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Foreword

This book collects the notes of lectures given by Jaume Llibre, Richard Moeckel,
and Carles Simó at Centre de Recerca Matemàtica (CRM) in Bellaterra, Barcelo-
na, from January 27th to 31st, 2014. The activity, in the framework of the Research
Program on Central Configurations, Periodic Orbits and Beyond in Celestial Me-
chanics, hosted at CRM from January to July 2014, was a joint collaboration
with the winter school in dynamical systems Recent Trends in Nonlinear Science
(RTNS2014), promoted by the DANCE (Dinámica, Atractores y Nolinealidad:
Caos y Estabilidad) Spanish network.

The Advanced Course on Central Configurations, Periodic Orbits and Hamil-
tonian Systems aimed at training their participants both theoretically and in ap-
plications in the field of nonlinear science; in this area as in many others, the
theoretical and the applications points of view clearly reinforce each other.

There were three series of lectures and, accordingly, the material is distributed
in three chapters in the book. The first series, delivered by Jaume Llibre, was dedi-
cated to the study of periodic solutions of differential systems in Rn via Averaging
Theory. Roughly speaking, in Averaging Theory one replaces a vector field by its
average (over time or an angular variable) with the goal of obtaining asymptotic
approximations to the original system that will be capable of guaranteeing the
existence of periodic solutions. The corresponding notes in Chapter 1 start with
an introduction of the classical, first order averaging theory followed by the main
results of the theory for arbitrary order and dimension. The theory is applied next
to the study of periodic solutions of some well known differential equations, like the
van der Pol differential equation, the Liénard differential systems, or the Rossler
differential system, among others. Some Hamiltonian systems are also studied.

The second series of lectures, given by Richard Moeckel, focused on methods
for studying central configurations, in Chapter 2. A Central Configuration is a
special arrangement of point masses interacting by Newton’s law of gravitation,
and with the following property: the gravitational acceleration vector produced
on each mass by all the others should point toward the center of mass and be
proportional to the distance to the center of mass. Central Configurations play an
important role in study of the Newtonian n-body problem. For example, they lead
to the only explicit solutions of the equations of motion, they govern the behavior of
solutions near collisions, and they influence the topology of integral manifolds. The

v



vi Foreword

lectures dealt with questions about the existence and enumeration of various types
of Central Configurations, including algebraic-geometrical approaches to Smale’s
Sixth Problem: is the number of Central Configurations always finite?

Chapter 3 is devoted to the last series of lectures, given by Carles Simó.
They describe the main mechanisms leading to a fairly global description of the
dynamics in conservative systems, either in the continuous version described by a
Hamiltonian, or in the discrete version. The Newtonian n-body problem belongs
to the general class of Hamiltonian systems. The chapter starts with several simple
but paradigmatic examples in the 2D case, from which it is easier to grasp the
main underlying ideas, also useful in higher dimension. Next, general theoretical
results are presented and applied to different problems in Celestial Mechanics,
with a rich variety of goals.

We would like to express our gratitude to the director and staff of the Cen-
tre de Recerca Matemàtica for making possible this activity. Finally, our special
thanks to the three lecturers, Jaume Llibre, Richard Moeckel and Carles Simó,
for the enthusiasm they showed during the course and for their fine preparation
of these notes. It is our hope that with their publication we may contribute to the
spreading of the interest of actual and future researchers for the exciting world of
dynamical systems.

Montserrat Corbera, Josep M. Cors and Enrique Ponce
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Chapter 1

The Averaging Theory for
Computing Periodic Orbits

Jaume Llibre

1.1 Preface

The method of averaging is a classical tool allowing us to study the dynamics of
the non-linear differential systems under periodic forcing. The method of averaging
has a long history starting with the classical works of Lagrange and Laplace,
who provided an intuitive justification of the method. The first formalization of
this theory was done in 1928 by Fatou [34]. Important practical and theoretical
contributions to the averaging theory were made in the 1930’s by Bogoliubov–
Krylov [8], in 1945 by Bogoliubov [7], and by Bogoliubov–Mitropolsky [9] (english
version 1961). For a more modern exposition of the averaging theory, see the book
Sanders–Verhulst–Murdock [78].

Every orbit of a differential system is homeomorphic either to a point, or to
a circle, or to a straight line. In the first case it is called a singular point or an
equilibrium point, and in the second case it is called a periodic orbit. The third
case does not have a name. These notes are dedicated to studying analytically the
periodic orbits of a given differential system.

We consider differential systems of the form

ẋ = F0(t,x) + εF1(t,x) + ε2R(t,x, ε), (1.1)

with x in some open subset D of Rn, Fi : R × D → Rn of class C2 for i = 1, 2,
R : R×D× (−ε0, ε0) → Rn of class C2 with ε0 > 0 small, and with the functions
Fi and R being T -periodic in the variable t. Here, the dot denotes derivative with
respect to the time t.

© Springer Basel 2015 1
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2 Chapter 1. The Averaging Theory for Computing Periodic Orbits

In general, to obtain analytically periodic solutions of a differential system
is a very difficult problem, many times a problem impossible to solve. As we shall
see when we can apply the averaging theory, this difficult problem for differential
systems (1.1) is reduced to finding the zeros of a non-linear function of dimension
at most n, i.e., now the problem has the same difficulty as the problem of finding
the singular or equilibrium points of a differential system.

An important problem for studying periodic solutions of differential systems
of the form

ẋ = F (t,x), or ẋ = F (x), (1.2)

using averaging theory is to transform them into systems written in the normal
form of the averaging theory, i.e., as a system (1.1). Note that systems (1.2), in
general, are not periodic in the independent variable t and do not have any small
parameter ε. So, we must find changes of variables which allow us to write the
differential systems (1.2) into the form (1.1), where F0 can eventually be zero.

The present chapter is divided in three sections. Section 1.2 is dedicated to the
averaging theory of first order; we present in it three main results for studying the
periodic solutions of differential systems, see Theorems 1.2.1, 1.2.9 and 1.2.18. We
develop four applications of Theorems 1.2.1, namely to the van der Pol equation,
to the Liénard differential system, to study the zero-Hopf bifurcation in Rn, and
to a class of Hamiltonian systems. We present three applications of Theorem 1.2.9;
in the first we study the Hopf bifurcation of the Michelson system, in the second
the periodic solutions of a third-order differential equation, and in the third one
we analyze the periodic solutions of the Vallis system which models the “El Niño”
phenomenon. Finally, we do an application of Theorem 1.2.18 to a class of Duffing
differential equations.

In Section 1.3, the most theoretical one, we present averaging theory for
studying periodic solutions of a differential system in Rn at any order in the small
parameter. This theory is developed using weaker assumptions.

Finally, in Section 1.4, we present some applications of averaging theory of
order higher than one. More concretely, using averaging theory of second order we
study periodic solutions of the Hénon–Heiles Hamiltonian, and using averaging
theory of third order we study first the limit cycles of the quadratic polynomial
differential systems, and of the linear with cubic homogeneous non-linearities poly-
nomial differential systems; and finally, we analyze the periodic solutions of the
generalized Liénard polynomial differential equations.

1.2 Introduction: the classical theory

1.2.1 A first order averaging method for periodic orbits

We consider the differential system

ẋ = εF (t,x) + ε2R(t,x, ε), (1.3)
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with x ∈ D ⊂ Rn, D a bounded domain, and t ≥ 0. Moreover we assume that
F (t,x) and R(t,x, ε) are T -periodic in t.

The averaged system associated to the system(1.3) is defined by

ẏ = εf0(y), (1.4)

where

f0(y) =
1

T

∫ T

0

F (s,y)ds. (1.5)

The next theorem says under what conditions the singular points of the
averaged system (1.4) provide T -periodic orbits for the system (1.3). The proof
presented here comes from [85].

Theorem 1.2.1. We consider system (1.3) and assume that the vector functions F ,
R, DxF , D2

x
F and DxR are continuous and bounded by a constantM (independent

of ε) in [0,∞) ×D, with −ε0 < ε < ε0. Moreover, we suppose that F and R are
T -periodic in t, with T independent of ε.

(i) If p ∈ D is a singular point of the averaged system (1.4) such that

det(Dxf
0(p)) �= 0 (1.6)

then, for |ε| > 0 sufficiently small, there exists a T -periodic solution x(t, ε)
of system (1.3) such that x(0, ε) → p as ε → 0.

(ii) If the singular point y = p of the averaged system (1.4) has all its eigenvalues
with negative real part then, for |ε| > 0 sufficiently small, the corresponding
periodic solution x(t, ε) of system (1.3) is asymptotically stable and, if one
of the eigenvalues has positive real part x(t, ε), it is unstable.

Theorem 1.2.1 is proved in Subsection 1.2.6. Before its proof we shall present
some applications of it in Subsection 1.2.2.

For each z ∈ D we denote by x(·, z, ε) the solution of (1.3) with initial
condition x(0, z, ε) = z. We consider also the function ζ : D × (−ε0, ε0) → Rn

defined by

ζ(z, ε) =

∫ T

0

[
εF (t,x(t, z, ε)) + ε2R(t,x(t, z, ε), ε)

]
dt. (1.7)

From (1.3) it follows that, for every z ∈ D,

ζ(z, ε) = x(T, z, ε)− x(0, z, ε). (1.8)

The function ζ can be written in the form

ζ(z, ε) = εf0(z) +O(ε2), (1.9)

where f0 is given by (1.5). Moreover, under the assumptions of Theorem 1.2.1,
the solution x(t, ε), for |ε| sufficiently small, satisfies that zε = x(0, ε) tends to be
an isolated zero of ζ(·, ε) when ε → 0. Of course, due to (1.8) the function ζ is a
displacement function for system (1.3), and its fixed points are initial conditions
for the T -periodic solutions of system (1.3).
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1.2.2 Four applications

We recall that a limit cycle of a differential system is a periodic orbit isolated in
the set of all periodic orbits of the system.

The van der Pol differential equation

Consider the van der Pol differential equation ẍ + x = ε(1 − x2)ẋ, which can be
written as the differential system

ẋ = y,
ẏ = −x+ ε(1− x2)y.

(1.10)

In polar coordinates (r, θ), where x = r cos θ, y = r sin θ, this system becomes

ṙ = εr(1 − r2 cos2 θ) sin2 θ,

θ̇ = −1 + ε cos θ(1 − r2 cos2 θ) sin θ,

or, equivalently,
dr

dθ
= −εr(1− r2 cos2 θ) sin2 θ +O(ε2).

Note that the previous differential system is in the normal form (1.3) for applying
the averaging theory described in Theorem 1.2.1 if we take x = r, t = θ, T = 2π
and F (t,x) = −r(1 − r2 cos2 θ) sin2 θ.

From (1.5) we get that

f0(r) = − 1

2π

∫ 2π

0

r(1 − r2 cos2 θ) sin2 θdθ =
1

8
r(r2 − 4).

The unique positive root of f0(r) is r = 2. Since (df0/dr)(2) = 1, by Theorem
1.2.1 (i), it follows that system (1.10) has, for |ε| �= 0 sufficiently small, a limit
cycle bifurcating from the periodic orbit of radius 2 of the unperturbed system
(1.10) with ε = 0. Moreover, since (df0/dr)(2) = 1 > 0, by Theorem 1.2.1 (ii), this
limit cycle is unstable.

The Liénard differential system

The following result is due to Lins–de Melo–Pugh [53]. Here, we provide an easy
and shorter proof with respect to the initial proof given by the mentioned authors.

Proposition 1.2.2. The Liénard differential systems of the form

ẋ = y − ε(a1x+ · · ·+ anx
n),

ẏ = −x,

with ε sufficiently small and an �= 0 have at most [(n−1)/2] limit cycles bifurcating
from the periodic orbits of the linear center ẋ = y, ẏ = −x, and there are examples
with exactly [(n− 1)/2] limit cycles; here, [·] denotes the integer part function.
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Proof. We write the system

ẋ = y − ε(a1x+ · · ·+ anx
n), ẏ = −x,

in polar coordinates (r, θ), where x = r cos θ, y = r sin θ, and we obtain

ṙ = −ε
n∑

k=1

akr
k cosk+1 θ,

θ̇ = −1 + ε sin θ

n∑
k=1

akr
k−1 cosk θ

or, equivalently,

dr

dθ
= −ε

n∑
k=1

akr
k cosk+1 θ +O(ε2).

Again, taking x = r, t = θ, T = 2π and F (t,x) = −
n∑

k=1

akr
k cosk+1 θ, the previous

differential system is in the normal form (1.3) for applying the averaging theory
described in Theorem 1.2.1.

We have that

f0(r) = − 1

2π

n∑
k=1

akr
k

∫ 2π

0

cosk+1 θ dθ = − ε

2π

n∑
k = 1

k odd

akbkr
k = p(r),

where bk =

∫ 2π

0

cosk+1 θ dθ �= 0 if k is odd, and bk = 0 if k is even. Now we

apply Theorem 1.2.1, since the polynomial p(r) has at most [(n − 1)/2] positive
roots, and we can choose the coefficients ak with k odd in such a way that p(r)
has exactly [(n− 1)/2] simple positive roots; the proposition follows. �

Zero-Hopf bifurcation in Rn

In this example we study a zero-Hopf bifurcation of C3 differential systems in Rn

with n ≥ 3. These results come from Llibre–Zhang [58].

We assume that these systems have a singularity at the origin, whose linear
part has eigenvalues εa ± bi, with b �= 0 and εck for k = 3, . . . , n, where ε is
a small parameter. Since the eigenvalues of the linearization at the origin when
ε = 0 are ±bi �= 0 and 0 with multiplicity n− 2, if an infinitesimal periodic orbit
bifurcates from the origin when ε = 0, we call such kind of bifurcation a zero-Hopf
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bifurcation. Such systems can be written into the form

ẋ = εax− by +
∑

i1+···+in=2

ai1...inx
i1yi2zi33 · · · zinn +A,

ẏ = bx+ εay +
∑

i1+···+in=2

bi1...inx
i1yi2zi33 · · · zinn + B,

żk = εckzk +
∑

i1+···+in=2

c
(k)
i1...in

xi1yi2zi33 · · · zinn + Ck, k = 3, . . . , n,

(1.11)

where ai1...in , bi1...in , c
(k)
i1...in

, a, b and ck are real parameters, ab �= 0, and A, B
and Ck are the Lagrange expression of the error function of third order in the
expansion of the functions of the system in Taylor series.

Theorem 1.2.3. There exist C3 systems (1.11) for which l ∈ {0, 1, . . . , 2n−3} limit
cycles bifurcate from the origin at ε = 0, i.e., for ε sufficiently small the system
has exactly l limit cycles in a neighborhood of the origin, and these limit cycles
tend to the origin when ε ↘ 0.

As far as we know, Theorem 1.2.3 was the first result proving that the number
of limit cycles that can bifurcate in a Hopf bifurcation increases exponentially with
the dimension of the space. We recall that a Hopf bifurcation takes place when one
or several limit cycles bifurcate from an equilibrium point.

From the proof of Theorem 1.2.3 we get immediately the following result.

Corollary 1.2.4. There exist quadratic polynomial differential systems (1.11) (i.e.,
with A = B = Ck = 0) for which l ∈ {0, 1, . . . , 2n−3} limit cycles bifurcate from the
origin at ε = 0, i.e., for ε sufficiently small the system has exactly l limit cycles in
a neighborhood of the origin and these limit cycles tend to the origin when ε ↘ 0.

Proof of Theorem 1.2.3. Doing the cylindrical change of coordinates

x = r cos θ, y = r sin θ, zi = zi, i = 3, . . . , n, (1.12)

in the region r > 0 the system (1.11) becomes

ṙ= εar +
∑

i1+···+in=2

(ai1...in cos θ + bi1...in sin θ)(r cos θ)i1(r sin θ)i2zi33 · · · zinn +O(3),

θ̇=
1

r

[
br +

∑
i1+···+in=2

(bi1...in cos θ − ai1...in sin θ)(r cos θ)i1(r sin θ)i2zi33 · · · zinn +O(3)

]
,

żk= εckzk +
∑

i1+···+in=2

c
(k)
i1...in

(r cos θ)i1(r sin θ)i2zi33 · · · zinn +O(3), k = 3, . . . , n,

(1.13)
where O(3) = O3(r, z3, . . . , zn).

As usual, Z+ denotes the set of all non-negative integers. Taking a00eij =

b00eij = 0 where eij ∈ Zn−2
+ has the sum of the entries equal to 2, it is easy to

show that in a suitably small neighborhood of (r, z3, . . . , zn) = (0, 0, . . . , 0) we
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have θ̇ �= 0. Then, choosing θ as the new independent variable system (1.13), in a
neighborhood of (r, z3, . . . , zn) = (0, 0, . . . , 0) it becomes

dr

dθ
=

r

(
εar +

∑
i1+···+in=2

(ai1...in cos θ + bi1...in sin θ)(r cos θ)i1 (r sin θ)i2z
i3
3 · · · zin

n + O(3)

)

br +
∑

i1+···+in=2

(bi1...in cos θ − ai1...in sin θ)(r cos θ)i1(r sin θ)i2z
i3
3 · · · zin

n + O(3)
,

dzk

dθ
=

r

(
εckzk +

∑
i1+···+in=2

c
(k)
i1...in

(r cos θ)i1(r sin θ)i2z
i3
3 · · · zin

n + O(3)

)

br +
∑

i1+···+in=2

(bi1...in cos θ − ai1...in sin θ)(r cos θ)i1 (r sin θ)i2z
i3
3 · · · zin

n + O(3)
,

(1.14)
for k = 3, . . . , n. We note that this system is 2π periodic in the variable θ.

In order to write system (1.14) in the normal form of the averaging theory
we rescale the variables

(r, z3, . . . , zn) = (ρε, η3ε, . . . , ηnε). (1.15)

Then the system (1.14) becomes

dρ

dθ
= εf1(θ, ρ, η3, . . . , ηn) + ε2g1(θ, ρ, η3, . . . , ηn, ε),

dηk
dθ

= εfk(θ, ρ, η3, . . . , ηn) + ε2gk(θ, ρ, η3, . . . , ηn, ε), k = 3, . . . , n,

(1.16)

where

f1 =
1

b

(
aρ+

∑
i1+···+in=2

(ai1...in cos θ + bi1...in sin θ)(ρ cos θ)i1(ρ sin θ)i2zi33 · · · zinn
)
,

fk =
1

b

(
cηk +

∑
i1+···+in=2

c
(k)
i1...in

(ρ cos θ)i1(ρ sin θ)i2zi33 · · · zinn
)
.

We note that the system (1.16) is in the normal form (1.3) of the averaging
theory, with x = (ρ, η3, . . . , ηn), t = θ, F (θ, ρ, η3, . . . , ηn) = (f1(θ, ρ, η3, . . . , ηn),
f3(θ, ρ, η3, . . . , ηn), . . . , fn(θ, ρ, η3, . . . , ηn)), and T = 2π. The averaged system of
(1.16) is

ẏ = εf0(y), y = (ρ, η3, . . . , ηn) ∈ Ω, (1.17)

where Ω is a suitable neighborhood of the origin (ρ, η3, . . . , ηn) = (0, 0, . . . , 0), and

f0(y) = (f0
1 (y), f

0
3 (y), . . . , f

0
n(y)),

with

f0
i (y) =

1

2π

∫ 2π

0

fi(θ, ρ, η3, . . . , ηn)dθ, i = 1, 3, . . . , n.
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After some calculations we have that

f0
1 =

1

2b
ρ

⎛⎝2a+

n∑
j=3

(a10ej + b01ej )ηj

⎞⎠ ,

f0
k =

1

2b

⎛⎝2ckηk +
(
c
(k)
200n−2

+ c
(k)
020n−2

)
ρ2 + 2

∑
3≤i≤j≤n

c
(k)
00eij

ηiηj

⎞⎠, k = 3, . . . , n,

where ej ∈ Zn−2
+ is the unit vector with the j-th entry equal to 1, and eij ∈ Zn−2

+

has the sum of the i-th and j-th entries equal to 2 and the other equal to 0.
Now we shall apply Theorem 1.2.1 for studying the limit cycles of system

(1.16). Note that these limits, after the rescaling (1.15), will become infinitesimal
limit cycles for system (1.14), which will tend to the origin when ε ↘ 0; con-
sequently, they will be bifurcated limit cycles of the Hopf bifurcation of system
(1.14) at the origin.

From Theorem 1.2.1 for studying the limit cycles of system (1.16) we only
need to compute the non-degenerate singularities of system (1.17). Since the trans-
formation from the cartesian coordinates (r, z3, . . . , zn) to the cylindrical ones
(ρ, η3, . . . , ηn) is not a diffeomorphism at ρ = 0, we deal with the zeros having the
coordinate ρ > 0 of the averaged function f0. So, we need to compute the roots
of the algebraic equations

2a+
n∑

j=3

(a10ej + b01ej )ηj = 0,

2ckηk +
(
c
(k)
200n−2

+ c
(k)
020n−2

)
ρ2 + 2

∑
3≤i≤j≤n

c
(k)
00eij

ηiηj = 0, k = 3, . . . , n.

(1.18)
Since the coefficients of system (1.18) are independent and arbitrary, in order to
simplify the notation we write it as

a+

n∑
j=3

ajηj = 0, c
(k)
0 ρ2 + ckηk +

∑
3≤i≤j≤n

c
(k)
ij ηiηj = 0, k = 3, . . . , n, (1.19)

where aj, c
(k)
0 , ck and c

(k)
ij are arbitrary constants.

Denote by C the set of algebraic systems of form (1.19). We claim that there
is a system belonging to C which has exactly 2n−3 simple roots. The claim can be
verified by the example:

a+ a3η3 = 0, (1.20)

c
(3)
0 ρ2 + c3η3 +

∑
3≤i≤j≤n

c
(3)
ij ηiηj = 0, (1.21)

ckηk +
∑

3≤i≤j≤k

c
(k)
ij ηiηj = 0, k = 4, . . . , n, (1.22)
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with all the coefficients being non-zero. Equations (1.22) can be treated as quadra-
tic algebraic equations in ηk. Substituting the unique solution η30 of η3 in (1.20)
into (1.22) with k = 4, this last equation has exactly two different solutions,
namely η41 and η42 for η4, choosing conveniently c4. Introducing the two solutions
(η30, η4i), i = 1, 2, into (1.22) with k = 5 and choosing conveniently the values of
the coefficients of equation (1.22) with k = 5 and (η3, η4) = (η30, η4i), we get two
different solutions η5i1 and η5i2 of η5 for each i. Moreover, playing with the coeffi-
cients of the equations, the four solutions (η30, η4i, η5ij) for i, j = 1, 2, are distinct.
By induction, we can prove that for suitable choice of the coefficients, equations
(1.20) and (1.22) have 2n−3 different roots (η3, . . . , ηn). Since η3 = η30 is fixed,

for any given c
(3)
ij there exist values of c3 and c

(3)
0 such that equation (1.21) has a

positive solution ρ for each of the 2n−3 solutions (η3, . . . , ηn) of (1.20) and (1.22).
Since the 2n−3 solutions are different, and the number of the solutions of (1.20)–
(1.22) is the maximum that the equations can have (by the Bezout Theorem, see
for instance [80]), it follows that every solution is simple, and consequently the
determinant of the Jacobian of the system evaluated at it is not zero. This proves
the claim.

Using the same arguments which allowed us to prove the claim, we can also
prove that we can choose the coefficients of the previous system in order to have
0, 1, . . . , 2n−3 − 1 simple real solutions.

Taking the averaged system (1.17) with f0 having the convenient coefficients
as in (1.20)–(1.22), the averaged system (1.17) has exactly k ∈ {0, 1, . . . , 2n−3} sin-
gularities with the components ρ > 0. Moreover, the determinants of the Jacobian
matrix ∂f0/∂y at these singularities do not vanish because all the singularities
are simple. In short, by Theorem 1.2.1 we get that there are systems of the form
(1.11) which have k ∈ {0, 1, . . . , 2n−3} limit cycles. This proves the theorem. �

An application to Hamiltonian systems

The results of this subsubsection come from the paper Guirao–Llibre–Vera [39].
We consider the following class of Hamiltonians in the action-angle variables

H(I1, . . . , In, θ1, . . . , θn) = H0(I1) + εH1(I1, . . . , In, θ1, . . . , θn), (1.23)

where ε is a small parameter. For more details on the action-angle variables see,
for instance, [1].

As usual, the Poisson bracket of the functions f(I1, . . . , In, θ1, . . . , θn) and
g(I1, . . . , In, θ1, . . . , θn) is

{f, g} =
n∑

i=1

(
∂f

∂θi

∂g

∂Ii
− ∂f

∂Ii

∂g

∂θi

)
.

The next result provides sufficient conditions for computing periodic orbits
of the Hamiltonian system associated to the Hamiltonian (1.23).
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Theorem 1.2.5. We define

〈H1〉 = 1

2π

2π∫
0

H1(I1, . . . , In, θ1, . . . , θn)dθ1,

and we consider the differential system

dIi
dθ1

= ε
{Ii, 〈H1〉}

H′

0(H−1
0 (h∗))

= εfi−1(I2, . . . , In, θ2, . . . , θn), i = 2, ..., n,

dθi
dθ1

= ε
{θi, 〈H1〉}

H′

0(H−1
0 (h∗))

= εfi+n−2(I2, . . . , In, θ2, . . . , θn), i = 2, . . . , n,

(1.24)

restricted to the energy level H = h∗ with h∗ ∈ R. The value h∗ is such that the
function H−1

0 in a neighborhood of h∗ is a diffeomorphism. The system (1.24) is
a Hamiltonian system with Hamiltonian ε 〈H1〉. If ε �= 0 is sufficiently small then
for every equilibrium point p = (I02 , . . . , I

0
n, θ

0
2, . . . , θ

0
n) of system (1.24) satisfying

that

det

(
∂(f1, . . . , f2n−2)

∂(I2, . . . , In, θ2, . . . , θn)

∣∣∣∣
(I2,...,In,θ2,...,θn)=(I0

2 ,...,I
0
n,θ

0
2,...,θ

0
n)

)
�= 0,

there exists a 2π-periodic solution γε(θ, . . . , In(θ1, ε), θ2(θ1, ε), . . ., θn(θ1, ε)) of the
Hamiltonian system associated to the Hamiltonian (1.23), taking as independent
variable the angle θ1 such that γε(0) → (H−1

0 (h∗), I02 , . . . , I0n, θ02, . . . , θ0n) when
ε → 0. The stability or instability of the periodic solution γε(θ1) is given by the
stability or instability of the equilibrium point p of system (1.24). In fact, the
equilibrium point p has the stability behavior of the Poincaré map associated to the
periodic solution γε(θ1).

Now we clarify some of the notations used in the statement of Theorem 1.2.5.
The function H0 is only a function of the variable I1, i.e., H0 : J → R where J is an
open subset of R (the domain of definition of H0), and consequently H0(I1) ∈ R.
Therefore, H′

0 means derivative with respect to the variable I1.
The differential system (2) is defined on the energy level H(I1, . . . , In,

θ1, . . . , θn) = h∗ with h∗ ∈ R, and we assume that the value h∗ is such that
the function H−1

0 in a neighborhood of h∗ is a diffeomorphism. Therefore, the
expression H′

0(H−1
0 (h∗)) is well defined.

On the other hand, every periodic solution of a differential system has defined
in its neighborhood a return map F usually called the Poincaré map. The periodic
solution provides a fixed point of the map F . The stability or instability of this
fixed point for the map F is what we call the stability behavior of the Poincaré
map associated to the periodic solution in the statement of Theorem 1.2.5. For
more details on the Poincaré map see, for instance, [76].

Theorem 1.2.5 will be proved later on.
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The next goal is to study the periodic orbits of the Hamiltonian system with
the perturbed Keplerian Hamiltonian of the form

H =
1

2

(
P 2
1 + P 2

2 + P 2
3

)− 1√
Q2

1 +Q2
2 +Q2

3

+ εP1(Q
2
1 +Q2

2, Q3). (1.25)

Note that the perturbation is symmetric with respect to the Q3-axis. It is easy to
check that the third component K = Q1P2 −Q2P1 of the angular momentum is a
first integral of the Hamiltonian system associated to the Hamiltonian (1.25). We
use this second first integral to simplify the analysis of the given axially symmetric
Keplerian perturbed system.

In the following we use the Delaunay variables for studying easily the periodic
orbits of the Hamiltonian system associated to the Hamiltonian (1.25), see [23,
71] for more details on the Delaunay variables. Thus, in Delaunay variables, the
Hamiltonian (1.25) has the form

H = − 1

2L2
+ εP(l, g, k, L,G,K) = − 1

2L2
+ εP(l, g, L,G,K), (1.26)

where l is the mean anomaly, g is the argument of the perigee of the unperturbed
elliptic orbit measured in the invariant plane, k is the longitude of the node, L
is the square root of the semi-major axis of the unperturbed elliptic orbit, G
is the modulus of the total angular momentum, and K is the third component
of the angular momentum. Moreover, P is the perturbation obtained from the
perturbation P1 using the transformation to Delaunay variables, namely

Q1 = r (cos(f + g) cos k − c sin(f + g) sin k) ,

Q2 = r (cos(f + g) sin k + c sin(f + g) cos k) ,

Q3 = rs sin(f + g),

(1.27)

with

c =
K

G
, s2 = 1− K2

G2
.

The true anomaly f and the eccentric anomaly E are auxiliary quantities defined
by the relations√

1− e2 =
G

L
, r = a(1− e cosE), l = E − e sinE.

sin f =
a
√
1− e2 sinE

r
, cos f =

a(cosE − e)

r
,

where e is the eccentricity of the unperturbed elliptic orbit.
Note that the angular variable k is a cyclic variable for the Hamiltonian

(1.26) and, consequently, K is a first integral of the Hamiltonian system as we
already knew.
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The family of Hamiltonians (1.26) is a particular subclass of the Hamiltonians
(1.23) with H1 = P . We denote by 〈P〉 the averaged map of P with respect to the
mean anomaly l, i.e.,

〈P〉 = 1

2π

2π∫
0

P(l, g, L,G,K)dl =
1

2π

2π∫
0

P(E − e sinE, g, L,G,K)(1− e cosE)dE.

We remark that the map 〈P〉 only depends on the angle g and the three action
variables L,G,K. We claim that H′

0(H−1
0 (h∗)) = (−2h∗)3/2. Indeed, H0(L) =

−1/(2L2) = h∗ so, H−1
0 (h∗) = (−2h∗)1/2. Since H′

0(L) = 1/L3, the claim follows.
From the definition of Poisson parenthesis, we also have that

{G, 〈P〉} = −∂G

∂G

∂ 〈P〉
∂g

= −∂ 〈P〉
∂g

,

{g, 〈P〉} =
∂g

∂g

∂ 〈P〉
∂G

=
∂ 〈P〉
∂G

,

{k, 〈P〉} =
∂k

∂k

∂ 〈P〉
∂K

=
∂ 〈P〉
∂K

.

Then, by Theorem 1.2.5 at the energy level H = h∗ with h∗ < 0 (because H0(L) =
−1/(2L2)) and with angular momentum K = k∗, the differential system (1.24)
with respect to the mean anomaly l is

dG

dl
= ε

{G, 〈P〉}
H′

0(H−1
0 (h∗))

= −ε(−2h∗)3/2
∂ 〈P〉
∂g

= −εf1(g,G,K),

dg

dl
= ε

{g, 〈P〉}
H′

0(H−1
0 (h∗))

= ε(−2h∗)3/2
∂ 〈P〉
∂G

= εf2(g,G,K),

dk

dl
= ε

{k, 〈P〉}
H′

0(H−1
0 (h∗))

= ε(−2h∗)3/2
∂ 〈P〉
∂K

= εf3(g,G,K).

(1.28)

Note that we do not write the differential equation dK/dt = 0 because we are
working in the invariant set H = h∗ and K = k∗.

Now, we are ready to state a corollary of Theorem 1.2.5 providing sufficient
conditions for the existence and the kind of stability of the periodic orbits in the
perturbed Kepler problems with axial symmetry.

Corollary 1.2.6. System (1.28) is the Hamiltonian system taking as independent
variable the mean anomaly l of the Hamiltonian (1.25) written in Delaunay vari-
ables on the fixed energy level H = h∗ < 0 and on the fixed third component of the
angular momentum K = k∗. If ε �= 0 is sufficiently small then, for every solution
p = (g0, G0, k

∗) of the system fi(g,G,K) = 0 for i = 1, 2, 3 satisfying

det

(
∂(f1, f2, f3)

∂(g,G,K)

∣∣∣∣
(g,G,K)=(g0,G0,k∗)

)
�= 0, (1.29)
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and all k0 ∈ [0, 2π) there exists a 2π-periodic solution

γε(l) =
(
g(l, ε), k(l, ε), L(l, ε), G(l, ε),K(l, ε) = k∗

)
such that γε(0) → (g0, k0,

√−2h∗, G0, k
∗) when ε → 0. The stability or instability

of the periodic solution γε(l) is given by the stability or instability of the equilibrium
point p of system (1.28). In fact, the equilibrium point p has the stability behavior
of the Poincaré map associated to the periodic solution γε(l).

We remark that having a periodic solution for every k0 ∈ [0, 2π) with the
same initial conditions for all of the other variables, means that we really have a
two dimensional torus foliated by periodic solutions.

There are many papers studying periodic orbits of different perturbed Kep-
lerian problems, see for instance [42, 47, 79] and the papers quoted therein.

In what follows we shall study the spatial generalized van der Waals Hamilto-
nian system modeling the dynamical symmetries of the perturbed hydrogen atom.

The generalized van der Waals Hamiltonian system was proposed in the
paper [3] via the following Hamiltonian with β ∈ R

H =
1

2

(
P 2
1 + P 2

2 + P 2
3

)− 1√
Q2

1 +Q2
2 +Q2

3

+ ε
(
Q2

1 +Q2
2 + β2Q2

3

)
. (1.30)

Note that this Hamiltonian is of the form (1.25). For more references, see the ones
quoted in [38].

Theorem 1.2.7. On every energy level H = h∗ < 0, and for the third component
of the angular momentum K = k∗, the spatial van der Waals Hamiltonian system
associated to the Hamiltonian (1.30) for ε �= 0 sufficiently small has:

(i) For K = k∗ = 0, two 2π-periodic solutions γ±
ε (l) =

(
g(l, ε), k(l, ε)), L(l, ε),

G(l, ε),K(l, ε)
)
such that

γ±
ε (l)(0) →

(
±1

2
arccos

(
3(β2 + 1)

5(β2 − 1)

)
, k0,

1√−2h∗ ,
1√−2h∗ , 0

)
when ε → 0, for each k0 ∈ [0, 2π) if β ∈ (−∞,−2) ∪ (−1/2, 1/2) ∪ (2,∞).
These periodic orbits have a stable manifold of dimension 2 and an unsta-
ble one of dimension 1 if β ∈ (−1/2, 1/2), and have a stable manifold of
dimension 1 and an unstable one of dimension 2 if β ∈ (−∞,−2) ∪ (2,∞).
Consequently, these periodic orbits are unstable.

(ii) For K = k∗ �= 0, four 2π-periodic solutions γ±,±
ε (l) =

(
g(l, ε), k(l, ε)), L(l, ε),

G(l, ε),K(l, ε)
)
such that

γ±,±
ε (0) →

(
±π

2
, k0,

1√−2h∗ ,
1

2

√
5

−2h∗ ,±
1

4

√
5(1− 4β2)

−2h∗(1− β2)

)
when ε → 0, for each k0 ∈ [0, 2π) if β ∈ (−1,−1/2)∪ (1/2, 1).
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Theorem 1.2.7 is proved later on. The result in statement (i) was already
obtained using cylindrical coordinates in [38].

The stability or instability of the four periodic orbits in statement (ii) can
be determined analyzing the eigenvalues of the corresponding Jacobian matrices,
but since the expression of these eigenvalues are huge and depend on the two
parameters h∗ and β, this study is a long task we are not going to do here.

We remark that, when (β2−1)(β2−4)(β2−1/4) = 0, i.e., for the values that
the averaging theory for finding periodic orbits do not provide any information,
it is known that the van der Waals Hamiltonian system is integrable, see [33].
Therefore the averaging method, when it cannot be applied for finding periodic
orbits, provides a suspicion that for such values of the parameter the system could
be integrable.

The Hamiltonian system associated to the Hamiltonian (1.23) can be written
as

dIi
dt

= ε{Ii,H1} = −ε
∂H1

∂θi
, i = 1, . . . , n,

dθi
dt

= ε{θi,H1} = ε
∂H1

∂Ii
, i = 2, . . . , n,

dθ1
dt

= H′

0(I1) + ε{θ1,H1} = H′

0(I1) + ε
∂H1

∂I1
.

(1.31)

Lemma 1.2.8. Taking as new independent variable the variable θ1, we have in the
fixed energy level H = h∗ < 0 that the differential system (1.31) becomes

dIi
dθ1

= ε
{Ii,H1}

H′

0(H−1
0 (h∗))

+O(ε2), i = 2, . . . , n,

dθi
dθ1

= ε
{θi,H1}

H′

0(H−1
0 (h∗))

+O(ε2), i = 2, . . . , n,
(1.32)

with I1 = H−1
0 (h∗) +O(ε) if H′

0(H−1
0 (h∗)) �= 0.

Proof. Taking as new independent variable θ1, equations (1.31) become

dIi
dθ1

=
ε{Ii,H1}

H′

0(I1) + ε{θ1,H1} = ε
{Ii,H1}
H′

0(I1)
+O(ε2), i = 1, . . . , n,

dθi
dθ1

=
ε{θi,H1}

H′

0(I1) + ε{θ1,H1} = ε
{θi,H1}
H′

0(I1)
+O(ε2), i = 2, . . . , n.

Fixing the energy level of H = h∗ < 0, we obtain h∗ = H0(I1)+εH1(I1, . . . , In, θ1,
. . . , θn). Using the Implicit Function Theorem and the fact that H′

0(H−1
0 (h∗)) �= 0,

for ε sufficiently small, we get I1 = H−1
0 (h∗)+O(ε), and the equations are reduced

to (1.32). �
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Proof of Theorem 1.2.5. The averaged system in the angle θ1 obtained from (1.32)
is

dIi
dθ1

= − 1

2π

ε

H′

0(H−1
0 (h))

2π∫
0

∂H1

∂θi
dθ1, i = 2, . . . , n,

dθi
dθ1

=
1

2π
ε

{θi,H1}
H′

0(H−1
0 (h))

2π∫
0

∂H1

∂Ii
dθ1, i = 2, . . . , n.

(1.33)

Since

∂ 〈H1〉
∂θi

=
1

2π

2π∫
0

∂H1

∂θi
dθ1, i = 2, . . . , n,

∂ 〈H1〉
∂Ii

=
1

2π

2π∫
0

∂H1

∂Ii
dθ1, i = 2, . . . , n,

the differential system (1.33) becomes

dIi
dθ1

= − ε

H′

0(H−1
0 (h))

∂ 〈H1〉
∂θi

= ε
{Ii, 〈H1〉}

H′

0(H−1
0 (h))

, i = 2, . . . , n,

dθi
dθ1

=
ε

H′

0(H−1
0 (h))

∂ 〈H1〉
∂Ii

= ε
{θi, 〈H1〉}

H′

0(H−1
0 (h))

, i = 2, . . . , n,

which coincides with (1.24).
Once we have obtained the averaged system (1.24), it is immediate to check

that it satisfies the assumptions of Theorem 1.2.1, then applying the conclusions of
this theorem the rest of the statement of Theorem 1.2.5 follows immediately. �

Proof of Theorem 1.2.7. For the generalized van der Waals Hamiltonian system,
the function P(E, g, h,G,K) is equal to(

β2G2 +G2 +K2 −K2β2
)
(e cosE − 1)2L4

2G2

−L4(G2 −K2)(β2 − 1)(e − cosE)2 cos2 g

2G2

+
L4(G2 −K2)(β2 − 1)(e − cosE)2 sin2 g

2G2

−2L3(G2 −K2)(β2 − 1)(e− cosE) cos g sinE sin g

G

+
1

2
L2(G2 −K2)(β2 − 1) cos2 g sin2 E

−1

2
L2(G2 −K2)(β2 − 1) sin2 E sin2 g.
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Its averaged function with respect to the mean anomaly is

〈P〉 = 1

2π

2π∫
0

P(E, g, h,G,K)(1− e cosE)dE =
B

4G2
,

where B = L2
(
5(G2 − K2)(G2 − L2)(β2 − 1) cos(2g) − (3G2 − 5L2)(G2 + K2 +

(G2 −K2)β2)
)
.

Equations (1.28) are the averaged equations of the Hamiltonian system with
Hamiltonian (1.30)

dG

dl
= ε

5(1 + 2h∗G2)(G2 −K2)(β2 − 1) sin(2g)

2G2
√−2h∗ = −εf1(g,G,K),

dg

dl
= −ε

C

2G3
√−2h∗ = εf2(g,G,K),

dk

dl
= ε

K(β2 − 1)(−5− 6h∗G2 + 5(1 + 2h∗G2) cos(2g))

2G2
√−2h∗ = εf3(g,G,K),

where C = 5K2(β2 − 1) + 6h∗G4(β2 + 1)− 5(2h∗G4 +K2)(β2 − 1) cos(2g); here,
L = 1/

√−2h∗ + O(ε). The equilibrium solutions (g0, G0, k
∗) of this averaged

system satisfying (1.29) give rise to periodic orbits of the Hamiltonian system
with Hamiltonian (1.30) for each H = h∗ < 0 and K = k∗, see Theorem 1.2.1.
These equilibria (g0, G0, k

∗) are

(
±1

2
arccos

(
3(β2 + 1)

5(β2 − 1)

)
,

1√−2h∗ , 0
)
,

(
±π

2
,
1

2

√
5

−2h∗ ,±
1

4

√
5(1− 4β2)

−2h∗(1− β2)

)
.

The first two equilibria exist if 3(β2 + 1)/(5(β2 − 1)) ∈ [−1, 1], i.e., if β ∈
(−∞,−2] ∪ [−1/2, 1/2]∪ [2,∞).

The Jacobian (1.29) of the first equilibrium is equal to J = 16
√−2h∗(β2−1)

(β2 − 4)(β2 − 1/4). So, when β ∈ (−∞,−2) ∪ (−1/2, 1/2)∪ (2,∞), each of these
equilibria provides one periodic orbit of the Hamiltonian system with Hamiltonian
(1.30) for each H = h∗ < 0 and K = k∗ = 0. Since k∗ = 0, these periodic
orbits bifurcate from an elliptic orbit (g0 �= 0) of the Kepler problem living in
the plane of motion of the two bodies of the Kepler problem. Moreover, since the
eigenvalues of the Jacobian matrix at these equilibra are ±2

√
(β2 − 4)(4β2 − 1)

and
√−2h∗(β2 − 1), these periodic orbits have a stable manifold of dimension 2

and an unstable one of dimension 1 if β ∈ (−1/2, 1/2), and have a stable manifold
of dimension 1 and an unstable one of dimension 2 if β ∈ (−∞,−2)∪ (2,∞). This
proves statement (i) of the theorem.

The last four equilibria exist if β ∈ (−1,−1/2] ∪ [1/2, 1) and have Jacobian
equal to J = −15

√−2h∗(β2 − 1)(4β2 − 1). So, for each value of k ∈ [0, 2π)
these four equilibria when β ∈ (−1,−1/2) ∪ (1/2, 1) provide four periodic orbits
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of the Hamiltonian system with Hamiltonian (1.30) for each H = h∗ < 0 and

K = k∗ = ±1

4

√
5(1− 4β2)

−2h∗(1− β2)
�= 0. Since k∗ �= 0 these periodic orbits bifurcate

from elliptic orbits (g0 �= 0) of the Kepler problem which are not in the plane of
motion defined by the two bodies. This proves statement (ii) of the theorem. �

1.2.3 Other first order averaging methods for periodic orbits

We consider the problem of bifurcation of T -periodic solutions from the differential
system

ẋ = F0(t,x) + εF1(t,x) + ε2R(t,x, ε), (1.34)

with ε = 0 to ε �= 0 sufficiently small. Here, the functions F0, F1 : R×D → Rn and
R : R×D × (−ε0, ε0) → Rn are C2 functions, T -periodic in the first variable, and
D is an open subset of Rn. One of the main assumptions is that the unperturbed
system

x′ = F0(t,x), (1.35)

has a submanifold of periodic solutions.
Let x(t, z) be the solution of the unperturbed system (1.35) satisfying that

x(0, z) = z. We write the linearization of the unperturbed system along the peri-
odic solution x(t, z) as

y′ = DxF0(t,x(t, z))y. (1.36)

In what follows we denote by Mz(t) some fundamental matrix of the linear dif-
ferential system (1.36), and by ξ : Rk × Rn−k → Rk the projection of Rn onto its
first k coordinates, i.e., ξ(x1, . . . , xn) = (x1, . . . , xk).

The next result goes back to Malkin [29] and Roseau [76]. Here, we shall
present the shorter proof given by A. Buică–Françoise–Llibre [12].

Theorem 1.2.9. Let V ⊂ Rk be open and bounded, and let β0 : Cl(V ) → Rn−k be
a C2 function. We assume that

(i) Z = {zα = (α, β0(α)) : α ∈ Cl(V )} ⊂ Ω and that for each zα ∈ Z the solution
x(t, zα) of (1.35) is T -periodic;

(ii) for each zα ∈ Z there is a fundamental matrix Mzα(t) of (1.36) such that
the matrix M−1

zα
(0)−M−1

zα
(T ) has in the right up corner the k× (n− k) zero

matrix, and in the right lower corner a (n − k) × (n − k) matrix Δα with
det(Δα) �= 0.

We consider the function F : Cl(V ) → Rk defined as

F(α) = ξ

(∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
. (1.37)

If there exists a ∈ V with F(a) = 0 and det ((dF/dα) (a)) �= 0, then there is a
T -periodic solution x(t, ε) of system (1.34) such that x(0, ε) → za as ε → 0.
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Theorem 1.2.9 is proved in Subsection 1.2.7. In the next subsection we provide
some applications of this theorem.

We assume that there exists an open set V with Cl(V ) ⊂ Ω such that for
each z ∈ Cl(V ), x(t, z, 0) is T -periodic, where x(t, z, 0) denotes the solution of the
unperturbed system (1.35) with x(0, z, 0) = z. The set Cl(V ) is isochronous for
the system (1.34), i.e., it is a set formed only by periodic orbits, all of them having
the same period. Then, an answer to the problem of the bifurcation of T -periodic
solutions from the periodic solutions x(t, z, 0) contained in Cl(V ) is given in the
following result.

Corollary 1.2.10 (Perturbations of an isochronous set). We assume that there exists
an open and bounded set V with Cl(V ) ⊂ Ω and such that, for each z ∈ Cl(V ),
the solution x(t, z) is T -periodic; then we consider the function F : Cl(V ) → Rn,

F(z) =

∫ T

0

M−1
z

(t, z)F1(t,x(t, z))dt. (1.38)

If there exists a ∈ V with F(a) = 0 and det ((dF/dz) (a)) �= 0, then there exists a
T -periodic solution x(t, ε) of system (1.34) such that x(0, ε) → a as ε → 0.

Proof. It follows immediately from Theorem 1.2.9 taking k = n. �

1.2.4 Three applications

In this subsection we shall develop three applications of Theorem 1.2.9 and of its
Corollary 1.2.10.

The Hopf bifurcation of the Michelson system

The Michelson system

ẋ = y, ẏ = z, ż = c2 − y − x2

2
, (1.39)

with (x, y, z) ∈ R3 and the parameter c ≥ 0, was introduced by Michelson [72] in
the study of the travelling wave solutions of the Kuramoto–Sivashinsky equation.
It is well known that system (1.39) is reversible with respect to the involution
R(x, y, z) = (−x, y,−z) and is volume-preserving under the flow of the system. It
is easy to check that system (1.39) has two finite singularities S1 = (−√

2c, 0, 0)
and S2 = (

√
2c, 0, 0) for c > 0, which are both saddle-foci. The former has a

two dimensional stable manifold and the latter has a two dimensional unstable
manifold.

For c > 0 small numerical experiments (see for instance Kent–Elgin [49]) and
asymptotic expansions in sinus series (see Michelson [72] in 1986 and Webster–
Elgin [86] in 2003) revealed the existence of a zero-Hopf bifurcation at the origin
for c = 0. But their results do not provide an analytic proof on the existence of



1.2. Introduction: the classical theory 19

such zero-Hopf bifurcation. By a zero-Hopf bifurcation we mean that when c = 0
the Michelson system has the origin as a singularity having eigenvalues 0,±i, and
when c > 0 sufficiently small the Michelson system has a periodic orbit which
tends to the origin when c tends to zero. The analytic proof of this zero-Hopf
bifurcation has been provided by Llibre–Zang [59]. Now we state this result and
reproduce its proof.

Theorem 1.2.11. For c ≥ 0 sufficiently small the Michelson system (1.39) has
a zero-Hopf bifurcation at the origin for c = 0. Moreover, the bifurcated periodic
orbit satisfies x(t) = −2c cos t+o(c), y(t) = 2c sin t+o(c) and z(t) = 2c cot t+o(c),
for c > 0 sufficiently small.

Proof. For any ε �= 0 we apply the change of variables x = εx, y = εy, z = εz and
c = εd, and Michelson system (1.39) becomes

ẋ = y, ẏ = z, ż = −y + εd2 − ε
1

2
x2, (1.40)

where we still use x, y, z instead of x, y, z. Now doing the change of variables x = x,
y = r sin θ and z = r cos θ, system (1.40) goes over to

ẋ = r sin θ, ṙ =
ε

2
(2d2 − x2) cos θ, θ̇ = 1− ε

2r
(2d2 − x2) sin θ. (1.41)

This system can be written as

dx

dθ
= r sin θ +

ε

2
(2d2 − x2) sin2 θ + ε2f1(θ, r, ε),

dr

dθ
=

ε

2
(2d2 − x2) cos θ + ε2f2(θ, r, ε),

(1.42)

where f1 and f2 are analytic functions in their variables.
For arbitrary (x0, r0) �= (0, 0), the system (1.42)ε=0 has the 2π-periodic so-

lution

x(θ) = r0 + x0 − r0 cos θ, r(θ) = r0, (1.43)

such that x(0) = x0 and r(0) = r0. It is easy to see that the first variational
equation of (1.42)ε=0 along the solution (1.43) is⎛⎜⎝ dy1

dθ
dy2
dθ

⎞⎟⎠ =

(
0 sin θ
0 0

)(
y1
y2

)
.

It has the fundamental solution matrix

M =

(
1 1− cos θ
0 1

)
, (1.44)
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which is independent from the initial condition (x0, r0). Applying Corollary 1.2.10
to the differential system (1.42) we have that

F(x0, r0) =
1

2

2π∫
0

M−1

(
(2d2 − x2) sin2 θ
(2d2 − x2) cos θ

)∣∣∣∣
(1.43)

dθ.

Then, F(x0, r0) = (g1(x0, r0), g2(x0, r0)) with

g1(x0, r0) =
1

4

(
4d2 − 5r20 − 6r0x0 − 2x2

0

)
, g2(x0, r0) =

1

2
r0(x0 + r0).

We can check that F = 0 has a unique non-trivial solution x0 = −2d and r0 = 2d,
and that detDF(x0, r0)|x0=−2d, r0=2d = d2. Hence by Corollary 1.2.10 it follows
that, for any given d > 0 and for |ε| > 0 sufficiently small, the system (1.42) has a
periodic orbit (x(θ, ε), r(θ, ε)) of period 2π, such that (x(0, ε), r(0, ε)) → (−2d, 2d)
as ε → 0. We note that the eigenvalues of DF(x0, r0)|x0=−2d, r0=2d are ±di. This
shows that the periodic orbit is linearly stable.

Going back to system (1.39) we get that, for c > 0 sufficiently small, the
Michelson system has a periodic orbit of period close to 2π given by x(t) =
−2c cos t + o(c), y(t) = 2c sin t + o(c) and z(t) = 2c cos t + o(c). We think that
this periodic orbit is symmetric with respect to the involution R, but we do not
have a proof of it. �

A third-order differential equation

Using Theorem 1.2.9 in the next result we present a third-order differential equa-
tion having as many limit cycles as we want.

Proposition 1.2.12. Let us consider the third-order differential equation

...
x − ẍ+ẋ− x = ε cos(x+ t). (1.45)

Then for all positive integer m there is εm > 0 such that if ε ∈ [−εm, εm]\ {0} the
differential equation (1.45) has at least m limit cycles.

Proof. If y = ẋ and z = ẍ, then (1.45) can be written as

ẋ = y,
ẏ = z,
ż = x− y + z + ε cos(x+ t) = x− y + z + εF (t, x, y, z).

(1.46)

The origin (0, 0, 0) is the unique singular point of (1.46) when ε = 0. The eigen-
values of the linearized system at this singular point are ±i and 1. By the linear
invertible transformation (X,Y, Z)T = C(x, y, z)T , where

C =

⎛⎝ 1 −1 0
0 −1 1
1 0 1

⎞⎠ ,
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we transform the differential system (1.46) into another such that its linear part
is the real Jordan normal form of the linear part of system (1.46) with ε = 0, i.e.,

Ẋ = −Y,

Ẏ = X + εF̃ (X,Y, Z, t),

Ż = Z + εF̃ (X,Y, Z, t),

(1.47)

where

F̃ (X,Y, Z, t) = F

(
X − Y + Z

2
,
−X − Y + Z

2
,
−X + Y + Z

2
, t

)
.

Using the notation introduced in (1.34) we have that x = (X,Y, Z), F0(x, t) =
(−Y,X,Z), F1(x, t) = (0, F̃ , F̃ ) and F2(x, t) = 0. Let x(t;X0, Y0, Z0, ε) be the
solution to system (1.47) with x(0;X0, Y0, Z0, ε) = (X0, Y0, Z0). Clearly the un-
perturbed system (1.47) with ε = 0 has a linear center at the origin in the (X,Y )-
plane, which is an invariant plane under the flow of the unperturbed system, and
the periodic solution x(t;X0, Y0, 0, 0) = (X(t), Y (t), Z(t)) is

X(t) = X0 cos t− Y0 sin t, Y (t) = Y0 cos t+X0 sin t, Z(t) = 0. (1.48)

Note that all these periodic orbits have period 2π.

For our system, V and α from Theorem 1.2.9 are V = {(X,Y, 0) : 0 <
X2 + Y 2 < ρ}, for some arbitrary ρ > 0 and α = (X0, Y0) ∈ V .

The fundamental matrix solution M(t) of the variational equation of the
unperturbed system (1.47)ε=0 with respect to the periodic orbits (1.48) satisfying
that M(0) is the identity matrix is

M(t) =

⎛⎝ cos t − sin t 0
sin t cos t 0
0 0 et

⎞⎠ .

We remark that it is independent from the initial condition (X0, Y0, 0). Moreover
an easy computation shows that

M−1(0)−M−1(2π) =

⎛⎝ 0 0 0
0 0 0
0 0 1− e−2π

⎞⎠ .

In short we have shown that all the assumptions of Theorem 1.2.9 hold. Hence
we shall study the zeros α = (X0, Y0) ∈ V of the two components of the function
F(α) given in (1.37). More precisely we have F(α) = (F1(α),F2(α)) where
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F1(α) =

∫ 2π

0

sin tF̃ (x(t;X0, Y0, 0, 0), t)dt

=

∫ 2π

0

sin tF

(
X(t)− Y (t)

2
,−X(t) + Y (t)

2
,
−X(t) + Y (t)

2
, t

)
dt,

F2(α) =

∫ 2π

0

cos tF̃ (x(t;X0, Y0, 0, 0), t)dt

=

∫ 2π

0

cos tF

(
X(t)− Y (t)

2
,−X(t) + Y (t)

2
,
−X(t) + Y (t)

2
, t

)
dt,

where X(t), Y (t) are given by (1.48).
First, we consider the third-order differential equation (1.45). For this equa-

tion we have that

f1(X0, Y0) =

∫ 2π

0

sin t cos

(
t+

(X0 − Y0) cos t− (X0 + Y0) sin t)

2

)
dt,

f2(X0, Y0) =

∫ 2π

0

cos t cos

(
t+

(X0 − Y0) cos t− (X0 + Y0) sin t)

2

)
dt.

To simplify the computation of these two integrals we do the change of vari-
ables (X0, Y0) → (r, s) given by

X0 − Y0 = 2r cos s, X0 + Y0 = −2r sin s, (1.49)

where r > 0 and s ∈ [0, 2π). From now on and until the end of the paper, we write
f1(r, s) instead of

f1(X0, Y0) = f1
(
r(cos s− sin s),−r(cos s+ sin s)

)
.

Similarly for f2(r, s).
We compute the two previous integrals and we get

f1(r, s) = −πJ2(r) sin 2s,

f2(r, s) = 2π

(
1

r
J1(r) − J2(r) cos

2 s

)
,

(1.50)

where J1 and J2 are the first and second Bessel functions of the first kind. For
more details on Bessel functions, see [2]. These computations become easier with
the help of an algebraic manipulator such as Mathematica or Maple.

Using the asymptotic expressions of the Bessel functions of first kind it follows
that Bessel functions J1(r) and J2(r) have different zeros. Hence, fi(r, s) = 0 for
i = 1, 2 imply that s ∈ {0, π/2, π, 3π/2}. Therefore, we have to study the zeros of

f2(r, 0) = f2(r, π) = 2π

(
1

r
J1(r) − J2(r)

)
, (1.51)
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f2(r, π/2) = f2(r, 3π/2) =
2π

r
J1(r). (1.52)

We claim that function (1.51) has also infinite zeros for r ∈ (0,∞). Note that
if ρ is sufficiently large, and we choose r < ρ also sufficiently large, then

Jn(r) ≈
√

2

πr
cos

(
r − nπ

2
− π

4

)
, for n = 1, 2,

are asymptotic estimations, see [2]. Considering (1.51) for r sufficiently large we
obtain

f2(r, 0) ≈ 2

r

√
2π

r

(
cos

(
r − 3π

4

)
+ r cos

(
r − π

4

))
=

2

r

√
π

r
((r − 1) cos r + (r + 1) sin r).

The above function has infinite zeros because the equation

tan r =
1− r

r + 1

has infinitely many solutions.
For every zero r0 > 0 of the function (1.51) we have two zeroes of system

(1.50), namely (r, s) = (r0, 0) and (r, s) = (r0, π).
We have from (1.50) that∣∣∣∣∂(f1, f2)∂(r, s)

∣∣∣∣
(r,s)=(r0,0)

=
4π2(J0(r0)r0 − 2J1(r0))(J0(r0)r0 + (r20 − 2)J1(r0))

r30

=
4π2

r0
J2(r0)(J1(r0)r0 − J2(r0)), (1.53)

where we have used several relations between the Bessel functions of the first kind,
see [2]. Clearly, it is impossible that (1.51) and (1.53) are equal to zero at the same
time. Therefore, by Theorem 1.2.1, there is a periodic orbit of the system (1.45)
for each (r0, 0), that is, for each value of (X0, Y0) = (r0,−r0).

In an analogous way, there is a periodic orbit of the system (1.45) for each
(r0, π), that is, for each value of (X0, Y0) = (−r0, r0). In fact, the periodic orbit
with these initial conditions and the previous one with initial conditions (X0, Y0) =
(r0,−r0) are the same.

Similarly, since J1(r) has infinitely many zeroes (see [2]), the function (1.52)
has infinitely many positive zeroes r1. Every one of these zeroes provides two
solutions to the system (1.50), namely (r, s) = (r1, π/2) and (r, s) = (r1, 3π/2).

Moreover we have from (1.50) that∣∣∣∣∂(f1, f2)∂(r, s)

∣∣∣∣
(r,s)=(r1,π/2)

=
4π2

r1
J2
2 (r1) �= 0. (1.54)
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Therefore, by Theorem 1.2.1, there is a periodic orbit of the system (1.45) for each
(r1, π/2), that is, for each value of (X0, Y0) = (−r1,−r1).

In an analogous way there is also a periodic orbit of the system (1.45) for
each (r1, 3π/2), that is, for each value of (X0, Y0) = (r1, r1). In fact, the periodic
orbit with these initial conditions and the previous one with initial conditions
(X0, Y0) = (−r1,−r1) are the same.

Taking the radius ρ of the disc V = {(X0, Y0, 0) : 0 < X2 + Y 2 < ρ} in
the proof of Theorem 1.2.9 conveniently large, we include in it as many zeros
of the system f1(X0, Y0) = f2(X0, Y0) = 0 as we want, so from Theorem 1.2.9,
Proposition 1.2.12 follows. �

The Vallis system (El Niño phenomenon)

The results of this subsubsection come from the paper Euzébio–Llibre [32].
The Vallis system, introduced by Vallis [84] in 1988, is a periodic non-

autonomous three dimensional system modeling the atmosphere dynamics in the
tropics over the Pacific Ocean, related to the yearly oscillations of precipitation,
temperature and wind force. Denoting by x the wind force, by y the difference of
near-surface water temperatures of the east and west parts of the Pacific Ocean,
and by z the average near-surface water temperature, the Vallis system is

dx

dt
= −ax+ by + au(t),

dy

dt
= −y + xz,

dz

dt
= −z − xy + 1,

(1.55)

where u(t) is some C 1 T -periodic function describing the wind force under seasonal
motions of air masses, and the parameters a and b are positive.

Although this model neglects some effects like Earth’s rotation, pressure field
and wave phenomena, it provides a correct description of the observed processes
and recovers many of the observed properties of El Niño. The properties of El Niño
phenomena are studied analytically in [82, 84]. More precisely, in [84] it is shown
that, taking u ≡ 0, it is possible to observe the presence of chaos by considering
a = 3 and b = 102. Later on, in [82], it is proved that there exists a chaotic
attractor for the system (1.55) after a Hopf bifurcation. This chaotic motion can
be easily understood if we observe the strong similarity between the system (1.55)
and the Lorenz system, which becomes more clear under the replacement of z by
z + 1 in (1.55).

Now we shall provide sufficient conditions in order that system (1.55) has pe-
riodic orbits and, additionally, we shall characterize the stability of these periodic
orbits. As far as we know, the study of the periodic orbits in the non-autonomous
Vallis system has not been considered in the literature, with the exception of the
Hopf bifurcation studied in [82].
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We define

I =

∫ T

0

u(s)ds.

Now we state our main result.

Theorem 1.2.13. For I �= 0 and a �= b the Vallis system (1.55) has a T -periodic
solution (x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(

aI

T (a− b)
,

aI

T (a− b)
, 1

)
.

Moreover this periodic orbit is stable if a > b, and unstable if a < b.

We do not know the reliability of the Vallis model approximating the Niño
phenomenon but it seems that, for the moment, this is one of the best existing
models. Accepting this reliability we can say the following.

The stable periodic solution provided by Theorem 1.2.13 says that the Niño
phenomenon exhibits a periodic behavior if the T -periodic function u(t) and the
parameters a and b of the system satisfy I �= 0 and a > b. Moreover, Theorem
1.2.13 states that this periodic solution lives near the point

(x, y, z) =

(
aI

T (a− b)
,

aI

T (a− b)
, 1

)
.

Since the periodic solutions found in the following Theorems 1.2.15, 1.2.16
and 1.2.17 are also stable, we can provide a similar physical interpretation for
them as we have done for the periodic solution from Theorem 1.2.13.

Theorem 1.2.14. For I �= 0 the Vallis system (1.55) has a T -periodic solution
(x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
− aI

T b
,− aI

T b
, 1

)
.

Moreover this periodic orbit is always unstable.

Theorem 1.2.15. For I �= 0 the Vallis system (1.55) has a T -periodic solution
(x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
I

T
,
I

T
, 1

)
.

Moreover this periodic orbit is always stable.

Theorem 1.2.16. For I �= 0 the Vallis system (1.55) has a T -periodic solution
(x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
I

T
, 0, 1

)
.

Moreover this periodic orbit is always stable.
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In what follows we consider the function

J(t) =

∫ t

0

u(s)ds,

and note that J(T ) = I. So, we have the following result.

Theorem 1.2.17. Consider I = 0 and J(t) �= 0 if 0 < t < T . Then, the Vallis
system (1.55) has a T -periodic solution (x(t), y(t), z(t)) such that

(x(t), y(t), z(t)) ≈
(
− a

T

∫ T

0

J(s)ds, 0, 1

)
.

Moreover this periodic orbit is always stable.

The tool for proving our results will be the averaging theory. This theory
applies to periodic non-autonomous differential systems depending on a small pa-
rameter ε. Since the Vallis system already is a T -periodic non-autonomous differ-
ential system, in order to apply to it the averaging theory described in Section
1.4 we need to introduce in such system a small parameter. This is reached doing
convenient rescalings in the variables (x, y, z), in the parameters (a, b), and in the
function u(t). Playing with different rescalings we shall obtain different results on
the periodic solutions of the Vallis system. More precisely, in order to study the
periodic solutions of the differential system (1.55), we start doing a rescaling of the
variables (x, y, z), of the function u(t), and of the parameters a and b, as follows:

x = εm1X, y = εm2Y, z = εm3Z,

u(t) = εn1U(t), a = εn2A, b = εn3B,
(1.56)

where ε is always positive and sufficiently small, and where mi and nj are non-
negative integers, for all i, j = 1, 2, 3. Then, in the new variables (X,Y, Z), the
system (1.55) is written

dX

dt
= −εn2AX + ε−m1+m2+n3BY + ε−m1+n1+n2AU(t),

dY

dt
= −Y + εm1−m2+m3XZ,

dZ

dt
= −Z − εm1+m2−m3XY + ε−m3 .

(1.57)

Consequently, in order to have non-negative powers of ε we must impose the
conditions

m3 = 0 and 0 ≤ m2 ≤ m1 ≤ L, (1.58)
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where L = min{m2 + n3, n1 + n2}. So, system (1.57) becomes

dX

dt
= −εn2AX + ε−m1+m2+n3BY + ε−m1+n1+n2AU(t),

dY

dt
= −Y + εm1−m2XZ,

dZ

dt
= 1− Z − εm1+m2XY.

(1.59)

Our aim is to find periodic solutions of the system (1.59) for some special
values of mi, nj , i, j = 1, 2, 3, and after we go back through the rescaling (1.56)
to guarantee the existence of periodic solutions in system (1.55). In what follows
we consider the case where n2 and n3 are positive and m2 = m1 < n1 +n2. These
conditions lead to the proofs of Theorems 1.2.13, 1.2.14 and 1.2.15. For this reason
we present these proofs together in order to avoid repetitive arguments. Moreover,
in what follows we consider

K =

∫ T

0

U(s)ds.

Proofs of Theorems 1.2.13, 1.2.14 and 1.2.15. We start considering system (1.59)
with n2 and n3 positive and m2 = m1 < n1 + n2. So we have

dX

dt
= −εn2AX + εn3BY + ε−m1+n1+n2AU(t),

dY

dt
= −Y +XZ,

dZ

dt
= 1− Z − ε2m1XY.

(1.60)

Now we apply the averaging method to the differential system (1.60). Using the
notation of Subsection 1.2.5, we have x= (X,Y, Z)T and

F0(t, x) =

⎛⎝ 0
−Y +XZ
1− Z

⎞⎠ . (1.61)

We start considering the system

ẋ = F0(t,x). (1.62)

Its solution x(t, z, 0) = (X(t), Y (t), Z(t)) such that x(0, z, 0) = z = (X0, Y0, Z0) is

X(t) = X0,

Y (t) = (1− e−t(1 + t))X0 + e−tY0 + e−ttX0Z0,

Z(t) = 1− e−t + e−tZ0.
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In order that x(t, z, 0) is a periodic solution we must choose Y0 = X0 and Z0 = 1.
This implies that, through every point of the straight line X = Y , Z = 1, there
passes a periodic orbit lying in the phase space (X,Y, Z, t) ∈ R3×S1. Here and in
what follows, S1 is the interval [0, T ] identifying T with 0.

Observe that, using the notation of Subsection 1.2.5, we have n = 3, k = 1,
α = X0 and β(X0) = (X0, 1) and, consequently, M is a one dimensional manifold
given by M = {(X0, X0, 1) ∈ R3 : X0 ∈ R}. The fundamental matrix Mz(t) of
(1.62), satisfying that Mz(0) is the identity of R3, is⎛⎝ 1 0 0

1− cosh t+ sinh t e−t e−ttX0

0 0 e−t

⎞⎠ ,

and its inverse matrix M−1
z

(t) is⎛⎝ 1 0 0
1− et et −ettX0

0 0 et

⎞⎠ .

Since the matrix M−1
z

(0) −M−1
z

(T ) has an 1 × 2 zero matrix in the upper right
corner, and a 2× 2 lower right corner matrix

Δ =

(
1− eT eTTX0

0 1− eT

)
,

with det(Δ) = (1 − eT )2 �= 0 because T �= 0, we can apply the averaging theory
described in Subsection 1.2.5.

Let F be the vector field of system (1.60) minus F0 given in (1.61). Then the
components of the function M−1

z
(t)F (t,x(t, z, 0)) are

g1(X0, t) = −εn2AX0 + εn3BX0 + ε−m1+n1+n2AU(t),

g2(X0, t) = ε2m1ettX3
0 + (1− et)g1(X0, t),

g3(X0, t) = −ε2m1etX2
0 .

In order to apply averaging theory of first order we need to consider only
terms up to order ε. Analysing the expressions of g1, g2 and g3 we note that these
terms depend on the values of m1 and nj , for each j = 1, 2, 3. In fact, we just need
to study the integral of g1 because k = 1. Moreover, studying the function g1 we
observe that the only possibility to obtain an isolated zero of the function

f1(X0) =

∫ T

0

g1(X0, t)dt

is assuming that n1 + n2 − m1 = 1. Otherwise, the only solution of f1(X0) = 0
is X0 = 0, which corresponds to the equilibrium point (X0, Y0, Z0) = (0, 0, 1) of
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system (1.62). The same occurs if n2 and n3 are greater than 1 simultaneously.
This analysis reduces the existence of possible periodic solutions to the following
cases:

(p1) n2 = 1 and n3 = 1;

(p2) n2 > 1 and n3 = 1;

(p3) n2 = 1 and n3 > 1.

In the case (p1) we have M−1
z

(t)F1(t,x(t, z, 0)) = −AX0 + BX0 + AU(t),
and then

f1(X0) = (−A+B)TX0 +AK.

Consequently, if A �= B, then f1(X0) = 0 implies X0 = AK/(T (A − B)). So, by
Theorem 1.2.9, system (1.60) has a periodic solution (X(t, ε), Y (t, ε), Z(t, ε)) such
that

(X(0, ε), Y (0, ε), Z(0, ε)) −→ (X0, Y0, Z0) =

(
AK

T (A−B)
,

AK

T (A−B)
, 1

)
when ε → 0. Note that the point (X0, Y0, Z0) is an equilibrium point of the system
(1.60). Then, taking n1 = n2 = n3 = 1 and going back through the rescaling (1.56)
of the variables and parameters, we obtain that the periodic solution of system
(1.60) becomes the periodic solution (x(t), y(t), z(t)) of system (1.55) satisfying

(x(t), y(t), z(t)) ≈
(

aI

T (a− b)
,

aI

T (a− b)
, 1

)
.

Indeed, we observe that

x0 = εX0 = ε
(aε−1)(Iε−1)

Tε−1(a− b)
=

aI

T (a− b)
.

Moreover, we note that f ′
1(x0) = εf ′

1(X0) = −a+ b �= 0 so, the periodic orbit
corresponding to x0 is stable if a > b, and unstable otherwise. This completes the
proof of Theorem 1.2.13.

Analogously the function f1 in the cases (p2) and (p3) is

f1(X0) = TBX0 +AK and f1(X0) = −TAX0 +AK,

respectively. In the first case the condition f1(X0) = 0 impliesX0 = −(AK)/(TB).
Now we observe that n2 > 1 and n3 = 1. So, going back through the rescaling, we
obtain

x0 = εX0 = ε
(−aε−n2)(Iε−n1)

Tbε−1
= − aI

T bεn1+n2−2

and consequently, choosing n1 = 0 and n2 = 2, we get x0 = −aI/(Tb). Note
also that f ′

1(x0) = Tb > 0, then the periodic orbit corresponding to x0 is always
unstable. Thus, Theorem 1.2.14 is proved.
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Finally, in the case (p3), f1(X0) = 0 implies X0 = K/T . So, taking n1 = 1
and going back through the rescaling, we have x0 = εX0 = εI/(Tε) = I/T .
Additionally, f ′

1(x0) = −Ta < 0. Therefore, the periodic solution coming from x0

is always stable. This proves Theorem 1.2.15. �

Proof of Theorem 1.2.16. As in the proofs of Theorems 1.2.13, 1.2.14 and 1.2.15,
we start by considering a more general case in the powers of ε in (1.59), taking
n2 > 0 and m2 < m1 < L. In this case the function F0(t,x) of system (1.34) is

F0(t, x) =

⎛⎝ 0
Y

1− Z

⎞⎠ . (1.63)

Then the solution x(t, z, 0) of system (1.35) satisfying x(0, z, 0) = z is

(X(t), Y (t), Z(t)) = (X0, e
−tY0, 1− e−t + e−tZ0).

This solution is periodic if Y0 = 0 and Z0 = 1. Then, through every point in
the straight line Y = 0, Z = 1 there passes a periodic orbit lying in the phase
space (X,Y, Z, t) ∈ R3 × S1. We observe that using the notation of Subsection
1.2.5 we have n = 3, k = 1, α = X0 and β(α) = (0, 1). Consequently, M is a one
dimensional manifold given by M = {(X0, 0, 1) ∈ R3 : X0 ∈ R}.

The fundamental matrix Mz(t) from (1.36) and satisfying Mz(0) = Id3 (with
F0 given by (1.63)), and its inverse M−1

z
(t) are, respectively

Mz(t) =

⎛⎝ 1 0 0
0 e−t 0
0 0 e−t

⎞⎠ and M−1
z

(t)

⎛⎝ 1 0 0
0 et 0
0 0 et

⎞⎠ .

Since the matrix M−1
z

(0)−M−1
z

T has an 1×2 zero matrix in the upper right
corner, and a 2× 2 lower right corner matrix

Δ =

(
1− eT 0

0 1− eT

)
,

with det(Δ) = (1 − eT )2 �= 0, we can apply the averaging theory described in
Subsection 1.2.5. Again, using the notations introduced in the proofs of Theorems
1.2.13, 1.2.14 and 1.2.15, since k = 1 we will look only to the integral of the first
coordinate of F = (f1, f2, f3). In this case we have

g1(X0, Y0, Z0, t) = −εn2AX0 + ε−m1+n1+n2AU(t).

Comparing this function g1 with the same function obtained in the proof of The-
orems 1.2.13, 1.2.14 and 1.2.15, it is easy to see that this case corresponds to the
case (p3) of the mentioned theorems. Then, in order to have periodic solutions, we
need to choose n2 = 1 and n1 + n2 −m1 = 1. So, following the steps of the proof
of case (p3) by choosing n1 = 1 and coming back through the rescaling (1.56) to
system (1.55), Theorem 1.2.16 is proved. �
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Proof of Theorem 1.2.17. We start by considering the system (1.59) with n3 = 2,
n2 > 0, m1 = n1 +n2 and m2 < m1 < m2 +n3. With these conditions the system
(1.59) becomes

dX

dt
= −εn2AX + εm2−n1−n2+n3BY +AU(t),

dY

dt
= −Y + ε−m2+n1+n2XZ,

dZ

dt
= 1− Z − εm2+n1+n2XY.

(1.64)

Again, we will use the averaging theory described in Subsection 1.2.5. So, consid-
ering x = (X,Y, Z)T we obtain

F0(t, x) =

⎛⎝ AU(t)
−Y
1− Z

⎞⎠ . (1.65)

Now we note that the solution x(t, z, 0) = (X(t), Y (t), Z(t)) such that x(0, z, 0) =
z = (X0, Y0, Z0) of the system

ẋ = F0(t,x) (1.66)

is

X(t) = X0 +

∫ t

0

AU(s)ds, Y (t) = e−tY0, Z(t) = 1− e−t + e−tZ0.

Since I = 0 and J(t) �= 0 for 0 < t < T , in order that x(t, z, 0) is a periodic
solution we need to fix Y0 = 0 and Z0 = 1. This implies that through every point
in a neighbourhood of X0 in the straight line Y = 0, Z = 1 there passes a periodic
orbit lying in the phase space (X,Y, Z, t) ∈ R3 × S1.

Following the notation of Subsection 1.2.5, we have n = 3, k = 1, α = X0

and β(X0) = (0, 1). Hence, M is a one dimensional manifold M = {(X0, 0, 1) ∈
R3 : X0 ∈ R}, and the fundamental matrix Mz(t) of (1.66) satisfying Mz(0) = Id3
is ⎛⎝ 1 0 0

0 e−t 0
0 0 e−t

⎞⎠ .

It is easy to see that the matrix M−1
z

(0)−M−1
z

(T ) has a 1× 2 zero matrix in the
upper right corner, and a 2× 2 lower right corner matrix

Δ =

(
1− eT 0

0 1− eT

)
,
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with det(Δ) = (1− eT )2 �= 0. Then, the hypotheses of Theorem 1.2.9 are satisfied.
Now the components of the function M−1

z
(t)F (t,x(t, z,0)) are

g1(X0, t) = −εn2A

(
X0 +

∫ t

0

AU(s)ds

)
+AU(t),

g2(X0, t) = ε−m2+n1+n2

(
X0 +

∫ t

0

AU(s)ds

)
et,

g3(X0, t) = 0.

Taking n1 = n2 = 1 and observing that k = 1 and n = 3, we are interested only in
the first component of the function F1 = (F11, F12, F13) described in Subsection
1.2.5. Indeed, applying the averaging theory, we must study the zeros of the first
component of the function

F(X0) = (f1(X0), f2(X0), f3(X0)) =

∫ T

0

M−1
z

(t, z)F11(t,x(t, z))dt.

Since

F11 = −A

(
X0 +

∫ t

0

AU(s)ds

)
,

we deduce

f1(X0) =

∫ T

0

−A

(
X0 +

∫ t

0

AU(s)ds

)
dt

= −ATX0 −A2

∫ T

0

(∫ t

0

U(s)ds

)
ds.

Therefore, from f1(X0) = 0 we obtain

X0 = −A

T

∫ T

0

(∫ t

0

U(s)ds

)
ds �= 0.

So, rescaling (1.56), we get

x0 = ε2X0 = −ε2
aε−1

εT

∫ T

0

J(s)ds = − a

T

∫ T

0

J(s)ds.

Moreover, since f ′
1(x0) = −a/T < 0, because a and ε are positive, the T -

periodic orbit detected by the averaging theory is always stable. This ends the
proof. �

1.2.5 Another first order averaging method for periodic orbits

The next result proved in [56] extends the result of Theorem 1.2.9 to the case n =
2m and when the matrix Δα is the zero matrix. Here, ξ⊥ : Rn = Rm ×Rm → Rm

is the projection of Rn onto its second set of m coordinates, i.e., ξ⊥(x1, . . . , xn) =
(xm+1, . . . , xn).
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Theorem 1.2.18. Let V ⊂ Rm be open and bounded, let β0 : Cl(V ) → Rm be a Ck

function and Z = {zα = (α, β0(α)) |α ∈ Cl(V )} ⊂ Ω its graphic in R2m. Assume
that for each zα ∈ Z the solution x(t, zα) of (1.34)ε=0 is T -periodic and that
there exists a fundamental matrix Mzα(t) of (1.3) such that the matrix M−1

zα
(0)−

M−1
zα

(T ) has in the upper right corner the m×m matrix Ωα with det(Ωα) �= 0, and
in the lower right corner the m×m zero matrix. Consider the function G : Cl(V ) →
Rm defined by

G(α) = ξ⊥
(∫ T

0

M−1
zα

(t)F1(t,x(t, zα))dt

)
. (1.67)

If there is α0 ∈ V with G(α0) = 0 and det((∂G/∂α)(α0)) �= 0 then, for ε �= 0
sufficiently small, there is a unique T -periodic solution x(t, ε) of the system (1.34)
such that x(t, ε) → x(t, zα0) as ε → 0.

Theorem 1.2.18 is proved in Subsection 1.2.8. In the next subsubsection we
provide some applications.

A class of Duffing differential equations

Many different classes of Duffing differential equations have been studied by dif-
ferent authors. They are mainly interested in the existence of periodic solutions,
in their multiplicity, stability, bifurcation, etc. See for instance the survey of J.
Mawhin [70], and the articles [26, 73].

In this subsubsection we shall study the class of Duffing differential equations
of the form

x′′ + cx′ + a(t)x+ b(t)x3 = h(t), (1.68)

where c > 0 is a constant, and a(t), b(t) and h(t) are continuous T -periodic
functions. These differential equations were studied by Chen–Li in the papers
[15, 16]. Their results were improved in [5] by Benterki–Llibre; we present a part
of these improvements here, as an application of Theorem 1.2.18.

Instead of working with the Duffing differential equation (1.68) we shall work
with the equivalent differential system

x′ = y,
y′ = −cy − a(t)x − b(t)x3 + h(t).

(1.69)

Theorem 1.2.19. For every simple real root of the polynomial

q(x0) = −
(∫ T

0

b(s) ds

)
x3
0 −

(∫ T

0

a(s) ds

)
x0 +

∫ T

0

h(s) ds,

the differential system (1.69) has a periodic solution (x(t), y(t)) with (x(0), y(0))
close to (x0, 0).
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Proof. We start by doing a rescaling of the variables (x, y), of the functions a(t),
b(t) and h(t), and of the parameter c as follows

x = εX, y = ε2Y,
c = εC, a(t) = εA(t),
b(t) = ε−1B(t), h(t) = ε2H(t).

(1.70)

Then the system (1.69) becomes

Ẋ = εY,

Ẏ = −εCY −A(t)X −B(t)X3 +H(t).
(1.71)

We shall apply the averaging Theorem 1.2.18 to system (1.71) and we shall
obtain Theorem 1.2.19. In what follows, we shall use the notation from Theorem
1.2.18. Thus x = (X,Y )T and

F0(t,x) =

(
0

−A(t)X −B(t)X3 +H(t)

)
,

F1(t,x) =

(
Y

−CY

)
,

F2(t,x) =

(
0
0

)
.

The differential system (1.71) with ε = 0 has x(t, z, 0) = (X(t), Y (t))T as a
solution with x(0, z, 0) = z = (X0, Y0)

T , and where

X(t) = X0,

Y (t) = Y0 +

∫ t

0

(−B(s)X3
0 −A(s)X0 +H(s)

)
ds.

For x(t, z, 0) to be a periodic solution, X0 must satisfy∫ T

0

(−B(s)X3
0 −A(s)X0 +H(s)

)
ds = 0, (1.72)

and Y0 is arbitrary. Therefore we get

zα = (α, β0(α)) =
(
Y0, X̄0

)
,

where X̄0 is a real root of the cubic polynomial (1.72). In short, the unperturbed
system (i.e., system (1.71) with ε = 0) has at most three families of periodic
solutions because Y0 is arbitrary and X̄0 is a real root of the cubic polynomial
(1.72). Therefore, using the notation of Theorem 1.2.18, we have n = 2 and m = 1
for each one of these possible families of periodic solutions.
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We compute the fundamental matrix Mzα(t) associated to the first varia-
tional system (1.36), associated to the vector field (Ẏ , Ẋ) given by (1.71) with
ε = 0 and such that Mzα(0) = Id2, and we obtain

Mzα(t) =

⎛⎝ 1 −
∫ t

0

(
3B(s)X2

0 +A(s)
)
ds

0 1

⎞⎠ .

The matrix

M−1
zα

(0)−M−1
zα

(T ) =

⎛⎝ 0 −
∫ T

0

(
3B(s)X2

0 +A(s)
)
ds

0 0

⎞⎠
has a non-zero 1 × 1 matrix in the upper right corner if the real root X̄0 of the
cubic polynomial (1.72) is simple, and a zero 1×1 matrix in its lower right corner.
Therefore, the assumptions of Theorem 1.2.18 hold and, by applying this theorem,
we study the periodic solutions which can be prolonged from the unperturbed
differential system to the perturbed one. Since for our differential system we have
ξ⊥(Y,X) = X , we must compute the function G(α) = G(Y0) given in (1.4), i.e.,

G(Y0) = ξ⊥
(∫ T

0

M−1
zα

(t)F1(t,x(t, zα, 0))dt

)
= −

∫ T

0

CY0 = −CTY0.

Theorem 1.2.18 says that, for every simple real root Y0 = 0 of the polynomial
G(Y0), the differential system (1.71) with ε �= 0 sufficiently small has a periodic
solution (X(t), Y (t)) such that (X(0), Y (0)) tends to (X̄0, 0) when ε → 0, being
X̄0 a simple real root of the cubic polynomial (1.72).

Now it is easy to check that the cubic polynomial (1.72) after the change of
variables (1.70), i.e.,

X =
x

ε
, Y =

y

ε2
, H(t) =

h(t)

ε2
, B(s) = εb(s), A(s) =

a(s)

ε
,

becomes the polynomial q(x0). Hence the theorem is proved. �

1.2.6 Proof of Theorem 1.2.1

Proof of Theorem 1.2.1(i). The assumptions guarantee the existence and unique-
ness of the solutions of the initial valued problems (1.3) and (1.4) on the time-scale
1/ε. We introduce

u(t,x) =

∫ t

0

[F (s,x)− f0(x)]ds. (1.73)

Since we have subtracted the average of f(s,x) in the integrand, the integral is
bounded, i.e.,

||u(t,x)|| ≤ 2MT, t ≥ 0, x ∈ D.
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We now introduce a transformation near the identity

x(t) = z(t) + εu(t, z(t)). (1.74)

This transformation will be used for simplifying equation (1.3). Differentiation of
(1.74) and substitution in (1.3) yields

ẋ = ż+ ε
∂

∂t
u(t, z) + ε

∂

∂z
u(t, z)ż = εF (t, z+ εu(t, z)) + ε2R(t, z+ εu(t, z), ε).

Using (1.73), we write this equation in the form(
I + ε

∂

∂z
u(t, z)

)
ż = εf0(z) + S,

with I the n× n identity matrix, and where

S = εF (t, z+ εu(t, z))− εF (t, z) + ε2R(t, z+ εu(t, z), ε).

Since ∂u/∂z is uniformly bounded (as u) we can invert to obtain(
I + ε

∂

∂z
u(t, z)

)−1

= I − ε
∂

∂z
u(t, z) +O(ε2), t ≥ 0, z ∈ D. (1.75)

From the Lipschitz continuity of F (t, z) we have

||F (t, z+ εu(t, z))− F (t, z)|| ≤ Lε||u(t, z)|| ≤ Lε2MT,

where L is the Lispchitz constant. Due to the boundedness of R it follows that,
for some positive constant C independent from ε, we have

||S|| ≤ ε2C, t ≥ 0, z ∈ D. (1.76)

From (1.75) and (1.76) we get that

ż = εf0(z) + S − ε2
∂u

∂z
f0(z) +O(ε3), z(0) = x(0). (1.77)

As S = O(ε2) by introducing the time-like variable τ = εt, we obtain that the
solution of

dy

dτ
= f0(y), y(0) = z(0)

approximates the solution of (1.77) with error O(ε) on the time-scale 1 in τ , i.e.,
on the time-scale 1/ε in t. Due to the near identity transformation (1.74) we obtain
that

x(t)− y(t) = O(ε) (1.78)

in the time-scale 1/ε.
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Now we shall impose the periodicity condition after which we can apply the
Implicit Function Theorem. We transform x → z with the near identity transfor-
mation (1.74), then the equation for z becomes

ż = εf0(z) + ε2S(t, z, ε). (1.79)

Due to the choice of u(t, z(t)), a T -periodic solution z(t) produces a T -periodic
solution x(t). For S we have the expression

S(t, z, ε) =
∂F

∂z
(t, z)u(t, z) − ∂u

∂z
(t, z)f0(z) +R(t, z, 0) +O(ε).

This expression is T -periodic in t and continuously differentiable with respect to
z. Equation (1.79) is equivalent to the integral equation

z(t) = z(0) + ε

∫ t

0

f0(z(s))ds + ε2
∫ t

0

S(s, z(s), ε)ds.

The solution z(t) is T -periodic if z(t+ T ) = z(t) for all t ≥ 0, which leads to the
equation

h(z(0), ε) =

∫ T

0

f0(z(s))ds + ε

∫ T

0

S(s, z(s), ε)ds = 0. (1.80)

Note that this is a short-hand notation. The right hand side of equation (1.80) does
not depend on z(0) explicitly. But the solutions depend continuously on the initial
values and so the dependence on z(0) is implicitly by the bijection z(0) → z(x).

It is clear that h(p, 0) = 0. If ε is in a neighborhood of ε = 0, then equation
(1.80) has a unique solution x(t, ε) = z(t, ε) because of the assumption on the
Jacobian determinant (1.6). If ε → 0 then z(0, ε) → p. This completes the proof
of statement (i). �

For proving statement (ii) of Theorem 1.2.1 we need some preliminary results.
The first result is Gronwall’s inequality.

Lemma 1.2.20. Let a be a positive constant. Assume that t ∈ [t0, t0 + a] and

ϕ(t) ≤ δ1

∫ t

t0

ψ(s)ϕ(s)ds + δ2, (1.81)

where ψ(t) ≤ 0 and ϕ(t) ≤ 0 are continuous functions, and δi > 0 for i = 1, 2.
Then,

ϕ(t) ≤ δ2e
δ1

∫ t
t0

ψ(s)ds
.

Proof. From (1.81) we get

ϕ(t)

δ1
∫ t

t0
ψ(s)ϕ(s)ds + δ2

≤ 1.
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Multiplying by δ1ψ(t) and integrating we obtain∫ t

t0

δ1ψ(s)ϕ(s)

δ1
∫ s

t0
ψ(r)ϕ(r)dr + δ2

ds ≤ δ1

∫ t

t0

ψ(s)ds,

therefore

log

(
δ1

∫ t

t0

ψ(s)ϕ(s)ds + δ2

)
− log δ2 ≤ δ1

∫ t

t0

ψ(s)ds.

Hence,

δ1

∫ t

t0

ψ(s)ϕ(s)ds + δ2 ≤ δ2e
δ1

∫ t
t0

ψ(s)ds
.

From (1.81) the lemma follows. �

We consider the linear differential system

ẋ = Ax, (1.82)

where A is a constant n× n matrix. The eigenvalues λ1, . . . , λn of system (1.82)
are the zeros of the characteristic polynomial det(A− λId).

If these eigenvalues λk are different, with eigenvectors ek for k = 1, . . . , n,
then eke

λkt, for k = 1, . . . , n, are n independent solutions of the system (1.82).
Assume now that not all eigenvalues are different, thus suppose that the

eigenvalue λ has multiplicity m > 1. Then λ generates m independent solutions
of the system (1.82) of the form

P0e
λt, P1(t)e

λt, . . . , Pm−1(t)e
λt,

where Pi(t) for i = 0, 1, . . . ,m− 1 are polynomial vectors of degree at most i.

With n independent solutions x1(t), . . . , xn(t) of system (1.82) we form a
matrix

Φ(t) = (x1(t), . . . , xn(t)),

called a fundamental matrix of system (1.82). Every solution x(t) of system (1.82)
can be written as x(t) = Φ(t)c, where c is a constant vector. Moreover the solution
x(t) with x(t0) = x0 is

x(t) = Φ(t)Φ(t0)
−1x0. (1.83)

Usually, we choose the fundamental matrix Φ(t) in such a way that Φ(t0) = Id.
From (1.83) and the explicit form of the independent solutions of system (1.82),
the next result follows easily.

Proposition 1.2.21. We consider the linear differential system ẋ = Ax, where A is
a constant n×n matrix with eigenvalues λ1, . . . , λn. Then the following statements
hold:
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(i) if Reλk < 0 for k = 1, . . . , n then, for each solution x(t) with x(t0) = x0,
there exist two positive constants C and μ satisfying

||x(t)|| ≤ C||x0||e−μt and lim
t→∞x(t) = 0;

(ii) if Reλk ≤ 0 for k = 1, . . . , n and the eigenvalues with Reλk = 0 are different,
then the solution x(t) is bounded for t ≥ t0; more precisely,

||x(t)|| ≤ C||x0|| with C > 0;

(iii) if there exists an eigenvalue λk with Reλk > 0, then in each neighborhood of
x = 0 there are solutions x(t) such that

lim
t→∞ ||x(t)|| = ∞.

Under the assumptions of statement (i) of Proposition 1.2.21, the solution
x = 0 is called asymptotically stable. Under the assumptions of statement (ii),
the solution x = 0 is called Liapunov stable. Finally, under the assumptions of
statement (iii) the solution x = 0 is called unstable.

The next result is also known as the Poincaré–Liapunov Theorem.

Theorem 1.2.22. Consider the differential system

ẋ = Ax +B(t)x+ f(t,x), x(t0) = x0, (1.84)

where t ∈ R, A is a constant n× n matrix having all its eigenvalues with negative
real part, and B(t) is a continuous n × n matrix such that limt→∞ ||B(t)|| = 0.
The function f(t,x) is continuous in t and x, and Lipschitz in x in a neighborhood
of x = 0. If

lim
||x||→0

f(t,x)

||x|| = 0 uniformly in t,

then there exists positive constants C, t0, δ and μ such that ||x0|| ≤ δ implies

||x(t)|| ≤ C||x0||e−μ(t−t0) for t ≥ t0.

The solution x = 0 is asymptotically stable and the attraction is exponential in a
δ-neighborhood of x = 0.

Proof. By Proposition 1.2.21 we have an estimate for the fundamental matrix of
the differential system

Φ̇ = AΦ, Φ(t0) = Id.

Since all the eigenvalues of the matrixA have negative real part, there exist positive
constants C and μ0 such that

||Φ(t)|| ≤ Ce−μ0(t−t0), for t ≥ t0.
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From the assumptions on f and B, for δ0 > 0 sufficiently small there exist a
constant b(δ0) such that if ||x|| ≤ δ0 then

||f(t,x)|| ≤ b(δ0)||x|| for t ≥ t0,

and if t0 is sufficiently large

||B(t)|| ≤ b(δ0), for t ≥ t0.

The existence and uniqueness Theorem states that in a neighborhood of x = 0
the solution of the initial problem (1.84), exists for t0 ≤ t ≤ t1. It can be shown
that this solution is defined for all t ≥ t0.

We claim that the initial problem (1.84) is equivalent to the integral equation

x(t) = Φ(t)x0 +

∫ t

t0

Φ(t− s+ t0)[B(s)x(s) + f(s,x(s))]ds. (1.85)

Now we prove the claim. The fundamental matrix Φ(t) of the differential system
ẋ = Ax can be written as Φ(t) = eA(t−t0). We substitute x = Φ(t)z into the
differential system (1.84) and obtain

dΦ(t)

dt
z+Φ(t)ż = AΦ(t)z+ B(t)Φ(t)z + f(t,Φ(t)z).

Since dΦ(t)/dt = AΦ(t), we get

ż = Φ(t)−1B(t)Φ(t)z +Φ(t)−1f(t,Φ(t)z).

Integrating this expression between t0 and t and multiplying by Φ(t) we get the
integral equation (1.85). So the claim is proved.

Using the estimates for Φ, B and f we have

||x(t)|| ≤ ||Φ(t)||||x0||+
∫ t

t0

[||Φ(t− s+ t0)||||B(s)||||x(s)|| + ||f(s,x(s))||] ds

≤ Ce−μ0(t−t0)||x0||+
∫ t

t0

Ce−μ0(t−s)2b||x(s)||ds

for t0 ≤ t ≤ t2 ≤ t1. Therefore

eμ0(t−t0)||x(t)|| ≤ C||x0||+
∫ t

t0

Ce−μ0(s−t0)2b||x(s)||ds,

for t0 ≤ t ≤ t2, where t2 is determined by the condition ||x|| ≤ δ0. Using now
Gronwall’s inequality (Lemma 1.2.20 with φ(s) = 2Cb) we obtain

e−μ0(s−t0)||x(t)|| ≤ C||x0||e2Cb(t−t0),
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or
||x(t)|| ≤ C||x0||e(2Cb−μ0)(t−t0).

If δ, and consequently b, are sufficiently small we have that μ = μ0 − 2Cb is
positive, and the inequality of the statement in the theorem follows for t ∈ [t0, t2].

Finally, if we choose ||x0|| such that ||x0|| ≤ δ0, then ||x(t)|| decreases, con-
sequently the solution x = 0 is asymptotically stable and the attraction is expo-
nential in a δ-neighborhood of x = 0. �

Now we shall consider linear differential systems of the form

ẋ = A(t)x, (1.86)

where A(t) is a continuous T -periodic n × n matrix, i.e., A(t + T ) = A(t) for all
t ∈ R. For these systems we can define again a fundamental matrix putting in each
column of this matrix an independent solution of the system (1.86).

The next result usually called the Floquet Theorem says that the fundamental
matrix of system (1.86) can be written as a product of a T -periodic matrix and a
non-periodic matrix in general.

Theorem 1.2.23. Consider the linear differential system (1.86) with A(t) a con-
tinuous T -periodic n × n matrix. Then each fundamental matrix Φ(t) of system
(1.86) can be written as the product of two n× n matrices

Φ(t) = P (t)eBt,

where P (t) is T -periodic and B is a constant matrix.

Proof. Since Φ(t) is a fundamental matrix of system (1.86), Φ(t + T ) is also a
fundamental matrix. Indeed, define τ = t+ T , then

dx

dτ
= A(τ − T )x = A(τ)x.

Therefore Φ(τ) is also a fundamental matrix.
The fundamental matrices Φ(t) and Φ(t+T ) are linearly dependent, i.e., there

exists a non-singular matrix C such that Φ(t+ T ) = Φ(t)C. Let B be a constant
matrix such that C = eBT . We claim that the matrix Φ(t)e−Bt is T -periodic.
Write Φ(t)e−Bt = P (t). Then,

P (t+ T ) = Φ(t+ T )e−B(t+T ) = Φ(t)Ce−BT e−Bt = Φ(t)e−Bt = P (t).

This completes the proof of the theorem. �

Remark 1.2.24. The matrix C introduced in the proof of Theorem 1.2.23 is called
the monodromy matrix of system (1.86). The eigenvalues ρk of the matrix C are
called the characteristic multipliers. Each complex number λk such that ρk = eλkT

is called a characteristic exponent. The characteristic multipliers are determined
uniquely. We can choose the exponents λk so that they coincide with the eigen-
values of the matrix B.
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Proposition 1.2.25. Consider the differential system

ẋ = A(t)x + f(t,x), (1.87)

in Rn with A(t) a T -periodic continuous matrix, f(t,x) continuous in t ∈ R and
in x in a neighborhood of x = 0. Assume that

lim
||x||→0

f(t,x)

||x|| = 0 uniformly in t.

If the real parts of the characteristic exponents of the linear periodic differential
system

ẏ = A(t)y (1.88)

are negative, then the solution x = 0 of system (1.87) is asymptotically stable.

Proof. By remark 1.2.24 and Theorem 1.2.23, we can use the change of variables
x = M(t)z being M(t) the periodic fundamental matrix solution of the system
(1.88). Then, the differential system (1.87) becomes

ż = Bz+M(t)−1f(t,M(t)z).

The constant matrix B has all its eigenvalues with negative real part. The solution
z of the previous system satisfies the assumptions of Theorem 1.2.22 from which
the proposition follows. �

Proposition 1.2.26. Consider the differential system

ẋ = Ax+B(t)x + f(t,x) with t ≥ t0, (1.89)

in Rn, where A is a constant n×n matrix having at least one eigenvalue with posi-
tive real part, and B(t) is a continuous n×n matrix such that limt→∞ ||B(t)|| = 0.
The function f(t,x) is continuous in t and x, and Lipschitz in x in a neighborhood
of x = 0. If

lim
||x||→0

f(t,x)

||x|| = 0 uniformly in t,

then the solution x = 0 is unstable.

Proof. Doing the change of variables x = Sy, where S is a non-singular constant
n× n matrix, the system (1.89) becomes

ẏ = S−1ASy + S−1B(t)Sy + S−1f(t, Sy). (1.90)

While the solution x(t) is real, in general, the solution y(t) will be complex. The
instability for the solution y = 0 of system (1.90) implies the instability for the
solution x = 0 of system (1.89). We assume that S can be taken in such a way
that S−1AS is diagonal, otherwise the proof is similar, or see [21, Chapter 13.1].
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Assume now that Re(λi) ≥ σ > 0 for i = 1, . . . , k, and that Re(λi) ≤ 0 for
i = k + 1, . . . , n. Let

R2 =

k∑
i=1

|yi|2 and r2 =

n∑
i=k+1

|yi|2.

From system (1.90) we shall compute the derivatives of R2 and r2 with respect to
t. First, we have

d|yi|2
dt

=
d(yiyi)

dt
= ẏiyi + yiẏi

= 2Reλi|yi|2 + (S−1B(t)Sy)yi + yi(S
−1B(t)Sy)i

+ (S−1f(t, Sy)iyi + yi(S
−1f(t, Sy)i.

We can choose ε > 0, δ0 and δ such that, for t ≥ t0 and ||y|| ≤ δ, we have

|S−1B(t)Sy|i ≤ ε|yi|, |(S−1f(t, Sy)i| ≤ ε|yi|.

Therefore,

1

2

d(R2 − r2)

dt
≥

k∑
i=1

(Reλi − ε)|yi|2 −
n∑

i=k+1

(Reλi + ε)|yi|2.

Taking 0 < ε ≤ σ/2, we obtain Reλi − ε ≥ σ − ε ≥ ε for i = 1, . . . , k, and
Reλi + ε ≥ ε for i = k + 1, . . . , n. Then,

1

2

d(R2 − r2)

dt
≥ ε(R2 − r2) for t ≥ t0 and ||y|| ≤ δ. (1.91)

Taking the initial conditions in such a way that (R2−r2)t=t0 = k > 0, from (1.91)
we get that

||y||2 ≥ R2 − r2 ≥ ke2ε(t−t0).

Hence, this solution leaves the ball ||y|| ≤ δ. Consequently, y = 0 is unstable. �

Proof of Theorem 1.2.1(ii). We linearize equation (1.3) in a neighborhood of the
periodic solution x(t, ε). After translating x = z+ x(t, ε), expanding with respect
to z, omitting the non-linear terms and renaming the dependent variable again by
x, we get the linear differential equation with T -periodic coefficients

ẋ = εA(t, ε)x, (1.92)

where

A(t, ε) =
∂

∂x
[F (t,x) + εR(t,x, ε)]x=xε(t).
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We define the T -periodic matrix

B(t) =
∂F

∂x
(t, p),

and from statement (i) we have limε→0 A(t, ε) = B(t). We also define the matrices

B0 =
1

T

∫ T

0

B(t)dt and C(t) =

∫ T

0

[B(s)−B0]ds.

Note that B0 is the matrix of the linearized averaging system. The matrix C(t) is
T -periodic and its average is zero. The near-identity transformation x → y defined
by y = (I − εC(t))x provides

ẏ = −εĊ(t)x + (I − εC(t))ẋ

= −εB(t)x+ εB0x+ (I − εC(t))εA(t, ε)x

= [εB0 + ε(A(t, ε)−B(t)) − ε2C(t)]A(t, ε)](I − εC(t))−1y

= εB0y + ε(A(t, ε)−B(t))y + ε2S(t, ε)y.

(1.93)

The function S(t, ε) is T -periodic and bounded. We note that A(t, ε)− B(t) → 0
when ε → 0, and also that the characteristic exponents of the differential system
(1.93) depend continuously on the small parameter ε. Therefore, for ε sufficiently
small, the sign of the real parts of the characteristic exponents is equal to the
sign of the real parts of the eigenvalues of the matrix B0. The same conclusion
holds, using the near-identity transformation, for the characteristic exponents of
the differential system (1.92).

Applying now Proposition 1.2.25 we obtain the stability of the periodic so-
lution in the case of negative real parts. If at least one real part is positive, the
Floquet transformation and the application of Proposition 1.2.26 provides the in-
stability of the periodic solution. �

1.2.7 Proof of Theorem 1.2.9

Proof of Theorem 1.2.9. We consider the function f : D × (−ε0, ε0) → Rn, given
by

f(z, ε) = x(T, z, ε)− z. (1.94)

Then, every (zε, ε) such that

f(zε, ε) = 0 (1.95)

provides the periodic solution x(·, zε, ε) of (1.34).
We need to study the zeros of the function (1.94), or, equivalently, of

g(z, ε) = Y −1(T, z)f(z, ε).
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We have that g (zα, 0) = 0, because x(·, zα, 0) is T -periodic, and we shall prove
that

Gα =
dg

dz
(zα, 0) = Y −1

α (0)− Y −1
α (T ). (1.96)

For this, we need to know (∂x/∂z) (·, z, 0). Since it is the matrix solution of (1.36)
with (∂x/∂z) (0, z, 0) = In, we have that (∂x/∂z) (t, z, 0) = Y (t, z)Y −1(0, z).
Moreover,

df

dz
(z, 0) =

∂x

∂z
(T, z, 0)− In = Y (T, z)Y −1(0, z)− In

and

dg

dz
(z, 0) = Y −1(0, z)− Y −1(T, z)+

(
∂Y −1

∂z1
(T, z)f(z, 0), . . . ,

∂Y −1

∂zn
(T, z)f(z, 0)

)
,

which, for zα ∈ Z, reduces to (1.96).
We have

∂g

∂ε
(z, 0) = Y −1(T, z)

∂x

∂ε
(T, z, 0).

The function (∂x/∂ε) (·, z, 0) is the unique solution of the initial value problem

y′ = DxF0(t, x(t, z, 0))y + F1(t, x(t, z, 0)), y(0) = 0.

Hence,
∂x

∂ε
(t, z, 0) = Y (t, z)

∫ t

0

Y −1(s, z)F1(s, x(s, z, 0))ds.

Now we have
∂g

∂ε
(z, 0) =

∫ T

0

Y −1(s, z)F1(s, x(s, z, 0))ds,

and hence
∂ (πg)

∂ε
(zα, 0) = f1(α),

where f1 is given by (1.37). Applying Theorem 2.1, there exists αε ∈ V such that
g(zαε , ε) = 0 and, further, f(zαε , ε) = 0, which assures that ϕ(·, ε) = x(·, zαε , ε) is
a T -periodic solution of (1.34). �

1.2.8 Proof of Theorem 1.2.18

Since the result of Theorem 1.2.18 is analogous to the result of Theorem 1.2.9,
their proofs are similar.

Proof of Theorem 1.2.18. Since Z is a compact set and x(t, zα) is T -periodic for
each zα ∈ Z, there is an open neighborhoodD of Z in Ω, and 0 < ε1 ≤ ε0 such that
any solution x(t, z, ε) of (1.34) with initial conditions inD×(−ε1, ε1) is well defined
in [0, T ]. We consider the function L : D× (−ε1, ε1) → R2m, (z, ε) → x(T, z, ε)−z.
If (z̄, ε̄) ∈ D × (−ε1, ε1) is such that L(z̄, ε̄) = 0, then x(t, z̄, ε̄) is a T -periodic
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solution of (1.34)ε=ε̄. Clearly, the converse is also true. Hence, the problem of
finding T -periodic orbits of (1.34) close to the periodic orbits with initial conditions
in Z is reduced to finding the zeros of L(x, ε).

The sets of zeros of L(z, ε) and L̃(z, ε) = M−1
z

(T )L(z, ε) coincide, since
Mz(T ) is a fundamental matrix. Moreover, following the proof of Theorem 1.2.9,
we can compute that

DzL̃(z, ε)=
(
M−1

z
(0)−M−1

z
(T )

)
+Dz

(∫ T

0

M−1
z

(t)F1(t,x(t, z, 0))dt

)
ε+O(ε2).

(1.97)

We note that L̃−1(0) = (ξ⊥ ◦ L̃)−1(0) ∩ (ξ ◦ L̃)−1(0). From (1.97) we obtain

DzL̃(zα, 0) = M−1
zα

(0)−M−1
zα

(T ). If we write z ∈ R2m as z = (u, v) with u, v ∈ Rm,

then Dv(ξ◦L̃)(zα, 0) is the upper right corner of M−1
z

(0)−M−1
z

(T ). Then, from (i),
we can apply the Implicit Function Theorem, deducing the existence of an open
neighborhood U × (−ε2, ε2) of Cl(V ) in ξ(D) × (−ε1, ε1), an open neighborhood
O of β0(Cl(V )) in Rm and a unique Ck function β(α, ε) : U × (−ε2, ε2) → O such

that (ξ ◦ L̃)−1(0)∩ (U ×O× (−ε2, ε2)) is exactly the graphic of β(α, ε). Now, if we

define the function δ : U × (−ε2, ε2) → R as δ(α, ε) = (ξ⊥ ◦ L̃)(α, β(α, ε), ε), then δ

is a function of class Ck and L̃−1(0)∩(U×O×(−ε2, ε2)) = {(α, β(α, ε), ε) | (α, ε) ∈
δ−1(0)}. Therefore, to describe the set L̃−1(0) in an open neighborhood of Z in
Rn × (−ε0, ε0), it suffices to describe δ−1(0) in an open neighborhood of Cl(V ) in
R× (−ε0, ε0).

Since M−1
zα

(0)−M−1
zα

(T ) has in the lower right corner the m×m zero matrix
and δ(α, 0) = 0 in V × (−ε2, ε2), the function δ(α, ε) can be written as δ(α, ε) =

εG(α) + ε2G̃(α, ε) in V × (−ε2, ε2), where G(α) is the function given in (1.67), see

[12]. In addition, if δ̃(α, ε) = G(α) + εG̃(α, ε) then δ−1(0) = δ̃−1(0).

If there is α0 ∈ V such that δ̃(α0, 0) = G(α0) = 0 and det((∂G/∂α)(α0)) �= 0
then, from the Implicit Function Theorem, there exist ε3 > 0 small, an open
neighborhood V0 of α0 in V and a unique function α(ε) : (−ε3, ε3) → V0 of class

Ck such that δ̃−1(0)∩ (V0× (−ε3, ε3)) is the graphic of α(ε), which also represents
the set δ−1(0) ∩ (V0 × (−ε3, ε3)). This completes the proof of the theorem. �

1.3 Averaging theory of arbitrary order and dimension

for finding periodic solutions

In this section we shall study periodic solutions of systems of the form

x′(t) =
k∑

i=0

εiFi(t, x) + εk+1R(t, x, ε), (1.98)

where Fi : R × D → Rn for i = 0, 1, . . . , k, and R : R × D × (−ε0, ε0) → Rn are
locally Lipschitz functions, being T -periodic in the first variable, and where D is
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an open subset of Rn; eventually F0 can be the zero constant function.
The classical works using the averaging theory for studying the periodic so-

lutions of a differential system (1.98) usually only provide this theory up to first
(k = 1) or second order (k = 2) in the small parameter ε. Moreover, these theories
assume differentiability of the functions Fi and R up to class C2 or C3, respectively.
Recently, in [14], this averaging theory for computing periodic solutions was devel-
oped up to second order in dimension n, and up to third order (k = 3) in dimension
1, only using that the functions Fi and R are locally Lipschitz. Also, in the recent
work [37], the averaging theory for computing periodic solutions was developed to
an arbitrary order k in ε for analytical differential equations in dimension 1.

In this section we shall develop the averaging theory for studying the periodic
solutions of a differential system (1.98) up to arbitrary order k in dimension n, with
zero or non-zero F0, and where the functions Fi and R are only locally Lipschitz.
In fact this section is based in the results of the paper Llibre–Novaes–Teixeira [55].

An example that qualitative new phenomena can be found only when con-
sidering higher order analysis is the following. Consider arbitrary polynomial per-
turbations

ẋ = −y +
∑

j≥1 ε
jfj(x, y),

ẏ = x+
∑

j≥1 ε
jgj(x, y),

(1.99)

of the harmonic oscillator, where ε is a small parameter. In this differential system
the polynomials fj and gj are of degree n in the variables x and y, and the system
is analytic in the variables x, y and ε. Then in [37] (see also Iliev [45]) it is proved
that system (1.99) for ε �= 0 sufficiently small has no more than [s(n−1)/2] periodic
solutions bifurcating from the periodic solutions of the linear center ẋ = −y, ẏ = x,
using the averaging theory up to order s, and this bound can be reached. Here, [·]
denotes the integer part function. So, higher order averaging theory can improve
the results on the periodic solutions, both qualitatively and quantitatively.

In short, the goal of this section is to extend the averaging theory for com-
puting periodic solutions of the differential system in n variables (1.98) up to an
arbitrary order k in ε for locally Lipschitz differential systems, using the Brouwer
degree.

1.3.1 Statement of the main results

We are interested in studying the existence of periodic orbits of general differential
systems expressed by

x′(t) =
k∑

i=0

εiFi(t, x) + εk+1R(t, x, ε), (1.100)

where Fi : R × D → Rn for i = 1, 2, . . ., k, and R : R × D × (−ε0, ε0) → Rn are
continuous functions, being T -periodic in the first variable, and where D is an
open subset of Rn.
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In order to state our main results we introduce some notation. Let L be a
positive integer, let x = (x1, . . . , xn) ∈ D, t ∈ R and yj = (yj1, . . . , yjn) ∈ Rn

for j = 1, . . . , L. Given F : R ×D → Rn a sufficiently smooth function, for each
(t, x) ∈ R × D we denote by ∂LF (t, x) a symmetric L-multilinear map which is

applied to a “product” of L vectors of Rn, which we denote as
⊙L

j=1 yj ∈ RnL.
The definition of this L-multilinear map is

∂LF (t, x)

L⊙
j=1

yj =

n∑
i1,...,iL=1

∂LF (t, x)

∂xi1 · · · ∂xiL

y1i1 · · · yLiL . (1.101)

We define ∂0 as the identity functional. Given a positive integer b and a vector
y ∈ Rn, we also write yb =

⊙b
i=1 y ∈ Rnb.

Remark 1.3.1. The L-multilinear map defined in (1.101) is the Lth Fréchet deriva-
tive of the function F (t, x) with respect to the variable x. Indeed, for every fixed
t ∈ R, if we consider the function Ft : D → Rn such that Ft(x) = F (t, x), then

∂LF (t, x) = F
(L)
t (x) = ∂L/∂xLF (t, x).

Example 1.3.2. To illustrate the above notation (1.101), we consider a smooth
function F : R× R2 → R2. So, for x = (x1, x2) and y1 = (y11 , y

1
2), we have

∂F (t, x)y1 =
∂F

∂x1
(t, x)y11 +

∂F

∂x2
(t, x)y12 .

Now, for y1 = (y11 , y
1
2) and y2 = (y21 , y

2
2), we have

∂2F (t, x)(y1, y2) =
∂2F (t, x)

∂x1∂x1
y11y

2
1 +

∂2F (t, x)

∂x1∂x2
y11y

2
2

+
∂2F (t, x)

∂x2∂x1
y12y

2
1 +

∂2F (t, x)

∂x2∂x2
y12y

2
2.

Observe that, for each (t, x) ∈ R×D, ∂F (t, x) is a linear map in R2 and ∂2F (t, x)
is a bilinear map in R2 × R2.

Let ϕ(·, z) : [0, tz] → Rn be the solution of the unperturbed system

x′(t) = F0(t, x) (1.102)

such that ϕ(0, z) = z. For i = 1, 2, . . . , k, we define the averaged function of order
i, fi : D → Rn, as

fi(z) =
yi(T, z)

i!
, (1.103)

where yi : R × D → Rn, for i = 1, 2, . . . , k − 1, are defined recurrently by the
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integral equation

yi(t, z) = i!

∫ t

0

(
Fi

(
s, ϕ(s, z)

)
+

i∑
l=1

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl ∂
LFi−l

(
s, ϕ(s, z)

) l⊙
j=1

yj(s, z)
bj

)
ds, (1.104)

where Sl is the set of all l-tuples of non-negative integers (b1, b2, . . . , bl) satisfying
b1 + 2b2 + · · ·+ lbl = l, and L = b1 + b2 + · · ·+ bl.

In Subsection 1.3.3 we compute the sets Sl for l = 1, 2, 3, 4, 5. Furthermore,
we make the functions fk(z) explicit, up to k = 5 when F0 = 0, and up to k = 4
when F0 �= 0.

Related to the averaging functions (1.103) there exist two cases of (1.100),
essentially different, that must be treated separately, namely, when F0 = 0 and
when F0 �= 0. It can be seen in the following remarks.

Remark 1.3.3. If F0 = 0, then ϕ(t, z) = z for each t ∈ R. So,

y1(t, z) =

∫ t

0

F1(t, z)ds, and f1(t, z) =

∫ T

0

F1(t, z)dt,

as usual in averaging theory; see, for instance, [5].

Remark 1.3.4. If F0 �= 0, then

y1(t, z) =

∫ t

0

F1 (s, ϕ(s, z)) + ∂F0 (s, ϕ(s, z)) y1(s, z)ds. (1.105)

The integral equation (1.105) is equivalent to the following Cauchy problem:

u̇(t) = F1 (t, ϕ(t, z)) + ∂F0 (t, ϕ(t, z))u and u(0) = 0, (1.106)

i.e., y1(t, z) = u(t). If we write

η(t, z) =

∫ t

0

∂F0(s, ϕ(s, z))ds, (1.107)

we have

y1(t, z) = eη(t,z)
∫ t

0

e−η(s,z)F1(s, ϕ(s, z))ds (1.108)

and

f1(z) =

∫ T

0

e−η(t,z)F1(t, ϕ(t, z))dt.

Moreover, each yi(t, z) is obtained similarly from a Cauchy problem. The formulae
are given explicitly in Subsection 1.3.3.
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In the following, we state our main results: Theorem 1.3.5 when F0 = 0, and
Theorem 1.3.6 when F0 �= 0. The Brouwer degree dB, which is defined in Appendix
1.3.6, is used.

Theorem 1.3.5. Suppose that F0 = 0. In addition, for the functions of (1.100), we
assume the following conditions:

(i) for each t ∈ R, Fi(t, ·) ∈ Ck−i for i = 1, 2, . . . , k; ∂k−iFi is locally Lipschitz
in the second variable for i = 1, 2, . . . , k; and R is continuous and locally
Lipschitz in the second variable;

(ii) fi = 0 for i = 1, 2, . . . , r− 1 and fr �= 0, where r ∈ {1, 2, . . . , k} (here, we are
taking f0 = 0). Moreover, suppose that for some a ∈ D with fr(a) = 0, there
exists a neighborhood V ⊂ D of a such that fr(z) �= 0 for all z ∈ V \ {a},
and that dB (fr(z), V, a) �= 0.

Then, for |ε| > 0 sufficiently small, there exists a T -periodic solution x(·, ε) of
(1.100) such that x(0, ε) → a when ε → 0.

Theorem 1.3.6. Suppose that F0 �= 0. In addition, for the functions of (1.100), we
assume the following conditions:

(i) there exists an open subset W of D such that, for any z ∈ W , ϕ(t, z) is
T -periodic in the variable t;

(ii) for each t ∈ R, Fi(t, ·) ∈ Ck−i for i = 0, 1, 2, . . . , k; ∂k−iFi is locally Lipschitz
in the second variable for i = 0, 1, 2, . . . , k; and R is continuous and locally
Lipschitz in the second variable;

(iii) fi = 0 for i = 1, 2, . . . , r − 1 and fr �= 0, where r ∈ {1, 2, . . . , k}; moreover,
suppose that for some a ∈ W with fr(a) = 0, there exists a neighborhood V ⊂
W of a such that fr(z) �= 0 for all z ∈ V \ {a}, and that dB (fr(z), V, a) �= 0.

Then, for |ε| > 0 sufficiently small, there exists a T -periodic solution x(·, ε) of
(1.100) such that x(0, ε) → a when ε → 0.

Theorems 1.3.5 and 1.3.6 are proved in Subsection 1.3.2.

Remark 1.3.7. When the functions fi defined in (1.103), for i = 1, 2, . . . , k, are C1,
the hypotheses (ii) from Theorem 1.3.5 and (iii) from Theorem 1.3.6 become:

(iv) fi = 0 for i = 1, 2 . . . , r − 1 and fr �= 0, where r ∈ {1, 2, . . . , k}; moreover,
suppose that for some a ∈ W with fr(a) = 0 we have that f ′

r(a) �= 0.

In this case, instead of Brouwer degree theory, the Implicit Function Theorem
could be used to prove Theorems 1.3.5 and 1.3.6.

We emphasize that our main contribution to the advanced averaging theory is
based on Theorems 1.3.5 and 1.3.6. In fact, we provide conditions on the regularity
of the functions, weaker than those given in [37].
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1.3.2 Proofs of Theorems 1.3.5 and 1.3.6

Let g : (−ε0, ε0) → Rn be a function defined on a small interval (−ε0, ε0). We say
that g(ε) = O(ε
) for some positive integer � if there exists constants ε1 > 0 and
M > 0 such that ||g(ε)|| ≤ M |ε
| for −ε1 < ε < ε1. The symbol O is one of the
Landau’s symbols (see for instance [78]).

To prove Theorems 1.3.5 and 1.3.6 we need the following lemma.

Lemma 1.3.8 (Fundamental Lemma). Under the assumptions of Theorems 1.3.5
or 1.3.6 let x(·, z, ε) : [0, tz] → Rn be the solution of (1.100) with x(0, z, ε) = z. If
tz = T , then

x(t, z, ε) = ϕ(t, z) +
k∑

i=1

εi
yi(t, z)

i!
+ εk+1O(1),

where yi(t, z) are defined in (1.104), for i = 1, 2, . . . , k.

Proof. By continuity of the solution x(t, z, ε) and by compactness of the set [0, T ]×
V × [−ε1, ε1], there exits a compact subset K of D such that x(t, z, ε) ∈ K for
all t ∈ [0, T ], z ∈ V and ε ∈ [−ε1, ε1]. Now, by continuity of the function R,
|R(s, x(s, z, ε), ε)| ≤ max{|R(t, x, ε)|, (t, x, ε) ∈ [0, T ]×K × [−ε1, ε1]} = N . Then∣∣∣∣∫ t

0

R(s, x(s, z, ε), ε)ds

∣∣∣∣ ≤ ∫ T

0

|R(s, x(s, z, ε), ε)| ds = TN,

which implies that ∫ t

0

R(s, x(s, z, ε), ε)ds = O(1). (1.109)

Related to the functions x(t, z, ε) and ϕ(t, z) we have the following two equalities:

x(t, z, ε) = z +

k∑
i=0

εi
∫ t

0

Fi(s, x(s, z, ε))ds+O(εk+1),

ϕ(t, z) = z +

∫ t

0

F0(s, ϕ(s, z))ds.

(1.110)

Moreover, x(t, z, ε) = ϕ(t, z) +O(ε). Indeed, F0 is locally Lipschitz in the second
variable, so from the compactness of the set [0, T ]×V × [−ε0, ε0] and from (1.110)
it follows that

|x(t, z, ε)− ϕ(t, z)| ≤
∫ t

0

|F0(s, x(s, z, ε))− F0(s, ϕ(s, z))|ds

+ |ε|
∫ t

0

|F1(s, x(s, z, ε))|ds+O(ε2)

≤ |ε|M +

∫ t

0

L0|x(s, z, ε)− ϕ(s, z)|ds < |ε|MeTL0.
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Here, L0 is the Lipschitz constant of F0 on the compact K. The first and second
inequalities were obtained similarly to (1.109). The last inequality is a consequence
of the Gronwall Lemma (see, for example, [78, Lemma 1.3.1]).

In order to prove the present lemma we need the following claim.

Claim. For some positive integer m, let G : R×D → Rn be a Cm function. Then

G(t, x(t, z, ε))

=

∫ 1

0

λm−1
1

∫ 1

0

λm−2
2 · · ·

∫ 1

0

λm−1

∫ 1

0

[
∂mG

(
t, �m ◦ �m−1 ◦ · · · ◦ �1(x(t, z, ε))

)
− ∂mG(t, ϕ(t, z))

]
dλmdλm−1 · · · dλ1 · (x(t, z, ε)− ϕ(t, z))m

+
m∑

L=0

∂LG(t, ϕ(t, z))
(x(t, z, ε)− ϕ(t, z))L

L!
,

where �i(v) = λiv + (1− λi)ϕ(t, z) for v ∈ Rn.
We shall prove this claim using induction on m. For m = 1, G ∈ C1. Let

�1(λ1) = G
(
t, �1(x(t, z, ε))

)
. So,

G(t, x(t, z, ε)) =G(t, ϕ(t, z)) + �1(1)− �1(0) = G(t, ϕ(t, z)) +

∫ 1

0

�′1(λ1)dλ1

=G(t, ϕ(t, z)) +

∫ 1

0

∂G(t, �1(x(t, z, ε)))dλ1 · (x(t, z, ε)− ϕ(t, z))

=

∫ 1

0

[
∂G(t, �1(x(t, z, ε)))− ∂G(t, ϕ(t, z))

]
dλ1 · (x(t, z, ε)− ϕ(t, z))

G(t, ϕ(t, z)) + ∂G(t, ϕ(t, z))(x(t, z, ε)− ϕ(t, z)).

Given an integer k > 1, we assume as the inductive hypothesis (I1) that the
claim is true for m = k − 1.

Now, for m = k, G ∈ Ck ⊂ Ck−1. So, from inductive hypothesis (I1),

G(t, x(t, z, ε)) =

∫ 1

0

λk−2
1

∫ 1

0

λk−3
2 · · ·

∫ 1

0

λk−2

∫ 1

0

[
∂k−1G

(
t, �k−1 ◦ �k−2 ◦ · · ·

◦ �1(x(t, z, ε))
)− ∂k−1G(t, ϕ(t, z))

]
dλk−1dλk−2 · · · dλ1

· (x(t, z, ε)− ϕ(t, z))k−1

+

k−1∑
L=0

∂LG(t, ϕ(t, z))
(x(t, z, ε)− ϕ(t, z))L

L!
.

(1.111)

Let �(λk) = ∂k−1G
(
t, �k ◦ �k−1 ◦ · · · ◦ �1(x(t, z, ε))

)
. So,∫ 1

0

�′(λk)dλk = �(1)− �(0)

= ∂k−1G
(
t, �k−1 ◦ �k−2 ◦ · · · ◦ �1(x(t, z, ε))

)− ∂mG(t, ϕ(t, z)).

(1.112)
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The derivative of �(λk) can be easily obtained as

�′(λk) = λk−1λk−2 · · ·λ1∂
kG

(
t, �k ◦ �k−1 ◦ · · · ◦ �1(x(t, z, ε))

)
(x(t, z, ε)− ϕ(t, z)).

Hence,∫ 1

0

�′(λk)dλk = λk−1λk−2 · · ·λ1

∫ 1

0

[
∂kG

(
t, �k ◦ �k−1 ◦ · · · ◦ �1(x(t, z, ε))

)
− ∂kG(t, ϕ(t, z))

]
dλk · (x(t, z, ε)− ϕ(t, z))

+ λk−1λk−2 · · ·λ1∂
kG(t, ϕ(t, z))(x(t, z, ε)− ϕ(t, z)).

(1.113)

Therefore, from (1.111) and (1.113), we conclude that

G(t, x(t, z, ε))

=

∫ 1

0

λk−1
1

∫ 1

0

λk−2
2 · · ·

∫ 1

0

λk−1

∫ 1

0

[
∂kG

(
t, �k ◦ �k−1 ◦ · · · ◦ �1(x(t, z, ε))

)
− ∂kG(t, ϕ(t, z))

]
dλkdλk−1 · · · dλ1 · (x(t, z, ε)− ϕ(t, z))k

+

k∑
L=0

∂LG(t, ϕ(t, z))
(x(t, z, ε) − ϕ(t, z))L

L!
.

This completes the proof of the claim.
Given a non-negative integer m, we note that for a Cm function G such that

∂mG is locally Lipschitz in the second variable, the claim implies the equality

G(t, x(t, z, ε)) =
∑m

L=0 ∂
LG(t, ϕ(t, z))

(x(t, z, ε)− ϕ(t, z))L

L!
+O(εm+1).

(1.114)
Indeed, for m = 0, G is a continuous function locally Lipschitz in the second
variable so,

|G(t, x(t, z, ε))−G(t, ϕ(t, z))| ≤ LG|x(t, z, ε)− ϕ(t, z)| < |ε|LGMeTL0.

Here, LG is the Lipschitz constant of the function G on the compact K. Thus,

G(t, x(t, z, ε)) = G(t, ϕ(t, z)) +O(ε).

Moreover, for m ≥ 1 the claim implies (1.114) in a similar way to (1.109).
Again, we shall use induction, now on k, to prove the present lemma. For

k = 1, F0 ∈ C1 and the functions ∂F0 and F1 are locally Lipschitz in the second
variable. Thus, from (1.114) and taking G = F0 and G = F1, we obtain

F0(t, x(t, z, ε)) = F0(t, ϕ(t, z)) + ∂F0(t, ϕ(t, z))(x(t, z, ε)− ϕ(t, z)) +O(ε2),

F1(t, x(t, z, ε)) = F1(t, ϕ(t, z)) +O(ε),

(1.115)
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respectively. From (1.110) and (1.115) we compute

d

dt
(x(t, z, ε)− ϕ(t, z))=∂F0(t, ϕ(t, z)) (x(t, z, ε)− ϕ(t, z))+εF1(t, ϕ(t, z))+O(ε2).

(1.116)
Solving the linear differential equation (1.115) with respect to x(t, z, ε) − ϕ(t, z)
for the initial condition x(0, z, ε)−ϕ(0, z, ε) = 0, and comparing the solution with
(1.108), we conclude that

x(t, z, ε) = ϕ(t, z) + εy1(t, z) +O(ε2).

Given an integer k we assume as the inductive hypothesis (I2) that the lemma
is true for k = k − 1.

Now for k = k, Fi = Ck−i for i = 0, 1, . . . , k and ∂k−iFi is locally Lipschitz
in the second variable for i = 0, 1, . . . , k. So, from (1.114),

Fi(t, x(t, z, ε)) =

k−i∑
L=0

∂LFi(t, ϕ(t, z))
(x(t, z, ε)− ϕ(t, z))L

L!
+O(εk−i+1), (1.117)

for i = 0, 1, . . . , k. Applying the inductive hypothesis (I2) in (1.117) we get

Fi(t, x(t, z, ε)) = F1(t, ϕ(t, z))

+

k−i∑
L=1

∂LFi(t, ϕ(t, z))

⎛⎝k−i−L+1∑
i=1

εi
yi(t, z)

i!

⎞⎠L

+O(εk−i+1),

(1.118)

for i = 1, 2, . . . , k. Now using theMultinomial Theorem in (1.118) (see, for instance,
[43, pag. 186]), we obtain

Fi(t, x(t, z, ε)) = Fi (t, ϕ(t, z))

+

k−i∑
L=1

k−i∑
l=L

∑
Sk−1
l,L

εl

b1! b2!2!b2 · · · bk−1!(k − 1)!bk−1
∂LFi (t, ϕ(t, z))

k−1⊙
j=1

yj(t, z)
bj

+O(εk−i+1),

for i = 1, 2, . . . , k. Here, Sn
l,L is the set of all n-tuples of non-negative integers

(b1, b2, . . . , bn) satisfying b1 + 2b2 + · · ·+ nbn = l and b1 + b2 + · · ·+ bn = L. We
note that if n > l then bl+1 = bl+2 = · · · = bn = 0. Hence,

Fi(t, x(t, z, ε)) = Fi (t, ϕ(t, z))

+
k−i∑
L=1

k−i∑
l=L

∑
Sl
l,L

εl

b1! b2!2!b2 · · · bl!l!bl ∂
LFi (t, ϕ(t, z))

l⊙
j=1

yj(t, z)
bj

+O(εk−i+1),

(1.119)



1.3. Averaging theory for arbitrary order and dimension 55

for i = 1, 2, . . . , k, because k − i ≥ l.
Finally, doing a change of indexes in (1.119), and observing that ∪l

L=1S
l
l,L =

Sl, we may write

Fi(t, x(t, z, ε)) = Fi (t, ϕ(t, z))

+

k−i∑
l=1

εl
∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl ∂
LFi (t, ϕ(t, z))

l⊙
j=1

yj(t, z)
bj

+O(εk−i+1),

(1.120)

for i = 1, 2, . . . , k. Following the above steps we also obtain

F0(t, x(t, z, ε)) = F0 (t, ϕ(t, z)) + ∂F0(t, ϕ(t, z))(x(t, z, ε)− ϕ(t, z))

+

k∑
i=1

εi
[∑

Si

1

b1! b2!2!b2 · · · bi!i!br ∂
LF0 (t, ϕ(t, z))

i⊙
j=1

yj(t, z)
bj

− ∂F0(t, ϕ(t, z))
yi(t, z)

i!

]
+O(εk+1).

(1.121)

Now, from (1.110), we compute

d

dt
(x(t, z, ε)− ϕ(t, z)) = F0(t, x(t, z, ε))

− F0(t, ϕ(t, z)) +

k∑
i=1

εiFi(t, x(t, z, ε)) +O(εk+1).

(1.122)

Proceeding with a change of index we obtain from (1.120) that

k∑
i=1

εiFi(t, x(t, z, ε)) =

k∑
i=1

εi
i−1∑
l=0

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl ∂
LFi−l (t, ϕ(t, z))

l⊙
j=1

yj(t, z)
bj +O(εk+1).

(1.123)

Substituting (1.121) and (1.123) in (1.122), we conclude that

d

dt
(x(t, z, ε)− ϕ(t, z)) = ∂F0(t, ϕ(t, z)) (x(t, z, ε)− ϕ(t, z))

+

k∑
i=1

εi

[
i∑

l=0

∑
Sl

1

b1! b2!2!b2 · · · bl!l!bl ∂
LFi−l (t, ϕ(t, z))

l⊙
j=1

yj(s, z)
bj − ∂F0(t, ϕ(t, z))

yi(t, z)

i!

]
+O(εk+1).

(1.124)
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Solving the linear differential equation (1.124) with respect to x(t, z, ε) − ϕ(t, z)
for the initial condition x(0, z, ε)− ϕ(0, z) = 0, we obtain

x(t, z, ε) = ϕ(t, z) +

k∑
i=1

εi
Yi(t, z)

i!
+O(εk+1),

where

Yi(t, z) = eη(t,z)
∫ t

0

e−η(s,z)

[
i∑

l=0

∑
Sl

i!

b1! b2!2!b2 · · · bl!l!bl ∂
LFi−l (s, ϕ(s, z))

l⊙
j=1

yj(s, z)
bj − ∂F0(s, ϕ(s, z))yi(s, z)

]
ds.

The function η(t, z) was defined in (1.107). Hence,

d

dt
Yi(t, z) = ∂F0(t, ϕ(t, z))Yi(t, z)

+
i∑

l=0

∑
Sl

i!

b1! b2!2!b2 · · · bl!l!bl ∂
LFi−l (t, ϕ(t, z))

l⊙
j=1

yj(t, z)
bj

− ∂F0(t, ϕ(t, z))yi(t, z)ds.

Computing the derivative of the function yi(t, z), we conclude that the func-
tions yi(t, z) and Yi(t, z) are defined by the same differential equation. Since
Yi(0, z) = yi(0, z) = 0, it follows that Yr(t, z) ≡ yr(t, z) for every i = 1, 2, . . . , k.
So, we have concluded the induction which completes the proof of the lemma. �

In a few words, the proof of Theorem 1.3.5 is an application of the Brouwer
degree (see Appendix 1.3.6) to the approximated solution given by Lemma 1.3.8.

Proof of Theorem 1.3.5. Let x(·, z, ε) be a solution of (1.100) such that x(0, z, ε) =
z. For each z ∈ V , there exists ε1 > 0 such that if ε ∈ [−ε1, ε1] then x(·, z, ε)
is defined in [0, T ]. Indeed, by the Existence and Uniqueness Theorem of solu-
tions (see, for example, [78, Theorem 1.2.4]), x(·, z, ε) is defined for all 0 ≤ t ≤
inf (T, d/M(ε)), where

M(ε) ≥
∣∣∣∣∣

k∑
i=1

εiFi(t, x) + εk+1R(t, x, ε)

∣∣∣∣∣
for all t ∈ [0, T ], for each x with |x− z| < d, and for every z ∈ V . When ε is suffi-
ciently small we can take d/M(ε) sufficiently large in order that inf (T, d/M(ε)) =
T for all z ∈ V . We write εf(z, ε) = x(T, z, ε)−z. From Lemma 1.3.8 and equation
(1.109) we have that

f(z, ε) = f1(z) + εf2(z) + ε2f3(z) + · · ·+ εk−1fk(z) + εkO(1),
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where the function fi is the one defined in (1.103) for i = 1, 2, . . . , k. From the
assumption (ii) of the theorem we have that

f(z, ε) = εr−1fr(z) + · · ·+ εk−1fk(z) + εkO(1).

Clearly, x(·, z, ε) is a T -periodic solution if and only if f(z, ε) = 0, because
x(t, z, ε) is defined for all t ∈ [0, T ].

From the Brouwer degree theory (see Lemma 1.3.12 in Appendix 1.3.6) and
hypothesis (ii) we have, for |ε| > 0 sufficiently small, that

dB (fr(z), V, a) = dB (f(z, ε), V, a) �= 0.

Hence, by Theorem 1.3.10(i) (see Appendix 1.3.6), 0 ∈ f(V, ε) for |ε| > 0 suffi-
ciently small, i.e, there exists aε ∈ V such that f(aε, ε) = 0.

Therefore, for |ε| > 0 sufficiently small, x(t, aε, ε) is a periodic solution of
(1.100). Clearly, we can choose aε such that aε → a when ε → 0, because f(z, ε) �=
0 in V \ {a}. This completes the proof of the theorem. �

For proving Theorem 1.3.6 we also need the following lemma.

Lemma 1.3.9. Let w(·, z, ε) : [0, ťz] → Rn be the solution of the system

w′(t) =
k∑

i=1

εi
(
[D2ϕ(t, w)]

−1 Fi(t, ϕ(t, w))
)
+ εk+1 [D2ϕ(t, w)]

−1 R(t, ϕ(t, w), ε),

(1.125)
such that w(0, z, ε) = z. Then, ψ(·, z, ε) : [0, t̃z] → Rn defined as ψ(t, z, ε) =
ϕ (t, w(t, z, ε)) is the solution of (1.100) with ψ(0, z, ε) = z.

Proof. Given z ∈ D, let M(t) = D2ϕ(t, z). The result about differentiable de-
pendence on initial conditions implies that the function M(t) is given as the fun-
damental matrix of the differential equation u′ = ∂F0(t, ϕ(t, z))u. So the matrix
M(t) is invertible for each t ∈ [0, T ]. Now the proof follows immediately from the
derivative of ψ(t, ξ, ε) with respect to t. �

Proof of Theorem 1.3.6. Let x(·, z, ε) be a solution of (1.100) with x(0, z, ε) = z.
For each z ∈ V , there exists ε1 > 0 such that if ε ∈ [−ε1, ε1] then x(·, z, ε) is
defined in [0, T ]. Indeed, from Lemma 1.3.9, x(t, z, ε) = ϕ (t, w(t, z, ε)) for each
z ∈ V , where w(·, z, ε) is the solution of (1.125). Moreover, for |ε1| > 0 sufficiently
small, w(t, z, ε) ∈ W for each (t, z, ε) ∈ [0, T ] × V × [−ε1, ε1]. Repeating the
argument of the proof of Theorem 1.3.5, we can show that ťz = T for every z ∈ V .
Since ϕ(·, z) is defined in [0,T] for every z ∈ W , it follows that t̃z = T , i.e., x(·, z, ε)
is also defined in [0, T ]. Now, denoting f(z, ε) = x(T, z, ε) − z, the proof follows
like that of Theorem 1.3.5. �
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1.3.3 Computing formulae

Now we shall illustrate how to compute the formulae from Theorems 1.3.5 and
1.3.6 for some k ∈ N. In Subsection 1.3.4 we compute the formulae when F0 = 0
for Theorem 1.3.5 up to k = 5. And in Subsection 1.3.5 we compute the formulae
when F0 �= 0 for Theorem 1.3.6 up to k = 4.

First of all, from (1.104) we should determine the sets Sl for l = 1, 2, 3, 4, 5:

S1 = {1},
S2 = {(0, 1), (2, 0)},
S3 = {(0, 0, 1), (1, 1, 0), (3, 0, 0)},
S4 = {(0, 0, 0, 1), (1, 0, 1, 0), (2, 1, 0, 0), (0, 2, 0, 0), (4, 0, 0, 0)}.

To compute Sl it is convenient to exhibit a table of possibilities with the value bi
in the column i. We start from the last column.

Clearly, the last column can be filled only by zeroes and ones because 5b5 > 5
for b5 > 1; the same happens with the fourth and the third column, because
3b3, 4b4 > 5, for b3, b4 > 1. Taking b5 = 1, the unique possibility is b1 = b2 =
b3 = b4 = 0, thus any other solution satisfies b5 = 0. Taking b5 = 0 and b4 = 1,
the unique possibility is b1 = 1 and b2 = b3 = 0, thus any other solution must
have b4 = b5 = 0. Finally, taking b5 = b4 = 0 and b3 = 1, we have two possibilities
either b1 = 2 and b2 = 0, or b1 = 0 and b2 = 1. Thus any other solution satisfies
b3 = b4 = b5 = 0.

Now we observe that the second column can be filled only by 0, 1 or 2,
since 2b2 > 5 for b2 > 2; and taking b3 = b4 = b5 = 0 and b2 = 1 the unique
possibility is b1 = 3. Taking b3 = b4 = b5 = 0 and b2 = 2 the unique possibility
is b1 = 1, thus any other solution satisfies b2 = b3 = b4 = b5 = 0. Finally, taking
b2 = b3 = b4 = b5 = 0 the unique possibility is b1 = 5. Therefore the complete
table of solutions is

S5 =

b1 b2 b3 b4 b5
0 0 0 0 1
1 0 0 1 0
0 1 1 0 0
2 0 1 0 0
3 1 0 0 0
1 2 0 0 0
5 0 0 0 0

Now we can use (1.104) and (1.103) to compute the expressions of the yi’s and
fi’s in each case.
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1.3.4 Fifth order averaging of Theorem 1.3.5

Let us assume that F0 ≡ 0. From (1.104) we obtain the functions yi(t, z) for
k = 1, 2, 3, 4, 5:

y1(t, z) =

∫ t

0

F1(s, z)ds,

y2(t, z) =

∫ t

0

(
2F2(s, z) + 2

∂F1

∂x
(s, z)y1(s, z)

)
ds,

y3(t, z) =

∫ t

0

(
6F3(s, z) + 6

∂F2

∂x
(s, z)y1(t, z)

+ 3
∂2F1

∂x2
(s, z)y1(s, z)

2 + 3
∂F1

∂x
(s, z) y2(s, z)

)
ds,

y4(t, z) =

∫ t

0

(
24F4(s, z) + 24

∂F3

∂x
(s, z)y1(s, z)

+ 12
∂2F2

∂x2
(s, z)y1(s, z)

2 + 12
∂F2

∂x
(s, z)y2(s, z)

+ 12
∂2F1

∂x2
(s, z)y1(s, z)� y2(s, z)

+ 4
∂3F1

∂x3
(s, z)y1(s, z)

3 + 4
∂F1

∂x
(s, z)y3(s, z)

)
ds,

y5(t, z) =

∫ t

0

(
120F5(s, z) + 120

∂F4

∂x
(s, z)y1(s, z

+ 60
∂2F3

∂x2
(s, z)y1(s, z)

2

+ 60
∂F3

∂x
(s, z)y2(s, z) + 60

∂2F2

∂x2
(s, z)y1(s, z)� y2(s, z)

+ 20
∂3F2

∂x3
(s, z)y1(s, z)

3 + 20
∂F2

∂x
(s, z)y3(s, z)

+ 20
∂2F1

∂x2
(s, z)y1(s, z)� y3(s, z)

+ 15
∂2F1

∂x2
(s, z)y2(s, z)

2 + 30
∂3F1

∂x3
(s, z)y1(s, z)

2 � y2(s, z)

+ 5
∂4F1

∂x4
(s, z)y1(s, z)

4 + 5
∂F1

∂x
(s, z)y4(s, z)

)
ds.

Therefore, from (1.103) we have that

f0(z) =0,

f1(z) =

∫ T

0

F1(t, z)dt,
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f2(z) =

∫ T

0

(
F2(t, z)ds+

∂F1

∂x
(t, z)y1(t, z)

)
dt,

f3(z) =

∫ T

0

(
F3(t, z) +

∂F2

∂x
(t, z)y1(t, z)

+
1

2

∂2F1

∂x2
(t, z)y1(t, z)

2 +
1

2

∂F1

∂x
(t, z)y2(t, z)

)
dt,

f4(z) =

∫ T

0

(
F4(t, z) +

∂F3

∂x
(t, z)y1(t, z)

+
1

2

∂2F2

∂x2
(t, z)y1(t, z)

2 +
1

2

∂F2

∂x
(t, z)y2(t, z)

+
1

2

∂2F1

∂x2
(t, z)y1(t, z)� y2(t, z)dt

+
1

6

∂3F1

∂x3
(t, z)y1(t, z)

3 +
1

6

∂F1

∂x
(t, z)y3(t, z)

)
dt,

f5(z) =

∫ T

0

(
F5(t, z) +

∂F4

∂x
(t, z)y1(t, z)

+
1

2

∂2F3

∂x2
(t, z)y1(t, z)

2 +
1

2

∂F3

∂x
(t, z)y2(t, z)

+
1

2

∂2F2

∂x2
(t, z)y1(t, z)� y2(t, z)

+
1

6

∂3F2

∂x3
(t, z)y1(t, z)

3 +
1

6

∂F2

∂x
(t, z)y3(t, z)

+
1

6

∂2F1

∂x2
(t, z)y1(t, z)� y3(t, z)

+
1

8

∂2F1

∂x2
(t, z)y2(t, z)

2 +
1

4

∂3F1

∂x3
(t, z)y1(t, z)

2 � y2(t, z)

+
1

24

∂4F1

∂x4
(t, z)y1(t, z)

4 +
1

24

∂F1

∂x
(t, z)y4(t, z)

)
dt.

1.3.5 Fourth order averaging of Theorem 1.3.6

Now we assume that F0 �≡ 0. First a Cauchy problem or, equivalently, an integral
equation (see Remark 1.3.4) must be solved to compute the expressions yi(t, z) for
i = 1, 2, . . . , k. We give the integral equations and its solutions for k = 1, 2, 3, 4.

Let η(t, z) be the function defined in (1.107), and let M(z) = η(T, z). Hence,
from (1.104) and (1.103) we obtain the functions y1(t, z) and f1(z):

y1(t, z) =

∫ t

0

(
F1(s, ϕ(s, z)) +

∂F0

∂x
(s, ϕ(s, z))y1(s, z)

)
ds,
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so

y1(t, z) = eη(t,z)
∫ t

0

e−η(s,z)F1(s, ϕ(s, z))ds,

and

f1(z) = M(z)

∫ T

0

e−η(t,z)F1(t, ϕ(t, z))dt.

Similarly, the functions y2(t, z) and f2(z) are given by:

y2(t, z) =

∫ t

0

(
2F2(s, ϕ(s, z)) + 2

∂F1

∂x
(s, ϕ(s, z))y1(s, z)

+
∂2F0

∂x2
(s, ϕ(s, z))y1(s, z)

2 +
∂F0

∂x
(s, ϕ(s, z)) y2(s, z)

)
dt,

so

y2(t, z) =eη(t,z)
∫ t

0

e−η(s,z)

(
2F2(s, ϕ(s, z)) + 2

∂F1

∂x
(s, ϕ(s, z))y1(s, z)

∂2F0

∂x2
(s, ϕ(s, z))y1(s, z)

2

)
ds,

and

f2(z) =M(z)

∫ T

0

e−η(t,z)

(
F2(t, ϕ(t, z)) +

∂F1

∂x
(t, ϕ(t, z))y1(t, z)

1

2

∂2F0

∂x2
(t, ϕ(t, z))y1(t, z)

2

)
dt.

The functions y3(t, z) and f3(z) are given by

y3(t, z) =

∫ t

0

(
6F3(s, ϕ(s, z)) + 6

∂F2

∂x
(s, ϕ(s, z))y1(s, z)

+ 3
∂2F1

∂x2
(s, ϕ(s, z))y1(s, z)

2 + 3
∂F1

∂x
(s, ϕ(s, z)) y2(s, z)

+ 3
∂2F0

∂x2
(s, ϕ(s, z))y1(s, z)� y2(s, z)

+
∂3F0

∂x3
(s, ϕ(s, z))y1(s, z)

3 +
∂F0

∂x
(s, ϕ(s, z))y3(s, z)

)
ds,
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so

y3(t, z) =eη(t,z)
∫ t

0

e−η(s,z)

(
6F3(s, ϕ(s, z)) + 6

∂F2

∂x
(s, ϕ(s, z))y1(s, z)

+ 3
∂2F1

∂x2
(s, ϕ(s, z))y1(s, z)

2 + 3
∂F1

∂x
(s, ϕ(s, z)) y2(s, z)

+ 3
∂2F0

∂x2
(s, ϕ(s, z))y1(s, z)� y2(s, z)

+
∂3F0

∂x3
(s, ϕ(s, z))y1(s, z)

3

)
ds,

and

f3(z) =M(z)

∫ T

0

e−η(t,z)

(
F3(t, ϕ(t, z)) +

∂F2

∂x
(t, ϕ(t, z))y1(t, z)

+
1

2

∂2F1

∂x2
(t, ϕ(t, z))y1(t, z)

2 +
1

2

∂F1

∂x
(t, ϕ(t, z)) y2(t, z)

+
1

2

∂2F0

∂x2
(t, ϕ(t, z))y1(t, z)� y2(t, z)

+
1

6

∂3F0

∂x3
(t, ϕ(t, z))y1(t, z)

3

)
ds.

Finally, the functions y4(t, z) and f4(z) are given by

y4(t, z) =

∫ t

0

(
24F4(s, ϕ(s, z)) + 24

∂F3

∂x
(s, ϕ(s, z))y1(s, z)

+ 12
∂2F2

∂x2
(s, ϕ(s, z))y1(s, z)

2 + 12
∂F2

∂x
(s, ϕ(s, z))y2(s, z)

+ 12
∂2F1

∂x2
(s, ϕ(s, z))y1(s, z)� y2(s, z)

+ 4
∂3F1

∂x3
(s, ϕ(s, z))y1(s, z)

3 + 4
∂F1

∂x
(s, ϕ(s, z))y3(s, z)

+ 4
∂2F0

∂x2
(s, ϕ(s, z))y1(s, z)� y3(s, z)

+ 3
∂2F0

∂x2
(s, ϕ(s, z))y2(s, z)

2ds+ 6
∂3F0

∂x3
(s, ϕ(s, z))y1(s, z)

2 � y2(s, z)

+
∂4F0

∂x4
(s, ϕ(s, z))y1(s, z)

4 +
∂F0

∂x
(s, ϕ(s, z))y4(s, z)

)
ds,

so
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y4(t, z) =eη(t,z)
∫ t

0

e−η(s,z)

(
24F4(s, ϕ(s, z)) + 24

∂F3

∂x
(s, ϕ(s, z))y1(s, z)

+ 12
∂2F2

∂x2
(s, ϕ(s, z))y1(s, z)

2 + 12
∂F2

∂x
(s, ϕ(s, z))y2(s, z)

+ 12
∂2F1

∂x2
(s, ϕ(s, z))y1(s, z)� y2(s, z)

+ 4
∂3F1

∂x3
(s, ϕ(s, z))y1(s, z)

3 + 4
∂F1

∂x
(s, ϕ(s, z))y3(s, z)

+ 4
∂2F0

∂x2
(s, ϕ(s, z))y1(s, z)� y3(s, z)

+ 3
∂2F0

∂x2
(s, ϕ(s, z))y2(s, z)

2ds+ 6
∂3F0

∂x3
(s, ϕ(s, z))y1(s, z)

2 � y2(s, z)

+
∂4F0

∂x4
(s, ϕ(s, z))y1(s, z)

4

)
ds,

and

f4(z) =M(z)

∫ T

0

e−η(t,z)

(
F4(t, ϕ(t, z)) +

∂F3

∂x
(t, ϕ(t, z))y1(t, z)

+
1

2

∂2F2

∂x2
(t, ϕ(t, z))y1(t, z)

2 +
1

2

∂F2

∂x
(t, ϕ(t, z))y2(t, z)

+
1

2

∂2F1

∂x2
(t, ϕ(t, z))y1(t, z)� y2(t, z)

+
1

6

∂3F1

∂x3
(t, ϕ(t, z))y1(t, z)

3 +
1

6

∂F1

∂x
(t, ϕ(t, z))y3(t, z)

+
1

6

∂2F0

∂x2
(t, ϕ(t, z))y1(t, z)� y3(t, z)

+
1

8

∂2F0

∂x2
(t, ϕ(t, z))y2(t, z)

2ds+
1

4

∂3F0

∂x3
(t, ϕ(t, z))y1(t, z)

2 � y2(t, z)

+
1

24

∂4F0

∂x4
(t, ϕ(t, z))y1(t, z)

4

)
ds.

1.3.6 Appendix: basic results on the Brouwer degree

In this appendix we present the existence and uniqueness result from the degree
theory in finite dimensional spaces. We follow Browder’s paper [11], where the
properties of the classical Brouwer degree are formalized. We also present some
results we shall need for proving our main results.

Theorem 1.3.10. Let X = Rn = Y for a given positive integer n. For bounded
open subsets V of X, consider continuous mappings f : V → Y , and points y0 in
Y such that y0 does not lie in f(∂V ) (as usual, ∂V denotes the boundary of V ).
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Then to each such triple (f, V, y0), there corresponds an integer d(f, V, y0) having
the following three properties:

(i) If d(f, V, y0) �= 0 then y0 ∈ f(V ). If f0 is the identity map of X onto Y then,
for every bounded open set V and y0 ∈ V , we have d

(
f0
∣∣
V
, V, y0

)
= ±1.

(ii) (Additivity) If f : V → Y is a continuous map with V a bounded open set
in X, and V1 and V2 are a pair of disjoint open subsets of V such that
y0 /∈ f(V \(V1 ∪ V2)) then, d (f0, V, y0) = d (f0, V1, y0) + d (f0, V1, y0).

(iii) (Invariance under homotopy) Let V be a bounded open set in X, and consider
a continuous homotopy {ft : 0 ≤ t ≤ 1} of maps of V into Y . Let {yt : 0 ≤
t ≤ 1} be a continuous curve in Y such that yt /∈ ft(∂V ) for any t ∈ [0, 1].
Then d(ft, V, yt) is constant in t on [0, 1].

Theorem 1.3.11. The degree function d(f, V, y0) is uniquely determined by the
conditions of Theorem 1.3.10.

For the proofs of Theorems 1.3.10 and 1.3.11, see [11].

Lemma 1.3.12. We consider continuous functions fi : V → Rn, for i = 0, 1, . . . , k,
and f, g, r : V × [ε0, ε0] → Rn, given by

g(·, ε) = f1(·) + εf2(·) + ε2f3(·) + · · ·+ εk−1fk(·),

f(·, ε) = g(·, ε) + εkr(·, ε).
Assume that g(z, ε) �= 0 for all z ∈ ∂V and ε ∈ [−ε0, ε0]. If for |ε| > 0 sufficiently
small dB (f(·, ε), V, y0) is well defined, then dB (f(·, ε), V, y0) = dB (g(·, ε), V, y0).

For a proof of Lemma 1.3.12, see [14, Lemma 2.1].

1.4 Three applications of Theorem 1.3.5

The first application studies the periodic solutions of the Hénon–Heiles Hamilto-
nian using the averaging theory of second order. The other two examples analyze
the limit cycles of some classes of polynomial differential systems in the plane.
These last two applications use the averaging theory of third order. More pre-
cisely, these three applications are based in Theorem 1.3.5.

In the next subsection we summarize the results of Theorem 1.3.5 up to third
order, precisely the ones used in the applications here considered.

1.4.1 The averaging theory of first, second and third order

As far as we know, the averaging theory of third order for studying specifically
periodic orbits was developed by first time in [14]. Now we summarize it here from
Theorem 1.3.5 which is given at any order.
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Consider the differential system

ẋ(t) = εF1(t, x) + ε2F2(t, x) + ε3F3(t, x) + ε4R(t, x, ε), (1.126)

where F1, F2, F3 : R × D → R and R : R × D × (−εf , εf ) → R are continuous
functions, T -periodic in the first variable, and D is an open subset of Rn. Assume
that the following hypotheses (i) and (ii) hold:

(i) F1(t, ·) ∈ C2(D), F2(t, ·) ∈ C1(D) for all t ∈ R, F1, F2, F3, R, D2
xF1,DxF2 are

locally Lipschitz with respect to x, and R is twice differentiable with respect
to ε. We define Fk0 : D → R for k = 1, 2, 3 as

F10(z) =
1

T

∫ T

0

F1(s, z)ds,

F20(z) =
1

T

∫ T

0

[DzF1(s, z) · y1(s, z) + F2(s, z)] ds,

F30(z) =
1

T

∫ T

0

[1
2
y1(s, z)

T ∂2F1

∂z2
(s, z)y1(s, z) +

1

2

∂F1

∂z
(s, z)y2(s, z)

+
∂F2

∂z
(s, z)(y1(s, z)) + F3(s, z)

]
ds,

where

y1(s, z) =

∫ s

0

F1(t, z)dt,

y2(s, z) =

∫ s

0

[
∂F1

∂z
(t, z)

∫ t

0

F1(r, z)dr + F2(t, z)

]
dt.

(ii) For V ⊂ D an open and bounded set, and for each ε ∈ (−εf , εf ) \ {0} there
exists aε ∈ V such that F10(aε) + εF20(aε) + ε2F30(aε) = 0 and dB(F10 +
εF20 + ε2F30, V, aε) �= 0.

Then for |ε| > 0 sufficiently small there exists a T -periodic solution ϕ(·, ε) of the
system such that ϕ(0, ε) = aε.

The expression dB(F10 + εF20 + ε2F30, V, aε) �= 0 means that the Brouwer
degree of the function F10 + εF20 + ε2F30 : V → Rn at the fixed point aε is not
zero. A sufficient condition for the inequality to be true is that the Jacobian of
the function F10 + εF20 + ε2F30 at aε is not zero.

If F10 is not identically zero, then the zeros of F10 + εF20 + ε2F30 are mainly
the zeros of F10 for ε sufficiently small. In this case, the previous result provides
the averaging theory of first order.

If F10 is identically zero and F20 is not identically zero, then the zeros of
F10+ εF20+ ε2F30 are mainly the zeros of F20 for ε sufficiently small. In this case,
the previous result provides the averaging theory of second order.
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If F10 and F20 are both identically zero and F30 is not identically zero, then
the zeros of F10 + εF20 + ε2F30 are mainly the zeros of F30 for ε sufficiently small.
In this case, the previous result provides the averaging theory of third order.

1.4.2 The Hénon–Heiles Hamiltonian

The results presented in this subsection have been proved by Jiménez–Llibre [50].
The classical Hénon–Heiles potential consists of a two dimensional harmonic

potential plus two cubic terms. It was introduced in 1964, as a model for studying
the existence of a third integral of motion of a star in a rotating meridian plane of
a galaxy in the neighborhood of a circular orbit [40]. The classical Hénon–Heiles
potential has been generalized by introducing two parameters to each cubic term,

1

2
(p2x + p2y + x2 + y2) +Bxy2 +

1

3
Ax3, (1.127)

such that B �= 0, with x, y, px, py ∈ R. Then the classical Hénon–Heiles Hamilto-
nian system corresponds to A = −1, B = 1. It is given by

ẋ = px,

ṗx = −x− (Ax2 +By2),

ẏ = py,

ṗy = −y − 2Bxy.

(1.128)

As usual, the dot denotes derivative with respect to the independent variable
t ∈ R, the time. We name (1.128) the Hénon–Heiles Hamiltonian systems with
two parameters, or simply the Hénon–Heiles systems.

The periodic orbits in the Hénon–Heiles potential have been numerically
studied and classified by Churchill–Pecelli–Rod [20], Davies–Huston–Baranger [24]
and others [10, 31, 74]. Maciejewski–Radzki–Rybicki [68] did an analytical study
of a more general Hénon–Heiles Hamiltonians including a third cubic term of the
form Cx2y, which can be removed by a proper rotation, and two more parameters
associated with the quadratic part of the potential. They proved the existence
of connected branches of non-stationary periodic orbits in the neighborhood of a
given degenerate stationary point.

Theorem 1.4.1. At every positive energy level the Hénon–Heiles Hamiltonian sys-
tem (1.128) has at least

(i) one periodic orbit if (2B − 5A)(2B −A) < 0 (see Figure 1.1),

(ii) two periodic orbits if A + B = 0 and A �= 0 (this case contains the classical
Hénon–Heiles system), and

(iii) three periodic orbits if B(2B − 5A) > 0 and A+B �= 0 (see Figure 1.2).
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� �
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Figure 1.1: Open region (2B − 5A)(2B − A) < 0 in the parameter space (A,B),
where there is at least one periodic orbit with multipliers different from 1.

� �

�

�

Figure 1.2: Open region B(2B − 5A) > 0 and A + B �= 0 in the parameter space
(A,B), where there are at least three periodic orbits with multipliers different
from 1. When A + B = 0, there are at least two periodic orbits with multipliers
different from 1.

Proof. For proving this theorem we shall apply Theorem 1.3.5 to the Hamiltonian
system (1.128). Generically, the periodic orbits of a Hamiltonian system with more
than one degree of freedom are on cylinders fulfilled by periodic orbits. Therefore
we cannot apply directly Theorem 1.3.5 to a Hamiltonian system, since the Ja-
cobian of the function f at the fixed point a will always be zero. Then we must
apply Theorem 1.3.5 to every Hamiltonian fixed level, where the periodic orbits
generically are isolated.

On the other hand, in order to apply Theorem 1.3.5 we need a small param-
eter ε. So in the Hamiltonian system (1.128) we change the variables (x, y, px, py)
to (X,Y, pX , pY ) where x = εX , y = εY , px = εpX and py = εpY . In the new
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variables, the system (1.128) becomes

Ẋ = pX ,

ṗX = −X − ε(AX2 +BY 2),

Ẏ = pY ,

ṗY = −Y − 2εBXY.

(1.129)

This system again is Hamiltonian with Hamiltonian

1

2
(p2X + p2Y +X2 + Y 2) + ε

(
BXY 2 +

1

3
AX3

)
. (1.130)

As the change of variables is only a scale transformation, for all ε different from
zero, the original and the transformed systems (1.128) and (1.129) have essentially
the same phase portrait and, additionally, the system (1.129) for ε sufficiently small
is close to an integrable one.

First we change the Hamiltonian (1.130) and the equations of motion (1.129)
to polar coordinates for ε = 0, which is an harmonic oscillator. Thus we have

X = r cos θ, pX = r sin θ, Y = ρ cos(θ + α), pY = ρ sin(θ + α).

Recall that this is a change of variables when r > 0 and ρ > 0. Moreover, doing
this change of variables, the angular variables θ and α appear in the system. Later
on, the variable θ will be used for obtaining the periodicity necessary for applying
the averaging theory.

The fixed value of the energy in polar coordinates is

h =
1

2
(r2 + ρ2) + ε

(
1

3
Ar3 cos3 θ +Brρ2 cos θ cos2(θ + α)

)
, (1.131)

and the equations of motion are given by

ṙ = −ε sin θ
(
Ar2 cos2 θ +B ρ2 cos2(θ + α)

)
,

θ̇ = −1− ε cos θ

(
Ar cos2 θ +

ρ2

r
B cos2(θ + α)

)
,

ρ̇ = −εB rρ cos θ sin(2(θ + α)),

α̇ = ε
cos θ

r

(
Ar2 cos2 θ +B(ρ2 − 2r2) cos2(θ + α)

)
.

(1.132)

However, the derivatives of the left hand side of these equations are with respect
to the time variable t, which is not periodic. We change to the θ variable as the
independent one, and we denote by a prime the derivative with respect to θ.
The angular variable α cannot be used as the independent variable since the new
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differential system would not have the form (1.98) for applying Theorem 1.3.5.
The system (1.132) goes over to

r′ =
ε r sin θ

(
Ar2 cos2 θ +Bρ2 cos2(θ + α)

)
r + ε(Ar2 cos3 θ +Bρ2 cos θ cos2(θ + α))

,

ρ′ =
εBr2ρ cos θ sin(2(θ + α))

r + ε(Ar2 cos3 θ +Bρ2 cos θ cos2(θ + α))
,

A′ = − ε cos θ
(
B
(
ρ2 − 2r2

)
cos2(θ + α) + Ar2 cos2 θ

)
r + ε(Bρ2 cos θ cos2(θ + α) +Ar2 cos3 θ)

.

Of course this system has now only three equations because we do not need the
θ equation. If we write the previous system as a Taylor series in powers of ε, we
have

r′ = ε sin θ(Ar2 cos2 θ +Bρ2 cos2(θ + α))

− ε2
sin 2θ

8r

(
Ar2(1 + cos(2θ)) +Bρ2(1 + cos(2(θ + α))

)2
+O(ε3),

ρ′ = εBrρ cos θ sin(2(θ + α))

− ε2Bρ cos2 θ sin(2(θ + α))(Ar2 cos2 θ +Bρ2 cos2(2(θ + α))) +O(ε3),
(1.133)

A′ = −ε
cos θ

r
(Ar2 cos2 θ +B(ρ2 − 2r2) cos2(θ + α))

+ ε2
cos2 θ

r2
(Ar2 cos2 θ +Bρ2 cos2(θ + α))

· (Ar2 cos2 θ +B(ρ2 − 2r2) cos2(θ + α)) +O(ε3).

Now system (1.133) is 2π-periodic in the variable θ. In order to apply The-
orem 1.3.5 we must fix the value of the first integral at h > 0 and, by solving
equation (1.131) for ρ, we obtain

ρ =

√
h− r2/2− εA r3 cos3 θ/3

1/2 + εB r cos θ cos2(θ + α)
. (1.134)

Then, substituting ρ in equations (1.133), we obtain the two differential equations

r′ = ε sin θ(Ar2 cos2 θ +B(2h− r2) cos2(θ + α))

− ε2
( sin 2θ

8r

(
Ar2(1 + cos(2θ)) +B

(
2h− r2

)
(1 + cos(2(θ + α)))

)2
+

2

3
AB r3 sin θ cos3 θ cos2(θ + α)

+ 2B2hr sin(2θ) cos4(θ + α)−B2r3 sin(2θ) cos4(θ + α)
)
+O(ε3),

(1.135)
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and

α′ = ε

(
B

r
(3r2 − 2h) cos θ cos2(θ + α)−Ar cos3 θ

)
+ ε2(A2r2 cos6 θ +

2

3
AB(6h− 5r2) cos4 θ cos2(θ + α)

+
B2

r2
(r2 − 2h)2 cos2 θ cos4(θ + α) ) +O(ε3).

(1.136)

Clearly, equations (1.135) and (1.136) satisfy the assumptions of Theorem 1.3.5,
and it has the form of (1.98) with F1 = (F11, F12) and F2 = (F21, F22), where

F11 = sin θ
(
Ar2 cos2 θ +B(2h− r2) cos2(θ + α)

)
,

F12 =
B

r
(3r2 − 2h) cos θ cos2(θ + α) −Ar cos3 θ,

and

F21 = − sin 2θ

8r

(
Ar2(1 + cos(2θ)) +B

(
2h− r2

)
(1 + cos(2(θ + α)))

)2
− 2

3
AB r3 sin θ cos3 θ cos2(θ + α)− 2B2hr sin(2θ) cos4(θ + α)

+B2r3 sin(2θ) cos4(θ + α),

F22 = A2r2 cos6 θ +
2

3
AB(6h− 5r2) cos4 θ cos2(θ + α)

+
B2

r2
(r2 − 2h)2 cos2 θ cos4(θ + α).

As r �= 0 the functions F1 and F2 are analytical. Furthermore, they are 2π-periodic
in the variable θ, the independent variable of the system (1.135)-(1.136). However,
the averaging theory of first order does not apply because the average functions
of F1 and F2 in the period vanish,

f1(r,A) =

∫ 2π

0

(F11, F12) dθ = (0, 0) .

As the function f1 from Theorem 1.3.5 is zero, we procede to calculate the
function f2 by applying the second order averaging theory. We have that f2 is
defined by

f2(r,A) =

∫ 2π

0

[DrAF1(θ, r,A).y1(θ, r,A) + F2(θ, r,A)] dθ, (1.137)

where

y1(θ, r,A) =

∫ θ

0

F1(t, r,A) dt .
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The two components of the vector y1 are

y11 =

∫ θ

0

F11(t, r,A) dt

=
1

3

(
B(2h−r2) sin2(θ/2)

(
cos(2(θ + α))+2 cos(2α+θ)+3

)−Ar2(cos3 θ − 1)
)
,

and

y12 =

∫ θ

0

F12(t, r,A) dt

= −Ar

12
(9 sin θ + sin 3θ)−Bh

6r
(3 sin(2α+ θ)+sin(2α+ 3θ)− 4 sin 2α+ 6 sin θ)

+
Br

4
(3 sin(2α+ θ) + sin(2α+ 3θ)− 4 sin(2α) + 6 sin θ).

For the Jacobian matrix

DrAF1(θ, r,A) =

⎛⎜⎜⎝
∂F11

∂r

∂F11

∂A
∂F12

∂r

∂F12

∂A

⎞⎟⎟⎠ ,

we obtain⎛⎜⎜⎜⎝
(
2Ar cos2 θ − 2Br cos2(θ + α)

)
sin θ −2B(2h− r2) cos(θ + α) sin θ sin(θ + α)

−A cos3 θ + 6B cos2(θ + α) cos θ −2B

r
(3r2−2h) cos θ cos(θ + α) sin(θ + α)

−B

r2
(
3r2−2h

)
cos2(θ + α) cos θ

⎞⎟⎟⎟⎠.
We can now calculate the function (1.137) from Theorem 1.3.5, and we obtain

f2 =
(
− Br

12
(6B −A)(r2 − 2h) sin 2A,

1

12

(
r2(5A2 − 12AB − 3B2)− 2B(A− 6B)(h− r2) cos(2α) + 2Bh(6A−B)

) )
.

We have to find the zeros (r∗,A∗) of f2(r,A), and to check that the Jacobian
determinant

|Dr,Af2(r∗,A∗)| �= 0. (1.138)

Solving the equation f2(r,A) = 0, we obtain five solutions (r∗,A∗) with r∗ > 0,
namely(√

2h,± arcsec
B(A− 6B)

4B2 + 6AB − 5A2

)
,

(√
2Bh

3B −A
, 0

)
,

(√
14Bh

9B − 5A
,±π/2

)
.

(1.139)
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The first two solutions are not good, because for them we would get from
(1.134) that ρ = 0 when ε = 0, and ρ must be positive. The third solution exists
if B(3B − A) > 0. The last two solutions exist if B(9B − 5A) > 0. The Jacobian
(1.138) of the third solution is

−5B2h2(A− 6B)(A− 2B)(A+B)

9(A− 3B)
(1.140)

and, for the last two solutions, the Jacobian coincides and is equal to

7B2h2(A− 6B)(5A− 2B)(A−B)

9(5A− 9B)
. (1.141)

Summarizing, from Theorem 1.3.5 the third solution of f2(r,A) = 0 provides
a periodic orbit for the system (1.135)-(1.136) (and consequently of the Hamilto-
nian system (1.129) on the Hamiltonian level h > 0) ifB(3B−A) > 0, (A−6B)(A−
2B)(A + B) �= 0, and from (1.134) we get ρ =

√
2(A− 2B)h/(A− 3B); we also

need (2B−A)(3B−A) > 0. The conditions B(3B−A) > 0 and (2B−A)(3B−A) >
0 can be reduced to B(2B − A) > 0, where (A − 6B)(A − 2B) �= 0 is included,
but A + B �= 0 is not. Then the third solution provides a periodic orbit when
B(2B −A) > 0 and A+B �= 0.

In a similar way the last two solutions of f2(r,A) = 0 provide two periodic
orbits for the system (1.135)-(1.136) if B(9B − 5A) > 0, (A− 6B)(5A− 2B)(A−
B) �= 0, and from (1.134) we get ρ =

√
2(5A− 2B)h/(5A− 9B); we also need

(2B−5A)(9B−5A) > 0. The conditions B(9B−5A) > 0 and (2B−5A)(9B−5A) >
0 can be reduced to B(2B−5A) > 0, where the condition (A−6B)(5A−2B)(A−
B) �= 0 is included. Then the fourth and fifth solutions provide two periodic orbits
whenever B(2B − 5A) > 0.

There is one periodic orbit if the third solution exists, and the last two
solutions do not. There are two periodic orbits if the two last solutions exist, and
not the third one, i.e., when A+B = 0. Finally, there are three periodic orbits if
the third, fourth and fifth solutions exist. Now the statements of Theorem 1.3.5
follow easily.

The regions in the parameter space where periodic orbits exist are summa-
rized in Figures 1.1 and 1.2. �

1.4.3 Limit cycles of polynomial differential systems

The results presented in this subsection come from Llibre–Swirszcz [57].
After the definition of limit cycle due to Poincaré [75], the statement of the

16-th Hilbert’s problem [41], and the discovery by Liénard [52] that limit cycles
are important in nature, the study of limit cycles of planar differential systems has
been one of the main problems of the qualitative theory of differential equations.

One of the best ways of producing limit cycles is by perturbing the periodic
orbits of a center. This has been studied intensively perturbing the periodic orbits
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of the centers of the quadratic polynomial differential systems, see the book of
Christopher–Li [18] and the references quoted there.

It is well known that if a quadratic polynomial differential system has a limit
cycle, this must surround a focus. Up to now, the maximum number of known limit
cycles surrounding a focus of a quadratic polynomial differential system is 3, which
coincides with the maximum number of small limit cycles which can bifurcate
by Hopf from a singular point of a quadratic polynomial differential system, see
Bautin [4]. But, as far as we know, up to now there are few quadratic centers for
which it is proved that the perturbation of their periodic orbits inside the class of
all quadratic polynomial differential systems can produce 3 limit cycles. These are
the center whose exterior boundary is formed by three invariant straight lines (see
Żo�la̧dek [88]), three different families of reversible quadratic centers (see Świrszcz
[83]), and the center ẋ = −y(1+x), ẏ = x(1+x) (see Buică–Gasull–Yang [13]). The
study of the perturbation of this last center has been made through the Melnikov
function of third order, computed using the algorithm developed by Françoise [35]
and Iliev [44]. Here, we can provide a new and shorter proof of this second result
by using the averaging theory, see Theorem 1.4.2.

We study the limit cycles of the following two differential systems: the
quadratic systems

ẋ = −y(1 + x) + ε(λx+ Āx2 + B̄xy + C̄y2),

ẏ = x(1 + x) + ε(λy + D̄x2 + Ēxy + F̄ y2),
(1.142)

such that, for ε = 0, have a straight line consisting of singular points, and the
cubic systems of the form

ẋ = −y(1− x2 − y2) + ε3λx +

3∑
s=1

εs
3∑

i=0

ai,sx
iy3−i,

ẏ = x(1− x2 − y2) + ε3λy +

3∑
s=1

εs
3∑

i=0

bi,sx
iy3−i,

(1.143)

such that, for ε = 0, have a unit circle consisting of singular points. Note that the
perturbation of these cubic systems is inside the class of all polynomial differential
system with linear and cubic homogeneous non-linearities.

We study for ε �= 0 sufficiently small the number of limit cycles of the systems
(1.142) and (1.143) bifurcating from the periodic orbits of the centres of (1.142)
and (1.143) for ε = 0, respectively. Our main results are the following.

Theorem 1.4.2. For convenient λ, Ā, B̄, C̄, D̄, Ē and F̄ , the system (1.142) has
3 limit cycles bifurcating from the periodic orbits of the center for ε = 0.

Theorem 1.4.3. The following statements hold for system (1.143):

(i) using the averaging theory of third order for ε �= 0 sufficiently small, we
can obtain at most 5 limit cycles of the system (1.143) bifurcating from the
periodic orbits of the center located at the origin of system (1.143) with ε = 0;
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(ii) for convenient λ, ai,s, bi,s, i = 0, 1, 2, 3, s = 1, 2, 3, the system (1.143) has 0,
1, 2, 3, 4 or 5 limit cycles bifurcating from the periodic orbits of the center
for ε = 0.

It is known that systems of the form ẋ = −y + P3(x, y), ẏ = x + Q3(x, y),
with P3 and Q3 homogeneous polynomials of degree 3 can have 5 small limit cycles
bifurcating by Hopf from the origin, see [62, 81]. We are going to use the following
result due to Cherkas [17].

Lemma 1.4.4. The differential equation

dr

dϕ
=

λr + a(ϕ)rk

1 + b(ϕ)rk−1

after the change of variable

ρ(ϕ) =
r(ϕ)k−1

1 + b(ϕ)r(ϕ)k−1

becomes the Abel equation

dρ

dϕ
= (k − 1)b(ϕ)(λb(ϕ) − a(ϕ))ρ3

+ [(k − 1)(a(ϕ)− 2λb(ϕ)) − b′(ϕ)] ρ2 + (k − 1)λρ.

Combining Lemma 1.4.4 with polar coordinates transformation we immedi-
ately get the next result.

Corollary 1.4.5. Let P (x, y) and Q(x, y) be homogenous polynomials of degree n.
Then the differential system

ẋ = −y + λx+ Pn(x, y)

ẏ = x+ λy +Qn(x, y)
(1.144)

can be transformed into the Abel equation

dρ

dϕ
= (k − 1)B(ϕ)(λB(ϕ) −A(ϕ))ρ3

+ [(k − 1)(A(ϕ) − 2λB(ϕ)) −B′(ϕ)] ρ2 + (k − 1)λρ,

where

A(ϕ) = cosϕPn(cosϕ, sinϕ) + sinϕQn(sinϕ, cosϕ),

and

B(ϕ) = cosϕQn(cosϕ, sinϕ)− sinϕPn(sinϕ, cosϕ).
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Proof. The system (1.144) expressed in polar coordinates becomes

ṙ = λr +A(ϕ)rn,

ẏ = 1 +B(ϕ)rn.

Dividing ṙ by ϕ̇ and using Lemma 1.4.4 the proof of the corollary follows. �

Proof of Theorem 1.4.2. From Corollary 1.4.5 applied to the system (1.142), it
follows that finding limit cycles of (1.142) is equivalent to finding periodic solutions
of

dρ

dϕ
= (sinϕ)ρ2 + ε

[
− 1

4
cosϕ((3Ā+ C̄ + Ē − 4λ) cosϕ

+ (Ā− C̄ − Ē) cos 3ϕ

+ 2(B̄ + D̄ + F̄ + (B̄ + D̄ − F̄ ) cos 2ϕ) sinϕ)ρ3

+ ((Ā+ C̄ − 2λ) cosϕ+ (Ā− C̄ − Ē) cos 3ϕ

+ (D̄ + F̄ ) sinϕ+ (B̄ + D̄ − F̄ ) sin 3ϕ)ρ2 + λρ

]
.

(1.145)

We are going to apply Theorem 1.3.5 to system (1.145). We first solve the
differential equation

dρ

dϕ
= (sinϕ)ρ2,

with initial condition ρ(0) = R/(1 + R), and we get ρ(ϕ,R) = R/(1 + R cosϕ).
Thus MR(ϕ) in (1.37) will be a solution of the differential equation M ′

R(ϕ) =
(2R sinϕ)/(1+R cosϕ), namely, MR(ϕ) = 1+2 ln(1+R)−2 ln(1+r cosϕ). Thus,
formula (1.37) yields

F(R) =

∫ 2π

0

(
λ

R

Ξ(ϕ,R)

+ Ā
cosϕ(R cosϕ+ 8 cos(2ϕ) + 3R cos(3ϕ))R2

4Ξ(ϕ,R)

+ B̄
(2R sin 2ϕ+ 8 sin 3ϕ+ 3R sin 4ϕ)R2

8Ξ(ϕ,R)

− C̄
cosϕ(3R cosϕ+ 4) sin2 ϕR2

Ξ(ϕ,R)

+ D̄
cos2 ϕ(3R cosϕ+ 4) sinϕR2

Ξ(ϕ,R)

− Ē
cosϕ(R cosϕ+ 8 cos 2ϕ+ 3R cos 3ϕ− 4)R2

4Ξ(ϕ,R)

+ F̄
(5R cosϕ+ 8 cos 2ϕ+ 3R cos 3ϕ) sinϕR2

4Ξ(ϕ,R)

)
dϕ,

(1.146)
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where Ξ(ϕ,R) = (R cosϕ+1)3(2 log(R+1)−2 log(R cosϕ+1)+1). Now, observe
that the terms in front of B̄, D̄ and F̄ are odd π-periodic functions of ϕ, thus their
integrals from 0 to 2π are equal to zero. Therefore,

F(R) =

∫ 2π

0

(
λ

R

Ξ(ϕ,R)

+ Ā
cosϕ(R cosϕ+ 8 cos(2ϕ) + 3R cos(3ϕ))R2

4Ξ(ϕ,R)

+ C̄
cosϕ(3R cosϕ+ 4) sin2 ϕR2

Ξ(ϕ,R)

+ Ē
cosϕ(R cosϕ+ 8 cos 2ϕ+ 3R cos 3ϕ− 4)R2

4Ξ(ϕ,R)

)
dϕ

= λf1(R) + Āf2(R) + C̄f3(R)− Ēf4(R).

(1.147)

We claim that the four functions f1, f2, f3 and f4 are linearly independent.
Now we prove the claim. By straightforward calculation we obtain the following
Taylor expansions:

f1(R) =
1

24
πR

(
2615R4 − 800R3 + 312R2 − 96R+ 48

)
+O(R6),

f2(R) =
1

24
πR3

(
313R2 − 60, R− 18

)
+O(R6),

f3(R) =
1

24
πR3

(
401R2 − 84R− 6

)
+O(R6),

f4(R) = − 1

24
πR3

(
43R2 − 12R+ 6

)
+O(R6).

The determinant of the coefficient matrix of terms R2, . . . , R5 is π4/3 and the
claim follows.

A well-known classical result states that if a family of n functions is linearly
independent, then there exists a linear combination of them with at least n − 1
zeroes. Thus, Theorem 1.4.2 follows. �

Proof of Theorem 1.4.3. First we prove statement (ii). We shall use third order
averaging to show that the system

ẋ = −y(1− x2 − y2) + ε3λx

− 1

1200
(75Bε+ 108E + 19840)εx3 + (j + 24)εx2y

+

(
4ε3(A− 4λ) + ε2

(
27B
128

− C
)
+

(81E + 16480)ε

300

)
xy2

+
1

2
ε(2j +Dε)y3,

(1.148)
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ẏ = x(1 − x2 − y2) + ε3λy

+
1

2
(Dε− 2j)εx3 +

(
ε2

(
C − 3B

128

)
+

(81E + 18080)ε

300

)
x2y

− (j + 40)εxy2 − 1

300
(27E + 6560)εy3,

(1.149)

can have 0, 1, 2, 3, 4 or 5 limit cycles for an appropriate choice of the parameters λ,
A, B, C, D and E . The system (1.148)-(1.149) is, clearly, a special case of (1.143);
thus this will prove statement (ii).

Using Cherkas Transformation (see Lemma 1.4.4) we transform the system
(1.148)-(1.149) into the Abel equation

dρ

dϕ
= εF1 + ε2F2 + ε3F3, (1.150)

where

F1 = ρ3
(

3

50
(3E + 640) cos(4ϕ) + 8(sin(2ϕ)− 2 sin(4ϕ))− 16

3
cos(2ϕ)

)
+ ρ2

(
− 9

50
(3E + 640) cos(4ϕ)− 8 sin(2ϕ) + 48 sin(4ϕ) +

16

3
cos(2ϕ)

)
,

F2 =
ρ3

30000

[
25(6400j + 75B + 432E + 117760) cos(2ϕ)

− 75 cos(4ϕ)(72(j + 8)E + 15360(j + 8)− 25B)
− 600 sin(2ϕ)(400j + 25D + 12E + 7360)

+ 480000(j + 8) sin(4ϕ)− 7200(E + 80) sin(6ϕ)

+ 3(9E + 1120)(9E + 2720) sin(8ϕ)

− 400(27E + 7360) cos(6ϕ) + 14400(3E + 640) cos(8ϕ)

]
+ ρ2

((
3B
128

− C
)
cos(2ϕ)− 3

16
B cos(4ϕ) + 3D sin(ϕ) cos(ϕ)

)
,

F3 = −2λρ

+ ρ2
(
(A− 4λ)(2 cos(2ϕ)− 3 cos(4ϕ)) +A

)
+ ρ3

{
A cos 4ϕ−A− 11B

64
+ 2C − 4D

3
+ 2λ

+
1

76800

[
sin(2ϕ)(384(100(j + 4)D − 3C(3E + 640)) + B(513E + 103040))

− 96 cos(2ϕ)(25(2j − 7)B + 3200C − 6D(3E + 640))

− 400 cos(4ϕ)(3(4j + 21)B + 128(3C + 2D + 6λ))

+ sin(6ϕ)(1152(3CE + 640C − 400D)− B(81E + 23680))
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− 96 cos(6ϕ)(175B − 640(5C + 18D)− 54DE)
+ 800 sin(4ϕ)(11B + 64(3D − 2C)) + 144B(3E + 640) sin(8ϕ)

+ 38400B cos(8ϕ)

]}
.

By straightforward calculations, we verify that F10 = 0,

y1(ρ, ϕ) =
ρ3

300
sinϕ((27E + 4160) cosϕ+ 3(3(3E + 640) cos 3ϕ− 800 sin3ϕ))

− ρ2

600

(
2 sin(2ϕ)(27(3E + 640) cos 2ϕ−800(9 sin2ϕ+ 1))+4800 sin2 ϕ

)
,

and F20 = 0. Next,

y2(ρ, ϕ) =
1

128
ρ2(9B cosϕ+ 12B cos(3ϕ) + 128C cosϕ− 192D sinϕ) sinϕ

+ ρ3
[(

8j

3
+

B
32

− 9E
25

+
128

15

)
sin(2ϕ)

− 1

50
(400j + 25D − 24E + 1280) sin2 ϕ

− 9

200
jE sin(4ϕ) +

8

9
(9j + 494) sin2(2ϕ)− 48

5
j sin(4ϕ)

+
1

64
B sin(4ϕ) +

81E2 sin2(4ϕ)

4000
− 4

5
E sin2(3ϕ) +

216

25
E sin2(4ϕ)

− 63

25
E sin(4ϕ)− 3

5
E sin(6ϕ) +

9

5
E sin(8ϕ)− 64 sin2(3ϕ)

+
3808

5
sin2(4ϕ)− 7904

15
sin(4ϕ)− 1472

9
sin(6ϕ) + 384 sin(8ϕ)

]
+ ρ4

[
−243E2 sin2(4ϕ)

16000
− 1

25
(21E + 2480) sin2 ϕ+

29

25
E sin2(3ϕ)

− 162

25
E sin2(4ϕ) +

1

300
(189E + 9920) sin(2ϕ) +

27

25
E sin(4ϕ)

+
87

100
E sin(6ϕ)− 27

20
E sin(8ϕ)− 1528

9
sin2(2ϕ) +

464

5
sin2(3ϕ)

− 2856

5
sin2(4ϕ) +

3056

15
sin(4ϕ) +

10672

45
sin(6ϕ)− 288 sin(8ϕ)

]
+ ρ5

((27E + 4160) cosϕ+3(3(3E + 640) cos(3ϕ)−800 sin(3ϕ)))2 sin2 ϕ

60000

and

F30(ρ) = −2λρ+Aρ2 −
(
A− B − 2D

3
− 2λ

)
ρ3

−
(
91B
128

− C +
7D
3

− 4E
5

)
ρ4 +

(
D − 9E

5

)
ρ5 + Eρ6.
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The coefficients of F30 are linearly independent (linear) functions of λ, A, B, C,
D and E . Therefore, for any ρ1, ρ2, ρ3, ρ4, ρ5 ∈ R there exist λ, A, B, C, D, E such
that F30(ρi) = 0 for i = 1, 2, 3, 4, 5. This ends the proof of (ii).

Now we sketch the proof of statement (i). If, instead of doing the computa-
tions of the proof of statement (ii) for the system (1.148)-(1.149), we did them
for the general system (1.143) we would obtain a function F30(ρ) which again is a
polynomial of degree 6 in ρ without independent term. Thus the averaging theory
of third order can only produce for ε �= 0 sufficiently small at most 5 limit cycles
for system (1.143), bifurcating from the periodic orbits at the origin of system
(1.143) with ε = 0. �

1.4.4 The generalized polynomial differential Liénard
equation

The results in this subsection have been proved by Llibre–Mereu–Teixeira [54].
The second part of the Hilbert’s problem is related with the least upper

bound on the number of limit cycles of polynomial vector fields having a fixed
degree. The generalized polynomial Liénard differential equations

ẍ+ f(x)ẋ + g(x) = 0, (1.151)

was introduced in [52]. Here, the dot denotes differentiation with respect to the
time t, and f(x) and g(x) are polynomials in the variable x of degrees n and
m, respectively. For this subclass of polynomial vector fields we have a simplified
version of Hilbert’s problem, see [53, 80].

In 1977 Lins–de Melo–Pugh [53] studied the classical polynomial Liénard
differential equations (1.151) obtained when g(x) = x, and stated the following
conjecture: “if f(x) has degree n ≥ 1 and g(x) = x, then (1.151) has at most [n/2]
limit cycles”. They also proved the conjecture for n = 1, 2. The conjecture for
n ∈ {3, 4, 5} is still open. For n ≥ 5 this conjecture is not true as it has been proved
recently by Dumortier–Panazzolo–Roussarie [29], and De Maesschalck–Dumortier
[25]. Recently, this conjecture has been proved for n = 3, see Chengzhi–Llibre
[61]. So, at this moment, it only remains to know if the conjecture holds or not
for n = 4.

We note that a classical polynomial Liénard differential equation has a unique
singular point. However, it is possible for generalized polynomial Liénard differen-
tial equations to have more than one singular point.

Many of the results on the limit cycles of polynomial differential systems
have been obtained by considering limit cycles which bifurcate from a single de-
generate singular point; these are the so called small amplitud limit cycles, see
[60]. We denote by Ĥ(m,n) the maximum number of small amplitude limit cy-
cles for systems of the form (1.151). The values of Ĥ(m,n) give a lower bound
for the maximum number H(m,n) (i.e., the Hilbert number) of limit cycles that
the differential equation (1.151) with m and n fixed can have. The finiteness of
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H(m,n) for every positive integers m and n is unknown. For more information
about Hilbert’s 16-th problem and related topics, see [46, 50].

n

1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 48 49 50

1 0 1* 1 2 2 3 3 4 4 5 5 6 6 · · · 24 24 →
2 1* 1* 2 3 3 4 5 5 6 7 7 8 9 · · · 32 33 →
3 1* 2 2 4 4 6 6 6 8 8 8 10 10 · · · 36 38 38

4 2 3 4 4 6 7 8 9 9 10 11 12 13

5 2 3 4 6 6 8 9 10 11

6 3 4 6 7 8 8 9

7 3 5 6 8 9 9 9

m 8 4 5 6 9 10

9 4 6 8 9 11

10 5 7 8 10

11 5 7 8 11

12 6 8 10 12

13 6 9 10 13
...

...
...

...

20 10 13 14 17

...
...

...
...

48 24 32 36

49 24 33 38

50 ↓ ↓ 38

Table 1.1: The values of H(m,n) or Ĥ(m,n) for Liénard systems.

Now we shall describe, briefly, the main results about the limit cicles on
Liénard differential systems:

(i) in 1928 Liénard [52] proved that, if m = 1 and F (x) =
∫ x

0
f(s)ds is a con-

tinuous odd function having a unique root at x = a and being monotone
increasing for x ≥ a, then equation (1.151) has a unique limit cycle;

(ii) in 1973 Rychkov [77] proved that, if m = 1 and F (x) =
∫ x

0
f(s)ds is an odd

polynomial of degree five, then equation (1.151) has at most two limit cycles;

(iii) in 1977 Lins–de Melo–Pugh [53] proved that H(1, 1) = 0 and H(1, 2) = 1;

(iv) in 1998 Coppel [22] proved that H(2, 1) = 1;

(v) Dumortier, Li and Rousseau in [27] and [30] proved that H(3, 1) = 1:



1.4. Three applications of Theorem 1.3.5 81

(vi) in 1997 Dumortier–Li [28] proved that H(2, 2) = 1.

Up to now and as far as we know, the four cases (iii) to (vi) (marked with
asterisks in Table 1.1) are the only ones for which Hilbert numbers H(m,n) are
determined.

Blows, Lloyd and Lynch, in the papers [6], [61] and [64] have used inductive
arguments in order to prove the following results:

(vii) if g is odd then Ĥ(m,n) = [n/2];

(viii) if f is even then Ĥ(m,n) = n, whatever g is;

(ix) if f is odd then Ĥ(m, 2n+ 1) = [(m− 2)/2] + n;

(x) if g(x) = x+ ge(x), where ge is even, then Ĥ(2m, 2) = m.

Christopher–Lynch [19, 67] and Lynch [65, 66] have developed a new algebraic
method for determining the Liapunov quantities of system (1.151) and proved the
following:

(xi) Ĥ(m, 2) = [(2m+ 1)/3];

(xii) Ĥ(2, n) = [(2n+ 1)/3];

(xiii) Ĥ(m, 3) = 2[(3m+ 2)/8] for all 1 < m ≤ 50;

(xiv) Ĥ(3, n) = 2[(3n+ 2)/8] for all 1 < m ≤ 50;

(xv) the values in Table 1.1 for Ĥ(4, k) = Ĥ(k, 4), k = 6, 7, 8, 9 and Ĥ(5, 6) =
Ĥ(6, 5).

In 1998 Gasull–Torregrosa [36] obtained upper bounds for Ĥ(7, 6), Ĥ(6, 7),
Ĥ(7, 7) and Ĥ(4, 20).

In 2006 the values in Table 1.1 for Ĥ(m,n) = Ĥ(n,m), for n = 4, m =
10, 11, 12, 13; n = 5, m = 6, 7, 8, 9; and n = 6, m = 5, 6 were given by Yu–Han in
[87].

By using the averaging theory, we shall study the maximum number of limit
cycles H̃(m,n) which can bifurcate from the periodic orbits of a linear center per-
turbed inside the class of all generalized polynomial Liénard differential equations
of degrees m and n as follows:

ẋ = y,

ẏ = −x−
∑
k≥1

εk(fk
n(x)y + gkm(x)), (1.152)

where for every k the polynomials gkm(x) and fk
n(x) have degree m and n respec-

tively, and ε is a small parameter; i.e., the maximal number of medium amplitude
limit cycles which can bifurcate from the periodic orbits of the linear center ẋ = y,
ẏ = −x, perturbed as in (1.152).

In fact, we shall mainly compute lower estimations of H̃(m,n). More pre-
cisely, we compute the maximum number of limit cycles H̃k(m,n) which bifurcate
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from the periodic orbits of the linear center ẋ = y, ẏ = −x, using the averaging
theory of order k, for k = 1, 2, 3. Of course, H̃k(m,n) ≤ H̃(m,n) ≤ H(m,n). Note
that, up to now, there were no known lowers estimations for H(m,n) when

(i) m = 4 and n > 13, or m > 20 and n = 4,

(ii) m = 5 and n > 9, or m > 9 and n = 5,

(iii) m = 6 and n > 7, or m > 7 and n = 6,

(iv) m,n > 7.

After our results we will have lowers estimations of H(m,n) for all m,n ≥ 1.
From these estimations we obtain that H̃k(m,n) ≤ Ĥ(m,n) for k = 1, 2, 3 for the
values which Ĥ(m,n) is known.

Theorem 1.4.6. If for every k = 1, 2, 3, the polynomials fk
n(x) and gkm(x) have

degree n and m respectively, with m,n ≥ 1, then for |ε| sufficiently small, the
maximum number of medium limit cycles of the polynomial Liénard differential
systems (1.152) bifurcating from the periodic orbits of the linear center ẋ = y,
ẏ = −x, using the averaging theory

(i) of first order is H̃1(m,n) =
[n
2

]
;

(ii) of second order is H̃2(m,n) = max

{[
n− 1

2

]
+
[m
2

]
,
[n
2

]}
; and

(iii) of third order is H̃3(m,n) =

[
n+m− 1

2

]
.

From Theorem 1.4.6, Table 1.2 follows immediately.

It seems that the numbers Ĥ(m,n) can be symmetric with respect to m
and n. Some studies is this direction are made in [63]. We remark that in general
H̃k(m,n) �= H̃k(n,m) for k = 1, 2, but H̃3(m,n) = H̃3(n,m).

Proof of Theorem 1.4.6(i). We shall need the first order averaging theory. In order
to apply the first order averaging method we write (1.152) with k = 1 in polar
coordinates, (r, θ), where x = r cos θ, y = r sin θ, r > 0. In this way, (1.152) is
written in the standard form for applying the averaging theory. If we write f(x) =∑n

i=0 aix
i and g(x) =

∑m
i=0 bix

i, then the system (1.152) becomes

ṙ = −ε

(
n∑

i=0

air
i+1 cosi θ sin2 θ +

m∑
i=0

bir
i cosi θ sin θ

)
, (1.153)
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n

1 2 3 4 5 6 7 8 9 10 11 12 13 . . . 48 49 50

1 0 1 1 2 2 3 3 4 4 5 5 6 6 · · · 24 24 →
2 1 1 2 2 3 3 4 4 5 5 6 6 7 · · · 24 25 →
3 1 2 2 3 3 4 4 5 5 6 6 7 7 · · · 25 25 →
4 2 2 3 3 4 4 5 5 6 6 7 7 8 · · · 25 26 →
5 2 3 3 4 4 5 5 6 6 7 7 8 8 · · · 26 26 →
6 3 3 4 4 5 5 6 6 7 7 8 8 9 · · · 26 27 →
7 3 4 4 5 5 6 6 7 7 8 8 9 9 · · · 27 27 →

m 8 4 4 5 5 6 6 7 7 8 8 9 9 10 · · · 27 28 →
9 4 5 5 6 6 7 7 8 8 9 9 10 10 · · · 28 28 →
10 5 5 6 6 7 7 8 8 9 9 10 10 11 · · · 28 29 →
11 5 6 6 7 7 8 8 9 9 10 10 11 11 · · · 29 29 →
12 6 6 7 7 8 8 9 9 10 10 11 11 12 · · · 29 30 →
13 6 7 7 8 8 9 9 10 10 11 11 12 12 · · · 30 30 →
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

20 10 10 11 11 12 12 13 13 14 14 15 15 16 · · · 33 34 →
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...

48 24 24 25 25 26 26 27 27 28 28 29 29 30 · · · 47 48 →
49 24 25 25 26 26 27 27 28 28 29 29 30 30 · · · 48 48 →
50 ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓

Table 1.2: Values of H̃3(m,n). The numbers written in roman style (like “6”)
coincide with the ones of Table 1.1. The numbers written in italic (like “6”)
are smaller than the corresponding of Table 1.1. Finally, the numbers written in
boldface (like “6”) are unknown in Table 1.1.

θ̇ = −1− ε

r

(
n∑

i=0

air
i+1 cosi+1 θ sin θ +

m∑
i=0

bir
i cosi+1 θ

)
. (1.154)

Taking θ as the new independent variable, system (1.153)-(1.154) becomes

dr

dθ
= ε

(
n∑

i=0

air
i+1 cosi θ sin2 θ +

m∑
i=0

bir
i cosi θ sin θ

)
+O(ε2),

and

F10(r) =
1

2π

∫ 2π

0

(
n∑

i=0

air
i+1 cosi θ sin2 θ +

m∑
i=0

bir
i cosi θ sin θ

)
dθ.
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In order to calculate the exact expression of F10 we use the following formulas

∫ 2π

0

cos2k+1 θ sin2 θdθ = 0, k = 0, 1, . . .∫ 2π

0

cos2k θ sin2 θdθ = α2k �= 0, k = 0, 1, . . .∫ 2π

0

cosk θ sin θdθ = 0, k = 0, 1, . . .

Hence,

F10(r) =
1

2

n∑
i=0

i even

aiαir
i+1. (1.155)

Then the polynomial F10(r) has at most [n/2] positive roots, and we can choose
the coefficients ai with i even in such a way that F10(r) has exactly [n/2] simple
positive roots. Hence, statement (i) of Theorem 1.4.6 is proved. �

Proof of Theorem 1.4.6(ii). We shall now use the second order averaging theory.

If we write f1(x) =
∑n

i=0 aix
i, f2(x) =

∑n
i=0 cix

i, g1(x) =
∑m

i=0 bix
i and

g2(x) =
∑m

i=0 dix
i, then system (1.152) with k = 2 in polar coordinates (r, θ),

r > 0 becomes

ṙ =− ε

(
n∑

i=0

air
i+1 cosi θ sin2 θ +

m∑
i=0

bir
i cosi θ sin θ

)

− ε2

(
n∑

i=0

cir
i+1 cosi θ sin2 θ +

m∑
i=0

dir
i cosi θ sin θ

)
,

θ̇ =− 1− ε

r

(
n∑

i=0

air
i+1 cosi+1 θ sin θ +

m∑
i=0

bir
i cosi+1 θ

)

− ε2

r

(
n∑

i=0

cir
i+1 cosi+1 θ sin θ +

m∑
i=0

dir
i cosi+1 θ

)
.

(1.156)

Taking θ as the new independent variable system, (1.156) is written

dr

dθ
= εF1(θ, r) + ε2F2(θ, r) +O(ε3),
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where

F1(θ, r) =

n∑
i=0

air
i+1 cosi θ sin2 θ +

m∑
i=0

bir
i cosi θ sin θ,

F2(θ, r) =

(
n∑

i=0

cir
i+1 cosi θ sin2 θ +

m∑
i=0

dir
i cosi θ sin θ

)

− r sin θ cos θ

(
n∑

i=0

air
i cosi θ sin θ +

m∑
i=0

bir
i−1 cosi θ

)2

.

Now we determine the corresponding function F20. For this we compute

d

dr
F1(θ, r) =

n∑
i=0

(i + 1)air
i cosi θ sin2 θ +

m∑
i=1

ibir
i−1 cosi θ sin θ,

and

∫ θ

0

F1(φ, r)dφ which is equal to

a1r
2 (α11 sin θ + α21 sin(3θ)) + · · ·
+ alr

l+1
(
α1l sin θ + α2l sin(3θ) + · · ·+ α( l+3

2 )l sin((l + 2)θ
)

+ a0r (α10θ + α20 sin(2θ)) + · · ·
+ abr

b+1
(
α1bθ + α2b sin(2θ) + · · ·+ α( b+4

2 )b sin(b+ 2)θ
)

b0(1 − cos θ) + · · ·+ bmrm
(

1

m+ 1
(1 − cosm+1 θ)

)
,

(1.157)

where l is the greatest odd number less than or equal to n, b is the greatest even
number less than or equal to n, and αij are real constants exhibited during the

computation of
∫ θ

0
cosi φ sin2 φ dφ for all i. We know from (1.155) that F10 is

identically zero if and only if ai = 0 for all i even. Moreover,∫ 2π

0

cosi θ sin3 θdθ = 0, i = 0, 1, . . .∫ 2π

0

cosi θ sin2 θ sin((2k + 1)θ)dθ = 0, i, k = 0, 1, . . .∫ 2π

0

cos2i+1 θ sin2 θdθ = 0, i = 0, 1, . . .∫ 2π

0

cos2i θ sin2 θdθ = A2i �= 0, i = 0, 1, . . .
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∫ 2π

0

cosi θ sin θdθ = 0, i = 0, 1, . . .∫ 2π

0

cos2i θ sin θ sin((2k + 1)θ)dθ = B2k+1
2i �= 0, i, k = 0, 1, . . .∫ 2π

0

cos2i+1 θ sin θ sin((2k + 1)θ)dθ = 0, i, k = 0, 1, . . .

So∫ 2π

0

d

dr
F1(θ, r)y1(θ, r)dθ

=

k∑
j=2

j even

l∑
i=1
i odd

− i+ 1

j + 1
aibjr

i+j

∫ 2π

0

cosi+j+1 θ sin2 θdθ

+

k∑
j=2

j even

l∑
i=1
i odd

jaibjr
i+j

∫ 2π

0

cosj θ sin θ
(
α1i sin θ + · · ·+ α i+3

2 i sin((i+ 2)θ)
)
dθ

= r
(
α̃10a1b0 + (α̃12a1b2 + α̃30a3b0)r

2 + · · ·+
∑

i+j=l+k

α̃ijaibjr
l+k−1

)
,

where α̃ij = −1 + i

j + i
Ai+j+1+j

(
α1iB

1
j + α2iB

2
j + · · ·+ α i+3

2 iB
i+2
j

)
, for all i, j and

k being the greatest even number less than or equal to m. Moreover,∫ 2π

0

F2(θ, r)dθ =

b∑
i=0

i even

cir
i+1

∫ 2π

0

cosi θ sin2 θdθ

+

k∑
j=0

j even

l∑
i=1
i odd

2ri+jaibj

∫ 2π

0

cosi+j+1 θ sin2 θdθ

= A0c0r + · · ·+Abcbr
b+1

+ 2
(
A2a1b0r+A4(a3b0 + a1b2)r

3+· · ·+Al+k+1r
l+k

∑
i+j=l+k

aibj

)
.

Then F20(r) is the polynomial

r
(
ρ10a1b0 + (ρ12a1b2 + ρ30a3b0)r

2 + (ρ14a1b4 + ρ32a3b2 + ρ50a5b0)r
4

+ · · ·+ ρlkalbkr
l+k−1 +A0c0 +A2c2r

2 + · · ·+Abcbr
b
)
,

(1.158)

where ρij = α̃ij + 2Ai+j+1 for all i, j. Note that, in order to find the positive
roots of F20, we must find the zeros of a polynomial in r2 of degree equal to
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max {(l + k − 1)/2, b/2}. We have that b/2 = [n/2] and (l + k − 1)/2 = [(n −
1)/2] + [m/2]; see Table 1.3:

n m l k (l + k − 1)/2 [(n− 1)/2] + [m/2]

odd even n m (n+m− 1)/2 (n− 1)/2 +m/2

even even n-1 m (n− 1 +m− 1)/2 ((n− 1)− 1)/2 +m/2

odd odd n m-1 (n+m− 1− 1)/2 (n− 1)/2 + (m− 1)/2

even odd n-1 m-1 (n− 1 +m− 1− 1)/2 ((n− 1)− 1)/2 + (m− 1)/2

Table 1.3: Values of (l + k − 1)/2 written using the integer part function.

We conclude that F20 has at most max{[(n − 1)/2] + [m/2], [n/2]} positive
roots. Moreover, we can choose the coefficients ai, bj , ck in such a way that (1.158)
has exactly max{[(n−1)/2]+[m/2], [n/2]} simple positive roots. Hence, the state-
ment (ii) of Theorem 1.4.6 follows. �

Proof of Theorem 1.4.6(iii). We shall now use the third order averaging theory.
If we write f1(x) =

∑n
i=0 aix

i, f2(x) =
∑n

i=0 cix
i, f3(x) =

∑n
i=0 pix

i,
g1(x) =

∑m
i=0 bix

i, g2(x) =
∑m

i=0 dix
i and g3(x) =

∑m
i=0 qix

i, then an equiva-
lent system to (1.152) with k = 3 will be found by considering polar coordinates
(r, θ). So,

ṙ =− sin θ
(
εA+ ε2B + ε3C

)
,

θ̇ =− 1− cos θ

r

(
εA+ ε2B + ε3C

)
,

(1.159)

where

A =

n∑
i=0

air
i+1 cosi θ sin θ +

m∑
i=0

bir
i cosi θ,

B =

n∑
i=0

cir
i+1 cosi θ sin θ +

m∑
i=0

dir
i cosi θ,

C =

n∑
i=0

pir
i+1 cosi θ sin θ +

m∑
i=0

qir
i cosi θ.

Taking θ as the new independent variable system, (1.159) becomes

dr

dθ
=εA sin θ + ε2

(
B sin θ − A2 cos θ sin θ

r

)
+ ε3

(
A3 cos2 θ sin θ

r2
− 2AB cos θ sin θ

r
+ C sin θ

)
.

(1.160)
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By (1.155), we know that F10 is identically zero if and only if ai = 0 for
all i even; and by (1.158) we obtain that F20 is identically zero if and only if the
coefficients ai, bj and ck satisfy

cμ =
1

Aμ

∑
i+j=μ+1

i odd, j even

ρi,jaibj , (1.161)

where μ is even, and Aμ and ρi,j are given in Subsection 1.3.2.
In order to apply the third order averaging method we need to compute the

corresponding function F30. So, the proof of statement (iii) of Theorem 1.4.6 will
be a direct consequence of the next auxiliary lemmas.

The proof of the next lemma is straightforward and follows from some tedious
computations; it will be omitted.

Lemma 1.4.7. The corresponding functions y1(θ, r) and y2(θ, r) of the third order
averaging method are expressed by (1.157) and

y2(θ, r) = C0 + C1r + C2r
2 + · · ·+ Cλr

λ,

respectively, where λ = max{2n+ 1, 2m− 1} and

C2k+1 =
∑

i+j+=2k

c0ijaiaj +
∑

i+j=2k+2

d0ijbibj +
∑

i+j=2k+1

e0ijaibjθ

+
∑

i+j=2k

f0
ijaiajθ

2 + d2k+1 + c2kθ +
∑

i+j=2k+2

bibj

( k+1∑
i=0

a02i+1 cos(2i+ 1)θ

)

+

( ∑
i+j+=2k

aiaj +
∑

i+j=2k+2

bibj +
∑

i+j=2k+1

aibjθ + d2k+1

)( k+1∑
i=0

a02i+2 cos(2i+ 2)θ

)

+
∑

i+j=2k+1

aibj

( k+1∑
i=0

a12i+1 sin(2i+ 1)θ

)

+

( ∑
i+j+=2k+1

aibj +
∑

i+j=2k

aiajθ + c2k

)( k+1∑
i=0

a12i+2 sin(2i+ 2)θ)

)
,

C2k =
∑

i+j+=2k−1

c1ijaiaj +
∑

i+j=2k+1

d1ijbibj +
∑

i+j=2k

e1ijaibjθ

+

( ∑
i+j=2k−1

aiaj +
∑

i+j=2k+1

bibj +
∑

i+j=2k

aibjθ

)( k+1∑
i=0

b02i+1 cos(2i+ 1)θ

)

+

( ∑
i+j+=2k+1

bibj

)( k+1∑
i=0

b02i+2 cos(2i+ 2)θ

)
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+

( ∑
i+j=2k

aibj + c2k−1 +
∑

i+j=2k

aibjθ

)( k+1∑
i=0

b12i+1 sin(2i+ 1)θ

)

+

( ∑
i+j+=2k

aibj

)( k+1∑
i=0

b12i+2 sin(2i+ 2)θ)

)
,

where al2i+1, a
l
2i+2, b

l
2i+1, a

l
2i+2, c

l
ij, d

l
ij , e

l
ij, f

l
ij are real constants for l = 1, 2 and

k = 0, 1, . . . , λ/2.

Lemma 1.4.8. The integral
∫ 2π

0
1
2
∂2F1

∂r2 (s, r)(y1(s, r))
2ds equals the polynomial

π(D0 +D1r +D2r
2 + · · ·+Dκr

κ), (1.162)

where

κ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 2m− 1 if m > n+ 1 and either m or n is even,

n+ 2m− 2 if m > n+ 1 and both m and n are odd,

3n+ 1 if m ≤ n+ 1 and n is even,

3n if m ≤ n+ 1 and n is odd,

and

Dχ =
∑

i+j+k=χ−1

β1
ijkaiajak +

∑
i+j+k=χ+1

γ1
ijkaibjbk +

∑
i+j+k=χ

δ1ijkaiajbk,

for χ = 0, 1, . . . , κ, where β1
ijk, γ

1
ijk, δ

1
ijk are real constants.

Proof. Let us write
∂2F1

∂r2
(s, r) = h1(r) + h2(r),

where

h1(r) =
n∑

i=1

i(i+ 1)air
i−1 cosi θ sin2 θ,

h2(r) =

m∑
i=2

i(i− 2)bir
i−2 cosi θ sin θ,

and
(y1(s, r))

2 = g21(r) + 2g1(r)g2(r) + g22(r),

with
g1(r) = s1(r) + s2(r),

where

s1(r) =a1r
2 (α11 sin θ + α21 sin(3θ)) + · · ·

+ alr
l+1

(
α1l sin θ + α2l sin(3θ) + · · ·+ α( l+3

2 )l sin((l + 2)θ
)
,

s2(r) =a0r (α10θ + α20 sin(2θ)) + · · ·
+ abr

b+1
(
α1bθ + α2b sin(2θ) + · · ·+ α( b+4

2 )b sin(b+ 2)θ
)
,
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and

g2(r) = b0(1− cos θ) + · · ·+ bmrm
(

1

m+ 1
(1− cosm+1 θ)

)
.

Then,

∂2F1

∂r2
(s, r) (y1(s, r))

2
=h1(r)

(
g21(r) + 2g1(r)g2(r) + g22(r)

)
+ h2(r)

(
g21(r) + 2g1(r)g2(r) + g22(r)

)
.

From∫ 2π

0

cos2i θ sin2 θ sin(ρ1θ) sin(ρ2θ)dθ = M1(2i, ρ1, ρ2) �= 0, ρ1, ρ2 odd,∫ 2π

0

cos2i+1 θ sin2 θ sin(ρ1θ) sin(ρ2θ)dθ = 0, ρ1, ρ2 odd,

for i = 1, 2, . . ., we have that

∫ 2π

0

h1(r)s1(r)
2dθ =

l∑
k=1
k odd

l∑
j=1
j odd

b∑
i=2

i even

ζ1ijkaiajakr
i−1rj+1rk+1,

where

ζ1ijk =

k+2∑
ρ1=1
ρ odd

j+2∑
ρ′=1
ρ1 odd

δjkρ1ρ2
i(i+ 1)α ρ1+1

2 j
α ρ2+1

2 k
M1(i, ρ1, ρ2),

and

δjkρ1ρ2
=

{
1 if ρ1 = ρ2 and j = k,

2 if ρ1 �= ρ2 or j �= k.

Thus, H1(r) =
∫ 2π

0 h1(r)s1(r)
2dθ is a polynomial in r of degree 3n− 1 if n even,

and 3n if n odd. Knowing that∫ 2π

0

cosi θ sin2 θ sin(ρ1θ)θdθ = M2(i, ρ1, 0) �= 0, ρ1 odd,∫ 2π

0

cos2i θ sin2 θ sin(ρ1θ) sin(ρ2θ)dθ = 0, ρ1 odd, ρ2 even,∫ 2π

0

cos2i+1 θ sin2 θ sin(ρ1θ) sin(ρ2θ)dθ = M3(2i, ρ1, ρ2) �= 0, ρ1 odd, ρ2 even,
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for i = 1, 2, . . ., we have that∫ 2π

0

2h1(r)s1(r)s2(r)dθ =

b∑
k=0

k even

l∑
j=1
j odd

n∑
i=1

ζ2ijkaiajakr
i−1rj+1rk+1

+

b∑
k=0

k even

l∑
j=1
j odd

l∑
i=1
i odd

ζ3ijkaiajakr
i−1rj+1rk+1,

where

ζλijk =
k+2∑
ρ1=1
ρ1 odd

j+2∑
ρ2=0
ρ2 even

2i(i+ 1)α ρ1+1

2 j
α ρ2+2

2 k
Mλ(i, ρ1, ρ2), λ = 2, 3.

Thus, the degree of the polynomial H2(r) =
∫ 2π

0 2h1(r)s1(r)s2(r)dθ in r is 3n.
From ∫ 2π

0

cosi θ(sin2 θ)θ2dθ = M4(i, 0, 0) �= 0,∫ 2π

0

cos2i θ sin2 θ sin(ρ1θ) sin(ρ2θ)dθ = M5(2i, ρ1, ρ2) �= 0, ρ1, ρ2 even,∫ 2π

0

cos2i+1 θ sin2 θ sin(ρ1θ) sin(ρ2θ)dθ = 0, ρ1, ρ2 even,∫ 2π

0

cosi θ sin2 θ sin(ρ1θ)θdθ = M6(i, ρ1, 0) �= 0, ρ1 even,

for i = 1, 2, . . ., we have that∫ 2π

0

h1(r)s
2
2(r)dθ =

b∑
k=0

k even

b∑
j=0

j even

n∑
i=1

ζ4ijkaiajakr
i−1rj+1rk+1

+

b∑
k=0

k even

b∑
j=1

j even

n∑
i=2

i even

ζ5ijkaiajakr
i−1rj+1rk+1

+
b∑

k=0
k even

b∑
j=0

j even

n∑
i=1

ζ6ijkaiajakr
i−1rj+1rk+1,

where

ζλijk =

k+2∑
ρ1=0

ρ1 even

j+2∑
ρ2=0

ρ2 even

δjkρ1ρ2
i(i+ 1)α ρ1+2

2 j
α ρ2+2

2 k
Mλ(i, ρ1, ρ2), λ = 4, 5, 6,
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with δjkρ1ρ2
as above. Thus, H3(r) =

∫ 2π

0
h1(r)s

2
2(r)dθ is a polynomial in r of degree

3n+ 1 if n even, and 3n− 1 if n odd. Knowing that∫ 2π

0

cosi θ sin2 θ sin(ρ1θ)dθ = 0, ρ1 = 1, 2, . . .∫ 2π

0

cos2i θ(sin2 θ)θdθ = M7(i, 0, 0) �= 0,∫ 2π

0

cos2i+1 θ(sin2 θ)θdθ = 0,

for i = 1, 2, . . ., we have that∫ 2π

0

h1(r)(s1(r) + s2(r))g2(r)dθ =

m∑
k=0

b∑
j=0

j even

n∑
i=1

ζ7ijkaiajbkr
i−1rj+1rk,

where k+i is odd, and ζ7ijk = i(i+1)α1jM7(i, 0, 0). Thus, H4(r) =
∫ 2π

0 h1(r)(s1(r)
+ s2(r))g2(r)dθ is a polynomial in r of degree 2n+m− 1 if m is even, 2n+m if
n is even and m is odd, and 2n+m− 2 if both n and m are odd.

The equalities∫ 2π

0

cos2i θ sin2 θdθ = M8(i, 0, 0) �= 0,∫ 2π

0

cos2i+1 θ sin2 θdθ = 0,

for i = 1, 2, . . . imply∫ 2π

0

h1(r)g
2
2(r)dθ =

m∑
k=0

m∑
j=0

n∑
i=1

ζ8ijkaibjbkr
i−1rjrk,

where ζ8ijk = δjki(i+ 1)M8(i, 0, 0) with

δjk =

{
1 if j = k,

2 if j �= k.

Thus, H5(r) =
∫ 2π

0
h1(r)g

2
2(r)dθ is a polynomial in r of degree 2m+ n− 1 if n or

m is even, and 2m+ n− 2 if n and m are both odd. From∫ 2π

0

cosi θ sin θ sin(ρ1θ) sin(ρ2θ)dθ = 0, ρ1, ρ2 odd

for i = 1, 2, . . ., we have that H6(r) =
∫ 2π

0 h2(r)s
2
1(r)dθ = 0.
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From the values of the integrals∫ 2π

0

cos2i θ(sin θ)θ sin(ρ1θ)dθ = M9(i, ρ1, 0) �= 0, ρ1 odd,∫ 2π

0

cos2i+1 θ(sin θ)θ sin(ρ1θ)dθ = 0, ρ1 odd,∫ 2π

0

cosi θ sin θ sin(ρ1θ) sin(ρ2θ)dθ = 0, ρ1 even, ρ2 odd,

for i = 1, 2, . . ., we have that

∫ 2π

0

h2(r)s1(r)s2(r)dθ =

l∑
k=1
k odd

b∑
j=0

j even

m∑
i=2

i even

ζ9ijkbiajakr
i−2rj+1rk+1,

where

ζ9ijk =

l+2∑
ρ1=1
ρ1 odd

i(i− 1)α1jα ρ1+1
2 k

M9(i, ρ1, 0).

Thus, H7(r) =
∫ 2π

0 h2(r)s1(r)s2(r)dθ is a polynomial in r of degree 2n+m− 1 if
m even, and 2m+ n− 2 if m odd. The formulas∫ 2π

0

cosi θ(sin θ)θ2dθ = M10(i, 0, 0) �= 0,∫ 2π

0

cos2i θ(sin θ)θ sin(ρ1θ)dθ = 0, ρ1 even,∫ 2π

0

cos2i+1 θ(sin θ)θ sin(ρ1θ)dθ = M11(i, ρ1, 0) �= 0, ρ1 even,∫ 2π

0

cosi θ sin θ sin(ρ1θ) sin(ρ2θ)dθ = 0, ρ1, ρ2 odd,

for i = 1, 2, . . . imply

∫ 2π

0

h2(r)s
2
2(r)dθ =

b∑
k=0

k even

b∑
j=0

j even

m∑
i=1

ζ10ijkbiajakr
i−2rj+1rk+1

+

b∑
k=0
k even

b∑
j=0

j even

m∑
i=1
i odd

ζ11ijkbiajakr
i−2rj+1rk+1,
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where

ζ10ijk = δ1jki(i− 1)α1jα1kM10(i, ρ1, 0),

ζ11ijk =

b+2∑
ρ1=1
ρ1 even

δ2jkρ1
i(i− 1)α1jα ρ1+2

2 k
M11(i, ρ1, 0),

with

δ1jk =

{
1 if j = k,

2 if j �= k,
and δ2jkρ1

=

{
1 if j = k, ρ1 = 0,

2 if j �= k, ρ1 �= 0.

Thus, H8(r) =
∫ 2π

0 h2(r)s
2
2(r)dθ is a polynomial in r of degree m+ 2n if n even,

and m+ 2n− 2 if n odd. From∫ 2π

0

cos2i θ sin θ sin(ρ1θ)dθ = M12(i, ρ1, 0) �= 0, ρ1 odd,∫ 2π

0

cos2i+1 θ sin θ sin(ρ1θ)dθ = 0, ρ1 odd,∫ 2π

0

cosi θ(sin θ)θdθ = M13(i, 0, 0) �= 0,∫ 2π

0

cos2i θ sin θ sin(ρ1θ)dθ = M14(i, ρ1, 0) �= 0, ρ1 even,∫ 2π

0

cos2i+1 θ sin θ sin(ρ1θ)dθ = 0, ρ1 even,

for i = 1, 2, . . ., we have that

∫ 2π

0

h2(r)(s1(r) + s2(r))g2(r)dθ =

m∑
k=0

l∑
j=1
j odd

m∑
i=1

ζ12ijkbiajbkr
i−2rj+1rk

+

m∑
k=0

b∑
j=0

j even

m∑
i=1

ζ13ijkbiajbkr
i−2rj+1rk

+

m∑
k=0

l∑
j=1
j even

m∑
i=1

ζ14ijkbiajbkr
i−2rj+1rk,
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where

ζ12ijk =

⎧⎪⎪⎨⎪⎪⎩
j+2∑
ρ1=1
ρ1 odd

i(i− 1)

k + 2
α ρ+1

2 jM12(i, ρ1, 0) for k + i even,

0 for k + i odd,

ζ13ijk =
i(i− 1)

k + 1
α1jM13(i, 0, 0),

ζ14ijk =

⎧⎪⎪⎨⎪⎪⎩
j+2∑
ρ1=0

ρ1 even

i(i− 1)

k + 2
α ρ1+2

2 j
M14(i, ρ1, 0) for k + i even,

0 for k + i odd.

Thus, H9(r) =
∫ 2π

0
h2(r)(s1(r) + s2(r))g2(r)dθ is a polynomial in r of degree

2m+ n− 1 if n even, and 2m+ n− 2 if n odd.

From the value of the integral∫ 2π

0

cosi θ sin θdθ = 0,

for i = 1, 2, . . ., we have that H10(r) =
∫ 2π

0 h2(r)g
2
2(r)dθ = 0.

We conclude that∫ 2π

0

1

2

∂2F1

∂r2
(s, r)(y1(s, r))

2ds =

10∑
i=1

Hi,

whose degree is the greatest of the degrees of Hi. Hence, the proof of the lemma
follows. �

The proofs of the next three lemmas follow in a similar way to the previous
one; they will be omitted.

Lemma 1.4.9. The integral
∫ 2π

0
1
2
∂F1

∂r (s, r)(y2(s, r))ds equals the polynomial

π

r
(E0 + E1r + E2r

2 + · · ·+ Eϑr
ϑ), (1.163)

where

ϑ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 2m if m > n+ 1 and n is even,

n+ 2m− 1 if m > n+ 1 and n is odd,

3n+ 2 if m ≤ n+ 1 and n is even,

3n+ 1 if m ≤ n+ 1 and n is odd,
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and

E2l+1 =
∑

i+j+k=2l−1

β2
ijkaiajak +

∑
i+j+k=2l+1

γ2
ijkaibjbk +

∑
i+j=2l

δ2ijbicj

+
∑

i+j=2l

η2ijaidj +
∑

i+j+k=2l
i even

υ2
ijkaiajbkπ,

E2l =
∑

i+j+k=2l−2

β2
ijkaiajak +

∑
i+j+k=2l

γ2
ijkaibjbk +

∑
i+j=2l−1

δ2ijbicj

+
∑

i+j=2l−1

η2ijaidj +
∑

i+j+k=2l−1
i even

υ2
ijkaiajbkπ +

∑
i+j=2l−2
i even

ς2ijaicjπ,

for l = 0, 1, . . . , ϑ/2, where β2
ijk, γ

2
ijk, δ

2
ij, η

2
ij , υ

2
ijk, ς

2
ij are real constants.

Lemma 1.4.10. The integral
∫ 2π

0
1
2
∂F2

∂r (s, r)(y1(s, r))ds equals the polynomial

π

r
(F0 + F1r + F2r

2 + · · ·+ Fνr
ν), (1.164)

where

ν =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 2m if m > n+ 1 and n is even,

n+ 2m− 1 if m > n+ 1 and n is odd,

3n+ 2 if m ≤ n+ 1 and n is even,

3n+ 1 if m ≤ n+ 1 and n is odd,

and

F2l+1 =
∑

i+j+k=2l−1

β3
ijkaiajak +

∑
i+j+k=2l+1

γ3
ijkaibjbk +

∑
i+j=2l

δ3ijbicj

+
∑

i+j=2l

η3ijaidj ,

F2l =
∑

i+j+k=2l−2

β3
ijkaiajak +

∑
i+j+k=2l

γ3
ijkaibjbk +

∑
i+j=2l−1

δ3ijbicj

+
∑

i+j=2l−1

η3ijaidj +
∑

i+j+k=2l−1
i even

υ3
ijkaiajbkπ +

∑
i+j+=2l−2

i even

ς3ijaicjπ,

for l = 0, 1, . . . , ν/2, where β3
ijk, γ

3
ijk, δ

3
ij , η

3
ij, υ

3
ijk, ς

3
ij are real constants.

Lemma 1.4.11. The integral
∫ 2π

0 F3(s, r)ds equals the polynomial

π

r
(G0 +G2r

2 + · · ·+Gψr
ψ), (1.165)
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where

ψ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 2m if m > n+ 1 and n is even,

n+ 2m− 1 if m > n+ 1 and n is odd,

3n+ 2 if m ≤ n+ 1 and n is even,

3n+ 1 if m ≤ n+ 1 and n is odd,

and

G2l =
∑

i+j+k=2l−2

β4
ijkaiajak +

∑
i+j+k=2l

γ4
ijkaibjbk +

∑
i+j=2l−1

δ4ijbicj

+
∑

i+j=2l−1

η4ijaidj + p2l−2,

for l = 0, 1, . . . , ψ/2, where β4
ijk, γ

4
ijk, δ

4
ij, η

2
ij , υ

4
ijk are real constants.

By Lemmas 1.4.8, 1.4.9, 1.4.10 and 1.4.11 we obtain

F30(r) =
α

r

(
M0 +M1r +M2r

2 +M3r
3 +M4r

4 + · · ·+M�−1r
�−1 +M�r

�
)
,

where

M2l+1 =
∑

i+j+k=2l−1

βijkaiajak +
∑

i+j+k=2l+1

γijkaibjbk +
∑

i+j=2l

δijbicj

+
∑

i+j=2l

ηijaidj +
∑

i+j=2l
i even

νijaiajbkπ,

M2l =
∑

i+j+k=2l

βijkaibjbk +
∑

i+j+k=2l−2

γijkaiajak +
∑

i+j=2l−1

δijbicj

+
∑

i+j=2l−1

ηijaidj +
∑

i+j+k=2l−2

μijkaiajak +�2l−2p2l−2

+

⎛⎜⎝ ∑
i+j+k=2l−1

i even

νijkaiajbk +
∑

i+j=2l−2
i even

ρijkaicj

⎞⎟⎠π

+
∑

i+j+k=2l−2
i even

τijkaiajakπ
2,
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for l = 0, 1, 2, . . . , �/2 and

� =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+ 2m if m > n+ 1 and n is even,

n+ 2m− 1 if m > n+ 1 and n is odd,

3n+ 2 if m ≤ n+ 1 and n is even,

3n+ 1 if m ≤ n+ 1 and n is odd.

Applying the equalities ai = 0, for all i even and (1.161), we obtain that M0 = 0
and Mκ = 0 for κ odd. Moreover, from (1.161) we obtain

ck =
∑

i+j=k+1
i odd
j even

aibj = 0

for k > b. Then Mk = 0 for k greater than

λ =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n+m− 2 if n and m are odd,

n+m− 1 if n is odd and m is even,

n+m− 2 if n and m are even,

n+m− 1 if n is even and m is odd.

Thus

F30(r) = αr
(
M2 +M4r

2 +M6r
4 + · · ·+Mλ−4r

λ−2 +Mλ−2r
λ
)
,

where

Mω =
∑

i+j+k=ω
i odd
j even
k odd

β′
ijkaibjbk +

∑
i+j=ω−1
i even
j odd

δ′ijbicj +
∑

i+j=ω−1
i odd
j even

η′ijaidj + �ωpω−2.

Consequently, F3(z) is a polynomial of degree λ in the variable r2. Then F3(z) has
at most [(n+m−1)/2] positive roots and, from the third order averaging method,
we conclude that this is the maximum number of limit cycles of the polynomial
Liénard differential systems (1.152) with k = 3 bifurcating from the periodic orbits
of the linear center ẋ = y, ẏ = −x. This completes the proof of statement (iii) of
Theorem 1.4.6. �
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Chapter 2

Central Configurations

Richard Moeckel

The topic of the present chapter is one of my favorites: central configurations
of the n-body problem. I gave a course on the same subject in Trieste in 1994
and wrote up some notes (by hand) which can be found on my website [23]. For
the new course, I tried to focus on some new ideas and techniques which have
been developed in the intervening twenty years. In particular, I consider space
dimensions bigger than three. There are still a lot of open problems and it remains
an attractive area for mathematical research.

2.1 The n-body problem

The Newtonian n-body problem is the study of the dynamics of n point particles
with masses mi > 0 and positions xi ∈ Rd, moving according to Newton’s laws of
motion:

mj ẍj =
∑
i	=j

mimj(xi − xj)

r3ij
, 1 ≤ j ≤ n, (2.1)

where rij = |xi − xj | is the Euclidean distance between xi and xj . Although we
are mainly interested in dimensions d ≤ 3, it is illuminating and entertaining to
consider higher dimensions as well.

Let x = (x1, . . . , xn) ∈ Rdn be the configuration vector and let

U(x) =
∑
i<j

mimj

rij
(2.2)

be the Newtonian potential. Then we have

mj ẍj = ∇jU(x), 1 ≤ j ≤ n, (2.3)
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where ∇j denotes the d-dimensional partial gradient with respect to xj or

Mẍ = ∇U(x), (2.4)

where ∇ is the dn-dimensional gradient and M = diag(m1, . . . ,mn) is the matrix
with d copies of each mass along the diagonal. (Later there will be an n× n mass
matrix, also called M .)

Let vj = ẋj ∈ Rd be the velocity vectors and v = (v1, . . . , vn) ∈ Rdn. Then
there is an equivalent first-order system

ẋ = v,

v̇ = M−1∇U(x).

Since Newtonian potential is singular at collisions, we have to restrict x to the
configuration space Rnd \Δ, where

Δ = {x : xi = xj for some i �= j} (2.5)

is the singular set.
The phase space for the first-order system is (Rnd \ Δ) × Rnd. Newton’s

equations are conservative. The total energy

H = K(v)− U(x), K =

n∑
j=1

mj |vj |2

is constant along solutions in phase space.
Even though we are considering the n-body problem in Rd, it may happen

that the motion that takes place in a subspace W . In fact, let W ⊂ Rd be any
subspace. If all of the positions and velocities satisfy xj , vj ∈ W , equation (2.1)
shows that the acceleration vectors are also in W . It follows that Wn \Δ ×Wn

is an invariant set for the flow in phase space. In particular we can consider the
smallest subspace containing all of the positions and velocities,

S(x, v) = span{xj , vj : j = 1, . . . , n} ⊂ Rd.

If (x(t), v(t)) is any solution, then S(x(t), v(t)) is independent of t. It will be called
the motion space of the solution.

2.2 Symmetries and integrals

Newton’s equations are invariant under simultaneous translations and rotations of
all of the positions and velocities xj , vj ∈ Rd. Symmetry under translations gives
rise, via Nöther’s Theorem [5], to conservation of the total momentum vector

p = m1v1 + · · ·+mnvn.
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Let

c =
1

m0
(m1x1 + · · ·+mnxn) , m0 = m1 + · · ·+mn (2.6)

be the center of mass, where m0 is the total mass. Then

ċ = p/m0,

ṗ = 0

so c(t) moves in a straight line with constant velocity. It follows that the positions
relative to the center of mass, yj(t) = xj(t) − c(t), are also solutions of Newton’s
equations. These have center of mass at the origin and total momentum zero. A
solution with this property will be called centered. We will use the notation

x− c = (x1 − c, . . . , xn − c) ∈ Rdn

for the configuration relative to the center of mass.
For any configuration x, the vectors xj−c, j = 1, . . . , n, span a subspace of Rd

which we will call the centered position space and denote by C(x). It is natural to
define the dimension of a configuration to be dim (x) = dim C(x). The maximum
possible dimension of a configuration of the n-body problem is n−1. For example,
every configuration of the three-body problem has dimension 1 (collinear) or 2
(planar).

The rotation group SO(d) in Rd has dimension
(
d
2

)
= d(d−1)

2 . The Lie algebra
so(d) consists of all anti-symmetric d × d matrices. If Q(t) is a one parameter
subgroup, it can be written as a matrix exponential

Q(t) = etα, α ∈ so(d).

From linear algebra we know that there is a rotation S ∈ SO(d) putting α into
the normal form:

S−1αS = diag(a1j, . . . , akj, 0 . . . , 0), j =

[
0 −1
1 0

]
,

where ai ∈ R. Then α has even rank, say 2k. The one-parameter group satisfies

S−1Q(t)S = diag(ρ(a1t), . . . , ρ(akt), 1, . . . , 1), ρ(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

Thus Q(t) acts by rotation at different rates in k orthogonal planes while fixing
the part of Rd orthogonal to these planes.

For example, in R3, an angular velocity matrix can be written

α =

⎡⎣ 0 −c b
c 0 −a
−b a 0

⎤⎦
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and the block-diagonal normal form is

S−1αS =

⎡⎣ 0 −a1 0
a1 0 0
0 0 0

⎤⎦ , a1 = ±
√
a2 + b2 + c2.

The corresponding one-parameter group is a rotation around the angular velocity
vector (a, b, c) with constant angular speed |a1|.

Symmetry under rotations implies that the angular momentum is preserved.
The angular momentum (with respect to the origin) can be represented by an
anti-symmetric d× d matrix ω(x, v) with entries

ωkl =

n∑
j=1

mj(xjkvjl − xjlvjk), (2.7)

where xjk, vjk denote the k-th components of the vectors xj , yj ∈ Rd. In case
d = 2, the angular momentum reduces to a scalar ω12, while if d = 3 it can be
viewed as a vector

ω = (ω23, ω31, ω12) =

n∑
j=1

mjxj × vj ,

where × denotes the cross product in R3.

The Newtonian potential is homogeneous of degree −1 and its gradient is
homogeneous of degree −2. It follows that if x(t) is any solutions of (2.1) and if
λ > 0 is constant, then x̃(t) = λ2x(λ−3t) is also a solution. This will be called the
scaling symmetry of the n-body problem.

For any configuration x, the moment of inertia with respect to the center of
mass is

I(x) = (x − c)TM(x− c) =
∑
j

mj|xj − c|2, (2.8)

where y is the corresponding centered configuration. I(x) is homogeneous of degree
2 with respect to the scaling symmetry. The following alternative formula in terms
of mutual distances is also useful:

I(x) =
1

m0

∑
i<j

mimjr
2
ij . (2.9)

2.3 Central configurations and self-similar solutions

At this point we can define the concept which will be the main focus of the present
notes.
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Definition 2.3.1. A central configuration (CC) for masses m1, . . . ,mn is an ar-
rangement of the n point masses whose configuration vector satisfies

∇U(x) + λM(x− c) = 0 (2.10)

for some real constant λ.

Multiplying (2.10) on the left by (x−c)T and using the translation invariance
and homogeneity of U(x) shows that

λ =
U(x)

I(x)
> 0,

where I(x) is the moment of inertia with respect to c from (2.8). If x is a central
configuration then the gravitational acceleration on the j-th body due to the other
bodies is

ẍj =
1
mj

∇jU(x) = −λ(xj − c).

In other words, all of the accelerations are pointing towards the center of mass, c,
and are proportional to the distance from c. We will see that this delicate balancing
of the gravitational forces gives rise to some remarkably simple solutions of the
n-body problem. Before describing some of these, we will briefly consider the
question of existence of central configurations.

For given masses m1, . . . ,mn, it is far from clear that (2.10) has any solutions
at all. We will consider this question in due course. For now we just note the
existence of symmetrical examples for equal masses. If all n masses are equal we
can arrange the bodies at the vertices of a regular polygon, polyhedron or polytope.
Then it follows from symmetry that the acceleration vectors of each mass must
point toward the barycenter of the configuration. This is the condition for a central
configuration, i.e., there will be some λ for which the CC equations hold.

In R2 we can put three equal masses at the vertices of an equilateral triangle
or n equal masses at the vertices of a regular n-gon to get simple examples. One
can also put an arbitrary mass at the center of a regular n-gon of equal masses as in
Figure 2.1 (left). In R3 we have the five regular Platonic solids, the tetrahedron,
cube, octahedron, dodecahedron and icosahedron. It is not clear what to do if
n �= 4, 6, 8, 12, 20, however. It turns out that there are six kinds of regular, convex
four-dimensional polytopes but in higher dimensions there are only three, namely
the obvious generalization of the tetrahedron, cube and octahedron [9, 16].

The regular d-simplex provides an example of a central configuration of d+1
equal masses in Rd generalizing the equilateral triangle and tetrahedron. Remark-
ably, these turn out to be central configurations even when the masses are not
equal (see Proposition 2.8.6) so we do indeed have at least one CC for any choice
of masses, provided we are willing to work in high-dimensional spaces. As a spe-
cial case, note that for the two-body problem, every configuration is a regular
simplex, i.e., a line segment. So every configuration of n = 2 bodies is a central
configuration.
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Less obvious examples can be found by numerically solving (2.10), for exam-
ple the asymmetrical CC of 8 equal masses shown in Figure 2.1 (right).

Figure 2.1: Central configurations.

Central configurations can be used to construct simple, special solutions of
the n-body problem where the shape of the figure formed by the bodies remains
constant. The configuration changes only by simultaneous translation, rotation and
scaling. In other words, the configurations x(t) at different times are all similar.
In this case the configuration relative to the center of mass will change only by
scaling and rotation.

Definition 2.3.2. A solution of the n-body problem is self-similar or homographic
if it satisfies

x(t) − c(t) = r(t)Q(t)(x0 − c0), (2.11)

where x0 is a constant configuration, r(t) > 0 is a real scaling factor, and Q(t) ∈
SO(d) is a rotation. Here c(t), c0 are the centers of mass of x(t), x0.

Two special cases are the homothetic solutions, where

x(t) − c(t) = r(t)(x0 − c0), (2.12)

and the rigid motions or relative equilibrium solutions, where

x(t) − c(t) = Q(t)(x0 − c0). (2.13)

The simplest of these are the homothetic solutions. For example, if put three
equal masses at the vertices of an equilateral triangle and release them with initial
velocities all zero, it seems clear that the triangle will just collapse to the center
of mass with each particle just moving on a line towards the center. It turns out
that such a solution is possible only when x0 is a central configuration.

Proposition 2.3.3. If x0 is a central configuration with constant λ and if r(t) is
any solution of the one-dimensional Kepler problem

r̈(t) = − λ

r(t)2
, (2.14)

then x(t) as in (2.12) is a homothetic solution of the n-body problem, and every
homothetic solution is of this form.
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Proof. Substituting x(t) from (2.12) into Newton’s equation (2.4) gives

r̈(t)M(x0 − c0) = ∇U(x(t)) = r(t)−2∇U(x0).

Now ∇U(x0) �= 0 for all x0, so this equation is satisfied if and only if there is some
constant, call it −λ, such that

r̈(t)r(t)2 = −λ, −λM(x0 − c0) = ∇U(x0). �

The one-dimensional Kepler problem (2.14) describes the motion of a point
on a line gravitationally attracted to a mass λ at the origin. It is easy to see
qualitatively what will happen even without solving it. For example, the solution
r(t) with initial velocity ṙ(0) = 0 collapses to the origin in both forward and
backward time. The corresponding homothetic solutions maintain the shape of
the underlying central configuration x0 while collapsing to a total collision at the
center of mass in both forward and backward time (see Figure 2.2 for the forward-
time half). Each body moves along a straight line towards the collision. From
the examples of central configurations mentioned above we see that we can have
homothetically collapsing solutions in the shape of an equilateral triangle, regular
n-gon or regular polytope.

� � �

Figure 2.2: The forward-time half of a homothetic solution based on Lagrange’s
equilateral triangle with masses 10, 2, and 1. Released with zero velocity, the
masses collapse to the center of mass (indicated by the + symbol) along straight
lines, maintaining the equilateral shape.

It turns out that central configurations also lead to rigid motions and more
general homographic solutions. We will postpone a general discussion of homo-
graphic solutions in Rd to later sections. For now we will consider the case of
planar motions. Let d = 2 and suppose x0 ∈ R2n is a central configuration. Let

Q(θ) =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
∈ SO(2).

The most general planar homographic motion would be of the form

x(t)− c(t) = r(t)Q(θ(t))(x0 − c0) (2.15)
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for some functions r(t) > 0, θ(t). Substituting this into Newton’s equation leads,
after some simplifications, to

(r̈ − r θ̇2)M(x0 − c0) + (r θ̈ + 2 ṙ θ̇)JM(x0 − c0) = r−2∇U(x0),

where J is the 2n× 2n matrix

J = diag(j, . . . , j), j = Q(θ)−1Q′(θ) =
[
0 −1
1 0

]
.

Now (x0−c0) and J(x0−c0) are nonzero, orthogonal vectors in R2n and the latter
is also orthogonal to ∇U(x0). Therefore, there must be some constant −λ such
that

r̈(t)− r(t)θ̇(t)2 = − λ

r(t)2
,

r(t)θ̈(t) + 2ṙ(t)θ̇(t) = 0,

(2.16)

and

−λM(x0 − c0) = ∇U(x0).

The differential equation is just the two-dimensional Kepler problem in polar
coordinates whose solutions are of the familiar elliptical, parabolic or hyperbolic
types and the last equation is the CC equation.

Proposition 2.3.4. If x0 is a planar central configuration with constant λ and if
r(t), θ(t) is any solution of the two-dimensional Kepler problem (2.16), then (2.15)
is a planar homographic solution and every such solution is of this form.

As a special case, we could take a circular solution of the Kepler problem
with r(t) = 1. Then we get a rigid motion or relative equilibrium solution where
the planar central configuration just rotates at constant angular speed around the
center of mass. This is the most general relative equilibrium solution in the plane.
In particular, nonuniform rotations are not possible.

In higher dimensions, the situation regarding rigid solutions and nonhomo-
thetic homographic solutions is more complicated, mainly due to the increased
complexity of the rotation group SO(d). The next few sections describe an ap-
proach to the general case developed by Albouy and Chenciner.

2.4 Matrix equations of motion

We will now describe an interesting reformulation of the n-body problem due to
Albouy and Chenciner [2, 3, 7] which is very convenient for studying symmetric
solutions. Let

X =
[
x1| · · · |xn

]
, V =

[
v1| · · · |vn

]
,
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Figure 2.3: Planar homographic motions based on a central configuration of eight
equal masses from Figure 2.1. On the left is a relative equilibrium solution while
the solution on the right features elliptical orbits of eccentricity 0.8.

be the d×n matrix whose columns are the positions and velocities of the n bodies.
For example, the matrix

X =

⎡⎢⎢⎢⎣
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

0 0 0
0 0 0

⎤⎥⎥⎥⎦ (2.17)

represents a configuration of n = 3 bodies in d = 4 dimensions arranged at the
vertices of an equilateral triangle.

We will view X,V as linear maps X,V : Rn → Rd. The domain of these maps
has no particular physical meaning; it is just a space of n × 1 column vectors ξ
with one coordinate for each of the n-bodies. We can think of the standard basis
vectors e1, . . . , en as representing the different bodies.

While the columns of X,V have an immediate dynamical meaning, it is not
clear what to think about the rows. These are 1×n vectors which we will view as
elements of the dual space Rn∗, another nonphysical space. For example, the first
row

[
1 − 1

2 − 1
2

]
of the matrix above gives the coefficients of a linear function

whose values on the basis vectors e1, e2, e3 of R3 are the first coordinates of the
three bodies in R4.

To get the matrix version of the laws of motion, write the j-th accelera-
tion vector from Newton’s equations (2.1) as a linear combination of the position
vectors:

ẍj =
1

mj
∇jU(x) =

∑
i	=j

mi(xi − xj)

r3ij
=
∑
i	=j

xi
mi

r3ij
− xj

⎛⎝∑
i	=j

mi

r3ij

⎞⎠ .
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So we get the matrix equation:

Ẍ = XA(X), (2.18)

where A(X) is the n× n matrix

A(X) =

⎡⎢⎢⎢⎢⎣
A11

m1

r312
· · · m1

r31n
m2

r312
A22 · · · m2

r32n
...

...
mn

r31n

mn

r32n
· · · Ann

⎤⎥⎥⎥⎥⎦ , Ajj = −
∑
i	=j

Aij = −
∑
i	=j

mi

r3ij
. (2.19)

Note that A(X) is invariant under translations and rotations, since it involves
only the mutual distances. It is independent of the space dimension d. For example,
consider the three-body problem in Rd where we have the 3× 3 matrix

A =

⎡⎢⎢⎢⎣
−m2

r312
− m3

r313

m1

r312

m1

r313

m2

r312
−m1

r312
− m3

r323

m2

r323

m3

r313

m3

r323
−m1

r313
− m2

r323

⎤⎥⎥⎥⎦ .

A(X) has some other useful properties. Let M = diag(m1, . . . ,mn) be an
n× n version of the mass matrix. Then we have

XA(X)M =
[∇1U(X) · · · ∇nU(X)

]
.

In addition, A(X)M is symmetric:

AM = (AM)T = MAT .

Finally, A(X)M is negative semi-definite. Indeed, for any ξ ∈ Rn one can check
that

ξTAMξ = −
∑
i<j

mimj

r3ij
(ξi − ξj)

2.

We will also need a matrix version of the first-order differential equations of
the n-body problem:

Ẋ = V,

V̇ = XA(X).
(2.20)

The d× 2n matrix Z =
[
X V

]
will be called the state matrix.

It is interesting to look at the symmetries and integrals of the n-body problem
from the matrix point of view. Let k ∈ Rd be a d×1 column vector. The translation
xj → xj + k has the effect of adding kiL to the i-th row of X , where

L =
[
1 · · · 1

] ∈ Rn∗
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is the 1× n row vector of 1’s. In other words the configuration matrix transforms
by addition of the d× n matrix kL,

X → X + kL. (2.21)

We call two d × n matrices X,Y translation equivalent if Y = X + kL for some
k ∈ Rd. If X,Y are translation equivalent then the corresponding linear maps
X,Y : Rn → Rd take the same values when restricted to the hyperplane

D∗ = L⊥ = {ξ ∈ Rn : Lξ = ξ1 + · · ·+ ξn = 0}.
The converse also holds so translation equivalence amounts to saying that

X |D∗ = Y |D∗ .

The notation D∗, due to Albouy–Chenciner [3], is explained as follows. The quo-
tient vector space Rn∗

/L is called the disposition space and denoted by D. Then
L⊥ can be identified with its dual vector space.

With this notation, the total mass and center of mass can be written

m0 = Lm, c =
1

m0
Xm, (2.22)

where m is the n× 1 column vector

m =
[
m1 · · · mn

]T
.

A state will have center of mass at the origin and total momentum zero if

Xm = V m = 0.

We will call a d× n matrix X centered if Xm = 0.

Proposition 2.4.1. Given a d × n matrix X, there is a unique centered matrix Y
translation equivalent to X, namely

Y = X − C, C = cL,

where c is the center of mass (2.22). Moreover,

Y = XP, P = I − 1

m0
mL.

The n×n matrix P represents the orthogonal projection of Rn onto the hyperplane
D∗ with respect to the inverse mass inner product on Rn.

Proof. Let Y = X − cL. Then Y is translation equivalent to X and is centered if
and only if c is given by (2.22). In this case it is easy to check that Y = XP where
P is as claimed. We have

P 2 = P, LP = 0.
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Hence, the linear map P : Rn → Rn is a projection map of Rn onto D∗. One can
also check that P is an M−1-symmetric matrix:

PTM−1 = M−1P,

whereM is the mass matrix. It follows that P represents the orthogonal projection
onto D∗ with respect to the inner product 〈ξ, η〉 = ξTM−1η. �

If the matrices X(t), V (t) solve Newton’s equations (2.20) so do the centered
matrices

Y (t) = X(t)− C(t) = X(t)P, W (t) = V (t)P

which describe the dynamics relative to the center of mass. This was shown already
in Section 2.2 but it can also be verified directly from (2.20) with the help of the
following easily verified formula:

A(X) = A(XP ) = A(X − C) = A(X)P = PA(X). (2.23)

The following facts about the right-hand side of Newton’s equation are also useful

CA(X) = 0, XA(X) = (X − C)A(X − C). (2.24)

We will use the matrix formulation to study central configurations and ho-
mographic solutions in Rd. The factorization (2.18) of the equations of motion is
very useful for understanding symmetrical solutions. The CC equation (2.10) for
configuration vectors gives the following equation for configuration matrices:

XA(X) + λ(X − C) = 0. (2.25)

2.5 Homographic motions of central configurations

in Rd

We have already defined homographic, homothetic and rigid solutions. The con-
figuration matrix of a homographic solution will satisfy

X(t)− C(t) = r(t)Q(t)(X0 − C0). (2.26)

Homothetic and rigid solutions are of the same form but with Q(t) = I and
r(t) = 1, respectively.

We have seen in Proposition 2.3.3 that every homothetic motion comes from
a CC, x0, with r(t) a solution of the one-dimensional Kepler problem. Also, Propo-
sition 2.3.4 shows that planar CC’s can execute Keplerian homographic motions.
The next result treats Keplerian homographic motions of central configurations in
Rd.
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Proposition 2.5.1. Let X0 be the configuration matrix of a central configuration
with constant λ and let C(x0) = im(X0 − C0) be its centered position subspace.
Suppose there is an antisymmetric d×d matrix J such that J2|C = −I|C. Then for
any solution r(t), θ(t) of the planar Kepler problem (2.16) there is a homographic
solution of the form (2.26) with

Q(t) = exp(θ(t)J).

Proof. Since X0 is a CC, the right-hand side of (2.18) is

rQ(X0 − C0)A(rQ(X0 − C0)) = r−2QX0A(X0) = − λ

r2
Q(X0 − C0),

where we have used the homogeneity and the translation and rotation invariance
of A. The left-hand side is

Ẍ = r̈Q(X0 − C0) + 2ṙQ̇(X0 − C0) + rQ̈(X0 − C0).

We have

Q̇ = θ̇(t)JQ, Q̈(t) = θ̈(t)JQ + (θ̇(t))2J2Q.

Since J and Q commute and J2(X0 − C0) = −(X0 − C0), we get

Ẍ = (r̈ − r(θ̇)2)Q(X0 − C0) + (rθ̈ + 2ṙθ̇)QJ(X0 − C0).

Since r(t), θ(t) are solutions of the Kepler problem, this reduces to

Ẍ = − λ

r2
Q(X0 − C0)

as required. �

Recall that a complex structure on a vector space S is given by a linear map
J : S → S with J2 = −I. If there is an inner product with respect to which J is
antisymmetric then we have a Hermitian structure. An antisymmetric matrix J
as above with J2|C = −IC determines a Hermitian structure on the larger space

S = C + JC.

To see this, note that S is J-invariant. If η ∈ JC then η = Jξ for some ξ ∈ C and
we get

J2η = J3ξ = J(−ξ) = −η.

Thus, we actually have

J2|S = −I |S .
Since J is antisymmetric, it has even rank and so dimS must be even. In the
proposition, S is the motion space of the Keplerian homographic motion.
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Thus a necessary condition that a CC x0 admits a matrix J as above is
that C(x0) be contained in an even dimensional subspace of Rd. Since any even-
dimensional subspace of the Euclidean space Rd has a natural Hermitian structure
where J is rotation by π/2 in k mutually orthogonal planes, this condition is also
sufficient. This will always be possible if either d is even or dim C < d. The only
bad case is when d = dim C is odd. For example, if we have a collinear central
configuration in R1 or a nonplanar configuration in R3, we will not be able to find
such an even-dimensional subspace.

Example 2.5.2. Consider the equilateral triangle in R4 whose configuration matrix
X is given by (2.17). Then dim C = rankX = 2. We could choose J to be a rotation
by π/2 in the plane C which fixes the orthogonal complement. Then the motion
space is also S = C and the triangle rotates rigidly in its own plane.

On the other hand we could choose

J =

⎡⎢⎢⎣
0 0 −1 0
1 0 0 0
0 0 0 −1
0 1 0 0

⎤⎥⎥⎦ .

Now the motion space will be S = R4. Each body moves in a planar Keplerian
orbit, but the orbits are in different planes. Indeed, we have

X(t) = r(t) cos θ(t)

⎡⎢⎢⎢⎣
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

0 0 0
0 0 0

⎤⎥⎥⎥⎦+ r(t) sin θ(t)

⎡⎢⎢⎢⎣
0 0 0
0 0 0
1 − 1

2 − 1
2

0
√
3
2 −

√
3
2

⎤⎥⎥⎥⎦ .

The i-th body moves in the plane spanned by the i-th columns in the two matrices.
On the other hand a regular tetrahedron in R3 is not contained in any even-

dimensional subspace. But if we put it in R4 we can choose any 4×4 matrix J with
J2 = −I, such as the one in the last paragraph, and proceed to construct Keplerian
homographic motions. Figure 2.4 shows a projection of such a motion onto the first
three coordinate axes. Each body moves on a circular orbit at constant speed, but
the circles are in different planes. In this projection the circles look like ellipses on
a vertical cylinder. Initially, the projected shape is a regular tetrahedron as in the
figure but later the projected bodies will form a square in the horizontal plane. Of
course it is still a regular tetrahedron in R4.

Note that, on the centered position space C(X0), the matrix exponential in
Proposition 2.5.1 can be written

Q(t) = exp(θ(t)J) = cos θ(t)I + sin θ(t)J.

It follows that, for a Keplerian homographic solution as in the proposition, the j-th
body moves in the two-dimensional plane spanned by the vectors xj0 , Jxj0 . All of
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Figure 2.4: Three-dimensional projection of a rigid motion of a central config-
uration in R4. Four equal masses are at the vertices of a regular tetrahedron.
Each body moves on a circle in R4 but the circles are in different planes. In the
projection, the circles become ellipses.

the bodies describe similar Keplerian orbits and the overall configuration remains
similar to the CC X0 throughout the motion. In particular, for each admissible
choice of J we get a family of periodic solutions with elliptical orbits of different
eccentricities. Eccentricity zero gives the uniform rigid motions and eccentricity
one gives the homothetic solutions.

2.6 Albouy–Chenciner reduction and relative equilibria
in Rd

The matrix formulation of Newton’s equations leads to an elegant way to reduce
by the rotational symmetry. The reduced equations lead to a deeper understanding
of the most general rigid and homographic motions. This section is based on the
works Albouy–Chenciner [3] and Chenciner [7]. The Albouy–Chenciner method
of reducing the equations of motion is a far-reaching generalization of Lagrange’s
reduction method for the three-body problem [15].

Starting from the matrix equations of motion (2.20), we can eliminate the
rotational symmetry of the n-body problem by passing to Gram matrices.

B(X) = XTX, C(X,V ) = XTV, D(V ) = V TV.

The entries of these matrices are the dot products of the position and velocity
vectors:

Bij = xi · xj , Cij = xi · vj , Dij = vi · vj .
It follows that the matrices are invariant under simultaneous rotation of all po-
sitions and velocities in Rd. In other words, if Q ∈ SO(d) is any rotation matrix
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then

B(QX) = B(X), C(QX,QV ) = C(X,V ), D(QV ) = D(V ).

Note also that B(X), D(V ) are symmetric and positive semi-definite.
To eliminate the translational symmetry we can work with the centered ma-

trices Y = X − C = XP and W = V P .

Definition 2.6.1. Given configuration and velocity matrices X and V , B(XP ) =
B(X − C) is the relative configuration matrix and B(XP ), C(XP, V P ), D(V P )
are the relative state matrices. If X(t), V (t) is a solution, we will write B(t), C(t)
and D(t) for the corresponding relative state matrices.

An alternative approach to eliminating the center of mass is just to view
all of these matrices as representations of bilinear forms on the hyperplane D∗. In
other words, only the values ξTBη for ξ, η ∈ D∗ are significant. Let’s call two n×n
matrices translation equivalent if they define the same bilinear form on D∗. Then,
for example, B(X) = XTX and B(X − C) = (X − C)T (X − C) are translation
equivalent. In fact any matrix obtained fromB by adding multiples of L to the rows
and multiples of LT to the columns will be translation equivalent. Starting from
B(X) we get a particularly simple representative by adding subtracting 1

2 |xi|2L
from the i-th row and 1

2 |xj |2L column. The diagonal entries of the new matrix are
0 and the off diagonals are

xT
i xj − 1

2
|xi|2 − 1

2
|xj |2 = −1

2
|xi − xj |2 = −1

2
r2ij .

Thus the following matrix is translation equivalent to B(X) and B(X − C):

B̂(X) = −1

2

⎡⎢⎢⎢⎣
0 r212 · · · r21n
r221 0 · · · r22n
...

...
r2n1 · · · r2n(n−1) 0

⎤⎥⎥⎥⎦ . (2.27)

Using (2.20) it is easy to derive differential equations for the matrices B,C,D.
One finds

Ḃ = C + CT ,

Ċ = D +BA,

Ḋ = CTA+ATC.

(2.28)

These apply equally to the original Gram matrices B(X), C(X,V ), D(V ) and to
the translation reduced versions.

Recall that A(X) = A(X − C) depends only on the mutual distances rij .
The mutual distances can be expressed in terms of the Gram matrix B, since

r2ij = |xi − xj |2 = |xi|2 + |xj |2 − 2xi · xj = Bii +Bjj − 2Bij .
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Hence we can view A as a function A(B). Then the system (2.28) could be used
to find the time evolution of the relative state matrices B,C,D without reference
to the actual state variables X,V .

The angular momentum is equivariant with respect to rotations

ω(QX,QV ) = Qω(X,V )QT = Qω(X,V )Q−1,

for Q ∈ SO(d). The eigenvalues of ω(X,V ) are rotation invariant and provide
constants of motion for the relative equations.

At this point we can write down the reduced version of the CC equation.

Proposition 2.6.2. Let X be a d × n configuration matrix. Then X is a CC with
constant λ if and only if the relative configuration matrix B(X − C) satisfies

BA(B) + λB = 0. (2.29)

Proof. By hypothesis, we have XA(X)+λ(X−C) = 0. Multiplying by (X−C)T

and using the translation and rotation invariance of A, we get (2.29). Conversely,
if (2.29) holds we get

(X − C)T (XA(X) + λ(X − C)) = 0.

To eliminate (X − C)T note that the matrix in parentheses has range contained
in im(X − C). Since im(X − C) ∩ ker(X − C)T = {0}, it must vanish. �

Next we will use the reduced equations to study general rigid motions of the
n-body problem. For a rigid motion we have

X(t)− C(t) = Q(t)(X0 − C0) (2.30)

for some Q(t) ∈ SO(d), and the relative configuration matrix

B(t) = B(X − C)

is constant. Conversely, if B(t) is constant then all of the mutual distances are
constant and (2.30) holds for some Q(t) ∈ SO(d). Thus rigid motions are charac-
terized by the constancy of B(t). It turns out that the other relative state matrices
are also constant, so we have an equilibrium point of (2.28).

Proposition 2.6.3. X(t), V (t) are the state matrices of a rigid motion solution of
the n-body problem in Rd if and only if the relative state matrices B(t), C(t), D(t)
are constant.

Proof. We have seen thatX(t), V (t) is a rigid motion if and only ifB(t) is constant.
It remains to show that the constancy of B implies that of C and D. Assuming
Ḃ = 0 we also get Ȧ = ˙A(B) = 0. Now use (2.28) to calculate the derivatives of
B(t):

Ḃ = C + CT = 0,

B̈ = Ċ + ĊT = 2D +BA+ATB = 0,
...
B = 2Ḋ = 2(CTA+ATC) = 0.
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So we have Ḋ = 0 and also find that 2D = −(BA+ATB) which implies

Ċ =
1

2
(ATB −BA).

We need to show that this vanishes. Computing one more derivative gives

....
B = 2(ĊTA+AT Ċ) = (ATB −BA)A −AT (ATB −BA) = 0.

It turns out that this equation can hold only when the quantity in parentheses is
already zero.

To see this we use the fact that AM is a symmetric matrix so AM = MAT .
We have

M(ATB −BA) = MATB −MBA = ATMB −MBA = −[MB,A],

the commutator of MB and A. Similarly,

M
(
(ATB −BA)A −AT (ATB −BA)

)
= −[[MB,A], A].

Now the symmetry of AM also gives ATM−1 = M−1A, i.e., A is M−1-symmetric.
This implies that A is diagonalizable with respect to some M−1 orthogonal basis.
Choose such a basis and let the matrix representing A be diag(a1, . . . , an) and that
representing MB have entries b′ij . Then the entries of [MB,A] and [[MB,A], A]
are

b′ij(ai − aj), b′ij(ai − aj)
2,

respectively. Thus [[MB,A], A] = 0 if and only if [MB,A] = 0 as claimed. Hence,....
B = 0 implies Ċ = 0 completing the proof. �

This result justifies the terminology relative equilibrium solution (RE) applied
to rigid motion solutions. We really do have an equilibrium of the relative equations
of motion (2.28). We have seen how to construct a uniformly rotating relative
equilibrium solution based on a central configuration. But it is not at all clear that
this is the only kind and, indeed, we will see that rotations of certain noncentral
configurations are possible. However, it is true that every rigid motion is a uniform
rotation.

Proposition 2.6.4. Let X(t), V (t) be any rigid motion (RE) solution. Then there is
a configuration matrix X0 (not necessarily central) and a constant antisymmetric
d× d matrix α such that

X(t)− C(t) = Q(t)(X0 − C0),

where Q(t) = exp(tα).

We will call α the angular velocity matrix. The proof uses the following fact
from linear algebra.
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Lemma 2.6.5. Let L1, L2 be d × k matrices such that kerL1 ⊂ kerL2. Then there
is a d× d matrix J such that

L2 = JL1.

Moreover, if imL2 ⊂ imL1 and if the k × k matrix LT
1 L2 is symmetric (antisym-

metric), then J can be chosen to be symmetric (antisymmetric).

Proof. The hypothesis about the kernels implies that we get a well-defined linear
map imL1 → Rd by setting Jξ = L2u when L1u = ξ. We can extend it to J : Rd →
Rd by making it vanish on the Euclidean orthogonal complement (imL1)

⊥ and
this choice makes the extension unique.

If imL2 ⊂ imL1 then J(imL1) ⊂ imL1. Let ξ, η be two vectors in imL1 and
write ξ = L1u, η = L1v. Then, by definition of J ,

ξT Jη = uTLT
1 L2v.

If LT
1 L2 is symmetric (antisymmetric), this shows that the restriction of J to imL1

is also symmetric (antisymmetric). Since we extended trivially on the orthogonal
complement, it is easy to see that the extension has the same symmetry. �

Proof of Proposition 2.6.4. Let Z(t) =
[
X(t)P V (t)P

]
=

[
Y (t) W (t)

]
be the

d× 2n centered state matrix and note that the 2n× 2n Gram matrix

ZTZ =

[
B CT

C D

]
encodes the relative state matrices B,C,D. For a RE solution this matrix is con-
stant so

ZT Ż + ŻTZ = 0.

In other words, the 2n× 2n matrix

Z(t)T Ż(t)

is antisymmetric. Now apply Lemma 2.6.5 with L1 = Z(t) and L2 = Ż(t) to get
an antisymmetric d× d matrix α(t) such that Ż(t) = α(t)Z(t), i.e.,

Ẏ (t) = α(t)Y (t), Ẇ (t) = α(t)W (t).

In particular, at t = 0, we have

Ẏ (0) = W0 = α0Y0, Ẇ (0) = Y0A(Y0) = α0W0 = α2
0Y0. (2.31)

To complete the proof, we will show

Y (t) = Q(t)Y0, Q(t) = exp(tα0).

Since this function has the right initial conditions, we need only to show that it is
a solution of Newton’s equations. We have

Ÿ (t) = α2
0Y (t),
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so we need to show that
α2
0Y (t) = Y (t)A(Y (t)). (2.32)

From (2.31) we have
α2
0Y0 = Y0A(Y0) (2.33)

so (2.36) holds when t = 0. It follows for other times by multiplying by Q(t) and
using the rotation invariance of A. �

It follows from this result that if X0 is a CC, then the most general possible
rigid motions with shapeX0 are the circular Keplerian ones from Proposition 2.5.1.
Comparing the antisymmetric matrices which appear in the two propositions, we
should have tα = θ(t)J . Now for the circular Kepler orbit of radius r = 1 we have
θ̇2 = λ. With

α = ±
√
λJ (2.34)

then one can check that, for the solution of Proposition 2.5.1, Ż = αZ holds.
The formulas in the last proof suggest a way to construct rigid motions whose

configurations are not central. The condition (2.33) is enough to guarantee that a
corresponding rigid solution exists.

Definition 2.6.6. A configuration x is balanced in Rd or d-balanced if there is a
d× d antisymmetric matrix α such that

XA(X)− α2(X − C) = 0 (2.35)

or, equivalently, if
∇jU(x)− α2M(xj − c) = 0. (2.36)

It is called balanced if it is d-balanced for d sufficiently large.

The definition of balanced configurations in [3] is equivalent to the one
given here. The proof of Proposition 2.6.4 shows that every balanced configu-
ration gives rise to a uniformly rotating relative equilibrium solution (2.30), with
Q(t) = exp(tα) in the appropriate ambient space Rd. From (2.34) we see that every
central configuration is balanced provided it is contained in an even-dimensional
subspace hence, certainly, in Rd or in Rd+1. However, there exist balanced config-
urations which are not central.

Before presenting an example we will derive a couple of equivalent versions
of the concept of balance. Note that if X is balanced then the matrix S = −α2 is
symmetric and positive semi-definite.

Proposition 2.6.7. A configuration is balanced if and only if its configuration matrix
satisfies

XA(X) + S(X − C) = 0 (2.37)

for some positive semi-definite matrix S. Equivalently, the relative configuration
matrix B(X − C) should satisfy

BA = (BA)T . (2.38)
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Proof. If X is balanced in Rd then (2.37) holds with S = −α2. Conversely suppose
(2.37) holds for a configuration in Rd. If we double the dimension of the space,
padding X with rows of zeros and replace S by the 2d×2d matrix Ŝ = diag(S, S),
then we can solve the equation Ŝ = −α2 for the antisymmetric matrix α. To see
this, assume without loss of generality that Ŝ = diag(σ2

1 , . . . , σ
2
d, σ

2
1 , . . . , σ

2
d). Then

we can use the block matrix

α =

[
0 −σ
σ 0

]
σ = diag(σ1, . . . , σd).

Thus, if X satisfies (2.37), it will give rise to a rigid motion in R2d, i.e., it will be
2d-balanced.

Multiplying (2.37) by (X−C)T and using (2.24) shows that BA is symmetric.
Conversely, suppose BA = (X − C)T (X − C)A(X) is symmetric. Using Lemma
2.6.5 with L1 = X − C and L2 = (X − C)A(X) gives a symmetric d × d matrix
−S with

(X − C)A(X) = −S(X − C),

as required. �

In the following example we will use (2.38) to check for balance. Moreover,
we can avoid explicitly shifting the center of mass by just requiring BA = (BA)T

on D∗.

Figure 2.5: Three-dimensional projection of a rigid motion of a balanced con-
figuration in R4. An isosceles triangle with edges 1,

√
3/2,

√
3/2 and masses

1, 1, (
√
5 − 1)/2 is rotating with different frequencies in two orthogonal planes

in R4. The mass on the symmetry axis is in one of the planes and moves on a
circle while the other two masses move on a torus.
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Example 2.6.8. Consider a triangle with sides r12 = r, r13 = s, r23 = t. We will
investigate the inverse problem: given a configuration, find which masses make it
balanced or central. We have

A(X) =

⎡⎢⎣−
m2

r3 − m3

s3
m1

r3
m1

s3

m2

r3 −m1

r3 − m3

t3
m2

t3

m3

s3
m3

t3 −m1

s3 − m2

t3

⎤⎥⎦
and

B̂(X) = −1

2

⎡⎣ 0 r2 s2

r2 0 t2

s2 t2 0

⎤⎦ .

The condition for a balanced triangle is that the restriction of BA to D∗ be sym-
metric. To avoid explicitly shifting the center of mass, we calculate the commutator
B̂A−AT B̂ and require that eTi (BA−AB)ej = 0 for some basis e1, e2 of the plane
D∗; for example, we could use e1 = (1,−1, 0), e2 = (1, 0,−1). The result is a 2× 2
antisymmetric matrix so there is only one equation which turns out to be

m1(s
−3 − r−3)(t2 − r2 − s2) +m2(r

−3 − t−3)(s2 − r2 − t2)

+m3(t
−3 − s−3)(r2 − s2 − t2) = 0.

(2.39)

For the equilateral triangle r = s = t the equation is trivial, so the triangle is
balanced for all choices of the masses. Of course we already knew this since it is a
CC for all masses (and is even-dimensional). For any nonequilateral triangle (2.39)
gives a two-dimensional plane of masses. This plane always intersects the positive
octant, so every triangle is balanced for some two-dimensional cone of masses.
For example, the isosceles triangle with (r, s, t) = (r, s, s) is balanced for all mass
vectors with m1 = m2 and arbitrary m3. On the other hand, the right triangle
with (r, s, t) = (3, 4, 5) is balanced for 183m2 = 392m3 with m1 (the mass at the
right angle) arbitrary. Since the only non-collinear CC is the equilateral triangle,
there are plenty of triangles which are balanced but not central.

To investigate the possible rigid motions of such triangles we need to work
with configuration matrices X and find the corresponding antisymmetric angular
velocity matrices, α. For the isosceles case in R2 we can take

X =

[
0 0 x
y −y 0

]
and in Rd we can just add rows of zeros. With masses m1 = m2 = 1 we find that

XA(X) + S(X − C) = 0, S = diag(
2 +m3

s3
,

1

4y3
+

m3

s3
), s =

√
x2 + y2.

We need a d × d antisymmetric matrix with α2 = −S. This is only possible in
R2 when S = λI, that is, only for the equilateral CC case. In the nonequilateral
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case with d = 4 the only valid angular velocity matrices are the block-diagonal
matrices

J =

[
0 −σ
σ 0

]
, σ = diag(σ1, σ2), σ2

1 =
2 +m3

s3
, σ2

2 =
1

4y3
+

m3

s3
.

The isosceles triangle rotates around its symmetry axis and simultaneously
around an orthogonal axis with two different frequencies, the two planes of rotation
being orthogonal. The motion of the mass on the symmetry axis is planar and
periodic but the other two masses move on a torus which spans R4 (see Figure
2.5). For fixed m3 > 0 one can check that the eigenvalue ratio σ2

2/σ
2
1 of S varies

over ((1 + 4m3)/(8 + 4m3),∞) as the angle at m3 of the isosceles shape decreases
from π to 0.

2.7 Homographic motions in Rd

Next we will show that the orbits described in Proposition 2.5.1 are actually the
most general, nonrigid homographic motions. In particular, only central configu-
rations give rise to such motions.

Proposition 2.7.1. Every nonrigid homographic solution of the n-body problem in
Rd is of the form

X(t)− C(t) = r(t)Q(t)(X0 − C0), Q(t) = exp(θ(t)J),

where X0 is a central configuration with constant λ, (r(t), θ(t)) is a solution of the
Kepler problem (2.16), and J is an antisymmetric d × d matrix with J2|C(X0) =
−I|C(X0).

Proof following [7]. Since the motion is homographic, the right-hand side of equa-
tion (2.18) is

X(t)A(X(t)) = r(t)−3X(t)A(X0).

The fact that the n× n matrix A(X0) is M
−1-symmetric implies that it is diago-

nalizable. One of the eigenvalues is zero since the mass vector m is in the kernel,
and the others are nonpositive because of the negative semi-definiteness of AM .
Let R be an invertible n× n matrix with

R−1A(X0)R = diag(−λ1,−λ2, . . . ,−λn).

If W (t) = (X(t)− C(t))R then Newton’s equations give

Ẅ = r(t)−3X(t)A(X0)R = r(t)−3W (t)R−1A(X0)R

and so the columns wj(t) of W (t) satisfy

ẅj(t) = −λjwj(t)

r(t)3
.
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Since the solution is homographic, we have W (t) = r(t)Q(t)W0 where W0 =
(X0 − C0)R. It follows that the columns of W,W0 satisfy

|wj(t)| = r(t)|w0j |, j = 1, . . . , n.

For each column such that |w0j | �= 0, define uj(t) = wj(t)/|w0j |. Then |uj(t)| =
r(t) for j = 1, . . . , n and

üj(t) = −λjuj(t)

|uj(t)|3 ,

i.e., the normalized nonzero columns solve Kepler’s equations with constant λj .
Moreover, they all have the same norm r(t). It follows that each of these uj(t)
moves in a plane and can be represented with respect to polar coordinates in that
plane by functions r(t), θ(t) satisfying (2.16) with λ = λj .

Lemma 2.7.2. If r(t), θ(t) solves (2.16) and r(t) is not constant, then λ and θ̇(t)
are uniquely determined by r(t).

Proof. Exercise. �

Continuing with the proof of the proposition, we now see that all of the λj

corresponding to nonzero columns of W (t) are equal. Then we have

X0A(X0) = W0 diag(−λ1, . . . ,−λn)S
−1 = −λW0S

−1 = −λ(X0 − C0),

where the second equation holds because changing λj to λ for a column wj = 0
does no harm. This shows that X0 is a central configuration.

To get the rest we will use the reduced equations of motion (2.28). Since
we are assuming that X(t) is homographic, the relative state matrices have a
particularly simple form. Let Y (t) = X(t)−C(t) = X(t)P and W (t) = V (t)P be
the centered position and velocity matrices. Then Y (t) = r(t)Q(t)Y0 and W (t) =
ṙ(t)Q(t)Y0 + r(t)Q̇(t)Y0. The relative state matrices are

B(t) = r(t)2B0, C(t) = r(t)ṙ(t)B0, D(t) = ṙ(t)2B0 − r(t)2Y T
0 Ω(t)2Y0,

where Ω(t) = Q(t)T Q̇(t) ∈ so(d). The antisymmetry of this matrix implies that
terms involving Y T

0 Ω(t)Y0 in the calculation of these matrices vanish. Now calcu-
lating Ċ(t) and comparing with (2.28) gives

(rr̈ + ṙ2)B0 = D +BA = D − λr2B0, (2.40)

where we used (2.29).
Now we already found that r(t), θ(t) are solutions of Kepler’s equation. By

rescaling X0 and choosing the origin of time, we may assume that r(0) = 1 and
ṙ(0) = 0. The second assumption certainly holds at the perihelion of the Kepler
orbit. At this point the velocities and positions are orthogonal. Evaluating (2.40)
at t = 0 and using Kepler’s equation (2.16) we get

D0 = θ̇20 B0. (2.41)



2.8. Central configurations as critical points 129

We also have C0 = 0.
Let Z0 =

[
Y0 W0

]
be the initial state matrix and consider the matrices

L1 = Z0, L2 =
[
θ̇−1
0 W0 −θ̇0Y0

]
.

We have

LT
1 L2 =

[
θ̇−1
0 C0 −θ̇0B0

θ̇−1
0 D0 −θ̇0C0

]
=

[
0 −θ̇0B0

θ̇−1
0 D0 0

]
.

This 2n × 2n matrix is antisymmetric by (2.41) so, by Lemma 2.6.5, there is an
antisymmetric d× d matrix J such that

W0 = θ̇0Jy0, Y0 = −θ̇−1
0 W0 = −J2Y0.

By Proposition 2.5.1, Ỹ (t) = exp(θ(t)J)Y0 is a homographic solution and its initial
conditions

Ỹ (0) = Y0, W̃ (0) = θ̇0JY0 = W0

are the same as those of the given homographic solution, Y (t). Therefore, Y (t) =
exp(θ(t)J)Y0 as claimed. �

Although we have made a point of studying the special solutions of the n-
body problem in Rd, we will summarize the results for the physical case d = 3. The
homographic solutions in R3 are of the following types. For any central configura-
tion and any solution of the one-dimensional Kepler problem there is a homothetic
solution. For any central configuration which is contained in some two-dimensional
subspace and any solution of the two-dimensional Kepler problem, there is a homo-
graphic solution for which the bodies remain in the same plane. This is a uniform
planar rigid motion if we take the circular solution of the Kepler problem. There
are no other homographic motions. In particular, a nonplanar CC does not lead to
any rigid or homographic, nonhomothetic solutions. A configuration which is bal-
anced but not central is not balanced in R3 so does not give rise to a RE solution
in R3.

2.8 Central configurations as critical points

Now that we have some motivation for studying central configurations, lots of
interesting questions arise. Fixing the masses mi we can ask whether central con-
figurations exist and if so, how many there are up to symmetry. Working with
configuration vectors x ∈ Rdn we need to study solutions of the CC equation

∇U(x) + λM(x− c) = 0. (2.42)

If x is a CC then so is any configuration y obtained from x by translations and
rotations. In particular, the centered configuration x − c is also a CC. If k > 0
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then kx is also a central configuration but with a different λ. Recall that λ(x) =
U(x)/I(x), where I(x) is the moment of inertia around the center of mass. So

λ(kx) = λ(x)/k3.

We will view such CC’s as equivalent and refer to similarity classes of CC’s.

The key idea in this section is to interpret CC’s as constrained critical points
of the Newtonian potential. The constraint is just to fix the moment of inertia.
Since ∇I(x) = 2M(x− c), the CC equation can be written

∇U(x) + 1
2λ∇I(x) = 0.

Interpreting λ/2 as Lagrange multiplier, we get:

Proposition 2.8.1. A configuration vector x0 is a central configuration if and only
if it is a critical point of U(x) subject to the constraint I(x) = k, where k = I(x0).

It is useful for existence proofs to have a compact constraint set. We can
use the scaling symmetry to normalize the moment of inertia to be I(x) = 1 but,
because of the translation invariance, {x : I(x) = 1} is not compact. We can
eliminate the translation symmetry by fixing the center of mass.

Just as in the matrix formulation of the problem, we can view the passage
from x to x− c as an orthogonal projection. In fact

x− c = P̂ x,

where P̂ : Rdn → Rdn is the orthogonal projection onto the subspace wherem1x1+
· · ·+mnxn = 0 ∈ Rd with respect to the mass inner product vTMw. The matrix
of P̂ is

P̂ = I − 1

m0
L̂T L̂M, L̂ =

[
I I · · · I

]
, (2.43)

where L̂ is d× dn with blocks of d× d identity matrices. One can check that P̂ is
an M -symmetric projection matrix.

Define the normalized configuration space as

N = {x : c = L̂Mx = 0, I(x) = 1}.

Any configuration x determines a unique normalized configuration with c = 0
and I = 1. Note that the center of mass condition defines a subspace of Rdn of
dimension d(n− 1) and then I = 1 gives an ellipsoid in this subspace. Hence N is

a smooth compact manifold diffeomorphic to a sphere, N � Sd(n−1)−1.

Proposition 2.8.2. A configuration vector x is a central configuration if and only
if the corresponding normalized configuration is a critical point of the Newtonian
potential U(x) restricted to N .
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Proof. If x is a CC, so is the corresponding normalized configuration. Proposition
2.8.1 shows that this normalized configuration is a critical point of U(x) with the
constraint I(x) = 1, so it is still a critical point if we add the center of mass
constraint defining N .

Conversely, suppose x is a critical point of U(x) restricted to N . We need
to show that it is still a critical point if we remove the center of mass constraint.
This can be checked using the orthogonal projection P̂ . Note that N is a smooth
codimension one submanifold of the subspace ker L̂M ⊂ Rdn. Therefore x ∈ N is
a critical point of U |N if and only if

(DU(x) + kDIS(x)) v = 0

for all v ∈ ker L̂M , where k ∈ R is a Lagrange multiplier. Equivalently we need

(DU(x) + kDIS(x)) P̂ = 0,

where P̂ is the orthogonal projection onto ker L̂M from (2.43). By translation
invariance U(P̂ x) = U(x), and differentiation gives DU(x)P̂ = DU(x) for x ∈ N .
Similarly, DI(x)P̂ = DI(x). So we can drop P̂ from the last equation and take
transposes to get

∇U(x) + k∇I(x) = 0,

which is the CC equation. �

An alternative approach is based on the moment of inertia with respect to
the origin,

I0(x) = xTMx =
n∑

j=1

mj |xj |2.

For configurations with c = 0, I(x) = I0(x) and the CC equation becomes

∇U(x) + λMx = 0. (2.44)

This is the critical point equation with fixed I0(x). It turns out that (2.44) forces
c = 0 and we have:

Proposition 2.8.3. The point x is a critical point of U(x) on {x : I0(x) = 1} if and
only if x is a normalized central configuration.

Proof. If x ∈ N then c = 0 and I(x) = I0(x) = 1. If it is also a central configuration
then (2.44) holds, so it is a critical point of U(x) on {I0 = 1}. Conversely, suppose
x is a critical point of U(x) on {I0 = 1}. Then (2.44) holds. We will show that this
implies c = 0 and it follows that x ∈ N and that the CC equation (2.42) holds.

Equation (2.44) gives

λmjxj = −∇jU(x) =
∑
i	=j

Fji,
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where Fji = (mimj(xi − xj))/r
3
ij is the force on body j due to body i. Summing

over j and dividing by the total mass gives

λc =
1

m0

∑
i<j

Fij .

The terms in this sum cancel out in pairs because Fij = −Fji. Since λ > 0 we get
c = 0 as required. �

The manifold {x : I0(x) = 1} is diffeomorphic to the sphere Sdn−1 so this
approach gives compactness without explicitly imposing the center of mass con-
straint. The critical points will automatically lie in our previous constraint mani-
fold N .

It is also possible to treat balanced configurations as critical points. Modify
the vector version of the balance equation (2.37) by introducing a constant λ to
get

∇U(x) + λŜM(x− c) = 0. (2.45)

Here λ ∈ R and Ŝ = diag(S, . . . , S) is a dn× dn block-diagonal matrix with iden-
tical d×d blocks S, the positive semi-definite, symmetric matrix from Proposition
2.6.7. We will call x an S-balanced configuration (SBC) if (2.45) holds for some λ.
CC’s are a special case with S = I. By putting a λ into (2.45) we can say that x
and kx are both S-balanced. The equation is also invariant under translations but
generally not invariant under rotations. In fact, the matrix S transforms under
rotations and scalings via

S(kQx) = k−3QSQT .

In the CC case we have S = I and we get rotation invariance. The other extreme
would be that S has d distinct eigenvalues and then it is not stabilized by any
rotation. By choosing an appropriate rotation Q we can get

QSQT = diag(σ2
1 , σ

2
2 , . . . , σ

2
d).

It is no loss of generality to assume S positive definite since it is definite on C(x)
and we could extend it arbitrarily on C(x)⊥.

To handle SBC’s in a similar way to CC’s, we will define an S-weighted
moment of inertia. Assuming that S is positive definite, we can use it to define a
new inner product and norm on Rd,

〈ξ, η〉S = ξTSη, |ξ|2S = ξTSξ.

Then set

IS(x) = (x− c)T ŜM(x− c) =

n∑
j=1

mj |xj − c|2S .
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As in the CC case, the constant λ in (2.45) is λ = U(x)/IS(x). Define the S-
normalized configuration space

N (S) = {x : c = L̂Mx = 0, IS(x) = 1}.
Then, as for CC’s, we have:

Proposition 2.8.4. A configuration vector x is a S-balanced configuration if and
only if the corresponding normalized configuration is a critical point of U(x) re-
stricted to N (S).

One of the main applications of the characterization of CC’s and SBC’s as
critical points are the existence proofs. For example:

Corollary 2.8.5. For every choice of masses mi > 0 in the n-body problem in Rd,
there is at least one central configuration. For every choice of masses and every
d × d positive definite symmetric matrix S, there exists at least one S-balanced
configuration.

Proof. It suffices to consider SBC’s, since CC’s are a special case. Note that N (S)
is a compact submanifold of Rdn. The Newtonian potential defines a smooth func-
tion U : N (S) \Δ → R. The singular set N (S) ∩Δ is compact and U(x) → ∞ as
x → Δ. It follows that U attains a minimum at some point x ∈ N (S) \Δ and this
point will be an S-balanced configuration. �

Although restricting to the compact space N or N (S) is useful, there are a
couple of alternative variational characterizations of CC’s and SBC’s as uncon-
strained critical points. The first version is obtained by normalizing the constant
λ instead of the moment of inertia. For every solution of (2.42) or (2.45), there is
a rescaled solution with λ = k, where k > 0 is any positive constant. If we choose
k = 2 then this rescaled configuration will be a critical point of the function

F (x) = U(x) + IS(x)

on Rdn, i.e., with no constraint on x. Or, we can impose the linear constraint
c = 0. Another variational approach is to avoid normalization altogether and look
for critical points of the homogeneous function

G(x) =
√
IS(x)U(x) or IS(x)U(x)2.

One can check that if x is a solution of (2.45) we get a ray of critical points kx,
k > 0, for these functions.

In the CC case, the Newtonian potential determines a function on the quo-
tient space

M = (N \Δ)/ SO(d).

However, for d > 2 the action of the rotation group is not free and the quotient
space is not a manifold. We can get a manifold by restricting to the configurations
of a given dimension.
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An amusing application of the variational approach on a reduced space is
the study of central configurations of maximal dimension. For any configuration
of n-bodies, the centered position space has dimC(x) ≤ n − 1. We will look for
CC’s with dimC(x) = n− 1.

Proposition 2.8.6. The only central configuration of n-bodies with dimC(x) = n−1
is the regular n-simplex and it is a central configuration for all choices of the
masses.

Proof. Without loss of generality we can consider the n-body problem in Rn−1.
The configuration space is Rn(n−1) \ Δ and the centered configurations form a
subspace of dimension n(n− 1)− (n− 1) = (n− 1)2. The subset of configurations
with dimC(x) = n−1 is an open subset. The rotation group SO(n−1) acts freely
on this open set and we can look for critical points on the quotient space which
will be a smooth manifold of dimension

(n− 1)2 − (n− 1)(n− 2)

2
=

n(n− 1)

2
.

The dimension suggests using the mutual distances rij , 1 ≤ i < j ≤ n, as local
coordinates. We will look for unconstrained critical points of U(x) + I(x), where
we express both terms as functions of the rij using (2.2) and (2.9). We get

∂U

∂rij
+

∂I

∂rij
= −mimj

r2ij
+

2mimjrij
m0

= 0.

The masses cancel out and the mutual distances are equal to r3ij = m0/2. �

The variational characterization suggests using the gradient flow of the New-
tonian potential to understand central or balanced configurations. Generically, a
smooth function on a smooth manifold is a Morse function, i.e., it has isolated
critical points which are nondegenerate. Due to the rotational symmetry, critical
points of U |N will never be isolated for d ≥ 2. One can try to eliminate the ro-
tational symmetry or just work with the similarity classes of critical points. We
can still hope for these classes to be isolated from one another or nondegenerate
in some sense.

First we deal with another problematic aspect of the gradient flow, the lack
of compactness. The manifold N (S) is compact, but the flow is only defined on
the open subset N (S) \ Δ. The next result, known as Shub’s lemma [32], shows
that CC’s and SBC’s are bounded away from Δ.

Proposition 2.8.7. For fixed masses m1, . . . ,mn and a fixed positive definite sym-
metric matrix S, there is a neighborhood of Δ in N (S) which contains no S-
balanced configurations.

Proof. Otherwise, there would be some x̄ ∈ N (S) ∩ Δ and a sequence of SBC’s
xk ∈ N (S) with xk → x̄ as k → ∞. The collision configuration x̄ defines a partition
of the bodies into clusters, where mi,mj are in the same cluster if x̄i = x̄j . For k



2.8. Central configurations as critical points 135

large, the bodies in each cluster will be close to each other but the clusters will be
bounded away from one another.

Let Fi(x
k) = ∇iU(xk) be the force on the i-th body. Since xk is a normalized

SBC, we have
Fi = −λkmiSx

k
i , λk = U(xk).

Let γ ⊂ {1, . . . , n} be the set of subscripts of one of the clusters. Then,∑
i∈γ

Fi = −λkS
∑
i∈γ

mix
k
i . (2.46)

As k → ∞, we have λk = U(xk) → ∞ since x̄ ∈ Δ. On the other hand

S
∑
i∈γ

mix
k
i → Smγ x̄γ ,

where mγ is the total mass of the cluster and x̄γ is the common value of the
limiting positions x̄i, i ∈ γ. We will show below that the left-hand side of (2.46)
is bounded. It follows that we must have x̄γ = 0 for all of the clusters. In other
words, there could be only one cluster and it would have to be at the origin. But
this is impossible since IS(x̄) = 1.

To see that the left-hand side of (2.46) is bounded, we can split the sum as∑
i∈γ

Fi =
∑
i,j∈γ
i�=j

Fij +
∑
i∈γ
l/∈γ

Fil,

where Fij = (mimj(xj − xi))/r
3
ij is the force on body i due to body j. The first

sum is identically zero since Fij = −Fji, and the second is bounded by definition
of cluster. �

It follows from Shub’s lemma that if the similarity classes of CC’s or SBC’s
are isolated then there are only finitely many of them. To see this, let U denote
a neighborhood of Δ in N (S) which contains no SBC’s. Since the complement
N (S)\U is compact, a hypothetical infinite sequence of distinct, similarity classes
would have normalized representatives with a convergent subsequence. The limit-
ing configuration would be a nonisolated SBC.

If we allow the masses to vary, it is possible to find a sequence of CC’s, say
x̄k, converging to Δ. This idea was used by Xia in [36], and further explored in
[21]. The masses in each nontrivial cluster all tend to zero. The limiting shapes of
the clusters are governed by equations similar to the CC equation.

It is interesting to classify CC’s and SBC’s by their Morse index. Recall that
if x is a critical point of a smooth function V on a manifold N , there is a Hessian
quadratic form on the tangent space TxN which is given in local coordinates by
the symmetric matrix of second partial derivatives,

H(x)(v) = vTD2V (x)v.
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Alternatively, if γ(t) is any smooth curve in N with γ(0) = x and γ′(0) = v then

H(x)(v) =
1

2

d2

dt2
V (γ(t))|t=0.

The Morse index ind(x) is the maximum dimension of a subspace of TxN on which
H(x) is negative definite. The nullity is the dimension of

kerH(x) = {v : H(q)(v, w) = 0 for all w ∈ TxN},
where H(x)(v, w) = vTD2V (x)w is the symmetric bilinear form associated to
H(x). We are interested in the function V = U |N (S) given by restricting the
Newtonian potential to the normalized configuration space.

Instead of working in local coordinates, we want to represent the Hessian by
a dn× dn matrix, also called H(x), whose restriction to TxN (S) gives the correct
values.

Proposition 2.8.8. The Hessian of V : N (S) → R at a critical point x is given by
H(x)(v) = vTH(x)v, where H(x) is the dn× dn matrix

H(x) = D2U(x) + U(x)ŜM. (2.47)

Proof. A critical point of V is also an unconstrained critical point of G(x) =√
IS(x)U(x) in Rdn. Since G|N (S) = U |N (S) = V , their Hessians on TxN (S)

agree.
To calculate D2G first recall that IS(x) = xT P̂T ŜMP̂x. For any vector

w ∈ Rdn, we have
DIS(x)w = 2xT P̂T ŜMP̂w.

Hence,
DG(x)w = IS(x)

1
2 DU(x)w + IS(x)

− 1
2U(x)xT P̂T ŜMP̂w.

We are only interested in computing D2G(x)(v, w) where v, w ∈ TxN (S). In
that case we have

IS(x) = 1, P̂ v = v, xT P̂T ŜMP̂v = 0,

and analogous equations for w. Differentiating G again and using these equations
we get

D2G(x)(v, w) = D2U(x)(v, w) + U(x)vT ŜMw,

as claimed. �

It is straightforward to calculate the dn× dn matrix D2U(x) with the result

D2U(x) =

⎡⎢⎣D11 D12 · · · D1n

D21 D12 · · · D2n

...
...

⎤⎥⎦ , (2.48)
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where the d× d blocks are

Dij =
mimj

r3ij

(
I − 3uiju

T
ij

)
, uij =

xi − xj

rij
, for i �= j,

and
Dii = −

∑
j 	=i

Dij .

The following formula for the value of the Hessian quadratic form on a vector
v ∈ Rdn is sometimes useful:

H(x)(v, v) =
∑
i<j

mimj

r3ij

(−|vij |2 + 3(uij · vij)2
)
+ U(q)vTMv, (2.49)

where vij = vi − vj ∈ Rd.
As noted above, the rotational symmetry implies that CC’s are always de-

generate as critical points for d ≥ 2. The following result describes the minimal
degeneracy.

Proposition 2.8.9. Let x ∈ N be a CC in Rd. Then the nullity of x as a critical
point U |N satisfies

null(x) ≥ d(d− 1)

2
− k(k − 1)

2
, k = d− dim (x) = d− dim C(x). (2.50)

Proof. The formula just gives the dimension of the subspace of TxN consisting of
tangent vectors to the action of the rotation group, i.e., the subspace

{v = αx : α ∈ so(d)}.

To see this, first note that the manifold N is rotation invariant. For any curve of
rotations Q(t) ∈ SO(d) with Q(0) = I, we have

Q̇(t)x|t=0 = αx ∈ TxN .

But x is stabilized by rotations which fix the subspace C(x). This stabilizer is
isomorphic to the rotation group of the orthogonal complement C(x)⊥ which has
dimension k. �

For SBC’s the corresponding minimal nullity will depend on how the rotation
group acts on the symmetric matrix S. If S has distinct eigenvalues, it is possible
for SBC’s to be nondegenerate. For example, recall that for masses m1 = m2 = 1
and m3 > 0 any isosceles triangle is balanced with the eigenvalues of S varying
with the shape. One can check using a computer that generic choices of isosceles
shape lead to nondegenerate SBC’s.

In all cases, it is natural to call a critical point nondegenerate if its nullity is
as small as possible given the rotational symmetry.
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Definition 2.8.10. A CC or SBC in Rd is nondegenerate if the nullity of the cor-
responding critical point is as small as possible consistent with the rotational sym-
metry. For CC’s this means that equality should hold in (2.50).

For example in R3 a nondegenerate collinear CC has nullity 2, while nonde-
generate planar and spatial CC’s have nullity 3.

2.9 Collinear central configurations

The first central configurations were discover by Euler in 1767, see [11]. He stud-
ied the collinear three-body problem where he found collinear central configura-
tions and the corresponding homothetic motions. Moulton investigated the central
configurations of the collinear n-body problem in 1910, see [25]. The results are
definitive in contrast to the state of the theory for d ≥ 2. This section is devoted
to proving Moulton’s theorem:

Proposition 2.9.1 (Moulton’s Theorem). Given masses mi > 0, there is a unique
normalized collinear central configuration for each ordering of the masses along
the line.

Note that when d = 1 there is no difference between CC’s and SBC’s due to
the lack of variety in 1× 1 symmetric matrices.

It is instructive to start with Euler’s case n = 3. The normalized configuration
space

N = {x ∈ R3 : m1x1 +m2x2 +m3x3 = 0, m1x
2
1 +m2x

2
2 +m3x

2
3 = m0}

is the curve of intersection of a plane and an ellipsoid. The collision set consists
of three planes:

Δ = {x1 = x2} ∪ {x1 = x3} ∪ {x2 = x3}
which divide the curve into six arcs corresponding to the different orderings of the
three masses along the line (see Figure 2.6). Since U → ∞ at these points, there
must be at least one critical point in each of the arcs. To see that there is only
one requires more work.

The three mutual distances provide convenient coordinates, but we need to
subject them to a collinearity constraint. If we fix the ordering of the bodies to be
x1 < x2 < x3 then the constraint is r12 + r23 − r13 = 0. Looking for critical points
of the homogeneous function F = U(rij)

2I(rij) with this constraint, and then
normalizing by setting r12 = r, r13 = 1, r23 = 1− r gives a degree five polynomial
equation for r:

(m2 +m3)r
5 + (2m2 + 3m3)r

4 + (m2 + 3m3)r
3

− (3m1 +m2)r
2 − (3m1 + 2m2)r − (m1 +m2) = 0.

(2.51)

Fortunately there is a single sign change so Descartes’ rule of signs implies there
is a unique positive real root. Of course, there is no simple formula for how this
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Figure 2.6: N for the collinear three-body problem is the boundary circle of the
shaded disk which represents the set I ≤ 1 in the plane of centered configurations.
Δ intersects this plane in three lines which divide the circle into six arcs, one for
each ordering of the bodies along the line.

root changes as a function of the masses. Euler’s example is a shot over the bow
about the CC equation. Even in the simplest nontrivial case, finding CC’s for
given masses involves solving complicated polynomial equations. Figure 2.7 shows
a surface defined by Euler’s quintic when one of the masses is normalized to 1.
The surface lies over the mass plane in a complicated way making the uniqueness
result for fixed positive masses all the more remarkable.

Before moving on to the proof of Moulton’s theorem we will have a look at the
geometry of the next case, n = 4. This time N is the intersection of a hyperplane
and an ellipsoid in R4. So it is a two-dimensional surface diffeomorphic to S2. There
are six collision planes which divide the sphere into 4! = 24 triangles. Figure 2.8
shows how the collision planes divide the sphere.

Proof of Moulton’s Theorem. The collision set Δ divides the ellipsoid N of nor-
malized centered configurations into n! components, one for each ordering of the
bodies along the line. Let V denote any one of these components, an open set
whose boundary is contained in Δ. The Newtonian potential gives a smooth func-
tion U |V : V → R, and U(x) → ∞ as x → ∂V . Hence U |V attains its minimum at
some x0 ∈ V and x0 is a CC with the given ordering of the bodies along the line.

Instead of working on the normalized space where I(x) = 1 we can study the
function F (x) = U(x) + I(x) on the cone Ṽ of all rays through the origin passing
through V (in Figure 2.6 this would be an infinite triangular wedge based on one
of the six arcs). Let x, y ∈ Ṽ and consider a line segment p(t) = (1 − t)x + ty,
0 ≤ t ≤ 1. Note that since the ordering is fixed, the sign of pi(t) − pj(t) =
(1− t)(xi − xj) + t(yi − yj) is equal to the common sign of xi − xj and yi − yj . It
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Figure 2.7: Surface defined by Euler’s quintic equations in the product space of
masses and configurations. Two mass parameters (horizontal) and one configura-
tion variable r (vertical). Fixing the masses means looking for intersections of the
surface with a vertical fiber, here a line segment. For positive masses, the segment
cuts the surface just once.

follows that p(t) ∈ Ṽ for all t and so Ṽ is a convex set. We will show that if x �= y
then F (p(t)) has a strictly positive second derivative. It follows that x, y cannot
both be critical points of F (x).

First consider F (rij) as a function of the mutual distances rij on (R+)
n(n−1)

2 .
We have

∂2F

∂r2ij
=

2mimj

r3ij
+

2mimj

m0
> 0.

Now since the configurations x, y are collinear, the mutual distances reduce to
rij(t) = |pi(t) − pj(t)| and, as the ordering is constant along the segment, this is
a linear function of t. It follows that F (p(t))′′ is a sum of terms

∂2F

∂r2ij
(p(t))

(
r′ij(t)

)2
.

These terms are all nonnegative and at least one is positive if x �= y. �

Next we will take a look at the Hessian H(x) of a collinear CC. Using the
rotation invariance of U we get

H(Qx) = QTH(x)Q,
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Figure 2.8: N for the collinear four-body problem. The collision planes divide the
sphere into triangles representing the possible orderings of the bodies.

where H(x) is given by (2.47) and Q ∈ SO(d) is any rotation. It follows that
the index and nullity are unchanged by such rotations. If x is collinear, we can
therefore assume that all of the bodies have positions xj ∈ R1 × {0}d−1 ⊂ Rd.
Then the unit vectors uij appearing in the formula (2.48) are all multiples of
e1 = (1, 0, . . . , 0). It follows that if we permute the components of configuration
vectors into groups of n with all of the e1 components first, the e2 components
next, etc., then D2U(x) will have a block-diagonal form

D2U(x) = diag(−2Ã, Ã, . . . , Ã),

where

Ã =

⎡⎢⎢⎢⎢⎢⎣
Ã11

m1m2

r312
· · · m1mn

r31n
m1m2

r312
Ã22 · · · m2mn

r32n
...

...
m1mn

r31n

m2mn

r32n
· · · Ãnn

⎤⎥⎥⎥⎥⎥⎦ , Ãjj = −
∑
i	=j

Ãij = −
∑
i	=j

mi

r3ij
.

Note that Ã is just the symmetric matrix A(X)M from Section 2.4.
Let v = (ξ1, ξ2, . . . , ξd)

T denote a vector in Rdn with its coordinates permuted
into groups of n as described above. Vectors of the form v = (ξ1, 0, . . . , 0)

T will be
called collinear vectors and those of the form v = (0, ξ2, . . . , ξn)

T normal vectors.
We are interested in the tangent space TxN to the normalized configuration space.
With these coordinates the center of mass subspace, ker L̂M , is given by

m · ξi = 0, i = 1, . . . , d,
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where m ∈ Rn is the mass vector. Since x is collinear, the equation DI(x)v = 0
affects only the first vector ξ1:

m1x11ξ11 + · · ·+mnxn1ξ1n = 0.

Finally, the action of the rotation group leads to a (d − 1)-dimensional subspace
of vectors in the kernel of the Hessian. A basis is ω2(x), . . . , ωd(x), where ωi(x) is
the vector whose i-th group of n coordinates is the vector of first coordinates of
the configuration, (x11, x21, . . . , xn1). For example, ω2(x) is the tangent vector at
x in the direction of a rotation in the (1, 2)-coordinate plane.

Proposition 2.9.2. Every collinear central configuration in Rd is nondegenerate
with null(x) = d−1 and ind(x) = (d−1)(n−2). In the collinear tangent directions,
H(x) is positive definite while in the normal directions it is negative semi-definite.

Proof. We will analyze the Hessian block-by-block. The first block of the Hessian
corresponds to the collinear directions and we have

ξTH(x)ξ = −2ξT Ãξ + U(x)ξTMξ,

where M is the n× n version of the mass matrix. We showed in Section 2.4 that
the matrix Ã = AM is negative semi-definite, so both terms here are nonnegative
and the second is strictly positive for nonzero vectors. Therefore the collinear part
of the Hessian is positive definite.

For each of the other blocks we have

ξTH(x)ξ = ξT Ãξ + U(x)ξTMξ.

The terms are of different signs and it is a subtle problem to see which is dominant.
The following proof, due to Conley, appears in [27].

Instead of finding the index and nullity of H(x) we will find the number of
negative and zero eigenvalues of the linear map with matrix

M−1H(x) = M−1Ã+ U(X)I.

It is possible to guess two eigenvalues and eigenvectors. Let u1 =
[
1 · · · 1

]T
.

Since the row sums of Ã are zero we have

M−1Hu1 = λ1u1, λ1 = U(x) > 0.

However, this vector is orthogonal to the zero center of mass subspace so is
not relevant for our index and nullity computation. Next we have u2 = x =[
x1 · · · xn

]T
, where we have simplified the notation so xi ∈ R denotes the

position of the i-th body along the line. Then a short computation gives

M−1Ãu2 = M−1∇U(x),
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where ∇ is the gradient in Rn. Since x is a normalized CC we have M−1∇U(x) =
−U(x)x = −U(x)u2 and so

M−1Hu2 = (M−1Ã+ U(x)I)u2 = −U(x)u2 + U(x)u2 = 0.

In other words u2 is an eigenvector with eigenvalue λ2 = 0. We have one such null
vector for each of the last d − 1 blocks. Note that u2 is the vector ωi(x) tangent
to the rotation group action. If we can show that the other n − 2 eigenvalues of
M−1H are strictly negative, the proposition will be proved.

Conley’s proof uses the dynamics of the linear flow of the differential equation

ξ̇ = M−1Ãξ.

Every linear flow determines a flow on the space of lines through the origin, and
the eigenvector lines are exactly the equilibrium points. Moreover the equilibrium
corresponding to the largest eigenvector is an attractor for this projectivized flow.
If we can show that the line of the eigenvector u2 = x is an attractor, then it
follows that all of the other eigenvalues of M−1Ã are strictly less than −U(x) and
so all of the other eigenvalues of M−1H(x) are negative.

Suppose that the ordering of the bodies along the line is x1 < x2 < · · · < xn.
Define a cone in the zero center of mass subspace by

K = {ξ : m · ξ = 0, ξ1 ≤ ξ2 ≤ · · · ≤ ξn}.
This cone contains the line spanned by the eigenvector u2 in its interior and does
not contain any two-dimensional subspaces. We will show that the flow carries K
strictly inside itself. It follows that for the projectivized flow, u2 is an attractor.

Now the boundary of K is the set where one or more of the inequalities in
the definition is an equality. Consider a boundary point where, for some i < j, we
have

ui−1 ≤ ui = · · · = uj ≤ uj+1.

The differential equation gives

u̇i =
∑
k 	=i

mk

r3ik
(uk − ui), u̇j =

∑
k 	=j

mk

r3jk
(uk − uj).

Since ui = uj the difference of these can be written:

u̇j − u̇i =
∑
k 	=i,j

mk(uk − ui)

[
1

r3jk
− 1

r3ik

]
.

Every term in this sum is nonnegative:

if k < i, uk − ui ≤ 0 and 1
r3jk

− 1
r3ik

< 0;

if i < k < j, uk − ui = 0;

if j < k, uk − ui ≥ 0 and 1
r3jk

− 1
r3ik

> 0.
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Moreover, not all of the terms can vanish since otherwise u would be a mul-

tiple of
[
1 · · · 1

]T
, which is not in the zero center of mass space. It follows that

at this boundary point u̇j − u̇i > 0 so the point moves strictly inside the cone
under the linear flow. It follows that the line determined by u2 is an attractor, as
required. �

2.10 Morse indices of non-collinear central

configurations

Unfortunately, much less is known about the Morse indices of non-collinear CC’s.
The following result gives a weak lower bound on the index which, at least, shows
that a minimum must have the maximum possible dimension.

Proposition 2.10.1. Suppose x is a central configuration of the n-body problem
in Rd with dim (x) < min(d, n − 1). Then the Morse index of the corresponding
critical point satisfies ind(x) ≥ d− dim (x). In particular, the critical point is not
a local minimum of U |N .

As a corollary we get the existence of CC’s of the n-body problem of all
possible dimensions.

Corollary 2.10.2. For the n-body problem in Rd and for any k with 1 ≤ k ≤
min(d, n− 1) there exists at least one central configuration with dim (x) = k.

Proof. We have seen that U |N achieves a minimum at some CC x, and it follows
from the proposition that dim (x) = min(d, n − 1). If 1 ≤ k < min(d, n − 1) then
we can further restrict U to a subspace of Rd of dimension k and get a CC of
dimension min(k, n− 1) = k. �

Proof of Proposition 2.10.1. If dim (x) = k < min(d, n−1) we can assume that all
of the bodies have position vectors xj ∈ W = Rk × {0}d−k. As in the last section

we get a block decomposition of the Hessian D2U(x) = diag(D2(U |W), Ã, . . . , Ã),
where D2(U |W) is the nk × nk tangential part, and where there are d− k copies
of the familiar n×n block Ã. We will show that the matrix M−1Ã+U(x)I has at
least one negative eigenvalue whose eigenvector has zero center of mass. Since the
eigenvalue in the u1-direction normal to the center of mass subspace is λ1 = U(x),
it suffices to show that tr(M−1Ã+ U(x)I) < −U(x) or, equivalently,

τ = − trM−1Ã > (n− 1)U(x).

Now

τ =
∑
i

∑
j 	=i

mj

r3ij
=

∑
(i,j)
i<j

mi +mj

r3ij
.

The problem, of course, is that we do not have much control over the mutual
distances. All we know is that we are at some CC. The following approach is due
to Albouy [1].
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We will use the reduced version of the CC equation (2.29). Viewing B as
a bilinear form on the hyperplane D∗, we can use the matrix representative B̂
from (2.27). For each pair of standard basis vectors in Rn, ei, ej , i < j, we have
ei − ej ∈ D∗. From (2.29),

(ei − ej)
T (B̂A+ λB̂)(ei − ej) = 0, i < j.

We have (ei − ej)
T B̂(ei − ej) = r2ij . The other term is more complicated but with

some effort we arrive at

2λ =
2(mi +mj)

r3ij
+

∑
k 	=i,j

mk

(
1

r3ik
+

1

r3jk

)
+

∑
k 	=i,j

mk(r
2
ik − r2jk)

(
1

r3ik
− 1

r3jk

)
.

Note that the two parentheses in the last sum always have opposite signs unless
they are both zero. So the sum is strictly negative unless all of the mutual distances
are equal. However, this would mean that the configuration was the regular simplex
with dim (x) = n− 1. By hypothesis, this is not the case, so we can drop the last
sum to get a strict inequality. Summing this inequality over all pairs i < j gives

n(n− 1)λ < nτ.

Since x is a normalized CC, we have λ = U(x) and this is exactly the inequality
we need. �

Upper bounds on the index are also of interest. For planar central configura-
tions we have the following result of Palmore which shows that the collinear CC’s
have the maximum possible index.

Proposition 2.10.3. If x is a central configuration of the n-body problem in R2,
then ind(x) ≤ n− 2.

Proof. For the planar problem, the dimension of the normalized configuration
space is dimN = 2n− 3. The tangent space TxN is given by

xTMv = 0, L̂Mv = 0,

where L̂ is the 2× 2n matrix consisting of n copies of the 2× 2 identity matrix.
Let j be the rotation of the plane by π/2 and let it act on vectors v =

(v1, . . . , vn) ∈ R2n by jv = (jv1, . . . , jvn), as usual. The vector v0 = jx is in
the tangent space and is tangent to the action of the rotation group SO(2) so
v0 ∈ kerH(x). The orthogonal complement v⊥0 is a (2n− 4)-dimensional subspace
of TxN and is invariant under the action of j.

For v ∈ TxN , it turns out that H(x)(v, v) +H(x)(jv, jv) > 0. To see this we
will use formula (2.49). The inner product terms are

3(uij · vij)2 + 3(uij · jvij)2 = 3|vij |2



146 Chapter 2. Central Configurations

since the vectors uij and juij form an orthonormal basis for R2. Then (2.49) gives

H(x)(v, v) +H(x)(jv, jv) =
∑
i<j

mimj

r3ij

(|vij |2)+ 2U(q)vTMv > 0.

Suppose S ⊂ TxN is a maximal subspace on which H(x) is negative semi-
definite. We may as well assume that S ⊂ v⊥0 . From the positivity of H(x)(v, v) +
H(x)(jv, jv) it follows that we must have S ∩ jS = {0} and hence ind(x) =
dimS ≤ n− 2. �

For d = 3 it is known, at least, that U |N does not have any local maxima.
See [20, 23] for these results. I don’t know if this is still true for d > 3.

2.11 Morse theory for CC’s and SBC’s

In this section we will describe how to use Morse theory to prove existence of CC’s.
This approach was initiated by Smale [34] and developed by Palmore [28] for the
planar n-body problem, and then extended to three dimensions using equivariant
Morse theory by Pacella [27]. An alternative approach to the three-dimensional
case is due to Merkel [19].

Recall that central configurations in Rd, d ≥ 2, correspond to degenerate
critical points of U |N due to the action of the symmetry group SO(d). In the
planar case, SO(2) � S1 acts freely on N \Δ and we can think of U as a smooth
function on the quotient manifold

M = (N \Δ)/ SO(2).

We can still define such a quotient space when d > 2 but, due to the non-free action
of SO(d), it will not be a manifold. In Section 2.8, we defined the concept of non-
degeneracy for CC’s with the symmetry group in mind so, using this terminology,
a nondegenerate CC of the planar n-body problem determines a nondegenerate
critical point in the manifold M.

A generic smooth function on a manifold is a Morse function, that is, all of
its critical points are nondegenerate. But it is difficult to actually verify this for
particular functions like the Newtonian potential. From Proposition 2.9.2 we know
that the collinear CC’s are nondegenerate.

When n = 3 the only non-collinear CC’s are the equilateral triangles and
these are nondegenerate. The same holds for the regular simplex in the n-body
problem.

Proposition 2.11.1. For every choice of n positive masses, the regular simplex
is a nondegenerate central configuration. It is a nondegenerate minimum of the
potential in the quotient space M.
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Proof. Suppose d = n−1. As noted above, SO(d) acts freely on the open subset of
Rn(n−1) \Δ consisting of configurations with dim (x) = n− 1, and we can use the
mutual distances rij as local coordinates in the corresponding open subset of the
quotient space under rotations and translations. In these coordinates, the matrix
of second derivatives of F = I+U is diagonal and the partial derivatives ∂2F/∂r2ij
are all positive.

Now suppose we have a curve γ(t) of normalized configurations passing
through the regular simplex when t = 0, and whose tangent vector γ′(0) is
not in the direction of the rotational symmetry. We would like to show that
U(γ(0))′′ > 0. The corresponding curve of mutual distances rij(t) passes through
the equal-distance point corresponding to the normalized regular simplex and we
have F (rij(t)) = 1 + U(γ(t)). From the discussion in the previous paragraph we
have U(γ(0))′′ = F (rij(0))

′′ > 0, as required. �

It follows that for the planar three-body problem and for all choices of the
three masses, the Newtonian potential determines a Morse function on M. The
space of normalized triangles is a three-dimensional ellipsoid. The quotient space
under the rotation group is diffeomorphic to S2 and is called the shape sphere
since it represents all possible shapes of triangles in the plane up to translation,
rotation and scaling. M is the shape sphere with three collision shapes deleted.
Figure 2.9 shows the level curves of the potential for two choices of the masses. The
poles represent the equilateral triangles which are minima. On the equator, which
represents the collinear shapes, there are the three collinear central configurations
found by Euler, which are saddle points.

Figure 2.9: M for the planar three-body problem is the shape sphere. The New-
tonian potential determines a Morse function with five critical points, shown here
for the case of equal masses (left) and masses 1, 2, and 10 (right).

For n > 3, d ≥ 2, it is much harder to check whether the critical points are
nondegenerate. For the planar four-body problem Palmore showed that degenerate
central configurations can occur for some choices of the masses and this is related
to bifurcations in the number of central configurations as the masses are varied.
Simó investigated the bifurcations numerically [33]. In Section 2.14 we will show
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that for generic choices of the masses in the planar four-body problem the potential
determines a Morse function.

Now we will see what Morse theory tells us about the number of central
configurations in the plane, taking the nondegeneracy of the critical points as an
assumption. Morse theory is based on the gradient flow induced by a function on a
Riemannian manifold. In our case the manifold is the quotient manifold M, where
we can use the restriction of the mass inner product as the Riemannian metric.
First consider the gradient flow on N \Δ. If the masses are fixed, Shub’s lemma
allows us to restrict to a compact set of the form K = {x ∈ N : U(x) ≤ U0}
for some sufficiently large U0. By definition, the gradient vector field of U |N with
respect to an inner product is the unique tangent vector field ∇̃U(x) with the
property

〈∇̃U(x),W 〉 = DU(x)W, W ∈ TxN .

Using the mass inner product 〈ξ, η〉 = ξTMη, one can check that the gradient
vector field is the restriction of

∇̃U(x) = M−1∇U(x) + U(x)x

to N . By rotation invariance, this vector field determines a gradient flow on the
quotient spaceM. Orbits of the gradient flow cross the level sets of U orthogonally
in the direction of increasing U . Orbits starting in the compact set K will continue
to exist at least until they reach the exit level U = U0.

The Morse inequalities relate the indices of the critical points of a Morse
function on a manifold M to the topology of the manifold. They are most easily
expressed in terms of polynomial generating functions. Define the Morse polyno-
mial as

M(t) =
∑
k

γkt
k,

where γk is the number of critical points of index k, and the Poincaré polynomial
as

P (t) =
∑
k

βkt
k,

where βk is the k-th Betti number of the manifold, i.e., the rank of the homology
group Hk(M,R) with real (or rational) coefficients. Then the Morse inequalities
can be written

M(t) = P (t) + (1 + t)R(t), (2.52)

where R(t) is some polynomial with nonnegative integer coefficients. In particular,
the Betti number βk is a lower bound on the number of critical points of index k.

It turns out that the manifold M has a complicated topology so the Morse
inequalities give interesting results. Recall that, for the n-body problem in Rd, the
space N of normalized configurations is an ellipsoid of dimension d(n− 1)− 1. It
is the deletion of collision set Δ which produces the topological complexity.
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Proposition 2.11.2. For the n-body problem in Rd, the Poincaré polynomial of
N \Δ is

P̃ (t) = (1 + td−1)(1 + 2td−1) · · · (1 + (n− 1)td−1).

In particular, for the planar three-body problem we have

P̃ (t) = (1 + t)(1 + 2t) = 1 + 3t+ 2t2.

Proof. It suffices to find the Betti number of the unnormalized space Rdn \Δ. To
do this, note that the normalization of the center of mass and moment of inertia
gives a diffeomorphism

Rdn \Δ � Rd × R+ × (N \Δ).

Now Künneth’s theorem from algebraic topology shows that the Poincaré polyno-
mial of a product space is the product of the Poincaré polynomials of the factors.
Here, the first two factors are homologically trivial with Poincaré polynomials
equal to 1.

The computation for Rdn \Δ is by induction on n. For n = 1 we have

Rd \Δ = Rd \ {0} � R+ × Sd−1

and we get the Poincaré polynomial of a sphere, P̃ (t) = 1 + td−1. For n > 1 we
have a fiber bundle π : Rdn \Δ → Rd(n−1)\Δ where the projection just forgets the
n-th body, π(x1, . . . , xn) = x1, . . . , xn−1). The fiber over a point (x1, . . . , xn−1) is
Rd \ {n− 1 points} because the n-th body must avoid the other n− 1. Now this
fiber bundle is not a product but it does satisfy certain topological conditions
which guarantee that the Poincaré polynomials multiply. First, there is a cross-
section map σ : Rd(n−1) \ Δ → Rdn \ Δ with π ◦ σ = id. For example, we could
let the n-th body of σ(x1, . . . , xn−1) be at the point obtained by translating the
barycenter of the other n−1 bodies a distance greater than the maximum distance
between these bodies in the direction of the first coordinate axis. In addition, the
fundamental group of the base acts trivially on the fiber (for d �= 2 the base is
simply connected). In any case, we go from the Poincaré polynomial for (n − 1)
bodies to the polynomial for n bodies by multiplying by the Poincaré polynomial
of the fiber, namely 1 + (n− 1)td−1. �

Next we restrict attention to the planar problem and pass to the quotient
space M under the S1 action. The image of the normalized space N � S2n−3 is
diffeomorphic to the complex projective space CP(n − 2) and the projection is a
nontrivial circle bundle. But when we delete the collision set, the bundle becomes
trivial. For example, there is a global cross-section to the circle action consisting
of all noncollision configurations where the vector from x1 to x2 is the direction
of the positive first coordinate axis. It follows that, in the planar case,

N \Δ � S1 ×M.
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Proposition 2.11.3. For the n-body problem in R2, the Poincaré polynomial of the
rotation reduced, normalized configuration space is

P (t) = (1 + 2t) · · · (1 + (n− 1)t).

Proof. Since N \Δ is the product of a circle and M, we have P̃ (t) = (1 + t)P (t).
Then Proposition 2.11.2 with d = 2 gives the result. �

For example when n = 3, 4 we have, respectively,

P (t) = 1 + 2t, P (t) = (1 + 2t)(1 + 3t) = 1 + 5t+ 6t2.

For n = 3, the Betti numbers β0 = 1 and β1 = 2 describe the homology of the
shape sphere with the three collision points deleted which is diffeomorphic to the
twice punctured plane.

To apply the Morse inequalities to the planar n-body problem first note that
we have, after quotienting by rotations, n!/2 collinear central configurations. By
Proposition 2.9.2, these have Morse index n− 2. The next result, due to Palmore,
uses this information to good effect.

Proposition 2.11.4. Suppose that all of the central configurations are nondegenerate
for a certain choice of masses in the planar n-body problem. Then there are at least

(3n− 4)(n− 1)!

2

central configurations, of which at least

(2n− 4)(n− 1)!

2

are non-collinear.

Proof. The simplest lower bound on the number of critical points is obtained by
setting t = 1 in (2.52): ∑

k

γk ≥
∑
k

βk = P (1) =
n!

2
.

But the information about the collinear configurations mentioned above shows that
in the Morse polynomial, we have γn−2 ≥ n!/2. On the other hand, the coefficient
of tn−2 in the Poincaré polynomial P (t) is βn−2 = 2 · 3 · · · (n− 1) = (n− 1)!.

Let R(t) =
∑

k rkt
k be the residual polynomial in the Morse inequality (2.52).

Then we have

rn−2 + rn−3 ≥ n!

2
− (n− 1)!.

Setting t = 1 in (2.52) now gives∑
k

γk ≥ n!

2
+ 2(rn−2 + rn−3) ≥ 3n!

2
− 2(n− 1)! =

(3n− 4)(n− 1)!

2
.

Subtracting n!/2 gives the non-collinear estimate. �



2.12. Dziobek configurations 151

For example, when n = 3 the Morse estimate gives five critical points, which
is exactly right. For n = 4 we have at least 24 CC’s of including the 12 collinear
ones, assuming nondegeneracy. The estimates increase rapidly with n —we expect
there to be many CC’s.

In the nonplanar case, the reduction of symmetry is more complicated and
the quotient space is not a manifold. See [19, 27] for two approaches to the spatial
case. We also mention the paper of McCord [18] which gives estimates based on
Lyusternik–Schnirelmann theory instead of Morse theory.

Instead of pursuing this, we will just make a few remarks on what Morse
theory can tell us about balanced configurations. Recall that these also admit a
variational characterization as critical points of U |N (S), where N (S) is the space
of normalized configurations with respect to the metric based on the symmetric
matrix S, 〈ξ, η〉 = ξT ŜMη. Now if we fix a symmetric matrix S with distinct
eigenvalues, there is no longer any rotational symmetry and we can have nonde-
generate critical points in N (S) \Δ. The topology of this space is independent of
S, so we can use the Poincaré polynomial P̃ (t) from Proposition 2.11.2.

This time there are more collinear configurations. If we fix any one of the
d eigenlines of S we will find n! collinear SBC’s which are nondegenerate with
Morse index (d − 1)(n − 1). There are d eigenlines for a total of dn! collinear
SBC’s. If we knew their indices, it might be possible to use the information to
get strong Morse estimates for the number of non-collinear SBC’s. It seems that
the proof of Proposition 2.9.2 can be generalized to show that the collinear SBC’s
corresponding to the largest eigenvalue of S have index (d−1)(n−1) which would
give γ(d−1)(n−1) ≥ n!. Using this to estimate the residual polynomial as in the
proof of Proposition 2.11.4 gives a lower bound∑

k

γk ≥ (3n− 1)(n− 1)!,

but this exceeds the known count of dn! collinear configurations only for d = 2.

2.12 Dziobek configurations

In Section 2.9 we studied collinear central configurations. These are at the lower
end of the dimension range for an n-body configuration, 1 ≤ dim (x) ≤ n− 1. We
also saw that the only CC with dim (x) = n − 1 is the regular simplex. In this
section we consider the highest nontrivial dimension.

Definition 2.12.1. A Dziobek configuration is a configuration of n bodies with
dim (x) = n− 2.

The physically interesting examples are collinear configurations of 3 bodies,
planar but non-collinear configurations of 4 bodies, and spatial but nonplanar con-
figurations of 5 bodies. They are named after Otto Dziobek who studied the planar
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four-body case [10]. We will be interested in finding Dziobek central configurations
(DCC’s).

We begin by studying the geometry of Dziobek configurations. We will as-
sume that the dimension of the ambient space is d = n− 2 so any n-body config-
uration is given by x = (x1, . . . , xn) with xj ∈ Rn−2. It is useful to associate with
x the so-called (n− 1)× n augmented configuration matrix

X̂ =

⎡⎢⎢⎣
1 · · · 1

x1 · · · xn

⎤⎥⎥⎦ . (2.53)

This is just the configuration matrix of Section 2.4 with a row of ones added to
the top. Then it is easy to see that dim (x) = rank X̂ − 1. Note that, because of
the row of ones, two configurations are translation equivalent if and only if their
augmented configuration matrices have the same row space or, equivalently, the
same kernel.

For a Dziobek configuration we have rank X̂ = n − 1 and dim ker X̂ = 1.
Hence there is a nonzero vector Δ = (Δ1, . . . ,Δn), unique up to a constant mul-
tiple, such that

Δ1 + · · ·+Δn = 0,

x1Δ1 + · · ·+ xnΔn = 0.
(2.54)

There is a nice formula for a vector Δ satisfying (2.54). Let X̂k be the (n− 1)×
(n− 1) matrix obtained from X by deleting the k-th column and let |X̂k| denote
its determinant. Then,

Δ = (|X̂1|,−|X̂2|, . . . , (−1)k+1|X̂k|, . . .)T (2.55)

is a solution to (2.54). Moreover, since the determinants are proportional to the
volumes of the (n− 2)-simplices of the deleted configurations, at least one of them
is nonzero in the Dziobek case.

Next we will reformulate the dimension criteria above in terms of the mutual
distances rij or rather, their squares sij = r2ij . Using equations (2.54) we have

∑
j

sijΔj = |xi|2
∑
j

Δj − 2xi ·
∑
j

xjΔj +
∑
j

|xj |2Δj =
∑
j

|xj |2Δj , (2.56)

where i is any fixed index and the sum over j runs from 1 to n (here, sii = 0). The
result is independent of i and we denote it by −Δ0. Define the Cayley–Menger
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matrix and determinant by

CM(x) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 · · · 1
1 0 s12 s13 · · · s1n
1 s12 0 s23 · · · s2n
1 s13 s23 0 · · · s3n
...

...
...

...
...

1 s1n s2n s3n · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
, F (x) = |CM(x)|. (2.57)

Then we have CM(x)Δ = 0, where now Δ = (Δ0,Δ1, . . . ,Δn). Consequently, we
have

F (x) = |CM(x)| = 0

for any Dziobek configuration or, indeed, for any configuration with dim (x) ≤
n− 2.

In order to find equations for Dziobek central configurations (DCC’s), begin
by setting λ = m0λ

′ in the standard equations (2.10). After some algebra we find
that, for each j = 1, . . . , n,

n∑
i=1

miSijxi = 0, (2.58)

where

Sij =
1

r3ij
− λ′, i �= j,

mjSjj = −
∑
i	=j

miSij .
(2.59)

Proposition 2.12.2. Let x be a Dziobek central configuration of the n-body problem,
let Sij be given by (2.59) and let Δ be any nonzero solution of (2.54). Then there
is a real number κ �= 0 such that

mimjSij = κΔiΔj . (2.60)

Moreover, at least two of the Δi are nonzero.

Proof. Equation (2.58) and the second equation of (2.59) show that for each j =
1, . . . , n the vector

(m1S1j ,m2S2j , . . . ,mnSnj)

is a solution to equations (2.54). Since the solution is unique up to a constant
multiple, there must be constants kj such that miSij = kjΔi. Since Sij = Sji, the
vector (k1, . . . , kn) is a multiple κ(Δ1/m1, . . . ,Δn/mn) so we get (2.60) for some
real number κ. If κ = 0 or if only one of the Δi were nonzero then all of the Sij ,
i �= j, would vanish and so all of the rij would be equal. But this only happens
for the regular simplex, which is not a Dziobek configuration. �

Multiplying two of the equations (2.60) gives:
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Corollary 2.12.3. Let x be a Dziobek configuration and let Sij be given by (2.59).
Then for any four indices i, j, k, l ∈ {1, . . . , n} we have

SijSkl = SilSkj .

These equations can be used to derive some mass independent constraints on
the shapes of CC’s. For example, when n = 4 we have two independent equations
of the form

(r312 − λ′)(r334 − λ′) = (r313 − λ′)(r324 − λ′) = (r314 − λ′)(r323 − λ′).

Eliminating λ′ gives a necessary condition on the distances, in addition to the
vanishing of the Cayley–Menger determinant, for a configuration to be central for
some choice of the masses.

2.13 Convex Dziobek central configurations

In this section we present an existence proof for convex Dziobek configurations
based on ideas of Xia [37]. First we discuss the geometry of the space of convex
configurations. Consider the n-body problem in Rn−2 as in Section 2.12. The
normalized configuration space N is diffeomorphic to a sphere of dimension (n−
1)(n−2)−1. The Dziobek configurations form an open subset, but N also contains
configurations with dim (x) < n− 2.

For each x ∈ N , let Δ(x) be the vector of determinants (2.55) representing,
up to a factor, the (n− 2)-dimensional volumes of its (n− 1)-body subconfigura-
tions. Then Δ: N → V ⊂ Rn, where V is the hyperplane Δ1 + · · ·+Δn = 0. If x
is a Dziobek configuration then at least two of the determinants Δi are nonzero
and Δ determines a point [Δ] of the unit sphere S(V) � Sn−2 in V . The planes
Δi = 0 divide the sphere into components where the signs of the Δi are constant.

The signs of the variables Δi provide a geometric classification of Dziobek
configurations. Suppose, for example, that Δn �= 0 so that the first n − 1 bod-
ies span a nondegenerate simplex in Rn−2 and the ratios bi = −Δi/Δn, i =
1, . . . , n − 1, are the barycentric coordinates of xn with respect to this simplex
[6]. In particular, xn is in the interior of the simplex if and only if bi > 0 for
i = 1, . . . , n−1. This provides a simple characterization of when a Dziobek config-
uration is nonconvex, namely, we must have either exactly one Δi > 0 and Δj < 0
for j �= i, or else exactly one Δi < 0 and Δj > 0 for j �= i. Let NCD ⊂ N denote
the open set of nonconvex Dziobek configurations.

The complement K = N \ NCD is a compact set containing all of the con-
vex Dziobek configurations. There will be some point x ∈ K where U |K achieves
its minimum and we would like to conclude that x is a convex Dziobek cen-
tral configuration. This entails showing that the minimum does not occur on the
boundary ∂K. We will prove this for n = 4 and get existence of planar, non-
collinear convex central configurations for the four-body problem, a result due to
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MacMillan–Bartky [17]. Unfortunately, there seem to be problems extending the
proof to higher dimensions. To highlight the difficulties, we will split the proof into
two parts. First we consider the part of ∂K consisting of Dziobek configurations.
This part of the proof works for all n.

Proposition 2.13.1. Let x ∈ ∂K be a Dziobek configuration. Then x is not the
minimizer of U |K .

Proof. We will show that arbitrarily close to x, there are points of K with strictly
smaller values of U |K . Instead of working with normalized configurations and U |K ,
we can forget the normalization and use the homogeneous function G = I(x)U(x)2.

By hypothesis, there is a sequence of nonconvex Dziobek configurations xk →
x. After re-indexing and taking a subsequence we may assume that for all k, the
n-th body xk

n is contained in the interior of the simplex formed by xk
1 , . . . , x

k
n−1.

Taking the limit we conclude that xn is contained in the boundary of the closed
simplex formed by x1, . . . , xn−1. Since we are assuming that x is still a Dziobek
configuration, x1, . . . , xn−1 span a nondegenerate (n−2)-simplex. After re-indexing
again, we may assume that xn is contained in the facet of this simplex spanned
by x2, . . . , xn−1. Let xik, k = 1, . . . , n− 2, denote the coordinates of the bodies in
the ambient space Rn−2. After a rotation and translation we may assume x11 > 0
and xi1 = 0, i = 2, . . . , n − 1. In other words all of the bodies except x1 lie in a
coordinate plane with x1 strictly to the right.

Consider the distances r1k from x1 to the other bodies. Since xn is contained
in the closed simplex spanned by x2, . . . , xn−1, we will have r1n < r1k for some
k ∈ {2, . . . , n− 1} and we may assume without loss of generality that r1n < r12.
Then we will see that moving xn a little to the left while moving x2 a little to the
right decreases G. Moreover these perturbed configurations are in K.

We will use mutual distance version of the moment of inertia (2.9) and the
usual formula for U(rij). Note that if we move x2, xn in the direction of the first
coordinate axis, the derivatives of the distances rij , 2 ≤ i < j ≤ n, are all zero.
Only r12 and r1n change to first order. If we change the first coordinates of x2, xn

by δx21 = m−1
2 ξ and δxn1 = −m−1

n ξ for some small ξ > 0, a short computation
shows that the first-order change in G is

δG = 2IUm1x11ξ(r
−3
12 − r−3

1n ),

where x11 > 0 is the first coordinate of x1. Since r1n < r12 and ξ > 0, we have
δG < 0 as required. �

Next we need to consider boundary points x ∈ ∂K with dim (x) < n − 2.
It is easy to see that every configuration with dim (x) < n − 2 can be perturbed
into both a convex and nonconvex Dziobek configuration, hence all such lower-
dimensional configurations are in ∂K. Fix a dimension k < n− 2 and let Nk ⊂ N
be the set of configurations with dim (x) ≤ k. Since Nk ⊂ ∂K ⊂ K it follows
that if x ∈ Nk is a minimizer of U |K then it is also a minimizer of U |Nk

and is
therefore a lower-dimensional CC. Therefore, in order to rule out such boundary
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points we need to understand how the potential changes when we perturb x to a
convex Dziobek configuration. We know from Proposition 2.10.1 that there will
be some perturbation to a Dziobek configuration which lowers the potential, but
we do not know that this perturbation moves us into K. When n = 4, however,
the only lower-dimensional configurations are collinear and we have the stronger
Proposition 2.9.2.

Proposition 2.13.2. There exists at least one convex, planar, non-collinear central
configuration of the four-body problem for each cyclic ordering of the bodies; hence,
at least six in all, up to similarity in the plane.

Proof. If x ∈ ∂K is a collinear configuration, then Proposition 2.9.2 shows that
every perturbation of x to a non-collinear configuration in N will lower the po-
tential. In particular, perturbing x into K will lower the potential. On the other
hand, Proposition 2.13.1 shows that the non-collinear boundary points also admit
potential-lowering perturbations into K. So the minimizer of U |K is in the interior
as required.

Note that there are six components of Dziobek configurations with Δ’s having
the convex sign patterns

(+,+,−,−), (+,−,+,−), (+,−,−,+),

and the three more with the signs reversed. These correspond to the distinct
cyclic orderings. If K0 is the closure of any one of these, we can apply the same
argument to find a CC in its interior. We only need to note that the required
potential-lowering perturbations can be made into K0. �

In [37] it is claimed that the analogous result holds for n = 5, but as noted
above, more information about the behavior of planar five-body CC’s under per-
turbations into Dziobek configurations seems to be needed.

Given that convex Dziobek configurations exist, one can ask about their
possible shapes. It is possible to use equations (2.60) together with the positivity
of the masses and the signs of the Δi to derive some simple geometrical constraints,
see [17, 30].

Finally, we can use the existence of at least six local minima to improve the
Morse estimates for the planar four-body problem. Recall that Proposition 2.11.4
gives the existence of at least twenty four CC’s, including the twelve collinear ones
(assuming that all critical points are nondegenerate). The twelve collinear CC’s
have index 2 which is the maximum possible, and the six convex Dziobek config-
urations are minima so γ0 ≥ 6 if they are nondegenerate. The Morse inequalities
become

γ0 + γ1t+ γ2t
2 = 1 + 5t+ 6t2 + (1 + t)(r0 + r1t),

where γ0 ≥ 6 and γ2 ≥ 12. It follows that r0 ≥ 5 and r1 ≥ 6 . Setting t = 1 gives
a lower bound for the total number of CC’s of

γ0 + γ1 + γ2 ≥ 12 + 2(5 + 6) = 34.
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This lower bound seems to be sharp although there can be as few as 32 in degen-
erate cases, see [12, 33].

2.14 Generic finiteness for Dziobek central
configurations

In this section we will present a proof that there are at most finitely many similarity
classes of Dziobek central configurations for generic choices of the masses; the proof
is based on [22]. We will also sketch a proof that these central configurations are
generically nondegenerate.

Proposition 2.14.1. For generic choices of the masses, there are only finitely many
Dziobek central configurations up to similarity. In fact there is a mass-independent
bound on the number of such configurations valid whenever the number is finite.

In particular, this applies to planar CC’s of the four-body problem and spatial
but nonplanar CC’s of the five-body problem. For the four-body problem, the only
non-Dziobek central configurations are the regular tetrahedron and the collinear
CC’s. So in this case it follows that the total number of CC’s is generically finite.
However, there is a stronger result [14]: the number of CC’s is finite for all choices
of positive masses and is at most 8472. This is proved by completely different
methods which required extensive algebraic computations. Similar methods were
applied to the spatial five-body problem in [13] with the result that the generic
conditions on the masses mentioned in Proposition 2.14.1 are made explicit. For
the planar five-body problem, Albouy and Kaloshin have recently proved generic
finiteness with explicit genericity conditions, see [4]. It is still open whether or not
there exist exceptional choices of five positive masses which admit infinitely many
CC’s, but Roberts has an example involving masses of different signs [29]. The
problem of finiteness for planar CC’s was singled out by Steve Smale as the sixth
of eighteen problems for twenty-first century mathematics [35]. But for n > 5 even
generic finiteness is open.

The rest of this section is devoted to the proof of Proposition 2.14.1. The key
point is to find the dimension of the algebraic variety defined by the equations for
Dziobek central configurations. If the dimension of the space of central configura-
tions is the same as the dimension of the space of normalized mass parameters,
then the generic finiteness will follow from general theorems of algebraic geometry.
For example, in Figure 2.7, Euler’s quintic equation defines a two-dimensional sur-
face. The projection of the surface to the two-dimensional normalized mass space
necessarily has zero-dimensional fibers, at least for generic masses. In this case, all
of the fibers are finite.

We begin with equations (2.60) relating the quantities Sij from (2.59) and
the Δi variables. However, we will make a few modifications. First of all, it is
theoretically advantageous to work with complex, projective algebraic varieties
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which are defined by homogeneous polynomial equations. Define a new variable
r0 such that λ′ = r−3

0 so that

Sij = r−3
ij − r−3

0 .

Let p = n(n− 1)/2 be the number of mutual distance variables rij . We will think
of the vector r = (r0, r12, . . . , r34) ∈ Cp+1 as homogeneous coordinates for a point
[r] ∈ CP(p), the complex projective space. Passing from r to [r] can be viewed as
an alternative way of normalizing the size of the configuration.

Next we suppress the mass variables from equations (2.60) by defining new
variables zi = Δi/mi. After clearing denominators we get polynomial equations

r30 − r3ij = κzizjr
3
0r

3
ij . (2.61)

The following proposition shows that by introducing another variable z0 we can
get a set of equations which are separately homogeneous in the variables r and
z = (z0, z1, . . . , zn) ∈ Cn+1. We will view z as a set of homogeneous coordinates
for a point [z] ∈ CP(n).

Proposition 2.14.2. Suppose rij are the mutual distances of a Dziobek central con-
figuration for some choice of masses mi > 0. Let r−3

0 = λ′, and let [r] ∈ CP(p) be
the corresponding point in the projective space. Then there is a point [z] ∈ CP(n)
such that

z20(r
3
0 − r3ij) = zizjr

3
ij . (2.62)

Moreover, the Cayley–Menger determinant vanishes, F (r) = 0.

Proof. It follows from Proposition 2.12.2 and the definition of r0 that there exist
zi, κ ∈ R such that (2.61) holds. Since κ �= 0 we can define z0 ∈ C so that
κz30 = r−3

0 and then we get equations (2.62). �

Equations (2.62) and the Cayley–Menger determinant are separately homo-
geneous with respect to the variables r and z so they define a projective variety
in the product space CP(p) × CP(n). As usual, we need to exclude the collision
configurations. Let

Σ = {([r], [z]) ∈ CP(p)× CP(n) : z0r0
∏
i<j

rij = 0}.

Then we can define the variety

V = {([r], [z]) ∈ CP(p)× CP(n) \ Σ : F (r) = 0 and (2.62) hold },

which contains all of the Dziobek central configurations. We will also work with
the subvarieties obtained by setting some of the zi = 0. Let

Vk = {([r], [z]) ∈ V : zk+1 = · · · = zn = 0}.
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These are quasi-projective varieties, that is, they are difference sets V = X \ Y
where X,Y are projective varieties. Much of the theory of complex, algebraic
geometry applies to such difference sets. We will use [8, 26, 31] as references for this
theory. One important point is that every quasi-projective variety has a projective
closure, defined as the smallest projective variety containing V . In general, this is
smaller than the variety X .

The following result is crucial for proving the generic finiteness theorem we
are after. It shows that the variety V containing the Dziobek configurations has
the same dimension as the normalized mass space.

Proposition 2.14.3. The variety V satisfies dimV =n−1. More generally, dimVk=
k − 1, for all k ≥ 2.

Proof. Let π2 : CP(p)×CP(n) → CP(n) be the projection. The proof for V consists
of analyzing the fibers and image of the mapping π2 : V → CP(n). Suppose [z] ∈
π2(V ) and let ([r], [z]) ∈ V . By definition of Σ we have z0r0 �= 0 so there will be
a representative r of [r] with r30z

2
0 = 1. Then rij satisfies

gij = (zizj + z20)r
3
ij − 1 = 0. (2.63)

It follows that zizj + z20 �= 0 on π2(V ), and that the mapping π2 : V → CP(n) has

finite fibers. If we can show that the projective closure W = π2(V ) has dimension
dimW = n − 1, general results from algebraic geometry will give dimV = n − 1
as well.

The main point is to show that there exists a nonzero homogeneous polyno-
mial H(z) which vanishes on π2(V ). This implies dimW ≤ n − 1. We have p+ 1
equations for the p variables rij , namely, equations (2.63) and the Cayley–Menger
determinant. To construct H(z), begin by taking the resultant with respect to r12
of the Cayley–Menger determinant F (r) and the polynomial g12. The result is a
polynomial involving z and the variables rij but with r12 eliminated. Now take the
resultant with respect to r13 of this new polynomial and g13. Continuing in this
way, we can eliminate all of the variables rij obtaining a homogeneous polynomial
H(z) in the z variables alone. It is conceivable that H(z) is identically zero, and
the next step is to show this is not the case.

Recall that the vanishing of the resultant is a necessary condition for two
polynomials in a single variable to have a common complex root. The polynomials
may involve other variables which can be viewed as parameters. If the parameters
are such that the leading coefficient of at least one of the two polynomials is
nonzero, then the vanishing of the resultant is also sufficient for the existence of a
common root. It follows that if H(z) = 0 for some z ∈ Cn+1 such that

zizj + z20 �= 0, 1 ≤ i < j ≤ n, (2.64)

then there do exist rij ∈ C such that equations (2.63) and the Cayley–Menger
condition hold. Therefore, to show that H(z) is not identically zero, it suffices to
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find a single point z such that (2.64) hold, but for which the required rij do not
exist.

To this end, choose z such that z0 = 1, zi = 0, 3 ≤ i ≤ n. Then for 3 ≤ i, j ≤ n
we have zizj + z20 = 1 and the equations gij = 0 reduce to r3ij = 1. So these rij
and their squares sij are all third roots of unity. On the other hand, if we choose
z1, z2 so that

z1z2 + z20 = 1/
√
8

then r312 =
√
8 and s12 is twice a third root of unity. We will show that with this

z, the Cayley–Menger determinant does not vanish.

Lemma 2.14.4. Let ωij ∈ C, 0 ≤ i < j ≤ n, be third roots of unity. Then∣∣∣∣∣∣∣∣∣∣∣∣∣

0 1 1 1 · · · 1
1 0 2ω12 ω13 · · · ω1n

1 2ω12 0 ω23 · · · ω2n

1 ω13 ω23 0 · · · ω3n

...
...

...
...

...
1 ω1n ω2n ω3n · · · 0

∣∣∣∣∣∣∣∣∣∣∣∣∣
�= 0.

Proof. The determinant can be expanded as a sum of monomials in the ωij with
integer coefficients. Each monomial is equal to an integer multiple of 1, ω or ω2

where ω = − 1
2 +

√
3
2 i. Therefore the determinant is of the form α + βω + γω2

where α, β, γ are integers. An expression of this form vanishes if and only if it
is a multiple of the minimal polynomial of ω, 1 + ω + ω2; that is, if and only if
α = β = γ. A necessary condition for this is that α+ β+ γ be divisible by 3. Now
the sum α + β + γ is the value of the determinant with all ωij = 1 which turns
out to be (−1)n4. So the determinant cannot vanish. �

It follows that our homogeneous polynomial H(z) is not identically zero.
Therefore the subvariety Z = {[z] : H(z) = 0} ⊂ CP(n) has dimension n− 1. The
the projection π2(V ) is contained in Z. In fact,

π2(V ) = {[z] ∈ Z : (2.64) hold}.
Since π2(V ) �= ∅, at least some of the irreducible components of Z intersect the set
where (2.64) holds. Let W denote the union of these irreducible components (W
will be the zero set of those factors of H(z) which are not divisible by any of the
polynomials in (2.64)). Then dimW = n− 1 and the complement W \ π2(V ) is a
lower-dimensional subvariety. It follows that W is the projective closure of π2(V )
and that dimW = dimV = n− 1, as claimed.

The proof for Vk is similar, but we use the projection π2 : Vk → CP(k) where
we view CP(k) as the subset of CP(n) with zk+1 = · · · = zn = 0. Again we need
to see that the resultant H(z) does not vanish identically on CP(k). This follows
because the point z with H(z) �= 0 which we constructed above is actually in
CP(k), k ≥ 2. �
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So far, we have discussed the variety V of Dziobek central configurations
without fixing the masses. Next we discuss the mapping from V to the normalized
mass space. A nonzero mass vector m = (m1,m2, . . . ,mn) determines a point in
the projective space [m] ∈ RP(n−1) ⊂ CP(n−1). We will think of CP(n−1) as the
normalized mass space. A generic mass vector will mean [m] ∈ CP(n−1)\B, where
B is a proper subvarienty of CP(n− 1). Note that if B is such a proper subvariety
then B ∩ RP(n − 1) is also a proper subvariety. This follows since any complex
polynomial which vanishes identically on RP(n − 1) also vanishes identically on
CP(n− 1).

Relations between the variables ([r], [z]) ∈ V and the masses are derived from
the fact that the vector

Δ = (Δ0,Δ1, . . . ,Δn) = (Δ0,m1z1, . . . ,mnzn)

is in the kernel of the Cayley–Menger matrix CM(r) from (2.57). Let K ⊂ CP(p)
be the subvariety of projective vectors [r] such that rankCM(r) < n. If [r] ∈ K
then rij cannot be the mutual distance of a Dziobek configuration. Consider the
decomposition of V into irreducible components. Call an irreducible component
W a Dziobek component if W �⊂ K. To study generic finiteness for Dziobek con-
figurations it suffices to consider each Dziobek component separately.

If W ⊂ V is a Dziobek irreducible component, then outside the proper sub-
variety W ∩ K, the vector Δ is uniquely determined up to a constant multiple.
There are two cases depending on whether or not some of the variables zi van-
ish identically on W , a possibility we will denote by zi ≡ 0. If zi �≡ 0 for all
i then the subset W0 = {([r], [z]) ∈ W : zi = 0 for some i} is a proper sub-
variety of W . The uniqueness of Δ implies that [m] is uniquely determined for
([r], [z]) ∈ W \ (W0 ∪ K). This means that we have a rational mass mapping
W → CP(n − 1) assigning to each point of W \ (W0 ∪ K) a unique, projective
mass vector (in algebraic geometry, a rational map can be multivalued on a proper
subvariety). Since dimW = n − 1 = dimCP(n − 1) it follows that a generic [m]
has a finite number of preimages in W . More precisely, either the mass mapping
takes W into a proper subvariety of the mass space or not. In the first case the
generic mass point [m] has no preimages in W . In the latter case, we say that the
mapping is dominant and the generic point [m] has a nonzero but finite number
of preimages, the number being bounded by some bound which is independent of
[m].

On the other hand, if some zi ≡ 0 on W we may assume without loss of
generality that W is a component of Vk from Proposition 2.14.3. Since zk+1 =
· · · = zn = 0, the (n−k) masses mk+1 = · · · = mn are arbitrary. But other masses
are unique up to a constant factor. Then Proposition 2.14.3 shows that

W̃ = {([r], [z], [m] : ([r], [z]) ∈ W,CM(r)Δ = 0}
is a subvariety of the product CP(p) × CP(n) × CP(n − 1) of dimension (k −
1) + (n − k) = n − 1. Projection onto the mass space defines a rational map
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W̃ → CP(n − 1), and the same reasoning as before shows that a generic mass
point has a finite number of preimages in W . This completes the proof of generic
finiteness.

The generic nondegeneracy of DCC’s follows from another nice fact about
rational maps of varieties. Consider a dominant rational map between varieties of
the same dimension. Then for a generic [m] in the range space, all of its preimages
are smooth points (meaning that the variety is locally a complex manifold) and the
mapping is a local diffeomorphism. If this holds for a map of complex manifolds
then it also holds for the real parts. Applying this theory to the real part of the
varieties W̃ in RP(p)×RP(n)×RP(n− 1) shows that the variety of DCC’s looks
like a finite covering map near a generic real [m].

On the other hand, consider Dziobek CC’s as critical points of U in M,
the quotient space of N under the action of the rotation group. Since we are
working in Rn−2, the Dziobek configurations have top dimension and the quotient
space is locally a manifold. The implicit function theorem shows that DCC has a
unique smooth continuation to nearby masses with the map to mass space a local
diffeomorphism if and only if it is a nondegenerate critical point in M. So generic
masses admit only nondegenerate DCC’s.

2.15 Some open problems

We will close these notes by mentioning some open questions about central con-
figurations. Perhaps the simplest one to state, if not to solve, is Smale’s sixth
problem about finiteness of the number of central configurations in the plane for
fixed positive masses [35]. As noted in the last section, even the weaker question of
generic finiteness is open for n > 5. One could also consider the same problem in
higher dimensions or for S-balanced configurations with both the masses and the
symmetric matrix S fixed. The generic finiteness problem seems more tractable in
light of Roberts’ example of a continuum of solutions for fixed nonpositive masses,
and the difficulties preventing Albouy and Kaloshin from handling all positive
masses in the five-body case. Perhaps opening up the problem to allow SBC’s
might make a positive mass counterexample possible.

Another type of open problem is about the Morse indices of CC’s and SBC’s.
As noted in Section 2.10, not much is known about the Morse indices of non-
collinear CC’s and even about collinear SBC’s. Good results about this would
improve the Morse theoretical estimates of the total number of critical points. It
was a lack of information about the Hessian in directions normal to the subspace
occupied by the configurations which prevented us from extending the existence
proof for convex Dziobek configurations to n > 4 bodies. The most natural con-
jecture, that the normal blocks of the Hessian are negative semi-definite, is not
true in general. There are planar CC’s for which the potential increases in certain
normal directions [20, 24].
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As far as we know, the convex Dziobek configurations of the four-body prob-
lem are unique given the ordering of the bodies, but no proof has been given. The
problem of counting convex Dziobek configurations could be posed for n > 4 once
the existence problem is solved.

Another group of open questions concerns a topic not treated in these notes,
namely the dynamical stability of relative equilibrium and homographic motions.
Given a planar CC we saw that we have a simple relative equilibrium solution
where the bodies rigidly rotate around their center of mass. In rotating coordi-
nates this becomes an equilibrium and one can ask about its linear stability. In
particular, one can ask if there is any relation between the eigenvalues at the
equilibrium point and the Morse index of the critical point. All of the known ex-
amples of linearly stable relative equilibria correspond to critical points which are
local minima. Is this always the case? In light of Albouy–Chenciner’s theory of
higher-dimensional relative equilibria, one can generalize the problem to ask for
the relationship between the properties of an SBC as a critical point and as an
equilibrium point of the reduced equations of motion. In fact, the problem of linear
stability of higher-dimensional relative equilibria seems to be completely open.
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[24] R. Moeckel and C. Simó, Bifurcations of spatial central configurations from
planar ones, SIAM J. Math. Anal. 26, (1995) 978–998.

[25] F.R. Moulton, The Straight Line Solutions of the Problem of n Bodies, Ann.
of Math. 12, (1910) 1–17.

[26] D. Mumford, Algebraic Geometry I, Complex Projective Varieties, Grundleh-
ren der Mathematische Wissenschaften 221, Springer-Verlag, Berlin, Heidel-
berg, New York (1976).

[27] F. Pacella, Central configurations of the n-body problem via equivariant Morse
theory, Arch. Rat. Mech. 97, (1987) 59–74.

[28] J. Palmore, Classifying relative equilibria, I: Bull. AMS, 79 (1973) 904-908;
II: Bull. AMS, 81 (1975) 489–491; III: Lett. Math. Phys. 1, (1975) 71–73.

[29] G. Roberts, A continuum of relative equilibria in the five-body problem, Phys.
D 127, (1999) 141–145.

[30] D. Schmidt, Central configurations in R2 and R3, in Hamiltonian Dynamical
Systems, Contemporary Math. 81, (1988) 59–76.

[31] I.R. Shafarevich, Basic Algebraic Geometry 1, Varieties in Projective Space,
Springer-Verlag, Berlin, Heidelberg, New York (1994).

[32] M. Shub, Appendix to Smale’s paper: Diagonals and relative equilibria, Lec-
ture Notes in Math. 197, (1971) 199–201.

http://www.math.umn.edu/%E2%88%BCrmoeckel/notes/Notes.html


Bibliography 167
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Chapter 3

Dynamical Properties of
Hamiltonian Systems with
Applications to Celestial
Mechanics

Carles Simó

3.1 Introduction

Our goal is to study some properties of the dynamics of the N -body problem. As is
well known, the Newtonian model of N punctual masses, mi, i = 1, . . . , N , located
at qi(t) ∈ Rd, moving under their mutual gravitational attraction is described by
the equations

q̈i =

N∑
j=1,j 	=i

(qj − qi)/r
3
i,j , r2i,j = ||qj − qi||22, i = 1, . . . , N. (3.1)

The system has several first integrals. The centre of mass ones, in a suitable
reference moving linearly with constant velocity, are

∑N
i=1 miqi = 0,

∑N
i=1 pi =

0, where the related momenta are defined as pi = miq̇i. Furthermore, defining
the kinetic energy as T (p) =

∑N
i=1 ||pi||22/mi and the potential one as U(q) =∑

1≤i<j≤N mimj/ri,j , one has the energy integral T (p)−U(q) = H(q, p) = h. The

total angular momentum
∑N

i=1 miqi ∧ q̇i is another first integral. In general, no
more first integrals exist. Of course, q and p above refer to the vectors in RNd

which contain all the components of positions and momenta. System (3.1) can be
put in Hamiltonian formulation: q̇i = ∂H/∂pi, ṗi = −∂H/∂qi. The pairs (qi, pi)
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are canonically conjugated. In the present case, the Hamiltonian has Nd degrees of
freedom (d.o.f.), despite the fact that the centre of mass integrals reduces them to
(N − 1)d, and the angular momentum gives additional reduction. For applications
we shall consider the cases d = 2 and d = 3. The equations are analytic except on
the collision set, when at least one of the values of ri,j equals zero.

In many problems it is interesting to consider that some of the bodies have
a negligible mass. They are influenced by massive bodies but have no action on
them. These are the restricted N -body problems.

The N -body problem belongs to the general class of Hamiltonian systems. In
these systems and in all kinds of dynamical systems, the ultimate goal is to describe
the main mechanisms leading to a fairly global description of the dynamics, how
it depends on parameters and, if it is possible to act on the system (either with
additional forces or by changing parameters), how to have some control on the
behaviour of the system. In the present case we shall be interested in conservative
systems, either in the continuous version described by a Hamiltonian or in the
discrete version. Next we make some comments on the passage from continuous
systems to discrete ones and vice-versa.

3.1.1 Continuous and discrete conservative systems

The associated discrete version is given by symplectic maps : F : (x, y) → (X,Y ),
where X = F1(x, y), Y = F2(x, y), with x, y,X, Y belonging to some set in Rd and

such that the 2-form dx ∧ dy =
∑d

i=1 dxi ∧ dyi is preserved: dX ∧ dY = dx ∧ dy.
We can replace working in Rd ×Rd by a formulation in symplectic manifolds but,
to have a simpler presentation, we prefer to work explicitly using coordinates and
refraining from extensions.

It is a simple matter to obtain discrete maps from a flow led by ẋ = f(x),
where f is a vector field (v.f.) in some open set U of Rn. Assume Σ is a hypersur-
face, given as points x ∈ U such that g(x) = 0, where g : U → R. We require that
it satisfies the transversality condition. We say that Σ is transversal to the v.f. if
the scalar product (f,∇g) is different from zero in Σ. The geometrical meaning is

clear: the flow of f (that we shall denote as ϕf
t or simply as ϕt) crosses transver-

sally the section Σ. In many examples one simply takes as g one of the coordinates
(either equal to zero or to a constant). In that case, Σ is usually not the full coor-
dinate hyperplane, but the part of it satisfying the transversality condition. Then,
given a point Q ∈ Σ we define a map, the so-called Poincaré map P , as the first
return of Q to Σ: ϕt(Q)(Q) ∈ Σ with a minimal value of t(Q) > 0. Note that,
eventually, some Q can never return to Σ for any t > 0. This implies that Σ has to
be reduced to a suitable subset. We also note that the return time t(Q) depends
on the starting point. We denote as P(Q) := ϕt(Q)(Q) the image of Q under the
Poincaré map P .

In the case of a Hamiltonian H with m d.o.f. (hence x has dimension 2m)
fixing a transversal section Σ and the level of energy h, the Poincaré map associated
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to Σ defines a map in Σ ∩ H−1(h), of even dimension 2(m − 1). This map is
symplectic.

Given a discrete map x → F (x) in V ⊂ Rn, there is also a simple way
to produce a v.f. such that it has, as associated Poincaré map, the initial map,
provided F is close to the identity, say F (x) = x + εG(x) with ε small enough
(see later). For concreteness we shall assume that G is a real analytic function. We
want to define a non-autonomous periodic v.f. of period 1 in t. Let us consider,
for instance, and for a given k > 1, the function ψk(t) = c

∫ t

0
sk(1 − s)k ds, where

the constant c is selected to have ψk(1) = 1. Then we define the flow starting at
the point x after a time t ∈ [0, 1] as ϕt(x) = x+ εψk(t)G(x), that is, we are using
an Hermite-like interpolation, because ψj

k(0) = 0 for j = 0, . . . , k, ψk(1) = 1, and

ψj
k(1) = 0 for j = 1, . . . , k. Other interpolations can also be used. For other values

of t it is defined by periodicity: ϕt(x) = ϕ(t)(x) where (t) = t − [t], being [t] the
largest integer less than or equal to t. Clearly ϕ0(x) = x, ϕ1(x) = F (x). Now
we should define the v.f. at (y, τ) for τ ∈ [0, 1]. To this end we look for z such
that ϕτ (z) = y. It follows immediately, from the implicit function theorem, that
a solution exists if || Id + εDG||∞ > 0. Finally the v.f. is f(y, τ) = εdψk

dt (τ)G(z).
We note that this is a slow v.f., having the parameter ε as a factor. It is usually

referred to as the suspension of the map F . We can consider if it is possible to
approximate it by an autonomous v.f. This follows from a general theorem on
averaging, that we present in a wider context: the case of v.f. depending on time
in a quasiperiodic way.

Theorem 3.1.1. Let

ż = εf(z, θ, ε), (3.2)

where f is analytic in (z, θ) for z ∈ Ω ⊂ Cn, Ω = D+Δ, a Δ-neighbourhood of D
in Cn, D a compact in Rn, and θ ∈ Tp +Δ, p ≥ 2, where Tp is a p-dimensional
torus. Assume f in (3.2) is bounded in ε for |ε| ≤ ε0 and θ = ωt, where ω ∈ Rn

is a vector of frequencies satisfying the Diophantine condition (DC)

|(k, ω)| ≥ b|k|−τ , ∀k ∈ Zp \ {0}, (3.3)

where b > 0, τ > p−1 and |k| = ∑p
i=1 |ki|. Then, if ε0 is small enough, for a fixed ε

with |ε| ≤ ε0, there exists a change of variables z = h(w, θ, ε), analytic in (w, θ) for
w ∈ D+Δ/2, θ ∈ Tp+Δ/2, such that the new equation is ẇ = ε(g(w, ε)+r(w, θ, ε))
and the remainder satisfies an exponentially small bound

|r|Δ/2 < c1 exp(−c2/ε
c3), (3.4)

where c1, c2 > 0 , c3 = 1/(τ + 1). The constants c1, c2 depend only on |f |Δ, the
dimensions and the constants in (3.3). Furthermore, |g|Δ/2 < 2|f |Δ. Here |f |Δ
denotes the sup norm of f in D +Δ, Tp +Δ for the fixed value of ε.



172 Chapter 3. Dynamical Properties of Hamiltonian Systems

Remark 3.1.2. (i) In the periodic case (it would be p = 1, τ = 0), there is no
need of analyticity with respect to t; just integrable is enough. Then c3 = 1,
see [36].

(ii) The optimal number of averaging steps (i.e., up to which order in ε one should
cancel the quasiperiodic dependence) is ≈ ε−c3 .

(iii) If f is a Hamiltonian v.f., the change to w can be made canonical. Hence,
the averaged system, skipping the remainder r, is also Hamiltonian, see [51].

(iv) If f has been obtained by suspension of a map F , we can produce an au-
tonomous v.f., like g, which interpolates F except by exponentially small
terms.

The basic idea of the proof is to obtain the change z = h(w, θ, ε) by means
of sequence of changes. This methodology is common to many topics in dynamical
systems. First we try to cancel the purely quasiperiodic terms in f , that is, the
terms in f̃ = f − f̄ , where f̄ denotes the average with respect to θ. Writing the
suitable condition for the change, one has to solve a PDE to obtain the quasiperi-
odic coefficients in this first change. To solve it with control on how the coefficients
of the change behave is where the analyticity with respect to θ and the DC (3.3)
play their roles. In the periodic case one has to do just an integration, and this is
why to be integrable in t is enough in that case.

Once the terms in f̃ have been skipped, one has to check the contribution
that the change makes in ε2. Here is where the analyticity with respect to z plays
a role, to bound the derivatives in a slightly smaller strip, passing from half width
Δ to Δ1. Then we proceed to cancel the purely quasiperiodic terms which appear
with ε2 as factor, and so on, to cancel the non-autonomous terms in εk, k = 3, . . .
At every step, to be able to bound the contributions made by the change to higher
order in ε, one has to reduce the size of the analyticity domain, introducing a
decreasing sequence for the half widths of the successive domains Δ2 > · · · >
Δk > · · · .

After every change one has a bound on the remainder. If for a given ε we
do too many changes, as we want to keep an analyticity domain of positive half
width, the differences Δk−1 − Δk are small. This implies bad estimates for the
derivatives and an increase on the size of the remainder. This is why, for every ε,
there is an optimal order. Simpler estimates give then the bound in (3.4). See [41]
for details and examples.

These kind of bounds on remainders are relevant to bound errors on ap-
proximations done, for instance, with normal forms (see Subsection 3.3.2). The
variables can be scaled in the domain of interest and the role of ε is played by the
size of the domain.

Finally we stress that the passage from flows to maps and vice-versa, when
the map or some power of it is close enough to the identity, allows a more complete
understanding and representation of key phenomena.
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In what follows we shall consider that all v.f. and maps are in the analytic
category.

3.1.2 Comments on the contents

Setting aside the two-body problem and subclasses with some special symmetry,
the simplest N -body problem is the planar circular restricted three-body prob-
lem which has two d.o.f. (see Section 3.4). The next simplest problem can be
the planar general three-body problem. Even restricting to a fixed value of the
angular momentum it has three d.o.f. The dimension can be reduced by fixing
energy and using a Poincaré section. In the first case we obtain symplectic 2D
maps, easy to visualize. In the second case we have symplectic 4D maps, not so
easy to visualize. There are key objects of codimension one (see Subsection 3.3.4)
and homoclinic/heteroclinic phenomena due to the intersection of two objects of
dimension two in dimension four. The invariant tori (see Subsection 3.3.3) do not
separate the phase space, and slow escape from points as close as we like to in-
variant tori (Arnold diffusion or general diffusion, see Subsection 3.3.5), avoiding
a large set of nearby tori, can occur.

For these reasons we devote Section 3.2 to introducing several simple but
paradigmatic examples in the 2D case, with the hope that they will make it easier
to grasp the main ideas in higher dimension. See also slides (B) for several examples
with low dimensional conservative systems.

Section 3.3 is devoted to presenting some general theoretical results. But it
is also relevant to see how to use the ideas of the proofs in concrete examples. In
many cases, effective computation is based on implementation of the proof, either
by symbolical or numerical methods or, quite frequently, by a combination of both.

Finally Section 3.4 presents some applications to Celestial Mechanics, with
a variety of goals.

Concerning references, most of the basic results can be found in classical
standard books. A few of them appear in the list of references, and no explicit
mention to them is made in the text. Some references to concrete topics are scat-
tered throughout the text and they are given at the end of these notes. The reader
can also, at the end of the references, look at the list of slides of several talks given
in the past and that, in turn, refer to some animations.

3.2 Low dimension: same key examples of

2D symplectic maps to see the kind of
phenomena to face

Invariance of dx ∧ dy in dimension 2 is equivalent to area preservation. We shall
denote as APM the area preserving maps. The simplest non-trivial APM which
come to mind are the quadratic ones: x, y ∈ R and F1, F2 are polynomials of degree
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two. These maps were widely studied by M. Hénon [20]. See also slides (E) and
slides (G). They are relevant because:

(i) the number of parameters can be reduced to only one, and they have a very
simple geometrical interpretation;

(ii) they appear in a natural way as a very good approximation in some parts of
R2 when we consider arbitrary APM; in particular when we study Poincaré
maps of Hamiltonian systems with two d.o.f.;

(iii) the following problems can all be understood thanks to our knowledge of the
quadratic case: (a) the existence of invariant curves diffeomorphic to S1; (b)
the role of the invariant manifolds of hyperbolic fixed or periodic points and
how they lead to the existence of chaos; and (c) the geometrical mechanisms
leading to the destruction of invariant curves.

We shall illustrate some of these features in this section.

3.2.1 The Hénon map

In the initial formulation the map (except in some degenerate cases) can be written,
thanks to the APM character, shift of origin and scaling, as F : (x, y) → (1−ax2+
y,−x). Hence, this family of maps depends on a single parameter a. The geometric
interpretation is simple: it is the composition of the map (x, y) → (x, y+1− ax2)
(one of the so-called de Jonquières maps) and a rotation of angle −π/2. Figure
3.1 shows, for a = −1/2, the square [−3, 3]2 (in red), the first image (in green)
and part of the next two images (in blue and magenta, respectively). One can
ask whether all points will escape for future iterations. To give an answer to this
question, we plot in black the set of points which remain bounded for all iterations
and the selected value of a.

However, we shall use another representation of that map, see [52], given by

Fc

(
x
y

)
→

(
x+ 2y + c

2 (1 − (x+ y)2)

y + c
2 (1− (x + y)2)

)
, (3.5)

which depends on c that can be assumed to be positive. It has two fixed points:
H at (−1, 0), hyperbolic ∀c > 0, and E = (1, 0), elliptic for 0 < c < 2 and
hyperbolic with reflection for c > 2. The reversor S(x, y) = (x,−y) allows us to
obtain F−1

c = SFcS.

Doing the change of scale (ξ, η) = (x, 2y/
√
c) one obtains a map

√
c-close to

the identity. According to Section 3.1 it can be approximated by the time-
√
c flow

of the v.f. dξ/dt = η, dη/dt = 1− ξ2, with Hamiltonian K(ξ, η) = η2/2− ξ+ ξ3/3.
It is, of course, a trivial matter to improve K to any power of

√
c. This v.f. has

the same fixed points as Fc and a separatrix on the level K = 2/3.
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Next we show iterates of some initial points under Fc for c = 0.2 and c =
0.762, see Figure 3.2.

-3

-2

-1

 0

 1

 2

 3

-2  0  2  4  6  8

Figure 3.1: The square [−3, 3]2 (in red) and the first three images of it under the Hénon
map with a = −0.5, shown in green, blue and magenta, respectively. The last two have
parts outside the frame shown here. In black we display the invariant set of points which
remain bounded under all iterations.
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Figure 3.2: Some iterates under Fc. Left: for c = 0.2. Right: for c = 0.762. We have
taken initial points on y = 0 and plotted 5,000 iterates of each one after a transient
of 106 iterates. Points outside the displayed domain escape to infinity close to the left
branch of W u

H . When looking at the figure in the electronic version it is suggested to
magnify the right plot to see the details. The same applies to several other plots in the
next figures, without explicit mention.

An important characteristic of points whose orbit is an invariant curve (IC) is
the rotation number ρ. It measures the average value of the fraction of revolution
that the point turns in each iterate. We can look at the curves around the elliptic
point E in previous plots and take polar coordinates. Let θk be the angle of the
k-th iterate, but considered in the lift R instead of S. Note that in this example
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the points turn clockwise. Then, we define

ρ =
1

2π
lim
k→∞

θk
k
. (3.6)

It always exists and does not depend on the initial point on the curve.

On the left plot in Figure 3.2 one can see a pattern which looks like the phase
portrait of a one d.o.f. Hamiltonian, with a foliation by periodic solutions and a
separatrix in blue. It seems that, as in the case of one d.o.f. systems, the map is
integrable. That is, there exists a non-constant function C(x, y) preserved by the
map: C(F (x, y)) = C(x, y). In fact there is a Cantor set (of positive measure) of ICs
with ρ /∈ Q, an infinite number of periodic orbits of elliptic and hyperbolic type and
the right-hand sides of the manifolds of H do not coincide. What happens is that
the differences with respect to the flow case are extremely small, in agreement with
(3.4). We shall see details on this smallness in the part about invariant manifolds
of Section 3.2.1.

The right-hand plot in Figure 3.2 displays a typical behaviour of a not close
to integrable APM. Certainly there are many ICs (again a Cantor set) around the
point E, but at some distance one can see big period-5 islands around elliptic
periodic points of period 5, and one can guess the existence of period-5 hyperbolic
points. Close to them there are chaotic orbits, still surrounded by some more ICs,
(rotational, that is, they make the full turn around E) and, finally, some little
islands before reaching a place where most of the points escape.

Some comments on invariant curves

The plots in Figure 3.2 raise several questions: (1) do ICs really exist for Fc? (2)
what is the structure of the set of ICs? (3) how are they destroyed? (4) what
happens after an IC’s destruction?

First we introduce the so-called twist maps. These are integrable maps defined
in some annular domain rd < r < ru, having a foliation by ICs, given by

T (r, α) = (r, α+ a(r)), (3.7)

and satisfying the twist condition

da(r)/dr �= 0. (3.8)

Of course, one can have the form (3.7) after a diffeomorphism. The curves can
have a shape different from circles, like ellipses, to be star-shaped or not.

A key result is the Moser twist theorem.

Theorem 3.2.1. Consider a perturbation Fε = T + εP of a twist map T . Then, if
we have an invariant curve of T which has Diophantine rotation number γ, this
curve, with a small deformation, subsists for Fε provided ε is sufficiently small.
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The Diophantine condition, in the present case, is like (3.3) with frequencies
γ and 1: |k1γ + k0| ≥ b|k|−τ , ∀(k1, k0) ∈ Z2 \ {0}, where |k| denotes some norm of
k = (k1, k0).

Let us comment a little on the three conditions: (a) it must be a perturbation
of a twist map T ; (b) the rotation number γ must be Diophantine; and (c) it must
be close enough to T , that is, ε must be small.

Assume that the Fourier representation of the IC of T which has ρ = γ is
r(α) =

∑
j∈Z

aj exp(i jα) in the present polar coordinates we are using (typically,
for a given problem, the twist map will not be given in the form (3.7), and to put
it explicitly in this form can be cumbersome). Let rε(α) =

∑
j∈Z

bj exp(i jα) be
the representation of the desired IC, invariant under Fε. The invariance condition
is expressed, in (r, α), as Fε(rε(α), α) = (rε(α+2πγ), α+2πγ). It is clear that we
can fix the origin of angles in an arbitrary way.

We try to pass from the coefficients aj to bj by making a sequence of changes
(similar to the case of Theorem 3.1.1) such that, after the k-th change, one has

an approximation of the IC under Fε with ρ = γ with an error O(ε2
k

). That is, a
Newton method in the space of Fourier series. The equation to be solved at each
step is of the form G(α+2πγ)−G(α) = R(α), the so-called homological equation,
where R(α) is related to the error of the previous approximation and has zero
average, a necessary condition in order to make it possible to solve the equation.

Using Fourier representations for G and R, say G =
∑

j∈Z
gj exp(i jα) and

R =
∑

j∈Z
rj exp(i jα), r0 = 0, it is straightforward to obtain gj = rj/(exp(i j2πγ)

− 1), j �= 0. But, of course, if jγ is close to an integer, the previous denominator
is close to zero. This is known as the small denominators problem. The DC allows
us to control the behaviour of the coefficients of G, so that if R is analytic in some
complex strip around real values of α, G is also analytic (perhaps in a slightly
narrower strip).

The problem is then that the error in the next approximation does not have
zero average and we will not be able to solve the next homological equation. But
this average can be canceled by modifying the initial independent term a0 (or,
equivalently, by selecting a proper value for g0) and this is possible, thanks to
the twist condition, by applying the implicit function theorem. It is convenient to
express the twist condition as dρ/da0 �= 0; that is, in terms of the average of the
initial curve. Finally the smallness of ε is necessary to have convergence in the
Newton procedure. Note that, for a fixed γ, the larger is the twist condition, the
larger are the admissible values of ε.

In Section 3.3.3 we shall talk about generalizations to higher dimension, both
for symplectic maps and for Hamiltonian flows. The key ideas for the proofs are
the same.

Using normal form tools (see Section 3.3.2) it is easy to prove that, what seem
to be ICs in Figure 3.2 are really ICs, at least close to the point E. Furthermore, it
is clear that the structure of the set of ICs is Cantorian, because so is the structure
of the set of Diophantine numbers for values of b, τ bounded from below, see (3.3).
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It is interesting to see what happens when the twist condition is not satisfied.
Figure 3.3 shows, for the map (3.5), with c = 1.35, the evolution of ρ as a function
of x for initial points of the form (x, 0). It is clear that ρ is only defined for ICs
and periodic orbits (or islands) and, in the present case, it seems that this occurs
for most of the initial values of x. One can prove that this behaviour, with a
local minimum at x = 1 and a local maximum on each side, appears only for
c ∈ (c1, c2), c1 = 5/4, c2 ≈ 1.4123. For c ∈ (0, c1) one has a local (in fact, global)
maximum at x = 1 (the point E).

 0.302

 0.304

 0.306

 0.308

 0.4  0.6  0.8  1  1.2
Figure 3.3: For c = 1.35 the value of ρ = ρ(x) is plotted for initial points on y = 0.
In blue the points with ρ ∈ Q. Note that now, to the left or to the right of x = 1, the
function ρ is no longer monotonous.

The twist condition is lost near the maxima. Let ρM be the value of ρ at
a given maximum M . Assume that there exist rationals p/q < ρM with q not
too large. They give rise to the typical islands structure, with q islands on each
family, on both sides of the IC with ρ = ρM (or close to it). The interaction of
these two families of islands, with ρ = p/q, gives rise to the so-called meandering
curves, see [43], which cannot be written with the radius as a function of the angle
seen from the point E. The curves have some folds (or meanders) but it is still
possible to apply Moser’s Theorem 3.2.1 to prove that they exist. Figure 3.4 shows
an example of meandering ICs for c = 1.3499 and a magnification including some
nearby orbits.

Some comments on invariant manifolds of hyperbolic points

Beyond the IC of an APM, there are other very important invariant objects which
play a key role in dynamics (this is also true for more general maps and flows in
any dimension, see Section 3.3.4). They are the stable and unstable manifolds of
the hyperbolic fixed or periodic points. They can be seen as the non-linear general-
isation of the invariant subspaces of the differential of the map at the fixed point.
On the left-hand plot in Figure 3.2, for c = 0.2, the branches Wu,+ and W s,− (the
ones which start to the right of x = −1) seem to be coincident, but they are not.
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Figure 3.4: Left: We show a couple of orbits for c = 1.3499, sitting on a domain in which
ρ passes through a maximum. These orbits are on invariant curves known as meanders.
Right: A magnification of the left. Beyond different meanders in red, one can see two
typical invariant curves (inner and outer) in blue and islands, in magenta, which belong
to two different chains of islands of rotation number 4/13.

Figure 3.5, left, shows a magnification when they return to the vicinity of the point
(−1, 0), after going clockwise around E under Fc (red points), or counterclockwise
under F−1

c (blue points). We see tiny oscillations with a size O(10−3). The right-
hand plot in Figure 3.5 shows the manifolds for c = 0.77 with large oscillations.
The points in Wu ∩W s are known as homoclinic points (or biasymptotic points).
Some of them, on y = 0, can be seen to the right of the plot. The successive nearby
returns of the manifolds produce infinitely many homoclinic points. Depending on
the location of a point with respect to a given homoclinic, after passing close to H
under iteration by Fc, will follow close to the positive, Wu,+, or to the negative,
Wu,−, branches of Wu. And similarly for the stable branches using F−1

c .
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Figure 3.5: Left: a magnification of Figure 3.2 showing that the manifolds do not coin-
cide. Right: part of the invariant manifolds of the hyperbolic point H for c = 0.77 (the
unstable manifold in red, the stable one in blue). One has W s

H = S(W u
H). The splitting of

the manifolds is now clearly visible. It is increasing with c. Note that the domain around
the point E which is not covered by the oscillations of the manifolds, becomes smaller.
Compare with the non escaping set of points in Figure 3.2 right, for a nearby value of c.
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A measure of the lack of coincidence of Wu and W s is the splitting angle.
This is defined as the angle between manifolds at a given homoclinic point. In the
present case of quadratic APM, we can measure the angle at the first intersection
of the manifolds with y = 0 to the right of x = 1 and see how it behaves as a
function of c. For concreteness, we denote this angle as σ(c). In Figure 3.6, left
and middle, we represent the value of σ(c) in different scales. In the left-hand
plot, despite the splitting being different from zero for any c > 0, we see that
only for c > 0.2 does it start to be visible. To make visible what happens for
small c, we display, in the middle plot, log(σ) against log(c). Note that already
for c = 0.05 the value of σ(c) is below 10−15 and, hence, it is negligible for any
practical application.
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Figure 3.6: Different representations of the splitting angle σ(c) between the mani-
folds at the first intersection with y = 0, x > 1. Left: σ, as a function of c, show-
ing that σ seems negligible for c < 0.2. At that value of c, the first digits are σ(c) =
6.2146342685682663009767540674985307425003 . . .× 10−5. Middle: log(σ) as a function
of log(c), which allows to see how small σ(c) is for c approaching zero. Right: the values
of log10(ω2m(2π2)2m/(2m + 6)!) versus m, to give evidence of the Gevrey character of
Ω(h) (see text).

Concerning the right-hand plot in Figure 3.6 we need some preliminaries. Let
λ(c) be the dominant eigenvalue at the point H , which is equal to 1+c+

√
2c+ c2

for Fc. An essential parameter in the theoretical study of the problem is h(c) =
log(λ(c)), because using suitable representations of the manifolds, it is possible
to show that the splitting has upper bounds of the form exp(−η/h), where η is
related to the imaginary part of the singularity of the separatrix of the limit flow,
as mentioned before in Figure 3.2. This type of result is true for general analytic
APM close to the identity map, see [10, 11]. In fact, for the present problem one
can prove a more precise result. The splitting angle has the form

σ(c) =
9

2
× 106π2h(c)−8 exp

(
− 2π2

h(c)

)
× Ω(h). (3.9)

The term Ω(h) can be expanded in powers of h2, say Ω(h) =
∑

m≥0 ω2mh2m,
and can be bounded by ω0+O(h). The constant term can be determined numeri-
cally and the first digits of ω0 are 2.48931280293671. Note, however, that the series
defining Ω(h) is divergent. But for every value of h it provides a good approxima-
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tion if we truncate the summation at the appropriate place. There is numerical
evidence that the series is of Gevrey-1 class.

A formal power series
∑

ckt
k is said to be of Gevrey-β class if the series∑

ck(k!)
−βtk is convergent. We can compute the series

∑
m≥0 ωmh2m/(2m)! ob-

tained from Ω(h) using β = 1. From a numerical determination of Ω(h), for differ-
ent values of h, one can obtain the coefficients ω2m. See [12] for methodology and
examples. In the right-hand plot in Figure 3.6 we display log10(ω2m(2π2)2m/(2m+
6)!) as a function of m, which seems to tend to a constant. This gives evidence of
the Gevrey-1 character of Ω(h) we mentioned. But to prove this fact is an open
problem.

See slides (H) for the role of the splitting phenomena in the measure of the
chaotic domain in different problems.

On the destruction of invariant curves

As mentioned in the part about invariant submanifolds in Section 3.2.1, if ρ is too
close to a rational (in the Diophantine sense), or if the twist condition is too weak,
or if the perturbation ε with respect to an integrable map is too large, the IC does
not exist. These analytic properties also have a nice geometric interpretation.

To illustrate the mechanism leading to the destruction of ICs we consider
Figure 3.7. It has been produced for c = 0.618 (left) and c = 0.63 (right) and it
only shows the left-hand part of the set of points which have bounded orbits. The
case of Figure 3.7 is similar to the one on the Figure 3.2 right, but now the main
islands are 6-periodic instead of 5-periodic.

On the left-hand plot one can see medium size islands with ρ = 3/19 (one
of them with its central elliptic point on y = 0) and two symmetrical islands,
in the same family, with ρ = 4/25, as well as several satellite islands, then tiny
islands (e.g., with ρ = 17/107, 39/245, 11/69, 19/119, 21/131, 13/81, . . .) and ICs.
In particular, some ICs are still present between the two chains of medium size
islands. Some other ICs, surrounding the main period-6 islands (not displayed),
appear as the rightmost curves shown.

On the right-hand plot we display in black two chains of islands of rota-
tion numbers 3/19 and 4/25, corresponding to the ones in the left plot, but now
they are smaller. Consider the associated hyperbolic periodic orbits, the one with
rotation number 4/25 being visible on the x-axis and the two symmetric points
belonging to the hyperbolic periodic orbit of rotation number 3/19 being close
to x = −0.2 off the x-axis. The manifolds of these periodic orbits give rise to
heteroclinic connections, that is, intersections of the stable and unstable mani-
folds of two different objects. The manifolds Wu

4/25,W
s
4/25 are shown in red and

green, respectively. The manifolds Wu
3/19,W

s
3/19 are shown in blue and magenta,

respectively. Note that Wu
4/25 and W s

3/19 (and, symmetrically, W s
4/25 and Wu

3/19)
have transversal heteroclinic intersections. This produces an obstruction to the
existence of the ICs which could separate the chains of islands. This is the basis
of the so-called obstruction mechanism [38].
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Figure 3.7: Left: A part of the set of non escaping points for the map Fc and c = 0.618.
Right: similar plot for c = 0.63, displaying also several invariant manifolds of periodic
hyperbolic points leading to heteroclinic intersections. See the text for details.

Indeed, if we consider a curve formed by a piece of invariant manifold of
the inner hyperbolic periodic point (the one of period 25) until the heteroclinic
point, followed by a piece of invariant manifold of the outer hyperbolic periodic
point (the one of period 19), from the heteroclinic point to the periodic one, the
ICs will have to cross it. This is impossible because of the invariance. In fact, one
concludes that ICs with ρ ∈ (3/19, 4/25) cannot exist. But ICs with ρ in that
interval are found for c = 0.618. Hence, the geometrical mechanism responsible
for the destruction is the existence of heteroclinic connections which obstruct the
possible curves.

Anyway, there are invariant objects with ρ in the above mentioned interval.
It is proved that they should be at the outer part of the manifolds of the hyper-
bolic periodic orbit with ρ = 4/25 and at the inner part of the manifolds of the
hyperbolic periodic orbit with ρ = 3/19. The heteroclinic intersections of these
manifolds create gaps which forbid the existence of points of the invariant object
in them. As a consequence, the invariant object which remains for some irrational
ρ ∈ (3/19, 4/25) is a Cantor set [29, 30]. Points which were located inside an IC
for c = 0.618 and, hence, without possible escape, can now, for c = 0.63, find a gap
of the Cantor set and escape under iteration. It looks like some random process
and, certainly, the probabilities are related to the size of the gaps in the Cantor
set.

3.2.2 The standard map

Looking at the right-hand plot in Figure 3.2 we clearly see the period-5 islands
around period-5 elliptic points and, as already said, we can guess the existence
of period-5 hyperbolic points. We also see ICs close to the island, some of them
inside, which have ρ > 1/5, and others outside, which have ρ < 1/5. If instead of
iterations under Fc we iterate using F 5

c we will check that the inside curves turn
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a little clockwise and the outside ones turn a little counterclockwise. We can ask:
what happens for an APM if we have two ICs turning by iteration a small amount
in opposite directions?

This is the contents of the so-called last geometric theorem by Poincaré.
Between the two curves, invariant under a map M , there should appear fixed
points, generically isolated and alternatively elliptic and hyperbolic. Typically,
one point of each type appears. But if the map is the q-th power of some other
map M̃ , with rotation number p/q, (p, q) = 1, then there are q fixed points of each
type under M , which are q-periodic under M̃ .

The structure of the islands is reminiscent of the phase portrait of a pen-
dulum, whose Hamiltonian is H(x, y) = y2/2 + cos(x) using suitable coordinates.
From a quantitative point of view (the width of the islands) we recall that the max-
imal distance between upper and lower separatrices in a pendulum with Hamilto-
nian H(x, y) = y2/2+ δ cos(x) is 4

√
δ. But we keep the presentation in the scaled

version, i.e., with the coefficient of the cosine equal to 1. The equations are ẋ = y,
ẏ = sin(x). One can think of a discrete model which, in the limit, behaves as
the pendulum. The simplest approach would be to use an explicit Euler method
with step h, which gives the map (x, y) → (x + hy, y + h sin(x)). Unfortunately,
that map is not an APM, but can be made symplectic using a symplectic Euler
method: (x, y) → (x̄, ȳ), ȳ = y+ h sin(x), x̄ = x+ hȳ. If we do not like to have the
parameter h in both variables, we simply replace hy by a new variable z, rename
z again as y, introduce k = h2, and we obtain

SMk :

(
x
y

)
→

(
x̄ = x+ ȳ

ȳ = y + k sin(x)

)
, (3.10)

a popular map known as a standard map [7]. It is clear that we can look at the
variables (x, y) in S×R or in T2. It has fixed points located at (0, 0), hyperbolic,
and at (π, 0), elliptic, that we denote again as H and E. Figure 3.8 displays the
phase portrait (in T2) for k = 0.5 and k = 1.

On the left-hand plot it is hard to see that the stable and unstable manifolds
ofH do not coincide. A study like the one in the invariant manifolds part of Section
3.2.1 reveals similar properties. But the strongest difference between these plots
is that in the left one there exist rotational ICs, that is, ICs going from the left
vertical boundary to the right one (in this representation; in fact these boundaries
are identified). These curves are absent in the right plot. Hence, if we consider the
map in S×R, there is no obstruction to the dynamics in the y direction for k = 1.
There are points with an initial value y ∈ [0, 2π) whose iterates can go arbitrarily
far away in the y direction (despite the fact that for that value k = 1 will require
many iterates).

The critical value up to which one has rotational ICs is the so-called Greene’s
critical value kG ≈ 0.971635; see [19]. The “last” rotational IC which is destroyed
has ρ = (

√
5 − 1)/2, the golden mean. This is not a surprise; it is the number in

(0, 1) with best Diophantine properties. The obstruction method using hyperbolic
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Figure 3.8: Phase portrait of (3.10). Left: for k = 0.5, still quite well ordered. Right: for
k = 1, already with a big amount of chaos. Beyond the main elliptic island around E
one can see several islands in both cases. The largest chaotic zone appears around the
invariant manifolds of H .

periodic orbits with rotation numbers of the form Fn−1/Fn and Fn/Fn+1, Fn being
the n-th Fibonacci number, plus a suitable extrapolation, allows us to determine
kG accurately. Note also that for k > kG but close to kG, the rotational IC with
ρ = (

√
5− 1)/2 is replaced by a Cantor set with “small holes”. This supports the

claim about the large number of iterates needed to have y far away from the initial
location. Renormalization theory [26, 27] provides the framework to understand
those things in detail. For large values of k the standard map has interesting
statistical properties. But they can be strongly affected by the role of the islands,
see [32].

On the other hand, the Hamiltonian H(x, y) = y2/2+cos(x) can be replaced
by more complex ones to obtain generalized standard maps. Adding terms in y3

and y cos(x) allows us to explain the asymmetry which can be seen in Figure 3.2,
right between the inner part and the outer part of the islands and the related
inner, and outer splittings of the manifolds of the associated periodic hyperbolic
points [52], in contrast with the symmetries of a pendulum. Replacing y2/2 by
−by+y3/3 allows us to reproduce a limit flow of the meandering curves, as shown
in Figure 3.4, and other more complicated changes give rise to labyrinthine ICs
with funny shapes [43].

3.2.3 Return maps: the separatrix map

A useful device to understand the dynamics when some hyperbolic invariant object
A has orbits homoclinic to it are the return maps. Assume that we have an initial
point in a given domain D close to a point homoclinic to A. Then it approaches
A under iteration, close to W s

A, and after the passage near A moves away, close
to Wu

A, and returns to D. Can we describe how the return is produced?
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To illustrate with an example we have used a modified Hénon–Heiles poten-
tial. In a pioneer example Hénon and Heiles in 1964 used a Hamiltonian with two
d.o.f. (a model of the motion of a star in a galaxy with cylindrical symmetry) [21].
The Hamiltonian they derived is

HH(x, y, px, py) = (x2 + y2 + p2x + p2y)/2 + x3/3− xy2, (3.11)

and a careful study of the behaviour of nearby orbits of the system (3.11) lead
to the detection of chaotic motion, giving evidence of the lack of integrability, a
fact that was proved theoretically later and that was relevant to face integrability
problems from an algebraic point of view; see [34] and references therein. Later on
the family with Hamiltonian HHc(x, y, px, py) = (x2+ y2+p2x+p2y)/2+ cx3−xy2

was introduced, and the case c = 0,

HHc=0(x, y, px, py) = (x2 + y2 + p2x + p2y)/2− xy2, (3.12)

that we shall use as illustration, presents some interesting particularities. Like
many other simple models it has a symmetry with respect to simultaneous change
of sign of y and t.

One can fix the value of the energy and use y = 0 as a Poincaré section. The
Poincaré map P has a fixed point H which corresponds to a hyperbolic periodic
orbit of (3.12). The invariant manifolds on HH−1

c=0(0.115) are shown in Figure 3.9.
There exist homoclinic points and the symmetry implies that the upper branch of
W s

H can be obtained from the lower branch of Wu
H .
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Figure 3.9: Left: the invariant manifolds (W u in red, and W s in blue) of the hyperbolic
simple periodic orbit of the modified Hénon–Heiles Hamiltonian located inside the domain
of admissible conditions on the Poincaré section y = 0, for the level of energy h = 0.115.
The variables displayed are (x, px). Right: a magnification of the upper part showing the
location of sections I , J , K, and L mentioned in the text. The periodic orbit appears
marked as H on the section.

Our goal is to describe the return to a suitable domain D as a model for a
general setting. In Figure 3.9 on the right there is a homoclinic point in the segment
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market as I, whose image under P is the segment marked as J . A suitable domain
can be a strip around the parts of the manifolds between I and J . Note that in
the present case, due to the symmetry, we consider in Figure 3.9 (right) only the
upper part in the (x, px) variables. It can happen that, after passage near H , a
point moves to the lower part. Hence, it is convenient to consider D as the union
of two strips, symmetric the one with the other, and that we can denote as D+

and D−, according to the sign of px, and define D = D+ ∪ D−.
In general, there is no symmetry and then D− is not obtained from D+

by symmetry, and even some of the branches of the manifolds can escape, as it
happens for (3.5).

If we take the part of Wu
H from H to the homoclinic point which appears

in J , followed by the part of W s
H between the homoclinic and H , and add the

symmetric part (on px<0) we have a figure-eight pattern which appears in many
problems. This occurs, e.g., in the manifolds of the hyperbolic fixed point of (3.10).
Looking at the map in S × R in suitable coordinates, one has also a figure-eight
pattern [53].

First we assume that a point is located in D+ below W s
H (the line in blue).

After passing close to H it will return to D+. We follow an elementary method
to find the return map. If the splitting is small enough we can assume that the
upper branches of the manifolds are coincident and consider a nearby integrable
map in the domain bounded by the branches of the manifolds. Let ϕt be the
flow of a Hamiltonian v.f. with one d.o.f. in (x, px) with Hamiltonian H such that
ϕ2π coincides with this integrable map. In particular, points in I move to points
in J under ϕ2π , and we can redefine the strip D+ as the set ∪t∈[0,2π]ϕt(I). The
manifolds W s,u

H under that Hamiltonian v.f. coincide and form the separatrix of
H. As additional variable in D+, transversal to that separatrix, we take the level
h of H, assuming H is positive inside the separatrix and equal to zero on it.

For concreteness, let us denote as λ the dominant eigenvalue of the differential
of the map ϕt=1 at H . It is clear that the dominant eigenvalue for ϕt=2π, close
to the one of the initial map, say μ, is λ2π and that for the Hamiltonian v.f.
is log(λ). If λ is close to 1 then log(λ) will be close to zero. For simplicity, we
denote log(λ) as λ∗. In terms of the dominant eigenvalue of the initial map one
has λ∗ ≈ log(μ)/(2π).

As all the orbits in the domain bounded by the separatrix are periodic under
the flow, when a point in D+ returns to it, it has the same value of h. But t has
changed by the period, which behaves like c − log(h)/λ∗, where c is a constant
(essentially equal to the time to go from section L to section K). The map would
be (t, h) → (t+ c− log(h)/λ∗ (mod 2π), h).

Now we return to our original map. The only change is due to the lack of
coincidence of W s

H and Wu
H . If we consider the variable h defined as an energy

with respect to Wu
H , when continuing the motion close to W s

H the energy should
be considered with respect to that manifold. There is a jump in energy due to
the splitting. Note that, using a normal form around H , it is possible to define in
a natural way an energy in a neighbourhood of this point, and to transport that
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function along both manifolds, by backward or forward iteration, see [11], and also
[50] in a general context. The two energies do not coincide in D+. The difference
is the jump just mentioned. Let us denote it as s(t) (it has a weak dependence
on h that we neglect). The simplest expression for s(t) is a sinusoidal oscillation
ε sin(t) which measures the location of Wu

H with respect to W s
H . Then the return

map becomes (
t
h

)
→

(
t̄ = t+ c− log(h̄)/λ∗ (mod 2π)

h̄ = h+ ε sin(t)

)
. (3.13)

It is clear that the map is not defined if h̄ = 0 because then the point is in W s
H .

On the other, hand we have not considered the case h < 0. Then the process is
similar, but we land on the lower domain D−. Beyond the variables (t, h) one has
to consider a sign σ equal to ±1 in D±. Using also the sign and renaming the
variables as ξ, η, with ξ ∈ [0, 2π) and η small, the map (3.13) becomes

SepM :

⎛⎝ ξ
η
σ

⎞⎠ →
⎛⎝ ξ̄ = ξ + c− log(|η̄|)/λ∗ (mod 2π)

η̄ = η + ε sin(ξ)
σ̄ = σ × sign(η̄)

⎞⎠ , (3.14)

a map known as a separatrix map. In a general case the jump ε sin(ξ) is replaced
by a function s(ξ). In the asymmetric cases one uses different jump functions
s±(ξ) according to σ. The parameter ε, related to the size of the jump or splitting
has, typically, exponentially small upper bounds as a function of some physical
parameter, like the energy in the case of system (3.12). But in other cases, if the
dominant eigenvalue at H tends to a constant λ0 > 1 when some parameter γ
tends to zero, it can be, simply, a power of γ.

For simplicity, we concentrate on the symmetric case and to points passing
only through D+. Then σ = 1 and we discard it in (3.14). Now we assume that η is
close to some fixed value, η0, write η = η0+ζ and log(η̄) = log(η0)+log(1+ζ̄/η0) ≈
log(η0) + ζ̄/η0, keeping only linear terms in ζ̄. This is a good approximation if
ζ̄/η0 is small. If we assume, also, that λ is close to 1, then λ∗ is small. In the
(ξ, ζ) variables the map becomes (ξ, ζ) → (ξ̄ = ξ + c1 + b1ζ̄ , ζ + ε sin(ξ)), where
c1 = c − log(η0)/λ

∗, b1 = −1/(η0 × λ∗), and we do not write explicitly that ξ
is taken mod 2π. Finally, define new variables u = ξ, v = c1 + b1ζ and the map
becomes (

u
v

)
→

(
ū = u+ v̄

v̄ = v + b1ε sin(u)

)
. (3.15)

Comparing (3.15) with (3.10) we see that they are identical if we set k = b1ε =
−ε/(η0 × λ∗). Therefore, we can expect to find invariant curves in the separatrix
map at a distance η0 > ε/(kG×λ∗) from the location of the invariant manifolds in
D+. A similar reasoning applies in the outer part, when the invariant curves make
the full turn around the figure eight. This gives also an estimate of the width of
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the zone with chaotic dynamics around the split manifolds. The estimate is quite
realistic if ε is very small and λ is close to 1. This occurs, for instance, in a case
like the Hamiltonian (3.12) because then, on a level of energy h, λ∗ and ε are,
respectively, of the order of h and exponentially small in h. See [47] for a study of
several cases, with different number of d.o.f., either resonant or not.

As final comments in this subsection one has to add that it is very important
to derive return maps in higher dimensions, like Hamiltonian systems with ≥ 3
d.o.f. or symplectic maps in dimension ≥ 4. But the formulas that one obtains
can be far from simple, due to quasiperiodicity and resonances. To derive, from
these return maps, bounds on the distance at which one can find invariant tori,
speed of diffusion, etc, is an open problem. See slides (J) for other open problems
associated to some classes of global bifurcations.

3.3 Some theoretical results, their implementation and
practical tools

In this section we recall some general results and also provide tools to make them
explicit.

3.3.1 A preliminary tool: the integration of the ODE, Taylor
method and jet transport

In the case of an analytic Hamiltonian (or general) v.f. like ẋ = f(t, x), x(t0) = x0,
(t0, x0) ∈ Ω ⊂ R× Rn or Ω ⊂ C× Cn, one should use integration methods of the
initial value problem for ODE. For instance, having in mind to compute Poincaré
iterates.

A quite convenient method is the Taylor method. That is, to obtain the
Taylor expansion x(t0 + h) for suitable values of h. If x(t0 + h) has components
xi, i = 1, . . . , n, we look for a representation

xi =

N∑
s=0

a
(s)
i hs, (3.16)

for suitable N, h, and use it as a one-step method. For further reference we denote

as a(s) the vector with components a
(s)
i .

The point is how to compute the coefficients of the expansion in an easy way
to high order. For a very large class of functions the evaluation of f can be split
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into simple expressions

e1 = g1(t, x),
e2 = g2(t, x, e1),

...
ej = gj(t, x, e1, . . . , ej−1),

...
em = gm(t, x, e1, . . . , em−1),

f1(t, x) = ek1 ,
...

fn(t, x) = ekn .

Each one of the expressions ej contains a sum of arguments, a product or quotient
of two arguments or an elementary function (like sin, cos, log, exp, √, . . .) of a
single argument. The basic idea is to compute in a recurrent way the power series
expansion (up to the required order) of all the ej. The gj have to be seen as
operations with (truncated) power series. Hence, we can proceed as follows:

(i) Input: t and the components of x0, that is, the coefficients of order zero in
(3.16).

(ii) Step s, s ≥ 0: from the arguments of gj up to order s we obtain the order
s terms of ej ; in particular for fj(t, x), which gives the order s + 1 for xj

(dividing by s+ 1). This is repeated up to the required value of N .

(iii) The values of N, h can be selected so that the truncation error
∑

s>N a
(s)
i hs

is bounded, for every component, by some small ε negligible in front of the
(unavoidable) round off error.

Under reasonable assumptions, like c1γ
s ≤ ||a(s)|| ≤ c2γ

s, 0 < c1 < c2,
(which implies radius of convergence ρ = 1/γ) in the limit when ε → 0, say ε =
10−d, with d large, one can take h such that the last term satisfies ||a(N)||hN = ε.
It turns out, concerning efficiency, that the optimal value of h tends to ρ×exp(−2)
(independently of the equation, and where ρ refers to the radius of convergence
around the current point x0), and N ≈ d log(10)/2 when ε → 0.

To carry out step (ii) above is immediate for arithmetic operations. As an
example for elementary functions we consider the case of powers, that we should
use to integrate (3.1). Let u(t) =

∑
s≥0 ust

s, u0 �= 0, α ∈ R, and we want to
compute v(t) = u(t)α =

∑
s≥0 vst

s. Then,

v0 = uα
0 , vs = − 1

su0

s−1∑
k=0

vkus−k[k − α(s − k)],

for s > 0, the determination being fixed by the one used for v0. This follows
easily from v(t) = u(t)α by taking logarithms and differentiation with respect to
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t. Similar recurrences can be obtained for any elementary function. If f contains
special functions (e.g., Bessel functions) it is enough to add the ODE satisfied by
these functions to the system to be integrated.

Computing to order N has a cost O(N2). This is true for the most expensive
elementary operations and functions, and it is the basis of the optimal estimates
given above, see [22] and slides (A).

In the autonomous case, to obtain the image of a point for a Poincaré map
P through a section Σ given by g(x) = 0 when g changes from < 0 to > 0,
assume that we have a time t∗ such that g(ϕt∗(x0)) < 0 and g(ϕt∗+h(x0)) > 0, for
the current value of h. Finding P(x0) reduces to solving a 1-dimensional equation,
g(ϕt∗+δ(x0)) = 0, for the variable δ. This is easily done by using Newton’s method.

Assume now that we look for a periodic solution. It can be written as a fixed
point of a Poincaré map: G(x0) = P(x0) − x0 = 0, for x0 ∈ Σ. Again this can
be solved by Newton’s method, but this requires that one knows the differential
map DP(x0). To this end we integrate, together with the v.f. f , the first order
variational equations Ȧ = Df(ϕt(x0))A, A(0) = Id. There are two points to take
into account, see [40]:

(i) The admissible variations of x0 should be confined to the tangent space to
Σ at that point. Furthermore, if the system has first integrals, like in the
Hamiltonian case, this gives additional constraints for x0 and the admissible
variations if we fix the levels of these integrals.

(ii) The return time to Σ depends on the initial point. If instead of leaving from
x0 we leave from x0 + ξ, ξ being an arbitrarily small admissible variation,
the landing time in Σ has to be corrected by terms O(||ξ||). This is relevant
to computing DP(x0).

In some cases (see Subsection 3.3.4) we can be interested in having an approx-
imation of the Poincaré map not restricted to first order terms in the variations
of x0 ∈ Σ, but to higher order: we would like to have the Taylor expansion of
P(x0+ ξ) to some given order in ξ. To this end, one can integrate the higher order
variational equations, restrict the domain of definition to Σ and to the levels of
the current first integrals, or proceed in a different, easier, way, using jet transport,
described along the following lines.

This can be also applied to obtain the image of a neighbourhood of a point
x0 under ϕt, to see how it depends on parameters (useful to analyze bifurcations),
etc.

Assume the initial conditions are x0 + ξ, where ξ are some variations and we
want to obtain ϕt(x0+ξ) at order m in ξ. It is enough to replace all the operations
described above to compute ej, in order to obtain the coefficients in (3.16), done
with numbers, by operations with polynomials in ξ up to order m. This applies to
arithmetic operations, elementary functions, special functions, etc. Hence, instead
of the vectors as of numerical coefficients in (3.16) we deal with tables containing
the numerical coefficients, up to order m, of n polynomials in the ξ variables.
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If we return to the case of the Poincaré map, we had to solve g(ϕt∗+δ(x0)) = 0,
for the variable δ. Now δ will depend on ξ, but this is not a problem for Newton’s
method. We simply apply it by replacing numbers by polynomials in ξ.

We remark that the jet transport can be implemented in an efficient way. It is
also possible to produce rigorous estimates of the tails at every step, and to obtain
intervals which contain the correct values of all the coefficients. This allows us
to convert a purely numerical simulation into a Computer Assisted Proof (CAP).
See, e.g., [24].

3.3.2 Normal forms

To study many systems, a useful trick is to try to reduce them to an expression
as simple as possible, according to the topics of interest. If we study a discrete
map around a fixed point, it would be nice to be able to reduce it to a linear
map. In general, this is not possible. Furthermore, we can be interested also in the
dependence with respect to parameters, to analyze possible bifurcations.

For concreteness we face a Hamiltonian in n d.o.f., in Cartesian coordinates,
around a fixed point (located at the origin) that we assume totally elliptic: the
eigenvalues are exp(±iωj), j = 1, . . . , n. In canonically conjugate variables (xi, yi),
i = 1, . . . , n, we write it as H =

∑
k≥2 Hk, where Hk denote the homogeneous

terms of order k and H2 =
∑n

i=1 ωi(x
2
i + y2i )/2. In principle, we try to make

a change of variables to cancel the terms Hk, k > 2. To keep the Hamiltonian
character of the v.f. we shall use canonical transformations. These can be easily
obtained as the flow of an auxiliary Hamiltonian, G, with respect to an auxiliary
time s until, say, s = 1. If you do not want to use a “so big time s = 1” simply scale
(x, y) → ε(u, v), divide the Hamiltonian by ε2 obtaining H2(u, v) + εH3(u, v) +
ε2H4(u, v)+· · · , and then the final value of s will be ε. But this is equivalent to the
previous approach. What makes the change close to the identity is the smallness
of (x, y), not the fact of using s = 1.

As we want to cancel, first, the terms in H3, we shall represent G also as a
sum of homogeneous parts, starting at order 3, G =

∑
k≥3 Gk.

To transform the function H under the change we write dH/ds = {H,G},
where

{H,G} =

n∑
i=1

∂H

∂xi

∂G

∂yi
− ∂H

∂yi

∂G

∂xi

denotes the Poisson bracket. Note that the bracket of homogeneous polynomials of
degrees d1 and d2 has degree d1 + d2− 2. Higher order derivatives are obtained by
doing, successively, the Poisson bracket with G once and again. Trying to cancel
(if it is possible to cancel) the terms Hk, k ≥ 3, we determine the homogeneous
parts Gk. But it turns out that to obtain these parts it is much simpler to use
complex coordinates. We introduce(

xi

yi

)
=

1√
2

(
1 i
i 1

)(
qi
pi

)
, i = 1, . . . , n.
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Then H2 becomes
∑n

j=1 iωjqjpj. The transformed Hamiltonian is

ϕG
s=1(H) = H + {H,G}+ 1

2!
{{H,G}, G}+ 1

3!
{{{H,G}, G}, G}+ · · · (3.17)

Assume we have determined Gj , j < m, and we want to cancel all the possible
terms to order m in (3.17). There are terms or order m in (3.17) which come from
Hm or involvingGj , j < m, which are already known and that we denote, together,
as Km. For definiteness, assume Km =

∑
a,b,|a|+|b|=mKa,b q

apb, where a denotes a

multiindex with n non-negative components ai, |a| =
∑n

i=1 ai, and qa = Πn
i=1q

ai

i ,
as usual. Similarly for b and pb. The only unknown part comes from Gm, that we
also write as Gm =

∑
a,b,|a|+|b|=mGa,b q

apb and we would like to have

0 = {H2, Gm}+Km =
∑

a,b,|a|+|b|=m

i (ω, b− a)Ga,b q
apb +

∑
a,b,|a|+|b|=m

Ka,b q
apb,

(3.18)
where (ω, b−a) denotes the scalar product

∑n
j=1 ωj(bj−aj). As Ka,b is known, one

easily determines Ga,b, provided (ω, b−a) �= 0. But it is clear that if bj = aj for all
j, then the term Ka,a must be left on the transformed Hamiltonian, independently
of ω. These are called the unavoidable resonances which appear at even orders.
Furthermore, if ω is resonant, i.e., there are integers cj , j = 1, . . . , n, such that
(ω, c) = 0, other terms should be kept in the transformed Hamiltonian when
b− a = c. These are the additional resonant terms.

The normalization process can be continued to any order. But, in general,
unless the Hamiltonian is integrable, the formal normal form is not convergent.
One can expect that it belongs to some Gevrey class (see the invariant manifolds
part in Section 3.2.1), but I am not aware of concrete general results in that
direction.

After we have transformed the Hamiltonian up to order M , we can skip the
terms of higher order and denote the contribution up to order M as HNFM , the
normal form to order M . We recall that a Hamiltonian system with n d.o.f. is
said to be integrable (in the Liouville–Arnold sense) if there exist n first integrals,
Fj , j = 1, . . . , n, an involution, {Fi, Fj} = 0, and functionally independent almost
everywhere. If ω is non-resonant then the HNFM is integrable, because one can
take Fj = qjpj , ∀j.

Now consider the resonant case. By construction, {H2, HNFM} = 0 and,
therefore, except in the degenerate case in which they are not independent, if
n = 2 one has HNFM integrable. In general this is not true if n > 2. The system
can be far from integrable even in a small vicinity of a totally elliptic point. But
it can take a long time to have numerical evidence of the existence of chaos, even
if it occurs for most of the initial conditions.

A celebrated theorem by Arnold says that, for an integrable system, if the
set of points in the phase space corresponding to fixed values of the first integrals
F−1
1 (c1) ∪ F−1

2 (c2) ∪ · · · ∪ F−1
n (cn) is compact, then it is an n-dimensional torus
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Tn. Around a given torus one can introduce the so-called action-angle variables
(I, ϕ), I ∈ Rn, ϕ ∈ Tn. The integrable system can be written, then, as depending
only on I: H = H0(I), the integration is elementary and the frequencies on the
given torus have the expression ωj = ∂H0/∂Ij |F=c, j = 1, . . . , n. If the system is
perturbed to H = H0(I) + εH1(I, ϕ) we can study how the properties of H0(I)
change under the effect of the perturbation. See Subsections 3.3.3 and 3.3.5 in this
direction.

But we want to point out that it is also possible to try to produce a normal
form for the perturbed Hamiltonian around the given torus if the frequencies on
it, ωj , satisfy a non-resonant condition. This can push the perturbation to higher
order in ε, making easier the applicability of general results.

Up to now we have considered, around a fixed point, the totally elliptic case.
If the quadratic termH2 contains some hyperbolic partH2 =

∑ne

i=1 ωi(x
2
i +y2i )/2+∑n

j=ne+1 λjxjyj , one can use similar ideas to obtain approximations of the central
manifold and of the Hamiltonian reduced to it. We return to this in Subsection
3.3.4.

3.3.3 Stability results: KAM theory and related topics

There is a natural generalization of the idea of twist map to higher dimension.
Consider a map T defined, in suitable coordinates, in a product of n annuli, with
radii ri ∈ (rd,i, ru,i), 0 < rd,i < ru,i, i = 1, . . . , n, of the form T (r, α) = (r, α+a(r)),
where r ∈ R = Πn

i=1(rd,i, ru,i) has components r1, . . . , rn, α ∈ Tn and a is a map
from R to Rn which can be denoted as translation. The map T is an integrable
symplectic map, and R × Tn is foliated by tori invariant under T . Nothing else
but what we saw for (3.7) in the part about ICs in Section 3.2.1.

The differential of the translation with respect to the radii, Dra(r) is known
as torsion.

Then the KAM theorem for symplectic maps has the following statement,
completely analogous to Theorem 3.2.1.

Theorem 3.3.1. Consider a perturbation Fε = T + εP of the integrable symplectic
map T in R×Tn, and assume that for r = r∗ the vector a(r∗) satisfies a DC, that
the torsion is non-degenerate and ε is small enough. Then the map Fε has also
invariant tori in Tn, close to r = r∗, and on them the action of Fε is conjugated
to the one of T on r = r∗, that is, a translation by a(r∗).

In the present case, the DC is slightly different from the one in (3.3). Beyond
the translations ai(r), i = 1, . . . , n, one has to add the value 1, as it is obvious
thinking on the suspension. So, it reads as∣∣∣∣∣(

n∑
i=1

ki, ai) + k0

∣∣∣∣∣ ≥ b|k|−τ , ∀k ∈ Zn+1 \ {0},

where k denotes now (k1, . . . , kn, k0). The role of the DC, the non-degeneracy of
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the torsion, is analogous to the twist condition, and the smallness of ε plays the
same role.

A result similar to Theorem 3.3.1 holds in the case of Hamiltonian systems.

Theorem 3.3.2. Let H0(I) be an integrable Hamiltonian, for which there exist
invariant tori, and assume that for some given torus, labelled by I∗, the frequen-
cies ω(I∗) = ∂H0(I)/∂I|I=I∗ satisfy a DC (in the sense of (3.3)) and are non-
degenerate, so that the differential ∂ω/∂I|I=I∗ is regular. Then if ε is small enough,
a perturbed Hamiltonian H(I, ϕ) = H0(I) + εH1(I, ϕ, ε) has a nearby invariant
torus with the same frequencies.

These results usually do not give estimates on how small ε should be or, if
any, they are very pessimistic. However, normal form techniques (see Subsection
3.3.2) can help to start the iterative process in a very good approximation, so that
the difference with the initial guess and the true torus, if it exists, is sufficiently
small.

For the effective computation of invariant tori there exist different methods.
A quite classical method is the Lindstedt–Poincaré (LP) method. In principle,

it is formal because one looks for the invariant tori without paying too much
attention to the DC (despite the fact that this can also be implemented). Assume
that we look for 2D tori around a totally elliptic point (assumed to be located
at the origin) in a Hamiltonian system with n = 2 d.o.f. Let ω1(0), ω2(0), be the
frequencies at the fixed point. The linear system will have, for the q, p variables,
a representation as linear combinations of cos(ω1(0)t+ ψ1) and cos(ω2(0)t+ ψ2),
where ψ1, ψ2 represent some phases, and these terms have amplitudes α1, α2. Due
to symmetries and the freedom to select the origin of time, the phases for the
different variables can be put in simple form.

We wish to satisfy the equations q̇ = ∂H/∂p, ṗ = −∂H/∂q by expanding in
powers of the amplitudes α1, α2 and integration of the coefficients of these powers
with respect to time. However, it turns out that at some order we can find on the
right-hand side of the equations terms which are not purely quasiperiodic, i.e.,
they are constant. The solution consists in allowing the frequencies to depend also
on the amplitudes. So ωi = ωi(0) +

∑
j1,j2

ci,j1,j2α
j1
1 αj2

2 , i = 1, 2, and a suitable
choice of these ci,j1,j2 coefficients cancels the constant terms.

An often used method is based in writing the coordinates of the points of the
unknown torus as Fourier series in some angles, and then imposing the invariance
conditions. For concreteness we consider the case of symplectic maps. The flow
case can be reduced to this one via a Poincaré map. Assume that we look for a
d-dimensional torus in which the dynamics is conjugated to θ → θ+α, for θ ∈ Td

and a translation vector α ∈ Rd satisfying the DC. Let x be the coordinates in
the phase space and F the discrete map. The invariance condition is

F (x(θ)) = x(θ + α). (3.19)

It is clear that one has freedom to select the origin of the angles θi and that
eventual symmetries can reduce the number of coefficients to be determined.
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To begin with the process, we can assume that we have obtained some ap-
proximation by direct numerical simulation, or that we start near a fixed (or
periodic) point and use the linear approximation or an approximation obtained
by an LP method. If we are interested in a family of invariant tori, one can use
continuation methods, but taking into account that the values of α should sat-
isfy the DC. Hence, there will be gaps in the family, despite the fact that they
can be very small in some cases. Let c denote, generically, the coefficients of the
Fourier expansion, truncated at a suitable order. From a grid of values of θ one
can obtain initial values of x. They are mapped to F (x) and the images can be
Fourier analyzed to obtain the new Fourier coefficients ĉ. Let L be the action of the
translation by α on the initial Fourier coefficients. According to (3.19), we should
require L(c) − ĉ = 0. This is the equation that follows from (3.19) and has to
be solved, usually by Newton’s method. The differentials of the Fourier synthesis
and analysis are elementary and the one of F can be obtained by computing DF
(this can be, typically, the differential of a Poincaré map). See [23] for an efficient
implementation with similar and extended ideas, which works even with a very
large number of harmonics.

The number of harmonics to be used depends on the shape of the torus. One
can use in the grid in θ (and, therefore, in x) a number of points larger than the
number of components of c. In that way one can check the behaviour of coefficients
in ĉ which have not been used as c coefficients in the representation of the solution
we search, and see if they can be neglected. Otherwise, one increases the number
of harmonics. This can be done at successive iterations of Newton’s method in a
dynamic way.

It is also possible not to fix α a priori and determine it together with the
coefficients c. Note that, in case α is close to resonant, one can have convergence
problems. For other quite different problems, like looking for invariant tori in PDE,
this method requires a huge number of Fourier coefficients if the discretisation
dimension is large. Other methods, working directly in the phase space like the
synthesis of a return map, see [39, 42], can give the desired results.

There is a fact, concerning invariant tori and which applies also to the compu-
tation of some periodic orbits, which can produce difficulties. This is the instability
present in partially normally hyperbolic tori or, in a simpler case, in linearly un-
stable periodic orbits. Given a point x, and assuming it approximately located
in an invariant torus, the instability can produce that F (x) is far away from the
torus. This produces convergence problems.

The solution consists in using parallel shooting. Instead of taking a single
Poincaré section, say Σ, one can use several of them, say Σ0 = Σ,Σ1,Σ2, . . . ,Σm−1,
and the corresponding partial Poincaré maps :

P1 : Σ0 → Σ1, P2 : Σ1 → Σ2, . . . Pm : Σm−1 → Σ0.

Hence, the full Poincaré map can be written as P = Pm ◦ · · · ◦ P2 ◦ P1. Then
we look for Fourier representations in each one of the intermediate sections. This
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produces a much larger set of equations, but it has the advantage that each one
of the partial maps Pj is much less unstable.

In the case of highly unstable periodic orbits things are simpler. We only need
one point in each intermediate section, say x0 ∈ Σ0, x1 ∈ Σ1, . . . , xm−1 ∈ Σm−1.
The conditions are simply P1(x0)−x1 = 0, P2(x1)−x2 = 0, . . . , Pm(xm−1)−x0 =
0. The system to be solved is large but the differential has a simple block structure
and the condition number is much better.

3.3.4 Invariant manifolds

Another basic ingredient of the dynamics are the invariant manifolds. In contrast
with the tori of maximal dimension, responsible for the regular behaviour, the
invariant manifolds are, typically, responsible for the chaotic part of the dynamics.
We comment first on invariant stable and unstable manifolds of fixed points of
APM F . The components will be denoted as F1, F2.

Assume a fixed point is located at the origin with dominant eigenvalue λ >
1, and having an unstable linear subspace Eu and a stable one Es. Then the
unstable manifold Theorem ensures the existence of an unstable manifold Wu

loc
in

a neighborhood of the origin, invariant under F , tangent to Eu at the origin and
such that for a point p on it, the iterates under F−1 tend to the origin. In fact,
only the points in Wu

loc
remain on the neighborhood for all iterations. This is a

local result. Then the global unstable manifold Wu is obtained by iteration of Wu
loc

under F . A similar result gives the stable manifold, obtained by exchanging F and
F−1. In the analytic case, as we assume, the manifolds are analytic.

Let u and s be local coordinates along the unstable and stable eigenvectors.
For the linear map DF , the manifold Wu is just s = 0. We can try to find a
representation of Wu for F as the graph of a function: s = g(u) =

∑
j≥2 aju

j .
The invariance condition reads F2(u, g(u)) = g(F1(u, g(u))). The coefficients aj
are determined in a recurrent way by identifying the left-hand and right-hand
coefficients of uj .

An alternative representation of Wu is the parametrization method. Let us
use z as a parameter. In the linear case, a point with u = z is mapped to u = λz.
Now it is not necessary to use coordinates adapted to the eigenspaces. If we use
(x, y) as coordinates around the fixed point and represent the parametrization as
(p1(z), p2(z)), the invariance condition is simply

F (p1(z), p2(z)) = (p1(λz), p2(λz)). (3.20)

That is, we look for a conjugacy on the manifold between F and its linear part.
We search now for the parametrization as p1(z) =

∑
j≥2 ajz

j , p2(z) =
∑

j≥2 bjz
j

in (3.20). Note that the parametrization can be normalized so that the vector of
coefficients of order 1 has Euclidean norm equal to 1. As before, the coefficients of
order j > 1 are obtained in a recurrent way. This is the method used for many of
the examples displayed before.
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A first practical question, given a parametrization to order N (a similar
question can be posed for the graph method), is up to which value of z, say zmax,
one can use the representation. The idea is quite simple: given a tolerance ε we
can compute the point B of parameter z and also the point A of parameter z/λ.
One should have F (A) = B, according to (3.20). Hence, we can check up to which
value of z one has ||F (A)−B|| < ε. This gives the admissible domain for z. Then,
a fundamental domain FD is parametrized by z ∈ (zmax/λ, zmax]. Any point on
the manifold can be found as an iterate of a point in FD. A similar domain, with
z < 0, has to be found for the other branch of the manifold.

To obtain points in the manifold for z > zmax we simply divide the current
parameter by λ as many times as required until a value less than zmax is obtained.
Assume one has to divide k times. Then we compute the point of parameter
z/λk and iterate it k times under F . In this way it is possible to reach points
away from the fixed one, to detect foldings of the manifold, to reach the vicinity
of a homoclinic or heteroclinic point, etc. The selected values of z at which the
computation is done can be chosen to satisfy conditions such as having the distance
between two consecutive points in Wu or the angle between three consecutive
points below some prefixed values.

Why do we need approximations beyond the linear one? The answer depends
on the purpose. If we want to produce a long part of the manifold and, especially,
if λ is close to 1, we can require many iterates. On the other hand, if F is not
given explicitly but follows from a Poincaré map, we need jet transport to have
a local Taylor expansion. In any case, there is an optimal choice to obtain the
“cheaper order” (cheaper can mean in terms of CPU time, of personal time, or a
combination of both).

If we are interested in locating a homoclinic point, and no symmetry is avail-
able for this, the problem reduces to finding two parameters, zu and zs, and well as
two integers, ku and ks, to be used for the unstable and stable manifolds, respec-
tively, such that F ku(pu(zu)) = F−ks(ps(zs)), where pu, ps denote the respective
parametrizations. It is possible to find suitable values of ku, ks and then to solve
for zu, zs using Newton’s method. A similar method can be used for heteroclinic
points, for tangencies, etc.

The ideas are similar in higher dimension. One can look for d-dimensional
invariant manifolds, d > 1, using either graph or parametric methods. This is
specially necessary, for instance, if we look for an unstable manifold with quite
different eigenvalues. A low order representation will take the initial points along
the direction of the maximal eigenvalue. Beyond using high order local expansions,
to decrease the problem, one can use different devices depending on the problem.

To look for the invariant unstable manifold of an invariant curve in a symplec-
tic 4D map, a parametrization using a parameter z, which measures the distance
to the curve, and an angle θ along the curve are useful. The fundamental domain,
in that case, is diffeomorphic to an annulus. See an example in Subsection 3.4.2
in a different context, and another one in Subsection 3.4.5 concerning a family of
invariant curves.
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The idea extends to any dimension with increasing complexity. See [2, 3, 4]
for a nice global approach.

A different problem appears when we consider symplectic maps in dimension
4 (or higher) or problems reducible to them. Consider again the case of a fixed
point but assume that, together with an eigenvalue λ > 1 and its inverse, there
is a couple of eigenvalues of modulus 1. They give rise to the centre manifold of
the point. In general, when we consider a given neighborhood of the point, the
manifold has some degree of differentiability which depends on the neighborhood.
Furthermore, there is no uniqueness in general.

The difficulty comes from the fact that the dynamics on that manifold is
not known. It can contain, simultaneously, invariant curves, periodic points and
chaotic zones. It is said to be a normally hyperbolic invariant manifold (NHIM) if
the hyperbolicity normal to the manifold is stronger than the hyperbolicity that
can be found inside the manifold.

One can recur to normal forms to obtain an approximation of all the dynamics
around the point and, in particular, the centre manifold. A similar idea is to use
a partial normal form, see [42]. Assume we have a Hamiltonian

H = λq1p1 +
1

2
ω1(q

2
2 + p22) +

1

2
ω2(q

2
3 + p23) +

∑
k≥3

Hk(q1, q2, q3, p1, p2, p3), (3.21)

where, as usual, Hk denotes a homogeneous polynomial of degree k.
We proceed as in the case of normal form above, but trying only to cancel all

the terms such that the total degree in (q1, p1) is equal to 1. Using again complexi-
fication, as in the case of the normal form, for the couples (q2, p2) and (q3, p3), the
current denominators to obtain the successive terms in the Hamiltonian G used
to transform H are of the form

(k1 − l1)λ+ i (k2 − l2)ω1 + i (k3 − l3)ω2,

with modulus bounded from below by |λ|, even if ω1 and ω2 are resonant. It is clear
that, denoting the new variables as Q1, Q2, Q3, P1, P2, P3, if we set Q1 = P1 = 0
this is the desired centre manifold. Hence, setting these variables to zero we have
a Hamiltonian with two d.o.f., which gives the reduction to the centre manifold of
the initial Hamiltonian. The process is formal, there is no convergence in general,
but one can obtain a good approximation in a suitable domain. One can check
up to which distance of the fixed point the approximation satisfies some tolerance
condition. See [42] for an example around the collinear point L2 in the spatial
circular restricted three-body problem.

3.3.5 Instability, bounds and detection

In the case of a Hamiltonian with n ≥ 3 d.o.f., in principle, there is no way to avoid
diffusion. The maximal dimensional tori have dimension n, that is, codimension n−
1 in a fixed level of energy, and they do not separate the phase space. For instance,
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initial conditions as close as we like to L4,5 in the spatial circular restricted three-
body problem (see the beginning of Section 3.4), which are totally elliptic fixed
points, can go far away from these points. But normal forms, or averaging, lead
to the so-called Nekhorosev estimates [37], showing that one needs an extremely
large time if one starts close enough to the libration point. See also [14] for a rather
detailed approach. Similar things happen for (2n−2)-dimensional symplectic maps.

Consider a perturbation H(I, ϕ) = H0(I) + εH1(I, ϕ, ε) of an integrable
Hamiltonian H0. The basic idea of the bounds is similar to the averaging Theo-
rem 3.1.1, trying to cancel, around an arbitrary torus labelled by the action I∗,
the dependence with respect to ϕ. But now the frequencies of the unperturbed
Hamiltonian ω(I) = DH0 may not satisfy the DC and, on the other hand, the
perturbation will produce that the frequencies change. Hence, the passage through
resonances or through other frequencies not satisfying the DC is unavoidable.

First one should examine what is the effect of a resonance. We refer to Sub-
section 3.2.2 where we commented on the width associated to a pendulum like
structure. A perturbation O(ε) can give rise to variations O(

√
ε) due to the pres-

ence of a simple resonance. This happens if the frequencies change, reach a res-
onance and then go away from it. But then one can put the following question.
Assume that in the variation of some action there is a term, due to the perturba-
tion, like İj = ε cos((k, ϕ)), where (k, ϕ) is a linear combination of the angles, and
the related combination of the frequencies satisfies (k, ω) = 0. One expects that
the frequencies will change with time and one will escape from resonance, but it
can happen that the frequencies are locked at resonance up to order m for some

m > 0. That is, dk

dtk
(k, ω) = 0 for k = 0, 1, . . . ,m, and dm+1

dtm+1 (k, ω) �= 0. Then,
during a long time, the term cos((k, ϕ)) will be close to constant and the action
can change by a large amount. If the locking occurs at all orders, the change in Ij
will be O(εt). To prevent this locking is why Nekhorosev introduced the so-called
steepness condition, which prevents the order of the locking exceeding a maximal
value. Then one has the Nekhorosev result: under steepness of some order, the
variation of the actions ||I(t) − I(0)|| does not exceed a bound O(εb) during a
time interval |t| < O(exp(cε−a)), where the positive constants a, b, c depend on
the order of steepness and properties of H0, assuming that the norm of H1 is
bounded.

Around a given point, or a given torus (in particular, a periodic orbit) it can
happen that there are many KAM tori. The above description of the Nekhorosev
estimates puts a bound on how fast escap from the vicinity of these tori can be.
Typically, one refers to this fact as stickiness of the invariant tori. Perhaps the
escape is so slow that it has no relevance during the time interval in which we are
interested, or even during the period of validity of the model. This suggests that
we introduce the concept of practical stability. Assume that the studied object has
I = I∗. Then, for fixed values of (ε, T ), where ε is moderately small and T is large,
we say that there is (ε, T )-practical stability if there exists ρ = ρ(ε, T ), such that
points with initial conditions at t = 0 satisfying ||I(0)− I∗|| < ρ evolve with time
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satisfying ||I(t) − I∗|| < ε for all t ∈ [0, T ]; that is, we require stability only for
finite time. See [14].

Clearly, for any v.f. with Lipschitz constant L, (ε, T )-practical stability is
found if ρ ≤ ε exp(−LT ), as follows from Gronwall’s Lemma. But this gives ex-
tremely small values of ρ, completely useless for any practical application. More
realistic values would be ρ = 0.01 for ε = 0.02 and T = 109, depending on the
practical example in mind. See, e.g., [9] for a nice approach to KAM and practical
stability simultaneously.

Another relevant point is how to detect the existence of chaos and quantify
it in a concrete example. There are many different approaches. We comment on
the Lyapunov exponents.

To measure the instability properties of a fixed point (of a continuous or
discrete system) it is enough to look at the differential of the v.f., or of the map
at that point. How to proceed for a general orbit? The idea is to look for the
rate of increase (if any) of the distance between the orbits of nearby points. In
the limit, this becomes the rate of increase of an initial displacement, ξ, under
the differential of the iterates of the map or under the action of the first order
variational flow. For concreteness we consider the case of discrete maps.

Let x0 be an initial point on a manifold M on which it acts a map F , and let
x1 = F (x0), . . . , xk = F (xk−1), . . . be the orbit of x0. We can define, if it exists,

Λ = sup
ξ

lim
k→∞

log(||DF k(x0)ξ||)
k

, (3.22)

where ξ is taken from the vectors with unit norm ||ξ|| = 1 in Tx0M, the tangent
space to M at the point x0. One can prove that the limit in (3.22) exists for
almost every x0 ∈ M and for almost every ξ ∈ Tx0M, and it is known as maximal
Lyapunov exponent.

In the Hamiltonian case (or in the symplectic one) it is easy to prove that,
for initial points in invariant tori of maximal dimension, the limit exists and is
equal to zero. Typically, ||DF k(x0)ξ|| behaves linearly in k in that case, which
gives the desired limit. For generic unstable orbits one expects positive values
of Λ. The geometrical reason is clear: every time that the iterates pass close to
an hyperbolic object, the unstable component will increase at a geometric rate.
For an integrable system, if, for instance, unstable and stable manifolds coincide,
when returning near the hyperbolic object, this expansion is canceled due to the
iterations which occur close to the stable manifold. But the existence of transversal
homoclinic (or heteroclinic points) prevents this from occurring.

One of the basic questions is how to have an estimate of the limit. In practice
the number of iterations should be finite (and there is also the effect of round off,
which is another issue). A simple approach is to proceed to the computation in
(3.22) using a different presentation. Let us define the Lyapunov sums as follows.
Let x0, ξ0 be the initial point and vector, and set S0 = 0. Then, at the k-th iterate,
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we use the following algorithm:

xk = F (xk−1), ηk = DF (xk−1)ξk−1, ξk = ηk/||ηk||, Sk = Sk−1 + log(||ηk||).
(3.23)

Hence, we normalize the tangent vector after every step and add the log of the
normalization to the current value of the sum S. It is clear that the limit slope of
Sk, as a function of k, should coincide with Λ, as defined in (3.22). Hence, we can
proceed as in (3.23) and, from time to time (say, after mN iterates, m = 1, 2, . . .),
fit a line to three different subsamples of the current sample (e.g., last 30%, last
50% and last 70%) and accept the average of the slopes as value of Λ if they
differ by less than a prescribed tolerance. Otherwise, keep iterating until the next
multiple of N , provided this does not exceed a maximal value.

A problem is that, in case Λ = 0, the convergence can be slow; for instance,
log(k)/k is below 10−5 only for k ≥ 1, 416, 361. An alternative approach, which
tends in a faster way to the limit and also smoothes out the oscillations due to the
quasiperiodic effects (in the case of orbits), can be found in [8]. One can look for
the systematic use of that method in [25] for a family of 2D symplectic maps in
S2. Another idea, if one is interested only in deciding whether the orbit is regular
or chaotic, is to stop computations and consider the orbit as chaotic if Sk exceeds
some threshold.

3.4 Applications to Celestial Mechanics

In this section we present several applications to illustrate theoretical and com-
putational approaches to simple examples in Celestial Mechanics. One can have a
look at slides (C), concerning the role of dynamical systems in Celestial Mechan-
ics. Most of the applications deal with the restricted three-body problem (RTBP).
We shortly recall it.

The RTBP studies the motion of a particle P3 of negligible mass under the
gravitational attraction of two massive bodies, P1 and P2, of masses m1 and m2,
respectively. They are known as primaries or as primary and secondary. We assume
that the primaries move in a plane along circular orbits around their centre of
masses.We can normalizem1+m2 = 1 and d(P1, P2) = 1 and express the dynamics
in a rotating frame (the so called synodical frame) with unit angular velocity. The
problem depends on a unique parameter μ = m2. In this frame P1 and P2 are kept
fixed at (μ, 0, 0) and (μ− 1, 0, 0).

The equations of motion are

ẍ− 2ẏ = Ωx, ÿ + 2ẋ = Ωy, z̈ = Ωz, (3.24)

where

Ω(x, y, z) =
1

2
(x2 + y2) +

1− μ

r1
+

μ

r2
+

μ(1− μ)

2
,
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r21 = (x− μ)2 + y2 + z2, and r22 = (x+ 1− μ)2 + y2 + z2. The function

J(x, y, z, ẋ, ẏ, ż) = 2Ω(x, y, z)− (ẋ2 + ẏ2 + ż2)

is a first integral, its value being known as Jacobi constant and it is usually rep-
resented as C. The related 5D energy manifolds are defined as

M(μ,C) =
{
(x, y, z, ẋ, ẏ, ż) ∈ R6|J(x, y, z, ẋ, ẏ, ż) = C

}
(3.25)

and their projections on the configuration space are known as Hill’s regions,
bounded by the zero velocity surfaces (ZVS) (the zero velocity curves, ZVC, in
the planar case).

The problem has five equilibrium points (also known as libration points):

(i) Three of them, say L1, L2 and L3, are collinear (or Eulerian) on the x-axis, of
centre×centre×saddle type and, hence, they have a 4D centre manifold which
contains the so-called horizontal and vertical periodic orbits of Lyapunov type
(to be denoted as hpoL and vpoL), invariant 2D tori and other periodic orbits
(like the halo orbits, depending on the value of C), as well as chaotic regions.

(ii) Two of them, say L4 and L5, are triangular (or Lagrangian) at x = μ− 1/2,
y = ±√

3/2, z = 0. The term μ(1− μ)/2 in Ω is added to have C(L4,5) = 3.
Let μj be the value of μ for which the ratio of frequencies in the plane,[
(1± (1 − 27μ(1− μ))1/2)/2

]1/2
, is j. The points are totally elliptic for 0 <

μ < μ1 = (9 − √
69)/18 and the 2:1, 3:1 resonances (leading to instability)

show up for μ2 = (45−√
1833)/90 and μ3 = (15−√

213)/30. Associated to
the planar frequencies there are the so-called short and long period periodic
orbits. The vertical frequency, giving rise also to a family of vpoL, is equal
to 1.

3.4.1 An elementary mission around L1

First we consider the planar case. Assume that P1 and P2 are Sun and Earth,
respectively. The distance between them, 1.5×108 km, and the period, 1 year, are
scaled to 1 and 2π units, respectively, as said before and we take μ = 3.0404326×
10−6 (it includes Moon’s mass). We want to carry out the following steps:

(i) Compute a periodic orbit of the system, around the Earth, with a period of
1 day (a geostationary orbit) and check that it is close to circular. Call it
PO1.

(ii) Compute some periodic orbits around L1 (of the hpoL family), which are
symmetrical with respect to the x-axis. Check that they are unstable. We
call them, in general, PO2.

(iii) Compute the left branches of the stable manifolds of the previous orbits until
they reach some suitable value of x (e.g., x = −0.999).
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(iv) Now assume an spacecraft is moving in the “parking” orbit PO1. At some
point of the orbit we give an impulsion Δv, in the direction of the velocity
at that point, with the goal of reaching a point of the stable manifold of one
of the hpoL. Determine the hpoL which are reachable in that way from the
parking orbit, at which place one should give the impulsion and which is the
size Δv.

This allows us to obtain an elementary approach to a space mission. Later,
one can consider the effect of perturbations of other bodies, the separate effects
of Earth and Moon, change to a non-planar target orbit, the fact that the target
orbit is, approximately, quasiperiodic instead of periodic, to optimize with respect
to fuel consumption and with respect to transfer time from departure to a vicinity
of the target orbit, etc. For information about the methodology for the design and
control of missions around libration points see [15, 16, 17, 18]. We detail the steps
to find the solution in the present example.

Step 1: First we compute a periodic orbit around the Earth with period τ =
2π/366.25. We start with initial data (x0, 0, 0, ẏ0) and require ϕτ (x0, 0, 0, ẏ0) =
(x0, 0, 0, ẏ0). In fact, it is much simpler to ask for the image at t = τ/2 to be of the
form (x1, 0, 0, ẏ1), and then symmetry completes the task. We have two known data
x0, ẏ0 and two conditions y1 = 0, ẋ1 = 0. After a few attempts one can use New-
ton’s method to find the solution x0 ≈ −0.999714471273, ẏ0 ≈ 0.103463316596.
One can check that the monodromy matrix has a double eigenvalue equal to 1
(as expected: energy preservation and time shift) and the other eigenvalues are
exp(±αi ), α ≈ 0.034228998. The difference with respect to a circular orbit is less
than 350 m. For further reference we denote this orbit as γ(t).

Step 2: Now we face the hpoL around L1. First we locate L1 by imposing Ωx = 0
as it follows from (3.24). Starting at x = μ − 1 + (μ/3)1/3, Newton’s method
converges quickly for μ small. Then we can compute the eigenvalues at that point,
which turn out to be λ, λ−1, exp(±ωi ), with λ ≈ 2.532659199, ω ≈ 2.086453579.
Hence, the maximal eigenvalue of the nearby periodic orbits, when they tend to
L1, is exp(2πλ/ω) ≈ 2052.671203.

This large instability suggests, again, that we look for the initial data for the
hpoL on the Poincaré section y = 0 for a fixed x0 with ẋ0 = 0, and leaving ẏ0
as the only unknown variable. The condition to be satisfied is then that the next
intersection with y = 0 (to the left of L1) should have ẋ = 0. This is easily solved
by Newton’s method. From the half orbit we recover the full orbit by symmetry,
the monodromy matrix and, hence, dominant eigenvalue and eigenvector. The
instability becomes milder when the size increases. For instance, for the smallest
orbit in Figure 3.10 on the left the dominant eigenvalue is 2050.987058, while the
largest one is 923.004416. Standard continuation techniques are used to generate
these orbits.

Step 3:With the previously computed data it is simple to produce the left branches
of the stable manifoldsW s,−

PO of the hpoL until they intersect the value x = −0.999.
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Figure 3.10: Left: some orbits in the family hpoL around L1. The initial values of x,
on y = 0, are of the form xL1 + k × 10−4 for k = 1(1)22. Right: For some of the
orbits, concretely for k = 6(4)22, we plot also the left branches of W s

POk
until they reach

x = −0.999. In both plots the variables x, y are shown.

It is enough to use the linear approximation of the manifold in the Poincaré section
y = 0. An example is shown in Figure 3.10 to the right. To compute the manifolds
200 points have been taken in a fundamental domain, equally spaced in logarithmic
scale. The intersections for the orbits with k = 8(2)22, i.e., for the indices ranging
from 8 to 22 with step 2 (see Figure 3.10) are shown in red in Figure 3.11 on the
right, using y, ẏ as variables.

Step 4: The last step is how to reach W s,−
POk

for a given k leaving from the parking
orbit. It is suggested to give an impulsion Δv from a given point γ(t∗) in the
orbit, in the direction of the velocity γ̇(t∗) at that point. The first question is to
compute what is the size of the new velocity. We simply require that the value
of the Jacobi constant with this velocity equals the one of the target POk. Let
|v| be the modulus obtained for this velocity. Then, Δv = |v| − |γ̇(t∗)|, and the
components of the new velocity are proportional to the ones of γ̇(t∗). This allows
us to compute the trajectories ψ(t, t∗) leaving from the parking orbit until they
reach x = −0.999. Depending on t∗ it can happen that ψ(t, t∗) reaches x = −0.999
or it goes first far away to the left, spending too much time. These trajectories
are skipped. A sample of the possible ψ(t, t∗) trajectories for several t∗ values is
shown in magenta in Figure 3.11 on the left, where the parking and target orbit
(with k = 14) are in red, and W s,−

PO14
is shown in blue.

Finally, on the right-hand part of Figure 3.11 we show, in the (y, ẏ) variables,
the information that has been obtained in x = −0.999: the intersections of W s,−

POk

for k = 8(2)22, in red, and the intersections of ψ(t, t∗) when one changes t∗, for
the Jacobi levels of POk, k = 10(4)22, in blue. The intersections of a given red
curve with the corresponding blue one are the candidates for the transfer. The
values of Δv are quite close. They range from 0.040286 for k = 10, to 0.041246 for
k = 22 (i.e., impulsions ranging from 1.203 to 1.232 km/s).
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Figure 3.11: Left: The parking orbit and an example of a possible target hpoL (with
k = 14), both in red, the branch W s,−

PO14
in blue, and some of the possible trajectories

ψ(t, t∗) departing from the parking orbit (see text) in magenta. Plot done using x, y
variables. Right: The intersections of W s,−

POk
for k = 8(2)22 with x = −0.999, in red, and

the intersections with the same plane of ψ(t, t∗) for different values of t∗ on the Jacobi
levels of POk, k = 10(4)22, in blue. Note that these four blue curves are quite close and
similar. The possible places for the transfer are the intersections of a W s,−

POk
curve with

the corresponding blue curve. They are marked in magenta. For each k shown here two
possible places are obtained. This plot is done using y, ẏ as variables.

3.4.2 Escape and confinement in the Sitnikov problem

This is an example to study escape/capture on a given problem of Celestial Me-
chanics using a very simple model. Two massive bodies of equal mass are moving
on the z = 0 plane on elliptic orbits of eccentricity e around the common centre
of mass, located at (0, 0, 0), with semimajor axis a = 1, while a body of negligible
mass moves along the z-axis. The standing equations are

z̈ = − z

(z2 + r(t)2/4)3/2
, r(t) = 1− e cos(E), t = E − e sin(E), (3.26)

where E denotes the eccentric anomaly of the primaries. For e = 0 the problem
has one d.o.f. and, hence, it is integrable. As a first order system we have ż = v,
v̇ = z(z2 + r(t)2/4)−3/2, with the obvious symmetries S1 : (z, v, t) ↔ (z,−v,−t),
S2 : (z, v, t) ↔ (−z, v,−t), and S3 : (z, v, t) ↔ (−z,−v, t). We can introduce E as
new time variable (denoting ′ = d/dE) and introduce a Hamiltonian formulation:

H(z, E, v, J) = (1− e cos(E))

[
1

2
v2 − (z2 + (1− e cos(E))2/4)−1/2

]
− J.

A suitable Poincaré section for the representation of orbits is Σ = {z = 0},
using (v, E) as local coordinates. Thanks to the symmetry and to avoid strong
deformations we shall use, instead, (v̂, E), where v̂ = |v|(1 − e cos(E))1/2.

If the infinitesimal mass escapes to infinity, the massive bodies move in S1

(eventually, after regularization of binary collisions using Levi–Civita variables).
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Figure 3.12: Left: A representation of the Sitnikov model. Right: For e = 0 plots of the
orbits in the (z, v) variables for values of H equal to −1.5, −1.0, −0.5 and 0.

One talks of a periodic orbit at infinity. A celebrated Theorem by Moser states
the following.

Theorem 3.4.1. The problem has periodic orbits at both z plus and minus infinity,
with invariant manifolds (orbits going to or coming from infinity parabolically).
For e small enough the manifolds intersect Σ in curves diffeomorphic to circles.
These curves have transversal intersection, implying the existence of heteroclinic
orbits from +∞ to −∞ and vice-versa.

As a consequence one has non-integrability, embedding of the shift with in-
finitely many symbols, existence of oscillatory solutions, escape/capture domains,
etc. The PO at ∞ is parabolic or, topologically, weakly hyperbolic. The linearized
map around the PO is the identity. To study the vicinity of these orbits we intro-
duce McGehee variables (q, p) defined as z = 2/q2, ż = −p. Then the equations of
motion become

q′ = Ψq3p, p′ = Ψq4
(
1 + Ψ2q4

)−3/2
, Ψ = (1 − e cos(E))/4. (3.27)

If e = 0 the invariant manifolds are given as p = ±q(1+ q4/16)−1/4. We shall
denote as Wu,s

± the intersections of unstable/stable manifolds of ±∞ with Σ. Due
to S3, W

u± coincide and also W s± coincide, but W s
+,W

u− have v > 0, while W s−,Wu
+

have v < 0. Due to S1, W
u
+ and W s

− are symmetric with respect to E = 0.
We look for a parametric representation of the manifolds of the PO as

p(E, e, q) =
∑
k≥1

bk(e, E)qk =
∑
k≥1

∑
j≥0

∑
i≥0

ci,j,ke
i sc(jE) qk, (3.28)

where bk(e, E) are trigonometric polynomials in E with polynomial coefficients in
e, ci,j,k are rational coefficients, and sc denotes sin or cos functions.

Note that the problem can be reduced to obtain invariant manifolds of fixed
parabolic points of discrete maps (think about the intersection of the manifolds
with E = 0). In this context McGehee proved that the invariant manifolds are
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analytic except, perhaps, at q = 0, see [31]. In fact, a result of Baldomà and Haro
[1] shows that, generically, the 1-dimensional manifolds of fixed parabolic points
are of some Gevrey class (see the part on invariant manifolds in Section 3.2.1).

From (3.27) and (3.28) the invariance of the manifolds can be written as

Ψq4
(
1 + Ψ2q4

)−3/2
=

∑
k≥1

dbk
dE

(e, E)qk +
∑
k≥1

bk(e, E)Ψkqk+2
∑
m≥1

bm(e, E)qm.

(3.29)
Equating coefficients of powers of q in (3.29) leads to the recurrence(− 3

2

m

)(
1− e cos(E)

4

)2m+1

= b′n(e, E) +
1− e cosE

4

n−3∑
k=1

kbk(e, E)bn−2−k(e, E),

(3.30)
where m = n/4− 1, defined only for n multiple of 4.

To solve the recurrence in (3.30) we first note that for the unstable manifold
of +∞ we have b1 = 1. One has b1 = −1 for the stable manifold. For a given value
of n we can split the function bn as b̃n+b̄n, where b̄n denotes the average and b̃n the
periodic part. Given b′n(e, E) equal to some known function (computed from the
previous coefficients) allows us only to compute the periodic part b̃n. The average
b̄n is computed previous to the solution of the equation for b′n+3(e, E), to have a
zero average function when we integrate. An essential fact is that b2 = b3 = b4 = 0.
One has also b6 = b7 = b10 = 0, but this is not so relevant.

Now it is a simple task to implement the computation of the coefficients to
high order. Using high order is important, because this allows us to have a good
representation for large values of q. A large q allows us to start the numerical
integration, to obtain the intersection Wu

+ of the manifold with z = 0, at a mod-
erate value of z. For instance, using terms up to order n = 100 one checks that
the representation is good (error of the order of 10−16) for q = 1/3. Then the
numerical integration can be started at z = 2/q2 = 18.

Figure 3.13 shows some results for different values of e, displaying Wu
+ and

W s
−, and using the (v̂, E) variables as polar coordinates. Note that the use of

(|v|, E) would give curves extremely elongated to the right for e close to 1. Con-
cretely, if the eccentricity is equal to 1− δ then the horizontal variable in the plots
reaches values ≈ 2/

√
δ. The values of the splitting angle at E = 0 and E = π on

the section Σ are shown as a function of e in Figure 3.14. Note the quite different
behaviour when e → 1. This gives evidence of the transversality for all values of e.

Summarizing, the steps to obtain the manifolds Wu
+ and W s

− and, hence, the
splitting angle, are the following:

(i) introduce McGehee coordinates to pass from (3.26) to a formulation around
the periodic orbits at infinity, as given by (3.27);

(ii) look for a suitable representation, as the one in (3.28), in which the manifold is
expressed as function of a distance to infinity (q) and a periodic time variable
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Figure 3.13: The manifolds W u
+, in red, and W s

−, in blue, for different values of e. Top
left: for e = 0.1. Top right: for e = 0.5. Bottom left: for e = 0.9. Bottom right: for
e = 0.999. In all cases we use (v̂, E) as polar coordinates.
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Figure 3.14: The splitting angle of the manifolds W u
+ and W s

− in Σ. For positive values
on the horizontal axis the splitting angle at E = 0 is shown as a function of e. For the
negative ones, the splitting angle at E = π is shown as a function of −e.
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(E); write the invariance condition (3.29) and derive the recurrences, as given
in (3.30);

(iii) analyze the properties of the recurrences (symmetries, powers of e in the coef-
ficients of the trigonometric polynomials, etc); design and implement routines
to obtain the desired numerical coefficients; and

(iv) select a suitable value of q for the current maximal order of the expansion,
evaluate (3.28) for a sample of values of E for every desired value of e, and
carry out the numerical continuation until z = 0.

It is important to stress that, for other similar problems (RTBP planar or
spatial, general, etc), to decide if an observed body will be captured or will escape,
it is enough to obtain the manifolds and decide the actual position with respect
to them. The case of the planar RTBP with a comparison between theoretical
predictions and numerical results can be found in [28] and the related slides (I).

3.4.3 Practical confinement around triangular points

As mentioned at the beginning of Section 3.4, the triangular libration points are
linearly stable in the 3D RTBP if μ is small enough. But, what can be said about
nonlinear stability? For the 2D case, nonlinear stability is proved for μ ∈ [0, μ1)
except for the couple of values μ2, μ3. A possible approach is to reduce to the study
of a symplectic 2D map and to apply Moser theorem. There is an exceptional value
for which the twist condition is not satisfied, but can be recovered as a weak twist
to higher order via normal forms.

In the 3D case, in principle, there is no way to avoid diffusion. Hence, initial
conditions as close as we like to L4,5 can go far away from that point. But normal
forms, or averaging, lead to the already mentioned Nekhorosev estimates, showing
that one needs an extremely large time if one starts close enough to the libration
point as discussed in Subsection 3.3.5.

But these results, concerning domains of practical stability in the 3D case,
give at most small regions around the triangular points. On the other hand one
has found the so-called Trojan (and Greek) asteroids, for the Sun-Jupiter system,
far away from L4,5, even with relatively high inclination. Hence, it seems that the
domain of practical stability for long times is much larger than what is given by
theoretical predictions. It would be nice to search for the confining mechanisms.

A side problem is why Trojan-like bodies are not found in the Earth-Moon
case. Certainly the Sun is guilty for that, the orbits equivalent to L4,5 for the
Earth-Moon system being unstable even in simple models of the Earth-Moon-Sun
motion. But this does not exclude the possibility that stable orbits exist with
moderate inclination.

Here we present some results which can help to understand the main mech-
anisms, see [48]. For different reasons, many computations are done with initial
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conditions on the ZVS using (z, α, ρ) as parameters for a fixed μ, as follows:

x=μ+ (1 + ρ) cos(2πα), y=(1 + ρ) sin(2πα), z=z0 ≥ 0, α ∈ (0, 1/2),

ẋ= ẏ= ż=0. (3.31)

As for μ = 0 one must be in 1 − 1 resonance, it is convenient to look, starting
at the ZVS, for initial conditions at rest, in the synodical frame, in the moment
that an elliptic orbit with semimajor axis equal to the unity passes through the
apocentre in the sidereal frame. That is, for values of (z,R = 1 + ρ) related by

z =
[
4(1 +R2)−2 −R2

]1/2
or

ψ = 1− 1
2w + 3

25w
2 − 1

28w
3 − 25

213w
4 + 33

216w
5 +O(w6),

(3.32)

where w = z2, ψ = ψ(z) = R2. This suggests that we make plots using the
variables

(α, γ = 1 + ρ−
√
ψ(z), z). (3.33)

It is clear that L5 corresponds to ρ = 0, α = 1/3, z = 0. By symmetry,
similar results are obtained for L4. Also, by symmetry, it is enough to look for
z ≥ 0. For the limit case, μ = 0, one would have γ = 0.

Some reasons to start at the ZVS are:

(i) Most of the i.c. non-leading to escape are on 3D tori. Hence, we scan a set of
positive measure in the full phase space (not fixing the Jacobi constant C).

(ii) The results obtained can be used as a seed to obtain the relevant objects
involved in the practical confinement, either starting at the ZVS or not.
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 0.95  1  1.05

Figure 3.15: Example of a transition for μ = 0.0001, α = 0.05, z = 0.3. The two tori
(confined in red, escaping in blue) have values of ρ which differ in 10−10. We show the
projections on (x, y) of the Poincaré section through z = 0. Left: a global view. Right: a
magnification. The separating unstable 2D torus or invariant curve in the section belongs
to W u,s

L3
. Note that the points in red are partially hidden by the ones in blue.



3.4. Applications to Celestial Mechanics 211

First, we show some results concerning the quasi-boundary between escape
and practical confinement. Figures 3.15 and 3.16 display, for a small value μ = 10−4

of the mass parameter, two different kinds of objects which appear on the quasi-
boundary. We should mention that the relevant objects have codimension 1 in the
full phase space. In the present case they have dimension 5. Typically, they are
Wu,s of central objects of dimension 4. These objects can be the centre manifolds of
fixed points of centre×centre×saddle type or the centre manifolds of 1-parameter
families of periodic orbits of centre×saddle type (the parameter being, e.g., the
value of the Jacobi constant). But it is clear that these Wu,s do not coincide: there
is some splitting. This is the reason why they are named quasi-boundaries.

We note, for instance, that in the upper left plot of Figure 3.16 beyond the
blue curve commented on the caption, one can guess another invariant curve (in
the Poincaré section, a 2D torus in the phase space) on top of the plot. The
separation between confined and escaping orbits is close to a double heteroclinic
connection between the lower curve in blue and the upper one in red. But the
related branches of these two partially normally invariant curves do not match
exactly. There is some tiny splitting between the branches.
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Figure 3.16: Similar to Figure 3.15 but starting at α = 0.4, z = 0.6. Now the separating
unstable 2D tori are not in W u,s

L3
. Top: initial part of Poincaré iterates with many iterates

in blue, giving evidence of the lower unstable 2D torus and points escaping from it
(left), and the separating lower unstable invariant curve alone (right) projected on (x, y).
Bottom: The same curve projected on (x, ż) (left), and the related 2D separating unstable
torus in a (x, y, z) projection (right).

In Figure 3.17 we display a general view of the boundary. See comments
on the caption. Typically, the transitions have been detected after a maximum
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integration time equal to 106 × 2π (in special cases 10, 102 or 103 times larger)
and with a resolution of 10−6 in ρ; see slides (D) for other values of μ.

Figure 3.17: A 3D view of the detected boundaries of practical stability starting at
the ZVS for μ = 10−4, shown in the (α, γ, z) variables. The inner (resp., outer) part
corresponds to γ < 0 (resp. γ = 0). Note the sharp change on the behaviour of the
boundary which occurs between z = 0.4 and z = 0.5.

We can make a rough scan of the boundaries for different values of μ, both
for the planar and spatial RTBP. We say rough in the sense that, typically, the
maximal time to look for escaping has been reduced to 105 × 2π time units and
that the grid we scan uses Δρ = 10−4, then Δα equal to 2×10−4 in the planar case
(5×10−4 in the spatial one) and Δz = 5×10−3 in the spatial case. The results are
shown in Figure 3.18. Note that the effect of the resonances is less important in
the spatial case. This is due to the fact that, for some values of μ, the resonances
destroy stability in the planar case, but still a large set of initial conditions is stable
in the spatial case. The change of the frequencies when z increases is responsible
for the minima being shifted to larger values of μ.

From now on we concentrate on a fixed value μ = 0.0002. The reasons for
this choice are the following:

(i) μ being small, the boundaries are sharper;

(ii) it should be also possible to obtain some information by means of perturba-
tion theory;

(iii) it is close to the Titan-Saturn mass ratio.

This small value of μ, however, raises a problem: the escape is relatively slow and,
hence, the integration time is large. The methodology used (for the L5 case) is as
follows:
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3D and 2D

Figure 3.18: Statistics as a function of μ starting at the ZVC (planar case, in red) and
at the ZVS (spatial case, in blue). This is normalized to the maximum, which for the
planar case occurs at μ = 0.0014 with 282757 points, and for the spatial case it occurs for
μ = 0.0017 with 19014882 points. Note the sharp effect of the resonances in the planar
case. Similar patterns are found for the Hénon map and in many other examples, see
[46]. In the spatial case the effect of the resonances is milder and delayed. In both cases
some stability subsists even for μ > μ1.

(i) Define some escape criterion (e.g., the (x, y) projection of the orbit enters
some wedge near the negative y-axis, or the orbit comes too close or too far
from the primary, or too close to the secondary).

(ii) Scan a set of initial conditions for short time (e.g., 104× 2π, using some grid
with small steps Δα, Δρ, δz). Look at every initial point on the grid, for
fixed z, as a pixel. Keep the pixels non leading to escape.

(iii) Repeat for longer time (e.g., 5×104×2π) for the pixels at a distance (counted
in the sup norm) less than d pixel units from the ones which already es-
caped (typically, we take d = 5). The tested points are marked depending on
whether they escape or they remain. Iterate the scan until no more points
have to be tested: all the ones at distance less than or equal to d from escap-
ing points have been tested and remain. Repeat two more times for longer
and longer integration time (25× 104 × 2π, 106 × 2π).

(iv) Eventually do additional refinements of ρ for fixed α, z.

Figures 3.19 and 3.20 show some results for μ = 0.0002 displaying, for dif-
ferent values of z, the set of non-escaping points starting on the ZVS and the
boundaries of the domain. See the captions for the variables used to represent the
results. Note that the domain of practical stability contains, for the planar case
z = 0, stable points quite close to the L3 (α ≈ 0). In the spatial case there are
stable orbits which reach z as large as 0.865 and, as the value of ρ for these orbits
reaches ≈ −0.181 they have a maximum inclination exceeding 46 degrees.
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Figure 3.19: For μ = 0.0002 the subsisting points, starting at the ZVS for 12 different
z values, given on the top of the plot. The coordinates used for the representation are
(α, ρ).
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Figure 3.20: Boundaries of the domains shown in Figure 3.19 using the paraboloid like
corrections. That is, as vertical variable one has used γ, as defined in (3.33) instead of ρ.

Some sections of the boundary for μ = 0.0002, for several values of α, are
shown in Figure 3.21.
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Figure 3.21: Some sections of the boundary starting at the ZVS for different values
of α. Left: in the (ρ, z) variables. Right: using the (γ, z) variables. The curves for α =
0.05, 0.12, 0.25 are plotted in red, and are easily seen on the right-hand plot going away
from (0, 0) and each line encircling the previous one. The curve for α = 0.33 is displayed
in blue. This is the largest one. Finally the curves for α = 0.40 and α = 0.435 are plotted
in magenta. Last one does not reach z = 0.

Still many things must be completed even for this small μ for which the
boundaries tend to be rather sharp, because they are associated to relatively small
splitting. The problem becomes more rough for the Sun-Jupiter case, because then
one starts to see the effect of some island-like structure. For the Earth-Moon case
the behaviour is quite wild due to the strong effect of resonances. The Earth-Moon
mass ratio is not far from the 3:1 resonance value μ3.

3.4.4 Infinitely many choreographies in the three-body problem

In the Newtonian N -body problem with all masses equal to 1, we can consider very
simple solutions in the planar case, the like N -gon relative equilibrium solutions.
Due to the homogeneity one can scale time and distance so that it is enough to
consider solutions with period 2π. The N bodies move on a circle of radius R such
that

2R3 = ΣN−1
j=1 (2 sin(jπ/N))−2.

It is clear that all the bodies move on the same path in the plane. Hence,
the following is a natural question: are there other periodic solutions such that all
bodies with equal masses move on the plane along the same path? At the end of
the twentieth century a solution with 3 bodies on the same planar curve, different
form a circle, was proved to exist by Chenciner–Montgomery [6]. Also, Moore [33]
found the same orbit in a previous numerical work in a different context, a few
years before. The path of this solution is the very popular figure eight curve and
is displayed in Figure 3.22.

Immediately, one can pose the question for N > 3 and for other shapes of
the path. These solutions are called choreographies because of the dancing-like
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Figure 3.22: The figure eight solution of the three-body problem. The initial positions
of the bodies are marked as black points. For concreteness, we can assume that at t = 0
the body located at the origin moves to the right, up. This forces the motion of the other
two.

motion of the bodies seen in animations, see [5, 45]. More precisely, they should
be called simple choreographies because they are on the same curve; we use the
term k-choreographies for bodies moving on k different curves. Slides (F) provide
some examples and links to animations. One can also introduce the notion of
relative choreographies if they are seen as choreographies in a uniformly rotating
frame. Two choreographies which differ only by a rotation, by scaling, change of
orientation, symmetry, etc, should be seen as the same.

Returning to simple choreographies in a fixed frame (or absolute choreogra-
phies) what one tries to find is some 2π–periodic function ψ : S1 → R2 such that
if the body j is located at qj(t) = ψ(t− (j − 1)2π/N) for j = 1, . . . , N , we have a
solution to the equations of motion.

Another natural question arises: are there other choreographies of the three-
body problem different from the figure eight?

A simple observation is that at some t > 0, relatively small, the three bodies
in Figure 3.22 will be in an isosceles configuration. Such a configuration is defined,
for instance, assuming that at some moment of time the bodies 2 and 3 have
positions and velocities given by

x3 = x2, y3 = −y2, ẋ3 = −ẋ2, ẏ3 = ẏ2. (3.34)

The conditions for m1 are determined from the centre of mass integrals. This
isosceles triangle has a symmetry axis passing through m1.

Assume that after some time τ the bodies pass through another isosceles
configuration, concerning positions, with the bodym2 in the symmetry axis defined
by the positions of m3 and m1, and that the velocities are close to satisfy the
isosceles condition. Let β be the angle between the former symmetry axis (the x-
axis) and the new one. A refinement is done to satisfy the full isosceles conditions
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with good accuracy (see the end of this subsection). Then, after rotating positions
and velocities at τ by an angle −β, we have an isosceles configuration with the
same symmetries concerning velocities than the initial one. The only change is a
circular permutation of the bodies with change of orientation. Then the action of
the semi-direct product of Z2 and Z3 (symmetry and permutation of the bodies)
produces a relative choreography with period T = 6τ and rotation 6β. If β is
kπ, k ∈ Z, we have an absolute choreography, symmetric with respect to the x-
axis.

This has been applied to ≈ 109 initial conditions. Near 3 × 105 relative
choreographies have been found and, by continuation of each one of them with
respect to the angular momentum, many (345 up to now) absolute, non-equivalent,
choreographies have been found. It is clear that several relative choreographies can
lead, by continuation, to an absolute choreography equivalent to another one found
previously, and these are not counted. It is checked that some of these new three-
body choreographies seem to belong to families. An example is shown in Figure
3.23. See [44] for other families.

Figure 3.23 suggests to try to continue the family for an increasing number
of loops. Now the continuation has to be done with respect to integers and not in
a continuous way. But using extrapolation of the data from the previous loops it
has been possible to continue the family without any problem (using quadruple
precision and high order extrapolation) until the solution shown in Figure 3.24.
The natural conjecture is that there are infinitely many choreographies in this
family.

There is an easy description of that solution. One of the bodies (say, the red
one) moves close to an elongated ellipse while the other two (green and blue) move
in a close binary, with its centre of mass close to an ellipse. When the three bodies
approach the centre of mass there is an exchange: the blue body moves close to an
elongated ellipse and the red and green form a binary in turn. At the end of this
we have traveled 1/3 of the period. The bodies return to the initial position with
a cyclic permutation RGB → GBR. One should stress that when they approach
the centre of mass the bodies are not close to triple collision. Preliminary results
seem to indicate that the minimal value of the moment of inertia along the orbit is
strictly decreasing with the number of binary loops, tending to a positive constant.

It should be mentioned that, among the 345 absolute choreographies avail-
able, one can identify several families. It is not excluded that some of these families
contain infinitely many elements. But it can also happen that a couple of families
merge together in a saddle-node bifurcation.

The steps for that application are as follows:

(i) To obtain initial data in isosceles configuration one can prescribe some neg-
ative energy. Then we give values of (x2, y2) and determine the positions of
the other masses. Because of the symmetries we can select x2 > 0, y2 < 0.
A bound on the domain is obtained because the kinetic energy should be
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Figure 3.23: Choreographies of the three-body problem belonging to a family. The paths
of the three bodies during 1/3 of the period are shown in different colors. The positions
of the bodies in the initial isosceles configuration and the ones after 1/6 of the period
are also shown. To display the solutions with the same scale in x and y variables, the
coordinates have been exchanged. Now, for these choreographies, the symmetry axis is
the vertical one and for this family both isosceles configuration (at t = 0 and after 1/6 of
the period) are symmetrical the one from the other with respect to the horizontal axis.
Counting the little inner loops (for instance, the ones in red) the number increases from
1 to 9 from top to bottom and from left to right. The value � on top of each plot refers
to the total number of small loops, either in red, blue or green.

non-negative. The possible values of (ẋ2, ẏ2) are parametrized by an angle
γ ∈ [0, 2π].

(ii) Then, we proceed to the integration of (3.1) with the selected initial condi-
tions, looking for a passage near another isosceles configuration. A maximal
time is used (e.g., 5 units) and the attempt is stopped if the bodies move too
far or they become too close. If a candidate is obtained a refinement is done
by Newton’s method, to have a good approximation to an isosceles symme-
try after 1/6 of the period. For the refinement we fix γ and leave (x2, y2) as
free variables to satisfy the isosceles condition for the velocities when it is
satisfied by the positions.

(iii) Next we carry out continuation by changing the angular momentum, looking
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Figure 3.24: Top: a choreography of the three-body problem of the same family of the
ones shown in Figure 3.23. In each of the binary portions the bodies in the binary make
200 revolutions around the centre of mass of the binary, while the third body moves close
to an elongated ellipse. Only 1/3 of the orbit is shown. The remaining parts are obtained
by cyclic permutations. Bottom: a magnification of the central part of the top.

for an absolute choreography. Continuation is stopped if the bodies approach
a collision. The new absolute choreographies are stored in a list. If they are
already in the list, they are discarded. Later, for our present goal, we select
the ones which belong to the family as shown in Figure 3.23.

(iv) Finally the family is continued with respect to the number of loops. An
extrapolation based on the previously computed loops allows us to have a
very good guess. Newton’s method converges in few iterations.

3.4.5 Evidences of diffusion related to the centre manifold of L3

In this last application we consider the 3D RTBP for a small value μ = 0.0002,
like we used in Subsection 3.4.3. Our goal is to give evidence of the diffusion when
we consider the unstable dynamics originated by the unstable/stable manifolds of
the part W c

L3,C
of the centre manifold W c

L3
of L3, for a given value C of the Jacobi

constant. For concreteness, we use the value C = 2.95998466228. To have a feeling
of the meaning, let us say that for that value of C the vpoL in W c

L3,C
has values

of z going from −0.2 to +0.2.
Beyond the vpoL, the W c

L3,C
contains 2D tori, the hpoL, some tiny chaotic

domains, and the additional periodic orbits related to these domains. Using the
methods of Subsections 3.3.1 and 3.3.3, we can compute both periodic orbits and
several tori. It is simpler to represent the tori as ICs of the Poincaré map P
associated to the section Σ := {z = 0, ż > 0}. In this application we shall use once
and again Σ and P . As we fixed also the value of C, we have to consider a discrete
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map in a 4D space that we denote as ΣC .
The ICs are hyperbolic normally to the centre manifold. Hence, we can com-

pute its manifolds, say Wu
C , W

s
C , for a given curve C. Note that these manifolds are

2D and to visualize them we can compute a section through some codimension-1
manifold in ΣC (e.g., an hyperplane Π). A suitably chosen Π gives as Wu

C ∩ Π a
closed curve, say Cu. In a similar way we can obtain Cs. Of course, these two curves
in ΣC ∩ Π, which is 3D, do not intersect generically, as opposite to Wu

C and W s
C

which are 2D in the 4D space ΣC , for which one expects to have intersections, but
not necessarily located in Π. But we can have a feeling of their relative position
by looking at Cu and Cs.

Figure 3.25 illustrates what has been said. In the left plot several ICs are
shown, as well as the point corresponding to the vpoL. Note that the largest IC is
quite close to the hpoL. The 2D torus corresponding to this last IC has values of
z which range in the small interval [−0.017, 0.017]. The hpoL, which is contained
in z = 0, is located outside the largest IC shown at a distance ≈ 0.004. The right
plot displays Cu and Cs for several ICs, using as Π the hyperplane defined by
y = −√

3(x − μ). One detects, visually, that for tori close to the vpoL the curves
are quite close. The difference increases going outside, away from the vpoL, and
decreases again when approaching the hpoL. This will be one of the relevant facts
to explain the results obtained.
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Figure 3.25: Left: invariant curves obtained as intersections with Σ of some tori in the
W c

L3,C
for C = 2.95998466228 projected on the (x, y)-plane. The vpoL orbit for this

value of C has z ∈ [−0.2, 0.2] and corresponds to the blue point. The blue curve will
be used in the computations reported here. Right: sections with y = −√

3(x− μ) of the
Poincaré sections of the unstable (red) and stable (blue) manifolds of some of the tori.
For the 3D view we use the (y, ẏ, ż) variables.

Figure 3.26 shows the projection in (x, y) of the first 105 iterates under P
starting at a point close to the blue curve, say Cb, in Figure 3.25, left. The first
iterates follow closely the upper part of Wu

Cb
and return near Cb close to the upper

part of W s
Cb

(or of some other nearby curve). As it is well known, next iterates can
continue going up or down, as happens after every return near Cb, in a quasirandom
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way. For completeness, the manifolds of vpoL are also shown (displayed in blue).
This behaviour suggests that, at the successive returns near W c

L3,C
, the

Poincaré iterates can approach different tori (2D in the phase space) on that
centre manifold. That is, a typical mechanism of diffusion thanks to chains of
heteroclinic connections of different tori.

But there are also tori (3D for the Hamiltonian flow, 2D for P) close to
these manifolds. Among these tori one finds the ones close to the boundary of the
practical stability domain for L5, as seen in Subsection 3.4.3. Looking at Figure
3.19 one checks that they reach values of α very close to 0 (the value of α for L3)
up to z = 0.4. The successive points can remain for a large number of iterations,
say 106 and even 108 in some tests, close to one of these tori, to one of the tori in
the symmetric domain around L4, or even tori which visit a vicinity of both L5

and L4 (with an (x, y) projection of the iterates in Σ similar to the red points in
Figure 3.26). The tori are very sticky, see Subsection 3.3.5. As a consequence, the
orbit of a point should consist of passages from the vicinity of the Wu of one of
the ICs to the vicinity of the W s of another IC (or, perhaps, the same one) with
long stays near tori of one of the three types described.

-1

 0

 1

-1  0  1

Figure 3.26: Starting at a point very close to the invariant curve in blue in Figure 3.25
we have computed the first 105 intersections with Σ. The plot shows the projections on
the (x, y)-plane. As a reference, we also show in blue the initial part of the manifolds of
the vpoL. The lack of coincidence of these last manifolds is not seen with the present
resolution.

To have evidence of this expected behaviour, we have taken 1920 points close
to Cb (the blue curve in Figure 3.25 left). For every initial point we record the first
5×106 Poincaré iterates, except if some kind of escape is detected. A typical escape
occurs when, going the iterates to the left, either near the upper or lower part of
Figure 3.26, they approach the location of the secondary. After this encounter,
the successive iterates can move close to the primary, escape far away or even
return several times near the secondary. Anyway, only for 37 of the 1920 initial
conditions escape was detected. Certainly the initial conditions will lead to escape
if the number of Poincaré iterates is largely increased, at least on this level of the
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Jacobi constant. See later for some tests with initial data taken near the vpoL.
To visualize the diffusion and to display a moderate amount of data we

have computed passages of the Poincaré iterates through a narrow slice around
x = 0. Only from time to time an iterate falls in the slice. For instance, among
the 1920×5×106 computed Poincaré iterates (and except for the few iterates lost
because of escape) only ≈ 3.2 × 106 fall in the slice |x| < 10−3. The passage can
occur in the upper part going from right to left (inner transition) or from left to
right (outer transition), and also from right to left (outer transition) or from left
to right (inner transition) in the lower part (see Figure 3.26).

The variables used in Σ are (x, y, ẋ, ẏ). Due to the symmetries, the inner
upper and inner lower transitions are symmetrical, with the changes (x, y, ẋ, ẏ) ↔
(x,−y,−ẋ, ẏ), and the same occurs for the outer ones.

Using only the points falling into the slice up to a maximum of 105 iterates
for all the initial conditions, the results (inner and outer upper transitions) are
shown in Figure 3.27 left. The blue points, P− to the left and P+ to the right,
correspond to the intersections with x = 0 of the manifolds of the vpoL. The point
P− is the first intersection of Wu

vpoL
with x = 0, and P+ is the first intersection of

W s
vpoL

with x = 0. The y coordinate of P− is smaller than the one of P+. In both
cases we refer to the manifolds of vpoL as seen in Σ. Compare with the section
through x = 0 of the upper part of the blue curves in Figure 3.26. Note also that
in Figure 3.27 we display y − 1 as horizontal coordinate, while ẏ is used for the
vertical one.

To see the behaviour when the number of iterates increases, the right part
of Figure 3.27 shows the evolution when we consider iterates in the slice after a
maximal number of iterations going from 105 to 8 × 105 and, later, to 5 × 106

(from green to blue and then to red). The points are plotted in the reverse order.
So, blue points hidden red ones and green points hidden blue ones. In magenta
we show the location of P−. To prevent from too heavy files we take the narrower
slice |x| < 10−4 and only show iterates when moving in the upper part to the left,
that is, upper inner transitions.

It is interesting to display statistics of the process. A simple measure is the
evolution of the distance of the iterates to the point P−, marked in magenta in
Figure 3.27 right. We use the slice |x| < 10−3 and all the Poincaré iterates (up to
5× 106 for the 1920 initial points, except for 37 points which escape, after escape
is detected). Then we compute the distances rk,i to P− in the (y, ẏ) variables,
where i is the index of the initial point and k the number of the Poincaré iterate.
One takes samples of the rk,i for all the indices i and for ranges of k of the form
((j − 1)M, jM ], j = 1, . . . , 100, with M = 50, 000. The samples can be labelled
by the final value of k. The Figure 3.28 displays, on the left, the behaviour of the
average distance as a function of the final value of k in the range of values of k in
the sample, while the behaviour of the standard deviation is shown on the right.
For these computations both inner transitions (upper and lower) have been taken
into account, in order to have larger samples (the total number of inner transitions
amounts to 1643007).
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Figure 3.27: For the set of points described in the text we show the (y−1, ẏ) projections
using different slices and times, for y > 0 (for y < 0 it is similar). Left: the slice is defined
as |x| < 10−3 and we restrict to the first 105 Poincaré iterates of the initial points. In
green (resp., red) the points when the iterates move to the left (resp., to the right) when
looking at them projected on (x, y). We also show the location of P±, as described in the
text. Right: points in the upper inner transitions. In red (resp., blue, green) we plot the
points on the slice for a number of Poincaré iterates up to 5×106 (resp., up to 8×105,
up to 105).

The results deserve some discussion. We can consider a diffusion process but,
as the rate of diffusion is related to the passage from some 2D torus (invariant
curve in the Poincaré section) to a nearby one, from the comments preceding
Figure 3.25, the rate of diffusion is not constant. It increases going away from the
vpoL and then it decreases again when approaching the hpoL. From the left plot
in Figure 3.28 it seems that the average is still in a range where the diffusion rate
is increasing. This asymmetry is what produces the increase of the average. Note
that the value of the distance to P− for the first iterates which fall in the slice has
an average of ≈ 0.0597. Concerning the standard deviation, one should mention
that it takes a not so small value (≈ 0.005) for k = 50, 000 (the first displayed
point). One of the reasons for this is that, looking at the green points in Figure
3.27, one checks that they are scattered around an ellipse, not a circle. Also, after
50,000 iterates the scattering is non-negligible.

One can mention that a good fit of the data for the standard deviation, as
a function of the number of Poincaré iterates, k, is of the form σ ≈ c(a0 + a1k +
a2k

2)1/2 with a0, a1 > 0, a2 < 0, and c a small positive constant. The negative
character of a2 should be due to the decrease of the diffusion rate when going to
the outer curves in Figure 3.25.

Furthermore, when the distance d to P− reaches a value d∗ less than, but not
too far from 0.18, the orbits quickly escape. One can check that the upper part of
the unstable manifold of the hpoL has a first intersection with x = 0 on a curve,
similar to a circle, for which the distance to P− takes an average value equal to
0.2. Hence, we can consider this as a diffusion process with varying diffusion rate
(first increasing, later decreasing, as a function of the distance to P−) and with
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Figure 3.28: The left (resp., right) plot shows (in red) the evolution of the average
(resp., standard deviation) for ranges of k of the form ((j − 1)M, jM ], j = 1, . . . , 100,
with M = 50, 000. The horizontal variable in the plots refers to millions of Poincaré
iterates. For comparison, the blue lines show the same results, with a reduced set of
initial points, for computations done using quadruple precision. See the text for details.

an absorbing barrier: reaching d = d∗ the points disappear from the system.

It is worth commenting also that, as an additional check, preliminary compu-
tations concerning diffusion and the related statistics have been carried out using
quadruple precision. The size of the sample of initial points has been reduced by
a factor of 4. The number of escapes before reaching N = 5 × 106 is 9, in good
agreement with the previous result. Note that now the samples for the statistics
are smaller, which gives slightly larger errors in the determination of average and
standard deviation. For comparison, the results are displayed in blue also in Figure
3.28.

Concerning escape, the following experiment has been carried out. A total of
625 initial conditions has been taken in Σ at distances of the order of 10−13 from
the intersection of the vpoL with Σ. Poincaré iterates have been computed up to
a maximum of 109. The first escape is produced after a number of iterates close
to 65×105. Only 13 points subsist for the full 109 iterates, most of them spending
a big part of the iterations very close to invariant tori. This is, again, related to
the stickiness of these tori. A plot of the number of points which subsist after k
iterations, for values of k multiples of 107 is shown in Figure 3.29.

Furthermore, taking initial data close to the 9 outermost tori in Figure 3.25
(again using samples of 625 points), one checks that all points escape, and that the
average number of iterates for the escape decreases in an exponential way when we
approach the outer torus. If the same experiment is done with 625 initial points
close to the hpoL, the result is that all of them escape. In that case, as the orbit
lives in z = 0, one can count the number of crossings of the orbits through the
section x = 0, either with y > 0 or with y < 0, and either with ẋ > 0 or with
ẋ < 0. The average number of such crossings is 14175. Note that, in contrast with
the passage of Poincaré iterates through a slice around x = 0, it happens that
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there are outer and inner, upper and lower crossings both with ẋ > 0 and with
ẋ < 0. See [48] for an explanation of this fact.

These results, displayed in Figure 3.29, require a few comments. Up to 64.9
million iterates there is no escape. Only 14 points escape before 108 iterates. Then,
up to ≈ 3 × 108 iterates the number of subsisting points is nearly linear in the
number of iterates, that is, a rate of decrease close to a constant. Finally, up to
≈ 9× 108 the rate of escape is slightly below an exponential one. The last escape
was produced around 870 million iterates. To explain these changes is a nice open
problem.

 0

 200

 400

 600

 0  200  400  600  800  1000

Figure 3.29: Statistics of the number of non-escaping points, starting close to the vpoL,
as a function of the number of Poincaré iterations. For the simulations one has used a
sample of 625 initial points. In the horizontal axis the number of iterations is shown in
millions.

A basic ingredient for this application is to have an efficient method to com-
pute Poincaré iterates. The steps are the following:

(i) The computation, stability properties and unstable direction of the vpoL,
as fixed point of the Poincaré map, is an easy task. The invariant curves of
P are computed by looking at a representation of the variables (x, y, ẋ, ẏ)
as Fourier series in a parametrization angle, using a number of harmonics
between 6 and 26, depending on the torus, as explained in Subsection 3.3.3.
The symmetries imply that, setting the origin of the angle at the minimal
value of x, both x and ẏ are even, while y and ẋ are odd. In this way, the left
plot in Figure 3.25 has been obtained. As a side comment we remark that the
rotation numbers are of the order of 10−4 and decreasing when going away
from the vpoL. This produces some problems in the condition number of the
linear systems to be solved in the Newton iterations.

(ii) The next step is the computation of invariant unstable/stable manifolds of
the invariant curves. The reversibility implies that it is enough to compute
the unstable ones, the stable being then recovered by the symmetries.
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We recall that the manifolds have a parametrization as a function of an
angle and a distance to the curve. A fundamental domain is diffeomorphic
to a cylinder. Looking for points such that after some number of iterations
are on an hyperplane Π requires a continuation method (e.g., to have the
starting distance as a function of the angle) or any similar device. This has
been used for the right-hand plot in Figure 3.25. The plots in Figure 3.26
follow immediately from the computation of Poincaré iterates.

(iii) To produce Figure 3.27 only requires the computation of Poincaré iterates,
detection of the passage through a given slice and whether an inner or outer,
upper or lower passage occurs. These are elementary tasks, despite the com-
putational cost being high. The statistics can be produced by elementary
means.

Note that the difficulties mentioned in item (i), about the smallness of the ro-
tation number, could be expected a priori. The problem in this region of the phase
space is a tiny perturbation of the two-body problem in synodical coordinates. If
μ → 0 the limit is the two-body problem, without the singularities which occur
in the case of L1 and L2 due to the presence of the secondary, which lead, under
suitable scaling, to a limit non-integrable case which is Hill’s problem, see [35, 49].
Hence, for μ → 0, the rotation numbers of the ICs like the ones in Figure 3.25 tend
to zero. Concretely they are O(μ), in contrast with the hyperbolicity at L3 and
also at the ICs, the vpoL and the hpoL, which is O(

√
μ). The possible resonances

are of a so high order that they become undetectable. The diffusion comes only
from the effect of the heteroclinic connections of the manifolds of these ICs. The
situation is more complex if there is also a relevant amount of hyperbolicity in the
centre manifold itself. See related topics in [13].

Summarizing: one has good evidence of the existence of diffusion associated
to the centre manifold of L3 on levels of the Jacobi constant not too far from the
value at that point. Certainly one can produce escape, due to the effect of the
secondary and even for μ as small as 0.0002, but the escape time is large. Anyway,
there are many topics which require further research.
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Motions ofN Bodies: A Preliminary Study”. InGeometry, Mechanics and Dy-
namics, P. Newton, P. Holmes, A. Weinstein, editors, pp. 287–308, Springer-
Verlag, 2002.

[6] A. Chenciner and R. Montgomery. “A remarkable periodic solution of the
three-body problem in the case of equal masses”. Ann. of Math. (2) 152 (3)
(2000), 881–901.

[7] B.V. Chirikov, “A universal instability of many-dimensional oscillator sys-
tems”. Phys. Rep. 52 (5) (1979), 264–379.

[8] P.M. Cincotta, C.M. Giordano and C. Simó. “Phase space structure of mul-
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[16] G. Gómez, A. Jorba, J. Masdemont and C. Simó. “Dynamics and Mission
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[39] J. Sánchez, M. Net and C. Simó. “Computation of invariant tori by Newton–
Krylov methods in large-scale dissipative systems”. Physica D 239 (2010),
123–133.
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