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Foreword

The Workshop revived a long-lasting and fruitful cooperation between Japan-
ese and Austrian researchers in mechanical sciences, particularly concerning
thermal stresses and related fields. The close relationship between the two
groups of researchers was initiated at the First International Conference on
Thermal Stresses in Hamamatsu, Japan in 1995, with Professor Naotake
Noda, the conference chair. The cooperation deepened in the course of the
following bi-annual series of Conferences on Thermal Stresses, the fourth,
chaired by Professor Yoshinobu Tanigawa, took place in Osaka in 2001,
and the sixth in Vienna in 2005 was co-chaired by Rudolf Heuer and
Franz Ziegler. For obvious reasons, the researchers interest has shifted
towards the emerging related field of smart materials and structures. In
2002, Professors Kazumi Watanabe and Franz Ziegler co-chaired the
IUTAM Symposium on Dynamics of Advanced Materials and Smart Struc-
tures in Yamagata, Japan. The recently founded Austrian Center of Compe-
tence in Mechatronics, ACCM in Linz, Austria, provided us with the oppor-
tunity to pursue the intense mutual exchange of know-how in this high-tech
area of research. The undersigned greatly enjoyed the reunion with distin-
guished colleagues at this 1st Japan-Austria Joint Workshop on Mechanics
and Model Based Control of Smart Materials and Structures, which took place
at the Johannes Kepler University in Linz, September 2008. Distinguished
researchers from Germany and Italy were invited to complete the Austrian
research group. The Proceedings of this Workshop will make available up-
to-date results to the international community and therefore will stimulate
further developments and successful international co-operations in the field
of Mechatronics.

Vienna, June 2009 Franz Ziegler
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Preface

The 1st Japan-Austria Joint Workshop on Mechanics and Model Based Con-
trol of Smart Materials and Structures aimed at bringing together scientists
from Japan and Austria with an outstanding expertise in mechanics and con-
trol, with emphasis on the application of smart materials for the control of
structures.

The workshop was intended as a scientific kick-off event for the Area Me-
chanics and Model Based Control within the newly founded Austrian Center
of Competence in Mechatronics (ACCM), which served as the Steering Or-
ganisation for the workshop. Mechanics and model based Control are both
rapidly expanding scientific fields and fundamental disciplines of engineering.
They share demanding mathematical and/or system-theoretic formulations
and methods. One challenge in Mechanics and Model based Control is to
use the ever increasing computer power with respect to both, the simulation
of complex physical phenomena in mechanics, and the design and real-time
implementation of novel control systems. Further challenges follow from the
availability of efficient multi-functional materials, so-called smart materials,
allowing the design and implementation of new types of actuator/sensor fields
and networks. The latter topics were the goals of the present workshop.
The main topics of the workshop are:

• Laminated, composite and functionally graded materials.
• Thermal as well as piezoelectric actuation.
• Active and passive damping.
• Vibrations and waves.

We believe that the workshop will finally result into the creation of research
teams with participation not only from Japan and Austria, but also from
other European countries; the latter was enabled by the participation of
widely renowned scientists from Europe. Such teams should push the frontiers
of mechanics and control of smart materials and structures to new dimen-
sions, resulting into the advanced design of future intelligent structures.
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viii Preface

The key objectives of the workshop were:

• Enabling the interchange of ideas from advanced mechanics of structures
and from control theory.

• Clarification of expectations of researches in the field of mechanics from
advanced control theory and vice versa.

• Development of joint Japan and Austria research proposals and teams
with participation from other countries.

• Encouragement of collaborations among industry and universities across
the borders of the participating countries.

The undersigned editors are happy to present in the following full length
papers of presentations from Japan, from Austria, 2 from Italy and 1 from
Germany. It is hoped that these contributions will further stimulate the in-
ternational research and cooperation in the field. The present book is aimed
as a first volume of a future Series in Research on Advanced Methods of
Mechatronics

Linz, Okinawa, Yamagata Hans Irschik
June 2009 Michael Krommer

Kazumi Watanabe
Toshio Furukawa
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Energy Absorption of
Axially-Impacted Column Controlled
by Transverse Impact

Tadaharu Adachi

Abstract Energy absorption of a column under an axial impact was con-
trolled by a transverse impact which attributed instantaneous reduction of
the structural stiffness. It was found that the absorption of the axial im-
pact energy increased due to the post-buckling deformation being enlarged
by transverse impact, though the axial impact load decreased. The experi-
ment showed that the time elapsed from the beginning of the axial impact
to the transverse impact significantly influenced the energy absorption. A
transverse impact applied simultaneously with an axial impact produced the
highest energy absorption. The method suggested in this paper could increase
the energy absorption without loosing any stiffness and static strength.

1 Introduction

Safety is becoming a vital issue in the design of modern transportation means
such a vehicle, train, helicopter and airplane. In recent years, impact energy
absorption during structural crash becomes very important and is excessively
investigated. Generally, in a collision, the structure collapses within the crush-
able zone to absorb the impact energy for safety of the passenger [1-3]. The
most common method to easily collapse a structure is reducing its structural
stiffness by adding imperfections such as dents and bents [4,5].

However, this method has a consequence of reducing the stiffness which is
very important for a better operation performance, minimizing vibration and
noise. Therefore, it is important to maintain high stiffness while improving
the energy absorption using alternative ways. To achieve this purpose, system
of impact energy absorption must be developed based on principle of smart
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structure. The main concept of the smart structure is an active control of
absorption and reducing structure stiffness only when an impact occurs.

In a previous studies, the author has investigated the effect of a transverse
impact on static post-buckling [6, 7] and dynamic post-buckling [8, 9] of a col-
umn to control energy absorption by experiment and finite element method
(FEM). In this paper, the effect of transverse impact on the dynamic post-
buckling of a column under axial impact loading was summarized. Especially
effect of transverse-impact timing on energy absorption was discussed. Gen-
erating column buckling by applying an axial impact and generating beam
bending by applying a transverse impact have been reported in several stud-
ies [10-13]. However, energy absorption of axially-impacted beam controlled
by transverse impact has not been investigated except the author.

2 Concept of Energy-Absorption Control

The principle idea of this study is illustrated in Fig. 1. In the conventional

In a previous studies, the author has investigated the effect of a transverse im-
pact on static post-buckling [6, 7] and dynamic post-buckling [8, 9] of a column to 
control energy absorption by experiment and finite element method (FEM). In this 
paper, the effect of transverse impact on the dynamic post-buckling of a column 
under axial impact loading was summarized. Especially effect of transverse-
impact timing on energy absorption was discussed. Generating column buckling 
by applying an axial impact and generating beam bending by applying a transverse 
impact have been reported in several studies [10-13]. However, energy absorption 
of axially-impacted beam controlled by transverse impact has not been investi-
gated except the author. 

CONCEPT OF ENERGY-ABSORPTION CONTROL 
The principle idea of this study is illustrated in Fig. 1. In the conventional method 
as shown in Fig. 1(a), the stiffness of a column is reduced beforehand by adding 
imperfections such as a dent. When impactor M collides with the column, the 
structure collapses easily due to the dent, and the impact energy absorption in-
creases. In this study, a transverse impact load Q(t) is applied to a column without 
an imperfection during an axial impact load P2(t) caused by the collision of impac-
tor M, as shown in Fig. 1(b). The transverse impact load Q(t) leads to dynamic 
buckling of the column and energy absorption of the column is improved without 
reduction of static stiffness and strength caused by imperfection. 
 

 

 

Fig. 1. Concept of absorption by applying transverse impact. 
Fig. 1 Concept of absorption by applying transverse impact

method as shown in Fig. 1(a), the stiffness of a column is reduced beforehand
by adding imperfections such as a dent. When impactor M collides with the
column, the structure collapses easily due to the dent, and the impact energy
absorption increases. In this study, a transverse impact load Q(t) is applied to
a column without an imperfection during an axial impact load P2(t) caused
by the collision of impactor M , as shown in Fig. 1(b). The transverse impact
load Q(t) leads to dynamic buckling of the column and energy absorption
of the column is improved without reduction of static stiffness and strength
caused by imperfection.



Energy Absorption of Column Controlled by Transverse Impact 3

3 Experiment

Based on the concept, the experimental apparatus was set up as shown in Fig.
2. First, an axial impactor was dropped onto a specimen. The axial impactor
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Fig. 2 Experimental apparatus

was a steel bar with a diameter of 40mm and a length of 750mm. During the
axial impact, a transverse impactor launched from an air gun collided with
the specimen. The transverse impactor was an acrylic bar with a diameter of
10mm and a length of 600mm. The specimen was clamped 30mm from both
ends by steel vices. The crosshead could slide smoothly in vertical direction
along four guide bars to compress the specimen axially. A rubber plate of
20mm in thickness was set on the crosshead to prevent the axial impactor
from rebounding.

The axial impact load P (t) applied to the specimen by collision with the
steel bar on the crosshead can be calculated from the longitudinal strain
history at the middle point of the steel bar based on the one-dimensional
elastodynamics theory [14]. The strain history was measured with semicon-
ductor gauges (Kyowa, KSP-2-120-E4). The displacement of the crosshead
measured by an optical displacement transducer (Zimmer, Model 100B) was
assumed to be equal to the axial displacement u(t) at the top end of the
specimen.
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The transverse impact load Q(t) was measured with strain gauges (Ky-
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Fig. 3 Specimens

owa, KFG-2-120-C1-23) located at 50 mm from the impacted tip of the trans-
verse impactor. The axial impact velocity vA and transverse impact velocity
vT were evaluated from the passing time interval between two He-Ne laser
beams just before the collision with the specimen.

The specimens and the experimental conditions related to the transverse
impact are shown in Fig. 3 and Table 1. Specimen S was a straight column
with a length of 400mm and a thickness of 3mm. Specimen S was subjected
to a transverse impact during an axial impact as shown in Fig. 1(b). Another
test where specimen S was only applied with an axial impact was also con-
ducted. The two tests with and without a transverse impact was distinguished
as test S−T and test S− 0. Tests of the conventional method shown in Fig.
1(a) were also carried out using specimens with dents. Specimens D1 to D4

were straight columns with one or two semi-cylindrical dents, which were
2mm and 10mm in diameter, to easily generate buckling when applied by an
axial impact only. The dents were located such that the column would buckle
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easily. All specimens were made of aluminum alloy (JIS A6063). The Young’s
modulus and the yield stress were 70GPa and 180MPa, respectively. The
combinations of the specimens and the experimental conditions are called
the test types given in Table 1 hereafter. The axial impact velocities vA were

Specimen Test type Transverse impact

S S − 0 No

S S − T Applied

D1 D1 − 0 No

D2 D2 − 0 No

D3 D3 − 0 No

D4 D4 − 0 No

Table 1 Specimens and test types

1.7m/s, 2.6m/s, and 3.5m/s, while the transverse impact velocities vT were
4.8m/s, 5.3m/s, and 6.3m/s. The transverse impactor collided at 250mm
from the bottom end of specimen S.

4 Experimental Results

Figure 4 shows the experimental results of test type S−T with vA = 3.5m/s
and vT = 5.3m/s. In the figures, the transverse impact time tT is defined as
the time elapsed between the collision of the axial impactor and that of the
transverse impactor. Here, the results with different transverse impact times
are denoted. The history of the axial impact load for test S − 0 was an ap-
proximate half-sine curve with a period of 8ms as shown in Fig. 4(a), while
the duration of the transverse load in Fig. 4(c) was much shorter and the
maximum value was smaller. The transverse impact at tT = 0.4ms reduced
the axial load more significantly compared to that with other transverse im-
pacts and that with no transverse impact (S−0), as shown in Fig. 4(a). As tT
became longer, the axial load histories converged to the result of type S − 0.
On the other hand, the axial displacement at the top of the specimen for the
transverse impact at tT = 0.4ms was the largest out of the results in Fig.
4(b).

From Figs. 4(a) and 4(c), the axial load-displacement curves were eval-
uated as shown in Fig. 4(d). The curves stood rapidly just after the axial
impact, although the curves of S − T (tT = 0.4ms) has a flatter slope due to
the short tT . After the buckling, the curve decreased gradually during the
post-buckling process as the displacement increased. The transverse impact
was confirmed to cause lower peaks and horizontally longer curves, which
were irreversible. This means external work by the axial impact was lost by
the post-buckling behavior of the specimen, that is, the energy absorption.
Therefore, the absorbed energy Eab of a specimen defined as the lost exter-
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Fig. 4 Experimental results for test type S − T : Axial impact velocity vA = 3.5m/s;
transverse impact velocity vT = 5.3m/s

nal work by the axial impact, can be evaluated from the envelope area of the
P − u curve.

Figure 4(e) shows the histories of energy absorption Eab. All tests show
different Eab histories after buckling. The total Eab for tT = 0.4ms had the
highest value. The transverse impact contributes to improving the energy
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absorption significantly. The transverse impact instantaneously reduced the
column stiffness and made the specimen more ready to absorb higher energy.
The effect was observed to be strongly dependent on the transverse impact
time regardless of the transverse impact velocity.

Figure 5 shows the experimental results of tests S−0, D1, D2, D3 and D4
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Figure 5 

  

Fig. 5 Experimental results for test types D1 − 0 to D4 − 0: Axial impact velocity vA =
3.5m/s

(with no transverse impact) to clarify the effect of the dent on the specimen.
In Fig. 5(a), each axial load was applied for approximately 8ms. The axial
impact loads reached the highest values for tests S − 0 and D1 − 0 and the
lowest one for test D4 − 0. As shown in Fig. 5(b), the axial displacement
for test type D3 − 0 was the largest. The P − u curves are shown in Fig.
5(c). Different from the P − u curve of the tests with a transverse impact,
the P − u curves for the dented specimens had the same shape as the one
of test S − 0, even though the peaks were lower and the displacements were
horizontally longer. Figure 5(d) shows that the total energy absorption of
test D3 − 0 was the largest compared to the other tests. As expected, these
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results denoted that the existence of dents on the specimen affects increasing
the energy absorption.

5 Discussion

In the previous section, it is described that the transverse impact time tT
strongly influenced the energy absorption. Here, the effect of tT on absorbed
energy Eab and maximum value of the axial load Pmax were considered in
detail. The results for the axial impact velocity vA at 3.5m/s are shown in
Fig. 6. In this figure, the efficiency of Eab is defined as the ratio of Eab to Tadaharu Adachi, page 6/7
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Figure 6 

Fig. 6 Effect of transverse impact time and transverse impact velocity

the impact energy, which is the kinetic energy of the axial impactor just
before collision. In the bottom graph of Fig. 6, the history of axial load for
test S − 0 is shown to help understanding tT . The Eab are independent of
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the transverse impact velocity vT within the region of these experiments but
they are strongly dependent on tT . When the transverse and axial impacts
were applied to the specimen simultaneously (e.g., tT ∼= 0), the efficiency
of Eab was improved by up to 18% and Pmax was the lowest compared to
the results for tests without a transverse impact. As the transverse impact
time tT became longer, Pmax increased and Eab decreased. The transverse
impact had no influence on the improvement of energy absorption when it
was applied after the axial impact load reached its maximum value. This was
because at that time the specimen had already buckled and deformed largely.
It is considered that the instantaneous imperfection of the specimen caused
by the transverse impact is more effective to induce buckling at the stage of
small specimen deformation. Therefore, the energy absorption was improved
much more efficiently when the transverse impact was applied simultaneously
with the axial impact. Similar results were obtained for different vA and vT .
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Fig. 7 Summary of energy absorption and static properties for each method

6 Summary

An overall comparison between the present method using a transverse impact
and the conventional method using dents is summarized as a bar graph in
Fig. 7. In this figure, the performance indexes are the structural properties
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normalized by the values of specimen S − 0 as the standards. The energy
absorption for the transversely impacted specimens (S − T ) were a little
larger than that of the dented specimens (D1− 0 to D4− 0) and much larger
than those of test type S − 0. The transverse impact and the dent methods
effectively increased the capabilities of the energy absorption. The dented
specimens (D1 − 0 to D4 − 0) had lower buckling and failure loads than the
straight specimen S − 0. Since these static properties are dependent on the
shape of the specimen, the structural properties for the transversely impacted
specimens (S − T ) are naturally the same as those for the straight ones
(S − 0). The present method proved to preserve the highly static properties
and improve the energy absorption more effectively than the method using
dents.
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Seismic Performance of Tuned Mass
Dampers

Christoph Adam and Thomas Furtmüller

Abstract In a fundamental parametric study the seismic performance of
Tuned Mass Dampers (TMDs) is investigated. Earthquake excited vibration-
prone structures are modeled as elastic single-degree-of-freedom oscillators
and they are equipped with a single TMD. The TMD performance is assessed
by means of response reduction coefficients, which are generated from the
ratio of the structural response with and without TMD attached. It is found
that TMDs are effective in reducing the dynamic response of seismic excited
structures with light structural damping. The results of the presented study
are based on a set of 40 recorded ordinary ground motions.

1 Introduction

New technologies and refined methods of analysis permit the design and con-
struction of more slender, and hence, in many cases more vibration-prone
structures with rather light damping. One effective measure to protect build-
ings against excessive large vibration amplitudes is the installation of Tuned
Mass Dampers (TMDs). A TMD is a control device with a single-degree-of-
freedom (SDOF) of either mass-spring-dashpot type, or a pendulum-dashpot
system. The Tuned Liquid Column Damper (TLCD) is a variety of the TMD,
which is based on the same mode of operation [1].

The natural frequency of the TMD is tuned closely to the dominant mode
of the vibration-prone structure. Thus, the kinetic energy is transferred from
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the vibrating main structure to the TMD, where it is subsequently dissipated
by its viscous element. Optimal design of TMDs is discussed in various pa-
pers, e.g. [2 - 6].

TMDs have been proven to be effective in reducing the dynamic response
of structures induced by narrow-band periodic excitation such as wind and
traffic loads. However, the effectiveness of TMDs to mitigate earthquake in-
duced vibrations is still a topic of controversial discussion. For example, [7]
reports about weak seismic performance of TMDs with very small mass ra-
tios. On the other hand, in [6] it is shown that for a large mass ratio TMDs
become very effective in minimizing the structural response.

In this paper the seismic performance of TMDs, i.e. their effectiveness and
robustness, is assessed. The presented parametric study of SDOF structures
covers a wide range of structural periods between 0.05s and 5.0s, and mass
ratios between 2% and 8%. The results are based on a set of recorded ordinary
ground motions.

2 Applied Procedure

2.1 Mechanical Model

A SDOF oscillator with mass M , stiffness K and viscous damping coefficient
R (or expressed alternatively by the non-dimensional damping coefficient ζS)
is utilized to represent a vibration-prone structure. The base acceleration ẍg
induces structural vibrations, which are characterized by the displacement
X of mass M with respect to the base. To this SDOF system a TMD is
attached, which is itself a SDOF oscillator with mass m, stiffness k, and
damping r (or ζT , alternatively). The relative displacement x of mass m
is related to the base. Together, structure and TMD form a non-classically
damped system with two-degrees-of-freedom (displacements X and x). An
example of a structure-TMD system is shown in Figure 1.

2.2 Seismic Excitation

For this study a set of ”real” earthquake records is employed to excite the
structural model. This set of ordinary ground motion records, denoted as
LMSR-N, contains 40 ground motions recorded in Californian earthquakes of
moment magnitude between 6.5 and 7 and closest distance to the fault rup-
ture between 13 km and 40 km on NEHRP site class D according to FEMA
368, 2000, [8]. This set of ordinary records has strong motion duration char-
acteristics, which are not sensitive to magnitude and distance. A statistical
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M

K
R

X(t)

m
k

r
x(t)

  
xg (t)

Fig. 1 Mechanical model of structure-TMD system subjected to seismic excitation

evaluation of this bin of records and its detailed description are provided in
[8].

2.3 Applied Tuning Procedures

The effectivity of TMDs to mitigate the dynamic structural response depends
on appropriate, or better, ”optimal” tuning of its parameters, i.e. the natural
frequency ω of the decoupled TMD expressed by the frequency ratio δ

δ =
ω

Ω
, ω =

√
k

m
, Ω =

√
K

M
(1)

and the damping ratio ζT [2]. In Eq. (1) Ω denotes the natural frequency of
the structure without TMD. Assuming that ordinary earthquake excitation
can be approximated with sufficient accuracy by a stationary white noise
random process the appropriate structural response quantity to be minimized
is the variance σ2

x of the structural displacement X. The variance σ2
x is related

to the constant white noise spectral density S0 by [3]

σ2
x = E

[
x2(t)

]
= S0

∞∫

−∞

|H(ν)|2 dν (2)

H(ν) is the complex frequency response function [9],

H(ν) =
µ+ Z(ν)

µ (1− α2 + 2iζSα)
α2ν2 , Z(ν) =

δ2 + 2iζTαδ
δ2 − α2 + 2iζTαδ

(3)
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where µ is the mass ratio and α an excitation frequency ratio,

µ =
m

M
, α =

ν

Ω
(4)

Mathematically, the optimization of the TMD parameters requires a perfor-
mance index J0, which complies with σ2

x [4],

J0 = S0

∞∫

−∞

|H(ν)|2 dν (5)

Subsequently, J0 is minimized with respect to δ and ζT . For an undamped
main structure (ζS = 0) the optimization procedure leads to analytical ex-
pressions for the TMD parameters [3], which depend on the mass ratio µ
only,

δopt =

√
1− µ/2
1 + µ

, ζTopt =

√
µ (1− µ/4)

4 (1 + µ) (1− µ/2)
(6)

In this study the parameters of the TMDs are optimized also utilizing
recorded earthquake motion records. Since ordinary ground motions are ran-
dom processes with in general wide-banded frequency content the perfor-
mance index according to white noise excitation is utilized for the optimiza-
tion procedure. However, the actual spectral density Si(ν) of the considered
record, which is a function of frequency ν, must be employed. Thus, the
performance index reads [6]

Ji =

∞∫

−∞

|H(ν)|2 Si(ν)dν (7)

For a given structure, and a given ground motion record this performance
index is used to determine the optimal tuning frequency and optimal viscous
damping coefficient of the TMD. The procedure is repeated for all 40 records.
Subsequently, the median TMD parameters of the 40 individual optimized
TMD parameters are employed to derive the structural response.

2.4 Representation of Outcomes

The effectiveness of the optimized TMD is presented by means of so-called re-
sponse reduction coefficients. Two types of response reduction coefficients are
defined: The response reduction coefficient Rm,i is the ratio of the structural
peak displacement with attached TMD to the structural peak displacement
without TMD induced by the ith earthquake record, while Rσ,i is gener-
ated from the ratio of the displacement standard deviation with TMD to the
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displacement standard deviation without TMD,

Rm,i =
max |Xi|TMD

max |Xi|NOTMD

, Rσ,i =

√∫
X2
i dt
∣∣∣
TMD√∫

X2
i dt
∣∣∣
NOTMD

(8)

The response reduction coefficients for all 40 records are evaluated statisti-
cally. In particular, their medians Rm and Rσ are utilized to assess the TMD
performance.

3 Assessment of the Seismic TMD Performance

In the following the results of parametric studies involving a series of
structure-TMD systems are discussed. Thereby, each system is character-
ized by the natural period TS of the stand-alone main structure, TS = 2π/Ω,
and the mass ratio µ. After finishing all simulations for a particular struc-
ture another system with different TS and µ is examined. The period TS is
changed stepwise with increments of 0.05s, starting from 0.05s up to 5.0s:
0.05s ≤ TS ≤ 5.0s. I.e. very stiff to soft structures are covered by the con-
sidered periods. The range of mass ratios, 0.02 ≤ µ ≤ 0.08, correlates to the
mass ratios of practically applied TMDs.

In Figure 2 the response reduction coefficients Rm and Rσ are depicted as
a function of structural period TS and mass ratio µ. Viscous damping of the
main structure is selected to be 1% (ζS = 0.01). TMDs of this parametric
study are tuned according to the assumption of white-noise ground acceler-
ation, compare with Eq. (5). The median response reduction coefficients Rm
shown in Figure 2(a) reveal that the median peak displacements are reduced
for all combinations of TS and µ, since Rm is always smaller than 1. A reduc-
tion from 10% to 40% can be observed. As expected the response diminishes
with increasing mass ratio. Furthermore it can be seen that the effectiveness
of TMDs is better for short period structures than for long period systems.

The response reduction coefficients Rσ of displacement standard devia-
tions are plotted in Figure 2(b). They exhibit values between 0.35 and 0.65.
These results demonstrate that for this set of earthquake records TMDs are
capable to reduce the vibration amplitudes of seismic excited structures.

Figure 3 shows the distribution of response reduction coefficients Rm and
Rσ for the same set of main structures. However, tuning of the attached
TMDs is based on the optimization procedure including the actual earth-
quake records, see Eq. (7). Comparison of these outcomes with the results
of Figure 2 reveals that the influence of the applied tuning procedure on the
performance of TMDs is of negligible magnitude, since the median TMD pa-
rameters instead of the individual optimized TMD parameters are employed.
Thus, for this study simplified tuning of the TMD parameters for station-



16 Christoph Adam and Thomas Furtmüller

ary white noise base acceleration is justified, although real recorded ordinary
ground motions induce structural vibrations. Subsequently, the control effec-
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Fig. 3 Response reduction coefficients, optimal TMD using actual seismic ground motions
records: (a) peak displacement, (b) standard deviation of displacement

tiveness of TMDs for structures with heavier damping is discussed. Viscous
structural damping of the main structure is increased to 3% (ζS = 0.03).
TMD parameters are optimally tuned for white noise ground acceleration.
Figure 4 verifies that the effectiveness of TMDs declines for main structures
with heavier structural damping. For the considered mass ratios and struc-
tural periods the peak displacements can be reduced at most up to 30% (i.e. a
Rm of 0.70), but in average not more than 15% to 20%, compare with Figure
4(a). For the standard deviation of displacements a reduction of up to 45%
can be achieved (i.e. a Rσ of 0.55). Eventually, the robustness of the seismic
TMD performance to uncertainty in its parameters is studied. Exemplarily,
a structure-TMD system with the following properties is considered: Mass
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ratio µ = 0.05, period of the decoupled main structure T = 1.0s, damping
of the main structure ζS = 0.01. Tuning of the TMD utilizing the perfor-
mance index J0, Eq. (5), leads to the following optimal TMD parameters:
δopt = 0.935, ζT,opt = 0.110. The response reduction coefficients Rm and Rσ
are determined for this optimal TMD configuration. Subsequently, the fre-
quency ratio and the damping coefficient are stepwise mistuned from -50% to
50% compared to the corresponding optimal value. For each mistuned system
the response reduction coefficients are plotted as a function of the deviation
from optimal conditions. The results are visualized in Figure 5, where a hor-
izontal black line refers to results based on the optimal damping coefficient
ζT,opt, and the vertical black line highlights response reduction coefficients
derived utilizing the optimal frequency ratio δopt. The intersection point of
both lines identifies results for optimal tuning parameters. Both, Rm (Fig-
ure 5(a)) and Rσ (Figure 5(b)) reveal that the seismic TMD performance
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is robust with respect to mistuning of the TMD damping coefficient ζT as
long as δ is optimal. However, mistuning of δ has a grave effect on the TMD
effectiveness. In particular, if δ is much larger than δopt the TMD is not able
to function properly. However, mistuning of δ less than 3% can be accepted
for this particular system and set of ground motions.

4 Conclusion

The results presented in this study suggest that the application of Tuned
Mass Dampers (TMDs) with mass ratios between 2% and 8% is an appro-
priate measure to mitigate the dynamic response of structures subjected to
ordinary seismic ground motions. This statement applies both for stiff and
soft structures. The seismic effectiveness of an optimally tuned TMD de-
creases with increasing initial structural damping of the vibrating structure.
Reviewing the results obtained in this study reveals that optimal tuning of
the TMD parameters under the assumption of white noise base acceleration is
sufficiently accurate. The seismic performance of the TMD is robust against
mistuning of the viscous element in the TMD. However, accurate tuning of
the TMD natural frequency is essential for its effectiveness.
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Problems in Fast Moving
Non-Holonomic Elastic Systems

Hartmut Bremer

Abstract The Central Equation of Dynamics allows a unified view on exist-
ing methods and reveals them as a specific view on one and the same classical
mechanics. Thereby, the particular methods exhibit special advantages and
disadvantages according to the aim of investigation. For the derivation of
the motion equations, the analytical methods display some drawbacks: the
use of non-holonomic velocities needs an enormous effort and non-holonomic
constraints can not à-priori be considered. Due to the directional derivatives
w.r.t. the angular velocities, the obtained linearized equations do not repre-
sent the motions w.r.t. the co-rotational frame (and any orthogonal frame,
resp.) as usually requested. This fact may lead to severe misinterpretations.
In elastic multi body systems, the calculation effort increases dramatically.
All these drawbacks are removed when using the Projection Equation.

1 Basics: The Central Equation of Dynamics

The principle of virtual work in dynamics,
∫

(S)

(dmr̈− dfe)T δr = 0, (1)

was established by J.L. de Lagrange in 1764. Two years before he explained
”I have to emphasize that I introduced a new characteristic δ; here, δr1

shall express a differential w.r.t. r which is not the same as dr but which
is nevertheless built with the same rules”. This statement obviously misled
many people, in the past as well as in the present, [”obscure” (L.Poinsot,
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1 Z from his original contribution is replaced here with r.
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1837); ”black magic” (Th. Kane (1986)]. However, considering dr/dt instead
of dr sheds light on the brilliant background of Lagrange’s concept: dr/dt =
ṙ and δr are tangent vectors w.r.t. the constraint planeΦ(r) = 0 : (∂Φ/∂r)ṙ =
0
∧

(∂Φ/∂r)δr = 0. (Lagrange himself calls δr virtual velocities). Hence,
δr is kept arbitrary (in direction and in magnitude) while ṙ represents the
real solution. Adopting this intepretation leads with a few steps of calculation
to the Central Equation of Dynamics

d

dt

[(
∂T

∂ṡ

)
δs
]
− δT − δW = 0,





T : kinetic energy
ṡ = H(q)q̇ : minimal velocities,

non-holonomic

q ∈ Rf : minimal coordinates

H ∈ Rf,f : regular,

(2)

from which a considerable body of methods in dynamics is derived (Helm-
holtz, Gibbs, Appell, Hamilton, Lagrange, Tzenoff, Nielsen, Mag-
gi, Hamel · · · and the Projection Equation). The Central Equations thereby
states that all these methods represent one and the same (classical) mechan-
ics but looked at from different view-points. The Central Equation allows
thus a fair comparison of methods.

2 Non-Holonomicity

The motion of a (fast moving) elastic system is composed of ”rigid body
coordinates” and of superimposed ”elastic coordinates” (the combination of
which has been introduced as ”hybrid coordinates” by P.W. Likins in the
1970ies). The corresponding ”elastic velocities” are assumed to move with
small amplitudes and are therefore integrable. Thus, non-holonomicity can
only arise from the rigid body motion. It is essential to emphasize that non-
holonomic velocities have à-priori nothing in common with non-holonomic
constraints while, the other way round, non-holonomic constraints need non-
holonomic velocities for description.

2.1 Analytical Methods

One of the most common procedures for the treatment of non-holonomic
systems is due to G. Hamel. His (explicit form of) equations read

d

dt

∂T

∂ṡn
− ∂T

∂sn
−Qn +

∑

ν,µ

∂T

∂ṡν
ṡµβ

µ,n
ν = 0 ; n = 1 · · · f, (3)
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βµ,nν =
∑

i,k

∂q̇k
∂ṡµ

∂q̇i
∂ṡn

(
∂2sν
∂qi∂qk

− ∂2sν
∂qk∂qi

)
= −βn,µν , i, k = 1 · · · f, (4)

where βµ,nν represent his famous coefficients; as can be seen from Eq.(4),
they are zero for sν being holonomic (fulfillment of H. Schwarz’s rule). For
nonholonomic sν , the term in parentheses vanishes for i = k, thus 2f(f − 1)
summation terms remain for each βµ,nν .

Let us consider a simplified model of a (rigid) car neglecting the wheel
masses. It moves in the (inertial) x-y-plane with velocities vx, vy, γ. The front
wheel is a suspension wheel with arbitrary motion while the rear wheels are
not allowed to slide, i.e. vy = 0 w.r.t. the body-fixed frame (index B). This
is a non-holonomic constraint. It is, however, not allowed to set vy = 0 in
advance, since then T would not more depend on vy yielding wrong results.
Thus, the calculation has first to be done for the whole set of variables:
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d

dt

∂T

∂ṡn

− ∂T

∂sn

−Qn +
∑

ν,µ

[
∂T

∂ṡν

ṡµ β
µ,n
ν

]
= 0, n = 1 · · · f, (3)

βµ,n
ν =

∑

i,k

∂q̇k

∂ṡµ

∂q̇i

∂ṡn

(
∂2sν

∂qi∂qk

− ∂2sν

∂qk∂qi

)
= −βn,µ

ν , i, k = 1 · · · f, (4)

where βµ,n
ν represent his famous coefficients; as can be seen from eq.(4),

they are zero for sν being holonomic (fulfillment of H. Schwarz’s rule). For
nonholonomic sν , the term in parentheses vanishes for i = k, thus 2f(f − 1)
summation terms remain for each βµ,n

ν .
Let us consider a simplified model of a (rigid) car neglecting the wheel

masses. It moves in the (inertial) x-y-plane with velocities vx, vy, γ. The front
wheel is a suspension wheel with arbitrary motion while the rear wheels are
not allowed to slide, i.e. vy = 0 w.r.t. the body-fixed frame (index B). This
is a non-holonomic constraint. It is, however, not allowed to set vy = 0 in
advance, since then T would not more depend on vy yielding wrong results.
Thus, the calculation has first to be done for the whole set of variables:
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ṡ1

ṡ2

ṡ3
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cos γ sin γ 0
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⇒



q̇1

q̇2

q̇3


 =




cos γ − sin γ 0
sin γ cos γ 0

0 0 1





ṡ1

ṡ2

ṡ3


 ,

(6)
(m: mass, c: mass center distance, Co: moment of inertia w.r.t. the B-frame
origin). The determination of the β’s is tedious2 even for this simple example.
They turn out +1,−1, 0, e.g.

β1,3
1 = −∂q1

∂s1

∂2s1

∂q1∂q3
− ∂q2

∂s1

∂2s1

∂q2∂q3
= (− cos γ)(− sin γ)− (sin γ)(cos γ) = 0

(7)
etc. From Eq.(3) one obtains the equations

2 For practical purposes, Hamel himself prefers a direct calculation of dδs − δds: ”it is

perhaps not always convenient to calculate the table of the β’s . . . but in fact easier to look
for the δsµ from the expression δdsρ − dδsρ” [Hamel 1949], p. 483. (Hamel’s original ϑ is
replaced here with s).
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(
d

dt

∂T

∂vx
+ β3,1

2︸︷︷︸
−1

ωz
∂T

∂vy
−Q1)δs1 =

[
mv̇x −mcω2

z −mωzvy − fx
]
δs1 = 0,

(
d

dt

∂T

∂vy
+ β3,2

1︸︷︷︸
+1

ωz
∂T

∂vx
−Q2]δs2 = [mv̇y +mcω̇z +mωzvx − fy) δs2 = 0,

(
d

dt

∂T

∂ωz
+ β2,3

1︸︷︷︸
−1

vy
∂T

∂vx
+ β1,3

2︸︷︷︸
+1

vx
∂T

∂vy
−Q3)δs3

= [Coω̇z +mcv̇y +mcvxωz −Mz] δs3 = 0, (8)

which, after inserting the non-holonomic constraint vy = 0, yields the equa-
tions of motion

[
m 0
0 Co

](
v̇x
ω̇z

)
+
[

0 −mcωz
mcωz 0

](
vx
ωz

)
−
(
fx
Mz

)
=
(

0
0

)
. (9)

2.2 Projection Equation

On the other hand, applying the Projection Equation

N∑

i=1

{[(
∂vc
∂ṡ

)T (
∂ωc
∂ṡ

)T] [ ṗ + ω̃IRp− fe

L̇ + ω̃IRL−Me

]}

i

= 0 (10)

(index c: mass center, index IR: reference frame R w.r.t. inertial frame I;
v,ω: velocity and angular velocity.; p,L: momentum and momentum of mo-
mentum; fe,Me: impressed force and torque; (̃ ): spin tensor; all terms repre-
sented in the reference coordinate system R) leads directly to the desired re-
sults. Once the cartesian velocities are calculated, all the remainder is known.
Especially, the functional matrix [(∂vc/∂ṡ)T (∂ωc/∂ṡ)T ] is nothing but the
coefficient matrix of the cartesian velocities w.r.t. the (chosen or calculated)
minimal velocities ṡ. For the car model we have



vcx
vcy
ωcz


 =




1 0
0 c
0 1


 ṡ , ṡ =

(
vx
ωz

)
. (11)

The chosen reference frame is the body-fixed one and the non-holonomic
constraint vy = 0 is already inserted. The matrix in square brackets repre-
sents the requested functional matrix [(∂vcx/∂ṡ)T (∂vcy/∂ṡ)T (∂ωcz/∂ṡ)T ]T .
The momenta are obtained by multiplication with m (mass) and Cc (mo-
ment of inertia w.r.t. the mass center c), respectively. These ingredients are
combined according to Eq.(10) by simple matrix multiplications to obtain
the motion equations without any detour,
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[
1 0 0
0 c 1

]




m 0
0 mc
0 Cc


 s̈ +




0 −ωz 0
ωz 0 0
0 0 0





m 0
0 mc
0 Cc


 ṡ−



fx
fy
Mz





 = 0, (12)

yielding Eq.(9) directly.
As a conclusion one may state that for non-holonomic systems the use

of the Projection Equation is preferable to the use of any of the analytical
methods which come into question. The calculation requirements are simple
and the non-holonomic constraints may be inserted already at the beginning.
This is because directional derivations are not requested. The required effort
is minimal.

3 Rigid Multibody Systems (MBS)

For a later comparison with fast moving elastic systems we may stay for
a short while with MBS. The over all sum in Eq.(10) may be split into a
double sum where the first one denotes a number of considered subsystems
to be chosen. The second one then characterizes the number of bodies Nn
within the actual subsystem n. Along with the chain rule of differentiation
one obtains

Nsub∑

n=1

(
∂ẏn
∂ṡ

)T Nn∑

i=1

{[(
∂vc
∂ẏn

)T (
∂ωc
∂ẏn

)T] [ ṗ + ω̃IRp− fe

L̇ + ω̃IRL−Me

]}

i

= 0 (13)

in terms of describing velocities ẏn for each subsystem. Carrying out the
calculation for the second sum, from 1 to Nn, leads to the typical structure
of mechanical systems in the form [Mnÿn + Gnẏn−Qn]. In matrix notation
one has then for Eq.(13)

[(
∂ẏ1
∂ṡ

)T (
∂ẏ2
∂ṡ

)T
· · ·

(
∂ẏN
∂ṡ

)T ]



M1ÿ1 + G1ẏ1 −Q1

M2ÿ2 + G2ẏ2 −Q2

...
MNÿN + GNẏN −QN


 = 0 (14)

where Nsub is abbreviated N for brevity. The describing velocities follow from
the kinematic chain ẏn = Tnpẏp + Fnṡn (index p: predecessor). Starting
with the first subsystem which does not have a predecessor yields ẏ1 = F1ṡ1.
Insertion into ẏ2 then yields ẏ2 = T21F1ṡ1 + F2ṡ2, hence ẏ3 = T31F1ṡ1 +
T32F2ṡ2 + F2ṡ3 where T31 = T32T21 etc. Using ṡ = (ṡT1 ṡT2 · · · ṡTN )T for
minimal velocities leads Eq.(14) to
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FT1 FT1 TT
21 · · · FT1 TT

N1

FT2 · · · FT2 TT
N2

. . .
...

FTN







M1ÿ1 + G1ẏ1 −Q1

M2ÿ2 + G2ẏ2 −Q2

...
MNÿN + GNẏN −QN


 = 0 (15)

which gives access to either a minimal representation (by inserting ẏn, ÿn
explicitly) or to a recursive alorithm in the sense of a Gaussian elimination
procedure. Obviously, the use of the Projection Equation once more leads to
minimum effort when compared to the analytical procedures.

4 Orthogonality

4.1 Hamilton’s Principle

One of the most popular procedures in the field of elastic body oscillations
is the use of Hamilton’s Principle to derive the equations of motion. Its
direct use in fast moving elastic systems, however, may cause problems. This
is demonstrated by a simple example: consider an elastic beam [two bending
variables v(x, t) and w(x, t)] which rotates quickly around its x-axis with α̇.
Hamilton’s Principle requires the variation of the kinetic energy T and of
the elastic potential V ,
Problems in Fast Moving Non-Holonomic Elastic Systems 7

Hamilton’s Principle requires the variation of the kinetic energy T and of
the elastic potential V ,

!
""""""""#

$

x

y

z

α̇

δT =
L∫
o

(
vT

c ρAδ vc + ωT
c ρI δωc

)
dx,

δV =
L∫
o

(EIzv
′′δv′′ + EIyw′′δw′′) dx, (16)

δW = Mxδα(0)

where: ρ: mass density, A: cross sectional area, I = diag{Ix, Iy, Iz}: tensor
of area moments of inertia, E: Young’s modulus, Mx: driving torque. The
mass center velocities of an element are

vc =




0
v̇ − α̇w

ẇ + α̇v


, ωc =




(
1− v′2

2 − w′2

2

)
v′ 0

−v′
(
1− v′2

2

)
0

−w′ 0 1







α̇

−ẇ′

v̇′


 (17)

where a Cardan–sequence −w′, v′ has been chosen for transformation from
the reference frame (rotating with α̇) to the element-fixed frame (sometimes
referred to as Tait-Bryan-sequence in the english speaking area). The prime
denotes spatial derivation, ( )′ = ∂( )/∂x. Without going into the details
of (the tedious) calculations, one obtains, after carrying out the required
integrations by parts, a result in the form

∫ L

o
{δα[· · ·] + δv[· · ·] + δw[· · ·]}

plus boundary terms. This is correct. However, usually one takes the square
brackets as motion equations, setting these individually equal to zero. Then,
in the present case, one obtains a rather strange result. Considering a circular
cross sectional area (Ix = 2Iy = 2Iz := 2I) yields

[ ∫ L

o

ρIxα̈−Mx

]
= 0 (⇒ α(t) known function),

[
ρA(v̈ − 2α̇ẇ−α̈w − α̇2v)− ρI(v̈′′ + v′′α̇2−w′′α̈) + (EIv′′)′′

]
= 0,

[
ρA(ẅ + 2α̇v̇+α̈v − α̇2w)− ρI(ẅ′′ + w′′α̇2−v′′α̈) + (EIyw′′)′′

]
= 0.(18)

Here, the (generalized) circulatory forces due to the angular acceleration
α̈ are, as expected, skew-symmetric for the translational part (ρA), but they

I

δT =
∫ L

0

(
vTc ρAδvc + ωTc ρIδωc

)
dx,

δV =
∫ L

0

(EIzv′′δv′′ + EIyw
′′δw′′) dx,

δW = Mxδα (16)

where: ρ: mass density, A: cross sectional area, I = diag{Ix, Iy, Iz}: tensor
of area moments of inertia, E: Young’s modulus, Mx: driving torque. The
mass center velocities of an element are

vc =




0
v̇ − α̇w
ẇ + α̇v


 , ωc =




(
1− v′2

2 − w′2

2

)
v′ 0

−v′
(

1− v′2

2

)
0

−w′ 0 1







α̇
−ẇ′
v̇′


 (17)

where a Cardan–sequence −w′, v′ has been chosen for transformation from
the reference frame (rotating with α̇) to the element-fixed frame (sometimes
referred to as Tait-Bryan-sequence in the english speaking area). The prime
denotes spatial derivation, ( )′ = ∂( )/∂x. Without going into the details
of (the tedious) calculations, one obtains, after carrying out the required
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integrations by parts, a result in the form
∫ L

0
{δα[· · · ] + δv[· · · ] + δw[· · · ]}

plus boundary terms. This is correct. However, usually one takes the square
brackets as motion equations, setting these individually equal to zero. Then,
in the present case, one obtains a rather strange result. Considering a circular
cross sectional area (Ix = 2Iy = 2Iz := 2I) yields

∫ L

0

(ρIxα̈−Mx)dx = 0 (⇒ α(t) known function),

ρA(v̈ − 2α̇ẇ−α̈w − α̇2v)− ρI(v̈′′ + v′′α̇2−w′′α̈) + (EIv′′)′′ = 0,

ρA(ẅ + 2α̇v̇+α̈v − α̇2w)− ρI(ẅ′′ + w′′α̇2−v′′α̈) + (EIyw′′)
′′ = 0. (18)

Here, the (generalized) circulatory forces due to the angular acceleration α̈
are, as expected, skew-symmetric for the translational part (ρA), but they
are symmetric for the rotational part (ρI). The reason is, that the rotation
axes which are assigned to the Cardan angular velocities (α̇,−ẇ′, v̇′ in the
present example) are not orthogonal. Because the analytical methods require
directional derivatives w.r.t. these, Eq.(18) represents the motion equations
in a non-orthogonal coordinate system which depends on the choice of the
sequence of deformations even in the case of small deformations. An interpre-
tation as motion equations w.r.t. the co-rotating reference frame, as usually
requested, is wrong.

4.2 The Projection Equation

The same as in the case of non-holonomic systems, the Projection Equation
does not need directional derivations and will therefore avoid such difficulties.
Considering elastic multibody systems (EMBS), the number of bodies of a
subsystem (e.g. beam slices) goes to infinity and the summation is replaced
with an integral, yielding the same equation structure as in the rigid body
case:

Nsub∑

n=1

∫

Bn

(
∂ẏn
∂ṡ

)T {[(
∂vc
∂ẏn

)T (
∂ωc
∂ẏn

)T] [
dṗ + ω̃IRdp− dfe
dL̇ + ω̃IRdL− dMe

]}

n︸ ︷︷ ︸
[dMnÿn + dGnẏn − dQn]

= 0

(19)
However, since the describing velocities now require the consideration of par-
tial derivatives w.r.t. the spatial variables (arising from bending angles and
curvatures), the functional matrix (∂ẏn/∂ṡ) can not directly be calculated.
We therefore pass to the corresponding virtual work expression,



26 Hartmut Bremer

Nsub∑

n=1

∫

Bn

δyTn [dMnÿn + dGnẏn − dQn] = 0. (20)

The solution steps are as follows: Consider Nsub = 1 for simplicity. Then
ẏ is calculated with the aid of a differential operator, ẏ = D ◦ ṡ, yielding
δy = D ◦ δs. Integration by parts yields

∫

Bn

δsTDT ◦ [dMnÿn + dGnẏn − dQn] + δWbound = 0 (21)

with a new differential operator D. This seemingly costly procedure results
extremely simple: The operator D follows from ẏ which contains the devia-
tions, the bending angles and the curvatures,

ẏ =




α̇
v̇
ẇ
−ẇ′
v̇′

v̇′′

ẇ′′




=




1 0 0
0 1 0
0 0 1
0 0 − ∂

∂x

0 ∂
∂x 0

0 ∂2

∂x2 0
0 0 ∂2

∂x2




◦



α̇
v̇
ẇ


 = D̄ ◦ ṡ. (22)

The requested operator D is the same as D with the only difference that
odd derivatives change their sign. (Simultaneously one obtains the operators
B0 and B1 for the (kinetic) boundary conditions by successive degeneration
of the differentiation grade with once more changing sign – this reflects the
consecutive integrations by parts with its sign changes). Applying DT to
dMÿ + dGẏ − dQ yields, for the present example,




1 0 0 0 0 0 0
0 1 0 0 − ∂

∂x
∂2

∂x2 0
0 0 1 ∂

∂x 0 0 ∂2

∂x2


 ◦




ρIα̈
ρA(−α̈w + v̈ − α̇2v − 2α̇ẇ)
ρA(+α̈v + ẅ − α̇2w + 2α̇v̇)

ρI(v′α̈− ẅ′ − α̇2w′)
ρI(w′α̈+ v̈′ + α̇2v′)

EIv′′

EIw′′




dx =




ρIα̈
ρA(v̈ − 2α̇ẇ−α̈w − α̇2v)− ρI(v̈′′ + α̇2v′′+w′′α̈) + (EIv′′)′′

ρA(ẅ + 2α̇v̇+α̈v − α̇2w)− ρI(ẅ′′ + α̇2w′′−v′′α̈) + (EIw′′)′′


 = 0.

(23)

As expected, one obtains automatically the correct signs for a representation
in the co-rotating frame, along with much less effort in calculation.
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5 Elastic Multibody System (EMBS)

5.1 Partial Differential Equations

Clearly, one might proceed this way to generate the partial differential equa-
tions (along with the corresponding boundary conditions) for an elastic multi
body system. The result is a Gauss form for the rigid body variables and
a set of differential operators for the elastic variables, and a combination of
these for the boundary conditions (in detail reported in [1]). However, such
a foregoing seems to lead to a dead end, because an analytical solution is
virtually impossible to achieve.

5.2 Approximative Solution

When looking for an approximative solution, it is not advisable to expand the
equations into partial differential equations and the corresponding boundary
conditions. This is simply because one will obviously never find admissi-
ble shape functions which fulfill all the boundary conditions as requested
by Galerkin’s (original) method, for instance. With an interpretation of
Galerkin’s method as a result from the virtual work one might think of
adding the work which is accomplished by the boundary forces and torques,
thus reducing the requirements for the shape functions to pure geometri-
cal ones. But formulating the boundary terms explicitly is, for the approx-
imative motion equations, unnecessary because the spatial coordinates do
not appear as independent variables any more. Therefore, we go back to
Eq.(20) along with ẏn = Dn ◦ ṡn [see Eq.(22)]. A Ritz series expansion
ṡn = Φn(x)T ẏnRitz(t) yields ẏn = [D ◦Φ(x)T ]nẏnRitz(t) := [Ψ(x)T ]nẏnRitz(t)
where Ψ(x) comprises the shape functions along with their spatial deriva-
tives as far as they are needed. The virtual displacements are then δyn =
[Ψ]Tn (∂ẏnRitz/ṡ)δs. Since δs is arbitrary, one obtains from Eq.20)




FT1 FT1 TT
21 · · · FT1 TT

N1

FT2 · · · FT2 TT
N2

. . .
...

FTN







M1ÿ1Ritz + G1ẏ1Ritz −Q1

M2ÿ2Ritz + G2ẏ2Ritz −Q2

...
MNÿNRitz + GNẏNRitz −QN


 = 0 (24)

where

Mn =
∫

Bn

[
ΨdMΨT

]
n
, Gn =

∫

Bn

[
ΨdGΨT

]
n
, Qn =

∫

Bn

[ΨdQ]n . (25)

One has thus once more the same Gauss form as in Eq.(15).
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6 Conclusions

When non-holonomic constraints come into play, then the analytical methods
require at first a calculation for the f ull set of variables. The non-holonomic
constraint may be inserted afterward. This is because the analytical methods
need directional derivations of the kinetic energy w.r.t. the minimal veloci-
ties. Inserting the non-holonomic constraint in advance would lead to a loss
of information and yields wrong results. This is avoided with the Projection
Equation which does not require directional derivatives. Here, the constraints
may be inserted in advance. This goes along with a considerable reduction of
calculation effort.

Directional derivations are also the reason that fast moving (accelerated)
systems have to be considered with care. At least when using Cardan-like
transformations, the resulting rotational axes which refer to the generalized
angular velocities are not orthogonal. As a consequence, the resulting equa-
tions are not independent when seen from the co-rotating coordinate system,
for instance. This difficulty is avoided with the Projection Equation. Its use
once more goes along with considerable effort savings.

Considering elastic multi body systems, the use of the analytical methods
requires an enormous effort in calculation. Here, one really runs into prob-
lems. Once more, the Projection Equation reduces this effort to a minimum.
Along with a direct Ritz approach one obtains the afore mentioned Gauss
form for approximative solution. Its evaluation leads to an order-n-formalism
which seems the only reasonable way to come around with such challenging
systems.

It should not remain unnoticed that in case of fast moving elastic systems
the corresponding zero order reaction forces (as well as zero order impressed
forces) need the consideration of second order displacement fields. These lead
to the so-called “dynamical stiffening effects”. They are, in the present con-
text, assumed to be taken into account with dQ.
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Using GPS sensors in Structural
Mechanics

Fabio Casciati and Zhicong Chen

Abstract Distributed sensor networks are conceived for a simple installa-
tion all around the free boundary of deformable media. The impact on cur-
rent structural engineering technology depends on some requisites which are
preliminarily discussed in this chapter: wireless communication between sen-
sors and storage unit(s), reliability of the acquisition, low power consumption.
Within this framework, non contact displacement sensors should be preferred
in view of reconstructing the stress and strain fields inside the medium. GPS
(Global Positioning System) sensors would be adequate, but they suffer some
drawbacks which suggest the study of land GPS configurations. Assuming
that the milestones listed above have all been reached, the design of the sen-
sors dislocation is identified as the core structural-mechanics optimization
problem.

1 Introduction

Within structural mechanics, the recent development of smart technologies
also resulted in adding to methods of numerical simulation (toward analysis
and design) a follow up of the structural system managed on experimental
bases. This is mainly achieved by the adoption of distributed sensor networks
[1-6].

The use of dense sensor networks was promoted by significant cost re-
ductions and by the implementation of wireless technologies [7-9], which be-
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come a must when hundreds (or thousands) of acquisition channels must be
managed. The characterization of the wireless channel, the reliability of the
acquisition and the aspect associated with power consumption [10] are pre-
liminarily discussed in next section.

The goal of the dense sensor network is an accurate sensing of structural
entities with a well-posed physical meaning, such as relative displacements
between members of a structural system, or slopes of displacement fields, to
mention only two examples. Even if the desired structural output in some
special cases might be accessible to a targeted single sensor, results obtained
by a dense network of sensors are advantageous from the viewpoint of accu-
racy and sensitivity to measurement errors. Moreover, multiple tunings of the
sensor weights will yield as many different desired outputs as may be needed,
such that redundant measurements become possible.

In view of reconstructing the stress and strain fields inside the medium [11],
non contact displacement sensors should be preferred. GPS (Global Position-
ing System) sensors would be adequate [12], but they suffer some drawbacks
which suggest the study of land GPS configurations. However there remains a
lack concerning the proper structural interpretation of the measured network
output. Research should therefore be focused on feasible spatial distributions
of properly located and weighted dense sensor networks, designed to make
the reconstruction of the internal stress and strain distribution feasible.

2 Wireless Communication Systems

2.1 Signal-Channel Characteristic

Unlike wired signal channels, a wireless signal channel is random, unpre-
dictable and time-varying. In order to achieve robust wireless digital commu-
nication, the characteristic of wireless signal-channel should be understood
and then be matched by the frequency band and baseband processing ap-
proach whose key points are modulation and coding [13].

1. Multipath: as illustrated in Figure 1, multipath originates from the fact
that the signal will arrive at the receiver through multiple paths. The com-
position of the same signals from different paths with different phase will
result in the signal distortion. It will lead to significant negative influence
when the obstacle size is large enough as compared to the wave length.

2. Interference and noise: nowadays, many kinds of wireless systems are in use
in many different frequency bands [14]. Moreover, automotive ignition in-
terference, industrial EM (Electro-Magnetic) pollution, various electronic
equipments and natural EM noise, are also commonplace. Therefore, the
actual EM environment all around is quite different from the ideal free
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space, and full of various interferences and noises. Furthermore, the signal
power is usually limited, so that the matched modulation and coding tech-
nology is necessary to achieve robust communication in the environment
of low SNR (Signal to Noise Ratio) [15].

Fig. 1 Propagation of electromagnetic waves

2.2 Implementation Approaches

The physical layer of a wireless digital communication system is usually com-
plex, and mainly consists of modulation, demodulation, encoding, decoding,
and other baseband processing. But thank to the development of the IC (In-
tegrated Circuit) technology, the whole physical layer hardware is usually
integrated in single chip or chip groups which facilitate the implementation
very much. For example, the physical layer of ZigBee 802.15.4 is realized by TI
(Texas Instruments) in a single chip CC2420/CC2430 (the System on Chip,
SoC, includes a 8051 core compared to CC2420), and many non standard
ISM (Industrial, Scientific, Medical) frequency band transceivers(CC1101,
nRF24L01, IA4432 and so on) also exist. However, if the wireless commu-
nication system comes without the support of those off-the-shelf RF (Radio
Frequency) single-chips or chip-groups, it is supposed to be constructed by
frequency band modules with monolithic IC (Low Noise Amplifier, Mixer,
Frequency Synthesizer, Modulator, Demodulator, Filter, and so on), and
baseband modules with DSP (Digital Signal Processor) or FPGA (Field Pro-
grammable Gate Array).[16-18]
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2.3 Key Points for Wireless Sensor Networks

1. Network topology and reliability: nowadays, the wireless sensor network
(WSN) is often expected to be a distributed computation sensing network,
i.e., it is not only conceived just to collect sensing data, but also to perform
some computations [19]. Therefore, the network topology should be well
considered, not just as simple as the traditional centralized star structure.
Usually, the network topologies for WSN can be categorized into the fol-
lowing basic types: star, tree and mesh, and then more complex network
can be built as hybrid of the above basic topologies. The mesh topology is
the most flexible, since it allows the communication between any two nodes
in the network. But it is more difficult to be built and costs much more
resources than those strictly necessary. Therefore, the kind of hierarchical
topology which is regarded as more promising is the hybrid one, made of
the above basic topologies. Of course the optimal result depends on the
specific application. In addition, the network topology also corresponds to
the communication protocol. Since the undesired errors and conflicts of
communication are unavoidable, the protocol should be able to perform
an error control in order to achieve high reliability. It usually adopts the
mechanisms of CRC (Cyclic Redundancy Check) and acknowledgement.

2. Delay and synchronization: as the mentioned communication reliability,
sensing synchronization is another very important aspect in the wireless
sensing network. If every node of the WSN possesses a high accuracy and
stability clock, just like the GPS satellite, to realize sensing synchroniza-
tion is an easy task. But this generally is not the case. Currently, digital
system extensively adopts the crystal oscillator which possesses relatively
high accuracy and stability. Although its accuracy is up to 1ppm (points
per million) level, it is still not enough, because it will still produce sig-
nificant asynchronies after running some time. Therefore, to estimate the
communication delay seems to be a better way to realize synchronization
among nodes. Clock synchronization is not only for sensing synchroniza-
tion, but also for coordinating the power-saving sleep mode and the ability
of communication, because the node in sleep mode can not be accessed by
other nodes. Two nodes can only communicate each with the other when
they are all in active mode. So in addition to the basic sensing synchro-
nization, one should also pursue a way to get a good balance between the
low power consumption and accessibility.

3. Low power and power supply: many WSN systems are powered by battery
and impractical to be all powered by commercial power. Therefore, in order
to extend the operating time, low power characteristic should be taken into
account. Usually, this problem can be approached from two sides: reducing
the power consumption and/or harvesting power through any convenient
way. Sleeping is the main way to reduce power consumption, and the low
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power characteristic should be carefully emphasized in the selection of IC.
Rechargeable batteries combined with solar panels are in use for many low
power systems. But the climate and sunshine conditions should be carefully
considered to determine first the applicability and then the capacity of
the rechargeable battery. In addition, harvesting power from mechanical
energy, such as wind and vibration, is a promising field of research [10].

3 Potential of Land GPS

Nowadays, the radio positioning system is becoming more and more impor-
tant, and the most famous among the available one is the United States GPS
(Global Positioning System) in which the receiver get the related time and
position information from at least four visual (i.e., in open sky) satellites to
determine its global position. In many applications, the GPS is adequate and
suitable, but the open sky satellite visibility requisite prevents one from the
many applications where the presence of a roof cannot be avoided. Moreover,
when operating on urban buildings, inside them the GPS signal will be too
weak and, even outside them, there will be a negative influence of the multi-
path effect. One should also remark that often the relative, rather than the
absolute, position in a small local area is required and that the cost of the
devices becomes soon rather high when high precision is nee pursued.

Therefore, as a complement to GPS, the local positioning system is emerg-
ing. The local positioning system (or Land GPS, LGPS) utilizes several fixed
position-determined base stations as reference coordinates, just like GPS uses
the satellites. The similarity of the concepts of GPS and LGPS is illustrated
in Figure 2. If the distances of the target from each base station are deter-
mined, the position is obtained of consequence.

In this section, the principles of several existing positioning approach will
first be reviewed. Then the different concepts will be introduced with refer-
ence to the prototype realized (or in construction) by some research bodies.

3.1 State-of-the art

Basically, from the positioning point of view, the local positioning system
approaches can be divided into two classes: remote-positioning and self-
positioning. The remote-positioning utilizes the base station to determine
the position of a moving unit, whereas this moving unit is directly enabled
to determine its position in the self-positioning system. Of course, in the
self-positioning scheme, the moving unit can send the obtained information
on its position back to the base stations. The selection of one of the two
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Fig. 2 Comparison between satellite GPS and ”Land GPS”

schemes mainly depends on the specific application. Another way to classify
the proposed schemes is based on the positioning principle. Here the local
positioning system methods can mainly be divided into three classes, the
concepts of which are simply illustrated in Figure 3 [20]:

1. Angle Of Arrival (AOA)
2. Received Signal Strength (RSS)
3. propagation time which can further be divided into three different sub-

classes:

• Time Of Arrival (TOA)
• Roundtrip Time Of Flight (RTOF)
• Time Difference Of Arrival (TDOA).

3.2 RSS

The RSS positioning approach is implemented on the ZigBee SoC CC2431
of TI (Texas Instruments) which has a location engine hardware capable
of calculating a two dimensional position of the blind node from the RSSI
(Received Signal Strength Indicator) and the known coordinates of the base
nodes [16]. This approach works on the relation between the distance and
RSSI, assuming the antenna has the isotropic radiation characteristic, which
can be expressed by the formula

RSSI = − (10 log10 d+A)n (1)

where

• n is the signal propagation constant, also named propagation exponent;
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Fig. 3 Measuring principles for a Local Positioning System: (a) angle-of-arrival AOA,

where RU and MU denote remote and mobile unit, α1 and α2, are the measured direction
angles; (b) received signal strength RSS, where L1 and L2 denote the measured path loss;
(c) time-of-arrival (TOA) and roundtrip time-of-flight (RTOF), where, τ1 and τ2 denote

the measured one-way or roundtrip signal propagation time; the spatial position is given by
the intersection of circles centered at the RUs; (d) time difference of arrival (TDOA), where
∇τ12 and ∇τ23 denote the measured propagation time difference from a signal traveling

from the MU to two different RUs and the position is given by the intersection of hyperbola
with foci at the RUs.

• d is distance from the sender;
• A is received signal strength at the distance of one meter.

The location engine of the blind node implements a distributed computation
algorithm that uses RSSI values from known reference nodes, such as mobile
neighbor nodes with the same Location Engine, or fixed infrastructure nodes.
The location error depends on signal environment, deployment pattern of
the reference nodes and the density of the reference nodes in the area of
interest. In general, having more reference nodes available, one improves the
accuracy of the location estimation. This approach just calculates the position
on the basis of the available RSSI without extra hardware and with little
computation. Its cost therefore is very low but the accuracy of the target
position is at the level of the meter. Therefore, for such a low resolution, the
RSS positioning approach is the most cost-effective.



36 Fabio Casciati and Zhicong Chen

3.3 RTOF

The RTOF positioning approach is prototyped by Berkeley for the location
in sensor networks [21]. This approach achieves positioning through directly
measuring TOF (Time Of Flight) by sampling in time domain. Therefore, the
accuracy is limited by the time quantization which depends on the sampling
period and on the corresponding signal bandwidth. In addition, an OFDM
(Orthogonal Frequency Division Multiplexing) wideband signal is selected for
implementation, due to its flexibility and its low computational complexity.

To achieve TOF measurements, the RX (Receiver) must be synchronized
with the TX (Transmitter), i.e. the RX needs to be aware of the clock off-
set between the two. Unsynchronized TOF measurement results include the
clock offset as an additive (subtractive) term. If the same measurement was
carried out in the reverse direction, then the same clock offset would appear
as a subtractive (additive) term. Averaging the forward and reverse measure-
ment results, one cancels the contribution of the clock offset. Also, halving
the difference of the forward and reverse TOF measurements, one obtains the
clock offset between the TX and RX.

Two important points should be noted regarding the round trip time trans-
fer method. First, the clock offset needs to remain constant during the for-
ward and reverse transmissions. Typically this implies that the measurements
should be carried out in rapid succession. Second, there is the need of an
additional, reliable communication mechanism for exchanging, transmitting
and receiving times. The prototype measurement error is within 0.5m to 2m,
when operating at 100Msps sampling rate and using a 50MHz signal in the
2.4 GHz ISM band. The system accuracy is limited by the sampling rate and
can be linearly improved with increasing rates.

3.4 TDOA-FWMW

The TDOA positioning approach prototyped by ICIE (Institute for Commu-
nications and Information Engineering, University of Linz, Austria) mainly
relies on FMCW (Frequency-Modulated Continuous-Wave) radar principle
which utilizes the frequency difference obtained from a mixer to represent
the round trip time of electromagnetic wave propagation [22]. The prototype
at least consists of four position-known BSs (Base Station), one position-
unknown MT (Measurement Transponder), one position-known RT (Refer-
ence Transponder), and one MPU (Master Processing Unit).

Since the distances to be determined between the MT and BSs are short,
which corresponds to a TOF (Time of Flight) in the range from nanosec-
onds to micro-seconds (which is difficult to be directly measured), an indirect
measurement in the frequency domain based on linear chirps is adopted. In
contrast to the TOF approach, which requires a common and highly accu-
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rate time base between transponders and BSs, the TDOA just need to achieve
synchronization among the BSs, which is realized by the RT instead of expen-
sive atomic clock or high-speed optical fibers. From the operational aspect,
the RT operates continuously to keep the BSs synchronized, whereas the in-
dividual MTs are activated by means of a trigger telegram to avoid mutual
interference among them. In this prototype, the accuracy of a few centimeters
can be achieved. From the aspect of system implementation, the devices to
be used, for both RF and digital modules, are available on the markets and of
common use. Although it is expensive compared to the above RSS approach,
this approach is able to achieve high precision, so that it results to be cost-
effective for high precision application. An alternative implementation can
be found in ref. [23].

4 Conclusions

The chapter is devoted to an obvious computational need that is to be re-
solved before dense sensor networks can be applied to structures of civil and
mechanical engineering in a more advantageous manner. The goal is to de-
velop design methodologies for the spatial distribution of networks of properly
weighted sensors such that the computed combination of their outputs can
be interpreted as an entity with a well-posed physical meaning. In particular
new methodologies for measuring an output with a meaning in the context
of structural mechanics and strength of materials are emphasized.

Potential applications of such dense sensor networks shall be studied con-
cerning structural systems of civil and mechanical engineering, robotics and
environmental processes. Implications of the new design methodologies for
sensor networks upon control and health monitoring shall also be worked
out.
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Hybrid Control Procedures in
Mitigating Cable Vibrations

Lucia Faravelli, Clemente Fuggini and Filippo Ubertini

Abstract Cable vibration control is an active research field in the techni-
cal literature. Yet, a robust and effective control strategy for cable dynamics
is still missing. Indeed, cables exhibit a complex behavior, mainly due to
internal resonances and nonlinear couplings. Moreover, most of the control
solutions already known in the literature are affected by damper/actuator
localization, which significantly impairs their overall control effectiveness. To
overcome these drawbacks, the authors have recently proposed a hybrid solu-
tion combining wrapped shape memory alloy (SMA) wires and an open-loop
actuation. These control solutions have shown promising vibration mitigation
capabilities when the motion was essentially dominated by the first in-plane
mode. Here, a particular attention is posed to controlling the second in-plane
modal amplitude which is known to entail serious control difficulties and
proved to be considerably relevant in technical situations. To this end, the
effectiveness of the passive (SMA wires), open-loop active and hybrid control
solutions are investigated by means of a campaign of laboratory tests. The
results extend the previous theoretical/experimental study and confirm the
potentialities of the proposed hybrid approach.
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1 Introduction

Cable vibration mitigation is a well-established research field due to the broad
diffusion of cables in bridge design. Among the different types of stay cables,
longer ones are those which suffer the most from vibration problems. As a
consequence of these undesired levels of vibrations, fatigue ruptures may ap-
pear in the cables [1].

Steel cables are characterized by a complex nonlinear dynamic with a large
variety of internal resonance conditions [2-3]. When structural control solu-
tions are concerned, such a complexity is even enhanced [4]. Within this field,
dampers mounted transversally to the cable are usually employed as passive
devices [5]. Unfortunately, the localisation of the dampers close to the ca-
ble support often limits their control capability. Alternatively, to overcome
the localization drawback, a pre-stressed shape memory alloy wire can be
added to the cable. Indeed, this passive solution was seen able to increase the
damping of the system by exploiting the hysteretic stress-strain relations of
the SMA [6]. The best vibration mitigation capabilities are however guaran-
teed by more expensive active or semi-active strategies as well-known from
the theory of structural control [7].

The authors recently proposed a hybrid control strategy [8-9] obtained by
combining an open loop actuation and the distributed passive one utilizing
wrapped SMA wires. The open loop control law was designed to enhance
the energy exchanges between modes produced by nonlinear couplings. The
hybrid solution was seen able to combine the added damping provided by the
SMA wire with the additional mitigation capability provided by the open loop
actuation. However, the experimental results presented in [9] were essentially
limited to the mitigation of the response when the motion was dominated by
the first in-plane mode. Here, a campaign of experimental tests is presented
to better investigate the capability of the said control strategies in mitigating
the vibrations of the second in-plane mode. Indeed, such a mode is already
known in the literature to entail serious control difficulties and it is usually
activated in large amplitude vibrations observed in stay cables.

2 Physical cable model

A heavy suspended cable is considered (see Figure 1) with span length L and
sag d. With the aim of mitigating the vibrations of the cable, three control
strategies are here considered [9]: distributed passive solution using wrapped
SMA wire (DP-SMA), open loop control solution (OP-LOOP) and hybrid
control solution (HYB).

In the OP-LOOP case a transversal vertical control actuator, represented
by a linear motor, is placed in the vicinity of one of the cable ends (at a dis-
tance xc) and exerts the control force Fc (see Figure 1). On the opposite side,
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exerts the control force Fc (see Figure 1). On the opposite side, at a distance xf 
from the cable end, the external excitation FF is provided by a second linear mo-
tor.  

 
Fig. 1. Sketch of the cable and of the control architecture 

The control effectiveness is analyzed through experimental tests on a physical ca-
ble model. (see Figure 2). The cable has a span length L=2.36 m and is supported 
at its ends by means of spherical joints fixed to rigid supports placed at the same 
height. One of the two anchorages allows to vary the tension in the cable and, con-
sequently, to vary its sag. The system is instrumented with two tri-axial acceler-
ometers placed at one-fourth and one-fifth of the span. The sensors record the ac-
celerations in the in-plane direction and in the out-of-plane one of the two 
application points. The cable is made by a steel wire of diameter 2 mm and with 
an elastic modulus E =135000 MPa. Six equally-spaced spherical masses are 
mounted on the cable such that the total weight per unit length is equal to 3.805 
N/m. The initial configuration chosen for the cable has a sag d=2.0 cm. 

 

 
Fig. 2. Physical cable model (left); particular of the anchorage with the load cell (right) 

In-plane modes Out-of-plane modes 
Frequency [Hz] Damping ratio Frequency [Hz] Damping ratio 

f1=5.25 
f2=7.30 

f3=10.31 

ξ1=0.0198 
ξ 2=0.092 
ξ 3=0.0110 

f1=4.03 
f2=7.63 

f3=11.05 

ξ 1=0.096 
ξ 2=0.0196 
ξ 3=0.0098 

Table 1. Identified modal frequencies and damping ratios 

The output-only system identification of the cable model was carried out else-
where [9] and led to the results summarized in Table 1. 

In such a table fi denotes the frequency of the i-th in-plane or out-of-plane mode 
while ξi denotes the corresponding damping ratio. The cable revealed to be  close 
to the 2:1 internal resonance between the third and the first in-plane modes 

Fig. 1 Sketch of the cable and of the control architecture

Fig. 2 Physical cable model

at a distance xf from the cable end, the external excitation FF is provided
by a second linear motor. Both dynamic forces Fc and FF are applied to the
cable without a fixed contact. Thus, the two linear motors do not modify the
physical system and excite the cable by simply impacting on it.

The control effectiveness is analyzed through experimental tests on a phys-
ical cable model (see Figure 2). The cable has a span length L = 2.36m and
is supported at its ends by means of spherical joints fixed to rigid supports
placed at the same height. One of the two anchorages allows to vary the
tension in the cable and, consequently, to vary its sag. The system is instru-
mented with two tri-axial accelerometers placed at one-fourth and one-fifth
of the span. The sensors record the accelerations in the in-plane direction and
in the out-of-plane one of the two application points. The cable is made by a
steel wire of diameter 2mm and with an elastic modulus E = 135000MPa.
Six equally-spaced spherical masses are mounted on the cable such that the
total weight per unit length is equal to 3.805N/m. The initial configuration
chosen for the cable has a sag d = 2.0cm.

The output-only system identification of the cable model was carried out
elsewhere [9] and led to the results summarized in Table 1. In such a table
fi denotes the frequency of the i-th in-plane or out-of-plane mode while ξi
denotes the corresponding damping ratio. The cable revealed to be close to
the 2 : 1 internal resonance between the third and the first in-plane modes
(f3/f1 = 1.96) and to be detuned from the 1 : 1 resonance between the first
and the second in-plane modes (f2/f1 = 1.39).
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In-plane modes Out-of-plane modes

Frequency [Hz] Damping ratio

f1 = 5.25 ξ1 = 0.0198
f2 = 7.30 ξ2 = 0.092

f3 = 10.31 ξ3 = 0.011

Frequency [Hz] Damping ratio

f1 = 4.03 ξ1 = 0.096
f2 = 7.63 ξ2 = 0.0196

f3 = 11.05 ξ3 = 0.0098

Table 1 Identified modal frequencies and damping ratios

3 Hybrid control strategy

The DP-SMA approach aims at increasing the modal damping of the struc-
tural system by wrapping a SMA wire [10] along the cable. This allows to
achieve a mitigation solution which is distributed along the cable and, hence,
it is not affected by the device localisation. The SMA wire (in austenite
phase) of diameter 1 mm is wrapped around the steel cable several times,
anchored to the same vertical point of the cable and fixed at one end by a
device that allows to assign a pre-tension force H to the wire but not to the
cable. An optimal configuration for the union between the steel cable and the
SMA wire was investigated [6] and the optimal pre-tension in the SMA wire
was found [9]. Particularly, the pretension force that produce a 2% of strain
(which corresponds to the so-called plateau of the stress-strain diagram for
the considered SMA) into the wire was found to be the value that maximizes
the control effectiveness.

The idea of the OP-LOOP control strategy is to exploit nonlinear cou-
pling phenomena for control purposes. The aim is to make the vibration
energy flow from low order modes (controlled modes) to some higher order
one (excited mode). The results presented in [9] have shown that choosing
a simple sinusoidal control law allows to reduce the nonlinear response of
the cable. To activate this mechanism, the frequency fc of the control action
must be chosen in such a way to activate the nonlinear vibrations of the ex-
cited mode. In [9], the value fc ≈ 2f3 was chosen (fc = 18Hz) in order to
excite the third in-plane mode (excited mode) nonlinearly (approximately in
a 2 : 1 ratio). This approach made the harmonic component with frequency
fc dominate the response of the third mode without significantly exciting any
others modes.

It is clear that the OP-LOOP approach is a non-conventional control strat-
egy in the sense that it is meant to mitigate the nonlinear response of the
cable by introducing energy into the system instead of taking energy out of
it. A possible way for controlling the response of the system in both linear
and nonlinear cases is to combine the DP-SMA and the OP-LOOP control
solutions in a hybrid strategy (HYB), as proposed in reference [9].
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4 Experimental results

The capability of DP-SMA, OP-LOOP and HYB control solutions to mitigate
the cable vibrations was demonstrated both theoretically and experimentally
in [9]. Here, the results of a second campaign of experimental tests are pre-
sented by devoting a special care to the mitigation of the cable response
when the second (anti-symmetric) in-plane mode is significantly excited. For
the seek of clarity, the effectiveness of HYB control solution is studied af-
ter dealing with DP-SMA and OP-LOOP cases, separately. To this end, the
forced oscillations of the cable under harmonic in-plane excitation FF are
considered. For every test, the recorded signals have a sampling frequency of
250Hz.

4.1 DP-SMA case

In the first stage of experimental tests the DP-SMA control solution is con-
cerned. First of all, the modal identification of the cable-SMA wire system
has been realized to evaluate the change in the natural frequencies of the
cable produced by the SMA wire. The results have been obtained as de-
scribed in reference [9] and are summarized in Table 2 where fSMA

i denotes
the frequency of the i-th in-plane or out-of-plane mode of the cable-SMA
wire system. The SMA wire was seen able to strongly reduce the harmonic

In-plane modes Out-of-plane modes

Frequency [Hz] fSMA
i /fi

fSMA
i = 6.66 1.27

fSMA
i = 10.95 1.50

fSMA
i = 17.77 1.72

Frequency [Hz] fSMA
i /fi

fSMA
i = 6.03 1.50
fSMA
i = 9.93 1.30

fSMA
i = 9.04 1.45

Table 2 Identified modal frequencies of cable-SMA wire system

response of the cable in the vicinity of the primary resonance with the first
in-plane mode [9]. Here, the experimental frequency response curves (frcs)
of the system in the vicinity of the resonance with the second in-plane mode
are presented. The frcs represent the amplitudes of the steady uncontrolled
and controlled responses, as functions of the frequency of the external load
FF . The results, shown in Figure 3, emphasize that the passive strategy re-
duces the response at one-fifth of the cable span, while being substantially
ineffective in mitigating the vibration of the second in-plane mode (maximum
response at one-fourth of the cable span). It is worth noting that, in Figure 3,
there is a frequency shift between uncontrolled and DP-SMA controlled frcs
due to the difference between the frequencies of the second in-plane modes
in the two cases.

Thus, a complementary approach is needed in order to configure a control
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Thus, a complementary approach is needed in order to configure a control strategy 
which is able to overcome the drawbacks of the DP-SMA solution.  

 

 
Fig. 3. Experimental normalized frcs under in-plane excitation in the region of the resonance 
with the second in-plane mode: cable with the SMA wire (black lines) vs. cable without the 
SMA wire (grey lines)  

OP-LOOP case 

In the second stage the effectiveness of the open loop control action in mitigating 
the response of the second in-plane mode is investigated. The control frequency 
fc=18Hz is chosen. 

To analyze the forced response of the system close to the resonance with the sec-
ond in-plane mode, the frequency ff of the harmonic forcing load FF is tunedto the 
value of 7.0 Hz. At this given frequency the open loop controlled response is 
compared to the uncontrolled one. The recorded time history of the in-plane accel-
eration components is shown in Figure 4. The presented results confirm thatthe 
control action is capable to reduce the resonant response of the second in-plane 
mode. In order to investigate the effectiveness of the open loop controller in dif-
ferent regions of the external excitation, the frcs to in-plane excitation are also 
considered. The results are presented in Figure 5 and evidence that the open loop 
controller is able to reduce the response of the system for a wide range of fre-
quency values close to f2.  

Fig. 3 Experimental normalized frcs under in-plane excitation in the region of the res-

onance with the second in-plane mode: cable with the SMA wire (black lines) vs. cable
without the SMA wire (grey lines)

strategy which is able to overcome the drawbacks of the DP-SMA solution.

4.2 OP-LOOP case

In the second stage of experimental tests, the effectiveness of the open loop
control action in mitigating the response of the second in-plane mode is in-
vestigated. The control frequency fc = 18Hz is chosen.

To analyze the forced response of the system close to the resonance with
the second in-plane mode, the frequency ff of the harmonic forcing load FF is
tuned to the value of 7.0Hz. At this given frequency the open loop controlled
response is compared to the uncontrolled one. The recorded time history of
the in-plane acceleration components is shown in Figure 4. The presented
results confirm that the control action is capable to reduce the resonant re-
sponse of the second in-plane mode. In order to investigate the effectiveness
of the open loop controller in different regions of the external excitation, the
frcs to in-plane excitation are also considered. The results are presented in
Figure 5 and evidence that the open loop controller is able to reduce the
response of the system for a wide range of frequency values close to f2.

4.3 HYB case

After investigating the effectiveness of DP-SMA and OP-LOPP control solu-
tion separately, the HYB control strategy is worth considering. In principle,
since the SMA wire modifies the natural frequencies and the internal detun-
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Fig. 4. Cable without the SMA wire: experimental time history of in-plane mid-span acceleration 
record under forced in-plane excitation in resonance with the second in-plane mode (ff=7.0 Hz) 
before and after the application of the open loop control input (top); power spectral density 
(PSD) of in-plane acceleration (bottom) in both uncontrolled and open loop controlled cases 

 
Fig. 5. Cable without the SMA wire: experimental normalized frcs under in-plane excitation for 
uncontrolled (black lines) and open loop controlled (grey lines) cases in the region of the reso-
nance with the second in-plane mode 

Fig. 4 Cable without the SMA wire: experimental time history of in-plane mid-span

acceleration record under forced in-plane excitation in resonance with the second in-plane
mode (ff = 7.0Hz) before and after the application of the open loop control input (top);
power spectral density (PSD) of in-plane acceleration (bottom) in both uncontrolled and

open loop controlled cases

 
Fig. 4. Cable without the SMA wire: experimental time history of in-plane mid-span acceleration 
record under forced in-plane excitation in resonance with the second in-plane mode (ff=7.0 Hz) 
before and after the application of the open loop control input (top); power spectral density 
(PSD) of in-plane acceleration (bottom) in both uncontrolled and open loop controlled cases 

 
Fig. 5. Cable without the SMA wire: experimental normalized frcs under in-plane excitation for 
uncontrolled (black lines) and open loop controlled (grey lines) cases in the region of the reso-
nance with the second in-plane mode 

Fig. 5 Cable without the SMA wire: experimental normalized frcs under in-plane excita-
tion for uncontrolled (black lines) and open loop controlled (grey lines) cases in the region
of the resonance with the second in-plane mode

ings of the cable, the control frequency fc adopted in the HYB case should be
different from that adopted in the OP-LOOP case. Here, however, the value
fc = 18Hz is kept also in the HYB case for reasons that will be explained
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below.
First of all the forced solution in resonance with the second in-plane mode

is investigated. To this end, the frequency ff of the harmonic forcing load
FF is tuned to the value of 10.9Hz which corresponds to the frequency of the
second in-plane mode of the cable-SMA wire system. At this given frequency
the HYB controlled response is compared to the DP-SMA controlled one.
The recorded time history of the in-plane acceleration components is shown
in Figure 6. The presented results confirm that, as expected, the open loop
control action is capable to reduce the resonant response of the second in-
plane mode of the cable-SMA wire system. The PSD analysis reveals that the
passively controlled solution is quasiperiodic since it posses incommesurate
frequencies.

The effectiveness of the HYB solution is then investigated by varying the
frequency of the external load in the vicinity of the resonance with the second
in-plane mode. To this end, the frcs of the cable-SMA wire system, with and
without the open loop controller, are shown in Figure 7. The results outline
that the additional control capability provided by the open loop controller is
not limited to the resonant case with the second in-plane mode but it extends
to all the considered frequency spectrum.

HYB case 

After investigating the effectiveness of DP-SMA and OP-LOPP control solution 
separately, the HYB control strategy is worth considering. In principle, since the 
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adopted in the OP-LOOP case. Here, however, the value fc=18 Hz is kept also in 
the HYB case. 
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the value of 10.9 Hz which corresponds to the frequency of the second in-plane 
mode of the cable-SMA wire system. At this given frequency the HYB controlled 
response is compared to the DP-SMA controlled one. The recorded time history of 
the in-plane acceleration components is shown in Figure 6.  

 
Fig. 6. Cable without wrapped SMA wire: experimental time history of in-plane mid-span accel-
eration record under forced in-plane excitation in resonance with the second in-plane mode 
(ff=10.9 Hz) before and after the application of the open loop control input (top); power spectral 
density (PSD) of in-plane acceleration (bottom) in both passively controlled and hybrid con-
trolled cases 

The presented results confirm that, as expected, the open loop control action is ca-
pable to reduce the resonant response of the second in-plane mode of the cable-
SMA wire system. The PSD analysis reveals that the passively controlled solution 
is quasiperiodic since it posses incommesurate frequencies. 

Fig. 6 Cable without wrapped SMA wire: experimental time history of in-plane mid-span

acceleration record under forced in-plane excitation in resonance with the second in-plane
mode (ff = 10.9Hz) before and after the application of the open loop control input (top);

power spectral density (PSD) of in-plane acceleration (bottom) in both passively controlled

and hybrid controlled cases
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-
plane mode. To this end, the frcs of the cable-SMA wire system, with and without 
the open loop controller, are shown in Figure 7. The results outline that the addi-
tional control capability provided by the open loop controller is not limited to the 
resonant case with the second in-plane mode but it extends to all the considered 
frequency spectrum.  

 
Fig. 7. Experimental normalized frcs under in-plane excitation for passively controlled utilizing 
wrapped SMA wire (black lines) and hybrid controlled (grey lines) cases in the region of the 
resonance with the second in-plane mode 

Conclusions 

The experimental results presented in this paper extend a previous theoretical-
experimental study by the authors. The effectiveness of a hybrid control strategy 
in reducing the vibrations of the second in-plane mode is investigated here through 
a campaign of laboratory tests. The hybrid strategy is obtained by combining a 
distributed passive solution utilizing wrapped SMA wires with an open loop ac-
tuation. The experimental results show that the SMA wire, which provides the sys-
tem with significant vibration mitigation capabilities in the case of symmetric in-
plane motions, is substantially ineffective in reducing the vibrations of antisym-
metric modes. On the contrary, the experimental results outline that the open loop 
controller guarantees a significant reduction of the nonlinear response of the sec-
ond in-plane mode. 

Thanks to the control capability of the open loop controller, the hybrid solution is 
seen able to guarantee a significant mitigation of the cable response for a wide 
range of frequency values in the region of the resonance with the second in-plane 
mode. The frequency analysis of the experimental resonant response reveals that 

Fig. 7 Experimental normalized frcs under in-plane excitation for passively controlled
utilizing wrapped SMA wire (black lines) and hybrid controlled (grey lines) cases in the

region of the resonance with the second in-plane mode

5 Conclusions

The experimental results presented in this paper extend a previous theoretical-
experimental study by the authors. The effectiveness of a hybrid control
strategy in reducing the vibrations of the second in-plane mode is investi-
gated here through a campaign of laboratory tests. The hybrid strategy is
obtained by combining a distributed passive solution utilizing wrapped SMA
wires with an open loop actuation. The experimental results show that the
SMA wire, which provides the system with significant vibration mitigation
capabilities in the case of symmetric in-plane motions, is substantially inef-
fective in reducing the vibrations of antisymmetric modes. On the contrary,
the experimental results outline that the open loop controller guarantees a
significant reduction of the nonlinear response of the second in-plane mode.

Thanks to the control capability of the open loop controller, the hybrid so-
lution is seen able to guarantee a significant mitigation of the cable response
for a wide range of frequency values in the region of the resonance with the
second in-plane mode. The frequency analysis of the experimental resonant
response reveals that the hybrid solution reduces both the leading harmonic
peak and the subharmonic one.

In summary, the proposed hybrid approach confirms its potentialities for
controlling both symmetric and antisymmetric cable vibrations, with low en-
ergy consumptions, large control robustness and with no actuator/damper
localization drawbacks.
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Thermal Stress Analysis in a
Functionally Graded Material
Considering Finite Thermal Wave
Speed

Toshio Furukawa

Abstract Three-dimensional generalized thermoelasticity based on the Lord
and Shulman’s theory and the Green and Lindsay’s theory is analyzed by
use of the state space approach and integral transform techniques (Laplace
and Fourier transforms). The functionally graded material is approximated
to a multi-layered medium. Each layer is homogeneous and isotropic. The
surfaces are traction free and subjected to a partial heating. The numerical
calculations for temperature and thermal stresses are carried out.

1 Introduction

The dynamical coupled theory [1], which takes into account the coupling be-
tween temperature and strain fields, involves the contradiction that thermal
wave propagates at an infinite velocity. The theory of generalized thermoe-
lasticity has been developed in an attempt to eliminate this paradox. There
are two different theories of the generalized thermoelasticity. The first is pro-
posed by Lord and Shulman [2] (L-S theory) and the second is proposed by
Green and Lindsay [3] (G-L theory). Recently, another some generalized theo-
ries [4-7] have been proposed. Hetnarski and Ignaczak [8] reviewed the recent
progress on the generalized thermoelasticity. We used the basic equations of
generalized thermoelasticity introduced by Noda et al. [9], which include the
L-S theory and G-L theory, and analyzed a solid cylinder and layered medium
[10-12], etc.

This paper deals with the three-dimensional generalized thermoelasticity
for a functionally graded material, which is approximated to a multi-layered
medium, based on the L-S and G-L theories. The state space approach [13]
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is utilized for this problem. It is assumed that the medium is initially natural
state. The surfaces of the medium are traction free and subjected to a partial
heating. The temperature, displacements and stresses are obtained by means
of the Laplace and Fourier transforms. The inversions of these transforms are
carried out numerically.

2 Analysis

We consider three-dimensional generalized thermoelasticity for a multi-layered
medium composed of homogeneous and isotropic n layers, and total thickness
is l as shown in Fig. 1. The basic equations, which include the L-S and G-L

1
2

i

n

0 y,z

x

l

Fig. 1 Multi-layered medium

theories, consist of three equations, that is, the heat conduction equation

κi(T,xx+T,yy +T,zz)− (T −T0 + t0iT,t ),t = (λi+2µi)
δi
γi

(e+δ1kt0ie,t),t, (1)

the equations of motion represented by displacement components

µi(ux,xx + ux,yy + ux,zz) + (λi + µi)e,x − γi(T − T0 + δ2kt1iT,t),x = ρiux,tt,

µi(uy,xx + uy,yy + uy,zz) + (λi + µi)e,y − γi(T − T0 + δ2kt1iT,t),y = ρiuy,tt,

µi(uz,xx + uz,yy + uz,zz) + (λi + µi)e,z − γi(T − T0 + δ2kt1iT,t),z = ρiuz,tt,

(2)

and the stress-strain-temperature relations
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σxx = 2µiux,x + λie− γi(T − T0 + δ2kt1iT,t),
σyy = 2µiuy,y + λie− γi(T − T0 + δ2kt1iT,t),
σzz = 2µiuz,z + λie− γi(T − T0 + δ2kt1iT,t),

σxy = µi(ux,y + uy,x) , σyz = µi(uy,z + uz,y) , σzx = µi(uz,x + ux,z),
(3)

where
γi = (3λi + 2µi)αi , e = ux,x + uy,y + uz,z. (4)

Here, T : temperature, ux, uy and uz: displacement components in the x, y
and z directions respectively, σij : stress component, t: time, T0: initial tem-
perature, κ: thermal diffusivity, α: coefficient of linear thermal expansion, δ:
thermomechanical coupling parameter, ρ: density, λ and µ: Lame’s constants,
t0 and t1: relaxation times, δjk: Kronecker’s delta whose subscript k denotes
the number of relaxation times. The subscript i of each symbol denotes the
referred layer number. The comma denotes the differentiation with following
variable.

We introduce the dimensionless quantities:

(x̄, ȳ, z̄) =
1
l
(x, y, z) , (τ, τ0, τ1) =

ci
l

(t, t0, t1) , θ =
T − T0

T1 − T0
,

(ūx, ūy, ūz) =
(ux, uy, uz)
lαi(T1 − T0)

, σ̄ij =
σij

µiαi(T1 − T0)
,

ξi =
cil

κi
, β0i =

λi + 2µi
µi

, β1i =
3λi + 2µi

µi
, (5)

where ci is the velocity of longitudinal wave and T1 is a prescribed tempera-
ture. Substituting Eq.(5) into Eqs.(1) and (2) and applying the Laplace and
Fourier transforms, we have

θ̂∗,x̄x̄−[ξis(1+τ0is)+η2+ζ2]θ̂∗ =
β0i

β1i
ξiδis(1+δ1kτ0is)(ˆ̄u∗x,x̄+iη ˆ̄u∗y+iζ ˆ̄u∗z), (6)

β0i ˆ̄u∗x,x̄x̄ − (η2 + ζ2 + β0is
2)ˆ̄u∗x + i(β0i − 1)(η ˆ̄u∗y + ζ ˆ̄u∗z),x̄ −

−β1i(1 + δ2kτ1is)θ̂∗,x̄ = 0,
ˆ̄u∗y,x̄x̄ − [β0i(η2 + s2) + ζ2]ˆ̄u∗y + (β0i − 1)η(iˆ̄ux,x̄ − ζ ˆ̄u∗z)−

−iηβ1i(1 + δ2kτ1is)θ̂∗ = 0,
ˆ̄u∗z,x̄x̄ − [β0i(ζ2 + s2) + η2]ˆ̄u∗z + (β0i − 1)ζ(iˆ̄u∗x,x̄ − η̂̄u∗y)−

−iζβ1i(1 + δ2kτ1is)θ̂∗ = 0, (7)

where Laplace transform and Fourier transform are denoted by the asterisk
(∗) and the hat ( ˆ ), and the transform parameters are s, η and ζ, respectively.
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Equations (6) and (7) are represented as the following matrix form

dV(x̄, η, ζ, s)
dx̄

= Ai(η, ζ, s)V(x̄, η, ζ, s), (8)

where

V(x̄, η, ζ, s) = {ˆ̄u∗x, ˆ̄u∗y, ˆ̄u∗z, θ̂∗, D ˆ̄u∗x, D ˆ̄u∗y, D ˆ̄u∗z, Dθ̂
∗}T ,

Ai(η, ζ, s) =




0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
a51i 0 0 0 0 a56i a57i a58i

0 a62i a63i a64i a65i 0 0 0
0 a72i a73i a74i a75i 0 0 0
0 a82i a83i a84i a85i 0 0 0




,

a51i =
1
β0i

(η2 + ζ2) + s2 , a56i = −β0i − 1
β0i

iη , a57i = −β0i − 1
β0i

iζ,

a58i =
β1i

β0i
(1 + δ2kτ1s) , a62i = β0i(η2 + ζ2) + s2 , a63i = (β0i − 1)ηζ,

a64i = iβ1iη(1 + δ2kτ1is) , a65i = −i(β0i − 1)η , a72i = a63i ,

a73i = η2 + β0i(ζ2 + s2) , a74i =
β1i

β0i
iζa58i , a75i = β0ia57i ,

a82i = iηa85i , a83i = iζa85i , a84i = η2 + ζ2 + ξi(1 + τ0is)s,

a85i =
β0i

β1i
ξiδis(1 + δ1kτ0is),

and D = d/dx̄. The differential equation (8) can be directly solved and we
obtain

V(x̄, η, ζ, s) = exp[Ai(x̄− x̄i−1)]V(x̄i−1, η, ζ, s), (9)

where x̄i−1 is the lower side of i-th layer and x̄0 = 0
The characteristic equation is represented by

det |Ai − piI| = p8
i + b1ip

6
i + b2ip

4
i + b3ip

2
i + b4i = 0, (10)

where I is the identity matrix composed of 8 rows and 8 columns, pi is
eigenvalue and the all odd orders are eliminated from manual calculation,
and the explicit representations of coefficient bij are omitted here.

Cayley-Hamiltons theorem leads

A8
i + b1iA6

i + b2iA4
i + b3iA2

i + b4iI = 0. (11)

From Eq.(11), the matrix exponential is represented by finite matrix polyno-
mial with no approximation as
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exp[Ai(x̄−x̄i−1)] = c0iI+c1iAi+c2iA2
i+c3iA

3
i+c4iA

4
i+c5iA

5
i+c6iA

6
i+c7iA

7
i ,

(12)
where the explicit representations of coefficient cij are omitted, too.

When we put
Fi(x̄, η, ζ, s) = exp[Ai(x̄− x̄i−1)], (13)

equation (9) is rewritten as

V(x̄, η, ζ, s) = Fi(x̄, η, ζ, s)V(x̄i−1, η, ζ, s). (14)

The physical quantities that must be matched at the interface of each layer
consist of temperature T , displacements ux, uy and uz, heat flux qt, normal
stress σxx, and shear stresses σxy and σzx. The dimensionless transformed
stress components are expressed as

ˆ̄σ∗xx = β0i ˆ̄u∗x,x̄ + i(β0i − 2)(η ˆ̄u∗y + ζ ˆ̄u∗z)− β1i(1 + δ2kτ1is)θ̂∗,
ˆ̄σ∗xy = iη ˆ̄u∗x + ˆ̄u∗y,x̄ , ˆ̄σ∗zx = ˆ̄u∗z,x̄ + iζ ˆ̄ux. (15)

The matrix-type relation at the interface of the i-th layer and (i−1)-th layer
is

V(x̄+
i−1, η, ζ, s) = Pi−1(η, ζ, s)V(x̄−i−1, η, ζ, s), (16)

where

Pi−1 =




1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 d52i d53i d54i d55i 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 d88i




,

d52i =
β0(i−1) − β0i

β0i
iη , d53i =

β0(i−1) − β0i

β0i
iζ , d88i =

k̄(i−1)(1 + δ1kτ0is)
k̄i(1 + δ1kτ0(i−1)s)

,

d54i = − 1
β0i

[β1(i−1)(1 + δ2kτ1(i−1))s− β1i(1 + δ2kτ1is)] , d55i =
β0(i−1)

β0i
,

and k̄i = ki/k1 is a dimensionless thermal conductivity.
This procedure is repeated to the first layer. The final form is represented

by
V(x̄, η, ζ, s) = G(x̄, η, ζ, s)V(0, η, ζ, s), (17)

where

G(x̄, η, ζ, s) = Fi(x̄i − x̄i−1, η, ζ, s)
i−1∏

j=1

Pj(η, ζ, s)Fj(x̄j − x̄j−1, η, ζ, s). (18)
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The initial state vector V(0, η, ζ, s) is determined from the boundary con-
ditions. The both surfaces of the medium are stress-free, so that the next
dimensionless mechanical boundary conditions are obtained

x̄ = 0 ; ˆ̄σ∗xx = ˆ̄σ∗xy = ˆ̄σ∗zx = 0,

x̄ = 1 ; ˆ̄σ∗xx = ˆ̄σ∗xy = ˆ̄σ∗zx = 0. (19)

We consider that the partial heat, whose profile is f(y, z, t), is applied to the
upper surface x = l. The dimensionless thermal boundary conditions are

x̄ = 0 ; −θ̂∗,x̄ +Ha(1 + τ01s)θ∗ = 0,

x̄ = 1 ; θ̂∗,x̄ +Hb(1 + τ0ns)(θ̂∗ − ˆ̄f∗) = 0, (20)

where Ha and Hb are Biot’s numbers of lower and upper surfaces, respec-
tively. From these eight equations, the initial state vector can be determined.
So that, the solutions for temperature, displacements and thermal stresses
are obtained in the Laplace and Fourier transformed domains. Because the
analytical inversions are much difficult, so the inversions are carried out nu-
merically.

3 Numerical Results and Discussion

Numerical calculations are carried out for multi-layers up to 10 layers based
on the generalized theories. The calculation conditions are shown below:

1. Materials
(a) 1 layer: mild steel (JIS S15C)
(b) 2 layers:

layer 1: l̄1 = 0.5, mild steel (JIS S15C)
layer 2: l̄2 = 0.5, ceramics (SiO2)

(3) 3-10 layers:
Each layer has same thickness and mixture of two materials.

2. Biot’s numbers (dimensionless relative heat transfer coefficients)
Hb = 1, Ha = k̄nHb

3. Dimensionless relaxation time
τ0i = τ1i = 0.01

4. Dimensionless heat profile
f̄(ȳ, z̄, τ) = H(1− ȳ)H(1− z̄)H(τ),
where H(·) is Heavisides unit step function.
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Fig. 2 Temperature dis-

tributions θ at the po-
sition ȳ = z̄ = 0(τ =

0.6 , 1 layer)
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Fig. 3 Temperature dis-
tributions θ at the po-

sition ȳ = z̄ = 0(τ =

0.6 , 10 layers)
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5. Dynamical coefficient and initial temperature
ξi = 1.0 , T0 = 293K

The mechanical and thermal properties for mild steel (JIS S15C) and ceramics
(SiO2) are

νs = 0.3 , νc = 0.31 , Es = 206GPa , Ec = 220GPa , αs = 11.8× 10−6K−1,

αc = 10.8× 10−6K−1 , cvs = 473J/(kgK) , cvc = 460J/(kgK),

ks = 51.6W/(mK) , kc = 3.0W/(mK) , ρs = 7860kg/m3
, ρc = 6000kg/m3

,

where subscripts s and c mean the mild steel and ceramics, respectively. The
mixture rule of particle dispersion reinforcements [14,15] is used for inner
layers.

Figures 2 and 3 show the temperature distributions θ in x̄ direction of 1
layer and 10 layers at the position ȳ = z̄ = 0 and dimensionless time τ = 0.6,
respectively.,The temperature distribution of 10 layers is lower than that of
1 layer. The differences between classical and generalized theories are not
cleared here.

Figure 4 shows the comparison of layer numbers for generalized theory (L-
S) at the position ȳ = z̄ = 0 and dimensionless time τ = 0.6. The reduction
effects of temperature are occurred at the case of large layers.

Figures 5 and 6 show the thermal stress distributions σ̄xx in x̄ direction of 1
layer and 10 layers at the position x̄ = z̄ = 0 and dimensionless time τ = 0.6,
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Fig. 4 Temperature distributions θ at the position ȳ = z̄ = 0(τ = 0.6 , L− S)

respectively. The compressive maximum thermal stress of 10 layers is lower
than that of 1 layer. The stresses for generalized theories are slightly larger
than that of classical one. Figure 7 shows the comparison of layer numbers
for L-S theory at the position x̄ = z̄ = 0 and dimensionless time τ = 0.6. The
reduction effects of stresses are occurred at the case of large layers.

Fig. 5 Stress distributions

σ̄xx at the position x̄ = z̄ =

0 , (τ = 0.6 , 1 layer)
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Fig. 6 Stress distributions
σ̄xx at the position x̄ = z̄ =

0 , (τ = 0.6 , 10 layers)
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Fig. 7 Stress distributions σ̄xx at the position x̄ = z̄ = 0 , (τ = 0.6 , L− S)

4 Conclusions

Three-dimensional generalized thermoelasticity based on L-S and G-L the-
ories is analyzed by use of the state space approach and integral transform
techniques. The functionally graded material is approximated to a multi-
layered medium and each layer is homogeneous and isotropic. The surfaces
are traction free and subjected to a partial heating. The following facts can
be found.

1. The state space approach can be applicable to replace the functionally
graded material to a multi-layered medium and the numerical calculation
of multi-layered medium has been performed up to 10 layers.

2. The global tendency of reduction effects of temperature and thermal
stresses by increasing layer number has been examined.

3. The difference between classical and generalized theories is not cleared
under this calculation condition. However, the maximum stress of the gen-
eralized theories is larger than that of classical one.
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Numerical homogenization and
optimization of smart composite
materials

Ulrich Gabbert, Sreedhar Kari, Niels Bohn and Harald Berger

Abstract The paper presents a numerical homogenisation approach to calcu-
late the effective properties of fibre and particle reinforced materials including
smart and multifunctional materials with a focus on piezoelectric fibre com-
posites applied to control vibration and noise radiation of structures. This
finite element based homogenisation is used to optimise the material distri-
bution at the micro-scale by applying an evolutionary approach to receive a
desired global behaviour of a structure at the macro-scale.

1 Introduction

Composite materials play a major role in meeting the increasing demand of
the industry for lightweight and low-cost structures. Compared to classical
monolithic engineering materials, composites offer higher specific strength
and specific stiffness values.

Smart piezoelectric fiber and particle reinforced composites are a new class
of materials, which are increasingly used to actively influence structures to
reduce, e.g., the vibration and the noise radiation [10]. Recently, composite
piezoelectric materials have been developed by combining piezoceramic fibers
with passive non-piezoelectric polymers, such receiving active fibrous com-
posites.

A number of methods have been developed to predict the homogenized
material properties of composites, which are required to perform static and
dynamic structural analysis. Analytical approaches ([1], [17]) are not capable
of predicting the response to general loadings, i.e., they do not give the full
set of overall material parameters. Semi analytical, Hashin/Shtrikman-type

Ulrich Gabbert, Sreedhar Kari, Niels Bohn and Harald Berger
Institute of Mechanics, Otto von Guericke University of Magdeburg, Universitätsplatz 2,
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and other bounds for describing the complete overall behavior (i.e., provid-
ing all elements of the material tensors) have been developed (see [4], [7],
[15], [16]), which are useful tools for theoretical considerations. However, the
range between the bounds can be very wide for certain effective moduli.
Mechanical mean field type methods have been extended to include electro-
elastic and thermal effects based on an Eshelby-type solution [9], [14], [18].
The restrictions of the methods can be overcome by employing periodic mi-
cro field approaches where the fields are typically solved numerically with
high resolution, e.g., by the finite element method [11]. Most of these meth-
ods are restricted to regular packings of fibers (rectangular and hexagonal).
However, in practical situations the fibers are aligned in their longitudinal
direction, while their arrangement in the matrix in transverse cross-section
is usually distributed randomly. To the knowledge of the authors, there is
not much development to handle the problem of transversely randomly dis-
tributed multi-field fiber composites properly. The aim of the present paper is
to present a numerical finite element based approach to predict the full set of
piezoelectric, dielectric, and mechanical effective material coefficients of such
composites with complex geometrical reinforcements (for details see [5], [13]).
This approach is used to optimize the microstructure (fiber distribution, fiber
orientation, fiber-volume fraction etc.) with respect to an objective function
defined at the macrostructure.

2 Numerical homogenization

Numerical finite element based micromechanical methods provide a power-
ful general tool to calculate the homogenized properties of fiber and parti-
cle reinforced and multi-field composite materials, such as piezoelectric fiber
composites, through an analysis of a periodic representative volume element
(RVE).

In piezoelectric fiber composites an electric potential gradient causes de-
formations (converse piezoelectric effect), while strains cause an electric po-
tential gradient in the material (direct piezoelectric effect). The behavior of
a piezoelectric medium in low electric and mechanical applications can be
described by the following linear piezoelectric constitutive equations, which
correlate stresses T , strains S, electric fields E, and electrical displacements
D as follows (the superscript t for transpose)

[
T
D

]
=
[
C −et
e ε

] [
S
E

]
, (1)

where C is the elasticity matrix, ε is the permittivity matrix, and e is the
piezoelectric strain coupling matrix.

The numerical finite element based calculation of the mean values of a
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Fig. 1 Representative unit cell (left) and corresponding finite element mesh (right)

piezoelectric fiber composite is based on a representative volume element
(RVE), which captures the global behaviour of the composite. If the fibers
are randomly distributed the size of the RVE with respect to the diameter
of the fibers is an important criterion. Our approach applies the random se-
quential absorption algorithm (RSA) [19] modified to provide a minimum
distance between any two fibers and for periodicity between opposite bound-
ary surfaces. In this algorithm the coordinates of the center of the fibers are
generated randomly step by step. A new generated midpoint coordinate is
checked for non-overlapping conditions with previously placed fibers. If there
is no overlapping and the periodicity is satisfied, then the fiber will be placed
on the plane. If a fiber cuts the boundary of the unite cell, then on the oppo-
site site also a fiber has to be placed to grantee the periodicity. This process
will be terminated when the desired volume fraction is achieved or when no
more fibers can be added because of the jamming limit, which can occur at
a volume fraction higher than 55%. For higher volume fractions, different
diameters of fibers are used, and these are placed on the x1-x2 plane in a de-
scending manner. With this approach the volume fraction achieved is about
80% with an adequate finite element meshing. Figure 1 shows an example
of such a generated RVE with variable diameters of fibers, and their corre-
sponding 3D finite element mesh.

Composite materials can be represented as a periodical array of the RVEs,
where each RVE has the same deformation mode, and there is no separation
or overlap between the neighboring RVEs after deformation. These periodic
boundary conditions described in Cartesian coordinates are given by [17]

ui = S̄ijxj + vi (2)

S̄ij denotes the average strains, and vi is the periodic part of the displacement
components (local fluctuation) on the boundary surfaces. The difference of
the displacements of a pair of opposite boundary surfaces points (with their
normal along the xi axis) is

uK
+

i − uK−i = S̄ij

(
xK

+

j − xK−j
)
, (3)
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where the index ’K+’ means along the positive xi direction, and ’K−’ means
along the negative xi direction on the corresponding surfaces of the 3D RVE.
The local fluctuations are identical on two opposing faces and disappear in
the difference. Similarly, the periodic boundary conditions for the electrical
potential are given as

ΦK
+ − ΦK− = Ēi

(
xK

+

i − xK−i
)
, (4)

where Φ represents the voltage and Ēi represents the average electric field.
The average mechanical and electrical properties of a unit cell, calculated

by

S̄ij =
1
V

∫

V

SijdV , T̄ij =
1
V

∫

V

TijdV ,

Ēi =
1
V

∫

V

EidV , D̄i =
1
V

∫

V

DidV , (5)

are finally used to calculate the mean values of the material tensor with help
of equation (1) (for details see [13]).

All finite element calculations are made with the commercial FE package
ANSYS for fully coupled electromechanical analyses. An APDL-script allows
performing all required calculations to evaluate finally the effective material
properties automatically in a batch processing, which provides a powerful
tool for a fast calculation of homogenized material properties for composites
with a great variety of inclusion geometries.

3 Optimization of fiber reinforced composites

The optimization goal is the minimization of an appropriate objective func-
tion

min
x∈S

f(x) , S =
{
x ∈ <N |hi(x) = 0 , gj(x) 6 0

}
, (6)

where x is the N -dimensional vector of design variables, hi(x) , i = 1, ..., n
and gj(x) , j = 1, ...,m are the equality constraints and the inequality con-
straints, respectively. To solve the optimization problem various methods
have been developed [12], which require the computation of gradients. Their
operability can only be guaranteed if the objective function is continuously
differentiable and uni-modal. When composite materials are considered, the
objective functions are more likely to be non-smooth, non-differentiable and
multimodal [20]. In such cases we suggest direct methods, which apply prin-
ciples of natural evolution (recombination, mutation and selection) to a set
µ of feasible solutions, the individuals
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w = [x1, x2, · · · xN , σ1, σ2, · · · σNσ ] , k = 1, ..., µ (7)

N stands for the problem dimension, xi represent the design variables of
the optimisation problem, and σi are the step-sizes for the mutation process.
The generation of new solutions starts with recombination, where a number
of λ ≥ µ offspring individuals are created by exchanging or averaging the
properties of randomly selected parents

w′ki =

{
wpi or wqi
(wpi + wqi)/2

k = 1, ..., λ, i = 1, ..., N, p, q ∼ U(1, µ). (8)

For more recombination variants see [3]. A mutation is carried out by the
application of small random changes in each component of an individual.
The process starts with the variation of the mutation step-sizes as

σ′′ki = σ′ki · h (z̄k, τ1, · · · τr) . (9)

The function h depends on the standard normal distributed random variants
z̄ ∼ N(1, 0) as well as on r heuristic factors τj , j = 1, ..., r (see [2], [3], [6]).
The object variables are then mutated according to

x′′ki = x′ki + zki , k = 1, ..., λ, (10)

where zki ∼ N(0, σ′′ki) is a normal distributed random variant which depends
on the individual mutation step-sizes. The population consists finally of λ
offsprings

w′′ =
[
x′′1 , x

′′
2 , · · · x′′N , σ′′1 , σ′′2 , · · · σ′′Nσ

]
, k = 1, ..., λ. (11)

After the evaluation of the objective function is performed for each individ-
ual, the µ best individuals are selected to become the parents for the next
iteration.

The generation loop is repeated until a termination criterion, such as a
lower limit for the mutation step-sizes, is fulfilled. A general software tool
has been developed on the basis of evolution strategies with an interface to
the commercial finite element code ANSYS. Our software possesses a modu-
lar structure, allowing for the implementation of various intermediate steps
in the optimization process.

4 Results and Discussion

For the calculation of effective coefficients we consider a composite with cir-
cular piezoelectric (PZT-5) fibers uniformly polarized along the x3 direction
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C11 C12 C13 C33 C44 C66 e15 e13 e33 ε11 ε33

PZT-5 12.1 7.54 7.52 11.1 2.11 2.28 12.3 5.4 15.8 8.11 7.35

Polymer 0.386 0.257 0.257 0.386 0.064 0.064 - - - 0.07965 0.07965

Table 1 Material properties of the composite constituents fiber (PZT-5) and matrix,
(Polymer) (Cij [GPa] ; eij [C/m2] ; εij [nF/m])

50% volume fraction C11 C12 C22 C23 C33 C13 C66 C44

Same diameter 9.40 4.93 9.07 5.47 31.96 5.58 1.87 1.99

Random diameter 9.23 4.93 9.13 5.49 31.91 5.52 1.87 2.0

50% volume fraction e15 e13 e33 ε11 ε33

Same diameter 0.0021 -0.224 9.81 0.273 3.86

Random diameter 0.0021 -0.219 9.80 0.266 3.85

Table 2 Comparison of piezoelectric fibers, (Cij [GPa] ; eij [C/m2] ; εij [nF/m])

and embedded randomly in a soft non-piezoelectric material (polymer) in the
transverse cross section (Table 1).

4.1 Effect of the Fiber Diameter on Effective Material
Properties

Investigations are performed to study the influence of the diameter of piezo-
electric fibers on the effective material properties of these composites. The
fluctuations (error) of effective material properties around the mean value,
which are obtained from the ensemble averages of the effective material prop-
erties of five RVE samples, are negligible.

The numerical homogenization techniques are also applied to two different
types of the RVE models, one with an identical diameter of all piezoelectric
fibers and another with a random diameter of fibers between 0.32mm and
0.12mm at 50% volume fraction. In both cases, also five different RVE sam-
ples are considered, and the effective material properties are obtained from
the ensemble average of the effective material properties. It is observed that
the differences in the effective material properties are again negligible, and
the differences between the random and identical diameter of piezoelectric
fibers are at most 2% (see Table 2).

4.2 Influence of the fiber arrangement

The effective electrical and mechanical properties of transversely randomly
distributed uni-directional piezoelectric fiber composites are evaluated for dif-
ferent volume fractions up to 80%. The effective material properties, which
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Fig. 2 Comparison of effective mechanical properties of transversely randomly distributed
piezoelectric fiber composites (TRDF) with square (SQUARE) and hexagonal (HEX) array

with the analytical self-consistent scheme by Levin [14] (SCS-Levin).

Fig. 3 Comparison of effective piezoelectric properties of transversely randomly dis-

tributed fiber composites (TRDF) with square (SQUARE) and hexagonal (HEX) array
with the analytical self-consistent scheme by Levin [14] (SCS-Levin).

are obtained for these cases, are compared with a square arrangement and
a hexagonal arrangement of the piezoelectric fibers. For the square arrange-
ment the maximum theoretically achievable volume fraction is 78.54%. Due
to the meshing limits with our finite element approach a maximum volume
fraction of 70% can be generated only. Figs. 2 and 3 represent the effective
mechanical and piezoelectric properties, respectively, calculated for different
fiber arrangements in the composite. The figures compare the numerically
calculated results based on different fiber arrangements, such as the trans-
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versely randomly distributed arrangement (TRDF), the square arrangement
(SQUARE) and the hexagonal arrangement (HEX) with the results calcu-
lated by the self consistent schema (SCS-LEVIN) [14]. From Fig 2 it can be
observed that the transverse mechanical properties are tending to increase
for transversely randomly distributed composites when compared with regu-
lar array composites, especially for the hexagonal array, but not in all other
cases. As a comparison between the square array and the hexagonal array,
the hexagonal array has a 6-fold axis of symmetry along fiber direction, and
results in a transverse isotropic behavior, i.e., Ceff

11 −Ceff
22 = 2Ceff

66, whereas for
the case of the square array, it has only 4-fold axis of symmetry, and it will
give rise to a tetragonal behavior resulting in a higher transverse stiffness.
For the transverse shear modulus Ceff

66, it is observed that the square array
composite has a lower transverse shear modulus, and the hexagonal array
composite has a higher value and satisfies the transverse isotropy.

In general, from our analysis it can be observed that the assumption of
a transversely randomly distributed fiber composites results in higher trans-
verse material properties when compared with a regular array of fiber ar-
rangement. The longitudinal material properties are almost the same like for
a regular array of composites. Also the numerical results of the effective ma-
terial coefficients like Ceff

11, ε
eff
11 along the transverse direction of a transversely

randomly distributed fiber composites match well with the results of SCS
at lower volume fractions in the considered fraction range between 10% and
40%. Beyond this volume fraction range, the effective coefficients of SCS are
underestimated.

The transverse isotropy was checked for all generated RVE samples and
for all effective material coefficients.

4.3 Optimization of a short fiber composite

We consider a quadratic plate with a hole in the middle consisting form a
polysulfon matrix being reinforced by short aramid fibers and loaded in x-
direction by a distributed load (for details see [8]). The amount of fibers in
the plate is limited to a prescribed average fiber density. The purpose of the
optimization is to distribute a fixed amount of fibres in the matrix material
in such a way, that a maximal structural stiffness is obtained under restric-
tions concerning the maximal principal stress and the average fibre density in
the plate. A (10, 70)-ES with discrete recombination and Schwefels mutation
type is applied [6].

Fig. 4 shows the optimal fiber orientations and the directions of the prin-
cipal stresses. The fibres concentrate in regions close to the upper side of the
hole, where the maximal stresses occur. A similar result is published in [8].
The optimization algorithm converges after about 80 generations leading to
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zation algorithm converges after about 80 generations leading to a decrease of 

49% in the objective function when compared to the random initial design.  

 

Fig. 5. Optimal short fibre orientations and principal stress directions 

Conclusions 

A finite element based numerical homogenization approach to evaluate the ef-

fective material properties of active piezoelectric fiber composites is presented.  A 

generalized procedure has been developed to calculate all effective coefficients 

automatically for all volume fractions based on the ANSYS Parametric Design 

Language. It reduces the manual work and time and can be used as a template to 

evaluate the effective coefficients of piezoelectric fiber composites with arbitrary 

arrangement of fibers. It is shown that evolution strategies are a reliable and effi-

cient method for the optimization of composite structures. The algorithm operates 

on a set of feasible solutions and requires no derivatives of the objective function. 

It has superior global search qualities and can be used even for non-differentiable, 

non-smooth and multimodal problems, which arise frequently in the context of the 

optimization of composite structures. The test examples underlined the good 

search properties of evolution strategies. 
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A finite element based numerical homogenization approach to evaluate the
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Hybride Bell Tower Like Structures in
Earthquake Environment

Rudolf Heuer and S. Mehdi Yousefi

Abstract Dynamic actions of bell movement are characteristic aspects in
bell towers and thus show significant influences on the response of the main
structure. In case of strong motions the oscillation of the bell exhibits (moder-
ately) large rotations and nonlinear analysis becomes essential to understand
the nature of the system and its dynamic process. The bell is modeled as rigid
pendulum and the equations of motion of the hybrid structure follow from
the formulation according to Lagrange equations. A coupled 2DOF system
is used to study the dominant geometrically nonlinear influence of the bells
rotation in frequency domain. Numerical nonlinear computer simulations are
performed for MDOFs studying the influence of the higher modes of the main
structure on the behavior of the pendulum. Parameter studies are performed
for two different types of support excitations, i.e., time-harmonic, stationary
random process.

1 Introduction

A Bell Tower (BT) can be considered as a structure consisting of two sub-
structures, namely the tower and the bell. The bell ringing action is modeled
as a simple pendulum that is suspended near the towers upper part by a
hinge bearing. The mechanical model of a tower is represented by a con-
tinuous structure and it is idealized as a Multi-Degree-of-Freedom (MDOF)
system.
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In the following research the tower structure coupled with a bell is studied
under dynamic loading, particularly against support excitation. The com-
plete structure is modeled as extended MDOF system [1], discrete bell and
continuous tower, in order to give insight into its complex nonlinear dynamic
behavior. Both linear and nonlinear behavior of the coupled system are ana-
lyzed. The formulation of the equation of motion is based on Lagrange equa-
tions that are applicable to systems in both linear and nonlinear conditions.
After applying appropriate analytical methods, parametric studies for forced
vibrations are performed by means of computer simulations. The nonlinear
dynamic analysis of the forced vibrations are chosen in time domain by using
numerical investigation with emphasize on the nonlinear interaction between
the excited tower and movement of the bell.

As shown in Figure 1, the mechanical model of a tower is represented by
a continuous slender structure, and the bell is modeled as a rigid pendu-
lum, that can also be interpreted as passive tuned pendulum mass damper
to improve the response of the entire structure under dynamic loads.

Fig. 1 Mechanical model of the bell tower like structure and its first 3 mode shapes
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2 The generalized MDOF system

The tower is mechanically idealized as a MDOF system and the bell is ideal-
ized as a ”mathematical pendulum”. The nonlinearity in this system is due to
large rotation of pendulum. In order to approximate the motion of the tower,
several mode shapes ψi(x) are assumed for the deflection. The amplitudes of
the motion are represented in form of generalized coordinates Zi(t), compare
[2],

w(x, t) =
n∑

i=1

ψi(x)Zi(t). (1)

The total displacement of the tower at point x is

wt(x, t) = Zg(t) + w(x, t). (2)

The structure is subjected to base excitation Z̈g(t) or/and to an external
moment due to the bell-ringing action M(t). The generalized coordinates are
selected as the modal displacements of some convenient point of the tower
such as its tip. By using the expressions for the kinetic and potential energy,

T =
1
2

(∫ L

0

ρA
[
ẇt(x, t)

]2
dx+mpv

2
p

)
, (3)

V =
1
2

∫ L

0

EI [w′′(x, t)]2 dx−mpgscosφ−Mφ, (4)

and applying Lagrange equations of motion [3],

d

dt

(
∂T

∂Żi

)
− ∂T

∂Zi
+
∂V

∂Zi
= Qi, (5)

where

Qi = −ri
n∑

j=1

Żj

∫ L

0

ψiψjdx, (6)

the system equations, exemplarily, for the first two modes of the tower, and
pendulum are expressed as follows [4]

(m1 +mp) Z̈1(t) +mpZ̈2(t) + c1Ż1(t) + k1Z1(t) +mps
(
φ̈cosφ− φ̇2sinφ

)
=

− (m∗1 +mp) Z̈g(t),(7)

(m2 +mp)Z̈2(t) +mpZ̈1(t) + c2Ż2(t) + k2Z2(t) +

+mps(φ̈ cosφ− φ̇2 sinφ) = −(m∗2 +mp)Z̈g(t), (8)
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mps cosφZ̈1(t) +mps cosφZ̈2(t) +mps
2φ̈+ 2mps

2ωpζpφ̇+

+mpsg sinφ = −mps cosφZ̈g(t) +M(t). (9)

The damping parameter of the pendulum reads

cp = 2s2ζpmpωp. (10)

Definition of the generalized mass, stiffness and damping are introduced as

mi =

L∫

0

ρAψ2
i (x) dx , ki =

L∫

0

EI [ψ′′i (x)]2dx,

ci = ri

L∫

0

ψ2
i (x) dx , m∗i =

L∫

0

ρAψi(x)dx , i = 1, 2. (11)

where ρA is the mass per unit length of the tower, and mp is the mass of
the idealized (mathematical) pendulum. EI stands for the flexural stiffness
of the tower and s is the length of the pendulum. Considering proportional
Rayleigh Damping the coefficients ci are expressed as linear combination of
the modal mass and stiffness coefficients mi and ki as

ci = a0mi + a1ki, (12)

where a0 and a1 have to be determined experimentally.
By means of time-integration the solution of these three equations leads to

the displacements of the tower for the first and second mode and the rotation
angle of the pendulum in each time step.

3 Geometrical nonlinear influence of the bell
(pendulum)

In order to study the geometrical influence of the bell rotation on the response
of the total structure, initially, the tower is discretized only by means of its
dominant basic mode, thus the two coupled equations of motion read

(1 + µ)Z̈ +
r

m1
Ż + ω2Z + µs(sinφ)̈ = −(1 + µ)Z̈g , µ = mp/m1, (13)

φ̈+
rp

mps2
φ̇+ ω2

p sinφ = −cosφ
s

(
Z̈g + Z̈

)

︸ ︷︷ ︸
Z̈t

+
M

mps2
. (14)

Expansion of both the system an excitation parameters leads to
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sinφ ≈ φ− 1
6
φ3 , cosφ ≈ 1− 1

2
φ2. (15)

Consequantly, the movement of the rigid pendulum (bell) is described as

D {φ} = φ̈+ ω2
p

(
φ− 1

6
φ3

)
+

1
s

(
1− 1

2
φ2

)
Z̈t − M

mps2
= 0. (16)

Furthermore, in case of a time-harmonic excitation,

Z̈t = sb cos νt or
M

mps2
= d cos νt. (17)

Galerkin’s procedure can be applied to find an approximate frequency-domain
solution for the response in the neighborhood of the primary resonance,

2π/ν∫

0

D {φ∗} cos νt dt = 0, , φ∗ = a cos νt, (18)

−1
8
a3 − 3

8
b

ω2
p

a2 +

[
1−

(
ν

ωp

)2
]
a+

b− d
ω2
p

= 0. (19)

It can be proved that the cubic as well as the quadratic terms produce a
nonlinear oscillator showing the behavior of a softening spring, [5].

4 Time-harmonic excitation

When a linear system is time-harmonically excited, the steady state response
expresses the same frequency as the input excitation. In the nonlinear case
the system’s natural frequency is changed and additional subharmonic and
superharmonic parts can be detected. Figure 2 shows a 3-D plot of response
function of the tower |Z/A|, where Z is displacement amplitude of the tower
tip point and A is the amplitude of the harmonic base excitation, which is of
the form

Z̈g(t) = A cos νt. (20)

Results for linear response of the tower are chosen under the assumption
of interpreting the bell tower like structure as slender cantilever beam with
passive pendulum absorber. Initially, the pendulum absorber’s optimum pa-
rameters are set in front of the plot series, see [4]. Comparison due to the
increase of amplitude A shows an unstable maximum frequency of the tower.
It also shows that when A < 0.5m/s2 and φmax ≤ 0.4rad, the maximum
optimal values of tuning mass is almost constant and it obeys the linear the-
ory. Pendulum rotation angle φmax increases with increasing amplitude A.
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For A ≥ 1.65m/s2 and φmax > 0.9rad the pendulum starts to rotate. The
increase of the rotation angle of the pendulum increases the pendulum tun-
ing values because of the systems nonlinearity. Figure 3 shows the change of
the pendulum optimum parameters according to the increase of the excita-
tion amplitude. Note that for larger pendulum amplitudes, the absorption
efficiency decreases and two peaks finally merge and form one peak only.

Fig. 2 |Z/A| (Z: displacement amplitude of the tower top point, A: amplitude of base
excitation) versus ν (circular frequency) and A

5 Stationary random base excitation

The artificial sample function for support excitation are generated by Simulink
software, where the stationary power density function S(ν) and base random
excitation Z̈g(t) can be expressed according to [6]

Z̈g(t) =
N∑

n=1

√
4S(ν)∆ν × cos(n∆νt− ϕ). (21)

Numerical parameters are chosen as follows
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Fig. 3 Maximum rotation angle of pendulum φmaxversus pendulum mass ratio ν

S(ν) = const.
[
m2/s3

]
, T = 100s , ∆ν =

2π
100

= 0.0628rad/s,

N = 100 , A =
√

4S(ν)∆ν , 0 ≤ ϕ(random) ≤ 2π. (22)

Due to the excitation in time domain, the response of the tower and the
pendulum are computed (built by Simulink). By increasing the amplitude of
excitation, the nonlinearity effect appears and changes the pendulum opti-
mum parameters.

Figure 3 shows the maximum rotation angle of pendulum with mass ratio
ν for constant values of amplitude A. When pendulum mass increases to 15%
of total mass of the tower, rotation angle of the pendulum decreases and
system yields to behave linearly. While the pendulum mass decreases to 1%
of total mass of the tower, it begins to rotate.

6 Conclusions

This paper studies the dynamic behavior of bell tower like structures ex-
cited by various sources. Governing equations for the dynamic response of
the tower coupled with pendulum motion are derived based on Lagrange
equations of motion. A coupled 2DOF system is used to study the dominant
geometrically nonlinear influence of the bells rotation in frequency domain.
Furthermore, this system is extended to a discretized MDOF model of the
tower coupled with a mathematical pendulum. Comparison is made between
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the characteristics in linear and nonlinear analysis. In order to evaluate non-
linear system, time-step analysis of numerical example by means of computer
programming is performed. When the rotation angle of pendulum increases,
the effects of nonlinearity appear. The nonlinear effects due to large motion
of pendulum changes the linear natural frequency of the pendulum and adds
subharmonic resonate frequencies to the coupled system. For numerical in-
vestigations the forcing types time-harmonic and stationary random support
excitations are selected. While the excitation frequency is smaller than the
bells eigenfrequency, nonstationary happens in the responses of the structure
considered.
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Tracking of Stresses: A Further Step
Towards Ageless Structures

Hans Irschik, Michael Krommer and Markus Gusenbauer

Abstract The present paper deals with the derivation of distributions of
smart actuators, which enforce a structure to follow a desired stress trajectory
everywhere and at all times. A particular case is the complete cancellation of
force-induced stresses, a topic of particular interest in the context of ageless
structures. Our formulation is derived within the framework of the linear
dynamic theory of elasticity, and is based on the characterization of the initial
boundary value problem of elasticity in terms of stresses. Smart actuation is
represented by actuation stresses. We derive conditions, under which the
desired stresses can be tracked exactly by the actuation stresses, and we
present an easy to solve initial value problem for computing the actuation
stresses.

1 Introduction

Smart structure technology has become a key technology in the design of
modern structures. Smart or intelligent structures are capable to react to
disturbances similar to human beings by mimicking their sensing, actuation
and control capabilities. The design of smart structures thus is a highly multi-
disciplinary task, which involves multi-field modeling and structure-control
interaction by means of suitable sensing and actuation. There is an agreement
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in the international engineering science community that smart sensor and ac-
tuator systems have the potential to change fundamentally the way structural
systems are monitored and controlled. So far, a main field of smart structure
technology has been the control of structural displacements, see Refs. [1]-[6].
During the last decade, more and more attention has been paid in the liter-
ature to control the behavior of structures with the goal of enhancing their
lifetime, in the long term of designing even ageless structures, see Ref. [7].
In the literature, these goals are often connected to a controlled self-repair
by utilizing chemical agencies that are incorporated into the structure and
are activated in a controlled manner. Notwithstanding the need for devel-
oping such self-repair technologies, the vision of ageless structures from the
mechanics point of view also brings into the play the necessity to study the
complex problem of controlling stresses in structures. Control of vibrations
and control of stresses are not equivalent, since the actuating effects in smart
structure technology, such as heat or piezoelectricity, produce stresses that in
general do not cancel out the stresses produced by imposed forces responsible
for the vibrations to be controlled. So far, our group has been particularly
interested in providing general solutions for finding smart actuator distribu-
tions, which theoretically can cancel out stresses completely, see Refs. [8] and
[9]. A converse to these findings in the form of a body-force analogy has been
presented in Ref. [10] for the case of thermal actuation. References [8]-[10]
on the control of stresses represent results that are complementary to the
research of our group on the so-called shape control of structures, i.e. the
complete suppression of force-induced structural displacements by smart ac-
tuation, see Refs. [11]-[14].

The present paper is concerned with an extension of Ref. [8]-[10] on the
cancellation of stresses: We present a methodology to derive distributions of
smart actuations, which can theoretically enforce the structure to follow a
desired stress trajectory everywhere (in every point of the structure) and at
all times (during a certain observation period). Our formulation is derived
within the framework of the dynamic linear theory of elasticity, see Gurtin
[15], and is based on the characterization of the initial boundary value prob-
lem of elasticity in terms of stresses by Ignaczak [16]. In our formulation, the
smart actuation is represented by actuation stresses, and we derive condi-
tions, under which the desired stresses can be tracked exactly by the actua-
tion stresses, where we present an easy method to solve the initial boundary
value problem for computing the latter. The present contribution should be
not only of interest in the context of smart structures technology with an
emphasis on the development of ageless structures, but it represents a novel
solution of the linear theory of elasticity in its own right. Due to limitations
in space, in the following we restrict to theoretical aspects, leaving practical
applications to a future contribution.
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2 Initial boundary value problem

Subsequently, we use a direct tensor notation, similar to the one introduced
in the Handbuchartikel by Gurtin [15]. The initial boundary value problem
of linear elasticity in the presence of actuation stresses SA reads as follows:

divS + b = ρü, (1)
S = ST , (2)

S − SA = C [E] , (3)
E = sym∇u, (4)
∂BU : u = û, (5)
∂BS : Sn = ŝ, (6)

t = 0 : u = r ; u̇ = v (7)

Here, S denotes the (second order) stress tensor, E is the symmetric strain
tensor, u is the displacement vector, b stands for the imposed body force
vector, and ρ is the mass density. A superimposed dot indicates the deriva-
tive with respect to time t, and the symbols div and ∇ stand for the spatial
divergence and gradient operator, respectively. The superscript T indicates
the transpose of a tensor, and sym stands for the symmetric part of a ten-
sor. Equation (1) represents balance of linear momentum, Eq.(2) results from
balance of angular momentum, Eq.(3) represents Hooke’s law extended with
respect to actuation stresses SA, where C is the (fourth order) tensor of elastic
constants. Equation (4) is a fundamental linear kinematical relation appro-
priate for small deformations. The body B under consideration is enclosed
by the surface ∂B = ∂BU ∪ ∂BS . On ∂BU , the displacement is described as
û, while on the complementary part ∂BS the traction is prescribed as ŝ, see
Eqs. (5) and (6). The unit outer normal vector at ∂B is denoted as n, and
Eq. (6) reflects Cauchy’s fundamental theorem on the stresses. Equation (7)
states inhomogeneous initial conditions, which must be compatible with the
boundary conditions in Eq. (5) and (6), r being the initial displacement, and
v the initial velocity. We assume the geometry of ∂B and the fields under
consideration to be nice enough, such that the subsequent mathematical ma-
nipulations of Eqs. (1)-(7) make sense.

Actuation stress In extension to the classical theory of linear elasticity, see
Gurtin [15], an actuation stress SA has been included in Hooke’s law, Eq.
(3). For the sake of a further clarification, we write

SA = C [EA] , (8)

where EA is an actuating eigenstrain. The latter notion can be used to char-
acterize various physical sources of stress and strain, which are utilized in
smart structure technology and which are different from imposed forces, in-
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duced boundary displacements or inhomogeneous initial conditions. A promi-
nent example for eigenstrains is the linear theory of thermoelasticity, where
SA and EA represent linear mappings of the temperature, see Carlson [17].
Analogously, SA and EA represent linear mappings of the electric field vector
for the linear theory of piezoelectricity, which is often used in smart struc-
tures, see the literature cited in the above Introduction. In the present contri-
bution, we use the notions ”actuation” stress SA and ”actuating” eigenstrain
EA, respectively, in order to indicate that we deal with physical eigenstrain-
type effects that are utilized in smart materials for the sake of actuation,
assuming that SA can be externally imposed as a function of space and time.
Should it be necessary to consider a coupling of EA to the strain E (e.g. due
to the direct piezoelectric effect) or to the strain rate Ė (in case the cou-
pled theory of thermoelasticity must be taken into account), then a further
problem has to be solved in order to find the proper distribution of electric
or heat sources that produce the corresponding distribution of eigenstrains
EA. The latter problems are beyond the scope of the present contribution, in
which we ask for certain desired distributions of SA only.

Formulation of the stress-tracking problem The following problem is
treated in the present contribution: Find an actuation stress SA, such that
the total stress follows a properly prescribed trajectory SD everywhere within
B and for all times t ≥ 0:

S = SD (9)

Subsequently, we shortly call SD the desired stress, and we talk about the
stress tracking problem in connection with Eq.(9).

3 A preliminary result stemming from shape control

In order to provide an introduction into the above stress-tracking problem,
we recall a result stemming from the complementary problem of tracking zero
displacements, also denoted as shape control, see Refs. [11]-[14]: Assume that

û = 0 , r = 0 , v = 0 (10)

in Eqs. (5) and (7). If the actuation stress satisfies the following conditions

divSA + b = 0, (11)
∂BS : SAn = ŝ (12)

then the displacements vanish throughout the body for all times ≥ 0:

⇒ u = 0 (13)



Tracking of Stresses: A Further Step Towards Ageless Structures 81

We shortly may say that the actuation stress SA must be in quasi-static local
equilibrium with the imposed forces b and ŝ in order to achieve the goal of
shape control, Eq.(13). But, substituting Eq.(13) into Hooke’s law, Eq.(3), it
follows that

S = SA. (14)

Hence, shape control does not only mean to yield zero displacements, Eq.(13),
but it can also be interpreted as a tracking of quasi-static stress distributions
that satisfy Eqs.(11) and (12), SD = SA. This method, which is restricted to
the class of solutions of Eqs.(11) and (12), has been followed by our group
in Ref. [18]. In the present paper, we develop a more general solution for
the above stress-tracking problem, Eq.(9), by working directly with stresses,
starting from a representation of the above initial value-problem, Eqs. (1)-(7),
in terms of stresses dating back to Ignaczak [16].

4 A solution for the stress-tracking problem

Ignaczak [16] layed down the following stress-based re-formulation of Eqs.(1)-
(7):

sym∇
(
ρ−1(divS + b)

)
= K

[
S̈ − S̈A

]
, (15)

∂BU : divS + b = ρ¨̂u, (16)
∂BS : Sn = ŝ, (17)

t = 0 : S − SA = C [sym∇r] , Ṡ − ṠA = C [sym∇v] (18)

Motivated by Ignaczaks considerations on the completeness problem for stress
equations of motion in the linear elasticity theory [16], we introduce the
following time-dependent integral over the body B:

I(t) =
∫

B

(
ρ−1divS̄ · divS̄ +K

[
˙̄S
]
· ˙̄S
)
dV (19)

with the tensor of elastic compliances K = C−1, and where we have intro-
duced the following error stress

S̄ = S̄T = S − SD (20)

in order to have a measure for the deviation of the actual stress S from the
desired stress SD. Derivation with respect to time yields

1
2
d

d
I(t) =

∫

B

(
ρ−1divS̄ · div ˙̄S +K

[
¨̄S
]
· ˙̄S
)
dV . (21)
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For the sake of a re-formulation of Eq. (21), we note the following properties
of the tensor of elastic compliances K with respect to any symmetric tensor
A and B, see Gurtin [15],

K [A] ·B = K [B] ·A , K [A] ·A > 0 for A 6= 0 (22)

Moreover, for any vector field a and second order tensor field A and B, there
is

a ·B = div
(
BTa

)
− (∇a) ·B. (23)

The divergence theorem reads
∫

B

div (Ab) dV =
∫

∂B

(Ab) · ndS =
∫

∂B

(
ATn

)
· bdS. (24)

Reformulating the boundary conditions, Eqs.(16) and (17), in terms of the
error-stress,

∂BU : divS̄ = −b+ ρ¨̂u− divSD, (25)
∂BS : S̄n = ŝ− SDn (26)

and utilizing Eqs. (22)-(24), after some derivations we arrive at the following
re-formulation of Eq.(21):

1
2
d

dt
I(t) =

∫

∂BS

(
˙̂s− ṠDn

)
·
(
ρ−1divS̄

)
dS

+
∫

∂BU

(
¨̂u− ρ−1 (b+ divSD)

)
·
(

˙̄Sn
)
dS

+
∫

B

(
∇
(
ρ−1 (divSD + b)

)
+K

[
S̈A − S̈D

])
· ˙̄SdV . (27)

Hence, if we require that each of the first bracketed terms in the products
that form the three integrands in Eq.(27) do vanish,

∂BS : SDn− ŝ = 0, (28)
∂Bu : ¨̂u− ρ−1 (b+ divSD) = 0, (29)

∇
(
ρ−1 (divSD + b)

)
+K

[
S̈A − S̈D

]
= 0, (30)

then it follows that the integral in Eq.(21) becomes constant and thus equal
to its initial value:

I(t) = 0 ⇒ I(t) = const. = I(t = 0), (31)

with
I(t = 0) = 2

∫

B

(
ρ−1divS̄ · divS̄ +K

[
˙̄S
]
· ˙̄S
)
dVt=0. (32)
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Thus, vanishing of the initial error stress and initial error stress velocity,

t = 0 : S̄ = 0 , ˙̄S = 0 (33)

does imply the vanishing of the integral in Eq.(21) itself:

I(t = 0) = I(t) = 0. (34)

But, from the properties of the scalar product and the tensor of elastic com-
pliances, namely that

divS̄ 6= 0 ⇒ divS̄ · divS̄ > 0, (35)
˙̄S 6= 0 ⇒ K

[
˙̄S
]
· ˙̄S > 0, (36)

see Eq. (22), it follows that Eq. (34) implies the vanishing of the error stress
everywhere in B and for all times t ≥ 0:

S̄ = 0 ⇒ S = SD (37)

such that the goal of stress tracking, Eq.(9) is reached, see Eq.(20).

Discussion We now summarize the conditions, for which this solution for
tracking of transient stresses does hold:

S̈A = S̈D − C
[
∇
(
ρ−1 (divSD + b)

)]
(38)

∂BS : SDn = ŝ, (39)
∂BU : divSD + b = ρ¨̂u, (40)

t = 0 : SA = SD − C [sym∇r] , ṠA = ṠD − C [sym∇v] . (41)

Equation (41) follows by substituting the initial conditions, Eq.(18), into
the requirement formulated in Eq.(33), Eq.(38) is a re-formulation of the re-
quirement of Eq.(30), and Eqs.(39) and (40) correspond to Eqs.(28) and (29).
Equations (39) and (40) mean that the desired stress SD must be compatible
with the boundary conditions, Eqs. (16) and (17), otherwise the goal of stress
tracking can not be reached. Eqs.(38) and (41) give a means to construct an
actuation stress, in case the desired stress does not satisfy the field equation,
Eq.(15), and the initial conditions, Eq.(18), in the absence of an actuation
stress. As it was to be expected, Eqs.(38) - (41) follow directly by replacing
S in Eqs.(15)-(18) by the desired stress SD.
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Non-Linear Dynamic Deformation of a
Piezothermoelastic Laminate

Masayuki Ishihara, Yasuhiro Watanabe and Naotake Noda

Abstract This paper presents an analysis on the nonlinear transient behavior
of a piezothermoelastic laminate. For the analytical model, a laminated beam
is considered to be composed of elastic structural and piezoelectric layers that
are subjected to mechanical, thermal, and electrical loads as disturbances or
intended control procedures. The deformation of the laminate is analyzed
using the classical laminate theory and the von Kármán strain. Equations
of motion in terms of the displacements are obtained and analyzed through
the Galerkin method. As a result, the dynamic deflection of the laminate
is found to be governed by the equation for a polynomial oscillator, and
the transient large deformation due to mechanical, thermal, and electrical
loads are obtained. Through these results, the characteristics of the transient
deformation of the laminate are discussed in detail.

1 Introduction

Piezoelectric materials have been used extensively as sensors and actuators
to control structural configuration and to suppress undesired vibration in
engineering due to their superior coupling effect between elastic and electric
fields. Fiber reinforced plastics (FRP) such as graphite/epoxy are in demand
for lightweight structures because they are lighter than general metals and
have high specific strength. The structures composed of laminated FRP and
piezoelectric materials are called piezothermoelastic laminates and have at-
tracted considerable attention in fields such as aerospace engineering and mi-
cro electro mechanical systems. For aerospace applications, structures have to
be comparatively large and lightweight. Because of this, they are vulnerable

Masayuki Ishihara
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to disturbances such as environmental temperature changes and collisions
with space debris. As a result, the deformations caused can be relatively
large. Therefore, the large deformations of piezothermoelastic laminates were
analyzed by several researchers [1-3].

The studies mentioned above [1-3] dealt with the static behavior of
piezothermoelastic laminates. However, aerospace applications of these lam-
inates involve dynamic deformation. Therefore, dynamic problems for large
deformations of piezothermoelastic laminates have become a focus of study
[4-7].

In these analyses [4-7], dynamic deformation deviating arbitrarily from the
equilibrium state was not considered, although it is very important from a
practical viewpoint for something such as aerospace applications. Therefore,
in a previous study Ishihara and Noda [8] analyzed steady vibration devi-
ating from the equilibrium state and obtained the relationship between the
deflection of the laminate and its velocity under various loading conditions,
excluding the effect of damping.

In practice, it is important to consider the effect of damping on analyzing
the dynamic behavior because damping changes such dynamic characteristics
as the transient behavior and natural frequencies. Therefore, an analysis of
transient dynamic behavior that takes damping into account is important to
estimate dynamic characteristics properly. This paper presents an analysis
of nonlinear transient dynamic behavior for a piezothermoelastic laminated
beam with the damping effect and dynamic deflections that deviate arbi-
trarily from the equilibrium state considered. For the analytical model, a
laminated beam with both ends simply supported is considered, composed
of fiber-reinforced laminate and piezoelectric layers subjected to mechanical,
thermal, and electrical loads as disturbances or as intended control proce-
dures. Nonlinear large deformation of the laminate is analyzed based on the
von Kármán strain [9] and classical laminate theory. Equations of motion for
the laminate are derived using the Galerkin method [10]. As a result, the
dynamic deflection of the beam is found to be governed by the equation for
a polynomial oscillator [11]. According to the equation, the transient large
deformation due to mechanical, thermal, and electrical loads are obtained.
Moreover, numerical calculation is performed to investigate the nonlinear
transient deformation and how to stabilize it.

2 Theoretical analysis

2.1 Problem

The model considered is a simply supported beam with dimensions a× b×h
and composed of N layers as shown in Fig. 1. Two of the N layers (zk−1 ≤
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z ≤ zk, zk′−1 ≤ z ≤ zk′) exhibit piezoelectricity while the other layers do not.
The beam is laminated in a symmetrical cross-ply manner. The laminate isNON-LINEAR DYNAMIC DEFORMATION OF A PIEZOTHERMOELASTIC 
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Fig. 1. Analytical model. 
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subjected to the transverse load Q(t) in the z direction and the temperatures
θ0(t) and θN (t) on the upper (z = −h/2) and the lower (z = h/2) surfaces of
the laminate respectively as mechanical and thermal disturbances. To control
the effects of the disturbances, the laminate is also subjected to the electric
potentials Vk(t) and Vk′(t) on z = zk−1 and z = zk′ respectively. The surfaces
z = zk and z = zk′−1 are both level surfaces of electric potential.

2.2 Governing equations

Based on the classical laminate theory, the von Kármán strain, and the con-
stitutive equation of piezothermoelasticity, the constitutive relations for the
laminate are given as follows [8, 12]:

Nx = A

[
∂u0

∂x
+

1
2

(
∂w

∂x

)2
]
−NT

x −NE
x , Mx = −D∂

2w

∂x2
−MT

x −ME
x (1)

where Nx and Mx denote the resultant force and moment respectively, u0

and w denote the displacement components in the x- and z- directions re-
spectively, A andD denote the extensional and bending rigidities respectively.
Moreover, NT

x , MT
x , NE

x , and ME
x are obtained as follows [8]:

NT
x =

1
2

[ΘN (t) +Θ0 (t)]
N∑

i=1

λi (zi − zi−1),
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MT
x =

1
3h

[ΘN (t)−Θ0 (t)]
N∑

i=1

λi
(
z3
i − z3

i−1

)
,

NE
x = ek [Vk (t)− Vk′ (t)] , ME

x = ek [Vk (t) + Vk′ (t)]
zk + zk−1

2
(2)

where λi and ei denote the stress-temperature coefficient and piezoelectric
coefficient respectively for the i-th layer. Equations of motion which integrate
the effect of in-plane resultant forces into anti-plane motion are given as
follows [8]:

∂Nx
∂x

= 0 , ρh
∂2w

∂t2
+ cd

∂w

∂t
= Nx

∂2w

∂x2
+
∂2Mx

∂x2
+Q (3)

where ρ and cd denote the average mass density with respect to z and the
damping coefficient. By substituting Eq. (1) into Eq. (3), the equations of
motion expressed by the displacements are given as follows:

L1

(
u0, w

)
=

∂

∂x

(
NT
x +NE

x

)
,

ρh
∂2w

∂t2
+ cd

∂w

∂t
+ L2(u0, w) = Q− ∂2

∂x2
(MT

x +ME
x )− (NT

x +NE
x )
∂2w

∂x2
(4)

where the definitions of the differentiation operators L1 and L2 are given as

L1

(
u0, w

)
= A

[
∂2u0

∂x2
+
∂w

∂x

∂2w

∂x2

]
,

L2

(
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)
= −A

[
∂u0

∂x
+

1
2

(
∂w

∂x

)2
]
∂2w

∂x2
+D

∂4w

∂x4
. (5)

2.3 Galerkin method

The Galerkin method [10] is used to solve Eq. (4). Trigonometric functions are
chosen as the trial functions and the considered displacements are expressed
as series:

{
u0, w

}
=
∞∑

m=1

{um (t) , wm (t)} sinαmx : αm =
mπ

a
(6)

to satisfy the simple support conditions. Then, the Galerkin method is applied
to Eq. (4) to obtain

∫ a

0

[
L1

(
u0, w

)
− ∂

∂x

(
NT
x +NE

x

)]
sinαm′xdx = 0,
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∫ a

0

[
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∂2w
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∂t
+ L2

(
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)
−Q+

∂2
(
MT
x +ME
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∂x2

+
(
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x +NE

x

) ∂2w

∂x2

]
sinαm′xdx = 0 , m′ = 1, 2, 3, . . . ,∞. (7)

By substituting Eq. (6) into Eq. (7) and integrating, the simultaneous non-
linear equations with respect to um and wm are obtained. Moreover, by elim-
inating um from the equations, the following simultaneous nonlinear ordinary
differential equations with respect to wm (m = 1, 2, 3, . . . ,∞) are obtained

ρh
d2wm

dt2
+ cd

dwm
dt

+ kLmwm +
∞∑

m′=1

∞∑

i=1

∞∑

k=1

kNm,m′ikwm′wiwk = pm,

m = 1, 2, 3, . . . ,∞ (8)

where the definitions of klm, kNm,m′ik, and pm are given as

kLm = α2
m

[
Dα2

m −
(
NT
x +NE

x

)]
,

kNm,m′ik =
1
8
Aα2

m′αiαk

(
∆c,ikm′m −

∞∑

l=1

2αi
αl

δiklδm′lm

)
,

pm = Qm + α2
m

(
MT
x,m +ME

x,m

)
, (9)

and Qm(t), MT
x,m(t), and ME

x,m(t) denote the Fourier coefficients of Q, MT
x ,

and ME
x respectively and the definitions of δij and ∆c,ijkl are given in the

previous paper [8].

2.4 Polynomial Oscillator

To develop the physical characteristics of the dynamic behavior of the lami-
nate, Eq. (8) is simplified. By truncating the infinite series in Eq. (6), there-
fore, in Eq.(8), up to one term and considering Eq. (8) form = 1, the following
nonlinear equation with respect to w1 is obtained

ρh
d2w1

dt2
+ cd

dw1

dt
+ kL1 w1 + kN1,111w

3
1 = p1. (10)

Note that, as in Eq. (6), w1 denotes the deflection at the center of the laminate
(x = a/2). By introducing non-dimensional variables such as
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U ≡ w11

h
, τ ≡

√
kN1,111h

ρ
t, λ ≡ − kL1

kN1,111h
2
, δ ≡ cd√

ρhkN1,111h
, α ≡ p1

kN1,111h
3
,

(11)
Eq. (10) is rewritten in non-dimensional form as

d2U

dτ2
+ δ

dU
dτ
− λU + U3 = α : δ ≥ 0 , α ≥ 0. (12)

2.5 Dynamic Behavior

2.5.1 Static large deflection

First, the static large deflection of the laminate and its stability are examined.
The static large deflection is obtained as the equilibrium point Ue of the
dynamical system described by Eq. (12). From Eq. (12), Ue is obtained for
α = 0 as:

Ue = 0 (≡ U1) ,

Ue = ±
√
λ (≡ U2) : λ > 0 (13)

and for α > 0 as:

Ue = U3 : λ < 0,

Ue = U4 : 0 < λ < 3 3
√

(α/2)2
,

Ue = U5, U6, U7 : λ > 3 3
√

(α/2)2 (14)

where the explicit solutions for U3 through U7 are given in the previous
paper [8]. The stability of the deflection described by Eqs. (13) and (14) can
be examined by considering the small deviation of U in the vicinity of Ue as
is usual [11]. The variations of the static large deflection of the laminate with
parameter λ are shown graphically in Fig. 2, where solid lines denote stable
deflections and broken lines denote unstable ones.

2.5.2 Transient large deflection

The transient large deflection that deviates arbitrarily from the equilibrium
state is examined. By introducing new non-dimensional variables such as
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Fig. 2. Variation of static large deflections with parameter λ  

Transient large deflection 

The transient large deflection that deviates arbitrarily from the equilibrium state is 
examined.  By introducing new non-dimensional variables such as 
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Eq. (12) is rewritten as 
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By solving Eq. (16) for U  through the Runge-Kutta method, the transient behav-
ior of the laminate is analyzed and the results are presented by orbits, that is, the 
relationship between the deflection U  and velocity V .  From Eqs. (13) and (14), 

′

′ ′

U ′ ≡ U√
|λ|

, τ ′ ≡ τ
√
|λ| , V ′ ≡ dU ′

dτ ′
, α′ ≡ α

|λ|
√
|λ|

, δ′ ≡ δ√
|λ|
,

(15)
Eq. (12) is rewritten as

d2U ′

dτ ′2
+ δ′V ′ − sgn (λ) · U ′ + U ′3 − α′ = 0. (16)

By solving Eq. (16) for U ′ through the Runge-Kutta method, the transient
behavior of the laminate is analyzed and the results are presented by orbits,
that is, the relationship between the deflection U ′ and velocity V ′. From Eqs.
(13) and (14), the final state of the transient behavior is found to be classified
into three cases depending on parameters λ and α′ as:

case(i) : λ < 0
case(ii): λ > 0 and α′ > 2

√
3
/

9
case(iii): λ > 0 and 0 6 α′ < 2

√
3
/

9



 . (17)

In order to connect the behavior with engineering sense, the following situa-
tion is considered:

Q = 0 , ΘN = Θ0 (≡ Θ) , Vk = Vk′ (≡ V ) (18)

where Θ and V are assumed as the thermal disturbance and control procedure
respectively. Then, from Eqs. (2), (9), (11), (15), and (18):

α′ =
4α2

1 (zk + zk−1) ekV
π |λ|

√
|λ|h3kN1,111

,

λ =
α2

1

h2kN1,111

N∑

i=1

λi (zi − zi−1) (Θ −Θcr) , Θcr =
Dα2

1

N∑
i=1

λi (zi − zi−1)
(19)

Thus, λ < 0 and λ > 0 mean that the laminate is subjected to temperatures
that are lower and higher than the buckling temperature respectively, and α′
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corresponds to the electric voltage applied to the piezoelectric layers.
Figure 3 shows the transient vibration of the laminate for case (i), where

the temperature is lower than the buckling temperature. Figure 4 shows the
result for the case (ii), where the temperature is higher than the buckling
temperature and the electric voltage is higher than the critical value. From
Figs. 3 and 4, the laminate is found to vibrate, decay, and tend to the final
deflections U ′3 (corresponding to U3) and U ′4 (corresponding to U4).

Figure 5 shows the transient vibration of the beam for the case (iii), where

Fig. 3 Transient de-

formation for case (i)
(λ < 0 , α′ = 1 , δ′ = 0.2)

NON-LINEAR DYNAMIC DEFORMATION OF A PIEZOTHERMOELASTIC 

  Finally, Fig. 6 shows the effect of the electric voltage on the transient deforma-
tion.  The desired final deformation is found to be possible to achieve by applying 
the appropriate electric voltage, which is of great importance in practical view-
point. 
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the temperature is higher than the buckling temperature and the electric
voltage is smaller than the critical value. In Fig. 5, the points denoted by U ′5,
U ′6 and U ′7 correspond to the equilibrium points U5, U6 and U7 respectively
and the dotted line shows the separatrix, or the orbit that passes through the
unstable equilibrium point U ′7 and disregards the effect of damping (δ′ = 0).
From Fig. 5, it is found that, when the initial deformation is outside the
separatrix, deformation reaches out to a branch of the separatrix and tends
to the equilibrium point enclosed by the branch.

Finally, Fig. 6 shows the effect of the electric voltage on the transient
deformation. The desired final deformation is found to be possible to achieve
by applying the appropriate electric voltage, which is of great importance in
practical viewpoint.
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3 Conclusion

The nonlinear transient behavior of a piezothermoelastic laminate is analyzed
with the damping effect and the dynamic deflection that deviates arbitrarily
from the equilibrium state considered. For the analytical model, a rectan-
gular laminated beam with both ends simply supported and composed of
fiber-reinforced laminate and piezoelectric layers is considered and subjected
to mechanical, thermal, and electrical loads as disturbances or as intended
control procedures. Nonlinear large deformations of the laminate are ana-
lyzed based on the von Kármán strains and classical laminate theory. As a
result, the dynamic deflection of the laminate is found to be governed by the
equation for a polynomial oscillator. Using the equation, the transient large
deformation with the damping effect considered due to mechanical, thermal,
and electrical loads is obtained. From the results for the transient large de-
formation, it is found that appropriate application of the electric voltage to
the piezoelectric layers can govern the final deformation of the beam.
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Determining Liquid Properties Using
Mechanically Vibrating Sensors

Bernhard Jakoby, E.K. Reichel, F. Lucklum, B. Weiss, C. Riesch, F.
Keplinger, R. Beigelbeck and W. Hilber

Abstract Miniaturized sensors for physical liquid parameters can be utilized
in applications where liquids in industrial processes are monitored in order
to maintain the quality of a process or the associated product. Due to the
adverse properties commonly associated with chemical interfaces (lacking re-
versibility, drift, etc.), sensing physical parameters as indicators for the state
of the liquid, in particularly density, viscosity (or more general rheological
properties), and infrared absorption is an attractive alternative to conven-
tional chemical sensors. The miniaturization of suitable sensor principles on
the one hand facilitates the implementation of these devices online. On the
other hand, scaling effect have to be taken into account, which, e.g., in case
of viscosity sensors, lead to issues when it comes to applications in complex
liquids such as suspensions. In our paper we provide an overview on our
recent work discussing the device design, the associated modeling, and the
application of the devices.

1 Introduction

In this contribution we report on recent research on miniaturized viscosity
sensors, which can be used in industrial process control and related appli-
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cations wherever process liquids and changes in the liquid’s condition are of
interest (e.g, in food industry and engine oil quality monitoring). Typical ap-
plications that we considered recently were the monitoring of transitions in
emulsions [1] and the monitoring of zeolite synthesis [2]. The viscosity (more
precisely the ”shear viscosity”) can be defined in terms of a simple experimen-
tal arrangement, where the liquid under test is sheared between two laterally
moving plates. The viscosity η is then defined as the ratio between the ap-
plied shear stress τ (maintaining the movement) and the resulting gradient
of the flow velocity v (i.e. the shear rate γ̇) of the liquid sheared between the
plates:

η =
τ

∂vx/∂y
=
τ

γ̇
(1)

The such defined viscosity (as already proposed by Newton) can be measured
in a straightforward manner by laboratory instruments, which in some way
impress a shear deformation on the liquid and measure the required torque
(or vice versa, i.e. impress torque and measure resulting shear deformation).
Such devices typically either utilize continuous rotational movements (avoid-
ing extended translational movements required by the simple plate setup) or
oscillatory rotational movements. Most often, the viscosity as defined by (1)
crucially depends on the used process parameters, e.g., the impressed shear
rate. For instance consider a simple schematic arrangement as shown in Fig.
1 for the measurement of viscosity: a pivoted cylinder is immersed in a vis-
cous liquid. By means of some motor, the cylinder can be driven to perform
a continuous rotational movement or rotational oscillation.

For the continuous rotation, the ratio between the applied torque and the

 

 
 

Fig. 1: Basic measurement approaches for viscosity: rotational and vibra-

tional (oscillatory) method. 

Fig. 1 Basic measurement approaches for viscosity: rotational and vibrational (oscillatory)
method.

rotational speed will be related to the viscosity of the liquid. Now for a so-
called ”Newtonian” liquid, this ratio yielding the viscosity would not depend
on the actually applied rotational speed or, in terms of the definition (1),
the viscosity would not depend on the shear rate. For real liquids, such a de-
pendence can, however, occur if, e.g., (macro)molecules in the liquid become
disentangled by the shear movement, which would be an example for so-called
”non-Newtonian” behavior. This behavior is known as shear-thinning behav-
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ior (the viscosity drops with increasing shear rate) and can be reversible or
(also partly) non-reversible. This behavior represents a non-linear response,
which can be accounted for by describing the viscosity a function of the shear
rate. For oscillatory (vibrational) measurements, the cylinder would perform,
e.g., sinusoidal oscillations, where, similarly as before, the ratio of the applied
torque-amplitude and the amplitude in angular speed could be used as mea-
sures for the viscosity. The above-mentioned non-linear behavior here would
lead to a dependence of the obtained viscosity on the amplitudes for angular
speed and torque. Moreover, another kind of non-Newtonian behavior can
appear: the measured viscosity can depend on the applied frequency. More
specifically, a phase shift between the torque and the angular speed signals
can appear, which represents the onset of elastic behavior. This phenomenon
is often referred to as viscoelastic behavior and can be modeled by adopt-
ing the common complex notation, where an imaginary part in the viscosity
accounts for the elastic part. (This is in analogy to an ohmic resistor sup-
plemented by an additional capacitive part.) In terms of system theory, this
kind of non-Newtonian behavior corresponds to a linear distortion in the
system response. We note that also the reverse effect can appear at higher
frequencies, i.e. dominantly elastic behavior such as the bulk compressibil-
ity of a liquid, can show viscous contributions such that the compressibility
coefficient shows an imaginary part, which corresponds to the so-called bulk
viscosity of a liquid. In contrast to the shear viscosity, the bulk viscosity is
difficult to measure and plays a minor role in the analysis of liquid behavior
such that it is often neglected.

In general both, linear and non-linear effects can occur, leading to some-
times complicated non-Newtonian behavior of liquids. In rheology, this be-
havior is a vibrant issue in research (see, e.g., [4] for a thorough account on
this).

2 Considered Technologies for Miniaturized
Viscosity-Sensors

As discussed above, the measurement of viscosity involves some kind of inter-
action of moving or vibrating parts with a liquid. In the following we discuss
some fundamental principles underlying our work on miniaturized viscosity
sensors.
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2.1 Thickness Shear Mode Resonators and Related
Devices

A very elegant and well defined way to achieve interaction of vibrating bod-
ies with a viscous sample is that of a shear-vibrating plane being in contact
with a viscous liquid. For an angular vibration frequency ω, an attenuated
shear wave with a characteristic decay length δ =

√
2η/ρω is excited in the

liquid (ρ denotes the density of the liquid). This interaction can be utilized
for viscosity sensing. A prominent example is the so-called thickness shear
mode resonator, which is most often embodied by piezoelectric disks. The
disks (most often quartz) feature electrodes on both faces. By applying an
AC voltage, mechanical vibrations can be excited by means of the piezo-
electric effect. Choosing an appropriate crystal cut, shear vibrations can be
excited. If the disk is immersed in a viscous liquid, an attenuated shear wave
as described above is excited at both faces of the disk.

The impedance appearing between the electrodes features a piezoelectri-
cally induced part, which represents the mechanical vibration. Close to the
mechanical resonance frequency, this so-called motional arm can be repre-
sented as LC-resonance circuit in an equivalent circuit (see, e.g., [6]). A
straightforward analysis [6] yields that loading the resonator with a liquid
results an additional inductance L2and a loss resistance R2 in the motional
arm of the equivalent circuit. These components can be interpreted as the
consequence of the additional mass loading by the entrained liquid layer re-
sulting change in the resonance frequency and the losses associated with the
viscous dissipation in the liquid. Both parameters are approximately propor-
tional to the square root of the viscosity-density product of the liquid

L2, R2 ∝
√
ρη (2)

There are other piezoelectric devices based on shear polarized surface bound
modes such as, e.g., Love waves [7] and surface transverse waves [8], which
yield similar interaction and sensitivities with respect to the viscosity-density
product in terms of the waves damping and wavenumber.

Piezoelectric excitation can be replaced by other excitation mechanisms
such as excitation by Lorentz-forces. In [9] the excitation of modes in conduct-
ing (e.g., metallic) disks and membranes in terms of induced eddy currents
in an external magnetic bias field is described. Here the excitation of domi-
nantly shear-polarized modes is crucially influenced by the geometry of the
excitation coil inducing the eddy currents.

Known issues in the design of shear-mode devices include spuriously ex-
cited compressional waves [10][11][12], which may lead to disturbing interfer-
ences upon reflections from nearby obstacles as, in contrast to shear waves,
compressional waves are scarcely damped even in viscous liquids.

In terms of rheology, shear vibrating devices at higher frequencies show a
comparatively small penetration depth δ e.g., for water and a frequency of
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6MHz, δ is in the order of 0.2microns. Thus structural effects influencing
the viscosity, which are related to microstructures with typical dimensions
in the order of δ or above, will not be captured by the sensor. For instance,
in emulsions featuring droplets in the dimensions 10microns or above, the
viscosity of the continuous phase rather than that of the entire mixture is
sensed. This effect does not occur for microemulsions with droplet sizes below
one micron [13]. Similar experiments have been reported with suspensions,
see also the discussion for vibrating beams below [14].

Apart from the fact that kind of a ”thin film viscosity” is determined,
compared to oscillatory lab viscometers, the devices typically feature signifi-
cantly higher vibration frequencies (some 10 kHz to some 100MHz. At the
same time the vibration amplitudes are very small (can be in the nm range).
This yield shear rates in the range of 107s−1 [15], where due to the sinusoidal
vibration, we strictly have to speak about an averaged shear rate [16].

Non-Newtonian behavior can be detected in terms of deviations from the
relation (2), which holds for Newtonian liquids only. Specifically, based on
(2) a linear relation between L2 and R2 can be established. If a measured
parameter pair yields a deviation from this linear relation this indicates non-
Newtonian behavior as will be shown in an example (monitoring of zeolite
synthesis) below.

Summarizing, compared to common lab instruments, shear vibrating
miniaturized viscosity sensors excite the liquid under test in a significantly
different rheological regime, which can be an issue for complex liquids, if the
conventional ”macroscopic” viscosity values have to be obtained. Still, these
sensors can have benefits also for the monitoring of complex non-Newtonian
liquids if a proper calibration routine or, more generally, a suitable interpre-
tation scheme for the obtained data is worked out. The latter can be sufficient
as in process control, it is often more important to detect changes in the pro-
cess rather than measure absolute viscosity values. For broad application also
in the laboratory, it will be essential, to standardize the method, similarly
as it has been done with other novel viscosity measurement methods (e.g.,
the high-temperature-high-shear or HTHS method in lubrication technology
(see, e.g., the standard ASTM D5481-04).

2.2 Vibrating Beam Devices and Membranes

Another simple vibrating structure that can be utilized to determine viscosity
and density of liquids is that of a vibrating beam. Even though the struc-
ture is simple, its interaction with the liquid is more involved than that of
a plane surface performing shear vibrations. However, in comparison to the
thickness shear resonators discussed above, the vibrating beams described in
the following feature the lower vibration frequencies and larger amplitudes
such that the probed rheological regime can be expected to be more compa-
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rable to that of conventional lab viscometers, which indeed holds true in the
experiment.

In our research, we considered beams implemented in silicon microma-
chining technology as well as beams implemented by means of thin vibrating
polymer foils. The beams are excited by Lorentz forces stemming from an
external magnetic field (provided by a permanent magnet) and AC-currents
in conductive paths along the beam. For the readout, the induced voltage in
a pickup coil (whose windings are partly on the beam and which are thus
vibrating in the magnetic field) or an optical readout method can be uti-
lized. Fig. 2 shows basic beam designs. Modeling the interaction of the beam

Fig. 2 Clamped-clamped beams in Simicromachining technology (left, [17]) and polymer
technology (right, [18]).

with the liquid is less straightforward. A suitable method considered is the
implementation of Euler Bernoulli beam theory by introducing a distributed
load along the beam, which represents the interaction with the liquid and
thus depends on the transversal motion of the beam given by its lateral dis-
placement w(x, t) [19]. It can be shown [12] that for the calculation of the
interaction between beam and liquid, the Navier-Stokes equations can be lin-
earized if the displacement amplitudes in the liquid are sufficiently small.
Using complex time-harmonic notation, the distributed load due to interac-
tion with the liquid at some position x along the beam can be linearly related
to the displacement amplitude at x by means of a complex-valued coefficient
(”mechanical impedance”). In order to determine this coefficient, a 2D ap-
proximation can be made if it is assumed that the liquid movements in the
direction of the beam axis are negligible. Thus, considering a vibrating cross
section of the beam in a 2D model, the ratio between complex resistance
force and associated displacement amplitudes can be determined to obtain
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said coefficient. In [19] the model involving a spectral domain approach is
described. Fig. 3 shows the problem and the plane of computation for the 2D
problem as well as an example for the flow field around the vibrating beam
cross section computed with the spectral method in 2D. The resulting effect 

Fig. 3 Beam geometry and associated 2D plane of computation for the fluid resistance

force (left) and example for the resulting flow field in the 2D problem (right).

on the beams frequency response is involved but it can be roughly stated that
the density mainly affects the resonance frequency while the viscosity domi-
nantly determines the Q-factor (or damping coefficient D) of the resonances.

To compare the rheological behavior of beams and TSM resonators, sus-
pensions and Newtonian liquid samples have been characterized with both
devices [14]. A glimpse on the results is shown in Fig. 4. These results indi-
cate that a TSM resonator is not suitable for the measurement of viscosity or
concentration of the considered SiO2-in-H2O suspensions (Samples 1 to 8),
whereas the results for Newtonian liquids (alcohols) follow the expected rela-
tion (2). For the vibrating bridge, all these liquids yield a damping coefficient
nicely correlating with the liquids viscosity as determined by a lab instru-
ment [14]. We finally note, that the concept of the beam devices is related
to the concept of vibrating membranes. In [20] a device is described where
the liquid under test is contained in a liquid cell featuring flexible bottom
and top walls. Exciting vibrations in these walls, similarly as in the case of
the vibrating bridges discussed above, the fluid properties of the liquid will
influence the associated resonance properties. This device is suitable for in-
tegration in miniaturized fluidic systems. Fig. 5 shows an associated device
and typical results illustrating that the relation between the liquid parame-
ters viscosity and density to the device parameters frequency and damping
is more complex than for the devices described above (both liquid parame-
ters influence both device parameters) [20]. A mathematical model has been
derived to predict the resonance behavior of the sensor cell loaded with a
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Fig. 4 Viscous loss resistance R2 of a 6MHz quartz TSM resonator vs. square root of

the viscositydensity product (left) showing deviations for non-Newtonian liquid samples.
In contrast, the damping factor of a vibrating bridge shows a nice correlation with the
viscosity also for complex liquids (right).

Fig. 5 Double membrane device where the liquid is contained in a cell with vibrating top
and bottom walls. Measurements for liquids with various viscosity and density values show

that both values influence damping as well as viscosity (right).

liquid [20]. The aim is to calculate the kinetic and potential (elastic) energy
terms, and the dissipated power. The modal shape for the vibration of the
walls is obtained by applying a Ritz-approach to the fully clamped plate, see
Fig. 6. The velocity field in the liquid is then approximately calculated by
assuming a potential flow (assuming incompressibility) and adding properly
scaled shear-wave solutions at the boundary to fulfill the no-slip condition
required for viscous fluid flow. Integration over the fluid volume yields the
required energy terms. From these results, the damped resonance frequency
and the Q-factor are derived as a function of mass density and viscosity of
the fluid [20].
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Fig. 6 The modeling of the loaded resonator cell uses the modeshape (left) as the boundary
condition for a 2D modeling of the velocity field (top-right) in two orthogonal planes. Based

on a potential flow approach (bottom-right, dotted line), a shear wave solution at the
boundary (dashed) is added to fulfill the no-slip boundary condition required for viscous
flow (solid line).

3 Summary and Conclusions

Microsensor technology facilitates the implementation of sensors for online
applications in industrial processes and plants. Devices involving vibrating
structures immersed in liquids can be used to determine mechanical and in
particular, rheological properties. Due to the associated small vibration am-
plitudes and high frequencies, the rheological domain can be quite different to
that probed by common lab equipment. In particular, this may be an issue for
non-Newtonian liquids such as emulsions and suspensions. For the monitoring
of changes in the liquid such as phase transitions, the specifically considered
rheological domain plays a minor role and the sensor output signals can be
subjected to a calibration procedure of some sort.
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Mathematical Analysis of Flexural
Vibration for a Functionally Graded
Material Plate and Vibration
Suppression by Flexural Wave Control

Ryuusuke Kawamura, Hiroshi Fujita, Kenichiro Heguri
and Yoshinobu Tanigawa

Abstract In this paper, flexural vibrations of rectangular plates and beams
which are consisted of functionally inhomogeneous materials due to cyclic
loadings of external force and temperature change are analyzed mathemat-
ically. Interference between the flexural vibration due to cyclic loading and
that due to cyclic heating is discussed. The amplification effect by loading
frequency is also discussed for the deflection and stresses of the beam and the
plate. Furthermore, a control problem of the flexural vibration of the FGM
beam by the method of wave control is considered. In order to remove pro-
gressive wave in flexural waves excited by cyclic loading, intensity and phase
lag of control force are derived on the basis of the active sink method. Then,
the validity of wave control for the flexural vibration suppression of the FGM
beam is discussed.

1 Introduction

Research and development of functionally inhomogeneous materials, such as
functionally graded materials, contribute to make performances and func-
tions of structural materials high. The reduction of thermal stresses is one
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of important subjects, in order to secure the material strength and to im-
prove the heat resistance. Assuming applications of FGMs to the field of
aerospace, structural members become lightweight and thin-walled. Many
thin-walled structural members with high aspect ratio are frequently used.
Weight saving in the members often results in decrease of stiffness and nat-
ural frequency. Hence, to analyze dynamic responses, such as the vibration
of structural members due to cyclic loading and heating, is one of impor-
tant subjects from a viewpoint of structural strength. In our previous works,
effects of material inhomogeneity on flexural vibrations were discussed for
the FGM beam [1] and rectangular plate [2,3], which were subjected to the
cyclic loading and heating. When the loading frequency is close to a natural
frequency of the plate, the vibration due to the cyclic loading and that due
to the cyclic heating offset each other. However, flexural responses for the
vibrating FGM plate with high aspect ratio due to cyclic loadings are not
fully made clear.

A number of low dumping natural modes exist in flexible long and large
structures such as large space structures. Approaches to their vibration con-
trol can be broadly classified into two categories. One is the vibration modal
control method. This is effective to treat the problem of comparatively less
vibration modes. However, it is impossible to apply the method to the prob-
lem in which structures have a number of vibration modes such as large space
structures. Instead, an approach to use the control of propagating waves has
been studied for problems of dynamic analysis and applied to the control of
vibration for structures. This approach proposed by Tanaka and Kikushima
[4,5] is one of wave controls and is referred as the active sink method. This
method is regarded as promising, since it enables to make vibration modes
asleep in the structures. The study which treats a vibration control problem
of the structure composed of FGMs from a viewpoint of waves has not been
seen yet.

In this paper, we study an effect of plate aspect ratio on interference be-
tween flexural vibrations due to the cyclic loading and heating applying to a
FGM plate. We discuss a difference in the deflection amplification between
the FGM plate with high aspect ratio and a FGM beam. Then, we attempt
to treat a control problem of the flexural vibration of the FGM beam by the
method of wave control.
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2 Flexural Vibrations for FGM Beam and Rectangular
Plate

2.1 Analytical Development

We consider a plate of thickness h as shown in Fig. 1. The plate initially
at zero temperature is bounded by planes z′ = 0 and z′ = h. The surface
z′ = h is kept perfectly insulated while the surface z′ = 0 is exposed, for time
t > 0, to a prescribed temperature which varies sinusoidally in time with
amplitude T0 and angular frequency ω. The corresponding one-dimensional

Fig. 1 Inhomogeneous
plate. o

tTT ωsin0=

h

o
tTT ωsin0=

h

∂T

h

∂T

h

0=
′∂

∂
z
T

z′ 0=
′∂

∂
z
T

z′

boundary-value problem for temperature change T = T (z′, t) is:

c(z′)ρ(z′)
∂T

∂t
=

∂

∂z′

{
λ(z′)

∂T

∂z′

}
, (1)

T = 0 at t = 0, (2)
T = T0 sinωt at z′ = 0, (3)
∂T

∂z′
= 0 at z′ = h. (4)

It is assumed that the specific heat capacity cρ and the thermal conductivity
λ are independently given in a form of power of thickness coordinate z′,

c(z′)ρ(z′) = c0ρ0

(
1 +

z′

h

)k
, λ(z′) = λ0

(
1 +

z′

h

)l
, (5)

where constants, c0,ρ0and λ0, are typical quantities of the specific heat, the
mass density, and the thermal conductivity; and exponents k and l are pa-
rameters representing the inhomogeneity in the specific heat capacity and
the thermal conductivity, respectively.

The solution of Eqs. (1)-(5) may be written in a dimensionless form as
follows:

T̄ (ζ, τ) =
∞∑

j=1

D1j(ζ) e−q
2
j τ +D2(ζ) cos ω̄τ +D3(ζ) sin ω̄τ, (6)
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where the variables ζ,τ and ω̄ denote the dimensionless quantities of coordi-
nate z′, time t, and angular frequency ω, whereas the descriptions in detail
of eigenvalue qj and functions D1j(ζ),D2(ζ),D3(ζ) are omitted due to limi-
tations of space.

We assume a beam and a rectangular plate which are subjected to a dis-
tributed transverse load p and are exposed to a temperature change T from
the stress-free state shown as Fig. 2. If the origin of the coordinate in the

x
O a

x
z′

b h
y

b h
y

O h
x

lO h

z′

(a) Rectangular plate (b) Beam

Fig. 2 Inhomogeneous rectangular plate and beam.

thickness direction is appropriately chosen in the cross-section of the inho-
mogeneous beam and plate in which Young’s modulus has an arbitrary inho-
mogeneity in the thickness direction, thermal bending in the inhomogeneous
beam and plate can be treated easily. Thus, the coordinate in the thickness
direction z whose position of the origin is located at z′ = η from the top
surface z′ = 0 of the plate is defined as

z = z′ − η. (7)

The position η of the origin of the coordinate z is defined as

η =
∫ h

0

E(z′)z′ dz′
/∫ h

0

E(z′) dz′. (8)

The equations of motion for the flexural vibration of the inhomogeneous beam
and plate are written as

∂4w

∂x4
+
µb
cb

∂2w

∂t2
=

1
cb

(
p− ∂2MT

∂x2

)
, (9)

(
∂2

∂x2
+

∂2

∂y2

)2

w +
µp
cp

∂2w

∂t2
=

1
cp

[
p− 1

1− ν

(
∂2

∂x2
+

∂2

∂y2

)
MT

]
, (10)

where ν is Poisson’s ratio; cb and cp are flexural rigidities; µb and µp are mass
per unit length and width; MT is thermal resultant moment.

We assume that the following cyclic transverse load p applies to the plate.
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p = p0 + p1 sinω1t, (11)

where p0 is reference load; p1 is load amplitude; ω1 is angular frequency.
The thermal resultant moment MT is defined as

MT =
∫ h

0

E(z′)α(z′)T (z′, t)(z′ − η) dz′. (12)

It is assumed that Young’s modulus E, the coefficient of linear thermal ex-
pansion α, the mass density ρ are independently given by a power of z′ as

E(z′) = E0

(
1 +

z′

h

)m
, α(z′) = α0

(
1 +

z′

h

)n
, ρ(z′) = ρ0

(
1 +

z′

h

)γ
,

(13)
where constants E0 and α0 are typical quantities of Young’s modulus and
the coefficient of linear thermal expansion; and exponents, m,n and γ, are
parameters representing the inhomogeneity of Young’s modulus, the coeffi-
cient of linear thermal expansion, and the mass density, respectively.

The thermo-elastic analysis of the flexural vibration for the inhomogeneous
plate is outlined below. Because of the linearity of the problem, the solution
of Eq. (10) for the out-of-plane deflection w with simple supports may be
written in a dimensionless form as the sum of two deflections due to cyclic
loading w1 and to cyclic heating w2 as

w̄ = w̄1 + w̄2, (14)

w̄1 =
1
µ̄p

16
π2

∞∑

m=odd

∞∑

n=odd

1
mn

{
p̄0

Ω2
mn

(1− cosΩmnτ)

− p̄1

Ω2
mn − ω̄2

1

(
sin ω̄1τ −

ω̄1

Ωmn
sinΩmnτ

)}
sinαmx̄ sinβnȳ, (15)

w̄2 =
16h̄2

(1− ν)µ̄pπ2

∞∑

k=odd

∞∑

l=odd

α2
k + β2

l

kl




∞∑

j=1

1
Ω2
kl + q4

j

×
(
e−q

2
j τ − cosΩklτ +

q2
j

Ωkl
sinΩklτ

)∫ 2

1

D1j(ζ)ζm+n(ζ − 1− η̄) dζ

+
1

Ω2
kl − ω̄2

(
sin ω̄τ − ω̄

Ωkl
cosΩklτ

)∫ 2

1

D3(ζ)ζm+n(ζ − 1− η̄) dζ

+
1

Ω2
kl − ω̄2

(cos ω̄τ − cosΩklτ)
∫ 2

1

D2(ζ)ζm+n(ζ − 1− η̄) dζ
}

sinαkx̄ sinβlȳ,

(16)
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where the dimensionless natural angular frequency Ωkl for the flexural vibra-
tion of the plate is given by

Ωkl =

√
c̄3h̄4

µ̄p

(
α2
k + β2

l

)
, αk = kπ, βl =

lπ

b̄
. (17)

The associated stress is also given as the sum of a solution to cyclic loading
and that to cyclic heating. It is illustrated that the stress σyy may be written
in a dimensionless form as the sum of the stress due to cyclic loading σyy1

and that due to cyclic heating σyy2,

σ̄yy = σ̄yy1 + σ̄yy2, (18)

σ̄yy 1 = − 1
1− ν2

ζm(ζ − 1− η̄)h̄2

(
ν
∂2w̄1

∂ x̄2
+
∂2w̄1

∂ ȳ2

)
, (19)

σ̄yy2 = − 1
1− ν2

ζm
{

(ζ − 1− η̄)h̄2

(
ν
∂2w̄2

∂ x̄2
+
∂2w̄2

∂ ȳ2

)
+ (1 + ν)ζnT̄

}
.

(20)

2.2 Numerical Results and Discussion

Interference between the flexural vibration due to cyclic loading and that
due to cyclic heating is examined numerically. The amplification effect by
the loading frequency is also examined for the deflection and stresses of the
beam and the plate.

Typical material properties are chosen from a mild steel. Thickness h,
length a, aspect ratio b̄(= b/a) for a plate and thickness h, length l for a
beam are given as

h = 2× 10−3[m] ; a = 1.00[m] , b̄ = 9.0 for plate, (21)
h = 2× 10−3[m] ; l = 1.00[m] for beam. (22)

So that the maximum deflection amplitude due to cyclic loading is made
closely equal to that due to cyclic heating, reference load p0 and load ampli-
tude p1 are given as

p0 = 0[kPa] , p1 = 1[kPa]. (23)

Angular frequencies in cyclic loading and heating ω̄1, ω̄ are given as

ω̄ 1 = ε1Ω
(h)
11 , ω̄ = εΩ

(h)
11 , (24)
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where ε1 and ε are parameters, Ω(h)
11 is a fundamental natural angular fre-

quency of the flexural vibration of a homogeneous square plate. Setting
ε 1 = ε, the interference in dynamic responses due to cyclic loading and
heating is examined, here. Figures 3 and 4 illustrate the time evolution of

Fig. 3 Time evolution of
out-of-plane deflection w̄ at

the central point x̄ = ȳ/b̄ =
0.5 of a FGM plate with
aspect ratio b̄ = 9.0.

-3 106
-2 106
-1 106

0
1 106
2 106
3 106

0 1 2 3 4 5

w
w1
w2

O
ut

-o
f-

pl
an

e 
de

fle
ct

io
n 

w
Dimensionless time, τ

_

ε = 0.41, m = -1, b = 9.0
x = y/b = 0.5_ _ _

_ _
_
_

Fig. 4 Time evolution of

stress σ̄yy at the central
point x̄ = ȳ/b̄ = 0.5 on
the surface ζ = 1.0 in a

FGM plate with aspect
ratio b̄ = 9.0.
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out-of-plane deflection w̄ at the central point x̄ = ȳ
/
b̄ = 0.5 and that of the

stress σ̄yy in the plate with aspect ratio b̄ = 9. When the angular frequen-
cies of cyclic loading and heating are closer to the natural angular frequency
of the plate, the deflection due to cyclic loading w1 and that due to cyclic
heating w2 offset each other regardless of aspect ratio. The same result can
be observed in the stress σyy shown in Fig. 4.

Figure 5 shows the time evolutions of dynamic out-of-plane deflections for
the plate with aspect ratio b̄ = 9.0 and for a beam, respectively. The time
evolution of the out-of-plane deflection for the plate with high aspect ratio
approaches that for a beam gradually.

Figure 6 shows the variation of deflection amplifications with a parameter
in cyclic loadings ε. Here, a deflection amplification is defined as the ratio of
the maximum dynamic deflection w̄max to the maximum quasi-static deflec-
tion w̄st max. The amplification factors for the plate and the beam increase
with an increase of the parameter ε. Furthermore, the amplification factor
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for the plate approaches that for the beam gradually with increase of the
parameter ε.

Fig. 5 Time evolution of

out-of-plane deflections for

a rectangular plate with
aspect ratio b̄ = 9.0 and for

a beam.
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Fig. 6 Variation of de-
flection amplifications with
parameter of angular fre-

quency ε for a rectangular
plate and a beam.
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3 Vibration Suppression of FGM Beam by Active Sink
Method

The concept of wave control for a homogeneous flexible beam has been pro-
posed by Tanaka and Kikushima [4,5]. When energy of an external force is in-
put into structural member, the energy is carried as progressive waves. When
the progressive waves arrive at the boundary, reflected waves are exited. Syn-
chronization of interference of these travelling waves causes vibration modes
in the structural members. The basic concept of the vibration suppression in
the active sink method is to remove reflected waves from structures and to
make vibration modes asleep.

We formulate equations for the FGM beam and derive wave vectors by
the transfer matrix method. We assume that the beam is subjected to cyclic
loading Fin = fin sinωτ at the right boundary edge x̄ = 1.0 of the beam and
control force Fd = fd sin(ωt + ϕ) at the left boundary one x̄ = 0.0, simulta-
neously as shown in Fig. 7. The mechanical conditions for the beam are free
at both edges. According to the active sink method, we obtain the intensity
fd and the phase lag ϕ in the control force Fd so as to null the reflected wave
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in the wave vector. Figures 8 and 9 show an effect of the control force on

Fig. 7 Vibration suppres-
sion of a FGM beam by the

active sink method.

in in sinF f tω=( )d d sinF f tω ϕ= +

O
L

x

the out-of-plane deflection of the beam. The intensity of the cyclic loading is
assumed as fin = 0.05[N] and the angular frequency ω is set as 0.999 times
of third natural angular frequency Ω3. When the control force is applied to
the beam, the maximum amplitude of deflection is decreased about less than
2% of one without the control force.

Figure 10 shows the difference in the time evolution of deflection at the
right boundary edge. The amplitude of the flexural vibration of the beam
without control force increases with time. On the other hand, the ampli-
tude of the beam vibration with control remains small with elapse of time.
Thus, we can confirm the validity of the active sink method for the vibration
suppression of the FGM beam.

Fig. 8 Longitudinal distri-

bution of out-of-deflection
w̄ of a FGM beam due to
cyclic loading Fin without

control force.
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Fig. 9 Longitudinal distri-
bution of out-of-deflection

w̄ of a FGM beam due
to cyclic loading Fin with

control force Fd.
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Fig. 10 Effect of addition

of control force on the time
evolution of out-of-plane

deflections at the right

boundary edge x̄ = 1.0 of a
FGM beam.
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4 Conclusion

Analytical solutions for the FGM beam and plate which are subjected to
the cyclic loading and heating are derived. Interference between the flexu-
ral vibration due to the cyclic loading and that due to the cyclic heating is
discussed numerically. The amplification effect by loading frequency is also
discussed for the deflection and stresses of the beam and the plate. A compar-
ison is made for transient flexural responses of the beam and of the plate with
high aspect ratio. Furthermore, a vibration suppression of the FGM beam is
discussed by applying the active sink method and is illustrated numerically.
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Monitoring and control of multi-storey
frame structures by strain-type
actuators and sensors

Michael Krommer and Markus Zellhofer

Abstract In the present paper we study monitoring and control of multi-
storey frame structures. In particular, we consider strain-type sensors and
actuators for that purpose. In the first part the concept of collocated con-
tinuously distributed strain-type sensors and actuators is introduced. Then
we discuss the design of continuously distributed sensors in detail, in order
to introduce the concept of strain-type sensor networks afterwards. Here, we
focuss on the optimal design of such networks to approximate continuously
distributed sensors. Finally, two case studies for a three-storey frame struc-
ture are presented. (1) Structural health monitoring for the detection of joints
appearing at the connection of floors and sidewalls, and (2) active control of
the third floor displacement by PD-controllers.

1 Introduction

Smart structure technology has become a key technology in the design of
modern, so-called intelligent, civil, mechanical and aerospace structures. Sim-
ilar to human beings, these intelligent or smart systems are capable to react
to disturbances exerted upon them by the environment they are operating
in. For reviews see [1] and [2] and for future challenges and opportunities see
[3]. Practical applications of smart structures are e.g. in the fields of active
structural vibration control [4] as well as active noise control [5]. One key
aspect for a successful design of a smart structure is the communication be-
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tween structure and controller, the so-called control-structure interaction [6].
Sensors and actuators are responsible for the functioning of this communica-
tion. In typical continuous systems a crucial point is the spatial distribution
of sensors and actuators to obtain proper information as well as to perform
distributed control of continua [6].

In the present paper we concentrate in particular on this latter topic; espe-
cially, on the application of strain-type sensors and actuators for multi-storey
frame structures with flexible sidewalls.

2 Monitoring and active control of multi-storey frame
structures

2.1 Closed loop control strategy

For a multi-storey frame structure the power theorem of mechanics (see [7])
is

d

dt
T = L(e) + L(i), (1)

in which T is the kinetic energy, L(e) is the power of the external forces and
L(i) is the power of the internal forces. Here, we are in particular interested in
the power of the internal forces. We assume the sidewalls of the multi-storey
frame structure to be modelled as thin beams; then, the bending moment
for one sidewall (exemplarily we consider the left sidewall of the i-th storey)
is related to the linearized curvature and to some strain-type actuation by
means of

MyiL = −DiL
∂2wiL
∂x2

iL

−M (a)
iL . (2)

In Eq. (2) MyiL is the bending moment; DiL the bending stiffness, wiL the de-
flection, xiL the local storey axial beam coordinate and M (a)

iL the distributed
strain-type actuation. The power of the internal forces then becomes (here R
refers o the right sidewall)

L(i) = − d

dt
W +

n∑

i=1




hi∫

0

M
(a)
iL

∂2ẇiL
∂x2

iL

dxiL +

hi∫

0

M
(a)
iR

∂2ẇiR
∂x2

iR

dxiR




︸ ︷︷ ︸
L(a)

, (3)

such that the power theorem can be written as

d

dt
(T +W ) = L(e) + L(a). (4)
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W is the elastic part of the strain energy and L(a) the power of the actuation.
We assume the actuation to be seperable in space and time, with only one
time variation u(t) and 2i spatial functions Si(L,R)(xi(L,R)). The power of the
actuation then is

L(a) = u(t)
d

dt

n∑

i=1




hi∫

0

SiL(xiL)
∂2wiL
∂x2

iL

dxiL +

hi∫

0

SiR(xiR)
∂2wiR
∂x2

iR

dxiR




︸ ︷︷ ︸
y(t)

, (5)

in which y(t) is the so-called collocated sensor output (see e.g. [8] or [9]).
Hence, we end up with a simple form of the power theorem:

d

dt
(T +W ) = L(e) + u(t)

dy(t)
dt

. (6)

The power of the actuation is the product of the time variation of the actua-
tion u(t) with the time derivative of the collocated sensor signal y(t). This is
advantegous from a control point of view. Assume a simple PD control law,
u(t) = −Py(t)−Dẏ(t), then the power theorem can be cast into

d

dt

(
T +W +

1
2
Py(t)2

)
= −Dẏ(t)2. (7)

From Eq. (7) we postulate the stability of the closed loop system.

2.2 Sensor design

The collocated sensor signal of a distributed strain-type sensor for the multi-
storey frame structure has been introduced in Eq. (5); such a sensor measures
a spatially weighted integral of the linearized curvatures of all sidewalls. The
weighing functions (also called shape functions) SiL(xiL) and SiR(xiR) are
yet to be computed. Hence, the problem we are seeking to solve in this section
is the following:

Find SiL and SiR for all sidewalls such that the combined sensor output
measures a desired structural (kinematical) entity of the multi-storey frame

structure.

For details of the design of such sensors see [10]. The solution to this problem
is found by applying the principle of virtual work to an auxiliary quasi-static
frame, which is choosen identical to the original frame structure. The principle
of virtual work reads δW (i) +δW (e) = 0, with the virtual work of the internal
forces as
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Fig. 1 Measurement of the

relative floor displacement
of a two-storey frame struc-

ture with two storeys

δW (i) = −
n∑

i=1




hi∫

0

M
(qs)
iL (xiL)

∂2δwiL
∂x2

iL

dxiL +

hi∫

0

M
(qs)
iR (xiR)

∂2δwiR
∂x2

iR

dxiR


.

(8)
In Eq. (8) M (qs)

i(L,R) is any statically admissible bending moment and δwi(L,R)

is any kinematically admissible deflection. We choose the virtual deflection as
the deflection of our original frame structure, which is kinematically admissi-
ble, δwi(L,R) = wi(L,R)(xi(L,R), t), and the shape function for the sensors are
choosen as the statically admissible bending moments of the auxiliary prob-
lem Si(L,R)(xi(L,R)) = M

(qs)
i(L,R)(xi(L,R)). Then, the distributed strain-type

sensor measures the work of the external forces applied to the quasi-static
frame with respect to the original deflection:

y(t) = δW (e)
∣∣∣
δwi(L,R)=wi(L,R)(xi(L,R),t)

(9)

As an example, we consider a two-storey frame structure. We seek to
measure the relative displacement between the first and the second floor.
Hence, we apply single unit forces at the two floors in opposite direction in the
quasi-static auxiliary problem and calculate any statically admissible bending
moment distribution. Two possible distributions for this redundant structure
are shown in Figure 1. Shape functions, which represent the deviation of the
different statically admissible bending moment distributions are denoted as
nilpotent in the literature (see [11]), because their signal is trivial.

3 Optimal design of sensor networks

One of the major problems of using distributed sensors is their practicality. In
general, it is more feasible to work with a network of sensor patches; e.g. made
of piezoelectric material. In order to study the design of such a network we
consider a single-storey of the multi-storey frame structure, which we model
as a single-span beam clamped at its lower end and with an end mass at
its other end; the latter has a zero slope and can only move horizontally,
see Figure 2. The lower end is assumed to be allowed to move horizontally
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Fig. 2 One-storey frame

structure modelled as a
beam with an end mass

as well. As strain-type sensors are sensitive to strain only, it is sufficient to
study only one storey for the design of the sensor network, and to conclude
from it on the design for the multi-storey frame structure.

The span of the beam is subdivided into n sub-sections, xi ≤ x ≤ xi+∆x,
i = 1, ..., n, with x1 = 0 and xn +∆x = L. Within each sub-section a strain-
type sensor patch is located; all of them with a constant width. The sections
of the patches are: x̄i ≤ x ≤ x̄i +∆x̄, i = 1, ..., n. To each patch we assign an
intensity Si such that the sensor output of the network is:

ȳ(t) =
n∑

i=1

x̄i+∆x̄∫

x̄i

Siw
′′(x, t)dx (10)

In a redundant beam a distributed sensor to measure a specific entity is char-
acterized by a shape function S(x), which depends on q arbitrary constants
χk, with k = 1, ...q, which represent the nilpotent sensor shape functions
present in redundant structures. Hence, the signal of the distributed sensor
is:

y(t) =

L∫

0

S(x, χ1, ..., χq)w′′(x, t)dx. (11)

Next, we introduce the error signal e(t) as the difference between the signal of
the continuous sensor and the sensor network; e(t) = y(t)− ȳ(t). An optimal
design of the sensor network requires to minimize the error signal e(t). Based
on our previous work [12], we suggest to locate the individual sensor patches
and to assign static weights to them according to (i = 1, ...n):

Si =
1
∆x̄

xi+∆x∫

xi

S(x)dx , x̄i +
1
2
∆x̄ =




xi+∆x∫

xi

S(x)dx



−1 xi+∆x∫

xi

S(x)xdx.

(12)
These so-called equal area rule and area center rule render 2n linear equations
for 2n+ q unknowns. We obtain q more equations from

0 =

L∫

0

S(x, χ1, ..., χq)w′′k(x)dx−
n∑

i=1

x̄i+∆x̄∫

x̄i

Siw
′′
k(x)dx, (13)
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in which the k = 1, ..., q curvatures are the curvatures due to linear indepen-
dent static transverse force loadings. In order to be able to use one sensor
network for more than one purpose, we consider the location of the sensor
patches a priori fixed; hence, we can only choose the weights Si. In this latter
case of a multi-purpose sensor network, we have n + q unknowns, but still
2n+ q equations. Here, we use a simple least square algorithm in the form

Ax = b → x = (ATA)−1ATb (14)

to compute the unknowns x.
As a simple example, we consider the one-storey frame structure of Fig-

ure 2 with 8 sensor patches of identical size ∆x̄ = 1/24 (a non-dimensional
formulation is used), located along the height of the side-walls in an equidis-
tant manner, for which we seek to measure the relative floor displacement.
From Eq. (14) we find the solution for the weights to be assigned to the sensor
patches for the multi-purpose sensor network. The continuous shape function
for the sensor can be deduced from Figure 1; as the floor is assumed rigid
only the distribution for the sidewall (combination of a constant and a linear
distribution) needs to be considered. In this example, we have a structure
with one statically indeterminate constant χ; therefore, we have used a static
loading corresponding to the weight of the frame in order to compute the
required curvature in Eq. (13). Figure 3(a) shows the dynamic magnification
factor for the sensor network for a harmonic ground excitation. The results
for the sensor network with 8 patches are good in the lower frequency regime,
yet for higher frequencies they are not satisfying. Therefore, we must further
refine the assigned weights for dynamic problems.

We assume the patch locations are fixed (multi-purpose network). Then,
we extend the intensities as follows 
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Fig. 3 Measurement of relative horizontal floor displacement: (a) static sensor network;
(b) dynamically refined sensor network
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S̄i = Si +
m∑

j=1

CjSji. (15)

Here, the Sji are computed from j = 1, ...,m additional shape function Sj(x)
by using the equal area rule, see the first relation in Eq. (12). Finally, the
constants Cj are computed from (k = 1, ...m):

0 =

L∫

0

S(x, χ1, ..., χq)w′′k(x)dx−
n∑

i=1

x̄i+∆x̄∫

x̄i


Si +

m∑

j=1

CjSji


w′′k(x)dx. (16)

This dynamic weight refinement strongly depends on a proper choice of the
j = 1, ...,m additional shape functions Sj(x) as well as the k = 1, ...,m
deflections wk(x). In the example problem we use the first m eigenmodes for
the wk(x) and the bending moments corresponding to these eigenmodes as
the additional shape functions Sj(x). The results are shown in Figure 3(b).
One can see that we have a much better accuracy over a much larger frequency
range than without the dynamic weight refinement.

4 Case study: three-storey frame structure

In this section we will present two case studies for a three-storey frame struc-
ture; first, the structural health monitoring by means of nilpotent sensors,
and second the active control of the relative floor displacements by displace-
ment sensors and corresponding collocated actuators.

In both cases we use three patch sensors (actuators) along the height of
each of the 6 sidewalls; the sensor length is 30mm, the width is 108mm and
their location along the height h of one sidewall are x̄i+∆x̄/2 = (2i−1)h/6.
The grade of redundancy of this frame structure is q = 9, the dimensions are
1476mm×344mm×108mm (total height × sidewall distance × sidewall width), the
thickness of the flexible sidewalls (aluminum) is 2mm and the mass of each
rigid floor (plexiglass) m = 0.629kg. The first four natural frequencies are:
2.2Hz, 6.37Hz, 9.5Hz and 44.35Hz. As an excitation we consider a ground
excitation.

4.1 Structural health monitoring with nilpotent sensors

As the grade of reduncancy is 9, we can compute 9 nilpotent sensor distri-
butions for the three-storey structure. One of them is shown in Figure 4(a).
Our goal is to use the nilpotent sensors to monitor possible additional hinges
appearing at the interconnection of floors with sidewalls. Figure 4(b) shows
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a possible damage scenario at floor 1. In order to test our sensor design, we
approximate all 9 nilpotent sensors by the sensor network with 18 patches
(no contribution from the rigid floors needs to be considered!). Two sim-
ulation models are used: one for the undamged structure and one for the
structure with the presented damage scenario. A harmonic ground excitation
with a frequency ω = 15Hz is used and at time t = 0.1s we switch from the
first simulation model to the second one (with the simulated damage). Four
nilpotent sensors start to measure non trivial signals; examplarily we show in
Figure 5 the one resulting from the nilpotent sensor of Figure 4(a). One can

Fig. 4 Three-storey frame structure: (a) nilpotent sensors; (b) damage scenario

see that the measured signal coincides very well with the slope at location of
the assumed additional hinge at the left sidewall; note, the distributed nilpo-
tent sensor measures the latter slope exactly. Hence, we are not only able to
conclude from measurements on the appearance of damage, but also on the
location (only four nilpotent sensors start to measure) as well as quantify the
damage (the slope is measured!).

Fig. 5 Three-storey frame

structure: nontrivial nilpo-
tent sensor signal Y2(t) for

simulated damage
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4.2 Active control of third floor displacement

As a second example we use the sensor network to measure the relative floor
displacements. For that sake we only need to approximate the continuous
sensors by the 9 patch sensors at the three sidewalls of the right side of the
frame. This follows directly from the right figure in Figure 1 by neglecting the
contribution from the rigid floors. This results into three independent sensor
networks. For active control we use three collocated actuator networks and
simple PD-controllers. Figure 6 shows the simulation results for the relative
(with respect to the ground excitation) third floor displacement at an excita-
tion frequency of 5Hz. For the controlled case the relative floor displacement
is sigificantly reduced.
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placement

5 Conclusion

The present paper has presented a general approach for monitoring and con-
trol of multi-storey frame structures by means of strain-type sensors and ac-
tuators; both, for using continuously distributed sensors and actuators as well
as sensor and actuator networks. We have shown that such sensor/actuator
systems can be used for structural and health monitoring with a high accu-
racy, but also for actively controlling the dynamic response of the structure.
For the future research will focuss on

• Numerical and experimental validation: Currently, we are working on the
analytical and numerical modelling of an existing laboratory three-storey
frame structure with attached piezoelectric patches to be used as sensors
and actuators, in order to validate our analytical methods.
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• Application to other types of structures: The focuss in this direction is on
the application of the developed methods for other types of thin-walled
structures such as plates and shells.
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Transient Piezothermoelastic Problem
of a Functionally Graded
Thermopiezoelectric Cylindrical Panel

Yoshihiro Ootao

Abstract This paper is concerned with the theoretical treatment of transient
piezothermoelastic problem involving a functionally graded thermopiezoelec-
tric cylindrical panel due to nonuniform heat supply in the circumferential
direction. The thermal, thermoelastic and piezoelectric constants of the cylin-
drical panel are expressed as power functions of the radial coordinate variable.
We obtained the exact solution for the two-dimensional temperature change
in a transient state, and piezothermoelastic response of a simply supported
cylindrical panel under the state of plane strain. Some numerical results are
shown in figures. Furthermore, the influence of the nonhomogeneity of the
material is investigated.

1 Introduction

Piezoelectric materials have coupled effects between the elastic field and the
electric field, and have been widely used as the actuators or sensors in smart
composite material systems. A new type of piezoelectric materials with ma-
terial constants varying continuously in the thickness direction, named func-
tionally graded piezoelectric materials (FGPMs), has been developed. It is
possible to produce large displacements and reduce the stresses when the
FGPMs are used as an actuator. Therefore, the piezoelectric or piezother-
moelastic problems for the FGPMs become important, and there are several
analytical studies concerned with these problems.

As piezothermoelastic problems, Wang and Noda [1] analyzed a smart
FGPM structures by using finite element method. Wu at al. [2] obtained an

Yoshihiro Ootao
Department of Mechanical Engineering, Graduate School of Engineering, Osaka Prefecture

University, 1-1 Gakuen-cho, Nakaku, Sakai, 599-8531, Japan, e-mail: ootao@me.osakafu-
u.ac.jp
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exact solution for a FGPM cylinder shell subjected to axisymmetric ther-
mal or mechanical loading. Ying and Zhifei [3] obtained the exact solution
of FGPM cantilevers whose material properties change linearly in the thick-
ness direction. Zhong and Shang [4] obtained the exact solution of the simply
supported FGPM plates. These papers, however, treated only the piezother-
moelastic problems under the uniform heating or the steady temperature
distribution. It is well-known that thermal stress distributions in a transient
state can show large values compared with the one in a steady state. There-
fore, the transient piezothermoelastic problems become important. Ootao and
Tanigawa [5] obtained the two-dimensional solution for transient piezother-
moelasticity of a FGPM strip. The one-dimensional solutions for transient
piezothermoelasticity of a FGPM hollow sphere [6] and a FGPM hollow
cylinder [7] were obtained. To the author’s knowledge, however, the exact
analysis for a transient piezothermoelastic problem of a functionally graded
thermopiezoelectric cylindrical panel under two-dimensional temperature dis-
tribution has not been reported.

In the present article, we analyzed exactly the transient piezothermoelas-
ticity involving a functionally graded thermopiezoelectric cylindrical panel
due to nonuniform heat supply in the circumferential direction as a plane
strain problem.

2 Analysis

We consider an infinitely long, functionally graded thermopiezoelectric cylin-
drical panel that has nonhomogeneous thermal, mechanical and electric prop-
erties in the radial direction, the span angle of which is denoted by θ0. The
panel’s inner and outer radii are designated ra and rb, respectively.

2.1 Heat Conduction Problem

We assume that the cylindrical panel is initially at zero temperature and
is heated from the inner and outer surfaces by surrounding media with rel-
ative heat transfer coefficients (heat transfer coefficient/thermal conductiv-
ity) ha and hb. We denote the temperatures of the surrounding media by
the functions Tafa(θ) and Tbfb(θ), and assume its end surfaces (θ = 0, θ0)
are held zero temperature. Then the temperature distribution shows a two-
dimensional distribution in r− θ plane. The thermal conductivity λr and λθ
and the heat capacity per unit volume are assumed to take the following form

λr(r) = λr0 (r/rb)
m
, λθ(r) = λθ0 (r/rb)

m
, c(r)ρ(r) = c0ρ0 (r/rb)

k (1)



Transient Piezothermoelastic Problem of a FGPM Panel 127

where m and k are nonhomogeneous parameters. Using the Eq. (1), the tran-
sient heat conduction equation in dimensionless form is

T̄ ,τ = (m+ 1)r̄m−k−1T̄ ,r̄ +r̄m−kT̄ ,r̄r̄ +λ̄θ0r̄m−k−2T̄ ,θθ (2)

where a comma denotes partial differentiation with respect to the variable
that follows. The initial and thermal boundary conditions in dimensionless
form are

τ = 0; T̄ = 0 (3)

r̄ = r̄a; T̄ ,r̄ −HaT̄ = −HaT̄afa(θ) , r̄ = 1; T̄ ,r̄ +HbT̄ = HbT̄bfb(θ) (4)

θ = 0, θ0; T̄ = 0 (5)

In Eqs.(2)-(5), we have introduced the following dimensionless values:

(T̄ , T̄a, T̄b) = (T, Ta, Tb)/T0, (r̄, r̄a) = (r, ra)/rb, (Ha, Hb) = (ha, hb)rb
λ̄θ0 = λθ0/λr0, κ0 = λr0/(c0ρ0), τ = κ0t/r

2
b

}

(6)
where T is the temperature change; t is time; and T0 and κ0 are typical
values of temperature and thermal diffusivity, respectively. Introducing the
finite sine transformation with respect to the variable θ and the Laplace
transformation with respect to the variable τ , the solution of Eq. (2) can be
obtained so as to satisfy conditions (3)-(5). This solution is shown as follows:

T̄ =
∞∑

K=1

T̄K(r̄, τ) sin qKθ (7)

where

T̄K(r̄, τ) = 2
θ0
{ 1
F (Ā′r̄β1 + B̄′r̄β2)

+
∞∑
j=1

2r̄−m/2e
−(2−m+k)2µ2

j τ/4

µj∆′(µj)
[ĀJγ(µj r̄(2−m+k)/2) + B̄Yγ(µj r̄(2−m+k)/2)]}

(8)
where Jγ( ) and Yγ( ) are the Bessel function of the first and second kind of
order γ, respectively; ∆ and F are the determinants of 2×2 matrix [akl] and
[ekl], respectively; the coefficients Ā and B̄ are defined as the determinant of
the matrix similar to the coefficient matrix [akl], in which the first column or
second column is replaced by the constant vector {ck}, respectively; similarly,
the coefficients Ā′ and B̄′ are defined as the determinant of the matrix similar
to the coefficient matrix [ekl], in which the first column or second column is
replaced by the constant vector {ck}, respectively. The elements akl, ekl and
ck are obtained from Eq. (4). Furthermore, in Eqs. (7) and (8), βi, γ, ∆′(µj)
and qK are



128 Yoshihiro Ootao

β1 = (−m+
√
m2 + 4q2

K λ̄θ0)/2, β2 = −(m+
√
m2 + 4q2

K λ̄θ0)/2

γ =
√
m2+4q2K λ̄θ0
|2−m+k| , ∆′(µj) = d∆

dµ

∣∣∣
µ=µj

, qK = Kπ
θ0





(9)

and µj represent the jth positive roots of the following transcendental equa-
tion

∆(µ) = 0 (10)

2.2 Piezothermoelastic Problem

Let analyze the transient piezothermoelasticity of a functionally graded ther-
mopiezoelectric cylindrical panel with simply supported edges as a plane
strain problem. For the thermopiezoelectric material of crystal class mm2,
the constitutive relations are expressed in dimensionless form as follows:

σ̄rr = C̄11ε̄rr + C̄12ε̄θθ − ē1Ēr − β̄rT̄
σ̄θθ = C̄12ε̄rr + C̄22ε̄θθ − ē2Ēr − β̄θT̄

σ̄zz = C̄13ε̄rr + C̄23ε̄θθ − ē3Ēr − β̄zT̄ , σ̄rθ = C̄66γ̄rθ − ē6Ēθ



 (11)

where

β̄r = C̄11ᾱr + C̄12ᾱθ + C̄13ᾱz, β̄θ = C̄12ᾱr + C̄22ᾱθ + C̄23ᾱz
β̄z = C̄13ᾱr + C̄23ᾱθ + C̄33ᾱz

}
(12)

The constitutive equation for the electric field in dimensionless form is given
as

D̄r = ē1ε̄rr + ē2ε̄θθ + η̄1Ēr + p̄1T̄ , D̄θ = ē6γ̄rθ + η̄2Ēθ (13)

The relations between the electric field intensities and the electric potential
φ in dimensionless form are defined by

Ēr = −φ̄,r̄ , Ēθ = −r̄−1φ̄,θ (14)

If the electric charge density is absent, the equation of electrostatics is ex-
pressed in dimensionless form as follows:

D̄r,r̄ +r̄−1(D̄r + D̄θ,θ ) = 0 (15)

The elastic stiffness constants Ckl, the piezoelectric coefficients ek, the di-
electric constants ηk, the coefficients of linear thermal expansion αk and the
pyroelectric constant p1 in dimensionless form are assumed to take the fol-
lowing forms

(C̄kl, ēk, η̄k) = (C̄0
kl, ē

0
k, η̄

0
k)r̄l, ᾱk = ᾱ0

kr̄
b, p̄1 = p̄0

1r̄
l+b (16)
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where l and b are arbitrary constants. In Eqs. (11)-(16), the following dimen-
sionless values are introduced:

σ̄kl = σkl
α0Y0T0

, (ε̄kl, γ̄kl) = (εkl,γkl)
α0T0

, (ūr, ūθ) = (ur,uθ)
α0T0rb

(C̄kl, C̄0
kl) = (Ckl,C

0
kl)

Y0

(ᾱk, ᾱ0
k) = (αk,α

0
k)

α0
, (ēk, ē0

k) = (ek,e
0
k)

Y0|d0| , (η̄k, η̄0
k) = (ηk,η

0
k)

Y0|d0|2

(p̄1, p̄
0
1) = (p1,p

0
1)

α0Y0|d0| , D̄k = Dk
α0Y0T0|d0| , φ̄ = φ|d0|

α0T0rb
, Ēk = Ek|d0|

α0T0





(17)

where σkl are the stress components, εkl are the normal strain components,
γrθ is the engineering shear strain component, (ur,uθ) are the displacement
components, Dk are the electric displacement components, and α0, Y0 and
d0 are typical values of the coefficient of linear thermal expansion, Young’s
modulus and piezoelectric modulus, respectively.

Substituting the displacement-strain relations, Eqs. (14) and (16), into
Eqs. (11) and (13), and later into Eq. (15) and the equilibrium equations,
the governing equations of the displacements and the electric potential in
dimensionless form are written as

C̄0
11[ūr,r̄r̄ +(l + 1)r̄−1ūr,r̄ ] + r̄−2(C̄0

12l − C̄0
22)ūr + r̄−2C̄0

66ūr,θθ
+(C̄0

12 + C̄0
66)r̄−1ūθ,r̄θ +(C̄0

12l − C̄0
22 − C̄0

66)r̄−2ūθ,θ +ē0
1φ̄,r̄r̄

+[ē0
1(l + 1)− ē0

2]r̄−1φ̄,r̄ +ē0
6r̄
−2φ̄,θθ = [β̄0

r (l + b+ 1)− β̄0
θ ]r̄b−1T̄ + β̄0

r r̄
bT̄ ,r̄





(18)
(C̄0

66 + C̄0
12)r̄−1ūr,r̄θ +[C̄0

66(l + 1) + C̄0
22]r̄−2ūr,θ

+C̄0
66[(l + 1)(r̄−1ūθ,r̄ −r̄−2ūθ) + ūθ,r̄r̄ ]

+C̄0
22r̄
−2ūθ,θθ +ē0

6(l + 1)r̄−2φ̄,θ +(ē0
6 + ē0

2)r̄−1φ̄,r̄θ = β̄0
θ r̄
b−1T̄ ,θ



 (19)

ē0
1ūr,r̄r̄ +[ē0

1(l + 1) + ē0
2]r̄−1ūr,r̄ +ē0

6r̄
−2ūr,θθ +ē0

2lr̄
−2ūr

+(ē0
2 + ē0

6)r̄−1ūθ,r̄θ +(ē0
2l − ē0

6)r̄−2ūθ,θ −η̄0
1 [φ̄,r̄r̄ +(l + 1)φ̄,r̄ ]− η̄0

2 r̄
−2φ̄,θθ

= −p̄0
1r̄
b[T̄ ,r̄ +(l + b+ 1)r̄−1T̄ ]





(20)
The boundary conditions of inner and outer surfaces can be represented as
follows:

r̄ = r̄a, 1; σ̄rr = 0, σ̄rθ = 0, D̄r = 0 (21)

We now consider the case of a simply supported cylindrical panel and assume
that the edges are electrically grounded. The boundary conditions of edges
are represented by the following relations:

θ = 0, θ0; σ̄θθ = 0, ūr = 0, φ̄ = 0 (22)

We assume the solutions of Eqs. (18)-(20) in order to satisfy Eq. (22) in the
following form.
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ūr =
∞∑
K=1

[UrcK(r̄) + UrpK(r̄)] sin qKθ

ūθ =
∞∑
K=1

[UθcK(r̄) + UθpK(r̄)]cosqKθ

φ̄ =
∞∑
K=1

[ΦcK(r̄) + ΦpK(r̄)] sin qKθ





(23)

In Eq. (23), the first term on the right side gives the homogeneous solution
and the second term of the right side gives the particular solution. We now
consider the homogeneous solution. Substituting the first term on the right
side of Eq. (23) into the homogeneous expression of the governing equation
of Eqs. (18)-(20), and later changing a variable with the use of r̄ = exp(s),
we obtained the simultaneous ordinary different equations of UrcK , UθcK and
ΦcK . We show UrcK , UθcK and ΦcK as follows:

(UrcK , UθcK , ΦcK) = (U0
rcK , U

0
θcK , Φ

0
cK) exp(λs) (24)

Substituting Eq. (24) into the simultaneous ordinary different equations, the
condition that a non-trivial solutions of (U0

rcK , U
0
θcK , Φ

0
cK) exist leads to the

following equation.

λ6 +A1λ
5 +A2λ

4 +A3λ
3 +A4λ

2 +A5λ+A6 = 0 (25)

where expressions for the coefficients A1 − A6 are omitted here. From Eq.
(25), there might be six real roots, four real roots and one pair of conjugate
complex roots, two real roots and two pair of conjugate complex roots, or
three pairs of conjugate complex roots.

Given JR real toots for λ, UrcK(r̄), UθcK(r̄) and ΦcK(r̄) are given by the
following expressions:

UrcK(r̄) =
JR∑
J=1

FKJ r̄
λJ , UθcK(r̄) =

JR∑
J=1

MKJ(λJ)FKJ r̄λJ

ΦcK(r̄) =
JR∑
J=1

NKJ(λJ)FKJ r̄λJ





(26)

If the complex root for λ is expressed by λJ = αJ ± iβJ , and given JI pairs
complex roots for λ, UrcK(r̄), UθcK(r̄) and ΦcK(r̄) are given by the following
expressions:
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UrcK(r̄) =
JI∑
J=1

[C1J r̄
αJ cos(βJ ln r̄) + C2J r̄

αJ sin(βJ ln r̄)]

UθcK(r̄) =
JI∑
J=1

{C1J r̄
αJ [Γ1J cos(βJ ln r̄)−Ω1J sin(βJ ln r̄)]

+ C2J r̄
αJ [Ω1Jcos(βJ ln r̄) + Γ1Jsin(βJ ln r̄)]}

Φck(r̄) =
JI∑
J=1

{C1J r̄
αJ [Γ2J cos(βJ ln r̄)−Ω2J sin(βJ ln r̄)]

+ C2J r̄
αJ [Ω2Jcos(βJ ln r̄) + Γ2Jsin(βJ ln r̄)]}





(27)

In Eqs. (26) and (27), FkJ , C1J and C2J are unknown constants.
In order to obtain the particular solution, we use the series expansions of

the Bessel functions. Since the order γ of the Bessel function in Eq. (8) is not
integer in general, Eq. (8) can be written as the following expression.

T̄K(r̄, τ) = a′0r̄
β1 + b′0r̄

β2 +
∞∑

n=0

[an(τ)r̄ω1 + bn(τ)r̄ω2 ] (28)

where

ω1 = [(2−m+ k)(2n+ γ)−m]/2, ω2 = [(2−m+ k)(2n− γ)−m]/2 (29)

UrpK(r̄), UθpK(r̄) and ΦpK(r̄) of the particular solutions are obtained the
function systems like Eq. (28). Then, the stress components and the electric
displacements can be evaluated from the displacement components and the
electric potential. The unknown constants in the homogeneous solutions such
as Eqs. (26) and (27) are determined so as to satisfy the boundary condition
(21).

3 Numerical results

Numerical parameters of heat conduction and shape are presented as follows:

Hb = 1.0, Ha = Hb/r̄
m
a , T̄a = 0, T̄b = 1, θ0 = 90◦, r̄a = 0.7

fb(θ) =
(
1− θ′2/θ2

b

)
H (θb − |θ′|) , θb = 15◦, θ′ = θ − θ0/2

}
(30)

where H(x) is Heaviside’s function. The typical values of material constants
are taken with reference to cadmium selenide. The nonhomogeneous parame-
ters adopted for the numerical calculations are shown in Table 1. Figures 1-5
show the results for Case 1. The variations of temperature change, thermal
stresses σ̄θθ, σ̄rr and electric potential in the radial direction at the midpoint
of the cylindrical panel (θ = θ0/2) are shown in Figures 1, 2, 3 and 5, re-
spectively. The variation of the shearing stress σ̄rθ in the radial direction at
the edge (θ = 30◦) of the heating region is shown in Figure 4. Figures 6
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m k b l

Case 1 −1, 0, 1 0 0 0.01

Case 2 0 0 1, 0,−1 0.01

Case 3 0 0 0 −1, 0.01, 1

Table 1 Nonhomogeneous parameters

and 7 show the variations of thermal stress σ̄rr in the radial direction at the
midpoint of the cylindrical panel for Cases 2 and 3, respectively.

Fig. 1 Variation of tem-

perature change in the
radial direction (Case 1,
θ = θ0/2).
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Fig. 2 Variation of thermal
stress σ̄θθ in the radial

direction (Case 1, θ =
θ0/2).
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4 Conclusion

We have analyzed the transient piezothermoelastic problem involving a func-
tionally graded thermopiezoelectric cylindrical panel that has nonhomoge-
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Fig. 3 Variation of thermal

stress σ̄rr in the radial
direction (Case 1, θ =

θ0/2).
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Fig. 4 Variation of thermal
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Fig. 5 Variation of electric
potential in the radial

direction (Case 1, θ =

θ0/2).
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neous thermal, thermoelastic and piezoelectric properties in the radial direc-
tion. We obtained the exact solution for the temperature and piezothermoe-
lastic response of a functionally graded thermopiezoelectric cylindrical panel
with simply supported edges due to a nonuniform heat supply in the circum-
ferential direction under the plane strain condition. We conclude that we can
evaluate not only the normal stress in the radial direction and transverse
shearing stress, but also the electric field in a transient state.
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Fig. 6 Variation of thermal

stress σ̄rr in the radial
direction (Case 2, θ =

θ0/2).
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Control of an Electronic Throttle
Valve for Drive-by-Wire Applications

Markus Reichhartinger, Martin Horn and Anton Hofer

Abstract Electrically actuated control devices for regulating the amount of
air entering gasoline engines play an essential role in drive-by-wire applica-
tions. In this paper an approach to the control of so-called electronic throttle
valves is outlined. First a standard sliding-mode controller is presented. It
is shown that the performance of the feedback loop can be improved signifi-
cantly by incorporating time-variable boundary layers.

1 Introduction

The continuously stringent emission and fuel economy regulation imple-
mented by governments motivates the development of drive-by-wire sys-
tems in automobiles with combustion engines. Besides modern cars often
are equipped with driver-assistance systems such as cruise control, collision
warning systems or driver impairment monitoring. Many of them are based
upon drive-by-wire concepts as well. A major component of these systems is
the so-called electronic throttle valve which eliminates the mechanical link
between the accelerator pedal and the throttle valve (see Fig. 1). In electronic
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Fig. 1 Principle of a drive-by-wire system.

throttle valves the valve-plate is actuated by a dc-drive via a gear unit. A
resistive position sensor measuring the opening angle ϕ of the valve is inte-
grated into the gear unit. The computation of a suitable reference angle ϕ∗ is
managed by the engine control unit (ECU) which is provided with relevant
engine data. In the case of an electronic failure two counteracting springs
reposition the valve-plate into the so-called limp-home angle ϕ0 so that an
emergency operation is guraranteed.

In the recent years a number of publications has been dedicated to the
modeling, simulation and control of electronic throttle valves. In [1] and [2]
a detailed mathematical model of a throttle valve is presented. Experimen-
tal procedures to identify unknown model parameters are described as well.
In [3] a dynamic friction model and approaches to compensate for fricition
phenomena are proposed and practically demonstrated. In [4] an output feed-
back LQR for a throttle valve and a wastegate system is designed. Due to its
undesirable high order the controller is reduced to a classical PI-structure. A
control scheme consisting of two LQG based approaches is presented in [5].
A drive-by-wire throttle control in combination with a sliding-mode concept
is studied in [6]. The proposed anticipatory band method is compared to
conventional bang-bang and PI strategies. A classical sliding-mode technique
including a full-state observer is outlined in [7], in [8] a discrete-time version
of the control law can be found. In [9] the sliding-mode controller is based on
a feedback linearized model of the throttle valve. The application of second
order sliding-mode strategies to a throttle valve is presented in [11].

The paper is organized as follows: In Section 2 a mathematical model for
the throttle valve system is presented. Section 3 outlines the principles of the
proposed control strategy. Section 4 shows simulation results whereas Section
5 is dedicated to experimental findings. Section 6 concludes the work.
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2 Mathematical Model

The model used in this work is sufficiently precise to describe the motion of
the valve-plate [11] and serves as a basis for the controller design task. The
dynamic behaviour of the opening angle ϕ can be modeled by the differential
equation

d2 ϕ

d t2
= −fsp − ffr + fmot (1)

where the right-hand side functions

fsp = c0 + c1 (ϕ− ϕ0) , (2)

ffr = kv
dϕ

d t
+ kc sign

(
dϕ

d t

)
and (3)

fmot = km u− kt
dϕ

d t
(4)

represent the nonlinear spring characteristic, the friction phenomena and the
impact of the dc-motor respectively. The parameters c0, c1, kv, kc, km and
kt are positive constants. The control signal u is a pulse-width modulated
signal. Note that in the model made up by equations (1), (2), (3) and (4)
phenomena like static friction, gear-backlash as well as the dc-motor dynamics
are neglected.

The task of the controller design is to make the opening angle ϕ track
a reference angle ϕ∗ which is generated by the ECU. This motivates the
introduction of the tracking error ε1 and its time derivative ε2 as

ε1 := ϕ− ϕ∗ and ε2 :=
d ε1
d t

. (5)

The representation of system (1) using the variables defined in (5) is given
by the two first order differential equations

d ε1
d t

= ε2

d ε2
d t

= −c0 − c1 (ε1 + ϕ∗ − ϕ0)− k
(
ε2 +

dϕ∗

d t

)
− (6)

− kc sign
(
ε2 +

dϕ∗

d t

)
− d2 ϕ∗

d t2
+ km u,

where k = kv + kt. The parameters of model (6) can easily be identified by
experiments described in [2]. The nominal values as well as the bounds of the
parameters are summarized in Table 1. Due to its discontinuous right-hand
side, uncertain model parameters and imperfections in modelling the control
of the throttle valve system is a challenging task. A promising approach to
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Table 1 Estimated plant parameters for sys-

tem (6) with bounds and nominal value.

parameter value

minimal nominal maximal

c0 110 150 195

c1 70 80 90

k 90 100 110

kc 33 66 104

km 110 120 130

ϕ0 0.095 0.095 0.095

address the control problem is the application of a variable structured control
law, often referred to as sliding-mode control.

3 Control

The desired dynamic of the tracking error [12, 13] is specified by the differ-
ential equation

d ε1
d t

= −λε1 with λ > 0. (7)

The structure of model (6) motivates the choice of the so-called switching
function

σ(t) := ε2 + λε1. (8)

It is the task of the controller to steer an arbitrary initial value σ0 := σ(0)
to σ = 0 within finite time. The stabilization of σ = 0 is solved with the
help of the so-called equivalent control method [14]. Thereby it is assumed
that the surface σ(t) = 0 has already been reached. To remain there the
required control signal ueq for system (6), parametrized with nominal plant
parameters, can be calculated from

d σ

d t

!= 0. (9)

The resulting equivalent control signal is expressed as

ueq =
1
km

[
c0 + c1 (ϕ− ϕ0) + k

dϕ

d t
+ kc sign

(
dϕ

d t

)
+
d2 ϕ∗

d t2
− λε2

]
. (10)

A discontinuous part udisc is added to the above control law, i.e.
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u = ueq + udisc = ueq −
κ

km
sign (σ) with κ > 0 (11)

to guarantee finite time convergence of σ. The parameter κ is chosen suffi-
ciently large to reach σ = 0 even in the case of uncertain parameters. An
implementation of control law (11) requires high switching frequency in the
control signal u. This evokes the so-called chattering phenomenon [12]. A well
known countermeasure is to approximate the discontinuity by a saturation
function [15], see Fig. 2. Thereby a so-called boundary layer of width Φ is
introduced around σ = 0.

Fig. 2 The discontinuous

sign-function is approxi-
mated by a sat-function.

4 Numerical Simulation

The control law (11) is realized in Matlab/Simulink. The simulations are
based on a detailed mathematical model, which includes gear-backlash, static
friction, mechanical stops and as well the dc-motor dynamics. The simulations
are carried out with the reference signal ϕ∗ shown in Fig. 3. The reference
signal covers almost the whole range of operation and comprises angles above
and below the limp home angle ϕ0. Also high angular velocities and discon-
tinuities are covered. The initial controller parameters satisfying sufficient
conditions for robust stability [13] were tuned online. A simulation result for
the parameters κ = 600, λ = 55 and Φ = 0.3 is depicted in Fig. 4. The feed-
back loop shows excellent steady state behaviour. The absolute value of the
tracking error remains below 1◦ during the entire simulation which is very
satisfactory. At time instants of high angular velocities in the reference sig-
nal the control signal contains undesired high frequency components which
induce mechanical vibrations. The challenge of the experimental parameter
tuning is to obtain a closed loop behaviour with satisfactory tracking perfor-
mance and a chatter-free control signal u.
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Fig. 3 The reference signal ϕ∗ consists of a smooth and a non-smooth part.

5 Experiment

The experimental hardware consists of a dSpace Microautobox, a H-Bridge
power amplification circuit and the electronic throttle valve system. The
present control law is executed with a sampling time of Ts = 1ms. The imple-
mentation of control law (11) is straight forward. The second time derivative
of the reference signal ϕ∗ is computed with the help of a DT2-element. Fig.
5 shows experimental results achieved with controller parameters obtained
from simulation. Solely the width Φ of the boundary layer was modified to
Φ = 0.5. The feedback loop shows satisfactory tracking performance. The
control signal u reveals the undesired chattering-effect. A way to minimize
the chattering-effect is to increase the width of the boundary layer. In Fig.
6 results for Φ = 1.5 are depicted. The control signal u shows a negligible
chattering-effect at the cost of an unacceptable steady state error. These re-
sults motivate the choice of a time varying boundary layer [15]. As observed,
the chattering-effect is proportional to the angular velocity of the valve-plate.
This fact suggests the choice [10]

Φ = Φ0 +
∣∣∣∣
dϕ

d t

∣∣∣∣ with Φ0 > 0 (12)
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Fig. 4 Simulation results for κ = 600, λ = 55 and Φ = 0.3.
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Fig. 5 Experiment: Constant boundary layer width of Φ = 0.5.

for the boundary layer. As a consequence of the above definition the condi-
tions for robust stability have to be adapted appropriately [15]. Results of an
experiment with Φ0 = 0.3 are plottet in Fig. 7. The steady state behaviour
is excellent and the chattering-effect in the control signal u is sufficently
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Fig. 6 Experiment: Constant boundary layer width of Φ = 1.5.
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Fig. 7 Experiment: time varying boundary-layer

reduced. The corresponding width Φ of the boundary layer during the exper-
iment is outlined in Fig. 8.



Control of an Electronic Throttle Valve for Drive-by-Wire Applications 143

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

9
state depending Φ

Φ

time [s]

Fig. 8 The thickness of the boundary-layer is varying during the experiment.

6 Conclusion

The scope of the paper is the evolution of a control strategy for electronic
throttle valves based on the concepts of variable structure systems. Based
upon a standard sliding-mode controller an improved strategy is derived by
employing time-variable boundary layers. It is demonstrated that the result-
ing feedback loop shows excellent tracking performance in simulation and
experiment. The implementation of the control law is straight forward and
hence suitable for a realization in the engine control unit.
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Output Regulation of Smart
Structures, Theory and Practice

Thomas Rittenschober and Kurt Schlacher

Abstract Self sensing and actuation of piezoelectric devices make it possible
to give mechanical structures new features. Under the assumption of linear
piezoelasticity and Kirchhoff plate theory a mathematical model is derived,
which is used for the controller design such that harmonic disturbance with
either known or unknown disturbance frequency are asymptotically elimi-
nated. Both simulations and laboratory experiments show the performance
of the proposed approach.

1 Introduction

Self sensing actuation of function materials enables the collocation of actua-
tor and sensor in a natural manner. But in the case of piezoelectric actuators,
self sensing requires a robust separation of the time derivative of the applied
voltage from the measured electric current in order to obtain a signal which
is proportional to the curvature rate integrated over the piezoelectric patch
area. Because of the unfavorable ratio of these two signals, the design of an
observer for the electric current due to the direct piezoelectric effect seems
most appropriate. But the design of observers relies on accurate modelling
of the underlying piezoelastic structure which in our case is chosen to be
a rectangular plate equipped with two piezoelectric actuators and two op-
posite edges either clamped or free. The special mathematical structure of
the model facilitates controller synthesis which is shown for the case of har-
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monic disturbance suppression with either known or unknown disturbance
frequency.

2 The Mathematical Model

The plate structure under investigation along with its geometric properties
is depicted in Figure 1. Geometric parameters and material properties are

Fig. 1 Geometric configuration of the piezoelastic structure.

given by a = 0.45m, b = 0.35m, c = 0.1m, d = 0.1525m , e = 0.045m,
f = 0.01m, hb (thickness of plate) = 0.001m, hp (thickness of patch) =
0.001m, k = 0.05m, l = 0.55m, ρ (mass density of plate) = 7500kg/m3,
Eb (Young’s modulus plate)= 2 · 1011N/m2 , Ep (Young’s modulus patch)=
6·1010N/m2, νb (Poisson’s ratio of plate) = 0.33, νp (Poisson’s ratio of patch)
= 0.25, G113 (piezoel. coupling const.) = 6.62C/m2 and F 33 (relative per-
mittivity) = 1.21e-8F/m.

Under the assumption of linearized piezoelasticity and the strain displace-
ment relations as introduced by Kirchhoff, the piezoelastic plate-like struc-
ture under consideration can be modelled according to the partial differential
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equation, see [1],

µ ∂2

∂t2w + D̄
(

∂4

∂X4 + 2∂4

∂X2∂Y 2 + ∂4

∂Y 4

)
(w)

= cU
(

∂2

∂X2 + ∂2

∂Y 2

)
(λ)−Bd (1)

where the coordinate t represents time, X,Y, Z are local coordinates for the
body B ⊆R3, w = w (t,X, Y ) is the transverse displacement of the plate’s
neutral fibre, µ = ρhb is the mass area density of the respective material, D̄
is the flexural rigidity of the plate and computes as D̄ = Ebh

3
b/
(
12
(
1− ν2

b

))
.

We denote by Eb and hb Young’s modulus and the thickness of the support
structure, respectively, and νb is Poisson’s ratio. The associated material and
geometric properties of the piezoelectric layer are denoted by a subscript p.
Assuming a typical property of transversely isotropic piezoelectric material
that the coupling constants G113 and G223 appearing in the constitutive
equations [5]

σ = Cε−GE,
D = Gε+ FE (2)

are identical, the constant c then computes as c = G113hp (hp + 2h) /4 and,
hence, incorporates piezoelectric and geometric properties. The constant h
describes the distance between the neutral fibre and the interface between
the piezoelectric layer and the support structure. We denote by σ, ε, C,
F, G, E and D in (2) the stress, strain, elasticity, relative permittivity, cou-
pling, electric field and electric flux density tensors, respectively. U = U (t)
is the electric potential at the upper electrode of the piezoelectric layer, the
shape function λ = λ (X,Y ) describes the weighted spatial distribution of the
electric potential U at the upper electrode and B = B (X,Y ) is the spatial
distribution of the body force acting on the structure. The tensorial compo-
nents appearing in the constitutive equations (2) are, in general, functions of
the spatial coordinates and will be set piecewise constant in our case.

The solution technique applied to the partial differential equation from
(1) under the appropriate kinematic and dynamic boundary and initial
conditions makes use of separation of variables, i.e. w (t,X, Y ) =

∑∞
i=1∑∞

j=1 qij (t)φij (X,Y ), the orthogonality property of the eigenfunctions φij
and the Laplace transform. The transfer functions of the systemGa

(
s,X1, X2

)

due to piezoelectric actuation may be then written as

Ga (s,X, Y ) =
ŵ (s,X, Y )
Û (s)

=
∞∑

i=1

∞∑

j=1

φijPa,ij
1

s2

ω2
ij

+ 1
(3)
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with

Pa,ij =
c

ω2
ij

∫

D
φij

(
∂2

∂X2
+

∂2

∂Y 2

)
(λ)Ω

where D denotes the corresponding domain of integration, Ω = dXdY is the
corresponding volume form and Pa,ij are the modal gains of mode ij of the
transfer function due to piezoelectric actuation. The natural frequencies ωij
for the C-F-C-F configuration are computed according to [4].

Considering the linear constitutive relations from (2), respecting conserva-
tion of charge and Kirchhoff’s assumptions on the relations of strain and dis-
placement and G123 = G213 = 0, we get D3 = −G113Z ∂2

∂X2w−G223Z ∂2

∂Y 2w+
F 33E3. Accounting for G113 = G223, the charge Q at the electrode of the
piezoelectric actuator computes as

Q =
∫

D
D3Ω

=
F 33e2

hp
U − 1

2
G113 (2h+ hp)

∫

D

(
∂2

∂X2
+

∂2

∂Y 2

)
(w)Ω .

The constant Cp = F 33e2/hp is the capacitance of the piezoelectric patch
which in our case is 24.5 nF according to the given geometric and material
parameters.

Alternatively, if the electric current I = Iindirect + Idirect = d
dtQ, i.e.

I =
F 33e2

hp

d
dt
U

︸ ︷︷ ︸
indirect part

− 1
2
G113 (2h+ hp)

∫

D

(
∂3

∂t∂X2
+

∂3

∂t∂Y 2

)
(w)Ω

︸ ︷︷ ︸
direct part

is at our disposal, we only need to robustly separate the time derivative of
actuation voltage from it in order to obtain a signal which is proportional
to the curvature rate integrated over the patch area. Due to the unfavorable
ratio of these two signals, the design of an observer for the direct part of the
electric current seems most appropriate. The corresponding transfer function
of such a model is given by

Ḡa (s) =
Î (s)
Û (s)

=
Cps

s2

ω2
C

+ 2ξC s
ωC

+ 1
+
∞∑

i=1

∞∑

j=1

2hpP 2
a,ijs

s2

ω2
ij

+ 2ξij s
ωij

+ 1
. (4)

where we assume proportional damping of the system and take losses and
inductance of the patch into account. The PCHD representation of (4) is
presented in [6].

In equation (4), we have extended the dynamics due to the indirect piezo-
electric effect by taking resistance Rp and inductance Lp of the piezoelectric
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patch into account, where ωC = 1/
√
LpCp, ξC = 1

2Rp
√
Cp/Lp. The transfer

function (4), hence, describes the indirect and direct piezoelectric effect by
means of a parallel connection of an RLC oscillator and an infinite series of
damped spring mass oscillators, respectively.

3 Control Design for Harmonic Disturbance Suppression

A preliminary step in designing a feedback controller for vibration suppres-
sion requires the estimation of the current due to the direct piezoelectric
effect denoted by ê ∈ R. Since the system ( 4) is infinite dimensional, one
cannot construct a realizable observer for (4), but one can construct a finite
dimensional approximation [6]. We close the loop with controller, which in-
jects damping, for the robust suppression of harmonic vibrations where the
underlying theory is described in [3] and [6].

The proposed controller for the robust suppression of harmonic vibrations
exhibits the structure

ξ̇1 = Φξ1 +Θê,

u1 = Γξ1 + u2 (5)

and the memoryless stabilizer

u2 = K2ê,

K2 > 0. (6)

with the state ξ1 ∈ R2, Φ ∈ R2×2, Θ1 ∈ R2×1, Γ ∈ R1×2, the controller
outputs u1, u2 ∈ R and

Φ =
(

0 1
−ω2

d 0

)
, Θ1 =

(
0
K

)
, Γ =

(
0 1
)
, (7)

The controller is driven by the observed direct part of the electric current ê.

Remark 1. As far as the proof of stability is concerned, it is required to show
that the finite dimensional closed loop system is stable in the context of finite
gain L2 stability and exponential stability of the origin using a passivity
based approach, see [2]. The proof, that the regulated variable ê tends to
zero as time goes to infinity in the presence of a harmonic disturbance with
a known frequency, involves a change of coordinates and the unique solution
of a Sylvester equation, see [3]. The infinite dimensional part of the plant to
be controlled is subsequently treated as an additive plant uncertainty and we
can hence apply the small gain theorem in order to show that the trajectories
of the infinite dimensional closed loop system are bounded in the context of
finite gain L stability, see [2].
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If the disturbance frequency is unknown, we may be well advised to extend
the proposed controller (5) by some sort of adaptive control. In fact, the
update law

ε̇ = −γ3êξ
1
1 , γ3 > 0

ensures that limt→∞ ê (t) = 0 where ε = ω̂2
d − ω2

d denotes the difference be-
tween the squared estimated and actual disturbance frequency.

Remark 2. The corresponding proof of stability requires changes of coordi-
nates and a Lyapunov stability argument, see [3]. We, thus, ensure that the
invariant subspace on which the regulated variable ê is zero is attractive in
the presence of the harmonic disturbance with unknown frequency. The ap-
plication of the small gain theorem in conjunction with the Hamilton-Jacobi
inequality ensures stability of the infinite dimensional closed loop system in
the context of finite gain L stability, see [2].

4 Measurement Results

The actual implementation of the proposed observer and control algorithms
are carried out on dSpace RTI 1104 rapid prototyping hardware. The power
amplification for the piezoelectric patches is supplied by a Trek PZD 350
dual channel piezo driver which is equipped with a current monitor. The
piezoelectric actuator at the boundary injects a harmonic disturbance at
ωd = 2π259 rad/s. The corresponding sensor and control signals are shown
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Fig. 2 Time signals for direct part of the measured current, indirect part of measured
current, controller output, actually measured current and estimated disturbance frequency
when plate structure is excited at ωd = 2π259 rad/s with frequency estimator initialized

at ωd (0) = 2π262.6 rad/s.

and in figure 2 with control switched on after five seconds. The update law is
initialized with a value of ωd (0) = 2π262.6 rad/s and the estimated frequency
progressively converges to the actual disturbance frequency of 2π259 rad/s.

5 Summary

This contribution was concerned with compensation of harmonic vibrations
in mechanical structures using the self sensing capability of piezoelectric ac-
tuators. The special mathematical structure of the underlying piezoelastic
structure facilitates controller synthesis for harmonic disturbance suppres-
sion with either known or unknown disturbance frequency.
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Analysis of Weld Induced Plasticity by
BFM

Akihide Saimoto

Abstract A method of analysis for the occurrence of localized thermoplastic
strain, in a material under plane strain constraint, is studied based on the
Body Force Method (BFM). BFM is an indirect boundary type method for
elastic stress analysis based on the principle of superposition. Any inelastic
strain can be expressed by the embedded force doublets in BFM. That is, in
the analysis, a continuously embedded force doublets into the elastic body are
used to express the presence of plastic strain. A simplified model of welding-
induced plasticity is treated as a numerical example of the present method.

1 Introduction

In order to evaluate a degree of plastic deformation and residual stresses in
the body, employment of the commercial finite element code that examines
automated elastic-plastic calculation becomes very popular in recent years.
The use of commercial code, however, often brings ineffectiveness from the
view point of computational efficiency since most of mechanical and structural
components are designed for elastic use, and therefore, the size of the plastic
zones, even if they may happen due to the localized stress concentration,
would be considerably small or restricted. In order to treat problems includ-
ing limited plasticity efficiently, Blomerus and Hills proposed a dislocation
based technique[1]. In their method, edge dislocations which correspond to
the occurrence of plastic flow are introduced into the direction of maximum
shear. The magnitude of the Burgers vector at the each dislocation point
where the plastic flow occurred are determined through the iterative proce-
dure considering the yield criterion. Since the magnitude of Burgers vector

Akihide Saimoto

Department of Mechanical Systems Engineering, Faculty of Engineering, Nagasaki Univer-
sity, 1-14 Bunkyo-machi, Nagasaki 8528521, Japan, e-mail: s-aki@nagasaki-u.ac.jp
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at each material point can be determined incrementally, the stress redistri-
bution due to the occurrence of yielding can be simulated reasonably. On
the other hand, the dislocation approach sometimes exhibits a convergence
problem in which the direction of maximum shear stress varied frequently
due to the fluctuation of the magnitude of Burgers vector at each material
point.

Chen and Nisitani proposed the other approach to treat the limited plas-
ticity based on the BFM. They employed a force doublet embedded in an
elastic continuum in order to express the inelastic strain[2, 3]. Although their
method is useful for wide range of limited plasticity, it seems difficult to ap-
ply the method to special class of plane strain problems in which the plastic
strain in the thickness direction becomes the major component. Since its
development in 1967, the BFM has been applied for elastic problems of prac-
tical importance. The original BFM is a boundary type method for elastic
stress analysis, whose base is the principle of superposition. That is, in BFM
any elastic problem is expressed in terms of the superposition of fundamental
stress fields. As the fundamental solution, stress field due to an isolated point
force acting in an infinite elastic body (usually referred as Kelvin solution)
is preferably employed due to its simplicity. In fact, based on the principle
of the BFM, stress components at an arbitrary point P , σij(P ), in an elastic
medium can be written as,

σij(P ) = σ0
ij(P ) +

∫

Γ

φk(Q)σkij(P,Q)dΓ (Q), (1)

where P ∈ R is an arbitrary point in the reference region R which is sur-
rounded by the imaginary boundary Γ . Q ∈ Γ is a source point which moves
along Γ . σkij(P,Q) is a fundamental stress solution (stress component σij at
point P caused by a unit magnitude of point force acting into kth-direction
at source point Q) and φk(Q) is a density function of the body force which
has to be determined so that the given boundary conditions are satisfied.

As discussed in [2, 3], the plastic strain at a point can be replaced by
an equivalent force doublet embedded in an perfect elastic solid whose yield
stress is infinite. So far, numerical solutions of elastic-plastic problems solved
by BFM have been limited to two-dimensional where the plastic strain in the
out-of-plain direction can be ignored or almost no influence. However, there
exist some important class of problems in which the presence of the out-of-
plane plastic strain has to be carefully treated even under the two-dimensional
situation. In the present study, the treatment of out-of-plane plastic strain by
two-dimensional BFM is discussed in detail. Then the weld-induced plasticity
problem is discussed under the assumption that the material is an elastic-
perfect-plastic body that obeys Von Mises yield criterion.
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2 Solution of Two-Dimensional Elastic Problem by BFM

Before going to further, it would be useful to remind how pure elastic problem
is solved by BFM briefly. Consider an infinite sheet with a circular hole of
diameter 2a, subjected to external tensile stresses as illustrated in Fig.1. In
this example, the reference region R is an infinite plate excluding the circular
disk, therefore, the imaginary boundary Γ is a circular ring of diameter 2a.
The stress component at point P can then be expressed according to Eq.(1)
as,

σxx(P ) = σ0
xx +

∫

Γ

{
φx(Q)σxxx(P,Q) + φy(Q)σyxx(P,Q)

}
dΓ (Q), (2)

σyy(P ) = σ0
yy +

∫

Γ

{
φx(Q)σxyy(P,Q) + φy(Q)σyyy(P,Q)

}
dΓ (Q), (3)

σxy(P ) =
∫

Γ

{
φx(Q)σxxy(P,Q) + φy(Q)σyxy(P,Q)

}
dΓ (Q) (4)

in which σxij(P,Q) and σyij(P,Q) are stress component at reference point
P (x, y) due to a unit magnitude of point force acting in the x and y direction
at source point Q(ξ, η), in an infinite sheet without any hole. σ0

xx and σ0
yy

are the uniform tensile stresses at infinity. φx(Q) and φy(Q) are the unknown
densities of body forces which define the magnitude of body forces at point
Q per unit length of an imaginary boundary as,

dFx(Q) = φx(Q)dΓ, dFy(Q) = φy(Q)dΓ. (5)

In numerical analysis, the imaginary boundary Γ is divided into several seg-
ments and the density of body forces at each segment is assumed to be
constant, linear or quadrateral function of the local coordinates as in a same
manner in boundary element methods. That is, the unknown densities of body
forces are determined through boundary condition defined from the limiting
procedure that the reference point P ∈ R is approached to the boundary
point PΓ from inside of the region R. When the problem is rather simple,

Fig. 1 Analysis of an elas-
tic sheet having a circular

hole of diameter 2a, sub-

jected to external tensile
stresses σ0

xx and σ0
yy at

infinity

2a 2a

σ0xx

σ0yy

P
Q

Γ
dFx

dFy
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the unknown density of body forces have closed form solution and can be
determined theoretically. In fact, the situation illustrated in Fig.1 is one of a
such case.

It is well known that two-dimensional elasticity problem can be expressed
in terms of two complex potentials Ω(z) and ω(z) such that,

σxx + σyy = 2
{
Ω′(z) +Ω′(z)

}
, (6)

σyy − σxx + 2iσxy = 2
{
zΩ′′(z) + ω′(z)

}
(7)

where z is a complex variable that represents the reference point z = x+ iy.
The Kelvin solution (stress field due to a point force of magnitudes Fx and
Fy acting at a point ζ = ξ + iη in an infinite elastic sheet) can be expressed
in the form of complex potentials as,

Ω(z) = − Fx + iFy
2π(κ+ 1)

log(z − ζ), (8)

ω(z) =
κ(Fx − iFy)
2π(κ+ 1)

log(z − ζ) +
Fx + iFy
2π(κ+ 1)

ζ

z − ζ , (9)

where κ is a constant relating to Poisson’s ratio ν as κ = (3− ν)/(1 + ν) for
plane stress and κ = 3 − 4ν for plane strain. i is an imaginary unit and the
over-bar denotes the complex conjugate. Using the complex potentials, the
elastic fields of Fig.1 can be expressed as,

Ω(z) =
σ0
xx + σ0

yy

4
z − 1

2π(κ+ 1)

∮

Γ

log(z − aeiθ){φx(θ) + iφy(θ)}adθ,

(10)

ω(z) =
σ0
yy − σ0

xx

2
z +

κ

2π(κ+ 1)

∮

Γ

log(z − aeiθ){φx(θ)− iφy(θ)}adθ

+
1

2π(κ+ 1)

∮

Γ

ae−iθ

z − aeiθ {φ
x(θ) + iφy(θ)}adθ, (11)

since the source point ζ is on the circle of radius a which can be expressed as
ζ = aeiθ. The density functions φx(θ) and φy(θ) have closed form solution;

φx(θ) =
κ+ 1

2(κ− 1)
{
κσ0

xx − (κ− 2)σ0
yy

}

︸ ︷︷ ︸
=ρx=const.

= ρx cos θ, (12)

φy(θ) =
κ+ 1

2(κ− 1)
{
κσ0

yy − (κ− 2)σ0
xx

}

︸ ︷︷ ︸
=ρy=const.

= ρy sin θ. (13)

In fact, substituting Eqs.(12), (13) into Eqs.(10), (11) and by examining the
contour integral considering |z| > a using the Cauchy’s integral theorem, the
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exact expressions of complex potentials for Fig.1 are obtained as,

Ω(z) =
σ0
xx + σ0

yy

4
z +

σ0
xx − σ0

yy

2
a2

z
, (14)

ω(z) =
σ0
yy − σ0

xx

2
z − σ0

xx + σ0
yy

2
a2

z
+
σ0
xx − σ0

yy

2
a4

z3
. (15)

It is readily found that the density functions of the body force in Eqs.(12) and
(13) are given by the product of some constant and the components of unit
normal (cos θ, sin θ) at a point Q on the imaginary boundary Γ . Therefore,
the expression of boundary integral in Eqs.(10) and (11) can be transformed
into a form of area integral by using the Green’s theorem as,

Ω(z) =
σ0
xx + σ0

yy

4
z +

1
2π(κ+ 1)

∫∫

R

ρx − ρy
z − ζ dξdη, (16)

ω(z) =
σ0
yy − σ0

xx

2
z − κ− 1

2π(κ+ 1)

∫∫

R

ρx + ρy
z − ζ dξdη

+
1

2π(κ+ 1)

∫∫

R

(ρx − ρy)
ζ

(z − ζ)2
dξdη, (17)

in which R is a region inside of the imaginary boundary Γ , usually referred as
an auxiliary region. Equivalence of Eqs.(10), (11) and Eqs.(16), (17) directly
implies that the influence of the body force applied along the imaginary
boundary is equivalent to that of due to embedded force doublets into the
auxiliary region. The physical meaning of the force doublet is an embedded
eigen strain at the point where it is applied. In the problem that includes
any inelastic strain as in plastic strain, therefore, the force doublet is used to
express its influence.

In the next section, the line weld model and its thermoelastic solution is
discussed. Then the procedure for treating a thermoplastic strain is described

Fig. 2 Simple weld-
ing model for stainless

steel ( Yield stress:σY =
800MPa, Heat flux:Q =
11.2MW/m2, Linear expan-
sion coefficient:α = 1.2 ×
10−5, Young’s modulus:
E = 200.2GPa, Density:ρ =

7833kg/m3, Specific

heat:c = 586J/kgK,
Poisson’s ratio:ν = 0.3,
Thermal diffusivity:
κ = 1.133 × 10−5m2/s and

Thermal conductivity:λ =
52W/mK )
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under the assumption that the material follows Prandtl-Reuss flow rule for
an elastic-perfect-plastic body under plain strain condition.

3 Simplified Model of Line Welding

Fig.2 shows a simplified weld model treated in this monograph. A uniform
strength of transient line heater of width “w” is applied to a surface of a
semi-infinite medium for a short duration of time with a strength chosen so
that the heat flux delivered from the heater resembles to that of expected
under actual welding of stainless steel. In a physical sense, the problem is
essentially two dimensional which should simplify the analysis, however, an
occurrence of plastic flow in the out-of-plane (z) direction make the problem
somewhat cumbersome. The resulted thermoelastic field such as temperature
rise τ(x, y, t) and elastic stress components σij(x, y, t) due to continuous heat-
ing of the duration t, can be written under the assumption of plane strain
(εzz = 0) that,

τ(x, y, t) =
Q

2πκρc

∫ w
2

−w2
E1 (S) dξ, (18)

σxx(x, y, t)
σ

=
∫ w

2

−w2

{(
2
y2

R2
− 1
)

1− e−S
S

− E1 (S)
}
dξ

− 2y
π

∫ ∞

−∞

(x− ξ)2

R4
f(ξ, t)dξ, (19)

Fig. 3 Temperature and

thermoelastic stresses after

1s heating
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σyy(x, y, t)
σ

=
∫ w

2

−w2

{(
1− 2

y2

R2

)
1− e−S

S
− E1 (S)

}
dξ

− 2y3

π

∫ ∞

−∞

f(ξ, t)
R4

dξ, (20)

σxy(x, y, t)
σ

= 2y
∫ w

2

−w2

x− ξ
R2

1− e−S
S

dξ − 2y2

π

∫ ∞

−∞

x− ξ
R4

f(ξ, t)dξ, (21)

σzz(x, y, t)
2σ

= −
∫ w

2

−w2
E1(S)dξ − ν y

π

∫ ∞

−∞

f(ξ, t)
R2

dξ, (22)

where R2 is a square of distance between reference and source points R2 =
(x− ξ)2 +y2, (x, y) is a coordinate of reference point, (ξ, 0) is a coordinate of
source point, σ is a constant defined by σ = αEQ/4πκρc(1−ν) in which ρ is a
mass density, κ is a thermal diffusivity, c is a specific heat, α is a coefficient of
linear expansion, E is a Young’s modulus, ν is a Poisson’s ratio (the concrete
values of those material properties used were shown in the caption of Fig.2).
S is a non-dimensional parameter defined by S = R2/4κt, E1(x) is a integral

exponential function defined by E1(x) =
∫ ∞

x

e−u

u
du and f(ξ, t) is a function

defined as

f(ξ, t) = 2
√
κt×

[
1
p

(1− e−p2) + pE1(p2)
] ξ−w/2

2
√
κt

ξ+w/2
2
√
κt

. (23)

4 Expression of Plastic Strain by Force Doublets

As already mentioned, the most fundamental concept for the treatment of
plastic strain in BFM is to replace the distribution of plastic strain by force
doublets. Consider an elastic-plastic body whose elasticity constants are E for
Young’s modulus and ν for Poisson’s ratio. The plastic part in the region is
noted Rp which is surrounded by an elastic foundation Re. Next, consider an
infinitesimally small plastic element ωp ∈ Rp which has stress components
σij(P ) and strain components εij(P ) = εeij(P ) + εpij(P ) at point P ∈ ωp

where εeij(P ) and εpij(P ) are the elastic and plastic components of the strain
at point P , respectively. ωp can be extracted without affecting the stress
field if traction ti(P ) = σij(P )nj(P ) is applied to the outer surface of ωp,
and at the same time, traction −ti is applied to the inner surface of the cavity
which is made by the extraction of ωp from Rp where nj(P ) is a component
of unit normal at P . Then the plastic element ωp is transposed into an ideal
elastic element ωe which has the same elastic properties (E, ν) with region
Re but its yield stress is infinite so that no yielding takes place. Owing to
this transposition, stress state is unchanged but the strain state is decreased
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by the amount of plastic strain εpij(P ). Therefore, if ωe is embedded into the
cavity of the region Rp, some clearances due to shrinkage of the element would
be observed. In order to compensate this strain decrease and to embed an
ideal element without any gap, an additive stress Tij(P ) have to be applied to
ωe. If such procedure is continued until all the plastic element are transposed
to an ideal elastic one. After the completion of such transposition, the stress
field at an arbitrary point P may be expressed as follows.

σij(P ) = σtherm
ij (P )− Tij(P ) +

∫∫

Rp

∂σkij(P,Q)
∂ξ`

Tk`(Q)dRp(Q), (24)

where σtherm
ij (P ) is component of thermoelastic stresses at point P which is

shown from Eqs.(19) ∼ (22), Tij(Q) is a magnitude of force doublet embed-
ded at point Q, which compensate the strain decrease during the process of
transposition from plastic element ωp to elastic one ωe. Because of the in-
cremental nature of plasticity, not the total stress but an incremental stress
is used to evaluated a present stress state. Then Eq.(24) is replaced by an
incremental form as

dσij(P ) = dσtherm
ij (P )− dTij(P ) +

∫∫

Rp

∂σkij(P,Q)
∂ξ`

dTk`(Q)dRp(Q),(25)

in which dTij(Q) is an increment of the magnitude of force doublet, which
is related to the increment of plastic strain at point Q. The total stress can
be calculated by a sum of stress increments such that σij(P ) =

∑
dσij(P ).

When Prandtl-Reuss flow rule is employed, each component of plastic strain
increment is assumed to be proportional to the component of deviatoric stress
Sij with unknown proportionality constant λ. Therefore, the increment of the
magnitude of point force doublet can be expressed as

dTij(Q) = Dijk`dε
p
k`(Q) = Dijk`

(
σk`(Q)− δk`

σmm(Q)
3

)
λ(Q), (26)

where Dijk` is an elastic modulus tensor and δij is Kronecker delta. It should
be noted that the term “−dTij(P )” in Eq.(25) is indispensable with no
relation to the value of ∂σkij(P,Q)/∂ξ`. In fact, stress components due to
point force doublet which acts in the z direction ∂σzij(P,Q)/∂z results no
influence at any point P under plane strain condition. However, even when
∂σkij(P,Q)/∂ξ` = 0, the term −dTij(P ) still gives a non-zero influence at
point P . In a practical analysis, the proportional constant λ(Q) in Eq.(26) is
the unknown parameter to be determined through numerical analysis. Since
λ(Q) is not only a function of the position Q but also the function of time t, it
is required to determine the value of λ(Q) step-wisely, considering the yield
criterion. For example, when Von Mises criterion for elastic-perfect-plastic
body is supposed, the following relation must hold at a point P ∈ Rp that
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σeq =
√

(σxx − σyy)2 + (σyy − σzz)2 + (σzz − σxx)2 + 6σ2
xy = σY . (27)

5 Numerical Procedure and Discussion

For the numerical estimation of residual strain, the time domain is divided
into N equally division as t = n∆t, (n = 1, 2, · · · , N) where ∆t is a time
increment. A space domain is also divided into number of square areas
(0.25mm×0.25mm) in which the magnitude of plastic strain (and therefore
the magnitude of force doublet) is assumed to be constant over a region and
a given time. As a result, the total stress component at the reference time
t = n∆t,σij(P )|n can be evaluated as

σij(P )|n =
n−1∑

k=1

dσij(P )|k + dσtherm
ij (P )|n − dTij(P )|n

+
∫

Ω

∂

∂ξ`

{
σkij(P,Q)

}
dTk`(Q)|ndΩp(Q), (28)

where dTij(P )|n is an increment of the magnitude of force doublet at time
t = n∆t. As seen Eq.(26), dTij(P )|n is related to the total stress state at
t = n∆t but it could be reasonable to evaluate its value from the value of

Fig. 4 Residual stress
distribution along y axis
after complete cool down
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total stress at one time step ∆t before. That is, dTij(P )|n is approximated
by

dTij(P )|n ≈ Dijk`

(
σk`(P )|n−1 − δk`

σmm(P )|n−1

3

)
λ(P )|n (29)

in which λ(P )|n is unknown parameter yet not determined. Substitution of
Eq.(29) into Eq.(28) gives stress components at arbitrary point P at reference
time t = n∆t, if parameter λ(P )|n is provided. In order to determine λ(P )|n,
the yield criterion is used. However, substitution of Eq.(28) into Eq.(27) leads
nonlinear simultaneous equations for the determination of λ(P )|n at each
reference point P . These nonlinear simultaneous equations should be solved
carefully under the constraint that λ(P )|n ≥ 0. When λ(P )|n becomes neg-
ative, it means the unloading process during plastic deformation so that the
value of λ(P )|n should set to be 0. In Figs.4 and 5 the residual stress distri-
bution along the y and x axes after complete cool down are shown. As seen,
the out-of-plane residual stress component σzz exhibits the largest value and
the usual plane strain relation σzz = ν(σxx + σyy) is violated.

6 Conclusion

A treatment of plastic strain in the direction of out-of-plane based on the
principle of the body force method was discussed. The material supposed
was elastic-perfect-plastic body that follows Von Mises yield criterion. It was
found that the residual stress in the out-of-plane direction σzz can be esti-
mated independently of the in-plane residual stress components σxx and σyy.
It was also found that the proposed method provides effective and efficient
technique for problems that include limited plasticity.
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Evaluation of Internal Friction of
Viscoelastic Composites with
Meso-Scale Structures for Vibration
Damping of Mechanical Structures

Yotsugi Shibuya

Abstract Viscoelastic analysis of polymer composites is focused to under-
stand effect of meso-scale structure of composite on the internal friction for
application of vibration damping in precision instruments. In this paper, the
meso-scale structure of the composite is supposed to be periodically clustered
hexagonal array of fibers. Internal damping of the composite is evaluated by
energy dissipation in cyclic response. Interaction of fibers and viscoelasticity
of the matrix cause the energy dissipation in the composite. To evaluate the
damping capacity of the composite in details, a homogenization theory with
multi-scale asymptotic expansion is used to analyze meso- and macro-scale
behavior of the composite.

1 Introduction

Polymer matrix composites provide an advantage of damping capacity to
reduce vibration of structures and enhance controllability of precision in-
strument [1]. It is important to understand effect of meso-scale structures
of composites on damping property. As damping property of the polymer
composite varies on frequency of vibration, it is necessary to study on the
frequency dependency for the property in detail.

Studies on damping properties of composite have been made for particle-
reinforced composites with the viscoelastic interpahse [2], Rayleigh damping
of laminated composites [3] and computation modeling and experimental
comparison [4]. The three phase model [5] and finite element analysis of unit
cell [6,7] were used to solve the problems for damping properties of compos-
ites. Design of structure of composites for optimal damping [8] was presented

Yotsugi Shibuya
Department of Mechanical Engineering, Akita University, 1-1 Tegata Gakuen-machi, Akita,
010-8502, Japan, e-mail: yshibuya@gipc.akita-u.ac.jp
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as an application of the method.
In this paper, viscoelastic analysis of fiber-reinforced polymer composites

is made to understand effect of frequency of vibration and meso-scale struc-
ture of composites on the internal damping. The meso-scale structure of the
composite is supposed to be periodically clustered hexagonal array of unidi-
rectional fibers. To evaluate meso- and macro-scale behavior of the composite
in details, a homogenization theory with multi-scale asymptotic expansion
of displacements in the composite [9]. To solve perturbed displacements at
meso-scale level, a boundary integral method of boundary value problems is
used for unit cells. The viscoelastic property of polymer matrix is applied as
generalized Maxwell model. Internal damping of the composite is evaluated
by stress strain relation in cyclic response as a simulation of experimental
technique.

Numerical calculation is made in view of periodical boundary conditions.
Damping behavior of the composite is calculated by energy dissipation under
cyclic loading.

2 Meso-scale structure of fiber composite

Consider a unidirectional fiber composite with periodically clustered hexag-
onal array of fibers to apply a homogenization theory [9]. The meso-scale
model of the composite is presented in Fig. 1(a) with two coordinate systems.
A unit cell for the periodic model is shown in Fig. 1(b) in details. Large-scale
coordinate x = (x1, x2, x3) with x3 axis for fiber direction and small-scale
coordinate y = (y1, y2, y3) are employed in the analysis for homogenization.
The size of the composite is supposed to be sufficiently large in comparison
with the size of the unit cell. Meso-scale structure of the composite is modeled
by a basic hexagonal cell where a fiber is placed at off-centered position of
the hexagon. A periodical unit cell is consists of three basic hexagonal cells
in the figure. Distance between fibers in the unit cell is df and diameter of
inscribed circle on the hexagon is dc. The radius of the fiber is a. The fiber
volume fraction Cf is

Cf =
2π a2

√
3d2

c

(1)

In the viscoelastic analysis on the effective damping properties of the com-
posite, the governing equations in large- and small-scale coordinate systems
can be expressed in the Laplace transform as

∂

∂xλi
σ̂λij(x,y, p) + F̂i(x, p) = 0 (2)

σ̂λij(x,y, p) = Ĉijkl(y, p) ε̂λkl(x,y, p) (3)
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Fig. 1(a) Y. Shibuya

(a) Two-scale coordinate system

Fig. 1(b) Y. Shibuya

(b) A unit cell model

Fig. 1 Model of the meso-scale structure of unidirectional fiber composite.

ε̂λkl(x,y, p) =
1
2

[
∂ûλi (x,y, p)

∂xλj
+
∂ûλj (x,y, p)

∂xλi
] (4)

where ˆ indicates the Laplace transform of a function and p is a variable
of the Laplace transform. σij are the stress components, εij are the strain
components, Fi are the body forces and ui are the displacements. Cijkl are
the relaxation moduli of the function in y.

To derive viscoelastic homogenized equations of the composite, the dis-
placement with two-scale coordinate systems can be expressed by asymptotic
expansion with parameter λ as
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ûλi (x,y, p) = û
(0)
i (x,y, p) + λû

(1)
i (x,y, p) + · · · (5)

where λ characterizes smallness of the meso-scale structure of the composite.
Relation of large scale and small scale coordinate systems and their differen-
tial operators are written as

y → x

λ
,

∂

∂xλi
→ ∂

∂xi
+

1
λ

∂

∂yi
(6)

Substituting Eqs. (3)-(5) into the equilibrium equation (2) taking account
of Eq. (6), it yields equations of different orders in λ. Then, the equilibrium
equations in small-scale coordinate system are written as

∂

∂ yi
{Ĉijkl(y, p)[ε̂(1)

kl (y, p) + ε̂∗kl(p)]} = 0 (7)

ε̂
(1)
ij (y, p) =

1
2

[
∂û

(1)
i (y, p)
∂ yj

+
∂û

(1)
j (y, p)
∂ yi

] (8)

where ε̂∗kl(p) is the homogenized strain field in the Laplace transform. The
homogenized stress-strain relation and the inverse are written as follows:

σ̂∗ij(p) = Ĉ∗ijkl(p)ε̂
∗
kl(p)

=
1
V

∫

V

Ĉijkl(y, p)[ε̂
(1)
kl (y, p) + ε̂∗kl(p)]dV (y) (9)

where V is the volume of the unit cell and C∗ijklis the effective dynamic mod-
ulus. Consider a unidirectional carbon-fiber composite with periodic array of
fibers.

3 Numerical procedure

The solution of Eq. (7) for the perturbed displacement û(1)
i is expressed by

integral equation form as

û
β(1)
j (y, p) =

∑

q

∫

Γβ q

[Ûβij(y,y
′, p)t̂βi (y′, p) − T̂ βij(y,y′, p)û

β(1)
i (y′, p)]dΓ (y′)

−
∑

q

∫

Ωβ q

Ŝβjkl(y,y
′, p) ε̂∗kl(y

′, p) dΩ(y′) (10)

where symbol β takes m or f , m and f indicate the matrix and fiber phases,
respectively. Γ βq and Ωβq are integral contour along the boundary and inte-
gral region, respectively, as shown in Fig. 2. ti is the surface traction along the
boundary Γ , and Uij , Tij and Sjkl are fundamental solutions associated to
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Fig. 2 Y. Shibuya

Fig. 2 Contours and domain of integral equation.

displacement, traction and stress, respectively, where an instantaneous point
load is subjected to an infinite viscoelestic medium. The solutions are deter-
mined from elastic solution by correspondence principle.

Since the perturbed displacement is obtained as solution of boundary in-
tegral equations, the it is effective macroscopic stress to reduce to surface
integral from Eq. (9) as follows:

σ̂∗ij(p) =
1
V
{

3∑

q=0

∫

Γmq

1
2
Ĉmijkl(p)[û

m(1)
k (y, p)nl

+ û
m(1)
l (y, p)nk] dΓ (y) + Ĉmijkl(p) ε̂

∗
ij(p)Vm

+
3∑

q=1

∫

Γfq

1
2
Cfijkl[û

f(1)
k (y, p)nl + û

f(1)
l (y, p)nk] dΓ (y)

+ Cfijkl ε̂
∗
kl(p)Vf} (11)

where nl is the normal vector on the boundary, and Vm and Vf are the vol-
umes of matrix and fiber regions, respectively.

Inverse Laplace transform is obtained by Duhamel integral form. Mul-
tiplying both sides of Eqs. (10) and (11) by p and making inverse Laplace
transform, we can obtain following equations.
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∂u
β(1)
j (y, t)
∂ t

=
3∑

q

∫

Γβq

∫ t

0

[Uβij(y,y
′, t− τ)

∂ tβi (y′, τ)
∂ τ

− T βij(y,y
′, t− τ)

∂u
β(1)
i (y′, τ)
∂ τ

] dτ dΓ (y′)

−
3∑

q

∫

Ωβq

∫ t

0

Sjkl(y,y′, t− τ)
∂ε∗kl(y

′, τ)
∂ τ

dτdΩ(y′) (12)

∂σ∗ij(t)
∂ t

=
1
V
{

3∑

q=0

∫

Γmq

∫ t

0

1
2
Cmijkl(t− τ)[

∂u
m(1)
k (y, τ)
∂τ

nl

+
∂ u

m(1)
l (y, τ)
∂τ

nk] dτ dΓ (y) + Vm

∫ t

0

Cmijkl(t− τ)
∂ε∗ij(τ)
∂τ

dτ

+
3∑

q=1

∫

Γfq

1
2
Cfijkl[

∂ u
f(1)
k (y, t)
∂ t

nl +
∂ u

f(1)
l (y, t)
∂ t

nk] dΓ (y)

+ Cfijkl
∂ ε∗kl(t)
∂ t

Vf} (13)

The boundary equations are solved by taking account of initial conditions
and boundary conditions. The initial conditions at t = 0 are given as

u
m(1)
i (y, 0) = 0 , tmi (y, 0) = 0
u
f(1)
i (y, 0) = 0 , tfi (y, 0) = 0
ε∗ij(0) = 0





(14)

Boundary conditions for perfect bonding (r = a) are assumed. The boundary
conditions are written as

u
m(1)
r = u

f(1)
r , u

m(1)
θ = u

f(1)
θ

tmr = − tfr , tmθ = − tfθ

}
(15)

The response of the composite is obtained from these equations under har-
monic load conditions to estimate internal damping effect.

4 Damping properties

A simple shear of the material is considered to evaluate the damping property
of materials. The generalized Maxwell model is shown in Fig. 3 to identify
the property of the viscoelastic material with frequency dependency. The
model consists of spring element with coefficient Gi proportional to strain
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and dashpot element with coefficient Di proportional to strain rate. The

Fig. 3 Y. Shibuya

Fig. 3 Generalized Maxwell model.

stress-strain relation described by the generalized Maxwell model is given in
the Laplace transform.

τ̂(p) = Ĝ(p) γ̂(p) (16)

where τ is the shear stress and γ is the engineering shear strain. As harmonic
shear strain is given and inverse Laplace transform is made, the shear stress
is obtained as frequency response.

τ(t) = Ḡ(ω) γ0 exp(iωt)
= [G′(ω) + i G′′(ω)] γ0 exp(iωt) (17)

where γ0 is the amplitude of the shear strain, ω the angular velocity, t the time
and i (=

√
−1) is the imaginary unit. Ḡ(ω) corresponds to Fourior transform

of the dynamic shear modulus and it is defined as complex modulus. The real
part G′(ω) is storage modulus and imaginary part G′′(ω) is loss modulus. The
loss factor is defined as

η = G′′(ω)/G′(ω) (18)

For the Maxwell model as shown in Fig. 3, the complex modulus can be
expressed as

Ḡ(ω) = [G0 +
N∑

q=1

(ωDq)2Gq
G2
q + (ωDq)2

] + i
N∑

q=1

ωDqG
2
q

G2
q + (ωDq)2

(19)
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5 Numerical results and discussion

Numerical calculations are carried out for carbon fiber composite with vis-
coelastic matrix 3M-467 reinforced by carbon fibers. The carbon fiber is
AS-4 and it is treated as an elastic material. The following properties are
used from Ref. [10]: ETL = 235 GPa, EfT = 14 GPa, νfLT = 0.2, νfT = 0.25,
GfLT = 28 GPa. The viscoelastic property depending on frequency is taken
from Ref. [11]. Fig. 4 shows the complex moduli of the 3M-467 matrix from

Fig. 4 Y. Shibuya

Fig. 4 Fitting of complex moduli with generalized Maxwell model (N = 5).

Ref. [11] and their fitting curves. Solid square symbols indicate the storage
modulus and circle symbols are the loss factor. Solid line is the fitting curve
of the storage modulus and broken line is of the loss factor. Fig. 5 shows
the stress strain relation under harmonic transverse shear loading with varia-
tion of fiber volume fraction. As the stiffness of the composite increases with
fiber volume fraction, the area of the loop expands widely. The area of the
Lissajous curve corresponds to the energy dissipation of the composite for
one cycle. The complex moduli are summarized in Table 1. The loss factor is
almost same value obtained from these moduli.
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Fig. 5 Y. Shibuya

Fig. 5 Effect of fiber volume fraction on stress strain relation.

Cf G
′
[MPa] G

′′
[MPa] η

0 0.967 0.969 1.002

0.2 1.415 1.418 1.002

0.4 2.264 2.278 1.002

0.6 4.697 4.697 1.000

Table 1 Complex moduli of the fiber composite

6 Conclusion

Viscoelastic analysis of fiber-reinforced polymer composites is made to under-
stand effect of frequency of vibration and meso-scale structure of composites
on the internal damping. The meso-scale structure of the composite is sup-
posed to be periodically clustered hexagonal array of unidirectional fibers.

The viscoelastic property of polymer matrix is applied generalized Maxwell
model. Internal damping of the composite is evaluated by energy dissipation
in cyclic response as a simulation of experimental technique.
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An Identification Method of the Time
Dependence of the Impact Force by
Using Acoustic Response and FEM
Analysis

Tomoaki Tsuji, Takafumi Kurimoto and Toshikazu Shibuya

Abstract The radiated sound from the impacted body must have the infor-
mation with respect to the impact force. We have proposed the method in
order to identify the impact force by analyzing the radiated sound from the
impacted body. Normally the impact position is unknown and important to
measure the impact position. Therefore, in this study, we propose the method
to identify the impact position and force by using the radiated sound from
the impact body. In the present method, the relationship between the im-
pacted force and sound pressure is obtained by FEM simulation. In order to
identify the impact position, the sound pressure, which is measured at the
other position, is used. The efficiency of the present method is confirmed by
using the many experiments of the plate as the impacted body.

1 Introduction

A lot of studies that identify the impact force have been reported. For in-
stance, Inoue et al. [1-3] identified the impact force by using the strain re-
sponse caused in the elastic body. In this method, the relation between the
known impact force and the strain response is requested, in order to deter-
mine the transfer function between the impact force and the strain response.
On the other hand, the radiated sound from the impacted body must have
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the information with respect to the impact force. If the impact force is iden-
tified by measuring the radiated sound, measurement will be made leaving
from the impact body, that is non-contact measurement. Author et al. [4, 5]
proposed the identify method of the impact force by measuring the radiated
sound. In this method, it is necessary to measure the impact force directory
before the identification experiment, in order to obtain the transfer function
between the impact force and the radiated sound pressure. However, it is dif-
ficult to measure the impact force directory. Authors proposed the method
to identify the impact force without the preliminary experiment [6]. In this
method, the relation between the known impact force and the radiated sound
is given by using FEM simulation.

Normally the impact position is unknown, especially in the case of the
impact from the flying object. But, it is difficult to investigate the impact po-
sition. Therefore, in this study, we propose the method to identify the impact
position and force by using the radiated sound from the impact body. In the
present method, the relation between the impacted force and sound pressure
is obtained by FEM simulation. By this relationship, the time dependence of
the radiated sound pressure and impact force can be shown by series form.
The unknown coefficient is determined by the least square method using the
measured sound pressure. In order to identify the impact position, the sound
pressure, which is measured at the other position, is used. The efficiency of
the present method is confirmed by using the many experiments of the plate
as the impacted body.

2 Experimental set up and measurement

In this study, we propose the method to identify the placement of the im-
pact and the impact force by using the sound pressure measured at different
place. Figure 1 shows the outline of the measurement system. The radiated
sound from the impacted body is measured by the two microphones, and
recorded by the digital oscilloscope. Moreover, the strain data by the strain
gauge is recorded. The sound and strain values are transferred into the com-
puter and analyzed. Figure 2 shows the configuration of the impact body

Fig. 1 The measuring

system of the sound and
the strain.
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as the aluminum bar (φ30mm×300mm) and the impacted body as the alu-
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minum plate (201mm×501mm×10mm). The impact bar is freely dropped
from height Hand impacts to the plate at the point x as shown in the figure.
Two microphones are in set with the distance 40mm and under the plate with
height h. The contact area between the impact bar and the impacted plate
approximately the circular rejoin with 10mm diameter. The impacted plate is
supported by the silicon rubber seats (20mm×20mm×10mm) under the four
corners of the plate. The impact bar falls to the plate through the plastic
cylinder of the inside diameter 31mm. The strain gauges are attached on the
side of the impact bar at 20mm from the under side of the bar as shown in
Fig.2. The impact force can be measured directly by these strain gauges. The

Fig. 2 The configuration
of the impact bar and the

aluminum plate.
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Fig. 2. The configuration of the impact bar and the 

aluminum plate. 
radiated sound pressure is measured by the microphone. The Type and the
configuration and the performance of this microphone are listed in Table 1.
The microphone is calibrated to output the voltage, which is linear to the
sound pressure. The actual measurement element of the sound pressure is
in the interior from the surface cap of the microphone. By the preliminary
experiment, we decided this actual measurement element is in 5mm from the
front surface of the microphone.

If the stress distribution in the section of the impact bar is assumed as

Type 4190

configuration φ12.7mm×17.6mm

bandwidth of the frequency 3 ∼ 20kHz

company Bruel & Kjaer

Table 1 The type and the configuration and the performance of the microphone.

uniform, the time dependence of the impact force Pbar(t) at the impact bar
can be given by the strain εbar(t) at the side of the bar as follow.
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Pbar(t) = Ebarεbar(t)
π

4
d2
bar, (1)

with Ebar : the modulus of the longitudinal elasticity and dbar: diameter of
the impact bar.

This impact force Pbar(t) should equal to the time dependence of the
impact force on the plate surface. Thus, we will use these data as the actual
measured values of the impact force in order to confirm the identified impact
force by the present method.

3 The identification method of the impact force by
using the radiated sound and FEM analysis

It is common using the stepwise function as input data, in order to get any
response. But, it is difficult to get good accuracy in FEM calculation because
of discontinuity. Thus, the following impact force Psim(t) respect with time
t is introduced as the input impact force.

Psim(t) = P0

[
1
2

{
1− cos(π

t

T
)
}
H(t)H(T − t) +H(t− T )

]
, (2)

with T : interval time, P0: magnitude of the impact force and H(t): Heavi-
side’s step function.

The time dependence of the radiated sound pressure psim(t) for the given
impact forcePsim(t) can be calculated by FEM analysis. Then, the time de-
pendence of the arbitrary impact force P (t) and sound pressure p(t) can be
given by using these functions psim(t) and Psim(t) as follows.

P (t) =
N∑

n=1

AnPsim(t+ tn) , p(t) =
N∑

n=1

Anpsim(t+ tn), (3)

with tn = ∆t× (n− 1), ∆t: time interval and An: unknown coefficient.
The measured sound pressure by the mike 1 is used to identify the impact

force P (t), and the one by the mike 2 is used to identify the impact position x.
The time dependence of the measured sound pressure is denoted as pexp1(t)
and pexp2(t). The square error Eerror1 between the measured values pexp1(t)
and the identified values p(t) in Eq.(3) can be shown as follow.

Eerror1 =
N max∑

i=1

{
N∑

n−1

Anpsim1(ti + tn)− pexp 1(ti)

}2

, (4)

with ti(i=1,2. . .Nmax): time when the sound pressure is measured and Nmax:
number of values
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The unknown coefficient An can be given by the least square method as
the solution of the following simultaneous linear equations.

N∑

n=1

N max∑

i=1

Anpsim1(τi + tn)psim(τi + tm) =
N∑

n=1

pexp(τi)psim(τi + tm) (5)

If the values of An are obtained by Eq.(5), the time dependence of the im-
pact force P (t) for the sound pressure pexp1(t) can be identified by Eq.(3).
However, the sound pressure p (t) and force P (t) are respect with the impact
position x, that is the value of x must be known before calculation. Once x is
expected as x = x∗, the values of An can be given by solving Eq.(5). More-
over, the impact force can be given by Eq.(3). For this impact force, we can
calculate the sound pressure at the position of the mike 2 by using Eq.(3).
The square error of this expected sound pressure psim2(t) and measured one
pexp2(t) can be given as follow.

Eerror2 =
N max∑

i=1

{
N∑

n−1

Anpsim2(ti + tn)− pexp 2(ti)

}2

(6)

The impact position x can be decided by minimizing Eq.(6) with respect to
the value of x∗. Figure 3 shows the FEM model for the FEM simulation. The

Fig. 3 The simulation
model of the plate with the
air.

4 T.Tsuji, T. Kurimoto and T.shibuya 

 

Fig. 3. The simulation 
model of the plate with 
the air. 

100mm

80mm

10mm

100mm

500mm

Pressure

x

aluminum

air

 

mechanical properties of the plate and the air layer are shown in Table 2 and
3. Since the symmetry of the model, the half region should be considered.
The boundary conditions for the support are very complicated, since the
silicone lubber should be deformed and contacted in any area to the plate.
However, within such a short duration, the supporting condition makes no
influence [6]. Thus, we use free condition that is no support. The region of
air is considered under and beside the plate as shown in Fig.3. The sound
wave is reflected at these open boundaries. However, the reflected sound at
the open boundary does not reach the position where the sound pressure is
measured until time 0.5ms, because the moving distance of the sound wave
is 173mm. Thus, the air layer boundary makes no influence to the calculated
values at the position where the sound pressure is measured. The mechanical
properties and the other conditions for the plate and the air are listed in Table
2 and 3, respectively. The impact force is applied to the circular region with
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material Aluminum

configuration 100×500×10 mm

Young’s modulus 70 GPa

Poisson’s ratio 0.34

density 2700 kg/m3

N. of element 3705

Table 2 The mechanical properties of the aluminum plate for the FEM analysis.

material air

configuration 180×500×100 mm

acoustic velocity 346 m/s

density 1.3 kg/m3

N. of element 24020

Table 3 The mechanical properties of air for the FEM analysis.

diameter d = 10mm as the uniformly distributed pressure. The input impact
force Psim(t) in Eq.(2) with T = 0.1ms and P0 = 1MPa is shown in Fig.4.
Time dependent FEM analysis is performed by the commercial FEM code by
Ansys inc. The radiated sound pressure at the mike 1, for the impact position
x = 0 is shown in Fig.5. By substituting this data into Eq.(3), the arbitrary
sound pressure can be given.

Fig. 4 The time depen-
dence of the pressure as the

input for the FEM simula-
tion (T = 0.1ms).
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Fig. 5 The time depen-
dence of the sound pressure
by FEM simulation at the

mike 1 (h= 10mm, x =

0mm).
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4 The identification of the impact position and impact
force

The arbitrary sound pressure and impact force can be given by unknown
coefficients An. In order to identify the impact force from the radiated sound
pressure, the unknown coefficients An is determined by minimizing Eq.(4),
that is solving Eq.(5). The radiated sound pressure is measured by dropping
from height H = 30mm to the impact position x = 0. The experimental
data pexp1(ti) is obtained through t = 0ms to 1ms by dividing Nmax = 200
points. The time interval is ∆ = 0.005ms. The calculated sound pressure are
satisfactory converged with N = 40 to the measured sound pressure. Thus,
in the following calculation, the value of N = 40 is used.

Figure 6 shows the time dependence of the identified sound pressure at the
mike 2 with the values of x∗ = -20, 0, 20mm. In the figure the measured sound
pressure is shown as gray line. The identified sound pressure at the mike 2
with x∗ = 0 is in good agreement with the measured one. Thus, the impact
position should be x = 0. In order to obtain the impact position x, which
minimize Eerror2 in Eq.(6), the relationship between x∗ and Eerror2 is shown
in Fig.7. By this figure, x∗ = 0 minimizes the Eerror2 that is the impact po-
sition is x = 0. This position is exactly same as the impact position. Figure

Fig. 6 The comparison

between the measured
and the simulated sound
pressure at the mike 2 with

the values of x∗ = -20, 0,
20mm (N = 40).
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Fig. 7 The relationship

between the expected im-

pact position x∗ and the
least square error of the

sound presser by the mike

2 during t = 0 to 0.5ms,
when the impact position is

x = 0.
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8 shows the time dependence of the identified impact force by using Eq.(3)
with the expected impact position x∗ = -20, 0, 20mm. The measured impact
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Fig. 8 The time depen-

dence of the impact force
with x∗ = -20mm, 0, 20mm,

when impacted at x = 0.
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Fig. 9 The relationship
between the expected im-

pact position x∗ and the
square error of the impact

force during t = 0 to 0.5ms,

when the impact position is
x = 0.
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force by the strain gage is shown as gray line. The values with x∗ = 0 is good
agreement with the measured values until time t = 0.5ms. After t= 0.5ms,
the identified impact force is not agree with the measured one. It may be
caused by the influence of the supporting condition. It is confirmed, that the
impact position is identified by the sound pressure of the mike 2 before t =
0.5ms. Figure 9 shows the relationship between the respected impact position
x∗ and the square error in between the measured and the identified impact
force. By this figure, the error takes the minimum value in between x∗ = 0
to 5mm. Therefore, it is confirmed that the impact position and the impact
force can be identified by the sound pressure, which is recorded by the two
microphones. In order to confirm the accuracy of the present method, the im-

Fig. 10 The relationship

between the expected im-
pact position x∗ and the
least square error of the

sound presser by the mike 2
during t = 0 to 0.5ms, with

various values of the impact
position x = 0 to 80mm.
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pact experiments are made with various values of the impact position. Figure
10 shows the relationship between the respect impact position x∗ and Eerror2
in Eq.(6) of the mike 2. Increasing the value of x, the graph becomes flatter.
Then the determination of the impact position becomes difficult. However,
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we can obtain the impact position when the impact position is far from the
microphone such as x = 80mm.

The time dependence of the identified impact force with the impact posi-
tion x = 10, 20 and 40mm are shown in Fig.11. The starting time of impact

Fig. 11 The comparison
between the measured and
identified impact force with

the impact position x = 10,
20, 40mm.
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(b) x = 20mm 
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(c) x = 40mm 

 

and the maximum values of impact force are in good agreement with the
directly measured ones by the strain gages. In Fig.11(c), the identified im-
pact force is wavering after time t = 0.3ms, because the impact position x is
leaving from the center of the microphones.

Figure 12 shows the relationship between the impact position x and the
square error of the impact force to the measured data during t = 0 to 0.5ms.
The error is almost same, when the impact position x is smaller than 20mm,
that is the impact position is in between the two microphones. The error
is increasing with the increment of the impact position, because the impact
position is leaving from the center of the microphones.
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Fig. 12 The relationship

between the impact posi-
tion x and the square error

of the identified impact

force respected with the
measured one during t = 0

to 0.5ms.
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5 Conclusion

In this study, we proposed the method to identify the impact position and the
impact force by using the radiated sound pressure with two microphones. By
using FEM analysis, the time dependence of the impact force and the impact
position can be given without any special experiments before the impact
experiment. The present method is confirmed by the many experiments. The
results are listed as follows.

1. The impact position and the time dependence of the impact force can be
identified by the present method.

2. The impact position can be determined when the impact position far from
two microphones.

3. The impact force is satisfactory identified, when the impact position is in
between the two microphones.
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Infinite Row of Parallel Cracks in a
Piezoelectric Material Strip under
Mechanical and Transient Thermal
Loadings

Sei Ueda

Abstract In this paper, the problem of an infinite row of parallel cracks in a
piezoelectric material strip is analyzed under static mechanical and transient
thermal loadings. The crack faces are supposed to be completely insulated.
By using the Laplace and Fourier transforms, the thermoelectromechanical
problem is reduced to a singular integral equation, which is solved numeri-
cally. The stress intensity factors for both the embedded and edge cracks are
computed. The results for the crack contact problem are also included.

1 Introduction

Due to the rapid growth in application for smart or intelligent systems [1-5],
the fracture problems of homogeneous piezoelectric materials under thermal
loading conditions have attracted many research activities in recent years
[6-12]. Especially, the overshooting phenomena of the stress and electric dis-
placement intensity factors were observed in piezoelectric strips under ther-
mal shock loading condition with a normal crack [6] and a parallel crack [12].

However, in spite of the fact that piezoelectric materials involve multiple
cracks, most of the existing contributions are concerned with the fracture be-
havior of a single crack except for the dynamic interaction between the two
coplanar cracks in homogeneous piezoelectric materials under electromechan-
ical loadings [13]. Then, one of the remaining problems that need to be fully
understood is that of interaction between cracks in such media subjected to
thermal loading, and the present author investigated the thermoelectrome-
chanical interaction of piezoelectric strips under thermoelectric loading with
two parallel cracks [14] and with two coplanar cracks [15].
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Department of Mechanical Engineering, Osaka Institute of Technology, 5-16-1 Omiya,
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In this paper, the problem of an infinite row of parallel cracks in a piezoelec-
tric material strip is analyzed under static mechanical and transient thermal
loadings. The crack faces are supposed to remain thermally and electrically
insulated [16,17]. The superposition technique is used to solve the govern-
ing equations. The transient temperature and thermal stress in an uncracked
strip are the same as the previous results [18]. This thermal stress is used as
the crack surface traction with opposite sign to formulate the mixed boundary
value problem. By using the Fourier transform [19,20], the electromechanical
problem is reduced to a singular integral equation, which is solved numeri-
cally [21]. The stress intensity factors for both the embedded and edge cracks
are computed. The results for the crack contact problem are also included.

2 Formulation of the problem

As shown in Fig. 1, suppose a piezoelectric material strip with the thickness
h containing an infinite row of parallel cracks of equal length 2c = b−a (0 ≤
a < b < h) being spaced at equal distance 2d perpendicular to the free bound-
aries. The system of rectangular Cartesian coordinates (x, y, z) is introduced
in the material in such a way that one of the crack is located along the z-axis,
and the x-axis is parallel to the boundaries. The piezoelectric material is un-
der a mechanical stress σ0 in the x-direction and is poled in the z-direction.
It is assumed that initially the medium is at the uniform temperature TI
(stress free temperature) and is suddenly subjected to a uniform temperature
change T0H(t) along the bottom surface (z = 0), where H(t) is the Heav-
iside step function and t denotes time. The temperature at the top surface
(z = h) is maintained at TI . The crack faces remain thermally and electri-
cally insulated [16,17]. The crack problem may be solved by superposition. In

Fig. 1 An infinite row
of parallel cracks in a
piezoelectric strip.

the problem considered here, since the heat conduction is one-dimensional,
straight cracks do not obstruct the heat flow in this arrangement, determina-
tion of the temperature distribution and the resulting thermal stress would
be quite straightforward and the related crack problem would be one of mode
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I. The lines of the centers of the cracks x = ±(2n + 1)d, (n = 0, 1, 2, ...) are
the axes of symmetry of the configuration and we suppose that each crack
is opened under the action of the same distribution of the internal pressure
σ0+σT0 (z, t) where t is the time, σ0 is the static mechanical stress and σT0 (z, t)
is the thermal stress induced by the time-dependent temperature change. The
thermal stress σT0 (z, t) has been already obtained in [18]. In the following,
the subscripts x, y, z will be used to refer to the direction of coordinates.

The constitutive equations are given by

σxx = c11
∂ux
∂x

+ c13
∂uz
∂z

+ e31
∂φ

∂z
, Dx = e15

(
∂ux
∂z

+
∂uz
∂x

)
− ε11

∂φ

∂x

σzz = c13
∂ux
∂x

+ c33
∂uz
∂z

+ e33
∂φ

∂z
, Dz = e31

∂ux
∂x

+ e33
∂uz
∂z
− ε33

∂φ

∂z

σzx = c44

(
∂ux
∂z

+
∂uz
∂x

)
+ e15

∂φ

∂x





(1)

where φ(x, z, t) is the electric potential, ux(x, z, t), uz(x, z, t) are the displace-
ment components, σxx(x, z, t), σzz(x, z, t), σzx(x, z, t) are the stress compo-
nents and Dx(x, z, t), Dz(x, z, t) are the electric displacement components.

The governing equations for the electromechanical fields may be expressed
as follows:

c11
∂2ux
∂x2

+ c44
∂2ux
∂z2

+ (c13 + c44)
∂2uz
∂x∂z

+ (e31 + e15)
∂2φ

∂x∂z
= 0

c44
∂2uz
∂x2

+ c33
∂2uz
∂z2

+ (c13 + c44)
∂2ux
∂x∂z

+ e15
∂2φ

∂x2
+ e33

∂2φ

∂z2
= 0

e15
∂2uz
∂x2

+ e33
∂2uz
∂z2

+ (e15 + e31)
∂2ux
∂x∂z

− ε11
∂2φ

∂x2
− ε33

∂2φ

∂z2
= 0





(2)

From the symmetry conditions it follows that the described problem may be
reduced to that of a piezoelectric material rectangle with one crack loaded by
the pressure σ0 +σT0 (z, t). Then the boundary conditions for the rectangular
region of 0 ≤ x ≤ d and 0 ≤ z ≤ h can be stated as follows:

σxx(0, z, t) = −σ0 − σT0 (z, t) (a < z < b)
ux(0, z, t) = 0 (0 ≤ z ≤ a, b ≤ z ≤ h)

}
(3)

σzx(0, z, t) = 0, Dx(0, z, t) = 0 (0 ≤ z ≤ h) (4)

σzx(d, z, t) = 0, Dx(d, z, t) = 0,
∂

∂z
ux(d, z, t) = 0 (0 ≤ z ≤ h) (5)

σzx(x, 0, t) = 0, σzz(x, 0, t) = 0, Dz(x, 0, t) = 0,
σzx(x, h, t) = 0, σzz(x, h, t) = 0, Dz(x, h, t) = 0

}
(0 ≤ x ≤ d) (6)
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3 Analysis

The general solutions of Eq.(2) are obtained by using the Fourier integral
transform techniques [19] :

ux(x, z, t) =
i

2π

6∑

j=1

∫ ∞

−∞

|s|
s
a1jA1j(s, t) exp(|s|γ1jx) exp(−isz)ds

+
6∑

j=1

∞∑

n=1

a2jA2jn(t) exp(µnγ2jz) sin(µnx) +
d− x
d

F0(t)

uz(x, z, t) =
1

2π

6∑

j=1

∫ ∞

−∞
A1j(s, t) exp(|s|γ1jx) exp(−isz)ds

+
6∑

j=1

∞∑

n=1

A2jn(t) exp(µnγ2jz) sin(µnx) +
z

h
F1(t)

φ(x, z, t) =
1

2π

6∑

j=1

∫ ∞

−∞
b1jA1j(s, t) exp(|s|γ1jx) exp(−isz)ds

+
6∑

j=1

∞∑

n=1

b2jA2jn(t) exp(µnγ2jz) sin(µnx) +
z

h
F2(t)





(7)

where A1j(s, t), A2jn(t) (j = 1, 2, ..., 6, n = 1, 2, ...) and Fi(t) (i = 1, 2, 3)
are the unknown functions to be solved, and µn = nπ/d (n = 1, 2, ...). The
constants γij , aij and bij(i = 1, 2, j = 1, 2, ..., 6) can be obtained by set-
ting s → ∞ of the functions γ1j(s), a1j(s) and b1j(s) (j = 1, 2, ..., 6) in
Appendix A of the previous paper [18] and the functions γ2j(s), a2j(s) and
b2j(s) (j = 1, 2, ..., 6) in Appendix B of the previous paper [22], respectively.
Substituting the displacements and electric potential solutions (7) into the
constitutive equations (1), one can obtain the stresses and electric displace-
ment components.

The problem may be reduced to a singular integral equation by defining
the following new unknown function G(z, t) [20]:

G(z, t) =

{
∂

∂z
ux(0, z, t) (a < z < b)

0 (0 ≤ z ≤ a, b ≤ z ≤ h)

}
(8)

Making use of the first boundary condition (3) with Eqs.(4)-(6), we have the
following singular integral equation for the determination of the unknown
function G(ξ, t) :
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∫ a

b

G(ξ, t)

[
1

ξ − z +
4∑

i=1

Mi(ξ, z) +
C

<[Z∞]d

]
dξ

=
π

<[Z∞]
[
σ0 + σT0 (z, t)

]
(a < z < b) (9)

where Z∞ and Mi(ξ, z) (i = 1, 2, 3, 4) are the known constant and kernel
functions. The singular integral equation (9) for a > 0.0 is to be solved
with the following subsidiary conditions obtained from the second boundary
condition (3). ∫ a

b

G(ξ, t)dξ = 0 (10)

For the case of a = 0.0, the constant C can be determined from the second
boundary condition (3) as follows:

C =
1
2

[
c213ε33 + 2c13e31e33 − c33e

2
31

c33ε33 + e2
33

− c11

]
(11)

To solve the singular integral equation (9) and the additional equation (10) by
using the Gauss-Jacobi integration formula [21], we introduce the following
function Φ(u, t):

G(ξ, t) =
cΦ(u, t)

(1 + u)α(1− u)1/2
(12)

where α = 1/2 for (a + b)/2 > 1 (embedded crack) and α = −1/2 for
(a+ b)/2 = 1 (edge crack), and u = (2ξ − a− b)/(b− a) (−1 < u < 1, a <
ξ < b). The stress intensity factors KIa(t) at z = a and KIb(t) at z = b may
be defined, and evaluated as

KIa(t) = lim
z→a−

{2π(z − a)}1/2σxx(0, z, t)

=
{
−<[Z∞](πc)1/2Φ(−1, t) (a > 0)
0 (a = 0)

} (13)

KIb(t) = lim
z→b+

{2π(b− z)}1/2σxx(0, z, t)

=
{
<[Z∞](πc)1/2Φ(1, t) (a > 0)
<[Z∞](2πb)1/2Φ(1, t) (a = 0)

} (14)

4 Numerical results and discussion

To examine the effect of thermoelectroelastic interactions on the stress inten-
sity factors, the solutions of the singular integral equation have been com-
puted numerically. For the numerical calculations, the thermoelectroelastic
properties of cadmium selenide are used [4]. Since the values of the coeffi-
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cients of heat conduction for cadmium selenide could not be found in the
literature, the value κ2 = κx/κz = 1/1.5 is used.

4.1 The Stress Intensity Factors under Pure
Mechanical Load

First, we consider the case of T0 = 0.0. In this case, the stress intensity fac-
tors are independent of the time t. Fig. 2 shows the effect of (a + b)/2h on

Fig. 2 The effect of the
crack location on the stress

intensity factors KIa and

KIb of the embedded crack
under pure mechanical

load.
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Figure 2. The effect of the crack location on the stress intensity factors  and  

of the embedded crack under pure mechanical load. 

IaK IbK

 

(KIa,KIb)/σ0(πc)1/2 for various values of d/h with c/h = 0.1, respectively.
The results for d/h→∞ are obtained in [18]. As d/h decreases, the values of
the stress intensity factors decrease. The stress intensity factors of the crack
tips near the free boundary ((a+ b)/2h→ 0.1 or 0.9) become very large. The
influence of the crack location on the stress intensity factors decreases with
decreasing d/h.

Fig. 3 displays KIb/σ0(πb)1/2 of the edge crack versus b/h for various val-
ues of d/h. Different from the cases for d/h → ∞, in which KIb/σ0(πb)1/2

increases monotonically with increasing b/h, KIb/σ0(πb)1/2 for d/h = 2.0
initially increases and then gradually decreases with increasing b/h and
KIb/σ0(πb)1/2 for d/h ≤ 1.0 decreases monotonically with increasing b/h.
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Fig. 3 The effect of the

crack length on the stress
intensity factor KIb of

the edge crack under pure

mechanical load.

 

 

 

 

0 0.1 0.2 0.3 0.4
0

1

2

b/h

K
Ib

/σ
0(
πb

)1/
2

a/h=0.0

T0=0.0

d/h=1.0

d/h=0.5

d/h=0.2

d/h→∞

d/h=2.0

 

 

 

 

Figure 3. The effect of the crack length on the stress intensity factor  of the edge 

crack under pure mechanical load. 
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4.2 The Stress Intensity Factors of the Embedded
Crack under Pure Thermal Load

Next, we consider the case of σ0 = 0.0. Assume the bottom surface of the
strip is suddenly heated from initial temperature TI to TI + T0(T0 > 0.0),
the calculated normalized stress intensity factors (KIa,KIb)/λ11|T0|(πc)1/2

versus time for c/h = 0.1, (a+ b)/2h = 0.3 and d/h = 0.2 are shown in Fig.
4. In the figure, the time t is represented through the dimensionless Fourier
number defined by

F =
λ0t

h2
(15)

Since the thermal stress σT0 (z, t) is statically self-equilibrating, large com-

Fig. 4 The transient stress
intensity factors KIa and

KIb of the embedded crack
under pure thermal load
for (a + b)/2h = 0.3 and

d/h = 0.2.
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pressive stress occurs near the surface, and the tensile stress appears inside
the strip [18]. Accordingly, the crack will open and the stress intensity factor
will be positive. The values of the stress intensity factors increase at first,
go through maxima, and then decrease with increasing F . As was expected,
the stress intensity factors approach zero when F goes to infinity. The max-
imum value of KIa/λ11|T0|(πc)1/2 is smaller and occurs faster than that of
KIb/λ11|T0|(πc)1/2.

4.3 The Stress Intensity Factor of the Edge Crack
under Pure Thermal Load

Finally, we consider the case of a/h = 0.0 (edge crack). As mentioned above,
if the strip is heated (T0 > 0.0) suddenly on its bottom surface, large com-
pressive stress will occur near the surface, and the small edge crack will be
fully closed and the stress intensity factor will be negative. This is the crack
contact problem and this phenomenon would be considered in this section.
In this problem it is assumed that the strip contains pre-existing edge cracks
of length b/h = 0.2 (a/h = 0.0) and the crack spacing d/h = 0.1, and the
bottom surface of the strip is cooled (T0 < 0.0) or heated (T0 > 0.0) sud-
denly. Fig. 5 shows the time dependencies of the normalized stress intensity
factor KIb/λ110|T0|(πc)1/2 and the value b0/h indicating the crack contact
zone under the cooling process (T0 < 0.0). In this case, because the edge
crack is deeper than the tensile zone, the crack tip region (z = b) would be
subjected to a compressive stress. On the other hand, the part of the crack
near the bottom surface 0 ≤ z ≤ b0 would be opened due to the large tensile
stress neat the surface, and the stress intensity factor at z = b is equal zero.
The unknown crack tip location z = b0 can be obtained from the condition
KIb0 = 0.0 at z = b0. Thus the problem may easily be solved by iteration
to find b0 and then compute KIb. Fig. 6 is the same figures as Fig. 5 under
the heating process (T0 > 0.0). Different from the cooling process, the edge
crack is deeper than the compressive zone, the crack tip region (z = b) would
be subjected to a tensile stress and the crack would remain partially open.
In other words, the part of the crack, 0 ≤ z < a0, near the bottom surface
would be closed and the stress intensity factor at the crack tip, z = b would
remain positive. The unknown crack tip location z = a0 is obtained from the
cusp condition KIa0 = 0.0 at z = a0. Thus the problem may easily be solved
by iteration to find a0 and then compute KIb. The crack contact zone a0

increases monotonously, and KIb becomes zero at F = 0.049, and the edge
crack would be fully closed.
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Fig. 5 The transient stress

intensity factor KIb and
the crack contact zone b0 of

the edge crack under pure

thermal load for b/h = 0.2
and T0 < 0.0.
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Fig. 6 The transient stress
intensity factor KIb and

the crack contact zone a0 of

the edge crack under pure
thermal load for b/h = 0.2
and T0 > 0.0.
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5 Conclusion

The transient fracture problem of an infinite row of parallel cracks in a piezo-
electric strip is studied. The effects of the crack spacing, the crack length and
the crack location on the fracture behavior are considered. Moreover, taking
the crack contact phenomenon into consideration, the transient fracture be-
havior of a pre-existing edge crack in the strip is considered. The following
facts can be found from the numerical results.

1. The stress intensity factors due to both the mechanical and thermal load
are lowered by the interaction among cracks, and the influence of it de-
pends on the geometric parameter.

2. In some cases, the stress intensity factors under pure thermal load become
negative and the results have no physical meaning. However, when the
thermal load is combined with the mechanical load which induces the
positive stress intensity factor, those results can be used effectively.

3. Taking the crack contact into consideration, it is found that the edge crack
in the strip under the heating process would be fully closed at some time
after the thermal shock.
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Elastodynamic Doppler Effects by a
Moving Interface

Kazumi Watanabe and Naobumi Sumi

Abstract A unified mathematical technique for analyzing a one-dimensional
Doppler effects by a moving interface is presented. Exact and closed form
expressions for stress waves are obtained. The solution for the stress has no
restriction not only for the motion of the interface, but also for the wave
nature, impulsive or time-harmonic. As an application example, the Doppler
frequency shifts by the uniform and back and forth motions of the interface
are discussed for the time-harmonic wave.

1 Introduction

There are two types of the Doppler frequency shift. The one is induced by a
moving source and the other by a moving reflector. The latter is named as
”scattering” Doppler effects and is called ”moving mirror problem” for light
and electromagnetic waves. The Doppler frequency shift in electromagnetic
and acoustic waves is widely used as the sensing principle, such as laser and
ultrasonic velocity meters. The outline of the existing theoretical work for
the Doppler effects by the uniformly moving reflector/interface can be found
in a relatively updated work by Huang [1]. The Doppler effect by a non-
uniformly moving edge of a string has been discussed by Censor[2] and he
applied his technique to the Doppler effect for the electromagnetic waves. An
approximation technique for the back and forth motion of a mirror has been
developed by Van Bladel and De Zutter[3]. In addition to [1], the Doppler
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effects by a uniformly moving electromagnetic interface have also been dis-
cussed by Yeh[4], and by Daly and Gruenberg[5] for 2D oblique incident wave.
However, the work on the scattering Doppler effects for elastic wave is very
scarcely because of its less applicability for solid media. At the present time,
the authors can not find any application of the scattering Doppler effects in
elastic solid media. But, as the natural extension of academic interest and a
hopeful application in the future, the Doppler effect by the moving interface
in elastic media is an attractive subject. If the moving interface in the elastic
media is considered as a model of the dynamic deformation or phase trans-
formation, the scattering Doppler effects in the solid will play some roles for
developing sensing instruments which detect the dynamic deformation.

The present paper develops a unified mathematical technique for analyz-
ing the 1D scattering Doppler effects by the moving interface which separates
two dissimilar elastic media. The mathematics developed here is a revised and
generalized version of Censors[2]. Our solution is valid for all types of wave
form and the interface motion. Applying this general solution to the case of
the back and forth motion of the interface, the Doppler effects are discussed
for a time-harmonic incident wave.

2 Elastodynamic Scattering Doppler Effect

Let us consider two dissimilar elastic half spaces and take x-axis as shown
in Fig. 1. Their interface is moving along the x-axis and is on x = 0 at time
t = 0 and its traveling distance is an arbitrary time function, l(t). We employ
the numerical subscripts, 1 and 2, to distinguish two materials and discuss
the Doppler effects for the dilatational wave. The 1D dilatational wave field
is governed by the equations,

∂2ux
∂x2

=
1
c2d

∂2ux
∂t2

, σxx = (λ+ 2µ)
∂ux
∂x

, cd =
√

(λ+ 2µ)/ρ, (1) 
 
 

 
 
 
 

Fig. 1 A moving interface between two dissimilar elastic half spaces. 
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Fig. 1 A moving interface between two dissimilar elastic half spaces.
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where ux and σxx are the displacement and stress, λ, ν, ρ are Lame’s con-
stants and density, and cd is the velocity of the dilatational wave. Here, we
have assumed that the motion of the interface does not cause any additional
disturbances in the wave field and thus the governing equation (1) holds for
all time and the whole region.

We consider an incident wave in the material 1 and it has the arbitrary
wave form as

u
(i)
x1 = u0f (t− x/cd1) , σ

(i)
xx1 = − u0

cd1
(λ1 + 2µ1)f ′ (t− x/cd1) , (2)

where the arbitrary wave form function f(z) has a single variable z and its
derivative is denoted by

f ′(z) = df(z)/dz (3)

In general, as we do not know the frequencies of reflected and transmitted
waves in advance, these waves are assumed in the form of Fourier integral
with respect to the frequency (This idea is the same as Censors[2]). They are

u
(r)
x1 = u0

+∞∫

−∞

1
$
R($)e+i$(t+x/cd1)d$, (4)

σ
(r)
xx1 =

iu0

cd1
(λ1 + 2µ1)

+∞∫

−∞

R($)e+i$(t+x/cd1)d$, (5)

for the reflected wave, and

u
(t)
x2 = u0

+∞∫

−∞

1
$
T ($)e+i$(t−x/cd2)d$, (6)

σ
(t)
xx2 = − iu0

cd2
(λ2 + 2µ2)

+∞∫

−∞

T ($)e+i$(t−x/cd2)d$, (7)

for the transmitted wave, where two unknown functions, R($) and T ($),
would be called as the spectrum amplitude.

In order to determine the unknown spectrums, we employ boundary con-
ditions at the moving interface, x = l(t). They are the continuities of the
displacement and stress,

u
(i)
x1 + u

(r)
x1 = u

(t)
x2 , σ

(i)
xx1 + σ

(r)
xx1 = σ

(t)
xx2 , x = l(t). (8)

Substituting Eqs. (2)-(7) into Eq.(8), we have the coupled integral equations
for the spectrum amplitudes,
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+∞∫

−∞

1
$
R($)e+i${t+l(t)/cd1}d$ −

+∞∫

−∞

1
$
T ($)e+i${t−l(t)/cd2}d$ =

= −f (t− l(t)/cd1) , (9)

+∞∫

−∞

R($)e+i${t+l(t)/cd1}d$ +
1
Z

+∞∫

−∞

T ($)e+i${t−l(t)/cd2}d$ =

= −if ′ (t− l(t)/cd1) , (10)

where Z is the impedance ratio defined by

Z =
λ1 + 2µ1

λ2 + 2µ2

cd2

cd1
=

√
(λ1 + 2µ1)ρ1

(λ2 + 2µ2)ρ2
. (11)

In order to make the same integration form for each spectrum amplitude, we
differentiate Eq. (9) with respect to time t,

{1 +M1(t)}
+∞∫
−∞

R($)e+i${t+l(t)/cd1}d$ − {1−M2(t)} ×

×
+∞∫
−∞

T ($)e+i${t−l(t)/cd2}d$ = i{1−M1(t)}f ′ (t− l(t)/cd1) , (12)

where Mach numbers which are varying with time are defined by

Mj(t) =
1
cdj

dl(t)
dt

; j = 1, 2. (13)

Then, Eqs. (10) and (12) constitute the algebraic simultaneous equations for
the integral of the spectrum amplitude and are solved as

+∞∫

−∞

R($)e+i${t+l(t)/cd1}d$ = +i
1−M1(t)− Z{1−M2(t)}
1 +M1(t) + Z{1−M2(t)}f

′
(
t− l(t)

cd1

)
,

(14)
+∞∫

−∞

T ($)e+i${t−l(t)/cd2}d$ = −i 2Z
1 +M1(t) + Z{1−M2(t)}f

′
(
t− l(t)

cd1

)
.

(15)

The form of the integration in the above equations is very close to that of
the Fourier transform, but the exponents of exponential function is slightly
different from that of the standard Fourier transform. However, we can find



Elastodynamic Doppler Effects by a Moving Interface 197

a transform couple for the Fourier transform with non-uniform parameter.
That is

F (x) =

b∫

a

f(ξ) exp{+iξh(x)}dξ ; −∞ < x < +∞

f(ξ) =
1

2π

+∞∫

−∞

F (x) exp{−iξh(x)}h′(x)dx ; a < ξ < b (16)

where a and b are constants, and h(x) is a monotonically increasing function.
If we assume that the velocity of the moving interface is subsonic for both

materials, the two time functions in the argument of the exponential function
in Eqs. (14) and (15),

T1(t) = t+ l(t)/cd1 , T2(t) = t− l(t)/cd2, (17)

are monotonically increasing. Then, these functions should be understood as
the non-uniform parameter h(x) and apply the transform formula (16) to
Eqs. (14) and (15), we have

R($) =
i

2π

+∞∫

−∞

C(r)(t)f ′ (t− l(t)/cd1) e−i$T1(t)T ′1(t)dt (18)

T ($) =
−i
2π

+∞∫

−∞

C(t)(t)f ′ (t− l(t)/cd1) e−i$T2(t)T ′2(t)dt (19)

where T ′j(t) = dT (t)/dt, and reflection and transmission coefficients which
are not constants are

(C(r)(t), C(t)(t)) =
(1−M1(t)− Z{1−M2(t)}, 2Z)

1 +M1(t) + Z{1−M2(t)} . (20)

We have just obtained the spectrum amplitude in the form of Fourier inver-
sion integral. It is no need to evaluate the integral, since this form is preferable
for the subsequent treatise. Substituting Eqs. (18) and (19) into the stress
wave of Eq. (5) and (7) respectively, and changing the order of integration,

− σ
(r)
xx1

λ1 + 2µ1
=

u0

2πcd1

+∞∫

−∞

C(r)(τ)f ′ (τ − l(τ)/cd1)T ′1(τ)dτ ×

×
+∞∫

−∞

e−i${T1(τ)−(t+x/cd1)}d$, (21)
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− σ
(t)
xx2

λ1 + 2µ1
=

u0

2πcd1

+∞∫

−∞

C(t)(τ)f ′ (τ − l(τ)/cd1)T ′2(τ)dτ ×

×
+∞∫

−∞

e−i${T2(τ)−(t−x/cd2)}d$. (22)

These inner integrals are easily evaluated by applying the integration formula
for the Dirac’s delta function,

+∞∫

−∞

e−i$xd$ = 2πδ(x). (23)

Eqs. (21) and (22) yield to the form of the single integral,

− σ
(r)
xx1

λ1 + 2µ1
=

=
u0

cd1

+∞∫

−∞

C(r)(τ)f ′ (τ − l(τ)/cd1)T ′1(τ)δ (T1(τ)− (t+ x/cd1)) dτ, (24)

− σ
(t)
xx2

λ1 + 2µ1
=

=
u0

cd1

+∞∫

−∞

C(t)(τ)f ′ (τ − l(τ)/cd1)T ′2(τ)δ (T2(τ)− (t− x/cd2)) dτ. (25)

Further, we apply the integration formula,

+∞∫

−∞

δ(T (τ)− x)g(τ)T ′(τ)dτ = g(T−1(x)). (26)

where T−1(x) is the inverse function of x = T (τ).
Finally, we have the exact closed form solution for the stress wave,

− σ
(r)
xx1

λ1 + 2µ1
=

u0

cd1
C(r)(t1)f ′ (t1 − l(t1)/cd1) , (27)

− σ
(t)
xx2

λ1 + 2µ1
=

u0

cd1
C(t)(t2)f ′ (t2 − l(t2)/cd1) , (28)

where t1 and t2 are inverse functions defined by
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t1 = T−1
1 (t+ x/cd1) ⇔ t+ x/cd1 = T1(t1),

t2 = T−1
2 (t− x/cd2) ⇔ t− x/cd2 = T2(t2). (29)

As for the displacement, Eqs. (18) and (19) are substituted into Eqs. (4) and
(6) respectively, and the order of integration is also exchanged. We have

u
(r)
x1

u0
= +

i

2π

+∞∫

−∞

C(r)(τ)f ′ (τ − l(τ)/cd1)T ′1(τ)dτ ×

×
+∞∫

−∞

1
$
e−i${T1(τ)−(t+x/cd1)}d$, (30)

u
(t)
x2

u0
= − i

2π

+∞∫

−∞

C(t)(τ)f ′ (τ − l(τ)/cd1)T ′2(τ)dτ ×

×
+∞∫

−∞

1
$
e−i${T2(τ)−(t−x/cd2)}d$. (31)

The integration formula,

+∞∫

−∞

1
$
e−i$xd$ =

{
−πi ; x > 0,
+πi ; x < 0, (32)

is applied to Eqs. (30) and (31). Then, the displacement wave is given in the
form of integral,

u
(r)
x1

u0
= +

1
2

+∞∫

τ=T−1
1 (t+x/cd1)

C(r)(τ)f ′ (τ − l(τ)/cd1)T ′1(τ)dτ −

− 1
2

τ=T−1
1 (t+x/cd1)∫

−∞

C(r)(τ)f ′ (τ − l(τ)/cd1)T ′1(τ)dτ, (33)
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u
(t)
x2

u0
= − 1

2

+∞∫

τ=T−1
2 (t−x/cd2)

C(t)(τ)f ′ (τ − l(τ)/cd1)T ′2(τ)dτ +

+
1
2

τ=T−1
2 (t−x/cd2)∫

−∞

C(t)(τ)f ′ (τ − l(τ)/cd1)T ′2(τ)dτ. (34)

Consequently, the reflected and transmitted stress waves are obtained exactly.
However, it is little bit regrettable that the displacement wave is in the form
of integral, not in the closed form. Some applications of this exact solution are
shown and the Doppler effects are also discussed in the subsequent sections.

3 Time-Harmonic Wave

When the incident wave is sinusoidal with frequency ω,

f(z) = cos(ωz) , f ′(z) = −ω sin(ωz) (35)

the stress wave for any motion of the interface is given by

σ
(i)
xx1

λ1 + 2µ1
=
ωu0

cd1
sin {ω(t− x/cd1)} , (36)

σ
(r)
xx1

λ1 + 2µ1
=
ωu0

cd1
C(r)(t1) sin [ω {t1 − l(t1)/cd1}] , t1 = T−1

1 (t+ x/cd1), (37)

σ
(t)
xx2

λ1 + 2µ1
=
ωu0

cd1
C(t)(t2) sin [ω {t2 − l(t2)/cd1}] , t2 = T−1

2 (t− x/cd2). (38)

Here, the displacement wave is left to the integral form of Eqs. (33) and (34),
since the interface motion l(t) is not specified.

Fortunately, the exact expression for the stress gives us a good chance to
discuss the Doppler effects. The arguments, so called phase, in the reflection
and transmission waves are time-dependent,

Θr(t, x) = ω {t1 − l(t1)/cd1} , Θt(t, x) = ω {t2 − l(t2)/cd1} . (39)

We define the instantaneous frequency for each wave. Differentiating Eq. (39)
with respect to time and with aids of the nature of the inverse function defined
by Eq. (29), the instantaneous frequency is derived as

ωr(t, x) =
∂Θr(t, x)

∂t
=

1−M1(t1)
1 +M1(t1)

ω, (40)
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for the reflected wave, and

ωt(t, x) =
∂Θt(t, x)

∂t
=

1−M1(t2)
1−M2(t2)

ω, (41)

for the transmitted wave, where the non-uniform Mach numbers are defined
by Eq. (13). The Doppler frequency shifts, which are thus time-dependent,
are

∆ωr
ω

=
ωr(t, x)− ω

ω
= − 2M1(t1)

1 +M1(t1)
, (42)

∆ωt
ω

=
ωt(t, x)− ω

ω
= −M1(t2)−M2(t2)

1−M2(t2)
. (43)

Then, we readily learn that the Doppler frequency shifts depend only on the
Mach numbers and their equation forms are unchanged for any motion of the
interface. This guarantees the approximation method [3].

3.1 Uniform motion

When the interface moves uniformly with velocity V ,

l(t) = V t, (44)
Mj = V/cdj , j = 1, 2, (45)

the coefficients of reflection and transmission are constant,

Cr ≡ C(r)(t) =
1−M1 − Z(1−M2)
1 +M1 + Z(1−M2)

, Ct ≡ C(t)(t) =
2Z

1 +M1 + Z(1−M2)
,

(46)
and two inverse functions are expressed exactly,

t1 = T−1
1 (τ) =

τ

1 +M1
, t2 = T−1

2 (τ) =
τ

1−M2
. (47)

Then, the stress wave yields

σ
(i)
xx1

λ1 + 2µ1
=
ωu0

cd1
sin {ω(t− x/cd1)} , (48)

σ
(r)
xx1

λ1 + 2µ1
=
ωu0

cd1

1−M1 − Z(1−M2)
1 +M1 + Z(1−M2)

sin
{

1−M1

1 +M1
ω(t+ x/cd1)

}
, (49)

σ
(t)
xx2

λ1 + 2µ1
=
ωu0

cd1

2
1 +M1 + Z(1−M2)

sin
{

1−M1

1−M2
ω(t− x/cd2)

}
, (50)
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and the Doppler frequency shifts are

ω(r) =
1−M1

1 +M1
ω ,

∆ω(r)

ω
=
ω(r) − ω

ω
= − 2M1

1 +M1
, (51)

for the reflected wave, and

ω(t) =
1−M1

1−M2
ω ,

∆ω(t)

ω
=
ω(t) − ω

ω
= −M1 −M2

1−M2
, (52)

for the transmitted wave.

3.2 Back and forth motion

When the motion of the interface is back and forth, and its maximum velocity
is subsonic for both materials,

l(t) = l0 sin(λt) , M∗j = λl0/cdj < 1 , j = 1, 2. (53)

Then Mach numbers are periodic functions of time,

Mj(t) = M∗j cos(λt) , j = 1, 2. (54)

and the reflection and transmission coefficients, defined by Eq. (20), are also
periodic. In this case, two inverse functions tj = T−1

j (·) have no explicit
expressions and we have to obtain tj numerically, based on their definitions,

t+ x/cd1 = T1(t1) = t1 + (l0/cd1) sin(λt1),
t− x/cd2 = T2(t2) = t2 − (l0/cd2) sin(λt2). (55)

After getting tj numerically, the periodic Doppler frequency shift and ampli-
tude modulation are given by

∆ωr
ω

= − 2M∗1 cos(λt1)
1 +M∗1 cos(λt1)

, (56)

C(r)(t1) =
1−M1(t1)− Z{1−M2(t1)}
1 +M1(t1) + Z{1−M2(t1)} , (57)

for the reflected wave, and

∆ω(t)

ω
= − M∗1 −M∗2

1−M∗2 cos(λt2)
cos(λt2), (58)

C(t)(t2) =
2Z

1 +M1(t2) + Z{1−M2(t2)} . (59)
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for the transmitted wave.
In the practical use, it is not convenient to obtain the inverse, tj = T−1

j (·),
numerically. But, fortunately, if the Mach numbers are sufficient small,
|Mj | � 1, the inverse functions can be approximated as

t1 = T−1
1 (t+ x/cd1) ≈ t+ x/cd1,

t2 = T−1
2 (t− x/cd2) ≈ t− x/cd2. (60)

Then, we will have exact expressions for frequency shifts and the stress re-
sponse.

Figure 2 shows a typical time-response of the reflected stress wave for three
impedance ratios. The computations are carried out based on the numerical
inversion for the inverse function. The amplitude of the high frequency carrier
wave is modulated and its amplitude modulation becomes clearer especially
in Fig. 2(c). However, the frequency modulation which is defined by Eq. (56)
is less visible, since the Mach number M∗1 = 0.1 is so small. The amplitude
modulation is caused by the periodic change of the amplitude equation (20)
with its frequency λ of the back and forth motion. Thus, this amplitude
modulation may be a key signal for detecting the interface motion.
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Fig. 2 Typical wave forms for reflected stress wave )1 (
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(c) Z = 0.1

Fig. 2 Typical wave forms for reflected stress wave (λ1+2ν1)−1(cd1/ωu0)σ
(r)
xx1. (l0ω/cd1 =

1 , l0λ/cd1 = 0.1 , cd1/cd2 = 0.5 , x/l0 = −10)

4 Conclusion

A unified mathematical technique for the 1D elastodynamic Doppler effect
by the moving interface has been developed. The exact closed form solution
obtained is valid not only for the arbitrary interface motion, but also for
every wave form. The solution is applied to the case of the standard uniform
motion, and of the back and forth motion. It is shown that the amplitude
modulation takes place when the interface motion is periodic, and reflected
and transmitted waves include not only the Doppler frequency shit, but also
amplitude modulation. The frequency of the amplitude modulation is the
same as that of interface motion. These amplitude and frequency modulations
may be useful information for developing a motion sensor for detecting the
dynamic deformation of solids.
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Compensation of flexible vibrations in
a two-link robot by piezoelectric
actuation

C. Zehetner and J. Gerstmayr

Abstract This paper concerns the active control of flexural vibrations in a
two-link robot consisting of two flexible arms with tip masses. Due to iner-
tial forces of distributed and concentrated masses flexural vibrations occur.
The robot is moving in a horizontal plane, such that gravity is not consid-
ered. In order to compensate the flexible vibrations, piezoelectric actuators
are integrated in the arms. In the framework of linear beam theory, the so-
lution of the shape control problem is derived, i.e. the necessary distribution
of the piezoelectric actuation strains in order to completely compensate the
inertial forces. Assuming that mass distribution, geometrical properties and
the link angles are exactly known by appropriate measurements, the flexible
vibrations can be fully suppressed. If some parameters are not known ex-
actly, remaining vibrations may occur. Numerical simultions are performed
in order to verify the solution of shape control and to study the sensitivity
to uncertainties of the parameters.

1 Introduction

The present paper deals with the control of vibrations in flexible multi-body
systems using piezoelectric actuation [1]. Exemplarily, a two-link robot con-
sisting of two flexible arms with concentrated tip masses is considered, in
which flexible vibrations are caused by inertial forces. In the first step, a so-
lution of the shape control problem is applied, i.e. the distribution of piezo-
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electric actuation strains is derived in order to compensate the inertial forces.
For review on shape control of structures see Irschik [2], applications to elas-
tic structures performing large rigidbody motions have been presented in [3]
- [5].

The shape control solution can be considered as a feed-forward control
strategy: Assuming that the inertial forces are known by appropriate mea-
surement of the link angles and their time-derivatives, the distributed actu-
ating moment is applied by piezoelectric actuation. It turns out that for each
arm at least three spatially distributed actuating moments with different time
responses are needed in order to completely compensate the inertial forces.

If there are uncertainties of the parameters, e.g. the mass distribution or
geometrical properties of the robot are not exactly known, the vibrations
cannot be suppressed completely by means of feed-forward shape control.
In order to verify the derived solution of shape control and to study the
sensitivity to uncertainties of the parameters, numerical simulations have
been implemented within the multibody dynamics simulation code HOTINT
1. The numerical model includes large deformation beam elements for the
robot arms, actuating piezoelectric elements and open loop shape control.
The beam elements are based on specific large deformation beam elements,
which are available for the Bernoulli Euler case [6] and the shear deformable
(Timoshenko) case [7]. Numerical computations are performed with main
goal to find an efficient configuration of patches and to test if the system
shows the desired behavior.

2 Shape control of a moving cantilever beam

In this section, an initially straight laminated elastic beam is considered which
is performing a rigid-body motion in a horizontal plane. Two Cartesian coor-
dinate frames are indroduced: the inertial frame (x0, y0, z0) and the floating
frame (x, y, z) which is fixed to the left end B of the beam. The motion is as-
sumed to take place in the plane (x0, z0) which is parallel to the plane (x, z).
For the notion of a floating frame of reference, see Shabana [8]. The rigid-
body motion is determined by the coordinates x0

B = x0
B(t) and z0

B = z0
B(t)

of the origin of the floating frame, and its orientation ϕ = ϕ(t) with respect
to the inertial frame. The x-axis of the floating system represents the beam
axis, with respect to which elastic vibrations take place in the (x, z) plane.
The elastic displacement of point P on the beam axis is described by the
extension u = u(x, t) and the deflection w = w(x, t). As external excitations,
a concentrated tip moment Me

y = Me
y (t) and a tip force with the components

F ex = F ex(t) and F ez = F ez (t) are considered.
In the framework of Bernoulli-Euler beam theory, axial stress is assumed

1 http://tmech.mechatronik.uni-linz.ac.at/staff/gerstmayr/hotint.html
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to be predominant, such that the consitututive relations for a laminated beam
consisting of passive and actuating layers are given in the additive form

σxx = E(εxx − ε0
xx), ε0

xx = d31Ez, (1)

where σxx is the axial component of stress, E is an effective Young modu-
lus and ε0

xx is called the axial eigenstrain. In thin piezoelectric layers, the
eigenstrains represent the converse piezoelectric effect, with the piezoelectric
coefficient d31 and the electric field Ez in thickness direction of a layer.

In Zehetner and Irschik [5], the equations of motion for a beam without
tip loads have been derived. Considering the latter, yields

(A11u
′)′ − µ(ü+ 2ẇϕ̇+ wϕ̈− uϕ̇2) = N ′a − qex, (2)

−(D11w
′′)′′ − µ(ẅ + 2u̇ϕ̇− uϕ̈− wϕ̇2) = M ′′a − qez, (3)

x = 0 : u = w = w′ = 0, (4)

x = L :




A11u

′ = F ex +Na
−(D11w

′′)′ = F ez +M ′a
−D11w

′′ = Me
y +Ma

(5)

with the mass per unit length µ = µ(x) =
∫
A(x)

ρ(x)dA. qex and qey are
effective distributed forces per unit length caused by inertial forces, A11 =
A11(x) and D11 = D11(x) are effective beam stiffnesses, Na = Na(x, t) and
Ma = Ma(x, t) represent the actuating force and moment,

qex = −µ(ẍ0
B cosϕ− z̈0

B sinϕ− xϕ̇2),
qez = −µ(ẍ0

B sinϕ+ z̈0
B cosϕ− xϕ̈), (6)

A11 =
∫
A
E dA, D11 =

∫
A
Ez2 dA,

Na =
∫
A
Eε0

xx dA, Ma =
∫
A
Eε0

xxz dA. (7)

The initial-boundary value problem formed by equations (2) - (5) is linear
with respect to the flexible coordinates u and w, ϕ, x0

B and z0
B are considered

as prescribed functions of time. In the following it is assumed that axial
vibrations are so small that they can be neglected.

The solution of shape control for transversal beam vibrations is expressed
as follows: The effective external excitations are compensated, if the right
hand sides of Eqs. (2), (3) and (5) vanish, i.e.

M ′′a = qez, x = L : Ma = −Me
y , M ′a = −F ez . (8)

Integration yields the actuating moment

Ma = −Me
y − F ezL(1− ξ)− L2

∫ 1

ξ

(ξ − ξ)qz(ξ) dξ, ξ = x/L. (9)
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If the motion starts from rest, i.e. w(t = 0) = ẇ(t = 0) = 0, then the elastic
displacements vanish, i.e. w(x, t) = 0. In the following, the solution of shape
control is applied to a two-link robot.

3 Compensation of flexural vibrations in a two-link
robot

Figure 1 shows a two-link robot consisting of two flexible arms with lengths
L1, L2, masses per unit length µ1, µ2 and concentrated masses m1,m2. The
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L , m2 2
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w
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Fig. 1 Two-link robot

effective loads for the two arms read

Arm 1: qez,1 = µ1ξL1ϕ̈1, F ez,1 = m1L1ϕ̈1 +m2hz,1(t) + µ2L2hz,2(t),

Me
y,1 = m2(L1gz,1(t) + L2ϕ̈2) + µ2(

1
2
gz,1(t)L1L

2
2 +

1
3
ϕ̈2L

3
2), (10)

Arm 2: qez,2 = µ2L1gz,1(t) + µ2ξL2ϕ̈2,

F ez,2 = m2L1gz,1(t) +m2L2ϕ̈2, Me
y,2 = 0, (11)

where φ2 = ϕ1 + ϕ2 has been introduced and gx,1, gz,1, gx,2 and gz,2 are
functions of time, determined by the rigid-body motion,

gx,1(t) = ϕ̈1(cosφ2 sinϕ1 − sinφ2 cosϕ1) + ϕ̇2
1(cosφ2cosϕ1 + sinφ2 sinϕ1),

gz,1(t) = ϕ̈1(sinφ2 sinϕ1 + cosφ2 cosϕ1) + ϕ̇2
1(sinφ2cosϕ1 − cosφ2 sinϕ1),

hz,1(t) = −(L1gx,1(t) + L2φ̇
2
2) sinϕ2 + (L1gz,1(t) + L2ϕ̈2) cosϕ2,

hz,2(t) = −(L1gx,1(t) + L2
2 φ̇

2
2 sinϕ2 + (L1gz,1(t) + L2

2 ϕ̈2 cosϕ2. (12)

Inserting Eqs. (10) and (11) into Eq. (9) yields the actuating moments,
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Ma,1(ξ, t) = M̂
(0)
a,1(t)S(0)(ξ) + M̂

(1)
a,1(t)S(1)(ξ) + M̂

(3)
a,1(t)S(3)(ξ), (13)

Ma,2(ξ, t) = M̂
(1)
a,2(t)S(1)(ξ) + M̂

(2)
a,2(t)S(2)(ξ) + M̂

(3)
a,2(t)S(3)(ξ),

with the shape functions

S(0)(ξ) = 1, S(1)(ξ) = 1− ξ, S(2)(ξ) = (1− ξ)2,

S(3)(ξ) = 1
2 (1− ξ)2(ξ + 2), (14)

and the time-dependent amplitudes

M̂
(0)
a,1(t) = M̂

(1)
a,2(t) + M̂

(2)
a,2(t) + M̂

(3)
a,2(t),

M̂
(1)
a,1(t) = L1(m1L1ϕ̈1 +m2hz,1(t) + µ2L2hz,2(t)),

M̂
(3)
a,1(t) = 1

3µ1L
3
1ϕ̈1, M̂

(1)
a,2(t) = −m2(L1gz,1(t) + L2ϕ̈2),

M̂
(2)
a,2(t) = − 1

2gz,1(t)L1µ2L
2
2, M̂

(3)
a,2(t) = − 1

3 ϕ̈2µ2L
3
2. (15)

Equation 13 shows that for each arm the actuating moment is composed of
three parts with different spatial distributions. Spatially distributed actu-
ating moments can be realized e.g. by applying shaped piezoelectric layers
on the arms, cf. Zehetner and Irschik [5], i.e. the width of the piezoelectric
layer coincides with the spatial distribution of the actuating moment. A more
practicable way is to use piezoelectric patches to discretize the distributed
actuating moment, cf. Nader et al. [9].

For the following numerical evaluation it is assumed that the actuating
moments in Eq. (13) are exactly applied to the arms, since main scope of the
numerical simulations is to verify the solution of shape control and to study
the sensitivity to uncertainties of parameters.

4 Numerical modeling of the piezo-beam-element

For the numerical simulation of the piezo-electric actuated robot, a fully
nonlinear beam finite element is utilized. In the following, the equations of
motion of a displacement based finite element, based on the absolute nodal
coordinate formulation (ANCF), see Shabana [8], and implemented according
to Gerstmayr and Irschik [6], are presented. The beam element has been ex-
tended to a formulation based on Reissner’s large deformation rod theory, see
Gerstmayr et al. [7]. The planar ANCF element, containing eight degrees of
freedom, including coupled large bending and axial deformation. According
to the Bernoulli-Euler beam theory, the latter finite element considers arbi-
trary large axial and bending deformation and no shear deformation. The
position vector r of a point at the beam axis, originally placed at x, see Fig-
ure 2, is interpolated by shape functions S and element coordinates q, which
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Fig. 2 Planar ANCF element.

follows as

r = S q, q =
[
r(1)T r′(1)T r(2)T r′(2)T

]T
(16)

with the abbreviation r′ = ∂r
∂x . Here, x ∈ [0, L] denotes the coordinate of the

undeformed beam axis. The shape function matrix Sm is given as,

r = [S1I S2I S3I S4I]q = Smq (17)

where I is the 2 × 2 unit matrix. This interpolation allows coupled bending
and stretching of the beam axis, while shear is not included. The single shape
functions Si are given by

S1 = 1−3
x2

L2
+2

x3

L3
, S2 = x−2

x2

L
+
x3

L2
, S3 = 3

x2

L2
−2

x3

L3
, S4 = −x

2

L
+
x3

L2

4.1 Equations of motion

The weak form of the equations of motion is derived from the Lagrange-
D’Alembert equation,

δWI + δWS − δWE = 0 (18)

in which δWI denotes the virtual work of inertia forces, δWS is the virtual
work of internal (elastic) forces and δWE is the virtual work of external forces.
The mass matrix is determined from the kinetic energy,
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T =
1
2

∫

L

ρAṙT ṙ dx = q̇T
∫ L

0

ρASTmSm dx q̇ = q̇TMq̇ (19)

and is defined by M =
∫ L

0
ρASTmSm dx. Here, A denotes the cross sectional

area of the beam element and ρ is the density. The mass matrix is constant
and can be stored in sparse form. The virtual work of inertia forces (I) and
external forces (E) follow as

δWI = q̈TM δq and δW b
E =

∫

L

AbT δr(x) dx (20)

The virtual work of elastic forces is defined by

δWS =
∫ L

0

A11(ε− ε0)δε+D11(K −K0)δK dx (21)

For details see the paper of Gerstmayr and Irschik [6]. The quantity K,
sometimes denoted as the material measure of curvature, is defined by the
rate of rotation θ of the cross section,

θ′ =
∂θ

∂s

∂s

∂x
= κ

∂s

∂x
= K =

(
r′ × r′′

|r′|2
)T

e3 (22)

The axial strain in the Bernoulli-Euler beam can be split into normal and
bending strain, respectively,

ε = |r′| − 1 and εbend = y K (23)

Eigenstrains are considered by means of the normal strain ε0 and the bend-
ing strain K0. The latter two quantities are utilized to include piezo-electric
actuation in the large deformation beam element. The terms ε0 and K0 are
equivalent to initial stretch and initial curvature in a pre-curved beam ele-
ment. The piezo-electric actuation can be equivalently taken into account by
means of actuating normal forces Na and actuating bending moments Ma,

δWS =
∫ L

0

(A11ε−Na) δε+ (D11K −Ma) δK dx (24)

5 Numerical Examples

In the following we study the motion of a two-link robot, see Figure 3, with tip
mass and piezoelectric control. The dimensions of the robot are lengths of the
arms L1 = L2 = 0.5m, a rectangular cross section with height h = 4.5mm and
width w = 20mm, densityρ = 7850kg/m3, Young’s modulus E = 2e11N/m2
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Fig. 3 Two-link robot with tip mass.

and a tip-mass of 1kg. The material is considered to be linear elastic and no
gravity is acting upon the robot which is moving in the horizontal plane. The
prescribed angles for the two idealized joints are

θ1 = θ2 = 10At3 − 15At4 + 6At5 for t < 1 else θ1 = θ2 = A

with the final angular position A = π/2. Figure 4 shows a comparison of
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Fig. 4 Comparison of midspan deflection of arm 1 without/with shape control

the robot with and without the idealized piezoelectric control showing the
midspan deflection of the first arm in the robot. It is obvious, that by piezo-
electric compensation, no deflections occur during the motion of the robot.
Not obvious from the very beginning, the compensation model which has
been designed for the linearized beam, works for the fully nonlinear simu-
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Fig. 5 Sensitivity of shape control to wrong mass-parameter.
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Fig. 6 Sensitivity of shape control to wrong geometrical parameter

lation of the robot. Without control, the robot arm undergoes moderately
large deformations which include geometrically nonlinear effects.

In a second test of the feed forward control scheme the case of a disturbed
system with an error in the mass is studied. For the comparison of the robot
without control, the idealized controlled robot and the controlled robot with
wrong mass in the feed forward control, which is 20% of the mass in the
dynamical system,, see Figure 5.

In a third test, an error in the length of the first arm is assumed to be of
the size 1%. Figure 6 shows the comparison of the robot without control, the
idealized controlled robot and the controlled robot with wrong length in the
feed forward control.
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6 Conclusions

A solution for the shape control problem of an idealized flexible two-link
robot has been derived, which fully eliminates the vibrations in the moving
robot arms. A numerical model has been set up, which is able to investigate
uncertainties of mass distributions or geometrical dimensions. The numerical
example shows that it is possible to significantly reduce the flexible vibra-
tions with the help of feed-forward shape control, if the system parameters are
well known. It turns out that the proposed solution is moderately sensitive
to mass or geometrical uncertainties. With the implemented numerical simu-
lation code parameter studies can be performed in order to find a reasonable
configuration for an experimental setup.
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The basis of optimal active (static and
dynamic) shape- and stress-control by
means of smart materials

Franz Ziegler

Abstract Vibrations may shorten the lifetime of structures and machines,
cause discomfort in many cases (noise radiation) and are totally unwanted
in precision engineering. The latter requires also static shape control. The
method of unique decomposition of eigenstrains into two constituents, namely
in impotent eigenstrains, that do not cause stress and in the complementary
nilpotent eigenstrains that do not induce any deformation in the linear elas-
tic solid is considered in detail. These two complete classes of eigenstrains
render optimal solutions by keeping shape and stress-control problems well
separated. Assuming a common time function of the dynamic load, a novel
approach is addressed to annihilate the forced vibrations. This optimal bench-
mark solution may serve the purpose in practical application to select prop-
erly shaped actuator patches and the control current.

1 Introduction

The state-of-the-art of active structural control up to 1990 is available in book
form [1], the current one is reflected in [2], with general views collected in [3]
and [4]. Haftka and Adelman [5] used transient thermal strains (eigenstrains)
imposed on the supporting structure for the first time to minimize deviations
of large space structures from their original shape. In [6] an adaptive wing of a
fighter plane is considered. Vibration suppression of rotary wings is analyzed
in [7]. An early summary is provided in [8]. In [9], reviews with emphasis
on piezoelectricity and its application in disturbance sensing and control of
flexible structures are provided, however, the sources of eigenstrain are not
within the scope of this short paper. Nonlinear optimization routines destroy

Franz Ziegler
Vienna University of Technology, Vienna A-1040/E2063, Austria
e-mail: franz.ziegler@tuwien.ac.at
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the comfortable settings in the control of linear vibrations. Linear solutions
of the inverse problem are presented in [10] with a recent review given in
[11]. It is shown that dynamic shape control when based on the annihilation
of the quasi-static portion of the force-induced deformations renders the op-
timal distribution and intensity level of (shaped) actuator patches thereby
fully quieting the vibrations. The controlled structure at rest finally carries
the quasi-static force-induced stresses only. Such benchmark solutions with
unlimited intensity of the actuators understood, serve for the best possible
practical design. In [12] the crucial, unique decomposition of an eigenstrain
tensor, e.g. of piezoelectric strain, is performed by means of the scalar product
measure in Hilbert functional space, rendering its impotent part that does
not produce stress, see also [13] and [14], and its complement, the nilpotent
eigenstrain that renders stresses but does not produce deformation, see [10],
[12] and [15].

2 Suppression of force-induced small vibrations about
an equilibrium state

The generalization of static shape control by means of imposed eigenstrains,
denoted ε∗, to the dynamic shape control can be based on the dynamic gener-
alization of Maysel’s formula, [16], where the dynamic Green’s stress dyadic
of the structure is applied and a convolution in time must be considered.
It is shown below that such a separate solution of the actuator problem is
superfluous, see also [17] and [18].

2.1 Force-induced small vibrations about an
equilibrium state

The dynamic shape control problem is solved by linear methods in [19], by
assigning proper actuator stresses, i.e., transient eigenstresses, assuming the
forced vibrations to be known. They elegantly use an extension of Neumann’s
method in [20], to define directly the properly distributed actuators. The
force load must be considered first. Since mass inertia is taken into account,
conservation of momentum renders the Euler-Cauchy equation of motion,
[21], b is the given transient body force load, if any

divσ + b = ρa , a = u,tt (1)

On part of the boundary, kinematic boundary conditions apply, on the re-
maining part of the surface, the transient traction of the force load is pre-
scribed,
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Γu : u = 0 , Γσ : σ · n = t(n) (2)

Within the validity of both, linearized geometric relations and Hooke’s law,
[21],

εij(F ) =
1
2

(ui,j + uj,i) , εij(F ) = Cijlmσlm (3)

the solution of the force-displacements u(x, t) = u(F ) is determined by Eqs.
(1)-(3). It will be shown that dynamic control of these deformations, produced
by prescribed body forces and surface traction, is achieved by the control of
the much simpler quasi-static solution of the force problem, determined by
the successive equilibrium states of the reduced Eq. (1),

divσ
(F )
(s) + b = 0 (4)

taking into account the prescribed dynamic boundary condition of Eq. (2).
To fully relate the solution to the static shape control, the kinematic bound-
ary condition, see again Eq. (2), is applied as well. With the simplifying
assumption for both, body force and traction to be separable in space and
time, Eq. (4) has to be solved only once and/or all available static solutions
become candidates for dynamic shape control. The directions of the principal
strain axes become time invariant! Since it is common practice in structural
dynamics and modal analysis, to split the response to the force load into its
quasi-static part, already posed by the boundary value problem of Eq. (4),

u(F ) = u
(F )
(s) + u(F )

(d) (5)

the complementary dynamic part in the solution, u(F )
(d) , is considered further.

Subtracting Eq. (4) from Eq. (1) renders the latter in a reduced form. Note
both, the ”body force” b∗(s), determined by substituting Eq. (5) and, conse-
quently recognized as the inertia force of the quasi-static force solution, and
the remaining homogeneous dynamic boundary condition; the kinematic b.c.
still holds true,

divσ
(F )
(d) + b∗(s) = ρu

(F )
(d),tt , b∗(s) = −ρuF(s),tt , Γσ : σ(F )

(d) · n = 0 (6)

2.2 Eigenstrain-induced small vibrations: dynamic
shape control

If impotent eigenstrains (with positive sign) equaling the quasi-static force-
induced strains ε̄∗ij(s)(x) = ε

(F )
ij(s)(x) are imposed, no additional stresses are

produced since the eigenstrain is a compatible one, σ(ε)
(s) = 0. That is a

trivial solution of the homogeneous Eq. (4) with (ε) substituted for the su-
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perscript (F ). The remaining dynamic boundary value problem of the eigen-
strain load is detemined by (homogeneous dynamic boundary conditions are
understood),

divσ
(ε)
(d) + b∗(s) = ρu

(ε)
(d),tt , Γσ : σ(ε)

(d) · n = 0,

u(ε) = u
(ε)
(s) + u(ε)

(d) , u
(ε)
(s) = u

(F )
(s) (7)

Since these impotent eigenstrains reproduce one and the same body force
distribution b∗s as defined in Eq. (6), they render the solution of the dynamic
part of the force problem, Eq. (6). Hence, it can be concluded that the quasi-
static impotent eigenstrain with reversed sign annihilates also the dynamic
part of the force-displacements and, in addition, counteracts the dynamic
stress portion of the force problem. The ideal dynamic shape control thus to-
tally suppresses force-induced vibrations (quiet initial conditions have been
assumed throughout) and leaves the quasi-static force-produced stresses un-
changed. The simple example of the dynamic shape control of a redundant
planar smart ideal truss, Fig. 1, by impotent eigenstrains illustrates this solu-
tion technique based on the quasi-static force response. The mass is lumped
to the nodes, stiffness EA of the member rods is assumed to be constant.
Since the load case is prescribed, we can directly calculate the quasi-static
strains in the smart member rods, [21], and impose these strains as impotent
eigenstrains, thus preserving the quasi-static member forces N (F )

(s) ,

ε
(F )T
(s) = −ε̄∗(s) =

F (t)
100EA

[−11, 89,−37, 15,−74,−49, 61, 54,−87,−39,−39] .

(8)

Fig. 1 Smart truss with
internal and external re-
dundancy (rank 3)

div!
d( )
"( )

+ b s( )
* = #u

d( ), tt
"( ) , u !( ) = u

s( )
!( )

+ u
d( )
!( ) , u

s( )
!( )

= u
s( )
F( ) ; !

tion b
s

*

force problem, Eq. (6). Hence, it can be concluded that the quasi

vibrations (quiet ini
quasi-static force-

eigenstrains illustrates this solution technique based on the quasi
sponse. The mass is lumped to the nodes, stiffness EA
sumed to be con
the quasi-static strains in the smart mem
impotent eigenstrains, thus preserving the quasi-

!
s( )
F( )T

= "! (s)

*
=

F t( )
100EA

–11,  89, – 37,  15, – 74, – 49,  61,  54, – 87,[
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3 The basis of impotent and nilpotent eigenstrain in
Hilbert (energy) space

For a rigorous formulation of the main theorem on eigenstress and eigenstrain,
the Hilbert function space H is introduced [12], [14], as the space of second
rank symmetric tensors where the components are real functions of spatial
coordinates in the function space L2. Assume, that the eigenstrain tensors
are the elements of the Hilbert space. The inner product defines the norm, -
of the eigenstrain ε̄,

(α,β) =
∫

Ω

α · ·C−1 · ·βdV , ‖α‖H =
√

(α,α) , α = β = ε̄ (9)

Mikhlin [22] and [23] identified the first part of Eq. (9) as twice the strain
energy, stored internally in the elastic body if α = β = ε̄. Accordingly,
the space is thus called energy space. For discretized structures, two mutual
orthogonal finite dimensional sub-spaces exist, i. e., any tensor of eigenstrain
ε̄ ∈ H existing in a body can be uniquely decomposed into its impotent ε̄∗

and nilpotent ε̄∗∗ constituents, see [12] and [14],

ε̄ = ε̄∗ + ε̄∗∗ , (ε̄∗, ε̄∗∗) = 0 , σ = −C−1 · · ε̄∗∗ , ε = ε̄∗ (10)

Equation (10) implies: there exists the orthogonal decomposition of the
Hilbert (energy) space H into subspaces Hu and Hσ, see [12], H = Hu⊕Hσ.
Further, the unique decomposition of the space of eigenstrains allows us to
establish the significant properties of eigenstress and deformation induced
by eigenstrain, see again Eq. (10). Consequently, determination of impotent
and nilpotent constituents of eigenstrain imposed on the structure allows in a
general manner the determination of eigenstress and deformation caused by
eigenstrain without straightforwardly solving the appropriate boundary value
problem in linearized elasticity with eigenstrain. Consequently, the static or
quasi-static control problems for load stress and deformation (or displace-
ment) are kept apart just by selecting the proper class of eigenstrains. The
general solution that may be called the basis of all possible impotent strains
in Hu is easily derived by inverting the stiffness matrix, K−1 is the flexibility
matrix. Each column renders, by means of a proper transformation, [24], a
strain distribution in the finite elements or simply in the member rods that
constructs such a base vector. For shells and FEM see [25]. Linear shape
functions in triangular or tetrahedral finite elements render the candidates of
impotent strain tensors constant. In case of higher order elements, a proper
mean strain should be determined, see again [24].
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3.1 Determination of the dimensions of the subspaces
Hu and Hσ of the energy space

The discretized system is composed of N variable types of elements. The
number of independent scalar parameters determining the deformation of an
element of type ”k” is denoted by mk. The number of elements of type ”k”
is denoted by nk. Since Hσ ⊂ H, it can be concluded that elastic strain and
eigenstrain have the identical approximation in any given element (e.g., given
by the shape functions selected for the finite element), thus, it remains valid
for deformation and stress as well. The total number of independent scalar
parameters defining the deformation of the discrete system thus defines the
dimension of space H,

dimH = dimHu + dimHσ =
N∑

k=1

nkmk (11)

The determination of dimHu requires the application of the theorem on eigen-
strain, [12]: the eigenstrain in space H belongs to the subspace Hu iff there
exist such (fictitious) body forces and surface traction that produce in the
same elastic body a deformation that equals the given eigenstrain. Conse-
quently, the number of independent variants of external nodal forces deter-
mines the dimension of subspace Hu. It is obvious, that in the case of a three-
dimensional discrete system, the dimension of subspace Hu is thus given by:
Nn, number of nodes; NR, number of support reactions (NR ≥ 6), cf. with
the size of the flexibility matrix,

dimHu = 3Nn −NR (12)

Using Eqs. (11) and (12) renders at once

dimHσ = dimH − dimHu =
N∑

k=1

nkmk +NR − 3Nn = s (13)

equal to the rank of redundancy of the discrete system: The rank of redun-
dancy s is defined by the number of internal and external forces that cannot
be determined from the system of nodal equilibrium equations, [21]. Note,
for discrete statically determinate structures the dimension of subspace Hσ

is zero. Consequently, stress control by eigenstrain can be performed for re-
dundant systems only, [5].
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3.2 Construction of the basis of nilpotent eigenstrain

For a given truss it is advisable to use the principle of constraint release
rendering forces Rj . Then the equilibrium conditions result for arbitrary
admissible node displacements w in the generalized form, Ski = Skj = Sk is
the axial member force,

Nm∑

k=1

Skεk(w)lk −
NR∑

j=1

Rj ·wj = 0 , ∀w ∈
(
W 1

2 (Ω)
)3

, wj = w(rj) (14)

With a unit vector ekthe strain in a member rod k between nodes numbered
i and j becomes εk(w) = ∆lk/l = (1/lk)(wj −wi) · ek. Hence, denoting the
force acting on the node ”m” on the source side of the attached members by
Fm, Eq. (14) becomes the equilibrium equation in the free-body-diagram,

Nn∑

m=1

Fm ·wm −
NR∑

j=1

Rj ·wj = 0 (15)

Therefore, the determination of statically admissible stresses reduces to the
solution of the nodal equilibrium equations. Subsequently, the nilpotent
eigenstrain can be obtained from the uniaxial Eq. (3). In the course of analy-
sis of the redundant truss, an appropriate basic statically determinate system
is selected, [21]. It means that it is necessary to release the redundant sup-
ports and member rods. We designate the magnitudes of redundant forces
by Xj , j = 1...s, where s is the rank of system redundancy. These forces
in the selected redundant member rods and supports Xj , j = 1...s, form
the (3Nn + s)× 1 column matrix: F T = {0...0, X1...Xs}. Thus, constructing
the influence function of strain ε

Xj
i = S

Xj
i /EiAi, i = 1...Nm, j = 1...s, i.e.,

of eigenstrains due to redundant forces, yields the desired basis of nilpotent
eigenstrains.

Considering a simply supported single field of the truss in Fig. 1, s = 1,
the single nilpotent unit basis is given by

φ(1)
σ =

ε̄∗∗

‖ε̄∗∗‖ =
1

√
2EAl

√
1 +
√

2

(
1√
2
, −1 ,

1√
2
,

1√
2
, −1 ,

1√
2

)
(16)

4 Conclusion

Vibration annihilation is shown to rely on the quasi-static shape control by
imposed impotent eigenstrains. A novel and efficient solution method for
modelling and control of static or quasi-static stress and deformation by
eigenstrain is ilustrated based on the theorem on decomposition of eigen-
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strain, [12] and [14]. A straightforward method for the determination of
the dimensions in energy space of eigenstrain, subspaces of impotent eigen-
strain and nilpotent eigenstrain, for discrete (trusses) or discretized structures
(FEM) is discussed.
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