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Invertibility in Groupoid C∗-algebras

Ruy Exel

Abstract. Given a second-countable, Hausdorff, étale, amenable groupoid G
with compact unit space, we show that an element a in C∗(G) is invertible
if and only if λx(a) is invertible for every x in the unit space of G, where λx

refers to the regular representation of C∗(G) on �2(Gx). We also prove that,

for every a in C∗(G), there exists some x ∈ G(0) such that ‖a‖ = ‖λx(a)‖.
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1. Introduction

The structure of certain C∗-algebras is often best studied via large families of
*-representations. According to this point of view, one tries to deduce the proper-
ties of any given element of the algebra by means of the properties of its images
under the representations provided. Here we shall mostly be interested in invert-
ibility questions, and thus on families of representations of a given C∗-algebra
which are large enough to determine when an element is invertible.

One of the first, and arguably also the most influential such result is the
Allan–Douglas local principle [1, Corollary 2.10], [4, Theorem 7.47], which asserts
that an element in a unital Banach algebra is invertible if and only if it is invertible
modulo certain ideals associated to the points of the spectrum of a given central
subalgebra. This principle has been generalized to nonlocal algebras (see [7] and
the references given there) and has successfully been applied to study Fredholm
singular integral operators with semi-almost periodic coefficients [3].

The present paper is an attempt to transpose the local-trajectory method of
[7] to the context of groupoid C∗-algebras. Since invertibility only makes sense
on unital algebras, and since the C∗-algebra of a groupoid is unital only when
the groupoid is étale and has a compact unit space, we restrict ourselves to this
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case (however our work suggests questions that might be relevant for more gen-
eral groupoids). To be precise, our main result, Theorem 2.10 applies to second-
countable, Hausdorff, étale, amenable groupoids with compact unit space. Given
such a groupoid G, we show that an element a in the groupoid C∗-algebra C∗(G)
is invertible if and only, for every x in the unit space of G, one has that λx(a) is
invertible, where λx is the regular representation of C∗(G) on �2(Gx).

A crucial tool used to prove our main result is the theory of induced repre-
sentations started by Renault in [9, Chap. II, §2] and improved by Ionescu and
Williams in [5] and [6].

Since G is amenable, we have by [2, Theorem 6.1.4(iii)] that

‖a‖ = sup
x∈G(0)

‖λx(a)‖, ∀a ∈ C∗(G). (1.1)

As a byproduct of our work we have found a small improvement of this result,
namely Corollary 3.3, below, which asserts that

‖a‖ = max
x∈G(0)

‖λx(a)‖, ∀a ∈ C∗(G), (1.2)

which is to say that the supremum in (1.1) is in fact attained for every a. The
proof of this fact is a straightforward combination of Theorem 2.10 with a result
of S. Roch [10], which we carefully describe below.

Even though the invertibility question treated in Theorem 2.10 only makes
sense for groupoids with compact unit space, (1.2) applies to a wider context. A
sensible question to be asked at this point is therefore whether or not (1.2) holds
in the absence of the compactness hypothesis.

Dropping the assumption that G is amenable, it is well known that (1.1) holds
as long as we replace the full by the reduced groupoid C∗-algebra. So it makes
sense to ask whether or not

‖a‖ = max
x∈G(0)

‖λx(a)‖, ∀a ∈ C∗
r (G) ? (1.3)

Unfortunately we have not been able to answer any of these questions, which we
are then forced to leave as open problems.

Attaining the supremum is a well-known property of continuous functions on
compact spaces, so a proof of (1.3) could be obtained, at least in the case of a
compact unit space, should we be able to prove that the function

x �→ ‖λx(a)‖
is continuous for every a ∈ C∗

r (G). However sensible this appears to be, we have
not been able to determine its validity.

Last, but not least, I would like to thank Amélia Bastos and the members of
“The Center for Functional Analysis and Applications – CEAF” of the “Instituto
Superior Técnico de Lisboa” for bringing their work to my attention and also for
their warm hospitality during two visits there where many interesting conversations
on these topics took place and where the ideas for the present work developed. I
would also like to thank Jean Renault for helpful e-mail exchanges.
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2. Sufficient family of representations

Let A be a unital C∗-algebra. The following concept appears in [10, Section 5].

Definition 2.1. A family F of non-degenerated representations (always assumed
to preserve the involution) of A is called sufficient if, for every a in A, one has that

a is invertible ⇐⇒ π(a) is invertible for all π ∈ F .

Observe that the implication “⇒” is always true, so the relevant property
conveyed by this definition is the implication “⇐”.

Proposition 2.2. The set of all irreducible representations of A is a sufficient family
of representations.

Proof. If a is a non-invertible element of A, then either a∗a or aa∗ are non-
invertible. So we may assume, without loss of generality that a∗a is non-invertible.
Let B be the closed *-subalgebra of A generated by a∗a and 1, and let X be the
compact spectrum of B. Since a∗a is non-invertible, there exists some point x0 in
X such that â∗a(x0) = 0, where the hat indicates the Gelfand transform.

The map

φ : b ∈ B �→ b̂(x0) ∈ C

is therefore a pure state of B, which may be extended to a pure state ψ on A.
Let π be the GNS representation associated to ψ, so that π is an irreducible
representation. If ξ is the associated cyclic vector we have

‖π(a)ξ‖2 = 〈π(a)ξ, π(a)ξ〉 = 〈π(a∗a)ξ, ξ〉 = ψ(a∗a) = φ(a∗a) = â∗a(x0) = 0.

It follows that the operator π(a) is not injective and hence non-invertible. �

� From now on we will be interested in the question of sufficiency for groupoid
C∗-algebras. We therefore fix a second-countable, Hausdorff, étale groupoid G,
with source and range maps denoted by “s” and “r”, respectively.

Given x in the unit space G(0) of G, we shall use the following standard
notations:

Gx = {γ ∈ G : s(γ) = x},

Gx = {γ ∈ G : r(γ) = x}, and

G(x) = Gx ∩ Gx.
Consider the Hilbert space Hx = �2(Gx) and the regular representation λx of

Cc(G) on Hx, given by

λx(f)ξ|γ =
∑

γ′γ′′=γ

f(γ′)ξ(γ′′), ∀f ∈ Cc(G), ∀ξ ∈ Hx, ∀γ ∈ Gx,

which is well known to extend to C∗(G). For each γ in Gx, let eγ be the basis
vector of Hx corresponding to γ.
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Proposition 2.3. For every γ1 and γ2 in Gx, and all f in Cc(G), one has that

〈λx(f)eγ1 , eγ2〉 = f(γ2γ
−1
1 ).

Proof. We have

〈λx(f)eγ1 , eγ2〉 = λx(f)eγ1 γ2
=

∑
γ′γ′′=γ2

f(γ′)eγ1(γ
′′)

=
∑

γ′γ1=γ2

f(γ′) = f(γ2γ
−1
1 ). �

Proposition 2.4. Let H be a closed sub-groupoid of G, viewed as a topological
groupoid with the relative topology. Then the following are equivalent:

(i) the restriction of the range map r to H, viewed as a mapping

r|H : H → H(0),

is an open mapping,
(ii) H is étale.

Proof. Assuming (i), let γ ∈ H and choose an open set U ⊆ G such that r is a
homeomorphism from U onto the open set r(U) ⊆ G(0). Then U ∩ H is open in
the relative topology of H and, by (i), we have that r(U ∩H) is open in H(0). It is
then clear that r is a homeomorphism from U ∩H to r(U ∩H), showing that r|H
is a local homeomorphism and hence that H is étale. The converse is evident. �

� From now on we fix a closed sub-groupoid H ⊆ G, satisfying the equivalent
conditions above. We will denote the unit spaces of G and H as follows

X := G(0), and Y := H(0).

Since H is closed in G and since Y = H ∩X , we see that Y is a closed subspace
of X .

Let us briefly describe the process of inducing representations from C∗(H) to
C∗(G), cf. [9, Chap. II, §2] and [6, Section 2]. Given a representation L of C∗(H)
on a Hilbert space HL, we want to produce a representation IndG

H L of C∗(G) on
a Hilbert space HIndL. In order to do so, consider the closed subset of G given by

GY = s−1(Y ) = {γ ∈ G : s(γ) ∈ Y }.
For ϕ and ψ in Cc(GY ), define 〈ϕ, ψ〉∗ in Cc(H), by

〈ϕ, ψ〉∗(ζ) =
∑

γ1γ2=ζ

ϕ(γ−1
1 )ψ(γ2), ∀ζ ∈ H.

It should be noticed that the above sum ranges over all pairs of elements γ1 and
γ2 in G (as opposed to H), whose product equals ζ. In this case notice that both
r(γ1) and s(γ2) lie in Y , so that γ−1

1 and γ2 indeed belong to the domain of ϕ and
ψ, respectively.

By [8, Theorem 2.8], one has that in fact Cc(GY ) may be completed to a
right C∗(H)-Hilbert module, which we will denote by M , the appropriate right
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multiplication being that which is described in [8, page 11]. It is therefore profitable
to view 〈· , ·〉∗ as a C∗(H)-valued map.

The spaceHIndL, on which the induced representation will act, is then defined
to be the completion of

Cc(GY )⊗HL,

relative to the inner-product

〈ϕ⊗ ξ, ψ ⊗ η〉 :=
〈
L
(
〈ψ, ϕ〉∗

)
ξ, η

〉
, ∀ϕ, ψ ∈ Cc(GY ), ∀ξ, η ∈ HL.

One next gives Cc(GY ) the structure of a left Cc(G)–module by setting

(f ∗ ϕ)(γ) :=
∑

γ1γ2=γ

f(γ1)ϕ(γ2), ∀f ∈ Cc(G), ∀ϕ ∈ Cc(GY ), ∀γ ∈ GY .

Again by [8, Theorem 2.8], the above left-module structure may be extended to a
bounded multiplication operation

(a, x) ∈ C∗(G) ×M �→ ax ∈M.

In order to define the induced representation one may either work with the
completionM described above or take the more pedestrian point of view of sticking
to compactly supported functions. Taking the latter approach, for f ∈ Cc(G) one
initially defines IndG

H L(f) on the dense subspace Cc(GY ) ⊗HL ⊆ HIndL, by the
formula

IndG

H L(f)(ϕ⊗ ξ) := (f ∗ ϕ)⊗ ξ, ∀ϕ ∈ Cc(GY ), ∀ξ ∈ HL,

and then extend it by continuity to HIndL. This provides a *-representation of
Cc(G) on HIndL which, in turn, may be extended to the whole of C∗(G).

The resulting representation of C∗(G) on HIndL is denoted by IndG

H L, and is
called the representation induced by L from H up to G. For more details, see [9,
Chap. II, §2] and [6, Section 2].

� Fix, for the time being, an element x ∈ X .

We would now like to consider the question of inducing representations from
H := G(x) up to G. Observing that

Y = G(x)(0) = {x},
we have that GY = Gx, which is a discrete topological space. Consequently Cc(GY )
is linearly generated by the set

{eγ : γ ∈ Gx},
where eγ denotes the characteristic function of the singleton {γ}.

Proposition 2.5. Given γ, γ′ ∈ Gx, we have that

〈eγ , eγ′〉∗ =

{
δγ−1γ′ , if r(γ) = r(γ′),
0, otherwise,

where, for each h ∈ G(x), we denote by δh the characteristic function of the sin-
gleton {h}, viewed as an element of Cc

(
G(x)

)
⊆ C∗(G(x)).
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Proof. We have, for every ζ ∈ G(x), that

〈eγ , eγ′〉∗(ζ) =
∑

γ1γ2=ζ

eγ(γ
−1
1 )eγ′(γ2) =

[
γ−1γ′=ζ

]
where the brackets denote the Boolean value of the expression inside, with the
convention that a syntactically incorrect expression, e.g., when the multiplication
γ−1γ′ is illegal, the value is zero.

Thus, when r(γ) = r(γ′), we have that the product γ−1γ′ is defined, evidently
giving an element of G(x) and, in this case,

〈eγ , eγ′〉∗ = δγ−1γ′ ,

On the other hand, when r(γ) �= r(γ′), we clearly have that 〈eγ , eγ′〉∗ = 0. �

The following elementary result is included in order to illustrate a simple
example.

Proposition 2.6. Let Λ be the left-regular representation of C∗(G(x)) on �2(G(x)).
Then IndG

G(x)
Λ is unitarily equivalent to λx.

Proof. For each element γ ∈ Gx, and each g ∈ G(x), consider the element

ϕγ,g = eγ ⊗ eg ∈ Cc(Gx)⊗ �2(G(x)) ⊆ HIndΛ.

We first claim that

〈ϕγ,g, ϕγ′,g′〉 =
[
γg=γ′g′

]
, ∀γ, γ′ ∈ Gx, ∀g, g′ ∈ G(x). (2.1)

In fact, we have

〈ϕγ,g, ϕγ′,g′〉 =
〈
eγ ⊗ er(γ), eγ′ ⊗ er(γ′)

〉
=

〈
Λ
(
〈eγ′ , eγ〉∗

)
er(γ), er(γ′)

〉
= (†)

Consequently, if r(γ) �= r(γ′) we have by Proposition 2.5 that 〈ϕγ,g, ϕγ′,g′〉 = 0,
which proves (2.1) in this case. If r(γ) = r(γ′) then, again by Proposition 2.5, it
follows that

(†) =
〈
Λ
(
δγ′−1γ

)
eg, eg′

〉
=

〈
eγ′−1γg, eg′

〉
=

[
γ′−1γg=g′

]
=

[
γg=γ′g′

]
,

proving (2.1). In particular, this implies that

〈ϕγ,g, ϕγ′,g′〉 = 〈ϕγg,x, ϕγ′,g′〉,
and since the collection of all ϕγ′,g′ evidently spans HIndΛ, we have that ϕγ,g =
ϕγg,x, and it is then clear that the mapping

eγ �→ ϕγ,x

extends to a unitary operator U : Hx → HIndΛ. Given f ∈ Cc(G), we claim that〈
U∗(IndG

H
Λ(f))Ueγ , eγ′

〉
= 〈λx(f)eγ , eγ′〉, ∀γ, γ′ ∈ Gx. (2.2)

In order to verify it observe that the left-hand side equals〈
IndG

H Λ(f)(ϕγ,x), ϕγ′,x
〉
=

〈
(f ∗ eγ)⊗ ex, eγ′ ⊗ ex′

〉
=

〈
Λ
(
〈eγ′ , f ∗ eγ〉∗

)
ex, ex

〉
= (♦)
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After checking that

f ∗ eγ =
∑
η∈Gx

f(ηγ−1)eη,

we conclude that

(♦) =
∑
η∈Gx

f(ηγ−1)
〈
Λ
(
〈eγ′ , eη〉∗

)
ex, ex

〉
=

∑
η∈Gx

r(γ′)=r(η)

f(ηγ−1)
〈
Λ
(
γγ′−1η

)
ex, ex

〉
=

∑
η∈Gx

r(γ′)=r(η)

f(ηγ−1)
〈
eγ′−1η, ex

〉
= f(γ′γ−1)

P.2.3
= 〈λx(f)eγ , eγ′〉.

This proves (2.2), and taking into account that γ and γ′ are arbitrary, we conclude
that U∗(IndG

H
Λ(f))U = λx(f), finishing the proof. �

Notice that there are two completions of Cc(Gx) which are relevant to us.
On the one hand M is the completion under the C∗(G(x))-valued inner-product
〈· , ·〉∗ , and, on the other, Hx is the completion for the 2-norm. These two spaces
are related to each other by the following.

Proposition 2.7. There is a bounded linear map

j : M → Hx,

such that j(ϕ) = ϕ, for every ϕ ∈ Cc(Gx).

Proof. Given ϕ ∈ Cc(Gx), notice that

‖ϕ‖22 =
∑
γ∈Gx

ϕ(γ)ϕ(γ) = 〈ϕ, ϕ〉∗(1) ≤ ‖〈ϕ, ϕ〉∗‖C∗(G(x))
= ‖ϕ‖2M .

This implies that the identity map on Cc(Gx) is continuous for ‖·‖M on its do-
main and the 2-norm on its codomain. The required map is then obtained by a
continuous extension. �

If ζ ∈ G(x), we have a well-defined bijective map

γ ∈ Gx �→ γζ ∈ Gx,
and hence the map

Rζ : Hx → Hx,

defined by

Rζ(ξ)γ = ξ(γζ), ∀ξ ∈ Hx, ∀γ ∈ Gx,
is a unitary operator. It is also easy to see that Rζ1 ◦Rζ2 = Rζ1ζ2 , which is to say
that R is a unitary representation of G(x) on Hx.

This representation will play an important role in our next result, but before
stating it, we need to introduce a notation.
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Given any discrete group G, and any ζ ∈ G, the map

f ∈ Cc(G) �→ f(ζ) ∈ C

is well known to extend to a bounded linear functional on C∗(G), which we will
denote by

a ∈ C∗(G) �→ â(ζ) ∈ C.

Proposition 2.8. For every a ∈ C∗(G), every x, y ∈ M , and every ζ ∈ G(x), we
have that

̂〈x, ay〉∗(ζ) =
〈
λx(a)Rζ

(
j(y)

)
, j(x)

〉
.

Proof. Given f ∈ Cc(G), and ψ, ϕ ∈ Cc(Gx), we have

〈ϕ, f ∗ ψ〉∗(ζ) =
∑

γ1γ2=ζ

ϕ(γ−1
1 )(f ∗ ψ)(γ2) =

∑
γ1γ2γ3=ζ

ϕ(γ−1
1 )f(γ2)ψ(γ3) = · · ·

With the change of variables “γ′
3 = γ3ζ

−1” the above equals

· · · =
∑

γ1γ2γ′
3=x

ϕ(γ−1
1 )f(γ2)ψ(γ

′
3ζ)

=
∑

γ1γ2γ′
3=x

ϕ(γ−1
1 )f(γ2)Rζ(ψ)(γ

′
3) =

〈
f ∗Rζ(ψ), ϕ

〉
.

This gives that

〈ϕ, f ∗ ψ〉∗(ζ) =
〈
f ∗Rζ(ψ), ϕ

〉
,

and the proof is concluded upon replacing

• f by the terms of a sequence {fn}n converging to a in C∗(G(x)),
• ϕ by the terms of a sequence {ϕn}n converging to x in M , and finally

• ψ by the terms of a sequence {ψn}n converging to y in M . �

Corollary 2.9. Given x ∈ X, suppose that a is an element of C∗(G) such that
λx(a) = 0. Then

IndG
G(x) L(a) = 0,

for any representation L of C∗(G(x)) which is weakly contained in Λ.

Proof. By Proposition 2.8, we deduce that

̂〈x, ay〉∗(ζ) = 0, ∀ζ ∈ G(x), ∀x, y ∈M.

Temporarily fixing x and y, we then deduce that Λ
(
〈x, ay〉∗

)
= 0, and hence that

L
(
〈x, ay〉∗

)
= 0, (2.3)

for any L as in the statement. Given f ∈ Cc(G), ϕ, ψ ∈ Cc(Gx) and ξ, η ∈ HL, we
have that〈

IndG
G(x) L(f)(ϕ⊗ ξ), ψ ⊗ η

〉
=

〈
(f ∗ ϕ)⊗ ξ, ψ ⊗ η

〉
=

〈
L
(
〈ψ, f ∗ ϕ〉∗

)
ξ, η

〉
.
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Applying this for f ranging in a sequence {fn}n converging to a in C∗(G(x)), we
conclude that〈

IndG
G(x)

L(a)(ϕ⊗ ξ), ψ ⊗ η
〉
=

〈
L
(
〈ψ, aϕ〉∗

)
ξ, η

〉 (2.3)
= 0,

from where the conclusion follows easily. �
We may now prove our main result:

Theorem 2.10. Let G be a second-countable, Hausdorff, étale groupoid, such that
G(0) is compact. Suppose moreover that G is amenable. Then {λx}x∈G(0) is a suf-
ficient family of representations for C∗(G). In other words, if a ∈ C∗(G) is such
that λx(a) is invertible for every x in the unit space of G, then a is necessarily
invertible.

Proof. Suppose, by way of contradiction, that a is non-invertible. By Proposi-
tion 2.2 there exists an irreducible representation π of C∗(G) such that π(a) is
non-invertible. Employing [5, Theorem 2.1] we have that, for some x ∈ G(0), there
exists an irreducible representation L of C∗(G(x)) such that π and IndG

G(x)
L share

null spaces.
Since G is amenable we have that G(x) is also amenable by [2, Proposition

5.1.1], and hence that L is weakly contained in the left-regular representation. We
may therefore employ Corollary 2.9 to conclude that

Ker (λx) ⊆ Ker
(
IndG

G(x)
L
)
= Ker (π).

By hypothesis a is invertible modulo Ker (λx), and hence it must also be invertible
modulo Ker (π), a contradiction. �

3. Strictly norming family of representations

A family F of representations of a C∗-algebra A is often called norming, when

‖a‖ = sup
π∈F
‖π(a)‖, ∀a ∈ A. (3.1)

As an example, the family {λx}x∈G(0) is norming for the reduced groupoid C∗-
algebra C∗

r (G), for every (non-necessarily amenable) groupoid G. Based on this
concept, let us give the following:

Definition 3.1. A family F of representations of a C∗-algebra A will be called
strictly norming when it is norming and, in addition, the supremum in (3.1) is
attained for every a in A.

The next result, due to Roch, relates strictly norming and sufficient families
in an interesting way. Its proof is included for the convenience of the reader and
also because it is slightly simpler than the proof given by Roch in [10].

Theorem 3.2 ([10, Theorem 5.7]). Let F be a family of non-degenerated represen-
tations of a unital C∗-algebra A. Then F is strictly norming if and only if it is
sufficient.
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Proof. Arguing by contradiction, suppose that F is sufficient, but there exists
a ∈ A such that ‖π(a)‖ < ‖a‖, for all π in F . Replacing a by a∗a, we may assume
that a is positive. For every π in F , we then have that

σ
(
π(a)

)
⊆

[
0, ‖π(a)‖

]
⊆

[
0, ‖a‖

)
.

Setting b = a− ‖a‖, we then have by the spectral mapping theorem that

σ
(
π(b)

)
= σ

(
π(a)− ‖a‖

)
= σ

(
π(a)

)
− ‖a‖ ⊆

[
− ‖a‖, 0

)
.

It follows that 0 /∈ σ
(
π(b)

)
, and hence that π(b) is invertible for every π in F ,

but, since ‖a‖ belongs to the spectrum of a, we see that b is not invertible, a
contradiction.

To verify the “only if ” part of the statement, let a be non-invertible. We thus
need to find some π ∈ F , such that π(a) is non-invertible.

Since a is non-invertible, then either a∗a or aa∗ is non-invertible. We suppose
without loss of generality that the former is true, that is, that the element c := a∗a
is non-invertible. We then have that

0 ∈ σ(c) ⊆
[
0, ‖c‖

]
.

With b = ‖c‖ − c, we conclude from the spectral mapping theorem that

‖c‖ ∈ σ(b) ⊆ ‖c‖ −
[
0, ‖c‖

]
=

[
0, ‖c‖

]
,

so ‖b‖ = ‖c‖, and by hypothesis there exists π ∈ F , such that ‖π(b)‖ = ‖c‖. Since
π(b) is positive, this implies that ‖c‖ lies in its spectrum, which is to say that
‖c‖ − π(b) is non-invertible, but

‖c‖ − π(b) = π(c),

so π(c) is non-invertible which implies that π(a) is non-invertible. �
Putting Theorem 2.10 and Theorem 3.2 together, we therefore deduce the

following important consequence:

Corollary 3.3. Suppose we are given a second-countable, Hausdorff, étale, amenable
groupoid G with G(0) compact. Then, for every a ∈ C∗(G), there exists x ∈ G(0),
such that

‖a‖ = ‖λx(a)‖.
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