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Abstract This paper presents an analysis on the nonlinear transient behavior
of a piezothermoelastic laminate. For the analytical model, a laminated beam
is considered to be composed of elastic structural and piezoelectric layers that
are subjected to mechanical, thermal, and electrical loads as disturbances or
intended control procedures. The deformation of the laminate is analyzed
using the classical laminate theory and the von Kármán strain. Equations
of motion in terms of the displacements are obtained and analyzed through
the Galerkin method. As a result, the dynamic deflection of the laminate
is found to be governed by the equation for a polynomial oscillator, and
the transient large deformation due to mechanical, thermal, and electrical
loads are obtained. Through these results, the characteristics of the transient
deformation of the laminate are discussed in detail.

1 Introduction

Piezoelectric materials have been used extensively as sensors and actuators
to control structural configuration and to suppress undesired vibration in
engineering due to their superior coupling effect between elastic and electric
fields. Fiber reinforced plastics (FRP) such as graphite/epoxy are in demand
for lightweight structures because they are lighter than general metals and
have high specific strength. The structures composed of laminated FRP and
piezoelectric materials are called piezothermoelastic laminates and have at-
tracted considerable attention in fields such as aerospace engineering and mi-
cro electro mechanical systems. For aerospace applications, structures have to
be comparatively large and lightweight. Because of this, they are vulnerable
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to disturbances such as environmental temperature changes and collisions
with space debris. As a result, the deformations caused can be relatively
large. Therefore, the large deformations of piezothermoelastic laminates were
analyzed by several researchers [1-3].

The studies mentioned above [1-3] dealt with the static behavior of
piezothermoelastic laminates. However, aerospace applications of these lam-
inates involve dynamic deformation. Therefore, dynamic problems for large
deformations of piezothermoelastic laminates have become a focus of study
[4-7].

In these analyses [4-7], dynamic deformation deviating arbitrarily from the
equilibrium state was not considered, although it is very important from a
practical viewpoint for something such as aerospace applications. Therefore,
in a previous study Ishihara and Noda [8] analyzed steady vibration devi-
ating from the equilibrium state and obtained the relationship between the
deflection of the laminate and its velocity under various loading conditions,
excluding the effect of damping.

In practice, it is important to consider the effect of damping on analyzing
the dynamic behavior because damping changes such dynamic characteristics
as the transient behavior and natural frequencies. Therefore, an analysis of
transient dynamic behavior that takes damping into account is important to
estimate dynamic characteristics properly. This paper presents an analysis
of nonlinear transient dynamic behavior for a piezothermoelastic laminated
beam with the damping effect and dynamic deflections that deviate arbi-
trarily from the equilibrium state considered. For the analytical model, a
laminated beam with both ends simply supported is considered, composed
of fiber-reinforced laminate and piezoelectric layers subjected to mechanical,
thermal, and electrical loads as disturbances or as intended control proce-
dures. Nonlinear large deformation of the laminate is analyzed based on the
von Kármán strain [9] and classical laminate theory. Equations of motion for
the laminate are derived using the Galerkin method [10]. As a result, the
dynamic deflection of the beam is found to be governed by the equation for
a polynomial oscillator [11]. According to the equation, the transient large
deformation due to mechanical, thermal, and electrical loads are obtained.
Moreover, numerical calculation is performed to investigate the nonlinear
transient deformation and how to stabilize it.

2 Theoretical analysis

2.1 Problem

The model considered is a simply supported beam with dimensions a× b×h
and composed of N layers as shown in Fig. 1. Two of the N layers (zk−1 ≤
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z ≤ zk, zk′−1 ≤ z ≤ zk′) exhibit piezoelectricity while the other layers do not.
The beam is laminated in a symmetrical cross-ply manner. The laminate isNON-LINEAR DYNAMIC DEFORMATION OF A PIEZOTHERMOELASTIC 
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Fig. 1. Analytical model. 
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subjected to the transverse load Q(t) in the z direction and the temperatures
θ0(t) and θN (t) on the upper (z = −h/2) and the lower (z = h/2) surfaces of
the laminate respectively as mechanical and thermal disturbances. To control
the effects of the disturbances, the laminate is also subjected to the electric
potentials Vk(t) and Vk′(t) on z = zk−1 and z = zk′ respectively. The surfaces
z = zk and z = zk′−1 are both level surfaces of electric potential.

2.2 Governing equations

Based on the classical laminate theory, the von Kármán strain, and the con-
stitutive equation of piezothermoelasticity, the constitutive relations for the
laminate are given as follows [8, 12]:

Nx = A

[
∂u0

∂x
+

1
2

(
∂w

∂x

)2
]
−NT

x −NE
x , Mx = −D∂

2w

∂x2
−MT

x −ME
x (1)

where Nx and Mx denote the resultant force and moment respectively, u0

and w denote the displacement components in the x- and z- directions re-
spectively, A andD denote the extensional and bending rigidities respectively.
Moreover, NT

x , MT
x , NE

x , and ME
x are obtained as follows [8]:

NT
x =

1
2

[ΘN (t) +Θ0 (t)]
N∑

i=1

λi (zi − zi−1),
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MT
x =

1
3h

[ΘN (t)−Θ0 (t)]
N∑

i=1

λi
(
z3
i − z3

i−1

)
,

NE
x = ek [Vk (t)− Vk′ (t)] , ME

x = ek [Vk (t) + Vk′ (t)]
zk + zk−1

2
(2)

where λi and ei denote the stress-temperature coefficient and piezoelectric
coefficient respectively for the i-th layer. Equations of motion which integrate
the effect of in-plane resultant forces into anti-plane motion are given as
follows [8]:

∂Nx
∂x

= 0 , ρh
∂2w

∂t2
+ cd

∂w

∂t
= Nx

∂2w

∂x2
+
∂2Mx

∂x2
+Q (3)

where ρ and cd denote the average mass density with respect to z and the
damping coefficient. By substituting Eq. (1) into Eq. (3), the equations of
motion expressed by the displacements are given as follows:

L1

(
u0, w

)
=

∂

∂x

(
NT
x +NE

x

)
,

ρh
∂2w

∂t2
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∂w

∂t
+ L2(u0, w) = Q− ∂2

∂x2
(MT

x +ME
x )− (NT

x +NE
x )
∂2w

∂x2
(4)

where the definitions of the differentiation operators L1 and L2 are given as

L1

(
u0, w

)
= A

[
∂2u0

∂x2
+
∂w

∂x

∂2w

∂x2

]
,

L2

(
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)
= −A

[
∂u0

∂x
+

1
2

(
∂w

∂x

)2
]
∂2w

∂x2
+D

∂4w

∂x4
. (5)

2.3 Galerkin method

The Galerkin method [10] is used to solve Eq. (4). Trigonometric functions are
chosen as the trial functions and the considered displacements are expressed
as series:

{
u0, w

}
=
∞∑

m=1

{um (t) , wm (t)} sinαmx : αm =
mπ

a
(6)

to satisfy the simple support conditions. Then, the Galerkin method is applied
to Eq. (4) to obtain

∫ a

0

[
L1

(
u0, w

)
− ∂

∂x

(
NT
x +NE

x

)]
sinαm′xdx = 0,
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∫ a

0

[
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∂2w
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+ L2

(
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)
−Q+

∂2
(
MT
x +ME

x

)

∂x2

+
(
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x

) ∂2w

∂x2

]
sinαm′xdx = 0 , m′ = 1, 2, 3, . . . ,∞. (7)

By substituting Eq. (6) into Eq. (7) and integrating, the simultaneous non-
linear equations with respect to um and wm are obtained. Moreover, by elim-
inating um from the equations, the following simultaneous nonlinear ordinary
differential equations with respect to wm (m = 1, 2, 3, . . . ,∞) are obtained

ρh
d2wm

dt2
+ cd

dwm
dt

+ kLmwm +
∞∑

m′=1

∞∑

i=1

∞∑

k=1

kNm,m′ikwm′wiwk = pm,

m = 1, 2, 3, . . . ,∞ (8)

where the definitions of klm, kNm,m′ik, and pm are given as

kLm = α2
m

[
Dα2

m −
(
NT
x +NE

x

)]
,

kNm,m′ik =
1
8
Aα2

m′αiαk

(
∆c,ikm′m −

∞∑

l=1

2αi
αl

δiklδm′lm

)
,

pm = Qm + α2
m

(
MT
x,m +ME

x,m

)
, (9)

and Qm(t), MT
x,m(t), and ME

x,m(t) denote the Fourier coefficients of Q, MT
x ,

and ME
x respectively and the definitions of δij and ∆c,ijkl are given in the

previous paper [8].

2.4 Polynomial Oscillator

To develop the physical characteristics of the dynamic behavior of the lami-
nate, Eq. (8) is simplified. By truncating the infinite series in Eq. (6), there-
fore, in Eq.(8), up to one term and considering Eq. (8) form = 1, the following
nonlinear equation with respect to w1 is obtained

ρh
d2w1

dt2
+ cd

dw1

dt
+ kL1 w1 + kN1,111w

3
1 = p1. (10)

Note that, as in Eq. (6), w1 denotes the deflection at the center of the laminate
(x = a/2). By introducing non-dimensional variables such as
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U ≡ w11

h
, τ ≡

√
kN1,111h

ρ
t, λ ≡ − kL1

kN1,111h
2
, δ ≡ cd√

ρhkN1,111h
, α ≡ p1

kN1,111h
3
,

(11)
Eq. (10) is rewritten in non-dimensional form as

d2U

dτ2
+ δ

dU
dτ
− λU + U3 = α : δ ≥ 0 , α ≥ 0. (12)

2.5 Dynamic Behavior

2.5.1 Static large deflection

First, the static large deflection of the laminate and its stability are examined.
The static large deflection is obtained as the equilibrium point Ue of the
dynamical system described by Eq. (12). From Eq. (12), Ue is obtained for
α = 0 as:

Ue = 0 (≡ U1) ,

Ue = ±
√
λ (≡ U2) : λ > 0 (13)

and for α > 0 as:

Ue = U3 : λ < 0,

Ue = U4 : 0 < λ < 3 3
√

(α/2)2
,

Ue = U5, U6, U7 : λ > 3 3
√

(α/2)2 (14)

where the explicit solutions for U3 through U7 are given in the previous
paper [8]. The stability of the deflection described by Eqs. (13) and (14) can
be examined by considering the small deviation of U in the vicinity of Ue as
is usual [11]. The variations of the static large deflection of the laminate with
parameter λ are shown graphically in Fig. 2, where solid lines denote stable
deflections and broken lines denote unstable ones.

2.5.2 Transient large deflection

The transient large deflection that deviates arbitrarily from the equilibrium
state is examined. By introducing new non-dimensional variables such as
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Fig. 2 Variation of static
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Fig. 2. Variation of static large deflections with parameter λ  

Transient large deflection 

The transient large deflection that deviates arbitrarily from the equilibrium state is 
examined.  By introducing new non-dimensional variables such as 
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Eq. (12) is rewritten as 
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d
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2
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αλδ

τ
UUVU . (16) 

By solving Eq. (16) for U  through the Runge-Kutta method, the transient behav-
ior of the laminate is analyzed and the results are presented by orbits, that is, the 
relationship between the deflection U  and velocity V .  From Eqs. (13) and (14), 

′

′ ′

U ′ ≡ U√
|λ|

, τ ′ ≡ τ
√
|λ| , V ′ ≡ dU ′

dτ ′
, α′ ≡ α

|λ|
√
|λ|

, δ′ ≡ δ√
|λ|
,

(15)
Eq. (12) is rewritten as

d2U ′

dτ ′2
+ δ′V ′ − sgn (λ) · U ′ + U ′3 − α′ = 0. (16)

By solving Eq. (16) for U ′ through the Runge-Kutta method, the transient
behavior of the laminate is analyzed and the results are presented by orbits,
that is, the relationship between the deflection U ′ and velocity V ′. From Eqs.
(13) and (14), the final state of the transient behavior is found to be classified
into three cases depending on parameters λ and α′ as:

case(i) : λ < 0
case(ii): λ > 0 and α′ > 2

√
3
/

9
case(iii): λ > 0 and 0 6 α′ < 2

√
3
/

9



 . (17)

In order to connect the behavior with engineering sense, the following situa-
tion is considered:

Q = 0 , ΘN = Θ0 (≡ Θ) , Vk = Vk′ (≡ V ) (18)

where Θ and V are assumed as the thermal disturbance and control procedure
respectively. Then, from Eqs. (2), (9), (11), (15), and (18):

α′ =
4α2

1 (zk + zk−1) ekV
π |λ|

√
|λ|h3kN1,111

,

λ =
α2

1

h2kN1,111

N∑

i=1

λi (zi − zi−1) (Θ −Θcr) , Θcr =
Dα2

1

N∑
i=1

λi (zi − zi−1)
(19)

Thus, λ < 0 and λ > 0 mean that the laminate is subjected to temperatures
that are lower and higher than the buckling temperature respectively, and α′
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corresponds to the electric voltage applied to the piezoelectric layers.
Figure 3 shows the transient vibration of the laminate for case (i), where

the temperature is lower than the buckling temperature. Figure 4 shows the
result for the case (ii), where the temperature is higher than the buckling
temperature and the electric voltage is higher than the critical value. From
Figs. 3 and 4, the laminate is found to vibrate, decay, and tend to the final
deflections U ′3 (corresponding to U3) and U ′4 (corresponding to U4).

Figure 5 shows the transient vibration of the beam for the case (iii), where

Fig. 3 Transient de-

formation for case (i)
(λ < 0 , α′ = 1 , δ′ = 0.2)
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tion.  The desired final deformation is found to be possible to achieve by applying 
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the temperature is higher than the buckling temperature and the electric
voltage is smaller than the critical value. In Fig. 5, the points denoted by U ′5,
U ′6 and U ′7 correspond to the equilibrium points U5, U6 and U7 respectively
and the dotted line shows the separatrix, or the orbit that passes through the
unstable equilibrium point U ′7 and disregards the effect of damping (δ′ = 0).
From Fig. 5, it is found that, when the initial deformation is outside the
separatrix, deformation reaches out to a branch of the separatrix and tends
to the equilibrium point enclosed by the branch.

Finally, Fig. 6 shows the effect of the electric voltage on the transient
deformation. The desired final deformation is found to be possible to achieve
by applying the appropriate electric voltage, which is of great importance in
practical viewpoint.
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λ > 0 , δ′ = 0.2 , (U ′, V ′)|τ ′=0 = (1.7, 0)

´

3 Conclusion

The nonlinear transient behavior of a piezothermoelastic laminate is analyzed
with the damping effect and the dynamic deflection that deviates arbitrarily
from the equilibrium state considered. For the analytical model, a rectan-
gular laminated beam with both ends simply supported and composed of
fiber-reinforced laminate and piezoelectric layers is considered and subjected
to mechanical, thermal, and electrical loads as disturbances or as intended
control procedures. Nonlinear large deformations of the laminate are ana-
lyzed based on the von Kármán strains and classical laminate theory. As a
result, the dynamic deflection of the laminate is found to be governed by the
equation for a polynomial oscillator. Using the equation, the transient large
deformation with the damping effect considered due to mechanical, thermal,
and electrical loads is obtained. From the results for the transient large de-
formation, it is found that appropriate application of the electric voltage to
the piezoelectric layers can govern the final deformation of the beam.
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