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Foreword

This book collects the notes of lectures given by Jaume Llibre, Richard Moeckel,
and Carles Sim6 at Centre de Recerca Matematica (CRM) in Bellaterra, Barcelo-
na, from January 27th to 31st, 2014. The activity, in the framework of the Research
Program on Central Configurations, Periodic Orbits and Beyond in Celestial Me-
chanics, hosted at CRM from January to July 2014, was a joint collaboration
with the winter school in dynamical systems Recent Trends in Nonlinear Science
(RTNS2014), promoted by the DANCE (Dindmica, Atractores y Nolinealidad:
Caos y Estabilidad) Spanish network.

The Advanced Course on Central Configurations, Periodic Orbits and Hamil-
tonian Systems aimed at training their participants both theoretically and in ap-
plications in the field of nonlinear science; in this area as in many others, the
theoretical and the applications points of view clearly reinforce each other.

There were three series of lectures and, accordingly, the material is distributed
in three chapters in the book. The first series, delivered by Jaume Llibre, was dedi-
cated to the study of periodic solutions of differential systems in R™ via Averaging
Theory. Roughly speaking, in Averaging Theory one replaces a vector field by its
average (over time or an angular variable) with the goal of obtaining asymptotic
approximations to the original system that will be capable of guaranteeing the
existence of periodic solutions. The corresponding notes in Chapter 1 start with
an introduction of the classical, first order averaging theory followed by the main
results of the theory for arbitrary order and dimension. The theory is applied next
to the study of periodic solutions of some well known differential equations, like the
van der Pol differential equation, the Liénard differential systems, or the Rossler
differential system, among others. Some Hamiltonian systems are also studied.

The second series of lectures, given by Richard Moeckel, focused on methods
for studying central configurations, in Chapter 2. A Central Configuration is a
special arrangement of point masses interacting by Newton’s law of gravitation,
and with the following property: the gravitational acceleration vector produced
on each mass by all the others should point toward the center of mass and be
proportional to the distance to the center of mass. Central Configurations play an
important role in study of the Newtonian n-body problem. For example, they lead
to the only explicit solutions of the equations of motion, they govern the behavior of
solutions near collisions, and they influence the topology of integral manifolds. The
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lectures dealt with questions about the existence and enumeration of various types
of Central Configurations, including algebraic-geometrical approaches to Smale’s
Sixth Problem: is the number of Central Configurations always finite?

Chapter 3 is devoted to the last series of lectures, given by Carles Simé.
They describe the main mechanisms leading to a fairly global description of the
dynamics in conservative systems, either in the continuous version described by a
Hamiltonian, or in the discrete version. The Newtonian n-body problem belongs
to the general class of Hamiltonian systems. The chapter starts with several simple
but paradigmatic examples in the 2D case, from which it is easier to grasp the
main underlying ideas, also useful in higher dimension. Next, general theoretical
results are presented and applied to different problems in Celestial Mechanics,
with a rich variety of goals.

We would like to express our gratitude to the director and staff of the Cen-
tre de Recerca Matematica for making possible this activity. Finally, our special
thanks to the three lecturers, Jaume Llibre, Richard Moeckel and Carles Simd,
for the enthusiasm they showed during the course and for their fine preparation
of these notes. It is our hope that with their publication we may contribute to the
spreading of the interest of actual and future researchers for the exciting world of
dynamical systems.

Montserrat Corbera, Josep M. Cors and Enrique Ponce
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Chapter 1

The Averaging Theory for
Computing Periodic Orbits

Jaume Llibre

1.1 Preface

The method of averaging is a classical tool allowing us to study the dynamics of
the non-linear differential systems under periodic forcing. The method of averaging
has a long history starting with the classical works of Lagrange and Laplace,
who provided an intuitive justification of the method. The first formalization of
this theory was done in 1928 by Fatou [34]. Important practical and theoretical
contributions to the averaging theory were made in the 1930’s by Bogoliubov—
Krylov [8], in 1945 by Bogoliubov [7], and by Bogoliubov—Mitropolsky [9] (english
version 1961). For a more modern exposition of the averaging theory, see the book
Sanders—Verhulst-Murdock [78].

Every orbit of a differential system is homeomorphic either to a point, or to
a circle, or to a straight line. In the first case it is called a singular point or an
equilibrium point, and in the second case it is called a periodic orbit. The third
case does not have a name. These notes are dedicated to studying analytically the
periodic orbits of a given differential system.

We consider differential systems of the form

%x = Fy(t,x) +eF1(t,x) + 2 R(t, %, €), (1.1)

with x in some open subset D of R", F;: R x D — R" of class C? for i = 1,2,
R: R x D x (—eg,e0) — R" of class C? with g > 0 small, and with the functions
F; and R being T-periodic in the variable ¢. Here, the dot denotes derivative with
respect to the time t.

© Springer Basel 2015 1
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2 Chapter 1. The Averaging Theory for Computing Periodic Orbits

In general, to obtain analytically periodic solutions of a differential system
is a very difficult problem, many times a problem impossible to solve. As we shall
see when we can apply the averaging theory, this difficult problem for differential
systems (1.1) is reduced to finding the zeros of a non-linear function of dimension
at most n, i.e., now the problem has the same difficulty as the problem of finding
the singular or equilibrium points of a differential system.

An important problem for studying periodic solutions of differential systems
of the form

X = F(t,x), or %= F(x), (1.2)

using averaging theory is to transform them into systems written in the normal
form of the averaging theory, i.e., as a system (1.1). Note that systems (1.2), in
general, are not periodic in the independent variable ¢ and do not have any small
parameter €. So, we must find changes of variables which allow us to write the
differential systems (1.2) into the form (1.1), where Fy can eventually be zero.

The present chapter is divided in three sections. Section 1.2 is dedicated to the
averaging theory of first order; we present in it three main results for studying the
periodic solutions of differential systems, see Theorems 1.2.1, 1.2.9 and 1.2.18. We
develop four applications of Theorems 1.2.1, namely to the van der Pol equation,
to the Liénard differential system, to study the zero-Hopf bifurcation in R™, and
to a class of Hamiltonian systems. We present three applications of Theorem 1.2.9;
in the first we study the Hopf bifurcation of the Michelson system, in the second
the periodic solutions of a third-order differential equation, and in the third one
we analyze the periodic solutions of the Vallis system which models the “El Nino”
phenomenon. Finally, we do an application of Theorem 1.2.18 to a class of Duffing
differential equations.

In Section 1.3, the most theoretical one, we present averaging theory for
studying periodic solutions of a differential system in R™ at any order in the small
parameter. This theory is developed using weaker assumptions.

Finally, in Section 1.4, we present some applications of averaging theory of
order higher than one. More concretely, using averaging theory of second order we
study periodic solutions of the Hénon—Heiles Hamiltonian, and using averaging
theory of third order we study first the limit cycles of the quadratic polynomial
differential systems, and of the linear with cubic homogeneous non-linearities poly-
nomial differential systems; and finally, we analyze the periodic solutions of the
generalized Liénard polynomial differential equations.

1.2 Introduction: the classical theory

1.2.1 A first order averaging method for periodic orbits

We consider the differential system

x =eF(t,x) + 2R(t, %, ), (1.3)
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with x € D C R™, D a bounded domain, and ¢ > 0. Moreover we assume that
F(t,x) and R(t,x,e) are T-periodic in t.
The averaged system associated to the system(1.3) is defined by

v =ef(y), (1.4)

where LT
fo(y):T/0 F(s,y)ds. (1.5)

The next theorem says under what conditions the singular points of the
averaged system (1.4) provide T-periodic orbits for the system (1.3). The proof
presented here comes from [85].

Theorem 1.2.1. We consider system (1.3) and assume that the vector functions F,
R, DxF, D2F and DxR are continuous and bounded by a constant M (independent
of ) in [0,00) X D, with —eo < £ < g9. Moreover, we suppose that F and R are
T-periodic in t, with T independent of .

(i) If p € D is a singular point of the averaged system (1.4) such that
det(Dx f*(p)) # 0 (1.6)

then, for |e| > 0 sufficiently small, there exists a T-periodic solution x(t,¢)
of system (1.3) such that x(0,e) = p as e — 0.

(ii) If the singular point'y = p of the averaged system (1.4) has all its eigenvalues
with negative real part then, for |¢| > 0 sufficiently small, the corresponding
periodic solution x(t,e) of system (1.3) is asymptotically stable and, if one
of the eigenvalues has positive real part x(t,¢), it is unstable.

Theorem 1.2.1 is proved in Subsection 1.2.6. Before its proof we shall present
some applications of it in Subsection 1.2.2.

For each z € D we denote by x(-,2,¢) the solution of (1.3) with initial
condition x(0,z,e) = z. We consider also the function ¢: D x (—eg,e9) — R"
defined by

T
C(z,¢) = / [eF(t,x(t,2.€)) + &2R(t, x(t,2,),€)] dt. (1.7)
0
From (1.3) it follows that, for every z € D,
C(Z7€> = X(T7Z,<€> _X(07Z7E)' (18>
The function ¢ can be written in the form
((z,¢) = ef(2) + O(?), (1.9)

where f¥ is given by (1.5). Moreover, under the assumptions of Theorem 1.2.1,
the solution x(t,¢), for || sufficiently small, satisfies that z. = x(0, €) tends to be
an isolated zero of ((-,&) when ¢ — 0. Of course, due to (1.8) the function ¢ is a
displacement function for system (1.3), and its fixed points are initial conditions
for the T-periodic solutions of system (1.3).
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1.2.2 Four applications

We recall that a limit cycle of a differential system is a periodic orbit isolated in
the set of all periodic orbits of the system.

The van der Pol differential equation

Consider the van der Pol differential equation i + x = (1 — 2%)4, which can be
written as the differential system

=y,
y=—x+e(l—a?)y. (1.10)

In polar coordinates (r,0), where z = r cosd, y = rsin6, this system becomes

7= er(l —r?cos?0) sin? 6,
0 =—1+ecosf(1 —r2cos? ) sinb,
or, equivalently,
dr
de
Note that the previous differential system is in the normal form (1.3) for applying
the averaging theory described in Theorem 1.2.1 if we take x =r, t =6, T = 27«
and F(t,x) = —r(1 — 72 cos? #) sin? 4.
From (1.5) we get that

= —er(1 —r? cos? 0)sin® 6 + O(e?).

2m
o) =— ! / (1 — r? cos? §) sin” Adh = 17‘(7“2 —4).

2 0 8
The unique positive root of f9(r) is r = 2. Since (df°/dr)(2) = 1, by Theorem
1.2.1 (i), it follows that system (1.10) has, for |¢| # O sufficiently small, a limit
cycle bifurcating from the periodic orbit of radius 2 of the unperturbed system
(1.10) with £ = 0. Moreover, since (df°/dr)(2) = 1 > 0, by Theorem 1.2.1 (ii), this

limit cycle is unstable.

The Liénard differential system

The following result is due to Lins—de Melo—Pugh [53]. Here, we provide an easy
and shorter proof with respect to the initial proof given by the mentioned authors.

Proposition 1.2.2. The Liénard differential systems of the form
T=y—claz+---+apa™),
y = T,

with € sufficiently small and a,, # 0 have at most [(n—1)/2] limit cycles bifurcating
from the periodic orbits of the linear center & = vy, y = —x, and there are examples
with exactly [(n — 1)/2] limit cycles; here, [-] denotes the integer part function.
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Proof. We write the system
t=y—clmr+- - +apx"), Y=-—-x,

in polar coordinates (r,6), where z = r cosf, y = rsinf, and we obtain

n
r=—c Z apr® cos" 10,
k=1
n
0=—-1+ ssinez apr® 1 cos® 0
k=1
or, equivalently,

dr -

_ ko k+l 2

=—¢ agr” cos"T 0+ O(e”).
o ; K (%)

n
Again, takingx =r, t =0, T = 27 and F(t,x) = — Z apr® cos**1 0, the previous
k=1
differential system is in the normal form (1.3) for applying the averaging theory
described in Theorem 1.2.1.

We have that

2
where b, = / cos**1 0 do # 0 if k is odd, and b = 0 if k is even. Now we

0
apply Theorem 1.2.1, since the polynomial p(r) has at most [(n — 1)/2] positive
roots, and we can choose the coefficients aj with k& odd in such a way that p(r)
has exactly [(n — 1)/2] simple positive roots; the proposition follows. O

Zero-Hopf bifurcation in R™

In this example we study a zero-Hopf bifurcation of C?® differential systems in R”
with n > 3. These results come from Llibre-Zhang [58].

We assume that these systems have a singularity at the origin, whose linear
part has eigenvalues ea + bi, with b # 0 and ec for k = 3,...,n, where ¢ is
a small parameter. Since the eigenvalues of the linearization at the origin when
€ =0 are +bi # 0 and 0 with multiplicity n — 2, if an infinitesimal periodic orbit
bifurcates from the origin when € = 0, we call such kind of bifurcation a zero-Hopf
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bifurcation. Such systems can be written into the form

t=car—by+ Y ay.g,x"y?zg -z + A,

i1+, =2 )
y=brteay+ 3 b, 7"y’ oz + B, (1.11)
i1+"'+in:i
Gomeamt Y oL atyRap 2 40y k=3,0m,
i1t tin =2

k
where a;, 4., biy i, c§1?”in, a, b and ¢y are real parameters, ab # 0, and A, B

and Cj are the Lagrange expression of the error function of third order in the
expansion of the functions of the system in Taylor series.

Theorem 1.2.3. There exist C3 systems (1.11) for which 1 € {0,1,...,2" 73} limit
cycles bifurcate from the origin at € = 0, i.e., for € sufficiently small the system
has exactly 1 limit cycles in a neighborhood of the origin, and these limit cycles
tend to the origin when £ \, 0.

As far as we know, Theorem 1.2.3 was the first result proving that the number
of limit cycles that can bifurcate in a Hopf bifurcation increases exponentially with
the dimension of the space. We recall that a Hopf bifurcation takes place when one
or several limit cycles bifurcate from an equilibrium point.

From the proof of Theorem 1.2.3 we get immediately the following result.

Corollary 1.2.4. There ezist quadratic polynomial differential systems (1.11) (i.e.,
with A = B = Cj, = 0) for which | € {0,1,...,2" =3} limit cycles bifurcate from the
origin at € = 0, i.e., for e sufficiently small the system has exactly | limit cycles in
a neighborhood of the origin and these limit cycles tend to the origin when € 0.

Proof of Theorem 1.2.3. Doing the cylindrical change of coordinates
x=rcos, y=rsinf, z =z, i=3,...,n, (1.12)
in the region r > 0 the system (1.11) becomes

r=ear + S (aiy.i, cOSO + biy i, sin 0) (1 cos 0)" (rsin0) 2258 - - 2in 4+ O(3),
i1t in =2

6= i br+ 3 (biy...in O8O — aiy i, sinB)(rcos0) (rsin )22 .. 2in £ O(3) |,
i1t in =2

k= eckzk + > cgf)ln (rcosf)t(rsin@)2z2 - 2in +0(3), k=3,...,n,
i1t in =2
(1.13)
where O(3) = O3(r, 23,. .., 2n)-
As usual, Z, denotes the set of all non-negative integers. Taking agoe,;, =

booe;; = 0 where e;; € ZZfQ has the sum of the entries equal to 2, it is easy to
show that in a suitably small neighborhood of (r,z3,...,2,) = (0,0,...,0) we
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have 6 # 0. Then, choosing 0 as the new independent variable system (1.13), in a
neighborhood of (r, z3,...,2,) = (0,0,...,0) it becomes

r | ear + > (@iq..ip cOSO +biy iy sin9)(rcos€)i1(rsin9)i2zé‘°’ -~-z;" + O(3)
dr i1t tin=2
do br + > (biy...ip €080 — @iy ..., sin0)(r cos )1 (rsin 0) 2 z? colgin g O(3)
i1 Fin=2

i1...in

r| eckzr + > ef® (rcos 0)1 (r sin 9)i22;3 <zin 1 0(3)
dzy Q14 tin=2

do br + > (biy...ip cOSO — iy . i, sin@)(r cos 0)1 (rsin 0)'2 z? coagin 4 O(3)7

i1 tin=2
(1.14)
for k = 3,...,n. We note that this system is 27 periodic in the variable 6.
In order to write system (1.14) in the normal form of the averaging theory
we rescale the variables

(r, 23, ..y 2n) = (PE,M3E, . . ., ME). (1.15)

Then the system (1.14) becomes

dp
df - 5f1(9w077737~ . 77]71) +5291(97P77737 s 77]7175)7
(1.16)
d
dnek = 5fk(07077]3;~ . 77777.) +529k(97977]37 s 7777”6)7 k= 37 RN
where

1 ) o )
fi= ap + >0 (@iy...in 08O + by 5, sin@)(pcos )t (psinh)* 2z -z |
b i1t tin=2

v = ! am+ Y P (pcosh)(psin@)zi . zin |
b inbeotin=2 "
We note that the system (1.16) is in the normal form (1.3) of the averaging

theory, with x = (p,n3,...,1mn), t = 0, F(0,p,m3,...,0n) = (f1(0,p,03, .., 1),
f3(0,0,m3, o s0n)s oy fn(6,0,m3, ..., 0n)), and T = 27. The averaged system of
(1.16) is

y=ef(y), y=(p.ms,-...mm) EQ, (1.17)

where  is a suitable neighborhood of the origin (p,ns,...,n,) = (0,0,...,0), and

fo(y) = (f{)(y)7f3(‘)(y)7 .- 7f1(1)(y))7

with
27

Y=, i

fi(97P77737-~-,7]n)d9, 7::1,3,...,71.
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After some calculations we have that

n

1
0 § .
fl = 2bp 2a + j:3(a106]- bOlej )nj 5

1 k k
f}g = o 2cpne + (cgo)on ,t 682)0n_2> p° 42 Z céo)eijmnj , k=3,...,n,
3<i<j<n

where e; € Zifz is the unit vector with the j-th entry equal to 1, and e;; € 21’2
has the sum of the i-th and j-th entries equal to 2 and the other equal to 0.

Now we shall apply Theorem 1.2.1 for studying the limit cycles of system
(1.16). Note that these limits, after the rescaling (1.15), will become infinitesimal
limit cycles for system (1.14), which will tend to the origin when & \, 0; con-
sequently, they will be bifurcated limit cycles of the Hopf bifurcation of system
(1.14) at the origin.

From Theorem 1.2.1 for studying the limit cycles of system (1.16) we only
need to compute the non-degenerate singularities of system (1.17). Since the trans-
formation from the cartesian coordinates (r,zs,...,z,) to the cylindrical ones
(pym3, .-, Mn) is not a diffeomorphism at p = 0, we deal with the zeros having the
coordinate p > 0 of the averaged function f°. So, we need to compute the roots
of the algebraic equations

2a + Y (aioe; + boie, )nj = 0,
i=3

2cpme + (C;IS)OM + cé];)oH) pP+2 3 cé’é)@unmj =0, k=3,...,n.
3<i<j<n
(1.18)
Since the coefficients of system (1.18) are independent and arbitrary, in order to
simplify the notation we write it as

a+ Z a;n; =0, c(gk)p2 + e + Z ff)nmj 0, k=3,...,n, (1.19)
j 3<i<j<n
where a;, cék)7ck and cgf) are arbitrary constants.
Denote by C the set of algebraic systems of form (1.19). We claim that there
is a system belonging to C which has exactly 2”3 simple roots. The claim can be
verified by the example:

a+asnz =0, (1.20)

O rems+ S Dny =0, (1.21)
3<i<j<n

Crik + Z ff)nmj k=4,...,n, (1.22)

3<i<j<k
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with all the coefficients being non-zero. Equations (1.22) can be treated as quadra-
tic algebraic equations in 7. Substituting the unique solution 730 of 73 in (1.20)
into (1.22) with & = 4, this last equation has exactly two different solutions,
namely 141 and 742 for 74, choosing conveniently c4. Introducing the two solutions
(130, M44), © = 1,2, into (1.22) with k = 5 and choosing conveniently the values of
the coefficients of equation (1.22) with £ =5 and (93, 74) = (930, 74:), We get two
different solutions 7s;1 and 7s;2 of 15 for each ¢. Moreover, playing with the coeffi-
cients of the equations, the four solutions (130, 74s, 715i;) for ¢, 7 = 1,2, are distinct.
By induction, we can prove that for suitable choice of the coefficients, equations
(1.20) and (1.22) have 2"~3 different roots (n3,...,n,). Since 13 = 730 is fixed,
for any given CE?) there exist values of c¢3 and cég) such that equation (1.21) has a
positive solution p for each of the 2"~ solutions (s, ..., n,) of (1.20) and (1.22).
Since the 2"~ solutions are different, and the number of the solutions of (1.20)-
(1.22) is the maximum that the equations can have (by the Bezout Theorem, see
for instance [80]), it follows that every solution is simple, and consequently the
determinant of the Jacobian of the system evaluated at it is not zero. This proves
the claim.

Using the same arguments which allowed us to prove the claim, we can also
prove that we can choose the coefficients of the previous system in order to have
0,1,...,27 3 — 1 simple real solutions.

Taking the averaged system (1.17) with f° having the convenient coefficients
as in (1.20)—(1.22), the averaged system (1.17) has exactly k € {0,1,...,2" 3} sin-
gularities with the components p > 0. Moreover, the determinants of the Jacobian
matrix 9f°/0y at these singularities do not vanish because all the singularities
are simple. In short, by Theorem 1.2.1 we get that there are systems of the form
(1.11) which have k € {0,1,...,2"3} limit cycles. This proves the theorem. [J

An application to Hamiltonian systems

The results of this subsubsection come from the paper Guirao—Llibre—Vera [39).
We consider the following class of Hamiltonians in the action-angle variables

H(Il,...7In,617...70n) = H()(Il) +EH1(11,...,In,917...79n), (123)

where ¢ is a small parameter. For more details on the action-angle variables see,
for instance, [1].

As usual, the Poisson bracket of the functions f(Iy,...,I,,01,...,0,) and
g(.l—l7 ~'~7In7017'~'76n) is

- (0f dg Of dg
{f’g}_;<aeian 8]1-891-)'

The next result provides sufficient conditions for computing periodic orbits
of the Hamiltonian system associated to the Hamiltonian (1.23).
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Theorem 1.2.5. We define

2w

/Hl(fl,...,In,el,...,en)del,
0

1

(Ha) = 27

and we consider the differential system
dli _ - {1, (H1)}
oy Hy(Hg ' (h))
do; _ - {6, (H1)}
oy Hy(Hg' ()

:6fi—1(127-~'7In7927~'~70n)7 i:27"'7n7
(1.24)
:5fi+n—2(127-~-7In7027~-~70n)7 i:27"'7n7

restricted to the energy level H = h* with h* € R. The value h* is such that the
function Hal in a neighborhood of h* is a diffeomorphism. The system (1.24) is
a Hamiltonian system with Hamiltonian € (H1). If € # 0 is sufficiently small then
for every equilibrium point p = (IS, ..., 12,609, ...,0°) of system (1.24) satisfying
that

................

dot O(f1,-- - fan—2) 20,
8(127-~-7I717927~-~79n) (I, 10 ,02,...,0,)=(13,...,19,09,...,09)

there exists a 2w-periodic solution ve(0, ..., 1,(01,¢€),02(01,¢), ..., 6,(01,¢)) of the
Hamiltonian system associated to the Hamiltonian (1.23), taking as independent
variable the angle 01 such that v-(0) — (Hg'(h*),19,...,12,09, ...,0%) when
e — 0. The stability or instability of the periodic solution ~.(01) is given by the
stability or instability of the equilibrium point p of system (1.24). In fact, the
equilibrium point p has the stability behavior of the Poincaré map associated to the
periodic solution Y. (01).

Now we clarify some of the notations used in the statement of Theorem 1.2.5.
The function Hg is only a function of the variable I, i.e., Ho: J — R where J is an
open subset of R (the domain of definition of Hy), and consequently Ho(l1) € R.
Therefore, H{, means derivative with respect to the variable I;.

The differential system (2) is defined on the energy level H(Iy,...,I,,
01,...,0,) = h* with h* € R, and we assume that the value h* is such that
the function H, 'in a neighborhood of h* is a diffeomorphism. Therefore, the
expression Hj(Hy H(h*)) is well defined.

On the other hand, every periodic solution of a differential system has defined
in its neighborhood a return map F usually called the Poincaré map. The periodic
solution provides a fixed point of the map F'. The stability or instability of this
fixed point for the map F is what we call the stability behavior of the Poincaré
map associated to the periodic solution in the statement of Theorem 1.2.5. For
more details on the Poincaré map see, for instance, [76].

Theorem 1.2.5 will be proved later on.
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The next goal is to study the periodic orbits of the Hamiltonian system with
the perturbed Keplerian Hamiltonian of the form

1
H=, (P +P;+Fj) +ePUQT+Q3.Qs).  (1.25)

1
V@i + Q5+ Q3
Note that the perturbation is symmetric with respect to the @s-axis. It is easy to
check that the third component K = Q1 P> — Q2 P; of the angular momentum is a
first integral of the Hamiltonian system associated to the Hamiltonian (1.25). We
use this second first integral to simplify the analysis of the given axially symmetric
Keplerian perturbed system.

In the following we use the Delaunay variables for studying easily the periodic
orbits of the Hamiltonian system associated to the Hamiltonian (1.25), see [23,
71] for more details on the Delaunay variables. Thus, in Delaunay variables, the
Hamiltonian (1.25) has the form

H =

+eP(l,9.k, LG, K) = +eP(l,g,L, G K), (1.26)

1 1
212 212
where [ is the mean anomaly, g is the argument of the perigee of the unperturbed
elliptic orbit measured in the invariant plane, k is the longitude of the node, L
is the square root of the semi-major axis of the unperturbed elliptic orbit, G
is the modulus of the total angular momentum, and K is the third component
of the angular momentum. Moreover, P is the perturbation obtained from the

perturbation P; using the transformation to Delaunay variables, namely

Q1 =1 (cos(f + g)cosk — esin(f + g)sink),
Q2 =1 (cos(f + g)sink + esin(f + g) cosk) , (1.27)
Q3 =rssin(f +g),

with

2
c= _,, s°=1- .
G G?
The true anomaly f and the eccentric anomaly E are auxiliary quantities defined
by the relations

G
Vi—e?2 = I r=a(l—ecosE), l=F—esinFE.

Sin f = a\/l—ezsinE7 cos [ = a(cosE—e)7
r T

where e is the eccentricity of the unperturbed elliptic orbit.

Note that the angular variable k is a cyclic variable for the Hamiltonian
(1.26) and, consequently, K is a first integral of the Hamiltonian system as we
already knew.



12 Chapter 1. The Averaging Theory for Computing Periodic Orbits

The family of Hamiltonians (1.26) is a particular subclass of the Hamiltonians
(1.23) with H; = P. We denote by (P) the averaged map of P with respect to the
mean anomaly [, i.e.,

2m 2m
(P) = 21 /P(l7g7L,G,K)dl: 21 /”P(E—esinE7g7L7G,K)(1—ecosE)dE.
T T
0 0

We remark that the map (P) only depends on the angle g and the three action
variables L, G, K. We claim that H)(Hy'(h*)) = (—2h*)%/2. Indeed, Ho(L) =
—~1/(2L?) = h* so, Hy ' (h*) = (=2h*)/2. Since H (L) = 1/L3, the claim follows.
From the definition of Poisson parenthesis, we also have that

LaGaP) _ a(P)

{G7 <P>} = G g = - g )
(9.P)) = 0N = O,

Then, by Theorem 1.2.5 at the energy level H = h* with h* < 0 (because Ho(L) =
—1/(2L?)) and with angular momentum K = k*, the differential system (1.24)
with respect to the mean anomaly [ is

G G, (P)}

0 (P)
_ *\3/ — K
dl _67,/0(/}!61(11*)) E( 2h )3 2 ag €f1(g,G, )7

dg  {g,(P)} w320(P) _

a = Sy ey T 2 og = ef(9.G. K), (1.28)
e {k,(P)} w320(P) _

BT e VP = efs(0. G K,

Note that we do not write the differential equation dK/dt = 0 because we are
working in the invariant set H = h* and K = k*.

Now, we are ready to state a corollary of Theorem 1.2.5 providing sufficient
conditions for the existence and the kind of stability of the periodic orbits in the
perturbed Kepler problems with axial symmetry.

Corollary 1.2.6. System (1.28) is the Hamiltonian system taking as independent
variable the mean anomaly 1 of the Hamiltonian (1.25) written in Delaunay vari-
ables on the fized energy level H = h* < 0 and on the fixed third component of the
angular momentum K = k*. If ¢ # 0 is sufficiently small then, for every solution
p = (90, Go, k™) of the system fi(g,G,K) =0 fori=1,2,3 satisfying

a(fh f27 f3)
det £0, (1.29)
( 8(97G7K) (9,G,K)=(g0,Go,k*)
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and all ko € [0,27) there exists a 2m-periodic solution
Ye(l) = (g(l,e), k(l,¢), L(l,¢),G(l,¢), K(l, &) = k¥)

such that v.(0) = (go, ko, V—2h*, Go, k*) when € — 0. The stability or instability
of the periodic solution (1) is given by the stability or instability of the equilibrium
point p of system (1.28). In fact, the equilibrium point p has the stability behavior
of the Poincaré map associated to the periodic solution v (I).

We remark that having a periodic solution for every ko € [0,27) with the
same initial conditions for all of the other variables, means that we really have a
two dimensional torus foliated by periodic solutions.

There are many papers studying periodic orbits of different perturbed Kep-
lerian problems, see for instance [42, 47, 79] and the papers quoted therein.

In what follows we shall study the spatial generalized van der Waals Hamilto-
nian system modeling the dynamical symmetries of the perturbed hydrogen atom.

The generalized van der Waals Hamiltonian system was proposed in the
paper [3] via the following Hamiltonian with 5 € R

1
VQ2 + Q3 + Q2

Note that this Hamiltonian is of the form (1.25). For more references, see the ones
quoted in [38].

H= 1(P{‘HLPQZHLP??)—

2 +e(QT+@3+5%Q3).  (130)

Theorem 1.2.7. On every energy level H = h* < 0, and for the third component
of the angular momentum K = k*, the spatial van der Waals Hamiltonian system
associated to the Hamiltonian (1.30) for € # 0 sufficiently small has:

(i) For K = k* = 0, two 2m-periodic solutions v (1) = (g(l,¢),k(l,€)), L(L,¢),
G(l,e),K(l,¢)) such that

E(1)(0) — (i; arccos (gEgQ i_ B) ko, \/_12h*7 \/_12h* , 0)

when € — 0, for each ko € [0,2m) if B € (—o0,—2) U (—1/2,1/2) U (2, 00).
These periodic orbits have a stable manifold of dimension 2 and an unsta-
ble one of dimension 1 if 8 € (—1/2,1/2), and have a stable manifold of
dimension 1 and an unstable one of dimension 2 if § € (—o0, —2) U (2,00).
Consequently, these periodic orbits are unstable.

(ii) For K = k* # 0, four 2m-periodic solutions v==(1) = (g(l,), k(l,2)), L(l, ),
G(l,e),K(l,€)) such that

s . 1 1 5 1 5(1—45%)

when € — 0, for each ko € [0,27) if B € (—1,-1/2)U (1/2,1).
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Theorem 1.2.7 is proved later on. The result in statement (i) was already
obtained using cylindrical coordinates in [38].

The stability or instability of the four periodic orbits in statement (ii) can
be determined analyzing the eigenvalues of the corresponding Jacobian matrices,
but since the expression of these eigenvalues are huge and depend on the two
parameters h* and (3, this study is a long task we are not going to do here.

We remark that, when (3% —1)(8%2—4)(8%—1/4) = 0, i.e., for the values that
the averaging theory for finding periodic orbits do not provide any information,
it is known that the van der Waals Hamiltonian system is integrable, see [33].
Therefore the averaging method, when it cannot be applied for finding periodic
orbits, provides a suspicion that for such values of the parameter the system could
be integrable.

The Hamiltonian system associated to the Hamiltonian (1.23) can be written
as

dl; . OM .

gt _E{I“Hl}__aaei’ i=1,...,n,

do; _ OHy .

gt _€{0i7H1}_68[¢ , 1=2,...,n, (1.31)
db OH4

Y= Hy (1) + {61, Ha} = Ho(Ih) + ¢

dt ol

Lemma 1.2.8. Taking as new independent variable the variable 61, we have in the
fized energy level H = h* < 0 that the differential system (1.31) becomes

dl, (I, H1) .
= ’ +0 2 ) = 27 sy lly
oy~ “HL(HG (b)) (&%), @ "
b {0, H) (1.32)

e +0(2), i=2...n,

oy EHO(H()_l(h*)) (e%), i n

with Iy = Hy ' (h*) + O(e) if Ho(Hy ' (1)) # 0.

Proof. Taking as new independent variable 61, equations (1.31) become
d-[i _ E{IhHl} _ €{Ii7H1}
A9y Ho(I) + {01, Hi}  Hollh)

do; e{0:i, Ha} _ E{9i7Hl}
df 7‘[6(]1) +5{917H1} HEJ(Il)

+0(?), i=1,...,n,

+0(?), i=2,...,n.

Fixing the energy level of H = h* < 0, we obtain h* = Ho([1) +eH1(l1, ..., I, 01,
..., 0,). Using the Implicit Function Theorem and the fact that H(Hg 1 (k*)) # 0,
for ¢ sufficiently small, we get I; = Hy ' (h*)+O(e), and the equations are reduced
to (1.32). O
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Proof of Theorem 1.2.5. The averaged system in the angle 67 obtained from (1.32)
i dI Ton
i 1 € 1 .
= - doy, i=2,...,n,
dor —2m (g (m)) 00
o (1.33)
de; 1 {0;,H1} 0t .
=_ € déy, 1=2,....,n.
o~ 2 Hy(Hg ' (h)) /Ol !

Since

2m
8<'H1> - 1 87‘[1 .
801 _27'(' 891 d&l, Z—2,...,n,
0

2
8<H1> o 1 8%1 .
8Ii = 9 8Il d&l, Z—2,...,n,
0

the differential system (1.33) becomes

a; _ e Oy _ AL (oy
by Hy(Hg'(h) 00 Ho(Hy ' (h)) N
db; £ o(H1)  {0i,(H1)} n

= ’ _ =& _, _ B 1=4,...
db: Ho(Ho 1(h)) ol; Ho(Ho 1(h))

which coincides with (1.24).

Once we have obtained the averaged system (1.24), it is immediate to check
that it satisfies the assumptions of Theorem 1.2.1, then applying the conclusions of
this theorem the rest of the statement of Theorem 1.2.5 follows immediately. O

Proof of Theorem 1.2.7. For the generalized van der Waals Hamiltonian system,
the function P(FE, g, h, G, K) is equal to

(B*G? + G* + K? — K?8?) (ecos E — 1)?L*

2G?
LYG? — K?)(B% —1)(e — cos E)? cos? g
- 2G?
+L4(G2 — K?)(8% — 1)(e — cos E)?sin® g
2G?
2L3(G? — K?)(8? — 1)(e — cos E) cos gsin E'sin g
G

-l-;L2(G2 — K?)(8% — 1) cos? gsin® F
—;L2(G2 — K?)(8% — 1) sin® Esin® g.
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Its averaged function with respect to the mean anomaly is

2

(P) = 21 /”P(E7g,h7G7K)(1 —ecosE)dE =
T
0

B
4G?’

where B = L?(5(G? — K?)(G? — L?)(8* — 1) cos(2g) — (3G? — 5L*)(G* + K* +
(G2~ K2)p2).

Equations (1.28) are the averaged equations of the Hamiltonian system with
Hamiltonian (1.30)

dG  5(1+2h*G?)(G? — K?)(8? — 1)sin(2g)
di =& 2G2\/—2h* - _Efl(g7G7K)7
dg C _

dl - €2G3\/—2h* _Ef2(g7G7K)7

dk __K(B” = 1)(=5 — 6h"G* + 5(1 + 21" G?) cos(2g))

= 7G7K )

where C = 5K?(5% — 1) + 6h*G*(8% + 1) — 5(2h*G* + K?)(B? — 1) cos(2g); here,
L = 1/v/-2h* 4+ O(e). The equilibrium solutions (g, Go, k*) of this averaged
system satisfying (1.29) give rise to periodic orbits of the Hamiltonian system
with Hamiltonian (1.30) for each H = h* < 0 and K = k*, see Theorem 1.2.1.
These equilibria (go, Go, k*) are

1 (3B +1) 1 T 1\/ 5 1 | 5(1—4B%)
(i2arCCOb<5(ﬁ2—1)>’\/—2h*’0>’<i2’2 _2h*’i4\/—2h*(1—ﬁ2)>'

The first two equilibria exist if 3(5% + 1)/(5(8% — 1)) € [-1,1], i.e., if B €
(=00, —2]U[-1/2,1/2]U[2,00).

The Jacobian (1.29) of the first equilibrium is equal to J = 16v/—2h* (3% —1)
(8% —4)(B? — 1/4). So, when 8 € (—o0, —2) U (—1/2,1/2) U (2, 00), each of these
equilibria provides one periodic orbit of the Hamiltonian system with Hamiltonian
(1.30) for each H = h* < 0 and K = k* = 0. Since k* = 0, these periodic
orbits bifurcate from an elliptic orbit (g9 # 0) of the Kepler problem living in
the plane of motion of the two bodies of the Kepler problem. Moreover, since the
eigenvalues of the Jacobian matrix at these equilibra are £2./(32 — 4)(452 — 1)
and /—2h*(B? — 1), these periodic orbits have a stable manifold of dimension 2
and an unstable one of dimension 1 if § € (—1/2,1/2), and have a stable manifold
of dimension 1 and an unstable one of dimension 2 if 8 € (—oc0, —2) U (2, 00). This
proves statement (i) of the theorem.

The last four equilibria exist if § € (—1,—1/2] U[1/2,1) and have Jacobian
equal to J = —15v/—2h*(B8% — 1)(48? — 1). So, for each value of k € [0,27)
these four equilibria when g € (—1,—1/2) U (1/2,1) provide four periodic orbits
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of the Hamiltonian system with Hamiltonian (1.30) for each H = h* < 0 and
1 [ 5(1—4p%

4\ —2h*(1 - ?2)
from elliptic orbits (go # 0) of the Kepler problem which are not in the plane of
motion defined by the two bodies. This proves statement (ii) of the theorem. O

K=k =% # 0. Since k* # 0 these periodic orbits bifurcate

1.2.3 Other first order averaging methods for periodic orbits

We consider the problem of bifurcation of T-periodic solutions from the differential
system
x = Fy(t,x) +eFy(t,x) + *R(t, %, €), (1.34)

with e = 0 to € # 0 sufficiently small. Here, the functions Fy, F7: Rx D — R™ and
R: R x D x (—¢gg,&0) — R™ are C? functions, T-periodic in the first variable, and
D is an open subset of R™. One of the main assumptions is that the unperturbed

system
x' = Fy(t, x), (1.35)

has a submanifold of periodic solutions.

Let x(¢,z) be the solution of the unperturbed system (1.35) satisfying that
x(0,z) = z. We write the linearization of the unperturbed system along the peri-
odic solution x(t,z) as

y' = DxFo(t,x(t,z))y. (1.36)
In what follows we denote by M, (t) some fundamental matrix of the linear dif-
ferential system (1.36), and by &: R*¥ x R"~F — R* the projection of R" onto its
first k coordinates, i.e., &(x1,...,2,) = (T1,...,Tk).

The next result goes back to Malkin [29] and Roseau [76]. Here, we shall
present the shorter proof given by A. Buica—Frangoise-Llibre [12].

Theorem 1.2.9. Let V C R¥ be open and bounded, and let By: CLI(V) — R"F pe
a C? function. We assume that

(1) Z2 ={2a = (o, Bo(a)) : a € CL(V)} C Q and that for each zo € Z the solution
x(t,zqo) of (1.35) is T-periodic;

(i) for each zo € Z there is a fundamental matric M, (t) of (1.36) such that
the matriz M, ' (0) — M, *(T) has in the right up corner the k x (n— k) zero

z
matriz, and in the right lower corner a (n — k) x (n — k) matriz A, with

det(Ay) # 0.
We consider the function F: CI(V) — R¥ defined as

T
Fla)=¢ (/0 M, () Fy (t,x(t,za))dt> : (1.37)

If there exists a € V with F(a) = 0 and det ((dF/da) (a)) # 0, then there is a
T-periodic solution x(t,€) of system (1.34) such that x(0,¢) — 2z, as e — 0.
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Theorem 1.2.9 is proved in Subsection 1.2.7. In the next subsection we provide
some applications of this theorem.

We assume that there exists an open set V' with CI(V) C € such that for
each z € CI(V), x(t, z,0) is T-periodic, where x(t,z,0) denotes the solution of the
unperturbed system (1.35) with x(0,2,0) = z. The set C1(V) is isochronous for
the system (1.34), i.e., it is a set formed only by periodic orbits, all of them having
the same period. Then, an answer to the problem of the bifurcation of T-periodic
solutions from the periodic solutions x(t,z,0) contained in Cl(V') is given in the
following result.

Corollary 1.2.10 (Perturbations of an isochronous set). We assume that there exists
an open and bounded set V with CL(V') C Q and such that, for each z € CL(V),
the solution x(t,z) is T-periodic; then we consider the function F: C1I(V) — R",

T
F(z) :/0 M, (t,z)Fy(t,x(t, z))dt. (1.38)

If there exists a € V with F(a) =0 and det ((dF/dz) (a)) # 0, then there exists a
T-periodic solution x(t,&) of system (1.34) such that x(0,e) = a as ¢ — 0.

Proof. 1t follows immediately from Theorem 1.2.9 taking k = n. O

1.2.4 Three applications

In this subsection we shall develop three applications of Theorem 1.2.9 and of its
Corollary 1.2.10.

The Hopf bifurcation of the Michelson system

The Michelson system

2
2 X

=y, Y=z zi=c Y (1.39)
with (x,y,2) € R and the parameter ¢ > 0, was introduced by Michelson [72] in
the study of the travelling wave solutions of the Kuramoto—Sivashinsky equation.
It is well known that system (1.39) is reversible with respect to the involution
R(z,y,2) = (—z,y, —z) and is volume-preserving under the flow of the system. It
is easy to check that system (1.39) has two finite singularities S; = (—v/2¢,0,0)
and Sy = (v/2¢,0,0) for ¢ > 0, which are both saddle-foci. The former has a
two dimensional stable manifold and the latter has a two dimensional unstable
manifold.

For ¢ > 0 small numerical experiments (see for instance Kent-Elgin [49]) and
asymptotic expansions in sinus series (see Michelson [72] in 1986 and Webster—
Elgin [86] in 2003) revealed the existence of a zero-Hopf bifurcation at the origin
for ¢ = 0. But their results do not provide an analytic proof on the existence of
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such zero-Hopf bifurcation. By a zero-Hopf bifurcation we mean that when ¢ =0
the Michelson system has the origin as a singularity having eigenvalues 0, £, and
when ¢ > 0 sufficiently small the Michelson system has a periodic orbit which
tends to the origin when ¢ tends to zero. The analytic proof of this zero-Hopf
bifurcation has been provided by Llibre-Zang [59]. Now we state this result and
reproduce its proof.

Theorem 1.2.11. For ¢ > 0 sufficiently small the Michelson system (1.39) has
a zero-Hopf bifurcation at the origin for ¢ = 0. Moreover, the bifurcated periodic
orbit satisfies x(t) = —2ccost+o(c), y(t) = 2¢sint+o(c) and z(t) = 2ccott+o(c),
for ¢ > 0 sufficiently small.

Proof. For any € # 0 we apply the change of variables x = ex, y = ey, z = ¢z and
¢ = ed, and Michelson system (1.39) becomes

1
=y, y=2 2:—y+ad2—52x2, (1.40)
where we still use z, y, z instead of =, y, z. Now doing the change of variables x = =z,

y=rsind and z = rcosd, system (1.40) goes over to

€

. (2d* — 2?)sin 6. (1.41)

& =rsing, = ;(2d2 — %) cosh, f=1-

This system can be written as

illz = rsin9 —+ ;(2d2 — ,132)81112 9 + €2f1(97T7 5)7

‘ (1.42)
T _ E 2 .2 2

0= 2(2d x?)cosf + e f2(0,1,¢),

where f; and fy are analytic functions in their variables.
For arbitrary (xo,70) # (0,0), the system (1.42).—¢ has the 2m-periodic so-
lution
x(0) = 1o + x0 —rocosd, r(0)=ro, (1.43)

such that z(0) = zo and 7(0) = 7o. It is easy to see that the first variational
equation of (1.42).—¢ along the solution (1.43) is

dy:

0 (0 sind Y1
Y2 “\ 0 0 y2 )

do

It has the fundamental solution matrix

1 1-—cosf
M-( 0 1 ), (1.44)
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which is independent from the initial condition (xg, o). Applying Corollary 1.2.10
to the differential system (1.42) we have that

2m
1 1 (2d% — 2?)sin? 0
F(x0,m0) = 2/M ( (2d? — x?) cos @
0

Then, F(zo,70) = (91(x0,70), g2(x0,70)) With

de.

(1.43)

1 1
g1(xo,70) = 4 (4d* — 51§ — 6rozo — 223) ,  g2(wo,70) = 27“0(560 +70).
We can check that F = 0 has a unique non-trivial solution xg = —2d and ro = 2d,

and that det DF(20,70)| 0= 24, rg=2d4 = d?. Hence by Corollary 1.2.10 it follows
that, for any given d > 0 and for |e| > 0 sufficiently small, the system (1.42) has a
periodic orbit (z(0, ), 7(0,¢)) of period 2, such that (2(0,¢),7(0,¢)) — (—2d, 2d)
as € — 0. We note that the eigenvalues of DF(z0,70)|,,— o4 ry—24 are £di. This
shows that the periodic orbit is linearly stable.

Going back to system (1.39) we get that, for ¢ > 0 sufficiently small, the
Michelson system has a periodic orbit of period close to 2w given by z(t) =
—2ccost + o(c), y(t) = 2csint + o(c) and z2(t) = 2ccost + o(c). We think that
this periodic orbit is symmetric with respect to the involution R, but we do not
have a proof of it. O

A third-order differential equation

Using Theorem 1.2.9 in the next result we present a third-order differential equa-
tion having as many limit cycles as we want.

Proposition 1.2.12. Let us consider the third-order differential equation
T — 343 —x=ccos(r +1). (1.45)

Then for all positive integer m there is €, > 0 such that if € € [—&um,, em| \ {0} the
differential equation (1.45) has at least m limit cycles.

Proof. If y =4 and z = &, then (1.45) can be written as

T =1y,
Y=z, (1.46)
i=x—y+ztecos(x+t)=x—y+z+ecF(t,z,y,z).

The origin (0,0,0) is the unique singular point of (1.46) when & = 0. The eigen-
values of the linearized system at this singular point are +4 and 1. By the linear
invertible transformation (X,Y, Z)T = C(z,vy, 2)T, where

1 -1 0
c=(0 -1 1],
10 1
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we transform the differential system (1.46) into another such that its linear part
is the real Jordan normal form of the linear part of system (1.46) with e =0, i.e.,

X =-Y,
Y =X +eF(X,Y,Z,t), (1.47)
7 =Z+eF(X,Y,Z1),

where

. X-Y+7 - X-Y+7 -X+Y+Z
F(X,Y,Z,t):F( 2+ , 5 ta +2 * ,t).

Using the notation introduced in (1.34) we have that x = (X, Y, Z), Fy(x,t) =
(=Y, X,Z), Fi(x,t) = (0,F,F) and Fy(x,t) = 0. Let x(t; Xo, Yo, Zo,¢) be the
solution to system (1.47) with x(0; Xo, Yo, Zo, &) = (Xo, Yo, Zo). Clearly the un-
perturbed system (1.47) with € = 0 has a linear center at the origin in the (X, Y)-
plane, which is an invariant plane under the flow of the unperturbed system, and
the periodic solution x(t; Xo,Y,0,0) = (X (¢),Y (¢), Z(t)) is

X (t) = Xocost — Yysint, Y (t)=Ypcost+ Xosint, Z(t)=0. (1.48)

Note that all these periodic orbits have period 2.

For our system, V and « from Theorem 1.2.9 are V = {(X,Y,0) : 0 <
X?+Y? < p}, for some arbitrary p > 0 and a = (Xo, Yp) € V.

The fundamental matrix solution M () of the variational equation of the
unperturbed system (1.47).—o with respect to the periodic orbits (1.48) satisfying
that M(0) is the identity matrix is

cost —sint 0
M(t)=|[ sint cost 0
0 0 et

We remark that it is independent from the initial condition (Xo, Yy, 0). Moreover
an easy computation shows that

In short we have shown that all the assumptions of Theorem 1.2.9 hold. Hence
we shall study the zeros oo = (Xo,Yy) € V of the two components of the function
F () given in (1.37). More precisely we have F(a) = (Fi (), Fa(a)) where
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27
Fia) = / sin tF(x(t: Xo, Yo, 0,0), t)dt
0

o X({t)-Y(t) XO)+Y(Et) —X({t)+Y(t)
:/O s1ntF< 9 , 9 , 5 ,t) dt,

27
.7-'2(04)2/ cost B (x(t; Xo, Yo, 0,0), ¢)dt
0

2 o o
_ / costF X(t)-Y(¢) ’ X+ Y(t)7 X(t) + Y(t>,t .
0 2 2 2
where X (¢),Y (¢) are given by (1.48).
First, we consider the third-order differential equation (1.45). For this equa-
tion we have that

27 . B .
f1(Xo, Yo) :/ sin t cos (t—i— (Xo —Yo) cost ) (Xo +Y0)Slnt>> dt.,
0
(Xo—Yp)cost — (Xog+Yp) sint)) g

27
fa2(Xo, Y0) :/ cost cos <t+ )
0

To simplify the computation of these two integrals we do the change of vari-
ables (Xo,Yy) — (r,s) given by

Xo—Yy=2rcoss, Xp+Yy=—2rsins, (1.49)

where r > 0 and s € [0, 27). From now on and until the end of the paper, we write
fi(r, s) instead of

f1(X0,Y0) = fi(r(coss —sins), —r(cos s + sin s)).

Similarly for fa(r, s).
We compute the two previous integrals and we get

fi(r,s) = —mwJo(r) sin 2s,

(1.50)
fa(r,s) =27 (710,]1 (r) — Jo(r) cos? 5) ,

where J; and Jy are the first and second Bessel functions of the first kind. For
more details on Bessel functions, see [2]. These computations become easier with
the help of an algebraic manipulator such as Mathematica or Maple.

Using the asymptotic expressions of the Bessel functions of first kind it follows
that Bessel functions Ji(r) and Jo(r) have different zeros. Hence, f;(r,s) = 0 for
i =1,2 imply that s € {0, 7/2, 7, 37/2}. Therefore, we have to study the zeros of

fg(?"70):fg(’l“ﬂl'):27T<iJ1(7”)—J2(7“)> s (151)
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Falrm/2) = folr, 37/2) = 2:J1(7"). (1.52)

We claim that function (1.51) has also infinite zeros for r € (0, 00). Note that
if p is sufficiently large, and we choose r < p also sufficiently large, then

2
In(r) =~ \/m“ cos (7’— n27r — Z), for n=1,2,

are asymptotic estimations, see [2]. Considering (1.51) for r sufficiently large we

obtain
2 /27 3T T
fQ(T’O)Nr\/r (cos(r— 4)+7‘c05(7’— 4>)

= 2\/:((7" —1)cosr + (r+ 1)sinr).

The above function has infinite zeros because the equation

1—r
tanr =
r+1
has infinitely many solutions.
For every zero rg > 0 of the function (1.51) we have two zeroes of system
(1.50), namely (r,s) = (r9,0) and (r,s) = (1o, 7).
We have from (1.50) that

‘3(1”17 f2) _ Am*(Jo(ro)ro — 2J1(r0))(Jo(ro)ro + (r§ — 2)J1(ro))
A(r,8) |(r,5)=(r0,0) g
472
= ro JQ(’I“())(Jl(T'Q)’I“() — JQ(’I“())), (153)

where we have used several relations between the Bessel functions of the first kind,
see [2]. Clearly, it is impossible that (1.51) and (1.53) are equal to zero at the same
time. Therefore, by Theorem 1.2.1, there is a periodic orbit of the system (1.45)
for each (rg,0), that is, for each value of (Xo,Yy) = (ro, —70).

In an analogous way, there is a periodic orbit of the system (1.45) for each
(ro,m), that is, for each value of (Xo,Yy) = (=79, r0). In fact, the periodic orbit
with these initial conditions and the previous one with initial conditions (Xo, Yy) =
(ro, —ro) are the same.

Similarly, since J; () has infinitely many zeroes (see [2]), the function (1.52)
has infinitely many positive zeroes ;. Every one of these zeroes provides two
solutions to the system (1.50), namely (r,s) = (r1,7/2) and (r, s) = (r1,37/2).

Moreover we have from (1.50) that

’ A(f1, f2)
a(r,s)

_ Y 20) £ 0. (1.54)

(r,8)=(r1,m/2) 1
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Therefore, by Theorem 1.2.1, there is a periodic orbit of the system (1.45) for each
(r1,7/2), that is, for each value of (Xo,Yp) = (—r1, —71).

In an analogous way there is also a periodic orbit of the system (1.45) for
each (r1,3m/2), that is, for each value of (Xo,Yp) = (r1,71). In fact, the periodic
orbit with these initial conditions and the previous one with initial conditions
(Xo,Yy) = (—r1, —r1) are the same.

Taking the radius p of the disc V = {(X0,Y5,0) : 0 < X2 +Y?2 < p} in
the proof of Theorem 1.2.9 conveniently large, we include in it as many zeros
of the system f1(Xo,Yp) = f2(Xo,Yo) = 0 as we want, so from Theorem 1.2.9,
Proposition 1.2.12 follows. O

The Vallis system (El Nifio phenomenon)

The results of this subsubsection come from the paper Euzébio—Llibre [32].

The Vallis system, introduced by Vallis [84] in 1988, is a periodic non-
autonomous three dimensional system modeling the atmosphere dynamics in the
tropics over the Pacific Ocean, related to the yearly oscillations of precipitation,
temperature and wind force. Denoting by = the wind force, by y the difference of
near-surface water temperatures of the east and west parts of the Pacific Ocean,
and by z the average near-surface water temperature, the Vallis system is

d

da; = —ax + by + au(t),
d

dz _ —z—zy+1

dt - Y ’

where u(t) is some C' T-periodic function describing the wind force under seasonal
motions of air masses, and the parameters a and b are positive.

Although this model neglects some effects like Earth’s rotation, pressure field
and wave phenomena, it provides a correct description of the observed processes
and recovers many of the observed properties of El Nifio. The properties of El Nino
phenomena are studied analytically in [82, 84]. More precisely, in [84] it is shown
that, taking u = 0, it is possible to observe the presence of chaos by considering
a = 3 and b = 102. Later on, in [82], it is proved that there exists a chaotic
attractor for the system (1.55) after a Hopf bifurcation. This chaotic motion can
be easily understood if we observe the strong similarity between the system (1.55)
and the Lorenz system, which becomes more clear under the replacement of z by
z+1in (1.55).

Now we shall provide sufficient conditions in order that system (1.55) has pe-
riodic orbits and, additionally, we shall characterize the stability of these periodic
orbits. As far as we know, the study of the periodic orbits in the non-autonomous
Vallis system has not been considered in the literature, with the exception of the
Hopf bifurcation studied in [82].
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T
I= / u(s)ds.
0
Now we state our main result.

Theorem 1.2.13. For I # 0 and a # b the Vallis system (1.55) has a T-periodic
solution (x(t),y(t), z(t)) such that

@O0 = (il 1)

We define

Moreover this periodic orbit is stable if a > b, and unstable if a < b.

We do not know the reliability of the Vallis model approximating the Nino
phenomenon but it seems that, for the moment, this is one of the best existing
models. Accepting this reliability we can say the following.

The stable periodic solution provided by Theorem 1.2.13 says that the Nino
phenomenon exhibits a periodic behavior if the T-periodic function w(t) and the
parameters a and b of the system satisfy I # 0 and a > b. Moreover, Theorem
1.2.13 states that this periodic solution lives near the point

9= (1 eyt

Since the periodic solutions found in the following Theorems 1.2.15, 1.2.16
and 1.2.17 are also stable, we can provide a similar physical interpretation for
them as we have done for the periodic solution from Theorem 1.2.13.

Theorem 1.2.14. For I # 0 the Vallis system (1.55) has a T-periodic solution
(x(t),y(t), z(t)) such that

(2(t), y(8). 2(1)) ~ (— o ol 1) .

Moreover this periodic orbit is always unstable.

Theorem 1.2.15. For I # 0 the Vallis system (1.55) has a T-periodic solution
(x(t),y(t), z(t)) such that

(w(),y(t), 2(8) ~ (; ! 1> |

Moreover this periodic orbit is always stable.

Theorem 1.2.16. For I # 0 the Vallis system (1.55) has a T-periodic solution
(z(t),y(t), 2(t)) such that

Moreover this periodic orbit is always stable.
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In what follows we consider the function

J@:AE@@

and note that J(T') = I. So, we have the following result.

Theorem 1.2.17. Consider I = 0 and J(t) # 0 if 0 < t < T. Then, the Vallis
system (1.55) has a T-periodic solution (z(t),y(t), z(t)) such that

a T
(umy@J@Dz<_TA ﬂ@@m4>.

Moreover this periodic orbit is always stable.

The tool for proving our results will be the averaging theory. This theory
applies to periodic non-autonomous differential systems depending on a small pa-
rameter €. Since the Vallis system already is a T-periodic non-autonomous differ-
ential system, in order to apply to it the averaging theory described in Section
1.4 we need to introduce in such system a small parameter. This is reached doing
convenient rescalings in the variables (z,y, z), in the parameters (a,b), and in the
function u(t). Playing with different rescalings we shall obtain different results on
the periodic solutions of the Vallis system. More precisely, in order to study the
periodic solutions of the differential system (1.55), we start doing a rescaling of the
variables (x,y, z), of the function u(t), and of the parameters a and b, as follows:

r=ec"™mX, y =My, z=eM37,

(1.56)
u(t) =emU(t), a=¢emA, b=¢e"B,
where € is always positive and sufficiently small, and where m; and n; are non-
negative integers, for all i, = 1,2,3. Then, in the new variables (X,Y,7), the
system (1.55) is written

dX

g = g2 AX + g~ mitmetns By + 5—77’L1-0-ﬂ1-i-ngAU’(t)7

'y y omematmay g (1.57)
dt

dz

P RS e

Consequently, in order to have non-negative powers of ¢ we must impose the
conditions

m3=0 and 0<mo <my <L, (1.58)
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where L = min{ms + ns,n1 + nz2}. So, system (1.57) becomes

X
ddt = g2 AX + g~ mitmetns By + 5—7711-0-711-i-n2AU’(t)7
Y
Yy ememyxy (1.59)
dt
7
2 _ | _ g emrmyy,
dt

Our aim is to find periodic solutions of the system (1.59) for some special
values of m;, n;, 4,j = 1,2,3, and after we go back through the rescaling (1.56)
to guarantee the existence of periodic solutions in system (1.55). In what follows
we consider the case where no and ng are positive and mg = my < ni + no. These
conditions lead to the proofs of Theorems 1.2.13, 1.2.14 and 1.2.15. For this reason
we present these proofs together in order to avoid repetitive arguments. Moreover,
in what follows we consider

K= /0 " U(s)ds,

Proofs of Theorems 1.2.13, 1.2.14 and 1.2.15. We start considering system (1.59)
with no and ng positive and mo = my < nq + ns. So we have

dx
g = EPAX £ emBY + g=mitnitna AT (4),
dy

- Y+ XZ 1.60
it + X2, (1.60)
dz

—1- 7 —2mXxy.
dt

Now we apply the averaging method to the differential system (1.60). Using the
notation of Subsection 1.2.5, we have x= (X, Y, Z)T and

0
Ftx)=| -Y+XZ |. (1.61)
1-Z
We start considering the system
x = Fy(t,x). (1.62)

Its solution x(t,2,0) = (X (¢),Y (¢), Z(t)) such that x(0,2,0) = z = (Xo, Yo, Zo) is
X (t) = Xo,
Y(t) = (]. — e*t(l + t))X() + eftYo + eittXQZQ,
Zt)y=1—et+e'Z.
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In order that x(t,,0) is a periodic solution we must choose Yy = X and Zp = 1.
This implies that, through every point of the straight line X =Y, Z = 1, there
passes a periodic orbit lying in the phase space (X,Y, Z,t) € R? x St. Here and in
what follows, S' is the interval [0, T'] identifying T with 0.

Observe that, using the notation of Subsection 1.2.5, we have n = 3, k = 1,
a = Xo and 3(Xo) = (Xo,1) and, consequently, M is a one dimensional manifold
given by M = {(Xo, Xo,1) € R? : Xy € R}. The fundamental matrix My(t) of
(1.62), satisfying that M,(0) is the identity of R3, is

1 0 0
1—cosht+sinht et e %Xy |,
0 0 et

and its inverse matrix M, (t) is

1 0 0
1—et et —eltXy
0 0 el

Since the matrix M, *(0) — M, *(T) has an 1 x 2 zero matrix in the upper right

z
corner, and a 2 X 2 lower right corner matrix

1—el eTTX,
A_< 0 1—¢ )

with det(A) = (1 — eT)? # 0 because T # 0, we can apply the averaging theory
described in Subsection 1.2.5.

Let F' be the vector field of system (1.60) minus F given in (1.61). Then the
components of the function M, ! (t)F(t,x(t,z,0)) are

g1 (X07 t) = —e"AXg+e"BXy + €7m1+n1+n2AU(t>7
g2(Xo,t) = 2™t X3 + (1 — et) g1 (Xo, 1),
g3(Xo,t) = —e?miet X2
In order to apply averaging theory of first order we need to consider only
terms up to order €. Analysing the expressions of g1, g2 and g3 we note that these
terms depend on the values of m; and nj, for each j = 1,2, 3. In fact, we just need

to study the integral of g; because k = 1. Moreover, studying the function g; we
observe that the only possibility to obtain an isolated zero of the function

T
fi(X) = /0 (X, t)dt

is assuming that ny + ne — m; = 1. Otherwise, the only solution of f1(Xp) = 0
is Xy = 0, which corresponds to the equilibrium point (Xo, Yy, Zo) = (0,0,1) of
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system (1.62). The sam