
Operator Theory:
Advances and Applications, Vol. 242, 279–306
c© 2014 Springer Basel

Inequalities and Convexity

Lars-Erik Persson and Natasha Samko

Dedicated to Professor António Ferreira dos Santos

Abstract. It is a close connection between various kinds of inequalities and
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in a unified way as an introduction of this area. In particular, a number of
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1. Introduction

Different kinds of inequalities are very important in various areas of mathematics
and its applications. Today the knowledge about inequalities has been developed
to be an independent area with many papers, Journals, conferences and books
(see, e.g., [6], [13], [18], [20], [21], and the references given there). Moreover, there
are also some books fully or partly devoted to convexity techniques (see, e.g., [14],
[22], [28], and the references given there). These areas are of independent interest
but there are also a huge numbers of examples how these subjects have supported
each other in the further developments of these areas but also of other areas within
mathematical sciences and even in other more applied areas.

Already G.H. Hardy, J.E. Littlewood and G. Polya in their classical book [13]
clearly understood the crucial role of convexity to develop the theory of inequali-
ties. Our intention with this paper is to complement and on some points further
develop the content of this book. The main idea is to further explain and use the
crucial role of convexity (Jensen’s inequality), to further develop and explain the
rich area of inequalities in an elementary and unified way.

The work was partially supported by CEAF under FCT project PEst-OE/MAT/UI4032/2011.
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As an example of the importance of inequalities we mention the following
classical sentence by G.H. Hardy in his Presidental address at the meeting of the
London Mathematical Society in November 8, 1928: “All analysts spend half their
time hunting through the literature for inequalities which they want to use and
cannot prove”. Our hope and main aim is that this paper can help these researchers
to find what they are looking for, e.g., by directly finding the inequality and if not
to give powerful ideas and hints to be able to derive even inequalities not explicitly
stated in our paper.

It is maybe a matter of fate that Hardy himself never discovered that also
his famous inequality (6.1) (after a simple substitution) in fact follows directly
from Jensen’s inequality. Moreover, also his first powerweighted versions of his
inequality is a consequence of the same simple technique. And maybe even more
remarkable is that “all” powerweighted Hardy inequalities (for p = q) are, in fact,
equivalent to the simple inequality∫ ∞

0

(
1

x

∫ x

0

f(x)

)p
dx

x
≤

∫ ∞

0

fp(x)
dx

x
, p ≥ 1, (1.1)

which easily follows from Jensen’s inequality. Moreover, also a number of other
classical inequalities (including those by Carleman, Pólya–Knopp etc.) follows di-
rectly from this fact.

We pronounce that all inequalities derived in this paper are sharp.
The content is organized as follows: In Section 2 we point out a number of

elementary inequalities which follow more or less directly from convexity (Young’s
inequality. Clarcson’s discrete inequality, two fundamental inequalities [6], etc.). In
Section 3 we reformulate Jensen’s inequality as an equivalence theorem connected
to the concept of convexity. In the next sections the following inequalities are
derived and analyzed by using convexity arguments from Sections 2–3.

Section 4: Classical Hölder’s inequality and various variants of this inequality
(including a version for infinite many Lebesgue spaces).

Section 5: Classical Minkowski’s inequality and various variants of this in-
equality (including an integral version of Fubini type).

Section 6: Some classical inequalities (by Hardy, CarlemanandPólya–Knopp).
It is also pointed out that all these inequalities (via substitutions and limit

arguments) can be derived from the same basic inequality (1.1), which, in turn,
follows from Jensen’s inequality. In particular, these calculations show that “all”
powerweighted Hardy inequalities are in fact equivalent because they are equivalent
to this basic inequality.

Section 7: Some more Hardy type inequalities including variants with finite
intervals involved (a precise equivalence result is proved, and thus improving and
making the statements in Section 6 more clear).

Section 8 is reserved for some further results and final remarks. It is shortly
mentioned how also interpolation theory is closely related to the concept of con-
vexity. This fact is further explained and developed in [25]. As an example there
we just derive Young’s integral inequality (including a limit case) via interpolation
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and convexity. We also mention a fairly new idea that Jensen’s inequality can be
“refined” if convex functions are replaced by superquadratic functions. We point
out that in particular our technique and this fact implies a new refined Hardy
type inequality with “breaking point” p = 2 (for p = 2 we even get a new integral
identity). This is in contrast to usual Hardy type inequalities where the “breaking
point” is p = 1.

2. Convexity – some elementary inequalities

Let I denote a finite or infinite interval on R+. We say that a function f is convex
on I if, for 0 < λ < 1, and all x, y ∈ I,

f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y).

If the inequality holds in the reversed direction, then we say that the function f
is concave.

Moreover, we say that the function f is midpoint convex on I if, for all
x, y ∈ I,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

There are many well-known facts concerning convex functions, see, e.g., the book
[22] by C.P. Niculescu and L.E. Persson. Here we just mention a few introductory
but useful facts:

∗ It follows directly from the definition of convexity that if f is convex on
I = [a, b], then, for all x ∈ [a, b],

f(x) ≤ f(a) +
f(b)− f(a)

b− a
(x− a). (2.1)

∗ Assume that f(x) is continuous on I. Then
a) f is convex if and only if it is midpoint convex,
b) f is convex if and only if

f(x+ h) + f(x− h)− 2f(x) ≥ 0.

Example 1. The function f(x) = xp, p ≥ 1, x ≥ 1, is an elementary example of a
convex function and as we will see later on this simple fact implies, e.g., the Hardy
inequality (see (6.1)). And since this function is convex also when p < 0 this
inequality holds also for p < 0, a fact which was also not noted by Hardy himself.
Another elementary example of convex function is f(x) = ex and by using this
function in a similar way we obtain a “trivial” proof of the Pólya–Knopp inequality
(6.4), see Examples 23 and 25, and Remark 6.4.

But there are also many non-trivial examples of convex functions which have
been important for the development. We will here only present one example which
we will use later, namely the following one by M. Riesz which was crucial when
he proved his convexity theorem, which was very important when interpolation
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theory was initiated via the famous Riesz–Thorin interpolation theorem, see, e.g.,
the book [7] by J. Bergh and J. Löfström.

Example 2. Let a and b be complex numbers. Then the function

f(α, β) = logmax

(
|a+ b|1/α + |a− b|1/α

)α(
|a|1/β + |b|1/β

)β
is convex on the triangle T : 0 ≤ α ≤ β ≤ 1.

We shall now present some useful elementary inequalities, which follow di-
rectly from convexity, sometimes combined by some other argument from calculus.

Example 3. Let a, b > 0. Then

ap + bp ≤ (a+ b)p ≤ 2p−1(ap + bp), p ≥ 1,

2p−1(ap + bp) ≤ (a+ b)p ≤ ap + bp, 0 < p ≤ 1.

Proof. The function f(u) = up is convex when p ≥ 1 and concave when 0 < p < 1.
Hence,

if p ≥ 1, then

(
a+ b

2

)p

≤ ap + bp

2
, i.e., (a+ b)p ≤ 2p−1(ap + bp),

and

if 0 < p < 1, then

(
a+ b

2

)p

≥ ap + bp

2
, i.e., (a+ b)p ≥ 2p−1(ap + bp).

We may without loss of generality assume that b ≤ a. Consider the function

f(t) = (1 + t)p − tp, [t = b/a]

and note that

f ′(t) = p(1 + t)p−1 − ptp−1.

Hence f ′(t) ≥ 0 for p ≥ 1 and f ′(t) ≤ 0 for 0 < p < 1. Moreover, f(0) = 1 and
we conclude that

f(t) ≥ 0 for p ≥ 1 ⇔
(
1 +

b

a

)p

− 1−
(
b

a

)p

≥ 0 for p ≥ 1

⇔ ap + bp ≤ (a+ b)p for p ≥ 1,

and

f(t) ≤ 0 for 0 < p ≤ 1 ⇔
(
1 +

b

a

)p

− 1−
(
b

a

)p

≤ 0 for 0 < p < 1

⇔ (a+ b)p ≤ ap + bp for 0 < p < 1. �
Remark 2.1. The inequalities in Example 3 can be unified as follows

c1(a
p + bp) ≤ (a+ b)p ≤ c2(a

p + bp), p > 0, (2.2)

where c1 = min{2p−1, 1} and c2 = max{2p−1, 1}. When (2.2) holds for some
positive numbers c1 and c2, we also write (a + b)p ≈ (ap + bp). This equivalence
notion can be generalized to more general situations in a natural way.
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By using induction we can generalize Example 3 as follows:

Example 4. Let a1, a2, . . . , an be positive numbers. Then

(a)

n∑
i=1

api ≤
(

n∑
i=1

ai

)p

≤ np−1
n∑

i=1

api , p ≥ 1,

(b) np−1
n∑

i=1

api ≤
(

n∑
i=1

ai

)p

≤
n∑

i=1

api , 0 < p ≤ 1.

Example 5. (Two fundamental inequalities). If x > 0 and α ∈ R, then{
xα − αx+ α− 1 ≥ 0 for α > 1 and α < 0
xα − αx+ α− 1 ≤ 0 for 0 < α < 1.

(2.3)

Remark 2.2. In the book [6] E.F. Beckenbach and R. Bellman called (2.3) “A
fundamental relationship” (see page 12). In particular, they showed later in the
book that several well-known inequalities follow directly from (2.3), e.g., the AG-
inequality, Hölder’s inequality, Minkowski’s inequality, etc. In [6] it was given two
different proofs of (2.3) but in view of the main argument in this paper we mention
another “proof” namely that (2.3) follows directly from the fact that the function
f(x) = xα is convex for α > 1 and α < 0 and concave for 0 < α < 1. In fact, if
f(x) = xα, then the equation for the tangent at x = 1 is equal to y = α(x− 1)+ 1
and (2.3) follows directly. Moreover, this proof shows that we have equality in both
inequalities in (2.3) if and only if x = 1 for all α.

Example 6 (Discrete Young inequality). For any a, b > 0, p, q ∈ R\ {0}, 1p +
1
q = 1,

it yields that

ab ≤ ap

p
+

bq

q
, if p > 1 (2.4)

and

ab ≥ ap

p
+

bq

q
, if p < 1, p �= {0}. (2.5)

Proof. In fact, (2.4) follows directly from (2.3) applied with x = a
b and α = 1

p (the

case 0 < α < 1) and (2.5) follows from (2.3) in the same way by instead applying
(2.3) in the cases α > 1 and α < 0. �

Remark 2.3. Another proof of (2.4) is obtained by directly using the fact that
f(x) = ex is convex:

ab = eln ab = e
1
p ln ap+ 1

q ln bq ≤ 1

p
elnap

+
1

q
eln bq =

1

p
ap +

1

q
bq.

By using the same argument and induction (cf. also Proposition 3.1) we obtain
the following generalization of Young’s inequality (2.4): Let ai > 0, pi > 1, n =
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1, 2, . . . , n, n ∈ Z+, n ≥ 2,
∑n

i=1
1
pi

= 1. Then

n∏
i=1

ai ≤
n∑

i=1

1

pi
api

i .

It seems not to be possible to derive a similar generalization of (2.5).

Example 7 (A generalization of (2.3)). Our simple proof of (2.3) gives directly
the following more general result: Let Φ(x) be a convex function on R+, which is
differentiable at x = 1. Then

Φ(x) − Φ′(1)x+Φ′(1)− Φ(1) ≥ 0. (2.6)

If instead Φ(x) is concave, then (2.6) holds in the reverse direction.

Another way to understand and generalize (2.4) is as follows:

Example 8 (Generalized discrete Young inequality). Let Φ(x) be a continuous and
strictly increasing function for x ≥ 0 and Φ(0) = 0. The inverse of Φ is denoted
Ψ (draw the figure of the situation). By examining the areas in this figure we see
that

ab ≤
∫ a

0

Φ(x)dx +

∫ b

0

Ψ(y)dy. (2.7)

Inequality (2.4) is obtained by applying (2.7) with Φ(x) = xp−1, p > 1. This
argument also shows that we have equality in (2.7) exactly when b = Φ(a), in
particular we have equality in (2.4) exactly when b = ap−1. It seems not to be
possible to have some similar generalization of inequality (2.5).

We finish this section by showing that also another useful inequality follows
from convexity via Example 2.

Example 9 (Discrete Clarkson inequality). Let a, b ∈ R, 1 < p ≤ 2 and q = p
p−1 .

Then

(|a+ b|q + |a− b|q)1/q ≤ 21/q (|a|p + |b|p)1/p . (2.8)

The inequality is sharp, i.e., 21/q can not be replaced by any smaller number.

Proof. Consider the convex function f(α, β) defined in Example 2. By using the
parallelogram law

|a+ b|2 + |a− b|2 = 2(|a|2 + |b|2) (2.9)

we see that f(1/2, 1/2) = 1
2 log 2. Moreover, we easily find that f(0+, 0+) = log 2

and f(0+, 1−) = 0.
The linear function g(α, β) that coincides with f(α, β) at the points (1/2, 1/2),

(0, 0) and (0, 1) is g(α, β) = (1 − β) log 2. Moreover, the convexity implies that
f(α, β) ≤ g(α, β) = (1 − β) log 2, and by choosing β = 1/p, 1 ≤ p ≤ 2, and
α = 1− β = 1/q we obtain that

log
(|a+ b|q + |a− b|q)1/q

(|a|p + |b|p)1/p
≤ 1

q
log 2 = log 21/q
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and (2.8) is proved. Finally, we note that by putting a = b in (2.8) we have equality
in (2.8). The proof is complete. �

Remark 2.4. We see that in the case p = q = 2, we have even equality in (2.8) via
the parallelogram law (2.9) and in the other extreme case when p → 1 we have

max(|a+ b|, |a− b|) ≤ (|a|+ |b|), (2.10)

which is just the triangle inequality. Hence, (2.8) is just some “interpolated” in-
equality between these two extreme cases. This argument can be formalized to a
formal proof by considering the operator T : (a, b) → (a+ b, a− b) and note that

it maps �22 → �22 with norm
√
2 (see (2.9)) and �21 → �2∞ with norm 1 (see (2.10))

and the usual Riesz–Thorin interpolation theorem (see [7]) gives the result.

Remark 2.5. Inequality (2.8) is fundamental for proving Clarkson type inequalities
and its applications to uniformly convex spaces. Moreover, by combining (2.8)
with other convexity inequalities we obtain more general inequalities, which are
also important for applications.

3. Convexity = Jensen’s inequality

Proposition 3.1. (Discrete Jensen inequality). Let n ∈ {2, 3, . . .} and let a = {ak}n1
be a sequence of positive real numbers. If Φ(x) is convex on an interval including
a, then, for λk > 0,

∑n
k=1 λk = 1, it yields that

Φ

(
n∑

k=1

λkak

)
≤

n∑
k=1

λkΦ(ak). (3.1)

Proof. In fact, for n = 2 it is just the definition of convexity and for n = 3 it
follows by using the definition two times:

Φ(λ1a1 + λ2a2 + λ1a3) = Φ

(
λ1a1 + (λ1 + λ2)

[
λ2

λ2 + λ3
a2 +

λ3

λ2 + λ3
a3

])
≤ λ1Φ(a1) + (λ2 + λ3)Φ

(
λ2

λ2 + λ3
a2 +

λ3

λ2 + λ3
a3

)
≤ λ1Φ(a1) + λ2Φ(a2) + λ3Φ(a3).

The proof follows by repeating this argument and formalize it via induction. �

Of course the above argument shows that in fact the discrete Jensen in-
equality is equivalent to the definition of convexity. We shall now continue by
reformulating the classical Jensen inequality

Φ

(∫
Ω

fdμ

)
≤

∫
Ω

Φ(f)dμ, (3.2)

where μ(Ω) = 1, as a more general form of such an equivalence statement.
Here and in the sequel we let μ denote a positive measure on a σ-algebra in

a set Ω.
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Theorem 3.2. Let f be a real μ-measurable function on Ω such that −∞ ≤ a <
f(x) < b ≤ +∞ for all x ∈ Ω and Φ be a function on I = (a, b). Then the following
conditions are equivalent:

(i) Φ is convex,
(ii) the inequality

Φ

(
1

μ(Ω)

∫
Ω

fdμ

)
≤ 1

μ(Ω)

∫
Ω

Φ(f)dμ (3.3)

holds for all measures such that 0 < μ(Ω) < ∞.

Proof. (ii)⇒(i): Apply (3.3) with the measure μ defined as the point mass 1 −
λ, (0 < λ < 1) at x and λ at y for x, y ∈ I and we find by (3.3) that

Φ((1− λ)x + λy) ≤ (1− λ)Φ(x) + λΦ(y),

i.e., Φ is convex.
(i)⇒(ii): It is obviously sufficient to prove (3.3) with the restriction μ(Ω) = 1, i.e.,
that (3.2) holds. First we note that since Φ is convex (cf. (2.1)) it yields that

Φ(t)− Φ(s)

t− s
≤ Φ(u)− Φ(t)

u− t
(3.4)

whenever a < s < t < u < b.
Let t =

∫
Ω
fdμ. Then a < t < b.

Put β = supremum of all quotients to the left in (3.4) for fixed u ∈ (t, b).

Hence Φ(t)−Φ(s)
t−s ≤ β so that Φ(s) ≥ Φ(t) + β(s− t).

Thus, for all x ∈ Ω (with s = f(x)) it yields that

Φ(f(x)) − Φ(t)− β(f(x) − t) ≥ 0.

We integrate and get that∫
Ω

Φ(f(x))dμ−
∫
Ω

Φ(t)dμ− β

∫
Ω

(f(x)− t)dμ

=

∫
Ω

Φ(f(x))dμ − Φ(t)− β

∫
Ω

f(x)dμ+ β

∫
Ω

tdμ

=

∫
Ω

Φ(f(x))dμ − Φ

(∫
Ω

fdμ

)
− β

∫
Ω

f(x)dμ+ β

∫
Ω

f(x)dμ

=

∫
Ω

Φ(f(x))dμ − Φ

(∫
Ω

fdμ

)
≥ 0.

The proof is complete. �

Remark 3.3. The arguments in the proof of (i)⇒(ii) are the same as those in most
Functional Analysis books but the formulation of Theorem 3.2 as an equivalence
theorem is important and done for our further purposes.

Our proof of Theorem 3.2 shows that we also have the following characteri-
zation of concave functions:
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Theorem 3.4. Let f and Φ be defined as in Theorem 3.2. Then the following con-
ditions are equivalent:

(iii) Φ is concave,
(iv) the inequality (3.3) holds in the reversed direction for all measures μ such

that 0 < μ(Ω) < ∞.

Remark 3.5. If Ω = R+, n = 2, 3, . . . , μ =
∑n

k=1 λkδk (δk is the unity mass at
t = k), λk > 0 and

∑n
k=1 λk = 1, then Jensen’s inequality (3.2) coincides with the

discrete Jensen inequality (3.1), with f(k) = ak. Moreover, if Φ is concave, then
Theorem 3.4 shows that (3.1) holds in the reversed direction.

The original forms of Jensen’s inequality traces back to his original papers
[15] and [16] from 1905–06.

4. Various variants of Hölder’s inequality via convexity

As usual, the space Lp = Lp(μ), 0 < p ≤ ∞, consists of all functions f on Ω such
that

‖f‖Lp :=

(∫
Ω

|f |pdμ
)1/p

< ∞, if 0 < p < ∞,

and

‖f‖L∞ := ess sup
x∈Ω

|f(x)| < ∞, if p = ∞.

Example 10 (Hölder’s inequality). Let p > 1 and 1
p + 1

q = 1. Then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq ,

i.e., ∫
Ω

|fg|dμ ≤
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q

. (4.1)

Proof 1. First we let ‖f0‖Lp = ‖g0‖Lq = 1 and use convexity of the exponential
function via Young’s inequality (2.4) and find that∫

Ω

|f0g0|dμ ≤ 1

p

∫
Ω

|f0|pdμ+
1

q

∫
Ω

|g0|qdμ =
1

p
· 1 + 1

q
· 1 = 1.

Apply this inequality with f0 = f
‖f‖Lp

and g0 = g
‖g‖Lq

and (4.1) is proved. �

Another even more direct convexity proof is the following one:

Proof 2. We may without loss of generality assume that 0 <
∫
Ω
|g|dμ < ∞ and

apply Jensen’s inequality (3.2) with the convex function Φ(u) = up to obtain that(
1∫

Ω
|g|dμ

∫
Ω

|fg|dμ
)p

≤
(∫

Ω

|g|dμ
)−1 ∫

Ω

|f |p|g|dμ,
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i.e., that ∫
Ω

|fg|dμ ≤
(∫

Ω

|g|dμ
)1−1/p (∫

Ω

|f |p|g|dμ
)1/p

.

Put |f ||g|1/p = |f1| and |g|1/q = |g1| and we find that∫
Ω

|f1g1|dμ ≤
(∫

Ω

|f1|pdμ
)1/p (∫

Ω

|g1|qdμ
)1/q

.

We just change notation and (4.1) is proved. �

Remark 4.1. It is easy to use the first proof to find (all) cases of equality in
Hölder’s inequality namely when g(x) = (f(x))p−1 (see Example 8). In particular,
this means that the following important relation(∫

Ω

|f |pdμ
)1/p

= sup

∫
Ω

|f |ϕdμ, (4.2)

yields for each p > 1, where supremum is taken over all ϕ ≥ 0 such that
∫
Ω ϕqdμ =

1. This technique is example of a technique called quasi-linearization.

Example 11 (Hölder’s inequality – the reversed form). Let 1
p + 1

q = 1, 0 < p < 1.

Then ∫
Ω

|fg|dμ ≥
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q

. (4.3)

Proof. Note that the function Φ(u) = up is convex also for p < 0. Therefore as in
the second proof of Hölder’s inequality we find that (with the same notation)(∫

Ω

|f1g1|dμ
)p

≤
∫
Ω

|f1|pdμ
(∫

Ω

|g1|qdμ
)p−1

.

Hence ∫
Ω

|f1g1|dμ ≥
(∫

Ω

|f1|pdμ
)1/p (∫

Ω

|g1|qdμ
)1/q

for p < 0 (and 0 < q < 1) and, hence, by interchanging the completely symmetric
roles of p and q and change notation we obtain (4.3) and the proof is complete. �

We shall now formulate a more general result, which includes Examples 10
and 11 as special cases.

Example 12 (Hölder’s inequality – completely symmetric form). Let p, q and r be
real numbers �= 0 such that 1

p + 1
q = 1

r . Then

(a)

(∫
Ω

|fg|rdμ
) 1

r

≤
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q

if p > 0, q > 0, r > 0 or p < 0, q > 0, r < 0 or p > 0, q < 0, r < 0, and

(b)

(∫
Ω

|fg|rdμ
) 1

r

≥
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q
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if p > 0, q < 0, r > 0 or p < 0, q > 0, r > 0 or p < 0, q < 0, r < 0. (Whenever some
parameter is negative we assume that the involved function is strictly positive.)

Proof. The case p > 0, q > 0, r > 0. First we note that the convexity of the function
f(u) = eu implies that

|f(t)g(t)|r = exp(r(ln |f(t)|+ ln |g(t)|))

= exp

(
r

p
ln |f(t)|p + r

q
ln |g(t)|q

)
≤ r

p
|f(t)|p + r

q
|g(t)|q.

By now integrating and discussing as in the proof of the special case r = 1 (see
Proof 1 of Example 10) we obtain (a).

The case p > 0, q < 0, r > 0. By using the estimate we just have proved we
find that(∫

Ω

|f(t)|pdμ
)1/p

=

(∫
Ω

|f(t)g(t)|p 1

|g(t)|p dμ
)

≤
(∫

Ω

|f(t)g(t)|rdμ
)1/r

(∫
Ω

∣∣∣∣ 1

g(t)

∣∣∣∣−q

dμ

)1/−q

,

i.e., (∫
Ω

|f(t)|pdμ
)1/p (∫

Ω

|g(t)|qdμ
)1/q

≤
(∫

Ω

|f(t)g(t)|rdμ
)1/r

,

which means that (b) holds.
By symmetry we see that (b) holds also for the case p < 0, q > 0, r > 0.
For the cases p < 0, q > 0, r < 0. and p > 0, q < 0, r < 0, we use the obtained

results with r, p, q replaced by −r,−p,−q, respectively, and obtain that(∫
Ω

|f(t)g(t)|rdμ
)1/r

=

(∫
Ω

∣∣∣∣ 1

f(t)g(t)

∣∣∣∣−r

dμ

)1/−r

≤
(∫

Ω

∣∣∣∣ 1

f(t)

∣∣∣∣−p

dμ

)1/−p /(∫
Ω

∣∣∣∣ 1

g(t)

∣∣∣∣−q

dμ

)1/−q

,

which means that (a) holds.
The proof of the case p < 0, q < 0, r < 0 is similar. �

Another well-known generalization of Example 10 is the following:

Example 13 (Hölder’s inequality for n−Lp spaces). Let p1, p2, . . . , pn, n = 2, 3, . . . ,
be positive numbers such that 1

p1
+ 1

p2
+ · · ·+ 1

pn
= 1. Then∫

Ω

|f1f2 · · · fn|dμ ≤
(∫

Ω

|f1|p1dμ

)1/p1

· · ·
(∫

Ω

|fn|pndμ

)1/pn

. (4.4)

The proof follows by just using (4.1) and induction or by using directly the
discrete Jensen inequality (3.1) and discussing as in Proof 1 of (4.1).



290 L.-E. Persson and N. Samko

Remark 4.2. Note that if we put 1/p = θ, 0 < θ < 1, and replace |f | by |f |θ and
|g| by |g|1−θ, then Hölder’s inequality (4.1) can be written∫

Ω

|f |θ|g|1−θdμ ≤
(∫

Ω

|f |dμ
)θ (∫

Ω

|g|dμ
)1−θ

, (4.5)

where 0 < θ < 1.

Remark 4.3. If a and b are positive numbers, then the number a1−θbθ, 0 < θ < 1,
is a geometric type mean of the numbers a and b (for θ = 1/2 we have the usual
geometric mean). Moreover, the geometric mean of a positive function f over an
interval [0, b] is defined as follows

Gf := exp

(
1

b

∫ x

0

ln f(t)dt

)
.

Accordingly to the Remarks 4.2 and 4.3 it is tempting to think that Example
14 can be generalized to the case with infinite many Lp spaces (cf. (4.7) below)
and in fact this is also true. The reader shall here think of that the functions
ft(x), t ∈ (0, b), belongs to the space Lp(t), where p(t) is sufficiently “smooth” so
the involved integrals make sense.

Example 14 (A Hölder inequality for infinite many functions involved). Let p(t)
be positive on [0, b] and let p be defined by

1

p
=

1

b

∫ b

0

1

p(t)
dt. (4.6)

Then (∫
Ω

(
exp

1

b

∫ b

0

log |ft(x)|dt
)p

dμ

)1/p

≤ exp
1

b

∫ b

0

log

(∫
Ω

|ft(x)|p(t)dμ
)1/p(t)

dt.

(4.7)

Remark 4.4. If we put b = 1, 0 = a0 < a1 < a2 < · · · < an = 1, αi = ai+1 − ai, i =
1, 2, . . . , n, ft(x) = fi(x) for ai < t ≤ ai+1, i = 1, 2, . . . , n, then p(t) = 1

ai
, i =

1, 2, . . . , n, so (4.7) reads∫
Ω

(
n∏

i=1

|fi(x)|αi

)
dμ ≤

n∏
i=1

(∫
Ω

|fi(x)|dμ
)αi

,

where
∑n

i=1 αi = 1, which is a generalization of (4.5) and equivalent to (4.4).

Remark 4.5. Inequality (4.7) was stated and proved in a little different form in the
paper [23] by L. Nikolova and L.E. Persson, where they used the theory of inter-
polation between infinite many Banach spaces. However, here we shall finish this
section by presenting another proof, which shows that also (4.7) follows essentially
from Jensen’s inequality (convexity).
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Proof. To prove (4.7) first we note that it is sufficient to prove that

I0 :=

∫
Ω

(
exp

1

b

∫ b

0

log |gt(x)|dt
)p

dμ ≤ 1, (4.8)

where

gt = gt(x) =
ft(x)(∫

Ω
|ft(x)|p(t)dμ

)1/p(t) .
Since (

exp
1

b

∫ b

0

log |gt(x)|dt
)p

= exp

∫ b

0

log |gt(x)|p(t)
p

p(t)

1

b
dx

the function Φ(u) = eu is convex and, by (4.6),
∫ b

0
p

p(t)
1
bdt = 1, we can use Jensen’s

inequality to obtain that(
exp

1

b

∫ b

0

log |gt(x)|dt
)p

≤ 1

b

∫ b

0

|gt(x)|p(t)
p

p(t)
dt.

Hence, by integrating and using Fubini’s theorem and (4.6), we find that

I0 ≤
∫
Ω

(
p

b

∫ b

0

|gt(x)|p(t)
1

p(t)
dt

)
dμ =

∫ b

0

p

b

1

p(t)

∫
Ω

(
|ft(x)|p(t)∫

Ω |ft(x)|p(t)dμ

)
dμ

=

∫ b

0

p

b

1

p(t)
dt = 1,

and (4.8) is proved. The proof is complete. �

5. Various variants of Minkowski’s inequality via convexity

The standard variant of Minkowski’s inequality reads:

Example 15 (Minkowski’s inequality). If p ≥ 1, then(∫
Ω

|f + g|pdμ
)1/p

≤
(∫

Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

. (5.1)

Remark 5.1. The inequality (5.1) can be written

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω),

which is the triangle inequality in Lp(Ω)-spaces. This is the crucial property that
the spaces Lp(Ω) are normed spaces, even Banach spaces, for p ≥ 1.

Proof 1. By the triangle inequality and Hölder’s inequality we have that∫
Ω

|f + g|pdμ =

∫
Ω

|f + g|p−1|f + g|dμ ≤
∫
Ω

|f + g|p−1(|f |+ |g|)dμ

=

∫
Ω

|f + g|p−1|f |dμ+

∫
Ω

|f + g|p−1|g|dμ
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≤
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|f + g|pdμ
)1/q

+

(∫
Ω

|g|pdμ
)1/p (∫

Ω

|f + g|pdμ
)1/q

=

(∫
Ω

|f + g|pdμ
)1/q

[(∫
Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

]
.

Hence (∫
Ω

|f + g|pdμ
)1−1/q

≤
(∫

Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

and since 1− 1/q = 1/p we obtain (5.1). �

Proof 1 is the most common proof in Functional Analysis books but we
present here also another proof of (5.1), which is easier to generalize and which is
a special case of a general technique called quasi-linearization. In our case we do
this linearization by using (4.2).

Proof 2. The fact that we have equality in Hölder’s inequality means that(∫
Ω

|f |pdμ
)1/p

= sup
ϕ≥0

∫
Ω

|f |ϕdμ,

(see (4.2)), where supremum is taken over all ϕ such that for q = p/(p− 1)(∫
Ω

ϕqdμ

)1/q

≡ 1.

Hence, by the usual triangle inequality for numbers and an obvious estimate, we
have that(∫

Ω

|f + g|pdμ
)1/p

= sup
ϕ≥0

∫
Ω

|f + g|ϕdμ ≤ sup
ϕ≥0

∫
Ω

(|f |ϕ+ |g|ϕ)dμ

≤ sup
ϕ≥0

∫
Ω

|f |ϕdμ+ sup
ϕ≥0

∫
Ω

|g|ϕdμ =

(∫
Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

. �

A generalization of (5.1) reads:

Example 16 (Minkowski’s inequality for n functions f1, f2, . . . , fn). If p ≥ 1,
n = 2, 3, . . . , then(∫

Ω

|f1 + f2 + · · ·+ fn|pdμ
)1/p

≤
(∫

Ω

|f1|pdμ
)1/p

+ · · ·+
(∫

Ω

|fn|pdμ
)1/p

.

The proof of this inequality follows by generalizing Proof 2 above of (5.1) in
an obvious way or simply by using induction and (5.1).

Next we shall present Minkowski’s inequality for infinite many functions
Ky(x) = K(x, y), which usually is called Minkowski’s integral inequality.
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Example 17 (Minkowski’s integral inequality). Let −∞ ≤ a ≤ b ≤ ∞,−∞ ≤ c ≤
d ≤ ∞, and let K(x, y) be measurable on [a, b]× [c, d].
If p ≥ 1, then(∫ b

a

(∫ d

c

K(x, y)dy

)p

dx

)1/p

≤
∫ d

c

(∫ b

a

Kp(x, y)dx

)1/p

dy. (5.2)

Proof. Let p > 1. We use again the quasi-linearization idea from (4.2) and obtain
that

I0 :=

(∫ b

a

(∫ d

c

K(x, y)dy

)p

dx

)1/p

= sup
ϕ≥0

∫ b

a

ϕ(x)

∫ d

c

K(x, y)dydx,

where the supremum is taken over all measurable ϕ such that
∫ b

a
ϕq(x)dx = 1, q =

p/(p− 1). Hence, by using the Fubini theorem and an obvious estimate, we have
that

I0 = sup
ϕ≥0

∫ d

c

∫ b

a

K(x, y)ϕ(x)dx dy ≤
∫ d

c

(
sup
ϕ≥0

∫ b

a

K(x, y)ϕ(x)dx

)
dy

=

∫ d

c

(∫ b

a

Kp(x, y)dx

)1/p

dy.

For p = 1 we have even equality in (5.2) because of the Fubini theorem, so the
proof is complete. �

Next we shall consider a special case of Example 17, which is useful, e.g.,
when working with mixed-norm Lp spaces and we need some estimate replacing
the Fubini theorem. More exactly, we put

K(x, y) =

{
k(x, y)Ψ(y)Ψ

1/p
0 (x), a ≤ y ≤ x,

0 , x < y ≤ b,

where k(x, y),Ψ(y) and Ψ0(x) are measurable so that Minkowski’s integral in-
equality (5.2) can be used. Under this assumption we have the following:

Example 18 (Minkowski’s integral inequality of Fubini type). If p ≥ 1,−∞ ≤ a <
b ≤ ∞, then (∫ b

a

(∫ x

a

k(x, y)Ψ(y)dy

)p

Ψ0(x)dx

)1/p

≤
∫ b

a

(∫ b

y

kp(x, y)Ψ0(x)dx

)1/p

Ψ(y)dy.

(5.3)

Remark 5.2. With the same proof as above we can also formulate more general
forms of the estimates (5.2) and (5.3) by replacing the measures dx and dy by
general measures dμ(x) and dμ(y), respectively, and thus, e.g., also cover cases
with double sums instead of double integrals.
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In particular, we have the following discrete variant of (5.3):

Example 19. Let p ≥ 1 and let {ak�}∞,∞
k,�=1, {bk}∞k=1 and {ck}∞k=1 be positive se-

quences. Then ( ∞∑
k=1

(
k∑

�=1

ak�b�

)p

ck

)1/p

≤
∞∑
�=1

( ∞∑
k=�

apk�ck

)1/p

b�. (5.4)

Remark 5.3. In the same way we can prove the following associate variants of (5.3)
and (5.4): (∫ b

a

(∫ b

x

k(x, y)Ψ(y)dy

)p

Ψ0(x)dx

)1/p

≤
∫ b

a

(∫ y

a

kp(x, y)Ψ0(x)dx

)1/p

Ψ(y)dy,

respectively, ( ∞∑
k=1

( ∞∑
�=k

ak�b�

)p

ck

)1/p

≤
∞∑
�=1

(
�∑
1

apk�ck

)1/p

b�.

6. Some classical inequalities (by Hardy, Carleman and
Pólya–Knopp) via convexity

The main information in this and the next section is mainly taken from the recent
paper [27] (cf. also [26]) by L.E. Persson and N. Samko. But the formulation of
some crucial results are different and put to this more general frame.

Example 20 (Hardy’s inequality (continuous form)). If f is non-negative and p-
integrable over (0,∞), then∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx, p > 1. (6.1)

Example 21 (Hardy’s inequality (discrete form)). If {an}∞1 is a sequence of non-
negative numbers, then

∞∑
n=1

(
1

n

n∑
n=1

ai

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn, p > 1. (6.2)

Remark 6.1. The dramatic more than 10 years period of research until Hardy
stated in 1920 (see [10]) and proved in 1925 (see [11]) his inequality (6.1) was
recently described in [19]. It is historically clear that Hardy’s original motivation
when he discovered his inequalities was to find a simple proof of Hilbert’s double
series inequality, so first he even only considered the case p = 2.
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Remark 6.2. It is clear that (6.1)⇒ (6.2), which can be seen by applying (6.1) with
step functions. This was pointed out to Hardy in a private letter from F. Landau
already in 1921 and here Landau even included a proof of (6.2).

Example 22 (Carleman’s inequality). If {an}∞1 is a sequence of positive numbers,
then ∞∑

n=1

n
√
a1 · · · an ≤ e

∞∑
n=1

an. (6.3)

Remark 6.3. This inequality was proved by T. Carleman in 1922 (see [8]) in con-
nection to this important work on quasianalytical functions. Carleman’s idea of
proof was to find maximum of

∑n
i=1(a1 · · · ai)1/i under the constraint

∑n
i=1 ai =

1, n ∈ Z+. However, (6.3) is in fact a limit inequality (as p → ∞) of the inequalities
(6.2) according to the following:

Replace ai with a
1/p
i in the Hardy discrete inequality (6.2) and we obtain

that
∞∑

n=1

(
1

n

n∑
n=1

a
1/p
i

)p

≤
(

p

p− 1

)p ∞∑
n=1

an, p > 1.

Moreover, when p → ∞ we have that(
1

n

n∑
i=1

a
1/p
i

)p

→
(

n∏
i=1

ai

)1/n

and

(
p

p− 1

)p

→ e.

In view of the fact that Carleman and Hardy had a direct cooperation at
that time (see, e.g., [9]) it is maybe a surprise that Carleman did not mention this
fact and simpler proof in his paper.

Example 23 (The Pólya–Knopp inequality). If f is a positive and integrable func-
tion on (0,∞), then∫ ∞

0

exp

(
1

x

∫ x

0

ln f(y)dy

)
dx ≤ e

∫ ∞

0

f(x)dx. (6.4)

Remark 6.4. Sometimes (6.4) is referred to as the Knopp inequality with reference
to his 1928 paper [17]. But it is clear that it was known before and in his 1925
paper [11] Hardy informed that G. Pólya had pointed out the fact that (6.4) is in
fact a limit inequality (as p → ∞) of the inequality (6.1) and the proof is literally
the same as that above that (6.2) implies (6.3), see Remark 6.3. Accordingly,
nowadays (6.4) is many times referred to as the Pólya–Knopp inequality and we
have adopted this terminology.

All inequalities above are sharp, i.e., the constants in the inequalities can not
be replaced by any smaller constants.

In particular, the discussion above shows that indeed all the inequalities (6.1)–
(6.4) are proved as soon as (6.1) is proved. Our next aim is to present a really simple
(“miracle”) proof of this inequality via convexity, but first we need the following:
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Basic observation 6.5. We note that for p > 1 it yields that∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx, (6.5)

⇔∫ ∞

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ 1 ·

∫ ∞

0

gp(x)
dx

x
, (6.6)

where f(x) = g(x1−1/p)x−1/p. In fact, consider (6.5) (= (6.1)) and we find that:(
p

p− 1

)p ∫ ∞

0

fp(x)dx =

(
p

p− 1

)p ∫ ∞

0

gp(x1−1/p)
dx

x

=

(
p

p− 1

)p+1 ∫ ∞

0

gp(y)
dy

y
,

and∫ ∞

0

(
1

x

∫ x

0

g(t1−1/p)t−1/pdt

)p

dx =

(
p

p− 1

)p ∫ ∞

0

(
1

x

∫ x1−1/p

0

g(s)ds

)p

dx

=

(
p

p− 1

)p+1 ∫ ∞

0

(
1

y

∫ y

0

g(s)ds

)p
dy

y
,

which proves this statement.

According to the Basic observation 6.5 we have proved (6.1) (and thus also
(6.2)–(6.4)) as soon as (6.6) is proved and here is the (“miracle”) proof of (6.1):
By Jensen’s inequality and Fubini’s theorem we have that∫ ∞

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤

∫ ∞

0

(
1

x

∫ x

0

gp(y)dy

)
dx

x

=

∫ ∞

0

gp(y)

∫ ∞

y

dx

x2
dy =

∫ ∞

0

gp(y)
dy

y
.

(6.7)

Remark 6.6. Since the function Φ(u) = up is convex also when p < 0 this simple
proof shows that (6.1) in fact also holds for p < 0, a fact which was not noted by
Hardy himself.

Remark 6.7. In 1927 G.H. Hardy himself (see [12]) proved the first weighted version
of his inequality (6.1) namely the following: The inequality∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

xadx ≤
(

p

p− 1− a

)p ∫ ∞

0

fp(x)xadx (6.8)

holds for all measurable and non-negative functions f on (0,∞) whenever a <
p− 1, p ≥ 1.

Hardy obviously believed that this was a generalization of (6.1) but, in fact,
by making the substitution

f(t) = g(t
p−1−α

p )t−
1+α
p
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and calculations like in the Basic observation 6.5 we see that also (6.8) for any
considered α is equivalent to (6.6).

Remark 6.8. There exists also an associate variant of (6.8), namely the following:∫ ∞

0

(
1

x

∫ ∞

x

f(y)dy

)p

xα0dx ≤
(

p

α0 + 1− p

)p ∫ ∞

0

fp(x)xα0dx, (6.9)

which holds for all measurable and non-negative functions on (0,∞) whenever α0 >
p− 1, p ≥ 1. In fact, also this inequality is equivalent to the basic inequality (6.6)
so, in particular, (6.8) and (6.9) are equivalent (with the relation α0 = −α−2+2p
as we will see later on). Moreover, since the function Φ(u) = up is convex also for
p < 0 it yields that

a) (6.8) holds also in the case p < 0, α > p− 1,
b) (6.9) holds also in the case p < 0, α0 < p− 1,

and these inequalities are equivalent also then.
Finally, we note that since the function Φ(u) = up is concave for 0 < p < 1

it yields that (6.8) and (6.9) hold in the reversed direction for 0 < p < 1 with the
same restrictions on α and α0.

This important remark is a special case of a more general statement (Propo-
sition 7.3) proved and discussed in detail in our next section.

7. More Hardy type inequalities via convexity

The same convexity argument as that in the proof (see (6.7)) of the basic inequality
(6.6) shows that we have the following more general statement:

Example 24. Let f be a measurable function on R+ and let Φ be a convex function
on Df = {f(x)}. Then∫ ∞

0

Φ

(
1

x

∫ x

0

f(y)dy

)
dx

x
≤

∫ ∞

0

Φ
(
f(x)

)dx
x
. (7.1)

If Φ instead is positive and concave, then the reversed inequality holds.
In fact, by Jensen’s inequality and Fubini’s theorems we have that∫ ∞

0

Φ

(
1

x

∫ x

0

f(y)dy

)
dx

x
≤

∫ ∞

0

∫ x

0

Φ(f(y))dy
dx

x2

=

∫ ∞

0

Φ(f(y))

∫ ∞

y

1

x2
dx dy =

∫ ∞

0

Φ(f(y))
dy

y
.

If Φ is concave, then the only inequality holds in the reverse direction.

Example 25. Consider the convex function Φ(u) = eu and replace f(y) with
ln f(y). Then (7.1) reads∫ ∞

0

exp

(
1

x

∫ x

0

ln f(y)dy

)
dx

x
≤

∫ ∞

0

f(x)
dx

x
. (7.2)
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By now making the substitution f(x) = xg(x) we transform (7.2) to the inequality∫ ∞

0

exp

(
1

x

∫ x

0

ln g(y)dy

)
dx ≤ e

∫ ∞

0

g(x)dx,

i.e., we obtain another proof of the Pólya–Knopp inequality (6.4) without going
via the limit argument mentioned in the Remark 6.4.

It is also known that the Hardy inequality (6.1) holds for finite intervals, e.g.,
that ∫ �

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ �

0

fp(x)dx, p > 1, (7.3)

holds for any �, 0 < � ≤ ∞, and the constant
(

p
p−1

)p

is still sharp also for � < ∞.

But the inequality (7.3) can be improved to the following:∫ �

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ �

0

fp(x)

[
1−

(x
�

) p−1
p

]
dx, (7.4)

where p > 1 or p < 0.
This fact is a special case of the more general result (Proposition 7.3) we next

aim to prove and discuss. As a preparation of independent interest we first state
the following generalization of our previous basic inequality (6.6):

Lemma 7.1. Let g be a non-negative and measurable function on (0, �), 0 < � ≤ ∞.

a) If p < 0 or p ≥ 1, then∫ �

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ 1 ·

∫ �

0

gp(x)
(
1− x

�

) dx

x
. (7.5)

(In the case p < 0 we assume that g(x) > 0, 0 < x ≤ �.)
b) If 0 < p ≤ 1, then (7.5) holds in the reversed direction.
c) The constant C = 1 is sharp in both a) and b).

Proof. By using Jensen’s inequality with the convex function Φ(u) = up, p ≥ 1 or
p < 0, and reversing the order of integration, we find that∫ �

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤

∫ �

0

1

x

∫ x

0

gp(y)dy
dx

x
=

∫ �

0

gp(y)

(∫ �

y

1

x2
dx

)
dy

=

∫ �

0

gp(y)

(
1

y
− 1

�

)
dy =

∫ �

0

gp(y)
(
1− y

�

) dy

y
.

The only inequality in this proof holds in the reversed direction when 0 < p ≤ 1
so the proof of b) follows in the same way.

Concerning the sharpness of the inequality (7.5) we first let � < ∞ and
assume that ∫ �

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ C ·

∫ �

0

gp(x)
(
1− x

�

) dx

x
(7.6)
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for all non-negative and measurable functions g on (0, �) with some constant C, 0 <
C < 1. Let p ≥ 1 and ε > 0 and consider gε(x) = xε (for the case p < 0 we assume
that −1 < ε < 0). By inserting this function into (7.6) we obtain that

C ≥ (εp+ 1)(ε+ 1)−p,

so that, by letting ε → 0+ we have that C ≥ 1. This contradiction shows that the
best constant in (7.5) is C = 1. In the same way we can prove that the constant
C = 1 is sharp also in the case b). For the case � = ∞ the sharpness follows
by just making a limit procedure with the result above in mind. The proof is
complete. �

Remark 7.2. For the case � = ∞ (7.5) coincides with the basic inequality (6.6)
and, thus, the constant C = 1 is sharp, which, in its turn, implies the well-known

fact that the constant C =
(

p
p−1

)p

in Hardy’s inequality (6.1) is sharp for p > 1

and as we see above this holds also for p < 0.

Moreover, since also the weighted variants (6.8) and (6.9) are equivalent to
the basic inequality (6.6) via substitutions we conclude that also these constants
are sharp in all considered cases.

We are now ready to formulate our main result in this section.

Proposition 7.3. Let 0 < � ≤ ∞, �0 = 1/�, a, a0 ∈ R and let p ∈ R \ {0} be a fixed
number and f be a non-negative function.

a) Let f be a measurable function on (0, �]. Then∫ �

0

(
1

x

∫ x

0

f(y)dy

)p

xadx

≤
(

p

p− 1− a

)p ∫ �

0

fp(x)xa

[
1−

(x
�

) p−a−1
p

]
dx

(7.7)

holds for the following cases:

a1) p ≥ 1, a < p− 1,
a2) p < 0, a > p− 1.

b) For the case 0 < p < 1, a < p − 1, inequality (7.7) holds in the reversed
direction in both cases a1) and a2).

c) Let f be a measurable function on [�,∞). Then∫ ∞

�0

(
1

x

∫ ∞

x

f(y)dy

)p

xa0dx

≤
(

p

a0 + 1− p

)p ∫ ∞

�0

fp(x)xa0

[
1−

(
�0
x

) a0+1−p

p

]
dx

(7.8)

holds for the following cases:

c1) p ≥ 1, a0 > p− 1,
c2) p < 0, a0 < p− 1.
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d) For the case 0 < p ≤ 1, a0 > p − 1 inequality (7.8) holds in the reversed
direction in both cases c1) and c2).

e) All inequalities above are sharp.

f) Let p ≥ 1 or p < 0. Then, the inequalities (7.7) and (7.8) are equivalent for
all permitted a and a0 because they are in all cases equivalent to (7.5) via
substitutions.

g) Let 0 < p < 1. Then, the reversed inequalities (7.7) and (7.8) are equivalent
for all permitted a and a0.

Remark 7.4. The formal relation between the parameters a and a0 is that a =
2p− a0 − 2, but this is not important according to f) and g).

Proof. First we prove that (7.7) in the case (a1) in fact is equivalent to (7.5) via
the relation

f(x) = g
(
x

p−a−1
p

)
x− a+1

p .

In fact, with f(x) = g
(
x

p−a−1
p

)
x− a+1

p and �0 = �
p

p−a−1 , in (7.7) we get that

(
p

p− 1− a

)p ∫ �0

0

gp
(
x

p−a−1
p

)[
1−

(
x

�0

) p−1−a
p

]
dx

x

=

(
p

p− 1− a

)p+1 ∫ �
p−a−1

p

0

gp(y)

⎡⎣1− y

�
p−1−a

p

0

⎤⎦ dy

y

=

(
p

p− 1− a

)p+1 ∫ �

0

gp(y)
[
1− y

�

] dy

y
,

where y = x
p−a−1

p , dy = x− a+1
p

(
p−1−a

p

)
dx, and∫ �0

0

(
1

x

∫ x

0

g
(
y

p−a−1
p

)
y−

a+1
p dy

)p

xadx

=

(
p

p− 1− a

)p ∫ �0

0

⎛⎝ 1

x
p−a−1

p

∫ x
p−a−1

p

0

g(s)ds

⎞⎠p

dx

x

=

(
p

p− 1− a

)p+1 ∫ �

0

(
1

y

∫ y

0

g(s)ds

)p
dy

y
.

Since we have only equalities in the calculations above we conclude that (7.5) and
(7.7) are equivalent and, thus, by Lemma 7.1, a) is proved for the case (a1).

For the case (a2) all calculations above are still valid and, according to Lemma
7.1, (7.5) holds also in this case and a) is proved also for the case (a2).

For the case 0 < p ≤ 1, a < p − 1, all calculations above are still true and
both (7.5) and (7.7) hold in the reversed direction according to Lemma 7.1. Hence
also b) is proved.
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For the proof of c) we consider (7.7) with f(x) replaced by f(1/x), with a
replaced by a0 and with � replaced by �0 = 1/� :∫ �0

0

(
1

x

∫ x

0

f(1/y)dy

)p

xa0dx

≤
(

p

p− 1− a0

)p ∫ �0

0

fp(1/x)xa0

[
1−

(
x

�0

) p−a0−1
p

]
dx.

(7.9)

Moreover, by making first the variable substitution x = 1/s and after that y = 1/x,
we find that left-hand side of (7.9) is equal to∫ �0

0

(
1

x

∫ ∞

1/x

f(s)

s2
ds

)p

xa0dx =

∫ ∞

�

(
y

∫ ∞

y

f(s)

s2
ds

)p

y−a0−2dy

=

∫ ∞

�

(
1

y

∫ ∞

y

f(s)

s2
ds

)p

y−a0−2+2pdy

[Put f(s)
s2 = g(s)]

=

∫ ∞

�

(
1

y

∫ ∞

y

gp(y)

)p

y2p−a0−2dy,

and, by using the substitution y = 1/x, we obtain that right-hand side of (7.9) is
equal to (

p

p− 1− a0

)p ∫ ∞

�

fp(y)y−a0

[
1−

(
�

y

) p−a0−1
p

]
y−2dy

=

(
p

p− 1− a0

)p ∫ ∞

�

gp(y)y2p−a0−2

[
1−

(
�

y

) p−a0−1

p

]
dy.

Now replace 2p−a0−2 by a and g by f and we have that a0 = 2p−a−2, p−1−a0 =
a+ 1− p. Hence, it yields that∫ ∞

�

(
1

x

∫ ∞

x

f(s)ds

)p

xadx ≤
(

p

a+ 1− p

)p ∫ ∞

�

fp(x)xa

[
1−

(
�

x

) a+1−p
p

]
dx

and, moreover,

a0 < p− 1 ⇔ 2p− a− 2 < p− 1 ⇔ a > p− 1.

By changing notation and using the symmetry between the parameters, we find
that c) with the conditions (c1) and (c2) are in fact equivalent to a) with the
conditions (a1) and (a2), respectively, and also c) is proved. (The formal relation
between the parameters is a = 2p− a0 − 2 and �0 = 1/�.)

The calculations above hold also in the case d) and the only inequality holds
in the reversed direction in this case so also d) is proved.

Finally, we note that the proof above only consists of suitable substitutions
and equalities to reduce all inequalities to the sharp inequality (7.5), or the reversed
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inequality (7.5), and we obtain a proof also of the statements e) and f) according
to Lemma 7.1. The proof is complete. �

8. Some further results and final remarks

Remark 8.1. Our presented simple convexity technique to prove powerweighted
Hardy inequalities can be useful for several generalizations. We only present here
the following generalization of our fundamental inequality (7.5) for the case of
piecewise-constant p(x) :

Example 26. Let

p(x) =

{
p0, 0 ≤ x ≤ 1,

p1, x > 1,
(8.1)

where p0, p1 ∈ R \ {0}. Let 0 < � ≤ ∞, and let p(x) be defined by (8.1). Then, for
every non-negative and measurable function f,∫ �

0

(
1

x

∫ x

0

f(t)dt

)p(x)
dx

x
≤ 1 ·

∫ �

0

(f(x))p(x)
(
1− x

�

) dx

x
(8.2)

+ max

{
0, 1− 1

�

}∫ 1

0

[(f(x))p1 − (f(x))p0 ] dx,

whenever p(x) ≥ 1 or p(x) < 0 (for the case p(x) < 0 we also assume that
f(x) > 0.)

For the case 0 < p(x) < 1 inequality (8.2) holds in the reversed direction.
The constant C = 1 in front of the first integral is sharp.

Remark 8.2. The proof of this and more general statements of this type can be
found in [27]. Note that for the case p0 = p1 = p (8.2) coincides with (7.5).
Hence, our inequality (8.2) is a genuine generalization not only of (7.5) but also
of all Hardy type inequalities we have derived from (7.5) in this paper (see, e.g.,
Proposition 7.3).

Remark 8.3. We have already mentioned that convexity was very important when
modern interpolation theory was initiated (see Example 2 and [7]). Hence, it is
not surprising that interpolation theory is also very important tool when proving
inequalities. The main aim of [25] is to illustrate and develop this close connec-
tion between Convexity, Interpolation and Inequalities. Here we just mention the
following example:

Example 27 (Young’s integral inequality). Consider the convolution operator T
defined by

Tf(x) =

∫ +∞

−∞
k(x− y)f(y)dy = k ∗ f(x).

If k ∈ Lr = Lr(−∞,+∞) and f ∈ Lp = Lp(−∞,+∞), where 1 < p < r′ =
r/(r − 1), then k ∗ f ∈ Lq, where 1/q + 1/p− 1/r′ and

‖k ∗ f‖Lq ≤ ‖k‖Lr‖f‖Lp . (8.3)
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Proof. By our variant of Minkowski’s inequality we have that

‖Tf‖Lr ≤ ‖k‖Lr‖f‖L1

and, by Hölder’s inequality,

‖Tf‖L∞ ≤ ‖k‖Lr‖f‖Lr′ .

This means that T : L1 → Lr and T : Lr′ → L∞ with norm ‖k‖Lr in both
cases. By interpolating between these two situations with the usual relation for
the parameters in intermediate spaces we obtain (8.3) and the proof is complete
(cf. [7], p. 6). �
Remark 8.4. Note that this argument of proof does not work for the case r = 1
(so that p = q) but this limit case holds also, which can be seen by just using a
direct convexity argument.

Example 28. If f ∈ Lp, 1 ≤ p ≤ ∞, and g ∈ L1, then f ∗ g ∈ Lp and, moreover,

‖f ∗ g‖Lp ≤ ‖g‖L1‖f‖Lp.

Proof. We shall prove that(∫ +∞

−∞

∣∣∣∣∫ +∞

−∞
f(y)g(x− y)dy

∣∣∣∣p dx
)1/p

≤
∫ +∞

−∞
|g(x)|dx

(∫ +∞

−∞
|f(x)|pdx

)1/p

.

The cases p = 1 and p = ∞ are trivial so we assume that 1 < p < ∞. First we
note that, by Hölder’s inequality, for each x ∈ R we have that

|f ∗ g(x)| =
∣∣∣∣∫ +∞

−∞
f(y)g(x− y)dy

∣∣∣∣ ≤ ∫ +∞

−∞
|f(y)||g(x− y)|1/p|g(x− y)|1/p

′
dy

≤
(∫ +∞

−∞
|f(y)|p|g(x− y)|dy

)1/p (∫ +∞

−∞
|g(x− y)|dy

)1/p′

.

We now take the Lp norm of both sides and use Fubini’s theorem to obtain
that

‖f ∗ g‖Lp ≤ (‖g‖L1)
1/p′

(∫ +∞

−∞
|f(y)|p

(∫ +∞

−∞
|g(x− y)|dx

)
dy

)1/p

= (‖g‖L1)
1/p′

(‖g‖L1)
1/p

(∫ +∞

−∞
|f(y)|pdy

)1/p

= ‖g‖L1‖f‖Lp. �

Remark 8.5. We claim that also a number of other classical and new inequalities
can be derived and understood in this uniform way via convexity and interpolation.
For further information concerning this we refer to [25].

We shall finish this section by shortly discussing the possibility to change the
concept of convexity a little and thus be able to prove some refined versions of
classical inequalities.

In this connection we mention that the following concept of super-quadratic
(sub-quadratic) function was introduced in 2004 by S.Abramovich et al. in [2]:
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Definition 8.6. [2, Definition 2.1]. A function ϕ : [0,∞) → R is superquadratic
provided that for all x ≥ 0 there exists a constant Cx ∈ R such that

ϕ(y)− ϕ(x) − ϕ (|y − x|) ≥ Cx (y − x)

for all y ≥ 0.
We say that f is subquadratic if −f is superquadratic.

Remark 8.7. It is easy to see that the function f(u) = up is super-quadratic for
p ≥ 2 and sub-quadratic for 1 < p ≤ 2.

In the paper [2] the authors proved the following remarkable refinement of
Jensen’s inequality for super-quadratic functions:

Theorem 8.8. Let (Ω, μ) be a measure space with μ(Ω) = 1. The inequality

ϕ

(∫
Ω

f(s)dμ(s)

)
≤

∫
Ω

ϕ(f(s))dμ(s)−
∫
Ω

ϕ

(∣∣∣∣f(s)− ∫
Ω

f(s)dμ(s)

∣∣∣∣) dμ(s) (8.4)

holds for all probability measures μ and all nonnegative μ-integrable functions f if
and only if ϕ is super-quadratic. Moreover, (8.4) holds in the reversed direction if
and only if ϕ is sub-quadratic.

In view of Remark 8.7 we have the following important special case of The-
orem 8.8:

Example 29. Let (Ω, μ) be a measure space with μ(Ω) = 1. If p ≥ 2, then(∫
Ω

f(s)dμ(s)

)p

≤
∫
Ω

(f(s))pdμ(s)−
∫
Ω

∣∣∣∣f(s)− ∫
Ω

f(s)dμ(s)

∣∣∣∣p dμ(s) (8.5)

holds and the reversed inequality holds when 1 < p ≤ 2 (see also [1, Example 1,
p. 1448]).

By now using the same technique as in our previous sections but with this
refined Jensen inequality (see Example 29) we can obtain for example the following
refined Hardy type inequalities (the details in the calculations can be found in the
paper [24] by J. Oguntuase and L.E. Persson).

Example 30. Let p > 1, k > 1, 0 < b ≤ ∞, and let the function f be locally

integrable on (0, b) such that 0 <
b∫
0

xp−kfp(x)dx < ∞.

(i) If p ≥ 2, then∫ b

0

x−k

(∫ x

0

f(t)dt

)p

dx+
k − 1

p

∫ b

0

∫ b

t

∣∣∣ p

k − 1

(
t

x

)1−k−1
p

f(t)

− 1

x

∫ x

0

f(t)dt
∣∣∣p · xp−k− k−1

p dxt
k−1
p −1dt

≤
(

p

k − 1

)p ∫ b

0

[
1−

(x
b

)k−1
p

]
xp−kfp(x)dx.

(8.6)

(ii) If 1 < p ≤ 2, then inequality (8.6) holds in the reversed direction.
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Remark 8.9. Note that (8.6) with b = ∞ means that if p ≥ 2, then the classical
Hardy inequality for k > 1 can be refined by adding a second term on the left-hand
side. In fact, this factor is so big that the inequality holds in the reversed direction
for 1 < p ≤ 2 so that, in particular, for p = 2 we have the following identity:∫ ∞

0

x−k

(∫ x

0

f(t)dt

)2

dx+
k − 1

2

∫ ∞

0

∫ ∞

t

( 2

k − 1

(
t

x

)1− k−1
2

f(t)

− 1

x

∫ x

0

f(t)dt
)2

· x2−k− k−1
2 dxt

k−1
2 −1dt =

(
2

k − 1

)2 ∫ ∞

0

x2−kf2(x)dx.

Remark 8.10. As we have seen the “normal” behaviour in Hardy type inequalities
is that the natural “breaking point” (the point where it reverses) is p = 1 but in
the refined Hardy inequality (8.6) the “breaking point” is p = 2. Further research
in this direction can be found in recent papers by S. Abramovich and the present
authors (see [3], [4] and [5]).
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