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Abstract Colorectal cancer (CRC) is the one of the leading causes of cancer-related 
deaths in the world. CRC is responsible for more than 600,000 deaths annually and 
incidence rates are increasing in most of the developing countries. Epidemiological 
and laboratory investigations suggest that environmental factors such as western 
style dietary habits, tobacco-smoking, and lack of physical activities are considered 
as risks for CRC.  Molecular pathobiology of CRC implicates pro-inflammatory 
conditions to promote the tumor malignant progression, invasion, and metasta-
sis.  It is well known that patients with inflammatory bowel disease are at higher 
risk of CRC. Many evidences exist reiterating the link between Inflammation 
and CRC. Inflammation involves interaction between various immune cells, 
 inflammatory cells, chemokines, cytokines, and pro-inflammatory mediators, such 
as  cyclooxygenase (COX) and lipoxygenase (LOX) pathways, which may lead to 
signaling towards, tumor cell proliferation, growth, and invasion. Thus, this review 
will focus on mechanisms by which pro-inflammatory mediators and reactive oxy-
gen/nitrogen species play a role in promoting CRC. Based on these mechanisms, 
various preventive strategies, involving anti-inflammatory agents, such as COX 
inhibitors, COX-LOX inhibitors, iNOS inhibitors, natural supplements/agents, and 
synthetic agents, that blocks the inflammatory pathways and suppress CRC are dis-
cussed in this review. 
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Abbreviations

CRC  Colorectal cancer
CAC  Colitis-associated cancer
IBD  Inflammatory bowel disease
NSAIDs  Non-steroidal anti-inflammatory drugs
NK  Natural killer cells
DC  Dendritic cells
ACF  Aberrant crypt foci
T reg  T regulatory cells
5-ASA  5-aminosalicylic acid
MCP-1  Monocytes chemo attractant protein 1
PGE2  Prostaglandin E2

IL-8  Interleukin-8
IL-6  Interleukin-6
IL-10  Interleukin 10
TNF-α  Tumor necrosis factor- α
COX-2  Cyclooxygenase-2
PGI2  Prostaglandin I2

PGD2  Prostaglandin D2

LT  Leukotriene
HPETE  Hydroperoxyeicosatetraenoic acid
EETs  Epoxy-eicosatrienoic acids
EPA  Eicosapentaenoic acid
DHA  Decosahexaenoic acid
PUFAs  Polyunsaturated fatty acids (PUFAs)
LX  Lipoxins
RVs  Resolvins
AOM  Azoxymethane
NO  Nitric oxide
NF-κB  Nuclear factor–κB
MMP  Matrix metalloproteinase
PI3K  Phosphatidylinositol 3-kinase
mPGES  Microsomal prostaglandin E synthase
VEGF  Vascular endothelial growth factor
FLAP  Five lox activating protein
DP1  PGD2 receptor
ROS  Reactive oxygen species
RNS  Reactive nitrogen species
NO  Nitric oxide
iNOS  Inducible nitric oxide synthase
nNOS  Neuronal nitric oxide synthase
eNOS  Endothelial nitric oxide synthase
APC  Adenomatous polyposis coli
LPS  Lipopolysaccharide
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IL-1β  Interleukin-1β

AA  Arachidonic acid
NO-NSAID  NO-releasing NSAID
IL-4  Interleukin 4
COXibs  COX-2-specific inhibitors
FAP  Familial adenomatous polyposis
L-NAME  L-nitro arginine methyl ester
Se-PBIT  Selenium [S,S’-1,4-phenylenebis(1,2-ethanediyl) bis-isothiourea]
GI  Gastrointestinal
MIP  Macrophage inflammatory protein
MCP  Monocytes chemo attractant protein
ABC  ATP-binding cassette
DMH  Dimethyl hydrazine
MDFs  Mucin depleted foci
DSS  Dextran sulfate sodium
EPA-FFA  Eicosapentaenoic acid-free fatty acid
ONA  Oleanolic acid
OT  18α-olean-12-ene-3β-23,28-triol
18R-RvE1  5,12,18R-trihydroxy-EPA
LXA4  lipoxins A4

ABC  ATP-binding cassette

2.1  Colorectal Cancer: A Major Health Problem

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths 
in the United States (US). Early diagnosis, though, often can lead to a complete 
cure. Each year, worldwide more than 1.2 million cases are diagnosed with about 
600,000 deaths. CRC is the third most common cancer diagnosed in both men and 
women in the US and the fourth most common cause of cancer mortality world-
wide (Tenesa and Dunlop 2009). It is the second most common cause of cancer 
deaths in the US. Overall, the lifetime risk of developing CRC is ~6 %. As per 
American Cancer Society statistics, it is expected to cause about 50,830 deaths 
during 2013 (ACS). Most of the CRC cases are sporadic and about 25 % are 
linked to genetic disorders. The majority of CRC cases are linked to environmen-
tal factors, including diet, exercise, weight, food borne mutagens, intestinal com-
mensals, and chronic intestinal inflammation, which precedes tumor development.

2.2  Inflammatory Bowel Disease as Risk Factor 
for Colorectal Cancer

Inflammatory bowel disease (IBD) may lead to colitis-associated cancer (CAC), which 
is a usually difficult-to-treat cancer having high mortality (Feagins et al. 2009). It is 
reported that more than 20 % of IBD patients develop cancer and 50 % of these will 
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die of colon cancer (Lakatos and Lakotos 2008). These patients are reported to have 
increased inflammatory infiltration and increased expression of inflammatory genes 
(Atreya and Neurath 2008; Atreya et al. 2008; Waldner and Neurath 2008; Clevers 
2004). A higher risk for colon cancer is observed in IBD patients who have a fam-
ily history of CRC (Askling et al. 2001). This increased risk suggests an overlap of 
signaling pathways and mechanisms that drive cancer development in CAC and CRC. 
Anti-inflammatory therapy has been reported to reduce the risk or prevent CRC and 
colitis-related CRC in several observational studies. Non-steroidal anti-inflammatory 
drugs (NSAIDs) have been reported to reduce colorectal neoplasia by 40–50 % (Thun 
et al. 1991; Smalley and Dubois 1997) and also have been reported to reduce CRC 
mortality odds by 49 % in a population of US military veterans with IBD (Bansal and 
Sonnenberg 1996). A recent meta-analysis of 9 observational studies reported that use 
of 5-aminosalicylic acid (5-ASA), mesalamine reduced the odds of colitis-related CRC 
by 49 % (Velayos et al. 2006). It is noteworthy that anti-inflammatory drugs such as 
5-aminosalicylate-based compounds have remained in the mainstream for the treat-
ment of IBD patients for >50 years. The findings in the human studies confirm obser-
vations in animal models, which show that NSAIDs reduce the occurrence of intestinal 
neoplasia. More than 90 % of 110 preclinical animal studies examining the effects of 
NSAIDs on tumorigenesis reported an anti-neoplastic effect (Hawk and Levin 2005). 
The large volume of compelling data on the use of anti-inflammatory agents/NSAIDs 
to reduce the risk of CRC suggests a potential role of inflammation in CRC.

2.3  Inflammation in CRC

Inflammation is driven by the accumulation of various immune and inflamma-
tory cells and soluble inflammatory mediators, such as cytokines, chemokines, 
growth factors, lipid molecules, reactive oxygen, and nitrogen species. The inter-
action between these immune and inflammatory cells and cytokines leads to 
generation of autocrine and paracrine signals that foster tumor cell progression, 
growth, and metastases. A clear link exits between inflammation and CRC. Even 
CRC that is linked to genetic mutations shows a contribution from inflammation 
to tumor development, as shown by the decreased CRC mortality with regular use 
of NSAIDs. These data strongly support a pro-tumorigenic role of inflammation 
in colon cancer. Various factors can influence the initiation of inflammation and 
establishment of CRC.

2.4  Role of Immune and Inflammatory Cells in CRC

Pathological analysis of CRC shows infiltration with various types of cells that func-
tion in innate immunity, such as neutrophils, mast cells, natural killer (NK) cells, 
dendritic cells (DC), and tumor-associated macrophages (Atreya and Neurath 2008). 
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These cells help in anti-tumor immune responses by suppressing tumor growth 
and angiogenesis. They also help to recruit and interact with other cells involved 
in adaptive immune responses. Collectively, these responses lead to a balancing of 
immune surveillance with tumor-promoting inflammatory functions. Immune sur-
veillance helps in early detection of aberrant crypt foci (ACF) and elimination of 
aberrant cells, which may progress into adenomas and adenocarcinomas in CRC. 
However, when a chronic inflammation persists, it creates an environment that out-
competes immune surveillance mechanisms and creates a microenvironment that 
favors inhibition of anti-tumor immune responses and leads to formation of tolero-
genic DCs and infiltration of T regulatory cells (T reg), which help in establishment 
of tumor cell growth. T reg infiltration is associated with bad prognosis (Erdman 
et al. 2005; Dunn et al. 2004). Thus, it is necessary to design drugs and  standardize 
doses that will inhibit only tumor-promoting immune responses and will spare 
tumor-inhibiting responses.

2.5  Resolution of Inflammation and Pro-Inflammatory 
Mediators in CRC

Macrophages accumulate at the site of inflammation or injury and are activated 
by the cytokines interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and 
monocytes chemoattractant protein (MCP-1). Neutrophils follow for resolution 
of inflammation. Eventually, fibroblasts play a role in tissue repair by secreting 
pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), and 
prostaglandin E2 (PGE2), which will help in the neutrophil response. Epithelial 
cells and stromal cells together help in repairing/healing the wound. Resolution 
of inflammation by recruitment of neutrophils can lead to complete remission of 
inflammation and stop the aberrant proliferation, which can extend into tumor 
growth. However, if this active process of resolution of inflammation is impaired, 
the on-going tissue repair eventually may lead to chronic inflammation, which 
predisposes to cancer. Cyclooxygenase (COX) and lipoxygenase (LOX) pathways 
and persisting inflammatory cells are involved in generating pro-inflammatory 
lipid mediators and gene responses, creating a favorable microenvironment that 
eventually can lead to tumor cell growth, proliferation, and metastases.

2.6  Role of Inflammatory Bioactive Arachidonic 
Acid Lipid Metabolites in CRC

Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid (PUFA) present in 
the phospholipids of cell membranes. It acts as a precursor for production of vari-
ous eicosanoids usually generated by three enzymes: COX, LOX, and cytochrome 
p450. The metabolites formed by action of COX and LOX are prostaglandin I2 
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(PGI2), prostaglandin D2 (PGD2), PGE2 and thromboxane A4 and Leukotrienes 
(LT)-A4, C4, D4 and B4, respectively. The LOX metabolites involve hydroperox-
yeicosatetraenoic acids (HPETE) such as 5-HPETE, 12-HPETE, and 15-HPETE. 
The metabolites of P450 are epoxy-eicosatrienoic acids (EETs) resulting in four 
regioisomeric EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET). The other 
metabolites that play a role during inflammatory processes are omega-3FAs [eicos-
apentaenoic acid (EPA) and decosahexaenoic acid (DHA)] derived from PUFAs. 
The other important bioactive molecules derived from these intermediates are 
lipoxins (LX) and resolvins (RVs). Unlike some of the COX and LOX metabolites, 
these bioactive molecules display potent anti-inflammatory, immunoregulatory, 
pro-resolving and anti-tumorigenic properties.

2.6.1  Role of Inflammatory Lipid Molecules Derived  
from the COX-2 Pathway in CRC

COX-2 is the inducible COX gene that mediates prostaglandin synthesis and pro-
inflammatory functions. The expression of COX-2 is elevated in 50 % of ade-
nomas and in 85 % of adenocarcinomas. In human intestinal tumors, COX-2 is 
expressed in epithelial and stromal cells; it usually is induced by interleukin 1β 
(IL-1β) and TNF-α. Over-expression of COX-2 increased azoxymethane (AOM)-
induced tumor formation (Al-Salihi et al. 2009); and COX-2 deficiency signifi-
cantly diminished tumorigenesis in mouse models of colon cancer (Chulada et al. 
2000a, b; Oshima et al. 1996a, b), confirming a role for COX-2 in tumorigenesis. 
The pro-inflammatory and pro-tumorigenic effects of COX-2 are mediated by its 
major end product, PGE2, which stimulates tumor cell proliferation/growth, angi-
ogenesis, and survival and inhibits apoptosis in CRC (Wang and Dubois 2006; 
Castellone et al. 2006). PGE2 activates a number of oncogenic signaling pathways, 
including β-catenin/transcription factors (TCF), Ras, and the phosphatidylino-
sitol 3-kinase (PI3K) pathways. The generation of microsomal prostaglandin E 
synthase (mPGES-1)-deficient mice has revealed a dominant role of this enzyme 
in PGE2 generation relevant to promotion of inflammation (Trebino et al. 2003). 
The mPGES-1-derived-PGE2 exhibits similar inflammatory responses during 
tumor growth. mPGES-1 deficiency was linked to reduced vascular endothelial 
growth factor (VEGF). Together, these findings show that deletion or inhibition of 
mPGES-1 markedly reduces inflammatory responses in mouse models and eventu-
ally may lead to inhibition of tumor cell proliferation.

PGD2, another important metabolite of COX-2, appears to be a negative regu-
lator of tumorigenesis; it has been demonstrated to possess anti-tumor proper-
ties (Murata et al. 2008). It is produced locally by inflammatory cells at sites of 
inflammation; and its receptor (DP1) also is expressed highly in tumor endothelial 
cells. The DP1 receptor is expressed on DCs that play a key role in initiating an 
adaptive immune response to foreign antigens (Hammad et al. 2003). These stud-
ies suggest that different COX-2-derived prostaglandins have opposing effects on 
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inflammation and tumor cell proliferation and that selective modulation of these 
prostaglandins may prevent tumor growth in CRC.

2.6.2  Role of Lipid Molecules Derived from the LOX 
Pathway in Inflammation and CRC

Among the LOX pathways, 5-LOX and 12-LOX pathways are closely related to 
inflammation and carcinogenesis; however, metabolites from another LOX path-
way, 15-LOX are linked positively and shown to inhibit inflammation and carcino-
genesis. A number of reports suggest the involvement of 5-LOX in early stages of 
CRC (Qiao et al. 1995; Bortuzzo et al. 1996; Avis et al. 2001; Ding et al. 2003; 
Tong et al. 2005). Hong et al. (1999) reported high expression of 5-LOX and 
5-LOX-activating protein in cancer cell lines. High expression of 5-LOX and its 
receptors was observed in CRC patients showing poor prognosis (Ohd et al. 2003). 
Accumulation of 5-HETE and LT upon activation of 5-LOX resulted in cancer cell 
proliferation (Ding et al. 1999). COX and LOX pathways are both linked in such 
a way that disturbance in one pathway may lead to over-expression of the other 
pathway; thus, balanced inhibition of these two pathways is favorable for inhibit-
ing CRC (Byrum et al. 1997; Griffiths et al. 1997; Goulet et al. 1994). Many stud-
ies have suggested that removal of 5-LOX and 5-LOX-activating protein (FLAP) 
results in increased expression of COX metabolites (Byrum et al. 1997; Goulet et 
al. 1994). These studies provide evidence for an important role of 5-LOX in CRC 
and suggest the potential for chemoprevention and treatment for CRC. Thus, tar-
geting both COX-2 and 5-LOX pathways together and increasing production of 
LX and RVs is a better approach for prevention/treatment of CRC.

2.6.3  Role of Reactive Oxygen and Nitrogen Species 
in Inflammation and CRC

Inflammation also is associated with generation of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS). Free radicals are known to be involved in 
carcinogenesis (Goldstein and Witz 1990; Cerutti 1985). Inflammatory phago-
cytic cells make ROS. O2

.− is the initial ROS and undergoes sequential metabolic 
changes that generate other species (i.e., OH, OCl−, and H2O2). Usually, these 
reactive species lead to mutations in DNA that may be mutagenic and involved 
in the etiology of cancer (Babbs 1990). A significant increased expression in ROS 
was reported by Haklar et al. (2001) in patient colon tumors.

The literature in this area generally is consistent with the view that the enhanced 
production of ROS and bioavailability of nitric oxide (NO) that accompany an inflam-
matory response play pivotal roles in mediating formation of microvessels dur-
ing tumor growth. Activated inflammatory cells produce ROS and reactive nitrogen 
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intermediates that can induce DNA damage and mutation in adjacent epithelial cells. 
These changes can stimulate ROS production within the epithelial cells may cause 
epigenetic silencing of tumor suppressor genes (Meira et al. 2008; Westbrook et al. 
2009). The discovery of NO as a product of immune system cells has implicated this 
chemical in the mechanism of carcinogenesis (Tamir and Tannenbaus 1996). Produced 
NO can interact with O2

.− resulting in the propagation of the highly reactive species 
peroxynitrite (Oshima and Bartsch 1994). Peroxynitrite, which is formed from the 
reaction between O2

.− and NO, reacts with all classes of biomolecules and thereby is 
thought to be involved in many pathologic phenomena (Bartosz 1996). NO and perox-
ynitrite concentrations were reported to be increased in cancerous samples (Haklar et 
al. 2001). NO is produced by three isoforms of nitric oxide synthase (NOS) [neuronal 
nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), and induc-
ible NOS (iNOS)]. nNOS and eNOS are constitutive NOS isoforms, whereas iNOS is 
induced upon exposure to inflammatory stimulation. iNOS is expressed in many cells: 
extravascular resident leukocytes (macrophages), intravascular and/or infiltrating leu-
kocytes (neutrophils and monocytes), endothelium, and parenchymal cells, including 
intestinal epithelium. Its production is stimulated by lipopolysaccharide (LPS), TNF-α, 
or interleukin-1β (IL-1β). The role of NO in colon cancer is controversial. Increased 
production of NO for a limited time is considered to produce positive results in inhib-
iting CRC, whereas chronic and continuous production of NO produced by iNOS is 
implicated in neoplastic transformation, a very crucial step during carcinogenesis. 
Studies with iNOS knockout mice suggested a positive role for iNOS in inducing pol-
yps in adenomatous polyposis coli (APC) min/+ mice (Hofseth et al. 2003; Crowell 
et al. 2003; Ahn and Ohshima 2001; Nam et al. 2004). High expression of iNOS in 
CRC xenografts suggested an inhibitory role for iNOS in tumor growth (Xu et al. 
2002). In various preclinical studies in animal models, we noted that iNOS inhibitors 
show promise for inhibiting CRC (Rao et al. 1999, 2002). In summary, both increased 
expression and decreased expression of NO is observed to have beneficial effects on 
CRC. Carefully designed, detailed studies to understand the role of NO during inflam-
mation are necessary in order to understand how to modulate its effects in CRC. 
Interactions between NO and COX-2 are well documented, and combinations of iNOS 
inhibitors and COX-2 inhibitors have provided inhibition of invasive adenocarcinomas 
in animal models of colon cancer (Janakiram and Rao 2012).

2.7  Anti-inflammatory Agents in Prevention of CRC

Since it is evident that inflammation is a significant contributor to CRC, anti- 
inflammatory agents, both from synthetic and natural origin, have gained importance 
for use in prevention and treatment of CRC. As mentioned previously, NSAIDs are 
the main anti-inflammatory agents shown to possess anti-tumorigenic properties. They 
function by inhibiting AA-related pathways and by enhancing immune responses 
against tumor development. iNOS inhibitors also have gained importance as anti-
inflammatory agents in CRC and in other cancers. CRC is associated with lower con-
sumption of fruits and vegetables and greater consumptions of fatty foods  implicated 
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in  causing CRC, thus natural constituents in these and other foods may contribute to 
reduce cancer risk or prevention. Here, we discuss various synthetic and natural bio-
active compounds that can activate or deactivate signaling cascades implicated during 
tumor development and that may exhibit chemopreventive properties.

2.7.1  Synthetic Anti-Inflammatory Agents  
for Prevention of CRC

Preclinical and clinical evidences suggest the presence of high levels of prostaglan-
dins, such as PGE2 as mentioned earlier, which affect tumor cell proliferation by 
suppressing immune responses (Marnett 1992; Smith 1992). Hence, it is reasonable 
to use NSAIDs that can suppress the synthesis of these prostaglandins by inhibiting 
COX enzymes may in turn suppress tumor development and growth in colon.

Epidemiological studies, intervention trials, and animal studies have provided 
compelling data for inhibition of colorectal carcinogenesis by aspirin and other 
NSAIDs (Giovannuci 1999; Brown and Dubois 2005). The first epidemiological 
report suggested use of aspirin to decrease risk for CRC (Kune et al. 1988). Most of 
the subsequent case–control studies and prospective studies supported these results 
(Thun et al. 1991; Freedman et al. 1998; La Vecchia et al. 1977; Muscat et al. 1994; 
Peleg et al. 1994; Suh et al. 1993; Giovannucci et al. 1994; Schreinemachers and 
Everson 1994; Chan et al. 2005). The relative risks were very consistent in reducing 
the risk to 50 % in aspirin users compared with non-aspirin users. Studies on pre-
cursors of CRC such as adenomatous polyps have shown similarly decreased risks 
(Suh et al. 1993; Greenberg et al. 1993; Logan et al. 1993; Martinez et al. 1995). 
Whereas, the risk reduction of CRC is linked to the dose intake and also the dura-
tion of aspirin use which is explored in a subset of studies. Across-study compari-
sons indicate a dose—response relationship between aspirin and CRC or other cancer 
types (Harris et al. 2005). A greatest risk reduction was seen among women who 
took more than two aspirin tablets daily reported by the Nurses’ Health Study sup-
port a strong dose—response relationship with colon cancer (Chan et al. 2005). Ten 
years of consistent aspirin use seems to be having reduced risks of CRC which is evi-
denced and seems consistent (Chan et al. 2005). Further, the role of NSAIDs/aspirin 
use is substantially strengthened in secondary prevention for reduction of metachro-
nous lesions among patients with primary colorectal adenomas or CRC by two ran-
domized controlled trials. In this trial, aspirin had a modest effect on patients with 
previous adenomas in reducing the risk of developing new adenomas or cancer that 
differed by dose. In this study, a lower dose (81 mg/day) showed better response of 
19 % reduced risk of adenomas than a higher dose (325 mg/day) (Sandler et al. 2003; 
Baron et al. 2003). Aspirin use as a chemopreventive agent is strongly supported 
by these trails against colorectal carcinogenesis among individuals with a known 
increased risk as a result of previous disease.

We and others have previously shown that several COX inhibitors, such as indo-
methacin, piroxicam, aspirin, ibuprofen, and sulindac suppress colon carcinogenesis 
in AOM-induced F344 rats (Reddy et al. 1993, 1987; Metzger et al. 1984; Narisawa 
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et al. 1993; Pollard and Luckert 1984; Moorghen et al. 1988). Indomethacin was 
reported to inhibit tumor growth in chemically induced large-bowel tumors in rats 
(Kudo et al. 1980). Similar results were observed in other preclinical studies (Pollard 
and Luckert 1980, 1981; Narisawa et al. 1981). Due to GI toxicities of indometha-
cin, we developed and tested a potentially less toxic derivative, NO-indomethecin, 
in AOM-induced carcinoma models. Nitric oxide-releasing non-steroidal anti-
inflammatory drugs (NO-NSAID) are promising chemoprevention agents; unlike 
conventional NSAIDs, they seem to be free of appreciable adverse effects, while 
they retain the beneficial activities of their parent compounds. NO-indomethecin sig-
nificantly suppressed AOM-induced tumor multiplicity and incidence in F344 rats 
(Rao et al. 2006). Its activity is related to suppression of COX, iNOS, and β-catenin 
levels (Fig. 2.1).

Fig. 2.1  The figure depicts the various pathways observed which initiates inflammation and 
tumor cell proliferation. Arachidonic acid metabolism leads to formation of both pro-inflam-
matory and anti-inflammatory metabolites. 5-LOX pathway leads to formation of leukotrienes 
which are known for their pro-inflammatory and pro-tumorigenic role. Triterpenoids are reported 
to show inhibitory effects on formation of leukotrienes. COX-2 in the presence of aspirin will 
lead to formation of epilipoxins (epiLXA4), which are anti-inflammatory and anti-tumorigenic in 
functions. Naturally 5-LOX pathway leads to formation of lipoxins, which show similar func-
tions as that of epiLXA4. COX-1 and COX-2 pathway leads to the formation of eicosanoids, 
PGI2, PGF2, TXA2, PGD2, and PGE2. PGE2 has been found to play a vital role during inflamma-
tion, development of Tregs, formation of tolerogenic DCs, tumor cell proliferation, and growth. 
NSAIDs and natural agent like curcumin are reported to have inhibitory effects on the formation 
of eicosanoids. LPS, IL-1β, and TNF-α are known to be involved in formation of nitric oxide 
(NO), and IL-6 is a known inflammatory cytokine involved during tumorigenesis. NO formed can 
initiate the inflammation and tumor formation by itself or by interacting COX-2 pathway. iNOS 
inhibitors and triterpenoids are shown to inhibit NO formation, and resveratrol and diosgenin 
inhibit pro-inflammatory cytokines. The free radical formation by macrophages which can cause 
DNA damage and eventually tumor cell proliferation by down-regulating p21, p53, and BAX are 
observed. Curcumin and resveratrol are reported to restore p21, p53, and p53 and inhibit tumor 
cell proliferation
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Rigau et al. (1991) have demonstrated that colon mucosal samples from 
patients on long-term sulindac therapy have a reduced PG-biosynthetic capac-
ity. In a randomized, placebo-controlled, double-blind crossover study in patients 
with familial adenomatous polyposis (FAP), administration of sulindac at a dose 
of 300 mg/day for 6–12 months caused disappearance of all polyps (Laybayle 
et al. 1991). Most of the clinical trials with FAP patients on long-term treatment 
with sulindac reported a reduction in the number and size of adenomas (Belliveau 
and Graham 1984; Waddel et al. 1989; Laybayle et al. 1991; Spagnesi et al. 1994; 
Winde et al. 1993; Giardello et al. 1993). Dietary administration of sulindac inhib-
ited dimethyl hydrazine (DMH)-induced colon tumor incidence and multiplicity 
in mice (Moorghen et al. 1998; Skinner et al. 1991). In these experiments, sulin-
dac was administered along with DMH throughout the study; however, administra-
tion of sulindac to mice seventeen weeks after DMH administration showed no 
reduction in colon tumor growth or development. Oral administration of sulindac 
(10 mg/kg) twice daily inhibited DMH-induced primary colon tumor development 
and growth in rats. Ahnen et al. (1994) showed that dietary administration of sulin-
dac and its metabolite sulindac sulfone significantly inhibited AOM-induced colon 
carcinogenesis in F344 rats. We found that sulindac was effective at both initia-
tion and postinitiation stages of colon tumor formation in F344 rats (Rao et al. 
1995). This study suggested that its inhibitory function may be due to its modula-
tory effects on AA metabolism. In another study by Suh et al. (2011), the NSAIDs 
sulindac and naproxen, individually and in combination with atorvastatin, caused 
significant reduction in AOM-induced colon tumors in F344 rats. The NSAID-fed 
animals showed reduction in inflammatory markers iNOS and COX-2 as well as in 
phospho-p65 and in the pro-inflammatory cytokines TNF-α, IL-1β, and interleukin 
4 (IL-4). Hence, use of NSAIDs in combination with statins was suggested for 
retaining efficacy with less/no GI toxicity.

The concern over gastric toxicity associated with aspirin use led to efforts to 
develop COX-2-specific inhibitors (COXibs such as rofecoxib, celecoxib) (Gupta 
and Dubois 2001). Available literature provides strong evidence for a role of 
COX-2 in inflammation and carcinogenesis. Several studies using COX-2 knock-
out or disrupted genes in mouse models of FAP or in chemically induced colon 
carcinogenesis in rats indicated that COX-2 selective inhibitors, such as rofecoxib 
and celecoxib, inhibit formation of intestinal adenomas (Dannenberg et al. 2005; 
Rao and Reddy 2004; Oshima et al. 1996a, b, 2001; Chulada et al. 2000a, b; 
Jacoby et al. 2000; Boolbol et al. 1996; Mahmoud et al. 1998; Kawamori et al. 
1998; Reddy and Rao 2002). In a clinical trial, FAP patients treated twice daily 
with 400 or 200 mg celecoxib had 31 and 12 % reduction, respectively, in polyp 
number (Arber et al. 2006). In this clinical trial, celecoxib, at a dose of 400 mg 
daily, reduced advanced adenoma formation in the colon by almost 50 % com-
pared with the placebo through a 3-year treatment period (Arbor et al. 2006). 
Although introduction of COXibs was successful in reducing GI toxicity, these 
drugs were associated with cardiovascular toxicity due to high selectivity toward 
COX-2 (Smith et al. 2000; Silverstein et al. 2000; Laine et al. 2003; Bresalier 
et al. 2005; Nussmeier et al. 2005; Solomon et al. 2005). An initial study indicated 



36 N. B. Janakiram and C. V. Rao

possible increases in the incidence of myocardial infarction with use of COXibs 
(Bombardier et al. 2000). No randomized controlled trials specifically to address 
the issue of cardiovascular toxicity were conducted; but trials were initiated to 
test the efficacy of COXibs in the prevention of metachronous colonic polyps 
(Bresalier et al. 2005; Solomon et al. 2005) and the management of postoperative 
pain (Nussmeier et al. 2005). The above-mentioned trials suggested that patients 
using these COX-2 inhibitors were showing cardiovascular events. These observa-
tions led to temporary withdrawal of COXibs from the US market in 2004. The 
findings suggest that this cardiovascular toxicity is specific to this class of drugs; 
but aspirin and other non-specific COX-2 inhibitors still have potential for chemo-
prevention of CRC.

In February 2005, the Food and Drug Administration (FDA) Advisory 
Committee meeting recommended that COXibs remain on the market, but with 
warnings added to labels (Alberts et al. 2005). The committee agreed that since 
celecoxib is the least likely to be associated with adverse cardiovascular events, it 
is the most appropriate COXib to study for the prevention and treatment of cancer. 
Complicating the risk—benefit evaluation are individual differences in both cancer 
risk and sensitivity to toxic events. The development of very low non-toxic doses 
of COXibs or COX and LOX-inhibiting regimens in combination with other agents 
continues. Licofelone (ML3000) is the first member of a new dual  COX/5-LOX 
inhibitor class and currently is under evaluation as a treatment for osteoarthritis. 
A multicenter study explored the effects of licofelone in  comparison with nap-
roxen as a disease-modifying agent and showed beneficial effects on cartilage. 
Although phase III trials have been completed successfully, no dates for  regulatory 
 submission have been given for this drug. Its safety profile shows fewer GI events 
than NSAIDs and selective COX-2 inhibitors (Martel-Pelletier et al. 2003; Cicero 
et al. 2005; Moreau et al. 2005; Bias et al. 2004). We tested licofelone in APCMin/+ 
mice and found it to possess potential chemopreventive properties (Mohammed 
et al. 2011). The efficacy achieved with licofelone was  comparable to or more 
effective than several NSAIDs and the COX-2-selective inhibitors celecoxib and 
rofecoxib (Swamy et al. 2006; Jacoby et al. 1996; Rao and Reddy 2004; Rao et al. 
2000; Orner et al. 2003). This result suggests that a balanced  inhibition of COX 
and LOX pathways is a better approach to obtain diminished side effects with high 
efficacy. The beneficial effects of NSAIDs in chemoprevention of CRC suggest 
that  inflammatory mechanisms are playing a vital role in tumor development, with 
strongest for colorectal cancer. Future work to understand the molecular mecha-
nisms still is needed to establish the chemopreventive potential of NSAIDs for use 
as a  preventive for and treatment of CRC.

2.7.2  Role of iNOS Inhibitors in Prevention of CRC

High NOS activity and high levels of NO are observed in AOM-induced colonic 
tumors in rats (Rao et al. 1999, 2002), in Crohn’s disease (Rachmilewitz et al. 1995) 
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and in ulcerative colitis (Colon et al. 2000). Over-expression of NO was observed 
in preneoplastic colon lesions and also in human colon adenocarcinomas (Hao et al. 
2001; Yagihashi et al. 2000; Lagares-Garcia et al. 2001; Szaleczky et al. 2000). High 
iNOS levels were observed in colons of animals fed a high-fat diet, suggesting a 
role of high-fat diets in inducing inflammatory conditions and CRC in humans (Wan 
et al. 2000). Collectively, these studies support a positive role of iNOS in inducing 
CRC and use of iNOS-inhibiting agents for suppressing the iNOS activity and its 
tumorigenic effects (Fig. 2.1).

S,S-1,4-phenylene-bis(1,2-ethanediyl)bis-isothiourea, PBIT a selective iNOS 
inhibitor, caused suppression of ACF development in rats by reducing pro-
tein levels of j; and iNOS in colonic mucosa (Rao et al. 1999). Kawamori et al. 
(2000) reported similar results with L-nitro arginine methyl ester (L-NAME), an 
L-arginine inhibitor on the development of ACF induced by AOM in rats. Animals 
that received 100 ppm of L-NAME for 11 weeks showed 32 % inhibition of ACF 
multiplicity. To increase the potency of PBIT with lower concentrations, a isosteric 
analog of PBIT, selenium [S,S′-1,4-phenylenebis(1,2-ethanediyl) bis-isothiourea] 
(Se-PBIT) was developed and tested recently, in colon cancer animal model. We 
reported chemopreventive properties of Se-PBIT on ACFs induced by AOM in rats 
(Janakiram et al. 2013). We have studied extensively the role of iNOS inhibitors 
in colon carcinogenesis (Rao et al. 2002; Rao 2004). We tested iNOS-selective 
inhibitors individually and in combination with COX inhibitors and found that 
low-dose combinations of the COX-2 inhibitor celecoxib and the iNOS inhibitor 
SC-51 inhibited AOM-induced crypt formation in rats (Rao 2004). L-NAME and 
iNOS-specific inhibitors have been reported to have inhibitory effects on forma-
tion of adenomas, adenocarcinomas (Kawamori et al. 2000; Schleiffer et al. 2000), 
and adenomatous polyps (Ahn and Ohshima 2001). NO signaling cascades also 
are involved in the migration of tumor cells. More detailed studies into role of NO 
at different doses and during different stages of tumor development are necessary 
for design of better iNOS inhibitors for prevention and treatment of CRC.

2.7.3  Natural Anti-Inflammatory Agents  
for Prevention of CRC

Epidemiologic evidence supports the benefit of changes in dietary and exer-
cise patterns for CRC prevention. Among well-known dietary agents, curcumin 
has been valued for more than 5,000 years for its medicinal properties and 
for its warm, peppery flavor. Curcumin is one of the curcuminoids of turmeric. 
Curcumin is a highly pleiotropic molecule capable of interacting with numer-
ous molecular targets involved in inflammation. It is reported to interact with 
inflammatory processes by down-regulating COX-2, 5-LOX, iNOS and also pro-
duction of inflammatory cytokines such as TNF-α, IL-1, -2, -6, -8 and -12, and 
also macrophage inhibitory protein (MIP), monocytes chemoattractant pro-
tein (MCP), and matrix metalloproteinases (MMPs) (Goel et al. 2008; Abe et al. 
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1999) (Fig. 2.1). Curcumin was found to be effective in reducing colitis induced 
by 1,4,6- trinitrobenzene sulfonic acid. Ukil et al. (2003) reported reduced lev-
els of NO and O2 radicals and suppression of NF-κB activation in curcumin-
treated colonic mucosa. We reported chemopreventive properties of curcumin 
(2,000 ppm) in inhibiting development of ACF and colon adenocarcinomas in 
AOM-induced F344 rats (Rao et al. 1995). Dietary administration of curcumin 
resulted in >50 % inhibition of AOM-induced colon adenocarcinoma incidence 
and multiplicity. Kawamori et al. (1999) reported a 78 % suppression of progres-
sion from adenoma to adenocarcinoma in a preclinical animal model with a high 
dose (6,000 ppm) of curcumin. Curcumin has been tested in combination with 
green tea catechins, another class of natural agents, and also in combination with 
the synthetic COX-2 inhibitor celecoxib for increased efficacy with low doses or 
to increase its bioavailability for better efficacy (Xu et al. 2010; Shpitz et al. 2006).

Although curcumin is well known for its anti-inflammatory and anti-tum-
origenic properties in preclinical animal models, the absorption required for 
achieving its anti-tumor properties is still a concern. Clinical trials to assess 
pharmacokinetics, metabolism, and systemic bioavailability in cancer patients 
are inconclusive. Cheng et al. (2001) conducted a phase 1 clinical trial on can-
cer patients and reported poor absorption and minimal serum concentrations 
of curcumin. Another phase 1 study reported similar poor absorption of cur-
cumin in patients (Sharma et al. 2004). However, Garcea et al. (2005) reported 
pharmacologically efficacious levels of curcumin (12.7 ± 5.7 nmol/g) in both 
malignant colorectal tissue and normal colorectal tissue (7.7 ± 1.8 nmol/g) from 
CRC patients, suggesting a potential anti-tumorigenic role for curcumin in CRC. 
Three other clinical trials have investigated the use of curcumin (curcumin, dem-
ethoxycurcumin, or bisdemethoxycurcumin) therapy in patients with established 
CRC and reported a decrease in carcinogenic embryonic antigen and PGE2 levels 
(Sharma et al. 2001, 2004). Another trial of curcumin in CRC patients required 
high doses (3.6 g daily) to observe any effects on oxidative DNA adducts, and 
COX-2 markers (Garcea et al. 2005). In that study, no change in COX-2 protein 
was observed. Additional studies are in progress to develop curcumin formula-
tions, analogs, and tumor site delivery methods to increase bioavailability for pre-
vention and treatment of CRC.

Piperine, the principle bioactive compound of Piper nigrum and Piper longum, 
is included in many traditional formulae to enhance the effectiveness of other bio-
active compounds, such as curcumin. Piperine has been reported to have immu-
nomodulatory, anti-carcinogenic, anti-asthmatic, stimulatory, hepatoprotective, and 
anti-inflammatory (Darshan and Doreswamy 2004). It was found to be genotoxic 
but had no adverse effects when tested for toxicity profile in rats at doses 5–20 
times the normal human intake (Bhat and Chandrasekhara 1986; Piyachaturawat  
et al. 1983). Due to its apolar nature, piperine alters lipid dynamics and it changes 
the conformation of enzymes in the intestine. Due to its unique properties, it is 
used in combinations to enhance the bioavailability of the other drugs. Its poten-
tial to increase the bioavailability of drugs in humans is of great clinical signifi-
cance (Bajad et al. 2003). Nalini et al. (2006) reported inhibitory effects of piperine 
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on DMH-induced colon tumors in F344 rats. We reported  inhibitory effects of 
piperine on AOM-induced colon tumors in F344 rats. The potential of piperine to 
enhance the bioavailability of other potent drugs is an important property that can 
be exploited to increase the efficacy of agents that inhibit CRC.

Another bioactive molecule available in edible fruits is resveratrol. The chemo-
preventive function of resveratrol was reported by Jang et al. (1997). They showed 
that it inhibited cellular events associated with the initiation, promotion, and 
progression of cancer development. A clinical trial with whole grape extract in 
patients with colon cancer resulted in reduced the expression of Wnt target genes 
in normal mucosa with no change in colon tissue (Nguyen et al. 2009). These trial 
results need more careful evaluation because of lack of control for dietary intake 
of resveratrol-rich food and the absence of control for ingestion of confounding 
medications. A second trial in 20 selected histologically confirmed CRC patients 
administered trans-resveratrol during 8 days prior to surgical resection reported a 
5 % (p = 0.05) reduction in cell proliferation (Patel et al. 2010). The cell prolifera-
tion analysis was carried out preintervention and postintervention with resveratrol 
in tissue samples. These data suggest achievement of high enough concentrations 
of resveratrol in the intestinal tissues to show some inhibition of cell proliferation. 
However, some preclinical and clinical studies suggest that bioavailability of res-
veratrol is low due to poor absorptions as a result of intestinal metabolism and 
low activity of ATP-binding cassette (ABC) transporters (Juan et al. 2010, 2012; 
Alfaras et al. 2010a; Walle 2011; Cottart et al. 2010). In a preclinical animal 
model in which ACF are induced by DMH, an oral dose of 60 mg/kg resveratrol 
caused 50 % inhibition in the medial and 48 % inhibition in the distal tumors in 
rats (Alfaras et al. 2010b). Resveratrol also was observed to have inhibitory effects 
on mucin-depleted foci (MDFs) with reduction of the number of MDFs by 36 and 
53 % in the medial and distal colon, respectively (Alfaras et al. 2010b). It also was 
found to be effective in long-term preclinical assays with development of adeno-
carcinomas as an end point. Oral administration of resveratrol (0.2 mg/kg in drink-
ing water) for 100 days showed reduced ACFs and colon carcinogenesis in F344 
rats (Tessitore et al. 2000). This reduction probably was due to modulation of Bax 
and p21, which regulate cell proliferation and apoptosis (Fig. 2.1). Daily adminis-
tration of 8 mg/kg of trans-resveratrol for 30 weeks in DMH-treated rats resulted 
in reduction in the incidence and multiplicity of ACFs and also decreased forma-
tion of multicrypt (more than 6) ACFs (Sengottuvelan and Nalini 2006). Inhibition 
of ACFs with 6 or more crypts is an indication of potent chemopreventive efficacy 
via suppressing the progression of preneoplastic lesions to neoplasia. These results 
suggest that resveratrol possesses chemopreventive properties and can suppress 
the progression of preneoplasia to malignant neoplasia in colon. This study also 
reported inhibitory effects of resveratrol on polyamine synthesis, which is high in 
neoplastic tissues (Sengottuvelan and Nalini 2006).

Resveratrol also has been evaluated for its anti-tumor activity in genetically 
modified mice. Resveratrol (0.01 % in drinking water) decreased the number of 
tumors in the small intestine and completely suppressed tumor formation in the 
colon of APCMin/+ mice (Schneider et al. 2001). In contrast to these results, 
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Ziegler et al. (2004) reported null results with resveratrol in APCMin/+ mice. 
Even though this study used high doses of resveratrol (4, 20, and 90 mg/kg body 
weight) in pellet form, no difference was observed in incidence of intestinal 
tumors. Another Apc min mouse study reported a 27 % decrease in adenoma for-
mation by 60 mg/kg of resveratrol administered in the diet (Sale et al. 2005). This 
reduction was attributed to decreases (of 58 and 62 % compared with intestinal 
mucosa from mice on control diet) in PGE2, which is involved in the maintenance 
of the malignant phenotype (Sale et al. 2005). Evidence from all of these stud-
ies suggests that resveratrol has potential prevention and therapeutic properties and 
needs further evaluation for its dosage and clinical efficacy in CRC.

Diosgenin, a natural steroidal saponin found predominantly in fenugreek and 
wild yams, has diverse biological properties (Raju and Mehta 2009). The com-
mercial synthesis of steroid products, such as cortisone, pregnenolone, and pro-
gesterone, involves use of diosgenin as a precursor (Raju and Mehta 2009). It 
is considered safe since it is neither synthesized nor metabolically converted 
into steroid by-products in the mammalian body. In preliminary studies with 
human subjects, diosgenin has been found to be effective against hyperglycemia 
(McAnuff et al. 2005), hypercholesterolemia (Juarez-Oropeza et al. 1987; Son 
et al. 2007), and hypertriacylglycerolemia (Kwon et al. 2003). Significant anti-
inflammatory functions have been demonstrated in relevant animal models. It is 
used in rats to heal the GI toxicity generated by indomethacin treatment. Its anti-
inflammatory role has been explored further by Yamada et al. (1997). Preclinical 
animal studies with AOM-induced ACFs in F344 rats suggested that diosgenin 
possesses chemopreventive efficacy in CRC. Administration of 0.1 or 0.05 % 
diosgenin in the diet during initiation, postinitiation, or promotion stages of colon 
carcinogenesis dose-dependently decreased ACF formation (Raju et al. 2004). 
Another study investigated the preventive effects of diosgenin (20, 100, or 500 mg/
kg) on AOM/dextran sodium sulfate (DSS)-induced CRC in mice. Diosgenin at 
very low doses significantly inhibited (53, 46, and 40 %, respectively) colonic 
mucosal ulcers and dysplastic crypts induced by AOM/DSS treatment and also 
reduced expression of inflammatory cytokine genes, including IL-1β, IL-6, 
IL-12b, and TNF-α, which are significantly elevated in the colonic mucosa of mice 
treated with AOM/DSS (Fig. 2.1). These studies suggest that diosgenin is a potent 
bioactive molecule possessing both anti-inflammatory and anti-tumorigenic prop-
erties that make it ideal for further investigation of its molecular and anti-neoplas-
tic functions in human clinical trials.

Triterpenoids are isolated from various medicinal plants and have been stud-
ied for their anti-inflammatory properties. Mostly these compounds are non-toxic 
and have made their way into cosmetics and health products (Liu 1995). Recently, 
interest in understanding and elucidating the biological roles of triterpenoids for 
their hepatoprotective, analgesic, anti-tumor, anti-inflammatory, and immunomod-
ulatory effects is increasing (Mahato and Sen 1997; Liu 1995). These agents are 
broken down in the gut to release triterpene metabolites, which are integrated 
into the intestinal cell membranes, absorbed, and lead to modulation of signal-
ing pathways. These molecules inhibit expression of inflammatory genes such as 
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COX-2, iNOS and various inflammatory cytokines that are known enhancers of 
carcinogenesis (Janakiram et al. 2008; Rao et al. 2002, Raju et al. 2004) (Fig. 2.1). 
Recently, triterpene analogs that are more potent than the original parent mol-
ecules have been synthesized. Kawamori et al. (1995) found that oleanolic acid 
(ONA), a crude plant extract of triterpenoid at a dose of 200 ppm, was effective in 
reducing ACF in the intestine of F344 rats. We reported the anti-neoplastic prop-
erties of ONA and the analog 18alpha-olean-12-ene-3 beta-23,28-triol (OT) in 
AOM-induced ACFs in F344 rats (Janakiram et al. 2008). These triterpenoids sig-
nificantly suppressed carcinogen-induced colonic preneoplastic lesions at dietary 
doses of 750 and 1,500 ppm of ONA, and 250 and 500 ppm of OT and without 
any toxicity. ONA inhibited 52 % of total AOM-induced ACFs and ~66 % of ACF 
with four or more crypts. OT inhibited up to 48 % of total AOM-induced ACF 
formation and 60 % of ACF with four or more crypts at very low doses compared 
with those of ONA. These studies support chemopreventive effects of triterpe-
noids in CRC and suggest that an in-depth evaluation of these agents in clinical 
trials should be carried out to assess pharmacokinetics, bioavailability, and anti- 
neoplastic functions.

Epidemiological, experimental, and clinical studies provide evidence for anti-
CRC activity of omega (ω)-3 PUFAs. Evidence from animals and humans sug-
gest that ω-3 PUFAs may play an inhibitory role during different stages of CRC, 
from primary CRC prevention to “tertiary” prevention after treatment of CRC and 
advanced metastatic disease. Out of 8 reported clinical studies of ω-3 PUFAs sup-
plementation, 6 reported protective effects. In patients with a previous history of 
sporadic colorectal adenomas, oral supplementation with ω-3 PUFA has resulted 
in a 13–70 % reduction in intestinal epithelial cell proliferation as compared to 
placebo groups (Cockbain et al. 2012). A phase III randomized, double-blind, pla-
cebo-controlled trial investigated treatment with eicosapentaenoic acid-free fatty 
acid (EPA-FFA) in 58 patients with FAP who had previously undergone colec-
tomy and ileorectal anastomosis and showed a 22.4 % reduction in polyp number 
compared with placebo (West et al. 2010). Colon cancer xenograft studies showed 
consistent protective effects (40–60 % reduction in xenograft size) in mice sup-
plemented with ω-3 PUFAs as compared to untreated mice (Boudreau et al. 2001; 
Kato et al. 2002; Calviello et al. 2004). Similar beneficial results were reported 
from studies with CRC cell allograft tumors (Mund et al. 2007; Cannizzo and 
Broitman 1989; Togni et al. 2003; Pizato et al. 2005). In spite of these encouraging 
data, no published studies yet have investigated the anti-neoplastic effect of u-3 
PUFAs in patients with primary or metastatic CRC.

Fish and fish oil are rich sources of the ω-3 PUFAs EPA and DHA. The metab-
olites derived from these PUFAs result in formation of 3-series prostaglandins, 
which are anti-inflammatory rather than pro-inflammatory and also may possess 
anti-tumor properties. A report of a switch from 2 series PGE2 to 3 series PGE3 
was demonstrated in colonic mucosa of rats treated with fish oil (Vanamala et al. 
2008). The recently discovered anti-inflammatory lipid mediators RVs and LX 
derived from EPA and DHA are gaining importance for their anti-neoplastic func-
tions. RVs derived from EPA are called as “E” series. Protectins are also generated 
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from precursors of omega 3-PUFAs. RVs or protectins from DHA, named “D” 
series, possess anti-inflammatory and immunomodulatory properties. The concen-
tration required for these lipid mediators to exhibit any biological activity is in the 
nanomolar or picomolar range. Acetylation of aspirin by COX-2 in the presence 
of EPA results in formation of 5,12,18R-trihydroxy-EPA (18R-RvE1) (Janakiram 
et al. 2011) (Fig. 2.1). Ingestion of aspirin and EPA generated 18R-RvE1 that was 
detectable in plasma of healthy volunteers (Oh et al. 2011). The anti-inflammatory 
role of RvE1 is well documented in a mouse model of DSS-induced colitis; it acts 
through inhibition of phosphorylation of NF-κB (Ishida et al. 2010). Another study 
reported a protective role of RvE1 in mouse colitis through induction of intestinal 
alkaline phosphatase (Campbell et al. 2010). EPA and DHA exhibited protective 
effects against colitis in a rat model by restoring the number of mature, mucin-
filled goblet cells (Arita et al. 2005). Two other studies also reported protective 
effects of RvE1 against colitis induced by DSS and 2, 4, 6-trinitrobenzene sulfonic 
acid (Nieto et al. 2002; Ishida et al. 2009).

Lipoxin A4 (LXA4) was shown to inhibit neutrophil chemotaxis, adherence, 
transmigration, and activation during resolution of inflammation and suppression 
of IL-8 production by epithelia and leukocytes and to cause clearing of neutro-
phils by up-regulation of monocyte ingestion (Serhan 1997, 2002; Canny et al. 
2002). Decreased LXA4 expression was shown in a DSS-induced colitis model 
(Gewirtz et al. 2002). Protective effects of LXA4 analogs were observed in DSS 
and other chemically induced colitis animal models (Gewirtz et al. 2002; Fiorucci 
et al. 2001). The protective effects of these analogs are attributed for their LXA4 
receptor-mediated inhibitory effects on pro-inflammatory signaling pathways. 
15-epi-LXA4 is formed in the presence of aspirin; and some of the preventive 
or therapeutic effects of aspirin-like NSAIDs may be through these 15-epi-LX 
(Claria and Serhan 1995) (Fig. 2.1). The anti-inflammatory functions of these lipid 
mediators suggest a potential chemopreventive therapeutic strategy for inflamma-
tion-related diseases like CRC.

2.8  Conclusions

Epidemiological and clinical literature strongly implicates chronic inflammation in 
neoplastic diseases, especially in CRC. Different inflammatory molecules and sig-
nals play different roles during different stages of CRC development. AA metabo-
lism, via COX-2 and 5-LOX pathways, generates a variety of lipid mediators that 
affect initiation, growth, and development of CRC. Current evidence from preclin-
ical, clinical, and epidemiological studies supports a positive role for anti-inflam-
matory agents, particularly NSAIDs as inhibitors of CRC; however, these drugs 
can have GI and cardiovascular toxicities. Additional studies are needed to design 
analogs or derivatives of these agents, to manipulate doses and to select appropri-
ate patient populations to provide increased safety without losing efficacy for CRC 
suppression. It also is important to develop other agents that can balance COX 
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and LOX inhibition, including natural agents like curcumin or synthetic agents 
like licofelone, to achieve safer toxicity profiles while retaining significant inhibi-
tion of CRC. Additional natural bioactive anti-inflammatory compounds are being 
identified to provide beneficial effects against colitis-induced inflammation and 
CRC. Many of these agents are well tolerated and may provide safe alternatives 
to existing, more toxic compounds. Increased consumption of EPA- and DHA-rich 
foods may reduce inflammation and its related CRC conditions. And other novel 
lipid mediators, such as LX, RVs and their analogs, need to be evaluated in CRC 
models for their effects on colon mucosal immunity against development of CRC.
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