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Abstract Nanoparticles are small sized (1–100 nm) par-
ticles derived from transition metals, silver, copper, alumi-
num, silicon, carbon and metal oxides that can easily cross 
the blood–brain barrier (BBB) and/or produce damage to the 
barrier integrity by altering endothelial cell membrane per-
meability. However, the influence of nanoparticles on BBB 
integrity is still not well-known. In this investigation, effect 
of nanoparticles derived from Ag, Al and Cu (50–60 nm) on 
BBB permeability in relation to brain edema formation was 
examined in a rat model. Intravenous (30 mg/kg), intraperi-
toneal (50 mg/kg) or intracerebral (20 µg in 10 µL) admin-
istration of Ag, Cu or Al nanoparticles disrupted the BBB 
function to Evans blue albumin (EBA) and radioiodine in rats 
24 h after administration and induced brain edema formation. 
The leakage of Evans blue dye was observed largely in the 
ventral surface of brain and in the proximal frontal cortex. 
The dorsal surfaces of cerebellum showed mild to moderate 
EBA staining. These effects were most pronounced in ani-
mals that received Ag or Cu nanoparticles compared to Al 
nanoparticles through intravenous routes. These observations 
are the first to suggest that nanoparticles can induce brain 
edema formation by influencing BBB breakdown in vivo.
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Introduction

Recently there has been a surge to investigate the effects of 
nanoparticles on biological systems normally present in the 
environment (1–3). These small sized (1 to 100 nm) particles 
have novel properties, which can be highly desirable for appli-
cations within the commercial, medical and environmental 
fields (5,6). Most of these nanoparticles are formed from tran-
sition metals, e.g., silver, copper, aluminum, silicon, carbon 
and metal oxides (1,5). Due to their small sizes, these nano-
particles can either easily cross the blood–brain barrier (BBB) 
and/or produce damage to the barrier integrity by altering 
endothelial cell membrane function (5,6). Intere s tingly, in spite 
of our increased understanding of BBB function, influence of 
nanoparticles on BBB is still largely unknown (9,13,15).

It is quite likely that nanoparticles when reaching the CNS 
compartments may induce profound cellular and molecular 
stress (8) leading to BBB disruption and brain edema forma-
tion through a cascade of secondary cellular and molecular 
events (8,9,12,13). This investigation is focused on the influ-
ence of engineered nanoparticles from metals, e.g., Al, Cu 
and Ag (50–60 nm) on the BBB permeability to protein trac-
ers, brain edema formation and cell injury in a rat model.

Materials and Methods

Animals

Experiments were carried out on Sprague Dawley rats (body 
weight 250 to 350 g) housed at controlled ambient temperature 
(22 ± 1°C) with 12 h light and 12 h dark schedule. Standard 
laboratory diet and tap water were supplied ad libitum before 
and after the experiments. All animal experiments described 
in this review were conducted according to National Institute 
of Health (NIH), United States Government guidelines for 
care, handling and maintenance of animals and approved by 
the Local Institutional Ethics Committee for Animal Care 
and Research.
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Administration of Nanoparticles

Under equithesin anesthesia (3 mL/kg, i.p.), engineered 
nanoparticles from Copper (Cu), Aluminum (Al), or Silver 
(Ag) in the size range of 50 to 60 nm (obtained from US 
Air Force Research Laboratory from Dr Saber Hussain; 
and commercially procured from IoLiTec Ionic Liquids 
Technologies, 79211 Denzlingen, Germany). The nanopar-
ticles were suspended in 0.05% Tween 80 in 0.7% NaCl 
solution (cf 10, 11, 13). This solution was administered 
intravenously (30 mg/kg), intraperitoneally (50 mg/kg) or 
used as cortical superfusion (c.s., 20 µg/10 µL). The Tween 
80 solution alone when injected into the carotid artery does 
not produce any brain or spinal cord pathology (see 11,15). 
The animals were allowed to survive 24 h after the adminis-
tration of nanoparticles.

Blood–Brain Barrier Permeability

The blood–brain barrier (BBB) permeability to Evans blue 
albumin (2% of a sterile solution, 0.3 mL/100 g body weight) 
and radioiodine tracer ([131]-Iodine, either 100 µCi/Kg, or a 
minimum of 0.5 million CPM) given intravenously was 
determined as described earlier (10).

Morphological Investigations

For morphological investigations, the brains were perfused  
in situ with 4% paraformaldehyde preceeded with a brief 
saline rinse (12–14), taken out and photographed. Then 
coronal sections passing through hippocampus, cerebellum 
and brain stem were embedded in paraffin. About 3 µm 
thick sections were cut and stained for standard histological 
stains, e.g., Nissl or Hematoxylin and Eosin and Luxol Fast 
Blue (13).

Brain Edema Formation and Electrolyte Content

Brain water content was measured from the differences in 
the wet and dry weight of the samples (10–14). Volume 
swelling from the differences between brain water content 
was calculated (see 13). Normally, an increase in 1% 
water content represents marked edema formation. After 
obtaining the dry weight, the tissue was processed to 
determine the Na+ and K+ content according to standard 
procedures (4).

Physiological Variables

In some group of animals mean arterial blood pressure 
(MABP) and blood gases including arterial pH were also 
examined using standard procedures (10).

Statistical Analysis

ANOVA followed by Dunnet’s test was used to evaluate 
statistical significance of the data obtained from one control 
group. A p-value <0.05 was considered significant.

Results

Effects on Nanoparticles on the BBB 
Permeability

The Ag, Cu and Al nanoparticles altered the BBB to Evans 
blue albumin and radioiodine in the rats in a highly selective 
and specific manner. The leakage of Evans blue was seen on 
the ventral surface of the brain and in the proximal frontal 
cortex. The dorsal surfaces of cerebellum and the brain stem 
showed mild to moderate Evans blue staining (Fig. 1). The 
effect of Al nanoparticles on the BBB function was much 
less intense compared to Ag and Cu nanoparticles. Intraperitoneal 
administration of nanoparticles had least influence on BBB 
disruption (see Table 1).

Cortical superfusion with nanoparticles resulted in mild 
to moderate opening of the BBB to protein tracers largely to 
be seen on the ipsilateral side. However, the cerebellum and 
dorsal parts of the brain stem showed leakage of Evans blue 
albumin as well. This effect was most pronounced with Ag 
and Cu nanoparticles. The Al nanoparticles showed only 
faint to mild blue staining (Table 1). Intravenous administra-
tion of Al, Cu and Ag nanoparticles induced extravasation of 
Evans blue and radioiodine tracer in different brain areas 
(Table 1). There was no difference in radiotracer extravasa-
tion when the nanoparticles were administrated as a suspen-
sion in water or mixed with Tween 80 (results not shown). 
Tween 80 or NaCl given in equimolar concentration did not 
induce radiotracer extravasation in any brain regions com-
pared to control group.

Nanoparticles and Edema Formation

Intravenous administration of Cu nanoparticle resulted in 
mild but significant edema formation in different parts of the 
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cortex compared to the control group. Thus, about 0.5% to 
1.2% increase in brain water content was noted in the cingulate, 
pyriform and temporal cortices. Administration of Al nano-
particle induced mild increase in water content compared to 
the controls (see Table 1).

Our data further show that Cu treatment increased Na+ con-
tent in the sample with a slight decrease in K+ content (Table 1). 
Ag treatment also altered ion content in the brain in a similar 
way. Al treatment showed minimum changes in Na+ and K+ 
contents in the brain compared to the control groups (Table 1).

Nanoparticles and Physiological Variables

Administration of nanoparticles either into the jugular vein 
or into the femoral artery slowed the heart rate immediately 
and the respiratory rate was temporarily increased. This 
effect lasted for about 10 min. However, none of the animals 
showed gasping. The effect of Cu and Ag nanoparticles were 
most pronounced on heart rate and respiration compared to 
Al nanoparticles (Table 1).

At the onset of nanoparticle (Cu and Ag) administration, 
the mean arterial blood pressure (MABP) was decreased by 
20 to 30 torr for about 5 to 8 min that recovered partially, but 
remained depressed from the pre-injection value even 90 
min after the nanoparticle injection. The decline in MABP 
following Al nanoparticle was least pronounced (Table 1). 
Arterial PaO

2
 increased slightly after nanoparticle adminis-

tration whereas PaCO
2
 was either unchanged or decreased 

slightly in some animals. The arterial pH was not affected 
significantly (Table 1).

Nanoparticles and Morphological Changes in the Brain

Nerve cell damage in several brain regions showing Evans 
blue extravasation (Fig. 2) was seen following administration 
of Ag and Cu nanoparticles (Fig. 2). Alterations in glial cell 
and myelin also occurred (Fig. 2). These neuropathological 
changes were least affected by Al nanoparticles (Table 1). 
Normal animals that received saline or Tween 80 did not 
show any cell changes in the brain (see Table 1).

Discussion

The present results are the first to suggest that engineered 
nanoparticles from metals when administered systemically 
are able to induce breakdown of the BBB permeability, 
depending on the route of administration and the type of 
nanoparticles. Thus, administration of Ag and Cu nanopar-
ticles intravenously or superfused over the cortical surface 
profoundly induced the breakdown of the BBB to protein 
tracers compared to Al nanoparticles. On the other hand, 
intraperitoneal administration of nanoparticles was least 
effective in BBB disruption. These observations suggest that 

Fig. 1 Shows extravasation of Evans blue on the dorsal (a) and 
ventral (b) surfaces of rat brain after Ag nanoparticle treatment. The 
Ag nanoparticle was administered intravenously (35 mg/kg) and the 
rat is allowed to survive 24 h after injection. Coronal sections of the 
brain passing through hippocampus (c) and caudate nucleus (d) are 
also shown. Leakage of Evans blue dye can be seen in various brain 

regions (arrows). The deeper parts of the brain, e.g. hippocampus, 
caudate nucleus, thalamus, hypothalamus, cortical layers including 
pyriform, cingulate, parietal and temporal cortices, showed moder-
ate blue staining. This indicates widespread leakage of Evans blue 
albumin within the brain after Ag treatment. Bar = 3 mm (modified 
after 9 and 15)
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Fig. 2 Shows loss of myelin and nerve cell damage in rats treated 
with Ag (c, f, h) or Cu (e, g, d) nanoparticles. Luxol fast blue staining 
was done to check myelin loss in nanoparticle treated rats compared to 
controls (Cont a, b). Significant loss of myelin was seen in loss of 
blue-green staining following Ag© and Cu (d) treatment (arrows). The 
areas devoid of luxol fast blue (*) are clearly seen (c, d). Nissl staining  

(e, f, g, h) shows dark and distorted neurons in the hippocampus fol-
lowing Cu (e) or Ag (f) treatment. In the cerebral cortex (g, h) Nissl 
stain showed many dark and distorted neurons following Cu (g) or Ag 
(h) treatment. Dark neurons (arrows), and loss of nerve cells (*) are 
clearly seen in the neuropil. Bar = 60 µm (after Sharma et al., 2009, 
Ref. 15)

the amount of nanoparticles reaching the cerebral circulation 
is largely determining their effects on BBB permeability. 
Obviously, intravenous administration or cortical superfu-
sion exposes the brain microvessels to these nanoparticles 
more effectively compared to their administration through 
intraperitoneal route.

Although, the mechanisms by which nanoparticles 
influence the BBB function are still unclear, it appears that 
nanoparticles depending on their characteristics may induce 
cellular or oxidative stress within the brain microvessels (1, 
8, 15). Cellular or oxidative stress is known to induce release 
of various neurochemicals, cytokines and other neurode-
structive factors, e.g., lipid peroxidation, generation of free 
radicals and nitric oxide (see (9–14)). These neurodestruc-
tive elements may then act on the cerebral microvessels 
either from lumen (when the nanoparticles are administered 
intravenously) or on the abluminal side (in case of cortical 
superfusion with nanoparticles) to disrupt the endothelial 
cell membrane permeability allowing intravascular tracers to 
leak within the brain microfluid environment (13, 15). Our 
investigation thus further suggested that nanoparticles are 
able to disrupt both the blood–brain and brain–blood barriers, 
not reported earlier.

This breakdown of BBB caused by nanoparticles is 
unrelated to the possible hyperosmotic effects of Al, Ag or 

Cu in saline or Tween 80 solution (7, 9, 10). This is appar-
ent from the fact that Tween 80 alone of NaCl solution of 
equimolar concentration did not affect the BBB function. 
Moreover, selective effects of nanoparticles with least BBB 
breakdown by Al nanoparticles compared to Ag and Cu 
also rule out hyperosmotic effects of solutions per se on 
BBB dysfunction (7).

Breakdown of the BBB to protein tracers, e.g., Evans 
blue and radioiodine, leads to vasogenic edema formation 
and subsequent brain damage (12–14). Significant increase 
in brain water and volume swelling in the areas showing 
Evans blue leakage induced by nanoparticles is in line with 
this idea. Alterations in Na+ and K+ content following nano-
particle treatment further support the development of 
vasogenic edema formation (4). When the brain fluid 
microenvironment is altered, then various biochemicals, 
immunological agents, and neurodestructive factors can 
easily be transported from blood to brain. Entry of these 
restricted elements into the fluid microenvironment of the 
brain will thus initiate serious immunological, biochemical, 
and cellular or molecular stress leading to nerve cell, glial 
cell and myelin injury (Sharma HS unpublished observa-
tion). Obviously, leakage of BBB and exposure of neurons, 
glial cells and myelin to exogenous serum factors will 
induce cell reaction in the brain.
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Conclusion

In conclusion, our observations suggest that engineered 
nanoparticles when administered systemically are capable 
to induce BBB disruption, brain edema formation and lead to 
abnormal cell reactions. These effects of nanoparticles on 
brain function are most pronounced with Cu and Ag nanopar-
ticles, compared to Al. It remains to be seen whether nano-
particle-induced brain dysfunction is related to dose and size 
of the nanoparticles. Furthermore, whether this acute exposure 
of nanoparticles will further enhance early neurodegenerative 
changes leading to various brain diseases is unclear and 
currently being investigated in our laboratory.
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