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New Structures on Valuations
and Applications

Semyon Alesker

Introduction

The theory of valuations on convex sets is a classical part of the topic of onvexity,
with traditionally strong relations to integral geometry. During the roughly last
15 years a considerable progress was made in valuation theory and its applications
to integral geometry. The progress is both conceptual and technical: several new
structures on valuations have been discovered, new classification results of various
special classes of valuations have been obtained, the tools used in valuation theory
and its relations with other parts of mathematics have become much more diverse
—besides convexity and integral geometry, one can mention representation theory,
geometric measure theory, elements of contact geometry, and complex and quater-
nionic analysis. This progress in valuation theory has led to new developments in
integral geometry, particularly in Hermitian spaces. Some of the new structures
turned out to encode in an elegant and useful way important integral geometric
information: for example, the product operation on valuations encodes somehow
the principal kinematic formulas in various spaces.

Quite recently, generalizations of the classical theory of valuations on convex
sets to the context of manifolds were initiated; this development extends the appli-
cability of valuation theory beyond affine spaces, and also covers a broader scope
of integral geometric problems. In particular, the theory of valuations on manifolds
provides a common point of view on three classical and previously unrelated direc-
tions of integral geometry: Crofton-style integral geometry, dealing with integral
geometric and differential geometric invariants of sets and their intersections, and
with projections to lower-dimensional subspaces; Gelfand-style integral geometry,
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dealing with the Radon transform on smooth functions on various spaces; and,
less classical but still well known, the Radon transform with respect to the Euler
characteristic on constructible functions.

Although the relations between valuation theory and Crofton-style integral
geometry have been known since the works of Blaschke and especially Hadwiger,
the new developments have enriched both subjects and, in fact, more progress
is expected. The relations of valuation theory to the two other types of integral
geometry are new.

Besides new notions, theorems, and applications, these recent developments
contain a fair amount of new intuition on the subject. However, when one tries to
make this intuition formally precise, the clarity of basic ideas is often lost among
numerous technical details; moreover, in a few cases this formalization has not
been done yet. Here, in several places, I take the opportunity to use the somewhat
informal format of lecture notes to explain the new intuition in a heuristic way,
leaving the technicalities aside. Nevertheless, I clearly separate formal rigorous
statements from such heuristic discussions.

The goal of my and Joe Fu’s lectures is to provide an introduction to these
modern developments. These two sets of lectures complement each other. My
lectures concentrate mostly on valuation theory itself and provide a general back-
ground for Fu’s lectures. In my lectures the discussion of the relations between
valuation theory and integral geometry is usually relatively brief, and its goal is to
give simple illustrations of general notions. The important exceptions are Sections
1.2.11 and 1.2.12, where new integral geometric results are discussed, namely a
Radon-type transform on valuations. A much more thorough discussion of appli-
cations to Crofton-style integral geometry, especially in Hermitian spaces, will be
offered in Fu’s lectures.

My lectures consist of two main parts. The first part discusses the theory of
valuations on convex sets and the second part discusses its recent generalizations
to manifolds. The theory of valuations on convex sets is a very classical and much
studied area. In these lectures, I mention only several facts from these classical
developments which are necessary for our purposes; I refer to the surveys [54, 55]
for further details and history.

The exposition contains almost no proofs. I tried to give the necessary def-
initions and list the main properties and sometimes present constructions of the
principal objects and some intuition behind. Among important new operations
on valuations are product, convolution, Fourier-type transform, pull-back, push-
forward, and the Radon-type transform on valuations; all of them are relevant to
integral geometry and are discussed in these notes.

Several interesting recent developments in valuation theory are not discussed
here. The main omissions are a series of investigations by M. Ludwig with collabo-
rators of valuations with weaker assumptions on continuity and various symmetries
(see, e.g., [48, 50, 51]) and convex-bodies-valued valuations (see, e.g., [47, 49, 60]).
Particularly, let me mention the surprising Ludwig–Reitzner characterization [50]
of the affine surface area as the only example (up to the Euler characteristic, vol-
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ume, and a non-negative multiplicative factor) of upper semi-continuous convex
valuation invariant under all affine volume-preserving transformations.
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1.1 Translation-invariant valuations on convex sets

1.1.1 Definitions

Let V be a finite-dimensional vector space of dimension n. Throughout these notes
we will denote by K(V ) the family of all convex compact non-empty subsets of V .

Definition 1.1.1. A complex-valued functional

φ : K(V ) −→ C

is called a valuation if

φ(A ∪B) = φ(A) + φ(B)− φ(A ∩B)

whenever A, B, A ∪B ∈ K(V ).

Remark 1.1.2. In Section 1.2 we will introduce a different but closely related
notion of valuation on a smooth manifold. To avoid confusion, we will sometimes
call valuations on convex sets from Definition 1.1.1 convex valuations, though this
is not a traditional terminology. But when there is no danger of confusion, we will
call them just valuations. In fact, all valuations from Section 1.1 will be convex,
while those from Section 1.2 will not, unless otherwise stated.

Examples 1.1.3. (1) Any C-valued measure on V is a convex valuation. In par-
ticular, the Lebesgue measure is such.

(2) The Euler characteristic χ, defined by χ(K) = 1 for any K ∈ K(V ), is a
convex valuation.

(3) Let φ be a convex valuation. Let C ∈ K(V ) be fixed. Define

ψ(K) := φ(K + C).

Then ψ is a convex valuation. (Here K + C := {k + c | k ∈ K, c ∈ C} is the
Minkowski sum.) Indeed, (A ∪ B) + C = (A + C) ∪ (B + C), and if A, B,
A ∪B ∈ K(V ), then

(A ∩B) + C = (A+ C) ∩ (B + C).
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Let us define a very important class of continuous convex valuations. Fix a
Euclidean metric on V . The Hausdorff distance on K(V ) is defined by

distH(A,B) := inf
{
ε > 0 | A ⊂ (B)ε, B ⊂ (A)ε

}
,

where (A)ε denotes the ε-neighborhood of A in the Euclidean metric. It is well
known (see, e.g., [58]) that K(V ) equipped with distH is a metric locally compact
space in which any closed bounded set is compact.

Definition 1.1.4. A convex valuation φ : K(V ) → C is called continuous if φ is
continuous in the Hausdorff metric.

This notion of continuity of a valuation is readily seen to be independent of
the choice of a Euclidean metric on V .

Definition 1.1.5. A convex valuation φ : K(V ) → C is called translation-invariant if

φ(K + x) = φ(K) for any K ∈ K(V ), x ∈ V .

The linear space of translation-invariant continuous convex valuations will
be denoted by Val(V ). If equipped with the topology of uniform convergence on
compact subsets of K(V ), Val(V ) is a Fréchet space. In fact it follows from Mc-
Mullen’s decomposition (Corollary 1.1.7 below) that Val(V ) with this topology is
a Banach space, with the norm given by

||φ|| := sup
K⊂D

|φ(K)|,

where D ⊂ V is the unit Euclidean ball for some auxiliary Euclidean metric.

1.1.2 McMullen’s theorem and mixed volumes

The following result due to McMullen [52] is very important.

Theorem 1.1.6. Let φ : K(V ) → C be a translation-invariant continuous convex
valuation. Then for any convex compact sets A1, . . . , As ∈ K(V ) the function

f(λ1, . . . , λs) = φ(λ1A1 + · · ·+ λsAs),

defined for λ1, . . . , λs ≥ 0, is a polynomial of degree at most n = dimV .

The special case s = 1 is already non-trivial and important. It means that,
for λ ≥ 0,

φ(λK) = φ0(K) + λφ1(K) + · · ·+ λnφn(K).

It is easy to see that the coefficients φ0, φ1, . . . , φn are also continuous translation-
invariant convex valuations. Moreover, φi is homogeneous of degree i (or i-homo-
geneous for brevity). By definition, a valuation ψ is called i-homogeneous if for
any K ∈ K(V ) and any λ ≥ 0 one has

φ(λK) = λiφ(K).



1.1. Translation-invariant valuations on convex sets 5

Let us denote by Vali(V ) the subspace in Val(V ) of i-homogeneous valuations. We
immediately get the following corollary:

Corollary 1.1.7 (McMullen’s decomposition).

Val(V ) =

n⊕
i=0

Vali(V ).

Remark 1.1.8. Clearly Val0(V ) is one-dimensional and is spanned by the Eu-
ler characteristic. Actually, Valn(V ) is also one-dimensional and is spanned by a
Lebesgue measure; this fact is not obvious and was proved by Hadwiger [39].

Let us now recall the definition of (Minkowski’s) mixed volumes, which pro-
vide interesting examples of translation-invariant continuous convex valuations.
Fix a Lebesgue measure on V , denoted vol. For any n-tuple of convex compact
sets A1, . . . , An consider the function

f(λ1, . . . , λn) = vol(λ1A1 + · · ·+ λnAn).

This is a homogeneous polynomial in λi ≥ 0 of degree n. Of course, this fact
follows from McMullen’s theorem (Theorem 1.1.6) and the n-homogeneity of the
volume, though originally it was discovered much earlier by Minkowski, and in
this particular case there is a simpler proof (see, e.g., [58]).

Definition 1.1.9. The coefficient of the monomial λ1 · · ·λn in f(λ1, . . . , λn) divided
by n! is called the mixed volume of A1, . . . , An and is denoted by V (A1, . . . , An).

The normalization of the coefficient is chosen in such a way that vol(A) =
V (A, . . . , A). Mixed volumes have a number of interesting properties; in particular
they satisfy the Aleksandrov–Fenchel inequality [58]. The property relevant for us,
however, is the valuation property. Fix 1 ≤ s ≤ n − 1 and an s-tuple of convex
compact sets A1, . . . , As. Define

φ(K) = V
(
K[n− s], A1, . . . , As

)
, (1.1.1)

where K[n−s] means that K is taken n−s times. Then φ is a translation-invariant
continuous valuation. This easily follows from Example 1.1.3(3).

1.1.3 Hadwiger’s theorem

One of the most famous and classical results of valuation theory is Hadwiger’s
classification of isometry-invariant continuous convex valuations on the Euclidean
space Rn. To formulate it, let us denote by Vi the ith intrinsic volume, which by
definition is

Vi(K) = cn,iV
(
K[i], D[n− i]

)
,

where cn,i is an explicitly written constant which is just a standard normalization
(see [58]). In particular, V0 = χ is the Euler characteristic and Vn = vol is the
Lebesgue measure normalized so that the volume of the unit cube is equal to 1.
Clearly Vi ∈ Vali is an O(n)-invariant valuation.
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Theorem 1.1.10 (Hadwiger’s classification [39]). Any SO(n)-invariant translation-
invariant continuous convex valuation is a linear combination of V0, V1, . . . , Vn. (In
particular, it is O(n)-invariant.)

In 1995, Klain [43] obtained a simplified proof of this deep result as an easy
consequence of his classification of simple even valuations discussed below in Sec-
tion 1.1.5. Hadwiger’s theorem turned out to be very useful in integral geometry
of the Euclidean space. This will be discussed in more detail in J. Fu’s lectures.
We also refer to the book [45].

1.1.4 Irreducibility theorem

One of the basic questions in valuation theory is to describe valuations with given
properties. Hadwiger’s theorem is one example of such a result of great importance.
In recent years, a number of classification results of various classes of valuations
have been obtained. The case of continuous translation-invariant valuations will
be discussed in detail in these lectures and in the lectures by Fu.

The question is whether it is possible or not to give a reasonable description
of all translation-invariant continuous convex valuations. In 1980, P. McMullen
[53] formulated a more precise conjecture which says that linear combinations of
mixed volumes (as in (1.1.1)) are dense in Val. This conjecture was proved in
the positive by the author [2] in a stronger form which later on turned out to be
important in further developments and applications.

To describe the result, let us make a few more remarks. We say that a valua-
tion φ is even (respectively odd) if φ(−K) = φ(K) (respectively φ(−K) = −φ(K))
for any K ∈ K(V ). The subspace of even (respectively odd) i-homogeneous valu-
ations will be denoted by Val+i (respectively Val−i ). Clearly,

Vali = Val+i ⊕Val−i . (1.1.2)

Next observe that the group GL(V ) of all invertible linear transformations
acts linearly on Val by

(gφ)(K) = φ(g−1K).

Theorem 1.1.11 (Irreducibility theorem [2]). For each i, the spaces Val+i and Val−i
are irreducible representations of GL(V ), i.e., they do not have proper invariant
closed subspaces.

Remark 1.1.12. By Remark 1.1.8, Val+0 = Val0 and Val+n = Valn are one-dimen-
sional. But for 1 ≤ i ≤ n− 1 the spaces Val±i are infinite-dimensional. Valn−1 was
explicitly described by McMullen [53]; we state his result in Section 1.1.5 below.

Theorem 1.1.11 immediately implies McMullen’s conjecture. Indeed, it is easy
to see that the closure of the linear span of mixed volumes is a GL(V )-invariant
subspace, and its intersection with any Val±i is non-zero. Hence, by the irreducibil-
ity theorem, any such intersection should be equal to the whole space Val±i .
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The irreducibility theorem will be used in these lectures several times. The
proof of this result uses a number of deep results from valuation theory in combi-
nation with representation-theoretical techniques. A particularly important such
result of high independent interest is the Klain–Schneider classification of sim-
ple translation-invariant continuous convex valuations; it is discussed in the next
section.

1.1.5 Klain–Schneider characterization of simple valuations

Definition 1.1.13. A convex valuation φ ∈ Val is called simple if φ(K) = 0 for any
K ∈ K(V ) with dimK < n := dimV .

Theorem 1.1.14. (i) (Klain [43]). Any simple even valuation from Val is propor-
tional to the Lebesgue measure.

(ii) (Schneider [59]). Any simple odd valuation from Val is (n− 1)-homogeneous.

Clearly, any simple valuation is the sum of a simple even one and a simple odd
one. Hence, in order to complete the description of simple valuations, it remains
to classify simple (n−1)-homogeneous valuations. Fortunately, McMullen [53] has
previously described Valn−1 very explicitly. His result was used in Schneider’s
proof, and it is worthwhile to state it explicitly as it is of independent interest.

First let us recall the definition of the area measure Sn−1(K, · ) of a convex
compact set K. Though it is not strictly necessary, it is convenient and common
to fix a Euclidean metric on V . After this choice, Sn−1(K, · ) is a measure on the
unit sphere Sn−1 defined as follows. First let us assume that K is a polytope. For
any (n − 1)-face F , let us denote by nF the unit outer normal to F . Then, by
definition,

Sn−1(K, · ) =
∑
F

voln−1(F )δnF
,

where the sum runs over all (n−1)-faces of K, and δnF
denotes the delta measure

supported at nF . Then the claim is that the area measure extends uniquely by
weak continuity to the class of all convex compact sets: ifKN → K in the Hausdorff
metric, then Sn−1(KN , · ) → Sn−1(K, · ) weakly in the sense of measures (see [58,
§4.2]).
Theorem 1.1.15 (McMullen [53]). Let φ ∈ Valn−1 and n = dimV . Then there
exists a continuous function f : Sn−1 → C such that

φ(K) =

∫
Sn−1

f(x) dSn−1(K,x).

Conversely, any expression of this form with f continuous is a valuation from
Valn−1. Moreover, two continuous functions f and g define the same valuation if
and only if the difference f − g is the restriction of a linear functional on V to the
unit sphere.
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Now we can state the classification of simple valuations.

Theorem 1.1.16 (Klain–Schneider). Simple translation-invariant continuous valu-
ations are precisely of the form

K 
−→ c · voln(K) +

∫
Sn−1

f(x) dSn−1(K,x),

where f : Sn−1 → C is an odd continuous function and c is a constant. Moreover,
the constant c is defined uniquely, while f is defined up to a linear functional.

1.1.6 Smooth translation-invariant valuations

We are going to describe an important subclass of Val, that of smooth valuations.
They form a dense subspace in Val and carry a number of extra structures (e.g.,
product, convolution, Fourier transform) which do not extend by continuity to
the whole space Val of continuous valuations. Moreover, main examples relevant
to integral geometry are in fact smooth valuations.

Definition 1.1.17. A valuation φ ∈ Val(V ) is called smooth if the Banach space
valued map GL(V ) → Val(V ) given by g 
→ g(φ) is infinitely differentiable.

By a very general and elementary representation-theoretical reasoning, the
subset of smooth valuations, denoted by Valsm(V ), is a linear dense subspace
of Val(V ) invariant under the natural action of GL(V ). Also, Valsm(V ) carries a
linear topology which is stronger than that induced from Val(V ), and with respect
to which it is a Fréchet space. This is often called the G̊arding topology, and we will
tacitly assume that Valsm(V ) is equipped with it. Of course, Valsm also satisfies
McMullen’s decomposition and the irreducibility theorem.

Let us give some examples of smooth valuations and non-smooth valuations.
Let A,A1, . . . , As ∈ K(V ) be full-dimensional convex bodies with infinitely smooth
strictly convex boundary. Then K 
→ vol(K + A) is a smooth valuation, and
consequently the mixed volumes K 
→ V (K[n − s], A1, . . . , As) are also smooth
valuations. A simple geometric example of a non-smooth continuous valuation is
the volume of a projection to a subspace of V .

For future applications to integral geometry, the following result will be im-
portant.

Proposition 1.1.18 ([4]). Let G be a compact subgroup of the orthogonal group of a
Euclidean space V . Assume that G acts transitively on the unit sphere of V . Then
any G-invariant valuation from Val(V ) is smooth.

1.1.7 Product on smooth translation-invariant valuations and
Poincaré duality

In this section we discuss the product operation on translation-invariant smooth
valuations introduced in [4]. This structure turned out to be intimately related to
integral geometric formulas discussed in detail in J. Fu’s lectures.
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First we introduce the exterior product on valuations.

Theorem 1.1.19 ([4]). Let V and W be finite-dimensional real vector spaces. There
exists a continuous bilinear map, called exterior product,

Valsm(V )×Valsm(W ) −→ Val(V ×W )

which is uniquely characterized by the following property: fix A ∈ K(V ) and B ∈
K(W ) such that both of them have smooth boundaries with positive curvature.
Let volV and volW be Lebesgue measures on V and W , respectively. Let φ(K) =
volV (K + A) and ψ(K) = volW (K +B). Then their exterior product, denoted by
φ� ψ, is

(φ� ψ)(K) = volV×W (K + (A×B)) for any K ∈ K(V ×W ),

where volV×W is the product measure of volV and volW .

Notice that the uniqueness in this theorem follows immediately from the
(proved) McMullen’s conjecture, since linear combinations of valuations of the
form vol( · +A) are dense in valuations.

Let us emphasize that the exterior product is defined on smooth valuations,
but it takes values not in smooth but just continuous valuations. Usually the
exterior product is not smooth. Let us give some examples.

Examples 1.1.20. (1) Obviously, the exterior product of Lebesgue measures in
the sense of valuations coincides obviously with their measure-theoretical
product.

(2) The exterior product of Euler characteristics is the Euler characteristic on V×
W . This can be seen as follows. First it is easy to verify that the exterior prod-
uct commutes with the natural action of the group GL(V )×GL(W ). Hence
χV � χW is invariant under this group, and in particular 0-homogeneous.
Thus it must be proportional to the Euler characteristic. Explicit evaluation
of this product on a point shows that the coefficient of proportionality must
be equal to 1. This evaluation can be done by observing that

χV (K) =
1

n! volV (D)

dn

dεn

∣∣∣
ε=0

volV (K + εD),

where D is a Euclidean ball (or any convex compact set of non-zero volume)
and n = dimV .

(3) Let volV be a Lebesgue measure on V and χW be the Euler characteristic
on W . Then the exterior product volV �χW is the volume of the projection
to V :

(volV �χW )(K) = volV (prV (K)) for any K ∈ K(V ×W ),

where prV : V ×W → V is the natural projection. Observe that this valuation
is not smooth (in contrast to the first two examples.)
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The first non-trivial point in Theorem 1.1.19 is that the exterior product is
well defined; the second one is continuity. We do not give here any proof. However,
let us give an incomplete, but instructive, explanation of why the exterior product
is well defined. There are of course many different ways to write a valuation as a
linear combination of vol( · + A). Let us check that the exterior product of finite
linear combinations of such expressions is independent of the particular choice
of a linear combination. Since the situation is symmetric with respect to both
valuations, we may assume that φ( · ) = ∑

i ci ·volV ( · +Ai) and ψ( · ) = volW ( · +
B). Then using Fubini’s theorem and the equality Ai ×B = (Ai × 0)+ (0×B) we
get

(φ� ψ)(K) =
∑
i

ci · volV×W (K + (Ai ×B))

=
∑
i

ci ·
∫
w∈W

volV
[{
(K + (0×B)) ∩ (V × {w})}+Ai

]
d volW (w)

=

∫
w∈W

φ
[
(K + (0×B)) ∩ (V × {w})] d volW (w).

Clearly the last expression is independent of the form of presentation of φ.
Now let us define the product on Valsm. Let us denote by

Δ: V −→ V × V

the diagonal imbedding. The product of φ, ψ ∈ Valsm(V ) is defined by

(φ · ψ)(K) := (φ� ψ)(Δ(K)).

It turns out that the product of smooth valuations is again smooth.

Theorem 1.1.21 ([4]). The product of smooth valuations Valsm(V )× Valsm(V ) →
Valsm(V ) is continuous (in the G̊arding topology), associative, commutative, and
distributive. Accordingly, Valsm(V ) becomes an algebra over C with unit, which is
the Euler characteristic. Moreover, the product respects the degree of homogeneity:

Valsmi ·Valsmj ⊂ Valsmi+j .

Example 1.1.22. The product of intrinsic volumes Vi ·Vj with i+j ≤ n is a non-zero
multiple of Vi+j : by the Hadwiger theorem it is clear that the product should be
proportional to Vi+j ; the constant of proportionality can be computed explicitly.

Let explain why the Euler characteristic is a unit in Valsm(V ). Let φ(K) =
voln(K +A). Fix a convex body B of non-zero volume. Then

χ(K) =
1

n! voln(B)

dn

dεn

∣∣∣
ε=0

voln(K + εB).
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Consequently,

(χ · φ)(K) =
1

n! voln(B)

dn

dεn

∣∣∣
ε=0

vol2n ((Δ(K) + (0×A)) + εB × 0) . (1.1.3)

It is well known (prove it, or see an equivalent formula (5.3.23) in [58]) that for a
convex compact subset U in a k-dimensional linear subspace Ek of the Euclidean
space RN and any convex compact set M ⊂ RN , one has

1

k! volk(U)

dk

dεk

∣∣∣
ε=0

volN (M + εU) = volN−k(pE⊥
k
M).

This and (1.1.3) imply that

(χ · φ)(K) = voln(p1(Δ(K) + (0×A))) = voln(K +A) = φ(K),

where p1 : V × V → V is the natural projection to the first component.
An interesting property of the product is a version of Poincaré duality.

Theorem 1.1.23 ([4]). For any i = 0, 1, . . . , n = dimV the bilinear map

Valsmi (V )×Valsmn−i(V ) −→ Valsmn (V )

is a perfect pairing, namely for any non-zero valuation φ ∈ Valsmi (V ) there exists
ψ ∈ Valsmn−i(V ) such that φ · ψ �= 0.

This result follows easily from the irreducibility theorem (Theorem 1.1.11).
Indeed, it suffices to prove the statement for valuations of fixed parity ε = ±1.
Then the kernel of the above pairing in Valε,smi (V ) is a GL(V )-invariant closed
subspace. Hence it must be either zero or everything. But it cannot be everything,
since then for any valuation ψ ∈ Valsmn−i(V ) one would have ψ ·Valε,smi (V ) = 0. But
this is not the case, as can be easily proved by constructing an explicit example.
(Say in the even case, the product of the intrinsic volumes Vi · Vn−i is a non-zero
multiple of the Lebesgue measure.)

Thus Valsm(V ) is a graded algebra that satisfies Poincaré duality. In Section
1.1.10 we will also see that it satisfies two versions of the hard Lefschetz theorem.

1.1.8 Pull-back and push-forward of translation-invariant
valuations

In this section we describe the operations of pull-back and push-forward on trans-
lation-invariant valuations under linear maps.

Let f : V → W be a linear map. We define [15] a continuous linear map,

f∗ : Val(W ) −→ Val(V )

called pull-back, as usual by (f∗φ)(K) = φ(f(K)). It is easy to see that f∗φ is
indeed a continuous translation-invariant convex valuation. The following result is
evident.
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Proposition 1.1.24. (i) f∗ preserves the degree of homogeneity and the parity.
(ii) (f ◦ g)∗ = g∗ ◦ f∗.

Notice that the product on valuations can be expressed via the exterior prod-
uct and the pull-back as

φ · ψ = Δ∗(φ� ψ),

where Δ is the diagonal imbedding.
A somewhat less obvious operation is the push-forward f∗, introduced in

[15]. In some non-precise sense f∗ is dual to f∗. In these notes it will be used
only to give an alternative description of the convolution on valuations in Section
1.1.9 and to clarify some properties of the Fourier-type transform on valuations
in Section 1.1.11; the reader not interested in these subjects may skip the rest of
this section.

Canonically, the push-forward map acts not between spaces of valuations,
but between their tensor product (twist) with an appropriate one-dimensional
space of Lebesgue measures. To be more precise, let us denote by D(V ∗) the one-
dimensional space of (C-valued) Lebesgue measures on V ∗. Then f∗ is a linear
continuous map

f∗ : Val(V )⊗D(V ∗) −→ Val(W )⊗D(W ∗).

In order to define this map, we will split its construction into the cases of f being
injective, surjective, and a general linear map.

Case 1: Let f be injective. Thus we may assume that V ⊂ W . In order to
simplify the notation, we choose a splitting W = V ⊕ L and we fix Lebesgue
measures on V and L. Then on W we have the product measure. These choices
induce isomorphisms D(V ∗) � C and D(W ∗) � C. We leave for the reader to
check that the construction of f∗ is independent of these choices.

Let φ ∈ Val(V ). Define

(f∗φ)(K) =

∫
l∈L

φ(K ∩ (l + V )) dl.

It is easy to see that f∗ : Val(V ) → Val(W ) is a continuous linear map.

Case 2: Let f be surjective. Again it will be convenient to assume that f
is just a projection to a subspace, and fix a splitting V = W ⊕ M . Again fix
Lebesgue measures on W,M , and hence on V . Let us also fix a set S ∈ K(M) of
unit measure. Set m := dimM . Then define

(f∗φ)(K) =
1

m!

dm

dεm
φ(K + ε · S)

∣∣∣
ε=0

.

Recall that by McMullen’s theorem φ(K+ε·S) is a polynomial in ε ≥ 0. Moreover,
its degree is at most m. Indeed, when K is fixed, this expression is a translation-
invariant continuous valuation with respect to S ∈ K(M). The coefficient of εm is
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an m-homogeneous valuation with respect to S ⊂ M , and hence, by Hadwiger’s
theorem (see Remark 1.1.8), it must be proportional to the Lebesgue measure on
M with a constant depending on K. By our definition, this coefficient is exactly
(f∗φ)(K) —in particular it does not depend on S. In fact, it also does not depend
on the choice of Lebesgue measures and the splitting.

Case 3: Let f be a general linear map. Let us choose a factorization f = g◦h,
where h : V → Z is surjective and g : Z → W is injective. Then define f∗ := g∗◦h∗.
One can show that f∗ is independent of the choice of such a factorization.

Proposition 1.1.25 ([15, Section 3.2]).

(i) The map f∗ : Val(V ) ⊗ D(V ∗) → Val(W ) ⊗ D(W ∗) is a continuous linear
operator.

(ii) (f ◦ g)∗ = f∗ ◦ g∗.
(iii) f∗ (Vali(V )⊗D(V ∗)) ⊂ Vali−dimV+dimW (W )⊗D(W ∗).

1.1.9 Convolution

In this section we describe another interesting operation on valuations: a con-
volution introduced by Bernig and Fu [24]. This is a continuous product on
Valsm ⊗D(V ∗). To simplify the notation, let us fix a Lebesgue measure vol on V ;
it induces a Lebesgue measure on V ∗. With these identifications, convolution is
going to be defined on Valsm(V ) (without the twist by D(V ∗)).

Theorem 1.1.26 ([24]). There exists a unique continuous bilinear map, called con-
volution,

∗ : Valsm(V )×Valsm(V ) −→ Valsm(V ),

such that

vol( · +A) ∗ vol( · +B) = vol( · +A+B).

This product makes Valsm(V ) a commutative associative algebra with unit element
vol. Moreover, Valsmi ∗Valsmj ⊂ Valsmi+j−n.

The above result characterizes the convolution uniquely, and allows to com-
pute it in some examples. We can give, however, one more description of it using
the previously introduced operations. Namely, let a : V × V → V be the addition
map, a(x, y) = x+ y. Then, by [15, Proposition 3.3.2], one has

φ ∗ ψ = a∗(φ� ψ).

The product and convolution will be transformed into one another in Sec-
tion 1.1.11 by another useful operation, the Fourier-type transform.
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1.1.10 Hard Lefschetz type theorems

The product and the convolution on valuations enjoy another non-trivial property,
analogous to the hard Lefschetz theorem from algebraic geometry [36]. Let us fix
a Euclidean metric on V . Consider the operator

L : Valsm∗ −→ Valsm∗+1

given by Lφ := φ · V1, where V1 is the first intrinsic volume introduced in Section
1.1.3. Consider also another operator

Λ: Valsm∗ −→ Valsm∗−1,

defined by (Λφ)(K) = d
dεφ(K + ε ·D)

∣∣
ε=0

, where D is the unit ball (here we use
again McMullen’s theorem that φ(K + ε ·D) is a polynomial). Notice that up to
a normalizing constant, the operator Λ is equal to the convolution with Vn−1, as
was observed by Bernig and Fu [24] (here is a hint: use Theorem 1.1.26 and the
fact that Λ(voln) is equal to a constant times Vn−1).

Theorem 1.1.27. (i) Let 0 ≤ i < 1
2n. Then Ln−2i : Valsmi → Valsmn−i is an iso-

morphism.
(ii) Let 1

2n < i ≤ n. Then Λ2i−n : Valsmi → Valsmn−i is an isomorphism.

Several people have contributed to the proof of this theorem. First the author
proved (i) and (ii) in the even case [3, 6], using previous joint work with Bernstein
[17] and integral geometry on Grassmannians (Radon and cosine transforms). Then
Bernig and Bröcker [23] proved part (ii) in the odd case, using a very different
method: the Laplacian acting on differential forms on the sphere bundle and some
results from complex geometry (Kähler identities). Next Bernig and Fu have shown
[24] that, in the even case, the two versions of the hard Lefschetz theorem are in
fact equivalent via the Fourier transform (which was at that time defined only for
even valuations). Finally, the author extended in [15] the Fourier transform to odd
valuations and derived version (i) of the hard Lefschetz theorem in the odd case
from version (ii).

1.1.11 A Fourier-type transform on translation-invariant convex
valuations

A Fourier-type transform on translation-invariant smooth valuations is another
useful operation. First it was introduced in [3] (under the different name of dual-
ity) for even valuations and was applied there to Hermitian integral geometry in
order to construct a new basis in the space of U(n)-invariant valuations on Cn. In
the odd case it was constructed in [15]. Some recent applications and non-trivial
computations of the Fourier transform in Hermitian integral geometry are due to
Bernig and Fu [25].

In this section we will describe the general properties of the Fourier transform
and its relation to the product and convolution described above. We will present
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a construction of the Fourier transform in the even case only. The construction in
the odd case is more technical. Notice that the even case will suffice for a reader
interested mostly in applications to integral geometry of affine spaces, since by a
result of Bernig [20] any G-invariant valuation from Val must be even, provided
G is a compact subgroup of the orthogonal group acting transitively on the unit
sphere.

The main general properties of the Fourier transform are summarized in the
following theorem. Part (2) for even valuations was proved in [24], while the general
case and parts (1) and (3) were proved in [15].

Theorem 1.1.28. There exists an isomorphism of linear topological spaces

F : Valsm(V ) −→ Valsm(V ∗)⊗D(V )

which satisfies the following properties:

(1) F commutes with the natural actions of the group GL(V ) on the two spaces.
(2) F is an isomorphism of algebras when the source is equipped with the product

and the target with the convolution.
(3) A Plancherel-type inversion formula holds for F, as explained below.

In order to describe the Plancherel-type formula and present a more explicit
description of the Fourier transform, it is convenient (but not necessary) to fix a
Euclidean metric on V . This induces identifications V ∗ � V and D(V ∗) � C. With
these identifications, F : Valsm(V ) → Valsm(V ); actually it changes the degree of
homogeneity:

F : Valsmi −̃→Valsmn−i .

The Plancherel-type formula says, under these identifications, that (F2φ)(K) =
φ(−K).

Here are a few simple examples: F(vol) = χ; F(χ) = vol; F(Vi) = cn,iVn−i,
where cn,i > 0 is a normalizing constant that can be computed explicitly. (Notice
that the last fact, except for the positivity of cn,i, is an immediate consequence of
the fact that F commutes with the action of O(n) and Hadwiger’s theorem.)

The Fourier transform on a 2-dimensional space has an explicit description
which we are going to give now. We will work for simplicity in R2 with the standard
Euclidean metric and standard orientation. With the identifications induced by
the metric as above, F : Valsm(R2) → Valsm(R2). It remains to describe F on 1-
homogeneous valuations. Every such smooth valuation φ can be written uniquely
in the form

φ(K) =

∫
S1

h(ω) dS1(K,ω),

where h : S1 → C is a smooth function which is orthogonal on S1 to the 2-dimen-
sional space of linear functionals. Let us decompose h into the even and odd parts:

h = h+ + h−.
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Let us decompose further the odd part h− into “holomorphic” and “anti-holomor-
phic” parts,

h− = hhol
− + hanti

− ,

as follows. Expand h− in the usual Fourier series on the circle S1:

h−(ω) =
∑
k

ĥ−(k)eikω.

By definition,

hhol
− (ω) :=

∑
k>0

ĥ−(k)eikω,

hanti
− (ω) :=

∑
k<0

ĥ−(k)eikω.

Then the Fourier transform of the valuation φ is equal to

(Fφ)(K) =

∫
S1

(h+(Jω) + hhol
− (Jω)) dS1(K,ω)−

∫
S1

hanti
− (Jω) dS1(K,ω),

where J is the counterclockwise rotation of R2 by π/2. (Notice the minus sign
in front of the second integral.) Observe that F preserves the class of real-valued
even valuations, but not that of odd real-valued valuations. This phenomenon also
holds in higher dimensions.

Let us consider even valuations in arbitrary dimension. We again fix a Eu-
clidean metric on V . A useful tool in studying even valuations is an imbedding of
Val+i (V ) into the space of continuous functions on the Grassmannian Gri(V ) of
i-dimensional subspaces of V . It was constructed by Klain [44] as an easy conse-
quence of his classification of simple even valuations (Theorem 1.1.14(i)). Define
the map

Kli : Val+i (V ) −→ C(Gri(V ))

as follows. Let φ ∈ Val+i (V ). For any E ∈ Gri(V ), the restriction of φ to E is
a valuation of maximal degree of homogeneity. Hence, by a result of Hadwiger,
it must be proportional to the Lebesgue measure volE induced by the Euclidean
metric. Thus, by definition,

φ|E = (Kli(φ)) (E) · volE .

Clearly, Kli(φ) is a continuous function and Kli is a continuous linear O(n)-equiva-
riant linear map. The non-trivial fact is that Kli is injective. For that, we observe
that if φ ∈ ker(Kli), then the restriction of φ to any (i+ 1)-dimensional subspace
is a simple, even, i-homogeneous valuation. Hence it vanishes by Klain’s theorem.
Proceeding by induction, one sees that φ = 0.
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Next it is not hard to see that smooth valuations are mapped under Kli
to infinitely smooth functions on Gri(V ). Let us define the Fourier transform
F : Val+,sm

i → Val+,sm
n−i by the following property: for any subspace E ∈ Grn−i(V ),

(Kln−i(Fφ))(E) = (Kli(φ))(E
⊥),

where as usual E⊥ denotes the orthogonal complement. This condition charac-
terizes F uniquely in the even case. The non-trivial point is the existence of F
with this property. The problem is that the Klain imbedding Kli : Val+,sm

i (V ) ↪→
C∞(Gri(V )) is not onto (for i �= 1, n−1). The main point is to show that this image
is invariant under taking the orthogonal complement. It was shown by Bernstein
and the author [17] that the image of Kli coincides with the image of the so-called
cosine transform on Grassmannians; this step used also the irreducibility theorem.
From the definition of the cosine transform (which we do not reproduce here) it is
easy to see that its image is invariant under taking the orthogonal complement.

Let us add a couple of words on the odd case. There is a version of Klain’s
imbedding for odd valuations, though it is more complicated: Val−,sm

i (V ) is re-
alized as a quotient of a subspace of functions on a manifold of partial flags
(here instead of Klain’s characterization of simple even valuations one has to use
Schneider’s version for odd valuations —Theorem 1.1.14(ii)). We call it Schneider’s
imbedding. However, there is no direct analogue of the “cosine transform” descrip-
tion of the image of it. A more delicate analysis is required; it is based (besides
the irreducibility theorem) on a more detailed study of the action of GL(n,R)
on valuations and on functions (or, rather, sections of an equivariant line bundle)
on partial flags. This requires more tools from infinite-dimensional representation
theory of the group GL(n,R). We refer for the details to [15].

Another important property of the Fourier transform is that it intertwines
the pull-back and push-forward on valuations. We will formulate this property in
a non-rigorous way to avoid various technicalities making the formal statement
heavier (see [14]). Let f : V → W be a linear map. Let f∨ : W ∗ → V ∗ be the dual
map between the dual spaces. Then the claim is that one should have

FV ◦ f∗ = (f∨)∗ ◦ FW , (1.1.4)

where f∗ is the pull-back under f , (f∨)∗ is the push-forward under f∨, and FV

and FW are the Fourier transforms on V and W , respectively. Notice that the
equality (1.1.4) is formally ill-defined if f is not an isomorphism. This is due to
the fact that F is formally defined only on the class of smooth valuations, while
f∗ and (f∨)∗ do not preserve this class. Nevertheless, in principle this equality
should be true, yet technically one should be more accurate.

Moreover, one expects that in some sense the Fourier transform should com-
mute with the exterior product:

F(φ� ψ) = Fφ� Fψ.
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The difficulty here is that the exterior product of smooth valuations is usually not
smooth.

As a last remark, let us mention that it would be desirable to have a more
direct construction of the Fourier transform. For example, we still do not know
how to describe it in terms of the construction of valuations using integration with
respect to the normal cycle discussed below in Section 1.1.12.

1.1.12 General constructions of translation-invariant convex
valuations

So far the only construction of valuations we have seen is the mixed volume. In
this section we review some other general constructions of translation-invariant
continuous convex valuations. In Section 1.1.12 we describe briefly an array of
examples coming from integral geometry —a more complete treatment will be
given in Fu’s lectures. In Section 1.1.12 we describe another very general and useful
construction via integration over the normal cycle of a set; this construction will be
generalized appropriately to the context of valuations on manifolds in Section 1.2.
There is yet another construction of valuations based on complex and quaternionic
pluripotential theory. It is somewhat more specialized and will not be discussed
here; we refer to [7, 13] and the survey [12].

Integral geometry

Let us give a few basic examples which arise naturally in (Crofton-style) integral
geometry. The classical reference to this type of integral geometry is Santaló’s book
[56]. For further discussions of this type of integral geometry and its relations to
valuation theory we refer to Fu’s lectures, the book [45], and the articles [3, 19,
20, 21, 25, 33] (these recent results are surveyed by Bernig [22]).

Let V = Rn be the standard Euclidean space. Let Grk,n denote the Grass-
mannian of all linear k-dimensional subspaces of V , and let Grk,n denote the
Grassmannian of affine k-dimensional subspaces. It is not hard to check that the
following expressions are continuous valuations invariant with respect to all isome-
tries of Rn:

φ(K) =

∫
E∈Grk,n

Vi(prE(K)) dE, (1.1.5)

ψ(K) =

∫
E∈Grk,n

Vi(K ∩ E) dE, (1.1.6)

where dE denotes in both formulas a Haar measure on the corresponding Grass-
mannian, and prE : Rn → E denotes the orthogonal projection. These expressions
have been studied quite extensively in the classical integral geometry; they can
be computed as integrals of certain expressions of the principal curvatures of the
boundary ∂K, at least under appropriate smoothness assumptions on ∂K; see,
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e.g., [45, 56]. Notice that Hadwiger’s theorem implies that these valuations can be
written as linear combinations of intrinsic volumes V0, V1, . . . , Vn, with coefficients
that can be computed explicitly.

Let us present analogous expressions from the Hermitian integral geometry
of Cn. Despite the obvious similarity to the Euclidean case, these expressions
have been studied in depth only quite recently [3, 25, 33]. Let CGrk,n denote the
Grassmannian of complex linear k-dimensional subspaces of Cn, and CGrk,n the
Grassmannian of complex affine k-dimensional subspaces. Let us define, in analogy
with (1.1.5)–(1.1.6),

φ(K) =

∫
E∈CGrk,n

Vi(prE(K)) dE, (1.1.7)

ψ(K) =

∫
E∈CGrk,n

Vi(K ∩ E) dE, (1.1.8)

where dE again denotes a Haar measure on the appropriate complex Grassman-
nian. It was shown in [3] that from valuations of the form (1.1.7) (or alternatively,
(1.1.8)) one can choose a basis of unitarily invariant valuations in Val(Cn). More-
over, in the same paper it was shown that the Fourier transform of a valuation of
the form (1.1.7) has the form (1.1.8) with appropriately chosen i and k, and vice
versa. Some different bases in unitarily invariant valuations have been constructed
by Bernig and Fu in [25], where they also computed several integral geometric
formulas in Cn, in particular the principal kinematic formula.

Normal cycle

In this section we recall the notion of the normal cycle of a convex set and use it to
construct translation-invariant smooth valuations on convex sets. In fact, we will
see that all such valuations can be obtained using this construction. One of the
important aspects of this construction is that it generalizes to a broader context
of valuations on manifolds to be discussed in Section 1.2.

In this section we will fix again a Euclidean metric and an orientation on a
vector space V with dimV = n, for the convenience of a geometrically oriented
reader. However, this metric is not necessary, and in Section 1.2.1 we describe an
extension of the construction of a normal cycle to any smooth manifold without any
additional structure (not for convex sets of course, but for compact submanifolds
with corners).

Let K ∈ K(V ) be a convex compact subset of V . For any point x ∈ K let
us define the normal cone of K at x as a subset of the unit sphere Sn−1 (see, e.g,
[58, p. 70]):

N(K,x) :=
{
u ∈ Sn−1 | (u, y − x) ≤ 0 for any y ∈ K

}
.

It is clear that N(K,x) is non-empty if and only if x belongs to the boundary
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of K. Now define the normal cycle of K by

N(K) :=
⋃
x∈K

{
(x, u) | u ∈ N(K,x)

}
.

It is not hard to see that N(K) is a closed subset of V × Sn−1. Moreover, it is lo-
cally bi-Lipschitz equivalent1 to Rn−1, and hence integration of smooth differential
(n− 1)-forms on V × Sn−1 over N(K) defines a continuous linear functional on
such forms (more precisely, N(K) can be considered as an integral (n−1)-current).
A proof of the following result can be found in [18]; it is based on some geometric
measure theory and previous work of Fu [28, 29, 30, 32] and other people [62, 63]
on normal cycles (the references can be found in [18]).

Proposition 1.1.29. Let ω be an infinitely smooth (n−1)-form on V ×Sn−1. Then
the functional

K 
−→
∫
N(K)

ω

is a continuous valuation on K(V ). If moreover ω is invariant with respect to trans-
lations in V , then the above expression is a smooth translation-invariant valuation
in the sense of Definition 1.1.17.

Let us denote by Ωn−1
tr (V ×Sn−1) the space of infinitely smooth (n−1)-forms

on V × Sn−1 which are invariant with respect to translations on V .

Proposition 1.1.30 ([8, Theorem 5.2.1]). The linear map C⊕ Ωn−1
tr (V × Sn−1) →

Valsm(V ) given by

(a, ω) 
−→ a · vol(K) +

∫
N(K)

ω

is continuous and onto.

The proof of this theorem is based on the observation that the map in the
proposition can be rewritten in metric-free terms so that it will commute with
the action of the full linear group GL(V ). The irreducibility theorem implies that
the image of this map is dense in Valsm(V ). The fact that the image is closed
follows from a rather general representation-theoretical result due to Casselman
and Wallach, which says that any morphism between two GL(V )-representations
in Fréchet spaces satisfying appropriate technical conditions has a closed image
(see [8, Theorem 1.1.5] for a precise statement and references).

The kernel of this map was described by Bernig and Bröcker [23] by a system
of differential and integral equations. Bernig has applied very successfully this
description in classification problems of translation-invariant valuations invariant
under various groups acting transitively on spheres [19, 20, 21].

1This fact was communicated to me by Joe Fu. Unfortunately, I have no reference to it.
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1.1.13 Valuations invariant under a group

Let G be a compact subgroup of the group of orthogonal transformations of a
Euclidean n-dimensional space V . We denote by ValG the subspace of Val(V )
of G-invariant valuations. When G = SO(n), the space ValG was described by
Hadwiger (see Section 1.1.3). There are examples of other groups, such as the
unitary group U(n/2), of particular interest to integral geometry. In fact, whenever
the space ValG turns out to be finite-dimensional, we may hope to classify it
explicitly in geometric terms and then apply this classification to integral geometry,
for example to obtain generalizations of Crofton and principal kinematic formulas.
The first general result in this direction is as follows.

Proposition 1.1.31 ([1]). Let G be a compact subgroup of the orthogonal group.
The space ValG is finite-dimensional if and only if G acts transitively on the unit
sphere.

Recall also that, by Proposition 1.1.18, if G acts transitively on the sphere,
then ValG ⊂ Valsm. This equips ValG with the product. Evidently, we have also
McMullen’s decomposition

ValG =

n⊕
i=0

ValGi .

Thus ValG becomes a finite-dimensional commutative associative graded algebra
with unit. It satisfies Poincaré duality and two versions of the hard Lefschetz
theorem as in Section 1.1.10. Moreover, it was shown by Bernig [20] that for such
G all G-invariant valuations are even. Next, ValG1 = C · V1 and ValGn−1 = C · Vn−1

by [4].

In topology there is an explicit classification of compact connected Lie groups
acting transitively and effectively on spheres due to A. Borel and Montgomery and
Samelson. There are 6 infinite lists

SO(n), U(n), SU(n), Sp(n), Sp(n) · Sp(1), Sp(n) · U(1),

and three exceptional groups

Spin(7), Spin(9), and G2.

Valuations in the case of SO(n) were completely studied by Hadwiger [39]. The
next interesting case is the unitary group U(n). This case turned out to be more
complicated than SO(n) and in recent years there was considerable progress in
it. There is a complete geometric classification [3], the description of the algebra
structure [33], and the principal kinematic formula [25]. This is discussed in detail
in Fu’s lectures. For most of the other groups, new strong results with applications
to integral geometry were obtained recently by Bernig in a series of articles. We
refer to his survey [22] reporting on the progress.
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1.2 Valuations on manifolds

The notion of valuation on smooth manifolds was introduced by the author in [9].
The goal of this section is to describe this notion, its properties, and some ap-
plications to integral geometry established in [8, 9, 10, 14, 16, 18]. In particular,
we extend the product construction to the setting of valuations on manifolds and
explain its intuitive meaning. This intuitive interpretation is based on another
useful notion of generalized valuation, which establishes an explicit link between
valuation theory and a better studied notion of constructible functions. The use-
fulness of this comparison will be illustrated with several other examples. Next
we introduce operations of pull-back and push-forward under smooth maps of
manifolds in a number of important special cases, generalizing familiar operations
on smooth functions, measures, and constructible functions. All these structures
are eventually used to define a general Radon-type transform on valuations which
generalizes the classical Radon transforms on smooth and constructible functions.

1.2.1 Definition of smooth valuations on manifolds and basic
examples

The original approach [9] to define smooth valuations on smooth manifolds was
rather technical. In these notes we will follow a different, more direct and actually
equivalent approach, which however might look less natural and less motivated.

Let X be a smooth manifold2 of dimension n. We describe a certain class of
finitely additive measures on nice subsets of X (to be more precise, on compact
submanifolds with corners). In our current approach this class is defined by the
explicit construction of integration of a differential form with respect to the normal
cycle. While in the original approach [8] this description was a theorem rather than
a definition, it seems to be faster not to repeat all the intermediate steps leading
to it. A reader may take Proposition 1.1.30 above as a possible justification for
the current approach.

A submanifold with corners of X is a closed subset P ⊂ X which is locally
diffeomorphic to Ri

≥0×Rj (then necessarily 0 ≤ i+j ≤ n). We denote by P(X) the
family of all compact submanifolds with corners. Basic examples from P(X) are
compact smooth submanifolds, possibly with boundary. When X = Rn, simplices,
or more generally, simple polytopes of any dimension belong to P(X); however,
non-simplicial polytopes (such as the octahedron in R3) do not.

We are going to define the normal cycle of P ∈ P(X). Let T ∗X denote
the cotangent bundle of X. Let PX denote the oriented projectivization of T ∗X,
namely PX := (T ∗X\0)/R>0, where 0 is the zero-section of T ∗X, and R>0 is the
multiplicative group of positive real numbers acting on T ∗X by multiplication on
the cotangent vectors. We call PX the cosphere bundle since if one fixes a Riemann-

2All manifolds are assumed to be countable at infinity, i.e., presentable as a union of countably
many compact subsets.
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ian metric on X, then it induces an identification of PX with the unit (co)tangent
bundle.

Let P ∈ P(X), and let x ∈ P be a point. The tangent cone to P at x is
the subset of the tangent space TxX consisting of all ξ such that there exists a
C1-smooth curve γ : [0, 1] → P such that γ(0) = x and γ′(0) = ξ. It it not hard
to see that TxP ⊂ TxX is a closed convex polyhedral cone. Let (TxP )o denote the
dual cone, namely

(TxP )o :=
{
η ∈ T ∗

xX | 〈η, ξ〉 ≤ 0 for any ξ ∈ TxP
}
.

This is a closed convex cone in T ∗X. Now define the normal cycle of P by

N(P ) :=
⋃
x∈P

((
(TxP )o\{0})/R>0

)
.

It is well known (and easy to see) that N(P ) is a compact (n − 1)-dimensional
submanifold of PX with singularities (warning: it is not a manifold with corners in
general; it is smooth outside of a subset of codimension one). Also it is Legendrian
with respect to the canonical contact structure on PX , though this fact will not
be used explicitly in these lectures.

Remark 1.2.1. If X = Rn and P ∈ P(Rn) is convex, then this definition of
the normal cycle coincides with the definition of the normal cycle from Section
1.1.12. Actually, the normal cycle can be defined for other classes of sets: sets
of positive reach (which includes convex compact sets in the case X = Rn), and
subanalytic sets when X is a real analytic manifold (see Fu [32], which is based on
[28, 29, 30, 31] and develops further [27, 62, 63]). An essentially equivalent notion
of characteristic cycle was developed in [42] for subanalytic sets using a different
approach.

Below in this exposition we will assume for simplicity of exposition that X
is oriented; this assumption can be easily removed. The orientation of X induces
an orientation of the normal cycle of every subset.

Definition 1.2.2. A map φ : P(X) → C is called a smooth valuation if there exist
a measure μ on X and an (n−1)-form ω on PX , both infinitely smooth, such that

φ(P ) = μ(P ) +

∫
N(P )

ω

for any subset P ∈ P(X).

Remark 1.2.3. This definition should be compared with Proposition 1.1.30. It can
be shown that any translation-invariant convex valuation on Rn which is smooth
in the sense of Definition 1.1.17 can be naturally extended to a broader class of
sets: to compact sets of positive reach and also to relatively compact subanalytic
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subsets of Rn. This is done as follows: given a convex valuation φ ∈ Valsm(Rn), let
us represent it (non-uniquely) in the form

φ(K) = a · vol(K) +

∫
N(K)

ω,

where ω is a smooth translation-invariant form. Then φ can be extended by the
same formula to any subset from the above broader class; this extension is inde-
pendent of the choice of the form ω and the constant a (see [9, Lemma 2.4.7]).

It can be shown that every smooth valuation is a finitely additive functional
in some precise sense [9].

Let us denote by V ∞(X) the space of all smooth valuations. The space
V ∞(X) is the main object of study in what follows.

Examples 1.2.4. (1) Any smooth measure on X is a smooth valuation. Indeed,
take ω = 0 in Definition 1.2.2.

(2) The Euler characteristic χ is also a smooth valuation. This fact is less obvious.
In the current approach, it is a reformulation of a version of the Gauss–Bonnet
formula due to Chern [26], who has constructed μ and ω to represent the
Euler characteristic; his construction depends on the choice of a Riemannian
metric on X.

(3) The next example is very typical for integral geometry. Let X = CPn be the
complex projective space. Let CGr denote the Grassmannian of all complex
projective subspaces of CPn of a fixed complex dimension k. It is well known
that CGr has a unique probability measure dE invariant under the group
U(n+ 1). Consider the functional

φ(P ) =

∫
E∈CGr

χ(P ∩ E) dE.

Then φ ∈ V ∞(CPn) —this follows, e.g., from Fu [31].

V ∞(X) is naturally a Fréchet space. Indeed, it is a quotient space of the
direct sum of Fréchet spaces M∞(X) ⊕ Ωn−1(PX) by a closed subspace, where
M∞(X) denotes the space of infinitely smooth measures. The subspace of pairs
(μ, ω) representing the zero valuation was described by Bernig and Bröcker [23] in
terms of a system of differential and integral equations.

One can show [9] that smooth valuations form a sheaf. This means that

(1) we have the natural restriction map V ∞(U) → V ∞(V ) for any open subsets
V ⊂ U ⊂ X;

(2) given an open covering {Uα} of an open subset U , and φ ∈ V ∞(U) such that
the restriction φ|Uα of φ to all Uα vanishes, one has φ = 0;

(3) given an open covering {Uα} of an open subset U and φα ∈ V ∞(Uα) for any
α such that φα|Uα∩Uβ

= φβ |Uα∩Uβ
for all α, β, there exists (uniquely by (2))

φ ∈ V ∞(U) such that φ|Uα = φα.
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1.2.2 Canonical filtration on smooth valuations

The space of smooth valuations carries a canonical filtration by closed subspaces.
In this section we summarize its main properties without giving a precise definition,
for which we refer to [9]. The important property of this filtration is that it partly
allows to reduce the study of valuations on manifolds to the more familiar case
of translation-invariant convex valuations. A more explicit geometric property of
this filtration is given at the end of Section 1.2.5.

Let us denote by Val(TX) the (infinite-dimensional) vector bundle over X
such that its fiber over a point x ∈ X is equal to the space Val∞(TxX) of smooth
translation-invariant convex valuations on TxX. By McMullen’s theorem, it has a
grading by the degree of homogeneity: Val∞(TX) =

⊕n
i=0 Val

∞
i (TX).

Theorem 1.2.5. There exists a canonical filtration of V ∞(X) by closed subspaces

V ∞(X) = W0 ⊃ W1 ⊃ · · · ⊃ Wn, n = dimX,

such that the associated graded space
⊕n

i=0 Wi/Wi+1 is canonically isomorphic to
the space of smooth sections C∞(X,Val∞i (TX)).

Remarks 1.2.6. (1) For i = n, the above isomorphism means that Wn coincides
with the space of smooth measures on X.

(2) For i = 0, the above isomorphism means that W0/W1 is canonically isomor-
phic to the space of smooth functions C∞(X). The epimorphism V ∞(X) →
C∞(X) with kernel W1 is just the point evaluation map

φ 
−→ [x 
−→ φ({x})].

Thus W1 consists precisely of valuations vanishing on all points.
(3) Actually U 
→ Wi(U) defines a subsheaf Wi of the sheaf of valuations.

1.2.3 Integration functional

Let V ∞
c (X) denote the subspace of V ∞(X) of compactly supported valuations.

(The definition is obvious: a valuation φ is said to have compact support if there
exists a compact subset A ⊂ X such that the restriction φ|X\A is zero.) Clearly
if X is compact then V ∞

c (X) = V ∞(X). The space V ∞
c (X) carries a natural

locally convex topology such that the natural imbedding to V ∞(X) is continuous
(however in general this is not a Fréchet space, but rather a strict inductive limit
of Fréchet spaces; see [10, Section 5.1]).

The integration functional∫
X

: V ∞
c (X) −→ C

is defined by
∫
X
φ := φ(X).
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Formally speaking, φ(X) is not defined when X is not compact. The formal
way to define it is to choose first a large compact domain A containing the support
of φ and set

∫
X
φ := φ(A). Then one can show that this definition is independent

of the large subset A. Moreover,
∫
X

is a continuous linear functional.

1.2.4 Product operation on smooth valuations on manifolds and
Poincaré duality

The product on smooth translation-invariant convex valuations, which was dis-
cussed in Section 1.1.7, can be extended to the case of smooth valuations on
manifolds. We will describe below its main properties, and in Section 1.2.7 we will
explain its intuitive meaning. However we present no construction of it in these
notes.

For the moment there are two different constructions of the product, both
rather technical. The first one was done in several steps. Initially, the product was
constructed by the author [8] on Rn (earlier the same construction was carried out
in an even more specific situation [4] of convex valuations that are polynomial with
respect to translations). Then this construction was extended by Fu and the author
[18] to any smooth manifold: it was shown that the product can be defined locally
choosing of a diffeomorphism of X with Rn and applying the above construction,
and the main technical point was to show that the product is independent of the
choice of this local diffeomorphism.

The second and rather different construction of the product was given re-
cently by Bernig and the author [16]. This construction describes the product of
valuations directly in terms of the forms μ and ω defining the valuations; it uses
the Rumin operator and some other standard operations on differential forms.
Compared to the first construction, the second one has the advantage of being
independent of extra structures on X (such as a coordinate system) and also some
other technical advantages. However, it is less intuitive than the first one. We
summarize basic properties of the product as follows.

Theorem 1.2.7. There exists a canonical product V ∞(X) × V ∞(X) → V ∞(X)
such that

(1) it is continuous;
(2) it is commutative and associative;
(3) the filtration W• is compatible with it:

Wi ·Wj ⊂ Wi+j ,

where we set Wk = 0 for k > n = dimX;
(4) the Euler characteristic χ is the unit in the algebra V ∞(X);
(5) it commutes with restrictions to open and closed submanifolds.

Thus V ∞(X) is a commutative associative filtered unital algebra over C.
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Let us also add that the point evaluation map V ∞(X) → C∞(X) defined in
Remark 1.2.6(2) is an epimorphism of algebras when C∞(X) is equipped with the
usual pointwise product.

An important property of the product is a version of Poincaré duality. Con-
sider the bilinear map

V ∞(X)× V ∞
c (X) −→ C

defined by (φ, ψ) 
→ ∫
X
φ · ψ.

Theorem 1.2.8. This bilinear form is a perfect pairing. In other words, the induced
map

V ∞(X) −→ (V ∞
c (X))∗

is injective and has a dense image with respect to the weak topology.

1.2.5 Generalized valuations and constructible functions

Definition 1.2.9. The space of generalized valuations is defined as

V −∞(X) := (V ∞
c (X))∗,

equipped with the weak topology. Elements of this space are called generalized
valuations.

By Theorem 1.2.8 we have the canonical imbedding with dense image

V ∞(X) ↪→ V −∞(X).

Informally speaking, at least when X is compact, the space of valuations is es-
sentially self-dual (up to completion). This imbedding also means that V −∞(X)
is a completion of V ∞(X) in the weak topology. Every smooth valuation can be
considered as a generalized one.

The advantage of working with generalized valuations is that they contain
the constructible functions (described below) as a dense subspace. This gives a
completely different point of view on valuations which is often useful, especially
on a heuristic level. Constructible functions have been studied quite extensively
by methods of algebraic topology (sheaf theory; see the book [42, Ch. 9]). We will
illustrate this below while discussing again the product on valuations, a Radon-
type transform, and the Euler–Verdier involution.

Let us define the space of constructible functions on X. In the literature
there are various, slightly different definitions of this notion, but the differences
are technical rather than conceptual. For simplicity of exposition, we will assume
in these notes, while talking about constructible functions, thatX is a real analytic
manifold.

Definition 1.2.10. A function f : X → C on a real analytic manifold X is called
constructible if it takes finitely many values and for any a ∈ C the level set f−1(a)
is subanalytic.
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For the definition of a subanalytic set, see [10, Section 1.2], or for more
details [42, §8.2]. Constructible functions with compact support form a linear space
which will be denoted by F(X). Moreover, F(X) is an algebra with pointwise
product.

An important property of constructible functions is that they also admit a
normal cycle such that if P ∈ P(X) is subanalytic, then the normal cycle of the
indicator function 1lP is equal to the normal cycle of P (see [32] and [42, Ch. 9]).
Using this notion we define the map

Ξ: F(X) −→ V −∞(X)

as follows. Let φ ∈ V ∞
c (X) be given by φ(P ) = μ(P ) +

∫
N(P )

ω, with smooth μ

and ω. Then, for any f ∈ F(X),

〈Ξ(f), φ〉 =
∫
X

f · dμ+

∫
N(f)

ω.

The map Ξ is well defined, i.e., it is independent of the particular choice of μ and
ω representing φ. Moreover, Ξ is linear injective with dense image [10, Section 8.1].

To summarize, we have a large space of generalized valuations with two
completely different dense subspaces,

V ∞(X) ⊂ V −∞(X) ⊃ F(X). (1.2.1)

Notice that, when X is compact, the image of the constant function 1 ∈ F(X) in
V −∞(X) coincides with the image of the Euler characteristic χ ∈ V ∞(X). The
two subspaces V ∞(X) and F(X) are very different: thus, for connected X, their
intersection is spanned by χ.

While working with valuations it is useful to keep in mind the imbeddings
(1.2.1). The role of constructible functions in the theory of valuations is some-
what analogous to the role of delta-functions in the classical theory of generalized
functions (distributions). It is often instructive to compare various structures on
valuations with their analogues on constructible functions. We will see several
examples of this below. Here we will show how this works for the integration
functional and the filtration W•.

It was shown in [10] that the integration functional
∫
X
: V ∞

c → C extends
uniquely by continuity in the weak topology to generalized valuations with com-
pact support, ∫

X

: V −∞
c (X) −→ C.

Let us restrict this functional to the subspace Fc(X) of constructible functions with
compact support. It turns out that this restriction coincides with the integration
with respect to the Euler characteristic; this operation is uniquely characterized
by the property that, for any compact subanalytic subset P ⊂ X,∫

X

1lP = χ(P ).
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Let us consider now the filtration W• on V ∞(X). Let W ′
i denote the closure

of Wi in V −∞(X) with respect to the weak topology. By [10] the restriction of W ′
i

back to V ∞(X) coincides with Wi, i.e., W
′
i ∩ V ∞(X) = Wi. Consider the induced

filtration on constructible functions, namely

F(X) = F(X) ∩W ′
0 ⊃ F(X) ∩W ′

1 ⊃ · · · ⊃ F(X) ∩W ′
n.

It was shown in [10] that F(X) ∩ W ′
i consists of constructible functions whose

support has codimension at most i. In particular, F(X)∩W ′
n consists of functions

with discrete support.

1.2.6 Euler–Verdier involution

Let us give another example of an application of the comparison with constructible
functions. The space of constructible functions has a canonical linear involution,
called the Verdier involution (see, e.g., [42]). In the special case of functions on Rn

which are constructible in a narrower (polyhedral) sense, this involution has been
known to convexity experts under the name of Euler involution. We will see that it
extends naturally to valuations, and this extension will be called the Euler–Verdier
involution.

Here we will choose a sign normalization different from the standard one.
Let us describe the Verdier involution σ (with a different sign convention) in the
special case when a constructible function has the form 1lP , where P is a compact
subanalytic submanifold with corners (the general case is not very far from this
one using the linearity property of it). Then

σ(1lP ) = (−1)n−dimP 1lintP ,

where intP denotes the relative interior of P . One has σ2 = id.

Theorem 1.2.11 ([10]). (1) The involution σ extends (uniquely) by continuity to
V −∞(X) in the weak topology. This extension is also denoted by σ.

(2) σ preserves the class of smooth valuations and σ : V ∞(X) → V ∞(X) is a
continuous linear operator (in the Fréchet topology).

(3) σ2 = id.
(4) σ : V ∞(X) → V ∞(X) is an algebra automorphism.
(5) σ preserves the filtration W•, namely σ(Wi) = Wi.
(6) For any smooth homogeneous translation-invariant valuation φ on Rn one

has

(σφ)(K) = (−1)deg φφ(−K),

where deg φ denotes the degree of homogeneity of φ.
(7) σ commutes with restrictions to open subsets (both for smooth and generalized

valuations).
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Remark 1.2.12. Although the involution σ was defined above only on a real an-
alytic manifold X, it can be defined on any smooth manifold as a continuous
linear operator σ : V −∞(X) → V −∞(X). Then it satisfies the properties (2)–(7)
of Theorem 1.2.11.

1.2.7 Partial product operation on generalized valuations

In this section we discuss the promised intuitive meaning of the product on valua-
tions. This interpretation was conjectured by the author [11] and proved rigorously
by Bernig and the author [16]. It provides yet another example of the relevance of
constructible functions to valuations.

Recall again that we have the imbedding of smooth valuations into the gen-
eralized ones

V ∞(X) ⊂ V −∞(X).

One could try to extend the product on smooth valuations to V −∞(X), say by
continuity. Unfortunately, this is not possible. The situation here is much analogous
to what is known in the classical theory of generalized functions (see, e.g., [41]).
There the space of smooth functions C∞(X) is naturally imbedded into the larger
space of generalized functions C−∞(X), which is the completion of the former in
the weak topology. The space C∞(X) has its usual pointwise product. However,
this product does not extend to C−∞(X) by continuity: for example, no rigorous
way is known to take the square of the delta-function on X = R. Nevertheless it
is still possible to define a partial product on C−∞(X). This roughly means that
one can define a product of two generalized functions whose “singularities” are
disjoint. The precise technical condition is formulated in the language of the wave
front sets of generalized functions in the sense of Hörmander and Sato; we will
not reproduce it here, but rather refer to [41]. This partial product is natural and
enjoys some continuity properties [37, Ch. VI §3].

In the case of valuations we have the following result.

Theorem 1.2.13 ([16]). There exists a partial product on V −∞(X) extending the
product on V ∞(X). It is commutative and associative.

We refer to [16] for the precise technical formulation when the partial product
of two generalized valuations is defined. We notice only that the condition is also
formulated in the language of wave front sets.

Now we can try to restrict the partial product on generalized valuations to
constructible functions and see what we get. The answer is very natural: we just
get their pointwise product (under certain technical assumptions on the functions
guaranteeing that their product in V −∞(X) is well defined). More precisely, we
have the following result.

Theorem 1.2.14 ([16]). Let P , Q ⊂ X be compact submanifolds with corners which
intersect transversally. Then the product of 1lP and 1lQ in the sense of generalized
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valuations is well defined and is equal to 1lP∩Q (notice that, under the transversality
assumption, P ∩Q is also a compact submanifold with corners).

We did not give a formal definition of transversality of two submanifolds with
corners. In the special case of submanifolds without corners, the definition is the
usual one. In the general case, the precise definition is given in [16]. Notice only
that any two compact submanifolds with corners can be made transversal to each
other by applying to one of them a generic diffeomorphism which is arbitrarily
close (in the C∞-topology) to the identity map.

1.2.8 A heuristic remark

In this section we will make a general heuristic remark on valuations. In the next
Section 1.2.9 we will show how it can be informally used in applications to integral
geometry.

Let ψ be a generalized valuation on a (say, real analytic) manifold X. Can
we consider it as a finitely additive measure on X? The answer is “essentially” yes.
This measure is partially defined: its value on a compact submanifold with corners
or compact real analytic subset P , which is “in generic position” to ψ, is equal
to

∫
X
ψ · 1lP . Notice that, once the product is defined, the integral is defined too.

When the valuation ψ is smooth, this integral has a very clear meaning, namely
one has ∫

X

ψ · 1lP = ψ(P ). (1.2.2)

Let us prove the last identity. First, by the definition of 1lP , ψ(P ) = 〈1lP , ψ〉.
But for any generalized valuation Φ with compact support one has

〈Φ, ψ〉 =
∫
X

Φ · ψ. (1.2.3)

To show this, let us observe that for fixed ψ both sides are continuous in Φ in the
weak topology; hence, it suffices to show (1.2.3) for smooth Φ. But in this case
this equality is just the definition of the imbedding V ∞(X) ↪→ V −∞(X).

Let us specialize the above discussion to the case ψ = 1lA. Then we get a
finitely additive partially defined measure P 
→ χ(A∩P ), where P should be in a
generic position with respect to A. Indeed,

P 
−→
∫
X

1lA · 1lP =

∫
X

1lA∩P = χ(A ∩ P ).

1.2.9 A few examples of computation of the product in integral
geometry

In this section we give examples of computation of the product of valuations in
the complex projective space CPn. These examples are very typical in integral
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geometry. We will use the heuristic discussion of the previous Section 1.2.8 since
hopefully it will clarify the intuition behind the product in applications.

Let now X = CPn with the Fubini–Study metric. Let us denote by CGl the
Grassmannian of l-dimensional complex projective subspaces of CPn. Clearly it
is equal to the Grassmannian of (l + 1)-dimensional complex linear subspaces in
Cn+1. Let us consider the smooth U(n+ 1)-invariant valuations

φl(K) :=

∫
CGl

χ(K ∩ E) dE, (1.2.4)

where dE is the Haar measure on CG normalized in some way (we do not care
about normalization constants). We claim that

φl · φm =

{
c · φl+m−n, l +m ≥ n,

0, l +m < n,
(1.2.5)

where c �= 0 is a normalizing constant depending on normalizations of Haar mea-
sures and l,m, n.

Let us give a heuristic proof of this equality. Using the discussion from the
previous Section 1.2.8, we observe that

φl(K) =

(∫
CGl

1lE dE

)
(K),

where 1lE is considered as a generalized valuation. Hence

φl · φm =

∫
(E,F )∈CGl×CGm

1lE · 1lF dE dF =

∫
CGl×CGm

1lE∩F dE dF,

where the last equality is due to Theorem 1.2.14. Since for generic projective
subspaces E and F their intersection E ∩ F is a projective subspace of dimension
l +m− n for l +m ≥ n and empty otherwise, it follows that∫

CGl×CGm

1lE∩F dE dF = c

∫
CGl+m−n

1lM dM = c · φl+m−n.

Thus the equality (1.2.5) is proved.
Let us consider another important example of the product on CPn. We claim

that the U(n+ 1)-invariant valuation

K 
−→
∫

CGl

Vi(K ∩ E) dE (1.2.6)

is equal to φl ·Vi, where φl is defined by (1.2.4). First observe that, by (1.2.2), one
has

Vi(K ∩ E) =

∫
1lK∩E · Vi,
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where 1lK∩E is considered as a generalized valuation and
∫

in the last expression
is the integration functional (i.e., evaluation on the whole space CPn). Now we use
again Theorem 1.2.14 to write (under transversality assumptions) 1lK∩E = 1lK ·1lE .
Thus ∫

1lK∩E · Vi =

∫
1lK · 1lE · Vi = (1lE · Vi)(K),

where the last equality follows from the heuristic discussion of Section 1.2.8. Thus
the valuation (1.2.6) is equal to∫

CGl

1lE · Vi dE =

(∫
CGl

1lE dE

)
· Vi = φl · Vi,

as claimed.
Finally let us compute a generalization of the two previous examples. We

claim that(∫
CGl

Vi( · ∩ E) dE

)
·
(∫

CGm

Vj( · ∩ F ) dF

)
= c′ ·

∫
CGl+m−n

Vi+j( · ∩M) dM,

(1.2.7)

where c′ is a constant which can be computed explicitly. By the previous two exam-
ples of this section, Example 1.1.22 from Section 1.1.7, and using the associativity
and the commutativity of the product, we see that the left-hand side of (1.2.7) is
equal to

(φl · Vi) · (φm · Vj) = (φl · φm) · (Vi · Vj) = c′ · φl+m−n · Vi+j = r.h.s. of (1.2.7).

Thus (1.2.7) is proved.

1.2.10 Functorial properties of valuations

We describe the operations of pull-back and push-forward on valuations under
smooth maps of manifolds. These operations generalize the well-known operation
of pull-back on smooth and constructible functions, the operation of push-forward
on measures, and integration with respect to the Euler characteristic along the
fibers (also called push-forward) on constructible functions. However, for the mo-
ment this is done rigorously only in several special cases of maps (say submersions
and immersions). We believe, however, that these constructions can be extended to
“generic” smooth maps as partially defined maps on valuations. The precise con-
ditions under which the maps could be defined might be rather technical. For this
reason we describe first the general picture heuristically. This picture should be
considered as conjectural. Then we formulate several rigorous results with precise
conditions under which one can define pull-back and push-forward on valuations.
These special cases turn out to be sufficient to define rigorously the Radon-type
transform on valuations (again under some conditions) in the next section. The
results of this section have been obtained by the author in [14].
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Let us start with the heuristic picture. Denote by V (X) a space of valuations
on a manifold X without specifying exactly the class of smoothness (smooth,
generalized, or something else). Vc(X) denotes the subspace of V (X) of compactly
supported valuations. Let f : X → Y be a smooth map of manifolds. There should
exist a partially defined linear map, called push-forward,

f∗ : Vc(X) ��� Vc(Y ),

such that, for any nice subset P ⊂ Y ,

(f∗φ)(P ) = φ(f−1(P )). (1.2.8)

Since (smooth) measures are contained in V (X), we can effect their push-forward
in the sense of valuations. Clearly this operation should coincide with the classical
push-forward of measures.

It immediately follows from (1.2.8) that for the composition of maps we
should have

(f ◦ g)∗ = f∗ ◦ g∗. (1.2.9)

We expect that the following interesting property of push-forward f∗ holds.
It should extend somehow to a partially defined map on generalized valuations.
Hence f∗ can be restricted to a partially defined map on constructible functions;
it should be defined on constructible functions which are “in generic position”
with respect to the map f : X → Y . We expect that when f is a proper map
(i.e., preimages of compact sets are compact), then on constructible functions f∗
coincides with integration with respect to the Euler characteristic along the fibers.

Let us recall how this operation is defined assuming that X and Y are real
analytic manifolds and f is a proper real analytic map. It is uniquely characterized
by the following property: Let P ⊂ X be a subanalytic compact subset. Then
(f∗1lP )(y) = χ(P ∩ f−1(y)) for any point y ∈ Y . One can show that f∗ maps
constructible functions to constructible ones. We refer to [42, Ch. 9] for further
details.

The push-forward should be related to the filtration on valuations in the
following way:

f∗(Wi) ⊂ Wi−dimX+dimY .

Also, f∗ should commute (up to a sign) with the Euler–Verdier involution.
Let us now discuss the pull-back operation

f∗ : V (Y ) ��� V (X),

which should be a partially defined linear map in the opposite direction. Heuris-
tically, f∗ should be the dual map to f∗ (recall from Section 1.2.4 that Vc(X) and
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V (X) are essentially dual to each other). The pull-back f∗ should be a homomor-
phism of algebras of valuations (again, the product might be partially defined).
We expect that f∗χ = χ. Also f∗ should preserve the filtration

f∗(Wi) ⊂ Wi,

and f∗ should commute with the Euler–Verdier involution. Notice that, since in
particular f∗(W1) ⊂ W1, f

∗ induces a map between the quotients

f∗ : V (Y )/W1 −→ V (X)/W1.

But by Remark 1.2.6(2), V (Y )/W1 coincides with functions on Y of an appropriate
class of smoothness. In particular, we should get a map

f∗ : C∞(Y ) −→ C−∞(X).

We expect that this is the usual pull-back on smooth functions, i.e.,

f∗(F ) = F ◦ f. (1.2.10)

Now let us restrict f∗ to constructible functions. We expect that it coincides again
with the usual pull-back on constructible functions, which is defined by the same
formula (1.2.10).

Finally, consider the restriction of f∗ to (say smooth) measures on Y . In
classical measure theory, the operation of pull-back of a measure does not exist.
Nevertheless, it is possible to define such a pull-back as a valuation, at least under
appropriate technical conditions on the map f . Let μ be a smooth measure on Y .
Then, leaving all the technicalities aside, one should have

(f∗μ)(P ) =

∫
y∈Y

χ(P ∩ f−1(y)) dμ(y).

In particular, if f : X → Y is a linear projection of vector spaces and P ⊂ X is a
convex compact subset, then (f∗μ)(P ) = μ(f(P )) is the measure of the projection
of P .

Now let us describe several rigorous results which will be used later. Let
f : X → Y be a smooth map.

Case 1: Assume that f is a closed imbedding. Then the obvious restriction
map V ∞(Y ) → V ∞(X) defines the pull-back map f∗, which is a linear continuous
operator. Dualizing it, we get the push-forward map

f∗ : V −∞(X) −→ V −∞(Y ),

which is a linear continuous operator (in the weak topology). Notice that in this
situation f∗ does not preserve the class of smooth valuations.

It was shown in [14] that in this case f∗(1lP ) = 1lf(P ) for any compact sub-
manifold with corners P ⊂ X. It was also shown that f∗ can be extended to a
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partially defined map V −∞(Y ) ��� V −∞(X) such that if Q ⊂ Y is a compact
submanifold with corners which is transversal to X, then f∗1lQ is well defined in
the sense of valuations and is equal to 1lX∩Q, i.e., the pull-back on valuations is
compatible with the pull-back on constructible functions.

Case 2: Assume that f is a proper submersion. Let us define the push-forward
f∗ : V ∞

c (X) → V ∞
c (Y ) by (f∗φ)(P ) = φ(f−1(P )) for any compact submanifold

with corners P ⊂ Y . Notice that in this case f−1(P ) is a compact submanifold with
corners, and f∗φ is indeed a smooth valuation. The map constructed is linear and
continuous. Taking the dual map, we define the pull-back map

f∗ : V −∞(Y ) −→ V −∞(X).

It was shown in [14] that in this case for any compact submanifold with corners
P ⊂ Y one has f∗(1lP ) = 1lP ◦ f = 1lf−1(P ). It was also shown that the push-
forward f∗ extends to a partially defined map on generalized valuations. However,
its compatibility with integration with respect to the Euler characteristic along
the fibers was proved only under rather unpleasant restrictions on the class of
constructible functions.

1.2.11 Radon transform on valuations on manifolds

In this section we combine the product, pull-back, and push-forward on valua-
tions to define a Radon-type transform on them. Before we introduce this notion,
it is instructive to recall the general Radon transform on smooth functions follow-
ing Gelfand, and less classical but still known Radon transform on constructible
functions. These two completely different transforms can be considered as special
cases of the general Radon transform on valuations. In our opinion, this is the
most interesting property of the new Radon transform on valuations.

Definition 1.2.15. A double fibration is a triple of smooth manifolds X, Y , and Z
with two submersive maps

X
p←− Z

q−→ Y

such that the map p× q : Z −→ X × Y is a closed imbedding.

To define a general Radon transform on smooth functions, let us fix a double
fibration as above and an infinitely smooth measure γ on Z. Let us also assume that
q : Z → Y is proper. The Radon transform is the operator Rγ : C

∞
c (X) → M∞(Y )

(where M∞(Y ) denotes the space of smooth measures) defined by

Rγf := q∗(γ · p∗f), (1.2.11)

where p∗f = f ◦ p is the usual pull-back on smooth functions, the product is just
the usual product of a measure by a function, and q∗ is the usual push-forward
on measures. Notice that all classical Radon transforms on smooth functions have
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such a form. For example, let us take X = Rn, Y the Grassmannian of affine
k-dimensional subspaces, and Z the incidence variety, i.e.,

Z = {(x,E) ∈ X × Y | x ∈ E}.

Let γ be a Haar measure on Z invariant under the group of all isometries of Rn.
Then Rγ is the classical Radon transform, given by integration of a function on
Rn over all affine k-dimensional subspaces. There is a very extensive literature on
this subject; see, e.g., [34, 35, 40].

Let us recall the Radon transform with respect to the Euler characteristic on
constructible functions. It was studied for the real projective space and a somewhat
more restrictive class of constructible functions by Khovanskii and Pukhlikov [46];
their work has been motivated by the earlier work of Viro [61] on the Radon
transform on complex constructible functions on complex projective spaces. We
will discuss and generalize the Khovanskii–Pukhlikov result in the next section.
For subanalytic constructible functions and other spaces, the Radon transform
with respect to the Euler characteristic was studied by Schapira [57]. Thus let

X
p←− Z

q−→ Y

be a double fibration of real analytic spaces with real analytic maps p and q. We
assume again that q is proper. Let us denote by F(X) the space of constructible
functions, as defined in Section 1.2.5. Then one defines the Radon transform
R : F(X) → F(Y ) by

Rf := q∗p∗(f), (1.2.12)

where p∗ denotes the usual pull-back on (constructible) functions, and q∗ is inte-
gration with respect to the Euler characteristic along the fibers of q.

With these preliminaries, let us introduce the Radon transform on valua-
tions. We fix a double fibration as above with the map q being proper. Let us fix
a smooth valuation γ ∈ V ∞(Z). We define the Radon transform on valuations
Rγ : V

∞(X) → V −∞(Y ) by

Rγ(φ) = q∗(γ · p∗φ),

where p∗ and q∗ are the pull-back and push-forward on valuations, respectively,
and the product with γ is taken in the sense of valuations. It was shown in [14]
that Rγ is a well-defined continuous linear operator.

Let us comment on some of the technical difficulties in this construction.
Usually p∗φ is not a smooth valuation, though φ is. Thus we have to multiply the
smooth valuation γ by the non-smooth p∗φ. This is always possible in the class
of generalized valuations, but the product is not a smooth valuation. Next we
have to take the push-forward of this generalized valuation. The push-forward of a
generalized valuation under a general proper submersion is not always defined; it
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is so only under a rather technical condition of “generic position” of “singularities”
of the valuation with respect to the map q. Fortunately, this technical condition is
satisfied for valuations of the form γ ·p∗φ with smooth φ. It was also shown in [14]
that under extra assumptions on the double fibration, the image Rγ(V

∞(X)) is
contained in smooth valuations. Also under a similar extra assumption Rγ can be
extended uniquely by continuity in the weak topology to generalized valuations
V −∞(X). An example satisfying both assumptions will be considered in the next
section.

Let us discuss now the relation of the new Radon transform on valuations to
the classical Radon transforms discussed above in this section. First let us assume
that the valuation γ ∈ V ∞(Z) is in fact a smooth measure considered as a smooth
valuation. Then the Radon transform

Rγ : V
∞(X) −→ V −∞(Y )

vanishes on W1 ⊂ V ∞(X). Indeed p∗(W1) ⊂ W1 and γ · W1 = 0, since γ is a
measure. Hence Rγ factorizes (uniquely) via the quotient V ∞(X)/W1 = C∞(X).
Notice also that in this case Rγ takes values in measures, in fact in infinitely
smooth ones. Hence we get a map C∞(X) → M∞(Y ). It was shown in [14] that
this map coincides with the classical Radon transform Rγ defined by (1.2.11).

Let us consider another extremal case of Rγ with γ = χ being the Eu-
ler characteristic. In this case our discussion will be less rigorous. First assume
that Rγ extends naturally to a partially defined map on generalized valuations
V −∞(X) ��� V −∞(Y ). We expect that its restriction to the class of constructible
functions coincides with the Radon transform with respect to the Euler charac-
teristic defined previously by (1.2.12). This result was proved rigorously in [14] in
very special circumstances. It is desirable to make the result rigorous under more
general assumptions.

1.2.12 Khovanskii–Pukhlikov-type inversion formula for the Radon
transform on valuations on RPn

Let us consider the Radon-type transform on valuations in the following special
case. Let X = RPn be the real projective space, i.e., the manifold of lines in Rn+1

passing through the origin. Let Y = RPn∨ be the dual projective space, i.e., the
manifold of linear hyperplanes in Rn+1. Let Z ⊂ X × Y be the incidence variety

Z :=
{
(l, E) ∈ RPn × RPn∨ | l ⊂ E

}
.

We have the double fibration

RPn p←− Z
q−→ RPn∨,

where p and q are the obvious projections. All the manifolds and maps are real
analytic.



1.2. Valuations on manifolds 39

We consider the Radon transform

Rχ : V
∞(RPn) −→ V −∞(RPn∨)

with the kernel γ = χ being the Euler characteristic on Z. In this case

Rχ = q∗p∗.

It was shown in [14] that the image of this transformation is contained in smooth
valuations, and that Rχ : V

∞(RPn) → V ∞(RPn∨) is continuous. Moreover, this
operator extends (uniquely) to a continuous linear operator, also denoted by Rχ,
on generalized valuations equipped, as usual, with the weak topology:

Rχ : V
−∞(RPn) −→ V −∞(RPn∨).

It was shown in [14] that Rχ is invertible for odd n, and for even n its kernel
consists precisely of multiples of the Euler characteristic. In both cases there is
an explicit inversion formula (in the latter case, up to a multiple of the Euler
characteristic); it generalizes and was motivated by the Khovanskii–Pukhlikov
inversion formula for constructible functions [46]. In order to state the result, let
us consider the analogous operator in the opposite direction,

Rt
χ : V

−∞(RPn∨) −→ V −∞(RPn),

namely
Rt

χ := p∗q∗.

Theorem 1.2.16 ([14]). For any generalized valuation φ ∈ V −∞(RPn) one has

(−1)n−1Rt
χRχ(φ) = φ+

1

2

(
(−1)n−1 − 1

)(∫
RPn

φ

)
· χ. (1.2.13)

Let us say a few words about the proof of this theorem. After all the operators
involved were defined, the next technically non-trivial step was to show that the
restriction of Rχ to a rather special class of constructible functions, which is still
dense in V −∞(RPn), coincides with the Radon transform with respect to the
Euler characteristic on constructible functions; also, an analogous result holds for
Rt

χ. Then Theorem 1.2.16 follows immediately by continuity from the Khovanskii–
Pukhlikov inversion formula for constructible functions, which claims precisely the
identity (1.2.13) for such functions in place of φ.
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