


^ SpringerWienNewYork 



Imme van den Berg 
Vitor Neves (eds.) 

The Strength 
of Nonstandard Analysis 

SpringerWienNewYork 



Imme van den Berg 
Departamento de Matematica 

Universidade de Evora, Evora, Portugal 

Vitor Neves 
Departamento de Matematica 

Universidade de Aveiro, Aveiro, Portugal 

This work is subject to copyright. 
All rights are reserved, whether the whole or part of the material is concerned, specifically those 
of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying 

machines or similar means, and storage in data banks. 
Product Liability: The publisher can give no guarantee for the information contained in this book. 
This also refers to that on drug dosage and application thereof In each individual case the 
respective user must check the accuracy of the information given by consulting other pharma

ceutical literature. 
The use of registered names, trademarks, etc. in this publication does not imply, even in the absence 
of a specific statement, that such names are exempt from the relevant protective laws and regu

lations and therefore free for general use. 
© 2007 Springer-Verlag Wien 

Printed in Germany 
SpringerWienNewYork is part of Springer Science -H Business Media 

springeronline.com 

Typesetting: Camera ready by authors 
Printing: Strauss GmbH, Morlenbach, Germany 

Cover image: Gottfried Wilhelm Freiherr von Leibniz (1646-1716), tinted lithograph 
by Josef Anton Seib. © ONB, Vienna 

Printed on acid-free and chlorine-free bleached paper 
SPIN 11923817 

With 16 Figures 

Library of Congress Control Number 2006938803 

ISBN-10 3-211-49904-0 SpringerWienNewYork 
ISBN-13 978-3-211-49904-7 SpringerWienNewYork 



Foreword 

Willst du ins Unendliche schreiten? 
Geh nur im Endlichen nach alle Seiten! 
Willst du dich am Ganzen erquicken, 
So must du das Ganze im Kleinsten erblicken. 

J. W. Goethe {Gott, Gemiit und Welt, 1815) 

Forty-five years ago, an article appeared in the Proceedings of the Royal 
Academy of Sciences of the Netherlands Series A, 64, 432-440 and Indagationes 
Math. 23 (4), 1961, with the mysterious title "Non-standard Analysis" authored 
by the eminent mathematician and logician Abraham Robinson (1908-1974). 

The title of the paper turned out to be a contraction of the two terms "Non
standard Model" used in model theory and "Analysis". It presents a treatment 
of classical analysis based on a theory of infinitesimals in the context of a 
non-standard model of the real number system R. 

In the Introduction of the article, Robinson states: 

"It is our main purpose to show that the models provide a natural 
approach to the age old problem of producing a calculus involving 
infinitesimal (infinitely small) and infinitely large quantities. As is 
well-known the use of infinitesimals strongly advocated by Leibniz 
and unhesitatingly accepted by Euler fell into disrepute after the 
advent of Cauchy's methods which put Mathematical Analysis on 
a firm foundation". 

To bring out more clearly the importance of Robinson's creation of a rigor
ous theory of infinitesimals and their reciprocals, the infinitely large quantities, 
that has changed the landscape of analysis, I will briefly share with the reader 
a few highlights of the historical facts that are involved. 

The invention of the "Infinitesimal Calculus" in the second half of the sev
enteenth century by Newton and Leibniz can be looked upon as the first funda-
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mental new discovery in mathematics of revolutionary nature since the death 
of Archimedes in 212 BC. The fundamental discovery that the operations 
of differentiation (flux) and integration (sums of infinitesimal increments) are 
inverse operations using the intuitive idea that infinitesimals of higher order 
compared to those of lower order may be neglected became an object of severe 
criticism. In the "Analyst", section 35, Bishop G. Berkeley states: 

"And what are these fluxions? The velocities of evanescent incre
ments. And what are these same evanescent increments? They are 
neither finite quantities, nor quantities infinitesimally small, nor 
yet nothing. May we call them ghosts of departed quantities?" 

The unrest and criticism concerning the lack of a rigorous foundation of the in
finitesimal calculus led the Academy of Sciences of Berlin, at its public meeting 
on June 3, 1774, and well on the insistence of the Head of the Mathematics Sec
tion, J. L. Lagrange, to call upon the mathematical community to solve this 
important problem. To this end, it announced a prize contest dealing with 
the problem of "Infinity" in the broadest sense possible in mathematics.The 
announcement read: 

"The utility derived from Mathematics, the esteem it is held in and 
the honorable name of 'exact science' par excellence, that it justly 
deserves, are all due to the clarity of its principles, the rigor of its 
proofs and the precision of its theorems. In order to ensure the 
continuation of these valuable attributes in this important part of 
our knowledge the prize of a 50 ducat gold medal is for: 

A clear and precise theory of what is known as 'Infinity' in Mathe
matics. It is well-known that higher mathematics regularly makes 
use of the infinitely large and infinitely small. The geometers of 
antiquity and even the ancient analysts, however, took great pains 
to avoid anything approaching the infinity, whereas today's emi
nent modern analysts admit to the statement 'infinite magnitude' 
is a contradiction in terms. For this reason the Academy desires 
an explanation why it is that so many correct theorems have been 
deduced from a contradictory assumption, together with a formula
tion of a truly clear mathematical principle that may replace that 
of infinity without, however, rendering investigations by its use 
overly difficult and overly lengthy. It is requested that the sub
ject be treated in all possible generality and with all possible rigor, 
clarity and simplicity." 
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Twenty-three answers were received before the deadhne of January 1, 1786. 
The prize was awarded to the Swiss mathematician Simon L'Huiher for his 
essay with motto: 

"The infinite is the abyss in which our thoughts are engulfed." 

The members of the "Prize Committee" made the fohowing noteworthy 
points: None of the submitted essays dealt with the question raised "why so 
many correct theorems have been derived from a contradictory assumption?" 
Furthermore, the request for clarity, simplicity and, above all, rigor was not 
met by the contenders, and almost all of them did not address the request for a 
newly formulated principle of infinity that would reach beyond the infinitesimal 
calculus to be meaningful also for algebra and geometry. 

For a detailed account of the prize contest we refer the reader to the interest
ing biography of Lazare Nicolas M. Carnot (1753-1823), the father of the ther-
modynamicist Sadi Carnot, entitled "Lazare Carnot Savant" by Ch. C. Gille
spie (Princeton Univ. Press, 1971), which contains a thorough discussion of 
Carnot's entry "Dissertation sur la theorie de Tinfini mathematique", received 
by the Academy after the deadline. The above text of the query was adapted 
from the biography. 

In retrospect, the outcome of the contest is not surprising. Nevertheless 
around that time the understanding of infinitesimals had reached a more so
phisticated level as the books of J. L. Lagrange and L. N. Carnot published in 
Paris in 1797 show. 

From our present state of the art, it seems that the natural place to look 
for a "general principle of infinity" is set theory. Not however for an "intrinsic" 
definition of infinity. Indeed, as Gian-Carlo Rota expressed not too long ago: 

"God created infinity and man, unable to understand it, had to 
invent finite sets." 

At this point let me digress a little for further clarification about the infinity 
we are dealing with. During the early development of Cantor's creation of set 
theory, it was E. Zermelo who realized that the attempts to prove the existence 
of "infinite" sets, short of assuming there is an "infinite" set or a non-finite 
set as in Proposition 66 of Dedekind's famous "Was sind und was sollen die 
Zahlen?" were fallacious. For this reason, Zermelo in his important paper 
"Sur les ensembles finis et le principe de I'induction complete". Acta Math. 
32 (1909), 185-193 (submitted in 1907), introduced an axiom of "infinity" by 
postulating the existence of a set, say A, non-empty, and that for each of its 
elements x, the singleton {x} is an element of it. 

Returning to the request of the Academy: To discover a property that all 
infinite sets would have in common with the finite sets that would facilitate 
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their use in all branches of mat hematics. What comes to mind is Zermelo's well-
ordering principle. Needless to say that this principle and the manifold results 
and consequences in all branches of mathematics have had an enormous impact 
on the development of mathematics since its introduction. One may ask what 
has this to do with the topic at hand? It so happens that the existence of 
non-standard models depends essentially on it as well and consequently non
standard analysis too. 

The construction of the real number system (linear continuum) by Cantor 
and Dedekind in 1872 and the Weierstrass e-5 technique gradually replaced 
the use of infinitesimals. Hilbert's characterization in 1899 of the real num
ber system as a (Dedekind) complete field led to the discovery, in 1907, by 
H. Hahn, of non-archimedian totally ordered field extensions of the reals. This 
development brought about a renewed interest in the theory of infinitesimals. 
The resulting "calculus", certainly of interest by itself, lacked a process of defin
ing extensions of the elementary and special functions, etc., of the objects of 
classical analysis. It is interesting that Cantor strongly rejected the existence 
of non-archimedian totally ordered fields. He expressed the view that no ac
tual infinities could exist other than his transfinite cardinal numbers and that, 
other than 0, infinitesimals did not exist. He also offered a "proof" in which he 
actually assumed order completeness. 

It took one hundred and seventy-five years from the time of the deadline 
of the Berlin Academy contest to the publication of Robinson's paper "Non
standard Analysis". As Robinson told us, his discovery did not come about as 
a result of his efforts to solve Leibniz' problem; far from it. Working on a paper 
on formal languages where the length of the sentences could be countable, it 
occurred to him to look up again the important paper by T. Skolem "Uber 
die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich oder abzahlbar 
unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen, Fund. Math. 23 
(1934), 150-161*. 

Briefiy, Skolem showed in his paper the existence of models of Peano arith
metic having "infinitely large numbers". Nevertheless in his models the prin
ciple of induction holds only for subsets determined by admissible formulas 
from the chosen formal language used to describe Peano's axiom system. The 
non-empty set of the infinitely large numbers has no smallest element and so 
cannot be determined by a formula of the formal language and is called an 
external set; those that can were baptized as internal sets of the model. 

Robinson, rereading Skolem's paper, wondered what systems of numbers 
would emerge if he would apply Skolem's method to the axiom system of the 
real numbers. In doing so, Robinson immediately realized that the real number 

See also: T. Skolem "Peano's Axioms and Models of Arithmetic", in Symposium on the 
Mathematical Interpretation of Formal Systems, North-Holland, Amsterdam 1955, 1-14. 
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system was a non-archimedian totally ordered field extension of the reals whose 
structure satisfies all the properties of the reals, and that, in particular, the 
set of infinitesimals lacking a least upper bound was an external set. 

This is how it all started and the Academy would certainly award Robinson 
the gold medal. 

At the end of the fifties at Caltech (California Institute of Technology) 
Arthur Erdelyi FRS (1908-1977) conducted a lively seminar entitled "Gener
alized Functions". It dealt with various areas of current research at that time 
in such fields as J. Mikusinski's rigorous foundation of the so-called Heaviside 
operational calculus and L. Schwartz' theory of distributions. In connection 
with Schwartz' distribution theory, Erdelyi urged us to read the just appeared 
papers by Laugwitz and Schmieden dealing with the representations of the 
Dirac-delta functions by sequences of point-functions converging to 0 point-
wise except at 0 where they run to infinity. Robinson's paper fully clarified 
this phenomenon. Reduced powers of M instead of ultrapowers, as in Robin
son's paper, were at play here. In my 1962 Notes on Non-standard Analysis 
the ultrapower construction was used, but at that time without using explicitly 
the Transfer Principle. 

In 1967 the first International Symposium on Non-standard Analysis took 
place at Caltech with the support of the U.S. Office of Naval Research. At the 
time the use of non-standard models in other branches of mathematics started 
to blossom. This is the reason that the Proceedings of the Symposium carries 
the title: Applications of Model Theory to Algebra, Analysis and Probability. 

A little anecdote about the meeting. When I opened the newspaper one 
morning during the week of the meeting, I discovered to my surprise that it had 
attracted the attention of the Managing Editor of the Pasadena Star News; his 
daily "Conversation Piece" read: 

"A Stanford Professor spoke in Pasadena this week on the subject 
'Axiomatizations of Non-standard Analysis which are Conservative 
Extensions of Formal Systems for Standard Classical Analysis', a 
fact which I shall tuck away for reassurance on those days when I 
despair of communicating clearly." 

I may add here that from the beginning Robinson was very interested in 
the formulation of an axiom system catching his non-standard methodology. 

Unfortunately he did not live to see the solution of his problem by E. Nelson 
presented in the 1977 paper entitled "Internal Set Theory". A presentation by 
Nelson, "The virtue of Simplicity", can be found in this book. 

A final observation. During the last sixty years we have all seen come 
about the solutions of a number of outstanding problems and conjectures. 
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some centuries old, that have enriched mathematics. The century-old problem 
to create a rigorous theory of infinitesimals no doubt belongs in this category. 

It is somewhat surprising that the appreciation of Robinson's creation was 
slow in coming. Is it possible that the finding of the solution in model theory, 
a branch of mathematical logic, had something to do with that? 

The answer may perhaps have been given by Augustus de Morgan 
(1806-1871), who is well-known from De Morgan's Law, and who in collabo
ration with George Boole (1805-1864) reestablished formal logic as a branch 
of exact science in the nineteenth century, when he wrote: 

"We know that mathematicians care no more for logic than logicians 
for mathematics. The two eyes of exact sciences are mathematics 
and logic: the mathematical sect puts out the logical eye, the logical 
sect puts out the mathematical eye; each believing that it can see 
better with one eye than with two." 

We owe Abraham Robinson a great deal for having taught us the use of 
both eyes. 

This book shows clearly that we have learned our lesson well. 
All the contributors are to be commended for the way they have made an 

effort to make their contributions that are based on the talks at the meeting 
"Nonstandard Mathematics 2004" as self-contained as can be expected. For 
further facilitating the readers, the editors have divided the papers in categories 
according to the subject. The whole presents a very rich assortment of the non
standard approach to diverse areas of mathematical analysis. 

I wish it many readers. 

Wilhelmus A. J. Luxemburg 
Pasadena, California 
September 2006 
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Foundations 



1 
The strength of nonstandard analysis 

H. Jerome Keisler 

Abstract 
A weak theory nonstandard analysis, with types at all finite levels over 
both the integers and hyperintegers, is developed as a possible framework 
for reverse mathematics. In this weak theory, we investigate the strength 
of standard part principles and saturation principles which are often used 
in practice along with first order reasoning about the hyperintegers to 
obtain second order conclusions about the integers. 

1.1 Introduction 

In this paper we revisit the work in [5] and [6], where the strength of 
nonstandard analysis is studied. In those papers it was shown that weak 
fragments of set theory become stronger when one adds saturation principles 
commonly used in nonstandard analysis. 

The purpose of this paper is to develop a framework for reverse mathe
matics in nonstandard analysis. We will introduce a base theory, "weak non
standard analysis" {WNA)^ which is proof theoretically weak but has types 
at all finite levels over both the integers and the hyperintegers. In WNA we 
study the strength of two principles that are prominent in nonstandard analy
sis, the standard part principle in Section 1.6, and the saturation principle in 
Section 1.9. These principles are often used in practice along with first order 
reasoning about the hyperintegers to obtain second order conclusions about 
the integers, and for this reason they can lead to the discovery of new results. 

The standard part principle (STP) says that a function on the integers 
exists if and only if it is coded by a hyperinteger. Our main results show 
that in WNA^ STP implies the axiom of choice for quantifier-free formulas 
(Theorem 17), STP+saturation for quantifier-free formulas implies choice for 
arithmetical formulas (Theorem 23), and S'TP+saturation for formulas with 
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first order quantifiers imphes choice for formulas with second order quanti
fiers (Theorem 25). The last result might be used to identify theorems that 
are proved using nonstandard analysis but cannot be proved by the methods 
commonly used in classical mathematics. 

The natural models of WNA will have a superstructure over the standard 
integers N, a superstructure over the hyperintegers *N, and an inclusion map 
j : N ^ *N. With the two superstructures, it makes sense to ask whether 
a higher order statement over the hyperintegers implies a higher order state
ment over the integers. As is commonly done in the standard literature on 
weak theories in higher types, we use functional superstructures with types 
of functions rather than sets. The base theory WNA is neutral between the 
internal set theory approach and the superstructure approach to nonstandard 
analysis, and the standard part and saturation principles considered here arise 
in both approaches. For background in model theory, see [2, Section 4.4]. 

The theory WNA is related to the weak nonstandard theory NPRA^ of 
Avigad [1], and the base theory RCAQ for higher order reverse mathematics 
proposed by Kohlenbach [7]. The paper [1] shows that the theory NPRA^ is 
weak in the sense that it is conservative over primitive recursive arithmetic 
[PRA) for 112 sentences, but is still sufficient for the development of much of 
analysis. The theory WNA is also conservative over PR A for 112 sentences, 
but has more expressive power. In Sections 1.11 and 1.12 we will introduce 
a stronger, second order Standard Part Principle, and give some relationships 
between this principle and the theories NPRA^ and RCA^. 

1.2 The theory PRA^ 

Our starting point is the theory PRA of primitive recursive arithmetic, 
introduced by Skolem. It is a first order theory which has function symbols for 
each primitive recursive function (in finitely many variables), and the equality 
relation =. The axioms are the rules defining each primitive recursive function, 
and induction for quantifier-free formulas. This theory is much weaker than 
Peano arithmetic, which has induction for all first order formulas. 

An extension of PRA with all finite types was introduced by Godel [4], and 
several variations of this extension have been studied in the literature. Here 
we use the finite type theory PRA^ as defined in Avigad [1]. 

There is a rich literature on constructive theories in intuitionistic logic that 
are very similar to PRA^ ^ such as the finite type theory HA^ over Heyting 
arithmetic (see, for example, [9]). However, in this paper we work exclusively 
in classical logic. 

We first introduce a formal object Â  and define a collection of formal 
objects called types over N. 
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(1) The base type over N is N. 

(2) If cr, T are types over N^ then cr ^ r is a type over A .̂ 

We now build the formal language L{PRA^). L{PRA^) is a many-sorted 
first order language with countably many variables of each type a over TV, and 
the equality symbol = at the base type N only. It has the usual rules of many-
sorted logic, including the rule 3f\/uf{u) = t{u^...) where n, / are variables 
of type a^a ^ N and t{u,...) is a term of type N in which / does not occur. 

We first describe the symbols and then the corresponding axioms. 
L{PRA^) has the following function symbols: 

• A function symbol for each primitive recursive function. 

• The primitive recursion operator which builds a term R{m, / , n) of type 
N from terms of type N^ N -^ N^ and N. 

• The definition by cases operator which builds a term c{n^ u^ v) of type a 
from terms of type N^ a^ and a. 

• The A operator which builds a term Xv.t of type a ^ r from a variable 
V of type a and a term t of type r . 

• The application operator which builds a term t{s) of type r from terms 
s of type a and t of type a ^ r. 

Given terms r, t and a variable v of the appropriate types, r{t/v) denotes 
the result of substituting tioivinr. Given two terms 5, t of type a, s = t will 
denote the infinite scheme of formulas r{s/v) = r(t/v) where i; is a variable 
of type (J and r{v) is an arbitrary term of type N. = is a substitute for the 
missing equality relations at higher types. 

The axioms for PRA^ are as follows. 

• Each axiom of PR A. 

• The induction scheme for quantifier-free formulas of L{PRA^). 

• Primitive recursion: R{m, / , 0) = m, R{m^ / , s{n)) = f{n, R{m, / , n)). 

• Cases: c(0,n,^') = u, c{s{m)^u,v) = v. 

• Lambda abstraction: {Xu.t){s) = t{s/u). 

The order relations <, < on type TV can be defined in the usual way by 
quantifier-free formulas. 

In [1] additional types cr x r , and term-building operations for pairing and 
projections with corresponding axioms were also included in the language, but 
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as explained in [1], these symbols are redundant and are often omitted in 
the literature. 

On the other hand, in [1] the symbols for primitive recursive functions are 
not included in the language. These symbols are redundant because they can 
be defined from the primitive recursive operator i?, but they are included here 
for convenience. 

We state a conservative extension result from [1], which shows that PRA^ 
is very weak. 

Proposition 1 PRA^ is a conservative extension of PRA, that is, PRA^ and 
PRA have the same consequences in L{PRA). 

The natural model of PRA^ is the full functional superstructure T^(N), 
which is defined as follows. N is the set of natural numbers. Define VA^(N) = N, 
and inductively define /̂̂ -̂̂ -̂(N) to be the set of all mappings from Vo-(N) into 
Vr{N). Finally, V{N) = [j^ K(N) . The superstructure V{N) becomes a model 
of PRA^ when each of the symbols of L(PRA^) is interpreted in the obvious 
way indicated by the axioms. In fact, V{N) is a model of much stronger 
theories than PRA'-^ ̂  since it satisfies full induction and higher order choice 
and comprehension principles. 

1.3 The theory NPRA^ 

In [1], Avigad introduced a weak nonstandard counterpart of PRA^ ^ called 
NPRA^. NPRA^ adds to PRA^ a new predicate symbol S'(-) for the standard 
integers (and S'-relativized quantifiers V*̂ , 3* )̂, and a constant H for an infinite 
integer, axioms saying that S'(-) is an initial segment not containing H and is 
closed under each primitive recursive function, and a transfer axiom scheme 
for universal formulas. In the following sections we will use a weakening of 
NPRA^ as a part of our base theory. 

In order to make NPRA^ fit better with the present paper, we will build the 
formal language L(NPRA^) with types over a new formal object W instead of 
over N. The base type over W is W, and if a^ r are types over W then a ^ r 
is a type over W. 

For each type a over A/", let V be the type over W built in the same way. 
For each function symbol u in L{PRA^) from types a to type r , L{NPRA^) 
has a corresponding function symbol *ix from types *(j to type *T. L{NPRA^) 

also has the equality relation = for the base type W, and the extra constant 
symbol H and the standardness predicate symbol S of type W. 

We will use the following conventions throughout this paper. When we 
write a formula A{v)^ it is understood that iTis a tuple of variables that contains 
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all the free variables of A. If we want to allow additional free variables we write 
A{v^...). We will always let: 

• 771, n , . . . be variables of type TV, 

• X, y , . . . be variables of type W, 

• / , ^ , . . . be variables of type N ^ N. 

To describe the axioms of NPRA^ we introduce the star of a formula of 
L{PRA^). Given a formula A of L{PRA''), a s t a r of ^ is a formula *A of 
L{NPRA^) which is obtained from A by replacing each variable of type a in 
A by a variable of type V in a one to one fashion, and replacing each function 
symbol in A by its star. The order relations on W will be written <, < 
without stars. 

The axioms of NPRA^ are as follows: 

• The star of each axiom of PRA^. 

• S is an initial segment: -^S{H) A VxV^ [S{x) Ay < x ^ '^{v)]-

• S is closed under primitive recursion. 

• Transfer: \f^x *A(f) -^ Vx *A(f), A{m) quantifier-free in L{PRA^). 

It is shown in [1] that if A{m^n) is quantifier-free in L{PRA) and NPRA^ 
proves \J^x3y M(x, y), then PRA proves \lm3n A{rn^ n). It follows that NPRA^ 
is conservative over PRA for 112 sentences. 

The natural models of NPRA^ are the internal structures *F(N), which are 
proper elementary extensions of V{H) in the many-sorted sense, with additional 
symbols S for N and H for an element of *N \ N. 

1.4 The theory WNA 

We now introduce our base theory WNA^ weak nonstandard analysis. The 
idea is to combine the theory PRA^ with types over TV with a weakening of 
the theory NPRA^ with types over W, and form a link between the two by 
identifying the standardness predicate S of NPRA^ with the lowest type N of 
PRA^. In this setting, it will make sense to ask whether a formula with types 
over W implies a formula with types over TV. 

The language L( WNA) of WNA has both types over N and types over W. 
It has all of the symbols of L{PRA^), ah the symbols of L{NPRA^) except the 
primitive recursion operator *i?, and has one more function symbol j which 
goes from type N to type W. 
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We make the axioms of WNA as weak as we can so as to serve as a blank 
screen for viewing the relative strengths of additional statements which arise 
in nonstandard analysis. 

The axioms of WNA are as follows: 

• The axioms of PRA"". 

• The star of each axiom of PR A. 

• The stars of the Cases and Lambda abstraction axioms of PRA'^. 

• S' is an initial segment: ^S{H) A \/x\/y [S{x) Ay < x ^ '^{v)]-

• S is closed under primitive recursion. 

• j maps S onto N: \/x [S{x) ^^ 3mx = j{m)]. 

• Lifting: j{a{m)) = *a(j(m)) for each primitive recursive function a. 

The star of a quantifier-free formula of L{PRA)^ possibly with some vari
ables replaced by H, will be called an internal quantifier-free formula. The 
stars of the axioms of PRA include the star of the defining rule for each prim
itive recursive function, and the induction scheme for internal quantifier-free 
formulas (which we will call internal induction). 

The axioms of NPRA^ that are left out of WNA are the star of the Primitive 
Recursion scheme, the star of the quantifier-free induction scheme of PRA^^ 
and Transfer. These axioms are statements about the hyperintegers which 
involve terms of higher type. 

Note that WNA is noncommittal on whether the characteristic function 
of S exists in type W -^ W, while the quantifier-free induction scheme of 
NPRA^ precludes this possibility. 

In practice, nonstandard analysis uses very strong transfer axioms, and 
extends the mapping j to higher types. Strong axioms of this type will not be 
considered here. 

Theorem 2 WNA + NPRA^ is a conservative extension of NPRA^, that is, 
NPRA"^ and WNA + NPRA"^ have the same consequences in L{NPRA'^). 

Proof. Let M be a model of NPRA"^, and let M^ be the restriction of M to the 
standardness predicate S. Then M^ is a model of PRA. By Proposition 1, the 
complete theory of M^ is consistent with PRA^. Therefore PRA^ has a model 
K whose restriction K^ to type TV is elementarily equivalent to M^. By the 
compactness theorem for many-sorted logic, there is a model Mi elementarily 
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equivalent to M and a model Ki elementarily equivalent to K with an iso
morphism j : Mf ^ K f , such that {Ki.MiJ) is a model of WNA + NPRA^. 
Thus every complete extension of NPRA^ is consistent with WNA + NPRA^, 
and the theorem follows. D 

Corollary 3 WNA is a conservative extension of PRA for 112 formulas. That 
is, if A{m,n) is quantifier-free in L{PRA) and WNA h \/m3nA{m,n), then 
PRA h \/m3n A{m^ n). 

Proof. Suppose WNA h \J'w3nA{m^n). By the Lifting Axiom, WNA h 
M^x^^y *A(x,^). By Theorem 2, NPRA"" h \J^x3^y *A(x,7/). Then PRA h 
^m3nA{m^n) by Corollary 2.3 in [1]. D 

Each model of WNA has a V{H) part formed by restricting to the objects 
with types over N^ and a F(*N) part formed by restricting to the objects with 
types over W. Intuitively, the 1/(N) and y(*N) parts of WNA are completely 
independent of each other, except for the inclusion map j at the zeroth level. 
The standard part principles introduced later in this paper will provide links 
between types N ^ N and {N ^ N) ^ N in the V{N) part and types W 
and W -^ W in the V{*N) part. 

WNA has two natural models, the "internal model" (F(N), *F(N), j ) 
which contains the natural model *T/(N) of NPRA"^, and the "full model" 
(F(N),1/(*N), j ) which contains the fuh superstructure y(*N) over *N. In 
both models, j is the inclusion map from N into *N. The full natural model 
(y(N), l / (*N), i ) of WNA does not satisfy the axioms NPRA"^. In particular, 
the star of quantifier-free induction fails in this model, because the character
istic function of S exists as an object of type ^N ^ ""N. 

1.5 Bounded minima and overspill 

In this section we prove some useful consequences of the WNA axioms. 
Given a formula A{x^...) of L( WW^), the bounded minimum operator 

is defined by 

u = (/ix < y) A{x,...) ^ [u<y/\ (Vx < u)^A{x,...) A [A{u,.. .)\/ u = y]\, 

where n is a new variable. By this we mean that the expression to the left 
of the ^^ symbol is an abbreviation for the formula to the right of the ^^ 
symbol. In particular, if z does not occur in A, [fiz < 1) A{...) is the (inverted) 
characteristic function of A, which has the value 0 when A is true and the 
value 1 when A is false. 

In PRA^ the bounded minimum operator is defined similarly. 
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Lemma 4 Let A^m, n) he a quantifier-free formula of L{PRA) and let a{p, n) 
be the primitive recursive function such that in PR A, 

a{p, n) = {fim < p) A{m^ n). 

Then 

(i) WNA h *a(7/, z) = {fix < y) *A(x, z). 

(a) In WNA, there is a quantifier-free formula B{p^...) such that 

(Vm < p) A{m,...) ^ Bip,...), (Vx < y) *A{x,...) ^ *B{y,...). 

Similarly for {3x < y) *A(x, . . . ) , and u = {fix < y) *A(x,.. .) . 

Proof, (i) By the axioms of WNA^ the defining rule for *a is the star of the 
defining rule for a. 

(ii) Apply (i) and observe that in WNA^ 

(Vx < y) *A(x,...) ^ y = {fix <y) ^*A(x,.. .)• • 

Let us write V^x A{x,...) for Vx [-^S{x) -^ A{x,...)] and 3 ^ x A{x,...) for 
3X[-^S{X)AA{X,...)]. 

Lemma 5 (Overspill) Let A{x,...) be an internal quantifier-free formula. 
In WNA, 

y^xA{x,...)^3'^xA{x,...) and 'i'^x A{x,...) ^ 3^x A{x,...). 

Proof. Work in WNA. If A{H,...) we may take x = H. Assume \/^xA{x,...) 
and -iyl(i7,.. .). By Lemma 4 (ii) we may take u = {fix < H) -iyl(x,. . .) . Then 
^S{u). Let X = u — 1. We have x < n, so A(x , . . . ) . Since S is closed under 
the successor function, ^S{x). D 

We now give a consequence of WNA in the language of PRA which is similar 
to Proposition 4.3 in [1] for NPRA^. Ei-collection in L{PRA) is the scheme 

(VTTT. < p)3nB{m^n,f) -^ 3k{'im < p){3n < k)B{m^n^r) 

where 5 is a formula of L{PRA) of the form 3gC, C quantifier-free. 

Proposition 6 T^i-collection in L{PRA) is provable in WNA. 
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Proof. We work in WNA. By pairing existential quantifiers, we may assume 
that B{m^n^r) is quantifier-free. Assume (Vm < p)3nB{m^n,f). Let *B 
be the formula obtained by starring each function symbol in B and replacing 
variables of type N by variables of type W. 

By the Lifting Axiom and the axiom that S is an initial segment, 

(Vx<p)3S*5(x,^,i(r)). 

Then 
y'^wiyx < p){3y < w) *5(x,^, j ( r ) ) . 

By Lemma 4 and Overspill, 

3^w{yx < p){3y < w) *5(x,y, j ( f )) . 

By the Lifting Axiom again, 

3k{\/m < p){3n < k) B{m^n,r). D 

1.6 Standard parts 

This section introduces a standard part notion which formalizes a construc
tion commonly used in nonstandard analysis, and provides a link between the 
type N ^ N and the type W. 

In type N let (n)^ be the power of the fc-th prime in n, and in type W 
let {x)y be the power of the y-th. prime in x. The function (n, k) \-^ {n)k is 
primitive recursive, and its star is the function (x,?/) i-̂  {'^)y 

Hereafter, when it is clear from the context, we will write t instead of j{t) 
in formulas of L{ WNA). 

Intuitively, we identify j{t) with t, but officially, they are different because 
t has type N while j{t) has type W. This will make formulas easier to read. 
When a term t of type N appears in a place of type W, it really is j{t). 

In the theory WNA^ we say that x is near-standard, in symbols ns{x)^ if 
y^zS{{x)z)' Note that this is equivalent to Vn5'((x)n)- We employ the usual 
convention for relativized quantifiers, so that \/'^^xB means \/x[ns{x) -^ B] 
and 3'^^xB means 3x [ns{x) A B]. We write 

X ^ y a ns(x) A V*̂ ^ {x)z = {y)z' 

This is equivalent to ns{x) /\\/n{x)n = {y)n- We write / = ^x, and say / is 
the standard part of x and x is a lifting of / , if 

ns{x) A\/nf{n) = (x)^. 
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Note that the operation x \-^ ^x goes from type W to type N ^ N. In 
nonstandard analysis, this often allows one to obtain results about functions 
of type N ^ N hy reasoning about hyperintegers of type W. 

Lemma 7 In WNA, suppose that x is near-standard. Then 

(i) If X ^ y then ns{y) and y ^ x. 

(a) {3y < II)x^y. 

Proof, (i) Suppose x ^ y. If S{z) then S{{x)z) and {y)z = (x)^, so S{{y)z)-
Therefore ns{y)^ and y ^ x follows trivially. 

(ii) Let f3 be the primitive recursive function f3{m^n) = Ui^mPi • By 
Lifting and defining rules for (3 and */3, ̂ x\lu\/z [z < u ^ {x)z = (*^('u,x))^]. 
Therefore y'^u^^z{x)z = (*/3(î , x))^, and hence V^ixa: ^ *P{u,x). We have 
\/^w w^ < i / , and by Overspill, there exists w with -^S{w) A w'^ < H. Since 
X is near-standard, M^u [u <,w f\ i^z < u)pz < w\. By Overspill, 

3 ^ ^ [u<w ^{\/z < u)pf^' < w\. 

Let y = ''f3{u, x). Then x ^ y. By internal induction, 

yu [{yz < u)pf^' <w-^ */3(^,x) < w""]. 

Then y<w'^<w'^<H. D 

We now state the Standard Part Principle, which says that every near-
standard X has a standard part and every / has a lifting. 

Standard Part Principle (STP): 

V^^x3/ / = ^x A V/3x / = ^x. 

The following corollary is an easy consequence of Lemma 7. 

Corollary 8 In WNA, STP is equivalent to 

(V^^x < H)3f / = ^x A V/(3x <H)f = ^x. 

The Weak Koenig Lemma is the statement that every infinite binary 
tree has an infinite branch. The work in reverse mathematics shows that many 
classical mathematical statements are equivalent to the Weak Koenig Lemma. 

Theorem 9 The Weak Koenig Lemma is provable in WNA + STP. 
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Proof. Work in WNA + STP. Let B{n) be the formula 

(Vm < n) [{n)m < 3 A (VA: < m) [{n)k = 0 ^ {n)m = 0]]. 

B{n) says that n codes a finite sequence of I's and 2's. Write m < n if 

B{m) A B{n) A m < n A (Vfc < m) [(m)/, > 0 ^ {m)k = (n)^]. 

This says the sequence coded by m is an initial segment of the sequence coded 
by n. Suppose that {n : / ( n ) = 0} codes an infinite binary tree T, that is, 

ym3n [m < n A f{n) = 0] A Vn [/(n) = 0 ^ 5 (n ) A Vm[m < n ^ / (m) = 0]]. 

The formulas B{n) and m <\n are Pi?A-equivalent to quantifier-free formulas, 
which have stars *B{y) and z*<\y. By S'TP, / has a lifting x. By Lemma 4 
and Overspill, 

3°°2/ [*B(j/) A (Vz < z/) [z *< J/ ^ (x) , = 0]]. 

Then ns{y), and by the STP there exists g = ^y. It follows that g codes an 
infinite branch of T. D 

The next proposition gives a necessary and sufficient condition for STP in 
WNA + NPRA^. Let 0 be a variable of type W -^ W, and write / C 0 for 
\/nf{n) = (/)(n). 

Proposition 10 In WNA + NPRA"^, STP is equivalent to 

^f^c^f C 0 A V03/ [V^xS((/)(x)) ^ / C (/)]. 

Proof. Work in WNA + NPRA"^. Cah the displayed sentence 5 'rP ' . 
Assume ^TP . Take any / . By STP, / has a lifting u. Since (?i, y) i-̂  (n)^ is 

primitive recursive, 3(j)\/y(f){y) = {u)y. Then \/n f{n) = {u)n = 0(n), so / C 0. 
Now take any 0 and assume that \/^x S{(j){x)). Using the star of the 

primitive recursion scheme in NPRA^ ^ there exists ^l) such that \/x(\/y < 
x)(j){y) = {^{x))y. Let u = '^(ii^). We then have (Vy < H) (l){y) = {u)y, 
so \/^y(f){y) = (i^)y. It follows that u is near-standard, and by STP there 
exists / with f = ^u and hence / C 0. 

Now assume S'^P^ Take any / . By STP' there exist (/) with / C 0. As 
before there exists t/j such that Vx(V^ < x) (f){y) — ('0(x))y. Let zx = i^{H). 
Then Vn (i/)n = 0(n) = / ( n ) , so it is a lifting of / . 

Now let u be near-standard. Since {u,y) \-^ {u)y is primitive recursive, 
3(INy(l){y) = {u)y. Then y^xS{(l){x)), so by STP' there exists / with / C 0. 
Then ^n f{n) = ('u)n = 0(n), so / = ^i/. D 
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1.7 Liftings of formulas 

In this section we will define some hierarchies of formulas with variables of 
type N and N ^ N^ and corresponding hierarchies of formulas with variables 
of type W. We will then define the lifting of a formula and show that liftings 
preserve the hierarchy levels and truth values of formulas. 

In the following we restrict ourselves to formulas of L[PRA^) with variables 
of types N and N ^ N. We now introduce a restricted class of terms, the 
basic terms, which behave well with respect to liftings. 

By a basic term over N we mean a term of the form a{ui,... ,Uk) where 
a is a primitive recursive function of k variables and each Ui is either a variable 
n of type TV or an expression of the form / ( n ) . These basic terms capture all 
primitive recursive functionals /3(m, / ) in the sense that there is a basic term 
t(m, / , n) over N which gives the nth value in the computation of /3(m, / ) for 
each input m^ f,n. 

Let QF be the set of Boolean combinations of equations between basic 
terms over N. 

If A G QF, then (Vm < n) A, {3m < n) A, and u = (yux < y) A are 
Pi?^^-equivalent to formulas in QF. 

The set IlJ = Ej of arithmetical formulas is the set of all formulas 
which are built from formulas in QF using first order quantifiers V?7i, 3m and 
propositional connectives. 

For each natural number /c, IÎ _^^ is the set of formulas of the form V/A 
where A G E^, and ^\j^i is the set of formulas of the form 3f A where A ^Ii\. 

We observe that up to Pi?^^-equivalence, 11^ C 11^^^ fl 5]^^^, 11^ is closed 
under finite conjunction and disjunction, and that negations of sentences in 
n^ belong to E^ (and vice versa). 

In the following we restrict our attention to formulas with variables of type 
W. We build a hierarchy of formulas of this kind. 

By a basic term over W we mean a term of the form *Q;(ni,... ,Uk) 
where a is a primitive recursive function of k variables and each Ui is either a 
variable of type W or the constant symbol H. NQF is the set of finite Boolean 
combinations of equations s = t and formulas S{t) where 5,t are basic terms 
over W. Note that the constant symbol H and the predicate symbol S are 
allowed in formulas of NQF, but the symbol j is not allowed. 

The internal quantifier-free formulas are just the formulas B G NQF in 
which the symbol S does not occur. 

Let NUQ = A/'EQ be the set of formulas which are built from formulas in 
NQF using the relativized quantifiers V*̂ , 3^ and propositional connectives. 
Note that the relations ns{x) and x ^ y are definable by A^IIQ formulas. 
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For each natural number fc, A n̂̂ _̂ -̂  is the set of formulas of the form V^^x A 
where A E ^ ^ ^ - ^^^-^i is the set of formulas of the form 3'^^xA where 
A e NUl. 

Up to lyyV^-equivalence, A^n^ C A^n^^^^ ^ ^^k+v ^^k ^^ closed under 
finite conjunction and disjunction, and negations of sentences in Nli^ belong 
to NT>^ (and vice versa). 

We now define the lifting mapping on formulas, which sends 11^ to NU^. 

Definition 11 Let A ( m , / ) be a formula in n^^ where rh, f contain all the 
variables of A, both free and bound. The lifting A{z, x) is defined as follows, 
where z and x are tuples of variables of type W of the same length as m, / . 

• Replace each primitive recursive function symbol in A by its star. 

• Replace each rrii by Zi. 

• Replace each fi{mk) by {xi)z^. 

• Replace each quantifier Wrrii by M^zi, and similarly for 3. 

• Replace each quantifier Mfi by M^^xi, and similarly for 3. 

Lemma 12 (Zeroth Order Lifting) For each formula A(m, f) G Hj, we have 
~A{z,x) G TVng, and 

WNA h ^f = / ^ [A{m, / ) ^ ]4(m, x)]. 

Moreover, if A E QF then A{z,x) is an internal quantifier-free formula. 

Proof. It is clear from the definition that A{z^ x) G A/'HQ, and if A G QF then 
A(z^ x) is an internal quantifier-free formula. In the case that A is an equation 
between basic terms, the lemma follows from the Lifting Axiom. The general 
case is then proved by induction on the complexity of A, using the axiom that 
j maps N onto S. D 

Lemma 13 (First Order Lifting) For each formula A{m^ f) G 11^^ we have 
~A{z, x) G A^n^ and 

WNA + STP h ^f = / ^ [A{m, f) ^ ]4(m, x)]. 

Proof. Zeroth Order Lifting gives the result for fc = 0. The general case follows 
by induction on k, using STP. D 
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1.8 Choice principles in L{PRA^) 

In this section we state two choice principles in the language L{PRA^)^ and 
show that for quantifier-free formulas they are consequences of the Standard 
Part Principle. Given a function g of type Â  ^ AT", let g^'^^ be the function 
^ W ( n ) = ^ ( 2 ^ 3 ^ ) . 

In each principle, F is a class of formulas with variables of types N and 
N ^ N^ and A{m^n^...) denotes an arbitrary formula in F. 

(F, 0)-choice \/m3nA{m^n^...) ^ ^g\lmA{m^g{m)^...). 
(F, l)-choice \fm3f A(m, / , . . . ) ^ 3g\/m A{m, ^ W , . . . ) • 

When F is the set of all quantifier-free formulas of PRA^ ^ [7] calls these 
schemes QF — AC^^^ and QF — AC^'^ respectively. A related principle is 

F-comprehension 3f\/mf(7n) = {/iiz < 1) A{m^...). 

IlQ-comprehension is called Arithmetical Comprehension. The follow
ing well-known fact is proved by pairing existential quantifiers. 

Proposition 14 In PRA"^: 

{Ii\^{))-choice, ili^^Q)-choice, and Arithmetical Comprehension are equivalent; 

ili^^l)-choice is equivalent to {Y^\j^-y^l)-choice, and implies {Y^^j^-^^G)-choice; 

{Jl\^l)-choice is equivalent to (E^^-^, l)-c/ioice and implies {Y^\j^-^^ff)-choice; 

( E L ]̂ , 0)-c/iozce implies IV\-comprehension. 

In PRA^ ^ one can define a subset of N to be a function / such that 
\/nf{n) < 1, and define n G f diS f{n) = 0. With these definitions, (11^,1)-
choice implies Il^-choice and Il^-comprehension in the sense of second order 
number theory (see [8]). 

L e m m a 15 For each internal quantifier-free formula A{x^y^z), 

WNA^^^x^^yA{x,y,z) -^ (3^^^ < H)\f^x A{x,{y),,z). 

Proof. Work in WNA. Assume that y^x3^y A{x^y,z). By Lemma 4, there 
is a primitive recursive function a such that *a{u, z^ w) = {fiv < w) A{u, v, z). 
By internal induction there exists w such that w'^ < H A ^S{w). Then 
y^uS{*a{u^z^w)) and 

\/^x{3y < H){\/u < x) {y)u = *a(ix, £,^i;). 

By internal induction, there exists an x such that -^S{x) and di y < H such 
that (VIA < x) {y)u = *Qf(iA, i", w). It follows that y is near-standard, and by the 
definition of a, (Vn < x) A{u., {y)uj ^)- Then 

i3^'y<H)^^xA{x,iy),,z). D 
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Theorem 16 (QF, 0)-choice is provable in WNA + STP. 

Proof. We work in WNA + STP. Let A(m, n, -F, h) G Q F and assume \/m3n 
A{m^n^r^h). Then A is an internal quantifier-free formula. By STP, h has a 
lifting z. By First Order Lifting, 

A(m, n, F, /i) ^^ A{m, n, F, i*). 

Then \/^u3^v A{u,v,r,z). By Lemma 15, there is a near-standard y such 
that y^u^{u,{y)u,r,z). By S'TP, 3 ^ ^ = ""y. Then by First Order Lifting, 
'imA{m,g{m),f,h). D 

Theorem 17 (QF, l)-c/ioice Z5 provable in WNA + STP. 

Proof. We use {QF, 0)-choice. Let A(m, / , f*, /i) G QF. Assume for simplicity 
that the tuple F is a single variable r. Suppose that \/m3f A{m, f^r^h). By 
the definition of QF formulas, / occurs in A only in terms of the form f{m) 
and / ( r ) . Then 

A(m, / , r, h) ^ B{m, f{m), f{r),r, h) 

where B G QF. Hence \/m3k B{m., {k)m, {k)r, r, h). By (QF, 0)-choice, 

3 / V m 5 ( m , ( / (m))^ , ( / (m))^ , r , / i ) . 

Applying (QF, 0)-choice to the formula yp3qq = (/((p)o))(p)i, we have 

3g\/pg{p) = (/((p)o))(p)i, 

and since (2^3^)o = m and (2^3^)i = n, 

3^VmVn^W(n) = ^(2-3^) = ( / (m) ) , . 

Then Vm5(m,^(^) (m) ,^(^) ( r ) , r , / i ) , and Vm A(m,^(^) ,r , K). D 

1.9 Saturation principles 

We state two saturation principles which formalize methods commonly used 
in nonstandard analysis. In each principle, F is a class of formulas with vari
ables of type W, and A{x,y,u) denotes an arbitrary formula in the class F. 

(F, 0)-saturation V^^iI [\/^x3^y A{x,y,u) -^ 3y\/^xA(x, {y)x,u)]. 
(F, l)-saturation V^^il [\/^x3''^y A{x,y,u) -^ 3y\/^xA{x, {y)x,u)]. 

Note that (F, l)-saturation implies (F, 0)-saturation. (TVH ,̂ l)-saturation 
is weaker than the *nj^-saturation principle in the paper [5]. *n;^-saturation 
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is the same as (TVII^, l)-saturation except that the quantifiers V^ ,̂ 3^^ are 
replaced by V, 3. 

In the rest of this section we prove some consequences of {NQF, 0)-
saturation. 

Proposition 18 Let us write w = st{v) for 

S{v) ^ w = V A ^S{v) ^ w = 0. 

In WNA, (NQF^O)-saturation implies that 

\/x3^'yy'z[{y), = st{{x),)]. 

In WNA + STP, (NQF.O)-saturation implies that 

yx3fym[f{m) = st{{x)m)]-

Proof. Work in WNA. Note that w = st{v) stands for a formula in NQF. 
Take any x. We have y^z3^ww = st{{x)z)- Then by (A^QF, 0)-saturation, 
3yy^z {y)z = st{{x)z)^ and it follows that ns{y). The second assertion follows 
by taking f = ''y. D 

Lemma 19 
WNA h (V^ > l){3w < v^''^)(yx < v) (w):, = {fiu < H) [(y)2-3- = 0]. 

Proof. Use internal induction on v. The result is clear ioi v = 2. Let a{x) = 
{fiu < H) [(y)2^3^ = 0]. Assume the result holds for v^ that is, w < i;^^^A(Vx < 
v){w)x = a{x). Let z = w ^ p v . We have py < v'^ and a{v) < H, so 
z < v^""^ * v^^ < {v + 1)2(^+1)^ and (Wx < v + 1) (^)^ = a{x). This proves 
the result for i; + 1 and completes the induction. D 

Lemma 20 In WNA^ (NQF^O)-saturation implies that for every formula 
A{x,u) e NU^Q, V^^ Î {3y < H)y^x{y)x = {/iz < l)A{x,u). 

Proof. Work in WNA and assume {NQF^ 0)-saturation. Let $ be the set of 
formulas A{x,u) such that y^^u{3y < II)y^x{y)x = {/j,z < l)A{x,u). We 
prove that NUQ ^ $ by induction on quantifier rank. Suppose first that 
A G NQF. Let C{x,w,u) be the formula w = {/j.z < l)A{x,u). Then C is a 
propositional combination of A, it; = 0, and w = 1^ so C G NQF. We clearly 
have y^^uy^x3^wC{x^w,u). By (7VQF, 0)-saturation and Lemma 7 (ii), 

y^'u{3y<H)y^xC{x,{y),,u), 

so A e ^. 
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It is clear that the set of formulas $ is closed under propositional connec
tives. Suppose all formulas of NUQ of quantifier rank at most n belong to $, 
and A{x^u) = 3^wB{x^w^u) where B{x,w,u) G NUQ has quantifier rank at 
most n. There is a formula D{v^u) with the same quantifier rank as B such 
that in WNA, D{2''3'^,u) ^ B{x,w,u). Then D e^.so 

y'''u{3t < H)y^v{t)y = {iiz < l)D{v,u). 

Then 

V^"n(3t < i7)V^xV^^ (t)2-3- = (M^ < l)B{x,w,u). 

Assume that ns{u) and take t as in the above formula. By Lemma 19 there 
exists s such that 

(Vx < H) (5)^ = {^w < H) [(t)2cc3- = 0]. 

It is trivial that \/^x3^yy = (/x^ < l)S'((5)a;). By (7VQF, 0)-saturation and 
Lemma 7, 

{3y < H)\/^x (y), = {^z < 1) S{{s),). 

Thus whenever S{x), 

(y)^ = 0 iff S{{s):,) iff 3^W [(t)2-3- = 0] iff 3^W B{X, W, U). 

It follows that 

V^"S(3y < H)y^x{y)a: = {iiz < l)3^wB{x,w,u), 

so A G $. D 

Theorem 21 In WNA, (NQF^O)-saturation implies {NUQ^O)-saturation. 

Proof. We continue to work in WNA and assume {NQF^ 0)-saturation and 
ns{u). Assume that A(x^y^u) G NUQ and y^x3^yA(x,y^u). There is a for
mula B{v,u) e NU^ with B{2''3y,u) l^A^A-equivalent to A{x,y,u). Applying 
Lemma 20 to 5 , we obtain w such that 

y^v {w)y = {iiz < 1) B{v, u), 

so 

V ^ X V S H 2 - 3 ^ = (M^ < l)A{x,y,u). 

By Lemma 19 there exists w' such that 

(Vx < H) {w% = {iiy < H) [{w)2^^y = 0]. 

Then V'̂ x 74(x, {w')x^ u), and w is near-standard because \/^x3^y v4(x, y^u). D 
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Theorem 22 In WNA, (NQF^O)-saturation implies that for every formula 
A(u) G A^n^; there is a formula B G NQF such that 

Proof. Work in WNA + (A^QF, 0)-saturation. Suppose A G NU^. Then 
there is a least k such that A is equivalent to a formula V^^xC where C is 
a prenex formula in NUQ of quantifier rank k. If C has the form ^^yD, 
the quantifier V y can be absorbed into the quantifier V^^x, contradicting the 
assumption that k is minimal. Suppose C has the form 3^y\/^z D{x^y^z^u) 
and assume that ns{u). Then -iC is equivalent to M^y^^z^D{x^y^z^u). By 
(A^nQ,0)-saturation, ^C is equivalent to 3^^z\l^y^D(x,y,{z)y,u). Then A 
is equivalent to y^^xy^^z3^y D{x^y, {z)y,u). By combining the quantifiers 
yns^yns^^ wc contradict the assumption that k is minimal. Therefore C must 
have the form 3^y B where B G NQF, as required. D 

1.10 Saturation and choice 

In this section we prove results showing that in WNA + STP, saturation 
principles with quantifiers of type W imply the corresponding choice principles 
with quantifiers of type N ^ N. 

Theorem 23 In WNA-\-STP, {NQF,{))-saturation implies Arithmetical Com
prehension. 

Proof. Work in WNA + STP and assume {NQF, 0)-saturation. By Proposi
tion 14, Arithmetical Comprehension is equivalent to (IIQ, 0)-choice. By Theo
rem 21, (A/T[Q, 0)-saturation holds. Let A{ni, n, r, h) be an arithmetical formula 
such that Vm3n A(7n, n, r, h). By STP, h has a lifting u. By First Order Lift
ing, we have \/^x3^y A{x, y, r, u), and A G Nli^. By (A/T[Q, 0)-saturation, there 
exists y such that M^x [S{{y)x) /\A{x, {y)x-, r, u)]. Then y is near-standard, and 
by STP there exists g = ^y. 

By First Order Lifting again, \/mA{m,g{m),f, h). D 

We remark that the axioms of Peano Arithmetic are consequences of Arith
metical Comprehension, so [NQF, 0)-saturation implies Peano Arithmetic. 

Theorem 24 In WNA+STP, {NUl, 0)-saturation implies {III, 0)-choice, and 
{NTi^,0)-saturation implies (Til,, 0)-choice. 

Proof. Work in WNA + STP. For the n^ case, assume (7Vn^,0)-saturation. 
Let A{m, n, f, h) G 11^ and suppose that \/m3nA{m, n, f, h). Now argue as in 
the proof of Theorem 23. The Yi\ case is similar. D 
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Theorem 25 In WNA-\- STP, {NUl,l)-saturation implies {^l_^^,l)-choice. 

Proof. Work in WNA + STP and assume {NU^, l)-saturation. It suffices to 
prove (n^, l)-choice. 

Let v4(m,/, r",/i) G 11^ and suppose that ym3f A{m^ f^r^h). By STP, h 
has a hfting u. By First Order Lifting, y^x3'^^y A{x, y, f, u) and A G NU^. We 
may rewrite this as y^x3'^^y [ns{y) A A{x, y, r, u)] and note that ns{y) A A G 
Nli^. By (A^n^, l)-saturation, there exists y such that 

y^x [ns{{y)^) A A{x, (y)^, f, u)]. 

Applying (TVH ,̂ 0)-saturation to the formula y^x3^zz = {{y)[x)o){x)i^ we get 

a near-standard z such that \/^x {z)x = {{y){x)o){x)i' Then 

y^xy^w{z)2o^3^ = {{y)x)w' 

By STP, there exists g = ""z. Then for each m,n, g^'^\n) = ^(2^3^) = 
{z)2msn = {{y)m)n- Therefore g^'^^ = ^{{y)m) for each m. By First Order 
Lifting, we get the desired conclusion \frn A{m, g^'^\r,u). D 

The literature in reverse mathematics shows that n}-comprehension is 
strong enough for almost all of classical mathematics (see [8]). 

Let us work in WNA -\- STP and aim for n}-comprehension. By The
orem 25, (AT'n ,̂ l)-saturation implies n|-comprehension. By Theorem 22, 
(A^n^, l)-saturation is equivalent to (F, l)-saturation where F is the set of 
formulas of the form M^^v^^w B with B G NQF, so (F, l)-saturation also im
plies n^-comprehension. By Theorem 25 at the next level, (A^n2, l)-saturation 
implies n2-comprehension, which is stronger than the methods used in most 
of classical mathematics. 

1.11 Second order standard parts 

In this section we introduce second order standard parts, which provide a 
link between the second level of F(N) (type {N ^ N) ^ N), and the first 
level of 1/(*N) (type W -^ W) . We will use F,G,... for variables of type 
{N ^ N)^ N, and 0, V^,... for variables of type W -^ W. 

(j) is called near-standard, in symbols ns{(p), if 

\/'''xS{(t){x))A\/x\/y [x^y^ 0(x) = (/)(y)]. 

We write 
0 ^ V̂  if ns((/)) A V^^x 0(x) = ^{x). 
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We write G = ^0, and say that G is the standard part of (f) and that 0 is a 
lifting of G, if 

718(0) A V^^xV/ ["x = / ^ ^{x) = G(/ ) ] . 

Note that the operation 0 i-̂  ^0 goes from type W -^ W to type {N -^ 
N) -^ N. The fohowing lemma is straightforward. 

Lemma 26 If ns{(j)) and (j) ^ i/j then ns{ip) and -0 ^ 0. 

We now state the Second Order Standard Part Principle, which says that 
every near-standard 0 has a standard part and every F has a lifting. 

Second Order Standard Part Principle: 

V "̂(/) 3 F F = > A \/F3(f) F = > . 

By WNA-\-STP{2) we mean the theory WNA plus both the first and second 
order standard part principles. 

We now take a brief look at the consequences of STP{2) in WNA + NPRA^. 
Roughly speaking, in WNA-\-NPRA^, the second order standard part principle 
imposes restrictions of the set of functionals which are reminiscent of construc
tive analysis. Besides the axioms of WNA^ the only axiom of NPRA^ that will 
be used in this section is the star of quantifier-free induction. 

A functional G is continuous if it is continuous in the Baire topology, 
that is, 

V/3nV/i [[(Vm < n) h{m) = / (m)] -^ G{h) = G{f)]. 

Proposition 27 WNA + NPRA"" + STP{2) h\/GG zs continuous. 

Proof. Work in WNA + NPRA"" + STP{2). Suppose G is not continuous at 
/ . Then 

\/n3h [[(Vm < n) h{m) = f{m)] A G{f) ^ G{h)]. 

By STP(2) there are liftings 0 of G and x of / . By Lemma 7 and STP^ 

Vn(3y < H) [[(Vm < n) {y)m = {x)m] A < (̂x) ^ </.(t/)]. 

By the star of QF induction, 

3~w;(3y < H) [[(V« < w) (x)„ = (t/)„] A ,^(x) ^ <t>{y)]. 

But then y ^ x, contradicting the assumption that (j) is near-standard. D 

This result is closely related to Proposition 5.2 in [1], which says that in 
NPRA^ ^ every function / G M ̂  M is continuous. 
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The sentence 

(32) = 3GV/ [G(/) = 0 ^ 3nf{n) = 0] 

played a central role in the paper [7], where many statements are shown to be 
equivalent to (3^) in RCAQ. Similar sentences are prominent in earlier papers, 
such as Feferman [3]. It is well-known that 

PRA"^ h (3^) ^ 3GG is not continuous. 

Corollary 28 WNA + NPRA"^ + STP{2) h ^(B^). 

1.12 Functional choice and (3 ) 

In this section we obtain connections between WNA and two statements 
which play a central role in the paper of Kohlenbach [7], the statement (3-̂ ) 
and the functional choice principle QF — AC^'^. 

In [7], Kohlenbach proposed a base theory RCAQ for higher order reverse 
mathematics which is somewhat stronger than PRA^ ^ and is a conservative 
extension of the second order base theory RCAQ. Its main axioms are the 
axioms of PRA^ and the scheme 

QF - AC''^ : V/3n Aif, n,...)^ 3GWf A{f, GU), • • •) 

where A(/ , n , . . . ) is quantifier-free. 

In [7], the formula A in the QF — AC^'^ scheme is allowed to be an arbitrary 
quantifier-free formula in the language L{PRA^). Here we will make the addi
tional restriction that A{f^ n , . . . ) is in the class QF as defined in Section 1.7, 
that is, A( / , n , . . . ) is a Boolean combination of equations and inequalities be
tween basic terms. These formulas only have variables of type N and N ^ N^ 
and do not have functional variables. 

We show now that QF — AC^'^ restricted in this way follows from WNA 
plus the standard part principles. 

Theorem 29 WNA + STP{2) h QF - AC^'^ 

Proof. Work in WNA + STP(2). Ass\ime\Jf3nA{f,n,m,h). By Zeroth Order 
Lifting, Aix^u^v^z) is an internal quantifier-free formula, and 

^x = f A^z = h ^ [A{f, n, m, h) ^^ A{x^ n, m, z)]. 

By Lemma 4 there is a primitive recursive function a such that 

*a(x, w, V, z) = {fiu < w) A{x^ u^ v, z). 
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By STP^ there exists i 'such that h = ^z. By the Lambda Abstraction axiom, 

3(/)Vx (j){x) = *a(x, i7, m, z). 

Then 
V^^x [S{(l){x)) A A(x, (/)(x), m, i^)]. 

It follows that (j) is near-standard. By STP{2)^ there exists G such that G = ^0. 
Therefore yfA{f,G{f),m,h). D 

One of the advantages of 1/1/7V74 over NPRA^ is that one can add hypotheses 
which produce external functions and still keep the standard part principles. 
The simplest hypothesis of this kind is the following statement, which says 
that the characteristic function of S exists: 

{Is exists) : ^(fNy (j){y) = {fiz < 1) S{y). 

It is clear that 
NPRA'' h ^ ( 1 ^ exists) 

because by the star of quantifier-free induction, V ^ (j){y) = 0 implies 

3y[^S{y)Acl>{y)=0]. 

However, (1^ exists) is true in the full natural model (T/(N), F(*N), j ) of WNA. 
We now connect this principle with the statement (3"^). 

Theorem 30 WNA + STP{2) h (1^ exists) -^ (3^). 

Proof. Work in WNA + STP{2). Let a be the primitive recursive function 
such that *a(x,'u;) = [iiu < w) {x)u = 0. Let 0 be the function l^-, so that 
\Jy(j)[y) = [ijiz < 1) S{y). Then there exists ^jj such that Vx'0(x) = ^(*a(x, H)). 
Observe that 

(/)(*a(x, if)) = 0 ^ 3^u {x)u = 0, 

so '0(x) = 0 ^^ 3^u {x)u = 0. Moreover, \IX%IJ{X) < 2. We show that -0 is 
near-standard. 

Suppose ns{x) and x ^ y. We always have S{(j){x)) since (j){x) < 2. If 
i/j{x) = 0 then there exists u such that S{u) and {x)u = 0, so {y)u = 0 and 
hence ^p{y) = 0. This shows that ns{ilj). By STP{2) there exists G such that 
G = ""il). Consider any / . By STP, f has a lifting x. Then G{f) = 0 iff 
ip{x) = 0 iff 3^u{x)u = 0 iff 3 n / ( n ) = 0, and thus (3^) holds. D 

Let us now go back to Section 1.7 and redefine the set QF of formulas by 
allowing basic terms of the form Gi{fk) in addition to the previous basic terms, 
and redefining the hierarchy H^ by starting with the new QF. Also redefine 
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the set NQF and the hierarchy Nli^ by allowing additional basic terms of the 
form (j)i[xk). When STP{2) is assumed, the lifting lemmas from Section 1.7 
and the results of Section 1.9 can be extended to the larger classes of formulas 
just defined. The hierarchies 11^ and NIlj^ at the next level can now be defined 
in the natural way. One can then obtain the following result, with a proof 
similar to the proofs in Section 1.9. 

Theorem 31 In WNA-\-STP{2), (NUl.O)-saturation implies {Ul,0)-choice, 
and (iVn^, 1)-saturation implies (11^, 1)-choice. 

1.13 Conclusion 

We have proposed weak nonstandard analysis, WNA, as a base theory for 
reverse mathematics in nonstandard analysis. 

In WNA + STP, one can prove: 

The Weak Koenig Lemma, 

(QF, 0)-choice and (QF, l)-choice, 

(A^QF, 0)-saturation implies (IIQ, 0)-choice. 

(iVn^,i)-saturation implies (11^, i)-choice, i = 0,1. 

In WNA + STP{2) one can prove: 

NPRA^ implies VG G is continuous, 

1 '̂ exists implies (3^), 

(7Vn^,z)-saturation implies ( n | , i)-choice, i = 0,1. 

We envision the use of these results to calibrate the strength of particular 
theorems proved using nonstandard analysis. At the higher levels, this could 
give a way to show that a theorem cannot be proved with methods commonly 
used in classical mathematics. 

Look again at the natural models of WNA discussed at the end of Sec
tion 1.4. Let *y(N) be an Hi-saturated elementary extension of V{N) in the 
model-theoretic sense, and consider the internal natural model (y(N),*y(N), j ) 
and the fuh natural model (T^(N), F(*N), j ) . Both of these models satisfy the 
axioms of WNA^ the STP, the statement (3^), and (A^II^, l)-saturation. In 
view of Corollary 28, in the internal natural model the axioms of NPRA^ hold 
and STP{2) fails, while in the full natural model STP{2) holds and the axioms 
of NPRA"^ fail. 
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2 
The virtue of simplicity 

Edward Nelson 

Part I. Technical 

It is known that 1ST (internal set theory) is a conservative extension of 
ZFC (Zermelo-Fraenkel set theory with the axiom of choice); see for example 
the appendix to [2] for a proof using ultrapowers and ultralimits. But these 
semantic constructions leave one wondering what actually makes the theory 
work—what are the inner mechanisms of Abraham Robinson's new logic. Let 
us examine the question syntactically. 

Notational conventions: we use x to stand for a variable and other lowercase 
letters to stand for a sequence of zero or more variables; variables with a prime ' 
range over finite sets; variables with a tilde " range over functions. 

We take as the axioms of 1ST the axioms of ZFC together with the following, 
in which A is an internal formula: 

(T) V *̂t [V^̂ xA -^ VxA], where A has free variables x and the variables of t, 

(I) V^y3xVyGy' A ^ 3xV'V A, 

(S) V"*x3^VA(x,y) -^ 3^*yV'*xA(x,y(x)). 

We have written the standardization principle (S) in functional form and re
quired A to be internal; we call this the restricted standardization principle. 
It can be shown that the general standardization principle is a consequence. 

All functions must have a domain. There is a neat way, using the reflec
tion principle of set theory, to ensure that y has a domain, but let me avoid 
discussion of this point. 

We do not take the predicate symbol standard as basic, but introduce it by 

X is standard ^^ ^^^y[y = ^]-

In this way V̂ * and 3^* are new logical symbols and (I), (S), (T) are logical 
axioms of Abraham Robinson's new logic. 

Department of Mathematics, Princeton University. 
ne l sonOmath .p r ince ton .edu 
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For any formula A of 1ST we define a formula A+, called the partial reduc
tion of A. It will always be of the form V *̂u3®*vA* where A* is internal. It is 
defined recursively as follows: 

if A is internal, A+ is A 

(-A)+ is V^*v3^*u-A*(u,v(u)) 

(Ai V A2)+ is V"*uiU23^ViV2[A*i V A^] 

(VxA)+ is V ^ * U 3 ^ W X 3 V G V A * 

(V"*xA)+ is V'^xuWAV 

(We take ->, V, and V as the basic logical operators—the others can be defined 
in terms of them.) It is understood when forming (Ai V A2)~^ that a variant 
may be taken (bound variables changed) to avoid colliding variables. If z 
are the free variables of A, then the reduction of A, denoted by A°, is the 
internal formula 

VU3VVZ3VGVAV 

This is the same as the partial reduction of the closure of A with V̂ * and 3^^ 
replaced by V and 3. 

We need only show that if A is an axiom of 1ST, then A° is a theorem, 
and that for every rule of inference with premise Ai (or premises Ai and A2) 
and conclusion B, if A J is a theorem (or A J and A2 are theorems), then B° is 
a theorem. This turns out to be quite straightforward in the main, but there 
is one exception. When I spoke in Aveiro I thought I could present a truly 
simple syntactical proof of conservativity, but I was mistaken. This remains a 
desirable goal. So the first part of this paper celebrates the virtue of simplicity 
by its absence. 

The complication lies with the rule of detachment, or modus ponens. First 
we need a purely internal lemma. 

Lemma 1 (Cross-section) Let A be internal. Then 

3 W U ' 3 Z V V G V ( U ) A(u,v,z) ^ 3VVU'3ZVUGU'A(u, v(u),z). 

Proof. The backward direction is trivial: let v'(u) = {v(u)}. To prove the 
forward direction, fix v' and let 

o = n 
Then O is the set of all cross-sections of v^ Each v'(u) is a finite set; give it 
the discrete topology, so it is compact. Give f2 the product topology, so it is 
compact by Tychonov's theorem. 
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By hypothesis, for each u' there exists an element v^/ of ̂  such that we have 
3zVuGu'A(u, v(u), z) (let v^f be arbitrary outside u'). The u' are a directed set 
under inclusion, so u' i-̂  v^f is a net in fl. Since ft is compact, this net has a 
limit point v, which has the desired property. D 

Corollary 2 (Dual form of cross-section) Again let A be internal. Then 

Vv'3uVz3vGv^(u) A(u, v, z) ^^ VV3UVZ3UGU' A(u, v(u), z). 

Theorem 3 (Detachment) If A° and (A -^ B)° are theorems, so is B°. 

Proof. Let y be the free variables common to A and B, let w be the remaining 
free variables of A, and let z be the remaining free variables of B. We shall 
derive a contradiction from A°, (A ^ B)°, and ^(B°). These formulas are 

(1) Vuo3v^Vwoyo3voGv[) A*(uo, VQ, WQ, yo) 

(2) VviriBu'^s'^VwiyiziBuiGu'^siGs'^ [-iA*(ui, vi(ui) , w i ,y l ) V 
B*(ri ,si ,yi ,zi)] 

(3) 3r2Vs23y2Z2Vs2GS2^B*(r2,S2,y2,Z2). 

Fix r2 and let ri = r2. (That is, delete 3r2 in (3), replace the variables r2 by 
constants also denoted by r2, delete Vri in (2) and replace each occurrence of 
1*1 by r2.) Now apply choice to (1) to pull out VQ as an existentially quantified 
function VQ of UQ. Notice that (2) has the form of the right hand side of the 
dual form of the cross-section lemma, so replace it by the left hand side. In 
this way we obtain 

(1^ 3v[)Vuozo3voGv[)(uo) A*(uo, VQ, WQ, yo) 

(2') Vv^i3uiSiVzi3uiGUiSiGSiVviGv^i(ui,si) [^A*(ui,vi,wi,yi) V 
B*(r2,si,yi,zi)] 

(30 Vs23z2Vs2GS2^B'(r2,S2,y2,Z2). 

Fix VQ; let v'̂  be defined by v'^(u, s) = VQ(U) for all u and s; fix û^ and s'̂ ; 
let S2 = s^; fix y2 and Z2; let yi = y2 and zi = Z2, and let wi be arbitrary; let 
Wo = wi and zo = 22; fix ui and si; let uo = ui and S2 = si; fix vo; let vi = vo-
Then we have 

( n A-(ui,vo,wi,y2) 

(2^0 -A-(ui ,vo,wi,y2)VB-(r2,si ,y2,Z2) 

(3^0 -B-(r2,si,y2,Z2), 

which is a contradiction. D 
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I have sketched the main step in a syntactical proof of the conservativity 
of 1ST over ZFC. But a better argument is needed, one that gives a practical 
method for converting external proofs into internal proofs. This should be 
possible. Whenever one uses an ideal object, such as an infinitesimal or a 
finite set of unlimited cardinal, it depends on the free variables in only a finite 
way. I expect it to be possible to develop a syntactical procedure that examines 
the external proof and establishes this dependence in an internal fashion. 

Part II. General 

Much of mathematics is intrinsically complex, and there is delight to be 
found in mastering complexity. But there can also be an extrinsic complexity 
arising from unnecessarily complicated ways of expressing intuitive mathemati
cal ideas. Heretofore nonstandard analysis has been used primarily to simplify 
proofs of theorems. But it can also be used to simplify theories. There are 
several reasons for doing this. First and foremost is the aesthetic impulse, to 
create beauty. Second and very important is our obligation to the larger scien
tific community, to make our theories more accessible to those who need to use 
them. To simplify theories we need to have the courage to leave results in sim
ple, external form—fully to embrace nonstandard analysis as a new paradigm 
for mathematics. 

Much can be done with what may be called minimal nonstandard analysis. 
Introduce a new predicate symbol standard applying only to natural numbers^ 
with the axioms: 

(1) 0 is standard, 
(2) if n is standard then n + 1 is standard, 
(3) there exists a nonstandard number, 
(4) if A(0) and if for all standard n whenever A(n) then A(n + 1), then for 
all standard n, A(n). 

A prime example of unnecessary complication in mathematics is, in my 
opinion, Kolmogorov's foundational work on probability expressed in terms of 
Cantor's set theory and Lebesgue's measure theory. A beautiful treatise using 
these methods is [1], but some probabilists find the alternate treatment in [3] 
more transparent. Please do not misunderstand what I am saying; these re
marks are not polemical. Simplicity is not the only virtue in mathematics and I 
wish in no way to discount other approaches to the use of nonstandard analysis 
in probability. I just want to encourage a few others to explore the possibility of 
using minimal nonstandard analysis in probability theory, functional analysis, 
differential geometry, or whatever field engages your passion. 
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In this spirit I shall give a few examples from [3]. A finite probability space 
is a finite set 17 and a strictly positive function pr on f̂  such that 

J2M^) = 1-

(The set Q is finite but we do not require its cardinal to be standard.) An 
event is a subset M of O, and its probability is 

Pr(M) = J2 Pr(^)-
ueM 

A random variable is a function x : O ^ M, and its expectation is 

Ex = y . X{U;)PY(UJ). 

If a G R, we define 

xW(,^) {a)f X _ l ^ ( ^ ) . k ( ^ ) l < ^ 
lO, otherwise. 

A random variable x is L^ in case 

E|x - x̂ ""̂ ! ^ 0 for ah a ^ oc. 

Theorem 4 (Radon-Nikodym) A random variable x is L^ if and only if we 
have E|x| <C oo and for all events M with Pr(M) '2:^{) we have E | X | X M — 0-

Proof. Suppose that x is L-̂ . We have E|x — x^̂ l̂ < 1 for all a ::± oo, so by 
overspill this is true for some a ^ o o . Then E|x| < E|x — x̂ ^̂  
1 + a < o o . Now let Pr(M) ^ 0. Let a ^ oo be such that aPr(7kf) ^ 0—for 
example, let a = l /v^Pr(M). Then 

E|x|xM < E|x(^)|xM + E|x - x^^^lxM < aPr(M) + E|x - x^̂ l̂ c^ 0. 

Conversely, suppose that E|x|<Coo and that for all M with Pr(M) ~ 0 
we have E | X | X M — 0- Let a ^ oo and let M = {|x| > a}. Then we have 
Pr(M) < E |x | / a 2̂  0, so that E | X | X M ^ 0; that is, E|x - x(^)| c^O. D 

A property holds almost everywhere (a.e.) in case for all e^O there in 
an event N with Pr(A^) < e such that the property holds everywhere except 
possibly on N. 

Theorem 5 (Lebesgue) If x and y are L^ and x c::^ y a.e., then Ex ::̂  E?/. 
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Proof. Let z = x—y. Then z 2̂  0 a.e. For ah A > 0 we have Pr({|^| > A}) < A, 
so by overspill this holds for some infinitesimal A. But then 

\z\ < k|X{|z|>A} + A 

and since ^ is L^, E|^| ĉ  0 by the previous theorem. Hence Ex ^ 'Ey. D 

One final example, useful in probability theory but more general. Let / be 
a finite subset of [0,1] of the form 

0 = to < ti • • • < U-i <U = 1 

such that t^ c:^ t^+i for all 0 < yt/ < i/. To the naked eye, / looks just like [0,1]. 
Although / is finite, it is "uncountable" in the following sense: 

T h e o r e m 6 (Cantor) For any sequence x : N ^ I there exists t G I such that 
t is not infinitely close to any Xn with n standard. 

Proof. Construct to by changing the nth decimal digit of x^, so that |to —x^l > 
10~^ for all n. Let t be the greatest element of / that is less than to; then t is 
in / and has the desired property. D 
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3 
Analysis of various practices of referring in 
classical or non s tandard mathematics 

Yves Peraire 

3.1 In t roduc t ion 

The thesis underlying this text is that the various approaches of mathe
matics, both the conventional or the diverse non standard approaches, pure or 
applied, are characterized primarily by their mode of referring and in particular 
by the more or less important use of the reconstructed reference, the reference 
to the sets and collections, that I will distinguish from the direct reference, 
the reference to the world of the facts in a broad sense. The direct reference, 
in traditional mathematics as well as in non standard mathematics (for the 
main part) is ritually performed in the classical form of modelling, consisting 
in confronting the facts to a small paradise (a set) correctly structured. So the 
discourse on the model acts like a metaphor of the modelized reality. 

I will defend another approach, the relative approach, which consists in 
using the mathematical languages like genuine languages of communication, 
referring directly to the facts, but accepting the usage of the metaphor of 
sets (revelead as such) too strongly culturally established. My thesis will be 
illustrated by the presentation of two articles 

1. A mathematical framework for Dirac's calculus [14]. 

2. Heaviside calculus with no Laplace transform [15]. 

The first one starts with a semantical analysis of Dirac's article introducing 
the Delta function. Dirac said: "(5 is improper, 6^ is more improper". If we give 
it the meaning: "5 is not completely known, and 5^ is less known", it works. 
So it is necessary to translate it in Relative Mathematics' language. We know 
that the non relative attitude consists in the formal affirmation that a model of 
the delta function is perfectly determined in a paradise, a space of generalized 
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functions. The continuation of the metaphor requires to provide the paradise 
with a topology. In the relative approach, we prefer to explore more deeply 
the concepts of a point, infinity, equality with words of relative mathematics. 
Finally the opposition 

N o N STANDARD/STANDARD 

is replaced by the antagonism 
R E L A T I V E / N O N RELATIVE. 

3.2 Generalites sur la referentiation 

Cette conference presente sous un autre angle, en les precisant, certaines 
des idees exposees au congres FILM 2002 et qui paraitront dans [13]. Les consi
derations generales concernant la semantique des langues mathematiques, qui 
sous-tendent mon expose, ne sont pas nouvelles. Toutefois, il est necessaire de 
les reactualiser pour tenir compte des pratiques specifiques des mathematiciens 
non standard. 

On a dit quelquefois que la demarcation entre les diverses pratiques des 
mathematiques non standard, se ferait a partir du materiel linguistique mis 
en oeuvre. En gros, les differentes ecoles non standard parleraient des meme 
choses mais utiliseraient des dialectes differents. 

Nous Savons bien pourtant que le langage des mathematiques, classiques 
ou non standard, est contenu dans le langage du premier ordre du calcul des 
predicats. II est vrai cependant que les differentes ecoles non standard n'uti-
lisent pas la meme partie de ce langage; le seul predicat binaire « • G • » pour 
les classiques, le predicat « • G • » et le predicat unaire « st • » pour I'ecole 
Nelson-Reeb, j'utilise personnellement le predicat « • G • » et un autre predicat 
binaire, le predicat de Wallet « • STZ • ». 

En realite, ces differents choix induisent (autant qu'ils sont induits par) des 
pratiques semantiques differenciees et c'est I'analyse de ce rapport au sens qui 
permet de comprendre la nature des differentes ecoles mathematiques, standard 
ou non standard qu'elles se veuillent appliquees ou se pretendent pures. 

Je distinguerai schematiquement trois mode d'attribution du sens, que je 
designerai par les termes 

- reference directe, 
- reference reconstruite ou 
- reference directe elargie. 
Ce que j'appelle reference directe, c'est la reference aux faits au sens large, 

ne se limitant pas a la description des phenomenes, s'autorisant aussi la des
cription des concepts. C'est en gros le mode de reference des physiciens. 

La reference reconstruite, c'est la reference aux entites mentales stables 
engendrees par le discours en langue mathematique : les ensembles introduits 
formellement par le quantificateur 3, les collections. 
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On pourrait dire que le referent des mathematiques pures consiste essentiel-
lement en ces entites, ejectees a partir des axiomes de la theorie des ensembles. 
Dans les faits, les choses sont beaucoup plus melangees. En effet, meme si elle 
n'est pas mise en avant, la reference au monde des "faits elargis" aux concepts 
naturels, concept d'ensemble, concept naturel de nombre, a une certaine idee 
du fini et de Tinfini, n'est pas absente de la pensee des mathematiciens purs. 
La pratique des mathematiques appliques constitue un pas vers le 3eme mode 
d'attribution du sens ; la modelisation en est la forme la plus classique. Le refe
rent est bien le mode des faits, mais le mode d'expression est systematiquement 
celui de la metaphore, prise dans Tunivers reconstruit. 

Les lignes precedentes illustrent ce que j'entend par referent : « ce a quoi 
le signe linguistique renvoie dans la "realite extra-linguistique" soit Tunivers 
"reel", soit I'univers imaginaire ». Mais de quels signes parlons-nous ? A quelle 
langue appartiennent-ils ? II est tout a fait clair que c'est de la langue de 
communication, 1'anglais ou le frangais, dont je parle et non pas des languages 
bien construites, de ZF de 1ST de RIST ou autre. En realite ces langues sont 
utilisees comme matrices pour produire des entites structurees et egalement 
comme une ecriture abregee de la langue naturelle, une sorte de stenographic. 

La pratique que je vais essayer de decrire maintenant, que j'appelle refe
rence directe elargie, prend acte des pratiques semantiques d'une partie du 
reseau Georges Reeb, les rend explicites et ouvre la voie a une generalisation. 
Ce qui caracterise cette approche, ce n'est pas la double reference — au monde 
des faits d'une part, au monde reconstruit de I'autre — qui est une pratique 
courante des mathematiques appliquees, mais le fait que ce processus de desi
gnation du sens concerne non plus seulement la langue vernaculaire, mais aussi 
la langue mathematique, que Ton se met a pratiquer alors, comme le frangais ou 
I'anglais, en alternant style direct et style metaphorique en quantite variable 
selon ses preferences. Voici deux exemples de pratiques semantiques utilisant 
une metaphore. 

Considerons I'enonce en frangais : « grand pere est mort ». II possede clai-
rement une reference dans le monde des faits. On pent transcrire cet enonce 
par un autre, metaphorique, « grand-pere est au paradis ». 

Admettons maintenant que ces deux enonces disent la meme chose et que 
Ton veuille a partir de I'un ou I'autre explorer plus finement le concept de la 
mort. On pent le faire de plusieurs manieres. La methode la plus directe consiste 
a utiliser le mot « mort » et a preciser encore le concept par I'introduction 
d'autre mots. On pent aussi tenter de « pousser la metaphore » un pen plus 
loin et proposer une description du paradis. Le second exemple provient des 
mathematiques de la physique. 

Le point de depart est Particle de Paul Dirac dans [2], dans lequel est intro-
duite la fonction 5. Si on ne regarde que les formules et les calculs qui figurent 
dans cet article, alors la definition donnee conduit sans nul doute a une contra-
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diction. II reste a expliquer pourquoi, malgre cela, ils ne conduisent pas a des 
absurdite physiques et semblent meme avoir une certaine puissance explicative. 

Le probleme de la contradiction tel qu'il a ete resolu par Laurent 
Schwartz [19] a consiste a parler de la fonction de Dirac, qui relie des grandeurs 
physiques, en termes d'un element d'un paradis repute stir, I'espace des dis
tributions. C'est une metaphore similaire a celle utilisee precedemment pour 
parler de la mort de grand-pere, en effet dans les deux cas 

(a) On veut rendre compte d'une relation entree/sortie : vie/mort d'un 
cote, [valeur 0]/[valeur 1] de I'autre. II y a une breve phase de transition 
de I'etat initial a I'etat final, que Ton ne pent pas decrire. On pense que 
I'etat des choses pendant cette phase doit expliquer le changement d'etat. 

(b) Dans chaque exemple Vindetermination factuelle de la phase de transi
tion est exprimee par une determination dans un univers mythique, qui 
pretend expliquer le phenomene. II faut remarquer toutefois que le mythe 
utilise dans la demarche mathematique est d'une bien plus grande cohe
rence, peut-etre parce que la langue mathematique, qui I'a engendre, est 
exempte d'ambigu'ite. 

(c) II y a dans les deux cas une tentation de pousser trop loin la metaphore. 

La metaphore de I'ensemble des distributions fonctionne assez bien, elle per-
met de faire correspondre a certaines formules posees par Dirac des transcrip
tions acceptables et utilisables mais on sait que certains faits ne sont pas pris 
en compte par ce modele, la multiplication n'est pas permise, I'egalite au sens 
des distributions s'eloigne assez de la realite de I'egalite physique... D'autres 
espaces abstraits, fonctions generalisees de Colombeau, ultrapuissances satu-
rees.. . permettent de tenir un discours formellement coherent sur la multipli
cation des fonctions de Dirac. 

Cependant, malgre la reelle efficacite mathematique de ces modelisations, 
on pent souhaiter une approche plus directe, dans laquelle le champ seman-
tique serait moins encombre par les representations ensemblistes. II ne s'agit 
pas de renoncer completement a ce type de methodes, mais plutot de briser 
rautomatisme du recours a ces dernieres. Ma position sur ce point diverge done 
de celle de Gilles Gaston Granger dans [4] pour qui ce qu'il appelle la sortie 
de Virrationnel ne pent se faire que par Vintroduction d'un espace fonction-
nel. J'ai choisi une approche plus directe du meme probleme; elle commence 
par une analyse semantique du texte de Paul Dirac. Cette analyse permet de 
decouvrir plusieurs faits, qu'il faut introduire dans la description en langue 
mathematique. En voici quelques uns. 

- le point materiel a une epaisseur non nulle, physiquement infinitesimale, 
- la fonction 5 est partiellement indeterminee dans le point. 
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- l'egalite dans les formules de Dirac n' est pas l'egalite classique des en
sembles. 

Notre travail consist era done a introduire, dans une langue bien construite, 
les mots pour exprimer ces faits (par une sorte de traduction de la langue 
naturelle). En ce qui concerne l'egalite de Dirac, I'analyse du texte fait appa-
raitre que Dirac identifie a 6 toute fonction nulle en dehors du point origine et 
d'integrale egale a 1, je donnerais done une definition de l'egalite qui integre ce 
fait. Jusqu'a present, le langage de la theorie relative des ensembles (voir [12]) 
m'a suffi pour fabriquer tout le lexique necessaire. 

Je propose d'appeller MATHEMATIQUES RELATIVES la pratique que je viens 
de decrire. En consequence les mathematiques classiques devront etre quali-
fiees, pour une large part, de non relatives. En guise d'illustration je vais main-
tenant presenter les resultats et la philosophic de deux articles concernant les 
mathematiques de la physique. 

1. A mathematical framework for Dirac's calculus [14]. 

2. Heaviside calculus with no Laplace transform [15]. 

Une partie importante de chacun de ces articles consiste a mettre en place 
une definition ad hoc de l'egalite. 

3.3 Le calcul de Dirac. L'egalite de Dirac 

Une description precise des notions evoquees plus has, niveaux dHmpro-
priete, derivees ohservees, egalite de Dirac est disponible dans [14], chapitres 
1 et 2 ainsi que de nombreux exemples de couples de fonctions Dirac-egales. 
Dans la discussion qui va suivre nous utiliserons des definitions incompletes 
pour ne pas cacher Vessentiel, qui est la philosophic de ce travail. En parti-
culier la definition de Vegalite de Dirac, Definition 4 de la section 2.4, est 
plus complexe. 

Comment justifier les calculs de Dirac? On a compris qu'il fallait recon-
naitre un sens physique a la notion de point, eclairer aussi la signification du 
signe « = » et exprimer cela en langue mathematique. L'etape initiale neces
saire pour y parvenir consiste a introduire des predicats pour dire Vindeternfii-
nation. Cette expression de I'indetermination est cachee dans les formulations 
de Dirac. En effet Considerons I'enonce tire de [2] : 

« Strictly of course, 5{x) is not a proper function of x,... 5\x), 
5"{x) ... are even more discontinuous and less proper than 5{x) 
itself. » 

J'ignore quelle signification precise Dirac donnait au mot « improper », 
cependant si on 1' interprete, en forgant un peu le sens, par « partiellement 
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indetermine », la transcription fonctionne. Par contre, la traduction par le mot 
« anormal » qui a ete donnee dans [3], pent provoquer un bloquage. 

Voici rapidement comment, dans Particle [14], j 'ai exprime les choses. 

1. J'ai utilise le predicat de standardicite relative -SR- pour definir les ni-
veaux d'impropriete. On pourra trouver dans [14], premiere section, la 
definition precise des niveaux d'impropriete. Rapidement, nous dirons 
que plus un objet est impropre moins il est standard. 

2. A tout nombre p j'associe le point analyse Ipl^ c'est un halo dont le 
degre d'infinitesimalite est d'autant plus petit que p est impropre. 

3. Je definis la fonction de Dirac principale S de la maniere suivante : 
(a) Je fixe un infinitesimal hi strictement positif et impropre. 

(b) je pose 5 
1 

2h 
-Indr hi,hi]' 

On obtient pour S le graphe suivant, que Ton pent trouver aussi dans 
les livres de physique. J'ai represente sur le meme graphique la fonction 
echelon de Heaviside, elle vaut 1 pour les valeurs positives de la variable 
et 0 part out ailleurs. 

Figure 3.1: La fonction de Heaviside et sa derivee observee, la fonction de 
Dirac 

Le reflexe de tout mathematicien sera d'observer que ma definition de 5 
n'est pas independante de la valeur de hi. La reponse a cette objection 
necessite une meilleure investigation de la notion d'egalite. 

D 
4. Je definis la Dirac-egalite, » sur un ensemble de fonctions C^ par 

morceaux, standard ou pas, de telle sorte que toute fonction ayant toutes 
ses derivees infinitesimales pour les valeurs appreciables et d'integrale 
infiniment proches de 1 sur tout intervalle [x,y] contenant 0 et ayant des 
bornes appreciables, soit Dirac-egale a la fonction de Dirac principale. 
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5. J'ai defini la derivee observee d'une fonction, standard ou pas, pouvant 
presenter des discontinuites du premier ordre par une formule de la forme 

f^\x) fix + /i) - fix - h) 
2h 

qui, a premiere vue, depend de /z,, ou h est infiniment petit d'un ordre 
de petitesse adapte au niveau d'impropriate de / . Apres avoir pose cette 
definition, 

il est preferable de resister a la tentation de chercher une limite 
quelque-part quand h tend vers 0. 

On repousse ainsi I'intrusion dans le champ semantique d'un objet encom-
brant. La derivee observee de la fonction de Heaviside est precisement notre 
fonction de Dirac principale. On montre facilement que la valeur de /I I est 
Dirac-independante de h : 

deux valeurs distinctes de h donnent des valeurs 
Dirac-egales de la derivee observee. 

Cela repond a I'objection evoquee a I'item 3 et explique aussi pourquoi dans 
la notation de la derivee observee je n'ai pas fait apparaitre I'accroissement h. 
On se convaincra facilement que cette approche donne une description plus 
proche de la realite physique. 

Le chapitre 3 presente les proprietes de base de la derivation observee. 
Parmi celles-ci nous avons : 

Compatibilite avec la derivee classique. 

S i / e s t de r ivab le / = /! '[. 

Linearite au sens de Dirac. 

Si f et g ont le meme niveau d'impropriete, alors 

Formule de Leibniz au sens de Dirac. 

Sous la meme condition sur le niveau d'impropriete, alors 

( / x f f ) l ' [ ^ / x / [ + / [ x < / . 

On trouvera dans [14], section 3 theoreme 4, une formulation d'ecriture plus 
complexe mais qui s'applique aux cas ou les fonctions f et g ont des niveaux 
d'impropriete distincts. 
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On remarquera que ces egalites ne sont pas testees sur des espaces fonction-
nels comme chez Schwartz ou Colombeau et que toutes les multiplications sont 
autorisees. Cela permet de legitimer des formules de physiques ou interviennent 
des Carres de fonction delta, comme celle-ci dans laquelle 5 est la fonction de 
Dirac principale : 

(p + 1)! + 2 

II existe une formule analogue dans [1] dans laquelle 5 est representee dans 
I'espace des fonctions generalisees de Colombeau et ou Tegalite est une egalite 
faible. La formule doit etre modifiee si on utilise une autre fonction de Dirac 
que la fonction de Dirac principale. 

R e m a r q u e s 

J'ai qualifie d'egalite la relation =. On pent preferer voir en cette relation 
une indiscernabilite ou une approximation de ^^quelque chose quelque parf\ Je 
pretends pourtant que la relation de Dirac merite, autant que I'egalite clas-
sique des ensembles, le nom d'egalite. En effet que dit la formule precedente ? 
En dehors du point origine, suppose d'epaisseur radicalement indetectable, et 
pour toute valeur accessible de la variable, les fonctions de part et d'autre 
du signe = ainsi que leur derivees, a tout ordre accessible, prennent des va-
leurs indistinguables a 10~^ pres quelle que soit la valeur de n a laquelle on 
puisse acceder. Les integrales iterees a tout ordre materiellement possible, avec 
des bornes d'integrations de part et d'autre du point 101 sont egalement in
distinguables. On pent dire que deux fonctions Dirac-egales representent des 
phenomenes physiquement identiques. En revanche, si on tourne le regard vers 
le monde des entites, la relation = n'est pas une egalite, c'est une relation 
d'equivalence; mais on sait bien que ce qui est presente comme egalite, dans 
le monde reconstruit, n'est qu'un avatar de I'equivalence logique. 

On remarquera que je n'ai pas hesite, dans ma description du calcul de 
Dirac, a faire usage de I'ensemble des nombres reels, pour parler des grandeurs 
physiques. Je n'ai commence a renoncer a la metaphore ensembliste qu'a partir 
du moment ou elle m'a semble genante. Kinoshita dans [6] et Grenier dans [5] 
ont prefere pour leur part utiliser un ^^ continuum discref\ 

Chacun est libre d^utiliser la quantite et le type de representations ensem-
blistes qui lui plait, chacun a droit a son style propre. 

On remarquera que les formules precedentes parlent en premier lieu de 
faits concernant des grandeurs physiques, pas des ensembles. II vaut mieux 
eviter, bien que cela reste possible, et meme souhaitable, pour d'autres tra-
vaux, d'attribuer un statut ontologique dans la "realite mathematique" aux 
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infinitesimaux de differents niveaux dont on fait usage, cela risque de devenir 
vite desagreable. L'enrichissement du vocabulaire que nous avons realise ici 
avait pour but de rendre plus precis le discours en langue mathematique... 
mais si on tournait les yeux vers les ensembles on pourrait y voir un monde 
d'entites de plus en plus ideales, un paradis etrange d'idealites stratifiees... 

La fonction de Dirac principale est celle que Ton obtient, prenant au serieux 
notre ignorance ce qu'il se passe dans le point ^ 0 ^, quand on applique la 
definition de la derivee observee a la fonction echelon de Heaviside. 

Dans la section suivante, j'utiliserai des fonctions de Dirac a droite de zero 
et de classe C^. Cela pent sembler beaucoup de precisions, pour une fonction 
mal connue a I'origine. Cela pent se justifier de la maniere suivante : dans 
Particle que je vais presenter le but n'est pas de decrire une partie de la realite 
physique mais de donner une plus ample ''^justification^'' pour le concept de Hea
viside d'operateur de derivation, ayant pour inverse un operateur d'integration. 

3.4 Calcul de Heaviside sans transformee de Laplace. 
L'egalite de Laplace 

Comme pour la section precedente, jHnviterai le lecteur a se reporter a un 
article complet, Varticle [15]. C^est la philosophique sous-jacente a cet article 
que je veux presenter ici, je devrai done passer sous silence les demonstrations, 
et meme donner des definitions incompletes. 

Le calcul operationnel, quand on I'applique formellement, sans verifier 
I'existence d'une transformation de Laplace, donne les bonnes solutions. Ces 
solutions elles meme n'ont le plus souvent pas d'integrale de Laplace, du moins 
dans les cas que j 'ai pu traiter. D'autre part on a le sentiment que ces methodes 
ne devraient pas dependre de la convergence de I'integrale de Laplace. Aussi 
ai-je tente (avec succes) de mettre en place une notion damage generalisee qui 
opere meme quand les fonctions en jeu ne sont pas Laplace-transformables. 
Bien sur, ce n'est pas la premiere tentative dans ce sens. Apres le premier tra
vail de Vigneaux public en 1929 dans [20] d'autres auteurs dont recemment, 
Komatsu dans [7], G.Lumer et F. Neubrander dans [8, 9] se sont attaques a ce 
probleme par des methodes classiques. 

L'approche relative permet d'obtenir une solution complete et beaucoup 
plus directe. Les resultats obtenus sont les suivants. 

1. Les diflficultes dues a la divergence de I'integrale de Laplace disparaissent. 

2. Les derivations par rapport aux parametres sont toujours permises. 

3. On pent utiliser des series divergentes comme images generalisees. 

4. Les calculs peuvent faire intervenir des fonctions de Dirac, des peignes de 
Dirac, etc. sans qu'il soit necessaire d'introduire des espaces fonctionnels. 
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5. L'application des methodes de ce calcul de Heaviside rejustifie, aboutit 
a une description plus fine des solutions trouvees. En particulier, si il 
apparait de Tindetermination dans une equation au derivees partielles, 
a cause de la presence d'une fonction delta, alors on retrouve la trace 
de cette indetermination dans les solutions (Voir Texemple 1 plus bas, a 
titre d'illustration). 

Indiquons maintenant plus precisement le chemin suivi. Notre calcul va 
s'appliquer a une classe de bonnes fonctions, par exemple de classe C ^ , mais 
pas necessairement integrables. 

Definition de I'egalite de Laplace 

Contrairement a ma definition de I'egalite de Dirac, dont la description 
s'inspirait de I'observation de I'usage que faisait Dirac de Tegalite, ma definition 
de ce que j'appelle egalite de Laplace n'est pas justifiee par une pratique de 
Laplace. La definition utilise deux niveaux d'improprietes definis au moyen du 
predicat -STZ-. Cette classification permet de definir des ordres de grandeur 
relatifs dans M. 

Nous connaissons les definitions suivantes. 
Un nombre x est infinitesimal et on ecrit x ^ 0 si 

M'^e > 0 \x\< e. (1) 

Le nombre x est infiniment grand et on ecrit x ~ +oo si 

V"̂ / \x\ > l. (10 

Nous dirons maintenant qu'un nombre x est un infinitesimal relatif, et nous 
ecrirons x ^ 0, si 

V^^% > 0 \x\< e. (2) 

et que x est un infiniment grand relatif si 

V^^^/ > 0 \x\>l (20 

ce qui s'ecrira x ^ +oo. (V^^^^x F{x) est une abreviation pour Vx {Imp{x) ^ 
F(x)) , ce qui s'oralise « pour tout x impropre, F{x) »). 

On pent montrer que tout nombre relativement infinitesimal est infinitesi
mal. Un nombre non relativement infiniment grand est dit relativement limite. 

On fixe ensuite une fois pour toute : 
- un nombre IX relativement infiniment grand, 
- une fonction de Dirac relative a droite de 0, 5. 
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Cela signifie que 5 reste une fonction de Dirac meme pour un observateur ideal 
capable de "voir" des fonctions de Dirac impropres. Cette fonction S est tres 
impropre, elle est nulle en dehors d'un intervalle [0, h] avec h ^ 0. 

J'ai defini ensuite dans [15] une collection Af de fonctions negligeables de 
classe C^ de deux variables x et t. La generalisation a un nombre plus grand 
de variables ne pose pas de probleme. On pent meme etendre nos resultats aux 
cas oil on a un nombre infiniment grand, impropre, de variables. Cela pent etre 
utile si on a besoin de faire intervenir des parametres qui sont des fonctions 
standard, representees par un ensemble fini impropre contenant toutes leurs 
valeurs standard. La classe J\f verifie les proprietes suivantes. 

- Si a(x, t) G AT alors a(x, t) ^ 0 pour tout x relativement limite et tout t 
relativement appreciable. 

- t-MdM. 
Si i< designe le produit de convolution des fonctions, alors 
- Ni<M dM. 
- f i^J\f d M pour toute bonne fonction / . 

Qn+m^ 
- — — C AT, pour tous n G N et 771 G Z, limites 

ox^of^ 
On remarque que dans la derniere propriete m pent etre negatif. La derivee 

d'ordre negatif —k d'une fonction a s'obtient en calculant I'integrale 
rtk=t rt2 rti 

Jo Jo Jo 
On integre k fois 

a{s) dsdti • • • dtk-

Remarque. La classe A/", "n'est pas" un ensemble pas plus que t • A/", 
ou ^j.mQfn • Les inclusions precedentes sont des inclusions de 

collections. 
On definit alors I'egalite de Laplace = en posant 

F = G %^ 3aeJ\f F-G = Ca 

ou Ca est la transformee de Laplace classique de a, qui doit done exister. 
On pose ensuite 

(L/)(p) ' '=^ / e-^'f{t)dt\-{CS){p). 
Jo J 

La fonction {jC5){p) n'est pas egale a 1, comme pour la distribution de Dirac. 
On trouve parfois dans les livres de physique, concernant les fonctions de Dirac, 
I'egalite {CA){p) = 1. En realite pour une fonction de Dirac A non standard, 
on a {C6){p) ~ 1 pour les valeurs limitees de p. Notre fonction 5^ fixee plus 
haut, verifie quant a elle 
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pour tout p > 0 relativement limite, {C5){p) ^ 1. 

Demontrons ce dernier point. La deuxieme formule de la moyenne donne, pour 
chaque p > 0, 

{C6){p) = eP^^ / 6{t)dt, ee [0,1]. 
Jo 

h ^ 0 implique 9h ^ 0, p6h ^ 0 pour p relativement limite et done, e^ ^ 1 . 
Comme JQ 5{t)dt ^ 1, on en deduit que (^C5){p) ^ 1 pour tout p relative
ment limite. 

c 
Notation. On ecrira / ZD F si F = L / et / Zl F si / admet F comme 

transformation de Laplace. 

Quelques resultats obtenus 

Pour toutes bonnes fonctions f et g standard ou impropre 

L L / est Laplace-independant de 5. Des choix distincts de la fonction 5 
donneraient des transformations Laplace-egales. 

2. Si / ZD F et f̂ ZD F , alors f = g. 

3. Si / est de type exponentiel, f Z\ F ^ f ZB F. 

Ce qui precede implique que toutes les fonctions qui figurent dans les 
tables de transformations de Laplace sont des images generalisees. 

4. (L/ ')(p) ^ p ( L / ) ( p ) - / ( 0 + ) - ( £ < 5 ) ( p ) . 

>H 'f{s)ds){p) 4 l ( L / ) ( p ) . 

6. Uf*9) = (L/ ) - (L(7) . 
+ OC IXI I +OC I 

7. Si f{t) = Y, ««*" alors LF = Y^ an ^_^^, meme si la serie ^ ^ a^ 
n=0 n=0 ^ n=0 ^ 

diverge. 
^ ^df c dLf 

ox ox 

3.5 Exemples 

Exemple 1. 
Recherche de la solution de I'equation aux derivees partielles definies pour 

X > 0, t > 0. 
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1/(0+, t) = A(t), i^(x,0+) = 0 pour tout x. 

A est une fonction impropre de Dirac. L'application du calcul formel generalise 
donne la solution "exacte" 

u{x, t) = \A{t) - H{t) • e '̂1 • -^=e^ + H{t) ^ e^'. 

Cependant LA REPONSE PHYSIQUE CORRECTE au probleme est la suivante : 
Pour tous a; > 0 et t > 0, 

(a) Si t est appreciable la solution est indiscernable de 

H{t) ^ e^' - \H{t) ic e^ e 4t -̂  -^e 4t 
2^/7ri l^fnt 

(b) On ne connait pas avec precision le comportement de la solution quand t 
est tres petit. Cette imprecision est heritee du celle de la fonction A. 

Exemple 2. 
La fonction e~^ a une transformation de Laplace et admet un developpe-

ment en serie de rayon infini, cependant sa transformee de Laplace n'est pas 
egale a la somme — qui n'est pas definie — des transformees de Laplace des 
termes de la serie. On a cependant 

2n<M ^ 

Pour la fonction ê  il n'y a pas de transformee de Laplace mais on pent ecrire 
une image generalisee : 

(2n)! 
e' ZD E 

2n<M 

En conclusion, je dirai que I'examen systematique des questions de seman-
tique pent accroitre considerablement I'efRcacite de I'outil mathematique. Nous 
venons de le const at er pour les mathematiques de la physique. 
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4 
Stratified analysis? 

Karel Hrbacek 

It is now over forty years since Abraham Robinson realized that "t/ie con
cepts and methods of Mathematical Logic are capable of providing a suitable 
framework for the development of the Differential and Integral Calculus by 
means of infinitely small and infinitely large numbers'"^ (Robinson [29], Intro
duction, p. 2). The magnitude of Robinson's achievement cannot be overstated. 
Not only does his framework allow rigorous paraphrases of many arguments 
of Leibniz, Euler and other mathematicians from the classical period of calcu
lus; it has enabled the development of entirely new, important mathematical 
techniques and constructs not anticipated by the classics. Researchers work
ing with the methods of nonstandard analysis have discovered new significant 
results in diverse areas of pure and applied mathematics, from number theory 
to mathematical physics and economics. 

It seems fair to say, however, that acceptance of "nonstandard" methods by 
the larger mathematical community lags far behind their successes. In particu
lar, the oft-expressed hope that infinitesimals would now replace the notorious 
£-5 method in teaching calculus remains unrealized, in spite of notable efforts 
by Keisler [20], Stroyan [31], Benci and Di Nasso [4], and others. Sociological 
reasons — the inherent conservativity of the mathematical community, the lack 
of a concentrated effort at proselytizing — are often mentioned as an explana
tion. There is also the fact that "nonstandard" methods, at least in the form in 
which they are usually presented, require heavier reliance on formal logic than 
is customary in mathematics at large. While acknowledging much truth to all 
of the above, here I shall concentrate on another contributing difficulty. At 
the risk of an overstatement, it is this: while it is undoubtedly possible to do 
calculus by means of infinitesimals in the Robinsonian framework, it does not 
seem possible to do calculus only by means of infinitesimals in it. In particular, 
the promise to replace the e-5 method by the use of infinitesimals cannot be 
carried out in full. 

*Department of Mathematics, The City College of CUNY, New York, NY 10031. 
khrbacek@ccny.cuny.edu 
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In Section 4.1 I examine this shortcoming in detail, review earlier relevant 
work, and propose a general plan for extending the Robinsonian framework 
with the goal of remedying this problem and — possibly — diminishing the 
need for formal logic as well. Section 4.2 contains a few examples intended 
to illustrate how mathematical arguments can be conducted in this extended 
framework. Section 4.3 presents an axiomatic system in which the techniques 
of Section 4.2 can be formalized, and discusses the motivation and prospects 
for its further extension. 

4.1 The Robinsonian framework 

Here and in the rest of the paper, by Robinsonian framework I mean any 
presentation of "nonstandard" methods that postulates a fixed hierarchy of 
standard, internal and, in most cases, also external sets. Thus the origi
nal type-theoretic foundations of Robinson [29], the superstructure method 
of Robinson and Zakon [30] (also Chang and Keisler [6]), and direct use of ul-
trafilters a la Luxemburg [21], as well as axiomatic nonstandard set theories like 
HST [13, 18, 19] or Nelson's 1ST [23], are covered by the term, and the dis
cussion in this section applies to all of them. I present the arguments in the 
"internal picture" employed in 1ST and HST; that is, for example, R denotes 
the set of all (internal) real numbers, and is referred to as the standard set of 
reals] if needed, °R denotes the external set of all standard reals. Superstruc
ture afficionados would use *R for R and R for °R. The same conventions 
apply to the standard set of natural numbers N and other standard sets. 

The paradigmatic example below, the familiar nonstandard definition of 
continuity, illustrates the difficulty I am concerned about. 

Definition 4.1.1 Let f : H ^ H be a standard function, and x G R a stan
dard real number. 

(i) f is continuous at x iff for all infinitesimal h, f{x-\-h) — f{x) is 
infinitesimal. 

(a) f is (pointwise) continuous iff for all standard x GH, f is continuous 
atx. Explicitly: (V^̂ x G R)(V infinitesimal h) {f{x-\-h) — f{x) is infinitesimal). 

It is a basic and useful fact of nonstandard analysis that the notion of 
continuity of a standard function at a standard point defined above can be 
extended in a natural way to the notion of continuity at a nonstandard point, 
and that a standard continuous function / : R ^ R is continuous at all 
X G R, even the nonstandard ones. But, what precisely does this mean in the 
Robinsonian framework, and how do we know that it is true? Certainly not 
by transfer! In the Robinsonian framework, for a statement about standard 
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objects to be transferable from the standard to the internal universe, all of 
its quantifiers have to range over standard sets; formally, it has to be of the 
form (f^^ where (^ is an G-formula (internal formula). Definition 4.1.1 is not of 
this form; the quantifier (V infinitesimal h) ranges over internal sets. Briefly, 
Definition 4.1.1 is not transferable. A naive attempt to transfer 4.1.1(ii) 
will likely produce something along the lines of 

(Vx G R)(V infinitesimal h) ( / (x -\-h) — f{x) is infinitesimal ). 

As is well known, this statement is equivalent to uniform continuity of / (for 
standard / ) . 

How then do we arrive at our "basic and useful fact"? Every treatment of 
elementary nonstandard analysis has to answer this question somehow. More
over, similar diflSculties appear with derivatives, integrals —in fact, with every 
concept defined by nonstandard methods. There seems to be little explicit 
attention paid to this issue in the literature. Important exceptions are the 
writings of Peraire [25]-[27], Gordon [11, 12], and Andreev's thesis [1]; dis
cussions of a number of points considered in this paper can be found there. 
I realized the crucial importance of this issue for teaching of nonstandard anal
ysis during O'Donovan's talk in Aveiro. While describing his experiences with 
the nonstandard definition of derivative, O'Donovan recounted some questions 
his students typically ask: "Can we use this formula when x is not standard? 
When / is not standard?" The answer of course is N O —but what then are 
they supposed to use? After all, a standard function like sinx does have a 
derivative at all x\^ 

Three implicit responses applicable in Robinsonian framework can be dis
cerned. 

Response I (Robinson [29], Goldblatt [10]). 
Although Definition 4.1.1 is not expressible by an G-formula, it is equivalent 

to an G-formula, namely, to the standard definition of continuity. 

Definition 4.1.2 Let / : R ^ R 6e a standard function, and a: G R standard, 
f is continuous at x iff (V *̂£ > 0)(3^*5 > 0)(V^*?/ e Ii){\y - x\ < S ^ 
\f{y)-f{x)\<s). 

The formula on the right side of Definition 4.1.2 is transferable, and yields 
a natural notion of continuity for all / : R ^ R and all x G R that agrees 
with Definition 4.1.1 for standard / and x. 

^I am grateful to R. O'Donovan for many subsequent email exchanges tha t have been 
extremely helpful in further clarification of the difficulties with using infinitesimals to teach 
calculus. 
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Definition 4.1.3 Let / : R ^ R 6e any (internal) function, and x G R any 
real f is continuous at x iff 

(Ve > 0){36 > 0)(Vy e R){\y - x\ < 5 ^ \f{y) - f(x)\ < e). 

The problem is resolved, but at the cost of a relapse to the usual £-6 
definition of continuity, at the internal level. This response also illustrates 
one of the chief reasons why nonstandard methods have to rely so heavily on 
formal logic. In Definitions 4.1.1(i) and 4.1.2 we have two equivalent formulas, 
of which one is transferable and the other is not. Transferability is an attribute 
of formulas; it is a logical, metamathematical concept. 

Response II (Nelson [23]). 
First, we use Definition 4.1.1(i) to define continuity for standard / , x. Then 

we let 
C := ^{(/, x) : / : R ^ R, X G R, / , X standard, / continuous at x} 

(C is a standard set), and finally, for any (internal) / and x, define 

Definition 4.1.4 / is continuous at x iff (/, x) G C. 

If / is standard and continuous at all standard x G R then (V^*x)((/, x) G 
C), this formula is transferable, and gives (Vx)((/, x) G C), i.e., / is continuous 
at all X G R, as desired. 

The problem here is that this ("somewhat implicit" [23]) definition of con
tinuity is completely divorced from the usual intuition (captured for standard 
/ , X, in different ways, both by the standard e-5 definition and by the non
standard definition using infinitesimals): a function / is continuous at x if 
arguments "near" x yield values "near" / ( x ) . According to 4.1.4, the im
plicit meaning of the statement " / is continuous at x" for standard / and 
unlimited x is "x G ^{?/ G R : ^ standard, / continuous at ?/}"; it is not re
lated to the behavior of / near x in the sense of the order topology on R. 
Similarly, continuity of / (x ) := x^, where i/ G N is unlimited, translates to 
"z/ G ^{n G N : /n(^) '•= x'^ is continuous }"; i.e., x^ is continuous "because" 
x^ is a continuous function for all finite n\ Definition 4.1.4 can be decoded 
via Nelson's reduction algorithm; it then gives the usual e-5 definition, at the 
internal level, as in Response I. We note that here too there are two equivalent 
formulas, one of which transfers and the other does not. 

Response III. 
This is a feasible response in an approach based on superstructures, even 

though I found no discussion of it in the literature. While considering it I 
switch to the asterisk notation. 



4.1. The Robinsonian framework 51 

We recall that the definition of (pointwise) continuity in terms of infinitesi
mals can be generalized to standard / : Ti ^ T2, where Ti and T2 are arbitrary 
standard topological spaces. The internal open sets of *R form a base for an 
(external) topology on *R, the Q-topology. The meaning of " / is continuous 
at x" for internal / and x G *R can be given by " / is continuous at x in 
the Q-topology on *R." As noted above, this concept has a nonstandard def
inition, although applying it requires working with ®(*R) in a "second-order" 
enlargement^ of the superstructure that contains *R. Yet the difficulty is not 
resolved. In order to prove that the two definitions of continuity are equivalent 
for standard / and x, one needs to apply transfer to the (equivalent) standard 
definitions in terms of open neighborhoods, i.e., fall back on the e-S method, in 
topological disguise. The Robinsonian framework does not provide for direct 
transfer of nonstandard definitions. This response also begs the question, how 
do we know that ®(*/) is continuous, and so on. Clearly, an infinite sequence 
of consecutive enlargements would be needed. 

It seems that every attempt to define continuity ultimately has to be 
grounded on the e-S method. As remarked above, the same difficulty appears 
with derivatives, integrals —in fact, with all standard concepts introduced by 
nonstandard methods. I see it as a serious problem for the Robinsonian frame
work, if not as a research tool, surely as a teaching tool and, fundamentally, 
as a satisfactory answer to the question about the place of infinitesimals, and 
nonstandard objects in general, in mathematics. 

What is to be done? 
Contemplation of the three responses suggests some ideas. First, we need 

to abandon the fixed distinction between standard and nonstandard and be 
able to treat any (internal) object as if it were standard, and in this capacity 
subject to application of nonstandard definitions and theorems. This is the idea 
of relativization of standardness. Second, we need to be able to transfer 
properties described by arbitrary (external) formulas, not just G-formulas; for 
emphasis, I refer to this facility as general transfer. 

Both ideas have some history in the literature of nonstandard analysis. 
A definition of relative standardness seems to appear first in Cherlin and 
Hirschfeld [7], although its model-theoretic roots can be discerned in [6]; but 
the subsequent development occurred mostly in the axiomatic setting. Gor
don [11] defined two notions of relative standardness in 1ST (one of them is 
essentially the same as in [7]). Wallet [24] proposed to use a binary relative 

^For some applications of "second-order" enlargements see Molchanov [22]. In the alpha-
theory of Benci and DiNasso [4], the *-embedding is defined for all sets, but *(*R) is only 
cJi-saturated, and monads in the Q-topology on *R are trivial. 
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standardness predicate as a primitive in an axiomatic treatment, an idea that 
was developed systematically by Peraire in [25]. The notion of relative stan
dardness stratifies the universe into levels of standardness. Both Gordon and 
Peraire give a nonstandard definition of continuity applicable to all / and x (see 
Definition 4.2.2), and numerous other examples (see also [1, 12, 26, 27, 28]). 
Gordon's approach does not work as smoothly for concepts whose definitions 
involve shadows, such as derivative, because standardization does not hold 
in full. A sufficiently strong (for this purpose) standardization does hold in 
Peraire's theory RIST. Another difference is that, unlike Gordon's, Peraire's 
relative standardness predicate is a total preordering. Yet another stratified 
nonstandard set theory (not employing a binary relative standardness predi
cate) was put forward by Fletcher [9]. 

None of [9, 11, 25] give an explicit formulation of transfer for more than 
just G-formulas. To my knowledge, the idea of (more) general transfer appears 
first in the work of Benninghofen and Richter [5]. The main result of [5] is a 
transfer theorem for a certain (complicated) class of G-st-formulas; Cutland [8] 
gives some simpler special cases. Although the class of transferable formulas is 
limited, it has led to interesting applications (see the proof of I'Hopital rule in 
Section 4.2, and [5, 32, 33]). However, the idea of relative standardness is not 
explicit in [5]. Further discussion of the mutual relationship of these various 
approaches can be found in [16]. 

In my opinion, the decisive step needed to resolve the difficulty discussed 
above is to combine relative standardness with general transfer. This step was 
taken by Peraire in [26] with his proof (in RIST) of "polytransfer," essentially, 
transfer for all formulas that do not quantify over levels of standardness. Many 
standard concepts have satisfactory nonstandard, transferable definitions in 
RIST. Nevertheless, there are situations (see Example 4 in Section 4.2) where 
quantification over levels of standardness is both natural and necessary. More
over, the need to single out the special classes of formulas to which principles 
of RIST apply increases reliance of the framework on formal logic. 

It is my belief that for a theory of the "nonstandard" to be fully satis
factory, both foundationally and practically, all of its principles need to apply 
uniformly at all levels, and to all formulas. In addition to a complete resolution 
of the difficulty that is the subject of this discussion, such framework would 
also diminish the need for appeals to formal logic in practical work: all for
mulas would be transferable, and equivalent formulas would have equivalent 
transfers. The axiomatic system FRIST presented in Section 4.3 achieves 
these objectives for internal sets. The examples in the next section show some 
of the power of internal methods extended by relativized standardness and 
general transfer. 
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4.2 Stratified analysis 

This section gives several examples intended to illustrate "nonstandard" 
mathematics in stratified framework. The presentation is informal; an ax
iomatic system FRIST in which all of the arguments in this section can be 
formalized is described fully in Section 4.3. 

Our basic assumption is that the universe of mathematical objects (= sets) 
is stratified by a binary relation C into "levels of standardness." The notation 
X ^ ^ is to be read "x is standard relative to ^" or "x is y-standard^\ and it 
is a dense total preordering with a least element 0. The 0-standard sets are 
called simply standard] they form the lowest level of standardness. The class 
of x-standard sets is denoted S^-

Let a be a set; relativization of standardness to level a consists in regarding 
Say rather than SQ? as the lowest level of standardness. A statement about 
standard sets is relativized to level a by replacing all references to "standard" 
with "a-standard" (more explicitly, by replacing "x is y-standard^^ with "x is 
{y, a)-standard^^). 

The key principle that governs the stratified universe is general transfer: 
All valid statements about standard sets remain valid when relativized to any 
level a. 

Mathematical practice proceeds by enriching the language with new defini
tions. We make it a general rule that, whenever some standard notion (a new 
predicate or function) is defined for standard x in terms of some property of 
X, the definition of the notion is extended to all x by relativizing the defining 
statement to level x (the definition has to be fully relativized —see Section 4.3). 

In addition, we make the familiar assumptions that 

• all the usual mathematical operations preserve standardness {the class 
So of all standard sets satisfies ZFC); 

• given any property of x and any standard set A, there is a standard set 
B^ whose standard elements are precisely those standard x G A having 
that property (standardization)] 

• for every level a Zl 0 there exist a-standard unlimited natural numbers 
(a much stronger idealization is available — see Section 4.3 — but this 
suffices for calculus). 

The examples that follow illustrate the formulation of relativizations and 
the general rule. 

Definition 4.2.1 

(i) r G R is a-limited iff \r\ < n for some a-standard n G N . 
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(ii) h ^R is a-infinitesimal iff \h\ < ^ for all a-standard n G N, n ^ 0. 

(Hi) r ^ ^ 8 iff r — s is a-infinitesimal. 

(iv) For a-limited r E R^ the a-shadow ofr, sh.a{r), is the unique a-standard 

(^Remark. ^5 usual, every limited (i.e., 0-limited) real has a unique 0-shadow, 
by standardization. By general transfer, every a-limited real has a unique a-
shadow.) 

E X A M P L E 1. Continuity (Gordon [11, 12], Peraire [25, 27]). 
Definition 4.1.1 relativizes as follows: 

Definition 4.2.2 Let f '.K ^K and x eK. 

(i) f is continuous at x iff for all {f, x)-infinitesimal h, f{x -\- h) — f{x) is 
(/, x) -infinitesimal. 

(ii) f is (pointwise) continuous iff it is continuous at all f-standard x. Ex
plicitly: for all f-standard x and all (/, x)-infinitesimal h, f{x-\-h) — f{x) 
is {f^x)-infinitesimal. 

The closure of (/, x)-standard sets under set-theoretic operations (due to 
transfer of this property from SQ) implies that / and x are (/, x)-standard. In 
particular, for /-standard x, " ( / , x)-standard" is equivalent to "/-standard", 
and we have: 
• / i s continuous iff for all /-standard x and all /-infinitesimal /i, f{x-\-h) — 
f{x) is /-infinitesimal. 

If / is a-standard, transfer gives: 
/ is continuous iff it is continuous at all a-standard x G R. 
But every x G R is a-standard for some a 3 / , so we have also: 
/ is continuous iff it is continuous at all x G R. 
This reasoning is a special case of a general global transfer principle (Sec

tion 4.3, Proposition 4.3.1). 
In contrast with •, relativized definition of uniform continuity is 

Definition 4.2.3 Let / : R ^ R. f is uniformly continuous iff for all x and 
all f-infinitesimal h, f{x -\- h) — f{x) is f -infinitesimal. 

E X A M P L E 2. Derivative (Peraire [27]). 
Relativization of the usual nonstandard definition of derivative gives 
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Definition 4.2.4 Let / : R ^ R and x G R. f is differentiable at x iff there 
is an (f^x)-standard L G R such that ^-^—^ ^^' — L is {f^x)-infinitesimal, 
for all {f ^ x)-infinitesimal h ^ 0. 

If this is the case, f'{x) \— L — ̂ ^{f^x) ( —h ) • 

We next give two proofs of an elementary result from calculus, in order to 
illustrate two styles of work that are supported by the stratified framework. 

Proposition 4.2.5 / / / is differentiable at x then f is continuous at x. 

Proof 1. By Definition 4.2.4, for any (/, x)-infinitesimal /i, f{x -\- h) — 
f{x) = Lh + kh where k is (/, x)-infinitesimal. The usual arguments show 
that the product of an (/, x)-limited real and an (/, x)-infinitesimal is an 
(/, x)-infinitesimal, and that the sum of two (/, x)-infinitesimals is (/, x)-
infinitesimal. D 

Proof 2. For any standard / and x and any infinitesimal /i, f{x-\-h) — f(x) = 
Lh-\-kh and Lh-\-kh is infinitesimal. Hence a standard function / differentiable 
at a standard x is continuous at x. By transfer, any function / differentiable 
at any x is continuous at x. D 

The style of the first proof is to give the argument uniformly for all / , x. The 
advantage is that there is no explicit evocation of transfer; the disadvantage is 
the need to keep track of the level (/, x) throughout the argument. 

The second proof is Robinson's, i.e., for standard / , x] followed by transfer 
of the result to all / , x. The formula being transferred is not an G-formula, but 
it is easily seen that our general transfer applies to it. This is another instance 
of the global transfer principle from Proposition 4.3.1 in Section 4.3: any state
ment that invokes relative standardness only via previously defined standard 
notions and is valid for all standard sets remains valid for all (internal) sets. 

One can, if one so chooses, work in stratified analysis exactly as one would 
in the Robinsonian framework; that is, give the nonstandard definitions and 
proofs for standard arguments only. This is what we do in the remaining 
examples. But in the stratified framework, all such definitions and proofs au
tomatically transfer to definitions and proofs that are meaningful and natural 
for all arguments (as long as no essential use is made of external sets). 

Stratified analysis also provides opportunities for proofs and constructions 
that are not readily available in the Robinsonian framework. They have not 
been much explored as yet; two examples of what is possible are given below. 
First we list some general results about infinitesimals. 

Lemma 4.2.6 

(a) If X ^R is a-infinitesimal and (3 Q a then x is (3-infinitesimal. 
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(b) Every a-limited natural number is a-standard. 

(c) / / y is infinitesimal then there is an infinitesimal x such that y is x-
infinitesimal. 

Proof, (a) is trivial from transitivity of C, and (b) is just transfer (to level a) 
of the well-known fact that every limited natural number is standard. 

(c) is a consequence of (b) and density of C. Let ?/ be a positive infinitesimal 
and let ẑ  G N be such that i/ < - < u -\- 1. Then 0 IZ ẑ ; we fix a such that 
0 \Z a \Z ly. By (b), jy is a-unlimited and so y < ^ for all a-standard n. So y 
is a-infinitesimal, hence x-infinitesimal for any a-standard infinitesimal x. D 

E X A M P L E 3. PHopital Rule (Benninghofen and Richter [5]; see also [12]). 

Proposition 4.2.7 {VHopital Rule) 

If\\m^^a 1 (̂̂ )1 = oo and limx^ay^ = oJ E R then UrUx^aj^j = d. 

Proof. It suffices to prove the proposition for standard / , g^ a, d. Also, w.l.o.g. 
we can let a = 0 (replace x hy x — a). Let x be infinitesimal and y be x-
infinitesimal. By Cauchy's Theorem, there is r] between x and y (hence, r] is 

infinitesimal) such that -̂ z ^~-̂ ; ^ = ^-rrl ~ d. Now factor ^ 9{y)-g{x) g'{ri) 

fl ^ fiy)-f{x) _ f{y)-f{x) g{y) , ^h^prvp tha t ^ ^ ~ 0 ^ ^ ~ D 
"^ ^ 9{y)-9{x) - 9{y) ^ 9{y)-9{x) ^^^ observe that ^̂ ^̂  ^ U, ^̂ ^̂  ^ U. 

(lim^^o \g{^)\ — c>o implies that for all infinitesimal ^, g{z) is unlimited. By 
transfer to x-level, for all x-infinitesimal z, g{z) is x-unlimited. As y is x-
infinitesimal, A ^ and ^^^ are x-infinitesimal.) 

It follows that the first factor is infinitely close to ^-^ and the second to 1. 

From properties of infinitesimals we conclude that ^-A^ ^ d. 

By Lemma 4.2.6(c), every infinitesimal y is x-infinitesimal for some in

finitesimal X. Hence ^-^ ^ d holds for every infinitesimal y, and we are done.D 

Remark. The assumption of density of levels allows for a simpler argument 
than that of [5, 12], but it is not essential. 

E X A M P L E 4. Higher derivatives. 
We assume that / , x are standard and f^{y) exists for all ^ ^ x. If f'^{x) = 

L G R exists, then L ^ f{x+^h)-2f{x+h)+f{x) ^^^^^ ^^^ ah /i P^ 0, h^ 0. 
However, the converse of this statement is false; existence of a standard L G R 
with the above property does not imply that f"{x) exists. 

In the stratified framework, we can give a description of f'\x) in terms of 
values of / , analogous to Definition 4.2.4, using two levels of standardness. 
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Proposition 4.2.8 Assume that f and x are standard and f'{y) exists for all 
y ^ X. Then f"{x) exists iff there is a standard L G R such that 

^ _ f{x + /iQ + fei) - f{x + ho) - fix + hi) + fix) 
J_J ~ 

kohl 

for all ho ^ 0, hi ^^^ 0, ho, hi 7̂  0. 
/ / this is the case, f'\x) = L. 

As usual in the stratified framework, the proposition holds for arbitrary / 
and X provided ^ is replaced by ^\-^'^/ and "standard" by " ( / , x)-standard." 

Proof. We assume that f\y) exists for all y ^ x; in particular, f'{x) and 
f\x + ho) exist. Hence 

where fci, ^2 ~^° 0. 
From this we get 

We note that (fci - fe) ~^° 0 and hence ^\^^^ ^^° 0, by transfer to the level 
ho of the fact that a quotient of an infinitesimal by a standard real 7̂  0 is 
infinitesimal. In particular, ^ ^̂  ^̂  ^ 0. 

If L := f'\x) exists, we have f'^^'^^^)-f'^^) = L + fc for fc ^ 0 and hence 

Conversely, if Q ^ L G °R for all /IQ, /?'1 as above, we have ^-^—^^~^ ^^^ ^ 
L for all ho ~ 0, /IQ 7̂  0, and hence f"{x) exists and equals to L. D 

By induction we get a characterization of f^'^^x) valid for any standard 
n G N. 

Proposition 4.2.9 Assume that f and x are standard and f^^~^\y) exists 
for all y ^ X. Then f^'^\x) exists iff there is a standard L G R such that 

/lO . . . hn-l ^—^ 

holds for all {ho,..., hn-i), where i = (ZQ, • • • ,in-i) ^ {0,1}^; h^^ := hk if 
i^ = 0, /I'fc := Oifik = 1; ho ^ 0, hk ^^^-^ 0 for 0 < k < n, and all hk 7̂  0. 

/ / this is the case, f^^\x) = L. 

General transfer implies that Proposition 4.2.9 holds for all n, even the 
unlimited (hyperfinite) ones, provided ~ is replaced everywhere by ~"̂  and 
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"standard L" by "n-standard L". As there are functions that have derivatives 
of all orders, there have to exist '^strongly decreasing'^ sequences of infinitesimals 
of any hyperfinite length n: (/IQ, • • •, /^n-i) where each hk is hk-i-infinitesimal. 
Such constructions are not available in RIST or in any other framework for 
nonstandard mathematics. 

4.3 An axiomatic system for stratified set theory 

The theory FRIST {Fully Relativized Internal Set Theory) presented here 
is formalized in first-order logic with equality and two primitive binary predi
cates, G (membership) and C (relative standardness). It postulates the axioms 
of ZFC (the schemata of separation and replacement for G-formulas only), and 
(Vx)(x C x), {\lx^y^z){x Q y A y Q z ^ x Q z)^ {\/x,y){x Q y V ^ E x), 
(\/x){0 Q x), (3x)(^ X Q 0). Thus C is a nontrivial total preordering with 
a least element 0 = 0 ; x C y reads "x is standard relative to y" or "x is y-
standardy We also write x \Zy iov x \^y A - " ^ E x , and postulate that C is 
dense: {\/x^y){x \Zy ^ {^z){x \Z z \Z y)). 

Let a be a set; we let SQ, := {x : x C <̂ } be the class of all a-standard 
sets; in particular S := SQ = {^ • ^ E 0} is the class of standard sets. If a 
is a list a i , . . . , a^, the statement that x is a-standard is shorthand for "x is 
( a i , . . . , an)-standard"; it is easy to see that (in FRIST) this is equivalent to 
"x is /3-standard" for /? := max { a i , . . . , a ^ } . 

For any a let x Ea y = (^ E <̂  A y E <^)V(x E ^)- This "relativized" relative 
standardness predicate treats SQ, as the "standard" (i.e. "level 0") universe, and 
keeps the higher levels unchanged. 

Let $ be any G-E-formula. $^ denotes the relativization of $ to level 
a, the formula obtained from $ by replacing each occurrence of E by Ea-
Informally, each occurrence of "x is ^-standard" is replaced by "x is (^, a)-
standard." Clearly x QQ y is equivalent to x Q y^ and $^ to $. 

We now state the principal axioms of FRIST. 

Transfer: For all a, (Vx G So)(^^^) ^ $^(x)). 

Standardization: For all x, 
(Vx G §o) {^y e §o) {\/zeSo) {zey ^ zex A $ 0 ( Z , X, X)). 

Idealization: For all 0 IZ a, A^B eE>o and x, 
(Va G A^^ n §o)(3x G 5)(V^ G a) $^(x,^ ,x) ^ 

(3xG B){yy e AnE>o)^'^{x,y,x). 
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Transfer captures the idea oi full relativization: whatever is true about the 
standard universe SQ is also true about each relativized standard universe E>a-
Precisely, for any a and any statement $ of the G-E-language, if FRIST h $ 
then also FRIST h ^^. In particular, it follows that we can replace 0 by any 
a in standardization, and by any f3 \Z a in the other two schemata. It is also 
easy to show that each SQ, satisfies ZFC. Details of these and other results 
about FRIST, as well as a discussion of its relationship to RIST and 1ST, 
can be found in [15]. 

We prove a version of transfer from the standard universe to the entire 
internal universe. Let $(x) be an G-E-formula. We define a new predicate P{x) 
by postulating P{x) = $^(x), and say that the definition of P is fully relativized 
if it has this form. We note that for any a and any x G S^, P{x) ^^ $^(x); 
in particular, P{x) ^^ ^{x) for standard x. 

Let the definitions of P i , . . . ,Pn be fully relativized. Given any formula 
^ (x) in the G-P-language, we denote the formula obtained by restricting all 
quantifiers in ^ to SQ, by SQ, 1= ̂ (x ) . 

Proposition 4.3.1 {Global Transfer) (Vx G Sc,)[(Sa ^ ^{x)) ^ ^ (x) ] . 

Proof. If ^ is a formula in the G-P-language, we let "^^^^ be the formula 
obtained from ^ by replacing (first) each occurrence of (3x) [(Vx), resp.] in ^ 
by (3x G Sa) [(Vx G S^), resp.], and (then) each occurrence of Pi{x) by ^f{x). 

We prove that for ah a and ah X G So., (§« ^ ^(x)) ^ ^ W ( x ) ^ ^ (x ) , 
by induction on complexity of ^ . 

If ^ (x) is Pz(x), the claim follows from the definitions and remarks above. 
If ^(x) " the assertion is trivial, as are the induction 
steps corresponding to logical connectives. 

Assume that, for all f3 and x,?/ G Ŝ ,̂ {E>p 1= ^(x ,y) ) ^^ ^(^)(x,y) ^^ 
^ ( x , ^ ) . 

Let X G Sa] we then have {§a ^ (V^)^(x,^)) ^ (V?/ G §«)(§« ^ ^{x,y)) ^ 
(VyGS,)^W(x,2/) ^ [(V2/)^(x,7/)]W. 

By transfer of the penultimate statement to level f3 we get its equiva
lence with (V/3 3 Q )̂(V^ G §/5)[^(^)(x,^)]^. It is easily seen that, for a Q p, 
[^(Q^)]/5 ^^ ^(^); hence the last statement is further equivalent to (V/3 3 <̂ ) 
(V^ G §^)^(^)(x,7/) ^ (V/? 3 Q )̂(V^ G Sp)'^{x,y) ^ (V7/)^(x,?/). (For the last 
step, note that for every y there is f3 ̂  a such that y G S/3; e.g. /? = (a,?/).)n 

Corollary 4.3.2 For any A^p, {x G A : ^(x, A,p)} is a set in S(^,p). 

Proof. Fix a so that A^p ^E)^' Standardization into SQ, yields a set P G §CK 
such that SQ, ^ (Vx)(x G P ^ x G A A ^ (x ,A,p ) ) . By global transfer, 
( V X ) ( X G P ^ X G A A ^ ( X , A , P ) ) . D 
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This corollary shows that we can use fully relativized predicates in def
initions of sets without fear of encountering external sets. For example, / ' 
is a standard function whenever / is, even though we use infinitesimals to 
define f'{x). 

The consistency of FRIST is established by the following theorem, whose 
proof can be found in [15], Theorems 4.7, 5.1, 5.2. 

Theorem 4.3.3 FRIST is a conservative extension of ZFC. 
In fact, FRIST has an interpretation in ZFC, in which the class of stan

dard sets is {definably) isomorphic to the class of all (ZFC) sets. 

An interpretation of FRIST in ZFC involves a new method of iterating 
ultrapowers, where the stages of the iteration used to obtain the final universe 
*V are not indexed by any a priori given linear ordering (A, <) , but by (*A, <*), 
a linear ordering constructed from (A, <) simultaneously with *V. 

FRIST differs from the theory of the same name presented in [15] in 
two ways. 

1. Idealization has been weakened to "bounded idealization" (see F R B S T 
of [15]). Foundational reasons for this move are discussed at length in [16] 
in the context of 1ST vs. B S T . Without some such weakening of ideal
ization, the second part of Theorem 4.3.3 does not hold. 

2. The postulate of density of levels has been added. This property holds 
in models from [15] based on A = Q or any other dense total ordering. 
There are foundational reasons that seem to favor this assumption, and 
it also has practical uses (see the proof of I'Hopital rule). 

Like 1ST, FRIST is a theory of internal sets. Nelson [23] exhibited a 
reduction algorithm for 1ST; it takes every (bounded) G-st-formula to an G-
formula that is equivalent to it for all standard values of the free variables. 
The question arises, whether such algorithm is also available for FRIST. On 
one level, the answer is YES] such algorithm is provided by the interpretation 
of FRIST in ZFC from the proof of Theorem 4.3.3. On the other hand, G-
formulas yielded by this algorithm are far too complicated to be helpful with 
practical work. It is possible that a simpler, more natural reduction algorithm 
can be given, but this matter is still under investigation. 

As demonstrated by Nelson and other adherents of 1ST, "internal" meth
ods, cleverly used, suffice for a large area of "nonstandard" applications. Nev
ertheless, I have always maintained [13, 14, 16] that a truly comprehensive 
nonstandard set theory has to incorporate external sets as well. There are nu
merous constructs (nonstandard hulls, Loeb measures,...) where external sets 
are not just a convenient bookkeeping device but the object of interest per se; 
a foundational framework that does not allow these constructs can hardly be 
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universally acceptable to practitioners of "nonstandard" methods. The foun
dational aspirations of nonstandard set theory also require external sets; "they 
are there," and have to be accounted for. The guiding "maxim" of this paper, to 
wit, that all principles should apply uniformly at all levels and to all formulas, 
gives yet another reason why external sets are necessary. In FRIST, transfer, 
standardization and idealization do indeed satisfy it, but the axioms of ZFC 
do not! In particular, separation applies in FRIST only to G-formulas. As 
soon as we attempt to extend it to all formulas, we introduce external sets 
(e.g. the set of standard integers {n G N : n C 0}). 

A thorough discussion of various axiomatic nonstandard set theories for ex
ternal sets and of the difficulties they face can be found in Kanovei and Reeken's 
monograph [19] and in the survey article [16]. Perhaps the only researcher who 
considered an extension of the idea of relativization of standardness to external 
sets in an axiomatic framework was David Ballard. In [3], Ballard proposed 
an axiomatic system EST, where external sets are allowed and any set can 
be regarded as "standard." EST was inspired by Fletcher's [9], and employs 
neither the binary standardness predicate nor general transfer. After the pa
per [15] was written, Ballard and I concurrently started to develop an extension 
of its ideas to external sets. David Ballard died unexpectedly in May 2004 in 
the midst of his work. My research on this topic is still in progress [17]; re
sults obtained so far indicate that an extension of FRIST to a theory that 
incorporates external sets is both possible and natural. 
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5 
ERNA at work 

C. Impens and S. Sanders 

Abstract 
Elementary Recursive Nonstandard Analysis, in short ERNA, is a con
structive system of nonstandard analysis proposed around 1995 by 
Chuaqui, Suppes and Sommer. It has been shown to be consistent 
and, without standard part function or continuum, it allows major parts 
of analysis to be developed in an applicable form. We briefly discuss 
ERNA's foundations and use them to prove a supremum principle and 
provide a square root function, both up to infinitesimals. 

5.1 Introduction 

Hubert ^s Program, proposed in 1921, called for an axiomatic formalization 
of mathematics, together with a proof that this axiomatization is consistent. 
The consistency proof itself was to be carried out using only what Hilbert 
called finitary methods. The special character of finitary reasoning then would 
justify classical mathematics. In due time, many characterized Hilbert's infor
mal notion of 'finitary' as that which can be formalized in Primitive Recursive 
Arithmetic (PRA), proposed in 1923 by Skolem. In PRA one finds (a) an 
absence of explicit quantification, (b) an ability to define primitive recursive 
functions, (c) a few rules for handling equality, e.g., substitution of equals for 
equals, (d) a rule of instantiation, and (e) a simple induction principle. 

By Godel's second incompleteness theorem (1931) it became evident that 
only partial realizations of Hilbert's program are possible. The system pro
posed by Chuaqui and Suppes is such a partial realization, in that it pro
vides an axiomatic foundation for basic analysis, with a PRA consistency 
proof ([1], p. 123 and p. 130). Sommer and Suppes's improved system al
lows definition by recursion (which does away with a lot of explicit axioms) 
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and still has a PRA proof of consistency ([2], p. 21). This system is called 
Elementary Recursive Nonstandard Analysis^ in short ERNA. Its consistency 
is proved via Herbrand's Theorem (1930), which is restricted to quantifier-free 
formulas (3(x i , . . . ,Xn), usually containing free variables. Alternatively, one 
might say it is restricted to universal sentences 

(Vxi) . . . (Vxn)Q(xi , . . . ,Xn) , 

obtained by closing the open quantifier-free formulas by means of universal 
quantifiers. Herbrand's theorem states that, if a collection of such formulas 
resp. sentences is consistent, it has a simple 'Herbrand' model and, if it is not, 
its inconsistency will show up in some finite procedure. 

Herbrand's theorem requires that ERNA's axioms be written in a quantifier-
free form. As a result, some axioms definitely look artificial; fortunately, the
orems don't suffer from the quantifier-free restriction. 

Calculus applications of ERNA have been, so far, scarce and sketchy. 
Thus, [3] contains an outline of an existence theorem for first-order ordinary 
differential equations, relying on the property, stated without proof, that a 
continuous function on a compact interval is bounded. As part of a less anec-
dotical approach we will provide an ERNA version of the supremum principle 
and deduce from it a square root function. Both results hold up to infinitesi
mals] as ERNA has no standard part function, it is intrinsically impossible to 
do better. 

5.2 The system 

The system we are about to describe was first presented in [2], and all our 
undocumented results are quoted from that paper. The foundations are also 
exposed, in a more informal manner, in [3]. 

Notat ion 5.2.1 N = {0 ,1 ,2 , . . .} consists of the (finite) integers. 

Notat ion 5.2.2 x stands for some finite (possibly empty) sequence {xi^...,Xk)-

Notat ion 5.2.3 T{X) denotes a term in which x = ( x i , . . . ^Xk) is the list of 
the distinct free variables. 

5.2.1 The language 

• connectives: A, -i, V, ^ , ^^ 

• quantifiers: V, 3 
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• an infinite set of variables 

• relation symbols:"^ 

— binary x = y 

— binary x < y 

— unary X(x), read as 'x is infinitesimar, also written 'x ~ 0' 

— unary A/'(x), read as 'x is hypernatural'. 

• individual constant symbols: 

— 0 

— 1 

— e (The Axiom 3 (6) of 5.2.2 shows that e denotes a positive infinites
imal.) 

— uj (The axioms 3 (7) and 2 (4) of 5.2.2 show that uj = 1/e denotes 
an infinite hypernatural.) 

— t, read as 'undefined'. 

Notat ion 5.2.4 ^x is defined^ stands for'x ^ Y. (Examples: 1/0 is undefined, 
1/0=1.) 

• function symbols:^ 

— (unary) 'absolute value' |x|, 'ceiling' [x], 'weight' ||x||. (For the 
meaning of ||x||, see Theorem 5.2.3.) 

— (binary) x + y, x — y^ x-y^ x/y^ x^y. (Axiom set 6 and Axiom 12 (4) 
of 5.2.2 show that x^n = x^ for hypernatural n, else undefined.) 

— for each fc G N, fc /c-ary function symbols n^^i {i = 1 , . . . , A:). (The 
Axiom schema 7 of 5.2.2 shows that 7rk^i{x) are the projections of 
the fc-tuple X.) 

— for each formula (p with TTI + 1 free variables, without quantifiers 
or terms involving min, an 7n-ary function symbol min^^. (For the 
meaning of which, see Theorem 5.2.6 and Theorem 5.2.7.) 

— for each triple (/c, c r (x i , . . . , x^ ) , r ( x i , . . . , x^+2)) with 0 < /c G N, cr 
and T terms not involving min, an (777,+l)-ary function symbol rec^^. 
(Axiom schema 9 of 5.2.2 shows that this is the term obtained from 
a and r by recursion, after the model /(O, x) = cr(x), / ( n + 1, x) = 
r{f{n, x), n, x), if terms are defined and don't weigh too much.) 

^For better readibility we express the relations in x or in (x ,y) , according to arity. 
^We denote the values as computed in a: or {x, y) according to the arity. 
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5.2.2 T h e a x i o m s 

Axiom set 1 (Logic). Axioms of first-order logic. 

Axiom set 2 (Hypernaturals). 

1. 0 is hypernatural; 

2. if X is hypernatural, so is x -\-1; 

3. if X is hypernatural, then x > 0; 

4- 00 is hypernatural. 

Definition 5.2.1 'x is infinite' stands for 'x 7̂  0 A 1/x ^ 0'; 'x is fi
nite' stands for ^x is not infinite'; ^x is natural' stands for 'x is hypernatural 
and finite'. 

Axiom set 3 (Infinitesimals). 

1. if X and y are infinitesimal, so is x -\- y; 

2. if X is infinitesimal and y is finite, xy is infinitesimal; 

3. an infinitesimal is finite; 

4. if X is infinitesimal and \y\ < x, then y is infinitesimal; 

5. if X and y are finite, so is x -\-y; 

6. e is infinitesimal; 

7. e = l/u. 

Axiom set 4 (Ordered field). Axioms expressing that the elements, with ] 
excluded, constitute an ordered field of characteristic zero with absolute 
value function. These include (quantifier-free) 

• if X is defined, then x + 0 = 0 + x = x; 

• if X is defined, then x + (0 — x) = (0 — x) + x = 0; 

• if X is defined and x ^ 0, then x • (1/x) = (1/x) • x = 1. 

Axiom set 5 (Archimedean). If x is defined, [x] is a hypernatural and 

[x] - 1 < X < [x]. 

Theorem 5.2.1 If x is defined, then |"x] is the least hypernatural > x. 

Theorem 5.2.2 x is finite iff there is a natural n such that |x| < n. 
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Proof. The statement is trivial for x = 0. If x 7̂  0 is finite, so is \x\ because, 
assuming the opposite, l/\x\ would be infinitesimal and so would 1/x be by 
axiom (4) of set 3. By axiom (5) of the same set, the hypernatural \\x\] < \x\-\-l 
is then also finite. Conversely, let n be natural and \x\ < n. I f l / | x | were 
infinitesimal, so would 1/n be by axiom (4) of set 3, and this contradicts the 
assumption that n is finite. D 

Corollary 5.2.1 x ^ 0 iff \x\ < 1/n for all natural n> 1. 

Axiom set 6 (Power). 

1. if X ^ t; then x^O = 1; 

2. if X ^ \ and n is hypernatural^ then x"(n + 1) = (x^n) • x. 

Axiom schema 7 (Projection). 

If xi,... ,Xn are defined, then Hji z(^i, • • • for i = 1,... ,n. 

Axiom set 8 (Weight). 

1. If \\x\\ is defined, then \\x\\ is a nonzero hypernatural. 

2. If\x\= m/n < 1 (m and n ^ 0 hypernaturals), then \\x\\ is defined, 
\\x\\.\x\ is hypernatural and \\x\\ < n. 

3. If\x\— m/n > 1 (m and n 7̂  0 hypernaturals), then \\x\\ is defined, 
\\x\\/\x\ is hypernatural and \\x\\ < m. 

Definition 5.2.2 A hyperrational is of the form -^p/q, with p and q y^ 0 
hypernatural. 

Theorem 5.2.3 

1. If X is not a hyperrational, then \\x\\ ='\. 

2. If x is a hyperrational, say x = -^p/q with p and q y^ 0 relatively prime 
hypernaturals, then 

II ±P/^II =niax{|p|,|g|}. 

Remark. In both statements of this theorem, the antecedent can be expressed 
in a quantifier-free way, but the whole sentence cannot. (This explains why 
it is a theorem and not part of the axioms.) For instance, J\f{p) -^ ^J\f{p\x\) 
expresses 'x is not hyperrational'. 

Theorem 5.2.4 

1- I IOII = 1 ; 
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2. if n > 1 is hypernatural, \\n\\ = n; 

3. if \\x\\ is defined, then | | l /x | | = ||x|| and \\ \x~\ || = | |"x] | < ||x||; 

4. "̂Z ll^ll GLnd \\y\\ defined, \\x-\-y\\, \\x — y\\, \\xy\\ and \\x/y\\ are at most 

equal to (1 + ||^||)(1 + ll^/ll); ^^^ 11̂ 2̂/11 -̂̂  ^^ most (1 + ||x||)"(l + \\y\\)' 

Notat ion 5.2.5 For any 0 < n G N i(;e write 

| | (x i , . . .,Xn)\\ = max{ | |x i | | , . . . , \\xn\\}. 

Notat ion 5.2.6 For any 0 < n G N K;e write 

n 2's 

Theorem 5.2.5 If T{X) is a term not involving uo, e, rec or mm., then there 
exists a 0 < /c G N such that 

||r(f)||<2fll. 

Axiom schema 9 (Recursion) For 0 < /c G N^ cr and r not involving min.* 

a{x) if this is defined, and has weight < 2'f, 

T ^/a(x)=T, 
0 otherwise. 

rec^^(n + l , f ) 

I r(rec^^(n, x ) ,n ,x) if defined, with weight < 2^1^^'^ " 

t z / r ( rec^^(n,x) ,n , f ) = t ; 

0 otherwise. 

If a is constant, the hst x is empty, and the weight requirements mentioned 
in this axiom schema are void. 

A few words concerning the restrictions included in this axiom schema. 
One of ERNA's main advantages over the Chuaqui-Suppes system is, that it 
ahows some form of recursion while preserving a finitary consistency proof. 
In achieving this, a crucial role is played by the weight function, introduced 
axiomatically but given explicitly in theorem 5.2.3. Recursion is an essential 
feature of PRA, and it is therefore impossible to prove inside PRA the con
sistency of a system that has unrestricted recursion. ERNA's axiom schema 9 
restricts recursion by truncating objects outgrowing the preset weight stan
dard. In view of the huge bounds allowed, it seems unlikely that access to 
calculus applications will suffer from this restriction; computing weights is the 
price to be paid in practice. 
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Axiom schema 10 (Internal minimum). For any quantifier-free formula 
(p(y^x) not involving min or X we have 

1. min(^(x) is a hypernatural number; 

2. z/min^(x) > 0̂  then (^(min^(x), x) ; 

3. if n is a hypernatural and Lpin^x), then 

min(x) < n and (/:)(min(x),x). 
if LP 

Theorem 5.2.6 / / the quantifier-free formula Lp{y,x) does not involve X or 
min^ and if there are hypernatural n^s such that (p{n,x), then min^(x) is the 
least of these. If there are none, min(^(x) = 0. 

Corollary 5.2.2 Proofs by hypernatural induction. 

Example 5.2.1 The sum of two hypernaturals is a hypernatural. 

Proof. Fix any hypernatural x. If the theorem is wrong, there exists at least 
one y with J\f{y) A ^J\f{x -\- y). By Theorem 5.2.6, there is a least number with 
these properties, say yo. Then yo ^ 0 since x + 0 = x (field axiom) and Af{x) 
(assumption). From yo ^ 0, A/'(yo — 1) (hypernatural axiom). By leastness, 
M[x + (T/O — 1)). Hence (field axiom) A/'((x + ^o) — 1) and finally M{x + T/Q) 
(hypernatural axiom). This contradiction proves the theorem. D 

Axiom schema 11 (External minimum). For any quantifier-free formula 
(p{y^x) not involving min^ LJ or e we have 

1. min(^(x) is a hypernatural number; 

2. if m.m^{x) > 0, then (/?(min^(x), x) ; 

3. ifn is a natural number, \\x\\ is finite and (f{n^x), ^/lenmin^(x) < n 
and (/?(min^(x),x). 

Remark. X is allowed in ip. 

Theorem 5.2.7 Let Lp{y^x) a quantifier-free formula not involving mm., (JO or 
e. If ||x|| is finite and if there are natural n^s such that (f{n,x), then min(^(x) 
is the least of these. If there are none, min(^(x) = 0. 

Corollary 5.2.3 Proofs by natural induction. 

Axiom schema 12 ((Un)defined terms). 

1. 0, 1, cj, e are defined; 
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2. \x\, [ x ] ^ ||x|| are defined iff x is; 

3. x-\-y, X — y, xy are defined iff x and y are; x/y is defined iff x and 
y are and y ^ 0; 

Jf.. x^y is defined iff x and y are and y is hypernatural; 

5. TTk^iixi, ...,Xk) is defined iff xi,...,Xk are; 

6. if X is not a hypernatural, rec^^(x,^) is undefined; 

7. min^ (x i , . . . , Xk) is defined iff xi^... ^x^ are. 

Theorem 5.2.8 (Hypernatural induction) Let (p{x) be a quantifier-free 
formula not involving min or X, such that 

1. if{Q) holds, 

2. the implication {J\f{n) A ̂ {n)) -^ (p{n + 1) holds. 

Then (f{n) holds for all hypernatural n. 

Proof. Suppose, on the contrary, that there is a hypernatural n such that 
-i(/p(n). By Theorem 5.2.6, there is a least hypernatural no such that -i(/9(no). 
By our assumption (1), no >0 . Consequently, (p{no — l) does hold. But then, by 
our assumption (2), so would (f{no). This contradiction proves the theorem. D 

Example 5.2.2 The sum of two hypernaturals is a hypernatural. 

Proof. Fix any hypernatural N and consider the formula J\f{N + x). Both 
M{N + 0) and J\f{N + n) ^ Af{N + n + 1) are included in axiom set 5.2.2. 
Hence M{N + n) for every hypernatural n. D 

Example 5.2.3 Let (p{n) be a quantifier-free formula not involving min orX. 
^/^o < '̂ 1 ^^e hypernaturals such that no < n < ni — 1 ^ ^(^) = V (̂̂  + 1); 
then (p{no) = V^(^i). 

Proof. The formula (f{no) = (f{no + x) holds for x = 0. If (f{no) = (f{no + n) 
for any hypernatural no + n < ni — 1, then also (f{no) = (f{no + n + 1) by 
assumption. Hence (p{no) = (f{no + n) for 0 < n < ni — no- D 

For further use we collect here some definable functions, being terms of the 
language that (provably in ERNA) have the properties of the function. 

1. The identity function id{x) = x is TTI^I. 
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2. For each closed term r and each arity fc, the constant function 

is 7Tk+i^k+i{xi,...,Xk,r). 

3. The hypersequence 
fo i fn = 0 

rin) = < 
^ ^ [1 if n > 1 

is rec^^ with A: = l,(7 = 0, r = C2,i. 

4. The function 

C(x) = 
1 if X = 0 

X otherwise 

is 1 + X — r{\ \x\ ]) . 

5. The functions 

M . ) = ' '">'> and ffW= ' •''^-" 
0 otherwise 0 otherwise 

^^^ ^77^ ^^d ^ + ^ ^ , respectively. 

1 if a < X < 6 

2C(:r) ^^^^ 2 "^ 2C(x) 

6. The function 

1 0 otherwise 

is h{x — a)H(h — x). Likewise for the characteristic function of any other 
interval. 

7. For constants a, h and terms p^cr^r^ the function 

I a{x) ii a < X <b and p{x) > 0 
d{x) = < 

I T(X) otherwise 

is l((j^^](x)(/i(p(x)) <j(x) + (l —/i(p(x))) T (X) ) . Likewise for any other type 
of interval in a < x < b and/or any other inequality in p{x) > 0. Any 
such construction will be called a definition by cases. If no interval is 
specified, the terms p, cr, r and the resulting function can have more than 
one free variable. 

The next theorem is to be considered as an ERNA version of the supremum 
principle for a set of type {x \ f{x) < 0}. 
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Notat ion 5.2.7 We write a <^b if a < b and a ^ b. 

Theorem 5.2.9 Let b < c be constants such that d := c — b is finite. Further, 
let f{x) be a term not involving X or min^ such that f{x) is never undefined 
for b < X < c. If 

I. f{c) > 0, 

n. f{b) < 0, 

then there is a constant 7 with the following properties: 

in- f{l) > 0; 

iv. for every natural number n> 1 there are x > 7— 1/n such that f{x) < 0. 

If f{x) has the extra property 

{f{x)<OAb<y<x)^f{y)<0 (5.1) 

then 7 is, up to infinitesimals, the only constant > b with the properties (Hi) 
and (iv). 

Proof. In order to apply recursion, we choose c as our term a and use definition 
by cases to obtain the term 

^(i„) = /*-^/2" a fit-dm >o 
I t otherwise. 

Note that 'otherwise' is equivalent here to 'if f{t — d/2^) < 0', because we have 
excluded undefined values for f{x). ERNA's unary function symbol rec^^ for 
this particular a and r will be shortened to rec. Its properties can be stated 
simply as 

rec(O) = c and rec(n + 1) = r(rec(n), n) 

because undefined terms cannot occur, and there are no weight requirements 
because r has arity two. 

If we prove that for any hypernatural n the two properties 

/(rec(n)) > 0 (5.2) 

/(rec(n) - c//2"-i) < 0 (n > 1) (5.3) 

hold, we are done. It suffices to take 7 = rec(a;) and to note that, because 
d /2"- i « 0, 

rec(w) < rec(w) - d/2'^"^ 
n 
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for any natural number n > 1. We prove (5.2) by hypernatural induction. 
For n = 0 the requirement (5.2) is identical with the assumption (i). Now 
let n be a hypernatural for which (5.2) holds. If /(rec(n) — d/2^) > 0, the 
definition of r implies that rec(n + 1) = T(rec(n),n) = rec(n) — (i/2^, which 
translates the assumption into /(rec(n + 1)) > 0. Otherwise, rec(n + 1) = 
r(rec(n),n) = rec(n), making the induction hypothesis identical with the re
quirement /(rec(n + 1)) > 0. 

Next we consider (5.3). Our proof demands that n = 1 be treated sep
arately. We have rec(l) = r(rec(0),0) = r(c, 0), and this is simply b since 
/ ( c — d) = f{b) < 0. Therefore, the property (5.3) is identical with the as
sumption (ii). Now the proof for any hypernatural N > 2. We consider the 
formula 

A/'(n) A n < Â  - 2 A iec{N - n) 7̂  rec(7V - n - 1) - d/2^-''-^ (5.4) 

and consider two possibilities. First possibility: there are no hypernaturals n 
satisfying (5.4). This means that 

Tec{N - n) - d /2^ -^ -1 = rec(A^ - n - 1) - rf/2^-^-2 

for 0 < n < A" — 2, and by example 5.2.3 it follows that 

rec(Ar) - d/2^-^ = rec(l) - d = c. (5.5) 

As /(c) < 0, we conclude that (5.3) holds for our A'. Second possibility: 
there are hypernaturals n satisfying (5.4). If so, let no be the smallest one, as 
provided by theorem 5.2.6. Then UQ < N — 2 and 

rec(A^ - no) 7̂  Tec{N - no - 1) - d/2^-''^-^ 

i.e. 

r(rec(A^ - no - 1), AT - no - 1) 7̂  rec(Ar - no - 1) - d/2^-''^-^. 

The definition of r{t^n) shows that then, inevitably, 

r(rec(A^ - no - 1), AT - no - 1) = rec(Ar - no - 1), 

meaning that 

/(rec(Ar - no - 1) - d/2^-'''-^) = /(rec(Ar - no) - d/2^-''^-^) < 0. (5.6) 

By the leastness of no, 

rec(Ar - n) - d/2^-''-^ = Tec{N - n - 1) - rf/2^-^-2 
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for 0 < n < no — 1. Hence 

Tec{N) - d /2^-1 = rec(Ar - no) - d/2^-'''-^ 

by example 5.2.3. Substituting in (5.6) gives 

/(rec(Ar) - d/2^-1) < 0, 

as was to be proved. 
Finally, assume the extra property (5.1). If 7̂  > 6 is another constant with 

the properties (iii) and (iv), we cannot have 7' <C 7, as property (iv) for 7 
would imply that there are x > y satisfying f{x) < 0, which by (5.1) leads to 
/(7^) < 0 and contradicts the property (iii) for 7^ Likewise for the possibility 
7 <C 7^ Therefore y ^ j . D 

This theorem allows us to equip ERNA with a square root up to infinitesi
mals function. 

Example 5.2.4 For every finite constant p > 0, ERNA provides a constant 
7 > 0̂  unique up to infinitesimals, such that 7^ ~ p. 

Proof. It follows from the properties of an ordered field that the term f{x) = 
x^ — p and the constants 6 = 0 , c = l + p satisfy the requirements of theo
rem 5.2.9, including the extra requirement (5.1). If 7 is the constant resulting 
from the theorem, then j ^ > p and for every natural n > 1 there are x > 7—1/n 
with x^ < p. Moreover, x < 1 + P by the properties of the ordered field. Hence 
7^ < x^ + 2x/n + l /n^ < p + 2 ( l + p ) / n + l/n^. By corollary 5.2.1, we conclude 
that 0 < 7 ^ - p ^ 0. D 

References 

[1] R. CHUAQUI and P. SUPPES , "Free-Variable Axiomatic Foundations of 
Infinitesimal Anaysis: A Fragment with Finitary Consistency Proof", J. 
Symb. Logic, 60 (1995) 122-159. 

[2] R. SOMMER and P. SuPPES, "Finite Models of Elementary Recursive Non
standard Analysis", Notas de la Sociedad Matematica de Chile, 15 (1996) 
73-95. 

[3] R. SOMMER and P. SUPPES , "Dispensing with the Continuum", J. Math. 
Psychology, 41 (1997) 3-10. 

[4] P . S U P P E S and R. CHUAQUI, A finitarily consistent free-variable positive 
fragment of Infinitesimal Anaysis, Proceedings of the IXth Latin Ameri
can Symposium on Mathematical Logic, Notas de Logica Mathematica, 38 
(1993) 1-59, Universidad Nacional del Sur, Bahia Blanca, Argentina. 



6 
The Sousa Pinto approach to nonstandard 

generahsed functions 

R. F. Hoskins* 

A b s t r a c t 
Nonstandard Analysis suggests several ways in which the standard the
ories of distributions and other generalised functions could be reformu
lated. This paper reviews the contributions of Jose Sousa Pinto to this 
area up to his untimely death four years ago. Following the original 
presentation of nonstandard models for the Sebastiao e Silva axiomatic 
treatment of distributions and ultradistributions he worked on a nonstan
dard theory of Sato hyperfunctions, using a simple ultrapower model of 
the hyperreals. (This in particular allows nonstandard representations 
for generalised distributions, such as those of Roumieu, Beurling, and so 
on.) He also considered a nonstandard theory for the generalised func
tions of Colombeau, and finally turned his attention to the hyperfinite 
representation of generalised functions, following the work of Kinoshita. 

6.1 Introduction 

Jose Sousa P in to of the University of Aveiro, Por tugal , died in August 2000 

after a prolonged and debil i tat ing illness. His interest in nons tandard methods , 

part icular ly in their application to the s tudy of generalised functions, was of 

long s tanding and he will be especially remembered for his par t in the organi

sation of the highly successful I n t e r n a t i o n a l C o l l o q u i u m of N o n s t a n d a r d 
M a t h e m a t i c s held at Aveiro [2] in 1994. A most modest and unassuming 

mathemat ic ian , his contr ibut ions to NSA are less well known t h a n their value 

deserves and this paper is concerned to report his work and to s tand as some 

t r ibu te to his memory. From a personal point of view I would also wish to take 

Department of Electronic and Electrical Engineering, Loughborough University, Lough
borough, UK. 
royhoskOaol.com 
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this opportunity to acknowledge the value and pleasure I have had in working 
with him over many years. 

6.1.1 Generalised functions and N.S.A. 

The theory of generalised functions is a subject of major importance in 
modern analysis and one that has gone through many changes since the orig
inal presentation [18] of the theory of distributions in the form given to it by 
Laurent Schwartz in the 1950s. Various alternative approaches to the theory 
have been explored over the years, and the subject has been expanded (and 
complicated) by the introduction of generalised distributions of several types, 
ultradistributions, hyp erf unctions and so on. In recent years the development 
of a unifying and simplifying treatment of the whole subject area has become 
possible through the use of Nonstandard Analysis (N.S.A.) The application 
of nonstandard methods to distributions and other generalised functions was 
already considered by Abraham Robinson in his classic text [15] on N.S.A. in 
1966, and various workers have extended and developed this approach since 
then. It was Sousa Pinto who first considered the possibility of developing 
a nonstandard realisation of the Sebastiao e Silva axioms for Schwartz dis
tributions [6], and later for ultradistributions [7]. His further work on Sato 
hyperfunctions remained unpublished at the time of his death and an outline 
of this forms the main part of the present paper. 

The first section of the paper briefly reviews standard material on distribu
tions, ultradistributions and Sato hyperfunctions, and summarises the earlier 
nonstandard re-formulation of that material on which the subsequent develop
ment is based. 

6.2 Distributions, ultradistributions and 
hyperfunctions 

6.2.1 Schwartz distributions 

We recall first some basic facts about distributions. A distribution, in the 
sense of Schwartz, is a continuous linear functional on the space V = V{E) 
of all infinitely differentiable functions of compact support, equipped with an 
appropriate topology. That is to say, a distribution is simply a member /x of 
the topological dual V^{K) of that space. The distributional derivative of 
fi ^V is the distribution D/j defined by 

< Dfi, (j) >=< II, -(j)' >, V0 G V. 
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It fohows from this definition that all distributions are infinitely differentiable 
in this sense. Moreover, it can be shown that every distribution is locally a 
finite-order derivative of a continuous function. Those distributions which are 
globally representable as finite-order derivatives of continuous functions are 
called, not unnaturally, finite-order distributions. The space of all such 
finite-order distributions is denoted by PV (M). 

Every locally integrable function / defines a so-called regular distribution 
fif according to 

/

+ 00 

f{x)(j){x)dx^ for all 0 E P . 

-oo 

V contains elements other than such regular distributions, so that V is a 
proper extension of the space Cioci^) of all locally integrable functions. In 
this sense distributions may be legitimately described as generalised functions. 
However there is no direct sense in which a distribution can be said to have a 
value at a point. This becomes particularly clear in the case of those distribu
tions which are not regular. The delta function is the prime example of such 
a singular distribution, being defined simply as that functional 5 (obviously 
linear and continuous) which maps each function (j) G V into the number 0(0). 
It is a finite-order distribution since it is the second derivative of the continuous 
function x+(t) = ti7(t), where H denotes the Heaviside unit step. 

6.2.2 The Silva axioms 

The definition of distributions as equivalence classes of nonstandard inter
nal functions in a nonstandard universe was already made explicit in Abraham 
Robinson's original text [15] on N.S.A. Several other nonstandard models 
for 2 '̂(M) have since appeared. In particular such a model was presented by 
Hoskins and Pinto [6] in 1991, based on the axiomatic treatment of distribu
tions given by Sebastiao e Silva [19] in 1956. The Silva axioms for finite-order 
distributions on an interval / C M can be stated as follows: 

Silva axioms for finite order distributions 

Distributions are elements of a linear space £{I) for which two linear maps 
are defined: i : C{I) -^ £{I) and D : £{I) -^ £{I), such that 

51 6 is the injective identity, (every / G C is a distribution). 

52 To each u G £ there corresponds Du G £ such that, if i/ = L{f) G C^(/) 
then Diy = i{f') 

53 For V ^ £ there exists / G C and r G No such that v = D^i{f). 
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S4 Given f,g e C and r G No, the equahty D"^i{f) = D"^i{g) holds if and 
only if ( / — ^) is a polynomial of degree < r. 

Silva gives an abstract model for this set of axioms as follows: define an 
equivalence relation o on NQ x C by 

(r, / ) o (s, 5) ^ 3m e No {m > r, s A ( I ^ - ^ - ^''g) e n ^ } 

where 11^ is the set of all complex-valued polynomials of degree less than m 
and X^ is the kth. iterated indefinite integral operator with origin at a G / . 
Now write 

Coo=Coo(/) = N o x C / o 

Then Coo is a model for the Silva axioms S1-S4, and every model for the Silva 
axioms is isomorphic to Coo- In particular X>V (̂]R) is isomorphic to Coo(I^)-
The extension to global distributions of arbitrary order is straightforward. See, 
for example, the exposition of the Silva approach to distribution theory given 
in Campos Ferreira, [3]. 

A nonstandard model for Coo 

A nonstandard model for these axioms was presented by Hoskins and 
Pinto [6], using a simple ultrapower model *M = ]R^/~ for the hyperreals. 
It may be summarised as follows: 

The internal set *C^(]R) is the nonstandard extension of the standard set 
C^(IR) of all infinitely diflFerentiable functions on R, 

*C^(M) = {F = [Un)nm] : fn G C^(M) for nearly ah n G N}. 

This set is a differential algebra. We denote by '̂ C(IR) the (external) set 
of all functions F G *C'^(]R) which are finite-valued and S'-continuous at each 
point of *]R?,. An internal function F G *C^(]R) is then said to be a predis-
tribution if it is a finite-order *derivative of a function in ^C(IR). The set of 
all such pre-distributions is given by, 

*D^{^C(R)} = U *D^{^C(R)} 
r > 0 

= {F G *C^(M) : F = *D^$ for some $ G ^C{R) and some r G No}. 

We then have the following (strict) inclusions: 

c *i:)̂ {^c(M)} c *c^(M). 

The members of *L)'^{'^C(M)} are the nonstandard representatives of finite or
der distributions on M. Given two such pre-distributions F and G, we say that 
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they are distributionally equivalent, and write FSG, if and only if there 
exists an integer m G No and a polynomial Pm of degree m (with coefficients 
in *R) such that 

where *2"^ denotes the mth-order * indefinite integral operator from a G *7^6-
Then for any F G *D'^{'^C(IR)} we denote by fip =^[F] the equivalence class 
containing F and call it a finite order Hdistribution. The set of all such 
equivalence classes is denoted by 

^Coo(I^) is a nonstandard model for the Silva axioms and is isomorphic 
wi thl^^^jR) . 

6.2.3 Fourier t rans forms a n d u l t rad i s tr ibut ions 

For the classical Fourier transform of sufficiently well-behaved functions 
we have 

f{y)e-"ydy ; f{y) = - / /(x)e-^rfx 

and the Parseval relation 

f{x)g{x)dx = / f{y)g{y)dy. 
-oo J — oo 

To extend the definition of Fourier transform to distributions Schwartz used a 
generalised form of Parseval relation to define ji as the functional satisfying 

The difficulty here is that \i (j) ^ T) then its Fourier transform 0 belongs not 
to V but to another space Z = Z{M) which comprises all those functions T/̂  
such that i^{z) is defined on C as an entire function satisfying an inequality 
of the form 

k V W I < Ck exp(a|y|), a > 0, fc = 0,1, 2 , . . . . 

Since P Pi ^ = 0 it follows that although jl is well defined as a linear con
tinuous functional on the space Z it is not necessarily defined on T> and may 
therefore not be a distribution. The members of Z^iM) are called ultradistri
butions, and constitute another class of generalised functions. Although there 
are functionals which are both distributions and ultradistributions there exist 
distributions which are not ultradistributions and ultradistributions which are 
not distributions. 
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Nonstandard representation of ultradistributions 

In [7] a slight modification of the argument presented in [6] showed that 
every ^distribution may be represented by an internal function in *I^(M). Ac
cordingly we can redefine "Coo(I^) as follows: 

-Coo(M) = *i^-(^7^)/s = |J{*D^(^:D)}/S 
r > 0 

where ^V is the *C^ submodule of ^C comprising all infinitely * different iable 
functions of hypercompact support which are finite-valued and S-continuous 
on *M ,̂. 

If F = [(/n)nGN] Is any internal function in *D then its inverse Fourier 
transform F = *JF~^{F} is defined in the obvious way as F = [(/n)nGN] = 
[(^"U/n})nGN] and it follows readily that F e ""V ii and only if F = T'^iF} G 
*Z. Not every internal function in *r> represents a ^distribution and similarly 
not every internal function in ""Z represents an ultradistribution. However the 
following result was established in [7]. 

Let 7Y(C) denote the space of all standard complex-valued functions which 
can be extended into the complex plane as entire functions. For each entire 
function A{z) = X ] ^ o ^n^^ in H{C) define the oo-order operator A : Z ^ Z 
by setting, for each (/> G Z, 

oo oo 

n = 0 n = 0 

Then: 

Theorem 1 The inverse Fourier transform of a ^distribution in "Coo(^) ^̂  
representable as a finite sum of (standard) oo-order derivatives of internal func
tions in ""Z whose standard parts are continuous functions of polynomial growth. 

6.2.4 S a t o hyper func t ions 

Another approach to the required generalisation of the Fourier transform 
stems from the work of Carlemann [4]. He observed that if a function / , not 
necessarily in /̂ -"̂ (M), satisfies a condition of the form 

rx 

/ \f{y)\dy = 0{\x\'^) for some natural number K^ 
Jo 

and if we write 

/

O r+oo 

f{y)e-''ydy, and 52(2) = - / f{y)e-''''dy 
-00 ^0 
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then gi{z) is analytic for ah Q{z) > 0 and g2{z) is analytic for all 9(^) < 0. 
Moreover, for /? > 0, the function 

g{x) = gi{x-\-1(3) - g2{x - i(3) 

is the classical Fourier transform of the function e~^l*l/(t). The original func
tion / can be recovered by taking the inverse Fourier transform of g and 
multiplying by e '̂̂ L This suggested that a route to a generalisation of the 
Fourier transform could be found by associating with / a pair of functions fi{z) 
and /2(^) analytic in the upper and lower half-planes respectively. This idea 
forms the basis of the theory of hyperfunctions developed by M. Sato [17] 
in 1959/60, (although it was anticipated by several other mathematicians). In 
order to give a brief sketch of this theory it is convenient to introduce the 
following notation: 

7i(C\]R) = the space of all functions analytic outside the real axis. 
7Y(C) = subspace of all functions in 7Y(C\R) which are entire. 
W^'^^^(C\M) = space of ah functions 6 in W(C\M) which are of arbitrary 

growth to infinity but locally of polynomial growth to the real axis (that is, 
such that for each compact K C R there exists CK > 0 and TK ^ No such that 

for all z eC with K(z) G K and sufficiently smah ^{z) ^ 0). 

Definition 2 The hyperfunctions of Sato are the members of the quotient 
space 7Ys'(M) = 7Y(C\M)/7Y(C); that is, the set of all equivalence classes [9], 
where 0{z) is defined and analytic on C\M and Oi ~ O2 iff Oi — 62 is entire. 

Sato hyperfunctions constitute a genuine extension of Schwartz distributions. 
This is shown by the following crucial result established by Bremermann [1], 
in 1965: 

Theorem 3 (Bremmerman) / / /j, is any distribution in V then there exists 
a function /JP{Z) defined and analytic in C\R such that 

/

+ 0 0 

{/i (x + ie) — fi {x — i£)}(l){x)dx. 
-00 

Conversely, if 6 e W '̂̂ ^^(C\]R) then there exists ji^V such that e{z) = fi^{z). 
Identifying fi G V^ with [6] G TisO^) g'^'^^^ ^^ embedding of V such that the 
mapping S \V' ^ liP'^^^{€\E) is a topological isomorphism. 

Remark 4 Note that if /i has compact support then IJP{Z) is given explic
itly by 
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/ ( ^ ) = ^ <f^,{x-z) 1 > . 

For example, 5^{z) = ^ < S^{x — z) > = —2^ ^^^ we have 

s r+^ 1 

6.2.5 H a r m o n i c represen ta t ion of hyper func t ions 

For each Sato hyperfunction [9] in 7Ys'(M) we can choose some specific 
function 9^G [9] as the defining function of the hyperfunction and write 

9^{x,y) = 9''{x^iy)-9''{x-iy). 

Then 9^ maps the half-plane n"*" = R x M."*" into C, and is harmonic on 11^. 
Define H(n+) to be the linear space of all (real or complex-valued) functions 
defined and harmonic on n + , and let F : 7Y(C\]R) -^ H ( n + ) denote the map 
given by 

9^ e n{C\R) -^ r{9^) = 9^{x,y). 

Then we have the result 

Theorem 5 (Li Bang-He, [13]) F is an onto map and ifT{9^) = T{i/^) then 
9^ — v^ is a complex constant. 

Now suppose that [9] is the null hyperfunction, so that 9^ belongs to Ti^C). 
It is easily shown that 9j^{x^y) is an entire function in both variables (that is, 
can be extended into C x C as an entire function), is odd in the variable y and 
such that 

lim 9j^{x^y) = 0. 

On the other hand we have immediately from the above theorem, 

Corollary 6 Let 9^ G H(n+) be an harmonic function entire in both variables 
and odd in the variable y. Then there exists an entire function 9 G 7Y(C) 
such that 

9^{x, y) = 9{x + iy) - 9{x - iy) 

for all {x,y) G n + . 

Denote by Ho(n+) the linear subspace of H ( n+ ) comprising all functions 
which extend into C x C as entire functions in both variables and which are 
odd in the second variable. Then we have 

Hsm - H(n+)/Ho(n+) 



84 6. The Sousa Pinto approach to nonstandard generahsed functions 

and every equivalence class [Oj^{x^y)] G H ( n + ) / H o ( n + ) is a representation by 
harmonic functions of the corresponding hyperfunction [6] G Tis^^)- In the 
sequel we will use analytic or harmonic representation for hyperfunctions as 
occasion demands. 

6.3 Prehyperfunctions and predistributions 

Nonstandard representation of hyperfunctions 
In the present context cj G *IR denotes the infinite hypernatural number 

defined by [(n)nGN] in *Noo- Then to each harmonic function v^^ G H ( n + ) 
there corresponds an internal function F|^} : *M ^ *C defined by 

where e — uj~^ G ?7ion(0) and V̂ ^ = *(î 7r) is the nonstandard extension of 
VT^. The internal function F | ^ | clearly belongs to *C^(R). If we define a map 
Lo : H ( n + ) -^ *C^(IR) by setting LJ{P^) = F^^y then we have 

^W^(M) = c2;(H(n+)) C X^(R) 

where the inclusion is strict. 
The set "^Hs = a;(H(n+)) is an external subset of *C^(R); however it 

can be embedded into an internal subset as follows: Consider the nonstandard 
extension *H(n+) of H ( n + ) comprising all * harmonic functions on *n+ and 
then define, 

"H(M) = {F G *C^(M) : [3Q G *H(n+) : F{x) = e (x ,6 ) , V,e*i?]}. 

Then we have 

""Hs = ^ ( H ( n + ) ) C ^H(R) C *C^(R) 

where ^H(R) contains elements which are infinitely close to members of ^Tis = 
cj(H(n+)) and also elements which are far from any internal function in that 
space. The members of ^H(M) will generally be called prehyperfunctions. 
Prehyperfunctions which are near some element of ^HsO^) are said to be 
nearstandard prehyperfunctions, and the others may be called remote 
prehyperfunctions. The set of all such nearstandard prehyperfunctions will 
be denoted by 

"H„ , (E) D "Hs = ^ ( H ( n + ) ) . 

The elements of ^H(]R) enjoy an important property which is not shared by 
all internal functions in *C'^(M), namely: 
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Theorem 7 Every prehyperfunction in '^H(IR) on the line may be extended 
into the hypercomplex plane as a"" analytic function in the infinitesimal strip 

^^ = {^G*C: \Im{z)\ <e}. 

Proof. Any function is analytic at the centre of an open disc on which it is 
harmonic. Hence any internal function F(x) , x G *i? in ^H(]R) extends into 
the hypercomplex plane z = ^ -\- irj and is * analytic on the disc 

For ^ = X we have —€<r]<€ and since x may be any hyper real it follows 
that the internal function Ff^|(x) extends as a *analytic function into the 
infinitesimal strip in *C defined by \Im{z)\ < e. D 

The converse does not hold: not every * analytic internal function in the 
infinitesimal strip ft^ is a prehyperfunction on the line. The product of two 
prehyperfunctions, for example, is a * analytic function on the strip ^^ but 
need not itself be a prehyperfunction: '^H(M) is a linear space over *C but 
not an algebra. Now let ^(O^) denote the set of all internal functions in 
*C'^(R) which may be extended * analytically into the strip O^. ^4(0^) is 
a differential subalgebra of *C'^(M) with respect to the usual operations of 
addition, multiplication and * differentiation. Moreover we have, 

^W^(M) C "^H^.(M) C "^H(IR) c Ai^e) C *C^(M). 

The product of any two prehyperfunctions makes sense within the algebra 
A{ft£) although such a product will not generally be a prehyperfunction. In 
view of the above inclusions it seems appropriate to call the members of A{^s) 
generalised prehyperfunctions. 

Finally let 0 (0^) be the subset of all internal functions 0 G A{^£) such 
that *D^e(x) ^ 0 for all x G *Rb and for ah k G NQ. O ( O ^ ) is a linear 
*Cfe-submodule (but not an ideal) of A{^e) and therefore 

A{ne)/0{ne) 

is a module over *C^: its elements might conveniently be called generahsed 
"-hyperfunctions. Every such generalised ^-hyperfunction which may 
be represented by an internal function in ^H^5(IR) is called a standard 
"-hyperfunction or simply a "-hyperfunction. 

The set of all "-hyperfunctions on the line is defined by 

and we have the isomorphism 
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6.4 The differential algebra yA{fts) 

6.4.1 Predistributions of finite order 

Although not every continuous function / on M may be continued ana-
lyticahy into the complex plane, every such function does admit an analytic 
representation in the sense that there exists a unique hyperfunction [fnix^y)] 
in Hsi^) such that f^{x,y) -^ f{x) a,s y [ 0 uniformly on compacts. Then 
the internal function F{x) = %{x, e) belongs to ^W^(M) C ^H^5(I^) C A{n^) 
and is such that 

F{x) ^ 7 ( x ) , for anxG*IR6. 

F{x) is S-continuous at every point (standard and nonstandard) of *IR ;̂ 
that is, 

\fx, y e'^Rbix ^ y ^ F{x) ^ F{y)]. 

Reciprocally, every internal function F G A{^e) which is finite and S-
continuous at every point x G *M^ is infinitely close to a (standard) continuous 
function / defined on M. We denote by ^C{^s) the subalgebra of all functions 
in A{^s) which are finite and S-continuous on *R^. 

An internal function F : *R ^ C is said to be finitely * different iable 
at X G *M if it is *differentiable at x and, in addition, *DF{x) is a bounded 
number. 

Theorem 8 An internal function F G ^4(0^) which is finitely "" differentiahle 
on *]Rt belongs to ^C{^e)-

Definition 9 For any internal function F in '^(3(0^) the standard function 
f = st{F) will he called the shadow of F while the regular distribution vp = 
stv{F) G V\R) generated by F will be called the V-shadow of F. 

Now let $ be an arbitrary function in '^^(Og). Since '^^(Og) is not a 
differential algebra the derivative, *D$, will not necessarily belong to ^C{Q£). 
However it is easy to see that the functional fi*D^ • T>(K) -^ C defined by 

< fI*D^, (j) >= St{< $, - V >) 

is a well defined distribution. Hence *D$ has a well-defined D-shadow. If, in 
addition, *D$ itself belongs to ^C{0^e) then iy*£)^ is the (regular) distribution 
generated by the standard function / ' = 5t(*D$) which is the standard deriva
tive of the function / = st{^). Let *D^{^C{fl£)} denote the set of derivatives 
of functions in ^C{Qs) and for each fc G No define 

""D^i^cin,)} = *D hD^-\^c{n,)}\ 
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where ''D^{^C{^e)} = ^C{fts)- We can now define the following (external) 
subset of *W(1^^): 

oo 

^Cooi^e) = U * I ^ ' { ^ C ( a ) } . 

Then for each F G *^Coo(^e) there exists an S-continuous function $ G ^C{ft£) 
and an integer r G NQ such that F = *D'^$. The functional fip : X>(IR), 
defined by 

< IIFA>= St ( ( -1 )^ < $,*(/)W > ) = 8 t ( y *0(x)F(x)dx 

is a distribution. We call fip the D-shadow of the internal function F and 
write fip = stx){F). That is to say, we extend stx> into '^Coo(^£) as a map
ping with values in P ' (R) . An internal function F G *7Y(f̂ £) is said to be 
*S^£)differentiable if, for every (j) G V there exists a standard number b^p 
such that 

< r - ^ n ^ + r ) - F(a;)}, V > ^ ?>.̂  

for all T ~ 0, r ^ 0. As is easily confirmed, every function F in ^Coo{^e) 
is *5'7:)differentiable, and we define the '^differential order of F to be the 
number ^o{F) defined by 

^o(F) = min{j G No : F = *D^'$, for some $ G ^C{ne)}. 

Accordingly we call ^Cooi^s) the set of all predistributions of finite 
"^differential order. 

Replacing the (standard) concept of distribution of finite order by the 
(nonstandard) concept of predistribution of finite "^differential order it 
is clear that ^Cooi^s) with the *D operator constitutes a natural (nonstan
dard) model for the axiomatic definition of distributions of finite order given 
by J.S. Silva. 

Distributional equivalence 
We may now glue together all internal functions in ^Coo{^s) which have the 

same distributional shadow. That is to say, we define the following equivalence 
relation on '^Coo(^£)-

F, G G ^Cooi^e) are distributionally equivalent, written FEG^ if and 
only if they have the same distributional shadow. The quotient space 

is a *C^-module which is isomorphic to the space Coo(I^) of J.S. Silva distribu
tions of finite order. 
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6.4.2 P r e d i s t r i b u t i o n s of local finite order 

Finite order predistributions in *̂ Coo(Î ) are not the only prehyperfunc-
tions which have a distributional shadow. Let F G '-^7is(J^)\^Coo{^e) be a 
prehyperfunction such that for every compact X C R there exists an integer 
rx ^ No and an internal function ^ ^ ^ ^Ws'(M) which is S-continuous on 
some *-neighbourhood of *K so that 

F{x) = * L ) ^ ^ $ K ( X ) 

for all X G *K C M .̂ The smallest such rx will be called the '^differential 
order of F on *K, and denoted ^OK{F). If 0 G V{1Z) has support contained in 
K then 

< F, *^ > = < $K, (-1)^^ V^^) > 

is a bounded number and so F has a distributional shadow in VKO^) C P ( M ) . 
Since K may be any compact in IZ it follows that F has a shadow in I){7V) 
and 80 fi = stD{F) will be a well defined (standard) distribution in V\TZ). 

Denote by *^C7r(̂ ) the subset of all prehyperfunctions which have a distri
butional shadow. Then we have the inclusion 

^Coo(M) c ^C,(R) 

Moreover '̂ C7,-(]R)\'̂ Coo(I^) is not empty since it contains, for example, the 
internal function F : *IR ^ *C defined by 

+ 00 

^-^ I TT 1 -\- ijJ'^ix — 2)^ I 
i = 0 ^ \ / y 

The members of '̂ (̂ ^̂ (M) will be called predistributions of local finite order 
or, more simply, predistributions. 

6 .4 .3 P r e d i s t r i b u t i o n s of infinite order 

Let $ be any internal function in ^C{yte) and suppose that there exists an 
harmonic function g G H ( n + ) such that $(x) = *^(x,£). Let also r = [r^] be 
an arbitrary infinite hypernatural number. For every n G N the function 

is again harmonic on n + , and so *D^$ is a generalised prehyperfunction in 
*7-^(r^£). The internal function *D^$ is locally bounded by r! cj^; that is to say. 
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for each compact iC C M there exists a bounded constant CK such that for all 
X G *i^ we have 

In general the infinite order derivative *D^^ may have neither an ordinary 
shadow nor a distributional shadow, and stj:,{'^D^^) may have no meaning. 
On the other hand, for any 0 G 2^(M), we have 

But, since there exist test functions in T)(R) whose derivatives may grow arbi
trarily with the order, then 

<*D^$, *(/)>= \(<g{x,l/n),{-lY-(f)^'-\x)>] 
LV JneN. 

will not in general be a bounded hypercomplex number. Hence stjy{*D^^) 
may have no meaning. However we can define a family of standard part maps 
which allow us to attach a type of shadow to derivatives of the form *L)^$ 
for infinite r E *Noo and internal functions $ in ^C{^s)- These standard 
part maps are defined on certain subspaces of I^(M), for example on those of 
so-called Roumieu type which we recall very briefly as follows. 

Spaces of Roumieu type [16] 
Let A^ denote the set of all positive real sequences {Mp)p^f^Q such that 

(a) (Mp)2 < Mp_iM^+i, p = 0 , l , . . . , 

(b) Mp < Ah'^ mmo<q<p{MpMp-q}, ]9 = 0 , 1 , . . . , for some positive constants 
A and /i, 

+ 00 

(c) ^{Mp)-^/P < +00. Further, let 2^(^^)(]R) be the subset of ^(IR) com-

prising all functions 0 whose derivatives satisfy 
\(^^P\x)\<AhPMp, p = 0 , l , . . . , 

for some sequence (Mp) G A1, where A and h are positive constants 
(generally dependent on </)). 

It can be shown that T>^^P\W) is not empty for every sequence {Mp}p^f^Q G 
Ai. In particular, if there exists p G No such that Mp = +oo for all p > po 
then {MplpeNo belongs to M and V^^P\R) = V{R). The space V'^^P\R) is 
the union of the family of spaces 

«^)(M)} 
KcR,h>0 
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where K runs over the set of ah compact subsets of M and h runs over all 

positive numbers. For each real number h > 0 and compact K C M, 2^]^^ (M) 

contains all functions (j) G V^^p\Wj with support contained in K and satisfying 

the above inequality for that particular value oi h > 0. Each space ^^h ^^ ^ 

Banach space with respect to the norm 

(Mp) = s u p < - - — s u p \(t)^^\x)\ 
^K,h p>o {ri^Mp xeK 

and D ( ^ P ) (M) is provided with the inductive limit topology. 
p'(Mp) denotes the topological dual oiV^^p\R) and its elements are some

times called generalised distributions in the sense of Roumieu. A linear 
functional is in is continuous on that space for every 
h > 0 and compact /C C M. 

6.5 Conclusion 

The above outline of Sousa Pinto's nonstandard treatment of hyperfunc-
tions is reported in greater detail in [10]. Sousa Pinto's later work, developing 
the hyperfinite approach to distributions initiated by Kinoshita, is given in [8] 
and [9], but most comprehensively in his last publication, the book [20], which 
is now available in an English translation. 
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7 
Neutrices in more dimensions 

Imme van den Berg 

A b s t r a c t 
Neutrices are convex subgroups of the nonstandard real number system, 
most of them are external sets. They may also be viewed as modules 
over the external set of all limited numbers, as such non-noetherian. Be
cause of the convexity and the invariance under some translations and 
multiplications, the external neutrices are appropriate models of orders 
of magnitude of numbers. Using their strong algebraic structure a cal
culus of external numbers has been developped, which includes solving 
of equations, and even an analysis, for the structure of external num
bers has a property of completeness. This paper contains a further step, 
towards linear algebra and geometry. We show that in M^ every neu-
trix is the direct sum of two neutrices of R. The components may be 
chosen orthogonal. 

7.1 Introduction 

7 . 1 . 1 M o t i v a t i o n a n d o b j e c t i v e 

Consider the problem to specify a mathemat ica l model for the intuitive no

tion of "order of magnitude". Orders of magni tude have some intrinsic vague

ness, haziness or superficiality. They are bounded and invariant under at least 

some addit ions, or alternatively, t ranslat ions . Classically, orders of magni tude 

are modelled wi th the O- or o-notation, which can be seen as addit ive groups 

of real functions in one variable [19]. One may argue t h a t there is some friction 

between the intuitive notion of order of magni tude , which is about numbers , 

and its model, which concerns functions. If one wishes to preserve the prop

erties of boundedness and invariance under some addit ions in the real number 

system, one enters into conflict wi th the archimedian property, a conflict also 
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known as the Sorites paradox [28, 35]. However, this difhculty can be circum
vented, if one models within the real number system of nonstandard analysis. 

Nonstandard analysis disposes of so-called external sets, which do not cor
respond to sets of classical analysis. External sets of real numbers may be 
convex and bounded without having an infimum and supremum, and they are 
invariant under at least some additions. It may be shown that such an ex
ternal set E has a group property: There exists e > 0 such that whenever 
X G E one has x -\- Is G E ior limited (i.e., bounded by a standard integer) real 
numbers /. So it is natural to consider convex (external) additive subgroups 
of M, which have been called neutrices in [29] and [30]. The term is borrowed 
from Van der Corput [20], who uses it to designate groups of functions, which 
may be more general than Oh's and oh's. Within the nonstandard real num
ber system there exists a rich variety of neutrices; simple examples are 0 , the 
set of all infinitesimals, and £ , the set of all limited real numbers, for more 
intricate examples see [29, 30] and also section 7.3.2. External numbers are 
the sum of a (nonstandard) real number and a neutrix. One could define an 
order of magnitude simply to be a convex (external) subset of the nonstandard 
reals; then it is in fact an external interval, bounded by two external numbers 
(see [5] for a proof). 

The external numbers satisfy a calculus, which is rich enough to include 
addition, subtraction, multiplication, division, order, solution of equations and 
calculation of integrals. All in all, this calculus of orders of magnitude resembles 
closely the calculus of the reals. We refer to [29, 30] for definitions, results 
and notations. We recall here a notation for two orders of magnitudes which 
are not neutrices. The set of positive appreciable numbers @ corresponds 
to the external interval (0 , £] and the set 96 of positive unlimited numbers 
corresponds to the external interval (<£,R]. 

The neutrices and external numbers have been applied in various settings 
(the terminology not being explicit in earlier papers): singular perturbation 
theory ([2, this paper describes the discovery of the "canard" phenomenon, 
the set of parameters for which it occurs is an external interval)], [22], [10], 
[11, papers on exponentially small thicknesses of boundary layers], [12, thick
ness of transitions of boundary layers]), asymptotics [5, sets of numbers hav
ing the same (nonstandard) asymptotic expansion, and domains of validity 
of asymptotic approximations], probability theory [6, modelling of mass and 
queue of probability distributions] and psychology [7, inperfect knowledge of 
maximal utility]. Special mention has to be made of the work of Bosgiraud, who 
applies the external numbers nontrivially to problems of modelling and calcu
lation of insecure statistical events in a series of papers [13, 14, 15, 16, 17, 18]. 

This paper makes a step towards an external calculus in more variables. 
The main result (7.2.2, decomposition theorem) states that every neutrix in 
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the two-dimensional real space is the direct sum of two neutrices in the one-
dimensional nonstandard real line. The neutrices are uniquely determined, and 
correspond to orthogonal directions. So in a sense the neutrices in the plane 
possess a dimension, too, which may be interpreted as "length" times "width". 
In a second paper [8] we extend the decomposition theorem to M^ for arbitrary 
standard k, and also show that the decomposition fails if k is unlimited. One 
reason for dividing the publication of the result into two separate papers is 
that the proofs of the two-dimensional case and the fc-dimensional case are 
both rather lengthy. It is to be noted that the proof of the fc-dimensional case 
uses in an essential way the result in two dimensions, but is by no means an 
extension of its proof by some form of external induction. 

For standard dimension, the result answers in part a conjecture by Georges 
Reeb, who suggested that one should be able to recognize the dimension of 
a space on its external subsets. He also conjectured that there should be a 
relatively easy nonstandard proof of the topological dimension theorem, or the 
invariance of domain theorem, but this remains unsettled (some progress has 
been made by Reveilles [34]). 

One may define an external point to be the sum of a (nonstandard) vector 
and a neutrix. On the basis of the decomposition theorem it could be inter
esting to develop fragments of linear algebra, matrix-calculus, geometry and 
multivariate analysis and statistics, in order to model, in the case of more vari
ables, approximate qualifications ("small", "enormous", "somewhat", "good"), 
approximate phenomena ("mistbanks", "stains", "spheres of infiuence", "super
ficiality"), and approximate calculus and reasoning. 

7.1.2 Setting 

Roughly spoken, an internal set is a set defined by a formula of classi
cal analysis (which may contain parameters), and an external set cannot be 
defined this way. 

In fc-dimensional space, except for its linear subspaces, every neutrix is an 
external set. The class of external sets differs from one nonstandard model to 
another, or alternatively, from one nonstandard axiomatics to another. How
ever, the particular external sets met in applications are to a large extent 
the same. Indeed, usually they reduce either to 0 or to £; these two sets 
have essentially the same properties through all common nonstandard models 
and axiomatics. 

The setting of this paper is the axiomatic system Internal Set Theory (1ST) 
of Nelson [32, 33], and we refer to [24] and [23] for up-to-date presentations and 
terminology. The language of this system contains two primitive symbols G 
and st (standard). It differs from model-theoretic approaches in the way that 
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nonstandard elements are already contained in infinite standard sets, instead 
of extensions of such sets. It has the advantage of simplicity, of saturation 
in all (standard) cardinals, and of full validity of the "Fehrele principle" [5]: 
no galactic formula, i.e. a Ei-formula, starting with the "external quantifier" 
3x {stx A' • •) is equivalent to a halic formula, i.e. a Hi-formula, starting with 
the "external quantifier" Vx {st x —> • • •) unless they are equivalent to an 
internal formula. These are exactly the two characteristics that enable to 
prove the classification theorem of halfiines (theorem 7.3.23), which has as 
a direct consequence that every order of magnitude is an external interval, 
and constitutes a crucial step in the proof of the decomposition theorem for 
neutrices in two dimensions (theorem 7.3.42). 

Formally, Nelson's axiomatics does not regard external sets, but there are 
no major problems if we consider "external sets" which have only internal ele
ments, and are defined by an external formula in which all "external quantifiers" 
range over standard sets. This is supposedly the case for neutrices, and for sets 
reduced to such. Axiomatics which enable to deal with this kind of external 
sets are given by [31, 27, 1, 25, 26]. 

7.1.3 Structure of this article 

In section 7.2 we define formally the notion of neutrix and state the de
composition theorem for neutrices in 2-dimensional space. 

The decomposition theorem is proved in section 7.3. The actual proof, 
which is contained in section 7.3.3, needs some elementary external geometry 
(section 7.3.1) and algebra (section 7.3.2). In particular we study two kinds of 
division for neutrices in one dimension, and their relation to certain geometric 
properties of neutrices in two dimensions. We give special attention to practical 
aspects, like the calculation of the divisions, and present many examples. 

In general, the proof is neither fully algebraic, nor fully analytic. Instead, 
it tends to be a mixture of algebraic and analytic arguments, where typically 
algebraic operations are adapted to the order of magnitude of the quantities 
involved. 

7.2 The decomposition theorem 

Definition 7.2.1 Let k GN, k > 1 be standard. A neutrix is a convex additive 
subgroup of M^. 

A convex (external) subset Â  of R is a subgroup if and only if it is sym
metric with respect to 0 and whenever x ^ N one has 2x G N. Then by 
external induction nx ^ N for all standard n G N; by convexity, one has Ix G 
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N for all limited / G M. This indicates an alternative way to define neutrices: 
they should be modules over £^ the external ring of all limited real numbers: 
a subset Â  of R is a neutrix if and only ii £ - N = N. 

The only internal neutrices of R^ are its linear subspaces. Thus the only 
internal neutrices of M are {0} and M itself. Two obvious external neutrices 
in M are £ itself and 0 , the external set of all infinitesimals. The neutrices of 
the form e£ for some positive e G IR ("^-galaxies") are isomorphic to £ and 
the neutrices of the form £0 for some positive 5 G M ("e-halos") are isomorphic 
to 0 . Every neutrix N ^ {0} is non-noetherian in an external sense: there 
exists always a strictly ascending chain of subneutrices (7V^)^^i^ with Â i ^ 
Â 2 ^ • • • ^ Nn § ^n+i § • • • for standard indices n. Indeed, let cj G IR 
be positive unlimited, and put Â ^ = uj^£. Then Â ^ ^ A^n+i ioi all indices 
n. Consider oj^ which is not an element of N^ for all standard indices n. 
Let £ G N he suflficiently small such that also £uj^ G N. Then {£Nj^)^^^ is a 
strictly ascending chain of £-submodules of A .̂ It may be proved [5] that for 
any strictly ascending chain (A^^)^^^ of neutrices, the union Ustn^n is neither 
isomorphic (for internal homomorphisms) to £ nor to 0 . This suggests that 
there is a rich variety of external neutrices in R, non-isomorphic with respect 
to internal homomorphisms. Still, as it is tacitly understood that a neutrix is 
defined by a bounded formula 0 of Internal Set Theory, a neutrix has a simple 
logical form, for 0 may be supposed to be internal, galactic or halic [5]. 

The main theorem of this paper asserts that in a sense augmenting the 
dimension to two does not generate entirely new types of neutrices, for any 
neutrix in R-̂  may be decomposed into two neutrices of R. We adopt the 
notation Nx = {nx \ n G A^} for the neutrix of all multiples of some vector x 
with coefficients in some neutrix Â  C R. 

Theorem 7.2.2 (Decomposition theorem) Let N C M? be a neutrix. Then 
there are neutrices Ni D N2 m R and orthonormal vectors ui, U2 such that 

N = Niui 0 N2U2 

Moreover, if Mi D M2 in R are neutrices and vi, V2 are orthonormal vectors 
with N = Mivi 0 M2V2, it holds that 

Ml = Â i , M2 = N2. 

7.3 Geometry of neutrices in R^ and proof of the 
decomposition theorem 

The present section is divided into various subsections, conform the various 
stages of the proof of the decomposition theorem. 



7.3. Proof of the decomposition theorem 97 

The first subsection contains the definitions of the notions of thickness, 
width (smallest thickness) and length (largest thickness) of neutrices, which 
are the basic ingredients of the proof. We prove an important theorem, called 
the "sector-theorem", expressing convexity of the thicknesses of neutrices in 
two dimensions on not too large sectors. One of the consequences is that the 
thicknesses in most directions are minimal. This implies that the width of a 
neutrix is realized in some direction, so in the decomposition represented in the 
main theorem we obtained already the neutrix N2. Other important notions 
used in the proof are near-orthogonality and near-parallelness. 

The most important step in the proof of the decomposition theorem in M^ 
consists in establishing a direction, which realizes the length of the neutrix; 
then up to a rotation, the neutrix will simply be "length times width". 

This part of the proof uses a form of euclidean geometry in which the points 
and lines may have non-zero thickness, in fact such a thickness takes the form 
of a neutrix. We have to adapt some definitions, operations and theorems of 
ordinary, exact euclidean geometry to this geometry of "clouds" or "mistbanks". 
This is done in the first subsection, while the second subsection contains an 
algebraic tool: the "division" of a neutrix by another, the result of which may 
be calculated through a "subtraction", after taking logarithms. 

The final subsection establishes the existence of a direction which realizes 
the length. It uses an argument of "external analysis": every (external) lower 
halfline has a supremum, which is an external number^ i.e., the sum of an 
ordinary real number and a neutrix (theorem 7.3.23). In a sense, the external 
set of directions which realize the length is the supremum of an external set of 
directions which do not realize the length. 

7.3.1 Thickness, width and length of neutrices 

Definition 7.3.1 Let N C M? be a neutrix. We call N square in case there 
exists a neutrix M C M such that N — M x M. 

Definition 7.3.2 Let N C M? be a neutrix and r G M? be a non-zero vector. 
The thickness of N in the direction of r is the neutrix T^ of M defined by 

I I ||r|| J 

The width W of N is defined by 

W= Q T„ 
res^ 

and its length L by 

L = IJ T,. 
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In an obvious way, if X is a subset of M? one may define ||X|| = 
{||x|| I X G X } . So, if r is unitary, we may write the thickness in the di
rection of r alternatively as T^ = ib ||A/̂  Pi Rr||. As an example, consider the 
neutrix £ x 0 C M^ Let r = (^°^^). Then T^ = £ if (/) ^ 0 (modTr), otherwise 
Tr = 0. Hence W = 0 and L = £. It will be shown later on that for every 
neutrix the width is assumed in some direction (in fact most of the directions) 
and the same holds for the length (in only few directions). For square neutrices 
N = M^ all thicknesses are equal to M, hence their width and length are also 
equal to M. 

Definition 7.3.3 Let TV C M^ fee a neutrix and x,7/ G M .̂ We call x and y 
nearly orthonormal if \\x\\ = \\y\\ = 1 and < x^y >::^ 0. We call x and y nearly 
orthogonal if TT^ and Trrr are nearly orthonormal. 

I F I I \\y\\ 

Let s ::̂  0. Then the vectors ( J ) and ( ^ j z ^ ) are nearly orthonormal. The 
vectors ( ^'^) and (f ) are nearly orthogonal. We introduce now a notion of 
near-orthogonality with respect to neutrices. 

Definition 7.3.4 Let A/" C M^ he a non-square neutrix and x^y ^M? he non
zero vectors. We call a line M?/ nearly parallel to N if Ty > W. We call x a 
near-normal vector of N if x is nearly orthogonal to all y ^ S^ such that y is 
nearly parallel to N. 

As an example, consider the neutrix N = £ x 0 C M?. The vector (5) 
is nearly orthogonal to A .̂ Indeed unitary vectors y^ such that y is nearly 
parallel, i.e. Ty^ = £ > 0 , are all of the form (^/j3^) with e 2̂  0. Then 
( ( ? ) ' ( ^ ^ ) ) - 0- ^^^^ ^^^^ 1̂1 vectors of the form (1+^) with a, /3 c± 0 are 
also nearly orthogonal to A .̂ 

The notions of near-parallelness and near-normality will be justified for 
neutrices A' in two dimensions by theorem 7.3.6. In fact it is a consequence 
of the next simple, but important theorem, based on the convexity of A", that 
most directions have the same thickness. This proves a fortiori the existence 
of a direction which realizes the width. 

Theorem 7.3.5 (Sector-theorem) Let Â  C M^ he a neutrix and a and b two 
unitary vectors which make an angle 9 with 0 < 9 ^ TV. Let c he a unitary 
vector, which makes an angle 7 with a such that 0 < 7 < 6>. Then 

Tc>mm{Ta,n). 

Proof. Without restriction of generality, we may assume that T^ > T^ > 0 and 
that a = ( Q ) . Let x G Ma fl A". Consider the change of scale M = N/ \\x\\ . 
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The image of x is a G M. Notice that also h G M, for T^ > Ta. Let C, be 
the intersection of the hnes ah and ^c. Then (" G M by convexity and ||C|| is 
appreciable. Because £ ( G M it holds that C/ ||CII ^ ^- Put ^ = ||x|| • ( / ||C||. 
Then z G N. Because ||2:|| = \\x\\ we conclude that Tc > Ta. D 

Theorem 7.3.6 Let N cM? be a neutrix. Then there exists an unitary vector 
u such that Tu = W. In fact the set of directions corresponding to an unitary 
vector r with T^ = W contains an interval of the form (a + 0 , a + TT + 0 ) . 

Proof. Let M = min (Tn\,Tm\]. By the sector-theorem Tu > M for aU 

unitary u in the first quadrant. But Tn\ = T/-i\ and T/o\ = T/ o \ hence 

Tu > M for all unitary u in every quadrant. Hence M = W. 
If N is square, one has Tr = W for all unitary vectors r. If not, we may 

rotate N in order to obtain that Tn\ = T/-i\ > W. Let r be an unitary 

vector which makes an angle 9 with the horizontal axis such that 0 ^ 0 ^ TT. 
If T^ > W^ one should have T/o\ > VF, by the sector-theorem applied to [0, n] 

or [0,0], depending to whether 6 < ^ or 9 > ^. This implies a contradiction, 
hence Tr = W. Thus we proved the second assert ion, with a = 0. D 

Corollary 7.3.7 Let N C M? be a neutrix with width W. Let u,v be two 
orthonormal vectors. Then Tu = W orTy = W. 

The proof of the decomposition theorem for a neutrix of M? is easy, once 
we know that its length is realized in some direction. 

Theorem 7.3.8 Let N CM!^ be a neutrix with length L and width W. Assume 
there exists a unitary vector u such that N fi E.u = Lu. Let v be unitary such 
that u J- V. Then N = Lu 0 Wv. Moreover, 'if u', v' are orthonormal and 
A î, Â 2 C M are neutrices with Ni D N2 such that N = Niu^ 0 A 2̂'̂ ^ one has 
Ni=L and N2 = W. 

Proof. By corollary 7.3.7 it holds that Ty = W. Because TV is a neutrix, we 
have Lu 0 Wv C N. 

Conversely, let n G A .̂ Let p be the orthogonal projection of n on Mn. 
Because ||n|| G L and \\p\\ < \\n\\ one has \\p\\ G L, so p G A .̂ Then n — p G N^ 
and because T^ = 1^, it follows that n — p G Wv. Hence n = p -\- {n — p) G 
Lu 0 Wv and N C Lu ® Wv. We conclude that N = Lu ® Wv. 

We prove now the uniqueness part. The neutrix N cannot contain vectors 
larger than its length, so Ni C L. If there exists A G L \ A/̂ i, all vectors n in 
Â  satisfy ||n|| < |A|, so L cannot be the length of A .̂ So L D A î, from which 
we conclude that L = Ni. By corollary 7.3.7, one has A'2 = W. D 
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It is now almost straightforward to prove the decomposition theorem for 
neutrices in M? if their length is of the form X£. 

Proposition 7.3.9 Let A G M, A > 0. Let N be a neutrix with length L = 
X£ and width W. Then there are orthonormal vectors u and v such that 
N = Lu^Wv. 

Proof. By rescaling if necessary we may assume that A = 1. Let u ^ N he 
unitary. Then £u G N because iV is a neutrix, and N D M.u C £u because the 
length of Â  is £. Hence N D 'M.u = £u = Lu. 

Let V be unitary such that u Lv. Then TV = Lu 0 Wv by theorem 7.3.8.D 

The decomposition theorem is also easily proved for subneutrices of a given 
neutrix with length less than the length of this neutrix. Indeed, we have the 
following definition and proposition. 

Definition 7.3.10 Let N cR^ be a neutrix with length L and width W. Let 
M CR be a neutrix with W C M C L. We define 

NM = {n e N \ \\n\\ e M}. 

Clearly NM is a neutrix with length M. Its length is realized in any direc
tion for which N contains a vector u with Tu > M. Then the next proposition 
is a direct consequence of theorem 7.3.8. 

Proposition 7.3.11 Let N (Z R'^ be a neutrix with length L and width W. 
Let M cR be a neutrix with W C M C L. Assume there is a unitary vector u 
such that Tu > M. Let v be a unitary vector v such that {u^v) is orthonormal. 
Then NM = Mu 0 Wv. 

Definition 7.3.12 Let N C R'^ be a neutrix. We call N lengthy if it is not 
square, and if its length is not of the form L = e£ for some e ER, S > 0. 

So the two-dimensional decomposition theorem will follow once we have 
proved that lengthy neutrices assume there length. Note that the proof of 
proposition 7.3.9 does not work, because for every A G L there exist n G N 
such that ||n|| = 96 • A. In order to prove that a lengthy neutrix assumes its 
length too, we work "from outside in". We consider lines with unitary directions 
u such that T^ < L, with u in an appropriate segment of the unit circle, in 
such a way that all lines "leave to the right". We divide the segment into two 
(external) classes: directory vectors for lines which are "leaving upside" and 
directory vectors for lines which are "leaving downside". It follows from the 
completion argument mentioned earlier that the two classes do not entirely fill 
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up the segment, just as two disjoint open intervals within some closed interval 
omit at least one point. The unitary vectors left out are then exactly those 
directions v such that Ty = L. 

We introduce an appropriate scaling and orientation for lengthy neutrices, 
and make also precise what we understand by "leaving to the right upside" and 
"leaving to the right downside". 

Definition 7.3.13 Let N CR'^ be a lengthy neutrix. We call N appropriately 
scaled ifW^0 and L^ £. 

Proposition 7.3.14 A lengthy neutrix N cM? is homothetic to an appropri
ately scaled neutrix. 

Proof. Let A,a; G L \ 1^ be positive such that X/cv ^ 0. Consider M = N/cv. 
Its width is W/LJ C W/X C 0 and its length is L/LJ which contains at least 
some unlimited elements. If W/X ^ 0 we are done. If W/X = 0 we have 
W/uj ^ VF/A, so clearly W/uj ^ 0 . Hence M is appropriately scaled. D 

Definition 7.3.15 Let N cM.^ be a lengthy appropriately scaled neutrix with 
length L. We call N appropriately oriented if 

Lemma 7.3.16 Let N C M? be a lengthy appropriately scaled neutrix. There 
exists a rotation p of the plane such that p{N) is appropriately oriented. 

Proof. Let W ^ 0 he the width of N. Then by proposition 7.3.11 there are 
orthonormal vectors u and v such that N£ = £u 0 Wv. So let /? be a rotation 
such that p(^) = (1) . Then p{N)£ = £{l) eVF(O) . D 

Lemma 7.3.17 Let N C M? be a lengthy appropriately scaled and oriented 
neutrix with length L and width W. Let A G L, A ^ 0. Then there exist 
orthonormal vectors î  ^ ( J ) and v c^ (^^) such that N£x = £Xu 0 Wv. 

Proof. If A is limited, the property follows from definition 7.3.15. If A is 
unlimited, any element n ^ N with ||n|| = A is of the form n = ( S ) with 
^ ^ oo and e ^ 0. Take u = . "̂  2(g) ^^^ ^ ~ / / 2 ( l ^ ) • Then the 
proposition follows from lemma 7.3.16. D 

In the final part of this section we consider points and lines close to a 
lengthy appropriately scaled and oriented neutrix. 
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Definition 7.3.18 Let N cM? be a lengthy appropriately scaled and oriented 
neutrix with and length L and width W. Let g G M^ &e such that \\q\\ G L. 
Then q is said to be infinitely close to N if q c^ n for some element n G N. 
Let ' U ^ ( Q ) ^ I ; 2 : ^ ( 5 ) be orthonormal vectors such that N£x = £\u 0 Wv for 
some unlimited A with A > ||g||. Then q = ^u -\- rjv with 77 2̂  0. It is called 
a lower point ifr}<W and an upper point if rj > W. Let x be a unitary 
vector, with x ^ ( J ) . We say that the nearly parallel line Rx is downward if it 
contains an infinitely close lower point, and upward if it contains an infinitely 
close upper point. 

As an example, consider N = LO0 X -^£. The line containing the vector 
(i/c^) is nearly parallel upward, and the line containing the vector (^_i/^) is 
nearly parallel downward. By convexity, a nearly parallel line cannot be both 
downward and upward with respect to a neutrix N. By the next proposition, 
if its intersection with N is not maximal, it should be either one. 

Proposition 7.3.19 Let N C M? be a lengthy appropriately scaled and ori
ented neutrix with length L. Let x ^ ( J ) be a unitary vector. Assume that 
Tx < L. Then the nearly parallel line x is either downward or upward with 
respect to N. 

Proof. Let W be the width of N. Let A be unlimited such that T^ < X < L. 
By proposition 7.3.9 there exist orthonormal vectors u ^ (^Q^ and i; 2̂  (5) 
such that N£i = <£A 0 Wv. By continuity x fl <£A 0 0v contains some point 
y = ^u-\- rjv with ^ G L+ and \rj\ > W. li rj < W the line x is downward, and 
T] > W the line x is upward. D 

Definition 7.3.20 Let N cM? be a lengthy appropriately scaled and oriented 
neutrix with length L and width W. Let x ^ N be an infinitely close lower point 
and y ^ N be an infinitely close upper point, with \\x\\ = \\y\\. Let u ^ (^Q) 
and v c^ (5) be orthonormal vectors such that u J- xy. If for some unlimited 
A with |A| > ||x|| it holds that N£x = £Xu 0 Wv, the points x and y are called 
opposite with respect to N. Also, the lines Rx and M.y are called opposite with 
respect to N. 

The final proposition of this section states that opposite lines generate the 
same thicknesses. 

Proposition 7.3.21 Let N C M? be a lengthy appropriately scaled and ori
ented neutrix. Let a^b c^ ( J ) be unitary such that Ma is a nearly parallel 
downward line, and IR6 an opposite nearly parallel upward line. Then Ta = Ti^. 
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Proof. Let L be the length of Â  and W be its width. Let x G Ma be an 
infinitely close lower point and y be its opposite infinitely close upper point on 
Rb. Let A G L+, |A| > ||x|| be such that A^^A = £^u © Wv, where iz 2̂  ( J ) 
and i; 2:̂  (5) ^^^ orthonormal vectors such that u J- xy. Let a > 0 be such 
that Ta < a < \\x\\. Then aa ^ N^ so there exist ^ < ||x||, rj > W such that 
aa = ^u — Tjv. Because N£x = £Xu 0 Wv, it holds that ah — ^u + r}v ^ TV, 
so a ^ Tt,. Hence Tf^ G Ta . In a symmetric manner we prove that Ta G Tf). 
We conclude that Ta = Tj,. D 

7.3.2 O n t h e d iv i s ion of neutr i ces 

Let A/" C M^ be a neutrix with width W and length L. We assume that TV 
is of the form Â  = i^(o) © l ^ ( i ) - Consider all lines Mx with x of the form 
x={l),yeR. 

The following sets appear to be of interest: 

1. R={y\R{l)nL{l)®W^{^,)=il}} 

2. 5 = { y | R ( i ) n i ^ ( i ) ® i y ( ? ) ^ 0 } (L 

Clearly, ii y ^ R or y ^ S the neutrix realizes its length in the direction x, 
i.e. one has T^ — L. If ^ E 5', the line M(^) leaves N on its "small" side. On 
the other hand, if ^ G i?^, the line M(^) leaves N on its "large" side. But Â  
may have "corners", i.e., there may exist lines Mx which after leaving N enter 
into the set L^( J) 0 i y ^ ( 5 ) . Then 5 g i?. An example of such a neutrix is 
Ar = £ ( Q ) 0 £ £ ( 5 ) , with 6 :^ 0, £ > 0. An example of a neutrix without such 
"corners" is given byA^ = i^(o) © ^ ( i ) , see also [5]. 

If VF ^ L, the sets R and S are neutrices, in fact they result from an 
algebraic operation applied to W and L. The first one is the well-known 
division operator on ideals or modules, commonly written ":" [36]. We recall 
here its definition, in the context of neutrices. 

Definition 7.3.22 Let M, TV C R two neutrices. We write 

TkT : AT = {x G M I (Vn G N){nx G M)} . 

One can also abbreviate by 

Tkf :TV = {xGR|TVxCTVf)} . 

Since N{£x) = {£N)x = Nx C M, the set Tkf : TV is a neutrix. Notice that 

N{M :N)CM 
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and that M : iV is the maximal set X which satisfies the property 

N'XcM. (7.1) 

As such, we call M : N the solution of the equation (7.1). 
The second one is also a sort of division, that we note M/N. This division 

is based on a sort of inverse. Its definition needs more knowledge on neutrices, 
and will be postponed. 

The study of divisions is highly related, but distinct from earlier work on 
the division of neutrices by Koudjeti [29] (see also [30]), mainly in the sense 
that our definitions are of algebraic or analytic nature, instead of set-theoretic. 
We use many of his tools and results, sometimes in a slightly modified form. 

Following Koudjeti, the argumentation becomes more simple and intrinsic, 
if instead of multiplications of neutrices we study additions of lower halflines. 

The transformation from neutrices N to lower halflines is done by the 
symmetrical logarithm logg{N) = log(A^+ \ {0}); formally we define log^jO} = 
0. We transform halflines G back by the symmetrical exponential ex.-pg{G) = 
[— exp(G), exp(G)]; formally we deflne exp^ 0 = {0}. 

Below we recall some fundamental properties of halflines and neutrices. 
A neutrix / is idempotent ii I • I = I. A lower halfline H is idempotent if 
H -\- H = H. A lower halfline is idempotent if and only if it is of the form 
(—oo, A )̂ or (—oo, A ]̂, where Â  is a neutrix. A lower halfline H is idempotent 
if and only if exp^ H is an idempotent neutrix. A neutrix N is idempotent if 
and only if log^ N is an idempotent lower halfline. 

Let £ ^ 0, e > 0. Examples of idempotent neutrices are, in increasing order 
{0}, £ ' e-®/^ £ . £^ , 0 , £ , £e(V^)® and M. The neutrices £ • e-(V^)'-@A, 
(l/£)^/^-£-£:^, {l/e)-0, e£ and £e^('^/^)+('^/^)® are not idempotent. They are 
all of the form a • / where / is an idempotent neutrix, and a is a real number. 
In fact every neutrix can be written is this form. This is a consequence of 
the following classification theorem of lower half-lines, which with successive 
generalizations has been proved in [9, 3, 5]: 

Theorem 7.3.23 Every lower half-line H C^ has a representation either of 
the form H = (—oo, r + A )̂ or H = (—oo, r -\- N], where N is a neutrix, which 
is unique, and r is a real number, determined up to the neutrix N. 

We see that a lower half-line H may be written in the form H = r + X, 
where K is of the form (—oo,A^) or (—oo,A/'], i.e. the lower halfline K is 
idempotent. Then exp^ H = e^ exp^ K, and we obtained as a consequence that 
every neutrix is the product of a real number and an idempotent neutrix. 

With respect to the above theorem we recall some notation. Halflines of the 
form (—oo, r + A )̂ may be called open^ and halflines of the form (—oo, r + A"] 
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closed. The external set r -\- N is cahed an external number; it has been 
shown [29], [30] that many algebraic laws valid for the real number system 
continue to be valid for the external numbers. Certain analytic laws, too, 
on behalf of the above theorem. For instance, it may be justified to call the 
external number r -\- N the supremum sup H of H. We call H = (—CXD, supi / ] 
the closure of i7, and H^ = ( —oo, supi7) the interior of H. 

The pointwise addition of lower halflines H and K, satisfies 

{ K suT>H 5 swpK, or SUT>H = swpK and K is open P ^ P . P P p ^^2) 

H supH ^ supK, or supH = swpK and K is closed. 
Similar definitions and rules hold for upper halflines, working with inflmums 
instead of supremums. Since lower halflines may be translated into idempo-
tent lower halflines, and neutrices may be rescaled to idempotent neutrices, 
in deflning algebraic operations we may restrict ourselves to the idempotent 
cases. The extension to the general case is straightforward and will be briefly 
addressed to at the end of this section. 

We turn flrst to the problem of defining subtractions. The first opera
tion -^ will correspond to the division :, and the second operation ••, which will 
correspond to the division / , is defined through inverses. 

Definition 7.3.24 Let H, K he idempotent lower halflines. We define H ^ 
K by 

H^K = {x\{\/keK){k + xeH)}. 

Notice that K + {H -^ K) C H and that we have a maximality property 
similar to the division :, i.e. H -^ K may be called the (maximal) solution of 
the equation K -\- X = H. 

Definition 7.3.25 Let H be an idempotent lower halfline. We define the sym
metrical inverse {—H)s of H by 

r TT\ \ ^ ^ open 
closed 

If H is open ("boundary to the left of zero"), its symmetric reciprocal is a 
idempotent halfline, which is closed ("boundary to the right of zero"); in a sense 
the "distance" of the "boundaries" of H and {—Hg) to zero is equal. So there 
is some geometric justiflcation in calling the reciprocal symmetric. Formally it 
holds that (-0)^ = M and (-IR)^ = 0. 

Definition 7.3.26 Let H^ K be idempotent lower halflines. We define H-K by 
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Notice that i J •• X is an idempotent lower halfline, too. 

Proposition 7.3.27 Let H^K he lower halflines. Let S = supH and T 
supjfC. Then 

1. 

2. 

3. 

( -

H 

H 

H),= 

••K = 

••K = 

-H^. 

H-K^. 

f i-K)s 
1 H 

S ^T, or S = T and H is closed 

S ^T, or S — T and H is open. 

The proofs are straightforward, using formula (7.2) in 3. 

Proposition 7.3.28 Let i7, K be two idempotent lower half-lines of M. Let 
S = sup H and T = sup K. Then 

j {-K)s S ^T, or S = T andK is open 

1 H S ^T, or S = T and K is closed. 

Proof. 

1. Let X G H ^ K. Suppose x e H^ - K. Then there exist y > H, k e K 

such that X = y — k. Thus x-\-k>H^ so x^H^K, a, contradiction. 

Then X e {H^ - K)^, hence H ^ K C {H^ - K)^. Conversely, let 

X e {H^ - K) . Suppose X ^ H ^ K. Then there exists k e K, 

z G H^ such that k -\- x = z. Thus x G H^ — K, a> contradiction. 

So X G {H^ -K)^ and {H^ -K)^ d H ^ K. We conclude that 

H-rK= {H^ -Kf. 

2. Straightforward, from 1 and formula (7.2). D 

The following theorem is a direct consequence of propositions 7.3.27.3 
and 7.3.28.2. 

Theorem 7.3.29 Let iJ, K be two idempotent lower half-lines o/M. Whenever 
H ^ K, it holds that 

H"K = H^K, 

but 
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So, genericahy, the subtraction ••, defined through reciprocals, and the sub
traction ^ , defined through solutions, yields the same result; thus the equation 
K -\- X = H can be solved through reciprocals. In the exceptional case of the 
subtraction of two identical halfiines the outcomes are strongly interrelated, 
for H •• H is the interior oi H ^ H^ and H ^ H the closure oi H - H. 

We will now consider divisions. We start by defining the symmetric inverse. 
We relate this notion to the symmetric reciprocal. 

Definition 7.3.30 Let N C M. be an idempotent neutrix. The symmetric 
inverse {N~^)s is defined by 

(iV-i)3 = e x p , ( - l o g , i V ) , . 

Notice that {N~^)s is an idempotent neutrix, for it is the exponential of 
an idempotent lower halfiine. 

Below we calculate the symmetric inverse for some familiar neutrices. We 
have always e ^ 0, s > 0. 

N 

{0} 
£e-®/^ 

£e'^ 

0 

£ 

£e(V-)« 

R 

log.N 

0 
(—oo, 0 / e ) 

(—oo, i^loge) 

(—oo, £) 

(—oo, £] 

(—oo, £/e] 

R 

(-log.N), 

M 

(—CO, 0/e] 

(—CO, £ l o g l / e ] 

(—oo, £] 

(—oo, £) 

(—oo, £/e) 

0 

( N - ^ ) . 

E 

£e^/' 

£(1/6)® 

£ 

0 

£e-^/^ 

{0} 

Table 7.1: Inverses of some idempotent neutrices. 

In [29] the symmetric inverse of a (convex) set Â  is defined to be - ^ U {0}. 
The next theorem states that, if A/̂  is a neutrix, the two definitions are 

equivalent. 

Proposition 7.3.31 Let N CR be a neutrix. Then 

Proof. The equality holds formally for TV = {0} and N = R. Let 0 g Â  g M. 
We prove only that (N ^)s C j ^ U {0}. Clearly 0 G ^ U {0}. Now assume 
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that X is a nonzero element of (N~ )s^ that we may suppose to be positive by 
reasons of symmetry. Then 

logx e (-log îV)^ 
= -(log.TV)^ 
= -( log( |7V|\{0})^ 
= - log(R+ \ A )̂ 

So X G l/N^. Hence (N"^) , C ^ U {0}. D 

We define the symmetric division through multiphcation by the symmetric 
inverse, and relate it to the symmetric subtraction. 

Definition 7.3.32 Let M, N cM. be two idempotent neutrices. The symmet
ric division M/N of M and N is defined by 

M/N = M ' {N-^)s. 

Proposition 7.3.33 Let M^N be idempotent neutrices. Then 

M/N = exp,(log, M .. log, N). 

Proof. We have, using the algebraic relations M = exp, log, M and exp, H • 
e x p , K = exp,(i:f+ K) , 

M/N = M • {N-^)s 

= exp, log, M • e x p , ( - log, A )̂̂  

= e x p , ( l o g , M + ( - l o g , 7 V ) , ) 

= exp, ( log ,M. . log ,7V) . D 

We refrain from giving a general formula for M/N and point out that it 
can be calculated with the help of the propositions 7.3.27 and 7.3.33. However 
in some special cases M/N may be readily calculated. 

1. M^N C0: M/N = M, N/M = {M-^)s. 

2. £ CM ^N : M/N = {N-^)s, N/M = N. 

3. M C 0 : M/M = M. 

4. M D £ : M/M = (M- i )^ . 
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Observe that always M/M C 0 . 
We consider now the division M : iV, of definition 7.3.22. It bears the 

following relation to the subtraction ^ : 

Proposition 7.3.34 Let M,N he idempotent neutrices. Then 

M:N = exp,(log, M - log, TV). 

Proof. We prove only that M : N C exp,(log5 M ^ l o g , N). Formally, one has 
0 G exp5(log5 M ^ l o g , N). Let x G M : N^x y^ 0. For reasons of symmetry, we 
may suppose that x > 0. Because xN C M one has logx + log, Â  C log, M. 
So logx G log, M -^ log, N^ hence x G exp,(log, M -^ log, TV). We conclude 
that M : N C exp,(log, M ^ log, TV). D 

As a consequence of theorem 7.3.29 and propositions 7.3.33 and 7.3.34 we 
obtain that M/N = M : N whenever M ^ N. li M = N we have 

r (M-i) 
\ M M:M = exp,(log, M - log, M) = exp, log, M = { V^ ' ' M D £. 

Notice that always M : M D £. Because M/M C 0 , we obtain 

M/M ^M :M. 

The division has the following set-theoretic characterization. 

Proposition 7.3.35 Let M^N cR be two neutrices. Then 

f M^ ^ 

Proof. The proof is very similar to the proof of proposition 7.3.28.1. D 

It follows from the results above that, analogously to the subtraction ^ , 
the division M : Â  can in practice be calculated through inverses. See also the 
table and the special cases we presented earlier. 

We indicate briefly how subtractions of non-idempotent halflines can be 
reduced to subtractions of idempotentent halflines, and consider also the anal
ogous reduction for divisions of neutrices. 

Let F, G be two lower halflines. By theorem 7.3.23 there exist real numbers 
/ and g and idempotent halflines H and K such that 

F^f + H , G^g + K. 
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We define 

F-G f-g+H-K , F^G=f-g 

In the same manner, let M, N be neutrices. Let m^n G 
potent neutrices such that 

R and / , J be idem-

M = ml N = nJ. 

We define 
7T7 

M/N = —I/J. 
n 

As regards to the operation M : N^ the relation 

M :N: 
n 

-{I: J) (7.3) 

readily follows from definition 7.3.22. It is a matter of straightforward verifi
cation to show that the above formulae do not depend on the choice oi f^g^m 
and n, and that, mutatis mutandis, the properties considered earlier in this 
section continue to hold. 

We state three useful properties of the division : . We recall that a neutrix 
N is linear if there exists e > 0 such that N = 06 or N = £ s , else N is 
nonlinear. Nonlinear neutrices have the property that N = oj - N ior dit least 
some oj ^ +00 (see [5]). 

Proposition 7.3.36 Let M, Mi, M2, Â , TVi, Â 2 CR be neutrices. 

1. If Ml C M2, it holds that Mi : N (Z M2 : N. 

2. If Ni C N2, it holds that M : Ni D M : N2. 

3. If M ^ N, one has M : N = 0 if and only if there exists e > 0 such that 
M = 0e and N = £e, otherwise M : N ^0. 

Proof. We only prove 3. Let 5,77 > 0. As regards to linear neutrices we have 
the following table 

07] 

£r) 

0e 

£e/rj 
£r}/s 

£e 

0ejr\ 
£rj/e 

So the only possibility for such neutrices M, N to obtain M : AT" = 0 , is when 
M = 08 and Â  = <£?7, with e/r] appreciable, i.e., when Â  = £e. Else the 
condition M ^ N ensures that e/rj ^ 0, respectively rj/e ^ 0, which implies 
that M : N ^0. 
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Assume M is nonhnear. Let u ^ +(X) be such that M/uj = M. Then 

M :N = — :N = -(M :N)c-0^0. 

The case that N is nonhnear is similar. This concludes the proof. D 

Finally we establish the relation between the two divisions and the families 
of directions in the plane R and S. 

Theorem 7.3.37 Let Â  C M^ he a neutrix with width W and length L, of the 
form N = Lu 0 Wv, where u and v are orthonormal vectors. Let 

R= {y\R{l)nLueW^v = (D} 

and, if L ^M., let 

s = [y\m) n L^u^Wv ^ 9}. 

Then R = W :L andS = W/L. 

Proof. Without restriction of generality, we may assume that '̂  = ( J) ^^^ 
V = (5 ) . First, let y e R. If y = 0, clearly, y eW \ L. Assume ^ 7̂  0. Then 
there exist A G L, A 7̂  0 such that [^y) ^ L[l) © W ^ ( ? ) , so 

\y ( W^ \^ ,,, , 

Hence R dW \ L. Conversely, let y G VF : L. If ?/ = 0, clearly y G R. Assume 
y j^ 0. Suppose there is A G L such that (;^^) G L ( J ) © W^{^). Then 

y G ^^Q| , which means that y ^ W : L^ a. contradiction. So 7/ G i?, hence 
W : L C R. We conclude that R = W : L. 

Second, let y e S. Then there exists 11 e L^ such that [l^y) G ^ ^ ( J ) ® 
W{\). So /XT/ G VT and ?/ G ^ = W/L. Hence S C W/L. Conversely, 
let y G W/L. Then there is /a e L^ and ri e W such that y = ^. So 
{/^y) G L ^ ( J ) © W^(;), which means that y e S. Hence H^/L C S'. We 
conclude that S = W/L. D 

7.3.3 P r o o f of t h e d e c o m p o s i t i o n t h e o r e m 

Let us consider a neutrix in M?. We know already that, if it is square or not 
lengthy, it can be decomposed into two neutrices of M. For lengthy neutrices, 
we sketch here the remaining part of the proof of the decomposition theorem. 
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A lengthy neutrix may be assumed to be appropriately scaled and oriented. 
By theorem 7.3.8 it suffices to look for a direction in the plane with maximal 
thickness. The set of directions with maximal thickness will be obtained as 
the complement of the directions with nonmaximal thickness, where by the 
sector-theorem we may restrain ourselves to directions nearly parallel to the 
neutrix. By proposition 7.3.19 and 7.3.21 they are divided into two "equal" 
opposite parts. The set of directions with maximal thicknesses will then be 
the supremum, in the sense of theorem 7.3.23, of the set of downward nearly 
parallel directions, or alternatively, the infimum of the set of upward nearly 
parallel directions. In fact, the "gap" between the two opposite families of 
directions is of the form ( ^^I^-.L ) ? where W is the width of the neutrix, and 
L its length. 

We turn now to the proper proof, and start with some terminology. 

Definition 7.3.38 Let N cM? be a lengthy appropriately scaled and oriented 
neutrix. We write 

D = { ^ c ^ 0 | ( ^ ) z 5 nearly parallel downward} 

U = \^y c^ 0 \ (^y) is nearly parallel upward} 

SD = {xeR\D^x = D} 

Su = {xeR\U^x = U}. 

For y i^^) we write 

and we define 

h = ( x G M T/ 1 N 

=̂nv 
= ̂ Q} 

Theorem 7.3.39 Let N dR? he a lengthy appropriately scaled and oriented 
neutrix with length L and width W. Then 

I = W :L^0. 

Proof. It follows from proposition 7.3.36.3 that W : L ^ 0. Let x G I. 
Suppose X ^ W : L. By proposition 7.3.35 there are r] G W^ and A G L such 
that X = r]/X. By proposition 7.3.9 there are orthonormal vectors î  ^ ( J ) 
and V ^ (^^) such that N£x = £Xu 0 Wv; up to a rotation we may assume 
that u = (1) and v = ( ? ) . So (^) ^ A .̂ Hence T/n C T/ l^ ^ £A C Tny 

Hence x ^ /^ D / , a contradiction. This implies that x GW : L^ which means 
that I CW : L. 

Conversely, let x G W : L. Let ^ ^ 0. By proposition 7.3.11 there are 
orthonormal vectors u^v such that Nr^nx = T ( J ) i / 0 Wv. It follows from 
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theorems 7.3.37 and 7.3.8 that T( i ^ = Tn^ for all x e W : Tn^ D W : L, so 
\y+x) \y) \y) 

X G ly . Because y is arbitrary, it holds that x G / . Hence W : L C I. We 
conclude that I = W : L. D 

Theorem 7.3.40 Let N cM? be a lengthy appropriately scaled and oriented 
neutrix with length L and width W. Then 

1. For all y,z G D such that y < z one has Tn\ < Tn\. 

2. For all y^z ^ U such that y < z one has Tn\ > Tn\. 

3. For all s > W : L there is y G D^z G U such that z — y < s. 

4. SD = SU = W :L. 

5. There exists x ^0 such that D = [0,x-\-W : L) and U = {x-\-W : L,0]. 

Proof. 

1. Suppose Tn\ > Tny By proposition 7.3.21 there is x G C/ such that 

Tn\ = Tny So y < z < X, y c^ X, while Tn\ > Tn\ < Tny This 

contradicts the sector-theorem. Hence Tn\ < Tny 

2. Analogous to 1. 

3. Because W : L is a neutrix, one has s/2 > W : L. By proposition 7.3.35 
there exist X G L^r] > W such that 77/A < s/2. Let u, v be orthonormal 
such that N£x = £Xu 0 Wv. We see that Xu -\- rjv^ Xu — rjv ^ TV, so 
-r^/A G D and 77/A G [/, while ry/A - ( - 77/A) < e. 

4. From 3 we derive that SD C W : L . Conversely, let y G D. Then it 
follows from theorem 7.3.39 that T/ 1 \ = Tfi\ < L. This implies that 

[y+W-.Lj \y) 

y -\- X e D ioT all X e W : L. Hence W : L C SD- We conclude that 
SD = W:L. The proof that Sjj = W : L is analogous. 

5. By theorem 7.3.23 and 4 the set D is either of the form D = [0,x-\-W : L) 
or D = [0^x -\-W : L]. We show that the second possibility is absurd. 
Then the only way to satisfy 3 is when [/ = (x + VF : L, 0 ] . By 7.3.39 
and 1 one has T/i\ < Tn\ for ah y e D. Then also Tn\ < Tn\ for aU 
z G U, hy proposition 7.3.21. Because D UU = 0, one has Tn\ < Tn\ 
for all 7/ ^ 0. By theorem 7.3.6 all other thicknesses are equal to W. 
Hence T^ < T/i\ < L for all unitary vectors r. Then L cannot be the 

length of N, a contradiction. Hence D = [0,x-\-W : L). The proof that 
U = {x -\- W : L^ 0] is analogous. D 
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Theorem 7.3.41 Let N C M? be a lengthy appropriately scaled and oriented 

neutrix with length L and width W. Then there exists x ĉ  0 such that 

{y\T^.^=L}=x + W:L. 

Proof. By theorem 7.3.40.5 there exists x ^ 0 such that 0 \ {D U U) = 

x + W : L. By theorem 7.3.39 we have Tn^ = Tn^ ioi all y e x + W : L. 

Suppose Tn\ < L. By proposition 7.3.19 either x^Doix^U^di contradic

tion. Hence Tn\ > L, in fact T/i\ = L for all ^ G x + Ĥ  : L. D 

Theorem 7.3.42 (Two-dimensional decomposition theorem) Let N C M? be 
a neutrix. Then there are neutrices L, W with W d L (Z^, and orthonormal 
vectors u, v such that 

N = Lu® Wv. 

Moreover, the neutrix L is the length of N, and W is its width. 

Proof. Let L be the length of N and W its width, li L = W one has 
N = L{1) ®W{^). If L = £A for some A G M, the theorem follows from 
proposition 7.3.9. In the remaining cases we may assume that N is appropri
ately scaled and oriented. By theorem 7.3.41 there exist a unitary vector u 
such that Tu = L. Let v be unitary such that u, v are orthonormal. By the
orem 7.3.8 we have N = Lu 0 Wv. The last part of the theorem also follows 
from theorem 7.3.8. D 
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Part II 

Number theory 



8 
Nonstandard methods for additive and 
combinatorial number theory. 
A survey 

Renling Jin 

8.1 The beginning 

In this article my research on the subject described in the title is summa
rized. I am not the only person who has worked on this subject. For example, 
several interesting articles by Steve Leth [21, 22, 23] were published around 
1988. I would like to apologize to the reader that no efforts have been made 
by the author to include other people's research. 

My research on nonstandard analysis started when I was a graduate student 
in the University of Wisconsin. A large part of my thesis was devoted towards 
solving the problems posed in [19]. By the time when my thesis was finished, 
many of the problems had been solved. However, some of them were still open 
including [19, Problem 9.13]. It took me another three years to find a solution 
to [19, Problem 9.13]. Before this my research on nonstandard analysis was 
mainly focused on foundational issues concerning the structures of nonstandard 
universes. After I told Steve about my solution to [19, Problem 9.13], he 
immediately informed me how it could be applied to obtain interesting results 
in combinatorial number theory. This opened a stargate in front of me and 
lead me into a new and interesting field. 

For nonstandard analysis we use a superstructure approach. We fix an Hi-
saturated nonstandard universe *V. For each standard set A we write *A for 
the nonstandard version of A in *V. 

Department of Mathematics, College of Charleston, Charleston, SC 29424. 
jinr@cofc.edu 
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8.2 Duality between null ideal and meager ideal 

Given an ordered measure space O such as the Lebesgue measure space on 
the real line with the natural order, one can discuss the relationship between 
measurable sets and open sets^. The null ideal on ft is the collection of null 
sets, i.e. the sets with measure zero, and the meager ideal is the collection of all 
meager sets^. The sets in an ideal are often considered to be small. The duality 
between null ideal and meager ideal means that there exists a meager set with 
positive measure, i.e. the smallness in terms of null ideal is incomparable with 
the smallness in terms of meager ideal. However, it is usually true that if the 
space also has an additive structure, then the sum of two set with positive 
measure may not be meager. See Corollary 8.2.2 for example. What can we 
say about a Loeb space? 

Let H he di hyperfinite integer and let [0, H] be an interval of integers. The 
term [a, b] in this article always means the interval of integers between a and b 
including a and b if they are also integers. On [0, H] one can construct a Loeb 
measure generated by the normalized counting measure. By a Loeb space we 
always mean the hyperfinite set [0, H] with the Loeb measure generated by the 
normalized counting measure^. On [0,if] there is also a natural order and an 
additive structure. However, the order topology on [0, H] is discrete, therefore 
uninteresting. In [19] a [/-topology is introduced for each cut U C [0, H] that 
gives meaningful analogy of the order topology on the real line. An infinite 
initial segment U of non-negative integers is called a cut if it is closed under 
addition. For example N, the set of all standard non-negative integers, is the 
smallest cut. We often write x > C/ for a positive integer x and a cut U if x 0 U. 
Let U C [0,H] be a cut. A set A C [0, H] is called U-open if for every x G A, 
there exists a positive integer y > U such that [x — y, x -\- y] (1 [0^ H] C A. 
A [/-topology is the collection of all [/-open sets and a [/-meager set is a 
meager set in terms of [/-topology. In [19] it was proven that for any cut 
[/ C [O^H] there is always a [/-meager set of Loeb measure one in [0, ilf]. The 
question 9.13 in [19] asked whether the sum (modulo H -\- 1) of two sets in 
[0, i/] with positive Loeb measure can be [/-meager for some cut U C [0,i/]. 
For two sets A and B and a binary operation o between A and 5 , we write 
Ao B for the set {a ob : a G A and b G B}. For a number /c, we write kA for 
the set {ka : a ^ A}. In [11] we prove the following theorem. 

^An order on a space can generate a topology called order topology on the space so tha t 
a set is open if it is the union of open intervals. 

^A set A in a topological space is nowhere dense if every non-empty open set O contains 
another non-empty open set R disjoint from A. A meager set is the union of finitely many 
or count ably many nowhere dense sets. A meager set is also called a set of the first category. 

^The Loeb space here is often called the hyperfinite uniform Loeb space. 
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Theorem 8.2.1 Let H be a hyperfinite integer and U C [0, i/] be any cut. If 
A^ B C [0, H] are two internal sets with positive Loeb measure^ then A 0^^ B 
is not U-nowhere dense, where ®H ^S the usual addition modulo H -\-l. 

Note that Theorem 8.2.1 yields a negative answer to [19, Problem 9.13]. 
Also note that the theorem is still true if 0ff is replaced by the usual addition + 
and the sumset A-\-B is considered to live in [0, 2H]. Theorem 8.2.1 has several 
corollaries in the standard world. If one lets U be the cut HnGNl^' "^1' ^^en 
Theorem 8.2.1 implies the following well known non-trivial fact. 

Corollary 8.2.2 If A and B are two sets of reals with positive Lebesgue mea
sure, then A-\- B must contain a non-empty open interval of reals. 

Corollary 8.2.2 was credited to Steinhaus in [21]. 
Let A C N be infinite. The upper Banach density BD{A) of A is defined by 

T^T^r A\ r | A n [ n , n + fc]| BD(A) = hm sup H nm sup — 
/c^oo fi£fq k -\- 1 

A set C C N is called piecewise syndetic if there is a positive integer k such 
that C + [0, fc] contains arbitrarily long sequence of consecutive numbers. The 
definition of upper Banach density, syndeticity, and piecewise syndeticity can 
be found in [1, 7]. If one let [/ = N, then Theorem 8.2.1 implies the follow
ing result. 

Corollary 8.2.3 Let A,B CN. If BD{A) > 0 and BD{B) > 0, then A + B 
is piecewise syndetic. 

Corollary 8.2.3 was pointed out to me by Steve Leth. By choosing other 
cuts U one can have more corollaries. These corollaries also have their own 
corollaries. The reader can find more of them in [11, 18]. 

Corollary 8.2.2 and Corollary 8.2.3 can also be proven using standard meth
ods [13]. However, Theorem 8.2.1 does not have a standard version. The gen
erality of Theorem 8.2.1 shows the advantages of the nonstandard methods. 
Theorem 8.2.1 reveals a universal phenomenon, which says that if two sets 
are large in terms of "measure", then A -\- B must not be small in terms of 
"order-topology". 

8.3 Buy-one-get-one-free scheme 

Excited by the results such as Corollary 8.2.3,1 was eager to let people know 
what I had obtained. After a talk I gave at a meeting in 1997, I was informed 
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by a member in the audience that Corollary 8.2.3 had probably already been 
proven in [1] or in [7]. This made me rush to the library to check out the book 
and the paper; I was anxious to see whether my efforts were a waste of time. 
Fortunately, they weren't; in fact, Corollary 8.2.3 complemented a theorem 
in [7] which says that if a set ^ C N has positive upper Banach density, then 
A — A is syndetic. From [1, 7] I also learned of terms such as upper Banach 
density^ syndeticity^ piecewise syndeticity^ etc. the first time. 

One thing which caught my eye when I read [1, 7] was the use of Birkhoff 
Ergodic Theorem. It is natural for a nonstandard analyst to think what one 
can achieve if Birkhoff Ergodic Theorem is applied to some problems in a 
Loeb measure space setting. With that in mind, I derived Theorem 8.3.1 and 
Theorem 8.3.2 as lemmas in [12]. 

Given a set ^ C N, the lower asymptotic density d{A) of A is defined by 

d{A) = hm mf ^^—^ 

where |X| means the cardinality of X when X is finite. Later, we will use |X| 
representing the internal cardinality of X when X is a hyperfinite set. For 
a set A and a number x we often write A zb x for A zb {x} and write x zb A 
for {x} ± A. 

Theorem 8.3.1 Suppose A CN with BD{A) = a. Then there is an interval 
of hyperfinite length [H, K] such that for almost all x G [H, K] in terms of the 
Loeb measure on [H^K], we have d{{*A — x) Pi N) = a. On the other hand, 
if A C ^ and there is a positive integer x such that ^((*A — x) Pi N) ^ a, 
then ED {A) ^ a. 

Given a set ^ C N, the Shnirel'man density cr{A) of A is defined by 

a{A) = inf \An^2^, 
n^l n 

Theorem 8.3.2 Suppose A C N with BD{A) = a. Then there is a positive 
integer x such that cr((M — x) H N) = a. 

Theorem 8.3.1 is [12, Lemma 2] and Theorem 8.3.2 is the combination 
of [12, Lemma 3, Lemma 4 and Lemma 5]. It is often the case that a result 
involving Shnirel'man density is obtained first. Then people explore possi
ble generalizations to some results involving lower asymptotic density. The 
behaviors of these two densities are quite similar. From Theorem 8.3.1 and 
Theorem 8.3.2 we can see that the behavior of upper Banach density is also 
similar to the behavior of lower asymptotic density or Shnirel'man density. We 
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can now claim that there is a theorem involving upper Banach density parallel 
to each existing theorem involving lower asymptotic density or Shnirel'man 
density. This is the scheme that can be called buy-one-get-one-free because we 
can get a parallel theorem involving upper Banach density for free as soon as a 
theorem involving lower asymptotic density or Shnirel'man density is obtained. 
I would now like to briefly describe how this works. 

Given a set A C N with BD(A) = a, there is a positive integer x (may be 
nonstandard) such that d((M - x) H N) = a (or cr((M - x) H N) = a) . This 
means that in x + N, a copy of N above x, the set *A has lower asymptotic 
density (or Shnirel'man density) a. Now apply the existing theorem involving d 
(or a) to the set M n (x + N) to obtain a result about M. Finally, pushing down 
the result to the standard world, one can obtain a parallel theorem involving 
upper Banach density. Corollary 8.3.3 and Corollary 8.3.4 below are the results 
obtained using this scheme. 

The first one is a corollary parallel to Mann's Theorem. Mann's Theorem 
says that if two sets A, 5 C N both contain 0, then a{A -\- B) ^ m.m{a{A) -\-
a{B),l}. Mann's Theorem is an important theorem; in [20] it is referred as 
one of three pearls in number theory. We can now easily prove the following 
corollary of Theorem 8.3.2. 

Corollary 8.3.3 BD{A + 5 + {0,1}) ^ mm{BD{A) + BD{B),1} for all 
A.BCN. 

The addition of {0,1}, which substitutes the condition 0 G AnB in Mann's 
Theorem, is necessary because without it, Corollary 8.3.3 is no longer true. 
For example if A and B both are the set of all even numbers, then BD{A) = 
BD{B) = BD{A + B) = ^. 

The second corollary is parallel to Pliinnecke's Theorem [24, p. 225] which 
says that if 5 C N is a basis of order /i, then a{A -\- B) ^ a{AY~h for every 
set A C N. A set 5 C N is called a basis of order h if every non-negative 
integer n is the sum of at most h non-negative integers (repetition is allowed) 
from B. In the upper Banach density setting we can define piecewise basis 
of order h. A set B C N is called a piecewise basis of order h if there is a 
sequence of intervals [aĵ , h}^ C N with limj^^oo(^/c ~ ctk) = cxo such that every 
integer n G [0, 6/̂  — a^] is the sum of at most h integers (repetition allowed) 
from {B — ak) H [0, h^ — a^]. If 5 is a basis of order /i, then it must also be a 
piecewise basis of order h because one can take h^ — k and a/̂  = 0. 

Corollary 8.3.4 If B is a piecewise basis of order h, then BD{A -\- B) ^ 

BD{A)^~T^ for every set A C N. 
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Corollary 8.3.3 and Corollary 8.3.4 can also be proven using the standard 
methods [13] from Ergodic Theory. For more results similar to Corollary 8.3.3 
and Corollary 8.3.4, see [12]. 

8.4 From Kneser to Banach 

In the last section we didn't use the full power of Theorem 8.3.1. Suppose 
A C N has upper Banach density a. We use only one x such that d((*A — 
x) n N) = a while there are almost all x in an interval [if, K\ of hyperfinite 
length such that c!((M — a:) Pi N) = a. We can take this advantage and prove a 
theorem involving upper Banach density parallel to Kneser's Theorem [9]. For 
two sets A, 5 C N we write A ^ B \i {A\B)\^[B \ A) \^ d. finite set. Kneser's 
Theorem^ says that for ah A, 5 C N, if d(A + 5 ) < d{A) + d[B), then there 
is a positive integer g and a set G C [0,^ — 1] such that A^ B C G + ^N, 
A + 5 - G + ^N, and ^ ( ^ + 5 ) = ^ ^ d{A) ^ d{B) - \. 

Kneser's Theorem was motivated by Mann's Theorem. Can Mann's The
orem be true if one replaces Shnirel'man density with lower asymptotic den
sity? There are obvious counterexamples. Let oJ, fc, and fc' be positive integers. 
Suppose G = {0, d, 2d , . . . , (/c - l)d} and G' = {0, rf, 2d , . . . , (k' - l)d}. Sup
pose also that g > {k -\- k^ - 2)d, A = G -\- gN, amd B = & -\- gN. Then 
d{A + 5 ) = t ± ^ = d{A) + d{B) - ^ Roughly speaking, Kneser's Theorem 
says that the only kind of counterexamples which make the inequality false in 
Mann's Theorem with a replaced by d are similar to the one just described. 

In [13] a parallel theorem [13, Theorem 3.8] was obtained. Let A, 5 C N 
with BD{A) = a and BD(B) = /?. Then there are intervals [a^, bn] and [c^, dn] 

s u c h t h a t l i m n ^ o o ( ^ n - Ctn) = OO, l i m n ^ o o ( d n - Cn) = 00 , l i m ^ ^ o o bn-af+1 = 

a, and lim^^oc \i ^^"",7^ = 6. We hope to characterize the structure oi A -\-
B inside the intervals [a^ + c^,^^ + dn\- However, [13, Theorem 3.8] when 
restricted to the addition of two sets, only characterized the structure oi A-\-B 
on a very small part of N. The reason for this is because we used only one x 
and one y with d((*A - x) H N) = a and d{(^B -y)nN)=(3m the proof. 

During the summer of 2003 my undergraduate research partner Prerna Bi-
hani and I conducted an undergraduate research project funded by the College 
of Charleston to work on theorems parallel to Kneser's Theorem. The work 
done during the summer and the following year produced the paper [2], which 
contains Theorem 8.4.1. To avoid some technical difficulties we considered only 
the sum of two copies of the same set in [2]. 

^The version of Kneser's Theorem in [9] is about the addition of multiple sets. We stated 
the version here for the addition of two sets just for simplicity. 
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Theorem 8.4.1 Let A be a set of non-negative integers such that BD{A) = a 
and BD{A -\- A) < 2a. Let {[an^hn] : n G N} be a sequence of intervals such 
that lim^^oof^n — a^) = oo and limn^oo h ^^"",7^ = a. Then there are a GN, 
G Q [0,g — 1], and [c„, dn] Q [fln, bn] for each n € N such that 

(1) lim„̂ oo f»ff = 1, 

(2) A + ACG + gN, 

(3) (A + A) n [2c„, 2dn] = (G + gn) n [2c„, 2d„] for all n G N, 

(4) BD{A + A)^\f^2a-\. 

Note that (1) above shows that the structure of A + 4̂ is characterized on 
a large portion of [2an,26n]- Note also that we cannot replace [2cn-,2dn\ with 
[2a^, 2bn] in (3) because all conditions for A still hold if we delete any elements 
from A n {[an, hn] \ K , dn])-

The proof of Theorem 8.4.1 can be described in several steps. Given a 
hyperfinite integer A ,̂ we know that for almost all x^y G [aN^b]\j] we have 
d ( ( M - x ) n N ) = d ( ( M - y ) n N ) = a. We can also assume that d ( ( x - M ) n N ) = 
^((^ —*74)nN) = a. Step one: characterize the structure of*{A-\-A) iiix-\-y-\-Z 
using Kneser's Theorem, where Z is the set of all standard integers. Step two: 
show that the structures of %A-\-A)n{x-\-y-\-Z) for almost all x^y ^ [a^, b]\j] are 
consistent with one another so that these structures can be combined into one 
structure. Hence we can characterize the structure of *(A + A) in [2CAA, 2dAr], 
where f^E^ ^ 1. Step three: prove that for different hyperfinite integers N 
and A^̂  the structure of %A + A) in [2aN, 2bN] and the structure of %A + A) 
in [2ajv^ '^bp^f] are consistent so that these structures of *(A + A) in [2aA ,̂ 26iv] 
for all hyperfinite integers N can be combined into one structure of *{A + A) 
in IJ{[a7v,^7v] - N is hyperfinite}. Step five: pushing down the structure of 
%A + A) to the standard world results Theorem 8.4.1. 

The methods developed in [13] do not seem to be enough for proving The
orem 8.4.1. So it is interesting to see whether one can produce a reasonably 
nice and short standard proof of the theorem. 

In [3] the structure of A was characterized when d{A) is very small and 
d{A -\- A) ^ cd{A) for some constant c ^ 2. It is also interesting to see how 
one can characterize the structure oi A-\- A when BD{A -\- A) ^ cBD{A) for 
some constant c ^ 2. 

8.5 Inverse problem for upper asymptotic density 

In January of 2000, I was invited to give a talk at the DIM ACS workshop 
"Unusual Applications of Number Theory". One of the workshop organizers 
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was Melvyn Nathanson to whom I am grateful for being the first number 
theorist to express an interest in my research on number theory not to mention 
his continued encouragement. During the workshop I had a chance to meet 
another number theorist G. A. Freiman who is well-known for his work on 
inverse problems in additive and combinatorial number theory. He gave me a 
preprint of his list of open problems [5]. This list and the book [24] have since 
gotten me interested in the inverse problems. 

Inverse problems study the properties of A when A-\-A satisfies certain con
ditions. Freiman discovered a phenomenon that if A + yl is small, then A must 
have some arithmetic structure. In fact Kneser's Theorem and Theorem 8.4.1 
can be viewed as two examples of the phenomenon. One can characterize the 
arithmetic structure of A from the structure oi A -\- A in Theorem 8.4.1 and 
characterize the structure of A and the structure of B from the structure of 
A-\-B in Kneser's Theorem (see [2] for details). In this section we characterize 
the structure of A when the upper asymptotic density oi A-\-A is small. Given 
A C N, the upper asymptotic density d{A) of A is defined by 

d{A) = hmsup ^^—^. 

Without loss of generality we always assume 0 ^ A in this section. We can 
also assume that gcd{A) = 1 because if gcd{A) = d > 1^ then we can recover 
the structure of A from the structure of A\ where A^ = {a/d : a G A}. When 
0 G A and gcd(A) = 1, one can easily prove, using Freiman's result (1) at 
the beginning of the next section, that d{A -\- A) ^ ^d{A) if d{A) ^ ^ and 

d{A -\- A) ^ — 2 ^ if d{A) ^ ^. The following two examples show that the 
lower bounds above are optimal. 

Example 8.5.1 For every real number 0 ^ a ^ 1, let 

oo 

^ = { 0 } u U [ r ( l - a ) 2 2 " l , 2 n . 
n = l 

Then d{A) = a, d{A ^ A) = ^^ tf a ^ \, and J(A + A) = | a z /a ^ ^. 

Example 8.5.2 Let fc,77i G N be such that k ^ 4 and 0; m, 2m are pairwise 
distinct modulo k. Let A = /cN U (TTT. + /cN). Then d{A) = | = a ^ | and 
d{A + A) = I = | a . It is easy to choose /c, m such that gcd{A) = 1. 

So we can say that ^(^4 + 74) is small when d{A-\-A) = m.in{^d{A), — 2 ^ } 
and we need to characterize the structure of A when d{A + A) is small. 

Clearly the characterization of the structure of A should cover the cases in 
both Example 8.5.1 and Example 8.5.2. We hope to show that A must have 
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the structure described in one of the examples above when d{A + A) is small. 
However, some variations of the examples are unavoidable. If the set A is 
replaced hy A^ C A with d{A^) = a in both Example 8.5.1 and Example 8.5.2, 
then d{A' -\- A^) is also small. Furthermore, ii A = A^ U A'^ where 

A' = {0}u[jm-a)2n,2n 
n=l 

and A^^ is an arbitrary subset of 

U[r(i-«)2^""i,2^ 22n+l ^2'^n + l 

n=l 

then again d{A + A) is small. This example shows that we can only hope 
to characterize the structure of A along the increasing sequence hn such that 
l i ^ \An[iM\ _ 

it'n 

It was a long journey for me to arrive at the most recent result in [16] 
due to the technical difficulties of the proof. First the structure of A was 
characterized in [14] when d{A + A + {0,1}) is small. Later the structure 
of A was characterized in [15] when d{A + A) is small and A contains two 
consecutive numbers. Finally in [16] the following theorem was proven. 

Theorem 8.5.3 Let d{A) = a > 0. 

Part I: Assume a > ^. Then d{A-\-A) = ^ ^ implies that for every increasing 

sequence {hn : n G N} with lim^^oo h ^i ~ ^^ ^^ have 

y \{A + A)n[o,hn]\ 
lim = a. 

n ^ o o hn -\- 1 

Part II: Assume c^ < ^ and gcd(74) = 1. Then d{A -\- A) = ^a implies that 
either (a) there exist k > 4 and c G [1,/c — 1] such that a = | and 
A C kN U (c + kN) or (b) for every increasing sequence {hn '• n G N} 
with lim^^oo h li ~ ^ ' there exist two sequences 0 ^ Cn ^ bn ^ hn 
such that 

.. \An[bn,hn]\ , 
n ^ o o hn — On-\-l 

lim - ^ = 0, 
n ^ o o hn 

and [c^ + 1, 6^ — 1] n A = 0 for every n G N. 
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Part III: Assume OL = \ andgcA{A) = 1. Then d{A-\-A) = | a implies that ei

ther (a) there exists c G {1, 3} such that A C 4NU(c+4N) or (h) for every 

increasing sequence {hn : n G N} with lim^^oo h li ~ ^^ '^^ have 

,. \{A +A) n[o, hn\\ 
iim = a. 

n^oo hn -\- 1 

I would like to make some remarks here on Theorem 8.5.3. First, the proof 
of Part I is easy; the most difficult part is Part II. Second, Part I and (b) of 
Part III cannot be improved so that set A has the structure similar to the 
structure described in (b) of Part II. For example, if one lets 

CO 

A = {0}U\J ([3 • 22^-^ 4 . 22^-3] U [5 • 22^-^ 2^^]) , 
n = l 

then d{A) = ^ and d{A -\- A) = — 2 ^ • Clearly A does not have the structure 
described in (b) of Part 11. 

The main ingredient of the proof of Theorem 8.5.3 is the following lemma 
in nonstandard analysis. For an internal set AC [0, i/] and a cut U C [0, i/] 
we define the lower [/-density djj{A) by 

du{A) = sup j inf Lt (^^^ \-^^^^\\ : n G f / \ [ 0 , m ] | :meU 

where st means the standard part map. Note that if [/ = N and A C N, then 
d{A) = dij{*A). A set / = {a, a + oJ, a + 2(i,. . .} is called an arithmetic progres
sion with difference d. An arithmetic progression can be finite (hyperfinite) or 
infinite. If an arithmetic progression is finite (hyperfinite), then its cardinality 
(internal cardinality) is its length. A set / U J is called a bi-arithmetic pro
gression if both / and J are arithmetic progressions with the same difference 
d and I -\- I^ I + J^ and J -\- J are pairwise disjoint. A finite (hyperfinite) 
bi-arithmetic progression / U J has its length | / | + \J\. Let [/ be a cut. A 
bi-arithmetic progression B C t/ is called ^/-unbounded if both / and J are 
upper unbounded in U. 

L e m m a 8.5.4 Let H be hyperfinite and U = flnGNl^' ^]- ^Wpose A C [0, H] 
he such that 0 < djji^) = Q^< | - If An U is neither a subset of an arithmetic 
progression of difference greater than 1 nor a subset of a U-unbounded bi-
arithmetic progression, then there is a standard positive real number 7 > 0 
such that for every N > U, there is a K G A, U < K < N, such that 

| ( ^ + ^ ) n [ o , 2 K ] | ^ | ^ n [ o , K ] | 
2K + 1 ^ 2K + 1 ^' 
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Lemma 8.5.4 is motivated by Kneser's Theorem. It basically says that 
either A-\-Ai8 large in an interval [0, 2K] with K > ^ for some standard n or 
A has desired arithmetic structure in an interval [0, K] with K > ^ ioi some 
standard n. The proof uses the fact that U is an additive semi-group. This 
can be done only in a nonstandard setting. It is interesting to see whether this 
lemma can be replaced by a standard argument with a reasonable length. 

Recently G. Bordes [4] generalized Part II of Theorem 8.5.3 for sets A with 
small upper asymptotic density. He characterized the structure of A when 
d(A) ^ ao for some small positive number QQ and d{A -\- A) < ^d{A). It is 
interesting to see whether one can replace QQ by a relatively large value, say | , 
in Bordes' Theorem. 

8.6 Freiman's 3k — 3 -\- b conjecture 

After Theorem 8.5.3 was proven, I realized that the same methods used 
there could also be used to advance the existing results towards the solution of 
Freiman's 3k — 3-\-b conjecture [5]. This is important because the conjecture is 
about the inverse problem for the addition of finite sets. Let ^ be a finite set 
of integers with cardinality fc > 0. It is easy to see that \A-\- A\ ^ 2k — 1. On 
the other hand, ii \A-\- A\ = 2k — 1^ then A must be an arithmetic progression. 
In the early 1960s, Freiman obtained the following generalizations [6]. 

(1) Let A C N. Suppose A; = l^l, 0 = minA, and n = maxyl. Suppose also 
gcd(A) = 1. Then \A + A\ ^ 3k - 3 ii n ^ 2k - 3 dmd \A + A\ ^ k + n ii 
n^2k-3. 

(2) li k > 3 and \2A\ = 2k - 1 -\- b < 3k - 3, then A is a subset of an 
arithmetic progression of length at most k -\-b 

(3) If /c > 6 and \2A\ = 3/c — 3, then either A is a subset of an arithmetic 
progression of length at most 2fc — 1 or A is a bi-arithmetic progression. 

In [6] a result was also mentioned without proofs for characterizing the 
structure of A when fc > 10 and \A -\- A\ = 3k — 2. In [10] an interesting 
generalization of (3) above was obtained by Hamidoune and Plague, where the 
condition 12̂ 41 = 3A: — 3 is replaced by |A + tA| = 3A: — 3 for every integer t. 
However, no further progress of this kind had been made for a larger value of 
|A + 74| before my recent work. In fact, Freiman made the following conjecture 
in [5] five years ago. 

Conjecture 8.6.1 There exists a natural number K such that for any finite 

3 set of integers A with \A\ = k > K and \A^ A\ = 3k — 3 -\-b < ^k — 5 for 
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some b ^ 0, A is either a subset of an arithmetic progression of length at most 
2k — 1 -\- 2b or a subset of a bi-arithmetic progression of length at most k -\- b. 

Note that the conclusion of Conjecture 8.6.1 could be false if one allows 
lA + Al = ^k — 5. Simply let A be the union of three intervals [0,a — 1], 
[6, 6+a —1], and [26, 26+a —1], where k = 3a and 6 is a sufficiently large integer. 
Clearly |A + 74| = ^fc — 5. Since b can be as large as we want, we can choose a 
b so that set A is neither a subset of an arithmetic progression of a restricted 
length nor a subset of a bi-arithmetic progression of a restricted length. 

Using nonstandard methods such as Lemma 8.5.4, I was able to prove the 
following theorem in [17]. 

Theorem 8.6.2 Suppose f : N \-^ N is a function with lim^^oo ^^ = 0-
There exists a natural number K such that for any finite set of integers A with 
\A\ =k, ifk>K and \A-\- A\ = 3k - 3-\-b for some 0 ^ 6 ^ /(fc), then A is 
either a subset of an arithmetic progression of length at most 2k — 1 -\-2b or a 
subset of a bi-arithmetic progression of length at most k -\-b. 

Theorem 8.6.2 gives a new result even for f{x) = 2. However, we still have 
a long way before solving Conjecture 8.6.1. It is already interesting to see 
whether we can obtain the same result with f{x) = ax for some positive real 
number a. 

The ideas for proving Theorem 8.6.2 are similar to the proof of Theo
rem 8.5.3, but much more technical. Suppose Theorem 8.6.2 is not true; then 
one can find a sequence of counterexamples A^, such that \An\ -^ oo. Given a 
hyperfinite integer A/", let A = Ajv- Without loss of generality, we can assume 
that 0 = minA, H = max A, gcd{A) = 1, and a ^ - ^ ^ ^ 0. Note that 

^ -jf^— ~ 0. Hence 1̂4 + 741 is almost the same as 31̂ 41 — 3 from the non
standard point of view. Using the case-by-case argument, we can show that if 
-̂ -pY ^ ^̂  then A is a subset of a bi-arithmetic progression. If -̂ -7̂ - ^ 1 and 
b=\A-\-A\- 3\A\ + 3, then we can show that i7 + 1 ^ 2\A\ - 1 + 26 when A 
is not a subset of a bi-arithmetic progression. The proof for the case - ^ ^ ^ ^ 

is much harder than the proof for the case -^^ <C ^ although the former 
depends on the latter. In both cases Lemma 8.5.4 was used to get structural 
information of A on an interval with length longer than ^ for some standard 
positive integer n. 

There are some similarities between our methods and analytic methods. 
In order to detect some structural properties of 4̂ C [0,n], one may need to 
show that either A is uniformly distributed on [0, n] or A has a greater density 
on a well formed subset of [0,n]. The analytic methods usually look for a 
large Fourier coefficient A{r) (cf. [8, Corollary 2.5]) or a large exponential sum 
^ ^ J Q A{i)e~^ (cf. [24, Theorem 2.9]) to detect the greater density on a well 
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formed subset of [0, n] when n is a prime number. When n is not a prime 
number then one needs to replace it with a prime number p > n and consider 
A in [O^p] instead. This replacement may not work well for Conjecture 8.6.1 
as the structure of A needs to be very precise. In our methods we look for 
the greater density oi A C [0,H] on an interval [0, K] for some K > U hy 
checking the value of du{A), where U = HnGNt^' ^]- ^^ dui^) ^ f̂  then the 
density of A on [0, K] for some K > U is significantly greater than l^l/jfiT, 
which will lead to a contradiction that |A + A| is almost the same as 3fc — 3. If 
du{A) = 0, then the density of A on [K, H] is significantly greater than | ^ | / i 7 , 
which will again lead to a contradiction. Otherwise either K l̂ + A) fl [0, 2K]| 

is large, which is impossible by the fact that 2H+I ^ 1^ ' ^^ ^ ^^^ ^^^^ ^^^^ 
structural properties on [0, K] following Lemma 8.5.4, which will force A to 
have the structure we hope for. 

References 

[1] V. BERGELSON, Ergodic Ramsey theory—an update, in Ergodic theory of 
Z^ actions (Warwick^ 1993-1994)-> London Mathematical Society Lecture 
Note Ser. 228, Cambridge University Press, Cambridge, 1996. 

[2] P . BiHANi and R. JiN, Kneser's Theorem for upper Banach density, sub
mitted. 

[3] Y. BiLU, "Addition of sets of integers of positive density", Journal of 
Number Theory, 64 (1997) 233-275. 

[4] G. BORDES, "Sum-sets of small upper density". Acta Arithmetica, to 
appear. 

[5] G. A. FREIMAN, Structure theory of set addition. II. Results and prob
lems, in Paul Erdos and his mathematics, I (Budapest, 1999), Bolyai Soc. 
Math. Stud., 11, Janos Bolyai Math. Soc, Budapest, 2002. 

[6] G. A. FREIMAN, Foundations of a structural theory of set addition^ Trans
lated from the Russian. Translations of Mathematical Monographs, Vol. 
37, American Mathematical Society, Providence, R. I., 1973. 

[7] H. FURSTENBERG, Recurrence in Ergodic Theory and Combinatorial 
Number Theory, Princeton University Press, 1981. 

[8] T. GOWERS, "A new proof of Szemeredi's theorem". Geometric and Func
tional Analysis, 11 (2001) 465-588. 

[9] H. HALBERSTAM and K. F. R O T H , Sequences, Oxford University Press, 
1966. 



132 8. Additive and combinatorial number theory 

[10] Y. O. HAMIDOUNE and A. PLAGNE, "A generalization of Freiman's 3fc-3 
theorem", Acta Arith., 103 (2002) 147-156. 

[11] R. J IN , "Sumset phenomenon", Proceedings of American Mathematical 
Society, 130 (2002) 855-861. 

[12] R. J IN, "Nonstandard methods for upper Banach density problems". The 
Journal of Number Theory, 91 (2001) 20-38. 

[13] R. J IN , Standardizing nonstandard methods for upper Banach density 
problems, in the DIMACS series. Unusual Applications of Number Theory, 
edited by M. Nathanson, Vol. 64, 2004. 

[14] R. J IN , "Inverse problem for upper asymptotic density". Transactions of 
American Mathematical Society, 355 (2003) 57-78. 

[15] R. J IN, "Inverse problem for upper asymptotic density 11", to appear. 

[16] R. J IN, "Solution to the inverse problem for upper asymptotic density", 
to appear. 

[17] R. J IN , Freiman's 3/c—3+6 conjecture and nonstandard methods, preprint. 

[18] R. J IN and H. J. KEISLER, "Abehan group with layered tiles and the 
sumset phenomenon". Transactions of American Mathematical Society, 
355 (2003) 79-97. 

[19] H. J. KEISLER and S. L E T H , "Meager sets on the hyperfinite time line", 
Journal of Symbolic Logic, 56 (1991) 71-102. 

[20] A. I. KHINCHIN, Three pearls of number theory, Translated from the 
2d (1948) rev. Russian ed. by F. Bagemihl, H. Komm, and W. Seidel, 
Rochester, N.Y., Graylock Press, 1952. 

[21] S. C. L E T H , "Applications of nonstandard models and Lebesgue measure 
to sequences of natural numbers", Transactions of American Mathematical 
Society, 307 (1988) 457-468. 

[22] S. C. L E T H , "Sequences in countable nonstandard models of the natural 
numbers", Studia Logica, 47 (1988) 243-263. 

[23] S. C. L E T H , "Some nonstandard methods in combinatorial number the
ory", Studia Logica, 47 (1988) 265-278. 

[24] M. B. NATHANSON, Additive Number Theory—Inverse Problems and the 
Geometry of Sumsets, Springer-Verlag, 1996. 



9 
Nonstandard methods and the 
Erdos-Turan conjecture 

Steven C. Leth 

9.1 In t roduc t ion 

A major open question in combinatorial number theory is the Erdos-Turan 
conjecture which states that ii A = (an) is a sequence of natural numbers 
with the property that J2'^=i 1/^n diverges then A contains arbitrarily long 
arithmetic progressions [1]. The difficulty of this problem is underscored by the 
fact that a positive answer would generalize Szemeredi's theorem which says 
that if a sequence A C N has positive upper Banach Density then A contains 
arbitrarily long arithmetic progressions. Szemeredi's theorem itself has been 
the object of intense interest since first conjectured, also by Erdos and Turan, 
in 1936. First proved by Szemeredi in 1974 [9], the theorem has been re-proved 
using completely different approaches by Furstenberg in 1977 [2, 3] and Gowers 
in 1999 [4], with each proof introducing powerful new methods. 

The Erdos-Turan conjecture immediately implies that the primes contain 
arbitrarily long arithmetic progressions, and it was thought by many that a 
successful proof for the primes would be the result of either a proof of the 
conjecture itself or significant progress toward the conjecture. However, very 
recently Green and Tao were able to solve the question for the primes without 
generalizing Szemeredi's result in terms of providing weaker density conditions 
on a sequence guaranteeing that it contain arithmetic progressions. 

In this paper we outline some possible ways in which nonstandard methods 
might be able to provide new approaches to attacking the Erdos-Turan conjec
ture, or at least other questions about the existence of arithmetic progressions. 
Heavy reference will be made to results in [7] and [8], and the proofs for all 
results quoted but not proved here appear in those two sources. 

Department of Mathematical Sciences, University of Northern Colorado, Greeley, 
CO 80639. 
Steven.lethQunco.edu 
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9.2 Near arithmetic progressions 

We begin with some definitions that first appear in [8]. 

Definition 9.2.1 Let A CN, and let I = [a, 6] be an interval in N. We will 
write 1(1) for the length of I (i.e. 1{I) = b — a-\-l) and we will write 5 (A, / ) or 
5(A, [a, b]) for the density of the set A on the interval I. Thus d{A^ I) = -jTjy-' 

Definition 9.2.2 Let t, d and w be inN , and let a eR with 0 < a < 1. For 
A cN and I an interval in N of length 1{I) we say that A contains a t-termed 
a-homogeneous cell of distance d and width w in I or simply a <t^OL^d^w> 
cell in I iff there exists b ^ I with b-\- {t — l)d-\-w also in I such that for each 
^,^ = 0 , l , 2 , . . . , t - l ; 

S{A,[b+^'d,b^^'d+w]) > {l-a)S{A,[b+iy'd,b^iy'd+w]) > {l-afS{AJ). 

If each 5{A^ [b-\-^ - d^b + ^ - d-\- w]) is simply nonzero, i.e. the intervals are 
nonempty, then we say that A contains a <t^d^w> cell. 

For /? > 0 and 0 < u < w we will say that a < t^a^d^w > cell is it, /3 
uniform if for each i/ = 0,1, 2,..., t — 1, and all x such that u < x < w: 

(1 - p)S{A, J^) < 5{A, [6 + i/. d, 6 + ^ . rf + x]) < (1 + (3)5{A, J^), 

where J^, denotes the interval \lj -\- v • d.,b + v • d + w\. 

It is clear that an actual arithmetic progression of length t and distance 
d is an example o f a < t , a , i L ' , o ! > cell with w = ^ and a any non-negative 
number. Furthermore, this cell is n, /3 uniform for n = 0 and any non-negative 
(3. We could view the existence of a <t,a^d,w> cell inside a sequence A as a 
weak form of an actual arithmetic progression inside A. These cells are "near" 
arithmetic progressions in some (perhaps rather weak) sense, and intuitively 
are "nearer" to arithmetic progressions as the size of w decreases. In some of 
the results that we look at w will be "small" in the sense that the ratio of w to 
d will be small compared to the ratio of d to the length of the interval / . In 
other results w will be "small" by actually being bounded by a finite number 
while d gets arbitrarily large. 

Definition 9.2.3 Let I be an interval in N, and A C I, with r > 1 G M and 
772 G N. We say that A has the m, r density property on I iff for any interval 
J Cl, ifl{J) > ^ , then6{A,J) <r6{AJ). 

Theorem 9.2.1 below gives a condition for the existence of "near" arithmetic 
progressions for any sequence on any interval / in which the density does not 
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drastically increase as the size of the subinterval decreases. More specifically, 
it provides an absolute constant such that whenever the density of a sequence 
does not increase beyond a fixed ratio for any subinterval of size greater than 
the length of / divided by that fixed constant, then the sequence will contain 
a <t^a^w,d> cell with some relative "smallness" conditions for w. 

A complete proof of this theorem appears in [8], but we will outline the 
proof here, as it provides the clearest illustration of how the use of the non
standard model provides us with a new set of tools for questions of this type. 

Theorem 9.2.1 Let h{x) be any increasing real valued function such that 
h{x) > 0 whenever x > 0, and let g{x) he any real valued function which 
approaches infinity as x approaches infinity. For all real a > 0̂  r > 1 and 
j^t ^ N there exists a standard natural number m such that for all n > m, 
whenever I is an interval of length n and any nonempty set A d I has the m, r 
density property on I then A contains a u^(3 uniform <t,a,d,w > cell with 

w < ^ ( f ) ' f < '^(n)' /5 < '^(n) ^^^-^<^<T ^^^thermore, we may take 
w and d to be powers of 2. 

Proof. (Sketch only). Suppose /i(x), ^(x), a, j , r, t are given as in the statement 
above and that no such m exists. By "overspill" there exists an M, Â  in *N — N 
with M < N and a hyperfinite internal set A such that A has the M, r density 
property on an interval of length N but A contains no <t,a,d,u)> cell on 
this interval with the required properties. Since the conditions are translation 
invariant we may assume that the interval is [0,A^ — 1]. We now define a 
standard function / : [0,1] —> [0,1] by: 

/(.) - St (\Anh^] 
^^''^ ''[\An[o,N]\\)-

Using the fact that A has the M, r density property on [0, N] it is not diffi
cult to show that f{x) satisfies a Lipschitz condition with constant r. Thus, the 
function / is absolutely continuous, differentiable almost everywhere and equal 
to the integral of its derivative. Since / ( I ) = 1, /(O) = 0 and / is the integral of 
its derivative, it must be that the Lebesgue measure of {x : f\x) > (l — ^ ) } 
is nonzero. Thus, there exists a real number c > 1 such that the Lebesgue 
measure of the set 

E^{x: c-^<f'{x)<c} 

is nonzero. 
By using the Lebesgue density theorem it is straightforward to show that 

any set of positive measure contains arbitrarily long arithmetic progressions, 
and that, in fact, these progressions may have arbitrarily small differences 
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between elements. This ahows us to obtain a <t,a,D,W> ceh, with D^W ^ 
*N - N with the property that there exists B G *N - N such that 

NJ ' \ N J ' \ N J ' ' V ^ 

forms an arithmetic progression in E. The a homogeneity fohows from the 
definition of E. The fact that / is differentiable at each point in E ahows us to 
obtain the uniformity condition, and allows us to take C/, D and W arbitrarily 
small but not infinitesimal to N. This, in turn, allows us the freedom to make 
those quantities powers of 2. 

We are thus able to obtain a f/, yS uniform < t , a ,D ,VF > cell for A in 
[0^ N — 1] with all the properties required in the theorem, contradicting our 
assumption. D 

Definition 9.2.4 For A a sequence of positive integers we define the upper 
Banach Density of A or BD{A) by: 

BD{A)= inf max-' ^ ' '̂ 
X G N - { 0 } aeN X 

Upper Banach density is often simply called Banach density, and is some
times referred to in the literature as strong upper density, with notation c/* (A) 
in place of BD{A). That notation is used in [7]. 

The theorem allows us to obtain some results about the existence of uniform 
<t,a,d^w> cells in sequences that are relatively sparse (certainly too sparse 
to necessarily contain actual arithmetic progressions). The theorem below, 
also proved in [8], is of this type. 

Theorem 9.2.2 Let a > 0 and t > 2 G N fee given, h{x) be any continuous 
real valued function such that h{x) > 0 whenever x > 0 and let A be a sequence 
in N with the property that for all 5 > 0, |A fl [0, n — 1]| > n^~^ for sufficiently 
large n. Then for sufficiently large n, A contains a u^/3 uniform <t^a^d,w> 
cell on [0, n — 1] with w and d powers of 2 and such that: 

w \aJ a \ log ny \ log ny 

The condition that ^ < /^(i^^) is not very strong, and it would be de
sirable to improve this weak "smallness" condition. The theorem below shows 
that, even for t = 3, if we keep the density condition on A as above then we 
cannot improve this smallness condition to ^ < (^) for any a > 0, even if 
we do not insist on any homogeneity or uniformity conditions. 
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Theorem 9.2.3 Let a > 0. There exist constants r > 0 such that for arbi
trarily large n there are subsets A o/ [0, n — 1] such that 

n 
U n [ 0 , n - l ] | > ^ ^ , 
I •" I 2r log log nyjiog n 

and yet A contains no <3^d^w> cell in [0,n — 1] satisfying ^ < (^) , with 
w and d a power of 2. 

Here we recall that a <t^d^w> cell is merely a collection of t intervals in 
arithmetic progression on which A is nonempty. 

Proof. Since the statement is strictly stronger as a decreases, we will assume 
that a < 1. In [5, p. 98] it is shown that there exists a constant c > 0 and a 
sequence A satisfying 

1̂4 n [0, n — 1] I > — for sufficiently large n 

that contains no 3-term arithmetic progression. This result is due to Behrend. 
For convenience we will adjust the constant and use log base 2 here, and also 
replace e with 2. By adjusting the constant if necessary (and using 2A) we may 
assume that A contains no two consecutive numbers. We may also translate 
so that 0 ^ A without changing the density condition. Thus, we begin with a 
sequence A which contains 0 and no two consecutive numbers and satisfies 

n 
L4 n [0, n — ll > for sufficiently large n. 

Let Â  G *N - N and let 

f3 = (1/2)2/^; mo = A ;̂ mi = the largest power of 2 less than /J^^+^/^^A^ 

/ Tfih \ ^ 

mk-\-i = the smallest power of 2 greater than ( —- J m^ 

L = the smallest number such that m^+i < 1. 

We now wish to show by induction that 

ruk < /3(^+"/2^'A^. (9.2.1) 

To see this we note that for fc = 1 the definition of mi guarantees this. By 
the construction we have 

/m/e \^ ^ frnk\^ 
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so that, assuming the induction hypothesis, 

= 2f/3^/2(l+a/2)fcA fpa/2(l+a/2)^\pil+a/2)^j^ 

^ ^a/2(l+a/2)^ + ( l + a / 2 ) ^ ^ 

completing the induction step, and estabhshing 9.2.1 above. 
We will define a subset B oi [O^N — 1] with the property that it contains 

no <3jd^w> cell in [0, TV — 1] satisfying ^ < (;^) , with w and d a power of 
2, and such that 

N 

by essentially using block copies of initial segments of *v4. More specifically 
we let 

5 i = [ 0 , m i - l ] 

and, ioT 1 < k < L 

i e Bk+i iff 
^ / c + l 

G *A, where z' is the remainder of i mod TTZ/̂ . 

When k is finite, the fact that 0 G *A means that B^ intersected with 
5 i n . . . n 5/c-i fias cardinality at least a noninfinitesimal multiple of that of 
5 i n . . . n 5/c-i- When /c is in *N — N the density condition on A guarantees 
that at least a ^̂ ^̂ ^̂  portion of B^ intersects with 5 i fl . . . fl 5/c-i, where 
n < TV. Thus 

N 
BiD ... n Bh has cardinality at least —, . ^ . (9.2.2) 

2<^^viog^ 

We now let 
B = Bin...nBL. 

Now suppose that 5 contains a <3^d^w> cell on [0, iV — 1] with -̂  < (;^) 
where both w and d are powers of 2. We show that this forces an actual arith
metic progression of length 3 in M and thus in A (by transfer), contradicting 
our assumption about A. 
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To see this, we let i be such that m^+i < d < rrii. Then since M contains no 
two consecutive numbers, the <^^d^w> cell on [0, Â  — 1] must be completely 
contained inside one of the blocks of length m^, i.e. inside some [z/m ,̂ {v-\-l)mi]. 

^ < ( - ^ j d<\-^) ^i<^i+i^ 

and since w^ d and the m/^'s are powers of 2 

w\miJ^i and mi\d^ 

so that there exist 3 intervals of length TTI^+I inside [vrrii^ {v + l)mi] which 
contain elements of B and are in arithmetic progression. By the construction 
this means that M contains an arithmetic progression of length 3, and then by 
transfer, so does A. 

It remains to estimate L in terms of A .̂ From 9.2.1 we see that 

nik < 1 when f]^^^""/^^'N < 1 i.e. N < (l//3)(^+"/2)' 

so that 
logA^< (l + a/2)Mog(l//?) 

or 
log log Â  < fclog(l + a/2) + loglog(l//3). 

Thus 
loglogA^-loglog(l//3) 

TTbh < 1 whenever k > ;—; . 
log(l + a/2) 

This and the definition of L now yield 

loglogiV-loglog(l / /?) 
L + l< log(l + a/2) 

The above inequality, the definition of B and 9.2.2 imply that for any r > 
c/ log(l + a/2) 

For such an r the result now follows by transfer. D 

We note that the density condition given in the theorem above is stronger 
than simply being greater than n^~^ for sufficiently large n, since n^~^ is of 
the form 

n ^ r 1 
< —— -^== tor large n. 2c\ogN 2log log ^ Vlog ̂  
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Thus, weak as theorem 9.2.2 is in its smallness conditions, there are clear hmits 
to how much it can be strengthened for sets of this relative sparseness. 

It appears to be more promising to look at denser sequences in the hope 
of maintaining a stronger "smallness" condition. The theorem below is proved 
in [8], and provides just one possible example of conditions like this that might 
provide a means for approaching deep questions about arithmetic progressions. 
The proof of theorem 9.2.4 below is similar to that of the proof of theorem 3 
given above. In particular these proofs illustrate how "smallness" conditions 
that may not seem very strong can be used to show that somewhat denser sets 
contain actual arithmetic progressions. 

Theorem 9.2.4 The Erdos-Turdn conjecture follows if we can show that for 
fixed t and constant c > 0; there exists no such that for all n > UQ, whenever 
the sequence A satisfies 

IA n [0, n - 1] I > %Y—,— 
' ^ '̂ (clogn)2iogiogn 

then A contains a <t,d,w> cell on [0, n — 1] with ^ < ^ where both w and d 
are powers of 2. 

9.3 The interval-measure property 

The conditions given below are natural from the nonstandard perspective 
and not at all so from the standard perspective. They might provide another 
means of attacking questions about arithmetic progressions. These definitions 
first appear in [7]. 

Definition 9.3.1 Let A be an internal subset of *N; ?/, z G *N with z — y G 
*N — N. Then we say that A has the IM (interval-measure) property on 
[y^ A '^ff f^'^ every real, standard /3 > 0 there is a real, standard a > 0 such that 
whenever [n, v] C [̂ , z] with i; — u G *N — N and the largest gap of A on [u^ v] 
is < (x{y — u) then 

^{'A{TZ^-- aeAr^[y,z]X\>i-p. 

If A is a standard subset of N, we say that A has the SIM (standard 
interval-measure) property iff *A has the IM property on every interval 
[y, z] C *N with ^ - y G *N - N, and 

: a G M n [?/, ̂ j l ' j > 0 on some such interval [y^ z]. 

Here X is used to denote Lebesgue measure. 



References 141 

A somewhat cumbersome but standard equivalent definition for the SIM 
property is given in [7]. Through the use of the standard equivalent it is easy to 
see that if A has the SIM property then given (3 > 0 there exists a fixed a > 0 
that works for every infinite interval. The theorem below follows immediately 
from theorem 3.2 in that same work. 

Theorem 9.3.1 Lett eN,0 < (3 < Xjt, and suppose that AcN has the SIM 
property, with a corresponding to the given f3. Then there exists a constant j G 
N such that whenever A contains a <t^d^w> cell consisting of the intervals 
[b -\- ^ ' d^ b -\- ^ ' d -\- vu] for 0 < ^ < t — 1 in which the largest gap of A on each 
of these intervals is < aw then A contains <t^d^j> suhcell, i.e. consisting 
of intervals of the form \b' -\- ^ - d^V -\- ^ - d -\- j] C \b -\- ^ • d.^b -\- ^ - d -\- w\. 

This result is significant in that a fixed constant size to the intervals is 
a much stronger "smallness" condition than was achieved in previous results. 
However, the assumption that A is a SIM set is a strong condition. It is shown 
in [7] that any sequence A = (a^) in which lim^^oo(^n+i — ^n) = oo does 
not have the SIM property, so no pure density condition weaker than positive 
Banach density can imply that A contains a SIM set. On the other hand, sets 
may certainly have the SIM property without having positive Banach density. 
Even the question of whether or not positive Banach density is sufficient for a 
sequence to contain a SIM set is still open. A positive solution to either of the 
conjectures below would be a major step toward establishing the SIM condition 
as a useful tool for questions of this type. Since the two conjectures together 
imply Szemeredi's theorem, at least one of them is certain to be quite difficult. 

Conjecture 9.3.1 Let A C N have positive Banach density. Then A contains 
a subset B with the SIM property. 

Conjecture 9.3.2 Every set A d^ with the SIM property contains arbitrarily 
long arithmetic progressions. 
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10 
Nonstandard likelihood ratio test in 
exponential families 

Jacques Bosgiraud 

A b s t r a c t 
Let (p6»)^ee be an exponential family in R^. After establishing nonstan
dard results about large deviations of the sample mean X, this paper de-
finesjbhe nonstandard likelihood ratio test of the null hypothesis HQ : 0 G 
hal(6o), where BQ is a standard subset of 6 and hal(Bo) its halo. If 
a is the level of the test, depending on whether ^ ^ is infinitesimal or 
not we obtain different rejection criteria. We calculate risks of the first 
and second kinds (external probabilities) and prove that this test is more 
powerful than any "regular" nonstandard test based on X. 

10.1 Introduction 

1 0 . 1 . 1 A m o s t p o w e r f u l n o n s t a n d a r d t e s t 

In a preceding paper [9], we proved t h a t the nons tandard likelihood rat io 

test (NSLRT) is more powerful t h a n the nons tandard chi-squared test . Our 

purpose now is to generalize this result to classical exponential families in M^ 

(where k is s t andard) : the NSLRT is more powerful t h a n any nons tandard 

test issuing from a (family of) s t andard test(s) wi th rejection criterion X G i?, 

where X is the sample mean and R a sufficiently regular set. The s t andard 

likelihood rat io test is not so powerful (see §10.5). We hope t h a t viewing 

the problem from a general perspective will lead to a clearer unders tanding 

of its s t ruc ture and simpler and be t te r proofs. In §10.3, we establish some 

results about large deviations of the mean, more or less similar to classical 

results, before s tudying the NSLRT in §10.4 and comparing it to nons tandard 

"regular" tes ts based on X in §10.5. 

Universite Paris VIII, Paris. 
j acques.bosgiraudOuniv-parisS.fr 
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This paper follows also papers about nonstandard tests for monotone like
lihood ratio families ([5], [6], [8]) and we shall maintain the same defini
tion for a nonstandard test in this paper. For notation and definitions of 
nonstandard analysis, external calculus, and external probabilities we refer 
to [15], [11], [14], [4]. 

10.2 Some basic concepts of statistics 

10.2.1 Main definitions 

A statistical family is a triplet (r^,jr, P ) where O is a set, ^ a cr-field of 
subsets of 17, P a family of probabilities on (O, JF): V := {PQ : 9 G 0 } . In the 
following, we suppose that (7 is a subset of R^ (where d is a standard integer), 
that G is a subset of R^ (where fc is a standard integer) and that there exists a 
positive mesure /i defined on {^^T) such that for each 6 ^ Q, PQ is absolutely 
continuous with respect to jj.: we note PQ \= pefi where po is a ^-measurable 
function defined on O. 

So, X : O ^ R^, X ̂  X is a random variable with distribution PQ. 
Let n be a (standard or nonstandard) integer; denoting X :— OP"^ PQ" : — 

Pf^ is a probability defined on (Af, JT^^) and we can write PQ" = P'Q/JP^ where 
^n ._ (̂g)n ^^^ p ^ ( x i , . . . ,Xn) = YYi=iPe{^i)- A n-sample ( x i , . . . ,x^) is an 
element of A!. For i = 1 , . . . , n we define Xi : X ^ M.^ by X^(x i , . . . , Xn) = 
Xi] then X i , . . . , X ^ are independent identically distributed (i.i.d.) random 
variables with distribution PQ. ( X i , . . . , X^) is a n-sampling of X. Note that 
some authors do not distinguish Xi and x^, sample and sampling. 

A statistic is a measurable function 

T : A' ^ M-, ( x i , . . . , Xn) ^ T ( x i , . . . , x^). 

For example, the sample mean X := ^ X^ILi ^^ ^̂  ^ statistic (here m = d). 
We note EQT the expectation of T for the probability P^ . 

10.2.2 Tests 

Let 00 a nonempty proper subset of 8 , 8 i := Q^ its complement and 
a G ]0,1[. A level-a test oi HQ : 9 G QQ against i7i : ^ G 0 i is a statistic 
(f:P^^ [0,1] such that V6> G OQ, Eeif < a. 

HQ : 9 G QQ ^^ called the null hypothesis; 1 — (p is the probability of 
accepting HQ. 

HI : 9 G Oi is the alternative hypothesis and ip is the probability of 
rejecting HQ. 
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Also, SUP^I^QQ EQLP is called the size of the test. { ( x i , . . . , x ^ ) G A', 
Lp{xi^... ^Xn) = 1} is called the rejection set and {(xi , . . . ,Xn) G A*, 
(/^(xi,..., Xn) = 0} is called the acceptation set] if (^(xi , . . . , x^) G JO, 1[ the 
test is said to be randomized. 

Very often, (p is defined through a statistic T and (/:^(xi,... ,x^) = 1 <^ 
T ( x i , . . . , Xn) G i? (in fact, we shall write (f = 1 <^ T ^ R) where i? is a subset 
of W^. R is also called the rejection set and "T G i? " is the rejection criterium 
(e.g. if m = 1, T > to is a rejection criterium; to is a constant depending on 
00 and a). 

For 6 e Go, Eocp is the risk of the first kind (at 0); for 9 G 6 i , Eo{l - (p) 
is the risk of the second kind (at 6); ioi 6 G Q^ E0(f is the power of ip (at 6). 

For testing a given null hypothesis, there are generally a lot of level-a tests 
(for example the constant test (p := a). A level-ce test (j) is said uniformly the 
most powerful (U.M.P.) if for any level-a test ip, <j) is uniformly more powerful 
than '0, i.e. V^ G QI^EQCJ) > EQLP (in fact "more powerful" means "at least 
as powerful"). U.M.P. tests only exist in particular cases: for example for 1-
dimensional exponential families ii HQ : 0 < OQ (where ^o ^ ©̂  an interval of 
M). So, some more sophisticated notions are used to compare the power of 
two tests: for exemple the relative efficiency (cf. §10.5). It is not possible to 
summarize this notion in some words; so we suggest to refer to [1], [2] or [12]. 

10.3 Exponential families 

10.3.1 Basic concepts 

The following classical results and more information about exponential fam
ilies can be found in [10] or [13]. Let /c be a standard integer. We denote by 
{x \ y) = J2j=i ^jVj ^^^ scalar product of x and y, vectors of M .̂ Let /i be a 
probability mesure on O := R^ (the a-field is the field of borelian sets) and let 

e := |6> G R^ : /exp((9 | x)ii{dx) < oo I . 

The set B is convex and for 0 G 0 , let 

IIJ{0) = In / exp(0 | x)ii{dx). 

The function '0 is convex and continuous on G^ (the interior of 0 ) . 
The statistical family {P î : 0 G 0 } defined by PQ := pe/j. where 

ps{x) ^ exp{{0 \ x) - ^(6)) 
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is the (full) exponential family associated to fi. A lot of classical statisti
cal families (e.g. multinomial distributions, multidimensional normal distri
butions,. . . ) are exponential families, generally after reparametrization. This 
reparametrization can be chosen such that O^ is nonempty. Let 

e^={(9Ge: ^^| |x| | <(X)} 

where |||| denotes the Euclidean norm. 
For 0 G O^ we define X{0) := EQX] this mapping is 1-1 from G' onto 

A := A(O'): O' contains 0^ and A is a 1-1 diffeomorphism from O^ onto A^ 
(cf. [10, pp.74,75]). To see this, notice that for 9 G 6^, EQX = V^jj^O) and all 
derivatives of '0 exist at 6. For 61^62 E 0^, ^1 7̂  ^2, '0 is strictly convex on the 
line joining 6>i and 62 and then {61 - 62 \ \{6i) - A(6>2)) > 0. 

10.3 .2 KuUback-Leibler in format ion n u m b e r 

For ^0 E 0 and 0 G 0 ^ the Kullback-Leibler information number is given by 

i{e, 00) = v(^o) - ^{0) + {e-9o\ x{e)). 

If 00 is a proper subset of 0 , let 

/ ( 0 , 0 o ) : = i n f { / ( 0 , 0 o ) : Oo e Qo} • 

For (^,^0) G A^, we set 

^ ( ^ , e o ) : = / ( A - \ 0 , A - \ e o ) ) , 

and for A C A and ^ G A, let 

J(^ ,A) : = i n f { J ( ^ , a ) : a e A} , 

J ( A , 0 := inf{ J ( a , 0 : a e A} . 

The classical likelihood ratio test of HQQ : ^ G 0 O against 0 G 0 \ 0o is 
based on the statistic 

^ / n n \ 

^Bo •= - lnsupTTp^(X,) - I n sup TTp^o(^^) 
n V ^e©f=i OoeSotA J 

where (Ar̂ )i<^<<^ is a n-sampling of X (see § 10.2.1). Here, denoting X = 
n 

=1 

i?eo = sup{{e\x)-^{e)}-sup {{eo\x)-^{eo)} 
ee& (90^00 

= inf sup {(0 - ^0 I ̂ ) - ^0) + ^(^o)} . 
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If X G A, then A ^{X) is the maximum likelihood estimator of 9 and so 

Re,= inf / (A-i(X),0o) = / ( A - ' ( X ) , OQ) = J ( X , AQ) 
OQEQO 

where AQ := A(6o). 
A (the closure of A) is the closure of the convex hull of the support of /i 

(cf. [10]); so, in any case, X G A. As sup {{6 \ ̂ ) — IIJ{9) : 0 G 0 } is lower semi-
continuous with respect to ^, we define (as in [10]), for ^ G dA (the boundary 
of A) a n d ^ o ^ A, J(^,^o) by 

J ( e , eo ) := liminf J(e' ,eo). 

So, if X ^ A (then X G dA) it remains possible to write 

Reo = J(X,Ao). 

In the following, we shall suppose that, for each ^Q ^ A, J(-,^o) is continu
ous on A. This assumption is verified by classical exponential families, but it 
is possible to build counter-examples (cf. exercise 7.5.6 in [10]). Note that if 
^0 ^ A\ hal(9A) is limited, this assumption implies the S-continuity of J(-,^o) 
on any limited subset of A. Indeed, if ^o is standard, it is obvious. If ^o is non
standard, and if ^ is limited, let OQ := A~^(^o); as A is a diffeomorphism from 
0^ onto A^, then ^OQ = A~" (̂̂ ^o) and so, as ip is continuous on B^, we can write 

^(CCo) - ^(^"^0) = V'(̂ o) - V-C ô) + COo -eo\0-0. 

The S-continuity of J(' ,^o) is then deduced from the S-continuity of J(-, ^^o). 
In the following, if A is a subset of M ,̂ A^ will denote its interior, A its 

closure, dA its boundary for the euclidian topology of M ;̂ its shadow ^A is a 
closed standard set (cf. [11, p. 63]). If 4̂ is a subset of A, dA will denote its 
boundary for the induced topology of A. 

10 .3 .3 T h e n o n s t a n d a r d t e s t 

In this paper n will be supposed unlimited, so we shall use dassical 
asymptotic properties of the likelihood ratio test (cf. §10.4). Let OQ be a 
standard subset of B, such that hal(6o) — its halo — is included in a standard 
compact K included in 8^. 

Let JF := JOQ internal : 8o C 0o C hal(Oo)} and let $eo be the likelihood 
ratio test of HQQ : 0 G QQ against 0 ^ Go of size a. Recall that ^QQ is defined 
in the following way: there exists a number d := d{a, OQ) such that 

sup P^iRso >d)<a< sup P^{RQ, > d). 
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Consequently, if RQ^ < d then $eo = 0, if RQ^ > d then $9^ = 1 and one 
randomizes if RQQ = d. 

Definition 10.3.1 The nonstandard likelihood ratio test (NSLRT) of the non
standard null hypothesis {HQ) : 0 G hal{Qo) of level a is defined by $0 = 
i n f { $ e o : © o e ^ } -

We prove in this paper that, except for a case studied in §10.4.3 where $0 
is randomized, $0 is equal to 0 or 1: 

• either VGQ G ^ , ^QQ = 1 and then $0 = 1 (if ^Go is rejected for each 
00 G ̂  then HQ is rejected), 

• or 38o G JF, $0Q = 0 and then $0 = 0 (if HQ^ is accepted for at least 
one QQ ^ T then HQ is accepted). 

At the beginning of §10.4 we shall explain that a has to be infinitesimal. 
We shall prove in §10.5 that this NSLRT is uniformly more powerful than any 
"regular" (this term will be defined later) nonstandard test based on X. 

Convention: if E is an external event, and PR{E) its external probability 
and if 77 is an external number, "the probability of E is equal to rf means 
PR{E) = 77 and "the probability of E is exactly equal to 77" means PR{E) = 77. 

10 .3 .4 Large d e v i a t i o n s for X 

In exponential families, J(-, A(^o)) can be regarded as the Cramer transform 
of PQQ . More generally, classical literature establishes that 

lim - lnP^(Xn eA) = - inf C{x) 
n^oo n xeA 

where 4̂ is a Borel set of M^ such that A C A^ and X^ the mean of 72 i.i.d. ran
dom variables taking values in M ,̂ C the Cramer transform of their distribution 
(see [16], section 4: the proof is based on the minimax theorem for compact 
convex sets). Even more generally, if the i.i.d. random variables take values 
in some topological vector space E^ classical literature (cf. [3]) establishes the 
same result if A is a finite union of convex Borel sets of E. For exponential 
families, it is possible to establish specific proofs by using half-spaces (cf. [10], 
chap. 7 and exercises 7.5.1 to 7.5.6). In a more general setting, half-spaces are 
also used in [3], section 2. 

Our propositions 10.3.2 and 10.3.3 give nonstandard results which imply 
(by transfer) the classical results. If the first part of the proofs is based on the 
law of large numbers as in the classical literature, the second part, based on 
infinitesimal pavings, seems to be original. 
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10 .3 .5 n-regular se t s 

Definition 10.3.2 Let A be a subset of A and a G dA. We shall say that A 

is n-regular in a iff 3b G hal(a), 3p G ] ^ , 0 ] such that p\\X~^{b)\\ ^ 0 and 

B(b^p) C A (where B{b^p) is the open ball of centrum b and radius p). 

Proposition 10.3.1 Let A be a limited subset of A such that ^A = (^A)^ and 
hal{dA) = hal{d^A); then A is n-regular in any point a G dA. 

Proof. We first claim that A \ hal(9^) = ^A \ hal(a^A). Indeed, if x G 
A \ hal(5A) then ^x G ""A and ^x ^ hal(5A) = hal(5^A) and so ^x G 
^A\hal (a^A); consequently, ^x G (^A)^ and so x G (^A)^; finally, as x ^ 
hal(aA) = hal(a^A), X G ^A\hal(a^A). Conversely, if x G ^A\hal(a^A), there 
exists ^ G A such that x ĉ  y; then x G A for if not x G hal(9A) = hal(9^^). 

If a ^ hal(9A), choose an infinitesimal p such that p > -^. Then for each 
6 G A \ hal(9A), 5(6, /o) C A: it is obvious if b is standard and if b is nonstan
dard, with ^b its shadow, there exists a standard po such that B{^b^po) C A 
and then B(6,p) C B{%,po) C A. So 

Ve ^ 0, 36 GA, ^(a, b) < e and 5(6, p) C A. 

Then the internal set {5 G M : 36 GA, (i(a, 6) < £ A B{b, p) C ^ } contains all 
appreciable e. Cauchy's principle yields that 

36 c^0,3b e A, d{a, b) < e and 5(6, p) C A; 

as a ^ hal(9A) then 6 ^ hal(9A) and so A~"̂ (6) is limited (because A is a 
standard diffeomorphism from 0^ onto A*̂ ). Finally p | |A~^(6) | | ^ 0. 

If a G hal(aA), fix p = n-V4; if ^̂  ^ A\(hal(aA)Uhal(aA)) then 5(6, p) C A 
and, as A~^(6) is limited p | |A~^(6) | | < n~'^'^ (for example). So the internal set 

{ ^ G M : 36 GA, d{a,b) <£ A B(b,p) dA A p||A-^(6)|| < n"^/^} 

contains all appreciable e. Cauchy's principle yields that 

3£2^0, 36 G ^ , d{a,b) <eAB(b,p) C A A p | | A " ^ ( 6 ) | | < n"^ /^ D 

For example, a standard set A such that A d A^ (e.g. an open standard 
set) is n-regular in any boundary point. It is possible to prove that a limited 
convex set A such that ^A has a nonempty interior is also n-regular in any 
boundary point (we shall not use this result in the following). 
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L e m m a 10.3.1 

(i) Let (̂ o?< î) ^ A^ cif^d let ^ G ]Co5^i[ (ihe segment between ^o CL'^d ^i). 

ThenJ{^,^i)<J{^o,^i)-

(a) Let A he a nonempty subset of A and ^i G A^ \ A. Then 7(^4, ̂ i) = 

(in) Let E and F be subsets of A such that E is a compact set included in F^; 
let ^eA^\E. Then J{F, 0 < J{E, ^ and J(^, F) < J(^, E). 

Proof, (i) As A is convex, ^ G A. We set ^o — ^ =• < (̂̂  — ^i) where a > 0; 
denoting 9 = A~^(^) and 6i := A~^(^i), we have (using corollary 2.5 in [10]) 

^ ( ^ 0 , 6 ) - J ( e , e i ) = {O-Oi I ^ 0 - 0 + ^ (^0 ,0 = c^iO-Oi I ^ - ^ i ) + J ( ^ o , 0 > 0-

(a) Let ^0 ^ ^- If ^0 ^ ^ ^ , let (^ e dAn ]^o,^i[- Using (i), we can write 
-^(^,^i) < -^(^o^^i)- So 7(9^4, ^i) < 7(^4, ̂ i). Conversely, using the continuity 
of J(- ,^i) , we have 

J{dA,^,)>j(A,^,) = J{A,^,). 

(Hi) If ^_e F , then J(F,C) = J{^,F) = 0 and J(F,C) 7^ 0, J ( ^ , F ) 7̂  0 
because ^ ^ E. 

We suppose now that ^ ^ F. Let ^£; G dE be such that J(-F, ^) = ^ ( ^ E , Oi 
there exists at least one ^p G dF n ]C£)^[ and then, using (i), J{^F,0 < 
J ( C £ , ^ ) a n d s o J ( F , e ) < J ( F , 0 . 

Let now ^^ G dE be such that J(^, E) = J(^ , ^^ ) ; there exists at least one 

^'pedFn WE,il We set OE := >^~HS,'E) and 6»F := A-i(^^). Then 

= ^{OE) - i^{e) + {e-eE\0- V'(^F) + i'{9) - (̂  - ^F U) 

= ^{OE) - V'(^F) + [OF -OE\£,) 

= V(^F) - i>{OF) + {0F - OE I ^F ) + (^F - ^F I e - ^F) 

= /(^F,^F) + ( ^ F - ^ F U - e F ) -

Then setting ^ — ^^ =: P{^p ~ ^E) where Ŝ > 0, we can write 

A^, ?F ) - ^(C, CF) = ^(CF, CF) + ^{OF -OEI^'E- ^F ) > 0, 

according to corollary 2.5 in [10]. D 
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Proposition 10.3.2 Let A be a limited subset of A\ hal{dA), ^i = A(^i) be 
a limited point of A\ hal{dA) and ^o ^ dA such that J{^o^^i) — J{A,^i). If 
A is n-regular in ^O; ihen 

-lnP^^(XeA)c^-J{A,^i), 
n 

and if furthermore d{^i,A) 9̂  0̂  then 

--InP^^iX eA) = J (A,e i ) ( l + 0 ) = @. 
n 

Proof. For all (^1,^2) ^ 0^, denoting x = (x i , . . . ,Xn) and x = \Yll=i^3 

(where Xj — {xj^i)i<^i<^k ^ I^^) we can write 

P^idx) = exp(n((0i -e2\x)- ^(^i) + ̂ '(^2)))^^" ('^^)-

Let ^0 •= A~^(^o) and let ^2 =• ^(^2) and p > ^ be such that ^2 ^ tLal(^o) and 
B(^2yP) C A. As A is a standard diffeomorphism from O^ onto A^, 9o^0i^92 
are limited. Then 

P^A^eA) > Pl(XeB{i2.p)) 

> [_ exp(n((0i -92\X)- ^{61) + ^^(^2))) dPg 

> expfn/ {{ei-02\X)-^{0i)^^{e2))dpA 
\ JxeB(e2,p) / 

by Jensen's inequality. 
According to (8.4) in [4], P - ( X , G [6,z " p/2,6,z + p/2]) = 1 + 0_for 

each i = 1.. .k. Then the nonstandard law of large numbers yields PJ^ (X G 
^{^2-, p)) = 1 + 0 and we can write (denoting by C^ the external set of limited 
vectors of M )̂ 

-\ivPl(XeA) > ( 01 -02 1 6 + ^ V ) - V ^ ( ^ i ) + V (̂̂ 2) + - l n ( l + 0) 
n ^ n 

n 
= -7(^2, ^i) + 0. 

As 
1(62,01) - IiOo,Oi) = {Oo - ^1 1 6 - ^o) + Ii02,0o), 

with 11̂ 0 - ^ill limited, U2 - Coll ^ 0 and /(^2,^o) = @||̂ 2 - ^o|| = ©116 - 611 
(cf. lemma 3.2.2 in [13]), we have 

-I{d2, Oi) = -7(^0, ^1) + 0 = - J ( A 6 ) + 0, 
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and so 

-\nPl{x e A) > -j(A,ii) + %. 
n ^ 

Conversely, the limited set A is included in a hypercube [—p,p] where p 
is a standard integer; pave it with n^(2p)^ hypercubes (T/) with side 5 = ^. 
Among these hypercubes, eliminate the ones which do not intersect A and for 
the others choose ti ^ AC]Ti. In the aim of simplicity, we shall denote again 
the selected hypercubes by (T/)i</<7v- Let 6i := A~"^(t/), 6i is limited because 
ti is limited and ti ^ hal(9A). From the relation N < n^{2p)^ we deduce 

_ ^ r 

1=1 n^^Ti} 
N 

< ^ e x p (n((0i - 01 I ti + ^ ) - ^{0i) + V^(^o)) 

((0^-0,\ti + ^)-i;{0^) + ij{0i)\ < N max exp { n 
1=1...N ' 

Thus 

n 
InP^^iXeA) < - l n 7 V + m a x | f 0 i - 0 H ^ / + — ) - ^ ( ^ i ) + ^ ( ^ / ) | ^ n 1=1...NI \ n / J 

< - l n 7 V + max {(^i - 0i \ ti) - i;{0i) + ^{0i)} + -
n 1=1...N n 

< - l n A ^ + max -/(6'i,6»i) + -
n 1=1...N n 

< -J(A6)+0-

Finally, 

-\nPl(X e A) = -J{A,^r) + ^. 
n 

As we said previously, according to lemma 3.2.2 in [13], if a and ^i are 
limited elements of A \ hal(A), then J (a ,^ i ) = @d(a,^i). Consequently, if 
d{A,^i) = @ then J(A,^i) = @. Thus 

- - InP^^ (XeA) = J{A, ^i)(l + 0) = @. D 

In fact, the continuity of J(-, ^i) allows us to generalize this result to limited 
subsets of A: 
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Proposition 10.3.3 Let A be a limited subset of A, ^i be a limited point of 
A \ hal{dA) and let ^o ^ dA such that J{^o^^i) — J{A,^i). If A is n-regular 
in (̂ 0 then 

-\nPl{XeA)^-.J{A,^i). 
n 

Proof. Let ^2 =• A(6>2) G lial(^o) and p > ^ he such that B{^2,p) C A and 

p 11̂211 — 0- As in the proof of proposition 10.3.2, we can write 

-InPlQleA) > ( 01 -02 1 6 + > C V ) - ^ ( ^ i ) + V (̂̂ 2) + - l n ( l + 0) 
n n 

= ( ^1-^2 | 6 ) + >Cp + 0 - ^ ( 0 i ) + V (̂02) + 0 

= - J ( 6 , 6 ) + 0 = -J{Co. 6 ) + 0 = -J{A^ 6 ) + 0 

because | | 6 — ^Q\\ C^ 0 and J ( - , 6 ) is S-continuous. 
Conversely, as in the proof of proposition 10.3.2, use a paving (T;) I<K7V 

with side S = ^ where each T/ is closed and such that T̂  fl A 7̂  0 , but choose 
ti in Ti (maybe outside A) such that: 

if ^i,z ~ Si,i > 0 then ti^i is maximal in Ti 
if ^i,z — ^i,i ^ 0 then ti^i is minimal in Ti 

So, for X G T/ we can write {0i - Oi \JC) < (6>i - 9i \ ti) and then 

/ _ 
[xeTi} 

PliXeA) < J2L ^dPl 

1=1 H^^T,} 
N 

< J ] e x p ( n ( ( ^ i - ^i I ti) - xPiOi) + V(^0))• 
1=1 

Thus 

i l n P ^ " ^ ( X e A ) < -lnN+ ma.x {{0^-01 \ti)-^{ei)+^{Oi)} 
n n 1=1...N 

< - l n 7 V + max { - J ( t / , £ i ) } . 
n 1=1...N 

As J ( - , 6 ) is S-continuous, J ( t / , 6 ) = J ( % , 6 ) + 0 and then, as % G "".A 

- l n P , - ( X G A ) < - J ( M , e i ) + 0. 
n ^ 
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We now claim that J (M,^ i ) 2̂  J (A,^ i ) . Indeed, ii a e A, then ^a G M 
and J (a ,^ i ) ^ J^^a,^!); so J^^A, ^1) ^ J(A, ^1). Conversely, if a G ""A, there 
exists a' ^ A such that a c^ a^ and thus such that J (a ,^ i ) ^ J{a\^i)] so 
J(A,e i )^J(%a)_ 

Finally i In P^-^(X G A) < - J ( A , a ) + 0- • 

10.3 .6 n-regular se t s def ined by KuUback-Leibler 
in format ion 

Let ©0 be an internal subset of 8 , included in a standard compact K 
included in the interior of B. 

Let Co := co(6o) := sup{/(6>,eo) : 6> G 6 } < 00. For c G ]0,co[, let Ac := 
{^ G A : J(^, Ao) < c} where AQ := A(eo). We shah see in lemma 10.3.2 that 
J(-, AQ) is continuous; then if c < ĉ  < CQ, AC is a proper subset of Ac' (for if 
not, {̂  G A : J(^,Ao) < ^ } = {̂  G A : J(^,Ao) < ^ } is a connected 
component of A which is a connected set.) 

Lemma 10.3.2 If c < CQ is limited, then dAc is a limited compact set. 

Proof. dAc = {̂  G A : J((^, AQ) = c} is closed in A since the function ^ -^ 
J(^, AQ) is continuous on A as we prove now. By transfer, we just have to prove 
this continuity for a standard AQ: if ^1 and ^2 are such that ||^i — ^2!! — 0, 
if ^0 ^ AQ is such that J(^i,^o) — -^(^i, AQ) then, as J(-,^o) is S-continuous, 
J (6 ,^o ) ^ ^ (a ,^o) and so J ( 6 , A o ) ^ J ( a , AQ); similarly 7(^1, A o ) ^ J ( 6 , AQ). 

We prove now that if ^ is unlimited, then J(^, AQ) is unlimited. For each 
^0 ^ AQ, ^0 belongs to the standard compact K; then ||^ — ^o|| — c>o and so 
J(^,^o) ^ 00 (cf. [10, p. 177]). Thus J(^,Ao) is unlimited. 

Therefore {^ G A : J(^, AQ) = c} is limited. D 

Proposition 10.3.4 Let c < CQ be limited and 9i be a limited point of Q' such 
thatii := A((9i) ^ hal{dA). 

(i) Ifii i Ac, then^\nP^^(XeAc) = ^ l n P - ( X G A^) ^ - J ( 5 A „ a ) . 

(zi) If^i G Ac, then ^ I n P - ( X G Ac) - 0. 

(m) 7 / 6 ^ A^, then^\nP-(X G A^) = i l n P - ( X G I F ) ^ -J{dAc,^i). 

(iv) Ifii G A^, then i I n P - ( X G A^^) ^ 0. 
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Proof. We first prove the both similar results (i) and (iii)^ and then the both 
similar results (ii) and (iv) which are obtained in a same way. 

(i) If 00 and c are standard, Ac is a standard compact set such that 
Ac = ~^c' Indeed, A^ = {̂  G A : J(^, AQ) < c}. If ^ is such that J(^, AQ) = c, 
let Ao G AQ (a compact set) be such that J(^, AQ) = J(^, AQ) = J(^, AQ) = c. 
According to lemma 10.3.1 (i), for any ^' G ]^,Ao[, J(^^ AQ) < J(^, AQ) and 
so J(^^Ao) < c. Thus ]^, Ao[ G A^ and then ^ G A^. So, according to 
proposition 10.3.1, Ac and A^^ are n-regular in any point of dAc and then, ac
cording to proposition 10.3.3, we can write ^ I nP^ {X G Ac) ^ —J{Ac^ ^i) and 
^lnPJ^^(X G Al) ^ - J ( A O , ^ I ) . Finally, lemma 10.3.1 (ii) yields J{Ac,^i) = 

\All) = J{dAc,ii). 
Now, if c or Bo are not standard, the continuity of J(^, •) on X{K) implies 

^AciQo) = Aoc{^Qo) and the hypothesis of proposition 10.3.1 is verified since 

hal(aAc) = hal(9Ae) U {̂  G 5A : J(^, Ao) ^ c } 

and 
hal(a^Ac) = hal(9^Ac) U {̂  G 9A : J ( ^ , % ) ^^c} . 

Indeed, on one hand, the continuity of J(^, •) implies 

{^ e M : J(e , Ao) ^ c} = {^ e M : J(^, "AQ) ^ ^c} , 

and on the other hand, this continuity also impHes 

hal(aAe) = { ^ G A : J ( e , A ( G o ) ) ~ c } 

= {^ 6 A : J(C, ACGo)) ^ °c} = hal(a°Ae). 

Then we can conclude as before, using proposition 10.3.1, proposition 10.3.3 
and lemma 10.3.1. 

(in) In the same way, A^ is n-regular in any point of dA^ — dAc^ but 
A^ is not always limited. Meanwhile, dAc is limited and so the proof (in 
proposition 10.3.3) of ^hiP^^(X G A^) > -J{dAdi) + 0 remains valid. 

Suppose now that ^i G Ac. Ac is included in a standard hypercube Up := 

[—p,p] (where p is a standard integer). If we set Sp^i := {x G M^ : x^ > p} 

and S'p- := {x G R^ : x^ < -p] then U^ = Uj=i(5'p,z U 5'̂  •). It is clear that 

P^^{X G A^) = P^^iX G [/p \ A J + P,-^(X G U^). 

On one hand, as Up \ A^ is limited and n-regular in any boundary point, 
we can write 

i \nPl(X e Up \ A,) ~ -J{Up \ Ac ,6 ) = -J{dUp U aAe ,a ) -
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Using lemma 10.3.1(iii) with E = dUp and F = A^.we have J{dUpUdAc, ^i) = 
J{dA,,^i) and so ^lnP^^{X e Up\A,) c^ -J{dA,,^i). 

On the other hand, 

k 

P^ixe u^) < Y.{Pl{x € S,,i) + Plix e 5;,)). 

We know that MnP^"^(X £ 5p,,) c^ - J ( 5 p , i , 6 ) and ^lnP^^(X G 5; . ) ~ 
—J{S'-^ ^1) (it is a classical result concerning half-spaces: cf. chap. 7 in [10]); so 

-\nPl(X e t f ) < max max( - J (5p ,„e i ) , - J ( 5 ; „ 6 ) ) + 0 

which is less than —j(dAc^^i) according to lemma 10.3.l(i). Then ^ I n P ^ {^ ^ 

A^)<-J{dA,,^,)+J. 
Finally, ^ l n F , - ( X e A^) ~ - / ( S A ^ ^ i ) . 

(ii) If ^1 G hal(9Ac), then exists ^o ^ ^^c such that J(^o,<^i) — -^(^,^1) — 
0 and it remains possible to use proposition 10.3.1, proposition 10.3.3 and 
lemma 10.3.1 as for the proof of (i). 

If ^1 ^ hal(974c), then ^1 G ^Ac \ hal(9Ac) according to the proof of (i) 
and so there is a standard number p such that the ball B(^^p) is included in 
^Ac \ hal(9v4c) and consequently included in Ac. Then the nonstandard law of 
large numbers yields PJ'^(X G A^) = 1 + 0 and finally lnPJ'^(X G Ac) ^ 0. 

(iv) is obtained in a similar way. D 

Definition 10.3.3 Let 0 G 0 ^ Let ho be the function defined on [0,co[ 
by h0{c) := J(A^,A(0)) and go the function defined on [0,co[ by ge{c) := 

j{Ac,\m-

As c ^ Ac is increasing, QQ is a non-increasing function and hg is a non-
decreasing function. Let 7(^) := / (0 ,0o) ; A(^) G Ac iff c > 7(6 )̂ and so 
ge{c) = 0 if and only if c G [7(6^), co[ and h0{c) = 0 if and only if c G ]0,7(^)]. 

Proposition 10.3.5 

(i) The functions (O^c) -^ ge{c) ^^^ {^^^) ~^ ho{c) are S-continuous on 
{6 ^Q\ hal(9e) : 6 limited] x ([0, co[ n C). 

(ii) The function go is decreasing on [0,7(0)] and he is increasing on [7(0), CQ]. 
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Proof. Let 6 be standard and 9' c^ 6, then \{9) c:^ A(6>'); let c and c' be such 
that c' ĉ  c. Then ^A /̂ = -̂Â  and 

J(Ae,A(eO) ^ ^ (^c , A(0)) ^ J r ^ e , A(0)). 

Similarly, J{A^,,X{0')) 2̂  J(^Ae/, A(6>)). 
The monotonicity of ge is deduced from lemma 10.3.1 (iii) which shows 

that if c' < c and A((9) ^ A^^ then J(Ac/, A((9)) > J{Ac, A((9)). 
The continuity and monotonicity of he are proved in the same way. D 

10.4 The nonstandard likelihood ratio test 

Recall that JT ;= {GQ internal : OQ C Go C hal(eo)}, that the NSLRT 
is defined by $0 •= inf{$eo • ©0 ^ ^}^ that $eo î  defined through RQ^ 
and that, for exponential families, RQQ = J(X,Ao) where AQ := A(8o). So, 
the relation 

sup PeiReo >d)<a< snp PeiRe^ > d) 
oeSo oeQo 

(see §10.2.1) can be written 

sup P^{X e A^(eo)) < a < sup P^{X e A^{eo)). 
eeSo eeSo 

Consequently, A^ is the rejection set (relatively to X ) , A^ the acceptation set 

and the test $eo is randomized if X G dAc. 
As n is illimited, if d < co(Oo) and if d is limited then, for 6> G OQ, 

proposition 10.3.4 yields 

As sup^^0Q —J{dAd, A(0)) = —d by definition of A^, we have 

In a 
d{a,Qo) 

n 

This is the nonstandard form of a classical result of Bahadur ([1], [2]). We 
shall study the NSLRT according as these d{a, BQ) are infinitesimal or appre
ciable. In this latter case, we shall have to distinguish the cases rf(a, BQ) < 
co(Bo) and d{a,Qo) > co(Bo). _ _ _ _ _ 

In the following, CQ stands for co(Bo), AQ for A(Bo) and RQ = J(X,Ao) 
for i?Q ; Ac will denote Ac{Ao)] the notations ho{c) and ge{c) will also refer 
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to these Ac := Ac{Ao). Note that if BQ G ^ , then the S-continuity of A on 
K implies 

RQO - Ro' 

The following lemmas will be used for the calculation of the risks of the 
first and the second kind. They are valid not only for exponential families, but 
also for any statistical family. Here ©'' is a standard subset of 0 . 

Lemma 10.4.1 Let T be a statistic, S a (perhaps external) subset of @" and 
F : D ^ ]R+,(0,c) -^ FQ^C) a standard continuous function defined on a 
domain D = {{9, c) G 6^' x M+ : d̂  < c < d'^} such that 

• the functions 9 ^ do and 9 ^ d^ are continuous, 

• for each 9 G S, FQ is decreasing on [do, d^] , 

• for each 9 in S and c nearly standard m Jd î, c?^[, 

- l n P , " ( T > c ) ~ F , ( c ) . 
n 

Then, for each 9 nearly standard in S and CQ standard in [dojd^l 

PR'o{T> Co) = Ce-''^^''Fe{Co)^ 

Proof. PE^{T ^ Co) = sup^^@ P^(T >Co + w). Now write 

- \nP^{T >C^ + w)^ Fo{Co + w) ^ 'Fo{Co + w). 
n 

So, as ^Fo = FOQ (where 9o := ^9) is a standard continuous decreasing function, 
we have 

- l n P E ^ ( T ^ Co) = 1 - o c , sup Fo{Co + w)\ = ]-oo, F^(Co) + 0[. 

Similarly, 

1 
^ lnPRo{T> Co) ^ ]-oo, ^FoiCo) + 0[ ^ ]-oc,F,(Co) + 0[, 

for if not, there exists 77 < 0, 77 ::± 0 such that 

ye e hal+(0), - lnPJ^(T > Co + e) > ^F^(Co) + v 
n 

where hal+(0) := {e G hal(O) : e > 0} . 
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Then {s G M+ : ^ \nP^{T > Co + s) > ^F^(Co) + rj] is an internal set in
cluding hal^(O) and consequently (by Cauchy's principle) including an interval 
[0, WQ] where WQ is standard. But 

- InP^(T > Co + ^o) ^ i^^(Co + w^) ^ 'Fe{Co + ^o) 
n 

with ^F^(Co + WQ) < ^F0{Co) which is a contradiction, because both these 
numbers are standard. Finally 

PM{T> Co) = P S ^ ( T > CO) = /:e-^®+^^^(^o). D 

Lemma 10.4.2 Let T be a statistic, S a (perhaps external) subset of &' and 
G \ E ^ R+,(0,c) -^ Ge{c) a standard continuous function defined on a 
domain E = {{6,c) G O'' x R+ - CQ < c < e^} such that 

• the functions 9 ^ eg and 6 ^ e^ are continuous, 

• for each 6 G S, GQ is increasing on [CQ, e^] , 

• for each 6 in S and c nearly standard in]eQ^e'Q[^ 

1 

n 
lnP^{T<c)^Ge{c). 

Then, for each 9 nearly standard in S and CQ standard in [e^, e'g\ 

Proof. P ^ ( T £ Co) = inft=@ P^{T <Co + t). Now write 

- \nP^{T <Co + t)- Ge{Co + i) - "GeiCo + t). 
n 

So, as ^GQ is a standard continuous increasing function, we have 

- InTW'eiT^Co) = 1 - o o , inf G^(Co + t)] = ] -oc , G^(Co) + 0]. 
n 

As in lemma 10.4.1, one establishes that PR^{T^Co) = PK^(T^Co) and 
finally 

PRe{T ^ Co) = Ce''^o(Co)+n0^ ^ 
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I n a . 
10.4 .1 inf ini tes imal 

n 

Proposition 10.4.1 For ^ ^ 0, 

(i) z/i?o — 0 then $o = 0 otherwise $o = 1/ 

(ii) for 6 G hal(Qo), the risk of the first kind is exactly equal to Ce~^'^~^^^^^^; 

(Hi) for a limited ^ G 0 \ {hal{dQ) U hal{Qo)), the risk of the second kind is 
exactly equal to £e-^^^(o)+^^ 

Proof, (i) If i?o 9̂  0 then VBo G T, Roo ^ 0 and so VBo G J^, $eo = 1 
because d{a, 6o) — — ^ — 0 and finally $o = 1-

If i?o — 0, X G hal(Ao) (for if not, RQ = J ( X , AQ) is appreciable) and so 
A-i(X) G 00 U {A-i (X)} G j ^ . Then, $©0 = 0 for this Go := QQ U {X-\'X)}. 

Finally, $o = 0. 
(̂ n̂  According to proposition 10.3.4 (iii) and (iv), for a limited c < CQ, we 

have ^lnPJ^(i?o > c) ::± —/i^(c). Let 8^' a standard compact set such that 
hal(eo) C e ' ' C e \ hal((9e) (for example 6 ' ' = K). Then according to 
proposition 10.3.5, (^,c) -^ —ho{c) is continuous on O '̂ x [O,co(0'')] and for 
6 G 6^', -ho is decreasing on [7((9), co(0'0]-

We can now apj)ly 10.4.1 with L> = {(6>, c) G 6 ' ' x IR+ : 7((9) < c < co(e '0}, 
T = i?o, <5 = hal(8o), î 6' = —/̂ ^̂  Co = 0 to obtain 

Pi?^(i?oJo) =£e-^®-^^^(0)^ 

(̂ m̂  According to proposition 10.3.4 (i) and (ii), for a limited c < CQ, 
we have ^lnP^{Ro < c) ^ -9e{c). For any limited 6 e ^ \ (hal(ae) U 
hal(8o)), there exists a standard compact set O'̂  C O \ hal(98), such that 
9 G 0 '^ According to proposition 10.3.5, (^, c) -^ —9e{c) is continuous on 
e^' X [O,co(e'0] and for 9 G &', -ge is increasing on [0,7(6>)]. 

We can nowjipply lemma 10.4.2 with D = {((9, c) G 6 ' ' xM+ : 0 < c < 7(l9)}, 
S = &'\ hal(eo), T = i?o, Ge = -ge, Co = 0, to obtain Pi?^(i?o^O) = 
£g-nfif0(O)+n0^ |-| 

Remark 10.4.1 Let 9 G hal{Qo); the nonstandard version of the law of large 
numbers yields 

PR'^iX G hal{X{9))) = 1 + 0 ^ PR'^iX G hal{Ao)) = 1 + 0. 

As the reject criterion is X ^ hal{Ao), it is not logical to take a appreciable, 
but infinitesimal. 
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10 .4 .2 0 ^ - | l n a | ^ CQ 

If Co = oo, we shall suppose that ^ ^ is limited because some preliminary 
results (in §10.3) are no longer available (for example Ac is no longer limited 
if c ^ oo). 

Proposition 10.4.2 For 0 J ^ J S Q and ^ limited, put C := ^ ( - ^ ) . 

(i) If Ro^C then $o = 1 otherwise $o = 0-

(a) For 9 e /ia/(9o); the risk of the first kind is exactly equal to £e-^@-^^0(C). 

(Hi) For a limited 0 e Q\ {{hal{dQ) U hal{Qo)), ^ / 7 ( ^ ) ^ C then the risk of 
the second kind is exactly equal to £e-^^0(C)+^0^- and if^{0) ^ C then the 
risk of the second kind is exactly equal to 1 -\- £e-^@-^^0(C). 

Proof, (i) If Ro^C then VBo G J^,i?eo^ - ^ , so RQ^ > d(a, Go) and 
$eo = 1- Finally, $o = 1-

If i?o ^ 0, $0 = 0, as in proposition 10.4.1 (i). 

If 0 ^ i?o ^ C, then X ^ hal(Ao); we prove that 30o G ̂ , $eo — 0- If ^^^^ 
the external set J^ is included in the internal set {OQ : 0o C 0o C K A ^ B Q T̂  O}? 
and using the Cauchy's principle, there exists an internal set OQ D hal(Bo) such 
that $00 7̂  O5 i-̂ - ^Bo — <^( '̂ ®o) — C'. Denoting by 0o the shadow of this 
60 we have R^ ^ RQ^ ^ C. 

Oo and 80 are two distinct relatively compact standard sets such that 
9Bo C OQ and then such that OAQ C AQ (where AQ := A(8o)). According to 
lemma 10.3.1 (iii), J(^, AQ) < J(^, AQ) for each ^ ^ AQ and then 

i?g^ = J ( X , Ao) ^ J ("X, Ao) < J ("X, Ao) ^ J ( X , Ao) = i?o. 

AS J ( ^ X , A O ) and J(^X,Ao) are both standard numbers, this contradicts 
i?A > C and i?o - C 

(a) The proof is similar to the proof of proposition 10.4.1 (ii), with CQ = C 
instead of Co = 0. We note that the risk of the first kind calculated in §10.4.1 
is a particular case of this result. 

(iii) For the first result, the proof is similar to the proof of proposition 10.4.1 
(iii), with Co = C instead of Co = 0 and S = {6 e &'\ hal(eo) : 7(6>)^ C} 
instead of 5 = B^' \ hal(Bo). For the second, we choose a standard compact 
set B^' C B \ hal(9B), such that 6 G B'^ In fact, the proof of (ii) is vahd with 
S=[ee&' : 7(6>) ^ C} and one obtains 
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10 .4 .3 - | l n a | > C o 
n ^ 

The number CQ is standard because OQ is standard and CQ ^ oo; A is 
a limited set for if not J(^, AQ) is unlimited because ^ is unlimited (see the 
proof of lemma 10.3.2) and then co(Oo) > sup^^^ J(^, AQ) is unlimited. We 
shall suppose here that for each subset BQ of 0 , the function d -^ / (0, BQ) is 
continuous on B. This assumption is verified by classical exponential families. 
Then for any BQ, CO(BO) = sup^^^v ^{i^ A(Bo)). 

For any BQ C K, if CO(BO) Q̂  \ | lna | then d(a, BQ) = co(Bo) and so $9^ < 1 
because ^^ = A. If X G A°, then $eo = 0 ^^id if X G 9A, either $eo = 0̂  
or 0 < $9(3 < 1 (there is a randomization); the problem is not simple, as the 
example of multinomial distributions shows (cf. [9]). We note that Kallenberg 
avoids this case in theorem 3.3.2 of [13]. 

P ropos i t i on 10.4.3 For ^ | lna | ^ C Q ; 

(i%) tfJC eA^ then^o = 0. 

Proof. As $0 is a non-increasing function of a, we just have to give proofs for 
^ | lna | c:^ Co. 

(i) We prove that 3Bo G JF, $9^ < 1. If not, VBQ G T, max$9Q = 1 (which 
means that $ 9 Q takes value 1), and by Cauchy's principle 3Bo D hal(Bo), 
such that m a x $ g = 1. According to lemma 10.3.1 (iii), for any ^ G A, 

J(''<^,''Ao) < J(''^,''Ao) because hal(Ao) C AQ := A(Bo). Both these numbers 
being standard, the relation 

J(^, Ao) - JiX'^Ao) < J{%'Ao) ^ Ji^Ao 

\\na\ implies J(^, AQ) ^ J(^, AQ) and then co(Bo) 06 co(Bo). So co(Bo) ô  ̂ ^ which 
contradicts max$A = 1. 

(a) Let X G A°; if VBQ G T, $ 9 O T̂  0, by Cauchy's principle 3Bo D hal(Bo) 
such that $g^ 7̂  0. But co(Bo) ^ CQ ^ - ^ ^ and so, as X G A°, ^g^ = 0, which 
contradicts $ g 7̂  0. D 

Remark 10.4.2 Le^ 9 be a limited element of &\ {hal{dQ) U ( B Q ) ) ; the non
standard version of the law of large numbers yields PKQ{X G hal{X{6))) = 1+0 
and thus PRQ{X G A^) = 1 + 0. So, for this 6, the risk of the second kind is 
equal to 1 + 0.* 2/ ^ | lna | ^ C Q , the NSLRT is not consistent (in the classical 
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theory^ a sequence of tests {(pn)n>no [where n is the size of the sample] is con
sistent if for any 0 G 0 i ; lim^^oo EQ^I — (pn) = 0.* then, for n ĉ  oo, the risk 
of the second kind is infinitesimal). 

Remark 10.4.3 ^5 the example of multinomial distributions shows (cf [9]), 
it seems impossible to give general results about the value of ^Q if X ^ dA. We 
can only say that $o ^̂  randomized if X belongs to a subset of dA and takes 
the value 0 if X belongs to the complement of this subset. This subset can be 
empty (as shown in [9]), and then $o = 0 ^^ ^^1/ case. 

10.5 Comparison with nonstandard tests based on X 

In the classical theory, for testing 0 G OQ against 0 G Oi, one fixes the 
level a and one tries to find a test that has maximum power in any 6> G Oi. 
However, such uniformly most powerful (U.M.P.) tests exist only in a few 
exceptional cases: for example for 1-dimensional exponential families, if OQ := 
{6 G O : 6 < 6Q}. If no U.M.P. exists, one studies an asymptotic approach, for 
sample sizes tending to infinity. One of the tools to compare asymptotically the 
power of two tests of the same hypothesis is the Bahadur relative efficiency. In a 
more general framework (not only for exponential families) Bahadur ([1] or [2], 
see also [12]) has proved that the likelihood ratio test is at last as "efhcient" as 
any test based on a rejection criterion of the form T > c (with randomization if 
T = c if necessary), where T is a statistic built with the n-sampling. However, 
it may be that to get the same power in a point 0 G O \ OQ the size of the 
sampling for the likelihood ratio test has to be larger than for the test based 
on T: thus was introduced the notion of "Bahadur deficiency" (cf. [13]). 

We shall prove that the NSLRT is uniformly the most powerful in a large 
family of nonstandard tests if a ^̂  1 and -^ rp CQ. The standard likelihood ratio 
test is not as powerful in the corresponding standard family. 

Let {}f^^ be a family of tests of level a (where Lp^^ tests i^e^ : ^ G ©o 
against d ^ GQ). The corresponding level-a nonstandard test ^̂ o is defined by 

Lp^ :=inf{(/:)eo : OQ G J^} 

and when we shall refer to a "nonstandard test", it will be defined thusly. 

10.5 .1 R e g u l a r n o n s t a n d a r d t e s t s 

Suppose that for each GQ, V̂ GQ is a test of size a defined by a rejection set 
R := i?(a, 6o) such that 

sup P^{X eR) < a < sup P^{X eRyJdR). 
6'Geo (9^60 
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If R is n-regular in any point of dR and if dR is limited, Lp^^ will be called 
"regular". The most famous example of such a test is the chi-squared test 
since the relative frequency F is in fact the sample mean for the multivariate 
distribution. In order to get i? ^ 0 we shall suppose that ^ | lna | r̂ ĉg and so 

^ | lna | r2^co(0o) for Go G J^. If V̂ BO is regular for any Go G !F, (fo will be 
said to be "regular". We prove now that $o is more powerful than any regular 
level-a nonstandard test (fo in the following sense: $o ^ V̂o- (For standard 
tests $ and (f, it is clear that if $ > (p, then $ is more powerful than (p —in 
the classical sense— because EQ^ > Egip for any 9.) 

Proposition 10.5.1 For (Xr^ 1 and ^ |lnQ;| Q^CQ; if ^O is a regular level-a non
standard test, then $o ^ V̂ o-

Proof. As n is illimited and as R is n-regular at any point of dR which is 
limited, we can write 

- l n P r ( X G i ? ) ĉ  - I n P r ( X G ^ ) ^ - J ( 9 P , A(l9)), 
n n 

so inf^eeo J0R,X{e)) =: J(ai? , A(Go)) verifies J(9i?, A(Go)) - - ^ . 

Put c := " ( ^ ) . The region where cpo ^ 0 is included in the external 

subset R^pQ := | | R{a, Go). We prove that R^^^ C {̂  G A, J((^, Ao)^ c} = 

{$0 = 1} which will prove that $o ^ ^o (we remember that $o takes only 
values 0 and 1). 

Let ^0 ^ A such that J(^o?Ao)^c; we now claim that 3Go G JF, ^o ^ 
i?(a,Go). Indeed, suppose that VGQ G JF, ̂ Q ̂  i?(a,Go). Then, by Cauchy's 
principle 3Go D hal(Go) such that ^o ^ i?(a,Go). Denote ^o •= '^"^(^o)-

• If ^0 ^ hal(Ao), then 6o G Go since A is a standard diffeomorphism from 
G^ onto A^. 

Suppose po := d{^o, dR{a, Go)) > -% and so B{^o, po) H A C R{a, Go). As 

A contains the support of PQ^^ the nonstandard law of large numbers yields 

Pe'^iX e i?(a, Go)) = 1+0 which is impossible because P ^ ^ ^ ( X G i?(a,Go)) < a. 

Suppose then po ^ ^ - Let ^i G 9i?(a, Go) H hal(^o); the n-regularity at 

^1 implies that 3 ^2 ^ hal(^i), 3p G ] - ^ , 0] such that P(^2, p) C R{a, Go). As 

^(^0,6) - 0, 6 e A(Go) and ^2 := A - i ( 6 ) ^ ©o_As previously, P - ( X G 

P ( a , Go)) = 1 + 0 which is impossible because P ^ ( X G R{a, Go)) < ce. 

• If ^0 ^ hal(Ao), we can write 

j(̂ o,A(eo)) c. j(eo,Areo))c.j(%,Areo)) 
< j(%,A(eo))~J(^o,A(eo)) 
< c. 
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But J(^^o, A(^eo)) and J(^^o, A(eo)) ^ 0 are both standard numbers; as A(eo) 
C (A(-eo))^ we have J (%,A(^eo) ) < J ( % , A ( e o ) ) and so J(^o, A(eo)) ^ c . 

On the other hand J(i?(a, 6o), A(6o)) — — ^ — c: this contradicts 

^0 ^ i?(ce,©o). • 

10.5 .2 Case w h e n ©o is c o n v e x 

For any 8o G JF and any ^i G 0 \ hal(Oo), there is a level-a test ^ Q 
which is the most powerful at 0i (for any level-a test ip testing 9 G QQ against 
0 G 0 1 , Ee^if < EQ-^'^Q ). This test is defined in the following way (see [13, 
p. 49]) let 

fix) := / exp(n((0o - ^i I x) - ^(Oo) + ij{9i))y{deo) 

where r is the least favorable distribution. Then ^ Q = 1 ii f{X) < C and 

^ 0 = 0 if f{X) > C where C is a constant depending on a, ©o, ^i- So, the 

rejection set (relatively to X) is {̂  G A : / (^) < C}. 

Definition 10.5.1 For (91 G 6 \ hal(eo); let ^Q^ := infj^^^^ : Go G J^}. 

We might think that ^Q^ is "the most powerful at 6i nonstandard level-a 
test of Ho^; but in fact, in some cases, $o is more powerful than ^ ^ : 

Proposition 10.5.2 IfQo is convex, then for any 6i G 6 \ha l (6o) ; $o ^ ^e^ -

Proof. Let ^i G O \ hal(Bo). We prove that the rejection sets 

^ :={^6A: fiO<C} 

are n-regular and then the proposition 10.5.1 yields the result. 
The set OQ is convex and oJ(0i,0o) 9̂  0 and so exists a standard cone 

A C R^ and a standard positive number s > 0 such that ii u G A and ||u|| = 1 
then (̂ 0 — Oi \ u) < —e for any OQ G OQ- Therefore, for any 0o G ^ , for any 
l9 G 00 and for any ^ G A \ {0}, (6>o - 6>i | n) < 0. 

Choose 00 G J^. If ^ G A \ {0} , 

f{x + u) := /_ exp(n(6>o - Oi \ u))-

)(n((eo - ^1 I x) - 7/̂ (̂ 0) + ^(ei)))r((ieo) < f{x). 

/eo 

•expl 
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Let now a G dA, then / ( a ) = C. For any u e A\ {0}, / ( a -\- u) < C, so 
a + (A \ {0}) C A. It is now possible to choose a point 6 G a + A such that 
d{a,b) = ^ (for example) and such that B{b, ^72) C a + A. If a ^ hal(9A), 
this proves that A is n-regular in a. If a G hal(9A), we have to use Cauchy's 
principle like at the end of the proof of proposition 10.3.1 D 

References 

[1] R. R. BAHADUR, An optimal property of likelihood ratio statistic, in 
Proc. Fifth Berkeley Symp. Math. Statist. Prob., Vol. 1, 1965. 

[2] R. R. BAHADUR Some limit theorems in statistics^ SIAM, Philadelphia, 
1971. 

[3] R.R. BAHADUR and S.L. ZABELL, "Large deviations of the sample mean 
in general vector spaces", Annals of Probability, 31 (1979) 587-621. 

[4] I. VAN DEN B E R G , An external probability order theorem with applica
tions, in F. and M. Diener editors, Non Standard Analysis in Practice^ 
Springer-Verlag, Universitext, 1995. 

[5] J. BOSGIRAUD, "Exemple de test statistique non standard, risque ex-
terne". Pub. Inst. Stat. Paris, 41 (1997) 85-95. 

[6] J. BOSGIRAUD, "Tests statistiques non standard sur des proportions". 
Pub. Inst. Stat. Paris, 44 (2000) 3-12. 

[7] J. BOSGIRAUD, "Tests statistiques non standard pour les modeles a rap
port de vraisemblance monotone (premiere partie)". Pub. Inst. Stat. Paris, 
44 (2000) 87-101 

[8] J. BOSGIRAUD, "Tests statistiques non standard pour les modeles a rap
port de vraisemblance monotone (seconde partie)". Pub. Inst. Stat. Paris, 
45 (2001) 61-78. 

[9] J. BOSGIRAUD, "Nonstandard chi-squared test". Journal of Information 
& Optimization Sciences, 26 (2005) 443-470. 

[10] L.D. BROWN, Fundamentals of Statistical Exponential Families^ Institute 
of Mathematical Statistics, Hayward, California, 1986. 

[11] F. D I E N E R and G. R E E B , Analyse non standard^ Hermann, Paris, 1989. 

[12] P . GROENEBOOM and J. O O S T E R H O F F , "Bahadur efficiency and proba
bilities of large deviations", Statistica Neerlandica, 31 (1977) 1-24. 



References 169 

[13] W.C.M. KALLENBERG, Asymptotic Optimality of likehood ratio tests in 
exponential families^ Mathematisch Centrum, Amsterdam, 1978. 

[14] F. KOUDJETI and I. VAN DEN B E R G , Neutrices, external numbers and 
external calculus, in F. et M. Diener editors: Non Standard Analysis in 
Practice^ Springer-Verlag, Universitext, 1995. 

[15] E. NELSON, Radically Elementary Probability Theory^ Princeton Univer
sity Press, 1987. 

[16] S.R.S. VARADHAN, Large Deviations and Applications^ SIAM, Philadel
phia, 1984. 



11 
A finitary approach for the representation of 

the infinitesimal generator of a markovian 
semigroup 

Scherazade Benhabib 

A b s t r a c t 
This work is based on Nelson's paper [1], where the central question was: 
under suitable regularity conditions, what is the form of the infinitesimal 
generator of a Markov semigroup? 

In the elementary approach using 1ST [2], the idea is to replace the 
continuous state space, such as R with a finite state space X possibly 
containing an unlimited number of points. The topology on X arises 
naturally from the probability theory. For x G X, let Xx be the set of all 
h E M vanishing at x where M is the multiplier algebra of the domain V 
of the infinitesimal generator. To describe the structure of the semigroup 
generator A, we want to split Ah{x) = 5^^ex\|a^| ^(^'?/) ^iv) so that 
the contribution of the external set Fx of the points far from x appears 
separately. A definition of the quantity aah{x) — J^yeF^i^^v) h{y) is 
given using the least upper bound of the sums on all internal sets W 
included in the external set F. This leads to the characterization of the 
global part of the infinitesimal generator. 

11.1 Introduction 

Let X be a finite s ta te space possibly containing an unlimited number Â^ 

of points . For all x in X , let a{x,y) be a real number for each y on X such 

t h a t a{x^y) is positive \i y ^ x and ^yCi{x^y) = 0. Then A = (a{x^y)) is 

a finite N x N mat r ix , with positive off-diagonal elements and row sums 0. 

Thus P^ = J2n ^ exists and is a markovian semigroup with infinitesimal 

generator A. 

EIGSI, 17041 La Rochelle, France. 
scherazad.e.benhabib@eigsi.fr 
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Then we can define externally the domain of definition of A and its multi
plier algebra as follows. 

Definition 11.1.1 The domain V of definition of the infinitesimal generator 
A is the external set 

V= {f e R^/ f limited and Af limited} (11.1.1) 

And its multiplier algebra is the external set 

M^{feV/\/geVfgeV} (11.1.2) 

The topology on X arises naturally from the probability theory and a 
proximity relation is defined on X, more particulary from the way the functions 
in the multiplier algebra Ai of the domain V of the infinitesimal generator 
act on X. 

Definition 11.1.2 Let u and v be in X, we say that u is close to v fn ^ v) if 
and only if 

yheM h{u) 2̂  h{v) 

Thus, the elements of A^ have a macroscopic property of continuity for
mally analogous to the S'-continuity. 

With this relation, we define the external sets 

C, = {yeX: yc^x} (11.1.3) 

of points close to x and 

F, = {yeX: y^x} (11.1.4) 

of those far from x. 
For each x in X, (a(x,y)) are positive real numbers \i x ^ y and can take 

unlimited values. Let X^ be the set of all h in M vanishing at x, and for h in 
Xx let us define 

Ah{x)= Y. ^ (^ '^ )%) (11-1-5) 
yeX\{x} 

To describe the structure of the semigroup generator, we want to split 
Ah{x) so that the contribution of the points far from x in X, appears 
separately. 

One is tempted to define directly the quantity 

Oiah{x) = Y a{x,y)h{y) (11.1.6) 
yeFa: 
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which alas has no meaning because of the external character of the set of 
indices F^ 

Nevertheless, we will show in Section 11.2 how we can attach a definite 
meaning to it. That leads in Section 11.3 to a definition for an a^-integrable 
function. Theorem 11.3.1 establishes the representation oi Ah{x) for functions 
in M. which have a zero at x of the third order. This is the global or integral 
part of A. Theorem 11.3.2 and its corollary extend the notion of aa^-integrable 
to functions which have a zero of the first or the second order. 

11.2 Construction of the least upper bound of sums 
in 1ST 

Lemma 11.2.1 Let E he an external subset of X and f a positive function 
defined on X. If there exists a standard natural number TIQ such that for all 
internal sets W contained in E we have 

yew 

then there exists a unique up to an infinitesimal least number cy{f) such that 

Y,f{y)<a{f) (11.2.2) 
yew 

for all internal sets W contained in E. 

Proof. Let no be a standard natural number such that for all internal sets W 
contained in E we have (11.2.1). 

By external induction, there is a least no such that (11.2.1) holds. Now for 
each standard natural k there is a largest natural number j with 0 < j < 2^ 
such that for all such W 

yew 

Let a{k) = no — ̂ . Then for each standard k we have a standard a(/c), so 
there is a standard sequence k -^ a{k). This sequence is decreasing, therefore 
it has a standard limit a{f). Moreover, for all standard k and all such VF, 

(«(/)-E,eiv/(y))<F- ° 
This proof uses very elementary tools. It can easily be formulated in the 

minimal non-standard analysis introduced by Nelson in [3] in which "standard" 



11.2. Construction of the least upper bound of sums in 1ST 173 

Step 0: 

Step 1: 

Step 2: 

no - 1 

no - 1 

no - 1 no -

Figure 11.1 

applies only to natural numbers. On the contrary, if all the force of 1ST is used, 
one could check that 

a{f) = s u p ' j x G IR+; 3'^'W C E J^ fiv) ^A' 
^ yew ^ 

Figure 11.1 exhibits the way the sequence is built. 

Definition 11.2.1 

1. If f is a positive function defined on X, and if the conditions required 
for Lemma 11.2.1 are verified the quantity 

af = Y^f{y) (11.2.4) 
yeE 

is defined to be the standard limit a{f). 

2. If the conditions for Lemma 11.2.1 are not verified, let af be the formal 
symbol oo and say that (11.2.2) is not defined. 

3. In the general case, let f = f^ — f~ be the decomposition of f into the 
difference of two positive functions. Say that af is defined in case both 
af+ and af- are defined, and let af be their difference: 

af = af+ — af-

Notat ion 11.2.1 For each x in X, if f depends on x, write af{x) instead 
of af. 
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11.3 The global part of the infinitesimal generator 

Definition 11.3.1 For x G X and h G A^^ let f = a(x, ')h, then h is said to 
be ax-integrable if and only if af{x) is defined. 

Notat ion 11.3.1 In that case write aah{x) instead of af{x). 

Definition 11.3.2 

1. h is a function in X^ if and only ifh^M. and h{x) = 0. 

2. h is a function in Xj if and only ifhGAi and h = X^^^^ ek Qk ^^^^ P 
limited and e^^gk ^^ ^x-

3. h is a function in Z^ if and only if h G M. and is of the form h = 
YK^kfkQk with ekjk, 9k ^ ^x Ojnd p limited. 

4- We say that h has a zero at x of the first order when h GXX, of the second 
order when /i G 2" ;̂ of the third order when /i G Z^. 

Tiieorem 11.3.1 Ifh has a zero atx of the third order, then h is ax-integrable 
and Ah{x) is infinitely close to aah{x). 

Proof. The proof goes through the fohowing three steps: 

1. Let h be in Z^ , therefore it is of the form h = Y^\ f^ gk with q hmited 

and fk.gk inXx-

2. If / , ^ G Xx then f'^g is a^-integrable and so is h. 

3. A{f'^g){x) ^ a^i^f2g){x) thus Ah{x) ^ aah{x). 

These steps are proved as fohows: 

1. Let /i G Z^, as 

efg =^{e + f)^g- -e^g - -f^g, 

therefore h is of the mentioned form. 

2. Let f'^g = (f^g^) — {f^9~) and W be an internal subset of Fx 

^a{x,y)f'^(y)g^(y) 

w 

< \\9\\A{f){x) 
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As 11̂11 and A{f'^) are limited, they are both infinitely close to a standard 
number. Taking the integer part of °(| |^| |A(/^)(x)) plus 1, we get the 
existence of the natural number no required by Lemma 11.2.1. 

The same argument applies to pg~. Thus a^(j2^+)(x) and a^(^pg-^^{x) 
exist and as a^(j2^)(x) = a^(^pg+^^{x) — a^(^pg-^{x)^ then f'^g is ax-
integrable, and so is /i. 

3. Let [3 ^ ^. Since g G Xx there is an internal set W of Fx such that 
g^{y) < f3 ioT y e W^. We have 

| ^ ( / V ) ( ^ ) -C^a(pg+)\ = Y^ a{x, y)f{y)g^{y) - o^a{pg+ 
yex\{x} 

yex\{x} yew 

= Yl ^i^^y)fiy)9^iy) 
yewc\{x} 

<f3 Y ^(^^y)f^(y) 
yewc\{x} 

<(3 Y ^(^^y)f(y) 
yex\{x} 

Since A(/^) is limited and /3 ^ 0 is arbitrary, A{f'^g~^) 2̂  a^(^f2g+\{x). 
The same applies to pg~. 

Then A{fg-){x) c^ a^(^pg-^{x) and (^a{pg) = ^a(/2^+)(^)+<^a(/2p-)(^)-
Thus A{fg){x) ^ a^(j2^)(x). Therefore A{h){x) ^ a(a/i)(^)- • 

Theorem 11.3.2 If h is positive and has a zero at x of the first order, then 
h is ax-integrable and a^ is less or infinitely close to Ah{x). 

Proof. Let W be any internal subset of Fx and h a positive function in X+, so 

o<Y(^i^^yMy)<Mh){x) 
w 

As A{h){x) is limited, we argue as in Theorem 11.3.1 and apply Lemma 11.2.1. 
One concludes that h is Ofa^-integrable. 

As the inequality above holds for all internal subset W of F^, we get that 
aah{x) is less or infinitely close to A{h){x). D 
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Corollary 11.3.1 If h has a zero at x of the second order, then h is a^-
integrable. 

Proof. Let /i be a function in 2"J, as 

f9=\{e + gf-\{e-gf 

k is also of the form h = Ylt=i f^kfk with (3^ = ± 1 , q limited and / | in Z j . 
Consequently we can apply Theorem 11.3.2 and h is aa^-integrable. D 

11.4 Remarks 

The next goal will be to find an 1ST construction of the pure diffusion part 
of the generator of the semi-group and to complete a work already in progress 
concerning the rescaling of the time parameter for the markovian semigroup P^. 
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like to thank Professor G. Wallet of the University of la Rochelle for his support. 
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12 
On two recent applications of nonstandard 
analysis to the theory of financial markets 

Frederik S. Herzberg 

A b s t r a c t 
Suitable notions of "unfairness" that measure how far an empirical dis
counted asset price process is from being a martingale are introduced 
for complete and incomplete-market settings. Several limit processes are 
involved each time, prompting a nonstandard approach to the analysis of 
this concept. This leads to an existence result for a "fairest price measure" 
(rather than a martingale measure) for an asset that is simultaneously 
traded on several stock exchanges. This approach also proves useful when 
describing the impact of a currency transaction tax. 

12.1 Introduction 

Nons tandard analysis is most successful when it concerns itself with ma th 

ematical concepts t h a t involve several limit processes in a non-trivial way. One 

such example is the quantification of a stochastic process's distance from being 

a mart ingale . 

Given the well-known correspondence between the existence of a mart ingale 

measure for a discounted asset price process and the non-existence of arbi t rage 

opportuni t ies , there is a na tu ra l economic in terpreta t ion to the comparison of 

two positive stochastic processes in regard to "how far" they actually are from 

being a mart ingale . We will render two economic questions related to such-

conceived "unfairness" mathemat ica l : (1) Is there a "fairest price measure" 

(rather t h a n a mart ingale measure) for an asset t h a t is simultaneously t raded 

at multiple stock exchanges? (2) Does a currency t ransact ion t a x imposed on 

a currency t h a t is subject to herd behaviour among t raders have a fairness-

Mathematical Institute, University of Oxford, Oxford 0X1 3LB, United Kingdom. 
herzbergOmaths. ox. ac . uk / herzbergOwiener. iam. uni-bonn. de 
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enhancing impact on the currency exchange rates preceding a financial crash? 
Both questions will be shown to allow for an affirmative answer. 

Techniques from nonstandard analysis have already been successfully ap
plied to mathematical finance in the work of Cutland, Kopp and Willinger [5]. 
This contribution is based on two more recent papers by the author [8, 9]. 

12.2 A fair price for a multiply traded asset 

In this Section, we will en passant motivate notions of "unfairness" for both 
complete-market as well as incomplete-market settings. 

Theorem 12.2.1 Let n G N^ p > 0 and c^N > 0. Consider an adapted 
probability space (F, Q, P) and i3[0,1] <^ Qi-measurable geometric Brownian mo
tions with constant multiplicative drift gi : T x [0,1] -^ M."'''^^ i G { 1 , . . . , n } . 
Then there exist processes gi, z G { 1 , . . . ,n} on an adapted probability space 
(f7,jr, Q)^ equivalent to the processes gi on V (in the sense of adapted equiv
alence [7]), such that there is a probability measure M ^ on 17 in the class of 
measures 

C{n,g):^{ 

minimising 

Q-Tx^ [0,1] : ^ ^ ^ ^ 1 ^ 

JO 

Q probability measure, 

< Q{A) < N 

C0VQ((^i)^,fe)J 
^Q\(9Z9J)S\ 

ds > c 

Q^mn{Q,g):=J2 [ I I V9i)s-^Q[{9i)t\^s] 
^^^ JO Js JQ ' 

dQ dtds 

in the class of Loeb extensions of finitely additive measures from (*C) (^,G) 
(G being an arbitrary lifting of g). 

Analogously, there is a probability measure M^ minimising 

Q ^ n^{Q .9)= f 
Jo 

Ef 
1 d 

gtdu u=0 
n9. t+u I yt\ dt 

(where n^{Q, g) is defined to be +oo if the derivative in 0 in this definition does 
not a.s. exist as a continuous function in t) in the class of Loeb extensions of 
finitely additive measures from (*C) (r^,G). Moreover, 

as well as 

inf m ^ ( . , ^ ) < inf mr( - ,^ ) 

inf ncti'.q) < inf nr (•, a ) . 
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R e m a r k 12.2.1 The original paper [8] does not state the Theorem and the 
subsequent Lemmas as precisely as it is done here, although the exact result 
becomes clear from the proofs in that paper. 

The proof for this Theorem can be split into the following Lemmas which 
might also be interesting in their own right. 

L e m m a 12.2.1 Using the notation of the previous Theorem 12.2.1, for any 
hyperfinite adapted space ^ [12], 

inf mn{',g) < inf m r ( - , ^ ) . 
c{n,g) c{rrg) 

L e m m a 12.2.2 Under the assumptions of Theorem 12.2.1 and choosing ft to 
be any hyperfinite adapted space, the infimum ofrnQ^-^g) in the class of Loeb 
extensions of finitely additive measures from (*C) (O, G) is attained by some 
measure Mm ^ C{ft,g). 

Proofs for both of these Lemmas can be found in a recent paper by the 
author [8]. 

Although they look very similar, it is technically slightly more demanding 
to prove the following two Lemmas (which in turn obviously entail the second 
half of the Theorem, i.e. the assertions concerned with the map n). 

L e m m a 12.2.3 Using the notation of the previous Theorem 12.2.1, for any 
hyperfinite adapted space ft [12], 

mi nn{',g) < inf n r ( - , ^ ) . 
cin,g) cir,g) 

L e m m a 12.2A Under the assumptions of Theorem 12.2.1 and choosing ft to 
be any hyperfinite adapted space, the infimum of n^{'^g) on C{ft^g) is attained 
by some measure M^ G C{ft^g). 

Easy results are 

L e m m a 12.2.5 A semimartingale x is a P-martingale on ft if and only if 
rriQ^iyP^ x) = 0. The function m^{P, ')p on the space of measurable processes of 
ft satisfies the triangle inequality and is 1-homogeneous. For p = 2, it defines 
an inner product on the space 

S := I X : ft X [0,1] ^ R^ : x measurable, m{P, x) < +oo \ 

which becomes a Hilbert space by this construction. 
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Lemma 12.2.6 A semimartingale x is a P-martingale on O if and only if 
nQ{P^x) = 0. The function nQ{P^') on the space of measurable processes 
of n remains unchanged when multiplying the argument by constants (scaling 
invariance). 

We can generalise this to the following 

Definition 12.2.1 Let Q be an adapted probability space. Define 

jC{ft, R"^) := Ix'.Ctx [0,1] ^ M^ : x measurable | . 

A function T : C (O, R*̂ ) -^ [0, +oo] is an incomplete-market notion of un
fairness if and only if it satisfies the triangle inequality, is 1-homogeneous, and 
assigns 0 to a semimartingale y if and only if y is a martingale. T is said to 
be a complete-market notion of unfairness if and only if it remains unchanged 
under multiplication by constants and T vanishes exactly for those semimartin-
gales that are in fact martingales. 

1 
By Lemmas 12.2.5 and 12.2.6 respectively, the function mQ{Q,-)p (for a 

fixed probability measure Q) is an example for an incomplete-market notion 
of unfairness, whereas similarly UQ^Q,-)^ again for a fixed probability measure 
Q, is an example for a complete-market notion of unfairness. 

Remark 12.2.2 The distinction between notions of unfairness for complete 
and incomplete markets can be justified by the following reasoning: If it is, 
under assumption of completeness, possible to buy as much of an asset as one 
intends to, multiplication of the discounted price process by a constant does 
not enhance the arising arbitrage opportunities at all; therefore, for complete 
markets, a suitable notion of unfairness should be scaling invariant in that it 
does not change under multiplication of the argument — which is conceived as 
being a discounted price process — by constants. 

12.3 Fairness-enhancing effects of a currency 
transaction tax 

In this Section, we shall analyse the empirical price of an asset that is 
subject to herd-behaviour preceding a financial crash and how the resulting 
distortion can be mitigated through imposing a transaction tax. This is of 
particular relevance if the crashing asset in question is a currency, given the 
massive (usually destabilising and therefore adverse) macroeconomic conse
quences of such financial crises. 



12.4. How to miniinize "unfairness" 181 

We shall restrict our attention to a model of currency prices where extrap
olation from the observed behaviour of other traders, up to white noise and 
constant inflation, completely accounts for the evolution of the currency price. 
This is to say that, in analogy to a Nash equilibrium, we assume that every 
agent is acting in such a manner that he gains most if all other agents follow 
his pattern. In our model this pattern will consist in using some average value 
of past currency prices as a "sunspot", that is a proxy for a general perception 
that depreciation or appreciation of the particular currency in question is due. 

In order to introduce the model for the pre-crash discounted currency price, 
consider a : M ̂  M, a piecewise constant function, such that 

a = a{l) > 0 on (0, +(X)) , a = a ( - l ) < 0 on (-oo, 0). 

We assume that the logarithmic discounted price process x^'^^ is governed, 
given some initial condition that without loss of generality can be taken to be 
3;(̂ ) = 0, by the stochastic differential equation 

2 

+ (J • dbt dt^ 

where r > 0 is the logarithmic discount rate (assumed to be constant), h is 
the one-dimensional Wiener process, {pu)uei is a convex combination — i.e. 
/ C (0,+oo) is finite, \/u G I Pu > 0 and ^y^^jPu = 1- The parameter v 
depends very much on the tax rate we assume. If p is the logarithmic tax 
rate and T the expected time during which one will hold the asset (that is the 
expected duration of the upward or downward tendency of the stock price), 
one can compute v as follows: 

V = T ' p. 

The equation (12.3.1), is of course first of all only a formal equation that — 
thanks to the boundedness of a — can be made rigorous using the theory 
of stochastic differential equations developed by Hoover and Perkins [11] or 
Albeverio et al. [2] for instance. 

We will introduce the following abbreviation: 

^^""^ '= X{\-\>v} • ^' 

12.4 How to minimize ''unfairness" 

Intuitively, the map n^{P^ •) (for a fixed probability measure P on a proba
bility space Vt) when applied to a discounted asset price process measures how 
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often (in terms of time and probability) and how much it will be the case that 
one may expect to obtain a multiple (or a fraction) of one's portfolio simply 
by selling or buying the stock under consideration. 

For the following, we will drop the first component of n (indicating the 
probability measure) if no ambiguity can arise; for internal hyperfinite adapted 
spaces and Loeb hyperfinite adapted spaces, we will assume that the canon
ical measure (the internal uniform counting measure and its Loeb measure, 
respectively) on the space is referred to. 

First of all we derive a formula that will make explicitly computing n easier 
in our specific setting: 

Lemma 12.4.1 If x^^^ satisfies (12.3.1) for some v > 0 on an adapted prob

ability space ( r , ^ ,Q)^ then the discounted price process (exp ix^^ j : t > 0 

is of finite unfairness. More specifically, 

nr ( e x p (Q .(^) 
Jo 

f 
Jo 

E 

E 

^(-) A^) J]pz 

du 
E 

u=0 

iei 

{v) 

^(t-i)VO 

+ 

dt 

dt 

Proof. The proof is more or less a formal calculation, provided one is aware of 
the path-continuity of our process and the fact that the filtrations generated 
by h and x^'^^ are identical. For this implies that, given t > 0, the value 

^(-) {v) 
PiX' 

iei 
{t-\-u-i)V0 

(c) 

does not change within sufficiently small times u — almost surely for all those 
paths u where x^\u) — "^i^jPix\^_^\^Q{^) ^ {i'^}? this condition itself being 
satisfied with probability 1. Now, using this result and the martingale property 
of the quotient of the exponential Brownian motion and its exponential bracket, 
we can deduce that for a lH > 0 almost surely: 

' " -' (x£l) 
exp (.!"') du 

E 
u=0 

exp 

_d_ 

du 

d_ 

du 

E 
u=0 

exp I X 
(v) 
t-\-u 

.H lft] 

exp ip (v) J^) 
u=0 

Z^Pi^{t-i)VO 

•E exp ahtJ^^ -it^u) abt 
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du 
exp V̂  -" X iv) [^M_\-„,>).^ J „ 

M=0 

•E 

iei 
^'^(t-z)VO 

exp ( abt+u - Y ( t + i/) 

_d_ 

du V V is/ 

exp ( -abt + —t 

« ^ ( « - i ) v o ) " ) ' • ' • 

Analogously, one may prove the second equation in the Lemma: for, one readily 
has almost surely 

d 
du 

E 
M = 0 

d_ 
du 

E /,(")(.(")_ Y- > ) Ki ^^^> x\ Y.V 
iei 

(̂") X(^)-J:P, 
iei 

(v) 

2 

—u + xy 

In order to proceed from these pointwise almost sure equations to the assertion 
of the Theorem, one wih apply Lebesgue's Dominated Convergence Theorem, 
yielding 

nr exp I x .H ))=r E 
" d 

E 
u=0 

Qt dt. D 

For finite hyperfinite adapted probability spaces, an elementary proof for 
the main Theorem of this Section can be contrived: 

Lemma 12.4.2 For any hyperfinite number H we will let X^^^ for all v > 0 
denote the solution to the hyperfinite initial value problem 

4") = 0, 
w.{o, . . . , i - l^} 

\ uei I 
1 g^ 1 

V(^) \^ r^ V(^) 

1 (12.4.1) 
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(where TT^/J/I : O = {±1}^ ' -^ {=^1} '^^ for all hyperfinite £ < HI the projection 
to the £-th coordinate) which is just the hyperfinite analogue to (12.3.1). Using 
this notation, and considering a hyperfinite adapted probability space of mesh 
size H\, one has for all k < H\, 

k<H\ 
X k/H\ - E ^k/H\ 

k<H 

-

E 
! 

^2 1 

2 H\ 

- E 'Y(V) 
^k/H\ 

a2 1 
2 H\ 

for all T > V. As a consequence, m ( x ( ' \ O) is monotonely decreasing for all 
hyperfinite adapted probability spaces ^ = { ± 1 } ^ ' . 

Proof of Lemma 12.4.2. It suflfices to prove the result for finite (rather than 
merely hyperfinite) adapted spaces. By transfer to the nonstandard universe, 
we will obtain the same result for infinite hyperfinite H as well. The proof of 
this Lemma for finite H relies on exploiting the assumption that a is piecewise 
constant, since a = Q^(l)x(o,+oc) + <^(-l)X(-oo,o) + < (̂0)X{0} yields 

yk<H\ \/v>o 

2 HI 
E X 

{v) 
fe+1 ^f k/m x^:^ + ^^ k 

H\ 
a X (v) 

k/H\ 
uei y 

^/U(^) V r. V(̂ ) 
uEl 

( «(1)X| 
1 

V 
+ a(-l)x 

P-^n 

-{̂  k/H\ •}) <-v 

>v > 

which immediately follows from the construction of Anderson's random walk [3] 
TT. and the recursive difference equation defining the process X^'^K 

/2H\ 
B. = 
However, this last equation implies 

V/c < i7! Vi; > 0 

E E ^k±i 
H\ 

:FI k/H\ 

= J-E 
tt(l)X| 

X 
(v) 
k/H\ 

+ « ( - l ) X | 
X k/H\ uei [m 

>v > 

<-v 
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1 

'W. 
I ^ • uei v^! i)vo 

> V 

.(v) .{v) 
+ K-i)ip^^^;^!-E^-^;^_,),o < -V 

uei I 
Now all t h a t remains to be shown is t h a t 

and 

k<H\ I uei ^Hi J J 

k<H\ I uei ^"^ ^ J 

are monotonely decreasing in v. The former s ta tement is a consequence of the 

following assertion: 

k<£ I uei ^Hi J J 

k<i I uei Vif! y J 

(12.4.2) 

One can prove this es t imate by considering the minimal i such t h a t the point-

wise inequality 

(12.4.3) 

fails to hold. Then one has an cj G f2 such t h a t 

I ^/^- ne/ (A-^)vo J 

I ^^^- uei [w.-V^^ J 

I / ixG/ (:m-^)^o >' 

I / ixG/ (:m-^)^o >' 

But equat ion (12.4.4) implies, via the difference equat ion for X^'^ (12.4.1) 

inductively in k the relation 

(12.4.4) 

(12.4.5) 

(12.4.6) 
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If one combines this with 

(co) 
''{4t,-E/«-^;i_„).o>"}' 

(which is equation (12.4.5)) and v < v\ one can derive — again via the recur
sive difference equation (12.4.1) — that -^^/^i > ^£/H\ ^PP^i^d in t = -Ĵ  as 
well as the estimates 

L / uei (:^-^)vo J I ^/^- uG/ [w.-V^^ J 

r^^/--.i-i4-.)vo^-j 

l^^/--.i^-14-^)vo^-} 
= 1. 

This contradicts equation (12.4.6). Hence, the estimate (12.4.3) has been es
tablished for ah k < H\, leading to (12.4.2). 

Similarly, one can prove 

V.' <vyi<Hi E P { 4 ; L -E^«• ̂ S-„)vo ̂  -^ 
k<i *- «G/ ^"- ' 

k<£ ^ uel 

which entails that J2k<H\ ^ i ̂ k/w. ~ "^ Pw ^{l \ ^ ~^ f must be mono-

tonely decreasing in 'U. D 

Using nonstandard analysis and the model theory of stochastic processes as 
developed by Keisler and others [10, 12, 7], we can prove the following result: 

Theorem 12.4.1 Suppose (̂ ^̂ ^ : v > O) is a family of stochastic processes on 
an adapted probability space T such that y^^^ solves the stochastic differential 
equation (12.3.1) formulated above for all v > 0. Then the function a \-^ 
^ r {y^^^) attains its minimum on [0,5'] in S. 

Proof. By the previous Lemmas 12.4.2 and the formula for n from 
Lemma 12.4.1, the assertion of the Theorem holds true internally for hyperfi-
nite adapted spaces F, if we replace y^^^ by a lifting Y^^^ and if we let TIQ when 
applied to internal processes denote the hyperfinite analogue of the standard 
riQ. Now, according to results by Hoover and Perkins [11] as well as Albeverio 
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et al. [2], the solution X^^^ of the hyperfinite initial value problem (12.4.1) is 
a lifting for the solution x̂ ^̂  of (12.3.1) on a hyperfinite adapted space for any 
i; > 0. Now, y ^-^ riQ (y) is the expectation of a conditional process in the sense 
of Fajardo and Keisler [7]. Therefore, due to the Adapted Lifting Theorem [7], 
we must have 

(where we identify n with its internal analogue when applied to internal pro
cesses). Since the internal equivalent of the Theorem's assertion holds for 
internal hyperfinite adapted space, the previous equation implies that it is also 
true for Loeb hyperfinite adapted spaces. 

Now let (?/(^) : i; > O) be a family of processes on some (not necessarily hy
perfinite) adapted probability space T with the properties as in the Theorem. 
Because of the universality of hyperfinite adapted spaces [7, 12], we will find a 
process x̂ ^̂  on any hyperfinite adapted space ft such that x and y are automor-
phic to each other. This implies [2] that x^'^^ satisfies (12.3.1) as well. Further
more, as one can easily see using Lebesgue's Dominated Convergence Theorem, 

Vi; > 0 nn (x^^'A = np (y^^'A 

Due to our previous remarks on the solutions of (12.3.1) on hyperfinite adapted 
spaces, this suffices to prove the Theorem. D 
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13 
Quantum Bernoulli experiments and 
quantum stochastic processes 

Manfred Wolff 

A b s t r a c t 
Based on a H^*-algebraic approach to quantum probabihty theory we 
construct basic discrete internal quantum stochastic processes with in
dependent increments. We obtain a one-parameter family of (classical) 
Bernoulli experiments as linear combinations of these basic processes. 

Then we use the nonstandard hull of the internal GNS-Hilbert space Tir 
corresponding to the chosen state r (the underlying quantum probabil
ity measure) in order to derive nonstandard hulls of our internal pro
cesses. Finally continuity requirements lead to the specification of a 
certain subspace C of Tir to which the nonstandard hulls of our inter
nal processes can be restricted and which turns out to be isomorphic 
to the Loeb-Guichardet space introduced by Leitz-Martini [10]. A sub-
space of C then is shown to be isomorphic to the symmetric Fock space 
JF^ ( L ^ ( [ 0 , 1], A)) and our basic processes agree with the processes of 
Hudson and Parthasarathy on this subspace. 

13.1 Introduction 

In the early 1980's Hudson and Pa r tha sa r a thy [5], Hudson and Lindsay [4], 

and Hudson and Streater [6] s ta r ted the theory of q u a n t u m stochastic pro

cesses, in par t icular of q u a n t u m Brownian motion. In [12] Pa r tha sa r a thy 

showed one way how to make the passage from q u a n t u m random walk to diffu

sion. All these topics are extensively t rea ted in P.A. Meyer 's compendium [11]. 

For another general in t roduct ion to this field see [13] where an extensive mo

tivation from q u a n t u m physics may be found. The Hudson-Par thasa ra thy ap

proach is based on the classical symmetr ic Fock space over L^ (R+ , A) where 

Mathematisches Institut, Eberhard-Karls-Univ. Tiibingen. 
manfred.wolff@uni- tuebingen.de 
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A denotes the Lebesgue measure (see section 13.6). Guichardet [3] gave an 
interesting representation of this Fock space as an L^-direct sum of spaces 
L^ = L^(Xn) where Xn is the space of all subsets of the unit interval [0,1] 
having exactly n elements. The measure on X^ is defined via the corresponding 
Lebesgue measure on W^. This representation was extensively used by Maassen 
developing his kernel approach to general quantum stochastic processes. 

Journe [7] invented the so called toy Fock spaces (bebe Fock in French) 
as discrete approximations of the symmetric Fock space. Let OQ = {0,1} be 
equipped with the uniform distribution fiQ. Then the toy Fock space of order n 
is the space L'^^QQ^ l^f^)- A rigorous discrete approximation of the Guichardet 
space and the basic quantum stochastic processes defined on it which uses the 
space L^(0^, /j^f ) as a toy Fock space is given by Attal [2]. 

There is another approach based also on the Guichardet space to prove 
such approximation theorems using nonstandard analysis which was developed 
by Leitz-Martini [10]. He discretized the Guichardet space in the following 
manner: l e t T = {-̂  : f c G * Z , 0 < / c < N} be the hyperfinite time line where 
N G *N is infinitely large. Let F^ be the set of all internal subsets of T of 
internal cardinality n and set F = UA;=O^^- ^ ^ W let M be an internal subset 
of F and set 

n<N 

where l^l denotes the internal cardinality of A. Then m is an internal measure 
on F with 77i(F) ^ e. The space Iy^(F,L^), where Lm denotes the Loeb 
measure associated to m, contains the Guichardet space as a Banach sublattice. 
In fact Lp'iV^Lm) is the nonstandard version of the Guichardet space, so to 
speak the Loeb-Guichardet space over the time interval [0,1]. Among other 
things Leitz-Martini constructed all the relevant discrete quantum stochastic 
processes and showed that their nonstandard hulls exist in a precise manner 
and form the basic quantum stochastic processes: the time process, the creation 
and annihilation processes, and the number process. 

All approaches mentioned so far start with some kind of discrete approxi
mation of the symmetric Fock space or the isomorphic Guichardet space over 
IR+, [0,1] respectively. 

In contrast to these approaches we present here a new one based on the 
more natural W^-algebraic foundation of quantum stochastic as described e.g. 
in [8]. In [13] the author sketched a different though similar approach in the 
finite-dimensional setting but he was not able to make the transition from the 
finite-dimensional to the continuous infinite-dimensional case. Our access is 
exactly the noncommutative version of Anderson's way [1] to Brownian mo
tion. In particular we are able to justify the use of the symmetric Fock space 
(or equivalently the Guichardet space) in the context of quantum stochastic 
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processes. We believe that by our approach the applications of nonstandard 
analysis as given by Leitz-Martini [10] are also better understandable. 

We begin with the discrete quantum Bernoulli experiment modelled in 
the von Neumann algebra of all 2^ x 2^-matrices over C. Then we prove 
a Moivre-Laplace type theorem for quantum Bernoulli experiments, i.e. we 
show that these discrete stochastic processes converge to quantum Brownian 
motion in the same sense in which the classical approximation of the usual 
Brownian motion is treated by Anderson [1]. Furthermore we construct the 
basic quantum stochastic processes out of the corresponding discrete versions 
in the case of a vacuum state. Finally we show how the symmetric Fock space 
approach fits into our setting. 

Applications to the theory of stochastic processes are under preparation. 

13.2 Abstract quantum probability spaces 

Recall that almost all information about a given probability space (r^, E, //) 
is to be found in the pair (^,//) with A = i7^(r^, E,//). Let us denote by 
[/] the equivalence class modulo negligible functions in which the essentially 
bounded measurable function / is contained. Then [/] -^ J^ f{uj)d/i{uj) =: 
/ /( /) defines a positive, linear, order continuous normalized functional on A. 

Analogously a quantum probability space is a pair (A^r) where A 
denotes a VF'^'-algebra and r is a positive, linear order continuous normalized 
functional on A, or a normal state for short. The reader not familiar with 
the abstract theory of VF"*"-algebras may look at them as subalgebras of the 
algebra of all bounded operators on an appropriate Hilbert space which are 
closed under involution '^ : a ^ a'^ and which are also closed with respect to the 
strong operator topology. In this context order continuity means the following: 
whenever a downward directed net (a^) of nonnegative self adjoint operators 
from A converges to the operator 0 with respect to the strong operator topology 
then liiRa r{aa) = 0 holds. In particular one may interpret L^(f2,E//) as 
the VF'^-algebra of all multiplication operators Mf : g -^ Mfid) = fd {f ^ 
L ^ ( ^ , S, fi)) on the Hilbert space L 2 ( 0 , S , /i). 

Let {A^ T) be a quantum probability space. Let Ai^A2 be H^'^'-subalgebras 
generating the l^'^'-subalgebra As] moreover let Tk be the restriction of r to 
Ak {k = 1,2,3). Then Ai and A2 are called stochastically independent 
if {AsfTs) is isomorphic to {AI^A2-,TI<^T2) where (8) denotes the I^^-tensor 
product. 

Remark: Let us point out that this notion of independence agrees with 
the usual one in the classical (commutative) case A = L^{^^Ti^ fi) but that 
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there are other notions of independence in the quantum stochastic setting also 
generalizing the classical one (e.g. free independence). 

Two probability spaces (w4, r ) and (A^r^) are called equivalent if there 
exists an order continuous algebraic isomorphism (f : A ^ A^ with r^ = r o Lp. 

Now let us construct the L^-space corresponding to the probability space 
(v4, r ) . It is nothing else than the so called GNS-space (after Gelfand, Naimark, 
and Segal). To this end we introduce the C-valued mapping (a|6) = r{a^b) 
on ^ X ̂ . It is sesquilinear, that means, it is linear in the second argument, 
antilinear in the first argument, and it satisfies (a|a) > 0 for all a ^ A. The 
space LT- = {a : (a|a) = 0} is a left ideal, and on A/L^ there is well-defined a 
scalar product by {a\b) = {a\b) where a = a-\-L^ denotes the equivalence class 
in which a is contained. Hr is the completion of A/L^ with respect to the 
associated scalar product norm ||a|| = ^J{a\a) = ^JT{aFa). The representation 
Tir '• A^ CiTir) is given by TTr{o){b-\-L^) = ab-\-Lr which is well-defined since 
Lr is a left ideal. The representation is injective whenever A is simple (i.e. has 
no nontrivial closed ideals), e.g. A = M^(C), the algebra of all n x n-matrices. 

In case A = L ^ ( 0 , / i ) the space Hr turns out indeed to be the space 
I/^(f2,/x) and in this way L^ (0 , / / ) is represented as the algebra of operators 
of multiplication by L^-functions (see above). 

13.3 Quantum Bernoulli experiments 

Let us begin with the easiest example of a quantum probability space: Let 
A = M2(C) be the VF'^-algebra of all complex 2 x 2 matrices a = (aik) and 
choose A G ] 1 / 2 , 1]. Then Tx{a) = Xau + (1 — X)a22 defines a normal state on 
A. As in the case of classical probability we will often write ^x{a) in place of 
TA(a), and we call it the expectation of a. 

Now consider the following model of tossing a fair coin: choose ^o as 
the commutative VF'*'-algebra Ĉ '̂-̂ J" and let fio : Ao ^ ^ he given by fio{f) = 
^(/(O) + / ( ! ) ) . The underlying classical probability space is to be rediscovered 
in AQ as the set of two idempotents I/Q} and l / i j where 1A denotes the indicator 
function of a subset A of a given set. Ao is spanned also by the elements 

X = -l{o} + 1(1} and 1 = l|o} + l{i} = l{o,i}-

We now construct all inject ive •-algebra homomorphisms n : AQ ^ A satisfy
ing Tx o TT = fiQ- In the sense of section 13.2 this means that we will find all 
abstract probability spaces (S, TA.^) which are equivalent to {Ao^/J'o)- An easy 
calculation shows that they are given by TT := TT̂  with 

'"«)=K i 1)=^' • '"<»''=K i 7 ) -« ' 
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and linear extension, where ^ G C is a parameter with \z\ = 1. 7r^(X) = 

Pz- Qz = {zl) ^'' ^z-

In summary we have seen that the simplest quantum probability space 
(-4, T\) contains a one-parameter family {Az-, ^\\AZ) ^^ niodels of classical coin 
tossing. 

For w — e^^^ z — e^^ (—TT < 5, t < TT) the commutator [X^, Xz]. — Xy^Xz — 
XzX^ is easily determined: 

[X^,X,]=2ism{s-t)( J _ M 

So X^ and Xz commute ii w = z or w = —z. 
We obtain Ex{[X^,Xz]) = 2i (2A - 1) sin(s - t). The absolute value of it 

attains its maximum at s — t = =b7r/2. The pair (X^^Xz) with z = —iw is 
called a quantum coin tossing. It is unique up to automorphisms. More 
precisely this means the following: choose w = e^^ {t G] — 7r,7r]) , and consider 
the automorphism Lp on A given by ^{o) = u^au where 

0 ê V2 

Then v?(Xi) = Xy,, ^{X-i) = X-i^, and rxoip = rx. 
So in the following we need only to consider the quantum coin tossing 

(Xi^X-i). Notice that Xi = cr̂  , X-i = ay and [Xyj^X-iyj]x = 2iaz^ where 
(Tx^cry, (Jz denote the Pauli matrices. The following important matrices can be 
constructed by {(Jx^cFy)'' 

b- = 

6+ = 

6° = 

Obviously the following formulae hold: 

a^ = 6+ + 6", ay = i'{b^ - 6"), [6", 6+] = a^ = 1 - 26°, X^ = wb"" + wb'. 

These formulae show that the random variables 6"̂  and b~ are in a certain 
sense more basic than X^ though they are not selfadjoint. 

As in the classical case we describe the experiment of n (G N ) independent 
coin tossings by the n-fold tensor product {A^^^ ^f^)- The algebra correspond
ing to the k-th trial is described by the elements 

l(g)---(g)l(^x(g)l(g)---(8)l=:xfc 

0 
0 

0 
1 

0 
0 

; ) 

o) 

n 

1 / • X 

= -^{<7x-i<7y), 

1 

(13.3.1) 

(13.3.2) 

(13.3.3) 

(/c-1) times {n-k) times 
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where x ^ A is arbitrary. Describing k times repetition of our quantum coin 
tossing we obtain S^^k •= ^j=i ^wj- We have 

k 

[^w,k^ ^—iw,k\ = ^^ / J ^z,k-

The pair {S^j^k^ S-i^j^k) is called a quantum Bernoulli experiment. 
Setting 

Ak := A^^ (g)l(8)---(g)l = {a(g)l(g)---(8)l: aG A^^} 

n-A; times n-A; timcs 

we obtain a natural filtering C • 1 C ^ i C • • • C An = A^^. Moreover there 
also exists a conditional expectation E/̂  from An onto Ak which is given by 
^kici ^b) = T^ ^^~ \b) • a, where b G A^^'^~^\ and linear extension. 

13.4 The internal q u a n t u m processes 

Now we consider a polysaturated model *y(M) of the full structure T/(M) 
over R. As usual we replace the standard integer n above by an infinitely 
large integer A .̂ Then all considerations in the previous section remain true 
for internal objects. 

We use the discrete time interval T = {-̂  : 0 < A ; < TV} denoting its 
elements by 5, t, n , . . . Moreover we rescale also the family (Ak) by setting 
At '= Am-

Set p = -j=. Then we introduce 

4 = pbf, (13.4.1) 
al = bl (13.4.2) 

al - p \ \ \ ) . (13.4.3) 

These elements are the internal increments by which we construct the basic 
internal stochastic processes 

A\ = So<.<t4 J e{+,- ,0 , .}=: / . 

(A^)t is called the internal creation process, (A^)^ the annihilation pro
cess, (A*)t the t ime process and finally (A^)t the number process. 

The internal Brownian motion corresponding to the parameter t(; G C then 
is given by By^^i = wA^ + ' ^ ^ 7 (I'^l = !)• ^t satisfies the internal differ
ence equation 

dByj^t = ^ ^ ^ + '̂ <^r • 
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Like in the previous section we consider the state rf 
obtain 

The second equation follows from the facts that 

rx,N {{y^cit + ^<^7)(^<^i + '^^n )) = 0 

for sy^u, but Tx,N {{"^cit + ^^7)^) = ^x,N (1/A^) = ^/N. 
The commutator is 

The so-called internal Ito-table for the increments is easily computed: 

=: Tx^]\i and we 

(13.4.4) 

<\ 

4 1 
<\ 

aj 

\< 

A: 
\p'4 

0 

0 

4 
0 

0 

4 
< 

< 

0 

0 

< 

a-

«s 

p'^a-

PH 

0 

0 

Let 0 7̂  'i; G *C be arbitrary. Then the process (Pt) given by 

TJV |2 / ! • 
4 + |̂ ;|5 ,̂, + |̂ ;|%• 

is called the Poisson Process with parameter v. 
Now we compute the characteristic operator functions of these pro

cesses. Whenever V = (14)t is a stochastic process its characteristic oper
ator function is defined by fv{u^t) = exp(mT4)5 where u G *M. Obviously 
fv{u^t) \u={) = iVt_ and fv{u,t) is unitary iff T4 is selfadjoint. 

The processes V = (Vt) we considered so far are all of the form 

Vt= Yl '̂ '̂ 

where 
ds = 1 

0<s<t 

1 (g)d(g) 1 < 1. 
A^s-1 times N-Ns times 

and d G A is appropriately chosen. Since d^, d^ commute for Uy^ v_ we obtain 

fv{u,t) = ( ^ (exp(md))5. 

0<s<t 
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The most important formulas are the following ones: 

ex.-p{iuB^^t) = ( ^ (cos(pu)l + isin(u)X^)5 
0<s<t 

exp(inPt) = ( ^ Qs{u) 
0<s<t 

where Q(n) = j (̂  ^_^^J, '_ ^̂  ^,|^^|, ^ ^J, j with ^ = 1 + p ^ p . 

13.5 From the internal to the standard world 

The operator norm topology on A is too fine in order to obtain reason
able nonstandard hulls. Moreover the processes discussed so far are internally 
bounded but not necessarily S'-bounded. For example B^^j^jjsf is selfadjoint, 
hence its operator norm is equal to its spectral radius. This number is easily 
computed as -j=^ or in other words ||5it;,t|| = V ^ • t. 

In the following we only consider TA for A = 1. The other case will be 
treated elsewhere. We set r i =: r and we construct the Hilbert space TLr 
corresponding to {A^ r) {A the algebra of 2 x 2-matrices, see section 13.2). To 
this end we denote the columns of the 2 x 2-matrix a by a = (aj,a2). Then 
T^a'h) = (aj I 6J) where the latter is the canonical scalar product on C^. Hence 
I/T- = {a : a2 = 0} and 7rr(a)(6 + I/T-) = ah\^-\-L^. In particular Tir = C^, where 
the isometric isomorphism is given by a + L̂ - ^ a j . 

We have previously introduced the random variable Xi = Cx- Its equiva

lence class in Hr is denoted by Xi = Xi + L^ We set CQ = 6̂ ^ = ( J ) = X^ 

a n d e i = b~^ = (? ) =Xi. 

Now we consider TN = r®^ . Obviously W^^ ^ (*c2)®A^ holds. Let 
(jj G {0,1}-^ be an arbitrary internal function. Then we define e^ by e^ = 
(^^JQ ^uj{k/N)- The set {e^ : c<; G {0,1}"^} forms an orthonormal basis in Tir^. 

1~LTN î  ^^ internal Hilbert space, so its nonstandard hull T~LTN ^̂  ^ Hilbert 
space. 

The formulae (13.3.1) up to (13.4.3) above lead to the following equations, 
which result from the fact that Tirj^ is the GNS-Hilbert space of {AN^^N)-

In order to make the formulae as simple as possible we denote the addition 
mod 2 by 0 , i.e. we consider 17 = {0,1}-^ as the cartesian product of the group 
(Z2, 0 ) . Then we set uo^ = 1^ 0 CJ and cj~ = cj for cj G {0,1}-^. Moreover we 
write It in place of ^{t}-
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With all theses conventions we obtain 

o^fe^ = —T^^ujeit^ ( 1 3 . 5 . 1 ) 

^l^^ = AT ^^ = ^t ^^^^^ (13.5.2) 

a |e^ = LJ~{t)euj = N • a^a^e^j. (13.5.3) 

13.5 .1 B r o w n i a n m o t i o n 

First of all we show that our internal Brownian motion {B^^t) leads to 
the standard Brownian motion on a subspace of Hr^. To this end we recall 
that the standard Brownian motion {(3t) on L'^{Q^Lfj^) (with ft = {0,1}"^, 
M — ÂÂ  — Mô  7 ^/i ^^^ corresponding Loeb measure) can be viewed as a 
family of multiplication operators / i-̂  (3tf on L'^{fl, L^) which are selfadjoint 
but unbounded (cf. the end of section 13.2). From equation (13.4.4) it follows 
that Byj^t is S'-bounded in TIN- We claim that classical Brownian motion 
(or better to say: Anderson's Brownian motion) is equivalent (in the sense 
of section 13.2) to our {By^o^) where {B^o-^ denotes the family of selfadjoint 
operators on a subspace of TYrjv coming from the family (Byj^t)- To this end 
let lit; I = 1 and 

^'-2[w 1 J ' ^^-2[-w 1 

For cj G O we set P^ = 0o<k<N Poo{k/N)' Î  follows TN{PUJ) = 2 " ^ = //({cj}). 
We denote the internal H^'^'-algebra generated by {P^^ : cj G {0,1}"^} by B{w). 
The formula 

h^^t '= wa^ + wa^ = ^ (^ i - ~ ^i+) 

shows that (Buj^t) = ^o<s<t^w,t is contained in B{w). 

The internal L^-space L^(l},//) is nothing else than L^({0,1},^^o)®^-
Thus it is not very hard to see that TTN '-= TT^^ (see section 13.2) maps 
L^{Q,lii) onto B{w) with TAT O 7rN\B{w) = M- Now let D = {f e L^(17,/i) : 
/ is S'-bounded}. Then 

7T]\f{D) C {a G AN • ||< |̂| is ^S-bounded} 

C {x G HTN ' ll^lb = V T(X* x) is S-bounded}. 

Moreover for f^g^Dwe have 

/ J'^gdL^ ^ ij.{fg) = TN {TTNifg)) = (7riv(/)kiv(^)) 
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because of i^N{fg) = ^N{fY'T^N{g)- Since L^(r^, L^) is the completion of {°/ : 

/ G D} the mapping °/ -^ ^NU) can be extended to a linear isometry U from 

L'^^Q^Lfj^) onto a subspace A1, say, of TYr̂ v-

For t e [0,1] set i = mm{s E T : s> t}. We show that U{(3t) = B^^i-
Define 

1 uj{t) = 1 

and Yt = -^ J2o<s<ty^- Then (3t{uj) = °F^(CJ). Moreover 7rN{Yt) = B^^t- Set 

Mn = {cj : \Yi{uj)\ < n}. Then for n G N we have M^ = {ou : |A(u;)| < n}. 

This implies that limn^oo A ^Mn = A holds in L^(0, L^). Therefore for every 

standard e > 0 there exists a standard no with ||/?t(lr^ — lMn)||2 < ^ for 

n > no standard. But this in turn implies ||lf(lr2 — lMn)l|2 < s for n standard, 

n > riQ. Since TT̂V is an isometry also for the internal L^-norm on 1~CTN ^^ obtain 

ll^^,t^A^(l^-lMn)l|2 < £ for these n > no- ||^^^,t^7v(lMn)l|2 = ll^^t^Mnlb < n 

implies that B^^^71N{'^MJ G W^^^n ^^^ ^ ( A I M ^ ) = ^^,t^iv(lMn)- But 

this in turn gives U{(3t) = B^^. That the operator of multiplication by f3t 

is mapped onto the operator of multiplication by B^ i follows from an easy 

additional argument. 

13.5 .2 T h e n o n s t a n d a r d hulls of t h e bas ic internal proces se s 

The deeper problem is to find a joint subspace /C of W^^ such that all pro
cesses have standard parts as closable operators densely defined in /C. We 
begin the construction with some more notations: For uo G {0,1}-^ =: Vt 
we set M^ = {t : Lj{t) = 1}, and |cj| := |M^|, that is the (internal) car
dinality of M^. Using these notations we obtain the following formulae by 
means of (13.4.4)-(13.5.2). Let y = X^CJGÎ  VLO^U; be arbitrary. Then 

4y = E ( ^ E ^^(Ay^^^ (13.5.4) 
ujen \ o<s<t J 

^tV = E ( E ^is.)]y^e^ (13.5.5) 
ujefi \o<s<t J 

^tv = I Z 7 ^ Yl y^(BU^~U)\e^ (13.5.6) 
(pen \^^^ o<s<t I 

^tV = S 7 ^ Yl ^<^ei.V^"^U) Uv^ (13.5.7) 
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Consider now the projection E^ from TL onto Tit which is the Hilbert space 
coming from At_ (see section 13.3). E^ is given by 

{ 
TT̂  / \ \ ^uj ^{s) = 0 for all 5 > t 
^'-^'-^ - < 0 "else 

Then we obtain E^AJ = A^Et for each ft ^ {•50,+,—} or in other words the 

family (AJ)^<I is adapted to {Ht)t<i' 
We prove now some continuity properties. To this end we introduce 

^\Lj\=n ^ 

and we set 7Y := HTN foi" short. 
Then H = J-^^QH^'^^ where 1. denotes the orthogonal direct sum. More

over A|(W(^)) C W(^), A|(WW) C W(^), A^{n^''^) C W^+\ and finally 

A^{n^^^) C W(^-i) where W^-^) := {0} =: H^^^^l 
For y = ^ | ^ | „ ?/^e^ and 0 < 5 < t we obtain 

|a;|=n s<u<t 
\yuj\'^ 

^ E | ^ E ifi^.p = a-.)^Np. (13.5.8) 
|c^|=n s<u<t 

It follows that 11 A* — A* 11 < (t — 5), in particular the mapping t 1-̂  A* is 
S'-continuous from T to jC(7i) with respect to the operator norm. 

Let y = E |^ |=„ Vo. e W<"\ and 0 < s < i 

|co;|=n s<u<t 

It follows that ||^tl7i(^)ll — '̂ 5 but the mapping t 1-̂  A'^y is not S-continuous 
in general. So finally we have to choose an appropriate subspace in order to 
get S-continuity of t ^ ^tV-

Next we show the following inequality: 

Proposition 1 For 0 < s_ < t 

\\{A+ - A+)|„(„) f <{n + m - s) (13.5.9) 

holds. 
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Proof. Let y = X]|c^|=n^^^^ ^ -̂ ^̂ ^ ^^ arbitrary. Then 

^ ^ ^ |(^|=n+l \ 5 < n < ^ / 

holds. If (^{u) = 0 then |(/P 0 1^| = n + 1 hence y^p^i^ = 0. It follows 

AT 
|(^|=n+l s<u<t 

|(^|=n+l s<u<t 

Let cj G O be arbitrary with \uj\ = n. Then there exist at most N{t — s_) — \uj' 
l[s^t[\ different ip with ip®lu=uj and s<u<t. This gives ||(A^ — A+)?/|p < 

N (^ + 1)11^IP' ^^d ^^^ asserted inequality follows. D 

Corollary 1 
| | ( A , - - A ; ) | „ ( „ ) | | 2 < ( i - s ) n . (13.5.10) 

Proof. A^ is the adjoint of A^. 

By construction we have n^^'^-Ln^'^^ for n 7̂  m. So the subspace /C^ of TY, 
generated by all the spaces 7Y*̂^̂  (n G N) is nothing else than the orthogonal 
direct sum /C^ = -L^^^^Q 7i^^\ Recall the definition i = min{i/ G T : u > t}. 
Then from the inequality (13.5.8) it follows that by 

AU = {Al^yr 

there is uniquely defined an operator on 7i^^^ bounded by t. So we obtain 
the operator A* = -L^^^^Q At^n on ^"^ which is self adjoint and bounded by t. 
Moreover ||A* - A*|| <t-s holds. D 

In order to define the nonstandard hull of one of the other operators A^ 
(tt G {+,—,0}) we choose the following joint domain of definition: 

'̂  n=0 J 

which is dense in IC^. From the inequalities (13.5.9) to (13.5.10) we obtain 
that by 

At{-\-neNoyn) = - L n G N o ( ^ l ^ n ) ^ 

Af{±rieNoyn) = ±neNo{Afyn)^ 
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the operators Al : /CQ° -^ K^ are uniquely defined. Moreover the following 
proposition holds: 

Proposition 2 A^ is selfadjoint and A^ and A^ are adjoint to each other. 

Proof. Set AI^ = AI \ Tin- These operators are bounded and A^^ is selfad
joint, whereas A^^ and A~r,^^ are adjoint to each other. Now the assertion 
is obvious. D 

The final problem we have to solve is to find an appropriate filtration with 
the necessary conditions of continuity. To this end we calculate the difference 
E^ - E^ for 0 < s < t. For y G W^̂ ^ we obtain 

(E,-E,)y= Y. y-^-' 

Let t = k/N, s = l/N. It follows 

\\Ety-E^yf = Yl l^-l' 
\cv\=n,uj<l^^^t^ 

2 I k - l 
< max u 

\u;\=n ' \ n 

So the mapping y -^ Ety will be S-continuous if max|^|^^ |?/^p N^ will be finite. 

This consideration leads to the internal measure m on O = {0,1}"^ given 

by in{{uj}) = T ^ . Then (yt^Tn) is the direct sum of {^n^'f^n)n<N with f̂^ = 

{uj ^ Q. \ \uj\ — n} and rrin — Tn\^^. Notice that 7n{^ri) — (n) ' 77^' ^^ ^^^^ 

H^) = ELOC^) • 77̂  = (1 + ^ ) ' ^ « e. Moreover ELlM^k) « 0 for all 
L ^ OO. 

Let ( 0 , L ^ ) be the Loeb measure space associated to (r^,77i). Then 
^mdJjfcGN ^k) = e and O \ (U/CGN ̂ k) is an L ^ - null set. Finally ^^(O, L^) = 
±^^i^L^(Q^,L^^) where L^^ is the Loeb measure associated to mn-

Consider the external subspace X of all S-bounded internal * complex val
ued functions on ft. Then for / G X the complex-valued function ^f \ uj ^ 
%f{io)) is in L'^(ft,Lm) and the space {°f : f e X} is dense in L^(f^,L^). 
Moreover 7 = ^^.^i^^ 7/c in the L^-sense, where fk = f b^-

Now we map X onto a subspace K of 7Y by the mapping V defined as 
follows: 

y ( / ) = ^ / ( a ; ) 7 V - M / 2 e „ , 
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and set 

w{f)=v{r). 
Then / ^ \f\^dm = | | F ( / ) f . Let C be the closure of {W{f) : / G X } =: ^ ^ 
in JC^. Then the last equation shows L^{fl,Lm) = >C. Moreover Xk = {/ G 
X : /(O^) = 0 for £ ̂  A:} is mapped onto a subspace of H^^^ {k standard). Let 
Ck be the closure in /C^ of {W{f) : / G Xk] =: >Ĉ ^̂  Then £ = ± /CGNA and 

The following facts are easily seen to hold: 

Theorem 1 

Al^f 
Aicf 

Atcf 

A-.cf 

c 
c 

c 

c 

c 

/C§^ joT fc G No 

^k 

^k 

rip) 

^k-V 

Moreover C Pi /CQ^ is dense in C and it is the joint domain of definition of the 
operators A J , [j ̂  {•70,+,—} which are closable and essentially self adjoint in 
case tt = •, ô  and adjoint to each other in case tt = +, —. 

Remark: We map an internal set M of T onto its indicator function 
1 M ^ {0) 1}"^ = ^- This mapping tjj is bijective and therefore we obtain an 
isometric isomorphism U of L^iyt^m) onto the internal Guichardet space of 
Leitz-Martini. This shows that our considerations concerning the continuity 
of the filtering leads in a very natural manner to the Loeb-Guichardet space 
for the basic quantum stochastic processes (cf. section 13.1). 

13.6 The symmetric Fock space and its embedding 
into C 

Let 'H be a Hilbert space and let "H®^ be the nth tensor product of Ti. We 
denote the full symmetric group of n elements by §^. Then by 

Pn{xi 0 • • • (8) Xn) = — ^ X^(l) ® " ' ^ :C^(n) 

7rG§n 

there is uniquely defined an orthogonal projection, the range of which is called 
the n t h symmetric tensor product TY© .̂ The symmetric Fock space 
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J^j^iTL) over Ti is the orthogonal sum 

where as usual Tv^ "̂  = C. 
For the special case TL = L^([0,1],A) (A: Lebesgue measure) the tensor 

product H®^ is nothing else than L^([0,1]^, A^) where A^ denotes the n-
dimensional Lebesgue measure, and the projection P^ is given by 

Pnfih, ...tn) = — 2 ^ /(^7r(l)5 • • 'U{n) 
TreSn 

Now we give the more or less classical definition of the basis quantum 
processes. To this end we set 

/ l O • • • O /n := Pnifl 0 • • • (S) /n) . 

For 0 < t < 1 the definition of the creation operator is given by 

Aiiifi o . . . o / , ) := l[o ,̂[ o / i o . . . o / , (13.6.1) 

and linear extension to the largest possible domain. 
Similarly the annihilation operator is given by 

n 

A " ( / l 0'"0f^) = J2 (l[0,t[l/,) / i o . . . o /,• o . . . o / , , (13.6.2) 
j = l 

where the expression fj indicates that this factor is omitted. 
The number operator is given by 

- 4 t ( / i 0 . . . o / ^ ) = l jQ^^ j . / i o . . . o / ^ + . . . + / i o / 2 0 . . . o / ^ _ l o l [ o , t [ - / n , (13.6.3) 

whereas the time-operator is 

A * ( / i ° - - - ° / n ) = i / i o - - - o / u - (13.6.4) 

Remark: These operators are those ones introduced by Hudson and 
Parthasarathy [5] as the basic quantum processes. 

Consider now the set X^ = {(^i, ^2, • • •, ^n) • 0 ^ ^i < • • • < ^n ^ ! } • It is 
a measurable subset of [0,1]^. Let / be an element of L'^{Xm A^). Setting 

ff. + \ — J / ( ^ l ' • • • 5^n) (^1, ' " ,tn) ^ ^n 
J[ti,...,tn)-< Q Otherwise 
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we obtain an element / of ^^([0,1]^, A^). Then P^( / ) G ^^([0,1], A ) 0^ and 
||P^(/)||2 = J^^|j|2^;^n^ ^^ IIJII _ | |P^(/) | | holds. On the other hand let 

/ e L2 ( [0 , 1] ,A)0^ be arbitrary. Then / = n\ Pn{f\^J (equality in the L^-
sense). It follows that the mapping / -^ Pn{f) is a linear isometry from 
L2(Xn,A^) onto L 2 ( [ 0 , 1 ] , A ) 0 ^ . Its inverse is given by ^ ^ n!^|^^ =: Un{g). 

Now we embed L^(X^, A'̂ ) isometrically into the space jCn constructed at 
the end of the previous section. To this end let ou G fin be arbitrary. Set ti{u) = 
min(5 : uj{s) = 1) and by induction t^^i(cj) = min(5 > tf^ : uj{s_) = 1). Then 
t(cj) := (ti(Lc;),..., t^(cj)) G *Xn H T^. Moreover if t := {h/N,..., k^/N) G 
*X^ n T^ then t = i{uj) for UJ = IM where M = {t^{uj),.. •, t ^ (^ )} . 

We consider the dense subspace Cn of L^(X^,A'^) consisting of the re
strictions to Xji of continuous functions on the closure X^ For f ^ Cn 
we set S{f){Lj) = ''f{t(u))). This is an element of L^(0^,mn) satisfying 
II/lb ~ ||5'(/)||2- It follows that Cn is linearly and isometrically embedded 
into L^i^n-, Lmn)-) ̂ ^d this embedding can obviously be extended to the whole 
of L^(Xn,A^). Since L^(On,^mn) is linearly and isometrically embedded in 
Cn-) we obtain that the symmetric tensor product iv^([0,1], A ) ^ ^ can be em
bedded in Cn- An obvious extension then yields an embedding denoted by U 
of the symmetric Fock space ^+(L^([0,1], A) into C Call Q the image of this 
embedding and set Q{) = G r\ /Cg .̂ 

Theorem 2 ^o is dense in Q. Moreover the restrictions of A^ to Qo yield 
closed densely defined operators which are self adjoint for jj G {o, •} and adjoint 
to each other in the other cases and which moreover satisfy 

AI = U-^AI U 

on U~^{Qo) where A^ are the operators given by equations (13.6.1) up 
to (13.6.4). 

The proof is obvious. 
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14 
Applications of rich measure spaces 

formed from nonstandard models 

Peter Loeb 

Abstract 
We review some recent work by Yeneng Sun and the author. Sun's work 
shows that there are results, some used for decades without a rigourous 
foundation, that are only true for spaces with the rich structure of Loeb 
measure spaces. His joint work with the author uses that structure to 
extend an important result on the purification of measure valued maps. 

14.1 Introduction 

In 1975 [11], the author constructed a class of standard measure spaces 
formed on nonstandard models. These spaces, now called "Loeb spaces" in 
the literature, are very close to the underlying internal spaces, and are rich in 
structure. (See the author's three chapters and Osswald's two chapters in [12] 
for background.) We will briefly review here some recent work by Yeneng Sun 
that uses these measure spaces. Sun has shown that there are results, some 
used in applications for decades without a rigorous foundation, that are only 
true for spaces with the rich structure of Loeb measure spaces. We will follow 
the description of Sun's work with a detailed proof of a special case of the recent 
result in [14] by Yeneng Sun and the author on the purification of measure-
valued maps. A counterexample shows that the result we give is false if the 
Loeb space we use is replaced by the unit interval with Lebesgue measure. We 
note in passing here that the result in [13] by Osswald, Sun, Zhang and the 
author presents yet another example needing rich measure spaces. 

Department of Mathematics, University of Illinois, Urbana, IL 61801. 
loebOmath .uiuc.edu 
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14.2 Recent work of Yeneng Sun 

We begin with some work in the late 1990's of Yeneng Sun ([16], [17], [18], 
and Chapter 7 of [12]). That work, Sun's alone, is published elsewhere, so 
what is said here is an invitation to read, and not a substitute for, the original 
articles. To set the background we consider the following question: Does it 
make sense to speak of an infinite number of independent individuals or random 
variables indexed by points in a uniform probability space? Can one, for 
example, reasonably consider an infinite number of independent tosses of a 
fair coin with the tosses indexed by a uniform probability space, and if so, 
does it make sense to say that half the tosses should be heads? Of course, 
there is no problem in speaking of independent random variables indexed by 
the first n integers with each integer having probability 1/n. An infinite index 
set with a uniform probability measure, however, must be uncountable; there 
is no uniform probability measure on the full set of natural numbers. The 
problem thus evolves to finding the possible meaning of an uncountable family 
of independent random variables. Whatever way one approaches this problem, 
the usual measure-theoretic tools fail. 

A natural attempt to generalize coin tossing replaces the natural numbers 
with points in the interval [0,1], and thus replaces sequences of I's and — I's 
with functions from [0,1] to the two-point set {—1,1}. This is a reasonable 
model for an uncountable family of independent coin tosses. In 1937, Doob [2] 
exhibited a problem with this and similar spaces of functions when standard 
techniques are applied. To see the problem, let O denote the set of { — 1,1}-
valued functions on [0,1], and let P be the product measure on f2 constructed 
from the measure taking the values 1/2 at 1 and 1/2 at —1. In the usual 
construction of an appropriate cr-algebra on O, measurable sets are formed 
from the algebra of cylinder sets, with functions in each cylinder set restricted 
at only a finite number of elements of [0,1] to take either the value 1 or —1. It 
follows that each measurable set in Q is determined in a way described below 
by a countable subset of [0,1], and so the following result holds. 

Proposition 14.2.1 Fix any h ^ ^. Set 

Mh := {cj G r̂  : u{t) = h{t) except for countably many t G [0,1]}. 

Then M^ has P-outer measure 1. 

Proof. For each measurable 5 C O, there is a countable set C G [0,1] such 
that for all a,/3 in r ,̂ if a{t) = f3{t) for all t ^ C^ then a G B ii and only if 
f3 G B. Suppose Mh ^ B. Given cj G O, Let ou^ agree with uj on C and agree 
with h on [0,1] \ C. Then cv^ G M/,, so ou^ G B. It then follows that u e B. 
Thus 5 = O, so the outer measure P''{Mh) = 1. • 
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Remark 14.2.2 Note that if a; G M/^, then since Lebesgue measure A of a 
countable set is 0, cj = /i A-a.e. on [0,1]. This is true if h is nonmeasurable, or 
if /i = 1, or if /i = — 1. Now outer measure when applied to the intersection of 
measurable sets with M/̂  is finitely additive, hence count ably additive. Since 
the outer measure of M^ is 1, one can trivially extend P to a measure P with 
P{Mh) = 1. Thus, no matter what h might be, one can claim that P almost 
every function is equal to h at A-almost very point of [0,1]. This, and other 
highly questionable arguments have been used for decades to work around the 
measure theoretic problem indicated by Doob's example. 

Another approach to representing a continuum of independent random vari
ables is to consider a function / ( i , cc;), called a process, where i is an index from 
an uncountable probability space called the parameter space (the probability 
measure need not be uniform) and uj is taken from a second probability space 
called the sample space. The question then is whether it makes sense to work 
with the usual product of these two probability spaces. Sun has shown in 
Proposition 7.33 of [12] that no matter what kind of measure spaces, even 
Loeb measure spaces, one might take as the parameter space and sample space 
of a process, independence and joint measurability with respect to the classical 
measure-theoretic product, i.e., formed using measurable rectangles as in [15], 
are never compatible with each other except for a trivial case. Here is the exact 
statement of that proposition. 

Proposition 14.2.3 (Sun) Let (I^X^ii) and {X^X^v) he any two probability 
spaces. Form the classical, complete product probability space (/ x X,T(8) A', 
fi ^ v). Let f be a function from I x X to a separable metric space. If f is 
jointly measurable on the product probability space, and for (i (g) fi-almost all 
(zi, 22) G Ixl, fi^ and fi^ are independent (call this almost sure pairwise in
dependence), then, for /J-almost all i G I, f{i, •) is a constant function on X. 

Sun notes that Proposition 14.2.3 is still valid when fi has an atom A. The 
almost sure pairwise independence condition implies the essential constancy of 
the random variables fi for almost alH G ^ . 

In the articles cited at the beginning of this section, Sun has shown that 
a construction overcoming these measure-theoretic problems is obtained by 
forming the internal product of internal factors, and then taking not just the 
Loeb space of each factor, but also the Loeb space of the internal product. 
This yields a rich extension of the usual product cr-algebra formed from the 
Loeb factors, one that still has the Fubini Property equating the integral over 
the product space to the iterated integrals over the factor spaces forming that 
product. Here in more detail is that construction. 
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Sun's starts with internal spaces (T, T, A) and (O, A^ P). The space T may 
be a hyperfinite set with A given by uniform weights. He then forms the Loeb 
spaces ( T , L A ( T ) , A ) and ( 0 , L ^ ( ^ ) , P ) . He lets X <S> P denote the internal 
product measure, while T ^ A denotes the internal product cr-algebra, and 
Lx(T) ® Lp[A) denotes the classical product cr-algebra formed from LxiT) 
and Lp{A) as in [15]. On the other hand, forming the Loeb space from the 
internal product T ^ A produces a larger cr-algebra L\^p (T^A) on Tx n. 
(See the following propositions.) Here are some properties of what we shall 
call the big product space ( T X O, L\^P{T (g) ^ ) , A (g) P ) . 

Proposition 14.2.4 (Keisler-Sun [7]) The big product space depends only 

on the Loeb factor spaces (T, Lx(T)^ A) and (O, Lp{A)^ P). 

Proposition 14.2.5 (Anderson [1]) If E e Lx{T) (g) Lp{A), then E G 

Lx^piT^A) andX^{E) = X^P{E). 

Proposition 14.2.6 (Hoover (first example) , Sun [17]) The inclusion 
of Lx{T) (g) Lp{A) in Lx^p{T (g A) is strict if and only if both A and P have 
non-atomic parts. 

Proposition 14.2.7 (Keisler [6]) A Fubini Theorem holds for the big prod
uct space. 

In his articles, cited above. Sun shows that to work with independence in 
a continuum setting, as has been attempted in informal mathematical applica
tions without rigor, and for decades, one needs a rich product cr-algebra such 
as the cr-algebra of a big product space. Here is that general result as stated 
in Proposition 7.4.1 of [12] and proved in Theorem 6.2 of [17]. 

Proposition 14.2.8 (Sun) Let X be a complete, separable and metrizable 
topological space. Let Ai{X) be the space of Borel probability measures on X, 
where M.{X) is endowed with the topology of weak convergence of measures. 
Let fi be any Borel probability measure on the space A^(X). / / both A and P are 
atomless, then there is a process f from (T x O, Lx^p{T®A)^ A g) P) to X such 
that the random variables ft = / ( t , •) are almost surely pairwise independent 
(i.e., for A g) X-almost all (ti, ^2) G TxT, ft^ and ft2 CLTC independent), and the 
probability measure on JVl[X) induced by the function Pff from T to M.{X) 
is the given measure ji. 

Remark 14.2.9 Here, for any given t G T, Pft ^^ ^^^ probability measure 
on X induced by the random variable /^ : O ^ X. It is the measurable 
mapping from T to M.{X) taking the value Pf^^ at each t G T that induces 
the measure /i on Ai{X). 
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Remark 14.2.10 A consequence of the proposition is that when the space 
( T , L A ( T ) , A) is a hyperfinite Loeb counting probabihty space and /I is a non-
atomic Loeb probabihty measure, it makes sense to use the big product space 
as the underlying product space for an infinite number of equally weighted, 
independent random variables or agents. 

As part of his work with large product spaces. Sun has extended the law of 
large numbers. The usual strong law states that if random variables X^, z G N, 
are independent with the same distribution and finite mean m, then ^T^^^-^Xi 
tends almost surely to the constant random variable m. That is, for almost all 
samples u, the value of the sequence at cj tends to the constant m. 

Theorem 14.2.11 (Sun) Let f be a real-valued integrable process on the big 
product space. If the random variables ft := f{t^-) are almost surely pair-
wise independent, then for almost all samples cj G Ô  the mean of the sample 
function f^ := f{--,^) on the parameter space T is the mean of f viewed as a 
random variable on the big product space. There is no requirement of identi
cal distributions. 

Another facet of this same work deals with independence. It is well known 
that for a finite collection of random variables, pairwise independence is strictly 
weaker than mutual independence. Sun has shown that for processes on big 
product spaces, pairwise independent and mutual independent coalesce, and 
they coalesce with other notions of independence that are distinct for a finite 
number of random variables. This implies asymptotic results for finite families 
of random variables where the families are ordered by containment and have 
increasing cardinality. 

14.3 Purification of measure-valued maps 

We now turn to a special case of the joint work of Yeneng Sun with the 
author in [14]. That special case generalizes the following celebrated theorem 
of Dvoretzky, Wald and Wolfowitz (see [3], [4], [5]). 

Theorem 14.3.1 Let A be a finite set and M.{A) the space of probability 
measures on A. Let {T^T) be a measurable space, and Hk, k = I ,--- ,m^ 
finite, atomless signed measures on (T^T). Given f :T ^ Ai{A) so that for 
each a G A, f{'){{ci}) is T-measurable, there is a T-measurable map g :T ^ A 
so that for each a G A, and each k < m, 

J f{t)i{a})d^kit) = Mfc({i e T : g{t) = a}). 
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This theorem justifies the ehmination, i.e., purification, of randomness in 
some settings. For example, in games, T represents information available to 
the players, and A represents the actions players may choose, given t G T. 
Every player's objective is to maximize her own expected payoflF, but that 
payoff depends on the actions chosen by all the players. 

For each player, a mapping from T to ^ is called a pure strategy. A 
mapping from T to Ai{A) is called a mixed strategy; in this case, each player 
chooses a "lottery on A\ A Nash equilibrium is achieved if every player is 
satisfied with her own choice of strategy given the choices of the other players. 

In quite general settings, such an equilibrium can be achieved using mixed 
strategies. When results such as Theorem 14.3.1 apply, those mixed strategies 
can be purified yielding an equilibrium with the same expected payoffs. We re
fer the reader to [14] for more information on the game-theoretic consequences 
of Theorem 14.3.1 and its extension. We will concentrate here on the proof of 
that extension, a proof simpler than that of the more general result in [14]. 

We extend the DWW Theorem from a finite set A to a complete, sepa
rable metric space. There always exists a Borel bijection from such a space 
to a compact metric space. That is, if A is uncountable, then it follows from 
Kuratowski's theorem (see [15], p. 406) that there is a Borel bijection from A 
to [0,1]. On the other hand, for a countable set A, one can use a bijection 
from A to { 0 , 1 , 1 / 2 , . . . , 1 /n , . . . } . Therefore, it suffices to let A be a compact 
metric space. For simplicity we will work with a finite set of measures, but 
may extend to a countable collection. 

Theorem 14.3.2 Let K be a finite set, and let A he a compact metric space. 
For each k G K, let fik be a nonatomic, finite, signed Loeb measure on a 
Loeb measurable space (T, T ) . If f is a T-measurable mapping from T to 
M.{A), then there is a T-measurable mapping g from T to A such that for 
each k G K and for all Borel sets B in A, Jj. f{t){B)fik{dt) = fik (^~^[^])-
This is equivalent to the condition that for each k G K and for any bounded 
Borel measurable function 9 on A, 

f I 6{a)f{t){da)iik{dt) = f 0{g{t))^ik 
JT J A JT 

{dt). 

Example 14.3.3 Sun and the author show by a counter example in [14] that 
the Loeb measures of the theorem cannot be replaced with measures absolutely 
continuous with respect to Lebesgue measure on [0,1]. In their example, the 
compact set A is the interval [—1,1], and the measure-valued map is given by 
f{t) := {5t + 5-t)/2 for each t G [0,1]. The example uses just two measures, 
//I = A on [0,1], and /i2 = 2tA on [0,1]. If there is a function g that works, then 
it is not hard to see using the functions on A given by ^(a) = \a\ and 9{a) = a^ 
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that JQ (t — l^(t)l) X{dt) = 0. That is, g{t) must take the value t or —t A-a.e. 
on [0,1]. It is also not hard to see that this is impossible. The moral is that a 
Lebesgue measurable g can't switch values on [0,1] fast enough to work. 

To set up the proof of the theorem, we let Jl^ be the signed internal measure 
generating /ik for each k G K. Also, we set PQ = ^T>keK\Ji^k\^ where \Jik\ 
is the internal total variation of Jik and c = ^keK \J^k\ (T). Then PQ is an 
internal probability measure on T, and for each k G K, Jlk « Po- Let 
P — -^^T^keK IM/CI- The probability measure P is the Loeb measure generated 
by Po, sind for each k ^ K^ fi^ « P. Let [3^ be the internal Radon-Nikodym 
derivative of Jlk with respect to PQ- Since (ik « P , Pk is S-integrable with 
respect to PQ and Pk •= st/?jt is the Radon-Nikodym derivative of iJ,k with 
respect to P . We let B denote the collection of Borel subsets of A. 

The following lemma is the only part of the proof that needs nonstandard 
analysis. 

Lemma 14.3.4 Let {0^ : i ^N} be a countable, dense (with respect to the sup-
norm topology) subcollection of the continuous real-valued functions on A. As
sume that there is a sequence of T-measurable mappings {gn, n G N} from T 
to A such that for each z G N and k ^ K, the sequence / ^ (/)i{gn{t))/3k{t)P{dt) 
converges; let ci^k ̂  '^ denote the limit. Then, there is a T-measurable mapping 
g from T to A such that for each z G N and k G K, 

J cl),{g{t))f3k{t)P{dt) = Q,fc. 

Proof. For each n G N, let /i^ ^ P ^ *^ be a 7o-measurable lifting of gn with 
respect to the internal measure PQ. Then for each n and i G N and each k G K^ 

[ U9n{t))Mt)P{dt) ~ / *<f>i{hn{t)mt)Po{dt), 
JT JT 

and so 

lim ( St / *(/),(/i,(t))/3fc(t)Po(c!t) - c^k = 0. 

Using Hi-saturation, we may extend the sequence h^ to an internal sequence 
and choose an unlimited integer H G *N so that for every z G N and each k G K, 

J *MhH{t))Mt)Poidt) c^ Q,fc. 

The desired function g is obtained by setting g{t) := st{hH{t)) e A at each 
teT. D 
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Now for the proof of Theorem 14.3.2, we note first that since M{A) is a 
compact metric space under the Prohorov metric p (which induces the topol
ogy of weak convergence of measures), there is a sequence of simple functions 
{fn}^=i from {T,T) to M{A) such that 

V tGT, lim p{U{t)J{t))=0. 

Assume we know that for each n G N, there is a T-measurable mapping 
gn from T to A such that for each k G K^ and any bounded Borel measurable 
function 9 on A, 

[ f e{a)fn{t){da)iik{dt) = f e{gn{t))iik{dt). 
JT J A JT 

Let ^ = {(/)i : i G N} be a countable dense subset of the continuous real-valued 
functions on A with the sup-norm topology. For a given (l)i ^ Q and each t ^ T^ 
J^(t)i{a)fn{t){da) -^ jj^(j)i{a)f{t){da). Moreover, each integral is bounded by 
the maximum value of 10̂ 1 on A, so by the bounded convergence theorem, for 
each k ^ K, 

[ (^,{gr,{t))(3k{t)P{dt) = [ M9n{t))fik{dt) 
JT JT 

i)fn{t){da)iik{dt) 

i)f{t){da)pk{dt) 

JT JA 

[ [ Ma) 
JT JA 

By the lemma, there is a T-measurable mapping g from T to A such that 
for each k ^ K^ 

[ M9it))l^k{dt) = / ^,{g{t))Mt)P{dt) 
JT JT 

i)f{t){da)iik{dt). I I U<^) 
JT JA 

Since this is true for each 0^ in Q^ it is true with 0^ replaced by an arbi
trary bounded Borel measurable function 9 on A. Therefore, without loss of 
generality, we may assume that f : T ^ M.{A) is simple. 

Next, we fix a sequence of Borel measurable, finite partitions V^ = 
{Aj^,..., Ap } of A such that the diameter of each set in P ^ is at most 1/2^, 
and Vm+i is a refinement of Vrn- Also for each /, 1 < / < /m, we pick a 
point af" e Af". 

Since / is a simple function from T to A4{A), there is a T-measurable 
partition {Sj}jLi of T such that f = jj G M.{A) on Sj. It follows that for 
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each B ^ B^ and each k G K^ Jj. f{t){B)fij^{dt) = J2j=i'lj{^)f^k{Sj). By 
Lyapunov's Theorem, each Sj can be decomposed by a finite, T-measurable 
partition {Tj^'"^,..., T^'^} so that for every 
lji^r)l^k{Sj), whence 

N 

(As an alternative to the above use of the Lyapunov theorem, one can with 
small modifications of the proof here use the author's Lyapunov theorem [10], 
but then all of the simple functions must be modified on a P-null set TQ SO 
that for each of them, the corresponding partition sets Sj of T are internal.) 

Now for each TTI > 1, we define a T-measurable mapping g^ \ T ^ A 
so that for each / < Im and each j < N^ gm{t) = ^X^ on T -̂̂ '̂ . For each 
continuous, real-valued '0 on A, for each m > 1 and each k G K^ 

I'm / r \ I \ 

E ^ « ) / /w(ArK(^t) =^^(an J2^Mr)f^k{Sj) 
1=1 ^ ^ ^ ^ 1=1 \j=i / 

Im N 

Im N 

approximates as TTI ^ oo the integral 

)f{t){da) \ Hkidt) 

N 

f ^ia)f{t){da)\ fikidt) = E / ( / „ ^ ( « 
J A / i^^ JT yJAY^ 

1=1 j=i ^ VAr J 

= V V / ilj{a)-fj{da) iik{Sj) 
1=1 3 = 1 W / 
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so 

/ i;{gm{t))f3k{t)P{dt) = [ ij{gm{t))iik{dt) 
JT JT 

Im N 

1=1 i = i 

^ j^(^jj^{a)f{t){da)^lik{dt) 

It follows from the lemma that there is a T-measurable mapping g from T to 
A such that for each k E K and for each continuous real-valued function 6 on 
A from a countable dense set of such functions, and therefore for each bounded 
Borel measurable function 0 on A, 

/ e{g{t))iik{dt) = [ f e{a)f{t){da)fik{dt). D 
JT JTJA 
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15 
More on S-measures 

David A. Ross 

15.1 Introduction 

In their important (but often overlooked) paper [1], C. Ward Henson and 
Frank Wattenberg introduced the notion of S-measurability^ and showed that 
S-measurable functions are "approximately standard" (in a sense made precise 
in the next section). 

In a recent paper ([3]), the author used this machinery to transform a well-
known nonstandard plausibility argument for the Radon-Nikodym theorem 
into a correct and complete nonstandard proof of the theorem. The problem 
of finding an "essentially nonstandard" proof for Radon-Nikodym had been 
one of long standing. Although Luxemburg gave a nonstandard proof as long 
ago as 1972 ([2]), he obtained the result as a consequence of another equally-
deep theorem in analysis due to Riesz. (Beate Zimmer [6] has recently proved 
vector-valued extensions of Radon-Nikodym starting from the same plausibility 
argument, though using different standardizing machinery than that in [3] or 
the present paper.) 

In this paper I use an S-measure argument very like the one in [3] to give 
an intuitive nonstandard proof of the Riesz result used by Luxemburg. Along 
the way I give a new proof for the main technical result from [1] on S-measures, 
a new nonstandard proof for Egoroff's Theorem, and a nonstandard proof for 
the existence of the conditional expectation operator which is more elementary 
than that in [3]. 

15.2 Loeb measures and S-measures 

I will assume that we work in a nonstandard model in the sense of Robin
son, and that this model is as saturated as it needs to be to carry out all 
constructions; in particular, it is an enlargement. 

Department of Mathematics, University of Hawaii, Honolulu, HI 96822. 
rossOmath .hawai i .edu 
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Suppose X a set and A is an algebra on X. There are two natural algebras 
on *X: Ao = {*A \ A ^ A} (the algebra of standard subsets of *X), and VI. 
Note that except in the simplest cases, (i) neither AQ nor VI are a-algebras; 
(ii) A^ is external; and (iii) VI is vastly larger than AQ. 

These leads to two distinct cr-algebras: 

1. As = the smallest cr-algebra containing /lo 

2. AL = the smallest cr-algebra containing VI 

Recall that if // is a (finitely- or countably-additive) finite measure on (X, A) 
then */i maps VI to *[0, oo), and in particular is not normally a measure, un
less the range of ii is finite. However, °*// takes its values in [0,oo), and so 
(*X, VI, °*yL̂) is an external, standard, finitely-additive finite measure space. 

The following was first noticed by Loeb. It is an immediate consequence 
of Ki-saturation and the Caratheodory Extension Theorem, or can be proved 
directly; see [4] for details. 

Theorem 1 °*/x extends to a a-additive measure ^IL on {*X,Ai). 

^EeAL 

piL{.E)=mi{iiL{A) : ECA&*A} 

= sup{AfL(A) : A(^E, Ae*A] 

Moreover, 

(15.2.1) 

(15.2.2) 

Of course, the measure IIL remains cr-additive when restricted to any cr-
algebra contained in AL-> in particular As] this corresponds to replacing VI by 
yio as the generating algebra. However, it is not so obvious that the approx
imation properties (15.2.1) and (15.2.2) hold with this replacement as well. 
The next lemma, which asserts that they do, guarantees that a set £̂  C *X 
has '''' S-measure 0" in the sense of Henson and Wattenberg [1] precisely when 
£̂  C Ẑ  for some D G As with IIL{D) = 0. For this lemma, and the duration 
of the paper, it will be convenient to assume that A is a, a-algebra. 

Lemma 1 V^ G ^l^, 

fiL{E) = mi{ii{A) : £̂  C *A, A e A} (15.2.3) 

= sup{ii{A) : ""ACE, AeA} (15.2.4) 

Proof. Let 

S = {EeAs: ye>0 3A,B eA such that *ACEC*B 

and /j.{B \A) < e} 

= {EeAs'- \/e>0 3A,B eA such that *ACEC*B 

and /ILCB) < /J.L{E) + e and JLLLCA) > IIL{E) - e). 
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Evidently M G S for every A ^ A. It suffices to show that S is a cr-algebra, 
so that As ^ "B. li A C E C B then B^ C E^ C A^ and M L ( ^ ^ \ A^) = 
I1L{A \ B ) , so S is closed under complements. It remains to show that !B 
is closed under countable unions. Let E = {j^En where £̂ ^ G S (n G N) 
increases to E^ and let e > 0. For some N^ IIL^E^) > IJLL^E) — s/2, and 
for some A e A, ""A (^ E^ and i^L(*^) > /^L{EN) - e/2; it follows that 
""A C E and /J^L^A) > IIL{E) — e. For the exterior approximation, there exists 
Bn^A with En C *5^ and iiL{^Bn \ En) < 6:2-(^+i). Put B = [j^Bn, then 
^ = U n ^ n C U n * ^ n C * 5 , a n d 

M(5) =/x^(*5) < A / L ( * ^ \ U * ^ - ) +i^^((U*^-) \ ^ ) ^I^L{E) 
n n 

< 0 + J ] 6 2 - ( ^ + i ) + IIL{E) < IIL{E) + 6 . D 

Call a function / : *X ^ R approximately standard provided: 

1. / is yi^'-measurable; 

2. the restriction g = f\x of / to X is an yi-measurable function from X 
to R; and 

3- f ^ ""g almost everywhere (with respect to fix,)-

For example, suppose /i : X ^ IR is a bounded yi-measurable function. 
For r G R, °*/i~^(-oo, r] = f]^^^*h~^{-oo,r + 1/n), so °*/i is ^l^-measurable. 
For X G X, /i(x) = */i(x) = °%(x), so /i = (°%)|x- It follows that °*/i is 
approximately standard. 

The main result of this section is the theorem of Henson and Wattenberg, 
that all yi^'-measurable functions are approximately standard. The proof here 
differs from theirs, and makes it possible to prove some new results about 
integrability. 

Denote by A P S the set of all approximately standard functions. The 
following enumerates some useful properties of APS. 

Lemma 2 

1. A P S is closed under finite linear combinations. 

2. If f,g e A P S then min{/ , g} G A P S and max{/ , g} G A P S . 

3. If fn ^ A P S , n G N; and fn monotonically increases pointwise to f, then 
/ G A P S . 
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4- Let h : X ^ M. be an A-measurable function, and put E = {x ^ *X : 
|*/i(x)| < oo}. Then (i) E G As, (ii) /J^LC^XXE) = 0, and (lii) °(*/ix^) G 
A P S (where XE ^S the characteristic function of E). 

Proof. 

1. Follows immediately from the observation that if / , ̂  : *X ^ R and 

a,/3 G R then ( a / + /3/) |x = ( a / | x + / 3 / U ) . 

2. As in (1), note that max{/ ,^} |x = m a x { / | x , ^ | x } and min{/ ,^} |x = 
m i n { / | x , ^ | x } . 

3. Let Qn = / n | x , An = {x e *X : ''g^{x) 56 fn{x)], and A = UnGN^n-
Since fiLi^n) = 0 for each n, /^^(A) = 0. Let g = f\x and note g = 
sup^ gn- Fix a standard e > 0, and for n G N let E^ = {x G X : 
gn{x) > g{x) - e}. Since X = UneN^n, I^L^^En) = ^(^n) increases 
to / / (A) = M L ( * A ) , SO I1L{A U ( * A \ UnGN*^n)) = 0. SuppOSC X G 

(*A \ A) n UnGN *^^- ^^^ s^"^^ n, m G N, X G *^n and /m(^) > f{x) - e. 
It follows that *^(x) < *^^(x) ^s'^ fn{x)^e < f{x) -\-£ < fra{x) + 2^ ^ 
*^m(^) + 2s < *5'(x) + 2s. Since e was arbitrary, *g(x) ^ /(3:^). 

4. P u t K = {^ e A : \h{x)\ < n } , so ^ = UnGN *^n G A ^ . A = UnGN^n, 

SO ijLL{*En) = /i(^n) increases to /i(A) = /iL(*A), and /iL(*A \ ^ ) = 0. 
The proof of (iii) is now like the example preceding the statement of 
this lemma. D 

Theorem 2 Every As-measurable function is approximately standard. 

Proof. Note that if A G A then x*A = \ A = °*XA is in A P S by Lemma 2 (4). 
By (1) and (3) of Lemma 2 and a suitable version of the Monotone Class 
Theorem (for example, Theorem 3.14 of [5]), every bounded A^-measurable 
function is in APS. If / > 0 is A^'-measurable then / = sup^max{/ , n} , so 
is in A P S by (2) and (3) of Lemma 2. Any general A^-measurable / can be 
written / = max{/ , 0} —max{—/, 0} so is in APS by (1) and (2) of Lemma 2. D 

For example, suppose E G As; denote by S{E) the set A fi E' of standard 
elements oi E. If / is the characteristic function of E then g = f\x is the 
characteristic function of S{E). By the theorem, S{E) is A-measurable and 
fi{S{E)) = IIL{*S{E)) ^J*9dfiL ^Jfdi^L^ l^LiE). 

Corollary 1 Let / : *A ^ R 6e approximately standard, and p > 0. Put 
g = f\x- Then f G ^^{IJLL) tf ct'^d only if g G £J^{I^), in which case f f^djiL = 
jg^dii and ||/||p = ||^||p. 
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Proof. Without loss of generahty, / > 0. Let 5^ : *X ^ M, n G N, be 
simple functions increasing pointwise to /^ . Put tn = Sn\x^ then tn is a 
sequence of simple functions on X increasing pointwise to g^. Moreover, if Sn = 
YT=i^kXEk then tn = YT=i^kXs{Ek)^ and J SndfiL = YT=i^k^L(Ek) = 
YlT=i^k/-f^{S{Ek)) = J tnd/j. Let n ^ (X), and it follows that J f^dfiL and 
J g^dfi are either both infinite or are both finite and equal. D 

The next result lets us extend the notion of approximate standardness to 
completion-measurable functions. 

L e m m a 3 Let f : *X ^ M; the following are equivalent: 

(i) f is measurable with respect to the I^L-completion of As; 

(^'^) f\x '^s measurable with respect to the jj.-completion of A, and f ^ * ( / |x ) 
off a HL-nullset in As-

Proof. Recall (without proof) the standard fact that a function is completion 
measurable if and only if it agrees with a measurable function off a nullset. 

(i ^ ii) There is an /l^'-measurable / ' and a //L-nullset A G As such that 
/ = / ' off ^ . Let g = f\x and g^ = / ' | x , then g' is /l-measurable, V ~ f off 
a /iL-nullset B G As, and {x e X : g{x) ^ g'{x)} C S{A). Since /iL(^) = 0, 
IJi{S{A)) = 0 by the example above, and so g' is measurable with respect to the 
//-completion of A. Note also that XS'(A)) = 0, so IIL{A U B U *S'(A)) = 0. 
For X G *X, X 0 A U 5 U *S'(A), f{x) = f{x) ^ g'{x) = g\x), proving (ii). 

{a =^ i) Let A G yi^ be a //^-nullset with / '^ * ( / |x ) off A. Let g = / | x , g' 
yi-measurable such that ^ = ^̂  off a //-nullset B ^ A, E = {x ^""X \ |V(^)I < 
oo}, and f = °(Vx£;). By Lemma 2, f is in A P S . For x ^ E U ""B U A, 
fix) ^ V(x) = *^(x) ^ / (x ) , so in fact f{x) = f{x). Since f is As-
measurable, / is completion measurable. D 

15.3 Egoroff's Theorem 

The most striking application [1] made of the S-measure construction was 
a proof of Egoroff's Theorem. Their proof relied on a nonstandard condition 
shown by Robinson to be equivalent to approximate uniform convergence. 

Here I use the machinery above to give an alternate proof of the theorem 
not depending on Robinson's condition. 

T h e o r e m 3 Let (X, yi,//) be a finite measure space, f^fn : X ^ R measur
able, fn^f CL'C. Then 

Ve > 0 3A G yi ii{A) > ii{X) - e Sz fn ^ f uniformly on A. 
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Proof. For n G N put g^ = inf^>-^/^ and h^ = s u p ^ ^ ^ / ^ . Note that 
for almost all x, hn{x) — gn{x) is nonnegative and nondecreasing in n with 
limn^oo^n(^) - 9n{x) = 0. Put g^ = °*^^, hn = """hn. Let E = {x G *X : 
lining CO i^nyX) 9n\X 

) 7̂  0}. Note E e As, so IJ^L{E) = IJ,{S{E)) = //(0) = 0. 
It follows that for some A e A, *A C E^ and /j.{A) > /i(X) — e. It remains 
to show that fn converges to / uniformly on A; equivalently, that h^ — gn 
converges to 0 uniformly on A. 

Fix S > 0. For x G M there is a fc G N such that hk{x) - gk{x) < 5. Note 
%k{x) — *gk{x) < 5 as well. Let 0(x) be the least k such that */ifc(x) —*^;.(x) < S. 
The function 0 : M ^ N is internal and finite-valued, so has a standard upper 
bound N eN. Then *hk — *̂ /c < ^ on M for every k > N, so hk - gk < S on 
A] this completes the proof. D 

15.4 A T h e o r e m of R iesz 

Theorem 4 Let T be a continuous linear real functional on £^(X, yi,/i); then 
there is a g such that for every f G /L^(X,yi,//)^ T{f) = j fgdji. 

After the proof we show that the function g is actually in iL^(X, yi,yu). 

Proof. By saturation let yi be a *-finite algebra with yio C yi C VI. There is 
an internal *-partition H of *X which corresponds to A in the sense that the 
latter is the internal closure of the former under hyperfinite unions. 

Now, define 

^^^^, X G p G n and */i(p) > 0; 
7(x) := { *M(P) 

^0, otherwise. 

Let a : n ^ *X be an internal choice function, that is, a^ G p for p G H. 
For any bounded, measurable / : X ^ R, 

T{f) = Y,*T{*fXp) (15.4.1) 
P 

^Y^JiapTTixp) (15.4.2) 

P 

P 

V •'P 
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= E / * / K ) ^ ( ^ ) * ' ^ ' " (15.4.5) 

P P 

/ 7 % (15.4.7) 

The steps from (15.4.1) to (15.4.2) and (15.4.5) to (15.4.6) follow from 
boundedness of / and the definition of yi. For (15.4.2) to (15.4.3) note that by 
continuity of T, if p G H and */i(j9) = 0 then *T(xp) = 0. 

Moreover, if */ is replaced in the above by any internal function /z, : *X ^ 
*]R with the property that h is constant on each p G 11, then all but the first 
equality in the above still holds, and we obtain *T(/i) = J h^ d^fi. In particular, 

iih = XA for some A^A then * T ( X A ) = X4 7 <̂*M-
The proof now proceeds as follows: (i) Show 7 is finite almost every

where (and therefore 7 =° 7 exists almost everywhere), (ii) Show that 7 is 
S-integrable (and therefore 7 = ° 7 is integrable). (iii) Put G = E[7|yi5] (the 
conditional expectation of 7). (iv) Let g be the restriction of G to X; by 
Theorem 2 ^ is yi-measurable. (v) Show that g works. 

For (i), write [7 < n] = {x G *X : ^{x) < n} {n e *N), and [7 < oc] = 
UUGNI^ ^ '^]- Suppose (for a contradiction) that /iL([7 < c>o]) < 1 — r for 
some standard r > 0. Then /i([7 < n]) < 1 — r for each standard n G N, 
so /x([7 < H]) < 1 - r for some infinite H. But then 00 > T( l ) ^ * / l7( i> 
(by the note above) > *Jr.^^i7(i*/x > H*iJ.{[j > H]) > rH, which is infinite, a 
contradiction. 

For (ii), the reader is referred to [4] for a discussion of S-integrability. 
In particular, to show that 7 is S-integrable, it suffices to show that Vi7 in
finite, *Jr.^^i7(i*yu ^ 0. (Indeed, this can be adopted as the definition of 
S-integrability.) 

So, fix such an H. Note [7 > i7] G A; it follows that *Ji-yH]7d*f^ = 
*T(x[^>^]). Suppose (for a contradiction) that *T{X[^>H]) > T > 0, r stan
dard. By (i), */x([7 > H]) ^ 0. It follows from transfer that for every stan
dard n G N there is di B^ e A with T{xBn) > r and //(^n) < 1/2"''. Put 
^ " '= [^m>nBm• Then / i (5- ) < E . n > n 2 - ^ = 2 - - + \ but T{XB-) > T. As 
n ^ 00, XB^ ^ 0 in £^ but T{XB^) > '̂ , contradicting continuity of T. 

It follows from S-integrability of 7 that 7 =° 7 is integrable, so its con
ditional expectation with respect to As, K[y\As], exists; put G = E[7|yi5']. 
(Conditional expectation is defined in the next section, where a simple non
standard proof for its existence is given. The reader is referred to chapter 9 
of [5] for properties of the conditional expectation.) 
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Finally, let ^ = G\x^ which (as noted above) is /l-measurable by Theorem 2. 
It remains to show that g satisfies the conclusion of Theorem 4. 

Let / G £2(x ,y i , / i ) , and suppose first that / is bounded. This ensures 
that ( 7 ) 7 is S-integrable, and (^7)7 G ^^{''X.AL, IJ^L)-

Then 

TU)^ j*fld*ii 

^ j nhduL 

= jE[rfh\As]dfiL 

= J rf)E[j\As]d^L 

^ j {°*f)GdiiL 

= fgdid 

(15.4.8) 

(15.4.9) 

(15.4.10) 

(15.4.11) 

(15.4.12) 

(15.4.13) 

The step from (15.4.8) to (15.4.9) is by S-integrability, (15.4.10) to (15.4.11) 
is a standard property of conditional expectation (using the fact that ° 7 is 
yi^-measurable), and (15.4.12) to (15.4.13) is Corollary 1 with p = 1. 

For unbounded / G £^(X,yi,/i) and n G N, let fn = max{—n, min{/ , n}}. 
By the result above, T(fn) = Jfngd/a. By continuity of T and Lebesgue's 
Dominated Convergence Theorem ([5], Theorem 5.9), T ( / ) = Jfgdfi. D 

The Riesz Theorem is usually stated in the following nominally stronger 
form. 

Corollary 2 Let T be a continuous linear real functional on iL^(X, A, jj,); then 
there is a g G £^(X,/ l , / / ) such that for every f G L'^{X^A^ /a), T{f) = ffgd/a. 

Proof. It suffices to show that any g satisfying the conclusion of Theorem 4 is 
already in £^(X, yi,/x). 

Since T is continuous, it is bounded, so there is a constant C such that for 
a n y / G £ 2 ( x , y i , ^ ) , r ( / ) < C | | / | | 2 . 

Put gn = min{^,n}. Then ||^^||^ = Jgldfi < Jgngdii = T(^^) < C||^n||2-
Divide both sides of this inequality by ||^n||2 and square, obtain Jg^djn = 
IÎ nII2 ^ ^^- The result now follows by Fatou's Lemma ([5], Lemma 5.4). D 
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15 .4 .1 Cond i t iona l e x p e c t a t i o n 

T h e o r e m 5 Suppose (X, A, /x) is a probability measure, that "B C A is another 
a-algebra, and that f G £J^{X,A, fi). There is a "B-measurable function g : X -^ 
M such that for any B ^ B, j ^ f dji = j^gdfi. 

The function g is called the conditional expectation of / on !B, and denoted 
by E[/|!B]. 

To avoid circularity, it is necessary to show that E[/|!B] exists without 
use of the Riesz Theorem (or related results, such as the Radon-Nikodym 
Theorem). Such a proof appears in [3]. This section presents a modification of 
that proof which is even more elementary, in that it does not require the Hahn 
decomposition. 

Without loss of generality / > 0. Put 9 = {g e JCJ^^X^B, fi) : WB e B, 
j^gdji < J^fd/j,}. Note if ^1,^2 ^ S then max{^i,^2,0} ^ S- Let r = 
8wp{J^ gd/j. : g G S}, and for n G N let gn ^ 9 with J^ gnd/j. > r — 1/2^; we 
may assume that 0 < gi < g2 < - • - - Put g = sup^^^. Note that ii B G S, 
J^gd/j. = sup^ J^gndfi < j^fdji, so g e 9. Moreover, Jxgd/J^ = r. It 
remains to show that for any 5 G S, J^ f d/j = J^ g dfi. 

Suppose not; then there is a 5 G S and 5 > 0 with J^ f dfi — J^ g dfi = e. 
For some 5 > 0, e' = J^{f — g)dfi > 0 where g = g -\- SXB- 9 almost 

witnesses a contradiction; the perturbation by 5 needs to be localized to a 
slightly smaller set. 

As in the proof of Theorem 4 let !B be a *-finite algebra with {*5 : 5 G 5 } C 
S C *'B, and let II be the internal hyperfinite *-partition of *X corresponding 
to %. Let 5 + = U{6 G n : / , * ( / - ^ )d> > 0}. Put s = ^J^+'^if - g)d% 

Note that for every C G S, if C C B then / ^ ( / - g)d/j. = f.^'^if - 9)d^l^ < 
s; in particular, e^ < s. 

For n G N consider the statement, 

3Br,eB, Br^CB, / (f-g)dfI>S-2-^ 
J Bn 

As this holds in the nonstandard model (with B^ for Bn)-, it holds by 
transfer in the standard model. For m G N put B^ = [J^^^Bn, and put 
Boo = HmB"^- Note Boo e B and B^o C B, so J^Jf-g)dfi < s. On 
the other hand, since always J^ ( / — g)d/i > s — 2~^, J^m{f — g)d/d > s — 
T.n>m 2 - " = 5 - 2 — , therefore / ^ ^ ( / - g)d,x > s. 

Put g'= g + 6xB^. lice's, 

[{f-g')dfi=[ {f-g)dij+ f {f-g)d^Ji. 
Jc Jc\B^ JcnBoc 
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The first term in this sum is nonnegative since g ^ 9. The second is nonnegative 
since otherwise f^ ^^{f — g)dii > s. \i follows that j^{f — g')dii > 0, so ^' G 
S. Since s > 0, fi{Boo) > 0, so Jg'd/j. = jgdji-]- 6fi{B^) > r, a contradiction. 
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16 
A Radon-Nikodym theorem for a 
vector-valued reference measure 

G. Beate Zimmer 

Abstract 
The conclusion of a Radon-Nikodym theorem is that a measure fi can 
be represented as an integral with respect to a reference measure such 
that for all measurable sets A, /x(A) = J^/^(x)( iA with a (Bochner or 
Lebesgue) integrable derivative or density /^ . The measure A is usually a 
countably additive cr-finite measure on the given measure space and the 
measure /i is absolutely continuous with respect to A. Different theorems 
have different range spaces for /z, which could be the real numbers, or 
Banach spaces with or without the Radon-Nikodym property. In this 
paper we generalize to derivatives of vector valued measures with re
spect a vector-valued reference measure. We present a Radon-Nikodym 
theorem for vector measures of bounded variation that are absolutely 
continuous with respect to another vector measure of bounded variation. 
While it is easy in settings such as /i < < A, where A is Lebesgue measure 
on the interval [0,1] and /x is vector-valued to write down a nonstan
dard Radon-Nikodym derivative of the form ip : *[0,1] -^ fin(*£') by 
(Pi_i{x) = Xli=i *x(A ) l ^ i (^ ) ' ^ vector valued reference measure does not 
allow this approach, as the quotient of two vectors in different Banach 
spaces is undefined. Furthermore, generalizing to a vector valued control 
measure necessitates the use of a generalization of the Bartle integral, a 
bilinear vector integral. 

16.1 Introduction and notation 

For nons tandard notions and nota t ions not defined here we refer for exam

ple to the book by Albeverio, Fenstad, Hoegh-Kr0hn and Lindst r0m [1] and 

the survey on nons tandard hulls by Henson and Moore [6] or the in t roduct ion 

Department of Mathematics and Statistics, Texas A&M University - Corpus Christi, 
Corpus Christi, TX 78412. 



228 16. A Radon-Nikodym theorem 

to nonstandard analysis in [7]. Plenty of information about vector measures 
can be found in [5]. 

Throughout, O is a set and E is a cr-algebra of subsets of ^. E^F and 
G denote Banach spaces, ji \ Ti ^ E and u : T> ^ F are countably additive 
vector measures of bounded variation. The variation of u is defined as |i^|(A) = 
sup X^TTGII ll^(^7r)|| where A ^ T> and 11 is a finite partition of A into sets in E. 
By Proposition 1.1.9 in [5] the variation \u\ of a countably additive measure u 
is also a countably additive measure on E. 

We think of the nonstandard model in terms of superstructures V{X) and 
F(*X) connected by the monomorphism * : V{X) -^ F(*X) and call an ele
ment b G V{*X) internal, if it is an element of a standard entity, i.e. if there 
is an a G V{X) with b G *a. We assume that the nonstandard model is at 
least K-saturated, where ^̂  is an uncountable cardinal number such that the 
cardinality of the cr-algebra E of |i/|-measurable subsets of O is less than H. 

Let (*0, L|^|(*E), \iy\) denote the Loeb space constructed from the nonstan
dard extension of the measure space (O, E, |z/|). This measure space is obtained 
by extending the measure °*|z/| from *E to the cr-algebra generated by *E. The 
completion of this cr-algebra is denoted by L|^|(*E). The Loeb measure \iy\ is 
a standard countably additive measure. 

The functions we work with take their values in a Banach space E or its 
nonstandard hull E. The nonstandard hull of a Banach space E is defined as 
E = fin(*£^)/ ^, the quotient of the elements of bounded norm by elements 
of infinitesimal norm. The nonstandard hull is a standard Banach space and 
contains £̂  as a subspace. We denote the quotient map from fin(*£^) onto E by 
TT or TTE' Whenever we encounter products of Banach spaces, we equip them 
with the £oo norm: ||e x / | | = max(||e||, | | / | | ) . 

By a result of Loeb in [8], there exists an internal *-finite partition of *n 
consisting of sets A i , . . . ^AH G *E {H G *N) such that the partition is finer 
than the image under * of any finite partition of O into sets in E. The proof 
uses a concurrent relation argument. From this fine partition we discard all 
partition sets of *|i/|-measure zero. The remaining sets still form an internal 
collection, which we also denote by A i , . . . , AH-

16.2 The existing literature 

Ross gives a nice detailed nonstandard proof of the Radon-Nikodym the
orem for two real-valued cr-finite measures fi « z/ on a measurable space 
in [9]. Previously we have studied nonstandard Radon-Nikodym derivatives 
of vector measures (i \ Ti ^ E with respect to Lebesgue measure on [0,1]. 
We have shown that through nonstandard analysis a unifying approach to 
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Radon-Nikodym derivatives independent of the Radon-Nikodym property or 
lack thereof of E can be found. The generalized derivatives we constructed are 
not necessarily essentially separably valued and therefore not always Bochner 
integrable. However, a generalization of the Bochner integral in [10] for func
tions with values in the nonstandard hull of a Banach space allows one to 
integrate the generalized derivatives. In [11] with methods similar to those 
used by Ross [9] or Bliedtner and Loeb in [3], and with the use of local refiex-
ivity we "standardize" the generalized derivatives from maps *^ ^ ^ to maps 
O -^ E" with values in the second dual of the original Banach space E. 

The vector measures book [5] by Diestel and Uhl is still considered as 
the authoritative work on Radon-Nikodym theorems. The standard literature 
yields very little on vector-vector derivatives; only Bogdan [4] together with 
his student Kritt has made an initial foray into this field. In their article they 
assume that they have two vector measures fi : T^ ^ E and u : T> ^ F with 
// < < |z/|, and they assume that the range space of // has the Radon-Nikodym 
property and the range space of v is uniformly convex. They then define a 
derivative and integral in the form /i(A) = J^ dh^i^) ' " i^(^) ^^^ where -^ is 
a function from ft into F\ the dual space of the range of u. The integrand is 
then of the form ^ ( ^ ) = e • /^, a function from O into E x F\ A trilinear 
product on ExFxF^ with values in E can be defined as e - / ' - / = f\f)-e. This 
is needed to integrate simple functions of the form XlILi ^̂  * / / * ^A -^ ^ ExF' 
with respect to the F-valued measure v as follows: 

/ 
^ i=l 2=1 i=l 

The main difficulty is the definition of - ^ , the derivative of a real-valued 
measure with respect to a vector-valued measure, the opposite setting from 
the ordinary Radon-Nikodym theorems. Bogdan uses his assumption that F 
is uniformly convex to find this derivative. Since v « |i/| and since uniform 
convex spaces are reflexive and hence have the Radon-Nikodym property, there 
is a Bochner integrable function 4 ^ : ̂  ^ F such that for all measurable sets 

A, the vector measure can be written as a Bochner integral i'{A) — J^ 4 ^ d\u\. 
A standard theorem (e.g. Theorem II.2.4 in [5]) about vector measures states 
that the norm of the Radon-Nikodym derivative is a Radon-Nikodym derivative 
for the total variation of the vector measure, i.e. for all A G E 

WU) 
du 

d\iy\ 
d\iy\ 

This implies that |?/|-almost everywhere on Q, | | ^ | | = 1. For uniformly 
convex spaces F there is a continuous map g : Sp ^ 5^?/, where Sx denotes 
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the unit sphere of X, such that {f,g{f)) = 1 for all / G Sp. In this case, the 
composition g o ^ is a map from Q. into the unit sphere of F\ The derivative 

of /J. with respect to u is defined as ^ = 4 ^ • (^ o ^ ) : Q ^ E x F\ or, if 
one regards the product e x / ' as a rank one continuous linear operator from 
F to E^ the derivative can be considered a map: -J^ : ̂  ^ L{F^ E). Since ^ 

and 4 ^ are both Bochner integrable and g is continuous and g o ^ is almost 
everywhere of norm one, it is easy to show that the result is integrable with 
respect to the vector measure v with an integral that uses approximation by 
simple functions. 

16.3 The nonstandard approach 

With nonstandard analysis we can significantly weaken the assumptions on 
the Banach spaces E and F. We use Bogdan's idea of writing the derivative 

as d\iy\ dv> d\v\ 

AiL a-n.q JJ^ The derivatives ^ and 4 ^ are derivatives of a vector measure with respect 
to a real valued measure. They can be found and integrated with the methods 
described in [10], [11] or [12]. 

In [10] we defined a Banach space M(|z/|,£') of extended integrable func
tions as the set of equivalence classes under equality |i/|-almost everywhere of 
functions f : ""ft ̂  E for which there is an internal, *-simple, AS-integrable 
(/? : *Q ^ *£' such that TTE ̂  ^ = f |z^|-almost everywhere on *Q. Such a 
(f is called a lifting of / . On M{\iy\/E) we defined an integral by setting 
J^f d\iy\ — TT (J^ (y^d*|z/|), for all A G *E, where the integral of the internal 
simple function ip is defined in the obvious way. This integral can be extended 
to sets in the Loeb cr-algebra and generalizes the Bochner integral in the sense 
that M{\iy\/E) contains Li{\iy\^E) and the integrals agree on that subspace. 
However, M{\i/\^E) also contains functions which fail to be essentially separa
bly valued and hence fail to be measurable. Lemma 1 in [11] translates to this 
situation as: 

Lemma 16.3.1 Let E be any Banach space and let JJL \ T, ^ E he a \v\-
ahsolutely continuous countahly additive vector measure of hounded variation. 
Then the internal ^-simple function (/?̂  : *r̂  ^ *£' defined hy 

is S-integrable, where A i , . . . , AH is the fine partition of *0 introduced ahove. 
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5'-integrabihty imphes that the function is |z/|-almost everywhere fin(*^)-
valued. This ahows us compose an S'-integrable internal function with the 
quotient map TVE - fin(*^) ^ ^ to make it a nonstandard hull valued function 
defined on the Loeb space (*r̂ , L|^|(*!]), |i/|). Define /^ G M{\iy\,E) by 

Theorem 4 in [11] asserts that if the vector measure /j, has a Bochner integrable 
Radon-Nikodym derivative, then the generalized derivative "is" the Radon-
Nikodym derivative in the following sense: 

Theorem 16.3.2 Let fi :Ti ^^ E be a countably additive vector measure with 
a Bochner integrable Radon-Nikodym derivative f : ft ^ E. Define the gener
alized Radon-Nikodym derivative f^'.'^Q.^Eas above. Then 

^E ^*f = ffi on each set Ai in the fine partition of *0. 

Of course, the same arguments also work for finding a F-valued generalized 
derivative /^ G M(|i/|, F) of the vector measure i/ : E ^ F with respect to its 
total variation |z/|. Differentiating v with respect to its total variation gives 
one extra feature of the derivative: 

Lemma 16.3.3 Let F be a Banach space and let v \ Y, ^ F be a countably 
additive vector measure of bounded variation. Define 

z = l ' '^ ^ 

Then f^ = np o (̂ ^ is \iy\-almost everywhere of norm one. 

Proof. Since v « \iy\, the S'-integrability of fi^ follows from Lemma 16.3.1. 
The norm condition follows from an adaptation of a basic standard result 
(Theorem IL2.4 in [5]): if / is Bochner integrable and a vector measure F is 
defined by F{A) = J^fd\iy\, then \F\{A) = J^ \\f\\d\u\. By construction of the 
generalized derivative. 

for all v4 G *E. In this situation it implies that 

du 

IA 
> | ( A ) = / 

J A 

7 * 1 I 

d w\ d\v\ 

and hence * [[(̂ ^̂ (̂cj)!! = 1 for |i/|-almost every cj G *r̂ . D 
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16.4 A nonstandard vector-vector integral 

The next theorem ahows us to generahze the generahzed Bochner integral 
to a vector-vector integral which for any simple function obviously agrees with 
the Bartle integral developed in [2]. For the definition of the Bartle integral, 
E, F and G are Banach spaces equipped with a continuous bilinear multipli
cation E X F ^ G and i/ : E ^ F is a countably additive vector measure 
of bounded variation. Such a product can arise by taking E = F = G to he 
a C*-algebra, or by taking E = F' and G = M, or by taking E = L{F,G). 
A function f : ^ ^ E is Bartle integrable if there is a sequence of simple 
functions Sn that converges to / almost everywhere and for which the se
quence Xn{A) = J^Sndiy converges in the norm of G for all A G S. Then 
J^fdiy = lim^^ooAn(^) exists in norm uniformly for all 4̂ G E. Essentially 
bounded measurable functions are Bartle-integrable. The Bartle integral is a 
countably additive set function. 

Theorem 16.4.1 Let E^F and G be Banach spaces equipped with a continu
ous bilinear multiplication E x F ^ G. Assume that v : T^ ^ F is a countably 
additive vector measure of bounded variation and f G M(\iy\^E). The integrand 
f has an internal lifting (ff and there is an internal ^-simple lifting (fjy of the 
generalized derivative of ly with respect to \iy\. Then for all A G *E^ the integral 
J^ f dV defined by 

/ fdl)=7TGi (ff '(fiyd'^lu 

is a well-defined countably additive G-valued integral. 

Proof. The function / G M(\U\/E) has a internal, S-integrable and *-simple 
lifting (/9/ : *n ^ fin(*£'). By Lemma 16.3.3 (/̂ ^ : *f2 ^ fin(*F) is internal, 
*-simple, S'-integrable and of norm one almost everywhere. Continuity of the 
multiplication ExF ^ G implies that the product (fff^ is an S'-integrable and 
internal *-simple function from *f2 -^ fin(*G). This means that it is a lifting of 
an extended Bochner integrable function in M(|j / | , G) and hence the G-valued 
generalized integral with respect to \iy\ applies and gives a well-defined vector-
vector integral. Since the extended Bochner integral is countably additive, so 
is this integral. D 

The use of nonstandard analysis simplifies standard arguments here, since 
in the standard setting this argument would only work if the Banach space F 
had the Radon-Nikodym property. 
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16.5 Uniform convexity 

Bogdan needed the assumption that F is uniformly convex to convert the 
F-valued derivative 4 ^ into the F'-valued derivative -^. He composed the 

derivative 4 ^ with a continuous map g from the unit sphere of F to the unit 
sphere of its dual space F^ such that for all f G Sp^ (/, g{f)) = 1. The resulting 
map g o ^ : ft ^ F^ is \Ty\ measurable and inherits the integrability of 4 ^ . 

If the Banach space F happens to be uniformly convex, we can compose 

the nonstandard extension of g with ipjy. In this case, {f,g{f)) = 1 for all 

f e SF translates into (^^|^[(^, *^(*M(Ao) / = 1 for z = 1 , . . . , i7 i.e. 

•"'^•'••' '(MS))=*"'|<^-'^ 

Theorem 16.5.1 Let E he any Banach space and let F be a uniformly convex 
vector space. If the vector measure ji \ Ti ^^ E is absolutely continuous with 
respect to the total variation of the vector measure v -.T, ̂  F, then there is an 
extended Bochner integrable function f \ ""ft ^ E x F' such that for all A ^ Yl 

fi{A)= [ fdv. 

Proof. Define (pf = cpj^ - {"^gocpj^)^ where cpj^ is a lifting of the generalized 
derivative ^ , (fjy is a lifting of the generalized derivative 4 ^ and g is the 
continuous map from SF to SF^- This lifting is internal, 5'-integrable, *-simple 
and takes its values in fin(*£') x *SF'' Define f = TTEXF' ^ ^f- Then 

""g^if^iu)) d*Ty 

H 

/ J * 

> ( A 

and similarly for /x(A), where (A^) is replaced by (A^ fl *A) throughout. Since 
the fine partition refines the standard partition of fl into A and its complement, 
Ai n *A is either the empty set or A^. D 
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If E has the Radon-Nikodym property, then this hfting coincides with the 
image of the derivative found by Bogdan in the nonstandard huh of the space 
of vector-vector integrable functions on f2. 

16.6 Vector-vector derivatives without 
uniform convexity 

We can weaken the assumption on F : it foUows from the Hahn-Banach 
theorem that for each nonzero / G F there is an / ' G F' with | | / ' | | = 1 and 
/ ' ( / ) — 11/11- Without uniform convexity, the choice of / ' is not necessarily 
unique, and the map f ^^ f need not be continuous on the unit sphere of F. 
We can forego the use of a function g defined on ah of Sp- Ah we need is a 
derivative on each set Ai in the fine partition of *f2. 

Theorem 16.6.1 Let F he any Banach space and letv \Ti ^^ F he a countahly 
additive vector measure of hounded variation. Then there is a function ^|^| G 

M(\U\,'F^') such that 

J*A 

for all A G E. 

Proof. As the cohection of sets Ai is internal, we can use the axiom of choice 
to get an internal collection of norm one functionals gi G "Spf with 

(7i (V(A,)) = > | ( A ) ioTz = l,...,H. 

Define an internal *-simple S'-integrable function, ^̂ ĵ j : *Q -^ ""Spf by 

H 

i=l 

This function is a lifting of an extended integrable function ^|^| G M{\i/\,F'). 
We can define a continuous bilinear multiplication F ' x F ^ M by / ' • / = / ' ( / ) 
and then use the integral from theorem 16.4.1. In this case the quotient map 
TTG becomes the standard part map ° : fin(*]R) -^ R. By the choice of the fine 
partition, Ai D *A is either the empty set or equals Ai. 
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H 

^ ^ , . V ( A , n * A ) 
2 = 1 

H 

J]>|(A,n*A) 

u\CA)) 
s = i 

o / * 

for any set A G E. This finishes the proof, as for all A G E, \iy\{A) = ° 0 | ( * A ) ) . 
D 

The last theorem constructed a derivative for any count ably additive vector 
measure of bounded variation with respect to its total variation as an element 
of M(|z/|, F^). This was the main difficulty in differentiation with respect to a 
vector measure. Now we can differentiate one vector measure with respect to 
another vector measure. 

Theorem 16.6.2 Let E and F he any Banach spaces, let fi \ Ti ^ E and 
v \ Ti ^ F he a countahly additive vector measures of hounded variation such 
that II « \iy\. Then there is a function h G M{\u\^E x F^) such that for 
allAeJ: 

hdv. 
A 

Proof. The continuous trilinear multiplication E x F' x F ^ E defined by 
ex f X f = f\f) • e extends to a continuous bilinear multiplication E x F' x 
F ^ E defined by 7r(e x f) x 7T{f) = TTEU'U) ' ^)- The extended integrable 
function h : *ft ^ E x F^ is defined through its lifting Lp = (/9^-'0|^|, the product 

of the lifting V̂^̂  of ^ G M{\^\,E) and the lifting V |̂̂ | of ^ ^ G M ( H , F ^ ) 
found in theorem 16.6.1. Setting 

we obtain a * simple internal function with values in fin(*£^) x *SF'- The 
iS-integrability of (p follows from the 5'-integrability of (/?̂  and Lemma 16.3.3 
which asserts that *||'0|jy||| ~ 1 almost everywhere. Then for all A G E 

7 r E f f ; V ( A i n M ) j 
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E^e;?^7^-(^-i---)-MA'-*^) 
, ^ *n{Ain*A) 

TTE 

L 

v\{A,n^A) 

f / ^11' 1̂̂ 1 d*v 

hdv. 

and /i : *f2 ^ £̂  X FMs an extended integrable generalized vector-vector deriva-
tive f. • 

16.7 Remarks 

All the constructions above depend on the choice of a fine partition A i , . . . , 
AH of *0 that refines all finite standard partitions of O into measurable sets. 
A different choice of the partition would yield different derivatives, especially 
in the case of a non-uniformly convex Banach space F. However, for the 
standard analyst there is no noticeable difference between different choices of 
fine partitions, as the integrals over any standard set will be the same, no 
matter which fine partition is used. 

Representing a vector measure z/ : E ^ F as an integral of its generalized 
derivative 4 ^ simplifies some of the results on Loeb completions of internal 

measures [13] by Zivaljevic. 
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17 
Differentiability of Loeb measures 

Eva Aigner 

A b s t r a c t 
We introduce a general definition of iS-differentiability of an internal 
measure and compare different special cases. It will be shown how 
5-differentiability of an internal measure yields differentiability of the 
associated Loeb measure. We give some examples. 

17.1 Introduction 

In this paper we present some new results about differential properties 
of Loeb measures. The theory of differentiable measures was suggested by 
Fomin [9] as an infinite dimensional substitute for the Sobolev-Schwartz theory 
of distributions and has extended rapidly to a strong field of research. In 
particular during the last ten years it has become the foundation for many 
applications in different fields such as quantum field theory (see e.g. [10] or [14]) 
or stochastic analysis (see e.g. [4], [5], [6] and [15]). 

There are many different notions of measure differentiability. The following 
two are most common (see e.g. [3], [6], [9], [13] and [15]). Let î  be a Borel 
measure on a locally convex space E and y an element of E. 

1) The measure u is called Fomin-differentiable along y if for all Borel sub
sets B G E the limit 

v{B + ry) -iy{B) 

r^O, reR r 

exists. 

2) The measure v is called Skorohod-differentiable with respect to y, if there 
exists another Borel measure u' on E, such that for all continuous real-

Ludwig-Maximilians-Universitat,Miinchen, Germany. 
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valued bounded functions g on E 

lim 19{^ - ry)di^i-) - 19ix)d.{x) ^ f^^^^^^^^y 

The relationships between these two approaches were studied by Averbukh, 
Smolyanov and Fomin [3] and Bogachev [6]. 

A very general definition of differentiability of a curve of measures is given 
by Weizsacker in [16]. 

In this paper we define measure differentiability as follows. 

Definition 17.1.1 Let {yt^J^^v) he a measure space, {yr)-s<r<e, ^ ^ ^ ^ ; ^ 
curve of nonnegative finite a-additive measures on Q such that v — v^ and C 
a set of T-measurable real-valued hounded functions on ^. We say that v is 
differentiable with respect to the set C if there exists a signed finite a-additive 
measure v' on VL, such that for all functions g of C 

r^o r J 

The measure v' is called a derivative of v. 

Note that Definition 17.1.1 covers the cases mentioned above, since for a 
locally convex space ^ and a fixed vector y G O a curve {vr)-e<r<e can be 
defined by VriB) = iy{B -\- ry) for all Borel subsets B C ^. When choosing 
C = {1B '• B G ^ } , where 1^ is the indicator function, we obtain Fomin-
differentiability. When choosing C as the set of all continuous bounded func
tions we obtain Skorohod-differentiability. 

Differentiability (in the above sense) for Loeb measures has not been stud
ied previously as far as we are aware. Hence the aim of this paper is to present 
the foundation and basic results. Since we want to obtain results for Loeb 
measures, in the first part we provide and discuss natural and very general 
assumptions for the underlying internal measures. The arising results for the 
Loeb measures — in particular a powerful theorem for the case of Fomin dif
ferentiability — are presented and discussed in the second part. Short and 
simple examples will illustrate the results. 

A more complex and detailed description of differential properties of Loeb 
measures will be given in the author's thesis ([1]). A main topic of that thesis 
is also the application of the basic results to nonstandard representations of 
abstract Wiener spaces (see [7], [8] and [12]), which yields new insights also in 
standard mathematics. 

The reader should be familiar with the basic results on nonstandard analysis 
and the Loeb measure construction, presented e.g. in [2], [7] and [12]. 
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17.2 S'-differentlability of internal measures 

Standing Assumption 
Throughout this paper let O be an internal set, A an internal V-field on ^ 

and /i > 0 an internal V-additive S-bounded measure on A. Let {lLit)teJ be an 
internal curve of nonnegative V-additive iS-bounded measures on A. Since we 
want to obtain an external curve of Loeb measures, we assume that for some 
e G M^ the internal parameter set J is either an interval of ~^M. containing the 
standard interval / = ] — £ , €[ or J is a discrete interval { ^ , ~^"^ , . . . , •^^, ^} 
with H G "̂ N \ N, fc G { 1 , . . . , H} and £ < ^. Moreover, the internal curve 
{l^t)teJ shall be S'-continuous in the following sense. If t, s G J with t ^ s^ 
then fit{A) ^ Ms(^) for each A G A. Finally we assume that fi — [IQ. 

We now introduce S'-differentiability for internal measures. 

Definition 17.2.1 Suppose we have a (not necessarily internal) set C of in
ternal'^l^-valued functions on ^, each being A-measurable and S-bounded. We 
say that the internal measure fi is S-differentiable with respect to the set C if 
there exists an internal S-bounded signed measure ii' on A so that for all f ^ C 
and for all infinitesimals t ^ J^ t ^ 0 

Jf{co)dM^)-If{^)d^i{co) ^ j f^^)d„\u). 

We call jji' an (internal) derivative of ji. 

Note that a derivative is not uniquely determined by the above definition. 
If 11 is S'-differentiable with respect to a set C and if for some infinitesimal t G J 
the internal measure ^*~^ ^^^ limited values, then ^*~^ is a derivative of /i. 

In this section we will regard and compare S'-differentiability for differ
ent sets C of functions. Following the standard literature we define AS-Fomin-
differentiability. 

Definition 17.2.2 The internal measure ji is called S-Fomin-differentiable if 
the differentiability is with respect to C = {1A - A G A} where 1A is the 
indicator function. 

Note that in the case of S'-Fomin-differentiability each measure ^^~^ with 
t ^ 0, t G J \ {0}, is a derivative of //. The following proposition shows the 
power of ^-Fomin-differentiability. 

P ropos i t i on 17.2.1 If fi is S-Fomin-differentiable and (i' is a derivative of 
11, then fi is S-differentiable with respect to the set C of all S-bounded '̂ 'R-
valued A-measurable functions. The Fomin-derivative ii' is also a derivative 
with respect to C. 
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Proof. Let fi be 5-Fomin-differentiable and let /i' be a derivative of /i. Let 
t 7̂  0 be an infinitesimal of J and set jl := ^^~^. Since in^ ^ JJL on A we 
obtain J f{uj)dfi\uj) ^ J f{uj)djl{Lj) for all S-bounded ^-measurable functions 
/ : O ^ *R. D 

When considering measures with Lebesgue densities, then the following 
lemma is useful. 

Lemma 17.2.1 Let ft = '̂ 'M, A the internal field of Borel subsets, y a fixed 
element of'^M, ii an internal S-hounded measure on A. Take J = '̂ 'R and for 
all t ^ J define fit{^) = M ( ^ + ty) for all A ^ A. Assume that ji has an 
internal Lebesgue density f satisfying the following three conditions: 

i) / ^ 0; / = 0 only on a set of internal Lebesgue measure 0. 

2) f is^differentiable in the direction ofy (with derivative fy{x) := f'{x)-y). 

3) Ift^ 0, then for all x e^^R with f{x) 7̂  0 

1 (f{x + ty) 

/ (^) 

Now if the internal function Pft : V . *ii 

m^) 
/3^(^) = <; fix) 

0 tffix 

^ fix) • 

, defined by 

^ffix)^0 

0, 

is Sf^-integrable, then fi is S-Fomin-differentiable and if fi' is a derivative, then 
for all A^ A 

l^\A) ^ f (3y{x)d^{x). 
J A 

Proof. Since /3^ is S'^-integrable, A \-^ j^(5f^{x)dii{x) defines an S'-bounded 
measure. Now let TV = {x E "̂M : f{x) = 0}. Then A(7V) = 0, where A is the 
internal Lebesgue measure. If t ^ 0, t 7̂  0, then 

^it{A)-ii{A) i (3lix)d^ix) < 
fix + ty)-fix) L 

I \-{ 
JA\N 11 V 

t 

1 /fix + ty) 

t V fix) 

I3lix)-fix) 

f'yix) 

fix) 

dXix) 

dnix) 

0. 

Here we have used condition 3) and the fact that /i is S'-bounded. D 



242 17. Differentiability of Loeb measures 

Example 17.2.1 Let Q = '̂ 'M, A be the internal field of Borel subsets and 
/i defined by //(A) = J^ j^^dX(x). Fix an element ^ G '̂ 'M and define the 
curve by /xt(^) = JA-\-t 1 + ^ dA(x), t G '̂ 'M. If y is limited, then it's easy to 
see that the assumptions of Lemma 17.2.1 are satisfied. Hence the measure // 
is S'-Fomin-differentiable and if fi^ is a derivative, then fi^{A) ^ J^ T+f̂  dfi{x) 
for each A G A. If y is an unlimited element of '*']R, then /i is not S'-Fomin-
differentiable, because for t = - and for the internal interval A = '*'[0,1] C ̂ M. 

the value ^̂ ^ ^~^̂  ^ is unlimited. 

Remark Note that Lemma 17.2.1 is also true for O = ^R^, L G ^N. In 
the author's thesis [1] this is used to show the S-Fomin-different lability of 
a nonstandard representation of the Wiener measure introduced by Cutland 
and Ngin [8]. 

We now turn to other forms of S-different lability. Again, following the 
standard literature, we define S-Skorohod-differentlability. 

Definition 17.2.3 Let ft be a subset of ^M where M is a metric space and 
let A be an internal '^a-field on f2. The measure ii is called S-Skorohod-
differentiable if it is S-differentiable with respect to the set of all S-bounded, 
A-measurable functions f : ^ ^ ~^]^ that are S-continuous. This means, 
f{uj) ^ f{oj) for uj^uj G ft, uj ^ oj. 

If O is as described in Definition 17.2.3, then, as a consequence of Proposi
tion 17.2.1, S-Fomin-differentiability implies S-Skorohod-differentiability. The 
following example shows that the converse is not true. 

Example 17.2.2 Fix a natural number H e ""N \'N and let f2 C "̂ R, f2 = 
{^ ' z • z G'^Z}. The measure /i is the counting measure defined on the field 
of internal subsets of r ,̂ i.e. 

M(A) 
l-4n[Q,V] 

H 

Here [O, V ] = {0, ;^, 
Now let J C 17, J = [-

. . . , ^^jj^} and |A| is the internal number of elements. 

jj, jj] with / G *N, jj ^ \ and let {iJit)teJ be defined 
by iit{A) = ii{A +1) . Note that for any k G "̂ N with -^ e J we obtain: 

and 

Ilk —11 

H 

ll-k — 11 

H 

K 

K 

A{^ 

y4n 

'-k -1] 

• fc-il 

-

-

An 

An 

'H-k H-^ 
_ H ' H \ 

'H H + k-lV 
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Now choose fc G *N with jj ^ J and jj '^ ^ and set A = [0, ^ ] . Then 

fik_ — 11 11^^ — iJi 
^ ^ ( A ) = 0 and ^ ^ ^ ( A ) 

H H 

Hence JJL is not S'-Fomin-differentiable. It is not hard to check that /i is S-
Skorohod-differentiable with internal derivatives ^^~^ for all infinitesimals t G 
J \ { 0 } . We will give a standard application of this example in Example 17.3.1. 

Finally we consider S'-differentiability with respect to '^'continuous func
tions. We will see that this is equivalent to S-Fomin-differentlability. The 
following proposition can be easily shown by transfer of Urysohn's Lemma. 

Proposition 17.2.2 Let O he an internal '^normal space, A the internal field 
of Borel subsets. If {lJit)teJ '^^ ^ curve of '^regular measures, then /x 5̂ S-
differentiable with respect to the set C of all internal ~^continuous S-bounded 
functions if and only if fi is S-Fomin-differentiable. 

17.3 Differentiability of Loeb measures 

In this section we show how S'-differentiability of an internal measure yields 
differentiability (in the sense of Definition 17.1.1) of the corresponding Loeb 
measure. Recall the Standing Assumption on page 240. 

Now we can define a curve of Loeb measures in a unique way. Let e G M+ as 
described in the Standing Assumption (page 240), / =] ~ ^^^i- ^^^ each r G / 
choose t ^ J such that t ^ r and set jj^r := fit- Let us denote the associated 
Loeb spaces by {rt^Li^^{A),{fir)L)- Since the Loeb cr-fields L^^(^) are not 
necessarily identical we choose a joint cr-field JF c HrG/ ^i^r (^)- We now define 
the curve {{fiL)r)rei of measures on JF by {fiL)r •= {f^r)L restricted to T. 

Let us mention some obvious connections between S'-differentiability and 
differentiability. 

Lemma 17.3.1 Let fi be S-differentiable with respect to a setC of internal "̂ M-
valued, A-measurable and S-bounded functions on Vt and let fi' be an internal 
derivative of fi. 

1) Then for all f eC 

The convergence is uniform, if C is internal. 
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2) Suppose 

C := {g : ̂  ^ M. : there is an f G C with °(/(cj)) = g{uj) for all uj G ^} 

and 

^̂ , :=(f|VM))nvM)-
Then the Loeb measure JIL, restricted to T^^i, is differentiate with respect 
to the set C and the Loeb extension (/i^L of °{lJi'), restricted to J^^i, is a 
derivative {/J^LY of /JL. This means that for all g G C: 

limj '- = / g{u)d{fi)L[uj). 
r^O r J 

Note that, if iJ.^ and 7' are two internal derivatives of /i, then J g{ijo)d{ii')L{uo) = 
J g{oj)d{j^)L for all g ^ C, but the Loeb measures (//^^ ^^^ ( T O ^ ^^ ^ ^^^ 
hence also the cr-fields L^/(^) and L y ( ^ ) may be different. 

Example 17.3.1 In Example 17.2.2 we defined an internal counting measure 
yu. Since /x is 5'-Skorohod-differentiable with internal derivatives ^Y^? t G J \ 
{0}, t ^ 0, we can apply Lemma 17.3.1. But as we have seen in Example 17.2.2, 
for ke-'N with ; | G J and | . P^ 0 and A = [0, ^ ] 

Nevertheless, there exists a cr-field, on which the Loeb measures ( ^ V ^ ) L ^^^^" 
cide for all infinitesimals t G J \ {0}. Let B(M.) be the (standard) cr-field of all 
Borel subsets of R. For B G B{R) let st-^[B] = {cj G O : °u; G 5 } . According 
to the usual approach to standard Lebesgue measure by a nonstandard count
ing measure (see [7] or [12]), the external set st-^[B] is an element of L^^ (A) 
for all r G / and {fir)L{st~^[B]) = z^r(^), where Vr{B) = J^_,^l[Q^ij{x)dX{x) 

with standard Lebesgue measure A. But 5t~"'̂ [5] is also an element of L^n-f^ (A) 
t 

for all infinitesimals t G J \ {0} and 

( ^ ^ ) {st-'m = 1B{1)-1B{0). 
L 

Hence the Loeb measures 
( ^ ^ ) L ' I'estricted to the cr-field {st'^lB] : B G 

S(]R)}, coincide for all infinitesimals t G J \ { 0 } . If we define a measure v^ 
on B{R) by iy^{B) = 1^(1) - 1 B (0), then the 5'-differentiability of the internal 
counting measure /i yields the Skorohod-differentiability (with respect to 1 G 
M) of the standard measure u with derivative v'. 
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We will now see that in the case of S'-Fomin-differentiability the cr-field T 
doesn't depend on the chosen internal derivative and the derivative (///,)' of \ii^ 
is uniquely determined. Moreover, the differentiability of \ii, is true not only 
with respect to standard parts of internal functions, but also with respect to 
all jF-measurable S^-bounded real-valued functions on O. 

We gather these facts together into the following, which is the main theorem 
of this paper. 

Theorem 17.3.1 Let \i he S-Fomin-differentiable and T = Clrei -^i^ri^)-
Then fiL ^̂  differentiable on T with respect to the set C = {1B • B G T} 
and the differentiability is uniform on C. The derivative {IIL)' ^̂  uniquely de
termined and is absolutely continuous with respect to /JL. If fi' is an internal 
derivative of fi, then the Loeb extension {fi')L ^̂  defined on T and coincides 
with {^11 L)'. In particular this is true for all internal measures ^*~^^ where 
t G J \ {0} is infinitesimal. 

Proof. Let yu' be a derivative of fi. We will show the following statements: 
(A) For all internal sets A G A the limit 

j j ^ (ML)r04)j-ML(^ 
r^O r 

exists and is equal to (/i')L(^). The convergence is uniform on the inter
nal field A. 

(B) If Â  G ̂  is a /x^-nullset, then 

li^^^(ML)r(iV)-ML(iV) ^Q_ 
r^O r 

The convergence is uniform for all /XL-nullsets of J-. Any //j^-nullset of J- is 
also a (/i')L-nullset of J^. 

(C) \{ B ^ T and if A G .4 is ytx^-equivalent to 5 , then 

j . ^ {piL)r{B) - pLLJB) ^ j . ^ {piL)M) - ^iL{A) 
r^O r r^O r 

in particular the left limit exists. The convergence is uniform on T. 
(D) The Loeb extension {II')L is defined on JT and for all B G JF 

r^O r 

(A) follows from Lemma 17.3.1. 
To prove (B) let A/" be a ///,-nullset of ^ , i.e. there exists a sequence 

{Ni)neN C ^ so that for ah n G N we have N C Ni, N i C Ni and 
n n n + 1 n 
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fi{Ni) < ^. Let N := fl^^i ^^i- Then N e T, fiL{N) = 0 and we obtain for 
n n 

all r e / 

Since /J^L{^) = 0 we get 

(ML)r(iV) - I,L{N) (I^LUN) 
< 

(ML).(^) 

Therefore it is sufficient to show that hm ^̂ ^̂ "̂ ^—- 0. Now since IJ^L{N) = 0, 

(ML)r(A^) {^L)r{N) - f,L{N) 

limn^oo{l^L)r{Ni) - hm 
n—^oo 

{l^L)r{Ni) - HL{NI) 
= hm 

{l^L)r(Ni)-flL{Nl) 
It fohows from (A)^ that for each n G N the hmit hm^^o ~ ^^ 

exists and is equal to {IJ^^)L{^I)- Since (A^O^ î  defined on the smallest cr-field 

containing A^ the limit lim^^oo(MOi/(^i) — {I^')L{^) silso exists. Because 
n 

of the uniform convergence stated in (A) and since (A / ' I ) ^^N C ^4 we can 
n 

exchange the limits as follows: 

lim 

lim lim 
n—>oo r ^ O 

(ML)r(A^i 

(ML)r(iV) 
r 

lim lim 
(ML).(iVi)-ML(A^i; 

= lim(/xOL(A^i) = (MOL(^). 

So the measure IIL is differentiable at TV and the value of the derivative is 
{II')L{N). It remains to show that (/J.^)L(N) = 0. To this end we use an 
argument due to Smolyanov and Weizsacker [15]. Let us consider the function 

/ : / ,r^{flL)r{N) 

Then / is differentiable at t = 0 and f\0) = {JLL^)L{N). Since / is nonnegative 
and /(O) = 0, the first derivative of / in 0 must be 0. Hence (/x')/,(7V') = 0. 
The uniformity of the convergence can be seen by using again the uniform 
convergence on A. Of course {IJ.^)L{N) = 0 since N C N. Hence the fiL-
nullsets of JF are also (/i')/,-nullsets of T. 
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(C) Here we show the differentiabihty for an arbitrary element of T. So 
let 5 G JF, A G w4 ///.-equivalent to B and r G I. Since IJ^L{B) = )L^L(^), it is 
sufficient to show that 

r^O r 

Since [II is nonnegative the following estimate is easy to verify. 

where A A B denotes the symmetric difference {A\B)[J {B\A). Now (B) 
yields 

lim 
i^iL)riB) - iflLUA) 

r^O r 

The uniform convergence follows from (A) and (B). Hence (C) is proved. 
(D) follows from (A), (B) and (C). U 

Example 17.3.2 Let // be a measure with internal Lebesgue density satisfying 
the assumptions of Lemma 17.2.1 for a fixed y G '̂ 'M. Recall that the internal 
curve is given by iit{A) = fi{A + ty) for all Borel subsets A C '̂ 'R. Let e G R^, 
/ =] — e,e[. Since /x is S'-Fomin-differentiable, we can apply Theorem 17.3.1. 
Hence /J^L is differentiable on ^ = Clj^^i Lf^^{A) with respect to C = {1^ : 
B G JF}. Moreover, for the uniquely determined derivative (/XL)' we obtain: 

(liLYiB) = [ °(3y{x)d^^Ux) 
JB 

for all B G T, where /3^ is defined in Lemma 17.2.1 

The power of Fomin-different lability is also shown in the last result. 

Corollary 17.3.1 If fi is S-Fomin-differentiable with an internal derivative 
jji' and T is defined as in Theorem 17.3.1, then the Loeb measure JIL, restricted 
to JF, is differentiable with respect to the set C of all J^-measurable real-valued 
bounded functions on Q.. The Loeb measure {lJi')L, restricted to T, is the deriva
tive of {II)L^ 

Proof. This is routine integration theory using the uniform differentiability on 
T and the approximation of measurable functions by simple functions. D 

Remark An application of Fomin-differentiability is given in [15] by Smolya-
nov and Weizsacker. There, a nonnegative measure i/ on a locally convex space 



248 17. Differentiability of Loeb measures 

E is considered which is Fomin-differentiable along all elements of a Hilbert 
subspace of E. Using this measure differentiability, Smolyanov and Weizsacker 
introduce an operator on a subspace of C'^^E^u). In the Gaussian case this 
operator is the derivative operator of the Malliavin calculus (see [11]). 

The question of the assumptions that are needed for differential properties 
of Loeb measures to yield such a derivative operator is the subject of ongo
ing investigation. 
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18 
The power of Gateaux differentiability 

Vitor Neves 

A b s t r a c t 
The search for useful non standard minimization conditions on C^ func-
tionals defined on Banach spaces lead us to a very simple argument which 
shows that if a C^ function f : E ^ F between Banach spaces is actu
ally Gateaux differentiable on finite points along finite vectors, then it 
is uniformly continuous on bounded sets if and only if it is lipschitzian 
on bounded sets. The following is a development of these ideas starting 
from locally convex spaces. 

18.1 Preliminaries 

This section consists of an informal description of tools to frame the dis

course and therefore contains only a small number of theorems and few proofs. 

Careful foundational t r ea tmen t s may be found in [3], [9], [14] or [1]; we shall 

also use Nelson's quantifiers V^̂  and 3^^ as in [8]. 

We assume the existence of two set-theoretical s t ructures A and B and 

a function *{-) : A ^ B satisfying the propert ies we proceed to describe. 

Elements of either of the s t ructures which are sets shall be called e n t i t i e s ^ . 

( P I ) A is a model of the relevant Analysis in the sense t h a t any object of 

Classical Mathemat ica l Analysis as well as the mathemat ica l s t ructures 

under s tudy have an in terpreta t ion in A and theorems about t h e m are 

t rue in A. In par t icular the complete ordered field R of real numbers or 

any other classical space are elements of A. 

Departamento de Matematica, Universidade de Aveiro. 
vnevesOmat.ua.pt 
Work for this article was partially supported by FCT via both the grant POCTI\ 
MAT\41683\01 and funds from the R&D unit CEOC. 

^We shall also admit the existence of atoms i.e. objects without elements which are not 
the empty set; for instance numbers are atoms. 
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The image by *(•) of any given element a ^ A will be denoted *a and be called 
standard as well as a itself; elements of standard sets in B shall be called 
internal; non internal sets in B are called external. 

A set of sets verifies the Finite Intersection Property, abbreviated f.i.p., 
if all its finite subsets have non-empty intersection. Denote the cardinal (num
ber of elements) of a set 5' by card{S) and its power set by V{S). 

(P2) Polysaturation^ 

Given E e A and C C *V{E), if C verifies the f.i.p. and card{C) < 
card{A) then fl C 7̂  0 

There is an encompassing formal first order language JC with equality = and 
G (to be read as the membership relation), with the usual connectives ^ for 
negation, A for conjunction, V for disjunction, =^ for implication, <^ for equiva
lence, universal V and existential 3 quantifiers and enough constants, predicate 
and function symbols to denote any elements, relations and functions under 
consideration either in A or in B. 

Say that a formula of C is bounded if its quantified subformulae, hereby 
including the formula itself, are of the form 

\/x [x ^ a ^ (/)] or 3x [x ^ a A (f)] 

for some constant a and formula (/); a sentence is a formula without free 
variables. B contains a formal copy of A in the following sense. 

(P3) Transfer 

/ / (/)(ai,--- ,a^) is a bounded sentence with occurrences of constants 
di {^ ^ i ^ n) cind no more constants, then 0(a i , - - - , a^) is true in 
A ijO (̂/)(*ai, • • • ,*an) is true in B^. 

It is always useful to keep in mind theorems 18.1.1 and 18.1.2 below. Say 
that a formula of C is standard (resp. internal) if it is bounded and all its 
constants denote standard (resp. internal) elements of B. 

Theorem 18.1.1 (Principles of Standard and of Internal Definition) 
A set B ^ B is standard (resp. internal) iff there exists a G A and a standard 
(resp. internal) formula (f) such that B — {x G *a| 0(x)} or, more informally, 
a set in B is standard or internal iff it is definable by a respectively standard 
or internal formula. 

^Actually this is stronger than needed for our purposes, but it is powerful and easy to 
formulate. 

^B is a kind of elementary extension of A with embedding *(•). 
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Call monad any intersection f](j^Q *C with 0 ^ C G ^ . 

Theorem 18.1.2 (Cauchy's Principle) Any internal set which contains a 
monad HCGC *^ ^^^^ contains one of the standard sets *C. 

Hyper-real numbers A G *M are classified the following way 

A is finite 

A is infinitesimal 

A is infinite 

= Vr G M [r > 0 ^ |x| < *r] 

= X is not finite. 

O and fi denote respectively the set of finite and infinitesimal hyper-
real numbers. 

For any given (real) locally convex space S, let Ts denote a gauge, i.e. a 
directed set., of semi-norms defining the topology of 5; fin(*5') and (JL^^'S) shall 
denote respectively the sets of finite and infinitesimal elements in *S', i.e., for 
any given x G *>§, 

X G fin(*5') := V7 G Ts l{x) G O (18.1.1) 

X G M(*5') := V7 G r ^ 7(x) G // (18.1.2) 

When r^- is unbounded, in the sense that 

Vx G 5 Vs{x) := {7(^)1 7 G T ^ } is unbounded, (18.1.3) 

it so happens that 

Vx e^^S [x G ii{''S) ^ V"S ^ r ^ 7(^) < 1]. (18.1.4) 

Condition (18.1.4) has the syntactical advantage of dispensing with a quanti
fier; as we will present strongly syntactical reasoning, 

we assume from now on that condition (18.1.3) is always verified. 

Denote ^C the set of standard elements of *C, i.e., 

^C := {*x| X G C}.4 

If E and F are locally convex spaces, L^^\E,F) denotes the space of 
continuous k-linear maps / : E ^ i^; a map / G ''L^^\E, F) is said to be finite 
(resp. infinitesimal) if/(fin(*£^)^) C fin(*F) (resp. /(fin(*£^)^) C /i(*F)). 

It is useful to keep in mind the following results ([4] is a most complete 
source; also see [14, chap. 10]). 

^We sometimes identify C with ^C for the sake of simphfying notation. 
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Theorem 18.1.3 In a locally convex space S, 

1. xe ii{*S) if and only if \/XeO Xxe /x(*5) (x G *S'). 

2. xe fin(*5') if and only if MXeiiXxe iii^^S) {x e *S). 

3. Vx G ii{^S) 3A G *IR \ O Ax G AX(*S'), therefore it is also true that 

Vx ^""Slxe fiCS) ^ 3A G *M \ O Ax G fi^S)] 

Let X ^ y mean that x is infinitely near y, i.e., x — y G /x(*S'); also let st 
denote standard part whenever appropriate, i.e., 

y = st(x) := y e ^S ^ X ^ y] 

ns(*5') will denote the set of near-standard vectors of *S', i.e., 

ns(*S') :=^S' + /i(*S'). 

A function / : *£̂  ^ *F is S-continuous on A C ""E if for ah x, y G A, 
/ (x ) ~ /(y)? whenever x ~ ^; by definition, any standard function / is 
S-continuous if */ is. Theorem 18.1.2 implies that S-continuity of internal 
functions is nothing else than continuity measured with standard tolerances; 
this and condition (18.1.3) imply: 

Lemma 18.1.1 Suppose A G *V{E). An internal function f : A ^ *F is 
S-continuous at x G A iff 

Vi/ G ^ T F V s G ^M 37 G ^r^; 3Se''RyyeA 

[7(x -y)<5^ iy{f{y) - / (x)) < e]. 

In particular 

Theorem 18.1.4 A function f : A C E ^ F between locally convex spaces E 
and F is 

1. continuous (on A) iff it is S-continuous on *A H ns(*£^); 

2. uniformly continuous (on A) iff it is S-continuous on M. 

And 

Theorem 18.1.5 Given locally convex spaces E and F and an internal *A;-
linear function I : *E'̂  -^ *F, the following conditions are equivalent 

1. I is S-continuous. 
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2. /(fin(*^)) C fin(*F) (i.e. the internal S-continuous maps are the internal 
finite maps). 

3. l{i,{*E))Ci_i{*F). 

It might also be interesting to notice the following 

Theorem 18.1.6 Let E and F he locally convex spaces, A be a subset ofE 
and (j) : {Ax-Rn{'^E)) -^ *F be an internal function which is linear in the second 
coordinate. If (j) is S-continuous in the sense that 

Vx, y G A Vn, V G fin(*£^) [x ̂  y ^ u ^ v =^ 0(x, u) ^ (j){y., v)]^ 

then, for all x G A^ (/)(x, •) is a finite map. 

Proof. Assume (j) : {A x fin(*£')) -^ *F is S-continuous, x e A C'^E and that 
u G fin(*^); for all t G //, tn ~ 0, therefore t(j){x,u) = (j){Xjtu) ^ 0(^,0) = 0, 
hence, by theorem 18.1.3, (j){x,u) G fin(*F) as required. D 

Observe that, when S is normed, an element x G *S' is infinitesimal (resp. 
finite) iff ||x|| G fi (resp. ||x|| G O) and the following holds. 

Corollary 18.1.1 Given normed spaces E and F and a k-linear function 
I \ E^ ^ F, the following conditions are equivalent 

1. I is continuous 

2. V x G * ^ [||x|| ^{) ^ \\l{x)\\ p^O] 

3. VxG*5 [||x|| G O ^ \\l{x)\\ G O ] . 

Of course theorem 18.1.5 and corollary 18.1.1 essentially say that, for linear 
maps continuity is equivalent to continuity at zero. 

18.2 Smoothness 

Let E and F be complete locally convex spaces, A be an internal subset of 
""E, f : A^^'F and /(.) : A -^ ""L^E, F) be internal and write 

f{x + tv) = f{x) + tl:,{v) +tL {xeA, V e^'E, te *M, i G *F). (18.2.1) 

/ is GS-differentiable at x with GS-derivative Ix^ ii i ^ 0 whenever v G 
fin(*^) and t ^ 0; / is uniformly differentiable at a G *^ with uniform 
derivative Z(.) if / is GS-differentiable at x and Ix is finite, for all x ^ a. We 
shah also call I : A x fln(*^) -^ *F the derivative of / and define 

df{x, v) := /(x, v) := lx{v) := dfx{v) (x, v G *E). 
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Observe that, when one takes x and v m. E within equation (18.2.1), the GS-
derivative df{x,v) is just the Gateaux derivative (G-derivative for short) of 
f at X along v. The following theorem is well known too (see [13]). 

Theorem 18.2.1 If E and F are Banach spaces, the function f : E ^ F 
has G-derivative df{x,y), for all x ^ E, and x i-̂  c(f(x, -) : E ^ L{E^F) is 
continuous for the uniform topology on L{E,F), then x \-^ df{x^ •) is actually 
a Frechet derivative. 

The following is a simple generalization of proposition 2.4 in [15]. 

Theorem 18.2.2 / / the internal map f : *E ^ *F is uniformly differentiahle 
at all points of an internal set A G *P(£') with derivative df, then 

1. f is S-continuous on A 

2. df : Ax fln(*£^) -^ *F verifies 

(a) df{A X fin(*^)) C fin(*F) 

(b) df is S-continuous in the sense that 

Vx,?/ G A \Ju,v E fin(*^) [x'^y k u^v => dfx{u) ^ dfy{v)]. 

Proof. Borrowing from [15]: suppose that / : *^ ^ *F is internal and uni
formly differentiable at all points of the internal set A, that x^y G A and that 
X ^ y; take A G *R\ O such that X{x — y)G /x(*^) (theorem 18.1.3) and define 
t := ^; t is infinitesimal and, for some L G I^C'F)^ 

f{x)-f{y) = f{y + t\{x-y))-f{y) 

= tdfy{X{x - y)) + U 

= dfy{x-y) + tieii{*F) 

by theorem 18.1.5, and 1 is proven. 

2 (a) is an immediate consequence of the fact that the maps dfx are finite 
and this is useful in proving S-continuity of df in (b): take x^y ^ A and 
u^v E fin(*£^) such that x ^ y ^ u ^ v; observe that 

df{x, u) - df{y, v) = dfx{u - v) ^ dfx{v) - dfy{v). 

As the maps dfx are finite, by theorem 18.1.5, df{x^u — v) G /J^i'^F) and it 
is enough to show that, under the present assumptions, dfx{v) — dfy{v) ^ 0. 
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Now, taking A and t as above and v G fin(*^), there exist infinitesimal vectors 
i,ri,d e *F such that 

f{x)-f{y) = dfy{x-y) + U (18.2.2) 

f{x + tv)-f{x) = tdUv)+trj (18.2.3) 

f{y + t{v + X{x-y)))-f{y) = tdfyiv)+dfy(x-y)+t6. (18.2.4) 

Summing (18.2.2) + (18.2.3)-(18.2.4), we obtain 

t{dUv) - dfy{v)) = t{L + v-S) 

and dfx{v) — dfy{v) ^ 0 as required. D 

Moreover Stroyan also showed in [15] that uniform differentiabihty is a very 
good generahzation of G-differentiabihty in that, among other properties, it 
overcomes the impossibihty of topologizing L{E^ F) in such a way that the eval
uation map (x, y) \-^ l{x) : L{E, F) x E ̂  F he continuous when E and F are 
not normable locally convex spaces^; we established the equivalence between 
uniform and Cqt, differentiability of standard functions on complete locally con
vex spaces, and discuss relations with a weaker kind of differentiability when 
fin(*£^) = ns(*.E), in [12]. The main results in this context read as follows. 

Assume that [/ is a non-empty open subset o f ^ , / : [ / ^ F , a G ^f7+/i(*.E) 
and k eN. 

Definition 18.2.1 (S t royan [15]) The function f is k-uniformly differen-
tiable at a if there are finite maps (î ^V(-) • ^ ~^ L^^\EIF), {1 < i < k) 
— the derivatives of f — such that, with d := d^^\ for all x G fin(*£') and 
all t G /i(*IR); there exist rj G A (̂*F) and infinitesimal maps rji (2 < i < k), 
so that 

f{a + tx) = f{a)+tdfa{x)+tr] (18.2.5) 

d^'^fa+U') = rf«/a(-) + td^'^'^faix, •) + % ( • ) (1 < Z < k). (18 .2 .6 ) 

/ is k-uniformly differentiable in U if it is k-uniformly differentiable at all 
a G ^U + IJ^{*E). When f is 1-uniformly differentiable we just say that it is 
uniformly differentiable. 

The following may also be found in [15]. 

Theorem 18.2.3 When f is k-uniformly differentiable, not only f itself is 
S-continuous but also the derivatives d^^^ f : ns(*£') x fin(*.E) -^ *F are S-
continuous: 

Vx, y G ns(*^) Mu, v G fin(*^) [x ̂  u k y ̂  v => d^^ fx{u) ^ d^"^ fy{v)] 

(1 <i<k). 

^A quite simple and clear explanation of this can be found in [7, page 2]. 
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Theorem 18.2.4 (Taylor's formula [15]) / is k-uniformly differentiable in 

U if there are maps df^'^^ : U -^ LT^HE^F) {1 < i < k), such that, whenever 

a e'^U -\- /i(*-E), X e fin(*£'), t e fi, there exists r] G î (*-F) such that 

f{a + tx) = / ( a ) + ^ ^rf/W (x, • • • , x) + t S . 
i=i ^' 

Relations with F-differentiability on Banach spaces are actually studied 
in [14, chap. 5]. On what regards standard definitions of smoothness we take 
from [6], whereto we refer the reader for details, namely on convergence 
s t ruc tu re s . 

Definition 18.2.2 Let M denote the filter of neighborhoods of zero inM., B he 
a filter on E and, for any filter T in a (real) vector space, MT denote the filter 
generated by {{rb\ r e N k b e F}\ N e Af k F e J"}; also, for keN, let B^ 
be the filter in E^ generated by {Bi x • • • x 5/^| Bi^- - • B^ G B} and, for any 
filter T in L^^\E,F), F{B^) be generated by { U G F K ^ ) I F e J=' k B e B}; 

finally, if (j) is a function and T is a filter on the domain of (j), (t>{J-') is generated 
hy{ct>{F)\FeJ'}. 

1. B is quasi-bounded if J\fB converges to zero; A^̂  denotes the conver
gence structure of quasi-bounded convergence; when a filter T converges 
to X G E with respect to Aq^, we write T G Ag^(x). 

2. A filter T in L^^\E,F) qb-converges to zero if T{B^) converges to zero 
in F whenever B is quasi-bounded in E. 

3. A function I : U ^ L^^\E,F) is qh-continuous if 1{J^) G Ag5(/(a)) 
whenever a ^ U and T is a filter in E converging to a. 

4- Recall that U is an open subset of E and f : U ^ F. We say that f is 
of class C^^ if 

(a) f is qb-continuous. 

(b) There exist maps d'f^.) : U -^ L^'\E, F) {1 < i < k) such that 

i. d'^f(^.^ is qb-continuous, for a// i = 1, • • • , fc 

a. For all a G U, all x G E and a// i = 0, • • • , fc — 1 

lim J {d'fa+tx - d'fa) = d'^^faix, •) 

for the topology of pointwise convergence on U{E^F). 
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Theorem 18.2.5 ([12]) The function f is of class C^ , with derivatives dJ' f(^.), 
{1 < i < k) iff it is k-uniformly differentiable with the same derivatives. 

The following is also a consequence (for example see [6]) either of this 
theorem (18.2.5) or of theorem 18.2.4. 

Theorem 18.2.6 The function f : E ^ F, between Banach spaces E and F, 
is of Frechet class C^, with derivatives d^f(^.^, {I < i < k) iff it is k-uniformly 
differentiable with the same derivatives. 

18.3 Smoothness and finite points 

Recall that E and F denote real locally convex spaces. 

Lemma 18.3.1 Suppose A G *P(£^). The following conditions are equivalent 
for any internal map f : A ^ *F which is GS-differentiable at all x G A D 
fin(*^), with GS-derivative df : {An fin(*^)) x fin(*£^) -^ *F. 

1. f is uniformly differentiable at all x ^ An fln(*£^) 

2. f is S-continuous on An fln(*^) 

3. df{{A n fin(*£;)) X fln(*^)) C fln(*F) 

Proof. For the sake of simplicity, we assume A = *^; the proof of the general 
case is an easy adaptation thereof. 

Suppose that df : fln(*^) xfin(*^) -^ *F is the GS-derivative of the internal 
map f '.""E ^ *F. 

(1 => 2) This is 1 in theorem 18.2.2 above. 

(2 ^ 3) Assume that / is S-continuous on fin(*^), let o(f(.) : fin(*£;) -^ 
'^L{E^F) be the GS-derivative of / . Pick x and v in fin(*£^); we must show 
that dfx{v) is finite; suppose this is not the case, take a semi-norm 7 G Fi? such 
that ^{dfx{v)) ^ O and let t := ~n[r~r;x\\ t is infinitesimal and, by hypothesis, 
there exists L G /i(*-F) such that f{x-\- tv) = f{x) -\- tdfx{v) + ti] but then 

1 = i{tdfx{v)) = 7 {fix + tv) - fix) -tL)^0 

which is impossible; it follows that dfx{v) must be finite as required. 

(3 ^ 1) In the presence of GS-differentiability, 3 completes the definition 
of uniform differentiability. D 

Say that a standard function f : E ^ F is GS, or uniformly, differentiable 
at X G *£̂  with derivative dfx if respectively */ is GS, or uniformly differentiable, 
at X with derivative *c(f. 
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Theorem 18.3.1 / / a standard function f : E ^ F is GS-differentiable 
with standard derivative dfx at all x G fin(*^)^ the following conditions are 
equivalent 

1. f is uniformly differentiahle on hounded sets with derivative df. 

2. f is uniformly continuous on bounded sets. 

3. For any hounded subset B of E^, df(B) is bounded in F. 

4. df is uniformly continuous on bounded subsets of E^. 

As we said before, the proof is easy. Start by keeping in mind that 

Theorem 18.3.2 A subset B of the locally convex space S is bounded iff *5 C 
fin(*S'); in particular, if E and F are normed and L{E; F) is endowed with the 
usual uniform norm, a subset B of L{E^F) is bounded iff 

\/(j) G *5 Vx G fin(*^) 0(x) G fin(*F). (18.3.1) 

Proof of thm. 18.3.1. Equivalences (1 <^ 2 <^ 3) are immediate conse
quences of lemma 18.3.1 and theorem 18.3.2 (note that, by theorem 18.3.2 
above, *B H fin(*£^) = *5 if and only if B is bounded). 

(3 ^ 4) Follows from theorems 18.3.2 and 18.2.2. 

( 4 ^ 2 ) If we show that condition 4 implies that dfx is a finite map when
ever 5 is a bounded subset of E and x G *5, we are done; but this follows 
from theorem 18.1.6. D 

As an application to Banach spaces: 

Corollary 18.3.1 Let E and F be Banach spaces and f : E ^ F be a S-
continuous and GS-differentiable function at all x G fin(*£') with standard 
derivative df, then 

1. df is actually the Frechet derivative of f and f is of class C^. 

2. (Mean Value) Denoting [x, y] the line segment from x to y, 

^x,yeE3ze[x,y] | | /(x) - / ( j / ) | | < ||d/,|| • ||x - y||; (18.3.2) 

therefore f is Lipschitzian on bounded sets, i.e., for each bounded subset 
B of E, there exists K G M such that 

\/x,y&B \\f(x)-f{y)\\<K\\x-y\\. (18.3.3) 
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3. For all infinitely near finite vectors x^y^z ^ ""E, there exists an infinites
imal /. G *F such that 

f{x)-f{y) = dMx - y) + \\x - y\\t (18.3.4) 

Proof. 1. As / is S-continuous on fin(*£'), it is uniformly continuous on 
bounded sets and hence, by theorem 18.3.1, of Frechet class C^. 

2. Condition (18.3.2) is true in view of part 1 above; therefore condi
tion (18.3.3) is true (by theorems 18.3.1 and 18.3.2) because fln(*.E) is *convex. 

3. We borrow from [14, page 97]: the Frechet derivative x \-^ dfx is 
S-continuous at finite points by 2b in theorem 18.2.2 and we may apply Trans
fer of the Mean Value condition (18.3.2) to the function 

g = v^ f{v) -dfz{v-z), 

whose derivative v i-̂  dg^ = dfy — dfz is infinitesimal whenever v '^ z^ and 
therefore verifies, for some c G [x^y]^ hence c^ z^ 

MO£WM^^(£L^M = ||,(,)_,(,)||< dgc 
y 0. n 

\x-y\ 

18.4 Smoothness and the nonstandard hull 

This section evolves along main ideas due to Manfred Wolff. 
Recall that • ^ • is an equivalence relation on *S', with equivalence classes 

X := x + /i(*S') and let S be the nonstandard hull of *S with semi-norms 7 or 

S := fln(*5)/^ & 7(x) := st{-f{x)) {x G fin(*5)). 

Nonstandard hulls are complete spaces, but may vary with the chosen model of 
analysis A] actually Banach spaces with invariant nonstandard hulls are finite 
dimensional, but this is not the case with locally convex non-normable ones; 
spaces with invariant non-standard hulls were characterized in [5] and were 
named HM-spaces by Keith Stroyan (relevant data is summarized in detail 
in [14, chap. 10]; also see [10, sec. 3.9] for nonstandard hulls of metric spaces). 

Any internal function between locally convex spaces, f : A C'^E ^ *F that 
is S-continuous on fin(*^) D A and such that /(fin(*^) D A) C fin(*F) has a 
natural non-standard hull f : A C E ^ F too defined by 

A := {x\ X e Rn^E) n A} 

fix) := /(^) (xeAnhnCE)); 
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note that / is not a standard function in the sense we have been considering, for 
it certainly is not a priori an element of the model of analysis v4, nevertheless 
an application of Nelson's Algorithm ([8], [11]) will provide us with definitions 
of differentiability for functions without reference to nonstandard extensions. 

From now on / : *£" ^ *F denotes an internal GS-differentiable function 
with derivative df such that 

/(fln(*^)) C fln(*F) (18.4.1) 

and 
df{x,v) :=dT(^) (18.4.2) 

whenever this is a good definition, namely when df is S-continuous on fln(*£') 
and x^v G fin(*£^). For any GS-differentiable function h : E ^ F 

A(/i, X, v^t) := ( - ( h{x + tv) — h{x) — dh{x^ v) j J {x^v 

18.4 .1 S t r o n g uni form differentiabi l i ty 

G*^; t G * R \ { 0 } ) . 

Definition 18.4.1 An internal function f \ ""E ^ T is Strongly Uni
formly Differentiable (SUD for short) if it is uniformly differentiahle on 
fln(*£^) and 

/ ( f in (*^ ) )^ f in (*^ ) . 

Let V and Q denote respectively gauges of semi-norms for E and F. 
In these terms, / is SUD when the two following conditions are simultane
ously verified 

V(x, v) e *^^ [{x, v) e hnCEf => df{x, v) G fln(*F)] 

V(x, v) e *^^ Vt G *IR [{x, v) e hnCEf A 0 7̂  t G // ^ A ( / , x, v, t) G //(*i^)]; 

these expand respectively to 

V(x, v) G *^2 [V"V ^ *^ 3"^m G *N p{x) + p{v) < m 
=> y'^q G V^'^n G 1^ q{df(x,v)) < n] 

V(x, v) G *£:2 Vt G1R [V"V ^ *^ 3"^m G *N p(x) +p(i;) < m 

AV"^nG*NO< |t| < - ^V"^gG*Qg(A( / , x , t ; , t ) ) < l l ; 
n J 

which reduce respectively to the following, where we leave the domains implicit, 

\/{x,v) M^^q 3^^{p,n) V^̂ m [p{x) -\-p{v) <m^ q{df{x,v)) < n] 

V(x, V, t) y'^q 3'\p, n) M'^m \p{x) + p{v) < m 

AO < Itl < - ^ q(A(f,x,v,t)) < 1 
n 
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Nelson's algorithm then gives 

V^̂ g \/'^m 3'^ ^'""P X N V(x, v) 3(p, n) e P x N 

[p{x) -\-p{v) < m{jp^n) ^ q{df{x^v)) < n] 
(18.4.3) 

M'^q y^m 3'^ ^^^P X N V(x, v, t) 3(p, n) ^ P x N 

p{x) -\-p{v) < m{p,n) A 0 < |t| < - ^ q(A{f,x,v,t)) < 1 
(18.4.4) 

Formulas (18.4.3) and (18.4.4) together define strong uniform differentia
bility of an internal function and we actually proved the following 

Theorem 18.4.1 An internal GS-differentiable function f : *E ^ *F is SUD 

y^q Y^m 3'^ ^^^P X N y{x,v,t) 3(p,n) ePxN 

1-
p{x) -\-p{v) < m{p,n) A 0 < |t| < 

n (18.4.5) 

[q{df{x,v))<n A q{A{f,x,v,t))<l] 

When / is standard, transfer of (18.4.5) provides the definition, 18.4.2 
below, of SU differentiability for functions between locally convex spaces in 
any "universe" A: 

Definition 18.4.2 A standard function h : S ^ T between locally convex 
spaces S and T, with unbounded gauges of semi-norms respectively E and Q, 
is Strongly Uniformly Differentiable, with derivative dh(^.^ : S -^ L{S^T), 
(SUD for short) when, leaving implicit that a G E ^ r G G ^ m i E x N ^ N ^ 
X e S, V e S andteR\ {0}, 

Vr Vm 3^^^C xN C^xQ V(x,i;,t) 3{p,n) eC xN 

a{x) + a{v) < m{a, n) A 0 < |t| < -
(18.4.6) 

[T{df{x,v))<n A r (A( / i ,x ,^ , t ) ) < l] 

NB: variants of this formula where any inequality < is taken to be 
strict, i.e., to be <, are equivalent. 
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18.4 .2 T h e n o n - s t a n d a r d hull 

Theorem 18.4.2 Let E and F he locally convex spaces and f : *E ^ "^F be 
an internal GS-differentiable function with derivative df such that 

/(fin(*^)) Cfin(*F). (18.4.7) 

/ is SUD iff f : E ^ F is uniformly differentiable with derivative df \ & ^ F 
given by 

df{x,v) := df{x,v). 

Proof. Let us first assume that the internal function / : *£' ^ *F is SUD with 
derivative d/, and takes finite vectors of *^ into finite vectors of *F. 

Define 

V:={p\p^V} , Q := {̂ 1 q G Q}; 

although there might exist continuous semi-norms not of the type 7, V and Q 
are unbounded directed families of semi-norms, so that condition (18.1.4) still 
holds with obvious adaptations. Also recall that 

/(^) = fix) 

and observe that equation 

df{x,v) := df{x,v) 

defines df well, in view of theorems 18.1.5 and 18.1.6 and lemma 18.3.1. 
Take g G Q and m : Q x N ^ N. Define 

M(p,n) := m(p,n) {peV, neN); 

M is a standard function, therefore we may deduce from (18.4.5) that there 
exists a standard finite set P x A/' C *p x *N such that 

y(x,v,t) G *E^ X 1R 3(p,n) ePxN 

\p{x) +p{v) < M{p,n) A 0 < |t| < - => 
\_ n 

qidf{x,v))<n A q{A{f,x,v,t))<l 

P and TV being standard and finite, define 

N:^N , P:^{p\peP}, 
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and take (x, v, t); whatever the representatives x and v^ there is a correspond
ing pair (p, n) G P x TV, which may be vary with x and v^ but always veri
fies (18.4.3); suppose that 

p{x) +p(fi) < M{p,n) A 0 < |t| < - ; (18.4.8) 
n 

ah the numbers involved here are standard, p{x) ^ p{x) & ^(t)) ^ p{v) as well 

as q{df{x,v)) ^ q{df{x,v)); in particular, it follows 

p(x)+p( i ; ) < m{p^n) = M{p,n) 

so that 

q{df{x,v)) < n 

an thus 

q{df{x,v)) < n 

that is 

q{df{x,v)) < n 

and the first factor in the consequent of (18.4.5) follows for / as required; for 
the remaining factor of the consequent, observe that, actually 

p{x) +p{v) < M{p,n) A 0 < |t| < - ; 
n 

implies 

q(^^[f{x + tv)-f{x)-df{x,v))\ = g(A(/,x,t;,i)) < 1 

too; t and n are standard, 0 7̂  t and / as well as df are S-continuous by lemma 
18.3.1, thus 

^ ( / ( x + t ^ ) - / ( x ) - d / ( x , ^ ) ) ^ i ( / > + t i ; ) - / > ) - d 7 ( ^ ) ) ; 

finally 
^ ( A ( / , , x , i ) , t ) ) < l . 

The proof that / is SUD with derivative df is finished. 

Now suppose that / is itself uniformly differentiable with derivative df : 
E^ -^ F. Take q e "^Q and a standard function m : *(P x N) ^ *N; since 
f) is 1-1 _ 

M{p,n) := m{p,n) 
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defines a function from V xN into N and we may apply (18.4.6) appropriately 
written in terms of / , and obtain the corresponding finite set P x Â  C P x N; 
pick x^v G E, t G R \ {0} and use (18.4.6), with < for <, in order to obtain 
{p,n) e P X N so that 

p(x)^p(v) <M(p,n) A 0 < Itl < - 1 ^ 
^y J yy J _ yy, J ' ' - nJ (18.4.9) 

therefore, if 

then 

[q{df{x,v)) <n A q{A{f,x,v,t)) < l ] ; 

p(x) +p(v) < m{p,n) A 0 < Itl < - (18.4.10) 
n 

p{x) -\-p{v) < M{p,n) A 0 < |t| < - , 
n 

hence 

or 

q{df{x,v)) <n A q{A{f,x,v,t)) < 1 

q{df{x,v)) <n A g(A(/ , x, i), t)) < 1. 

It immediately follows that 

q{df{x,v)) < n, 

because both q(df{x^v)) and the n above are standard; moreover (•) is linear 
and when t 56 0 

q{^{f,x,v,t)) < 1; (18.4.11) 

it so happens that t 1-̂  q{A{f,x^v,t)) is always an internal function and we 
actually have shown that 

0 < | t | < - ^ g ( A ( / , x , i ; , t ) ) < 1 
n 

which is the same as 

yqe^Q [ O ^ t ^ O => q{A{f,x,v,t))^0] 

and thus (18.4.11) also holds when t ^ 0. Again because (•) is 1-1, we may 
define 

P := {p\peP} 

and we have shown that (18.4.5) holds. D 
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19 
Nonstandard Palais-Smale conditions 

Natalia Martins and Vitor Neves 

Abstract 
We present n o n s t a n d a r d versions of t h e Pa la is -Smale condi t ion ( P S ) be

low, some of t h e m general izat ions , b u t still sufficient t o prove M o u n t a i n 

Pass Theo rems , which are qui te i m p o r t a n t in Cri t ical Po in t Theory . 

19.1 Preliminaries 

For notation, other preliminaries and basic references on Nonstandard 
Analysis we suggest section 1 in article [13] in this volume, namely we assume 
that we have two set-theoretical structures A and B — the former a model of 
"the relevant" Analysis — and a 1-1 function *(•) : A ^ B which satisfies the 
Transfer and Polysaturation Principles. Specific notation and results follow. 
Recall that *]R denotes the set of hyperreal numbers and O the set of finite 
hyperreal numbers; if x G *M is infinitesimal we write x ~ 0. If x, ?/ G *M are 
such that X — y ^ 0, we say that x is infinitely close to y and write x ^ y. 
Also remember that finite hyperreal numbers have a standard part: 

Theorem 19.1.1 (Standard Part Theorem) If x e O there exists a 
unique r G M such that x ^ r; r is called the standard part of x and is 
denoted by st(iK) or °x. Moreover, for all x^y ^ O, st{x -\- y) = st{x) + st{y), 
st{xy) = st{x)st{y) and if x <y then st{x) < st{y). 
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search in Optimization and Control (CEOC) of the University of Aveiro and grant 
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Next we restrict some definitions to normed spaces; just recall that a 
normed space is a locally convex space whose topology is defined by a sin
gle norm and also recall that, for any set A G A^ 

^A:={*a: a e A}, 

and often A and M. are identified for simplicity. 

Definition 19.1.1 Let {E, ||-||) be a real normed space and x G *-E. 

L X e hn{^E), i.e., x is finite if \\x\\ G O; 

2. X e lJ^{*E), i.e., X is infinitesimal if \\x\\ ^ 0 in *IR; x ^ 0 means 
X e Ai(*^); 

3. X e ns(*^), i.e., x is near-standard if there exists a e ^E such that 
X ^ a, which means x — a ^ 0; 

4. X ^ pns (*£'); i.e., x is pre-near-standard if for all positive e G M there 
exists a G ̂ E such that \\x — a\\ < e. 

It follows from the above definitions that ns(*^) C pns(*^) and ns(*^) C 
fln(*£^). In general, ns(*^) ^ pns(*^) and ns(*E) ^ fln(*£^). 

Theorem 19.1.2 Let {E^ ||-||) be a real normed space. 

1. E is complete if and only if pns(*£^) = ns(*^); 

2. E is finite dimensional if and only if fln(*E') = ns(*£^); 

3. AC E is compact if and only if M C ns(*^) and s t(M) = A. 

The nonstandard extension of N, *N, is the set of hypernatural numbers 
and *Noo denotes the set of infinite hypernatural numbers. It is also useful 
to keep in mind the following properties of sequences and functions in a real 
normed space {E^ ||-||). 

Proposition 19.1.1 Suppose (xn)nGN ^^ CL sequence in E. Then 

L {xn)nen is bounded if and only if Vn G*Noo ^n G fin(*£;); 

2' (^n)nGN convcrgcs to a ^ E if and only if Vn G*Noo ^n ~ CL; 

3- (^n)nGN ^as a Convergent subsequence if and only if BTTI G *NOO; 

Xm e ns(*£'). 

Theorem 19.1.3 Let E and F be two real normed spaces and f : E ^ F. 
The function f is continuous on a G E if and only if 

VxG*£' [x^a^ f{x) ^ f{a)]. 
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19.2 The Palais-Smale condition 

Many results in Critical Point Theory involve the following condition, orig
inally introduced in 1964 [10] by Palais and Smale: 

Definition 19.2.1 If E is a real Banach space, the C^ functional f : E ^ M. 
satisfies the Palais-Smale condition if for all {xn)neN ^ ^ ^ ; 

(PS) (/(^n))nGN ^̂  bounded and lim f'{xn) = 0 ^ 
n ^ o o 

{xn)neH has a convergent subsequence. 

Suppose (E^ II'ID is a real Banach space with continuous dual E^ and duality 
pairing (•, •). Let C^{E^ R) denote the set of continuously Frechet differentiable 
functionals defined on E] a is critical point (resp. almost critical point) 
of / if f{a) = 0 (resp. f{a) ^ 0), i.e., if {f{a),v) = 0 (resp. {f{a),v) ^ 0) 
for all V e E (resp. v G fin(*^)); / ( a ) is a critical value of / if f~^{f{a)) 
contains critical points. 

If / : ^ ^ M is Frechet differentiable we will denote by K the set of all 
critical points of / , that is, 

K = {xeE: f\x) = 0} 

and, for each c G M, ifc will denote the set of critical points with value c, 
that is, 

Ke = {xeE: fix) = 0 A / (x ) = c} = K n r\c). 

The following is easy to prove. 

Proposition 19.2.1 Suppose that f G C^iE.R) satisfies (PS) . Then 

1. If f is bounded, K is a compact set. 

2. For each a, 6 G M such that a < b, 

{ueE: a< f{u) < b A f{u) = 0} = /"^([a, b]) H K 

is a compact set. 

Note that 

/ satisfies (PS) and K is compact 7^ / is bounded 

and 
K is compact and / is bounded 7^ / satisfies (PS), 

as can be seen with the following two examples. 
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Example 19.2.1 The real function f{x) = x^ {x e R) satisfies (PS), K = {0} 
is compact and / is not bounded. 

Example 19.2.2 Let 

2 - ^ 2 i f x G [ - l , l ] 

^ ^ " ^ ^ " l ^ if ^ 0 [-1,1] 

/ is bounded, K = {0} but / does not satisfies (PS). 

Example 19.2.3 The real functions exp(x), cos(x), sin(x) and all the con
stant functions defined on IR do not satisfy (PS). 

Now we will present an important class of functionals that satisfies (PS). 

Proposition 19.2.2 If E is a finite dimensional real Banach space and f G 
C^{E^R) is coercive (i.e. f{x) -^ +oo whenever \\x\\ -^ +ooJ; then f satis-
fies (PS). 

Proof. Let (x^)nGN ^ E he such that {f{xji))neN is bounded and 
limn^oo/'(^n) = 0- Then, for all n G *Noc, / (^n) ^ O (Proposition 19.1.1). 
Since / is coercive, for all n G *Noo, ^n ^ fln(*.E). E is finite dimensional 
then, by Theorem 19.1.2, fin(*£^) = ns(*£^) and therefore, for ah n G *Noo, 
Xn G ns{*E). Finally, Proposition 19.1.1 implies that (x^)nGN has a convergent 
subsequence. D 

19.3 Nonstandard Palais-Smale conditions 

The following definition often shortens statements 

Definition 19.3.1 Suppose f G C^{E^R). We say that a sequence {un)neN ^̂  
a Palais-Smale sequence for f if 

{f{un))neN '^s bounded and lim f'{un) = 0. 

Therefore, 
/ satisfies the Palais-Smale condition (PS) if every Palais-Smale se

quence for f has a convergent subsequence. 
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Suppose ^ is a real Banach space and / G C^{E, M). Next we present some 
nonstandard variations of (PS): 

{uji)neN is a Palais-Smale sequence 
{PSO) U 

3m e *Noo Um e ns(*£^) 

(PSl) f{u) eO ^ f'{u) ^{)^ue ns(*£:) 

f{u) eO A f{u) ^ 0 
{PS2) ^ 

u G fin(*^) A s t ( / (n) ) is a critical value of / 

{un)neN is a Palais-Smale sequence 
{PSi) ^ 

('̂ n)nGN is bouudcd A Vn G *Noo st(/(i^^)) is a critical value of / 

('̂ n)nGN is a Palais-Smale sequence 
(PS4) U 

('Un)̂ ^p^ is bounded A 3n G *Noo ^t{f{un)) is a critical value of / 

Proposition 19.3.1 / / / G C'^{E,M.) then 

{PSl) ^ \f{u) G O A f\u) ^ 0 ^ 

1̂  G ns(*^) A st(/(i^)) Z5 a critical value of f 

Proof. The implication <^ is trivial. For the proof of the other implication, 
suppose that n G *^ is such that f{u) G O and f\u) ^ 0. By (PS'l), there 
exists a ^ ^E such that u ^ a and, therefore, from the continuity of / and / ' 
it follows that (Theorem 19.1.3) 

/ ( a ) ^ f{u) and f\a) ^ f\u) ^ 0 

too, so that / ( a ) = st{f{u)) and / ( a ) is a critical value of / . D 

Nonstandard versions of (PS) and (PS) itself are related as follows. 
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Theorem 19.3.1 For any real Banach space E we have 

{PSl) ^ (PS) ^ (PSO) ^ {PS2) ^ {PS3) ^ {PS4). 

Proof. It is clear that (PS) ^ (PS'O), (PSl) => (PSO) and {PS3) => (PS'4), 
therefore 

(PSl) => (PS) ^ (PSO) and {PS3) => (PSA) 

are true. 
First we prove that (PSO) => {PS2). Let u e ""E such that f{u) G O and 

f{u) ^0. Fix M G M+ such that \f{u)\<M. Suppose u ^ fin(*£:). For each 
n G N, define the standard set 

Hn:={xeE: \f{x)\ <M A \\f'{x)\\ < ^ A ||x|| > n } . 

Since, for each n G N, 

^ G *//n = {x e *^ : 1/(^)1 <M A \\f\x)\\ < ^ A ||x|| > n } , 

we conclude that *i7^ ^ 0 and the Transfer Principle says that Hn ^ 0. 
For each n G N, take Xn G Hn- Then (x^)^^i^ is a Palais-Smale sequence 

but, for ah n G *Noo, ^n ^ fin(*^), and hence, for all n G *Noo, a;n ^ ns(*^). 
This is a contradiction with (PS'O) and therefore u G fin(*£^). 

Now we will prove that if j{u) G O and /'(ix) ~ 0, then s t ( / (n) ) is a 
critical value of / . 

Let oi = s t ( / (n) ) and, for each n G N, define 

F^:^{xeE: \f{x)\ <M A | | / ' (x) | | < - A \a - / ( x ) | < - | . 

Since, for each n G N, 

u€*Fn = {xG*E : \f{x)\ <M A | | / ' (x) | | < i A |a - f{x)\ < -} 

then, *Fn + 0 and therefore Fn ^ 0. 
For each n G N take Xn G F^. Then {xn)neH is a Palais-Smale sequence 

and from (PS'O) we conclude 

3a e^'E 3m e *Noo ^m ~ «• 

S i n c e / G C n F , M ) , 

Q̂  ~ /(^m) ~ / ( a ) and 0 ^ / ( x ^ ) ^ / ( a ) . 
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Therefore a = / ( a ) , f'{a) = 0, a is a critical value of / and (PS'O) ^ {PS2) 
is proven. 

Lets prove that {PS2) =^ (PS'3). Let {un)neN be a Palais-Smale sequence. 
Then, 

VnG*Noo [f{un)eO A / K ) ^ 0 ] . 

From {PS2) we conclude that 

Vn G*Noo [un G fin(*^) A st{f{un)) is a critical value of / ] 

so we may conclude that {un)nef^ is bounded and 

Vn G *Noo st(/(zxn)) is a critical value of / . 

Finally we will prove that (PS'3) => {PS2). Let n G*£' such that f{u) G O 
and f{u) ^ 0. Let M e R-^ such that | / (n ) | < M. Suppose u ^ fin(*^); we 
construct a Palais-Smale sequence {xn)neN using the sets Hn^ as in the proof 
of the first part of the proof that (PS'O) ^ (PS2), in such a way that (x^)^^!^ 
is not bounded, which contradicts (PS3). 

Suppose now that f{u) G O and f^{u) ^ 0. We need to prove that a = 
st{f{u)) is a critical value of / . Just as in the second part of the proof of 
(PSO) ^ (PS2), we can build a Palais-Smale sequence {xn)neN such that 
for ah n G *Noo, / (^n) ~ Q̂- From (PS3) we conclude that for ah n G *Noo, 
st{f{xn)) = a is a critical value of / . D 

More can be said when E is separable: 

Theorem 19.3.2 When E is a separable Banach space, (PS) and (PS l ) are 
equivalent; in other words: if E is a separable Banach space, a C^ function 
f : E ^ R verifies the Palais-Smale condition if and only if almost critical 
points where f is finite are near-standard. 

Proof. Suppose / satisfies (PS) and it G *-E is such that f{u) G O and 
f{u) ^ 0 . If n ^ ns(*P), it follows from Theorem 19.1.2 that u ^ pns(*^), 
that is, 

3£GlR+ Mye'^E \\u-y\\ > e. 

Let V := {vp : p G N} be dense in E. We will construct a Palais-Smale 
sequence (xn)nGN in E such that for all N G*Noo, XN ^ ns(*^) which contra
dicts (PS). 

Let M G R+ be such that \f{u)\ < M. For each n G N, define 

Cn'.= [x^E: \f{x)\ < M A | | / ( x ) | | < - A V p G N [ p < n ^ l l^ -^ l l > ^ ] } . 
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Since, for each n G N, î  G *Cn, we conclude that *Cn 7̂  0 and therefore C^ ^ 0. 
For each n G N, take x^ G C^. Let N G *Noo and v G "^E. Since F = ^ , 

there exists po ^ N such that Ĥ ; — i;po|| < | . Since 

\\XN -v\\ > \\XN -'^poll - II'̂ PO -'^11 > 

we conclude that XN ^ ns{*E) which contradicts (PS). D 

It is not clear whether this equivalence is true in general. 
The following result is consequence of the fact that if E is finite dimensional, 

then E is separable and fin(*£^) = ns(*^). 

Theorem 19.3.3 If E is finite dimensional 

(PSl) ^ (PS) ^ (PSO) ^ {PS2) ^ {PS3) ^ {PS4). 

Another easy observation: 

Proposition 19.3.2 Any C^ functional in a Banach space which verifies 
(PSA) and admits a Palais-Smale sequence, has at least one critical point. 

Proof. Suppose that (iXn)nGN is a Palais-Smale sequence for the functional 
/ G C^{E, R). Then there exist m G *Noo such that s t ( / ( u ^ ) ) is a critical value 
of / . Hence, there exists a G E such that / ( a ) = s t ( / ( 'u^)) and /^(a) = 0. D 

Next we present an example which shows that 

{PS2) ^ (PSl). 

Example 19.3.1 Let H be an infinite dimensional Hilbert space and define 

f :H ^ R 
X ^ f{x)=g{\\xf-l) 

where ^ : M ̂  M is given by 

f 0 if t < 0 

I t exp t2 if t > 0 

Observe that ^ is a C^ function and 

g\t)^0 ^ [t<0 V t^O]. (19.3.1) 

Also, 
h:H -^ R 

X \-^ llxlp — 1 
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is a C^ functional and 

yaeH^xeH {h\a),x) = 2a • x 

where • • • denotes the inner product in H. Therefore, / is a C^ functional. 
We will prove that / does not satisfy {PSl) but satisfies {PS2). 

By Theorem 19.1.2 we can take u e ""H such that u G fin(*if) \ ns{*H) 
and ||i^|| = 1. Hence, f{u) = 0 and f^u) = 0, which shows that / does not 
satisfy (PSl). 

Note that 
v^hnCH)^ f{v) ^O 

and 

^ yxefin{''H) {f{v),x) = {2v.x)g'{\\v\\^-l) ^0. ^ ''^ 

Next we will prove that 

f{v)^0 => [ | | ^ | | < l V | | t ; | | ^ l ] . (19.3.3) 

If f{v) ^ 0 and ^ ^ 0, by (19.3.2) either 2i; • ^ ^ 0, and thus \\v\\ ^ 0, 

or ^''(llt^lP — 1) ~ 0, so that, by (19.3.1), ||i;|| < 1 or \\v\\ ^ 1; in all possible 

cases (19.3.3) holds. 
Since 

[\\v\\ < 1 V ||i;|| ^ 1] ^ f{v) ^ 0 

and 0 is a critical value of / , we may conclude that 

f{v) eO A fiy) ^{) ^ V ^ fin(*i/) A st(/(i;)) = 0 is a critical value of / 

proving that / does satisfy {PS2). 

Remark 19.3.1 Other consequences of Example 19.3.1.' 

1. If we assume H to be separable. Theorem 19.3.2 shows that 

{PS2) y^ (PS). 

2. Moreover, the fact that / G C^{E^ M) and satisfies (PS'2), does not imply 
that the sets 

f-H[a,b])nK ( a < 6 ) 

are compact (see Proposition 19.2.1). 
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It follows easily from Proposition 19.1.1 that condition (PSS) is equiva
lent to 

{un)neN is a Palais-Smale sequence 

{un)neN is bounded A all convergent subsequences of {f{un))neN 
converge to a critical value of / 

and (P5'4) is equivalent to 

{un)neN is a Palais-Smale sequence 

('̂ n)nGN is bouudcd A there is a subsequence of (/('^n))nGN 
which converges to a critical value of / . 

Moreover, in the finite dimensional case, these two standard conditions 
are equivalent. 

19.4 Palais-Smale conditions per level 

In this section we present a weaker compactness condition for C^ functionals 
introduced in 1980 [3] by Brezis, Coron and Nirenberg. In the survey book [7] 
the reader can find more variants of the (PS) condition. 

Definition 19.4.1 Suppose f G C^{E^R) and c G M. We say that {un)neN ^^ 
a Palais-Smale sequence of level c (for f) if 

lim f{un) = c and lim f'{un) = 0. 

/ satisfies the Palais-Smale condition of level c, (PS)c; if every Palais-
Smale sequence of level c has a convergent subsequence. 

Remark 19.4.1 Suppose that / G C^{E,R). Then 

1. If / satisfies (PS), then / satisfies (PS)c for ah c G R. 

2. If / satisfies (PS)c, then the set of critical points of value c, Kc^ is 
compact. 

Example 19.4.1 The function exp(x) : R ^ IR satisfies (PS)c for all c except 
for c = 0. The real functions sin(x) and cos(x) defined in R satisfy (PS)c for 
all c except for c = 1 and c = — 1. 
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19.5 Nonstandard variants of Palais-Smale 
conditions per level 

As above, £̂  is a real Banach space, / G C^(^ ,R) and c G R. 

Obvious adaptations of conditions (PSO), (PSl) and {PS2) provide the 
following conditions per level: 

(^n)nGN IS a Palais-Smalc sequence of level c 
{PSO)c U 

3m G*Noo Um e ns(*£^) 

{PSl)c f{u) ^c A f{u) ^{)^ue ns{*E) 

f{u) ^ c A f{u) ^ 0 
{PS2)c U 

u G fin(*£') A c = s t ( / (u) ) is a critical value of / 

Note that if {un)neN is a Palais-Smale sequence of level c, then 

VnG*Noo st{f{un)) =c 

hence, the adaptation of conditions {PS3) and (PSA) to this context are equiv
alent to the standard condition: 

{un)neN is a Palais-Smale sequence of level c 

{un)neN is bounded A c is a critical value of / . 

The variants of Theorems 19.3.1, 19.3.2 and 19.3.3 can be easily proven. 

Theorem 19.5.1 For any real Banach space E we have 

{PSl), => (PS)e ^ {PSO)c => {PS2),. 

Theorem 19.5.2 Suppose E is a real separable Banach space and f G 
C^{E^'R). Then f satisfies (PS)c if and only if f satisfies (P5'l)c. 

Theorem 19.5.3 If E has finite dimension, then 

{PSl)c ^ (PS)e ^ {PSO)c ^ {PS2),. 

Remark 19.5.1 Example 19.3.1 also shows that condition {PS2)c does gen
eralize (PS)c and (PS'l)c when c = 0. 
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19.6 Moun ta in Pass Theorems 

Some important results in Critical Point Theory, such as the Mountain 
Pass Theorems and some variants of Ekeland's Variational Principle, can be 
obtained using a deformation technique. This technique was introduced in 
1934 by Lusternik and Schnirelman [8] and consists in deforming a given C^ 
functional outside the set of critical points. In 1983 Willem proved in [14] the 
Quantitative Deformation Lemma; a very technical lemma that involves the 
concept of pseudo-gradient vector field (see [14] or [9]). 

For S C E^ a G M^ and c G M, we use the following notations 

f" :={x eE : f{x) < c} and S^'•= {x e E : dist{x, S) < a} 

where 
dist{x, S) = inf{||x — ^|| : y ^ S}. 

Lemma 19.6.1 (Quantitative Deformation Lemma) Let f G C^{E,W), 
S C E, ceR, £,S eR-^ be such that 

yyef-\[c-2s,c + 2s])nS2s [ ||/'(y)|| > y ] • 

Then there exists rj G C([0,1] x E, E) such that 

2. ii(t,y)=y ify^f-H[c-2e,c + 2e])nS25; 

3. 7?(i ,r+^ns)c/-^-

4' for all t G [0,1], 77(t, •) : E ^ E is a homeomorphism; 

5. ytG[0,l],\/yGE \\ri{t,y)-y\\<5; 

6. for each y G E, f{ri{-,y)) is non increasing; 

7. ytG]0,l],^yGrnSs fiv{t,y))<c. 

An easy consequence of the Quantitative Deformation Lemma is the fol
lowing variant of Ekeland's Variational Principle (see [9, page 14]). 

Corol lary 19.6.1 Let f G C^{E^R) be bounded from below. Then, for any 
e G R'^, there exists u G E such that 

f{u) < ini f{x)+e and \\f'{u)\\ < y^ . 



19.6. Mountain Pass Theorems 283 

Applying the Transfer Principle to Corollary 19.6.1 we obtain 

Corollary 19.6.2 Let f G C^(E,R) be bounded from below. Then there exists 
a point u G^E such that 

f{u) ^ inf f{x) and f{u) ^ 0. 

Now we can deduce 

Theorem 19.6.1 Let f G C^{E^R) be bounded below and c = inf^^£;/(x). / / 
/ satisfies {PS2)c then c is a critical value of f. 

Proof. By Corollary 19.6.2 we conclude that there exists u G "^E such that 
f{u) ^ c and f^{u) ^ 0. Since / satisfies (PS'2)c, c = st(/(ix)) is a critical 
value of / . n 

Theorem 19.6.1 is a generalization of the classical result (see [7, page 16]): 

Theorem 19.6.2 Let f G C^{E,W) be bounded below and c = inf^^£;/(x). / / 
/ satisfies (PS)c then c is a critical value of f. 

We now state the Mountain Pass Theorem introduced by Ambrosetti and 
Rabinowitz in 1973 [1]. 

Theorem 19.6.3 (Mountain Pass Theorem, Ambrosetti-Rabinowitz) 
Let E be a real Banach space and f e C^{E,R). Suppose that 

L there exists e G E and r G M"̂  such that \\e\\ > r and 

max{/(0) , / (e )} < b := ini f{x)-
\\x\\=r 

2. r = {7GC([0, l ] ,£ ; ) : 7(0) = 0 A 7 ( 1 ) = e} and c := inf m a x / ( 7 ( t ) ) ; 

3. f satisfies (PS) . 

Then c>b and c is a critical value of f. 

We usually say that if / : £̂  ^ R satisfies condition 1 of Theorem 19.6.3, 
then / satisfies the mountain pass geometry (with respect to 0 and e). 

Remark 19.6.1 Conditions 1 and 2 of Theorem 19.6.3 are not enough to 
imply that c is a critical value of / as we can see with the following example 
(see [7, page 36]). The function / : M^ ^ M defined by / (x , y) = x'^^ix^lfy'^ 
satisfies the mountain pass geometry with 0 = (0,0), e = (—2,3) and r = ^. 
(0, 0) is a strict local minimizer and is the only critical point of / . Therefore, 
there is no ^ G M^ such that f{z) = c > 0 and f^{z) = 0. 
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In 1980 Brezis, Coron and Nirenberg obtained in [3] a generalization of the 
Mountain Pass Theorem of Ambrosetti-Rabinowitz for functionals satisfying 
the (PS)c condition: 

Theorem 19.6.4 (Mountain Pass Theorem, Brezis-Coron-Nirenberg) 
Let E be a real Banach space and f G C^{E,M.). Suppose that 

1. there exists e G E and r G M~̂  such that \\e\\ > r and 

max{/(0),/(e)} < b:= Mf{x); 

2. r = { 7 G C ( [ 0 , l ] , ^ ) : 7(0) = 0 A 7 ( 1 ) = e } and c := inf m a x / ( 7 ( t ) ) ; 

3. f satisfies (PS)c. 

Then c> b and c is a critical value of f. 

This result and the Mountain Pass Theorem of Ambrosetti-Rabinowitz are 
easy consequences of the Quantitative Deformation Lemma, since it is possible 
to prove that for every C^ functional that satisfies conditions 1 and 2 of both 
theorems, there exists a Palais-Smale sequence of level c (see [9, page 19]). 

We now deduce the following generalization of the Mountain Pass Theorem 
of Brezis-Coron-Nirenberg. 

T h e o r e m 19.6.5 Let E be a real Banach space and f G C^(£',]R). Sup
pose that 

1. there exists e G E and r G M+ such that \\e\\ > r and 

max{/(0) , / (e )} < b:= Mf{x); 

^. r = { 7 G C ( [ 0 , l ] , ^ ) :7(0) = 0 A 7 ( 1 ) = e} and c := inf m a x / ( 7 ( t ) ) ; 

3. f satisfies {PSA)c. 

Then c> b and c is a critical value of f. 

Proof. From the Quantitative Deformation Lemma there exists a Palais-Smale 
sequence of level c. Since / satisfies (PS'4)c, c is a critical value of / . D 
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20 
Averaging for ordinary differential equations 

and functional differential equations 

Tewfik Sari 

A b s t r a c t 
A nonstandard approach to averaging theory for ordinary differential 
equations and functional differential equations is developed. We define 
a notion of perturbation and we obtain averaging results under weaker 
conditions than the results in the literature. The classical averaging the
orems approximate the solutions of the system by the solutions of the 
averaged system, for Lipschitz continuous vector fields, and when the so
lutions exist on the same interval as the solutions of the averaged system. 
We extend these results to perturbations of vector fields which are uni
formly continuous in the spatial variable with respect to the time variable 
and without any restriction on the interval of existence of the solution. 

20.1 Introduction 

In the early seventies, Georges Reeb, who learned about A b r a h a m Robin

son's Nonstandard Analysis (NSA) [29], was convinced t h a t NSA gives a lan

guage which is well adap ted to the s tudy of pe r tu rba t ion theory of differen

tial equations (see [6, p . 374] or [25]). The axiomatic presentat ion Internal 

Set Theory (1ST) [26] of NSA given by E. Nelson corresponded more to the 

Reeb 's d ream and was in agreement wi th his conviction ^'Les entiers naifs ne 

remplissent pas N^\ Indeed, no formalism can recover exactly all t he actual 

phenomena, and nonstandard objects which may be considered as a formal

ization of non-nawe objects are already elements of our usual (s tandard) sets. 

We do not need any use of stars and enlargements. Thus , the Reebian school 

adopted 1ST. For more informations about Reeb 's d ream and convictions see 

the Reeb 's preface of Lutz and Goze's book [25], Stewart ' s book [40] p . 72, or 

Lobry 's book [23]. 

The Reebian school of nonstandard perturbation theory of differential equa

tions produced various and numerous studies and new results as a t tes ted by a 

Universite de Haute Alsace, Mulhouse, France. 
T.SariOuha.fr 
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lot of books and proceedings (see [2, 3, 4, 7, 8, 9, 10, 12, 23, 25, 30, 37, 42] and 
their references). It has become today a weh-estabhshed tool in asymptotic 
theory, see, for instance, [17, 18, 20, 24, 39] and the five-digits classification 
34E18 of the 2000 Mathematical Subject Classification. Canards and rivers (or 
Ducks and Streams [7]) are the most famous discoveries of the Reebian school. 

The classical perturbation theory of differential equations studies defor
mations, instead of perturbations, of differential equations (see Section 2.1). 
Classically the phenomena are described asymptotically, when the parameter 
of the deformation tends to some fixed value. The first benefit of NSA is a 
natural and useful notion of perturbation. A perturbed equation becomes a 
simple nonstandard object, whose properties can be investigated directly. This 
aspect of NSA was clearly described by E. Nelson in his paper Mathematical 
Mythologies [30], p. 159, when he said ^Tor me, the most exciting aspect of non
standard analysis is that concrete phenomena, such as ducks and streams, that 
classically can only be described awkwardly as asymptotic phenomena, become 
mythologized as simple nonstandard objects/^ 

The aim of this paper is to present some of the basic nonstandard techniques 
for averaging in Ordinary Differential Equations (ODEs), that I obtained 
in [32, 36], and their extensions, obtained by M. Lakrib [19], to Functional Dif
ferential Equations (FDEs). This paper is organized as follows. In Section 20.2 
we define the notion of perturbation of a vector field. The main problem of 
perturbation theory of differential equations is to describe the behavior of tra
jectories of perturbed vector fields. We define a standard topology on the set 
of vector fields, with the property that / is a perturbation of a standard vector 
field /o if and only if / is infinitely close to /o for this topology. In Section 20.3 
we present the Stroboscopic Method for ODEs and we show how to use it in 
the proof of the averaging theorem for ODEs. In Section 20.4 we present the 
Stroboscopic Method for FDEs and we show how to use it in the proofs of the 
averaging theorem for FDEs. The nonstandard approaches of averaging are 
rather similar in structure both in ODEs and FDEs. It should be noticed that 
the usual approaches of averaging make use of different concepts for ODEs and 
for FDEs: compare with [5, 31] for averaging in ODEs and [13, 14, 15, 22] for 
averaging in FDEs. 

20.2 Deformations and perturbations 

20.2.1 Deformations 

The classical perturbation theory of differential equations studies families 
of differential equations 

x = F(x,£) , (20.2.1) 
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where x belongs to an open subset [/ of M^, called phase space^ and e belongs 
to a subset B of M ,̂ called space of parameters. 

The family (20.2.1) of differential equations is said to be a k-parameters 
deformation of the vector field FQ{X) = F(x,6o), where SQ is some fixed value 
of s. The main problem of the perturbation theory of differential equations is 
to investigate the behavior of the vector fields F{x^e) when e tends to e^. 

The intuitive notion of a perturbation of the vector field FQ which would 
mean any vector field which is close to FQ does not appear in the theory. The 
situation is similar in the theory of almost periodic functions which, classically, 
do not have almost periods. The nonstandard approach permits to give a very 
natural notion of almost period (see [16, 28, 33, 41]). The classical perturbation 
theory of differential equations considers deformations instead of perturbations 
and would be better called deformation theory of differential equations. Ac
tually the vector field F(x, e) when e is sufficiently close to SQ is called a 
perturbation of the vector field Fo(x). In other words, the differential equation 

X = Fo(x) (20.2.2) 

is said to be the unperturbed equation and equation (20.2.1), for a fixed value 
of s, is called the perturbed equation. This notion of perturbation is not very 
satisfactory since many of the results obtained for the family (20.2.1) of dif
ferential equations take place in all systems that are close to the unperturbed 
equation (20.2.2). Noticing this fact, V. I. Arnold (see [1], footnote page 157) 
suggested to study a neighborhood of the unperturbed vector field Fo(x) in 
a suitable function space. For the sake of mathematical convenience, instead 
of neighborhoods, one considers deformations. According to V. I. Arnold, the 
situation is similar with the historical development of variational concepts, 
where the directional derivative (Gateaux differential) preceded the derivative 
of a mapping (Frechet differential). Nonstandard analysis permits to define 
a notion of perturbation. To say that a vector / is a perturbation of a stan
dard vector field /o is equivalent to say that / is infinitely close to /o is a 
suitable function space, that is / is in any standard neighborhood of /Q. Thus, 
studying perturbations in our sense is nothing than studying neighborhoods, 
as suggested by V. I. Arnold. 

20.2.2 Perturbations 

Let X be a standard topological space. A point x G X is said to be 
infinitely close to a standard point XQ G X, which is denoted by x ^ XQ, if x is 
in any standard neighborhood of XQ. Let A be a subset of X. A point x G X 
is said to be nearstandard in A if there is a standard XQ G A such that x ĉ  XQ. 
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Let us denote by 

^^A = {xeX : 3'^xo G A X ĉ  xo}, 

the external-set of nearstandard points in A [34]. Let ^ be a standard uniform 
space. The points x G E and y G E are said to be infinitely close, which is 
denoted by x ~ ?/, if (x, y) lies in every standard entourage. If £" is a standard 
metric space, with metric d^ then x c:^ y 18 equivalent to d(x, y) infinitesimal. 

Definition 1 Let X be a standard topological space X. Let E be a standard 
uniform space. Let D and DQ be open subsets of X, DQ standard. Let f : D ^ 
E and fo : DQ ̂  E be mappings^ /o standard. The mapping f is said to be a 
perturbation of the mapping fo, which is denoted by f c:^ fo, if ^^DQ C D and 
f{x)c:^fo{x)forallxe^^Do. 

Let J-'x,E be the set of mappings defined on open subsets of X to E : 

j r ^ ^ = {(/ , L>) : D open subset of X and / : D ^ ^ } . 

Let us consider the topology on this set defined as follows. Let (/o, DQ) G J-X,E-

The family of sets of the form 

{(/, D) 6 Tx,E : KcD\/xeK {fix), fo{x)) 6 U}, 

where K is a compact subset of DQ^ and U is an entourage of the uniform 
space E, is a basis of the system of neighborhoods of (/o, DQ). Let us call this 
topology the topology of uniform convergence on compacta. If all the mappings 
are defined on the same open set D, this topology is the usual topology of 
uniform convergence on compacta on the set of functions on D to E. 

Proposition 1 Assume X is locally compact. The mapping f is a perturbation 
of the standard mapping /o if and only if f is infinitely close to /o for the 
topology of uniform convergence on compacta. 

Proof. Let f : D ^ E he a, perturbation of fo : DQ ^ E. Let K be a 
standard compact subset of DQ. Let [/ be a standard entourage. Then K C D 
and f{x) c± /o(x) for ah x e K. Hence (/(x), /o(x)) G U. Thus / ^ /o 
for the topology of uniform convergence on compacta. Conversely, let / be 
infinitely close to /o for the topology of uniform convergence on compacta. Let 
X G ^^DQ. There exists a standard XQ G DQ such that x c:^ XQ. Let K be a 
standard compact neighborhood of XQ, such that K C DQ (such a neighborhood 
exists since X is locally compact). Then x G K C D and (/(x), /o(x)) G U 
for all standard entourages U, that is ^^DQ C D and f{x) ^ /o(^) on ^^DQ. 
Hence / is a perturbation of /Q. D 
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The notion of perturbation can be used to formulate Tikhonov's theorem on 
slow and fast systems whose fast dynamics has asymptotically stable equi
librium points [24], and Pontryagin and Rodygin's theorem on slow and fast 
systems whose fast dynamics has asymptotically stable cycles [39]. In the fol
lowing section we use it to formulate the theorem of Krilov, Bogolyubov and 
Mitropolski of averaging for ODEs. All these theorems belong to the singular 
perturbation theory. In this paper, by a solution of an Initial Value Problem 
(IVP) associated to an ODE we mean a maximal (i.e. noncontinuable) solu
tion. The fundamental nonstandard result of the regular perturbation theory 
of ODEs is called the Short Shadow Lemma. It can be stated as follows [36, 37]. 

Let g : D ^ M.^ and go : DQ ^ R^ be continuous vector fields, D^DQ (Z 
IR+ X R^. Let ag and a^ be initial conditions. Assume that go and a^ are 
standard. The IVP 

dX/dT = g{T, X) , X(0) = a° (20.2.3) 

is said to be a perturbation of the standard IVP 

dX/dT = go{T,X), X(0) = ag, (20.2.4) 

if ^ 2̂  ^0 and a^ c:^ a^. To avoid inessential complications we assume that 
equation dX/dT = ^0(^5 X) has the uniqueness of the solutions. Let 00 be the 
solution of the IVP (20.2.4). Let / be its maximal interval of definition. Then, 
by the following theorem any solution of problem (20.2.3) also exist on / and 
is infinitely close to (/)o. 

Theorem 1 (Short Shadow Lemma) Let problem (20.2.3) be a perturba
tion of problem (20.2.4)- Every solution (j) of problem (20.2.3) is a perturbation 
of the solution 00 of problem (20.2.4), that is, for all nearstandard t in I, (j){t) 
is defined and satisfies (j){t) c^ 0o(^)-

Let us consider the restriction t/j oi (f) to ^^I. By the Short Shadow Lemma, 
for standard t G / , it takes nearstandard values '0(t) ^ (po{t)- Thus its shadow, 
which is the unique standard mapping which associate to each standard t the 
standard part of '0(t), is equal to 0o- In general the shadow of (/) is not equal to 
00- Thus, the Short Shadow Lemma describes only the "short time behaviour" 
of the solutions. 

20.3 Averaging in ordinary differential equations 

The method of averaging is well-known for ODEs. The fundamental re
sult of this theory asserts that, for small e > 0, the solutions of a nonau-
tonomous system 

i: = / (t/e, X, s ) , where x = dx/dt, (20.3.1) 
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are approximated by the solutions of the averaged autonomous system 

y = F{y), where F{x) = lim ^ [ f{t,x,0) dt (20.3.2) 

The approximation of the solutions of (20.3.1) by the solutions of (20.3.2) 
means that if x{t^£) is a solution of (20.3.1) and y{t) is the solution of the 
averaged equation (20.3.2) with the same initial condition, which is assumed 
to be defined on some interval [0,T], then for e ~ 0 and for all t G [0,T], we 
have x(t,£) ^ y{t)-

The change of variable Z{T) = X{£T) transforms equation (20.3.1) into 
equation 

/ = sf (r, z, e), where / = dz/dr. (20.3.3) 

Thus, the method of averaging can be stated for equation (20.3.3), that is, if 
£ is infinitesimal and 0 < r < T/e then Z{T^ e) ^ y{sr). 

Classical results were obtained by Krilov, Bogolyubov, Mitropolski, Eck-
haus, Sanders, Verhulst (see [5, 31] and the references therein). The theory is 
very delicate. The dependence of / ( t , x, e) in s introduces many complications 
in the formulations of the conditions under which averaging is justified. In 
the classical approach, averaging is justified for systems (20.3.1) for which the 
vector field / is Lipschitz continuous in x. Our aim in this section is first to 
formulate this problem with the concept of perturbations of vector fields and 
then to give a theorem of averaging under hypothesis less restrictive than the 
usual hypothesis. In our approach, averaging is justified for all perturbations 
of a continuous vector field which is continuous in x uniformly with respect to 
t. This assumption is of course less restrictive than Lipschitz continuity with 
respect to x. 

20.3.1 K B M vector fields 

Definition 2 Let UQ be an open subset of R^. The continuous vector field 
/o : M+ XUQ ^M.^ is said to be a Krilov-Bogolyubov-Mitropolski (KBM) vector 
field if it satisfies the following conditions 

1. The function x -^ fo{t^x) is continuous in x uniformly with respect to 
the variable t. 

2. For all x G UQ the limit F{x) = limT^oc ^ /Q /O(^? ^) dt exists. 

3. The averaged equation y{t) = F{y{t)) has the uniqueness of the solution 
with prescribed initial condition. 
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Notice that, in the previous definition, conditions (1) and (2) imply that the 
function F is continuous, so that the averaged equation considered in condition 
(3) is weh defined. In the case of non autonomous ODEs, the definition of a 
perturbation given in Section 20.2 must be stated as fohows. 

Definition 3 Let UQ and U be open subsets o/R^. A continuous vector field 
f : IR+ xU ^M^ is said to be a perturbation of the standard continuous vector 
field /o : M+ x UQ ^ M. if U contains all the nearstandard points in UQ, and 
f{s,x) ^ /o(5,x) for all s G M+ and all nearstandard x in UQ. 

Theorem 2 Let /o : M+ x UQ ^ W^ be a standard KBM vector field and let 
aQ G UQ be standard. Let y{t) be the solution of the IVP 

m = F{y{t)), 2/(0) = ao, (20.3.4) 

defined on the interval [0,a;[; 0 < LJ < oo. Let f : IR+ x U ^ R^ be a 
perturbation 0 / /0 . Let e > 0 be infinitesimal and a c± ao- Then every solution 
x{t) of the IVP 

x(t) = f {t/e, x{t)), x(0) = a, (20.3.5) 

is a perturbation of y{t), that is, for all nearstandard t in [0,cc;[̂  x{t) is defined 
and satisfies x{t) ::± y{t). 

The proof, in the particular case of almost periodic vector fields, is given in 
Section 20.3.4. The proof in the general case is given in Section 20.3.5. 

20.3.2 Almost solutions 

The notion of almost solution of an ODE is related to the classical notion 
of e-almost solution. 

Definition 4 A function x{t) is said to be an almost solution of the standard 
differential equation x = G(t, x) on the standard interval [0, L] if there exists 
a finite sequence 0 = to < • • • < tjv+i = L such that for n = 0, • • • , A/" we have 

tn+l - tn, X{t) ^ x{tn) for t G [ t n , t n + l ] , 

and ""^Y'^lf^^Git^^xitr,)). 

The aim of the following result is to show that an almost solution of a standard 
ODE is infinitely close to a solution of the equation. This result which was 
first established by J. L. Callot (see [11, 27]) is a direct consequence of the 
nonstandard proof of the existence of solutions of continuous ODEs [26]. 
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Theorem 3 If x{t) is an almost solution of the standard differential equation 
X = G{t^x) on the standard interval [0,L]^ x(0) ^ yo, with yo standard^ and 
the IVP y = G{t,y), y{0) = yo, has a unique solution y(t), then y{t) is defined 
at least on [0, L] and we have x{t) ^ y{t), for all t G [0, L\. 

Proof. See [11, 36] D 

Let us apply this theorem to obtain an averaging result for an ODE which 
does not satisfy all the hypothesis of Theorem 2. 

Consider the ODE (see [11, 27, 36]) 

tx 
x{t) = s i n — . (20.3.6) 

The conditions (2) and (3) in Definition 2 are satisfied with F{x) = 0. Thus, 
the solutions of the averaged equation are constant. But condition (1) of the 
definition is not satisfied, since the function / ( t , x) = sin (tx) is not continuous 
in X uniformly with respect to t. Hence Theorem 2 does not apply. In fact the 
solutions of (20.3.6) are not nearly constant and we have the following result: 

Proposition 2 If e > 0 is infinitesimal then, in the region t > x > 0 the 
solutions of (20.3.6) are infinitely close to hyperbolas tx = constant. In the 
region x > t > 0, they are infinitely close to the solutions of the ODE 

X = G{t, x), where G{t, x) = X^-^ Z ^ . (20.3.7) 

Proof. The isocline curves I^ = {{t^x) : tx = 2k7r£} and /^ = {{t^^) • t^ — 
(2/c + DTT^} define, in the region t > x > 0, tubes in which the trajectories are 
trapped. Thus for t > x > 0 the solutions are infinitely close to the hyperbolas 
tx = constant. This argument does not work for x > t > 0. In this region, we 
consider the microscope 

where (t/̂ ,̂ Xjt) are the points where a solution x(t) of (20.3.6) crosses the curve 
I]^. Then we have 

^ = sin [x^T + t^X + ETX) , X(0) = 0. 

By the Short Shadow Lemma (Theorem 1), X(T) is infinitely close to a solution 
of dX/dT = sin {x^T -\- tkX). By straightforward computations we have 

-— ^ G{tk,Xk). 

Hence, in the region x > t > 0, the function x{t) is an almost solution of the 
ODE (20.3.7). By Theorem 3, the solutions of (20.3.6) are infinitely close to 
the solutions of (20.3.7). D 
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20 .3 .3 T h e s t r o b o s c o p i c m e t h o d for O D E s 

In this section we denote by G : IR+ x L) ^ M^ a standard continuous 
function, where L) is a standard open subset of R^. Let x : / ^ R^ be a 
function such that 0 G / C IR+. 

Definition 5 We say that x satisfies the Strong Stroboscopic Property with 
respect to G if there exists /i > 0 such that for every positive limited to ^ I 
with x{to) nearstandard in D, there exists ti E I such that /i < ti — to — 0; 
[to,ti] C / ; x{t) ^ x{to) for all t G [to,ti]; and 

x{ti) - x ( t o ) ^, , .. 
c:^ G{to,x{to)). 

ti — to 
The real numbers to and ti are cahed successive instants of observation of the 
stroboscopic method. 

Theorem 4 (Stroboscopic Lemma for ODEs) Let OQ E D be standard. 
Assume that the IVP y{t) = G(t^y{t)), y{0) = OQ, has a unique solution y 
defined on some standard interval [0, L]. Assume that x{0) ^ ao and x satisfies 
the Strong Stroboscopic Property with respect to G. Then x is defined at least 
on [0, L] and satisfies x{t) ^ y{t) for all t G [0, L]. 

Proof. Since x satisfies the Strong Stroboscopic Property with respect to G, 
it is an almost solution of the ODE x = G{t^x). By Theorem 3 we have 
x{t) ^ y{t) for all t G [0, L]. The details of the proof can be found in [36]. D 

The Stroboscopic Lemma has many applications in the perturbation theory 
of differential equations (see [11, 32, 35, 36, 38, 39]). Let us use this lemma to 
obtain a proof of Theorem 2. 

20 .3 .4 P r o o f of T h e o r e m 2 for a lmos t per iod ic vec tor fields 

Suppose that /o is an almost periodic in t, then any of its translates 
fo{s + ^^o) is a nearstandard function, and /o has an average F which satis
fies [16, 28, 33, 41] 

1 r+^ 
F{x)=lim - / /o( t ,x)dt , 

uniformly with respect to s G M+. Since F is standard and continuous, we have 

rs+T 

F{x) ^f fo{t,x)dt, (20.3.^ 
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for all s G M+, all T 2± oo and all nearstandard x in UQ. Let x : / ^ [/ be a 
solution of problem (20.3.5). Let to be an instant of observation: to is limited 
in / , and XQ = x{to) is nearstandard in UQ. The change of variables 

X (to + eT) - xo 
^ — 1 

e 

transforms (20.3.5) into 

dX/dT = f(s + T, a:o + eX), where s = to/e. 

By the Short Shadow Lemma (Theorem 1), applied to g(T^X) = f{s + 
T,xo + sX) and go{T,X) = fo{s + T,xo), for ah limited T > 0, we have 
X(T) ĉ  JQ fo{s + r,xo)dr. By Robinson's Lemma this property is true for 
some unlimited T which can be chosen such that sT ^ 0. Define ti = to + eT. 
Then we have 

x{h)-x{to) x{T) 1 r,, , ,, 1 r^^ 
h — to 

1 r 1 r + ^ 
^ / /o(5 + r ,xo)dr = - / /o(t, xo) dt ^ F(xo). 

Thus X satisfies the Strong Stroboscopic Property with respect to F. Using the 
Stroboscopic Lemma for ODEs (Theorem 4) we conclude that x{t) is infinitely 
close to a solution of the averaged ODE (20.3.4). 

20.3 .5 P r o o f of T h e o r e m 2 for K B M vec tor fields 

Let /o be a KBM vector field. From condition (2) of Definition 2 we deduce 

that for all s G M+, we have F{x) = lim^^oo ^ Is «̂ o(̂ ' ̂ ) ^^' ^^^ ^^^ limit 
is not uniform on s. Thus for unlimited positive s, the property (20.3.8) does 
not hold for all unlimited T, as it was the case for almost periodic vector fields. 
However, using also the uniform continuity of /o in x with respect to t we can 
show that (20.3.8) holds for some unlimited T which are not very large. This 
result is stated in the following technical lemma [36]. 

Lemma 1 Let g : R+ x M, ^^ W^ he a standard continuous function where 
Ai is a standard metric space. We assume that g is continuous in m G 
Ai uniformly with respect to t G M+ and that g has an average G{m) = 
limT^^oo f^/o g{t^m)dt. Let £ > 0 be infinitesimal. Let t G IR+ be limited. 
Let m be nearstandard in Ai. Then there exists a > s, a ^ 0 such that, for 
all limited T > 0 we have 

I rs+TS 
— / ^(r, m) dr ^ TG{m)^ where s = tje^ S = aje. 
^ Js 
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The proof of Theorem 2 needs another technical lemma whose proof can be 
found also in [36]. 

Lemma 2 Let g : R+ x R^ ^ R*̂  and h : IR+ -^ R^ be continuous functions. 
Suppose that g{T^X) ĉ  h{T) holds for all limited T G M+ and all limited 
X G M ;̂ and J^ h{r) dr is limited for all limited T E IR+. Then^ any solution 
X{T) of the IVP dX/dT = g(T, X), X(0) = 0, is defined for all limited T G IR+ 
and satisfies X(T) ~ JQ h{r) dr. 

Proof of Theorem 2. Let x : / ^ t/ be a solution of problem (20.3.5). Let 
to G / be limited, such that XQ = a;(to) is nearstandard in t/o- By Lemma 1, 
applied to ^ = /o, G = F and m = x(to), there is a > 0, a ^ 0 such that for 
all limited T > 0 we have 

I rs+TS 
- / /o(r, xo) dr ^ TF(xo), where s = to/e, S = a/e. (20.3.9) 
'-̂  Js 

The change of variables 

^ ^ X (to + aT) - XQ 

a 

transforms (20.3.5) into 

dX/dT = f{s + ST, xo + aX). 

By Lemma 2, applied to g{T,X) = f{s + S'T,xo + aX) and / i (r) = fo{s + 
ST^XQ), and (20.3.9), for all limited T > 0, we have 

X{T)c^j f^(s + Sr,xo)dr = - j /o(r,xo) dr ^ TF(xo). 

Define the successive instant of observation of the stroboscopic method ti by 
ti = to + Q̂ . Then we have 

tl — to 

Since ti — to = a > e and x{t) — x{to) = aX(T) c^ 0 for all t G [to,ti], we 
have proved that the function x satisfies the Strong Stroboscopic Property with 
respect to F. By the Stroboscopic Lemma, for any nearstandard t G [0,cj[, 
x{t) is defined and satisfies x{t) ^ y{t). D 
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20.4 Functional differential equations 

Let C = C([—r, 0], R^), where r > 0, denote the Banach space of continuous 
functions with the norm ||(/)|| = sup{||0(^)|| : 6 G [—'̂ ,0]}, where ||-|| is a norm 
of M .̂ Let L > to. If X : [—r, L] -^ R^ is continuous, we define Xt G C by 
setting xt{0) = x{t + e), 9 e [-r, 0] for each t G [0, L]. Let ^ : IR+ x C ^ R^, 
(t, u) 1-̂  g(t^ li), be a continuous function. Let 0 G C be an initial condition. A 
Functional Differential Equation (FDE) is an equation of the form 

x{t) = g{t,xt), xo = 0. 

This type of equation includes differential equations with delays of the form 

x{t) = G{t,x{t),x{t-r)), 

where G : R+ x R^ x R^ ^ R^. Here we have g{t, u) = G{t, u{^),u{-r)). 
The method of averaging was extended [13, 22] to the case of FDEs of 

the form 
Z'(T) = £ / ( T , Z , ) , (20.4.1) 

where s is a small parameter. In that case the averaged equation is the ODE 

y'{r) = £F(y(r)) , (20.4.2) 

where F is the average of / . It was also extended [14] to the case of FDEs 
of the form 

x{t) = f{t/e,xt). (20.4.3) 

In that case the averaged equation is the FDE 

y(t)^F{yt). (20.4.4) 

Notice that the change of variables x{t) = z{t/e) does not transform equa
tion (20.4.1) into equation (20.4.3), as it was the case for ODEs (20.3.3) 
and (20.3.1), so that the results obtained for (20.4.1) cannot be applied 
to (20.4.3). In the case of FDEs of the form (20.4.1) or (20.4.3), the clas
sical averaging theorems require that the vector field / is Lipschitz continuous 
in X uniformly with respect to t. In our approach, this condition is weak
ened and we only assume that the vector field / is continuous in x uniformly 
with respect to t. Also in the classical averaging theorems it is assumed that 
the solutions ^(r, £) of (20.4.1) and ^(r) of (20.4.2) exist in the same interval 
[0,T/£] or that the solutions x{t,e) of (20.4.3) and y{t) of (20.4.4) exist in the 
same interval [0,T]. In our approach, we assume only that the solution of the 
averaged equation is defined on some interval and we give conditions on the 
vector field / so that, for e sufficiently small, the solution x(t, e) of the system 
exists at least on the same interval. 
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20 .4 .1 Averag ing for F D E s in t h e form Z\T) = ef ( r , z^) 

We consider the IVP, where e is a small parameter 

Z\T) ^ef {r.Zr), ZQ = 0. 

The change of variable x{t) = zitje) transforms this equation in 

x(t) = f {t/e, xt^,), x{t) = ^{t/s), t e [sr, 0], (20.4.5) 

where xt^^ ^ C is defined by xt^s{0) = x{t + e9) for 6 G [—r, 0]. 
Let / : R+ x C ^ R^ be a standard continuous function. We assume that 

(HI) The function f : u \-^ f{t,u) is continuous in u uniformly with respect 
to the variable t. 

(H2) For all n G C the limit F{u) = hm^^oo ^ /g /(^^ '^) dt exists. 

We identify M^ to the subset of constant functions in C, and for any vector 
c G M ,̂ we denote by the same letter, the constant function u G C defined by 
u{6) = c^ 6 G [—r, 0]. Averaging consists in approximating the solutions x(t, e) 
of (20.4.5) by the solution y{t) of the averaged ODE 

y{t) ^ F {y{t)), y{0)^m- (20.4.6) 

According to our convention, y{t), in the right-hand side of this equation, is 
the constant function u^ G C defined by u^{9) = ?/(t), 9 G [—r, 0]. Since F is 
continuous, this equation is well defined. We assume that 

(H3) The averaged ODE (20.4.6) has the uniqueness of the solution with pre
scribed initial condition. 

(H4) The function / is quasi-bounded in the variable u uniformly with respect 
to the variable t, that is, for every t G IR+ and every limited u G C, f{t,u) 
is limited in W^. 

Notice that conditions (HI), (H2) and (H3) are similar to conditions (1), (2) 
and (3) of Definition 2. In the case of FDEs we need also condition (H4). In 
classical words, the uniform quasi boundedness means that for every bounded 
subset 5 of C, / ( R + x B) is a bounded subset of M .̂ This property is strongly 
related to the continuation properties of the solutions of FDEs (see Sections 2.3 
and 3.1 of [15]). 

Theorem 5 Let f : IR+ x C ^ R^ be a standard continuous function satisfying 
the conditions (H1)-(H4). Let cf) be standard in C. Let L > 0 be standard and 
let y : [O^L] ^M.^ be the solution of (20.4-6). Let s > 0 be infinitesimal. Then 
every solution x{t) of the problem (20.4-5) is defined at least on [—er,L] and 
satisfies x{t) ^ y{t) for all t G [0, L]. 
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20 .4 .2 T h e s t r o b o s c o p i c m e t h o d for O D E s rev i s i t ed 

In this section we give another formulation of the stroboscopic method 
for ODEs which is well adapted to the proof of Theorem 5. Moreover, this 
formulation of the Stroboscopic Method will be easily extended to FDEs (see 
Section 20.4.4). We denote by G : IR+ x R"̂  ^ W^, a standard continuous 
function. Let x : / ^ R^ be a function such that 0 G / C M+. 

Definition 6 We say that x satisfies the Stroboscopic Property with respect to 
G if there exists /a > 0 such that for every positive limited to G / ; satisfying 
[0,to] C / and x(t) is limited for all t G [0,to]; there exists t i G / such that 
)tx < ti — to — 0̂  [to,ti] C / ; x{t) ^ x(to) for all t G [to,ti]; and 

x{ti)-x{to) ^ 
— ^ G (to, x[to)). 

t i — to 

The difference with the Strong Stroboscopic Property with respect to G con
sidered in Section 20.3.3 is that now we assume that the successive instant of 
observation ti exists only for those values to for which x(t) is limited for all 
t G [0, to]. In Definition 5, in which we take D = M ,̂ we assumed the stronger 
hypothesis that ti exists for all limited to for which x(to) is limited. 

Theorem 6 (Second Stroboscopic Lemma for ODEs) Let ao e D be 
standard. Assume that the IVP y{t) = G{t^y{t)), y{0) = OQ, has a unique 
solution y defined on some standard interval [O^L]. Assume that x{0) ^ ao 
and X satisfies the Stroboscopic Property with respect to G. Then x is defined 
at least on [0, L] and satisfies x(t) ^ y{t) for all t G [0, L\. 

Proof. Since x satisfies the Stroboscopic Property with respect to G, it is an 
almost solution of the ODE x — G{tjx). By Theorem 3 we have x(t) ^ y{t) 
for all t G [0, L]. The details of the proof can found in [19] or [21]. D 

Proof of Theorem 5. Let x : / ^ R^ be a solution of problem (20.4.5). 
Let to G / be limited, such that x{t) is limited for all t G [0,to]. By Lemma 1, 
applied to ^ = / , G = F and the constant function m = x{to)^ there is a > 0, 
a ~ 0 such that for all limited T > 0 we have 

- / / ( r , x(to)) dr 2̂  TF(x(to)), where s = to/s, S = a/e. (20.4.7) 

Using the uniform quasi boundedness of / we can show (for the details see [19] 
or [21]) that x(t) is defined and limited for all t c^ to- Hence the function 

x{to + aT + ee)-x{to)^ ^ e [ - r , 0 ] , T e [ 0 , l ] , 
a 
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is well defined. In the variable X(- ,T) system (20.4.5) becomes 

dX 
— {0,T)^f{s + ST,x{to) + aX{;T)). 

Using assumptions (HI) and (H4) together with (20.4.7), we obtain after some 
computations that for all T G [0,1], we have 

rT -J rs+TS 

X(0, T)c^ j f{s + Sr, x{to)) dr = - J f{r, x{to)) dr ^ TF{x{to)). 

Define the successive instant of observation of the stroboscopic method ti by 
ti = to -\- ot. Then we have 

^ M ^ = X ( 0 , l ) c . F ( x ( t o ) ) . 
ti — to 

Since ti — to = a > £ and x{t) — x{to) = aX(0 ,T) 2̂  0 for all t G [to,ti], 
we have proved that the function x satisfies the Stroboscopic Property with 
respect to F. By the Second Stroboscopic Lemma for ODEs, for any t G [0, L], 
x{t) is defined and satisfies x{t) ^ y{t). D 

20 .4 .3 Averag ing for F D E s in t h e form x{t) = f (t/s^Xt) 

We consider the IVP, where e is a small parameter 

x{t) = f{t/e,xt), xo = (/), (20.4.8) 

We assume that / satisfies conditions (HI), (H2) and (H4) of Section 20.4.1. 
Now, the averaged equation is not the ODE (20.4.6), but the FDE 

y{t)=F{yt), yo = 4>- (20.4.9) 

Averaging consists in approximating the solutions x{t^e) of (20.4.8) by the 
solution yit) of the averaged FDE (20.4.9). Condition (H3) in Section 20.4.1 
must be restated as follows 

(H3) The averaged FDE (20.4.9) has the uniqueness of the solution with pre
scribed initial condition. 

Theorem 7 Let f : IR+ x C ^ R^ be a standard continuous function satisfying 
the conditions (H1)-(H4). Let <j) he standard in C. Let L > 0 be standard and let 
y : [0,L] -^ M^ be the solution of problem (20.4-9). Let e > 0 be infinitesimal. 
Then every solution x{t) of the problem (20.4-8) is defined at least on [—r, L] 
and satisfies x(t) ^ y(t) for all t G [—r, L]. 
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20 .4 .4 T h e s t r o b o s c o p i c m e t h o d for F D E s 

Since the averaged equation (20.4.9) is an FDE, we need an extension of 
the stroboscopic method for ODEs given in Section 20.4.2. In this section we 
denote by G : IR+ x C ^ R*̂ , a standard continuous function. Let x : / ^ R^ 
be a function such that [—r, 0] C / C M+. 

Definition 7 We say that x satisfies the Stroboscopic Property with respect to 
G if there exists fi > 0 such that for every positive limited to G / ; satisfying 
[0, to] C / and x{t) and G(t^ Xt) are limited for all t G [0, to]; there exists ti E I 
such that )tx < ti — to — 0; [to,ti] C I, x(t) ^ x(to) for all t E [to,ti]; and 

x ( t i ) - x ( t o ) ^ , . 
— ^ G ( t o , x t o ) . 

ti — to 

Notice that now we assume that the successive instant of observation ti exists 
for those values to for which both x{t) and G(t, Xt) are limited for all t G [0, to]. 
In the limit case r = 0, the Banach space C is identified with R^ and the 
function xt is identified with x{t) so that, G(t^xt) is limited, for all limited 
x{t). Hence the "Stroboscopic Property with respect to G" considered in the 
previous definition is a natural extension to FDEs of the "Stroboscopic Property 
with respect to G" considered in Definition 6. 

Theorem 8 (Stroboscopic Lemma for FDEs) Let cj) EC he standard. As
sume that the IVP y{t) = G{t,yt), yo = (/), has a unique solution y defined 
on some standard interval [—r, L]. Assume that the function x satisfies the 
Stroboscopic Property with respect to G and XQ ̂  (j). Then x is defined at least 
on [—r, L] and satisfies x{t) ^ y{t) for all t G [—r, L\. 

Proof. Since x satisfies the Stroboscopic Property with respect to G, it is an 
almost solution of the FDE x = G{t,xt). For FDEs, we have to our disposal 
an analog of Theorem 3. Thus x{t) ^ y{t) for all t G [0, L]. The details of the 
proof can found in [19] or [21]. D 

Proof of Theorem 7. Let x : / ^ R^ be a solution of problem (20.4.8). Let 
to G / be limited, such that both x{t) and F{xt) are limited for all t G [0,to]. 
From the uniform quasi boundedness of / we deduce that x{t) is S-continuous 
on [0,to]. Thus xt is nearstandard for all t G [0,to]. By Lemma 1, applied to 
g = f, G = F and m = xt^-, there is a > 0, a ^ 0 such that for all limited 
T > 0 we have 

SJs 

s+TS 

f{r, xto) dr ĉ  TF (xt^), where s = to/e, S = a/e. (20.4.10) 
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Using the uniform quasi boundedness of / we can show (for the details see [19] 
or [21]) that x{t) is defined and hmited for all t ^ to- Hence the function 

a 

is well defined. In the variable X(- ,T) system (20.4.8) becomes 

dX 
— (0,T) = fis + ST,xt,+aX{;T)). 

Using assumptions (HI) and (H4) together with (20.4.10), we obtain that for 
allT e [0,1], we have 

rT ^ rs+TS 

X(0, T)o^ J / (8 + Sr, xt,) dr = -J f {r, x , J dr ^ TF (x , J . 

Define the successive instant of observation of the stroboscopic method ti by 
ti = to -\- a. Then we have 

H M ^ = X(O,I). .FK) 
tl — to 

Since ti — to = ot > e and x{t) — x(to) = aX(0 ,T) 2̂  0 for all t G [^o?^i], 
we have proved that the function x satisfies the Stroboscopic Property with 
respect to F. By the Stroboscopic Lemma for FDEs, for any t G [0, L], x{t) is 
defined and satisfies x{t) 2̂  y(t). D 
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21 
Path-space measure for stochastic 

differential equation with a coefficient of 
polynomial growth 

Toru Nakamura 

A b s t r a c t 
A (j-additive measure over a space of paths is constructed to give the so
lution to the Fokker-Planck equation associated with a stochastic differ
ential equation with coefficient function of polynomial growth by making 
use of nonstandard analysis. 

21.1 Heuristic arguments and definitions 

Consider a stochastic differential equation, 

dx{t) = f{x(t)) dt + dh(t), (21.1.1) 

where / ( x ) is a real-valued function and h{t) a Brownian motion wi th variance 

2Dt for a t ime interval t. We wish to construct a measure over a space of pa ths 

for (21.1.1). To my knowledge, the coefficient function has been assumed to 

have at most linear growth, t h a t is \f{x)\ < const- |x | for sufficiently large x, 

otherwise some pa ths explode to infinity in finite t imes. As an example, let 

f{x) = |x|"^+^((5 > 0) and define explosion time e for each continuous p a t h 

x{t) by l imt^e -o^ (^ ) = ± o o . Then, it is proved t h a t P ( e = oo) < 1 and more 

strongly P ( e = oc) = 0. For general case, see Feller's test for explosion in [1]. 

Despite the explosion, we shall consider f[x) of polynomial growth of an 

arb i t rary order and define a measure over a space of pa ths . We use nons tandard 

analysis because it has a very convenient theory, Loeb measure theory [2, 3], 

which enables us to construct a s t andard cr-additive measure in a simple way. 

Department of Mathematics, Sundai Preparatory School, Kanda-Surugadai, Chiyoda-
ku, Tokyo 101-0062, Japan. 
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Let us interpret (21.1.1) as a law for a particle momentum x = x{t) at 
time t with the force / (x ( t ) ) for drift and the random force dh{t)/dt acting on 
the particle. By a time t > 0 some particles may disappear to infinity along 
the exploding paths, but others still exist with finite momentum so that they 
should make up a "probability" density of a particle momentum. We wish to 
use the word "probability" though its total value may be less than 1 because 
of the disappearance of particles to infinity. 

Especially when f{x{t)) is a repulsive force, that is, its sign is the same 
as that of x(t), a particle can get larger momentum compared to the case 
where / (x ( t ) ) is absent. However, once it gets very large momentum, it can 
hardly come back to the former one because the drift force f{x{t)) acts on 
the particle so as to increase its momentum. Thus, the particles which have 
gone to infinity by a time t > 0 could not contribute to the probability density 
at t. This consideration suggests that we can introduce a cutoff at an infinite 
number in momentum space if it is necessary in order to define a measure over 
a space of paths so that the probability density should be constructed by a 
path integral with respect to the measure. 

Eq. (21.1.1) gives the forward Fokker-Planck equation for the probability 
density t/(t, x) of a particle momentum x at time t, 

^U(t,x) = D-^U{t,x) - ^{f{x)U{t,x)}. (21.1.2) 

We assume that the drift coeflacient f{x) and the initial function [/(O, x) satisfy 
the following conditions: 

(Al) For some natural number n G N, \f{x)\ < const-|x|^ for sufl^ciently 
large x. 

(A2) fix) e C2(M). 

(A3) /(a;)2/(4D) + f'{x)/2 is bounded from below. We denote the bound by 

c = mm{f{xf/(4D) + / ' ( x ) /2 | a; G R}. 

(A4) U{0,x) e C^iR) and its support is a bounded set. 

Rewrite (21.1.2) into a diflFerence equation with infinitesimal time-spacing 
£ and momentum-spacing d = v2De using a forward difference quotient 

--U{t,x)^^{U{t + s,x)-U{t,x)} 

for time-derivative, and central ones 

^U{t,x) => ^{Uit,x + S)-U{t,x-6)} 
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and 

^U{t,x) ^ ^ { t / ( t , x + S) + U{t,x- 6) - 2U{t,x)} 

for space-derivative. The result is 

Uit + e,x) = l \ l + f{x-6)^/I/(2D)}uit,x-5) 
Y (21.1.3) 

+ -{l + fix + 6){-^/I/{2D))}u{t,x + 6), 

which indicates that the coefhcients ^{ l + / ( x — 5)^/£/{2D)^ should be as
signed to the infinitesimal line-segment with end points (t, x{t)) = (t, x{t -\-
e) — (5) and (t + £, x(t + s)) of a *-polygonal path x{s)^ and | { l + f{x + 
5)(^—^/e/{2D)^^ to the segment with end points (t, x{t)) = (t, x(t + e) + 5) 
and (t + £, x(t + e)). 

Taking into account the approximation 

log[l + f{x{t)) {±^/I/(2D))] ^ ^ / ( ^ W ) ( ± V 2 ^ ) - ^ / ( ^ W ) ' ^ 

= ^f{x{t)){xit + e) - x(i)} - ^f{xit)fs, 

let us interpret the coefiicients as 

\{l + f{x{t)){±.M2D))} 

^exp 

The first integral on the right-hand side is the Ito-integral. Thus, we define 
*-path uj^ *-measure fi for each cc;, and U{t^x) by 

Definition 1 

(1) Let V he [t/s] with Gauss^ parenthesis. For each internal function 
a : {0,1, • • • , i/ — 1} -^ {—151} (^'^d y G M; define Xk by Xk = y -\-
^i=o <^(0^; anduj by the ^-polygonal path with vertices (0,?/), (£,xi), • • •, 
(i^e.Xjy). 

(2) Define ^-measure ji by 

rt ^ pt ^ 
(21.1.4) M(^) = :^ exp ( ^fHs))dh{s)- j ^ ^f{^{s))'ds 

2^ 

mt/i î /ie /zr5t integral in the exponent being the Ito integral, and 

U(t,x) = ^ t / ( 0 , u ; ( 0 ) ) / / H (21.1.5) 
UJ 

where the sum is taken over all uo satisfying uo{ye) = x. 
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We note that the *-measure (21.1.4) corresponds to the Girsanov for
mula [4]. 

21.2 Bounds for the ^-measure and the *-Green 
function 

Making use of the Ito formula 

f^^fHs))dh(s) = ^{F(a ; (^ ) ) -F(a;(0))} - ^ J^ f (u;{s)) ds 

where F\x) = / (x ) , we obtain a bound for [i as 

M(^) = 7^ exp 

< :— exp 
- 2^ 

^{FHt)) - i^(-(0))}-^*{^/(-(.))' + \f'Hs))}ds 

^{FHt)) - F(a;(0))} - ct]. (21.2.1) 

The constant c in the last line was given in the assumption (A3). 
Let us fix the end points of uj at finite numbers y and x, and consider a 

space of *-paths, 

P ( t , x : 0,^) = { cj I Lj{0) = y and UJ(^£[t/s]) = x ̂ ^ 

and define the *-Green function for the interval [0, t] by 

g{t,x:0,y) = ^ Y^ li{u). (21.2.2) 
ujeP{t,x:0,y) 

Then, U(t^x) defined in (21.1.5) is written as 

U{t, x) = ^ t/(0, y)g{t, X : 0, y)25. (21.2.3) 
y 

The infinitesimal spacing corresponding to dy is not 5 but 2(5 in (21.2.3) because 
only the paths that start every other point y could reach the end point x. Since 

{x-yf-E _ 25 
F ^ (4^L>t)V2 exp 

cjGP(t,x:0,2/) 

the *-Green function is bounded as 

-F{x) F{y) 

4Dt 
( l + 0{e' (21.2.4) 

G{tjX : 0,?/) < exp 
2D 2D 

1 

ct 

X 
(4^Dt)V2 exp 4Dt 

( l + 0{e^ / 2 ^ 

(21.2.5) 
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and hence 

-F{x) Fiy) 
^|'^iu,(/; |t;xp| 

V 

p{t,x)\ < J]|t/(0,y)|exp 
2D 2D 

ct 

X T TTTT e x p 

. _ ., (21.2.6) 

Since the support of f/(0, y) is assumed in (A4) to be a bounded set, the 
right-hand side of (21.2.6) is near-standard. 

To define a standard function U as the standard part of W, we introduce 
two time scales of different orders, one for the Brownian motion, £, and the 
other, r , for the changes in the drift term in (21.1.1); we choose e = O ( T ^ ) , for 
example. The spacing s is finer and stands for the time-spacing of *-random 
walks, and r is long enough to cover many steps of the *-random walks, yet 
short enough for the change in the drift term to be small. Define a standard 
function [/(t, x) as the standard part of the value of U at the coarse-grained 
lattice point of time t: 

U{t,x) = St U{t,x) where t = r [ t / r ] , (21.2.7) 

which we expect to be the solution to the Fokker-Planck equation (21.1.2). 

21.3 Solution to the Fokker-Planck equation 

In order to prove that [/(t, x) in (21.2.7) is the solution to (21.1.2), or more 
concretely to estimate / i in (21.3.7) below, we should truncate the *-paths at 
an infinite number A as 

PA{t,x:0,y) = {ujeP{t,x:0,y) \ Vs G [O, t] \uj{s)\ <A}. 

The magnitude of A will be determined later in (21.3.5). Then the correspond
ing *-Green function QA and UA are defined by 

GAit,x:0,y) = ^ Y, I^H (21.3.1) 

and 
UA{1 X) = Y, U{0, y)GA{t, X : 0, y)26. (21.3.2) 

y 

Let us first calculate the difference between (21.2.2) and (21.3.1). Consider 
a *-path uj G P{t^x : 0,^) \PA{hx • 0,2/) and put i{uj) = min{s | \UJ{S)\ = A}. 
Define a *-path u' by turning upside down the section of the path u{s) for 
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the interval 0 < s < i{uj) so that uj^ should start 2A — y oi —2A — y ai 
time 5 = 0. The section of oj\s) for i{uj) < s < t is that of cj{s) for the 
same interval. In this way, we can define a one-to-one correspondence from 
to e P{t,x : {),y)\PA{t,x : ^,y)iouo' G P{t,x : 0, 2A-?/)UP(t , x : 0 , - 2 A - ? / ) . 
Then by (21.2.4), 

E 2(5 

weP(t,x:0,j/)\P^(t,a;:0,j 

and hence 

2̂ ^ (47rZ?i)V2 exp 
{2A-y- xf 

4Dt + 

exp 
{-2A-y-x) 

ADt 
[l + Oie'l')), 

\Q{t,x : 0,2/) -0A{t,x : 0,j/)| < exp 
Fix) F{y) 

2D 2D 
ct 

exp 
{2A-y- x)2 

ADt 
+ exp 

{-2A-y-xy 
ADt }^( 

(47rDi)V2 

l + (e 

(21.3.3) 

which imphes 
A^ 

\U{t,x)-UA{t,x)\ = 0 ( e x p [ - - ^ ] ) (21.3.4) 

for any finite x. 
Now, we are ready to prove that U{t,x) is the solution to (21.1.2). We 

wish to evaluate the standard part of 

-lu{t^a,x) -U{t,x)\ 

for an infinitesimal a = fcr (fc G *N) given arbitrarily. Choose the truncation 
parameter A as 

A={D/(3)^/^\log(3cr\ (21.3.5) 

where 9̂ > 0, a standard constant, is just introduced to make the argument of 
logarithm dimensionless. Then by (21.3.4), 

U{t, x) - UA(t, x) = oia"") and U{t + a, x) - UAH + a, X) = o(a'') (21.3.6) 

for any standard natural number n, meaning that UAit^x) can be identified 
with W(t, x) up to negligible error. Therefore we shall hereafter deal with the 
truncated UA instead of U. 

Then the difference quotient we should calculate is 

-\llA{t + (j,x) -UA{IX)} = -{h ^ h) + o{l) 
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where 

{gAt + a,x:t,x + 0-j^J-, (47rZ?a)V2 exp iDa 
]25, 

J2 - ^ {^/A a, a: + 0 - ^ ^ (fc x )} ^ ^ ^ ^ exp [ ^'-2 -, 

4Dai 
25. 

(21.3.7) 

(21.3.. 

In order to calculate the sum in / i , we wish to expand the summand as 
power series in ^ except for the exponential function, which is possible if ^ is 
sufficiently small. Since 

GA{t + a,x : t,x + 0 = ^exp[—{F{x) - F{x + 0}] 

E 
wePA(i+o-,x:t,x+{) 

satisfies 

2" 7 exp J'^'^{^f«'^)' + lf'(^('^)y' 
(21.3.9) 

gA{t + a,x:t,x + 0 <exp\—-{F{x) - F{x + 0} - ca 
2D 

(47rDCT)V2 exp 
e 

ADa 

(21.3.10) 

the summand in (21.3.7) contains exp[—^^] as a factor which enables us to 
restrict ^ to be sufficiently small, |^| = 0((j^'^), in rough estimation. In reality, 
it is restricted to 

|C|<(Z?//3)^(/3<T)^« 

for some small a such as 1/10 as shown in the following. Note that 

exp ^{F{x)-F{x + 0-ct]\=O{e\'^^^'^r) (21.3.11) 

for some m G N by the truncation at A = C(|log/3(T|) and the assumption 
(Al). Then by (21.3.10), 

r 1 r ^̂  11 
UA{t,x + 0{QA{t + a,x:tx + 0 - ,^^^.y^^w[-j^\] {An Day 

< const-el ^^s'̂ '̂ l" 

ADa 

1 
(47rL>CT)V2 exp ADa 
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If 1̂1 > {D/f3)^f3a)^~'', the infinitely large number el^^s^^l" in the last line 
can be controlled by the half of the factor e~^ /(4^^). In fact, 

exp c 2 -, 

8Dai 
< exp 

8{f3a [2a 
= o{e -iiog/3^r )• 

Hence, the sum ^ ^ in (21.3.7) for such ^ is estimated as 

const 
/ 

|C|>(D//3)V2(;3a)i/2-a 
(4^Da)V2 exp 

( 2 n 

SDa 
d^ = o(a''e scA^"") =o(cr^) 

for any n G N, so that it can be neglected. Now, we have only to consider ^ of 
infinitesimal order equal or less than cr2~^, so that we can expand 

F{x) - F{x + 0 = - e / (^ ) - p\x) + 0{J-'^). (21.3.12) 

Next, we wish to replace the integral in (21.3.9) by 

— j ^ f{^{s)fds + -J^ f'icvis)) ds c. — / ( x ) 2 + -fix). (21.3.13) 

It is justifiable if paths going very far at some time s G [t, t + cr] can be 
neglected. Let us take an infinitesimal 

where a' is small but a^ > a, for example, a^ = 2/10 if we take a = 1/10. 
Then, the sum over uj which satisfies |cc;(s) — x\ > A' for some s G [t, t + cr] is 
bounded by 

const 
{47V Day/^ exp 

{2A'-0 2n 

4Da exp 
{2A' + 0 2-, 

4Da ] - (21.3.14) 

0{a-^/^e (/5-)^-) =o((7^) 

for any n G N in the same way as (21.3.3), and hence negligible. Here, we have 
used the fact ^ = 0{a^~^) = o{A^) because a' > a. Thus, we have only to 
consider uj satisfying 

\oo{s)-x\ < {D/f3)2{(3a)2-'' 
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for ah 5 G [t, t + cr], and hence 

exp 

exp 

X exp 

j^/W'-f/W 

exp 4 0 

- - J {f{u;{s))ds-f{x)}ds 

(21.3.15) 

Putting (21.3.12), (21.3.15) and 

v ^ 1 _ 2S 

into (21.3.9), we obtain 

2^' {47vDay/^ exp ADa 
( l + 0(a^/2)) 

GA{t-\- a,x : t, X + ^) 
(4^i^a)V2 exp 4D(7 

{-^/w « + ^ " V ( x ) • • « - ' " " 
4D 8Z)2 

1 

/ ( x ) 2 + o ( a ) } x (21.3.16) 

exp 4Da 

(21.3.17) 

(47rDa)V2 

Lastly, we use the expansion 

llAit,x + 0 = UA{LX) + ^DSUA{LX) + 0{cj^-^^) 

with 

DSUAH^X) = -^\uA{t,x + 8) -UAH^X)^ 

for / i . For /2, we use the expansion taken one step further, 

UA{t,x + 0 =UA{LX) + iDsUA{t,x) + ^DlUA{t,x) + o{a) (21.3.18) 
2!' 

with 

D^ ZYA(i, a;) = ^ {WA( i , a; + <5) + Z^A(i, X - (5) - 2 iY^(i, x ) } , 
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because (21.3.16) contains a factor of order 0{a^~^)^ whereas there is no such 
factor in I2. We shall not give the proof of these expansions, for it requires 
elementary but a little long estimations. Estimations similar to this case can 
be found in [5, 6, 7]. 

Putting (21.3.16) and (21.3.17) into (21.3.7) and replacing the sum by 
integral which is permitted because 5 = O{T^^'^), we obtain 

h I { 2D fix) 
e^2Ba ^,. 

4D 
nx) + ^-^f{xf + o{a)} 

l«l<(0//3)l/2(^^)l/2-a 

X [uA{t,x)+^DsUA{t,x)] , .y, exp 

8D2 

e ^ 
AD a 

d^ 

{(- i n^,.e^^n^,,e-2D. 
2D AD 8Z)2 

f(xf)UA(t,x) 

|«|<(Z)//3)l/2(^^)l/2-a 

e — f{x)DsUA{hx)+o{a)^j^-—^^e^^[-^dt. 

Since the domain of integration can be extended to *]R by the factor 

(47rD(j)V2 ^^P[ 4DaJ' 

/{(- 2D 
fix) 

Ĉ  + 2Da .,. 

2D 
f{x)DsUAit,x) + 

i ^ — / (^) + 8^2 fixf)UAiLx) 

'^'^J^c (47rL'a)i/2 exp ADa 
d^ (21.3.19) 

= -a[f'{x)UAihx) + f{x)DsUAihx)]+o{a). 

Similarly, putting (21.3.18) into (21.3.8), we obtain 

h = DaDJUAiLx) + o{a). 

Therefore, 

-\UAit + a,x) -UAihx)^ = 

DDlUAit,x)-{f'{x)UAit,x) + f{x)DsUAit,x)]+o{l 

(21.3.20) 

(21.3.21) 

holds for any infinitesimal a = kr, which means that U{t,x) = st^/^(t,x) 
is differentiable with respect to t and its i-derivative is the standard part of 
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the right-hand side of (21.3.21). Though we omit the proof, it is proved that 
[/(t, x) is twice differentiable with respect to x and their values are 

d d'^ 
^—U(t,x) = St DSUAU.X) and --^U(t,x) = si DJUAU^X). 
ox ax^ 

Taking the standard part of the both-hand sides of (21.3.21), we obtain 

^^U{t,x) = D^U{t,x) - ^{f{x)Uit,x)}, (21.3.22) 

namely U{t^x) is the solution to the Fokker-Planck equation (21.1.2). 
Let us finally note that, by Loeb measure theory, a standard cr-additive 

measure over a space of paths can be derived from the *-measure fi we have 
constructed in this paper so far. 
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22 
Optimal control for Navier-Stokes equations 

Nigel J. Cutland and Katarzyna Grzesiak 

Abstract 
We survey recent resul ts on exis tence of op t ima l controls for s tochas t ic 

Navier-Stokes equa t ions in 2 a n d 3 d imensions using Loeb space m e t h o d s . 

22.1 Introduction 

In this paper we give a brief survey of recent results^ concerning the exis
tence of optimal controls for the stochastic Navier-Stokes equations (NSE) in 
a bounded domain D in 2 and 3 space dimensions; that is, D (ZW^ with d = 2 
or 3. The controlled equations in their most general form are as follows (see 
the next section for details): 

u{t) = no + / {-iyAu{s) - B {u{s)) + / (5, u{s),0{s, u))} ds 

^' (22.1.1) 

+ / g{s,u{s))dw{s) 
Jo 

Here the evolving velocity field u = u{t,uj) is a stochastic process with values 
in the Hilbert space H C L (D) of divergence free functions with domain D; 
this gives the (random) velocity u{t^x^uj) G M^ of the fluid at any time t and 
point X G D. The most general kind of control 6 that we consider acts through 
the external forcing term / , and takes the form 6 : [O^T] x Ti ^ M where Ti 
is the space of paths in H and the control space M is a compact metric space. 
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Department of Finance, Wyzsza Szkola Biznesu, National-Louis University, Nowy Sacz, 
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^The results reported here are developed from the second author 's PhD thesis [16] written 
under the supervision of the first author. Full details may be found in the papers [9] and [10]. 
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In certain settings however it is necessary to restrict to controls of the form 
9 : [0,T] ^ M that involve no feedback, or those where the feedback only 
takes account of the instantaneous velocity u{t). 

The terms uA, B in the equations are the classical terms representing the 
effect of viscosity and the interaction of the particles of fluid respectively; 
the term B is quadratic in u and is the cause of the difl^culties associated with 
solving the Navier-Stokes equations (even in the deterministic case ^ = 0). The 
final term in the equation represents noisy external forces, with w denoting an 
infinite dimensional Wiener process. 

The methods involve the Loeb space techniques that were employed in [4, 6] 
to solve the stochastic Navier-Stokes equations with general force and multi
plicative noise (that is, with noise g{s^u{s)) involving feedback of the solu
tion n), combined with the nonstandard ideas used earlier in the study of 
optimal control of finite dimensional equations (see [7] for example). For the 
3-d case it is necessary to utilize the idea of approximate solutions developed 
in [11] for the study of attractors. 

We assume a fixed time horizon for the problem, and then the aim is to 
establish the existence of an optimal control that minimizes a general cost J 
that has a running component and a terminal cost, modelled by 

J[e,u) =E( [ h{t,u{t),e{t,u))dt^h{u{T))] . (22.1.2) 

The existence of an optimal control (in some cases, a generalized or relaxed 
control) can be established in a number of settings. The results ioi d = 2 
are somewhat stronger than for d = 3, which is a reflection of the well-known 
distinction between these two cases even for the uncontrolled equations: in di
mension d = 2 there is uniqueness of solutions and the solutions are strong (es
sentially this means that the field u{t^ x) is differentiable in x for each t) whereas 
ioT d = 3 the solutions that exist for all time are weak and uniqueness is a ma
jor open problem^. Consequently even the formulation of the optimal control 
problem is more diflicult, and optimal controls are obtained using our methods 
for more restricted classes of controls compared to the results for GJ = 2. 

The plan of the paper is as follows. First (Section 22.2) we provide some 
details of the Hilbert space setup for the equations and their solution, and then 
recall the basic nonstandard ideas concerning controls. The results for dimen
sion d = 2 are then outlined in Section 22.3, and in the final section we do the 
same for d = 3. We omit proofs, referring the interested reader to [9] and [10], 
although in some cases where new ideas are introduced we provided sketches. 

Alternative approaches to control theory for stochastic Navier-Stokes equa
tions have been studied in [3, 13, 18], where the controls are assumed to be 

^In fact this is one of the Millennium problems. Uniqueness is known for strong solutions 
but for d = 3 such solutions can only be obtained for short times. 
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stochastic processes 
l9: [0,T] x O ^ H 

adapted to the information filter given by complete observations of the fluid 
velocity. In [3] for example, the author assumes that there is a constant p > 0 
such that \0{t,uj)\ < p for aU t G [0,T] and cj G f2, while in [13, 18] it is 
assumed that the controls satisfy the condition 

E( f \e{t)\^dt] <oo. 

In these papers the control is subject to the action of a linear operator. The 
stochastic minimum principle is derived providing a necessary condition for 
an optimal control, and a dynamic programming approach is presented to 
give a sufficient condition. It is shown that the minimum value function is 
a viscosity solution to the Hamilton-Jacobi-Bellman equation associated with 
the problem. In [13] the authors obtain smooth solutions to the HJB equation 
which justifies the dynamic programming approach. 

22.2 Preliminaries 

22.2.1 Nonstandard analysis 

For optimal control theory, nonstandard analysis is a natural tool to use 
because one can always find a "nonstandard" optimal control — this is simply 
6N for any infinite TV, where {On)neN is a minimizing sequence of controls. The 
task then is to see whether Ojsf can be transformed into a standard optimal 
control of some kind. For finite dimensional DEs and SDEs this idea was 
developed in [7] and related papers. 

In the study of the Navier-Stokes equations (particularly the stochastic ver
sion) Loeb space techniques have proved very powerful, providing for example 
the first general existence proof for the stochastic Navier-Stokes equations in 
dimensions up to 4 (see [6]) and more recently new results concerning the 
existence of attractors (see [5], [11] and [12]). 

In the work reported here the nonstandard techniques used in these two 
areas are combined. We work in a standard universe V = Y{S) where S is 
a base set that contains all the objects of interest, and take an Hi-saturated 
extension *V(S') C V(*S'). For ease of reference we gather together in an 
Appendix the most important facts about the nonstandard representation of 
the spaces used in the study of the NSE equations. 

22.2.2 The stochastic Navier-Stokes equations 

The classical form of the uncontrolled stochastic Navier-Stokes equations 
with zero boundary condition on a time interval 0 < t < T is as follows: 
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( du= {lyAu- <u,\/ > u-Vp-\- f{t, u)}dt + g{t, u)dw{t) 
div 1̂  = 0 

u\dD = 0 
[ n(0,x) = UQ{X) 

These equations are considered in a bounded domain D C M^ (d = 2,3) 
which is fixed throughout the paper, with the boundary dD of class C^. Here 
u \ [0,T] X D X O ^ M^ is the random velocity field, v is the viscosity, p 
is the pressure, and / represents external forces; u^ is the initial condition. 
The diffusion term g together with the driving Wiener process w represents 
additional random external forces, or noise. Underlying this model is a filtered 
probability space Q, = ( ^ , ^ , {J^t)t>o^P)-

For the conventional Hilbert space formulation, write L^{D) = {L^{D)Y 
and let 

V = {u^ C^{D, M )̂ :diyu = 0}. 

Then H is the closure of V in L^(i^) with the norm given by \u\' 

d 

{u,u)^ where 

{x)dx. 

and V is the closure of V in the norm |i^| + ||u|| where \\u\\^ = ((it, uj) and 

d 

""•""^S(S'il)-
H and V are real Hilbert spaces, V dense in H. The dual space to V is 
denoted by W with the duality extending the scalar product in H and 

V C H = H ' C V . 

Write A for the Stokes operator on H (the self-adjoint extension of the pro
jection of —A) which is densely defined in H; it can be extended to A : V ^ V 
by Ai^[t'] = (lu^vjj for u^v G V. The operator A has an orthonormal ba
sis of eigenfunctions {e/e}/ĉ r̂  = £̂  C H with eigenvalues 0 < A^ / " cx). For 
1̂  G H write u = ^u^ek- Write H^ for the finite dimensional subspace 
Hn = spanjei, e 2 , . . . , e^} and Pr^ for the projection onto H^. 

A family of spaces H^ for r G R is defined as follows: for r > 0 

Ĥ  = { 1̂  G H : ^ Xlul < oo] 
k=i 
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with the norm given by 
oo 

I |2 V ^ \r 2 

k=l 

and H~^ is the dual of H^. We may represent H~^ by 

oo 

k=l 

In terms of this family we have H^ = H, H-*̂  = V, and H~-^ = V ' with the 
norms |i^| = \u\o and ||n|| = |i^|i. 

The quadratic function B is given by (^B{u)^y) = b{u,u^y)^ where 

whenever the integral is defined. This describes the nonlinear inertia term 
in the equation. The trilinear form b has many properties [19] including the 
following that we need here. 

b{u,v,v) = 0 , (22.2.1) 

\b{u,v,y)\ < c|n|4 ||n||4|i;|4 ||'i;||4 \\y\\ (22.2.2) 

There are additional properties that hold only in dimension d = 2. 
The inequality (22.2.2) gives the second of the following properties. 

Proposition 22.2.1 For u eV 

\Au\Yf = ||l^|| 

1 3 
\B{u)\Yf < c\u\'^ \\u\\ 2 

In the above setting the evolution form of the Navier-Stokes equations 
(without explicit control) in the space V ' (the vector Vp = 0 in this space) is 
given by 

u{t) =uo-\- {-TyAu{s) - B {u{s)) + / (s, u{s))} ds 

' , (22.2.3) 

+ / g{s,u{s))dw(s) 
Jo 

with the initial condition UQ G Ji. The first integrals are Bochner integrals in 
V^ The driving noise process w is an H-valued Wiener process with covari-
ance Q, a fixed non-negative trace class operator (see [6, 14] for details), and 
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the stochastic integral is the extension of the Ito integral to Hilbert spaces due 
to Ichikawa [17]. 

In the study of the Navier-Stokes equation there are several types of solu
tion. The most general is a weak solution^ but in the case d = 2 we also have 
strong solutions. The definitions are as follows (see [6]): 

Definition 22.2.2 

(a) An adapted process u : [0, T] x 17 ̂  i7 is a weak solution to the stochas
tic Navier-Stokes equations (22.2.3) if 

(i) for P-a.a. ou the path u{',uj) has 

«( - ,cu)eL°°( [0 , r ] ;H)nL2([o ,T] ;V)nC([0 ,T] ;H^eak) , 

(ii) for all t G [0,T] the equation (22.2.3) holds as an identity in V^, 

(iii) u satisfies the energy inequality 

E ( sup \u{t)\^^ I \\u{t)fdt] < o o . (22.2.4) 

\tG[0,T] Jo J 

By solution henceforth in this paper we mean weak solution. 

(b) A weak solution is strong if 

(i) for P-a.a. uj the path u^-^uj) has 

u(.,a;) GL-([0,T];V)nL2([o,T];H2)nC([0,T];Vweak) , (22.2.5) 

(which implies that u{-,uj) G C([0 , r ] ; if)); 

(ii) for P-a.a. uj the path U{'^UJ) has 

ip \\u{t)f+ [^ 
te\i 
sup \\u{t)f+ Au{tfdt <oc. (22.2.6) 

te[o,T] Jo 

When controls are introduced into the forcing term / the equation (22.2.3) 
takes the form 

u{t)=uo-\- / {-jyAu{s) - B{u{s))-\-f{s,u{s),e{s,u))}ds 
Jo 

+ / g{s,u{s))dw{s). 
Jo 

In the next section we discuss the types of control that we consider. 
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The following general existence result for solutions to the sNSE was first 
proved in [4] (see also [6] for an exposition), using Loeb space methods. 

First define Km = {v : Ĥ Ĥ < m} C V, with the strong topology of H. 
In the theorem below, continuity on each K^ turns out to be the appropriate 
condition for the coefficients / , ^; this is weaker than continuity on V in either 
the H-norm or the weak topology of V. 

Theorem 22.2.3 Suppose that î o ^ H and 

/ : [0, oo) X V ^ V , g: [0, oc) x V ^ L(H, H) 

are jointly measurable functions with the following properties 

(i) f{tr)eC{Kmy^,,^)forallm^ 

(ii) g{t, •) e C{Kra, L(H, H)weak) for all m, 

(iii) | / ( t ,n) |v^ + |^(t,n)|H,H < a(t)(l + \u\) where a G L^{0,T) for allT. 

Then equation (22.2.3) has a solution u on a filtered Loeb space. 

In dimension d = 2 a stronger existence theorem (and uniqueness, given 
Lipschitz coefficients) has been established — this will be noted when required 
in Section 22.3. 

22 .2 .3 Contro l s 

The simplest controls considered in this paper are those with no feedback, 
as follows. As is customary in optimal control theory, it is often necessary to 
extend this class to its natural completion, which is the class of generalized 
or relaxed controls. These, and the topology on them are as defined thus (as 
in [7]). The compact metric space M is fixed for the whole paper. 

Definition 22.2.4 

(i) The class C of ordinary controls is the set of measurable functions 
0 : [0, T] ^ M, where M is a fixed compact metric space. 

(ii) The class D of relaxed controls is the set of measurable functions (p : 
[0, T] -^ Mi (M) , where Mi(M) is the set of probability measures on M. 
(We regard C C D hy identifying a G M with the Dirac measure Sa)-

The weak or narrow topology on (t is given by means of the set /C of 
bounded measurable functions ^ : [0,T] x M ^ M with z{t, •) continuous for 
ah t E [0, T]. The action of (9 G C on ^ E /C is defined by 
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T 

e{z)= f z{t,e{t))dt. 
0 

Then the topology on £ is defined by specifying as subbase of open neighbour
hoods the sets 

{9: \e{z)\<e}s>o,zeK:. 

The effect of a relaxed control on a function z G IC is obtain by first extending 
the domain of each z G IC to [0,T] x Aii(M) as follows: for a probability 
measure /i G Aii{M) define 

z{t^li) = / z{t^m)dii{m). 

M 

The weak (or narrow) topology is then extended to 2) by defining the action 
of (/? G S) on ^ G /C to be 

V (̂̂ ) = / z(t^ip{t))dt = / I / z{t^m)d(ft{'^) ] dt 
Jo Jo \JM J 

where for brevity we use (ft := ^{t). 
The fundamental results about controls that we shall use are summarized 

below; for details consult for example [7], [15], [2] or [20] (noting that a relaxed 
control is a particular case of a Young measure). 

Theorem 22.2.5 The set of relaxed controls 2) is compact. 

This means that for an internal ("nonstandard") control $ (*ordinary or 
* relaxed) there is a well defined standard part ° $ G 2). (In [7] it is shown how 
this can be defined explicitly using Loeb measures.) Note that for a control 
(f el) we have °(*(/:') = (f. 

For the next result we define a uniform step control to be an ordinary 
control 9 such that there is a partition of [0, T] into intervals of constant length 
with 6 constant on each partition interval. 

Theorem 22.2.6 The set of uniform step controls €^ is dense in 2). 

To handle controls in a nonstandard setting the next definition and re
sult is basic. 

Definition 22.2.7 Z : *[0,T] x *M ^ *i? is a bounded uniform Hfting of 
2: G /C if Z is an internal * measurable function such that 

(i) Z is finitely bounded 
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(li) for a.a. r G *[0,T], for all a G *M : Z{r,a) ^ ^ (° r , °a) . 

T h e o r e m 22.2.8 ([7]) Let $ be an internal control with (̂  = °$ and Z be a 
bounded uniform lifting of z. Then ^{Z) ^ ^{z), i.e. 

1 1 

I Z{T,(pr)dr^ / z{t,(pt)dt 

In later sections we will define wider classes of controls of the form 6 = 
9{t^u) for zx G H or even 9 = 9{t^u{-)) where u{-) denotes the trajectory 
{u{s) : 0 < 5 < t} up to time t. 

22.3 Optimal control for d = 2 

Throughout this section we take d — 2 and utilize the stronger existence 
and uniqueness results that obtain in this case. 

22 .3 .1 Contro l s w i t h n o feedback 

First we consider the simplest kind of optimal control problem, taking the 
set of controls to be the no-feedback controls £ and its generalization !l). The 
controlled equation then takes the form 

u{t)=UQ+ I {—h'Au{s) — B{u{s)) + f{s^u{s).,(^{s))}ds 

-^^^ (22.3.1) 

g{s,u{s))dw{s) I 
Jo 

for a control in D. Provided / and g are suitably Lipschitz then solutions to 
this equation are unique. Theorem 22.2.3 is refined as follows. 

T h e o r e m 22.3.1 Let d = 2. Consider the following conditions on the func
tions f^g: there exist constants c > 0 and a(-) G L^(0,T) such that: 

(a) / : [0,T] X H X M ^ V is jointly measurable and 

(i) \f{t,u,m) - f{t,v,m)\^rf <c\u-v\ 

(ii) f{t^u,') is continuous 

(in) for a.a. te [0,T] 

| / ( t , n , m ) | v ' < a ( t ) ( l + |^|) 

for all u^v Gtl and m G M. 
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(b) ^ : [0,T] X H ^ L ( H , H ) is jointly measurable and 

(i) \g{t,u) - g{t,v)\u,ii<c\u-v\ 

(ii) for a.a.te [0,T] 

| ^ ( t ,n ) |H ,H<a( t ) ( l + |7x|) 

for all i/,!; G H. 

There is a filtered probability space ft = (r^,J^, {Tt)t>OiP) carrying a Wiener 
process w, with the universal property that for any f, g satisfying the above 
conditions (for any a{t) and c) and any ordinary or relaxed control the equa
tion (22.3.1) has a unique solution on H satisfying the energy inequality 

E | sup \u{t)\^+ f \\u{t)fdt] <E (22.3.2) 
\tG[0,Tl Jo 

with the constant E uniform over the set of controls; in fact E = E (i^o, < (̂*))-

The uniqueness of solutions requires the property 

\b{u^v.,y)\ < c |n|2||'u||2 \v\2 ||i;||2 ll̂ ll 

of the form b which is only valid in dimension 2. 
We now fix a space H as given by this theorem. This may be a Loeb space 

(as in [6, Theorem 6.4.1 and 6.6.2]), but for the current purpose this is not 
essential^: we simply assume that there is such a space Q, in the basic standard 
universe of discourse and do not care about its provenance. (In Section 22.3.11 
it will be necessary to specify the space Q. more precisely.) For a given control 
Lp and initial condition î o we define 

u^ = the unique solution for the control (f with u(0) = no 

(Strictly we should write u^^ to denote the underlying space, but where not 
mentioned this will be H.) 

22.3.2 Costs 

To formulate an optimal control problem it is necessary to consider the cost 
of a control. Here we consider a general cost comprising a running cost and a 
terminal cost, defined as follows. 

^This is in contrast to Section 22.3.11 and also when working in c/ = 3, where it will be 
necessary to specify the space Q, more precisely. 
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Definition 22.3.2 We assume given (and fixed for the paper) two functions 
h : [0,T] X H X M ^ R and h : H ^ R with the following properties. 

(i) h is jointly measurable, non-negative, continuous in the second and the 
third variables and satisfies the following growth condition: for a.a. t G 
[0,T], allue H diJidme M 

\h{t,u,m)\ < a(t)(l + 1̂ 1). 

(ii) h : H ^ R is non-negative, continuous and has linear growth: that is, 

\Hu)\ < c ( l + |n|) 

for all u ^ H. 

The cost for a control (f (ordinary or relaxed) is J{(p) defined by 

J{^) =E([ h{t, u^{t), ^{t)) dt + h {u^{T)) 

(Strictly we should write Jci{(f) to denote the underlying space, but if the 
space is not mentioned then we mean Q.) 

The minimal cost for ordinary controls is 

Jo = inf{J{e) : ee€} 

and the minimum cost for relaxed controls is 

Jo = mi{J{^) : (̂  G 2)} 

22 .3 .3 So lu t ions for internal contro ls 

In the present context we are not concerned with proving existence of solu
tions to the stochastic Navier-Stokes equations (sNSE) — either by Loeb space 
methods or any other technique: we are simply assuming the basic existence 
result above. However, for the purposes of obtaining an optimal control we 
wish to transfer this result to give the existence of an internal solution U^ to 
the internal equation on the internal space *fl controlled by an internal control 
$. The idea then is to take the standard part to give a standard solution to 
the equation controlled by the standard part °$ ; of course the solution will 
live on the adapted Loeb space L(*H) rather than the original space 11, and 
later we see how we can come back to ft. 

The proof of the following result, making the first part of the above proce
dure precise, is almost identical to that involved in the proof of existence — the 
main difference being that in the existence proof the internal process U lives 
in H^v whereas here the process U^ lives in *H. Here is the result needed. 
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Theorem 22.3.3 Let UQ ^H and f, g, h and h satisfy the conditions of The
orem 22.3.1 and Definition 22.3.2, and suppose that $ is an internal control. 
Let U^ be the unique solution (which exists by transfer of Theorem 22.3.1) on 
*il to the internal equation "" (22.3.1) with control $ ; that is 

U^{T) = %o + r {-^M[/^(a) - *5 {U^{a)) + */ (a, C/̂ (a), $(a))} da + 
Jo 

+ / *̂  (a, U^{(J)) dW{a) (22.3.3) 
Jo 

and satisfying the internal energy inequality 

E*p( sup \U^{r)\^+l \\U^{T)\\^dT\<E. (22.3.4) 
\rG*[0,T] Jo J 

Then U^ has a standard part u = °[ /^ , which is a solution on L(*r2) to the 
standard equation (22.3.1) with control ^^, i.e. u = U ^ and 

* J * Q ( $ ) ^ JL(*r2)(°^). (22.3.5) 

22.3.4 Optimal controls 

The main theorem for controls with no feedback is now easy to derive. 

Theorem 22.3.4 Let UQ Gtl and f, g, h and h satisfy the conditions of The
orem 22.3.1 and Definition 22.3.2. Then there is an optimal relaxed control (fo, 
i.e. such that J{(po) = Jo 

Proof. Take a sequence of controls {Ok)keN ̂  ^ such that 

lim J{9k) = Jo and J{0k) \ Jo-

Fix an infinite K G *N; then *^*Q(6>K) ^ Jo for the internal ordinary control 
OK • *[0, T] -^ *M. Corresponding to this control is the unique internal solution 
U^^ to the internal controlled Navier-Stokes equation (22.3.3) which obeys the 
energy inequality (22.3.4). 

Let (fo := °6>K : [0,T] -^ Mi{M) and apply Theorem 22.3.3 to the control 
^ = 0K and to the solution U^^. Then °t/^^ = n^(*^) and 

"^J^niOx) ^ JL(*17)(^O) 

so 
JL{*n){^o) = JO' 
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It only remains to show that J'L{*fi){^o) = c7(^o)- First notice that J'{(fo) is 
a real number so j7(^o) = *^*ri(*V^o)- Apply Theorem 22.3.3 to the internal 
control *(/?o and the internal solution u'^^ on *!! giving 

J{^o) = *:^*n(Vo) - JLi^n)CC^o)) = JLi*n){^o) = Jo 

so (fo is optimal. D 

Actually the above theorem is easily derived from the following more gen
eral consequence of Theorem 22.3.3. 

Theorem 22.3.5 The function J is continuous with respect to the narrow 
topology on D. 

Proof. This is routine using the nonstandard criterion for continuity, together 
with Theorem 22.3.3 and the argument in the final part of the above proof. D 

This result, together with the density of C in D (Theorem 22.2.6) means 
that j7o = Jo and so we have 

Theorem 22.3.6 The optimal relaxed control (fo is also optimal in the class 
of relaxed controls. 

As usual in optimal control theory, if the force term / is suitably convex 
then from an optimal relaxed control it is easy to obtain an optimal ordi
nary control. 

22.3 .5 Ho lder cont inuous feedback contro ls (d = 2) 

The natural generalization of the control problem for the stochastic 2D 
Navier-Stokes equation is to allow 6 to depend on the instantaneous fluid ve
locity as well as on time: 

n ( t ) = ^ / o + / {-iyAu{s) - B {u{s)) -\- f{s,u{s),0{s,u{s)))} ds -\-

,t (22.3.6) 

g{s,u{s))dw{s). I 
Jo 

It is straightforward to extend the approach outlined above for no-feedback 
controls to the special situation when the controls considered are Holder con
tinuous feedback controls with uniform constants, as follows. 
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Definition 22.3.7 For a given set of constants (a,/3,7, ci, C2) with a,/? G 
(0,1) and 7, ci,C2 > 0 the set of Holder continuous feedback controls 
C(a, /?, 7, ci, C2) is the set of jointly measurable functions 

|9: [0,T] x H ^ M 

which are locally Holder continuous in both variables with these constants; 
that is: 

|(9(t,u) - 9{s,v)\<ci\t- 5|" + C2\u - vf (22.3.7) 

for all t, s G [0,T] such that |t — s| < 7 and all u^v G H such that |n — i;| < 7. 

We will see that this definition guarantees the existence of an optimal 
ordinary control; the Holder continuity allows us to construct the standard 
part of an internal control as an ordinary control without the need to consider 
measure-valued (i.e. relaxed) controls. 

The cost of a control is as before: 

J{0) =E [ h{t, u\t), e{t, u\t))) dt + h{u\T)) (22.3.8) 

where h and h satisfy the conditions of Definition 22.3.2. The minimal cost is 
now defined as 

Jo = inf{ J ( 0 ) : e e £(a, /?, 7, ci, C2)} 

(of course, strictly this should be J7O(Q ,̂ /?, 7, ci, C2)). 
The standard part of an internal control is defined in the obvious way: 

Definition 22.3.8 Suppose that 6 G *e:(a,/3,7, ci, C2), so 6 : *[0,T] x *H ^ 
*M. Define 6 G £(a, /? ,7 , ci, C2) by 

0(t,i/) = °e( t , i / ) = ° e ( r , [ / ) 

for any r ^ t and U ^ uintl (because of the condition (22.3.7)). Write 6 = °Q. 

Now we have the counterpart of Theorem 22.3.3 for Holder continuous 
controls. 

Theorem 22.3.9 Let 9 G *£(a,/3,7, ci, C2) be an internal control and f, g 
satisfy the conditions of Theorem 22.3.1. Let U he the unique solution on *H 
to the internal equation with control Q: 

+ j\-y*AU^{r) - *B {U^{T)) + 7 (r, [/^(r), e{r, [/^(r))) }dr 2̂2.3.9) 

+ r*9{T,U^{T))dW{T) 
Jo 
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and satisfying the internal energy inequality 

E*p( sup \U^{r)\^^ f \\U^{T)fdT] <E. 
\TG*[O,T] JO J 

Then its standard part u = °[/® is a solution on L(*r2) to the standard equa
tion (22.3.6) with control ° 0 (i.e. u = u°^), and 

This gives the following with proof almost identical to that of Theorem 22.3.4. 

Theorem 22.3.10 Let f, g satisfy the conditions of Theorem 22.3.1. There 
exists an optimal admissible control OQ G C(CI, C2, a^,/3,7); i.e. such that 
J{Oo) = Jo-

22.3.6 Controls based on digital observations (d = 2) 

The most general results for optimal control of 2D stochastic Navier-Stokes 
equations involves feedback controls that depend on the entire past of the path 
of the process u through digital observations made at a fixed finite number of 
points of time. This model of control was discussed in [1] and [7] for finite 
dimensional stochastic equations; in the latter paper digital observations were 
made at random times, but we do not include that feature here. 

The controlled system takes the form 

du{t) = {-uAu{t) - B{u{t),u{t)) + f {t, u, e{y{u), t))} dt ^ 

+ g{t^u)dw{t) 

with initial condition u{0) = UQ G tl. In this equation u = u{') denotes the 
path of the process u{t) up to the present time (which will be clear from the 
context). The function y{u) in the control 9 denotes the digital observations 
or read-out given by the path u, described in the next sections. 

22.3.7 The space H 

For this system the conditions on / , g will be strengthened slightly so that 
the solutions to (22.3.10) are strong, and thus the paths of solutions to the 
equation belong to the space 7i where 

7^ = C ( [ 0 , T ] ; H ) n L ^ ( [ 0 , T ] ; V ) . 

Let \u\ denote the uniform norm on this space; that is 

|i^| = sup \u{t)\ 
0<t<T 

and note that with this norm H is separable. 
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22 .3 .8 T h e observat ions 

Controls will be based on the information received from digital observations 
of the solution path u eH made at observation t imes 

0<ti< ... <tp<T 

that are fixed for the problem. For completeness we write to = 0 and tp+i = 
T, but observations are not made at these times. The digital observation 
(taking its value in N) at time U is denoted by i/i where 

yr.n^N (2 = l , . . . , p ) 

The complete set of observations for a path u is recorded as 

y{u) = {yi(u),...,yp{u)) 

The i^^ observation yi is assumed to be non-anticipating in the sense that yi{u) 
depends only on the past u \ [0, ti] of the path u up to time ti. 

The digital observation functions yi are fixed for the whole problem. 

22 .3 .9 Ordinary a n d re laxed feedback contro ls for dig i ta l 
observat ions 

The feedback controls considered here are as follows. M is the fixed com
pact metric space as before. 

Definition 22.3.11 An ordinary feedback control based on digital ob
servations is a measurable function 

e-.W X [0,T] ^ M 

where 9 is non-anticipating in the sense that if tĵ  < t < tk-\-i for k = 
1 , . . . ,p, then 9{y^ t) depends on t and only the first k components of ^, namely 
{yi-, •' • -> Vk)' For t e [0, ti) a control 6 depends only on t. 

A relaxed feedback control based on digital observations is a mea
surable function 

(f-.W X [0,T] ^Mi{M) 

where Mi(M) is the space of probability measures on M and (p is non-
anticipating in the same sense as for an ordinary control. 

Write C and D for these sets of ordinary and relaxed feedback controls. 
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For brevity, in the current context, by a control (ordinary or relaxed) we 
mean a feedback control based on digital observations. The interpretation of 
a relaxed control is as before. 

Nonstandard (i.e. internal) controls have standard parts that are given as 
follows, using the compactness of non-feedback controls (Theorem 22.2.5). Let 
$ be an internal control: 

$ :*N^ X *[0,T] ^ * A 4 ( M ) 

It is sufficient to construct the standard part of $ only for n G N^. For 
T G *[0,ti) the control $ is a function of time only (so it is a no-feedback 
control as in Section 22.2.3) and hence on the first subinterval [0,ti) we define 
its standard part as (/? = °$ in the sense of the weak topology on J) (see 
the remark following Theorem 22.2.5). For k = l , . . . , p and n G N^ write 
n \ k = ( n i , . . . , rik) and notice that 

$ ( n , r ) = $ ( n \ k.r) 

for tk<T < tk+i' So define ^ntfc : *[t/c,t/c+iH *A^i(M) by 

^nrfc(r) = $ ( n \k,T). 

Each $ntfc is an internal relaxed control from *0 (restricted to *[tfc, tj^+i[), so, 

using Theorem 22.2.5 it has a standard part: 

From this we define the standard part (/? = ° $ to be the standard relaxed 
control given by 

(/?(n,t) = ^nlkit) 

for t e [tk,tk-\-il (Note that for fixed n G N^ if we write ^ ( r ) = $ ( n , r ) and 
'0(r) = (p{n, r ) then ° ^ = ^.) 

The weak or narrow topology on C and D is extended to € and 3D in the 
natural way (by regarding these as subsets of the products of C^^and J)^^ with 
the product topology) and then the standard part we have constructed is the 
standard part with respect to this topology — see [7] for details. The above 
together with the results of that paper give: 

Theorem 22.3.12 V is compact and the subset ^^ of uniform step controls 
in (t is dense in 3). 

The following is the extension of Theorem 22.2.8 to show how the standard 
part of a digital feedback control acts. 
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Proposition 22.3.13 Let $ be an internal feedback control with (f = ° $ . / / 
z : [O^T] X M ^ M. is a bounded^ measurable function continuous on M and 
Z : *[0,T] X *M ^ *]R Z5 a bounded uniform lifting (according to Defini
tion 22.2.7) then for any neW 

dt. 
Jo Jo 

22.3.10 Costs for digitally observed controls 

The cost of a control is defined in the expected way: for a control cp (ordi
nary or relaxed) define 

J{(p, U)=E( h{t,u, (p{y{u),t)) dt + h{u) j (22.3.11) 

where u is any solution to the equation with control (p. The cost functions h 
and h are given, with properties set out below. As usual the aim is to find 
a control which minimizes the cost over the set of controls. We will see that 
the solution to the equation is unique for a given control so we can define the 
cost J'{(f) = J{(f^u'-^) (where u'-^ is the solution for the control (f). Then the 
optimal control problem is reduced to finding a control such that 

j7o := inf{J'(^) : 6 an ordinary feedback control} 

is obtained. As is to be expected, in general the set of ordinary feedback 
controls does not have sufficient closure properties and we prove existence of 
an optimal relaxed control. 

22.3.11 Solution of the equations 

As noted above the conditions on the functions / , g^ /i, h need to be 
strengthened (and modified to take account of the form of feedback). We fix 
the following set of assumptions for the current discussion. 

Conditions 22.3.14 There exist constants a > 0 and L > 0 such that: 

(a) / : [0, T] X W X M ^ H is jointly measurable^ bounded, non-anticipating, 
Lipschitz continuous in the second variable and continuous in the third 
variable. Specifically 

(i) \f{t,u,m)\<a 

(ii) u\t = v\t=^ f{t, u, m) = f{t, V, m) 

(iii) \f{t,u,m) - f{t,v,m)\ii < L\u - v\ 
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(iv) fit^u^ •) continuous for a.a. t G [0,T]^ for all u^v ^TL and m G M. 

(b) g : [0, T] x 7^ ^ L(H, V) 5̂ jointly measurable, hounded, non-anticipating 
and Lipschitz continuous in the second variable. Specifically 

(i) |^(^ ,^) |H,V < a 

(ii) u \t = v \t=^ g{t, u) = g(t, v) 

(iii) |^(t,u) — g{t,'^)|H,H ^ L\u — v\ for a.a. t G [0,T] and all u^v GH. 

For convenience we also assume that g is diagonal, i.e. Vn G N 
gn = Prn(^ \ tin) • [^jT] X H —> Sd{n) where Sd{n) denotes the 
space of n X n diagonal matrices (that is, aij 7̂  0 iff i ^ ])• 

(c) g{t,u) is invertible and 

\g~'^{t,u)f{t,u,m)\ < a 

for a.a. t G [0, T], all u G H and m G M. 

(d) h : [0, T] X 7i X M ^ R is jointly measurable, non-negative, bounded, 

non-anticipating in the second variable and continuous in the second and 
third variables. Specifically 

(i) |/i(t,n,7Ti)| < a 

(ii) u \ t = V \ t = ^ /i(t, n, m) = /i(t, V, m) 

(iii) /i(t, •, •) is continuous for a.a. t G [0,T], all u,v GH and m G M. 

(e) h : H ^M. is non-negative, continuous and bounded. Specifically 

mu)\ < a 

for all u G H. 

Existence and uniqueness of solutions to the equation With the in
formation, control and cost structures now defined, we return to the equa
tions (22.3.10) under consideration. Since these equations involve feedback of 
the entire past of the process both directly in the coefficients / , g and through 
the control (p there are new considerations concerning existence and unique
ness. The first task therefore is to show how the basic existence theorem of [6] 
can be extended to prove the following. 

T h e o r e m 22.3.15 There is an adapted Loeb space ft = (^, .F, {Tt)te[o,T]^P) 
carrying a Wiener process w of covariance Q, with the following property. For 
any f, g satisfying Conditions 22.3.14(ci,b,c), any initial condition UQ ^ tl 
and any feedback control ip (ordinary or relaxed) the equation (22.3.10) has a 
unique strong solution u = u"^ on ft. 
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The proof of this is rather long and somewhat complicated technically. The 
essence is to solve the internal hyperfinite dimensional Galerkin approximation 
in HTV with the internal control V giving an internal solution U '^^ and then 
take the standard parts. The latter involves transferring the Girsanov theorem 
to the hyperfinite setting, and the use of special topologies defined on the 
spaces C(W, H) and C{H x M, H) to make them separable so that Anderson's 
Luzin Theorem can be applied. 

22 .3 .12 O p t i m a l control 

For the rest of this section the space H = (f2, JT, {J-'t)te[o,T]i P) ^^^ Wiener 
process w are fixed as those given by Theorem 22.3.15. The following is proved 
by taking the internal control in the proof of the previous theorem to be an 
arbitrary internal control $ instead of V-

Theorem 22.3.16 Suppose that $ is an internal control and U^ is the so
lution to the following equation in HN on the internal space Cl = ( O , ^ , 
{Ar)re*[o,T]^^) of the previous theorem: 

dU{r) 

= {-iy%U{r) - BN{U{r), U{T)) + F^( r , [/, $ (F ( [ / ) , r ) , U)]dT (22.3.12) 

+ GN{T,U)dW{T) 

with 1^(0) = t/(0) = t/o = PrN*'î o ^^c! Bjsi^ FJM, GN CLS before, and Y = (Yi) a 
lifting of y with respect to jn. Then u = °U^ is the unique strong solution to 
the controlled equation (22.3.10) with (̂  = °$ and 

Av) = °m 

where J ( $ ) is defined by 

J ( $ ) = ^E( f % (r, [/^, $ ( y ( [ / ^ ) , r ) ) dt + %{U^) 

The existence of an optimal relaxed control now follows easily: 

Theorem 22.3.17 The cost function J is continuous on S) 

Proof. Suppose that Lpn -^ (f in 1). Theorem 22.3.16 shows that J{'^(fn) ~ 
J{(fn) and so J{(PM) ~ *J{^M) for small infinite M. 

Again using Theorem 22.3.16 we have J{(^M) ~ J{°^M) = J{^)- Thus 
*J{^M) ~ J{^) for small infinite M and so J{(fn) -^ J{^) ^s required. D 

The compactness of T) and the density of step-controls now gives: 
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Theorem 22.3.18 For feedback controls based on digital observations JQ = JQ 
(the infimum for relaxed controls) and there is an optimal relaxed control ipo 
with J{(fo) = Jo = Jo-

22.4 Optimal control for d = 3 

The extra complications of the 3D stochastic Navier-Stokes equations mean 
that we are only able to consider the simplest kind of controls. The controlled 
equation considered takes the form 

u{t) = I/O + / {-iyAu{s) - B {u{s)) + / (5, u{s),e{s))} ds + 

^ ' (22.4.1) 

+ / g{s,u{s))dw{s) 
Jo 

which has the same appearance as equation (22.3.1) for no-feedback controls 
in dimension d = 2. 

The possible non-uniqueness of solutions means that the very definition of 
cost and optimality has to be refined — see below — and this requires a space 
that is rich enough to support essentially all possible solutions for any given 
control. For this it is necessary to employ a Loeb space. 

First we fix the conditions on the coefficients / , g in the equation. These 
are the natural extension of the basic conditions for the fundamental existence 
of solutions in Theorem 22.2.3. 

Conditions 22.4.1 There exists an L^ function a{t) > 0 such that 

(a) / : [0, T] X H X M —> V is jointly measurable with linear growth, con
tinuous in the second variable on each Kn and continuous in the third 
variable, i.e. 

(i) | / ( t , ^ , m ) | v ' < a ( t ) ( l + |^ | ) , 

(ii) f{t,-,m) e C'(^n;V(^gg^i^) for all finite n, where Kn = {u ^ Y : 

\\u\\ <n} as before (with the strong H-topology). 

(iii) f(t^u^') continuous 

for a.a. t G [0, T\, all u GH and all m G M. 

(b) ^ : [0, T] X H —> L(H, H) is jointly measurable with of linear growth, and 
continuous in the second variable on each Kn, i.e. 

(i) \9{t,u)\u,n<a{t){l + \u\), 

(ii) g{t, •) G C{Kn; L(H, H)weak) for all finite n, 

for a.a. t G [0, T] and all ix G H. 
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22 .4 .1 E x i s t e n c e of so lu t ions for any control 

Theorem 22.2.3 then gives the following, where as before the key feature 
to note is the uniform energy bound. 

T h e o r e m 22.4.2 There is a filtered probability space fi = (f2,^, {J-'t)t>o,P) 
with the universal property that for any f, g satisfying Conditions 22.4-1 (oi,b) 
and any ordinary or relaxed control, the equation (22.4-1) has a solution sat
isfying the energy inequality 

E ( sup \u{t)\^^ I \\u{t)fdt] <E (22.4.2) 
\tG[0,T] Jo J 

with a constant E = E (IXQ, a) uniform over the set of controls. 

The space fulfilling this result in [6, Theorem 6.4.1] is a particular Loeb 
space, which we need to specify later. Note that in the current 3D setting 
solutions may not be unique (this is an open problem). 

22 .4 .2 T h e control p r o b l e m for 3 D s tochas t i c N a v i e r - S t o k e s 
e q u a t i o n s 

In order to formulate the optimal control problem for the 3D stochastic 
Navier-Stokes equations it is necessary to have a space ft as in Theorem 22.4.2 
that has solutions for all controls. Fix such a space; then bearing in mind the 
possible non-uniqueness of solutions, the optimal control problem is formulated 
as follows. For a given control (p define 

W^ := | n : u is weak solution on ft 
(22.4.3) 

to (22.4.1) for (f and satisfying (22.4.2) } 

Then, taking the functions h, h satisfying the conditions of Definition 22.3.2 let 

J{p,u) = E ( / h{t,u{t),(f{t))dt + h{u{T))] . (22.4.4) 

The cost for cp is then defined by 

J{(f) := mi{J{^, u): ue W). (22.4.5) 

Now set 

Jo = inf { J ( ^ , u): ee€,ueU^} = mf{J{e) : 9 e (t} 
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which is the optimal cost for ordinary controls. Likewise 

Jo = inf {j((/p, u): (/? G S , n G W^} = mf{J{if) : (̂  G 2)} 

is the optimal cost for relaxed controls. The optimal control problem is to find 
if possible an optimal control 9 and optimal solution u GU^ such that 

j{e,u) = j{e) = jo 

and similarly for relaxed controls 

Remark The above definitions are of course relative to the space Q, — so 
strictly this should be acknowledged by writing JTQ^, etc. However, the space 
ft defined in the next section will be fixed for the rest of the paper. 

22.4.3 The space fi 

In order to obtain an optimal control and optimal solution to the 3D 
stochastic Navier-Stokes equations the space must be rich enough to carry 
a good supply of solutions for each given control; we will see that the Loeb 
space used in [4] (see also [6]) to solve the general existence problem for the 
stochastic Navier-Stokes equations in dimensions < 4 is just what is needed. 
For the rest of this paper we take ft to be this space, defined as follows. 

Fix an infinite natural number N and take the internal space 

where O is the canonical space of continuous functions *C(*[0, T]; H^v), and 11 
is the Wiener measure induced by the canonical Wiener process W{T) G H^V 
having covariance operator QAT (= Pi*Ar *QPi*Ar)- The filtration {Ar)Te*[o,T] is 
that generated by the internal process W{T). 

Take the Loeb measure and Loeb algebra P = L{IV)^ T = L^A) and put 

where J\f denotes the family of P-null sets. This gives the adapted Loeb space 

which carries the process w = °W, which is a Wiener process in H with 
covariance Q. 
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The fundamental existence result for the 3D stochastic Navier-Stokes equa
tions on the space ft in [4] or [6] is proved by taking the internal solution C/(r, cj) 
to the Galerkin approximation of dimension A ,̂ so U{r^uj) is an internal pro
cess with values in H^v- The existence of a uniform finite energy bound allows 
the definition of the standard part process it = °f/ in H, which is the required 
solution. We do not need to repeat this here in order to establish existence, 
but the proof of the key theorem below concerning approximate solutions uses 
similar techniques. 

22 .4 .4 A p p r o x i m a t e so lu t ions 

Recall the main idea for using nonstandard methods in deterministic op
timal control theory used in 2-dimensions. Take a minimizing sequence of 
controls 9n and consider a nonstandard control Q — ""OK for infinite K and a 
solution U = U^ to the equation for this control. Then i/ = °[/ is a standard 
solution for the control (/P = ° 0 which is thus optimal. The problem with this 
approach in the 3D stochastic setting is that the solution U associated with 
0 would live in *H and be carried by the nonstandard space *ri (provided we 
can make sense of that). We showed in Section 22.3 how the uniqueness of 
solutions for d = 2 allows us to move back to the space Q. to complete the 
story, but here an alternative approach is needed. This is provided by the 
notion of approximate solutions^ first introduced in [11] in order to establish 
results on attractors for 3D stochastic Navier-Stokes equations. The rather 
technical notion required in [11] has been adjusted below to suit the current 
needs — and is somewhat simpler than the corresponding notion in [11]. 

Definition 22.4.3 (Approximate solutions) Fix an initial condition u^ E 
H and let E = E{UQ^ a). Let $ G *i^ be an internal control (ordinary or relaxed) 
and define sets X^ and X ^ as follows. 

(a) For each j G W denote by X ^ the internal class of internal processes 
U : *[0,T] X O ^ HN that are *adapted to the filtration (A^), with the 
following properties: 

(i) With n-probability > 1 - i on O, for all r G *[0,T] and ah k < j : 

\Uk{r) - Uk{0) - J^[-uAUk{a) - Bk{U{a), U{a))}da 

r F^{a,U{a))da- [' Gk{a,U{a))dW{a 
0 Jo 

(22.4.6) 
< 2 - ^ 

where B^ = (*5,*e,), F^{a,U{a)) = (*/(^, f/(^), ^ ( ^ ) ) , *efc) and 

Gk = (*^,*e/,). 
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(ii) 

' r \\u{<y 

(iii) 

^ ^ 1 
En sup \U{(j)\^ + uj \\U{a)fd(j\<E+- (22.4.7) 

WG*[O,T] 

\U{{))-uo\ < - (22.4.8) 
3 

(b) Define X^ = H ^p^X^^. This is the set of approximate solutions to the 
controlled stochastic Navier-Stokes equations for control $ . 

Remark The sequence of internal sets X^ is decreasing with j and since the 

set X^ involves Xf only for finite j then we have X^ C X^ for ah K G *N\N. 

The theory of [11], adapted to the modified definition of approximate solu
tion here gives the following key result. First we must define the internal cost 
jf ($ , t/) for an internal process U G HA/̂  on H and control $ by 

J ($ , U) = En (J %{T, U{T), ^iT))dT + *h{U{r)) 

which is different from *^*^($, U) (which doesn't actually make sense). 

Theorem 22.4.4 

(a) Let $ be an internal control (that is, $ G *S)j and U G A'^. Then for 
P-a.a. uj ^ ft, |f7(r, c<;)| is finite for all r G *[0,T] and U{'^uj) is weakly 
S-continuous. The process defined by 

u{t,uj) =''U{T,U) 

for T ^ t belongs toU°^ (where °^ is the standard part of ^ in the weak 
topology on D as described in Section 22.2.3) and 

(b) Let (̂  G D be a standard control and u G W^. Then there exists [/ G A' ^ 
with u = ^U as defined in part (a), and hence 

J{*<p,U)»J{<p,u). 

Proof (Sketch). The proof of (a) follows quite closely the proof of Theo
rem 6.4.1 in [6]. The main difference here compared with that proof is (i) the 
presence of the control in the drift term / , which is dealt with routinely using 
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Anderson's Luzin Theorem, and (ii) the fact that internally we only have an 
approximate equation. That is, we have ^ instead of = in the internal equa
tion for each finite co-ordinate of the solution. That is, from the approximate 
equality (22.4.6) with j = K for some infinite K^ using overspill, we have 

Uk{T) « C/fe(0) + r{-vAUk{,a) - Bk{U{a),U{a))}da 
Jo 

+ r F^{a,U{a))da+ [ Gk{a,U{a))dW{a) 
Jo Jo 

for finite k. This gives equality after taking standard parts. 
For (b) the theory in [11] can be adapted easily to obtain suitable liftings 

of the solution u, giving an internal process t/ G A' '̂  such that u = ^U. The 
remaining fact about the cost follows from part (a) with $ = *(/? and using the 
fact that °(*6>) = 6>. D 

22.4.5 Optimal control 

The results concerning optimal control of the stochastic 3D equation follow 
from the next more general theorem. 

T h e o r e m 22.4.5 Let f, g, h and h satisfy Conditions 22.4.1. 

(a) For every control if there is an optimal solution u"^ ^U'^ with J{ifj u'^) = 

(b) Let cpn be a sequence of controls andu^ G 14"^"^, with J[}Pn-, ^n) converging. 
Then there is a control (p and u G U"^ with J^Lp^u) = lim ^{(fn^Un)-

Proof, (a) For a control (/P G D take a minimizing sequence {uk)keN C W^ 
such that J'{(f^Uk) \ J{f)- Using Theorem 22.4.4 (b), for each k take an 
approximate solution Uk ^ ^ "^ such that Uk = "^Uk and J(^f^ Uk) ~ J'i^j Uk)-
Weakening this gives 

and 

| J ( V , C / f c ) - J ( ^ , W f c ) | < ^ 

for each finite k so by ^«^i-saturation there is an infinite K with UK ^ <^x — "^ 
and Ji^ip.UK) ~ J ( ^ , ^ K ) . Then Theorem 22.4.4 (a) gives ^t/^ G W^ with 
J{LP, °UK) = J{(p), so we may take u^ = ""UK-
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(b) The proof is similar to the proof of (a). For each k take an approximate 
solution Uk ^ ^ '^'^ such that Uk = ^Uk and J'{'^(pk^ Uk) ~ J{^k^ '^k)- Using Hi-
saturation there is an infinite K with UK ^ ^^^ C A' ^^ and J{''(pK-, UK) ~ 
J l = l i m ^ ^ o o J ( ^ n , Un). 

Now let LP = ""C^K) and u = ""UK; Theorem 22.4.4 (a) gives u e U"^ and 

Corollary 22.4.6 

(a) There exists a relaxed control (fo (and solution u"^^ G Z//^°^ that achieves 
the minimum cost for ordinary controls (i.e. such that Ji^po^u'^^) = 

J{^o) = Jo); 

(b) There is an optimal relaxed control LpQ and optimal solution u"^^ G W^° 

Proof. For (a) take a minimizing sequence of ordinary controls (and solutions) 
and for (b) take a minimizing sequence of relaxed controls and solutions. Then 
apply (b) of the previous theorem. D 

Remark 22.4.7 One consequence of the possible non-uniqueness of solutions 
is that unlike in dimension 2 we cannot prove that JQ = Jo? so this theory is 
rather less satisfactory than that for 2D. 

22.4 .6 Ho lder cont inuous feedback contro ls (d = 3) 

Recall that in dimension d = 2, the existence of optimal ordinary feedback 
controls in a general setting was ensured by taking Holder continuous feedback 
controls (Section 22.3.5). The technique of approximate solutions allows the 
extension of this idea to the 3D stochastic setting. Controls take the form 
9{t,u{t)), and the controlled equation (22.4.1) becomes 

u{t) =uo-\- {- iyAu{s) - B {u{s)) + / (s, u{s), 6>(s, u{s))) ]ds + 

°, (22.4.9) 

+ / g{s,u{s))dw{s) 
Jo 

with cost function 

J{e,u) = E ( / h{t,u{t),e{t,u{t)))dt + h{u{T))\ (22.4.10) 

for u^W^ 
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We maintain the Conditions 22.4.1 on the coefRcients / , ^, /i, h. 

The controls considered are the Holder continuous feedback controls 
(t(a,/3,7,ci, C2) given by Definition 22.3.7. 

The controls we consider are Holder continuous feedback controls defined 
as follows. So we fix constants (a,/3,7, ci, C2) and as before write C^ = 
(t{a, /3,7, ci, C2). We continue to work with the space ft as defined above (Sec
tion 22.4.3); it is routine to see that for any control 6 G C^ there is a solution 
to (22.4.9) having the energy bound (22.4.2). As before write U^ for the set 
of all such solutions, and then the minimal cost is defined as expected: for 
0 E €^ extend the earlier definition to give: 

J{e)=mf{J{e,u) : ueU^} 

and then set 
Jo"^ = mf{J{e) : 6 e C^}. 

The standard part of an internal control is defined in the natural way: 

Definition 22.4.8 Suppose that 6 G *€^, so 9 : *[0,T] x *H ^ *M. Define 
° e = 6> G £ ^ by 

0{t,u) = ° e ( t , i / ) = ° e ( r , [ / ) 

for any r ^ t and U ^ u in H (this makes sense because of the condi
tion (22.3.7)). 

22 .4 .7 A p p r o x i m a t e so lu t ions for Ho lder cont inuous contro ls 

For an initial condition UQ E H and an internal control B G *C^ the 
sets A*® and Af® are defined as in Definition 22.4.3 with F^ modified in the 
obvious way: 

F^{a,U{a)) = {*f{a,U{a),e{a,U{a))),*ek) 

Then we have the counterpart of Theorem 22 A A for Holder continuous 
controls. 

Theorem 22.4.9 

(a) Let Q be an internal Holder continuous control (that is, 8 G *£^J and 
U G A'®. Then for a.a. u G ft, |C/(r, u;)| is finite for all r G *[0,T] and 
U{',uj) is weakly S-continuous. The process defined by 

u{t,iu) =^U{T,UJ) 

for T ^ t belongs to U°^ and 
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(b) Let 9 G €^ be a standard Holder continuous control and u ^ U^. Then 
there exists U ^ X with u = °U as defined in part (a), and hence 

The proof is similar to the proof of Theorem 22.4.4 except for dealing 
with the terms that contain the control, and this is routine using the Holder 
continuity property. 

Finally we have the counterpart of Theorem 22.4.5. 

Theorem 22.4.10 Let f, g, h and h satisfy Conditions 22.4-L 

(a) For every Holder continuous control 6 there is an optimal solution u^ G 
U^ with J{9, u^) ^J{e). 

(b) Let On he a sequence of controls in €^ and Un G U^"^, with J{6n^Un) 
converging. Then there is a control 9 G C^ and u G U^ with J'{9,u) = 
limn^oo J{9n,Un). 

Proof. Proved from Theorem 22.4.9 just as Theorem 22.4.5 followed from 
Theorem 22.4.4. D 

The existence of an optimal control now follows. 

Corollary 22.4.11 There is an optimal Holder continuous control 9o and op
timal solution u^^ eU^^ with J{9Q,U^^) = J{9o) = JQ^. 

Proof. Take a minimizing sequence 9^1 of controls in (C^ and solutions Uji ̂  14 ^ 
with J'{9n,u^'^) -^ J^ and apply (b) of the previous theorem. D 

Appendix: Nonstandard representations of the 
spaces H^ 

For ease of reference the most important facts about the nonstandard rep
resentation of members of the spaces H^ are summarized here, together with 
other crucial nonstandard matters. For full details consult [6]. 

The space *H has a basis (*en)nG*N — {En)ne*N given by the nonstandard 
extension *e of the function e : N ^ H. For each t/ G *H there is a unique 
internal sequence of hyperreals {Un)ne*N such that 

*oo 
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and the subspace H^v of *H defined by 

N 

HN = {Yl ^^^^ • ^ ^ *^^' ^ internal | 
n = l 

On H (and also V or any of the spaces H^) there are both weak and strong 
topologies. Here are the most important nonstandard facts. 

Proposition 22.4.12 Let t/ G *H (or HAT) Then 

(a) U is (strongly) nearstandard to u in tl (denoted U ^ u ) if \U — *u\ ^ 0 
(and then \U\ ~ |n|y). 

(a) U is weakly nearstandard to u in tl (denoted U ^ ^ u) if ([/, *̂ ') ^ (n, v) 
for all V Gtl and \u\ < °|t/| (allowing this to be oo^. 

(b) / / U is strongly nearstandard then it is weakly nearstandard and the stan
dard parts agree, so we write °U for the standard part in whichever topol
ogy it may be nearstandard. 

(c) / / \U\ is finite then U is weakly nearstandard and {°U)^ = °{U^) for fi

nite n. 

(d) / / \\U\\ is finite then U is strongly nearstandard in H. 

(e) If\U\,\V\ < o o then 

U ^^V ^:^ U^^Vi V Z G N . 

Similar facts obtain for other spaces in the spectrum H^. 
From (22.2.2) we have the following lemma (a slight extension of the Crucial 

Lemma (Lemma 2.7.7) of [6]), which is crucial for taking standard parts of the 
quadratic term B(U)^ which is the source of many of the difficulties when 
discussing the Navier-Stokes equations. 

Lemma 22.4.13 (Crucial Lemma) If U,V G *V with \\U\\ and \\V\\ both 
finite, and ^ G V then 

%{U,V,''z)^h{u,v,z) 

where u = °U and v = °V (with u^v G Y.) Hence, if \\U\\ < oo 

*5(?7) ^ b{u) in V (weakly) 

For the proof consult any of [6, 9, 10]. 
Taking standard parts of the term AU needs the following observation. 

Lemma 22.4.14 If U e ""V with \\U\\ finite with u = ''U then 

""AU^ Au in Y' (weakly) 
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23 
Local-in-time existence of strong solutions of 
the n-dimensional Burgers equation via 
discretizations 

Joao Paulo Teixeira 

A b s t r a c t 
Consider the equation: 

ut = uAu - {u • V)u + / for X e [0, l]"" and t G (0, oo), 

together with periodic boundary conditions and initial condition u{t,0) = 
g{x). This corresponds a Navier-Stokes problem where the incompress-
ibility condition has been dropped. The major difficulty in existence 
proofs for this simplified problem is the unbounded advection term, 
{u ' \/)u. 

We present a proof of local-in-time existence of a smooth solution based 
on a discretization by a suitable Euler scheme. It will be shown that this 
solution exists in an interval [0, T), where T < ^ , with C depending only 
on n and the values of the Lipschitz constants of / and u at time 0. The 
argument given is based directly on local estimates of the solutions of the 
discretized problem. 

23.1 Introduction 

The Burgers equat ion 

Ut - lyAu + {u ' \/)u = f xeDcR'^,t>0 

provides an example of a model for flows t h a t takes into account the interact ion 

between diffusion and (nonlinear) advection. This is probably the simplest 

nonlinear physical model for turbulence. 

Institute Superior Tecnico, Lisbon, Portugal. 
j t e ixOmath . i s t .u t l .p t 
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This equation is a simplification of the Navier-Stokes equations where the 
incompressibihty constraint on the fiow has been dropped. The Navier-Stokes 
equations are usuahy studied by taking projected solutions of the Burgers 
equations onto a subspace of divergence free functions. The main difficulty 
in the analysis of nonlinear fiows, the advection term, {u • V)'U, is present in 
both equations. 

It is a consequence of the incompressibihty condition that there are only 
trivial Navier-Stokes fiows for n = 1. This is not the case in Burgers fiows, 
where the case n = 1 is already nontrivial. Cole [6] and Hopf [10] have studied 
the problem in the real line: 

{ Ut — VUxx + UUx = 0 X G M , t > 0 

(23.1.1) 
u{x^t) = UQ{X) X G M. 

Using the transformation of variables 

u = -2u—, (23.1.2) 
Vx 

(23.1.1) was reduced to and initial value problem for the heat equation: 

{ ^t - i^Vxx = 0 X G M , t > 0 

(23.1.3) 
v{x^t) = vo{x) X G R. 

(Where UQ = —2iy^). This enabled them to get a formula for a solution of 
problem (23.1.1), in terms of a Gaussian integral. Thus, and under very mild 
conditions on ng, a solution, u^ exists for all x G M and t > 0, and is smooth. 

It would be reasonable to expect that the n > 1 case should behave in 
a similar way. The usual standard theory for this type of equations uses a 
weak formulation of the problem in Sobolev spaces, a Galerkin approximation 
to show existence of weak solutions and, finally, regularity estimates. How
ever, these methods only lead to partial results. For well-posed problems with 
generic initial and boundary data, the best that can be obtained is local in-
time existence of regular solutions. It can also be shown that regular (strong) 
solutions are unique (if they exist). See [4, 13, 9, 12, 16] for accounts on 
these methods. 

To gain some new insight into this problem, we develop a hyperfinite ap
proach to the following model problem on a compact domain. 

Model Problem: Let T"' = M^/Z^ be an n-dimensional torus. Assume 
that f is locally Lipschitz continuous on T^ x [0, cx)) and UQ G C^'"^(T'^) (that 
is, UQ is twice differentiahle and all its second partial derivatives are Lipschitz 
continuous on T^^. Let r> = T^ x (0, oo). Let z/ G M+. Let f : M^/Z^ -^ M, 
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UQ : M^/Z^ -^ M^. Our task is to study the initial value problem for the Burgers 
equations: 

{ ut — vAu + (u • \/)u = f in V 

^ ^ (23.1.4) 
u = uo on T^ X {0}. 

A (strong) solution of this problem is a sufficiently smooth u satisfying (23.1.4). 
By "sufficiently smooth n" we mean that u : T^ x [0, oo) ^ IR is such that 
u{',t) e C2(T^) for all t G [0, oo) and n(x, •) G C^{[0,oo)) for all x E T^. 

23.2 A discretization for the diffusion-ad vect ion 
equations in the torus 

We now look for a discretized version of problem (23.1.4). Since we are 
mainly interested in the existence result, we will do this in the simplest way 
possible. First we work in the standard universe. To discretize T^, we introduce 
an /i-spaced grid on T^. Choose M G Ni, and let /i = -^. Then, let: 

T ^ = jo, /i, 2/i,..., (M - l)/i, iV = h{Z mod M)^. 

Consistently with our interpretation of T^ as a discrete version of the torus, 
T^, we define addition in T ^ as follows: given any x = (mi, 777,2, • • •, m,^)/i and 
y = (/i,/2,...,/n)/?' in T ^ , let: 

X -\- y = I (mi + /i) mod M, (777,2 + 2̂) mod M , . . . , (777,̂  + In) mod M 1 h 

This makes addition well-defined in T ^ ; furthermore, it will behave in a similar 
way to addition in T^. In particular, the set of grid-neighbors of any x G T ^ , 

{x =b hei : z = 1, 2 , . . . ,77,} 

is well-defined. 
As for the discretization of time, consider T G M^ and K G Ni. Let k = ^^ 

and define: 

/ ^ = j o , fc, 2/c, . . . , (K - l)/c, r } = /c (N n [0, K)); 

To each triple d = {M,K,T), with M, TV G Ni and T G M+, we associate a 
discretization as defined above. We will, later on, introduce some restrictions 
on the set of admissible d. For now, given any d = (M, K, T), with M, Â  G Ni 
and T G IR+, we let: 
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P , = T ^ x ( / | : u { T } ) 

The elements of V^ are called gridpoints. Any function U whose domain is a 
subset of Vd is called a gridfunction. _ _ 

The discrete Laplacian can be defined as a map A^ : MP"^ -^ MP^^ given by: 

AdUix, t) = -^Yl iy^^ + ^^i^ *) ~ 2^^^ ' *) + ^ ( ^ ~ '*^»' *)) • (23.2.1) 

The definition of addition in T ^ makes this well-defined. 
The discrete version of the nonlinear parabolic operator, P , that occurs 

in the diffusion-advection equations is defined as the map P^ : M^^ -^ R-̂ ^ 
given by: 

PdU{x,t) = ^ ^ ^-^^-iyAdU{x,t) 

U^ix^t) . 
2h 

k TW^ _ , 
With 

we get: 

PdU{x,t) = 

= ^ ( U{x, t + k)-{l- 2nu\)U{x, t) - (23.2.2) 

- \^{(u - -Uiix,t)^Uix + hei,t) + (^u + -Ui{x,t)^U{x - hei,t)]\ 

The discretized version of problem (23.1.4) is, then: 

r PdU{x, t) = fix, t) if {x, t) e Vd ^ 

\ U{x,0) = uo{x,0) if x e T ^ . 

Let us look more closely at the finite difference equation in (23.2.3). If we 
solve for U{x, t + k), we get: 

U{x, t + k)={l- 2niyX) U{x, t) 

+ A ^ f ( i / - - [ / , ( x , t ) ) f 7 ( x + /ie^,t)+ (^u^-Ui{x,t)^U{x-he^,t)] (23.2.4) 

+ Xh^f{x,t) 
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Equation (23.2.4), together with the initial condition in (23.2.3), gives a 
recursive formula for the unique solution of problem (23.2.3). 

Define a map 

by: 

^{U,V){x,t) = ( l - 2 n z / A ) [ / ( x , t ) + 

+ A ^ f L - ^ F ^ ( x , t ) j [ / ( x + / i e „ t ) + L^^V^{x,t)^ U{x-hei,t)\ 

whenever (x,t) G V^. Equation (23.2.4) can now be written as: 

U{x,t ^ k) = ^{U,U){x,t) ^ Xh^ f{x,t) 

In what follows, we will require the right-hand side of (23.2.5) to be in 
the form of a weighted average, that is, all coefficients multiplying U{x^t) and 
U{x ± hci^t) must be positive. For this, we will always assume that: 

A < - ^ (23.2.6) 

We also require that: 

\Ud{x,t)\ < ^ for ah {x,t)eVd, (23.2.7) 

where U^ is the solution of (23.2.3), relative to d. 
This means that the set of admissible discretizations is: 

( M , K , r ) G N i x N i x R + : A < - ^ A V(x,t) G P ^ |t/rf(x,t)| < ^ 1 

Note that condition (23.2.7) is easily satisfied when we work in the nonstandard 
universe. Whenever h is infinitesimal, ^ will be infinitely large; so, \iU is kept 
finite, then condition (23.2.7) holds. 

23.3 Some standard estimates for the solution of the 
discrete problem 

In this section, we derive estimates that will not require a nonstandard 
discretization. 
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Consider any (standard) discretization, d. Given U : V^ -^ M^ and 
A C Vd, let: 

WUhx^A) = ^max^|C/(x,t)| 

\f~^\T^(A) = m a x : : 
' ' d^ ) {x,t),(y,t)eAx^y \x - y\ 

\U{x,t + k)-U{x,t)\ 
\\U\\TOO(A\ = m a x ; 

Here, | • | denotes the Euclidean norm on W. 
We begin by showing some properties of $ . 

L e m m a 1 Let U,V e (R^)'^^. Let h > 0 be such that: 

h< ^^ _ . (23.3.1) 

Then^ for all (x,t) G V^,: 

mU,V){x,t)\<\\U\\^^^:^^y 

Proof. For any {x, t) € P^: 

\^{U,V){x,t)\ < \{l-2nj^\)U{x,t)\ + 
n 

iy--Vi{x,t) ]U{x + hei,t) 
i=l \ i ^ 

Let M = ||f/||ioo(^^). By condition (23.3.1): 

i^+-Viix,t) ] U{x-hei,t) 

v±-V{x,t) > 0 . 

Thus: 

mU,V){x,t)\ < {l-2ni'X) \U{x,t)\ + 

u-'^Vi{x,tU \Uix + hei,t)\+ (v+'^Vi{x,t) ] \U{x - hei,t)\ 

Since \U{x,t)\ < M, we get: 

n / U h \ 
mU, V){x,t)\ < (1 - 2nu\) M^XMJ2[^- ^y^i^^t) + 1/ + -V,{x,t) 1 

< (1 - 2niyX) M + \M2vn = M. D 
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Lemma 2 Let U, V,W,Z ^ (M^)^^. Then, for all (x, t) G V^: 

Proof. For all {x, t) G ^d : 

$([/ , W){x, t) - $ (F , Z)(x, i) = (1 - 2nAzy) (^/(x, i) - V{x, t)) + 

4̂(( i ^ - 2^»(^ '* ) ) U{x + he„t)- iv--Zi{x,t) ) F (x + /iei,i) + 

i /+ -Wi(x , i ) j U{x - he^,t) - (u + -Ziix,t)j V{x - he^t) j 

= (1 - 2n\v){U{x, t) - V{x,t)\ + 

n / , 

+ A ^ ( (i/ - -Wi{x,t)^ (U{x + /ie„ i) - V{x + ha, i ) ) + 

+ (i/ + -I^iCa;, i ) ) (c/(a; - /ie„ t) - V{x - hei, i) H + 

- {Zi{x,t) - Wi{x,t))V{x - hei,t) 

^^{U-V,W){x,t) + 

\h 

T Y^ (^Zi{x, t) - Wi{x, t ) ) (y{x + /lei, t) - V{x - hei, t ) ) . D 
=1 

Lemma 3 Let d be a discretization such that: 

2u 
h< 

\UO\\L^ + T | | / | | L O O 

If U is the solution of the discrete problem, (23.2.3), then: 

| | ?7 | | ^oo(^^)< | |«0 | |L-+r | | / | |L-

In particular, d is an admissible discretization. 
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Proof. Let M = ||UO||L°° and L = | | / | | L ° ° - We show, by induction on t = 
0, / c , . . . , T, that for ah r = 0, / c , . . . , t and for ah x G T ^ : 

\U{x,t)\ <M + tL. 

By the initial condition in problem (23.2.3), the result holds for t = 0. As
suming it is valid for some t G / J , we have, by the hypothesis on h and the 
induction hypothesis, that: 

2v 2v 2v 
h < -— —- < — < M + TL M + tL \U{x,t)\' 

for ah (x, t) G T ^ x {0, fc, 2fc,.. . , t} . Hence, by Lemma 2: 

\U{x,t^k)\ < | $ ( t / , t / ) (x , t ) | + /c | /(x,t) | <M + tL + kL = M+(t + k)L. D 

23.4 Main estimates on the hyperfinite 
discrete problem 

The nonstandard analytical setup we now use is as follows. We work in 
a superstructure (F(IR), *F(IR), *). We will omit the stars on all standard 
functions of one or several variables and usual binary relations. Any x G *M^ 
is called finite iff there exists TTI G N such that |a::| < m. Each finite x G *M can 
be uniquely decomposed as x = r + s, where r G M and e is an infinitesimal; 
r is called the standard part of x, and denoted by s tx . If x,?/ G *M are such 
that X — y is infinitesimal, then we say that x is infinitely close to ^, and write 
X ^ y. Similarly, if x, ?/ G *M^: 

X ^ y iff \x — y\ ^ 0 iff Xi ^ yi^ for each z = 1 , . . . , n. 

Let j , / G N. If X G *R '̂ is finite then let: 

s tx = s t ( x i , . . . ,Xj) = ( s t x i , . . . , s tx j ) . 

If F : ^ C *IR̂ ' ^ *R^ is an S-continuous function, define °F by: 

°F(st x) = st(F(x)) Vx G A. (23.4.1) 

For sets A G M^ let: 

°A= Istx : "x is finite" and x G A J . 

Each "circle" map as introduced above is sometimes called a standard part map. 
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In this, and other similar definitions of this work, we consider *V, where 
V = {A^}. *V is an internal * family of linear maps indexed in the internal set 
of all admissible d; each A^ G * /̂ is a * linear map acting on the vector space 
of internal gridfunctions U : V^ -^ *R. 

Similarly, we can consider *Z//, where 

f TM'^ 1 1 
U= \Pd: M G * N , T G * M + , K G * N and — — < 7^ > . 

I K 2niy J 

*Z// is now an internal family of linear maps, indexed on an internal set. Each 
^MK ^ *^ ^̂  then a * linear map acting on the vector space of internal grid-
functions. 

For the norms and seminorms introduced in the previous Section, we can 
proceed similarly. We get families of internal norms and seminorms which, by 
transfer, satisfy the following. Given U : V^ -^ *IR^ and A C V^: 

\\U\\L^(A) =*max{ | f7(x , t ) | : {x,t) G A } , 

[ ^ ]Lgo(A)=*max | l ^^^ -g~^^^ -^^ l : (x, t), (^, t) G A and x ^ y | , 

[ [ t / ] k s o ( ^ ) = * m a x | M ^ ^ ^ ± ^ ^ ^ ^ (x , t ) , (x , t + fc)GA}. 

Lemma 4 Let d be an admissible discretization such that h is infinitesimal Let 

Lo = max ( [^/O]L-(T-), r([/]L-f^w))^^^ 
1 

If U is the solution of the discrete problem (23.2.3) then, for T < 2^' 

Proof. To work internally, we will begin by requiring a weaker condition on 
/i, namely: 

h < T—u ^^Wn^ • (23.4.2) 

Lemma 3 shows that this is a sufficient condition for admissibility of d, which 
is all that is needed for now. 
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Fix z G Tj{̂  and write V[x^ t) — U{x + z,t). Then, by Lemma 2: 

U{x + z,t + k)- U{x, t + k) = $ (F , V){x, t) - $([/ , U){x, t) + 

+ Xh^if{x + z,t)-fix,t)) 

= ^V-U,V)ix,t) + 

\h 

+ A/i2(/(rc + 2 , t ) - / ( x , i ) ) 

By *recursion, we will construct a function L : {0, /c, 2fc,.. . , T} —> *R such 
that, for a lH = 0, fc,... T and x, z G T ^ : 

\U{x + z,t)-U{x,t)\ <L{t)\z\ (23.4.3) 

Let L{t) be given by: 

r L(0) = Lo 

\ L(t + fc) = L{t) + nk{L{t)Y + nkLl 

For t = 0, we get: 

|t/(x + z,0) - t / (x,0) | = |i^o(^ + ^) - ^o(^)| < ho]L2°(T^) kl < L^\A' 

Now, we assume that for all r = 0, / c , . . . , t and x E T ^ 

\U{x + z,T)-U{x,r)\ <L{t)\z\. 

Since d is admissible (and so | F ( x , r ) | = \U{x-\r Z^T)\ < X ) ' Lemma 1 implies 
that \^{V -U,V)\ <L{t)\z\. Hence: 

\U{x + z,t + k) -U{x,t + k)\ < L{t)\z 

X 

~2 
+ — Y.^{t)\z\L{t)2h + \h^[f]Loo\z\ 

2 = 1 

< h.{t) + nk{L{t)f + nkL^^\z\. 

This shows inequality (23.4.3) by *induction. 
Note that Lit) defines the Euler iterates for the standard ODE initial 

value problem: 

^ ^ ' (23.4.4) 
^(0) = Lo 
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Since y' > 0, y{t) > LQ. Hence, y^ < 2ny^^ and thus: 

yit) < - 2nLot 

Now, use the fact that h is infinitesimal. By the convergence of the Euler 
iterates to the solutions of problem (23.4.4), we conclude that: 

m^y{t)< ^' 
1 - 2nLot 

This estimate is valid for t in any compact interval where problem (23.4.4) has 
solution; in particular, the estimate will be valid for t < 2^- ^ 

Lemma 5 Let d he an admissible discretization such that h is infinitesimal. 
Let LQ be as in Lemma 4 CL^^d 

Mo = max n K ] ] L - ( T ^ ) , "([[/]]L-(Prf)) ^^o j , with 

[[M]L^{T^) = *max i^uAuoix) - {u • V)uo{x) + / (x , 0) : x e T^^j 

If U is the solution of the discrete problem (23.2.3) then, for T < 2^' 

ff^^^^?(^^) ~ 1 - 2nLoT 

Proof. Again we begin by requiring that h satisfies the weaker statement: 

2v 
h < T,—n ^^TTTT;— (23.4.5) 

Write V{x, t) = U{x, t + k). Then, by Lemma 2: 

U{x, t + 2k)- U{x, t + k) = $ (F , V)(x, t) - $([/ , U){x, t) + 

+ Xh\fix,t + k)-f{x,t)) 

^<^{V-U,V){x,t) + 

Xh 
Y^ (Ui{x, t) - Vi{x, O) (U{x + hei, t) - U{x - ha, i )) 

+ Xh\fix,t + k)-f{x,t)) 

2 

By *recursion, we again construct a function M : {0, k, 2k,..., T} ^ *M such 
that, for a lH = 0, fe,... T and a; e T ^ : 

\U{x,t + k)-U{x,t)\ <M{t)k. (23.4.6) 
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Let M{t) be given by: 

J M(0) = Mo 

\ M{t + k) = M{t)+nkM{t)L{t)+nkM^ 

Here, L is the function introduced in the proof of Lemma 4. 
For t — 0, we get: 

[/(x, fc) - C/(a;, 0) „ \ ^ e O rr V^ rr AO 7-r , f r^ n\ = u2_^d^iiU-2_^Uid,^iU + f{x,0) 

« j/Awo(a;) - (uo • V)wo(a;)+ / (x , 0) 

< [[WO]]L-(T5^) 

< Mo. 

Now, we assume that for all T = 0, A;,..., i and x 6 T ^ 

| t / (x , r + fc)-?7(x,r)| < M{t)k. 

Since d is admissible (and so |y(a; , r ) | — \U{X,T + k)\ < ^ ) , Lemma 1 implies 
that \'^{V - U,V)\ < M{t)k. Hence: 

|[/(a;,i + 2A;)-(7(a;,i + A:)| < M{t)k +—^M{t)kL{t)2h +\h\f]]L^h 
i=l 

< (M{t) + nkM{t)L(t) + nkMf\ k 

= M{t + k)k. 

This shows inequality (23.4.6) by *induction. 
Now, we note that M{t) defines the Euler iterates for the standard ODE 

initial value problem: 

{ z' = nzy + nM^ 
° (23.4.7) 

^(0) = Mo. 
Here, y{t) is the solution of problem (23.4.7), as given in the proof of Lemma 4. 

Since / > 0, z{t) > MQ, SO nz{t)y{t) > UMOLQ > nM^. Hence, z\t) < 
2nz{t)y{t)^ and thus: 

"(') - Y^2^t 
Now, use the fact that h is infinitesimal. By the convergence of the Euler 
iterates to the solutions of problem (23.4.4), we conclude that: 
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This estimate is valid for t in any compact interval where problem (23.4.4) has 
solution; in particular, the estimate will be valid for t < 2^- ^ 

23.5 Existence and uniqueness of solution 

By the results of section 23.4, the function [/(x, t) is S-continuous for t G 
{0, fc,... , T } , with T < 2^- Note that the set of admissible values for T 
depends only on LQ, that is, on the size of the Lipschitz constants of no and / . 

Therefore, 
u{si X, St t) = St U{x, t) (23.5.1) 

is well-defined and continuous on T^ x [0,T]. Also, Lemmas 4 and 5 imply 
that u is globally Lipschitz on T^ x [0,T]. 

To show that u solves (locally in time) the problem and also to prove a 
uniqueness result, we need the following: 

Lemma 6 Let a : T^ x [0, T] ^ M he Lipschitz continuous. Then, the problem, 

{ vt — lyAv + (a • \/)v = f in P 

^ ^ (23.5.2) 
;̂ = no on T^ X {0}. 

has a unique solution v G C'^'^(T^ x [0,T]). Furthermore, if v is a solution of 
problem (23.5.2) then (in the nonstandard universe) v satisfies: for all (x,t) G 
Vd, there exists an e ^ 0 such that 

v{x, t-\-k) = ^{v, a)(x, t) + Xh^f{x, t) + eXh^. 

Proof. Consider problem (23.5.2). Since a is given, the vectorial differential 
equation Vf — vAv + (a • V)'̂ ; = / is just an uncoupled system of n scalar 
second order parabolic equations. Since a is a Lipschitz continuous function 
on T^ X [0,T] and no G C^'^(T^), by the theory of parabolic equations (e.g. 
Friedman, [8]), the problem has a unique (strong) solution, v G C'2,i(̂ qpn ^ 
[0, T]). By the regularity of n: 

f{x^t) = vt{x,t) — iyAv{x,t) + (a(x,t) • V)i;(x,t) ^ Pdv{x^t) 

v{x,t-\-k) -v{x,t) . / x̂ , v ^ . .v{x-\-hei.t)-v{x - hei.t) 
= ^ TyAdv{x,t) + 2_^ai{x,t) — 

i=l 

= ——r v(x, t -\- k) — (1 — 2niyX)v(x^ t) — 

- A ^ ( (v- -ai{x, t) \ v{x + hci, t) + f z/ + - a i (x , t) \ v{x - hci, t) \ J 
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Consequently, for each (x,t) G V^, there exists an s ^ 0 such that: 

v{x, t + fc) = (l - 2niyX) v{x, t) + 

•%i V - -ai{x, t) \ v{x + hei, t) + iiy-\- -ai{x, t) ) v{x - hci, t) | + 

+ \h^f{x,t)+eXh^ 

= ^{v,a){x,t) + Xh^f{x,t) + eXh^. D 

Here is our existence lemma: 

Lemma 7 Let u and T he as given by equation (23.5.1). Then u G C(^'-^^(T^ x 
[0,T]) and u is a (strong) solution of the Burgers equation problem (23.1.4)-

Proof. Consider the problem: 

{ vt — jyAv + {u • S/)v — f in P 

v = uo on T^ X {0}. 
By Lemma 6 the problem has a unique (strong) solution, u G C'^'^(T^ x [0, T]) 
and, in the nonstandard universe, for all (x,t) G V^^ there exists an £ ^ 0 
such that: 

v{x, t-\-k) = $(v, a)(x, t) + Xh^f{x, t) + eXh^. 

Now, we show that u = v. 
Let r G M^ be arbitrary. We will show by induction o n t = 0,A:,2/c,...,T 

that for all r = 0, fc, 2fc,.. . , t and x G T ^ : 

|C/ (x , t ) -* t ; (x , t ) | < r t . 

This implies that, for all (x,t) G r>^: 

i^(st X, st t) = st t/(x, t) = st *'i;(x, t) = i;(st x, st t), 

as wanted. 
(As usual, from this point on we omit stars on *^'). For t = 0 the statement 

follows from the initial conditions. Now, assuming the statement holds true 
for some t = jk, j G *N: 

U{x, t + k)- v{x, t + k) = $([/ , U){x, t) - ^{v, u){x, t) - eXh^ 

= ^{U - V, u){x, t) - ek-\-

Xh " 
^^(ui{x,t) - Ui{x,t)] (v{x + hei.t) - v{x - hei,t)\. 

2 
2 = 1 
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Since v{'^t) is a C^ function on the compact set T^, there exists a finite C so 
that \v{x-\-hei^t) — v{x — hei^t)\ < 2hC. Also, by the definition and continuity 
of u^ Ui{x^t) — Ui{x,t) = 5^0. By the induction hypothesis and Lemma 3, 
\^{U - v,u){x,t)\ <rt. Therefore: 

U{x,t-\-k) -v{x,t-\-k) <rt + ek^ — n5 2hC 

= rt-\-k{£-\-nC6) 

<r{t-\-k). D 

As consequence of the above Lemma, we get: 

Theorem 1 Let f be locally Lipschitz continuous on T^ x [0, oo) and UQ G 
C2'i(T^). Let 

L = max (^ho]L-(TS,), - ( [ / ] L - ( ^ , ) ) ' ^ ' ' [ K ] ] L - ( T ^ ) , - ( [ [ / ] ] L - ( ^ , ) ) ' ^ ' 

Here, [[UOWLOO^JU ^ is an upper-bound for the Lipschitz constant of the function 

Auo{x) + {UQ ' V)uo{x) + / (x , 0). Then, for any T < ^^, the problem 

{ ut = v/S.u — (u ' V)u + / in P 

u = uo on T^ X {0}. 

has a strong solution, u G C^'i(T^ x [0,T]). 

The uniqueness theorem follows from: 

Lemma 8 Let u and v be solutions of the Burgers equation problem (23.1.4) 
on T^ X [0,T]; for some T > 0. Let Ly = HL°°(T^X[O,T])- Then: 

u{x,t) =v{x,t) f o r a f i x G T ' ' , 0 < t < min i — — , T 
[ 2nLy 

Proof. Using the nonstandard statement of Lemma 6, (note that u and v are 
given functions), we conclude that for all (x,t) G V^^ there exist infinitesimal 
Si and 62 such that: 

u{x, t-\-k) = $(n, u){x, t) + \h^f{x, t) + 5i\h^ 

and 
v{x, t + k) = ̂ {v, v){x, t) + \h^f{x, t) + 52\h^. 



364 23. Burgers equation via discretizations 

Let 6 be the largest ik, i G *N, such that ik < mini 2 ^ ^ ^ f - Let r G IR+ 
be arbitrary. We wih show by induction on t = 0, A:, 2/c, . . . , 0 that for ah 
r = 0,fc,2fc, . . . , t and X G T ^ : 

|*iz(x,t) - * i ; ( x , t ) | < rt. 

This imphes that, for all (x,t) G V^: 

u{st X, st t) = i;(st X, st t), 

as wanted. 
(From hereon, we omit stars on *î  and *v). For t = 0 the statement follows 

from the initial conditions. Now, assuming the statement holds true for some 
t = jk, j G *N: 

u{x,t-\- k) - v{x,t-\-k) = ^{u,u){x,t) - ^{v,v){x,t) + (^i - S2)Xh^ 

Let £ = 5i — 52 ^ 0. Using Lemma 2: 

u{x,t-\-k) — v{x,t-\-k) = ^{u — v,v){x^t)-\-ek 

Xh 

T 
2 = 1 

n 
y ^ (vi{x,t) - Ui{x,t)] (v{x + hei.t) - v{x - hei,t)j 

Note that \v{x-\-hei,t) —v{x — hei,t)\ < 2hLy. Using the induction hypothesis 
\ui{x,t) — Vi{xjt)\ < rt. Also, by Lemma 3 and the induction hypothesis, 
\^{u — v,v){x,t)\ <rt. Therefore: 

\u{x^t-\-k) — v{x^t-\-k)\ < rt-\-ek-\ nrt2hLy 

= rt -\- kye -\- rntLy j . 

Since t < O < ^iHT^ ^^ follows that: 

\u{x,t-\-k) -v{x,t-\-k)\ < r{t-\-k). D 

Theorem 2 Let u and v be solutions of our Model Problem (23.1.4) on T^ x 
[0, T], for some T > 0. Then u = v. 

Proof. Assume there exists t G [0,T] such that, for some x G T^, u{x^t) ^ 
v{x, t); let 6 be the infimum of such t. 

Note that: 
u(x, 9) = v{x, 6), for all x G T^. (23.5.3) 
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li 6 = 0 then equality (23.5.3) follows from the initial conditions; otherwise, it 
follows from continuity of u and v. Consider the problem: 

{ Wf = jyAw — (w ' V)w -\- q in X> 

^ ^ (23.5.4) 
w = u{x,9) on T^ X {0}. 

where g{x,t) = /(x,6> + t), for all (x,t) G T^ x [0,T - 6>]. Consider wi,W2 : 
T^ X [0,r-6>] ^ R given by wi{x,t) =n(x,6> + t) and wi{x,t) =v{x,e + t). 
But wi and tt;2 are solutions of problem (23.5.4) such that, for arbitrarily 
small t > 0: 

wi{x^t) ^ W2{x^t) for some x G T^. 
This contradicts Lemma 8. D 
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Part V 

Infinitesimals and education 



24 
Calculus with infinitesimals 

Keith D. Stroyan 

24.1 Intui t ive proofs wi th ' 'small" quant i t ies 

Abraham Robinson discovered a rigorous approach to calculus with in
finitesimals in 1960 and published it in [9]. This solved a 300 year old problem 
dating to Leibniz and Newton. Extending the ordered field of (Dedekind) 
"real" numbers to include infinitesimals is not difficult algebraically, but calcu
lus depends on approximations with transcendental functions. Robinson used 
mathematical logic to show how to extend all real functions in a way that 
preserves their properties in a precise sense. These properties can be used 
to develop calculus with infinitesimals. Infinitesimal numbers have always fit 
basic intuitive approximation when certain quantities are "small enough," but 
Leibniz, Euler, and many others could not make the approach free of contra
diction. Section 1 of this article uses some intuitive approximations to derive 
a few fundamental results of analysis. We use approximate equality, x ~ 7/, 
only in an intuitive sense that "x is sufficiently close to ?/". 

H. Jerome Keisler developed simpler approaches to Robinson's logic and 
began using infinitesimals in beginning U.S. calculus courses in 1969. The 
experimental and first edition of his book were used widely in the 1970's. Sec
tion 2 of this article completes the intuitive proofs of Section 1 using Keisler's 
approach to infinitesimals from [6]. 

24 .1 .1 C o n t i n u i t y a n d e x t r e m e va lues 

Theorem 1 The Extreme Value Theorem 

Suppose a function f[x] is continuous on a compact interval [a, 6]. Then 
f[x] attains both a maximum and minimum, that is, there are points XMAX ^^^ 
Xmin ^^ [<̂ , b], SO that for every other x in [a, b], f [xmin] ^ f [x] < f [^MAX] • 

University of Iowa, USA. 
ke i th - s t royanOuiowa .edu 
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Formulating the meaning of "continuous" is a large part of making this 
result precise. We will take the intuitive definition that f[x] is continuous 
means that if an input value xi is close to another, X2, then the output values 
are close. We summarize this as: f[x] is continuous if and only if a < xi ~ 
X2<b=^ f[xi] ^ f[x2]. 

Given this property of /[x], if we partition [a, b] into tiny increments, 

l(b-a) 2 ( 6 - a ) k(b - a) 
<b 

the maximum of the function on the finite partition occurs at one (or more) 

This means that for any other partition point of the points XM = (i-\—H 

xi a + 
3{h-a) 

H , f[xM] > f[xi] 
Any point a < x < 6 is within -^ of a partition point xi = a-\- fj -, so if 

H is very large, x ^ xi and 

f[xM] > f[xi] « f[x] 

and we have found the approximate maximum. 
It is not hard to make this idea into a sequential argument where XJ^^H] 

depends on iJ, but there is quite some trouble to make the sequence xj^^^] 
converge (using some form of compactness of [a, 6].) Robinson's theory simply 
shows that the hyperreal XM chosen when 1/H is infinitesimal, is infinitely 
near an ordinary real number where the maximum occurs. We complete this 
proof as a simple example of Keisler's Axioms in Section 2. 

24.1.2 Microscopic tangency in one variable 

In beginning calculus you learned that the derivative measures the slope of 
the line tangent to a curve ^ = /[x] at a particular point, (x, /[x]). We begin 
by setting up convenient "local variables" to use to discuss this problem. If 
we fix a particular (x, /[x]) in the x-y-coordinates, we can define new parallel 
coordinates [dx^dy) through this point. The (dx, d?/)-origin is the point of 
tangency to the curve. 

dy = m dx 

Figure 24.1.1: Microscopic Tangency 
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A line in the local coordinates through the local origin has equation dy = 
mdx for some slope m. Of course we seek the proper value of m to make 
dy = mdx tangent to y = f[x]. 

You probably learned the derivative from the approximation 

lim 
Ax—^0 

/[x + Ax] - / [x ] 
Ax fH 

If we write the error in this limit explicitly, the approximation can be expressed 
as n^+^^^^-fi^^ = f[x] + £ or f[x + Ax] - f[x] = f[x] • Ax + e • Ax. Intuitively 
we say f[x] is smooth if there is a function f'[x] that makes the error small, 
6 ~ 0, in the formula 

f[x + Sx] - f[x] = f[x] 'S^e-Sx (24.1.1) 

when the change in input is small, 5x^0. The main point of this article is 
to show that requiring e to be infinitesimal whenever 5x is infinitesimal and 
X is near standard gives an intuitive and simple direct meaning to C^ smooth. 
Requiring only that £ tend to zero only for fixed real x, or pointwise, is not 
sufiicient to capture the intuitive approximations of our proofs. 

The nonlinear change on the left side of (24.1.1) equals a linear change, m-
(5x, with m = / ' [x], plus a term that is small compared with the input change. 

The error e has a direct graphical interpretation as the error measured 
above x-\-6x after magnification by l/6x. This magnification makes the small 
change 6x appear unit size and the term s • 5x measures e after magnification. 

xx+(5x 

Figure 24.1.2: Magnified Error 

When we focus a powerful microscope at the point (x, f[x]) we only see the 
linear curve dy = m • dx, because 6 ~ 0 is smaller than the thickness of the 
line. The figure below shows a small box magnified on the right. 
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Figure 24.1.3: A Magnified Tangent 

24 .1 .3 T h e F u n d a m e n t a l T h e o r e m of Integral Ca lcu lus 

Now we use the intuitive microscope approximation (24.1.1) to prove: 

Theorem 2 The Fundamental Theorem of Integral Calculus: Part I 
Suppose we want to find J f[x] dx. If we can find another function F[x\ 

so that the derivative satisfies F'[x] = f[x] for every x, a < x <h, then 

rb 
f[x] dx = F[b] - F[a] I 

J a The definition of the integral we use is the real number approximated by a 
sum of small slices, 

pl) b—6x 

/ f[x] dx ^ y . / W * ^^? when Sx ^ 0 
Ja ^_^ 

x=a 
s tep 5a; 

Figure 24:.1 A: Sum Approximations 

24 .1 .4 Te le scop ing s u m s a n d der ivat ives 

We know that if F[x] has derivative F^[x] = /[x], the differential approxi
mation above says, 

F[x + 5x] - F[x\ = f[x] 'Sx^e'5x 

so we can sum both sides 
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b—Sx b-5 b—5x 

Y, F[x + Sx] - F[x] = Y, / N •^^+ XI ̂ '^^ 
x=a 

s tep 6x 
x=a 

step 6x 
x=a 

step 6x 

The telescoping sum satisfies, 

b—Sx 

J2 F[x + ̂ x] - F[x] = F[b'] - F[a\ 

x=a 
s tep Sx 

SO we obtain the approximation, 

/.^ b—Sx 

/

f) b—Sx b—Sx 

fix] dx^Yl /N • ^̂  = [̂̂ '] - ^H - E ^ • -̂ ^ x=a 
step 5x 

x=a 
step Sx 

This gives, 

J2f[x]-5x-(F[b']-F[a]) 
x=a 

s tep 5a3 

< 

< 

b—5x 

/] e • 5x 
x=a 

step 5cc 

6—(5x 

x=a 
step 5cc 

fe—5x 

max[|£:|] • Y^ fe = max[|£|] • {b' — a) 

x=a 
s tep Sx 

or J^ /[x] dx ^ ^ ^^^ /[x] • Sx ^ F[6'] — F[a]. Since F[x] is continuous, 
step Sx 

F[b'] « F[6], so J^ fix] dx = F[6] - F[a]. 
We need to know that ah the epsilons above are small when the step size 

is small, e ^ 0, when 5x^0 for all x = a,a -\- Sx, a + 2(5, • • •. This is a 
uniform condition that has a simple appearance in Robinson's theory. There is 
something to explain here because the theorem stated above is false if we take 
the usual pointwise notion of derivative and the Riemann integral. (There are 
pointwise differentiable functions whose derivative is not Riemann integrable. 
See [5] Example 35, Chapter 8, p. 107 ff.) 

The condition needed to make this proof complete is natural geometrically 
and plays a role in the intuitive proof of the inverse function theorem in the 
next example. 

24.1.5 Continuity of the derivative 

We show now that the differential approximation 

f[x + Sx] - f[x] = f[x] 'S^e-Sx 
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forces the derivative function f'[x] to be continuous, 

Let xi ~ X2, but xi 7̂  X2. Use the differential approximation with x = xi 
and Sx = X2 — xi and also with x = X2 and Sx = xi—X2^ geometrically looking 
at the tangent approximation from both endpoints. 

f[x2] - f[xi] = f[xi] • {X2 - Xi) + €i • {X2 - Xi) 

f[xi] - f[x2] = f[x2] • {Xi - X2) + 62 • {Xi - X2) 

Adding these equations, we obtain 

0 = ((/'[a;i] - f'[x2]) + (£1 - £2)) • {X2 - xi) 

Dividing by the nonzero term (x2 — xi) and adding /'[X2] to both sides, we 
obtain, f^[x2] = f^[xi]-\-{ei—€2) or f^[x2] ~ / ' [ ^ i ] , since the difference between 
two small errors is small. 

This fact can be used to prove: 

Theorem 3 The Inverse Function Theorem 
If f^[xo] 7̂  0 then f[x] has an inverse function in a small neighborhood of 

XQ, that is, if y ^ yo = /[^o]; then there is a unique x ^ XQ SO that y = f[x]. 

We saw above that the differential approximation makes a microscopic 
view of the graph look linear, li y ^ yi the linear equation dy = m • dx with 
m = f^[xi] can be inverted to find a first approximation to the inverse, 

y-yo = m- {xi- XQ) 

xi =xo + ^{y-yo) 

X2 X i 

Figure 24.1.5: Approximate Inverse 
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We test to see ii f[xi] = y. If not, examine the graph microscopically at 
i^i^yi) = (^1? /[^i])- Since the graph appears the same as its tangent to within 
£ and since m = f'[xi] ^ /'[a:2], the local coordinates at (xi ,yi) look like a 
line of slope m. Solving for the linear x-value which gives output y^ we get 

y-yi=m-{x2 - xi) 
X2 = xi + ^{y - f[xi]) 

Continue in this way generating a sequence of approximations, xi = XQ -\-
^{y-yo), ^n+i = G[xn], where the recursion function is G[^] = x-\-^{y-f[^]). 
The distance between successive approximations is 

\x2 - xi\ = \G[xi] - G[xo]\ < -'\xi- xo\ 

\X3 - X2\ = \G[X2] - G[xi]\ < - ' \X2 - Xi\ < - ' - ' \xi - Xo\ 

by the Differential Approximation for G [x]. Notice that G'[^] = 1 — f^[^]/m ~ 
0, for ^ ^ xo, so |G'[^]| < 1/2 in particular, and 

| x 2 - x i | = \G[xi] - G[xo]\ < - ' \xi - xo\ 

\X3 - X2\ = \G[X2] - G[xi]\ < - ' \X2 - Xi\ < -^ ' \xi - XQ | 

1 , 
F n + l - ^ n | < — -IXi-Xol 

\Xn-\-l - Xo\ < \Xn-\-l - Xn\ + |^n " ^ n - l | H h |xi - Xo| 

A geometric series estimate shows that the series converges, Xn ^ x ^ XQ 
and f[x] = y. 

To complete this proof we need to show that G[^] is a contraction on 
some noninfinitesimal interval. The precise definition of the derivative matters 
because the result is false if f'[x] is defined by a pointwise limit. The function 
f[x] = X -\- x'^ sin[7r/x] with /[O] = 0 has pointwise derivative 1 at zero, but is 
not increasing in any neighborhood of zero. 

24.1 .6 Trig, po lar coord ina te s , a n d Hold i t ch ' s formula 

Calculus depends on small approximations with transcendental functions 
like sine, cosine, and the natural logarithm. Following are some intuitive ap
proximations with non-algebraic functions. 
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Sine and cosine in radian measure give the x and y location of a point 
on the unit circle measured a distance 9 along the circle. Now make a small 
change in the angle and magnify by 1/56 to make the change appear unit size. 

sin[e+(5e 

Figure 24.1.6: Sine increments 

Since magnification does not change lines, the radial segments from the origin 
to the tiny increment of the circle meet the circle at right angles and appear 
under magnification to be parallel lines. Smoothness of the circle means that 
under powerful magnification, the circular increment appears to be a line. 
The difference in values of the sine is the long vertical leg of the increment 
"triangle" above on the right. The apparent hypotenuse with length 56 is the 
circular increment. 

Since the radial lines meet the circle at right angles the large triangle on 
the unit circle at the left with long leg cos[6>] and hypotenuse 1 is similar to 
the increment triangle, giving 

cos[6] ^ (5 sin 

1 ^ ~ 5 ^ 

We write approximate similarity because the increment "triangle" actually 
has one circular side that is ^-straight. In any case, this is a convincing 
argument that ^^[6] = cos[0]. A similar geometric argument on the increment 
triangle shows that ^[6] = -sin[(9]. 

24.1.7 The polar area differential 

The derivation of sine and cosine is related to the area differential in polar 
coordinates. If we take an angle increment of 56 and magnify a view of the 
circular arc on a circle of radius r, the length of the circular increment \^ r -56, 
by similarity. 
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Figure 24.1.7: Polar increment 

A magnified view of circles of radii r and r -\-5r between the rays at angles 
0 and 6-\-56 appears to be a rectangle with sides of lengths 5r and r-dO. If this 
were a true rectangle, its area would he r-S0 -Sr , but it is only an approximate 
rectangle. Technically, we can show that the area of this region is r - 66 - Sr 
plus a term that is small compared with this infinitesimal, 

5A = rSeSr + e • Se6r, e ^ 0. 

Keisler's Infinite Sum Theorem [6] assures us that we can neglect this size 
error and integrate with respect to rdOdr. 

Theorem 4 Holditch's formula 
The area swept out by a tangent of length R as it traverses an arbitrary 

convex curve in the plane is A = iiB?. 

Figure 24.1.8: yO-(y^-coordinates 

We can see this interesting result by using a variation of polar coordinates 
and the infinitesimal polar area increment above. Since the curve is convex, 
each tangent meets the curve at a unique angle, Lp, and each point in the region 
swept out by the tangents is a distance p along that tangent. 
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We look at an infinitesimal increment of the region in yO-(/:'-coordinates, first 
holding the (^-base point on the curve and changing Lp. Microscopically this 
produces an increment like the polar increment: 

Figure 24.1.9: p-only increment 

Next, looking at the base point of the tangent on the curve, moving to the 
correct Lp + (̂ (ŷ -base point, moves along the curve. Microscopically this looks 
like translation along the tangent line (by smoothness) as shown on the left. 
Including this near-translation in the infinitesimal area increment produces a 
parallelogram: 

Figure 24.1.10: ^ and p increment 

of height p • 5(f and base 5p, or area SA = p - S(f - 5p: 

{p,ip+6w 

{p + 6p,(p) 

Figure 24.1.11: da = p - 6(p - Sp 
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Integrating gives the total area of the region 

rR r^TT 

If 
Jo Jo 

pdifdp = TTR^. 

24.1.8 Leibniz's formula for radius of curvature 

The radius r of a circle drawn through three infinitely nearby points on a 
curve in the (x, y)-plane satisfies 

1 d f dy 

r dx \ds 

where s denotes the arclength. 

For example, if y = /[x], ^o ds = y l + (/'[^]) d^i then 

^ _ d I fix] \ _ f"[x] 
r ax \ . / i + (_^,[^]^2y {l + nxff^ 

If the curve is given parametrically, y = y[t] and x = x[t], so ds 

^Jx'[tf ^y'[tfdt, then 

1 _ d(f^ _y'[t]x"[t]-x'[t\y"[t] 
d^ (^/[t]2+^/[t]2)3/2 

24 .1 .9 C h a n g e s 

Consider three points on a curve C with equal distances As between the 
points. Let aj and ajj denote the angles between the horizontal and the 
segments connecting the points as shown. We have the relation between the 
changes in y and a: 

sin[a] = ^ (24.1.2) 

The difference between these angles, Ace, is shown near p / / / (figure 24.1.12). 
The angle between the perpendicular bisectors of the connecting segments 

is also Aa, because they meet the connecting segments at right angles. 
These bisectors meet at the center of a circle through the three points on 

the curve whose radius we denote r. The small triangle with hypotenuse r gives 

. \Aa] As/2 .^. -. .X 
sin = ^— (24.1.3) 
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As/2 

Figure 24.1.12: Changes in s and a 

24.1.10 Small changes 

Now we apply these relations when the distance between the successive 
points is an infinitesimal Ss. The change 

—(^sin[a] = —(̂  I -— ) = sin[a] — smla — 5a] = cos[a] • 5a -\-19 - 5a^ (24.1.4) 
\5sJ 

with '?? ̂  0, by smoothness of sine (see above). Smoothness of sine also gives, 

5a 
sm 

5a 

T 
+ T]' Ja , with ?7 ^ 0. 

Combining this with formula (24.1.3) for the infinitesimal case (assuming r 7̂  
0), we get 

5s 
5a = \- L' 5a, with ^ ̂  0. 

r 
Now substitute this in (24.1.4) to obtain 

5s 
cos[a] h C * <̂̂5 with C ~ 0-

By trigonometry, cos [a] = 5x/5s, so 

H^) 1 5s 1 
5x r 5x r^ 
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as long as |^ is not infinitely large. 
Keisler's Function Extension Axiom allows us to apply formulas (24.1.3) 

and (24.1.4) when the change is infinitesimal, as we shall see. We still have 
a gap to fill in order to know that we may replace infinitesimal differences 
with differentials (or derivatives), especially because we have a difference of a 
quotient of differences. 

First differences and derivatives have a fairly simple rigorous version in 
Robinson's theory, just using the differential approximation (24.1.1). This 
can be used to derive many classical differential equations like the tractrix, 
catenary, and isochrone, see: Chapter 5, Differential Equations from Increment 
Geometry in [11]. 

Second differences and second derivatives have a complicated history. 
See [2]. This is a very interesting paper that begins with a course in calculus 
as Leibniz might have presented it. 

24.1.11 The natural exponential 

The natural exponential function satisfies 

^[0] = 1 

dy_ ^ 

dx 

We can use (24.1.1) to find an approximate solution, 

y[Sx]=y[0]+y'[0]-S = l^Sx 

Recursively, 

y[25x] = y[6x] + y'[5x] • Sx = y[5] • (1 + Sx) = (1 + Sxf 

y[35x] = y[25x] + y'[25x] • 6x = y[2Sx] • (1 + 5x) = (1 + 5xf 

y[x] = (1 + fe)''/^'^, for X = 0,5x, 2fe, 3fe, • • • 

This is the product expansion e ^ {1 -\- S) ''̂  ^, for fe ^ 0. 
No introduction to calculus is complete without mention of this sort of "in

finite algebra" as championed by Euler as in [3]. A wonderful modern interpre
tation of these sorts of computations is in [7]. W. A. J. Luxemburg's reformula
tion of the proof of one of Euler's central formulas sin[z] = z f l ^ i (^ ~ ( ^ ) ^) 
appears in our monograph, [13]. 
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24.1.12 Concerning the history of the calculus 

Chapter X of Robinson's monograph [10] begins: 
The history of a subject is usually written in the light of later developments. 

For over half a century now, accounts of the history of the Differential and In
tegral Calculus have been based on the belief that even though the idea of a 
number system containing infinitely small and infinitely large elements might 
be consistent, it is useless for the development of Mathematical Analysis. In 
consequence, there is in the writings of this period a noticeable contrast between 
the severity with which the ideas of Leibniz and his successors are treated and 
the leniency accorded to the lapses of the early proponents of the doctrine of lim
its. We do not propose here to subject any of these works to a detailed criticism. 
However, it will serve as a starting point for our discussion to try to give a 
fair summary of the contemporary impression of the history of the Calculus... 

I recommend that you read Robinson's Chapter X. I have often wondered if 
mathematicians in the time of Weierstrass said things like, 'Karl's epsilon-delta 
stuff isn't very interesting. All he does is re-prove old formulas of Euler.' 

I have a non-standard interest in the history of infinitesimal calculus. It 
really is not historical. Some of the old derivations like Bernoulli's derivation 
of Leibniz' formula for the radius of curvature seem to me to have a compelling 
clarity. Robinson's theory of infinitesimals offers me an opportunity to see what 
is needed to complete these arguments with a contemporary standard of rigor. 

Working on such problems has led me to believe that the best theory to use 
to underly calculus when we present it to beginners is one based on the kind of 
derivatives described in Section 2 and not the pointwise approach that is the 
current custom in the U.S. I believe we want a theory that supports intuitive 
reasoning like the examples above and pointwise defined derivatives do not. 

24.2 Keisler's axioms 

The following presentation of Keisler's foundations for Robinson's Theory 
of Infinitesimals is explained in more detail in either of the (free .pdf) files [12] 
and the Epilog to Keisler's text [6]. 

24.2.1 Small, medium, and large hyperreal numbers 

A field of numbers is a system that satisfies the associative, commutative 
and distributive laws and has additive inverses and multiplicative inverses for 
nonzero elements. (See the above references for details.) Essentially this means 
the laws of high school algebra apply. The binomial expansion that follows is 
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a consequence of the field axioms. Hence this formula holds for any pair of 
numbers x and Ax in a field. 

{x + Axf = x^ -\- Sx'^Ax + ((3x + Ax) • Ax) • Ax 

To compare sizes of numbers we need an ordering. An ordered field has a 
transitive order that is compatible with the field operations in the sense that 
if a < 6, then a-\-c < b-\-c and if 0 < a and 0 < 6, then 0 < a-b. (The complex 
numbers can't be ordered compatibly because i^ = —1.) 

An infinitesimal is a number satisfying \S\ < 1/m for any ordinary nat
ural counting number, m = 1,2,3, •••. Archimedes' Axiom is precisely the 
statement that the (Dedekind) "real" numbers have no positive infinitesimals. 
(We take 0 as infinitesimal.) Keisler's Algebra Axiom is the following: 

24 .2 .2 Keis ler 's a lgebra a x i o m 

Axiom 5 The hyperreal numbers are an ordered field extension of the real 
numbers. In particular, there is a positive hyperreal infinitesimal, S. 

Any ordered field extending the reals has an infinitesimal, but we just 
include this fact in the axiom. There are many different infinitesimals. For 
example, the law a<b^a-\-c<b-\-c applied to a = 0 and b = c = 5 
says S < 2(5. If A; is a natural number, kS < ^, for any natural m, because 
S < -j^ when 5 is infinitesimal. All the ordinary integer multiples of 6 are 
distinct infinitesimals, 

'" <-3S <-25 <-S <0<S <2S <3S <" 

Magnification at center c with power 1/6 is simply the transformation x -^ 
(x — c)/(5, so by laws of algebra, integer multiples of 6 end up the same integers 
apart after magnification by 1/S centered at zero. 

- 3 - 2 - 1 0 1 2 3 

Figure 24.2.1: Magnification by 4 

Similar reasoning lets us place | , | , • • • on a magnified line at one half the 
distance to 6, one third the distance, etc. 
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~n n r 
3 2 

Figure 24.2.2: Fractions of 5 

Where should we place the numbers 5^, 5^- - -1 On a scale of 5, they are 
infinitely near zero, ^((5^ — 0) = (5 ~ 0. Magnification by 1/5^ reveals (J'̂ , 
but moves (5 infinitely far to the right, ^ ( 5 — 0) = ^ > m for all natural 
m = 1, 2,3, • • • 

"H r 
0 6^ 6^ 

Fieure 24.2.3: 5^ on a S^ scale 

Laws of algebra dictate many "orders of infinitesimal" such as 0 < • • • < 
(5̂  < 5^ < (5. The laws of algebra also show that near every real number there 
are many hyper reals, say near 7r = 3.14159---

• • • < 7 r - 3 ( 5 < 7 r - 2 5 < 7 r - ( 5 < 7 r < 7 r + (5<7r + 2(5<7r + 3(5<---

A hyperreal number x is called limited (or "finite in magnitude") if there is a 
natural number m so that \x\ < m. If there is no natural bound for a hyperreal 
number it is called unlimited (or "infinite"). Infinitesimal numbers are limited, 
being bounded by 1. 

Theorem 6 Standard Parts of Limited Hyperreal Numbers 
Every limited hyperreal number x differs from some real number by an in

finitesimal, that is, there is a real r so that x ~ r. This number is called the 
^^standard parf^ of x, r = st[x]. 

Proof. Define a Dedekind cut in the real numbers hj A = {s : s < x} and 
B = {s : X < 5}. st[x] is the real number defined by this cut. D 

The fancy way to state the next theorem is to say the limited numbers are 
an ordered ring with the infinitesimals as a maximal ideal. This amounts to 
simple rules like "infsml x limited = infsml." 

Theorem 7 Computation rules for small, medium, and large 

(a) If p and q are limited, so are p -\- q and p • q 
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(&) If s and 6 are infinitesimal, so is e -\- 5. 

(c) If S ^ 0 and q is limited, then q - 5 ^ 0. 

(d) 1/0 is still undefined and 1/x is unlimited only when x ^ 0. 

Proof. These rules are easy to prove as we illustrate with (c). If q is limited, 
there is a natural number with \q\ < k. the condition 5 ^ 0 means \5\ < ^7^, 
so |g • 5| < ^ proving that g • (5 ^ 0. D 

24 .2 .3 T h e uni form der ivat ive of x^ 

Let's apply these rules to show that f[x\ — x^ satisfies the differential 
approximation with f'[x\ = 3x^ when x is limited. We know by laws of alge
bra that 

{x + 5x) — x^ = 3x^6x + e • fe, with s = ((3x + 5x) • 5x) 

If X is limited and Sx ^ 0^ (a) shows that 3x is limited and that 3x + 6x is also 
limited. Condition (c) then shows that e = ((3x + Sx) • Sx) ^ 0 proving that 
for all limited x 

f[x + Sx] - f[x] = f[x] 'Sx + e-Sx 

with e ^ 0 whenever 5x^0. 

Below we will see that this computation is logically equivalent to the state

ment that lim ——f ^ ~^ = 3x^, uniformly on compact sets of the real line. 
Ax—^0 ^^ 

It is really no surprise that we can differentiate algebraic functions using al
gebraic properties of numbers. You should try this yourself with f[x] = x^, 
f[x] = 1/x, f[x] = ^/x^ etc. This does not solve the problem of finding sound 
foundations for calculus using infinitesimals because we need to treat transcen
dental functions like sine, cosine, log. 

24 .2 .4 Keis ler 's funct ion e x t e n s i o n a x i o m 

Keisler's Function Extension Axiom says that all real functions have exten
sions to the hyperreal numbers and these "natural" extensions obey the same 
identities and inequalities as the original function. Some familiar identities are 

sin [a + /?] = sin [a] cos[/3] + cos [a] sm[/3] 

log[x'y] =log[x] -\-log[y] 
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The log identity only holds when x and y are positive. Keisler's Function 
Extension Axiom is formulated so that we can apply it to the Log identity in 
the form of the implication 

(x > 0 and y > 0) ^ log[x] and log[^] are defined 

and 

log[x • y] = log[x] + \og[y] 

The Function Extension Axiom guarantees that the natural extension of 
log[-] is defined for all positive hyperreals and its identities hold for hyperreal 
numbers satisfying x > 0 and y > 0. We can state the addition formula for 
sine as the implication 

{a = a and j3 = (3) ̂  sin[ce], sin[/?], sin[a + /?], cos[a], cos[/3] are defined 

and 

sin [a -\- (3]= sin [a] cos[/3] + cos [a] sin[/3] 

The addition formula is always true so we make the logical real statement 
(see 24.2.7 below) begin with {a = a and /? = /3). 

24.2.5 Logical real expressions 

Logical real expressions are built up from numbers and variables using 
functions. 

(a) A real number is a real expression. 

(b) A variable standing alone is a real expression. 

(c) If ei, 62, • • • , Cn are a real expressions and / [x i , X2, • • • , Xj^ is a real func
tion of n variables, then / [e i , 62, • • • , e^] is a real expression. 

24.2.6 Logical real formulas 

A logical real formula is one of the following: 

(i) An equation between real expressions, ii/\ — -c/2-

(ii) An inequality between real expressions, Ei < E2^ Ei < E2^ Ei > £^2, 
El > E2, or El 7̂  E2. 

(iii) A statement of the form "£^ is defined^^ or of the form "E' is undefined^ 
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24.2.7 Logical real statements 

Let S and T be finite sets of real formulas. A logical real statement is an 
implication of the form, 

The functional identities for sine and log given above are logical real statements. 

Axiom 8 Keisler^s Function Extension Axiom 
Every real function /[xi,X2, • • • , x^] has a ''naturar extension to the hy-

perreals such that every logical real statement that holds for all real numbers 
also holds for all hyperreal numbers when the real functions in the statement 
are replaced by their natural extensions. 

There are two general uses of the Function Extension Axiom that under
lie most of the theoretical problems in calculus. These involve extension of 
the discrete maximum and extension of finite summation. The proof of the 
Extreme Value Theorem below uses a hyperfinite maximum, while the proof 
of the Fundamental Theorem of Integral Calculus uses hyperfinite summation 
and a maximum. 

Theorem 9 Simple Equivalency of Limits and Infinitesimals 
Let f[x] be a real valued function defined for 0 < \x — a\ < A with A a fixed 

positive real number. Let b be a real number. Then the following are equivalent: 

(a) Whenever the hyperreal number x satisfies a y^ x ^ a, the natural exten
sion function satisfies 

fix] « b. 

(b) For every real accuracy tolerance 6 there is a sufficiently small positive 
real number^ such that if the real number x satisfies 0 < |x —a| < ^, then 

\f[x] -h\<9. 

Condition (b) is the familiar Weierstrass "epsilon-delta" condition (written 
with 0 and 7.) Notice that the condition f[x\ ^ b is NOT a logical real 
statement because the infinitesimal relation is NOT included in the formation 
rules for forming logical real statements. 
Proof. We show that (a) ^ (b) by proving that not (b) implies not (a), the 
contrapositive. Assume (b) fails. Then there is a real 0 > 0 such that for every 
real 7 > 0 there is a real x satisfying 0 < |x — a| < 7 and \f[x] — 6| > 0. Let 
^[7] = X be a real function that chooses such an x for a particular 7. Then 
we have the equivalence 

7 > 0 ^ (X[7] is defined, 0 < \X[-i] - a| < 7, \f[X[-f]] -b\>e) 
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By the Function Extension Axiom this equivalence holds for hyperreal numbers 
and the natural extensions of the real functions X[-] and /[•]. In particular, 
choose a positive infinitesimal 7 and apply the equivalence. We have 0 < 
|X[7] — a| < 7 and |/[-^[7]] — b\ > 6 and 0 is a positive real number. Hence, 
/[X[7]] is not infinitely close to 6, proving not (a) and completing the proof 
that (a) implies (b). 

Conversely, suppose that (b) holds. Then for every positive real 0, there 
is a positive real 7 such that 0 < |x — a| < 7 implies \f[x] — b\ < 0. By 
the Function Extension Axiom, this implication holds for hyperreal numbers. 
li ^ ^ a, then 0 < |^ — a| < 7 for every real 7, so |/[^] — b\ < 9 for every 
real positive 9. In other words, /[^] ^ 6, showing that (b) implies (a) and 
completing the proof of the theorem. D 

Other examples of uses of the Function Extension Axiom to complete the 
proofs of the basic results of Section 1 follow. 

24.2.8 Continuity and extreme values 

We follow the idea of the proof in Section 1 for a real function f[x] on a 
real interval [a, b]. Coding our proof in terms of real functions. 

There is a real function XM [h] so that for each natural number h the max
imum of the values f[x] for x = a + fcAx, fc = 1, 2, • • • , /i and Ax = (6 — a)/h 
occurs at XM[^]- We can express this in terms of real functions using a real 
function indicating whether a real number is a natural number, 

r M = / 0' if^T^ 1 ,2 ,3 , . . . 
^ ^ \ 1, i fx = 1 ,2 ,3 , . . . 

When the natural extension of the indicator function satisfies I[k] = 1, we say 
that fc is a hyperinteger. (Every limited hyperinteger is an ordinary positive 
integer. As you can show with these functions.) The maximum of the partition 
can be described by 

a < X < 6 & / h^ = 1 ^ fix] < f[xM[h]] 

We want to extend this function to unlimited "hypernatural" numbers. The 
greatest integer function Floor[x] satisfies, /[Floor[x]] = 1, 0 < x — Floor[x] < 
1. The unlimited number 1/5, for (5 ^ 0 gives an unlimited H = Floor[x] with 
I[H] = 1 and 

a<x<b k l ^x-a 

b — a 
fix] < f[xM[H]] 
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There is a greatest partition point of any number in [a, 6], P[h^x] = 
a + Floor [ / i f f f ] ^ with a < P[h,x] < b k / [ / ^^ [M-^] = i and 0 < 
X — P[h,x] < 1/h. When we take the unhmited hypernatural number H 
we have x — P[H^ x] < 1/H ~ 0 and P[H, x] a partition point in the sense that 
(a < X < 6 & I[H^^§^^] = 1), so we have 

f[P[H,x]]<f[xM[H]]. 

Let TM = st[xM[^]], the standard part. Since a < XM[H] < b^ a < TM ^ b. 
Continuity of the function in the sense xi ~ X2 ^ /[^i] ~ /[^2] gives 

f[x] « f[P[H,x]\ < f[xM[H]\ « f[rMl so f[x] < / K ] 

for any real x in [a, 6]. 
One important comment about the proof of the Extreme Value Theorem 

is this. The simple fact that the standard part of every hyperreal x satisfying 
a < X < 6 is in the original real interval [a, b\ is the form that topological com
pactness takes in Robinson's theory: A standard topological space is compact 
if and only if every point in its extension is near a standard point, that is, has 
a standard part and that standard part is in the original space. 

24 .2 .9 Microscop ic t a n g e n c y in o n e variable 

Suppose f[x\ and f'[x\ are real functions defined on the interval (a, 6), 
if we know that for all hyperreal numbers x with a < x < b and a ^ x ^ b^ 
f[x + 6x] — f[x] = f'[x] 'Sx + €'5x with s ^ 0 whenever fe ^ 0, then arguments 
like the proof of the simple equivalency of limits and infinitesimals above show 
that f'[x] is a uniform limit of the difference quotient functions on compact 
subintervals [a,/3] C (a^b). More generally, in [12] we show: 

Theorem 10 Uniform Differentiability 
Suppose f[x] and f'[x] are real functions defined on the open real interval 

(a^b). The following are equivalent definitions of ^^The function f[x] is smooth 
with continuous derivative f^[x] on {a^b)/^ 

(a) Whenever a hyperreal x satisfies a < x < b and x is not infinitely near a 
or b, then an infinitesimal increment of the extended dependent variable 
is approximately linear on a scale of the change, that is, whenever (5x ^ 0 

f[x + 5x] — f[x] = f'[x\ ' 5x + e ' 5x with s ^ 0. 

(6) For every compact subinterval [a,/3] C (a^b), the real limit 

f[x^Ax]-f[x] , ^ ^o 
lim = / \x\ uniformly for a < x < p. 

Ax—>0 A 
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(c) For every pair of hyperreal xi ^ X2 with a < si[xi] = c <h, j\-^'^^ J\-^^^ ~ 

/'[c]. 

{d) For every c in (a^b), the real double limit, lim J[X2\-^T[XI\ _ y-'ĵ ĵ̂  
Xi >C,X2 >C ^ 2 XI 

(e) The traditional pointwise defined derivative Dxf = ^lim ^ ̂ —^ •̂ '̂ 

continuous on (a^b). 

Continuity of the derivative follows rigorously from the argument of Sec
tion 1, approximating the increment f[xi]—f[x2] from both ends of the interval 
[xi,X2]. It certainly is geometrically natural to treat both endpoints equally, 
but this is a "locally uniform" approximation in real-only terms because the x 
values are hyperreal. 

In his General Investigations of Curved Surfaces (original in draft of 1825, 
published in Latin 1827, English translation by Morehead and Hiltebeitel, 
Princeton, NJ, 1902 and reprinted by the University of Michigan Library), 
Gauss begins as follows: 

A curved surface is said to possess continuous curvature at one of its points 
A, if the directions of all straight lines drawn from A to points of the surface at 
an infinitely small distance from A are deflected infinitely little from one and 
the same plane passing through A. This plane is said to touch the surface at 
the point A. 

In [4], Chapter A6, we show that this can be interpreted as C^-embedded 
if we apply the condition to all points in the natural extension of the surface. 

24 .2 .10 T h e F u n d a m e n t a l T h e o r e m of Integral Ca lcu lus 

The definite integral f^ f[x] dx is approximated in real terms by taking 
sums of slices of the form 

f[a\ ' Ax + f[a + Ax] • Ax + f[a + 2Ax] • Ax + • • • + f[b'] • Ax, 

where V = a + h • Ax and a + (/i + 1) • Ax > b 
Given a real function /[x] defined on [a, b\ we can define a new real function 

S[a, b, Ax] by 

S[a, b, Ax] = f[a] • Ax + f[a + Ax] • Ax + f[a + 2Ax] • Ax + • • • + f[b'] • Ax, 

where b' = a-\-h' Ax and a + (/i +1) • Ax > b. This function has the properties 
of summation such as 

\S[a,b,Ax\\ < | / [ a ] | . A x + | / [ a + A x ] | - A x + | / [ a + 2 A x ] | - A x + . . - + | / [ 6 ' ] | . A x 

|5'[a,6,Ax]| < Max[ | / [x] | : x = a, a + Ax, a + 2Ax, ••• , 6 T ( 6 - a ) 
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We can say we have a sum of infinitesimal slices when we apply this function 
to an infinitesimal 5x^ 

b-S 

/ f[x] dx^ ^ f[x] • Sx 

x=a 
step 5x 

or 

/ 

b 

f[x] dx = st 
b—6x 

Y^ /[x] • Sx 
x=a 

step Sx 

when 5x^0 

OflQcially, we code the various summations with the functions like 5[a, 6, Sx] 
(in order to remove the function f[x] as a variable.) We need to show that 
this is well-defined, that is, gives the same real standard part for every in
finitesimal, 5[a, 6, Sx] ^ 5[a, 6, L] and both are limited (so they have a common 
standard part.) 

When f[x] is continuous, we can show this "existence," but in the case of the 
Fundamental Theorem, if we know a real function F[x] with F^[x] = f[x] for 
all a < X < 6, the proof in Section 1 interpreted with the extended summation 
functions and extended maximum functions proves this "existence" at the same 
time it shows that the value is F[b] — F[a]. The only ingredient needed to make 
this work is that 

max[|£[x, Sx] | : x = a^a -\- Sx^ a + 2fe, • • • ,6^] = £[a + k Sx^ Sx] ^ 0 

This follows from the Uniform Differentiability Theorem above when we take 
one of the equivalent conditions as the definition of "F'[x] = f[x] for all 
a<x < hr 

Notice that £[x,Ax] is the real function ^—AX ~ f'[A-> ^^ we can 
define an infinite sum by extending the real function 

b—5x 

S'e[a, 6, A x ] = 2_\ \^\-Sx 

x=a 
step 6x 

24.2.11 The Local Inverse Function Theorem 

In [1] Michael Behrens noticed that the inverse function theorem is true 
for a function with a uniform derivative even just at one point. (It is NOT 
true for a pointwise derivative.) Specifically, condition (d) of the Uniform 
Differentiability Theorem makes the intuitive proof of Section 1 work. 
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Theorem 11 The Inverse Function Theorem 
If m is a nonzero real number and the real function f[x\ is defined for all 

X ^ xo, a real XQ with yo = f[xo] and f[x] satisfies 

f[^2] - f[xi] _ , ^ ^ 
^ m whenever xi ^ X2 ~ XQ 

X2 — Xi 

then f[x] has an inverse function in a small neighborhood O/XQ; that is, there is 
a real number A > 0 and a smooth real function g[y] defined when \y — yo\ < A 
with f[g[y]] = y and there is a real e > 0 such that if \x — XQI < e, then 
\f[x] -yo\ < A and g[f[x]] = x. 

Proof. This proof introduces a "permanence principle." When a logical real 
formula is true for all infinitesimals, it must remain true out to some positive 
real number. We know that the statement "|x — xo\ < 5 ^ f[x] is defined" is 
true whenever 5 ~ 0. Suppose that for every positive real number A there was 
a real point r with |r — xo| < A where f[r] was not defined. We could define 
a real function U[A] = r. Then the logical real statement 

A > 0 ^ (r = U[A], |r - xol < A, f[r] is undefined) 

is true. The Function Extension Axiom means it must also be true with A = 
(5 ^ 0, a contradiction, hence, there is a positive real A so that f[x] is defined 
whenever |x — xo| < A. 

We complete the proof of the Inverse Function Theorem by a permanence 
principle on the domain of y-values where we can invert f[x]. The intuitive 
proof of Section 1 shows that whenever \y — yo\ < 6 ^ 0^ we have |xi — xo| ~ 0, 
and for every natural n and fc, 

\xn - ^o| < 2|xi - xo|, \xn+k " ^/c| < 2 ^ 1̂ 1 ~ ^o| , /[^n] IS defined, 

\y- f[xn+i]\ < l\y- f[xn]\ 

Recall that we re-focus our infinitesimal microscope after each step in the 
recursion. This is where the uniform condition is used. 

Now by the permanence principle, there is a real A > 0 so that whenever 
1̂  ~ ^o| < ^^ the properties above hold, making the sequence Xn convergent. 
Define g[y] = Lim x^- • 

n >oo 

24 .2 .12 S e c o n d differences a n d h igher order s m o o t h n e s s 

In Section 1 we derived Leibniz' second derivative formula for the radius of 
curvature of a curve. We actually used infinitesimal second diflFerences, rather 
than second derivatives and a complete justification requires some more work. 
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One way to re-state the Uniform First Derivative Theorem above is: The 
curve y = f[x\ is smooth if and only if the hne through any two pairs of 
infinitely close points on the curve is near the same real line, 

Xi - X2 

A natural way to extend this is to ask: What is the parabola through three 
infinitely close points? Is the (standard part) of it independent of the choice 
of the triple? In [8], Vitor Neves and I show: 

T h e o r e m 12 Theorem on Higher Order Smoothness 
Let f[x] be a real function defined on a real open interval (a, uj). Then 

f[x] is n-times continuously differentiable on (a, uo) if and only if the n^^-order 
differences 5^ f are S-continuous on (a, uo). In this case, the coefficients of the 
interpolating polynomial are near the coefficients of the Taylor polynomial, 

<5VN,...,x„]«^/(")[6] 

whenever the interpolating points satisfy xi ^ • • - ̂  Xn^h. 
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25 
Pre-University Analysis 

Richard O'Donovan 

A b s t r a c t 
This paper is a follow-up of K. Hrbacek's article showing how his ap
proach can be pedagogically helpful when introducing analysis at pre-
university level. 

Conceptual difficulties arise in elementary pedagogical approaches. In 
most cases it remains difficult to explain at pre-university level how the 
derivative is calculated at nonstandard values or how an internal func
tion is defined. Hrbacek provides a modified version of 1ST [8] (rather 
Peraire's RIST) which seems to reduce all these difficulties. This system 
is briefly presented here in its pedagogical form with an application to 
the derivative. It must be understood as a state-of-the-art report^. 

25.1 Introduction 

Infinitesimals are interesting when teaching analysis because they give 

meaning to symbols such as dx^ dy or df{x) and all related formulae. Also, 

symbolic manipula t ions are usually simpler t h a n with limits. 

In secondary school, real numbers are introduced wi th no formal justifica

tion. It is sometimes shown t h a t ^/2 ^ Q. It is t radi t ional to quote t h a t TT is 

not a rat ional either (with no p r o o f ) . . . and therefore the set of real numbers 

exists. The algebraic rules of the rat ionals are applied to the new numbers — 

s tudents would never imagine t h a t it could be otherwise. 

On the one hand, it is possible to use the s tudents ' intuit ion of infinity 

and infinitesimals to make t h e m find out most of the computa t iona l rules 

of a system containing infinitesimals, as shown in [10]. On the other hand . 

College Andre-Chavanne, Geneve, Switzerland. 
richard.o-donovanOedu.ge.ch 

^The author has been teaching analysis with infinitesimals at pre-university level for 
several years. This paper has been possible thanks to many exchanges with Karel Hrbacek 
and also many helpful remarks by Keith Stroyan. 
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Hoskins writes: "the logical basis of NSA needs to be made clear before it 
can be used safely" [6]. Most published books on the subject seem to confirm 
this view. Di Nasso, Benci and Forti state: "Roughly, nonstandard analysis 
consists of two fundamental tools: the star-map and the transfer principle" [2]. 
Foundational aspects are fundamental but they should not be a prerequisite to 
study infinitesimals. Frege and Wittgenstein are not studied in kindergarten 
prior to learning how to add natural numbers. 

Our motivations may have a more pedagogical origin than those exposed by 
Hrbacek in [8], but globally the reasons why we feel unsatisfied with the avail
able textbooks are the same. Because of these difficulties, some colleagues have 
been tempted to work with infinitesimals by ignoring the question of transfer 
altogether. But without transfer, analysis with infinitesimals is analysis in a 
non-archimedean field, and these fields are known to have very special and 
unwanted properties as shown in [4] and [13]. Nonstandard analysis ensures 
that the properties of completeness are transferred to a certain class of objects. 

25.2 Standard part 

A major difficulty in nonstandard analysis is the existence of external func
tions. Consider the "updown" function: 

f : X \-^ 2 ' st(x) — X 

At standard scale it is indistinguishable from the identity function but at 
the infinitesimal scale the function is everywhere decreasing with a rate of 
change (slope?) equal to —1 and it is S-continuous and satisfies the interme
diate value property! Why does it not satisfy that if a continuous function has 
a negative slope everywhere on an interval, then the function is decreasing on 
that interval? 

It appears difficult to explain to students that statements which use the 
standardness predicate are "external" but that we can nonetheless use it safely 
for the definition of the derivative. How can a student understand when it 
is acceptable to use st[ ] and when is it not? Some students have pointed 
out that if the derivative is given by s t ( ^ ^ ) for ah x, then f{x + 5) = 
f\x). The classical textbooks such as [9], [14] or [5] use an indirect definition 
for the derivative at nonstandard points which makes a drastic distinction in 
nature between standard and nonstandard numbers: at standard points, the 
derivative is calculated using that point and other nonstandard neighbours but 
at nonstandard points some form of transfer is used. How can we be convincing 
when explaining why there are two different definitions? 
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Even Stroyan's uniform derivative [14] is not totally satisfying here because 
it requires that we recognise a "real function", which in turn means that we 
need a definition of what such a function is, and what an extension is. 

25.3 Stratified analysis 

Stratified analysis may be an answer. An interesting aspect is that the 
theory is adapted for elementary teaching at the same time as it is being 
developed. The interactions are mutual. 

In the adaptation for high-school, we have deliberately avoided references to 
the words "standard" and "nonstandard" for reasons already discussed in [10]. 

Instead of the binary relation C introduced by Hrbacek, we have suggested 
to use a concept of level, symbolised by v(x). li a Q b then a G v{b): a is 
relatively standard to b means that a is at the level of b. For high-school, we 
feel that this is a simpler concept. All of the adaptations have been discussed 
with Hrbacek so that they satisfy both the educational requirements and the 
theoretical consistency. 

The following is a possible description given to the students: 

Levels 

We get to know the familiar natural numbers 1,2,3, . . . when we learn to count. 
But it would be a rare child that actually counts (in steps of 1) to more than a 
thousand or so. It is not necessary to keep going further, because somewhere at 
this point one gets the idea that the counting process never ends (this is called: 
potential infinity), and one is capable of forming the set of natural numbers N, i.e. 
it is possible to consider the collection of all natural numbers as one "thing" (this 
is called: actual infinity). It is neither necessary nor possible to count all natural 
numbers to do it! 

Also, sums, products, differences, quotients, powers, roots, etc. of these familiar 
numbers are or can be known at this stage. 

All these familiar numbers are at the same level. 

If X is at the level of y, it means that x can be known when y can be known; 
written 

X e \/{y) 

Familiar numbers are all at the coarsest level. 

v ( 0 ) = v ( l ) = v Q ) = v ( V 3 ) 
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But then there are natural numbers unknown at this level, numbers that are 
so large (we will say "unlimited") that they do not belong to v(0). 

Let K be such an unlimited natural number, i.e. K ^ v(0). It takes a higher 
level of knowledge to know K, but once we do, we also know 2K, K + 1 . . . and 
many other objects which all belong to v ( K ) . In increasing our knowledge about 
numbers, we do not lose former knowledge, so 1,2,3, . . . are also at v ( i ^ ) : they 
remain known. Also, the reciprocal: j^ is an "infinitesimal" that becomes known 
at the level of i ^ . Hence a number such as, say, 3 + 3 ^ is at M{K) (a finer level) 
and is infinitely close to 3. 

But again, this level of knowledge does not exhaust the set N, so there are 
numbers not at M{K) — hence not at v(0), etc. The levels potentially expand 
forever and never fully exhaust N. 

• There are many levels, each making new numbers known. 

• At v(0) there are no infinitesimals. 

Infinitesimals are defined relatively to a level, a-infinitesimals and a-
unlimited are numbers which are not at v(a) and which are, respectively, 
less in modulus, greater in modulus, than any nonzero number at v(a) . For 
an a-limited number ^, the a-shadow (noted shQ,(^)) is the unique number at 
V(Q;) which is a-infinitesimally close to ^. The x-shadow replaces the concept 
of standard part in this relativistic framework^. 

We give a more restricted definition of levels than Hrbacek's. We only 
include numbers in the levels, not sets. This slight difference can be considered 
as a restriction of the definition given by Hrbacek not a contradiction: the only 
sets we use explicitly in our course are intervals, N or M. 

One of the immediate advantages of stratified analysis is the possibility to 
easily identify "acceptable" statements — those that will eventually transfer. A 
statement about x is acceptable if it makes either no reference to levels or only 
to the level of x. The same holds if instead of x there is a list x = xi , X2,. . . 

A function / is defined by a rule that tells us what f{x) is when x is in 
the domain of / . The rule may depend on some parameters, pi,P25--- A 
function is acceptable if the rule either does not refer to levels or refers only to 
v(x,]9i,p2, • • • )• (Although probably not necessary at this school level, transfer 
ensures that if there are two different rules using parameters from different 
levels which give the same value for all values of the variable, then they define 

^ Again, for reasons related to politics in the educational realm, shadow has been preferred 
to "standard part". It also yields a fairly intuitive image tha t numbers cast a shadow on 
coarser levels (provided they are finite with respect to tha t level); shadows contain less 
information. 
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the same function and its level is the coarsest one where the function can 
be defined). 

f : X \-^ 2 ' shQ(x) — X is not an acceptable function because there is an 
absolute reference to v(0) in the shadow predicate. If adapted as 2 • sh^ (x) — x 
then, as sha^(x) = x, it simplifies to the identity function. Theorems about 
continuity are for (acceptable) continuous functions and this function does not 
satisfy the conditions. The student can see this with no "external" knowledge. 

It seems reasonable to state that from then on, acceptable functions will 
be simply called functions (so the statements of theorems will look very much 
like the classical ones). 

25.4 Derivative 

The derivative of a function is defined by: 
Let / :]a; b[-^ M be a function and x G]a; b[ 
f is differentiable at x iff there is an L G v(x, / ) such that, for any < x, / >-

infinitesimal h, with x -\- h G]a]b[, 

ff{x + h)-f{x)\ 

then the derivative is 

It is a direct observation that the derivative is "acceptable". 

For f : X \-^ x^ ai X = 2 the derivative is simple and works exactly as in 
any other nonstandard method. For x in general, the quotient simplifies to 
2x -\- h. The only parameter of / is 2 G v(0) hence v ( x , / ) = v(x). As h is 
x-infinitesimal, sh.x{2x-\- h) = 2x. For a direct calculation of /^(2 + 5), we have 
2 -\- 5 G v{6) hence a [2 + 5]-infinitesimal is also a (5-infinitesimal. Let /i be a 
(5-infinitesimal. 

^^^ j^(2+m)id2±£)!) ^ sh , ( i M 2 M ^ ^ sh5(4 + 25+ h)^ 4 + 25. 

Thus stratified analysis satisfies one of our major requirements: a single 
definition of the derivative which applies to all numbers. 

In [10] it is shown that using the definition of infinitesimals, the students 
could work out the rules of computation as exercises and find that for standard 
a and infinitesimal 6, a - 5 is infinitesimal. The same exercises adapted to ac
ceptable statements yield that if 5 is a-infinitesimal, then a-5 is a-infinitesimal. 
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25.5 Transfer and closure 

Some definitions have been re-written several times and the definitions we 
use today may not be final. All the proofs of theorems in the syllabus must be 
checked and cross-checked. 

The only principles that are needed are Hrbacek's closure principle: If / 
is an acceptable function, then f(x) G v(x, / ) for all x in the domain of / . 
This extends the observation that operations with "familiar" numbers do not 
yield infinitesimals. The other is a simple form of transfer which states that an 
acceptable statement is true for v(a) iff it is true for all v(/3) with a G v(/3). 

This adaptation to pre-university level is not completed yet. We hope to 
finish a first version of a handout, with proofs, within a year or so. Our goal is 
still the same: for most people, infinitesimals "are there", but can they be used 
to make maths easier to teach and learn and still remain rigorous? We hope 
to be able to contribute an answer to this question in a not too distant future. 
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