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v

It was Aulus Cornelius Celsus, a physician in first-century Rome, who first defined 
inflammation as calor (heat), dolor (pain), rubor (redness), and tumor (swell-
ing). However, it was Rudolf Virchow who in the mid-1800s linked inflammation 
with atherosclerosis, rheumatoid arthritis, multiple sclerosis, asthma, Alzheimer’s  
disease, cancer, and other chronic diseases. The suffix “-itis” was introduced to indi-
cate inflammation in words such as bronchitis (inflammation of the bronchus) and 
colitis (inflammation of the colon). Extensive research has revealed that inflam-
mation precedes most cancers; for example, cancers of the liver, lung, colon, 
cervix, pancreas, stomach, and prostate are preceded by hepatitis, bronchitis,  
colitis, cervicitis, pancreatitis, gastritis, and prostatitis, respectively.

Within the past three decades, researchers have determined the molecular basis 
of most kinds of inflammation. Furthermore, various cell-signaling pathways 
that lead to inflammation have also been relatively well defined, leading to the  
development of various therapeutics that can modulate these pathways and thus 
alter the course of disease.

The current monograph deals with the role of inflammation in cancer, and some 
of the leaders in the field have contributed to this volume. We would like to thank 
these experts for their contributions and the publisher for giving us the opportunity 
to edit this volume.

Bharat B. Aggarwal
Bokyung Sung

Subash Chandra Gupta

Preface



vii

1 The Role of Inflammation in Lung Cancer . . . . . . . . . . . . . . . . . . . . . . . 1
Mónica Gomes, Ana Luísa Teixeira, Ana Coelho, António Araújo  
and Rui Medeiros

2 The Role of Inflammation in Colon Cancer . . . . . . . . . . . . . . . . . . . . . . 25
Naveena B. Janakiram and Chinthalapally V. Rao

3 The Role of Inflammation in Inflammatory Breast Cancer  . . . . . . . . . 53
Tamer M. Fouad, Takahiro Kogawa, James M. Reuben  
and Naoto T. Ueno

4 The Role of Inflammation in Brain Cancer  . . . . . . . . . . . . . . . . . . . . . . 75
James L. Sowers, Kenneth M. Johnson, Charles Conrad,  
Joel T. Patterson and Lawrence C. Sowers

5 The Role of Inflammation in Head and Neck Cancer . . . . . . . . . . . . . . 107
Marcelo Bonomi, Alexis Patsias, Marshall Posner  
and Andrew Sikora

6 The Role of Inflammation in Pancreatic Cancer . . . . . . . . . . . . . . . . . . 129
Simone Hausmann, Bo Kong, Christoph Michalski, Mert Erkan  
and Helmut Friess

7 The Role of Inflammation in Prostate Cancer . . . . . . . . . . . . . . . . . . . . 153
Karen S. Sfanos, Heidi A. Hempel and Angelo M. De Marzo

8 The Role of Inflammation in Bladder Cancer  . . . . . . . . . . . . . . . . . . . . 183
Georgios Gakis

9 The Role of Inflammation in Kidney Cancer . . . . . . . . . . . . . . . . . . . . . 197
Antonio Roma de Vivar Chevez, James Finke and Ronald Bukowski

Contents

http://dx.doi.org/10.1007/978-3-0348-0837-8_1
http://dx.doi.org/10.1007/978-3-0348-0837-8_2
http://dx.doi.org/10.1007/978-3-0348-0837-8_3
http://dx.doi.org/10.1007/978-3-0348-0837-8_4
http://dx.doi.org/10.1007/978-3-0348-0837-8_5
http://dx.doi.org/10.1007/978-3-0348-0837-8_6
http://dx.doi.org/10.1007/978-3-0348-0837-8_7
http://dx.doi.org/10.1007/978-3-0348-0837-8_8
http://dx.doi.org/10.1007/978-3-0348-0837-8_9


Contentsviii

10 The Role of Inflammation in Gastric Cancer . . . . . . . . . . . . . . . . . . . . 235
Kazım Şenol, Murat Bulut Özkan, Selahattin Vural and Mesut Tez

11 The Role of Inflammation in Sarcoma  . . . . . . . . . . . . . . . . . . . . . . . . . 259
Jürgen Radons

12 The Role of Inflammation in Lymphoma . . . . . . . . . . . . . . . . . . . . . . . 315
Antonino Carbone, Claudio Tripodo, Carmelo Carlo-Stella,  
Armando Santoro and Annunziata Gloghini

13 The Role of Inflammation in Leukaemia  . . . . . . . . . . . . . . . . . . . . . . . 335
Janusz Krawczyk, Michael O’Dwyer, Ronan Swords, Ciara Freeman  
and Francis J Giles

14  The Role of Inflammatory Cells in Angiogenesis in  
Multiple Myeloma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Domenico Ribatti and Angelo Vacca

15 The Role of Inflammation in Cervical Cancer . . . . . . . . . . . . . . . . . . . 377
S. Deivendran, K. Hezlin Marzook and M. Radhakrishna Pillai

16 The Role of Inflammation in Liver Cancer  . . . . . . . . . . . . . . . . . . . . . 401
Anupam Bishayee

17 The Role of Inflammation in Skin Cancer  . . . . . . . . . . . . . . . . . . . . . . 437
Girish B. Maru, Khushboo Gandhi, Asha Ramchandani and  
Gaurav Kumar

Erratum to: The Role of Inflammation in Leukaemia   .  .  .  .  .  .  .  .  .  .  .  .  .  .  .  . E1
Janusz Krawczyk, Michael O’Dwyer, Ronan Swords, Ciara Freeman  
and Francis J Giles

Editors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 473

http://dx.doi.org/10.1007/978-3-0348-0837-8_10
http://dx.doi.org/10.1007/978-3-0348-0837-8_11
http://dx.doi.org/10.1007/978-3-0348-0837-8_12
http://dx.doi.org/10.1007/978-3-0348-0837-8_13
http://dx.doi.org/10.1007/978-3-0348-0837-8_14
http://dx.doi.org/10.1007/978-3-0348-0837-8_14
http://dx.doi.org/10.1007/978-3-0348-0837-8_15
http://dx.doi.org/10.1007/978-3-0348-0837-8_16
http://dx.doi.org/10.1007/978-3-0348-0837-8_17
http://dx.doi.org/10.1007/978-3-0348-0837-8_18


ix

António Araújo Chief of the Medical Oncology Service of Centro Hospitalar do 
Porto, Porto, Portugal; Chief of the Medical Oncology Service of Centro  Hospitalar 
de Entre Douro e Vouga,  Santa Maria da Feira, Portugal; Instituto de Ciências 
 Biomédicas de Abel Salazar, Porto, Portugal

Anupam Bishayee Department of Pharmaceutical Sciences, School of Pharmacy, 
American University of Health Sciences, Signal Hill, CA, USA

Marcelo Bonomi Head and Neck Oncology Program, Wake Forest School of Med-
icine, Winston-Salem, NC, USA

Ronald Bukowski Cleveland Clinic Lerner College of Medicine, Case Western 
Reserve University, Cleveland, OH, USA

Antonino Carbone Department of Pathology, Centro di Riferimento Oncologico 
Aviano, Istituto Nazionale Tumori, IRCCS, Aviano, Italy

Carmelo Carlo-Stella Department of Oncology and Hematology, Humanitas 
 Cancer Center, Humanitas Clinical and Research Center, Rozzano, Milan, Italy

Ana Coelho Instituto Português de Oncologia do Porto Francisco Gentil, EPE, 
Grupo de Oncologia Molecular—CI, Porto, Portugal; Faculty of Medicine of 
 University of Porto, Porto, Portugal; LPCC Research Department-Portuguese 
League Against Cancer (NRNorte), Porto, Portugal

Charles Conrad Department of Neuro-Oncology, The University of Texas MD 
Anderson Cancer Center, Houston, TX, USA

Angelo M . De Marzo Department of Pathology, The Johns Hopkins University 
School of Medicine, Baltimore, MD, USA

Antonio Roma de Vivar Chevez Cleveland Clinic Lerner College of Medicine, 
Case Western Reserve University, Cleveland, OH, USA

S . Deivendran Cancer Research Program, Rajiv Gandhi Centre for Biotechnology, 
Thiruvananthapuram, India

Mert Erkan Department of Surgery, Klinikum rechts der Isar, Technische 
 Universität München, Munich, Germany

Contributors



Contributorsx

James Finke Cleveland Clinic Lerner College of Medicine, Case Western Reserve 
University, Cleveland, OH, USA

Tamer M . Fouad Department of Breast Medical Oncology, Morgan Welch 
 Inflammatory Breast Cancer Research Program and Clinic, The University of 
Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Medical 
 Oncology, The National Cancer Institute, Cairo University, Cairo, Egypt

Ciara Freeman Department of Haematology, Barts and the Royal London NHS 
Trust, London, UK

Helmut Friess Department of Surgery, Klinikum rechts der Isar, Technische 
 Universität München, Munich, Germany

Georgios Gakis Department of Urology, University Hospital Tübingen, 
 Eberhard-Karls University, Tübingen, Germany

Khushboo Gandhi Maru Lab, Advanced Centre for Treatment, Research and 
 Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi 
Mumbai, India

Francis J Giles Northwestern Medicine Developmental Therapeutics  Institute, 
Robert H. Lurie Comprehensive Cancer Center of Northwestern University, 
 Chicago, USA

Annunziata Gloghini Department of Diagnostic Pathology and Laboratory 
 Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy

Mónica Gomes Instituto Português de Oncologia do Porto Francisco Gentil, EPE, 
Grupo de Oncologia Molecular—CI, Porto, Portugal; ICBAS, Abel Salazar  Institute 
for the Biomedical Sciences, University of Porto, Porto, Portugal; LPCC Research 
Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal

Simone Hausmann Department of Surgery, Klinikum rechts der Isar, Technische 
Universität München, Munich, Germany

Heidi A . Hempel Department of Pathology, The Johns Hopkins University School 
of Medicine, Baltimore, MD, USA

Naveena B . Janakiram Center for Cancer Prevention and  Drug Development, 
Department of Medicine, Hematology Oncology Section, PCS Cancer Center, 
 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA

Kenneth M . Johnson Department of Pharmacology and Toxicology, The 
 University of Texas Medical Branch (UTMB), Galveston, TX, USA

Takahiro Kogawa Department of Breast Medical Oncology, Morgan Welch 
 Inflammatory Breast Cancer Research Program and Clinic, The University of Texas 
MD Anderson Cancer Center, Houston, TX, USA

Bo Kong Department of Surgery, Klinikum rechts der Isar, Technische Universität 
München, Munich, Germany



Contributors xi

Janusz Krawczyk Department of Haematology, Galway University Hospital, 
 Galway, Ireland

Gaurav Kumar Maru Lab, Advanced Centre for Treatment, Research and 
 Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi 
Mumbai, India

Girish B . Maru Maru Lab, Advanced Centre for Treatment, Research and 
 Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi 
Mumbai, India

K . Hezlin Marzook Cancer Research Program, Rajiv Gandhi Centre for 
 Biotechnology, Thiruvananthapuram, India

Rui Medeiros Instituto Português de Oncologia do Porto Francisco Gentil, EPE, 
Grupo de Oncologia Molecular—CI, Porto, Portugal; ICBAS, Abel Salazar  Institute 
for the Biomedical Sciences, University of Porto, Porto, Portugal; LPCC Research 
Department-Portuguese League Against Cancer (NRNorte), Porto, Portugal;  
CEBIMED, Health Sciences Faculty, Fernando Pessoa, University of Porto, Porto, 
 Portugal

Christoph Michalski Department of Surgery, Klinikum rechts der Isar,  Technische 
Universität München, Munich, Germany

Michael O’Dwyer Biosciences, National University of Ireland Galway, Galway, 
Ireland

Murat Bulut Özkan Department of General Surgery, Ankara Numune Research 
and Training Hospital, Ankara, Turkey

Alexis Patsias Head and Neck Oncology Program, Mount Sinai School of 
 Medicine, New York, USA

Joel T . Patterson Department of Surgery, Division of Neurosurgery, UTMB, 
 Galveston, TX, USA

Marshall Posner Head and Neck Oncology Program, Mount Sinai School of 
 Medicine, New York, USA

M . Radhakrishna Pillai Cancer Research Program, Rajiv Gandhi Centre for 
 Biotechnology, Thiruvananthapuram, India

Jürgen Radons Department of Radiotherapy and Radiation Oncology, Klinikum 
rechts der Isar, Technische Universität München, Munich, Germany

Asha Ramchandani Maru Lab, Advanced Centre for Treatment, Research and 
Education in Cancer (ACTREC), Tata Memorial Centre (TMC), Kharghar, Navi 
Mumbai, India

Chinthalapally V . Rao Center for Cancer Prevention and  Drug Development, 
 Department of Medicine, Hematology Oncology Section, PCS Cancer Center, 
 University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA



Contributorsxii

James M . Reuben Department of Hematopathology, Morgan Welch Inflammatory 
Breast Cancer Research Program and Clinic, The University of Texas MD Anderson 
Cancer Center, Houston, TX, USA

Domenico Ribatti Department of Basic Medical Sciences, Neurosciences and 
Sensory Organs, Section of Human Anatomy and Histology, University of Bari 
Medical School, Bari, Italy; National Cancer Institute, Bari, Italy

Armando Santoro Department of Oncology and Hematology, Humanitas Cancer 
Center, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
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1

Abstract Lung cancer remains a serious public health problem and is the first 
cause of cancer death worldwide, and the overall 5-year survival rate for all stages 
is 14–17 % for Non-small-cell lung cancer and 6 % for small-cell lung cancer. 
Clinical and epidemiologic studies have suggested a strong association among 
chronic infection, inflammation, and cancer. Immune system plays a critical role 
in maintaining tissue homeostasis, cell turnover, tissue remodeling, and preventing 
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infection and cell transformation. The inflammatory component in the development 
of the neoplasm includes a diverse leukocyte population; these components are 
considered inflammatory tumor key factors promoting tumor progression due to 
its ability to release a variety of cytokines, chemokines, and cytotoxic mediators 
such as reactive oxygen species (ROS), metalloproteinases, interleukins, and inter-
ferons. Cancer-related inflammation affects many aspects of malignancy, including 
the proliferation and survival of malignant cells, angiogenesis, tumor metastasis, 
and tumor response to chemotherapeutic drugs and hormones. Moreover, epide-
miologic studies and meta-analysis have shown that prolonged use of non-steroid 
anti-inflammatory (NSAID) drugs reduces the risk of several solid tumor includ-
ing lung cancer. Strong lines of evidence suggest that the chemopreventive proper-
ties of chronic NSAID administration are based on their COX-inhibitory activity. 
However, the prevention is a much better and more economical way to fight 
against cancer than treating an already advanced and often incurable disease.

1 .1  Introduction: Incidence, Survival, Major Gene 
Products and Current Therapies for Lung Cancer

In 2008, about 12.7 million cancer cases and 7.6 million cancer deaths are 
estimated to have occurred in this year in worldwide, with 56 % of cases and 
64 % of the deaths in the economically developing world (Jemal et al. 2011). 
Lung cancer was found to be the most commonly diagnosed cancer as well as 
the primary cause of cancer-related mortality for males worldwide and the sec-
ond leading cause of cancer-related deaths for women (Jemal et al. 2011; Siegel 
et al. 2012). For the year 2012, it is estimated that lung cancer will account for 
26 % of all female cancer deaths and 29 % of all male cancer deaths (Siegel et al. 
2012). Breast cancer in females and lung cancer in males are the most frequently 
diagnosed cancers and the leading cause of cancer death for each sex in both eco-
nomically developed and developing countries, except lung cancer is preceded by 
prostate cancer as the most frequent cancer among males in economically devel-
oped countries (Jemal et al. 2011).

Lung cancer was the most commonly diagnosed cancer as well as the leading 
cause of cancer death in males in 2008, globally. Among females, it was the fourth 
most commonly diagnosed cancer and the second leading cause of cancer death 
(Jemal et al. 2011; Ferlay et al. 2010). Lung cancer accounts for 13 % (1.6 mil-
lion) of the total cases and 18 % (1.4 million) of the deaths in 2008 (Ferlay et al. 
2010; Jemal et al. 2011).

The observed variations in lung cancer rates and trends across countries or 
between males and females within each country largely reflect differences in the 
stage and degree of the tobacco epidemic (Jemal et al. 2011).

Lung cancer can be divided into two major groups: small-cell lung cancer 
(SCLC) and non-small-cell cancer (NSCLC) (Hoffman et al. 2000; Molina et  al. 
2008), NSCLC accounts for approximately 85 % of all cases of lung cancer 
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(Molina et al. 2008; Araujo et al. 2007). These lung cancer cells can again be 
categorized based on their histological characteristics as squamous cell carci-
noma, large cell carcinoma, and adenocarcinoma (Tang et al. 2013). NSCLC 
spreads slower than SCLC, so many patients who are diagnosed at an earlier stage 
are potentially curable, though NSCLC may often relapse at other metastatic site. 
Furthermore, NSCLC is generally less responsive to chemotherapy than SCLC, 
so that even with surgical resection at early diagnosis, approximately 50 % of 
NSCLC patients face recurring cancers (Tang et al. 2013).The 1-year survival rate 
for lung cancer was 43 % in 2003–2006. However, despite extensive preclinical 
and clinical research, the overall 5-year survival rate for all stages is still as low as 
14–17 % for NSCLC (Araujo et al. 2007; Peebles et al. 2007) and even lower in 
SCLC (6 %) (Wu et al. 2012).

In recent years, knowledge concerning the molecular mechanisms underly-
ing cellular transformation and development of cancer has been greatly expanded 
(Araujo et al. 2007). Alteration of the major cell signaling and regulatory path-
ways either by overexpression or gene sequence variation is a frequent event in 
lung cancer. These changes include alterations in receptor tyrosine kinases (TKs), 
such as epidermal growth factor receptor (EGFR), and alterations in angiogenesis 
pathways, apoptosis, proteasome regulation, and cell cycle control, among others 
(Molina et al. 2008).

The EGFR is a tyrosine kinase that contributes to the regulation of cellular 
homeostasis. It is a 170-KDa membrane protein that stimulates downstream cell 
proliferation, survival, and tumorigenesis (Wheeler et al. 2010; Cohen 1965). 
EGFR has been implicated in the growth of several human epithelial malignancies, 
including lung cancer. It is overexpressed in several cancers, including approxi-
mately 40–80 % of NSCLC, which made EGFR a popular target for new drug 
treatment exploration (Tang et al. 2013).

The ALK tyrosine kinase receptor has gained much attention recently as a 
newly emerging relevant biomarker and therapeutic target in NSCLC (Wu et al. 
2012). The activation of ALK is primarily through the formation of fusion genes. 
EML4-ALK translocation is the most common ALK gene rearrangement. This 
rearrangement in NSCLC patients is mainly found in younger non-smoking 
patients with adenocarcinoma (Wu et al. 2012; Kwak et al. 2010). EML4-ALK 
rearrangements are mutually exclusive with EGFR or KRAS mutations (Wu et al. 
2012; Li et al. 2013). It has been reported that approximately 2–11 % of tumors 
carrying positive EML4-ALK (Li et al. 2013).

KRAS mutations are a negative predictor of response to EGFR TKs, mainly 
accounting for primary resistence (Linardou et al. 2008; de Mello et al. 2011). 
Most KRAS mutations in lung adenocarcinoma are associated with smoking. 
KRAS positive mutations are limited to NSCLC and are mutually exclusive to 
mutations in EGFR and ALK (Linardou et al. 2008; Wu et al. 2012).

Lung cancer is a very aggressive cancer and its treatment still remains a chal-
lenge for health professionals. Conventional treatments are based on surgery, radi-
ation therapy, and chemotherapy. The selection of therapeutic regimen is based on 
the cancer type (small-cell or non-small-cell), stage of disease, patient’s functional 
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ability, and genetic characterization (Wu et al. 2012; Tang et al. 2013; Hoffman 
et al. 2000).

The majority of stage I through stage IIIA lung cancer patients generally choose 
surgery as their primary option. Another popular option is preoperative chemo-
therapy, which has been shown to improve survival rate in patients with NSCLC. 
Patients who require complete resection and no preoperative chemotherapy usually 
invest in adjuvant chemotherapy. For patients with unresectable NSCLC, RT and 
chemotherapy are excellent options for treatment (Tang et al. 2013). Further, cer-
tain agents have been combined with the chemotherapy to enhance its effects. The 
anti-vascular endothelial growth factor agent, bevacizumab, for example, when 
combined with chemotherapy, has resulted in increased survival rate when com-
pared to chemotherapy treatment alone (Tang et al. 2013).

For first-line chemotherapy, a platinum-based two-drug combination is sug-
gested for patients (Azzoli et al. 2009; Molina et al. 2008). Studies show that the 
cisplatin, when used in combination chemotherapy, is associated with improved 
response rates, no change in survival rate, and increased toxicity when compared 
with the carboplatin (Tang et al. 2013). Also, another drug bevacizumab has dem-
onstrated great potential when used in combination with carboplatin or paclitaxel 
in NSCLC patients (Tang et al. 2013; Molina et al. 2008).

The second-line chemotherapy treatment options, after primary treatment fails 
to yield effective results, do differ from the first-line drugs. Approximately 30 % 
of NSCLC patients who undergo first-line cancer treatment are candidates for 
second- or third-line therapeutics. The first agent that was approved for second-
line therapeutics was docetaxel (Fossella et al. 2000). Other drugs that were also 
soon approved include pemetrexed, erlotinib, and gefitinib (Tang et al. 2013). 
Undergoing research is currently evaluating other possible strategies for second-
line therapeutics.

1 .2  Inflammatory Signaling Pathways Associated with 
Lung Cancer

Cancer is a hyperproliferative disorder that involves morphological cellular trans-
formation, dysregulation of apoptosis, uncontrolled cellular proliferation, invasion, 
angiogenesis, and metastasis (Lin and Karin 2007; Hanahan and Weinberg 2011).

Clinical and epidemiologic studies have suggested strong association between 
chronic infection, inflammation, and cancer (Coussens and Werb 2002; Lin and 
Karin 2007; Ribeiro et al. 2007). Up to 20 % of cancers are linked to chronic 
infections, 30 % can be attributed to tobacco smoking and inhaled pollutants 
(such as silica and asbestos), and 35 % to dietary factors (20 % of cancer burden is 
linked to obesity) (Aggarwal et al. 2009).

Approximately 150 ago, Virchow postulated that inflammation is a predisposing 
factor of tumorigenesis (Lu et al. 2006; Balkwill and Mantovani 2001; Schottenfeld 
and Beebe-Dimmer 2006). This hypothesis was based on his observation that 
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cancerous tissue often arose at sites of chronic inflammation and that inflammation 
cells were present in the resect tumors (Bremnes et al. 2011; Mantovani et al. 2008; 
Balkwill and Mantovani 2001). In contrast, Burnet proposed, in 1970, the concept 
of immunological surveillance: the immune system spontaneously identifies and 
eliminates cancer cells, thus protecting against tumor development (Bremnes et al. 
2011; Van Ginderachter et al. 2006) (Fig. 1.1).

During the last decades, and according to Virchow hypothesis, epidemiological 
studies have shown that individuals prone to chronic inflammatory diseases have 
an increased risk of cancer development and that the underlying infections and 
inflammatory responses have been linked to 15–20 % of all cancer deaths world-
wide (Bremnes et al. 2011).

The ultimate recognition of inflammation as a major player in cancer develop-
ment was reinforced with the 2011 update article on cancer hallmarks by Hanahan 
and Weinberg, where it was classified as an enabling characteristic of tumors 
(Mantovani et al. 2008; Hanahan and Weinberg 2011).

These evidence gathered over the last years showed that inflammation con-
tributes to the appearance of multiple cancer hallmark capabilities by supplying 
important molecules to the tumor microenvironment. Those molecules include 
growth factors that sustain the proliferative signaling, survival factors that limit 
apoptosis, pro-angiogenic factors, extracellular matrix-modifying enzymes that 
favor angiogenesis, invasion, and metastasis (Ben-Baruch 2006). Furthermore, 
inflammation manifestations are observed at the earliest stages of tumor progres-
sion and are capable of nurturing insipient neoplasias into developed cancers. 
In addition, inflammatory cells can release a number of chemicals, such as ROS, 

Fig . 1 .1  Oncogenic evolution (adapted from Bremnes et al. 2011)
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that are actively mutagenic and promote malignancy even further (Hanahan and 
Weinberg 2011).

Immune system plays critical roles in maintaining tissue homeostasis, cell 
turnover, tissue remodeling, and preventing infection and cell transformation. It 
is composed of two distinct compartments mediating innate and adaptive immune 
response. Each compartment has, through a diversity of cells and soluble mediators, 
advanced communication networks, which enable rapid and effective responses to 
tissue injury (Bremnes et al. 2011).

Although it is clear that inflammation itself is not the cause of the onset of can-
cer cell proliferation, a sustained atmosphere rich in inflammatory cells, growth 
factors, and promoters activated stromal DNA damage may enhance and/or pro-
mote risk for the emergence of malignancies. This tumor microenvironment is 
composed not only by resident tissue cells such as fibroblasts and endothelial cells 
but also by infiltrating host leukocytes (Ben-Baruch 2006). Tumor cells produce 
several cytokines and chemokines that attract leukocytes. Several inflammatory 
cytokines have been implicated to mediate different steps in the pathway leading 
to carcinogenesis. Increased serum levels of pro-inflammatory interleukins IL-1β, 
IL-6, IL-8, IL-12, and IL-18 have been observed in different types of cancer, 
including lung cancer (Tsai et al. 1999; Srivani and Nagarajan 2003; Michalaki et 
al. 2004; Ye et al. 2007; Azevedo et al. 2011).

On the other hand, the pleiotropic anti-inflammatory interleukins, IL-4 and 
IL-10, stimulate the growth of many tumors, such as ovarian, prostate, and lung 
although they have an inhibitory effect on growth or invasion of other types of 
cancer (Toi et al. 1992; Takeshi et al. 2005; Lan et al. 2006; Gomes et al. 2012) 
(Fig. 1.2).

The inflammatory component in the development of the neoplasm includes a 
diverse leukocyte population, which stand macrophages (abundant in many types 
of tumors), lymphocytes, natural killer (NK) cells, neutrophils, and dendritic cells.

These components are considered inflammatory tumor key factors in pro-
moting tumor progression due to its ability to release a variety of cytokines, 
chemokines, cytotoxic mediators such as reactive oxygen species, metallopro-
teinases (MMPs) and agents perforator membrane, and soluble mediators of cell 
death, such as TNF-α (Tumor Necrosis Factor-α), interleukins (IL), and interfer-
ons (IFNs) (Coussens and Werb 2002).

Many of the mediators released during chronic inflammation promote unregu-
lated cell proliferation and invasion, induce angiogenesis, and increase mutagen-
esis. Due to these characteristics, the transformation and initiation of a malignant 
phenotype may occur and tumor progression may be promoted. In addition, many 
of the factors released by inflammatory cells may lead directly or indirectly to a 
marked suppression of the immune response, which otherwise could have an 
important role in tumor eradication (Ben-Baruch 2006).

The lung cancer tumor microenvironment is composed of extracellular matrix, 
tumor cells, fibroblasts, inflammatory cells, vascular and lymphatic endothelial 
cells, growth factors, cytokine, chemokines, hormones, proteases, among oth-
ers. Fibroblasts exist normally in the connective tissue and produce extracellular 
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matrix and collagen. They are essential in wound repairing but when exposed to 
cigarette smoke, they secrete pro-inflammatory mediators such as prostaglandin-E2 
(PGE2), IL-8, IL-6, and MCP-1, leading to a prolonged inflammatory response 
(Martey et al. 2004). Macrophages are recruited by granulocyte colony- stimulating 
factor (G-CSF), GM-CSF, macrophage-stimulating protein (MSP), vascular 
endothelial growth factor (VEGF), transforming growth factor-β (TGF-β), and 
macrophage migration inhibitory factor (MIF).

It is known that macrophages can be activated in response to microbiological 
agents and in particular cytokines interferon-γ (IFN-γ) (classical macrophage acti-
vation). However, it was recently discovered that anti-inflammatory molecules, 
such as glucocorticoid hormones and cytokines IL-4, IL-13, and IL-10, induce a 
different program activation of macrophages (alternative macrophage activation) 
(Sica et al. 2006; Mantovani et al. 2002, 2004). Tumor-associated macrophages 
(TAM) that interact with tumor cells to produce cytokines and growth factors 
that influence tumor development have two different phenotypes: M1 and M2 
(O’Callaghan et al. 2010). The M1 macrophages have been associated with better 
prognosis in NSCLC, are efficient immune cells and are associated with an anti-
tumor behavior (Bremnes et al. 2011). Nonetheless, the most prevalent phenotype 
is the M2, which promotes tumor growth, angiogenesis, invasion, and metastasis. 

Fig . 1 .2  The tumor microenvironment associated with inflammation and its consequence in can-
cer processes (adapted from Serefoglou et al. 2008)
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They also suppress adaptive immunity by inducing T cell dysfunction (Bremnes 
et al. 2011). For a long period, classical or M1 macrophage activation was rec-
ognized as the unique activation program in response to microbial products and 
IFN-γ and has only recently become clear that anti-inflammatory molecules, such 
as glucocorticoid hormones, IL-4, IL-13, and IL-10, are more than simple inhibi-
tors of macrophage activation, since they induce distinct M2 activation programs 
(Sica et al. 2006; Wang and Joyce 2010; Van Ginderachter et al. 2006). TAM 
derived from circulating monocytes are recruited at the tumor site by a tumor-
derived chemotactic factor for monocytes, originally described by this group and 
later identified as the chemokine CCL2/MCP-1 (Sica et al. 2006; Coelho et al. 
2006). The molecular mechanisms accounting for the constitutive expression of 
chemokines by cancer cells have been defined only for CXCL1 and involve NF-кB 
activation by NF-кB-inducing kinase (Sica et al. 2006).

Neutrophil infiltration was described in NSCLC, especially in the adenocarci-
noma bronchoalveolar subtype, and associated with poorer outcomes. The recruit-
ment, activation, and survival of these cells are under the influence of the tumor 
microenvironment. Furthermore, neutrophil release pro-inflammatory cytokines, 
proteases, ROS, that can cause damage to the DNA and oncogene activation, 
matrix degradation, tumor cell proliferation, increased metastasis and enhanced 
angiogenesis may also influence celular there processes (Gregory and Houghton 
2011). Neutrophils are also thought to have a polarized function, as the one that 
occurs in TAM, with N1 neutrophils being anti-tumor and N2 neutrophils pro-
tumor (88). CD8+ T cells are proposed to have a protective role against tumors, 
by modifying the tumor stromal and epithelium and therefore reducing disease pro-
gression and metastasis, but sometimes fail to mount a robust anti-tumor response 
due to suppressive factors that affect their survival (Bremnes et al. 2011; Gregory 
and Houghton 2011). Nevertheless, CD8+ T cells in the stromal correlated with 
disease-specific survival (DSS) in NSCLC (Bremnes et al. 2011). Stromal lev-
els of helper CD4+ T cells correlated significantly with DSS and were a favora-
ble independent prognostic factor in NSCLC patients (Bremnes et al. 2011). The 
localization of CD8+ and CD4+ T cells is associated with an improved survival 
(Suzuki et al. 2011). Regulatory T cells suppress host immune responses and are 
thought to promote tumor growth. Their levels correlated positively with cyclooxy-
genase-2 (COX-2) expression levels in NSCLC tumors and were associated with 
increased recurrence (Suzuki et al. 2011). Increased numbers of epithelial and 
stromal B lymphocytes correlated with DSS in NSCLC. This good prognosis is 
thought be related to limited tumor dissemination and to the antibody-mediated 
action of NK cells (Bremnes et al. 2011). Increasing numbers of stromal NK cells 
were associated with DSS and considered a favorable prognostic factor (Bremnes 
et al. 2011). An effective anti-tumor response depends on the action of dendritic 
cells given their important role as antigen-presenting cells (Bremnes et al. 2011). 
Increasing numbers of these cells were associated with DSS, and the density of 
mature dendritic cells was a better predictor of NSCLC clinical outcome (Bremnes 
et al. 2011). Mast cell density was also significantly associated with angiogenesis, 
microvessel density, and poor prognosis of NSCLC patients (Bremnes et al. 2011).
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1 .3  Role of Inflammatory Molecules in the Development 
of Lung Cancer: Evidence from in Vitro Studies

Chronic inflammation has been postulated to play a central role in orchestrat-
ing these processes in concert with irreversible mutational events and may pro-
vide reversible targets for lung cancer prevention and treatment. Cancer-related 
inflammation affects many aspects of malignancy, including the proliferation and 
survival of malignant cells, angiogenesis, tumor metastasis, and tumor response 
to chemotherapeutic drugs and hormones (Mantovani et al. 2008). When tissue 
homeostasis is persistently perturbed as in chronic inflammation, interactions 
between innate and adaptive immune cells as well as composition of cells and 
mediators will change. The inability to properly regulate the innate and adaptive 
immune system can result in excessive tissue remodeling, loss of tissue architec-
ture due to destruction, protein alterations and genotoxic DNA damage due to oxi-
dative stress and subsequently increased cancer risk (de Visser et al. 2006).

1.3.1  Role of Inflammatory Molecules in the Transformation 
of Lung Cancer Cells

There are some events that are required to drive from initiated cells to malignant 
tumors (Hanahan and Weinberg 2011). The infiltration of immune cells to tumors 
may repress tumor growth (Dunn et al. 2002). However, the increasing concern 
hypothesis is that inflammatory cells act as tumor promoters in inflammation- 
associated cancers (Smyth et al. 2004). Accumulated mutations in epithelial cells 
lead to dysregulation of their growth and migration. These dysregulated may also 
produce cytokines and chemokines to attract immune cells to facilitate cancer 
development (Lin and Pollard 2004; Coelho et al. 2006).

Several studies on tumor–host interaction have highlighted the importance of 
inflammatory response in the early steps of carcinogenesis as well as in estab-
lished progressive tumors and are beginning now to identify the contribution of 
polarized inflammatory responses in cancer progression (Sica et al. 2006; Wang 
and Joyce 2010).

TNF is a transforming agent for carcinogen-treated fibroblast. Two weeks of 
exposure to the cytokine in vitro is sufficient to render cells capable of tumor 
formation in nude mice (Komori et al. 1993). The molecular basis may involve 
induction of reactive oxygen. Reactive oxygen in the form of NO is often gener-
ated by inflammatory cytokine induction of NO synthase. NO is an important reg-
ulatory molecule in both inflammation and cancer development (Lu et al. 2006). 
NO can directly oxidize DNA, resulting in mutagenic changes, and may damage 
some DNA repair proteins (Jaiswal et al. 2000). In study of Yan and co-workers, 
they revealed that TNF-α is potent mutagen that causes DNA damage through 
the induction of ROS (Yan et al. 2006; Aggarwal et al. 2006). This study brings 
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up two new concepts, a mechanism through which a cytokine can induce genetic 
instability and the involvement of the TNF-α-mediated DNA damage pathway in 
inflammation-associated carcinogenesis (Yan et al. 2006). DNA damage can be 
induced by conventional mutagens, such as radiation and chemicals, or endoge-
nous from errors in DNA replication or ROS produced cell metabolism. Yan and 
co-workers found that endogenous cytokine TNF-α is potent mutagen by virtue of 
its ability to induce ROS (Yan et al. 2006). Therefore, TNF-α drives tumor devel-
opment by promoting the accumulation of mutations and survival of precancerous 
or transformed cells (Yan et al. 2006).

1.3.2  Role of Inflammatory Molecules in the Survival 
of Lung Cancer Cells

A large number of studies suggest that TNF and chemokines are candidate linking 
molecules between inflammation and cancer (Lu et al. 2006). The TNF, which is 
produced mainly by activated macrophages but also by tumor cells, binds to mem-
brane-bound homotrimeric receptors (Lu et al. 2006).

It is well established the critical role of TNF-α in chronic inflammatory dis-
eases, and its tumor-promoting effects have been demonstrated (Lin and Karin 
2007). The production of TNF-α by tumor cells or inflammatory cells in the tumor 
microenvironment can promote tumor cell survival through the induction of genes 
encoding NF-кB-dependent anti-apoptotic molecules (Lin and Karin 2007; Luo 
et al. 2004). Furthermore, TNF-α promotes cell survival and thereby reduces 
asbestos-induced cytotoxicity, increasing the pool of asbestos-damaged mesothe-
lial cells that are susceptible to malignant transformation (Yang et al. 2006; Lin 
and Karin 2007). Other actions of TNF-α that might enhance tumor progression, 
as opposed to tumor initiation, include promotion of angiogenesis and metasta-
sis, as well as impairment of immune surveillance by strongly suppressing many 
T cell responses and the cytotoxic activity of activated macrophages (Elgert et al. 
1998; Lin and Karin 2007).

Transforming growth factor-β (TGFβ), an immunosuppressive cytokine (Flavell 
et al. 2010), with a pleiotropic role in tumor biology, is a cytokine frequently over-
expressed in many cancers, including NSCLC (Bruno et al. 2013; Teixeira et al. 
2011; Siegel and Massague 2003). TGFβ belong to widely expressed family of 
cytokines with pleiotropic effects on a variety of cellular functions such as cell 
growth, proliferation, differentiation, and apoptosis (Luo et al. 2010).

TGFβ also has a role in the tumor microenvironment immune cell polariza-
tion, including macrophages, neutrophils, and NK cells associated with tumor 
immune evasion (Flavell et al. 2010; Siegel and Massague 2003). High expres-
sion of TGFβ is characteristic of NSCLC and predictive of poor survival 
(Teixeira et al. 2011).

Interleukin-10 (IL-10) is a multifunctional cytokine with both immunosuppres-
sive and anti-angiogenic functions and consequently has both tumor-promoting 
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and tumor-inhibiting properties (Shih et al. 2005). Raised levels of serum and 
peri-tumoral IL-10 production have been reported in many malignant (Dummer 
et al. 1995), including lung cancer (Shih et al. 2005), which have been inter-
preted in support of a role for IL-10 in tumor escape from the immune response. 
Furthermore, increased production of immunosuppressive IL-10 by NSCLC 
and increased serum concentrations of IL-10 in NSCLC patients have both been 
shown recently to correlate with reduced survival (Shih et al. 2005). Serum levels 
of IL-10 were found to be elevated in NSCLC patients when compared to healthy 
controls; moreover, IL-10 serum levels were demonstrated to be higher in patients 
with metastatic disease as opposed to the values recorded in patients with undis-
seminated cancer (De Vita et al. 2000). IL-10 promotes tumor malignancy by 
promoting T cell apoptosis and tumor cell survival (Wang et al. 2012). In lung 
carcinomas, IL-10 production can inhibit tumor cell susceptibility to cytotoxic 
T-lymphocyte-mediated killing (Asselin-Paturel et al. 2001). IL-10 transgenic 
cytotoxic mice injected with Lewis lung carcinoma cells developed larger tumors 
than control mice, suggesting that the production of IL-10 prevents the develop-
ment of an effective immune response against the tumor cells (Montuenga and 
Pio 2007).

1.3.3  Role of Inflammatory Molecules in the Proliferation 
of Lung Cancer Cells

NK-кB is a positive mediator of cell growth and proliferation. NF-кB increases 
the expression of several factors involved cell cycle progression such as cyclins  
D and E (Chen et al. 2011). Upregulation of cyclin D1 expression by NF-кB 
is associated with enhanced transition from G1 to S phase (Chen et al. 2011; 
Nogueira et al. 2013). Furthermore, NF-кB negatively regulates expression of 
growth arrest and DNA damage-inducible protein 45 (GADD45), a cell cycle 
checkpoint protein that keeps cell at the G2/M phase transition (Chen et al. 2011). 
Additionally, the mutual interplay between NF-кB and proinflammatory cytokines 
such as TNF-α and IL-1β is also involved in stimulating cancer cell proliferation, 
particularly during chronic inflammation (Karin 2008). The contributions of NF-
кB to lung cancer development are complex, underlying mechanism of which 
have not been fully understood (Chen et al. 2011). There is considerable evidence 
that NF-кB is constitutively activated in a variety of solid tumors, including pros-
tate, breast, cervical, pancreatic, and lung cancer (Chen et al. 2011; Karin 2008). 
Although lung tumors are histologically heterogenic, tumor samples obtained 
from lung cancer patients showed high levels of NF-кB activation in both SCLC 
and NSCLC and are significantly associated with disease advancement in TNM 
stages and poor prognosis in lung cancer patients (Chen et al. 2011). Inhibiting 
NF-кB with different approaches such as siRNA, IKK inhibitors, and IkappaB 
super suppressor inhibited lung cancer cell’s survival and proliferation (Chen 
et al. 2011; Karin 2008).
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IL-6 is a potent pleiotropic inflammatory cytokine that is considered a key 
growth-promoting and anti-apoptotic factor, and this interleukin was responsi-
ble of biological activities in immune regulation, hematopoiesis, inflammation, 
and oncogenesis which is produced by various types of human normal and trans-
formed tumor cells and transformed tumor cells (Ishihara and Hirano 2002; Lin 
and Karin 2007; Chang et al. 2005). IL-6 is of particular interest because they are 
expressed in malignant epithelial cells, and their expression is associated with 
a poor prognosis in lung cancer patients (Pine et al. 2011). Consistent with this 
prominent role in cell proliferation, IL-6 has been detected in primary squamous 
cell carcinomas, adenocarcinomas, as well as in tumor cell lines (Chang et al. 
2005; Azevedo et al. 2011).

Increased serum levels of IL-6 was found in 39 % of lung cancer patients, 
whereas IL-6 was not detected in the serum of healthy people as well as patients 
with benign lung diseases (Chang et al. 2005; Yanagawa et al. 1995). Bihl and co-
workers have demonstrated that IL-6 may be required in the control of cell prolif-
eration in a subset of NSCLC cell lines, and there are two subgroups of NSCLC 
IL-6 dependent and independent (Bihl et al. 1998). Paradoxically, anti-tumor 
effects of IL-6 have been demonstrated in vitro and in vivo patients with NSCLC 
and breast cancer (Chang et al. 2005).

1.3.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Lung Cancer Cells

The tumor vasculature is derived from sprouting of local blood vessels (angiogen-
esis) and circulating vasculogenic progenitor cells derived from the bone marrow 
(vasculogenesis). The new vessels are often irregular and leaky due to lack of the 
pericyte cover, with the result that tumor cells can penetrate them more easily. As 
compared to blood capillaries, lymphatic endothelial cells have even less devel-
oped junctions with frequently large interendothelial gaps and impaired basement 
membranes (Kessenbrock et al. 2010). The invasive margin is a critical area for 
stimulation of angiogenesis and lymphangionesis in tumors, which contributes to 
tumor invasion and metastasis (Padera et al. 2002).

The major MMPs involved in tumor angiogenesis are MMP-2, MMP-9, and 
MMP-14, and to a lesser extent MMP-1 and MMP-7 (Kessenbrock et al. 2010; 
Rao et al. 2005).

MMPs are a family of proteolytic enzymes that are capable of degrading vari-
ous components of the extracellular matrix (Liu et al. 2012). They are involved 
in all stages of cancer progression, not only in the process of tumor invasion and 
metastasis (Hu et al. 2005) but also in as proliferation, adhesion, migration, dif-
ferentiation, angiogenesis, senescence, autophagy, apoptosis, and evasion of the 
immune system (Gonzalez-Arriaga et al. 2012; Deryugina and Quigley 2006). 
The expression of these MMPs by tumor cells may help to increase the invasive 
potential of tumor cells by allowing the remodeling of the extracellular matrix 
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(Hu et al. 2005; Gomes et al. 2011). The proteolytic activity is also required for 
a cancer cell to invade a nearby blood vessel (intravasation) and then extravasate 
at a distant location and invade the distant tissue in order to seed a new metastatic 
site (Roy et al. 2009). Increased expression of MMP-2 and MMP-9 was shown to 
correlate with an invasive phenotype of cancer cells (Vihinen and Kahari 2002). 
Several recent reports confirmed lung neoplastic cells produce both and their 
inhibitors (Brown et al. 1993).

MMPs have also been implicated in the epithelial to mesenchymal transition 
(EMT), a hallmark of cancer progression to metastasis (Thiery 2002; Roy et al. 
2009; Rao et al. 2005). During EMT, tumor cells acquire migratory characteris-
tics and more readily invade into surrounding tissues and metastasize to secondary 
sites (Roy et al. 2009; Rao et al. 2005).

Several studies have reported that plasma and/or serum levels of MMP-9 and 
TIMP-1 are elevated in patient with stage III or IV lung cancer, when compared 
with those in patients with nonmalignant lung diseases (Jumper et al. 2004; Koc 
et al. 2006). Retrospective studies of NSCLC tissue found that MMP-7 expression 
was higher in squamous cell carcinomas than in adenocarcinomas and correlated 
with significantly lower overall in patients (Liu et al. 2007). In the normal lung, 
MMP-9 is not produced by resident cells, but under various forms of stimulation, 
bronchial epithelial cells, alveolar type II cells, fibroblasts, smooth muscle cells, 
and endothelial cells produce MMP-9 (Atkinson and Senior 2003). Leukocytes in 
the lung can also be a source of MMP-9. Macrophages, eosinophils, mast cells, 
lymphocytes, NK cells, and dendritic cells all can produce MMP-9 (Atkinson and 
Senior 2003). Lung cancer cells, both primary and metastatic, can express MMP-9 
constitutively, which may correlate with metastatic potential (Atkinson and Senior 
2003; Zucker et al. 1992; Baruch et al. 2001) (Fig. 1.3).

Fig . 1 .3  Overview of 
the role of inflammatory 
molecules in development of 
lung cancer
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1 .4  Evidence from Patients for the Role of Inflammation 
in Lung Cancer Cells

In study of Zeni and co-workers, they show that expression of IL-10 is increased in 
TAMs of patients with stage II, III, and IV NSCLC compared with those with stage 
I NSCLC. In adition, IL-10 positive TAM percentage was higher in patients with 
lymph node metastases than in those without lymph node metastases. Moreover, 
higher IL-10 expression by TAMs was associated with shorter overall survival 
(Zeni et al. 2007). This study was the first time they showed, in NSCLC, TAMs 
express IL-10 and that its expression correlates with both disease progression and 
prognosis (Zeni et al. 2007). By the other hand, the study of Hatanaka and co-work-
ers shows that NSCLC patients with high IL-10-expressing tumors showed poorer 
prognosis than those without IL-10 expression (Hatanaka et al. 2000).

Another important molecule is RANTES (Regulated on Activation, Normal  
T cell Expressed and Secreted); also, CCL5 is a known chemotactic cytokine that 
is produced by many cell types, including T-lymphocytes, monocytes, platelets, 
eosinophils, epithelial cells, dendritic cells, and mast cells (Umekawa et al. 2013). 
RANTES has been used as a prognostic indicator in both breast and cervical can-
cers, and high levels of RANTES in these malignancies correlate with poor out-
come (Borczuk et al. 2008; Niwa et al. 2001).

Umekawa and co-workers showed that, in NSCLC patients, high level of 
plasma RANTES at diagnosis was associated with the severity of general fatigue. 
Low level of plasma RANTES at diagnosis was significantly associated with long-
term survival. Thus, patients with high systemic inflammation, as represented 
by RANTES, may experience severe general fatigue and shorter survival time 
(Umekawa et al. 2013). In another study, Moran and co-workers found a correla-
tion between increased RANTES expression and tumor lymphocytic response in 
lung cancer patients (Moran et al. 2002).

De Vita, in 1998, has evaluated serum levels of IL-6 in a group of advanced 
NSCLC patients and found that patients who respond to cisplatin-based chemo-
therapy have lower serum IL-6 levels when compared with unresponsive patients. 
Their data suggest that NSCLC patients with high levels of IL-6 have a worse clin-
ical outcome and may manifest resistance to cisplatin chemotherapy (De Vita et al. 
1998). However, in study of Chang and co-workers, they failed to demonstrate that 
exogenous or endogenous IL-6 could influence cisplatin or etoposide sensitivity of 
the tested NSCLC cells at cellular level (Chang et al. 2005).

1 .5  Inhibitors of Inflammation for the Prevention 
and Treatment of Lung Cancer

Epidemiologic studies and meta-analysis have shown that prolonged use of 
NSAIDs reduces the risk of several solid tumor including lung cancer, and recent 
meta-analysis suggests that low-dose aspirin could reduce the relative risk of 
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cancer mortality (Zhan et al. 2013; Vaish and Sanyal 2011; Setia and Sanyal 
2012). Both clinical and experimental studies support the anti-neoplastic effects 
of NSAIDs mediated by regulation of COX-2 levels and induction of apoptosis 
(Haynes et al. 2003). A daily intake of NSAIDs for 1 or 2 years is reported to 
reduce 60–68 % of relative risk of lung cancer (Harris et al. 2007). The best 
known target of NSAIDs, including aspirin, is the enzyme COX-2, a key enzyme 
involved in the production of prostaglandins and other eicosanoids from arachi-
donic acid (Menter et al. 2010; Pereira et al. 2010). Due primarily to the action 
of COXs on the free arachidonic acid (AA) liberated from membrane phospho-
lipids, overproduction of PGE2 which is predominantly generated by upregula-
tion of COX-2 is associated with a variety of carcinogenic mechanisms (Mao 
et al. 2005, 2011).

The association between COX-2 overexpression and survival in lung cancer 
patients has been studied for over a decade (Dalwadi et al. 2005). COX-2 expres-
sion has also been shown to be a poor prognostic indicator in non-small-cell lung 
cancer (Khuri et al. 2001; Li et al. 2011). Inhibition of COX-2 and thus of PGE2 
synthesis suppresses lung tumorigenesis in animal models (Mao et al. 2011). 
According to these evidences, COX-2 is one of the targets under investigation 
for lung cancer therapy and chemoprevention (Dubinett et al. 2003; Lee et al. 
2007). Some reports indicate that the regular use of aspirin and other is associated 
with reduced risks of developing lung cancer in animal models and in smokers 
(Smith et al. 2006; Brody and Spira 2006; Peebles et al. 2007). Later epidemio-
logic studies have confirmed the chemopreventive effect of NSAIDs in colorectal 
cancer (Gupta and Dubois 2001). More recently, it has become clear that effects 
of aspirin may not be restricted to gastrointestinal tract cancers, but may also be 
relevant in the prevention of breast cancer and lung cancer (Ballaz and Mulshine 
2003). In animal model of lung cancer, anti-inflammatory treatment resulted in a 
significance (34–52 %) reduction of tumor multiplicity (i.e., in number of tumors 
per animal), although treatment with anti-inflammatory drugs did not completely 
inhibit tumor growth (Rioux and Castonguay 1998; Duperron and Castonguay 
1997; Ballaz and Mulshine 2003).

Strong lines of evidence suggest that the chemopreventive properties of chronic 
NSAID administration are based on their COX-inhibitory activity. Overexpression 
of COX-2 is associated with poorer prognosis in some cancers, including NSCLC 
(Brabender et al. 2002; Ballaz and Mulshine 2003).

However, increasing evidences showing that NF-кB plays a critical role in lung 
cancer development suggest NF-кB as a target for lung cancer chemoprevention 
(Chen et al. 2011). Interestingly, some agents that have lung cancer preventive 
potential, including NSAIDs and dietary compounds, possess inhibitory activity 
on NF-кB (Cuzick et al. 2009). Oral administration of pomegranate fruit extract, 
which inhibits NF-кB, significantly reduced multiplicity of lung tumor induced 
by benzo(a)pyrene and N-nitroso-tris-chloroethylurea (Khan et al. 2007a, b). 
Chemoprevention involves prolonged use of preventive agents. The long-time use 
of the NF-кB inhibitors or anti-inflammatory drugs is likely to result in un-tolera-
ble side effects (Karin 2006). Thus, dedicated single NF-кB inhibitors are unlikely 
to be used as chemoprevention agents (Cuzick et al. 2009). It has been proposed 
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that logically constructed mixtures of agents or combination treatments are better 
choice for lung cancer chemoprevention (Chen et al. 2011). This strategy would 
improve the efficacy of cancer prevention while eliminate the possible side effects.

1 .6  Conclusions and Future Directions

Inflammation can affect all hallmarks of tumor development and prognosis as well 
as the response to therapy. During the inflammation progress, various types of leu-
kocytes, lymphocytes, and other inflammatory cells are activated and attracted to 
the inflamed site by a signaling network involving a great number of growth fac-
tors, cytokines, and chemokines (Lu et al. 2006).

In the NSCLC microenvironment, there is a complex interaction between 
immune cells and tumor cells as well as other stromal cell types and tissue compo-
nents. The distribution of these cells and the expression of different inflammatory 
molecules throughout the tumor microenvironment are, to various extents, related 
to tumor progression and survival.

We believe that further studies are needed and further research in order to find 
new predictive and prognosis biomarkers in NSCLC. Also needed are new meas-
ures to reduce the risk of cancer. Thereby, prevention is a much better and more 
economical way to fight cancer than treating an already advanced and often incur-
able disease.
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Abstract Colorectal cancer (CRC) is the one of the leading causes of cancer-related 
deaths in the world. CRC is responsible for more than 600,000 deaths annually and 
incidence rates are increasing in most of the developing countries. Epidemiological 
and laboratory investigations suggest that environmental factors such as western 
style dietary habits, tobacco-smoking, and lack of physical activities are considered 
as risks for CRC.  Molecular pathobiology of CRC implicates pro-inflammatory 
conditions to promote the tumor malignant progression, invasion, and metasta-
sis.  It is well known that patients with inflammatory bowel disease are at higher 
risk of CRC. Many evidences exist reiterating the link between Inflammation 
and CRC. Inflammation involves interaction between various immune cells, 
 inflammatory cells, chemokines, cytokines, and pro-inflammatory mediators, such 
as  cyclooxygenase (COX) and lipoxygenase (LOX) pathways, which may lead to 
signaling towards, tumor cell proliferation, growth, and invasion. Thus, this review 
will focus on mechanisms by which pro-inflammatory mediators and reactive oxy-
gen/nitrogen species play a role in promoting CRC. Based on these mechanisms, 
various preventive strategies, involving anti-inflammatory agents, such as COX 
inhibitors, COX-LOX inhibitors, iNOS inhibitors, natural supplements/agents, and 
synthetic agents, that blocks the inflammatory pathways and suppress CRC are dis-
cussed in this review. 
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Abbreviations

CRC  Colorectal cancer
CAC  Colitis-associated cancer
IBD  Inflammatory bowel disease
NSAIDs  Non-steroidal anti-inflammatory drugs
NK  Natural killer cells
DC  Dendritic cells
ACF  Aberrant crypt foci
T reg  T regulatory cells
5-ASA  5-aminosalicylic acid
MCP-1  Monocytes chemo attractant protein 1
PGE2  Prostaglandin E2

IL-8  Interleukin-8
IL-6  Interleukin-6
IL-10  Interleukin 10
TNF-α  Tumor necrosis factor- α
COX-2  Cyclooxygenase-2
PGI2  Prostaglandin I2

PGD2  Prostaglandin D2

LT  Leukotriene
HPETE  Hydroperoxyeicosatetraenoic acid
EETs  Epoxy-eicosatrienoic acids
EPA  Eicosapentaenoic acid
DHA  Decosahexaenoic acid
PUFAs  Polyunsaturated fatty acids (PUFAs)
LX  Lipoxins
RVs  Resolvins
AOM  Azoxymethane
NO  Nitric oxide
NF-κB  Nuclear factor–κB
MMP  Matrix metalloproteinase
PI3K  Phosphatidylinositol 3-kinase
mPGES  Microsomal prostaglandin E synthase
VEGF  Vascular endothelial growth factor
FLAP  Five lox activating protein
DP1  PGD2 receptor
ROS  Reactive oxygen species
RNS  Reactive nitrogen species
NO  Nitric oxide
iNOS  Inducible nitric oxide synthase
nNOS  Neuronal nitric oxide synthase
eNOS  Endothelial nitric oxide synthase
APC  Adenomatous polyposis coli
LPS  Lipopolysaccharide
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IL-1β  Interleukin-1β

AA  Arachidonic acid
NO-NSAID  NO-releasing NSAID
IL-4  Interleukin 4
COXibs  COX-2-specific inhibitors
FAP  Familial adenomatous polyposis
L-NAME  L-nitro arginine methyl ester
Se-PBIT  Selenium [S,S’-1,4-phenylenebis(1,2-ethanediyl) bis-isothiourea]
GI  Gastrointestinal
MIP  Macrophage inflammatory protein
MCP  Monocytes chemo attractant protein
ABC  ATP-binding cassette
DMH  Dimethyl hydrazine
MDFs  Mucin depleted foci
DSS  Dextran sulfate sodium
EPA-FFA  Eicosapentaenoic acid-free fatty acid
ONA  Oleanolic acid
OT  18α-olean-12-ene-3β-23,28-triol
18R-RvE1  5,12,18R-trihydroxy-EPA
LXA4  lipoxins A4

ABC  ATP-binding cassette

2 .1  Colorectal Cancer: A Major Health Problem

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths 
in the United States (US). Early diagnosis, though, often can lead to a complete 
cure. Each year, worldwide more than 1.2 million cases are diagnosed with about 
600,000 deaths. CRC is the third most common cancer diagnosed in both men and 
women in the US and the fourth most common cause of cancer mortality world-
wide (Tenesa and Dunlop 2009). It is the second most common cause of cancer 
deaths in the US. Overall, the lifetime risk of developing CRC is ~6 %. As per 
American Cancer Society statistics, it is expected to cause about 50,830 deaths 
during 2013 (ACS). Most of the CRC cases are sporadic and about 25 % are 
linked to genetic disorders. The majority of CRC cases are linked to environmen-
tal factors, including diet, exercise, weight, food borne mutagens, intestinal com-
mensals, and chronic intestinal inflammation, which precedes tumor development.

2 .2  Inflammatory Bowel Disease as Risk Factor 
for Colorectal Cancer

Inflammatory bowel disease (IBD) may lead to colitis-associated cancer (CAC), which 
is a usually difficult-to-treat cancer having high mortality (Feagins et al. 2009). It is 
reported that more than 20 % of IBD patients develop cancer and 50 % of these will 
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die of colon cancer (Lakatos and Lakotos 2008). These patients are reported to have 
increased inflammatory infiltration and increased expression of inflammatory genes 
(Atreya and Neurath 2008; Atreya et al. 2008; Waldner and Neurath 2008; Clevers 
2004). A higher risk for colon cancer is observed in IBD patients who have a fam-
ily history of CRC (Askling et al. 2001). This increased risk suggests an overlap of 
signaling pathways and mechanisms that drive cancer development in CAC and CRC. 
Anti-inflammatory therapy has been reported to reduce the risk or prevent CRC and 
colitis-related CRC in several observational studies. Non-steroidal anti-inflammatory 
drugs (NSAIDs) have been reported to reduce colorectal neoplasia by 40–50 % (Thun 
et al. 1991; Smalley and Dubois 1997) and also have been reported to reduce CRC 
mortality odds by 49 % in a population of US military veterans with IBD (Bansal and 
Sonnenberg 1996). A recent meta-analysis of 9 observational studies reported that use 
of 5-aminosalicylic acid (5-ASA), mesalamine reduced the odds of colitis-related CRC 
by 49 % (Velayos et al. 2006). It is noteworthy that anti-inflammatory drugs such as 
5-aminosalicylate-based compounds have remained in the mainstream for the treat-
ment of IBD patients for >50 years. The findings in the human studies confirm obser-
vations in animal models, which show that NSAIDs reduce the occurrence of intestinal 
neoplasia. More than 90 % of 110 preclinical animal studies examining the effects of 
NSAIDs on tumorigenesis reported an anti-neoplastic effect (Hawk and Levin 2005). 
The large volume of compelling data on the use of anti-inflammatory agents/NSAIDs 
to reduce the risk of CRC suggests a potential role of inflammation in CRC.

2 .3  Inflammation in CRC

Inflammation is driven by the accumulation of various immune and inflamma-
tory cells and soluble inflammatory mediators, such as cytokines, chemokines, 
growth factors, lipid molecules, reactive oxygen, and nitrogen species. The inter-
action between these immune and inflammatory cells and cytokines leads to 
generation of autocrine and paracrine signals that foster tumor cell progression, 
growth, and metastases. A clear link exits between inflammation and CRC. Even 
CRC that is linked to genetic mutations shows a contribution from inflammation 
to tumor development, as shown by the decreased CRC mortality with regular use 
of NSAIDs. These data strongly support a pro-tumorigenic role of inflammation 
in colon cancer. Various factors can influence the initiation of inflammation and 
establishment of CRC.

2 .4  Role of Immune and Inflammatory Cells in CRC

Pathological analysis of CRC shows infiltration with various types of cells that func-
tion in innate immunity, such as neutrophils, mast cells, natural killer (NK) cells, 
dendritic cells (DC), and tumor-associated macrophages (Atreya and Neurath 2008). 
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These cells help in anti-tumor immune responses by suppressing tumor growth 
and angiogenesis. They also help to recruit and interact with other cells involved 
in adaptive immune responses. Collectively, these responses lead to a balancing of 
immune surveillance with tumor-promoting inflammatory functions. Immune sur-
veillance helps in early detection of aberrant crypt foci (ACF) and elimination of 
aberrant cells, which may progress into adenomas and adenocarcinomas in CRC. 
However, when a chronic inflammation persists, it creates an environment that out-
competes immune surveillance mechanisms and creates a microenvironment that 
favors inhibition of anti-tumor immune responses and leads to formation of tolero-
genic DCs and infiltration of T regulatory cells (T reg), which help in establishment 
of tumor cell growth. T reg infiltration is associated with bad prognosis (Erdman 
et al. 2005; Dunn et al. 2004). Thus, it is necessary to design drugs and  standardize 
doses that will inhibit only tumor-promoting immune responses and will spare 
tumor-inhibiting responses.

2 .5  Resolution of Inflammation and Pro-Inflammatory 
Mediators in CRC

Macrophages accumulate at the site of inflammation or injury and are activated 
by the cytokines interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α), and 
monocytes chemoattractant protein (MCP-1). Neutrophils follow for resolution 
of inflammation. Eventually, fibroblasts play a role in tissue repair by secreting 
pro-inflammatory cytokines such as interleukin-6 (IL-6), interleukin-8 (IL-8), and 
prostaglandin E2 (PGE2), which will help in the neutrophil response. Epithelial 
cells and stromal cells together help in repairing/healing the wound. Resolution 
of inflammation by recruitment of neutrophils can lead to complete remission of 
inflammation and stop the aberrant proliferation, which can extend into tumor 
growth. However, if this active process of resolution of inflammation is impaired, 
the on-going tissue repair eventually may lead to chronic inflammation, which 
predisposes to cancer. Cyclooxygenase (COX) and lipoxygenase (LOX) pathways 
and persisting inflammatory cells are involved in generating pro-inflammatory 
lipid mediators and gene responses, creating a favorable microenvironment that 
eventually can lead to tumor cell growth, proliferation, and metastases.

2 .6  Role of Inflammatory Bioactive Arachidonic 
Acid Lipid Metabolites in CRC

Arachidonic acid (AA) is an omega-6 polyunsaturated fatty acid (PUFA) present in 
the phospholipids of cell membranes. It acts as a precursor for production of vari-
ous eicosanoids usually generated by three enzymes: COX, LOX, and cytochrome 
p450. The metabolites formed by action of COX and LOX are prostaglandin I2 
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(PGI2), prostaglandin D2 (PGD2), PGE2 and thromboxane A4 and Leukotrienes 
(LT)-A4, C4, D4 and B4, respectively. The LOX metabolites involve hydroperox-
yeicosatetraenoic acids (HPETE) such as 5-HPETE, 12-HPETE, and 15-HPETE. 
The metabolites of P450 are epoxy-eicosatrienoic acids (EETs) resulting in four 
regioisomeric EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET). The other 
metabolites that play a role during inflammatory processes are omega-3FAs [eicos-
apentaenoic acid (EPA) and decosahexaenoic acid (DHA)] derived from PUFAs. 
The other important bioactive molecules derived from these intermediates are 
lipoxins (LX) and resolvins (RVs). Unlike some of the COX and LOX metabolites, 
these bioactive molecules display potent anti-inflammatory, immunoregulatory, 
pro-resolving and anti-tumorigenic properties.

2.6.1  Role of Inflammatory Lipid Molecules Derived  
from the COX-2 Pathway in CRC

COX-2 is the inducible COX gene that mediates prostaglandin synthesis and pro-
inflammatory functions. The expression of COX-2 is elevated in 50 % of ade-
nomas and in 85 % of adenocarcinomas. In human intestinal tumors, COX-2 is 
expressed in epithelial and stromal cells; it usually is induced by interleukin 1β 
(IL-1β) and TNF-α. Over-expression of COX-2 increased azoxymethane (AOM)-
induced tumor formation (Al-Salihi et al. 2009); and COX-2 deficiency signifi-
cantly diminished tumorigenesis in mouse models of colon cancer (Chulada et al. 
2000a, b; Oshima et al. 1996a, b), confirming a role for COX-2 in tumorigenesis. 
The pro-inflammatory and pro-tumorigenic effects of COX-2 are mediated by its 
major end product, PGE2, which stimulates tumor cell proliferation/growth, angi-
ogenesis, and survival and inhibits apoptosis in CRC (Wang and Dubois 2006; 
Castellone et al. 2006). PGE2 activates a number of oncogenic signaling pathways, 
including β-catenin/transcription factors (TCF), Ras, and the phosphatidylino-
sitol 3-kinase (PI3K) pathways. The generation of microsomal prostaglandin E 
synthase (mPGES-1)-deficient mice has revealed a dominant role of this enzyme 
in PGE2 generation relevant to promotion of inflammation (Trebino et al. 2003). 
The mPGES-1-derived-PGE2 exhibits similar inflammatory responses during 
tumor growth. mPGES-1 deficiency was linked to reduced vascular endothelial 
growth factor (VEGF). Together, these findings show that deletion or inhibition of 
mPGES-1 markedly reduces inflammatory responses in mouse models and eventu-
ally may lead to inhibition of tumor cell proliferation.

PGD2, another important metabolite of COX-2, appears to be a negative regu-
lator of tumorigenesis; it has been demonstrated to possess anti-tumor proper-
ties (Murata et al. 2008). It is produced locally by inflammatory cells at sites of 
inflammation; and its receptor (DP1) also is expressed highly in tumor endothelial 
cells. The DP1 receptor is expressed on DCs that play a key role in initiating an 
adaptive immune response to foreign antigens (Hammad et al. 2003). These stud-
ies suggest that different COX-2-derived prostaglandins have opposing effects on 
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inflammation and tumor cell proliferation and that selective modulation of these 
prostaglandins may prevent tumor growth in CRC.

2.6.2  Role of Lipid Molecules Derived from the LOX 
Pathway in Inflammation and CRC

Among the LOX pathways, 5-LOX and 12-LOX pathways are closely related to 
inflammation and carcinogenesis; however, metabolites from another LOX path-
way, 15-LOX are linked positively and shown to inhibit inflammation and carcino-
genesis. A number of reports suggest the involvement of 5-LOX in early stages of 
CRC (Qiao et al. 1995; Bortuzzo et al. 1996; Avis et al. 2001; Ding et al. 2003; 
Tong et al. 2005). Hong et al. (1999) reported high expression of 5-LOX and 
5-LOX-activating protein in cancer cell lines. High expression of 5-LOX and its 
receptors was observed in CRC patients showing poor prognosis (Ohd et al. 2003). 
Accumulation of 5-HETE and LT upon activation of 5-LOX resulted in cancer cell 
proliferation (Ding et al. 1999). COX and LOX pathways are both linked in such 
a way that disturbance in one pathway may lead to over-expression of the other 
pathway; thus, balanced inhibition of these two pathways is favorable for inhibit-
ing CRC (Byrum et al. 1997; Griffiths et al. 1997; Goulet et al. 1994). Many stud-
ies have suggested that removal of 5-LOX and 5-LOX-activating protein (FLAP) 
results in increased expression of COX metabolites (Byrum et al. 1997; Goulet et 
al. 1994). These studies provide evidence for an important role of 5-LOX in CRC 
and suggest the potential for chemoprevention and treatment for CRC. Thus, tar-
geting both COX-2 and 5-LOX pathways together and increasing production of 
LX and RVs is a better approach for prevention/treatment of CRC.

2.6.3  Role of Reactive Oxygen and Nitrogen Species 
in Inflammation and CRC

Inflammation also is associated with generation of reactive oxygen species (ROS) 
and reactive nitrogen species (RNS). Free radicals are known to be involved in 
carcinogenesis (Goldstein and Witz 1990; Cerutti 1985). Inflammatory phago-
cytic cells make ROS. O2

.− is the initial ROS and undergoes sequential metabolic 
changes that generate other species (i.e., OH, OCl−, and H2O2). Usually, these 
reactive species lead to mutations in DNA that may be mutagenic and involved 
in the etiology of cancer (Babbs 1990). A significant increased expression in ROS 
was reported by Haklar et al. (2001) in patient colon tumors.

The literature in this area generally is consistent with the view that the enhanced 
production of ROS and bioavailability of nitric oxide (NO) that accompany an inflam-
matory response play pivotal roles in mediating formation of microvessels dur-
ing tumor growth. Activated inflammatory cells produce ROS and reactive nitrogen 
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intermediates that can induce DNA damage and mutation in adjacent epithelial cells. 
These changes can stimulate ROS production within the epithelial cells may cause 
epigenetic silencing of tumor suppressor genes (Meira et al. 2008; Westbrook et al. 
2009). The discovery of NO as a product of immune system cells has implicated this 
chemical in the mechanism of carcinogenesis (Tamir and Tannenbaus 1996). Produced 
NO can interact with O2

.− resulting in the propagation of the highly reactive species 
peroxynitrite (Oshima and Bartsch 1994). Peroxynitrite, which is formed from the 
reaction between O2

.− and NO, reacts with all classes of biomolecules and thereby is 
thought to be involved in many pathologic phenomena (Bartosz 1996). NO and perox-
ynitrite concentrations were reported to be increased in cancerous samples (Haklar et 
al. 2001). NO is produced by three isoforms of nitric oxide synthase (NOS) [neuronal 
nitric oxide synthase (nNOS), endothelial nitric oxide synthase (eNOS), and induc-
ible NOS (iNOS)]. nNOS and eNOS are constitutive NOS isoforms, whereas iNOS is 
induced upon exposure to inflammatory stimulation. iNOS is expressed in many cells: 
extravascular resident leukocytes (macrophages), intravascular and/or infiltrating leu-
kocytes (neutrophils and monocytes), endothelium, and parenchymal cells, including 
intestinal epithelium. Its production is stimulated by lipopolysaccharide (LPS), TNF-α, 
or interleukin-1β (IL-1β). The role of NO in colon cancer is controversial. Increased 
production of NO for a limited time is considered to produce positive results in inhib-
iting CRC, whereas chronic and continuous production of NO produced by iNOS is 
implicated in neoplastic transformation, a very crucial step during carcinogenesis. 
Studies with iNOS knockout mice suggested a positive role for iNOS in inducing pol-
yps in adenomatous polyposis coli (APC) min/+ mice (Hofseth et al. 2003; Crowell 
et al. 2003; Ahn and Ohshima 2001; Nam et al. 2004). High expression of iNOS in 
CRC xenografts suggested an inhibitory role for iNOS in tumor growth (Xu et al. 
2002). In various preclinical studies in animal models, we noted that iNOS inhibitors 
show promise for inhibiting CRC (Rao et al. 1999, 2002). In summary, both increased 
expression and decreased expression of NO is observed to have beneficial effects on 
CRC. Carefully designed, detailed studies to understand the role of NO during inflam-
mation are necessary in order to understand how to modulate its effects in CRC. 
Interactions between NO and COX-2 are well documented, and combinations of iNOS 
inhibitors and COX-2 inhibitors have provided inhibition of invasive adenocarcinomas 
in animal models of colon cancer (Janakiram and Rao 2012).

2 .7  Anti-inflammatory Agents in Prevention of CRC

Since it is evident that inflammation is a significant contributor to CRC, anti- 
inflammatory agents, both from synthetic and natural origin, have gained importance 
for use in prevention and treatment of CRC. As mentioned previously, NSAIDs are 
the main anti-inflammatory agents shown to possess anti-tumorigenic properties. They 
function by inhibiting AA-related pathways and by enhancing immune responses 
against tumor development. iNOS inhibitors also have gained importance as anti-
inflammatory agents in CRC and in other cancers. CRC is associated with lower con-
sumption of fruits and vegetables and greater consumptions of fatty foods  implicated 
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in  causing CRC, thus natural constituents in these and other foods may contribute to 
reduce cancer risk or prevention. Here, we discuss various synthetic and natural bio-
active compounds that can activate or deactivate signaling cascades implicated during 
tumor development and that may exhibit chemopreventive properties.

2.7.1  Synthetic Anti-Inflammatory Agents  
for Prevention of CRC

Preclinical and clinical evidences suggest the presence of high levels of prostaglan-
dins, such as PGE2 as mentioned earlier, which affect tumor cell proliferation by 
suppressing immune responses (Marnett 1992; Smith 1992). Hence, it is reasonable 
to use NSAIDs that can suppress the synthesis of these prostaglandins by inhibiting 
COX enzymes may in turn suppress tumor development and growth in colon.

Epidemiological studies, intervention trials, and animal studies have provided 
compelling data for inhibition of colorectal carcinogenesis by aspirin and other 
NSAIDs (Giovannuci 1999; Brown and Dubois 2005). The first epidemiological 
report suggested use of aspirin to decrease risk for CRC (Kune et al. 1988). Most of 
the subsequent case–control studies and prospective studies supported these results 
(Thun et al. 1991; Freedman et al. 1998; La Vecchia et al. 1977; Muscat et al. 1994; 
Peleg et al. 1994; Suh et al. 1993; Giovannucci et al. 1994; Schreinemachers and 
Everson 1994; Chan et al. 2005). The relative risks were very consistent in reducing 
the risk to 50 % in aspirin users compared with non-aspirin users. Studies on pre-
cursors of CRC such as adenomatous polyps have shown similarly decreased risks 
(Suh et al. 1993; Greenberg et al. 1993; Logan et al. 1993; Martinez et al. 1995). 
Whereas, the risk reduction of CRC is linked to the dose intake and also the dura-
tion of aspirin use which is explored in a subset of studies. Across-study compari-
sons indicate a dose—response relationship between aspirin and CRC or other cancer 
types (Harris et al. 2005). A greatest risk reduction was seen among women who 
took more than two aspirin tablets daily reported by the Nurses’ Health Study sup-
port a strong dose—response relationship with colon cancer (Chan et al. 2005). Ten 
years of consistent aspirin use seems to be having reduced risks of CRC which is evi-
denced and seems consistent (Chan et al. 2005). Further, the role of NSAIDs/aspirin 
use is substantially strengthened in secondary prevention for reduction of metachro-
nous lesions among patients with primary colorectal adenomas or CRC by two ran-
domized controlled trials. In this trial, aspirin had a modest effect on patients with 
previous adenomas in reducing the risk of developing new adenomas or cancer that 
differed by dose. In this study, a lower dose (81 mg/day) showed better response of 
19 % reduced risk of adenomas than a higher dose (325 mg/day) (Sandler et al. 2003; 
Baron et al. 2003). Aspirin use as a chemopreventive agent is strongly supported 
by these trails against colorectal carcinogenesis among individuals with a known 
increased risk as a result of previous disease.

We and others have previously shown that several COX inhibitors, such as indo-
methacin, piroxicam, aspirin, ibuprofen, and sulindac suppress colon carcinogenesis 
in AOM-induced F344 rats (Reddy et al. 1993, 1987; Metzger et al. 1984; Narisawa 
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et al. 1993; Pollard and Luckert 1984; Moorghen et al. 1988). Indomethacin was 
reported to inhibit tumor growth in chemically induced large-bowel tumors in rats 
(Kudo et al. 1980). Similar results were observed in other preclinical studies (Pollard 
and Luckert 1980, 1981; Narisawa et al. 1981). Due to GI toxicities of indometha-
cin, we developed and tested a potentially less toxic derivative, NO-indomethecin, 
in AOM-induced carcinoma models. Nitric oxide-releasing non-steroidal anti-
inflammatory drugs (NO-NSAID) are promising chemoprevention agents; unlike 
conventional NSAIDs, they seem to be free of appreciable adverse effects, while 
they retain the beneficial activities of their parent compounds. NO-indomethecin sig-
nificantly suppressed AOM-induced tumor multiplicity and incidence in F344 rats 
(Rao et al. 2006). Its activity is related to suppression of COX, iNOS, and β-catenin 
levels (Fig. 2.1).

Fig . 2 .1  The figure depicts the various pathways observed which initiates inflammation and 
tumor cell proliferation. Arachidonic acid metabolism leads to formation of both pro-inflam-
matory and anti-inflammatory metabolites. 5-LOX pathway leads to formation of leukotrienes 
which are known for their pro-inflammatory and pro-tumorigenic role. Triterpenoids are reported 
to show inhibitory effects on formation of leukotrienes. COX-2 in the presence of aspirin will 
lead to formation of epilipoxins (epiLXA4), which are anti-inflammatory and anti-tumorigenic in 
functions. Naturally 5-LOX pathway leads to formation of lipoxins, which show similar func-
tions as that of epiLXA4. COX-1 and COX-2 pathway leads to the formation of eicosanoids, 
PGI2, PGF2, TXA2, PGD2, and PGE2. PGE2 has been found to play a vital role during inflamma-
tion, development of Tregs, formation of tolerogenic DCs, tumor cell proliferation, and growth. 
NSAIDs and natural agent like curcumin are reported to have inhibitory effects on the formation 
of eicosanoids. LPS, IL-1β, and TNF-α are known to be involved in formation of nitric oxide 
(NO), and IL-6 is a known inflammatory cytokine involved during tumorigenesis. NO formed can 
initiate the inflammation and tumor formation by itself or by interacting COX-2 pathway. iNOS 
inhibitors and triterpenoids are shown to inhibit NO formation, and resveratrol and diosgenin 
inhibit pro-inflammatory cytokines. The free radical formation by macrophages which can cause 
DNA damage and eventually tumor cell proliferation by down-regulating p21, p53, and BAX are 
observed. Curcumin and resveratrol are reported to restore p21, p53, and p53 and inhibit tumor 
cell proliferation
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Rigau et al. (1991) have demonstrated that colon mucosal samples from 
patients on long-term sulindac therapy have a reduced PG-biosynthetic capac-
ity. In a randomized, placebo-controlled, double-blind crossover study in patients 
with familial adenomatous polyposis (FAP), administration of sulindac at a dose 
of 300 mg/day for 6–12 months caused disappearance of all polyps (Laybayle 
et al. 1991). Most of the clinical trials with FAP patients on long-term treatment 
with sulindac reported a reduction in the number and size of adenomas (Belliveau 
and Graham 1984; Waddel et al. 1989; Laybayle et al. 1991; Spagnesi et al. 1994; 
Winde et al. 1993; Giardello et al. 1993). Dietary administration of sulindac inhib-
ited dimethyl hydrazine (DMH)-induced colon tumor incidence and multiplicity 
in mice (Moorghen et al. 1998; Skinner et al. 1991). In these experiments, sulin-
dac was administered along with DMH throughout the study; however, administra-
tion of sulindac to mice seventeen weeks after DMH administration showed no 
reduction in colon tumor growth or development. Oral administration of sulindac 
(10 mg/kg) twice daily inhibited DMH-induced primary colon tumor development 
and growth in rats. Ahnen et al. (1994) showed that dietary administration of sulin-
dac and its metabolite sulindac sulfone significantly inhibited AOM-induced colon 
carcinogenesis in F344 rats. We found that sulindac was effective at both initia-
tion and postinitiation stages of colon tumor formation in F344 rats (Rao et al. 
1995). This study suggested that its inhibitory function may be due to its modula-
tory effects on AA metabolism. In another study by Suh et al. (2011), the NSAIDs 
sulindac and naproxen, individually and in combination with atorvastatin, caused 
significant reduction in AOM-induced colon tumors in F344 rats. The NSAID-fed 
animals showed reduction in inflammatory markers iNOS and COX-2 as well as in 
phospho-p65 and in the pro-inflammatory cytokines TNF-α, IL-1β, and interleukin 
4 (IL-4). Hence, use of NSAIDs in combination with statins was suggested for 
retaining efficacy with less/no GI toxicity.

The concern over gastric toxicity associated with aspirin use led to efforts to 
develop COX-2-specific inhibitors (COXibs such as rofecoxib, celecoxib) (Gupta 
and Dubois 2001). Available literature provides strong evidence for a role of 
COX-2 in inflammation and carcinogenesis. Several studies using COX-2 knock-
out or disrupted genes in mouse models of FAP or in chemically induced colon 
carcinogenesis in rats indicated that COX-2 selective inhibitors, such as rofecoxib 
and celecoxib, inhibit formation of intestinal adenomas (Dannenberg et al. 2005; 
Rao and Reddy 2004; Oshima et al. 1996a, b, 2001; Chulada et al. 2000a, b; 
Jacoby et al. 2000; Boolbol et al. 1996; Mahmoud et al. 1998; Kawamori et al. 
1998; Reddy and Rao 2002). In a clinical trial, FAP patients treated twice daily 
with 400 or 200 mg celecoxib had 31 and 12 % reduction, respectively, in polyp 
number (Arber et al. 2006). In this clinical trial, celecoxib, at a dose of 400 mg 
daily, reduced advanced adenoma formation in the colon by almost 50 % com-
pared with the placebo through a 3-year treatment period (Arbor et al. 2006). 
Although introduction of COXibs was successful in reducing GI toxicity, these 
drugs were associated with cardiovascular toxicity due to high selectivity toward 
COX-2 (Smith et al. 2000; Silverstein et al. 2000; Laine et al. 2003; Bresalier 
et al. 2005; Nussmeier et al. 2005; Solomon et al. 2005). An initial study indicated 
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possible increases in the incidence of myocardial infarction with use of COXibs 
(Bombardier et al. 2000). No randomized controlled trials specifically to address 
the issue of cardiovascular toxicity were conducted; but trials were initiated to 
test the efficacy of COXibs in the prevention of metachronous colonic polyps 
(Bresalier et al. 2005; Solomon et al. 2005) and the management of postoperative 
pain (Nussmeier et al. 2005). The above-mentioned trials suggested that patients 
using these COX-2 inhibitors were showing cardiovascular events. These observa-
tions led to temporary withdrawal of COXibs from the US market in 2004. The 
findings suggest that this cardiovascular toxicity is specific to this class of drugs; 
but aspirin and other non-specific COX-2 inhibitors still have potential for chemo-
prevention of CRC.

In February 2005, the Food and Drug Administration (FDA) Advisory 
Committee meeting recommended that COXibs remain on the market, but with 
warnings added to labels (Alberts et al. 2005). The committee agreed that since 
celecoxib is the least likely to be associated with adverse cardiovascular events, it 
is the most appropriate COXib to study for the prevention and treatment of cancer. 
Complicating the risk—benefit evaluation are individual differences in both cancer 
risk and sensitivity to toxic events. The development of very low non-toxic doses 
of COXibs or COX and LOX-inhibiting regimens in combination with other agents 
continues. Licofelone (ML3000) is the first member of a new dual  COX/5-LOX 
inhibitor class and currently is under evaluation as a treatment for osteoarthritis. 
A multicenter study explored the effects of licofelone in  comparison with nap-
roxen as a disease-modifying agent and showed beneficial effects on cartilage. 
Although phase III trials have been completed successfully, no dates for  regulatory 
 submission have been given for this drug. Its safety profile shows fewer GI events 
than NSAIDs and selective COX-2 inhibitors (Martel-Pelletier et al. 2003; Cicero 
et al. 2005; Moreau et al. 2005; Bias et al. 2004). We tested licofelone in APCMin/+ 
mice and found it to possess potential chemopreventive properties (Mohammed 
et al. 2011). The efficacy achieved with licofelone was  comparable to or more 
effective than several NSAIDs and the COX-2-selective inhibitors celecoxib and 
rofecoxib (Swamy et al. 2006; Jacoby et al. 1996; Rao and Reddy 2004; Rao et al. 
2000; Orner et al. 2003). This result suggests that a balanced  inhibition of COX 
and LOX pathways is a better approach to obtain diminished side effects with high 
efficacy. The beneficial effects of NSAIDs in chemoprevention of CRC suggest 
that  inflammatory mechanisms are playing a vital role in tumor development, with 
strongest for colorectal cancer. Future work to understand the molecular mecha-
nisms still is needed to establish the chemopreventive potential of NSAIDs for use 
as a  preventive for and treatment of CRC.

2.7.2  Role of iNOS Inhibitors in Prevention of CRC

High NOS activity and high levels of NO are observed in AOM-induced colonic 
tumors in rats (Rao et al. 1999, 2002), in Crohn’s disease (Rachmilewitz et al. 1995) 



372 The Role of Inflammation in Colon Cancer

and in ulcerative colitis (Colon et al. 2000). Over-expression of NO was observed 
in preneoplastic colon lesions and also in human colon adenocarcinomas (Hao et al. 
2001; Yagihashi et al. 2000; Lagares-Garcia et al. 2001; Szaleczky et al. 2000). High 
iNOS levels were observed in colons of animals fed a high-fat diet, suggesting a 
role of high-fat diets in inducing inflammatory conditions and CRC in humans (Wan 
et al. 2000). Collectively, these studies support a positive role of iNOS in inducing 
CRC and use of iNOS-inhibiting agents for suppressing the iNOS activity and its 
tumorigenic effects (Fig. 2.1).

S,S-1,4-phenylene-bis(1,2-ethanediyl)bis-isothiourea, PBIT a selective iNOS 
inhibitor, caused suppression of ACF development in rats by reducing pro-
tein levels of j; and iNOS in colonic mucosa (Rao et al. 1999). Kawamori et al. 
(2000) reported similar results with L-nitro arginine methyl ester (L-NAME), an 
L-arginine inhibitor on the development of ACF induced by AOM in rats. Animals 
that received 100 ppm of L-NAME for 11 weeks showed 32 % inhibition of ACF 
multiplicity. To increase the potency of PBIT with lower concentrations, a isosteric 
analog of PBIT, selenium [S,S′-1,4-phenylenebis(1,2-ethanediyl) bis-isothiourea] 
(Se-PBIT) was developed and tested recently, in colon cancer animal model. We 
reported chemopreventive properties of Se-PBIT on ACFs induced by AOM in rats 
(Janakiram et al. 2013). We have studied extensively the role of iNOS inhibitors 
in colon carcinogenesis (Rao et al. 2002; Rao 2004). We tested iNOS-selective 
inhibitors individually and in combination with COX inhibitors and found that 
low-dose combinations of the COX-2 inhibitor celecoxib and the iNOS inhibitor 
SC-51 inhibited AOM-induced crypt formation in rats (Rao 2004). L-NAME and 
iNOS-specific inhibitors have been reported to have inhibitory effects on forma-
tion of adenomas, adenocarcinomas (Kawamori et al. 2000; Schleiffer et al. 2000), 
and adenomatous polyps (Ahn and Ohshima 2001). NO signaling cascades also 
are involved in the migration of tumor cells. More detailed studies into role of NO 
at different doses and during different stages of tumor development are necessary 
for design of better iNOS inhibitors for prevention and treatment of CRC.

2.7.3  Natural Anti-Inflammatory Agents  
for Prevention of CRC

Epidemiologic evidence supports the benefit of changes in dietary and exer-
cise patterns for CRC prevention. Among well-known dietary agents, curcumin 
has been valued for more than 5,000 years for its medicinal properties and 
for its warm, peppery flavor. Curcumin is one of the curcuminoids of turmeric. 
Curcumin is a highly pleiotropic molecule capable of interacting with numer-
ous molecular targets involved in inflammation. It is reported to interact with 
inflammatory processes by down-regulating COX-2, 5-LOX, iNOS and also pro-
duction of inflammatory cytokines such as TNF-α, IL-1, -2, -6, -8 and -12, and 
also macrophage inhibitory protein (MIP), monocytes chemoattractant pro-
tein (MCP), and matrix metalloproteinases (MMPs) (Goel et al. 2008; Abe et al. 
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1999) (Fig. 2.1). Curcumin was found to be effective in reducing colitis induced 
by 1,4,6- trinitrobenzene sulfonic acid. Ukil et al. (2003) reported reduced lev-
els of NO and O2 radicals and suppression of NF-κB activation in curcumin-
treated colonic mucosa. We reported chemopreventive properties of curcumin 
(2,000 ppm) in inhibiting development of ACF and colon adenocarcinomas in 
AOM-induced F344 rats (Rao et al. 1995). Dietary administration of curcumin 
resulted in >50 % inhibition of AOM-induced colon adenocarcinoma incidence 
and multiplicity. Kawamori et al. (1999) reported a 78 % suppression of progres-
sion from adenoma to adenocarcinoma in a preclinical animal model with a high 
dose (6,000 ppm) of curcumin. Curcumin has been tested in combination with 
green tea catechins, another class of natural agents, and also in combination with 
the synthetic COX-2 inhibitor celecoxib for increased efficacy with low doses or 
to increase its bioavailability for better efficacy (Xu et al. 2010; Shpitz et al. 2006).

Although curcumin is well known for its anti-inflammatory and anti-tum-
origenic properties in preclinical animal models, the absorption required for 
achieving its anti-tumor properties is still a concern. Clinical trials to assess 
pharmacokinetics, metabolism, and systemic bioavailability in cancer patients 
are inconclusive. Cheng et al. (2001) conducted a phase 1 clinical trial on can-
cer patients and reported poor absorption and minimal serum concentrations 
of curcumin. Another phase 1 study reported similar poor absorption of cur-
cumin in patients (Sharma et al. 2004). However, Garcea et al. (2005) reported 
pharmacologically efficacious levels of curcumin (12.7 ± 5.7 nmol/g) in both 
malignant colorectal tissue and normal colorectal tissue (7.7 ± 1.8 nmol/g) from 
CRC patients, suggesting a potential anti-tumorigenic role for curcumin in CRC. 
Three other clinical trials have investigated the use of curcumin (curcumin, dem-
ethoxycurcumin, or bisdemethoxycurcumin) therapy in patients with established 
CRC and reported a decrease in carcinogenic embryonic antigen and PGE2 levels 
(Sharma et al. 2001, 2004). Another trial of curcumin in CRC patients required 
high doses (3.6 g daily) to observe any effects on oxidative DNA adducts, and 
COX-2 markers (Garcea et al. 2005). In that study, no change in COX-2 protein 
was observed. Additional studies are in progress to develop curcumin formula-
tions, analogs, and tumor site delivery methods to increase bioavailability for pre-
vention and treatment of CRC.

Piperine, the principle bioactive compound of Piper nigrum and Piper longum, 
is included in many traditional formulae to enhance the effectiveness of other bio-
active compounds, such as curcumin. Piperine has been reported to have immu-
nomodulatory, anti-carcinogenic, anti-asthmatic, stimulatory, hepatoprotective, and 
anti-inflammatory (Darshan and Doreswamy 2004). It was found to be genotoxic 
but had no adverse effects when tested for toxicity profile in rats at doses 5–20 
times the normal human intake (Bhat and Chandrasekhara 1986; Piyachaturawat  
et al. 1983). Due to its apolar nature, piperine alters lipid dynamics and it changes 
the conformation of enzymes in the intestine. Due to its unique properties, it is 
used in combinations to enhance the bioavailability of the other drugs. Its poten-
tial to increase the bioavailability of drugs in humans is of great clinical signifi-
cance (Bajad et al. 2003). Nalini et al. (2006) reported inhibitory effects of piperine 
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on DMH-induced colon tumors in F344 rats. We reported  inhibitory effects of 
piperine on AOM-induced colon tumors in F344 rats. The potential of piperine to 
enhance the bioavailability of other potent drugs is an important property that can 
be exploited to increase the efficacy of agents that inhibit CRC.

Another bioactive molecule available in edible fruits is resveratrol. The chemo-
preventive function of resveratrol was reported by Jang et al. (1997). They showed 
that it inhibited cellular events associated with the initiation, promotion, and 
progression of cancer development. A clinical trial with whole grape extract in 
patients with colon cancer resulted in reduced the expression of Wnt target genes 
in normal mucosa with no change in colon tissue (Nguyen et al. 2009). These trial 
results need more careful evaluation because of lack of control for dietary intake 
of resveratrol-rich food and the absence of control for ingestion of confounding 
medications. A second trial in 20 selected histologically confirmed CRC patients 
administered trans-resveratrol during 8 days prior to surgical resection reported a 
5 % (p = 0.05) reduction in cell proliferation (Patel et al. 2010). The cell prolifera-
tion analysis was carried out preintervention and postintervention with resveratrol 
in tissue samples. These data suggest achievement of high enough concentrations 
of resveratrol in the intestinal tissues to show some inhibition of cell proliferation. 
However, some preclinical and clinical studies suggest that bioavailability of res-
veratrol is low due to poor absorptions as a result of intestinal metabolism and 
low activity of ATP-binding cassette (ABC) transporters (Juan et al. 2010, 2012; 
Alfaras et al. 2010a; Walle 2011; Cottart et al. 2010). In a preclinical animal 
model in which ACF are induced by DMH, an oral dose of 60 mg/kg resveratrol 
caused 50 % inhibition in the medial and 48 % inhibition in the distal tumors in 
rats (Alfaras et al. 2010b). Resveratrol also was observed to have inhibitory effects 
on mucin-depleted foci (MDFs) with reduction of the number of MDFs by 36 and 
53 % in the medial and distal colon, respectively (Alfaras et al. 2010b). It also was 
found to be effective in long-term preclinical assays with development of adeno-
carcinomas as an end point. Oral administration of resveratrol (0.2 mg/kg in drink-
ing water) for 100 days showed reduced ACFs and colon carcinogenesis in F344 
rats (Tessitore et al. 2000). This reduction probably was due to modulation of Bax 
and p21, which regulate cell proliferation and apoptosis (Fig. 2.1). Daily adminis-
tration of 8 mg/kg of trans-resveratrol for 30 weeks in DMH-treated rats resulted 
in reduction in the incidence and multiplicity of ACFs and also decreased forma-
tion of multicrypt (more than 6) ACFs (Sengottuvelan and Nalini 2006). Inhibition 
of ACFs with 6 or more crypts is an indication of potent chemopreventive efficacy 
via suppressing the progression of preneoplastic lesions to neoplasia. These results 
suggest that resveratrol possesses chemopreventive properties and can suppress 
the progression of preneoplasia to malignant neoplasia in colon. This study also 
reported inhibitory effects of resveratrol on polyamine synthesis, which is high in 
neoplastic tissues (Sengottuvelan and Nalini 2006).

Resveratrol also has been evaluated for its anti-tumor activity in genetically 
modified mice. Resveratrol (0.01 % in drinking water) decreased the number of 
tumors in the small intestine and completely suppressed tumor formation in the 
colon of APCMin/+ mice (Schneider et al. 2001). In contrast to these results, 
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Ziegler et al. (2004) reported null results with resveratrol in APCMin/+ mice. 
Even though this study used high doses of resveratrol (4, 20, and 90 mg/kg body 
weight) in pellet form, no difference was observed in incidence of intestinal 
tumors. Another Apc min mouse study reported a 27 % decrease in adenoma for-
mation by 60 mg/kg of resveratrol administered in the diet (Sale et al. 2005). This 
reduction was attributed to decreases (of 58 and 62 % compared with intestinal 
mucosa from mice on control diet) in PGE2, which is involved in the maintenance 
of the malignant phenotype (Sale et al. 2005). Evidence from all of these stud-
ies suggests that resveratrol has potential prevention and therapeutic properties and 
needs further evaluation for its dosage and clinical efficacy in CRC.

Diosgenin, a natural steroidal saponin found predominantly in fenugreek and 
wild yams, has diverse biological properties (Raju and Mehta 2009). The com-
mercial synthesis of steroid products, such as cortisone, pregnenolone, and pro-
gesterone, involves use of diosgenin as a precursor (Raju and Mehta 2009). It 
is considered safe since it is neither synthesized nor metabolically converted 
into steroid by-products in the mammalian body. In preliminary studies with 
human subjects, diosgenin has been found to be effective against hyperglycemia 
(McAnuff et al. 2005), hypercholesterolemia (Juarez-Oropeza et al. 1987; Son 
et al. 2007), and hypertriacylglycerolemia (Kwon et al. 2003). Significant anti-
inflammatory functions have been demonstrated in relevant animal models. It is 
used in rats to heal the GI toxicity generated by indomethacin treatment. Its anti-
inflammatory role has been explored further by Yamada et al. (1997). Preclinical 
animal studies with AOM-induced ACFs in F344 rats suggested that diosgenin 
possesses chemopreventive efficacy in CRC. Administration of 0.1 or 0.05 % 
diosgenin in the diet during initiation, postinitiation, or promotion stages of colon 
carcinogenesis dose-dependently decreased ACF formation (Raju et al. 2004). 
Another study investigated the preventive effects of diosgenin (20, 100, or 500 mg/
kg) on AOM/dextran sodium sulfate (DSS)-induced CRC in mice. Diosgenin at 
very low doses significantly inhibited (53, 46, and 40 %, respectively) colonic 
mucosal ulcers and dysplastic crypts induced by AOM/DSS treatment and also 
reduced expression of inflammatory cytokine genes, including IL-1β, IL-6, 
IL-12b, and TNF-α, which are significantly elevated in the colonic mucosa of mice 
treated with AOM/DSS (Fig. 2.1). These studies suggest that diosgenin is a potent 
bioactive molecule possessing both anti-inflammatory and anti-tumorigenic prop-
erties that make it ideal for further investigation of its molecular and anti-neoplas-
tic functions in human clinical trials.

Triterpenoids are isolated from various medicinal plants and have been stud-
ied for their anti-inflammatory properties. Mostly these compounds are non-toxic 
and have made their way into cosmetics and health products (Liu 1995). Recently, 
interest in understanding and elucidating the biological roles of triterpenoids for 
their hepatoprotective, analgesic, anti-tumor, anti-inflammatory, and immunomod-
ulatory effects is increasing (Mahato and Sen 1997; Liu 1995). These agents are 
broken down in the gut to release triterpene metabolites, which are integrated 
into the intestinal cell membranes, absorbed, and lead to modulation of signal-
ing pathways. These molecules inhibit expression of inflammatory genes such as 
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COX-2, iNOS and various inflammatory cytokines that are known enhancers of 
carcinogenesis (Janakiram et al. 2008; Rao et al. 2002, Raju et al. 2004) (Fig. 2.1). 
Recently, triterpene analogs that are more potent than the original parent mol-
ecules have been synthesized. Kawamori et al. (1995) found that oleanolic acid 
(ONA), a crude plant extract of triterpenoid at a dose of 200 ppm, was effective in 
reducing ACF in the intestine of F344 rats. We reported the anti-neoplastic prop-
erties of ONA and the analog 18alpha-olean-12-ene-3 beta-23,28-triol (OT) in 
AOM-induced ACFs in F344 rats (Janakiram et al. 2008). These triterpenoids sig-
nificantly suppressed carcinogen-induced colonic preneoplastic lesions at dietary 
doses of 750 and 1,500 ppm of ONA, and 250 and 500 ppm of OT and without 
any toxicity. ONA inhibited 52 % of total AOM-induced ACFs and ~66 % of ACF 
with four or more crypts. OT inhibited up to 48 % of total AOM-induced ACF 
formation and 60 % of ACF with four or more crypts at very low doses compared 
with those of ONA. These studies support chemopreventive effects of triterpe-
noids in CRC and suggest that an in-depth evaluation of these agents in clinical 
trials should be carried out to assess pharmacokinetics, bioavailability, and anti- 
neoplastic functions.

Epidemiological, experimental, and clinical studies provide evidence for anti-
CRC activity of omega (ω)-3 PUFAs. Evidence from animals and humans sug-
gest that ω-3 PUFAs may play an inhibitory role during different stages of CRC, 
from primary CRC prevention to “tertiary” prevention after treatment of CRC and 
advanced metastatic disease. Out of 8 reported clinical studies of ω-3 PUFAs sup-
plementation, 6 reported protective effects. In patients with a previous history of 
sporadic colorectal adenomas, oral supplementation with ω-3 PUFA has resulted 
in a 13–70 % reduction in intestinal epithelial cell proliferation as compared to 
placebo groups (Cockbain et al. 2012). A phase III randomized, double-blind, pla-
cebo-controlled trial investigated treatment with eicosapentaenoic acid-free fatty 
acid (EPA-FFA) in 58 patients with FAP who had previously undergone colec-
tomy and ileorectal anastomosis and showed a 22.4 % reduction in polyp number 
compared with placebo (West et al. 2010). Colon cancer xenograft studies showed 
consistent protective effects (40–60 % reduction in xenograft size) in mice sup-
plemented with ω-3 PUFAs as compared to untreated mice (Boudreau et al. 2001; 
Kato et al. 2002; Calviello et al. 2004). Similar beneficial results were reported 
from studies with CRC cell allograft tumors (Mund et al. 2007; Cannizzo and 
Broitman 1989; Togni et al. 2003; Pizato et al. 2005). In spite of these encouraging 
data, no published studies yet have investigated the anti-neoplastic effect of u-3 
PUFAs in patients with primary or metastatic CRC.

Fish and fish oil are rich sources of the ω-3 PUFAs EPA and DHA. The metab-
olites derived from these PUFAs result in formation of 3-series prostaglandins, 
which are anti-inflammatory rather than pro-inflammatory and also may possess 
anti-tumor properties. A report of a switch from 2 series PGE2 to 3 series PGE3 
was demonstrated in colonic mucosa of rats treated with fish oil (Vanamala et al. 
2008). The recently discovered anti-inflammatory lipid mediators RVs and LX 
derived from EPA and DHA are gaining importance for their anti-neoplastic func-
tions. RVs derived from EPA are called as “E” series. Protectins are also generated 
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from precursors of omega 3-PUFAs. RVs or protectins from DHA, named “D” 
series, possess anti-inflammatory and immunomodulatory properties. The concen-
tration required for these lipid mediators to exhibit any biological activity is in the 
nanomolar or picomolar range. Acetylation of aspirin by COX-2 in the presence 
of EPA results in formation of 5,12,18R-trihydroxy-EPA (18R-RvE1) (Janakiram 
et al. 2011) (Fig. 2.1). Ingestion of aspirin and EPA generated 18R-RvE1 that was 
detectable in plasma of healthy volunteers (Oh et al. 2011). The anti-inflammatory 
role of RvE1 is well documented in a mouse model of DSS-induced colitis; it acts 
through inhibition of phosphorylation of NF-κB (Ishida et al. 2010). Another study 
reported a protective role of RvE1 in mouse colitis through induction of intestinal 
alkaline phosphatase (Campbell et al. 2010). EPA and DHA exhibited protective 
effects against colitis in a rat model by restoring the number of mature, mucin-
filled goblet cells (Arita et al. 2005). Two other studies also reported protective 
effects of RvE1 against colitis induced by DSS and 2, 4, 6-trinitrobenzene sulfonic 
acid (Nieto et al. 2002; Ishida et al. 2009).

Lipoxin A4 (LXA4) was shown to inhibit neutrophil chemotaxis, adherence, 
transmigration, and activation during resolution of inflammation and suppression 
of IL-8 production by epithelia and leukocytes and to cause clearing of neutro-
phils by up-regulation of monocyte ingestion (Serhan 1997, 2002; Canny et al. 
2002). Decreased LXA4 expression was shown in a DSS-induced colitis model 
(Gewirtz et al. 2002). Protective effects of LXA4 analogs were observed in DSS 
and other chemically induced colitis animal models (Gewirtz et al. 2002; Fiorucci 
et al. 2001). The protective effects of these analogs are attributed for their LXA4 
receptor-mediated inhibitory effects on pro-inflammatory signaling pathways. 
15-epi-LXA4 is formed in the presence of aspirin; and some of the preventive 
or therapeutic effects of aspirin-like NSAIDs may be through these 15-epi-LX 
(Claria and Serhan 1995) (Fig. 2.1). The anti-inflammatory functions of these lipid 
mediators suggest a potential chemopreventive therapeutic strategy for inflamma-
tion-related diseases like CRC.

2 .8  Conclusions

Epidemiological and clinical literature strongly implicates chronic inflammation in 
neoplastic diseases, especially in CRC. Different inflammatory molecules and sig-
nals play different roles during different stages of CRC development. AA metabo-
lism, via COX-2 and 5-LOX pathways, generates a variety of lipid mediators that 
affect initiation, growth, and development of CRC. Current evidence from preclin-
ical, clinical, and epidemiological studies supports a positive role for anti-inflam-
matory agents, particularly NSAIDs as inhibitors of CRC; however, these drugs 
can have GI and cardiovascular toxicities. Additional studies are needed to design 
analogs or derivatives of these agents, to manipulate doses and to select appropri-
ate patient populations to provide increased safety without losing efficacy for CRC 
suppression. It also is important to develop other agents that can balance COX 
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and LOX inhibition, including natural agents like curcumin or synthetic agents 
like licofelone, to achieve safer toxicity profiles while retaining significant inhibi-
tion of CRC. Additional natural bioactive anti-inflammatory compounds are being 
identified to provide beneficial effects against colitis-induced inflammation and 
CRC. Many of these agents are well tolerated and may provide safe alternatives 
to existing, more toxic compounds. Increased consumption of EPA- and DHA-rich 
foods may reduce inflammation and its related CRC conditions. And other novel 
lipid mediators, such as LX, RVs and their analogs, need to be evaluated in CRC 
models for their effects on colon mucosal immunity against development of CRC.
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Abstract Inflammatory breast cancer (IBC) is the most aggressive form of breast 
cancer. Despite extensive study, whether inflammation contributes to the tumori-
genicity or aggressiveness of IBC remains largely unknown. In this chapter, we 
will review the potential role played by inflammation in IBC based on the results 
of in vitro, in vivo, and patient studies. Current evidence suggests that several 
major inflammatory signaling pathways are constitutively active in IBC and breast 
cancer. Among them, the NF-κB, COX-2, and JAK/STAT signaling systems seem 
to play a major role in the tumorigenesis of IBC. Inflammatory molecules such 
as interleukin-6, tumor necrosis factor alpha (TNF-α), and gamma interferon have 
been shown to contribute to malignant transformation in preclinical studies of 
IBC, while transforming growth factor-β, interleukins 8 and 1β, as well as TNF-α 
appear to play a role in proliferation, survival, epithelial–mesenchymal transition, 
invasion, and metastasis. In this chapter, we also describe work thus far involving 
inhibitors of inflammation in the development of prevention and treatment strate-
gies for IBC.
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3 .1  Introduction

Breast cancer is the second most common cancer, following skin can-
cer, among women in America. The American Cancer Society estimates 
that there will be 232,670 new cases of breast cancer among women in the 
United States in 2014 (ACS 2014). It is also the second leading cause of 
death from cancer in women, approximately with 40,000 predicted deaths for 
2014. Inflammatory breast cancer (IBC) is the most aggressive form of breast 
cancer. Although it accounts for an estimated incidence rate of up to 5 % 
of breast cancers (Anderson et al. 2005; Hance et al. 2005; Jaiyesimi et al. 
1992), IBC is responsible for a disproportionate 8–10 % of all breast cancer-
related deaths (Hance et al. 2005).

The word “inflammatory” was first applied to the IBC subtype of breast 
cancer by Haagensen (1971). His description was based on certain presenting 
features that are unique to this subgroup of patients. IBC presents with rapid 
onset of breast erythema occupying at least one-third of the breast, accompa-
nied by breast edema leading to the characteristic peau d’orange appearance 
of the skin. Other features include breast enlargement, pain, and tenderness. 
Approximately 50 % of patients do not present with a palpable mass or radio-
graphic evidence of cancer (Ueno et al. 1997; Yang et al. 2008). Almost all 
IBC patients present with lymph node metastasis at the time of diagnosis, and 
approximately 30 % present with distant metastasis (Jaiyesimi et al. 1992; Li 
et al. 2011).

For diagnosing IBC, consensus guidelines recommend at a minimum a core 
biopsy to enable detection of invasive carcinoma and to allow marker study 
(hormone receptors and HER2). A skin punch biopsy to confirm the presence of 
dermal lymphatic invasion, one of the hallmarks of IBC, is also strongly recom-
mended in suspected cases (Dawood et al. 2011).

Treatment of IBC, as for other types of breast cancer, involves a multidisci-
plinary approach that includes surgery, radiation therapy, and medical oncol-
ogy. Patients are stratified according to extent of disease and the molecular 
subtype. This approach has been associated with a significant reduction in can-
cer-related mortality (Ueno et al. 1997; Kesson et al. 2012). Currently, the most 
active anti-cancer agents include anthracycline and taxanes, in addition to anti-
HER2 therapy and endocrine therapy. However, compared with other types of 
breast cancer, treating IBC has proved to be more challenging mainly because 
of its rapidly aggressive nature combined with the lack of effective targeting 
therapy.

Despite extensive study, whether inflammation contributes to the tumorigenic-
ity or aggressiveness of IBC remains unknown. In this chapter, we will review the 
potential role played by inflammation in IBC based on the results of in vitro, in 
vivo, and patient studies. We will also describe work thus far involving inhibitors 
of inflammation in the prevention and treatment of IBC.
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3 .2  Inflammatory Signaling Pathways Associated with IBC

Several intrinsic pathways driven by oncogenes or tumor suppressor genes have 
been shown to activate the expression of inflammation-related programs in both 
IBC and breast cancer in general. These pathways are described below.

NF-κB The nuclear factor of kappaB (NF-κB) family of sequence-spe-
cific transcription, known to play a critical role in inflammation and the innate 
immune response, has recently been implicated in tumorigenesis. It is ubiq-
uitously expressed in all cell types, where, in most cases, it is maintained in an 
inactive state in the cytoplasm bound to a class of inhibitory proteins known as 
IκBs (inhibitors of κB). Activation of NF-κB occurs by a variety of stimuli and is 
regulated in normal cells via two main pathways, the classical (canonical) pathway 
and the alternative (non-canonical) pathway (Prasad et al. 2010). Both pathways 
involve kinase-dependent degradation of inhibitory molecules to release NF-κB, 
but they differ in the inhibitory molecule involved, the activated kinases, and the 
types of NF-κB proteins as well as the stimuli that trigger them. Upon activation, 
NF-κB is transported to the nucleus, where it upregulates the expression of target 
genes that are responsible for a wide variety of effects, including the inflammatory 
and immune response, proliferation, cell–matrix adhesion, chemotaxis, and angio-
genesis (Shostak and Chariot 2011).

In a variety of cancers, including breast cancer, NF-κB undergoes persistent 
(constitutive) activation (Nakshatri et al. 1997). Laere et al. (2005) performed a 
genome-wide expression profile using a cDNA microarray to compare IBC and 
non-IBC tissue samples. The authors reported that an unusually high number of 
NF-κB target genes were differentially overexpressed in IBC versus non-IBC. In a 
similar study, the mRNA expression levels of 60 NF-κB-related genes were com-
pared in IBC versus non-IBC samples using real-time quantitative RT-PCR. The 
authors reported that approximately 60 % of NF-κB-related genes were upregu-
lated in the IBC samples compared to non-IBC samples. The resulting five-gene 
molecular signature was matched with patient outcomes; it included two genes 
that are regulated by NF-κB (Lerebours et al. 2008). Collectively, these studies 
confirm the importance of NF-κB in IBC and its contribution to the aggressive 
phenotype of IBC.

In a recent study, El-Shinawi et al. (2013) examined the association between 
evidence of human cytomegalovirus (HCMV) infection in the serum and tissue of 
IBC and non-IBC patients and whether HCMV was associated with NF-κB acti-
vation in IBC. The authors reported significantly higher levels of serum HCMV 
IgG as well as higher levels of HCMV DNA in the tumor tissue of IBC patients. 
Infected IBC samples also had enhanced NF-κB/p65 signaling compared to non-
IBC controls (El-Shinawi et al. 2013). While these findings suggest an associa-
tion between IBC and HCMV could exist, the authors noted that the evidence is 
not conclusive. If the results are confirmed, they may help explain the higher inci-
dence of IBC in some geographic areas (Soliman et al. 2011).
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Several studies have suggested complex cross talk between NF-κB and estrogen 
receptor (ER) in IBC as well as in breast cancer in general. In a separate study, 
Van Laere et al. reported that NF-κB activation in IBC tumors was associated with 
ER downregulation, which was linked to both EGFR and/or HER2 overexpression 
and MAPK hyperactivation (Laere et al. 2007). Additionally, ER seems to be capa-
ble of inhibiting both the constitutive and the inducible activation of NF-κB in a 
dose-dependent manner (Biswas et al. 2004). On the other hand, studies also seem 
to suggest that in ER-positive patients, cross talk between ER and NF-κB occurs 
that may either be transrepressive or positive (Kalaitzidis and Gilmore 2005). 
Theoretically, this could explain how in luminal B subtypes and some ER-positive 
IBC patients, resistance to hormonal therapy and poorer outcome could result 
from positive cross talk between NF-κB and ER leading to enhanced ER-mediated 
expression of genes involved in cell proliferation, survival, and resistance.

COX family The cyclooxygenase (COX) family of enzymes consists of two 
members, COX-1 and COX-2. Both enzymes catalyze the conversion of arachi-
donic acid to prostanoids and are also responsible for the generation of eicosanoid 
products, which are important mediators of pain and inflammation. Tissue upreg-
ulation of COX-2 can be triggered by several stimuli, including growth factors 
and oncogenes (Williams et al. 1999). Aberrant activation of COX/prostaglandin 
signaling is common in many cancers, especially in colon cancer, where COX-2 
is overexpressed in 85 % of tumors (Brown and DuBois 2005). This has also been 
the case with breast cancer; enzyme levels have been found to be increased in 
40 % of breast tumor tissues examined (Yoshimura et al. 2003).

Several studies have documented the role that the PTGS2 gene, which encodes 
COX-2, plays in cell proliferation, invasion, angiogenesis, and metastasis (Wang and 
Dubois 2004; Menter et al. 2010). Overexpression of COX-2 in breast cancer cor-
relates with a more aggressive breast cancer profile that is characterized by higher 
proliferation rates, larger tumors, higher pathologic grade, hormone receptor nega-
tivity, and HER2 overexpression (Ristimaki et al. 2002; Subbaramaiah et al. 2002). 
Compared with non-IBC tumors, the PTGS2 gene is differentially overexpressed in 
IBC, and it is identified as a key component in the molecular signature for IBC (Laere 
et al. 2005, 2007). Moreover, prostaglandin E2 (PGE2), which is a product of COX-2 
enzymatic activity, is known to be upregulated in primary IBC tumors and metastatic 
lesions (Robertson et al. 2008). These findings emphasize the role of the COX-2 path-
way in IBC and its potential use as a target for disease prevention and treatment.

JAK/STAT signaling The JAK/STAT signaling system is the main pathway for 
a variety of cytokines, including interferon and interleukins (e.g. IL-6), as well as 
growth factors or other chemical messengers. Depending on both the context and 
the integrity of the pathway, JAK/STAT signaling can stimulate proliferation and 
cell migration versus differentiation and apoptosis (Rawlings et al. 2004).

STAT3 is known to be constitutively activated in >50 % of breast cancers and 
tumor-derived cell lines (Garcia et al. 1997; Diaz et al. 2006). Using small inter-
fering RNA (siRNA) to block STAT3 in both cell culture and xenograft models 
of breast cancer, investigators were able to show increased apoptosis through the 
Fas-mediated intrinsic apoptotic pathway, as well as reduced expression of the 
transmembrane molecule B-cell lymphoma-extra large (Bcl-xL), which promotes 
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survival (Kunigal et al. 2009). Additionally, constitutive activation of STAT led 
to accelerated mammary tumorigenesis and increased metastatic potential in can-
cer cells expressing ErbB2 (Barbieri et al. 2010). Moreover, ablation of STAT3 
resulted in inhibition of anchorage-independent growth of breast cancer cells, 
thus limiting their metastatic potential. More recently, however, it was found 
that JAK2/STAT3 appears to be necessary for growth and survival of tumor cells 
expressing the cancer stem cell (CSC) phenotype (Ma et al. 2011). More recently, 
investigators were able to induce cell death in SUM149 IBC tumor spheres by 
inhibiting STAT3 activation in a dose-dependent manner using a novel JAK2 
inhibitor (Ma et al. 2011).

In summary, current evidence suggests that several major inflammatory signaling 
pathways are constitutively active in IBC and breast cancer. Among them, the NF-
κB, COX-2, and JAK/STAT signaling systems seem to play a major role in the tumo-
rigenesis of IBC. Blocking these pathways may prove to be a promising therapeutic 
strategy owing to their multiple roles in promoting cancer cell survival and metastasis.

3 .3  Role of Inflammatory Molecules in the Development of 
IBC: Evidence From In Vitro Studies

3.3.1  Role of Inflammatory Molecules in Malignant 
Transformation

Accumulating DNA mutations play a causal role in the process of malignant trans-
formation. Oncogenic insults may result in activation of oncogenes, loss of tumor 
suppressor genes, or the constitutive activation of membrane receptors or lead to the 
alteration of critical cellular processes such as the cell cycle or apoptosis (Hanahan 
and Weinberg 2000). In this setting, inflammation may contribute to carcinogenesis 
through the activation of the DNA damage response system in response to major 
oncogenic insults (Martin et al. 2011; Hartman et al. 2011). Moreover, viral infec-
tions, such as human papillomavirus (HPV), whose genome has been detected in 
breast cancer tissue, may also cause DNA damage, resulting in activation of the 
DNA damage response pathway, and stimulate the formation of a pro-inflammatory 
tumor microenvironment (Moody and Laimins 2009; Kan et al. 2005).

Interleukin-6 (IL-6), which is overexpressed in the SUM149 preclinical model 
of IBC (Golen et al. 2000), plays a potent role in malignant transformation. IL-6 
was able to convert a non-transformed mammary epithelial cell line (MCF-10A) to 
the transformed state in 24–36 h (Iliopoulos et al. 2009, 2010).

Additionally, HER2 overexpression, which is known to occur in up to 60 % of 
IBC tumors and 25 % of non-IBC tumors, is associated with poor outcome (Guerin 
et al. 1989; Kallioniemi et al. 1991). HER2 amplification was associated with 
marked increase in IL-6 in breast cancer cells and induced STAT3 activation, sug-
gesting a HER2-IL-6-STAT3 signaling pathway could play a critical role in tumori-
genesis (Hartman et al. 2011).
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On the other hand, cancer stem cells (CSCs), also known as tumor-initiating 
cells, are highly tumorigenic cells and are enriched in IBC tumors as well as in 
preclinical models of IBC (Laere et al. 2010; Charafe-Jauffret et al. 2010; Xiao 
et al. 2008). IL-6 acts as a growth factor for CSCs and is sufficient to convert non-
stem cancer cells to CSCs (Iliopoulos et al. 2011). IL-6 gene expression was found 
to promote self-renewal, as well as invasive potential, in both normal and MCF-
7-derived spheroids (Sansone et al. 2007). IL-6 is also at the center of epigenetic 
regulation of stem cells (D’Anello et al. 2010; Hodge et al. 2005). IL-6 thus plays 
a critical role in mediating the epigenetic switch that involves NF-κB and STAT3 
and links inflammation to cell transformation (Iliopoulos et al. 2009, 2010).

Additional inflammatory signaling involved in the regulation of CSCs includes 
the tumor necrosis factor alpha (TNF-α) and gamma interferon (IFN-γ) path-
ways, both of which are upregulated in breast CSCs (Murohashi et al. 2010). Both 
cytokines are also able to activate the NF-κB pathway (Cheshire and Baldwin 
1997; Hayden and Ghosh 2008; Matsumoto et al. 2005). Treatment with the 
chemokine IL-8 resulted in increased mammosphere formation, whereas IL-8 
receptor/CXCR1 blockade depleted the breast CSC population both in vitro and 
in xenografts (Murohashi et al. 2010; Charafe-Jauffret et al. 2009; Ginestier et al. 
2010). Expression of CCL5/RANTES was also found to be upregulated in breast 
CSC populations (Murohashi et al. 2010).

3.3.2  Role of Inflammatory Molecules  
in the Survival of IBC Cells

One of the hallmarks of cancer cells is their capacity to acquire resistance to apop-
totic signals (Hanahan and Weinberg 2000). Transforming growth factor (TGF)-β is 
a pro-apoptotic cytokine that normally induces cell cycle arrest in the early phases of 
tumorigenesis. The mechanisms by which cancer cells escape the inhibitory effects of 
TGF-β are not fully understood but may include inactivating mutations or homozy-
gous deletions(Kaklamani et al. 2003; Pasche et al. 2004; Dunning et al. 2003) or 
upregulation in oncogenic expression (Zhang et al. 2003). Once the pro-apoptotic 
functions of TGF-β are subverted, its tumorigenic potential becomes unhindered, thus 
stimulating growth, invasion, and angiogenesis (Biswas et al. 2007; Lei et al. 2002).

Likewise, although TNF-α promotes apoptosis in MCF-7 cells (Simstein et al. 
2003), a process similar to TGF-β subverts the pro-apoptotic effect of TNF-α 
(Rivas et al. 2008). HER2 amplification, which is present in up to 60 % of IBC 
patients, was shown to confer resistance to TNF-α-induced apoptosis in breast 
cancer cell lines mainly through an Akt/NF-κB anti-apoptotic cascade (Zhou et al. 
2000). Likewise, increased expression of claudin-1 was able to reverse TNF-α-
induced apoptosis in the MCF-7 breast cancer cell line (Liu et al. 2012). These 
studies suggest that there are multiple pathways by which breast cancer cells can 
overcome TNF-α-induced apoptosis, thus promoting cancer cell survival and 
unleashing the tumorigenic potential of TNF-α.
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Using mastectomy samples from patients with either invasive or non-invasive 
breast cancer as well as tissue from benign controls, both IL-6 protein levels and IL-6 
receptor levels, were correlated with tissue levels of B-cell lymphoma 2 (Bcl-2) and 
Bcl-2-associated X (Bax) proteins (Garcia-Tunon et al. 2005). A higher proportion of 
malignant samples, compared with benign controls, were positive for IL-6, Bcl-2, and 
Bax by immunohistochemistry. The more invasive samples had a more intense immu-
noreaction for Bcl-2 than did benign lesions. In addition, infiltrating tumors that were 
positive for IL-6 were also positive for Bcl-2 with a high degree of correlation between 
immunoreaction intensities of both antibodies (Garcia-Tunon et al. 2005). These results, 
along with others, suggest that IL-6 plays a central role in protecting cancer cells against 
apoptosis as well as the regulation of survival in CSCs via several pathways, including 
the canonical JAK/STAT3 pathway, and by direct action on Bcl-2 family gene products 
(Iliopoulos et al. 2011; Hinohara and Gotoh 2010; Heinrich et al. 2003).

3.3.3  Role of Inflammatory Molecules  
in the Proliferation of IBC Cells

Cancer is fundamentally a disease of inappropriate cell division and proliferation. 
Cytokines can enhance growth through their interaction with growth factors, e.g., 
ER, and transcriptional pathways such as IL-6/JAK/STAT3. An in vitro study com-
paring ER-positive to ER-negative breast cancer cell lines reported higher levels 
of IL-6-mediated STAT3 phosphorylation in ER-negative versus ER-positive cells. 
Upon exposure of MCF-7 ER-positive cells to IL-6, tumor cell growth rates were 
enhanced by >two-fold (Sasser et al. 2007).

IL-1β is a major proinflammatory cytokine that is known to contribute to 
tumor proliferation, angiogenesis, and local invasion (Apte et al. 2006). Higher 
IL-1β levels in breast cancer tissue or serum were correlated with more aggres-
sive disease and poorer outcome (Goldberg and Schwertfeger 2010). However, 
the interaction between IL-1β and ER in tumor growth in breast cancer has been 
less understood with evidence supporting transcriptional activation of ER by IL-1β 
(Speirs et al. 1999). A recent study suggested that IL-1 secretion in breast cancer 
may be regulated by estradiol in vivo and that its release may be inhibited by anti-
estrogen therapy (Abrahamsson et al. 2012).

TNF-α, a potent suppressor of proliferation in normal cells, was found to 
enhance proliferation in the T47D breast cancer cell line through an NF-κB-
dependent pathway (Rubio et al. 2006). Proliferating cells were found to express 
high levels of cyclin D1 (Rivas et al. 2008). Furthermore, the addition of a specific 
NF-κB inhibitor, Bay 11-7082, was able to block TNF-α-induced tumor promo-
tion and cyclin D1 expression. Additional in vitro studies on MCF-7 cells demon-
strated the capacity of TNF-α to upregulate several genes associated with cancer 
proliferation (Yin et al. 2009). Alternatively, TNF-α can interact with ER as well 
as other transcription factors in an NF-κB-independent manner to regulate genes 
that are important for proliferation in breast cancer (Gloire et al. 2006).
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3.3.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of IBC Cells

Cancer cell progression is a multistep process that involves the acquisition of 
several characteristics that include epithelial–mesenchymal transition (EMT), 
cell invasion, migration, intra- and extravasation, and angiogenesis. EMT is the 
process by which cancer cells lose epithelial properties such as cell polarity and 
cell-to-cell contact and acquire mesenchymal (fibroblastic) characteristics. This 
process confers malignant properties such as invasiveness and motility and is 
essential for cancer cells to metastasize (Thiery 2002; Thiery et al. 2009).

IBC gene expression profiles have revealed the activation of specific stem-
cell-related pathways that contribute to the activation of NF-κB, which in turn 
induces EMT (Laere et al. 2010). Recently, investigators were able to reproduce 
EMT in IBC cells using a three-dimensional culture system. IBC cells exhibited a 
reduction in epithelial markers (E-cadherin) and overexpression of mesenchymal 
marker vimentin. Investigators were able to inhibit EMT by blocking the EGFR 
pathway using an EGFR tyrosine kinase inhibitor, erlotinib (Zhang et al. 2009).

Overexpression of TGF-β has been associated with several tumors and corre-
lates with aggressive features (Derynck et al. 2001). TGF-β plays a central role 
in the induction of EMT (Moustakas and Heldin 2007). It inhibits expression of 
E-cadherin (Xu et al. 2009) and is associated with reduced levels of claudins and 
occludins, as well as tight-junction degradation (Moustakas and Heldin 2007). 
Moreover, TGF-β1 induces expression of Mdm2, which results in the destabili-
zation of p53, a critical step in the EMT of breast cancer that is associated with 
advanced disease (Araki et al. 2010).

In tissue samples of human breast cancers, high levels of TGF-β1 mRNA were 
associated with increased angiogenesis as measured by microvessel density, fea-
tures that are common in IBC (de Jong et al. 1998). TGF-β is known to trigger 
the expression of vascular endothelial growth factor (VEGF) as well as act as a 
chemo-attractant for monocytes, which in turn release angiogenic factors (Yang 
and Moses 1990; Ashcroft 1999). Furthermore, TGF-β is also able to induce cell 
migration through the expression of matrix metalloproteases MMP-2 and MMP-9 
(Hagedorn et al. 2001). The results of these studies suggest that TGF-β exerts a 
broad range of effects that confer invasiveness and metastasis through its regula-
tion of EMT and cell motility (Docherty et al. 2006; Yang et al. 2006).

Higher levels of IL-6 in the SUM149 IBC model have been attributed to regu-
lation by RhoC GTPase, which plays a role in the development of the invasive/
angiogenic phenotype of IBC (Golen et al. 2000). In turn, IL-6 activates multiple 
effectors involved in the process of invasion and metastasis (Heinrich et al. 2003; 
Tawara et al. 2011). Sullivan et al. (2009) observed that IL-6 induced EMT as well 
as enhanced invasiveness of MCF-7 cancer cells. Furthermore, IL-6 produced by 
fibroblasts or stromal adipocytes derived from breast tissue or from metastatic 
sites promoted invasion in MCF-7 cells (Studebaker et al. 2008; Walter et al. 
2009).
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The chemokine IL-8 is another inflammatory molecule that is differentially 
expressed in IBC tumors (Laere et al. 2005, 2007). IL-8 production is amplified 
in metastatic breast cancer lesions and plays a key role in tumor progression, inva-
sion, and angiogenesis (Freund et al. 2004; Yao et al. 2007; Lin et al. 2004). A 
similar effect can be seen with increased tumor and serum levels of IL-1β, which 
were associated with invasiveness in ER-negative breast tumors (Goldberg and 
Schwertfeger 2010). In ER-positive tumors, IL-1β was found to promote EMT 
changes as well as cell migration, invasion, angiogenesis, and metastasis (Franco-
Barraza et al. 2010; Wang et al. 2005).

Studies in MCF-7 breast cancer cells have also shown TNF-α to promote the 
expression of a panel of genes that are known to be associated with invasion and 
metastasis (Yin et al. 2009). Moreover, the chemokine receptor CXCR4 and its 
ligand CXCL12 (stromal cell-derived factor-1 alpha) are differentially expressed 
in IBC tumors and are known to regulate interactions between tumor cells and the 
microenvironment that are critical for the development of organ-specific metasta-
sis (Cabioglu et al. 2007; Clezardin 2011).

3 .4  Role of Inflammatory Molecules in the Development 
of IBC: Evidence From In Vivo Studies

One of the challenges facing IBC research is the development of preclinical mod-
els that accurately recapitulate the aggressiveness of the disease. Currently, there 
is a need for better immunocompetent mouse models of IBC that allow assess-
ment of the molecular and inflammatory mechanisms underlying the disease and 
the development of effective therapeutic targets.

In a recent study that looked at the role of NF-κB signaling in conferring 
self-renewal to breast cancer cells, three types of IBC SUM149 cells were pre-
pared and injected into the mammary fat pads of nude mice. These included cells 
expressing IκBα-SR at low or high density or an empty vector (Kendellen et al. 
2013). Investigators assessed self-renewal by measuring the ability of cells when 
injected at limiting dilutions to establish primary tumors. Cells with deficient NF-
κB signaling produced smaller tumors at a much later onset compared to those 
with empty vector, whereas the low density of SUM149 cells expressing IκBα-SR 
did not form tumors. The ability to self-renew appears to require both intact 
canonical and non-canonical NF-κB pathways (Kendellen et al. 2013). This dem-
onstrates the importance of NF-κB for tumorigenesis in xenograft models.

Cyclooxygenase-2 (COX-2) is over-expressed in mammary tumors derived 
from rodent models of breast cancer. Enhanced COX-2 expression was found to be 
sufficient to induce mammary gland tumorigenesis in the mouse mammary tumor 
virus (MMTV)/COX-2 transgenic mouse strain, thus providing evidence for its in 
vivo oncogenicity (Liu et al. 2001). Additionally, mammary gland involution after 
weaning was delayed in the transgenic animals compared to controls, suggesting 
that apoptosis suppression was also involved (Liu et al. 2001).
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Studies have also demonstrated that tumor formation in these models can be sup-
pressed either pharmacologically by using anti-inflammatory drugs, including COX 
inhibitors, or through genetic ablation (Howe 2007; Howe et al. 2001; Howe et al. 
2005). COX inhibitors were also evaluated in HER2/neu transgenic mice, which are 
also ER negative. Celecoxib administration was able to significantly delay tumor 
formation in the animal model (Howe et al. 2002; Lanza-Jacoby et al. 2003).

To examine the consequences of knocking out COX-2, investigators adopted 
an approach used in intestinal cancer models (Oshima et al. 1996), by cross-
ing COX-2 knockout mice with mammary tumor virus/neu deletion mutant 
(MMTV/NDL) mice and comparing tumor multiplicity to HER2/neu transgenic 
mice that were COX-2 wild type, heterozygous, and null (Howe et al. 2005). 
Tumor multiplicity and size were significantly reduced in COX-2 knockout mice 
(heterozygous and null) compared to controls (Howe et al. 2005). Additionally, the 
authors observed that COX-2 null animals were associated with reduced expres-
sion in several angiogenesis factors, which led to a reduction in mammary blood 
vessel formation. Together, these studies suggest that an intact COX-2 pathway is 
both necessary and sufficient for the induction of tumorigenesis.

Similarly, the tumorigenicity of TGF-β was assessed by developing a dox-
ycycline-inducible triple transgenic mice model in which doxycycline can be 
used to induce TGF-β1 expression in polyomavirus middle T antigen (PyVmT) 
transformed mammary tumors (Muraoka-Cook et al. 2004). TGF-β1 stimulation 
resulted in rapidly accelerated metastatic progression with >ten-fold increase in 
lung metastases in as little as 2 weeks. Antisense-mediated inhibition of TGF-β1 
resulted in decreased cell motility, survival, anchorage-independent growth, tumo-
rigenicity, and metastasis. Similarly, Criswell et al. looked at the role of TGF-β 
type III receptors in inducing EMT, cancer cell motility, and invasion of metastatic 
cancer cells through a similar transgenic model (Criswell et al. 2008).

To address the role of IL-6 in cancer proliferation, investigators looked at 
whether expression of IL-6 in MCF-7 cells would alter tumor growth rates in 
immunocompromised mice. Xenografts expressing IL-6 underwent rapid engraft-
ment and expansion relative to MCF-7 xenografts that did not express IL-6 (Sasser 
et al. 2007). On the other hand, using siRNA to knock down STAT3 expression in 
nude mice, investigators were able to suppress breast cancer cell growth compared 
with controls. pRNAi-STAT3 also led to downregulation of STAT3 and Bcl-xL, as 
well as upregulation of Fas and induction of apoptosis via expression of cleaved 
caspase-3 (Kunigal et al. 2009; Matthews et al. 2007).

3 .5  Evidence From Patients for the Role  
of Inflammation in IBC

The rarity of IBC as a disease has not allowed the role of inflammation to be 
systematically examined in clinical studies involving IBC patients; however, 
numerous clinical reports and observational studies have addressed the role of 
inflammation in breast cancer in general.
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C-reactive protein (CRP) is an acute-phase protein that is considered the clas-
sic marker of systemic inflammation. CRP levels in plasma are known to rise rap-
idly in response to acute inflammation (Black et al. 2004; Casas et al. 2008; Gabay 
and Kushner 1999), but have also been found to be moderately increased in chronic 
inflammatory disease (Hirschfield and Pepys 2003). Large epidemiologic studies 
have suggested a correlation between high circulating levels of CRP and the risk 
of developing cancer. This observation has not been demonstrated for breast can-
cer, however. The Women’s Health Study measured baseline plasma CRP levels for 
27,919 healthy women aged 45 years or older. After a mean follow-up of 10 years, 
892 patients had developed breast cancer; results showed no association between 
increased CRP levels and the risk of developing breast cancer (Zhang et al. 2007).

Likewise, in a Danish general population study, 10,408 individuals had their CRP 
levels measured at baseline and were observed for up to 16 years. During follow-up, 
1,624 went on to develop cancer, and 998 patients died. Increased CRP levels were 
associated with an increased risk of cancer of any type and possibly an increased 
risk of colorectal cancer and lung cancer, but not breast cancer (Allin et al. 2009).

On the other hand, high CRP levels were found to be associated with poor prognosis 
in several types of cancer, including breast cancer. Allin et al. (2011) looked at CRP lev-
els at baseline in 2,910 breast cancer patients. Higher CRP levels were found to be asso-
ciated with larger tumor size, development of distant metastases, and poor prognosis. 
More importantly, the authors reported that breast cancer was the leading cause of death 
in this cohort, thus excluding the possibility that the outcome was confounded by risk of 
cardiac disease, for which CRP is an established risk factor (Allin et al. 2011).

Ristimaki and colleagues analyzed the expression of COX-2 protein using immuno-
histochemistry in tissue specimens of 1,576 patients with breast cancer (Ristimaki et al. 
2002). Increased levels were found in approximately 40 % of breast tumors and were 
associated with shorter distant metastasis-free survival. Tumors with COX-2 expression 
were associated with negative hormone receptor status as well as the presence of HER2 
amplification and axillary nodal metastasis. Additional unfavorable features associated 
with COX-2 increase include larger tumor size, higher histological grade, high Ki-67 
proliferation rates, higher p53 expression, and ductal type histology. However, the dif-
ferences in outcome between patients with increased COX-2 protein and those without 
was even more pronounced in patients with more favorable prognostic characteristics, 
such as ER positivity, low p53 expression, and no HER-2 amplification.

The preclinical model of IBC, a disease known for its aggressive course, 
expressed increased levels of IL-6 and IL-8 (Golen et al. 2000). High levels of 
IL-6 were reported to be associated with poorer response to therapy in patients 
with metastatic breast cancer (Zhang and Adachi 1999). This was confirmed in the 
clinical setting; breast cancer patients were found to have higher serum levels of 
IL-6 than do healthy women (Kozlowski et al. 2003; Jiang et al. 2000). Two stud-
ies looked at IL-6 in different tumor stages and found higher levels of IL-6 were 
correlated to advanced cancer stage (Jablonska et al. 2001; Lyons et al. 2011). 
Others looked at how serum levels correlated with recurrence and outcome in the 
metastatic setting (Nishimura et al. 2000; Bozcuk et al. 2004; Salgado et al. 2003). 
One study analyzed the association between IL-6 serum levels and response 
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to therapy as designated by the Response Evaluation Criteria in Solid Tumors 
(RECIST); higher levels were associated with poor objective response to therapy 
(Zhang and Adachi 1999).

Similarly, TGF-β levels in plasma in breast cancer patients were found to be 
increased and predictive of lymph node and distant metastasis (Ivanovic et al. 2009; 
Yu et al. 2010). Additionally, increased levels of IL-1β in the tumor and in the serum 
of ER-negative breast tumors were correlated with tumor invasiveness and poor out-
come (Studebaker et al. 2008). The production of IL-8 in ER-positive breast  cancer 
patients was associated with shorter relapse-free survival (Freund et al. 2003). 
Furthermore, increased circulating levels of TNF-α were correlated with increased 
lymph node metastasis and breast cancer stage (Sheen-Chen et al. 1997).

3 .6  Inhibitors of Inflammation for the Prevention  
and Treatment of IBC

Management of IBC consists of tri-modality therapy: neoadjuvant chemotherapy, 
then modified radical mastectomy, followed by locoregional radiotherapy. Prior to 
the era of multimodality therapy, the 5-year overall survival rate was less than 5 % 
(Robbins et al. 1974). In a more recent study, patients who received all components 
of tri-modality therapy achieved an overall survival rate at 5 years of 51 %, versus 
24 % for patients who did not receive all three components (Bristol et al. 2008).

One of the biggest challenges in the treatment of IBC thus far has been the lack of 
clinically relevant treatment targets. In a retrospective analysis, 316 IBC patients were 
assigned according to ER and HER2 status into four groups: ER positive (33 %), ER 
positive/HER2 positive (12 %), HER2 positive (26 %), and triple negative (29 %) 
(Li et al. 2011). The triple-negative subtype was found to predict the worst overall 
 survival and high recurrence rates. Hence, the search for potential treatment targets has 
become a priority in particular for patients with triple-negative IBC. One  promising 
tactic has been to target the inflammatory pathways in the adjuvant setting or in 
 combination with systemic therapy (Pierga et al. 2010; Agrawal and Fentiman 2008).

Pan et al. looked at the activity of tetrathiomolybdate, a copper chelator, in 
tumors derived from SUM149 IBC cells. Tetrathiomolybdate was shown to effec-
tively suppress angiogenesis and motility in IBC cell line tumors through its inhib-
itory effects on NF-κB signaling (Pan et al. 2002, 2003). This was accompanied by 
reduced levels of VEGF, basic fibroblast growth factor (bFGF), IL-6, IL-1α, and 
IL-8, as well as decreased tumor volume (Pan et al. 2002). Another compound that 
is known to inhibit the NF-κB pathway is pyrrolidinedithiocarbamate (Zhou et al. 
2008). Inhibition of the NF-κB pathway, which is upregulated in IBC, is one of the 
most promising areas of research.

The chemokine CXCR4/CXCL12 receptor/ligand pair has been observed 
to promote angiogenesis as well as confer survival on CSCs (Duda et al. 2011; 
Greenfield et al. 2010). The CXCR4 antagonist, CTCE 9908, in combination with 
paclitaxel, was evaluated in a SUM149 preclinical model of triple-negative IBC 
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(Singh et al. 2010). CTCE-9908 as a single agent inhibited skeletal metastases but 
failed to prevent primary tumor growth or pulmonary metastasis.

Owing to their unacceptable cardiotoxicity, the use of selective COX-2 inhibi-
tors has been limited despite initial enthusiasm regarding promising epidemio-
logic results and their anti-cancer activities (Psaty and Furberg 2005; Graham 
et al.2005). Interest has instead shifted to searching for alternative COX-2-targeted 
agents. One such target is the family of prostanoid receptors, particularly EP4, that 
bind with PGE2, which is a product of COX-2 (Jones et al. 2009). EP4 was found 
to mediate invasion and metastasis in both inflammatory and non-IBCs, and EP3 
suppressed angiogenesis in IBC tumors (Robertson et al. 2008, 2010). None of the 
available EP4 antagonists have yet been tested in cancer patients.

Apricoxib is a novel selective COX inhibitor analog that is currently under evalu-
ation in breast cancer in combination with lapatinib and capecitabine in the treatment 
of HER2/neu-positive advanced breast cancer (Health NIo 2001). Tranilast is another 
compound under investigation and is known as a potent inhibitor of PGE2. It was 
shown to suppress tumorigenesis in both xenograft mammary tumors and human triple-
negative breast cancer cells (Chakrabarti et al. 2009; Subramaniam et al. 2010, 2011).

Another agent under evaluation in breast cancer is fish oil. Fish oils con-
tain the omega-3 fatty acids docosahexaenoic acid (DHA) and eicosapentaenoic 
acid (EPA), which ultimately lead to the inhibition of inflammation in the body 
(Weaver et al. 2009). This is suspected to occur through inhibition of COX/PGE2 
production (Wendel and Heller 2009).

Recently, a new role for statins as a preventive agent against cancer has 
emerged. Recent evidence has suggested that in addition to their lipid-lowering 
effects, statins exert powerful anti-inflammatory effects by acting on multiple 
inflammatory gene pathways (Jain and Ridker 2005). The anti-cancer effects of 
statins have also been linked to the mevalonate pathway, which in turn leads to 
the inhibition of many downstream growth factors (Nielsen et al. 2012). Large 
observational studies have pointed toward the potential role this pathway has 
against cancer in general as well as breast cancer specifically (Nielsen et al. 2012; 
Ahern et al. 2011). Brewer et al. have also addressed the potential role of statins in 
improving the survival of patients with IBC (Brewer et al. 2012).

Curcumin is the principal derivative of turmeric, the popular Indian spice and a 
member of the ginger family. Various preclinical studies have looked into its role 
in breast cancer as a chemosensitizer and radiosensitizer to agents such as doxo-
rubicin, 5-fluorouracil, and paclitaxel (Goel and Aggarwal 2010). Curcumin is a 
known potent inhibitor of NF-κB, STAT3, and COX-2 as well as other growth fac-
tors and anti-apoptotic proteins (Goel and Aggarwal 2010).

3 .7  Conclusions and Future Directions

Current evidence supports that inflammation plays a central role in the process of 
tumor formation in IBC at various levels. Several important inflammatory gene 
pathways are differentially upregulated in IBC and contribute to the formation 
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of a pro-inflammatory feedback loop that is critical for malignant transformation 
(Hartman et al. 2011). On the other hand, downstream cytokines and chemokines 
are involved at every step of tumorigenesis/carcinogenesis, including initiation, 
transformation, proliferation, cancer cell survival, invasion, angiogenesis, and 
metastasis. Several pharmacological compounds that target the inflammatory 
signaling pathways are currently being tested in the laboratory and in the clini-
cal setting. There is a demand for better immunocompetent IBC mouse models 
for more accurate in vivo testing and drug development. Proteomic analysis of 
IBC offers the opportunity to conduct a quantitative and functional evaluation of 
protein activity in the various signaling networks involved (Chen et al. 2002). It 
allows assessment of posttranslational modifications, complementing gene expres-
sion studies in IBC (Bichsel et al. 2001). New approaches such as high-through-
put screening may help identify novel agents that inhibit key signaling pathways. 
Ultimately, the clinical role of targeting inflammation in IBC needs to be tested 
prospectively.
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Abstract Malignant brain tumors are among the most lethal of human tumors, 
with limited treatment options currently available. A complex array of recurrent 
genetic and epigenetic changes has been observed in gliomas that collectively 
result in derangements of common cell signaling pathways controlling cell sur-
vival, proliferation, and invasion. One important determinant of gene expression 
is DNA methylation status, and emerging studies have revealed the importance 
of a recently identified demethylation pathway involving 5-hydroxymethylcyto-
sine (5hmC). Diminished levels of the modified base 5hmC is a uniform finding 
in glioma cell lines and patient samples, suggesting a common defect in epigenetic 
reprogramming. Within the tumor microenvironment, infiltrating immune cells 
increase oxidative DNA damage, likely promoting both genetic and epigenetic 
changes that occur during glioma evolution. In this environment, glioma cells are 
selected that utilize multiple metabolic changes, including changes in the metab-
olism of the amino acids glutamate, tryptophan, and arginine. Whereas altered 
metabolism can promote the destruction of normal tissues, glioma cells exploit 
these changes to promote tumor cell survival and to suppress adaptive immune 
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responses. Further understanding of these metabolic changes could reveal new 
strategies that would selectively disadvantage tumor cells and redirect host antitu-
mor responses toward eradication of these lethal tumors.

4 .1  Malignant Tumors of the Central Nervous System: 
Focus on Glioblastoma

4.1.1  WHO Classification of CNS Tumors

Tumors of the central nervous system (CNS) were first classified by the World 
Health Organization (WHO) on the basis of histopathology, clinical, and diag-
nostic criteria in 1979. In 1993, immunohistochemical criteria were added, and in 
2000, some genetic profiles, epidemiological data, clinical signs and symptoms, 
imaging, and other predictive factors were added to the classification. As of 2007, 
additional types had been added, creating an array of more than 130 tumor types 
and subtypes (Louis et al. 2007; Huttner 2012). The WHO grading scale is based 
upon histology and includes a “malignancy scale” useful in predicting biological 
behavior and in selecting treatment strategies. Of the “gliomas,” Grade I tumors 
have low proliferative potential and include all pilocytic astrocytomas and gener-
ally can be cured surgically. Grade II tumors demonstrate some infiltration and 
are likely to recur following surgery. Grade III tumors demonstrate evidence of 
malignancy, and patients with these tumors generally receive radiation and chemo-
therapy. Grade IV tumors are malignant, mitotically active and are likely to show 
evidence of necrosis and vascular proliferation. Grade IV tumors progress rap-
idly, usually with fatal outcome. CNS tumors can be classified broadly as glio-
mas, including astrocytomas, oligodendrogliomas, and ependymomas, or non-glial 
tumors, including meningiomas, pituitary tumors, and medulloblastoma.

Glioblastoma multiforme, a Grade IV tumor, is the most common primary 
malignant brain tumor diagnosed in the USA and is recognized for its aggressive 
growth, recurrence, resistance to therapy, and short median survival (Fig. 4.1). 
As glioblastomas account for approximately 80 % of malignant brain tumors 
(CBTRUS 2011), they will be the focus of this review on inflammation and brain 
cancer. Glioblastomas primarily affect adults with a peak incidence between 40 
and 70 years. Most glioblastomas arise in older individuals as primary tumors (pri-
mary glioblastoma) in the cerebral hemispheres and demonstrate microvascular 
proliferation and necrosis. A smaller number (<10 %) likely arose from tumors 
of a lower grade in younger patients that progressed (secondary glioblastoma) 
(Huttner 2012).

Current treatment strategies include surgical resection, radiation therapy, and 
chemotherapy, primarily with the alkylating agent temozolomide.



774 The Role of Inflammation in Brain Cancer

4.1.2  Genetic Changes Driving Glioblastoma

The intricate landscape of brain tumors defined by histology becomes more 
complicated as histologically similar tumors are further subdivided by the iden-
tification of recurrent mutations. Somatic mutations have been identified in glio-
blastoma in multiple genes, and these mutations are observed in a significant 
percentage of tumors including TP53 (42 %), PTEN (33 %), NF1 (21 %), epi-
dermal growth factor receptor (EGFR) (18 %), RB1 (11 %), PIK3R1 (10 %), and 
PIK3CA (7 %) (Dunn et al. 2012). Current efforts are directed at understanding 
the significance of these mutations within the context of cell signaling “networks,” 
which could substantially reduce the complexity and increase understanding of the 
biological properties of glioblastomas (Dunn et al. 2012; Cancer Genome Atlas 
Research Network 2008; Huse and Holland 2010). To date, three critical signaling  
pathways have been identified in glioblastoma in which at least one member of 
each pathway is altered (Fig. 4.2). The pathways include the RTK/RAS/PI3K path-
way, altered in 88 % of glioblastomas, the p53 pathway, mutated in 87 %, and the 
RB pathway, mutated in 78 % (Cancer Genome Atlas Research Network 2008). 
The majority of glioblastomas have defects in all three pathways that promote cell 
proliferation, enhance cell survival, and circumvent cell cycle checkpoints, senes-
cence, and apoptosis.

4 .1 .2 .1  The RTK/RAS/PI3K Pathway

The receptor tyrosine kinase (RTK) signaling pathway is initiated by ligand  
binding to one of several membrane-bound RTKs, initiating a signaling cascade 
that ultimately promotes or inhibits cellular proliferation, migration, and survival  

Fig . 4 .1  Example of patient with GBM. T1-weighted gadolinium enhanced magnetic resonance 
images demonstrating a left frontal tumor with mass effect. Pathology is consistent with glioblas-
toma multiforme
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(Rajasekhar et al. 2003; Aksamitiene et al. 2011; Chen et al. 2012). Members of the 
RTK family significant in glioblastoma include amplification of EGFR, EGFRvIII 
ERBB2, PDGFRA, and MET. The binding of ligands to these membrane recep-
tors stimulates the intrinsic tyrosine kinase activity of the RTK, leading to receptor 
autophosphorylation and activation of Ras by GTP binding. The RAS signaling kinase 
cascade can then proceed down the RAS/PI3K/PTEN/AKT/mTOR or the RAS/RAF/
MEK/ERK pathways. Ultimately, either a series of transcription factors are activated 
that promote transcription of a subset of genes, or existing mRNAs are differentially 
recruited into polysomes. Although these pathways are often presented as being  
discrete, substantial cross talk occurs, creating a complicated signaling network.

Under normal conditions, these signaling pathways allow a cell to communicate 
with its environment and to respond appropriately. Changes in protein levels or muta-
tions in key genes can result in the disruption of normal signaling. In glioblastoma, 
signaling through these pathways is often perturbed by amplification or mutation 
of the RTK member, EGFR. Mutations or amplification in other RTKs are less fre-
quently observed. The neurofibromatosis 1 (NF1) and PTEN (phosphatase and tensin 
homolog deleted on chromosome 10) gene products act as regulators of each arm of 
this pathway, and both are known to be mutated or deleted in a substantial number of 
glioblastomas. Loss or alteration of these regulators results in partial or complete loss 
of regulation of the signaling pathway. Mutations in RAS, PI3K, or other members 
of the network could result in constitutive activation of the signaling cascade.
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4 .1 .2 .2  The p53 Pathway

The TP53 gene product is an important tumor suppressor that reduces the number 
of mutant cells in a population by directing cells with substantial DNA damage 
toward senescence or apoptosis through transcription-dependent or -independent 
mechanisms. The TP53 gene is frequently mutated in human tumors and is the 
most frequently mutated gene in glioblastoma. Protein levels of p53 are regu-
lated by the mouse double minute 2 homolog (MDM2) and double minute 4 pro-
tein (MDM4) ubiquitin ligases, which mark p53 for proteosomal degradation, as 
well as inhibit p53-mediated transcriptional activation. The amplification of either 
of these ubiquitin ligases can diminish p53 levels and thus abrogate p53 function. 
Another member of the p53 network is p14Arf transcribed from an alternate read-
ing frame of the CDNK2A locus that inhibits MDM2; therefore, deletion or muta-
tion of p14Arf would result in increased MDM2 levels and increased p53 degradation 
(Riemenschneider et al. 1999; Zheng et al. 2008; Stegh and DePinho 2011).

4 .1 .2 .3  The RB Pathway

The retinoblastoma (RB) tumor suppressor gene controls cellular proliferation by 
sequestering the E2F family of transcription factors, originally identified as factors 
binding to the E2 adenovirus promoter. In this pathway, mitogenic signals are able 
to induce the cyclin-dependent kinases (CDK4/6) to phosphorylate Rb in a pRB-
E2F dimer, thereby releasing E2F. The activity of the CDKs is modulated by the 
p16 tumor suppressor gene (CDKN2). Loss or mutation of p16 would then result 
in loss of control over Rb phosphorylation, causing constitutive E2A activation and 
cell cycle progression. The loss or mutation of p16, pRB, or the amplification of the 
CDKs is observed in most glioblastomas (Ueki et al. 1996; Chow et al. 2011).

4 .1 .2 .4  Coupling Common Defects in Glioblastoma for New Therapy 
Development

As each of the three pathways above is functionally altered in the majority of  
glioblastomas, developing therapies based upon defects in multiple pathways 
might provide significant targeting and selectivity for glioblastoma treatment. In 
many glioblastomas (~78 %), the RB pathway is inoperative due to a defect in 
one of the constitutive components, thereby abrogating the control of entry into 
the cell cycle. In many glioblastomas, the EGFR gene is mutated, and a frequent 
mutation resulting from the deletion of exons 2–7 generates the mutant RTK, 
EGFRvIII. Overexpression of either wild type or EGFRvIII facilitates greater 
signaling through this pathway and increased cell proliferation, survival, and 
migration of the tumor cells.
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Wild-type adenoviruses similarly exploit the critical role of pRB upon infection 
of human cells by expressing the virally encoded E1A protein. This protein binds to 
pRB, releasing E2F and allowing progression of quiescent cells into the cell cycle, 
therefore promoting viral replication. An oncolytic adenovirus has been engineered 
in which a 24 base pair deletion has been inserted into the E1A region (Δ24). This 
virus will replicate only in RB-deficient cells, resulting in cell lysis (Fueyo et al. 
2000). Adenovirus normally binds to the coxsackie and adenovirus receptor (CAR) 
present on the surface of some human cells. However, a mutation can be created that 
prevents binding to this receptor. In its place, an RGD-4C peptide coding sequence 
has been inserted, effectively retargeting the adenovirus to cells that express inte-
grins αvβ3,5, which are frequently upregulated in a number of high-grade tumors 
including glioblastoma (Piao et al. 2009). Thus, the combined Δ24-RGD oncolytic 
adenovirus will selectively destroy glioblastoma tumor cells with defects in the RB 
pathway and increased expression in integrins. Clinical trials are currently underway 
with this viral vector approach.

4.1.3  Epigenetic Changes in Glioblastoma

In addition to somatic mutations, human tumors frequently have simultaneous  
heritable epigenetic changes including DNA methylation (5-methylcytosine, 
5mC) patterns, histone modifications, and noncoding RNAs (miRNA) (Berger 
et al. 2009). Changes in DNA methylation patterns have been studied frequently 
in human tumors, including glioblastoma. Aberrant cytosine methylation patterns 
can result in the inappropriate expression of tumor suppressor genes or in the tran-
scriptional silencing of tumor suppressor genes.

In normal human cells, cytosine residues in DNA can be enzymatically 
methylated in the 5-position of the pyrimidine ring by methyltransferases using 
S-adenosylmethionine as the methyl donor (Razin and Riggs 1980; Chen and 
Riggs 2011; You and Jones 2012) (Fig. 4.3). In humans, three methyltransferases 
have been identified: DNMT1, DNMT3A, and DNMT3B. Once established, meth-
ylation patterns can be heritably transmitted to progeny cells following DNA 
replication because the DNMT1 maintenance methyltransferase preferentially 
methylates hemimethylated CpG dinucleotides on the progeny strand following 
DNA replication (Herring et al. 2009).

Methylated DNA sequences can then modulate expression of surrounding genes 
by blocking the binding of some transcription factors or by enhancing the bind-
ing of proteins containing a methyl-binding domain, referred to as methyl-bind-
ing proteins (MBPs). MBPs, including MeCP2, bind to symmetrically methylated 
sequences with one hundred times greater affinity over unmethylated sequences 
(Lao et al. 2010). The MBPs recruit histone-modifying enzymes, including the his-
tone deacetylases which modify histone proteins, resulting in a compact chroma-
tin structure inaccessible to transcription factors (Bird and Wolffe 1999; Klose and 
Bird 2006).
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In glioblastoma tumor cells, several genes are frequently methylated (Nakamura 
et al. 2001; Costello et al. 1996; Bello and Resy 2006; Cecener et al. 2012; Martinez 
et al. 2009; Di Vinci et al. 2012; Lorent et al. 2008; Martinez and Esteller 2010; 
Martinez 2012; Alelu-Paz et al. 2012). Many of the genes frequently mutated in 
glioblastoma can also be silenced by aberrant methylation, and therefore, hyper-
methylation can conspire with genetic mutations in disrupting critical signaling 
pathways as shown in Fig. 4.2. Aberrant methylation of additional genes could 
also have important consequences influencing treatment choices. One such gene is  
O6-methylguanine methyltransferase (MGMT) which encodes a DNA repair protein 
that removes alkyl groups from the O6 position of guanine in DNA. One of the few 
chemotherapy agents shown to have activity in glioblastoma is the alkylating agent 
temozolomide, which forms such an adduct with guanine in DNA (Esteller et al. 
2000; Weller et al. 2010). In cells where MGMT is expressed, the guanine-temo-
zolamide adducts can be repaired; however, in the absence of MGMT, the adduct is 
persistent and blocks DNA replication. In clinical trials, patients who have tumors 
in which the MGMT gene is methylated show substantially greater responses than 
those with unmethylated MGMT (Esteller et al. 2000).

4.1.4  Defects in Epigenetic Reprogramming: A New 
Paradigm in Glioblastoma

Cytosine methylation patterns are established during cellular differentiation, and 
once formed, these patterns can be heritably transmitted to progeny cells. However, 
biological evidence for changes in methylation patterns in differentiated cells led 
to several different proposed mechanisms for active methylation later found to be 
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irreproducible (Ooi and Bestor 2008). Two significant findings reported in 2009 
redirected studies on DNA demethylation to an oxidation product of 5mC, 5hmC. In 
one study, 5hmC was identified as a “sixth base” in the DNA of mammalian Purkinji 
neurons (Kriaucionis and Heintz 2009). Simultaneously, it was reported that mam-
malian 10–11 translocation (TET) enzymes requiring α-ketoglutarate, Fe(II), and 
oxygen could convert 5mC to 5hmC (Tahiliani et al. 2009). These reports have since 
led to a flood of reports on potential epigenetic reprogramming pathways in mam-
malian DNA with demonstrated defects in human cancer, including glioblastoma.

The pyrimidine methyl groups of both thymine and 5mC in DNA can be chem-
ically oxidized by endogenous reactive oxygen species (ROS) with formation of 
5-hydroxymethyluracil (5hmU) and 5hmC (Mellac et al. 1993; Privat and Sowers 
1996; Tardy-Planechaud et al. 1997; Burdzy et al. 2002), respectively. The oxida-
tion of 5mC to 5hmC is known to interfere with the binding of proteins contain-
ing methyl-binding domains, including MeCP2 (Valinluck et al. 2004), and also 
with methyl-directed methylation of hemimethylated DNA by methyltransferases, 
including mammalian DNMT1 (Valinluck and Sowers 2007). This confirms earlier 
suggestions that 5hmC might be an intermediate in a DNA demethylation path-
way (Rusmintratip and Sowers 2000). Potential mechanisms are currently being 
explored for downstream events in the processing of 5hmC, including enzymatic 
deamination to 5hmU, followed by removal by the thymine-DNA glycosylase 
(TDG) (Guo et al. 2011; Cortellino et al. 2011), and further enzymatic oxida-
tion by TET family members to 5-formylcytosine (5foC) and 5-carboxylcytosine 
(5caC), also removed by TDG (He et al. 2011).

Recent studies have measured 5hmC levels in both normal brain tissues and in 
tumors by both liquid chromatography mass spectrometry (LC-MS) and locali-
zation by immunohistochemistry (IHC). In the mouse tissue, 5mC is found in all 
tissues, with the highest levels in neurons within the CNS (Munzel et al. 2010; 
Globisch et al. 2010; Munzel et al. 2011). In human adult and embryonic tissues, 
the highest levels of 5hmC are found in terminally differentiated cells. Less dif-
ferentiated cells and stem cell compartments had lower 5hmC levels (Haffner et al. 
2011). In the normal adult brain, 5hmC is abundant in cells of the cortex and white 
matter; however, reduced levels are found in gliomas, with lower levels in tumors 
of higher grade (Kraus et al. 2012; Orr et al. 2012). In adult GBM, low 5hmC lev-
els are related to reduced survival (Orr et al. 2012), suggesting that the formation 
and metabolism of 5hmC represent critical events in the development of GBM and 
might reveal future treatment strategies. It is as yet unknown if 5hmC functions 
primarily as an intermediate in a 5mC demethylation pathway or if 5hmC might 
have an independent function in modulating specific DNA–protein interactions 
with currently unidentified proteins (Yildirim et al. 2011).

It is as yet unknown what metabolic events result in the loss of 5hmC, though 
several mechanisms are under investigation (Fig. 4.3). A convergence between 
5hmC formation and glioblastoma somatic mutation has been shown for the isoci-
trate dehydrogenase gene (IDH1/2). IDH mutations (Sahm et al. 2011; Xu et al. 
2011; Jin et al. 2011; Liu et al. 2012) are frequently found in secondary glioblasto-
mas, although rarely in primary tumors. The IDH gene product converts isocitrate 
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to α-ketoglutarate either in mitochondria (IDH1) or in the cytosol (IDH2), and 
α-ketoglutarate is a required cofactor for the Tet-mediated conversion of 5mC to 
5hmC. Several IDH mutations have been identified; however, a R132H mutation 
results in a protein that consumes α-ketoglutarate, reducing it to 2-hydroxyglu-
tarate, an inhibitor of Tet-mediated 5mC oxidation. The role of IDH mutations in 
glioblastoma is as yet unclear because only a subset of tumors harbors IDH muta-
tions. However, 5hmC levels are low or undetectable in most tumor cells and glioma 
patient samples. Other mechanisms have been identified that could interfere with 
5hmC formation, including mutations in Tet genes (Mohr et al. 2011), promoter 
methylation and transcriptional silencing (Kim et al. 2011), and exclusion of Tet 
from the nucleus (Muller et al. 2012). The role of 2-hydroxyglutarate in IDH mutant 
cells is also unclear as 2-hydroxyglutarate inhibition is not exclusive to the Tet fam-
ily. Several dioxygenases, including histone demethylases (Xiao et al. 2012) and the 
hypoxia-inducible factor (HIF) prolyl hydroxylase (PHD) in the HIF-1α hypoxia 
signaling pathway are inhibited by 2-hydroxyglutarate (Reitman and Yan 2010).

Hypermethylation of a subset of genes at CpG dinucleotides has been identified 
in several human tumors, and this phenomenon has been identified as a CpG island 
methylator phenotype, or CIMP (Noushmehr et al. 2010; Shinawi et al. 2013). The 
CIMP phenotype has been associated with the common IDH R132H mutation. A 
greater number of methylated CpG islands are found in tumor cells derived from 
long-term survivors, as opposed to short-term survivors, suggesting that the IDH 
mutation diminishes tumor survival. As the hypermethylation observed in CIMP is 
associated with IDH mutations, this phenotype is more likely a defective “demeth-
ylation” phenotype, as opposed to a methylator phenotype.

4 .2  Inflammation and Glioblastoma Initiation  
and Progression

4.2.1  The Inflammatory Microenvironment of Glioblastoma

The tumor microenvironment in glioblastoma is influenced by many cell types, 
including infiltrative inflammatory cells, cells with stem-like properties, cells with 
neural, glial, and myeloid markers, as well as some cells undergoing necrosis. 
Rapid tumor growth results in both hypoxia and aberrant vascular proliferation as 
well as the infiltration of immune cells including macrophages, eosinophils, neu-
trophils, and T lymphocytes. Signaling pathways among these various cell types 
are complex, involving numerous cytokines that function in both a paracrine and 
autocrine manner resulting in aberrant activation or suppression of multiple sign-
aling pathways. While these multiple interacting components likely facilitate tis-
sue repair following injury, the presence of activated inflammatory cells and the 
release of inflammatory mediators promote tumor proliferation, angiogenesis, 
and invasion and likely contribute to the molecular evolution of the tumor cells  
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(Rossi et al. 1987; Fossati et al. 1999; Murat et al. 2009; Charles and Holland 
2010; Yang et al. 2011; Sen 2011; Huysentruyt et al. 2011; Curran and Bertics 
2012; Charles et al. 2012). Interactions in the tumor microenvironment are pre-
sented diagrammatically in Fig. 4.4.

4.2.2  Inflammation, Oxidative DNA Damage, and Repair

While cytokine signaling within the tumor microenvironment promotes tumor 
growth and invasion, how might the inflammatory environment contribute to the 
array of genetic and epigenetic changes commonly seen in gliomas? Although 
inflammation has been strongly implicated in the development of cancer (Balkwill 
and Mantovani 2001), the molecular basis for this association is as yet unclear. 
While cellular communication between tumor and inflammatory cells is accom-
plished primarily by soluble mediators that bind with high affinity and specificity 
to membrane receptors, much of innate immunity is based upon the production 
of reactive oxidizing chemicals that function well as antimicrobial agents but 
cause collateral damage to host cells as well. When stimulated by cytokines, 
macrophages release superoxide (O2

.) and hydrogen peroxide (H2O2) through an 
NADPH-dependent oxidative burst. Macrophages also generate nitric oxide (NO), 
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an important signaling molecule in modulating vascular tone, which can combine 
with O2 to form peroxynitrite (ONOO-). Neutrophils and eosinophils can com-
bine H2O2 with halogens to generate hypochlorous acid (HOCl) and hypobromous 
acid (HOBr). These reactive oxygen, nitrogen, and halogen species can react with 
lipids, proteins, and nucleic acids to form a complicated array of reaction prod-
ucts. Numerous DNA adducts have been identified that can induce polymerase 
(PARP) miscoding, resulting in genetic mutations (Lewis and Adams 1987; Ames 
et al. 1995; Lonkar and Dedon 2011).

Among the many mutagenic DNA oxidation damage products known to form, 
8-oxo-2’-deoxyguanosine (8-oxodG) has been most extensively studied. While oxi-
dative DNA damage occurs in all metabolically active cells, levels of 8-oxodG in 
glioblastoma tissues are reported to be roughly twice those found in normal brain 
tissues. The increase in oxidation is accompanied by a reduction in total antioxidant 
capacity (Tuzgen et al. 2007). Increased 8-oxodG in GBM tissues is associated with 
increases in the phosphorylated histone H2AX (γH2AX) and induction of a DNA 
damage response that signals to p53 (Bartkova et al. 2010). While in the tumor 
microenvironment, ROS from outside of the cell can contribute to increased DNA 
damage, and molecular alterations within the cell can also increase oxidative stress. 
Glioblastoma cells with the common EGFRvIII mutation have increased 8-oxodG 
and upregulate DNA repair genes in response to increased DNA damage (Nitta et al. 
2010). Presumably, increased signaling through EGFR results in increased oxidative 
stress, increased DNA damage, and further promotes genetic instability.

Single-base oxidative damage like 8-oxodG is repaired by the base excision-
repair (BER) pathway. Although glioblastoma cells likely experience enhanced 
oxidative damage within the tumor microenvironment, the levels of multiple gly-
cosylases of the BER pathway are significantly downregulated in astrocytoma 
Grades II to IV. Expression of the OGG1 glycosylase involved in 8-oxodG repair 
is reduced by more than an order of magnitude (Jiang et al. 2006). Interestingly, 
patients with high EGFR expression and low relative BER capacity had longer 
survival times (Nitta et al. 2010), suggesting that the relationship between DNA 
damage and repair in glioma might extend beyond tumor initiation and could sug-
gest targets for selective chemotherapy.

4.2.3  Inflammation, DNA Damage, and Genetic Mutations  
in Glioblastoma

Among the many genes often mutated in glioblastoma, the p53 gene is the most 
frequently mutated and has been studied the most extensively. The most prevalent 
mutations in p53 of brain tumors are single-base changes, with ~85 % simple sub-
stitutions (Greenblatt et al. 1994). Among these, transition mutations (GC to AT or 
AT to GC) comprise ~65 % of the substitutions. A significant number (~30 %) of 
the GC to AT transitions are within a CpG dinucleotide, and CpG dinucleotides in 
the p53 gene are generally methylated (Tornaletti and Pfeifer 1995). Therefore, a 
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significant number of p53 mutations arise from the hydrolytic deamination of 5mC 
to thymine, a base change that is difficult to repair. The spectrum of single-base 
mutations found in the p53 gene outside of CpG dinucleotides in brain tumors is 
consistent with cycles of endogenous damage and repair cycles.

The T-G mispair formed by hydrolytic deamination of 5-methylcytosine can 
be repaired by four human glycosylases: UNG2, SMUG1, MBD4, and TDG 
(Vasovcak et al. 2012). Failure to repair the T-G mispair would result in the 
observed GC to AT transition mutations frequently observed at p53 CpG sites 
in glioblastoma. The TDG glycosylase might be of particular importance as it is 
involved in epigenetic reprogramming/demethylation as previously discussed 
(Fig. 4.3), and TDG expression is apparently regulated by p53 (da Costa et al. 
2012) and is essential for maintaining epigenetic stability (Cortázar et al. 2011). 
The TDG glycosylase represents an intersection between p53 mutation and epige-
netic reprogramming in glioblastoma.

4.2.4  Inflammation Induced Epigenetic Changes  
in Glioblastoma

Aberrant hypermethylation of the promoter regions of multiple genes has been 
demonstrated in glioblastoma, as well as several other human tumors as discussed 
above. However, the mechanisms leading to hypermethylation are as yet unknown. 
Inflammation has long been associated with cancer development, yet a mecha-
nistic link has been difficult to identify. Inflammation-mediated ROS can induce 
multiple forms of DNA damage; however, most forms of DNA damage inhibit the 
binding of MBPs and block enzymatic methylation. It has been recently discov-
ered that some forms of inflammation-mediated DNA damage might supply such a 
link (Whiteman et al. 1997).

The tumor microenvironment in glioblastoma promotes the infiltration of 
immune cells, including eosinophils and neutrophils. Upon activation, both initi-
ate an oxidative burst that generates H2O2, HOBr, and HOCl (Lonkar and Dedon 
2011). DNA damage products include both 5-chlorocytosine (5ClC) and 5-bro-
mocytosine (5BrC) (Whiteman et al. 1997; Winterbourn and Kettle 2000; Kang 
and Sowers 2008). Both 5ClC and 5BrC have been shown in in vitro studies to 
mimic 5mC and to act as fraudulent epigenetic signals (Valinluck et al. 2005; Lao 
et al. 2009, 2010; Valinluck and Sowers 2007). Therefore, inflammation-mediated 
formation of either 5ClC or 5BrC could account in part for the aberrant hyper-
methylation in glioblastoma. Halogenated cytosine residues have been iden-
tified in human T cells (Badouard et al. 2005), in inflamed human sinus tissues 
(Seiberling et al. 2012), and in a mouse model of inflammation-mediated colon 
cancer (Mangerich et al. 2012).

Halogenated cytosine bases have not yet been measured in glioblastoma or 
normal brain tissues. Myeloperoxidase (MPO) converts H2O2 to HOCl, which in 
turn can generate 5ClC (Lonkar and Dedon 2011). MPO concentrations in both 
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tumor tissue and in plasma are significantly higher in glioblastoma patients versus 
control (Atukeren et al. 2010). Elevated MPO levels have been measured inside 
tumors and in peritumoral cerebrum using a gadolinium-based MRI method in 
rodent gliomas (Kleijn et al. 2011). Although MPO is likely derived from infiltrat-
ing neutrophils, it has been reported that astrocytes can aberrantly express MPO in 
a mouse model of Alzheimer’s disease (Maki et al. 2009). Further studies examin-
ing halogenated DNA bases in human glioblastoma are warranted.

4 .3  Cross Talk Between Glioblastoma Cells and Infiltrating 
Immune Cells

4.3.1  Neutrophils and Neuroinflammation

Emerging evidence indicates that astrocytes and neutrophils interact with one 
another in a normal process of neuroinflammatory homeostasis. Following injury 
or infection in the brain, neutrophils and other peripheral immune cells infiltrate 
the brain parenchyma. Through interacting with normal astrocytes in the brain, 
infiltrating immune cells can destroy infectious agents, eliminate necrotic tissues, 
and stimulate tissue repair. Recent studies in mice have revealed some interact-
ing pathways (Xie et al. 2010). Neutrophils undergo spontaneous apoptosis to 
limit inflammatory damage mediated by ROS, including HOCl generated by 
MPO. Direct contact between neutrophils and astrocytes may prolong neutrophil 
survival and reduce necrosis, which results in the dumping of matrix metallopro-
teinases (MMPs) and MPO into the tissues. The antimicrobial activity of neutro-
phils requires an NADPH-dependent oxidative burst generating H2O2, followed 
by MPO-mediated conversion to HOCl. Cell–cell contact between astrocytes and 
neutrophils can decrease both the production of ROS in neutrophils and the release 
of MPO by neutrophils (Xie et al. 2010).

4.3.2  Signaling with Neutrophils in the Tumor 
Microenvironment

While neutrophils may interact effectively with normal brain cells in destroying 
invading pathogens or promoting tissue turnover and repair, HOCl generated by 
neutrophils is indiscriminate in its chemical reactivity and can damage the DNA of 
normal cells, including astrocytes, promoting both genetic and epigenetic changes 
as described previously. MPO-positive neutrophils are frequently identified within 
human glioma tissues; though their role in tumor initiation and progression has 
not yet been established. The presence of neutrophils increases with tumor grade, 
as approximately 85 % of Grade IV gliomas samples show significant infiltration 
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(Fossati et al. 1999), suggest an increasingly mutagenic tumor microenvironment. 
In addition, circulating WBC counts increase in glioma patients, due primarily  
to increased circulating neutrophils (Fossati et al. 1999). Several interactions 
between glioma cells and neutrophils are discussed below.

4 .3 .2 .1  TNF-α → IL-8 → Neutrophils

Several pathways have been identified for communication between neutrophils 
and gliomas. Glioma cells can attract neutrophils by secreting interleukin-8 (IL-8), 
a member of the CXC chemokine family (CXCL8) that is defined by its ability to 
direct the migration of neutrophils as well as other inflammatory cells. The CXCL8 
ligand interacts with the CXCR1 and CXCR2 receptors found on neutrophils (Brat 
et al. 2005). Although the IL-8 present in the complex tumor samples could be attrib-
uted to macrophages, glioblastoma cells lines also have been shown to produce IL-6 
and IL-8, especially when stimulated by TNF-α, IL-2, and IL-β (Tada et al. 1993).

4 .3 .2 .2  Annexin1 → Neutrophils

Human neutrophils, as well as glioma cells, express formylpeptide receptor (FPR), 
a G-protein-coupled chemoattractant receptor (GPCR) that binds N-formyl-
methionyl-leucyl-phenylalanine (fMLF), a product of gram-negative bacteria 
(Huang et al. 2008). Necrotic human glioblastoma cells are also known to release 
Annexin 1, which is chemotactic for neutrophils and also stimulates glioma growth 
via the formyl peptide receptor 1 (FPR1) (Yang et al. 2011).

4 .3 .2 .3  Hypoxia → OPN → Neutrophil

In hypoxic areas of tumors, HIF-1α mediates the upregulation of osteopontin (OPN) 
expression, an arginine–glycine–aspartate (RGD)-containing glycophosphoprotein. 
Tumor-derived OPN also facilitates the influx of neutrophils into glioblastoma, likely 
by interacting with the α9β1 integrin, which is highly expressed on neutrophils (Atai 
et al. 2010).

4.3.3  Signaling with Eosinophils in the Tumor 
Microenvironment

In 1967, it was demonstrated that glioblastoma cells, cocultured with eosinophils, 
promoted eosinophil survival (Ciembroniewicz and Kolar 1967). It has since been 
established that the infiltration of eosinophils into glioblastoma is mediated by 
tumor-derived granulocyte macrophage colony-stimulating factor (GM-CSF). TNF-α 
increases tumor cell GM-CSF production, which is reversed by dexamethasone. 
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Eosinophils stimulated with GM-CSF release TGF-α, a ligand that can promote gli-
oma proliferation via the EGF receptor (Curran and Bertics 2012; Curran et al. 2011).

4 .3 .3 .1  GM-CSF → Eosinophils and Neutrophils

Human gliomas produce both granulocyte colony-stimulating factor (G-CSF) 
and GM-CSF ligands as well as receptors for these ligands. G-CSF and GM-CSF 
are important factors that control the proliferation and activation of granulocytes. 
The presence of both ligands and receptors in advanced stage tumors suggests 
both paracrine and autocrine functions (Curran et al. 2011; Mueller et al. 1999; 
Revoltella et al. 2011).

Several previous studies have shown an inverse relationship between atopic disease 
and risk for glioblastoma (Linos et al. 2007). As the eosinophil has been identified as 
an effector cell in the pathophysiology of atopic disease (Curran and Bertics 2012), 
eosinophils may also be responsible for destroying glioblastoma at an early stage. 
The possibility that eosinophils might be responsible for both initiating tumor forma-
tion via DNA damage, and in eliminating glioblastoma cells through inflammatory 
responses suggest that the interactions between infiltrating immune cells and normal 
brain cells must be carefully orchestrated. It is known that some chemical carcinogens 
at low levels can be mutagenic, but at higher levels are cytotoxic.

4 .4  Activation of Tryptophan Metabolism in the Tumor 
Microenvironment

4.4.1  The Kynurenine Pathway

Tryptophan is an essential amino acid that serves as a building block for protein  
synthesis but also functions as a precursor for other biochemical mediators including 
serotonin. Tryptophan also undergoes metabolism through the kynurenine pathway 
(Fig. 4.5), ultimately generating quinolinic acid needed for the synthesis of nicoti-
namide adenine dinucleotide (NAD+). Several of the metabolites formed along this 
pathway, including kynurenine, kynurenic acid, and quinolinic acid, have activities 
that can result in neuroprotection or pathophysiology. Several reviews have been 
published on the role of the kynurenine pathway in the brain (Guillemin et al. 2001; 
Schwarcz and Pellicciari 2012; Guillemin et al. 2007; Schwarcz et al. 2012; Adams 
et al. 2012; Vécsei et al. 2013).

The kynurenine pathway is triggered by inflammatory cytokines found in the 
glioma tumor microenvironment including IFN-α, IFN-γ, TNF-α, TGF-β, IL-4, 
and IL-23 (Mándi and Vécsei 2012). These cytokines induce the first enzyme of 
the kynurenine pathway, indoleamine 2,3-dioxygenase (IDO), which converts  
tryptophan to kynurenine. However, induction of the enzymes along the kynurenine  
pathway can be both cytokine and cell-type specific. In human mesenchymal stem cells, 
both IFN-β and IFN-γ upregulate expression of mRNAs for all of the enzymes along 
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the pathway, and IFN-γ upregulates all pathway enzymes substantially in macrophages. 
In contrast, in mouse neural stem cells, IFN-g upregulates the initiating enzyme, IDO, 
kynurenine aminotransferase that converts kynurenine to kynurenic acid, and quinoli-
nate phosphoribosyltransferase (QPRT) that converts quinolinic acid to nicotinic acid 
ribonucleotide, a necessary substrate for (NAD+) synthesis (Croitoru-Lamoury et al. 
2011). Astrocytes lack kynurenine hydroxylase, such that activation of the kynurenine 
pathway in these cells generates kynurenine and kynurenic acid, but not quinolinic acid 
(Guillemin et al. 2001).

The upregulation of some, but not all of the kynurenine pathway enzymes in neurons 
suggests that some of the initial metabolites including kynurenine and kynurenic acid 
could be beneficial to neurons, but that quinolinic acid is not. However, quinolinic 
acid generated by other cells might be utilized as a substrate for replenishing (NAD+) 
in neurons. Therefore, examining the kynurenine pathway within the context of the 
inflammatory tumor microenvironment might provide important clues not revealed by 
examining the same pathway in a single cell type in isolation.

4.4.2  The Biological Activity of Kynurenine

The first metabolite of the kynurenine pathway is kynurenine. In addition to 
serving as an intermediate along this pathway, the emerging role of kynurenine  
in modulation of inflammation is only beginning to be recognized. As with 
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astrocytes, human malignant glioma cells in culture increase expression of IDO 
when stimulated with IFN-γ. In contrast, 3-hydroxyanthranilate 3,4-dioxyge-
nase (3HAO) is not induced so that glioma cells could produce kynurenine and 
kynurenic acid, but not quinolinic acid. Glioma cells could potentially utilize exog-
enous quinolinic acid produced by other cells for (NAD+) synthesis (Miyazaki 
et al. 2009). Recent clinical studies have demonstrated that IDO expression lev-
els in resected glioma specimens are inversely correlated with patient survival 
(Wainwright et al. 2012; Mitsuka et al. 2013).

While induction of IDO activity could deplete tryptophan, resulting in inhi-
bition of cellular replication, activation of the kynurenine pathway more likely 
decreases patient survival by inducing immunosuppression. Within the tumor 
microenvironment, kynurenine could be generated by multiple cells including 
tumor cells and macrophages. Prior studies have demonstrated that T-cell func-
tion could be modulated through the aryl hydrocarbon receptor (AhR) present 
on T cells and that environmental chemicals such as 2,3,7,8 tetrachlorobenzo-
p-dioxin (TCDD, dioxin) could activate formation of regulatory T cells (Treg) 
while inhibiting natural killer cells (Stevens et al. 2009). However, emerging stud-
ies have revealed that kynurenine is an endogenous ligand for the AhR and has 
a similar immunomodulatory effect on T cells (Nguyen et al. 2010; Opitz et al. 
2011). While the effect of kynurenine on T-cell function is likely part of an immu-
nomodulatory feedback loop needed for the maintenance of homeostasis, its 
impact on tumor growth, evasion of immune regulation, and patient survival may 
be profound.

Many cell types express the AhR, including glioma cells. AhR expression at 
both the mRNA and protein levels has been observed in both glioma cell lines and 
in primary cells. Activation of the AhR has been shown to promote glioma cell 
proliferation and invasion through upregulation of TGF-β (Gramatzki et al. 2009). 
In human lung cancer cells, TCDD has been shown to activate the AhR that binds 
directly to the nuclear factor erythroid 2 p45-related factor (NRF2) promoter, 
resulting in the expression of the NRF2 transcription factor (Tsay et al. 2013). 
Expression of the NRF2 transcription factor in human U251 glioma cells results 
in both multidrug resistance and proliferation, as well as upregulation of MMP9 
(matrix metalloproteinase 9), an enzyme involved in degradation of the extracel-
lular matrix (Pan et al. 2012).

Inflammation within the glioblastoma tumor microenvironment induces produc-
tion of kynurenine, which has a potent immunomodulatory effect on T cells and can 
promote glioma cell proliferation and invasion in a paracrine and autocrine manner. 
Inhibition of kynurenine production via inhibition of IDO is therefore a potentially 
important therapeutic target that could result in inhibition of Treg induction, as well 
as inhibit a shift from a TH1 response to a TH2 response (Mándi and Vécsei 2012; 
Miyazaki et al. 2009; Stevens et al. 2009). IDO inhibitors include the tryptophan 
analog 1-methyl L-tryptophan (Miyazaki et al. 2009), as well as the antiviral agent 
acyclovir (Söderlund et al. 2010). Interestingly, acyclovir has previously been shown 
to inhibit human glioblastoma cells in culture (Kominsky et al. 2010); however, the 
mechanism has not yet been clarified.
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4.4.3  The Biological Activity of Kynurenic Acid

Once formed, kynurenine many be oxidized to 3-hydroxykynurenine and then 
on to quinolinic acid. Alternatively, kynurenine can be converted to kynurenic 
acid (KYNA) by kynurenine aminotransferase. KYNA is an antagonist of the 
glutamate-gated ion channel receptors found in the human brain: the N-methyl-
D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 
(AMPA), and kainate receptors (Birch et al. 1988). KYNA is also a noncompeti-
tive inhibitor of the α7-nicotinic acetylcholine receptor, as well as an endogenous 
ligand for an orphan G-protein-coupled receptor, GPR35. KYNA is considered to 
be neuroprotective because it inhibits glutamate excitotoxicity by inhibiting the 
glycine site of the NMDA receptor. However, the IC50 for KYNA at the glycine 
site of the NMDA receptor is approximately 8 μM (Passera et al. 2011), yet con-
centrations of KYNA rise from only 1 nM to approximately 5 nM in the cere-
brospinal fluid of humans with tick-borne encephalitis (Holtze et al. 2012). This 
suggests that KYNA might be of limited value in protecting from glutamate exci-
toxicity. However, plasma KYNA levels rise to near 1 μM in patients with inflam-
matory bowel disease (Forrest et al. 2002). KYNA could be generated by multiple 
cells within the tumor microenvironment, yet KYNA formation would be lim-
ited in glioblastoma cells carrying an IDH mutation because a required cofactor 
for kynurenine aminotransferase is α-ketoglutarate (Passera et al. 2011), which is 
depleted in glioma cells carrying an IDH mutation.

KYNA stimulates the proliferation of human glioblastoma cells in vitro and 
unexpectedly inhibits the release of fibroblast growth factor (FGF-1); however, the 
mechanism connecting these events is unknown (Barth et al. 2009). KYNA can 
also bind to the GPR35 orphan receptor and induce adhesion of human monocytes 
via β1 and β2 integrins at millimolar concentration (Barth et al. 2009).

4.4.4  The Biological Activity of Quinolinic Acid

4 .4 .4 .1  Quinolinic Acid is Neurotoxic

The metabolism of tryptophan along the kynurenine pathway generates quino-
linic acid that can be utilized to replenish NAD+ in cells following oxidative DNA 
damage and PARP activation. However, quinolinic acid is also an agonist of the 
NMDA receptor present on neurons and potentially can induce excitotoxic death. 
In experimental rat brain tumors, quinolinic acid immunoreactivity is observed in 
and around tumors; however, the positive cells were primarily macrophages and 
microglia (Moffett et al. 1997). This finding is consistent with expression of all 
enzymes along the pathway expressed in macrophages and microglia, but not in 
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astrocytes or neurons. Glioblastoma cells in culture (U373GM) produce significant 
amounts of kynurenine upon incubation with IFN-γ, but do not produce quinoli-
nate (Saito et al. 1993; Heyes et al. 1996).

Quinolinate can induce neuronal death both in vitro and in vivo (Schwarcz et al. 
1983; Bordelon et al. 1999; Moroni 1999; Chiarugi et al. 2001; Leaver et al. 2012). 
Injection of small amounts of quinolinate, (60 nmol) into the striatum is frequently 
used to model excitotoxic neurodegeneration in rodents (Leaver et al. 2012). The loss 
of neuronal cells, but not glial cells, is observed around the injection site four days 
after injection (Schwarcz et al. 1983). Although quinolinate can induce neuron tox-
icity, quinolinate is only a weak agonist for the NMDA receptor glutamate-binding 
site. Concentrations of quinolinate have been measured as high as 7.3 μM by in vivo 
microdialysis in the brains of gerbils following intrastriatal infusion of lipopolysaccha-
ride, which is 10–100 fold higher than control levels (Beagles et al. 1998). Nanomolar 
quinolinate levels have been measured in the CSF of patients with hepatitis C treated 
with IFN-α (Raison et al. 2010). However, activation of the NMDA receptor requires 
millimolar quinolinate concentrations (Obrenovitch 2001). The mechanism of quinoli-
nate neurotoxicity is therefore as yet unresolved and might involve additional potenti-
ating factors or longer time of exposure (Chiarugi et al. 2001; Stone and Behan 2007).

4 .4 .4 .2  Quinolinic Acid Supports Glioma Survival and Proliferation

Quinolinate generated by activate macrophages could promote the survival and 
proliferation of glioma cells by serving as a precursor for NAD+. NAD+ is essen-
tial for ATP synthesis, intracellular calcium homeostasis, and DNA repair. In the 
inflammatory microenvironment, oxidative damage to DNA triggers a DNA dam-
age response, including activation of PARP which consumes NAD+. PARP-1 pro-
tein is usually not present in normal neurons, but human primary glioblastoma 
tissues uniformly have positive immunohistochemical staining for PARP-1 (Galia 
et al. 2012). Because NAD+ is essential for many biochemical reactions, depletion 
of NAD+ can induce cell death.

Experimental studies have shown that quinolinate promotes the proliferation 
of glioma cells in culture, and that exogenous quinolinate can increase intracel-
lular NAD+ levels (Grant and Kapoor 1998; Braidy et al. 2009). The inhibition of 
NAD+ synthesis sensitizes glioma cells to the cytotoxic activity of temozolamide, 
suggesting future directions for combination chemotherapy (Watson et al. 2009; 
Goellner et al. 2011). Oxidative stress, temozolomide, and irradiation induce 
QPRT expression in gliomas, and QPRT levels are increased in higher grade 
tumors. Whereas quinolinic acid generated by microglia and macrophages can be 
toxic to neurons, glioma cells can exploit quinolinate generated by other cells for 
the regeneration of NAD+. Increased expression of QPRT confers resistance and 
results in poorer patient prognosis (Sahm et al. 2013).
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4 .5  The Role of Glutamate in the Tumor Microenvironment

4.5.1  Excessive Glutamate is Toxic to Neurons

Glutamate is the main excitatory neurotransmitter in the mammalian central nervous 
system. Glutamate binding to NMDA, AMPA, and kainate receptors mediates syn-
aptic transmission largely through an increase in Na+ permeability, and glutamate 
can also bind to metabotropic glutamate receptors that induce signaling through 
multiple second messenger pathways. Glutamate concentrations near synapses are 
maintained at very low concentrations (low micromolar) by reuptake by specific glu-
tamate transporters, and nearby glial cells that convert glutamate to glutamine. In 
contrast to normal glial cells, glioma cells release rather than take up glutamate, and 
glutamate released by glioma cells cocultured with neurons activates the neuronal 
NMDA receptor, causing Na+ influx and excitotoxic cell death. The release of glu-
tamate by glioma cells is proposed as an explanation for seizures, common in glioma 
patients (de Groot and Sontheimer 2011).

The tissue concentration of glutamate in the brain is approximately 10 mM, 
however, most of this is intracellular. The concentration of extracellular gluta-
mate in the brain is estimated to be only 0.6 μM. Damage to neurons is expected 
when extracellular glutamate exceeds 5 μM (Lipton and Rosenberg 1994). 
Peritumoral glutamate levels have been measured in glioma patients by micro-
dialysis and have been found to exceed 100 μM (Ye and Sontheimer 1999; 
Marcus et al. 2010). Therefore, once a sufficient number of glioma cells dump 
glutamate into the tumor microenvironment to kill a few neurons, those neurons 
will dump intracellular glutamate, resulting in a cascade of damage to surround-
ing neurons.

4.5.2  Excessive Glutamate Facilitates Glioma Cell Survival 
and Proliferation

Although glutamate is excitotoxic to neurons, glioma cells not only have a much 
higher threshold for glutamate damage, but glutamate binding to glioma-specific 
receptors can also promote glioma cell proliferation. Multiple groups have recently 
reported that glioma cells and glioblastoma-derived brain tumor initiating cells 
(BTICs) have Ca2+ permeable AMPA receptors. AMPA receptors are tetrameric and 
are composed of GluR1 through GluR4 subunits, and GluR2-lacking receptors are 
Ca2+ permeable. AMPA receptors on BTICs are comprised of GluR1 and GluR4 
subunits (Oh et al. 2012), whereas AMPA receptors on the glioblastoma cell line 
U87MG contain the GluR2 subunit and are Ca2+ impermeable (Ekici et al. 2012). 
Human surgical glioma tissues contain Ca2+ permeable AMPA receptors, and gluta-
mate activation promotes cell growth and mobility (Lyons et al. 2007) by activation 
of the Akt pathway (Ishiuchi et al. 2007; Schunemann et al. 2010).
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4 .6  Arginine Metabolism in the Tumor Microenvironment

4.6.1  Arginine is Important in the Human Immune Response

L-arginine is converted to L-citrulline with the release of NO by NO synthase. 
Macrophages within the tumor environment can generate NO, which has potent 
antimicrobial and tumoricidal activity (Bogdan 2001; Munder 2009). NO can also 
combine with O2 to produce peroxynitrite (ONOO-). Peroxynitrite can react with 
nucleic acids to produce mutagenic 8-nitroguanine adducts (Hiraku 2010).

4.6.2  Arginine Metabolism by Neutrophil-Derived Arginase

In glioblastoma patients, degranulation of neutrophils generates high levels of 
arginase. Arginase converts L-arginine to L-ornithine and urea, thereby depleting 
L-arginine needed for NO generation. Therefore, neutrophil degranulation within 
the tumor microenvironment diminishes macrophage-mediated antitumor activity 
(Sippel et al. 2011). Further, depletion of local L-arginine could inhibit the prolifer-
ation of T cells, resulting in T-cell dysfunction, which can be reversed by L-arginine 
supplementation (Sippel et al. 2011).

4 .7  Summary, Conclusions, and Future Directions

At the time of presentation, high-grade gliomas are aggressive tumors that display 
aberrant vascularization with infiltrating immune cells creating a heterogeneous 
tumor microenvironment. Multiple recurrent genetic and epigenetic abnormalities are 
observed in glioma cells that converge on several key signaling pathways involved 
in tumor cell survival, proliferation, and invasion. Despite the significant increases 
in understanding of the molecular changes found in glioma cells, current therapy 
options remain focused on surgical resection, radiation therapy, and chemotherapy 
with the alkylating agent temozolomide, and survival is still measured in months.

Very little is currently known about agents or events that might drive the genetic 
and epigenetic changes leading to the evolution of high-grade glioma, and it is 
unknown if the multitude of observed changes must occur in a particular sequence. 
It is likely that initial metabolic changes within tumor initiating cells increase intra-
cellular oxidative stress, leading to increased oxidative DNA damage. Increased 
DNA damage, coupled with diminished DNA repair could then drive subsequent 
mutations. Within the inflammatory tumor microenvironment, reactive oxygen, 
nitrogen and halogen species contributed by activated macrophages, neutrophils, 
and eosinophils likely contribute to further mutations and epigenetic changes as 
glioma cells progress.
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The genetic and epigenetic changes in glioma cells account for the survival, pro-
liferation, and invasion of tumors. Yet, these changes alter cellular metabolism in 
ways that could be exploited for the future development of targeted chemotherapy 
focused against metabolism. Altered metabolism within the tumor cells is also cou-
pled to changes within the tumor environment that influence the impact of the gli-
oma cells on normal neurons and immune cells. Although a multitude of genetic and 
epigenetic changes can be found in glioma cells, a uniform finding in glial tumors is 
the absence of the modified DNA base, 5hmC. This recently identified modified base 
is believed to be an intermediate in an enzymatic demethylation pathway required 
for epigenetic reprogramming. The uniform loss of 5hmC in glioma cells lines and 
human tissues suggests a common defect central to gliomagenesis.

Emerging studies indicate that metabolic activity of three amino acids, glutamate, 
tryptophan, and arginine, and these metabolic alterations have profound effects on 
glioma progression. Whereas normal glial cells sequester glutamate, maintaining 
low extracellular levels, glioma cells export glutamate that is excitotoxic to neurons. 
Subsequent neuronal death results in further increases in extracellular glutamate, 
promoting a cascade of neuron loss and tissue destruction. In contrast with normal 
neurons, glutamate drives glioma progression by binding to glutamate AMPA recep-
tors, activating cell signaling pathways that drive proliferation.

Tissue destruction results in increases in inflammatory mediators including 
IFN-γ. Inflammatory cytokines upregulate enzymes of tryptophan metabolism 
within the kynurenine pathway. In most cell types, including glioma cells, IFN-γ 
upregulates the first enzyme of this pathway, IDO, which converts tryptophan to 
kynurenine. Kynurenine binds to the AhR on T cells diminishing antitumor T-cell 
responses and promoting the formation of Tregs. Activation of the entire kynure-
nine pathway in macrophages results in the conversion of tryptophan to quino-
linic acid. Although quinolinic acid is toxic to human neurons, and is commonly 
used in experimental models of excitotoxic neurodegeneration, quinolinic acid 
promotes glioma cell survival and proliferation. Increased oxidative stress within 
glioma cells results in increased DNA damage which in turn results in upregula-
tion of PARP-1 and consumption of NAD+. Diminished NAD+ levels can lead to 
energy failure and cellular death; however, quinolinic acid generated by other cells 
can serve as a precursor for NAD+ synthesis in glioma cells.

Chemoattractants generated within the tumor microenvironment are able to facil-
itate the invasion of neutrophils. Reactive molecules from activated neutrophils can 
lead to further tissue destruction and glioma mutagenesis. Neutrophil degranulation 
also dumps arginase 1, which converts arginine to ornithine. Diminished arginine 
concentrations reduce macrophage-generated NO and profoundly suppress T-cell 
immune responses. Through both tryptophan and arginine metabolic pathways, 
inflammation within the tumor microenvironment promotes immunosuppression 
and promotes tumor evolution.

Substantial further studies are required to understand the complex interactions 
between the multiple cell types associated with gliomas, as well as how genetic 
and epigenetic changes within glioma cells are both likely induced by the inflam-
matory environment and exploited by glioma cells to promote tumor cell survival 
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with collateral damage to normal tissues. Studying tumor cells in isolation may 
provide targets for metabolic intervention and future chemotherapy development. 
However, a more complete understanding of the complex interactions between the 
tumor cells and surrounding normal tissues could lead to strategies to redirect the 
host response against these rapidly growing and lethal human tumors.
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Abstract Cancer-related inflammation is considered the “seventh hallmark of 
 cancer”; numerous studies demonstrate that tumors develop and progress within 
inflammatory diseases. Central to the development of cancer are genetic changes 
that endow these cancer cells with many of the hallmarks of cancer, such as self-suf-
ficient growth and resistance to anti-growth and pro-death signals. However, while 
the genetic changes that occur within cancer cells themselves, such as activated 
oncogenes or dysfunctional tumor suppressors, are responsible for many aspects 
of cancer development, they are not sufficient. Tumor promotion and progression 
are dependent on ancillary processes involving cells of the tumor environment that 
are not necessarily cancerous themselves. Infiltration of immune cells facilitates 
tumor development through the production of factors that promote carcinogen-
esis and by enabling tumors to evade the host immune response. Small molecules 
including cytokines, chemokines, and growth factors play key roles in both inflam-
mation and cancer by promoting proliferation, angiogenesis, and carcinogenesis 
and by recruiting immune cells. The extracellular matrix is altered in inflammation 
and provides structural support to developing tumors. Hypoxia is a common state in 
cancers and inflamed tissues which causes DNA damage and induces tumorigenic 
factors. Finally, tissue vasculature is a vital part of its microenvironment, supply-
ing oxygen, nutrients, and growth factors to rapidly dividing cells and providing a 
mechanism for metastatic spread. This review will discuss the reflexive relation-
ship between cancer and inflammation with particular focus on how by considering 
the role of inflammation in physiologic processes such as the maintenance of tissue 
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homeostasis and repair may provide a logical framework for understanding the 
 connection between the inflammatory response and cancer. The cells and molecules 
outlined here represent potential targets for the treatment of head and neck cancer.

5 .1  Introduction

Head and neck squamous cell carcinoma (HNSCC) originates in the mucosa of 
5 major anatomic subsites: the oral cavity, oropharynx, larynx, hypopharynx, and 
nasopharynx. It is the sixth most common cancer worldwide, with approximately 
650,000 new cases reported annually. Aggravating factors are tobacco smoking, 
alcohol consumption, betel chewing, and human papilloma virus (HPV) infection 
(Curado and Hashibe 2009). In the United States, there were 49,000 new cases in 
2010, with 11,000 deaths (Jemal et al. 2010). Despite the overall decreased inci-
dence of HNSCC in the United States over the past 3 decades, researchers have 
observed a significant increase in the incidence of squamous cell malignancies of 
the base of tongue, and tonsil, particularly in young-to-middle-age patients likely 
due to rising incidence of HPV-associated HNSCC (Shiboski et al. 2005).

Despite treatment advances in multimodality therapy with surgery, radiother-
apy, and chemotherapy, 5-year survival is still poor for patients with locoregionally 
advanced disease (Forastiere et al. 2003; Posner et al. 2007; Vermorken et al. 2007).

The genetic alteration of cells in wide preneoplastic fields (field cancerization) 
results in locoregional recurrence and second primary cancer. Half of all individu-
als still die from their disease. The characterization of the mechanisms involved 
in the metastasis formation and the identification of markers allowing identifying 
patients with biologically aggressive tumors is of great interest for the effective 
management of HNSCC patients.

Cigarette smoke (CS) causes considerable morbidity and mortality by inducing 
cancer, chronic lung and vascular diseases, and oral disease. Despite the well-rec-
ognized risks associated with smoking, the habit remains unacceptably prevalent. 
Several toxins present in CS have immune modulatory effects. CS also contains 
trace amounts of microbial cell components, including bacterial lipopolysaccha-
ride. These and other CS constituents induce chronic inflammation at mucosal 
surfaces and modify host responses to exogenous antigens. Mucosal damage from 
chronic tobacco and alcohol exposure has been well characterized, both in terms 
of its clinicopathologic course and the underlying molecular derangements respon-
sible for tumor development. Premalignant lesions, including leukoplakia and 
erythroplakia, progress to invasive carcinomas along a well-described pathologic 
sequence (Perez-Ordonez et al. 2006).

Molecular events that undergird this process include increasing cytogenic abnor-
malities, inactivation of tumor suppressor genes, and changes in intracellular signaling 
pathways that induce cellular immortalization. The effects of CS on immunity are far-
reaching and complex; both pro-inflammatory and suppressive effects may be induced. 
The net effect of CS on immunity depends on many variables, including the dose and 
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type of tobacco, the route, and chronicity of exposure, and the presence of other factors 
at the time of immune cell stimulation, such as Toll receptor ligands or other inflam-
matory mediators. CS impairs innate defenses against pathogens, modulates antigen 
presentation, and promotes autoimmunity. CS also impairs immunity in the oral cavity 
and promotes gingival and periodontal disease and oral cancer. The recognition of spe-
cific mechanisms by which CS affects host immunity is an important step toward elu-
cidating mechanisms of tobacco-induced disease and may identify novel therapeutic 
approaches for the management of smoking-related diseases (Lee et al. 2012).

Human papilloma virus-related oropharyngeal carcinoma (HPVOPC) clinically 
behaves differently than tobacco- and alcohol-induced HNSCC. Inflammation 
and immunosuppression are likely to also play a critical role in HPVOPC. These 
patients tend to present at a younger age, and without a history of excessive 
tobacco or alcohol use. Overall, HPVOPC patients also have better outcomes, with 
tumors more responsive to both surgical and non-surgical therapies and a lower 
risk of dying from disease. The relationship of HPVOP to inflammation remains 
largely unexplored (Chung and Gillison 2009; Ang et al. 2010).

5 .2  Inflammatory Signaling Pathways Associated  
with Head and Neck Cancer

There are several genetic alterations associated with chronic inflammation in 
HNSCC. Inactivation of tumor suppressor genes through homozygous deletion, 
point mutations, and epigenetic alterations such as hypermethylation fuels the neo-
plastic process. For instance, a common genetic alteration in 70–80 % of dysplas-
tic squamous cells and HNSCC tumors is the loss of chromosome 9p21, a region 
that contains cyclin-dependent kinase inhibitor 2A (CDKN2A), encodes tumor 
suppressor genes p16 and p14, and is involved in the G1 phase cell-cycle regu-
lation. Loss of 3p, a locus with tumor suppressor phenotype, is another common 
genetic event seen early in dysplasia (Perez-Ordonez et al. 2006). Inactivation of 
p16 is a frequent event witnessed in >80 % of tumor specimens. Similarly, loss of 
heterozygosity of 17p—the region encoding tumor suppressor p53—is extremely 
common (Reed et al. 1996). It has been found that half of all tumor specimens 
from patients with HNSCC contain p53 mutations. Notably, disruption of TP53—
the genetic locus on 17p giving rise to p53—has been associated with reduced sur-
vival after surgical therapy for HNSCC (Poeta et al. 2007).

Telomerase, an enzyme active in germ line cells but normally quiescent in 
somatic cells, has been shown to be overexpressed in 90 % of HNSCC cells. 
Telomerase is responsible for maintaining genomic stability by protecting chro-
mosomal ends, especially in rapidly dividing cells; its activity in malignant cells 
enables evasion of apoptosis and contributes to cellular immortality (McCaul  
et al. 2002). Altered intracellular signaling also facilitates neoplastic development 
in HNSCC, including activation of oncogenic pathways downstream of the epider-
mal growth factor receptor (EGFR) and other molecular pathways.
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HPV inactivates the same pathways via direct viral effects. The HPV is a 
 circular, double-stranded DNA virus that encompasses many different subtypes, 
with HPV-16 and HPV-18 being the most common oncogenic variants in HPVOPC. 
Using in situ hybridization, HPV-16 DNA has been found in up to 72 % of oro-
pharyngeal cancer specimens where this association remains the highest (D’Souza 
et al. 2007). On a molecular level, HPV gains access to the intracellular compart-
ment of mucosal squamous cells and integrates into host DNA. The integrated virus 
subsequently expresses oncoproteins E6 and E7, which act synergistically to target 
the tumor suppressor genes p53 and pRb for ubiquitin-mediated intracellular degra-
dation, resulting in genomic instability and oncogenic transformation as the normal 
cell-cycle regulatory points are inactivated (Chung and Gillison 2009).

Experimental tumor model studies show that non-steroidal anti-inflammatory 
drugs (NSAIDs) impair the growth and development of HNSCC, indicating poten-
tial as a chemopreventive agent. Furthermore, regular use of NSAIDs and aspirin 
has been shown to reduce the risk of other cancers.

Biologically, NSAIDs act as non-specific inhibitors for the pro-inflammatory 
cyclooxygenase enzymes (COX-1 and COX-2), which are involved in the conver-
sion of arachidonic acid (AA) to prostaglandins (PG). COX-1 is present in most 
tissues and is involved in the production of PGs required for many normal physi-
ologic functions, while COX-2 is found only in a limited number of cell types and 
is induced by stimulatory factors implicated with inflammation and many cancers.

Overexpression of COX-2 and PGs have been reported in a variety of cancer 
sites, including HNSCC, with increased levels reported in both tumor tissue and 
adjacent epithelium in HNSCC but not normal epithelium. Studies also suggest a 
correlation between COX-2 expression and head and neck tumor size and progno-
sis, with higher expression correlating with poorer outcome (Wilson et al. 2011). 
The downstream actions of PGs, such as increased cell proliferation, cell mobility 
and invasion, neo-angiogenesis, and the inhibition of apoptosis, are known to play 
important roles in cancer development. The mechanism by which NSAIDs inhibit 
tumor development is not clearly understood, although it is thought that they may 
act through the inhibition of COX-2 and consequently the synthesis of PGs and 
their pro-cancerous downstream effects (Wilson et al. 2011).

It has been shown that the EGFR and COX-2 have an important role in the biology 
of HNSCC. Overexpression of COX-2 is associated with a poor prognosis in HNSCC, 
and COX-2 inhibitors have demonstrated synergy when combined with EGFR inhibi-
tors in preclinical models (Chen et al. 2004; Chung et al. 2011). Inflammatory media-
tors can promote epithelial–mesenchymal transition (EMT), a process by which 
epithelial cells lose their cell polarity and cell–cell adhesion, and gain migratory and 
invasive properties to become mesenchymal cells. This process is responsible for the 
increase resistance to EGFR-TKIs in HNSCC. These studies provide a strong ration-
ale for combining a COX-2 inhibitor with an EGFR TKI (Kao et al. 2011).

Recent advances in the understanding of the oncogenesis of HNSCC have 
revealed multiple deregulated signaling pathways. Transforming growth factor-β 
(TGF-β) and PTEN/PI3K/Akt/mTOR pathways are among the most frequently 
altered signaling routes. Both pathways have central roles in numerous cellular 
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processes, including metabolism, cell growth, apoptosis, survival, and  differentiation, 
which ultimately contribute to HNSCC progression (Molinolo et al. 2009).

NF-κB is a pleiotropic transcription factor which plays a role in both innate and 
adaptive immunity and is required for the expression of several pro-inflammatory 
factors. Chronic inflammation is often a key factor in cancer development. As the 
head and neck area is prone to exposure to factors causing irritation and inflam-
mation of the squamous epithelium, it might therefore be plausible that chronic 
inflammation also might be a major cause for the development of HNSCC. It 
has been shown that NF-κB and its pro-inflammatory target genes are activated 
in HNSCC cell lines and tumor specimens. Blocking NF-κB function in HNSCC 
greatly reduces tumor growth and decreases the expression of IL-6 and IL-8 along 
with many other cytokines and chemokines associated with the pro-inflammatory 
state (Kross et al. 2010).

Cytokines are soluble proteins that play an important role in the initiation 
and maintenance of inflammatory and immune responses as well as intercellu-
lar cross talking. Cytokines regulate immunity, inflammation, and hematopoiesis, 
and this family of proteins includes interleukins (ILs), interferons (IFNs), tumor 
necrosis factors (TNFs), and growth factors. They are typically divided into two 
categories: pro-inflammatory (e.g., IL-1, IL-6, IL-8, TNF-α, and IFN-γ) and anti-
inflammatory [e.g., IL-4, IL-10, TGF-β, and vascular endothelial growth factor 
(VEGF)]. They bind to receptors and transducer signals via second messengers 
to control growth, differentiation, and activation of cells (Wang et al. 2009). 
It has been shown that high levels of cytokines and growth factors may have a 
role in the development of different cancers (Wang et al. 2009). High levels of 
IL-1a, IL-6, IL-8, granulocyte macrophage colony stimulating factor (GM-CSF), 
growth-regulated oncogene-(a) GRO1, VEGF, and hepatocyte gowth factor 
(HGF) have been involved in the development of HNSCC (Lee et al. 2007). It 
is also important to notice that altered levels of cytokines and growth factors can 
predict response to therapy and high levels of pro-inflammatory cytokines are 
associated with poor outcomes in patients undergoing chemoradiation treatments 
for HNSCC (Allen et al. 2007).

Interleukin-6 (IL-6) is a multifunctional cytokine synthesized in response to 
stimuli such as infection and trauma by a variety of cells such as macrophages, 
neutrophils, keratinocytes, fibroblasts, and endothelial cells. IL-6 cell signals are 
transmitted through a receptor expressed in a wide range of target cell types. 
In addition to this, a soluble IL-6 receptor (sIL-6R) enables to widen the rep-
ertoire of cells responsive to IL-6 (Jones et al. 2001). IL-6 is able to stimulate 
a number of biologic processes including antibody (and probable autoantibody) 
production, activation of T cells, B cell differentiation, increase in acute-phase 
proteins, hematopoiesis, induction of angiogenesis, vascular permeability, and 
osteoclast differentiation (Ridker et al. 1997; Nibali et al. 2012). It is also a 
strong stimulator of hepcidin, a liver-produced hormone that regulates intestinal 
iron absorption (Hohaus et al. 2010), potentially contributing to sideropenic ane-
mia in chronic inflammation. IL-6 activity in inflammation is considered dou-
ble-edged, acting both as anti-inflammatory (e.g., down-regulation of neutrophil 
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recruitment and pro-inflammatory cytokine expression) (Xing et al. 1998) but 
also as  pro-inflammatory (e.g., induction of acute-phase reactants by the liver) in 
chronic diseases (Jones et al. 2001). IL-6 is also believed to have growth factor 
properties regarding the development and progression of many types of cancers 
(Nishimoto 2010).

5 .3  Role of Inflammatory Molecules in the Invasion, 
Metastasis and Angiogenesis of Head and Neck Cancer 
Cells

Epidemiologic and experimental evidence supports the concept that chronic 
inflammation promotes the development and progression of cancers. Because 
inflammation is a complex process involving many effector cells and mediators, it 
is likely that inflammation facilitates tumor progression through multiple mecha-
nisms (Balkwill and Mantovani 2001).

The initiation of an epithelial-to-mesenchymal transition (EMT) is required for 
tumor dissemination to occur. E-cadherin has a key role in epithelial intercellular 
adhesion and its down-regulation is a hallmark of EMT, which is associated with 
invasion, metastasis, and poor prognosis. EMT is the major mechanism respon-
sible for mediating invasiveness and metastasis of epithelial cancers. E-cadherin 
transcriptional repressors have a role in the inflammation-induced promotion of 
EMT in HNSCC, which is mediated by COX-2. Levels of COX-2 and its cata-
lytic product PGE2 are increased in HNSCC (Buchanan et al. 2003; Dannenberg 
and Subbaramaiah 2003; Cooper et al. 2004). PGE2 can stimulate cell prolif-
eration, motility, and angiogenesis while inhibiting apoptosis and immune surveil-
lance (Buchanan et al. 2003; Cooper et al. 2004). COX-2-derived PGE2 may also 
promote metastasis by stimulating EMT and cell invasion (Dohadwala et al. 2006). 
It has been reported that PGE2 is transported or passed through the cell membrane 
via pro-staglandin-specific transporters, including the pro-staglandin transporter 
(PGT, an influx transporter). Intratumoral PGE2 levels depend not only upon the rate 
of production, but also on the rate of degradation. Inactivation of PGE2 located in 
the developing tumor microenvironment has been suggested to occur by a two-step 
model (Haddad et al. 2009). The first step is mediated by the PGT, which engages 
carrier-mediated membrane transport of pro-staglandins, including PGE2, PGF2a, 
and PGD2, from the extracellular milieu to the cytoplasm (Haddad et al. 2009). This 
transporter belongs to the organic anion superfamily of transporting polypeptides that 
contain 12 transmembrane spanning domains. The second step of PGE2 inactivation 
occurs in the cytoplasm, where 15-hydroxyprostaglandin dehydrogenase (15-PGDH) 
catabolizes and thus inactivates PGE2 (Haddad et al. 2009). Studies have shown that 
15-PGDH expression is frequently reduced in several other epithelial cancers as well, 
(Ichikawa et al. 1996; Holla et al. 2008) suggesting that abnormalities in catabolism 
of PGE2 may have an important role in the development of these cancers.
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During the process of tumor dissemination, tumor cells lose their  epithelial 
characteristics [inhibition of E-cadherin (Cdh1)] to the profit of mesenchymal 
properties (expression of Snail1 and increased migratory abilities), allowing 
them to invade blood and lymphatic systems and establish new colonies in dis-
tant organs (Thiery et al. 2009). Other inflammatory mediators in addition to 
COX-2 have been shown to modulate EMT. Indeed in HNSCC cell lines, IL-1β 
was reported to stimulate Snail1 and inhibit Cdh1 expression (John et al. 2009). 
Among inflammatory actors, IL-32 was reported to modulate cytokine expression 
and to be up-regulated by TNF-α, IL-1β and IL-6 (Shioya et al. 2007; Kim et al. 
2005). IL-8 and GRO1 serve as chemoattractants for neutrophils, monocytes, and 
endothelial cells, which are all major constituents of the inflammatory and angio-
genesis response, and their expression promotes aggressive growth and metastasis 
(Van Waes 2007). In addition, IL-1 and IL-6 are potent inducers of HGF pro-
duction by stromal cells, such as fibroblasts, further enhancing IL-8 and VEGF 
expression (Worden et al. 2005). Several cytokines and growth factors also acti-
vate signal pathways that promote the malignant phenotype. TNF-α, IL-1, HGF, 
and their receptors promote activation of the mitogen-activated protein kinase-acti-
vator protein-1 (MAPK-AP-1), nuclear factor-kappa B (NF-κB), and phosphati-
dylinositol-3 kinase (PI3K)/Akt pathways (Van Waes 2007). Epidermal growth 
factor (EGF) and IL-6 activate signal transducer and activating transcription fac-
tor-3 (STAT3) in HNSCC cells (Lee et al. 2008).

An increasing number of studies have recently focused on the role of cytokine 
networks, including IL-6, in the pathogenesis and progression of oral malignancy. 
In particular, clinical studies reported elevation of IL-6 levels in serum and saliva 
of patients with oral and other cancers of the head and neck compared with age-
matched control subjects and their significant relation with staging and response 
to therapy (Chen et al. 1999; Bigbee et al. 2007). The expression of IL-6 and 
IL-8 genes was shown, via large-scale gene expression profiling on laser-cap-
tured microdissected oral cancer and normal oral epithelial cells, to be uniquely 
associated with HNSCC (Alevizos et al. 2001). IL-6 seems to contribute to oral 
cancer pathogenesis through different mechanisms and biologic processes. An in 
vitro study showed that IL-6 can stimulate HNSCC cells to enhanced secretion of 
matrix metalloproteinases 1 and 9, which play a major role in infiltrative growth, 
metastasis, and neo-angiogenesis (Sundelin et al. 2005). IL-6 may also modulate 
a variety of keratinocytes pathways including cell growth, survival, and differen-
tiation. In particular, IL-6 has been shown to stimulate proliferation of cultured 
human keratinocytes in psoriatic skin (Nibali et al. 2012). Furthermore, IL-6 can 
activate transcription factors such as signal transducer and activator of transcrip-
tion (STAT)-1 and STAT-3, which in turn have been observed in various tumors 
(Hirano et al. 2000). A recent study showed that IL-6 can also promote tumorigen-
esis by causing DNA hypomethylation as well as aberrant promoter hypermethyla-
tion changes, which can lead to epigenetic changes in gene expression of HNSCC 
cells (Gasche et al. 2011). Furthermore, in vitro studies demonstrated that oral 
keratinocytes can produce IL-6 in response to a number of environmental factors 
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well known to increase oral cancer risk such as areca nut and tobacco smoking 
(Jeng et al. 2003). Indeed, biopsies from individuals with oral submucous fibrosis 
showed increased expression of IL-6 in the epithelium and underlying inflamma-
tory infiltrate, as well as in peripheral blood mononuclear cells (Haque et al. 2000).

IL-32 is one of the cytokines with pro-inflammatory activities implicated in 
inflammatory disorders, such as rheumatoid arthritis, mycobacterium tuberculo-
sis infections, and inflammatory bowel disease (Shioya et al. 2007; Heinhuis et al.  
2011). On a retrospective study of 65 patients with HNSCC, it was shown that 
patients with tumors expressing high amounts of IL32 had a worse disease-free 
survival and overall survival in comparison with individuals with weak IL32 tumor 
expression. In addition, in vitro data linked IL32 expression to metastatic poten-
tial (Guenin et al. 2013). The inverse correlation between IL32 and p53 expres-
sion found in this study was also found in patients with hepatocarcinoma (Kang  
et al. 2012). The increased p53 expression induced by IL-32 inhibition could origi-
nate from the loss of Snail1 which would not be able to form a complex with p53 
leading to its degradation through a transcription-independent mechanism (Lee  
et al. 2009). Alternatively, IL-32 inhibition was reported to decrease NF-κB which 
is a well-described p53 inhibitor and an activator of Snail1 expression (Gurova 
et al. 2005; Tergaonkar and Perkins 2007; Zhang et al. 2011). Therefore, IL-32 
down-regulation might allow p53 re-expression through NF-κB and Snail1 inhibi-
tion (Kim et al. 2011). We can speculate that IL32 plays a pivotal role in tumor 
responses to inflammatory mediators and enhances cell invasiveness properties 
through a nuclear NF-κB/Snail1 axis in which intermediary actors have to be iden-
tified. This is supported by its nuclear localization found in the more aggressive 
tumors (Guenin et al. 2013).

TGF-β belongs to a superfamily of multifunctional cytokines that regulate cell 
proliferation, differentiation, migration, adhesion, and apoptosis, thereby influ-
encing important physiologic processes such as embryonic development, immune 
function, and carcinogenesis (Derynck and Zhang 2003; Massague 2008). The 
three mammalian TGF-β isoforms, TGF-β1, TGF-β2, and TGF-β3, exert their 
functions through a cell-surface receptor complex composed of type I (TGFBR1) 
and type II (TGFBR2) serine/threonine kinase receptors. Upon ligand binding, 
TGFBR2 recruits and phosphorylates TGFBR1, which in turn phosphorylates 
Smad2 or Smad3. Phosphorylated Smad2 or Smad3 binds to Smad4, and then, 
these complexes translocate from the cytoplasm into the nucleus. This results in 
the transcriptional activation of TGF-β-responsive genes that mediate the effects of 
TGF-β at the cellular level. In addition to Smad-mediated signaling, receptor acti-
vation also induces other downstream targets, including Ras, RhoA, TAK1 (TGF-
β-activated kinase-1), MEKK1, PI3K, and PP2A, to produce the full spectrum of 
TGF-β response (Moustakas and Heldin 2009; Zhang 2009).

The effects of TGF-β signaling on carcinogenesis largely depend on the tissue 
of origin and the tumor type. In most types of human cancer, TGF-β has a para-
doxical role in cancer development by way of functioning as a tumor suppressor 
during the early stages (Engle et al. 1999) and as a tumor promoter during the 
later stages (Piek and Roberts 2001; Tang et al. 2003). Several reports have noted 
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that mutations and polymorphisms of TGFBR1 and Smads are associated with 
HNSCC, (Chen et al. 2001; Xie et al. 2003; Pasche et al. 2005) suggesting that 
TGF-β functions as a potent tumor suppressor. However, it is not clear whether 
alterations in TGF-β signaling act alone or in concert with alterations in other 
pathways to promote a pro-oncogenic phenotype in advanced late-stage HNSCC.

As noted above, The PI3K/Akt pathway is important for suppressing apopto-
sis, and promoting cell growth and proliferation. In HNSCC, hyper activation of 
PI3K can be induced by mutations or by enhanced activity of its upstream activa-
tors, including the activation of Ras oncoproteins or inactivation of phosphatase and 
tensin homolog (PTEN) deleted on chromosome 10 (Molinolo et al. 2009). PTEN 
is a potent tumor suppressor gene and a negative regulator of the PI3K/Akt path-
way. As PTEN mutations were identified in 0–16 % of HNSCCs, loss of PTEN 
expression was observed in 29 % of tongue cancers and loss of heterozygosity of 
the PTEN locus was identified in 40 % of HNSCCs (Henderson et al. 1998; Shao 
et al. 1998; Lee et al. 2001). Additionally, 47 % of HNSCC cases showed at least 
one molecular alteration in the PI3K/Akt pathway, including PI3 KCA and AKT2 
amplification, p110α overexpression and PTEN protein down-regulation. This 
suggests the critical role of the PTEN/PI3K/Akt signaling pathways in the car-
cinogenesis of HNSCC (Pedrero et al. 2005). It seems that there may be negative 
cross talk between the TGF-β tumor suppressor and the PI3K/Akt pathways (Bian 
et al. 2012). It was shown that defects in the TGF-β and PI3K/Akt signaling path-
ways are common in human HNSCCs. Activation of the PI3K/Akt pathway due to 
PTEN deletion initiates tumor formation by increasing proliferation in the head and 
neck epithelia. However, PTEN deletion alone is not sufficient to induce invasive 
HNSCC due to the induction of premature senescence by p-Akt in the presence of 
the tumor suppressor TGF-β. In combination with the additional loss of TGFBR1, 
which blocks tumor inhibition by TGF-β signaling, premalignant cells cannot 
undergo cellular senescence and will progress into cancer cells (Bian et al. 2012).

Studies on a 2cKO mouse model showed that TGFBR1 and PTEN work col-
laboratively in suppressing tumor progression. The loss of TGFBR1/PTEN func-
tion is associated with increased cell proliferation, loss of apoptosis, and increase 
levels of Cyclin D1 (CCND1) in head and neck cancer (Bian et al. 2012).

The multifunctional cytokine TGF-B has different effects in premalignant and 
malignant cells. In epithelial cells, TGF-B has a tumor-suppressor effect via its 
autocrine interaction with other signaling pathways. On the other hand, in tumor 
cells, TGF-B increases tumor proliferation via its paracrine effects which include 
but not limited to inflammation, angiogenesis, and escape form immunosurveil-
lance (De Wever and Mareel 2003).

The interaction between different pathways, transcription factors, and multi-
funcitonal cytokines is far more complex than previously thought. For instance, 
in a head and neck mouse model, it was recently shown that the deletion of 
TGFBR1/PTEN is associated with the activation of the NF-kB pathway. As a 
result of this interaction, several genes that are associated with an inflammatory 
state are also over-expressed (i.e., Cxc11, Cxcl5, Ptgs2). This pro-inflamma-
tory state is responsible for the recruitment of myeloid-derived suppressor cells 
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(MDSCs), which increases the angiogenesis and immune suppressive state within 
the tumor stroma (Bian et al. 2012). The disruption of the TGF-B signaling path-
way can lead to similar findings (Lu et al. 2006; Bierie et al. 2008). These data 
support the concept that the tumor stroma has a pivotal role in the development 
and progression of head and neck cancer (Bian et al. 2012).

Neuroblast differentiation-associated protein AHNAK, also known as 
desmoyokin, is a protein that in humans is encoded by the AHNAK gene. AHNAK 
was originally identified in 1989 (in bovine muzzle epidermal cells) and named 
desmoyokin due to its localization pattern (that resembled a yoke) in the desmo-
somal plaque. It is a protein of exceptionally large size (700 kDa) that is expressed 
in a variety of cell types (Shtivelman et al. 1992). This protein has the ability to 
shuttle between various subcellular compartments. For instance, it has been shown 
that AHNAK can translocate from the cytoplasm to the plasma membrane of 
keratinocytes in a manner dependent on Ca2+ and protein kinase C (Hashimoto 
et al. 1995). Furthermore, AHNAK was shown to contain a nuclear export sig-
nal (NES) sequence which allowed it to be excluded from the nuclei of epithelial 
cells following cell–cell contact and activation of protein kinase B, respectively 
(Sussman et al. 2001). At functional level, AHNAK was shown to be involved in 
various cellular processes, including calcium regulation and organization of the 
actin cytoskeleton (Haase et al. 1999; Gentil et al. 2001). In tumor cells, AHNAK 
was recently found to be essential for pseudopodia formation and tumoral 
migration/invasion (Shankar et al. 2010). Other recent studies proposed that the 
AHNAK gene might be involved in mutagenic transformation of colon epithelial 
cells and thus carcinogenesis (Tanaka et al. 2008). It is well established that solid 
tumors display an inflammatory microenvironment characterized by large numbers 
of tumor-infiltrating immune cells (Coussens and Werb 2002). Within this micro-
environment, the immune cells of the host are reprogrammed by the tumor cells to 
acquire pro-tumoral activities. Although less characterized than tumor-associated 
macrophages (TAMs) or tumor-infiltrating lymphocytes (TILs), tumor-infiltrating 
neutrophils are emerging as important players in the pathophysiology of cancer. 
Within the tumor tissue, neutrophils can modulate several cellular processes which 
may ultimately lead to tumor progression. Neutrophils were shown to modulate 
angiogenesis in several murine tumor models (Nozawa et al. 2006; Jablonska 
et al. 2010; Bekes et al. 2011) and were recently associated with angiogenesis pro-
gression in hepatocellular carcinoma patients (Kuang et al. 2011). Further stud-
ies showed that neutrophils could directly modulate the biology and functions of 
tumor cells by promoting their migration, invasion or proliferation (Gregory and 
Houghton 2011).

There is an association of high numbers of tumor-infiltrating neutrophils with 
advanced disease and poor clinical outcome in patients with different types of 
cancer, such as renal cancer, hepatocellular cancer, non-small-cell lung carcinoma 
(NSCLC), or melanoma (Dumitru et al. 2012).

In head and neck cancer patients, it was demonstrated that a high neutrophilic 
infiltration of the tumor tissue was correlated with high tumor stage and poor sur-
vival (Trellakis et al. 2011). In vitro studies indicated a direct interaction between 
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neutrophils and head and neck cancer cells by showing that neutrophils were 
primed by the tumor cells to release pro-inflammatory factors, which promoted 
tumoral migration in a feedback manner (Dumitru et al. 2011, 2012). Selected solu-
ble inflammatory mediators, such as cytokines, chemokines, and metabolites of the 
AA pathway, have been found to change the function and differentiation of immune 
cells (Lin and Karin 2007). Among these molecules, macrophage migration inhibi-
tory factor (MIF) is emerging as an important regulator of inflammation in cancer 
(Bucala and Donnelly 2007). A number of studies found that high levels of MIF 
in the tumor tissues or serum of patients with different types of cancer were asso-
ciated with advanced disease and poor clinical outcome (Grieb et al. 2010). It was 
also demonstrated that overexpression of tumoral MIF was associated with poor over-
all survival in patients with orohypopharyngeal cancer (Dumitru et al. 2011). More 
importantly, MIF was identified as one of the missing links in the tumor-neutrophil 
interaction and showed that head and neck cancer cells released MIF which subse-
quently enhanced the pro-inflammatory functions of neutrophils to promote tumoral 
migration (Dumitru et al. 2011). AHNAK overexpression is associated with poor 
survival in these patients. Interestingly, in patients with HNSCC, it was found that 
high levels of AHNAK together with high MIF expression or high neutrophilic infil-
tration, respectively, were strongly associated with poor survival. Synchronous high 
levels of MIF and tumor-infiltrating neutrophils had stronger predictor values over 
the individual markers as well. Finally, patients with high levels of all three mark-
ers displayed the shortest survival in the entire patient cohort (Dumitru et al. 2013). 
These findings suggest that AHNAK might cooperate with MIF and/or neutrophils to 
enhance progression of HNSCC. There is data regarding direct interactions between 
HNSCC-derived MIF and neutrophils both in vitro and in vivo. It was shown that 
HNSCC-derived MIF enhanced neutrophil chemotaxis in vitro and that tumoral MIF 
levels correlated with the neutrophilic infiltration in tissues from orohypopharyngeal 
carcinoma patients (Dumitru et al. 2011). Since MIF is a known ligand for CXCR2, 
one of the major chemokine receptors on neutrophils, (Bernhagen et al. 2007) MIF-
mediated recruitment might be a critical mechanism for infiltration of HNC tissues 
by neutrophils. It was further demonstrated that HNC-derived MIF stimulated neutro-
phils to release large amounts of pro-inflammatory factors, among which CCL4 and 
MMP9 (Dumitru et al. 2011). Neutrophils enhance the motility, migration, and inva-
sion of tumor cells via—not fully identified—soluble factors and molecular mecha-
nisms (Dumitru et al. 2012). Interestingly, AHNAK was recently linked to regulation 
of tumoral migration/invasion. It seems that AHNAK is essential for rearrangement of 
the actin cytoskeleton and pseudopodia formation (Shankar et al. 2010).

HPV-HNSCC differs from tobacco-related head and neck cancers in several 
ways. The patients tend to be younger in age, lack a significant tobacco and/or 
alcohol history, and have improved clinical outcomes. The virus-related tumors 
arise from the deep crypts within the lymphoid tissue of the tonsil and base of 
tongue and the majority can be distinguished from tobacco-related HNSCC 
by the characteristic infiltration of lymphocytes in the stroma and tumor nests. 
Nevertheless, despite this profound inflammatory response, HPV-HNSCCs are 
able to evade immune surveillance, persist, and grow (Gillison et al. 2008).
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Various mechanisms have been proposed for the resistance of human solid 
tumors to immune recognition and obliteration, including the recruitment of regula-
tory T cells, MDSCs, and local secretion of inhibitory cytokines. Recent evidence 
suggests that tumors develop physiologic mechanisms of tissue protection from 
inflammatory destruction via up-regulation of immune inhibitory ligands. Antigen-
induced activation and proliferation of T cells are regulated by the temporal expres-
sion of both co-stimulatory and co-inhibitory receptors and their cognate ligands 
(Topalian et al. 2012).

In the context of cancer, in which immune responses are directed against 
antigens specifically or selectively expressed by tumor cells, these immune 
checkpoints can represent major obstacles to the generation and maintenance of 
clinically meaningful anti-tumor immunity. CTLA-4 and programmed cell death-1 
(PD-1) are two such checkpoint receptors being actively targeted in the clinic 
(Lyford-Pike et al. 2013).

It has been shown that in HPV-HNSCCs that are highly infiltrated with lym-
phocytes, PD-L1 expression on both tumor cells and CD68(+) TAMs is geograph-
ically localized to sites of lymphocyte fronts, whereas the majority of CD8þ TILs 
express high levels of PD-1, the inhibitory PD-L1 receptor. Significant levels of 
mRNA for IFN-γ, a major cytokine inducer of PD-L1 expression, were found in 
HPV(+)  PD-L1(+) tumors. These findings support the role of the PD-1: PD-L1 
interaction in creating an “immune-privileged” site for initial viral infection and 
subsequent adaptive immune resistance once tumors are established and suggest a 
rationale for therapeutic blockade of this pathway (Lyford-Pike et al. 2013).

5 .4  Role of Inflammatory Molecules in the Development of 
Head and Neck Cancer: Evidence from In Vivo Studies

Chronic inflammation is frequently associated with malignant growth and is 
thought to promote and enhance tumor progression, although the mechanisms 
which regulate this relationship remain elusive (Coussens and Werb 2002). It has 
been reported that interleukin (IL)-1β promoted tumor progression by enhancing 
the accumulation of MDSCs and hypothesized that inflammation leads to can-
cer through the production of MDSCs which inhibit tumor immunity (Bunt et al. 
2006) if inflammation-induced MDSCs promote tumor progression by blocking 
anti-tumor immunity, then a reduction in inflammation should reduce MDSC levels 
and delay tumor progression; whereas an increase in inflammation should increase 
MDSC levels and hasten tumor progression (Dinarello 1996). This hypothesis was 
tested by using the 4T1 mammary carcinoma and IL-1 receptor (IL-1R)–deficient 
mice which have a reduced potential for inflammation, and IL-1R antagonist–
deficient mice, which have an increased potential for inflammation. Consistent 
with the initial hypothesis, IL-1R–deficient mice have a delayed accumulation of 
MDSC and reduced primary and metastatic tumor progression. Accumulation of 
MDSCs and tumor progression are partially restored by IL-6, indicating that IL-6 
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is a downstream mediator of the IL-1B-induced expansion of MDSC. In contrast, 
excessive inflammation in IL-1R antagonist-deficient mice promotes the accumu-
lation of MDSC and produces MDSC with enhanced suppressive activity. These 
results show that immune suppression by MDSC and tumor growth are regulated 
by the inflammatory milieu and support the hypothesis that the induction of sup-
pressor cells which down-regulate tumor immunity is one of the mechanisms link-
ing inflammation and cancer (Bunt et al. 2007).

The potential role of TGFBR1/PTEN in development of head and neck can-
cer was studied in the 2cKO mouse model. It was found that deletions of 
TGFBR1/PTEN are associated with tumor cells with a proliferative and inva-
sive phenotype. Interestingly, the nonmalignant epithelial cells of the head and 
neck area also revealed and enhanced proliferation pattern, loss of apoptosis, 
and increased expression of CCND1 (Bian et al. 2012). The effects of TGF-B 
was shown to have different effects on premalignant and malignant cells. On  
premalignant cells, TGF-B exerts tumor-suppression effects through its autocrine 
interaction with other signaling pathways. The effect of TGF-B on tumor cells is 
exert by its paracrine activity and is associated with an aggressive tumor pheno-
type and a pro-inflammatory state (De Wever and Mareel 2003). There is increas-
ing evidence that the tumor micro-environment has an important role in cancer 
development and tumor progression. For instance, deletions of TGFBR/PTEN in 
the mouse head and epithelium are associated with activation of the NF-kB path-
way, the generation of a pro-inflammatory stroma. As a result of all these events, 
there is a recruitment of MDSC’s and increase angiogenesis, and an immuno-sup-
pressive state of the tumor micro-environment that facilitates the proliferative and 
infiltrating pattern of head and neck tumor cells (Bian et al. 2012; Lu et al. 2006; 
Bierie et al. 2008)

5 .5  Evidence from Patients for the Role of Inflammation  
in Head and Neck Cancer

It is well established that high levels of pro-inflammatory cytokines play a role 
in the development of HNSCC (Wang et al 2009). In clinical practice, it has been 
shown that low levels of cytokines and growth factors are associated with response 
to therapy and high levels are associated with poor outcomes in patients with 
HNSCC receiving chemotherapy and radiation. (Allen et al. 2007).

It has been shown that there is a significant reduction in HNC risk with aspi-
rin use, with the strongest protective effect for laryngeal cancers. A subanalysis 
in individuals with information on alcohol use revealed an increasing reduction in 
HNC risk, albeit non-significant, with aspirin use among participants with increas-
ing alcohol use. The exact mechanism by which this may be occurring is uncer-
tain. Ethanol found in alcohol has been reported to act as a local irritant potentially 
leading to localized inflammation, which may possibly explain the observed 
reduction in HNC in aspirin users who consume alcohol.
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In patients with HPV-related oropharyngeal cancer, there is some evidence to 
suggest an up-regulation of COX-2 in HPV-infected tissues, and this might explain 
the reduction in HNSCC in this patient population (Wilson et al. 2013). However, 
the chemopreventive effect of aspirin and NSAIDs cannot be explained by the inhi-
bition of pro-staglandin synthesis alone, since several NSAIDs have anti-prolif-
erative effects in cells without COX activity. High aspirin doses induce apoptosis 
through COX-independent mechanisms, by regulating several different targets—
e.g., ALOX15, a pro-apoptotic gene PAWR, and an anti-apoptotic gene BCL2L1. 
Additionally, NSAIDs including aspirin also induce apoptosis by the activation of 
caspases, the activation of p38 MAP kinase, release of mitochondrial cytochrome 
c, and activation of the ceramide pathway. These effects might not be universal to 
all cell types and the range of doses of aspirin needed in such COX-independent 
pathways could be higher than for the inhibition of COX-2 (Elwood et al. 2009). 
Celecoxib, in conjunction with erlotinib and reirradiation, was shown to be a feasible 
and clinically active regimen in a population of patients with recurrent HNSCC who 
had a poor prognosis (Kao et al. 2011). However, the majority of data suggest a lim-
ited role for celecoxib in head and neck cancer therapy, either due to toxicity or lack 
of efficacy (Dannenberg and Subbaramaiah 2003; Jaeckel et al. 2001). Celecoxib 
was ineffective in controlling oral premalignant lesions in a recent randomized con-
trolled trial (Papadimitrakopoulou et al. 2008). COX-2 inhibition has a chemopre-
ventive effect, but its application as a treatment of HNSCC in a clinical setting still 
requires further research to overcome its limited anticancer effects (Kim et al. 2010).

Apricoxib is a selective COX-2 inhibitor with preclinical data showing analgesic, 
anti-inflammatory, and anti-tumor effects. Apricoxib plus erlotinib was tested in a 
phase I study in non-small-cell lung cancer and was found to be well tolerated with 
a 60 % disease control rate (Reckamp et al. 2011). In addition to reversing EMT via 
inhibition of COX-2, Apricoxib up-regulates 15-prostaglandin dehydrogenase and 
the PGT, thereby reducing the levels of active PGE2 by both suppressing its synthesis 
and increasing its catabolism (St John et al. 2012). Treatment of HNSCC cells with 
Apricoxib also causes greater up-regulation of E-cadherin expression and down-regula-
tion of vimentin, as compared to celecoxib treatment. This has significant implications 
for targeted chemoprevention and anticancer therapy because E-cadherin expression 
has been implicated as a marker of sensitivity to EGFR TKI (St John et al. 2012). 
Studies have shown that EGFR and COX-2 have an important role in the biology of 
HNSCC. Overexpression of COX-2 is associated with a poor prognosis in HNSCC, 
and COX-2 inhibitors have demonstrated synergy when combined with EGFR inhibi-
tors in preclinical models (Chen et al. 2004; Chung et al. 2011). Inflammatory media-
tors can promote EMT and increase resistance to EGFR-TKIs in HNSCC. These 
studies provide a strong rationale for combining a COX-2 inhibitor with an EGFR TKI.

In patients with HPVOPC, the PD-1: PD-L1 pathway plays a role in both per-
sistence of HPV infection (through expression of PDL1in the tonsillar crypt epithe-
lium—the site of initial infection) as well as resistance to immune elimination during 
malignant progression. Given the high levels of membranous PD-L1 expression 
within the tumors, recent studies support a rationale for administering PD-1/PD-L1-
targeted therapy to the HPVOPC patient population (Topalian et al. 2012).
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5 .6  Conclusions and Future Directions

In conclusion, current evidence supports the concept that chronic inflammation 
promotes the development and progression of cancer. Because inflammation is 
a complex process involving many effector cells and mediators, it is likely that 
inflammation facilitates tumor progression through multiple mechanisms that are 
not yet fully understood. Tumor promotion and progression are dependent on 
physiologic responses provided by supportive tissues of the tumor environment but 
that are not necessarily cancerous themselves. Infiltration of immune cells facili-
tates tumor development through production of factors that promote carcinogen-
esis and by enabling tumors to evade the host immune response. Small molecules 
including cytokines, chemokines, and growth factors play key roles in both inflam-
mation and cancer by promoting proliferation, angiogenesis, and carcinogenesis 
and by recruiting immune cells. Many of these physiologic processes and small 
molecules are potential targets with anti-neoplastic activity.

From in vitro and in vivo data, it seems that in the future, the use of different 
molecules that can affect one of the inflammatory pathways at different levels (i.e., 
co-administration of EGFR and STAT inhibitors) or different pathways at differ-
ent levels (i.e., COX-2 inhibitors, NF-κB, and STAT inhibitors) will probably be 
needed to improve the anti-neoplastic activity of these molecules.

The role of the PD-1: PD-L1 interaction in creating an “immune-privileged” 
site for initial viral infection and subsequent adaptive immune resistance once 
tumors are established supports the rationale for therapeutic blockade of this path-
way in patients with HPVOPC.
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Abstract Pancreatic ductal adenocarcinoma (PDAC) is a devastating disease 
with an extremely poor prognosis. Inflammatory processes have emerged as key 
mediators of pancreatic cancer development and progression. In genetically engi-
neered mouse models, induction of pancreatitis accelerates PDAC development, 
and patients with chronic pancreatitis are known to have a higher risk of develop-
ing pancreatic cancer. In recent years, much effort has been given to identify the 
underlying mechanisms that contribute to inflammation-induced tumorigenesis. 
Many inflammatory pathways have been identified and inhibitors have been devel-
oped in order to prevent cancer development and progression. In this chapter, we 
discuss the role of inflammatory pathways in the initiation and progression of pan-
creatic cancer as well as the role of inhibitors used in treatment and prevention of 
pancreatic cancer.

6 .1  Introduction: Clinical Aspects and Current Therapy 
Options in Pancreatic Ductal Adenocarcinoma

A relationship between inflammation and cancer was hypothesized by Rudolph 
Virchow back in the 1850s (Balkwill and Mantovani 2001). Dvorak (1986) later 
described tumors as ‘‘wounds that do not heal’’, where microenvironment-derived 
growth-promoting factors sustain the survival and proliferation of initiated cells. 
It is known that chronic persistent inflammatory conditions are associated with 
cancer in many organs, such as ulcerative colitis and colon carcinoma, Barrett’s 
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esophagus and esophageal cancer, hepatitis and liver cancer. The fibroinflam-
matory stroma of chronic pancreatitis resembles that of pancreatic cancer, and 
patients with familial chronic pancreatitis have a 26-fold increased risk of devel-
oping pancreatic cancer compared with the normal population—probably owing 
to chronic inflammation (Lowenfels et al. 1993). In this chapter, key pathways 
involved in this multifaceted interaction between inflammatory cells and pancre-
atic cancer are summarized.

6.1.1  Incidence and Survival

Pancreatic ductal adenocarcinoma is the fourth deadly cancer worldwide with an 
age-adjusted incidence rate of 12.1 per 100,000 men and woman per year (Siegel 
et al. 2013). It is estimated that in the United States, 45,220 patients will be diag-
nosed with pancreatic cancer in 2013 (Siegel et al. 2013). With a five-year survival 
rate of only 6 % and 38,460 estimated deaths in 2013, its incidence and mortality 
rates are almost identical (Siegel et al. 2013). Despite intensive research to prolong 
the survival of pancreatic cancer patients, little has been achieved, and like thirty 
years ago, surgery remains to be the only therapy option to cure some and provide 
the best palliation for many patients (Winter et al. 2012). However, only 15–20 % 
of the patients are initially candidates for surgical resection (Winter et al. 2012). 
Unfortunately, with the conventional non-surgical therapy options such as radio-
therapy and chemotherapy, the survival of pancreatic cancer patients can only be 
prolonged for a couple of weeks to a few months (Moore et al. 2007; Michl and 
Gress 2013).

6.1.2  Current Therapy Options

The poor prognosis of pancreatic cancer patients is mostly due to late diagnosis and 
the absence of effective therapy options. Considering that three quarters of patients 
are not candidates for surgery at the time of first diagnosis, the most commonly 
employed therapy consists of radio- and chemotherapy. In the last decade, gemcit-
abine-based chemotherapy became the reference treatment since studies compar-
ing gemcitabine with 5-fluorouracil showed similar survival advantages but better 
quality of life with the former (Neoptolemos et al. 2010). Different combinations of 
gemcitabine with other cytotoxic drugs could not improve the survival of patients 
significantly compared to gemcitabine treatment alone. Even the highly toxic regi-
men Folfirinox, consisting of irinotecan, oxaliplatin, 5-fluorouracil and folinic acid, 
resulted in a median survival of less than one year in patients with advanced pan-
creatic cancer (Conroy et al. 2011). Many targeted agents, including angiogenesis 
inhibitors, which have shown success in the preclinical setting, failed to prolong 
survival of pancreatic cancer patients in the clinical setting (Erkan et al. 2012). The 
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only FDA approved targeted agent Erlotinib (a tyrosine kinase inhibitor that acts 
on human epidermal growth factor receptor type 1 [HER1/EGFR]) is no exception. 
This agent only increases median survival from 5.91 months (gemcitabine and pla-
cebo) to 6.24 months (gemcitabine and erlotinib) in patients with advanced pancre-
atic cancer (Moore et al. 2007).

Recently, the abundant fibrotic stroma of pancreatic cancer is shown to form 
a mechanical barrier for the effective delivery of chemotherapeutic agents. This 
observation has led to the emergence of anti-fibrotic therapies which appear to be 
effective in the preclinical setting. For example, the inhibition of the hedgehog 
signaling pathway in a genetically engineered mouse model of pancreatic cancer 
showed a better penetrance of the tumor with gemcitabine and a longer survival of 
the mice (Olive et al. 2009). However, the first phase II trial (IPI-926-03) has to be 
stopped after interim analysis due to increased mortality in the therapy arm (Erkan 
2013a). These results hint that the problem in pancreatic cancer is multifaceted, 
and a successful therapy should aim at correcting several defects at genetic, epige-
netic, and microenvironmental levels.

6 .2  Inflammatory Signaling Pathways Associated 
with Pancreatic Cancer

6.2.1  The NFκB Signaling Pathway as Key Modulator 
of Inflammation-Induced Carcinogenesis

The transcription factor nuclear factor κB is a key regulator of inflammatory  
processes and therefore plays an important role in the development of pancreatitis 
and pancreatic carcinogenesis (DiDonato et al. 2012). NFκB belongs to a  family 
of proteins sharing the Rel homology domain (RHD), which can bind to DNA 
either as hetero- or homodimers. There are 5 NFκB/Rel family members, p65 
(RelA), c-Rel, Rel-B, and the precursor proteins NFκB1 (p105/p50) and NFκB2 
(p100/p52), which form homo- or heterodimers (Karin et al. 2002). In the pancreas, 
the p65/p50 heterodimer is the predominant form of NFκB (Han et al. 2001). In 
the healthy pancreas, the NFκB signaling pathway is inactivated, and the above-
mentioned regulatory subunits are kept in the cytoplasm by interaction to the IκB 
family of inhibitory proteins, which include IκB-α, IκB-β, IκB-γ, IκB-ε, Bcl-3, 
p105/NFκB1, and p100/NFκB2 (Beg and Baldwin 1993; Thompson et al. 1995; 
Baldwin 1996; Verma et al. 1995). Due to microbial and viral infections as well 
as pro-inflammatory cytokines, the IκB kinase (IKK) complex gets activated and 
phosphorylates the IκB proteins at two conserved serine residues (Ling et al. 1998). 
The IKK complex consists of the two catalytic active protein kinases IKKα and 
IKKβ and the regulatory subunit IKKγ which is also called NEMO (Israel 2010). 
By phosphorylation of the inhibitory proteins, IκB gets targeted for ubiquitination 
and subsequent degradation by the 26S proteasomal system (Chen et al. 1995). 
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After the separation from the inhibitory protein IκB, the subunits can translocate 
to the nucleus, bind to κB-sequences within promoter regions and regulate the tran-
scription of different genes involved in survival, inflammation as well as its own 
inhibitor IκB-α (Pahl 1999; Hayden and Ghosh 2011).

In many studies, it could be shown that the NFκB pathway is activated 
in early stages of pancreatitis and enhances the pro-inflammatory response 
through the activation of anti-apoptotic and inflammatory genes (Gukovsky 
et al. 1998; Steinle et al. 1999; Karin 1998). In a recent paper published by 
Huang and colleagues, it was demonstrated that the level of NFκB correlates 
with the severity of acute pancreatitis. Furthermore, the group displayed that 
long periods of activated NFκB in pancreatic acinar cells lead to a chronic pan-
creatitis characterized by severe pancreatic damage, immune cell infiltration, 
and fibrosis (Huang et al. 2013). Another group showed that the deletion of 
the IκB kinase IKK2 in all pancreatic epithelial cells prevented the formation 
of PanIN lesions in PdxCre/+; LSL-KrasG12D/+ mice (Maniati et al. 2011) thus 
indicating that the NFκB pathway plays an important role in the carcinogenesis 
of pancreatic cancer.

6.2.2  TheIL-6–STAT3 Axis and its Importance  
in Development of Pancreatic Cancer

The signal transducer and activator of transcription 3 (STAT3) is known to be an 
important regulator of stem cell renewal, cancer cell survival as well as inflamma-
tion. In the normal pancreas, STAT3 is inactive and located in the cytoplasm (Lee 
and Hennighausen 2005). In inflammatory conditions as well as in PDAC, how-
ever, STAT3 gets activated by phosphorylation on a tyrosine residue. Subsequent 
dimerization and translocation to the nucleus lead to the transcription of many 
target genes involved in inflammation and stem cell renewal (Shuai et al. 1993, 
1994; Frank 2007; Bromberg and Darnell 2000). In inflammatory conditions, 
growth factors and cytokines such as IL-6 activate the Janus-activated kinase 
(JAK) family of tyrosine kinases that in return phosphorylate STAT proteins on 
their tyrosine residue (Zhong et al. 1994). Other tyrosine kinases such as src have 
also been reported to activate STAT proteins (Cao et al. 1996). The importance 
of STAT3 in the process of pancreatic cancer was recently shown by Miyatsuka 
et al. (2006) who proved that STAT3 is essential for the development of acinar-
to-ductal metaplasia (ADM), an early event in the pathogenesis of pancreatic can-
cer. Furthermore, STAT3 was shown to be important for fostering progression of 
pancreatic cancer at different stages in mouse models and pancreatic cancer cell 
lines (Corcoran et al. 2011). The group of Hebrok additionally showed that the 
inflammatory mediator STAT3 contributes to PDAC initiation by promoting pan-
creatic cancer precursor lesions and support of cell proliferation and metaplasia-
associated inflammation (Fukuda et al. 2011). In line, Lesina et al. (2011) showed 
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that inhibition of IL-6 or STAT3 can reduce PanIN progression and diminishes the 
development of PDAC. These results from in vitro and in vivo studies emphasize 
the importance of the IL-6–STAT3 axis in the initiation as well as progression of 
pancreatic cancer.

6.2.3  The Role of Toll-like Receptors in Pancreatic Cancer

Toll-like receptors (TLRs) belong to the pattern recognition receptors and are 
mainly expressed on innate immune cells as well as on neoplastic tissues (Huang 
et al. 2008). Ligands for the Toll-like receptors include conserved patterns of 
bacterial and viral origin also referred to as pathogen-associated molecular pat-
terns (PAMPs) as well as damage-associated molecular patterns (DAMPs). A 
recent paper published by Ochi et al. (2012) showed that the TLR7 is not only 
overexpressed in the epithelial compartment in pancreatic cancer but also in the 
tumor stroma in mice and humans. Using a mouse model of pancreatic cancer 
(p48Cre/+; KrasG12D/+), the group showed that TLR7 ligation accelerated the 
development of pancreatic cancer and inhibition of TLR7 was able to inhibit 
pancreatic tumorigenesis. The activation of TLR7 induced STAT3 activation and 
interacted with Notch, canonical NFκB, and MAP kinase pathways. Another 
group showed that the inflammatory substance lipopolysaccharide (LPS) which 
activates TLR4 increased the invasive behavior of pancreatic cancer cell lines 
Panc-1 and AsPC-1 through the activation of the NFκB signaling pathway. These 
results demonstrate the interplay between TLR4 and NFκB signaling may be 
one of the pathways linking inflammation and PDAC progression in vitro (Ikebe  
et al. 2009).

6.2.4  TGF-β Signaling Pathway

TGF-β is an anti-inflammatory cytokine which plays an important role in cell 
growth, apoptosis, and differentiation of cells and often correlates with advanced 
tumor stage (Patterson and Padgett 2000; Lu et al. 1997; Daroqui et al. 2012). 
Under normal conditions, TGF-β has suppressive effects on tumorigenesis 
through inhibition of cell growth and promotion of apoptosis. Upon ligand bind-
ing, the TGF-β type I and TGF-β type II receptors heterodimerize and the type 
II receptor phosphorylates the receptor I kinase domain. The signal cascade is 
further forwarded by phosphorylation of SMAD proteins which is performed 
only by the type I receptor (Massague et al. 2000). The activated SMAD pro-
teins then translocate into the nucleus and activate the transcription of target 
genes that mediate the tumor-suppressive effects. In pancreatic cancer, the role 
of the TGF-β signaling pathway is well established (Friess et al. 1993a). Like 
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in many cancers, the TGF-β signaling is impaired in pancreatic cancer lead-
ing to tumor-promoting effects such as increased cell growth, survival of can-
cer cells, invasion and metastasis as well as decreased survival of pancreatic  
cancer patients (Friess et al. 1993a, b). For many pancreatic cancer cell lines, 
it has been shown that SMAD4 is deleted or that the cancer cells have defects 
in TGF-β receptors (Villanueva et al. 1998). TGF-β has been shown to play an 
important role in the development and progression of chronic pancreatitis. In a 
study in which TGF-β signaling in the mouse pancreas was inhibited, the mice 
showed a stronger response to cerulein-mediated pancreatitis which was charac-
terized by severe pancreatic edema, immune cell infiltration, hyperactivation of 
B and T cells and antibodies against pancreatic acinar cells (Hahm et al. 2000). 
Due to the important role of TGF-β in development and progression of pan-
creatitis, it has become an interesting drug target. In the recent years, several 
TGF-β receptor kinase inhibitors have been developed and have shown promis-
ing results in  in vitro and in vivo experiments.

6 .3  Role of Inflammatory Molecules in the Development  
of Pancreatic Cancer: Evidence from In Vitro Studies

6.3.1  Role of Inflammatory Molecules in the Transformation  
of Pancreatic Cancer Cells

Disturbances of pancreatic tissue homeostasis through various mechanisms lead 
commonly to a fibroinflammatory response in the pancreas. If there is an imbal-
ance of the inflammatory reaction, chronic pancreatitis can ensue, which in the 
long term may enable transformation of premalignant cells to a malignant state. 
Apart from loss of tumor suppressor genes and deregulation of genes controlling 
the cell cycle, cytokines have been shown to contribute to the malignant transfor-
mation of cells. Moreover, during the typical fibroinflammation seen in chronic 
pancreatitis, microenvironmental factors, specifically hypoxia, acidosis, and reac-
tive oxygen species, are also shown to induce genetic instability in the epithelial 
cells (Gillies et al. 2012).

6 .3 .1 .1  The Role of the Cytokine TNF-α and the EGFR Signaling  
in the Transformation of Pancreatic Cancer Cells

In response to acinar damage, the expression of the cytokine tumor necrosis  factor 
alpha (TNF-α) is induced. In human pancreatic cancer cell lines, it could be shown 
that the treatment of these cell lines with TNF-α was able to induce the expres-
sion of epidermal growth factor receptor (EGFR) and its ligand, transforming 
growth factor α (TGF-α) (Schmiegel et al. 1993). In vitro studies by Means et al. 



1356 The Role of Inflammation in Pancreatic Cancer

the further demonstrated the importance of the EGFR signaling pathway in the 
transformation of acinar cells toward a malignant phenotype. Treatment of wild-
type acinar cells with TGF-α resulted in transformation of acinar cells into a ductal 
phenotype which was accompanied by loss of acinar markers and expression of 
ductal markers like cytokeratin 19 (Means et al. 2005).

6 .3 .1 .2  The Influence of the Cytokine IL-1α on Transformation  
of Pancreatic Cancer Cells

Another cytokine that plays an important role in the malignant transformation 
of pancreatic cells is the pro-inflammatory cytokine interleukin-1α (IL-1α). In 
a study by Sawai and colleagues, it could be shown that IL-1α enhanced pro-
liferation, adhesion, and migration of the pancreatic cancer cell lines BxPC3, 
Capan-2, and SW1990. These changes were explained by the upregulation of 
the integrin subunit α6 as well as by alterations of the urokinase plasminogen 
activator (uPA) and urokinase plasminogen activator receptor (uPAR) expres-
sion, which are both known to be upregulated in pancreatic cancer and play a 
role in disease progression (Cantero et al. 1997). Furthermore, IL-1α induced 
the activation of Ras and the downstream ERK signaling pathway (Sawai et al. 
2006). By using an integrin α6 antibody, the IL-1α-mediated effects could be 
abolished indicating that IL-1α mediates its effects through the integrin signal-
ing pathway. Another study demonstrated that forced expression of IL-1α in the 
pancreatic cancer cell line MiaPaCa-2 activated NFκB expression, uPA as well 
as vascular endothelial growth factor (VEGF) and IL-8. Due to these changes 
in the expression profile, the non-metastatic cell line MiaPaCa-2 showed an 
invasive behavior in in vitro as well as in an orthotopic mouse model (Melisi  
et al. 2009).

6.3.2  Role of Inflammatory Molecules in Survival  
of Pancreatic Cancer Cells

6 .3 .2 .1  NFκB and IL-6 Induce Anti-Apoptotic Genes

Resistance to apoptosis is one of the hallmarks of cancer and promotes tumor 
growth and metastasis (Hanahan and Weinberg 2000). In pancreatic cancer, the 
key regulator of inflammatory processes NFκB contributes to apoptosis resist-
ance of pancreatic cancer cells (Liptay et al. 2003; Greten et al. 2002). Different 
studies showed that NFκB has anti-apoptotic effects on pancreatic cancer cells 
by activating different downstream target genes. In several pancreatic cancer 
cell lines, NFκB- and STAT3-dependent upregulation of the anti-apoptotic gene 
BcL-xL was demonstrated. However, this is not the only mechanism by which 
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NFκB exerts its anti-apoptotic effects. Several studies were able to show that 
NFκB is also involved in the regulation of cyclin D1 expression (Yamamoto and 
Gaynor 2001). In a recent study, it was shown that downregulation of the NFκB 
subunit p65 in pancreatic cancer cells leads to a subsequent downregulation of 
the pro-apoptotic gene BcL-2 as well as to the cell cycle gene cyclin D1 lead-
ing to growth inhibition of the pancreatic cancer cell line BxPC-3 (Kong et al. 
2010). Another study showed that blocking the EGFR pathway in the pancre-
atic cancer cell line MDA Panc-28 resulted in a decreased NFκB binding activ-
ity as well as a reduced expression of the pro-apoptotic gens BcL-xL and Bfl-1 
(Sclabas et al. 2003). The pro-inflammatory cytokine IL-6 was also shown to 
contribute to survival of pancreatic cancer cells by upregulating BcL-2 and 
BcL-xL. This effect could be reverted by the use of an IL-6 antibody (Miyamoto 
et al. 2001).

6.3.3  Role of Inflammatory Molecules in the Proliferation 
of Pancreatic Cancer Cells

6 .3 .3 .1  The Cytokines IL-4, IL-6, and IL-8 have Proliferative Effects 
on Pancreatic Cancer Cells

Cytokines are found abundantly in the fibroinflammatory microenvironment of 
pancreatic cancer. The pro-inflammatory cytokine IL-6 was shown to affect pan-
creatic cancer cell proliferation in vitro by activating the STAT3 signaling pathway 
(Friess et al. 1999; Huang et al. 2010). In a recent study, it could be demonstrated 
that IL-6 induces the release of Th2-type cytokines as well as activates the ERK2 
signaling pathway in pancreatic cancer cells. These results indicate that IL-6 sign-
aling creates a tumor environment which promotes the development of pancreatic 
cancer by Th2-driven events as well as by upregulating cell proliferation-related 
genes (Feurino et al. 2007). Another cytokine that has a major role in promoting 
proliferation of pancreatic cancer cells is IL-8. The pancreatic cancer cell line 
Capan-1 has been identified to secret IL-8 as well as its receptor CXCR2. When 
IL-8 was inhibited using an IL-8 antibody, growth of Capan-1 cells was inhib-
ited (Takamori et al. 2000). Another study showed that IL-8 inhibition in the cell 
line Hup-T4 via IL-8 antisense oligonucleotides also reduced the cell growth 
(Miyamoto et al. 1998). Additionally, IL-4 was identified to influence pancreatic 
cancer cell growth since pancreatic cancer cells as well as pancreatic cancer tis-
sue show a high upregulation of the IL-4 receptor (Kawakami et al. 2001). In vitro 
studies displayed that the anti-inflammatory cytokine IL-4 significantly enhances 
the tumor growth of different pancreatic cell lines (AsPC-1, Colo-357, Capan-1, 
Panc-1). Moreover, the ablation of IL-4 in cell culture showed a reduced tumor 
growth, confirming the proliferative effect of IL-4 on pancreatic tumor cells 
(Prokopchuk et al. 2005).
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6.3.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Pancreatic Cancer 
Cells

6 .3 .4 .1  The Pro-inflammatory Cytokine Interleukin-1α Plays an 
Important Role in Invasion and Metastasis of Pancreatic  
Cancer Cells

Many inflammatory molecules have been indicated to play a role in invasion, metas-
tasis, and angiogenesis of PDAC. One of these is the pro-inflammatory cytokine 
IL-1α which is produced by pancreatic cancer cells. In recent studies, it could be 
demonstrated that IL-1α promotes proliferation, adhesion, and migration of the pan-
creatic cancer cell lines BxPC-3, SW1990, and Capan-2 through the upregulation 
of the integrin subunits α6 and β1 and the uPAR. The above-mentioned effects are 
associated with the activation of RAS and the downstream ERK signaling pathway. 
By using inhibitory antibodies against α6, β1, and uPA, the group showed that the 
activation of the ERK signaling as well as proliferation, adhesion, and migration of 
pancreatic cancer cell lines was prevented (Sawai et al. 2006). In an additional study, 
it was elucidated that IL-1α produced by pancreatic cancer cells is able to induce 
the expression of hepatocyte growth factor (HGF) by fibroblasts (Xu et al. 2010). 
In co-culture experiments with pancreatic cancer cells and fibroblasts, the group 
showed not only the IL-1α-dependent expression of HGF by fibroblasts but also 
an increased invasive and proliferative behavior of pancreatic cancer cells as well 
as of human umbilical vein endothelial cells (HUVECs). This can be explained by 
binding of HGF to its receptor c-met/HGF on the surface of pancreatic cancer cells 
and thus fostering the observed behavior of pancreatic cancer cells (Xu et al. 2010). 
Another study demonstrated that forced expression of IL-1α in the pancreatic can-
cer cell line MiaPaCa-2 activated the NFκB signaling pathway as assessed by an 
increase in NFκB downstream targets. As a result of the forced expression of IL-1α 
and subsequent NFκB activation, the cells gained an invasive phenotype. However, 
when the NFκB pathway was inactivated by the expression of a dominant negative 
IκB protein, the metastatic behavior was prevented. The same behavior of the cells 
was observed when IL-1α was silenced in the metastatic pancreatic cancer cell line 
L3.6pl, indicating that IL-1α-induced NFκB expression is contributing to the meta-
static phenotype of pancreatic cancer cells (Melisi et al. 2009).

6 .3 .4 .2  The Pro-Inflammatory Cytokines TNF-α, IL-6, and IL-1β  
are Important for the Survival, Metastasis of Cancer Cells,  
and Escape from Immune Surveillance

In many cancer types, the pro-inflammatory cytokine IL-1β has been indicated 
to influence metastasis and tumor growth (Apte et al. 2006). IL-1β together with 
IL-1α belongs to the IL-1 family and has been shown to induce the expression of 
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pro-inflammatory genes such as cyclooxygenase-2 (COX-2), inducible NO  synthetase 
(iNOS), and IL-6. Pancreatic cancer cell lines treated with recombinant IL-1β 
revealed that the cancer cells stimulated with IL-1β showed a strong invasive behav-
ior, whereas extracellular matrix adhesion was not influenced (Greco et al. 2005).

The NFκB pathway has been shown to have an important impact on survival 
of pancreatic cancer cells through the upregulation of anti-apoptotic genes such 
as BcL-XL. Several studies showed that inhibition of NFκB in human pancreatic 
cancer cells resulted in increased apoptosis of cancer cells. Different mechanisms 
contributing to the anti-apoptotic effects of NFκB in pancreatic cancer cells have 
been described. In a paper by Sclabas and colleagues, EGFR-dependent NFκB 
activation was analyzed (Sclabas et al. 2003). Therefore, the EGF receptor was 
blocked in the human pancreatic cancer cell line MDA Panc-28 using an anti-
EGFR monoclonal antibody which resulted in decreased NFκB activity as well as 
a diminished expression of the apoptotic genes BcL-XL and BfL-1. Furthermore, 
the group was able to show a significant increase in apoptosis of MDA Panc-28 
cells when they were treated with the EGFR monoclonal antibody and gemcit-
abine together (Sclabas et al. 2003). The results of this study indicate that sign-
aling through the EGF receptor can induce NFκB signaling and subsequently 
influence apoptosis of pancreatic cancer cells in vitro. Another study showed that 
silencing of NFκB had an effect on gemcitabine-sensitive pancreatic cancer cell 
lines BxPC3, L3.6pl, and CFPAC-1 alone or in combination with gemcitabine. 
However, if NFκB was silenced in gemcitabine-resistant pancreatic cancer cell 
lines (MPanc-96, Panc-1, MiaPaCa-2), no effect on apoptosis could be detected 
(Pan et al. 2008). Therefore, inhibition of NFκB may only be a therapeutic advan-
tage for a subset of pancreatic cancer  patients.

6 .3 .4 .3  TGF-β Mediates Invasiveness of Pancreatic Cancer Cells

In normal epithelial cells, TGF-β functions as inhibitor of cell growth (Logsdon 
et al. 1992). The same effects can be observed in early stages of cancer and in some 
pancreatic cancer cell lines such as Colo-357 (Kleeff and Korc 1998). However, at 
late stages of cancer, the cells are not responsive to the growth inhibitory effects 
due to mutations of downstream molecules such as SMADs or the expression of 
TGF-β signaling inhibitors (Kleeff et al. 1999a, b), and hence TGF-β functions as 
tumor-supporting factor. Treatment of the pancreatic cancer cell lines Panc-1 and 
IMIM-PC1 with recombinant TGF-β increased the invasiveness of these cells. 
The invasive behavior of Panc-1 and IMIM-PC1 could be completely abolished 
by using a neutralizing TGF-β antibody. Furthermore, the treatment of cells with 
TGF-β upregulated the matrix metalloproteinase 2 (MMP2) and the uPA system 
and thus mediated the invasive behavior of Panc-1 and IMIM-PC1 (Ellenrieder 
et al. 2001). Another study analyzed the pancreatic cancer cell lines Panc-1, 
BxPC3, and MiaPaCa in regard to stimulation of TGF-β and found out that the 
pancreatic cancer cell lines had a defective response to the TGF-β stimulation as 
determined by 3[H]thymidine incorporation and TGF-β-sensitive reporter assays. 
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Furthermore, no correlation of the unresponsiveness to TGF-β and TGF-β type I 
and II receptor or Smad2 and Smad3 was identified. However, when Smad4 was 
introduced into the cell line BxPC3 which has a homologous deletion of SMAD4, it 
restored the responsiveness to TGF-β, indicating that Smad4 plays a crucial role in 
the loss of TGF-β responsiveness at least in some pancreatic cancer cells (Simeone 
et al. 2000). The role of SMAD4 in mediating TGF-β effects was further confirmed 
by a study by Chow et al. The group showed that TGF-β facilitates motility and 
invasiveness of the pancreatic cancer cell lines BxPC3 and Capan-1 through inhibi-
tion of PTEN expression and activation of NFκB. However, when SMAD4 expres-
sion was restored in BxPC3 and Capan-1 cells, the invasive behavior was prevented 
due to the inhibited activation of NFκB pathway (Chow et al. 2010).

6 .3 .4 .4  IL-6 and IL-8 Induce Angiogenesis by Activating Vascular 
Endothelial Growth Factor

In a variety of tumors, IL-8 is known to contribute to the regulation of tumor growth, 
invasion, and angiogenesis (Strieter et al. 1995). In head and neck cancer, IL-8 was 
identified as an autocrine growth factor and it could be shown that IL-8 expression 
leads to cancer cell survival and tumor growth. IL-8 expression was induced by 
IL-1α-dependent activation of the transcription factors NFκB and AP-1 which in turn 
promoted survival of head and neck squamous cell carcinoma cells in vitro (Wolf et 
al. 2001). Similarly, in pancreatitis and pancreatic cancer, an upregulation of IL-8 can 
be detected which correlates with an increase in angiogenesis and metastatic behav-
ior of cells (Farrow et al. 2004). In fact, many pancreatic cancer cell lines produce a 
mixture of pro- and anti-angiogenic substances. Their dominant effect on angiogen-
esis remains mostly inhibitory (Erkan et al. 2009). IL-8 belongs to the pro-angiogenic 
factors produced by pancreatic cancer cell lines. In vitro, HUVEC co-cultured with 
some other pancreatic cancer cells show an increase in proliferation and angiogenesis 
(Matsuo et al. 2004). Moreover, the human pancreatic cancer cell line Panc-1 shows 
an increased metastatic behavior when stimulated with exogenous IL-8 (Kuwada et 
al. 2003). Recent studies revealed that the observed angiogenic effect mediated by 
IL-8 is in part due to induction of VEGF and neuropilin-2 produced by pancreatic 
cancer cells (Li et al. 2008).

Another important cytokine involved in mediating angiogenesis in pancreatic 
cancer cell lines is IL-6. A recent study showed that the IL-6 levels are increased 
in different pancreatic cancer cell lines such as BxPC-3, MiaPaCa-2, Panc-1, and 
PaCa-2 compared to human pancreatic ductal epithelium cells. Further investi-
gations showed that similar to IL-8, IL-6 also induced expression of VEGF and 
neuropilin-1 supporting angiogenesis and metastasis of pancreatic cancer cells 
(Feurino et al. 2007). Both IL-8 and IL-6 activate the MAP kinase pathway. This 
could be demonstrated by an increase in ERK2 phosphorylation when Panc-1 cells 
were stimulated with IL-8 or IL-6. Through the activation of this signaling path-
way, proliferation of pancreatic cancer cells is fostered and thus progression of 
pancreatic cancer in enhanced.
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6 .4  Role of Inflammatory Molecules in the Development 
of Pancreatic Cancer: Evidence from In Vivo Studies

6.4.1  STAT3 Contributes to Pancreatic Ductal Adenocarcinoma 
Initiation and Progression

Not only in vitro studies were able to show that the inflammatory mediator 
STAT3 is linked with pancreatic precursor lesion formation, but also in vivo stud-
ies demonstrated the role of STAT3 in the development of preneoplastic lesions 
(Corcoran et al. 2011; Fukuda et al. 2011; Lesina et al. 2011; Li et al. 2011). 
Corcoran et al. (2011) showed that STAT3 is necessary both for the development 
of precursor lesions [i.e., ADM, pancreatic intraepithelial neoplasia (PanIN)], 
and progression to PDAC. Fukuda et al. (2011) confirmed that STAT3, which 
is overexpressed in epithelial cells after cerulein-induced inflammation in a 
KrasG12D mouse model, helps to initiate tumor development and progression. 
Blocking of STAT3 has led to attenuation of precursor lesion formation and pro-
liferation as well as increased apoptosis, proving the contribution of STAT3 to 
cancer initiation. Moreover, the group also identified that the loss of epithelial 
STAT3 leads to a reduced inflammatory cell infiltration as well as decreased 
expression of inflammatory cytokines. These results indicate that STAT3 not 
only has an influence on the proliferative, dedifferentiated state of the epithelial 
cells but also contributes to inflammatory processes associated with metaplasia 
(Fukuda et al. 2011). Lesina et al. (2011) observed the same events but addition-
ally identified the myeloid compartment to secrete the pro-inflammatory cytokine 
IL-6 which leads to the activation of STAT3 in the pancreas and fosters the devel-
opment and progression of PanIN lesions. The identification of this mechanism 
strengthens the role of the microenvironment in the development of PDAC and 
was also shown to be valid for human PDAC by analyzing human PDAC speci-
men and patient data. Therefore, the results of these studies indicate STAT3 as a 
potential therapeutic target for preventing inflammation-induced development of 
PDAC at an early stage.

6 .5  Clinical Evidence on the Role of Fibroinflammation  
in Pancreatic Cancer

Inflammation has early been indicated to play a major role in pancreatic cancer 
development. Similarities between the fibroinflammatory stroma (Fig. 6.1) com-
position in chronic pancreatitis and pancreatic cancer emphasize the pathogenetic 
link between them (Chu et al. 2007). Inflammatory cells such as macrophages, 
mast cells, neutrophils, dendritic cells, B and T lymphocytes as well as activated 
PSC have all been described in the stroma of pancreatic cancer. However, only 
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a few experimental studies exploited the functional role of immune cells in the 
biology of PDAC. Most of these studies rely on correlation analysis which needs 
further confirmation using functional analysis as well as animal experiments. For 
example, studies on mast cells show that they foster neoangiogenesis (Esposito 
et al. 2002, 2004) and that there is a positive correlation between the number 
of mast cells in the pancreatic fibroinflammatory stroma and angiogenesis. To 
such extent that the number of mast cells correlates positively with the occur-
rence of metastasis and negatively with survival of patients with PDAC (Esposito 
et al. 2002, 2004). Epidemiologic studies show that inflammation significantly 
increases the risk of pancreatic cancer development. Importantly, these studies 
reveal that the elevated risk was independent of gender, ethnicity, and type of 
pancreatitis (Lowenfels et al. 1993; Malka et al. 2002). A recently conducted 
study identified inflammatory monocytes to play a role in survival of pancreatic 
cancer patients. The study revealed that monocytes in the peripheral blood are 
negatively correlated with the survival of pancreatic cancer patients, whereas a 
low amount of peripheral monocytes showed an increased survival of pancreatic 
cancer patients with a resected tumor (Sanford et al. 2013). It is also shown that 

Fig . 6 .1  Hematoxylin + Eosin staining of human and murine tissues depicting the fibroinflam-
matory stroma. a (50×) and b (100×) tissue from a pancreatic cancer patient showing the strong 
inflammatory stroma. c (50×) and d (100×) tissue of a mouse overexpressing the oncogene Kras 
under the control of the pancreas-specific promoter p48. Precancerous lesions develop which are 
surrounded by a strong stromal response with concomitant immune cell infiltration
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M2 macrophages which are characterized by a high expression of the cytokines 
IL-4 and IL-10 are associated with large tumor size and shortened survival 
time in pancreatic cancer patients indicating the important role of inflamma-
tory cells in the survival of pancreatic cancer patients (Yoshikawa et al. 2012). 
Furthermore, elevated serum levels of the cytokine IL-6 have been found in pan-
creatic cancer patients compared to healthy individuals and chronic pancreatitis 
patients. These increased serum levels correlated with tumor size as well as liver 
metastases in pancreatic cancer patients (Talar-Wojnarowska et al. 2009; Okada 
et al. 1998). Lesina et al. (2011) highlighted the importance of IL-6 in pancreatic 
cancer development and progression by identifying myeloid cells to produce IL-6 
which is responsible for activating the STAT3 signaling pathway that promotes 
the progression of precancerous lesions. Recently, it was also shown that IL-6 
produced by pancreatic stellate cells enhances myeloid-derived suppressor cell 
(MDSC) differentiation and function from peripheral blood mononuclear cells, 
which promotes an immunosuppressive microenvironment in PDAC (Mace et al. 
2013). PSC supernatants promoted peripheral blood mononuclear cells differen-
tiation into an MDSC (CD11b+CD33+) phenotype and a subpopulation of poly-
morphonuclear CD11b+CD33+CD15+ cells. The resulting CD11b+CD33+ 
cells functionally suppressed autologous T lymphocyte proliferation. Culture of 
normal peripheral blood mononuclear cells with PSC supernatants led to STAT3 
but not STAT1 or STAT5 phosphorylation. In these interactions, IL-6 was an 
important mediator as its neutralization inhibited PSC supernatant-mediated 
STAT3 phosphorylation and MDSC differentiation. Moreover, chemical inhibi-
tion of STAT3 abrogated PSC supernatant-mediated MDSC differentiation, PSC 
viability, and reduced autocrine IL-6 production, indicating these processes are 
STAT3 dependent. These results identify a novel role for PSC in driving immune 
escape in pancreatic cancer and extend the evidence that STAT3 acts as a driver 
of stromal immunosuppression to enhance its interest as a therapeutic target 
(Mace et al. 2013).

In the last decade, the fibroinflammatory stroma/desmoplasia, produced by the 
activated pancreatic stellate cells, has attracted attention as it forms a physical 
barrier for the effective delivery of therapeutic agents. There is also considerable 
amount of evidence stemming from in vitro and animal experiments that PSC and 
various ECM components support tumor growth by various mechanisms such as 
promoting tumor growth, creating apoptosis resistance, creating a niche for cancer 
stem cells, enabling immune escape of cancer cells, modulation of angiogenesis, 
facilitation of metastatic spread, and increasing therapy resistance (Erkan 2013b). 
Moreover, depletion of the desmoplastic stroma of the PDAC has led to bet-
ter chemotherapy delivery and drug response in Kras-based genetic mouse mod-
els confirming the previous observations (Olive et al. 2009; Jacobetz et al. 2013; 
Provenzano et al. 2012). Although anti-fibrotic therapy appears as a new hope in 
the treatment of PDAC, it is not for certain that this fibrotic reaction is exclusively 
pro-tumorigenic as there is also evidence that various stromal components can as 
well be protective (see below).
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6 .6  Inhibitors of Inflammation for the Prevention  
and Treatment of Pancreatic Cancer

Currently, there is not enough clinical evidence to support the routine usage of anti-
inflammatory drugs to improve outcome in pancreatic cancer patients. Some under-
powered studies show partial benefit when anti-inflammatory therapy (i.e., COX-2 
inhibition) is added to conventional chemotherapy (Lipton et al. 2010). Similarly, 
there is some circumstantial evidence that anti-inflammatory drugs reduce the risk of 
malignant pancreatic lesions. Below, some experimental data are reported.

6.6.1  TGF-β Receptor Kinase Inhibitors

As mentioned above, in normal cells, TGF-β exerts tumor-suppressive functions 
by inhibiting proliferation and inducing apoptosis. However, in many cancers 
including pancreatic cancer, TGF-β levels increase significantly and can support 
tumor growth, angiogenesis, invasion, and metastasis. Therefore, small molecu-
lar inhibitors have been developed to block TGF-β function and to inhibit these 
tumor-promoting effects. In a preclinical study, the TGF-β receptor kinase inhibi-
tor SD-208 was investigated using the human pancreatic cell line Panc-1. The 
study demonstrated that the TGF-β receptor kinase inhibitor was able to inhibit 
invasion of Panc-1 cells in vitro. Moreover, the study revealed that the use of 
SD-208 in a xenograft mouse model reduced the size of the primary tumor and 
diminished the incidence of metastasis (Gaspar et al. 2007). Another study tested 
an inhibitor against the TGF-β receptors I and III (LY2109761). In cell culture 
experiments, the inhibitor was able to prevent migration, invasion, and induced 
anoikis in soft agar experiments. In further in vivo studies, LY2109761 in com-
bination with gemcitabine was able to decrease the tumor burden in an orthotopic 
mouse model, prolonged the survival, and reduced liver metastases in these mice 
(Melisi et al. 2008). These promising results from in vitro and in vivo studies 
implicate that TGF-β receptor kinase inhibitors may serve as therapeutic agents in 
prevention of metastasis of pancreatic cancer.

6.6.2  Cyclooxygenase-2 Inhibitors

Cyclooxygenase (COX) and 5-lipoxygenase are the main regulators of the arachi-
donic acid metabolism and have been shown to be dysregulated in pancreatic can-
cer (Hennig et al. 2002, 2005; Ding et al. 2001). COX-2, which is a prostaglandin 
synthetase, catalyzes the conversion of arachidonic acid into prostaglandin G2. In 
the pancreas, COX-2 expression is induced by inflammatory cytokines, growth fac-
tors, and mitogenic stimuli and was shown to be overexpressed in pancreatic cancer 
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(Yip-Schneider et al. 2000). By supporting proliferation, invasion, and angiogenesis 
of pancreatic cancer cells, COX-2 contributes to the aggressive phenotype of PDAC 
(Chu et al. 2003; Ito et al. 2004; Eibl et al. 2003). Hermanova et al. (2008) found 
a different expression pattern in normal, premalignant, malignant pancreatic tissue 
indicating the important role of COX-2 in the progression of precancerous lesions. 
Treatment of pancreatic cancer cell lines displaying a high COX-2 expression such 
as BxPC-3 with gemcitabine and celecoxib (COX-2 inhibitor) showed a signifi-
cantly inhibition of growth and enhanced apoptosis compared to gemcitabine treat-
ment alone. However, in pancreatic cancer cell lines with low COX-2 expression, no 
such effect could be observed (El-Rayes et al. 2004). In vivo studies using COX-2 
inhibitors in PdxCre/+; LSL-KrasG12D/+ mice which recapitulate all steps of pancre-
atic cancer development also demonstrated a decreased pancreatic tumor growth as 
well as a delay in the progression from precancerous lesions into pancreatic can-
cer (Funahashi et al. 2007; Eibl et al. 2005). In a study by Guerra and colleagues, 
mice were treated with the COX-1/2 inhibitor sulindac for a period of 3 months 
after induction of pancreatitis by the cholecystokinin analog cerulein for 3 months. 
Histology showed that the pancreata of these mice were almost normal with the 
exception of few areas displaying atrophy and immune cells (Guerra et al. 2011). 
Interestingly, sulindac hardly reduced low-grade lesions, but a significant reduction 
of high-grade lesions and PDAC could be observed. These results stress the impor-
tance of inflammation in the progression of early lesions to PDAC development.

Following these promising results in cell culture and mouse models, selective 
COX-2 inhibitors were developed for phase II studies. In a trial with patients suf-
fering of advanced or metastatic pancreatic adenocarcinoma, treatment with gem-
citabine and an additional daily oral dose of celecoxib twice a day was performed. 
However, the results of this study were disappointing since the additional adminis-
tration of celecoxib did not improve the clinical outcome (Dragovich et al. 2008). 
Another phase II trial involving patients with unresectable pancreatic cancer radio-
therapy combined with uracil/tegafur plus leucovorin and celecoxib did not show 
a response and moreover the patients showed gastrointestinal toxicity. Therefore, 
treatment of patients with a locally advanced pancreatic tumor cannot be advised 
as standard therapy (Morak et al. 2011). Despite the promising effects of COX-2 
inhibitors in vitro and in mouse models, so far there is no promising treatment for 
pancreatic cancer patients with COX-2 inhibitors.

6.6.3  Inhibition of NFκB

The NFκB signaling pathway has been shown to play multitudes of roles in the 
development of pancreatic cancer as well as in metastatic spread due to its role 
in controlling proliferation, apoptosis, and angiogenesis. Therefore, inhibition 
of NFκB expression is a promising therapeutic target to reduce tumor growth 
and metastasis formation in pancreatic cancer patients. In vitro studies showed 
that inhibition of NFκB signaling in combination with gemcitabine resulted in 
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decreased angiogenesis, proliferation, and induction of apoptosis of BxCP-3 and 
Panc-1 cells (Kong et al. 2010). The same anti-tumor effects could be observed 
when NFκB activity was inhibited in a human pancreatic cancer cell line and sub-
sequently implanted into the pancreas of nude mice (Xiong et al. 2004). Due to 
these promising in vitro and in vivo results, pharmacological NFκB inhibitors have 
been developed and investigated in clinical studies. One of them is the proteas-
ome inhibitor bortezomib which was analyzed in a clinical trial with metastatic 
pancreatic cancer patients. In this trial, 44 enrolled patients received bortezomib 
alone, and 43 patients were treated with bortezomib and gemcitabine. However, 
the results of this study revealed that the treatment with bortezomib and the treat-
ment with the combination of bortezomib and gemcitabine did not have a better 
outcome for metastatic pancreatic cancer patients compared to gemcitabine treat-
ment alone (Alberts et al. 2005). Despite of the promising results of bortezomib 
in in vitro experiments, this NFκB inhibitor does not have an effect on metastatic 
pancreatic cancer patients. Therefore, further substances need to be developed to 
target pancreatic cancer development and chemoresistance.

6.6.4  Anti-Fibrotic Therapies

Recently, the abundant fibrotic stroma, produced by the activated pancreatic stel-
late cells, has attracted attention as it might form a physical barrier for the effec-
tive delivery of therapeutic agents. There is a considerable amount of evidence 
stemming from in vitro and animal experiment that PSC and various ECM com-
ponents support tumor growth by various mechanisms such as promoting tumor 
growth, creating apoptosis resistance, creating a niche for cancer stem cells, ena-
bling immune escape of cancer cells, modulation of angiogenesis, facilitation of 
metastatic spread, and increasing therapy resistance (Erkan 2013b). In line with 
these observations, depletion of the desmoplastic stroma of the PDAC has led 
to better chemotherapy delivery and drug response in Kras-based genetic mouse 
models (Conroy et al. 2011; Erkan et al. 2012; Olive et al. 2009). Taken together, 
anti-fibrotic therapy appears as a new hope in the treatment of PDAC. However, 
as of today, data from clinical studies are largely missing. However, as a proof of 
principle, Von Hoff et al. (2011) used in a phase I/II trial nanoparticle albumin-
bound (nab) paclitaxel (to deplete the stroma in PDAC) alone and in combination 
with gemcitabine and showed that through depletion of the stroma, higher concen-
trations of gemcitabine can be delivered in the tumor.

Despite the initial hope mostly stemming from the success achieved in genetic 
mouse models of PDAC, the clinical reality seems to be more complex. As men-
tioned above, the first trial using an inhibitor of sonic hedgehog signaling to 
deplete the stroma of PDAC (IPI-926-03 trial, http://www.clinicaltrials.gov/) has 
been stopped due to increased mortality in the treatment arm. Currently, several 
other trials are recruiting patients where various forms of anti-fibrotic therapies 
are applied concomitantly with conventional therapies. The results of these trials 

http://www.clinicaltrials.gov/
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will help understanding whether nonselective anti-fibrotic therapy would improve 
the results of conventional therapies (Erkan 2013b). Nonetheless, judging by the 
results of the above-mentioned trial and previous failures, it is likely that nonselec-
tive anti-fibrotic therapy may also not be the solution to overcome therapy resist-
ance in PDAC (Erkan 2013b).

Considering the normal function of stromal cells (forming a barrier between 
a noxious stimuli and the body), we have previously argued that PSC are initially 
activated around genetically defective cells (i.e., Kras mutated) in a preventive man-
ner. This type of activation is also observed in chronic pancreatitis tissues. However, 
due to the fibrosis created by PSC, the microenvironment becomes gradually more 
fibrotic and hypoxic (Erkan 2013b). The ensuing stromal barriers specifically 
hypoxia, acidosis, and reactive oxygen species are not only highly selective but also 
able to induce genetic instability in the epithelial cells (Gillies et al. 2012). As a 
result, malignant cancers evolve through negative selection of the fitter clones under 
the selection pressure applied by their defensive microenvironment (Gillies et al. 
2012). These evolved clones are also resistant to conventional therapies that induce 
apoptosis (Gillies et al. 2012). As mentioned above, the fibrotic stroma also forms a 
mechanical barrier preventing effective delivery of chemotherapeutics in advanced 
cancer. However, at this late stage, where selection of aggressive clones has already 
taken place, applying anti-fibrotic therapy can be a double-edged sword (Erkan 
2013c). Since conventional chemotherapeutics are not powerful enough to eradicate 
all cancer cells (i.e., tumor-promoting cells) in the tumor, breaking down the stromal 
wall may also lead to the increased dissemination of cancer cells (Erkan 2013c).

6 .7  Conclusions and Further Directions

Pancreatic cancer is the fourth deadly cancer worldwide and has a 5-year sur-
vival rate of only 6 %. The cellular mechanisms contributing to pancreatic cancer 
development and progression are still not completely identified. Inflammation has 
emerged to be a key mediator of pancreatic cancer development. In a paper by 
Guerra and colleagues, it could be shown that in adult mice the expression of the 
mutant Kras is not sufficient to induce pancreatic cancer. However, when addition-
ally inflammation was induced, the mice developed pancreatic cancer stressing the 
importance of inflammation in the development of pancreatic cancer (Guerra et al. 
2007). Furthermore, many studies showed the impact of inflammatory molecules on 
the development and progression of pancreatic cancer. So far, different approaches 
have been made to inhibit the main inflammatory signaling pathways in pancreatic 
cancer. Although, having shown promising results in vitro and in vivo experiments, 
inhibitors of inflammation have not been successful in cancer prevention or cancer 
progression in clinical trials. Therefore, further research is needed to elucidate the 
mechanisms through which inflammation contributes to tumor initiation and pro-
gression. It is very likely that that there are several altered mechanisms on various 
levels contributing to the aggressiveness of PDAC. Therefore, effective therapy of 
PDAC should aim at overcoming various obstacles at several levels.
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Abstract In the United States and in “Westernized” countries, the prevalence of 
both prostate cancer and prostate inflammation is very high, indicating that the 
two pathologies could be causally related. Indeed, chronic inflammation is now 
regarded as an “enabling” characteristic of human cancer. Prostate cancer inci-
dence is thought to be mediated in part by genetics, but also by environmental 
exposures, including the same exposures that may contribute to the development 
of prostatic inflammation. As our understanding of the role of inflammation in 
cancer deepens, it is increasingly apparent that “inflammation” as a whole is a 
complex entity that does not always play a negative role in cancer etiology. In fact, 
inflammation can play potentially dichotomous (both pro and antitumorigenic) 
roles depending on the nature and the cellular makeup of the immune response. 
This chapter will focus on reviewing the current state of knowledge on the role of 
innate and adaptive immune cells within the prostate tumor microenvironment and 
their seemingly complex role in prostate cancer in preventing versus promoting 
initiation and progression of the disease.

7 .1  Introduction: Inflammation in the Adult Prostate  
and Prostate Cancer Risk

The prevalence of both prostate cancer and prostatic inflammation is at near-
epidemic levels in the USA and in “Westernized” countries (Nelson et al. 2013). 
Prostate cancer incidence is thought to be mediated in part by genetics, but also by 
environmental exposures, including the same exposures that may contribute to the 
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development of prostatic inflammation. Inflammation of the prostate, e.g.,  prostatitis, 
is a heterogeneous disease entity that is categorized by the National Institutes of 
Health (NIH) consensus classification as chronic prostatitis⁄chronic pelvic pain syn-
drome (CPPS). CPPS is divided into four categories, the first three of which relate to 
men with symptoms of disease: (1) acute bacterial prostatitis; (2) chronic bacterial 
prostatitis; (3) chronic prostatitis⁄CPPS; and (4) asymptomatic inflammatory pros-
tatitis (Krieger et al. 1999). Whereas there is some epidemiological evidence asso-
ciating symptomatic prostatitis with prostate cancer risk (Palapattu et al. 2005), a 
comprehensive analysis of the influence of prostatic inflammation on prostate cancer 
initiation and/or progression is difficult to perform due to the very high prevalence 
of prostatic inflammation that occurs in the absence of symptoms. Asymptomatic 
prostatic inflammation (i.e., “histological prostatitis”) is a very common finding in 
the prostate of the adult male, as indicated by histological analysis of biopsies from 
men tested for prostate cancer due to elevated prostate-specific antigen (PSA) levels, 
radical prostatectomy specimens from men being treated for prostate cancer, tran-
surethral resection of the prostate (TURP) specimens from men treated for benign 
prostatic hyperplasia (BPH), and autopsy specimens (Stimac et al. 2009; Gui-zhong 
et al. 2011; Ugurlu et al. 2010; Fujita et al. 2011; Delongchamps et al. 2008; Nickel 
et al. 1999; De Marzo et al. 2007). Accordingly, prostatic inflammation has been 
linked to all major diseases of the human prostate including BPH, prostatitis syn-
dromes, and prostate cancer. Although the stimulus for this near-universal phenom-
enon of asymptomatic prostatic inflammation in the adult male remains elusive, 
multiple different sources are proposed to contribute, as shown in Fig. 7.1, including 
infectious agents, hormonal alterations (Ellem et al. 2009), physical trauma due to 
the formation of corpora amylacea, urine reflux, dietary factors, and prostate cancer 
(i.e., tumor-elicited immune responses) (De Marzo et al. 2007; Sfanos and De Marzo 
2012; Sfanos et al. 2009b).

Of particular note, there is a significant amount of literature that supports an 
early role for prostatic inflammation in the development of a putative risk factor/
precursor lesion to prostate cancer development, namely proliferative inflamma-
tory atrophy (PIA). PIA is a term given to regions of prostatic atrophy associated 
with inflammatory cell infiltrates that develop at a high frequency in older men 
and can involve very large regions of the prostate. The proliferating atrophic 
epithelial cells of PIA appear to be regenerating in response to cellular damage, 
show signs of oxidative stress, and are hypothesized to serve at times as the direct 
precursor cells to prostatic intraepithelial neoplasia (PIN) and/or prostate cancer 
(Putzi and De Marzo 2000; Nelson et al. 2003). Indeed, morphological transitions 
between PIA, PIN, and prostate cancer have been described (Putzi and De Marzo 
2000; Wang et al. 2009). Furthermore, PIA contains some of the hallmark changes 
found in PIN and prostate cancer, including downregulation of the tumor suppres-
sors NKX3.1 and p27, and a fraction of PIA lesions exhibit methylation of deoxy-
cytidine residues within the cytosine–guanine–dinucleotide (CpG) island near the 
glutathione S-transferase-π (GSTP1) promoter region (which occurs at a high fre-
quency in prostate cancer and PIN lesions), leading to silencing of GSTP1 (De 
Marzo et al. 1999; Bethel et al. 2006; Nakayama et al. 2003) (Fig. 7.2). The role 
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of prostatic inflammation in the development of prostate cancer precursor lesions 
remains a topic of keen significance, and this issue has been widely covered by 
recent reviews and book chapters (Sfanos and De Marzo 2012; Nelson et al. 2013; 
De Marzo et al. 2007; De Marzo 2007; Lucia et al. 2010). This chapter, there-
fore, will focus on reviewing the current state of knowledge on the role of innate 
and adaptive immune cells within the prostate tumor microenvironment and their 
potentially dichotomous role in preventing versus promoting progression of the 
disease.

Fig . 7 .1  Potential sources of prostatic inflammation. Reprinted from De Marzo et al. (2007)

Fig . 7 .2  Proposed progression model for prostate cancer development. Adapted from De Marzo 
et al. (2007)
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7 .2  Innate Immunity and Prostate Cancer

7.2.1  Innate Immunity and Cancer

The cells of the innate immune system, including mast cells, phagocytes (mac-
rophages, neutrophils, and dendritic cells), basophils, eosinophils, natural killer 
(NK) cells, and γδ T cells, are the human body’s first responders to invading path-
ogens. Interestingly, evidence suggests that these innate effector cells may also 
serve as the first line of defense against cancer. Investigations in multiple forms 
of human cancer as well as in animal models indicate that the innate immune sys-
tem, along with cells of the adaptive immune system, is actively involved in cancer 
immune surveillance as part of a process that has been termed “extrinsic tumor 
suppression” (Vesely et al. 2011; Swann and Smyth 2007). In essence, this pro-
cess presumes that along with malignant transformation, cells begin to produce 
novel peptides or otherwise immunogenic molecules (i.e., “tumor antigens”) that 
are recognized by the immune system. Indeed, recent genome-wide approaches 
to sequencing human adult cancers have indicated that approximately 30–70 non-
silent somatic mutations are present in common solid tumors such as that of the 
colon, breast, brain, or pancreas in coding regions of genes that result in altered 
peptide sequences (reviewed in (Vogelstein et al. 2013)). Regardless of whether 
these mutations confer a selective growth advantage on tumor cells (i.e., “driver 
mutations”) or have no effect on tumorigenesis (i.e., “passenger mutations”), in 
principle, these altered peptide sequences can serve as tumor-specific antigens 
(Vogelstein et al. 2013). The elicited response, mediated by cells of both the 
innate and the adaptive immune system, either eliminates the tumor cells before 
they become clinically apparent or serves to prevent tumor outgrowth (Vesely 
et al. 2011). Indeed, the concept of inducing innate immune responses for their 
anti-tumorigenic properties has been harnessed by certain immunotherapy strat-
egies such as Bacillus Calmette–Guérin (BCG) treatment for bladder cancer. In 
accordance with this model, the presence and number of innate immune cells, such 
as mast cells and macrophages, in some types of human cancer have been shown 
to serve as a prognostic factor, with larger numbers of tumor-infiltrating innate 
immune cells or accumulation of innate immune cells at the tumor-invading front 
conferring a better prognosis (Welsh et al. 2005; Fleischmann et al. 2009; Rajput 
et al. 2008; Forssell et al. 2007; Zhou et al. 2010; Li et al. 2009a). However, as 
inflammation in cancer is truly a “double-edged sword,” there are many impor-
tant exceptions to this rule (Hagemann et al. 2007). One notable exception is the 
innate immune cells involved in dampening and/or regulating immune responses 
such as the myeloid-derived suppressor cell (MDSC) lineage of human myeloid 
progenitors (Ostrand-Rosenberg and Sinha 2009). Furthermore, innate immune 
cells can produce pro-inflammatory cytokines, such as IL-6 and IL-1β, and factors 
that enhance cell migration and invasiveness, such as matrix metalloproteinases 
(MMPs) and CC family chemokines, which have been shown to promote tumor 
initiation and/or progression (Kang et al. 2010; Li et al. 2009b; Allavena et al. 
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2008; Kaler et al. 2009; Loberg et al. 2006; Mizutani et al. 2009). Therefore, the 
influence of innate immune cells on cancer prevention versus cancer progression is 
often very difficult to discern (Disis 2010; Zhang et al. 2012), and whether these 
various cells provoke pro-growth versus growth-suppressive effects may relate to 
the specific tissue type in question, the disease temporal state (e.g., initiation, pro-
motion, local extension/progression, metastasis), host genetic factors, and/or envi-
ronmental cofactors such as local (or systemic) coinfection and dietary exposures.

In regard to prostate cancer, a number of studies have been carried out to deter-
mine the prognostic significance of tumor-infiltrating innate immune cells. Herein, 
although this research is still relatively early overall in terms of the scope of what 
can be done, we will summarize these efforts and specifically focus on the prog-
nostic significance of prostate-infiltrating innate immune cells.

7.2.2  Mast Cells in Prostate Cancer

Mast cells are best known for their role in allergic reactions, where IgE–antigen 
complex (IgE–Ag) binding to the mast cell receptor FceRI stimulates degranula-
tion, releasing effector molecules such as histamine, serotonin, leukotrienes, and 
proteoglycans (Galinsky and Nechushtan 2008; Galli 2000). However, mast cells 
have also been shown to play a significant role in defense against parasites, to be 
key players in controlling bacterial infection, and to be very important producers 
of immunoregulatory cytokines (Galinsky and Nechushtan 2008; Krishnaswamy 
et al. 2001; Arock et al. 1998; Gordon and Galli 1990; Gordon et al. 1990). What 
makes mast cells particularly interesting in cancer biology, however, lies in the 
dynamic way in which these cells reside in and interact with the microenviron-
ment in their target tissues. Mast cell functions can have very potent effects on 
their environment, effects that can be powerfully pro- or anti-tumorigenic, depend-
ing on the circumstances (Fig. 7.3). These functions are very dynamic and are sub-
ject to manipulation by outside forces, possibly even by the surrounding cancer 
cells (Galinsky and Nechushtan 2008; Theoharides and Conti 2004). As such it 
is likely that mast cells play different roles in different cancers and different can-
cer stages (Pittoni and Colombo 2012). This possibility is, in fact, reflected in the 
literature. There have been a number of studies in many different cancers attempt-
ing to correlate mast cell density in or around the tumor, with the results varying 
from associating mast cell density with good prognosis, poor prognosis, and hav-
ing no association with prognosis at all, even between studies in the same cancer 
(Galinsky and Nechushtan 2008; Pittoni and Colombo 2012; Fisher et al. 1989; 
Ribatti et al. 2003; Iamaroon et al. 2003; Ribatti et al. 1999; Molin et al. 2002; 
Molin 2004; Ribatti et al. 2005; Tuna et al. 2006; Fisher et al. 1985; Aaltomaa 
et al. 1993; Dabiri et al. 2004; Welsh et al. 2005; Chan et al. 2005; Johansson 
et al. 2010; Sari et al. 1999; Fleischmann et al. 2009). In prostate cancer specif-
ically, higher numbers of “intratumoral” mast cells have been shown to be cor-
related with lower Gleason grade and better prognosis (Johansson et al. 2010; 
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Fleischmann et al. 2009; Sari et al. 1999); however, the opposite finding has also 
been reported (Nonomura et al. 2007). These and other studies on mast cells in 
human cancers were performed using a variety of techniques and without a stand-
ardized definition of “intratumoral” versus “peritumoral” mast cells. Nevertheless, 
the notion of mast cells having different effects in different circumstances is an 
attractive one and is consistent with what is known about mast cell biology.

Mast cells, such as most immune cells, originate in the bone marrow. However, 
mast cells travel to their targets before their final stages of development, and their 
final differentiation into different subtypes is dictated in large part by the microen-
vironment of their resident tissues (Galinsky and Nechushtan 2008; Theoharides 
and Conti 2004). The two main subtypes of mast cells are commonly known as 
MCTC, which express chymase, tryptase, carboxypeptidase, and cathepsin G 
and are usually found in mucosa, and MCT, which express mainly tryptase and 
are usually localized to connective tissues (Krishnaswamy et al. 2001; Irani et al. 
1986; Khazaie et al. 2011). These two subtypes also differ in number, type, and 
content of secretory granules, as well as which stimuli to which they will respond 
(Theoharides and Conti 2004). These subtypes are not exhaustive, however, 
as mast cells have been discovered with phenotypes outside of these. In addi-
tion, there is significant evidence to suggest that mast cell differentiation is not 
final, and phenotype and mast cell protease profile can be changed based on dif-
ferent conditions in their microenvironment, including exposure to different 
cytokines, the presence of fibroblasts, and different host organ tissues (Galinsky 

Fig . 7 .3  Potential biological roles for mast cells in prostate cancer. Figure shows a photomi-
crograph from a region of human prostatic adenocarcinoma stained for mast cells (brown stain-
ing cells) by immunohistochemistry (H.A. Hempel, A.M. De Marzo, K.S. Sfanos, unpublished 
observations). Original magnification, ×100
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and Nechushtan 2008; Lee et al. 1998; Gurish et al. 1995). As such, it is reason-
able to suggest that mast cell phenotype will be very different depending on differ-
ing conditions, such as in vitro versus in vivo, and on different cancers and cancer 
stages. The best known method of mast cell effector function is via degranulation, 
which is the release of the previously synthesized contents of intracellular granules 
in response to IgE–Ag binding to the mast cell receptor. These contents include 
effector molecules such as serotonin, histamine, heparin, tryptase, and chymase, 
among others, many of which with pro-inflammatory, anti-tumorigenic properties. 
However, there is also significant evidence for a method for “piecemeal degranu-
lation” of mast cells, allowing for the selective release of cytokines without the 
release of the entire secretory granule (Crivellato et al. 2003). This alternative 
activation model helps to fuel the mechanistic side of the argument for the pro-
tumorigenic potential of mast cells, as it provides the potential for the selective 
release of pro-tumorigenic cytokines such as IL-1 and IL-6 (Lacy and Stow 2011) 
and effector molecules such as MMP9 in the absence of anti-tumorigenic mast cell 
granule components. The mast cell subtype also comes into play here, as differ-
ent subtypes will have different effector molecules available to them and thus can 
have different effects on the tumor upon degranulation, piecemeal or otherwise. 
In addition to these, mast cells are also potent producers of immune modulating 
cytokines, chemokines, angiogenic factors, and proteases, all of which can cause 
significant changes in the tumor microenvironment (Khazaie et al. 2011).

Mast cells are known to produce many different angiogenic molecules, includ-
ing VEGF, histamine, TNF-α, and Ang-1, and thus have been suspected for some 
time to play a significant role in tumor angiogenesis and possibly even in the angi-
ogenic switch (Maltby et al. 2009). There have been several studies supporting this 
idea, including a transplantation multiple myeloma mouse model, in which it was 
found that transplanting mast cells with plasmacytoma tumors resulted in signifi-
cantly higher vascularization (Nakayama et al. 2004). In addition, one study in a 
squamous carcinoma mouse model demonstrated a significant decrease in prema-
lignant angiogenesis in mast cell-deficient mice (Coussens et al. 1999). Evidence 
in humans for a role for mast cells in tumor angiogenesis is also mounting, such as 
in one study correlating melanoma progression with mast cell density and simulta-
neously increased vascular density (Ribatti et al. 2005). However, some have also 
suggested a role for mast cells in suppressing angiogenesis by providing receptors 
that can “soak up” angiogenic factors (Theoharides and Conti 2004). In addition, 
there are studies correlating mast cell density with cancer progression without 
finding a correlation with angiogenesis, suggesting that mast cells may also have a 
role in tumor promotion aside from blood vessel development (Molin 2004; Molin 
et al. 2002). In human prostate cancer, mast cell densities have not been correlated 
with neovascularization; however, in an orthotopic rat model, implantation of AT-1 
tumor cells resulted in peritumoral recruitment of mast cells and an increase in 
peritumoral vascular density (Johansson et al. 2010). Furthermore, castration was 
found to result in mast cell recruitment to the prostate both in men and in the AT-1 
tumor model and the Dunning rat model, and this correlated with an increase in 
vascular density in the Dunning model (Johansson et al. 2010).
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In addition to the possible roles for mast cells in angiogenesis, the role of 
mast cells in tissue remodeling is of particular interest in tumor promotion and 
includes a possible connection in prostate cancer. The idea that the extracellu-
lar matrix (ECM) plays a significant role in tumor promotion has gained impor-
tance in recent years (Bissell and Hines 2011; LaBarge et al. 2009; van Dijk et al. 
2013). Mast cells produce potent proteases, including chymase, tryptase, colla-
genases, MMP9, and other gelatinases, and cysteinyl cathepsins. As such, research 
into the role of mast cells in ECM modulation and tumor invasion is also gain-
ing ground (Khazaie et al. 2011). One study in prostate cancer explored the role 
of mast cell MMP9 in early prostate tumor progression in transgenic adenocar-
cinoma of the mouse prostate (TRAMP) mice, arguing that lower-grade prostate 
tumors would need mast cell-derived MMP9 for invasion, since well-differentiated 
prostate tumor cells do not produce MMP9 (Pittoni et al. 2011). The results did in 
fact suggest that mast cell MMP9 was necessary for early tumor invasion in mice. 
Immunohistochemistry (IHC) studies in human prostate cancer tissues showed a 
positive correlation between increased mast cell density, MMP9 production con-
fined almost entirely to tumor-infiltrating mast cells, and well-differentiated 
tumors—supporting the observations in the TRAMP mouse studies (Pittoni et al. 
2011). Whether mast cell-derived MMP9 plays a role in driving early invasion of 
human prostate cancer is yet to be elucidated.

In addition to the direct effects mast cells might have on cancer cells and 
their microenvironment, mast cells may also affect cancer through their roles as 
potent immune modulators. Mast cells are capable of both suppressing and pro-
moting inflammatory responses, depending on the circumstances (Galinsky and 
Nechushtan 2008). In fact, mast cells are known to produce a number of cytokines 
and chemokines capable of recruiting, activating, suppressing, and driving the dif-
ferentiation of both innate and adaptive immune cells, including neutrophils, baso-
phils, macrophages, lymphocytes (such as B cells, TH2 T cells, and Treg cells), and 
NK cells. As such, mast cells are also capable of anti- or pro-tumorigenic effects 
through the suppression or activation of the inflammatory response and could also 
have a significant effect on other inflammatory cells in different cancers.

Studies both in vivo in mice and in vitro in mouse and human cells have dem-
onstrated mast cell influences on cancer cells, with one in vivo study showing 
decreased mitotic index and increased apoptosis in intestinal polyps and two in 
vitro studies showing increased proliferation and invasion upon treatment with 
mast cell-conditioned medium (Khazaie et al. 2011; Gounaris et al. 2007; Cheon 
et al. 2011; Strouch et al. 2010). This activity of mast cells has been theorized to 
be due to the production of tryptase, which is reported to promote proliferation of 
colon cancer cells, fibroblasts, and other cell types (Yoshii et al. 2005; Cairns and 
Walls 1996; Berger et al. 2001; Gruber et al. 1997; Levi-Schaffer and Piliponsky 
2003; Frungieri et al. 2002). Mast cell histamine has also been suggested to play 
a role in tumor cell proliferation; however, the literature is not in agreement with 
whether it promotes or suppresses proliferation (Theoharides and Conti 2004). 
In contrast, mast cell effector molecules such as IL-4 and TNF-α could result in 
tumor cell death (Gooch et al. 1998; Gordon and Galli 1990).
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As mast cells and cancer cells evolve in the same microenvironment, the inter-
actions between the two could change significantly. With the myriad of mast cell 
effector molecules, there is a delicate balance between the anti- and pro-tumori-
genic capabilities of mast cells that can conceivably change very dramatically with 
time, even within the same tumor. It is possible that even if mast cells cannot serve 
as an independent prognostic factor for all cancers, they might be an indicator of 
cancer aggressiveness and invasiveness (Galinsky and Nechushtan 2008). In addi-
tion, it is very important that this ever-evolving relationship with cancer be better 
understood before any mast cell-targeted therapies are attempted. Since mast cells 
may have the potential to be pro-tumorigenic or anti-tumorigenic depending on the 
microenvironment, even in the same cancer, certain therapies may be beneficial 
at certain stages of cancer and detrimental in others (Pittoni and Colombo 2012; 
Pittoni et al. 2011). As such, mast cells have great potential in cancer research, and 
many possible roles of mast cells in prostate cancer continue to be an important 
area of study.

7.2.3  Macrophages in Prostate Cancer

The current understanding of tumor-associated macrophages (TAMs) is that they 
are a heterogeneous group of cells that can be further classified into subsets based 
on both phenotypic and functional characteristics. Analogous to the TH1 and TH2 
classification of T-cell lineages, activated macrophages are generally classified into 
“M1” or “M2” macrophage subsets. M1 macrophages are “classically” activated, 
acute-phase macrophages that produce a number of pro-inflammatory cytokines 
such as IL-1β, IL-6, IL-12, IL-23, and TNF. In contrast, M2 or “alternatively” acti-
vated macrophages have been described as immune regulators and produce the 
anti-inflammatory cytokines IL-10 and TGF-β1 (Edin et al. 2012). In most cases, 
macrophages that infiltrate the tumor microenvironment are considered to be M2 
macrophages, and as such, these cells may play a role in dampening anticancer 
immune responses, leading to tumor immune escape (Hao et al. 2012) (Fig. 7.4).

In prostate cancer, several studies have aimed to correlate TAM numbers with 
disease prognosis. Studies in prostate cancer have almost exclusively used IHC for 
the pan-macrophage-specific cell surface marker, CD68, to quantify the number 
of TAMs in benign and cancerous regions of the prostate. In one of the earliest 
studies on macrophage numbers in prostate cancer, macrophage density was found 
to be significantly lower in benign areas adjacent to prostate tumors than within 
the tumor itself (Shimura et al. 2000). Furthermore, the majority of TAMs (84 %) 
were found to be distributed within the tumor-associated stroma as opposed to 
within direct contact with cancer cells or within the lumen of cancerous glands. 
Interestingly, although TAM density within prostate tumors was positively associ-
ated with Gleason score (i.e., higher numbers of TAMs in higher Gleason score 
tumors), lower numbers of TAMs were shown to be significantly associated with 
higher clinical stage and the presence of positive lymph nodes. Furthermore, 
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reduced TAM numbers were found to be an independent predictor for time to 
PSA-detected disease progression (Shimura et al. 2000). This same group later 
reported that lower numbers of prostate-infiltrating class A macrophage scavenger 
receptor (SR-A)-expressing cells (dendritic cells and macrophages) were similarly 
associated with higher clinical stage and positive lymph nodes and predictive of 
shorter time to PSA progression (Yang et al. 2004). Although the intriguing posi-
tive association of macrophage numbers with Gleason score has held up in mul-
tiple additional studies, TAM quantification as an independent prognostic factor 

Fig . 7 .4  Inflammatory cells within tumor microenvironment and their potential biological roles. 
Differentiation of monocytes into tumor-associated macrophages (TAM) with differing biological 
roles may be mediated by secretion of cytokines and growth factors by tumor cells and stromal 
cells within the tumor microenvironment. Reprinted from Hao et al. (2012)
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for time to PSA progression has varied (Lissbrant et al. 2000; Wang et al. 2005; 
Nonomura et al. 2011). In a study on disease progression after hormone therapy 
for prostate cancer, TAM densities as assayed by IHC for CD68 on patient’s pros-
tate biopsy specimens prior to treatment were found to be positively correlated 
with Gleason score and clinical stage (Nonomura et al. 2011). Furthermore, in 
contrast to the studies by Shimura et al. (2000) and Yang et al. (2004), Nonomura 
et al. reported that increased numbers of TAMs were significantly associated with 
PSA progression and serve as a prognostic indicator for decreased time to progres-
sion-free survival (Nonomura et al. 2011).

Richardsen et al. (2008) also reported that the production of macrophage 
colony-stimulating factor (M-CSF) and colony-stimulating factor-1 receptor 
(CSF-1R) is significantly greater in tumor cells and in stromal areas in the pri-
mary tumors of patients with metastatic prostate cancer compared to those without 
metastatic disease. The mechanism by which macrophages may promote prostate 
cancer invasion may be mediated in part by secretion of proteases that act on the 
ECM. Of interest is the serine protease urokinase plasminogen activator (uPA) that 
stimulates the plasminogen activation system upon binding to urokinase receptor 
(uPAR). Cleavage of the α6β1 integrin by uPA has been shown in in vivo stud-
ies to increase tumor cell motility, invasion, and prostate cancer metastasis (Ports 
et al. 2009). Further in vitro studies indicated that this process may be mediated 
by TAMs (Sroka et al. 2011). Likewise, the cathepsin proteases, and specifically 
cathepsin K and cathepsin S, are also of interest in this regard. Cathepsins K and 
S are both lysosomal cysteine proteases. Whereas cysteine cathepsins are gener-
ally thought to serve in intracellular lysosomal protein degradation and turnover, 
these two cathepsins (K and S) can be secreted by macrophages (Punturieri et al. 
2000) and may potentially play an important role in ECM remodeling to promote 
tumor invasion and progression. Macrophage-secreted cathepsin-mediated tumor 
invasion has been previously demonstrated in multiple forms of cancer (Vasiljeva 
et al. 2006; Gocheva et al. 2010). In prostate cancer specifically, macrophage-
secreted cathepsin S was found in the TRAMP mouse model as a protein of inter-
est in advanced disease as assessed by differential protein-profiling studies of 
normal prostate, primary tumors of differing histological grades, and metastatic 
tumors (Lindahl et al. 2009). IHC for CD68 costained with cathepsin S demon-
strated that both in TRAMP tumors and in human prostate tumors, cathepsin S is 
produced primarily by TAMs. Furthermore, the number of cathepsin S-secreting 
macrophages was found to be significantly higher in castration-resistant prostate 
cancer as opposed to hormone naïve prostate cancer in patients with high-grade 
prostate tumors (Lindahl et al. 2009). Another recent study in prostate cancer 
demonstrated that cathepsin K-deficient mice had a significant reduction in tumor 
growth and bone resorption when PC3 cells were injected into the tibia compared 
to wild-type mice (Herroon et al. 2013). This phenomenon was specific to bone, 
as PC3 cells implanted subcutaneously had similar growth in both wild-type and 
cathepsin K knockout animals. By IHC, cathepsin K was found to be restricted 
to osteoclasts and macrophages in this model (Herroon et al. 2013). The role of 
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macrophage-secreted cathepsins remains an area of active interest in prostate 
 cancer invasion, progression, and potentially metastasis.

Further illustrations of the potential role of macrophages in prostate  cancer 
progression involve the large body of work studying macrophage inhibitory 
cytokine-1 (MIC-1) and its potential prognostic value. MIC-1, also known as 
prostate-derived factor (PDF), GDF15, PLAB, NAG-1, or PTGFB, is a member 
of the transforming growth factor beta (TGF-β) superfamily that was initially 
discovered during cDNA library screens for genes associated with macrophage 
activation (Bootcov et al. 1997). Although little is known to date regarding the 
cellular receptor for MIC-1 or its signaling pathways, studies both in vitro and in 
vivo indicate a generalized anti-inflammatory role for this molecule (Breit et al. 
2011). MIC-1 is up-regulated in inflammatory conditions, and this molecule is 
also produced by cancer cells in multiple types of human cancer. Systemic lev-
els of MIC-1 are indicative of poor prognosis in cancer, cardiovascular disease, 
chronic renal and heart failure, and pulmonary embolism, and recent studies sug-
gest that serum MIC-1 levels may even serve as a novel predictor of all-cause mor-
tality (Wiklund et al. 2010). In prostate cancer, high serum levels of MIC-1 have 
been consistently shown to be correlated with poor prognosis (Brown et al. 2009; 
Selander et al. 2007; Welsh et al. 2003). Furthermore, serum MIC-1 levels have 
been shown to increase the specificity of PSA testing for prostate cancer (Brown 
et al. 2006). MIC-1 has been previously shown to be overexpressed in prostate 
cancer tissues versus benign tissues in gene expression microarray studies, with 
a magnitude of differential expression between tumor and matched normal tissue 
that is similar to other well-known genes that are differentially expressed in pros-
tate cancer such as alpha-methylacyl-CoA racemase (AMACR) and hepsin (Welsh 
et al. 2001). MIC-1 protein levels are also increased in prostate tumor tissues ver-
sus benign, and this finding has been demonstrated in multiple studies utilizing 
protein-profiling analyses (Cheung et al. 2004; Hood et al. 2005). By IHC, MIC-1 
levels are low in normal prostate epithelium and progressively higher in the sus-
pected prostate cancer precursor lesion, high-grade prostatic intraepithelial neopla-
sia (HGPIN), and prostate cancer (Rasiah et al. 2006). Similar to the studies in 
serum, high levels of MIC-1 protein or mRNA in prostate cancer tissues has been 
shown to act as an indicator of poor prognosis (Rasiah et al. 2006; Nakamura et al. 
2003; Bauskin et al. 2005).

The mechanism by which MIC-1 serves as a prognostic indicator in prostate 
cancer may involve multiple potential processes. Immunohistochemical studies of 
MIC-1 production in the prostate have not addressed the potential production of 
MIC-1 by prostate-infiltrating inflammatory cells (e.g., macrophages). However, 
as prostate cancer is known to develop in an organ that contains a great deal of 
unexplained acute and chronic inflammation in adulthood, it is likely that MIC-1 
may serve as a “bridge” molecule linking inflammation to cancer development 
(Karan et al. 2009). Furthermore, the production of MIC-1 by prostate cancer cells 
may serve to inhibit prostate-infiltrating macrophages that are involved in anti-
tumor immune responses. MIC-1 has been shown in in vitro systems to reduce cell 
adhesion and induce cell detachment of prostate cancer cells in culture (Liu et al. 
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2003). This finding provides a potential mechanism whereby MIC-1 production 
may contribute to tumor dissemination and metastasis.

7.2.4  Toll-Like Receptors (TLRs)

TLRs are a class of molecules associated with innate immunity that are expressed 
on cells such as macrophages and dendritic cells. TLRs recognize structurally con-
served pathogen-derived products such as lipopolysaccharide (LPS) contained in 
Gram-negative bacteria. TLRs are also involved in tissue homeostasis and play 
a role in tissue repair and regeneration. There are significant data to demonstrate 
that TLRs may serve a role as negative regulators of cancer, as many antican-
cer therapeutic agents have been based on administration of TLR agonists (e.g., 
the historical use of Coley’s toxin as a cancer treatment and the currently used 
strategy of BCG treatment for bladder cancer) (Rakoff-Nahoum and Medzhitov 
2009). On the other hand, TLRs have also been implicated in the promotion of 
tumorigenesis, which may involve recruitment of macrophages to sites of tissue 
injury in the developing tumor (Rakoff-Nahoum and Medzhitov 2009). In prostate 
cancer, early evidence of a role for TLRs in prostate cancer development came 
from genetic studies of TLR polymorphisms associated with prostate cancer risk. 
Specifically, multiple studies have shown that single nucleotide polymorphisms 
(SNPs) in TLR4 and the TLR1-6-10 gene cluster are associated with prostate can-
cer risk (Chen et al. 2005; Zheng et al. 2004; Sun et al. 2005; Kim et al. 2012), 
although results have varied among cohorts (Chen et al. 2007; Shui et al. 2012). 
At the tissue level, TLRs have been reported to be up-regulated by prostate cancer 
cells as assessed by IHC. For example, TLR3, TLR4, and TLR9 were shown to 
be produced by prostate tumor cells as assayed by IHC, and interestingly, high 
expression of these TLRs as assayed by real-time PCR was found to correlate 
with biochemical recurrence (Gonzalez-Reyes et al. 2011). The mechanism by 
which this relationship may arise, however, remains unclear, as, on the contrary, 
TLR stimulation in cancer cells in prostate cancer models has also been consist-
ently shown to result in the upregulation of inflammatory cytokines and induction 
of apoptosis and/or anti-tumor immune responses (Paone et al. 2008; Harashima 
et al. 2012; Chin et al. 2010; Galli et al. 2010; Andreani et al. 2007).

7.2.5  IL-6 in Prostate Cancer

Interleukin-6 (IL-6) is a pleiotropic cytokine that elicits multiple physiological pro-
cesses including immune responses, hematopoiesis, and cellular proliferation and 
differentiation. IL-6 has also been implicated in a number of pathophysiologic pro-
cesses and may also play an important role in carcinogenesis, including promotion 
of tumor cell adhesion, invasion, proliferation, and neoangiogenesis. Increasing 
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evidence indicates that IL-6 may contribute to the progression of  prostate cancer, 
and a high systemic level of IL-6 is considered to be a sign of a more aggressive 
clinical course (Smith et al. 2001; Okamoto et al. 1997; Twillie et al. 1995). IL-6 is 
secreted by a variety of cell types such as T cells, macrophages, endothelial cells, 
and fibroblasts. In addition, studies have suggested that IL-6 is secreted by prostate 
adenocarcinoma cells (Hobisch et al. 2000). IL-6 is responsible for skewing cellular 
differentiation of multiple cell types including B cells, TH17 cells, and myeloid cells 
(Kimura and Kishimoto 2010; Cheng et al. 2011; Tanner and Tosato 1992). As such, 
both systemic and local production of IL-6 may drive accumulation of immune cell 
subtypes. For example, IL-6, along with CCL2 (CC chemokine ligand 2), can induce 
the differentiation of CD11b+ monocytes into M2-type macrophages, indicating that 
systemic and/or local IL-6 production in prostate cancer patients may lead to differ-
entiation and accumulation of this immune-suppressive, pro-tumorigenic subset of 
macrophages (Roca et al. 2009). There is additional evidence that CCL2 may assist 
in recruitment of macrophages to the tumor site and promote tumor cell metasta-
sis to bone (Loberg et al. 2006; Mizutani et al. 2009). Furthermore, in experiments 
using the TRAMP murine model, high circulating levels of IL-6 were associated 
with recruitment of MDSCs (Wu et al. 2012); abrogation of IL-6 in this model inhib-
ited the recruitment of MDSCs, slowed tumor growth, and attenuated angiogenesis 
(Wu et al. 2012).

A number of studies have been conducted to gain understanding of how IL-6 
might act locally on tumor cells to contribute to prostate cancer development 
and progression. One line of investigation has aimed to identify a role for IL-6 
in progression of prostate cancer to androgen independence via direct regulation 
of androgen receptor transactivation and/or androgen synthesis in prostate cancer 
cells (Lee et al. 2003; Malinowska et al. 2009; Chun et al. 2009). Finally, it has 
also been suggested that a positive feedback loop between IL-6 activation, STAT3 
activation, and NF-κB activation in cancer maintains cells in an “epigenetic trans-
formed” state that might transform “non-stem cancer cells” into “cancer stem-like 
cells” (Iliopoulos et al. 2011).

7.2.6  Additional Innate Immune Cells in Prostate Cancer

There are additional innate immune cells that potentially play a role in prostate can-
cer as indicated by studies in animal and/or in vitro models, but do not as of yet have 
significant data in human prostate cancer tissues. One notable example of this is the 
MDSC lineage of myeloid progenitors. MDSCs accumulate in the tumor microen-
vironment as well as the blood, lymph nodes, and bone marrow in association with 
several forms of human cancer and may contribute to tumor immune escape due to 
their general functional role in immune suppression (Ostrand-Rosenberg and Sinha 
2009). In regard to prostate cancer, multiple murine models of prostate cancer dem-
onstrate accumulation of MDSCs in tumors along with a potential contribution to 
tumor progression (Wu et al. 2012; Svensson et al. 2011; Rigamonti et al. 2011).
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Finally, whereas we have reviewed different subsets of innate immune cells as 
separate entities in this chapter, it is entirely possible that multiple different innate 
immune cells contribute to prostate cancer etiology in concert. In support of this, 
when 320 SNPs in 46 genes involved in the innate immunity pathway were exam-
ined in a large cohort of advanced prostate cancer cases and non-diseased controls, 
the whole pathway was found to be significantly associated with prostate cancer 
risk (Kazma et al. 2012). The authors of this particular study conclude that the 
innate immunity pathway may play a “modest role” in advanced prostate cancer 
through “multiple small effects” (Kazma et al. 2012). Relatedly, reports from the 
Glasgow Inflammation Outcome Study, a previously described cohort of cancer 
patients in north Glasgow, UK (Proctor et al. 2010), describe the use of markers 
of “systemic inflammation” to predict disease outcome in prostate cancer patients 
(Shafique et al. 2012). Results from this study indicated that prostate cancer 
patients with elevated modified Glasgow Prognostic Score (mGPS—a combina-
tion of assays for serum levels of C-reactive protein and albumin) predicted poorer 
5-year overall and relative survival, excess risk of death, and high-grade (Gleason 
grade 8–10) disease (Shafique et al. 2012). C-reactive protein is an acute-phase 
protein and a measure of systemic inflammation. Interestingly, prediagnostic levels 
of C-reactive protein do not appear to be associated with the development of pros-
tate cancer (Platz et al. 2004). Similar findings to the Glasgow studies are apparent 
in studies aiming to determine why men of African American (AA) race are two 
to three times more likely to die from prostate cancer that European Americans 
(EA) (Horner et al. 2009). Gene expression microarray studies of prostate cancer 
tissues from AA and EA men have consistently shown overexpression of gene sets 
involving inflammation pathways in AA samples (Powell et al. 2013; Reams et al. 
2009; Wallace et al. 2008). This includes differentially expressed gene clustering 
in pathways involved in immune response, interleukins, and cytokine signaling 
and overexpression of specific genes such as IL-6, IL-8, and IL-1β (Powell et al. 
2013; Reams et al. 2009; Wallace et al. 2008).

7 .3  Adaptive Immunity and Prostate Cancer

7.3.1  Adaptive Immunity and Cancer

The cells of the adaptive immune system (also known as the “acquired” immune 
system) are more generally considered to be the “second-line” response against 
invading pathogens, as they typically require costimulation from innate immune 
cells (i.e., in the form of antigen presentation to cellular receptors) to drive cellular 
proliferation and a pathogen antigen-specific response. Cells of the adaptive immune 
system include T lymphocytes (i.e., CD4+ and CD8+ T cells) and B lymphocytes 
(B cells). Like the cells of the innate immune system, cells involved in adaptive 
immunity are known to play paradoxical roles in cancer development. For example, 
whereas CD8+ T cells are thought to be major effector cells in anti-tumor immune 
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responses, it is now well known that chronic inflammation, which is characteristi-
cally mediated by the cells of the adaptive immune system, plays a significant role 
in cancer initiation and progression. Indeed, chronic inflammation is now regarded 
as one of the “hallmarks” of human cancer (Hanahan and Weinberg 2011). This is 
especially apparent in types of cancer that are known to be associated with infectious 
agents and where chronic inflammation-associated lesions are known risk factors for 
cancer development (Sfanos and De Marzo 2012). One well-known example of this 
is Helicobacter pylori (H. pylori)-induced gastritis, gastric ulcers, and gastric atro-
phy as risk factor lesions for the development of gastric cancer.

7.3.2  Tumor-Infiltrating Lymphocytes (TIL)  
and Prostate Cancer

The presence of intratumoral T cells, or TIL, is generally indicative of good prog-
nosis in cancer and thought to be indicative of local reaction to the tumor and the 
initiation of an anti-tumor immune response (Zhang et al. 2003; Clemente et al. 
1996; Rao et al. 2010). CD8+ T cells (e.g., cytotoxic T cells or “killer” T cells) 
are of particular interest in this regard, as they may serve as the primary effector 
cells in cancer cell elimination (Pardoll 2002). Along these lines, multiple stud-
ies also show that the presence of tumor-infiltrating CD8+ T cells in particular is 
indicative of good prognosis (Naito et al. 1998; Liu et al. 2012; Schumacher et al. 
2001). In prostate cancer, a limited number of studies have attempted to identify 
and quantify prostate TIL and correlate the presence of TIL with prostate cancer 
prognosis. One study in particular that quantified TIL in 325 prostatic adeno-
carcinomas with clinical follow-up data found that absent or “weak” TIL within 
the tumor was significantly associated with tumor progression and death from 
prostate cancer (Vesalainen et al. 1994). In contrast, a study analyzing CD3+ T 
cells on tissue microarrays (TMAs) containing tissue from 2,144 prostate cancer 
samples found no significant correlation between the number of CD3+ TIL and 
tumor stage, Gleason grade, preoperative PSA level, or lymph node involvement 
(Flammiger et al. 2012). Intriguingly, this study found that either very low or very 
high numbers of CD3+ TIL (as opposed to intermediate levels) were significantly 
associated with shortened PSA recurrence-free survival (Flammiger et al. 2012). 
A study by Richardsen et al. (2008) reported that CD3+ cells in tumor areas and 
stromal areas were significantly higher in the primary tumors of patients with 
metastatic prostate cancer versus those without metastatic disease. Another study 
quantifying TIL in 188 radical prostatectomy specimens on TMAs found that high 
numbers of TIL was an independent predictor of short PSA recurrence-free sur-
vival together with high Gleason score (Karja et al. 2005). Likewise, a study that 
quantified inflammation as a whole in 161 radical prostatectomies found a signifi-
cant correlation between “high-grade” inflammation in and surrounding malignant 
glands and postoperative biochemical recurrence (Irani et al. 1999). McArdle et al. 
(2004) reported on a series of 80 cases that increased CD4+ TIL was associated 
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with poor outcome in prostate cancer patients. One potential explanation for the 
difference in results between studies may involve the heterogeneous nature of 
prostate cancer (and prostate tumor-associated inflammation) that may not be ade-
quately represented on TMAs as opposed to whole tissue sections. Another poten-
tial explanation may involve the fact that many of these studies aimed to quantify 
TIL as a whole and did not attempt to quantify different T-cell subtypes, such as 
the different THELPER subsets of T cells (TH1, TH2, TH17) or regulatory T cells 
(Treg), and it is known that the different subtypes can play varying and opposing 
roles in the tumor microenvironment (Kennedy and Celis 2008). Treg, for exam-
ple, which are characterized by high expression of CD25 and FoxP3 and play a 
suppressive role in immune responses, are known to actively suppress anti-tumor 
immune responses (Mougiakakos et al. 2010).

The analysis and quantification of T-cell subsets in prostate tissue samples is 
challenging, as these cells are typically differentiated by the different cytokines 
that they secrete. IHC is often not a reliable assay for secreted cytokines, and the 
isolation of immune cells from prostate tumor or tissue samples for use in flow 
cytometry can be technically challenging. Nevertheless, one study did isolate 
TIL from radical prostatectomy specimens using a fine-needle aspiration tech-
nique and quantitatively assayed for separate CD4+ T-cell subsets (TH1, TH2, 
TH17, Treg) using flow cytometry (Sfanos et al. 2008). The results of this study 
indicated that TH1 cells are quantitatively most abundant in the prostate of cancer 
patients and that TH2 cells are almost completely absent. Furthermore, prostate-
infiltrating TH1, TH17, and Treg cells are significantly elevated when compared 
to levels in the peripheral blood of the cancer patients, with the most significant 
skewing toward the CD4+ TH17 and Treg phenotype (Sfanos et al. 2008). Finally, 
although the sample size was limited (n = 20), greater numbers of CD4+ TH17 
TIL were significantly associated with lower pathologic Gleason score (Sfanos 
et al. 2008). Of interest, this finding of higher numbers of TH17 cells in lower-
grade tumors is inconsistent with literature in other types of cancer (Zhang et al. 
2008; Grivennikov et al. 2012); however, there does not appear to be a consensus 
as to whether TH17 cells are pro- or anti-tumorigenic (Wilke et al. 2011; Martin 
et al. 2012; Zou and Restifo 2010), and they can possibly be both depending on 
the inflammatory microenvironment and the stage of the tumor. One potential lim-
itation to the Sfanos et al. study was that the entire peripheral zone of the pros-
tate (where prostate cancer typically arises) was sampled and likely sampled areas 
that contained both cancerous and benign regions. Therefore, localization of T-cell 
subsets in prostate tumor versus benign prostate tissues was not conducted. This 
type of analysis would likely need to be performed in frozen or formalin-fixed 
 paraffin-embedded (FFPE) tissues using in situ hybridization-based assays.

One study of note did utilize IHC for IL-17 to determine that IL-17-producing 
macrophages accumulate in areas of PIA (Vykhovanets et al. 2011). Treg cells have 
been examined in additional studies in prostate cancer patients and have consistently 
been found to be elevated in tumor tissues (Miller et al. 2006; Kiniwa et al. 2007); 
however, levels in peripheral blood vary (Miller et al. 2006; Yokokawa et al. 2008). 
These studies also demonstrate the suppressive activity of CD4+ Treg (Miller et al. 
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2006; Yokokawa et al. 2008; Kiniwa et al. 2007), as well as CD8+ Treg (Kiniwa 
et al. 2007), isolated from peripheral blood and tumor tissues of prostate cancer 
patients. CD8+ Treg cells are the newest class of T cells shown to exert suppressive 
effects on CD4+ T cells (Leavy 2010). Another molecule of interest with respect to 
its general suppressive function in regard to human prostate cancer is programmed 
death 1 or PD-1. PD-1 is an inhibitory marker on T cells and is associated with a 
non-functional or “exhausted” phenotype (Barber et al. 2006; Chen 2004; Freeman 
et al. 2000). This molecule along with its ligand, PD-L1, may serve as a method of 
immune escape in human tumors. As such, the PD-1 pathway has been targeted in 
multiple immunotherapy strategies for different cancers, and preliminary studies in 
human trials remain promising (Dotti 2009; Turnis et al. 2012). At least two stud-
ies have assayed for the presence of PD-1 in prostate tumors. One study identified 
very high levels of PD-1 expression (close to 90 % of prostate-infiltrating CD8+ 
T cells in some patients) on prostate-infiltrating CD8+ lymphocytes isolated from 
prostatectomy tissues and assayed by flow cytometry (Sfanos et al. 2009a). PD-1 
was likewise found to be elevated in CD8+ T cells in the peripheral blood of pros-
tate cancer patients compared to controls (Sfanos et al. 2009a). In a separate study 
that assayed for the presence of PD-1+ lymphocytes in prostate tissues via IHC, 
clusters of PD-1+ T cells were found to surround most prostate tumors (Ebelt et al. 
2009). Furthermore, overexpression of PD-1 in cancer patients may be associated 
with poor disease outcome, and this pathway remains of interest in prostate cancer 
immunotherapy strategies (Barach et al. 2011; Dulos et al. 2012).

7.3.3  B Cells and Prostate Cancer

Very few studies have assessed a potential contribution of B lymphocytes to prostate 
cancer etiology, although these cells are present in the prostate tumor microenviron-
ment (Flammiger et al. 2012). One study of note, however, indicated a potential role 
for B cell-derived lymphotoxin in the development of hormone-refractory prostate 
cancer (Ammirante et al. 2010). Here, IKK-β (inhibitor of nuclear factor kappa-B 
kinase subunit beta) ablation in bone marrow-derived cells in mice allografted with 
MYC-CaP cells delayed the development of castration-resistant cancer after castration. 
IKK-β ablation in bone marrow-derived cells was found to have abolished lympho-
toxin production by B cells, and this property was found to be specifically responsible 
for delayed growth of castration-independent cancer (Ammirante et al. 2010).

7 .4  Concluding Remarks

Herein, we have attempted to comprehensively review the field to date regarding 
the role of both innate and adaptive immunity in the prostate cancer microenvi-
ronment. There are clear indications that prostate tumor-infiltrating immune cells 
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contribute to prostate cancer initiation and/or progression; however, these cells 
may play a dichotomous role, acting in the context of both pro-tumorigenic and 
anti-tumorigenic depending on the stage of disease, type of inflammation, and/or 
the tumor microenvironment. Further research in human specimens as well as ani-
mal models of prostate cancer will assist in the elucidation of these roles, which 
may prove to be imperative in the rational design of prostate cancer prevention and 
treatment strategies.
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Abstract The aim of this book chapter is to present the latest basic research 
developments on the role of inflammation in bladder cancer and provide insights 
into their future clinical significance in preventing bladder carcinogenesis and pro-
gression. Bladder cancer is a highly immunogenic malignancy. Urothelial cancer 
cells aim to manipulate the immune system by inhibiting its cytotoxic function 
while stimulating the secretion of growth promoting factors. Cytokine-induced 
imbalances in the distribution and differentiation of tumor-infiltrating cytotoxic 
cells can boost bladder cancer cell proliferation. Tumor-induced release of exces-
sive amount of cytokines causes an “inflammatory storm” which drives metastasis 
formation via degradation of extracellular matrix proteins. Tumor-related selective 
cyclooxygenase-2 (COX-2) upregulation suppresses the cell-mediated immune 
response via aberrant prostaglandin metabolism resulting in failure of differentia-
tion of myeloid cell progenitors into mature antigen-presenting cells. T cells are 
capable of increasing the oxidative stress on bladder cancer cells via induction of 
COX-2 and STEAP expression. Some evidence also suggests that COX-2 activa-
tion may be also involved in inflammation-mediated cancer stem cell proliferation. 
Antibodies against the VEGF-co-receptor neuropilin decrease the angiogenetic 
potential of bladder cancer cells. Inflammation-based predictive bladder cancer 
models have demonstrated to accurately predict response to treatment both in the 
curative and palliative setting. While randomized trials do not support a clinical 
benefit for the use of anti-inflammatory drugs (i.e., celecoxib, atorvastatin) in pre-
venting recurrence of low-grade bladder cancer, further investigations are war-
ranted in the setting of high-grade tumors since the immune response to cancer 
stimuli is most probably more pronounced in advanced stages.
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8 .1  Introduction

In Western countries, bladder cancer is the sixth most common cause of cancer 
death in men and the eight most common cause in women. In the United States, 
the incidence rate of bladder cancer has increased between the years 1973 and 
2009 from 21 to 26/100,000 person-years. Stage-specific analyses have confirmed 
an increase in the incidence of localized and distant tumor stages. Meanwhile, 
improved 5-year survival rates were noted for all stages, except for distant disease 
(Abdollah et al. 2013). Similarly, in Germany, a pronounced increase in the inci-
dence of approximately 35 % in men and 75 % in women has been noted between 
the years 1980 and 2004, which is the second highest bladder cancer incidence 
worldwide after Denmark. Despite this sharp increase in the incidence, the age-
standardized mortality has dropped around 20 % in men and 40 % in men (Robert-
Koch-Institut 2010).

Approximately 70–75 % of all bladder malignancies are diagnosed in 
superficial tumor stages (Stenzl et al. 2011). Superficial bladder cancer is 
characterized by a high recurrence rate and a relatively low progression rate 
(Babjuk et al. 2011). Due to this, lifelong surveillance regimens are necessary 
to detect recurrences at the earliest possible stage. This is the reason why blad-
der cancer causes the highest costs of all cancer entities in health care systems 
(Stenzl et al. 2008). Despite the use of recently introduced sophisticated treat-
ment methods based on the combination of urine-based markers, fluorescence-
guided cystoscopy, and intravesical instillations (Gakis et al. 2010), 25–30 % 
of all primary cases demonstrate histologically muscle invasion which is asso-
ciated with concurrent distant metastatic lesions in 20 % of the patients (Stenzl 
et al. 2011).

Effective bladder cancer control requires an intact immune system (Balkwill 
and Mantovani 2001). When bladder cancer cells invade into the subepithelial 
tissue, further invasion can be arrested by intravesical instillations of Bacille-
Calmette-Guerin (BCG), which provides long-term recurrence-free survival in 
about two-thirds of the patients (Kawai et al. 2013). However, the mechanisms 
that mediate the antiproliferative effects of BCG on cancer cells are poorly 
understood (Kawai et al. 2013). The clinical benefits seen in BCG patients sug-
gest that the immune system itself plays an important role in arresting bladder 
cancer progression (Kawai et al. 2013). However, when tumor cells infiltrate into 
the muscle layer of the bladder, the risk of micrometastatic disease increases  
significantly. Therefore, at this stage, the chance of cure can be increased by 
radical surgical treatment in conjunction with neoadjuvant cisplatinum-based 
chemotherapy which, has shown to especially in patients with advanced tumor 
stages (Gakis et al. 2013). In the last years, there is an increasing awareness 
in the uro-oncological community that the immune system plays a critical role 
in bladder cancer progression (Gakis et al. 2011). The aim of this review is to 
 provide molecular and clinical evidence for the role of inflammation in bladder 
cancer development and progression.
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8 .2  Evidence Acquisition

This review aims to describe the latest basic research developments on the role 
of inflammation in bladder cancer and provide clinical insights into their future 
role in preventing bladder carcinogenesis and progression. For this, a system-
atic Medline literature search was performed along with a free-text protocol, 
using one or several combinations of the following terms: angiogenesis, blad-
der cancer, cytotoxic, immune system, inflammation, invasion, in vitro, in vivo, 
macrophage, metastasis, molecule, pathway, proliferation, T-cell, urothelial 
carcinoma.

8 .3  Inflammatory Cells and Pathways in Bladder Cancer

Systemic inflammation is a common host response to any tumorigenic process 
(Trikha et al. 2003). The microenvironment in tumor tissues resembles a status 
of chronic inflammation (Balkwill and Mantovani 2001). The immune response 
to cancer is ensured by macrophages, granulocytes, and lymphocytes (Balkwill 
and Mantovani 2001). The exact mechanism through which the invasive poten-
tial of bladder cancer cells is regulated by the immune system remains elusive. 
Recent evidence suggests that macrophages play a key role in regulating the 
metastatic potential of bladder cancer cells. Immunohistochemical studies of 
patients with high-grade or early-invasive bladder cancer treated with BCG have 
revealed that the number of macrophages infiltrating into the cancer area in rela-
tion to the number of macrophages in the tumor-surrounding lamina propria is of 
prognostic value (Ajili et al. 2013). A lower cancer area-to-lamina propria ratio 
has been associated with an improved recurrence-free survival. These data sug-
gest that effective bladder cancer elimination requires the ability of macrophages 
to migrate largely into peritumoral area. However, this migration potential is dif-
ferentially expressed as there are distinct subtypes of macrophages which exert 
pro- and anti-inflammatory effects (Edin et al. 2012). For this reason, a recent in 
vitro study investigated the cytotoxic effects of pro-inflammatory type-1 mac-
rophages and anti-inflammatory type-2 macrophages on the human urothelial 
cancer cell line T24. The number of viable T24 cells was considerably higher in 
T24 cell/macrophage-2 co-cultures than in T24 cell/macrophage-1 co- cultures. 
In the latter co-cultures, an increase in tumor necrosis factor (TNF)-α gene 
expression and phosphoinositide 3-kinase (PI3K)/Akt signaling pathway activ-
ity was observed which was also associated with enhanced cellular invasiveness. 
Conversely, macrophage-2-derived factors suppressed the inhibitory effect of 
macrophage-1-derived factors on T24-cell growth, while exogenous interleukin 
(IL)-10 administration reversed the effects of macrophage-1-mediated arrest 
of cell growth on T24 cell/macrophage-1 co-cultures. Of note, while the inva-
sive potential of T24 cells decreased after inhibition of PI3K pathway or TNF-α 
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receptor blockade, it did not affect cell viability (Dufresne et al. 2011). This sug-
gests that, besides activation of macrophages, cancer cell elimination requires 
further action of the immune system. These two macrophage subtypes show 
opposite effects in terms of their invasive potential.

Further molecular characterization of these subtypes helps to understand the 
divergent effects on cancer cells. A recent study analyzed myeloid cells from 
peripheral blood and tumor tissue collected from patients with urothelial carcino-
mas. Both blood and tissue analyses showed that two major CD11b(+) myeloid 
cell subsets were present: granulocyte-type CD15(high) CD33(low) cells and 
monocyte-type CD15(low) CD33(high) cells. Interestingly, the number of circulat-
ing granulocytic but not monocytic myeloid cells was markedly increased in can-
cer patients compared to healthy individuals. Both myeloid cell subsets produced 
substantial amounts of proinflammatory chemokines. Granulocytic myeloid cells 
were able to inhibit in vitro T-cell proliferation via induction of CD4(+) T regula-
tory cells. Further analysis revealed that tumor tissues were infiltrated with both 
monocyte–macrophage CD11b(+)-HLA-DR(+) and granulocytic CD11b(+)-
CD15(+)-HLA-DR(−) myeloid cells (Eruslanov et al. 2012). Collectively, these 
studies suggest that different subtypes of activated inflammatory myeloid cells not 
only interfere with cancer cells but also with the T-cell system, thereby regulat-
ing the invasive potential of cancer cells and the functional efficiency of the local 
immune response.

To effectively eliminate cancer cells, natural killer (NK) cells, CD4(+), and 
CD8(+) T cells are of fundamental importance. In this respect, in vitro BCG mod-
els are ideally suited to elucidate the interactions between the immune and bladder 
cancer cells. Human interferon-alpha 2B-secreting recombinant BCG augments 
interferon-γ (IFN-γ) and interleukin-2 (IL-2) production by T helper cells (Liu et 
al. 2009). This, in turn, potentiates cytotoxic effects of peripheral blood mononu-
clear cells (PBMCs) on bladder cancer cells. Blockage of IFN-α, IFN-γ, or IL-2 
by neutralizing antibodies after rBCG-IFN-α stimulation of cancer cells reduced 
the ability of PBMC to induce T-cell cytotoxicity. Conversely, NK and CD8(+) 
T cells are also able to enhance PBMC cytotoxicity after exposure to BCG-IFN-α 
(Liu et al. 2009).

An imbalance in the distribution of tumor-infiltrating Th17 cells and  
regulatory T cells in the tumor area and peripheral blood seems to contribute to 
the development or progression of bladder carcinoma. Upon interleukin stimu-
lation, T helper cells differentiate into Th17 cells which are capable of produc-
ing large amounts of cytokines. Using flow cytometric analyses, patients with 
bladder cancer exhibited enriched Th17 cells in the bladder tumor and a higher 
proportion of regulatory T cells in peripheral blood compared with healthy con-
trols. Exposure to IL-2 converted T regulatory cells into Th17 cells (Chi et al.  
2010). Taken together, cytokine-induced imbalances in the distribution and 
differentiation of tumor-infiltrating cytotoxic cells and macrophages provoke 
a dysregulation of the immune system, thereby promoting bladder cancer cell 
growth.
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8 .4  Role of Inflammatory Molecules in the Development 
of Bladder Cancer: Evidence from In Vitro Studies

8.4.1  Role of Inflammatory Molecules in the Transformation 
of Bladder Cancer Cells

Chronic inflammation may not only be the host’s response to bladder cancer devel-
opment but also actually elicit bladder carcinogenesis. Secreted protein acidic and 
rich in cysteine (SPARC), a glycoprotein located in the extracellular matrix which 
is increasingly expressed during tissue remodeling, has been recently implicated 
with bladder carcinogenesis. SPARC-deficient mice and their wild-type littermates 
were exposed to chemical bladder carcinogens. Loss of SPARC accelerated the 
development of urothelial preneoplastic (such as atypia and dysplasia) and neoplas-
tic conditions. SPARC-deficient animals showed a stronger accumulation of reac-
tive oxygen species, increased urothelial cell proliferation, and carcinogen-induced 
inflammation. Interestingly, loss of SPARC was associated with an increased acti-
vation of pro-inflammatory macrophages and NF-κB overexpression. In experi-
mental and spontaneous metastatic models, tumor- and stroma-derived SPARCs 
reduced tumor cell growth and metastasis formation via inhibition of cancer-related 
inflammation and lung colonization. These data indicate that SPARCs are produced 
both in cancer- and non-cancer-related compartments of bladder carcinomas, where 
they suppress bladder carcinogenesis and progression via modulation of the inflam-
matory response to cancer cells (Said et al. 2013).

The two isoforms of the enzyme cyclooxygenase catalyze the initial step in the 
formation of prostaglandins (PGs). PGs are involved in various inflammatory cell 
processes, i.e., inflammation, immune response, and carcinogenesis. Urothelial 
cells predominantly express high levels of COX-1, while bladder cancer cells 
show COX-2 overexpression (Boström et al. 2001). Therefore, the mechanisms 
that modify the expression of COX isoforms may possibly contribute to the trans-
formation of normal urothelial cells to cancer cells. In in vitro studies, exposure to 
IFN-α decreased significantly the expression of COX-1 in 5637 and T24 bladder 
cancer cells, while an increased COX-2 expression was found in both cell lines 
(Boström et al. 2001). These findings suggest that IFN-α plays a role in COX-2 
upregulation in urothelial cancer cells.

Bacterial lipopolysaccharides have been found to exert tumorigenic influence on 
the non-tumorigenic rat urothelial cell line MYP3 via cytokine-mediated increase in 
oxidative stress (i.e., hydrogen oxide) (Okamoto et al. 1996). Hydrogen oxide is a 
potent transforming agent which is released during inflammatory conditions of the 
bladder mucosa. Besides IFN-α, an increase in TNF-α release during inflammation 
has been causally related to the transformation of normal urothelial cells to malignant 
cells. In a prior study, it was demonstrated that number of colonies of MYP3 cells, 
which had been exposed to hydrogen oxide and subsequently to TNF-α,  markedly 
increased as compared to untreated controls. Conversely, exposure to TNF-α alone 
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was associated with a strong increase in intracellular hydrogen oxide concentration. 
Importantly, the use of antioxidants, i.e., α-tocopherol, resulted in a significant reduc-
tion in the number of colonies induced by TNF-α exposure. These data reveal that 
inflammation is able to induce malignant transformation of normal urothelial cells 
via induction of TNF-α-dependent release of hydrogen oxide (Okamoto et al. 1996; 
Okamoto and Oyasu 1997).

8.4.2  Role of Inflammatory Molecules in the Survival  
of Bladder Cancer Cells

Activation of distinct inflammatory pathways may also be important for improved 
survival of bladder cancer cells. Non-steroidal anti-inflammatory drugs (NSAIDs) are 
known to be potent inhibitors of COX-2 and capable of inducing apoptosis of bladder 
cancer cells. In bladder cancer cell lines, exposure to NSAIDs (i.e., ibuprofen) induces 
the expression of the proximate cell membrane glycoprotein, p75 neurotrophin recep-
tor (p75NTR). A high expression of p75NTR correlates negatively with cancer cell 
viability. Transfection of bladder cancer cells prior to NSAID exposure with vectors 
carrying domain-deleted p75NTR products known to be strong antagonists of the 
intact p75NTR protein decreased cancer cell viability (Khwaja et al. 2004). These 
observations suggest that p75NTR modulates the antineoplastic effects of NSAIDs in 
cancer cells, while inhibition of p75NTR protein diminishes their viability.

Another recently discovered group of cell surface proteins, the human six-trans-
membrane epithelial antigen of the prostate (STEAP) protein family, consists of at 
least five homologous members that are frequently overexpressed in urological can-
cers. Basically, these proteins are oxidoreductases involved in the regulation of various 
physiological cell functions, including iron uptake and turnover, reaction to inflamma-
tory stress, and acid and glucose metabolism (Grunewald et al. 2012). Isolation of spe-
cific STEAP-derived epitopes and in vitro vaccination with T helper cells from bladder 
cancer patients and healthy individuals has shown to stimulate T helper cells. In fact, 
STEAP peptides behave as promiscuous T-cell epitopes by stimulating T cells in the 
context of multiple major histocompatibility complex class II alleles (Azumi et al. 
2010). Collectively, T cells are able to increase the oxidative stress on bladder can-
cer cells via induction of STEAP expression. Due to their membrane-linked location 
and high expression levels, STEAPs represent promising targets for future cell- and 
antibody-based immunotherapy in bladder cancer (Grunewald et al. 2012).

8.4.3  Role of Inflammatory Molecules in the Proliferation  
of Bladder Cancer Cells

In contrast to traditional immunological theories signifying that only B lympho-
cytes are capable of expressing immunoglobulins on their cell surface, a recent 
study reported that the expression of immunoglobulin G (IgG) messenger RNA 
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(mRNA) and protein was also present on the bladder cancer cell surface. In two 
human urothelial cancer cell lines, T24 and BIU-87, and in tissues of 56 patients 
with urothelial carcinoma, IgG mRNA and IgG proteins were detectable. 
Increased cell apoptosis and inhibited cell growth via activation of the caspase 
pathway was observed after blockade of tumor-derived IgG by either antihu-
man IgG antibody or antisense oligonucleotides. Furthermore, in xenotransplant 
models, antihuman IgG antibody was able to suppress tumor growth. Moreover, 
adding either antihuman IgG antibody or antisense oligonucleotides to the blad-
der cancer cell line T24 enhanced its sensitivity to mitomycin C (Liang et al. 
2013). Besides immunoglobulines, tumor-derived exosomes exert antiprolif-
erative effects on bladder cancer cells. Exosomes are multi-protein complexes 
which are capable of degrading RNA. Tumor-specific exosomes are promising 
tumor vaccines antigens but show low antiproliferative activity. To enhance their 
immunogenicity, melanoma-antigen-1 (MAGE-1)-expressing T24 cells were 
transfected with a plasmid encoding the glycosyl-phosphatidylinositol-anchored 
interleukin 2 (GPI-IL-2) gene. Hereafter, IL-2 was found on the cell surface in 
the GPI-anchored form. The tumor-derived GPI-IL-2 exosome contained bio-
active GPI-IL-2 and tumor-associated antigen MAGE-1. The proliferation of T 
cells and the antigen-specific cytotoxic T lymphocyte response was found to be 
more pronounced in exosomes expressing GPI-IL-2-pulsed dendritic cells. In 
future, these observations may pave the way for exosome-based tumor immuno-
therapeutic strategies as an alternative approach to traditional immunoglobulin-
based immunotherapy.

8.4.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Bladder Cancer Cells

Inflammatory processes are not only necessary for carcinogenesis but also neces-
sary for metastasis formation. The Rho-GDP dissociation inhibitor (RhoGDI2) 
suppresses the metastatic potential of various human bladder cancer cell lines 
(Gildea et al. 2002). In patients with muscle-invasive bladder cancer, increased 
RhoGDI2 expression has been associated with inferior survival (Theodorescu 
et al. 2004). Versican, a complex and versatile extracellular matrix protein, is a 
key regulatory molecule in cancer-related inflammation and is also associated 
with invasive and metastatic cancer stages (Wight 2002). It acts as a substrate to 
be depleted during invasion by cancer cells in order to facilitate metastasis forma-
tion. This metastasis-promoting effect depends on the recruitment of macrophages. 
Thus, versican is an integral component in order to establish a highly inflamma-
tory microenvironment (Said and Theodorescu 2012). The excessive “crosstalks” 
between the immune system and cancer cells cause an “inflammatory cytokine 
storm” that drives cancer cell colonization. Targeting versican or the associated 
excessive release of cytokines represents a promising strategy to delay the evolu-
tion of metastases (Said et al. 2012).
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Colonization of distant organs by cancer cells requires first their adhesion to 
the vascular endothelium. Selectin ligands are transmembrane glycoproteins on 
cancer cells that bind to selectins on the endothelial surface, thereby enabling 
the adhesion and migration of cancer cells and leukocytes through the endothe-
lium. Functioning selectin ligands require Sialyl-Lewis tetrasaccharides which are 
cofactors that facilitate metastasis formation (St Hill 2011).

Following extravasation, cancer cells induce local neovascularization in order 
to supply with oxygen and nutrients. Therefore, the question arises whether the 
degree of inflammatory response may also trigger angiogenesis. VEGF receptors 
and their co-receptors, neuropilins (NRPs) are constituently expressed on nor-
mal urothelial cells. In animal models of BCG-induced chronic inflammation, 
the two VEGF receptor types (VEGFR1 and VEGFR2) and their associated co-
receptors (NRP1 and NRP2) were markedly upregulated indicating neovascu-
larization (Saban et al. 2010). In BCG-treated mice, after systemic application of 
neutralizing NRP antibodies (against their binding site on VEGFs) and following 
periodic BCG exposure, a depletion of a fluorescent internalizable tracer, called 
scVEGF/Cy5.5, was found both in cancer cells and in the urothelium which was 
histologically associated with a decrease in BCG-induced blood vessel density. 
Treatment with NRP1-neutralizing antibodies also diminished tumor infiltration 
by PMNCs and dendritic cells. These data suggest that NRPs can regulate the can-
cer-induced vascular and inflammatory responses (Saban et al. 2010).

8.4.5  Role of Inflammatory Molecules in the Development  
of Bladder Cancer: Evidence from In Vivo Studies

An established method of inducing bladder cancer in animal models is exposure 
to N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN). Targeting COX-2 by pharma-
cological inhibition has been shown to reduce the incidence of preneoplastic and 
neoplastic lesions in the BBN-pretreated bladder mucosa and reduce serum trans-
forming growth factor-β1 and C-reactive protein (CRP) levels (Parada et al. 2009). 
As the cyclooxygenase pathway regulates prostaglandin metabolism and cancer 
cells are able to deregulate the immune system, it seems prudent to investigate 
whether potential aberrations in prostaglandin metabolism may enhance tumor 
cell growth. Fast-growing SW780-bladder tumor mice xenografts were transfected 
with heterogeneous CD11b myeloid cell subsets including tumor-associated mac-
rophages and myeloid-derived suppressor cells. It was demonstrated that bladder 
tumors secreted substantial amounts of prostaglandin E2 (PGE2). Moreover, when 
normal bone marrow myeloid cell progenitor cells were cultured in the presence of 
a bladder tumor-conditioned medium enriched for PGE2, they did not only fail to 
differentiate into mature antigen-presenting cells (APCs) but acquired the pheno-
type of myeloid-derived suppressor cells (Eruslanov et al. 2011).

Another interesting pathway of attenuation of bladder tumor growth is the 
adenosine pathway. Accumulation of adenosine in tumors leads to an inactivation 
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of immune cells and limits their ability to eliminate cancer cells. Conversely, 
blockade of adenosine A2 receptors activates cytotoxic T cells and stimulates 
dendritic cells. Basically, there are two adenosine receptor subtypes [A(2A) and 
A(2B)] which can be blocked in a selective and non-selective manner. Receptor 
analyses have shown that the antitumoral effects of adenosine blockers are mainly 
mediated by the selective adenosine A(2B) receptor. ATL801 is a selective A(2B) 
receptor antagonist which induces the secretion of IFN-γ and IFN-inducible 
chemokine CXCL10. CXCL10 is a ligand for CXCR3 expressed on tumor-infil-
trating cytotoxic T cells. Accordingly, administration of ATL801 in CXCR3-
deficient bladder tumor mice did not show to decelerate tumor growth (Cekic et al. 
2012). Taken together, these data suggest that selective adenosine (2B) receptor 
blockers activate dendritic cells and enhance CXCR3-mediated cytotoxic response 
to bladder cancer growth. Whether a combined approach by a concurrent blockade 
of A(2B) and COX-2 receptors might result in superior tumor growth inhibition 
awaits further investigation.

8 .5  Evidence from Patients for the Role of Inflammation  
in Bladder Cancer

Migration of macrophages into tumor tissues is essential for effective tumor cell 
elimination. Increasing evidence suggests that the pro-inflammatory cytokine mac-
rophage migration inhibitory factor (MIF) serves as a link between inflammation 
and carcinogenesis. Anti-thrombin III, an endogenous serine protease inhibitor, 
which is known to inactivate several enzymes of the blood coagulation cascade, 
also acts as an inhibitory binding protein for MIF. In the serum, an increased MIF 
concentration was found in bladder cancer patients compared to healthy individu-
als, while the concentration of ATIII-MIF complexes was decreased in cancer 
patients. These data suggest that increased circulating levels of bioactive MIF are 
present in the sera of bladder cancer patients (Meyer-Siegler et al. 2010).

In recent years, besides increasing evidence for the role of inflammation in blad-
der cancer, the presence of cancer stem cells has been suggested to be causative for 
the high risk of recurrence and progression (van der Horst et al. 2012). Therefore, 
the question arises whether inflammation is capable of activating cancer stem cells. 
Data from immunohistochemical analyses show that the immunoreactivity of dis-
tinct stemness markers (Oct3/4 and CD44v6) and COX-2 is significantly higher in 
cystitis and cancer patients compared to healthy controls. Interestingly, the nuclear 
localization of COX-2 was significantly associated with upregulation of Oct3/4 
and CD44v6 in bladder cancer tissues irrespective of the degree of inflammation. 
Therefore, COX-2 activation may be also involved in inflammation-mediated cancer 
stem cell proliferation during bladder carcinogenesis (Thanan et al. 2012).

From a clinical point of view, as the degree of inflammation potentially reflects 
tumor aggressiveness (Siemes et al. 2006), the use of serum markers for meas-
uring the degree of systemic inflammation may be useful in counseling patients 
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for neoadjuvant and adjuvant treatment. Candidate markers which can be  easily 
assessed in daily clinical practice include interleukin-6, leukocyte levels, and 
serum CRP (Siemes et al. 2006). In this respect, CRP is a highly sensitive marker 
of acute and chronic inflammation (Ledue et al. 1998). After interleukin-6 medi-
ated release by hepatocytes, CRP acts an opsonizing agent for cancer cell detec-
tion and elimination. However, interleukin-6 can also be released by tumor cells 
themselves, facilitating cancer cell survival by pleiotrophic effects (Trikha et al. 
2003). Consequently, elevated serum CRP levels are not only an epiphenom-
enon of the tumor microenvironment but also a critical component of the host’s 
response to the tumor.

A recent screening study among healthy individuals showed that elevated CRP 
indicates a higher risk of developing bladder cancer (Trichopoulos et al. 2006). In 
patients undergoing radical surgery for bladder cancer, preoperative serum CRP 
levels have been shown to predict local tumor stage and prognosis. A novel pre-
diction model for cancer-specific survival after radical cystectomy, termed TNR-C 
Score (Gakis et al. 2011), which accounts for critical determinants for survival 
(Tumor-stage lymph Node density, Resection margin status, and CRP level), 
yielded a considerably high predictive accuracy of 79 %. In the following, further 
investigations have confirmed the clinical significance of pretreatment CRP levels 
and kinetics in predicting response to first-line and second-line chemotherapy in 
metastatic bladder cancer (Saito et al. 2012; Ishioka et al. 2012).

8 .6  Inhibitors of Inflammation for the Prevention  
and Treatment of Bladder Cancer

In the last years, anticarcinogenic properties have been attributed to 3-hydroxy-
3-methylglutaryl-coenzyme A (HMGCoA) reductase inhibitors which are effective 
pharmacological substances for lowering serum LDL cholesterol levels. The anti-
carcinogenic effects of atorvastatin on bladder carcinogenesis were also recently 
investigated in a BBN-treated rodent model. The incidence of bladder carcinomas 
was significantly lower in the atorvastatin/BBN group compared to BBN alone. 
Nevertheless, recent large meta-analyses have not demonstrated a significant ben-
efit of statins in decreasing cancer incidence and mortality (Cholesterol Treatment 
Trialists’ Collaboration 2012). Similarly, a randomized, double-blind, placebo-
controlled trial was set up to determine whether celecoxib, a potent COX-2 inhibi-
tor, could reduce the time to recurrence in patients with non-muscle-invasive 
bladder at high risk for recurrence. A total of 146 patients were randomized to 
receive either 200 mg celecoxib or placebo administered orally twice daily for at 
least 12 months. While celecoxib was well tolerated, the intention-to-treat anal-
ysis revealed no statistically significant increase in the time to recurrence in the 
celecoxib group compared with placebo. However, celecoxib had a marginally sig-
nificant effect on reducing metachronous recurrences (Sabichi et al. 2011). While 
these results do not support a clinical benefit for the long-term use of celecoxib 
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in preventing recurrence of low-grade bladder cancer, further investigations are 
warranted as the immune response to cancer stimuli may probably be more pro-
nounced in advanced tumor stages.

8 .7  Conclusions and Future Directions

In conclusion, bladder cancer is a highly immunogenic malignancy. Yet, the exact 
mechanisms through which bladder cancer cells silence the immune system dur-
ing tumor progression remain largely elusive. Current evidence suggests that blad-
der cancer cells aim to trigger an “inflammatory cytokine storm” that stimulates 
the secretion of tumor growth promoting factors while attenuating the cytotoxic 
function of immune cells. The degree of inflammatory response also triggers the 
formation of distant metastatic clones. One of the key regulatory events in bladder 
cancer progression seems to be COX-2 upregulation which leads to an aberrant 
prostaglandin metabolism and suppresses the cytotoxic function of immune cells. 
Additionally, COX-2 activation may be also involved in inflammation-mediated 
cancer stem cell proliferation. Immune cells can attenuate the angiogenetic poten-
tial of bladder cancer cells by inhibiting endothelial adhesion and the VEGF recep-
tor signaling pathway. Taken together, the identification of novel target molecules 
involved in dysregulation of the immune system provides a rationale for a variety 
of novel targeted approaches in bladder cancer. In light of results from randomized 
studies on the chemopreventive effects of NSAIDs in bladder cancer, we must 
acknowledge that optimal selection of appropriate candidates based on established 
predictive marker models is of paramount importance in order to maximize the 
clinical benefit of inflammation-based therapeutic strategies.
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Abstract Renal cell carcinoma (RCC) constitutes more than 90 % of primary 
kidney tumors with the development of metastatic disease in the lung, bone, 
liver, and brain. Clear-cell RCC (CCRCC) is the most common histologic form 
of sporadic kidney cancer where the majority of tumors have inactivation of the 
von Hippel–Lindau (VHL) tumor-suppressor gene resulting in the accumulation 
of hypoxia-inducible factor (HIF) leading to dysregulation of cell growth and 
angiogenesis. Understanding of the genetic changes in RCC and the downstream 
events have led to the development of tyrosine kinase inhibitors (TKI) that target 
HIF-regulated proteins which currently represents front-line therapy for meta-
static disease although resistance develops in most patients overtime. Despite the 
fact that RCC is an immunogenic tumor, there is mounting evidence that immune 
cells and inflammatory pathways can enhance tumor growth and immune escape. 
However, recent studies are beginning to uncover the mechanisms of immune 
escape in RCC, and the role inflammatory immune cells and cytokines play is this 
process. These new findings have led to renewed interest in the use of immuno-
therapy for the treatment of this disease that includes strategies to regulate inflam-
matory responses. Here, we will discuss the different inflammatory signaling 
pathways (e.g., VHL, hypoxia, TNF-α, STAT, and TGF-β) and the downstream 
transcription factors, cytokines, and chemokines involved in tumor development, 
and disease progression. This will include assessment of the role inflammatory 
molecules (e.g., pVHL, TGFb, IL6, select chemokines/chemokine receptors) 
play in promoting cell transformation, survival, proliferation of tumor cells, and 
metastasis derived from in vitro and in vivo studies. Included is a section on how 
select inflammatory cells (TAM, MDSC, and neutrophils) promote tumor  evasion 
of immune cells. We also provide examples of molecules/cells that correlate 
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negatively (CXCL12, CXCR4, and MMP, neutrophils, and MDSC) and positively 
(TH1 cells, IP-10, and MIG) with tumor progression and survival. Finally, there is 
a discussion of different inhibitors of inflammation that may be useful in the treat-
ment of RCC.

9 .1  Introduction

An estimated 65,150 new cases of kidney cancer will be diagnosed in the USA 
in 2013 resulting in 13,680 deaths. Kidney cancer incidence has increased by 
3.1 % per year from 2005 to 2009 while death rates have decreased by 5 % in the 
same time period. The increased incidence is mainly explained by an increase in 
early-stage diagnosis incidentally during abdominal imaging for unrelated issues; 
there are, however, no current recommendations for a screening test for the gen-
eral population. Incidence appears to be reaching a plateau for the first time in 
several decades. Renal cell carcinoma (RCC) are tumors arising from the renal 
tubular epithelial cells and account for more than 90 % of primary kidney tumors. 
RCC represents the eighth most common malignancy in adults in the USA and 
more than 50 % of individuals present with metastatic disease (American Cancer 
Society 2008).

Clear-cell RCC (CCRCC) represents the most common histological type of 
RCC, accounting for up to 75 % of all renal cancer cases, followed by papillary 
(15 %), oncocytoma (5 %), and chromophobe (5 %) (Devita et al. 2011). CCRCC 
can affect all patient age groups but is most commonly found in their 60s or 70s, 
predominantly in men (male-to-female ratio of 2:1) (Cheville et al. 2003).

The extent of the disease determines the treatment of RCC, and it greatly influ-
ences survival. Due to its location in the retroperitoneum, RCC tumors can fre-
quently grow unnoticed for many years until the development of metastasis. 
Historically, less than 50 % of patients have localized disease at presentation, 
20 % have local invasion, and 30–40 % of patients have metastatic disease at the 
time of diagnosis (Golimbu et al. 1986; Zisman et al. 2002). However, recent data 
(2003–2009) from the surveillance, epidemiology, and end results (SEER) pro-
gram reflect a pronounced increase in RCC with localized tumors at the time of 
diagnosis, which brings the percentage of localized disease to a range of 61–71 % 
depending on the demographic group.

Survival

The overall 5-year relative survival for kidney cancer has increased from 51 % in 
the early 1980s to over 73 % in the past decade (Howlader et al. 2013). Tumors of 
the renal pelvis carry a worse prognosis than RCC tumors (5-year survival of 50 
vs. 72 %, respectively). Early diagnosis (i.e., at a local stage) increases the 5-year 
survival rate to 91 %. Unfortunately, this percentage drops to 10 % in patients pre-
senting with metastatic disease (Cohen and McGovern 2005).
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Major gene products associated with kidney cancer

Von Hippel–Lindau is a tumor-suppressor gene located on chromosome 3p that 
encodes a protein with the same name (pVHL). This gene has been associated 
with predisposition to various types of cancer including pheochromocytomas, 
hemangioblastomas, and CCRCC. VHL disease is a dominantly inherited famil-
ial cancer syndrome initiated by mutations in the VHL tumor-suppressor gene 
(Ong et al. 2007). The genetic studies from families with this genetic predisposi-
tion have been extensive, and this has led to a better understanding of the develop-
ment of RCC. VHL inactivation is also a common feature of sporadic CCRCC the 
most abundant histological form of kidney cancer. Although inactivation of VHL 
is a critical event in the pathogenesis of most CCRCC, it is not sufficient to cause 
this disease (Li and Kaelin 2011). The gene product pVHL interacts with other 
proteins to form the complex called E3-ubiquitin. This complex targets specific 
proteins to undergo proteosomal degradation. pVHL provides target specificity to 
this complex, and one of its major functions is to bind to the HIFs HIF-1α and 
HIF-2α to promote their proteosomal degradation. It is now known that pVHL 
plays a critical role in the cell’s response to hypoxic changes (Maher et al. 2011). 
HIF proteins are hydroxylated under normoxic conditions; pVHL binds to this 
hydroxylated form of the HIF molecule, tagging it for degradation and keeping 
it in a relatively low level within the cells. When hypoxic conditions ensue, how-
ever, HIF proteins are not hydroxylated and cannot be recognized by pVHL and its 
concentrations begin to rise. In RCC patients, VHL gene mutations produce non-
functional pVHL which are not able to target HIF proteins for degradation, and 
therefore, they accumulate regardless of the cells redox state. HIF-1 and HIF-2 are 
transcription factors that regulate a group of genes important to tumor survival and 
hypoxic gene response. These genes (including VEGF, PDGFβ, TGFα, Cyclin D1) 
are implicated in several biologic responses including angiogenesis, proliferation, 
apoptosis, and metabolism (see Fig. 9.1).

Current Therapies for Kidney Cancer Surgery

Surgery is the most effective treatment for localized RCC. Radical nephrectomy 
is the most common operation for T1a tumors (i.e., less than 4 cm in diameter). It 
consists of the complete removal of Gerota’s fascia and its contents. Adrenal spar-
ing surgery is recommended for T1a tumors of the inferior pole (Golimbu et al. 
1986). Patients with a small (<4 cm), usually incidentally found mass, have a sur-
vival rate of 90 % or greater when partial or radical nephrectomy is performed. 
The role of surgery in metastatic disease, however, is only limited to symptom pal-
liation, and nephrectomy alone has no survival benefits in this group of patients 
(Dekernion et al. 1978). There have been reports of spontaneous regression of 
metastatic renal cancer following removal of the primary tumor. This rare occur-
rence (~1 %), however, is not an indication for surgery in metastatic disease as a 
single modality treatment (Middleton 1980). Advanced RCC can be treated sur-
gically as part of a multimodal therapy such as immunotherapy (Flanigan et al. 
2001).
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Chemotherapy

Chemotherapy has shown poor efficacy for advanced stage RCC in numerous 
clinical trials. Single-agent regimens have shown response rates of 5–6 % in trials 
involving over 4,000 cases and more than 30 individual agents (Motzer et al. 2000; 
Yagoda et al. 1995). 5-fluorouracil and gemcitabine combinations have yielded 
slightly better response rates (10–15 %) (Rini et al. 2005; Stadler et al. 2006).

Immunotherapy

Clear-cell RCCs are considered an immunogenic tumor based on several observa-
tions that include rare but documented cases of spontaneous regression sometimes 
associated with cytoreductive nephrectomy, significant immune infiltrate in some 
tumors, identification of tumor-associated antigens expressed by RCC, and their 
sensitivity to immunotherapy.

Fig . 9 .1  This figure provides a summary of the changes in the infiltrating immune cells that 
promote immune suppression and angiogenesis resulting in tumor evasion (top left, purple). 
Also detailed are the different signaling pathways associated with RCC development, growth, 
and survival (lower right, pink). Included is a depiction of the central role VHL silencing has 
on the constitutive activation of HIF transcription leading to gene expression of different mol-
ecules involved in tumor growth. The impact of proangiogenic protein production has on promo-
tion of the tumor vasculature is depicted (upper right). This figure also highlights the importance 
of inflammatory proteins and their receptors in regulating RCC development and growth. Red 
arrows represent inhibition or downregulation, while blue represents stimulation or upregulation; 
green arrows indicate nuclear translocation of transcription factors
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Cytokine therapy

Cytokines represent an active, non-specific immunotherapy for the treatment of 
metastatic kidney cancer, and the most studied include interleukin-2 (IL-2) and 
interferon-alpha.

IL-2

IL-2 was approved by the FDA for the treatment of advanced RCC, and mela-
noma over two decades ago and for years was the first-line agent for metastatic 
RCC. Administration of recombinant IL-2 is associated with a 20–25 % objec-
tive response rate in patients with kidney cancer. In different clinical trials, the 
5-year survival rate for these patients was almost 20 % of the responders (Clement 
and McDermott 2009; Halama et al. 2010; Escudier 2010; Dillman et al. 2011). 
High-dose IL-2, however, has profound side effects, in particular, one character-
ized as a “cytokine storm” or capillary leak syndrome, but the mechanism behind 
it is not clearly understood. Clinically, this results in hypotension, cardiac, renal, 
pulmonary, gastrointestinal, cerebral, and hepatic toxicity (Finkelstein et al. 
2010). Strategies to improve efficacy and/or reduce the side effect profile have 
been unsuccessful; agent combination such as TNF, iNOS, or VEGF inhibition, 
IFN-α administration did not significantly improve outcome (Halama et al. 2010; 
Escudier 2010). Efforts to identify which patients are more likely to respond to 
IL-2 have identified possible biomarkers. Complete responders to IL-2 therapy 
have unique protein and gene expression patterns, but clinical trials have failed to 
identify markers that can be use prospectively (Clement and McDermott 2009). 
The cloning and production of recombinant IL-2 allowed for the in vitro expan-
sion of lymphokine-activated killer cells (LAK). These cells were administered 
to patients as a form of adoptive immunotherapy. The majority of LAK cells are 
derived from precursor cells with the immunological marker spectrum CD3(−), 
CD11(+), CD14(−), CD16(+), CD56(+). Following activation with IL-2, cells 
express the markers CD2(+), CD3(−), CD56(+) and typically represent activated 
NK cells (Fortis et al. 1991). However, IL2 combined with LAK cell infusion did 
not improve the therapeutic activity of IL2 (Law et al. 1995).

IFN-α

IFN-α is a glycoprotein that has antitumor effects along with immunomodula-
tive, antiproliferative, and differentiation-inducing activities (Neidhart 1986; 
McDermott and Rini 2007). Overall response rates range between 10 and 15 % 
with different dose regimens and preparations. A meta-analysis involving 6,117 
patients with metastatic RCC between 1995 and 2004 showed a median improve-
ment in survival of 3.8 months (Coppin et al. 2005). This small but significant 
improved survival and a lower treatment-related toxicity (and cost) resulted in a 
wide spread use of IFN-α in metastatic RCC. IFN-α has been tested in clinical 
trials with multiple other agents including IL-2 at different doses, chemotherapeu-
tic drugs (5-fluorouracil, vinblastine, cis-retinoic acid), targeted therapy agents 
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(sorafenib, sunitinib, bevacizumab), and even combination of these three classes 
of drugs, and although modest synergy has been observed in phase II clinical 
 trials, strong phase III clinical trial data to support the use of any of this com-
binations over IFN-α alone are still lacking (Rini and Campbell 2009). However, 
there are clinical variables that can stratify patients into favorable, intermediate, or 
poor risk with median survival of 30, 14, and 5 months, respectively. These data 
were gathered from six prospective clinical trials, and the clinical variables were: 
low Karnofsky performance status, high lactate dehydrogenase, low serum hemo-
globin, high corrected serum calcium and time from diagnosis (of RCC) to IFN-α 
therapy of less than one year.

Checkpoint inhibitors as immunotherapy

Tumors, including RCC, escape immune destruction by multiple mechanisms. 
This includes using the body’s own protective pathways that normally pre-
vent autoimmunity such as immune checkpoints leading to termination of 
immune responses after T cell activation (Pardoll 2012; Tang and Heng 2013). 
Current therapies include the use of antibodies directed toward select check-
point  molecules such as CTLA-4 (cytotoxic T lymphocyte-associated antigen 4). 
CTLA-4 is known to be an inhibitory regulator of T cell expansion which coun-
ter acts the CD28-mediated co-stimulation initiated by B7-1 and B7-2 ligands 
(Peggs et al. 2009). Genetic disruption of CTLA-4 expression results in a T-cell-
dominated lymphoproliferative syndrome leading to significant autoimmune dis-
ease. However, the use of blocking antibodies to CTLA-4 in mouse and humans 
can enhance immunological responses to cancer (Shrikant et al. 1999). Indeed, 
clinical studies in patients with metastatic RCC and melanoma demonstrated that 
treatment with anti-CTLA4 antibody (ipilimumab) has significant clinical activity. 
Interestingly, there was a significant association between autoimmune events noted 
in these patients and tumor regression (Yang et al. 2007; Tang and Heng 2013). 
However, autoimmunity mediated by anti-CTLA4 antibody treatment is a signifi-
cant complication in some patients.

The other T cell co-inhibitory receptor that has been shown to suppress T cell 
function is PD-1 (Programmed death 1). PD-1 is expressed after T cell activation, 
and when PD-1 receptors binds to its ligands PD-L1 (B7-H1) or PD-L2, T cell 
function is blocked (Tang and Heng 2013; Freeman et al. 2000); approximately 
56 % of RCC tumors have infiltration of PD-1+ T cells, and patients with PD-1+ 
immune cells were at significant risk of cancer-specific death when compared to 
PD-1-negative patients (Thompson et al. 2007). Additionally, the ligand PD-L1 is 
known to be expressed on a portion of renal tumors (30 %), and expression of 
this ligand is associated with poor prognosis (Thompson et al. 2004, 2006). Anti-
PD1 antibodies have shown significant efficacy in several tumor types (25 %) 
including RCC, melanoma, and non-small-cell lung cancer (Topalian et al. 2012; 
Lipson et al. 2013). Although less studied anti-PD-L1 antibody has also demon-
strated antitumor activity in RCC patients (Brahmer et al. 2012), these studies and 
others suggest that blocking PD-1 interaction with its ligands is a new and viable 
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approach to the treatment of metastatic RCC and will likely to lead to interesting 
combinational studies.

Targeted therapy drugs

Discovery of the VHL gene as a landmark mutation for both familial as well as 
sporadic cases of RCC resulted in an extensive characterization of the downstream 
pathway of this gene product functions. This eventually led to identification of 
specific molecules involved in RCC development and subsequently the identifica-
tion of drugs that specifically act on these pathways.

VEGF receptor inhibitors

VEGF is typically produced by fibroblast and stromal cells; however, RCC cells 
are able to produce this protein in large amounts as a consequence of silencing 
of the VHL gene (Edgren et al. 1999). Binding of this protein to its receptor ulti-
mately results in blood vessel formation. Sunitinib maleate is a multitargeted 
tyrosine kinase inhibitor that is available in oral form. It has antitumor and antian-
giogenic activity in part through inhibition of VEGF receptors, whether its activity 
is also related to other receptors it binds to remains unclear (PDGF receptors as 
well as Flt-3, c-Kit, and CSF1R) (Mendel et al. 2003). Two Phase II clinical  trials 
involving 63 and 106 patients with advanced RCC, response rates were 40 and 
39 %, respectively, and a median progression-free survival of 8.7 and 8.3 months, 
respectively. No complete responses were observed in these studies (Motzer et al. 
2006a, b). A phase III international trial compared sunitinib to IFN-α as first-line 
treatment for advanced RCC (Motzer et al. 2007). The median progression-free 
survival and objective response rate were 47.3 weeks and 37 % for sunitinib and 
24.9 weeks and 9 % for IFN-α. This led to the use of sunitinib as one of the stand-
ard first-line therapies for advanced RCC. Additional TKI have been developed 
and have demonstrated clinical efficacy in mRCC, and this includes axitinib, pazo-
panib, and sorafenib. Current studies are comparing these different TKI in terms 
of their antitumor activity as well as toxicity. Although these TKI have significant 
clinical activity, RCC patients eventually become resistant to the drug possibly by 
different mechanisms. Another interesting feature of select TKI such as sunitinib 
is that they can moderate immune suppression and improve T cell function in the 
tumor bearing host. Sunitinib has been reported to reduce the number of mye-
loid-derived suppressor cells and T-regulatory cells in RCC patients and enhance 
T cell production of IFNγ (van Cruijsen et al. 2008; Ko et al. 2009; Finke et al. 
2008). Subsequent studies in multiple mouse models have shown that sunitinib 
can enhance the efficacy of immunotherapy including vaccines (Bose et al. 2011; 
Farsaci et al. 2012), IL-12 plus 4-1BB activation (Farsaci et al. 2012) and adoptive 
T cell therapy (Kujawski et al. 2010).

mTOR inhibitors

Another important cellular pathway in the biology of RCC involves the mamma-
lian target of rapamycin (mTOR). This serine–threonine protein kinase is critical 
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for cell proliferation, metabolism, protein synthesis, and angiogenesis, and its 
activation was found in around 60 % of primary CCRCC (Robb et al. 2007); 
 furthermore, its activation worsens the prognosis of localized and metastatic 
kidney cancer patients (Pantuck et al. 2007). Three analogs of rapamycin with 
mTOR inhibition properties have been tested clinically: temsirolimus, everolimus, 
and deforolimus. The first two have been extensively tested in RCC as second-
line agents in metastatic RCC that progressed after treatment with a TKI as first-
line drug treatment. Compared to IFNγ, IV infusion of temsirolimus improved 
the overall survival of poor prognosis population with RCC (Hudes et al. 2007). 
Everolimus can be taken orally as a second-line agent after progressive disease 
following TKI treatment; its efficacy and safety in this patient population have 
been established in a phase III clinical trial involving 416 patients. PFS was 4.9 
and 1.9 months for the everolimus and placebo groups, respectively (Motzer  
et al. 2008).

Combination therapy

There are a number of combinational studies that are being developed, and some 
are underway. This includes combining anti-CTLA-4 antibodies with either anti-
PD1 or anti-PDL-1 antibodies as a strategy that will block two checkpoint path-
ways of T cell suppression. Other studies are combining checkpoint blockade 
inhibitory antibodies with TKI since the latter are known to reduce angiogenesis 
but can also reduce immune suppression by targeting myeloid-derived suppres-
sor cells and Treg cells (Ko et al. 2009; Ozao-Choy et al. 2009). Another focus is 
to combine agents that reduce immune suppression mediated by different mecha-
nisms along with different immunotherapy approaches that are designed to stimu-
late the immune system. Clinical trials are underway testing whether sunitinib will 
synergize with two different vaccine strategies to promote an antitumor immune 
response and improve overall survival. This includes vaccination of RCC patients 
with DCs expressing tumor-associated antigens following their transfection with 
autologous tumor RNA (Argos Inc) or with a cocktail of peptides constituting 
multiple proteins that are overexpressed on RCC (Immatics Biotechnology). It 
also seems likely that additional studies will include combining these and other 
vaccines with checkpoint blockade antibodies.

9 .2  Inflammatory Signaling Pathways Associated  
with Kidney Cancer

VHL pathway

Inflammation is mediated by certain environmental and pathogenic factors which 
include upregulation of HIF-1α and the production of proinflammatory proteins 
leading to the concept that hypoxia plays a role in inflammatory processes in 
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RCC (Reuter et al. 2010; Fitzgerald et al. 2012). As mentioned earlier, the tran-
scription factors, HIF-1 and HIF-2, initiate transcription of a large set of genes 
important in several biologic responses including angiogenesis, proliferation, 
apoptosis, and metabolism (Fig. 9.1) (Kaelin 2009). The proteins produced as a 
consequence of VHL silencing include those involved in angiogenesis [vascular 
endothelial growth factor (VEGF), glycolysis (phosphoglycerate kinase), glucose 
transport (Glut-1), and erythropoiesis (erythropoietin)]; the chemokine receptor 
CXCR4 has also been identified as an HIF target (Staller et al. 2003), suggesting 
that HIF activation may contribute to the metastatic potential of cancer cells.

Hypoxia

A recent study (Fitzgerald et al. 2012) suggests that the inflammatory cytokines 
interleukin-6 and interleukin-8 (IL-6 and IL-8) are secreted from RCC cells after 
exposure to hypoxia (VHL deficient RCC cells). Furthermore, the NADPH oxi-
dase isoform, Nox4, plays an important role in hypoxia-induced IL-6 and IL-8 
production in RCC. Additionally, the AMP-activated protein kinase (AMPK) is a 
key regulator of NOX oxidase protein expression. AMPK is a sensor of cellular 
sensor status that has been shown to play a role in the regulation of cell inflamma-
tory processes. Ex vivo studies by Fitzgerald et al. showed that enhanced levels 
of IL-6 and IL-8 result in RCC cell invasion and that activation of AMPK reduces 
Nox4 expression, IL-6 and IL-8 production, and RCC cell invasion. These find-
ings shed light on a possible mechanism by which AMPK and Nox4 are linked to 
inflammation-induced RCC metastasis and that activation of AMPK may represent 
a relevant therapeutic strategy to reduce IL-6- and IL-8-induced inflammation and 
cell invasion in RCC.

VEGF

Binding of VEGF to its receptor initiates a complex of signaling cascades that 
promotes various cellular processes essential for new vessel formation including; 
increased vascular permeability, endothelial cell growth, migration, and survival of 
preexisting vasculature. VEGF also mobilizes endothelial progenitor cells from the 
bone marrow to sites of neovascularization.

The exact mechanism by which VEGF changes vascular permeability is not 
clearly understood but this change leads to macromolecule leak to the extravas-
cular space and followed by edema formation. This change in the extravascular 
microenvironment makes it more proangiogenic compared to the stromal baseline 
conditions (Dvorak 2002). Additionally, VEGF promotes antiapoptotic proteins 
like bcl-2 and A1 which inactivates upstream caspases. This is mediated by activa-
tion of the PI3K-Akt pathway and promotes survival of endothelial cells. VEGF 
signaling increases the expression of several genes in endothelial cells, includ-
ing several proteases, mitogens, and adhesion molecules that ultimately promote 
endothelial cell changes in cytoskeleton, cell morphology, and migration and 
 invasion (Zachary 2001).
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mTOR pathways

Protein kinase B (Akt) and mTOR are key players in processes involved in onco-
genic transformation including cell survival, angiogenesis, and proliferation. 
mTOR is part of two major signaling complexes, mTORC1 and mTORC2, with 
two different functional roles. mTORC1 promotes cell proliferation and growth; 
mTORC2 modulates cell polarity and cytoskeleton rearrangement. Signaling 
of the mTORC1 pathway is initiated by growth factors binding PI3K on the cell 
membrane, this in turn phosphorylates PIP2 to PIP3, and this step is negatively 
regulated by PTEN. However, PIP3 activates Akt, which inhibits TSC (tuberous 
sclerosis complex) results in an overall upregulation of mTORC1 (Lieberthal and 
Levine 2009). In addition to its effects in cell growth and proliferation, mTOR 
activation leads to HIF accumulation; this is mediated through downstream pro-
teins S6K1 and eIF-4E. PTEN is inactive in 20–30 % of RCC tumors (Brenner 
et al. 2002); furthermore, these mTOR-related proteins measured by tissue micro-
array from 375 patients with RCC were found more active in tissue samples from 
higher grade tumor and poor prognostic features (Pantuck et al. 2007), and some 
of these biomarkers (pAkt and p-S6K1) could be predictive of response with 
mTOR inhibition therapy (temsirolimus) (Cho et al. 2007).

TNF pathway

TNF has many different effects on tumor cells mostly dependent on ligation of 
each of its receptors (TNFR1 and TNFR2). Ligation of TNFR1 activates apop-
totic signaling kinase and NF-κB promoting apoptosis. TNFR2 ligation leads to 
activation of EtK and VEGFR2, stimulates the transcription of antiapoptotic pro-
teins, and promotes entry into the cell cycle acting as an autocrine growth factor 
in ccRCC (Al-Lamki et al. 2010). Thus, strategies to reduce TNFR2 expression or 
to selectively block signaling through TNFR2 may be more effective than global 
TNF blockade to reduce tumor progression. Malignant transformation of tubuloen-
dothelial cells changes the profile of TNFR2 expression, in fact at both tissue level 
and plasma levels of TNFR2 have been shown to be elevated in RCC, and this 
elevation correlates with malignant grade of ccRCC (Elsasser-Beile et al. 2000; 
Al-Lamki et al. 2010). Furthermore, TNF-α may play a role in tumorigenesis in 
RCC, TNF-α-induced epithelial–mesenchymal transition and promotes tumor 
invasion by repressing E-cadherin, upregulating vimentin, activating matrix metal-
loproteinase 9 (Ho et al. 2012; Chuang et al. 2008).

STAT signaling pathways

The signal transducers and activators of transcription (STAT) factors represent 
downstream effectors of cytokine and growth factor receptor signaling. STATs 
are dual role proteins with both cytoplasmic signaling function and nuclear tran-
scription factors capability. Cytokines and growth factors associated with tyrosine 
kinase receptors, cytoplasmic tyrosine kinases or molecules with intrinsic kinase 
activity use STAT to transmit cytoplasmic signals (van Boxel-Dezaire et al. 2006).  
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The persistent cytokine and growth factor signaling observed in cancer and 
chronic inflammation leads to accumulation of activated STAT proteins, and this 
persistent STAT activation has been observed in several types of cancer includ-
ing RCC (Buettner et al. 2002; Horiguchi et al. 2002). In the setting of constant 
STAT activation, resulting in persistence of STAT in the nucleus and dysregulated 
gene expression eventually will alter the genotype of the cell. Constitutive expres-
sion of STAT3 induces expression of BCL-XL, MCL1, and survivin, which have 
antiapoptotic functions. Blocking STAT3 signaling can block the expression of 
these proteins and makes cells more susceptible to apoptosis (Catlett-Falcone et al. 
1999; Aoki et al. 2003). STAT3 also induces C-MYC expression which prevents 
cells from reaching terminal differentiation and maintains mitotic cell capabilities 
(Bowman et al. 2001).

9 .3  Role of Inflammatory Molecules in the Development 
of Kidney Cancer: In Vitro Studies

The development and transformation of cancer cells, as well as invasion and 
metastasis is influenced by a complex interaction of inflammatory mediators 
including cytokines, chemokines, their receptors, and downstream signaling path-
ways. This inflammatory signaling profile promotes proliferation of tumor cells as 
well as a microenvironment rich in growth factors, activated inflammatory cells 
and factors that support angiogenesis, migration and invasion (Balkwill 2004). An 
increasing number of cytokines and chemokines are been found to be related to 
RCC, and they often correlate with bad prognosis or high malignant grade. This 
includes CXCR4, CCR3, IL-6, IL-1β, and TNF-α which are among the inflamma-
tory markers found upregulated in RCC (Johrer et al. 2005; Yoshida et al. 2002; 
Dosquet et al. 1994).

9.3.1  Role of Inflammatory Molecules in the Transformation 
of Kidney Cancer Cells

Early in the formation of primary epithelial tumors, cells show excessive prolifera-
tion, angiogenesis, and invasiveness. This is thought to be initially characterized by 
the invasion of the basement membrane which is the first step for tumor cells to 
eventually disseminate and metastasize. The ability to advance through the base-
ment membrane is not exclusive of tumor cells, normal cells can do this as part of 
the epithelial to mesenchymal transition (EMT) which is tightly regulated geneti-
cally and biochemically. Activation of this phenotype is postulated as a key step 
in malignant transformation of epithelial cells and is characterized by altered mor-
phology, adhesion, migration, and cellular architecture (Thiery 2002). Expression 
of vimentin and nuclear translocation of β-catenin are some of the molecular 
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markers of EMT; cells also show resistance to apoptosis and increased migration 
capacity. An invasion assay using CCRCC lines with mutated VHL showed that 
tumor-derived IL-6, TNF-α, IL-1, and matrix metalloproteinase-2 (MMP2) pro-
moted tumor invasion. The most invasive cell lines showed higher levels of mRNA 
of these proinflammatory cytokines and MMP2 and produced more TNF-α, which 
was correlated with stronger invasive ability (Chuang et al. 2008). TNF-α has 
shown to enhance migration of RCC cell lines via activation of PI3K/Akt  pathway 
which in turn inactivates GSK-3β pathway (Sourbier et al. 2006) which has been 
reported to be involved in the regulation of EMT (Luo 2009). Moreover, inhibition 
of PI3K/AKT reactivated the GSK-3β suppression of EMT in TNF-α-conditioned 
RCC cells (Ho et al. 2012).

pVHL can play an HIF-independent role in tumor transformation. VHL muta-
tion results in dysregulation of HIF-1α which in turn activates a cascade of events 
that favor tumor growth and proliferation. However, the mechanism by which a 
normal kidney cell undergoes oncogenic transformation is poorly understood. 
Some in vitro studies have shown that VHL has HIF-1α-independent effect on 
RCC cells, and such effect could play an important role in tumor initiation. In fact, 
overexpression of non-degradable HIF proteins in the absence of VHL mutation 
leads to proliferation of normal-appearing blood vessels but no oncogenic trans-
formation (Elson et al. 2001). pVHL directly binds to fibronectin which interacts 
with integrin to bridge cells to the extracellular matrix in vitro, and this assem-
bly is defective in mutant pVHL cells (Ohh et al. 1998). pVHL stabilizes tumor-
suppressor gene p53 which mediates cell cycle arrest and apoptosis. Additionally, 
pVHL also suppresses the expression of the mitogen cyclin D1 which is required 
for cells to exit the cell cycle upon serum starvation in vitro (Roe et al. 2006; 
Zatyka et al. 2002; Pause et al. 1998). Functional VHL seems also to be required 
for the formation of the primary cilium, which occurs in cells reaching quiescence, 
and its dysfunction is associated with the formation of renal cyst which often pre-
cedes tumor formation (Esteban et al. 2006; Lutz and Burk 2006). Together, these 
experiments suggest that there are independent functions of VHL separable from 
its interactions with HIF-1α that likely play an important role in the oncogenic 
transformation of kidney cells in RCC.

Transforming growth factor  (TGF) β1 is a member of the TGF-β  superfamily. 
This cytokine plays a role in wound healing, fibrinogenesis, and tissue remode-
ling and can strongly influence the growth and phenotype of several types of cells 
(Massague et al. 1992). Overexpression has been observed in different kinds of 
cancer, including RCC. Primary RCC cells as well as different RCC cell lines 
express TGF-β1, and a majority of cell lines are resistant to growth-suppressive 
effect of exogenous TGF-β1 (Ramp et al. 1997). This suggests that transforma-
tion and/or progression of human RCC could be related to TGF-β1 resistance to 
growth inhibition. Transfection of wild-type VHL gene into the human RCC line 
786-O lacking WT pVHL suppressed TGF-β message mainly at the posttran-
scriptional level showing that TGF-β is a target for pVHL. However, this line was 
unresponsive to TGF-β because it lacked the TGF-β type II receptor. While VHL 
mutations appear early in RCC development, a second genetic event resulting in 
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loss of TGF-β type II receptor expression and resistant to the antiproliferative 
effect of TGF-β can occur. Additionally, the biological significance of increased 
TGF-β levels in RCC appears to be the stimulation of angiogenesis, and there-
fore, blocking the angiogenic effect of TGF-β could be a strategy to reducing RCC 
growth (Ananth et al. 1999).

9.3.2  Role of Inflammatory Molecules in the Survival 
of Kidney Cancer Cells

The production of IL-6, a proinflammatory cytokine, is associated with poor 
prognosis in patients with metastatic RCC. IL-6 causes upregulation of the sup-
pressor of cytokine signaling-3 (SOCS3) which plays a role in IFN-α resistance 
in RCC by inactivating cytokine-induced janus kinase/signal transducer and acti-
vator of transcription (JAK/STAT) pathway (Tomita et al. 2011). IFN-α stimula-
tion induced IL-6 secretion and both IL-6 and SOCS3 mRNA expression in RCC 
cell lines. Adding an antihuman IL-6 receptor blocking antibody, tocilizumab, to 
IFN-α-treated RCC cell lines significantly suppressed cell proliferation compared 
to IFN-α stimulation alone. Tocilizumab also inhibited the IFN-α-induced mRNA 
expression of SOCS3. Treatment with tocilizumab in IFN-α-stimulated RCC cells 
enhanced phosphorylation of STAT1 and inhibited SOCS3 expression and the 
phosphorylation of both STAT3 and ERK (Oguro et al. 2013). This experiment 
suggests that autocrine IL-6 secretion after IFN-α treatment can promote tumor 
cell survival possibly through upregulation of SOCS3 and STAT3 activation. IL-6 
decreases the antitumor effects of IFN-α treatment. This inhibition can be reversed 
when an IL-6 receptor blocking antibody is utilized.

TNF-α plays a major role in several inflammatory pathways; it regulates cyto-
toxicity, survival, and apoptotic responses (Wajant et al. 2003). RCC cell lines with 
a non-functional VHL protein were shown to be resistant to TNF-α-induced cyto-
toxicity. Insertion of a wild-type pVHL plasmid into the RCC cells  reconstituted 
the sensitivity to TNF-α compared to empty plasmid insertion as measured by 
an Annexin-V assay going from 2 and 12 % to 32 and 61 % after 48–72-h treat-
ment with TNF-α (Qi and Ohh 2003). TNF-α can both induce cell survival and cell 
death depending on expression of receptors and regulation of downstream signal-
ing. FADD recruitment to the TNFR1 starts the caspase cascade, which results in 
apoptosis. In contrast, TNF-α also activates aPKC, which results in translocation 
of NF-κB into the nucleus and subsequently suppression of apoptosis.

Another member of the TNF family, TNF-related apoptosis-inducing ligand 
(TRAIL) is produced by most normal tissue cells. Binding of TRAIL to its recep-
tor results in apoptosis, primarily in tumor cells. Most RCC cell lines express 
TRAIL-R1 and TRAIL-R2 receptors; however, the majority of RCC cell lines 
are resistant to TRAIL-mediated apoptosis (Ramp et al. 2003). Constitutively 
activated NF-κB correlates with resistance to TRAIL-induced apoptosis in RCC 
cell lines (Oya et al. 2001). VHL protein has been shown to bind several aPKC 
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isoforms and targets them for ubiquitination and degradation (Okuda et al. 2001). 
The nuclear fraction of RCC cell lines was analyzed by electrophoretic mobility 
shift assay and showed higher basal level of NF-κB capable of binding its DNA 
motifs compared with wild-type VHL reconstituted cells. Furthermore, treatment 
with TNF-α showed a significant rise in NF-κB in the nucleus of WT VHL recon-
stituted cells compared to a lower response in non-reconstituted cells (Qi and 
Ohh 2003). This suggests that in addition to downregulation of HIF proteins and 
their target genes, VHL is a positive regulator of apoptosis and RCC cells with 
a mutated VHL display resistant to NF-κB-mediated apoptosis. Functional VHL 
protein may be required for TNF-α and TRAIL-induced apoptotic cell death.

CSF-1 is highly regulated in the kidney and plays an important role in renal 
tubular injury by promoting repair and inhibiting apoptosis (Menke et al. 2009). It 
also participates in progression of several epithelial tumors (Morandi et al. 2011). 
RCC cell lines were found to co-express CSF-1, and its receptor CSF-1R stimula-
tion with TNF-α significantly upregulates this expression at the RNA and protein 
level. Moreover, expression of CSF-1 and CSF-1R is induced in tubular epithe-
lial cells when treated with supernatant from an RCC cell culture in a concentra-
tion dependent fashion and with greater response when the supernatant was from 
stimulated RCC cells. Treatment of RCC and TEC cell lines with CSF-1 showed 
increased cell proliferation in a dose-dependent manner, and this response was 
inhibited with a blocking antibody. RCC cell lines stimulated with TNF-α/LPS 
showed an increased rate of apoptosis, and adding a blocking anti-CSF-1R Ab 
further increased the response (Menke et al. 2012). CSF-1 may have an autocrine 
and paracrine role in RCC promoting tumor cell proliferation, and decreasing 
apoptosis.

9.3.3  Role of Inflammatory Molecules in the Proliferation 
of Kidney Cancer Cells

Chemokine role in proliferation and trafficking

Chemokines are proinflammatory cytokines involved in several immune  reactions 
including inflammation, infection, tissue repair, and many others, and have been 
shown to have an important role in tumor growth and metastasis (Wang et al. 
1998). CXCL12 is a chemokine whose expression has been found decreased in 
rapidly dividing cells such as fibroblast and liver cells (Jiang et al. 1994) and in 
several kinds of solid tumors, it binds to a G protein coupled receptor CXCR4 and 
its expression is commonly elevated in cancer cells including RCC (Begum et al. 
1999; Shibuta et al. 1997; Rempel et al. 2000; Sehgal et al. 1998).

The expression of CXCL12 and its receptor was measured by RT-PCR in 4  
primary human kidney cancer cell lines (Schrader et al. 2002). CXCR4 was 
 elevated in all 4 cell lines analyzed in particular in A-498 cells. This elevation of 
CXCR4 in RCC cells is likely due to a loss of inhibition by the pVHL. CXCR4 
was shown to be one of the target genes of HIF and reconstitution of pVHL in an 
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RCC cell line resulted in significant downregulation of CXCR4 gene (Staller et al. 
2003). Treatment with a recombinant ligand (rhCXCL12 alpha) induced changes 
in intracellular calcium levels in A-498 RCC cells, proving functionality of this 
receptor. Furthermore, a cDNA expression array showed increased stimulation 
of cell cycle and apoptosis-related genes compared to unstimulated A-498 cells. 
Upon binding of CXCL12 to CXCR4, a signaling cascade is initiated, the com-
plex is internalized and localizes into the nucleus (Wang et al. 2009). Silencing of 
the CXCR4 receptor by RNA interference in A-498 cells induced apoptosis and 
inhibited cell growth, migration, and invasiveness compared to control cells (Wang 
et al. 2012b). Previous studies have shown that CXCR4-expressing cancer cells 
commonly metastasize to organs that express abundant CXCL12 (Muller et al. 
2001), and this chemotactic property could also play an important role in RCC 
tumor migration. Moreover, while this HIF-dependent expression of CXCR4 takes 
place in other solid tumors in response to hypoxia, RCC cells could manifest this 
CXCR4 activation much earlier in the tumor progression. Thus, CXCR4 expres-
sion could provide kidney cancer cells with an increased ability to regulate the cell 
cycle, invade tissue barriers, migrate to other organs, and inhibit apoptosis.

A-498 cells also express CCR3, CCR6, CXCR2, CXCR3, and CXCR4 on both 
mRNA and protein levels (Johrer et al. 2005). CCR3 is a receptor for eotaxin-1 
which has been characterized as a potent eosinophil chemoattractant but may also 
play an important role in the proliferation of RCC cells. CCR3 and eotaxin-1 mRNA 
expression is high in a wide range of organs including small intestine, colon, heart, 
kidney, and pancreas (Levina et al. 2009). Proinflammatory cytokines including 
TNF-α, IL-1, IFN-α, and IL-4 induce eotaxin-1 expression in vitro in a variety of 
tissues (Garcia-Zepeda et al. 1996a, b; Schrader et al. 2002; Mochizuki et al. 1998). 
Binding of eotaxin-1 to its receptors leads to activation of G proteins, increased 
intracellular calcium, cytoskeletal rearrangements, activation of mitogen-activated 
protein kinase pathway, and receptor internalization (Zimmermann et al. 1999). 
When A-498 kidney cancer cells were treated with eotaxin-1, there was upregulation 
of intracellular Ca2+, internalization of the receptor-ligand complex that coincided 
with increased cell proliferation compared to control (Johrer et al. 2005).

9.3.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Kidney Cancer Cells

Invasion and metastasis

Metastasis represents the worst prognostic feature of several kinds of cancer. 
Kidney cancer in particular presents a dramatic drop in the 5-year survival rate 
from over 90 % to a mere 10 % when metastasis is present at diagnosis (Cohen 
and McGovern 2005). For a tumor to become invasive a complex series, chemical 
interactions must take place between tumor cells, extracellular matrix, adhesion 
molecules, and blood vessels to allow the tumor cells to escape from the primary 
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tumor site. Inflammatory molecules play an important role in RCC that allows 
these interactions to occur.

MMPs are metalloendopeptidases that have the ability to disrupt the extra-
cellular matrix continuity, thereby playing an important role in the inflamma-
tory response and in promoting histological processes such as tissue remodeling 
and angiogenesis. MMPs also participate in pathological processes like cirrho-
sis, arthritis, and metastasis (Yoon et al. 2003). The loss of VHL function has 
been linked with upregulation of gene and protein MMP expression through 
HIF up-regulation (Petrella et al. 2005). Specifically, MT1-MMP gene is a tar-
get of HIF-2α, and MT1-MMP is thought to be a key mediator of invasion and 
angiogenesis (Seiki and Yana 2003). An experiment using RCC cells either wild-
type (WT8) and null (pRc-9) for VHL looked at their invasive characteristics. 
The pRc-9 cells had increased capacity to degrade and invade in a type I colla-
gen matrix transwell assay compared to WT8 cells. Expression of HIF-2α or 
MT1-MMP in the WT8 cells, via transfection, promoted collagen degradation 
and invasion of these cells comparable to levels seen in pRc-9 cells (Petrella and 
Brinckerhoff 2006).

Tissue inhibitors of metalloproteinases (TIMPs) are endogenous inhibitors of 
MMPs that protect tissues by regulating their function, and a high MMP to TIMP 
ratio in a particular tumor has been found to correlate with malignant grade. 
MMP-2 and MMP-9 are increased in RCC tissue (Kallakury et al. 2001; Kugler 
et al. 1998) and overexpressed in RCC cell lines analyzed after oxidative stress. 
However, the levels of their inhibitors TIMP-1 and TIMP-2 remained unchanged 
compared to unstressed cells. Silencing MMP-9 reduced the expression of MMP-9 
in a RCC cell line (Caki-2) as well as their invasiveness, but cell proliferation was 
not affected (Ueno et al. 2009). The increase in MMP to TIMP ratio may repre-
sent a mechanism by which RCC cells acquire invasive capabilities in the pres-
ence of oxidative stress inducers such as tumor-associated macrophages (TAMs) 
(Hemmerlein et al. 2004).

In addition to ROS, TAMs from RCC specimens have been shown to secrete 
high amounts of IL1-β (Ikemoto et al. 2003). Treatment of serum starved human 
786-0 VHL null RCC cell line with IL-1β resulted in induction of tumor cell inva-
sion in a type I collagen-coated transwell assay. Furthermore, pretreatment of 
RCC cells with a pan-MMP inhibitor, blocked IL-1β-induced invasion thereby 
demonstrating a MMP-dependent effect of IL-1β in promoting cell invasion. 
Moreover, IL-1β potently induced the expression of MMP-1, MMP-3, and MMP-
10 (which have collagen I degradation activity) at the mRNA and protein levels in 
a dose-dependent fashion (Ikemoto et al. 2003).

Urokinase-type plasminogen activator (uPA) has been known to mediate inva-
sion and metastasis of various tumor cells, its expression has been found elevated 
in kidney tumors, and it possibly correlates with aggressive phenotype (Andreasen 
et al. 2000; Swiercz et al. 1998). The protein C inhibitor (PCI) is an endogenous 
inhibitor of several protease enzymes including protein C and uPA. In humans, 
PCI is mainly produced by the liver and other tissues including the reproduc-
tive track, and the kidney also produces it in lesser amounts (Laurell et al. 1992; 
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Francis and Thomas 1984). PCI is found in tissues in complex with uPA, which 
inhibits it suggesting a role of PCI in protecting tissues from unopposed uPA; in 
fact, PCI knockout mice have been reported to grow normally but are infertile, this 
is thought to be due to disruption of the blood–testis barrier (Uhrin et al. 2000). 
uPA has been known to mediate invasion and metastasis of various tumor cells. 
An experiment using purified PCI to treat Caki-1, a kidney cancer cell line that 
expresses uPA (but not PCI) showed that PCI inhibited cell invasion in a dose-
dependent fashion in gel matrix assay, heat inactivation of PCI, or addition of a 
PCI antibody blocked this inhibition and treatment with an uPA antibody also 
inhibited cell migration (Wakita et al. 2004).

RCC, especially the clear-cell type, develops a densely vascular architecture. 
The VHL gene plays a crucial role in the cellular response to oxygen, and its abil-
ity regulates critical regulators of angiogenesis through the HIF transcription fac-
tors (Iliopoulos et al. 1996). In the renal tumor setting, HIF-2α is responsible for 
activation of cyclin-D1, TGF-α, and VEGF pathways (Raval et al. 2005). VEGF 
angiogenic activity is mediated through interaction with other proangiogenic fac-
tors many of which are also gene targets of HIF, some of these molecules, like 
angioprotein-1, provide antiapoptotic properties and vessel stability; erythro-
poietin, also a target of HIF, promotes endothelial cell growth and migration 
(Heeschen et al. 2003; Yamakawa et al. 2004).

MMPs can disrupt the extracellular matrix and promote tumor cell migra-
tion; this disruption of the tissue also allows for pericyte invasion and activation 
through release of growth factors bound to the extracellular matrix; this step is 
necessary for new vessel formation and is also facilitated by platelet-derived 
growth factor receptor (PDGFR) activation on the pericyte (Yamakawa et al. 
2004). PDGF-B and TGF-β1 participate in smooth muscle cell recruitment and 
stabilization (Carmeliet and Jain 2000).

9 .4  Role of Inflammatory Molecules in the Development 
of Kidney Cancer: In Vivo Studies

Animal models

The most widely used murine tumor model is the RENCA cell line that arose 
spontaneously in Balb/c mice (Wigginton et al. 1996). More recently, streptozo-
tocin-induced renal cell tumor lines including SIRCC-1.15 (designated RCC#15) 
have been developed and characterized. The Streptozotocin tumor develops spon-
taneous metastases to lung and mesenteric lymph nodes following into kidneys 
(Gruys et al. 2001). Both of these tumor models are sensitive to different forms 
of immunotherapy; however, neither have the molecular and cellular features of 
human CCRCC as they lack the loss of the VHL gene function and the consti-
tutive expression of HIF and its targets. Conditional models of VHL inactivation 
and VHL knockout mice have been produced but they do not develop spontaneous 
RCC (Kleymenova et al. 2004; Rankin et al. 2006; Haase et al. 2001). A mouse 
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model that specifically express a mutated, constitutively active HIF-1α in kidney 
cells was recently developed and shows characteristics of VHL disease including 
spontaneous kidney tumors (Fu et al. 2011); this model could be a closer step to 
better explore the biology of RCC in an in vivo model. Clearly, additional stud-
ies are needed to develop tumor models that come closer to mimicking human 
RCC. The implantation of human clear-cell tumors into nu/nu mice is currently 
being used to study the signaling pathways of RCC and metabolism of this tumor 
along with TKI resistance (Gameiro et al. 2013; Huang et al. 2010; Karam et al. 
2011). Another model uses tissue slices from freshly collected RCC specimens to 
be implanted under the renal capsule in nu/nu mice (Thong et al. 2014). The major 
drawback to the use of xenograft models in nude mice or NOD-skid is that the role 
of immune cells in either promoting tumor growth (infiltrating macrophages) or 
eradication of tumor via immunotherapy cannot be examined.

9 .5  Evidence from Patients for the Role of Inflammation 
in Kidney Cancer

The production of different inflammatory cytokines, chemokines, and growth fac-
tors by RCC cells and tumor stromal cells stimulates the activation, expansion, and 
trafficking of various immune cells into the tumor where they can promote tumor 
progression by enhancing angiogenesis and initiating T cell immune suppression 
(Fig 9.1) (Gabrilovich et al. 2012).

9.5.1  Immune Inflammatory cells

TAMs

Tumor-associated macrophages or TAMs are cells that originate from recruited 
myeloid cells such as monocytes and MDSC. These myeloid cells are highly 
plastic and tumor-derived factors recruit and sustain them to support angiogen-
esis, tissue remodeling, and immune suppression (Sica and Bronte 2007). TAMs 
can constitute a significant component of solid tumors, and depending on the 
microenvironment, they can present different phenotypes (Sica and Bronte 2007; 
Biswas and Mantovani 2010). In RCC microenvironment, there is an increased 
metabolism of arachidonic acid partly due to the enzyme 15-lypoxygenase (LOX) 
highly expressed in RCC TAMs. This, in turn, increases production of hydrox-
yeicosatetraenoic acids (HETE). An upregulated LOX-HETE pathway in RCCs 
tumor microenvironment affects the immune phenotype of TAMs. For example, 
RCC TAMs secrete immunosuppressive Interleukin-10 and the proinflammatory 
chemokine CCL2. IL-10-producing macrophages are considered “regulatory mac-
rophages” in a recently proposed classification, and their presence could nega-
tively affect prognosis as well as efficacy of tumor vaccines and other kinds of 
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immunotherapy (Mosser and Edwards 2008). RCC TAMs also induce  upregulation 
of CTLA-4, IL-10-secreting TILs, and FoxP3+ T cells, a tolerogenic subset of 
tumor infiltrating lymphocytes called Tregs (Daurkin et al. 2011). And, as dis-
cussed above, their ability to induce oxidative stress and produce IL1-β could 
favor a more invasive and proangiogenic phenotype in RCC cells. RCC tumors 
with high-infiltration TAMs were significantly associated with poor prognosis, 
and inflammatory cytokines TAMs produce, including IL-1β, TNF-α, and IL-6, 
are also independent factors of poor prognosis in RCC (Yoshida et al. 2002; 
Komohara et al. 2011).

MDSC

Myeloid-derived suppressor cells constitute a heterogenous cell population with 
immunosuppressive and angiogenic properties that originate from the bone mar-
row under pathologic conditions such as cancer. These cells have the morphol-
ogy of immature granulocytes, monocytes, and dendritic cells (DCs) (Gabrilovich 
2004). These cells are functionally defined by their capacity to suppress T cell 
immunity via different mechanisms (Gabrilovich 2004; Peranzoni et al. 2010). 
MDSC express enzymes (e.g., arginase 1) that can deplete select amino acids in 
the tumor microenvironment (L-arginine and L-cysteine), thereby limiting the 
availability of these amino acid which are necessary for lymphocyte activation 
(13) (Srivastava et al. 2010). Some MDSC produce reactive oxygen species (ROS) 
and/or inducible nitric oxide synthase, resulting in reduced CTL activity and 
IFN-γ production (Corzo et al. 2009; Kusmartsev et al. 2008; Cohen et al. 2012; 
Ko et al. 2010). MDSC indirectly inhibit T cell immunity by stimulating expan-
sion of regulatory T cells (Treg) (Huang et al. 2006; Pan et al. 2010). MDSC can 
also reduce L-selectin expression of naïve T cells, reducing their ability to enter 
peripheral lymph nodes where DC presents antigen (Hanson et al. 2009). Besides 
mediating immunosuppression, MDSC can stimulate angiogenesis. Injecting nude 
mice with MDSC plus tumor cells compared to tumor alone increased vascular 
density and maturation within the tumor that was dependent metallomatrix pro-
tein 9 (MMP9) production. Interestingly, a subset of MDSC can associate with 
tumor endothelium followed by their differentiation into endothelial cells (Yang 
et al. 2004). Furthermore, the production of VEGF and bFGF by MDSC is STAT3 
dependent since MDSC- mediated angiogenesis can be blocked by STAT3 inhib-
itors (Kujawski et al. 2008). Similar to mouse models, granulocytic (G) MDSC 
(CD33+HLADR−CD15+CD14−) dominate in the blood of patients with differ-
ent types of cancer including RCC, GBM, lung, and pancreatic cancer (Rodriguez 
et al. 2009; Zea et al. 2005; Peggs et al. 2009; Ko et al. 2010; Youn et al. 2012; 
Sippel et al. 2011). Monocytic (CD33+HLADR−CD15−CD14+) are also pre-
sent in modest numbers in RCC patients while a population of MDSC not typi-
cally seen in mouse models are prevalent in RCC, the linage negative subset 
(CD33+HLADR−CD15−CD14−) (11, 23, 25). The granulocytic MDSC are 
known to be suppressive. The impact-increased MDSC numbers in the blood has 
on tumor progression were recently assessed in RCC patients. High pretreatment 
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levels of M-MDSC and G-MDSC in mRCC patients correlated with reduced  
overall survival (Walter et al. 2012).

The abnormal expansion of MDSC is attributable to the heightened produc-
tion of several growth factors such as G-CSF, GM-CSF, IL6, VEGF, S100, and 
SCF (Gabrilovich 2004). Additional molecules expressed in the tumor microenvi-
ronment stimulate MDSC activation, and this includes prostaglandins, and select 
cytokines IFN-γ, IL-4, IL-13, and TGF-β.

Neutrophils

Increased neutrophil numbers in the peripheral blood have been identified as a 
predictor for shorter overall survival in metastatic RCC patients (Choueiri et al. 
2007; Donskov and von der Maase 2006; Donskov 2013; Lopez-Lago et al. 2013; 
Negrier et al. 2002). More recently it was reported that the presence of intratu-
moral CD66b+ neutrophils in RCC patients with localized disease was linked to 
higher tumor size, lower recurrence-free survival, and reduced overall survival 
(Jensen et al. 2009). It may be that the negative impact of neutrophils on RCC 
patient outcome is linked to the evidence that neutrophils from RCC patients are 
immunosuppressive. Peripheral blood from RCC patients contain already mature, 
activated neutrophils with suppressive activity resulting from their expression of 
arginase. Because of their similarities to granulocytic MDSC, they were identified 
as G-MDSC (Rodriguez et al. 2009; Zea et al. 2005). These findings were similar 
to the work of Schmielau and Finn who earlier showed that the presence of granu-
locytes from pancreatic, colon, and breast cancer patients had T cell suppressive 
activity and their presence correlated with reduced T cell zeta-chain expression 
and decreased cytokine production. They also showed that healthy donor resting 
granulocytes could be converted to suppressive cells by exposure to the chemotac-
tic peptide N-formyl-L-methionyl–L-leucyl–L-phenylanine (fmlp) (Schmielau and 
Finn 2001). However, other studies suggest that human G-MDSC constitute imma-
ture neutrophils (CD16−CD33+HLADR−CD66b+) because they display low to 
absent expression of the neutrophil maturation marker CD16 (FcRγ1) (Brandau 
et al. 2011). Additional functional and gene array studies are clearly needed to 
define the interrelationship between G-MDSC, patient neutrophils, and activated 
neutrophils from healthy donors.

9.5.2  Chemokines Receptors (CXCR4, CXCR3 enoxin) 
and Ligands, Cytokines (IL-6, IFNγ, IL-4,) 
that Correlates with Prognosis

Angiogenesis, invasion, and metastasis

As cancer progresses, the phenotype of cells, microenvironment, and the immune 
responses exhibit changes (often orchestrated by tumor cells) that allow this progres-
sion to take place. Real-time PCR and immunohistochemistry staining of specimens 
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from RCC patients with localized or metastatic RCC showed that primary human 
RCC tumors are immunogenic and expresses high levels of HLA class I mRNA and 
proinflammatory cytokines and chemokines. In contrast, metastatic RCC is charac-
terized by an immunosuppressive microenvironment, decreased expression of HLA 
class I, reduced level of IFN-γ and suppression of IP-10, VEGF and SDF-1 at both 
mRNA and protein level (Romero et al. 2006). This may indicate that a switch in the 
tumor cells, its microenvironment, or both may provide an escape for tumor cells 
from the cytotoxic response and favor tumor invasion and metastasis.

The macrophage migration inhibitory factor (MIF) is a cytokine with roles in 
autoimmunity diseases, obesity, and cancer; it promotes inflammation and can pro-
long immune responses. This cytokine is regulated by hypoxia and is one of the 
HIF target genes (Bernhagen et al. 1993; Welford et al. 2006). MIF is expressed 
and correlated with poor prognosis in a number of solid tumors (Du et al. 2013). 
In RCC, MIF was found in most tumor specimens, and it correlated with the pres-
ence of circulating MIF in RCC patients. shRNA inhibition of MIF expression in 
RCC cell lines or the use of a direct antagonist reduced their proliferation rate. 
Similarly, inhibition of MIF receptors CD74 or CD44 resulted in inhibition of 
cell proliferation. Western blot analysis showed MIF signaling through CD74 and 
CD44 increases Src expression and degradation of p27 which could represent a 
mechanism for promotion of cell growth (Du et al. 2013).

Inflammatory molecules as prognostic tools

Inflammation-associated molecules have been increasingly studied as prognostic 
factors or predictors of response. CRP is an acute phase reactant discovered almost 
a century ago and is used in the clinic as a non-specific early marker of inflam-
mation. CRP is mainly synthesized in the liver under different stimuli, mainly 
by IL-6 and IL-1β. Cancer patients often have elevated plasma levels of CRP, 
and it correlates with survival in many solid tumors (Roxburgh and McMillan 
2010; Trichopoulos et al. 2006). In RCC, CRP is too used as a prognostic fac-
tor for patients undergoing surgery as well as receiving systemic therapy (Saito 
and Kihara 2013; Saito et al. 2009). IL-6 levels are elevated in patients with 
RCC, they correlate with CRP levels and correlate with, poor prognosis, survival, 
and response to treatment, both immunotherapy and targeted systemic therapy 
(Michaelson and Stadler 2013; Kallio et al. 2001; Blay et al. 1992).

As discussed earlier, CXCL12 and its receptors, CXCR4 and CXCR7, play an 
important role in kidney cancer cells’ survival and proliferation; CXCR4 has been 
found unregulated in RCC tumors while CXCL12 is decreased compared to sur-
rounding tissues (Schrader et al. 2002; D’Alterio et al. 2010a). The presence of 
this cytokines and receptors in tumor specimens has been correlated with poor 
prognosis. A total of 560 RCC patients’ specimens from three different studies 
were evaluated for CXCR4 and CXCR7 through immunohistochemistry. High 
CXCR4 and high CXCR7 expression predicted poor disease-free survival (DFS). 
Both CXCR4 and CXCR7 were found to have a significant negative correlation 
with survival independently in multivariate analysis. A total of 97 specimens 
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evaluated showed CXCL12 expression which was correlated with poor overall 
survival and DFS. Furthermore, RT-PCR analysis of 49 tumor samples showed 
that the presence of CXCR4 and CXCR7 correlated with symptoms at the time 
of diagnosis and lymph nodes status (D’Alterio et al. 2010b; Wang et al. 2012a; 
D’Alterio et al. 2010a). Screening for the chemokine receptor CXCR3 (recep-
tor for eotaxin-1 discussed above) in 219 tumor specimens found this expres-
sion in almost a third of the samples, and its expression was found to correlate 
with high tumor grade (Johrer et al. 2005). Two ligands for this receptor are CXC 
chemokines, I-TAC and Mig, and they have antiangiogenic activities; however, 
RCC samples showed high levels of both in vascular smooth muscle, pericytes of 
tumor tissues compared to corresponding normal tissue. This paradoxical expres-
sion suggests a stronger opposing angiogenic stimuli or a possible dual role of 
these chemokines generally considered angiostatic (Suyama et al. 2005).

In contrast with the above markers, Th1-associated cytokines could indicate 
favorable prognosis. A total of 67 tumor specimens from sporadic RCC cases were 
analyzed by rt-PCR for Th1- (IP-10, ITAC, MIG, MIP-1β, and RANTES) and 
Th2- (MDC and eotaxin) associated genes. TH1 genes were higher compared to 
normal kidney tissue, and it correlated with IFNγ expression. More importantly, 
out of 59 patients who underwent curative surgery, 9 patients had recurrence, and 
none of them presented high TH1-related cytokines IP-10, ITAC, MIP-1β, and 
RANTES, and 1 patient with high MIG had recurrence after surgery (mean follow 
up of 45.7 ± 29.3 months). Similarly, patients with high eotaxin expression had no 
tumor recurrence after surgery (Kondo et al. 2006).

Matrix metalloproteinases (MMPs) and their regulators, TIMPs, are implicated 
in RCCs invasive potential (see in vitro section). A total of 153 RCC sections 
were analyzed for MMP2, MMP9, TIMP1, and TIMP2 by immune staining, and it 
was found that their increased expression (including TIMPs) correlated with poor 
prognostic characteristics including survival, and high tumor grade (Kallakury 
et al. 2001). The paradoxical correlation of TIMPs expression with poor prognos-
tic features suggest a more complex biology of these inhibitors, in fact, when the 
ratio of MMPs to TIMPs in RCC tumors was compared to normal kidney tissue, 
it was found that tumors cells had a ratio of 2.4 MMP:TIMP (based on a ratio of 
1 for normal kidney) for localized tumors and 4.86 for advanced disease suggest-
ing that a balance of these molecules has probably more prognostic value than the 
absolute number (Kugler et al. 1998).

9 .6  Inhibitors of Inflammation for the Prevention  
and Treatment of Kidney Cancer

NSAIDs

Studies on the use of anti-inflammatory drugs and kidney cancer have been incon-
sistent. The overall risk of cancer in patients who use NSAIDs is reduced com-
pared to patients not taking this drugs (Bardia et al. 2007); this is thought to be 
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due to COX-2 inhibition, reduced inflammation, and effects on cell proliferation 
and apoptosis (Leahy et al. 2002). Cho et al. (2011) used prospective data of two 
different cohorts with 126,000 women and men followed for 16 and 20 years, 
respectively. Lifestyle questionnaires every 2 years enquiring about NSAIDs use 
and illnesses including RCC were done. Aspirin and acetaminophen, which are 
among the most used analgesics, use were not associated with RCC risk, con-
sistent with previous reports (Tavani et al. 2010). In contrast, increased risk of 
RCC was associated with non-aspirin NSAIDs; the absolute risk differences for 
users vs. nonusers of non-aspirin NSAIDs were 9.15 per 100,000 person years 
in women and 10.92 per 100,000 person years in men and a pooled multivariate 
relative risk of 1.51 suggesting an increased risk of RCC with longer use of non-
aspirin NSAIDs (Cho et al. 2011). Although the absolute risk for NSAIDs users 
compared to nonusers is relatively small, the ubiquitous use of NSAIDs world-
wide should emphasize the significance of these results.

COX-2 inhibitors

Cyclooxygenase-2 (COX-2) is an important enzyme involved in the synthesis of 
prostaglandins. In cancer, COX-2 has been linked to several stages of develop-
ment of tumors including cell growth, antiapoptosis, and angiogenesis (Koga et al. 
2004; Sawaoka et al. 1999; Masferrer et al. 2000). COX-2 inhibitors have been 
used in preclinical and clinical studies to inhibit tumor growth and angiogenesis 
and as a chemopreventive drug in different solid tumors (Rao et al. 2002; Wang 
et al. 2013; Fujimura et al. 2007). RCC cell lines overexpress COX-2, and it has 
a role in cell invasion capabilities (Chen et al. 2004a, b). Although in vivo stud-
ies showed COX-2 enhanced tumorigenesis and angiogenesis in a human RCC 
xenograft, and human RCC specimens showed expression of COX-2, human clini-
cal trials using a selective COX-2 inhibitor in combination with IFN-α resulted in 
no added clinical activity compared to IFN-α alone. Furthermore, selective treat-
ment of patients whose tumors showed high immunostaining for COX-2 did not 
benefited from COX-2 inhibition when treated with IFN-α. Selecting high COX-2 
expressing tumors could also represent a selection of highly immunosuppressive 
tumors which could explain this lack of additional response. (Rini et al. 2006; 
Schwandt et al. 2011).

Statins as an anti-inflammatory drug in kidney cancer

Statins are a group of drugs that inhibit HMG-CoA reductase enzyme and lower 
blood cholesterol levels. Although not traditionally considered anti-inflammatory 
drugs, statins have been found to have effects on inflammation and immunomod-
ulation (Schonbeck and Libby 2004). Moreover, statins can reduce cell growth 
and proliferation of several types of cancer cells, and recent studies are looking 
at statins as potential anticancer agents (Sassano and Platanias 2008; Gauthaman 
et al. 2009). Clinically, studies looking at the overall risk of cancer in patients tak-
ing statins have had variable results from reduced overall risk, neutral effect, and 
one study found higher cancer incidence correlated with lower LDL-cholesterol 
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levels (Farwell et al. 2008; Dale et al. 2006; Alsheikh-Ali et al. 2007). Khurana 
et al. (2008) looked nearly 500,000 records of veterans who visited the VA Health 
Care System over a period of 5.6 years, multivariate analysis adjusting for age, 
race, sex, body mass index (BMI), and smoking showed an overall 44 % RCC risk 
reduction in patients taking statins. Mechanistically, the effect of statins on renal 
cancer cells has been shown to inhibit cell growth, proliferation, invasion, and 
pro-apoptotic effects in vitro, it also leads to cell cycle arrest with upregulation 
of p21 and p53 (Fang et al. 2013; Horiguchi et al. 2004). Protein analysis showed 
elevated Bax and decreased Bcl-2; the balance of these two apoptosis-related 
proteins favors apoptosis when it favors Bax. Looking downstream, cleaved cas-
pase-3 (an effector caspase) and cleaved PARP (a caspase-3 target) levels were 
also elevated; furthermore, a statin (simvastatin) mediated these effects by target-
ing the AKT/mTOR pathway which is commonly activated in RCC as discussed 
in the beginning of this chapter. Similarly, phosphorylation of ERK and IL-6 
induced JAK2/STAT3 pathway that results in increased proliferation, migration, 
and invasion of RCC cells was also inhibited by statin pretreatment. In vivo mod-
els showed that statins inhibited tumor growth, metastasis, and induced apoptosis 
in the tumors and, consistent with in vitro experiments; AKT, ERK, and STAT3 
phosphorylation were decreased (Fang et al. 2013; Horiguchi et al. 2004).

Reduction in number and function of suppressive MDSC

Because MDSC are immunosuppressive, and angiogenic multiple strategies are 
being examined to reduce the number and/or function in tumor bearing mice and 
humans (Gabrilovich 2004; Najjar and Finke 2013). Strategies tested in RCC 
patients and mouse models includes the use of all-trans retinoic acid (ATRA) to 
drive the differentiation of immature myeloid cells into mature cells without sup-
pressive activity (Kusmartsev et al. 2008). In RCC patients treated with ATRA, 
the number of MDSC in the blood was significantly reduced, and this reduction 
was associated with an increase in tetanus-toxoid-specific T cell responses (Mirza 
et al. 2006). Others are testing whether MDSC can be converted into tumoricidal 
macrophages by the use of CD40 ligand, TLR agonists, and/or T1-type cytokines 
(Beatty et al. 2011; Shirota et al. 2012; Liscovsky et al. (2011); Zembala et al. 
1994). Additional studies using a different approach demonstrated that blocking 
reactive oxygen species production in MDSC with synthetic triterpenoid (CDDO, 
Me) reduced the suppressive activity of MDSC isolated from patients with RCC 
(Nagaraj et al. 2010). In a mouse model, this approach did not alter the number 
of MDSC in the spleens but did reduce their suppressive activity and decreased 
tumor growth. Select TKI that are used to treat metastatic RCC patients can reduce 
the number of MDSC by promoting cell death. Sunitinib (front-line therapy) sig-
nificantly reduces the number of MDSC in the peripheral blood (Ko et al. 2009; 
van Cruijsen et al. 2008) along with restoring Type-1 T cell IFN-γ responses 
(Ko et al. 2009; Finke et al. 2008). Additionally, select chemotherapy agents can 
also reduce MDSC levels in cancer patients (Gabrilovich 2004; Najjar and Finke 
2013). In select mouse tumor models, sunitinib therapy when combined with vac-
cines and/or adoptive therapy can enhance tumor regression, improve survival, and 
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increase development of antitumor T cell responses compared to either treatment 
alone (Bose et al. 2011; Farsaci et al. 2012; Kujawski et al. 2010; Ozao-Choy et al. 
2009).

Reduction in tumor-promoting TAM

IL-10 and CCL2 production by RCC TAM is likely mediated by  overexpression 
of the enzyme 15-lipoxygenase-2 (15-LOX2), resulting in production of the 
 biologically active lipid 15 (S) HETE. Inhibition of the lipoxygenase pathway by the 
inhibitor NDGA significantly reduced expression of the chemokine CCL2 by TAM, 
and in vitro reduced the ability of TAMs to produce IL-10 (Daurkin et al. 2011).

9 .7  Conclusions and Future Directions

The last couple of decades have seen exponentially growing evidence linking can-
cer and inflammation, and with this a shift to our approach to cancer from strictly 
a disorder of cells with damaged or mutated genes that grow unregulated to one 
that includes the interaction between tumor cells and the immune system where 
tumor cells use host’s immune mediators to foster their growth and survival, in 
turn, inflammation becomes chronic and tumors thrive and progress, a view that 
Rudolph Virchow had over 150 years ago. RCC represents 90 % of primary kid-
ney tumors and is a prototypical tumor that interacts profoundly with the immune 
system. The gene mutations that result in a loss of function of the VHL gene are a 
common feature of sporadic and familial cases of RCC. Most solid tumors eventu-
ally outgrow their blood supply and enter a constant state of hypoxia; this activates 
hypoxia-inducible genes via the HIF; in RCC, however, the loss of VHL function 
results in a constant HIF expression and function early in the tumor formation 
even in normoxic conditions. Early on there is upregulation of many pathways that 
promote tumor growth, proliferation, invasion, angiogenesis, antiapoptosis, and 
evasion of the immune system. These pathways are mediated by targets of HIF 
which include VEGF, MMPs, chemokines, and chemokine receptors, cyclin-D1, 
TGF-alpha, angioprotein-1, erythropoietin among others. The VHL protein itself 
has HIF-independent functions that may favor malignant transformation and tumor 
progression; it mediates cell–extracellular matrix interactions and assembly, stabi-
lizes p53, suppresses cycling D1, and helps cells reach quiescence.

Surgery remains the most effective treatment for RCC but is limited to local-
ized disease. Surgery for advanced RCC does not improve survival but anecdotal 
cases of metastatic disease regression after nephrectomy has hints on the control 
RCC has over immune-tumor interactions. Advanced RCC responds poorly to 
chemotherapy and/or radiation although it is considered an immunogenic tumor 
and is modestly responsive non-specific immunotherapy for RCC (IL-2 and IFN-α). 
While a small percentage of patients achieved cures with this approach, signifi-
cant toxicity to high-dose IL-2 made way to more specific therapies. HIF target 
genes and their pathways are now the main focus of the current and developing 
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treatments of RCC (e.g., TKI targeting VEGF and mTOR inhibitors), termed 
“ targeted therapy,” and have proven to have greater survival benefit than IL-2 and 
IFN-α treatment. Therapies targeting checkpoints of the immune system such 
as CTLA-4 and PD-1 pathways have shown significant activity in some cancer 
types such as RCC and providing renewed interest in immunotherapy approaches. 
Additionally, growing evidence is emerging on inflammatory profiles on the 
patient side that can help predict not only prognosis and survival but also  predict 
response to specific treatment. Inflammatory cytokines usually correlate poor 
prognosis or advance disease, and immune infiltrating cell profiles can also predict 
patient outcomes; even xenograft tumor model using fresh tissue tumor samples 
implanted in nude mice are used in an attempt to predict best response to treat-
ment. Clearly, efforts are been made to characterize both patients and their tumor 
inflammatory profiles and treatments that target a more specific biology. There are 
many unanswered questions in the interactions of RCC with the immune system, 
a better understanding of this bilateral dialog is vital to achieve clinical improve-
ments in patients with RCC.
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Abstract Gastric cancer, despite its declining incidence rate, is still the second 
cause of cancer-related death worldwide, killing 750,000 people each year and 
remaining the second common type of cancer. The best examples of inflammation- 
associated cancer in human beings may be gastric cancer. Understanding the 
molecular mechanism of the inflammation in gastric carcinogenesis is important 
for developing new strategies against gastric cancer.

10 .1  Introduction

Cancer is a major public health problem. Every year almost 1 million new cases of 
gastric cancers are presented and there are about 750,000 deaths caused by  gastric 
cancer. It ranks second in terms of cancer-related deaths after lung and bronchus 
cancer (Hussain and Harris 2007; Jemal et al. 2011). Although chemotherapy 
improves life expectancy, complete resection of gastric cancer (R0) via gastrec-
tomy remains insufficient and more than 80 % of patients with advanced gastric 
cancer die of the recurrent disease within 1 year after diagnosis (Group et al. 2010; 
Gomceli et al. 2012).

The choice of treatment generally depends on the tumor’s size, tumor 
 location, stage of disease, and general health status of patient. Treatment of the 
 gastric  cancer consists of surgery, chemotherapy, radiotherapy, and also targeted 
 therapy. Surgery is a common treatment of all stages of gastric cancer. The aim 
of  surgery is to remove as completely as possible all grossly visible tumor tissue 
and to obtain histologically free surgical margins. Total and subtotal gastrectomy 
are used for R0 resection. If the tumor is blocking the stomach but the cancer 
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cannot be completely removed by standard surgery, endoluminal stent placement, 
 endoluminal laser therapy, and gastrojejunostomy are used in palliative surgical  
procedures. Generally, 3 cycles of chemotherapy regimen are used before and after 
surgery. Each cycle lasts 3 weeks. The most commonly used drug combinations 
for gastric cancer are ECF and ECX. ECF contains the drugs epirubicin, cispl-
atin, and fluorouracil, and ECX contains epirubicin, cisplatin, and capecitabine. 
Targeted therapy is an another type of treatment of gastric cancer. A drug called 
trastuzumab has led to significant gains in overall survival if the stomach cancer 
cells have too much HER2 protein (Misleh et al. 2013).

10 .2  Inflammatory Signaling Pathways

Cell proliferation, differentiation, and function are principally arranged with a broad 
signaling network mediated by stimulative/inhibitory hormones,  neurotransmitters, 
various cytokines, and growth factors. The interactions between cells are the most 
important factors that keep the balance of this network which can influence cell 
proliferation in positive or negative ways, as well as these interactions induce a 
series of differentiated responses in appropriate target cells. When these networks 
are inappropriately regulated, neoplastic cells may occur with its  autonomy of 
unrestrained growth and may harm the organism even the causes are disappeared  
(Fedi et al. 2000).

Inflammation is one of the predominant manifestations of innate and adaptive 
immune systems that different and also alternative inflammatory mechanisms play a 
part in remodeling of tissue and re-establishment of tissue homeostasis in consequence 
of infection or injury by exogenous or endogenous means. All pro-inflammatory 
responses are accompanied by anti-inflammatory responses as a non-homogenous 
result that depend on type of the pathogen or tissue damage, the genotype of the host, 
and also discrepancies between the tissue involved. Any disturbance in tissue home-
ostasis activates the innate immune cells that are first line of defense which quickly 
migrate into the injured tissue after vasodilatation and in response to chemokine gra-
dients, classically described as the inflammatory stage of wound healing (Velnar et al. 
2009). The innate immune system cells are composed of macrophages, mast cells, 
dendritic cells (DC), and natural killer cells (NK), etc., that regulates the inflammatory 
response by releasing excessive growth hormones, cytokines, chemokines, matrix-
remodeling proteases, reactive oxygen, and nitrogen species on behalf of taking con-
trol of the inflammatory process (Coussens and Werb 2002; Nathan 2002). These cells 
also promote healing by releasing cytokines such as tumor necrosis factor (TNF), 
interleukin (IL)-1, interleukin (IL)-6 that achieves cell survival, activate stem cells 
and promote epithelial proliferation. Also, the correlation between tumor-associated 
macrophage abundance and poor prognosis has been shown (Nowicki et al. 1996). 
Furthermore, macrophage-deficient mice display reduced progression of tumors to a 
more malignant phenotype (Bromberg and Wang 2009). NK and DC also play a key 
role in providing a link between adaptive and innate immune response, and both have 
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crucial roles in maintaining the antigen-specific immunity (de Visser et al. 2006). Th1 
response and its accompanying mediators interferon (IFN)-γ are not only necessary 
for Helicobacter-induced inflammation but also for the development of atrophy or 
metaplasia and spasmolytic polypeptide-expressing metaplasia (SPEM); however, a 
Th2 response and its mediators (i.e., IL-4) appear to be protective. The presence of 
a Th1, rather than a Th2, immune response is also associated with better survival in 
gastric cancer patients (Marshall and Warren 1984).The host response to the inflam-
mation is a key factor takes role within inflammation process leading to carcinogen-
esis which includes the steps of initiation, promotion, and progression (Kinzler and 
Vogelstein 1996).

In addition, inappropriate and steady regulation of the immune components may 
be a cause of chronic inflammation by generating an initiative microenvironment 
that alters normal cellular homeostasis and advances the stepwise accumulation of 
genetic and epigenetic alterations of various proto-oncogenes and tumor suppres-
sor genes on behalf of cancer development. These genetic and  epigenetic changes 
include point mutations, deletions, duplications, recombinations, methylation of var-
ious tumor-related genes through various mechanisms (Chiba et al. 2012) and also 
include altered microRNAs expression (Zhang et al. 2008). Although, multiple sign-
aling pathways including increased inflammatory cytokine production, abnormal  
apoptosis, inappropriate cell proliferation/differentiation, and epithelial transfor-
mation are triggering causes of these alterations. The fact is that biology of cell  
division, differentiation, and apoptosis is exceedingly similar in both normal and 
cancer cells (Ooi et al. 2009).

Some of the earliest observations in cancer biology as well as recent advances 
in molecular analyses contribute to our knowledge about the multistep process 
of  gastric carcinogenesis (Yokozaki et al. 1997; Balkwill and Mantovani 2001; 
Gutierrez-Gonzalez and Wright 2008). Ooi et al. (2009) mentioned in a study that 
among 70 % of GC patients, three oncogenic pathways are deregulated, which are 
demonstrated as: proliferation/stem cell pathway (40 % of GCs), NF-κB pathway 
(46 % of GCs), and Wnt/b-catenin pathway (39 % of GCs). Nuclear factor (NF)-κB 
and STAT3 pathways have emerged as key regulators of the release of these pro-
inflammatory cytokines, and important mediators of both tumor proliferation and 
persistence of chronic inflammation. The activation of these pathways results in fur-
ther cytokine release (Yang 2007; Rius et al. 2008; Guilford et al. 1998). Several 
studies suggest that association between gastric carcinogenesis and cytokine overex-
pression, especially IL-1, IL-6, TNF which are also regulated by the NF-κB, showed 
such a clinical correlation with NF-κB signaling pathway upregulation in gastric 
cancer cells more than benign disorders such as gastritis (Yin et al. 2013). STAT3 
drive in gastric cancer initiation and progression through its activation by cytokines, 
IL-6 family ligands are expressed in the stomach that IL-6 and IL-11 provide a basis 
in tumorigenesis (Giraud et al. 2012).

The gastrointestinal tract has rapid epithelial turnover and exposure to injury by 
infections and dietary toxins. These conditions create very high cancer prevalence. 
Intestinalization of gastric units, which is called “IM”; phenotypic antralization 
of fundic units, which is called “spasmolytic polypeptide-expressing metaplasia 
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(SPEM)”; and the development directly from the stem/progenitor cell zone are 
three pathways that have been described for gastric carcinogenesis (Fox and Wang 
2007; Hoffmann 2008; Slack 1986).

Stem cell activation is a remarkable step in obtaining the tissue repair and self-
renewal. Despite the main disadvantages of addressing the response of human 
immune system in the clinical researches remain obscure, these studies implicate 
that only a subset of cancer stem cells (CSCs) propagate the tumor (Vries et al. 
2010), while the frequency of CSCs greatly increases to possibly more than 25 % 
of all tumor cells (Shmelkov et al. 2008; Quintana et al. 2008; Kelly et al. 2007). 
Several signaling pathways such as, Wnt/β-catenin pathway, take role in assuring 
the homeostasis and maintain the balance of gastric epithelia between progenitor and 
stem cells (Lickert et al. 2001; Katoh 2007). Additionally, Wnt signaling pathway 
is described as important steps of tissue repair and stem cell self-renewal in chronic  
tissue injury-related carcinogenesis (Beachy et al. 2004). It has been shown in a study 
that Wnt pathway in association with other inflammatory signaling pathways initiates 
the gastric progenitor cells through the metaplasia-carcinoma sequence in rat gastric 
mucosa (Oshima et al. 2006). In another mouse model, activated macrophages in the 
inflamed or Helicobacter pylori-infected gastric mucosa express TNF-α, which stim-
ulate the surrounding cells to promote Wnt/β-catenin signaling activity in multistep 
pathogenesis of inflammation leading to gastric cancer (Oguma et al. 2008).

Cyclooxygenases (COX) are the key enzymes that convert and array of fatty 
acid substrates into pro-inflammatory prostanoids. There are 2 types of COX 
genes, type 1 is a physiologic gene that constitutively expressed in many tissues 
and responsible for the synthesis of prostanoids involved in protection of the gas-
trointestinal mucosa and for production of the pro-aggregatory prostanoid throm-
boxane by the platelets. In the contrary, type 2 COX gene is usually undetectable 
in most tissues. COX-2 is an inducible gene and activated by several stimulus like 
hormones, pro-inflammatory cytokines, growth factors, and tumor promoters. 
Also COX-2 has been related to inflammation, reproduction, and carcinogenesis 
(Taketo 1998; Dannenberg et al. 2001).

Although the subsequent pathways are different, chronic inflammation is the 
first step in both the intestinal and the diffuse type of gastric cancer. While the 
intestinal type has a sequence of multifocal atrophic gastritis, IM, and dysplasia, 
which advances to carcinoma, the diffuse type tends to be primarily genetic in  
origin (Correa 1995; Nardone et al. 2004). The progress from IM to gastric cancer 
has a wide range of molecular alterations affecting transcription factors, such as 
CDX1 and CDX2, telomerases, microsatellite instability, mutations of p53 protein, 
overexpression of COX-2, cyclin D2, and decreased expression of p27 (Muller 
et al. 2001). The next step is gastric dysplasia. During the progression of normal 
tissue through the metaplasia-dysplasia sequence, there are mutations in genes 
including p53, also loss of heterozygosity of the adenomatous polyposis coli gene, 
overexpression of the anti-apoptotic gene bcl-2, and a mixture of polyploidy and 
aneuploidy (Muller et al. 2001).

As described above, several signaling pathways take place in gastric carcino-
genesis, and detection of the form and complexity of interactions between these 
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oncogenic pathways may be helpful in the immediate future to taxonomize the 
individual gastric cancers into biologically and clinically relevant subgroups  
(Ooi et al. 2009).

Aside cytokines, members of the nuclear hormone receptor superfamily, which 
are ligand-activated transcription factors and members, peroxisome proliferator-
activated receptors (PPARs) are assigned in multiple tasks. PPARγ, in particular, 
is involved in the control of inflammation and glucose metabolism and participates 
in the processes of cellular proliferation, differentiation, and apoptosis. It has been 
clearly demonstrated that gastric cancer cell lines express PPARγ and PPARγ 
is implicated in H. pylori-related gastric carcinogenesis (Morita et al. 2001; 
Konturek et al. 2003). PPARγ ligands, especially troglitazone, induce growth inhi-
bition of gastric cancer cell lines, and that PPARγ agonists may have potential in a 
cancer therapeutic role (Sato et al. 2000). In addition, a study suggested that on the 
effect of PPARγ agonists, PPARγ antagonists also inhibit the gastric cancer cell 
lines growth which explains that PPARγ may effect gastric carcinogenesis through 
a PPARγ-independent pathway (Ma et al. 2009).

10 .3  Role of Inflammation in Gastric Cancer

About 150 years ago Rudolph Virchow distinguished that inflammatory cells are 
existed in tumor tissues suggesting that chronic inflammation played a role in 
carcinogenesis. Since then it has been established that 25 % of all cancer types 
related with chronic inflammation (Hussain and Harris 2007). After identifying 
chronic atrophic gastritis and discover of H. pylori, gastric carcinoma has taken 
place in one of the cancers caused by chronic inflammation.

Over 100 years several studies have been conducted on gastric cancer and its 
relationship with atrophic gastritis and intestinal metaplasia. There has been a sig-
nificant progress through the understanding of the development of gastric cancers, 
after in 1937, Magnus concluded that the presence of intestinal epithelium in the 
stomach is the result of the faulty regeneration of surface epithelium in a mucosa 
repeatedly damaged by gastritis and that it is, in fact, an example of metaplasia 
resulting form chronic irritation, and in 1955, Morson suggested that gastric car-
cinoma has arose from the areas of intestinal metaplasia (Morson 1955; Magnus 
1937). Interest in H. pylori as a cause of cancer began after the pioneering discov-
eries of Marshall and Warren in 1983. H. pylori infection is the most common bac-
terial infection worldwide, almost 80 % of the population in developing countries 
are infected with H. pylori (Pounder and Ng 1995). H. pylori is a gram-negative 
spiral-shaped rod that usually acquired in infancy. It has four to six flagella that 
settle beneath the mucus layer of stomach. This is a defensive mechanism which 
protects bacteria from low gastric pH. Another defensive mechanism is its highly 
active urease enzyme which is capable of dividing urea into ammonia and bicar-
bonate, creating a non-acid microenvironment. H. pylori has various virulence 
factors such as its screw-like shape, lipopolysaccharide, vacuolating cytotoxin 
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A (VacA), cytotoxin-associated gene A (CagA), and its pathogenicity island  
(cagPAI). In recent years, there have been some studies about cagA and cagPAI 
and their relationship with gastric adenocarcinomas (Yamaoka 2010).

After the discovery of H. pylori in the late 1980s and 1990s, many researches have 
been achieved on its effects over the gastric mucosa and linkage to multistep patho-
genesis of atrophic gastritis, intestinal metaplasia, and finally gastric cancer sequence 
(Correa 1988). The pattern of gastritis has also been shown to correlate strongly with 
the risk of gastric adenocarcinoma. The presence of antral-predominant gastritis, the 
most common form, confers a higher risk of developing peptic ulcers whereas corpus 
predominant gastritis and multifocal atrophic gastritis lead to a higher risk of devel-
oping gastric ulcers and subsequent gastric cancer. Pathogens that insist a long-term 
infection, such as H. pylori, can lead to the chronic production of pro-tumorigenic 
cytokines (Grivennikov et al. 2010). The response to H. pylori infection and the  
subsequent pattern of gastritis depends on the genotype of the patients and in particu-
lar genetic polymorphisms of IL-1 beta which is an inflammatory mediator triggered 
by H. pylori infection (Milne et al. 2009). H. pylori is the most important risk factor 
that causes chronic gastritis, peptic ulcus, non-cardia adenocarcinomas, and mucosa-
associated lymphoid tissue (MALT) lymphoma. Although most of the infected indi-
viduals are asymptomatic, 10–15 % of them develop peptic ulcus and only 1 % of 
them develop gastric malignancy (Ernst et al. 2006). H. pylori has been classified 
by the World Health Organization as a class one carcinogen in 1994 (Hoggart et al. 
2002). However, gastric cancer is not prevented by H. pylori eradication in all patients. 
This can be speculated that prevention of H. pylori-associated carcinogenesis only 
benefits those in whom the malignant process has not begun. Understanding the mech-
anism of inflammation and cancer may provide a powerful tool for understanding  
cancer development and prognosis.

Also other pathogen-associated inflammatory responses leading to gastric cancer 
has been identified, especially Epstein–Barr virus (EBV) that has been accounted 
for 10 % of the total GC cases (Ushiku et al. 2007). As well as Shin et al. (2006) 
revealed a rare agent human papilloma virus called the John Cunningham virus 
(JCV), and JCV T-Ag (oncogenic transforming antigen) has been isolated in 21 out 
of 37 GC (57 %) patients. Besides, other studies has already been concluded that 
JCV T-Ag DNA sequences are even presented in 80–90 % of colorectal cancers 
(Dyson et al. 1990; Bollag et al. 1989).

In the literature, association between parasitic infections and gastric cancer has 
also been described. Toxocariasis infestation-related multiple liver and  pulmonary 
metastatic nodules have been documented in the follow-up of three gastric  
cancer patients which are fully regressed after anti-biotherapy (Park et al. 2012). 
In another patient diagnosed as gastric cancer showed Microfilaria infestation in a 
sample of supraclavicular lymphoid tissue aspiration cytology in the background 
of malignant cells thought as transmigration along with metastatic emboli in an 
immunosuppressed state (Kumar 2010). Although, underlying mechanisms of 
existence of these pathogens, associated malignancy has to be clarified.

Other etiologic factors in gastric cancer are shown in Table 10.1 (Gomceli et al. 
2012).
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10 .4  Role of Inflammatory Molecules in Gastric Cancer: 
Evidence from In Vitro Studies

Inflammatory cytokines are the remarkable determinants cell survival and death. 
IL-1 and IL-6 activate nuclear factor-кB (NF-κB) and STAT3 pro-survival tran-
scription factors to induce cell survival and tumor development, where as other 
cytokines such as Fas ligand and TNF-related apoptosis-inducing ligand (TRAIL) 
induce apoptotic cell death (Kuraishy et al. 2011). It is now well accepted that if 
the host-mediated anti-tumor activity is incapable of forming immune response 
via several defending mechanisms, tumor cells undergo immune escape and grow 
 rapidly. Dunn et al. (2004) suggested as in “cancer immunosurveillance” theory 
that cytokines have dual roles, while such cytokines especially TNF, TRAIL, FasL, 
and TWEAK are inducing the apoptotic cell death, the other cytokines such as type 
I interferon (IFN) and TGF-β limit the proliferation of epithelial cells. TNF-α, espe-
cially in combination with IFN-γ, were originally described for their anti-tumoral 
activity, a cytotoxic action against tumor cells by regulating the immune response, 
host defense and gene expression. It is demonstrated in a study that IFN-γ regu-
lates apoptosis by soluble TNF-R released by IFN-gamma in the injured gastric 
epithelial cell line induced by TNF (Furuta et al. 2002). IL-12 and IL-18 both 

Table 10 .1  Etiologic factors in gastric cancer

Adapted from Gomceli et al. (2012)

Genetic factors Environmental factors Other factors

Sex Helicobacter pylori Gastric adenomas
Familial adenomatous polyposis Epstein–Barr virus Barrett’s esophagus
Hereditary non-polyposis  

colorectal cancer (Lynch 2)
Nitrites Hamartomas

Genetic diffuse gastric cancer 
(E-cadherin–CDH 1 mutation)

Excess alcohol ingestion Menetrier’s disease

Genetic polymorphisms for  
pro- and anti-inflammatory 
cytokines

High intake of salted, pickled, 
or smoked foods

Chronic atrophic gastritis

Polymorphisms for cell  
receptors of innate immune 
response

Low intake of fiber, fruits,  
and vegetables

Gastric metaplasia

Peutz–Jeghers syndrome Antioxidant consumption 
(especially ascorbic acid, 
carotenoids, folates, and 
tocopherols)

Pernicious anemia

Tobacco smoking  
(adenocarcinoma  
of cardia)

Benign gastric ulcers
Fundic gland polyps
Hyperplastic polyps
Gastric biopsy revealing  

high-grade dysplasia
History of subtotal  

gastrectomy (>20 year)
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allow proliferation of T cells and potent production of IFN-γ, which may lead to a 
direct anti-proliferative and pro-apoptotic effect on the tumor cells as well as anti-
tumor activity (Ye et al. 2007). In a study, IL-18 enhance the proliferation of gastric 
cancer lines via NF-κB signaling pathway in a dose-dependent manner, where as 
L-18-pretreated gastric cancer cells, which were cultured with cytokine-activated 
peripheral blood killer lymphocytes, showed less secretion of IFN-γ or perforin, 
anti-tumor products of killer lymphocytes, resulting in a decreased susceptibility of 
cancer cells to killer lymphocytes (Majima et al. 2006). Despite cytokines, several  
in vitro studies have found that PPARγ activation results in cell cycle arrest and/
or apoptosis of gastric cancer cells (Takahashi et al. 1999). Cytokines produced 
in response to injury have enormous effects on cell survival contributing to tumor  
initiation, growth, progression, and metastasis, which is yet to be elucidated.

Chronic inflammation plays an important role in tumorigenesis and macrophages 
are a key player in generating the chronic inflammation microenvironment by being 
activated persistently until leading to continuous tissue damage (Macarthur et al. 
2004). In the acute phase of inflammation, the release of endogenous reactive oxy-
gen (ROS) and nitrogen species (NOS) (O2

−, H2O2, NO, OH, ONOO−, HOCl) 
from such innate immune cells as macrophages together with other leukocytes con-
tributes a fight back to infection and pathogens (Maeda and Akaike 1998; Leach 
et al. 1987). However, sustained generation of ROS and NOS may alter proliferating  
cells via forming a tumorigenic microenvironment that generated in several path-
ways. Continuous deleterious ROS and NOS exposure triggers amplification of 
inflammatory cytokine production that stimulates signal transductors, angiogenic 
factors, and oncogene overexpression and post-translational modification of tumor 
suppressor genes and also causes direct DNA damage by inhibition of DNA repair in 
proliferating cells (Federico et al. 2007).

ROS and NOS secretion is under control of pro-inflammatory cytokines 
through the activation of protein kinases signaling that accumulates the production 
of free radicals such as hydroxyl radical (OH•), superoxide (O2

−•), nitric oxide 
(NO•), and peroxynitrite (ONOO−).

TNF-α induces ROS production in neutrophils, tumor cells, and also endothelial 
cells via a ceramide-dependent signaling pathway (Corda et al. 2001), while TNF-
α, IL-1β, interferon-γ (IFN-γ) stimulates the expression of inducible nitric oxide 
synthase in inflammatory and epithelial cells. In addition, in an increased cellular 
oxidative stress process, TNF-α induced excessive production of reactive oxygen 
species, influence its cytotoxic effects on tumor cells, and arrangement of gene 
expression (Goossens et al. 1995; Schutze et al. 1992).

TNF-α and IL-1β also induce the formation of ONOO−, which formed by 
a reaction of NO• with superoxide, is a constitutive producer of IL-8. IL-8 is a 
potent pro-inflammatory chemokine derived from monocytes, macrophages, and 
endothelial cells that promote adhesion, migration, invasion, and chemoresist-
ance of gastric cancer cells (Zouki et al. 2001; Kuai et al. 2012). When ROS levels  
are significantly increased, oxidatively altered nucleic acids (Demple and Harrison 
1994) cause DNA damage including strand breaks, intrastrand adducts, and DNA 
protein cross-links (Valko et al. 2005). In addition, ROS mediates the formation of 
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8-oxo-7,8-dihydro-20-deoxyguanosine (Inoue and Kawanishi 1995), and 8-nitro-
guanine (Yermilov et al. 1995; Akaike et al. 2003), which are considered to be 
potential biomarkers of oxidative stress (Evans et al. 2004), in relation to cancer-
associated inflammation (Valko et al. 2006, 2007). 8-hydroxydeoxyguanine basically 
alters the nucleotide string by leading to guanine(G)/cytosine(C) to thymine(T)/
adenine(A) transversions which are also observed in vivo in the ras gene (Bos 
1988) and the v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (K-RAS) 
and TP53 tumor suppressor gene in lung and liver cancers (Takahashi et al. 1989;  
Hsu et al. 1991).

In an another study, chronic gastritis as a precancerous lesion of gastric cancer,  
is characterized by the accumulation of oxidative DNA damage that H. pylori 
infection is the major determinant for DNA adduct formation (Farinati et al. 
1998). H. pylori-infected stomach arranges the microenvironment for the activated 
neutrophils to provide the ROS or NOS production besides that H. pylori itself 
also produces ROS (Handa et al. 2010).

NO• has a crucial role in inflammation and its functional heterogeneity, between 
preneoplastic and antineoplastic functions is the remarkable status in the field of 
cancer biology. NO• and nitric oxide synthase (NOS), especially overexpression 
of NOS2, both have an impact on the post-translational modification of tumor sup-
pressor genes such as p53 and Rb during chronic inflammation (Ying et al. 2005; 
Hofseth et al. 2003). NO• mediated p53 accumulation and post-translational modifi-
cation promote gastric cancer progression in association with advanced tumors even 
with metastasis thereby causing cellular growth arrest, inducing apoptosis and onco-
genic mutations in the p53 gene (Rajnakova et al. 2001).

However, c-MYC oncogene activation generates sufficient ROS to produce 
DNA strand breaks, activate p53 pathway in the absence of apoptosis, and cause 
DNA damage before the S phase in association with ROS induction in normal 
human fibroblasts (Vafa et al. 2002). Thus, activated oncogenes induce genomic 
instability in consequence of DNA damage in both precancerous lesions and 
 cancers (Halazonetis et al. 2008)

However, a tumorigenic microenvironment, formed by an unresolved inflam-
mation on account of any deleterious effects of unrestrained release of mediators 
that already exacerbated by such immune cells, mesenchymal cells, and epithelial 
cells, contributes to tumor initiation and/or initial tumoral progression. Cytokines 
are the putative regulators of the inflammation with pro- and anti-inflammatory 
functions, where INF-γ, TNF, IL-1α/β, IL-6, and chemokines are known to be the 
major cytokines important for inflammation and cancer development (El-Omar 
et al. 2000; Ben-Neriah and Karin 2011; Kuraishy et al. 2011).

TNF-α has an important role in both anti-tumoral activity and tumorigenesis with a 
diversity of response in the chronic inflammation, which ranges between tissue recov-
ery and tissue destruction. TNF-α, produced by malignant cells,  leukocytes, and other 
cells in tumor microenvironments, acts primarily through membrane-bound homo-
trimeric receptors TNRFI and TNRFII in autocrine and paracrine ways (Locksley 
et al. 2001). Despite locally high dose of TNF-α exposure destroys the tumor vas-
cularate and causes tumor necrosis, sustained production of TNF-α may facilitate 
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tissue remodeling and stromal development linking to tumor growth and spread as an 
endogenous tumor promoter (Balkwill and Joffroy 2010). TNF-α can also promote the 
angiogenesis by inducing a range of angiogenic factors, thymidine phosphorylase, and 
matrix metalloproteinases (MMPs) (Balkwill and Mantovani 2001; Leek et al. 1998; 
Balkwill and Joffroy 2010; Aggarwal 2003). In addition, TNF-α has a vital role in 
DNA damage with the help of other inflammatory cytokines, IFN-γ, and IL-1β, by 
upregulating iNOS and NO• production which causes direct damage of DNA and 
inhibits the DNA repair (Jaiswal et al. 2000). Besides that, TNF-α implicates other 
chemokines via regulating a tumorigenic signaling network, in inflammatory pro-
cesses leading to tumorigenesis (Balkwill and Joffroy 2010).

Thus, TNF-α secures its position as a major mediator of inflammation-associ-
ated carcinogenesis, by contributing a tumorigenic microenvironment via  inducing 
several cytokines, angiogenic factors, and MMPs that cause DNA damage and 
promote tumor growth and tumor metastasis in the survival of tumor cells through 
a tumorigenic signaling pathway, NF-кB (Balkwill and Joffroy 2010). NF-кB is 
a transcription factor, and NF-кB-regulated genes provide several products that 
inhibit apoptosis and enhance cell cycle progression, angiogenesis, and metas-
tasis, in consequence of forming the IKK complexes which pro-inflammatory 
cytokines and microbial infections are being stimulated (Karin and Greten 2005; 
Karin 2006; Luo et al. 2005). Soutto et al. (2011) demonstrated that Trefoil fac-
tor 1(TFF1, a tumor suppressor gene) knockout mice leads to activation of IKK 
complex-regulated NF-κB transcription factors, and hence, NF-κB-mediated 
inflammatory response causes a multistep carcinogenesis cascade in the progres-
sion of gastric carcinogenesis with the help of TNF-α-mediated NF-κB activation 
through the TNF receptor 1 (TNFR1)/IκB kinase (IKK) pathway. In an another 
study, Mochizuki et al., also showed that by using a green fluorescent protein 
(GFP)-tagged human gastric cancer cell line, TNF-α-pretreated mice group exhib-
its an early progression of peritoneal metastasis which is more significant than the 
non-pretreated group (Mochizuki et al. 2004). It is still a controversial manner that 
gastric cancer patients show a significant increase in TNF-α levels.

TNF-α and IL-1β are essential in the initiation of chronic inflammation. Recent 
works have shown that IL-1β overexpression, in the absence of H. pylori infection, is 
sufficient to cause gastric cancer. In addition, IL-1β is one of the essential pro-inflam-
matory cytokines modulated during H. pylori infection that directs the mucosa toward 
atrophy, metaplasia, and neoplastic transformation (El-Omar et al. 2000; El-Omar 
2001; Pollard 2004). Beales (2002) demonstrated in a study that IL-1β stimulates the 
proliferation of gastric cancer cell lines via tyrosine kinase-dependent signaling path-
way and autocrine stimulation of GM-CSF contributes to this stimulation in a dose-
dependent manner. Similar to findings for IL-1β, Uefuji et al. (2005) demonstrated 
that IL-1α mRNA expression levels were relevant to COX-2 positive cancer cell 
lines, that exogenous supplement of IL-1α enhances both IL-1α and COX-2 mRNA 
expression levels which indicates IL-1α-COX-2 pathway might be involved in tumor 
progression by regulating cancer cell proliferation. Several researchers have demon-
strated that IL-1α enhances angiogenesis and vascular endothelial cell proliferation in 
gastric cancer cell lines (Ma et al. 2008; Furuya et al. 2000).
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Recently, direct evidence has also linked IL-6 to inflammation-mediated tumor 
initiation and proliferation in colon cancer (Bromberg and Wang 2009). IL-6 plays 
an important role in stimulation of tumor growth and tumor metastasis including the 
steps of tumor cells invasion of the stroma, intravasation of blood vessels and cir-
culation in the blood. In an in vitro study designed with several gastric cancer cell 
lines demonstrated that such gastric cancer cell lines expressed IL-6 mRNA, which 
was an indicator of gastric cancer cell growth, even anti-IL-6 antibody inhibited this 
process (Ito et al. 1997). In cancer cells, IL-6 expression that leads to tumor invasion 
and metastasis in gastric cancer may act as in autocrine and paracrine ways. IL-6 can 
be secreted from cancer cells which combines with IL-6 receptors on the surface of 
cancer cells, directly promote the cancer cell mitogenic activity in an autocrine path-
way (Ashizawa et al. 2005). IL-6 also stimulates cancer cells to produce hepatocyte 
growth factor (HGF), which combines with the HGF receptor (c-met) expressed on 
cancer cells, through a paracrine pathway that HGF induces cancer cells to move to 
the metastatic site by promoting and accelerating invasion as well as lymph node 
and/or hepatic metastasis (Ashizawa et al. 2005). In addition, it is documented that 
IL-6, is an important effector of TNF-α and IL-1β actions in vivo (Gangopadhyay 
et al. 1998). IL-6 promotes the adhesion of cancer cells and endothelial cells via 
overexpressing the intercellular adhesion molecules such as ICAM, VCAM, and 
E-selectin in association with TNF-α and IL-1β (Gangopadhyay et al. 1998). IL-6 
acts on cancer cells directly via the Janus Kinase (JNK)/signal transducer and acti-
vator of transcription 3 pathways (Ashizawa et al. 2005) and may also inhibit DC 
maturation and, together with the NF-κB-activating cytokines IL-1 and TNF may 
promote tumor progression. IL-6 can regulate VEGF and angiogenesis in gastric 
cancer, as demonstrated in another study that increasing dose and duration of IL-6-
stimulated gastric cancer cell lines produces significant amount of vascular endothe-
lial growth factor (VEGF) in vivo and in vitro (Huang et al. 2004).

IL-10 and transforming growth factor (TGF)-β are known for not only their 
effects oversuppressing the host anti-tumor immunity and anti-inflammatory 
actions, but also are central regulator of regulatory T cell (Treg) which can inhibit 
immune responses mediated by CD4(+) and CD8(+) cells (Tsujimoto et al. 
2010). TGF-β1 expression demonstrated as a clinical prognostic marker and puta-
tive angiogenic factor in gastric carcinogenesis that has already been suggested in 
a study that TGF-β1 expression stimulates angiogenesis via promoting indirectly 
by VEGF upregulation (Saito et al. 1999).

10 .5  Role of Inflammatory Molecules in Gastric Cancer: 
Evidence from In Vivo Studies

IL-1β, IL-6, IL-8, and TNF-α mRNA expression levels were significantly  elevated in 
H. pylori-positive mucosa compared with H. pylori-negative mucosa. In H. pylori-
positive gastric mucosa, IL-1β, IL-6, and IL-8 mRNA expression levels correlated 
significantly with activity and chronic inflammation scores, and TNF-α mRNA 
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expression levels correlated with chronic inflammation scores. There was a nega-
tive association between IL-6 and IL-8 mRNA expression and intestinal metapla-
sia scores IL-6 and TNF-α mRNA expression levels increased with the severity of 
atrophic gastritis, while pro-inflammatory cytokine mRNA expression levels were 
lower in the mucosa with intestinal metaplasia compared to mucosa with extended 
atrophic gastritis (Isomoto et al. 2012).

Individual differences in the intensity of the inflammatory response (which 
affects the maintenance, severity, and outcome of H. pylori infection) may 
 contribute to gastric mucosa transformation. Moreover, the impact of gene poly-
morphisms on the activity of key inflammatory molecules is relatively well known.

Previous studies on the association between IL-1 genetic polymorphisms and 
the risk of gastric cancer have produced controversial results. In a meta-analysis, 
authors observed that the IL-1B–511T carrier, as well as the IL-1RN*2 carriers, 
are associated with an increased risk of developing of gastric cancer, markedly 
the intestinal type. IL-1RN*2 carrier increased the risk of developing gastric can-
cer among Caucasian. However, the IL-1B–31C and +3954T genotypes are not 
 associated with an increased risk of developing gastric cancer (Wang et al. 2007).

In contrast, these polymorphisms are not consistently related to the risks of 
esophageal or gastric cardia cancers (El-Omar et al. 2003).

A number of studies have shown that cyclooxygenase-2 (COX-2) gene poly-
morphisms were associated with gastric cancer. However, the results from different 
research groups have not been consistent. At present, two polymorphisms in COX-2 
have been reported. The promoter region polymorphic variant of −1195G>A and 
−765G>C has been demonstrated to have a functional effect on COX-2 transcrip-
tion, which may cause gastric cancer (Pereira et al. 2009; Zhang et al. 2005).

Several studies have examined the association of polymorphisms in tumor 
necrosis factor-A gene (TNF-A) with gastric cancer risk. However, the meta-
analysis of these studies have shown that TNF-A-308AA genotype was  associated 
with a increased risk of gastric cancer, whereas other polymorphisms are not 
(Gorouhi et al. 2008).

Polymorphisms in the 5′-flanking region of IL-10 at positions −1082 A/G, 
−819T/C, and −592A/C have been suggested to be associated with gastric can-
cer risk in different populations (El-Omar et al. 2003; de Oliveira et al. 2012). 
IL-10-592 AA is a factor of protection against the development of this neoplasm 
in Asians, but not among Caucasians and Latinos, indicating differences in the 
genetic background of Asians and other ethnicities (Zhu et al. 2011).

IL-17A has a crucial role in the gastric inflammation and carcinogenesis. 
Genetic polymorphisms of IL-17A may be involved in methylation-related carcino-
genesis in the stomach (Tahara et al. 2010). Similarly, it also indicates that IL8, and 
maybe IL4R, variants may modify the risk for gastric cancer (Crusius et al. 2008).

Few studies have done combined analysis of different polymorphisms in gastric 
cancer. El-Omar et al. (2003) analyzed 11 polymorphisms of the IL-1B, IL-1RN, 
IL-4, IL-6, IL-10, and TNF-A cytokine genes and showed that the risk for non-
cardia gastric cancer increased progressively with the number of pro-inflammatory 
genotypes to 27.3 for three or four polymorphisms. This finding is probably due to 



24710 The Role of Inflammation in Gastric Cancer

an additive effect of the pro-inflammatory profiles of these gene polymorphisms, 
resulting in an exacerbated immune response. Several studies have demonstrated 
that the Pro12Ala polymorphism is associated with the high risk of gastric adeno-
carcinoma (Xu et al. 2010; Lee et al. 2012).

TNF-α-857T carrier showed significantly better overall survival than patients 
with CC genotype. Gastric cancer patients who have both IL-1β-31 CC and IL-1β-
511 TT genotypes and have at least one of the protective genotypes (IL-1β-31 CC, 
IL-1β-511 TT, TNF-α-857 T carrier) were also associated with better survival. 
IL-1β-31CC, IL-1β-511TT genotype, and TNF-α-857T carrier may have protec-
tive effect against gastric cancer progression (Tahara et al. 2011). Percentages of 
Tc17 cells in gastric tumors are associated with survival times of patients (Zhuang 
et al. 2012). Overexpression of TNF-α, IL-6, IL-8, IL-10, IL-18, and IL-33 
 correlates with several poor prognostic factors such as depth of invasion, distant 
metastasis, and advanced stage (stage III/IV).

Despite the several studies concluded, the correlation between high serum  levels 
of TNF-α is a prognostic marker in advanced gastric cancer (stage III and IV) 
patients (Forones et al. 2001; Macri et al. 2006), Wu et al. (1998) suggest that TNF-α 
value was not an independent prognostic indicator and the role of TNF-α in gastric 
cancer remains obscure. Gastric cancer patients show different biologic behavior in 
each of the cases depending on host inflammatory immune conditions. For example,  
TNF-α gene polymorphism, which is located in the promoter of TNFA gene, effects 
the prognosis and survival of the patients in such protective and progressive ways 
(Tahara et al. 2011; Hong et al. 2013). Several studies manifest that IL-6 serum 
level increase is a significant marker in correlation with tumor size, tumor stage, and 
metastasis in gastric cancer patients as well as indicator of gastric cancer progression 
(Ikeguchi et al. 2009; Ashizawa et al. 2005).

On the other hand, low serum levels of IL-12 have been associated with more 
advanced stages of gastric and colorectal carcinomas and tended to be associated 
with lymph node metastasis and carcinoembryonic antigen (CEA)-positive tumors 
greater than 5 cm in diameter (Kawabata et al. 2001; Wu et al. 1998; Nakayama 
et al. 2000; Sun et al. 2011; Szaflarska et al. 2009). IL-18, previously known as 
interferon-γ-inducing factor, found elevated in patients with gastric carcinoma 
stage 2 or 3 (Kawabata et al. 2001).

Also, COX-2 expression is associated with intestinal histologic subtype, 
 proximal location, large tumor size, and advanced stage (Thiel et al. 2011).

Although there are several studies about relation between gastric cancer progno-
sis and inflammation markers, none of these markers are used in clinical practice.

10 .6  Inhibitors of Inflammation for the Prevention  
and Treatment of Gastric Cancer

Chemoprevention of gastric carcinoma may be divided into three titles: eradication 
of H. pylori, cyclooxygenase inhibitors which directly effects inflammation, and 
dietary supplements.
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Eradication of H. pylori for prevention from gastric adenocarcinoma still keeps 
its uncertainty. But there is a truth that eradication reduces the rates of precancer-
ous lesion such as atrophic gastritis and intestinal metaplasia (Mera et al. 2005). 
Recent studies state that early eradication of H. pylori seems to reduce gastric can-
cer risk (Fuccio et al. 2009). The key point of eradication is “timing.” If the malig-
nant process has begun, eradication therapy loses its significance. Recent long-term 
studies about the patients with high risk of gastric carcinoma or with patients after 
endoscopic resection of early gastric carcinoma showed that the eradication therapy 
did not reduce the risk of development of primary or metachronous gastric cancer 
(Wong et al. 2004; Maehata et al. 2012). A double-blind randomized study in China 
showed that gastric cancer still occurred after successful eradication of H. pylori and 
that H. pylori eradication did not lead to significant decrease in the incidence of gas-
tric cancer. In the high-risk region of China, 1630 healthy carriers of H. pylori were  
followed for 7.5 years. During the follow-up, the development of gastric cancer was 
observed in 7 subjects from the H. pylori eradication therapy group and 11 subjects 
from the placebo group, with no significant difference between the two groups. 
In the subgroup analysis without precancerous lesions (atrophy, intestinal meta-
plasia, and dysplasia), the incidence of gastric cancer was significantly lower in the  
H. pylori eradication therapy group than in the placebo group (Wong et al. 2004). 
This study suggested that the preventive effect of H. pylori eradication for gastric can-
cer is sufficient only in patients without an atrophic change (Kato and Asaka 2012).

Right after the study which defines miRNA expression patterns in H. pylori-
infected gastric mucosa before and after eradication (Matsushima et al. 2011), Shiotani 
made similar study with patients who underwent endoscopic gastric resection with 
control biopsies before and 1 year after the eradication therapy (Shiotani et al. 2012). 
In H. pylori-infected mucosa, eradication therapy works as a decreasing factor for vast 
majority of miRNA which expressed during the H. pylori-associated gastritis. But on 
the other hand, Shiotani underlined that eradication therapy did not improve the abnor-
mal expression of many oncogenic miRNAs in intestinal metaplastic glands or in the 
gastric mucosa of the high-risk group for gastric cancer (Kato and Asaka 2012).

Several epidemiologic studies have suggested that long-term and regular use 
of NSAIDs, aspirin in particular, reduce mortality from gastrointestinal metapla-
sias (Ristimaki et al. 1997). As a result, cyclooxygenase enzyme (COX) is to be 
thought of a potential therapeutic target in cancer prevention and treatment (Thiel 
et al. 2011). Firstly, COX-2 inhibitors were tried for prevention therapy of colo-
rectal polyps and cancer; then, recent studies showed that NSAIDs and specific 
COX-2 inhibitors can play role in prevention of gastric cancer.

In a large prospective cohort study in 2009, Abnet et al. found that regular use 
of aspirin, or non-aspirin NSAIDs, may reduce the risk of non-cardia gastric can-
cer. In this study, they reached 2078248 person-years of follow-up in total (mean 
follow-up is 6.7 years). They found that reported use of aspirin or non-aspirin 
NSAIDs was associated with a significant 36 % reduction in the risk of non-cardia 
gastric cancer (Abnet et al. 2009).

Except from NSAIDs, there are several published articles about selective COX-2 
inhibitors. In animal models, a study with reflux-induced gastric adenocarcinoma in 
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Wistar rats that underwent gastrojejunostomy stated that celecoxib has an inhibiting 
effect on reflux-induced gastric carcinogenesis (Rocha et al. 2009).

In a human trial, patients with gastric preneoplastic lesion, who taken H. pylori 
eradication therapy, received either celecoxib or placebo for 3 months, and a signif-
icant improvement in precancerous lesions was observed who received celecoxib 
for placebo (Zhang et al. 2009). In an another study, etodolac was used as a selec-
tive COX-2 inhibitor to demonstrate the preventive effects on cancer development 
in extensive metaplastic gastritis (Yanaoka et al. 2010). These results strongly  
suggest that chemoprevention of cancer in the metaplastic stomach is  possible by 
controlling COX-2 expression.

In light of these findings, there is a high probability that in near future, gastric 
cancer will be prevented by COX inhibition.

There are various studies about diet, nutrition, dietary supplements, and their 
relation with gastric cancer and also its prevention. According to The World Cancer 
Research Fund and the American Institute for Cancer Research, non-starchy veg-
etables and fruits probably protect against stomach cancer. Salt and also salt-pre-
served foods are probably the causes of this cancer (Wiseman 2008). A prospective 
study with 10-year follow-up of the Japan Public Health Center study cohort sug-
gested that consumption of vegetables and fruits is associated with diminished 
gastric cancer risk (Kobayashi et al. 2002). Current epidemiologic and human trial 
evidence generally indicates that antioxidant foods or supplements provide little 
protection against gastrointestinal cancers (Jayaprakash and Marshall 2011).

10 .7  Conclusions and Future Directions

Gastric cancer is a major health problem in worldwide. Understanding of the 
 mechanism inflammation and cancer may provide a powerful tool for understanding  
cancer development and prognosis. CSC hypothesis has received more and more 
attention in last 10 years. This hypothesis will change our daily practice in several 
types of cancer including gastric cancer. An in-depth understanding of the relation 
between stem cell and inflammation can lead to development of new drugs and 
markers that can be used in routine practice.
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Abstract Sarcomas encompass a heterogenous group of tumors with diverse 
 pathologically and clinically overlapping features. It is a rarely curable disease, and 
their management requires a multidisciplinary team approach. Chronic  inflammation 
has emerged as one of the hallmarks of tumors including sarcomas. Classical 
 inflammation-associated sarcomas comprise the inflammatory malignant fibrous 
histiocytoma and Kaposi sarcoma. The identification of specific chromosomal trans-
locations and important intracellular signaling pathways such as Ras/Raf/MAPK, 
insulin-like growth factor, PI3K/AKT/mTOR, sonic hedgehog and Notch together 
with the increasing knowledge of angiogenesis has led to development of targeted 
therapies that aim to interrupt these pathways. Innovative agents like oncolytic 
viruses opened the way to design new therapeutic options with encouraging find-
ings. Preclinical evidence also highlights the therapeutic potential of anti-inflamma-
tory nutraceuticals as they can inhibit multiple pathways while being less toxic. This 
 chapter gives an overview of actual therapeutic standards, newest evidence-based 
studies and exciting options for targeted therapies in sarcomas.
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11 .1  Introduction

11.1.1  Epidemiology

Sarcomas represent a heterogenous group of rare malignant neoplasms of the 
 connective tissue arising from mesenchymal cells. Sarcomas account for 21 % of all 
pediatric solid malignant cancers and less than 1 % of all adult solid malignant can-
cers (Lahat et al. 2008). They comprise a group of more than 50 different histologi-
cal subtypes that can occur at any age and are not restricted to a specific anatomic 
site. Sarcomas are quite lethal tumor entities due to the lack of distinct symptoms at 
early stage leading to advanced disease and metastasis at presentation (Burningham 
et al. 2012). Sarcomas can be divided into soft tissue sarcoma (STS), bone sarcoma 
(BS), and gastrointestinal stromal sarcoma (GIST; Table 11.1). In the “Surveillance 
of Rare Cancer in Europe” (RARECARE) project, a large population-based series 
of data were analyzed to characterize the epidemiology of sarcomas in Europe. By 
analyzing 45,568 incident cases diagnosed between 1995–2002 for rare sarcomas, 
the crude incidence was found as being 5.6 per 100,000 per year (increasing with 
age) with 28,000 new cases a year (Stiller et al. 2013). As given in Table 11.1, STS 
account for approximately 85 % of all sarcomas diagnosed, while the remaining pre-
dominantly consist of malignant BS (14 %). Chondrosarcoma (CS) and osteosarcoma 
(OS) are the most frequent malignant bone tumors, accounting for more than half of 
all BS diagnoses. Leiomyosarcoma (LMS) has been identified as being the most fre-
quent STS together with liposarcoma (LS) and unspecified sarcomas. LMS represents 
the most common sarcoma entity of the uterus, peritoneum, head and neck as well as 
other genitourinary and visceral sites (Stiller et al. 2013). LS has been found as being 
the most frequent sarcoma of the limbs whereas phyllodes tumor was the most com-
mon in breast and peripheral nerve sheath tumors the most common in the peripheral 
nerves and autonomic nervous system. It is interesting to note that the Ewing’s family 
tumors (EFT) occur with a high percentage at both, bone and extraosseous sites.

Five-year relative survival for the period 2000–2002 was 58 % for STS, 62 % 
for BS and 68 % for GIST, respectively. Among STS, the highest survival rate of 
>90 % could be found in the skin while STS of the heart and mediastinum har-
bored the lowest survival rates ranging between 10 and 15 %. Vascular sarcomas 
showed the lowest survival rate among all BS tested with 34 % whereas the highest 
survival rate was found for epithelial tumors such as adamantinoma (Table 11.1).

The epidemiology of sarcoma is similar in the United States. As demonstrated by 
the Surveillance, Epidemiology, and End Results (SEER) program (www.seer.can-
cer.gov), STS is the most frequent sarcoma entity (86 %) followed by BS, the latter 
accounting for 14 % of all sarcomas. OS and CS were identified as being the most 
common malignant bone tumors in the United States with the same frequency as can 
be found in Europe. According to SEER, LS (16.5 %), LMS (13.7 %), malignant 
fibrous histiocytoma (11.9 %), and fibrosarcoma (6.3 %) represent the most common 
histologic subtypes of STS. As in the RARECARE project, incidence increases with 
age and <50 % of cases were primarily located at connective tissue (Toro et al. 2006). 

http://www.seer.cancer.gov
http://www.seer.cancer.gov


262 J. Radons

A recent population-based study from the SEER data base with >48,000 STS cases 
clearly demonstrated that individuals over 50 years of age have an inferior survival 
than younger patients (Ferrari et al. 2011), thus confirming results of the RARECARE 
project. A similar pattern was observed for OS (Mirabello et al. 2009) and CS 
(Giuffrida et al. 2009), demonstrating the lowest survival rates in the oldest age group. 
The influence of gender on the incidence of sarcoma is controversially discussed in 
the literature. According to RARECARE, STS overall had a slightly higher incidence 

Table 11 .1  Epidemiology of sarcomas in Europe during 1995–2002 based on the “Surveillance 
of Rare Cancer in Europe” (RARECARE) project

Table adapted from Stiller et al. (2013)
n.d. not determined
aCrude incidence rates per 100,000 in Europe per year
bEstimated 5-year relative survival based on the period survival analysis 2000–2002

Sarcoma entity Cases Percentage Incidencea Survival (%)b

Soft tissue sarcoma (STS) 38,526 84.6 4.7 57.8
STS of limbs 8,323 18.3 1.0 68.0
STS of viscera 4,169 9.2 45.6
STS of uterus 4,011 8.8 0.5 49.2
STS of superficial trunk 3,748 8.2 0.5 44.1
STS of skin 2,473 5.4 94.0
STS of head and neck 2,338 5.1 0.3 65.1
STS of retroperitoneum and peritoneum 2,322 5.1 42.0
Other STSs of genitourinary tract 1,954 4.3 0.2 53.7
STS of brain and other parts of the  

nervous system
1,560 3.4 0.2 52.9

STS of breast 1,526 3.4 0.2 80.8
Embryonal rhabdomyosarcoma of soft  

tissue (RMS)
511 1.1 <0.1 62.4

Ewing’s family tumors of soft tissue 433 1.0 0.1 46.5
Alveolar RMS 264 0.6 <0.1 37.5
STS of paratestis 263 0.5 <0.1 90.0
STS of mediastinum 214 0.5 <0.1 15.3
STS of heart 122 0.3 <0.1 10.7
STS of pelvis 116 0.3 <0.1 42.4
STS of paraorbit 54 0.1 <0.1 75.5
Others 4,636 10.2 n.d. n.d.
Bone sarcoma (BS) 6,494 14.3 0.8 61.6
Chondrogenic sarcomas 1,969 4.3 0.2 76.7
Osteosarcoma (OS) 1,838 4.0 0.2 53.9
Ewing’s family tumors (EFT) 1,053 2.3 0.1 52.8
Chordoma 352 0.8 <0.1 76.4
Epithelial tumors (adamantinoma) 70 0.2 <0.1 82.9
Fibrosarcoma (FS), malignant fibrous  

histiocytoma (MFH)
147 0.3 <0.1 51.4

Vascular sarcomas 26 0.1 <0.1 33.9
Other bone sarcomas 1,039 2.3 n.d. n.d.
Gastrointestinal stromal sarcoma (GIST) 548 1.2 0.1 67.7
Total cases analyzed 45,568 45,136 15,141
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in females than in males (Stiller et al. 2013), whereas SEER data revealed the direct 
opposite (Toro et al. 2006; Ferrari et al. 2011).

11.1.2  Major Gene Products

Several inherited genetic syndromes predispose to sarcoma development. Inherited 
cancer predisposition syndromes represent a heterogeneous group of disorders 
that are summarized in Table 11.2. Most notably, individuals with Li–Fraumeni 

Table 11 .2  Inherited disorders obviously predisposing to sarcoma development

Disorder Gene, protein Chromosome Function

Li–Fraumeni syndrome  
(LFS)

TP53, tumor suppressor 
p53

17p13.1 DNA repair, apoptosis 
induction

Rothmund–Thomson  
syndrome (RTS)

RECQL4, RecQ 
 protein-like 4

8q24.3 DNA helicase

RAPADILINO  
syndrome

RECQL4, RecQ 
 protein-like 4

8q24.3 DNA helicase

Baller–Gerold  
syndrome (BGS)

RECQL4, RecQ 
 protein-like 4

8q24.3 DNA helicase

Werner syndrome (WS) WRN, RecQ protein-like 2 8p12 DNA helicase
Bloom syndrome (BLS) BLM, RecQ protein-like 3 15q26.1 DNA helicase
Retinoblastoma (RB) RB1, retinoblastoma 1 13q14.2 Tumor suppressor cell 

cycle control
Neurofibromatosis type 

1 (NF1; syn. von 
Recklinghausen’s 
disease)

NF1, neurofibromin 17q11.2 Tumor suppressor, 
stimulation of proto-
oncoprotein p53

Familial GIST  
syndrome

CKIT, c-Kit (CD117) 4q12 Stem cell factor receptor, 
proto-oncoprotein

PDGFRA, PDGFR-α Platelet-derived growth 
factor receptor alpha

Hereditary leiomy- 
omatosis and renal 
cell cancer (HLRCC) 
syndrome

FH, fumarate hydratase 
(fumarase)

1q43 Krebs cycle enzyme, 
tumor suppressor

Diamond–Blackfan   
anemia (DBA)

RPS19, RPL5, RPL11, 
RPL35A, RPS7,  
RPS17, RPS24

Multiple Ribosomal proteins S19, 
L5, L11, L35a, S7, 
S17, S24

Familial adenomatous  
polyposis (FAP)

APC, adenomatous 
 polyposis coli protein

5q21 Tumor suppressor, cell 
migration, cell adhe-
sion, chromosome 
segregation, spindle 
assembly, apoptosis, 
neuronal differentiation

TDP-43 proteinopathies 
(frontotemporal  
lobar degeneration,  
amyotrophic lateral  
sclerosis)

TARDBP, transactivation 
response DNA-binding 
protein (TDP-43)

1p36.22 TDP-43 pathology

EGR2, Egr-2 10q21 Transcriptional regulation
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syndrome (LFS), neurofibromatosis type 1 (NF1; at risk for malignant  peripheral 
nerve sheath tumors and GIST), or those with familial adenomatous polypo-
sis (FAP; at risk for intraabdominal desmoids tumors) are at high risk of devel-
oping sarcomas. LFS was about one of the first genetic syndromes found to be 
strongly associated with sarcoma development (Li and Fraumeni 1969). It is 
caused by germ line mutations in the tumor suppressor gene TP53 (Malkin et al. 
1990). Its product, the p53 protein, is a transcription factor playing a crucial role 
in numerous cellular processes including DNA repair, apoptosis, and cell growth. 
Mutations in TP53 will consequently lead to the early development of tumors 
including sarcomas as a result of genetic instability (Multhoff and Radons 2012). 
Notably, approximately 30 % of patients meeting clinical criteria for LFS do not 
harbor TP53 mutations (Das et al. 2007; Savage and Mirabello 2011) whereas 
somatic TP53 mutations can be observed in 30–60 % of STS (Das et al. 2007). 
In addition to sarcomas, these individuals develop a multitude of tumors such as 
adrenocortical tumors, leukemias as well as tumors of brain and breast. Mdm-2 
has been shown to bind to p53, thus abolishing its function as a transcription factor 
(Momand et al. 1992; Cordon-Cardo et al. 1994). Overexpression of MDM2 has 
been demonstrated in a wide variety of sarcomas including LS and OS (Ladanyi et 
al. 1993; Leach et al. 1993; Shimada et al. 2006), and MDM2 amplification to cor-
relate with disease recurrence and metastasis (Gisselsson et al. 2002).

Retinoblastoma (RB), a relatively rare pediatric cancer of the eye, results from 
mutations in the tumor suppressor gene retinoblastoma 1 (RB1) located on chromo-
some 13q14 with very high penetrance and expressivity (Harbour 2001). This gene 
encodes the cell cycle regulatory retinoblastoma gene protein (pRb), which is criti-
cally involved in controlling cell cycle and differentiation processes as well as pre-
serving chromosomal stability (Knudson 1971). Survivors of hereditary RB are of 
higher risk for developing secondary malignancies (Wong et al. 1997). Loss of pRb 
functions has been reported in several sporadic tumors including OS representing the 
most frequent tumor in patients with RB (Hansen et al. 1985). Long-term survivors of 
hereditary RB show an increased 20-fold risk of developing and dying from a subse-
quent nonocular cancer, primarily BS and STS, melanoma and brain tumors (Marees 
et al. 2008). Survivors of nonhereditary RB are at much lower risk of a subsequent 
primary cancer, similar to the risk in the general population (Fletcher et al. 2004).

Individuals with mutations in DNA helicase genes are predisposed for the 
development of OS. Known OS predisposition syndromes include Rothmund–
Thomson syndrome (RTS), Werner syndrome (WS), Bloom syndrome (BLS), and 
RAPADILINO syndrome (Calvert et al. 2012). RTS is a rare autosomal recessive 
disorder caused by mutations in the DNA helicase gene RECQL4 located on chro-
mosome 8q24.3 (Wang et al. 2003; Kansara and Thomas 2007). Individuals with 
RTS typically present with a characteristic sun-sensitive rash during infancy fol-
lowed by poikiloderma through adulthood. RTS patients may have small statue 
and skeletal dysplasias. As demonstrated by the group of Sharon Plon, the loss of 
RECQL4 protein function occurred in two-thirds of RTS patients and was associ-
ated with high risk of OS (Wang et al. 2003). Studies are currently under way to 
examine the role of RECQL4 mutations in sporadic OS in the general population.
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Apart from RTS, WS and BLS are rare autosomal recessive cancer 
 predisposition disorders caused by loss of function of the RecQ helicases Wrn or 
Blm, respectively. BLS and WS are characterized by replication defects, hyperre-
combination events and chromosomal aberrations (Muftuoglu et al. 2008; Shen et 
al. 2012) leading to genetic instability as one of the hallmarks of cancer (Colotta 
et al. 2009). Genetic instability is associated with an increased predisposition to a 
great variety of cancers including sarcoma, e.g., OS, CS, and spindle cell sarcoma 
(Lahat et al. 2008). RECQL4 mutations can also lead to Baller–Gerold syndrome 
(BGS), or RAPADILINO syndrome correlating with an increased risk for OS 
(Suhasini and Brosh 2013). Diamond–Blackfan anemia (DBA) represents a fur-
ther inherited disorder which has been found as being associated with an enhanced 
risk of OS (Lipton et al. 2001). DBA patients exhibit abnormal pre-rRNA matura-
tion patterns, and the majority bears mutations in one of several ribosomal protein 
genes that encode structural components of the ribosome essential for the correct 
assembly of the ribosomal subunits. Studies on the most frequently mutated gene, 
RPS19, revealed that mutations prevent the assembly of the ribosomal protein into 
forming preribosomal particles, thus triggering nucleolar stress pathways (Ellis 
and Gleizes 2011). However, the role of ribosomal proteins in the pathogenesis of 
OS remains to be elucidated.

Hereditary leiomyomatosis and renal cell cancer (HLRCC) syndrome is a 
tumor predisposition syndrome caused by heterozygous germ line mutations in 
the fumarate hydratase (FH) gene (Tomlinson et al. 2002). The condition is char-
acterized by predisposition to benign leiomyomas of the skin and the uterus, 
renal cell carcinoma (RCC), and uterine LMS (Launonen et al. 2001; Lehtonen 
et al. 2006). As shown by Pollard et al. (2005a, b), HLRCC tumors were found 
to overexpress hypoxia-inducible factor-1α (HIF-1α) and hypoxia-responsive 
genes encoding vascular endothelial growth factor (VEGF) and Bcl-2/adenovirus 
E1B 19 kDa interacting protein 3 (BNIP3) accompanied by a higher microves-
sel density in comparison with the sporadic counterparts. From these findings, the 
authors postulate that failure of the Krebs cycle in HLRCC tumors causes inap-
propriate signaling followed by a hypoxic cell state which may lead to angiogen-
esis as well as clonal expansion and tumor growth through some uncharacterized, 
cell-autonomous effects.

Several heritable mutations in the genes encoding the stem cell factor recep-
tor c-Kit and platelet-derived growth factor receptor alpha (PDGFR-α) have been 
identified in patients with familial GIST (Maeyama et al. 2001; Heinrich et al. 
2003b). While about 70–80 % of GIST harbor mutations in the proto-oncogene 
CKIT, approximately one–third of the remaining have mutations in PDGFRA 
(Wardelmann et al. 2003; Heinrich et al. 2003a). Mutations in these genes result in 
constitutive activation of the c-Kit and PDGFR-α signaling pathway culminating 
in blockage of apoptosis and cell proliferation, respectively (Rubin et al. 2007).

On the other hand, genetic syndromes associated with Ewing’s sarcoma 
(ES), a neoplasm of the undifferentiated small round cells generally affect-
ing the bone and deep soft tissues of children and adolescents, are extremely 
rare. ES is associated with specific chromosomal translocations resulting 
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in oncogenic fusion transcripts and proteins (Ross et al. 2013). The chimeric 
 proteins commonly represent artificial transcription factors dysregulating gene 
expression (Xia and Barr 2005) and consequently modifying growth and dif-
ferentiation processes leading to cell transformation due to their oncogenic 
potential (May et al. 1993; Scheidler et al. 1996). A genome-wide association 
study of 401 French individuals with ES recently identified candidate risk loci 
upstream of TARDBP and EGR2 (Postel-Vinay et al. 2012). TARDBP encodes 
the nuclear transactive response DNA-binding protein 43 (TDP-43) represent-
ing the dominant disease protein in amyotrophic lateral sclerosis and a subgroup 
of frontotemporal lobar degeneration. TARDBP shares structural similarities 
with EWSR1 and FUS, that encode RNA-binding proteins, and early growth 
response gene 2 (EGR2) is a target gene of the EWSR1/ETS translocation. 
Erythroblastosis virus E26 transforming sequence (ETS) family of proteins are 
transcription factors that modulate the expression of genes involved in various 
biological processes, including cellular proliferation, differentiation, devel-
opment, transformation, and apoptosis (Bassuk and Leiden 1997). The study 
by Postel-Vinay et al. (2012) clearly demonstrated that variants at these loci 
were associated with expression levels of TARDBP, ADO (encoding cysteam-
ine dioxygenase), and EGR2. Since our knowledge of the oncogenic pathways 
underlying the pathogenesis of sarcoma is steadily increasing, one can assume 
that fusion genes characteristic for a certain subtype could have the potential to 
function as critical targets in diagnosis and therapy.

Moreover, specific molecular markers have been shown to impact STS progno-
sis. In addition to p53 and PDGFR-α that give rise to GIST, upregulated β-catenin 
levels correlate with increased proliferative activity in high-grade STS (Kuhnen et 
al. 2000). Apart from its membranous function as an effective molecule for cell 
adhesion in sarcomas with epithelioid pattern, β-catenin may act as an oncoprotein 
in sarcomas with intracytoplasmic and nuclear localization by binding to nuclear 
DNA (Kuhnen et al. 2000). S-phase kinase-associated protein 2 (Skp-2) catalyzes 
the ubiquitylation of the tumor suppressors p27Kip-1 and p21Waf-1 (Fasanaro et al. 
2010). In myxofibrosarcomas, Skp-2 overexpression was found as being highly 
representative of the biological aggressiveness, thus playing an important prognos-
tic role (Huang et al. 2006).

An intriguing novel aspect is presented by Savage and Mirabello (2011) who 
 discuss the putative impact of single nucleotide polymorphisms (SNPs) on the risk of 
OS. SNPs are the most common type of genetic variation in the genome. Although 
SNPs do not modify gene expression or protein functions, they can influence a wide 
variety of biological effects such as upregulation of Mdm-2, a direct negative regula-
tor of p53, and inhibition of the p53 signaling pathway, thereby accelerating tumor 
formation (Bond et al. 2004). SNPs have been found, among others, in the genes 
encoding estrogen receptor (ESR1), collagen 1α1 (COL1A1), vitamin D receptor 
(VDR), Mdm-2 (MDM2), insulin-like growth factor receptor 2 (IGFR2), Fas protein 
(FAS), and TGFBR1*6A, a common hypomorphic variant of transforming growth 
factor beta receptor 1 (TGFBR1). In these genes, genetic variations obviously appear 
to be associated with an increased risk of OS (Savage and Mirabello 2011).
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11.1.3  Current Therapies

Sarcomas represent a complex family of diseases necessitating multidisciplinary 
therapeutic approaches not only including advanced surgical and/or orthope-
dic techniques, reconstructive surgery as well as radiotherapy and chemotherapy, 
but also hormonal and physical therapy as well as specialized targeted therapy 
and psychosocial support. Expert surgical resection with or without radiotherapy 
remains the first-line therapy for localized sarcoma (Stojadinovic et al. 2002; 
O’Sullivan et al. 2002). Of note, the role of adjuvant therapy remains controver-
sial. Radiotherapy can be delivered before, during or after surgery. Although pre-
operative radiation therapy is favored for certain sarcomas, in the United Kingdom 
most of STS are treated with postoperative radiotherapy although requiring a 
higher radiation dose (Grimer et al. 2010b). A similar outcome was observed in 
a reasonably sized randomized trial of preoperative versus postoperative radiation 
therapy for large sarcomas of the extremity in Canada (Davis et al. 2005).

The benefits of chemotherapy in sarcoma management remain controversial. 
Preoperative systemic chemotherapy represents the standard therapy for high-
grade OS, ES, and certain RMS (Grimer et al. 2010a). BS such as CS (Grimer et al. 
2010a) or other STS entities, including LMS (Gupta et al. 2013) and LS (Crago and 
Singer 2011), obviously do not significantly benefit from systemic chemotherapy. 
In contrast, Hensley and coworkers reported on a clinical benefit of the fixed-dose 
rate gemcitabine plus docetaxel treatment as a first- and second-line therapy in met-
astatic uterine LMS (Hensley et al. 2008a, b). A recent meta-analysis of ifosfamide-
based combination chemotherapy in advanced STS revealed that this combinatorial 
treatment improves response rates by rendering such tumors resectable, but at the 
cost of a higher toxicity and a failure to improve one-year survival (Verma et al. 
2008). Notably, a further meta-analysis with 1,953 STS patients in 18 randomized 
trials demonstrated that the combined administration of doxorubicin and ifosfa-
mide significantly improved overall survival compared to doxorubicin administered 
in monotherapy (Pervaiz et al. 2008). From these data, it can be concluded that a 
combinatorial treatment with ifosfamide and doxorubicin represents the standard of 
care for completely resected high-risk sarcomas (Purohit et al. 2011).

A growing body of evidence suggests that sarcoma treatment may differ 
 radically depending on the histologic subtype (Verweij and Baker 2010). The 
best example is GIST, a form of routinely fatal sarcoma that is driven by aberrant 
tyrosine kinase signaling. GIST is the most common mesenchymal neoplasm of 
the gastrointestinal tract and is highly resistant to conventional chemotherapy and 
radiotherapy. Since our understanding of the pathogenesis of GIST has increased, 
targeted therapies using specific tyrosine kinase (TK) inhibitors such as imatinib 
mesylate (Gleevec, STI-571, Novartis) and sunitinib mesylate (Sutent, SU11248, 
Pfizer) are being investigated in GIST. Clinical response to imatinib was found 
to correlate with the tumor genotype, i.e., patient tumors harboring mutations in 
exon 11 of CKIT showed the best responses (Debiec-Rychter et al. 2004). Patients 
with CKIT mutations in exon 9 obviously benefit from a higher imatinib dosage. 
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Results from the Meta-GIST meta-analysis showed that patients whose GIST 
 harbors a CKIT mutation in exon 9 garner a longer progression-free survival time 
when treated initially with high-dose imatinib (800 mg daily) compared with those 
patients harboring CKIT mutations in exon 11 or no mutation (Meta-analysis 2010; 
Gronchi et al. 2010). Moreover, treatment interruption after three years resulted in 
tumor progression in most patients with metastatic GIST (Le Cesne et al. 2010), 
demonstrating that GIST patients benefit from an imatinib treatment. Imatinib 
treatment has been approved by the Food and Drug Administration (FDA) to 
decrease the risk of disease recurrence after resection of GIST with significant 
relapse potential. Although this treatment strategy has improved the quality of life 
and survival of patients with advanced GIST, several patients did not respond to 
imatinib. Approaches to treat imatinib-resistant GIST include the use of alternative 
kinase inhibitors such as sunitinib, dasatinib, nilotinib, AMG-706 (Amgen), the 
mammalian target of rapamycin (mTOR) inhibitor everolimus (Afinitor, RAD001, 
Novartis), and the Hsp90 inhibitor retaspimycin hydrochloride (IPI-504).

New drugs for the treatment of STS include eribulin (Halaven, Eisai), an analog 
of the marine sponge natural product halichondrin B, which functions as a mechanis-
tically unique inhibitor of microtubule dynamics. Eribulin has been approved 2010 
by the FDA for the treatment of patients with metastatic breast cancer. In a nonrand-
omized multicenter phase II study, patients were included if they had progressive or 
high-grade STS and had received no more than one previous combination chemo-
therapy or up to two single drugs for advanced disease (Schoffski et al. 2011b). This 
study clearly demonstrated that 32 % of patients with LMS, 47 % of patients with 
adipocytic sarcoma, 21 % of patients with synovial sarcoma (SS), and 19 % of other 
sarcomas were progression-free at 12 weeks after eribulin monotherapy.

Targeting the molecular pathways involved in sarcomagenesis represents a 
 promising novel approach in the treatment of sarcomas. Antagonistic antibodies, TK 
inhibitors, and inhibitors of downstream molecules of the PI3K (phosphatidylinosi-
tol 3-kinase)/AKT/mTOR pathway demonstrated encouraging activities. Table 11.3 
summarizes selected chemotherapeutics that have been used in clinical settings for 
the treatment of different subtypes of sarcoma. Among them, monoclonal antibod-
ies against the insulin-like growth factor 1 receptor (IGF1-R) such as figitumumab, 
cixutumumab, and ganitumab either alone or in combination with other agents are 
currently under investigation for patients with sarcomas. The IGF signaling path-
way is constitutively activated in and drives cellular growth of a great variety of 
sarcomas including ES, LS, LMS, RMS, and SS. Therefore, anti-IGF therapy rep-
resents a promising therapeutic option in the treatment of sarcoma because it also 
affects mTOR, one of the downstream effector molecules of PI3K. The participation 
of mTOR in sarcomagenesis is related to the primordial role of the IGF system in 
these tumors. Therefore, mTOR inhibitors have been consequently tested for their 
anti-tumor potential in sarcoma. Sirolimus, temsirolimus, everolimus, and ridaforoli-
mus are analogs of rapamycin, so-called rapalogs, and function as specific mTOR 
inhibitors (Table 11.3). Clinical trials analyzing the clinical efficacy of rapalogs in 
 monotherapy or combination therapy in sarcomas are ongoing.
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Table 11 .3  Chemotherapeutics used for the treatment of sarcomas

Agents Sarcoma subtype References

Cytostatics
Dacarbazine plus other  

drugs (doxorubicin, 
ifosfamide, mesna)

Advanced STS, uterine LMS Grimer et al. (2010b),
Minobe et al. (2011)

Doxoribucin Localized respectable and 
 metastatic STS

Sarcoma Meta-analysis 
Collaboration (1997),  
Grimer et al. (2010b)

Doxorubicin plus  
ifosfamide

Locally-advanced STS, SS Spurrell et al. (2005), Verma 
et al. (2008), Pervaiz et al. 
(2008), Kasper et al. (2013)

Epirubicin with/without 
ifosfamide

STS at high risk of relapse Petrioli et al. (2002)

Ifosfamide Advanced STS, e.g., myxoid  
LS, SS

van Oosterom et al. (2002), 
Sleijfer et al. (2010)

Eribulin mesylate High-grade STS Schoffski et al. (2011b)
Metastatic breast cancer Cortes et al. (2011), Cortes et al. 

(2012)
Gemcitabine plus  

docetaxel
Metastatic STS, metastatic  

uterine LMS
Bay et al. (2006), Maki et al.  

(2007), Hensley et al. 
(2008a, b)

Ixabepilone plus 
capecitabine

Metastatic breast cancer Thomas et al. (2007), Valero  
et al. (2012)

Paclitaxel Angiosarcoma (AS) Fata et al. (1999), Skubitz and 
Haddad (2005)

Trabectedin SS, LMS, advanced  
myoxid/round cell LS

Yovine et al. (2004), Garcia-
Carbonero et al. (2004), 
Demetri et al. (2009a), 
Gronchi et al. (2012)

Tyrosine kinase/ 
Angiogenesis inhibitors

Axitinib STS, AS Clinical trials currently ongoing
Bevacizumab Metastatic STS, AS, epitheloid 

hemangioendothelioma,  
fibrous tumors, 
hemangiopericytomas

D’Adamo et al. (2005), Fuller 
et al. (2010), Rosen et al. 
(2010), Park et al. (2011), 
Agulnik et al. (2013)

Brivanib Advanced STS Schwartz et al. (2011)
Cediranib Alveolar soft part sarcoma  

(ASPS)
Gardner et al. (2009), Kummar 

et al. (2011)
Imatinib mesylate Advanced GIST Demetri et al. (2002), Verweij 

et al. (2004), Meta-analysis 
(2010), Le Cesne et al. 
(2010), Gronchi et al. (2010)

Pazopanib Advanced STS, e.g., LMS, SS Sleijfer et al. (2009), van der 
Graaf et al. (2012)

Sorafenib Advanced STS, OS, AS Maki et al. (2009), von Mehren 
et al. (2012), Ray-Coquard 
et al. (2012), Grignani et al. 
(2012)

(continued)
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A variety of drugs targeting angiogenesis are also being tested in sarcomas. 
Angiogenesis plays a crucial role in growth and dissemination of tumors. It is 
well accepted that upregulated expression of pro-angiogenic VEGF represents an 
independent poor prognostic factor in tumorigenesis (Purohit et al. 2011). Despite 
an upregulated VEGF expression, overexpression of growth-promoting PDGF-β 
as well as invasiveness- and angiogenesis-promoting matrix metalloproteinase 
(MMP) 2 and -9 (MMP-9) and uroplasminogen activator (uPA) has been found 
as correlating with high tumor grade and diminished overall survival (Purohit  
et al. 2011). There is now a wealth of evidence indicating that monoclonal anti-
bodies such as bevacizumab and TK inhibitors (e.g., axitinib, brivanib, cediranib, 
imatinib, pazopanib, sorafenib, sunitinib) harbor promising activity and safety in 
certain subtypes of sarcoma.

Table 11 .3  continued

Agents Sarcoma subtype References

Sunitinib mesylate,  
sunitinib malate

Imatinib-resistant GIST,  
extraskeletal myxoid CS,  
solitary fibrous tumor

Heinrich et al. (2008), George 
et al. (2009), Demetri et al. 
(2009b), Stacchiotti et al. 
(2012a, b)

Tivantinib Clear cell sarcoma (CCS) Wagner et al. (2012)
mTOR inhibitors
Everolimus (RAD001) Advanced sarcoma, retroperito- 

neal perivascular epithelioid  
cell tumor (PEComa), SS

Quek et al. (2011), Gennatas  
et al. (2012), Ho et al. (2012)

Ridaforolimus (AP23573) Advanced BS and STS Mita et al. (2013), Chawla et al. 
(2012)

Sirolimus (rapamycin) KS, CS, pretreated STS, OS,  
ES

Yaich et al. (2012), Bernstein-
Molho et al. (2012), 
Schuetze et al. (2012)

Temsirolimus (CCI-779) BS, STS, Ewing's family  
tumors (EFT), malignant 
PEComa

Italiano et al. (2010), Naing  
et al. (2012), Schwartz et al. 
(2012)

Insulin-like growth factor 
receptor inhibitors

6

Cixutumumab EFT, refractory BS and STS Schoffski et al. (2011a), Naing 
et al. (2012), Schwartz et al.  
(2012), Malempati et al. 
(2012), Chugh et al. (2012)

Figitumumab ES, STS Toretsky and Gorlick (2010), 
Olmos et al. (2010), Quek 
et al. (2011), Juergens et al. 
(2011)

Ganitumab (AMG 479) EFT, desmoplastic small round  
cell tumors (DSRCT),  
advanced or metastatic RMS, 
LMS, adipocytic sarcoma, SS

Tolcher et al. (2009), Tap et al. 
(2012)
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11 .2  Inflammatory Signaling Pathways Associated  
with Sarcoma

Rudolf Virchow (1821–1902) established cellular pathology and coined the phrase 
Omnis cellula e cellula that means “each cell stems from another cell,” and he dis-
tinguished sarcomas from carcinomas (Virchow 1859). In 1863, Virchow noted 
leukocytes in neoplastic tissues and postulated a connection between chronic inflam-
mation and development of cancer (Virchow 1863). 60 years later, Francis Harbitz 
(1867–1950) demonstrated the significance of chronic inflammation with the for-
mation of sarcomas (Harbitz 1924). Epidemiological and experimental studies now 
provide evidence that the development of cancer is indeed attributed to inflamma-
tion. Nowadays, it is generally accepted that up to 25 % of human malignancies are 
related to chronic inflammation and to viral and bacterial as well as parasitic infec-
tions (Hussain and Harris 2007). Chronic inflammation increases the risk of cancer, 
promotes tumor progression, and supports metastatic spread (Multhoff et al. 2012; 
Kundu and Surh 2012). The connection between tumorigenesis and inflammation 
is mediated via intrinsic and extrinsic pathways (Mantovani et al. 2008). The intrin-
sic pathway is activated by various epigenetic alterations causing inflammation and 
malignant transformation. Epigenetic alterations comprise mutation-driven proto-
oncogene activation, chromosomal rearrangement/amplification, and inactivation 
of tumor suppressor genes. Transformed cells secrete inflammatory mediators and 
thus generate an inflammatory microenvironment. The extrinsic pathway is driven 
by inflammation or infections consequently leading to malignant transformation and 
further increasing the risk for cancer development. Both pathways converge in tumor 
cells and induce the activation of several transcription factors such as NF-κB, STAT-
3, and HIF-1 culminating in the formation of numerous pro-inflammatory molecules 
that recruit and activate various leukocyte populations into the tumor microenviron-
ment (for a review see Multhoff et al. 2012). These pro-inflammatory factors include 
proangiogenic mediators (IL-8, VEGF), growth factors (IL-6, GM-CSF, osteopon-
tin), anti-apoptotic mediators (Bcl-xL, c-Flip, survivin), cell cycle mediators (cyclin 
D1, c-Myc), adhesion molecules (ELAM-1, ICAM-1, VCAM-1), invasion-promoting 
factors (MMP-2/-7/-9, uPA), inflammatory enzymes (lipoxygenase, prostaglandin H2 
synthase 2: PGHS-2), prostaglandins, iNOS, as well as chemokines (CCL2/-20, IL-8, 
osteopontin), and pro-inflammatory cytokines (IL-1, IL-6, IL-23, TNF, TGF-β, EGF), 
promoting the malignant phenotype. The tumor cell-derived pro-inflammatory mol-
ecules now activate the same transcription factors within tumor cells and cells of the 
microenvironment. This concerted action of tumor and micromilieu results in a more 
pronounced generation of inflammatory mediators driving the progression of a posi-
tive amplification loop which further triggers tumor growth and invasiveness.

Emerging data suggest that genetic destabilization of tumor cells is regarded 
as a further hallmark of most human cancers contributing to tumor initiation 
and progression (Colotta et al. 2009). Apart from the production of cytokines, 
chemokines, proteases, and prostanoids, inflammatory cells are able to produce 
reactive oxygen (ROS) and nitrogen species (RNS) acting as chemical effectors in 
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inflammation-driven carcinogenesis (Kundu and Surh 2008). ROS and RNS have 
been identified in tumor cells as inducers of the oxygen-dependent heterodimeric 
transcription factor HIF-1 (Sandau et al. 2000) which plays a pivotal role in genetic 
destabilization of these cells (Koshiji et al. 2005). All of these inflammatory media-
tors act together in perpetuating and amplifying the inflammatory cascade. On the 
one hand, they suppress DNA repair mechanisms leading to microsatellite instability. 
On the other hand, they can cause chromosomal instability culminating in abnormal 
chromosomal segregation and aneuploidy (Multhoff and Radons 2012). Moreover, 
the inflammatory factors induce DNA double-strand breaks, affect function of mitotic 
checkpoint molecules, and dysregulate homologous recombination of DNA double-
strand break repair leading to random genetic diversification of tumor cells. Cancer 
cells harboring the optimal combination of activated oncoproteins and inactivated 
oncosuppressor proteins will develop the malignant phenotype (Colotta et al. 2009).

Inflammatory processes also play a critical role in sarcomagenesis. The classical 
tumor with inflammatory etiology is the inflammatory malignant fibrous histiocy-
toma (MFH) predominantly occurring in adults (Sinkovics 2007a, b). The expres-
sion of cytokines in inflammatory MFH may account for local inflammatory cell 
infiltration and the aggressive nature of the malignant cells (Melhem et al. 1993). 
In this sarcoma subtype, the inflammatory process is driven by HIF-1 (Koga et al. 
2005) which not only plays a crucial role in genetic destabilization of tumor cells 
but also in tumor angiogenesis, invasion, survival, and growth (Multhoff et al. 2012). 
As demonstrated by the group of Takaaki Akaike, ROS and RNS induce the forma-
tion of 8-nitroguanine, a product of nitrative DNA damage (Ohshima et al. 2006). In 
MFH patients, 8-nitroguanine formation can be detected predominantly in the nuclei 
of tumor cells and inflammatory cells in tumor tissues, while HIF-1α, the oxygen-
regulated subunit of HIF-1, is expressed in the cytoplasm and nuclei of tumor cells 
(Hoki et al. 2007b). Apart from HIF-1α, iNOS, NF-κB, and PGHS-2 have been 
found to colocalize with 8-nitroguanine in MFH tissues and to negatively correlate 
with the survival indicating an NF-κB-driven sarcomagenesis (Hoki et al. 2007a, b).

Human herpesvirus 8 (HHV8) or Kaposi sarcoma-associated herpesvirus 
(KSHV) is the known causative oncogenic virus for Kaposi sarcoma (KS), which 
in general portends a poor prognosis (Mesri et al. 2010). KS is a chronic inflam-
mation-associated malignancy that arises from the initial infection of an appro-
priate endothelial or progenitor cell by KSHV/HHV8. Cellular hallmarks of KS 
progression include both the hyperproliferation of KSHV-infected cells and the 
infiltration of immune modulatory cells into KS lesions, which together result in 
chronic inflammation, the induction of angiogenesis and tumor growth (Douglas  
et al. 2010). Recent evidence has pointed to the involvement of the NF-κB path-
way in the biology of KSHV and in the pathogenesis of KS (Keller et al. 2006).

Many aspects of KS suggest that chronic inflammation associated with the lesion 
and/or viral infection plays a role in tumor pathogenesis. A crucial role for inflam-
mation in the pathogenesis of KS is exemplified by the association of KS with the 
Koebner (or isomorphic) phenomenon, a condition where lesions initiate or recur at 
inflammatory sites of injury or trauma (Rubin and Stiller 2002), and the recrudes-
cent KS (KS flare) seen with the immune constitution inflammatory syndrome (IRIS; 
Leidner and Aboulafia 2005). The inflammatory response generated is thought to 
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attract infected cells to the site as well as exacerbate the oncogenic properties of the 
viruses (Rubin and Stiller 2002). Progression of KS likely depends on a complex and 
incompletely understood interplay between KSHV and the host immune system that 
allows for the establishment of a tumor-promoting environment (Douglas et al. 2010).

In addition to the classical tumor-promoting molecules such as cytokines, 
chemokines, ROS/RNS, matrix-degrading enzymes, the matricellular protein osteo-
pontin (OPN) has been identified as playing a crucial role in inflammation and tumor 
progression. OPN mediates cell migration, adhesion, and survival in many cell types 
(Lund et al. 2009). As reviewed by Kundu and Surh (2012), OPN signals via the cell 
surface receptor RAGE and αvβ3-integrin. On the one hand, OPN/RAGE interaction 
leads to upregulation of NADPH oxidase (NOX) and a concomitant raise in ROS levels 
culminating in activation of AKT and MAPK (mitogen-activated protein kinase) as well 
as NF-κB. On the other hand, OPN/αvβ3-integrin interactions lead to direct or indi-
rect activation of NF-κB via the mitogen-activated protein kinase kinase / extracellular  
signal-regulated protein kinase (MEK/ERK) pathway, regulating the expression of sev-
eral genes involved in cell survival, angiogenesis, and metastasis and thereby promoting 
tumor growth (Kundu and Surh 2012).

Several signaling pathways have been identified as playing a crucial role in sar-
comagenesis required for neoplastic transformation. These pathways include the 
Ras/Raf/MAPK pathway, the PI3K/AKT/mTOR pathway as well as the recep-
tor tyrosine kinase c-Met and its ligand hepatocyte growth factor (HGF). Normally, 
c-Met is expressed by epithelial and mesenchymal cells and regulates several cellular 
responses such as cell proliferation, survival, motility, invasion, and morphogenesis 
(Birchmeier et al. 2003). Activation via ligand binding and/or receptor overexpres-
sion, amplification, and mutation induces multiple downstream effector proteins and 
cascades including Ras/Raf/MAPK, PI3K/AKT/mTOR, and STAT-3/-5 (for a review 
see Liu et al. 2010). The c-Met/HGF pathway represents one of the most commonly 
dysregulated pathways in human cancers with aberrant signaling found in most solid 
tumors and hematological malignancies (Birchmeier et al. 2003; Liu et al. 2010). 
Amplification or overexpression of c-Met has been demonstrated in many cancers 
including OS and unclassified pleomorphic sarcoma/MFH (Lahat et al. 2011).

Induction of the PI3K/AKT/mTOR and Ras/Raf/MAPK cascades can also be 
achieved via activation of TK receptors by either growth factors (IGF, HGF, VEGF, 
bFGF) or upregulation/mutation. This triggers a number of mitogenic processes 
that promote cell survival and proliferation, anti-apoptotic signals and upregulate 
expression of cell cycle proteins such as cyclin D1 and CDK4 (Takebe et al. 2011). 
Moreover, activation/upregulation of Ras culminates in the induction of ERK-1/-2 
via Raf and MAPK/ERK kinases (MEK-1/-2) which regulate cell proliferation, sur-
vival, differentiation, and migration (Takebe et al. 2011). The possible contribution 
of these pathways to sarcomagenesis is discussed in detail in Sect. 11.3.

One of the major pathways involved in sarcomagenesis is the insulin-like growth 
factor (IGF) system. Signaling via the IGF receptor (IGF-1R) plays an impor-
tant role in normal cell growth and differentiation as well as key aspects of neopla-
sia such as transformation and anti-apoptotic signaling (Zha and Lackner 2010). 
The ligands IGF-1 and IGF-2 are both capable of binding and stimulating IGF-1R. 
Bioavailability of IGF-1 is modulated by circulating IGF-binding proteins (IGFBPs), 
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whereas bioavailability of IGF-2 is modulated both by the IGFBPs and by binding to 
the IGF-2R, resulting in receptor-mediated internalization and degradation of IGF-2 
in lysosomes. Receptor ligation creates multiple docking sites for the adaptor proteins 
insulin receptor substrate 1 (IRS-1), IRS-2, and Shc. IRS-1 and IRS-2 binding results 
in activation of PI3K followed by recruitment and activation of AKT by PDK-1 and 
the mTOR-containing complex mTORC-2 (Guertin and Sabatini 2005). AKT activa-
tion exerts anti-apoptotic effects through inhibition of pro-apoptotic factors such as 
Bad and members of the FOXO family of transcription factors, as well as increased 
expression of anti-apoptotic proteins such as Bcl-2, Bcl-xL, and NF-κB (Datta et al. 
1999). AKT signaling also impacts glucose metabolism and plays a key role in pro-
tein synthesis and cell growth by regulating the activity of the mTORC-1 complex 
(Efeyan and Sabatini 2010). In contrast, Shc binding to activated IGF-1R activates the 
Ras/Raf/MAPK pathway and induces transduction of mitogenic signals (Pollak 2008).

As described above, the IGF-1 system is considered as playing a general role in 
 neoplastic transformation and metastasis in a number of cancers including sarcomas. 
An upregulated expression of IGF-1/-2 or IGF-1R has been identified in various sarco-
mas such as SS, RMS, LMS, OS, and GIST while in ES, a downregulation of IGFBP-3 
can be observed (Quesada and Amato 2012). In this context, preliminary clinical data 
argue for a link between members of the IGF system to increased cancer risk and path-
ological alterations in certain tumor types, notably sarcomas (Zha and Lackner 2010).

11 .3  Role of Inflammatory Molecules in the Development of 
Sarcoma: Evidence from In Vitro Studies

11.3.1  Role of Inflammatory Molecules in the Transformation of 
Sarcoma Cells

There is growing evidence that interconnections among molecular pathways  governing 
tissue differentiation are nodal points for malignant transformation. In this scenario, 
the discovery of microRNA (miRNA) identified this RNA subtype as a crucial player 
in tumorigenesis. miRNAs are a class of small RNAs that post-transcriptionally reg-
ulate gene expression, triggering not only transformation but also differentiation, 
and proliferation. Global alterations in miRNAs are frequently observed in a num-
ber of disease states including cancer. A comprehensive analysis of miRNA expres-
sion profiles of 27 sarcomas using microarray technology and/or small RNA cloning 
approaches identified distinct miRNA expression profiles among the tumor types as 
demonstrated by an unsupervised hierarchical clustering, and unique miRNA expres-
sion signatures in each tumor class (Subramanian et al. 2008). In GIST, the down-
regulated expression of miR-221 and miR-222 was suggested to allow for increased 
translation of CKIT and to further enhance its oncogenic potential on the cells. 
Significant overrepresentation of miR-1, miR-133a, and miR-133b was found in LMS 
playing a major role in myogenesis and myoblast proliferation. In SS, miR-143 was 
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expressed at very low levels relative to GIST and LMS. The only experimentally 
verified target for miR-143 is ERK5 (also known as MAPK7) whose role in sarcom-
agenesis is unclear. SSX1, a common 3′-fusion partner gene resulting from a t(X;18)
(p11.2;q11.2) translocation in SS (Sturgis and Potter 2003), is predicted to be a target 
for miR-143, suggesting that underrepresentation of miR-143 in SS tumor cells ena-
bles the production of the SYT/SSX-1 oncoprotein (Subramanian et al. 2008; Hisaoka 
et al. 2011). In alveolar RMS, high levels of miR-335 involved in mesoderm or muscle 
differentiation can be found (Subramanian et al. 2008). From these data, the authors 
speculate that the clearly distinct miRNA expression signatures among the tumor types 
studied might implicate their role in tumorigenesis in these tumors and their potential 
as diagnostic markers or even therapeutic targets. It is interesting to note that the induc-
tion of the cancer stem cell (CSC) phenotype in ES is the result of the combined effect 
of suppression of miR-145 promoter activity and expression of EWS/FLI1 fusion gene 
required for transformation (Riggi et al. 2010). SOX2, which participates in the devel-
opment of pluripotent stem cells, was identified as the target gene of miR-145 and 
EWS/FLI1, thus providing insight how a single oncogene (EWS/FLI1) can reprogram 
cells to display the CSC phenotype (Riggi et al. 2010).

Several groups demonstrated a strikingly decreased expression of miR-1 and 
miR-133a in alveolar and embryonal RMS cell lines (Yan et al. 2009; Rao et al. 
2010). Preclinical studies reported that forced re-expression of miR-206 leads 
to cell cycle arrest and myogenic differentiation of RMS cells, preventing xeno-
graft growth in vivo by targeting the mRNA of the oncogenic c-Met receptor (Yan  
et al. 2009; Taulli et al. 2009). miR-1 and miR-206 are downregulated in alveolar 
and embryonal RMS compared to nonneoplastic skeletal muscle tissues and fail to 
increase in RMS cell lines in response to differentiation-inducing treatment (Taulli 
et al. 2009). Moreover, re-expression of miR-1 or miR-206 through lentiviral vec-
tors promotes cell differentiation in alveolar cell lines that are resistant to differen-
tiate cues, and blocks anchorage-independent growth and invasiveness in vitro and 
in vivo (Taulli et al. 2009). Meanwhile, clusters of hundreds of genes up- (muscle 
lineage) or downregulated (cell cycle) by miR-206 in RMS were identified, among 
which c-Met was found as being a direct miR-206 target. Thus, the miR-206-de-
pendent post-transcriptional inhibition of c-Met expression markedly contributes 
to the anti-tumor effects of this miRNA rendering tissue-specific miRNAs as hold-
ing great therapeutic potential.

The miR-155 has been shown to be the most overexpressed miRNA in LS cell 
lines, and functional investigations assigned an important role in the growth of 
dedifferentiated LS cells (Zhang et al. 2012). Knockdown of miR-155 retarded 
tumor cell growth, decreased colony formation, and induced G1/S cell cycle arrest 
in vitro and blocked tumor growth in murine xenografts in vivo. Casein kinase 1α 
(CK1α) seems to be the direct target of miR-155 augmenting β-catenin signaling 
and cyclin D1 expression and promoting tumor cell growth (Zhang et al. 2012).

In inflamed tissue, miR-155 inhibits the repair of DNA double-strand breaks or 
allows mismatch repairs. According to Sinkovics (2012), these cells assume the 
“mutator phenotype” and upregulate the expression of hypoxanthine phosphori-
bosyl-transferase as a consequence of the dramatically enhanced number of DNA 
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strand breaks and mutations. Inflammatory mediators such as TNF, IL-1β, IL-6, 
IL-8, and LPS are able to upregulate miR-155 in cancer cells. miR-155 increases 
the proliferation of adenocarcinoma cells and downregulates Wee-1, a recently 
recognized tumor suppressor and the key inhibitor of cyclin-dependent kinase 
1 (Cdk-1), enabling unlimited cell divisions to occur (Enders 2010). Apart from 
being a regulator of mitotic entry, Wee-1 has been described to affect other cellular 
processes, including regulation of mitotic spindle formation, positioning and integ-
rity, microtubule stabilization, and heat-shock protein 90 (Hsp90) phosphorylation 
(Hashimoto et al. 2006; Garcia et al. 2009; Mollapour et al. 2010). Inactivation 
of Wee-1 by miR-155 represents one of the hallmarks of inflammatory carcino-
genesis (Enders 2010; Butz et al. 2010; Tili et al. 2011). Whether downregulation 
of Wee-1 as can be observed in human sporadic pituitary cancer cells (Butz et al. 
2010) also occurs in sarcoma remains to be addressed.

Epithelial–mesenchymal transition (EMT) is the key process driving can-
cer metastasis characterized by the loss of the epithelial marker E-cadherin, an 
increase in the mesenchymal markers vimentin and N-cadherin, and an increase 
in the migratory and invasive behavior (Kraljevic Pavelic et al. 2011). Oncogene/
self-renewal factor Bmi-1 has been shown to induce EMT in cancer cells (Yang 
et al. 2010b). Bmi-1 upregulation is associated with malignant transformation in 
hepatocellular carcinoma (Sasaki et al. 2008). Recent studies suggest that miRNAs 
function as crucial modulators for EMT. The group of Noriaki Sakuragi identified 
Bmi-1 as an essential factor in EMT and in the development of an invasive pheno-
type in endometrial cancer (EC) cells (Dong et al. 2011). Furthermore, the expres-
sion of Bmi-1 could be suppressed by miR-194 via direct binding to the BMI1 
3′-untranslated region. Ectopic expression of miR-194 in EC cells induced a mes-
enchymal to epithelial transition (MET) by restoring E-cadherin, reducing vimen-
tin expression, and inhibiting cell invasion in vitro. Based on these findings, it can 
be concluded that targeting the oncoprotein Bmi-1 might provide a potential new 
strategy to prevent EC progression.

Proto-oncogene activation represents a critical component in the intrinsic 
pathway of cancer-related inflammation. In this context, mutations in RAS genes 
play an important role in tumorigenesis of sarcoma. Overall, up to 30 % of all 
human tumors harbor mutations in canonical RAS genes (KRAS, HRAS, NRAS). 
Remarkably, these oncogenic mutations predominantly affect the KRAS locus, 
with oncogenic KRAS mutations being detected in 25–30 % of all screened tumor 
samples (Forbes et al. 2011). Activating RAS mutations are also present in up to 
44 % of human STS (Yoo et al. 1999) and in up to 35 % of human embryonal 
RMS (Martinelli et al. 2009). The high frequency of KRAS mutations and their 
appearance in early tumor stages argue for a causative role of the K-Ras protein 
in human tumorigenesis (Fernandez-Medarde and Santos 2011). Members of the 
RAS family are crucial for the connection of upstream signals to downstream 
effector pathways that are functionally related to cell cycle progression, growth, 
migration, cytoskeletal changes, apoptosis, and senescence. In tumor cells, activa-
tion of mutated Ras is followed by the induction of several intracellular signal-
ing pathways including the Raf/MEK/ERK kinase cascade, the PI3K/AKT/mTOR 
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pathway, and RalGDS proteins (Downward 2009), the latter belonging to the 
family of nucleotide-exchange factors activating small GTPases such as RalB. 
RalB stimulates the TANK-binding kinase 1 (TBK-1) resulting in NF-κB activa-
tion. NF-κB not only functions as crucial regulator of inflammatory and immune 
responses as well as of cell survival, but it has also been implicated in cellular 
transformation and tumorigenesis. In cancer cells, a constitutive activation of this 
pathway, via chronic RalB activation, restricts the initiation of apoptosis after 
oncogenic stress (Chien et al. 2006). Beside NF-κB activation, TBK-1 activates 
the transcription factors IRF-3 and IRF-7 (Hacker and Karin 2006), leading to the 
production of growth and inflammatory mediators. Previously, it has been shown 
that oncogenic K-Ras is a direct inducer of pro-inflammatory IL-6 and pro-angi-
ogenic IL-8 in vitro required for the initiation of tumor-associated inflammation 
and neovascularization promoting tumor growth (Sparmann and Bar-Sagi 2004; 
Ancrile et al. 2007). Since TBK-1 and NF-κB signaling have been identified as 
being essential in K-Ras mutant tumors (Barbie et al. 2009), it was assumed that 
targeting the NF-κB signaling pathway might be effective in treating Ras-mutated 
tumors (Downward 2009). Interestingly, NF-κB inhibition by dehydroxymeth-
ylepoxyquinomicin (DHMEQ) inhibited proliferation, decreased the mitotic 
index, and triggered apoptosis of OS cells HOS and MG-63 (Castro-Gamero  
et al. 2012) while NF-κB inhibition by the semisynthetic flavonoid 7-mono-O- 
(β-hydroxyethyl)-rutoside (monoHER) potentiated the anti-tumor activity of doxo-
rubicin in the human LS cell line WLS-160 (Jacobs et al. 2011).

An intriguing aspect in cellular transformation is presented by the group of 
Bharat Aggarwal, who discussed the potential role of oxidative stress in tumori-
genesis (Reuter et al. 2010). As stated by the authors, oxidative stress impacts any 
stage of tumorigenesis. In the initial phase, oxidative stress induces genetic insta-
bility by enhancing the mutation rate of cells and consequently leading to onco-
genic transformation (Jackson and Loeb 2001). Apart from mediating genomic 
destabilization, ROS have been found to activate several intracellular signaling 
pathways promoting tumor growth and metastasis. In this context, the transcrip-
tion factor FoxM1, a member of the large evolutionarily conserved family of fork-
head box transcription factors involved in activating detoxifying enzymes (e.g., 
manganese superoxide dismutase), obviously plays a pivotal role in tumorigenesis 
since it is overexpressed in various human malignancies (Pilarsky et al. 2004). 
FoxM1 is also expressed in ES (Christensen et al. 2013), neuroblastoma (Wang  
et al. 2011) and medullablastoma cell lines (Priller et al. 2011). In glioblastoma 
cells, a high expression of FoxM1 was found to correlate with the tumorigenicity 
of the tumor cells (van den Boom et al. 2003; Liu et al. 2006).

The glycophosphoprotein osteopontin (OPN) is implicated in several physiologi-
cal and pathophysiological processes including atherosclerosis, glomerulonephritis, 
chronic inflammatory diseases, and cancer (Lund et al. 2009). OPN is involved in 
proliferation, cell adhesion, migration, and invasion via interaction with its recep-
tor, αvβ3-integrin. It has been shown previously that OPN induction is required 
for tumor promotor-mediated transformation of preneoplastic mouse epidermal 
cells (Chang et al. 2003). Chen and coworkers convincingly demonstrated that 
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OPN enhances the migration of human chondrosarcoma cells JJ012 by  increasing 
MMP-9 expression through αvβ3 -integrin, FAK (focal adhesion kinase), MEK, 
ERK, and NF-κB signal transduction pathways (Chen et al. 2009).

11.3.2  Role of Inflammatory Molecules in the Survival  
of Sarcoma Cells

It has increasingly been recognized during the past years that malignancy not only 
results from enhanced proliferation but also from decreased apoptosis, a funda-
mental process in tumor cell kinetics. Cancer cells are extremely dependent on 
aberrations of the apoptotic pathways to survive. Critical regulators of this path-
way include the Bcl-2 family of proteins and p53. In cultured KS tumor cells, 
flow cytometric and immunoblotting analyses revealed a predominant expres-
sion of anti-apoptotic Bcl-xL over Bcl-2 with no detectable pro-apoptotic Bax or 
Bcl-xS (Foreman et al. 1996). Bcl-2 is also expressed in the SS cell line, SN-SY-1 
(Noguchi et al. 1997). It has been shown previously that Bcl-2 expression can be 
induced by VEGF in human dermal microvascular endothelial cells (HDMECs), 
thereby enhancing endothelial survival and sustaining angiogenesis (Nör et al. 
1999). These data suggest that the ability of VEGF to enhance endothelial cell sur-
vival might be attributed to its capacity to induce the expression of Bcl-2. Of note, 
exposure of KS cells to pro-inflammatory IL-1 increased the expression of Bcl-2 
and decreased that of Bax without affecting Bcl-xL expression providing a link 
between KS cell escape from apoptosis and the immune dysregulation associated 
with KS (Simonart and Van Vooren 2002). Bcl-2 overexpression has been recently 
reported in SS in situ (Hirakawa et al. 1996).

Evidence for the role of inflammatory mediators in the survival of sarcoma cells 
is given by several in vitro studies, revealing that cultured human astrocytes as 
well as glioblastoma cell lines release GM-CSF that can be enhanced by addition 
of TNF or IL-1, respectively (Frei et al. 1992; Curran et al. 2011). In human neu-
roblastoma and glioblastoma cell lines, exposure to GM-CSF showed cytoprotec-
tive effects on these cell lines by inhibiting staurosporine-induced apoptosis (Huang  
et al. 2007; Choi et al. 2007). The same group found out that pretreatment of N2a 
glioblastoma cells with GM-CSF inhibited staurosporine-induced expression of 
pro-apoptotic p53 and Bax, while upregulated that of Bcl-2 (Huang et al. 2007). 
These data imply that the GM-CSF-mediated modulation of pro- and anti-apoptotic 
gene expression is crucially involved in inflammation-driven sarcomagenesis.

A wide range of pro-survival factors are activated by the essential embryonic 
sonic hedgehog (Hh) signaling pathway which has been implied in tumor forma-
tion and progression of various cancers. Aberrant activation of the Hh signaling 
pathway has been shown as playing a crucial role in RMS, OS, CS, ES as well 
as medulloblastoma (Quesada and Amato 2012; Martin Liberal et al. 2012). Upon 
Hh activation, upregulated expression of several marker genes, e.g., PTCH1, 
GLI1, GLI3, and MYF5, can be observed in embryonal RMS and also in fusion 
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gene-negative alveolar RMS (Zibat et al. 2010). Together with the finding of an 
elevated Hh signaling in cancer stem cells and nonmalignant stromal cells sur-
rounding malignant tumors, the Hh pathway can be considered as key cofactor in 
sarcomagenesis (Takebe et al. 2011).

Further critical signaling pathways in sarcomagenesis involve the PI3K/AKT/ 
mTOR as well as the Ras/Raf/MAPK cascade. The study by Sasaki and cowork-
ers detected RAF1 and MEK1/2 mRNA in OS and MFH cells (Sasaki et al. 2011). 
Treatment with the MEK inhibitor U0126 decreased proliferation of OS and MFH 
cells in a time- and dose-dependent manner. In human SS cells, inhibition of the 
MAPK pathway by sorafenib led to downregulation of cyclin D1 and pRb, G1 
arrest, and induction of apoptosis (Peng et al. 2009). Notably, the work by the 
group of Hiroki Sakai convincingly demonstrated that the mTORC-2/AKT path-
way was constitutively activated in canine hemangiosarcoma (HAS) cell lines and 
tumors (Murai et al. 2012a, b).

Angiogenin (ANG), a 14-kDa multifunctional pro-angiogenic growth factor, is 
upregulated in several types of cancers including KSHV-associated cancers such 
as KS (Sadagopan et al. 2009). ANG mediates its effects in multiple subcellular 
compartments, including the nucleolus where it directly binds to DNA, thereby 
inducing 45S rRNA transcription and cell proliferation (Moroianu and Riordan 
1994). Studies by the group of Bala Chandran demonstrated that ANG plays a 
crucial role in the anti-apoptotic state of KSHV-infected cells by suppressing p53 
functions (Sadagopan et al. 2012; Paudel et al. 2012). Moreover, ANG expression 
inhibited pro-apoptotic Bax and p21Waf-1 expression, induced anti-apoptotic Bcl-2 
and blocked cell death. ANG was also found to colocalize with the p53 regulator 
protein Mdm-2 and to increase p53/Mdm-2 interactions suggesting that ANG pro-
motes the inhibition of p53 functions to mediate anti-apoptosis and cell survival 
(Sadagopan et al. 2012).

The crucial role of FoxM1 in tumorigenesis of sarcomas has already been men-
tioned. An altered expression and function of FoxM1B as can be found in sev-
eral human malignancies also has an impact on apoptosis, possibly by regulating 
the cell cycle repressor protein p27Kip-1 (Liu et al. 2006). p27Kip-1 has been found 
to modulate apoptosis in various cell types, including glioblastoma multiforme 
cells (Hiromura et al. 1999; Lee and McCormick 2005). Knockdown of FoxM1 in 
medulloblastoma cell lines significantly decreased cell viability which was caused 
by a failure in mitotic spindle formation and caspase-dependent mitotic catastro-
phe (Priller et al. 2011).

11.3.3  Role of Inflammatory Molecules in the Proliferation  
of Sarcoma Cells

Tumor cells have to evade various cellular stress factors for proliferation and 
survival including a markedly increased production of ROS. In this context, the 
serine/threonine kinase Mirk/Dyrk1B has been reported to be highly expressed 



280 J. Radons

in several types of cancer cells, including OS (U2OS, KHOS), uterine sarcoma 
(MES-SA), CS (CS-1), SS (SS-1), ES (TC-71), and ovarian cancer (SKOV-3) 
in comparison with normal human osteoblast cell lines (Yang et al. 2010a). The 
same group clearly demonstrated that Mirk mediates cell proliferation and apop-
tosis in KHOS cells (Yang et al. 2010a). Mirk knockdown by RNA interference 
or shRNA induced apoptosis in both, OS cell lines and primary OS cell cultures 
in vitro. Mirk was also identified as being an active kinase in RMS cells in which 
its depletion by RNA interference led to apoptosis induction (Mercer et al. 2006). 
Mirk is known to upregulate the expression of several anti-oxidant genes involved 
in scavenging ROS by acting as a coactivator for distinct transcription factors and 
thus mediating cell survival (Deng et al. 2009).

Recent observations suggest a contribution of Mirk to the Hh pathway in sar-
comas. As demonstrated previously, Mirk is a downstream effector of oncogenic 
K-Ras and an active kinase in RMS and OS cells (Jin et al. 2007). Moreover, acti-
vating RAS mutations can be found in up to 44 % of human STS (Yoo et al. 1999) 
and in up to 35 % of human embryonal RMS (Martinelli et al. 2009). Since Mirk 
has been found to enhance Gli1-dependent gene transcription and to act synergisti-
cally with sonic Hh in inducing transcription, one can hypothesize that Mirk alters 
Hh signaling and consequently controls stromal environment of these tumors 
(Friedman 2011).

As already mentioned, OPN, a secreted phosphorylated chemokine-like protein, 
plays an important role in proliferation of tumor cells. In particular, the two iso-
forms of OPN, OPN-A and OPN-B, have been found to stimulate pro-tumorigenic 
behaviors, such as cell proliferation, migration, invasion, and soft agar colony for-
mation in transiently transfected mesothelioma cell lines (Ivanov et al. 2009).

Evidence for the role of inflammatory mediators in the proliferation of sar-
coma cells is further given by several in vitro studies revealing that cultured 
human astrocytes as well as glioblastoma cell lines release growth-promoting 
GM-CSF that can be enhanced by addition of TNF or IL-1, respectively (Frei  
et al. 1992; Curran et al. 2011). Human glioblastoma cell lines and murine OS cell 
lines secrete TGF-β (Constam et al. 1992; Navid et al. 2000) and IL-1 (Fontana 
et al. 1984; Lee et al. 1989), the latter has been found to modulate TGF-β secre-
tion from malignant glioma cells (Naganuma et al. 1996). The effect of TGF-β on 
growth of sarcoma cells remains an open question. While TGF-β obviously did 
not affect growth of malignant glioma cells exposed to IL-1 (Naganuma et al. 
1996), it markedly increased proliferation of murine OS cells (Navid et al. 2000) 
but decreased that of human RS cells (Ye et al. 2005). TNF, a critical cytokine in 
tumorigenesis and produced by astrocytes in vitro and in vivo, contrarily affected 
proliferation of the astrocytoma cells A-172 and U-87, thereby decreasing TGF-β 
expression in U-87 only (Chen et al. 1993).

Stimulation of human OS cells Saos2 with TNF increased bone sialopro-
tein (BSP), IL6, and PGHS2 mRNA levels (Nakayama et al. 2004). TNF is a 
pro-inflammatory cytokine crucially involved in cellular proliferation and dif-
ferentiation. It also contributes to bone remodeling and represents a component 
of the RANK/RANKL pathway (Silva and Branco 2011). RANKL, a member 
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of the TNF superfamily of cytokines, has been found in a variety of malignant 
tumor cells where it regulates cell proliferation and migration (Tat et al. 2009). 
Expression of RANKL could be demonstrated in Paget’s sarcoma stromal cells 
(Sun et al. 2006), OS cells (Mori et al. 2007), bone stromal cells from giant cell 
tumors (Ng et al. 2010), and ES cells (Taylor et al. 2011). The expression of 
RANKL increases in response to pro-inflammatory cytokines such as IL-1 in 
multiple myeloma mesenchymal stromal cells in a MEK/ERK-dependent manner 
(Fernandez et al. 2010).

PGHS-2 has emerged as another pro-inflammatory mediator in tumorigen-
esis whose expression is mediated by NF-κB. PGHS-2 is the rate-limiting enzyme 
involved in the conversion of arachidonic acid to prostanoids acting as key media-
tors of inflammation. Aberrant or increased expression of PGHS-2 has been shown 
to be involved in the pathogenesis of several malignancies including OS. PGHS-2 
and prostaglandins contribute to carcinogenesis by stimulating cell proliferation, 
apoptosis, angiogenesis, and metastasis (Aggarwal and Gehlot 2009; Kundu and 
Surh 2012). Overexpression of PGHS-2 results in the secretion of large amounts of 
VEGF and therefore is associated with increased tumor cell invasion and poor prog-
nosis (Raut et al. 2004; Ladetto et al. 2005). Our own investigations on the human OS 
cell line U-2 OS revealed a strong IL-6 and IL-8 production by U2 OS after stimu-
lation with IL-1 (Hönicke et al. 2012). IL-6 is an NF-κB-regulated pleiotropic pro-
inflammatory cytokine that enables tumor growth and inhibits apoptosis in numerous 
human cancers (Rose-John and Schooltink 2007). Similarly, IL-8 increases prolif-
eration and survival of endothelial and cancer cells (Takamori et al. 2000; Li et al. 
2003; Yao et al. 2007). In CS cells SW1353, IL-1 exposure strongly induced IL-6 
production and upregulated secretion of MMP-1 and MMP-13 (Radons et al. 2006b). 
Experiments with pharmacological inhibitors clearly demonstrated a contribution 
of the p38MAPK and/or the PI3K/JNK (c-Jun N-terminal kinase) pathway to IL-1-
induced IL-6 secretion in SW1353 cells (Radons et al. 2006a).

Recent investigations of the laboratory of Brooke Mossman demonstrated an 
increased secretion of inflammatory mediators (IL-13, bFGF, G-CSF, and VEGF) 
in human malignant mesothelioma (MM) cells LP9/TERT-1 after exposure to 
asbestos (Hillegass et al. 2010b). Exposure to asbestos fibers is known to induce 
the development of MM, a rare form of cancer that affects the thin cell wall lin-
ing (mesothelium) of the body’s internal organs and structures. Using an RNA 
interference, the asbestos-induced upregulation of IL-1β, IL-13, and G-CSF as 
well as of growth-promoting PDGF-BB and pro-angiogenic VEGF in LP9/TERT-1 
cells could be attributed to an activation of the transcription factor ATF-3 (Shukla   
et al. 2009). In malignant peripheral nerve sheath tumor (MPNST), a highly 
aggressive STS without any effective treatment options, PDGF-BB functions as 
the most effective inducer of MPNST cell proliferation and invasion. As demon-
strated by Iwasaki and collaborators, PDGF-BB was found to enhance the invasive 
activity of MPNST cells via PDGFR phosphorylation which could be blocked by 
imatinib mesylate in vitro (Iwasaki et al. 2009). In addition, EMMPRIN is a trans-
membrane glycoprotein expressed on tumor cells and induces the production of 
MMPs in peritumoral fibroblasts thus promoting tumor growth and invasiveness 
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of human carcinomas. Epithelioid sarcoma cell lines have been shown to express 
EMMPRIN and to upregulate MMP-2 in fibroblasts in coculture experiments criti-
cal for epithelioid sarcoma cell stromal invasion and vascular involvement (Koga 
et al. 2007). These findings render tumor-associated EMMPRIN a potentially use-
ful target in the therapy of certain STS.

To analyze the functional and potential therapeutic relevance of IGF-1R signaling, 
Friedrichs and collaborators treated SS cell lines with the IGF-1R inhibitor NVP-
AEW541 (Friedrichs et al. 2008). In this study, the IGF-1R antagonist was found 
to inhibit cell growth through a reduction in phosphorylation of AKT and p44/42 
MAPK. Moreover, inhibition of the receptor led to increased apoptosis and dimin-
ished mitotic activity. In a recent study, an upregulated expression of IGF-1R, c-Met, 
HER-2, VEGFR-3, insulin receptor, and PDGFR-β was identified in OS cell lines 
suggesting a contribution of these receptors to osteosarcomagenesis (Hassan et al. 
2012). Further in vitro evidence for the contribution of the MAPK pathway to sar-
comagenesis is given by the work of Sasaki and colleagues who detected RAF1 and 
MEK1/2 mRNA expression in several human sarcoma cell lines (Sasaki et al. 2011). 
Treatment with the MEK inhibitor U0126 resulted in dose- and  time-dependent 
 inhibition of cell proliferation and suppression of p-ERK expression (Sasaki et al. 
2011). A similar observation was made with the SS cell lines SW982 and HS-SY-
II where the Raf inhibitor sorafenib effectively inhibited cell proliferation and phos-
phorylation of MEK and ERK, downregulated cyclin D1 and pRb levels, caused G1 
arrest and S phase decrease, and induced apoptosis (Peng et al. 2009).

Lyn, a member of the SRC family of kinases, is a known regulator of tumor cell 
proliferation, adhesion, motility, and invasion. Elevated Lyn kinase activity has been 
found in ES cell lines (Rosen et al. 1986; Guan et al. 2008). Shor et al. (2007) also 
reported high levels of phosphorylated Src in human OS and ES cell lines. In ES 
cells, Lyn expression is regulated by EWS/Fli-1 which is known to transform cells 
by acting as an aberrant transcriptional factor for specific target genes (Guan et al. 
2008). In vitro, inhibition of Lyn kinase activity by the small-molecule Src fam-
ily tyrosine kinase (SFK) inhibitor AP23994 suppressed growth of ES tumor cells 
TC71, while downregulation of Lyn reduced invasive capacity of the cells (Guan 
et al. 2008). Activation of Lyn can be induced by the KSHV protein K1 in K1 lym-
phoma cells leading to production of VEGF and NF-κB activation, both strongly 
implicated in the development of KSHV-derived disorders (Prakash et al. 2005).

As discussed earlier, FoxM1 is a central player in sarcomagenesis. FoxM1 is 
exclusively expressed in proliferating cells and critically involved in cell cycle 
progression (Laoukili et al. 2005; Wang et al. 2005a). FoxM1B overexpression 
increased the growth of glioma cells both in vitro and in vivo, which was at least 
partially caused by accelerated glioma cell cycle progression (Liu et al. 2006). 
Consistent with previous studies (Kalinichenko et al. 2004); FoxM1 overexpression 
was shown to diminish the expression of nuclear p27Kip-1 protein but increased the 
expression of Skp-2 and cyclin D1 protein. From these observations, the authors con-
clude that FoxM1 probably regulates p27Kip-1 protein expression indirectly by induc-
ing Skp-2 expression, which mediates the degradation of p27Kip-1 protein. FoxM1 
is also expressed in ES cell lines in which reduction of its expression resulted in 
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diminished potential for anchorage-independent growth (Christensen et al. 2013). 
FoxM1 is obviously implicated in the pathogenesis of neuroblastoma. In neuroblas-
toma cell lines, reduction in FOXM1 expression by siRNA markedly diminished 
anchorage-independent growth (Wang et al. 2011). Furthermore, neuroblastoma cells 
with reduced FoxM1 expression underwent spontaneous differentiation with dimin-
ished levels of Sox-2. Human OS cells U2 OS expressing hyperactivated AKT are 
addicted to FoxM1 for proliferation and clonogenic survival as they require con-
tinuous presence of FoxM1 for survival (Park et al. 2009). The same study further 
revealed that expression of FoxM1 is induced by oncogenic Ras requiring ROS and 
that upregulated FoxM1 counteracts elevated intracellular ROS levels in a negative 
feedback loop by stimulating the expression of anti-oxidant enzyme genes to protect 
dividing cells and tumor cells from oxidative stress (Park et al. 2009). Together, these 
observations indicate a strong reliance of tumor cells on FoxM1.

11.3.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Sarcoma Cells

Angiogenesis, which is essential for tumor growth, is regulated by various pro-
angiogenic factors (e.g., VEGF, IL-8, bFGF, EGF, PDGF, MMP-2, Notch-1/-4, and 
OPN). Among them, VEGF has been identified as a crucial player in sarcomagen-
esis. As demonstrated by our group, human U2 OS cells spontaneously release high 
amounts of invasiveness- and angiogenesis-promoting MMP-2, VEGF, and IL-8 
that can be further enhanced by pro-inflammatory IL-1 (Hönicke et al. 2012). IL-1 
was also found to strongly upregulate secretion of pro-angiogenic IL-8, suggesting 
a crucial involvement in osteosarcomagenesis. We also detected a massive release 
of pro-angiogenic MMP-1 and MMP-13 in CS cells SW1353 after exposure to IL-1 
highlighting the crucial impact of inflammatory mediators in bone sarcomagenesis 
(Radons et al. 2006b). Measurement of VEGF levels in cell supernatants of canine 
HAS cell lines treated with masitinib mesylate demonstrated a statistically significant 
increased VEGF release in close proximity to the IC50 of each cell line followed by 
a decline back toward baseline levels (Lyles et al. 2012). VEGF blockade induced a 
significant cell death in human glioblastoma and fibrosarcoma (FS) cell lines, thereby 
confirming the central role of VEGF in sarcomagenesis (Lee et al. 2011, 2012). 
Identical to IGF, VEGF binding to its corresponding receptor leads to activation of 
the PI3K/AKT/mTOR and Ras/Raf/MAPK pathways, promoting not only angiogen-
esis but also proliferation, differentiation and survival. In this context, stimulation of 
human CS cells JJ012 with OPN significantly increased expression of invasiveness- 
and angiogenesis-promoting MMP-9 and activation of FAK, MEK, ERK, and NF-
κB (Chen et al. 2009). In addition, treatment of JJ012 cells with the NF-κB inhibitor 
PDTC, the IκB protease inhibitor TPCK, RGD peptide, anti-αvβ3 integrin mono-
clonal antibody or MEK inhibitors (PD98059, U0126) inhibited the OPN-induced 
MMP-9 upregulation of CS cells providing in vitro evidence for the role of OPN 
in angiogenesis and invasiveness of sarcoma. Remarkably, transfection of murine 
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neuroblastoma C1300 cells with OPN did not increase VEGF production and did not 
affect gene expression of other proangiogenic factors confirmed by complementary 
DNA microarray system suggesting a pro-angiogenic role independent of VEGF, at 
least in this sarcoma subtype (Takahashi et al. 2002). Other pro-angiogenic factors 
are differentially upregulated in STS cells such as angiopoietin-2, bFGF, MMP-2, 
Notch-1/-4, and PDGF (Engin et al. 2009; Lee et al. 2010; Ye et al. 2012; Bai et al. 
2012; Hönicke et al. 2012). Some chromosomal translocations and their gene prod-
ucts are able to upregulate the transcription of pro-angiogenic VEGF, HIF1A, MDK, 
CMET, and TIMP2 as can be found in the alveolar soft part sarcoma cell line ASPS-1 
(Quesada and Amato 2012). In this context, FoxM1 is required for invasion and angi-
ogenesis of glioma cells as VEGF was identified as being a direct transcriptional tar-
get of FoxM1B (Zhang et al. 2008). Furthermore, FoxM1 overexpression increased 
and inhibition of FoxM1 expression suppressed the angiogenic ability of glioma 
cells. According to Agulnik (2012), the PI3K/AKT/mTOR pathway has an important 
role in the regulation of angiogenesis mediated by HIF-1α. Preclinical and clinical 
studies provide further evidence for the anti-angiogenic effects of specific mTOR 
inhibitors (rapalogs) in sarcoma (see also Table 11.3).

As already mentioned in Sect. 11.3.2, the multifunctional pro-angiogenic 
growth factor ANG is upregulated in numerous cancers including KS (Sadagopan 
et al. 2009). Apart from ANG, KSHV infection upregulates the transcription of 
a broad range of host genes involved in angiogenesis such as VEGF and PGHS2 
(Sivakumar et al. 2008; Sharma-Walia et al. 2010). The nuclear location of ANG is 
a prerequisite not only for its pro-angiogenic and proliferative properties but also 
for the pro-angiogenic potential of VEGF and bFGF (Kishimoto et al. 2005). In a 
previous study, the group of Bala Chandran demonstrated robust PGHS2 expres-
sion and high levels of PGE2 secretion by KSHV during primary infection of 
human microvascular endothelial cells (HMVEC-d) and human foreskin fibroblast 
cells (Sharma-Walia et al. 2006). KSHV infection-induced PGHS-2/PGE2 expres-
sion also upregulated Rac1-GTPases in adhering endothelial cells, thereby acceler-
ating cell adhesion (Sharma-Walia et al. 2010). The same study also demonstrated 
that KSHV infection-induced PGHS-2 potentially modulated survival, prolifera-
tion, and angiogenesis of latently infected endothelial cells by inducing secretion 
of numerous growth (PDGF-BB, IGF-1, G-CSF, and IL-8), angiogenesis (VEGF, 
ANG, oncostatin, IL-8, and MMP-2), inflammation (IL-1, TNF, RANTES, and 
IL-8), and invasiveness-promoting factors (MMP-2/-9).

11 .4  Role of Inflammatory Molecules in the Development  
of Sarcoma: Evidence from In Vivo Studies

Increasing evidence suggests a role of the Ras/Raf/MAPK pathway in the patho-
genesis of sarcoma. In a xenograft FS model, the MKK inhibitor LeTx (anthrax 
lethal toxin) was found to suppress tumor growth and vascularization (Ding  
et al. 2008). Growth inhibition correlated with decreased cellular proliferation and 
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extensive necrosis, and it was accompanied by a decrease in tumor mean vessel 
density and a reduction in serum expression of angioproliferative cytokines (Ding 
et al. 2008). Importantly, up to 44 % of human STS and up to 35 % of human 
embryonal RMS harbor activating RAS mutations (Yoo et al. 1999; Martinelli  
et al. 2009). It has been shown previously that ectopic expression of oncogenic 
KRAS induces RMS in zebrafish (Langenau et al. 2007) and cooperates with 
the loss of the tumor suppressor p53 to induce RMS in adult mice (Tsumura  
et al. 2006). Like RAS, perturbations of the cyclin-dependent kinase inhibitor 2A 
(CDKN2A) locus, encoding the cell cycle inhibitors p16Ink-4a and p19Arf, also have 
been linked to sarcoma pathogenesis (Serrano et al. 1996). Alterations in CDKN2A 
and its downstream effectors RB1 and TP53 have been noted in human STS (Obana 
et al. 2003; Kohashi et al. 2008; Rubin et al. 2011). In human RMS, reduced or 
absent expression of INK4A and/or ARF mRNA was noted and showed no signifi-
cant correlation with clinicopathological parameters (Chen et al. 2007). Based on 
these data, oncogenic KRAS and dysregulated INK4A/ARF can be considered as 
clinically relevant sarcoma-associated lesions (Hettmer et al. 2011).

In a transplantable model of murine histiocytic sarcoma (HS), the introduc-
tion of oncogenic KRAS into tumor suppressor gene-deficient (INK4A/ARF−/−) 
bone marrow cells by ex vivo gene transduction with subsequent injection of these 
genetically altered cells into the gastrocnemius muscles of NOD/SCID mice led 
to an upregulated expression of CD47, also known as integrin-associated protein 
(IAP; Liu et al. 2012b). CD47 protects cells from being eaten, such that cells with 
high surface expression of CD47 are able to escape integrin-mediated phagocy-
tosis and death (Oldenborg et al. 2001). The group of Yuji Yamanashi recently 
demonstrated that mice with coincident loss of DOK1, DOK2, and DOK3 genes 
develop highly invasive and transplantable HS endogenously, and DOK1/2/3−/− 
macrophages demonstrate enhanced proliferation ability (Mashima et al. 2010). 
The DOK family consists of seven members acting as downstream targets of many 
TKs. Among them, Dok-1, Dok-2, and Dok-3 have been identified as negative 
regulators of TK-mediated proliferation and transformation of cells (Lemay et al. 
2000; Honma et al. 2006; Ng et al. 2007). HS also has been observed sporadi-
cally in PEUM/RAS transgenic mice (Haupt et al. 1992), and INK4A/ARF−/− mice 
develop HS with homozygous loss of the tumor suppressor gene PTEN, pro-
viding mechanistic insights into the pathogenesis of human HS (Carrasco et al. 
2006). Deficiency of PTEN culminates in activation of AKT, as well as ERK-1 
and ERK-2 in HS cells indicating hyperactivation of the K-Ras/MAPK pathway 
(Carrasco et al. 2006).

By using a chimeric mouse model in which sarcoma-associated genetic lesions 
were introduced into discrete, muscle-resident myogenic and mesenchymal cell 
lineages, the group of Amy Wagers identified a Ras-predominated gene expression 
signature shared by KRAS, INK4A/ARF−/− mouse sarcomas, and human embryo-
nal as well as alveolar RMS, and demonstrated activation of the Ras/Raf/MEK/
ERK pathway as well as the mTOR pathway in KRAS, INK4A/ARF−/− mouse sar-
comas, and in 26–50 % of human RMS and LMS surveyed (Hettmer et al. 2011). 
Moreover, chemical inhibition of Ras or mTOR signaling arrested the growth 
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of mouse KRAS, INK4A/ARF−/− sarcoma, and human RMS cells in vitro and in 
vivo (Hettmer et al. 2011). Consistent with a central role of Ras signaling in these 
tumors, inhibition of the Ras/Raf/MEK/ERK signaling cascade diminished the 
proliferation of mouse and human sarcoma cells (Marampon et al. 2009).

Several other candidate genes have been linked to mTOR signaling including 
the actin filament-plasma membrane linker ezrin (encoded by VIL2) and the home-
odomain-containing transcription factor Six-1 (sine oculis-related homeobox-1 
homolog) playing essential roles in determining the metastatic fate of RMS cells (Yu 
et al. 2004). Similarly, phosphorylation of AKT, the upstream effector of mTOR, was 
reported in approximately 50 % of human embryonal and alveolar RMS (Cen et al. 
2007). The findings by Hettmer et al. (2011) are consistent with previous observa-
tions made with RMS cell lines and xenografts demonstrating that pharmacological 
inhibition of mTOR signaling in mouse and human sarcoma cells impaired tumor 
growth (Petricoin et al. 2007; Houghton et al. 2008). Beneficial effects were also 
seen in some patients with advanced sarcomas including RMS (Yarber and Agulnik 
2011; Agulnik 2012). All these data clearly document the important contribution of 
aberrant Ras and mTOR signaling to the growth and malignancy of STS.

As already mentioned in Sect. 11.3.1, overexpression of oncogenic K-Ras was 
found to induce the secretion of pro-inflammatory IL-6 and pro-angiogenic IL-8 in 
different tumor cell types. The study by Ancrile et al. (2007) revealed that this Ras-
driven cytokine production is required for the initiation of tumor-associated inflam-
mation and neovascularization promoting tumor growth in vivo. In theses studies, 
knock-down of IL6, genetic ablation of the IL6 gene, or treatment with a neutraliz-
ing IL-6 antibody retarded K-Ras-driven tumorigenesis in mice (Ancrile et al. 2007). 
Ras-induced expression of several pro-inflammatory mediators including IL-1, IL-6, 
and IL-11 as well as pro-angiogenic IL-8 has been demonstrated to promote tumor 
growth and neovascularization in vivo (Sparmann and Bar-Sagi 2004). In an animal 
model of human OS, increased IL-1 levels are also reported (Baamonde et al. 2007).

Further evidence for the impact of inflammation in sarcomagenesis comes 
from a gene profiling approach in canine HAS (Tamburini et al. 2010). HAS, also 
called malignant hemangioendothelioma or angiosarcoma, is a deadly cancer that 
originates in the endothelium and invades the blood vessels. HAS is more com-
mon in dogs than any other species. The study by Tamburini et al. (2010) clearly 
identified inflammation and angiogenesis as distinguishing features of canine 
HAS. Six genes of the IL-8 signaling cascade were found as being enriched in 
HAS. These genes included IL8, MMP9, VEGF, VCAM1, PGHS2, and cyclin D1 
(CCND1) known as being involved in regulating pro-inflammatory and pro-angio-
genic responses via the IL-8 receptor-β (Tamburini et al. 2010). In a SCID mouse 
xenograft model of human MM, Hillegass and colleagues identified an early and 
sustained neutrophilia accompanied by early detection of cytokines that promote 
inflammation (IL-6, IL-8, and IL-12), cell proliferation (IL-6, bFGF, IL-8, G-CSF, 
and PDGF-BB), and angiogenesis (bFGF, IL-8, and VEGF) by human MM in per-
itoneal lavage fluid (Hillegass et al. 2010a)

Using a xenograft nude mouse model for human glioblastoma, Liu and cowork-
ers convincingly demonstrated that overexpression of FoxM1B directly promotes 
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the growth of human glioma cells in the brain of nude mice, while inhibition of 
FoxM1 by FoxM1-siRNA significantly suppressed glioma growth in these mice, 
thus confirming in vitro results of the same study (Liu et al. 2006). Moreover, 
depletion of FoxM1 inhibited anchorage-independent growth and tumorigenicity 
of neuroblastoma xenografts (Wang et al. 2011).

The contribution of oxidative stress to sarcomagenesis is proven by investiga-
tions on a transgenic Rac-1 model for KS (Ma et al. 2009). The small GTPase 
Rac-1, a member of the Rho family within the RAS superfamily, triggers ROS pro-
duction by members of the phagocytic as well as nonphagocytic NOX family (Abo 
et al. 1991). Expression of a constitutively active Rac-1 (RacCA) in transgenic mice 
is sufficient to cause KS-like tumors through mechanisms involving ROS-driven 
proliferation, upregulation of AKT signaling, and HIF-1α-related angiogenesis (Ma 
et al. 2009). Notably, the use of the ROS-scavenging agent N-acetylcysteine inhib-
ited angiogenesis and completely abrogated transgenic RacCA tumor formation, 
indicative for the causal role of ROS in sarcomagenesis. These data clearly imply 
the direct oncogenicity of Rac-1 and ROS and their contribution to a KS-like malig-
nant phenotype, further underscoring the carcinogenic potential of oxidative stress 
in the context of chronic infection and inflammation (Ma et al. 2009).

In vivo evidence for the crucial role of OPN in sarcomagenesis is given by 
the work of Liu and colleagues who successfully reduced the tumorigenecity of 
human osteosarcoma cells OS-732 xenotransplanted into nude mice using an anti-
sense human OPN RNA expression vector (Liu et al. 2008). Takahashi and cow-
orkers recently generated a stable OPN transfectant from murine neuroblastoma 
C1300 cells and demonstrated that culture medium with OPN-transfected C1300 
cells significantly stimulates human umbilical vein endothelial cell (HUVEC) 
migration and induces neovascularization in mice compared to control cells 
(Takahashi et al. 2002). Further evidence for the pro-angiogenic role of OPN is 
provided by the same group who found that OPN enhances tumorigenesis and 
angiogenesis of murine neuroblastoma cells in mice rendering OPN a promising 
target in sarcoma therapy (Hirama et al. 2003).

Experimental animal models suggest a contribution of the IGF system in tum-
origenesis of sarcomas. In addition as being linked to increased cancer risk and 
certain neoplasias (see Sect. 11.3.1), dysregulated IGF expression has also been 
demonstrated to have functional consequences. IGF-1 overexpression in basal 
keratinocytes resulted in increased formation of squamous papillomas in trans-
genic mice (Wilker et al. 1999). Injection of ES cells carrying dominant nega-
tive IGF-IR into nude mice attenuated tumor formation and metastatic abilities 
of ES cells and increased survival (Scotlandi et al. 2002). Furthermore, trans-
fected clones showed significantly higher sensitivity to doxorubicin, a major drug 
in the treatment of ES. Ligand overexpression seems to be driven by pathologi-
cal alterations, particularly in sarcomas. The EWS/FLI1 translocation is a defin-
ing characteristic of ES and has been shown to upregulate IGF-1 expression and 
downregulate IGFBP-3 expression, enabling an autocrine regulatory loop con-
sisting of IGF-1 and IGF-1R, which can be blocked by IGF-1R targeting agents 
(Scotlandi et al. 2002; Prieur et al. 2004). In addition, EWS/FLI1 was shown to 
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upregulate expression of the Src kinase Lyn in athymic nude mice injected with 
TC71 human ES tumor cells allowing increased bony lysis by creating space for 
tumor growth, and providing simple access for tumor cells to the bone stroma 
facilitating metastasis (Guan et al. 2008). Targeting Lyn using siRNA or the 
pharmacological inhibitor AP23994 resulted in suppression of tumor growth, 
decreased bony lysis due to tumor cells, and significantly fewer lung metastases in 
this ES xenograft tumor model.

Current experimental data support the role of the PI3K/AKT/mTOR pathway in 
sarcomagenesis. In an animal model of STS, intramuscular delivery of an adeno-
virus carrying Cre recombinase in mice with conditional mutations in KRAS and 
TRP53 sufficiently initiated high-grade sarcomas with myofibroblastic differen-
tiation similar to RMS (Kirsch et al. 2007). The PI3K/AKT/mTOR pathway also 
plays a substantial role in smooth muscle transformation and LMS genesis. As 
demonstrated by the group of Carlos Cordon-Cardo, mice carrying homozygous 
deletion of PTEN alleles developed widespread smooth muscle cell hyperplasia 
and abdominal LMS (Hernando et al. 2007).

11 .5  Evidence from Patients for the Role of Inflammation 
in Sarcoma

The role of inflammation in human sarcomagenesis has long been overlooked, but 
emerging evidence suggests its contribution to the malignant process in humans. 
The subsequent examples highlight the putative role of inflammatory mediators 
in the pathogenesis of sarcomas. Among the inflammatory mediators present in 
the tumor microenvironment, IL-1 acts as crucial player in inflammation-associ-
ated carcinogenesis (Lin and Karin 2007; Voronov et al. 2007). Elevated levels of 
IL-1 have been identified in several human tumor entities. Overall, patients har-
boring IL-1-positive tumors have markedly worse prognoses (Lewis et al. 2006). 
IL-1 is produced directly by cancer cells or by cells of the mircroenvironment and 
stimulates other cell types to produce pro-angiogenic and pro-metastatic media-
tors, thus playing an important role in inflammation-associated carcinogenesis 
(Lin and Karin 2007; Voronov et al. 2007). In this context, children with MFH 
showed elevated serum levels of pro-inflammatory IL-1 and TNF (Ishii et al. 
1991). Elevated serum levels of TNF and IL-6 were also found in a patient with 
ovarian FS (Fukuda et al. 2001). Tumor cells from this patient revealed a focally 
positive immunoreaction for vimentin, IL-6, TNF, and inhibin-α, a subunit of the 
heterodimeric hormone inhibin produced in the ovary that antagonizes activin 
signaling and FSH synthesis in the pituitary. Serum TNF levels were also sig-
nificantly higher in patients with aural cholesteatoma compared to controls cor-
relating with bone destruction (Sastry et al. 1999). Increased levels of IL-1 and 
TNF were detected in acquired and congenital cholesteatoma tissues as com-
pared to normal skin (Akimoto et al. 2000). Tissue biopsy samples from chronic 
otitis media patients with cholesteatoma also harbored significantly higher levels 
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of these cytokines compared to cholesteatoma-free patients (Yetiser et al. 2002). 
Cholesteatoma-derived TNF and IL-1 can lead to bone resorption which can be 
inhibited by TNF blockage (Akimoto et al. 2000). Both, TNF and IL-1, induce 
activation of NF-κB, the key orchestrator in tumorigenesis, regulating the expres-
sion of several inflammatory mediators promoting tumor growth and invasive-
ness. Increased serum levels of angioproliferative cytokines, including IL-6, IL-8, 
M-CSF, bFGF, TNF, and VEGF, have also been reported in sarcoma patients cor-
relating with poor overall survival (Feldman et al. 2001; Rutkowski et al. 2003). In 
this context, NF-κB-dependent MMP-2/-9 expression in STS biopsies correlated 
with metastasis and grade in LS, while lack of tissue inhibitor of metalloproteinase 
2 (TIMP-2) expression was identified as a poor prognostic factor for disease-free 
survival in SS (Benassi et al. 2001).

Malignant peripheral nerve sheath tumor (MPNST) is a rare STS with poor 
prognosis. MPNST occurs frequently in patients with neurofibromatosis type 1 
(NF1), in which NF1 gene deficiency leads to Ras hyperactivation. Ras activation 
causes the subsequent activation of the PI3K/AKT/mTOR and Ras/Raf/MAPK 
pathways and regulates cellular functions. Immunohistochemical and Western 
blotting analyses of 135 tumor specimens revealed that the PI3K/AKT/mTOR and 
Ras/Raf/MAPK pathways were activated in more than 50 % of NF1-related and 
sporadic MPNST correlating with poor prognosis (Endo et al. 2013).

In patients with CS, positive expressions of nitric oxide synthase (NOS) 1 
and NOS-2 were associated with decreased overall survival rates (Nakagawa 
et al. 2010). Nitric oxide stimulates the production of PGHS-2, which is linked 
to inflammation and angiogenesis in tumors. There was a significant association 
of nitrotyrosine, PGHS-2, and the endothelial cell marker CD34 with histologi-
cal grades, but not with overall prognosis in CS patients (Nakagawa et al. 2010). 
Several studies have identified PGHS-2 expression in a variety of sarcomas, 
including RMS, OS, and CS. Although PGHS-2 overexpression has been associ-
ated with poor prognosis and decreased survival in CS and OS, no relationship 
between PGHS-2 expression and patient outcome has been demonstrated in RMS 
or adult STS such as SS (Carmody Soni et al. 2011) and uterine carcinosarcoma 
(Menczer et al. 2010). The analysis of 51 patients with extremity OS who com-
pleted standard therapy and obtained complete initial regression of the tumor, 
however, revealed a correlation between PGHS-2 overexpression in the primary 
tumor and the occurrence of distant metastasis suggesting an effect on the post-
metastatic survival (Urakawa et al. 2009).

Several genetic and chromosomal abnormalities as part of the intrinsic pathway 
have been found in OS patients including chromosomal amplification and loss of 
heterozygosity, associated with poor prognosis (Ta et al. 2009; Smida et al. 2010). 
Additionally, mutations in the tumor suppressor proteins p53 and pRb have been 
implicated in the oncogenesis of OS enhancing the risk and thus contributing to 
its poorer prognosis (Longhi et al. 2001; Heinsohn et al. 2007). Also molecular 
abnormalities in the p53 regulator Mdm-2 have been identified as critical players 
in sarcoma development (Cordon-Cardo et al. 1994). Aberrant Mdm-2 expression 
can be found in a variety of sarcomas including LS and OS (Ladanyi et al. 1993; 
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Leach et al. 1993; Shimada et al. 2006). In the latter, Mdm-2 overexpression occurs 
with high frequency as a result of an upregulated MDM2 mRNA expression cor-
relating with disease recurrence and metastasis (Ladanyi et al. 1993; Gisselsson 
et al. 2002). An upregulated expression of the FOXM1 mRNA could be detected 
in neuroblastoma tissue samples compared to noncancerous ganglioneuroma or 
less aggressive ganglioneuroblastoma (Koch et al. 2008; Hillegass et al. 2010a). 
FoxM1 is a transcription factor critically involved in cell cycle progression (see 
Sect. 11.3.1). As demonstrated by Liu et al. (2006), human glioma tissue specimens 
apparently had a substantially higher level of FoxM1 expression than normal tissue 
and this expression correlated directly with the grade of the glioma. Together with 
the in vitro and in vivo findings from the same study, these data suggest the pivotal 
role of FoxM1 in tumorigenesis of glioma. FoxM1 is also expressed at robust levels 
in a variety of Ewing tumor specimens (Christensen et al. 2013). Previous stud-
ies have shown that nuclear expression of the cell cycle repressor protein p27Kip-1 
decreases with malignancy in human astrocytic gliomas and that p27Kip-1 has inde-
pendent prognostic value in patients with astrocytomas (Piva et al. 1997; Alleyne 
et al. 1999; Kirla et al. 2003). In human gliomas, the Skp-2 expression level 
directly correlated with the tumor grade but inversely correlated with the p27Kip-1 
level (Schiffer et al. 2002). FoxM1 has also been implicated in the pathogenesis 
of human medulloblastoma, the most frequent malignant brain tumor in childhood 
that can derive from cerebellar granule neuron precursors (Priller et al. 2011). As 
documented in this study, FoxM1 was highly expressed in all subtypes of medul-
loblastoma tested. Importantly, expression levels of FoxM1 significantly correlated 
with unfavorable clinical outcome and has been identified as an independent prog-
nostic marker (Priller et al. 2011). Overexpression of FoxM1 has been reported to 
strongly correlate with metastasis in prostate cancer (Chandran et al. 2007).

Genetic evidence of the cooperative interactions of the PTEN and INK4A tumor 
suppressor genes in the development of human histiocytic sarcoma (HS) is pro-
vided by Carrasco and coworkers who investigated the Pten and Ink-4A status in 
human HS, a rare human neoplasm with only a limited number of cases reported 
in the world literature (Carrasco et al. 2006). Immunohistochemical analyses of 
a panel of ten cases of human HS revealed a loss of immunoreactivity for either 
Pten or p16Ink-4A alone in four and five cases, respectively. Three of the ten cases 
showed concomitant lack of immunostaining for both Pten and p16Ink-4A, while 
four of the ten cases were positive for both proteins. Most human HS cases dem-
onstrated increased levels of pAKT in the histiocytic tumor cells compared to 
normal cells. These results highlight the general role of AKT phosphorylation in 
human HS pathogenesis suggesting that additional mechanisms besides Pten inac-
tivation can lead to AKT activation (Carrasco et al. 2006), including changes in 
Src activity, Pten expression, PI3K activity, or receptor TK signaling (Lu et al. 
2003; Nagata et al. 2004; Shekar et al. 2005; Wang et al. 2005b).

The implication of oxidative and nitrative stress in human sarcomagen-
esis is attributed, for instance, to the work of Fredika Robertson and colleagues 
on AIDS-related KS, the most prevalent AIDS-related cancer arising under a 
unique condition that is characterized by a combination of immunosuppres-
sion and immunostimulation (Shah et al. 2002; Restrepo and Ocazionez 2011). 
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According to Mallery et al. (2004), nitrative stress occurred in situ within lesions 
of AIDS-KS patients. Cultured AIDS-KS cells from these tumors were found to 
harbor impaired functional activity of the putative tumor suppressor MnSOD as a 
result of tyrosine nitration, implying a critical contribution of reactive oxygen and 
nitrogen species to AIDS-KS pathogenesis. Because the fundamental functions of 
MnSOD comprise, in addition to its function as tumor suppressor, its anti-oxidant 
capacity, the loss of the cytoprotective activity of MnSOD might facilitate malig-
nant transformation (Mallery et al. 2004).

It is well known that osteopontin (OPN) plays an important role in tumor pro-
gression and that a high OPN expression level in several tumor entities correlates 
with poor prognosis in cancer patients. In STS, elevated OPN protein in serum 
as well as in tumor tissues correlates with clinical parameters and functions as an 
important negative prognostic factor (Bache et al. 2010). In female STS patients 
and those who received curative radiotherapy, high expression levels of OPN 
splice variants were determined as negative prognostic and predictive markers 
(Hahnel et al. 2012). An upregulation of certain OPN splice variants could also 
be demonstrated in MM peritoneum specimens compared to healthy controls 
(Ivanov et al. 2009). The putative role of OPN in human sarcomagenesis is further 
given by the observation that in 90 % of patients with highly aggressive glioblas-
toma, OPN is upregulated at both, the mRNA and protein level (Atai et al. 2011). 
Moreover, OPN protein expression was found to colocalize with neutrophils and 
macrophages, suggesting that OPN promotes migration of cancer cells as well as 
of leukocytes in tumors (Atai et al. 2011). Increased OPN serum levels were also 
found in asbestos-induced MM (Pass et al. 2005).

Among other cancers, miR-155 is upregulated in endometrial carcinosarcoma 
(ECS) which is known to undergo a true EMT. Castilla and collaborators ana-
lyzed the miRNA signatures associated to EMT in human ECS and determined 
their relationships with EMT markers and repressors of E-cadherin transcription 
(Castilla et al. 2011). This study clearly demonstrated that the loss of epithelial 
characteristics, including cadherin switching and the acquisition of a mesenchy-
mal phenotype, was accompanied by changes in the profile of miRNA expression 
and an upregulation of all the E-cadherin repressors analyzed. On the one hand, 
members of the miR-200 family were downregulated in the mesenchymal part of 
the ECS as well as miR-23b and miR-29c involved in the inhibition of mesen-
chymal markers, and miR-203, involved in the inhibition of cell stemness. On the 
other hand, an upregulated expression of miR-155, miR-369-5p, miR-370, miR-
450a, and miR-542-5p has been noted, thus confirming, at least in part, previous 
in vitro data on LS cell lines (Zhang et al. 2012). These data suggest that in human 
ECS, the interplay between transcriptional repressors of E-cadherin and miRNAs 
provides a link between EMT activation and the maintenance of stemness. In con-
trast, the group of Dirk Dittmer reported that multiple tumor suppressor miRNAs 
(miR-155, miR-220/221, let-7 family) are downregulated in KSHV-associated 
cancers, including KS and primary effusion lymphoma (PEL), whereas others 
(miR-143/145) are upregulated exclusively in KS tumors highlighting the impact 
of tumor suppressor miRNAs in oncogenic transformation and their clinical utility 
for tumor classification (O’Hara et al. 2009).
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The role of the IGF system as one of the central players in the tumorigenesis 
of sarcomas has also been validated in humans. SS exhibits characteristic t(X;18)
(p11.2;q11.2) translocations that result in enhanced transcription of the IGF2 
gene, hyperactivation of IGF-1R signaling, phosphorylation of AKT, and activa-
tion of p44/42 MAPK (Friedrichs et al. 2008). SS cell migration was found to 
depend on signals transmitted by the IGF-1R, rendering the IGF-1R a promis-
ing therapeutic target in SS. Together with the in vitro data of the same group, it 
can be postulated that IGF-1R obviously plays a central role in neoplastic trans-
formation and metastasis in a number of cancers, and pathological alterations in 
the pathway may be particularly important in certain cancers including sarcoma. 
There is a wealth of evidence illustrating the central role of the PI3K/AKT/mTOR 
pathway in human sarcomagenesis. Abnormal activation of this pathway via 
several growth factor receptors triggers the development of various sarcomas 
(Vemulapalli et al. 2011). Hyperactivation of mTOR in humans can also result 
from PTEN inactivation, lack of the tumor suppressor kinase Lkb-1, and loss of 
inhibitory function of the tuberous sclerosis complex proteins (Hogendoorn et al. 
2004; Wan and Helman 2007; Yang and Guan 2007).

It is well known that numerous TKs are crucially involved in sarcomagenesis. 
Understanding the mode of their activation may help to develop new targeted 
therapies. EWS/FLI1 is the most common translocation found in ES tumors. The 
oncogene has been shown to transform cells by acting as a transcriptional factor to 
modulate a cohort of target genes including the Src TK LYN (Guan et al. 2008). 
Meanwhile, elevated Lyn kinase activity was demonstrated in numerous KS and 
glioblastoma patient samples (Prakash et al. 2005; Stettner et al. 2005), suggesting 
that Lyn activity plays a seminal role in promoting the malignant phenotype in these 
cancers and further supporting the consideration of Lyn as being a potential thera-
peutic target for the treatment of patients with these sarcoma subtypes. A charac-
teristic translocation in alveolar soft part sarcoma (ASPS) results in a novel fusion 
of the ASPSCR1 (previously designated ASPL) and TFE3 genes (ASPSCR1/TFE3), 
leading to the formation of a functional transcription factor inducing unregulated 
transcription of TFE3-regulated genes (Lazar et al. 2007). In this study, ASPS 
biopsy specimen overexpressed a unique array of pro-angiogenic TFE3-regulated 
genes and proteins including midkine, Jag-1, and ANG. Elevated serum levels 
of ANG and VEGF can also be found in OS and ES patients (Kushlinskii et al. 
2000). As KSHV infection upregulates ANG secretion in primary HMVEC-d cells 
(Sadagopan et al. 2009), ANG upregulation can be considered as a crucial player in 
inflammation-associated tumorigenesis of certain sarcomas.

11 .6  Inhibitors of Inflammation for the Prevention and 
Treatment of Sarcoma

Several lines of evidence indicate that inflammation has been implicated in 
sarcomagenesis leading to the activation of the key transcription factors NF-
κB, STAT-3, and HIF-1 involved in a complex inflammatory network. These 
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factors regulate the expression of a broad panel of tumorigenic factors affecting 
 proliferation,  migration, survival, angiogenesis, invasiveness, metastasis as well as 
radio- and chemoresistance of tumors. Thus, inhibitors of pro-inflammatory path-
ways have enormous potential. Some of them have been evaluated in clinical trials 
(Table 11.3). Most of the chemopreventive agents have been found to suppress NF-
κB and STAT-3 (Yu et al. 2009; Chaturvedi et al. 2011). Moreover, lifestyle-related 
agents derived from different sources, including fruits, legumes, vegetables, grains, 
spices, and exercise, are also able to inhibit NF-κB, including berberine, curcumin, 
resveratrol, and piperazine (Aggarwal and Gehlot 2009). With respect to sarcoma, 
the selective PGHS-2/NF-κB inhibitor celecoxib induced apoptosis and reduced 
β-catenin protein required for cell survival in the human osteosarcoma cell line 
MG-63 via downregulation of PI3K/AKT (Xia et al. 2010; Hönicke et al. 2012; 
Liu et al. 2012a). Genes downstream of STAT-3 (BCL2, BIRC5, and CCND1) 
were downregulated by celecoxib in RMS cells (Reed et al. 2011). Celecoxib pre-
vented lung metastasis in a murine model of ES with no effect on tumor size or 
neovascularization (Gendy et al. 2011). Clinical trials with celecoxib for treatment 
of sarcomas are rare. In a phase II study, the combination of low-dose anti-angi-
ogenic vinblastine/celecoxib with standard multiagent chemotherapy for patients 
with metastatic ES was found as being feasible with a better 24-month event-free 
survival for those with isolated pulmonary metastases (Felgenhauer et al. 2013). 
Interestingly, the anti-microbial fish peptide pardaxin exhibited anti-tumor activ-
ity toward murine FS by downregulating STAT-3 and p65/RelA (Wu et al. 2012). 
A clinical phase II study with metastatic cancer patients, evaluating the protective 
effects of the semisynthetic flavonoid 7-mono-O-(β-hydroxyethyl)-rutoside (mono-
HER) on doxorubicin-induced cardiotoxicity, revealed a 75 % response rate in STS 
patients (Bruynzeel et al. 2007), most probably via inhibition of NF-κB (Jacobs  
et al. 2011). Curcumin from Curcuma longa inhibited growth of LMS and OS cells 
via inhibition of the PI3K/AKT/mTOR and Notch-1 pathway, respectively (Wong 
et al. 2011; Li et al. 2012). It also induced apoptosis and cell cycle arrest in the 
ES cell line SK-NEP-1 highlighting its therapeutic potential (Singh et al. 2010). In 
human OS cells, green tea polyphenols induced apoptosis by decreasing amount 
and activity of NF-κB, downregulating Bcl-2 and upregulating Bax (Hafeez et al. 
2006). Combinatorial treatment of human OS cells with the IL-1 inhibitor IL-1Ra 
(IL-1 receptor antagonist, anakinra™) and the green tea catechin epigallocate-
chin-3 gallate (EGCG) resulted in a more pronounced inhibition of IL-1-induced 
tumorigenic factors rendering this combined administration a promising approach 
as an adjuvant therapy in OS patients (Hönicke et al. 2012). However, clinical trials 
with anti-oxidants such as EGCG and curcumin are lacking due to their low bio-
availability in humans.

Despite its history as a human teratogen, thalidomide is emerging as a puta-
tive treatment for cancer including sarcoma. Thalidomide has been shown to sup-
press urokinase receptor (uPAR) expression via NF-κB inhibition in CS cells in 
vitro and to decrease progressive tumor growth and ascites formation in an animal 
model of human ovarian cancer (Kobayashi et al. 2005). Thalidomide treatment 
of patients with refractory uterine carcinosarcoma prolonged progression-free 
survival at six months (McMeekin et al. 2012). However, based on results with 
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thalidomide analogs, the activity was insufficient to strengthen additional 
investigations.

Novel approaches in limiting sarcoma growth include monoclonal antibodies 
directed against c-Kit (Edris et al. 2013) and IGFR (Tolcher et al. 2009; Olmos et al. 
2010); Cdk inhibitors such as roscovitine (seliciclib; Lambert et al. 2008), flavopiri-
dol (Luke et al. 2012), and dinacliclib (Fu et al. 2011); the EGFR inhibitor erlotinib 
(Abraham et al. 2011; Xie et al. 2011); and the c-Met inhibitor tivantinib (ARQ197; 
Wagner et al. 2012). In this context, several phase II trials with anti-IGFR-1 anti-
bodies are currently being conducted. Preliminary data of treatment with cixutu-
mumab in patients with advanced or metastatic STS and ES revealed clinical benefit 
being achieved in adipocytic sarcoma patients (Schoffski et al. 2011a).

A further option in the treatment of sarcomas represents targeting specific chromo-
somal translocations as can be found in about 30 % of sarcomas. For instance, clear 
cell sarcoma (CCS) is associated with a specific chromosomal translocation in most 
cases, t(12;22)(q13;q12), leading to the activation of c-Met critically involved in angi-
ogenesis and invasiveness. A partial response in a CCS patient with the c-MET inhibi-
tor tivantinib has recently been demonstrated in a phase II trial (Wagner et al. 2012).

Inhibition of molecular chaperones such as Hsp90 is supposed to lead to pro-
teasomal degradation of activated c-Kit, thereby decreasing gene transcription and 
increasing apoptosis sensitivity. In refractory GIST, Hsp90 inhibition has been 
assumed to downregulate expression of activated c-Kit and shows in vitro activ-
ity against GIST. Based on these observations, several clinical phase I-III trials 
have been conducted to assess the efficacy of the Hsp90 inhibitor retaspimycin 
hydrochloride (IPI-504) with contradictory outcomes. Despite these less encour-
aging results, Hsp90 inhibitors continue to be evaluated in sarcoma patients. For 
instance, a phase II trial of BIIB021 led to objective responses in refractory GIST 
patients with mild-to-moderate adverse effects (Dickson et al. 2013). These data 
warrant further investigations with respect to the development of novel approaches 
as an adjuvant therapy in certain sarcomas.

11 .7  Conclusions and Future Directions

Sarcomas represent a heterogeneous group of tumors with diverse pathologically 
and clinically overlapping features. It is a rarely curable disease, and their man-
agement requires a multidisciplinary team approach. Despite their low incidence in 
comparison with other tumor entities, the development of novel effective therapeu-
tic approaches is essential. In the past years, an increasing number of new targets 
have been identified in the treatment of sarcomas forming the basis for the devel-
opment of targeted therapies. In this context, targeting inflammatory pathways 
has emerged as a promising option. Although inflammation has been identified as 
one of the hallmarks of cancer, its contribution to sarcomagenesis has been over-
looked for so long. The evidence described here clearly demonstrates that inflam-
matory pathways are critical targets in both, prevention and therapy of sarcomas. 
Despite the progress in characterizing the complex oncogenic pathways involved 
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in sarcomagenesis, little progress had been made to  translate these findings into 
effective clinical strategies. The identification of novel key effector molecules in 
sarcomagenesis has resulted in the development of an increasing number of drugs 
that need to be tested. As already discussed, aberrant activation of the Hh path-
way has been shown in certain sarcomas such as RMS, OS, CS, and ES. Moreover, 
the aggressiveness of RMS and OS appears to be related to the Notch pathway 
(Tanaka et al. 2009; Roma et al. 2011). Clinical trials of the Hh inhibitor GDC-
0449 and the Notch inhibitor RO4929097 as well as the histone deacetylase inhibi-
tor vorinostat are ongoing with no results up to date.

Another protein related to sarcomas is anaplastic lymphoma kinase (ALK) 
upregulated in approximately half of inflammatory myofibroblastic tumor (IMT). A 
phase I trial reported a sustained partial response to the ALK inhibitor crizotinib (PF-
02341066) in a patient with ALK-translocated IMT, suggesting a therapeutic strategy 
for genomically identified patients with this aggressive STS (Butrynski et al. 2010).

It should be kept in mind that cancers including sarcomas are caused by dys-
regulation of multiple pathways due to cross talk between the pathways. It there-
fore seems reasonable that agents interfering with multiple pathways are likely as 
being more effective. The best outcome might be achieved by combining agents 
with distinct modes of action. Natural products such as nutraceuticals are a reason-
able choice due to their safety and ability to suppress multiple targets including 
NF-κB, STAT-3, and Notch. The strategy of inhibiting multiple pathways simulta-
neously in sarcoma is currently under investigation. Ongoing studies explore, for 
instance, the efficacy of a combination of targeted agents alone or together with 
chemotherapy. An intriguing novel approach in sarcoma treatment relates to onc-
olytic virotherapy. Preclinical data revealed that oncolytic viruses exhibit potent 
direct oncolytic effects against human sarcoma in vitro and in vivo (Li et al. 2011; 
He et al. 2012). As the knowledge of the molecular pathways involved in sarcom-
agenesis is increasing, individualized targeted therapies aiming to cure sarcomas 
are not illusive.
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Abstract Human lymphomas usually develop in specialized tissue  microenvironments 
characterized by different populations of accessory stromal and lymphoid cells that 
interact with malignant cells. A clinical role of the tumor microenvironment has 
recently emerged, bringing new knowledge and suggesting new ideas and targets for 
treatment. This chapter analyzes the microenvironment in human lymphomas high-
lighting the role of inflammation in their pathogenesis. Microenvironmental specificity 
is detailed according to different models including classic Hodgkin lymphoma (HL), 
 follicular lymphoma (FL), diffuse large B-cell lymphoma (DLBCL), peripheral T-cell 
lymphoma, unspecified and angioimmunoblastic T-cell lymphoma (AITL).

12 .1  Introduction

Genetic alterations and abnormal microenvironmental factors are involved in tumor 
development, cell growth, and disease progression. The tumor microenvironment 
contains accessory cells that within individual organs work through cell–cell contacts 
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and active molecular cross talk. Inflammatory cells and soluble mediators, i.e., 
cytokines and chemokines, are essential microenvironmental factors that sustain cell 
growth and invasion, induce angiogenesis, and suppress antitumor immune functions 
(Mantovani et al. 2008).

Lymphomas usually develop in specialized tissue microenvironments characterized 
by different populations of accessory stromal and lymphoid cells that interact with 
malignant cells. In multidimensional studies on hematolymphoid malignancies, a rel-
evant clinical role of the tumor microenvironment has recently emerged, bringing new 
knowledge and suggesting new ideas and targets for treatment (Burger et al. 2009; 
Dave et al. 2004; Lenz et al. 2007; Steidl et al. 2010).

12 .2  The Microenvironment of Human Lymph Node

The human lymph node is a complex tissue resulting from the microenvironmental 
organization of different cell populations (lymphoid cells, accessory or non-lymphoid 
cells, and stromal cells) linked by topographical and/or functional relationships. The 
follicle is a structure made of B and T lymphoid cells within a network of follicular 
dendritic cells (FDCs). Germinal centers (GCs) contain different microenvironmental 
zones (i.e., the “dark” zone [DZ] and the “light” zone [LZ]). There is a sharp demar-
cation around the whole follicle center, which is highlighted by fibroblastic reticulum 
cells (FRCs) (Gloghini et al. 1990). Tingible body macrophages (TBMs) are located 
throughout the GCs (Gloghini and Carbone 1993; MacLennan 1994).

The GC in lymphoid organs is a dynamic and a complex cellular microenvironment 
where B cells undergo repeated rounds of mutation and selection. Three major cellu-
lar components appear necessary for the GC reaction: The FDCs that define the locus 
of GC formation and serve as antigen-retaining cells for GC B cells (GCBs), antigen-
specific T cells, and antigen-specific B cells. GCBs take up antigen from FDC, process 
it, and present it to antigen-specific T cells. GC T cells that recognize the antigens pre-
sented by centrocytes deliver two types of stimuli that result in the proliferation and 
differentiation of B cells: contact-mediated stimuli and activating cytokines.

12 .3  Interactions Between Microenvironment of Secondary 
Lymphoid Organs and Lymphoma Cells in Human 
Lymph Nodes and Other Secondary Lymphoid Organs

The principal molecules involved in contact-mediated B-cell stimulation are CD40 
on B cells and CD40 ligand on activated T cells. CD40-mediated signals to B 
cells are well known to strongly upregulate B-cell proliferation and differentia-
tion into either memory B cells or plasma cells. CD40 receptor engagement, usually 
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caused in vivo by the interaction of GC lymphocytes with surrounding T cells at the 
 terminal stages of GC reaction, leads to NFKB-mediated transcriptional  activation 
of the IRF4 gene (Klein and Dalla-Favera 2008; Lossos 2007). Regarding lymphoid 
malignancies, in classic Hodgkin lymphoma (HL), CD40 receptor engagement  
is caused by the interaction of the Reed-Sternberg (RS) cells with surrounding 
 CD40L-positive T cells and leads to NFKB activation of IRF4 (Aldinucci et al. 2011).

Moving to B-cell trafficking between the DL and the LZ in GC physiology, 
it is regulated by a complex mechanism that is based on the interplay of special-
ized chemokines and their relative receptors. Centroblasts express CXC receptor 4 
(CXCR4) and migrate toward a gradient of CXC chemokine ligand 12 (CXCL12 
or SDF1) originating in the LZ and mostly produced by stromal cells (Allen et al. 
2004). Centrocytes instead express CXCR5, which attracts cells toward a gradient 
of CXCL13 produced in the DZ. FDCs have been identified as the main cellular 
source of this chemokine in lymphoid organs (Ansel et al. 2000). In GC-derived 
lymphomas, CXCL13 has also been shown to be secreted by follicular lymphoma 
(FL) cells, which also express CXCR4 and 5 (Husson et al. 2002). CXCL13 
expression has been described in angioimmunoblastic T-cell lymphoma (AITL) 
cases (Dupuis et al. 2006).

12 .4  Relationships Between Lymphoma Cells and 
Microenvironment

The relationships between lymphomas and microenvironment appear to follow 
3 major patterns: (1) an independent, largely autonomous pattern, (2) a depend-
ent on deregulated interactions pattern, (3) a dependent on regulated coexist-
ence pattern (Burger et al. 2009). A typical example of the first pattern is Burkitt 
lymphoma where all tumor cells proliferate because of permanent c-myc gene 
activation. This pattern may be referred to as loss of interconnection with the 
microenvironmental network, which occurs when transformed cells have prolifera-
tion advantage that is largely autonomous and independent of microenvironmental 
signals (Burger et al. 2009). A typical example of the second pattern is classic HL, 
where RS cells escape the regulated cell growth and proliferation control. This 
pattern may be referred to a dysfunctional environment, where the neoplastic cells 
engage in deregulated interactions with the supportive environment that provide 
the malignant cells with growth signals (Aldinucci et al. 2010). A typical example 
of the third pattern is FL and mucosa-associated lymphoid tissue (MALT) lympho-
mas. In this pattern, a regulated coexistence of the malignant cells and the micro-
environment resembles the pattern that the normal counterpart B cells engage in 
with their respective microenvironments. At least initially, tumor development 
and cell growth largely dependent on external signals from the microenvironment, 
such as antigens, cytokines, and cell–cell interactions (Carbone et al. 2009).
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12 .5  Microenvironmental Specificity According  
to Different Models

12.5.1  Classic HL

A well-studied model of tumor–microenvironment interactions is classical HL, in 
which the RS tumor cells (Kuppers 2009) are regulated by interactions with reac-
tive cells in HL-involved tissues. These reactive cells, recruited and/or induced 
to proliferate by RS tumor cells, produce soluble or membrane-bound molecules 
involved in tumor cell growth and survival. Moreover, the abnormal cytokine/
chemokine network seems to contribute not only to RS cells proliferation but also 
to the maintenance of an environment in which an effective host immune response 
to RS cells cannot be achieved (reviewed in Aldinucci et al. 2010).

12 .5 .1 .1  Microenvironmental Cell Types

Classic HL is a monoclonal B-cell neoplasm, composed of mononuclear Hodgkin 
cells and multinucleated RS cells residing in a reactive cellular microenvironment. 
Based on the characteristics of the reactive cellular infiltrate, several histological 
subtypes have been traditionally distinguished (Lukes and Butler 1966). At pre-
sent, four subtypes have been recognized: lymphocyte-rich HL, nodular sclerosis 
HL, mixed cellularity HL, and lymphocyte-depleted HL (Stein et al. 2008).

In most HL cases, RS cells represent the minority of the tumor burden and are 
dispersed among reactive elements comprising mixture of inflammatory cells, 
stromal cells, and a predominance of Th2 cells between the various subpopula-
tions of lymphoid cells. Microenvironmental cell types include non-neoplastic  
B and T small lymphocytes, plasma cells, eosinophils, mast cells, histiocytes/mac-
rophages, fibroblast-like cells, and interdigitating reticulum cells.

12 .5 .1 .2  Recruitment of HL Microenvironment

Numerous molecules (see below) (Aldinucci et al. 2010) are involved directly or 
indirectly in the recruitment and/or proliferation of cells constituting the classic 
HL microenvironment.

An abnormal network of cytokines and chemokines and/or their receptors in 
RS cells are involved in the attraction of many of the microenvironmental cells 
into the lymphoma background (see below). RS cells are surrounded by CD40L-
expressing rosetting T cells (Carbone et al. 1995) and are dependent on survival 
signals received from other cells, such as CD40L-expressing T cells (Carbone 
et al. 1995), CD30L+ mast cells and eosinophils, or by a proliferation-inducing 
ligand (APRIL)-producing neutrophils (Kuppers 2009).
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A considerable fraction of infiltrating CD4+ T cells is regulatory T (Treg) cells, 
which have been shown to have immunosuppressive activity on HL-infiltrating 
cytotoxic T cells (Schreck et al. 2009). Recently, it was suggested that Treg cells 
and programmed death 1 (PD-1)+ T cells also interact with RS cells (Marshall 
et al. 2004; Schreck et al. 2009; Yamamoto et al. 2008), which produce the Treg 
attractant galectin-1 and the PD-1 ligand (PDL-1).

CD4+ T helper (TH) cells are attracted by RS cells through secretion of 
chemokines, including regulated on activation, normal T cell expressed, and 
secreted (RANTES)/CC chemokine ligand 5 (CCL5). CCL5 has an additional role 
in the recruitment of eosinophils and mast cells (Aldinucci et al. 2008).

Polarized Th1 and Th2 cells represent two subgroups of helper T cells. On the 
contrary to Th1 cells, the Th2 cells produce IL-4, IL-5, IL-10, and IL-13, which 
are responsible for strong antibody production and inhibition of several mac-
rophage functions, thus providing phagocyte-independent protective responses.

A whole plethora of soluble mediators synthesized by RS cells with chemo-
tactic activity such as the cytokines and chemokines IL-5, IL-8, IL-9, CCL-5, 
and CCL-28 are involved in the recruitment of granulocytes, mast cells, and mac-
rophages, whereas IL-7, CCL-5, CCL-17, CCL-20, and CCL-22 were effectors of 
lymphocyte recruitment and expansion (Aldinucci et al. 2010).

Recruitment of infiltrating immune cells is also boosted by reactive cells 
themselves and particularly by macrophages and mast cells synthesizing CCL-3, 
CCL-4, and CCL-8 chemokines (Aldinucci et al. 2010; Poppema 1989, 2005). 
Chemokine receptors, CXCR3, CXCR4, and CCR7, and adhesion molecules 
including CD62 ligand were found to be expressed on most T cells within HL tis-
sues, while the corresponding ligands were expressed on malignant cells and vas-
cular endothelium.

12.5.2  Nodular Lymphocyte-Predominant Hodgkin 
Lymphoma

NLPHL is a monoclonal B-cell neoplasm characterized by a nodular, or a nodular 
and diffuse, proliferation of RS cell variants, known as popcorn or lymphocyte-
predominant cells (LP cells). LP cells reside within nodules consisting of spheri-
cal meshworks of FDCs that are filled with non-neoplastic inflammatory cells 
(Schmitz et al. 2009). Inflammatory cells include small B cells, T cells, and his-
tiocytes. Furthermore, the nodules of NLPHL are characterized by an increase in 
GC-derived CD57+, IRF4+, and PD-1+ T cells that are closely associated with, 
and surround, the neoplastic LP cells (Carbone et al. 2002; Kraus and Haley 2000; 
Nam-Cha et al. 2008; Poppema et al. 2008; Timens et al. 1986).

LP cells of NLPHL clearly resemble GCBs in many phenotypic and genetic 
aspects and proliferate in association with a cellular microenvironment that retains 
key features of a normal primary follicle.
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12.5.3  Follicular Lymphoma

Morphologically, FL is defined as a proliferation of malignant GCBs that are 
admixed with non-malignant cells such as T cells, FDCs, and macrophages and 
whose normal counterparts, i.e., centrocytes and centroblasts, represent the pre-
dominant cell types of the GC reaction (WHO). FLs are derived from GCBs and 
maintain the gene expression programme of this stage of differentiation (Dave 
et al. 2004). Unlike normal GCBs, roughly 85 % of FLs express BCL2 as a result 
of the characteristic t(14;18) translocation.

It has become increasingly clear that development and progression in FL are 
driven not only by genetic changes but also by the close interaction with the immune 
microenvironment and stromal cells. Classes of CD4+ T cells, including folli-
cular helper T cells and regulatory T cells, are the major players in regulating the 
delicate balance of effector populations (de Jong and Fest 2011). In FL, the tumor 
cells reside and proliferate in follicular structures in close association with FDCs 
(Manconi et al. 1988), even when the infiltrate localize in the bone marrow and in 
non-lympoid organs (Burger et al. 2009; Carbone et al. 1985). Therefore, the lym-
phoma cells seem to require the cellular interactions in the GC-like environment for 
their proliferation and to retain key features of normal GCBs including the interac-
tion with T cells and FDCs in the follicular microenvironment (Carbone et al. 1995). 
A relevant role of the microenvironment on the final outcome of the disease has been 
demonstrated by gene expression profiling analysis showing that survival of patients 
with FL might be associated with “immune response” signatures expressed by non-
malignant cells, such as T cells and macrophages (Dave et al. 2004).

The fact that FL is a malignancy primarily related to defects in the induction 
of apoptosis and is widely accepted, judging from the clinical course and the in 
vivo data. Evidence from in vitro studies points to a possible role of CD40 and its 
interactions with CD40L in the pathogenesis of FL. This interaction plays a very 
important role in GC physiology. The initiation of GC response depends critically 
on the interactions between co-stimulatory B-cell surface receptors and ligands 
expressed by T cells or antigen-presenting cells. The most important of them 
involves the tumor necrosis factor (TNF) receptor family member CD40, which is 
expressed by all B cells, and its ligand CD40L (or CD154), expressed by Th cells

A proposed model of the interplay between microenvironment and FL hypothe-
sizes that beneficial signals for growth and survival include cytokines such as IL-4 
and IL-21, which bind to interleukin receptors on lymphoma cells (IL-4R/IL-21R) 
or CXCL12 and CXCL13 secreted by stromal cell subsets. BCR signaling occurs 
through stimulation of the BCR by the innate immune system through N-glycans 
or by specific antigen presentation through FDCs. Tumor cells subvert the anti-
tumor immune response from T helper cells, CTLs, and macrophages. Immune 
cell subsets that suppress an efficient immunological response against the tumor 
include Tregs and M2-polarized macrophages (TAMs) (Kridel et al. 2012).

Regarding disease progression, FL may have a pure follicular pattern (in situ 
or in early FL), or at least partially follicular pattern (in FL associated with diffuse 
lymphoma). The factors determining which individuals carrying t(14;18) develop 
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FL and the genetic events underlying the progression from in situ FL to overt 
FL and to diffuse lymphoma are totally unknown. There is a wide spectrum of 
genetic abnormalities identified in FL, such as genomic copy number changes and 
somatic mutation of the histone modifying genes including EZH2 (7 %) (Morin et 
al. 2010), MLL2 (89 %) (Morin et al. 2011), MEF2B (15 %) (Morin et al. 2010), 
CREBBP (33 %) (Pasqualucci et al. 2011), and EP300 (8.7 %) (Pasqualucci et al. 
2011), and inactivation of TNFRSF14 (18 %) (Cheung et al. 2010). It remains to 
be investigated whether these genetic changes are driver mutations and cooper-
ate with t(14;18) in malignant transformation. In other words, in some cases, FL 
“transforms” into an aggressive lymphoma resembling diffuse large B-cell lym-
phoma (DLBCL), and this transformation can be associated with a variety of 
oncogenic changes (Lossos and Levy 2003). Accumulation of genomic alterations 
and clonal selection account for subsequent FL progression and transformation. 
However, a role for the immunological microenvironment of FL in determining 
clinical behavior and prognosis of the disease has also recently been substantiated.

In addition to genetic events, microenvironment factors could underlie the FL 
progression. The interaction between lymphoid tumor cells and their tissue micro-
environment may promote dissemination and progression from in situ lymphoma 
to early or overt FL.

The molecular pathways of cross talk between the lymphoma cells and their 
nursing stroma of the follicular mantle (Hopken and Rehm 2012; Skibinski et al. 
2001) might be mediated by factors expressed by mantle fibroblasts, also known 
as FRCs (Gloghini et al. 1990). It is known that invasion requires active movement 
on the part of the tumor cells. Movement of tumor cells through stromal tissues is 
mediated in part by a “scatter factor” that is synthesized and secreted by fibroblasts 
(Woolf 1998). Scatter factor, also known as hepatocyte growth factor (HGF), is a 
multifunctional cytokine whose activities mainly include stimulation of epithelial 
cell motility and invasiveness (reviewed in Skibinski et al. 2001). Its receptor is a 
transmembrane tyrosine kinase encoded by the proto-oncogene, c-met (reviewed in 
Skibinski et al. 2001), which can also be expressed, or induced, on normal B cells 
(reviewed in Skibinski et al. 2001). Furthermore, B cells, when appropriately stimu-
lated, express the HGF receptor c-met, creating the potential for functional interac-
tion between mesenchymal and lymphoid cells (Skibinski et al. 2001; Weimar et al. 
1997). We suggest that these functional interactions may influence lymphoid cell 
motility and invasiveness. Microenvironmental factors should be further investi-
gated to clarify their role in the progression from in situ FL to early FL or overt FL.

12.5.4  Diffuse Large B-Cell Lymphoma Related  
to Inflammation

DLBCL is the most common B-cell lymphoid neoplasm. DLBCL associated with 
chronic inflammation, defined as DLBCL arising in the context of long-standing 
chronic inflammation, is associated with Epstein–Barr virus (EBV) infection or 
HCV infection.
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12 .5 .4 .1  DLBCL Associated with Chronic Inflammation  
Related to EBV Infection

DLBCL associated with chronic inflammation most commonly involves body 
cavities. The prototype for this category is pyothorax-associated lymphoma (PAL). 
PAL was first reported in 1987 in patients who were treated for tuberculosis with 
the induction of an artificial pneumothorax and is EBV positive about 70 % of 
the time (Aozasa 2006; Fukayama et al. 1993). Patients present with fever, chest/
back pain, and cough with a latency period of 10–64 years after the onset of the 
original inflammatory effusion and are often found to have a very large tumor 
(often > 10 cm) confined to the thoracic cavity. Other cases of DLBCL occurring 
in the setting of chronic inflammation (such as chronic skin ulcers or osteomy-
elitis) are also frequently positive for EBV. Interferon-inducible (IFI) protein 27 
is differentially expressed in PAL cell lines compared to bystander cells (Aozasa 
2006). The function of IFI27 is not known, but it can be induced in B cells by the 
stimulation of interferon. The presence of inflammation itself plays a dual role in 
PAL with EBV inducing B-cell transformation and escape from cytotoxic T cells.

12 .5 .4 .2  Lymphomatoid Granulomatosis Related to EBV Infection

Lymphomatoid granulomatosis (LYG) is a rare angiodestructive EBV-driven lym-
phoproliferative disease comprised of atypical clonal EBV+ B cells in an inflam-
matory background. Patients usually do not have an overt immunodeficiency prior 
to diagnosis, but many patients show evidence of immune dysregulation. It is rec-
ognized, however, that patients with known immunodeficiency are at increased 
risk (Wilson et al. 1996). EBV transformation of B cells and chemokine induc-
tion is currently believed to be at the center of all the pathological and clinical 
features of LYG (Jaffe and Wilson 1997). Histologically, LYG is comprised of a 
small number of EBV+ B cells admixed with a prominent inflammatory back-
ground comprised of T cells, plasma cells, and histiocytes. The malignant B cells 
usually are large in size and express CD20, LMP1, and EBER by in situ hybridiza-
tion. They are variably positive for CD30 and usually negative for CD15. Vascular 
changes and angiodestruction are distinctive features with intimal thickening of 
blood vessels and accompanying necrosis in many cases. LYG mostly involves 
extranodal sites with the lung virtually always being involved. Patients present 
with multiple bilateral pulmonary nodules of varying size. These nodules are usu-
ally localized in the mid- and lower lung fields. Often the nodules show evidence 
of central necrosis and/or cavitation.

Other common sites of extranodal involvement include the central nervous sys-
tem and skin in up to 20 % of patients (Jaffe and Wilson 1997). One striking fea-
ture of LYG is that lymph nodes and spleen are almost always spared at initial 
diagnosis and only involved at late stages of disease.
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12 .5 .4 .3  B-Cell Lymphomas Associated with Chronic Inflammation 
Related to HCV Infection

Many studies have provided evidence that HCV infection is associated with 
development of lymphoplasmacytoid lymphoma (immunocytoma) and with 
other indolent and aggressive B-cell NHL (Mele et al. 2003; Germanidis et 
al. 1999; Sansonno et al. 2007). However, a case–control study of patients 
with various B-cell NHL subtypes indicated that HCV infection was detected 
most frequently among those with DLBCL (Talamini et al. 2004). In con-
trast, the finding from several case–control studies did not support a notable 
effect of HCV on T-cell lymphomas (reviewed in IARC). The similarities 
shared by rearranged Ig genes present in B cells from patients with type II MC 
and malignant B cells from HCV-positive patients with B-cell NHL support 
the possibility that the antigens that promote type II MC and B-cell NHL in 
HCV-positive patients are the same (De Vita et al. 1995; Sansonno et al. 1996). 
These similarities also suggest that type II MC may be a precursor of B-cell 
NHL (Dammacco et al.1998). Type II MC probably plays a central role in the 
development of B-cell lymphoma in HCV-positive patients with Sjögren’s syn-
drome (SS) (Mariette 2001).

The liver is the main target of HCV infection and the major site of inflammatory 
events, including recruitment of inflammatory cells. An emerging area of research 
is directed to the definition of effective signals that enhance the survival of immu-
nocompetent cells (Taneda et al. 2001). Uncontrolled and inappropriate survival 
signals are known to underlie many autoimmune disorders. The B-cell-activating 
factor of the TNF family (BAFF), in particular, is a fundamental survival factor 
(Mackay and Browing 2002; Schneider and Tschopp 2003).

Occurrence of HCV enrichment in intrahepatic inflammatory infiltrates 
supports the notion that HCV is directly involved in the emergence and main-
tenance of these B-cell expansions (Sansonno et al. 2004). Intrahepatic B-cell 
clonalities are invariably associated with extrahepatic manifestations of HCV 
infection, frank B-cell NHL.

Molecular mechanisms of HCV-associated lymphoma development are still 
poorly understood. Three general theories have emerged to understand the HCV-
induced lymphomagenesis: (1) continuous external stimulation of lymphocyte 
receptors by viral antigens and consecutive proliferation; (2) direct role of HCV 
replication and expression in infected B cells; (3) permanent B-cell damage, e.g., 
mutation of tumor suppressor genes, caused by a transiently intracellular virus 
(“hit and run” theory) (IARC 2012; Peveling-Oberhag et al. 2013).

Other non-exclusive hypotheses have been proposed over the past two decades. 
These hypotheses have variously emphasized the important role played by chro-
mosomal aberrations, cytokines, or microRNA molecules (Zignego et al. 2012). 
However, the mechanisms by which B-cell lymphomas are induced by HCV 
remain the subject of debate.
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12.5.5  Peripheral T-Cell Lymphomas, Unspecified and AITLs

Our understanding of the biology of T-cell lymphomas is growing along with the 
development of new tools for molecular profiling of T-cell clones. Lymphomas 
of peripheral T cells (PTCLs) are commonly burdened by phenotypic aberrancies 
implying antigenic losses, which impair specification of neoplastic T-cell differen-
tiation. Yet, gaining insight into the functional skewing of the neoplastic clone is 
a fundamental step toward the correct interpretation of microenvironment biologi-
cal influence. It is conceivable that T cell clones with diverse Th or Tc polariza-
tion would differently prime the surrounding immunological and stromal milieu and 
differently respond to the environment feedback. To date, we have limited but sig-
nificant evidence that PTCLs can originate from, or at least reproduce, functionally 
differentiated T cells (Piccaluga et al. 2007; Iqbal et al. 2010). A notable example is 
AITL, which has been demonstrated to derive from follicular helper T cells (Tfh), 
a specific subset of T cells providing key help to B-cell responses under the fringes 
of GC programs. Tfh cell differentiation and function are strictly reliant on IL-21/
IL-21R axis, and they express the stigmata of GC-associated lymphocytes such as 
BCL-6, CD10, CXCL13, CXCR5, PD1, and ICOS expression. According to their 
Tfh differentiation, AITL neoplastic cells display the Tfh phenotype and also syn-
thesize IL-21 and CXCL13. Signs of AITCl clone deregulated Tfh function can 
be identified in the associated microenvironment such as the exuberant prolifera-
tion of FDC network and abundant B- and plasma cell infiltration. FDC expansion 
can be directly induced by AITL cells through IL-21 and CXCL13 release and is 
also sustained by the release of pro-inflammatory mediators by bystander myeloid 
cells. Reactive B cells infiltrating the AITL microenvironment classically display 
an activated phenotype and signs of EBV infection. These cells have been impli-
cated in the arousal of AITL-associated B-cell malignancies and in the orchestration 
of autoimmune humoral responses. Abundant CXCL13 and IL-21 release by AITL 
cells are effective stimuli favoring B-cell attraction and activation, which warn 
about interpretation of the actual role of EBV in AITL-associated B-cell expan-
sion. Actually, EBV-infected B cells can be more susceptible to CXCL13 attraction 
owing to the upregulation of CXCR5, and this event could underlie the enrichment 
of EBV-infected B cells in the AITL milieu even in the absence of a trigger role for 
EBV in B-cell expansion. The influence of AITL clone also extends to bystander T 
cells via the activity of myeloid effectors. By CXCL13 release, AITL cells recruit 
overly inflammatory mast cells eventually inducing Treg skewing toward Th17 dif-
ferentiation by IL-6 and OX40/OX40L interaction. The induction of a Th17-prone 
background further contributes to magnifying myeloid cell accrual and fostering the 
autoimmune diathesis of AITL cases (Tripodo et al. 2010).

The pressure exerted by the neoplastic clone over the mesenchymal components 
of AITL-infiltrated lymphoid tissues also results in the induction of the characteris-
tic vascular proliferation. AITL angiogenic response is not mere expression of the 
vascular remodeling associated with an expanding lymphoid clone, rather it reflects 
the outcome of the uncontrolled release of pro-angiogenic factors such as the pro-
totypical VEGF-A, which is constitutively synthesized and released by neoplastic 
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cells. Moreover, the angiogenic loop is further boosted through the engendering of 
pro-inflammatory conditions to which mast cells, macrophages, neutrophils, and 
eosinophils largely contribute. Notably, endothelial cells of AITL newly formed 
vessels, which are characterized by BCL2 expression, give rise to a bidirectional 
cross talk with neoplastic lymphocytes via the VEGF-A axis toward lymphoma 
progression. Overall, the AITL model well explains the integrated effort of clonal 
T cells and reactive lymphoid, myeloid, and mesenchymal elements to the orches-
tration of a vicious homeostasis and provides a precious insight into the influence 
of T-cell clone polarization in the specification of the associated environment. 
Recently, PTCLs other than AITL have been reported to be characterized by T cell 
clones with Tfh phenotype. In these cases of PTCL, typical features of the AITL 
microenvironment could be variably identified thus suggesting that the nature of 
the neoplastic T-cell population and the quality of the microenvironment are both 
determinant in the outcome of the lymphomagenesis. Accordingly, different polar-
izing environments can be associated with the establishment of diverse T-cell lym-
phoma histotypes. The induction of a Th-22 polarizing milieu has been reported to 
favor CTCL development (Miyagaki T et al. 2011) while establishment of a Th-
17-skewed environment characterizes some anaplastic T-cell lymphoma (ALCL) 
cases. The dynamics of induction of Th-17 skewing in ALCL is particularly inter-
esting being mediated by the NPM–ALK translocation via upregulation of miR-
135 and Th-2 program repression and thus indicating posttranscriptional regulation 
of neoplastic T-cell fate as further element of complexity in PTCL biology.

12 .6  Inflammation in Human Lymphomas: Prognostic and 
Therapeutic Implications

Lymphomas represent a heterogeneous group of tumors with pathologically and clin-
ically overlapping features. Although a substantial proportion of cases is cured by 
currently available multidisciplinary treatment strategies, management of relapsed or 
refractory patients still represents an unmet medical need requiring the development 
of effective therapeutical approaches based on the use of molecularly targeted agents 
(Reeder and Ansell 2011). Over the last decades, genetic alterations that induce cell 
cycle perturbations, antiapoptotic signaling, block of terminal differentiation, and 
constitutive activation of intracellular signaling pathways have been increasingly 
identified as the leading causes in lymphomagenesis as well as attractive therapeu-
tic targets (Nogai et al. 2011). More recently, however, tumor microenvironment has 
emerged as a critical player in the pathogenesis and progressions of human lympho-
mas due to its role in providing nutrients to tumor cells, stimulating angiogenesis and 
triggering immune deregulation (Steidl et al. 2011; Coupland 2011). The microen-
vironment may also create niches that promote drug resistance and cancer stem cell 
maintenance (Nakasone et al. 2012). A large body of evidences suggests that tumor 
microenvironment may play a significant prognostic and also therapeutic role in 
human lymphomas. Indeed, clinical data regarding biological agents that target the 
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microenvironment, such as lenalidomide, anti-CD137 antibodies, antiangiogenic 
molecules, and immunocytokines, have shown promising therapeutic activity in the 
setting of refractory lymphomas, supporting the concept that disrupting the growth-
promoting interactions or cross talk between neoplastic and non-neoplastic cells may 
eventually become a treatment option even in the upfront setting (Lenz and Staudt 
2010; Witzig et al. 2011). Despite their complexity and heterogeneity, DLBCL, FL, 
and cHL are attractive disease models allowing to dissect the prognostic and thera-
peutic role of tumor microenvironment.

Although a variety of well-defined genetic alterations have been pathogenetically 
implicated in DLBCL, cross talk between the neoplastic B cells and the microenvi-
ronment is currently appreciated as an important aspect of the biology of DLBCL 
(Gascoyne and Steidl 2011). Tumor microenvironment of DLBCL comprises a wide 
spectrum of non-neoplastic cells, including benign B cells, regulatory T cells, Th1 
cells, Th2 cells, Th17 cells, natural killer cells, antigen-presenting cells, stromal ele-
ments, and vascular endothelial cells (Steidl et al. 2011). Cells of tumor microenvi-
ronment are mixed in a three-dimensional network with neoplastic B cells (Nelson 
2010), and their content, distribution, and function are likely to change in response 
to therapy (Burger et al. 2009). Important information on the microenvironment in 
DLBCL was provided a decade ago by a gene expression profiling (GEP) study 
(Rosenwald et al. 2002). This study demonstrated that a lymph node signature and 
a MHC class II signature could be used as molecular predictors in DLBCL patients 
treated with CHOP-like chemotherapy. Interestingly, immunohistochemistry (IHC) 
correlates of MHC class II loss were shown to be prognostic in DLBCL and related 
lymphoma subtypes (Rimsza et al. 2004; Roberts et al. 2006). Subsequently, the 
Lymphoma/Leukemia Molecular Profiling Project (LLMPP) analyzed 181 de novo 
cases of DLBCL treated with CHOP and 233 de novo cases of DLBCL treated with 
R-CHOP using GEP and confirmed that three gene expression signatures—termed 
“GC B cell,” “stromal-1,” and “stromal-2” – predicted survival both in patients who 
received CHOP and patients who received R-CHOP, further supporting the role 
of the microenvironment in DLBCL pathogenesis (Lenz et al. 2008). The whole-
section GEP data were complemented by data derived from magnetic bead separa-
tions of CD19-positive B cells versus CD19-negative cells from DLBCL biopsies 
that convincingly showed that two new signatures stromal-1 and stromal-2 were 
clearly derived from non-neoplastic CD19-negative cells in the tumor microenviron-
ment. The stromal-1 signature conferred a favorable outcome and revealed genes 
suggesting extracellular matrix deposition and histiocytic infiltration. The stromal-2 
gene signature was associated with inferior survival and revealed genes involved in 
endothelial cell biology and adipocyte function. Overall, these data strongly estab-
lish an important role for non-neoplastic cells in the pathogenesis of DLBCL and 
suggest that treatment approaches that target both the malignant B cells and the non-
neoplastic cells in the microenvironment should be explored to improve the efficacy 
of first-line therapy in selected subsets of patients with DLBCL.

FL is characterized by a substantial molecular, histological, and clinical 
 heterogeneity with no agreement on optimal initial therapy. Studies aimed at eval-
uating the prognostic impact of microenvironment parameters, such as analysis of 
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lymphoma-associated macrophages and microvessel density (MVD), have  provided 
conflicting results. Increased numbers of macrophages in diagnostic biopsies of FL 
have been associated with inferior survival (Farinha et al. 2005; Canioni et al. 2008). 
However, addition of rituximab to chemotherapy was shown to overcome the nega-
tive prognostic impact of macrophages (Canioni et al. 2008) and indeed was asso-
ciated with a survival advantage (Taskinen et al. 2007). Analysis of MVD found a 
correlation of increased MVD with favorable outcome in FL patients treated with 
CVP and interferon (IFN)-alpha followed by maintenance IFN-α (Koster et al. 
2005), while conflicting result emerged from FL patients treated with BP-VACOP 
(Farinha et al. 2010). Whether or not these differences in the prognostic impact of 
MVD can be interpreted as related to IFN-α, a drug known to have some antiangio-
genic effects, remains an open issue. The role of the microenvironment in histologic 
transformation of FL to DLBCL has been addressed by several studies with con-
flicting results. A frequency of programmed cell death 1 (PD-1)-positive cells ≤5 % 
has been associated with a higher risk of transformation, whereas a high content 
of PD-1-positive cells predicted favorable outcome of FL patients (Carreras et al. 
2009). In contrast, a recent study from Mayo Clinic (Smeltzer et al. 2013) has identi-
fied the pattern of PD-1+ cells and the localization of CD14+ cells to the follicle 
as associated with inferior time to transformation (TTT) and overall survival (OS). 
Interestingly, after accounting for FLIPI score, both these factors remained signif-
icant, thus identifying two independent predictors of the rate of transformation in 
FL and suggesting that location rather than quantity of CD14+ or PD-1+ cells may 
influence clinical outcome. Overall, these conflicting results do not allow to reach 
any definitive conclusion on the prognostic role of microenvironment in FL rather 
they clearly show that several issues still require to be accurately addressed by the 
prospective analysis of homogeneously treated large cohorts of patients. These stud-
ies should combine conventional approaches, such as immunohistochemistry and 
cell separation techniques, with genomic technologies including DNA sequencing 
and analysis of the transcriptional profiles.

cHL represents a paradigm of tumor cell–microenvironment interactions, as the 
neoplastic HRS cells typically represent <5 % of the total infiltrate in lymph node 
biopsies, whereas >95 %of the total infiltrate consists of a mixture of inflammatory 
and immune cells. Both HRS cells and non-neoplastic cells within the microenviron-
ment pathogenetically contribute to the pathological process by secreting cytokines 
and chemokines that allow the neoplastic HRS cells to survive and evade antitumor 
immune mechanisms. cHL microenvironment allows HRS cells to grow in a Th2 
milieu where HRS cells produce a variety of factors, including among others galec-
tin-1, PD-L1, CSF-1, and TARC that create a peculiar microenvironment leading 
to the recruitment of macrophages and regulatory T cells that further contribute to 
immune privilege. Several GEP studies performed using whole biopsy sections have 
explored the contribution of the microenvironment to disease outcome (Steidl et al. 
2010; Sanchez-Aguilera et al. 2006; Scott et al. 2013). These studies consistently 
implicate macrophages, benign B cells and specific T-cell subsets in predicting the 
success of first-line therapy in patients with cHL. The study by Steidl and colleagues 
(Steidl et al. 2010) analyzed 130 cases of cHL including 38 primary treatment 
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failures and 92 treatment successes. In this study, macrophage signatures were 
associated with treatment failure. Validation of this results using an unrelated clini-
cal cohort and a IHC-based approach using CD68 expression showed that increased 
CD68-positive macrophages at the time of diagnosis were associated with treatment 
failure and interestingly were also associated with failure following salvage therapy. 
Based on these results, targeting the microenvironment might be a useful strategy in 
the treatment of selected subsets of cHL patients (Germano et al. 2013). The avail-
ability of biological agents such as brentuximab vedotin targeting CD30-positive 
HRS cells combined with agents that can disrupt the cross talk with the non-neoplas-
tic cells in the microenvironment (e.g., lenalidomide) might represent important new 
strategies for the treatment of refractory cHL patients.

A variety of therapeutic targets are emerging from studies investigating lym-
phoma microenvironment. However, the translation of our current knowledge of 
tumor microenvironment into hypothesis-driven clinical trials remains a challeng-
ing issue. The concept that the tumor microenvironment might be a promising 
therapeutic target involves not only the use of biological agents but also that of 
conventional molecules, such as the pyrimidine analog gemcitabine, a cytotoxic 
agent reported to be effective in relapsed cHL and known to specifically target 
regulatory T cells(Correale et al. 2008). Inflammation has been implicated in lym-
phomagenesis because it may lead to the activation of the key transcriptional fac-
tors NF-κB and STAT-3 which are involved in a complex inflammatory network. 
These transcriptional factors regulate oncogenic factors affecting proliferation, 
migration, angiogenesis, invasiveness, as well as drug resistance of tumors. Since 
cancers including lymphomas are caused by dysregulation of multiple pathways, 
it seems reasonable that agents interfering with multiple pathways are likely as 
being more effective. In conclusion, therapies targeting cells of the microenviron-
ment or disrupting microenvironment-dependent signaling in the malignant cells 
might have a positive impact on patients with relapsed lymphomas. Current clin-
ical trials focusing on the combination of targeted agents with classical chemo-
therapy agents as well as randomized trials comparing these novel agents with the 
current standard of care for first- and second-line therapies will ultimately deter-
mine their significance in the overall landscape of lymphoma treatment.
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Abstract Acute leukaemias are a group of malignancies characterised by the 
invasion of the bone marrow by immature haematopoietic precursors and differ-
entiation arrest at various maturation steps. Multiplicity of intrinsic and extrinsic 
factors influences the transformation and progression of leukaemia. The intrinsic 
factors encompass genetic alterations of cellular pathways leading to the activa-
tion of, among others, inflammatory pathways (such as nuclear factor kappa B). 
The extrinsic components include, among others, the inflammatory pathways acti-
vated by the bone marrow microenvironment and include chemokines, cytokines 
and adhesion molecules. In this chapter, we review the role of inflammatory pro-
cesses in the transformation, survival and proliferation of leukaemias, particularly 
the role of nuclear factor kappa B and its downstream signalling in leukaemias and 
the novel therapeutic strategies that exploit potentially unique properties of inflam-
matory signalling that offer interesting options for future therapeutic interventions.
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13 .1  Introduction

Leukaemia is a broad category of haematological neoplasms. Based on clinical 
 criteria, leukaemias are grouped into acute and chronic. Based on pathological crite-
ria, leukaemias are grouped into myeloid and lymphoid. In adults, the most common 
types of leukaemia are chronic lymphocytic leukaemia (CLL) and acute myeloid leu-
kaemia (AML). Chronic myeloid leukaemia (CML) and acute lymphoid leukaemia 
(ALL) are less frequent. AML is a heterogeneous group of disorders characterised 
by the uncontrolled proliferation of myeloid progenitors with a reduced potential to 
differentiate into mature cells. Laboratory data suggest that AML originates from a 
population of rare cells, termed leukaemic stem cells (LSCs), which are capable of 
self-renewal, proliferation and differentiation. These cells may persist after treatment 
and are probably responsible for disease relapse. Molecular alterations underlying 
the development of leukaemia, typically involve the disruption of tumour suppres-
sor genes (point mutations, chromosomal deletions), activation of proto-oncogenes 
or the formation of oncogenic fusion proteins. In AML, several chromosomal abnor-
malities and mutations have been identified. The t(8;21), t(16;16) and inv(16) muta-
tions are associated with a better prognosis. Mutation in the FLT3 tyrosine kinase 
receptor gene is the most common mutation in AML and is associated with poor 
clinical outcomes. Mutations in the DNA methyltransferase gene, DNMT3A, are 
also associated with poor prognosis and are recurrent in patients with intermediate-
risk AML. The presence of any DNMT3A mutation, either alone or in combination 
with the FLT3 internal tandem duplication (ITD) mutation, is associated with a sig-
nificantly shorter overall survival rate. Tables 13.1 and 13.2 present the key chromo-
somal and molecular prognostic factors in AML. The incidence of AML is 3.7 per 
100,000 per year (Dohner et al. 2010). Over the past several decades, better chem-
otherapeutic regimens have improved the outcomes in both acute leukaemias. The 
primary goal of therapy in AML is to achieve and maintain a complete remission 
(CR), as it significantly improves survival (Freireich et al. 1961). The patients who 
remain in CR for 3 years have a low (<10 %) probability of relapse (de Lima et al. 
1997). Standard remission induction chemotherapy for AML consists of a combina-
tion of anthracycline and cytarabine (known as 3 + 7 regimen). Despite an initial 
sensitivity to chemotherapy, long-term disease-free survival in AML remains low 
mostly due to the frequency of relapses. In the USA, the overall 5-year relative sur-
vival rate for 2002–2008 from Surveillance Epidemiology and End Results (SEER) 
database was 23.4 % (NCI 2013). Although more than one-half of adult patients 
achieve CR, relapses occur frequently as result of the expansion of leukaemic cells 
that have escaped chemotherapy. Minimal residual disease (MRD), which is detected 
by immunophenotyping or molecular analyses, identifies malignant cells that have 
survived chemotherapy. The level of MRD after chemotherapy has a strong prog-
nostic impact and may provide a surrogate endpoint or provide assistance in assess-
ing the clinical efficacy of new targeted therapies. For younger patients, despite the 
improved protocols of treatment developed in the last years, the survival rate remains 
unsatisfactory, and the curative options for relapse after allogeneic HSCT are poor. 
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Limiting factors in the treatment of AML include the development of drug resist-
ance, the relatively high treatment-related mortality and the long-term side effects. 
Immunotherapy holds great promise to sustain AML remission once the disease has 
been bulk-reduced with chemotherapy. Despite recent improvements in the treatment 
of AML, the frequency of relapses and the difficulty to completely eradicate the dis-
ease warrant the search for innovative therapies.

The age-adjusted incidence of ALL is 1.7 per 100,000 persons, with a median 
age at diagnosis of 13 years. ALL is the most common childhood acute leukaemia, 
representing approximately 80 % of childhood leukaemia cases, although it repre-
sents only 20 % of adult leukaemias. The aetiology of ALL remains unknown in 
most cases. Chromosomal translocations have been suggested as the primary cause 
for paediatric ALL; some genetic disorders are associated with a higher risk of ALL 
(trisomy 21, XXY). Some studies have suggested possible infectious aetiologies. 
Therapy of ALL is one of the most complex types of anti-cancer programs. Multiple 
drugs are combined into regimen-specific sequences in order to reconstitute normal 
haematopoiesis, prevent resistance, provide adequate prophylaxis of sanctuary sites 
and eliminate MRD through postremission consolidation and maintenance therapy.

CLL is a common monoclonal B-cell lymphoproliferative disease, derived from 
antigen-experienced B lymphocytes. The CLL cells depend on external factors 
for survival and proliferation. B-cell receptor stimulation and activation of a vari-
ety of signalling pathways, including PI3K/AKT, NF-κB, MAPK/ERK, WNT and 

Table 13 .1  AML cytogenetic risk groups

Karyotype Frequency (%) Complete remission (%) Event-free survival (%)

Favourable
t(8;21) 5–10 90 60–70
inv(16) 5–10 90 60–70
t(15;17) 5–10 80–90 70
Intermediate
Diploid, -Y 40–50 70–80 30–40
Unfavourable
−5/−7 20–30 50 5–10
+8 10 60 10–20
11q23, 20q−, other 10–20 60 10

Table 13 .2  Prognostic 
factors in AML

Factor Relapse rate Survival

↑ BAACL ↓
FLT3 ITD/mutation ↑ ↓
MLL PTD ↑
↑ BCL2 and WT1 mRNA ↑ ↓
↑ EVI1 mRNA ↑ ↓
p53 mutation ↓
CEBPA mutation ↓ ↑
c-kit mutation ↑ ↓
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NOTCH, have also been associated with CLL cell survival, with the incidence of 
three cases per 100,000 individuals, and it accounts for 35 % of all leukaemias diag-
nosed in the United States. Currently, several cytogenetic and molecular markers 
have an established prognostic value, including among others, chromosomal abnor-
malities (especially deletions of 11q and 17p, beta-2-microglobulin, IgVH mutation 
status, CD38 expression and ZAP70). The introduction of purine analogues, mono-
clonal antibodies and other targeted therapies has shifted the treatment paradigm for 
CLL in recent years. These modern therapies commonly achieve CRs and even erad-
ication of MRD—endpoints that were essentially impossible in the past (NCI 2013). 
Despite these advances, it remains an incurable disease.

CML is a clonal disorder of a pluripotent stem cell that affects myeloid, 
erythroid, megakaryocytic lineages and lymphocytes. The age-adjusted annual 
incidence of CML in the United States is 1.6/100,000 (NCI 2013). CML is charac-
terised by the presence of Philadelphia chromosome and the BCR-ABL oncogene. 
The expression of the chimeric BCR-ABL gene in CML led to development of 
agents specifically targeted at inhibiting the resulting tyrosine kinase that have sig-
nificantly changed the natural history of the disease.

13 .2  Key Links Between Inflammation and Leukaemia

The development of leukaemia is a multistep process, where genetic alterations con-
fer specific growth advantages driving a progressive transformation from normal to 
malignant cells. In haematological malignancies, mutations occur in somatic cells 
expressing oncogenic proteins that disrupt the equilibrium between cell proliferation 
and cell death. Chronic inflammation is considered of to be one of the hallmarks of 
malignancy (Colotta et al. 2009). The connection between inflammation and cancer 
is based on two mechanisms. The extrinsic mechanism involves immune and micro-
environment factors, where a constant inflammatory state contributes to the initiation 
and progression of the cancer. The intrinsic mechanism includes acquired genetic 
alterations affecting oncogenes, tumour suppressors and genome stability genes that 
contribute to the activation of the inflammatory pathways. Several molecular and 
cellular signalling pathways have been identified as links between inflammatory pro-
cesses and cancer development (Aggarwal and Gehlot 2009). Key molecular regula-
tors include innate immune cells, cytokines, chemokines and members of molecular 
pathways including NF-κB and STAT3 and others.

13 .3  Tumour-Associated Macrophages

The presence of tumour-associated macrophages (TAMs) correlates with improved 
prognosis in patients with solid tumours. Recent studies have shown that AML 
cells express CD47, a protective marker against TAMs. In a mouse model, the 
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administration of a blocking antibody to CD47 induced macrophage-mediated 
phagocytosis of AML stem cells and inhibited their engraftment. The treatment of 
human AML LSC-engrafted mice with anti-CD47 antibody depleted AML and tar-
geted AML LSCs (Majeti et al. 2009; Jaiswal et al. 2009; Chao et al. 2010). These 
observations suggest that macrophage mediated tumour immune-surveillance is 
an important factor in survival of  leukemia stem cells (LSCs). Further identifica-
tion and characterisation of distinct sets of receptor/ligands on phagocytic mac-
rophages may be an ideal strategy with which to investigate the interaction of 
cancer stem cells and TAM and may lead to the exploration of new therapeutic 
targets against cancer stem cells.

The development of CLL is delayed in the absence of macrophage migration 
inhibitory factor (MIF)—a proinflammatory and immunoregulatory cytokine. 
Macrophages are the primary source of MIF, but also other cells of the immune 
system can secrete it. The absence of MIF delays the development and progres-
sion of CLL by reducing the survival of CLL cells and the number and migratory 
capacity of macrophages in leukaemic homing organs. This may serve as a poten-
tial new therapeutic strategy (Reinart et al. 2013).

13.3.1  Cytokines and Chemokines in Leukaemia

In normal hematopoietic cells, the activation of cell surface receptors by cytokines, 
chemokines and growth factors regulate signal transduction activity and the inter-
action between cells and the bone marrow microenvironment (Ferretti et al. 2012). 
The relative frequency of the activation of signal transduction in AML exceeds the 
frequency of mutations or genetic alterations found in the pathways or receptors, 
suggesting an alternative mechanism of stimulation that can include extracellular 
signalling. This provides leukaemic cells with proliferative and survival advantages 
by inhibiting apoptosis, stimulating proliferation and blocking differentiation. The 
abnormal cytokine signalling can be a result of an autocrine secretion, modulation 
of receptor expression, receptor mutations, activation of specific oncogenes or the 
deregulation of transcription factors. The drop in cytokine levels in patients with leu-
kaemia in remission is well documented, suggesting that cytokine levels depend on 
AML activity, possibly due to autonomous blast cytokine secretion (Van Etten 2007).

The evidence for abnormal cyto- and chemokine regulation in AML is mainly 
based on single cytokine serum level analysis. For example, a high level of transcrip-
tion factor MEF2C induces over-expression of CCL2, CCL3 and CCL4 (Schwieger 
et al. 2009). A series of individual regulatory axes were studied. However, the most 
comprehensive study so far is the analysis of serum cytokine levels in patients with 
AML, MDS, including a panel of 27 cyto- and chemokines. In this study, the levels 
of CCL5, IL-8, IL-2, CCL4 and IL-5 were predictive for survival in AML, while 
IL-4 and CCL3 were predictive for survival in MDS. Patients who achieved remis-
sion were more likely to have increased levels of CCL5, IL-2/4/5/10, and decreased 
levels of CCL2 and tumour necrosis factor (TNF). The long-time survival rate was 
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only associated with increased levels of CCL5 and IL-2/5 and decreased levels 
of CCL4 and CXCL8. A panel of 11 cyto- and chemokines (including CCL3 and 
CCL5) allowed for the separation of patients into favourable, intermediate and unfa-
vourable remission groups with significantly different median survival rates (52 vs. 
32 vs. 16 weeks, p = 0.003). The effect of chemo- and cytokines in leukaemia is 
complex, as the level of receptor expression, the presence of receptor mutations, 
para- and autocrine secretion and abnormalities in signalling pathways activation 
modulate the effected cytokines (Kornblau et al. 2010).

One of the best-characterised chemokine is stromal-derived factor 1α, SDF-1α 
(CXCL12). It is constitutively secreted by marrow stromal cells and binds to 
C-X-C chemokine receptor type 4 (CXCR4), also known as CD184 (Koblas  
et al. 2007). The main role of this axis is the homing of hematopoietic progenitors 
and leukaemia cells within the bone marrow. CXCL12/CXCR4 mediates the adhe-
sion of leukaemic cells to marrow stromal cells, influences survival and prolifera-
tion, protects AML cells from the effects of chemotherapy in vitro and in vivo and 
activates ERK and PI3K pathways (Tilton et al. 2000; Nebreda and Gavin 1999; 
Datta et al. 1999). In primary AML samples, the increased CXCR4 expression 
was found in 64 % of samples and was an independent poor prognostic factor for 
relapse and survival (Spoo et al. 2007). In ALL, a high expression of CXCR4 was 
strongly predictive for extramedullary organ involvement (Crazzolara et al. 2001).

The chemokine receptor CCR7 is an essential adhesion signal required for the 
targeting of leukaemic T cells into the CNS. Ccr7 gene expression is controlled 
by the activity of the Notch1 oncogene and is expressed in human tumours carry-
ing Notch1-activating mutations. The silencing of either CCR7 or its chemokine 
ligand CCL19 in an animal model of T-ALL specifically inhibits CNS infiltration. 
In a murine model, CNS-targeting by human T-ALL cells depended on the expres-
sion of CCR7 (Buonamici et al. 2009).

13.3.2  NF-κB in Leukaemia

Family of nuclear factor kappa B (NF-κB) transcription factors is the key signal-
ling pathway linking cancer and inflammation. NF-κB activates more than 200 
genes including the expression of inflammatory cytokines, adhesion molecules, key 
enzymes in the prostaglandin synthase pathway (COX-2), nitric oxide (NO) syn-
thase and angiogenic factors. In addition, by inducing anti-apoptotic genes (e.g. 
Bcl2), it promotes survival in malignant cells. In resting cells, the majority of NF-
κB complexes are bound to the Inhibitor-κB (IκB) and remain sequestered in cyto-
plasm. The classical activation pathway of NF-κB in response to pro-inflammatory 
cytokines and chemokines, DNA damaging agents, Toll-like receptors (TLRs) 
ligands or viruses starts with the activation of inhibitor kappa B kinase (IKK) that 
phosphorylates IκB and frees NF-κB complexes to enter the nucleus. The non-clas-
sical signalling responds to the subset of TNF receptors and depends on the pro-
cessing of a precursor protein p100 into a mature NF-κB subunit (p52) (Sun 2011). 
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Activated NF-κB can be downregulated through multiple pathways including being 
exported to cytoplasm by newly synthesised proteins. Constitutive activation NF-κB 
is frequent in malignant cell lines and primary tumours samples. It is rare in nor-
mal cells, with the exception of immune cells (proliferating T cells, B cells, thymo-
cytes, monocytes and astrocytes). In addition, NF-κB activation can be the result of 
cell-autonomous genetic alterations (amplification, mutations or deletions) in cancer 
cells. In both malignant and inflammatory cells, NF-κB is activated downstream to 
the TLR-MyD88 pathway (sensing microbes and tissue damage) or the inflamma-
tory cytokines, including TNF and IL-1β. Alternatively, NF-κB activation can be the 
result of genetic alterations (amplification, mutations or deletions) in cancer cells. 
Figure 13.1 shows the essential NF-κB-related signalling pathways with proven sig-
nificance in leukaemias.

The evidence supporting the potential role for NF-κB in leukaemogenesis 
is based mainly on in vitro data. NF-κB is required for leukaemogenesis initi-
ated by the Bcr-Abl chimeric protein (a deregulated tyrosine kinase) in CML 
(Reuther et al. 1998). The activation or expression of NF-κB was also observed 
in T- and B-cell lymphocyte leukaemia (Bargou et al. 1996). Consequently, a role 
for NF-κB in the leukaemogenesis is highly possible. It is still unclear whether 
over-activation or excessive expression of NF-κB in these transformed cells 
is a primary event or whether NF-κB provides only an accessory signal for the 
transformation. In HTLV-1-induced T cell acute lymphoblastic leukaemias, NF-
κB is activated by Tax—a protein (encoded by HTLV-1 virus)—and it can be a 
mediator for viral-induced tumourigenesis (Hiscott et al. 1997). Indirect evi-
dence to support this hypothesis is provided by the observation that mice treated 
with anti-sense oligonucleotides to relA (NF-κB p65) have a reduced incidence 

Fig . 13 .1  The central role of NF-κB in signal crosstalk between inflammation and leukaemia; 
only pathways with proven significance are shown (MMP matrix metalloproteases, TLR Toll-like 
receptors, TRAIL tumour necrosis factor-related apoptosis-inducing ligand, TNF tumour necrosis 
factor, VEGF vascular endothelial growth factor, NF-κB nuclear factor kappa B)
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of Tax-induced tumours (Kitajima et al. 1993). The level of NF-κB activation in 
AML, including LSCs, was analysed in several studies (Estrov et al. 1999; Frelin 
et al. 2005a; Guzman et al. 2002). Two studies have explored the consequences of 
aberrant activity of NF-κB in normal haematopoiesis. In the cord blood-derived 
CD34+ cells, the induction of constitutive NF-κB activity as a single hit is not suf-
ficient to cause changes in proliferation, differentiation or self-renewal in normal 
haemopoiesis (Schepers et al. 2006). Similar results were also reported in adult-
derived CD34+ cells (Romano et al. 2003). In AML, the constitutive activation of 
the NF-κB was observed in 46 % of patients and there was no correlation between 
blast counts and NF-κB activity (Bueso-Ramos et al. 2004). In another report, NF-
κB was activated in CD34+/CD38- blast cells derived from patients with de novo 
AML—and the levels were proportional to the peripheral blood blast count (Frelin 
et al. 2005a). The mechanisms of constitutive activation of NF-κB in AML include 
the mutation of IκB (Wood et al. 1998), enhanced proteosomal activity (Miyamoto 
et al. 1994) or the enhanced inflammatory cytokine expression (O’Connell et al. 
1995). It is also likely that autocrine production of cytokines may play a role in 
stimulating NF-κB in leukaemia. This is supported by observations of spontane-
ous expression of IL-1β and IL-6 in AML blast cells, as well as elevated levels of 
IL-6 in the serum of most patients with AML (Dokter et al. 1995). In AML, the 
constitutive NF-κB activity is observed in LSC and not in the normal hematopoi-
etic stem cells (Guzman et al. 2001b). Because LSCs are responsible for disease 
relapse, these cells are promising targets for future therapies with IKK inhibi-
tors (Frelin et al. 2005a). The treatment of blast cells with NF-κB or proteasome 
inhibitors in vitro has led to apoptosis (Guzman et al. 2001a). Interestingly, these 
effects are more selective on leukaemic cells, producing minor effects on normal 
stem cell populations. The proteasome inhibitor that blocks NF-κB but also other 
signalling pathways has shown selective toxicity for LSCs rather than for haemat-
opoiesis in vitro.

In MDS, the degree of NF-κB activation correlated with the risk of progression 
to AML, with bone marrow blast counts and the high level of activation (Braun 
et al. 2006); two mechanisms can explain significant NF-κB activation. A combined 
immunohistochemical detection of p65 and FISH detection of common MDS-
associated cytogenetic abnormalities revealed that NF-κB activation was restricted 
to malignant stem cells (as opposed to non-mutated stroma cells), suggesting 
that the intrinsic mechanism of activation is dependent on acquired mutations. 
An alternative mechanism of paracrine NF-κB activation via TNF is suggested in 
another study that described the correlation between the relative expression level 
of two TNF-R subunits (R1 or p55 versus R2 or p75) and the degree of NF-κB 
activation in MDS. The patients with predominately R1 expression of the NF-κB 
activation were the highest [65]. It is also possible that both intrinsic and TNF-
dependent mechanisms coexist. Possibly, genetic abnormalities could lead to both 
NF-κB activation and differential TNF-α-R subunit expression as independent 
consequences, or alternatively the mutational profile of MDS blast would change 
the TNF-R subunit expression balance, which in turn would increase the intrinsic 
capacity of MDS blasts to activate NF-κB.
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Constitutive activation of Bcr-Abl kinase in CML signals down to many sur-
vival pathways, including NF-κB and STAT, among others (Steelman et al. 2004). 
The NF-κB activation may be as a result of the increase in nuclear translocation 
as well as an increase in the potential of transactivation. Bcr-Abl activates NF-
κB-dependent gene expression, at least partially, via Ras pathway, which trans-
activates the p65. IKK activation is not enhanced in primary CML cells (Lounnas 
et al. 2009). NF-κB is also important in malignant transformation by Bcr-Abl as 
shown both in vivo (nude mice) and in vitro experiments. The activation of NF-
κB mediates proliferation, transformation and resistance to apoptosis in Bcr-Abl-
positive cells. The key genes regulated by NF-κB include c-myc, necessary for 
Bcr-Abl transformation as well as many surface molecules mediating cell adhe-
sion and cellular interactions. Studies demonstrated an intrinsic activity of NF-κB 
in Bcr-Abl-positive cells is increasing during the progression of the disease from 
the chronic phase to more advanced stages.

In CLL, the NF-κB activity is increased, in comparison to non-malignant 
B cells. The activity was further increased by the ligation of CD40 by the phys-
iological ligand CD154, a critical pathway for CLL cell survival. In CD154+ 
CLL samples, the addition of a neutralising anti-154 mAb resulted in the inhi-
bition of NF-κB activity associated with subsequent cell death. As expected, 
the anti-apoptotic proteins TRAF1 and TRAF2 were upregulated in CLL cells, 
but it is unclear whether this occurs through a NF-κB-dependent mechanism. In 
CLL, many other factors, including AKT activation, B-cell receptor signalling 
and interleukin-4 (IL-4), have been demonstrated to increase NF-κB activity 
and enhance CLL cell survival. The constitutive high NF-κB in CLL was found 
in primary CLL samples taken from untreated patients. The activity of NF-κB 
was modulated with cytokines (IL-4 and IL-13 increased and TGF-β reduced) 
(Zaninoni et al. 2003). NF-κB in CLL was linked with fludarabine resist-
ance (Hewamana et al. 2008). In primary ALL samples, a constitutive NF-κB  
activity was found in Ph+ samples, while in Ph- primary samples and 
B-precursor cell lines both had normal NF-κB activity. The constitutive NF-
κB activity in Ph+ blasts was not related to elevated endogenous IKK activity 
(Munzert et al. 2004).

13.3.3  STAT3 in Leukaemia

The signal transducer and activator of transcription 3 (STAT3) is a transcrip-
tion factor responding to various inflammatory and non-inflammatory cytokines 
and growth factors [interferons, epidermal growth factor, IL-5, IL-6, leukae-
mias inhibitory factor (LIF), IL-10] and regulating cell growth and apoptosis. 
STAT3 and NF-κB can co-regulate the expression of target genes (including 
those encoding PAI-1, Bcl-3 and Bcl-2). In some cases, resistance to tyrosine 
kinase inhibitors (TKI) can be attributed to the increased activity of the STAT3 
pathway, and the STAT3 inhibition restores TKI sensitivity (Zhou et al. 2009). 
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In AML, STAT3 was constitutively activated in most of the cell lines and nearly 
half of the primary paediatric samples (Redell et al. 2011). STAT proteins are 
involved in the hematopoietic cytokine receptor signalling pathways that regu-
late cell proliferation, differentiation and survival. STATs are dysregulated in 
AML; mechanisms of dysregulation include constitutive activation and trunca-
tion of the C-terminal transactivation domain; the latter results in a beta iso-
form that has a trans-dominant negative effect on gene induction, mediated by 
the full-length STAT alpha form. A constitutive STAT3 activity in AML was 
associated with poor prognosis (Benekli et al. 2002), possibly due to the resist-
ance to chemotherapy. Disease-free survival (DFS) was significantly shorter 
in patients with constitutive STAT3 activity (median 8.7 vs. 20.6 months; 
P = 0.01). The overall survival rate did not differ significantly. The subgroup 
of patients with constitutive STAT3 activity and the STAT3 beta isoform had 
the shortest DFS (P = 0.006) and the shorter overall survival rate (P = 0.049) 
than all other patients. It is not clear whether adverse treatment outcomes are 
attributable to constitutive STAT activity or to a process that leads to constitu-
tive STAT activity (Benekli et al. 2002). The constitutive serine phosphoryla-
tion of STAT1 and STAT3 is present, although the physiologic significance of 
these modifications remains to be determined (Frank et al. 1997). CLL cells 
have high levels of unphosphorylated STAT-3 (USTAT-3). It was confirmed 
that USTAT-3 USTAT-3/NF-κB complexes bind to DNA and activate NF-κB-
regulated genes in CLL cells (Liu et al. 2011).

13.3.4  NF-κB Modulators in Leukaemia

13 .3 .4 .1  Vascular Endothelial Growth Factor

One of the newly discovered NF-κB activators is vascular endothelial growth fac-
tor (VEGF). In AML, the number of vessels in the bone marrow biopsies was sig-
nificantly increased at diagnosis, compared with normal bone marrow (P = 0.019) 
and was restored to normal levels after achieving CR. The expression of VEGF 
correlated with a degree of neoangiogenesis. These results suggest that malig-
nant cell proliferation, angiogenesis and VEGF expression are linked in AML 
and might contribute to the growth advantage of the malignant clone (de Bont  
et al. 2001). In CLL, VEGF mediates neovascularization in bone marrow. B-CLL 
lymphocytes produced VEGF in vitro, and increased VEGF levels were found in 
primary samples. Elevated VEGF receptor (VEGFR)-2 had a negative prognos-
tic impact on survival. Also VEGF stimulates NF-κB in malignant B-CLL cells. 
The downstream transcriptional targets of NF-κB activation in CLL are also likely 
to be diverse, but certainly include the inhibitor of apoptosis proteins (IAPs) 
and anti-apoptotic members of the Bcl-2 family of proteins, for example, Bcl-2, 
Bcl-XL and Bfl1/A1.
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13 .3 .4 .2  Tumour Necrosis Factor

TNF is a monocyte-derived cytotoxin promoting the inflammatory response and 
signalling via three pathways, an anti-apoptotic NF-κB (one of the most potent 
activators), generally pro-apoptotic MAPK and a relatively weak induction of 
death signalling (via caspase-8). The overall effects of TNF activation are mul-
tiple and frequently conflicting. In AML, a high serum TNF level was found in 
approximately 50 % of the cases and was an adverse prognostic factor for survival 
in patients with untreated AML or high-risk MDS (Tsimberidou et al. 2008). In 
the in vitro studies, TNF has had a potent anti-tumour and proapoptotic activity 
in AML cell lines as a single agent and after pre-treatment with interferon or IL-2 
(Katschinski et al. 1999). Interestingly, the TNF gene polymorphisms are associ-
ated with poor prognosis in various haematological malignancies, including CLL 
(Lech-Maranda et al. 2013). In primary CLL samples, TNF levels were signifi-
cantly higher than in a controlled population and when correlated with adverse 
prognostic factors such as ZAP-70 and CD38 (Bojarska-Junak et al. 2008).

13 .3 .4 .3  Tumour Necrosis Factor-Related Apoptosis-Inducing Ligand

TNF-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer 
cytokine as it mediates apoptosis via the caspase-8-dependent pathway, primarily 
in tumour cells, by binding to death receptors and not in normal cells (Kaufmann 
and Steensma 2005). TRAIL binds to membrane receptors including proapoptotic 
TRAIL-R1 (DR4), TRAIL-R2 (DR5) containing the death domain and mediating 
apoptosis, anti-apoptotic TRAIL-R3 and TRAIL-R4 without a complete cytoplas-
mic death domain that cannot mediate apoptosis upon ligand binding (Schulze-
Osthoff et al. 1998). In cells expressing TRAIL-R4, TRAIL also activates NF-κB 
and promotes inflammation. The normal bone marrow progenitors show no signifi-
cant increase in apoptosis when exposed to TRAIL (Zang et al. 2001).

The initial experiments on AML-derived cell lines showed significant sen-
sitivity to TRAIL-induced apoptosis (Wen et al. 2000). In the primary sam-
ples, however, a very low sensitivity of AML cells to TRAIL-induced apoptosis 
was observed (Jones et al. 2003) and this was likely related to the expression of 
TRAIL decoy receptors (Riccioni et al. 2005). A recent report has related the 
poor response of AML to the simultaneous expression of death and decoy recep-
tors (Inukai et al. 2006), whereas co-expression of death receptors with the decoy 
receptor TRAIL-R3 resulted in significant shortened overall survival of AML 
patients (Chamuleau et al. 2011). Several strategies were tested in order to over-
come TRAIL resistance in AML. The combination of TRAIL with classic chem-
otherapeutic agents (fludarabine, cytosine arabinoside or daunorubicin) shows 
additive or synergistic caspase-related pro-apoptotic effects. The initial results 
of in vitro testing of a combination of TRAIL and histone deacetylase inhibi-
tors (HDACis) showed significant apoptosis and upregulation of the TRAIL-R2 
expression. The AKT inhibitors showed upregulation of TRAIL-R2 and increased 
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sensitivity of AML to TRAIL. Bortezomib was also found to increase sensitiv-
ity of primary AML blasts to TRAIL. A combination of TRAIL and Nutlin-3  
(a potent activator of the p53 pathway) has shown synergistic effects in the induc-
tion of apoptosis both in AML cell lines and primary AML samples with wild-type 
p53 status (Impicciatore et al. 2010).

The activity of TRAIL in primary ALL samples is much lower than in the 
cell lines (29 % killing efficiency vs. 75 % in Jurkat cell line) (Clodi et al. 
2000). In T-ALL cell lines and primary samples of childhood T-ALL, soluble 
rTRAIL has failed to demonstrate efficacy, likely due to the low cell surface 
expression levels of TRAIL-R1 and TRAIL-R2. Mature normal neutrophils 
show low sensitivity to TRAIL (Meurette et al. 2006). Single-agent TRAIL sig-
nificantly reduces the number of myeloid colonies and clusters in primary CML 
samples, while normal human stem cells treated with high doses of TRAIL 
maintain a proliferation potential when transplanted into NOD/SCID mice 
(Zang et al. 2001). It was also recently demonstrated that the loss of Bcr-Abl, 
in imatinib-resistant CML cells, lead to an increase in TRAIL sensitivity, sug-
gesting that TRAIL could be an effective strategy for the treatment of imatinib-
resistant CML with the loss of Bcr-Abl (Park et al. 2009). Preliminary studies 
carried out on cell lines and on a number of primary samples have shown a low 
cytotoxic activity of TRAIL on B-CLL (MacFarlane et al. 2002). In consist-
ence with this hypothesis, the combination of TRAIL with anti-CD95 ligand has 
proved effective in inducing apoptosis of CD40-activated B-CLL cells. A more 
recent study identified a different TRAIL sensitivity of Zap-70 low and Zap-70 
high B-CLL subsets, proposing this negative prognostic marker as being respon-
sible to redirect TRAIL signalling from pro-apoptotic to pro-inflammatory 
pathway (Richardson et al. 2005).

13 .3 .4 .4  Toll-Like Receptors

TLRs are pattern recognition receptors and take part, among others, in the 
 initiation of inflammation. They are involved in innate and adaptive immune 
responses when activated by pathogen-associated molecular patterns (PAMPS), 
and they mediate the secretion of cytokines. TLRs display both pro- and anti-
tumour properties. TLRs after the recognition of a specific ligand signal down 
through adapter protein MyD88. MyD88 mediates the classical pathway of the 
NF-κB activation. Pro-tumourigenic effects of endotoxin occur through TLR4-
mediated NF-κB activation. The focus of recent research has been aimed at acti-
vation of the immune system in order to inhibit cancer cell growth and induce 
cancer cell apoptosis. TLRs, therefore, offer a unique target for cancer therapy. 
TLR3 is an intracellular, type 1 trans-membrane receptor and is an important 
“danger” signalling receptor that takes part in the control of the balance between 
tolerance and inflammation on the one hand and inflammation and disease on 
the other hand. In cytogenetically normal, but high-risk AML (based on FLT3–
ITD, a wild-type NPM1, or expression of both genes), the microRNA expression 
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profiling revealed increased TLR2, TLR4 and TLR8 expression (Marcucci et al. 
2008). On the contrary, the reduced expression of TLR4 was reported in both 
CLL and AML in comparison with normal controls (Webb et al. 2009). Further 
studies are needed to explain whether the decreased TLR4 expression contrib-
utes to the pathogenesis of leukaemia through impaired immune surveillance 
and whether TLR4 agonists might serve to effectively strengthen the response of 
the immune system in battling the leukaemic burden.

13 .3 .4 .5  Matrix Metalloproteases

NF-κB regulates matrix metalloproteases (MMP). In AML, variable expression 
levels of MMP-2 and MMP-9 were detected in myeloid cell lines. The matrigel 
invasion assay has shown a dependence on MMP-2 but not on MMP-9 (Sawicki 
et al. 1998). A decrease in the MMP-9 expression was observed in primary AML 
samples at diagnosis, with normalisation at remission and a decrease at relapse 
(Lin et al. 2002). The lower levels in active leukaemia can be explained by the 
fact that most of MMP-9 is secreted by stromal, endothelial cell fibroblasts. 
Patients with lower MMP-9 levels tend to have longer survival times [185]. MMP-
2-positive patients have survived for over 3 years, whereas all MMP-2-negative 
patients relapsed within 13.5 months of their diagnosis (Kuittinen et al. 1999). In 
ALL, MMP-2 expression of lymphoblastic cell lines correlated with the ability to 
invade matrigel in vitro and with the capacity to invade and metastasise in a SCID 
mouse model (Hendrix et al. 1992). MMP-9 expression in lymphoblastic cell lines 
was found to be important for the invasion and metastasis (Ivanoff et al. 1999). 
In adults, 65 % of ALL cases were positive for MMP-2 and 25 % for MMP-9. 
MMP-2 expression correlated with an extramedullary disease pattern. In addition, 
a trend towards a worse survival rate has been observed in MMP-9-positive cases 
(Qu et al. 2011). Those results suggest a possible role of MMPs as surrogate markers 
of remission status and in risk assessment.

13.3.5  Other Signalling Pathways

COX2 has emerged as another major mediator of inflammation, and over-expres-
sion has been observed in many malignancies. In leukaemias, increased COX-2 
expression was noted in chronic phase CML (76.32 %) and CLL (75.86 %). In 
addition, the expression of COX-2 may correlate with the prognosis in those 
chronic leukaemias (Bao et al. 2007).

Inducible nitric oxide synthase (iNOS) expression is regulated by NF-κB and 
mediates the production of NO. In AML and ALL cell lines, IFN-gamma induced 
iNOS expression and generated high levels of NO production that induced apoptosis 
(Siripin et al. 2011). CML cells are also sensitive to the anti-proliferative effect of 
NO (Ferry-Dumazet et al. 2002).
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13 .4  Role of Inflammatory Molecules in the Development  
of Leukaemia

In the last few years, studies have also clearly demonstrated that leukaemia popu-
lations are highly heterogeneous and that the disease is propagated by a subpop-
ulation of LSC. LSCs, like normal hematopoietic stem cells, possess a range of 
biological characteristics that enable for their long-term survival. Therefore, LSCs 
reside in a mostly quiescent state, and as a consequence, the overall activity of 
many chemotherapeutic agents that function by targeting cycling cells is possi-
bly reduced (Konopleva and Jordan 2011). Although some studies have indicated 
a role for NF-κB in quiescent cells, the activation of NF-κB is an acquired phe-
nomenon. Unstimulated human CD34+ progenitor cells do not express NF-κB, 
while primary AML cells display readily detectable NF-κB activity. NF-κB is 
highly activated in leukaemic cells, which suggests that an intrinsic aspect of AML 
biology resides in the constitutive activation of various pathways. Furthermore, 
detailed analyses of enriched AML stem cells (CD341/CD382/CD1231) indi-
cate that NF-κB is also active in the LSC population. Interestingly, leukaemic 
cells showed a rapid apoptotic response while stimulated by a NF-κB inhibitor 
(MG-132), whereas normal CD341/CD382 cells showed a limited effect. Taken 
together, these data indicate that primitive AML cells aberrantly express NF-κB 
and that the presence of this factor may provide unique opportunities to preferen-
tially ablate LSCs (Guzman et al. 2001a).

T-cell acute lymphoblastic leukaemia (T-ALL) is associated with an increased 
risk of central nervous system (CNS) relapse. Little is known about the mechanism 
of leukaemic cell infiltration of the CNS. In an animal T-ALL model, chemokine 
receptor, CCR7, was shown to be an essential adhesion signal required for the 
targeting of leukaemic T cells into the CNS. The CCR7 gene expression is con-
trolled by the activity of the T-ALL oncogene Notch1 and is expressed in human 
tumours carrying Notch1-activating mutations. The silencing of either CCR7 or its 
chemokine ligand CCL19 (Bellosillo et al. 1998) in an animal model of T-ALL 
specifically inhibits CNS infiltration. These studies identify a single chemokine-
receptor interaction as a CNS “entry” signal and open the way for future pharma-
cological targeting. The targeted inhibition of CNS involvement in T-ALL could 
potentially decrease the intensity of CNS-targeted therapy, thus reducing its asso-
ciated short- and long-term complications (Buonamici et al. 2009).

13 .5  Evidence from Patients for the Role of Inflammation 
in Leukaemia

Direct, patient-derived evidence supporting the role of inflammation in the 
development of leukaemia is limited. Epidemiological studies give insight into the  
role of the inflammatory processes in the development of different leukaemias. 
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The aetiology of leukaemias remains largely undetermined. Smoking was identified 
as a major risk factor in AML, ionising radiation in AML and CML and expo-
sure to benzene in AML and CLL (Khalade et al. 2010). The possible association 
between the development of leukaemia and chronic inflammation is illustrated in a 
series of epidemiological studies. In a Swedish nationwide cohort of patients with 
ulcerative colitis, there was a moderately increased relative risk of AML, while 
in the Crohn’s disease, there was no increase observed (Askling et al. 2005). In 
another Swedish study, the standardised incidence ratio (SIR) of leukaemias was 
analysed in a cohort of patients hospitalised for autoimmune diseases. SIR for 
AML was significantly increased in rheumatoid arthritis (SIR = 1.92), systemic 
lupus (SIR = 4.63), polymyalgia (SIR = 2.53), pernicious anaemia (SIR = 4.08) 
and Wegener granulomatosis (SIR = 2.83). SIRs in Crohn’s disease and ulcera-
tive colitis were not significantly increased (Hemminki et al. 2013). Similar 
associations were reported in a study based on US SEER data (Anderson et al. 
2009). Interestingly, for CML, association with Crohn’s disease and ulcera-
tive colitis were reported in Swedish studies but were not replicated in US-based 
study. In another large, population-based study, the risk of AML and MDS associ-
ated with a prior history of a broad range of infections or autoimmune diseases 
were analysed. In total, 9,219 patients with AML, 1,662 patients with MDS and 
42,878 matched controls were included. Overall, a history of any infectious dis-
ease was associated with a significantly increased risk of both AML (overall risk 
(OR) = 1.3) and MDS (OR = 1.3). A previous history of any autoimmune dis-
ease was associated with a 1.7-fold increased risk for AML and 2.1-fold increased 
risk for MDS. Similar to previous reports, conditions were associated with AML 
and MDS (Kristinsson et al. 2011). Studies on the use of NSAID and the devel-
opment of leukaemia have showed interesting results. A prospective cohort study 
of over 28,000 postmenopausal women in Iowa (Kasum et al. 2003) reported a 
55 % decreased risk of leukaemia (mostly AML and CLL) in women who reported 
usage of aspirin two or more times weekly in comparison with women who never 
used aspirin. A case-control study of acute leukaemia involving 169 cases and 676 
controls showed only modest decreases in the risk of leukaemia in aspirin users 
as opposed to a moderate increase in paracetamol (acetaminophen) users (Weiss 
et al. 2006). In another prospective, cohort study (VITAL), no statistically signif-
icant effect of aspirin use on haematological malignancies was reported (Walter 
et al. 2011). The above studies show no convincing epidemiological evidence of 
the protective effect of aspirin against leukaemia; however, there is the possibility 
of a weak protective effect. The mechanistic explanation of the role of aspirin is 
still lacking, but the observations can be explained by anti-inflammatory proper-
ties or caspase activation by aspirin observed in vitro in AML cell lines (Klampfer 
et al. 1999). The epidemiological data show a chronological association between 
leukaemias and autoimmune disorders or infections; however, it does not provide 
an insight into underlying mechanism. The possible explanations for the epidemio-
logical observations include the possibility that autoimmune conditions or infec-
tions are caused by the immune dysfunction that precedes the development of 
leukaemia. The findings may also be related to immune- or inflammation-driven 
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tumourigenesis from autoimmune conditions that lead to leukaemia. In addition, 
the therapies for autoimmune disorders can contribute to the development of leu-
kaemia. Overall, the evidence currently available suggests an association between 
chronic inflammation and development of leukaemias. The confirmation of this 
association through a large, prospective study is required.

13 .6  Inhibitors of Inflammation for the Prevention and 
Treatment of Leukaemia

As has been mentioned above, various inflammatory pathways are activated in leu-
kaemias; therefore, modulation of those pathways may have the potential for treat-
ment and possibly the prevention of leukaemias. Complete inhibition of a single 
pathway is more likely to be toxic and less likely to be effective. Partial downregu-
lation of several pathways is more likely to inhibit the deregulated inflammatory 
signalling and be less toxic and more efficient in therapy. The key agents modu-
lating inflammatory pathways include steroids, proteasome inhibitors, TNF inhibi-
tors, NF-κB inhibitors and COX2 inhibitors, TRAIL, chemokine modulators and 
others. Another group of interesting agents is the naturally occurring modifiers of 
NF-κB activation.

13.6.1  Cytokine-Based Interventions

Modifying CXCL12/CXCR4 axis is very attractive clinically. Currently, a CXCL12 
analogue (plerixafor) is used for the mobilisation of haematopoietic progenitor. 
Data from murine models of AML demonstrated that plerixafor could mobilise 
AML blasts into the peripheral circulation. Furthermore, the addition of plerixafor-
sensitised leukaemic blasts to the effects of cytotoxic chemotherapy increased the 
overall survival of leukaemic mice treated with the combination of plerixafor and 
chemotherapy compared to chemotherapy alone. Feasibility of plerixafor use in 
relapsed/refractory AML was demonstrated in a phase I/II study in combination 
with mitoxantrone, etoposide and cytarabine. The encouraging remission rate was 
also noted. Interestingly, in this study, neither symptomatic leukostasis nor delayed 
hematopoietic recovery was observed (Uy et al. 2012). The polypeptide RCP168 
seems to have a strong antagonistic effect on the stromal cell-induced chemotaxis of 
leukaemic cells. Furthermore, RCP168 blocked the binding of anti-CXCR4 mono-
clonal antibody 12G5 to the surface CXCR4 in a concentration-dependent manner 
and inhibited SDF-1alpha-induced AKT and extracellular signal-regulated kinase 
phosphorylation. Equivalent results were obtained with the small-molecule CXCR4 
inhibitor AMD3465. A second-generation CXCR4 inhibitor, AMD3465, antagonized 
SDF-1α and stroma-induced chemotaxis and suppressed stroma-activated PI3K/AKT 
and MEK/ERK pathways, which effectively mobilised leukaemia cells and 
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stem cells into circulation and enhanced the sensitivity to chemotherapy or FLT3-
inhibitor-induced cell death. Other antagonists have also been investigated. One of 
them, RCP168, had a strong antagonistic effect on chemotaxis of leukaemic cells. 
Another candidate molecule, E-4031, a specific hERG1K(+) channel inhibitor and 
CXCL12 blocker, inhibited the migration of leukaemic cell-induced G0/G1 arrest, 
impaired proliferation and apoptosis of AML cells.

It was also found that ubiquitin is a natural ligand of CXCR4. Ubiquitin is a 
small, highly conserved protein; it primarily targets intracellular proteins for deg-
radation via the ubiquitin proteasome system. Evidence in numerous animal mod-
els suggests that extracellular ubiquitin is an anti-inflammatory immune modulator 
and an endogenous opponent of pro-inflammatory damage-associated molecular 
pattern molecules. It is speculated this interaction may be through CXCR4 medi-
ated signalling pathways and regulatory effects on the growth of various leukae-
mia cell lines (Majetschak 2011).

13.6.2  Inhibition of NF-κB Pathway in Leukaemia

NF-κB inhibition can be accomplished by upstream blocking of the NF-κB activa-
tors or direct competitive inhibitors. Upstream inhibition includes proteasome inhibi-
tors (bortezomib), IKK inhibitors (non-steroidal anti-inflammatory drugs [NSAIDs], 
sulphasalazine, curcumin and parthenolide analogues) and antioxidants (disulfiram 
and glutathione). Direct targeting strategies include the use of peptide inhibitors, 
decoy oligodeoxynucleotides and anti-sense oligonucleotide. In in vitro experiments, 
bortezomib induced apoptosis in primary AML samples (Guzman et al. 2001a; 
Frelin et al. 2005b), with a relatively selective effect on leukaemic cells and was 
sparing of normal haematopoiesis. These results provide the rational for Phase I/II 
clinical trials for the treatment of refractory or relapsed AML patients with protea-
some inhibitors (Cortes et al. 2004). The clinical efficacy of a single-agent borte-
zomib is limited. In phase II trial, there was no CR or PR and only a limited decrease 
in the blast count was observed after the administration to 14 high-risk AML patient 
(Sarlo et al. 2013). Similarly, in CLL, bortezomib had cytotoxic effects in vitro and 
it enhanced the effects of fludarabine. The treatment of CLL patients with single-
agent bortezomib is, however, not effective. The inhibition of IKK2 (AS602868) has 
led to the apoptosis in primary AML samples. The effect was dose dependent and 
affected both patients at diagnosis or under treatment, demonstrating a strong pro-
survival potential for NF-κB in AML cells (Frelin et al. 2005b). Aspirin and other 
NSAIDs (ibuprofen, indomethacin and SDX-308) suppress NF-κB by inhibition of 
IKK activation and IκBα degradation. Aspirin has induced apoptosis in a dose and 
time-dependent manner in primary CLL cells, an effect not observed with other 
NSAIDs probably mediated by cyclooxygenase-independent mechanisms (Bellosillo 
et al. 1998). Sulphasalazine, a synthetic anti-inflammatory and immunosuppressive 
agent, has also inhibited NF-κB activation via the direct inhibition of IKK and IKK 
leading to apoptosis in primary CLL.
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Curcumin (diferuloylmethane) is a polyphenol derived from the plant Curcuma 
longa with antioxidant, anti-inflammatory, anti-angiogenic and anti-tumour activ-
ity. It has induced apoptosis in CLL cells via the inhibition of NF-κB and other 
pathways (STAT3 and AKT). Interestingly, there was synergism between curcumin 
and epigallocatechin-3 gallate (green tea extract). Resveratrol (another naturally 
occurring polyphenol) was shown to be a potent inhibitor of NF-κB activation and 
NF-κB-dependent gene expression through its ability to inhibit IKK activity.

Bortezomib induced proliferation arrest and apoptosis in imatinib-sensitive and 
imatinib-resistant CML cell lines (Gatto et al. 2003), which provides a rationale 
for the use of this drug in the subset of patients resistant to imatinib. In addition, 
a combination of bortezomib and flavopiridol (a cyclin-dependent kinase inhibi-
tor) has shown synergism in apoptosis induction in CML cells resistant to imatinib 
through both Bcr-Abl-dependent and Bcr-Abl-independent mechanisms (Dai 
et al. 2004). These findings suggest that a combination of bortezomib and other 
drugs including flavopiridol is promising in CML. The IKK inhibitor PS1145 
(Millennium, Cambridge, USA) in CML cells was shown to induce growth arrest 
and apoptosis synergistically with imatinib in cell lines and in bone marrow cells 
from CML patients (Cilloni et al. 2006). The combinations of imatinib plus the 
IKK inhibitors or bortezomib represent a valid approach to be tested in vivo for 
the treatment of CML patients resistant to imatinib therapy.

13.6.3  Other Therapeutic Options

The approved inhibitors of TNF—etanercept (a recombinant extracellular 
TNF-binding portion of the TNF receptor linked to the Fc portion of IgG1) and 
infliximab (a chimeric monoclonal anti-TNF antibody). Both agents showed hae-
matological responses in small clinical trials in MDS. No results of trials of the 
inhibition of TNF in AML or CLL were reported. The analysis of cytokine levels 
will allow identification of patients with high TNF level. This group of patients 
could be candidates for combination therapies including anti-TNF agent.

A novel small-molecule Stat3 inhibitor (C188-9) inhibited G-CSF-induced 
Stat3 phosphorylation and apoptosis in AML cell lines and primary samples. 
It also inhibited AML blast colony formation at low micro molar range concen-
trations (Redell et al. 2011). The agents used in combination with TRAIL either 
enhance TRAIL-R1/-R2 expression or decrease the expression of anti-apoptotic 
proteins (c-FLIP, X-IAP, Bcl-2). A number of receptor-specific TRAIL variants 
and agonistic antibodies have been recently developed. Some of these agents tar-
geting TRAIL-R1 and/or TRAIL-R2 (TRAIL receptor agonists) are progressing 
to phase I/II clinical trials. A number of natural compounds stimulate TRAIL and 
NF-κB-mediated apoptosis in leukaemia cells. Wogonin (derived from a popu-
lar Chinese herb) sensitises TNF-resistant T-cell leukaemia cell line to TNF and 
TRAIL-induced apoptosis. Wogonin does not affect the viability of normal periph-
eral blood T cells (Fas et al. 2006). Curcumin (derived from turmeric) upregulates 
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TRAIL-R2 expression and inactivates NF-κB in a ROS-dependent manner. Taken 
together, these findings demonstrate that non-genotoxic natural molecules or small 
compounds enhance TRAIL-mediated killing of leukaemia cells with reduced side 
effects compared to conventional chemotherapy.

13 .7  Conclusions and Future Directions

Inflammation represents a link between intrinsic (oncogenes, tumour suppressors 
and genome stability genes) and extrinsic (immune and microenvironment) fac-
tors contributing to tumour development. Despite the fact that currently available 
therapies have significantly improved clinical outcomes in a variety of leukaemias, 
they are not always efficient and are usually associated with significant toxicities. 
To improve outcomes, the novel therapeutic strategies should include agents capa-
ble of eliminating quiescent cells or must include cell cycle activation of LSCs.

The new strategies should utilise the unique properties of the microenvironment 
to permit more selective and efficient eradication of LSC. In most cancers, a variety 
of chemokine ligands are observed. Their exact role is not characterised. The com-
prehensive study of chemokines and receptors in leukaemia will be crucial to the 
further understanding of the chemokine network. Chemokines are important for sur-
vival, proliferation and the homing of leukaemic cells. The importance of CXCR4 
has been well demonstrated, and the targeting of the mechanisms that mediate LSC 
adhesion within BM niches and stimulation of niche-induced pro-survival and self-
renewal pathways both appear to be useful strategies. Profiling the current and new 
experimental agents from the point of view of interference with the CXCR4 receptor 
should help to design rational drug combinations that will possibly eradicate LSCs.

From the perspective of interphase of the inflammation and leukaemia, the 
increased constitutive activation of NF-κB appears to be the most promising tar-
get. NF-κB is a major regulator of cell survival, and it is closely involved in car-
cinogenesis. As presented, NF-κB acts together with other important oncogenic 
signalling pathways. As a non-selective inhibition of NF-κB is likely to cause sig-
nificant adverse effects, identification of selective modifiers of NF-κB responses 
may be a rational approach leading to the utilisation of NF-κB in the therapy of 
malignancy as well as in chronic inflammatory diseases. Characterisation of the 
interaction between those mechanisms will have an important role in the identifi-
cation of future biomarkers and planning of therapeutic combinations. For exam-
ple, as IKK inhibitors are under study in therapy of leukaemia and inflammatory 
diseases, full understanding of the structure and function will be important for the 
rational design of combination protocols. The data presented provide sufficient 
evidence that inflammatory pathways are a critical mediator of proliferation and 
survival of leukaemic clones. It suggests that purpose-designed biomarkers based 
on inflammatory pathways can have role in diagnostic and prognostic evaluation 
of different leukaemias. Although numerous cell culture and animal studies have 
identified several natural anti-inflammatory agents, their true potential will only be 
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recognised through well-controlled clinical trials. They are likely not to be utilised 
as single agents, but rather as a part of multidrug protocols that can lead to a suc-
cessful therapy for different haematological malignancies

Further understanding of interactions between inflammation and leukaemia will 
reveal novel targets for monitoring and novel therapies in combination with con-
ventional treatments. Therapeutic modifications of inflammatory pathways in leu-
kaemias will possibly improve the clinical efficacy. A better identification of bone 
marrow and leukaemia-specific inflammatory mechanisms will allow personalisa-
tion of therapeutic strategies. Therapeutic manipulation of inflammatory pathways 
is likely to change the inflammatory microenvironment into an anti-cancer micro-
environment. Taking into account the relevance of inflammatory networking in 
leukaemia, it would be very important to incorporate inflammatory parameters into 
traditional classification schemes to provide new prognostic tools. The challenges 
for the future are to investigate the activation, function and prognostic value of 
inflammatory pathways in leukaemia, as well as to evaluate the therapeutic poten-
tial of novel therapeutic strategies in clinical trials that interfere with inflammatory 
signalling, including NF-κB. The novel agents interfering with inflammatory path-
ways look promising and will most likely be a useful addition to the treatments 
that are currently available for many leukaemias.

In this chapter, we have provided conclusive evidence that inflammatory signal-
ling pathways play an important role in leukaemia. It is, therefore, evident that 
anti-inflammatory agents should be explored for both the prevention and treatment 
of leukaemia. Although numerous cell culture and animal studies have identified 
several natural anti-inflammatory agents, their true potential will be recognised 
only through well-controlled clinical trials.
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Abstract Both innate and adaptive immune cells are involved in the mechanisms 
of endothelial cell proliferation, migration and activation, via production and 
release of a large spectrum of pro-angiogenic mediators, thus creating the specific 
microenvironment that favors increased rate of tissue vascularization. In this arti-
cle, we focus on the immune cell component of the angiogenic process occurring 
during multiple myeloma progression. We also provide information on some anti-
angiogenic properties of immune cells that may be applied for a potential pharma-
cological use as anti-angiogenic agents in the disease treatment.

14 .1  Introduction

Inflammatory cells regulate endothelial cell functions related to physiological as 
well as tumor-associated angiogenesis. The relationship between inflammation and 
cancer was discovered as early as 1863 by Rudolf Virchow, who first described 
a leukocyte infiltrate in tumor tissues. In some cancers, inflammation precedes 
development of malignancy, and it is well known that tumor-infiltrating inflam-
matory cells produce various cytokines that regulate the inflammatory response 
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in tumor-bearing hosts, while inflammatory cells may produce growth factors that 
suppress the anti-tumor immune response. The most aggressive human cancers are 
associated with dramatic host inflammatory response, and inflammatory cells act 
in concert with tumor cells, stromal cells, and endothelial cells to create a micro-
environment that is critical for the survival, development, and diffusion of the neo-
plastic mass. These interactions within the tumor microenvironment may represent 
important mechanisms for tumor development and metastasis by providing an effi-
cient vascular supply and an easy escape pathway.

Inflammatory cells produce angiogenic cytokines, growth factors, and pro-
teases that contribute to new vessels formation at the site of tumor growth. 
Conversely, microvascular endothelium activated by a number of cytokines and 
angiogenic growth factors can express pro-inflammatory molecules involved in 
leukocyte recruitment and activation (Pober and Sessa 2007). Various chemokines 
may act both as leukocyte attractants and angiogenic inducers by acting directly 
on endothelial cells. Several pro-inflammatory cytokines, including  interleukin 
(IL)-1α, IL-1β, IL-6, tumor necrosis factor alpha (TNF-α), and osteopon-
tin, induce vessel formation acting directly on endothelial cells or indirectly by 
inducing leukocyte and/or endothelial cells to produce pro-angiogenic mediators. 
Conversely, vascular endothelial growth factor (VEGF) and angiopoietin-1 (Ang-
1) may elicit pro-inflammatory responses in endothelial cells by up-regulating the 
expression of cell-adhesion molecules and inflammatory mediators.

14 .2  The Role of Monocyte–Macrophage  
Cells in Tumor Angiogenesis

Cells belonging to the monocyte–macrophage lineage are a major component of the 
leukocyte infiltration in tumors (Balkwill and Mantovani 2001). The number of tumor-
derived chemoattractants ensures macrophage recruitment, including colony-stimulat-
ing factor-1 (CSF-1), the CC chemokines CCL-2, CCL-3, CCL-4, CCL-5, and CCL-8, 
and VEGF secreted by both tumor and stromal cells (Mantovani et al. 2002). Activated 
macrophages are generally categorized into two types, called M1 (“classically acti-
vated”) and M2 (“alternatively activated”) (Balkwill and Mantovani 2001). M1 mac-
rophages are able to kill microorganisms as well as tumor cells and secrete high levels 
of pro-inflammatory cytokines and tumoricidal agents (TNF-α and IL-12), as well as 
reactive nitrogen and oxygen intermediates (RNI, ROI) (Balkwill et al. 2005).

In the tumor microenvironment, macrophages are mainly represented by M2 
cells, derived from tumor-associated macrophages (TAMs) upon local exposure 
to IL-4 and IL-10 (Mantovani et al. 2002), which have poor attitude to destroy 
tumor cells but are better adapted to promoting angiogenesis, repairing and remod-
eling wounded or damaged tissues, and suppressing adaptive immunity (Sica et 
al. 2006). In regressing and non-progressing tumors, TAMs mainly resemble the 
M1 type and exhibit anti-tumor activity. Worth of note is that in malignant and 
advanced tumors, TAMs are biased toward the M2 phenotype that favors tumor 
malignancy (Qian and Pollard 2010).
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The molecular mechanisms that promote M1 or M2 subsets within the tumor 
microenvironment are not completely understood. Unique cell surface markers 
that distinguish the M1 and M2 TAM phenotypes remain elusive, and expres-
sion of M1/M2 associated molecules is highly dependent on tumor type and 
stage, intratumoral localization, hypoxia, and other microenvironmental signals 
(Mantovani et al. 2002). The phenotype of polarized M1/M2 macrophages has the 
potential to be reversed (Guiducci et al. 2005).

Numerous studies have examined the association of TAMs with patient progno-
sis, survival, and angiogenesis in human tumors. Extensive TAM infiltration cor-
relates with poor prognosis for breast, prostate, cervix, and bladder cancer patients 
(Talmadge et al. 2007). Besides killing tumor cells once activated by interferon-γ 
(IFN-γ) and IL-12, these TAMs produce several pro-angiogenic cytokines, includ-
ing VEGF, TNF-α, IL-8, and FGF-2, as well as extracellular matrix-degrading 
enzymes, including matrix metalloproteinase-2 (MMP-2), MMP-7, MMP-9, MMP-
12, and cycloxygenase-2 (COX-2) (Naldini and Carraro 2005; Klimp et al. 2001).

A close relationship between macrophage infiltrate or depletion and angio-
genesis has been established in different experimental models. In a model of sub-
cutaneous melanoma, both angiogenesis and growth rate correlate with tumor 
infiltration by macrophages expressing angiotensin I receptor and VEGF (Egami 
et al. 2003). Lewis lung carcinoma cells expressing IL-1β develop neovasculature 
with macrophage infiltration and enhance tumor growth in wild type but not in 
monocyte chemotactic protein-1 (MCP-1)-deficient mice, suggesting that mac-
rophage involvement might be a prerequisite for neovascularization and tumor 
progression (Nakao et al. 2005). In a murine model of mammary carcinoma, defi-
ciency of macrophage colony-stimulating factor (M-CSF), an inductor of mac-
rophage recruitment in tumor tissues, reduces progression to invasive carcinoma 
and metastasis and angiogenesis (Lin et al. 2001). In polyoma middle-T (PyMT)-
induced mouse mammary tumors, accumulation of macrophages in pre-malig-
nant lesions precedes the angiogenic switch and progression into invasive tumors 
(Lin et al. 2007). Up-regulation of angiogenic activity in TAMs is stimulated by 
hypoxia and acidosis (Bingle et al. 2002). Moreover, activated macrophages syn-
thesize and release inducible nitric oxide synthase, which increases blood flow and 
promotes angiogenesis (Jenkins et al. 1995). The angiogenic factors secreted by 
macrophages stimulate migration of other accessory cells that potentiate angio-
genesis, in particular mast cells (Gruber et al. 1995). Osteopontin deeply affects 
the pro-angiogenic potential of human monocytes (Denhardt et al. 2001) and 
may affect angiogenesis by acting directly on endothelial cells and/or indirectly 
via mononuclear phagocyte engagement, enhancing the expression of TNF-α and 
IL-1β in mononuclear cells (Leali et al. 2003; Naldini et al. 2006).

Macrophages are producers of IL-12, which causes tumor regression and 
reduces metastasis in animal models, through the promotion of anti-tumor immu-
nity, and also to the significant inhibition of angiogenesis (Colombo and Trinchieri 
2002). The anti-angiogenic activity is mediated by IFN-γ production, which in 
turn induces the chemokine IFN-γ-inducible protein-10 (Angiolillo et al. 1995; 
Romagnani et al. 2001). Moreover, IL-12 inhibits VEGF production by breast 
cancer cells and regulates stromal cell interactions, leading to decreased MMP-9  
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and increased tissue inhibitor of metalloproteinase-1 (TIMP-1) production (Dias 
et al. 1998). Using a transgenic mouse which develops mammary cancer (PyMT 
mice), Lin et al. (2006) demonstrated that both the angiogenic switch and the 
progression to malignancy are regulated by infiltrated macrophages. Moreover, 
inhibition of macrophage homing into the tumor microenvironment delayed the 
angiogenic switch, whereas genetic restoration of macrophages rescued the vas-
cular phenotype. In addition, mice deficient in hypoxia inducible factor-2 alpha 
(HIF-2α) in myeloid cells displayed reduced TAM infiltration in both murine hepa-
tocellular and colitis-associated colon carcinoma models (Imtiyaz et al. 2010). 
Moreover, mouse mammary tumors exhibited enriched M2-like TAMs in hypoxic 
tumor areas, with increased pro-angiogenic phenotype in vivo, and TAMs counts 
increasing as the tumor progressed (Movahedi et al. 2010). The developing vas-
culature in tumors lacking myeloid-cell-derived VEGF-A was less tortuous, with 
increased pericyte coverage (indicating enhanced maturation), and decreased ves-
sel length, with evidence of vascular normalization and increased susceptibility to 
chemotherapeutic agents (Stockman et al. 2008).

De Palma et al. (2005) identified a subpopulation of monocytes expressing 
the Tie-2 receptor [Tie-2-expressing monocytes (TEMs)], which were selectively 
recruited to spontaneous and orthotopic tumors, promoted angiogenesis in a par-
acrine manner, and accounted for the majority of pro-angiogenic activity induced 
by myeloid cells in these tumors. Moreover, TEMs knockout completely prevented 
human glioma neovascularization in the mouse brain and induced tumor regres-
sion, and their gene expression profile was highly related to TAMs (Pucci et al. 
2009). Finally, Ang-2 (a Tie-2 ligand) blockade did not inhibit recruitment of 
TEMs to the tumor microenvironment, but abrogated their up-regulation of Tie-2 
expression, association with blood vessels, and their ability to restore angiogenesis 
in tumors (Mazzieri et al. 2008).

A significant relationship between the number of TAMs and the density of 
blood vessels has been established in human tumors, including breast carcinoma, 
melanoma, glioma, squamous cell carcinoma of the esophagus, bladder carci-
noma, and prostate carcinoma (Lewis et al. 1995; Leek et al. 1996; Makitie et al. 
2001; Nishie et al. 1999; Koide et al. 2004; Hanada et al. 2000; Lissbrant et al. 
2000). Depletion of TAMs reduces to about 50 % tumor vascular density, lead-
ing to areas of necrosis by loss of blood supply within the tumor mass, and mac-
rophages accumulate particularly in such necrotic and hypoxic areas in different 
neoplasia, such as human endometrial, breast, prostate, and ovarian carcinomas 
(Ohno et al. 2004; Leek et al. 1999).

14 .3  Mast Cells and Angiogenesis in Tumors

Mast cells are bone marrow-derived tissue-homing leukocytes which were first 
described by Paul Ehrlich in 1878. They appear as highly versatile cells playing an 
important role in a large spectrum of biological settings, including inflammation, 
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angiogenesis, tissue repair and remodeling, and cancer. As concerns the role of 
mast cells in tumor growth, although some evidence suggests that these cells can 
promote tumorigenesis and tumor progression, there are some clinical data as 
well as experimental tumor models in which mast cells seem to have functions 
that favor the host (Ribatti and Crivellato 2009). Mast cells are attracted into the 
microenvironment by stem cell factor (SCF) secreted by tumor cells and pro-
duce several angiogenic factors as well as MMPs, which promote, respectively, 
tumor vascularization and invasiveness (Ribatti and Crivellato 2009). Mast cells 
are capable of suppressing immune reactions by releasing histamine (which can 
induce tumor cell proliferation through H1 receptors and suppress the immune 
system through H2 receptors), TNF-α (Ullrich et al. 2007), and inhibitory 
cytokines, such as IL-10, and are essential in promoting the immune tolerance 
mediated by regulatory T cells (Treg) which, in their turn, stimulate immune toler-
ance and tumor promotion (Grimbaldenston et al. 2007). By contrast, mast cells 
may promote inflammation, inhibition of tumor cell growth, and tumor cell apop-
tosis by releasing cytokines, such as IL-1, IL-4, IL-6, IL-8, MCP-3 and MCP-4, 
transforming growth factor beta (TGF-β), TNF-α, and chymase. Mast cells also 
produce chondroitin sulfate and tryptase: chondroitin sulfate may inhibit tumor 
cells diffusion, while tryptase causes both tumor cell disruption and inflamma-
tion through activation of protease-activated receptors (PAR-1 and -2) (Ribatti and 
Crivellato 2012).

Increased mast cell number has been correlated with a poor prognosis in sev-
eral human tumors, including melanoma (Ribatti et al. 2003a), oral squamous 
carcinoma (Wanachantarak 2003), and squamous cell carcinoma of the lip 
(Rojas et al. 2005). Mast cells produce several pro-angiogenic factors, includ-
ing FGF-2, VEGF, IL-8, TNF-α, TGF-β, and nerve growth factor (NGF) (Qu et 
al. 1995, 1998a, b; Grützkau et al. 1998; Aoki et al. 2003; Abdel-Majid et al. 
2004; Boesiger et al. 1998; Kanbe et al. 2000; Moller et al. 1993; Walsh et al. 
1991; Nilsson et al. 1997). Mast cells migrate in vivo and in vitro in response to 
VEGF and placental growth factor-1 (PlGF-1) (Detmar et al. 1998; Gruber et al. 
1995;Detoraki et al. 2009). Human lung mast cells express VEGF-A, VEGF-B, 
VEGF-C, and VEGF-D, and supernatants of prostaglandin E2 (PGE2)- and 
5′-N-ethylcarboxamido-adenosine (NECA)-activated lung mast cells induced 
angiogenic response in the chick embryo chorioallantoic membrane (CAM) 
assay that was inhibited by an anti-VEGF-A antibody (Detoraki et al. 2009). 
Mast cells store in their secretory granules pre-formed active serine proteases, 
including tryptase and chymase (Metcalfe et al. 1997). Tryptase stimulates the 
proliferation of endothelial cells, promotes vascular tube formation in vitro, 
degrades connective tissue matrix, and activates MMPs and plasminogen activa-
tor (PA), which in turn degrade the extracellular matrix with consequent release 
of VEGF or FGF-2 from their matrix-bound state (Blair et al. 1997). Histamine 
and heparin stimulate proliferation of endothelial cells in vitro and are angio-
genic in the CAM assay (Sörbo et al. 1994; Ribatti et al. 1987). Mast cells 
contain MMP-2 and MMP-9, and TIMPs, which intervene in regulation of extra-
cellular matrix degradation, allowing release of angiogenic factors. Granulated 
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mast cells and their granules are able to stimulate an intense angiogenic  reaction 
in the CAM assay, partly inhibited by anti-FGF-2 and anti-VEGF antibodies 
(Ribatti et al. 2001). Moreover, intraperitoneal injection of compound 48/80 
causes a vigorous  angiogenic response in the rat mesentery window angiogenic 
assay and in mice (Norrby et al. 1986, 1989).

Mast cells play a direct role in tumor angiogenesis. Mast cell-deficient  
W/Wv mice exhibit a decreased rate of tumor angiogenesis (Starkey et al. 1988). 
Heparin facilitates tumor vascularization by a direct pro-angiogenic effect and 
its anti-clotting effect (Theoharides et al. 2004). An increased number of mast 
cells have been demonstrated in angiogenesis associated with vascular tumors, 
such as hemangioma and hemangioblastoma (Glowacki and Mulliken 1982), 
as well as a number of hematological and solid tumors, including lymphomas 
(Ribatti et al. 1998, 2000; Fukushima et al. 2001), multiple myeloma (MM) 
(Ribatti et al. 1999), myelodysplastic syndrome (Ribatti et al. 2002), B-cell 
chronic lymphocytic leukemia (Ribatti et al. 2003a; Molica et al. 2003), breast 
cancer (Hartveit et al. 1981; Bowrey et al. 2000), colo-rectal cancer (Lachter et 
al. 1995), uterine cervix cancer (Graham and Graham, 1996; Bentitez-Bribiesca 
et al. 2001; Ribatti et al. 2005), and melanoma (Reed et al. 1996; Dvorak et al. 
1980), in which mast cell accumulation correlates with increased neovasculari-
zation, mast cell VEGF and FGF-2 expression, tumor aggressiveness, and poor 
prognosis (Tóth-Jakatics et al. 2000; Ribatti et al. 2003b, c). Indeed, a prognos-
tic significance has been attributed to mast cells and microvascular density also 
in squamous cell cancer of the esophagus (Elpek et al. 2001). An association 
between VEGF, mast cells, and angiogenesis has been demonstrated in laryngeal 
carcinoma and in small lung carcinoma (Sawatsubashi et al. 2000; Imada et al. 
2000; Takanami et al. 2000; Tomita et al. 2000).

The introduction of novel experimental procedures to induce carcinogenesis in 
pre-clinical in vivo models contributed to our increased understanding on the role 
of mast cells in tumor angiogenesis. Development of squamous cell carcinoma in 
a human papilloma virus (HPV) 16 infected transgenic mouse model of epithelia 
carcinogenesis provided experimental support for the early participation of mast 
cells in tumor growth and angiogenesis (Coussens et al. 1999, 2000). Infiltration 
of mast cells and activation of MMP-9 coincided with the angiogenic switch in 
pre-malignant lesions through the release of pro-angiogenic molecules from the 
extracellular matrix. Remarkably, pre-malignant angiogenesis was abrogated in a 
mast cell-deficient HPV 16 transgenic mouse indicating that neoplastic progres-
sion in this model involved infiltration of mast cells in the skin (Coussens et al. 
1999, 2000). By using the same in vivo transgenic mouse model, it has been dem-
onstrated that genetic elimination of mature T and B lymphocytes limits neoplas-
tic progression (de Visser et al. 2005; Andreu et al. 2010). Moreover, in prostate 
tumors derived from both tumor transgenic adenocarcinoma of the mouse pros-
tate (TRAMP) mice and human patients, mast cells promote well-differentiated 
 adenocarcinoma growth (Pittoni et al. 2011).
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14 .4  Angiogenesis in Multiple Myeloma

In MM, bone marrow angiogenesis measured as microvascular density increases 
with progression from monoclonal gammopathy of undetermined significance 
(MGUS) to non-active MM (complete/objective response MM) and active MM 
(newly diagnosed, relapsed, and resistant MM), and is related with the plasma cell 
labeling index (Vacca and Ribatti 2006). Myeloma plasma cells induce angiogen-
esis through the secretion of angiogenic cytokines, including VEGF and FGF-2, 
by induction of host inflammatory cell infiltration, and secretion of MMP-2 and 
MMP-9 and urokinase-type plasminogen activator (Vacca and Ribatti 2006). There 
is also evidence of loss of anti-angiogenic activity on the part of bone marrow 
plasma cells (Kumar et al. 2004; Mangieri et al. 2008). Moreover, bone marrow 
MM endothelial cells secrete growth factors, including VEGF and IL-6, which 
promote MM plasma cell growth (Vacca et al. 2003).

The microenvironment favors angiogenesis in MM. In fact, it is composed by 
stromal cells (BMSCs), including hematopoietic stem and progenitor cells (HSPCs), 
fibroblasts, osteoblasts, osteoclasts, adipocytes, endothelial progenitor cells (EPCs), 
endothelial cells, T cells, macrophages, and mast cells, as well as by extracellular 
matrix composed by a complex network of proteins such as fibronectin, laminin, and 
collagen, and a mixture of growth factors, cytokines, and chemokines.

In MM, reciprocal interactions between plasma cells and BMSCs, mediated 
by several cytokines, receptors, and adhesion molecules, modulate the angiogenic 
response (Ribatti et al. 2006). BMSCs, osteoclasts, osteoblasts, and endothelial 
cells secrete several factors, including VEGF, FGF-2, TNF-α, IL-6, B-cell activat-
ing factor, stromal cell-derived factor 1α (SDF1α, also known as CXCL12), osteo-
pontin, insulin-like growth factor-1 (IGF-1), and various Notch family members, 
which are further up-regulated by tumor cell adhesion to extracellular matrix pro-
teins and/or BMSCs (Hideshima et al. 2007).

In this way, BMSCs increase the concentration of angiogenic factors and 
matrix-degrading enzymes in the bone marrow microenvironment by direct secre-
tion or by stimulation of MM plasma cells or endothelial cells through paracrine 
interactions. The enhanced invasive and angiogenic capacity of MM cells explain 
the intramedullary and extramedullary dissemination observed in MM.

14.4.1  The Involvement of Macrophages  
in MM Neovascularization

In patients with active MM, bone marrow macrophages contribute to neovasculari-
zation through a vasculogenic pathway. When these macrophages are exposed to 
VEGF and FGF-2, which are major angiogenic cytokines secreted by plasma cells 
(Vacca et al. 1999), and present in the bone marrow microenvironment at 4–5-fold 
higher levels than in peripheral blood (Di Raimondo et al. 2000), they transform 
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into cells functionally and phenotypically similar to paired MM endothelial cells, 
and generate capillary-like networks mimicking those of MM endothelial cells 
(Scavelli et al. 2008). Endothelial cell-like macrophages and apparently typical 
macrophages contribute sizably to the formation of the neovessel wall in patients 
with active MM, whereas their vascular supply is minimal in non-active MM and 
absent in MGUS patients and control patients (Fig. 14.1) (Scavelli et al. 2008). 
In patients with active MM, FACS analysis on freshly isolated bone marrow 
mononuclear cells revealed higher percentages of CD14/CD68 double-positive 
cells than in those with non-active disease and MGUS. Furthermore, in active 
MM patients, bone marrow biopsies displayed macrophages with both endothe-
lial cell-like (i.e., CD68/FVIII-RA double positive) and apparently typical (i.e., 
CD68 positive/FVIII-RA negative) features located in the microvessel wall and 
collaborating with MM endothelial cells to line the vessel lumen. Figures of this 
type were rare in non-active MM patients and absent in MGUS. Thus, macrophage 
involvement in the vasculogenic pathway proceeds in step with MM activity and 
with progression of plasma cell tumors as well (Scavelli et al. 2008).

14.4.2  The Involvement of Mast Cells in MM 
Neovascularization

Also, mast cells contribute to MM neovascularization. Bone marrow angiogenesis 
and mast cell counts are highly correlated in patients with non-active and active 
MM, and in those with MGUS, and both parameters increase simultaneously in 

Fig . 14 .1  CD68 (red) and FVIII-RA (green) in (a) dual confocal laser microscopy, and (b, c) 
immunofluorescence of bone marrow biopsies of (a, b) a patient with multiple myeloma (MM) 
and (c) a patient with monoclonal gammopathy of undetermined significance (MGUS). In (a), 
a microvessel lined by flattened FVIII-RA-positive endothelial cells (arrow) and FVIII-RA 
 positive macrophage (arrowhead) showing protrusions connected to endothelial cells; another 
macrophage containing double-labeled CD68 (red arrowhead) and FVIII-RA (green arrowhead) 
granules in the cytoplasm is connected to endothelial cells by a FVIII-RA-positive cytoplasmic 
protrusion (double arrowhead). b Another microvessel formed by FVIII-RA-positive (green) 
endothelial cells and CD68-positive (red, arrowheads) tracts belonging to the cytoplasmic pro-
trusions (double arrow) of macrophages, some of which are arrowed. c The MGUS microvessel 
is formed only by FVIII-RA-positive endothelial cells: macrophages (arrows) are randomly scat-
tered in the tissue. [Reproduced from Scavelli et al. (2008)]
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active MM (Ribatti et al. 1999). Ang-1 is promoter of MM angiogenesis, and 
experimental evidence indicates that Ang-1 secreted by primary murine mast 
cells promotes marked neovascularization in an in vivo transplantation assay 
(Nakayama et al. 2004). Primary mast cells accelerate tumor growth and angio-
genesis by established plasmocytoma cell lines, while Ang-1-neutralizing anti-
bodies significantly reduced the growth of plasmocytomas containing mast cells 
(Nakayama et al. 2004). Vessels from MM biopsies are lined by mast cells whose 
cytoplasms are filled with numerous and irregularly shaped electron-dense gran-
ules (Nico et al. 2008). These findings have been confirmed by confocal laser 
microscopy using double anti-tryptase (to mark mast cells) and anti-FVIII-
RA (to mark endothelial cells) antibodies. Vessels from MM biopsies displayed 
regions stained by FVIII-RA alternating with regions stained by both tryptase and 
FVIII-RA. In the MGUS biopsies, the vessels were uniformly stained by the anti-
FVIII antibody only, while tryptase-positive mast cells were only recognizable 
perivascularly (Fig. 14.2) (Nico et al. 2008).

14 .5  Immunomodulatory and Anti-inflammatory  
Molecules in the Treatment of MM

14.5.1  Immunomodulatory Drugs

The Immunomodulatory Drugs (IMiDs) thalidomide, lenalidomide, and pomalidomide, 
used in the treatment of MM, have direct anti-tumor, immunoregulatory, anti-angio-
genic, and anti-inflammatory properties. They specifically trigger caspase-8-mediated 

Fig . 14 .2  Double FVIII-RA (green) and tryptase (red) confocal laser microscopy from bone 
marrow biopsies of patients with (a) multiple myeloma (MM) and (b) monoclonal gammopathy 
of undetermined significance (MGUS). In (a), a vessel is lined by both endothelial cells posi-
tive for FVIII-RA and by mast cells positive for tryptase (arrowheads). Mast cells containing 
tryptase-positive granules (arrows) are also recognizable on the abluminal side of the vessel. In 
(b), a MGUS vessel is lined only by endothelial cells positive for FVIII-RA and is surrounded by 
tryptase-positive mast cells (arrows). [Reproduced from Nico et al. (2008)]
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apoptosis; decrease binding of tumor cells to bone marrow; inhibit constitutive and MM 
cell binding-induced secretion of cytokines from bone marrow; and stimulate autolo-
gous NK and T-cell immunity to MM cells (Hideshima et al. 2007).

IMiDs inhibit TNF-α, IL-1β, IL-6, IL-12, and TGF-β production. These cytokines 
enhance growth and survival of myeloma cells, drug resistance, cell migration, 
and adhesive molecule expression. Moreover, IMiDs increase anti-inflammatory 
cytokines (IL-10) production. Anti-inflammatory and anti-angiogenic properties of 
thalidomide are partially controlled by NF-κB transcriptional factor. Moreover, tha-
lidomide significantly inhibits SDF-1α and CXCR4 receptor expression on MM cells 
leading to decreased IL-6 and VEGF production supporting survival of MM cells.

14.5.2  Cytokines

In MM, both chains of IL-27 receptor are expressed in CD138 positive plasma 
cells from patients (Cocco et al. 2011). IL-27 inhibits the angiogenic potential of 
MM cells, down-regulates different angiogenic factors, and up-regulates the anti-
angiogenic chemokines CXCL9 and CXCL10 (Cocco et al. 2011). Pre-clinical 
studies using highly immunodeficient non-obese diabetic/severe combined immu-
nodeficient mice injected with MM plasma cells demonstrated that IL-27 inhibits 
MM plasma cell growth through inhibition of angiogenesis, thus supporting the 
concept that IL-27 may represent a novel therapeutic agent for patients with MM.

14.5.3  The Anti-inflammatory Molecule Pentraxin 3

Pentraxin 3 (PTX3) plays an important role in inhibiting the cross talk between 
BMSCs and plasma cells in MM. Basile et al. (2013) demonstrated that PTX3 inhibits 
FGF-2-induced angiogenesis of MM endothelial cells through its binding to FGF-2 
and exerts a direct impact on FGF-2-induced biological activities on MM fibroblasts, 
which also support MM cell growth. In particular, PTX3 is cytotoxic on MM cells by 
inhibiting the activities of endothelial cells and fibroblasts, including cytokine produc-
tion, and causing loss of adhesive plasma cell capability to these cells.

14.5.4  Other Molecules

Clodronate liposomes depleted macrophages and inhibited tumor angiogenesis 
in mouse tumor transplantation models (Zeisberger et al. 2006). In the mouse 
cornea model, killing of COX-2-positive infiltrating macrophages with clodro-
nate liposomes reduces IL-1β-induced angiogenesis and partially inhibits VEGF-
induced angiogenesis (Nakao et al. 2005). VEGF inhibitors decrease macrophage 
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recruitment, and this effect may contribute to their anti-angiogenic activity 
(Giraudo et al. 2004). Specific inhibition of VEGFR-2 decreased tumor mac-
rophage infiltration into orthotopic pancreatic tumors (Dineen et al. 2008). CSF-1 
receptor (c-fms) kinase inhibitors exhibit anti-angiogenic and anti-metastatic 
activity in tumors (Manthey et al. 2009). Anti-CSF-1 antibodies and antisense 
oligonucleotides suppress macrophage infiltration and xenograft tumor growth in 
mice (Aharinejad et al. 2002, 2004).

Mast cells might act as a new target for the adjuvant treatment of tumors through 
the selective inhibition of angiogenesis, tissue remodeling, and tumor promot-
ing molecules, allowing the secretion of cytotoxic cytokines and preventing mast 
cell-mediated immune-suppression. Pre-clinical studies using anti-cKIT antibod-
ies (Huang et al. 2008), anti-TNF-α antibodies (Gounaris et al. 2007), or the mast 
cells stabilizer disodium cromoglycate (cromolyn) (Soucek et al. 2007) in mouse 
models have demonstrated promising results. Thus, identification and targeting of 
mast cells and macrophages represents an attractive therapeutic approach in can-
cer. Therapeutic strategies include inhibition of recruitment to the tumor microen-
vironment and blockade of pro-tumoral effector functions. Chemoprevention with 
an anti-inflammatory approach has the potential to inhibit neovascularization before 
the onset of the angiogenic switch, resulting in a significant delay in tumor growth.

14 .6  Concluding Remarks

The pathogenesis of most cancers includes complex and mutual interactions that affect 
the number and phenotype of the tumor cells and host inflammatory cells. In this con-
text, angiogenesis in MM is the result of a complex balance between pro- and anti-
angiogenic stimuli generated in the tissue milieu. The evidences summarized highlight 
the importance of the inflammatory microenvironment during angiogenesis in MM 
and provide a novel perspective for the complex interplay between several inflamma-
tory and vascular components in the bone marrow microenvironment in MM.
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Abstract Knowledge regarding cervical cancer and human papillomavirus is 
expanding rapidly. Inflammation subsequent to viral infection is a driving force 
that accelerates cancer development. The infiltrated immune cells and their secre-
tory cytokines along with chemokines and growth factors greatly contribute the 
malignant traits of cervical cancer. A better understanding of the mechanisms 
related to inflammation and cancer progression in terms of pathogen survival, can-
cer development, progression, and metastasis will lead to innovative approach for 
treating cancer.

15 .1  Introduction: Incidence, Survival, Major Gene 
Products, and Current Therapies for Cervical Cancer

15.1.1  Cervical Cancer Incidence—Worldwide

Cancer is the major health problem and accounts for 14 % of the death worldwide. 
Cervical cancer is the seventh most common cancer (including both sexes) and 
accounts for about 4.2 % of the total cancers. It is also third most common among 
the women and occupies 13 % of female cancer, which is next only to breast can-
cer. More than 85 % of the cases of cervical cancer are present in the develop-
ing countries. Incidence of cervical cancer is highest in Eastern, Western, Southern 
Africa, and in south-central Asia. Incidence is lowest in Western Asia, Northern 
America, Australia, and New Zealand, and Western Asia. Cervical cancer remains 
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the most common cancer among women only in Eastern Africa, south-central 
Asia, and Melanesia. Cervical cancer is also the fourth most common cancer caus-
ing death next to breast, lung, and colorectal cancer. About 9 % of cancerous peo-
ple are diagnosed with cervical cancer.

Cervical cancer incidence varied between regions ranging from 5 per 100,000 
in Western Asia to 35 per 100,000 in Eastern Africa in 2008. Highest incidence 
rates were 56 and 53 per 100,000, respectively, in Guinea and Zambia. The UK 
was 145th highest out of 184 countries worldwide. Cervical cancer is more prev-
alent in countries where Human Developmental Index is low. Cervical cancer is 
the second most prevalent cancer in females (present in 37 countries in South and 
Central America, Southern Africa, and Asia) (Ferlay et al. 2010b).

It was estimated that cervical cancer leads to 275,000 deaths worldwide in 
2008, accounting for 8.2 % of all female cancer deaths (3.6 % of the total in men 
and women). Cervical cancer is the tenth leading cancer in developed countries 
(76,500 cases), and it shifts to second in case of developing countries (453,300). It 
also ranks second (242,000) in causing mortality in developing countries which is 
closely next to breast cancer (268,900 cases). Incidence of cervical cancer is 9.0 % 
in developed countries, and it rises to 17.8 % in developing countries. Mortality 
rate is 3.2 % in developed countries, and it increases to threefold in developing 
countries (9.8 %). Mortality rates were less than 2 per 100,000 in Australia/New 
Zealand and Northern America and 25 per 100,000 in Eastern Africa in 2008.

15 .1 .1 .1  Cervical Cancer Incidence in Europe

In Europe, the overall incidence rate of cervical cancer is 10.6 per 100,000. 
Europe continent is diverse, and incidence of cervical cancer varies from region to 
region. Incidence of cervical cancer in Western Europe is low (6.9/100,000), and 
it increases to twofold in Central/Eastern Europe. Incidence in Northern Europe 
and Southern Europe is almost similar with rate of 8.4/100,000 and 8.1/100,000, 
respectively. Incidence is highest in Romania (23.9/100,000) and lowest in Malta 
(2.1/100,000). Eastern Europe has increased 4–5 times risk of developing cervical 
cancer when compared to western countries. The incidence of cervical cancer in 
some countries in eastern part of Europe is 20 per 100,000. Incidence in Europe 
has not changed, and it remains almost the same for the past few years (11.05 per 
100,000 in 2002; 10.06 per 100,000 in 2008). For the past 10 years, the incidence 
of cervical cancer in eastern European countries continues to increase. In Europe, 
mortality due to cervical cancer decreased around 10 % from 5.0 per 100,000 to 
4.5 per 100,000 (during the period 2002–2008) (Ferlay et al. 2010a).

15 .1 .1 .2  Cervical Cancer Incidence in Asia–Oceania Region

Asia–Oceania region carries around 50 % burden of cervical cancer world-
wide. Every year around 315,000 persons are diagnosed with cervical cancer, 
and incidence rate is 15.2 per 100,000. Among the region, incidence is higher 
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in Nepal (32 per 100,000), followed by Mongolia (28.4 per 100,000) and India 
(27 per 100,000). Incidence of cervical cancer is second highest in Asia–Oceania 
region where the list is headed by breast cancer. Incidence is lowest in Australia, 
Singapore, and Hong Kong. Mortality rate is around 7.9 per 100,000 in Asia–
Oceania region. Every year around 160,000 women dies because of cervical can-
cer. Mortality rate is highest in Nepal, Papua New Guinea, and India, and lowest in 
Japan and Australia. Though the incidence of cervical cancer is second highest in 
Asia–Oceania region, in mortality, it ranks fourth (Garland et al. 2012).

15 .1 .1 .3  Cervical Cancer Incidence in Africa

15.2 % of total cervical cancer burden is from Africa. The incidence of cervical 
cancer varies from region to region. Incidence is high in Southern and Eastern 
Africa (40 per 100,000). Incidence is high among Lesotho and Swaziland. 
Mortality due to cervical cancer in Africa is 19.4 %.

15 .1 .1 .4  Cervical Cancer Incidence in England

Incidence of cervical cancer decreased to one-third from 15.0 to 9.8 (per 100,000 
female populations) over the 20 years. United Kingdom has lower mortality rate 
and ranked 157th among 184 countries worldwide. Mortality rates were higher in 
the less developed regions of the world. It has been estimated that cervical cancer 
contributes over 2.7 million years of life lost among women dying between the 
ages of 25 and 64 years worldwide, some 2.4 million of which occur in the devel-
oping countries and only 0.3 million in the developed countries.

15.1.2  Cervical Cancer Survival

In USA, one-year survival rate of cervical patient is 87 %. Five-year survival rate 
for all stages in cervical cancer is 68 %. Invasive cervical cancer, when detected at 
early stage, can be successfully treated. In USA, the five-year relative survival rate 
(measure of survival of cancer patients in comparison with the general population) 
is 91 % and the rate decreases to 17 % when detected at a later stage. Cancer sur-
vival rate varies across the countries. Europe, North America, Australia, and New 
Zealand have higher survival rate for cervical cancer. Survival data from African, 
Asian, Caribbean, and Central American countries showed wide variation. Survival 
rate was lower in Uganda (19 %) and Gambia (23 %), whereas it is higher in Seoul, 
South Korea (76 %), and Hong Kong (77 %). Survival rate also varied drasti-
cally within the countries like India, where the 5-year survival rate for women in 
Bhopal is 31 % and Chennai is 60 %. Lower cancer survival and higher mortality 
in the developing countries is attributed to lack of screening facilities. In Singapore, 
around 81 % of cervical cancer patients are diagnosed at the earlier stages, whereas 
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in Chennai, India, it is only 7 %, similarly with the countries Costa Rica (33 %), 
Manila, Philippines (35 %), and Cuba (53 %). Survival rate is higher in Singapore 
when compared to other countries like USA. In China, Singapore, South Korea, 
and Turkey, the median relative survival for cervical cancer is 63–79 %. One-, 
three-, and five-year survival in invasive cervix cancer is 83, 61, and 54 %, respec-
tively in Costa Rica (Sankaranarayanan 2011; Coleman et al. 2008).

15.1.3  Major Inflammatory Gene Products  
in Cervical Cancer

Inflammation is termed as the seventh hall mark of cancer, and chronic inflammation 
is involved in cellular transformation, survival, proliferation, invasion, and metastasis. 
Inflammation process involves tissue-remodeling events brought about by alterations 
to epithelial, vascular, and immune cell function. These events occur by the involve-
ment of cytokines, chemokines, growth factors, and lipid mediators, and also by the 
activation of transcription factors such as nuclear factor-κB, STAT3, and HIF-1.

15 .1 .3 .1  HPV Infection and Cervical Cancer

Among the identified and categorized HPV’s, twelve HPVs namely 16, 18, 31, 
33, 35, 39, 45, 51, 52, 56, 58, and 59 are defined as high risk by the World Health 
Organization (WHO) along with types 68, 73 being as ‘possibly’ cancer causing. 
HPV16 and HPV18 are found closely associated with high chances of cervical 
cancer. Within the consolidated 8 early viral genes (E1–E8), E6 and E7 hold a lead 
role in driving the HPV infection in the way to cancer. Recently, E5 is also added 
to the same group considering its expression as a boon for the tumor progression 
in HPV-infected conditions. Functional differences between high-risk type E6 and 
E7 with low-risk type accounts for the potential of these viruses to be carcinogenic. 
After infection, HPV amplifies the HPV E1/L1 genes through its tat protein which 
leads to the viral replication and release of virions. Viral E6 protein binds to p53 and 
degrades by ubiquitination. E7 protein binds to Rb protein and disrupts the Rb/E2F 
complex leading to the increase in production of nitric oxide (NO), DNA damage 
and the activation of the cyclooxygenase 2 (COX-2)/prostaglandin (PG)/PG G recep-
tor inflammatory pathways leading to increased inflammation and tumorigenesis.

15 .1 .3 .2  Inflammatory Molecules in Cervical Cancer

The inflammatory molecules involved in the inflammation-mediated cervical can-
cers are reactive oxygen species (ROS), tumor necrosis factor-α (TNF-α), inter-
leukin-1 (IL-1), interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-18 (IL-18), 
hypoxia-inducing factor (HIF), cyclooxygenase (COX), inducible nitric oxide 
synthase (iNOS), matrix metalloproteinase-9 (MMP9), and chemokines.
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Cyclooxygenase-Prostaglandin Pathway

Cyclooxygenase-prostaglandin (COX-PG) pathway is a major pathway involved 
in the inflammation of cervical cancer. COX-1 and COX-2 are involved in the 
process. COX catalyzes the formation of prostaglandins from arachidonic acid 
through the formation of unstable intermediate PGH2, which in turn is converted 
by terminal PG synthase enzymes to specific classes of prostaglandins. These 
prostaglandins can promote metastasis and angiogenesis, and increases the cell 
proliferation. COX-1 is expressed in normal tissues and catalyzes the forma-
tion of prostaglandins from normal physiological functions. COX-2 is absent in 
normal tissues, and it is induced by inflammatory cytokines, growth factors, and 
oncogenes. In HPV, 16 E6 and E7 expressing cancer cells, the mRNA, and pro-
tein levels of prostaglandin E2 (PGE2) and COX-2 were higher when compared to 
HPV-negative cell line. So HPV16 stimulates the transcription of COX. After HPV 
infection and integration into the cervical cancer cells, they increases the expres-
sion of COX-2, increases the biosynthesis of PGE2 and E-series prostanoid G 
protein-coupled receptors (PTGER) expression. These PGE2 regulates the tumor 
functions through PTGER.

Hypoxia-Inducing Factors

Normally in tissues, oxygen levels are maintained by the homeostatic mecha-
nisms at cellular, organ, and system levels. Percentage of oxygen ranges from 22.5 
to 9 % in normal tissues. Under inflamed conditions, the oxygen levels will be 
decreased to less than 1 % due to large number of infiltrating cells. Inflammatory 
cytokines and growth factors induce the HIFs. These HIFs are also induced by 
pro-inflammatory cytokines such as TNF-α and IL-1β. HIF is a heterodimer with 
oxygen-regulated α subunit and constitutively expressing β subunit, belonging to 
basic helix-loop-helix/PAS transcription factor family member and HIF-1α with 
three isoforms. The abundance of HIF1α is regulated by prolyl hydroxylases 
PHD1, PHD2, and PHD3. In the presence of oxygen, oxygen-dependent degrada-
tion (ODD) domain of HIF-1α is hydroxylated. Once HIF is hydroxylated, the von 
Hippel–Lindau (pVHL) tumor suppressor protein binds to α-subunit and tags them 
for ubiquitination and proteasomal degradation. In the presence of hypoxia, activ-
ity of PHD decreases leading to the stabilization of HIF-1α, which tranlocates to 
the nucleus and induces the transcription of target genes through hypoxia respon-
sible elements (HREs).

Inflammatory Cytokines

TNF-α, a cytokine plays a major role in the inflammation process. It triggers 
other inflammatory mediators and proteases involved in the process. It can pro-
mote tumorigenesis and plays a major role in cellular transformation, promo-
tion, survival, proliferation, invasion, angiogenesis, and metastasis. In cervical 
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cells, it induces amphiregulin which in turn plays a major role in proliferation. 
It stimulates the proliferation in immortal cervical cells along with the IL-1α. 
Interleukins (IL) (namely IL-1, IL-6, IL-8, and IL-18) are involved in the inflam-
mation process. IL-1α promotes the proliferation of cervical cancer cells. IL-1 
and IL-6 are involved in the cell growth, metastasis, and tumor development.

15.1.4  Current Therapy for Cervical Cancer

Cervical cancer is treated according to the stages classified by Féderation 
Internationale de Gynécologieetd’Obstétrique (FIGO). The classification is based 
on tumor size, vaginal or parametrial involvement, bladder/rectum extension, and 
distant metastases. Cervical cancer treatment consists of surgery, radiotherapy, or a 
combination of radiotherapy and chemotherapy.

Stage IA1: Conization (removal of cone-shaped or cylindrical piece of tissue 
from the cervix and cervical canal) is done to those who wish to preserve their 
fertility. In the early stage 1A1, extrafascial hysterectomy (removal of cervix and 
uterus), modified radical trachelectomy (removal of cervix and adjacent tissues), 
or hysterectomy with pelvic node dissection is recommended. In the presence of 
lymphovascular space involvement (LVSI), lymphadenectomy (removal of lymph 
nodes) is done.

Stage 1A2: Stage 1A2 is treated by conization. If LVSI is present, pelvic 
lymphadenectomy is done with radical trachelectomy or radical hysterectomy. 
Brachytherapy is also done in patients with surgical contraindications.

Stages IB1 to IIA1: Radial surgery including pelvic lymphadenectomy or 
radiotherapy is done for stages IB1 to IIA1. Generally, chemotherapy is done for 
the patients in stages IB1 to IIA1. For lymph node-positive cases, chemotherapy 
is done. Brachytherapy with or without cisplatin-based chemotherapy is given to 
patients with stage IB or IIA

Stages IB2 to IVA: Chemoradiation is done for treating the patients in stages 
from IB2 to IVA. In locally advanced cervical cancer, radiotherapy controls 
around 88–95 % for stage IB, 70–80 % for stage IIB, and 30–40 % for stage 
III, and 5-year survival >80 % for stage IB, 65 % for stage IIB, and 40 % for 
stage III.

Stages IIB to IVA is considered as advanced stages, and the treatment includes 
chemoradiation and brachytherapy. Chemoradiation therapy includes the adminis-
tration of cisplatin along with weekly once radiation therapy (minimum 4 cycles; 
maximum 6 cycles). Sometimes 5-FluroUracil is also administered on days 2–5.

Stage IVB: Cisplatin-based chemotherapy is given to stage IVB patients. 
Individualized radiation therapy is also performed. Paclitaxel combined with cis-
platin or topotecan with cisplatin or paclitaxel is given for stage IV recurrent or 
metastatic disease. Drugs bevacizumab, docetaxel, gemcitabine, ifosfamide, 5-FU, 
mitomycin, irinotecan, and topotecan are also given as a second-line therapy for 
stage IV recurrent or metastatic disease (Colombo et al. 2012).
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15 .2  Inflammatory Signaling Pathways Associated  
with Cervical Cancer

Inflammation is regarded as the seventh hallmark of cancer. Unlike the basic func-
tion of inflammation as in wound healing to destroy the infectious agents, during 
cancer, inflammation persists to acquire a chronic condition and fails to undergo 
healing process leading to a persistent infection. Occurrence of chronic inflamma-
tion is accompanied by release if certain agents from the immune response cell 
that will support the better thriving of the pathogen in the host organism. This 
enhances the betterment in incorporation of carcinogenic genetic material by the 
virus to the host machinery. During an HPV infection, the inflammatory signal-
ing pathways mainly include pro-inflammatory cytokine pathway, interferon 
pathway, TNF-α pathway, NF-κB, and COX-2 in order to link inflammation with 
carcinogenesis. Thus, the key features of inflammation during a carcinogenesis 
may include the infiltration of white blood cells, prominently tumor-associated 
macrophages (TAMs); the presence of polypeptide messengers of inflammation 
[cytokines such as TNF, IL-1, and IL-6, chemokines such as CCL2 and CXCL8, 
and the occurrence of tissue remodeling and angiogenesis] (Colotta et al. 2009). A 
better understanding of inflammation and tumor microenvironment is crucial for 
the development of new therapeutic strategies based on the nature of tumor devel-
opment, progression, and metastasis.

15 .3  Role of Inflammatory Molecules in the Development 
of Cervical Cancer: Evidences from In Vitro Studies

Infectious agents have become a common cause for the development of tumor-
associated inflammation which triggers the inflammatory molecules in the micro-
environment to drive the persistence of tumor and therefore its progress. In 
majority of the HPV infections, eradication of neoplastic lesions occurs in the ini-
tial stages, failure of which may impart the ability for HPV to evade the immune 
barriers and integrate into the host genome. This whole process ultimately results 
in a complex role for inflammation to occur during an HPV infection. The main 
transmission of HPV pathogen to a cervix is via an infected partner’s semen dur-
ing coitus after which the virus resides in the epidermal mucosa with a total cut-
off from the connective tissue and paves the way to hide itself from host immune 
system. Within this period, the virus attains the potential to induce mechanisms to 
evade the host immune system by deregulating various pathways involving pat-
tern recognition receptor namely the toll-like receptor (TLR)-9 by the host. Mere 
infection is incapable of inducing tumorigenesis in cervix. Under such instances, 
oxidative stress induces the pathogen to drive the cell to attain oncogenic property. 
Oxidative stress modifies the DNA and protein of the cell to provide a platform 
for neoplastic development and its progress. This condition is further enhanced 
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by iNOS overexpression whose function is further induced by other inflammatory 
molecules like TNF-α, IL-1β, and NF-κB (De Marco et al. 2012). Infection with 
HPV may be cofactored by the resident Chlamydia trachomatis or Neisseria gon-
orrhoeae, tobacco carcinogens and weak immune system which ultimately leads 
to inflammation to generate cascade of complex networks involving cytokines, 
chemokines, IL, growth factors, and prostaglandins. Inflammation initiated by 
theses cascade networks compels to alter the host immune function along with 
changes in the epithelial and the vascular nature of the tissue.

Once a pathogen attacks a system, it implies several mechanisms to sustain and 
multiply. Among such is the inhibition of interferon-stimulated genes (ISG), which 
will ultimately reduce the pathogen recognition receptors (PRR); the so-called 
TLR3, RIG-I, and MDA5. This may be directly correlated with the reduced levels 
of IFNβ, IFNλ, and CCL20, further ensuring the minimized expression of induc-
ible IFN possessing antiviral property such as IFIT1 and MX1 (Reiser et al. 2011). 
Reports from same laboratory has also shown a reduced CCL20 expression when 
cell lines were established by immortalization with complete HPV genomes. This 
may indicate that CCL20 expression is prevented both by reducing PRR levels and 
by interference at the transcriptional level by HPV. HPV-positive cervical cells 
also exhibited an inhibition in the constitutive expression of IFNκ (DeCarlo et al. 
2010). This inhibition may be one of the causes for the inhibition of ISG in human 
cervical cancer cells. Recent reports came up with the fact that DNA methylation 
on the interferon; the IFNκ promoter can regulate the expression of IFNκ gene 
which may be influenced by the viral proteins. This study was further supported 
by an observation in HeLa cells where they emphasizes that IFNκ expression is 
extremely down which can be reverted by DNA methyltransferase inhibitors such 
as 5-aza-dC (Rincon-Orozco et al. 2009). In this way, the hurdle of IFNκ is man-
aged by the HPV genes such that pathogen acquires more power and support for 
its growth and survival using the host machineries.

15.3.1  Role of Inflammatory Molecules in the 
Transformation of Cervical Cancer Cells

Immunosuppressed victims of HPV are more prone to the persistence of infection 
and develop a high-risk HPV-related cancers. On the onset of infection, release of 
inflammatory molecules including cytokines occurs at the site of infection from 
the keratinocytes; the process even more supported by macrophages and NK cells. 
Role of anti-inflammatory molecules comes into act then, where TNF-α, IL-1, and 
IFNα/β inhibit transcription of viral oncogenes which was evident from various in 
vitro studies. Despite all these, certain proportion of infection are capable of estab-
lishing infection leading to chronic inflammation.

Activation of interferon pathway is a common response during a viral infec-
tion. Interferons are antiviral particles which can induce resistance to viral 
genome replication in the infected host cell. Initiation of IFN pathways occurs 
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by binding of type I (IFNα/β) and type II (IFNγ) to the specific cell receptors 
which in turn induces the transcription of IFN-induced genes via JAK-STAT path-
way (Chang and Laimins 2000). High-risk E6 and E7 proteins repress the STAT1 
expression, which will inhibit its regulatory function on IFN response. It is also 
found that high-risk E6 and E7 proteins downregulates type 1 IFN expression and 
absence of influencing signals by these IFN during the process of antigen rec-
ognition leads to immune tolerance than expected immune responses (Sasagawa 
et al. 2012). In vitro studies in support of these observation lead to clinical trials 
of IFN to accomplish the eradication of viral infection on the onset of the disease. 
Treatment of type I IFN to cells transfected with HPV31 episomes shows a loss of 
viral episomes. This property of IFN is attributed to its clinical trials, but later on 
reports indicated to explain the fact that HPV had gained resistance to overcome 
the IFN therapy. It is now concluded that IFN response by HPV varies on the 
type of IFN and also on the type of HPV infected and also cell specificity. Recent 
reports came up with HPV16 oncoproteins E6 and E7 influencing the interferon 
pathway. E7 oncoprotein physically interacts with the transcription factor and 
interferon regulatory factor (IRF) 1, and hinders the binding of IRF1 on the IFNβ 
promoter, thus inhibiting the transactivating function. This inhibition hinders the 
heterodimerization of STAT1-STAT2, thus affecting the translocation to nucleus 
(Park et al. 2000). Likewise, E6 oncoprotein interacts with IRF3 and repress the 
transactivating function of IFNβ promoter by recruiting HDAC onto the promoter 
(Ronco et al. 1998). Rincon-Orozco et al. (2009) came up with the regulatory 
aspects of IFNκ by HPV16 E6 oncoprotein. Clinical sample revealed the informa-
tion that IFNκ was downregulated in cervical patients compared to that of normal 
ones. This phenomenon was emphasized with the epigenetic  silencing of IFNκ by 
E6 protein.

Despite the antiviral properties of interferon, there are contradictory reports 
regarding IFNβ. It is in limelight now that IFNβ facilitates the transcription of 
HPV16 by promoting the binding of IRF1 to the viral promoters. Interferon also 
plays a crucial role in proliferation. In vitro studies in HeLa cell lines, an HPV18 
cervical cell line is shown to proliferate with the induction of IFNα2b. Evidences 
from certain studies confirm that IFN-β is able to induce replication of HPV11, 
HPV16, and HPV31 in human keratinocytes. Moreover, on continual IFN-β treat-
ments, it is reported that cells expressing high-risk type cutaneous HPV38 undergo 
senescence by the induced expression of the tumor suppressor PML, known to be 
downstream effector of IFN (Chiantore et al. 2012).

Cytokine production is a remarkable property of viral-induced human cancers. 
As primary site of HPV infection, the keratinocytes are the immediate source of 
cytokine. IL and TNF mainly contribute to this aspect. TNF has a definitive role on 
any inflammation caused due to infection. Basically, TNFs are majorly involved 
in the regulation of inflammation by binding to its cell-specific TNF receptors 
(TNFR1 or TNFR2) in order to elicit signaling pathways against a viral infec-
tion, induce apoptosis, growth arrest, or aid in cell proliferation. TNF-α plays as 
a growth stimulator for epidermal growth factor (EGF) or serum-depleted cervi-
cal cancer cells (Gaiotti et al. 2000). TNF-α acts as a potent keratinocyte inhibitor 
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during the course of viral entry and onset of inflammation and elicit extrinsic 
apoptotic pathway (Basile et al. 2001). Extrinsic pathway is initiated by the bind-
ing of these cytokines to receptors mainly TNFR1 or TRAIL. It is reported that E6 
high-risk type proteins can bind on these TNFR1 or TRAIL and inhibit the down-
stream pathways (Filippova et al. 2002). More often, it is also found that E6 pro-
tein binds on to FADD and caspase8, thus blocking the FAS-mobilized apoptotic 
response (Filippova et al. 2004; Garnett et al. 2006). In response to intrinsic path-
way, E6 plays a crucial role by interacting with Bax and Bak proteins of Bcl2 fam-
ily of pro-apoptotic proteins, which induces the upregulation of IAP and survivin 
(Garnett and Duerksen-Hughes 2006). Thus, literature based on TNF gives out 
the point that they are responsible for growth arrest in an HPV-infected keratino-
cyte. TNF activates NF-κB pathway to upregulate the expression of p21CIP1/WAF1, 
which is a well-known cyclin-dependent kinase (Cdk) inhibitor. Moreover, TNF is 
also having a critical function in downregulating certain cell cycle proteins such as 
cyclinA, cyclinB, cdc2, and so on.

Polymorphism in inflammatory genes has become a common report, and it 
stands as a potential therapeutic biomarker in cervical carcinomas. Polymorphism 
detected in an anti-inflammatory gene IL-10 can lead to its underexpression, 
thus allowing the cancer progression. PCR–RFLP-assay-based cohort stud-
ies implicated the potential effect of SNP on TNF-α-238 G/A in reducing the 
risk of cervical cancer, whereas the multifunctional cytokine IL-10 is not, the 
polymorphism of which are highly associated with the risk of cervical cancer 
(Barbisan et al. 2012).

15.3.2  Role of Inflammatory Molecules in the Survival 
of Cervical Cancer Cells

Persistence of HPV related to age old cervical cancer shows circulating inflam-
matory cytokines, namely TNF-α and also IL-8 (Kemp et al. 2010). An increasing 
levels of resistin and Fas was noted in such a condition where an increased levels 
of resistin, an adipokine, and sFas is observed in HPV-infected older women with 
decreased immune function (Baker et al. 2011). Complexing of E7 with Rb leaves 
a compliment by increasing the level of p53, a tumor suppressor gene, which hap-
pens to be the intrinsic mechanism of the cell to undergo apoptosis. To protect this 
adverse situation the viral particle, E6 comes into play which aids in the protea-
somal degradation of p53 by recruiting E6AP (E6-associated protein), a HECT 
domain containing E3 ubiquitin ligase (Huibregtse et al. 1991). In response to IFN 
stimulus, p53 gains antiproliferative function which is highly tackled by high-risk 
HPV proteins. Senescence is promoted in HPV16-expressing keratinocytes which 
is mediated by acetylated p53.

Among the different strategies used by viruses in its survival, a colorful role 
is engraved by the expression of class I MHC. HPV nonstructural viral proteins 
like E5 protein have been shown to interact with several cellular processes in 
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order to impair the antigen presenting function of MHC class I expression, thereby 
 suppressing the Th1 pathway to reduce the functional role of IFNγ. It is evident 
that overexpression of HPV E5 attenuates MHC class I molecules to sequester 
itself to the Golgi apparatus (Ashrafi et al. 2005). The viral protein, E7, may block 
the ability of interferon-γ (IFN-γ) to induce IRF-1 expression, in turn inhibiting 
the expression of downstream genes related to MHC class I antigen processing 
and presentation. Recent study by Zhou et al. (2011) demonstrated that expression 
of HPV16 E7 as a transgene product in epithelial cells does not directly impair, 
but rather slightly increases MHC class I expression.

Direct role of inflammation to survival is evident from the participation of NF-κB 
by bypassing apoptotic mechanism. NF-κB activation induces several pro-inflamma-
tory cytokines which are prominent in supporting the progression of HPV-induced can-
cer (Karin 2006). In cervical cancer cell lines, a constitutive activation of NF-κB was 
studied which is usually seen to be accompanied with p50 and p65, the heterodimeric 
complex of RelA family of proteins in the nucleus during the course of tumor progres-
sion. NF-κB acts in targeting apoptosis, cell cycle, and cell adhesion in the stage of 
neoplasia. NF-κB competes with p53 for common transcriptional co-activators such as 
p300 and CBP (Okamoto et al. 2007) and also for the binding to p21 promoter (Ma 
et al. 2008). Effect of E6 proteins comes in act by degrading p53 via a tripartite com-
plex formation with p53 along with the acetylating agent p300, thus hindering the 
acetylating property of p53 and suppression in the activation of p53-inducible genes for 
senescence (Patel et al. 1999). Unlike the high-risk types, low-risk E6 can directly inter-
act with p53 which is an outstanding feature for survival mechanism in low-risk types.

From the development of macrophages from monocytes, there exist severe con-
ditions of hypoxia which is very evident in tumor microenvironment. At this point, 
there is an upregulation of HIF1α which plays a crucial role in the survival of cells 
during hypoxia. HIF1α is expressed immensely in the inflammation site leading to 
support the survival by regulating several angiogenic genes like VEGF. Moreover, 
studies show that in cervical cancer cell lines, HPV E7 enhances HIF1α regulating 
the transcription activation of various pro-angiogenic genes by inhibiting HDAC 
activity (Bodily et al. 2011). Thus, we can see that HPV protein is facilitating the 
existing microenvironment rendering it favorable for its own survival and prolif-
eration through their epigenetic control.

15.3.3  Role of Inflammatory Molecules in the Proliferation 
of Cervical Cancer Cells

Chromosomal instability, an abnormal segregation of chromosomes leading to ane-
uploidy is a common event in HPV-related cancers. Molecular mechanism behind 
this is incompletely described though many postulates and evidences have come 
into existence. Inactivation of p53 is the hallmark in creating chromosomal insta-
bility, the reason for which is numerous. One of the reasons for chromosomal 
instability for p53 inactivation is pro-inflammatory cytokine migration inhibitory 
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factor suppressing p53 activity as a transcriptional activator (Hudson et al. 1999). 
Moreover, IL-6 increases the activity of DNA methyltransferase, resulting in CpG 
island methylation, which is also associated with p53 mutation (Hodge et al. 2005).

Aneuploidy is one of the reasons for malignancies in high-risk HPV tumors 
and can be detected in pre-malignant HPV lesions (Schiffman et al. 2007). The 
centrosomal aberrations led by E7 occur as several rounds of centrosome syn-
thesis during the S phase which is a CDK2-dependent program. In vivo stud-
ies revealed that E7 can induce similar effects in the absence of Rb interaction 
(Duensing and Munger 2003) which is the prime necessity of CDK2 expres-
sion (Duensing et al. 2006). In normal condition, Rb interacts with E2F1–E2F5 
transcription factors out of the total eight member of the E2F family of proteins 
(Lammens et al. 2009); which possess a domain for pocket proteins. This binding 
normally regulates the G1-S phase transition in the process of cell cycle where 
during the termination of G1, Rb is phosphorylated by CDK and is released from 
E2F which can now function as an independent transcription factor for the S 
phase proteins. The beauty of this regulation is disrupted by the interaction of E7 
with Rb which result in the constitutive expression of cyclinA and cyclinE neces-
sary to drive S phase and early synthesis of DNA occurs henceforth (DeGregori 
and Johnson 2006).

15.3.4  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Cervical Cancer Cells

During a persistent infection with HPV, there occurs tissue injury which paves 
the way for epigenetic alterations and remodeling of epithelial cellular events 
promoting angiogenesis, invasion, finally leading to metastasis. Angiogenesis, 
invasion, and metastasis are a complex network underwent by tumor for the well 
progression and spreading of the own. In such a condition, an overall remodeling 
occurs causing the degradation of extracellular matrix (ECM), cell migration, 
proliferation, and also generation of vasculature. Angiogenesis and inflammation 
are two mutually dependent processes for which inflammatory molecules come 
in contact with cells such as the endothelial cells, fibroblast cells, and also the 
ECM to promote angiogenesis. In cancer cells, angiogenesis occurs as an abnor-
mal process where there is an imbalance between pro- and anti-angiogenic fac-
tors requiring the activation of several receptors by growth factors coupled with 
the triggering of inflammation. Attack of an HPV fires inflammation and lead to 
the production of monocytes. It is noted that there are two types of macrophages 
produced during such a condition in which one acts as tumor supportive and the 
other as tumor suppressive. Tumor-supportive macrophages are greatly involved 
in angiogenesis. These macrophages are often referred as TAMs. TAM produces 
a cytokine MCP-1, which is an indication of macrophage accumulation at the 
tumor site, in turn giving a feedback regulation.



38915 The Role of Inflammation in Cervical Cancer

IL-1β can induce angiogenesis from a study involving mouse cornea. It is 
also noticed that there occurs a downregulation of MMP during the silencing of 
IL-1β. Studies related to immunological parameters by immunohistochemistry and 
ELISA revealed that expression of Th2 inflammation-promoting cytokine TSLP 
and of IDO1 was higher in invasive carcinoma compared to the normal. On the 
other side, expression of IL-10 was higher in cervical carcinoma in situ and inva-
sive cervical cancer (Feng et al. 2012). TLR expressions in cells are associated 
with tumorigenesis. In cervical intraepithelial neoplasia1 (CIN1), a key stage in 
the development of cervical cancer is a decrease in the expression of TLR4 during 
the progression of cervicalneoplasia which is highly associated with the expres-
sion of p16INK4A, a molecule regarded as a biomarker for HPV integration 
into host cells.

Another major participation in terms of metastasis is shared by STAT3 which is 
activated by various growth factors, cytokines as well as viral oncoproteins, thus 
rendering a constitutive expression to lead invasion. High levels of IL-6 induce the 
activation of STAT3, via facilitating the phosphorylation of STAT3. STAT3 pro-
motes invasion directly by transcriptional activation of MMPs, mainly MMP1, 
MMP2, and MMP10 (Xie et al. 2004). On the other hand, STAT3 directly inter-
act with focal adhesion kinases and paxillin to promote invasion. Focal adhe-
sion kinase (FAK) is important in regulating cytoskeletal reorganization by the 
phosphorylation of FAK and activation of paxillin. HPV E6 protein is capable 
of binding to paxillin, but the downstream process still remains unelucidated 
(McCormack et al. 1997). HPV-infected cases show high levels of FAK, and E6 is 
capable of binding to fibulin 1, an ECM protein indicating the process of transfor-
mation and tumor invasion (Du et al. 2002).

15 .4  Role of Inflammatory Molecules in the Development 
of Cervical Cancer: Evidences from In Vivo Studies

Even though the direct relationship between HPV and inflammation remains 
 undecided and contrary, experiments in animal model support to the fact that HPV 
controls inflammatory pathways in the host. Direct evidences exist describing the 
role of HPV16 early genes expressed under human keratin 14 promoter which 
facilitate the induction of the chemokine CCL2 from the neoplastic lesion to recruit 
macrophage in the tumor microenvironment. In the development of cancer COX-2-
derived PGE2 has a direct effect on inflammation. HIV1 infection augmented with 
HPV infection is associated with increased cervical COX-2 and increased systemic 
PGE2 levels (Fitzgerald et al. 2012). Findings in human cervical epithelial cells of 
neoplasia explain that late genes of HPV16 namely E6 and E7 upregulate COX-2 
activate COX/PG pathways. The expression of pro-inflammatory cytokine inter-
leukin-32 (IL-32) is very evident in high-risk HPV-positive cervical cancer which 
is mediated by COX-2 stimulation controlled by E7. There also exist an E7 and 
COX-2 downregulation in the IL-32γ overexpressing cells suggesting a feedback 
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mechanism by IL-32γ on E7 and COX-2 cervical cancer cells (Lee et al. 2011). In a 
study related to mouse corneal angiogenesis induced by IL-1β, inhibition of COX-2 
almost completely attenuated angiogenesis (Kuwano et al. 2004).

IL-17 is a pro-inflammatory cytokine produced by Th17 cells, found to play a 
main role in inflammation-triggered oncogenesis. This observation is further sup-
ported by studies in vivo that IL-17 overexpressing human cervical cancer shows 
high oncogenic growth and the functional status of IL-17 is determined to be pro-
angiogenic (Tartour et al. 1999). Studies in transgenic mice with defective E6 pro-
tein ensures that there is no development of potent tumor in these mice models 
due to mutated PDZ binding domain which is associated with PDZ protein and in 
turn a direct target of p53. Mutations linked to the mentioned PDZ binding domain 
of the E6 protein may lead to ultimate loss of function of the protein in terms of 
pathogen survival.

15.4.1  Evidence from Patients for the Role of Inflammation 
in Cervical Cancer

15 .4 .1 .1  Polymorphisms Associated with TNF-α

Macrophages secretes (TNF-α), and their role in risk of cervical cancer remains 
controversial until meta-analysis was performed by Ding et al. where polymor-
phism status is studied in 2298 cases and 1903 controls. They found that poly-
morphism in TNF-α-308 G > A is a risk factor for developing cervical cancer in 
Asians and whites but not in Africans (Ding et al. 2012). Recently, TNF-α pol-
ymorphism rs1800629 was studied in Chinese population, which included three 
groups with Group 1 consisted of 285 high-risk HPV-positive cervical cancer 
patients, Group 2 with 225 high-risk HPV-positive patients without cervical can-
cer, and Group 3 with 318 HPV-negative women with no cervical cancer. They 
found that TNF-α polymorphism rs1800629 has no association with HPV infec-
tion or risk of developing cervical cancer (Wang et al. 2012). Polymorphisms 
TNFA-308G/A (rs1800629) and -238G/A (rs361525) are associated with the 
increase in risk in cervical cancer. Association of polymorphisms in pro- and 
anti-inflammatory cytokines (TNF-α, TNFA, and interleukin, IL-10) with cervi-
cal cancer was studied in 2009 (Singh et al. 2009). The study included 150 histo-
pathologically confirmed cervical cancer patients and 162 age, ethnically matched 
cervical cytology-negative controls. They found that polymorphism in TNFA 
(-308 G > A) is associated with developing cervical cancer stages early (IB) and 
advanced stages (III). They have also concluded that polymorphism IL-10 (-819 
C > T) is not associated with cervical cancer (Singh et al. 2009). Recently, pol-
ymorphisms were analyzed in North Indian population for IL-6 and IL-10, and 
contradictorily, they found that polymorphism IL-4 Rp1/Rp2 and IL-10 (AC) 
genotype is associated with risk in cervical cancer (Shekari et al. 2012) which 
supported the previous results where promoter polymorphism in IL-6 promoter, 
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which regulates inflammation has the association with increase in cervical cancer 
(Gangwar et al. 2009).

15 .4 .1 .2  Polymorphisms Associated with Interleukin-1β

Interleukin-1β (IL-1β), inflammation-induced cytokine, has several single- 
nucleotide polymorphisms. Polymorphism in lL-1β gene (IL-1β +3953) in associ-
ation with increase in cervical cancer risk was reported in a study which analyzed 
150 women cervical cancer patients and 200 healthy controls. Increased IL-1β is 
due to SNP, C-511T which is present in the promoter region. The plasma levels 
of IL-1β were analyzed in 100 histopathologically confirmed Egyptian women 
with cervical cancer and 50 age-matched, cervical cytology-negative, healthy con-
trols. The study revealed that there is a significant increase in IL-1β concentra-
tion in cervical cancer cases carrying C-511T variant genotypes and associated 
with increase in cervical cancer risk (Al-Tahhan et al. 2011). Similarly, increase 
in cervical risk in association with IL-1β polymorphism was also reported earlier 
in Indian population (Singh et al. 2008), whereas in Korean population, IL-1B-
511 C/C genotypes is associated with the decrease in risk of cervical cancer (Kang 
et al. 2007).

Association between polymorphisms in cytokine genes [TNF-α, TGF-β1, IFN-
γ, and IL-10] and cervical cancer in Chinese population was studied in 2011. The 
study included 186 histopathologically confirmed cases of cervical cancer and 200 
healthy controls. They found that no significant association was found in TNF-α-
308G/A, TGF-β1 codons 10 and 25 C/C-G/G and IL-10-1082G/A gene polymor-
phisms and except IFN-γ+874A/T polymorphism, which may be associated with 
developing cervical cancer (Wang et al. 2011).

15 .4 .1 .3  Polymorphisms Associated with Other Inflammatory Genes

Association of cervical cancer risk with the polymorphism in interleukin-12A 
(IL-12A) and interleukin-12B (IL-12B) was reported in Chinese population, where 
they have analyzed in 400 patients along with 404 controls (Chen et al. 2009).

Polymorphisms in toll-like receptors-3 (TLR-3) and (TLR-9) were analyzed in 
North Indian population in samples collected from 200 histopathologically con-
firmed cervical cancer patients and 200 unrelated, age, ethnicity matched, healthy 
female controls. There is no association of cervical cancer risk with polymor-
phisms in TLR-3 (c.1377C/T) [rs3775290] and TLR-9 (G2848A) [rs352140] in 
north India (Pandey et al. 2011).

NO and PG play a major role in the cervical cancer inflammation. In Korean 
population, polymorphism in these genes was analyzed in 176 histologically con-
firmed invasive cervical cancer patients and in 172 healthy controls. The results 
demonstrated that there is no significant association between polymorphism of 
COX-2 and iNOS genes and cervical cancer (Lee et al. 2007).
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Inhibitors of inflammation for the prevention and treatment of cervical cancer
Cervical cancer is mainly due to the deregulated inflammation which may be 

due to HPV, HIV, and also various other infections. Cervical cancer can be pre-
vented by using cervical cancer vaccines. Till date, 148 HPV types are recognized 
officially from HPV-1 to HPV-152. Few HPV did not fulfill the adequate criteria 
and they have classified as the subtypes (HPV-46, HPV-55, HPV-64, and HPV-
79). High-risk types HPV16 and HPV18 are responsible for 70 % of cervical can-
cer. HPV6 and HPV11 are regarded as low-risk genotype and are responsible for 
the development of genital warts and laryngeal squamous cell papillomas of both 
genders. Two vaccines have been developed a Cervarix®, bivalent vaccine against 
HPV16 and HPV18 and Gardasil®, quadrivalent vaccine against HPV6, HPV11, 
HPV16, and HPV18. The efficacy of these vaccines was studied in clinical trials 
and proved to be safe. Both these vaccines are intramuscularly administrated in 
three doses over 6 months, though the recommended timing for the second dose 
varies between the two vaccines. Gardasil is very effective against development 
of genital warts caused by types HPV6 and HPV11 (Donovan et al. 2011). These 
two vaccines have been licensed in more than 110 countries, and in more than 
40 countries, universal HPV vaccination system have been introduced through 
national vaccination program. Though the protection duration for the available 
vaccine is not exactly known, bivalent vaccine protects over 8.4 years and quad-
rivalent vaccine gives protection for more than over 5 years. Vaccination is done in 
females belonging to the age group 9–14 years. Though the efficacy is proved by 
clinical trials, issues regarding the usage of booster dosages and cross-protection 
remains standstill. So the efforts are being taken for the generation of second-gen-
eration HPV vaccines. A nonavalent vaccine, which, in addition to the four HPV 
types, contains L1 viral-like proteins of HPV-31, HPV-33, HPV-45, HPV-52, and 
HPV-58, is in the advanced stage of phase III efficacy trials (Poljak 2012).

Nonsteroidal anti-inflammatory drugs (NSAID) are used in the treatment of 
cancers. They inhibit inflammatory pathways through COX. The class of inhibi-
tors, which inhibits the COX, was designed as coxibs. NSAIDs are more non-
specific in their action, and so it inhibits COX-1 or COX-2 or both. Aspirin also 
belongs to the NSAID group. Recently, Fitzgerald reported that COX-2/PGE2 
inflammatory pathways were activated by HIV infection and they can be reduced 
by the use of COX-2 inhibitors like aspirin. They insisted that aspirin or aspirin-
like agents, which decrease the production of prostaglandins, can minimize the 
risk of cervical cancer in HIV- and HPV-infected cases. Apart from COX inhibi-
tors, some of the inhibitors which are used for the treatment of other cancers are 
used in clinical trials for cervical cancer, and the details of the drugs, their action, 
and the stage in which they are used are given in Table 15.1 adapted from Duenas-
Gonzalez et al. 2012.
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15 .5  Conclusion

HPV infection is the one of the most common causes of sexually transmitted viral 
disease. Preceded by breast cancer, cervical cancer holds a second position among 
the most common cancer prevalent in women across the world. The HPV–cervical 
cancer bond is so strong that among the 30 HPV types identified that can spread 
through sexual contact to infect primarily the cervix, vagina, vulva and penis; four 
are most often associated with cervical cancer malignancies. HPV-related cervi-
cal cancer is one of the typical examples for the role of viral infection in devel-
oping a malignancy. The primary viral particles responsible for this malignancy 
by altering the cellular intrinsic pathways are E5, E6, and E7 proteins. The com-
plex interplay between the HPV particles and inflammation is well deciphered and 
their functional and regulatory aspect in the development of malignancy is also 
highly focused. The molecular studies in HPV-related cervical cancer had solidi-
fied its epidemiological side also. This helped in decreasing the incidence of mor-
tality related to cervical cancer and the emergence of Pap smear tests had greatly 
added to the importance in detecting the cancer at a very early stage which has 
a significant influence on the morbidity of cervical cancer. Although Pap smear 
remains the major screening method, HPV-based testing has been more effective 
than cytology for the detection of cervical cancer precursors and prevention of cer-
vical cancer. Successful designing of effective therapeutics and vaccines has also 
greatly helped to eradicate the prevalence of HPV infection at least in developed 
countries and contributed to the control of cervical cancer.
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Abstract Persistent inflammation is known to promote and exacerbate malignancy. 
Primary liver cancer, mostly hepatocellular carcinoma (HCC), is a clear example 
of inflammation-related cancer as more than 90 % of HCCs arise in the context of 
hepatic injury and inflammation. HCC represents the fifth most common malignancy 
and the third leading cause of cancer-related death worldwide with about one million 
new cases diagnosed every year with almost an equal number of deaths. Chronic 
unresolved inflammation is associated with persistent hepatic injury and concurrent 
regeneration, leading to sequential development of fibrosis, cirrhosis, and eventually 
HCC. Irrespective of the intrinsic differences among various etiological factors, a 
common denominator at the origin of HCC is the perpetuation of a wound-healing 
response activated by parenchymal cell death and the resulting inflammatory cas-
cade. Hence, the identification of fundamental inflammatory signaling pathways 
causing transition from chronic liver injury to dysplasia and HCC could depict new 
predictive biomarkers and targets to identify and treat patients with chronic liver 
inflammation. This chapter critically discusses the roles of several major cytokines, 
chemokines, growth factors, transcription factors, and enzymes as well as a distinct 
network of inflammatory signaling pathways in the development and progression of 
HCC. It also highlights and analyzes preclinical animal studies showing innovative 
approaches of targeting inflammatory mediators and signaling by a variety of natural 
compounds and synthetic agents to achieve effective therapy as well as prevention of 
hepatic malignancy. Additionally, current limitations and potential challenges asso-
ciated with the inhibition of inflammatory signaling as well as future directions of 
research to accelerate clinical development of anti-inflammatory agents to prevent 
and treat liver cancer are presented.
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16 .1  Introduction

Primary liver cancers can be categorized into angiosarcoma, cholangiocarcinoma, 
hepatoblastoma, and hepatocellular carcinoma (HCC). The latter is the most domi-
nant form of primary liver cancer, accounting for more than 90 % of this cancer 
(El-Serag and Rudolph 2007). HCC represents the fifth most common malignancy 
and the third leading cause of cancer-related death worldwide (Nordenstedt et al. 
2010). HCC has a dismal prognosis with a number of HCC-related deaths almost 
equal to the number of diagnosed cases (more than 600,000) each year (Sherman 
2005). The median survival time of HCC patients is 7–8 months from the time 
of diagnosis (Wilson 2005), and a 5-year survival rate is below 9 % (Sherman 
2005). The rate of HCC incidence continues to increase in several low-risk regions 
of the world, including developed countries in Western Europe, North America, 
and Oceania, while the rate is declining in several highest-risk countries of Asia 
(Center and Jemal 2011). The incidence of HCC has dramatically increased in 
the USA by more than 70 % during the last quarter century (El-Serag 2004), with 
approximately 31,000 new cases and about 22,000 deaths expected to occur in 
2013 alone (Siegel et al. 2013). The annual health care cost associated with HCC 
in the USA has been estimated to be approximately 455 million dollars (Lang 
et al. 2009). The overall costs for HCC patients are two- to eightfold higher than 
those without HCC, and this underscores the huge burden of medical care expense 
of illness related to hepatic malignancy (White et al. 2012).

HCC is a complex and heterogeneous malignancy caused by a number of risk 
factors. The major origin of HCC development is viral hepatitis caused by hepati-
tis B virus (HBV) and HCV (Marrero and Marrero 2007; Schütte et al. 2009; Gao 
et al. 2012). Other non-viral risk factors include alcohol abuse, non-alcoholic stea-
tohepatitis (NASH), type 2 diabetes mellitus, and hemochromatosis (El-Serag et al. 
2006; Blonski et al. 2010). Accumulating evidence showed that obesity is related 
to both HCC incidence and mortality and represents an independent risk factor for 
HCC in patients with alcoholic and cryptogenic cirrhosis (Nair et al. 2002; Larsson 
and Wolk 2007; Gregor and Hotamisligil 2011). Environmental and dietary car-
cinogens, such as aflatoxin B1 (AFB1, a mycotoxin present in corn, soybean and 
peanuts) and nitrosamines (present in tobacco smoke, cosmetics, gasoline, and vari-
ous processed foods, including cured meats, salami and fried fish) are known to 
cause HCC (Bartsch and Montesano 1984; El-Serag and Rudolph 2007). A cohort 
study conducted in Shanghai (China) showed that the risk of developing HCC in 
patients with HBV infection and AFB1 exposure was more than 59-fold that of nor-
mal population (Qian et al. 1994). Similar results were reported by another study 
conducted in Qidong, a high AFB1 contamination area in China (Ming et al. 2002). 
Epidemiologic studies have suggested that cigarette smoking is a risk factor for the 
development of HCC. Results based on a clinical study on Taiwanese patients indi-
cate that 4-aminobiphenyl exposure, which is primarily a result of cigarette smok-
ing, plays a role in the development of HCC in humans (Wang et al. 1998). Several 
studies have indicated a causal link between the use of oral contraceptives and 
HCC development (Kenya 1990; Korula et al. 1991). Finally, gender is another risk 
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factor for HCC as men are more susceptible than women with a male-to-female 
ratio of 2:1–4:1 (El-Serag and Rudolph 2007; Ruggieri et al. 2010).

Current treatment options for patients with HCC are limited. Surgical  resection 
is the treatment of choice for patients with well-preserved hepatic functions. 
Unfortunately, it involves a high risk of postoperative complications and tumor 
recurrence. At the present time, liver transplantation is the most effective way to 
improve the survival of HCC patients (Dutkowski et al. 2010). However, this option 
has limitation due to inadequate number of qualified donors as well as occurrence 
of the disease in the transplanted liver. Although various strategies, such as cry-
oablation, microwave ablation, radio-frequency ablation, trans-catheter arterial 
chemoembolization, percutaneous ethanol injection, and yttrium-90 microspheres, 
are available for inoperable patients, difficulty in the management of patients and 
tumor recurrence remain two significant limitations for these treatments (Senthil 
et al. 2010). Currently, sorafenib [N-(3-trifluoromethyl-4-chlorophenyl)-N′-(4-(2-
methylcarbamoyl pyridin-4-yl)oxyphenyl)urea, Nexavar®, Bayer] is the only drug 
approved by the United States Food and Drug Administration for the treatment of 
advanced HCC based on two large phase III clinical trials (Llovet et al. 2008; Cheng 
et al. 2009). Nevertheless, only moderate improvement of survival, a number of 
adverse side effects, and high costs underscore the need for other novel therapeutic 
as well as preventive approaches for HCC (Je et al. 2009; Lu 2010; Bishayee et al. 
2010a; Bishayee 2012).

16 .2  Cellular and Molecular Mechanisms of Liver Cancer

The molecular pathogenesis of hepatocellular cancer is very complex. The exact 
sequence of hepatocarcinogenesis, including the development of preneoplastic 
lesions and their growth and eventual progression to HCC, is not fully understood 
(Farazi and DePinho 2006). Several cellular phenomena, including alterations 
in tumor microenvironment, inflammation, oxidative stress, and hypoxia, act in 
concert with various molecular events to facilitate liver tumor initiation, progres-
sion, and metastasis (Aravalli et al. 2013). Mounting evidence indicates complex 
genetic and epigenetic alterations, chromosomal aberrations, mutations, abnormal 
expression of cellular proteins, overexpression of oncogenes, inhibition of tumor-
suppressor genes, and altered molecular pathways lead to the development of HCC 
(Aravalli et al. 2008; Lachenmayer et al. 2010). Studies carried out during the last 
several decades have identified numerous signaling pathways activated in HCC, 
such as angiogenic signaling mediated through vascular endothelial growth fac-
tor and platelet-derived growth factor; Raf, mitogen-activated protein extracel-
lular kinase (MEK), and extracellular signal-regulated kinase (ERK) (Ras/Raf/
MEK/ERK); janus kinase (JAK)/signal transducers, and activators of transcription 
(STAT) (JAK/STAT); phosphatidylinositol 3-kinase (PI3K)/Akt/mammalian target 
of rapamycin (mTOR) (PI3K/Akt/mTOR); and Wnt/β-catenin and Hedgehog path-
ways (Huynh 2010; Hoshida et al. 2010; Whittaker et al. 2010; Nejak-Bowen and 
Monga 2011; Bishayee 2013).
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16 .3  Inflammation and Liver Cancer

Numerous epidemiological and clinical studies have provided convincing evidence 
that chronic inflammation leads to carcinogenesis (Demaria et al. 2010). Various 
types of cancer arise in the setting of chronic inflammation, indicating a strong link 
between inflammation and cancer (Mantovani et al. 2008; Grivennikov et al. 2010). 
It has been estimated that approximately 15 % of all human cancers are associated 
with inflammation and chronic infections (Coussens and Werb 2002). The devel-
opment of HCC represents one of the most extensively investigated inflammation-
related carcinogenesis events since more than 90 % of HCCs arise in the context of 
hepatic injury and inflammation (Nakagawa and Maeda 2012). HCC slowly unfolds 
on a background of chronic inflammation predominantly triggered by exposure to 
infectious agents, such as hepatotropic viruses, or to toxic compounds, for exam-
ple, ethanol (Berasain et al. 2009a). Despite the intrinsic differences among various 
etiological factors for HCC, a common denominator at the origin this malignancy 
is the perpetuation of a wound-healing response activated by parenchymal cell 
death and the resulting inflammatory cascade. During chronic viral hepatitis, the 
host immune responses to HBV or HCV are often not strong enough to completely 
eradicate the infection, culminating in lingering stimulation of an antigen-specific 
immune response (Budhu and Wang 2006). The host immune cells are known to 
kill virus-infected liver cells, resulting in the production of various cytokines and 
growth factors and consequently inducing compensatory hepatocyte regeneration 
(Markiewski et al. 2006). The persistent cycle of “necro-inflammation” and hepato-
cyte regeneration is believed to enhance the risk of genetic mutation in hepatocytes, 
promoting survival and expansion of initiated cells (Nakagawa and Maeda 2012). 
All these events ultimately lead to deregulated hepatocytes proliferation which con-
tributes to the development and progression of hepatic cancer. Moreover, oxidative 
stress through generation of reactive oxygen and nitrogen species in the initiated 
hepatocytes as well as inflammatory cells accelerate hepatocarcinogenesis through 
several mechanisms, including transcription and activation of cytokines and growth 
factors, oxidative DNA damage, DNA methylation, and hepatocyte injury (Tanaka 
et al. 2008; Chuma et al. 2008; Marra et al. 2011).

16 .4  Inflammatory Mediators and Signaling Pathways 
Associated with Liver Cancer

Chronic inflammation is associated with persistent hepatic injury and concurrent 
regeneration, leading to sequential development of fibrosis, cirrhosis, and even-
tually HCC. Hence, the identification and analysis of fundamental inflammatory 
signaling pathways causing transition from chronic liver injury to dysplasia and 
HCC could depict new predictive biomarkers and targets to identify and treat 
patients with chronic liver inflammation (Weber et al. 2011). A growing number 
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of preclinical and clinical studies have identified a plethora of inflammatory medi-
ators and signaling pathways implicated in hepatocellular cancer (Berasain et al. 
2009a; Weber et al. 2011; Nakagawa and Maeda 2012; Wai and Kuo 2012; Szabo 
and Lippai 2012). It is interesting to note that these complex signaling molecules 
and pathways do not act independently, but are interconnected with extensive 
crosstalk. The following section highlights several major cytokines, chemokines, 
transcription factors, and proteins which belong to inflammatory signaling path-
ways implicated in hepatocarcinogenesis.

16.4.1  Cytokines

Cytokines are synthesized by various cell types in the liver. Hepatocytes also 
express cell surface receptors for cytokines. Various inflammatory cytokines, such 
as interleukin-1α (IL-1α), IL-1β, IL-6, IL-8 and tumor necrosis factor-α (TNF-α), 
participate in chronic hepatic inflammation, and IL-6 is probably the most impor-
tant and studied one (Budhu and Wang 2006; Naugler and Karin 2008). During 
chronic hepatitis, activated Kupffer cells produce IL-6 which enhances local inflam-
matory responses and induce compensatory hepatocyte proliferation resulting in 
neoplastic transformation of hepatocytes (Naugler and Karin 2008). Elevated serum 
levels of IL-6 have been found in patients with chronic liver ailments, including 
alcoholic hepatitis, NASH, and hepatic infections with HBV and HCV (Deviere 
et al. 1989; Lee et al. 1998; Wieckowska et al. 2008). Moreover, higher serum levels 
of IL-6 have been found to be associated with increased risk of HCC development 
in patients with chronic hepatitis B and C infections (Nakagawa et al. 2009; Wong 
et al. 2009). All these reports underscore the pivotal role of IL-6 in chronic inflam-
mation-mediated hepatocarcinogenesis in humans.

An elegant study conducted by Naugler et al. (2007) investigated the role of 
IL-6 in liver cancer using IL-6 knockout mouse model. IL-6 knockout mice 
exhibited a significant reduction of diethylnitrosamine (DENA)-initiated HCC 
development, suggesting direct involvement of IL-6 signaling in experimental 
hepatocarcinogenesis. The results from this study also showed the critical role 
played by the toll-like receptor (TLR) adapter protein MyD88 in the production of 
IL-6 by Kupffer cells during DENA-induced HCC development. The production 
of IL-6 by necrotic hepatocytes was reduced considerably in Kupffer cells defi-
cient for MyD88. The ablation of MyD88 also suppressed DENA-induced hepatic 
tumorigenesis, indicating that IL-6 production by the TLR/MyD88/nuclear factor-
kappaB (NF-κB) pathway is critical for HCC development. Another study from 
the same laboratory found that DENA-induced acute inflammatory response is 
triggered by IL-1α release from necrotic hepatocytes, and IL-1α stimulates IL-6 
production by Kupffer cells (Sakurai et al. 2008). Moreover, the investigators have 
found that IL-1α released by damaged hepatocytes is essential for the compensa-
tory proliferation which is essential for DENA-initiated hepatocellular carcinogen-
esis. Rogers et al. (2007) proposed a multistep model linking chronic hepatitis to 
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liver cancer through cytokine-mediated derangement of gender-specific cellular 
metabolism. This mouse model introduces a novel mechanism of inflammation-
related carcinogenesis consistent with male-predominant HCC risk.

Several epidemiological studies reveal a strong link between obesity and devel-
opment and progression of liver cancer (Nair et al. 2002; Larsson and Wolk, 2007; 
Gregor and Hotamisligil 2011). The connection between obesity and liver can-
cer is likely to be mediated, at least in part, by chronic inflammation (Sun and 
Karin 2012; Shimizu et al. 2013). Hypertropic adipocytes are known to accumu-
late excess lipids and release free fatty acids, and these cells together with vari-
ous immune cells secrete a number of proinflammatory cytokines, including IL-6, 
IL-1β, IL-9, IL-10, IL-17, IL-18, and TNF-α (Sun and Karin 2012). It has been 
shown that macrophase infiltration into white adipose tissue, which is accompa-
nied by IL-6 and TNF-α production, is an initial contributing event for the devel-
opment of chronic low-grade systemic inflammation (Weisberg et al. 2003). 
Elevated concentrations of IL-6 have been found in type 2 diabetes, an inflamma-
tory condition, inducing cellular insulin resistance (Senn et al. 2002; Donath and 
Shoelson 2011). Among obesity-related pathophysiological conditions that predis-
pose HCC, insulin resistance and subsequent inflammatory cascades are consid-
ered to play a crucial role in the occurrence of HCC (Shimizu et al. 2013). Park 
et al. (2010) reported that dietary-induced or genetically induced obesity promotes 
DENA-initiated HCC with low-grade inflammation. Interestingly, ablation of IL-6 
or TNF-α abolishes the tumor-promoting effects of these cytokines, indicating that 
IL-6 and TNF-α are required for the promotion of obesity-linked HCC.

IL-1β, another proinflammatory cytokine in hepatocarcinogenesis, is found 
to promote hepatic stellate cell proliferation, activation, and transdifferentiation 
into the myofibroblastic phenotype (Han et al. 2004). IL-1β can promote hepatic 
inflammation by inducing the production of C-reactive protein, a sensitive marker 
of infection and inflammation, independently of IL-6 (Weinhold and Rüther 1997). 
c-Jun N-terminal kinase (JNK) activation by IL-1β stimulated the pSmad3L/
plasminogen activator inhibitor 1 pathway in facilitating hepatocytic invasion 
with simultaneous reduction of transforming growth factor-β (TGF-β)-dependent 
tumor-suppressive activity by the phosphorylated Smad3C/p21(WAF1) pathway 
(Matsuzaki et al. 2007). It has been reported that the C31T polymorphism in IL-1β 
could be a genetic marker for the development of hepatitis-associated HCC (Wang 
et al. 2003). According to a case-control study including 209 incident HCC cases, 
IL-1β-31T/C polymorphism may modify HCC risk in relation to alcohol intake or 
smoking (Sakamoto et al. 2008).

16.4.2  NF-κB Pathway

NF-κB, an important transcription factor that regulates innate immunity and 
inflammation, plays an essential function in the regulation of inflammatory sign-
aling pathways in the liver (Xiao and Ghosh 2005; Muriel 2009). Accumulating 
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knowledge clearly indicate that NF-κB provides a critical link between 
 inflammation and cancer (Karin 2009; DiDonato et al. 2012). Mammalian  
NF-κB consists of five members, namely RelA (p65), c-Rel, RelB, NF-κB1 (p50/
p105), and NF-κB2 (p52/p100) (Ghosh and Karin 2002). Under normal physio-
logic conditions, p50 and p65 subunits of NF-κB dimerize are kept inactive in the 
cytoplasm through binding to the inhibitory protein known as inhibitor of NF-κB 
(IκB) (Hoffmann and Baltimore 2006). In response to various proinflammatory 
stimuli, including pathogen-derived lipopolysaccharide, viral and bacterial DNA 
and RNA, TLR-Myd88 signaling, and inflammatory cytokines (such as TNF-α 
and IL-1β), the IκB kinase (IKK) complex, which consists of two catalytic 
subunits, IKK-α and IKK-β, and a regulatory subunit, IKK-γ or NF-κB essen-
tial modulator (NEMO), phosphorylates IκB and subsequently induces its deg-
radation by the 26S proteasome (Karin and Ben-Neriah 2000; West et al. 2006). 
Consequently, the activated NF-κB dimer is released and translocates into the 
nucleus, binds specific DNA sequences, and stimulates transcription of hundreds 
of target genes involved in inflammation, immune responses, cell proliferation, 
and cell survival (Pahl 1999; Ghosh and Karin 2002).

NF-κB has been found to be activated in virtually every chronic liver disease, 
including viral hepatitis, alcoholic liver disease, non-alcoholic fatty liver disease, and 
biliary liver disease (Luedde and Schwabe 2011). A wealth of information based on 
recently published studies illustrates a crucial role of NF-κB in connecting inflam-
mation with hepatic oncogenesis (Arsura and Cavin 2005; Luedde and Schwabe 
2011; He and Karin 2011). Several animal models have been developed to study 
the role of IKK/IκB/NF-κB signaling pathways in various cell populations during 
hepatocarcinogenesis. In Mdr2 knockout mouse model, which is an animal HCC 
model induced by chronic inflammation, inhibition of NF-κB with inducible IκB 
super-repressor resulted in decreased liver tumor progression (Mauad et al. 1994). 
Likewise, inhibition of NF-κB activation in liver parenchymal cells at later stages 
of hepatocarcinogenesis led to reduced inflammation-linked tumor progression in 
Mdr2 knockout mouse (Pikarsky et al. 2004). The liver tumor-promoting role of  
NF-κB has been confirmed by another study using hepatocyte-specific lymphotoxin 
αβ transgenic mouse model. In this inflammatory HCC model, inhibition of NF-κB 
via hepatocyte-specific deletion of IKK-β almost completely diminished HCC devel-
opment (Haybaeck et al. 2009). In contrary, hepatocyte-specific deletion of IKK-β 
gene and therefore hepatocyte-specific inactivation of NF-κB signaling resulted in 
higher incidence of HCC in mice following exposure to hepatocarcinogen DENA 
(Maeda et al. 2005). Similarly, another laboratory found that inhibition of NF-κB 
through ablation of IKK-γ/NEMO, the regulatory subunit of IKK complex, in liver 
parenchymal cells led to spontaneous and sequential development of hepatosteato-
sis, hepatitis, fibrosis, and HCC (Luedde et al. 2007). Based on all these studies pre-
sented above, it can be concluded that NF-κB signaling possibly play dual roles in 
hepatocarcinogenesis depending on cancer model and stage of tumor development. 
Activation of NF-κB in non-parenchymal cells typically stimulates inflammation, 
fibrosis, and hepatocarcinogenesis. On the other hand, suppression of NF-κB activa-
tion in parenchymal cells accelerates hepatocarcinogenesis in several cancer models 
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and suppresses tumor formation in other models. During early stages of liver tumor 
development, the cytoprotective role of NF-κB prevails as it prevents hepatocyte 
death. In late stages, NF-κB promotes tumor cell survival and proliferation.

The influence of NF-κB signaling in myeloid cells has also been investigated 
utilizing DENA-induced HCC in mice. Ablation of IKK-β in both hepatocytes and 
myeloid cells (including Kupffer cells) has been found to inhibit DENA-induced 
HCC development (Maeda et al. 2005). This effect was accompanied by dimin-
ished production of proinflammatory cytokines, such as IL-6, TNF-α and hepato-
cyte growth factor, which are secreted by non-parenchymal cells in response to 
dying hepatocytes to stimulate compensatory proliferation of remaining hepat-
ocytes (Maeda et al. 2005). Another study showed that IKK-β in myeloid cells, 
especially in Kupffer cells, has also been involved in the development of meta-
static liver malignancy through IL-6 production (Maeda et al. 2009).

Several reports support the notion that NF-κB plays an indispensable role in 
the promotion of obesity-associated HCC. The effects of obesity-induced activa-
tion of NF-κB are believed to be mediated through the synthesis of NF-κB target 
genes, including IL-1β, IL-6, and TNF-α (Shoelson et al. 2006). Experimental 
results showed that high-fat diet increased NF-κB activation, resulting in sustained 
elevation of IKK-related kinase IKK-ε in the liver, adipocytes, and adipose tissue 
macrophages. Interestingly, IKK-ε ablation was found to reduce the expression 
of inflammatory cytokines and protected mice from high-fat diet-induced obesity, 
chronic hepatic inflammation, and hepatic steatosis (Chiang et al. 2009). Wang 
et al. (2009a) reported that administration of DENA enhanced the development of 
preneoplastic lesions in the livers of rats fed with a high-fat diet with simultaneous 
increase in TNF-α/NF-κB signaling and ERK-related hepatocyte proliferation. The 
role of hepatic NF-κB in obesity-associated liver tumorigenesis has been inves-
tigated in mice with liver-specific inactivation of the NF-κB essential modulator 
gene NEMO exposed to a high-fat diet. Hepatic NEMO deficiency has been found 
to synergize with high-fat diet in the development of liver steatosis, increased 
inflammation, and aggravated liver tumorigenesis (Wunderlich et al. 2008).

16.4.3  JAK-STAT Signaling

STAT proteins are known to play vital roles in cytokine signaling pathways 
involved in cell growth and differentiation in various species, including mammals 
(Darnell et al. 1994). The STAT family consists of seven members, such as STAT1, 
STAT2, STAT3, STAT4, STAT5a, STAT5b, and STAT6. Among STAT family pro-
teins, STAT3 has gained substantial attention as a convergent point for a number of 
oncogenic signaling pathways as well as regulator of signal transduction pathways 
of several proinflammatory cytokines and growth factors involved in hepatic dam-
age and repair mechanisms (Taub 2003; Costa et al. 2003). Following phosphoryl-
ation and activation by JAKs, especially by JAK2, STAT3 undergoes dimerization 
before entry to nucleus for DNA binding (Yoshimura et al. 2007).
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Subramaniam et al. (2013) have recently published an elegant review in which 
the authors presented an excellent overview of STAT3 signaling cascade and its 
interacting partners in the initiation of hepatocarcinogenesis and role of various 
STAT3-regulated genes in inflammation, survival, invasion, and angiogenesis dur-
ing HCC progression. Based on an impressive number of studies, STAT3 has been 
recognized as a key player linking inflammation and liver cancer (Pfitzner et al. 
2004; He and Karin 2011; Nakagawa and Maeda 2012; Subramaniam et al. 2013). 
He et al. (2010) have examined a large number of human HCC specimens and 
detected activated nuclear STAT3 in approximately 60 % of these samples with 
STAT3-positive tumors being more aggressive. These results are in agreement 
with a previous report in which STAT3 was found to be activated in the major-
ity of HCC samples with poor prognosis, but not in surrounding non-malignant 
tissue or normal liver (Calvisi et al., 2006). Although the precise mechanisms of 
STAT3 activation in human HCC are not fully understood, the elevated expression 
of IL-6, IL-11, and IL-22 has been proposed to play an important role (He and 
Karin 2011).

Hepatocyte-specific STAT3-deficient mice have been used to investigate the 
role of STAT3 in experimental liver tumorigenesis induced by DENA. STAT3-
deficient mice were found to exhibit more than sixfold reduction in liver tumor 
load compared to their normal counterparts (He et al. 2010). The suppressor of 
cytokine signaling 3 (SOCS3) is known to block STAT3 signaling, and hepato-
cyte-specific SOCS3 knockout mice have been found to be susceptible to HCC 
development, possibly due to activation of JAK/STAT and mitogen-activated pro-
tein kinase (MAPK) signaling (Ogata et al. 2006). Another study showed that 
hepatocyte-specific IL-6 and IL-6 receptor transgenic mice spontaneously devel-
oped hepatocellular hyperplasia and adenomas, which represent preneoplastic 
lesions in humans, with concomitant STAT3 activation (Maione et al. 1998). All 
these studies underscore the importance of IL-6/JAK/STAT3 pathway in the patho-
physiology of liver cancer.

Several lines of evidence suggest possible interactions between STAT3 and 
NF-κB signaling pathways. It is well established that STAT3 and NF-κB coregu-
late various inflammatory and tumor-promoting genes (Yu et al. 2009). Moreover, 
STAT3 can directly interact with RelA (p65) subunit of NF-κB, confiding it in 
the nucleus, and thereby contributing to the constitutive activation of NF-κB 
in human neoplasm (Lee et al. 2009). In contrast, a separate study revealed that 
IKK-β/NF-κB signaling in hepatocyte negatively regulated STAT3 activation 
in DENA HCC animal model (He et al. 2010). Interestingly, similar inverse cor-
relation between STAT3 and NF-κB signaling has also been observed in human 
HCC samples (He et al. 2010). SHP1 and SHP2, which dephosphorylate JAK2 and 
STAT3, function as negative regulator of JAK-STAT pathway. Hepatocyte-specific 
deletion of SHP2 promotes inflammatory signaling through the STAT3 pathway 
and hepatic inflammation/necrosis, resulting in spontaneous hyperplasia and devel-
opment of hepatic tumors in aged mice. Additionally, SHP2 ablation dramatically 
enhanced DENA-induced HCC development, which was abolished by concurrent 
deletion of SHP2 and STAT3 in hepatocytes (Bard-Chapeau et al. 2011).
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16.4.4  Epidermal Growth Factor Receptor Signaling

Epidermal growth factor receptor (EGFR), also known as ErbB1, is a transmem-
brane glycoprotein (170 kDa) consisting of an extracellular ligand-binding domain, 
a transmembrane domain, and a cytoplasmic domain that harbors a tyrosine kinase 
region. EGFR can be activated by a family of ligands, including epidermal growth 
factor (EGF), TGF-α, heparin-binding EGF (HB-EGF), betacellulin, epiregu-
lin, and amphiregulin. Mounting evidence supports a role for the EGFR system 
in inflammation-related cell signaling with special emphasis in liver inflammation 
and HCC (Berasain et al. 2009b). Upregulation of EGFR has been found in human 
HCC samples, and several investigators have observed correlations between ele-
vated levels of EGFR and poor patient survival (Berasain et al. 2007; Sibilia et al. 
2007). Chronic activation of regenerative and wound-healing response mediated by 
EGFR signaling is thought to contribute tissue degeneration, resulting in chronic 
inflammation, fibrosis, and neoplastic transformation in the liver (Avila et al. 2006). 
Murillo et al. (2007) showed that TGF-β induced the expression of EGFR ligands, 
such as HB-EGF and TGF-α, in isolated fetal rat hepatocytes through the activation 
of NF-κB. The importance of EGFR in the activation of inflammation-associated 
NF-κB signaling has also been shown in the liver of transgenic mice overexpressing 
EGFR ligand TGF-α (Arsura and Cavin 2005).

16.4.5  Cyclooxygenase-Prostaglandin Pathway

One of the best characterized inflammatory pathways implicated in liver cancer 
is cyclooxygenase-2 (COX-2)-mediated prostaglandin pathway. COX-2, an induc-
ible enzyme responsible for catalyzing the conversion of arachidonic acid to 
prostaglandins (PGs), plays a significant role in inflammation-associated hepato-
carcinogenesis (Shiota et al. 1999). COX-2 has been found to be induced by pro-
inflammatory mitogens, cytokines, and tumor promoters (Williams et al. 1999). 
Since chronic inflammation contributes to hepatocarcinogenesis and the expres-
sion of COX-2 has been known to be regulated by several transcription factors 
and cytokines implicated in inflammation, including NF-κB and IL-6, it is highly 
likely that inflammation-mediated induction of COX-2 may represent a pivotal 
step in hepatocellular carcinogenesis. As a matter of fact, it has been found that 
COX-2 is chronically overexpressed in chronic inflammation and cirrhosis as well 
experimental and human HCC (Wu 2006). Clinically, the expression of COX-2 in 
HCC has been found to be upregulated in well-differentiated HCC compared to 
less-differentiated tumor or histologically normal liver, indicating the involvement 
of COX-2 in early stages of hepatocarcinogenesis related to the inflammatory phe-
nomena (Cervello and Montalto 2006; Giannitrapani et al. 2009). Additionally, 
evidence is available in the literature that COX-2 expressions are independent 
of tumor mass and tumor stage, and COX-2 signaling may play a key role both 
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in early as well as late states of hepatic cancer (Sung et al. 2004; Yildirim et al. 
2008). COX-2-derived PG signaling has also been shown to be involved in chol-
angiocarcinoma, a highly malignant epithelial tumor arising within the biliary tract 
(Wu 2005).

Experimental evidence supports a close interaction between COX-2 and 
EGFR signaling pathways. The activation of EGFR in human HCC cells has been 
found to upregulate COX-2 expression and PGE2 synthesis (Dajani et al. 2008). 
Likewise, COX-2-derived PGE2 is known to transactivate the EGFR receptor (Wu 
2005; Han et al. 2006). Moreover, COX-2-derived prostanoids may be one key sig-
nal in the activation of EGFR involved in the early stages of hepatic inflammation 
and neoplasia (Berasain et al. 2005; Castillo et al. 2006).

16.4.6  Inducible Nitric Oxide Synthase

Another important mediator linking chronic inflammation and liver cancer is 
nitric oxide (NO), produced by hepatic parenchymal and non-parenchymal cells 
from L-arginine through the catalytic function of inducible nitric oxide synthase 
(iNOS), also known as NOS2. NO reacts with superoxide (O2

· −) to form perox-
ynitrite (ONOO−), a highly reactive nitrogen species that causes nitrative and 
oxidative DNA damage. Oxidative stress is known to elevate iNOS gene transcrip-
tion and promoter activity in hepatocytes (Kuo et al. 1997). iNOS can bind and 
S-nitrosylate COX-2 protein to increase its activity (Kim et al. 2005). Mounting 
evidence underscores the vital role that iNOS plays in the development and pro-
gression of HCC as this enzyme has been found to be overexpressed in several 
rodent liver tumor models (Ahn et al. 1999; Denda et al. 2007; Calvisi et al. 2008). 
Interestingly, iNOS is a target gene for NF-κB and iNOS cross talk with NF-κB 
and Ha-RAS/ERK cascades influences HCC growth and prognosis (Calvisi et al. 
2008). Additionally, iNOS expression has been found in hepatocytes and Kupffer 
cells in hepatitis, cirrhosis, and HCC (Rahman et al. 2001; McNaughton et al. 
2002; Kawanishi et al. 2006).

16.4.7  Inhibitor of Apoptosis

The inhibitor of apoptosis (IAP) represents a family of proteins, including c-IAP1, 
c-IAP2, ML-IAP and XIAP, with significant roles in cancer-related inflam-
mation and metastasis (Guicciardi et al. 2011; de Almagro and Vucic 2012). 
Alterations in IAPs have been observed in several types of human malignancies, 
including HCC, with chemoresistance, accelerated disease progression, and poor 
prognosis (Gyrd-Hansen and Meier 2010). IAPs are known to function by regu-
lating caspases involved in apoptosis as well as modulate inflammatory signaling 
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through ubiquitin-mediated activation of NF-κB (Silke and Meier 2013). c-IAP1 
and c-IAP2 function as key mediators of TNF-α-induced activation of NF-κB 
(Gyrd-Hansen and Meier 2010). A survivin-XIAP complex has been shown to 
activate NF-κB and accelerate metastasis in a splenic model of hepatic metastasis 
(Mehrotra et al. 2010).

16.4.8  Chemokines

Human chemokines are a family of small proteins (45–50 kb) containing a 
structural homologous conservative family of cysteine residues. Chemokines 
are classified into four groups, namely CXC, CC, CX3C, and C according 
to the presence of four cysteine residues in conserved locations. It is known 
that tumor cells can regulate chemokine expression to recruit inflammatory 
cells and also use these agents to facilitate tumor growth (Coussens and Werb 
2002). Based on current knowledge, chemokines and their receptors, such as 
CXCL12-CXCR4 axis, CX3CL1-CX3CR1 axis, and CCL20-CCR6 axis, are 
believed to play intricate roles in HCC progression, growth, and metastasis, 
and immune response to HCC (Huang and Geng 2010). Activation of innate 
immune response in hepatocytes following chronic HCV infection leads to 
infiltration of proinflammatory and antiviral immune effector cells into the 
liver (Heydtmann and Adams 2009). This response is recruited to the liver, 
in part, by the chemokine CXCL10, which exerts its effects on resident and 
infiltrating cells. The deregulation of these cell populations within the liver 
may lead to chronic hepatic inflammation in HCV-linked HCC (Brownell and 
Polyak 2013).

16.4.9  MicroRNAs

MicroRNAs (miRNAs) are endogenous, small (20–25 nucleotides) noncoding 
RNA molecules that posttranscriptionally inhibit the expression of their target 
genes through mRNA degradation and/or translational inhibition (Bartel 2004). 
Several miRNAs function as oncogenes by inhibiting tumor suppressors and are 
overexpressed in cancers, whereas others function as tumor suppressors by inhibit-
ing oncogenes and are downregulated or lost in cancers (Sengupta and Bishayee 
2010). Aberrant expression of several miRNAs has been found to be involved 
in human liver cancer (Gramantieri et al. 2008; Braconi et al. 2011; Wong et al. 
2013). Emerging experimental evidence supports the involvement of miRNAs in 
hepatocarcinogenesis via modulation of inflammatory signaling pathways. Ji et al. 
(2009) studied miRNAs expression profiles in human HCC samples and observed 
reduced levels of miR-26 expression as compared with paired non-cancerous 
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tissues. In addition, tumors with reduced miR-26 expression had activation of  
NF-κB and IL-6 signaling pathways. Another study demonstrated that low miR-26 
played an important role in an experimental mouse model of HCC, and adminis-
tration of this miRNA using adeno-associated virus resulted in inhibition of cancer 
cell proliferation, induction of tumor-specific apoptosis, and dramatic suppression 
of HCC development (Kota et al. 2009).

Wang et al. (2009b) showed upregulation of oncogenic miR-155 with concomi-
tant suppression of its tumor-suppressor target CCAAT/enhancer-binding protein β 
(C/EBPβ) in choline-deficient and amino acid-defined diet (CDAA)-induced NASH 
that led to hepatocarcinogenesis in mice. The DNA-binding activity of NF-κB 
(indication of NF-κB activation) that transactivates miR-155 gene was significantly 
elevated in the liver of mice fed with CDAA diet. Interestingly, the expression of 
miR-155 correlated with CDAA-induced hepatic inflammation as evidenced by 
histopathological changes. Ectopic expression of miR-155 promoted the growth 
of HCC cells, and its depletion resulted in an inhibition of tumor cell growth. 
This study also documented upregulation of miR-155 with a concurrent decrease 
in C/EBPβ level in primary human HCC samples compared with matching  
liver tissues.

Hepatocyte nuclear factor 4α (HNF4α) is a transcription factor essential for 
liver development and hepatocyte function. Recently, transient inhibition of 
HNF4α has been found to initiate hepatocellular transformation through a micro-
RNA-inflammatory feedback loop circuit consisting of miR-124, IL6R, STAT3, 
miR-24, and miR-629. Moreover, it has been shown that once this circuit is acti-
vated, it maintains suppression of HNF4α and sustains hepatic oncogenesis. 
Finally, systemic administration of miR-124, which modulates inflammatory sign-
aling, was effective in preventing and suppressing hepatocellular carcinogenesis 
(Hatziapostolou et al. 2011).

16 .5  Inhibitors of Inflammation for the Prevention  
and Treatment of Liver Cancer

Numerous in vitro, in vivo, and clinical studies as described above have validated 
the critical role of chronic inflammation in the development and progression of 
liver cancer. Identification of cellular pathways necessary for the initiation and 
propagation of inflammatory cascade in HCC not only aids in understanding the 
pathophysiology, progression, and diagnosis but also provides a valuable tool in 
designing effective prevention and treatment of this disease. Hence, interfering 
with various inflammatory signaling molecules and pathways may offer poten-
tial opportunities for the development of novel drugs for the prevention as well as 
therapy of HCC. The following section highlights preclinical animal studies show-
ing innovative approaches of targeting inflammatory mediators and signaling by a 
variety of natural compounds as well as synthetic agents.
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16.5.1  Natural Compounds

A wide spectrum of phytochemicals present in fruits, vegetables, nuts, legumes, 
beverages, spices, and traditional medicinal herbs are endowed with potent anti-
inflammatory properties implicated in cancer prevention and treatment (Murakami 
2009; Kim et al. 2009; Aravindaram and Yang 2010; Gupta et al. 2010). Studies 
carried out in our laboratory and elsewhere strongly suggest that a number of bio-
active components from dietary and non-dietary sources are capable of exerting 
liver cancer preventive and therapeutic efficacies through multiple mechanisms 
(Bishayee et al. 2010a, 2012; Darvesh and Bishayee 2010, 2013); Darvesh et al. 
2012. As presented below and highlighted in Table 16.1, several phytoconstituents 
have been found to modulate various proinflammatory signaling during experimental  
hepatocarcinogenesis, resulting in liver cancer preventive or therapeutic effect.

N-acetylcysteine (NAC), a water soluble organosulfur compound present in garlic,  
exhibited chemopreventive potential against 2-amino-3,8-dimethylimidazo[4,5-f]
quinoxaline (MeIQx)-initiated hepatocarcinogenesis in rats. NAC treatment during  
the post-initiation stage exhibited decreased number and area of glutathione 
S-transferase-placental form (GST-P)-positive foci by reducing cell proliferation 
which may involve downregulation of insulin-like growth factor I (IGF-I) and iNOS 
(Nishikawa-Ogawa et al. 2006).

Berberine, a bioactive alkaloid, is present in the root and bark of Berberis 
aristata or Coptis chinensis. Berberine showed antiproliferative effect during the 
early phase of hepatocarcinogenesis initiated by DENA and promoted with pheno-
barbital (PB) in rats, and this response was accompanied by inhibition of hepatic 
iNOS expression (Zhao et al. 2008).

Anthocyanins (glycosides) and anthocyanidins (aglycones) represent the most 
ample flavonoid pigments of various fruits and vegetables, including berries, grapes, 
apples, corn, and purple cabbage. Recently, our laboratory has shown that an antho-
cyanin-rich fraction from black currant (Ribes nigrum L.) fruit, containing cyani-
din-3-O-rutinoside as the principle anthocyanin, significantly reduced the incidence 
and multiplicity of hepatic nodules during DENA-initiated and PB-promoted hepa-
tocarcinogenesis in rats (Fig. 16.1) (Bishayee et al. 2011a). Subsequent study from 
our laboratory demonstrated that black currant anthocyanins afforded a striking  
inhibition of gamma-glutamyl transpeptidase (GGT)-positive preneoplastic foci 
during DENA/PB-mediated hepatocarcinogenic events by reversal of hepatic over-
expression of COX-2 and iNOS and blockade of the nuclear translocation of NF-κB 
(Fig. 16.1) (Thoppil et al. 2012; Bishayee et al. 2013a).

Murugan et al. (2010) showed that black tea polyphenols (Polyphenon-B) 
reduced the multiplicity and volume of hepatic tumors in rats induced by 
p-dimethylaminoazobenzene (DAB) in rats with concomitant inhibition of hepatic 
NF-κB and elevation of IκB.

Chrysin (5,7-dihydoxy-flavone), a flavonoid present in honey, propolis, and 
several plant extracts, is available as a dietary supplement. This phytochemical has 
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Foci

COX-2

iNOS

NF- B

BCA (100 mg/kg)
+ DENA

)gk/gm005(ACBANED
+ DENA

Nodule

Fig . 16 .1  Anti-inflammatory mechanisms implicated in the chemoprevention of rat liver 
 carcinogenesis by black currant anthrocyanins (BCA). Male Sprague-Dawley rats were subjected to 
diethylnitrosamine (DENA) hepatocarcinogenesis. Rats were treated with BCA in diet (equivalent 
to 100 or 500 mg/kg body weight), starting the treatment 4 weeks before DENA administration 
and continued for 18 consecutive weeks following the carcinogenic exposure. Rats were sacrificed 
22 weeks following the commencement of the study, and livers were subjected to morphological, 
histochemical, and immunohistochemical analysis. Chemoprevention of hepatocarcinogenesis by 
BCA was evidenced by reduced size of macroscopic hepatic nodules (indicated by white arrows) 
and microscopic gamma-glutamyl transpeptidase-positive preneoplastic hepatic foci (indicated by 
black arrows) in various rat groups (magnification: 100x). BCA downregulated hepatic expression 
of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) in cytoplasm and 
reduced the nuclear expression of nuclear factor-kappaB (NF-κB) in a dose-responsive manner, 
indicating suppression of inflammatory cascade. Reproduced from Bishayee et al. (2011a, 2013a), 
and Thoppil et al. (2012) with permission
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been studied for its chemopreventive activity during DENA-initiated early hepa-
tocarcinogenesis in rats. Chrysin administration significantly reduced the number 
and size of hepatic nodules with an inhibition of hepatic expression of COX-2 and 
NF-κB (Khan et al. 2011).

Curcumin (diferuloylmethane) is the predominant active component present in 
the roots of perennial plant turmeric (Curcuma longa). Curcumin has been shown 
to prevent DENA-induced hepatic hyperplasia in rats with reduced hepatic NF-
κB expression (Chuang et al. 2000). Yoysungnoen et al. (2006) reported antian-
giogenic potential of curcumin in nude mice xenografted with HepG2 cells. 
Additional studies showed suppression of intratumor COX-2 expression.

Epigallocatechin-3-gallate (EGCG) is the primary catechin present in green tea. 
Shimizu et al. (2011a) have investigated the effects of EGCG on the development 
of DENA-induced liver tumorigenesis in obese and diabetic mice. EGCG in drink-
ing water has been found to inhibit the phosphorylation of the IGF-IR, ERK, Akt, 
STAT3, and JNK proteins in the livers of experimental mice. The serum levels of 
insulin, IGF-I, IGF-II, free fatty acid, and TNF-α were all decreased by drinking  
EGCG, which also lowered the expression of TNF-α, IL-6, IL-1β, and IL-18 
mRNAs in the livers.

Genistein, a phytoestrogen, can be found in soybeans and other legumes, such 
as chickpeas. Genistein retarded the growth of established tumors generated by 
injecting HepG2 cells in nude mice. Mechanistic results showed suppression of 
Akt activation, NF-κB activity, and downregulation of NF-κB regulated gene 
COX-2 (Ma et al. 2011).

Geranylgeraniol, a dietary diterpene, showed reduction in the number and size 
of GST-P hepatic foci and nodules during the pre- and post-initiation stages of 
DENA-induced hepatocarcinogenesis in rats. This study also revealed decreased 
cell proliferation, DNA damage, and NF-κB p65 expression following the treatment 
with geranylgeraniol (Espindola et al. 2005).

Lycopene, a bright red carotenoid pigment, is mostly found in tomatoes along 
with other red fruits and vegetables, including red bell peppers, red carrots, water-
melons, and papayas. Lycopene as well as tomato extract curtailed the development 
of GST-P foci in DENA-initiated NASH-promoted hepatocarcinogenesis in rats. 
Additional results showed reduced activation of ERK and NF-κB and decrease in 
mRNA expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-12 
(Wang et al. 2010).

Morin (3,5,7,2′,4′-pentahydroxyflavone), a bioflavonoid, is found in red wine, 
almonds, figs, and Osage orange. Sivaramakrishnan and Devaraj (2009, 2010) 
provided evidence for morin-mediated reversal of hepatic ultra-structural changes 
in DENA-exposed animals via apoptosis induction through modulation of the 
PI3K/Akt and NF-κB signaling pathways.

Perillyl alcohol, a monoterpene, is found in lavender oil, sage, cherries, orange 
peel, and peppermint. Mills et al. (1995) showed that dietary perillyl alcohol treat-
ment in rats exposed to DENA inhibited hepatic tumor growth. The mRNA levels  
of mannose 6-phosphate/insulin-like growth factor-II receptor (M6P/IGF-IIR), 
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and TGF β type I, II, and III receptors (TGF-β I, II, III R) were also significantly 
increased in the liver tumors of perillyl alcohol-treated rats.

Our laboratory has demonstrated that a pomegranate-based formulation containing  
various phytochemicals, including caffeic acid, gallic acid, and ellagic acid, exerts 
a striking chemopreventive activity in rats subjected to DENA-PB hepatocar- 
cinogenesis as evidenced by reduced incidence, number, multiplicity, size, and 
volume of hepatocyte nodules as well as GGT-positive focal number and area 
(Bishayee et al. 2011b). We have also reported that pomegranate bioactive phyto-
constituents are capable of suppressing DENA-induced inflammatory cascade by 
reversing the elevated expression of iNOS, COX-2, and NF-κB during experimental  
hepatocellular carcinogenesis in rats (Bishayee et al. 2013b).

Resveratrol (3,4′,5-trihydroxy-trans-stilbene), a naturally occurring antioxidant  
and anti-inflammatory agent found in grapes, berries, peanuts, plums as well as 
red wine, has been shown to prevent the development or reduce the growth of 
tumors in multiple organs (Bishayee 2009). According to our study, dietary resver-
atrol reduced the incidence, total number, and multiplicity of hepatocyte nodules 
(Bishayee and Dhir 2009). Ancillary studies showed that resveratrol dose-depend-
ently suppressed DENA-induced elevated expressions of hepatic inflammatory 
markers, such as iNOS, COX-2, and NF-κB, and attenuated the translocation of 
NF-κB to the nucleus by stabilizing IκB (Bishayee et al. 2010b, c). Additionally, 
we have also observed that resveratrol treatment reversed the DENA-induced 
alteration in the level and expression of hepatic TNF-α, IL-1β, and IL-6 (Mbimba 
et al. 2012).

Saikosaponin-d, a triterpene saponin, is extracted from Bupleurum falcatum L. 
(Umbelliferae). A recent study has investigated the chemopreventive potential of 
Saikosaponin-d against hepatocarcinogenesis and its possible molecular mechanism 
in vivo. The liver nodule formation, tumorous invasion to surrounding organs, and 
increased cellular atypia induced by DENA were markedly reduced by intraperito-
neally injected saikosaponin-d. The immunohistochemical staining demonstrated 
that the expression of COX-2 and C/EBPβ (a protein involved in inflammation and 
carcinogenesis) was significantly increased in tumor cells and macrophages of liver 
tissue from DENA-treated rats, whereas the expression of these two proteins was 
markedly lowered in the saikosaponin-d plus DENA group (Lu et al. 2012).

Silymarin is a complex mixture of polyphenolic flavonoids present in the 
seeds of milk thistle (Silybum marianum L. Gaertner). Silibinin (also known as 
silybin) represents the major active component of silymarin. Silibinin reduced the 
growth transplanted HuH7 tumor through the inhibition of phosphatase and ten-
sin homolog (PTEN)/p-Akt and ERK signaling and reduced the level of NF-κB 
(Cui et al. 2009). It has been showed time that both pre- and post-treatment of 
DENA-initiated rats with silymarin significantly inhibited the multiplicity and size 
of hepatic nodules (Ramakrishnan et al. 2006). A separate study from the same 
laboratory documented that dietary silymarin supplementation downregulated 
the hepatic expression of COX-2 during DENA-induced hepatic carcinogenesis 
(Ramakrishnan et al. 2008).
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16.5.2  Synthetic Agents

Shimizu et al. (2011b) examined the effects of acyclic retinoid on the development 
of DENA-induced liver tumorigenesis in C57BLKS/J- +Leprdb/+Leprdb obese 
mice. The development of liver cell adenoma was significantly inhibited by acyclic 
retinoid which also markedly reduced the phosphorylation of ERK. The serum levels 
of TNF-α and the expression of levels of TNF-α, IL-1β, and IL-6 mRNA in the liv-
ers of DENA-treated mice were decreased by acyclic retinoid treatment, indicating 
attenuation of the chronic inflammation induced by excessive fatty deposits.

Aspirin (acetyl salicylic acid) significantly reduced the degree of highly 
metastatic HCC developed in rats by sequential treatment with DENA and 
N-nitrosomorpholine (NMOR). This effect was associated with aspirin-mediated 
downregulation of COX-2 in primary HCC (Futakuchi et al. 2002).

The chemopreventive effect of celecoxib, a specific COX-2 inhibitor, on the 
development of liver preneoplastic lesions in rats has been evaluated using a 
medium-term experimental hepatocarcinogenesis protocol. A reduction by 80 
and 90 % both in the number and size of altered hepatic foci was observed in the 
group treated with celecoxib following carcinogen treatment, respectively. Neither 
COX-2 expression nor PGE2 production has been altered by the hepatocarcino-
genic exposure or celecoxib treatment. Interestingly, celecoxib inhibited the trans-
location of Rel A/p65 to the nucleus from the cytoplasm with significant effect on 
stability of the repressor IκB-α (Márquez-Rosado et al. 2005).

The effect of etodolac ([±]-1,8-diethyl-1,3,4,9-tetrahydropyrano-[3,4-b] indole-
1-acetic acid), a specific COX-2 inhibitor, on spontaneous development of HCC in 
fatty liver Shionogi mice has been evaluated. The development of HCC has been 
suppressed slightly in the high-dose group and suppressed markedly in the low-
dose group, although the development of fatty liver has not been inhibited in either 
group. Plasma PGE2 levels were also decreased significantly in the low-dose 
group, consistent with the suppression of HCC (Liu et al. 2006).

Simile et al. (2005) have investigated the chemopreventive potential and pos-
sible mechanisms of action of fenretinide [N-(4-hydroxyphenyl)retinamide], a 
synthetic retinoid, using rats subjected to the “resistant hepatocyte” protocol that 
included initiation by DENA followed by 2-acetylaminofluorene (2-AAF) treat-
ment and partial hepatectomy. Fenretinide suppressed the development of GST-P-
positive foci, nodules, and HCC through inhibition of iNOS and inactivation of 
NF-κB.

Yamamoto et al. (2003) have investigated the inhibitory effects of JTE-522 
[(4-(4-cyclohexyl-2-methyloxazol-5-yl)-2-fluorobenzenesulfonamide], a selective  
COX-2 inhibitor, on liver fibrosis and carcinogenesis induced by CDAA. JTE-
522 significantly inhibited fibrosis and development of preneoplastic lesions in a 
dose-dependent manner and completely inhibited generation of cirrhosis and HCC 
at both low and high doses. Mechanistic studies indicated that the CDAA model 
displayed upregulation of several biomarkers, including COX-2 and PGE2, and 
increased the proportion of activated hepatic stellate cells, proliferating cell nuclear 
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antigen index, and CD45-positive inflammatory cells in the liver. JTE-522 effec-
tively reversed all these changes.

The chemopreventive efficacy of nimesulide, a specific COX-2 inhibitor, has been 
tested in CDAA-induced rat hepatocarcinogenesis. Administration of nimesulide 
through diet decreased the number and size of preneoplastic, enzyme-altered liver 
foci, multiplicity of neoplastic nodules and hepatocellular carcinomas, and prevented 
the development of cirrhosis with reduced expression of COX-2 (Denda et al. 2002).

The effects of pitavastatin, a drug used for the treatment of hyperlipidemia, 
on the development of DENA-induced liver preneoplastic lesions have been 
examined in C57BL/KsJ-db/db (db/db) obese mice. Feeding of animals with 
10 ppm pitavastatin significantly inhibited the development of hepatic prema-
lignant lesions (foci of cellular alteration) as compared to the untreated group 
through inhibition of cell proliferation and induction of apoptosis. Pitavastatin 
improved liver steatosis, decreased free fatty acid and aminotransferases levels, 
while increasing adiponectin levels in the serum. Additionally, the serum levels of 
TNF-α and the expression of TNF-α and IL-6 mRNAs in the liver were decreased 
by pitavastatin treatment (Shimizu et al. 2011c).

Roxithromycin, a macrolide antibiotic, inhibited oxidative stress as measured 
by the level of thiobarbituric acid-reactive substances, NO production, and acti-
vation of NF-κB during DENA-induced hepatic carcinogenesis in rats. All these 
results were associated with a dose-dependent inhibition of hepatic tumor volume 
in experimental animals (Ueno et al. 2005).

SC-236, a selective COX-2 inhibitor, has been tested for its antihepatocarci-
nogenic potential using a choline-deficient, ethionine-supplemented (CDE) diet-
induced rodent model of HCC. The test compound not only suppressed hepatocyte 
peri-cellular fibrosis and steatosis, but also inhibited the early stages of HCC 
(Davies et al. 2006).

Sodium selenite has been found to exert chemoprevention of DENA-initiated 
and 2-AAF-promoted hepatocarcinogenesis in rats as evidenced from histopatho-
logical observations with simultaneous inhibition of hepatic NF-κB expression 
(Alwahaibi et al. 2010).

Activation of Ras and its downstream signaling pathways are likely to contrib-
ute to the development of hepatocarcinoma. It has been shown that intraperitoneal 
injections of the S-trans- trans-farnesylthiosalicylic acid (FTS), a Ras inhibitor, 
blocks Ras activation and prevents heptocarcinoma development in rats challenged 
with DENA (Schneider-Merck et al. 2009). A follow-up study from the same 
laboratory showed that DENA-induced activation of NF-κB and STAT3 has been 
abrogated by FTS treatment. Although FTS treatment showed no effect on DENA-
induced elevation of TNF-α, IL-6, and TLR4, it significantly reduced phosphoryla-
tion of the MAPK p38 and of the p70S6 kinase, a surrogate marker for mTOR 
activation, without affecting ERK and Akt phosphorylation (Stärkel et al. 2012).

TNP-470 (O-chloroacetyl-carbamoyl-fumagillol) is a synthetic derivative 
of fumagillin, a naturally secreted antibiotic from Aspergillus fumigatus. The 
expression of GST-P was significantly reduced in rats with hepatocarcinogenesis 
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receiving TNP-470 when compared to untreated animals. TNP-470 also inhibited 
oxidative stress, NO  production, and NF-κB activation (Mauriz et al. 2003).

16 .6  Conclusions and Future Directions

Emerging in vitro, in vivo, and clinical studies carried out during the last decade 
provide substantial evidence that activation of inflammatory signaling pathways 
plays a vital role in the pathogenesis and progression of liver cancer. It is also 
apparent that there are several mechanisms which contribute to the activation of 
inflammatory cascade in the liver in response to various etiological factors of 
liver cancer. There also exists the possibility of cross talk between inflamma-
tory pathways and other signaling events in liver cancer. Since various inflam-
matory pathways are closely regulated at multiple cellular and subcellular levels, 
these pathways provide opportunities to develop novel preventive and therapeu-
tic strategies for management of liver cancer. Based on current interest in inflam-
matory signaling pathways in liver cancer, it is conceivable that new signaling 
molecules and pathways of inflammation-linked HCC would be identified in the 
near future.

Several animal studies as presented in this chapter clearly demonstrate that var-
ious natural and synthetic compounds are capable of disrupting activated inflam-
matory signaling to halt or reverse the growth of a variety of transplanted HCC 
cells in vivo and inhibit the development and progression of chemically initiated, 
dietary-induced, or spontaneously occurring liver tumors in rodents. All these anti-
hepatocarcinogenic effects could be possible due to inhibition of upstream acti-
vators of key inflammatory regulators, subunits of lead inflammatory mediators, 
activating kinases or target genes. The unique inflammation-hepatocarcinogenesis 
sequence in liver cancer clearly indicates that specific inhibitors of inflammatory 
pathways have the potential to block or disrupt the continuous transition from 
chronic liver injury to liver neoplasia. It is, indeed, noteworthy that all these struc-
turally dissimilar compounds target nearly all known proinflammatory factors and 
signaling pathways in hepatic carcinogenesis. Since activation of inflammatory 
insult occurs during the early as well as late phases of multistage hepatocarcino-
genesis, naturally occurring or synthetic anti-inflammatory agents could be effec-
tive in both chemoprevention and therapy of liver cancer.

Although a large number of preclinical and clinical studies underscore the 
importance of inflammation in liver cancer, the direct clinical application of this 
knowledge has not been fully realized. Similarly, despite the identification of a 
large number of natural as well as synthetic agents targeting inflammatory path-
ways during hepatocellular carcinogenesis, there remains a gap in the transition of 
these impressive results into clinical practice. Hence, future well-controlled clini-
cal studies are needed to validate the promising preclinical results of blocking or 
diminishing liver cancer by interference with the inflammatory signaling by vari-
ous natural and synthetic compounds. The safety of these agents also needs to be 
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established by appropriate clinical studies. Moreover, there are certain challenges 
as well as limitations of targeting inflammatory signaling. Several inflammatory 
pathways have a wide range of functions with complex cross talk and hence may 
function differently during hepatocarcinogenesis based on specific cell type and 
disease stage. Thus, inhibition of a signaling molecule in specific cell type within 
the liver would be more advantageous than global inhibition of the same target. 
An example of this premise is NF-κB. The tumor-specific suppression of NF-κB 
is beneficial. Nevertheless, generalized suppression of this inflammatory regulator 
may result in serious host toxicity with minimum effect on the tumor (Aggarwal 
and Sung 2011).

As presented here, various inflammatory signaling pathways are intercon-
nected, and liver cancer may arise due to dysregulation of multiple pathways. 
Thus, agents that can suppress multiple pathways simultaneously may have better 
potential as liver cancer preventive and therapeutic drugs. The duration of therapy 
with anti-inflammatory drugs is another important consideration, and it is related 
to the extent of liver disease. In patients with severe fibrosis, cirrhosis or HCC, 
certain anti-inflammatory agents may trigger toxicity due to compromised liver 
function. Additionally, use of anti-inflammatory drugs in patients undergoing anti-
viral treatment, such as interferon therapy for HCV infection, may interfere with 
the clinical outcome of such treatment.

In conclusion, substantial experimental and clinical evidence as presented in 
this chapter strongly suggests that chronic inflammation fuels the development and 
progression of liver cancer and various proinflammatory molecules, and signaling 
pathways represent novel targets for the prevention and therapy of this devastating 
disease.
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Abstract Cancer is an environmental disease and skin cancer (melanoma and 
non-melanoma) is the most common of all cancers. Epidemiological and experi-
mental evidence suggest “chronic inflammation” to be one of the hallmarks in 
solar ultraviolet radiation and several other environmental agent-mediated skin 
cancers. The identification of transcription factors, mainly nuclear factor-kappa 
B (NF-κB), signal transducer and activator of transcription 3 (STAT3), hypoxia-
inducible factor-1 alpha (HIF-1α) and their gene products i.e. prostaglandins, 
cyclooxygenase-2 (COX-2), cytokines [tumor necrosis factor- alpha (TNF-α)], 
chemokines [CXC-chemokine ligand (CXCL)] and chemokine receptors suggest 
critical role of inflammation in skin carcinogenesis. Considering the potential role 
of inflammation in tumor initiation and its major role in promotion/progression, as 
well as tumor angiogenesis and metastasis; inflammatory pathways may become 
attractive targets for skin cancer prevention. Hence this review focuses on compil-
ing available evidence and understanding the role of chronic inflammation in the 
development of skin cancer.

17 .1  Introduction

Exposure to a wide variety of natural and/or man-made agents/substances in the 
environment accounts for majority of cases of cancer. These environmental factors 
include lifestyle choices such as use of tobacco, alcohol, poor diet, and excessive 
sunlight exposure. Other factors include exposure to certain drugs, hormones, radi-
ation, specific viruses/bacteria, and environmental chemicals that may be present 
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in the air, water, food, and workplace. The chance that an individual will develop 
cancer in response to exposure to a specific environmental agent depends on com-
plex interactions between environmental and host factors (genetic/acquired sus-
ceptibility/protective), how long and how often a person is exposed to a particular 
substance, exposure to other agents, genetic factors, diet, lifestyle, health, age and 
gender, etc.

The environmental agent(s)-mediated cancers have been observed to share 
ten common traits that govern the transformation of normal cells to cancer cells 
(Hanahan and Weinberg 2011). Accumulating evidence has resulted in the accept-
ance of “chronic inflammation” to be one of the ten hallmarks of cancer. Cancers 
caused by environmental agents frequently occur in tissues with the greatest sur-
face exposure to the agent(s), e.g., lungs, gastrointestinal tract, and skin (Loeb 
and Harris 2008). Skin cancer is the most common of all cancers. Therefore, this 
review focuses mainly on compiling available evidence and understanding the role 
of chronic inflammation in the development of skin cancer. Before presenting the 
available evidence on (a) the role of inflammatory molecules in the development 
of skin cancer in vitro and in vivo, and (b) observations on inhibitors of inflam-
mation for the prevention and treatment of skin cancer, brief description of skin 
structure, function, types and prevalence of skin cancer, causative agents and risk 
factors, treatment modalities and survival, etc., has been included for enhancing 
the understanding and clarity of the presentation.

17.1.1  Skin Structure and Function

The skin is the largest and dynamic organ of the body, making up 16 % of body 
weight, with a surface area of 1.8 m2 and situated at the interface between the body 
and environment. Skin serves as the armors for the body against mechanical, thermal, 
and physical injury and hazardous substances (Proksch et al. 2008). There are three 
structural layers of the skin: epidermis, dermis, and subcutaneous layer (Fig. 17.1).

Epidermis is an external and continually regenerative, stratified epithelium 
devoid of blood or nerve supplies of approximately 5–100 μm thickness. It is 
composed of several distinct cell populations, keratinocytes and melanocytes 
being the main constituents. Keratinocytes, which comprise 95 % of the epider-
mis, are arranged in four layers. The inner layer is the stratum germinativum 
(stratum basale, basal layer), from which columnar-shaped keratinocytes divide 
to migrate to the next layer. The stratum spinosum (spinous layer) is composed 
of polygonal keratinocytes that become eventually more condensed. Further dif-
ferentiation of the cells leads to the stratum granulosum (granular layer), which 
contains basophilic granules. In thick skin areas, such as the soles of feet or the 
palms of hands, there is a clear layer of flattened cells called the stratum lucidum. 
The outermost layer is the stratum corneum (horny layer), which contains keratin 
and dead cells that confer to the skin its barrier function. Melanocytes are cells of 
neural crest embryogenic origin whose primary function is to produce melanin, 
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the pigment that determines skin and hair color. They are located in the basal layer 
of the epidermis, which comprise from 5 to 10 % of the cells and in hair follicles, 
and are also found in other anatomical areas such as the inner ear, the eye, and the 
meninges (Costin and Hearing 2007).

Dermis, the middle layer of the skin found below the epidermis, is composed 
of a tough, supportive cell matrix. The dermis contains fibroblasts, which produce 
collagen, elastin, and structural proteoglycans, together with immune-competent 
mast cells and macrophages. Collagen fibers, which make up 70 % of the dermis, 
give skin its strength, elasticity, and toughness. Dermis contains hair follicles, 
sweat glands, blood vessels, and nerves that are held in place by collagen.

Subcutis or subcutaneous layer consists of loose connective tissue and fat. It 
helps the body conserve heat and has a shock-absorbing effect that helps protect 
the body’s organs from injury.

Skin has several functions, the most important being to form a physical bar-
rier to the environment, allowing and limiting the inward and outward passage 
of water, electrolytes, and various substances while providing protection against 
microorganisms, ultraviolet radiation (UVR), toxic agents, and mechanical insults. 
Its other functions are insulation, temperature regulation, sensation, and synthesis 
of vitamin D and the protection of vitamin B folates.

17.1.2  Types of Skin Cancer

There are four different types of skin cancer: basal cell carcinoma (BCC) and squa-
mous cell carcinoma (SCC) collectively referred to as non-melanoma skin cancers 
(NMSC) or keratinocyte carcinoma; melanoma and other non-epithelial skin cancer. 
BCC and SCC account for approximately 80 and 16 % of all NMSC, respectively. 

Fig . 17 .1  Schematic presentation of skin structure, cell types, causes, and risk factors associated 
with skin cancer



440 G. B. Maru et al.

Melanoma accounts for only 10 % of skin cancer cases, but it is the most serious 
type, which can also occur in other body organs (Ibanez et al. 2011). Along with 
melanoma and keratinocyte cancers, there are some other less common types of 
skin cancer, e.g., Merkel cell carcinoma, Kaposi’s sarcoma, cutaneous (skin) lym-
phoma, skin adnexal tumors, dermatofibrosarcoma protuberans, and angiosarcoma.

17.1.3  Prevalence

Skin cancer is the most common malignancy in the USA, Australia, and  
New Zealand with substantially associated morbidity and cost, as well as relatively 
smaller but significant mortality (Rogers et al. 2010). Australia and New Zealand 
have the highest rates of skin cancer incidence in the world, almost four times the 
rates registered in the USA, the UK, and Canada. Skin cancer is 10 times more 
common in whites than in African Americans. It is estimated that one American 
dies every hour from skin cancer, whereas the incidence of UV-induced NMSC 
has increased dramatically worldwide accounting for more than 40 % of all human 
cancers in the USA, with about 1.3 million new cases being diagnosed annually of 
which roughly 20–30 % is of SCC (Madan et al. 2010).

17.1.4  Causative Agents and Risk Factors

UVR from sun exposure is the main cause of skin cancer, accounting for at least 
65 % of melanomas worldwide. The geographic variation and risk of development 
of NMSC are associated with ambient sun irradiance, genotypic, phenotypic, and 
environmental factors. Risk is greatest in residents of high ambient solar irradiance 
who have markers of UV susceptibility, such as light skin, eye and hair color, or an 
inability to tan, and those with benign sunlight-related skin disorders, e.g., actinic 
keratosis (AK) and solar lentigines. Incidence within countries is associated with 
increasing proximity to the equator. The thinner ozone layer and shorter distance 
traversed by UVB at lower latitudes than at high latitudes make residents of these 
regions most vulnerable to the effects of this radiation (Madan et al. 2010).

Individuals with familial genetic syndromes, viral infections such as human 
immunodeficiency virus (HIV), human herpesvirus 8 (HHV8), and human papil-
loma virus (HPV) or exposed to artificial UVR (tanning beds and lamps), aging, 
diet, and smoking are attributed risks. Some treatment modalities, including radi-
otherapy, phototherapy, psoralen, long-wave ultraviolet radiation (PUVA), and 
immunosuppressant drugs (cyclosporin A, methotrexate) besides work-related 
exposures such as arsenic, tar product, and chemical carcinogens (petroleum refin-
ing, pesticide manufacturing, etc.), also predispose individuals to skin cancers 
(Fig. 17.1) (IARC 1987; Boffetta et al. 2001). Skin cancers are also attributed to 
chronically injured or non-healing wounds and scars or ulcers that occur at sites of 
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previous burns, sinuses, trauma, osteomyelitis, prolonged heat (Kangri cancer) and 
chronic friction (Saree/Dhoti cancer) (Aziz et al. 1998; Patil et al. 2005; Saladi 
and Persaud 2005). The incidence of malignancy in scar tissues is 0.1–2.5 %.

17.1.5  Treatment for Skin Cancer

A variety of modalities for the treatment of skin cancer is available, including sur-
gery, radiation therapy, chemotherapy, photodynamic therapy (PDT), and biologi-
cal therapy. Surgical options, including curettage with electrodessication, Mohs 
micrographic surgery, and surgical excision, are the most frequently used treat-
ments, providing a high control rate and satisfactory cosmetic results. Radiation 
therapy, including brachytherapy techniques and external beam radiations such as 
superficial/orthovoltage X-rays, megavoltage photons, and electron beam radia-
tion, has been used as primary and post-surgical adjuvant therapy for skin cancers. 
Chemotherapy includes the topical agents (in the form of ointment) such as fluo-
rouracil, diclofenac sodium, and imiquimod. In PDT, a photosensitive drug and 
a certain type of laser light are used to kill cancer cells. However, in biological 
therapy (biotherapy or immunotherapy), substances such as interferon and imiqui-
mod (made by the body or in a laboratory) are used to boost, direct, or restore the 
body’s natural defenses against cancer.

17.1.6  Survival

Although the incidence of skin cancer is increasing, it is curable especially if it is 
detected or treated early and considered one of the most preventable types of can-
cer. The 5- and 10-year relative survival rates for persons with melanoma which 
is more likely than other skin tumors to spread to other parts of the body, are 91 
and 89 %, respectively. For localized melanoma (84 % of cases), the 5-year sur-
vival rate is 98 %; survival declines to 62 and 15 % for regional- and distant-stage 
disease, respectively. BCC and SCC are highly treatable, and survival rates for 
NMSC are very high. The mortality rate of NMSC is around 0.3 %, causing 2,000 
deaths per year in USA (American Cancer Society 2013).

17.1.7  Inflammation and Skin Cancer

Inflammation is a signal-mediated response to cellular insult by infectious agents, 
toxins, and physical stresses. Inflammation is caused by physical agents (e.g., UVR), 
mechanical injuries, chemical agents (tar products, arsenic, immunomodulatory 
drugs, toxins), biological agents (bacteria, viruses, fungi, parasites), immunologic 
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disorders (hypersensitivity reactions, autoimmunity, immunodeficiency states), etc. 
Inflammation can be acute or chronic with distinct characteristics (see Table 17.1) 
(Mueller 2006; Aggarwal et al. 2009). Acute inflammation is a rapid, self-limiting 
process, maybe prolonged and transformed to chronic inflammation. Chronic 
inflammation being more insidious lies at the basis of various diseases, including 
cardiovascular diseases, cancer, diabetes, arthritis, Alzheimer’s disease, pulmonary 
diseases, and autoimmune diseases (Aggarwal et al. 2009).

As early as 1863, Virchow noted leukocytes in neoplastic tissues and made a 
connection between inflammation and cancer. He suggested that the “lympho-
reticular infiltrate” reflected the origin of cancer at sites of chronic inflammation 
(Mantovani et al. 2008). The correlation between cancer and inflammation has 
been recognized for decades, but only in recent years, evidence begun to suggest 
that the inflammation is a prerequisite rather than a consequence of tumorigen-
esis (Balkwill and Coussens 2004). It is estimated that underlying infections and 
inflammatory responses are linked to 15–20 % of all deaths from cancer worldwide 
(Lu et al. 2006; Parkin 2006; Mantovani et al. 2008). Several clinical conditions 
such as discoid lupus erythematosus, dystrophic epidermolysis bullosa, and chronic 
wound sites are associated with cutaneous inflammation and appear to predispose 
the individual to increased susceptibility for skin cancer (Nickoloff et al. 2005).

Injury to the skin initiates a cascade of events including inflammation, new tissue 
formation, and tissue remodeling which leads to wound repair. In chronic inflam-
mation, active inflammation, tissue destruction, and attempts at repair proceed 
simultaneously. The inflammatory response involves three major stages: dilation 
of capillaries to increase blood flow; microvascular structural changes and escape 
of plasma proteins from the bloodstream; and leukocyte transmigration through 
endothelium and accumulation at the site of injury (http://bme.virginia.edu/ley/). 
In addition to the defense functions [production of proteinase and reactive oxygen 
species (ROS)], inflammatory cells are also an important source of growth factors 
and cytokines such as interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-
α) that are necessary for cell recruitment, activation, and proliferation (Nickoloff  
et al. 2005; Mueller 2006). However, while normal inflammation, e.g., during 
wound healing, is a rapid self-limiting process, deregulation of the profile and level 
of any of cytokines/chemokines that persists at sites of inflammation result in the 
development of various pathologies including cancer. The mechanisms include 

Table 17 .1  Characteristics of inflammation

Characteristics Acute inflammation Chronic inflammation

Duration Short Relatively long
Pattern Stereotyped Varied
Predominant cell Neutrophils, leukocytes Lymphocytes, macrophages,  

plasma cells, giant cells, fibroblasts
Tissue destruction Mild to moderate Marked
Fibrosis Absent Present
Inflammatory reaction Exudative Productive

http://bme.virginia.edu/ley/
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induction of genomic instability, alterations in epigenetic events and subsequent 
inappropriate gene expression, enhanced proliferation of initiated cells, resistance to 
apoptosis, unlimited replicative potential, sustained angiogenesis (tumor neovascu-
larization), tissue invasion, and metastasis (Colotta et al. 2009).

17 .2  Inflammatory Signaling Pathways Associated  
with Skin Cancer

Inflammation is associated with different stages of tumor development, including  
initiation, promotion, malignant conversion, invasion, and metastasis (Fan et al. 2013). 
Cancer-related inflammation, which has been suggested to represent the seventh hall-
mark of cancer (Hanahan and Weinberg 2011), affects all the important aspects of 
cancer such as proliferation and survival of cancer cells, tumor response to chemo-
therapeutic drugs and hormones, metastasis and angiogenesis similar to that seen in 
chronic inflammatory responses, and tissue remodeling/repair (Kamp et al. 2011; 
Mantovani et al. 2008).

Two pathways connect cancer and inflammation: the intrinsic and extrinsic 
pathways (Fig. 17.2). The intrinsic pathway is activated by genetic events that 
cause neoplasia, including the activation of oncogenes (H-ras, N-ras, BRAF, 
c-MYC, human counterpart of MDM2 [HDM2], C-erbB) by mutation, chromo-
somal rearrangement or amplification, and inactivation of tumor suppressor genes 
(p16/INKA4 [cyclin-dependent kinase inhibitor 2A], p14/ARF [ADP ribosylation 
factor]) (Soehnge et al. 1997; Hocker et al. 2008; Hanahan and Weinberg 2011). 
Cells, which are transformed in this manner, produce inflammatory mediators, 
thereby generating an inflammatory microenvironment in tumors. Moreover, there 
are other gene products frequently observed in skin cancer (mainly melanoma 
and NMSC) such as protein-patched homolog 1 (PTCH1), PTCH2, sonic hedge-
hog (Shh), cyclin-dependent kinase 4 (CDK4) and CDK6, melanocortin 1 recep-
tor (MC1R), microphthalmia-associated transcription factor (MITF), cytochrome 
p450 (CYP), glutathione S-transferase theta 1 (GSTT1), Ras, xeroderma pigmen-
tosum, complementation group C (XPC), and tumor protein 53 (TP53). Genes 
involved in UVR-induced skin cancer include the tumor suppressor gene p53, 
PTCH, and the ras oncogenes (Hocker et al. 2008; Madan et al. 2010).

In contrast, the extrinsic pathway represents inflammatory leukocytes and 
soluble mediators leading to conditions, which increase cancer risk (Fig. 17.2). 
The chronic inflammation related to malignancy is induced by infections with 
pathogens (HHV), mechanical, radiation, and chemical insults, which results 
in the production of oxidative stress (Del Prete et al. 2011). The two pathways 
unite, resulting in the activation of transcription factors, mainly nuclear factor 
kappa B (NF-κB), signal transducer and activator of transcription 3 (STAT3) 
and hypoxia-inducible factor-1 alpha (HIF-1α) in tumor cells. These transcrip-
tion factors coordinate the production of pro-inflammatory mediators, includ-
ing cytokines (TNF-α, IL-6, IL-1), chemokines (chemokine [C-C motif] ligand 
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2 [CCL2], CXC chemokine ligand 8 [CXCL8]), as well as the production of 
cyclooxygenase-2 (COX-2) (which, in turn, results in the production of prosta-
glandins [PG]) (Mantovani et al. 2008; Del Prete et al. 2011). Pro-inflammatory 
cytokines, the important mediators of inflammation, have distinguished roles 
in skin cancer development and along with nitric oxide (NO) act as cell-to-cell 
messenger as well as help in the activation of NF-κB (Kundu and Surh 2008). 
The cytokines activate the same key transcription factors in inflammatory cells, 
stromal cells, and tumor cells, resulting in more mediators’ production and can-
cer-related inflammatory microenvironment being generated.

Fig . 17 .2  Signaling pathways associated with inflammation and skin cancer
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In extrinsic pathway, exposure of skin to various physical, chemical, or biological 
agents induces infiltration of neutrophils at site of tissue injury which are key produc-
ers of ROS and reactive nitrogen species (RNS). ROS, an inherent part of the anabo-
lism and catabolism of various body tissues, including skin, play important roles in 
the stimulation of molecules for metabolism, cell cycle, and intercellular transduction 
pathways (Ibanez et al. 2011) and are involved in all the three stages of carcinogen-
esis, viz. initiation, promotion, and progression. Furthermore, transient levels of ROS 
can activate cellular proliferation or survival signaling pathways, such as the NF-κB, 
activator protein-1 (AP-1), extracellular signal-regulated kinase-/mitogen-activated 
protein kinase (ERK/MAPK), and phosphoinositide 3-kinase/Akt8 virus oncogene 
cellular homolog (PI3K/Akt) pathways. In addition, ROS induce both the activation 
and synthesis of AP-1, a regulator of cell growth, proliferation, and apoptosis, and 
transcription factors such as STAT3, HIF-1α, and p53 (Reuter et al. 2010).

NF-κB and STAT3 are two most important transcription factors in inflamma-
tory pathways that play major roles in tumorigenesis because they are constitu-
tively active in most cancers, including skin (melanoma, SCC, Kaposi’s sarcoma). 
Moreover, most gene products linked to inflammation, survival, proliferation, inva-
sion, angiogenesis, and metastasis are regulated by NF-κB and STAT3, and most 
chemopreventive agents mediate their effects through inhibition of NF-κB and 
STAT3 activation pathways (Aggarwal et al. 2009; Zhu et al. 2011).

Many stimuli can induce NF-κB activity, such as TNF-α, IL-1β, bacterial 
lipopolysaccharides (LPS), UV, ionizing radiation, ROS, several skin-related micro-
organisms such as Borrelia burgdorferi, Neisseria gonorrhoeae, Staphylococcus 
aureus, herpes simplex virus (HSV), measles virus, and HIV-1 (Pahl 1999; Bell 
et al. 2003). NF-κB activation as core transcriptional mediator of inflammation is 
a central component of pro-carcinogenic innate immune responses. Functional 
nuclear NF-κB is necessary for the growth inhibition control during upward cellular 
migration and differentiation of epidermal cells, which have central role in skin car-
cinogenesis (Bell et al. 2003). Several NF-κB-dependent genes present in the skin 
are essential to the initiation of cutaneous inflammation, including genes for differ-
ent chemokines (IL-1, IL-6, TNF) and cytokines, intercellular adhesion molecule-1 
(ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), urokinase plasminogen 
activator (uPA), and E-selectin (Pahl 1999; Bell et al. 2003). NF-κB also regulates 
pro-inflammatory enzymes, such as inducible nitric oxidase synthase (iNOS) and 
COX-2, which are involved in chronic inflammation of the skin and later in skin 
carcinogenesis. Additionally, NF-κB controls the expression of the genes linked 
with apoptosis (cellular inhibitor of apoptosis [c-IAP], XIAP, B cell lymphoma 2 
[Bcl-2], Bcl-xL, cellular FLICE-like inhibitory protein [c-FLIP], survivin), prolif-
eration (cyclins, c-Myc), invasion, angiogenesis, and metastasis (e.g., matrix metal-
loproteinase [MMP], vascular endothelial growth factor [VEGF], CXCL12, C-X-C 
chemokine receptor type 4 [CXCR4]) of cancer. Based on these evidences, NF-κB 
is believed to be closely associated with the whole process of tumorigenesis (Prasad 
et al. 2010; Zhu et al. 2011).

STATs are proteins that are activated by extracellular signaling proteins, growth 
factors such as epidermal growth factor receptor (EGFR), cytokines (IL-6, IL-17, 
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IL-22), and various peptides (Zhu et al. 2011). STAT3 regulates the expression of 
genes that mediate survival (survivin, Bcl-xl, myeloid cell leukemia sequence 1 
[mcl-1], c-FLIP), proliferation (c-fos, c-myc, cyclin D1), invasion (MMP-2), and 
angiogenesis (VEGF) (Aggarwal et al. 2009). Along with NF-κB, STAT3 is a point 
of convergence for numerous oncogenic signaling pathways. Maintenance of NF-κB 
activation in tumors requires STAT3 which is constitutively activated both in tumors 
and in immune cells and plays a role in carcinogenesis (Colotta et al. 2009).

17 .3  Role of Inflammatory Molecules in the Development  
of Skin Cancer: Evidence from In Vitro Studies

17.3.1  Role of Inflammatory Molecules in the Transformation  
of Skin Cells

Causal association between environmental (chemical/physical/biological) agent(s) 
in cancer development has been well established, while understanding and accept-
ance of the role of inflammation in cancer development are relatively recent. Due 
to this, evidence from available in vitro and/or in vivo experimental model sys-
tems pertaining to the role of inflammation in initiation of carcinogen-induced 
tumorigenicity is not clearly and conclusively addressed. One of the main reasons 
being non-inclusion of this aspect in the scope and planning of the experiments to 
address the question and/or complexity of experimental/real-life systems, wherein 
role of inflammation among multiple factors cannot easily be identified. Most of 
the environmental skin cancer-causing agents have been shown to induce spec-
trum of changes such as genotoxicity, cytotoxicity, and inflammation in cells 
exposed in vitro, and hence, biological significance and criticality of exact role 
of inflammation in the initiation of carcinogenesis are not established. Available 
evidence suggests the role of inflammatory molecules in the promotion of car-
cinogenesis in cells which have been initiated, wherein some products generated 
during inflammation do possess ability to damage/modify DNA, proteins, and 
lipids (Lu et al. 2006).

Several studies support the hypothesis that regulation of chemokines in certain 
cells in the presence of persistent autocrine and paracrine stimulation with spe-
cific CXC chemokine ligands can promote preneoplastic to neoplastic cellular 
transformation. Over-expression of CXCL1 (melanoma growth stimulatory activ-
ity/growth-regulated protein α) induced by IL-1, LPS, and TNF-α in immortal-
ized melanocytes resulted in the transformation of these cells that had capability to 
form tumors in nude/SCID mice (Dhawan and Richmond 2002).

RAS-mediated tumor formation is commonly associated with up-regulation of 
cytokines and chemokines that mediate an inflammatory response relevant to onco-
genesis (Cataisson et al. 2012). Over-expression of any of three normal Ras genes, 
N-Ras, H-Ras, or K-Ras, leads to in vitro transformation (Crespo and Leon 2000; 
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Dhawan and Richmond 2002). Studies using in vitro transformation assay have 
demonstrated that N-Ras could induce cellular transformation in a manner similar to 
CXCL1 in controlling melanocyte cells (Dhawan and Richmond 2002), indicating 
that CXCL1-mediated transformation requires Ras activation in melanocytes. Using 
both genetic and pharmacological approaches, it has been observed that the differen-
tiation and pro-inflammatory effects of oncogenic RAS in keratinocytes require the 
establishment of an autocrine loop through IL-1α, IL-1R, and myeloid differentia-
tion primary response gene (88) (MyD88), leading to the phosphorylation of IκBα 
(inhibitor of κBα) and NF-κB activation. Thus, MyD88 exerts a cell-intrinsic func-
tion in RAS-mediated transformation of keratinocytes (Cataisson et al. 2012).

The modulation of IL-1α production in the HaCaT keratinocyte cell line, wherein 
UVR induces keratinocytes to secrete other pro-inflammatory and immunomodula-
tory mediators, promotes inflammation and skin tumor development (Magcwebeba 
et al. 2012). Maximal production of these mediators appears to be due to over-
expression of the slug (snail homolog 2 or zinc finger 2 [Snai2]) transcription fac-
tor in keratinocytes and normal human melanocytes, thereby stimulating growth 
and migration (Shirley et al. 2012). UVB exposure led to significant increase in the 
production of IL-1α in a dose-dependent manner with minimal necrotic and apop-
totic effects. Moreover, induction of IL-6 production following short-wave UVR in 
normal human epidermal keratinocytes and epidermoid carcinoma cell line is medi-
ated by DNA damage and that IL-6 release has been shown to be associated with 
enhanced levels of IL-6 mRNA transcripts (Petit-Frere et al. 1998).

In primary mouse keratinocyte cultures, prostaglandin E2 (PGE2) activated the 
EGFR and its downstream signaling pathways as well as increased cAMP produc-
tion and activated the cAMP response element binding protein (CREB). Inhibitors 
of ERK1/2 and PI3K pathway attenuated the PGE2-induced proliferation, NF-
κB, AP-1, and CREB binding to the promoter regions of the cyclin D1 and VEGF 
genes and expression of cyclin D1 and VEGF in primary mouse keratinocytes 
(Ansari et al. 2008).

Nuclear factor of activated T cells (NFAT), known to be expressed in both 
immune and non-immune cells, plays an essential role in inflammatory responses 
by regulating the expression of a wide range of pro-inflammatory cytokines.  
It has been demonstrated that NFAT transcriptional activity is preferentially 
induced by UVB wavelengths in HaCaT keratinocytes and retroviral Phoenix 
amphotropic (RPA) cells. Inhibiting UV-induced NFAT activation in keratinocytes 
led to reduced COX-2 protein induction and an increase in UV-induced apoptosis 
(Flockhart et al. 2008).

Pro-inflammatory cytokines have been shown to activate NF-κB by activating 
an NF-κB-inducing kinase (NIK)/MEKK–IκB kinase (IKK)–IκB signaling path-
way in many cell types. Studies have reported that the suppression of phosphoryla-
tion of NF-κB/p65 on Ser536 reduced the activation and nuclear translocation of 
NF-κB and functionally led to the resistance of JB6 cells to TNF-α-induced trans-
formation (Hu et al. 2005; Lu et al. 2006).

Different proteases also play important role in the transformation of skin 
cancer cells. Serpins constitute the most broadly distributed super family of 
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protease inhibitors described in humans. Expression profiling of normal epidermal 
keratinocytes and transformed SCC cell lines revealed up-regulation of SerpinA1 
in the latter and that the level of SerpinA1 mRNA has shown marked up- 
regulation as analyzed by quantitative RT-PCR. SerpinA1 production by SCC cells 
appears to be dependent on p38 MAPK activity and up-regulated by EGF, TNF-
α, interferon-gamma (IFN-γ), and IL-1β (Farshchian et al. 2011). Other important 
protease is stromelysin-2 (MMP-10), which is known to be involved in the growth 
of skin tumors. The level of MMP-10 was up-regulated in a cutaneous SCC cell 
line (UT-SCC-7) by TNF-α and keratinocyte growth factor and by IFN-γ in com-
bination with transforming growth factor (TGF)-β1 and TNF-α both in UT-SCC-7 
and in HaCaT cells (Kerkela et al. 2001).

HPV are known to be additional cofactors in the development of cutaneous 
SCC. Several studies have evaluated the ability of the E6 and E7 proteins of HPV 
to transform cells in vitro. HPV 10 and HPV 20 E7 proteins do not display in 
vitro transforming activities. Moreover, E6 and E7 of HPV 38 have been shown 
to immortalize primary human keratinocytes, suggesting a role of HPV 38 infec-
tion in skin carcinogenesis. High-risk HPV E5 is considered tumorigenic because 
it transforms murine fibroblasts and keratinocytes in tissue culture, enhances the 
immortalization potential of E6 and E7, and, in cooperation with E7, stimulates 
the proliferation of human and mouse primary cells (IARC 2007).

17.3.2  Role of Inflammatory Molecules in the Survival  
and Proliferation of Skin Cancer Cells

Available experimental evidence suggests that the inflammatory response plays 
a role in providing survival and proliferative signals to initiated cells, thereby 
leading to tumor promotion (Balkwill and Coussens 2004). While NF-κB pro-
tein is a key player in inflammation, other molecular targets comprise cytokines, 
chemokines, ROS, oncogenes, inflammatory enzymes (COX-2, 5-lipoxygenase 
[5-LOX], MMP), anti-apoptotic proteins, transcription factors (STAT3, AP-1, 
CREB, nuclear factor erythroid 2-related factor 2 [Nrf2]) that regulate tumor cell 
proliferation, transformation, and survival (Shanmugam et al. 2012).

Expression of NF-κB has been shown to promote cell proliferation and con-
tribute to cell survival mechanism. Cell lines from SCC are reported to constitu-
tively express activated NF-κB (Balkwill and Coussens 2004). Definitive evidence 
that STAT3 (which is inducible by IL-6 signaling) contributes to oncogenesis has 
shown that interrupting STAT3 signaling blocks the transformation of fibroblasts 
by SRC oncoprotein (Yu et al. 2007; Hanahan and Weinberg 2011). Constitutively 
activated STAT3 is known to support tumor cell survival and proliferation by up-
regulating expression of the anti-apoptotic protein, Bcl-2, in diverse human can-
cer cell lines, including melanoma cells. STAT3 also controls expression of cyclins 
D1, D2, and B, as well as the proto-oncogene c-Myc, and through them, it may 
stimulate cell proliferation (Yu et al. 2007).
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The tumor- and progression-promoting effect of inflammatory cytokines is 
substantiated by the enhanced tumor growth of IL-6-transfected human BCC 
as well as by the malignant progression that is associated with the expression 
of G-colony-stimulating factor (G-CSF) and granulocyte/macrophage colony- 
stimulating factor (GM-CSF) in HaCaT keratinocyte cells (Mueller 2006). Studies 
on TNF-α signaling, the most extensively studied pro-inflammatory cytokines in 
skin carcinogenesis, revealed an involvement of both TNF-α receptor subtypes, as 
well as of protein kinase C-alpha (PKC-α) and transcription factors of the AP-1 
family in tumor promotion-mediated inflammation and proliferation as well as 
angiogenesis and invasion (Balkwill and Coussens 2004; Mueller 2006; Mantovani 
et al. 2008). Cytokines also control the inflammatory milieu to either favor anti-
tumor immunity (IL-12, TNF-related apoptosis-inducing ligand [TRAIL], IFN-γ) 
or enhance tumor progression (IL-6, IL-17, IL-23) and also have direct effects on 
cancer cell growth and survival (TRAIL, FasL, TNF-α, EGFR ligands, TGF-β, 
IL-6) as in the case of melanoma cells (Haghnegahdar et al. 2000).

Tumor progression locus 2 (Tpl2) is a MAP3 kinase at the crossroad of various 
pro-inflammatory and oncogenic signals with a major role in promoting cell pro-
liferation and transformation through activation of the ERK MAPK. Studies have 
reported a link between naturally occurring high levels of Tpl2 expression and 
ERK phosphorylation in melanoma cell lines. The over-expression of Tpl2 in mel-
anoma cells carrying mutated B-Raf is associated with resistance to the Raf kinase 
inhibitor PLX4720. Tpl2 can also stimulate the activation of JNK and to a lesser 
extent p38c and ERK5 by directly phosphorylating their upstream kinases MKK4, 
MKK6, and MEK5 (Vougioukalaki et al. 2011). Ras, which is mutated in approxi-
mately 25 % of all malignancies, promotes cell proliferation and tumor growth of 
malignant cells. During inflammatory stimuli, Ras induces the expression of vari-
ous inflammatory gene products, including the pro-inflammatory cytokines IL-1, 
IL-6, and IL-11, and the chemokine IL-8. ROS have been reported to be tumori-
genic by virtue of their ability to increase cell proliferation, survival, and cellular 
migration through the activation and synthesis of AP-1, a regulator of cell growth, 
proliferation, and apoptosis (Reuter et al. 2010).

PGE2, which plays a key role in normal skin homeostasis, has been shown to 
be a critical player mediating the contribution of the COX-2 pathway to cancer 
development and acts as a tumor promoter, controlling many of the behaviors typi-
cal of cancer cells. Studies have shown increased E prostanoid 1 (EP) receptor lev-
els in murine skin tumor cells and that this receptor is critical for the mitogenic 
effects of PGE2 on these cells in vitro, a finding that has also been demonstrated 
in NIH-3T3 cells (Tober et al. 2006).

In vitro studies have implicated Bmx (bone marrow tyrosine kinase gene in 
chromosome X) gene signaling in cell migration and survival. Bmx over-expres-
sion accelerates keratinocyte proliferation and wound re-epithelialization and also 
induces chronic inflammation in the skin and that this occurs via cytokine-medi-
ated recruitment of inflammatory cells (Paavonen et al. 2004).

Cylindromatosis (CYLD), which encodes a 956 amino acid enzyme that is 
ubiquitously expressed, contains a deubiquitinating domain at the C-terminus. 



450 G. B. Maru et al.

Mutations that inactivate the carboxyl-terminal-deubiquitinating domain of CYLD 
deregulate the NF-κB activity, underlying the development of skin appendage 
tumors in humans (Brummelkamp et al. 2003; Trompouki et al. 2003). It was dem-
onstrated that the expression in tumorigenic epidermal cells of a catalytically inac-
tive form of CYLD (CYLDC/S) that mimics the identified mutations of cyld in 
human tumors and competes with the endogenous CYLD results in enhanced cell 
proliferation and inhibition of apoptosis. These indicate an increased oncogenicity 
of the tumorigenic epidermal CYLDC/S mutant cells in vitro. The loss of CYLD 
in keratinocytes has been linked to hyperproliferation and elevation in cyclin D1 
levels because of increased nuclear activity of Bcl-3-associated NF-κB p50 and 
p52 (Massoumi et al. 2006). A decrease in CYLD function results in an increase 
in the malignant behavior of the tumor epidermal cells and progression of skin 
carcinomas, as seen by an enhancement in proliferation and survival of the cells 
expressing the mutant CYLDC/S. Tumor epidermal cells expressing CYLDC/S 
also show an important increase in the nuclear localization of Bcl-3, p52, and 
β-catenin.

Tumor formation involves epigenetic modifications and microenvironmental 
changes as well as cumulative genetic alterations encompassing somatic mutations, 
loss of heterozygosity, and aneuploidy. The role of NF-κB in epidermal hyperpro-
liferation arising from p120 loss appears rooted in its impact on epidermal micro-
environment because p120-null keratinocytes display a growth-arrested phenotype 
in culture due to mitotic alterations and chronic inflammatory responses, resulting 
in unstable, binucleated cells in vitro (Perez-Moreno et al. 2008).

17.3.3  Role of Inflammatory Molecules in the Invasion, 
Metastasis, and Angiogenesis of Skin Cancer Cells

Several clinical observations and experimental findings indicate that the process of 
metastasis is non-random and involves a sequence of multistep events targeted for 
therapy. Metastatic cancer cells exploit the mechanisms of the inflammation pro-
cess, which successfully migrate into distant organs. This implies a pivotal role for 
specific adhesive interactions between cancer cells and vascular endothelial cells 
and activation of migratory pathways in the cancer cells (Laferriere et al. 2002). 
The tumor cells follow the extravasation strategy of leukocytes in their migration 
toward inflammatory sites (Witz 2006). For instance, VCAM-1, an integrin recep-
tor located on an endothelial cell, binds to the integrin α4 β1 (VLA-4—very late 
antigen-4), which are normally expressed on leukocyte plasma membranes, but 
they do not adhere to their appropriate ligands until the leukocytes are activated by 
chemotactic agents or other stimuli (Schadendorf et al. 1995).

Selectins have been involved in the progression of cancer. In fact, several 
types of tumor cells express functional ligands of selectins and contact selec-
tins expressed on blood vessel walls (Laferriere et al. 2002; Witz 2006; Barthel 
et al. 2007). Keratinocyte cell lines—A431, HaCaT, SVK14—express selectin 
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ligands including sialyl Lewis X and S-Le(a) expression, whereas normal human 
keratinocytes do not. These findings suggest a potential role for selectin-mediated 
events in the early and late metastasis (Groves et al. 1993). To this end, the study 
of the role of selectins in leukocyte and tumor cell extravasation merits particu-
lar attention in understanding the pathophysiology of inflammation and cancer and 
is substantiated by a number of recent studies (Witz 2006; Barthel et al. 2007). 
There is also growing awareness that platelets and leukocytes may potentiate 
and even enhance the hematogenous dissemination of cancer cells, suggesting a 
link between inflammation and cancer progression. Indeed, the tumor microenvi-
ronment often contains infiltrates of platelets, macrophages, dendritic cells, and 
lymphocytes (Mantovani et al. 2008). These cells may be critical sources of pro-
inflammatory cytokines, including TGF-β, TNF-α, IL-1β, and IL-6, all of which 
may promote the up-regulation of selectin expression on the vascular wall and 
synergize with chemokines, such as IL-8, secreted by tumor cells.

Tumor invasion and metastasis represent a multistep process that depends on 
the activity of many proteins (Hua et al. 2011; Shanmugam et al. 2012; Ravi and 
Piva 2013). Several classes of proteases, including MMPs, serine proteases like 
furin, and cysteine proteases such as cathepsin have been implicated in the tumor 
cell-invasive process. Of these, MMPs appear to be primarily responsible for 
extracellular matrix (ECM) degradation observed during invasive processes (Hua 
et al. 2011; Pytliak et al. 2012; Ravi and Piva 2013). They contribute to tumor 
growth by degradation of the ECM as well as by the release of sequestered growth 
factors such as VEGF, b-fibroblast growth factor (b-FGF), or TGFβ, the suppres-
sion of tumor cell apoptosis and the destruction of immune-modulating chemokine 
gradients (Ravi and Piva 2013). In normal skin, MMPs are not constitutively 
expressed but can be induced temporarily in response to exogenous signals such 
as UVR. UVR is known to elevate the expression of MMP-1, MMP-3 (stromely-
sin-1), and MMP-9 in human skin. MMP-2 and MMP-9 have been frequently 
associated with the invasive and metastatic potential of tumor cells (Ramos 
et al. 2004; Dong et al. 2008; Ravi and Piva 2013).

Furin is a serine protease that is frequently over-expressed in several cancer cell 
lines and malignancies, including several murine cell lines derived from chemically 
induced skin tumors (Fu et al. 2012). Its activity results in proteolytic cleavage 
of substrates, leading to the activation of many cancer-related proteins including 
important growth factors and receptors such as insulin growth factor-1 (IGF-1) and 
its receptor IGF-1R, TGF-β, and VEGF. (Siegfried et al. 2003; Ravi and Piva 2013). 
Furin is also involved in the maturation of both TNF-alpha-converting enzyme 
(TACE) and MMP within skin cells and mainly activate MT1-MMP, which directly 
contributes to the motility and invasiveness of the tumor cell, thereby indicating 
that furin activity has an influence on the inflammation seen in the skin, follow-
ing exposure to UVR (Ravi and Piva 2013). It has been shown that furin mRNA, 
protein, and enzyme activity increase immediately after UVA and UVB treatment 
in human epidermal keratinocytes (HaCaT cells). Furin/PC processing of substrates 
has been shown to contribute to tumor progression, aggressiveness, metastasis, and 
angiogenesis (Arsenault et al. 2012; Fu et al. 2012; Ravi and Piva 2013).



452 G. B. Maru et al.

Cytokines play a crucial role in tumor progression. Pro-inflammatory cytokine, 
TNF-α, stimulates the secretion of active MMP-2, an enzyme that degrades type IV 
collagenase, in organ-cultured full-thickness human skin. TNF-α also induces MMP-2 
activation in human skin and thus induces angiogenesis with the MMPs involved in 
wound healing or cancer cell invasion. As basement membrane components, type IV 
collagen and laminin are potential substrates for MMP-2, and activation of a type IV 
collagenase by this cytokine may provide a mechanistic explanation for the role of 
TNF-α during metastasis and angiogenesis (Han et al. 2001). TNF-α up-regulates 
malignant melanoma invasion and migration in vitro. In melanoma, TNF-α may 
exert its pro-invasive effect on human cutaneous melanoma cell line via an integrin- 
dependent mechanism as well as a modest up-regulation of degradative enzyme activ-
ity not readily detected in general protease assays (Katerinaki et al. 2003).

IL-6 is also one of the pro-inflammatory cytokines induced by UVR in keratino-
cytes (Schwarz and Luger 1989; Chung et al. 1996). IL-6 induced angiogenesis in 
human BCC cell line by up-regulation of bFGF via both Janus kinase (JAK)/STAT3 
and PI3-kinase/Akt pathways. Blockage of COX-2 by siRNA reduced angiogenic 
activity in IL-6 over-expressing BCC cells, suggesting that COX-2 also plays a 
role in IL-6-induced angiogenesis (Jee et al. 2004). IL-6 also plays important role 
in tumor progression from benign to malignant, in invasive tumors in the HaCaT 
model of human skin carcinoma by activating STAT3, and directly stimulates pro-
liferation and migration of the benign non-invasive HaCaT-ras A-5 cells in vitro. 
Furthermore, IL-6 induces inflammatory and angiogenic factors such as IL-8, 
GM-CSF, and CSF as well as VEGF and monocyte chemotactic protein-1 (MCP-
1) in the tumor cells, leading to tumor cell invasion in organotypic cultures in vitro. 
Tumor invasion is supported by the IL-6 induced over-expression of MMP-1 in vitro 
and in vivo, thus demonstrating a key function of IL-6 in the progression of skin 
SCC by regulating a complex cytokine and protease network (Lederle et al. 2011).

A majority of cancers over-express COX-2, an enzyme responsible for the bio-
synthesis of PG metabolites. Enhanced production of PGs, and particularly PGE2, 
has been linked with tumor progression, invasion, and metastasis. Human epider-
mis actively synthesizes PGs, and previous studies have demonstrated that PGE2 
generation can regulate epidermal cell proliferation in vitro. Elevated levels of 
PGE2 observed in SCC and BCC of the skin may correlate with an increased pro-
pensity for metastatic and invasive behavior (Singh and Katiyar 2011).

VEGF is known to be a key regulator of cutaneous angiogenesis and as such 
plays a role in several physiological and disease processes in the skin, including 
hair growth, cancer development, and psoriasis as well as wound healing. It has 
been shown that VEGF is essential for tumor development in multistage models 
of skin carcinogenesis, and the mechanism of action has been primarily attrib-
uted to the induction of angiogenesis (Johnson and Wilgus 2012). VEGFR-1, 
expressed in mouse and human skin tumor cells and in SCC cell lines, suggests 
that VEGF could affect tumor cells directly. UV up-regulates VEGF production in 
keratinocyte-derived cell lines both directly through transcription factor activation 
and indirectly through cytokine release. VEGF has also been shown to induce the 
migration of primary keratinocytes in vitro (Zhu et al. 2013).
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17 .4  Role of Inflammatory Molecules in the Development  
of Skin Cancer: Evidence from In Vivo Studies

Chemically induced mouse skin tumors using inflammatory agent, 
12-O-tetradecanoylphorbol-13-acetate (TPA), for tumor promotion greatly contrib-
uted to our understanding of multistage carcinogenesis and have given important 
insights into the functional interaction between inflammatory microenvironment and 
epithelial tumor, especially when used in combination with transgenic animals. Data 
from these and additional new model systems clearly emphasize that the tumor- 
promoting microenvironment is indispensable for tumor formation and progression.

The two-stage mouse skin carcinogenesis and UV-induced photocarcino-
genesis are well established in vivo models for the understanding of the mul-
tistage nature of tumor development to design novel therapeutic concepts for 
human epithelial neoplasia. In two-stage mouse skin model, tumor initiation 
is accomplished through a single topical application of a carcinogen, typically 
7,12-dimethylbenz(a)anthracene (DMBA) that results in an initiated state of the 
epidermal keratinocytes, which frequently harbor one single genetic mutation 
(e.g., ras activation) and are more susceptible to subsequent genetic alterations 
(Mueller 2006). Tumor promotion achieved by repeated treatment with phor-
bol esters, such as TPA, resulted in benign papillomas, some of which spontane-
ously progress into malignant SCC. TPA activates a series of PKC isoenzymes and 
induces a pleiotropic tissue response, resulting in a strong inflammatory reaction 
(Rundhaug and Fischer 2010).

Tumor promoters, whether UV, chemicals, or endogenous factors, usually 
interact at the cell surfaces with specific receptors or other cell components that 
elicit several processes/responses, including enhanced DNA synthesis, increased 
production of eicosanoids, cytokines and growth factors, a pro-oxidant state, and 
alterations in cell surface properties, leading to changes in cell adhesion and cell-
to-cell communication (Rundhaug and Fischer 2010).

Chronic exposure to UV leads to the up-regulation of COX-2 expression and 
chronic inflammation along with the accumulation of DNA damage and muta-
tions, all of which combine to induce malignant changes in epidermal keratino-
cytes and skin cancers (Rundhaug and Fischer 2010). Topical application of 
a prototype tumor promoter, TPA, induces expression of COX-2 and its mRNA 
transcript in mouse skin in vivo by activating eukaryotic transcription factors such 
as NF-κB and AP-1. These in turn are regulated by a series of upstream kinases 
collectively known as MAP kinases such as ERK, p38 MAPK, and JUN amino-
terminal kinase (JNK) (Chun et al. 2006; Kundu et al. 2006), thereby contributing 
to the inflammatory responses mediated by TPA and in arachidonic acid metab-
olite production (Kundu et al. 2006). Inappropriate up-regulation of COX-2 also 
prolongs the survival of malignant or transformed cells and leads to phenotypic 
changes associated with metastatic potential (Surh et al. 2001). COX-2 also has 
roles in keratinocyte differentiation, and the absence of COX-2 causes premature 
terminal differentiation of initiated keratinocytes and reduced tumor formation 
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in DMBA/TPA-induced mouse skin carcinogenesis (Tiano et al. 2002). Increase 
in COX-2 results in a subsequent increase in the level of PGs, which inappropri-
ately up-regulated in various premalignant and malignant tissues. Elevated levels 
of some PGs, especially PGE2 and PGF2-α, are functionally related to mouse 
skin tumor promotion (Furstenberger et al. 1989). Even topical application of a 
COX-2 product, 15-deoxy-D12,14-prostaglandin J2, has been shown to potenti-
ate DMBA/TPA-induced mouse skin tumorigenesis (Millan et al. 2006), which 
indicated the important role of COX-2 in tumor promotion in vivo (Kundu et 
al. 2006). This was also evident by using transgenic mouse model, wherein COX-2 
over-expressing transgenic mice (Muller-Decker et al. 2002) are highly susceptible to 
spontaneous skin tumor formation, while COX-2 knockout animals (Tiano et al. 2002) 
are less prone to experimentally induced tumorigenesis.

TGFβ1 and TNF-α, which play crucial role in the inflammatory process during 
wound healing, are the most comprehensively studied pro-inflammatory cytokines 
in skin carcinogenesis (Urban et al. 1986). TGFβ1 up-regulates PG generation and 
COX-1 and COX-2 expressions of mast cells and significantly affects skin tumor 
promotion by paradoxically enhancing epidermal proliferation, besides stimulat-
ing inflammation within a developing tumor (Perez-Lorenzo et al. 2010). This 
was evident by abrogation of TGF-β signaling by knocking out Smad3 (mothers 
against decapentaplegic homolog 3), which results in resistance to chemical car-
cinogenesis (Li et al. 2004; Mueller 2006).

TNF-α has been shown to activate neutrophils and mediate the cytotoxic effects 
of activated macrophages (Urban et al. 1986). The pro-inflammatory effect of 
TNF-α seems to be important for early stages of tumor promotion. This is evident 
from the observations, wherein TNF-α-deficient mouse is resistant to the develop-
ment of benign and malignant skin tumors induced by repeated DMBA exposure 
or initiation with DMBA and promotion with TPA/okadaic acid. The resistance 
was associated with a clearly decreased inflammatory response in the dermis of 
the transgenic animals. Later stages of carcinogenesis were not affected by TNF-α 
as tumors in wild-type and TNF-α-deficient mice showed similar rates of malig-
nant progression (Scott et al. 2004; Mueller 2006). TNF-α initiates the activation 
of NF-κB signaling through its receptor, TNFR1, by recruiting the IKK complex 
and through PKCζ and PI3K/Akt phosphorylation (Martin et al. 2001; Rundhaug 
and Fischer 2010). NF-κB signaling leads to the induction of a variety of anti-
apoptotic factors. Another TNFR1-mediated signaling pathway is the activation of 
the JNK cascade. The activated JNK phosphorylates the AP-1 transcription fac-
tor, leading to transcriptional up-regulation of AP-1-responsive genes, such as 
GM-CSF, MMP-3, and MMP-9, which are involved in proliferation, differentia-
tion, and apoptosis and promote inflammation and angiogenesis as well as inva-
sion of tumor keratinocytes (Scott et al. 2004; Rundhaug and Fischer 2010).

IL-1 is another important cytokine secreted by monocytes and macrophages, 
which drive the acute phase of inflammation. Many cell types produce IL-1 after 
stimulation by microorganisms, cytokines, or other environmental insults. IL-1α 
activates adjacent cells (or IL-1β on distant cells) to induce the expression of addi-
tional pro-inflammatory genes, including IL-6, COX-2, and iNOS (Apte et al. 2006). 
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Various skin tumor promoters induce IL-1α mRNA and protein expression in the 
epidermis in vivo (Oberyszyn et al. 1993; Lee et al. 1994). Blocking the activity of 
IL-1α with intradermal injections of a neutralizing antibody inhibits TPA-induced 
vascular permeability, inflammatory cell infiltration, and epidermal hyperplasia, 
which demonstrates the central role of IL-1α in mediating these tumor promoter-
related events (Lee et al. 1994). Transgenic mice over-expressing IL-1α in basal 
keratinocytes (K14 promoter) develop spontaneous inflammatory skin lesions, as 
well as dermal neutrophil infiltration even in non-lesional skin (Groves et al. 1995). 
Moreover, stable over-expression of antagonist of IL-1 (IL-1Ra) in mouse skin car-
cinoma cell line results in down-regulated COX-2 expression and slower in vitro 
and in vivo growth. These results indicate that IL-1 is contributing to malignant 
cell proliferation (Rundhaug and Fischer 2010). IL-12 and IL-23 also play role in 
skin tumorigenesis, wherein IL-12 acts as a tumor suppressor by inducing immune 
surveillance and IL-23 promotes skin tumorigenesis by driving inflammation and 
reducing immune surveillance. While IL-12p35-null mice develop papillomas ear-
lier and more frequently than wild-type mice, IL-23p19-null mice, as well as p40-
null mice, are resistant to DMBA/TPA induction of skin tumorigenesis (Langowski 
et al. 2006). In addition, IL-12p35- and IL-12p40-null mice are more sensitive to 
UV-induced skin carcinogenesis, with reduced repair of UV-induced DNA damage, 
increased number of tumors per mouse, more rapid growth, and greater malignant 
potential than wild-type mice. UV-induced tumors from IL-12p35-null mice also 
have increased angiogenesis and up-regulated expression of pro-inflammatory IL-6 
and IL-23 (Meeran et al. 2007). Thus, IL-12 counteracts UV-induced immunosup-
pression, inflammation, and skin carcinogenesis.

Proteinases such as MMP-2 and MMP-9, provided by mast cells as well as 
granulocyte neutrophils in inflammatory microenvironment, play important roles 
as regulators of development, angiogenesis, and tumor progression. The essential 
role of stromal MMP-9 for tumor development in K14-HPV16 transgenic mice 
showed that mice deficient for MMP-9 resulted in decreased tumor incidence 
(Coussens et al. 1996). In addition, lack of MMP-9 was associated with delayed 
activation of angiogenesis in the stroma of the lesions (Mueller 2006). In another 
study, it has been shown that MMP-9 expressed by inflammatory cells is function-
ally involved in distinct processes of epithelial carcinogenesis such as regulation 
of oncogene-induced keratinocyte hyperproliferation, progression to invasive can-
cer, and end-stage malignancy (Coussens et al. 2000).

17 .5  Evidence from Patients for the Role of Inflammation 
in Skin Cancer

The association between chronic inflammation and cancer including epithelial 
skin tumors was illustrated by epidemiologic and clinical studies for years (Lu 
et al. 2006). One of the earliest descriptions for the relationship between chronic 
inflammation and epithelial skin tumors is Marjolin’s ulcer, which describes a 
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relatively uncommon ulcerative condition associated with a thermal injury in 
which malignant transformation occurs within a chronic inflammatory focus. 
Various other similar associations have been observed for lupus erythematosus, leg 
ulcerations, osteomyelitis, perineal inflammatory disease, ulcerative lichen planus, 
and epidermolysis bullosa, where SCC development with inflammatory disorders 
had been seen in non-healing wounds. Inflammation also plays an important role 
in skin cancer progression. It is evident in a study, where progression of AK to 
SCC preceded by a short inflammatory phase in the AK. This is paralleled by an 
increase in the number of cells expressing detectable levels of p53 and Bcl-2 and a 
decrease in the number of cells expressing FasL, suggesting increasing resistance 
to cell cycle arrest and apoptosis (Mueller 2006).

It is established knowledge that there may be a mild-to-moderate chronic inflam-
matory cell infiltrate at the periphery of the tumors. In the cohort study of patients 
with head and neck cutaneous SCC, a dense infiltrate of lymphocytes was found 
in the dermis in 84/315 index tumors. Notably, the proportion of the presence of 
this infiltrate was significantly higher in those tumors that recurred (Kyrgidis et 
al. 2010). Moreover, peri-neoplastic inflammation in intraepithelial SCC is pro-
nounced both in immune-competent patients and in organ transplant recipients 
(OTRs). Inflammation increases further in invasive SCC. OTRs show reduced pro-
portions of regulatory T cells and CD123+ plasmacytoid dendritic cells. This dis-
tinct inflammatory infiltrate may result in the increased cutaneous carcinogenesis 
and more aggressive behavior of SCC in OTRs (Muhleisen et al. 2009).

In response to systemic inflammation, and in particular to elevated IL-6 levels, 
the liver produces C-reactive protein (CRP) used as a marker of systemic inflamma-
tion, which binds to dead or dying cells to activate the complement system. Elevated 
CRP concentration increases the risk for “all-cause” mortality compared to other 
subjects (Marsik et al. 2008). Cancer patients with highly elevated CRP showed 
increased mortality by a factor of 28, which confirms correlation between cancer 
progression and inflammation. Mikirova et al. (2012) observed that twenty-eight out 
of forty-five subjects had sharply elevated CRP levels in cancer patients, suggest-
ing that inflammation is a prevalent problem for cancer patients. This is especially 
important since other reports indicate that inflammation, particularly elevated CRP, 
is a marker of a poor prognosis (St Sauver et al. 2009). They also observed higher 
level of pro-inflammatory cytokines IL-1α, IL-2, IL-8, TNF-α, chemokine eotaxin, 
which were reduced after treatment for vitamin C (Mikirova et al. 2012).

Prostaglandins generated by the arachidonic acid cascade particularly PGE2 
have been involved in various models for tumorigenesis (Vanderveen et al. 1986). 
Squamous cell skin cancer appears to link with chronic activation of the PG bio-
synthetic pathway resulting from recurrent UVB exposure. In the series of tumor 
biopsies evaluated, COX-2 was highly expressed in SCC within the overlying sun-
exposed epidermis as well as within the tumor nests. Positive staining was also 
observed within the endothelium and smooth muscle layers of the blood vessels 
and infiltrative macrophages of SCC biopsies (Buckman et al. 1998).

Taken together, the association of inflammation with enhanced tumor formation 
and tumor progression has been supported by a large number of clinical studies; 



45717 The Role of Inflammation in Skin Cancer

however, these studies do not allow any insight in the cellular and molecular 
mechanisms that lie at the basis of the tumor and progression-promoting effect of 
inflammation in epithelial skin cancers.

17 .6  Inhibitors of Inflammation for the Prevention  
and Treatment of Skin Cancer

Evidence suggests that inflammation is causally linked to carcinogenesis (Balkwill 
and Coussens 2004). COX-2, the rate-limiting enzyme in arachidonic acid metab-
olism leading to PG synthesis, is up-regulated in murine and human NMSC. 
Inhibition of COX-2 by biochemical inhibitors or genetic deletion decreases 
chemical- or UV-induced skin tumor development (Wright et al. 2006). A number 
of animal models have shown that inhibition of COX-2 helps prevent skin cancer, 
including UVR-induced skin carcinogenesis and two-stage skin carcinogenesis 
model in mice.

17.6.1  Non-steroidal Anti-inflammatory Drugs (NSAIDs)

Drugs of this class include celecoxib, diclofenac, indomethacin, sulindac, aspi-
rin, and ibuprofen. They act by repressing prostaglandin biosynthesis through 
inhibition of COX (Bode and Dong 2000). The expression of COX-2 is linked to 
excessive activation of intracellular signal transduction pathways comprising pro-
line-directed serine/threonine kinases and their downstream transcription factors. 
There is an important relation between MAPK signaling and COX-2 expression, 
which further supports the idea that agents modulating MAPK signaling pathways 
can be effective in chemoprevention of skin cancer (Shrotriya et al. 2010).

Celecoxib, a COX-2 inhibitor, decreases macrophage and neutrophil infiltra-
tion into skin tumors, as well as inflammation induced by 50 Gy radiation (Liang 
et al. 2003). Celecoxib at the doses, determined to be equivalent to twice-daily 
doses in humans, was effective at increasing tumor latency and decreasing mul-
tiplicity in hairless mice exposed to UVR. This study showed a decrease in PG 
synthesis in the epidermis, as well as a statistically significant decrease in tumor 
yield (Fischer et al. 1999). Oral or topical administration of celecoxib has been 
reported to prevent new tumor formation after the onset of UV-induced photocar-
cinogenesis in hairless mice (Wilgus et al. 2003), while also suppressing PGE2 
production induced by UVB. Such sensitization appears to be mediated through 
inhibition of AP-1, JNK, and p38 signaling pathways. In DMBA-initiated/TPA-
promoted female ICR mouse skin, application of celecoxib also significantly 
reduced the multiplicity of papillomas, which was associated with decreased 
expression of COX-2 and VEGF, as well as inhibition of CCAAT (cytidine–
cytidine–adenosine–adenosine–thymidine)/C/EBP (enhancer binding protein) 
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activation (Chun et al. 2006). Oral administration of celecoxib is also effective in 
the prevention of SCC and BCC in individuals who have extensive actinic dam-
age and are at high risk for the development of NMSC (Elmets et al. 2010).

Topical application of etodolac one week prior to and after the tumor initiation 
resulted in a significant delay of the tumor induction and inhibition of the tumor 
burden as well as multiplicity in the DMBA/TPA-induced skin tumorigenesis in 
ICR mouse. Treatment with oxyphenbutazone in drinking water increased the 
tumor latency period and decreased the tumor incidence as well as tumor burden 
in the peroxynitrite-induced/TPA-promoted skin tumors in the HOS-HR-1-specific 
pathogen-free mice (Kapadia et al. 2010).

The prototypical COX inhibitor, aspirin, blocks enzymatic activity covalently 
through the acetylation of Ser-530 in COX-1 and Ser-516 in COX-2 (Wennogle 
et al. 1995). Aspirin inhibits both UVC- and UVB-induced AP-1 activity in a dose-
dependent manner, when the cells are treated with aspirin or before exposure to 
UVR. The inhibition of UVB-induced AP-1 activity appears to mediate through 
their ability to block the activation of ERKs, JNKs, and P38 kinases, whereas 
the inhibitory effect on UVC-induced AP-1 activity seems to be mediated only 
through the inhibition of JNKs. In the skin of AP-1/luciferase transgenic mice, 
topical pretreatment of mouse skin with aspirin blocked the UVB-induced AP-1 
transactivation in vivo (Huang et al. 1997).

Topical application of indomethacin reduced skin tumor development by 
~30 % in the DMBA/TPA-induced mouse skin tumorigenesis (Slaga et al. 1977). 
Indomethacin has also been shown to reduce photocarcinogenesis in mice and 
when administered through diet led to the decrease in tumor yield by 78 % in 
UV-induced skin tumor development in SKH:HR-1 hairless mice and also blocked 
PG synthesis in the epidermis (Fischer et al. 1999).

Diclofenac, a non-selective NSAID, is widely used in the treatment of AK. In 
a study of 32 organ transplant recipients with 3 or more AK, patients randomized 
to twice-daily treatment with 3 % diclofenac showed decrease in lesions and no 
patients in the diclofenac group had developed SCC in the treated areas. Thus, 
diclofenac may prevent the cancerous transformation of AK (Ulrich et al. 2010).

Sulindac is NO-releasing NSAIDs, which when synthesized reduces gastro-
intestinal and cardiovascular toxicities of NSAIDs and possess anti-proliferative, 
pro-apoptotic, and anti-cancer activities. In the skin, topical application of sulin-
dac reduces UVB-induced cutaneous phototoxicity and significantly decreased 
the development of UVB-induced skin tumor in SKH-1 hairless mice, as indi-
cated by a substantial reduction in tumor number and tumor volume. The inhibi-
tory effect was corroborated by increase in Bax:Bcl-2 ratio and the expression of 
pro-apoptotic BCL-2-associated X protein (Bax), decrease in anti-apoptotic Bcl-2 
expression indicating increased apoptosis, and reduced cell proliferation as evident 
by decreased expression of proliferating cell nuclear antigen (PCNA) and cyclin 
D1. Sulindac diminished UVB-induced inflammatory responses as observed by 
a remarkable reduction in the levels of phosphorylated MAPK such as ERK1/2, 
p38, and JNK1/2. It also inhibited NF-κB by enhancing IκBα as evidenced by the 
reduced expression of iNOS and COX-2, the direct NF-κB transcription target 
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proteins. Moreover, sulindac also significantly reduced the progression of benign 
lesions to invasive carcinomas by suppressing the tumor aggressiveness and 
retarding epithelial–mesenchymal transition. Thus, sulindac is a potent inhibitor of 
UVB-induced and chemically induced skin carcinogenesis and acts by targeting 
proliferation regulatory pathways (Kim et al. 2006; Chaudhary et al. 2013).

17.6.2  Naturally Occurring Plant Products

Dietary polyphenols which are widely present in fruits, vegetables, dry legumes, 
and beverages (such as tea, coffee, juice, wine, beer) have gained considerable 
attention for the prevention of UV-induced skin photodamage including the risk of 
skin cancer. Experimental and epidemiologic studies have suggested that polyphe-
nols protect the skin from the adverse effects of UV radiation. Polyphenols have 
been shown to (a) scavenge radical species such as ROS/RNS, e.g., O2

−, H2O2, 
OH•, ONOO−; (b) suppress ROS/RNS formation by inhibiting some enzymes or 
chelating trace metals involved in free radical production; and (c) up-regulate or 
protect antioxidant defense (Patel et al. 2007).

Oral administration of green tea polyphenols (GTPs) to SKH-1 hairless mice 
resulted in significant inhibition of UVR-induced cutaneous edema, erythema, 
and bifold skin thickness (a biomarker of inflammation). Administration of GTPs 
in drinking water decreased COX-2, PGE2, PCNA, and cyclin D1 and also sig-
nificantly reduced the levels of various pro-inflammatory cytokines in chronically 
UVB-exposed skin/skin tumors of mice (Meeran et al. 2009). Topical treatment 
with GTPs prior to UV exposure reduced the UV-induced hyperplastic response, 
myeloperoxidase (MPO) activity, and the numbers of infiltrating inflammatory 
leukocytes in the skin (Afaq et al. 2003). Moreover, similar administration of 
both agents in the untanned backs of humans resulted in significantly less devel-
opment of erythema as compared to the UV-irradiated skin that was not treated 
with GTPs (Katiyar et al. 2001). Topical application of EGCG, an active constitu-
ent of green tea, in mice and humans, resulted in the inhibition of UVB-induced 
production of PG metabolites (PGE2, PGF2-α, and PGD2), which play a critical 
role in inflammatory disorders, free radical generation, proliferative skin diseases, 
and skin tumor promotion (Katiyar et al. 2001; Katiyar and Mukhtar 2001). The 
inhibitory effects of GTPs on these biomarkers of inflammation in UV-exposed 
skin provide mechanistic evidence of the anti-carcinogenic effects of GTPs. 
Studies have also shown that topical pretreatment with polymeric black tea poly-
phenols in Swiss bare mouse skin decreased TPA-induced inflammatory pro-
tein (COX-2) and cellular proliferation through decreasing activation of cellular 
kinases (JNK, ERK, p38, and Akt) and transcription factors (AP-1 and NF-κB) 
as well as apoptosis (Patel et al. 2008). The above in vivo observations generated 
using both animal and human systems provide insights into the possible protec-
tive mechanisms involved in the anti-initiating and/or anti-inflammatory effects 
of tea polyphenols.
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Dietary intake or topical treatment of silymarin as well as resveratrol in UVR-
exposed mice also resulted in similar inhibitory effects in terms of inflammation-
related biomarkers as observed with GTPs (Gu et al. 2007). These products also 
inhibited the expression of ornithine decarboxylase (ODC), an enzyme required 
for polyamine biosynthesis, which has a role in tumor promotion in UVB-
exposed skin. Moreover, topical pretreatment with resveratrol in mouse skin is 
reported to inhibit the TPA-induced (a) AP-1 (c-jun and c-fos) via modulation 
of p38 and JNK; (b) nuclear translocation of p65 and subsequent DNA binding 
of NF-κB by blocking the degradation of IκBα; (c) phosphorylation of p65 and 
its interaction with CREB-binding protein (CBP)/p300, rendering NF-κB tran-
scriptionally inactive; and (d) mRNA levels of COX-1, COX-2, c-myc, c-fos, 
c-Jun, TGF-β1, and TNF-α and protein levels of COX-2 (Jang and Pezzuto 1999; 
Kundu et al. 2006). Topical application of rosemary was observed to decrease 
TPA-induced tumor promotion through inhibition of hyperplasia, ODC activity, 
and inflammatory responses (Osakabe et al. 2004).

Bromelain derived from pineapple, when applied topically, resulted in delay in 
onset and thereby inhibition of tumor development in DMBA-initiated/TPA-promoted 
skin tumors in female Swiss albino mice. The mechanism involved in anti-carcino-
genic activity is underlined by induction of p53, shift in Bax/Bcl-2 ratio, induction of 
caspases, decrease in COX-2 expression, and inhibition of NF-κB pathway by regu-
lating MAPK and Akt/PKB pathways (Bhui et al. 2009). Pretreatment with oligonol 
has been shown to significantly inhibit the expression of COX-2 in skin papillomas 
and carcinomas in DMBA/TPA-induced skin carcinogenesis (Kundu et al. 2009).

Administration of polyphenol fraction from dried fruits of Crataegus pinnatifida  
(CF-TP), diallyl trisulfide (DATS), organosulfur compounds from garlic, and 
D-limonene exhibited an inhibitory effect on DMBA/TPA-mediated mouse skin 
tumorigenesis. These effects are evidenced by reduction in TPA-mediated inflamma-
tory responses (edema, hyperplasia, COX-2, iNOS expression), activation of ODC, 
and oxidative stress, which were attributed to the inhibition of Ras/Raf/ERK1/2 
signaling pathway, blockade of AP-1 activation via downregulation of upstream Akt 
and JNK signaling pathways, and promotion to pro-apoptotic state (Chaudhary et 
al. 2012; Shrotriya et al. 2010). Moreover, CF-TP inhibited the activation of NF-κB 
and AP-1 induced by TPA in JB6 P+ cells as well as benzo[a]pyrene (B[a]P)/TPA-
induced skin tumor formation and decreased the incidence of tumor. CF-TP also 
suppressed TPA-induced MPO activation, which is used as a marker to quantitate the 
extent to which leukocytes that have infiltrated into the dermis produce reactive oxy-
gen intermediates in response to topical stimuli (Kao et al. 2007). Apigenin exerts 
chemopreventive effects on UVB-induced COX-2 and skin inflammation in JB6 P+ 
mouse epidermal cells and SKH-1 hairless mice by directly suppressing Src kinase 
activity (Byun et al. 2013).

Topical application of euphol isolated from the roots of Euphorbia kan-
sui markedly inhibited TPA-induced ear edema and skin inflammation in 
DMBA/TPA-treated male CD 1 mice (Yasukawa et al. 2000). Euphol also inhib-
ited activation of downstream signaling proteins, namely PKC and MAPKs, which 
in turn decreased the levels of CXC chemokines and COX-2, following topical 
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application of TPA. Thus, euphol exhibits strong topical anti-inflammatory actions 
on mouse ear through a mechanism that involves its ability to regulate PKC 
and ERK activation, resulting in reduced COX-2, MIP-2, and CXCL1/KC up- 
regulation and leukocyte infiltration (Passos et al. 2013).

Female Swiss albino mice pretreated topically with geraniol (GOH) prior to 
TPA administration significantly inhibited TPA-induced lipid peroxidation (LPO), 
inflammatory responses, pro-inflammatory cytokine release, reduced glutathione 
(GSH) content, and the activity of different antioxidant enzymes. GOH attenuated 
early tumor promotional changes through TPA-induced altered expression of NF-
κB (p65) and COX-2 and inhibited TPA-induced altered activity of p38 MAPK. 
GOH also effectively suppresses the production of the TNF-α, IL-1β, and IL-6 
cytokines (Khan et al. 2013).

Topical treatment of UVB-induced mice with honokiol, magnolol, or silib-
inin decreased tumor multiplicity and volume. These effects are corroborated by 
decrease in the UVB-induced expression of markers of inflammation and prolif-
eration, e.g., COX-2, PGE2, PCNA, cyclins, Cdc25B, and associated Cdks (2, 4, 
6) besides phosphorylation and nuclear translocation of STAT3 (Tyr 705, Ser536) 
and NF-κB/its DNA-binding activity, which are potential upstream regulators 
of iNOS and COX-2 in the skin/skin tumors of mice. Moreover, these products 
increased the levels of CDK-interacting protein 1 (Cip)/p21, Kip/p27, cleavage of 
caspase-8, and poly-ADP-ribose polymerase (PARP) by inhibiting the levels of 
PI3K and the phosphorylation of Akt (Mallikarjuna et al. 2004; Vaid et al. 2010; 
Chilampalli et al. 2011). Treatment with honokiol also significantly inhibited 
UVB-induced expression of pro-inflammatory cytokines, such as TNF-α, IL-1β, 
and IL-6, in the mouse skin/skin tumors and that may have contributed in the inhi-
bition of tumor development (Vaid et al. 2010). Topical pretreatment with delphi-
nidin inhibits the UVB-induced MAPKK and PI3K activity directly to suppress 
COX-2 over-expression in mouse skin (Kwon et al. 2009).

Caffeine is effective in inhibiting the UVB-induced AKT/COX-2 pathway inde-
pendent of ATR in human HaCaT keratinocyte, which results in the induction of 
UVB-induced apoptosis. Blocking the AKT/COX-2 signaling by caffeine spe-
cifically eliminates UVB-damaged keratinocytes without complete DNA repair 
through apoptosis (Han et al. 2011).

Benzene fraction of Selaginella bryopteris inhibited the expression of the 
inflammatory cytokines IL-8, IL-1β, and TNF-α in methyl isocyanate-stimulated 
HEK-293 cells. In a parallel study involving a two-stage protocol of DMBA/ 
croton oil-induced skin carcinogenesis, oral administration of the flavonoid-rich 
benzene fraction of S. bryopteris prior to croton oil application caused signifi-
cant reduction in tumor incidence and multiplicity with significant delay in the 
latency period, providing evidence to the effect of polyphenolic flavonoids as anti- 
carcinogenic and/or anti-tumor-promoting agents (Mishra et al. 2011).

Collectively, the results concerning the inhibitory effects of these natu-
rally occurring plant products on UV- and phorbol ester-induced inflammatory 
responses revealed that anti-carcinogenic activity of naturally occurring plant 
products is mediated in part through their anti-inflammatory effects.
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17 .7  Conclusions and Future Directions

Melanoma and non-melanoma skin cancers are among the most prevalent cancers 
in human. Epidemiological and experimental evidence suggests “chronic inflam-
mation” to be one of the hallmarks in solar UVR and several other environmen-
tal agent-mediated skin cancers. The identification of transcription factors, i.e., 
NF-κB, STAT3, and HIF-1α, and their gene products, i.e., COX-2, cytokines, 
chemokines, and chemokine receptors, suggests critical role of inflammation 
in skin carcinogenesis. Considering the potential role of inflammation in initia-
tion and its major as well as convincing role in promotion, progression as well as 
tumor angiogenesis and metastasis, inflammatory pathways may become attractive 
targets for skin cancer prevention. Efforts to prevent or minimize the exposure to 
known skin carcinogens and ongoing studies on evaluating the role of various pro-
inflammatory mediators in carcinogenesis and assessing them as potential targets 
for chemoprevention of skin cancers need to be enhanced/encouraged.
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