
Chapter 3

Dynamical Properties of
Hamiltonian Systems with
Applications to Celestial
Mechanics

Carles Simó

3.1 Introduction

Our goal is to study some properties of the dynamics of the N -body problem. As is
well known, the Newtonian model of N punctual masses, mi, i = 1, . . . , N , located
at qi(t) ∈ Rd, moving under their mutual gravitational attraction is described by
the equations

q̈i =

N∑
j=1,j 	=i

(qj − qi)/r
3
i,j , r2i,j = ||qj − qi||22, i = 1, . . . , N. (3.1)

The system has several first integrals. The centre of mass ones, in a suitable
reference moving linearly with constant velocity, are

∑N
i=1 miqi = 0,

∑N
i=1 pi =

0, where the related momenta are defined as pi = miq̇i. Furthermore, defining
the kinetic energy as T (p) =

∑N
i=1 ||pi||22/mi and the potential one as U(q) =∑

1≤i<j≤N mimj/ri,j , one has the energy integral T (p)−U(q) = H(q, p) = h. The

total angular momentum
∑N

i=1 miqi ∧ q̇i is another first integral. In general, no
more first integrals exist. Of course, q and p above refer to the vectors in RNd

which contain all the components of positions and momenta. System (3.1) can be
put in Hamiltonian formulation: q̇i = ∂H/∂pi, ṗi = −∂H/∂qi. The pairs (qi, pi)
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170 Chapter 3. Dynamical Properties of Hamiltonian Systems

are canonically conjugated. In the present case, the Hamiltonian has Nd degrees of
freedom (d.o.f.), despite the fact that the centre of mass integrals reduces them to
(N − 1)d, and the angular momentum gives additional reduction. For applications
we shall consider the cases d = 2 and d = 3. The equations are analytic except on
the collision set, when at least one of the values of ri,j equals zero.

In many problems it is interesting to consider that some of the bodies have
a negligible mass. They are influenced by massive bodies but have no action on
them. These are the restricted N -body problems.

The N -body problem belongs to the general class of Hamiltonian systems. In
these systems and in all kinds of dynamical systems, the ultimate goal is to describe
the main mechanisms leading to a fairly global description of the dynamics, how
it depends on parameters and, if it is possible to act on the system (either with
additional forces or by changing parameters), how to have some control on the
behaviour of the system. In the present case we shall be interested in conservative
systems, either in the continuous version described by a Hamiltonian or in the
discrete version. Next we make some comments on the passage from continuous
systems to discrete ones and vice-versa.

3.1.1 Continuous and discrete conservative systems

The associated discrete version is given by symplectic maps : F : (x, y) → (X,Y ),
where X = F1(x, y), Y = F2(x, y), with x, y,X, Y belonging to some set in Rd and

such that the 2-form dx ∧ dy =
∑d

i=1 dxi ∧ dyi is preserved: dX ∧ dY = dx ∧ dy.
We can replace working in Rd ×Rd by a formulation in symplectic manifolds but,
to have a simpler presentation, we prefer to work explicitly using coordinates and
refraining from extensions.

It is a simple matter to obtain discrete maps from a flow led by ẋ = f(x),
where f is a vector field (v.f.) in some open set U of Rn. Assume Σ is a hypersur-
face, given as points x ∈ U such that g(x) = 0, where g : U → R. We require that
it satisfies the transversality condition. We say that Σ is transversal to the v.f. if
the scalar product (f,∇g) is different from zero in Σ. The geometrical meaning is

clear: the flow of f (that we shall denote as ϕf
t or simply as ϕt) crosses transver-

sally the section Σ. In many examples one simply takes as g one of the coordinates
(either equal to zero or to a constant). In that case, Σ is usually not the full coor-
dinate hyperplane, but the part of it satisfying the transversality condition. Then,
given a point Q ∈ Σ we define a map, the so-called Poincaré map P , as the first
return of Q to Σ: ϕt(Q)(Q) ∈ Σ with a minimal value of t(Q) > 0. Note that,
eventually, some Q can never return to Σ for any t > 0. This implies that Σ has to
be reduced to a suitable subset. We also note that the return time t(Q) depends
on the starting point. We denote as P(Q) := ϕt(Q)(Q) the image of Q under the
Poincaré map P .

In the case of a Hamiltonian H with m d.o.f. (hence x has dimension 2m)
fixing a transversal section Σ and the level of energy h, the Poincaré map associated
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to Σ defines a map in Σ ∩ H−1(h), of even dimension 2(m − 1). This map is
symplectic.

Given a discrete map x → F (x) in V ⊂ Rn, there is also a simple way
to produce a v.f. such that it has, as associated Poincaré map, the initial map,
provided F is close to the identity, say F (x) = x + εG(x) with ε small enough
(see later). For concreteness we shall assume that G is a real analytic function. We
want to define a non-autonomous periodic v.f. of period 1 in t. Let us consider,
for instance, and for a given k > 1, the function ψk(t) = c

∫ t

0
sk(1 − s)k ds, where

the constant c is selected to have ψk(1) = 1. Then we define the flow starting at
the point x after a time t ∈ [0, 1] as ϕt(x) = x+ εψk(t)G(x), that is, we are using
an Hermite-like interpolation, because ψj

k(0) = 0 for j = 0, . . . , k, ψk(1) = 1, and

ψj
k(1) = 0 for j = 1, . . . , k. Other interpolations can also be used. For other values

of t it is defined by periodicity: ϕt(x) = ϕ(t)(x) where (t) = t − [t], being [t] the
largest integer less than or equal to t. Clearly ϕ0(x) = x, ϕ1(x) = F (x). Now
we should define the v.f. at (y, τ) for τ ∈ [0, 1]. To this end we look for z such
that ϕτ (z) = y. It follows immediately, from the implicit function theorem, that
a solution exists if || Id + εDG||∞ > 0. Finally the v.f. is f(y, τ) = εdψk

dt (τ)G(z).
We note that this is a slow v.f., having the parameter ε as a factor. It is usually

referred to as the suspension of the map F . We can consider if it is possible to
approximate it by an autonomous v.f. This follows from a general theorem on
averaging, that we present in a wider context: the case of v.f. depending on time
in a quasiperiodic way.

Theorem 3.1.1. Let

ż = εf(z, θ, ε), (3.2)

where f is analytic in (z, θ) for z ∈ Ω ⊂ Cn, Ω = D+Δ, a Δ-neighbourhood of D
in Cn, D a compact in Rn, and θ ∈ Tp +Δ, p ≥ 2, where Tp is a p-dimensional
torus. Assume f in (3.2) is bounded in ε for |ε| ≤ ε0 and θ = ωt, where ω ∈ Rn

is a vector of frequencies satisfying the Diophantine condition (DC)

|(k, ω)| ≥ b|k|−τ , ∀k ∈ Zp \ {0}, (3.3)

where b > 0, τ > p−1 and |k| = ∑p
i=1 |ki|. Then, if ε0 is small enough, for a fixed ε

with |ε| ≤ ε0, there exists a change of variables z = h(w, θ, ε), analytic in (w, θ) for
w ∈ D+Δ/2, θ ∈ Tp+Δ/2, such that the new equation is ẇ = ε(g(w, ε)+r(w, θ, ε))
and the remainder satisfies an exponentially small bound

|r|Δ/2 < c1 exp(−c2/ε
c3), (3.4)

where c1, c2 > 0 , c3 = 1/(τ + 1). The constants c1, c2 depend only on |f |Δ, the
dimensions and the constants in (3.3). Furthermore, |g|Δ/2 < 2|f |Δ. Here |f |Δ
denotes the sup norm of f in D +Δ, Tp +Δ for the fixed value of ε.
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Remark 3.1.2. (i) In the periodic case (it would be p = 1, τ = 0), there is no
need of analyticity with respect to t; just integrable is enough. Then c3 = 1,
see [36].

(ii) The optimal number of averaging steps (i.e., up to which order in ε one should
cancel the quasiperiodic dependence) is ≈ ε−c3 .

(iii) If f is a Hamiltonian v.f., the change to w can be made canonical. Hence,
the averaged system, skipping the remainder r, is also Hamiltonian, see [51].

(iv) If f has been obtained by suspension of a map F , we can produce an au-
tonomous v.f., like g, which interpolates F except by exponentially small
terms.

The basic idea of the proof is to obtain the change z = h(w, θ, ε) by means
of sequence of changes. This methodology is common to many topics in dynamical
systems. First we try to cancel the purely quasiperiodic terms in f , that is, the
terms in f̃ = f − f̄ , where f̄ denotes the average with respect to θ. Writing the
suitable condition for the change, one has to solve a PDE to obtain the quasiperi-
odic coefficients in this first change. To solve it with control on how the coefficients
of the change behave is where the analyticity with respect to θ and the DC (3.3)
play their roles. In the periodic case one has to do just an integration, and this is
why to be integrable in t is enough in that case.

Once the terms in f̃ have been skipped, one has to check the contribution
that the change makes in ε2. Here is where the analyticity with respect to z plays
a role, to bound the derivatives in a slightly smaller strip, passing from half width
Δ to Δ1. Then we proceed to cancel the purely quasiperiodic terms which appear
with ε2 as factor, and so on, to cancel the non-autonomous terms in εk, k = 3, . . .
At every step, to be able to bound the contributions made by the change to higher
order in ε, one has to reduce the size of the analyticity domain, introducing a
decreasing sequence for the half widths of the successive domains Δ2 > · · · >
Δk > · · · .

After every change one has a bound on the remainder. If for a given ε we
do too many changes, as we want to keep an analyticity domain of positive half
width, the differences Δk−1 − Δk are small. This implies bad estimates for the
derivatives and an increase on the size of the remainder. This is why, for every ε,
there is an optimal order. Simpler estimates give then the bound in (3.4). See [41]
for details and examples.

These kind of bounds on remainders are relevant to bound errors on ap-
proximations done, for instance, with normal forms (see Subsection 3.3.2). The
variables can be scaled in the domain of interest and the role of ε is played by the
size of the domain.

Finally we stress that the passage from flows to maps and vice-versa, when
the map or some power of it is close enough to the identity, allows a more complete
understanding and representation of key phenomena.
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In what follows we shall consider that all v.f. and maps are in the analytic
category.

3.1.2 Comments on the contents

Setting aside the two-body problem and subclasses with some special symmetry,
the simplest N -body problem is the planar circular restricted three-body prob-
lem which has two d.o.f. (see Section 3.4). The next simplest problem can be
the planar general three-body problem. Even restricting to a fixed value of the
angular momentum it has three d.o.f. The dimension can be reduced by fixing
energy and using a Poincaré section. In the first case we obtain symplectic 2D
maps, easy to visualize. In the second case we have symplectic 4D maps, not so
easy to visualize. There are key objects of codimension one (see Subsection 3.3.4)
and homoclinic/heteroclinic phenomena due to the intersection of two objects of
dimension two in dimension four. The invariant tori (see Subsection 3.3.3) do not
separate the phase space, and slow escape from points as close as we like to in-
variant tori (Arnold diffusion or general diffusion, see Subsection 3.3.5), avoiding
a large set of nearby tori, can occur.

For these reasons we devote Section 3.2 to introducing several simple but
paradigmatic examples in the 2D case, with the hope that they will make it easier
to grasp the main ideas in higher dimension. See also slides (B) for several examples
with low dimensional conservative systems.

Section 3.3 is devoted to presenting some general theoretical results. But it
is also relevant to see how to use the ideas of the proofs in concrete examples. In
many cases, effective computation is based on implementation of the proof, either
by symbolical or numerical methods or, quite frequently, by a combination of both.

Finally Section 3.4 presents some applications to Celestial Mechanics, with
a variety of goals.

Concerning references, most of the basic results can be found in classical
standard books. A few of them appear in the list of references, and no explicit
mention to them is made in the text. Some references to concrete topics are scat-
tered throughout the text and they are given at the end of these notes. The reader
can also, at the end of the references, look at the list of slides of several talks given
in the past and that, in turn, refer to some animations.

3.2 Low dimension: same key examples of

2D symplectic maps to see the kind of
phenomena to face

Invariance of dx ∧ dy in dimension 2 is equivalent to area preservation. We shall
denote as APM the area preserving maps. The simplest non-trivial APM which
come to mind are the quadratic ones: x, y ∈ R and F1, F2 are polynomials of degree
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two. These maps were widely studied by M. Hénon [20]. See also slides (E) and
slides (G). They are relevant because:

(i) the number of parameters can be reduced to only one, and they have a very
simple geometrical interpretation;

(ii) they appear in a natural way as a very good approximation in some parts of
R2 when we consider arbitrary APM; in particular when we study Poincaré
maps of Hamiltonian systems with two d.o.f.;

(iii) the following problems can all be understood thanks to our knowledge of the
quadratic case: (a) the existence of invariant curves diffeomorphic to S1; (b)
the role of the invariant manifolds of hyperbolic fixed or periodic points and
how they lead to the existence of chaos; and (c) the geometrical mechanisms
leading to the destruction of invariant curves.

We shall illustrate some of these features in this section.

3.2.1 The Hénon map

In the initial formulation the map (except in some degenerate cases) can be written,
thanks to the APM character, shift of origin and scaling, as F : (x, y) → (1−ax2+
y,−x). Hence, this family of maps depends on a single parameter a. The geometric
interpretation is simple: it is the composition of the map (x, y) → (x, y+1− ax2)
(one of the so-called de Jonquières maps) and a rotation of angle −π/2. Figure
3.1 shows, for a = −1/2, the square [−3, 3]2 (in red), the first image (in green)
and part of the next two images (in blue and magenta, respectively). One can
ask whether all points will escape for future iterations. To give an answer to this
question, we plot in black the set of points which remain bounded for all iterations
and the selected value of a.

However, we shall use another representation of that map, see [52], given by

Fc

(
x
y

)
→

(
x+ 2y + c

2 (1 − (x+ y)2)

y + c
2 (1− (x + y)2)

)
, (3.5)

which depends on c that can be assumed to be positive. It has two fixed points:
H at (−1, 0), hyperbolic ∀c > 0, and E = (1, 0), elliptic for 0 < c < 2 and
hyperbolic with reflection for c > 2. The reversor S(x, y) = (x,−y) allows us to
obtain F−1

c = SFcS.

Doing the change of scale (ξ, η) = (x, 2y/
√
c) one obtains a map

√
c-close to

the identity. According to Section 3.1 it can be approximated by the time-
√
c flow

of the v.f. dξ/dt = η, dη/dt = 1− ξ2, with Hamiltonian K(ξ, η) = η2/2− ξ+ ξ3/3.
It is, of course, a trivial matter to improve K to any power of

√
c. This v.f. has

the same fixed points as Fc and a separatrix on the level K = 2/3.
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Next we show iterates of some initial points under Fc for c = 0.2 and c =
0.762, see Figure 3.2.

-3

-2

-1

 0

 1

 2

 3

-2  0  2  4  6  8

Figure 3.1: The square [−3, 3]2 (in red) and the first three images of it under the Hénon
map with a = −0.5, shown in green, blue and magenta, respectively. The last two have
parts outside the frame shown here. In black we display the invariant set of points which
remain bounded under all iterations.
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Figure 3.2: Some iterates under Fc. Left: for c = 0.2. Right: for c = 0.762. We have
taken initial points on y = 0 and plotted 5,000 iterates of each one after a transient
of 106 iterates. Points outside the displayed domain escape to infinity close to the left
branch of W u

H . When looking at the figure in the electronic version it is suggested to
magnify the right plot to see the details. The same applies to several other plots in the
next figures, without explicit mention.

An important characteristic of points whose orbit is an invariant curve (IC) is
the rotation number ρ. It measures the average value of the fraction of revolution
that the point turns in each iterate. We can look at the curves around the elliptic
point E in previous plots and take polar coordinates. Let θk be the angle of the
k-th iterate, but considered in the lift R instead of S. Note that in this example



176 Chapter 3. Dynamical Properties of Hamiltonian Systems

the points turn clockwise. Then, we define

ρ =
1

2π
lim
k→∞

θk
k
. (3.6)

It always exists and does not depend on the initial point on the curve.

On the left plot in Figure 3.2 one can see a pattern which looks like the phase
portrait of a one d.o.f. Hamiltonian, with a foliation by periodic solutions and a
separatrix in blue. It seems that, as in the case of one d.o.f. systems, the map is
integrable. That is, there exists a non-constant function C(x, y) preserved by the
map: C(F (x, y)) = C(x, y). In fact there is a Cantor set (of positive measure) of ICs
with ρ /∈ Q, an infinite number of periodic orbits of elliptic and hyperbolic type and
the right-hand sides of the manifolds of H do not coincide. What happens is that
the differences with respect to the flow case are extremely small, in agreement with
(3.4). We shall see details on this smallness in the part about invariant manifolds
of Section 3.2.1.

The right-hand plot in Figure 3.2 displays a typical behaviour of a not close
to integrable APM. Certainly there are many ICs (again a Cantor set) around the
point E, but at some distance one can see big period-5 islands around elliptic
periodic points of period 5, and one can guess the existence of period-5 hyperbolic
points. Close to them there are chaotic orbits, still surrounded by some more ICs,
(rotational, that is, they make the full turn around E) and, finally, some little
islands before reaching a place where most of the points escape.

Some comments on invariant curves

The plots in Figure 3.2 raise several questions: (1) do ICs really exist for Fc? (2)
what is the structure of the set of ICs? (3) how are they destroyed? (4) what
happens after an IC’s destruction?

First we introduce the so-called twist maps. These are integrable maps defined
in some annular domain rd < r < ru, having a foliation by ICs, given by

T (r, α) = (r, α+ a(r)), (3.7)

and satisfying the twist condition

da(r)/dr �= 0. (3.8)

Of course, one can have the form (3.7) after a diffeomorphism. The curves can
have a shape different from circles, like ellipses, to be star-shaped or not.

A key result is the Moser twist theorem.

Theorem 3.2.1. Consider a perturbation Fε = T + εP of a twist map T . Then, if
we have an invariant curve of T which has Diophantine rotation number γ, this
curve, with a small deformation, subsists for Fε provided ε is sufficiently small.
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The Diophantine condition, in the present case, is like (3.3) with frequencies
γ and 1: |k1γ + k0| ≥ b|k|−τ , ∀(k1, k0) ∈ Z2 \ {0}, where |k| denotes some norm of
k = (k1, k0).

Let us comment a little on the three conditions: (a) it must be a perturbation
of a twist map T ; (b) the rotation number γ must be Diophantine; and (c) it must
be close enough to T , that is, ε must be small.

Assume that the Fourier representation of the IC of T which has ρ = γ is
r(α) =

∑
j∈Z

aj exp(i jα) in the present polar coordinates we are using (typically,
for a given problem, the twist map will not be given in the form (3.7), and to put
it explicitly in this form can be cumbersome). Let rε(α) =

∑
j∈Z

bj exp(i jα) be
the representation of the desired IC, invariant under Fε. The invariance condition
is expressed, in (r, α), as Fε(rε(α), α) = (rε(α+2πγ), α+2πγ). It is clear that we
can fix the origin of angles in an arbitrary way.

We try to pass from the coefficients aj to bj by making a sequence of changes
(similar to the case of Theorem 3.1.1) such that, after the k-th change, one has

an approximation of the IC under Fε with ρ = γ with an error O(ε2
k

). That is, a
Newton method in the space of Fourier series. The equation to be solved at each
step is of the form G(α+2πγ)−G(α) = R(α), the so-called homological equation,
where R(α) is related to the error of the previous approximation and has zero
average, a necessary condition in order to make it possible to solve the equation.

Using Fourier representations for G and R, say G =
∑

j∈Z
gj exp(i jα) and

R =
∑

j∈Z
rj exp(i jα), r0 = 0, it is straightforward to obtain gj = rj/(exp(i j2πγ)

− 1), j �= 0. But, of course, if jγ is close to an integer, the previous denominator
is close to zero. This is known as the small denominators problem. The DC allows
us to control the behaviour of the coefficients of G, so that if R is analytic in some
complex strip around real values of α, G is also analytic (perhaps in a slightly
narrower strip).

The problem is then that the error in the next approximation does not have
zero average and we will not be able to solve the next homological equation. But
this average can be canceled by modifying the initial independent term a0 (or,
equivalently, by selecting a proper value for g0) and this is possible, thanks to
the twist condition, by applying the implicit function theorem. It is convenient to
express the twist condition as dρ/da0 �= 0; that is, in terms of the average of the
initial curve. Finally the smallness of ε is necessary to have convergence in the
Newton procedure. Note that, for a fixed γ, the larger is the twist condition, the
larger are the admissible values of ε.

In Section 3.3.3 we shall talk about generalizations to higher dimension, both
for symplectic maps and for Hamiltonian flows. The key ideas for the proofs are
the same.

Using normal form tools (see Section 3.3.2) it is easy to prove that, what seem
to be ICs in Figure 3.2 are really ICs, at least close to the point E. Furthermore, it
is clear that the structure of the set of ICs is Cantorian, because so is the structure
of the set of Diophantine numbers for values of b, τ bounded from below, see (3.3).
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It is interesting to see what happens when the twist condition is not satisfied.
Figure 3.3 shows, for the map (3.5), with c = 1.35, the evolution of ρ as a function
of x for initial points of the form (x, 0). It is clear that ρ is only defined for ICs
and periodic orbits (or islands) and, in the present case, it seems that this occurs
for most of the initial values of x. One can prove that this behaviour, with a
local minimum at x = 1 and a local maximum on each side, appears only for
c ∈ (c1, c2), c1 = 5/4, c2 ≈ 1.4123. For c ∈ (0, c1) one has a local (in fact, global)
maximum at x = 1 (the point E).

 0.302

 0.304

 0.306

 0.308

 0.4  0.6  0.8  1  1.2
Figure 3.3: For c = 1.35 the value of ρ = ρ(x) is plotted for initial points on y = 0.
In blue the points with ρ ∈ Q. Note that now, to the left or to the right of x = 1, the
function ρ is no longer monotonous.

The twist condition is lost near the maxima. Let ρM be the value of ρ at
a given maximum M . Assume that there exist rationals p/q < ρM with q not
too large. They give rise to the typical islands structure, with q islands on each
family, on both sides of the IC with ρ = ρM (or close to it). The interaction of
these two families of islands, with ρ = p/q, gives rise to the so-called meandering
curves, see [43], which cannot be written with the radius as a function of the angle
seen from the point E. The curves have some folds (or meanders) but it is still
possible to apply Moser’s Theorem 3.2.1 to prove that they exist. Figure 3.4 shows
an example of meandering ICs for c = 1.3499 and a magnification including some
nearby orbits.

Some comments on invariant manifolds of hyperbolic points

Beyond the IC of an APM, there are other very important invariant objects which
play a key role in dynamics (this is also true for more general maps and flows in
any dimension, see Section 3.3.4). They are the stable and unstable manifolds of
the hyperbolic fixed or periodic points. They can be seen as the non-linear general-
isation of the invariant subspaces of the differential of the map at the fixed point.
On the left-hand plot in Figure 3.2, for c = 0.2, the branches Wu,+ and W s,− (the
ones which start to the right of x = −1) seem to be coincident, but they are not.
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Figure 3.4: Left: We show a couple of orbits for c = 1.3499, sitting on a domain in which
ρ passes through a maximum. These orbits are on invariant curves known as meanders.
Right: A magnification of the left. Beyond different meanders in red, one can see two
typical invariant curves (inner and outer) in blue and islands, in magenta, which belong
to two different chains of islands of rotation number 4/13.

Figure 3.5, left, shows a magnification when they return to the vicinity of the point
(−1, 0), after going clockwise around E under Fc (red points), or counterclockwise
under F−1

c (blue points). We see tiny oscillations with a size O(10−3). The right-
hand plot in Figure 3.5 shows the manifolds for c = 0.77 with large oscillations.
The points in Wu ∩W s are known as homoclinic points (or biasymptotic points).
Some of them, on y = 0, can be seen to the right of the plot. The successive nearby
returns of the manifolds produce infinitely many homoclinic points. Depending on
the location of a point with respect to a given homoclinic, after passing close to H
under iteration by Fc, will follow close to the positive, Wu,+, or to the negative,
Wu,−, branches of Wu. And similarly for the stable branches using F−1

c .
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-1.01 -1.005 -1 -0.995 -0.99

-0.8
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 0.4

 0.8

-1  0  1  2

Figure 3.5: Left: a magnification of Figure 3.2 showing that the manifolds do not coin-
cide. Right: part of the invariant manifolds of the hyperbolic point H for c = 0.77 (the
unstable manifold in red, the stable one in blue). One has W s

H = S(W u
H). The splitting of

the manifolds is now clearly visible. It is increasing with c. Note that the domain around
the point E which is not covered by the oscillations of the manifolds, becomes smaller.
Compare with the non escaping set of points in Figure 3.2 right, for a nearby value of c.
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A measure of the lack of coincidence of Wu and W s is the splitting angle.
This is defined as the angle between manifolds at a given homoclinic point. In the
present case of quadratic APM, we can measure the angle at the first intersection
of the manifolds with y = 0 to the right of x = 1 and see how it behaves as a
function of c. For concreteness, we denote this angle as σ(c). In Figure 3.6, left
and middle, we represent the value of σ(c) in different scales. In the left-hand
plot, despite the splitting being different from zero for any c > 0, we see that
only for c > 0.2 does it start to be visible. To make visible what happens for
small c, we display, in the middle plot, log(σ) against log(c). Note that already
for c = 0.05 the value of σ(c) is below 10−15 and, hence, it is negligible for any
practical application.
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Figure 3.6: Different representations of the splitting angle σ(c) between the mani-
folds at the first intersection with y = 0, x > 1. Left: σ, as a function of c, show-
ing that σ seems negligible for c < 0.2. At that value of c, the first digits are σ(c) =
6.2146342685682663009767540674985307425003 . . .× 10−5. Middle: log(σ) as a function
of log(c), which allows to see how small σ(c) is for c approaching zero. Right: the values
of log10(ω2m(2π2)2m/(2m + 6)!) versus m, to give evidence of the Gevrey character of
Ω(h) (see text).

Concerning the right-hand plot in Figure 3.6 we need some preliminaries. Let
λ(c) be the dominant eigenvalue at the point H , which is equal to 1+c+

√
2c+ c2

for Fc. An essential parameter in the theoretical study of the problem is h(c) =
log(λ(c)), because using suitable representations of the manifolds, it is possible
to show that the splitting has upper bounds of the form exp(−η/h), where η is
related to the imaginary part of the singularity of the separatrix of the limit flow,
as mentioned before in Figure 3.2. This type of result is true for general analytic
APM close to the identity map, see [10, 11]. In fact, for the present problem one
can prove a more precise result. The splitting angle has the form

σ(c) =
9

2
× 106π2h(c)−8 exp

(
− 2π2

h(c)

)
× Ω(h). (3.9)

The term Ω(h) can be expanded in powers of h2, say Ω(h) =
∑

m≥0 ω2mh2m,
and can be bounded by ω0+O(h). The constant term can be determined numeri-
cally and the first digits of ω0 are 2.48931280293671. Note, however, that the series
defining Ω(h) is divergent. But for every value of h it provides a good approxima-
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tion if we truncate the summation at the appropriate place. There is numerical
evidence that the series is of Gevrey-1 class.

A formal power series
∑

ckt
k is said to be of Gevrey-β class if the series∑

ck(k!)
−βtk is convergent. We can compute the series

∑
m≥0 ωmh2m/(2m)! ob-

tained from Ω(h) using β = 1. From a numerical determination of Ω(h), for differ-
ent values of h, one can obtain the coefficients ω2m. See [12] for methodology and
examples. In the right-hand plot in Figure 3.6 we display log10(ω2m(2π2)2m/(2m+
6)!) as a function of m, which seems to tend to a constant. This gives evidence of
the Gevrey-1 character of Ω(h) we mentioned. But to prove this fact is an open
problem.

See slides (H) for the role of the splitting phenomena in the measure of the
chaotic domain in different problems.

On the destruction of invariant curves

As mentioned in the part about invariant submanifolds in Section 3.2.1, if ρ is too
close to a rational (in the Diophantine sense), or if the twist condition is too weak,
or if the perturbation ε with respect to an integrable map is too large, the IC does
not exist. These analytic properties also have a nice geometric interpretation.

To illustrate the mechanism leading to the destruction of ICs we consider
Figure 3.7. It has been produced for c = 0.618 (left) and c = 0.63 (right) and it
only shows the left-hand part of the set of points which have bounded orbits. The
case of Figure 3.7 is similar to the one on the Figure 3.2 right, but now the main
islands are 6-periodic instead of 5-periodic.

On the left-hand plot one can see medium size islands with ρ = 3/19 (one
of them with its central elliptic point on y = 0) and two symmetrical islands,
in the same family, with ρ = 4/25, as well as several satellite islands, then tiny
islands (e.g., with ρ = 17/107, 39/245, 11/69, 19/119, 21/131, 13/81, . . .) and ICs.
In particular, some ICs are still present between the two chains of medium size
islands. Some other ICs, surrounding the main period-6 islands (not displayed),
appear as the rightmost curves shown.

On the right-hand plot we display in black two chains of islands of rota-
tion numbers 3/19 and 4/25, corresponding to the ones in the left plot, but now
they are smaller. Consider the associated hyperbolic periodic orbits, the one with
rotation number 4/25 being visible on the x-axis and the two symmetric points
belonging to the hyperbolic periodic orbit of rotation number 3/19 being close
to x = −0.2 off the x-axis. The manifolds of these periodic orbits give rise to
heteroclinic connections, that is, intersections of the stable and unstable mani-
folds of two different objects. The manifolds Wu

4/25,W
s
4/25 are shown in red and

green, respectively. The manifolds Wu
3/19,W

s
3/19 are shown in blue and magenta,

respectively. Note that Wu
4/25 and W s

3/19 (and, symmetrically, W s
4/25 and Wu

3/19)
have transversal heteroclinic intersections. This produces an obstruction to the
existence of the ICs which could separate the chains of islands. This is the basis
of the so-called obstruction mechanism [38].
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Figure 3.7: Left: A part of the set of non escaping points for the map Fc and c = 0.618.
Right: similar plot for c = 0.63, displaying also several invariant manifolds of periodic
hyperbolic points leading to heteroclinic intersections. See the text for details.

Indeed, if we consider a curve formed by a piece of invariant manifold of
the inner hyperbolic periodic point (the one of period 25) until the heteroclinic
point, followed by a piece of invariant manifold of the outer hyperbolic periodic
point (the one of period 19), from the heteroclinic point to the periodic one, the
ICs will have to cross it. This is impossible because of the invariance. In fact, one
concludes that ICs with ρ ∈ (3/19, 4/25) cannot exist. But ICs with ρ in that
interval are found for c = 0.618. Hence, the geometrical mechanism responsible
for the destruction is the existence of heteroclinic connections which obstruct the
possible curves.

Anyway, there are invariant objects with ρ in the above mentioned interval.
It is proved that they should be at the outer part of the manifolds of the hyper-
bolic periodic orbit with ρ = 4/25 and at the inner part of the manifolds of the
hyperbolic periodic orbit with ρ = 3/19. The heteroclinic intersections of these
manifolds create gaps which forbid the existence of points of the invariant object
in them. As a consequence, the invariant object which remains for some irrational
ρ ∈ (3/19, 4/25) is a Cantor set [29, 30]. Points which were located inside an IC
for c = 0.618 and, hence, without possible escape, can now, for c = 0.63, find a gap
of the Cantor set and escape under iteration. It looks like some random process
and, certainly, the probabilities are related to the size of the gaps in the Cantor
set.

3.2.2 The standard map

Looking at the right-hand plot in Figure 3.2 we clearly see the period-5 islands
around period-5 elliptic points and, as already said, we can guess the existence
of period-5 hyperbolic points. We also see ICs close to the island, some of them
inside, which have ρ > 1/5, and others outside, which have ρ < 1/5. If instead of
iterations under Fc we iterate using F 5

c we will check that the inside curves turn
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a little clockwise and the outside ones turn a little counterclockwise. We can ask:
what happens for an APM if we have two ICs turning by iteration a small amount
in opposite directions?

This is the contents of the so-called last geometric theorem by Poincaré.
Between the two curves, invariant under a map M , there should appear fixed
points, generically isolated and alternatively elliptic and hyperbolic. Typically,
one point of each type appears. But if the map is the q-th power of some other
map M̃ , with rotation number p/q, (p, q) = 1, then there are q fixed points of each
type under M , which are q-periodic under M̃ .

The structure of the islands is reminiscent of the phase portrait of a pen-
dulum, whose Hamiltonian is H(x, y) = y2/2 + cos(x) using suitable coordinates.
From a quantitative point of view (the width of the islands) we recall that the max-
imal distance between upper and lower separatrices in a pendulum with Hamilto-
nian H(x, y) = y2/2+ δ cos(x) is 4

√
δ. But we keep the presentation in the scaled

version, i.e., with the coefficient of the cosine equal to 1. The equations are ẋ = y,
ẏ = sin(x). One can think of a discrete model which, in the limit, behaves as
the pendulum. The simplest approach would be to use an explicit Euler method
with step h, which gives the map (x, y) → (x + hy, y + h sin(x)). Unfortunately,
that map is not an APM, but can be made symplectic using a symplectic Euler
method: (x, y) → (x̄, ȳ), ȳ = y+ h sin(x), x̄ = x+ hȳ. If we do not like to have the
parameter h in both variables, we simply replace hy by a new variable z, rename
z again as y, introduce k = h2, and we obtain

SMk :

(
x
y

)
→

(
x̄ = x+ ȳ

ȳ = y + k sin(x)

)
, (3.10)

a popular map known as a standard map [7]. It is clear that we can look at the
variables (x, y) in S×R or in T2. It has fixed points located at (0, 0), hyperbolic,
and at (π, 0), elliptic, that we denote again as H and E. Figure 3.8 displays the
phase portrait (in T2) for k = 0.5 and k = 1.

On the left-hand plot it is hard to see that the stable and unstable manifolds
ofH do not coincide. A study like the one in the invariant manifolds part of Section
3.2.1 reveals similar properties. But the strongest difference between these plots
is that in the left one there exist rotational ICs, that is, ICs going from the left
vertical boundary to the right one (in this representation; in fact these boundaries
are identified). These curves are absent in the right plot. Hence, if we consider the
map in S×R, there is no obstruction to the dynamics in the y direction for k = 1.
There are points with an initial value y ∈ [0, 2π) whose iterates can go arbitrarily
far away in the y direction (despite the fact that for that value k = 1 will require
many iterates).

The critical value up to which one has rotational ICs is the so-called Greene’s
critical value kG ≈ 0.971635; see [19]. The “last” rotational IC which is destroyed
has ρ = (

√
5 − 1)/2, the golden mean. This is not a surprise; it is the number in

(0, 1) with best Diophantine properties. The obstruction method using hyperbolic
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Figure 3.8: Phase portrait of (3.10). Left: for k = 0.5, still quite well ordered. Right: for
k = 1, already with a big amount of chaos. Beyond the main elliptic island around E
one can see several islands in both cases. The largest chaotic zone appears around the
invariant manifolds of H .

periodic orbits with rotation numbers of the form Fn−1/Fn and Fn/Fn+1, Fn being
the n-th Fibonacci number, plus a suitable extrapolation, allows us to determine
kG accurately. Note also that for k > kG but close to kG, the rotational IC with
ρ = (

√
5− 1)/2 is replaced by a Cantor set with “small holes”. This supports the

claim about the large number of iterates needed to have y far away from the initial
location. Renormalization theory [26, 27] provides the framework to understand
those things in detail. For large values of k the standard map has interesting
statistical properties. But they can be strongly affected by the role of the islands,
see [32].

On the other hand, the Hamiltonian H(x, y) = y2/2+cos(x) can be replaced
by more complex ones to obtain generalized standard maps. Adding terms in y3

and y cos(x) allows us to explain the asymmetry which can be seen in Figure 3.2,
right between the inner part and the outer part of the islands and the related
inner, and outer splittings of the manifolds of the associated periodic hyperbolic
points [52], in contrast with the symmetries of a pendulum. Replacing y2/2 by
−by+y3/3 allows us to reproduce a limit flow of the meandering curves, as shown
in Figure 3.4, and other more complicated changes give rise to labyrinthine ICs
with funny shapes [43].

3.2.3 Return maps: the separatrix map

A useful device to understand the dynamics when some hyperbolic invariant object
A has orbits homoclinic to it are the return maps. Assume that we have an initial
point in a given domain D close to a point homoclinic to A. Then it approaches
A under iteration, close to W s

A, and after the passage near A moves away, close
to Wu

A, and returns to D. Can we describe how the return is produced?
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To illustrate with an example we have used a modified Hénon–Heiles poten-
tial. In a pioneer example Hénon and Heiles in 1964 used a Hamiltonian with two
d.o.f. (a model of the motion of a star in a galaxy with cylindrical symmetry) [21].
The Hamiltonian they derived is

HH(x, y, px, py) = (x2 + y2 + p2x + p2y)/2 + x3/3− xy2, (3.11)

and a careful study of the behaviour of nearby orbits of the system (3.11) lead
to the detection of chaotic motion, giving evidence of the lack of integrability, a
fact that was proved theoretically later and that was relevant to face integrability
problems from an algebraic point of view; see [34] and references therein. Later on
the family with Hamiltonian HHc(x, y, px, py) = (x2+ y2+p2x+p2y)/2+ cx3−xy2

was introduced, and the case c = 0,

HHc=0(x, y, px, py) = (x2 + y2 + p2x + p2y)/2− xy2, (3.12)

that we shall use as illustration, presents some interesting particularities. Like
many other simple models it has a symmetry with respect to simultaneous change
of sign of y and t.

One can fix the value of the energy and use y = 0 as a Poincaré section. The
Poincaré map P has a fixed point H which corresponds to a hyperbolic periodic
orbit of (3.12). The invariant manifolds on HH−1

c=0(0.115) are shown in Figure 3.9.
There exist homoclinic points and the symmetry implies that the upper branch of
W s

H can be obtained from the lower branch of Wu
H .
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Figure 3.9: Left: the invariant manifolds (W u in red, and W s in blue) of the hyperbolic
simple periodic orbit of the modified Hénon–Heiles Hamiltonian located inside the domain
of admissible conditions on the Poincaré section y = 0, for the level of energy h = 0.115.
The variables displayed are (x, px). Right: a magnification of the upper part showing the
location of sections I , J , K, and L mentioned in the text. The periodic orbit appears
marked as H on the section.

Our goal is to describe the return to a suitable domain D as a model for a
general setting. In Figure 3.9 on the right there is a homoclinic point in the segment
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market as I, whose image under P is the segment marked as J . A suitable domain
can be a strip around the parts of the manifolds between I and J . Note that in
the present case, due to the symmetry, we consider in Figure 3.9 (right) only the
upper part in the (x, px) variables. It can happen that, after passage near H , a
point moves to the lower part. Hence, it is convenient to consider D as the union
of two strips, symmetric the one with the other, and that we can denote as D+

and D−, according to the sign of px, and define D = D+ ∪ D−.
In general, there is no symmetry and then D− is not obtained from D+

by symmetry, and even some of the branches of the manifolds can escape, as it
happens for (3.5).

If we take the part of Wu
H from H to the homoclinic point which appears

in J , followed by the part of W s
H between the homoclinic and H , and add the

symmetric part (on px<0) we have a figure-eight pattern which appears in many
problems. This occurs, e.g., in the manifolds of the hyperbolic fixed point of (3.10).
Looking at the map in S × R in suitable coordinates, one has also a figure-eight
pattern [53].

First we assume that a point is located in D+ below W s
H (the line in blue).

After passing close to H it will return to D+. We follow an elementary method
to find the return map. If the splitting is small enough we can assume that the
upper branches of the manifolds are coincident and consider a nearby integrable
map in the domain bounded by the branches of the manifolds. Let ϕt be the
flow of a Hamiltonian v.f. with one d.o.f. in (x, px) with Hamiltonian H such that
ϕ2π coincides with this integrable map. In particular, points in I move to points
in J under ϕ2π , and we can redefine the strip D+ as the set ∪t∈[0,2π]ϕt(I). The
manifolds W s,u

H under that Hamiltonian v.f. coincide and form the separatrix of
H. As additional variable in D+, transversal to that separatrix, we take the level
h of H, assuming H is positive inside the separatrix and equal to zero on it.

For concreteness, let us denote as λ the dominant eigenvalue of the differential
of the map ϕt=1 at H . It is clear that the dominant eigenvalue for ϕt=2π, close
to the one of the initial map, say μ, is λ2π and that for the Hamiltonian v.f.
is log(λ). If λ is close to 1 then log(λ) will be close to zero. For simplicity, we
denote log(λ) as λ∗. In terms of the dominant eigenvalue of the initial map one
has λ∗ ≈ log(μ)/(2π).

As all the orbits in the domain bounded by the separatrix are periodic under
the flow, when a point in D+ returns to it, it has the same value of h. But t has
changed by the period, which behaves like c − log(h)/λ∗, where c is a constant
(essentially equal to the time to go from section L to section K). The map would
be (t, h) → (t+ c− log(h)/λ∗ (mod 2π), h).

Now we return to our original map. The only change is due to the lack of
coincidence of W s

H and Wu
H . If we consider the variable h defined as an energy

with respect to Wu
H , when continuing the motion close to W s

H the energy should
be considered with respect to that manifold. There is a jump in energy due to
the splitting. Note that, using a normal form around H , it is possible to define in
a natural way an energy in a neighbourhood of this point, and to transport that
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function along both manifolds, by backward or forward iteration, see [11], and also
[50] in a general context. The two energies do not coincide in D+. The difference
is the jump just mentioned. Let us denote it as s(t) (it has a weak dependence
on h that we neglect). The simplest expression for s(t) is a sinusoidal oscillation
ε sin(t) which measures the location of Wu

H with respect to W s
H . Then the return

map becomes (
t
h

)
→

(
t̄ = t+ c− log(h̄)/λ∗ (mod 2π)

h̄ = h+ ε sin(t)

)
. (3.13)

It is clear that the map is not defined if h̄ = 0 because then the point is in W s
H .

On the other, hand we have not considered the case h < 0. Then the process is
similar, but we land on the lower domain D−. Beyond the variables (t, h) one has
to consider a sign σ equal to ±1 in D±. Using also the sign and renaming the
variables as ξ, η, with ξ ∈ [0, 2π) and η small, the map (3.13) becomes

SepM :

⎛⎝ ξ
η
σ

⎞⎠ →
⎛⎝ ξ̄ = ξ + c− log(|η̄|)/λ∗ (mod 2π)

η̄ = η + ε sin(ξ)
σ̄ = σ × sign(η̄)

⎞⎠ , (3.14)

a map known as a separatrix map. In a general case the jump ε sin(ξ) is replaced
by a function s(ξ). In the asymmetric cases one uses different jump functions
s±(ξ) according to σ. The parameter ε, related to the size of the jump or splitting
has, typically, exponentially small upper bounds as a function of some physical
parameter, like the energy in the case of system (3.12). But in other cases, if the
dominant eigenvalue at H tends to a constant λ0 > 1 when some parameter γ
tends to zero, it can be, simply, a power of γ.

For simplicity, we concentrate on the symmetric case and to points passing
only through D+. Then σ = 1 and we discard it in (3.14). Now we assume that η is
close to some fixed value, η0, write η = η0+ζ and log(η̄) = log(η0)+log(1+ζ̄/η0) ≈
log(η0) + ζ̄/η0, keeping only linear terms in ζ̄. This is a good approximation if
ζ̄/η0 is small. If we assume, also, that λ is close to 1, then λ∗ is small. In the
(ξ, ζ) variables the map becomes (ξ, ζ) → (ξ̄ = ξ + c1 + b1ζ̄ , ζ + ε sin(ξ)), where
c1 = c − log(η0)/λ

∗, b1 = −1/(η0 × λ∗), and we do not write explicitly that ξ
is taken mod 2π. Finally, define new variables u = ξ, v = c1 + b1ζ and the map
becomes (

u
v

)
→

(
ū = u+ v̄

v̄ = v + b1ε sin(u)

)
. (3.15)

Comparing (3.15) with (3.10) we see that they are identical if we set k = b1ε =
−ε/(η0 × λ∗). Therefore, we can expect to find invariant curves in the separatrix
map at a distance η0 > ε/(kG×λ∗) from the location of the invariant manifolds in
D+. A similar reasoning applies in the outer part, when the invariant curves make
the full turn around the figure eight. This gives also an estimate of the width of
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the zone with chaotic dynamics around the split manifolds. The estimate is quite
realistic if ε is very small and λ is close to 1. This occurs, for instance, in a case
like the Hamiltonian (3.12) because then, on a level of energy h, λ∗ and ε are,
respectively, of the order of h and exponentially small in h. See [47] for a study of
several cases, with different number of d.o.f., either resonant or not.

As final comments in this subsection one has to add that it is very important
to derive return maps in higher dimensions, like Hamiltonian systems with ≥ 3
d.o.f. or symplectic maps in dimension ≥ 4. But the formulas that one obtains
can be far from simple, due to quasiperiodicity and resonances. To derive, from
these return maps, bounds on the distance at which one can find invariant tori,
speed of diffusion, etc, is an open problem. See slides (J) for other open problems
associated to some classes of global bifurcations.

3.3 Some theoretical results, their implementation and
practical tools

In this section we recall some general results and also provide tools to make them
explicit.

3.3.1 A preliminary tool: the integration of the ODE, Taylor
method and jet transport

In the case of an analytic Hamiltonian (or general) v.f. like ẋ = f(t, x), x(t0) = x0,
(t0, x0) ∈ Ω ⊂ R× Rn or Ω ⊂ C× Cn, one should use integration methods of the
initial value problem for ODE. For instance, having in mind to compute Poincaré
iterates.

A quite convenient method is the Taylor method. That is, to obtain the
Taylor expansion x(t0 + h) for suitable values of h. If x(t0 + h) has components
xi, i = 1, . . . , n, we look for a representation

xi =

N∑
s=0

a
(s)
i hs, (3.16)

for suitable N, h, and use it as a one-step method. For further reference we denote

as a(s) the vector with components a
(s)
i .

The point is how to compute the coefficients of the expansion in an easy way
to high order. For a very large class of functions the evaluation of f can be split
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into simple expressions

e1 = g1(t, x),
e2 = g2(t, x, e1),

...
ej = gj(t, x, e1, . . . , ej−1),

...
em = gm(t, x, e1, . . . , em−1),

f1(t, x) = ek1 ,
...

fn(t, x) = ekn .

Each one of the expressions ej contains a sum of arguments, a product or quotient
of two arguments or an elementary function (like sin, cos, log, exp, √, . . .) of a
single argument. The basic idea is to compute in a recurrent way the power series
expansion (up to the required order) of all the ej. The gj have to be seen as
operations with (truncated) power series. Hence, we can proceed as follows:

(i) Input: t and the components of x0, that is, the coefficients of order zero in
(3.16).

(ii) Step s, s ≥ 0: from the arguments of gj up to order s we obtain the order
s terms of ej ; in particular for fj(t, x), which gives the order s + 1 for xj

(dividing by s+ 1). This is repeated up to the required value of N .

(iii) The values of N, h can be selected so that the truncation error
∑

s>N a
(s)
i hs

is bounded, for every component, by some small ε negligible in front of the
(unavoidable) round off error.

Under reasonable assumptions, like c1γ
s ≤ ||a(s)|| ≤ c2γ

s, 0 < c1 < c2,
(which implies radius of convergence ρ = 1/γ) in the limit when ε → 0, say ε =
10−d, with d large, one can take h such that the last term satisfies ||a(N)||hN = ε.
It turns out, concerning efficiency, that the optimal value of h tends to ρ×exp(−2)
(independently of the equation, and where ρ refers to the radius of convergence
around the current point x0), and N ≈ d log(10)/2 when ε → 0.

To carry out step (ii) above is immediate for arithmetic operations. As an
example for elementary functions we consider the case of powers, that we should
use to integrate (3.1). Let u(t) =

∑
s≥0 ust

s, u0 �= 0, α ∈ R, and we want to
compute v(t) = u(t)α =

∑
s≥0 vst

s. Then,

v0 = uα
0 , vs = − 1

su0

s−1∑
k=0

vkus−k[k − α(s − k)],

for s > 0, the determination being fixed by the one used for v0. This follows
easily from v(t) = u(t)α by taking logarithms and differentiation with respect to
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t. Similar recurrences can be obtained for any elementary function. If f contains
special functions (e.g., Bessel functions) it is enough to add the ODE satisfied by
these functions to the system to be integrated.

Computing to order N has a cost O(N2). This is true for the most expensive
elementary operations and functions, and it is the basis of the optimal estimates
given above, see [22] and slides (A).

In the autonomous case, to obtain the image of a point for a Poincaré map
P through a section Σ given by g(x) = 0 when g changes from < 0 to > 0,
assume that we have a time t∗ such that g(ϕt∗(x0)) < 0 and g(ϕt∗+h(x0)) > 0, for
the current value of h. Finding P(x0) reduces to solving a 1-dimensional equation,
g(ϕt∗+δ(x0)) = 0, for the variable δ. This is easily done by using Newton’s method.

Assume now that we look for a periodic solution. It can be written as a fixed
point of a Poincaré map: G(x0) = P(x0) − x0 = 0, for x0 ∈ Σ. Again this can
be solved by Newton’s method, but this requires that one knows the differential
map DP(x0). To this end we integrate, together with the v.f. f , the first order
variational equations Ȧ = Df(ϕt(x0))A, A(0) = Id. There are two points to take
into account, see [40]:

(i) The admissible variations of x0 should be confined to the tangent space to
Σ at that point. Furthermore, if the system has first integrals, like in the
Hamiltonian case, this gives additional constraints for x0 and the admissible
variations if we fix the levels of these integrals.

(ii) The return time to Σ depends on the initial point. If instead of leaving from
x0 we leave from x0 + ξ, ξ being an arbitrarily small admissible variation,
the landing time in Σ has to be corrected by terms O(||ξ||). This is relevant
to computing DP(x0).

In some cases (see Subsection 3.3.4) we can be interested in having an approx-
imation of the Poincaré map not restricted to first order terms in the variations
of x0 ∈ Σ, but to higher order: we would like to have the Taylor expansion of
P(x0+ ξ) to some given order in ξ. To this end, one can integrate the higher order
variational equations, restrict the domain of definition to Σ and to the levels of
the current first integrals, or proceed in a different, easier, way, using jet transport,
described along the following lines.

This can be also applied to obtain the image of a neighbourhood of a point
x0 under ϕt, to see how it depends on parameters (useful to analyze bifurcations),
etc.

Assume the initial conditions are x0 + ξ, where ξ are some variations and we
want to obtain ϕt(x0+ξ) at order m in ξ. It is enough to replace all the operations
described above to compute ej, in order to obtain the coefficients in (3.16), done
with numbers, by operations with polynomials in ξ up to order m. This applies to
arithmetic operations, elementary functions, special functions, etc. Hence, instead
of the vectors as of numerical coefficients in (3.16) we deal with tables containing
the numerical coefficients, up to order m, of n polynomials in the ξ variables.
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If we return to the case of the Poincaré map, we had to solve g(ϕt∗+δ(x0)) = 0,
for the variable δ. Now δ will depend on ξ, but this is not a problem for Newton’s
method. We simply apply it by replacing numbers by polynomials in ξ.

We remark that the jet transport can be implemented in an efficient way. It is
also possible to produce rigorous estimates of the tails at every step, and to obtain
intervals which contain the correct values of all the coefficients. This allows us
to convert a purely numerical simulation into a Computer Assisted Proof (CAP).
See, e.g., [24].

3.3.2 Normal forms

To study many systems, a useful trick is to try to reduce them to an expression
as simple as possible, according to the topics of interest. If we study a discrete
map around a fixed point, it would be nice to be able to reduce it to a linear
map. In general, this is not possible. Furthermore, we can be interested also in the
dependence with respect to parameters, to analyze possible bifurcations.

For concreteness we face a Hamiltonian in n d.o.f., in Cartesian coordinates,
around a fixed point (located at the origin) that we assume totally elliptic: the
eigenvalues are exp(±iωj), j = 1, . . . , n. In canonically conjugate variables (xi, yi),
i = 1, . . . , n, we write it as H =

∑
k≥2 Hk, where Hk denote the homogeneous

terms of order k and H2 =
∑n

i=1 ωi(x
2
i + y2i )/2. In principle, we try to make

a change of variables to cancel the terms Hk, k > 2. To keep the Hamiltonian
character of the v.f. we shall use canonical transformations. These can be easily
obtained as the flow of an auxiliary Hamiltonian, G, with respect to an auxiliary
time s until, say, s = 1. If you do not want to use a “so big time s = 1” simply scale
(x, y) → ε(u, v), divide the Hamiltonian by ε2 obtaining H2(u, v) + εH3(u, v) +
ε2H4(u, v)+· · · , and then the final value of s will be ε. But this is equivalent to the
previous approach. What makes the change close to the identity is the smallness
of (x, y), not the fact of using s = 1.

As we want to cancel, first, the terms in H3, we shall represent G also as a
sum of homogeneous parts, starting at order 3, G =

∑
k≥3 Gk.

To transform the function H under the change we write dH/ds = {H,G},
where

{H,G} =

n∑
i=1

∂H

∂xi

∂G

∂yi
− ∂H

∂yi

∂G

∂xi

denotes the Poisson bracket. Note that the bracket of homogeneous polynomials of
degrees d1 and d2 has degree d1 + d2− 2. Higher order derivatives are obtained by
doing, successively, the Poisson bracket with G once and again. Trying to cancel
(if it is possible to cancel) the terms Hk, k ≥ 3, we determine the homogeneous
parts Gk. But it turns out that to obtain these parts it is much simpler to use
complex coordinates. We introduce(

xi

yi

)
=

1√
2

(
1 i
i 1

)(
qi
pi

)
, i = 1, . . . , n.



192 Chapter 3. Dynamical Properties of Hamiltonian Systems

Then H2 becomes
∑n

j=1 iωjqjpj. The transformed Hamiltonian is

ϕG
s=1(H) = H + {H,G}+ 1

2!
{{H,G}, G}+ 1

3!
{{{H,G}, G}, G}+ · · · (3.17)

Assume we have determined Gj , j < m, and we want to cancel all the possible
terms to order m in (3.17). There are terms or order m in (3.17) which come from
Hm or involvingGj , j < m, which are already known and that we denote, together,
as Km. For definiteness, assume Km =

∑
a,b,|a|+|b|=mKa,b q

apb, where a denotes a

multiindex with n non-negative components ai, |a| =
∑n

i=1 ai, and qa = Πn
i=1q

ai

i ,
as usual. Similarly for b and pb. The only unknown part comes from Gm, that we
also write as Gm =

∑
a,b,|a|+|b|=mGa,b q

apb and we would like to have

0 = {H2, Gm}+Km =
∑

a,b,|a|+|b|=m

i (ω, b− a)Ga,b q
apb +

∑
a,b,|a|+|b|=m

Ka,b q
apb,

(3.18)
where (ω, b−a) denotes the scalar product

∑n
j=1 ωj(bj−aj). As Ka,b is known, one

easily determines Ga,b, provided (ω, b−a) �= 0. But it is clear that if bj = aj for all
j, then the term Ka,a must be left on the transformed Hamiltonian, independently
of ω. These are called the unavoidable resonances which appear at even orders.
Furthermore, if ω is resonant, i.e., there are integers cj , j = 1, . . . , n, such that
(ω, c) = 0, other terms should be kept in the transformed Hamiltonian when
b− a = c. These are the additional resonant terms.

The normalization process can be continued to any order. But, in general,
unless the Hamiltonian is integrable, the formal normal form is not convergent.
One can expect that it belongs to some Gevrey class (see the invariant manifolds
part in Section 3.2.1), but I am not aware of concrete general results in that
direction.

After we have transformed the Hamiltonian up to order M , we can skip the
terms of higher order and denote the contribution up to order M as HNFM , the
normal form to order M . We recall that a Hamiltonian system with n d.o.f. is
said to be integrable (in the Liouville–Arnold sense) if there exist n first integrals,
Fj , j = 1, . . . , n, an involution, {Fi, Fj} = 0, and functionally independent almost
everywhere. If ω is non-resonant then the HNFM is integrable, because one can
take Fj = qjpj , ∀j.

Now consider the resonant case. By construction, {H2, HNFM} = 0 and,
therefore, except in the degenerate case in which they are not independent, if
n = 2 one has HNFM integrable. In general this is not true if n > 2. The system
can be far from integrable even in a small vicinity of a totally elliptic point. But
it can take a long time to have numerical evidence of the existence of chaos, even
if it occurs for most of the initial conditions.

A celebrated theorem by Arnold says that, for an integrable system, if the
set of points in the phase space corresponding to fixed values of the first integrals
F−1
1 (c1) ∪ F−1

2 (c2) ∪ · · · ∪ F−1
n (cn) is compact, then it is an n-dimensional torus
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Tn. Around a given torus one can introduce the so-called action-angle variables
(I, ϕ), I ∈ Rn, ϕ ∈ Tn. The integrable system can be written, then, as depending
only on I: H = H0(I), the integration is elementary and the frequencies on the
given torus have the expression ωj = ∂H0/∂Ij |F=c, j = 1, . . . , n. If the system is
perturbed to H = H0(I) + εH1(I, ϕ) we can study how the properties of H0(I)
change under the effect of the perturbation. See Subsections 3.3.3 and 3.3.5 in this
direction.

But we want to point out that it is also possible to try to produce a normal
form for the perturbed Hamiltonian around the given torus if the frequencies on
it, ωj , satisfy a non-resonant condition. This can push the perturbation to higher
order in ε, making easier the applicability of general results.

Up to now we have considered, around a fixed point, the totally elliptic case.
If the quadratic termH2 contains some hyperbolic partH2 =

∑ne

i=1 ωi(x
2
i +y2i )/2+∑n

j=ne+1 λjxjyj , one can use similar ideas to obtain approximations of the central
manifold and of the Hamiltonian reduced to it. We return to this in Subsection
3.3.4.

3.3.3 Stability results: KAM theory and related topics

There is a natural generalization of the idea of twist map to higher dimension.
Consider a map T defined, in suitable coordinates, in a product of n annuli, with
radii ri ∈ (rd,i, ru,i), 0 < rd,i < ru,i, i = 1, . . . , n, of the form T (r, α) = (r, α+a(r)),
where r ∈ R = Πn

i=1(rd,i, ru,i) has components r1, . . . , rn, α ∈ Tn and a is a map
from R to Rn which can be denoted as translation. The map T is an integrable
symplectic map, and R × Tn is foliated by tori invariant under T . Nothing else
but what we saw for (3.7) in the part about ICs in Section 3.2.1.

The differential of the translation with respect to the radii, Dra(r) is known
as torsion.

Then the KAM theorem for symplectic maps has the following statement,
completely analogous to Theorem 3.2.1.

Theorem 3.3.1. Consider a perturbation Fε = T + εP of the integrable symplectic
map T in R×Tn, and assume that for r = r∗ the vector a(r∗) satisfies a DC, that
the torsion is non-degenerate and ε is small enough. Then the map Fε has also
invariant tori in Tn, close to r = r∗, and on them the action of Fε is conjugated
to the one of T on r = r∗, that is, a translation by a(r∗).

In the present case, the DC is slightly different from the one in (3.3). Beyond
the translations ai(r), i = 1, . . . , n, one has to add the value 1, as it is obvious
thinking on the suspension. So, it reads as∣∣∣∣∣(

n∑
i=1

ki, ai) + k0

∣∣∣∣∣ ≥ b|k|−τ , ∀k ∈ Zn+1 \ {0},

where k denotes now (k1, . . . , kn, k0). The role of the DC, the non-degeneracy of
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the torsion, is analogous to the twist condition, and the smallness of ε plays the
same role.

A result similar to Theorem 3.3.1 holds in the case of Hamiltonian systems.

Theorem 3.3.2. Let H0(I) be an integrable Hamiltonian, for which there exist
invariant tori, and assume that for some given torus, labelled by I∗, the frequen-
cies ω(I∗) = ∂H0(I)/∂I|I=I∗ satisfy a DC (in the sense of (3.3)) and are non-
degenerate, so that the differential ∂ω/∂I|I=I∗ is regular. Then if ε is small enough,
a perturbed Hamiltonian H(I, ϕ) = H0(I) + εH1(I, ϕ, ε) has a nearby invariant
torus with the same frequencies.

These results usually do not give estimates on how small ε should be or, if
any, they are very pessimistic. However, normal form techniques (see Subsection
3.3.2) can help to start the iterative process in a very good approximation, so that
the difference with the initial guess and the true torus, if it exists, is sufficiently
small.

For the effective computation of invariant tori there exist different methods.
A quite classical method is the Lindstedt–Poincaré (LP) method. In principle,

it is formal because one looks for the invariant tori without paying too much
attention to the DC (despite the fact that this can also be implemented). Assume
that we look for 2D tori around a totally elliptic point (assumed to be located
at the origin) in a Hamiltonian system with n = 2 d.o.f. Let ω1(0), ω2(0), be the
frequencies at the fixed point. The linear system will have, for the q, p variables,
a representation as linear combinations of cos(ω1(0)t+ ψ1) and cos(ω2(0)t+ ψ2),
where ψ1, ψ2 represent some phases, and these terms have amplitudes α1, α2. Due
to symmetries and the freedom to select the origin of time, the phases for the
different variables can be put in simple form.

We wish to satisfy the equations q̇ = ∂H/∂p, ṗ = −∂H/∂q by expanding in
powers of the amplitudes α1, α2 and integration of the coefficients of these powers
with respect to time. However, it turns out that at some order we can find on the
right-hand side of the equations terms which are not purely quasiperiodic, i.e.,
they are constant. The solution consists in allowing the frequencies to depend also
on the amplitudes. So ωi = ωi(0) +

∑
j1,j2

ci,j1,j2α
j1
1 αj2

2 , i = 1, 2, and a suitable
choice of these ci,j1,j2 coefficients cancels the constant terms.

An often used method is based in writing the coordinates of the points of the
unknown torus as Fourier series in some angles, and then imposing the invariance
conditions. For concreteness we consider the case of symplectic maps. The flow
case can be reduced to this one via a Poincaré map. Assume that we look for a
d-dimensional torus in which the dynamics is conjugated to θ → θ+α, for θ ∈ Td

and a translation vector α ∈ Rd satisfying the DC. Let x be the coordinates in
the phase space and F the discrete map. The invariance condition is

F (x(θ)) = x(θ + α). (3.19)

It is clear that one has freedom to select the origin of the angles θi and that
eventual symmetries can reduce the number of coefficients to be determined.
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To begin with the process, we can assume that we have obtained some ap-
proximation by direct numerical simulation, or that we start near a fixed (or
periodic) point and use the linear approximation or an approximation obtained
by an LP method. If we are interested in a family of invariant tori, one can use
continuation methods, but taking into account that the values of α should sat-
isfy the DC. Hence, there will be gaps in the family, despite the fact that they
can be very small in some cases. Let c denote, generically, the coefficients of the
Fourier expansion, truncated at a suitable order. From a grid of values of θ one
can obtain initial values of x. They are mapped to F (x) and the images can be
Fourier analyzed to obtain the new Fourier coefficients ĉ. Let L be the action of the
translation by α on the initial Fourier coefficients. According to (3.19), we should
require L(c) − ĉ = 0. This is the equation that follows from (3.19) and has to
be solved, usually by Newton’s method. The differentials of the Fourier synthesis
and analysis are elementary and the one of F can be obtained by computing DF
(this can be, typically, the differential of a Poincaré map). See [23] for an efficient
implementation with similar and extended ideas, which works even with a very
large number of harmonics.

The number of harmonics to be used depends on the shape of the torus. One
can use in the grid in θ (and, therefore, in x) a number of points larger than the
number of components of c. In that way one can check the behaviour of coefficients
in ĉ which have not been used as c coefficients in the representation of the solution
we search, and see if they can be neglected. Otherwise, one increases the number
of harmonics. This can be done at successive iterations of Newton’s method in a
dynamic way.

It is also possible not to fix α a priori and determine it together with the
coefficients c. Note that, in case α is close to resonant, one can have convergence
problems. For other quite different problems, like looking for invariant tori in PDE,
this method requires a huge number of Fourier coefficients if the discretisation
dimension is large. Other methods, working directly in the phase space like the
synthesis of a return map, see [39, 42], can give the desired results.

There is a fact, concerning invariant tori and which applies also to the compu-
tation of some periodic orbits, which can produce difficulties. This is the instability
present in partially normally hyperbolic tori or, in a simpler case, in linearly un-
stable periodic orbits. Given a point x, and assuming it approximately located
in an invariant torus, the instability can produce that F (x) is far away from the
torus. This produces convergence problems.

The solution consists in using parallel shooting. Instead of taking a single
Poincaré section, say Σ, one can use several of them, say Σ0 = Σ,Σ1,Σ2, . . . ,Σm−1,
and the corresponding partial Poincaré maps :

P1 : Σ0 → Σ1, P2 : Σ1 → Σ2, . . . Pm : Σm−1 → Σ0.

Hence, the full Poincaré map can be written as P = Pm ◦ · · · ◦ P2 ◦ P1. Then
we look for Fourier representations in each one of the intermediate sections. This
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produces a much larger set of equations, but it has the advantage that each one
of the partial maps Pj is much less unstable.

In the case of highly unstable periodic orbits things are simpler. We only need
one point in each intermediate section, say x0 ∈ Σ0, x1 ∈ Σ1, . . . , xm−1 ∈ Σm−1.
The conditions are simply P1(x0)−x1 = 0, P2(x1)−x2 = 0, . . . , Pm(xm−1)−x0 =
0. The system to be solved is large but the differential has a simple block structure
and the condition number is much better.

3.3.4 Invariant manifolds

Another basic ingredient of the dynamics are the invariant manifolds. In contrast
with the tori of maximal dimension, responsible for the regular behaviour, the
invariant manifolds are, typically, responsible for the chaotic part of the dynamics.
We comment first on invariant stable and unstable manifolds of fixed points of
APM F . The components will be denoted as F1, F2.

Assume a fixed point is located at the origin with dominant eigenvalue λ >
1, and having an unstable linear subspace Eu and a stable one Es. Then the
unstable manifold Theorem ensures the existence of an unstable manifold Wu

loc
in

a neighborhood of the origin, invariant under F , tangent to Eu at the origin and
such that for a point p on it, the iterates under F−1 tend to the origin. In fact,
only the points in Wu

loc
remain on the neighborhood for all iterations. This is a

local result. Then the global unstable manifold Wu is obtained by iteration of Wu
loc

under F . A similar result gives the stable manifold, obtained by exchanging F and
F−1. In the analytic case, as we assume, the manifolds are analytic.

Let u and s be local coordinates along the unstable and stable eigenvectors.
For the linear map DF , the manifold Wu is just s = 0. We can try to find a
representation of Wu for F as the graph of a function: s = g(u) =

∑
j≥2 aju

j .
The invariance condition reads F2(u, g(u)) = g(F1(u, g(u))). The coefficients aj
are determined in a recurrent way by identifying the left-hand and right-hand
coefficients of uj .

An alternative representation of Wu is the parametrization method. Let us
use z as a parameter. In the linear case, a point with u = z is mapped to u = λz.
Now it is not necessary to use coordinates adapted to the eigenspaces. If we use
(x, y) as coordinates around the fixed point and represent the parametrization as
(p1(z), p2(z)), the invariance condition is simply

F (p1(z), p2(z)) = (p1(λz), p2(λz)). (3.20)

That is, we look for a conjugacy on the manifold between F and its linear part.
We search now for the parametrization as p1(z) =

∑
j≥2 ajz

j , p2(z) =
∑

j≥2 bjz
j

in (3.20). Note that the parametrization can be normalized so that the vector of
coefficients of order 1 has Euclidean norm equal to 1. As before, the coefficients of
order j > 1 are obtained in a recurrent way. This is the method used for many of
the examples displayed before.
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A first practical question, given a parametrization to order N (a similar
question can be posed for the graph method), is up to which value of z, say zmax,
one can use the representation. The idea is quite simple: given a tolerance ε we
can compute the point B of parameter z and also the point A of parameter z/λ.
One should have F (A) = B, according to (3.20). Hence, we can check up to which
value of z one has ||F (A)−B|| < ε. This gives the admissible domain for z. Then,
a fundamental domain FD is parametrized by z ∈ (zmax/λ, zmax]. Any point on
the manifold can be found as an iterate of a point in FD. A similar domain, with
z < 0, has to be found for the other branch of the manifold.

To obtain points in the manifold for z > zmax we simply divide the current
parameter by λ as many times as required until a value less than zmax is obtained.
Assume one has to divide k times. Then we compute the point of parameter
z/λk and iterate it k times under F . In this way it is possible to reach points
away from the fixed one, to detect foldings of the manifold, to reach the vicinity
of a homoclinic or heteroclinic point, etc. The selected values of z at which the
computation is done can be chosen to satisfy conditions such as having the distance
between two consecutive points in Wu or the angle between three consecutive
points below some prefixed values.

Why do we need approximations beyond the linear one? The answer depends
on the purpose. If we want to produce a long part of the manifold and, especially,
if λ is close to 1, we can require many iterates. On the other hand, if F is not
given explicitly but follows from a Poincaré map, we need jet transport to have
a local Taylor expansion. In any case, there is an optimal choice to obtain the
“cheaper order” (cheaper can mean in terms of CPU time, of personal time, or a
combination of both).

If we are interested in locating a homoclinic point, and no symmetry is avail-
able for this, the problem reduces to finding two parameters, zu and zs, and well as
two integers, ku and ks, to be used for the unstable and stable manifolds, respec-
tively, such that F ku(pu(zu)) = F−ks(ps(zs)), where pu, ps denote the respective
parametrizations. It is possible to find suitable values of ku, ks and then to solve
for zu, zs using Newton’s method. A similar method can be used for heteroclinic
points, for tangencies, etc.

The ideas are similar in higher dimension. One can look for d-dimensional
invariant manifolds, d > 1, using either graph or parametric methods. This is
specially necessary, for instance, if we look for an unstable manifold with quite
different eigenvalues. A low order representation will take the initial points along
the direction of the maximal eigenvalue. Beyond using high order local expansions,
to decrease the problem, one can use different devices depending on the problem.

To look for the invariant unstable manifold of an invariant curve in a symplec-
tic 4D map, a parametrization using a parameter z, which measures the distance
to the curve, and an angle θ along the curve are useful. The fundamental domain,
in that case, is diffeomorphic to an annulus. See an example in Subsection 3.4.2
in a different context, and another one in Subsection 3.4.5 concerning a family of
invariant curves.
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The idea extends to any dimension with increasing complexity. See [2, 3, 4]
for a nice global approach.

A different problem appears when we consider symplectic maps in dimension
4 (or higher) or problems reducible to them. Consider again the case of a fixed
point but assume that, together with an eigenvalue λ > 1 and its inverse, there
is a couple of eigenvalues of modulus 1. They give rise to the centre manifold of
the point. In general, when we consider a given neighborhood of the point, the
manifold has some degree of differentiability which depends on the neighborhood.
Furthermore, there is no uniqueness in general.

The difficulty comes from the fact that the dynamics on that manifold is
not known. It can contain, simultaneously, invariant curves, periodic points and
chaotic zones. It is said to be a normally hyperbolic invariant manifold (NHIM) if
the hyperbolicity normal to the manifold is stronger than the hyperbolicity that
can be found inside the manifold.

One can recur to normal forms to obtain an approximation of all the dynamics
around the point and, in particular, the centre manifold. A similar idea is to use
a partial normal form, see [42]. Assume we have a Hamiltonian

H = λq1p1 +
1

2
ω1(q

2
2 + p22) +

1

2
ω2(q

2
3 + p23) +

∑
k≥3

Hk(q1, q2, q3, p1, p2, p3), (3.21)

where, as usual, Hk denotes a homogeneous polynomial of degree k.
We proceed as in the case of normal form above, but trying only to cancel all

the terms such that the total degree in (q1, p1) is equal to 1. Using again complexi-
fication, as in the case of the normal form, for the couples (q2, p2) and (q3, p3), the
current denominators to obtain the successive terms in the Hamiltonian G used
to transform H are of the form

(k1 − l1)λ+ i (k2 − l2)ω1 + i (k3 − l3)ω2,

with modulus bounded from below by |λ|, even if ω1 and ω2 are resonant. It is clear
that, denoting the new variables as Q1, Q2, Q3, P1, P2, P3, if we set Q1 = P1 = 0
this is the desired centre manifold. Hence, setting these variables to zero we have
a Hamiltonian with two d.o.f., which gives the reduction to the centre manifold of
the initial Hamiltonian. The process is formal, there is no convergence in general,
but one can obtain a good approximation in a suitable domain. One can check
up to which distance of the fixed point the approximation satisfies some tolerance
condition. See [42] for an example around the collinear point L2 in the spatial
circular restricted three-body problem.

3.3.5 Instability, bounds and detection

In the case of a Hamiltonian with n ≥ 3 d.o.f., in principle, there is no way to avoid
diffusion. The maximal dimensional tori have dimension n, that is, codimension n−
1 in a fixed level of energy, and they do not separate the phase space. For instance,
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initial conditions as close as we like to L4,5 in the spatial circular restricted three-
body problem (see the beginning of Section 3.4), which are totally elliptic fixed
points, can go far away from these points. But normal forms, or averaging, lead
to the so-called Nekhorosev estimates [37], showing that one needs an extremely
large time if one starts close enough to the libration point. See also [14] for a rather
detailed approach. Similar things happen for (2n−2)-dimensional symplectic maps.

Consider a perturbation H(I, ϕ) = H0(I) + εH1(I, ϕ, ε) of an integrable
Hamiltonian H0. The basic idea of the bounds is similar to the averaging Theo-
rem 3.1.1, trying to cancel, around an arbitrary torus labelled by the action I∗,
the dependence with respect to ϕ. But now the frequencies of the unperturbed
Hamiltonian ω(I) = DH0 may not satisfy the DC and, on the other hand, the
perturbation will produce that the frequencies change. Hence, the passage through
resonances or through other frequencies not satisfying the DC is unavoidable.

First one should examine what is the effect of a resonance. We refer to Sub-
section 3.2.2 where we commented on the width associated to a pendulum like
structure. A perturbation O(ε) can give rise to variations O(

√
ε) due to the pres-

ence of a simple resonance. This happens if the frequencies change, reach a res-
onance and then go away from it. But then one can put the following question.
Assume that in the variation of some action there is a term, due to the perturba-
tion, like İj = ε cos((k, ϕ)), where (k, ϕ) is a linear combination of the angles, and
the related combination of the frequencies satisfies (k, ω) = 0. One expects that
the frequencies will change with time and one will escape from resonance, but it
can happen that the frequencies are locked at resonance up to order m for some

m > 0. That is, dk

dtk
(k, ω) = 0 for k = 0, 1, . . . ,m, and dm+1

dtm+1 (k, ω) �= 0. Then,
during a long time, the term cos((k, ϕ)) will be close to constant and the action
can change by a large amount. If the locking occurs at all orders, the change in Ij
will be O(εt). To prevent this locking is why Nekhorosev introduced the so-called
steepness condition, which prevents the order of the locking exceeding a maximal
value. Then one has the Nekhorosev result: under steepness of some order, the
variation of the actions ||I(t) − I(0)|| does not exceed a bound O(εb) during a
time interval |t| < O(exp(cε−a)), where the positive constants a, b, c depend on
the order of steepness and properties of H0, assuming that the norm of H1 is
bounded.

Around a given point, or a given torus (in particular, a periodic orbit) it can
happen that there are many KAM tori. The above description of the Nekhorosev
estimates puts a bound on how fast escap from the vicinity of these tori can be.
Typically, one refers to this fact as stickiness of the invariant tori. Perhaps the
escape is so slow that it has no relevance during the time interval in which we are
interested, or even during the period of validity of the model. This suggests that
we introduce the concept of practical stability. Assume that the studied object has
I = I∗. Then, for fixed values of (ε, T ), where ε is moderately small and T is large,
we say that there is (ε, T )-practical stability if there exists ρ = ρ(ε, T ), such that
points with initial conditions at t = 0 satisfying ||I(0)− I∗|| < ρ evolve with time
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satisfying ||I(t) − I∗|| < ε for all t ∈ [0, T ]; that is, we require stability only for
finite time. See [14].

Clearly, for any v.f. with Lipschitz constant L, (ε, T )-practical stability is
found if ρ ≤ ε exp(−LT ), as follows from Gronwall’s Lemma. But this gives ex-
tremely small values of ρ, completely useless for any practical application. More
realistic values would be ρ = 0.01 for ε = 0.02 and T = 109, depending on the
practical example in mind. See, e.g., [9] for a nice approach to KAM and practical
stability simultaneously.

Another relevant point is how to detect the existence of chaos and quantify
it in a concrete example. There are many different approaches. We comment on
the Lyapunov exponents.

To measure the instability properties of a fixed point (of a continuous or
discrete system) it is enough to look at the differential of the v.f., or of the map
at that point. How to proceed for a general orbit? The idea is to look for the
rate of increase (if any) of the distance between the orbits of nearby points. In
the limit, this becomes the rate of increase of an initial displacement, ξ, under
the differential of the iterates of the map or under the action of the first order
variational flow. For concreteness we consider the case of discrete maps.

Let x0 be an initial point on a manifold M on which it acts a map F , and let
x1 = F (x0), . . . , xk = F (xk−1), . . . be the orbit of x0. We can define, if it exists,

Λ = sup
ξ

lim
k→∞

log(||DF k(x0)ξ||)
k

, (3.22)

where ξ is taken from the vectors with unit norm ||ξ|| = 1 in Tx0M, the tangent
space to M at the point x0. One can prove that the limit in (3.22) exists for
almost every x0 ∈ M and for almost every ξ ∈ Tx0M, and it is known as maximal
Lyapunov exponent.

In the Hamiltonian case (or in the symplectic one) it is easy to prove that,
for initial points in invariant tori of maximal dimension, the limit exists and is
equal to zero. Typically, ||DF k(x0)ξ|| behaves linearly in k in that case, which
gives the desired limit. For generic unstable orbits one expects positive values
of Λ. The geometrical reason is clear: every time that the iterates pass close to
an hyperbolic object, the unstable component will increase at a geometric rate.
For an integrable system, if, for instance, unstable and stable manifolds coincide,
when returning near the hyperbolic object, this expansion is canceled due to the
iterations which occur close to the stable manifold. But the existence of transversal
homoclinic (or heteroclinic points) prevents this from occurring.

One of the basic questions is how to have an estimate of the limit. In practice
the number of iterations should be finite (and there is also the effect of round off,
which is another issue). A simple approach is to proceed to the computation in
(3.22) using a different presentation. Let us define the Lyapunov sums as follows.
Let x0, ξ0 be the initial point and vector, and set S0 = 0. Then, at the k-th iterate,
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we use the following algorithm:

xk = F (xk−1), ηk = DF (xk−1)ξk−1, ξk = ηk/||ηk||, Sk = Sk−1 + log(||ηk||).
(3.23)

Hence, we normalize the tangent vector after every step and add the log of the
normalization to the current value of the sum S. It is clear that the limit slope of
Sk, as a function of k, should coincide with Λ, as defined in (3.22). Hence, we can
proceed as in (3.23) and, from time to time (say, after mN iterates, m = 1, 2, . . .),
fit a line to three different subsamples of the current sample (e.g., last 30%, last
50% and last 70%) and accept the average of the slopes as value of Λ if they
differ by less than a prescribed tolerance. Otherwise, keep iterating until the next
multiple of N , provided this does not exceed a maximal value.

A problem is that, in case Λ = 0, the convergence can be slow; for instance,
log(k)/k is below 10−5 only for k ≥ 1, 416, 361. An alternative approach, which
tends in a faster way to the limit and also smoothes out the oscillations due to the
quasiperiodic effects (in the case of orbits), can be found in [8]. One can look for
the systematic use of that method in [25] for a family of 2D symplectic maps in
S2. Another idea, if one is interested only in deciding whether the orbit is regular
or chaotic, is to stop computations and consider the orbit as chaotic if Sk exceeds
some threshold.

3.4 Applications to Celestial Mechanics

In this section we present several applications to illustrate theoretical and com-
putational approaches to simple examples in Celestial Mechanics. One can have a
look at slides (C), concerning the role of dynamical systems in Celestial Mechan-
ics. Most of the applications deal with the restricted three-body problem (RTBP).
We shortly recall it.

The RTBP studies the motion of a particle P3 of negligible mass under the
gravitational attraction of two massive bodies, P1 and P2, of masses m1 and m2,
respectively. They are known as primaries or as primary and secondary. We assume
that the primaries move in a plane along circular orbits around their centre of
masses.We can normalizem1+m2 = 1 and d(P1, P2) = 1 and express the dynamics
in a rotating frame (the so called synodical frame) with unit angular velocity. The
problem depends on a unique parameter μ = m2. In this frame P1 and P2 are kept
fixed at (μ, 0, 0) and (μ− 1, 0, 0).

The equations of motion are

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy, z̈ = Ωz, (3.24)

where

Ω(x, y, z) =
1

2
(x2 + y2) +

1− μ

r1
+

μ

r2
+

μ(1− μ)

2
,
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r21 = (x− μ)2 + y2 + z2, and r22 = (x+ 1− μ)2 + y2 + z2. The function

J(x, y, z, ẋ, ẏ, ż) = 2Ω(x, y, z)− (ẋ2 + ẏ2 + ż2)

is a first integral, its value being known as Jacobi constant and it is usually rep-
resented as C. The related 5D energy manifolds are defined as

M(μ,C) =
{
(x, y, z, ẋ, ẏ, ż) ∈ R6|J(x, y, z, ẋ, ẏ, ż) = C

}
(3.25)

and their projections on the configuration space are known as Hill’s regions,
bounded by the zero velocity surfaces (ZVS) (the zero velocity curves, ZVC, in
the planar case).

The problem has five equilibrium points (also known as libration points):

(i) Three of them, say L1, L2 and L3, are collinear (or Eulerian) on the x-axis, of
centre×centre×saddle type and, hence, they have a 4D centre manifold which
contains the so-called horizontal and vertical periodic orbits of Lyapunov type
(to be denoted as hpoL and vpoL), invariant 2D tori and other periodic orbits
(like the halo orbits, depending on the value of C), as well as chaotic regions.

(ii) Two of them, say L4 and L5, are triangular (or Lagrangian) at x = μ− 1/2,
y = ±√

3/2, z = 0. The term μ(1− μ)/2 in Ω is added to have C(L4,5) = 3.
Let μj be the value of μ for which the ratio of frequencies in the plane,[
(1± (1 − 27μ(1− μ))1/2)/2

]1/2
, is j. The points are totally elliptic for 0 <

μ < μ1 = (9 − √
69)/18 and the 2:1, 3:1 resonances (leading to instability)

show up for μ2 = (45−√
1833)/90 and μ3 = (15−√

213)/30. Associated to
the planar frequencies there are the so-called short and long period periodic
orbits. The vertical frequency, giving rise also to a family of vpoL, is equal
to 1.

3.4.1 An elementary mission around L1

First we consider the planar case. Assume that P1 and P2 are Sun and Earth,
respectively. The distance between them, 1.5×108 km, and the period, 1 year, are
scaled to 1 and 2π units, respectively, as said before and we take μ = 3.0404326×
10−6 (it includes Moon’s mass). We want to carry out the following steps:

(i) Compute a periodic orbit of the system, around the Earth, with a period of
1 day (a geostationary orbit) and check that it is close to circular. Call it
PO1.

(ii) Compute some periodic orbits around L1 (of the hpoL family), which are
symmetrical with respect to the x-axis. Check that they are unstable. We
call them, in general, PO2.

(iii) Compute the left branches of the stable manifolds of the previous orbits until
they reach some suitable value of x (e.g., x = −0.999).
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(iv) Now assume an spacecraft is moving in the “parking” orbit PO1. At some
point of the orbit we give an impulsion Δv, in the direction of the velocity
at that point, with the goal of reaching a point of the stable manifold of one
of the hpoL. Determine the hpoL which are reachable in that way from the
parking orbit, at which place one should give the impulsion and which is the
size Δv.

This allows us to obtain an elementary approach to a space mission. Later,
one can consider the effect of perturbations of other bodies, the separate effects
of Earth and Moon, change to a non-planar target orbit, the fact that the target
orbit is, approximately, quasiperiodic instead of periodic, to optimize with respect
to fuel consumption and with respect to transfer time from departure to a vicinity
of the target orbit, etc. For information about the methodology for the design and
control of missions around libration points see [15, 16, 17, 18]. We detail the steps
to find the solution in the present example.

Step 1: First we compute a periodic orbit around the Earth with period τ =
2π/366.25. We start with initial data (x0, 0, 0, ẏ0) and require ϕτ (x0, 0, 0, ẏ0) =
(x0, 0, 0, ẏ0). In fact, it is much simpler to ask for the image at t = τ/2 to be of the
form (x1, 0, 0, ẏ1), and then symmetry completes the task. We have two known data
x0, ẏ0 and two conditions y1 = 0, ẋ1 = 0. After a few attempts one can use New-
ton’s method to find the solution x0 ≈ −0.999714471273, ẏ0 ≈ 0.103463316596.
One can check that the monodromy matrix has a double eigenvalue equal to 1
(as expected: energy preservation and time shift) and the other eigenvalues are
exp(±αi ), α ≈ 0.034228998. The difference with respect to a circular orbit is less
than 350 m. For further reference we denote this orbit as γ(t).

Step 2: Now we face the hpoL around L1. First we locate L1 by imposing Ωx = 0
as it follows from (3.24). Starting at x = μ − 1 + (μ/3)1/3, Newton’s method
converges quickly for μ small. Then we can compute the eigenvalues at that point,
which turn out to be λ, λ−1, exp(±ωi ), with λ ≈ 2.532659199, ω ≈ 2.086453579.
Hence, the maximal eigenvalue of the nearby periodic orbits, when they tend to
L1, is exp(2πλ/ω) ≈ 2052.671203.

This large instability suggests, again, that we look for the initial data for the
hpoL on the Poincaré section y = 0 for a fixed x0 with ẋ0 = 0, and leaving ẏ0
as the only unknown variable. The condition to be satisfied is then that the next
intersection with y = 0 (to the left of L1) should have ẋ = 0. This is easily solved
by Newton’s method. From the half orbit we recover the full orbit by symmetry,
the monodromy matrix and, hence, dominant eigenvalue and eigenvector. The
instability becomes milder when the size increases. For instance, for the smallest
orbit in Figure 3.10 on the left the dominant eigenvalue is 2050.987058, while the
largest one is 923.004416. Standard continuation techniques are used to generate
these orbits.

Step 3:With the previously computed data it is simple to produce the left branches
of the stable manifoldsW s,−

PO of the hpoL until they intersect the value x = −0.999.
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Figure 3.10: Left: some orbits in the family hpoL around L1. The initial values of x,
on y = 0, are of the form xL1 + k × 10−4 for k = 1(1)22. Right: For some of the
orbits, concretely for k = 6(4)22, we plot also the left branches of W s

POk
until they reach

x = −0.999. In both plots the variables x, y are shown.

It is enough to use the linear approximation of the manifold in the Poincaré section
y = 0. An example is shown in Figure 3.10 to the right. To compute the manifolds
200 points have been taken in a fundamental domain, equally spaced in logarithmic
scale. The intersections for the orbits with k = 8(2)22, i.e., for the indices ranging
from 8 to 22 with step 2 (see Figure 3.10) are shown in red in Figure 3.11 on the
right, using y, ẏ as variables.

Step 4: The last step is how to reach W s,−
POk

for a given k leaving from the parking
orbit. It is suggested to give an impulsion Δv from a given point γ(t∗) in the
orbit, in the direction of the velocity γ̇(t∗) at that point. The first question is to
compute what is the size of the new velocity. We simply require that the value
of the Jacobi constant with this velocity equals the one of the target POk. Let
|v| be the modulus obtained for this velocity. Then, Δv = |v| − |γ̇(t∗)|, and the
components of the new velocity are proportional to the ones of γ̇(t∗). This allows
us to compute the trajectories ψ(t, t∗) leaving from the parking orbit until they
reach x = −0.999. Depending on t∗ it can happen that ψ(t, t∗) reaches x = −0.999
or it goes first far away to the left, spending too much time. These trajectories
are skipped. A sample of the possible ψ(t, t∗) trajectories for several t∗ values is
shown in magenta in Figure 3.11 on the left, where the parking and target orbit
(with k = 14) are in red, and W s,−

PO14
is shown in blue.

Finally, on the right-hand part of Figure 3.11 we show, in the (y, ẏ) variables,
the information that has been obtained in x = −0.999: the intersections of W s,−

POk

for k = 8(2)22, in red, and the intersections of ψ(t, t∗) when one changes t∗, for
the Jacobi levels of POk, k = 10(4)22, in blue. The intersections of a given red
curve with the corresponding blue one are the candidates for the transfer. The
values of Δv are quite close. They range from 0.040286 for k = 10, to 0.041246 for
k = 22 (i.e., impulsions ranging from 1.203 to 1.232 km/s).
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Figure 3.11: Left: The parking orbit and an example of a possible target hpoL (with
k = 14), both in red, the branch W s,−

PO14
in blue, and some of the possible trajectories

ψ(t, t∗) departing from the parking orbit (see text) in magenta. Plot done using x, y
variables. Right: The intersections of W s,−

POk
for k = 8(2)22 with x = −0.999, in red, and

the intersections with the same plane of ψ(t, t∗) for different values of t∗ on the Jacobi
levels of POk, k = 10(4)22, in blue. Note that these four blue curves are quite close and
similar. The possible places for the transfer are the intersections of a W s,−

POk
curve with

the corresponding blue curve. They are marked in magenta. For each k shown here two
possible places are obtained. This plot is done using y, ẏ as variables.

3.4.2 Escape and confinement in the Sitnikov problem

This is an example to study escape/capture on a given problem of Celestial Me-
chanics using a very simple model. Two massive bodies of equal mass are moving
on the z = 0 plane on elliptic orbits of eccentricity e around the common centre
of mass, located at (0, 0, 0), with semimajor axis a = 1, while a body of negligible
mass moves along the z-axis. The standing equations are

z̈ = − z

(z2 + r(t)2/4)3/2
, r(t) = 1− e cos(E), t = E − e sin(E), (3.26)

where E denotes the eccentric anomaly of the primaries. For e = 0 the problem
has one d.o.f. and, hence, it is integrable. As a first order system we have ż = v,
v̇ = z(z2 + r(t)2/4)−3/2, with the obvious symmetries S1 : (z, v, t) ↔ (z,−v,−t),
S2 : (z, v, t) ↔ (−z, v,−t), and S3 : (z, v, t) ↔ (−z,−v, t). We can introduce E as
new time variable (denoting ′ = d/dE) and introduce a Hamiltonian formulation:

H(z, E, v, J) = (1− e cos(E))

[
1

2
v2 − (z2 + (1− e cos(E))2/4)−1/2

]
− J.

A suitable Poincaré section for the representation of orbits is Σ = {z = 0},
using (v, E) as local coordinates. Thanks to the symmetry and to avoid strong
deformations we shall use, instead, (v̂, E), where v̂ = |v|(1 − e cos(E))1/2.

If the infinitesimal mass escapes to infinity, the massive bodies move in S1

(eventually, after regularization of binary collisions using Levi–Civita variables).
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Figure 3.12: Left: A representation of the Sitnikov model. Right: For e = 0 plots of the
orbits in the (z, v) variables for values of H equal to −1.5, −1.0, −0.5 and 0.

One talks of a periodic orbit at infinity. A celebrated Theorem by Moser states
the following.

Theorem 3.4.1. The problem has periodic orbits at both z plus and minus infinity,
with invariant manifolds (orbits going to or coming from infinity parabolically).
For e small enough the manifolds intersect Σ in curves diffeomorphic to circles.
These curves have transversal intersection, implying the existence of heteroclinic
orbits from +∞ to −∞ and vice-versa.

As a consequence one has non-integrability, embedding of the shift with in-
finitely many symbols, existence of oscillatory solutions, escape/capture domains,
etc. The PO at ∞ is parabolic or, topologically, weakly hyperbolic. The linearized
map around the PO is the identity. To study the vicinity of these orbits we intro-
duce McGehee variables (q, p) defined as z = 2/q2, ż = −p. Then the equations of
motion become

q′ = Ψq3p, p′ = Ψq4
(
1 + Ψ2q4

)−3/2
, Ψ = (1 − e cos(E))/4. (3.27)

If e = 0 the invariant manifolds are given as p = ±q(1+ q4/16)−1/4. We shall
denote as Wu,s

± the intersections of unstable/stable manifolds of ±∞ with Σ. Due
to S3, W

u± coincide and also W s± coincide, but W s
+,W

u− have v > 0, while W s−,Wu
+

have v < 0. Due to S1, W
u
+ and W s

− are symmetric with respect to E = 0.
We look for a parametric representation of the manifolds of the PO as

p(E, e, q) =
∑
k≥1

bk(e, E)qk =
∑
k≥1

∑
j≥0

∑
i≥0

ci,j,ke
i sc(jE) qk, (3.28)

where bk(e, E) are trigonometric polynomials in E with polynomial coefficients in
e, ci,j,k are rational coefficients, and sc denotes sin or cos functions.

Note that the problem can be reduced to obtain invariant manifolds of fixed
parabolic points of discrete maps (think about the intersection of the manifolds
with E = 0). In this context McGehee proved that the invariant manifolds are
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analytic except, perhaps, at q = 0, see [31]. In fact, a result of Baldomà and Haro
[1] shows that, generically, the 1-dimensional manifolds of fixed parabolic points
are of some Gevrey class (see the part on invariant manifolds in Section 3.2.1).

From (3.27) and (3.28) the invariance of the manifolds can be written as

Ψq4
(
1 + Ψ2q4

)−3/2
=

∑
k≥1

dbk
dE

(e, E)qk +
∑
k≥1

bk(e, E)Ψkqk+2
∑
m≥1

bm(e, E)qm.

(3.29)
Equating coefficients of powers of q in (3.29) leads to the recurrence(− 3

2

m

)(
1− e cos(E)

4

)2m+1

= b′n(e, E) +
1− e cosE

4

n−3∑
k=1

kbk(e, E)bn−2−k(e, E),

(3.30)
where m = n/4− 1, defined only for n multiple of 4.

To solve the recurrence in (3.30) we first note that for the unstable manifold
of +∞ we have b1 = 1. One has b1 = −1 for the stable manifold. For a given value
of n we can split the function bn as b̃n+b̄n, where b̄n denotes the average and b̃n the
periodic part. Given b′n(e, E) equal to some known function (computed from the
previous coefficients) allows us only to compute the periodic part b̃n. The average
b̄n is computed previous to the solution of the equation for b′n+3(e, E), to have a
zero average function when we integrate. An essential fact is that b2 = b3 = b4 = 0.
One has also b6 = b7 = b10 = 0, but this is not so relevant.

Now it is a simple task to implement the computation of the coefficients to
high order. Using high order is important, because this allows us to have a good
representation for large values of q. A large q allows us to start the numerical
integration, to obtain the intersection Wu

+ of the manifold with z = 0, at a mod-
erate value of z. For instance, using terms up to order n = 100 one checks that
the representation is good (error of the order of 10−16) for q = 1/3. Then the
numerical integration can be started at z = 2/q2 = 18.

Figure 3.13 shows some results for different values of e, displaying Wu
+ and

W s
−, and using the (v̂, E) variables as polar coordinates. Note that the use of

(|v|, E) would give curves extremely elongated to the right for e close to 1. Con-
cretely, if the eccentricity is equal to 1− δ then the horizontal variable in the plots
reaches values ≈ 2/

√
δ. The values of the splitting angle at E = 0 and E = π on

the section Σ are shown as a function of e in Figure 3.14. Note the quite different
behaviour when e → 1. This gives evidence of the transversality for all values of e.

Summarizing, the steps to obtain the manifolds Wu
+ and W s

− and, hence, the
splitting angle, are the following:

(i) introduce McGehee coordinates to pass from (3.26) to a formulation around
the periodic orbits at infinity, as given by (3.27);

(ii) look for a suitable representation, as the one in (3.28), in which the manifold is
expressed as function of a distance to infinity (q) and a periodic time variable
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Figure 3.13: The manifolds W u
+, in red, and W s

−, in blue, for different values of e. Top
left: for e = 0.1. Top right: for e = 0.5. Bottom left: for e = 0.9. Bottom right: for
e = 0.999. In all cases we use (v̂, E) as polar coordinates.
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Figure 3.14: The splitting angle of the manifolds W u
+ and W s

− in Σ. For positive values
on the horizontal axis the splitting angle at E = 0 is shown as a function of e. For the
negative ones, the splitting angle at E = π is shown as a function of −e.
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(E); write the invariance condition (3.29) and derive the recurrences, as given
in (3.30);

(iii) analyze the properties of the recurrences (symmetries, powers of e in the coef-
ficients of the trigonometric polynomials, etc); design and implement routines
to obtain the desired numerical coefficients; and

(iv) select a suitable value of q for the current maximal order of the expansion,
evaluate (3.28) for a sample of values of E for every desired value of e, and
carry out the numerical continuation until z = 0.

It is important to stress that, for other similar problems (RTBP planar or
spatial, general, etc), to decide if an observed body will be captured or will escape,
it is enough to obtain the manifolds and decide the actual position with respect
to them. The case of the planar RTBP with a comparison between theoretical
predictions and numerical results can be found in [28] and the related slides (I).

3.4.3 Practical confinement around triangular points

As mentioned at the beginning of Section 3.4, the triangular libration points are
linearly stable in the 3D RTBP if μ is small enough. But, what can be said about
nonlinear stability? For the 2D case, nonlinear stability is proved for μ ∈ [0, μ1)
except for the couple of values μ2, μ3. A possible approach is to reduce to the study
of a symplectic 2D map and to apply Moser theorem. There is an exceptional value
for which the twist condition is not satisfied, but can be recovered as a weak twist
to higher order via normal forms.

In the 3D case, in principle, there is no way to avoid diffusion. Hence, initial
conditions as close as we like to L4,5 can go far away from that point. But normal
forms, or averaging, lead to the already mentioned Nekhorosev estimates, showing
that one needs an extremely large time if one starts close enough to the libration
point as discussed in Subsection 3.3.5.

But these results, concerning domains of practical stability in the 3D case,
give at most small regions around the triangular points. On the other hand one
has found the so-called Trojan (and Greek) asteroids, for the Sun-Jupiter system,
far away from L4,5, even with relatively high inclination. Hence, it seems that the
domain of practical stability for long times is much larger than what is given by
theoretical predictions. It would be nice to search for the confining mechanisms.

A side problem is why Trojan-like bodies are not found in the Earth-Moon
case. Certainly the Sun is guilty for that, the orbits equivalent to L4,5 for the
Earth-Moon system being unstable even in simple models of the Earth-Moon-Sun
motion. But this does not exclude the possibility that stable orbits exist with
moderate inclination.

Here we present some results which can help to understand the main mech-
anisms, see [48]. For different reasons, many computations are done with initial
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conditions on the ZVS using (z, α, ρ) as parameters for a fixed μ, as follows:

x=μ+ (1 + ρ) cos(2πα), y=(1 + ρ) sin(2πα), z=z0 ≥ 0, α ∈ (0, 1/2),

ẋ= ẏ= ż=0. (3.31)

As for μ = 0 one must be in 1 − 1 resonance, it is convenient to look, starting
at the ZVS, for initial conditions at rest, in the synodical frame, in the moment
that an elliptic orbit with semimajor axis equal to the unity passes through the
apocentre in the sidereal frame. That is, for values of (z,R = 1 + ρ) related by

z =
[
4(1 +R2)−2 −R2

]1/2
or

ψ = 1− 1
2w + 3

25w
2 − 1

28w
3 − 25

213w
4 + 33

216w
5 +O(w6),

(3.32)

where w = z2, ψ = ψ(z) = R2. This suggests that we make plots using the
variables

(α, γ = 1 + ρ−
√
ψ(z), z). (3.33)

It is clear that L5 corresponds to ρ = 0, α = 1/3, z = 0. By symmetry,
similar results are obtained for L4. Also, by symmetry, it is enough to look for
z ≥ 0. For the limit case, μ = 0, one would have γ = 0.

Some reasons to start at the ZVS are:

(i) Most of the i.c. non-leading to escape are on 3D tori. Hence, we scan a set of
positive measure in the full phase space (not fixing the Jacobi constant C).

(ii) The results obtained can be used as a seed to obtain the relevant objects
involved in the practical confinement, either starting at the ZVS or not.
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Figure 3.15: Example of a transition for μ = 0.0001, α = 0.05, z = 0.3. The two tori
(confined in red, escaping in blue) have values of ρ which differ in 10−10. We show the
projections on (x, y) of the Poincaré section through z = 0. Left: a global view. Right: a
magnification. The separating unstable 2D torus or invariant curve in the section belongs
to W u,s

L3
. Note that the points in red are partially hidden by the ones in blue.
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First, we show some results concerning the quasi-boundary between escape
and practical confinement. Figures 3.15 and 3.16 display, for a small value μ = 10−4

of the mass parameter, two different kinds of objects which appear on the quasi-
boundary. We should mention that the relevant objects have codimension 1 in the
full phase space. In the present case they have dimension 5. Typically, they are
Wu,s of central objects of dimension 4. These objects can be the centre manifolds of
fixed points of centre×centre×saddle type or the centre manifolds of 1-parameter
families of periodic orbits of centre×saddle type (the parameter being, e.g., the
value of the Jacobi constant). But it is clear that these Wu,s do not coincide: there
is some splitting. This is the reason why they are named quasi-boundaries.

We note, for instance, that in the upper left plot of Figure 3.16 beyond the
blue curve commented on the caption, one can guess another invariant curve (in
the Poincaré section, a 2D torus in the phase space) on top of the plot. The
separation between confined and escaping orbits is close to a double heteroclinic
connection between the lower curve in blue and the upper one in red. But the
related branches of these two partially normally invariant curves do not match
exactly. There is some tiny splitting between the branches.
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Figure 3.16: Similar to Figure 3.15 but starting at α = 0.4, z = 0.6. Now the separating
unstable 2D tori are not in W u,s

L3
. Top: initial part of Poincaré iterates with many iterates

in blue, giving evidence of the lower unstable 2D torus and points escaping from it
(left), and the separating lower unstable invariant curve alone (right) projected on (x, y).
Bottom: The same curve projected on (x, ż) (left), and the related 2D separating unstable
torus in a (x, y, z) projection (right).

In Figure 3.17 we display a general view of the boundary. See comments
on the caption. Typically, the transitions have been detected after a maximum
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integration time equal to 106 × 2π (in special cases 10, 102 or 103 times larger)
and with a resolution of 10−6 in ρ; see slides (D) for other values of μ.

Figure 3.17: A 3D view of the detected boundaries of practical stability starting at
the ZVS for μ = 10−4, shown in the (α, γ, z) variables. The inner (resp., outer) part
corresponds to γ < 0 (resp. γ = 0). Note the sharp change on the behaviour of the
boundary which occurs between z = 0.4 and z = 0.5.

We can make a rough scan of the boundaries for different values of μ, both
for the planar and spatial RTBP. We say rough in the sense that, typically, the
maximal time to look for escaping has been reduced to 105 × 2π time units and
that the grid we scan uses Δρ = 10−4, then Δα equal to 2×10−4 in the planar case
(5×10−4 in the spatial one) and Δz = 5×10−3 in the spatial case. The results are
shown in Figure 3.18. Note that the effect of the resonances is less important in
the spatial case. This is due to the fact that, for some values of μ, the resonances
destroy stability in the planar case, but still a large set of initial conditions is stable
in the spatial case. The change of the frequencies when z increases is responsible
for the minima being shifted to larger values of μ.

From now on we concentrate on a fixed value μ = 0.0002. The reasons for
this choice are the following:

(i) μ being small, the boundaries are sharper;

(ii) it should be also possible to obtain some information by means of perturba-
tion theory;

(iii) it is close to the Titan-Saturn mass ratio.

This small value of μ, however, raises a problem: the escape is relatively slow and,
hence, the integration time is large. The methodology used (for the L5 case) is as
follows:
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3D and 2D

Figure 3.18: Statistics as a function of μ starting at the ZVC (planar case, in red) and
at the ZVS (spatial case, in blue). This is normalized to the maximum, which for the
planar case occurs at μ = 0.0014 with 282757 points, and for the spatial case it occurs for
μ = 0.0017 with 19014882 points. Note the sharp effect of the resonances in the planar
case. Similar patterns are found for the Hénon map and in many other examples, see
[46]. In the spatial case the effect of the resonances is milder and delayed. In both cases
some stability subsists even for μ > μ1.

(i) Define some escape criterion (e.g., the (x, y) projection of the orbit enters
some wedge near the negative y-axis, or the orbit comes too close or too far
from the primary, or too close to the secondary).

(ii) Scan a set of initial conditions for short time (e.g., 104× 2π, using some grid
with small steps Δα, Δρ, δz). Look at every initial point on the grid, for
fixed z, as a pixel. Keep the pixels non leading to escape.

(iii) Repeat for longer time (e.g., 5×104×2π) for the pixels at a distance (counted
in the sup norm) less than d pixel units from the ones which already es-
caped (typically, we take d = 5). The tested points are marked depending on
whether they escape or they remain. Iterate the scan until no more points
have to be tested: all the ones at distance less than or equal to d from escap-
ing points have been tested and remain. Repeat two more times for longer
and longer integration time (25× 104 × 2π, 106 × 2π).

(iv) Eventually do additional refinements of ρ for fixed α, z.

Figures 3.19 and 3.20 show some results for μ = 0.0002 displaying, for dif-
ferent values of z, the set of non-escaping points starting on the ZVS and the
boundaries of the domain. See the captions for the variables used to represent the
results. Note that the domain of practical stability contains, for the planar case
z = 0, stable points quite close to the L3 (α ≈ 0). In the spatial case there are
stable orbits which reach z as large as 0.865 and, as the value of ρ for these orbits
reaches ≈ −0.181 they have a maximum inclination exceeding 46 degrees.
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Figure 3.19: For μ = 0.0002 the subsisting points, starting at the ZVS for 12 different
z values, given on the top of the plot. The coordinates used for the representation are
(α, ρ).
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Figure 3.20: Boundaries of the domains shown in Figure 3.19 using the paraboloid like
corrections. That is, as vertical variable one has used γ, as defined in (3.33) instead of ρ.

Some sections of the boundary for μ = 0.0002, for several values of α, are
shown in Figure 3.21.
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Figure 3.21: Some sections of the boundary starting at the ZVS for different values
of α. Left: in the (ρ, z) variables. Right: using the (γ, z) variables. The curves for α =
0.05, 0.12, 0.25 are plotted in red, and are easily seen on the right-hand plot going away
from (0, 0) and each line encircling the previous one. The curve for α = 0.33 is displayed
in blue. This is the largest one. Finally the curves for α = 0.40 and α = 0.435 are plotted
in magenta. Last one does not reach z = 0.

Still many things must be completed even for this small μ for which the
boundaries tend to be rather sharp, because they are associated to relatively small
splitting. The problem becomes more rough for the Sun-Jupiter case, because then
one starts to see the effect of some island-like structure. For the Earth-Moon case
the behaviour is quite wild due to the strong effect of resonances. The Earth-Moon
mass ratio is not far from the 3:1 resonance value μ3.

3.4.4 Infinitely many choreographies in the three-body problem

In the Newtonian N -body problem with all masses equal to 1, we can consider very
simple solutions in the planar case, the like N -gon relative equilibrium solutions.
Due to the homogeneity one can scale time and distance so that it is enough to
consider solutions with period 2π. The N bodies move on a circle of radius R such
that

2R3 = ΣN−1
j=1 (2 sin(jπ/N))−2.

It is clear that all the bodies move on the same path in the plane. Hence,
the following is a natural question: are there other periodic solutions such that all
bodies with equal masses move on the plane along the same path? At the end of
the twentieth century a solution with 3 bodies on the same planar curve, different
form a circle, was proved to exist by Chenciner–Montgomery [6]. Also, Moore [33]
found the same orbit in a previous numerical work in a different context, a few
years before. The path of this solution is the very popular figure eight curve and
is displayed in Figure 3.22.

Immediately, one can pose the question for N > 3 and for other shapes of
the path. These solutions are called choreographies because of the dancing-like
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Figure 3.22: The figure eight solution of the three-body problem. The initial positions
of the bodies are marked as black points. For concreteness, we can assume that at t = 0
the body located at the origin moves to the right, up. This forces the motion of the other
two.

motion of the bodies seen in animations, see [5, 45]. More precisely, they should
be called simple choreographies because they are on the same curve; we use the
term k-choreographies for bodies moving on k different curves. Slides (F) provide
some examples and links to animations. One can also introduce the notion of
relative choreographies if they are seen as choreographies in a uniformly rotating
frame. Two choreographies which differ only by a rotation, by scaling, change of
orientation, symmetry, etc, should be seen as the same.

Returning to simple choreographies in a fixed frame (or absolute choreogra-
phies) what one tries to find is some 2π–periodic function ψ : S1 → R2 such that
if the body j is located at qj(t) = ψ(t− (j − 1)2π/N) for j = 1, . . . , N , we have a
solution to the equations of motion.

Another natural question arises: are there other choreographies of the three-
body problem different from the figure eight?

A simple observation is that at some t > 0, relatively small, the three bodies
in Figure 3.22 will be in an isosceles configuration. Such a configuration is defined,
for instance, assuming that at some moment of time the bodies 2 and 3 have
positions and velocities given by

x3 = x2, y3 = −y2, ẋ3 = −ẋ2, ẏ3 = ẏ2. (3.34)

The conditions for m1 are determined from the centre of mass integrals. This
isosceles triangle has a symmetry axis passing through m1.

Assume that after some time τ the bodies pass through another isosceles
configuration, concerning positions, with the bodym2 in the symmetry axis defined
by the positions of m3 and m1, and that the velocities are close to satisfy the
isosceles condition. Let β be the angle between the former symmetry axis (the x-
axis) and the new one. A refinement is done to satisfy the full isosceles conditions
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with good accuracy (see the end of this subsection). Then, after rotating positions
and velocities at τ by an angle −β, we have an isosceles configuration with the
same symmetries concerning velocities than the initial one. The only change is a
circular permutation of the bodies with change of orientation. Then the action of
the semi-direct product of Z2 and Z3 (symmetry and permutation of the bodies)
produces a relative choreography with period T = 6τ and rotation 6β. If β is
kπ, k ∈ Z, we have an absolute choreography, symmetric with respect to the x-
axis.

This has been applied to ≈ 109 initial conditions. Near 3 × 105 relative
choreographies have been found and, by continuation of each one of them with
respect to the angular momentum, many (345 up to now) absolute, non-equivalent,
choreographies have been found. It is clear that several relative choreographies can
lead, by continuation, to an absolute choreography equivalent to another one found
previously, and these are not counted. It is checked that some of these new three-
body choreographies seem to belong to families. An example is shown in Figure
3.23. See [44] for other families.

Figure 3.23 suggests to try to continue the family for an increasing number
of loops. Now the continuation has to be done with respect to integers and not in
a continuous way. But using extrapolation of the data from the previous loops it
has been possible to continue the family without any problem (using quadruple
precision and high order extrapolation) until the solution shown in Figure 3.24.
The natural conjecture is that there are infinitely many choreographies in this
family.

There is an easy description of that solution. One of the bodies (say, the red
one) moves close to an elongated ellipse while the other two (green and blue) move
in a close binary, with its centre of mass close to an ellipse. When the three bodies
approach the centre of mass there is an exchange: the blue body moves close to an
elongated ellipse and the red and green form a binary in turn. At the end of this
we have traveled 1/3 of the period. The bodies return to the initial position with
a cyclic permutation RGB → GBR. One should stress that when they approach
the centre of mass the bodies are not close to triple collision. Preliminary results
seem to indicate that the minimal value of the moment of inertia along the orbit is
strictly decreasing with the number of binary loops, tending to a positive constant.

It should be mentioned that, among the 345 absolute choreographies avail-
able, one can identify several families. It is not excluded that some of these families
contain infinitely many elements. But it can also happen that a couple of families
merge together in a saddle-node bifurcation.

The steps for that application are as follows:

(i) To obtain initial data in isosceles configuration one can prescribe some neg-
ative energy. Then we give values of (x2, y2) and determine the positions of
the other masses. Because of the symmetries we can select x2 > 0, y2 < 0.
A bound on the domain is obtained because the kinetic energy should be
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Figure 3.23: Choreographies of the three-body problem belonging to a family. The paths
of the three bodies during 1/3 of the period are shown in different colors. The positions
of the bodies in the initial isosceles configuration and the ones after 1/6 of the period
are also shown. To display the solutions with the same scale in x and y variables, the
coordinates have been exchanged. Now, for these choreographies, the symmetry axis is
the vertical one and for this family both isosceles configuration (at t = 0 and after 1/6 of
the period) are symmetrical the one from the other with respect to the horizontal axis.
Counting the little inner loops (for instance, the ones in red) the number increases from
1 to 9 from top to bottom and from left to right. The value � on top of each plot refers
to the total number of small loops, either in red, blue or green.

non-negative. The possible values of (ẋ2, ẏ2) are parametrized by an angle
γ ∈ [0, 2π].

(ii) Then, we proceed to the integration of (3.1) with the selected initial condi-
tions, looking for a passage near another isosceles configuration. A maximal
time is used (e.g., 5 units) and the attempt is stopped if the bodies move too
far or they become too close. If a candidate is obtained a refinement is done
by Newton’s method, to have a good approximation to an isosceles symme-
try after 1/6 of the period. For the refinement we fix γ and leave (x2, y2) as
free variables to satisfy the isosceles condition for the velocities when it is
satisfied by the positions.

(iii) Next we carry out continuation by changing the angular momentum, looking
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Figure 3.24: Top: a choreography of the three-body problem of the same family of the
ones shown in Figure 3.23. In each of the binary portions the bodies in the binary make
200 revolutions around the centre of mass of the binary, while the third body moves close
to an elongated ellipse. Only 1/3 of the orbit is shown. The remaining parts are obtained
by cyclic permutations. Bottom: a magnification of the central part of the top.

for an absolute choreography. Continuation is stopped if the bodies approach
a collision. The new absolute choreographies are stored in a list. If they are
already in the list, they are discarded. Later, for our present goal, we select
the ones which belong to the family as shown in Figure 3.23.

(iv) Finally the family is continued with respect to the number of loops. An
extrapolation based on the previously computed loops allows us to have a
very good guess. Newton’s method converges in few iterations.

3.4.5 Evidences of diffusion related to the centre manifold of L3

In this last application we consider the 3D RTBP for a small value μ = 0.0002,
like we used in Subsection 3.4.3. Our goal is to give evidence of the diffusion when
we consider the unstable dynamics originated by the unstable/stable manifolds of
the part W c

L3,C
of the centre manifold W c

L3
of L3, for a given value C of the Jacobi

constant. For concreteness, we use the value C = 2.95998466228. To have a feeling
of the meaning, let us say that for that value of C the vpoL in W c

L3,C
has values

of z going from −0.2 to +0.2.
Beyond the vpoL, the W c

L3,C
contains 2D tori, the hpoL, some tiny chaotic

domains, and the additional periodic orbits related to these domains. Using the
methods of Subsections 3.3.1 and 3.3.3, we can compute both periodic orbits and
several tori. It is simpler to represent the tori as ICs of the Poincaré map P
associated to the section Σ := {z = 0, ż > 0}. In this application we shall use once
and again Σ and P . As we fixed also the value of C, we have to consider a discrete
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map in a 4D space that we denote as ΣC .
The ICs are hyperbolic normally to the centre manifold. Hence, we can com-

pute its manifolds, say Wu
C , W

s
C , for a given curve C. Note that these manifolds are

2D and to visualize them we can compute a section through some codimension-1
manifold in ΣC (e.g., an hyperplane Π). A suitably chosen Π gives as Wu

C ∩ Π a
closed curve, say Cu. In a similar way we can obtain Cs. Of course, these two curves
in ΣC ∩ Π, which is 3D, do not intersect generically, as opposite to Wu

C and W s
C

which are 2D in the 4D space ΣC , for which one expects to have intersections, but
not necessarily located in Π. But we can have a feeling of their relative position
by looking at Cu and Cs.

Figure 3.25 illustrates what has been said. In the left plot several ICs are
shown, as well as the point corresponding to the vpoL. Note that the largest IC is
quite close to the hpoL. The 2D torus corresponding to this last IC has values of
z which range in the small interval [−0.017, 0.017]. The hpoL, which is contained
in z = 0, is located outside the largest IC shown at a distance ≈ 0.004. The right
plot displays Cu and Cs for several ICs, using as Π the hyperplane defined by
y = −√

3(x − μ). One detects, visually, that for tori close to the vpoL the curves
are quite close. The difference increases going outside, away from the vpoL, and
decreases again when approaching the hpoL. This will be one of the relevant facts
to explain the results obtained.
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Figure 3.25: Left: invariant curves obtained as intersections with Σ of some tori in the
W c

L3,C
for C = 2.95998466228 projected on the (x, y)-plane. The vpoL orbit for this

value of C has z ∈ [−0.2, 0.2] and corresponds to the blue point. The blue curve will
be used in the computations reported here. Right: sections with y = −√

3(x− μ) of the
Poincaré sections of the unstable (red) and stable (blue) manifolds of some of the tori.
For the 3D view we use the (y, ẏ, ż) variables.

Figure 3.26 shows the projection in (x, y) of the first 105 iterates under P
starting at a point close to the blue curve, say Cb, in Figure 3.25, left. The first
iterates follow closely the upper part of Wu

Cb
and return near Cb close to the upper

part of W s
Cb

(or of some other nearby curve). As it is well known, next iterates can
continue going up or down, as happens after every return near Cb, in a quasirandom



3.4. Applications to Celestial Mechanics 221

way. For completeness, the manifolds of vpoL are also shown (displayed in blue).
This behaviour suggests that, at the successive returns near W c

L3,C
, the

Poincaré iterates can approach different tori (2D in the phase space) on that
centre manifold. That is, a typical mechanism of diffusion thanks to chains of
heteroclinic connections of different tori.

But there are also tori (3D for the Hamiltonian flow, 2D for P) close to
these manifolds. Among these tori one finds the ones close to the boundary of the
practical stability domain for L5, as seen in Subsection 3.4.3. Looking at Figure
3.19 one checks that they reach values of α very close to 0 (the value of α for L3)
up to z = 0.4. The successive points can remain for a large number of iterations,
say 106 and even 108 in some tests, close to one of these tori, to one of the tori in
the symmetric domain around L4, or even tori which visit a vicinity of both L5

and L4 (with an (x, y) projection of the iterates in Σ similar to the red points in
Figure 3.26). The tori are very sticky, see Subsection 3.3.5. As a consequence, the
orbit of a point should consist of passages from the vicinity of the Wu of one of
the ICs to the vicinity of the W s of another IC (or, perhaps, the same one) with
long stays near tori of one of the three types described.
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Figure 3.26: Starting at a point very close to the invariant curve in blue in Figure 3.25
we have computed the first 105 intersections with Σ. The plot shows the projections on
the (x, y)-plane. As a reference, we also show in blue the initial part of the manifolds of
the vpoL. The lack of coincidence of these last manifolds is not seen with the present
resolution.

To have evidence of this expected behaviour, we have taken 1920 points close
to Cb (the blue curve in Figure 3.25 left). For every initial point we record the first
5×106 Poincaré iterates, except if some kind of escape is detected. A typical escape
occurs when, going the iterates to the left, either near the upper or lower part of
Figure 3.26, they approach the location of the secondary. After this encounter,
the successive iterates can move close to the primary, escape far away or even
return several times near the secondary. Anyway, only for 37 of the 1920 initial
conditions escape was detected. Certainly the initial conditions will lead to escape
if the number of Poincaré iterates is largely increased, at least on this level of the
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Jacobi constant. See later for some tests with initial data taken near the vpoL.
To visualize the diffusion and to display a moderate amount of data we

have computed passages of the Poincaré iterates through a narrow slice around
x = 0. Only from time to time an iterate falls in the slice. For instance, among
the 1920×5×106 computed Poincaré iterates (and except for the few iterates lost
because of escape) only ≈ 3.2 × 106 fall in the slice |x| < 10−3. The passage can
occur in the upper part going from right to left (inner transition) or from left to
right (outer transition), and also from right to left (outer transition) or from left
to right (inner transition) in the lower part (see Figure 3.26).

The variables used in Σ are (x, y, ẋ, ẏ). Due to the symmetries, the inner
upper and inner lower transitions are symmetrical, with the changes (x, y, ẋ, ẏ) ↔
(x,−y,−ẋ, ẏ), and the same occurs for the outer ones.

Using only the points falling into the slice up to a maximum of 105 iterates
for all the initial conditions, the results (inner and outer upper transitions) are
shown in Figure 3.27 left. The blue points, P− to the left and P+ to the right,
correspond to the intersections with x = 0 of the manifolds of the vpoL. The point
P− is the first intersection of Wu

vpoL
with x = 0, and P+ is the first intersection of

W s
vpoL

with x = 0. The y coordinate of P− is smaller than the one of P+. In both
cases we refer to the manifolds of vpoL as seen in Σ. Compare with the section
through x = 0 of the upper part of the blue curves in Figure 3.26. Note also that
in Figure 3.27 we display y − 1 as horizontal coordinate, while ẏ is used for the
vertical one.

To see the behaviour when the number of iterates increases, the right part
of Figure 3.27 shows the evolution when we consider iterates in the slice after a
maximal number of iterations going from 105 to 8 × 105 and, later, to 5 × 106

(from green to blue and then to red). The points are plotted in the reverse order.
So, blue points hidden red ones and green points hidden blue ones. In magenta
we show the location of P−. To prevent from too heavy files we take the narrower
slice |x| < 10−4 and only show iterates when moving in the upper part to the left,
that is, upper inner transitions.

It is interesting to display statistics of the process. A simple measure is the
evolution of the distance of the iterates to the point P−, marked in magenta in
Figure 3.27 right. We use the slice |x| < 10−3 and all the Poincaré iterates (up to
5× 106 for the 1920 initial points, except for 37 points which escape, after escape
is detected). Then we compute the distances rk,i to P− in the (y, ẏ) variables,
where i is the index of the initial point and k the number of the Poincaré iterate.
One takes samples of the rk,i for all the indices i and for ranges of k of the form
((j − 1)M, jM ], j = 1, . . . , 100, with M = 50, 000. The samples can be labelled
by the final value of k. The Figure 3.28 displays, on the left, the behaviour of the
average distance as a function of the final value of k in the range of values of k in
the sample, while the behaviour of the standard deviation is shown on the right.
For these computations both inner transitions (upper and lower) have been taken
into account, in order to have larger samples (the total number of inner transitions
amounts to 1643007).
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Figure 3.27: For the set of points described in the text we show the (y−1, ẏ) projections
using different slices and times, for y > 0 (for y < 0 it is similar). Left: the slice is defined
as |x| < 10−3 and we restrict to the first 105 Poincaré iterates of the initial points. In
green (resp., red) the points when the iterates move to the left (resp., to the right) when
looking at them projected on (x, y). We also show the location of P±, as described in the
text. Right: points in the upper inner transitions. In red (resp., blue, green) we plot the
points on the slice for a number of Poincaré iterates up to 5×106 (resp., up to 8×105,
up to 105).

The results deserve some discussion. We can consider a diffusion process but,
as the rate of diffusion is related to the passage from some 2D torus (invariant
curve in the Poincaré section) to a nearby one, from the comments preceding
Figure 3.25, the rate of diffusion is not constant. It increases going away from the
vpoL and then it decreases again when approaching the hpoL. From the left plot
in Figure 3.28 it seems that the average is still in a range where the diffusion rate
is increasing. This asymmetry is what produces the increase of the average. Note
that the value of the distance to P− for the first iterates which fall in the slice has
an average of ≈ 0.0597. Concerning the standard deviation, one should mention
that it takes a not so small value (≈ 0.005) for k = 50, 000 (the first displayed
point). One of the reasons for this is that, looking at the green points in Figure
3.27, one checks that they are scattered around an ellipse, not a circle. Also, after
50,000 iterates the scattering is non-negligible.

One can mention that a good fit of the data for the standard deviation, as
a function of the number of Poincaré iterates, k, is of the form σ ≈ c(a0 + a1k +
a2k

2)1/2 with a0, a1 > 0, a2 < 0, and c a small positive constant. The negative
character of a2 should be due to the decrease of the diffusion rate when going to
the outer curves in Figure 3.25.

Furthermore, when the distance d to P− reaches a value d∗ less than, but not
too far from 0.18, the orbits quickly escape. One can check that the upper part of
the unstable manifold of the hpoL has a first intersection with x = 0 on a curve,
similar to a circle, for which the distance to P− takes an average value equal to
0.2. Hence, we can consider this as a diffusion process with varying diffusion rate
(first increasing, later decreasing, as a function of the distance to P−) and with
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Figure 3.28: The left (resp., right) plot shows (in red) the evolution of the average
(resp., standard deviation) for ranges of k of the form ((j − 1)M, jM ], j = 1, . . . , 100,
with M = 50, 000. The horizontal variable in the plots refers to millions of Poincaré
iterates. For comparison, the blue lines show the same results, with a reduced set of
initial points, for computations done using quadruple precision. See the text for details.

an absorbing barrier: reaching d = d∗ the points disappear from the system.

It is worth commenting also that, as an additional check, preliminary compu-
tations concerning diffusion and the related statistics have been carried out using
quadruple precision. The size of the sample of initial points has been reduced by
a factor of 4. The number of escapes before reaching N = 5 × 106 is 9, in good
agreement with the previous result. Note that now the samples for the statistics
are smaller, which gives slightly larger errors in the determination of average and
standard deviation. For comparison, the results are displayed in blue also in Figure
3.28.

Concerning escape, the following experiment has been carried out. A total of
625 initial conditions has been taken in Σ at distances of the order of 10−13 from
the intersection of the vpoL with Σ. Poincaré iterates have been computed up to
a maximum of 109. The first escape is produced after a number of iterates close
to 65×105. Only 13 points subsist for the full 109 iterates, most of them spending
a big part of the iterations very close to invariant tori. This is, again, related to
the stickiness of these tori. A plot of the number of points which subsist after k
iterations, for values of k multiples of 107 is shown in Figure 3.29.

Furthermore, taking initial data close to the 9 outermost tori in Figure 3.25
(again using samples of 625 points), one checks that all points escape, and that the
average number of iterates for the escape decreases in an exponential way when we
approach the outer torus. If the same experiment is done with 625 initial points
close to the hpoL, the result is that all of them escape. In that case, as the orbit
lives in z = 0, one can count the number of crossings of the orbits through the
section x = 0, either with y > 0 or with y < 0, and either with ẋ > 0 or with
ẋ < 0. The average number of such crossings is 14175. Note that, in contrast with
the passage of Poincaré iterates through a slice around x = 0, it happens that
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there are outer and inner, upper and lower crossings both with ẋ > 0 and with
ẋ < 0. See [48] for an explanation of this fact.

These results, displayed in Figure 3.29, require a few comments. Up to 64.9
million iterates there is no escape. Only 14 points escape before 108 iterates. Then,
up to ≈ 3 × 108 iterates the number of subsisting points is nearly linear in the
number of iterates, that is, a rate of decrease close to a constant. Finally, up to
≈ 9× 108 the rate of escape is slightly below an exponential one. The last escape
was produced around 870 million iterates. To explain these changes is a nice open
problem.

 0

 200

 400

 600

 0  200  400  600  800  1000

Figure 3.29: Statistics of the number of non-escaping points, starting close to the vpoL,
as a function of the number of Poincaré iterations. For the simulations one has used a
sample of 625 initial points. In the horizontal axis the number of iterations is shown in
millions.

A basic ingredient for this application is to have an efficient method to com-
pute Poincaré iterates. The steps are the following:

(i) The computation, stability properties and unstable direction of the vpoL,
as fixed point of the Poincaré map, is an easy task. The invariant curves of
P are computed by looking at a representation of the variables (x, y, ẋ, ẏ)
as Fourier series in a parametrization angle, using a number of harmonics
between 6 and 26, depending on the torus, as explained in Subsection 3.3.3.
The symmetries imply that, setting the origin of the angle at the minimal
value of x, both x and ẏ are even, while y and ẋ are odd. In this way, the left
plot in Figure 3.25 has been obtained. As a side comment we remark that the
rotation numbers are of the order of 10−4 and decreasing when going away
from the vpoL. This produces some problems in the condition number of the
linear systems to be solved in the Newton iterations.

(ii) The next step is the computation of invariant unstable/stable manifolds of
the invariant curves. The reversibility implies that it is enough to compute
the unstable ones, the stable being then recovered by the symmetries.
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We recall that the manifolds have a parametrization as a function of an
angle and a distance to the curve. A fundamental domain is diffeomorphic
to a cylinder. Looking for points such that after some number of iterations
are on an hyperplane Π requires a continuation method (e.g., to have the
starting distance as a function of the angle) or any similar device. This has
been used for the right-hand plot in Figure 3.25. The plots in Figure 3.26
follow immediately from the computation of Poincaré iterates.

(iii) To produce Figure 3.27 only requires the computation of Poincaré iterates,
detection of the passage through a given slice and whether an inner or outer,
upper or lower passage occurs. These are elementary tasks, despite the com-
putational cost being high. The statistics can be produced by elementary
means.

Note that the difficulties mentioned in item (i), about the smallness of the ro-
tation number, could be expected a priori. The problem in this region of the phase
space is a tiny perturbation of the two-body problem in synodical coordinates. If
μ → 0 the limit is the two-body problem, without the singularities which occur
in the case of L1 and L2 due to the presence of the secondary, which lead, under
suitable scaling, to a limit non-integrable case which is Hill’s problem, see [35, 49].
Hence, for μ → 0, the rotation numbers of the ICs like the ones in Figure 3.25 tend
to zero. Concretely they are O(μ), in contrast with the hyperbolicity at L3 and
also at the ICs, the vpoL and the hpoL, which is O(

√
μ). The possible resonances

are of a so high order that they become undetectable. The diffusion comes only
from the effect of the heteroclinic connections of the manifolds of these ICs. The
situation is more complex if there is also a relevant amount of hyperbolicity in the
centre manifold itself. See related topics in [13].

Summarizing: one has good evidence of the existence of diffusion associated
to the centre manifold of L3 on levels of the Jacobi constant not too far from the
value at that point. Certainly one can produce escape, due to the effect of the
secondary and even for μ as small as 0.0002, but the escape time is large. Anyway,
there are many topics which require further research.
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