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Abstract. According to [1], Markus Seidel asked whether certain homomor-
phisms which identify local algebras can be also viewed as lifting homomor-
phisms. The authors of [1] give an affirmative answer in the context of concrete
Banach algebras. The purpose of this short note is to show that this question
always has an affirmative answer, with the meaning of “always” explained
below.
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Introduction. To keep the paper simple and short, we consider the Hilbert space
setting only. In principle, all notions can be adapted to the setting of separable
reflexive Banach spaces as well, and the basic arguments remain valid in this
context.

Given a sequence of separable Hilbert spaces Hn with identity operators In,
write F for the set of all bounded sequences (An)n∈N of operators An ∈ L(Hn).
Provided with pointwise defined operations and the supremum norm, F becomes
a C∗-algebra, and the set G of all sequences (Gn) ∈ F with ‖Gn‖ → 0 is a closed
ideal of F . A basic task of numerical analysis is, for a given unital C∗-subalgebra
A of F which contains G, to examine the stability of sequences (An) in A or,
equivalently, the invertibility of the coset (An) + G in F/G.

This task is usually performed in two steps: a lifting step, which provides us
with a C∗-subalgebra FJ of F which contains A, and with a closed ideal J of FJ

which contains G, such that the invertibility of a coset (An) + J can be lifted by
a family of lifting homomorphisms and such that the quotient FJ /J possesses a
sufficiently large C∗-algebra C in its center, and a second, localization, step where
localization over C is employed in order to study invertibility in FJ /J . The basic
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tools of these steps, the lifting theorem and the local principle by Allan–Douglas,
are briefly described in the following paragraphs.

A basic technical ingredient employed in both steps are strong limit homo-
morphisms. These are defined in terms of a sequence E := (En) of isometries En

on Hn with values in an Hilbert space HE, i.e., it is E∗
nEn = In, and we assume

that the projections EnE
∗
n converge strongly to the identity operator IE on HE .

Note that the latter requirement ensures the separability of HE . Let FE be the
set of all sequences A = (An) in F for which the limits

WE(A) := s-limEnAnE
∗
n and s-limEnA

∗
nE

∗
n

exist in the strong operator topology (in which case we call (EnAnE
∗
n) a

∗-strongly
convergent sequence). Then FE is a closed unital subalgebra of F , WE is a unital
∗-homomorphism from FE to L(HE), and the set

J E := {(E∗
nKEn +Gn) : K ∈ L(HE) compact, (Gn) ∈ G}

is a closed ideal of FE .

Lifting. Let now {Et}t∈T be a family of sequences Et = (Et
n) of isometries as

above and with the additional property that

Es
n(E

t
n)

∗ → 0 weakly as n → ∞ whenever s �= t. (1)

For t ∈ T , we put Wt := WEt

and Jt := J Et

, We further set FT := ∩t∈TFEt

and write JT for the smallest closed ideal of FT which contains all ideals Jt with
t ∈ T . The condition (1) implies that Js ∩ Jt = G whenever s �= t (use Theorem
5.51 in [2]). We therefore refer to (1) as the ideal separation condition.

Theorem 1 (Lifting theorem). (Theorems 5.37 and 5.51 in [2]). Let the family
{Et}t∈T satisfy the ideal separation condition (1). Then a sequence A ∈ FT is
stable if and only if the operators Wt(A) are invertible for every t ∈ T and if the
coset A+ JT is invertible in FT /JT .

Localization. Let A be a closed unital C∗-subalgebra of F . In many circumstances,
one is able to find a family {Et}t∈T of sequences of isometries which satisfy the
ideal separation condition (1) and for which

• A ⊆ FT and
• the quotient algebra (A+ JT )/JT has a non-trivial center C.

In this setting, it is an evident idea to use central localization in order to study
the invertibility of a coset A+JT in (A+JT )/JT (equivalently, in FT /JT ). The
context of the general central localization theorem by Allan and Douglas is as
follows. We are given a unital C∗-algebra B and a C∗-subalgebra C of the center of
B which contains the unit element. For every maximal ideal s of the commutative
C∗-algebra C, let Is denote the smallest closed ideal of B which contains s, and
write Φs for the canonical homomorphism from B to B/Is. In this context the
following holds.
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Theorem 2 (Allan–Douglas). An element b ∈ B is invertible in B if and only if
Φs(b) is invertible in B/Is for every maximal ideal s of C.

The question. Applying the local principle in order to study invertibility in (A+
JT )/JT requires to study the local algebras ((A + JT )/JT )/Is, where s ∈ S, the
maximal ideal space of C. We suppose that this can be done again by a family of
strong limit homomorphisms {F s}s∈S , i.e., for every s ∈ S, there is a sequence
F s = (F s

n) of isometries such that

• A+ JT ⊆ FF s

, JT ⊆ kerWF s

, and
• the quotient mapping WF s

/JT : A + JT �→ WF s

(A) has the ideal Is in
its kernel, and the quotient mapping (WF s

/JT )/Is is injective on ((A +
JT )/JT )/Is (thus, a coset (A + JT ) + Is in ((A + JT )/JT )/Is is invertible
if and only if the operator WF s

(A) in invertible on HF s

).

We thus have two families of strong limit homomorphisms: one which provides
us with the lifting mechanism, and one which identifies local algebras. Markus
Seidel’s question was if one can include both families into a large family which
still satisfies the conditions of the lifting theorem, and how this would affect the
structure of the local algebras.

The answer. We formulate the first part of Seidel’s question in a slightly more
general way. Suppose we are given two families of strong limit homomorphisms:
one defined by a family {Et}t∈T of sequences of isometries which satisfies the ideal
separation condition (1), and one by a family {F s}s∈S of sequences of isometries
with JT ⊆ kerWF s

for all s which satisfies the following point separation condition

• for every pair of distinct points s1, s2 ∈ S, there is a sequence A ∈ A such
that WF s1

(A) = I and WF s2
(A) = 0.

It is clear that a family which allows identification of the local algebras satisfies
this condition (the algebra of the Gelfand transforms of a commutative C∗-algebra
separates the points of the maximal ideal space).

The only thing we have to check is if the family {Et}t∈T ∪ {F s}s∈S satisfies
the ideal separation condition (1). We employ the following elementary observation
for sequences (An), (Bn) of bounded linear operators:

1. If An → A strongly and Bn → B weakly, then BnAn → BA weakly.
2. If A∗

n → A∗ strongly and Bn → B weakly, then AnBn → AB weakly.
3. If An → 0 strongly and (Bn) is bounded, then BnAn → 0 strongly.

Let E = (En) and F = (Fn) be sequences in {Et}t∈T ∪ {F s}s∈S .

We distinguish between three cases.

Case 1: E, F ∈ {Et}t∈T . Then (1) holds by assumption.

Case 2: E ∈ {Et}t∈T and F ∈ {F s}s∈S. Then the ideal J E lies in kerWF

by assumption. Hence, FnE
∗
nKEnF

∗
n → 0 strongly for every compact operator K.

This implies the weak convergence of EnF
∗
n to zero as in the proof of Theorem

5.51 in [2]. Taking adjoints we get the weak convergence of FnE
∗
n to zero as well.
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Case 3: E, F ∈ {Fs}s∈S . By the point separation condition, there is a sequence
A = (An) such that EnAnE

∗
n → I and FnAnF

∗
n → 0 ∗-strongly. In particular,

with Yn := FnE
∗
n,

EnAnE
∗
n = En(F

∗
nFn)An(F

∗
nFn)E

∗
n = Y ∗

nFnAnF
∗
nYn → I (2)

∗-strongly. Since YnY
∗
n = FnE

∗
nEnF

∗
n = FnF

∗
n → I and FnAnF

∗
n → 0 ∗-strongly,

we conclude that YnY
∗
nFnAnF

∗
n → 0 ∗-strongly.

Suppose that Yn → Y weakly for some operator Y . From Observation 2 and
(2) we then conclude that YnY

∗
nFnAnF

∗
nYn → 0 weakly. On the other hand, we can

use Observation 3 to conclude from (2) that YnY
∗
nFnAnF

∗
nYn − Yn → 0 strongly.

Hence, Yn → 0 weakly. The same argument shows that whenever a subsequence
of (Yn) converges weakly, then it converges weakly to zero.

It remains to show that the sequence (Yn) indeed converges weakly to 0.
Suppose it does not. Then there are vectors x ∈ HE , y ∈ HF and an ε > 0 such
that |〈Ynk

x, y〉| ≥ ε for all elements in an (infinite) subsequence (Ynk
) of (Yn). A

standard diagonal argument yields that this subsequence has a weakly convergent
subsequence1, which then converges weakly to zero as shown before. Contradiction.

In particular, we have seen that the point separation property implies the
ideal separation property. Thus, whenever the combination of lifting theorem and
local principle makes sense, the first part of Seidel’s question has an affirmative
answer (the general answer to the second part is already in [1]).
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[1] D. Dragičević, P.A. Santos, and M. Szamotulski, On a Question by Markus Seidel.
This volume, pp. 159–172.

[2] R. Hagen, S. Roch, and B. Silbermann, C∗-Algebras and Numerical Analysis. Marcel
Dekker, Inc., New York, Basel 2001.

Steffen Roch
Fachbereich Mathematik
Technische Universität Darmstadt
Schlossgartenstrasse 7
D-64289 Darmstadt, Germany
e-mail: roch@mathematik.tu-darmstadt.de

1Choose dense countable subsets HE ⊆ HE and HF ⊆ HF and let n 
→ (x(n), y(n)) be a

bijection from N onto HE × HF . Set Y
(0)
k := Ynk . For every n ≥ 1, choose a subsequence

(Y
(n)
k )k≥1 of (Y

(n−1)
k )k≥1 such that 〈Y (n)

k x(n), y(n)〉 converges as k → ∞. Set Zk := Y
(k)
k .

Then (Zk) is the desired subsequence.
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