
Operator Theory:
Advances and Applications, Vol. 242, 243–251
c© 2014 Springer Basel

On Spectral Subspaces and Inner
Endomorphisms of Some Semigroup
Crossed Products

Nadia S. Larsen

Abstract. This note provides a look into some of the abstract properties of the
semigroup crossed product of a unital C∗-algebra by an action consisting of
endomorphisms for which there is a left inverse. The objective is to describe
in general terms some of the relations between spectral subspaces for the
canonical coaction on the crossed product and certain eigenspaces of a time-
evolution on the crossed product. The present analysis is inspired by certain
constructions due to Cornelissen and Marcolli [2].
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Introduction

Semigroup crossed products as models for C∗-algebras arising in number theory
were first considered by Laca and Raeburn in [8], with motivation provided by the
work in [1]. In employing techniques of the theory of semigroup crossed products
they were able to offer simplifications of the presentation of the reduced Hecke C∗-
algebra in [1] and show that this algebra possessed a universal property. Similar
classes of semigroup crossed products were studied later by many authors, and
recently they appeared in work of Cornelissen and Marcolli [2].

The starting point in [2], from the point of view of semigroup crossed prod-
ucts, is common to many of the previous studies, and consists of a dynamical sys-
tem (A,S, α) where A is a unital C∗-algebra, S is a semigroup with nice properties
(typically part of a lattice ordered group (G,S)), and α is an action of S by injec-
tive endomorphisms of A for which there is a left inverse. The interest in [2] is in
the crossed product A = A�αS as part of a quantum statistical mechanical system
(A, σ) arising from a time-evolution σt on A for t ∈ R. Cornelissen and Marcolli’s
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study of isomorphism of two quantum statistical mechanical systems (A, σ) and
(A′, σ′) associated to two number fields is heavily dependent on delicate number
theoretic facts and arguments. However some of the ingredients introduced along
the way pertain to the semigroup crossed product and may be looked at in general
terms. This is the objective of the present note. We study here relations between
the spectral subspaces of A�αS associated to the canonical coaction of G and the
eigenspaces of a time evolution σ on the crossed product. As application we iden-
tify inner endomorphisms (in the terminology of Cornelissen–Marcolli) of (A, σ)
that are dagger inner endomorphisms of A �α S, where the dagger subalgebra is
another new ingredient introduced in [2]. A crucial aspect in [2] is preservation of
the dagger subalgebra under inner endomorphisms, and one of their results relies
on characterizing dagger inner endomorphisms as those inner endomorphisms pre-
serving the dagger subalgebra. It is a natural question whether it is possible to
identify in greater generality elements among the inner endomorphisms that are
dagger inner isomorphisms. We shall provide an affirmative answer to this question
under some suitable conditions.

I thank the referee for a number of useful comments and suggestions.

1. Semigroup crossed products

Suppose that S is a subsemigroup of a (discrete) group G containing the identity
element e and α : S → End(A) is an action of S by endomorphisms of a unital
C∗-algebra A. The semigroup crossed product A �α S is the unital C∗-algebra
generated by (the image of) a pair (iA, iS) in which iA a ∗-homomorphism of A
and iS is a semigroup homomorphism of S satisfying the covariance condition

iS(s)iA(a)iS(s)
∗ = iA(αs(a)) (1.1)

for all s ∈ S and a ∈ A; the pair (iA, iS) is universal in the sense that any
pair (π, V ) (into B(H) for some Hilbert space H) satisfying the analogue of (1.1)
factors through (iA, iS). If the system admits a pair (π, V ) satisfying the covariance
condition with π injective, then iA is injective. We shall assume henceforth that
iA is injective.

We identify g in G with its image as a generating unitary inside C∗(G). It is
known that there is a homomorphism iG from C∗(G) into C∗(G) ⊗ C∗(G), with
⊗ denoting the minimal tensor product, such that iG : g �→ g ⊗ g. Recall that a
coaction δ of G on a unital C∗-algebra A is an injective homomorphism δ : A →
A�C∗(G) which satisfies (δ◦idC∗(G))◦δ = (idA⊗iG)◦δ and span(δ(A)(1⊗C∗(G)))
is dense in A⊗C∗(G). We refer to [10] for basic properties of coactions of discrete
groups on C∗-algebras.

With the notation of the first paragraph of this section, [7, Proposition 6.1]
(see also their Remark 6.2 which says that one can work with the minimal tensor
product), shows that there is a coaction δ of G on A �α S such that δ(iA(a)) =
iA(a)⊗ e and δ(iS(s)) = iS(s)⊗ s for a ∈ A and s ∈ S.
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Proposition 1.1. The cosystem (A �α S,G, δ) is a maximal coaction in the sense
of [4].

Proof. Let A be the Fell bundle associated to (A �α S,G, δ), and let C∗(A) be
its full sectional C∗-algebra. Then the universal properties of both algebras imply
that A �α S ∼= C∗(A), and the result follows because C∗(A) with its canonical
coaction of G is a maximal coaction system. �

Let S be a cancellative semigroup with identity e. We say that S is right-
reversible (or S is an Ore semigroup) provided that Ss ∩ Ss′ �= ∅ for any pair
s, s′ ∈ S. It follows that S embeds in its group of left quotients G = S−1S. If
S ∩ S−1 = {e}, then x ≤r y ⇐⇒ yx−1 ∈ S is a right-invariant order on G. Note
that the right-reversibility condition ensures that any two elements s, s′ ∈ S have
a common upper bound in S. In the next section we shall assume that there exists
a least upper bound for any two elements in S (and in G).

It is known that A �α S is the closed span of monomials iS(s)
∗iA(a)iS(s′)

for a ∈ A and s, s′ ∈ S, see [6, 9]. The algebraic crossed product is

A�alg
α S = span{iS(s)∗iA(a)iS(s′) | s, s′ ∈ S, a ∈ A}.

By extending the terminology from [2] for a certain class of semigroup crossed
products, the dagger subalgebra (A�α S)† of A�α S is the algebra generated by
iA(A) and the isometries iS(s) for s ∈ S. In this case, (A�αS)

† = span{iA(a)iS(s) |
a ∈ A, s ∈ S}.

The next result was claimed in [9] without proof. We include some details of
the proof here because they will be useful later. Recall that the spectral subspace
at g ∈ G for the coaction δ on A�αS is the space (A�αS)g consisting of x ∈ A�αS
such that δ(x) = x⊗ g.

Lemma 1.2. The spectral subspaces corresponding to δ are given by

(A�α S)δg = span {iS(s)∗iA(a)iS(s′) : g = s−1s′, s, s′ ∈ S, a ∈ A}, (1.2)

for g ∈ G. In particular, the fixed point algebra (A�α S)δe for δ is

(A�α S)δe = span {iS(s)∗iA(a)iS(s) : s ∈ S, a ∈ A}. (1.3)

Proof. We prove first (1.3). Clearly span {iS(s)∗iA(a)iS(s) : s ∈ S, a ∈ A} is
contained in (A�αS)e. For the other inclusion, let c ∈ (A�αS)e. We may assume
c =

∑n
j=1 iS(sj)

∗iA(aj)iS(s′j) for sj , s
′
j ∈ S and aj ∈ A. Let λG be the regular

representation of G (extended to C∗(G)), and let irG denote the embedding of G

as unitaries in C∗
r (G). The canonical trace τ on C∗

r (G) carries irG(s
−1
j s′j) to 1 if

s−1
j s′j = e and to zero otherwise. Since δ(c) − c ⊗ e = 0 in (A �α S) ⊗ C∗(G),

by applying (id⊗τ) ◦ (id⊗λG) to the difference we get that the sum of terms
iS(sj)

∗iA(aj)iS(s′j) in c in which s−1
j s′j �= e is zero. This proves (1.3).

To prove the general case note that the right to left inclusion in (1.2) follows
from the definition of δ. For the other inclusion let c ∈ (A�α S)g for some g ∈ G.
Then c∗c ∈ (A �α S)∗g(A �α S)g, which is included in (A �α S)e by [10, Lemma
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1.3]. Assume c =
∑n

j=1 iS(sj)
∗iA(aj)iS(s′j) for sj , s

′
j ∈ S and aj ∈ A. To simplify

notation, let Mj = iS(sj)
∗iA(aj)iS(s′j). Then

c∗c =
(∑

j

Mj

)∗(∑
k

Mk

)
=

∑
j

M∗
j Mj +

∑
j 	=k

M∗
j Mk

=
∑
j

iS(s
′
j)

∗iA(a∗jαsj (1)aj)iS(s
′
j) +

∑
j 	=k

M∗
j Mk;

we compute the second sum separately. For each pair (j, k) with j, k = 1, . . . , n
and j �= k we choose u(j,k), v(j,k) ∈ S such that sjs

−1
k = u−1

(j,k)v(j,k). Then w(j,k) :=

u(j,k)sj = v(j,k)sk. Letting

b(j,k) := αu(j,k)
(a∗j )αw(j,k)

(1)αv(j,k)
(ak)

for j �= k we obtain

c∗c =
∑
j

iS(s
′
j)

∗iA(a∗jαsj (1)aj)iS(s
′
j) +

∑
j 	=k

M∗
j Mk

=
∑
j

iS(s
′
j)

∗iA(a∗jαsj (1)aj)iS(s
′
j) +

∑
j 	=k

iS(u(j,k)s
′
j)

∗iA(bj,k)iS(v(j,k)s′k).

Since c∗c ∈ (A�α S)e, we obtain from two applications of (1.3) that

(u(j,k)s
′
j)

−1v(j,k)s
′
k = e

for all j, k with j �= k. Thus we must have (s′j)
−1sjs

−1
k s′k = e or, equivalently,

s−1
j s′j = s−1

k s′k for all j, k with j �= k. This means that

g′ := s−1
j s′j for all j = 1, . . . , n.

Then δ(c) = c⊗ g = c⊗ g′, so g = g′ = s−1
j s′j for all j. �

2. Semigroup dynamical systems with left inverses

Semigroup dynamical systems of the form (A,S, α) with S a right-reversible Ore
semigroup and α an action by injective endomorphisms of a unital C∗-algebra A
are useful models of some C∗-algebras arising in number theory. In such examples,
the action α has a left inverse. To formalise this, a left inverse for α is an action
α′ : S → End(A) such that α′

s ◦ αs = id and αs ◦ α′
s is multiplication by the

projection αs(1) for all s ∈ S. We shall assume that αe(1) = 1 and αs(1) �= 1
for s ∈ S \ {e}. If (A,S, α, α′) is such a system, then iA induces an isomorphism

iA : A
∼=→ (A �α S)e, see, e.g., [9, Proposition 3.1(1)] (note that the properties

(iii)–(iv) are not needed for assertion (1) in that proposition). Note also that
α′
s(a) = iS(s)

∗iA(a)iS(s) for all s ∈ S and a ∈ A. We next note that such systems
have a gauge-invariant uniqueness property.
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Proposition 2.1 (The gauge-invariant uniqueness property). Let S be an Ore semi-
group with enveloping group G = S−1S and α : S → End(A) an action of S on a
unital C∗-algebra A for which there is a left inverse α′ : S → End(A). A surjective
homomorphism ϕ : A�α S → C is injective if and only if ϕ|iA(A) is injective and
there is a maximal coaction η of G on C such that ϕ is δ–η-equivariant.

Proof. Since δ is maximal, this follows from the gauge-invariant uniqueness theo-
rem for maximal coactions from [5, Corollary A.2]. �

Given a right-reversible semigroup S such that S ∩S−1 = {e}, assume more-
over that for any two elements s, s′ ∈ S there is s̃ ∈ S satisfying Ss ∩ Ss′ = Ss̃.
Then the element s̃ is the least upper bound of s, s′ with respect to the order ≤r.
We denote s̃ = s ∨r s′, and refer to S as being right-lattice ordered whenever any
two elements admit a ∨r.

Suppose that S is right-lattice ordered. Let G = S−1S be its group of left
quotients. If x = s−1t ∈ G, then x ≤r t, so every element in G admits a right
upper bound in S. It is not true in general that any x ∈ G admits a least upper
bound in S. Assume that every element in G admits a least upper bound in S
with respect to ≤r, in which case we refer to (G,S) as being right-lattice ordered.
Then similar to the argument of [3, Lemma 7], which deals with the case of left-
invariant orders, it follows that (G,S) is right-lattice ordered precisely when for
each g ∈ G = S−1S, there is a unique pair of elements s, s′ ∈ S such that:

1. s ∧l s′ = e (where ∧l denotes greatest lower bound in G with respect to the
left-invariant order x ≤l y ⇐⇒ x−1y ∈ S),

2. g = s−1s′, and
3. for any decomposition g = z−1z′ with z, z′ ∈ S we have s ≤r z and s′ ≤r z

′.
We denote g− := s and g+ := s′ and refer to (g−, g+) as the minimal pair in S×S
associated to g.

Under these assumptions, the spectral subspaces admit a particularly nice
description.

Corollary 2.2. Assume that (A,S, α) is a dynamical system where A is unital,
(G,S) is right-lattice ordered, and α is an action by endomorphisms for which there
is a left-inverse α′. Then for each g ∈ G with associated minimal pair (g−, g+) ∈
S × S we have

(A�α S)g = span {iS(g−)∗iA(a)iS(g+) : a ∈ A}.

Proof. By (1.2), it suffices to prove the left to right inclusion. Let z, z′ ∈ S such
that g = z−1z′. Then g− ≤r z and g+ ≤r z′ with z(g−)−1 = z′(g+)−1 ∈ S, and
the claim follows from the calculations

iS(z)
∗iA(a)iS(z′) = iS(g−)∗iS(z(g−)−1)∗iA(a)iS(z′(g+)−1)iS(g+)

= iS(g−)∗iA(α′
z(g−)−1(a))iS(g+). �

Let (G,S) be a right-lattice ordered group and (A,S, α) a semigroup dy-
namical system with injective endomorphisms of the unital C∗-algebra A. Let δ
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be the canonical coaction of G on A �α S. Suppose that NG : G → (0,∞) is a
homomorphism, where (0,∞) has its multiplicative structure. The universal prop-
erty of A �α S implies that there is a one-parameter group of automorphisms
σ : R→ Aut(A�α S) such that

σt(iS(s)
∗iA(a)iS(s′)) = NG(s

−1s′)itiS(s)∗iA(a)iS(s′). (2.1)

We need to recall some terminology from [2]. A quantum statistical me-
chanical system (A, σ) consists of a C∗-algebra A with a one-parameter group of
automorphisms (a time evolution) σ. An element c ∈ A is an eigenvector of σ if
there is λ ∈ (0,∞) such that σt(c) = λitc for all t ∈ R. An endomorphism of (A, σ)
is a ∗-homomorphism ϕ : A → A such that ϕ ◦ σt = σt ◦ ϕ for all t ∈ R.

Definition 2.3 ([2, Definition 1.8]). Suppose that (A, σ) is a quantum statistical
mechanical system. An inner endomorphism of (A, σ) is an endomorphism ϕ of
(A, σ) such that there exists u an isometry in A and an eigenvector of σ for which
ϕ(x) = uxu∗ for all x ∈ A.

To simplify notation, we let Aσ
λ denote the space of eigenvectors c of σ such

that σt(c) = λitc for all t ∈ R. By (2.1), (A�α S)g ⊆ (A�α S)σNG(g) for all g ∈ G.

The next couple of results present partial converses to this inclusion.

Remark 2.4. Suppose (G,S) is a right-lattice ordered group, (A,S, α) is a semi-
group dynamical system with a left inverse α′, and σ is a time-evolution on A�αS
given as in (2.1). Let (A�αS)

† be the dagger subalgebra of A�αS. Suppose that S
is abelian. We claim that every inner endomorphism of (A�αS, σ) preserves the clo-
sure of the dagger subalgebra. To see this, assume first that u = iS(s)

∗iA(b)iS(s′)
and x = iA(a)iS(p) ∈ (A�α S)†. Then

uxu∗ = iA
(
α′
s(bαs′(a)αp(αs′(1)b

∗))
)
iS(p) ∈ (A�α S)†.

By continuity, we have u(A�α S)†u∗ ⊆ (A�α S)† for any isometry u ∈ A �α S,
showing the claim.

There is no reason to expect in general that an endomorphism of (A�α S, σ)
that preserves the dagger subalgebra necessarily must be an inner endomorphism.
In [2, Definition 1.8], a dagger inner endomorphism of (A, σ) is an inner endomor-
phism of the form ϕ(x) = uxu∗ for all x ∈ A, where u ∈ (A�α S)† is an isometry
and an eigenvector of σ. We make the following slight modification of this notion.

Definition 2.5. A dagger inner endomorphism of (A, σ) is an inner endomorphism ϕ

such that for some u ∈ (A�α S)† which is an eigenvector of σ we have ϕ(x) = uxu∗

for all x ∈ A.
In the proof of [2, Proposition 10.1], it is observed that for the particular

systems under consideration, inner endomorphisms that preserve the dagger sub-
algebra coincide with the dagger inner endomorphisms. Thus a natural question is
whether it is possible to identify in greater generality elements among the inner en-
domorphisms that are dagger inner isomorphisms. We shall provide an affirmative
answer to this question under some suitable conditions.
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Assume that the homomorphism NG which induces the time evolution in
(2.1) satisfies the following two conditions:

Hom1. NG(S) ⊆ N \ {0}, and
Hom2. NG(s) and NG(s

′) are co-prime whenever s, s′ ∈ S \ {e} and s ∧l s′ = e.

Lemma 2.6. Suppose (G,S) is a right-lattice ordered group, (A,S, α) is a semigroup
dynamical system with a left inverse α′, and σ is the time-evolution on A �α S
associated to a homomorphism NG that satisfies (Hom1) and (Hom2).

Let c ∈ (A �α S) ∩ (A �α S)σm/n, where m,n are positive integers such that

m,n are coprime. If c∗c ∈ (A �α S)e, then there is g ∈ G with NG(g+) = m and
NG(g−) = n such that c ∈ (A�α S)g.

Proof. From the hypothesis we have σt(c) = (mn )
it
c. Suppose first that c =∑J

j=1 iS(sj)
∗iA(aj)iS(s′j) for sj, s

′
j ∈ S and aj ∈ A. As in the proof of (1.2), the

assumption that c∗c ∈ (A�α S)e implies that there is g ∈ G such that g = s−1
j s′j

for all j = 1, . . . , J . By Corollary 2.2, we may assume c ∈ iS(g−)∗iA(A)iS(g+),
where g = (g−)−1g+ is the minimal decomposition of g such that g− ∧l g+ = e.
Then σt(c) = (NG((g−)−1g+))

itc, and thus NG(g−)−1NG(g+) = m/n. By (Hom2),
we must have NG(g−) = n and NG(g+) = m, and the lemma follows. �

As a consequence of Lemma 2.6, it follows that the set of fixed-points of σt

is exactly iA(A).

Corollary 2.7. We have iA(A) = (A�α S)σ1 .

Proof. Clearly the set of fixed-points of σt is a C∗-subalgebra of A �α S that
contains iA(A) by the definition of σ. Let u ∈ A �α S be a unitary such that
σt(u) = u. Lemma 2.6 implies that there are s, s′ ∈ S with NG(s) = NG(s

′) and
s∧l s′ = e such that u ∈ iS(s)

∗iA(A)iS(s′). This in connection with (Hom2) forces
s = s′ = e and the corollary follows. �

In examples, a system of the form (A,S, α, α′) often has an additional feature.
Denoting vs := iS(s) for s ∈ S, assume that

v∗s′vs = vsv
∗
s′ when s ∧l s′ = e in S. (2.2)

Assuming (2.2), it follows that for every a ∈ A, we have

iA(α
′
s′(αs(a))) = v∗s′ iA(αs(a))vs′ = v∗s′vsiA(a)v

∗
svs′

= vsv
∗
s′ iA(a)vs′v

∗
s = iA(αs(α

′
s′ (a))).

Thus (2.2) says that the actions α and α′ satisfy the identity

α′
s′ ◦ αs = αs ◦ α′

s′ whenever s, s
′ ∈ S with s ∧l s′ = e. (2.3)

Note that the converse is valid, too: applying (2.3) to a = 1 and writing out the
identity using the isometries v gives (2.2).
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Lemma 2.8. Assume that the actions α and α′ satisfy (2.3) and αs(1) are central
projections in A for all s ∈ S. Let u ∈ A�αS be an isometry with u ∈ (A�αS)

σ
m/n

for positive integers m,n such that m,n are coprime. Then n = 1 and there exists
s′ ∈ S such that NG(s

′) = m and u ∈ (A �α S)s′ . In particular, u belongs to the
closure of (A�α S)†.

Proof. By Lemma 2.6, we may assume that u = iS(s)
∗iA(a)iS(s′) for s, s′ ∈ S

with NG(s) = n,NG(s
′) = m and s ∧l s′ = e. Then

u∗u = iA
(
α′
s′(a

∗αs(1)a)
)

= iA
(
α′
s′(αs(1)a

∗a)
)
since αs(1) is central

= iA(α
′
s′ ◦ αs ◦ α′

s(a
∗a))

= iA(αs ◦ α′
s′ ◦ α′

s(a
∗a))) by (2.3).

The assumption u∗u = 1 implies that αs(a
′) = 1 for a′ = α′

s′ ◦α′
s(a

∗a), from which
we infer that a′ = α′

s(αs(a
′)) = α′

s(1) = 1. Thus αs(1) = 1, which necessarily
implies that s = e, and in particular that n = 1. The lemma follows. �
Theorem 2.9. Suppose (G,S) is a right-lattice ordered group, (A,S, α) is a semi-
group dynamical system with a left inverse α′, and σ is the time-evolution on
A �α S associated to a homomorphism NG that satisfies (Hom1) and (Hom2).
Assume further that α and α′ satisfy (2.3) and αs(1) are central projections in A
for all s ∈ S.

Then every inner endomorphism of (A �α S, σ) corresponding to a positive
rational eigenvalue of the time evolution is a dagger inner endomorphism.

Proof. Assume that ϕ is an inner endomorphism of the form ϕ(x) = uxu∗ for
x ∈ A �α S, where u ∈ (A �α S)σq for some rational q. Writing q = m/n for
m,n ∈ N, n �= 0, m,n co-prime, it follows from Lemma 2.8 that u is in the closure
of (A�α S)†, as claimed. �

Given systems (A,S, α) and (B,R, β) where (G,S) and (K,R) are right-
lattice ordered, assume α′ is a left-inverse for α such that α′

s(1) = 1, αs(1) is central
in A for all s ∈ S and α, α′ satisfy (2.3), and similarly β′ is a left-inverse for β
such that β′

r(1) = 1, βr(1) are central in B for all r ∈ R and β, β′ satisfy (2.3). Let
NG : G → (0,∞) and NK : K → (0,∞) be homomorphisms satisfying (Hom1)–
(Hom2), and let σ and τ , respectively, be the time evolutions on A�αS and B�βR
given as in (2.1). Suppose that φ : A�α S → B�β R is an isomorphism such that
φ ◦ σt = τt ◦ φ for all t ∈ R. The first observation is that φ|iA(A) : iA(A)→ iB(B)
is an isomorphism. Indeed, since φ(iA(a)) is a fixed point of τt, it follows that
φ(iA(a)) ∈ iB(B) by Corollary 2.7. Hence φ(iA(A)) ⊆ iB(B), and the opposite
direction is similar using the inverse φ−1.

Let y ∈ (A �α S)δs where NG(s) = m for some positive integer m ≥ 1. The

equivariance of φ with respect to σ and τ shows that φ(y) ∈ (B�alg
β R)∩(B�βR)τm.

Thus by Lemma 2.6 there is r ∈ R with NK(r) = m such that φ(y) ∈ (B �β

R)εr. It is not clear in general that an isomorphism φ as above will preserve the
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dagger subalgebras. In the situation of [2], it is part of the assumptions that an
isomorphism between (A, σ) and (B, τ) preserves the dagger subalgebras. In the
present setup, the following partial result holds true.

Corollary 2.10. If φ is an isomorphism of quantum statistical mechanical systems
(A�α S, σ) and (B �β R, τ) as above, then for every m ≥ 1, φ is an isomorphism

φ : (A�α S)† ∩ (A�α S)σm → (R �β R)† ∩ (B �β R)εm.
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