
Analysis of Weld Induced Plasticity by
BFM

Akihide Saimoto

Abstract A method of analysis for the occurrence of localized thermoplastic
strain, in a material under plane strain constraint, is studied based on the
Body Force Method (BFM). BFM is an indirect boundary type method for
elastic stress analysis based on the principle of superposition. Any inelastic
strain can be expressed by the embedded force doublets in BFM. That is, in
the analysis, a continuously embedded force doublets into the elastic body are
used to express the presence of plastic strain. A simplified model of welding-
induced plasticity is treated as a numerical example of the present method.

1 Introduction

In order to evaluate a degree of plastic deformation and residual stresses in
the body, employment of the commercial finite element code that examines
automated elastic-plastic calculation becomes very popular in recent years.
The use of commercial code, however, often brings ineffectiveness from the
view point of computational efficiency since most of mechanical and structural
components are designed for elastic use, and therefore, the size of the plastic
zones, even if they may happen due to the localized stress concentration,
would be considerably small or restricted. In order to treat problems includ-
ing limited plasticity efficiently, Blomerus and Hills proposed a dislocation
based technique[1]. In their method, edge dislocations which correspond to
the occurrence of plastic flow are introduced into the direction of maximum
shear. The magnitude of the Burgers vector at the each dislocation point
where the plastic flow occurred are determined through the iterative proce-
dure considering the yield criterion. Since the magnitude of Burgers vector
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at each material point can be determined incrementally, the stress redistri-
bution due to the occurrence of yielding can be simulated reasonably. On
the other hand, the dislocation approach sometimes exhibits a convergence
problem in which the direction of maximum shear stress varied frequently
due to the fluctuation of the magnitude of Burgers vector at each material
point.

Chen and Nisitani proposed the other approach to treat the limited plas-
ticity based on the BFM. They employed a force doublet embedded in an
elastic continuum in order to express the inelastic strain[2, 3]. Although their
method is useful for wide range of limited plasticity, it seems difficult to ap-
ply the method to special class of plane strain problems in which the plastic
strain in the thickness direction becomes the major component. Since its
development in 1967, the BFM has been applied for elastic problems of prac-
tical importance. The original BFM is a boundary type method for elastic
stress analysis, whose base is the principle of superposition. That is, in BFM
any elastic problem is expressed in terms of the superposition of fundamental
stress fields. As the fundamental solution, stress field due to an isolated point
force acting in an infinite elastic body (usually referred as Kelvin solution)
is preferably employed due to its simplicity. In fact, based on the principle
of the BFM, stress components at an arbitrary point P , σij(P ), in an elastic
medium can be written as,

σij(P ) = σ0
ij(P ) +

∫

Γ

φk(Q)σkij(P,Q)dΓ (Q), (1)

where P ∈ R is an arbitrary point in the reference region R which is sur-
rounded by the imaginary boundary Γ . Q ∈ Γ is a source point which moves
along Γ . σkij(P,Q) is a fundamental stress solution (stress component σij at
point P caused by a unit magnitude of point force acting into kth-direction
at source point Q) and φk(Q) is a density function of the body force which
has to be determined so that the given boundary conditions are satisfied.

As discussed in [2, 3], the plastic strain at a point can be replaced by
an equivalent force doublet embedded in an perfect elastic solid whose yield
stress is infinite. So far, numerical solutions of elastic-plastic problems solved
by BFM have been limited to two-dimensional where the plastic strain in the
out-of-plain direction can be ignored or almost no influence. However, there
exist some important class of problems in which the presence of the out-of-
plane plastic strain has to be carefully treated even under the two-dimensional
situation. In the present study, the treatment of out-of-plane plastic strain by
two-dimensional BFM is discussed in detail. Then the weld-induced plasticity
problem is discussed under the assumption that the material is an elastic-
perfect-plastic body that obeys Von Mises yield criterion.
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2 Solution of Two-Dimensional Elastic Problem by BFM

Before going to further, it would be useful to remind how pure elastic problem
is solved by BFM briefly. Consider an infinite sheet with a circular hole of
diameter 2a, subjected to external tensile stresses as illustrated in Fig.1. In
this example, the reference region R is an infinite plate excluding the circular
disk, therefore, the imaginary boundary Γ is a circular ring of diameter 2a.
The stress component at point P can then be expressed according to Eq.(1)
as,

σxx(P ) = σ0
xx +

∫

Γ

{
φx(Q)σxxx(P,Q) + φy(Q)σyxx(P,Q)

}
dΓ (Q), (2)

σyy(P ) = σ0
yy +

∫

Γ

{
φx(Q)σxyy(P,Q) + φy(Q)σyyy(P,Q)

}
dΓ (Q), (3)

σxy(P ) =
∫

Γ

{
φx(Q)σxxy(P,Q) + φy(Q)σyxy(P,Q)

}
dΓ (Q) (4)

in which σxij(P,Q) and σyij(P,Q) are stress component at reference point
P (x, y) due to a unit magnitude of point force acting in the x and y direction
at source point Q(ξ, η), in an infinite sheet without any hole. σ0

xx and σ0
yy

are the uniform tensile stresses at infinity. φx(Q) and φy(Q) are the unknown
densities of body forces which define the magnitude of body forces at point
Q per unit length of an imaginary boundary as,

dFx(Q) = φx(Q)dΓ, dFy(Q) = φy(Q)dΓ. (5)

In numerical analysis, the imaginary boundary Γ is divided into several seg-
ments and the density of body forces at each segment is assumed to be
constant, linear or quadrateral function of the local coordinates as in a same
manner in boundary element methods. That is, the unknown densities of body
forces are determined through boundary condition defined from the limiting
procedure that the reference point P ∈ R is approached to the boundary
point PΓ from inside of the region R. When the problem is rather simple,

Fig. 1 Analysis of an elas-
tic sheet having a circular

hole of diameter 2a, sub-

jected to external tensile
stresses σ0

xx and σ0
yy at

infinity
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the unknown density of body forces have closed form solution and can be
determined theoretically. In fact, the situation illustrated in Fig.1 is one of a
such case.

It is well known that two-dimensional elasticity problem can be expressed
in terms of two complex potentials Ω(z) and ω(z) such that,

σxx + σyy = 2
{
Ω′(z) +Ω′(z)

}
, (6)

σyy − σxx + 2iσxy = 2
{
zΩ′′(z) + ω′(z)

}
(7)

where z is a complex variable that represents the reference point z = x+ iy.
The Kelvin solution (stress field due to a point force of magnitudes Fx and
Fy acting at a point ζ = ξ + iη in an infinite elastic sheet) can be expressed
in the form of complex potentials as,

Ω(z) = − Fx + iFy
2π(κ+ 1)

log(z − ζ), (8)

ω(z) =
κ(Fx − iFy)
2π(κ+ 1)

log(z − ζ) +
Fx + iFy
2π(κ+ 1)

ζ

z − ζ , (9)

where κ is a constant relating to Poisson’s ratio ν as κ = (3− ν)/(1 + ν) for
plane stress and κ = 3 − 4ν for plane strain. i is an imaginary unit and the
over-bar denotes the complex conjugate. Using the complex potentials, the
elastic fields of Fig.1 can be expressed as,

Ω(z) =
σ0
xx + σ0

yy

4
z − 1

2π(κ+ 1)

∮

Γ

log(z − aeiθ){φx(θ) + iφy(θ)}adθ,

(10)

ω(z) =
σ0
yy − σ0

xx

2
z +

κ

2π(κ+ 1)

∮

Γ

log(z − aeiθ){φx(θ)− iφy(θ)}adθ

+
1

2π(κ+ 1)

∮

Γ

ae−iθ

z − aeiθ {φ
x(θ) + iφy(θ)}adθ, (11)

since the source point ζ is on the circle of radius a which can be expressed as
ζ = aeiθ. The density functions φx(θ) and φy(θ) have closed form solution;

φx(θ) =
κ+ 1

2(κ− 1)
{
κσ0

xx − (κ− 2)σ0
yy

}

︸ ︷︷ ︸
=ρx=const.

= ρx cos θ, (12)

φy(θ) =
κ+ 1

2(κ− 1)
{
κσ0

yy − (κ− 2)σ0
xx

}

︸ ︷︷ ︸
=ρy=const.

= ρy sin θ. (13)

In fact, substituting Eqs.(12), (13) into Eqs.(10), (11) and by examining the
contour integral considering |z| > a using the Cauchy’s integral theorem, the
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exact expressions of complex potentials for Fig.1 are obtained as,

Ω(z) =
σ0
xx + σ0

yy

4
z +

σ0
xx − σ0

yy

2
a2

z
, (14)

ω(z) =
σ0
yy − σ0

xx

2
z − σ0

xx + σ0
yy

2
a2

z
+
σ0
xx − σ0

yy

2
a4

z3
. (15)

It is readily found that the density functions of the body force in Eqs.(12) and
(13) are given by the product of some constant and the components of unit
normal (cos θ, sin θ) at a point Q on the imaginary boundary Γ . Therefore,
the expression of boundary integral in Eqs.(10) and (11) can be transformed
into a form of area integral by using the Green’s theorem as,

Ω(z) =
σ0
xx + σ0

yy

4
z +

1
2π(κ+ 1)

∫∫

R

ρx − ρy
z − ζ dξdη, (16)

ω(z) =
σ0
yy − σ0

xx

2
z − κ− 1

2π(κ+ 1)

∫∫

R

ρx + ρy
z − ζ dξdη

+
1

2π(κ+ 1)

∫∫

R

(ρx − ρy)
ζ

(z − ζ)2
dξdη, (17)

in which R is a region inside of the imaginary boundary Γ , usually referred as
an auxiliary region. Equivalence of Eqs.(10), (11) and Eqs.(16), (17) directly
implies that the influence of the body force applied along the imaginary
boundary is equivalent to that of due to embedded force doublets into the
auxiliary region. The physical meaning of the force doublet is an embedded
eigen strain at the point where it is applied. In the problem that includes
any inelastic strain as in plastic strain, therefore, the force doublet is used to
express its influence.

In the next section, the line weld model and its thermoelastic solution is
discussed. Then the procedure for treating a thermoplastic strain is described

Fig. 2 Simple weld-
ing model for stainless

steel ( Yield stress:σY =
800MPa, Heat flux:Q =
11.2MW/m2, Linear expan-
sion coefficient:α = 1.2 ×
10−5, Young’s modulus:
E = 200.2GPa, Density:ρ =

7833kg/m3, Specific

heat:c = 586J/kgK,
Poisson’s ratio:ν = 0.3,
Thermal diffusivity:
κ = 1.133 × 10−5m2/s and

Thermal conductivity:λ =
52W/mK )

x

y

 w 

2D-modelingw

x

y

z

y=0

α,E,v,κ,ρ,c

weld line

Q



158 Akihide Saimoto

under the assumption that the material follows Prandtl-Reuss flow rule for
an elastic-perfect-plastic body under plain strain condition.

3 Simplified Model of Line Welding

Fig.2 shows a simplified weld model treated in this monograph. A uniform
strength of transient line heater of width “w” is applied to a surface of a
semi-infinite medium for a short duration of time with a strength chosen so
that the heat flux delivered from the heater resembles to that of expected
under actual welding of stainless steel. In a physical sense, the problem is
essentially two dimensional which should simplify the analysis, however, an
occurrence of plastic flow in the out-of-plane (z) direction make the problem
somewhat cumbersome. The resulted thermoelastic field such as temperature
rise τ(x, y, t) and elastic stress components σij(x, y, t) due to continuous heat-
ing of the duration t, can be written under the assumption of plane strain
(εzz = 0) that,

τ(x, y, t) =
Q

2πκρc

∫ w
2

−w2
E1 (S) dξ, (18)

σxx(x, y, t)
σ

=
∫ w

2

−w2

{(
2
y2

R2
− 1
)

1− e−S
S

− E1 (S)
}
dξ

− 2y
π

∫ ∞

−∞

(x− ξ)2

R4
f(ξ, t)dξ, (19)

Fig. 3 Temperature and

thermoelastic stresses after
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σyy(x, y, t)
σ

=
∫ w

2

−w2

{(
1− 2

y2

R2

)
1− e−S

S
− E1 (S)

}
dξ

− 2y3

π

∫ ∞

−∞

f(ξ, t)
R4

dξ, (20)

σxy(x, y, t)
σ

= 2y
∫ w

2

−w2

x− ξ
R2

1− e−S
S

dξ − 2y2

π

∫ ∞

−∞

x− ξ
R4

f(ξ, t)dξ, (21)

σzz(x, y, t)
2σ

= −
∫ w

2

−w2
E1(S)dξ − ν y

π

∫ ∞

−∞

f(ξ, t)
R2

dξ, (22)

where R2 is a square of distance between reference and source points R2 =
(x− ξ)2 +y2, (x, y) is a coordinate of reference point, (ξ, 0) is a coordinate of
source point, σ is a constant defined by σ = αEQ/4πκρc(1−ν) in which ρ is a
mass density, κ is a thermal diffusivity, c is a specific heat, α is a coefficient of
linear expansion, E is a Young’s modulus, ν is a Poisson’s ratio (the concrete
values of those material properties used were shown in the caption of Fig.2).
S is a non-dimensional parameter defined by S = R2/4κt, E1(x) is a integral

exponential function defined by E1(x) =
∫ ∞

x

e−u

u
du and f(ξ, t) is a function

defined as

f(ξ, t) = 2
√
κt×

[
1
p

(1− e−p2) + pE1(p2)
] ξ−w/2

2
√
κt

ξ+w/2
2
√
κt

. (23)

4 Expression of Plastic Strain by Force Doublets

As already mentioned, the most fundamental concept for the treatment of
plastic strain in BFM is to replace the distribution of plastic strain by force
doublets. Consider an elastic-plastic body whose elasticity constants are E for
Young’s modulus and ν for Poisson’s ratio. The plastic part in the region is
noted Rp which is surrounded by an elastic foundation Re. Next, consider an
infinitesimally small plastic element ωp ∈ Rp which has stress components
σij(P ) and strain components εij(P ) = εeij(P ) + εpij(P ) at point P ∈ ωp

where εeij(P ) and εpij(P ) are the elastic and plastic components of the strain
at point P , respectively. ωp can be extracted without affecting the stress
field if traction ti(P ) = σij(P )nj(P ) is applied to the outer surface of ωp,
and at the same time, traction −ti is applied to the inner surface of the cavity
which is made by the extraction of ωp from Rp where nj(P ) is a component
of unit normal at P . Then the plastic element ωp is transposed into an ideal
elastic element ωe which has the same elastic properties (E, ν) with region
Re but its yield stress is infinite so that no yielding takes place. Owing to
this transposition, stress state is unchanged but the strain state is decreased
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by the amount of plastic strain εpij(P ). Therefore, if ωe is embedded into the
cavity of the region Rp, some clearances due to shrinkage of the element would
be observed. In order to compensate this strain decrease and to embed an
ideal element without any gap, an additive stress Tij(P ) have to be applied to
ωe. If such procedure is continued until all the plastic element are transposed
to an ideal elastic one. After the completion of such transposition, the stress
field at an arbitrary point P may be expressed as follows.

σij(P ) = σtherm
ij (P )− Tij(P ) +

∫∫

Rp

∂σkij(P,Q)
∂ξ`

Tk`(Q)dRp(Q), (24)

where σtherm
ij (P ) is component of thermoelastic stresses at point P which is

shown from Eqs.(19) ∼ (22), Tij(Q) is a magnitude of force doublet embed-
ded at point Q, which compensate the strain decrease during the process of
transposition from plastic element ωp to elastic one ωe. Because of the in-
cremental nature of plasticity, not the total stress but an incremental stress
is used to evaluated a present stress state. Then Eq.(24) is replaced by an
incremental form as

dσij(P ) = dσtherm
ij (P )− dTij(P ) +

∫∫

Rp

∂σkij(P,Q)
∂ξ`

dTk`(Q)dRp(Q),(25)

in which dTij(Q) is an increment of the magnitude of force doublet, which
is related to the increment of plastic strain at point Q. The total stress can
be calculated by a sum of stress increments such that σij(P ) =

∑
dσij(P ).

When Prandtl-Reuss flow rule is employed, each component of plastic strain
increment is assumed to be proportional to the component of deviatoric stress
Sij with unknown proportionality constant λ. Therefore, the increment of the
magnitude of point force doublet can be expressed as

dTij(Q) = Dijk`dε
p
k`(Q) = Dijk`

(
σk`(Q)− δk`

σmm(Q)
3

)
λ(Q), (26)

where Dijk` is an elastic modulus tensor and δij is Kronecker delta. It should
be noted that the term “−dTij(P )” in Eq.(25) is indispensable with no
relation to the value of ∂σkij(P,Q)/∂ξ`. In fact, stress components due to
point force doublet which acts in the z direction ∂σzij(P,Q)/∂z results no
influence at any point P under plane strain condition. However, even when
∂σkij(P,Q)/∂ξ` = 0, the term −dTij(P ) still gives a non-zero influence at
point P . In a practical analysis, the proportional constant λ(Q) in Eq.(26) is
the unknown parameter to be determined through numerical analysis. Since
λ(Q) is not only a function of the position Q but also the function of time t, it
is required to determine the value of λ(Q) step-wisely, considering the yield
criterion. For example, when Von Mises criterion for elastic-perfect-plastic
body is supposed, the following relation must hold at a point P ∈ Rp that
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σeq =
√

(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6σ2
xy = σY . (27)

5 Numerical Procedure and Discussion

For the numerical estimation of residual strain, the time domain is divided
into N equally division as t = n∆t, (n = 1, 2, · · · , N) where ∆t is a time
increment. A space domain is also divided into number of square areas
(0.25mm×0.25mm) in which the magnitude of plastic strain (and therefore
the magnitude of force doublet) is assumed to be constant over a region and
a given time. As a result, the total stress component at the reference time
t = n∆t,σij(P )|n can be evaluated as

σij(P )|n =
n−1∑

k=1

dσij(P )|k + dσtherm
ij (P )|n − dTij(P )|n

+
∫

Ω

∂

∂ξ`

{
σkij(P,Q)

}
dTk`(Q)|ndΩp(Q), (28)

where dTij(P )|n is an increment of the magnitude of force doublet at time
t = n∆t. As seen Eq.(26), dTij(P )|n is related to the total stress state at
t = n∆t but it could be reasonable to evaluate its value from the value of

Fig. 4 Residual stress
distribution along y axis
after complete cool down
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total stress at one time step ∆t before. That is, dTij(P )|n is approximated
by

dTij(P )|n ≈ Dijk`

(
σk`(P )|n−1 − δk`

σmm(P )|n−1

3

)
λ(P )|n (29)

in which λ(P )|n is unknown parameter yet not determined. Substitution of
Eq.(29) into Eq.(28) gives stress components at arbitrary point P at reference
time t = n∆t, if parameter λ(P )|n is provided. In order to determine λ(P )|n,
the yield criterion is used. However, substitution of Eq.(28) into Eq.(27) leads
nonlinear simultaneous equations for the determination of λ(P )|n at each
reference point P . These nonlinear simultaneous equations should be solved
carefully under the constraint that λ(P )|n ≥ 0. When λ(P )|n becomes neg-
ative, it means the unloading process during plastic deformation so that the
value of λ(P )|n should set to be 0. In Figs.4 and 5 the residual stress distri-
bution along the y and x axes after complete cool down are shown. As seen,
the out-of-plane residual stress component σzz exhibits the largest value and
the usual plane strain relation σzz = ν(σxx + σyy) is violated.

6 Conclusion

A treatment of plastic strain in the direction of out-of-plane based on the
principle of the body force method was discussed. The material supposed
was elastic-perfect-plastic body that follows Von Mises yield criterion. It was
found that the residual stress in the out-of-plane direction σzz can be esti-
mated independently of the in-plane residual stress components σxx and σyy.
It was also found that the proposed method provides effective and efficient
technique for problems that include limited plasticity.
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