
2 
The virtue of simplicity 

Edward Nelson 

Part I. Technical 

It is known that 1ST (internal set theory) is a conservative extension of 
ZFC (Zermelo-Fraenkel set theory with the axiom of choice); see for example 
the appendix to [2] for a proof using ultrapowers and ultralimits. But these 
semantic constructions leave one wondering what actually makes the theory 
work—what are the inner mechanisms of Abraham Robinson's new logic. Let 
us examine the question syntactically. 

Notational conventions: we use x to stand for a variable and other lowercase 
letters to stand for a sequence of zero or more variables; variables with a prime ' 
range over finite sets; variables with a tilde " range over functions. 

We take as the axioms of 1ST the axioms of ZFC together with the following, 
in which A is an internal formula: 

(T) V *̂t [V^̂ xA -^ VxA], where A has free variables x and the variables of t, 

(I) V^y3xVyGy' A ^ 3xV'V A, 

(S) V"*x3^VA(x,y) -^ 3^*yV'*xA(x,y(x)). 

We have written the standardization principle (S) in functional form and re
quired A to be internal; we call this the restricted standardization principle. 
It can be shown that the general standardization principle is a consequence. 

All functions must have a domain. There is a neat way, using the reflec
tion principle of set theory, to ensure that y has a domain, but let me avoid 
discussion of this point. 

We do not take the predicate symbol standard as basic, but introduce it by 

X is standard ^^ ^^^y[y = ^]-

In this way V̂ * and 3^* are new logical symbols and (I), (S), (T) are logical 
axioms of Abraham Robinson's new logic. 
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28 2. The virtue of simplicity 

For any formula A of 1ST we define a formula A+, called the partial reduc
tion of A. It will always be of the form V *̂u3®*vA* where A* is internal. It is 
defined recursively as follows: 

if A is internal, A+ is A 

(-A)+ is V^*v3^*u-A*(u,v(u)) 

(Ai V A2)+ is V"*uiU23^ViV2[A*i V A^] 

(VxA)+ is V ^ * U 3 ^ W X 3 V G V A * 

(V"*xA)+ is V'^xuWAV 

(We take ->, V, and V as the basic logical operators—the others can be defined 
in terms of them.) It is understood when forming (Ai V A2)~^ that a variant 
may be taken (bound variables changed) to avoid colliding variables. If z 
are the free variables of A, then the reduction of A, denoted by A°, is the 
internal formula 

VU3VVZ3VGVAV 

This is the same as the partial reduction of the closure of A with V̂ * and 3^^ 
replaced by V and 3. 

We need only show that if A is an axiom of 1ST, then A° is a theorem, 
and that for every rule of inference with premise Ai (or premises Ai and A2) 
and conclusion B, if A J is a theorem (or A J and A2 are theorems), then B° is 
a theorem. This turns out to be quite straightforward in the main, but there 
is one exception. When I spoke in Aveiro I thought I could present a truly 
simple syntactical proof of conservativity, but I was mistaken. This remains a 
desirable goal. So the first part of this paper celebrates the virtue of simplicity 
by its absence. 

The complication lies with the rule of detachment, or modus ponens. First 
we need a purely internal lemma. 

Lemma 1 (Cross-section) Let A be internal. Then 

3 W U ' 3 Z V V G V ( U ) A(u,v,z) ^ 3VVU'3ZVUGU'A(u, v(u),z). 

Proof. The backward direction is trivial: let v'(u) = {v(u)}. To prove the 
forward direction, fix v' and let 

o = n 
Then O is the set of all cross-sections of v^ Each v'(u) is a finite set; give it 
the discrete topology, so it is compact. Give f2 the product topology, so it is 
compact by Tychonov's theorem. 
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By hypothesis, for each u' there exists an element v^/ of ̂  such that we have 
3zVuGu'A(u, v(u), z) (let v^f be arbitrary outside u'). The u' are a directed set 
under inclusion, so u' i-̂  v^f is a net in fl. Since ft is compact, this net has a 
limit point v, which has the desired property. D 

Corollary 2 (Dual form of cross-section) Again let A be internal. Then 

Vv'3uVz3vGv^(u) A(u, v, z) ^^ VV3UVZ3UGU' A(u, v(u), z). 

Theorem 3 (Detachment) If A° and (A -^ B)° are theorems, so is B°. 

Proof. Let y be the free variables common to A and B, let w be the remaining 
free variables of A, and let z be the remaining free variables of B. We shall 
derive a contradiction from A°, (A ^ B)°, and ^(B°). These formulas are 

(1) Vuo3v^Vwoyo3voGv[) A*(uo, VQ, WQ, yo) 

(2) VviriBu'^s'^VwiyiziBuiGu'^siGs'^ [-iA*(ui, vi(ui) , w i ,y l ) V 
B*(ri ,si ,yi ,zi)] 

(3) 3r2Vs23y2Z2Vs2GS2^B*(r2,S2,y2,Z2). 

Fix r2 and let ri = r2. (That is, delete 3r2 in (3), replace the variables r2 by 
constants also denoted by r2, delete Vri in (2) and replace each occurrence of 
1*1 by r2.) Now apply choice to (1) to pull out VQ as an existentially quantified 
function VQ of UQ. Notice that (2) has the form of the right hand side of the 
dual form of the cross-section lemma, so replace it by the left hand side. In 
this way we obtain 

(1^ 3v[)Vuozo3voGv[)(uo) A*(uo, VQ, WQ, yo) 

(2') Vv^i3uiSiVzi3uiGUiSiGSiVviGv^i(ui,si) [^A*(ui,vi,wi,yi) V 
B*(r2,si,yi,zi)] 

(30 Vs23z2Vs2GS2^B'(r2,S2,y2,Z2). 

Fix VQ; let v'̂  be defined by v'^(u, s) = VQ(U) for all u and s; fix û^ and s'̂ ; 
let S2 = s^; fix y2 and Z2; let yi = y2 and zi = Z2, and let wi be arbitrary; let 
Wo = wi and zo = 22; fix ui and si; let uo = ui and S2 = si; fix vo; let vi = vo-
Then we have 

( n A-(ui,vo,wi,y2) 

(2^0 -A-(ui ,vo,wi,y2)VB-(r2,si ,y2,Z2) 

(3^0 -B-(r2,si,y2,Z2), 

which is a contradiction. D 
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I have sketched the main step in a syntactical proof of the conservativity 
of 1ST over ZFC. But a better argument is needed, one that gives a practical 
method for converting external proofs into internal proofs. This should be 
possible. Whenever one uses an ideal object, such as an infinitesimal or a 
finite set of unlimited cardinal, it depends on the free variables in only a finite 
way. I expect it to be possible to develop a syntactical procedure that examines 
the external proof and establishes this dependence in an internal fashion. 

Part II. General 

Much of mathematics is intrinsically complex, and there is delight to be 
found in mastering complexity. But there can also be an extrinsic complexity 
arising from unnecessarily complicated ways of expressing intuitive mathemati
cal ideas. Heretofore nonstandard analysis has been used primarily to simplify 
proofs of theorems. But it can also be used to simplify theories. There are 
several reasons for doing this. First and foremost is the aesthetic impulse, to 
create beauty. Second and very important is our obligation to the larger scien
tific community, to make our theories more accessible to those who need to use 
them. To simplify theories we need to have the courage to leave results in sim
ple, external form—fully to embrace nonstandard analysis as a new paradigm 
for mathematics. 

Much can be done with what may be called minimal nonstandard analysis. 
Introduce a new predicate symbol standard applying only to natural numbers^ 
with the axioms: 

(1) 0 is standard, 
(2) if n is standard then n + 1 is standard, 
(3) there exists a nonstandard number, 
(4) if A(0) and if for all standard n whenever A(n) then A(n + 1), then for 
all standard n, A(n). 

A prime example of unnecessary complication in mathematics is, in my 
opinion, Kolmogorov's foundational work on probability expressed in terms of 
Cantor's set theory and Lebesgue's measure theory. A beautiful treatise using 
these methods is [1], but some probabilists find the alternate treatment in [3] 
more transparent. Please do not misunderstand what I am saying; these re
marks are not polemical. Simplicity is not the only virtue in mathematics and I 
wish in no way to discount other approaches to the use of nonstandard analysis 
in probability. I just want to encourage a few others to explore the possibility of 
using minimal nonstandard analysis in probability theory, functional analysis, 
differential geometry, or whatever field engages your passion. 
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In this spirit I shall give a few examples from [3]. A finite probability space 
is a finite set 17 and a strictly positive function pr on f̂  such that 

J2M^) = 1-

(The set Q is finite but we do not require its cardinal to be standard.) An 
event is a subset M of O, and its probability is 

Pr(M) = J2 Pr(^)-
ueM 

A random variable is a function x : O ^ M, and its expectation is 

Ex = y . X{U;)PY(UJ). 

If a G R, we define 

xW(,^) {a)f X _ l ^ ( ^ ) . k ( ^ ) l < ^ 
lO, otherwise. 

A random variable x is L^ in case 

E|x - x̂ ""̂ ! ^ 0 for ah a ^ oc. 

Theorem 4 (Radon-Nikodym) A random variable x is L^ if and only if we 
have E|x| <C oo and for all events M with Pr(M) '2:^{) we have E | X | X M — 0-

Proof. Suppose that x is L-̂ . We have E|x — x^̂ l̂ < 1 for all a ::± oo, so by 
overspill this is true for some a ^ o o . Then E|x| < E|x — x̂ ^̂  
1 + a < o o . Now let Pr(M) ^ 0. Let a ^ oo be such that aPr(7kf) ^ 0—for 
example, let a = l /v^Pr(M). Then 

E|x|xM < E|x(^)|xM + E|x - x^^^lxM < aPr(M) + E|x - x^̂ l̂ c^ 0. 

Conversely, suppose that E|x|<Coo and that for all M with Pr(M) ~ 0 
we have E | X | X M — 0- Let a ^ oo and let M = {|x| > a}. Then we have 
Pr(M) < E |x | / a 2̂  0, so that E | X | X M ^ 0; that is, E|x - x(^)| c^O. D 

A property holds almost everywhere (a.e.) in case for all e^O there in 
an event N with Pr(A^) < e such that the property holds everywhere except 
possibly on N. 

Theorem 5 (Lebesgue) If x and y are L^ and x c::^ y a.e., then Ex ::̂  E?/. 
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Proof. Let z = x—y. Then z 2̂  0 a.e. For ah A > 0 we have Pr({|^| > A}) < A, 
so by overspill this holds for some infinitesimal A. But then 

\z\ < k|X{|z|>A} + A 

and since ^ is L^, E|^| ĉ  0 by the previous theorem. Hence Ex ^ 'Ey. D 

One final example, useful in probability theory but more general. Let / be 
a finite subset of [0,1] of the form 

0 = to < ti • • • < U-i <U = 1 

such that t^ c:^ t^+i for all 0 < yt/ < i/. To the naked eye, / looks just like [0,1]. 
Although / is finite, it is "uncountable" in the following sense: 

T h e o r e m 6 (Cantor) For any sequence x : N ^ I there exists t G I such that 
t is not infinitely close to any Xn with n standard. 

Proof. Construct to by changing the nth decimal digit of x^, so that |to —x^l > 
10~^ for all n. Let t be the greatest element of / that is less than to; then t is 
in / and has the desired property. D 
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