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1. Introduction

Factorization of matrix functions is a standard tool in solving systems of convolu-
tion type equations

k ∗ φ = f (1.1)

on a half-line, going back to the classical paper [27] and known as the Wiener–Hopf
technique; see, e.g., the monographs [6, 17, 16] for detailed presentation and further
references. This technique was modified by Ganin [15] to allow for consideration
of equations on intervals of finite length. Ganin’s approach, however, gives rise to
matrix functions [

eλIN 0

k̂ e−λIN

]
, (1.2)
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where λ is the length of the interval,

eλ(x) = eiλx, x ∈ R, (1.3)

and k̂ is the Fourier transform of the N ×N kernel k. These matrix functions have
a second kind discontinuity at ∞, even when k̂ behaves nicely. Besides, the size
of the matrix doubles, so even scalar equations (1.1) yield a factorization problem
for a 2× 2 matrix function, more complicated than that for scalar functions.

It was shown by two of the authors [19] that for a rather wide class of kernels
k the factorization of (1.2) reduces to that for matrix functions of the same block
triangular structure in which the off-diagonal block is substituted by its so-called
almost periodic representatives at ±∞. Thus emerged the factorization problem
for almost periodic matrix functions G, with special interest in the case of

GF =

[
e1IN 0N

F e−1IN

]
. (1.4)

(Note that the change of λ to 1 in (1.4) can be achieved by a simple change of
variable and can therefore be adopted without any loss of generality.)

A systematic exposition of the factorization theory for such matrix functions
can be found in [5], while some more recent results are in [2, 9, 10, 11, 12, 13, 18, 25].
Still, the theory is far from being complete, even for matrix functions (1.4).

The factorability criterion for matrix functions (1.4) in the case N = 1,

F = C1eα + C−1eα−1 + C2eβ + C−2eβ−1 (1.5)

with 0 < α < β < 1 was established (in somewhat different terms) in [1], with
an alternative approach and some generalization presented in [25]. In our previous
paper [2], we provided explicit factorization formulas for this setting. For N > 1
the canonical factorability criterion and the factorization formulas are available if
C1 = 0 or C−2 = 0, see [24, Theorem 6.5]. If C2 = 0 or C−1 = 0 then the respec-
tive results can be derived from [21, Theorem 6.1], but only under an additional
assumption that the remaining matrix coefficients can be simultaneously put in a
triangular form via the same equivalence transformation.

The goal of this paper is to establish respective results (that is, the canon-
ical factorization criterion and explicit factorization formulas) under the similar
“triangularizability” requirement on the coefficients Cj in (1.5) without supposing
that either of them vanishes, thus extending the statements of [2]. This is done
in Section 3. Section 2 contains necessary notation and background information,
including a slight variation of a known result on factorability in decomposing alge-
bras. Section 4 provides formulas for the so-called geometric mean of the matrices
GF when N = 2, with technical details delegated to the Appendix.
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2. Preliminaries

2.1. Background information on AP factorization

For any algebra A, we denote by GA the group of its invertible elements, and by
AN×N the algebra of all N ×N matrices with the entries in A.

Let APP be the algebra of almost periodic polynomials, that is, the set of
all finite linear combinations of elements eλ (λ ∈ R), with eλ defined by (1.3). The
closure of APP with respect to the uniform norm is the C∗-algebra AP of almost
periodic functions, and the closure of APP with respect to the stronger norm,

‖
∑

λ cλeλ‖W =
∑

λ |cλ|, cλ ∈ C,

is the Banach algebra APW .
The basic information about AP functions can be found in several mono-

graphs, including [4, 14] and [22]. For our purposes, the following will suffice.
For any f ∈ AP there exists the Bohr mean value

M(f) = lim
T→+∞

1

2T

∫ T

−T

f(x) dx.

The functions f ∈ AP are defined uniquely by the Bohr–Fourier series∑
λ∈Ω(f)

f̂(λ)eλ

where Ω(f) :=
{
λ ∈ R : f̂(λ) �= 0

}
is the Bohr–Fourier spectrum of f and the

numbers f̂(λ) = M(fe−λ) are referred to as the Bohr–Fourier coefficients of f .
Let

AP± :=
{
f ∈ AP : Ω(f) ⊂ R±

}
, APW± := AP± ∩ APW,

APW±
0 :=

{
f ∈ APW± : f̂(0) = 0

}
,

where, as usual, R± = {x ∈ R : ± x ≥ 0}.
A function f ∈ AP is invertible in AP if and only if it is invertible in L∞(R),

that is, if and only if infx∈R |f(x)| > 0. For every f ∈ GAP , the following limits
exist, are finite, equal and independent of the choice of a continuous branch of the
argument of f :

κ(f) := lim
T→+∞

1

2T

{
arg f(x)

}T

−T
= lim

T→±∞
1

T

{
arg f(x)

}T

0
.

Their common value is called the mean motion (or the AP index) of f .
We say that G ∈ APN×N admits a canonical left AP factorization if

G = G+G
−1
− (2.1)

with G± ∈ GAP±
N×N . If in fact G± ∈ GAPW±

N×N , (2.1) is said to be a canonical
left APW factorization of G. More generally, a left AP or APW factorization (not
necessarily canonical) of G is a representation G = G+DG−1

− with G± as above
and an extra middle factor D = diag[eκ1 , . . . , eκN ]. The parameters κj ∈ R are
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defined by G uniquely up to a permutation whenever the factorization exists, and
are called the (left) partial AP indices of G. Of course, condition G ∈ GAPN×N

(resp., G ∈ GAPWN×N ) is necessary in order for G to admit a left AP (resp.,
APW ) factorization, and

κ1 + · · ·+ κN = κ(detG).

A canonical AP factorization of G ∈ APWN×N is automatically its (naturally,
also canonical) APW factorization. For N = 1, any G ∈ GAPW admits an APW
factorization, and thus AP (and even APW ) factorable functions form a dense
subset of AP . As was discovered recently [8], this is not the case any more if
N > 1.

However, for matrix functions of the form (1.4) with N = 1, that is,

Gf =

[
eλ 0
f e−λ

]
, (2.2)

it is presently not known whether (and therefore still a priori possible that) the set
of f for which Gf admits an AP factorization is dense in AP ; see open problems in
[7]. Let us denote by E the closure of this set, and say that E ⊂ R is admissible if

Ω(f) ⊂ E =⇒ f ∈ E .
From previous work on the factorization theory it follows in particular that grids
−ν + hZ and sets E with a gap of length at least 1 inside (−1, 1) are admissible.

The next result implies that the set of f ∈ APW for which (2.2) admits a
canonical AP factorization is dense in E ∩ APW .

Lemma 2.1. Let Gf be APW factorable. Then in every neighborhood of f in APW
metric there exist g for which Gg admit a canonical AP factorization.

Proof. Step 1. It is a standard trick in AP factorization theory (see, e.g., [5, Propo-
sition 13.4]) to consider along with Gf the matrix function[

1 0
φ+ 1

]
Gf

[
1 0
φ− 1

]
= Gf̃ ,

where f̃ = f + eλφ+ + e−λφ−. Obviously, Gf and Gf̃ are APW factorable only

simultaneously and have the same sets of partial AP indices, provided that φ± ∈
APW±. Moreover, small perturbations of f̃ are equivalent to small perturbations
of f , for φ± being fixed. So, choosing for f ∈ APW

φ± = −
∑

μ∈Ω(f),±μ≥λ

f̂(μ)e(μ∓λ),

we reduce the general case to the situation when

Ω(f) ⊂ (−λ, λ). (2.3)

Step 2. Suppose that (2.3) holds and Gf admits an APW factorization G+DG−1
− .

Then its partial AP indices are ±ν for some ν ∈ [0, λ], Ω(G±1
+ ) ⊂ [0, λ] and
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Ω(G±1
− ) ⊂ [−λ, 0]. Of course, only the case ν �= 0 is of interest. Thus, we may

suppose that D = diag[eν , e−ν] with ν ∈ (0, λ].
Since for c �= 0 [

eν 0
c e−ν

]
=

[
1 eν
0 c

] [
e−ν 1
−c 0

]−1

,

the matrix function

Gf + cG+

[
0 0
1 0

]
G−1

− = G+

[
eν 0
c e−ν

]
G−1

−

admits a canonical APW factorization. So, there are arbitrarily small (in APW
metric) perturbations of Gf by matrix functions with the Bohr–Fourier spectrum
in [−λ, λ] admitting a canonical AP factorization.

Step 3. Let H ∈ APW2×2 be a small perturbation the existence of which was
proved at Step 2, that is, Ω(H) ⊂ [−λ, λ] and Gf + H admits a canonical AP
factorization. Observe that

Gf +H =

[
eλ(1 + e−λh11) h12

f + h21 e−λ(1 + eλh22)

]
=

[
1 0
0 1 + eλh22

] [
eλ h12

f̃ e−λ

] [
1 + e−λh11 0

0 1

]
,

(2.4)

where

f̃ =
f + h21

(1 + e−λh11)(1 + eλh22)
. (2.5)

Since Ω(eλh22) ⊂ [0, 2λ], 1 + eλh22 ∈ GAPW+ provided that ‖H‖W is sufficiently
small. Similarly, 1 + e−λh11 ∈ GAPW−. From (2.4) we then conclude that the
matrix function [

eλ h12

f̃ e−λ

]
(2.6)

admits a canonical AP factorization, while (2.5) implies that f̃ can be made ar-
bitrarily close to f . In other words, the perturbation H can be made off-diagonal,
with Ω(h12) ⊂ [−λ, λ].

Step 4. Consider now a small perturbation of Gf the existence of which was es-
tablished at Step 3, and represent it as[

eλ h12

f + h21 e−λ

]
=

[
eλ 0

f + h21 e−λ(1 − h12(f + h21))

] [
1 e−λh12

0 1

]
. (2.7)

Since Ω(e−λh12) ⊂ [−2λ, 0], the right factor in (2.7) belongs to GAPW−
2×2. Thus,

the left factor in the right-hand side of (2.7) admits a canonical AP factorization
along with its left-hand side. In its turn, 1−h12(f +h21) is a function close to 1 in
APW and therefore admitting a canonical factorization g+g

−1
− with the multiples

also close to 1. From here we conclude that the matrix function[
eλ 0

(f + h21)g
−1
+ e−λ

]
=

[
1 0
0 g−1

+

] [
eλ 0

f + h21 e−λ(1 − h12(f + h21))

] [
1 0
0 g−

]
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also admits a canonical AP factorization. It remains to observe that (f + h21)g
−1
+

can be made arbitrarily close to f by choosing ‖H‖W small enough. �

If G ∈ APN×N has a canonical left AP factorization then the matrix

d(G) := M(G+)M(G−)−1, (2.8)

with M(G±) understood entry-wise, does not depend on the particular choice of
such a factorization and is called the geometric mean of G.

The value of d(G) plays an important role in the Fredholmness criteria for
the related convolution type equations. It is known to depend continuously on G
([26], see also [5]).

2.2. Factorization in decomposing algebras

Let B be a decomposing unital Banach algebra with unit e, that is, B admits a
direct sum decomposition

B = B+ ⊕ B− (2.9)

with B± being subalgebras of B, and let P± be the complementary projections
associated with this decomposition, P± : B → B±.

We say that b = e− a ∈ B admits a canonical left factorization if

e− a = (e + b+) (e+ b−), (2.10)

where e+ b± ∈ GB, b± ∈ B± and (e+ b±)−1 − e ∈ B±.
The existence of such a factorization when ‖a‖ is sufficiently small is well

known, see, e.g., [16, Chapter I, Lemma 5.1] or [17, Chapter XXIX, Theorem 9.1].
For our purposes we need a variation of this result presented below.

Consider the linear mappings

P+
a : B → B+, x �→ P+(xa),

P−
a : B → B−, x �→ P−(ax).

(2.11)

Theorem 2.2. Let B be a decomposing unital Banach algebra with associated direct
sum decomposition (2.9) and let b = e− a ∈ B be invertible in B. If

(P+
a )n+e = 0 and (P−

a )n−e = 0 for some n± ∈ N, (2.12)

then e− a admits the canonical left factorization (2.10), where

e+ b+ =

(
n+−1∑
n=0

(P+
a )ne

)−1

, e+ b− =

(
n−−1∑
n=0

(P−
a )ne

)−1

. (2.13)

Proof. Setting

e + c− := e− P−

((
n+−1∑
n=0

(P+
a )ne

)
a

)
,

e+ c+ := e− P+

(
a

(
n−−1∑
n=0

(P−
a )ne

))
,
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it is easily seen from (2.12) that(
n+−1∑
n=0

(P+
a )ne

)
(e− a) = e+ c−, (2.14)

(e − a)

(
n−−1∑
n=0

(P−
a )ne

)
= e+ c+. (2.15)

In view of the invertibility of e− a, equation (2.15) is equivalent to

(e− a)−1(e + c+) =

n−−1∑
n=0

(P−
a )ne. (2.16)

Multiplying (2.14) and (2.16), we obtain(
n+−1∑
n=0

(P+
a )ne

)
(e + c+) = (e+ c−)

(
n−−1∑
n=0

(P−
a )ne

)
(2.17)

or, equivalently,

c+ +

(
n+−1∑
n=1

(P+
a )ne

)
(e + c+) = c− + (e + c−)

(
n−−1∑
n=1

(P−
a )ne

)
, (2.18)

where the expression on the left of (2.18) belongs to B+ and on the right of (2.18)
belongs to B−. Since B+∩B− = {0}, both sides of (2.18) equal zero. Hence, (2.17)
can be rewritten in the form(

n+−1∑
n=0

(P+
a )ne

)
(e+ c+) = (e + c−)

(
n−−1∑
n=0

(P−
a )ne

)
= e, (2.19)

which means that the elements
∑n±−1

n=0 (P±
a )ne are one-sided inverses for the ele-

ments e + c±, respectively.
Replacing a by λa, where λ ∈ [0, 1], and following the proof of [16, Chapter I,

Lemma 5.1], we infer that all the multiples in (2.19) are two-sided invertible. Then
(2.14) and (2.19) imply the canonical left factorization (2.10) with e+ b± given by
(2.13). �

2.3. APW factorization in the scalar quadrinomial case

In what follows we use the notation �x� and �x� for the best integer approximation
to x ∈ R from below and above, respectively; {x} denotes the fractional part of
x ∈ R: {x} = x− �x�. Also, as usual,

N := {1, 2, . . .}, N− := {−1,−2, . . .}, Z+ := N ∪ {0}, Z− := N− ∪ {0}.

The results of this subsection are not new, and are listed here for convenience
of reference.
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Theorem 2.3 ([1, 25]). Let in (2.2)

λ = 1 and f = C1eα + C−1eα−1 + C2eβ + C−2eβ−1, C±1, C±2 ∈ C, (2.20)

where 0 < α < β < 1 and the number β − α is irrational. Then Gf admits a
canonical left AP factorization if and only if

|C2|1−β |C−2|β �= |C1|1−α |C−1|α .

Corollary 2.4. Functions f of the form (2.20) belong to E, with say, the sets
{α, β, α− 1, β − 1} are admissible.

Note that the matrix function (2.2) with

|C2|1−β |C−2|β = |C1|1−α |C−1|α �= 0

in (2.20) is not AP factorable [25] while for C2C−2 = C1C−1 = 0 its APW
factorization exists but it is not canonical. Also, only the case of irrational β − α
is of interest, since otherwise the distances between all the points in Ω(f) are
commensurable. The latter situation, with an arbitrary number of terms in f , was
covered earlier in [20] (see also [5, Section 14.4]).

The remaining portion of this subsection is a restatement of the results from
[2] in a form convenient for our current purposes.

Theorem 2.5. Suppose that G is given by (2.20) where 0 < α < β < 1, the number
β − α is irrational, and

|C2|1−β |C−2|β < |C1|1−α|C−1|α.

Then G admits a canonical left APW factorization (2.1) where the matrix func-
tions G±, G−1

± ∈ APW±
2×2 are given by

G± =

[
ϕ±
1 ϕ̃±

1

ϕ±
2 ϕ̃±

2

]
, G−1

± =
1

detG±

[
ϕ̃±
2 −ϕ̃±

1

−ϕ±
2 ϕ±

1

]
,

ϕ+
1 = e1 +

∑∞
n=0

Xne{n(β−α)},

ϕ−
1 = 1 +

∑∞
n=0

Xne{n(β−α)}−1,

ϕ+
2 = C1eα + C2eβ +

∑
{n∈Z+: 0≤{α+n(β−α)}<α}

C1Xne{α+n(β−α)}

+
∑

{n∈Z+: 0≤{β+n(β−α)}<β}
C2Xne{β+n(β−α)},

ϕ−
2 = −

∑
{n∈Z+: {α+n(β−α)}=0}

C−1Xn −
∑

{n∈Z+: α≤{α+n(β−α)}<1}
C−1Xne{α+n(β−α)}−1

−
∑

{n∈Z+: {β+n(β−α)}=0}
C−2Xn −

∑
{n∈Z+: β≤{β+n(β−α)}<1}

C−2Xne{β+n(β−α)}−1,

(2.21)
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ϕ̃+
1 =

∑∞
n=0

X̃ne{n(β−α)−α},

ϕ̃−
1 =

∑∞
n=0

X̃ne{n(β−α)−α}−1,

ϕ̃+
2 =

∑
{n∈Z+: 0≤{n(β−α)}<α}

C1X̃ne{n(β−α)} +
∑

{n∈Z+: 0≤{(n+1)(β−α)}<β}
C2X̃ne{(n+1)(β−α)},

ϕ̃−
2 = −

∑
{n∈Z+: α≤{n(β−α)}<1}

C−1X̃ne{n(β−α)}−1 (2.22)

−
∑

{n∈Z+: β≤{(n+1)(β−α)}<1}
C−2X̃ne{(n+1)(β−α)}−1 − C−1X̃0.

The coefficients Xn and X̃n (n ∈ Z+) here are given by

Xn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−1
(C−2

C1

)k(C2

C1

)−1+(n−� k
β−α�)+

∑k
s=1(� s−α

β−α�−� s−1
β−α�−1)

×
(C−2

C−1

)∑k
s=1(� s

β−α�−� s−α
β−α�)X1 if n =

⌈
k

β−α

⌉
+ 1, . . . ,

⌈
k+1−α
β−α

⌉
−1,

(−1)n−1
(C−2

C1

)k(C−2

C−1

)(n−� k+1−α
β−α �+1)+

∑k
s=1(� s

β−α�−� s−α
β−α�)

×
(
C2

C1

)−1+
∑k+1

s=1(� s−α
β−α�−� s−1

β−α�−1)
X1 if n =

⌈
k+1−α
β−α

⌉
, . . . ,

⌈
k+1
β−α

⌉
−1,

(−1)n−1
(C−2

C1

)k+1(C−2

C−1

)∑k+1
s=1(� s

β−α�−� s−α
β−α�)

×
(
C2

C1

)−1+
∑k+1

s=1(� s−α
β−α�−� s−1

β−α�−1)
X1 if n =

⌈
k+1
β−α

⌉
(2.23)

and

X̃n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n
(C−2

C−1

)(n−� k
β−α�)+

∑k−1
s=0 (� s+α

β−α�−� s
β−α�)(C−2

C1

)k
×
(
C2

C1

)∑k
s=1(� s

β−α�−� s−1+β
β−α �)

X̃0 if n =
⌈

k
β−α

⌉
, . . . ,

⌈
k+α
β−α

⌉
− 1,

(−1)n
(C−2

C−1

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)(C−2

C1

)k+1

×
(
C2

C1

)∑k
s=1(� s

β−α�−� s−1+β
β−α �)

X̃0 if n =
⌈
k+α
β−α

⌉
=

⌈
k+β
β−α

⌉
− 1,

(−1)n
(C−2

C1

)k+1(C2

C1

)(n−� k+β
β−α�+1)+

∑k
s=1(� s

β−α�−� s−1+β
β−α �)

×
(C−2

C−1

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)X̃0 if n =
⌈
k+β
β−α

⌉
, . . . ,

⌈
k+1
β−α

⌉
− 1

(2.24)

for k = 0, 1, 2, . . ., with the initial conditions X̃0 = 1,

X0 = −C−1

C1
, X1 = −C−2

C1
+

C2C−1

C2
1

.
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To simplify the forthcoming formulas, we let

N±
γ := {n : ± n ∈ N and γ + n(β − α) ∈ Z} for γ = ±α, β. (2.25)

Corollary 2.6. In the setting of Theorem 2.5 we have

M(G−) =

[
1 0

−
∑

n∈N
+
α
C−1Xn −

∑
n∈N

+
β
C−2Xn −C−1

]
,

M(G+) =

⎡⎣ −C−1C
−1
1

∑
n∈N

+
−α

X̃n∑
n∈N

+
α
C1Xn +

∑
n∈N

+
β
C2Xn C1

⎤⎦ ,

and hence the geometric mean of G is given by

d(G) =

⎡⎣ −C−1C
−1
1 −

∑
n∈N

+
−α

C−1
−1X̃n∑

n∈N
+
β
(C2 − C1C

−1
−1C−2)Xn −C1C

−1
−1

⎤⎦ .

Theorem 2.7. Suppose that G is given by (2.20) where 0 < α < β < 1, the number
β − α is irrational, and

|C2|1−β |C−2|β > |C1|1−α|C−1|α.

Then G admits a canonical left APW factorization (2.1) where the matrix func-
tions G±, G−1

± ∈ APW±
2×2 are given by

G± =

[
ψ±
1 ψ̃±

1

ψ±
2 ψ̃±

2

]
, G−1

± =
1

detG±

[
ψ̃±
2 −ψ̃±

1

−ψ±
2 ψ±

1

]
, (2.26)

with

ψ+
1 = e1 +

∑0

n=−∞ Yne{n(β−α)},

ψ−
1 = 1 +

∑0

n=−∞ Yne{n(β−α)}−1,

ψ+
2 = C1eα + C2eβ +

∑
{n∈Z−: 0≤{α+n(β−α)}<α}

C1Yne{α+n(β−α)}

+
∑

{n∈Z−: 0≤{β+n(β−α)}<β}
C2Yne{β+n(β−α)},

ψ−
2 = −

∑
{n∈Z−: {α+n(β−α)}=0}

C−1Yn −
∑

{n∈Z−: α≤{α+n(β−α)}<1}
C−1Yne{α+n(β−α)}−1

−
∑

{n∈Z−: {β+n(β−α)}=0}
C−2Yn −

∑
{n∈Z−: β≤{β+n(β−α)}<1}

C−2Yne{β+n(β−α)}−1,

(2.27)
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ψ̃+
1 =

∑−1

n=−∞ Ỹne{n(β−α)−α},

ψ̃−
1 =

∑−1

n=−∞ Ỹne{n(β−α)−α}−1,

ψ̃+
2 =

∑
{n∈N−: 0≤{n(β−α)}<α}

C1Ỹne{n(β−α)} +
∑

{n∈N−: 0≤{(n+1)(β−α)}<β}
C2Ỹne{(n+1)(β−α)},

ψ̃−
2 = −

∑
{n∈N−: α≤{n(β−α)}<1}

C−1Ỹne{n(β−α)}−1 (2.28)

−
∑

{n∈N−: β≤{(n+1)(β−α)}<1}
C−2Ỹne{(n+1)(β−α)}−1 − C−2Ỹ−1.

The coefficients Yn (n ∈ Z−) and Ỹn (n ∈ N−) here are defined by

Yn−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)|n|
(C−1

C−2

)(|n|−� k
β−α�)+

∑k−1
s=0 (� s+α

β−α�−� s
β−α�)( C1

C−2

)k
×
(
C1

C2

)∑k
s=1(� s

β−α�−� s−1+α
β−α �−1)

Y−1 if −n =
⌈

k
β−α

⌉
, . . . ,

⌈
k+α
β−α

⌉
−1,

(−1)|n|
(
C1

C2

)(|n|−� k+α
β−α�+1)+

∑k
s=1(� s

β−α�−� s−1+α
β−α �−1)( C1

C−2

)k
×
(C−1

C−2

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)Y−1 if −n =
⌈
k+α
β−α

⌉
, . . . ,

⌈
k+1
β−α

⌉
−2,

(−1)|n|
(C−1

C−2

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)( C1

C−2

)k+1

×
(
C1

C2

)∑k+1
s=1(� s

β−α�−� s−1+α
β−α �−1)

Y−1 if − n =
⌈
k+1
β−α

⌉
− 1

(2.29)
and

Ỹn−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)|n|
(
C1

C2

)(|n|−� k
β−α�)+

∑k
s=1(� s−β

β−α�−� s−1
β−α�)( C1

C−2

)k
×
(C−1

C−2

)∑k
s=1(� s

β−α�−� s−β
β−α�−1)

Ỹ−1 if − n =
⌈

k
β−α

⌉
, . . . ,

⌊
k+1−β
β−α

⌋
,

(−1)|n|
(
C1

C2

)∑k+1
s=1(� s−β

β−α�−� s−1
β−α�)( C1

C−2

)k+1

×
(C−1

C−2

)∑k
s=1(� s

β−α�−� s−β
β−α�−1)

Ỹ−1 if − n =
⌊
k+1−β
β−α

⌋
+ 1,

(−1)|n|
(

C1

C−2

)k+1(C−1

C−2

)(|n|−� k+1−β
β−α �−1)+

∑k
s=1(� s

β−α�−� s−β
β−α�−1)

×
(
C1

C2

)∑k+1
s=1(� s−β

β−α�−� s−1
β−α�)Ỹ−1 if − n =

⌊
k+1−β
β−α

⌋
+ 2, . . . ,

⌊
k+1
β−α

⌋
(2.30)

for k = 0, 1, 2, . . ., with the initial conditions Ỹ−1 = 1,

Y0 = −C−2

C2
, Y−1 = −C−1

C−2
+

C1

C2
.

In the notation (2.25), we have the following.
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Corollary 2.8. In the setting of Theorem 2.7 we have

M(G−) =

[
1 0

−
∑

n∈N
−
α
C−1Yn −

∑
n∈N

−
β
C−2Yn −C−2

]
,

M(G+) =

⎡⎣ −C−2C
−1
2

∑
n∈N

−
−α

Ỹn∑
n∈N

−
α
C1Yn +

∑
n∈N

−
β
C2Yn C2

⎤⎦ ,

and hence the geometric mean of G is given by

d(G) =

[
−C−2C

−1
2 −

∑
n∈N

−
−α

C−1
−2 Ỹn∑

n∈N
−
α
(C1 − C2C−1C

−1
−2 )Yn −C2C

−1
−2

]
.

3. Factorization of some block triangular matrix functions

3.1. A conditional criterion of AP factorability

Factorability properties of G ∈ APN×N obviously do not change under multipli-
cation on the left and on the right by matrices from GCN×N . In particular, G of
the form (1.4) admits a left AP or APW factorization only simultaneously with[

Q−1 0
0 P

]
G

[
Q 0
0 P−1

]
=

[
e1IN 0
PFQ e−1IN

]
(3.1)

for any P,Q ∈ GCN×N , and the partial AP indices of GF and GPFQ coincide.

Proposition 3.1. Let F ∈ APWN×N be a triangular matrix function with the di-
agonal entries fj. Then in order for GF to admit a canonical AP factorization it
is sufficient, and if fj ∈ E for j = 1, . . . , N also necessary, that all 2 × 2 matrix
functions Gfj admit such a factorization.

Proof. Choosing P = Q = [δj,N−j+1] in (3.1), we can switch between lower and
upper triangular F . So, without loss of generality we may suppose that F is lower
triangular.

Sufficiency. Observe that

F = F0 + F̃ , (3.2)

where F0 = diag[f1, . . . , fN ] and F̃ is lower triangular with zero diagonal. Letting
now

P = Q−1 = diag[1, ε, . . . , εN−1],

we can make the difference PFQ − F0 arbitrarily small by an appropriate choice
of ε. Since canonical AP factorable matrices form an open set, it suffices to show
that GF0 lies there. But the latter matrix is permutationally similar to

diag[Gf1 , . . . , GfN ],

and thus admits a left canonical AP factorization along with its diagonal 2 × 2
blocks.
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Necessity. Suppose GF admits a left canonical AP factorization. Consider hj so
close to fj (j = 2, . . . , N) that the matrix GH with

H = F̃ + diag[f1, h2, . . . , hN ]

still admits a left canonical AP factorization, while the matrices Ghj also are AP
factorable with zero partial AP indices, j = 2, . . . , N . (This is possible due to
Lemma 2.1 since fj ∈ E ∩ APW .) Via a permutational similarity corresponding
to the permutation {1, N + 1, 2, . . . , 2N}, the matrix GH can be put in a block
triangular form [

Gf1 0
∗ GH1

]
, (3.3)

where H1 ∈ APW(N−1)×(N−1) is lower triangular with the diagonal entries h2, . . .,
hN . By the already proven sufficiency, GH1 admits a canonical AP factorization.

So, a block triangular matrix (3.3) and one of its diagonal blocks both admit a
left canonical AP factorization. Since canonical AP factorability of APW matrices
is equivalent to the invertibility of the respective Toeplitz operators, from here it
follows that the other diagonal block of (3.3), that is, Gf1 , must admit a canonical
AP factorization.

In its turn, the same permutational similarity can be used to rewrite the un-
perturbed matrix GF in a block triangular form, with the diagonal blocks being
Gf1 and GF1 , where F1 ∈ APW(N−1)×(N−1) is simply F with the first row and
column deleted. From the canonical AP factorability of GF and Gf1 we now con-
clude that GF1 also admits a canonical AP factorization. Since the statement is
trivially correct for N = 1, the induction argument thus completes the proof. �

3.2. Quadrinomial case: Existence

We now pass to the case of matrix functions (1.4) with N > 1 and the off-diagonal
block (1.5) such that its coefficients Cj ∈ CN×N can be put in a triangular form by
the same transformation Cj �→ PCjQ with some P,Q ∈ GCN×N . This condition
is satisfied, in particular, if Cj pairwise commute, in which case it is possible to
choose Q = P−1 (see, e.g., [23, Lemma 4.3]).

Since the matrix functions GF given by (1.4) and GPFQ admit a canonical
factorization only simultaneously, we may without loss of generality suppose that
Ci are themselves (lower) triangular:

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(ci)1,1 0 0 . . . 0 0
(ci)2,1 (ci)2,2 0 . . . 0 0
(ci)3,1 (ci)3,2 (ci)3,3 . . . 0 0

...
...

...
. . .

...
...

(ci)N−1,1 (ci)N−1,2 (ci)N−1,3 . . . (ci)N−1,N−1 0
(ci)N,1 (ci)N,2 (ci)N,3 . . . (ci)N,N−1 (ci)N,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)

(i = ±1,±2). In what follows, we will relabel the diagonal entries (ci)s,s of the
matrices (3.4) by ci,s. Note that in the case of pairwise commuting (but a priori
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not necessarily triangular) matrices Ci, ci,s are their so-called bonded eigenvalues,
in the terminology of [3].

Theorem 3.2. Let G = GF be given by (1.4), (1.5) and (3.4), where 0 < α < β < 1
and the number β−α is irrational. Then G admits a canonical left AP factorization
G = G+G

−1
− if and only if

|c2,s|1−β |c−2,s|β �= |c1,s|1−α|c−1,s|α for all s = 1, 2, . . . , N, (3.5)

where ci,s := (ci)s,s for all i = ±1,±2 and all s = 1, 2, . . . , N are the diagonal
entries of matrix coefficients (3.4) in (1.5).

Proof. Follows directly by combining Corollary 2.4 with Proposition 3.1. �

3.3. Quadrinomial case: Explicit factorization

We now turn to the explicit factorization construction of matrix functions GF with
F given by (1.5), (3.4) when its canonical factorization exists, that is, conditions

(3.5) hold. Decomposition (3.2) in our setting yields matrices F0 and F̃ of the same
structure (1.5) as F but with Ci replaced by diag[ci,1, . . . , ci,N ] for F0 and by

C̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0
(ci)2,1 0 0 . . . 0 0
(ci)3,1 (ci)3,2 0 . . . 0 0

...
...

...
. . .

...
...

(ci)N−1,1 (ci)N−1,2 (ci)N−1,3 . . . 0 0
(ci)N,1 (ci)N,2 (ci)N,3 . . . (ci)N,N−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

for F̃ . Then GF = G +K, where G is an abbreviated notation for GF0 and

K =

[
0N 0N
F̃ 0N

]
.

Consider the matrix functions

G± =

[
G±
1 G̃±

1

G±
2 G̃±

2

]
, (3.7)

G±
1 := diag{g±s,1}Ns=1, G̃±

1 := diag{g̃±s,1}Ns=1,

G±
2 := diag{g±s,2}Ns=1, G̃±

2 := diag{g̃±s,2}Ns=1,

where for s = 1, 2, . . . , N and j = 1, 2,

g±s,j :=

{
ϕ±
s,j

ψ±
s,j

, g̃±s,j :=

{
ϕ̃±
s,j

ψ̃±
s,j

if

{ |c2,s|1−β |c−2,s|β < |c1,s|1−α|c−1,s|α,
|c2,s|1−β |c−2,s|β > |c1,s|1−α|c−1,s|α,

(3.8)
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ϕ±
s,j and ϕ̃±

s,j are given by (2.21) and (2.22), respectively, with Ci replaced by ci,s

for i = ±1,±2, and with Xn and X̃n (n ∈ Z+) calculated by formulas (2.23),
(2.24) (again with Ci replaced by ci,s for i = ±1,±2), where

X0 = −c−1,s

c1,s
, X1 = −c−2,s

c1,s
+

c2,sc−1,s

c21,s
, X̃0 = 1;

ψ±
s,j and ψ̃±

s,j are given by (2.27) and (2.28), respectively, with Ci replaced by ci,s

for i = ±1,±2, and with Yn (n ∈ Z−) and Ỹn (n ∈ N−) calculated by formulas
(2.29), (2.30) (once again, with Ci replaced by ci,s for i = ±1,±2), where

Y0 = −c−2,s

c2,s
, Y−1 = −c−1,s

c−2,s
+

c1,s
c2,s

, Ỹ−1 = 1.

Below we will denote these Xn, X̃n, Yn and Ỹn as Xn,s, X̃n,s, Yn,s and Ỹn,s.

For s = 1, 2, . . . , N , we put

G±
s =

[
g±s,1 g̃±s,1

g±s,2 g̃±s,2

]
, (3.9)

where g±s,j and g̃±s,j for j = 1, 2 are given by (3.8). Note that

detG+
s = detG−

s = ks where ks = M(detG±
s ). (3.10)

We also define the matrix

KN = diag
[
k−1
1 , . . . , k−1

N

]
. (3.11)

By [2], the matrix function G = GF0 admits the canonical left APW factor-
ization

G = G+G−1
− . (3.12)

It follows from (3.12) that

G = G+G̃G−1
− ,

where

G̃ = G−1
+ GG− =

[
KN G̃+

2 −KN G̃+
1

−KNG+
2 KNG+

1

] [
e1IN 0N
F e−1IN

] [
G−
1 G̃−

1

G−
2 G̃−

2

]

=

[
IN 0N
0N IN

]
+

[
−KN G̃+

1 F̃G−
1 −KN G̃+

1 F̃ G̃−
1

KNG+
1 F̃G−

1 KNG+
1 F̃ G̃−

1

]
(3.13)

and KN is given by (3.11).

Consider now APWN×N as the decomposing Banach algebra B, with B+ =
APW+

N×N and B− = (APW−
0 )N×N . Letting

a :=

[
KN G̃+

1 F̃G−
1 KN G̃+

1 F̃ G̃−
1

−KNG+
1 F̃G−

1 −KNG+
1 F̃ G̃−

1

]
(3.14)
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and observing that each of its blocks is lower triangular with zero diagonal entries,
we conclude that

(P+
a )NI2N = 02N and (P−

a )N I2N = 02N ,

where the mappings P±
a are defined by (2.11) with a given by (3.14). Hence, by

Theorem 2.2, the matrix function G̃ = I2N −a admits a canonical left factorization

G̃ = (I2N + b+)
−1(I2N + b−)−1 (3.15)

where the matrix functions

b+ = a+ + (a+a)+ + ((a+a)+a)+ + · · ·+ (. . . (a+a)+ . . . a)+︸ ︷︷ ︸
N−1 terms

,

b− = a− + (aa−)− + (a(aa−)−)− + · · ·+ (a . . . (aa−)− . . .)−︸ ︷︷ ︸
N−1 terms

,
(3.16)

belong to APW+
2N×2N and (APW−

0 )2N×2N , respectively, and a± :=P±a=P±
a I2N .

Since each of N ×N blocks in (3.14) is lower triangular matrix function with zero
diagonal entries, it is easily seen from (3.16) that

(I2N + b+)
−1 = I2N +

N−1∑
k=1

(−1)kbk+,

whence (3.15) takes the form

G̃ =

(
I2N +

N−1∑
k=1

(−1)kbk+

)
(I2N + b−)−1. (3.17)

Putting together (3.13) and (3.17), we arrive to the following conclusion.

Theorem 3.3. Let GF be the matrix function (1.4) with F given by (1.5) and
(3.4) and satisfying (3.5). Then the multiples G± from its left canonical APW
factorization (2.1) can be chosen as

G+ = G+

(
I2N +

N−1∑
k=1

(−1)kbk+

)
, G− = G−(I2N + b−), (3.18)

with G± and b± defined by (3.7)–(3.8) and (3.16) respectively.

It follows from Corollaries 2.6 and 2.8 that

M(G±) =

[
diag{M(g±s,1)}Ns=1 diag{M(g̃±s,1)}Ns=1

diag{M(g±s,2)}Ns=1 diag{M(g̃±s,2)}Ns=1

]
, (3.19)



Factorization of Almost Periodic Matrix Functions 41

where

M(g+s,1) =

{
−c−1,sc

−1
1,s,

−c−2,sc
−1
2,s,

M(g̃+s,1) =

{∑
n∈N

+
−α

X̃n,s,∑
n∈N

−
−α

Ỹn,s,

M(g+s,2) =

⎧⎨⎩
∑

n∈N
+
α
c1,sXn,s +

∑
n∈N

+
β
c2,sXn,s,∑

n∈N
−
α

c1,sYn,s +
∑

n∈N
−
β

c2,sYn,s,
M(g̃+s,2) =

{
c1,s,

c2,s,

M(g−s,1) = 1, M(g̃−s,1) = 0,

M(g−s,2) =

{
−

∑
n∈N

+
α
c−1,sXn,s −

∑
n∈N

+
β
c−2,sXn,s,

−
∑

n∈N
−
α

c−1,sYn,s −
∑

n∈N
−
β

c−2,sYn,s,
(3.20)

M(g̃−s,2) =

{
−c−1,s,

−c−2,s

if

{
|c2,s|1−β |c−2,s|β < |c1,s|1−α|c−1,s|α,
|c2,s|1−β |c−2,s|β > |c1,s|1−α|c−1,s|α.

On the other hand, we infer from (3.18) and (3.16) that

M(G+) = M(G+)

(
I2N +

N−1∑
k=1

(−1)kM(b+)
k

)
, M(G−) = M(G−),

which in view of (2.8) implies the following

Corollary 3.4. Under the conditions of Theorem 3.2, the geometric mean of the
matrix function G given by (1.4), (1.5) and (3.4) is calculated by

d(G) = M(G+)

(
I2N +

N−1∑
k=1

(−1)kM(b+)
k

)
M(G−)−1, (3.21)

where M(G±) and b+ are given by (3.19)–(3.20) and (3.16), respectively.

4. The geometric mean in the case N = 2

Corollary 3.4 in principle allows to compute the geometric mean for any value ofN .
In practice the complexity of this computation grows with N substantially, in par-
ticular because each of the inequalities (3.5) can materialize in two different ways,
and the resulting 2N cases yield different formulas and thus have to be treated
separately. We therefore restrict our attention to the case N = 2 which should
suffice for illustrative purposes. Corollary 3.4 can then be restated as follows.

Theorem 4.1. Under the conditions of Theorem 3.2, the geometric mean of the
matrix function GF given by (1.4), (1.5) and (3.4) for N = 2 is calculated by

d(GF ) = d(GF0) + TF̃ , (4.1)
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where d(GF0) = d(G) = M(G+)M(G−)−1,

TF̃ = M(G+)

⎡⎢⎢⎣
0 0 0 0

−k−1
2 M(g̃+2,1fg

−
1,1) 0 −k−1

2 M(g̃+2,1f g̃
−
1,1) 0

0 0 0 0
k−1
2 M(g+2,1fg

−
1,1) 0 k−1

2 M(g+2,1f g̃
−
1,1) 0

⎤⎥⎥⎦M(G−)−1, (4.2)

M(G±) are given by (3.19)–(3.20), the functions g+2,1, g̃
+
2,1, g

−
1,1, g̃

−
1,1 are given by

(3.8), k2 is given by (3.10),

F̃ =

[
0 0
f 0

]
, f = c̃1eα + c̃−1eα−1 + c̃2eβ + c̃−2eβ−1 (4.3)

and c̃i := (ci)2,1 for all i = ±1,±2.

Proof. Since N = 2, we conclude from (3.16) that

M(b+) = M(a+) = M(a), (4.4)

where, by (3.14), (3.11) and (4.3),

M(a) =

[
K2M(G̃+

1 F̃G−
1 ) K2M(G̃+

1 F̃ G̃−
1 )

−K2M(G+
1 F̃G−

1 ) −K2M(G+
1 F̃ G̃−

1 )

]

=

⎡⎢⎢⎣
0 0 0 0

k−1
2 M(g̃+2,1fg

−
1,1) 0 k−1

2 M(g̃+2,1f g̃
−
1,1) 0

0 0 0 0
−k−1

2 M(g+2,1fg
−
1,1) 0 −k−1

2 M(g+2,1f g̃
−
1,1) 0

⎤⎥⎥⎦ . (4.5)

Hence we infer from (3.21), (4.4) and (4.5) that

d(G) = M(G+)
(
I4 −M(a)

)
M(G−)−1 = d(G) + TF̃ ,

where TF̃ is given by (4.2). �

The explicit formulas for the mean values involved in (4.2) depend on which
of the four possible cases

|c2,s|1−β|c−2,s|β < |c1,s|1−α|c−1,s|α for s = 1, 2; (4.6)

|c2,s|1−β|c−2,s|β > |c1,s|1−α|c−1,s|α for s = 1, 2; (4.7)

|c2,1|1−β |c−2,1|β < |c1,1|1−α|c−1,1|α,
|c2,2|1−β |c−2,2|β > |c1,2|1−α|c−1,2|α;

(4.8)

|c2,1|1−β |c−2,1|β > |c1,1|1−α|c−1,1|α,
|c2,2|1−β |c−2,2|β < |c1,2|1−α|c−1,2|α

(4.9)

takes place, and are delegated to the Appendix. Here is the final result under a
simplifying condition on α, β, with a proof also delegated to the Appendix.



Factorization of Almost Periodic Matrix Functions 43

Theorem 4.2. Let G = GF be given by (1.4), (1.5) and (3.4), where N = 2,
0 < α < β < 1 and

mα+ nβ /∈ {0, 1} for all rational m,n. (4.10)

Then G admits a canonical left AP factorization G = G+G
−1
− if and only if

|c2,s|1−β|c−2,s|β �= |c1,s|1−α|c−1,s|α for all s = 1, 2, (4.11)

where ci,s := (ci)s,s for all i = ±1,±2 and all s = 1, 2 are the diagonal entries of
matrix coefficients (3.4) in (1.5). If (4.11) holds, then

d(G) = diag[T1, T2], (4.12)

where

T1 =

[
−c−1,1c

−1
1,1 0

−(c1,1c̃−1 − c−1,1c̃1)c
−1
1,1c

−1
1,2 −c−1,2c

−1
1,2

]
,

T2 =

[
−c1,1c

−1
−1,1 0

(c1,2c̃−1 − c−1,2c̃1)c
−1
−1,1c

−1
−1,2 −c1,2c

−1
−1,2

]
, (4.13)

if (4.6) holds;

T1 =

[
−c−2,1c

−1
2,1 0

−(c2,1c̃−2 − c−2,1c̃2)c
−1
2,1c

−1
2,2 −c−2,2c

−1
2,2

]
,

T2 =

[
−c2,1c

−1
−2,1 0

(c2,2c̃−2 − c−2,2c̃2)c
−1
−2,1c

−1
−2,2 −c2,2c

−1
−2,2

]
, (4.14)

if (4.7) holds;

T1 =

[
−c−1,1c

−1
1,1 0

−(c1,1c̃−2 − c−1,1c̃2)c
−1
1,1c

−1
2,2 −c−2,2c

−1
2,2

]
,

T2 =

[
−c1,1c

−1
−1,1 0

(c2,2c̃−1 − c−2,2c̃1)c
−1
−1,1c

−1
−2,2 −c2,2c

−1
−2,2

]
, (4.15)

if (4.8) holds;

T1 =

[
−c−2,1c

−1
2,1 0

−(c2,1c̃−1 − c−2,1c̃1)c
−1
2,1c

−1
1,2 −c−1,2c

−1
1,2

]
,

T2 =

[
−c2,1c

−1
−2,1 0

(c1,2c̃−2 − c−1,2c̃2)c
−1
−2,1c

−1
−1,2 −c1,2c

−1
−1,2

]
, (4.16)

if (4.9) holds.
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5. Appendix

5.1. Computation of d(G) and TF̃

Applying Corollaries 2.6 and 2.8 with notation (2.25), we infer that

d(G) = − diag
[
c−1,1c

−1
1,1, c−1,2c

−1
1,2, c1,1c

−1
−1,1, c1,2c

−1
−1,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

+
−α

c−1
−1,1X̃n,1,

∑
n∈N

+
−α

c−1
−1,2X̃n,2

]
, (5.1)

B2,1 = diag

[ ∑
n∈N

+
β

(c2,1 − c1,1c
−1
−1,1c−2,1)Xn,1,

∑
n∈N

+
β

(c2,2 − c1,2c
−1
−1,2c−2,2)Xn,2

]
,

if (4.6) holds;

d(G) = − diag
[
c−2,1c

−1
2,1, c−2,2c

−1
2,2, c2,1c

−1
−2,1, c2,2c

−1
−2,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

−
−α

c−1
−2,1Ỹn,1,

∑
n∈N

−
−α

c−1
−2,2Ỹn,2

]
, (5.2)

B2,1 = diag

[ ∑
n∈N

−
α

(c1,1 − c2,1c
−1
−2,1c−1,1)Yn,1,

∑
n∈N

−
α

(c1,2 − c2,2c
−1
−2,2c−1,2)Yn,2

]
,

if (4.7) holds;

d(G) = − diag
[
c−1,1c

−1
1,1, c−2,2c

−1
2,2, c1,1c

−1
−1,1, c2,2c

−1
−2,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

+
−α

c−1
−1,1X̃n,1,

∑
n∈N

−
−α

c−1
−2,2Ỹn,2

]
, (5.3)

B2,1 = diag

[ ∑
n∈N

+
β

(c2,1 − c1,1c
−1
−1,1c−2,1)Xn,1,

∑
n∈N

−
α

(c1,2 − c2,2c
−1
−2,2c−1,2)Yn,2

]
,

if (4.8) holds;

d(G) = − diag
[
c−2,1c

−1
2,1, c−1,2c

−1
1,2, c2,1c

−1
−2,1, c1,2c

−1
−1,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

−
−α

c−1
−2,1Ỹn,1,

∑
n∈N

+
−α

c−1
−1,2X̃n,2

]
, (5.4)

B2,1 = diag

[ ∑
n∈N

−
α

(c1,1 − c2,1c
−1
−2,1c−1,1)Yn,1,

∑
n∈N

+
β

(c2,2 − c1,2c
−1
−1,2c−2,2)Xn,2

]
,

if (4.9) holds.
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On the other hand, by (4.2) and (3.19), we obtain

TF̃ =

⎡⎢⎢⎣
0 0 0 0
t2,1 0 t2,3 0
0 0 0 0
t4,1 0 t4,3 0

⎤⎥⎥⎦ , (5.5)

where

t2,1 =
[
−M(g+2,1)M(g̃+2,1fg

−
1,1) +M(g̃+2,1)M(g+2,1fg

−
1,1)

]
k−1
2

+
[
M(g+2,1)M(g̃+2,1f g̃

−
1,1)−M(g̃+2,1)M(g+2,1f g̃

−
1,1)

]
M(g−1,2)k

−1
1 k−1

2 ,

t2,3 =
[
−M(g+2,1)M(g̃+2,1f g̃

−
1,1) +M(g̃+2,1)M(g+2,1f g̃

−
1,1)

]
k−1
1 k−1

2 ,

t4,1 =
[
−M(g+2,2)M(g̃+2,1fg

−
1,1) +M(g̃+2,2)M(g+2,1fg

−
1,1)

]
k−1
2

+
[
M(g+2,2)M(g̃+2,1f g̃

−
1,1)−M(g̃+2,2)M(g+2,1f g̃

−
1,1)

]
M(g−1,2)k

−1
1 k−1

2 ,

t4,3 =
[
−M(g+2,2)M(g̃+2,1f g̃

−
1,1) +M(g̃+2,2)M(g+2,1f g̃

−
1,1)

]
k−1
1 k−1

2 ,

(5.6)

and M(g+2,j),M(g̃+2,j),M(g−1,2) for j = 1, 2 are given by (3.20).

5.2. Computation of M(g̃+
2,1fg

−
1,1), M(g̃+

2,1fg̃
−
1,1),

M(g+
2,1fg

−
1,1), M(g+

2,1fg̃
−
1,1)

Below, along with N±
γ given by (2.25), we use the following notation for γ = α, β

and l = 1, 2:

Ñ±
γ := {n ∈ N± : {n(β − α)} + γ = 1},

(Z± × Z±)γ,l := {(n, k) ∈ Z± × Z± : {n(β − α)− α}
+ {k(β − α)− α}+ γ = l},

(Z± × Z±)∼γ,l := {(n, k) ∈ Z± × Z± : {n(β − α)}+ {k(β − α)}+ γ = l}.

(5.7)

If (4.6) holds, then

g̃+2,1g
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,
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which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−1X̃0,2 + c̃1X̃0,2X0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n,k)∈(Z+×Z+)α,1

c̃1X̃n,2X̃k,1 +
∑

(n,k)∈(Z+×Z+)α,2

c̃−1X̃n,2X̃k,1

+
∑

(n,k)∈(Z+×Z+)β,1

c̃2X̃n,2X̃k,1 +
∑

(n,k)∈(Z+×Z+)β,2

c̃−2X̃n,2X̃k,1,

M(g+2,1fg
−
1,1) =

∑
n∈Ñ

+
α

c̃−1(Xn,1 +Xn,2) +
∑
n∈Ñ

+
β

c̃−2(Xn,1 +Xn,2)

+
∑

(n,k)∈(Z+×Z+)∼α,1

c̃1Xn,2Xk,1 +
∑

(n,k)∈(Z+×Z+)∼α,2

c̃−1Xn,2Xk,1

+
∑

(n,k)∈(Z+×Z+)∼β,1

c̃2Xn,2Xk,1 +
∑

(n,k)∈(Z+×Z+)∼β,2

c̃−2Xn,2Xk,1,

M(g+2,1f g̃
−
1,1) = c̃−1X̃0,1 + c̃1X0,2X̃0,1.

(5.8)

If (4.7) holds, then

g̃+2,1g
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−2Ỹ−1,2 + c̃2Ỹ−1,2Y0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n+1,k+1)∈(Z−×Z−)α,1

c̃1Ỹn,2Ỹk,1 +
∑

(n+1,k+1)∈(Z−×Z−)α,2

c̃−1Ỹn,2Ỹk,1

+
∑

(n+1,k+1)∈(Z−×Z−)β,1

c̃2Ỹn,2Ỹk,1 +
∑

(n+1,k+1)∈(Z−×Z−)β,2

c̃−2Ỹn,2Ỹk,1,
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M(g+2,1fg
−
1,1) =

∑
n∈Ñ

−
α

c̃−1(Yn,1 + Yn,2) +
∑
n∈Ñ

−
β

c̃−2(Yn,1 + Yn,2)

+
∑

(n,k)∈(Z−×Z−)∼α,1

c̃1Yn,2Yk,1 +
∑

(n,k)∈(Z−×Z−)∼α,2

c̃−1Yn,2Yk,1

+
∑

(n,k)∈(Z−×Z−)∼β,1

c̃2Yn,2Yk,1 +
∑

(n,k)∈(Z−×Z−)∼β,2

c̃−2Yn,2Yk,1,

M(g+2,1f g̃
−
1,1) = c̃−2Ỹ−1,1 + c̃2Y0,2Ỹ−1,1. (5.9)

If (4.8) holds, then

g̃+2,1g
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,

which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−2Ỹ−1,2 + c̃2Ỹ−1,2X0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n+1,k)∈(Z−×Z+)α,1

c̃1Ỹn,2X̃k,1 +
∑

(n+1,k)∈(Z−×Z+)α,2

c̃−1Ỹn,2X̃k,1

+
∑

(n+1,k)∈(Z−×Z+)β,1

c̃2Ỹn,2X̃k,1 +
∑

(n+1,k)∈(Z−×Z+)β,2

c̃−2Ỹn,2X̃k,1,

M(g+2,1fg
−
1,1) =

∑
k∈Ñ

+
α

c̃−1Xk,1 +
∑
k∈Ñ

+
β

c̃−2Xk,1 +
∑
n∈Ñ

−
α

c̃−1Yn,2 +
∑
n∈Ñ

−
β

c̃−2Yn,2

+
∑

(n,k)∈(Z−×Z+)∼α,1

c̃1Yn,2Xk,1 +
∑

(n,k)∈(Z−×Z+)∼α,2

c̃−1Yn,2Xk,1

+
∑

(n,k)∈(Z−×Z+)∼β,1

c̃2Yn,2Xk,1 +
∑

(n,k)∈(Z−×Z+)∼β,2

c̃−2Yn,2Xk,1,

M(g+2,1f g̃
−
1,1) = c̃−1X̃0,1 + c̃1Y0,2X̃0,1. (5.10)
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If (4.9) holds, then

g̃+2,1g
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−1X̃0,2 + c̃1X̃0,2Y0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n,k+1)∈(Z+×Z−)α,1

c̃1X̃n,2Ỹk,1 +
∑

(n,k+1)∈(Z+×Z−)α,2

c̃−1X̃n,2Ỹk,1

+
∑

(n,k+1)∈(Z+×Z−)β,1

c̃2X̃n,2Ỹk,1 +
∑

(n,k+1)∈(Z+×Z−)β,2

c̃−2X̃n,2Ỹk,1,

M(g+2,1fg
−
1,1) =

∑
n∈Ñ

+
α

c̃−1Xn,2 +
∑
n∈Ñ

+
β

c̃−2Xn,2 +
∑
k∈Ñ

−
α

c̃−1Yk,1 +
∑
k∈Ñ

−
β

c̃−2Yk,1

+
∑

(n,k)∈(Z+×Z−)∼α,1

c̃1Xn,2Yk,1 +
∑

(n,k)∈(Z+×Z−)∼α,2

c̃−1Xn,2Yk,1

+
∑

(n,k)∈(Z+×Z−)∼β,1

c̃2Xn,2Yk,1 +
∑

(n,k)∈(Z+×Z−)∼β,2

c̃−2Xn,2Yk,1,

M(g+2,1f g̃
−
1,1) = c̃−2Ỹ−1,1 + c̃2X0,2Ỹ−1,1. (5.11)

5.3. Computation of M(g̃+
2,1fg

−
1,1) and M(g+

2,1fg̃
−
1,1)

Since

X̃0,1 = X̃0,2 = 1, Ỹ−1,1 = Ỹ−1,2 = 1

and

X0,1 = −c−1,1

c1,1
, X0,2 = −c−1,2

c1,2
, Y0,1 = −c−2,1

c2,1
, Y0,2 = −c−2,2

c2,2
,
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we deduce from (5.8), (5.9), (5.10) and (5.11) that

M(g̃+2,1fg
−
1,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1X̃0,2 + c̃1X̃0,2X0,1,

c̃−2Ỹ−1,2 + c̃2Ỹ−1,2Y0,1,

c̃−2Ỹ−1,2 + c̃2Ỹ−1,2X0,1,

c̃−1X̃0,2 + c̃1X̃0,2Y0,1,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1 − c̃1(c−1,1/c1,1),

c̃−2 − c̃2(c−2,1/c2,1),

c̃−2 − c̃2(c−1,1/c1,1),

c̃−1 − c̃1(c−2,1/c2,1),

(5.12)

M(g+2,1f g̃
−
1,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1X̃0,1 + c̃1X0,2X̃0,1,

c̃−2Ỹ−1,1 + c̃2Y0,2Ỹ−1,1,

c̃−1X̃0,1 + c̃1Y0,2X̃0,1,

c̃−2Ỹ−1,1 + c̃2X0,2Ỹ−1,1,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1 − c̃1(c−1,2/c1,2),

c̃−2 − c̃2(c−2,2/c2,2),

c̃−1 − c̃1(c−2,2/c2,2),

c̃−2 − c̃2(c−1,2/c1,2),

(5.13)

if, respectively, (4.6), (4.7), (4.8) and (4.9) holds.

Substituting M(g̃+2,1fg
−
1,1) and M(g+2,1f g̃

−
1,1) given by (5.12) and (5.13), re-

spectively, and M(g̃+2,1f g̃
−
1,1) and M(g+2,1fg

−
1,1) given by (5.8), (5.9), (5.10) and

(5.11) into (5.6) and applying (3.20), we obtain the entries of the matrix TF̃ (see
(5.5)), which together with d(G) = d(GF0) obtained in (5.1)–(5.4) gives d(GF )
due to (4.1).

5.4. Proof of Theorem 4.2

Under condition (4.10), all the sets

N±
γ , Ñ±

γ , (Z± × Z±)γ,l, (Z± × Z±)∼γ,l (5.14)

given by (2.25) and (5.7) are empty. Hence, by (5.1)–(5.4), we infer that

d(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− diag

[
c−1,1c

−1
1,1, c−1,2c

−1
1,2, c1,1c

−1
−1,1, c1,2c

−1
−1,2

]
,

− diag
[
c−2,1c

−1
2,1, c−2,2c

−1
2,2, c2,1c

−1
−2,1, c2,2c

−1
−2,2

]
,

− diag
[
c−1,1c

−1
1,1, c−2,2c

−1
2,2, c1,1c

−1
−1,1, c2,2c

−1
−2,2

]
,

− diag
[
c−2,1c

−1
2,1, c−1,2c

−1
1,2, c2,1c

−1
−2,1, c1,2c

−1
−1,2

]
,

(5.15)

if, respectively, conditions (4.6), (4.7), (4.8) or (4.9) hold. Since the sets (5.14) are
empty, it follows from (3.20) and (5.8)–(5.11) that

M(g̃+2,1) = M(g+2,2) = M(g−1,2) = 0

and

M(g̃+2,1f g̃
−
1,1) = M(g+2,1fg

−
1,1) = 0.

Then we deduce from (5.6) that

t2,1 = −M(g+2,1)M(g̃+2,1fg
−
1,1)k

−1
2 , t2,3 = 0,

t4,3 = M(g̃+2,2)M(g+2,1f g̃
−
1,1)k

−1
1 k−1

2 , t4,1 = 0.
(5.16)

Taking into account the relations ks = M(g̃−s,2) for s = 1, 2, applying (3.20) for

M(g+2,1), M(g̃+2,2) and M(g̃−s,2), and using (5.12) and (5.13) for M(g̃+2,1fg
−
1,1) and
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M(g+2,1f g̃
−
1,1), we infer from (5.16) that

t2,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(c1,1c̃−1 − c−1,1c̃1)c

−1
1,1c

−1
1,2,

−(c2,1c̃−2 − c−2,1c̃2)c
−1
2,1c

−1
2,2,

−(c1,1c̃−2 − c−1,1c̃2)c
−1
1,1c

−1
2,2,

−(c2,1c̃−1 − c−2,1c̃1)c
−1
2,1c

−1
1,2,

t4,3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(c1,2c̃−1 − c−1,2c̃1)c

−1
−1,1c

−1
−1,2,

(c2,2c̃−2 − c−2,2c̃2)c
−1
−2,1c

−1
−2,2,

(c2,2c̃−1 − c−2,2c̃1)c
−1
−1,1c

−1
−2,2,

(c1,2c̃−2 − c−1,2c̃2)c
−1
−2,1c

−1
−1,2

(5.17)

in the cases (4.6), (4.7), (4.8) and (4.9), respectively.
Finally, substituting t2,3 = 0, t4,1 = 0 and also t2,1 and t4,3 given by (5.17)

into (5.5) and applying (5.15) and (4.1), we immediately obtain (4.12) with trian-
gular 2× 2 matrices T1 and T2 given by (4.13)–(4.16).
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