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Abstract In this paper, flexural vibrations of rectangular plates and beams
which are consisted of functionally inhomogeneous materials due to cyclic
loadings of external force and temperature change are analyzed mathemat-
ically. Interference between the flexural vibration due to cyclic loading and
that due to cyclic heating is discussed. The amplification effect by loading
frequency is also discussed for the deflection and stresses of the beam and the
plate. Furthermore, a control problem of the flexural vibration of the FGM
beam by the method of wave control is considered. In order to remove pro-
gressive wave in flexural waves excited by cyclic loading, intensity and phase
lag of control force are derived on the basis of the active sink method. Then,
the validity of wave control for the flexural vibration suppression of the FGM
beam is discussed.

1 Introduction

Research and development of functionally inhomogeneous materials, such as
functionally graded materials, contribute to make performances and func-
tions of structural materials high. The reduction of thermal stresses is one
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of important subjects, in order to secure the material strength and to im-
prove the heat resistance. Assuming applications of FGMs to the field of
aerospace, structural members become lightweight and thin-walled. Many
thin-walled structural members with high aspect ratio are frequently used.
Weight saving in the members often results in decrease of stiffness and nat-
ural frequency. Hence, to analyze dynamic responses, such as the vibration
of structural members due to cyclic loading and heating, is one of impor-
tant subjects from a viewpoint of structural strength. In our previous works,
effects of material inhomogeneity on flexural vibrations were discussed for
the FGM beam [1] and rectangular plate [2,3], which were subjected to the
cyclic loading and heating. When the loading frequency is close to a natural
frequency of the plate, the vibration due to the cyclic loading and that due
to the cyclic heating offset each other. However, flexural responses for the
vibrating FGM plate with high aspect ratio due to cyclic loadings are not
fully made clear.

A number of low dumping natural modes exist in flexible long and large
structures such as large space structures. Approaches to their vibration con-
trol can be broadly classified into two categories. One is the vibration modal
control method. This is effective to treat the problem of comparatively less
vibration modes. However, it is impossible to apply the method to the prob-
lem in which structures have a number of vibration modes such as large space
structures. Instead, an approach to use the control of propagating waves has
been studied for problems of dynamic analysis and applied to the control of
vibration for structures. This approach proposed by Tanaka and Kikushima
[4,5] is one of wave controls and is referred as the active sink method. This
method is regarded as promising, since it enables to make vibration modes
asleep in the structures. The study which treats a vibration control problem
of the structure composed of FGMs from a viewpoint of waves has not been
seen yet.

In this paper, we study an effect of plate aspect ratio on interference be-
tween flexural vibrations due to the cyclic loading and heating applying to a
FGM plate. We discuss a difference in the deflection amplification between
the FGM plate with high aspect ratio and a FGM beam. Then, we attempt
to treat a control problem of the flexural vibration of the FGM beam by the
method of wave control.
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2 Flexural Vibrations for FGM Beam and Rectangular
Plate

2.1 Analytical Development

We consider a plate of thickness h as shown in Fig. 1. The plate initially
at zero temperature is bounded by planes z′ = 0 and z′ = h. The surface
z′ = h is kept perfectly insulated while the surface z′ = 0 is exposed, for time
t > 0, to a prescribed temperature which varies sinusoidally in time with
amplitude T0 and angular frequency ω. The corresponding one-dimensional
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boundary-value problem for temperature change T = T (z′, t) is:
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, (1)

T = 0 at t = 0, (2)
T = T0 sinωt at z′ = 0, (3)
∂T

∂z′
= 0 at z′ = h. (4)

It is assumed that the specific heat capacity cρ and the thermal conductivity
λ are independently given in a form of power of thickness coordinate z′,

c(z′)ρ(z′) = c0ρ0

(
1 +

z′

h

)k
, λ(z′) = λ0

(
1 +

z′

h

)l
, (5)

where constants, c0,ρ0and λ0, are typical quantities of the specific heat, the
mass density, and the thermal conductivity; and exponents k and l are pa-
rameters representing the inhomogeneity in the specific heat capacity and
the thermal conductivity, respectively.

The solution of Eqs. (1)-(5) may be written in a dimensionless form as
follows:

T̄ (ζ, τ) =
∞∑

j=1

D1j(ζ) e−q
2
j τ +D2(ζ) cos ω̄τ +D3(ζ) sin ω̄τ, (6)



108 Ryuusuke Kawamura, Hiroshi Fujita, Kenichiro Heguri and Yoshinobu Tanigawa

where the variables ζ,τ and ω̄ denote the dimensionless quantities of coordi-
nate z′, time t, and angular frequency ω, whereas the descriptions in detail
of eigenvalue qj and functions D1j(ζ),D2(ζ),D3(ζ) are omitted due to limi-
tations of space.

We assume a beam and a rectangular plate which are subjected to a dis-
tributed transverse load p and are exposed to a temperature change T from
the stress-free state shown as Fig. 2. If the origin of the coordinate in the
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(a) Rectangular plate (b) Beam

Fig. 2 Inhomogeneous rectangular plate and beam.

thickness direction is appropriately chosen in the cross-section of the inho-
mogeneous beam and plate in which Young’s modulus has an arbitrary inho-
mogeneity in the thickness direction, thermal bending in the inhomogeneous
beam and plate can be treated easily. Thus, the coordinate in the thickness
direction z whose position of the origin is located at z′ = η from the top
surface z′ = 0 of the plate is defined as

z = z′ − η. (7)

The position η of the origin of the coordinate z is defined as

η =
∫ h

0

E(z′)z′ dz′
/∫ h

0

E(z′) dz′. (8)

The equations of motion for the flexural vibration of the inhomogeneous beam
and plate are written as

∂4w

∂x4
+
µb
cb

∂2w

∂t2
=

1
cb

(
p− ∂2MT

∂x2

)
, (9)

(
∂2

∂x2
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∂2

∂y2

)2

w +
µp
cp

∂2w

∂t2
=

1
cp

[
p− 1

1− ν

(
∂2

∂x2
+

∂2

∂y2

)
MT

]
, (10)

where ν is Poisson’s ratio; cb and cp are flexural rigidities; µb and µp are mass
per unit length and width; MT is thermal resultant moment.

We assume that the following cyclic transverse load p applies to the plate.
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p = p0 + p1 sinω1t, (11)

where p0 is reference load; p1 is load amplitude; ω1 is angular frequency.
The thermal resultant moment MT is defined as

MT =
∫ h

0

E(z′)α(z′)T (z′, t)(z′ − η) dz′. (12)

It is assumed that Young’s modulus E, the coefficient of linear thermal ex-
pansion α, the mass density ρ are independently given by a power of z′ as

E(z′) = E0

(
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z′

h

)m
, α(z′) = α0

(
1 +

z′

h

)n
, ρ(z′) = ρ0

(
1 +

z′

h

)γ
,

(13)
where constants E0 and α0 are typical quantities of Young’s modulus and
the coefficient of linear thermal expansion; and exponents, m,n and γ, are
parameters representing the inhomogeneity of Young’s modulus, the coeffi-
cient of linear thermal expansion, and the mass density, respectively.

The thermo-elastic analysis of the flexural vibration for the inhomogeneous
plate is outlined below. Because of the linearity of the problem, the solution
of Eq. (10) for the out-of-plane deflection w with simple supports may be
written in a dimensionless form as the sum of two deflections due to cyclic
loading w1 and to cyclic heating w2 as

w̄ = w̄1 + w̄2, (14)

w̄1 =
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where the dimensionless natural angular frequency Ωkl for the flexural vibra-
tion of the plate is given by

Ωkl =

√
c̄3h̄4

µ̄p

(
α2
k + β2

l

)
, αk = kπ, βl =

lπ

b̄
. (17)

The associated stress is also given as the sum of a solution to cyclic loading
and that to cyclic heating. It is illustrated that the stress σyy may be written
in a dimensionless form as the sum of the stress due to cyclic loading σyy1

and that due to cyclic heating σyy2,

σ̄yy = σ̄yy1 + σ̄yy2, (18)

σ̄yy 1 = − 1
1− ν2

ζm(ζ − 1− η̄)h̄2

(
ν
∂2w̄1

∂ x̄2
+
∂2w̄1

∂ ȳ2

)
, (19)

σ̄yy2 = − 1
1− ν2

ζm
{

(ζ − 1− η̄)h̄2

(
ν
∂2w̄2

∂ x̄2
+
∂2w̄2

∂ ȳ2

)
+ (1 + ν)ζnT̄

}
.

(20)

2.2 Numerical Results and Discussion

Interference between the flexural vibration due to cyclic loading and that
due to cyclic heating is examined numerically. The amplification effect by
the loading frequency is also examined for the deflection and stresses of the
beam and the plate.

Typical material properties are chosen from a mild steel. Thickness h,
length a, aspect ratio b̄(= b/a) for a plate and thickness h, length l for a
beam are given as

h = 2× 10−3[m] ; a = 1.00[m] , b̄ = 9.0 for plate, (21)
h = 2× 10−3[m] ; l = 1.00[m] for beam. (22)

So that the maximum deflection amplitude due to cyclic loading is made
closely equal to that due to cyclic heating, reference load p0 and load ampli-
tude p1 are given as

p0 = 0[kPa] , p1 = 1[kPa]. (23)

Angular frequencies in cyclic loading and heating ω̄1, ω̄ are given as

ω̄ 1 = ε1Ω
(h)
11 , ω̄ = εΩ

(h)
11 , (24)
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where ε1 and ε are parameters, Ω(h)
11 is a fundamental natural angular fre-

quency of the flexural vibration of a homogeneous square plate. Setting
ε 1 = ε, the interference in dynamic responses due to cyclic loading and
heating is examined, here. Figures 3 and 4 illustrate the time evolution of

Fig. 3 Time evolution of
out-of-plane deflection w̄ at

the central point x̄ = ȳ/b̄ =
0.5 of a FGM plate with
aspect ratio b̄ = 9.0.
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Fig. 4 Time evolution of

stress σ̄yy at the central
point x̄ = ȳ/b̄ = 0.5 on
the surface ζ = 1.0 in a

FGM plate with aspect
ratio b̄ = 9.0.
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out-of-plane deflection w̄ at the central point x̄ = ȳ
/
b̄ = 0.5 and that of the

stress σ̄yy in the plate with aspect ratio b̄ = 9. When the angular frequen-
cies of cyclic loading and heating are closer to the natural angular frequency
of the plate, the deflection due to cyclic loading w1 and that due to cyclic
heating w2 offset each other regardless of aspect ratio. The same result can
be observed in the stress σyy shown in Fig. 4.

Figure 5 shows the time evolutions of dynamic out-of-plane deflections for
the plate with aspect ratio b̄ = 9.0 and for a beam, respectively. The time
evolution of the out-of-plane deflection for the plate with high aspect ratio
approaches that for a beam gradually.

Figure 6 shows the variation of deflection amplifications with a parameter
in cyclic loadings ε. Here, a deflection amplification is defined as the ratio of
the maximum dynamic deflection w̄max to the maximum quasi-static deflec-
tion w̄st max. The amplification factors for the plate and the beam increase
with an increase of the parameter ε. Furthermore, the amplification factor
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for the plate approaches that for the beam gradually with increase of the
parameter ε.

Fig. 5 Time evolution of

out-of-plane deflections for

a rectangular plate with
aspect ratio b̄ = 9.0 and for

a beam.
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Fig. 6 Variation of de-
flection amplifications with
parameter of angular fre-

quency ε for a rectangular
plate and a beam.
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3 Vibration Suppression of FGM Beam by Active Sink
Method

The concept of wave control for a homogeneous flexible beam has been pro-
posed by Tanaka and Kikushima [4,5]. When energy of an external force is in-
put into structural member, the energy is carried as progressive waves. When
the progressive waves arrive at the boundary, reflected waves are exited. Syn-
chronization of interference of these travelling waves causes vibration modes
in the structural members. The basic concept of the vibration suppression in
the active sink method is to remove reflected waves from structures and to
make vibration modes asleep.

We formulate equations for the FGM beam and derive wave vectors by
the transfer matrix method. We assume that the beam is subjected to cyclic
loading Fin = fin sinωτ at the right boundary edge x̄ = 1.0 of the beam and
control force Fd = fd sin(ωt + ϕ) at the left boundary one x̄ = 0.0, simulta-
neously as shown in Fig. 7. The mechanical conditions for the beam are free
at both edges. According to the active sink method, we obtain the intensity
fd and the phase lag ϕ in the control force Fd so as to null the reflected wave
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in the wave vector. Figures 8 and 9 show an effect of the control force on

Fig. 7 Vibration suppres-
sion of a FGM beam by the

active sink method.

in in sinF f tω=( )d d sinF f tω ϕ= +

O
L

x

the out-of-plane deflection of the beam. The intensity of the cyclic loading is
assumed as fin = 0.05[N] and the angular frequency ω is set as 0.999 times
of third natural angular frequency Ω3. When the control force is applied to
the beam, the maximum amplitude of deflection is decreased about less than
2% of one without the control force.

Figure 10 shows the difference in the time evolution of deflection at the
right boundary edge. The amplitude of the flexural vibration of the beam
without control force increases with time. On the other hand, the ampli-
tude of the beam vibration with control remains small with elapse of time.
Thus, we can confirm the validity of the active sink method for the vibration
suppression of the FGM beam.

Fig. 8 Longitudinal distri-

bution of out-of-deflection
w̄ of a FGM beam due to
cyclic loading Fin without

control force.
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Fig. 9 Longitudinal distri-
bution of out-of-deflection

w̄ of a FGM beam due
to cyclic loading Fin with

control force Fd.
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Fig. 10 Effect of addition

of control force on the time
evolution of out-of-plane

deflections at the right

boundary edge x̄ = 1.0 of a
FGM beam.
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4 Conclusion

Analytical solutions for the FGM beam and plate which are subjected to
the cyclic loading and heating are derived. Interference between the flexu-
ral vibration due to the cyclic loading and that due to the cyclic heating is
discussed numerically. The amplification effect by loading frequency is also
discussed for the deflection and stresses of the beam and the plate. A compar-
ison is made for transient flexural responses of the beam and of the plate with
high aspect ratio. Furthermore, a vibration suppression of the FGM beam is
discussed by applying the active sink method and is illustrated numerically.
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