
Operator Theory
Advances and Applications 

242

M. Amélia Bastos
Amarino Lebre
Stefan Samko
Ilya M. Spitkovsky
Editors

Operator Theory, 
Operator 
Algebras and 
Applications





 

 

Operator Theory: Advances and Applications 

Founded in 1979 by Israel Gohberg 

Volume 242

 

Joseph A. Ball (Blacksburg, VA, USA) 
Harry Dym (Rehovot, Israel) 
Marinus A. Kaashoek (Amsterdam, The Netherlands) 
Heinz Langer (Wien, Austria) 
Christiane Tretter (Bern, Switzerland) 
 

Vadim Adamyan (Odessa, Ukraine) 

Albrecht Böttcher (Chemnitz, Germany) 
B. Malcolm Brown (Cardiff, UK) 
Raul Curto (Iowa, IA, USA) 
Fritz Gesztesy (Columbia, MO, USA) 
Pavel Kurasov (Stockholm, Sweden) 
Leonid E. Lerer (Haifa, Israel) 
Vern Paulsen (Houston, TX, USA) 
Mihai Putinar (Santa Barbara, CA, USA) 
Leiba Rodman (Williamsburg, VA, USA) 
Ilya M. Spitkovsky (Williamsburg, VA, USA) 

Lewis A. Coburn (Buffalo, NY, USA) 
Ciprian Foias (College Station, TX, USA) 
J.William Helton (San Diego, CA, USA) 
Thomas Kailath (Stanford, CA, USA) 
Peter Lancaster (Calgary, Canada) 
Peter D. Lax (New York, NY, USA) 
Donald Sarason (Berkeley, CA, USA) 
Bernd Silbermann (Chemnitz, Germany) 
Harold Widom (Santa Cruz, CA, USA) 

 

Associate Editors: Honorary and Advisory Editorial Board: 

Editors: 

Wolfgang Arendt (Ulm, Germany) 

Subseries 
Linear Operators and Linear Systems 
Subseries editors: 
Daniel Alpay (Beer Sheva, Israel) 
Birgit Jacob (Wuppertal, Germany) 
André C.M. Ran (Amsterdam, The Netherlands) 
 
 
Subseries 
Advances in Partial Differential Equations 
Subseries editors: 
Bert-Wolfgang Schulze (Potsdam, Germany) 
Michael Demuth (Clausthal, Germany) 
Jerome A. Goldstein (Memphis, TN, USA) 
Nobuyuki Tose (Yokohama, Japan) 
Ingo Witt (Göttingen, Germany) 



Editors 

Operator Theory, Operator

mélia Bastos • Amarino Lebre • Stefan Samko
Ilya M. Spitkovsky

Algebras and Applications

M. A



 
ISBN 978-3-0348-081 -  ISBN 978-3-0348-081 -  (eBook) 
DOI 10.1007/978-3-0348-081 -  
Springer Basel Heidelberg New York Dordrecht London 
 

 
Mathematics Subject Classification (2010): 35 , 35 , A , , 
 
© Springer Basel 2014 
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with 
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed 
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or 
parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its 
current version, and permission for use must always be obtained from Springer. Permissions for use may be 
obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the 
respective Copyright Law. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein. 
 
Printed on acid-free paper 
 
Springer Basel is part of Springer Science+Business Media (www.birkhauser-science.com) 

ISSN 0255- ISSN 2 -0156 296 4878 (electronic)
5 6 6 3

6 3

Q15 A23 47 68 47B35 47L10, 47L15

Editors

Instituto Superior Técnico
Departamento de Matemática

Lisbon, Portugal

Amarino Lebre Departamento de Matemática

, Portugal

Department of Mathematics

Universidade do Algarve
Faro

Ilya M. Spitkovsky

Stefan Samko

College of William  Mary
Williamsburg, VA, USA

&

sM. Amélia Basto

Library of Congress Control Number: 2014940149

http://www.birkhauser-science.com


Contents

Editorial Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

Scientific Life of António Ferreira dos Santos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Participants of WOAT 2012 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

WOAT 2012 – Contributed Articles
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Editorial Introduction

This volume is devoted to the Workshop on Operator Theory, Operator Algebras
and Applications, WOAT 2012, held at Instituto Superior Técnico, Universidade
de Lisboa, Portugal, from September 11th to September 14th of 2012. The main
scientific goal of WOAT 2012 was to present developments in Operator Theory,
Operator Algebras and their applications and to promote research exchanges in the
areas of Operator Theory and Operator Algebras. WOAT 2012 continued a series
of conferences organized by the Center for Functional Analysis and Applications
since 2006 and was dedicated to Professor António Ferreira dos Santos on the
occasion of his seventieth birthday.

This volume consists of 22 peer-reviewed papers contributing to the main
topics of WOAT 2012. More specifically, it contains the articles on Operator The-
ory and Harmonic Analysis (in particular, singular integral operators with shifts,
pseudodifferential operators, factorization of almost periodic functions, Riesz po-
tential operators, inequalities), on Operators Algebras (namely, Fredholm and in-
vertibility theory in C∗-algebras, Følner sequences, sequences related to the finite
section method), and on Mathematical Physics (operator approach to diffraction
problems, Poisson structures).

The organizers acknowledge the support of the WOAT 2012 sponsors: The
Portuguese Foundation for Science and Technology and the Center for Functional
Analysis and Applications. The organizers would also like to thank the Associação
de Turismo de Lisboa for providing publicity material on Lisbon.

The editors of this volume express their deep gratitude to Birkhäuser’s edi-
torial team, Sylvia Lotrovsky and Thomas Hempfling, for their kind and prompt
help during the preparation of the volume

Lisbon, 20th October 2013 The Editorial Board



António Ferreira dos Santos



Scientific Life of António Ferreira dos Santos

(Communication of M. Amélia Bastos in the WOAT 2012 opening session)

Professor Ferreira dos Santos was born in 1939 in the town of Almeirim. Determi-
nation and passion for knowledge are some of the personal characteristics which
were typical for him since his early youth. At that time he used to cross the bridge
over Tejo river every day by bike to get to Santarém where he attended his sec-
ondary school. This bridge, pictured on WOAT 2012 poster, symbolizes precisely
this determination to cross the barriers in order to reach knowledge.

Despite his family’s economic difficulties, he managed to complete his uni-
versity studies with the help of a grant from Gulbenkian Foundation which was
awarded to him as the best student of Liceu de Santarém in 1957. With this sup-
port he finished his studies at Instituto Superior Técnico graduating with Elec-
trical Engineering degree in 1963. In 1966, also with the support of Gulbenkian
Foundation, he went to London where he received his PhD degree in Electrical En-
gineering from the Imperial College, for his work on wave propagation. Professor
Ferreira do Santos returned to Instituto Superior Técnico in 1971 as an assistant
professor, thus starting his university career. In the beginning he joined the Centro
de Análise e Processamento de Sinais, where he continued his research on Math-
ematical Methods in Wave Propagation, publishing papers and supervising two
PhD students. At the end of the 80s he decided to move to Pure Mathematics.
He did the habilitation in Mathematics in 1989 and has been full professor in
Mathematics since that time.

Professor Ferreira dos Santos is the founder of the research group in Operator
Theory in Portugal. I vividly recall the first meetings under his direction, when four
young researchers, Francisco Teixeira, Amarino Lebre, Cristina Câmara and I, were
actively searching for areas of Operator Theory in which it was possible to make
substantial contributions. I also acknowledge the importance of the international
support of Professor Gohberg, Professor Meister and Professor Kaashoek which
our group enjoyed at the time.

Professor Ferreira dos Santos was also the main founder of the Center of
Applied Mathematics and later of the Center for Functional Analysis and Appli-
cations, the president of which he had been until his retirement in 2009. During
his research career he published more than forty papers and made important con-
tribution to several topics in Operator Theory, in particular in the factorization



x Scientific Life of António Ferreira dos Santos

theory and the theory of singular integral operators. To name a few: Factorization
of matrix functions of Daniele–Khrapkov type and factorization on a Riemann
surface; Fredholm theory for equations on compact intervals; Factorization of al-
most periodic matrix functions; Relations between the factorization theory and
corona problems; Applications of the factorization theory to integrable systems.
His research activity also includes the supervision of six PhD students who all now
are professors at the Mathematics Department of IST.

Professor Ferreira dos Santos was also very active as an educator. He intro-
duced and was responsible for a number of courses, both at an undergraduate and
master levels: Applied Mathematics for Electrical Engineering; Complex Analysis;
Functional Analysis; Integral Equations: Linear Operators; Operators Algebras;
Mathematical Analysis. For some of these courses he wrote lecture notes. Profes-
sor Ferreira dos Santos played a crucial role in the IST management. He was a
member of the Management Board of IST in 1974–75 and President of the Man-
agement Board in 1978–1979. He was also President of the Pedagogical Board
of IST in 1979–80. In the periods of 1983–1984 and 1991–1992 he was President
of the Mathematics Department. Since the beginning of 1983 until 1991 he was
the coordinator of the Master Course in Applied Mathematics. In the period of
2001–2002 and 2003–2004 he was President of the Scientific Board of IST.

In all aspects of his activities, Professor Ferreira dos Santos always acted with
determination and passion, and he conveyed this approach to all his collaborators.
From myself, and on behalf of the Center for Functional Analysis and Appli-
cations, I would like to thank Professor Ferreira dos Santos for his outstanding
contribution to the research in Operator Theory in Portugal and the development
of Mathematics.

Professor Ferreira dos Santos, I wish you to continue crossing different bridges
to extend boundaries of knowledge with the same determination, passion and joy
for many years to come!
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Fernando Lledó; e-mail: flledo@math.uc3m.es
Universidad Carlos III, Madrid, Spain

Paulo Lopes; e-mail: palopes@math.ist.utl.pt
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Følner Sequences in Operator Theory
and Operator Algebras
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non-degenerate representation which has a Følner sequence or, equivalently,
an amenable trace. We give an abstract characterization of these algebras in
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1. Introduction

In their beginnings the single operator theory and the theory of operator algebras
were a common subject and shared many techniques. As an example recall that
von Neumann algebras were introduced (as rings of operators) in 1929 by von
Neumann in his second paper on spectral theory [39]. In recent times, however,
each of these theories has developed own elaborated techniques which in many
cases remain unknown to experts of the other area. Nevertheless single operator
theory and the theory of operator algebras have also had fruitful and important
interactions ever since. Brown, Douglas and Fillmore’s theory was motivated by the
classification of essentially normal operators and ended with the introduction of the
Ext-group as a fundamental invariant for operator algebras. Finally, Voiculescu’s
work on quasidiagonality also shows the importance of the dialog between these
communities (cf. [26, 49, 50, 48]).

In more recent times operator algebra techniques, in particular exact C∗-alge-
bras, have also been used to solve Herrero’s approximation problem for quasidiago-
nal operators (cf. [15]). Moreover, operator algebras have shown to be a useful tool
in order to address problems in spectral approximation: given a sequence of linear
operators {Tn}n∈N in a complex separable Hilbert space H that approximates an
operator T in a suitable sense, a natural question is how do the spectral charac-
teristics of T (the spectrum, spectral measures, numerical ranges, pseudospectra
etc.) relate with those of Tn as n grows. (Excellent books that include a large
number of examples and references are, e.g., [21, 2]. See also [11, 29] for the ap-
plication of C∗-algebra techniques in numerical analysis.) Arveson’s seminal series
of articles [3, 4, 5] on this topic were directly inspired by Szegő’s classical approx-
imation theorem for Toeplitz operators. Among other interesting results, Arveson
gave conditions that guarantee that the essential spectrum of a large class of self-
adjoint operators T may be recovered from the sequence of eigenvalues of certain
finite-dimensional compressions Tn. These results were then refined by Bédos who
systematically applied the concept of Følner sequence of non-zero finite rank pro-
jections to spectral approximation problems (see [8, 7, 6] as well as [29, 37]; for a
precise definition of Følner sequence and additional results we refer to Section 2).
It is stated in Section 7.2 of [29] that SeLegue also considered Szegő-type theo-
rems for Toeplitz operators in the context of C∗-algebras. Hansen extends some
of the mentioned results to the case of unbounded operators (cf. [33, § 7]; see also
[34] for recent developments in the non-selfadjoint case). Brown shows in [16] that
abstract results in C∗-algebra theory can be applied to compute spectra of impor-
tant operators in mathematical physics like almost Mathieu operators or periodic
magnetic Schrödinger operators on graphs.

In the last two decades, the relation between spectral approximation problems
and Følner sequences for non-selfadjoint and non-normal operators has been also
explored, see, for instance, [52, 45, 12, 43].

The aim of this article is to present in a single publication recent operator the-
oretic and operators algebraic results that involve the notion of Følner sequences
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for operator. Følner sequences were introduced in the context of operator algebras
by Connes in Section V of his seminal paper [22] (see also [23, Section 2]). This
notion is an algebraic analogue of Følner’s characterization of amenable discrete
groups and was used by Connes as an essential tool in the classification of in-
jective type II1 factors. Part of the material of this paper is taken from [1, 38].
There is though a new and complete proof that any essentially normal operator
has a proper Følner sequence (cf. Subsection 3.1) which, in our opinion, is inter-
esting in its own right. The proof is based on the absorbing property for direct
sums stated in Proposition 2.3 and pure operator theoretic arguments including
Brown–Douglas–Fillmore theory.

In this article we will present (with the exception of Subsection 3.1) only
short proofs that improve the comprehension of the statement or that contain
useful techniques. For more difficult and elaborate arguments we will refer to the
original publications. Section 3 is completed with the analysis of the relations
between the class of finite operators (introduced by Williams in [53]) and the
notion of Følner sequence. It shown that Følner sequences for operators provide a
very useful and natural tool to analyze this class of operators. In the last section
we will study the role of Følner sequences in operator algebras. First we review
the relation between Følner sequences for a unital and separable C∗-algebra A
and amenable traces. In particular, we present an approximation procedure for
amenable traces in terms of Følner sequences of projections [41, Theorem 6.1]
(see also [17, Theorem 6.2.7]). We apply this method in Theorem 4.2 to extend a
spectral approximation result for scalar spectral measures in the spirit of Arveson
and Bédos. In Subsection 4.2 we give finally an abstract characterization of unital
separable C∗-algebras A admitting a non-degenerate representation π on a Hilbert
space such that there is a Følner sequence for π(A) or, equivalently, such that π(A)
has an amenable trace (see Theorem 4.7). We conclude with a brief discussion of
C∗-algebras that can also be related to a given Følner sequence and that appear
naturally in the context of spectral approximation problems. In the last section
we summarize some of the main relations and differences in the analysis of Følner
sequences for single operators and for abstract C∗-algebras.

Notation: We will denote by L(H) the C∗-algebra of bounded and linear operators
on the complex separable Hilbert space H, and by K(H) the ideal of compact
operators on H. Next, Pfin(H) is the set of all non-zero finite rank orthogonal
projections on H and [A,B] := AB − BA stands for the commutator of two
operators A,B ∈ L(H). We denote by Tr(·) the standard trace on L(H) and by
tr(·) the unique tracial state on a matrix algebra Mn(C), n ∈ N.

2. Basic properties of Følner sequences for operators

The notion of Følner sequences for operators has its origins in group theory. Recall
that a discrete countable group Γ is said to be amenable if it has an invariant mean,
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i.e., there is a positive linear functional ψ on the von Neumann algebra1 �∞(Γ)
with norm one such that

ψ(γf) = ψ(f) , γ ∈ Γ , f ∈ �∞(Γ) ,

where (γf)(γ0) := f(γ−1γ0). Abelian groups, finite groups and their extensions
are amenable. A Følner sequence for the group Γ is a sequence of non-empty finite
subsets Γi ⊂ Γ that satisfy

lim
i

|(γΓi)�Γi|
|Γi|

= 0 for all γ ∈ Γ , (2.1)

where � denotes the symmetric difference and |X | is the cardinality of a set X .
Then, Γ has a Følner sequence if and only if Γ is amenable (see, e.g., Chapter 4
in [42]). An analysis of different properties of approximability of a group by finite
groups and their relation to amenability has been undertaken in the review [47].

The counterpart of the preceding definition in the context of operators is
given next. First we need to recall that if T ∈ L(H), then ‖T ‖p, p = 1, 2, . . . , is
its norm in the Schatten–von Neumann class.

Definition 2.1. Let T ⊂ L(H) be a set of operators. A sequence of non-zero finite
rank orthogonal projections {Pn}n∈N ⊂ Pfin(H) on H is called a Følner sequence
for T if

lim
n→∞

‖TPn − PnT ‖2
‖Pn‖2

= 0 , T ∈ T . (2.2)

If the Følner sequence {Pn}n∈N satisfies, in addition, that it is increasing and
converges strongly to �, then we say it is a proper Følner sequence for T .

The existence of a Følner sequence has already important structural conse-
quences, see, for instance, Proposition 2.5 and Corollary 3.9 below. Notice, how-
ever, that proper Følner sequences are important in the context of spectral ap-
proximation in the spirit of works [52, 45, 43] and others.

In the preceding definition we have not specified any structure on the set of
operators T . Typically, T will be a single operator or a concrete C∗-algebra, real-
ized in a Hilbert space H. The next result collects some immediate consequences
of the definition of a Følner sequence for operators. Part (ii) is shown in Lemma 1
of [6] (see also [38, Proposition 2.1]).

Proposition 2.2. Let T ⊂ L(H) be a set of operators and {Pn}n∈N ⊂ Pfin(H) a
sequence of non-zero finite rank orthogonal projections. Then we have

(i) {Pn}n∈N is a Følner sequence for T if and only if it is a Følner sequence for
C∗( T , �

)
, where C∗(·) is the C∗-algebra generated by its argument. More-

over, {Pn}n∈N is a proper Følner sequence for T if and only if it is a proper
Følner sequence for

C∗( T , K(H) , �
)
.

1We identify here each f ∈ �∞(Γ) with the multiplication operator with f on the Hilbert space
�2(Γ).
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(ii) {Pn}n∈N is a Følner sequence for T if and only if the following condition
holds:

lim
n→∞

‖TPn − PnT ‖1
‖Pn‖1

= 0 , T ∈ T . (2.3)

If T is a self-adjoint set (i.e., T ∗ = T ), then {Pn}n∈N is a Følner sequence
for T if and only if for all T ∈ T :

lim
n→∞

‖(I − Pn)TPn‖p
‖Pn‖p

= 0, p ∈ {1, 2} . (2.4)

(iii) Let T ∈ L(H) and {Qn}n ⊂ Pfin(H) be such that the sequence {dimQn} is
unbounded and

lim
n→∞

‖TQn −QnT ‖2
‖Qn‖2

= 0 .

Then there exists a proper Følner sequence for T .

Proper Følner sequences for operators have the following characteristic ab-
sorbing property for direct sums:

Proposition 2.3. Let H and H′ be separable Hilbert spaces with dimH = ∞. If
T has a proper Følner sequence, then T ⊕ X ∈ L(H ⊕ H′) has a proper Følner
sequence for any X ∈ L(H′).

Proof. Let {Pn}n∈N be a proper Følner sequence for T and since the sequence of
projections is increasing we may assume that dimPnH ≥ n2. Let {ei | i ∈ N}
be an orthonormal basis of H′ and denote by Qn the orthogonal projection onto
span{e1, . . . , en} ⊂ H′. Then the following calculation shows that {Pn ⊕ Qn}n is
a proper Følner sequence for T ⊕X , X ∈ L(H′):∥∥[T ⊕X,Pn ⊕Qn

]∥∥2
2

‖Pn ⊕Qn‖22
=
‖[T, Pn]‖22 + ‖[X,Qn]‖22

‖Pn‖22 + n

≤ ‖[T, Pn]‖22
‖Pn‖22

+
4 ‖Qn‖22 ‖X‖

2

n2 + n

=
‖[T, Pn]‖22
‖Pn‖22

+ 4 ‖X‖ n

n2 + n
−→
n→∞ 0 . �

Next, we mention some first operator algebraic consequences related to the
existence of Følner sequences. For this we need to recall the following notion:

Definition 2.4. A state τ on the unital C∗-algebra A ⊂ L(H) (i.e., a positive and
normalized linear functional on A) is called an amenable trace if there exists a
state ψ on L(H) such that ψ � A = τ and

ψ(XA) = ψ(AX) , X ∈ L(H) , A ∈ A .

The state ψ is also referred in the literature as a hypertrace for A.



6 P. Ara, F. Lledó and D.V. Yakubovich

Note that an amenable trace is really a trace on A (i.e., τ(AB) = τ(BA),
A,B ∈ A). We also refer to [13, 41] for a thorough description of the relations of
amenable traces and Følner sequences to other important areas like, e.g., Connes’
embedding problem. Hypertraces are the algebraic analogue of the invariant mean
on groups mentioned at the beginning of this section. Later we will need the
following standard result. (See [22, 23] for the original statement and more results
in the context of operator algebras; see also [7, 1] for additional results in the
context of C∗-algebras related to the existence of a hypertrace.)

Proposition 2.5. Let A ⊂ L(H) be a separable unital C∗-algebra. Then A has a
Følner sequence if and only if A has an amenable trace.

Finally, we also mention the following useful results in the context of single
operator theory. We need to introduce first the following definition.

Definition 2.6. We say that T ∈ L(H) is finite block reducible if T has a non-trivial
finite-dimensional reducing subspace, i.e., there is an orthogonal decomposition
H = H0 ⊕H1 which reduces T and where H0 is finite dimensional and non-zero.

The following two propositions are technical and we refer to Section 3 in [38]
for a complete proof.

Proposition 2.7. Let T = T0 ⊕ T̃ on H = H0 ⊕ H̃, where dimH0 < ∞. Then, T

has a proper Følner sequence if and only if T̃ has a proper Følner sequence.

Note that in the reverse implication of Proposition 2.5 the sequence of pro-
jections does not have to be a proper Følner sequence in the sense of Definition 2.1.
In fact, one can easily construct the following counterexample: consider a finite
block reducible operator T = T0 ⊕ T1 on the Hilbert space H = H0 ⊕ H1, with
1 ≤ dimH0 < ∞ and where T1 has no Følner sequence (examples of these type
of operators will be given in Section 3.3). Then, one can show that C∗(T , �) has
a hypertrace (see Williams’ theorem in Subsection 3.2) and by Proposition 2.5
it has a Følner sequence also. The obvious choice of Følner sequence is the con-
stant sequence Pn = �H0 ⊕ 0, n ∈ N, which trivially satisfies (2.2) for T . But
T cannot have a proper Følner sequence, because T1 has no Følner sequence by
Proposition 2.7.

The following proposition clarifies the relation between Følner sequences and
proper Følner sequences in the context of operator theory. In a sense the differ-
ence between Følner sequence and proper Følner sequence can only appear if the
operator is finite block reducible.

Proposition 2.8. Let T ∈ L(H) and suppose that TP−PT �= 0 for all P ∈ Pfin(H).
If there is a Følner sequence of projections {Pn}n ⊂ Pfin(H) of a constant rank,
then T has a proper Følner sequence.
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3. Følner sequences in operator theory

Using a classical result by Berg that states that any normal operator can be ex-
pressed as a sum of a diagonal operator and a compact operator (cf. [26, Sec-
tion II.4]) it is immediate that any normal operator has a proper Følner sequence.
In the next subsection we will address the question of existence of proper Følner
sequences for an important class of non-normal operators. We will also explore the
structure of operators that have no proper Følner sequence. Finally we will show
the strong link between the class of finite operators (in the sense of Williams [53])
and the notion of Følner sequence.

3.1. Essentially normal operators

In this subsection we give a proof of the fact that any essentially normal operator
has a proper Følner sequence. The proof below is from an earlier version of [38].
In this reference we present a stronger statement, namely that any essentially
hyponormal operator has a proper Følner sequence by using different techniques
(see Theorem 5.1 in [38])2.

Nevertheless in our opinion the present direct proof is interesting in itself and
the reasoning is completely different from that in [38]. The proof below is based on
the absorbing property for direct sums given in Proposition 2.3 and pure operator
theoretic arguments including Brown–Douglas–Fillmore theory.

We begin showing that the unilateral shift S has a canonical proper Følner
sequence. In fact, define S on H := �2(N0) by Sei := ei+1, where {ei | i =
0, 1, 2, . . .} is the canonical basis of H and consider for any n the orthogonal
projection Pn onto span{ei | i = 0, 1, 2, . . . , n}. Then∥∥[Pn, S]

∥∥2
2
=

∑∞
i=1

∥∥∥[Pn, S]ei

∥∥∥2

= ‖en+1‖2 = 1

and ∥∥[Pn, S]
∥∥
2

‖Pn‖2
=

1√
n+ 1

−→
n→∞ 0 .

Next we recall some definitions and facts concerning essentially normal op-
erators. Details and additional references can be found, e.g., in [19, 28]; see also
[27] for an excellent brief up-to day account of essential normality and the Brown–
Douglas–Fillmore theory. An operator T ∈ L(H) is called essentially normal if its
self-commutator is a compact operator, i.e., if [T, T ∗] ∈ K(H). If ρ is the quotient
map from L(H) onto the Calkin algebra L(H)/K(H), then T is essentially normal
if and only if ρ(T ) is normal in the Calkin algebra. The unilateral shift S men-
tioned above is a standard example of an essentially normal operator, since its
self-commutator is a rank 1 projection. We recall that an operator F ∈ L(H) is
called Fredholm if its range ranF is closed and both kerF and (ranF )⊥ are finite

2An operator T ∈ L(H) is called hyponormal if its self-commutator [T ∗, T ] is nonnegative. T
is called essentially hyponormal if the image in the Calkin algebra L(H)/K(H) of [T ∗, T ] is a

nonnegative element. Any essentially normal operator is essentially hyponormal (see, e.g., [24,
Chapter 4] or the review [51] for additional results).
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dimensional. The index of a Fredholm operator F is defined as

ind(F ) = dimkerF − dim(ranF )⊥ .

The essential spectrum of an operator T is

σess(T ) := {λ ∈ C | T − λ� is not Fredholm} .
If F is Fredholm and K is compact, then F +K is Fredholm and ind(F +K) =
ind(F ). Finally, F ∈ L(H) is Fredholm if and only if ρ(F ) is invertible in the
Calkin algebra. Therefore, the essential spectrum of any T ∈ L(H) coincides with
the spectrum of ρ(T ). We refer to Section I.8 in [44] for an accessible exposition
of Fredholm operators.

We will need later the following standard facts:

Proposition 3.1. Let {Tn}n∈N be a sequence of bounded operators in L(Hn).

(i) Assume supn {‖Tn‖} < ∞ and define the bounded operator T̂ = ⊕nTn on

⊕nHn. Then, T̂ is invertible if and only if each Tn is invertible and

sup
n

{
‖T−1

n ‖
}
<∞ .

(ii) σess(T1 ⊕ T2) = σess(T1) ∪ σess(T2).
(iii) If T1, T2 are Fredholm operators, then ind(T1 ⊕ T2) = ind(T1) + ind(T2).

The proof of the main result of this subsection is based on the existence of
operators having specific spectral properties. In what follows, for a subset Ω of the
complex plane, we denote by Ω cl its closure and put

Ω = {z̄ | z ∈ Ω} .
We will use the space R2(Ω), defined as the closure in L2(Ω) (with the Lebesgue
measure) of the set of rational functions with poles off Ω cl (see, e.g., Chapter 1
in [24]).

We need to recall here also some other standard notions in operator theory.
An operator T ∈ L(H) is called finitely multicyclic if there are finitely many vectors
g1, . . . , gm ∈ H such that the span of the set

{u(T )gi | 1 ≤ i ≤ m , u rational function with poles off σ(T )}
is dense in H. The vectors g1, . . . , gm are called a cyclic set of vectors. If T is
finitely multicyclic and m is the smallest number of cyclic vectors, then T is called
m-multicyclic.

For the reader’s convenience, we recall the following classical result due to
Berger and Shaw and which we will use several times. For details we refer to the
original article [9] or to Section IV.2 in [24].

Theorem 3.2 (Berger–Shaw). Suppose T is an m-multicyclic hyponormal operator.
Then its self-commutator [T ∗, T ] is of trace class and the canonical trace satisfies

Tr
(
[T ∗, T ]

)
≤ m

π
area(σ(T )) ,

where σ(T ) denotes the spectrum of T .
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Lemma 3.3. Let Ω be an open, bounded and connected subset of C. Then, the
multiplication operator on R2(Ω) given by

(MΩf) (z) := z f(z) , f ∈ R2(Ω) ,

satisfies the following properties:

(i) σ (MΩ) = Ω cl and ‖MΩ‖ = maxz∈Ω cl {|z|}.
(ii) σess (MΩ) ⊂ ∂Ω and

ind (MΩ − λ�) =

{
0 , λ �∈ Ω cl

−1 , λ ∈ Ω .

(iii) ‖(MΩ − λ)−1‖ =
(
dist

(
λ,Ω cl

))−1
, λ �∈ Ω cl .

(iv) MΩ is a hyponormal operator.3

(v) The self-commutator [M∗
Ω,MΩ] is a trace-class operator and

Tr
(
[M∗

Ω,MΩ]
)
≤ 1

π
area(Ω) . (3.1)

Proof. It is a standard fact that R2(Ω) consists of analytic functions on Ω and
that for any λ ∈ Ω, the evaluation functional f �→ f(λ) is bounded on R2(Ω) (see,
e.g., Section II.7 in [24]). Parts (i) and (iii) follow from standard properties of the
multiplication operator. (Note that for λ �∈ Ω cl the function (z − λ)−1 is bounded
and analytic in Ω.) To prove (ii), it suffices to observe that ker(MΩ−λ) = {0} for
any λ ∈ C, that Ran(MΩ − λ) = R2(Ω) for λ /∈ Ω cl and that

Ran(MΩ − λ) =
{
f ∈ R2(Ω) | f(λ) = 0

}
for λ ∈ Ω .

This gives the formula for the index stated above.

To prove (iv) note that M∗
Ωf = QR(z f), f ∈ R2(Ω), where QR denotes

the orthogonal projection from L2(Ω) onto R2(Ω). Therefore ‖M∗
Ωf‖ ≤ ‖MΩf‖,

f ∈ R2(Ω), which implies that MΩ is a hyponormal. Finally, by the definition of
R2(Ω), the constant function 1 is cyclic for MΩ, so that MΩ is 1-multicyclic. Hence
we can apply the Berger–Shaw Theorem to conclude that [M∗

Ω,MΩ] is a trace-class
operator and that the inequality stated above holds. �

Definition 3.4. Let T,R ∈ L(H) be essentially normal operators. We say that T
and R have the same spectral picture the following two conditions hold:

(i) σess(T ) = σess(R) =: X
(ii) ind(T − λ�) = ind(R− λ�) , λ �∈ X .

Theorem 3.5. Any essentially normal operator T ∈ L(H) has a proper Følner
sequence.

3In fact a stronger property holds: MΩ is a subnormal operator (i.e., the restriction of a normal
operator to an invariant subspace); see [24].
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Proof. (i) The first step of the proof uses the following classical result of the
Brown–Douglas–Fillmore theory (see [18, Section V] or [19, Theorem 11.1]). Let
T,R ∈ L(H) be essentially normal, then we have that T = U(R+K)U∗ for some
compact operatorK and some unitary U if and only if operators T and R have the
same spectral picture (cf. Definition 3.4). Therefore to prove that T has a proper
Følner sequence it will be enough to construct an essentially normal operator R
with a proper Følner sequence and having the same spectral picture as T . Indeed,
if {Pn}n is a proper Følner sequence for R, then by Proposition 2.2 (i) it is also
a proper Følner sequence for R + K for any compact operator K and therefore

P̂n := UPnU
∗ is a proper Følner sequence for T = U(R+K)U∗.

(ii) Given the essentially normal operator T , the construction of an essentially
normal operator R with the same spectral picture as T and having a proper Følner
sequence goes as follows. The set X := σess(T ) is a closed and bounded subset of
C, so that we consider its decomposition

C \X := ∪
j∈J

Ωj

into open, connected and disjoint sets; here J ⊂ N is a set of indices. The index
function ∪jΩj � λ �→ ind (T − λ�) is continuous and therefore constant on each
connected component Ωj .

We denote for λ ∈ Ωj the index by nj := ind (T − λ�) ∈ Z, and put

J− := {j ∈ J | nj < 0}, J+ := {j ∈ J | nj > 0}, J∪ = J− ∪ J+.

These sets of indices may be finite or infinite.

To construct R, first take any normal operator N on an infinite-dimensional
Hilbert space K such that σess(N) = X . (A concrete example can be constructed
as follows: put H = �2(N) and let {dn}n∈N be a dense sequence of points in X .
Any isolated point in X is repeated infinitely many times. Then the diagonal
operator N := diag ({dn}n) is normal and σess(N) = X .) Since N is normal we
have ind (N − λ�) = 0, λ �∈ X .

Second, for any bounded Ωj , j ∈ J+ (i.e., nj > 0) we consider the operator
Mj := MΩj on R2(Ωj) as in Lemma 3.3 and that satisfies the properties (i)–

(iv). If j ∈ J−, then we put Mj := MΩj
on R2(Ωj). Define the Hilbert spaces

Kj := ⊕njR2(Ωj) for nj > 0 and Kj := ⊕|nj |R2(Ωj) for nj < 0. Next, we construct
on Kj the operator

Sj :=

⎧⎪⎨⎪⎩
|nj |
⊕
1

M∗
j , if nj < 0 ,

nj

⊕
1
Mj , if nj > 0 .

From Proposition 3.1 (iii) and Lemma 3.3 (ii) we have ind (Sj − λ�) = nj for any
λ ∈ Ωj . Then we consider the operator

Ŝ :=
(
⊕

j∈J∪
Sj

)
on K̂ := ⊕

j∈J∪
Kj
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and, finally, we put

R := N ⊕ Ŝ ∈ L(K ⊕ K̂) .
(iii) The last part of the proof consists in showing that R satisfies all the

required properties.
Since N is normal it has a proper Følner sequence. By the absorbing property

of proper Følner sequences for direct sums stated in Proposition 2.3 we conclude
that R has a proper Følner sequence too.

Next we show that R has the same spectral picture as the given operator T .

For this purpose we prove first that σess(Ŝ) ⊂ X and that for λ in Ωj , ind (Ŝ−λ�) =
nj . Assume that λ /∈ X . Then λ ∈ Ωk for some index k ∈ J . If k /∈ J∪, put
d := infj∈J∪

{
dist

(
λ,Ω cl

j

)}
. In this case d > 0. From Lemma 3.3 (iii) we obtain∥∥(Sj − λ�)−1

∥∥ =
1

dist
(
λ,Ω cl

j

) ≤ 1

d
, j ∈ J∪ .

We conclude that the operator Ŝ − λ� is invertible (recall Proposition 3.1 (i)),

hence it is Fredholm of index 0 and λ �∈ σess(Ŝ).
Now consider the case when λ ∈ Ωk, where k ∈ J∪. Then we may consider

the decomposition

Ŝ − λ� = (Sk − λ�)⊕
(
⊕
j 	=k

Sj − λ�
)
.

The same argument as before shows that ⊕
j 	=k

(Sj−λ�) is invertible, hence Fredholm

of index 0. By construction of Sk (see Lemma 3.3 (ii)) and by Proposition 3.1 (iii)

we conclude that λ �∈ σess(Ŝ) and that ind (Ŝ−λ�) = nk, for any λ ∈ Ωk. Therefore

we have that σess(Ŝ) ⊂ X .
From the properties of the normal operator N constructed in step (ii), we

have σess(N) = X . Using now Proposition 3.1 (ii) we conclude that

σess(R) = σess(N) ∪ σess(Ŝ) = X .

Moreover, we have for any λ ∈ Ωj

ind (R − λ�) = 0 + nj = ind (T − λ�) ,

and we have shown that T and R have the same spectral picture.
Finally, we still have to show that R is essentially normal, i.e., that the self-

commutator of R is compact. For this note that

[R∗, R] = 0⊕ [Ŝ∗, Ŝ] .

We need to consider two cases: if the index set J∪ is finite, then by Lemma 3.3 (v)

the operator Ŝ is trace class, hence R is essentially normal. Note that ∪
j∈J∪

Ωj is

bounded. Therefore, if the set J∪ has infinite cardinality, then we have, in addition,

lim
J∪
j→∞

area(Ωj) = 0 . (3.2)
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Consider the partial direct sum ŜN := ⊕
j∈J∪, j≤N

Sj . Applying again Lemma 3.3 (v)

we get∥∥∥[Ŝ∗, Ŝ]− [Ŝ∗
N , ŜN ]

∥∥∥ =
∥∥∥ ⊕

j∈J∪, j>N
[S∗

j , Sj ]
∥∥∥ = sup

j∈J∪, j>N

∥∥[M∗
j ,Mj]

∥∥
≤ 1

π
sup

j∈J∪, j>N
area(Ωj)→ 0 as N →∞

(see Eq. (3.2)). Since [Ŝ∗
N , ŜN ] is a trace-class operator, it follows that the self-

commutator [R∗, R] can be approximated in norm by trace-class operators, hence
it is compact and we conclude that R is essentially normal. �

Corollary 3.6. If T ∈ L(H) is an m-multicyclic hyponormal operator, then T has
a proper Følner sequence.

Proof. By the Berger–Shaw Theorem it follows that the self-commutator [T ∗, T ]
is trace-class and, therefore, T is essentially normal and the assertion follows from
Theorem 3.5. �

We conclude this subsection mentioning that any quasinormal operator (i.e.,
any operator Q that commutes with Q∗Q) has a proper Følner sequence. Recall
also that an operator T on H is called subnormal if there is a normal operator N

acting on a Hilbert space H̃ containing H such that H is invariant for N and T is
the restriction of N to H. It can also be shown that any subnormal operator has
a proper Følner sequence. See [38] for details and also Chapter II in [24] for the
relations between these classes of operators.

3.2. Finite operators

In this subsection we study the class of finite operators introduced by Williams in
[53] and their relation to proper Følner sequences. (See also [36].)

We begin recalling the main definition and known results.

Definition 3.7. T ∈ L(H) is called a finite operator if

0 ∈
(
W ([T,X ])

)cl

for all X ∈ L(H) ,

where W (T ) denotes the numerical range of the operator T , i.e.,

W (T ) = {〈Tx, x〉 | x ∈ H , ‖x‖ = 1} ,
and where the (·)cl means the closure of the corresponding subset in C.

We collect in the following theorem some standard results due to Williams
about the class of finite operators (cf. [53]).

Theorem 3.8 (Williams). An operator T ∈ L(H) is finite if and only if C∗(T,�)
has an amenable trace. The class of finite operators is closed in the operator norm
and contains all finite block reducible operators.
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It follows that the norm closure of the set of all finite block reducible operators
is contained in the class of finite operators. Combining Williams’ Theorem with
Proposition 2.5, we get the following fact.

Corollary 3.9. For any operator T ∈ L(H), the following properties are equivalent:

(i) T is finite;
(ii) T has a Følner sequence;
(iii) C∗(T,�) has an amenable trace.

The next result shows the strong link between finite operators and proper
Følner sequences. We include the proof, because it is short and illustrative (cf. [38,
Theorem 4.1]).

Theorem 3.10. Let T ∈ L(H). Then, T is a finite operator if and only if T is finite
block reducible or T has a proper Følner sequence.

Proof. (i) If T is finite block reducible, then T is a finite operator (cf. [53]). More-
over, if T has a proper Følner sequence, then the C∗-algebra C∗(T,�) has the
same proper Følner sequence and, by Proposition 2.5, it also has an amenable
trace. Then, by Williams’ theorem (see also Theorem 4 in [53]) we conclude that
T is finite.

(ii) To prove the other implication, assume T is a finite operator. We consider
several cases. If there exists a (non-zero) P ∈ Pfin(H) such that [T, P ] = 0, then
T is finite block reducible. Consider next the situation where [T, P ] �= 0 for all
P ∈ Pfin(H). Since T is finite we can use Williams’ Theorem to conclude that
C∗(T,�) has an amenable trace. Applying Proposition 2.5 (see also Theorem 1.1
in [7]) we conclude that there exists a Følner sequence of non-zero finite rank
projections {Pn}n, i.e., we have

lim
n→∞

‖[T, Pn]‖2
‖Pn‖2

= 0 .

(Note that Pn is not necessarily a proper Følner sequence in the sense of Defini-
tion 2.1.) Two cases may appear: if dimPnH ≤ m for some m ∈ N, then choose
a subsequence with constant rank and by Proposition 2.8 we conclude that T has
a proper Følner sequence. If the dimensions of PnH are not bounded, then from
Proposition 2.2 (iii) we also have that T has a proper Følner sequence. �
3.3. Strongly non-Følner operators

In the present subsection we study the operators with no Følner sequence. For this
we introduce the following notion of operator that is far from having a non-trivial
finite-dimensional reducing subspace.

Definition 3.11. Let H be an infinite-dimensional Hilbert space and T an operator
on H. We will say that T is strongly non-Følner if there exists an ε > 0 such that
all projections P ∈ Pfin(H) satisfy

‖TP − PT ‖2
‖P‖2

≥ ε .
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The following result shows the structure of operators with no proper Følner
sequence. Its proof is long and technical and we refer to Section 3 in [38] for details.

Theorem 3.12. Let T ∈ L(H) with dimH = ∞. Then T has no proper Følner

sequence if and only if T has an orthogonal sum representation T = T0 ⊕ T̃ on

H = H0 ⊕ H̃, where dimH0 <∞ and T̃ is strongly non-Følner.

Next we mention some concrete examples of strongly non-Følner operators.
We will use the amenable trace that appears in Proposition 2.5 as an obstruction.
Recall the definition of the Cuntz algebra On (cf. [25, 26]): it is the universal C∗-
algebra generated by n ≥ 2 non-unitary isometries S1, . . . , Sn with the property
that their final projections add up to the identity, i.e.,

n∑
k=1

SkS
∗
k = � . (3.3)

This condition implies in particular that the range projections are pairwise or-
thogonal, i.e.,

S∗
l Sk = δlk� . (3.4)

It is easy to realize the Cuntz algebra on the complex Hilbert space �2 of square
summable sequences.

Proposition 3.13. The Cuntz algebra On, n ≥ 2, is singly generated and its gener-
ator is strongly non-Følner.

Proof. By Corollary 4 (or Theorem 9) in [40] any Cuntz algebra On, n ≥ 2, has a
single generator Cn, i.e., On = C∗(Cn). We assert that Cn is strongly non-Følner.
Indeed, assume that, to the contrary, it is not; then by Corollary 3.14 (ii), Cn is
finite. By Corollary 3.9, it would follow that On = C∗(Cn) has an amenable trace
τ . But this gives a contradiction since applying τ to the equations (3.3) and (3.4)
we obtain n = 1. �

Other examples of a strongly non-Følner operators can be obtained from the
proof of Theorem 5 in [30]. It is also worth mentioning that Corollary 4 in [20]
gives an example of a strongly non-Følner operator generating a type II1 factor.

Theorem 3.10 allows to divide the class of bounded linear operators into the
following mutually disjoint subclasses summarized in the following table:

Operators with a proper Operators with no proper
Følner sequence Følner sequence

Finite block reducible W0+ W0−

Non finite block reducible W1+ S

Table 1
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Finally, we conclude this analysis with the following immediate consequences:

Corollary 3.14. Let T ∈ L(H). Then
(i) T is a finite operator if and only if T is in one of the following mutually

disjoint classes: W0+, W0−, W1+.
(ii) T is not a finite operator (i.e., it is of class S) if and only if T is strongly

non-Følner.
(iii) The class of strongly non-Følner operators is open and dense in L(H).

Proof. The characterization of finite operators and its complement stated in (i)
and (ii) follows from Theorem 3.10 and Williams’ theorem. To prove part (iii)
we use that the class of finite operators is closed and nowhere dense (cf. [35]).
Therefore the set of strongly non-Følner operators is an open and dense subset
of L(H). �

As a summary let us mention that proper Følner sequences for operators pro-
vide a useful and natural tool to analyze the class of finite operators. To illustrate
this with an example note that the preceding corollary already implies that the
class of finite operators is closed in L(H).

4. Følner sequences in operator algebras

We start the analysis of Følner sequences in the context of operator algebras
stating some approximation results for amenable traces. We will apply them to
spectral approximation problems of scalar spectral measures. In the final part of
this section we will give an abstract characterization in terms of unital completely
positive maps of C∗-algebras admitting a faithful essential representation which
has a Følner sequence or, equivalently, an amenable trace.

4.1. Approximations of amenable traces

Part (i) of the following result is a standard weak*-compactness argument. Part (ii)
is known to experts (see, e.g., Exercise 6.2.6 in [17]) or [1] for a complete proof).

Proposition 4.1. Let A ⊂ L(H) be a unital separable C∗-algebra.
(i) If A has a Følner sequence {Pn}n, then A has an amenable trace.
(ii) Assume that A∩K(H) = {0}, and let τ be an amenable trace on A. Then A

has a Følner sequence {Pn}n satisfying

τ(A) = lim
n→∞

Tr(APn)

Tr(Pn)
, A ∈ A , (4.1)

where Tr denotes the canonical trace on L(H).

We will now present an application of Proposition 4.1 (ii) to obtain an ap-
proximation result for scalar spectral measures. For this we need to recall from
[6] the definition of Szegő pairs for a concrete C∗-algebra A ⊂ L(H). This notion
incorporates the good spectral approximation behavior of scalar spectral measures



16 P. Ara, F. Lledó and D.V. Yakubovich

of selfadjoint elements in A and is motivated by Szegő’s classical approximation
results mentioned in the introduction.

Let A be a unital C∗-algebra acting on H and let τ be a tracial state on
A. For any selfadjoint element T ∈ A we denote by μT the spectral measure
associated with the trace τ of A. Consider a sequence {Pn}n of non-zero finite
rank projections on H and write the corresponding (selfadjoint) compressions as
Tn := PnTPn. Denote by μn

T the probability measure on R supported on the
spectrum of Tn, i.e., for any T = T ∗ ∈ A we have

μn
T (Δ) :=

Nn
T (Δ)

‖Pn‖1
, Δ ⊂ R Borel ,

where Nn
T (Δ) is the number of eigenvalues of Tn (multiplicities counted) contained

in Δ. We say that ({Pn}n , τ) is a Szegő pair for A if μn
T → μT weakly for all

selfadjoint elements T ∈ A, i.e.,

lim
n→∞

1

dn

(
f(λ1,n) + · · ·+ f(λdn,n)

)
=

∫
f(λ) dμT (λ) , f ∈ C0(R) ,

where dn = ‖Pn‖1 is the dimension of the PnH and {λ1,n, . . . , λdn,n} are the
eigenvalues (repeated according to multiplicity) of Tn.

By [6, Theorem 6 (i), (ii)], if ({Pn}n , τ) is a Szegő pair for A, then {Pn}n
must be a Følner sequence for A, τ must be an amenable trace, and equation
(4.1) must hold for every A ∈ A. Proposition 4.1 (ii) allows one to complete any
amenable trace τ on A with a Følner sequence so that the pair ({Pn}n , τ) is a
Szegő pair for A, as follows. The proof of the following result requires the con-
struction of an increasing sequence of operators that approximates simultaneously
the corresponding commutator and the amenable trace. We refer to Theorem 3.2
in [1] for details

Theorem 4.2. Let A be a unital, separable C∗-algebra acting on a separable Hilbert
space H, and assume that A ∩ K(H) = {0}. If τ is an amenable trace on A, then
there exists a proper Følner sequence {Pn}n such that ({Pn}n , τ) is a Szegő pair
for A.

Remark 4.3. We conclude this subsection recalling that an important step in the
proof of the Arveson–Bédos spectral approximation results mentioned in the in-
troduction is the compatibility between the choice of the Følner sequence in the
Hilbert space and the amenable trace. In fact, if a unital and separable concrete
C∗-algebra A ⊂ L(H) has an amenable trace τ and {Pn}n is a Følner sequence of
non-zero finite rank projections for A it is needed that the projections approximate
the amenable trace in the following natural sense

τ(A) = lim
n→∞

Tr(APn)

Tr(Pn)
, A ∈ A . (4.2)

Now given A ⊂ L(H) with an amenable trace τ it is possible to construct a
Følner sequence in different ways. As observed by Bédos in [7] one way to obtain
a Følner sequence {Pn} for A ⊂ L(H) is essentially contained in [22, 23]. In these
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articles Connes adapts the group theoretic methods by Day and Namioka to the
context of operators. Using this technique one loses track of the initial amenable
trace τ , in the sense that the sequence {Pn} does not necessarily satisfy (4.2). To
avoid this problem one may assume in addition that A has a unique tracial state.
This is sufficient to guarantee a good spectral approximation behavior of relevant
examples like almost Mathieu operators, which are contained in the irrational
rotation algebra (cf. [10]).

In contrast with the previous method, the construction of a Følner sequence
given in [41, Theorem 6.1] (see also [17, Theorem 6.2.7]) allows one to approximate
the original trace as in Eq. (4.2). In the precedent theorem it was crucial to use
this method to prove a spectral approximation result in the spirit of Arveson and
Bédos, but removing the hypothesis of a unique trace (compare Theorem 4.2 with
[7, Theorem 1.3] or [6, Theorem 6 (iii)] and the formulation in p. 354 of [4]).

4.2. Følner C∗-algebras
The existence of a Følner sequence for a set of operators T is a weaker notion
than quasidiagonality. Recall that a set of operators T ⊂ L(H) is said to be qua-
sidiagonal if there exists an increasing sequence of finite-rank projections {Pn}n∈N

converging strongly to � and such that

lim
n
‖TPn − PnT ‖ = 0 , T ∈ T . (4.3)

(See, e.g., [32, 49] or Chapter 16 in [17].) The existence of proper Følner sequences
can be understood as a quasidiagonality condition, but relative to the growth
of the dimension of the underlying spaces. It can be easily shown that if {Pn}n
quasidiagonalizes a family of operators T , then this sequence of non-zero finite
rank orthogonal projections is also a proper Følner sequence for T . The unilateral
shift is a basic example that shows the difference between the notions of proper
Følner sequences and quasidiagonality. It is a well-known fact that the unilateral
shift S is not a quasidiagonal operator. (This was shown by Halmos in [31]; in
fact, in this reference it is shown that S is not even quasitriangular.) In the setting
of abstract C∗-algebras it can also be shown that a C∗-algebra containing a non-
unitary isometry is not quasidiagonal (see, e.g., [14, 17]).

In [50], Voiculescu characterized abstractly quasidiagonality for unital sepa-
rable C∗-algebras in terms of unital completely positive (u.c.p.) maps4 (see also
[49]). This has become by now the standard definition of quasidiagonality for op-
erator algebras (see, for example, [17, Definition 7.1.1]):

Definition 4.4. A unital separable C∗-algebra A is called quasidiagonal if there
exists a sequence of u.c.p. maps ϕn : A → Mk(n)(C) which is both asymptoti-
cally multiplicative (i.e., ‖ϕn(AB) − ϕn(A)ϕn(B)‖ → 0 for all A,B ∈ A) and
asymptotically isometric (i.e., ‖A‖ = limn→∞ ‖ϕn(A)‖ for all A ∈ A).

4Recall that in this context a linear map ϕ : A → B between unital C∗-algebras A, B is called

unital completely positive (u.c.p.), if ϕ(�) = � and if the inflations ϕn := ϕ⊗ idn : A⊗Mn(C) →
B ⊗Mn(C) are positive for all n ≥ 1.
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Inspired by Voiculescu’s work on quasidiagonality we introduce in this section
an abstract definition of a Følner C∗-algebra and formulate our main result char-
acterizing Følner C∗-algebras in terms of Følner sequences and also of amenable
traces.

Recall that tr(·) denotes the unique tracial state on a matrix algebra Mn(C).

Definition 4.5. Let A be a unital, separable C∗-algebra.

(i) We say that A is a Følner C∗-algebra if there exists a sequence of u.c.p. maps
ϕn : A →Mk(n)(C) such that

lim
n
‖ϕn(AB) − ϕn(A)ϕn(B)‖2,tr = 0 , A,B ∈ A , (4.4)

where ‖F‖2,tr :=
√
tr(F ∗F ), F ∈Mn(C) .

(ii) We say that A is a proper Følner C∗-algebra if there exists a sequence of
u.c.p. maps ϕn : A → Mk(n)(C) satisfying (4.4) and which, in addition, are
asymptotically isometric, i.e.,

‖A‖ = lim
n
‖ϕn(A)‖ , A ∈ A . (4.5)

It is clear that if A is a separable, unital and quasidiagonal C∗-algebra
(cf. Definition 4.4), then A is a proper Følner algebra. The Toeplitz algebra serves
as a counter-example to the reverse implication.

Although, in principle, the two concepts – Følner and proper Følner – seem
to be different for C∗-algebras, we can show that they indeed define the same
class of unital, separable C∗-algebras. The proof of the next proposition includes
a useful trick so that we will include it here (cf. [1, Proposition 3.2]).

Proposition 4.6. Let A be a unital separable C∗-algebra. Then A is a Følner C∗-
algebra if and only if A is a proper Følner C∗-algebra.

Proof. Assume that A is a Følner C∗-algebra, and let ϕn : A → Mk(n)(C) be a
sequence of u.c.p. maps such that (4.4) holds. Considering the direct sum of a
sufficiently large number of copies of ϕn, for each n, we may assume that

lim
n→∞

n

k(n)
= 0. (4.6)

Let π : A → L(H) be a faithful representation of A on a separable Hilbert space H.
Let {Pn}n be an increasing sequence of orthogonal projections on H, converging
to � in the strong operator topology and such that dimPn(H) = n for all n. Then
for all A ∈ A we have ‖A‖ = limn ‖Pnπ(A)Pn‖. Let ψn : A → Mk(n)+n(C) be
given by:

ψn(A) = ϕn(A) ⊕ Pnπ(A)Pn, A ∈ A.
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Then ψn is a u.c.p. map. For A,B ∈ A, set Xn = Pnπ(A)(1 − Pn)π(B)Pn. Then
we have

‖ψn(AB)− ψn(A)ψn(B)‖22,tr ≤ ‖ϕn(AB)− ϕn(A)ϕn(B)‖22,tr +
Tr(X∗

nXn)

k(n) + n

≤ ‖ϕn(AB) − ϕn(A)ϕn(B)‖22,tr +
n‖A‖2‖B‖2
k(n) + n

.

Using (4.6) we get

lim
n
‖ψn(AB) − ψn(A)ψn(B)‖2,tr = 0.

On the other hand, for A ∈ A, we have

‖A‖ − ‖ψn(A)‖ ≤ ‖A‖ − ‖Pnπ(A)Pn‖ → 0

so that (4.5) holds for the sequence (ψn). This concludes the proof. �

For the next result recall that a representation π of an abstract C∗-algebra A
on a Hilbert spaceH is called essential if π(A) contains no nonzero compact opera-
tors. The proof uses the same approximation technique as the proof of Theorem 4.2
(see Theorem 3.4 in [1] for details).

Theorem 4.7. Let A be a unital separable C∗-algebra. Then the following conditions
are equivalent:

(i) There exists a faithful representation π : A → L(H) such that π(A) has a
Følner sequence.

(ii) There exists a faithful essential representation π : A → L(H) such that π(A)
has a Følner sequence.

(iii) Every faithful essential representation π : A → L(H) satisfies that π(A) has
a proper Følner sequence.

(iv) There exists a non-zero representation π : A → L(H) such that π(A) has an
amenable trace.

(v) Every faithful representation π : A → L(H) satisfies that π(A) has an ame-
nable trace.

(vi) A is a Følner C∗-algebra.

Remark 4.8.

(i) The class of C∗-algebras introduced in this section has been considered before
by Bédos. In [7] the author defines a C∗-algebra A to be weakly hypertracial
if A has a non-degenerate representation π such that π(A) has a hypertrace.
In this sense, the preceding theorem gives a new characterization of weakly
hypertracial C∗-algebras in terms of u.c.p. maps.

(ii) Note also that the equivalences between (i), (iv) and (v) in Theorem 4.7 are
basically known (see [7]).

We conclude mentioning that in the study of growth properties of C∗-algebras
(and motivated by previous work done by Arveson and Bédos) Vaillant defined
the following natural unital C∗-algebra (see Section 3 in [46]): given an increasing
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sequence P := {Pn}n ⊂ Pfin(H) of orthogonal finite rank projections strongly
converging to �, consider the set of all bounded linear operators in H that have P
as a proper Følner sequence, i.e.,

FP(H) :=
{
X ∈ L(H) | lim

n→∞
‖XPn − PnX‖2

‖Pn‖2
= 0

}
.

This unital C∗-subalgebra of L(H) (called Følner algebra by Hagen, Roch and
Silbermann in Section 7.2.1 of [29]) has shown to be very useful in the analysis of
the classical Szegő limit theorems for Toeplitz operators and some generalizations
of them (see, e.g., Section 7.2 of [29] and [12]).

The C∗-algebra FP is always non-separable for the operator norm. Indeed,
consider the �∞-direct sum of matrix algebras A =

∏
iMni(C), where ni are

the ranks of the orthogonal projections Pi+1 − Pi, i ∈ N, with norm given by
‖(ai)‖ = supi ‖ai‖. It is clear that A is not separable, and the elements of A
can be seen inside FP as block-diagonal operators, so the algebra FP is also non-
separable.

5. Final remarks: Følner versus proper Følner

As was mentioned at the beginning of Section 2, Følner sequences appeared first in
the context of groups. Note that if countable discrete group Γ has a Følner sequence
one can always find another Følner sequence which, in addition to Eq. (2.1), is
also proper, i.e., Γi ⊂ Γj if i ≤ j and Γ = ∪iΓi. In the context of operators
and due to the linear structure of the underlying Hilbert spaces the difference
between Følner sequence and proper Følner sequence is relevant. As was mentioned
after Proposition 2.7 if T = T0 ⊕ T1 is a finite block reducible operator on the
Hilbert space H = H0 ⊕ H1, with 1 ≤ dimH0 < ∞, and T1 strongly non-Følner
(cf. Subsection 3.3), then T has an obvious constant Følner sequence but can not
have a proper Følner sequence. Moreover, Proposition 2.8 shows that the difference
between Følner and proper Følner sequence for single operators can only appear
in the case when there is a non-trivial finite-dimensional invariant subspace.

At the level of abstract C∗-algebras Proposition 4.6 shows that Følner C∗-
algebras and proper Følner C∗-algebras define the same class of unital separable
C∗-algebras. Note that by Theorem 4.7 (i) the direct sum of a matrix algebra and
the Cuntz algebra

A := Mn(C)⊕On

is a Følner (hence proper Følner) C∗-algebra. But in its natural representation
on H := Cn ⊕ �2 this algebra can not have a proper Følner sequence because the
representation is not essential (see Theorem 4.7 (iii)).

Finally, if B is a unital C∗-subalgebra of a Følner C∗-algebra A, then one
can restrict the u.c.p. maps of A to B to show that B is also a Følner C∗-algebra.
This is not true if B is a non-unital C∗-subalgebra (i.e., if �A /∈ B). Consider, for
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example, the concrete C∗-algebra on K := �2 ⊕H given by

A := C∗(S)⊕ C∗(T1) ,

where S is the unilateral shift and T1 is a strongly non-Følner operator. Then,
again, A is a Følner (hence proper Følner) C∗-algebra, but the non-unital C∗-
subalgebra B := 0⊕ C∗(T1) is not a Følner C∗-algebra.
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1. Introduction

Factorization of matrix functions is a standard tool in solving systems of convolu-
tion type equations

k ∗ φ = f (1.1)

on a half-line, going back to the classical paper [27] and known as the Wiener–Hopf
technique; see, e.g., the monographs [6, 17, 16] for detailed presentation and further
references. This technique was modified by Ganin [15] to allow for consideration
of equations on intervals of finite length. Ganin’s approach, however, gives rise to
matrix functions [

eλIN 0

k̂ e−λIN

]
, (1.2)
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where λ is the length of the interval,

eλ(x) = eiλx, x ∈ R, (1.3)

and k̂ is the Fourier transform of the N ×N kernel k. These matrix functions have
a second kind discontinuity at ∞, even when k̂ behaves nicely. Besides, the size
of the matrix doubles, so even scalar equations (1.1) yield a factorization problem
for a 2× 2 matrix function, more complicated than that for scalar functions.

It was shown by two of the authors [19] that for a rather wide class of kernels
k the factorization of (1.2) reduces to that for matrix functions of the same block
triangular structure in which the off-diagonal block is substituted by its so-called
almost periodic representatives at ±∞. Thus emerged the factorization problem
for almost periodic matrix functions G, with special interest in the case of

GF =

[
e1IN 0N

F e−1IN

]
. (1.4)

(Note that the change of λ to 1 in (1.4) can be achieved by a simple change of
variable and can therefore be adopted without any loss of generality.)

A systematic exposition of the factorization theory for such matrix functions
can be found in [5], while some more recent results are in [2, 9, 10, 11, 12, 13, 18, 25].
Still, the theory is far from being complete, even for matrix functions (1.4).

The factorability criterion for matrix functions (1.4) in the case N = 1,

F = C1eα + C−1eα−1 + C2eβ + C−2eβ−1 (1.5)

with 0 < α < β < 1 was established (in somewhat different terms) in [1], with
an alternative approach and some generalization presented in [25]. In our previous
paper [2], we provided explicit factorization formulas for this setting. For N > 1
the canonical factorability criterion and the factorization formulas are available if
C1 = 0 or C−2 = 0, see [24, Theorem 6.5]. If C2 = 0 or C−1 = 0 then the respec-
tive results can be derived from [21, Theorem 6.1], but only under an additional
assumption that the remaining matrix coefficients can be simultaneously put in a
triangular form via the same equivalence transformation.

The goal of this paper is to establish respective results (that is, the canon-
ical factorization criterion and explicit factorization formulas) under the similar
“triangularizability” requirement on the coefficients Cj in (1.5) without supposing
that either of them vanishes, thus extending the statements of [2]. This is done
in Section 3. Section 2 contains necessary notation and background information,
including a slight variation of a known result on factorability in decomposing alge-
bras. Section 4 provides formulas for the so-called geometric mean of the matrices
GF when N = 2, with technical details delegated to the Appendix.
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2. Preliminaries

2.1. Background information on AP factorization

For any algebra A, we denote by GA the group of its invertible elements, and by
AN×N the algebra of all N ×N matrices with the entries in A.

Let APP be the algebra of almost periodic polynomials, that is, the set of
all finite linear combinations of elements eλ (λ ∈ R), with eλ defined by (1.3). The
closure of APP with respect to the uniform norm is the C∗-algebra AP of almost
periodic functions, and the closure of APP with respect to the stronger norm,

‖
∑

λ cλeλ‖W =
∑

λ |cλ|, cλ ∈ C,

is the Banach algebra APW .
The basic information about AP functions can be found in several mono-

graphs, including [4, 14] and [22]. For our purposes, the following will suffice.
For any f ∈ AP there exists the Bohr mean value

M(f) = lim
T→+∞

1

2T

∫ T

−T

f(x) dx.

The functions f ∈ AP are defined uniquely by the Bohr–Fourier series∑
λ∈Ω(f)

f̂(λ)eλ

where Ω(f) :=
{
λ ∈ R : f̂(λ) �= 0

}
is the Bohr–Fourier spectrum of f and the

numbers f̂(λ) = M(fe−λ) are referred to as the Bohr–Fourier coefficients of f .
Let

AP± :=
{
f ∈ AP : Ω(f) ⊂ R±

}
, APW± := AP± ∩ APW,

APW±
0 :=

{
f ∈ APW± : f̂(0) = 0

}
,

where, as usual, R± = {x ∈ R : ± x ≥ 0}.
A function f ∈ AP is invertible in AP if and only if it is invertible in L∞(R),

that is, if and only if infx∈R |f(x)| > 0. For every f ∈ GAP , the following limits
exist, are finite, equal and independent of the choice of a continuous branch of the
argument of f :

κ(f) := lim
T→+∞

1

2T

{
arg f(x)

}T

−T
= lim

T→±∞
1

T

{
arg f(x)

}T

0
.

Their common value is called the mean motion (or the AP index) of f .
We say that G ∈ APN×N admits a canonical left AP factorization if

G = G+G
−1
− (2.1)

with G± ∈ GAP±
N×N . If in fact G± ∈ GAPW±

N×N , (2.1) is said to be a canonical
left APW factorization of G. More generally, a left AP or APW factorization (not
necessarily canonical) of G is a representation G = G+DG−1

− with G± as above
and an extra middle factor D = diag[eκ1 , . . . , eκN ]. The parameters κj ∈ R are
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defined by G uniquely up to a permutation whenever the factorization exists, and
are called the (left) partial AP indices of G. Of course, condition G ∈ GAPN×N

(resp., G ∈ GAPWN×N ) is necessary in order for G to admit a left AP (resp.,
APW ) factorization, and

κ1 + · · ·+ κN = κ(detG).

A canonical AP factorization of G ∈ APWN×N is automatically its (naturally,
also canonical) APW factorization. For N = 1, any G ∈ GAPW admits an APW
factorization, and thus AP (and even APW ) factorable functions form a dense
subset of AP . As was discovered recently [8], this is not the case any more if
N > 1.

However, for matrix functions of the form (1.4) with N = 1, that is,

Gf =

[
eλ 0
f e−λ

]
, (2.2)

it is presently not known whether (and therefore still a priori possible that) the set
of f for which Gf admits an AP factorization is dense in AP ; see open problems in
[7]. Let us denote by E the closure of this set, and say that E ⊂ R is admissible if

Ω(f) ⊂ E =⇒ f ∈ E .
From previous work on the factorization theory it follows in particular that grids
−ν + hZ and sets E with a gap of length at least 1 inside (−1, 1) are admissible.

The next result implies that the set of f ∈ APW for which (2.2) admits a
canonical AP factorization is dense in E ∩ APW .

Lemma 2.1. Let Gf be APW factorable. Then in every neighborhood of f in APW
metric there exist g for which Gg admit a canonical AP factorization.

Proof. Step 1. It is a standard trick in AP factorization theory (see, e.g., [5, Propo-
sition 13.4]) to consider along with Gf the matrix function[

1 0
φ+ 1

]
Gf

[
1 0
φ− 1

]
= Gf̃ ,

where f̃ = f + eλφ+ + e−λφ−. Obviously, Gf and Gf̃ are APW factorable only

simultaneously and have the same sets of partial AP indices, provided that φ± ∈
APW±. Moreover, small perturbations of f̃ are equivalent to small perturbations
of f , for φ± being fixed. So, choosing for f ∈ APW

φ± = −
∑

μ∈Ω(f),±μ≥λ

f̂(μ)e(μ∓λ),

we reduce the general case to the situation when

Ω(f) ⊂ (−λ, λ). (2.3)

Step 2. Suppose that (2.3) holds and Gf admits an APW factorization G+DG−1
− .

Then its partial AP indices are ±ν for some ν ∈ [0, λ], Ω(G±1
+ ) ⊂ [0, λ] and
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Ω(G±1
− ) ⊂ [−λ, 0]. Of course, only the case ν �= 0 is of interest. Thus, we may

suppose that D = diag[eν , e−ν] with ν ∈ (0, λ].
Since for c �= 0 [

eν 0
c e−ν

]
=

[
1 eν
0 c

] [
e−ν 1
−c 0

]−1

,

the matrix function

Gf + cG+

[
0 0
1 0

]
G−1

− = G+

[
eν 0
c e−ν

]
G−1

−

admits a canonical APW factorization. So, there are arbitrarily small (in APW
metric) perturbations of Gf by matrix functions with the Bohr–Fourier spectrum
in [−λ, λ] admitting a canonical AP factorization.

Step 3. Let H ∈ APW2×2 be a small perturbation the existence of which was
proved at Step 2, that is, Ω(H) ⊂ [−λ, λ] and Gf + H admits a canonical AP
factorization. Observe that

Gf +H =

[
eλ(1 + e−λh11) h12

f + h21 e−λ(1 + eλh22)

]
=

[
1 0
0 1 + eλh22

] [
eλ h12

f̃ e−λ

] [
1 + e−λh11 0

0 1

]
,

(2.4)

where

f̃ =
f + h21

(1 + e−λh11)(1 + eλh22)
. (2.5)

Since Ω(eλh22) ⊂ [0, 2λ], 1 + eλh22 ∈ GAPW+ provided that ‖H‖W is sufficiently
small. Similarly, 1 + e−λh11 ∈ GAPW−. From (2.4) we then conclude that the
matrix function [

eλ h12

f̃ e−λ

]
(2.6)

admits a canonical AP factorization, while (2.5) implies that f̃ can be made ar-
bitrarily close to f . In other words, the perturbation H can be made off-diagonal,
with Ω(h12) ⊂ [−λ, λ].
Step 4. Consider now a small perturbation of Gf the existence of which was es-
tablished at Step 3, and represent it as[

eλ h12

f + h21 e−λ

]
=

[
eλ 0

f + h21 e−λ(1 − h12(f + h21))

] [
1 e−λh12

0 1

]
. (2.7)

Since Ω(e−λh12) ⊂ [−2λ, 0], the right factor in (2.7) belongs to GAPW−
2×2. Thus,

the left factor in the right-hand side of (2.7) admits a canonical AP factorization
along with its left-hand side. In its turn, 1−h12(f +h21) is a function close to 1 in
APW and therefore admitting a canonical factorization g+g

−1
− with the multiples

also close to 1. From here we conclude that the matrix function[
eλ 0

(f + h21)g
−1
+ e−λ

]
=

[
1 0
0 g−1

+

] [
eλ 0

f + h21 e−λ(1 − h12(f + h21))

] [
1 0
0 g−

]
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also admits a canonical AP factorization. It remains to observe that (f + h21)g
−1
+

can be made arbitrarily close to f by choosing ‖H‖W small enough. �

If G ∈ APN×N has a canonical left AP factorization then the matrix

d(G) := M(G+)M(G−)−1, (2.8)

with M(G±) understood entry-wise, does not depend on the particular choice of
such a factorization and is called the geometric mean of G.

The value of d(G) plays an important role in the Fredholmness criteria for
the related convolution type equations. It is known to depend continuously on G
([26], see also [5]).

2.2. Factorization in decomposing algebras

Let B be a decomposing unital Banach algebra with unit e, that is, B admits a
direct sum decomposition

B = B+ ⊕ B− (2.9)

with B± being subalgebras of B, and let P± be the complementary projections
associated with this decomposition, P± : B → B±.

We say that b = e− a ∈ B admits a canonical left factorization if

e− a = (e + b+) (e+ b−), (2.10)

where e+ b± ∈ GB, b± ∈ B± and (e+ b±)−1 − e ∈ B±.
The existence of such a factorization when ‖a‖ is sufficiently small is well

known, see, e.g., [16, Chapter I, Lemma 5.1] or [17, Chapter XXIX, Theorem 9.1].
For our purposes we need a variation of this result presented below.

Consider the linear mappings

P+
a : B → B+, x �→ P+(xa),

P−
a : B → B−, x �→ P−(ax).

(2.11)

Theorem 2.2. Let B be a decomposing unital Banach algebra with associated direct
sum decomposition (2.9) and let b = e− a ∈ B be invertible in B. If

(P+
a )n+e = 0 and (P−

a )n−e = 0 for some n± ∈ N, (2.12)

then e− a admits the canonical left factorization (2.10), where

e+ b+ =

(
n+−1∑
n=0

(P+
a )ne

)−1

, e+ b− =

(
n−−1∑
n=0

(P−
a )ne

)−1

. (2.13)

Proof. Setting

e + c− := e− P−

((
n+−1∑
n=0

(P+
a )ne

)
a

)
,

e+ c+ := e− P+

(
a

(
n−−1∑
n=0

(P−
a )ne

))
,
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it is easily seen from (2.12) that(
n+−1∑
n=0

(P+
a )ne

)
(e− a) = e+ c−, (2.14)

(e − a)

(
n−−1∑
n=0

(P−
a )ne

)
= e+ c+. (2.15)

In view of the invertibility of e− a, equation (2.15) is equivalent to

(e− a)−1(e + c+) =

n−−1∑
n=0

(P−
a )ne. (2.16)

Multiplying (2.14) and (2.16), we obtain(
n+−1∑
n=0

(P+
a )ne

)
(e + c+) = (e+ c−)

(
n−−1∑
n=0

(P−
a )ne

)
(2.17)

or, equivalently,

c+ +

(
n+−1∑
n=1

(P+
a )ne

)
(e + c+) = c− + (e + c−)

(
n−−1∑
n=1

(P−
a )ne

)
, (2.18)

where the expression on the left of (2.18) belongs to B+ and on the right of (2.18)
belongs to B−. Since B+∩B− = {0}, both sides of (2.18) equal zero. Hence, (2.17)
can be rewritten in the form(

n+−1∑
n=0

(P+
a )ne

)
(e+ c+) = (e + c−)

(
n−−1∑
n=0

(P−
a )ne

)
= e, (2.19)

which means that the elements
∑n±−1

n=0 (P±
a )ne are one-sided inverses for the ele-

ments e + c±, respectively.
Replacing a by λa, where λ ∈ [0, 1], and following the proof of [16, Chapter I,

Lemma 5.1], we infer that all the multiples in (2.19) are two-sided invertible. Then
(2.14) and (2.19) imply the canonical left factorization (2.10) with e+ b± given by
(2.13). �

2.3. APW factorization in the scalar quadrinomial case

In what follows we use the notation �x� and �x� for the best integer approximation
to x ∈ R from below and above, respectively; {x} denotes the fractional part of
x ∈ R: {x} = x− �x�. Also, as usual,

N := {1, 2, . . .}, N− := {−1,−2, . . .}, Z+ := N ∪ {0}, Z− := N− ∪ {0}.

The results of this subsection are not new, and are listed here for convenience
of reference.
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Theorem 2.3 ([1, 25]). Let in (2.2)

λ = 1 and f = C1eα + C−1eα−1 + C2eβ + C−2eβ−1, C±1, C±2 ∈ C, (2.20)

where 0 < α < β < 1 and the number β − α is irrational. Then Gf admits a
canonical left AP factorization if and only if

|C2|1−β |C−2|β �= |C1|1−α |C−1|α .

Corollary 2.4. Functions f of the form (2.20) belong to E, with say, the sets
{α, β, α− 1, β − 1} are admissible.

Note that the matrix function (2.2) with

|C2|1−β |C−2|β = |C1|1−α |C−1|α �= 0

in (2.20) is not AP factorable [25] while for C2C−2 = C1C−1 = 0 its APW
factorization exists but it is not canonical. Also, only the case of irrational β − α
is of interest, since otherwise the distances between all the points in Ω(f) are
commensurable. The latter situation, with an arbitrary number of terms in f , was
covered earlier in [20] (see also [5, Section 14.4]).

The remaining portion of this subsection is a restatement of the results from
[2] in a form convenient for our current purposes.

Theorem 2.5. Suppose that G is given by (2.20) where 0 < α < β < 1, the number
β − α is irrational, and

|C2|1−β |C−2|β < |C1|1−α|C−1|α.

Then G admits a canonical left APW factorization (2.1) where the matrix func-
tions G±, G−1

± ∈ APW±
2×2 are given by

G± =

[
ϕ±
1 ϕ̃±

1

ϕ±
2 ϕ̃±

2

]
, G−1

± =
1

detG±

[
ϕ̃±
2 −ϕ̃±

1

−ϕ±
2 ϕ±

1

]
,

ϕ+
1 = e1 +

∑∞
n=0

Xne{n(β−α)},

ϕ−
1 = 1 +

∑∞
n=0

Xne{n(β−α)}−1,

ϕ+
2 = C1eα + C2eβ +

∑
{n∈Z+: 0≤{α+n(β−α)}<α}

C1Xne{α+n(β−α)}

+
∑

{n∈Z+: 0≤{β+n(β−α)}<β}
C2Xne{β+n(β−α)},

ϕ−
2 = −

∑
{n∈Z+: {α+n(β−α)}=0}

C−1Xn −
∑

{n∈Z+: α≤{α+n(β−α)}<1}
C−1Xne{α+n(β−α)}−1

−
∑

{n∈Z+: {β+n(β−α)}=0}
C−2Xn −

∑
{n∈Z+: β≤{β+n(β−α)}<1}

C−2Xne{β+n(β−α)}−1,

(2.21)
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ϕ̃+
1 =

∑∞
n=0

X̃ne{n(β−α)−α},

ϕ̃−
1 =

∑∞
n=0

X̃ne{n(β−α)−α}−1,

ϕ̃+
2 =

∑
{n∈Z+: 0≤{n(β−α)}<α}

C1X̃ne{n(β−α)} +
∑

{n∈Z+: 0≤{(n+1)(β−α)}<β}
C2X̃ne{(n+1)(β−α)},

ϕ̃−
2 = −

∑
{n∈Z+: α≤{n(β−α)}<1}

C−1X̃ne{n(β−α)}−1 (2.22)

−
∑

{n∈Z+: β≤{(n+1)(β−α)}<1}
C−2X̃ne{(n+1)(β−α)}−1 − C−1X̃0.

The coefficients Xn and X̃n (n ∈ Z+) here are given by

Xn =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n−1
(C−2

C1

)k(C2

C1

)−1+(n−� k
β−α�)+

∑k
s=1(� s−α

β−α�−� s−1
β−α�−1)

×
(C−2

C−1

)∑k
s=1(� s

β−α�−� s−α
β−α�)X1 if n =

⌈
k

β−α

⌉
+ 1, . . . ,

⌈
k+1−α
β−α

⌉
−1,

(−1)n−1
(C−2

C1

)k(C−2

C−1

)(n−� k+1−α
β−α �+1)+

∑k
s=1(� s

β−α�−� s−α
β−α�)

×
(
C2

C1

)−1+
∑k+1

s=1(� s−α
β−α�−� s−1

β−α�−1)
X1 if n =

⌈
k+1−α
β−α

⌉
, . . . ,

⌈
k+1
β−α

⌉
−1,

(−1)n−1
(C−2

C1

)k+1(C−2

C−1

)∑k+1
s=1(� s

β−α�−� s−α
β−α�)

×
(
C2

C1

)−1+
∑k+1

s=1(� s−α
β−α�−� s−1

β−α�−1)
X1 if n =

⌈
k+1
β−α

⌉
(2.23)

and

X̃n =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)n
(C−2

C−1

)(n−� k
β−α�)+

∑k−1
s=0 (� s+α

β−α�−� s
β−α�)(C−2

C1

)k
×
(
C2

C1

)∑k
s=1(� s

β−α�−� s−1+β
β−α �)X̃0 if n =

⌈
k

β−α

⌉
, . . . ,

⌈
k+α
β−α

⌉
− 1,

(−1)n
(C−2

C−1

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)(C−2

C1

)k+1

×
(
C2

C1

)∑k
s=1(� s

β−α�−� s−1+β
β−α �)X̃0 if n =

⌈
k+α
β−α

⌉
=

⌈
k+β
β−α

⌉
− 1,

(−1)n
(C−2

C1

)k+1(C2

C1

)(n−� k+β
β−α�+1)+

∑k
s=1(� s

β−α�−� s−1+β
β−α �)

×
(C−2

C−1

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)X̃0 if n =
⌈
k+β
β−α

⌉
, . . . ,

⌈
k+1
β−α

⌉
− 1

(2.24)

for k = 0, 1, 2, . . ., with the initial conditions X̃0 = 1,

X0 = −C−1

C1
, X1 = −C−2

C1
+

C2C−1

C2
1

.
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To simplify the forthcoming formulas, we let

N±
γ := {n : ± n ∈ N and γ + n(β − α) ∈ Z} for γ = ±α, β. (2.25)

Corollary 2.6. In the setting of Theorem 2.5 we have

M(G−) =

[
1 0

−
∑

n∈N
+
α
C−1Xn −

∑
n∈N

+
β
C−2Xn −C−1

]
,

M(G+) =

⎡⎣ −C−1C
−1
1

∑
n∈N

+
−α

X̃n∑
n∈N

+
α
C1Xn +

∑
n∈N

+
β
C2Xn C1

⎤⎦ ,

and hence the geometric mean of G is given by

d(G) =

⎡⎣ −C−1C
−1
1 −

∑
n∈N

+
−α

C−1
−1X̃n∑

n∈N
+
β
(C2 − C1C

−1
−1C−2)Xn −C1C

−1
−1

⎤⎦ .

Theorem 2.7. Suppose that G is given by (2.20) where 0 < α < β < 1, the number
β − α is irrational, and

|C2|1−β |C−2|β > |C1|1−α|C−1|α.

Then G admits a canonical left APW factorization (2.1) where the matrix func-
tions G±, G−1

± ∈ APW±
2×2 are given by

G± =

[
ψ±
1 ψ̃±

1

ψ±
2 ψ̃±

2

]
, G−1

± =
1

detG±

[
ψ̃±
2 −ψ̃±

1

−ψ±
2 ψ±

1

]
, (2.26)

with

ψ+
1 = e1 +

∑0

n=−∞ Yne{n(β−α)},

ψ−
1 = 1 +

∑0

n=−∞ Yne{n(β−α)}−1,

ψ+
2 = C1eα + C2eβ +

∑
{n∈Z−: 0≤{α+n(β−α)}<α}

C1Yne{α+n(β−α)}

+
∑

{n∈Z−: 0≤{β+n(β−α)}<β}
C2Yne{β+n(β−α)},

ψ−
2 = −

∑
{n∈Z−: {α+n(β−α)}=0}

C−1Yn −
∑

{n∈Z−: α≤{α+n(β−α)}<1}
C−1Yne{α+n(β−α)}−1

−
∑

{n∈Z−: {β+n(β−α)}=0}
C−2Yn −

∑
{n∈Z−: β≤{β+n(β−α)}<1}

C−2Yne{β+n(β−α)}−1,

(2.27)
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ψ̃+
1 =

∑−1

n=−∞ Ỹne{n(β−α)−α},

ψ̃−
1 =

∑−1

n=−∞ Ỹne{n(β−α)−α}−1,

ψ̃+
2 =

∑
{n∈N−: 0≤{n(β−α)}<α}

C1Ỹne{n(β−α)} +
∑

{n∈N−: 0≤{(n+1)(β−α)}<β}
C2Ỹne{(n+1)(β−α)},

ψ̃−
2 = −

∑
{n∈N−: α≤{n(β−α)}<1}

C−1Ỹne{n(β−α)}−1 (2.28)

−
∑

{n∈N−: β≤{(n+1)(β−α)}<1}
C−2Ỹne{(n+1)(β−α)}−1 − C−2Ỹ−1.

The coefficients Yn (n ∈ Z−) and Ỹn (n ∈ N−) here are defined by

Yn−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)|n|
(C−1

C−2

)(|n|−� k
β−α�)+

∑k−1
s=0 (� s+α

β−α�−� s
β−α�)( C1

C−2

)k
×
(
C1

C2

)∑k
s=1(� s

β−α�−� s−1+α
β−α �−1)

Y−1 if −n =
⌈

k
β−α

⌉
, . . . ,

⌈
k+α
β−α

⌉
−1,

(−1)|n|
(
C1

C2

)(|n|−� k+α
β−α�+1)+

∑k
s=1(� s

β−α�−� s−1+α
β−α �−1)( C1

C−2

)k
×
(C−1

C−2

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)Y−1 if −n =
⌈
k+α
β−α

⌉
, . . . ,

⌈
k+1
β−α

⌉
−2,

(−1)|n|
(C−1

C−2

)−1+
∑k

s=0(� s+α
β−α�−� s

β−α�)( C1

C−2

)k+1

×
(
C1

C2

)∑k+1
s=1(� s

β−α�−� s−1+α
β−α �−1)

Y−1 if − n =
⌈
k+1
β−α

⌉
− 1

(2.29)
and

Ỹn−1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−1)|n|
(
C1

C2

)(|n|−� k
β−α�)+

∑k
s=1(� s−β

β−α�−� s−1
β−α�)( C1

C−2

)k
×
(C−1

C−2

)∑k
s=1(� s

β−α�−� s−β
β−α�−1)

Ỹ−1 if − n =
⌈

k
β−α

⌉
, . . . ,

⌊
k+1−β
β−α

⌋
,

(−1)|n|
(
C1

C2

)∑k+1
s=1(� s−β

β−α�−� s−1
β−α�)( C1

C−2

)k+1

×
(C−1

C−2

)∑k
s=1(� s

β−α�−� s−β
β−α�−1)

Ỹ−1 if − n =
⌊
k+1−β
β−α

⌋
+ 1,

(−1)|n|
(

C1

C−2

)k+1(C−1

C−2

)(|n|−� k+1−β
β−α �−1)+

∑k
s=1(� s

β−α�−� s−β
β−α�−1)

×
(
C1

C2

)∑k+1
s=1(� s−β

β−α�−� s−1
β−α�)Ỹ−1 if − n =

⌊
k+1−β
β−α

⌋
+ 2, . . . ,

⌊
k+1
β−α

⌋
(2.30)

for k = 0, 1, 2, . . ., with the initial conditions Ỹ−1 = 1,

Y0 = −C−2

C2
, Y−1 = −C−1

C−2
+

C1

C2
.

In the notation (2.25), we have the following.
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Corollary 2.8. In the setting of Theorem 2.7 we have

M(G−) =

[
1 0

−
∑

n∈N
−
α
C−1Yn −

∑
n∈N

−
β
C−2Yn −C−2

]
,

M(G+) =

⎡⎣ −C−2C
−1
2

∑
n∈N

−
−α

Ỹn∑
n∈N

−
α
C1Yn +

∑
n∈N

−
β
C2Yn C2

⎤⎦ ,

and hence the geometric mean of G is given by

d(G) =

[
−C−2C

−1
2 −

∑
n∈N

−
−α

C−1
−2 Ỹn∑

n∈N
−
α
(C1 − C2C−1C

−1
−2 )Yn −C2C

−1
−2

]
.

3. Factorization of some block triangular matrix functions

3.1. A conditional criterion of AP factorability

Factorability properties of G ∈ APN×N obviously do not change under multipli-
cation on the left and on the right by matrices from GCN×N . In particular, G of
the form (1.4) admits a left AP or APW factorization only simultaneously with[

Q−1 0
0 P

]
G

[
Q 0
0 P−1

]
=

[
e1IN 0
PFQ e−1IN

]
(3.1)

for any P,Q ∈ GCN×N , and the partial AP indices of GF and GPFQ coincide.

Proposition 3.1. Let F ∈ APWN×N be a triangular matrix function with the di-
agonal entries fj. Then in order for GF to admit a canonical AP factorization it
is sufficient, and if fj ∈ E for j = 1, . . . , N also necessary, that all 2 × 2 matrix
functions Gfj admit such a factorization.

Proof. Choosing P = Q = [δj,N−j+1] in (3.1), we can switch between lower and
upper triangular F . So, without loss of generality we may suppose that F is lower
triangular.

Sufficiency. Observe that

F = F0 + F̃ , (3.2)

where F0 = diag[f1, . . . , fN ] and F̃ is lower triangular with zero diagonal. Letting
now

P = Q−1 = diag[1, ε, . . . , εN−1],

we can make the difference PFQ − F0 arbitrarily small by an appropriate choice
of ε. Since canonical AP factorable matrices form an open set, it suffices to show
that GF0 lies there. But the latter matrix is permutationally similar to

diag[Gf1 , . . . , GfN ],

and thus admits a left canonical AP factorization along with its diagonal 2 × 2
blocks.



Factorization of Almost Periodic Matrix Functions 37

Necessity. Suppose GF admits a left canonical AP factorization. Consider hj so
close to fj (j = 2, . . . , N) that the matrix GH with

H = F̃ + diag[f1, h2, . . . , hN ]

still admits a left canonical AP factorization, while the matrices Ghj also are AP
factorable with zero partial AP indices, j = 2, . . . , N . (This is possible due to
Lemma 2.1 since fj ∈ E ∩ APW .) Via a permutational similarity corresponding
to the permutation {1, N + 1, 2, . . . , 2N}, the matrix GH can be put in a block
triangular form [

Gf1 0
∗ GH1

]
, (3.3)

where H1 ∈ APW(N−1)×(N−1) is lower triangular with the diagonal entries h2, . . .,
hN . By the already proven sufficiency, GH1 admits a canonical AP factorization.

So, a block triangular matrix (3.3) and one of its diagonal blocks both admit a
left canonical AP factorization. Since canonical AP factorability of APW matrices
is equivalent to the invertibility of the respective Toeplitz operators, from here it
follows that the other diagonal block of (3.3), that is, Gf1 , must admit a canonical
AP factorization.

In its turn, the same permutational similarity can be used to rewrite the un-
perturbed matrix GF in a block triangular form, with the diagonal blocks being
Gf1 and GF1 , where F1 ∈ APW(N−1)×(N−1) is simply F with the first row and
column deleted. From the canonical AP factorability of GF and Gf1 we now con-
clude that GF1 also admits a canonical AP factorization. Since the statement is
trivially correct for N = 1, the induction argument thus completes the proof. �

3.2. Quadrinomial case: Existence

We now pass to the case of matrix functions (1.4) with N > 1 and the off-diagonal
block (1.5) such that its coefficients Cj ∈ CN×N can be put in a triangular form by
the same transformation Cj �→ PCjQ with some P,Q ∈ GCN×N . This condition
is satisfied, in particular, if Cj pairwise commute, in which case it is possible to
choose Q = P−1 (see, e.g., [23, Lemma 4.3]).

Since the matrix functions GF given by (1.4) and GPFQ admit a canonical
factorization only simultaneously, we may without loss of generality suppose that
Ci are themselves (lower) triangular:

Ci =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

(ci)1,1 0 0 . . . 0 0
(ci)2,1 (ci)2,2 0 . . . 0 0
(ci)3,1 (ci)3,2 (ci)3,3 . . . 0 0

...
...

...
. . .

...
...

(ci)N−1,1 (ci)N−1,2 (ci)N−1,3 . . . (ci)N−1,N−1 0
(ci)N,1 (ci)N,2 (ci)N,3 . . . (ci)N,N−1 (ci)N,N

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.4)

(i = ±1,±2). In what follows, we will relabel the diagonal entries (ci)s,s of the
matrices (3.4) by ci,s. Note that in the case of pairwise commuting (but a priori
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not necessarily triangular) matrices Ci, ci,s are their so-called bonded eigenvalues,
in the terminology of [3].

Theorem 3.2. Let G = GF be given by (1.4), (1.5) and (3.4), where 0 < α < β < 1
and the number β−α is irrational. Then G admits a canonical left AP factorization
G = G+G

−1
− if and only if

|c2,s|1−β |c−2,s|β �= |c1,s|1−α|c−1,s|α for all s = 1, 2, . . . , N, (3.5)

where ci,s := (ci)s,s for all i = ±1,±2 and all s = 1, 2, . . . , N are the diagonal
entries of matrix coefficients (3.4) in (1.5).

Proof. Follows directly by combining Corollary 2.4 with Proposition 3.1. �

3.3. Quadrinomial case: Explicit factorization

We now turn to the explicit factorization construction of matrix functions GF with
F given by (1.5), (3.4) when its canonical factorization exists, that is, conditions

(3.5) hold. Decomposition (3.2) in our setting yields matrices F0 and F̃ of the same
structure (1.5) as F but with Ci replaced by diag[ci,1, . . . , ci,N ] for F0 and by

C̃i =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 . . . 0 0
(ci)2,1 0 0 . . . 0 0
(ci)3,1 (ci)3,2 0 . . . 0 0

...
...

...
. . .

...
...

(ci)N−1,1 (ci)N−1,2 (ci)N−1,3 . . . 0 0
(ci)N,1 (ci)N,2 (ci)N,3 . . . (ci)N,N−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(3.6)

for F̃ . Then GF = G +K, where G is an abbreviated notation for GF0 and

K =

[
0N 0N
F̃ 0N

]
.

Consider the matrix functions

G± =

[
G±1 G̃±1
G±2 G̃±2

]
, (3.7)

G±1 := diag{g±s,1}Ns=1, G̃±1 := diag{g̃±s,1}Ns=1,

G±2 := diag{g±s,2}Ns=1, G̃±2 := diag{g̃±s,2}Ns=1,

where for s = 1, 2, . . . , N and j = 1, 2,

g±s,j :=

{
ϕ±
s,j

ψ±
s,j

, g̃±s,j :=

{
ϕ̃±
s,j

ψ̃±
s,j

if

{ |c2,s|1−β |c−2,s|β < |c1,s|1−α|c−1,s|α,
|c2,s|1−β |c−2,s|β > |c1,s|1−α|c−1,s|α,

(3.8)
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ϕ±
s,j and ϕ̃±

s,j are given by (2.21) and (2.22), respectively, with Ci replaced by ci,s

for i = ±1,±2, and with Xn and X̃n (n ∈ Z+) calculated by formulas (2.23),
(2.24) (again with Ci replaced by ci,s for i = ±1,±2), where

X0 = −c−1,s

c1,s
, X1 = −c−2,s

c1,s
+

c2,sc−1,s

c21,s
, X̃0 = 1;

ψ±
s,j and ψ̃±

s,j are given by (2.27) and (2.28), respectively, with Ci replaced by ci,s

for i = ±1,±2, and with Yn (n ∈ Z−) and Ỹn (n ∈ N−) calculated by formulas
(2.29), (2.30) (once again, with Ci replaced by ci,s for i = ±1,±2), where

Y0 = −c−2,s

c2,s
, Y−1 = −c−1,s

c−2,s
+

c1,s
c2,s

, Ỹ−1 = 1.

Below we will denote these Xn, X̃n, Yn and Ỹn as Xn,s, X̃n,s, Yn,s and Ỹn,s.

For s = 1, 2, . . . , N , we put

G±
s =

[
g±s,1 g̃±s,1

g±s,2 g̃±s,2

]
, (3.9)

where g±s,j and g̃±s,j for j = 1, 2 are given by (3.8). Note that

detG+
s = detG−

s = ks where ks = M(detG±
s ). (3.10)

We also define the matrix

KN = diag
[
k−1
1 , . . . , k−1

N

]
. (3.11)

By [2], the matrix function G = GF0 admits the canonical left APW factor-
ization

G = G+G−1
− . (3.12)

It follows from (3.12) that

G = G+G̃G−1
− ,

where

G̃ = G−1
+ GG− =

[
KN G̃+2 −KN G̃+1
−KNG+2 KNG+1

] [
e1IN 0N
F e−1IN

] [
G−1 G̃−1
G−2 G̃−2

]

=

[
IN 0N
0N IN

]
+

[
−KN G̃+1 F̃G−1 −KN G̃+1 F̃ G̃−1
KNG+1 F̃G−1 KNG+1 F̃ G̃−1

]
(3.13)

and KN is given by (3.11).

Consider now APWN×N as the decomposing Banach algebra B, with B+ =
APW+

N×N and B− = (APW−
0 )N×N . Letting

a :=

[
KN G̃+1 F̃G−1 KN G̃+1 F̃ G̃−1
−KNG+1 F̃G−1 −KNG+1 F̃ G̃−1

]
(3.14)
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and observing that each of its blocks is lower triangular with zero diagonal entries,
we conclude that

(P+
a )NI2N = 02N and (P−

a )N I2N = 02N ,

where the mappings P±
a are defined by (2.11) with a given by (3.14). Hence, by

Theorem 2.2, the matrix function G̃ = I2N−a admits a canonical left factorization

G̃ = (I2N + b+)
−1(I2N + b−)−1 (3.15)

where the matrix functions

b+ = a+ + (a+a)+ + ((a+a)+a)+ + · · ·+ (. . . (a+a)+ . . . a)+︸ ︷︷ ︸
N−1 terms

,

b− = a− + (aa−)− + (a(aa−)−)− + · · ·+ (a . . . (aa−)− . . .)−︸ ︷︷ ︸
N−1 terms

,
(3.16)

belong to APW+
2N×2N and (APW−

0 )2N×2N , respectively, and a± :=P±a=P±
a I2N .

Since each of N ×N blocks in (3.14) is lower triangular matrix function with zero
diagonal entries, it is easily seen from (3.16) that

(I2N + b+)
−1 = I2N +

N−1∑
k=1

(−1)kbk+,

whence (3.15) takes the form

G̃ =

(
I2N +

N−1∑
k=1

(−1)kbk+

)
(I2N + b−)−1. (3.17)

Putting together (3.13) and (3.17), we arrive to the following conclusion.

Theorem 3.3. Let GF be the matrix function (1.4) with F given by (1.5) and
(3.4) and satisfying (3.5). Then the multiples G± from its left canonical APW
factorization (2.1) can be chosen as

G+ = G+

(
I2N +

N−1∑
k=1

(−1)kbk+

)
, G− = G−(I2N + b−), (3.18)

with G± and b± defined by (3.7)–(3.8) and (3.16) respectively.

It follows from Corollaries 2.6 and 2.8 that

M(G±) =
[
diag{M(g±s,1)}Ns=1 diag{M(g̃±s,1)}Ns=1

diag{M(g±s,2)}Ns=1 diag{M(g̃±s,2)}Ns=1

]
, (3.19)
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where

M(g+s,1) =

{
−c−1,sc

−1
1,s,

−c−2,sc
−1
2,s,

M(g̃+s,1) =

{∑
n∈N

+
−α

X̃n,s,∑
n∈N

−
−α

Ỹn,s,

M(g+s,2) =

⎧⎨⎩
∑

n∈N
+
α
c1,sXn,s +

∑
n∈N

+
β
c2,sXn,s,∑

n∈N
−
α

c1,sYn,s +
∑

n∈N
−
β

c2,sYn,s,
M(g̃+s,2) =

{
c1,s,

c2,s,

M(g−s,1) = 1, M(g̃−s,1) = 0,

M(g−s,2) =

{
−

∑
n∈N

+
α
c−1,sXn,s −

∑
n∈N

+
β
c−2,sXn,s,

−
∑

n∈N
−
α

c−1,sYn,s −
∑

n∈N
−
β

c−2,sYn,s,
(3.20)

M(g̃−s,2) =

{
−c−1,s,

−c−2,s

if

{
|c2,s|1−β |c−2,s|β < |c1,s|1−α|c−1,s|α,
|c2,s|1−β |c−2,s|β > |c1,s|1−α|c−1,s|α.

On the other hand, we infer from (3.18) and (3.16) that

M(G+) = M(G+)
(
I2N +

N−1∑
k=1

(−1)kM(b+)
k

)
, M(G−) = M(G−),

which in view of (2.8) implies the following

Corollary 3.4. Under the conditions of Theorem 3.2, the geometric mean of the
matrix function G given by (1.4), (1.5) and (3.4) is calculated by

d(G) = M(G+)
(
I2N +

N−1∑
k=1

(−1)kM(b+)
k

)
M(G−)−1, (3.21)

where M(G±) and b+ are given by (3.19)–(3.20) and (3.16), respectively.

4. The geometric mean in the case N = 2

Corollary 3.4 in principle allows to compute the geometric mean for any value ofN .
In practice the complexity of this computation grows with N substantially, in par-
ticular because each of the inequalities (3.5) can materialize in two different ways,
and the resulting 2N cases yield different formulas and thus have to be treated
separately. We therefore restrict our attention to the case N = 2 which should
suffice for illustrative purposes. Corollary 3.4 can then be restated as follows.

Theorem 4.1. Under the conditions of Theorem 3.2, the geometric mean of the
matrix function GF given by (1.4), (1.5) and (3.4) for N = 2 is calculated by

d(GF ) = d(GF0) + TF̃ , (4.1)
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where d(GF0) = d(G) = M(G+)M(G−)−1,

TF̃ = M(G+)

⎡⎢⎢⎣
0 0 0 0

−k−1
2 M(g̃+2,1fg

−
1,1) 0 −k−1

2 M(g̃+2,1f g̃
−
1,1) 0

0 0 0 0
k−1
2 M(g+2,1fg

−
1,1) 0 k−1

2 M(g+2,1f g̃
−
1,1) 0

⎤⎥⎥⎦M(G−)−1, (4.2)

M(G±) are given by (3.19)–(3.20), the functions g+2,1, g̃
+
2,1, g

−
1,1, g̃

−
1,1 are given by

(3.8), k2 is given by (3.10),

F̃ =

[
0 0
f 0

]
, f = c̃1eα + c̃−1eα−1 + c̃2eβ + c̃−2eβ−1 (4.3)

and c̃i := (ci)2,1 for all i = ±1,±2.

Proof. Since N = 2, we conclude from (3.16) that

M(b+) = M(a+) = M(a), (4.4)

where, by (3.14), (3.11) and (4.3),

M(a) =

[
K2M(G̃+1 F̃G−1 ) K2M(G̃+1 F̃ G̃−1 )

−K2M(G+1 F̃G−1 ) −K2M(G+1 F̃ G̃−1 )

]

=

⎡⎢⎢⎣
0 0 0 0

k−1
2 M(g̃+2,1fg

−
1,1) 0 k−1

2 M(g̃+2,1f g̃
−
1,1) 0

0 0 0 0
−k−1

2 M(g+2,1fg
−
1,1) 0 −k−1

2 M(g+2,1f g̃
−
1,1) 0

⎤⎥⎥⎦ . (4.5)

Hence we infer from (3.21), (4.4) and (4.5) that

d(G) = M(G+)
(
I4 −M(a)

)
M(G−)−1 = d(G) + TF̃ ,

where TF̃ is given by (4.2). �

The explicit formulas for the mean values involved in (4.2) depend on which
of the four possible cases

|c2,s|1−β|c−2,s|β < |c1,s|1−α|c−1,s|α for s = 1, 2; (4.6)

|c2,s|1−β|c−2,s|β > |c1,s|1−α|c−1,s|α for s = 1, 2; (4.7)

|c2,1|1−β |c−2,1|β < |c1,1|1−α|c−1,1|α,
|c2,2|1−β |c−2,2|β > |c1,2|1−α|c−1,2|α;

(4.8)

|c2,1|1−β |c−2,1|β > |c1,1|1−α|c−1,1|α,
|c2,2|1−β |c−2,2|β < |c1,2|1−α|c−1,2|α

(4.9)

takes place, and are delegated to the Appendix. Here is the final result under a
simplifying condition on α, β, with a proof also delegated to the Appendix.
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Theorem 4.2. Let G = GF be given by (1.4), (1.5) and (3.4), where N = 2,
0 < α < β < 1 and

mα+ nβ /∈ {0, 1} for all rational m,n. (4.10)

Then G admits a canonical left AP factorization G = G+G
−1
− if and only if

|c2,s|1−β|c−2,s|β �= |c1,s|1−α|c−1,s|α for all s = 1, 2, (4.11)

where ci,s := (ci)s,s for all i = ±1,±2 and all s = 1, 2 are the diagonal entries of
matrix coefficients (3.4) in (1.5). If (4.11) holds, then

d(G) = diag[T1, T2], (4.12)

where

T1 =

[
−c−1,1c

−1
1,1 0

−(c1,1c̃−1 − c−1,1c̃1)c
−1
1,1c

−1
1,2 −c−1,2c

−1
1,2

]
,

T2 =

[
−c1,1c−1

−1,1 0

(c1,2c̃−1 − c−1,2c̃1)c
−1
−1,1c

−1
−1,2 −c1,2c−1

−1,2

]
, (4.13)

if (4.6) holds;

T1 =

[
−c−2,1c

−1
2,1 0

−(c2,1c̃−2 − c−2,1c̃2)c
−1
2,1c

−1
2,2 −c−2,2c

−1
2,2

]
,

T2 =

[
−c2,1c−1

−2,1 0

(c2,2c̃−2 − c−2,2c̃2)c
−1
−2,1c

−1
−2,2 −c2,2c−1

−2,2

]
, (4.14)

if (4.7) holds;

T1 =

[
−c−1,1c

−1
1,1 0

−(c1,1c̃−2 − c−1,1c̃2)c
−1
1,1c

−1
2,2 −c−2,2c

−1
2,2

]
,

T2 =

[
−c1,1c−1

−1,1 0

(c2,2c̃−1 − c−2,2c̃1)c
−1
−1,1c

−1
−2,2 −c2,2c−1

−2,2

]
, (4.15)

if (4.8) holds;

T1 =

[
−c−2,1c

−1
2,1 0

−(c2,1c̃−1 − c−2,1c̃1)c
−1
2,1c

−1
1,2 −c−1,2c

−1
1,2

]
,

T2 =

[
−c2,1c−1

−2,1 0

(c1,2c̃−2 − c−1,2c̃2)c
−1
−2,1c

−1
−1,2 −c1,2c−1

−1,2

]
, (4.16)

if (4.9) holds.
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5. Appendix

5.1. Computation of d(G) and TF̃

Applying Corollaries 2.6 and 2.8 with notation (2.25), we infer that

d(G) = − diag
[
c−1,1c

−1
1,1, c−1,2c

−1
1,2, c1,1c

−1
−1,1, c1,2c

−1
−1,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

+
−α

c−1
−1,1X̃n,1,

∑
n∈N

+
−α

c−1
−1,2X̃n,2

]
, (5.1)

B2,1 = diag

[ ∑
n∈N

+
β

(c2,1 − c1,1c
−1
−1,1c−2,1)Xn,1,

∑
n∈N

+
β

(c2,2 − c1,2c
−1
−1,2c−2,2)Xn,2

]
,

if (4.6) holds;

d(G) = − diag
[
c−2,1c

−1
2,1, c−2,2c

−1
2,2, c2,1c

−1
−2,1, c2,2c

−1
−2,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

−
−α

c−1
−2,1Ỹn,1,

∑
n∈N

−
−α

c−1
−2,2Ỹn,2

]
, (5.2)

B2,1 = diag

[ ∑
n∈N

−
α

(c1,1 − c2,1c
−1
−2,1c−1,1)Yn,1,

∑
n∈N

−
α

(c1,2 − c2,2c
−1
−2,2c−1,2)Yn,2

]
,

if (4.7) holds;

d(G) = − diag
[
c−1,1c

−1
1,1, c−2,2c

−1
2,2, c1,1c

−1
−1,1, c2,2c

−1
−2,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

+
−α

c−1
−1,1X̃n,1,

∑
n∈N

−
−α

c−1
−2,2Ỹn,2

]
, (5.3)

B2,1 = diag

[ ∑
n∈N

+
β

(c2,1 − c1,1c
−1
−1,1c−2,1)Xn,1,

∑
n∈N

−
α

(c1,2 − c2,2c
−1
−2,2c−1,2)Yn,2

]
,

if (4.8) holds;

d(G) = − diag
[
c−2,1c

−1
2,1, c−1,2c

−1
1,2, c2,1c

−1
−2,1, c1,2c

−1
−1,2

]
+

[
0 −B1,2

B2,1 0

]
,

B1,2 = diag

[ ∑
n∈N

−
−α

c−1
−2,1Ỹn,1,

∑
n∈N

+
−α

c−1
−1,2X̃n,2

]
, (5.4)

B2,1 = diag

[ ∑
n∈N

−
α

(c1,1 − c2,1c
−1
−2,1c−1,1)Yn,1,

∑
n∈N

+
β

(c2,2 − c1,2c
−1
−1,2c−2,2)Xn,2

]
,

if (4.9) holds.
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On the other hand, by (4.2) and (3.19), we obtain

TF̃ =

⎡⎢⎢⎣
0 0 0 0
t2,1 0 t2,3 0
0 0 0 0
t4,1 0 t4,3 0

⎤⎥⎥⎦ , (5.5)

where

t2,1 =
[
−M(g+2,1)M(g̃+2,1fg

−
1,1) +M(g̃+2,1)M(g+2,1fg

−
1,1)

]
k−1
2

+
[
M(g+2,1)M(g̃+2,1f g̃

−
1,1)−M(g̃+2,1)M(g+2,1f g̃

−
1,1)

]
M(g−1,2)k

−1
1 k−1

2 ,

t2,3 =
[
−M(g+2,1)M(g̃+2,1f g̃

−
1,1) +M(g̃+2,1)M(g+2,1f g̃

−
1,1)

]
k−1
1 k−1

2 ,

t4,1 =
[
−M(g+2,2)M(g̃+2,1fg

−
1,1) +M(g̃+2,2)M(g+2,1fg

−
1,1)

]
k−1
2

+
[
M(g+2,2)M(g̃+2,1f g̃

−
1,1)−M(g̃+2,2)M(g+2,1f g̃

−
1,1)

]
M(g−1,2)k

−1
1 k−1

2 ,

t4,3 =
[
−M(g+2,2)M(g̃+2,1f g̃

−
1,1) +M(g̃+2,2)M(g+2,1f g̃

−
1,1)

]
k−1
1 k−1

2 ,

(5.6)

and M(g+2,j),M(g̃+2,j),M(g−1,2) for j = 1, 2 are given by (3.20).

5.2. Computation of M(g̃+
2,1fg

−
1,1), M(g̃+

2,1fg̃
−
1,1),

M(g+
2,1fg

−
1,1), M(g+

2,1fg̃
−
1,1)

Below, along with N±
γ given by (2.25), we use the following notation for γ = α, β

and l = 1, 2:

Ñ±
γ := {n ∈ N± : {n(β − α)} + γ = 1},

(Z± × Z±)γ,l := {(n, k) ∈ Z± × Z± : {n(β − α)− α}
+ {k(β − α)− α}+ γ = l},

(Z± × Z±)∼γ,l := {(n, k) ∈ Z± × Z± : {n(β − α)}+ {k(β − α)}+ γ = l}.

(5.7)

If (4.6) holds, then

g̃+2,1g
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,
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which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−1X̃0,2 + c̃1X̃0,2X0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n,k)∈(Z+×Z+)α,1

c̃1X̃n,2X̃k,1 +
∑

(n,k)∈(Z+×Z+)α,2

c̃−1X̃n,2X̃k,1

+
∑

(n,k)∈(Z+×Z+)β,1

c̃2X̃n,2X̃k,1 +
∑

(n,k)∈(Z+×Z+)β,2

c̃−2X̃n,2X̃k,1,

M(g+2,1fg
−
1,1) =

∑
n∈Ñ

+
α

c̃−1(Xn,1 +Xn,2) +
∑
n∈Ñ

+
β

c̃−2(Xn,1 +Xn,2)

+
∑

(n,k)∈(Z+×Z+)∼α,1

c̃1Xn,2Xk,1 +
∑

(n,k)∈(Z+×Z+)∼α,2

c̃−1Xn,2Xk,1

+
∑

(n,k)∈(Z+×Z+)∼β,1

c̃2Xn,2Xk,1 +
∑

(n,k)∈(Z+×Z+)∼β,2

c̃−2Xn,2Xk,1,

M(g+2,1f g̃
−
1,1) = c̃−1X̃0,1 + c̃1X0,2X̃0,1.

(5.8)

If (4.7) holds, then

g̃+2,1g
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−2Ỹ−1,2 + c̃2Ỹ−1,2Y0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n+1,k+1)∈(Z−×Z−)α,1

c̃1Ỹn,2Ỹk,1 +
∑

(n+1,k+1)∈(Z−×Z−)α,2

c̃−1Ỹn,2Ỹk,1

+
∑

(n+1,k+1)∈(Z−×Z−)β,1

c̃2Ỹn,2Ỹk,1 +
∑

(n+1,k+1)∈(Z−×Z−)β,2

c̃−2Ỹn,2Ỹk,1,
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M(g+2,1fg
−
1,1) =

∑
n∈Ñ

−
α

c̃−1(Yn,1 + Yn,2) +
∑
n∈Ñ

−
β

c̃−2(Yn,1 + Yn,2)

+
∑

(n,k)∈(Z−×Z−)∼α,1

c̃1Yn,2Yk,1 +
∑

(n,k)∈(Z−×Z−)∼α,2

c̃−1Yn,2Yk,1

+
∑

(n,k)∈(Z−×Z−)∼β,1

c̃2Yn,2Yk,1 +
∑

(n,k)∈(Z−×Z−)∼β,2

c̃−2Yn,2Yk,1,

M(g+2,1f g̃
−
1,1) = c̃−2Ỹ−1,1 + c̃2Y0,2Ỹ−1,1. (5.9)

If (4.8) holds, then

g̃+2,1g
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( −1∑
n=−∞

Ỹn,2e{n(β−α)−α}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)(
1 +

∞∑
k=0

Xk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

0∑
n=−∞

Yn,2e{n(β−α)}

)( ∞∑
k=0

X̃k,1e{k(β−α)−α}−1

)
,

which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−2Ỹ−1,2 + c̃2Ỹ−1,2X0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n+1,k)∈(Z−×Z+)α,1

c̃1Ỹn,2X̃k,1 +
∑

(n+1,k)∈(Z−×Z+)α,2

c̃−1Ỹn,2X̃k,1

+
∑

(n+1,k)∈(Z−×Z+)β,1

c̃2Ỹn,2X̃k,1 +
∑

(n+1,k)∈(Z−×Z+)β,2

c̃−2Ỹn,2X̃k,1,

M(g+2,1fg
−
1,1) =

∑
k∈Ñ

+
α

c̃−1Xk,1 +
∑
k∈Ñ

+
β

c̃−2Xk,1 +
∑
n∈Ñ

−
α

c̃−1Yn,2 +
∑
n∈Ñ

−
β

c̃−2Yn,2

+
∑

(n,k)∈(Z−×Z+)∼α,1

c̃1Yn,2Xk,1 +
∑

(n,k)∈(Z−×Z+)∼α,2

c̃−1Yn,2Xk,1

+
∑

(n,k)∈(Z−×Z+)∼β,1

c̃2Yn,2Xk,1 +
∑

(n,k)∈(Z−×Z+)∼β,2

c̃−2Yn,2Xk,1,

M(g+2,1f g̃
−
1,1) = c̃−1X̃0,1 + c̃1Y0,2X̃0,1. (5.10)
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If (4.9) holds, then

g̃+2,1g
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g̃+2,1g̃
−
1,1 =

( ∞∑
n=0

X̃n,2e{n(β−α)−α}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

g+2,1g
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)(
1 +

0∑
k=−∞

Yk,1e{k(β−α)}−1

)
,

g+2,1g̃
−
1,1 =

(
e1 +

∞∑
n=0

Xn,2e{n(β−α)}

)( −1∑
k=−∞

Ỹk,1e{k(β−α)−α}−1

)
,

which with f given by (4.3) implies, respectively, that

M(g̃+2,1fg
−
1,1) = c̃−1X̃0,2 + c̃1X̃0,2Y0,1,

M(g̃+2,1f g̃
−
1,1) =

∑
(n,k+1)∈(Z+×Z−)α,1

c̃1X̃n,2Ỹk,1 +
∑

(n,k+1)∈(Z+×Z−)α,2

c̃−1X̃n,2Ỹk,1

+
∑

(n,k+1)∈(Z+×Z−)β,1

c̃2X̃n,2Ỹk,1 +
∑

(n,k+1)∈(Z+×Z−)β,2

c̃−2X̃n,2Ỹk,1,

M(g+2,1fg
−
1,1) =

∑
n∈Ñ

+
α

c̃−1Xn,2 +
∑
n∈Ñ

+
β

c̃−2Xn,2 +
∑
k∈Ñ

−
α

c̃−1Yk,1 +
∑
k∈Ñ

−
β

c̃−2Yk,1

+
∑

(n,k)∈(Z+×Z−)∼α,1

c̃1Xn,2Yk,1 +
∑

(n,k)∈(Z+×Z−)∼α,2

c̃−1Xn,2Yk,1

+
∑

(n,k)∈(Z+×Z−)∼β,1

c̃2Xn,2Yk,1 +
∑

(n,k)∈(Z+×Z−)∼β,2

c̃−2Xn,2Yk,1,

M(g+2,1f g̃
−
1,1) = c̃−2Ỹ−1,1 + c̃2X0,2Ỹ−1,1. (5.11)

5.3. Computation of M(g̃+
2,1fg

−
1,1) and M(g+

2,1fg̃
−
1,1)

Since

X̃0,1 = X̃0,2 = 1, Ỹ−1,1 = Ỹ−1,2 = 1

and

X0,1 = −c−1,1

c1,1
, X0,2 = −

c−1,2

c1,2
, Y0,1 = −c−2,1

c2,1
, Y0,2 = −c−2,2

c2,2
,
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we deduce from (5.8), (5.9), (5.10) and (5.11) that

M(g̃+2,1fg
−
1,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1X̃0,2 + c̃1X̃0,2X0,1,

c̃−2Ỹ−1,2 + c̃2Ỹ−1,2Y0,1,

c̃−2Ỹ−1,2 + c̃2Ỹ−1,2X0,1,

c̃−1X̃0,2 + c̃1X̃0,2Y0,1,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1 − c̃1(c−1,1/c1,1),

c̃−2 − c̃2(c−2,1/c2,1),

c̃−2 − c̃2(c−1,1/c1,1),

c̃−1 − c̃1(c−2,1/c2,1),

(5.12)

M(g+2,1f g̃
−
1,1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1X̃0,1 + c̃1X0,2X̃0,1,

c̃−2Ỹ−1,1 + c̃2Y0,2Ỹ−1,1,

c̃−1X̃0,1 + c̃1Y0,2X̃0,1,

c̃−2Ỹ−1,1 + c̃2X0,2Ỹ−1,1,

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c̃−1 − c̃1(c−1,2/c1,2),

c̃−2 − c̃2(c−2,2/c2,2),

c̃−1 − c̃1(c−2,2/c2,2),

c̃−2 − c̃2(c−1,2/c1,2),

(5.13)

if, respectively, (4.6), (4.7), (4.8) and (4.9) holds.

Substituting M(g̃+2,1fg
−
1,1) and M(g+2,1f g̃

−
1,1) given by (5.12) and (5.13), re-

spectively, and M(g̃+2,1f g̃
−
1,1) and M(g+2,1fg

−
1,1) given by (5.8), (5.9), (5.10) and

(5.11) into (5.6) and applying (3.20), we obtain the entries of the matrix TF̃ (see
(5.5)), which together with d(G) = d(GF0) obtained in (5.1)–(5.4) gives d(GF )
due to (4.1).

5.4. Proof of Theorem 4.2

Under condition (4.10), all the sets

N±
γ , Ñ±

γ , (Z± × Z±)γ,l, (Z± × Z±)∼γ,l (5.14)

given by (2.25) and (5.7) are empty. Hence, by (5.1)–(5.4), we infer that

d(G) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
− diag

[
c−1,1c

−1
1,1, c−1,2c

−1
1,2, c1,1c

−1
−1,1, c1,2c

−1
−1,2

]
,

− diag
[
c−2,1c

−1
2,1, c−2,2c

−1
2,2, c2,1c

−1
−2,1, c2,2c

−1
−2,2

]
,

− diag
[
c−1,1c

−1
1,1, c−2,2c

−1
2,2, c1,1c

−1
−1,1, c2,2c

−1
−2,2

]
,

− diag
[
c−2,1c

−1
2,1, c−1,2c

−1
1,2, c2,1c

−1
−2,1, c1,2c

−1
−1,2

]
,

(5.15)

if, respectively, conditions (4.6), (4.7), (4.8) or (4.9) hold. Since the sets (5.14) are
empty, it follows from (3.20) and (5.8)–(5.11) that

M(g̃+2,1) = M(g+2,2) = M(g−1,2) = 0

and

M(g̃+2,1f g̃
−
1,1) = M(g+2,1fg

−
1,1) = 0.

Then we deduce from (5.6) that

t2,1 = −M(g+2,1)M(g̃+2,1fg
−
1,1)k

−1
2 , t2,3 = 0,

t4,3 = M(g̃+2,2)M(g+2,1f g̃
−
1,1)k

−1
1 k−1

2 , t4,1 = 0.
(5.16)

Taking into account the relations ks = M(g̃−s,2) for s = 1, 2, applying (3.20) for

M(g+2,1), M(g̃+2,2) and M(g̃−s,2), and using (5.12) and (5.13) for M(g̃+2,1fg
−
1,1) and
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M(g+2,1f g̃
−
1,1), we infer from (5.16) that

t2,1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−(c1,1c̃−1 − c−1,1c̃1)c

−1
1,1c

−1
1,2,

−(c2,1c̃−2 − c−2,1c̃2)c
−1
2,1c

−1
2,2,

−(c1,1c̃−2 − c−1,1c̃2)c
−1
1,1c

−1
2,2,

−(c2,1c̃−1 − c−2,1c̃1)c
−1
2,1c

−1
1,2,

t4,3 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(c1,2c̃−1 − c−1,2c̃1)c

−1
−1,1c

−1
−1,2,

(c2,2c̃−2 − c−2,2c̃2)c
−1
−2,1c

−1
−2,2,

(c2,2c̃−1 − c−2,2c̃1)c
−1
−1,1c

−1
−2,2,

(c1,2c̃−2 − c−1,2c̃2)c
−1
−2,1c

−1
−1,2

(5.17)

in the cases (4.6), (4.7), (4.8) and (4.9), respectively.
Finally, substituting t2,3 = 0, t4,1 = 0 and also t2,1 and t4,3 given by (5.17)

into (5.5) and applying (5.15) and (4.1), we immediately obtain (4.12) with trian-
gular 2× 2 matrices T1 and T2 given by (4.13)–(4.16).
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and Applications, vol. 103, Birkhäuser Verlag, Basel and Boston, 1998, pp. 53–74.

[4] A.S. Besicovitch, Almost periodic functions, Dover Publications Inc., New York, 1955.
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M. Amélia Bastos, Cláudio A. Fernandes and Yuri I. Karlovich

Dedicated to Professor António Ferreira dos Santos

Abstract. Representations on Hilbert spaces for the nonlocal C∗-algebra B of
singular integral operators with piecewise slowly oscillating coefficients, which
is extended by the unitary shift operators Ug associated with the solvable
discrete group G of diffeomorphisms g : T → T that are similar to affine
mappings on the real line, are constructed. Such shifts may change or preserve
the orientation on T and have both common fixed points for all g ∈ G and
distinct fixed points for different shifts. Using the theory developed for C∗-
algebras of singular integral operators with shifts preserving the orientation
of a contour, a Fredholm symbol calculus for the C∗-algebra B is constructed
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Mathematics Subject Classification (2010). Primary 47A53; Secondary 47A67,
47B33, 47G10, 47L15, 47L30.

Keywords. Singular integral operator with shifts, piecewise slowly oscillating
function, C∗-algebra, amenable group, affine shifts, local-trajectory method,
spectral measure, lifting theorem, representation, symbol calculus, Fredholm-
ness.

1. Introduction

In this paper we deal with the nonlocal C∗-algebra B generated by the C∗-algebra
of singular integral operators with piecewise slowly oscillating coefficients and by
the discrete group of unitary operators UG associated with the group G of all
diffeomorphisms (shifts) g of the unit circle T := {z ∈ C : |z| = 1} onto itself,
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given by

g = α ◦ ĝ ◦ α−1, (1.1)

where

α : R→ T, α(x) =
x− i

x+ i
for x ∈ R, (1.2)

and

ĝ : R→ R, ĝ(x) = kgx+ hg for x ∈ R, (1.3)

with kg ∈ R \ {0}, hg ∈ R.
Let B := B(L2(T)) be the C∗-algebra of all bounded linear operators on

the space L2(T) and K := K(L2(T)) be the ideal of compact operators in B. An
operator B ∈ B is said to be a Fredholm operator if and only if the coset Bπ :=
B+K is invertible in the Calkin algebra B/K. A representation ΨB : B→ B(HB),
where HB is a Hilbert space, is called a Fredholm symbol map for the C∗-algebra
B if the Fredholmness of each operator B ∈ B is equivalent to the invertibility of
ΨB(B) on HB.

C∗-algebras of singular integral operators with piecewise slowly oscillating
coefficients and different classes of groups G of preserving-orientation shifts were
studied in [4]–[8]. The aim in this paper is to construct, using similar ideas to those
used in [8], a Fredholm symbol map for the C∗-algebra

B := alg (PSO(T), ST, UG) ⊂ B(L2(T)), (1.4)

where the shifts g ∈ G may also change the orientation of T. Thus, the C∗-algebra
B is generated by all multiplication operators aI with a ∈ PSO(T), by the Cauchy
singular integral operator ST defined by

(STϕ)(t) := lim
ε→0

1

πi

∫
T\T(t,ε)

ϕ(τ)

τ − t
dτ, T(t, ε) = {τ ∈ T : |τ − t| < ε}, t ∈ T,

and by the group UG := {Ug : g ∈ G} of unitary weighted shift operators Ug given
by

(Ugϕ)(t) := |g′(t)|1/2ϕ(g(t)) for t ∈ T,

where G is the group of shifts defined by (1.1)–(1.3) and acting on T from the
right: (g1g2)(t) = g2(g1(t)) for all t ∈ T and all g1, g2 ∈ G.

Notice that different shifts g ∈ G have both common and distinct fixed points.
Indeed, denoting by Tg the set of fixed points of the shift g = α ◦ ĝ ◦ α−1, where
ĝ(x) = kgx+ hg, we have

Tg =

⎧⎪⎪⎨⎪⎪⎩
T if kg = 1, hg = 0;

{1} if kg = 1, hg �= 0;{
1,

hg+i(kg−1)
hg−i(kg−1)

}
if kg �= 1.

(1.5)

Moreover, in contrast to [8], where all shifts preserve the orientation of T, the shifts
g in the present group G preserve or change the orientation of T if, respectively,
kg > 0 or kg < 0.
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In view of (1.1), the reflection γ̂(x) = −x on R generates on T the reflection
γ ∈ G given by

γ(t) = t for t ∈ T. (1.6)

Denoting by G0 the normal subgroup of G consisting of the shifts that preserve
the orientation of T, we easily conclude that for each shift g ∈ G \ G0 there
exist g̃1, g̃2 ∈ G0 such that g = g̃1γ = γg̃2. Group G is then given by the union
G = G0 ∪G0γ, where G0γ = {g̃γ : g̃ ∈ G0}.

The paper is organized as follows. Section 2 contains preliminaries: descrip-
tions of the C∗-algebra PSO(T) of piecewise slowly oscillating functions on T and
its maximal ideal space M(PSO(T)), a Fredholm symbol map (Theorem 2.2) for
the C∗-algebra

A := alg (PSO(T), ST) ⊂ B, (1.7)

generated by the operator ST and all operators aI with a ∈ PSO(T), and the
description of a spectral measure associated with a central subalgebra of the C∗-
algebra B/K. Section 2 also contains the main tools for studying the C∗-algebra
B: a C∗-algebra version of the lifting theorem (Theorem 2.6) and a suitable version
of the local-trajectory method (Theorem 2.7).

Section 3 contains the main results of the paper: a representation ΨB of the
C∗-algebra B on a Hilbert space HB = H1 ⊕H2 ⊕H3, where

ΨB = Ψ1 ⊕Ψ2 ⊕Ψ3 (1.8)

is the direct sum of representations Ψi : B → B(Hi) (i = 1, 2, 3), such that
KerΨB = K. As a result, a Fredholm symbol map for B is obtained (Theorem 3.1)
and a Fredholm criterion for the operators B ∈ B in terms of their Fredholm
symbols is established (Theorem 3.2).

In Section 4 we study the invertibility in the quotient C∗-algebra B̂ := B/H
where H is the closed two-sided ideal in B generated by all commutators [aI, ST],

with a ∈ PSO(T). The C∗-algebra B̂ can be viewed as

B̂ = alg (Â, ÛG), (1.9)

the C∗-algebra generated by the commutative C∗-subalgebra Â := (A+H)/H and

by the group of the unitary cosets ÛG = {Ug + H : g ∈ G}. Using the local-

trajectory method, the Gelfand transform of the C∗-algebra Â is extended to a

faithful representation of the C∗-algebra B̂. As a consequence, an invertibility

symbol map for the C∗-algebra B̂ is constructed, an invertibility criterion for its
elements is obtained (Corollary 4.4 and Theorem 4.3), and the ∗-homomorphism
Ψ3 : B→ B(H3) is defined (Theorem 4.5 and Corollary 4.6).

The continuity of mappings Ψ1 : B → B(H1) and Ψ2 : B → B(H2) is
established in Section 5. These mappings are associated, respectively, with two
G-orbits: ω1 = {1} and ω2 = T \ {1} resulting from the action of G on T. Using
ideas from [8] and [16] we establish the continuity of mappings Ψ1 and Ψ2 for the
considered groupG that admits shifts changing the orientation of T (Theorem 5.4).
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Relations between the mappings Ψ1,Ψ2 and the ideals H1,H2 generating H are also
investigated (Theorem 5.5).

Finally, in Section 6, applying (1.8) and collecting results from Sections 4
and 5, and also using the lifting theorem presented in Subsection 2.4, we prove
Theorems 3.1 and 3.2, the main results of the paper.

2. Preliminaries

2.1. The C∗-algebra of PSO(T) functions

Let L∞(T) be the C∗-algebra of all bounded measurable functions on the unit circle
T := {z ∈ C : |z| = 1}. Let C(T), PC(T) and SO(T) denote the C∗-subalgebras
of L∞(T) consisting, respectively, of all continuous functions on T, all piecewise
continuous functions on T, that is, the functions having one-sided limits at each
point t ∈ T, and all slowly oscillating functions on T, that is, the functions f that
are slowly oscillating at each point λ ∈ T:

lim
ε→0

ess sup
{
|f(z1)− f(z2)| : z1, z2 ∈ Tε(λ)

}
= 0,

where Tε(λ) := {z ∈ T : ε/2 ≤ |z − λ| ≤ ε}. Denoting by SOλ(T) the C∗-
subalgebra of L∞(T) consisting of the continuous functions on T \ {λ} that are
slowly oscillating at λ ∈ T, we deduce that SO(T) := alg {SOλ(T) : λ ∈ T} is the
smallest C∗-subalgebra of L∞(T) containing all C∗-algebras SOλ(T), λ ∈ T.

Denoting by PC0(T) and SO0(T) the non-closed subalgebras of L∞(T) con-
sisting of all bounded functions that are continuous at all points of T except
perhaps a finite number of points where these functions are, respectively, piece-

wise continuous or slowly oscillating, we conclude that PC(T) = PC0(T) and

SO(T) = SO0(T), with closures taken in L∞(T).
Let PSO(T) := alg (SO(T), PC(T)) be the C∗-subalgebra of L∞(T) gener-

ated by the C∗-algebras SO(T) and PC(T). Obviously, PSO(T) is the closure
in L∞(T) of the set PSO0(T) consisting of all bounded functions on T admit-
ting piecewise slowly oscillating discontinuities at finite subsets of T and being
continuous at all other points of T.

As usual, we do not distinguish the non-zero multiplicative linear functionals
on A and their kernels which are the maximal ideals of A.

It is known that the maximal ideal space of C(T) and PC(T) can be identified,
respectively, with T and T× {0, 1},

M(C(T)) = T, M(PC(T)) = T× {0, 1},

where the points t ∈ T are identified with the evaluation functionals δt given by
δt(f) = f(t) for f ∈ C(T), and the pairs (t, 0) and (t, 1) are the multiplicative linear
functionals defined for a ∈ PC(T) by (t, 0)a = a(t−0) and (t, 1)a = a(t+0), where
a(t− 0) and a(t+0) are the left and right one-sided limits of a at the point t ∈ T.
The base of open sets on T× {0, 1} consists of all sets of the form (t, τ) × {0, 1},
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((t, τ ] × {0}) ∪ ((t, τ) × {1}), ((t, τ) × {0}) ∪ ([t, τ) × {1}), where t, τ ∈ T. Since
C(T) ⊂ SO(T) ⊂ PSO(T), it follows from [4] that

M(SO(T)) =
⋃
t∈T

Mt(SO(T)), M(PSO(T)) =
⋃

ξ∈M(SO(T))

Mξ(PSO(T)), (2.1)

where the corresponding fibers are given for t ∈ T and ξ ∈M(SO(T)) by

Mt(SO(T)) =
{
ξ ∈M(SO(T)) : ξ|C(T) = t

}
,

Mξ(PSO(T)) =
{
y ∈M(PSO(T)) : y|SO(T) = ξ

}
.

Given ξ ∈ Mt(SO(T)) for t ∈ T, for any sequence {ai} ⊂ SO(T) according to [4,
Corollary 4.4] there exists a sequence {tn} ⊂ T \ {t} such that

ξ(ai) = lim
n→∞ ai(tn) for all i ∈ N.

The fibers Mξ(PSO(T)) for ξ ∈M(SO(T)) can be characterized as follows.

Theorem 2.1. [4, Theorem 4.6] If ξ ∈Mt(SO(T)) with t ∈ T, then

Mξ(PSO(T)) = {(ξ, 0), (ξ, 1)}, (2.2)

where, for μ ∈ {0, 1}, (ξ, μ)|SO(T) = ξ, (ξ, μ)|C(T) = t, (ξ, μ)|PC(T) = (t, μ).

By (2.1) and (2.2) we have M(PSO(T)) = M(SO(T)) × {0, 1}. With the
Gelfand topology described in [5], M(PSO(T)) becomes a compact Hausdorff
space.

2.2. The C∗-algebra A

Consider the C∗-algebra A of singular integral operators on L2(T) with PSO(T)
coefficients, which is given by (1.7). With A we associate the set

M := M(SO(T)) × R, (2.3)

where R = [−∞,+∞]. Let B(M,C2×2) be the C∗-algebra of all bounded matrix
functions f : M→ C2×2. According to [9, Section 7] and [5, Theorem 5.1] we have
the following symbol calculus for the C∗-algebra A.

Theorem 2.2. The map Sym : {aI : a ∈ PSO(T)} ∪ {ST} → B(M,C2×2) given
by the matrix functions

[Sym (aI)](ξ, x)=

(
a(ξ, 1) 0

0 a(ξ, 0)

)
, [SymST](ξ, x)=

(
u(x) −v(x)
v(x) −u(x)

)
, (2.4)

where a(ξ, μ) is the Gelfand transform of a function a ∈ PSO(T) at the point
(ξ, μ) ∈M(PSO(T)) and

u(x) := tanh(πx), v(x) := −i/ cosh(πx) for x ∈ R, (2.5)

extends to a C∗-algebra homomorphism Sym : A → B(M,C2×2) whose kernel
consists of all compact operators on L2(T). An operator A ∈ A is Fredholm on the
space L2(T) if and only if det([SymA](ξ, x)) �= 0 for all (ξ, x) ∈M.
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To each point t ∈ T we assign the operator Vt ∈ B(L2(T)) with fixed singu-
larity at t, which is given for z ∈ T by

(Vtϕ)(z) :=
χ+
t (z)

πi

∫
T

ϕ(y)χ+
t (y)

y + z − 2t
dy − χ−

t (z)

πi

∫
T

ϕ(y)χ−
t (y)

y + z − 2t
dy, (2.6)

where χ±
t are the characteristic functions of arcs γ±

t such that γt := γ+
t ∪ γ−

t is
a neighborhood of t separated from −t, γ+

t ∩ γ−
t = {t}, and γ+

t ∩ (−t, t) = ∅,
γ−
t ∩ (t,−t) = ∅. The operators Vt for all t ∈ T belong to the C∗-algebra A (see,

e.g., [5, Lemma 5.3]).
Let P consist of all polynomials

∑n
k=0 aku

k (ak ∈ C, n = 0, 1, . . .), and

Z := alg
{
aI, HP,t : a ∈ SO(T), P ∈ P , t ∈ T

}
⊂ B(L2(T)) (2.7)

be the C∗-subalgebra of A generated by the operators aI (a ∈ SO(T)) and

HP,t := P (χ+
t STχ

+
t I − χ−

t STχ
−
t I)Vt ∈ A (P ∈ P , t ∈ T).

By [5, (4.10)–(4.11)] and [16, (5.24)], we get

aHP,t � HP,taI, STHP,t � HP,tST, UgHP,t � HP,g−1(t)Ug (2.8)

for all a ∈ PSO(T), t ∈ T and g ∈ G. Moreover, because

bST � STbI for all b ∈ SO(T),

we conclude that Zπ := (Z + K)/K is a central C∗-subalgebra of the C∗-algebra
Aπ := A/K, where K := K(L2(T)). Given the set

Ṁ := M(SO(T)) × Ṙ (2.9)

with Ṙ = R ∪ {∞}, we infer from [5, Theorem 6.3] that Zπ ∼= C(Ṁ), where Ṁ is
the compact Hausdorff space equipped with the Gelfand topology.

By analogy with [5, Lemma 5.4], we easily obtain its generalization for shifts
changing the orientation of T from (2.6) and (2.4).

Lemma 2.3. Let g be an orientation-preserving diffeomorphism on T, t ∈ T, v(x) =
−i/ cosh(πx) for x ∈ R, and let M be the set (2.3).

(i) If g(t) = t, then UgVt ∈ A and

[Sym (UgVt)](ξ, x) :={
diag

{
eix ln g′(t)v(x), eix ln g′(t)v(x)

}
if (ξ, x) ∈Mt(SO(T)) × R,

02×2 if (ξ, x) ∈M \ (Mt(SO(T)) × R).

(ii) If g(t) = t, then UgUγVt ∈ A and

[Sym (UgUγVt)](ξ, x) :=⎧⎪⎨⎪⎩
(

0 eix ln |g′(t)|v(x)
eix ln |g′(t)|v(x) 0

)
if (ξ, x) ∈Mt(SO(T)) × R,

02×2 if (ξ, x) ∈M \ (Mt(SO(T)) × R).
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2.3. The spectral measure associated with the C∗-algebra Bπ

Consider an isometric representation

ϕ : Bπ → B(Hϕ), Bπ �→ ϕ(Bπ) (2.10)

of the C∗-algebra Bπ := B/K on an abstract Hilbert space Hϕ. Let R(Ṁ) be the

σ-algebra of all Borel subsets of the compact set Ṁ given by (2.9), and let

Pϕ : R(Ṁ)→ B(Hϕ) (2.11)

be the unique spectral measure associated to the representation (2.10) restricted
to the commutative unital C∗-algebra Zπ, where Z is defined by (2.7). Since all
shifts g ∈ G have continuous derivative on T, for the generators of B we have the
relations

UgaU
−1
g = (a ◦ g)I, a ∈ PSO(T), g ∈ G, (2.12)

and

UgSTU
−1
g � ST, UgγSTU

−1
gγ � −ST, g ∈ G0, (2.13)

where a ◦ g, a ◦ γ ∈ PSO(T) (cf. [4, Lemma 4.2]).
As a consequence, for each g ∈ G the mapping

αg : Aπ �→ Uπ
g A

π(Uπ
g )

−1

is a ∗-automorphism of the C∗-algebra Aπ and its central C∗-subalgebra Zπ. These
∗-automorphisms in view of (2.12) and (2.8) induce on M(Zπ) = Ṁ the group of
homeomorphisms

βg : Ṁ→ Ṁ, (ξ, x) �→ (g(ξ), x) if g ∈ G,

where ξ �→ g(ξ) is the homeomorphism on M(SO(T)) given by

a(g(ξ)) = (a ◦ g)(ξ) for all a ∈ SO(T) and all ξ ∈M(SO(T)) (2.14)

(as usual a(ξ) := ξ(a)).

Denoting by RG(Ṁ) the subset of R(Ṁ) given by

RG(Ṁ) :=
{
Q ∈ R(Ṁ) : βg(Q) = Q for all g ∈ G

}
,

we conclude from [14] that, for each Q ∈ RG(Ṁ) and each operator B ∈ B,

Pϕ(Q)ϕ(Bπ) = ϕ(Bπ)Pϕ(Q).

For every point t ∈ T we introduce the open subset of Ṁ given by

M◦
t := Mt(SO(T)) × R. (2.15)

For each g ∈ G, the homeomorphism ξ �→ g(ξ) defined by (2.14) sends the fibers
Mt(SO(T)) onto the fibers Mg(t)(SO(T)). Since 1 is a fixed point for any shift
g ∈ G, for every function a ∈ SO(T) it follows that a(g(ξ)) = a(ξ) for all ξ ∈
M1(SO(T)) (see, e.g., [5, Theorem 6.4]), and therefore M◦

1 is a set of fixed points

for all homeomorphisms βg (g ∈ G). Consequently, M◦
1 ∈ RG(Ṁ), while for all

t ∈ T \ {1} the sets M◦
t do not belong to RG(Ṁ). Similarly to [7, Lemma 4.2] we

obtain the following.
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Lemma 2.4. For every t ∈ T and every g ∈ G,

Pϕ(M
◦
t )ϕ(U

π
g ) = ϕ(Uπ

g )Pϕ(M
◦
g(t)). (2.16)

In particular, from Lemma 2.4 it follows for the reflection γ ∈ G given by
(1.6) and for every t ∈ T that

Pϕ(M
◦
t )ϕ(U

π
γ ) = ϕ(Uπ

γ )Pϕ(M
◦
t ).

For each t ∈ T, let A◦
t be the abstract C∗-subalgebra of B(Hϕ) given by

A◦
t := Pϕ(M

◦
t )ϕ(A

π).

Using the fact that M◦
t is an open subset of Ṁ, we obtained in [5, Corollary 9.3]

the following invertibility criterion for the operators in A◦
t .

Lemma 2.5. For any t ∈ T, the map Sym◦
t : A◦

t → B(l2(M◦
t ,C

2)) defined by

Sym◦
t : Pϕ(M

◦
t )ϕ(A

π)→ B(l2(M◦
t ,C

2)), Pϕ(M
◦
t )ϕ(A

π) �→ (SymA)|M◦
t
I

is an isometric C∗-algebra homomorphism. An operator Pϕ(M
◦
t )ϕ(A

π) for A
∈ A is invertible on the space Pϕ(M

◦
t )Hϕ if and only if

det([SymA](ξ, x)) �= 0 for all (ξ, x) ∈Mt(SO(T)) × R.

2.4. Lifting theorem and the local-trajectory method

Let B := B(H) be the C∗-algebra of all bounded linear operators on a Hilbert
space H and let B be a C∗-subalgebra of B containing the identity operator I ∈ B.
Suppose the ideal K := K(H) is contained in B. Given B ∈ B, let |B| denote the
essential norm of B, that is,

|B| = ‖Bπ‖ = inf{‖B +K‖ : K ∈ K}.
To investigate the Fredholmness of operators B ∈ B, the central result is

the following analogue of the lifting theorem from [12, Theorem 1.8] (see also [18,
Section 6.3]), which is a C∗-algebra modification of [15, Theorem 3.3]. For reader’s
convenience we give its proof.

Theorem 2.6. Let Λ be an index set and suppose that, for each λ ∈ Λ, we are given
a unital C∗-algebra Lλ, a ∗-homomorphism Ψλ : B→ Lλ, and a closed two-sided
ideal Hλ ⊂ B such that:

(i) K ⊂ Hλ ∩KerΨλ and Hμ ⊂ KerΨλ for all μ ∈ Λ \ {λ};
(ii) the restriction of the quotient homomorphism

B/K → Lλ, B +K �→ Ψλ(B)

onto the ideal Hλ/K is a ∗-isomorphism of Hλ/K onto the closed two-sided
ideal Rλ := Ψλ(Hλ) of the C∗-algebra Bλ := Ψλ(B) ⊂ Lλ.

Let H be the smallest closed two-sided ideal of B containing all ideals Hλ (λ ∈ Λ).
Then an operator B ∈ B is Fredholm if and only if the coset B + H is invertible
in B/H and for every λ ∈ Λ the element Ψλ(B) is invertible in Lλ.
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Proof. Necessity. Let B ∈ B be a Fredholm operator. Then there is an operator

B′ ∈ B such that BB′ = I + K and B′B = I + K̃ with K, K̃ ∈ K. Since the
quotient C∗-algebra Bπ = B/K is inverse closed in the C∗-algebra Bπ = B/K,
that is, any coset Bπ ∈ Bπ invertible in Bπ is invertible in Bπ, and since K ⊂ H,
we infer that the coset B + H is invertible in B/H and its inverse is the coset
B′ +H. Because the homomorphisms Ψλ : B/K → Lλ preserve the invertibility of
elements, for every λ ∈ Λ the element Ψλ(B) = Ψλ(B +K) is invertible in Lλ.

Sufficiency. Suppose that the coset B+H is invertible in the quotient algebra
B/H. Then there are elements D ∈ B and H ∈ H such that DB = I + H .
By definition of the ideal H one can choose a set {λ1, λ2, . . . , λn} ⊂ Λ, elements
Hλi ∈ Hλi (i = 1, 2, . . . , n) and H ′ ∈ H such that

H ′ � Hλ1 + · · ·+Hλn and |H −H ′| < 1.

In addition, for each λ ∈ Λ, since Ψλ(Hμ) = 0 for all μ ∈ Λ\ {λ} and all Hμ ∈ Hμ,
it follows that Ψλ(H) = Ψλ(Hλ) = Rλ, and therefore the invertibility of the coset
B + H in B/H implies the invertibility of the coset Ψλ(B) + Rλ in the quotient
C∗-algebra Bλ/Rλ.

Let Ψ−1
λi

(B) stand for the inverse of Ψλi(B) in Lλi , i = 1, 2, . . . , n. Because

Bλi is a C∗-algebra, we conclude that Ψ−1
λi

(B) ∈ Bλi , whence Ψλi(Hλi)Ψ
−1
λi

(B)
belongs to the idealRλi of the C

∗-algebraBλi . Then by (ii) there exists an element
Dλi ∈ Hλi such that

Ψλi(Dλi) = Ψλi(Hλi)Ψ
−1
λi

(B). (2.17)

If we put D ′ = D −Dλ1 − · · · −Dλn , then

D ′B = I +H −Dλ1B − · · · −DλnB

= I + (H −H ′) + (Hλ1 −Dλ1B) + · · ·+ (Hλn −DλnB). (2.18)

It follows from (i) and (ii) that actually

Hλ ∩KerΨλ = K. (2.19)

Indeed, if Hλ ∈ Hλ with Ψλ(Hλ) = 0, then coset Hλ +K belongs to the kernel of
the ∗-isomorphism mentioned in (ii). Thus, Hλ +K = 0 +K and hence Hλ ∈ K.

Since, by definition, Hλi − DλiB ∈ Hλi and, in view of (2.17), Ψλi(Hλi −
DλiB) = 0, we conclude from (2.19) that Hλi − DλiB ∈ K. Thus we infer from
(2.18) that

D ′B � I +H −H ′.

In view of the inequality |H −H ′| < 1, the coset I +H −H ′ + K is invertible in
B/K, and (I +H −H ′ +K)−1 = B0+K with B0 ∈ B. Then B0D

′B � I, whence
the operator B0D

′ ∈ B is a left regularizer of B.
Analogously one can prove the existence of a right regularizer of B, which

together with the previous part implies the Fredholmness of B. �

In order to study the invertibility of cosets in the C∗-algebraB/H, we will use
the following version of the local-trajectory method (cf. [13], [14], [5] and [1]–[3]).
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Let A be a commutative C∗-algebra with unit I, G a discrete group with unit
e, u : g �→ ug a homomorphism of the group G onto a group uG = {ug : g ∈ G}
of unitary elements such that ug1g2 = ug1ug2 and ue = I. Suppose A and uG are
contained in a C∗-algebra Y and assume that

(A1) for every g ∈ G, the mapping αg : d �→ ug d u
∗
g is a ∗-automorphism of the

commutative C∗-algebra A;
(A2) G is an amenable discrete group.

By [11, § 1.2], a discrete group G is called amenable if the C∗-algebra l∞(G)
of all bounded complex-valued functions on G with sup-norm has an invariant
mean, that is, a positive linear functional ρ of norm 1 such that

ρ(f) = ρ(sf) = ρ(fs) for all s ∈ G and all f ∈ l∞(G),

where (sf)(g) = f(s−1g), (fs)(g) = f(gs), g ∈ G.

Let D := alg (A, uG) be the minimal C∗-algebra containing the C∗-algebra
A and the group uG. By virtue of (A1), D is the closure of the set D0 of elements
d =

∑
agug, where ag ∈ A and g runs through finite subsets of G.

Let M := M(A) be the maximal ideal space of the commutative C∗-algebra
A. By the Gelfand–Naimark theorem [17, § 16], A ∼= C(M). Under assumption
(A1), identifying characters ϕm of the C∗-algebra A and the maximal ideals m =
Kerϕm ∈ M , we obtain the homomorphism g �→ βg(·) of the group G into the
homeomorphism group of M according to the rule

a(βg(m)) = (αg(a))(m), a ∈ A, m ∈M, g ∈ G,

where a(·) ∈ C(M) is the Gelfand transform of the element a ∈ A. The set
G(m) := {βg(m) : g ∈ G} is called the G-orbit of a point m ∈M .

Suppose that the next version of topologically free action of G holds (see
[13], [5]):

(A3) there is a set M0 ⊂ M(A) such that for every finite set G0 ⊂ G \ {e} and
every nonempty open set V ⊂ M(A) there exists a point m0 ∈ V ∩ G(M0)
such that βg(m0) �= m0 for all g ∈ G0.

For each m ∈ M , we take the representation πm : A → B(C), a �→ a(m).
Given M0 ⊂ M , let Ω(M0) be the set of G-orbits of all points m ∈ M0. Fix a
point m = mω in each G-orbit ω ∈ Ω(M0), and let l2(G) be the Hilbert space of
all functions f : G �→ C such that f(g) �= 0 for at most countable set of points
g ∈ G and ‖f‖ := (

∑
|f(g)|2)1/2 < ∞. For every ω ∈ Ω(M0) we consider the

representation πω : D → B(l2(G)) defined by

[πω(a)f ](g) = πm(αg(a))f(g), [πω(uh)f ](g) = f(gh)

for all a ∈ A, all g, h ∈ G and all f ∈ l2(G).

We infer the following nonlocal version of the Allan–Douglas local principle
from [14, Theorems 4.1, 4.12] and [5, Theorem 3.1].
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Theorem 2.7. If assumptions (A1)–(A3) are satisfied, then an element d ∈ D is
invertible in D if and only if for every orbit ω ∈ Ω(M0) the operator πω(d) is
invertible on the space l2(G) and, in the case of infinite set Ω(M0),

sup
{
‖(πω(d))

−1‖B(l2(G)) : ω ∈ Ω(M0)
}
<∞.

3. Main results

Given t, τ ∈ T, we define the set

Yt,τ := {g ∈ G : g(t) = τ}. (3.1)

Since t = 1 is a common fixed point for all g ∈ G, we conclude that Y1,1 = G.
Fix t0 ∈ T \ {1}. Then its G-orbit G(t0) := {g(t0) : g ∈ G} coincides with

T \ {1}. For each τ ∈ T \ {1} let us fix a shift gτ ∈ Yt0,τ such that gt0 = e, the unit
of G. Observe that, for every g ∈ Yt,τ with t, τ ∈ T \ {1}, we have

g̃t,τ := gtgg
−1
τ = g−1

τ ◦ g ◦ gt ∈ Yt0,t0 . (3.2)

For each shift g ∈ G, we also define the function δg : T× T→ {0, 1} by

δg(t, τ) :=

{
1 if g ∈ Yt,τ ,

0 if g /∈ Yt,τ .
(3.3)

With the C∗-algebra B we associate the Hilbert space

HB := H1 ⊕H2 ⊕H3

where

H1 := l2(M1(SO(T)) × R, C2),

H2 := l2(Mt0(SO(T)) × R, l2(T \ {1},C2)), (3.4)

H3 := l2(Mt0(SO(T)) × {0, 1}, l2(G)).

Here H1 is the non-separable Hilbert space consisting of C2-valued functions de-
fined on the set M1(SO(T)) × R and having at most countable sets of non-zero
values. The norm of a vector function

Φ : M1(SO(T)) × R→ C2, (ξ, x) �→ Φ(ξ, x) = (Φi(ξ, x))
2
i=1

in the Hilbert space H1 is given by

‖Φ‖ :=
( ∑

(ξ,x)∈M1(SO(T))×R

2∑
i=1

|Φi(ξ, x)|2
)1/2

.

Analogously, H2 and H3 are non-separable Hilbert spaces consisting, respectively,
of l2(T\{1},C2)-valued functions defined on the set Mt0(SO(T))×R and of l2(G)-
valued functions defined on the set Mt0(SO(T)) × {0, 1}, and all these functions
have at most countable sets of non-zero values. In its turn, l2(T \ {1},C2) is the
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non-separable Hilbert space consisting of all vectors f = (fτ )τ∈T\{1} with at most

countable sets of non-zero entries fτ = (fτ,i)
2
i=1 ∈ C2 and the norm

‖f‖ :=
( ∑

τ∈T\{1}

2∑
i=1

|fτ,i|2
)1/2

.

Thus, the norm of vector functions

Θ : Mt0(SO(T)) × R→ l2(T \ {1},C2), (ξ, x) �→ Θ(ξ, x) = (Θτ (ξ, x))τ∈T\{1}

and

Δ : Mt0(SO(T)) × {0, 1} → l2(G), (ξ, μ) �→ Δ(ξ, μ) = (Δg(ξ, μ))g∈G

in the Hilbert spaces H2 and H3 are given, respectively, by

‖Θ‖ :=
( ∑

(ξ,x)∈Mt0(SO(T))×R

‖Θ(ξ, x)‖2
)1/2

=

( ∑
(ξ,x)∈Mt0(SO(T))×R

∑
τ∈T\{1}

2∑
i=1

|Θτ,i(ξ, x)|2
)1/2

and

‖Δ‖ :=
( ∑

(ξ,μ)∈Mt0 (SO(T))×{0,1}
‖Δ(ξ, μ)‖2

)1/2

=

( ∑
(ξ,μ)∈Mt0 (SO(T))×{0,1}

∑
g∈G

|Δg(ξ, μ)|2
)1/2

.

We now construct a representation

ΨB : B→ B(HB), B �→ Ψ1(B)⊕Ψ2(B)⊕Ψ3(B) (3.5)

of the C∗-algebra B on the Hilbert space HB = H1⊕H2⊕H3. The values ΨB(B)
for B ∈ B are bounded linear operators acting on the space HB. A Fredholm
criterion for the operators B ∈ B will be described in terms of invertibility of
the operators ΨB(B) on the space HB. Hence, the representation ΨB : B →
B(HB) can be referred to as the Fredholm symbol map for the C∗-algebra B.
The representation ΨB can be considered as the direct sum of the following three
C∗-algebra homomorphisms

Ψ1 : B→ B(H1), B �→ Ψ1(B) = Sym1(B)I,

Ψ2 : B→ B(H2), B �→ Ψ2(B) = Sym2(B)I, (3.6)

Ψ3 : B→ B(H3), B �→ Ψ3(B) = Sym3(B)I,

defined initially on the generators of the C∗-algebra B.
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In (3.6), Ψ1(B) are operators of multiplication by 2 × 2 matrix functions
Sym1(B) :M1(SO(T))×R→C2×2 whose values at the points (ξ,x)∈M1(SO(T))×
R are defined on the generators of the C∗-algebra B by

[Sym1(aI)](ξ, x) :=

(
a(ξ, 1) 0

0 a(ξ, 0)

)
,

[Sym1(ST)](ξ, x) :=

(
tanh(πx) i/ cosh(πx)
−i/ cosh(πx) − tanh(πx)

)
,

[Sym1(Ug)](ξ, x) :=

(
eixkg 0
0 eixkg

)
,

[Sym1(Uγ)](ξ, x) :=

(
0 1
1 0

)
, (3.7)

where a ∈ PSO(T), g ∈ G0, kg := ln g′(1) with g′(1) > 0.

Further, Ψ2(B) are operators of multiplication by infinite matrix functions
Sym2(B) given on Mt0(SO(T))×R, where the values of these matrix functions at
the points (ξ, x) ∈Mt0(SO(T))×R define bounded linear operators on the Hilbert
space l2(T \ {1},C2) and are given on the generators of the C∗-algebra B by

[Sym2(aI)](ξ, x) := diag

{(
(a ◦ gt)(ξ, 1) 0

0 (a ◦ gt)(ξ, 0)

)}
t∈T\{1}

,

[Sym2(ST)](ξ, x) := diag

{(
tanh(πx) i/ cosh(πx)
−i/ cosh(πx) − tanh(πx)

)}
t∈T\{1}

,

[Sym2(Ug)](ξ, x) :=

((
δg(t, τ)e

ixkg,t,τ 0
0 δg(t, τ)e

ixkg,t,τ

))
t,τ∈T\{1}

,

[Sym2(Uγ)](ξ, x) :=

((
0 δγ(t, τ)

δγ(t, τ) 0

))
t,τ∈T\{1}

, (3.8)

where a ∈ PSO(T), g ∈ G0, kg,t,τ := ln g̃′t,τ (t0) with g̃t,τ defined by (3.2) and
g̃′t,τ (t0) > 0, and the function δh is given by (3.3) for h ∈ G.

Finally, Ψ3(B) are operators of multiplication by infinite matrix functions
Sym3(B) given on Mt0(SO(T))×{0, 1}, where the values of these matrix functions
at the points (ξ, μ) ∈Mt0(SO(T))×{0, 1} define bounded linear operators on the
space l2(G) and are given on the generators of the C∗-algebra B as follows:

[Sym3(aI)](ξ, μ) := diag
{
(a ◦ h)(ξ, μ)

}
h∈G

,

[Sym3(ST)](ξ, μ) := diag
{
θh

}
h∈G

,

[Sym3(Ug)](ξ, μ) :=
(
δhg,s

)
h,s∈G

, (3.9)

where a ∈ PSO(T), g ∈ G, θh = 1 if h ∈ G preserves the orientation on T, θh = −1
if h ∈ G changes the orientation on T, and δh,s is the Kronecker symbol on G.
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Given a ∈ PSO(T), we also note that

(a ◦ h)(ξ, μ) =
{
a(h(ξ), μ) if h ∈ G0,

a(h(ξ), 1− μ) if h ∈ G0γ,

where the map ξ �→ g(ξ) on M(SO(T)) is given by (2.14).
We will prove below the following main results of the paper.

Theorem 3.1. The map ΨB defined on the generators of the C∗-algebra B by
formulas (3.5)–(3.9) extends to a C∗-algebra homomorphism of B into the C∗-
algebra B(HB) such that ‖ΨB(B)‖ ≤ |B| for all B ∈ B, and KerΨB coincides
with the ideal K(L2(T)) of all compact operators in the C∗-algebra B(L2(T)).

Theorem 3.2. An operator B ∈ B is Fredholm on the space L2(T) if and only if
the operator ΨB(B) is invertible on the space HB, that is, if the following three
conditions hold:

(i) for every (ξ, x) ∈ M1(SO(T)) × R the matrix [Sym1(B)](ξ, x) is invertible
and

inf
(ξ,x)∈M1(SO(T))×R

∣∣ det ([Sym1(B)](ξ, x)
)∣∣ > 0;

(ii) for every (ξ, x) ∈Mt0(SO(T))×R the operator [Sym2(B)](ξ, x)I is invertible
on the Hilbert space l2(T \ {1},C2) and

sup
(ξ,x)∈Mt0(SO(T))×R

∥∥([Sym2(B)](ξ, x)I
)−1∥∥

B(l2(T\{1},C2))
<∞;

(iii) for every (ξ, μ) ∈ Mt0(SO(T)) × {0, 1} the operator [Sym3(B)](ξ, μ)I is in-
vertible on the Hilbert space l2(G) and

sup
(ξ,μ)∈Mt0 (SO(T))×{0,1}

∥∥([Sym3(B)](ξ, μ)I
)−1∥∥

B(l2(G))
<∞.

By Theorems 3.1 and 3.2, the representation (3.5) is a map assigning a Fred-
holm symbol to every operator B ∈ B, and ΨB(B) is the C∗-algebra of the
Fredholm symbols for the operators B ∈ B.

4. Invertibility in the C∗-algebra B/H. The homomorphism Ψ3

Let A0 and B0 be the non-closed algebras consisting of operators of the form

n∑
i=1

Ti,1Ti,2 . . . Ti,ji (n, ji ∈ N) (4.1)

where Ti,k are, respectively, the generators aI (a ∈ PSO0(T)) and ST of the C∗-
algebras A and the generators aI (a ∈ PSO0(T)), ST and Ug (g ∈ G) of the
C∗-algebra B. Clearly, A0 is a dense subalgebra of A, B0 is a dense subalgebra
of B.
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Let H be the closed two-sided ideal of B generated by all commutators
[aI, ST] = aST − STaI, where a ∈ PSO0(T). Then H is the closure of the set

H0 :=

{
n∑

i=1

BiHiCi : Bi, Ci ∈ B0, Hi = [aiI, ST], ai ∈ PSO0(T), n ∈ N

}
.

(4.2)
As is known (see, e.g., [10]), the ideal K of all compact operators on the space
L2(T) is contained in H.

Fix t0 ∈ T \ {1} and let H1 and H2 be the closed two-sided ideals of the
C∗-algebra B generated, respectively, by V1 and K and by Vt0 and K, where V1

and Vt0 are the operators with fixed singularities defined by (2.6). Let Hπ
1 := H1/K

and Hπ
2 := H2/K. Similarly to [16, Lemma 5.4] and [5, Lemma 10.4] we have the

following characterization of the ideal Hπ := H/K.

Lemma 4.1. Every coset Hπ ∈ Hπ can be written as Hπ = Hπ
1 + Hπ

2 , where the
cosets Hπ

1 ∈ Hπ
1 and Hπ

2 ∈ Hπ
2 have the form

Hπ
1 = lim

n→∞(Aπ
n,0V

π
1 +Aπ

n,1V
π
1 Uπ

γ ),

Hπ
2 = lim

n→∞

∑
t∈Tn

∑
g∈Fn

(
Aπ

t,g,n,0V
π
t Uπ

g +Aπ
t,g,n,1V

π
t Uπ

g U
π
γ

)
, (4.3)

with An,0, An,1, At,g,n,0, At,g,n,1 ∈ A0, and Tn and Fn are finite subsets of T\{1}
and G0, respectively.

Consider the quotient C∗-algebras B̂ := B/H and Â := (A+H)/H, where A

is the C∗-algebra given by (1.7). By [5, Theorem 5.2], the C∗-algebra Â consists

of the cosets Â = a+P+
T + a−P−

T + H, where a± ∈ PSO(T), and is obviously

commutative. Its maximal ideal space M(Â) is homeomorphic to the compact set

N := M(SO(T)) × {0, 1} × {±∞}, (4.4)

and hence Â ∼= C(N). The Gelfand topology on N is defined as follows. If t ∈ T
and ξ ∈Mt(SO(T)), a base of neighborhoods of the point (ξ, μ, x) ∈ N consists of
all open sets

U(ξ,μ,x) =

{(
Uξ,t × {0} × {x}

)
∪
(
U−
ξ,t × {0, 1} × {x}

)
if μ = 0,(

Uξ,t × {1} × {x}
)
∪
(
U+
ξ,t × {0, 1} × {x}

)
if μ = 1,

(4.5)

where Uξ,t = Uξ ∩Mt(SO(T)), Uξ is an open neighborhood of ξ ∈M(SO(T)), and
U−
ξ,t, U

+
ξ,t consists of all ζ ∈ Uξ such that τ = ζ|C(T) belong, respectively, to the

open arcs (te−iε, t) and (t, teiε) of T for some ε ∈ (0, 2π). The Gelfand transform

of cosets Â = a+P+
T + a−P−

T +H ∈ Â with a± ∈ PSO(T) is given for (ξ, μ, x) ∈ N
by

Â(ξ, μ, x) := a+(ξ, μ)P+(x) + a−(ξ, μ)P−(x), (4.6)

where

P±(x) = [1± tanh(πx)]/2 for all x ∈ R.
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Applying the local-trajectory method we will obtain here an invertibility

criterion for the cosets B +H (B ∈ B) in the C∗-algebra B̂. As a consequence we
will construct the ∗-homomorphism Ψ3 defined on the generators of B by (3.9).

By (2.12) and (2.13), we conclude that for every g ∈ G the map

α̂g : Â→ Â, A+ H �→ Ug(A+ H)U−1
g

is a ∗-automorphism of the commutative C∗-algebra Â. Indeed, taking a± ∈
PSO(T) we obtain

Ug(a
+P+

T + a−P−
T + H)U−1

g = (a+ ◦ g)P+
T + (a− ◦ g)P−

T + H (g ∈ G0),

Ug(a
+P+

T + a−P−
T + H)U−1

g = (a+ ◦ g)P−
T + (a− ◦ g)P+

T + H (g ∈ G0γ),

where (a± ◦g)(ξ, μ) = a±(g(ξ), 1−μ) for all (ξ, μ) ∈M(PSO(T)) and all g ∈ G0γ.

Hence the C∗-algebra B̂ is the closure of the algebra B̂0 consisting of the cosets∑
g∈F AgUg + H, where Ag ∈ A0 and g runs through finite subsets F ⊂ G. For

each g ∈ G, the ∗-automorphism α̂g of the C∗-algebra Â induces on the maximal
ideal space N defined by (4.4) the homeomorphism given by

β̂g : (ξ, μ, x) �→ (g(ξ), μ, x) for all g ∈ G0,

β̂g : (ξ, μ, x) �→ (g(ξ), 1− μ,−x) for all g ∈ G0γ,
(4.7)

according to the rule

Â
[
β̂g(ξ, μ, x)

]
=

[
α̂g(Â)

]
(ξ, μ, x), Â ∈ Â, (ξ, μ, x) ∈ N, g ∈ G,

where Â(·, ·, ·) ∈ C(N) is the Gelfand transform of a coset Â ∈ Â (see (4.6)).
Since the homeomorphism ξ �→ g(ξ) given by (2.14) sends the fibers

Mt(SO(T)) onto the fibers Mg(t)(SO(T)) for all t ∈ T, it follows from the proof of
[5, Theorem 6.4] that g(ξ) = ξ for every ξ ∈ Mt(SO(T)) and every t ∈ Tg, where
Tg is the set (1.5) of all fixed points of g on T. This in view of (4.7) gives the
following.

Lemma 4.2. For each g ∈ G0, Ng :=
⋃

t∈Tg

(
Mt(SO(T)) × {0, 1} × {±∞}

)
is the

set of all fixed points of β̂g on N. For all g ∈ G0γ the homeomorphisms β̂g do not
have fixed points on N.

Since G acts topologically freely on T, we easily deduce from Lemma 4.2 and
the Gelfand topology (4.5) on N that the group G acts topologically freely on N
as well. Moreover, since the set

N0 :=
⋃

t∈T\{1}

(
Mt(SO(T)) × {0, 1} × {±∞}

)
is dense in N, we see that for every nonempty open set W ⊂ N and every finite

set G0 ⊂ G there exists a point (ξ0, μ0, x0) ∈ W ∩ N0 such that β̂g(ξ0, μ0, x0) �=
(ξ0, μ0, x0) for all g ∈ G0 \{e}. Due to this fact and the amenability of the solvable
group G, we infer that all conditions of the local-trajectory method (see Subsec-

tion 2.4) for the C∗-algebra B̂ having the form (1.9) are fulfilled.
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For t0 ∈ T \ {1} the G-orbit G(t0) := {g(t0) : g ∈ G} of t0 on T coincides
with T \ {1}. From (2.14) and (4.7) it follows that the set

Ωt0 := Mt0(SO(T)) × {0, 1} × {+∞} (4.8)

contains exactly one point in each G-orbit of every point in N0. Consider the
Hilbert space l2(G) consisting of all complex-valued functions defined on G and
having at most countable sets of non-zero values, and with every point (ξ, μ, x) ∈
Ωt0 we associate the representation

Πξ,μ,x : B̂→ B(l2(G)), B̂ := B + H �→ B̂ξ,μ,x (4.9)

given on the coset B̂ =
∑

g∈F ÂgÛg ∈ B̂0, where F is a finite subset of G, Âg ∈ Â0

and Ûg = Ug + H, by(
B̂ξ,μ,xf

)
(h) =

∑
g∈F

([
α̂h(Âg)

]
(ξ, μ, x)

)
f(hg) (4.10)

for all f ∈ l2(G) and all h ∈ G. Then we immediately obtain the following invert-
ibility criterion from Theorem 2.7.

Theorem 4.3. A coset B̂ ∈ B̂ is invertible in the quotient C∗-algebra B̂ = B/H if

and only if the operators B̂ξ,μ,x are invertible on the space l2(G) for all (ξ, μ, x) ∈
Ωt0 and

sup
(ξ,μ,x)∈Ωt0

∥∥∥(B̂ξ,μ,x

)−1
∥∥∥
B(l2(G))

<∞.

Applying Theorem 4.3 to the operator B̂B̂∗ ∈ B̂ and using the relation∥∥B̂∥∥ =
∥∥B̂B̂∗∥∥1/2 =

[
r
(
B̂B̂∗)]1/2, where r

(
B̂B̂∗) is the spectral radius of the

operator B̂B̂∗, we conclude that∥∥B̂∥∥ =
[
r
(
B̂B̂∗)]1/2 = sup

(ξ,μ,x)∈Ωt0

[
r
(
B̂ξ,μ,xB̂

∗
ξ,μ,x

)]1/2
,

= sup
(ξ,μ,x)∈Ωt0

∥∥B̂ξ,μ,x

∥∥
B(l2(G))

,

whence we obtain the following.

Corollary 4.4. The representation⊕
(ξ,μ,x)∈Ωt0

Πξ,μ,x : B̂→ B
( ⊕

(ξ,μ,x)∈Ωt0

l2(G)

)
, (4.11)

where Πξ,μ,x and Ωt0 are given by (4.9)–(4.10) and (4.8), respectively, is an iso-
metric C∗-algebra homomorphism.

The Hilbert space H3 := l2(Mt0(SO(T))×{0, 1}, l2(G)) introduced in (3.4) is
isometrically isomorphic to

⊕
(ξ,μ,x)∈Ωt0

l2(G). Identifying these two Hilbert spaces,
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we easily conclude that the algebraic ∗-homomorphisms

Ψ3 : B0 → B(H3), B �→ Ψ3(B) = Sym3(B)I,

defined initially on the dense subalgebraB0 ofB by (3.9), coincides with represen-
tation (4.11). Consequently, Ψ3 admits a continuous extension to the C∗-algebra
B whose kernel is the ideal H. Thus, we get the following.

Theorem 4.5. The algebraic ∗-homomorphisms Ψ3 : B0 → B(H3) defined on the
generators of the C∗-algebra B by formulas (3.6) and (3.9), extends by continuity
to a representations Ψ3 : B→ B(H3) such that

‖Ψ3(B)‖ = ‖B̂‖ ≤ |B| for all B ∈ B and hence Ker Ψ3 = H ⊃ K.

For each operator B ∈ B, Corollary 4.4 gives the following invertibility cri-

terion for the coset B̂ in terms of Ψ3.

Corollary 4.6. Given an operator B ∈ B, the coset B̂ := B+H is invertible in the

quotient C∗-algebra B̂ := B/H if and only if the operator Ψ3(B) defined by (3.9) is
invertible on the Hilbert space H3, that is, if for every (ξ, μ) ∈Mt0(SO(T))×{0, 1}
the operator [Sym3(B)](ξ, μ)I is invertible on the Hilbert space l2(G) and

sup
(ξ,μ)∈Mt0 (SO(T))×{0,1}

∥∥([Sym3(B)](ξ, μ)I
)−1∥∥

B(l2(G))
<∞.

Let, for example, the coset B̂ ∈ B̂ be given by

B̂ =
∑
g∈F

[
(a+g Ug + c+g UgUγ)P

+
T + (a−g Ug + c−g UgUγ)P

−
T

]
+ H,

where a±g , c±g ∈ PSO(T) and F is a finite subset of the subgroup G0 of G. Then
Ψ3(B) = Sym3(B)I, where the matrix function

[Sym3(B)](ξ, μ) =
(
Bh,s(ξ, μ)

)
h,s∈G

(
(ξ, μ) ∈Mt0(SO(T)) × {0, 1}

)
,

whose values define the operator B̂ξ,μ,+∞ ∈ B(l2(G)), has the entries

Bh,s(ξ, μ) =
∑
g∈F

([
(a+g ◦ h)(ξ, μ)P+

h (+∞) + (a−g ◦ h)(ξ, μ)P−
h (+∞)

]
δhg,s

+
[
(c+g ◦ h)(ξ, μ)P−

h (+∞) + (c−g ◦ h)(ξ, μ)P+
h (+∞)

]
δhgγ,s

)
,

and P±
h (+∞) = [1± θh]/2. Consequently,

Bh,s(ξ, 1) =

⎧⎨⎩
∑

g∈F

(
a+g (h(ξ), 1)δhg,s + c−g (h(ξ), 1)δhgγ,s

)
if h ∈ G0,∑

g∈F

(
a−g (h(ξ), 0)δhg,s + c+g (h(ξ), 0)δhgγ,s

)
if h ∈ G0γ,

Bh,s(ξ, 0) =

⎧⎨⎩
∑

g∈F

(
a+g (h(ξ), 0)δhg,s + c−g (h(ξ), 0)δhgγ,s

)
if h ∈ G0,∑

g∈F

(
a−g (h(ξ), 1)δhg,s + c+g (h(ξ), 1)δhgγ,s

)
if h ∈ G0γ.
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5. The homomorphisms Ψ1 and Ψ2

Fix t0 ∈ T \ {1}. Obviously, the set of G-orbits of points t ∈ T consists of only two
G-orbits: the one-point orbit G(1) = {1} and the non-countable orbit ω := G(t0).

Consider the dense subalgebra B0 of B composed by operators of the form
(4.1), where Ti,k are the multiplication operators aI with a ∈ PSO0(T) or the
Cauchy singular integral operator ST, or the unitary shift operators Ug with g ∈ G.
Due to relations (2.12)–(2.13) and the equality g = g̃γ with g̃ ∈ G0 for every
g ∈ G \G0, the operators N ∈ B0 can be written in the form

N =
∑
g∈F1

A(1)
g Ug +

∑
g∈F2

A(2)
g UgUγ , (5.1)

where F1, F2 are finite subsets of G0 and the operators A
(1)
g , A

(2)
g belong to the

dense subalgebra A0 of A generated by the multiplication operators aI with a ∈
PSO0(T) and by the Cauchy singular integral operator ST.

For the algebra B0 we introduce the two algebraic ∗-homomorphisms

Ψ1 : B0 → B(H1), Ψ1(B) = Sym1(B)I,

Ψ2 : B0 → B(H2), Ψ2(B) = Sym2(B)I,
(5.2)

where the Hilbert spaces H1 and H2 are defined in (3.4) and the finite and infinite
matrix-valued functions

(ξ, x) �→ [Sym1(B)](ξ, x), (ξ, x) �→ [Sym2(B)](ξ, x)

are defined on the generators of the C∗-algebra B by (3.7) and (3.8), respectively.
Given any set Γ ⊂ T, we define the sets

MΓ(SO(T)) :=
⋃
t∈Γ

Mt(SO(T)), M◦
Γ := MΓ(SO(T)) × R. (5.3)

Observe that from (5.3) and (2.15) it follows that M◦
{t} = M◦

t for every t ∈ T. For

any finite set Γ ⊂ T we introduce the operator

VΓ :=
∑
t∈Γ

Vt ∈ H, (5.4)

where the operators Vt for t ∈ T are given by (2.6) and H is the closed two-sided
ideal being the closure of the set H0 defined in (4.2).

For any set Y ⊂ T \ {1}, let
ΠY := diag {E2χY (t)}t∈T\{1}, (5.5)

where E2 := diag{1, 1} and χY is the characteristic function of the set Y .

Lemma 5.1. If N ∈ B0, then

|NV1| = ‖Ψ1(N)vI‖B(H1), (5.6)

where the function v is given by (2.5).
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Proof. Fix N ∈ B0 of the form (5.1). Let ϕ be the isometric ∗-isomorphism of the
quotient C∗-algebra Bπ = B/K on a Hilbert space Hϕ considered in (2.10). Then

|NV1| = ‖ϕ([NV1]
π)‖B(Hϕ). (5.7)

We deduce from (5.1) and Lemma 2.3 that the operator

NV1 =
∑
g∈F1

A(1)
g UgV1 +

∑
g∈F2

A(2)
g UgUγV1

belongs to the C∗-algebra A, and

[Sym (NV1)](ξ, x) =∑
g∈F1

[
SymA(1)

g

]
(ξ, x)eixkgv(x) +

∑
g∈F2

[
SymA(2)

g

]
(ξ, x)

(
0 1
1 0

)
eixkgv(x) (5.8)

if (ξ, x) ∈M1(SO(T)) × R, where kg = ln g′(1), and

[Sym (NV1)](ξ, x) = 02×2 if (ξ, x) ∈M \ (M1(SO(T)) × R). (5.9)

Thus, it follows from (5.8) and (3.7) that

[Sym (NV1)](ξ, x) = [Ψ1(N)](ξ, x)v(x), (ξ, x) ∈M1(SO(T)) × R.

Applying now the spectral projection given by (2.11), we infer from Lemma 2.5
that

‖Pϕ(M
◦
1)ϕ([NV1]

π)‖B(Hϕ) = ‖(Sym (NV1))|M◦
1
I‖B(H1) = ‖Ψ1(N)vI‖B(H1).

(5.10)

Taking the open set MT\{1}(SO(T))× Ṙ and the closed set M1(SO(T))× {∞} in
Ṁ, we infer from (5.9) by analogy with [5, Subsection 8.1] that

Pϕ(MT\{1}(SO(T)) × Ṙ)ϕ([NV1]
π) = 0, (5.11)

and, by [5, Lemma 10.5],

Pϕ(M1(SO(T)) × {∞})ϕ([NV1]
π) = 0. (5.12)

It follows from the partition

Ṁ =
(
MT\{1}(SO(T)) × Ṙ

)
∪ M◦

1 ∪
(
M1(SO(T)) × {∞}

)
that

I = Pϕ(Ṁ) = Pϕ(MT\{1}(SO(T)) × Ṙ) + Pϕ(M
◦
1) + Pϕ(M1(SO(T)) × {∞}),

and hence we infer from (5.11)–(5.12) that

‖ϕ([NV1]
π)‖B(Hϕ) = ‖Pϕ(Ṁ)ϕ([NV1]

π)‖B(Hϕ) = ‖Pϕ(M
◦
1)ϕ([NV1]

π)‖B(Hϕ).
(5.13)

Combining (5.7), (5.13) and (5.10), we obtain (5.6). �

Lemma 5.2. If N ∈ B0 and the operator VΓ is given by (5.4), then for every finite
set Γ ⊂ T \ {1},

|NVΓ| = ‖Ψ2(N)ΠΓvI‖B(H2). (5.14)
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Proof. Fix a finite set Γ ⊂ T \ {1} and take an operator N ∈ B0 written in the

form (5.1), where A
(1)
g , A

(2)
g ∈ A0 and F1, F2 are finite subsets of G0. Consider the

finite subset Γ̃ of T \ {1} defined by

Γ̃ := {g−1(t) : t ∈ Γ, g ∈ F1} ∪ {g−1(t) : t ∈ Γ, g ∈ F2}.

Given the isometric ∗-isomorphism ϕ of the C∗-algebra Bπ = B/K on a
Hilbert space Hϕ considered in (2.10), we conclude that

|NVΓ| = ‖ϕ([NVΓ]
π)‖B(Hϕ). (5.15)

Applying (5.1) and taking into account the relations

UgVt � Vg−1(t)Ug, UγVt = VtUγ , A(i)
g Vt � VtA

(i)
g , t ∈ T, g ∈ G0, i = 1, 2,

we can represent the operator NVΓ in the form

NVΓ =
∑
g∈F1

∑
t∈Γ

A(1)
g UgVt +

∑
g∈F2

∑
t∈Γ

A(2)
g UgUγVt

=
∑
g∈F1

∑
t∈Γ

Vg−1(t)A
(1)
g Ug +

∑
g∈F2

∑
t∈Γ

Vg−1(t)A
(2)
g UgUγ +K, (5.16)

where K ∈ K. Taking the symbol

[SymVΓ](ξ, x) =

{
diag{v(x), v(x)} if (ξ, x) ∈MΓ(SO(T)) × R,

0 if (ξ, x) ∈M \ (MΓ(SO(T)) × R),

of the operator VΓ ∈ A (see Lemma 2.3), we infer from the second equality in
(5.16), by analogy with (5.11) and (5.12), that

Pϕ(MT\Γ̃(SO(T)) × Ṙ)ϕ([NVΓ]
π) = 0

for the open set M
T\Γ̃(SO(T)) × Ṙ ⊂ Ṁ, and

Pϕ(MΓ̃(SO(T)) × {∞})ϕ([NVΓ]
π) = 0

for the closed set MΓ̃(SO(T)) × {∞} ⊂ Ṁ. Thus, since

Ṁ = M◦
Γ̃
∪
(
M

T\Γ̃(SO(T)) × Ṙ
)
∪
(
MΓ̃(SO(T)) × {∞}

)
and

Pϕ(M
◦
Γ̃
) + Pϕ(MT\Γ̃(SO(T)) × Ṙ) + Pϕ(MΓ̃(SO(T)) × {∞}) = I,

we conclude, using (2.16), that

‖ϕ([NVΓ]
π)‖B(Hϕ) = ‖Pϕ(M

◦
Γ̃
)ϕ([NVΓ]

π)‖B(Hϕ)

= ‖Pϕ(M
◦
Γ̃
)ϕ([NVΓ]

π)Pϕ(M
◦
Γ)‖B(Hϕ). (5.17)
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Let GN be the subgroup of G generated by the finite set F1 ∪ F2γ, with
F2γ := {gγ : g ∈ F2}, and let ΩN,Γ be the finite set of GN -orbits ω of all points
t ∈ Γ. Then Γω := Γ ∩ ω is a finite subset of ω ∈ ΩN,Γ. Since

VΓ =
∑

ω∈ΩN,Γ

VΓω , VΓω :=
∑
t∈Γω

Vt, ΠΓ =
∑

ω∈ΩN,Γ

ΠΓω ,

and therefore

|NVΓ| = max
ω∈ΩN,Γ

|NVΓω |, ‖Ψ2(N)ΠΓvI‖B(H2) = max
ω∈ΩΓ

‖Ψ2(N)ΠΓωvI‖B(H2),

we only need to prove (5.14) for VΓ replaced by any VΓω . In what follows we will
assume without loss of generality that Γ ⊂ ω and ω = GN (t0). Since the group
GN is at most countable, the same happens for the GN -orbit ω.

Consider the Hilbert space Ht0 :=
⊕

t∈ω Pϕ(M
◦
t0)Hϕ, which is isometrically

isomorphic to l2(M◦
t0 , l

2(ω,C2)), and the isomorphism

ηω : Pϕ(M
◦
ω)Hϕ →

⊕
t∈ω

Pϕ(M
◦
t0)Hϕ, Pϕ(M

◦
ω)f �→

(
Pϕ(M

◦
t0)ϕ(U

π
gt)f

)
t∈ω

, (5.18)

where f ∈ Hϕ and gt for every t ∈ ω is a fixed shift in Yt0,t, that is, gt possesses

the property gt(t0) = t (see (3.1)). Clearly, for Γ̃ ⊂ ω and every f ∈ Hϕ we get

ηω(Pϕ(M
◦
Γ̃
)f) = ΠΓ̃

ω

(
Pϕ(M

◦
t0)ϕ(U

π
gt)f

)
t∈ω

, (5.19)

where

ΠΓ̃
ω = diag{χΓ̃(t)}t∈ωI. (5.20)

Taking now the isometric C∗-algebra homomorphism

Υω : B(Pϕ(M
◦
ω)Hϕ)→ B

(⊕
t∈ω

Pϕ(M
◦
t0)Hϕ

)
, T �→ ηωTη

−1
ω , (5.21)

where ηω is given by (5.18), and applying the relations

A
(i)
g,t := UgtA

(i)
g U−1

gt ∈ A, UgtUgU
−1
gτ = Ug̃t,τ (g ∈ G),

UgτVsU
−1
gτ � Vg−1

τ (s) (s ∈ Γ)

for t, τ ∈ ω, where according to (3.2) we have g̃t,τ = gtgg
−1
τ ∈ Yt0,t0 if g(t) = τ ,

we infer from (5.16), (5.19) and (5.20) that

Υω

(
Pϕ(M

◦
Γ̃
)ϕ([NVΓ]

π)Pϕ(M
◦
Γ)
)
= Υω

(
Pϕ(M

◦
Γ̃
)

( ∑
g∈F1

∑
s∈Γ

ϕ
(
[A(1)

g UgVs]
π
)

+
∑
g∈F2

∑
s∈Γ

ϕ
(
[A(2)

g UgγVs]
π
))

Pϕ(M
◦
Γ)

)
,

(5.22)
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where

Υω

(
Pϕ(M

◦
Γ̃
)
∑
g∈F1

∑
s∈Γ

ϕ
(
[A(1)

g UgVs]
π
)
Pϕ(M

◦
Γ)

)

= ΠΓ̃
ω

(
Pϕ(M

◦
t0)

∑
g∈F1

∑
s∈Γ

ϕ
(
[UgtA

(1)
g U−1

gt ]π[Ug̃t,τ ]
π[UgτVsU

−1
gτ ]π

)
Pϕ(M

◦
t0)

)
t,τ∈ω

ΠΓ
ω

= ΠΓ̃
ω

( ∑
g∈F1

δg(t, τ)Pϕ(M
◦
t0)ϕ

(
[A

(1)
g,tUg̃t,τVt0 ]

π
))

t,τ∈ω

ΠΓ
ω (5.23)

and analogously

Υω

(
Pϕ(M

◦
Γ̃
)
∑
g∈F2

∑
s∈Γ

ϕ
(
[A(2)

g UgγVs]
π
)
Pϕ(M

◦
Γ)

)

= ΠΓ̃
ω

( ∑
g∈F2

δgγ(t, τ)Pϕ(M
◦
t0)ϕ

(
[A

(2)
g,tU(g̃γ)t,τVt0 ]

π
))

t,τ∈ω

ΠΓ
ω

= ΠΓ̃
ω

( ∑
g∈F2

δg(t, τ )Pϕ(M
◦
t0)ϕ

(
[A

(2)
g,tU(g̃γ)t,τVt0 ]

π
))

t,τ∈ω

ΠΓ
ω. (5.24)

From (5.21) and (5.22)–(5.24) it follows that∥∥Pϕ(M
◦
Γ̃
)ϕ([NVΓ]

π)Pϕ(M
◦
Γ)
∥∥
B(Hϕ)

=
∥∥Υω

(
Pϕ(M

◦
Γ̃
)ϕ([NVΓ]

π)Pϕ(M
◦
Γ)
)∥∥

B(Ht0 )

=

∥∥∥∥ΠΓ̃
ω

( ∑
g∈F1

P
(1)
g,t,τ +

∑
g∈F2

P
(2)
gγ,t,τ

)
t,τ∈ω

ΠΓ
ω

∥∥∥∥
B(Ht0 )

, (5.25)

where, for each t, τ ∈ ω,

P
(1)
g,t,τ := δg(t, τ)Pϕ(M

◦
t0)ϕ

(
[A

(1)
g,tUg̃t,τVt0 ]

π
)

if g ∈ F1,

P
(2)
gγ,t,τ := δg(t, τ )Pϕ(M

◦
t0)ϕ

(
[A

(2)
g,tU(g̃γ)t,τVt0 ]

π
)

if g ∈ F2.

Since the cosets [A
(1)
g,tUg̃t,τVt0 ]

π and [A
(2)
g,tU(g̃γ)t,τVt0 ]

π belong to the quotient
C∗-algebra Aπ, we deduce from Lemma 2.5 that for t, τ ∈ ω,∥∥∥∥ ∑

g∈F1

P
(1)
g,t,τ +

∑
g∈F2

P
(2)
g,t,τ

∥∥∥∥
B(Pϕ(M◦

t0
)Hϕ)

=

∥∥∥∥∑
g∈F1

δg(t, τ)
[
SymN

(1)
g,t,τ

]∣∣
M◦

t0

I +
∑
g∈F2

δg(t, τ )
[
SymN

(2)
gγ,t,τ

]∣∣
M◦

t0

I

∥∥∥∥
B(l2(M◦

t0
,C2))

where

N
(1)
g,t,τ := A

(1)
g,tUg̃t,τVt0 if g ∈ F1,

N
(2)
gγ,t,τ := A

(2)
g,tU(g̃γ)t,τVt0 if g ∈ F2.
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Hence, taking into account the finiteness of the sets Γ, Γ̃ ⊂ ω in (5.25), we
infer from (3.8), (5.2), (5.5), (5.25) and Lemma 2.3 that∥∥∥∥ΠΓ̃

ω

( ∑
g∈F1

P
(1)
g,t,τ +

∑
g∈F2

P
(2)
gγ,t,τ

)
t,τ∈ω

ΠΓ
ω

∥∥∥∥
B(Ht0)

=

∥∥∥∥ΠΓ̃
ω

( ∑
g∈F1

δg(t, τ)
[
SymN

(1)
g,t,τ

]∣∣
M◦

t0

I

+
∑
g∈F2

δg(t, τ)
[
SymN

(2)
gγ,t,τ

]∣∣
M◦

t0

I

)
t,τ∈ω

ΠΓ
ω

∥∥∥∥
B(l2(M◦

t0
,l2(ω,C2)))

=

∥∥∥∥ΠΓ̃

( ∑
g∈F1

δg(t, τ)
[
Sym

(
A

(1)
g,tUg̃t,τVt0

)]∣∣
M◦

t0

I

+
∑
g∈F2

δgγ(t, τ)
[
Sym

(
A

(2)
g,tU(g̃γ)t,τVt0

)]∣∣
M◦

t0

I

)
t,τ∈T\{1}

ΠΓI

∥∥∥∥∥
B(H2)

= ‖Ψ2(N)ΠΓvI‖B(H2). (5.26)

Finally, combining (5.15), (5.17), (5.25) and (5.26), we obtain (5.14). �

Lemmas 5.1 and 5.2 are the key to prove the continuity of the algebraic
homomorphisms Ψ1 and Ψ2. Hence, following the proof of [8, Theorem 7.3] we get
the following results.

Theorem 5.3. If N ∈ B0, then

‖Ψ1(N)‖B(H1) ≤ |N |, ‖Ψ2(N)‖B(H2) ≤ |N |. (5.27)

Theorem 5.4. The algebraic homomorphisms Ψ1 and Ψ2 given by (3.7) and (3.8)
extend, respectively, to representations

Ψ1 : B→ B(H1), Ψ2 : B→ B(H2)

such that (5.27) holds for every N ∈ B and Ker Ψλ ⊃ K for λ = 1, 2.

For the representations Ψ1 and Ψ2 we also have the following result.

Theorem 5.5. For every λ ∈ Λ, the restriction of the quotient homomorphism

Ψλ : B/K → Lλ := B(Hλ), B +K �→ Ψλ(B)

onto the ideal Hλ/K of B/K is an isometric ∗-isomorphism of Hλ/K onto the
closed two-sided ideal Ψλ(Hλ) of the C∗-algebra Ψλ(B) ⊂ Lλ.

Proof. Since the set {NV1 : N ∈ B0} is dense in the ideal H1 and Ψ1(V1) = vI,
from Lemma 5.1 it follows that the restriction Ψ1|H1 is a ∗-homomorphism of H1

into L1 = B(H1) such that ‖Ψ1(H1)‖ = |H1| for every H1 ∈ H1. Consequently,
Ker (Ψ1|H1) = K and Ψ1 is a C∗-algebra isomorphism of H1/K onto Ψ1(H1).

Analogously, because the set{
NVΓ : N ∈ B0, Γ runs through finite subsets of T \ {1}

}
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is dense in the ideal H2 and since Ψ2(VΓ) = ΠΓvI, we infer from Lemma 5.2
that the restriction Ψ2|H2 is a ∗-homomorphism of H2 into L2 = B(H2) such that
‖Ψ2(H2)‖ = |H2| for every H2 ∈ H2. This implies that Ker (Ψ2|H2) = K, and
therefore Ψ2 is a C∗-algebra isomorphism of H2/K onto Ψ2(H2). �

6. Proofs of Theorems 3.1 and 3.2

In Sections 4 and 5 it was proved that the C∗-algebra homomorphisms Ψ1, Ψ2 and
Ψ3, given respectively by (3.7), (3.8) and (3.9), are well defined on B. Using the
version of lifting theorem presented in Subsection 2.4, we give in this section the
proofs of the main results of the paper.

6.1. Proof of Theorem 3.1

Theorems 4.5 and 5.4 imply that the map ΨB defined on the generators of the
C∗-algebra B by formulas (3.5)–(3.9) extends to a C∗-algebra homomorphism of
B into the C∗-algebra B(HB) such that

‖ΨB(B)‖ = max
i=1,2,3

‖Ψi(B)‖ ≤ |B| for all B ∈ B. (6.1)

By (6.1), Ker ΨB ⊃ K. On the other hand, given an operator B ∈ B such that
ΨB(B) = 0 and hence Ψ3(B) = 0, we infer from Theorem 4.5 that B = HB ∈ H.
Thus,

Ψλ(HB) = Ψλ(B) = 0 for λ = 1, 2. (6.2)

By Lemma 4.1, we have

HB = H1 +H2, H1 ∈ H1, H2 ∈ H2. (6.3)

Applying (5.2), (3.7), (3.8) and Lemma 2.3, we infer that

Ψ1(Vt) = 0 for all t ∈ T \ {1}, Ψ2(V1) = 0.

This in view of (4.3) implies that

Ψ1(H2) = {0}, Ψ2(H1) = {0}. (6.4)

Hence, from (6.3), (6.4) and (6.2) it follows that

Ψ1(H1) = Ψ1(HB) = 0, Ψ2(H2) = Ψ2(HB) = 0.

Thus, we conclude from Theorem 5.5 that H1, H2 ∈ K. Consequently, B = HB =
H1+H2 ∈ K, and therefore KerΨB = K, which completes the proof of Theorem 3.1.
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6.2. Proof of Theorem 3.2

Sufficiency. Let Λ = {1, 2}. It follows from Theorems 5.4, 5.5 and equalities (6.4)
that all the conditions of Theorem 2.6 are fulfilled for the C∗-algebra B defined
by (1.4), for the ideal H = H1 + H2 generated by all commutators [aI, ST] (a ∈
PSO0(T)), and for the representations Ψλ : B → Lλ = B(Hλ) given by (5.2)
for λ ∈ Λ, where the Hilbert spaces H1 and H2 are defined in (3.4). Hence, by
Theorem 2.6, an operator B ∈ B is Fredholm on the space L2(T) if the coset

B̂ := B+H is invertible in the quotient C∗-algebra B̂ = B/H and for every λ ∈ Λ
the operator Ψλ(B) is invertible in the C∗-algebra Lλ.

Fix an operator B ∈ B. If conditions (iii) of Theorem 3.2 are fulfilled, then

by Theorem 4.5 the coset B̂ := B + H is invertible in the C∗-algebra B̂. On the
other hand, the fulfillment of conditions (i) and (ii) of Theorem 3.2 implies the
invertibility of operators Ψ1(B) ∈ B(H1) and Ψ2(B) ∈ B(H2), respectively. Hence,
we conclude from Theorem 2.6 that the operator B ∈ B is Fredholm on the space
L2(T).

Necessity. Let an operator B ∈ B be Fredholm on the space L2(T) or, equivalently,
the coset B +K be invertible in the quotient C∗-algebra B/K. Since KerΨB = K
by Theorem 3.1, the quotient ∗-homomorphism

B/K → B(HB), N +K �→ ΨB(N),

is a C∗-algebra isomorphism. Consequently, ΨB(B) is invertible on the space HB

and then, according to (3.5), the operators Ψλ(B) are invertible on the spaces Hλ,
with λ = 1, 2, 3, respectively. The invertibility of the operators Ψλ(B), in view of
(3.6)–(3.9), immediately implies parts (i)–(iii) of Theorem 3.2, which completes
the proof.
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Instituto Superior Técnico
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e-mail: karlovich@uaem.mx

mailto:abastos@math.ist.utl.pt
mailto:caf@fct.unl.pt
mailto:karlovich@uaem.mx


Operator Theory:
Advances and Applications, Vol. 242, 81–92
c© 2014 Springer Basel

On Cauchy Type Integrals Related
to the Cimmino System of
Partial Differential Equations

R. Abreu Blaya, J. Bory Reyes and B. Schneider

Abstract. In this paper, we established a one-to-one correspondence between
quaternionic hyperholomorphic functions in R4 ∼= C2 and solutions (pairs of
complex-valued functions) for Cimmino system of partial differential equa-
tions written in complex form. This leads to a pair of Cauchy type integrals
associated with Cimmino system. The topics of the paper concern theorems
which cover basic properties of those Cauchy type integrals: the Sokhotski–
Plemelj and Plemelj–Privalov type theorems for it as well as the necessary
and sufficient condition for the possibility to extend a given pair of complex-
valued Hölder-continuous functions from such a surface up to a solution of
Cimmino system in a Jordan domain. Formulae for the square of the corre-
sponding singular Cauchy type integrals are given. The proofs of all these
facts are based on intimate relations between the theory of Cimmino system
and some version of quaternionic analysis.

Mathematics Subject Classification (2010). Primary 30G35.

Keywords. Cimmino system, quaternionic analysis, hyperholomorphic func-
tions.

1. Introduction

As is well known, the role of the complex Cauchy type integral in analytic function
theory of one complex variable is very important. In the present work, motivated by
[11], we make an attempt to start the construction of a function theory associated
with the solutions of Cimmino system written in complex form, in the framework
of exploiting hyperholomorphic function theory.
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Let Ω be a domain in R4 and fi, i = 0, 1, 2, 3, be R-valued C1-functions in Ω.
The homogeneous system⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0
∂x0

+
∂f2
∂x2
− ∂f1

∂x1
− ∂f3

∂x3
= 0,

∂f0
∂x1

+
∂f1
∂x0
− ∂f2

∂x3
− ∂f3

∂x2
= 0,

∂f0
∂x2

+
∂f3
∂x1
− ∂f1

∂x3
− ∂f2

∂x0
= 0,

∂f0
∂x3

+
∂f1
∂x2

+
∂f2
∂x1

+
∂f3
∂x0

= 0

(1.1)

is called the Cimmino system, which was originally due to G. Cimmino [2] and
greatly strengthened by S. Dragomir and E. Lanconelli [4]. This system offers a
natural and elegant generalization to four-dimensional case of that of Cauchy–
Riemann. Thus, the theory of solutions of the Cimmino system reduces, in some
degenerate cases, to that of complex holomorphic functions. It is known that solu-
tions of (1.1) satisfy the four-dimensional Laplace equation (cf. [11]). Hence, one
may consider the former to be a refinement of harmonic analysis.

For our purpose we shall use the notation

∂z̄1 :=
1

2

(
∂

∂x0
+ i

∂

∂x1

)
, ∂z̄2 :=

1

2

(
∂

∂x2
+ i

∂

∂x3

)
∂z1 :=

1

2

(
∂

∂x0
− i

∂

∂x1

)
, ∂z2 :=

1

2

(
∂

∂x2
− i

∂

∂x3

)
,

with z1 = x0+ix1, z2 = x2+ix3. Therefore (1.1) may be written now in a complex
form as: {

∂z̄1u+ ∂z2 v̄ = 0,

∂z̄2u− ∂z1 v̄ = 0,
(1.2)

where u = f0 + if1 and v = f2 + if3. Clearly, the set of solutions of system (1.2)
contains all holomorphic functions of two complex variables.

In the present paper, we follow the approach presented in [9], where the third
author studied an analogue of a Cauchy type integral for the theory of the Moisil–
Theodoresco system of partial differential equations in the case of a piecewise
Lyapunov surface of integration.

The paper is organized as follows: In Section 2, we formulate a series of
theorems that cover basic properties of a pair of Cauchy type integrals for the
theory of the Cimmino system of partial differential equations in the case of an
Ahlfors–David regular surface of integration. The proofs of all of them can be found
in Section 4 in the form of direct consequences of the corresponding facts valid
for a slight modification of the hyperholomorphic function theory developed in [1].
Section 3 provides a detailed exposition of the Cimmino system in the terminology
of hyperholomorphic function theory.
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2. Cimmino system and Cauchy–Cimmino integrals

2.1. To facilitate access to the preliminary knowledge we collect here some defi-
nitions to be used in the sequel. Let E be a bounded subset of R4 ∼= C2 ∼= C×C,
BC(E,Rm),m ∈ {2, 4} be the class of Rm-valued bounded continuous functions
on E. For ϕ ∈ BC(E,Rm) we define the modulus of continuity of ϕ as the non-
negative function wϕ(t), t > 0, by setting

wϕ(t) := sup
|x−y|≤t

{|ϕ(x)− ϕ(y)| : x, y ∈ E}.

Let ν be a real number with 0 < ν ≤ 1. If

sup
0<t≤diamE

{
wϕ(t)

tν

}
<∞,

then ϕ is Hölder continuous with exponent ν in E (Lipschitz continuous for ν = 1).
The collection of Hölder continuous function on E will be denoted by

C0,ν(E,Rm) := {ϕ ∈ BC(E,Rm) : sup
0<t≤diamE

{
wϕ(t)

tν

}
<∞}, 0 < ν ≤ 1,

and for ϕ ∈ C0,ν(E,Rm) let

||ϕ||C0,ν(E,Rm) := ||ϕ||∞ + sup
0<t≤diamE

{
wϕ(t)

tν

}
,

where ||ϕ||∞ is the sup norm.

We say (e.g., [3]) that a closed set E in R4 is an Ahlfors–David regular set
(in short AD-regular) if there exists a constant c > 0 such that for all x ∈ E and
0 < r < diamE there holds

c−1r3 ≤ H3(E ∩ B(x, r)) ≤ cr3,

where B(x, r) stands for the closed ball with center x and radius r and H3 is the
3-dimensional Hausdorff measure.

The AD-regularity condition implies a uniform positive and finite bound on
E for the upper and lower density. Moreover, we notice that such a condition
produces a very wide class of surfaces that contains the classes of surfaces classi-
cally considered in the literature: Liapunov surfaces, smooth surfaces and Lipschitz
ones.

Finally we would like to remark that AD-regular sets are not always rectifiable
in the sense of Federer [5] (see [8], Example 2 on p. 798), but if γ is a closed Jordan
curve in the complex plane which is AD-regular, then it is automatically rectifiable.

2.2. In what follows, Ω stands for a bounded domain in R4 with an AD-regular
boundary Γ, and introduce the temporary notation Ω+ = Ω and Ω− = R4 \ Ω+,
where both open sets are assumed to be connected.
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Let u, v : Ω −→ C. We consider the following pair of integral operators

K1[u, v](z1, z2) =

∫
Γ

[(ζ̄1 − z̄1)(n0 + in1) + (ζ̄2 − z̄2)(n2 + in3)]u(ζ1, ζ2)

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3

−
∫
Γ

[(ζ̄2 − z̄2)(n0 + in1)− (ζ̄1 − z̄1)(n2 + in3)]v̄(ζ1, ζ2)

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3,

K2[u, v](z1, z2) =

∫
Γ

[(ζ̄1 − z̄1)(n0 + in1) + (ζ̄2 − z̄2)(n2 + in3)]v(ζ1, ζ2)

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3

+

∫
Γ

[(ζ̄2 − z̄2)(n0 + in1)− (ζ̄1 − z̄1)(n2 + in3)]ū(ζ1, ζ2)

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3,

where (n0, n1, n2, n3) stands for the outward unit normal vector to the surface Γ
due to Federer [5]. The pair (K1,K2) of integrals for (z1, z2) ∈ C2 play the role of
an analog of a Cauchy type integral in theory of the Cimmino system of partial
differential equations. We call it the Cauchy–Cimmino type integrals.

Similarly the singular Cauchy–Cimmino integral operators are defined for-
mally as the pair (S1,S2), of the following singular integrals taken in the sense of
Cauchy’s principal value

S1[u, v](z1, z2)

= 2

∫
Γ

[(ζ̄1 − z̄1)(n0 + in1) + (ζ̄2 − z̄2)(n2 + in3)][u(ζ1, ζ2)− u(z1, z2)]

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3

− 2

∫
Γ

[(ζ̄2 − z̄2)(n0 + in1)− (ζ̄1 − z̄1)(n2 + in3)][v̄(ζ1, ζ2)− v̄(z1, z2)]

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3

+ u(z1, z2),

S2[u, v](z1, z2)

= 2

∫
Γ

[(ζ̄1 − z̄1)(n0 + in1) + (ζ̄2 − z̄2)(n2 + in3)][v(ζ1, ζ2)− v(z1, z2)]

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3

+ 2

∫
Γ

[(ζ̄2 − z̄2)(n0 + in1)− (ζ̄1 − z̄1)(n2 + in3)][ū(ζ1, ζ2)− ū(z1, z2)]

2π2(|ζ1 − z1|2 + |ζ2 − z2|2)2
dH3

+ v(z1, z2).

We will now formulate the main results of the paper to be proved in the last
section.

Theorem 2.1 (Sokhotski–Plemelj formulas for the Cauchy–Cimmino type integrals
for Ahlfors–David regular surfaces). Let Ω be a bounded domain in C2 with AD-
regular boundary Γ. Let (u, v) ∈ C0,ν(Γ,R2) × C0,ν(Γ,R2). Then the following
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limits exist:

lim
Ω±
(z1,z2)→(ζ1,ζ2)∈Γ

(K1[u, v](z1, z2),K2[u, v](z1, z2))

=: (K±
1 [u, v](ζ1, ζ2),K±

2 [u, v](ζ1, ζ2)),

moreover the following identities hold:

(K±
1 [u, v](ζ1, ζ2),K±

2 [u, v](ζ1, ζ2))

=
1

2
[(S1[u, v](ζ1, ζ2),S2[u, v](ζ1, ζ2))± (u(ζ1, ζ2), v(ζ1, ζ2))],

for all (ζ1, ζ2) ∈ Γ.

Theorem 2.2 (Plemelj–Privalov type theorem for the Cimmino system). Let Ω be
a bounded domain in C2 with AD-regular boundary Γ. Then

(u, v) ∈ C0,ν(Γ,R2)×C0,ν(Γ,R2)⇒ (S1[u, v],S2[u, v]) ∈ C0,ν(Γ,R2)×C0,ν(Γ,R2),

for 0 < ν < 1.

Theorem 2.3 (Extension of a given pair of complex-valued Hölder continuous func-
tion on Γ up to a solution of the Cimmino system). Let Ω be a bounded domain
in C2 with AD-regular boundary Γ. Then we have:

1. In order to a pair (u, v) ∈ C0,ν(Γ,R2) × C0,ν(Γ,R2) be a boundary value of
a solution of Cimmino system (U, V ) into Ω+, it is necessary and sufficient
that

(u(ζ1, ζ2), v(ζ1, ζ2)) = (S1[u, v](ζ1, ζ2),S2[u, v](ζ1, ζ2)), (ζ1, ζ2) ∈ Γ.

2. In order to a pair (u, v) ∈ C0,ν(Γ,R2) × C0,ν(Γ,R2) be a boundary value of
a solution of Cimmino system (U, V ) into Ω−, and vanishes at infinity, it is
necessary and sufficient that

(u(ζ1, ζ2), v(ζ1, ζ2)) = (−S1[u, v](ζ1, ζ2),−S2[u, v](ζ1, ζ2)), (ζ1, ζ2) ∈ Γ.

Theorem 2.4 (On the square of the singular Cauchy–Cimmino operators). Let
Ω be a bounded domain in C2 with AD-regular boundary Γ, then for (u, v) ∈
C0,ν(Γ,R2)× C0,ν(Γ,R2), the following formulas hold

S21 [u, v]− S22 [u, v] = u,

S1[u, v]S2[u, v] + S2[u, v]S1[u, v] = −v.

3. Quaternionic function theory: general information

In this section, we provide some background on quaternionic analysis needed in
this paper. For more information, we refer the reader to [6], [7].

3.1. Recall that the algebra H of real quaternions is an extension of the field R by
the imaginary units i, j,k in Hamilton’s classical notation. Throughout this paper,
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we denote the generators by e1 := i, e2 := j, e3 := k and unit element of H by e0
for convenience. This means

H := {q = x0 + x1e1 + x2e2 + x3e3; (x0, x1, x2, x3) ∈ R4},
where ei (i = 1, 2, 3) are subject to the multiplication table in H

eiej + ejei = −2δij, e1e2 = e3,

and the usual component wise defined addition. Then H ∼= R4.
The quaternionic conjugation of q = x0 + x1e1 + x2e2 + x3e3 is given by

q̄ := x0 − x1e1 − x2e2 − x3e3.

We use the Euclidean norm |x| in H, defined by

|q| :=
√
qq̄ =

√
x2
0 + x2

1 + x2
2 + x2

3.

We embed the usual complex linear space C2 into the skew-field H by means of
the mapping that associates the pair

(z1, z2) = (x0 + e1x1, x2 + e1x3)

with the quaternion

q = z1 + z2e2 = x0 + e1x1 + e2x2 + e3x3 ∈ H.

The above embedding means that the set of elements of the form

q = z1 + z2j, z1, z2 ∈ C, j2 = −1,
is endowed both with an obvious component-wise addition and with the associative
multiplication. In particular, the commutation rule is then: aj = jā for every
a ∈ C, and the two quaternions q = z1 + z2j and ξ = ζ1 + ζ2j are multiplied
according the rule:

q ξ = (z1ζ1 − z2ζ̄2) + (z1ζ2 + z2ζ̄1)j.

The quaternion conjugation gives:

z1 + z2j := z̄1 − z2j.

Note that the classical conjugation in C2 is

(z1, z2) = (z̄1, z̄2).

In addition, |q|2 := |z1|2 + |z2|2. For the properties of the quaternions taken in the
form q = z1 + z2j we refer the reader to [7, Appendix 2, pp. 216–217]. Topology
in C2 is determined by the metric dist(ξ, q) = |ξ − q|.

3.2. Let the matrix

Bl(b) :=

⎛⎜⎜⎝
b0 −b1 −b2 −b3
b1 b0 −b3 b2
b2 b3 b0 −b1
b3 −b2 b1 b0

⎞⎟⎟⎠ ∈ R4×4 (3.1)
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be the left regular representation of real quaternion b. Then H can be identified,
as a skew-field, with Bl := {Bl(b) | b ∈ H}. Moreover, the left multiplication by
the real quaternion b corresponds to the multiplication by the matrix Bl(b), i.e.,

b · q ↔ Bl(b) ·

⎛⎜⎜⎝
x0

x1

x2

x3

⎞⎟⎟⎠ .

3.3. For continuously real-differentiable function f =
∑3

i=0 fiei : Ω → H, the
operator

ψD :=
∂

∂x0
+ ψ1 ∂

∂x1
+ ψ2 ∂

∂x2
+ ψ3 ∂

∂x3

associated to structural H-vector ψ, i.e., ψ = (ψ0 ≡ 1, ψ1, ψ2, ψ3), with the condi-
tion

ψαψβ + ψβψα = 2δαβ ,

(δαβ is the Kronecker symbol) is called the Cauchy–Riemann–Fueter operator, see
[12] for more details.

A function f : Ω→ H is called left-ψ-hyperholomorphic if

ψDf = 0. (3.2)

For the particular case of the standard structural H-vector

ψ = ψst := (1, e1, e2, e3),

equation (3.2) is equivalent to the following system for R-valued functions:

(CF )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0
∂x0
− ∂f1

∂x1
− ∂f2

∂x2
− ∂f3

∂x3
= 0,

∂f0
∂x1

+
∂f1
∂x0
− ∂f2

∂x3
+

∂f3
∂x2

= 0,

∂f0
∂x2

+
∂f1
∂x3

+
∂f2
∂x0
− ∂f3

∂x1
= 0,

∂f0
∂x3
− ∂f1

∂x2
+

∂f2
∂x1

+
∂f3
∂x0

= 0.

We call both systems (3.2), (CF ) the Cauchy–Fueter system. See [10] for a survey
of the theory of ψ-hyperholomorphic functions along more classical lines.

3.4. Let θ(q) = 1
4π2

1
|q|2 be a fundamental solution of the Laplace operator ΔC2 =

1
2ΔR4 . Then a fundamental solution Kψ of the operator ψD is given by the formula

Kψ(q) :=
ψD[θ](q) =

1

2π2|q|4
3∑

k=0

ψkxk =
1

2π2|q|4Bl(V
T
ψ̄ · q), q �= 0,

where ψ := {1, ψ1, ψ2, ψ3} and Vψ :=

(
1 0
0 a

)
, with a = (ψk

j )
3
j,k=1.
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Let σψ := dx[0] − ψ1dx[1] + ψ2dx[2] − ψ3dx[3], where dx[k] denotes, as usual
the differential form dx0 ∧ dx1 ∧ dx2 ∧ dx3 with factor dxk omitted.

The quaternionic Cauchy type integral is given by the formula,

ψCΓ[f ](q) =

∫
Γ

Kψ(ξ − q)σψ(ξ) f(ξ), q /∈ Γ.

Besides the quaternionic Cauchy type integral we also need its singular version

ψSΓ[f ](q) = 2

∫
Γ

Kψ(ξ − q)σψ(ξ) (f(ξ) − f(q)) + f(q), q ∈ Γ.

The integral above has to be taken in the sense of Cauchy’s principal value.

Note that if (n0(ξ), n1(ξ), n2(ξ), n3(ξ)) is the outward unit normal to the
surface Γ at ξ due to Federer [5], one has the possibility to establish (−1)knk(ξ)dH3

as an alternative definition of dx[k] for AD-regular surfaces.

According to the identity σψ(ξ) = nψ(ξ) dH3, where nψ = n0+ψ1n1+ψ2n2+
ψ3n3, we are in a position to specify the appearance of the unit normal vector to
the boundary in the definition of the quaternionic Cauchy type integrals. To this
end one has

ψCΓ[f ](q) =

∫
Γ

Kψ(ξ − q)nψ(ξ)f(ξ) dH3, q /∈ Γ.

In the same way, the singular Cauchy type integral, may be written as

ψSΓ[f ](q) = 2

∫
Γ

Kψ(ξ − q)nψ(ξ)(f(ξ) − f(q)) dH3 + f(q), q ∈ Γ.

For a deeper discussion of the basic properties of these quaternionic integrals for
the special structural H−vector ψ = (1, e1, e2,−e3) over rectifiable surfaces we
refer the reader to [1, Section 3].

Investigation of the Cauchy–Cimmino type integrals requires us to consider,

as a crucial fact, to replace ψ by ψ̂ := {1, e1,−e2, e3}. Following similar arguments
to those in [1, Theorem 3.43.7], we can recover the same results.

For the convenience of the reader we state the corresponding aforementioned
analogous results without proofs, thus making our exposition self-contained.

Theorem 3.1. Let Ω be a bounded domain in R4 with AD-regular boundary Γ. Let
f ∈ C0,ν(Γ,R4). Then the following limits exist:

lim
Ω±
q→ξ∈Γ

(ψ̂CΓ[f ](q)) =: ψ̂C±
Γ [f ](ξ),

moreover the following identities hold:

ψ̂C±
Γ [f ](ξ) =

1

2
[ψ̂SΓ[f ](ξ)± f(ξ)],

for all ξ ∈ Γ.
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Theorem 3.2. Let Ω be a bounded domain in R4 with AD-regular boundary Γ. Then

f ∈ C0,ν(Γ,R4)⇒ ψ̂SΓ[f ] ∈ C0,ν(Γ,R4),

for 0 < ν < 1.

Theorem 3.3. Let Ω be a bounded domain in R4 with AD-regular boundary Γ. Then
we have:

1. In order to a function f ∈ C0,ν(Γ,R4) be ψ̂-hyperholomorphic extendable into
Ω+, it is necessary and sufficient that

f(ξ) = ψ̂SΓ[f ](ξ), ξ ∈ Γ.

2. In order to a function f ∈ C0,ν(Γ,R4) be ψ̂-hyperholomorphic extendable into
Ω−, and vanishes at infinity, it is necessary and sufficient that

f(ξ) = −ψ̂SΓ[f ](ξ), ξ ∈ Γ.

Theorem 3.4. If Γ is a AD-regular surface, then for f ∈ C0,ν(Γ,R4), 0 < μ < 1
we have the following formula:

ψ̂S2
Γ[f ](ξ) = f(ξ), ξ ∈ Γ. (3.3)

4. Proofs of the Theorems from Section 2

In this section, we prove all the theorems from Section 2 using the relations between

the theory of the Cimmino system and that of ψ̂-hyperholomorphic functions.

4.1. As it was pointed out by W. Tutschke (see [11]), the Cimmino system can be
obtained by using the quaternionic analysis in the following way.

Note that the substitution x2 �→ −t transforms the Cauchy–Fueter system
(CF ) into the Cimmino system

ψ̂Df =

(
∂

∂x0
+ e1

∂

∂x1
− e2

∂

∂t
+ e3

∂

∂x3

)
f = 0. (4.1)

Equation (4.1) is equivalent to the following Cimmino system (compare with (1.1)):⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂f0
∂x0

+
∂f2
∂t
− ∂f1

∂x1
− ∂f3

∂x3
= 0,

∂f0
∂x1

+
∂f1
∂x0
− ∂f2

∂x3
− ∂f3

∂t
= 0,

∂f0
∂t

+
∂f3
∂x1
− ∂f1

∂x3
− ∂f2

∂x0
= 0,

∂f0
∂x3

+
∂f1
∂t

+
∂f2
∂x1

+
∂f3
∂x0

= 0.

(4.2)

The system (4.1) (or (4.2)) is deeply structural analogous to (CF ), but the class
of solutions of the first system, unlike the last, contains all holomorphic mappings
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of two complex variables. Nevertheless, (4.1) can be studied along lines parallel to
the analysis of (3.2).

Using matrix (3.1), we can rewrite the equality ψ̂Df = 0 as follows:

Bl

(
∂

∂x0
+ e1

∂

∂x1
− e2

∂

∂t
+ e3

∂

∂x3

) ⎛⎜⎜⎝
f0
f1
f2
f3

⎞⎟⎟⎠ = 0,

with

Bl(
∂

∂x0
+ e1

∂

∂x1
− e2

∂

∂t
+ e3

∂

∂x3
) =

⎛⎜⎜⎝
∂

∂x0
− ∂

∂x1

∂
∂x2

− ∂
∂x3

∂
∂x1

∂
∂x0

− ∂
∂x3

− ∂
∂x2

− ∂
∂x2

∂
∂x3

∂
∂x0

− ∂
∂x1

∂
∂x3

∂
∂x2

∂
∂x1

∂
∂x0

⎞⎟⎟⎠ .

Thus

ψ̂Df = 0⇐⇒

⎛⎜⎜⎝
∂

∂x0
− ∂

∂x1

∂
∂x2

− ∂
∂x3

∂
∂x1

∂
∂x0

− ∂
∂x3

− ∂
∂x2

− ∂
∂x2

∂
∂x3

∂
∂x0

− ∂
∂x1

∂
∂x3

∂
∂x2

∂
∂x1

∂
∂x0

⎞⎟⎟⎠
⎛⎜⎜⎝

f0
f1
f2
f3

⎞⎟⎟⎠ = 0.

4.2. Let q = z1 + z2j ∈ H and consider a complex form of the operator ψ̂D

associated to the structural vector ψ̂ = (1, e1,−e2, e3):

ψ̂D = 2

{
∂

∂z̄1
− j

∂

∂z̄2

}
.

Note that
ψ̂D ψ̂D = ψ̂D ψ̂D = ΔR4 ,

where
ψ̂D = 2

{
∂

∂z1
+ j

∂

∂z̄2

}
.

We check at once that, if f = u+ vj with u = f0 + if1 and v = f2 + if3

ψ̂Df = 0 ⇐⇒
{
∂z̄1u+ ∂z2 v̄ = 0

∂z̄2u− ∂z1 v̄ = 0.
(4.3)

From this it follows that the solution (u, v) of the Cimmino system (1.2) can be

thought as the ψ̂-hyperholomorphic function f .

The fundamental solution to the operator ψ̂D may be written in complex
form as

Kψ̂(z1 + z2j) =
ψ̂D[θ4](z1 + z2j) =

1

2π2

z̄1 + z̄2j

(|z1|2 + |z2|2)2

=
1

2π2

Bl(V
T

ψ̂
· (z1 + z2j))

(|z1|2 + |z2|2)2
, z1, z2 �= 0.

In this way nψ̂ may be decomposed into nψ̂ = (n0 + in1)− j(n2 + in3).
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Using the presentation of the quaternionic Cauchy kernel Kψ̂ and the normal

vector nψ̂ in the complex form, we have:

ψ̂CΓ[u+ vj] = K1[u, v] +K2[u, v]j, (4.4)

ψ̂SΓ[u+ vj] = S1[u, v] + S2[u, v]j. (4.5)

Having disposed of this preliminary preparation we are now in the position to
proof our main results.

4.3. Proof of Theorem 2.1

Proof. Let (u, v) ∈ C0,ν(Γ,R2) × C0,ν(Γ,R2), consider K1[u, v],K2[u, v]. Then,
applying Theorem 3.1 for f = u+ vj ∈ C0,ν(Γ,R4) we can assert that there exist
ψ̂C±

Γ [f ] and

ψ̂C±
Γ [f ](ξ) =

1

2

[
ψ̂SΓ[f ](ξ)± f(ξ)

]
,

for all ξ = ζ1 + ζ2j ∈ Γ. Hence, using (4.4) it follows that there exist also K±
1 [u, v]

and K±
2 [u, v]. Therefore the complex decomposition given by formulae (4.5) yields

that

K±
1 [u, v](ζ1, ζ2) =

1

2
[S1[u, v](ζ1, ζ2)± u(ζ1, ζ2)],

K±
2 [u, v](ζ1, ζ2) =

1

2
[S2[u, v](ζ1, ζ2)± v(ζ1, ζ2)],

for all (ζ1, ζ2) ∈ Γ. �
4.4. Proof of Theorem 2.2

Proof. If (u, v) ∈ C0,ν(Γ,R2) × C0,ν(Γ,R2), then f = u + vj ∈ C0,ν(Γ,R4). By

Theorem 3.2 we have ψ̂SΓ[f ] ∈ C0,ν(Γ,R4). Now recalling the relation (4.5) we
conclude that (S1[u, v],S2[u, v]) ∈ C0,ν(Γ,R2)× C0,ν(Γ,R2). �
4.5. Proof of Theorem 2.3

Proof. The proof is a direct consequence of Theorem 3.3. �
4.6. Proof of Theorem 2.4

Proof. The proof consists of taking into account Theorem 3.4 combined with a
straightforward calculation. �
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Abstract. In this paper we propose a classification to the linear-fractional
shifts and consider a class of paired singular integral operators with a shift
of that class. We show how the study of the this type of operators can be
reduced to the study of paired operators with, what we call, a canonical shift.
Some of the results obtained are used to construct explicit solutions for a class
of singular integral equations with a non-Carleman shift.
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1. Introduction

Let T denote the unit circle with the positive (anticlockwise) orientation, and
denote by T+ and T− the interior and the exterior of T, respectively. On the
Lebesgue spaces Lp := Lp(T), p ∈ (1,∞), we consider the singular operator with
Cauchy kernel S, defined almost everywhere on T by

Sϕ(t) = (πi)−1

∫
T

ϕ(τ)(τ − t)−1dτ, (1.1)

where the integral is understood in the sense of its principal value. The operator
S is a bounded linear involutive operator (S2 = I, where I is the identity operator
on Lp). Then it is possible to define in Lp a pair of complementary projection
operators in Lp by

P± =
1

2
(I ± S)

Research supported by Centro de Análise Funcional e Aplicações (CEAF), Instituto Superior
Técnico, under FCT project PEst-OE/MAT/UI4032/2011.
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and to decompose Lp = L+
p ⊕

◦
L−
p , L

+
p = imP+ and

◦
L−
p = imP−. We also set

L−
p =

◦
L−
p ⊕ C.

On the unit circle T we consider a linear-fractional shift α, i.e., the function
α : T→ T is either of the form

α(t) = eiθ
t− β

βt− 1
, θ ∈ R, (1.2)

or

α(t) =
τ

t
, τ ∈ T. (1.3)

The latter can be seen as the limit case of the first expression as |β| tends to
infinity and we will refer to it as a flip and the case τ = 1 will be henceforth called
the canonical flip.

It is well known that, if |β| < 1, α given by (1.2) preserves the given ori-
entation of T, we will call it a forward shift, and when |β| > 1, α reverses the
given orientation of T, this will be referred as a backward shift. For our purposes
we also need to divide the linear-fractional shifts in two classes: Carleman and
non-Carleman shifts.

The shift is said to be of Carleman type if it satisfies the Carleman condition
for some n ∈ N, that is

αn(t) ≡ t, t ∈ T,

where α1 = α, αk = α ◦αk−1, k = 2, . . . , n. The least value of n ∈ N for which the
above relation holds is then called the order of the shift. Otherwise, if α is not of
Carleman type, it will be referred as a non-Carleman shift.

We consider as the shift operator associated with the shift α, Uα : Lp → Lp

one acting according to the rule

Uαϕ(t) = μα(t)ϕ(α(t)), t ∈ T, (1.4)

where the function μα is some function defined on T that will be specified later
whenever it will be needed, otherwise μα ≡ 1. Its inclusion here is related to the fact
that some known results about singular integral operators with shift are expressed
in terms of shift operators satisfying some additional properties, for instance, if α
is a Carleman shift of order n ∈ N, then μα can be chosen so that Un

α = I (see
Sections 2 and 3 for details).

Let α be a linear-fractional shift and Uα the associated shift operator on Lp

of the form (1.4). We consider singular integral operators with shift of the general
form

TAα,Bα := AαP+ +BαP−, (1.5)

with

Aα :=

m∑
k=0

akU
k
α, Bα :=

m∑
k=0

bkU
k
α, m ∈ N, (1.6)

where ak, bk ∈ L∞, k = 0,m.
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The paper is organized as follows. In Section 2 we propose a classification
to the linear-fractional shifts based on the relative position of its fixed point on
the plane, on preserving or reversing the orientation of T and on being or not a
Carleman shift. In Section 3 we consider a class of paired singular integral opera-
tors with a linear-fractional shift. We show that the study of the this operator can
be reduced to the study of a similar paired operator with, what we call, a canon-
ical shift, by means of an anti-involutive operator. Some of the results obtained
are used, in the forthcoming section, to construct explicit solutions for a class of
singular integral equations with a non-Carleman shift.

2. Classification of linear-fractional shifts on T

It is difficult to classify a linear-fractional shift as a Carleman or non-Carleman,
when it is written in the form (1.2). For that reason we will use the idea of [4],
Chapter 1. The linear-fractional shift α has either one or two fixed points on C,
given as solutions of the second-order equation

βt2 − (eiθ + 1)t+ βeiθ = 0. (2.1)

If |β| �= | cos( θ2 )|, the shift α has two distinct fixed points on C, henceforth

denoted by t±. When |β| = | cos( θ2 )| equation (2.1) has only one solution (although
a double one, if β �= 0):

t+ =
eiθ + 1

2β
. (2.2)

In the first place we will discuss the case when (1.2) has two distinct fixed
points.

Proposition 2.1. If α has two distinct fixed points t± ∈ C \ T, then t± = t−1
∓ .

Proof. Suppose that t+ ∈ T+ (T+ denotes the interior of T) is one of the fixed
points of the shift function (1.2) and let t be its symmetric point with respect to
T, t′ = 1

t+
. Taking into account that α(t+) and α(t′) must be also symmetric with

respect to T, we get

α(t′) =
1

α(t+)
=

1

t+
= t′.

So t′ = t−.
Clearly this argument also holds if the original fixed point belongs to T−, the

exterior of T, which completes the proof. �

In order to deal with αn, n ∈ N, the iterations of the shift function α, is
very useful to introduce the so-called multiplier of the transformation (see, for
instance, [4]):

ω =
eiθ − βt+

eiθ − βt−
. (2.3)
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Proposition 2.2. If the linear-fractional shift (1.2) has two distinct fixed points t±
on C, then it admits the following representation

α(t) =
(t+ − ωt−)t+ (ω − 1)t+t−

(1− ω)t+ ωt+ − t−
. (2.4)

Proof. By Viete’s Theorem, from (2.1), it follows that

t+ + t− =
eiθ + 1

β
, t+t− =

βeiθ

β
. (2.5)

Using the first of these equalities and the definition of the multiplier ω, we conclude
that

eiθ =
ωt− − t+
ωt+ − t−

. (2.6)

On the other hand, by (2.6), the equality (2.3) is equivalent to

β =
ω − 1

ωt− − t+
eiθ =

ω − 1

ωt+ − t−
. (2.7)

Taking into account the second formula in (2.5), we get

β =
(ω − 1)t+t−
ωt− − t+

. (2.8)

Finally, from (2.6), (2.7) and (2.8) we can write the shift function (1.2) in the
desired form (2.4). �

Note that the above proof permits to write the multiplier w of the shift α in
the form

ω =
eiθt− − t+
eiθt+ − t−

, (2.9)

which can be useful. This results directly from (2.6), solving for ω.
The statement of the last proposition holds true for β �= 0. If β = 0 the shift

function α has the form

α(t) = ωt, |ω| = 1, (2.10)

with one fixed point t+ = 0. In this case, we may consider that α has two fixed
points, the other one being the point at infinity: t− =∞. With this convention the
shift α has two distinct fixed points on C whenever |β| �= | cos( θ2 )|, θ ∈ (−π, π).

For the iterations of the shift, we have

αn(t) =
(t+ − ωnt−)t+ (ωn − 1)t+t−

(1 − ωn)t+ ωnt+ − t−
, n ∈ N.

Then, if (2.4) has two different fixed points, we conclude that α is a Carleman
shift if and only if

ωn = 1,

where n is the order of the shift.
It must be also remarked that the flip (1.3) is a second-order backward shift,

which admits the representation (2.4) with ω = −1 and t± = ±
√
τ .
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Proposition 2.3. Suppose that the linear-fractional shift (1.2) has two distinct fixed
points on C. Then the following holds for the multiplier (2.3) (or (2.9)):

(i) If t± �∈ T, then |ω| = 1;
(ii) If t± ∈ T, then ω ∈ R.

Proof. From (2.6), we have

ωt− − t+
ωt+ − t−

=
ωt+ − t−
ωt− − t+

,

which is equivalent to

|ω|2|t−|2 − ωt−t+ − ωt−t+ + |t+|2 = |ω|2|t+|2 − ωt+t− − ωt+t− + |t−|2. (2.11)

According to Proposition 2.1, if t± �∈ T, then

t± =
1

t∓
and (2.11) reduces to

(|ω|2 − 1)(|t+|2 − |t−|2) = 0,

which implies that |ω| = 1.
On the other hand, from (2.11), if t± ∈ T, the following equality holds

(ω − ω)(t+t− − t+t−) = 0.

Then either t+ = −t− or ω = ω. It is possible to show that always ω = ω, that is
ω ∈ R. In fact, If t+ = −t−, taking into account (2.5), we have

eiθ = −1, t+β =
β

t+
,

and, from (2.3), it follows that

ω =
−1− βt+

−1 + βt+
=
−1− β

t+

−1 + β
t+

= ω. �

Proposition 2.4. Under the condition |β| > | cos
(
θ
2

)
|, the linear-fractional shift

(1.2) is a forward (backward) shift if and only if ω > 0 (ω < 0), where ω is the
multiplier (2.3).

Proof. According to [4], the multiplier ω is a solution of the equation

ω +
1

ω
=

(
eiθ − 1

)2
eiθ (|β|2 − 1)

− 2,

and, consequently,

ω =
1

1− |β|2

(
sin

(θ
2

)
±

√
|β|2 − cos2

(θ
2

))2

.

Taking into account that (1.2) is forward (backward) shift if and only if |β| < 1
(|β| > 1), the result follows. �
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Proposition 2.5. If |β| > 1, the linear-fractional shift (1.2) is a Carleman shift if
and only if ω = −1. In this case,

α(t) =
t− β

βt− 1
. (2.12)

Proof. According to the last proposition ω ∈ R−, when |β| > 1. If α is a Carle-
man shift, since it is a backward shift, its order must be equal to two (see, for
instance, [5]). Thus, ω2 = 1 together with ω ∈ R− implies that ω = −1.

From (2.3) and the first equality of (2.5), is straightforward that eiθ = 1. �

Finally, we will find the general form of linear-fractional shifts with just one
fixed point.

Proposition 2.6. If the shift function (1.2) has only one fixed point t+ on C, then

α(t) =
2ωt+t− (ω + 1) t2+
(ω + 1) t− 2t+

, (2.13)

where t+ ∈ T and |ω| = 1.

Proof. As was already mentioned, if |β| = cos | θ2 | �= 0, then the shift (1.2) has only
one fixed point given by (2.2). Thus |t+| = 1,

β =
eiθ + 1

2t+
, and, consequently, β =

(
e−iθ + 1

)
t+

2
.

Using the last two equations it is easy to see that α can be written in the
form (2.13) with ω = eiθ. �

We remark that the linear-functional (2.13) is a forward shift and thus, con-
sidering that a Carleman forward shift has not fixed points on T (see, for instance,
[5]), we conclude that in such case (1.2) is a non-Carleman forward shift.

In appendix A we constructed a table containing the main features of linear-
fractional shifts on T.

3. Reduction to the canonical cases

In this section our objective is to show that any singular integral operator with
a linear-fractional shift in Lp can be reduced (by means of an invertible bounded
linear transformation) to a singular integral operator with a simpler shift, in the
same space.

These kind of relations between linear-fractional shifts were used by Baturev,
Kravchenko and Litvinchuk (see p. 8 in [2], see also p. 346 in [13]) and by Karelin in
[6]. In [6] the author considered a reduction to the shift α(t) = −t, on the real line.
The main goal of this section is to give a complete solution of this problem in the
case of the unit circle T, when the shift under consideration is linear-fractional.
Some of the results of the present section will be used in the next section to
construct the solutions of a singular integral equation with a non-Carleman shift.
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Another motivation to study this reduction problem is the following. It is
well known that, in the theory of the singular integral equations with shift, the
case where the shift is the canonical flip is the most important, either from the
point of view of the applications as well as from point of view of the mathematical
literature, where themes like Toeplitz plus Hankel operators are relatively well
developed.

We will refer as canonical shifts one of the following linear-fractional shifts:

– A rotational shift (the fixed points are 0 and ∞),

f(t) = ωt, ω ∈ T, (3.1)

– A shift having ±1 as fixed points,

f(t) =
(1 + ω)t+ 1− ω

(1− ω)t+ ω + 1
, ω ∈ R \ {1}, (3.2)

– A shift having 1 as the unique fixed point,

f(t) =
2ωt− (ω + 1)

(ω + 1)t− 2
. (3.3)

Our goal is to show that, given a linear-fractional shift α there exist another
linear-fractional shift η such that

η ◦ α = f ◦ η, (3.4)

where f is one of the canonical shifts mentioned above. The passage from α to f
by means of η is called reduction to the canonical form, and η is then called the
reduction map.

Let us stress that from the above relation one can immediately deduce the
following assertions for the shifts α and f :

• Both are forward or backward shifts.
• Both are Carleman or non-Carleman shifts.
• When they are Carleman shifts, the order is the same.
• The number of fixed points is the same and η(t±) are the fixed points of the
shift f .
• The fixed points t+ and η(t±), simultaneously, are in T or do not belong to T.

Keeping these ideas in mind, we obtain the reduction maps for each case. One
can use the complex function theory to obtain deductively such maps, for instance,
the very well-known result that states the following: Given two sets of three distinct
points in the extended complex plane, say {z1, z2, z3} and {w1, w2, w3}, there exists
a unique linear-fractional map g such that g(zj) = wj , j = 1, 2, 3. However, in
each of three the propositions below the proof can be made by straightforward
verification of (3.4).

Proposition 3.1. Let α be the linear-fractional shift (2.4), with

t± = t−1
∓ , |t+| < 1,
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then α can be reduced to (3.1) using the reduction map

η(t) =
t− (t− t+)

t− t−
, (3.5)

where t± and ω ∈ T are, respectively, the fixed points and the multiplier of α.

Proposition 3.2. If ω ∈ R \ {1} and t± ∈ T are the fixed points of (2.4), then α
can be reduced to (3.2) using the reduction map

η(t) =
(t+ + t−) t− 2t+t− + t+ − t−

(2 + t+ − t−) t− t+ − t−
. (3.6)

Under the conditions of the previous proposition, when α is a backward
Carleman shift we have for the multiplier ω = −1. Then, the canonical shit (3.2)
becomes the canonical flip (1.3) (τ = 1). So, according to the last proposition, any
Carleman backward shift can be reduced to the canonical flip.

Proposition 3.3. If the linear-fractional shift α has the form (2.13), where t+ ∈ T
is its unique fixed point, then α can be reduced to (3.3) using the reduction map

η =
2t+t− t2+ − t+

(t+ + 1)t− 2t+
, (3.7)

The next result show that the maps considered above exhaust all possible
cases.

Lemma 3.4. Let α be a linear-fractional of T. Then α can be reduced to one of
the canonical shifts (3.1), (3.2) or (3.3), using as reduction map the second-order
Carleman shift (3.5), (3.6) or (3.7), respectively.

Proof. From the results of Section 2 we conclude that, if α has not the form (2.10),
then either

1. α is of the form (2.4) with t± �∈ T,
2. α is of the form (2.4) with t± ∈ T, or
3. α is of the form (2.13) with t+ ∈ T.

Consequently, using the previous propositions, we can affirm that always
exists a map η which reduces α to one of the canonical shifts. The map η has one
of the forms (3.5), (3.6) or (3.7). In all cases η is a second-order Carleman shift.

Moreover, in the cases 1 and 3, η is a forward shift. In the case 2 the map η
given by (3.6) is a forward shift if and only if

|2t+t− − t+ + t−| < |t+ + t−|.
�

Let α be a linear-fractional shift of the form (1.2) which is not a rotation and
consider its reduction to the canonical form f by means of the reduction map η,
according to Propositions 3.1 to 3.3. Since in every case η is linear-fractional, its
derivative η′ has no zeros and has a unique singular point, a double pole. Fix a
square root of it, which is a rational function and that we will henceforth denote
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by ν, so ν(t) = (η′(t))
1
2 , t ∈ T, and consider the linear operator Cη : Lp → Lp

(p ∈ (1,∞)), defined by the formula

Cηϕ(t) = ν(t)ϕ(η(t)), t ∈ T, ϕ ∈ Lp, (3.8)

which clearly is bounded and invertible, with inverse given by

C−1
η ϕ(t) = ν̆(t)ϕ(ζ(t)), t ∈ T, ϕ ∈ Lp,

where ζ = η−1 is the inverse function to η and ν̆(t) = 1/(ν(ζ(t)), t ∈ T. The trans-
formation Cη will be called reduction operator. Note that in each of the Proposi-
tions 3.1 to 3.3 η is a second-order Carleman shift and thus ζ = η and Cη is an
anti-involutive operator, C2

η = −I. However, we will keep this general notation,
since other choices could be made for η.

We show that the reduction operator either commutes or anti-commutes with
the singular integral operator with Cauchy kernel, depending on whether the re-
duction map is a forward or backward shift.

Proposition 3.5. Let α be a shift of the form (1.2) with β �= 0, η the map that
reduces α to the canonical form, Cη the reduction operator (3.8) and S the Cauchy
singular integral operator (1.1) in Lp, p ∈ (1,∞). Then

SCη = ±CηS.

where the plus or minus sign is taken depending on whether the reduction map η
is a forward or backward shift, respectively.

Proof. As previously mentioned for each case of Propositions 3.1 to 3.3, the re-
duction map η is a Carleman shift of order 2 and can be given the form (1.2) with
θ = 0. Then η coincides with its inverse and a simple computation shows that

ν(η(ξ))η′(ξ)
η(ξ) − η(ξ′)

=
ν(η(ξ

′
))

ξ − ξ′ .

Then, for any ϕ ∈ Lp (p ∈ (1,∞)) and any t ∈ T, we have

SCηϕ(t) =
1

πi

∫
T

ν(τ)ϕ(η(τ))

τ − t
dτ = ± 1

πi

∫
T

ν(η(ξ))η′(ξ)ϕ(ξ)
η(ξ)− η(η(t))

dξ

= ± 1

πi

∫
T

ν(t)ϕ(ξ)

ξ − η(t)
dξ = ±CηSϕ(t),

where the sign + or − is taken as stated in the proposition. �

Now we study the influence of the shift operator associated with the shift α
on the reduction operator.

Proposition 3.6. Let α be a shift of the form (1.2), Uα the associated shift operator
(1.4), η a map that reduces α to the canonical form and Cη the corresponding
reduction operator (3.8). Then

UαCη = MwCηUf , (3.9)
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where Mw denotes the multiplication operator by the function w, given by

w(t) =
μα(t)ν(α(t))

μf(η(t))ν(t)
, t ∈ T. (3.10)

Proof. The proof is straightforward using the definition of the operators Cη, Uα

and Uf as well as the fundamental relation (3.4). For any ϕ ∈ Lp and any t ∈ T,
we have

UαCηϕ(t) = μα(t)ν(α(t))ϕ((η ◦ α)(t))= μα(t)ν(α(t))ϕ((f ◦ η)(t))

=
μα(t)ν(α(t))

μf (η(t))
(Ufϕ)(η(t)) =

μα(t)ν(α(t))

μf (η(t))ν(t)
(CηUfϕ)(t)

= w(t)(CηUfϕ)(t). �

Using Propositions 3.5 and 3.6 we can reduce the study of the operator TA,B,
given by (1.5)–(1.6), to the study of a similar operator with a simpler shift, namely
one of the canonical forms given above (see (3.1) to (3.3)). We first consider forward
shifts, but we need to introduce some notation:

In what follows we shall use the following conventions of notation: for any
x ∈ L∞, we put

x̂ = x ◦ ζ,
where ζ is the inverse function to η. We put w(0) ≡ 1, α0 ≡ 1, and for any k ∈ N
we define

w(k) =

k∏
j=1

w ◦ αj−1.

Proposition 3.7. Let α be a forward linear-fractional shift of the form (1.2) having
either only one fixed point t+ ∈ T or two fixed points t± ∈ C \ T, η be a map that
reduces α to the canonical form f and Cη the corresponding reduction operator on
Lp, p ∈ (1,∞). Then Cη reduces the singular integral operator with shift α, TAα,Bα ,
to a singular integral operator with canonical shift f . More precisely, putting

Ãf :=

m∑
k=0

ãkU
k
f , B̃f :=

m∑
k=0

b̃kU
k
f ,

with

ãk = âkŵ(k), b̃k = b̂kŵ(k),

we have

TÃf ,B̃f
:= ÃfP+ + B̃fP− = C−1

η TAα,BαCη.

Proof. With the convention of notation established before this proposition, for any
x ∈ L∞, we have

C−1
η xICη = x̂I.

As pointed out in the proof of Lemma 3.4, if α has only one fixed point t+ ∈ T or
two fixed points t± /∈ T, then the reduction map η (which is given by (3.7) or by
(3.5), respectively) is a Carleman forward shift.
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From Proposition 3.5, it follows that

C−1
η P±Cη = P±.

On the other hand, based on the equality (3.9), we have

U2
αCη = UαMwCηUf = MwαUαCηUf = MwαMwCηU

2
f = Mw(2)CηU

2
f .

By induction one easily establishes that, for any k ∈ N, there holds

Uk
αCη = Mwαk−1

· · ·MwαMwCηU
k
f = Mw(k)CηU

k
f

Then, for any x ∈ L∞, we have

C−1
η xUk

αCη = x̃Uk
f

where x̃ := x̂ ŵ(k). Putting everything together, one obtains successively

C−1
η TAα,BαCη = C−1

η AαCηP+ + C−1
η BαCηP−

= C−1
η

m∑
k=0

akU
k
αCηP+ + C−1

η

m∑
k=0

bkU
k
αCηP−

= C−1
η

m∑
k=0

akw
(k)CηU

k
f P+ + C−1

η

m∑
k=0

bkw
(k)CηU

k
f P−

=
m∑

k=0

ãkU
k
f P+ +

m∑
k=0

b̃kU
k
f P−

which completes the proof. �
As a direct consequence, we have the following.

Corollary 3.8. Under the conditions of Proposition 3.7, if the function μα in the
definition of the shift operator Uα in (1.4) is chosen so that w ≡ 1, then the

coefficients Ãf and B̃f of the operator TÃf ,B̃f
simplify to

Âf :=
m∑

k=0

âkU
k
f , B̂f :=

m∑
k=0

b̂kU
k
f ,

respectively.

Now we consider the remaining forward shifts and backward shifts.

Proposition 3.9. Let α be a linear fractional shift of the form (1.2) having two
fixed points t± ∈ T, η be a map that reduces α to the canonical form f and Cη the
corresponding reduction operator on Lp, p ∈ (1,∞). Then Cη reduces the singular
integral operator with shift α, TAα,Bα , to a singular integral operator with canonical
shift f . More precisely, if

|2t+t− − t+ + t−| < |t+ + t−|, then TÃf ,B̃f
= C−1

η TAα,BαCη,

and, if

|2t+t− − t+ + t−| ≥ |t+ + t−|, then TB̃f ,Ãf
= C−1

η TAα,BαCη.
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Proof. The proof is similar to that of Proposition 3.7, but now we have two cases
to consider because the reduction map η (which is given by (3.6)) can be either a
Carleman forward or backward, depending on the position of the fixed points t±,
and as it follows from Proposition 3.5, we have

C−1
η P±Cη =

{
P± if η is a forward shift,
P∓ if η is a backward shift.

As was mentioned in the proof of Lemma 3.4, if |2t+t− − t+ + t−| < |t+ + t−|,
then η is a Carleman forward shift and similarly to the proof of Proposition 3.7,
we have

C−1
η TAα,BαCη = TÃf ,B̃f

.

However, if |2t+t− − t+ + t−| ≥ |t+ + t−|, then η is a Carleman backward shift
and in such case, we have

C−1
η TAα,BαCη = C−1

η AαCηP− + C−1
η BαCηP+

=
m∑

k=0

ãkU
k
f P− +

m∑
k=0

b̃kU
k
f P+ = TB̃f ,Ãf

,

which completes the proof. �

Again, as a direct consequence, we have the following.

Corollary 3.10. Under the conditions of Proposition 3.9, if the function μα in the
definition of the shift operator Uα in (1.4) is chosen so that w ≡ 1, then the

coefficients Ãf and B̃f of the operator TÃf ,B̃f
or of TB̃f ,Ãf

simplify to

Âf :=
m∑

k=0

âkU
k
f , B̂f :=

m∑
k=0

b̂kU
k
f ,

respectively.

As mentioned before in the case where the shift α in (1.2) is a Carleman shift
of order n (recall that, if it is a backward shift, then necessarily n = 2) we may chose
the weight μα in such a way that the associate shift operator satisfies Un

α = I and,
moreover, it commutes or anti commutes with the operator S according to whether
it is forward or backward, respectively. According to the results in Section 2, since
in such case to the shift α can be given the form (2.4), if we take, for some c ∈ C:

μα(t) = c(α′(t))
1
2 =

t+ − t−
(1− ω)t+ ωt+ − t−

, t ∈ T, (3.11)

then the above-mentioned properties are satisfied, that is Un
α = I and UαS =

±SUα, the sign taken as previously explained. Notice that, according to Proposi-
tion 2.5, we have ω = −1, if α is a Carleman backward shift.

As a consequence of the fundamental relation (3.4), if α has two fixed points
t± ∈ C and μα is given by (3.11), then the function w in (3.10) satisfies

w ≡ 1,
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regardless of α being or not a Carleman shift. Therefore, either Corollary 3.8 or
Corollary 3.10 applies.

Of course, if α is Carleman backward shift, since it is necessarily of order 2,
it is enough to consider binomial coefficients (m = 1). In previous works of two
of the authors of the present paper (see [8], [9]) it was shown that the Fredholm
characteristics of a singular integral operator with a linear-fractional backward
Carleman shift and binomial coefficients (m = 1) can be studied by means of a
special factorization of a matrix function associated with it, which depends on the
shift. The above proposition provides another way of analysis of such operators,
namely one can first reduce the study of such operator to another one having as
shift the canonical flip (1.3) (τ = 1), these being usually called Toeplitz plus Hankel
operators (see [3], [1]). The main advantage of this procedure is that the study of
these last operators is more developed than the initial ones. Similar considerations
are also valid, for instance, for the case of Carleman forward shifts (see [10]) and
can also be used in the case of non-Carleman shifts, as we will see in the next
section.

4. Explicit solutions for a non-Carleman shift

The main purpose of this section is to show that some results of the Fredholm
theory of singular integral operators with a non-Carleman shift can be obtained
in particular cases.

Specifically we have in mind those non-Carleman linear-fractional shifts α
having two fixed points on C, one in the interior and the other in the exterior
of the unit circle. According to Proposition 3.1, singular integral operators with
such shift can be reduced to singular integral operators with a rotational shift of
the form (3.1). The non-Carleman condition means that the constant ω in (3.1)
is not a primitive root of the identity, i.e., ωn �= 1, ∀n ∈ N. This particular case
is sometimes called irrotational shift in the literature. The corresponding shift
operator Uf is therefore defined as follows:

Ufϕ(t) = ϕ(ωt), t ∈ T, ω = eiθ, θ ∈ [0, 2π), θ/2π ∈ R \Q. (4.1)

Associated with the shift α we consider the weighted shift operator Uα with
weight given by (3.11). The reduction operator Cη takes the form

Cηϕ(t) =

√
t+t− − t2−
t− t−

ϕ (η(t)) , t ∈ T, ϕ ∈ Lp, (4.2)

where η is given by (3.5). As already said, with the above choices the function w
defined by (3.10) is such that w ≡ 1, and so Corollary 3.8 applies, according to
which we have

TÂf ,B̂f
= −CηTAα,BαCη,
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where

Âf =

m∑
k=0

âkU
k
f , B̂f =

m∑
k=0

b̂kU
k
f ,

âk = ak◦η, b̂k = bk◦η, k = 0,m, and it was used the fact that Cη is an anti-involute
operator.

We first analyze the simpler operator TÂf ,B̂f
.

4.1. The case of an irrotational shift

In this part we consider singular integral operators with shift of the form

T := TI,C = P+ + CP− : Lp → Lp, with C =

m∑
j=0

cjU
j ,

where U = Uf is the shift operator (4.1), m ∈ N, and the coefficients cj , j = 1,m
are continuous functions on the unit circle, cj ∈ C(T).

We note that the Fredholmness conditions for the operator T can be studied
considering the matrix operator (see [11], [7], [12])

T̃ = P+ + C̃P− : Lm
p → Lm

p , with C̃ = c̃0I + c̃mU,

where

c̃0 =

⎛⎝ c0 O1×(m−1)

O(m−1)×1 Im−1

⎞⎠ ,

c̃m =

⎛⎝ c1 c2 . . . cm−1 cm

−Im−1 O(m−1)×1

⎞⎠ ,

Im denotes the m ×m identity matrix and we suppose that the operators U , P±
act componentwise.

The following result holds.

Proposition 4.1. The operator T is a Fredholm operator on Lp if and only if the

operator T̃ is a Fredholm operator on Lm
p . In the affirmative case, dimkerT =

dimker T̃ and dim cokerT = dim coker T̃ .

Proof. As is known, the Fredholmness of a bounded linear operator T is preserved
under its multiplication by invertible operators and so are the numbers dimkerT
and dim cokerT .

We multiply T̃ on the right by the invertible operator

N =

⎛⎜⎜⎜⎜⎜⎝
0 0 · · · 0 I
0 0 · · · I UP−
...

...
0 I · · · Um−3P− Um−2P−
I UP− · · · Um−2P− Um−1P−

⎞⎟⎟⎟⎟⎟⎠ .
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Using UP− = P−U , we obtain

T̃N =

⎛⎜⎜⎜⎜⎜⎝
D1 D2 · · · Dm−1 T
0 0 · · · I 0
...

. . .
...

0 I · · · 0 0
I 0 · · · 0 0

⎞⎟⎟⎟⎟⎟⎠ ,

where

Dj =

j−1∑
k=0

cm−kU
j−kP−, j = 1,m− 1.

The operator T̃N is Fredholm if and only if the operator T is Fredholm. Moreover,

the defect numbers of T̃N and T coincide. Since N is invertible the result follows.
�

4.2. Some particular coefficients

Now let us consider the particular case of the operator T when the coefficients are
first degree polynomials, which we rename as K, i.e.,

K = P+ +

( m∑
j=0

pjU
j

)
P−. (4.3)

where
pj(t) = aj0 + aj1t, aj0, aj1 ∈ C, j = 0,m, m ∈ N. (4.4)

We will study the kernel of the operator K. To this end, suppose that ϕ ∈
kerK and decompose ϕ = ϕ+ + ϕ−, ϕ+ ∈ L+

p , ϕ− ∈
◦
L−
p . Then

ϕ+ +

( m∑
j=0

pjU
j

)
ϕ− = 0, (4.5)

with

ϕ+(t) =
∞∑
k=0

φkt
k, t ∈ T+, φk ∈ C;

ϕ−(t) =
∞∑
k=1

ϕkt
−k, t ∈ T−, ϕk ∈ C.

Taking into account that, for any s = 0, n, there holds

psU
sϕ− = as1ϕ1ω

−s +
∞∑
k=1

as1ϕk+1ω
−(k+1)st−k +

∞∑
k=1

as0ϕkω
−kst−k,

we arrive at the following equality

ϕ+(t) + ϕ1

m∑
k=1

ak1ω
−k +

∞∑
k=1

(akϕk+1 + bkϕk) t
−k = 0,
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where, we recall, ω is given by (4.1) and

ak =

m∑
j=0

aj1ω
−j(k+1), (4.6)

bk =

m∑
j=0

aj0ω
−jk. (4.7)

Then the functions ϕ± are a solution of (4.5) if and only if

ϕ+(t) = −ϕ1

m∑
k=0

ak1ω
−k, (4.8)

and

akϕk+1 + bkϕk = 0.

If ak �= 0, k ∈ N, the general solution of the last equation is

ϕk = (−1)k−1ϕ1

k−1∏
l=1

bl
al
, k ∈ N, (4.9)

and, if ak = 0 for some k ∈ N, then ϕk = 0 for all k ∈ N.
So, we can state the following result.

Proposition 4.2. Let K be the operator defined by (4.3). Then the function ϕ =
ϕ+ + ϕ− ∈ kerK if and only if ϕ+ is given by (4.8) and the series

ϕ−(t) =
∞∑
k=1

ϕkt
−k, t ∈ T−, (4.10)

converges absolutely, where ϕk is the sequence (4.9). In the affirmative case,

dimkerT = dimker T̃ and dim cokerT = dim coker T̃ .

Further we will do a deeply study of the series (4.10). Namely we establish
some sufficient conditions for its convergence or divergence. But first we need to
introduce some useful notation.

We write the complex numbers aμν in the exponential form

aμν = |aμν | eiθμν , μ = 1,m, ν = 0, 1,

and, using Euler’s formula, we compute

|bk|2 =

( m∑
j=0

aj0e
−ijkθ

)( m∑
j=0

aj0e
ijkθ

)

=
m∑
t=0

|at0|2 + 2
m−1∑
s=0

m∑
r=s+1

|as0| |ar0| cos[θs0 − θr0 + (r − s)θk],
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and

|ak|2 =

( m∑
j=0

aj1e
−ij(k+1)θ

)( m∑
j=0

aj1e
ijkθ

)

=

m∑
t=0

|at1|2 + 2

m−1∑
s=0

m∑
r=s+1

|as1| |ar1| cos[θs1 − θr1 + (r − s)θ(k + 1)],

where ak and bk are given by (4.6) and (4.7).
Let us consider the functions of the real variable t

a(t) =

m∑
t=0

|at1|2 + 2

m−1∑
s=0

m∑
r=s+1

|as1| |ar1| cos[θs1 − θr1 + (r − s)θ(t+ 1)], (4.11)

and

b(t) =

m∑
t=0

|at0|2 + 2

m−1∑
s=0

m∑
r=s+1

|as0| |ar0| cos[θs0 − θr0 + (r − s)θt]. (4.12)

Note that
a(k) = |ak|2 , b(k) = |bk|2 , k ∈ N.

and it must be remarked that the functions b(t) and a(t) are periodic functions,

with period equal to
2π

θ
.

Lemma 4.3. Let K be the operator defined by (4.3), a and b be the continuous real
periodic functions (4.11) and (4.12), respectively. If the condition

max
t∈

[
0,

2π
θ

]
∣∣∣∣ b(t)a(t)

∣∣∣∣ < 1, (4.13)

holds, then dimkerK = 1 and

kerK = {ϕ ∈ L2 : ϕ = ϕ+ + ϕ−} , (4.14)

where ϕ± are given by (4.8) and (4.10).

Proof. From (4.13), it follows that
|bk|
|ak|

< 1. Therefore, for any t ∈ T−, we have∣∣∣∣ϕk+1

ϕk t

∣∣∣∣ = ∣∣∣∣ bk
ak t

∣∣∣∣ < 1.

By the D’Alembert criterion, the series (4.10) converges absolutely in T−. Thus,
according to the last proposition, dimkerK = 1 and the set kerK is given by
(4.14). �
Lemma 4.4. Let K be the operator defined by (4.3), a and b be the continuous real
periodic functions (4.11) and (4.12), respectively. If the condition

min
t∈

[
0,

2π
θ

]
∣∣∣∣ b(t)a(t)

∣∣∣∣ > 1, (4.15)

holds, then dimkerK = 0.
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Proof. Let c = min
t∈

[
0,

2π
θ

]
∣∣∣∣ b(t)a(t)

∣∣∣∣. If c > 1, then∣∣∣∣ϕk+1

ϕk t

∣∣∣∣ = ∣∣∣∣ bk
ak t

∣∣∣∣ ≥ √m|t|
and for t ∈ T− such that 1 < |t| <

√
m it follows that∣∣∣∣ϕk+1

ϕk t

∣∣∣∣ > 1.

Therefore, taking into account the D’Alembert criterion and Proposition 4.2, we
can affirm that dimkerK = 0. �

Using Lemmas 4.3 and 4.4 we can state the following result.

Corollary 4.5. Let K̂ be the paired operator on Lp

K̂ = P+ + (r0I + r1Uα + r2U
2
α + · · ·+ rmUm

α )P−,

where Uα is the weighted operator (1.4), with non-Carleman shift (2.4) and

μα =
t+ − t−

(1− ω) t+ ωt+ − t−
.

The coefficients rj, j = 0,m, are the rational scalar functions

rj(t) =
rj1t+ rj0
t− t−

,

and let

pj0 =
t+rj1 + t−rj0

t+ − t2−
, pj1 =

t−rj1 + rj0
t2− − t+

.

Additionally, let a and b be the scalar functions (4.11) and (4.12). Then the fol-
lowing statements hold true:

(i) If the condition (4.13) holds, then dim ker K̂ = 1 and

ker K̂ = {φ ∈ L2 : φ = Cηϕ, ϕ ∈ kerK} ,

where K is the operator (4.3), kerK is the set (4.14) and Cη is the operator
(4.2).

(ii) If the condition (4.15) holds, then dim ker K̂ = 0.

Proof. The rational functions rj , j = 0,m, satisfy the equality rj = pj ◦ η, where
pj are the first degree polynomials (4.4) and η is the map (3.5). Then the proof

can be completed taking into account that K̂ = −CηKCη. �
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Appendix

The table below contains the main features of linear-fractional shifts on T.

Properties of
β and θ

Properties
of ω

Properties
of t±

Type
of α

Classific.
of α

General
Form

β = 0 ∃n ∈ N : ωn = 1
t+ = 0,
t− =∞ Carleman

Forward
Shift

(2.10)

β = 0
|ω| = 1,
ωn �= 1, ∀n ∈ N

t+ = 0,
t− =∞

Non-
Carleman

Forward
Shift

(2.10)

|β| < | cos
(
θ
2

)
| ∃n ∈ N: ωn = 1 t± = t−1

∓ Carleman Forward
Shift

(2.4)

|β| < | cos
(
θ
2

)
| |ω| = 1,

ωn �= 1, ∀n ∈ N
t± = t−1

∓
Non-
Carleman

Forward
Shift

(2.4)

|β| = | cos
(
θ
2

)
| |ω| = 11

t+ ∈ T,
t+ = t−

Non-
Carleman

Forward
Shift

(2.13)

| cos
(
θ
2

)
|

< |β| < 1
ω ∈ R+ t± ∈ T Non-

Carleman
Forward
Shift

(2.4)

|β| > 1 ω = −1 t± ∈ T Carleman
Backward
Shift

(2.4),
(2.12)

|β| > 1 ω ∈ R−\{−1} t± ∈ T
Non-
Carleman

Backward
Shift

(2.4)
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[12] N. Krupnik, Banach Algebras with Symbol and Singular Integral Operators. Operator
Theory: Advances and Applications, vol. 26, Birkhäuser, Basel, 1987.

[13] G.S. Litvinchuk, Solvability Theory of Boundary Value Problems and Singular Inte-
gral Equations with Shift. Mathematics and its Applications, vol. 523, Kluwer Aca-
demic Publishers, Dordrecht, 2000.

Lina Campos
Escola Secundária de Loulé
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Diffraction from Polygonal-conical Screens,
an Operator Approach
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Abstract. The aim of this work is to construct explicitly resolvent operators
for a class of boundary value problems in diffraction theory. These are formu-
lated as boundary value problems for the three-dimensional Helmholtz equa-
tion with Dirichlet or Neumann conditions on a plane screen of polynomial-
conical form (including unbounded and multiply-connected screens), in weak
formulation. The method is based upon operator theoretical techniques in
Hilbert spaces, such as the construction of matrical coupling relations and
certain orthogonal projections, which represent new techniques in this area of
applications. Various cross connections are exposed, particularly considering
classical Wiener–Hopf operators in Sobolev spaces as general Wiener–Hopf
operators in Hilbert spaces and studying relations between the crucial opera-
tors in game. Former results are extended, particularly to multiply-connected
screens.

Mathematics Subject Classification (2010). Primary 78A45; Secondary 47G30.

Keywords. Diffraction, plane screen, polygonal domain, conical domain, Diri-
chlet problem, Neumann problem, explicit solution, Wiener–Hopf operator,
Sobolev space, matrical coupling, orthogonal projector.

1. Formulation of problems and main results

Given a proper open subset Σ ⊂ R2, we consider the domain Ω defined by

Ω = R3 \ Γ
Γ = Σ× 0 = {x = (x1, x2, 0) ∈ R3 : x′ = (x1, x2) ∈ Σ}.

(1.1)

This work was started during the Workshop on Operator Theory and Operator Algebras in
September 2012 at Lisbon.
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For convenience the boundary manifold Γ is closed (in R3) and the screen Σ is
open (a domain in R2). However, the two sets will be identified in some sense
(provided int clos Σ = Σ). As a rule we assume Σ �= ∅, Σ �= R2, if nothing else is
said.

Problems of diffraction from a plane screen Γ are often formulated in terms
of (or reduced to) the solution of the three-dimensional Helmholtz equation (HE)
in Ω with Dirichlet or Neumann conditions on Γ, briefly written as(

Δ+ k2
)
u = 0 in Ω

Bu = g on Γ = ∂Ω.
(1.2)

Herein k is the wave number and we assume that $mk > 0 throughout this
paper (some parts are restricted to %ek = 0). B stands for the boundary operator,
taking the trace or normal derivative of u on Γ. We think of the weak formulation
looking for u ∈ L2(Ω) with restrictions u± = u|Ω± to the upper and lower half-
space Ω± = {x ∈ R3 : ±x3 > 0} that satisfy u± ∈ H1(Ω±) and the common
transmission conditions across the complement of Σ:

Σ′ = R2 \ Σ,

namely

u+
0 − u−

0 = [u+ − u−]|x3=0 = 0

u+
1 − u−

1 = [∂u+/∂x3 − ∂u−/∂x3]|x3=0 = 0
on Σ′ (1.3)

according to the trace theorem and by help of representation formulas, see [20] and
Section 2 for details. In a sense, this is equivalent to state that the HE holds across
the complementary screen Σ′ [26]. The boundary data g are arbitrarily given in
the corresponding data space H1/2(Σ) or H−1/2(Σ), respectively (values of g in
the boundary of Σ do not matter in this space setting).

For convenience we study the (homogeneous) HE, since boundary value prob-
lems for the inhomogeneous HE Au = (Δ+k2)u = f can be “equivalently reduced”
under the present assumptions, see [40]. Hence the operator associated with the
boundary value problem (BVP) can be written as

B0 = B|kerA : H1(Ω) → H±1/2(Σ) (1.4)

where H1(Ω) denotes the space of weak solutions of the HE in Ω and B0 denotes
the restriction of B to this space. We are looking for the inverse B−1

0 , the so-called
resolvent operator.

Sometimes different data g± are prescribed on the two banks Σ± of the
screen corresponding to x3 = ±0. This generalization is not very important from
the physical point of view (where g denotes the trace of the “incoming field”, e.g.),
but useful for understanding the structure of the problems. In this case the BVPs
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can be briefly written in the form

u ∈ H1(Ω)

B0u =

(
B+

B−

)
u = g =

(
g+

g−

)
on Γ = ∂Ω

(1.5)

where now

• in case of the Dirichlet problem: g is given in the spaceH1/2(Σ)2 = H1/2(Σ)×
H1/2(Σ) with the compatibility condition that g+ − g− is extensible by zero
from Σ to the full plane (corresponding to x3 = 0) within H1/2(R2),
• in case of the Neumann problem: g is given in the space H−1/2(Σ)2 =
H−1/2(Σ) × H−1/2(Σ) with the compatibility condition that g+ − g− be
extensible by zero from Σ to the full plane (corresponding to x3 = 0) within
H−1/2(R2), see [20] for details.

We express these compatibility conditions briefly by writing

g ∈ H1/2(Σ)2∼ respectively g ∈ H−1/2(Σ)2∼. (1.6)

In several publications the second compatibility condition is written in the form

g+ + g− ∈ H̃−1/2(Σ) according to the convention that the normal derivative is
always taken with respect to the outer (or inner) normal, i.e., g− = −∂/∂x3u on
Σ−, in contrast to the present situation.

The question of “low regularity”, i.e., u ∈ H1+ε, ε ∈]0, 1/2[, could be included
from the beginning, but will be answered only at the end of Section 5, to keep the
notation short.

It is well known that all the above-mentioned BVPs are correctly posed pro-
vided Σ is a strong Lipschitz domain (bounded) or special Lipschitz domain (un-
bounded) [20, 42]. This results from the use of Green’s formula (for uniqueness),
reduction to boundary integral or pseudo-differential equations, their Fredholm
property, an index formula and strong ellipticity (for existence). The fact that the
associated operator B0 : H1(Ω) → H±1/2(Σ) is a bounded, linear and bijective
operator acting in Hilbert spaces, implies (by the inverse mapping theorem) that
B−1

0 is continuous.

The question is: Can we obtain an explicit formula of B−1
0 , not only for

very special screens like half-planes and certain cones [25]? In the present article
we shall admit solutions in closed analytical form or series expansion, as well as
infinite operator products which are strongly convergent. In this sense, the answer
will be positive for a surprisingly large class of problems and possibly not useless
in view of the capacity of modern computers.

Let us briefly look at the classes of domains Σ ⊂ R2 under consideration.
The following domain properties are crucial in what follows.

• First we shall assume the strong extension property [20, 23], i.e., for any
s ∈ R, there exists a continuous extension operator which is left invertible by
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restriction:
�sΣ : Hs(Σ)→ Hs(R2)

rΣ�
s
Σ = IHs(Σ).

(1.7)

Lipschitz domains (that are bounded and characterized by fulfilling the uni-
form cone property [18, 20]) and (unbounded) special Lipschitz domains in
the sense of [42] (of the form Σ = {(x1, x2) ∈ R2 : x2 > ϕ(x1)} where ϕ is
uniformly Lipschitz continuous and rotations of this kind of domain) fulfil the
strong extension property. The existence of continuous extension operators
(1.7) guarantees the equivalence of B0 to operators which have the form of a
general Wiener–Hopf operator W (see Section 2), i.e., B0 = EWF where E
and F are linear homeomorphisms.
• Second we shall confine our considerations to domains with the property

int clos Σ = Σ, which is needed for a relaxed use of Sobolev spaces. Note
that this excludes “cracks” in the screen (also called “slit domains”) with
discontinuities across the cracks, which could be considered using more com-
plicated notation than Hs(Σ) (in general, the notion of Hs(Σ) with Lipschitz
domains Σ is not suitable for that case, see [20], p. 110, and the introduction
of [15], for instance).

A domain Σ with these two properties is said to be an E-domain. The prop-
erties are actually needed only for s = ±1/2 in the basic results.

Further we shall work with an algebra A2 of open subsets Σ ⊂ R2 which
contains open half-planes, finite intersections and the interior of complements of
elements of A2.

Therefore we introduce the following.

Definition 1.1. A convex polygonal-conical domain (convex PCD) in R2 is given
by

Σ =
⋂

j=1,...,m

Σj where Σj are open half-planes. (1.8)

A polygonal-conical domain (PCD) in R2 is given by

Σ = int
⋃

j=1,...,m

clos Σj (1.9)

where Σj are convex PCDs which do not meet in a corner.

Remark 1.2. The following observations are obvious:

1. Convex PCDs are simply connected, PCDs may be multiply connected, both
possibly unbounded (cones are included).

2. PCDs are E-domains.
3. The set of PCDs (including Σ = ∅ and Σ = R2) coincides with the minimal

set algebra A2 described above, since they allow a representation

Σ = R2 \
( ⋂

j=1,...,m

(R2 \ Σj)

)
(1.10)
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where Σj are convex PCDs. This results from the De Morgan formulas and
some elementary topological consideration.

4. The set of Lipschitz domains does not form a set algebra, because the intersec-
tion of two Lipschitz domains does not necessarily have the strong extension
property. Also special Lipschitz domains do not generate an algebra of sets
which have the strong extension property, for the same reason.

In order to describe the spaces for the boundary data in more detail, we
recall the definition of the usual Sobolev spaces Hs = Hs(Rn) (sometimes named
Bessel potential or fractional Sobolev spaces) and of the Sobolev spaces Hs(Σ),

Hs
Σ, H̃

s(Σ), as well (see, e.g., [16, 20]). Thus let

Hs = Hs(Rn) =

{
f ∈ S ′ : ‖f‖ =

(∫
Rn

∣∣∣f̂(ξ)∣∣∣2 (ξ2 + 1)sdξ

)1/2

<∞
}

(1.11)

where ξ2 stands for |ξ|2 and S ′ = S ′(Rn) denotes the Schwartz distribution space

and f̂(ξ) = Fx �→ξf(x) =
∫
Rn eixξf(x)dx the (n-dimensional) Fourier transform of

f ∈ S extended to distributions f ∈ S ′. Hs is a Hilbert space with inner product

〈ϕ, ψ〉s =
∫
Rn

ϕ̂(ξ) ψ̂(ξ) (ξ2 + 1)sdξ , ϕ, ψ ∈ Hs(Rn). (1.12)

The function λ(ξ) = (ξ2 + 1)1/2, ξ ∈ Rn, will play a special role in what
follows, since it can be considered as a particular case of the square root of the
“Helmholtz symbol” t(ξ) = λk(ξ) = (ξ2 − k2)1/2 for k = i (the double notation
has historical reasons). We shall always choose branches, continuous in Rn, such
that λk(ξ)→ +∞ as |ξ| → +∞. It may be useful to consider the spaces Hs as the
isometric images of the Bessel potential operators

Λ−s = F−1λ−s · F : L2 → Hs , s ∈ R. (1.13)

The restriction operator which restricts a function or distribution on Rn to
an open subset Σ will be denoted by rΣ. Thus H

s(Σ) = rΣ(H
s), and the norm in

Hs(Σ) is defined by

‖f‖Hs(Σ) = inf
�
‖�f‖Hs

where �f stands for any extension of f to a distribution in Hs. An equivalent norm
can be defined via the Sobolev–Slobodetski norm for s > 0 and via a duality for
s < 0. Furthermore, we denote by Hs

Σ the (closed) subspace of Hs which consists

of all distributions with support in the closure of Σ. By H̃s(Σ) we denote the
space of all distributions which are the restrictions of distributions in Hs

Σ, i.e.,

H̃s(Σ) = rΣ(H
s
Σ). A norm is defined by

‖f‖H̃s(Σ) = inf
�0
‖�0f‖Hs

where �0f stands for any extension of f to a distribution in Hs
Σ (which is unique

only for s ≥ −1/2, see [14], pages 4–5, in which case the last infimum is redundant).

Notice that while H̃s(Σ) is always continuously embedded in Hs(Σ), these two
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spaces coincide for s ∈]−1/2, 1/2[. In various publications H̃s(Σ) is defined as the
set of Hs(Σ) function(al)s that are extendible by zero to an element of Hs(Rn)
[18, 20]. For E-domains this definition is equivalent to the present one.

Now we are in a position to summarize the main result.

Theorem 1.3 (Main Theorem). Let Σ be a PCD. Then the resolvent operator B−1
0

(see (1.4), (1.5)) for the Dirichlet or Neumann problem is explicitly given in terms
of infinite operator products (presented in Sections 4 and 5) which strongly con-
verge in the common (Bessel potential) norm of H±1/2(R2) for k = i and in
a modified equivalent norm for k ∈ iR+, respectively. In the remaining cases of
k ∈ C , $mk > 0 the resolvent operator can be explicitly represented by (additional)
use of Neumann series.

The principle steps are: (1) to show operator equivalence of B0 with a bound-
ary pseudo-differential operator that has the form of a general Wiener–Hopf op-
erator (WHO), (2) to represent B−1

0 in terms of a certain projector acting in

H±1/2(R2), which depends heavily on the form of Σ, (3) for screens which are
convex PCDs, to give an explicit formula for these kind of projectors in case of
k ∈ iR+, choosing a topology where they are orthogonal and using a result of Hal-
mos [19] for the representation of the orthogonal projector onto the intersection
of closed Hilbert subspaces, (4) to reduce the case of arbitrary k with $mk > 0 to
the previous by approximation, and finally (5) to reduce the case of non-convex
screens to the case of convex screens by matrical coupling of associated WHOs
and the so-called geometric perspective of Ferreira dos Santos [30, 31] for general
WHOs, noting that not only complements of convex screens are admitted, but
arbitrary PCDs.

Some similar ideas appeared already in special situations or different settings,
see [15, 24, 25, 37, 39] and will be pointed out in the corresponding context.
However, some of the cited results are presented here with a new, more compact
proof, e.g., Theorem 3.5 and parts of Theorem 3.8 and of Theorem 3.10.

From the historical point of view, one can say, that the story started with the
solution of Sommerfeld’s half-plane problem [35] by modern Wiener–Hopf meth-
ods [26], contributions to the diffraction by a quarter-plane [11, 12, 25, 44] and
the discovery of relations with general WHOs [31, 37]. The present paper could be
regarded as an extension of [24] to non-convex, general polynomial-conical screens,
however with several new techniques that provide a deeper insight into the struc-
ture of this kind of BVPs. Finally it should be noticed that the present screen
problems are quite different from wedge diffraction problems in formulation and
structure.

2. Reduction to boundary pseudo-differential equations
and form of resolvent operators

For this step we need a precise notation of Wiener–Hopf operators in Sobolev
spaces. We shall use only a scalar version (the matrix analogue is evident).
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Definition 2.1. A Wiener–Hopf operator in Sobolev spaces (briefly referred to as
classical WHO) is given by

Wφ,Σ = rΣAφ : Hr
Σ → Hs(Σ) (2.1)

where Σ ⊂ Rn is a domain, r, s ∈ R, Aφ = F−1φ · F is a convolution (translation
invariant) operator in Rn of order r − s, i.e., φ0 = φλr−s ∈ L∞(Rn).

Remark 2.2. Other popular notations of WHOs are the following. The “classical
WHO” acting on L2(R+) (or on Lp(R+) etc. [22]) is given by

Wf(x) = af(x) +

∫ ∞

0

k(x− y)f(y)dy , x > 0 (2.2)

with a ∈ C, k ∈ L1(R). It can be briefly written as

W = r+Aφ�0 : L2(R+)→ L2(R+) (2.3)

where φ = a + Fk is the Fourier symbol of W [17, 29] and �0 the zero extension
from L2(R+) to L2(R). This is easily generalized to an operator acting on L2(Σ),
Σ ⊂ Rn by writing

W = rΣAφ�0 : L2(Σ)→ L2(Σ) (2.4)

and makes sense already, if Σ is measurable. The direct generalization to Sobolev
spaces makes sense if the extension �0 : Hs(Σ)→ Hs(Rn) is well defined, e.g., for
Lipschitz or special Lipschitz domains Σ. It can be written as

W = rΣAφ�0 : H
s(Σ)→ Hs(Σ) (2.5)

defined by restriction (s > 0) or by continuous extension (s < 0), if s ∈]−1/2, 1/2[.
In contrast, the “Eskin like notation” (2.1) makes sense for all s ∈ R and arbitrary
domains Σ [16, 28].

Another generalization will be important for our purposes, the notion of
“general WHOs”. That will be discussed in Section 3.

Now we come to the point where these operators appear in reality.

Theorem 2.3 (Representation Theorem for the Dirichlet problem). Assume that
Σ ⊂ R2 be any (proper) open subset of R2, Ω be given by (1.1) and Ω± = {x ∈
R3 : ±x3 > 0}. Then the Dirichlet problem in Ω (see (1.5)) is well posed if and
only if the following WHO is invertible:

Wt−1,Σ = rΣ At−1 : H
−1/2
Σ → H1/2(Σ). (2.6)

In this case, the solution of the Dirichlet problem is given by the formulas

u = KD,Ω(g1, g2) =

{
KD,Ω+ u+

0 in Ω+

KD,Ω− u−
0 in Ω− (2.7)

KD,Ω+u+
0 (x) = F−1

ξ′ �→x′e
−t(ξ′)x3 û+

0 (ξ
′) =

1

(2π)2

∫
R2

e−iξ′x′−t(ξ1,ξ2)x3 û+
0 (ξ1, ξ2)dξ

′

KD,Ω−u−
0 (x) = F−1

ξ′ �→x′e
t(ξ′)x3 û−

0 (ξ
′) =

1

(2π)2

∫
R2

e−iξ′x′+t(ξ1,ξ2)x3 û−
0 (ξ1, ξ2)dξ

′
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(
u+
0

u−
0

)
= Υ−1

D

(
�0 0
0 At−1W−1

t−1,Σ

)
ΥD

(
g+

g−

)
, ΥD =

(
I −I
I I

)
abbreviating ξ′ = (ξ1, ξ2) ∈ R2 , dξ′ = dξ1dξ2 , t(ξ′) = (ξ21 + ξ22 − k2)1/2 , x′ =
(x1, x2) ∈ R2 and ξ′x′ = ξ1x1 + ξ2x2.

Proof. (Sketch) Based on ideas from [24] and [15] we see that a possible solution
is represented by the trace data u±

0 (in the entire plane x3 = 0), where u+
0 − u−

0

is directly given and that u+
0 + u−

0 = A−1
t (u+

1 − u−
1 ) where u+

1 − u−
1 satisfies

a boundary pseudo-differential equation which has the form of a (generalized)
Wiener–Hopf equation on Σ. If the WHO is invertible, the BVP is well posed,
since one can verify that the formulas represent linear homeomorphisms between
the data and the solution spaces. Conversely, if the BVP is well posed, the WHO
must be bijective. As a bounded linear operator, it is necessarily a homeomorphism
according to the inverse mapping theorem.

More details can be found in the context of Sommerfeld potentials (where Σ
is a half-plane) [14, 15]. Also BVPs for the Lamé equation have been solved in a
similar way already in [13]. �
Theorem 2.4 (Representation Theorem for the Neumann problem). Assume that
Σ ⊂ R2 be any (proper) open subset of R2, Ω be given by (1.1) and Ω± = {x ∈
R3 : ±x3 > 0}. Then the Neumann problem in Ω (see (1.5)) is well posed if and
only if the following WHO is invertible:

Wt,Σ = rΣ At : H
1/2
Σ → H−1/2(Σ). (2.8)

In this case, the solution of the Neumann problem is given by the formulas

u = KN,Ω(g1, g2) =

{
KN,Ω+ u+

1 in Ω+

KN,Ω− u−
1 in Ω− (2.9)

KN,Ω+u+
1 (x) = F−1

ξ′ �→x′e
−t(ξ′)x3

−1
t(ξ′)

û+
1 (ξ

′)

=
1

(2π)2

∫
R2

e−iξ′x′−t(ξ1,ξ2)x3
−1

t(ξ1, ξ2)
û+
1 (ξ1, ξ2)dξ1dξ2

KN,Ω−u−
1 (x) = F−1

ξ′ �→x′e
t(ξ′)x3

1

t(ξ′)
û−
1 (ξ

′)

=
1

(2π)2

∫
R2

e−iξ′x′+t(ξ1,ξ2)x3
1

t(ξ1, ξ2)
û−
1 (ξ1, ξ2)dξ1dξ2(

u+
1

u−
1

)
= Υ−1

N

(
AtW

−1
t,Σ 0

0 �0

)
ΥN

(
g+

g−

)
, ΥN =

(
I I
I −I

)
.

Proof. Conclusions are similar as before. �
Remark 2.5. Existence and uniqueness of a solution are known from [18, 43] in case
of Lipschitz domains and from [25, 38] in case of half-planes. Hence uniqueness is
trivial for convex PCDs and obvious for PCDs from (1.9).
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The uniqueness result follows also directly from the Green formula, while
existence can be shown with the Lax–Milgram Lemma (see, e.g., [9], Section 6.3).

On the other hand, by using the representation formulas of solutions with
layer potentials and Plemelji–Sokhotskii formulas, one reduces both, the Dirich-
let and the Neumann BVPs to boundary integral equations with positive defi-
nite symbol in the Bessel potential spaces where the operators act in the spaces

H̃1/2(Σ) → H−1/2(Σ) or H̃−1/2(Σ) → H1/2(Σ) (cf. (2.6) and (2.8)). Those can
also be studied with the help of results from [12] (lifting in the Bessel potential
spaces and pseudo-differential operators with locally sectorial symbols).

We shall see later (in the proof of Theorem 5.1) that the crucial terms in these
formulas At−1W−1

t−1,Σ and AtW
−1
t,Σ can be interpreted as very particular extension

operators or operators of the form of a composition Π� where Π is a particular pro-
jector and � an arbitrary extension of a functional from H±1/2(Σ) to a functional
in H±1/2.

3. Some results on general Wiener–Hopf operators

A general Wiener–Hopf operator (also abbreviated by WHO) is given by

W = P2A|P1X (3.1)

where A : X → Y is a bounded linear operator acting in Banach spaces and
P1 ∈ L(X), P2 ∈ L(Y ) are projectors, i.e., P 2

j = Pj , j = 1, 2. By convention, W is
regarded as an operator from P1X = imP1 into P2Y = imP2, although, P2 acts
into Y , i.e., strictly speaking, not into P2Y (cf. [27, Chapter III]). This convention
will be applied and referred to in the sequel for convenience (and following the
tradition). For practical reasons we enlarge the convention by identifying in some
formulas W with P2 AP1 as an operator acting between the full spaces. Occa-
sionally we will also consider W−1 as acting on the full space, i.e., we consider
P1W

−1P2 = P1(P2A|P1X)−1P2. This makes some formulas more compact.

The notation (3.1) was introduced in [10, 33], first in a symmetric setting
where X = Y and P1 = P2 = P for operators in Hilbert spaces, and later in the
asymmetric setting of (3.1) [36, 37]. Main objective in those publications was the
(generalized) inversion of W by an operator factorization of A (assuming that A is
invertible). Here we study a completely different (abstract) idea, presented by A.F.
dos Santos [30, 31], originally connected to more special applications [24, 25, 39].

3.1. Identification of general Wiener–Hopf operators

The connection between classical WHOs (2.1) and general WHOs (3.1) is given
via a continuous extension operator

Es
Σ : Hs(Σ)→ Hs(Rn) (3.2)
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provided it exists for Σ ⊂ Rn (see Section 1), namely by the identification

X = Hr , Y = Hs

P1X = Hr
Σ , P2 = Es

Σ rΣ

A = F−1 φ · F : Hr → Hs.

(3.3)

We observe, in the identification of a general WHO, that not the full defini-
tions of P1 and P2 are relevant but only imP1 and kerP2. The domain domW of
W is a complemented subspace of X and can be seen as the image of any projector
P with the same image imP = domW = imP1 (and arbitrary complement for
the kernel), i.e.,

PP1 = P1 , P1P = P. (3.4)

Further, if P2 and Π are projectors with the same kernel, then the following two
WHOs are equivalent:

W = P2A|P1X ∼ W̃ = ΠA|P1X = ΠA|PX (3.5)

because

ΠP2 = Π , P2Π = P2. (3.6)

In the classical case, Π reflects the variety of possible extension operators. In
Hilbert spaces we conclude easily the following interesting result:

Proposition 3.1. Let W = P2A|P1X be a general WHO (see (3.1)) where X,Y are
Hilbert spaces. Then

W ∼ W̃ = ΠA|PX (3.7)

where P and Π are orthogonal projectors.

Proof. It is well known that the orthogonal projectors P onto P1X and Π along
(I − P2)Y exist. Hence we have the equivalence relation

W = P2A|P1X = P2 ΠA|PX P |P1X = P2|ΠY W̃ P |P1X

between W and W̃ where the outer factors are bijective in the sense of the above-
mentioned convention. �

The foregoing result will be used in Section 4 for the construction of certain
non-orthogonal projectors (in the case k /∈ iR) based upon the knowledge of corre-
sponding orthogonal projectors with the same image (resulting from Lemma 4.2),
by an approximation argument.

Focusing on (generalized) inverses, we obtain in a similar way:

Proposition 3.2. Let W , W̃ be general WHOs related by (3.4)–(3.6) and let W̃− :

ΠY → PX be a generalized inverse of W̃ . Then a generalized inverse of W is
given by

W− = P1|PXW̃−Π|P2Y . (3.8)

Proof. By verification WW−W = W . �
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Clearly the statement includes the cases of one-sided invertibility, Fredholm-
ness, and invertibility that is needed in this paper.

Now, the identification of the general WHO W = P2Aφ|P1X with the Eskin
type WHO is given by the equivalence relations

Es
ΣWφ,Σ = W , Wφ,Σ = rΣW.

Consequently, in case of invertible WHOs

W−1
φ,Σ = W−1Es

Σ , AφW
−1
φ,Σ = AφW

−1Es
Σ

which makes the connection with Theorems 2.3 and 2.4.

Another relationship between WHOs turns out to be very important in what
follows. Given a general WHO (3.1), where now A is assumed to be boundedly
invertible, and let the complemented projectors be denoted by Q1 = IX − P1 and
Q2 = IY − P2, respectively, we call

W∗ = Q1A
−1|Q2Y : Q2Y → Q1X (3.9)

the WHO associated with W . This notation was introduced in [10] for symmetric
and in [36] for asymmetric setting, respectively. In a different context (realization
theory, minimal factorization) it was called an “indicator” ofW , thinking of various
possibilities of extending W to an operator matrix

A =

(
W ∗
∗ ∗

)
, (3.10)

see [1, 2] for details.

3.2. A geometric perspective

Following an idea of A.F. dos Santos [30, 31] (which has roots in [10, 34] and
[24]) we study a “geometric relation” between AP1X and Q2Y . In contrast to the
existing literature we shall base this consideration upon the following result, which
seems to be still unpublished [2] but very efficient.

Lemma 3.3. Given two pairs of complementary projectors in Banach spaces, P1,
Q1 = I − P1 ∈ L(X), P2, Q2 = I − P2 ∈ L(Y ) and an invertible operator
A ∈ L(X,Y ), the following operator factorization is valid:(

P2AP1 0
0 Q2

)
=

(
P2AP1 0
Q2AP1 Q2

) (
P1 0

−Q2AP1 Q2

)
=

(
P2AP1 P2AQ1

Q2AP1 Q2AQ1

)(
P1 0
0 Q1A

−1Q2

)
(
P1 P1A

−1Q2

0 Q2

)(
P1 0

−Q2AP1 Q2

)
.

(3.11)

Proof. The formula can be verified easily. �
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Remark 3.4. Note that the matrix operator on the left of (3.11) acts as

M : P1X ⊕Q2Y → P2Y ⊕Q2Y ∼= Y,

i.e., not from X into Y in contrast to the first factor of the second line. For the
first line of (3.11) we do not need the invertibility of A. It would be more adequate
to write P2A|P1X instead of P2AP1 etc. We avoided this just for cosmetic reasons
(see the convention).

Theorem 3.5 (Ferreira dos Santos 1988). Let W be a general WHO, given by (3.1)
where A is injective. Then W is invertible if and only if AP1X and Q2Y are
complemented subspaces of Y , in brief

AP1X ⊕ Q2Y = Y. (3.12)

If A is invertible we equivalently have

P1X ⊕ A−1Q2Y = X. (3.13)

Proof. Formula (3.12) is an interpretation of the first part of (3.11) if one takes
into account that P2AP1 +Q2AP1 = AP1 and that the last factor in the first line
of (3.11) is invertible. The second conclusion (3.13) is then evident. �

Corollary 3.6. Let W = P2A|P1X : P1X → P2Y be a general WHO with A : X →
Y being invertible. Assume that W is invertible (or, equivalently (3.12) holds).
Then the inverse W−1 : P2Y → P1X can be represented by

W−1 = A−1Π|P2Y where Π projects ontoAP1X along Q2Y

= PA−1|P2Y where P projects ontoP1X along A−1Q2Y .
(3.14)

Moreover, in this case these projectors are given by

Π = AW−1 P2 , P = W−1 P2 A (3.15)

as operators acting in Y and X, respectively.

Remark 3.7. For the symmetric setting (X = Y, P1 = P2 = P ) Theorem 3.5 was
proved in [10]. There are further generalizations to the case where W is Fredholm,
e.g., see [30, 31]. Another generalization to the case where W is generalized invert-
ible might be possible by ideas of [37], we suppose. However, they are not needed
here.

The formulas (3.14) imply that P = A−1ΠA, i.e., it obviously suffices to
construct one of the two projectors P and Π in order to invert W .

3.3. Matrical coupling

Let us recall two definitions and a few known results. Two bounded linear operators
in Banach spaces S ∈ L(X1, Y1) , T ∈ L(X2, Y2) are said to be matrically coupled,
if there is an invertible operator matrix (with suitable entries ∗) such that(

S ∗
∗ ∗

)
=

(
∗ ∗
∗ T

)−1

. (3.16)
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Two bounded linear operators in Banach spaces S and T are said to be
equivalent after extension, in brief

S ∼∗ T, (3.17)

if there exist Banach spaces Z1, Z2 and linear homeomorphisms E,F such that(
S 0
0 IZ1

)
= E

(
T 0
0 IZ2

)
F. (3.18)

Example. Looking at Lemma 3.3 and Remark 3.4 we can interpret the first line
of (3.11) as

W ∼∗ (AP1|Q2) : P1X ⊕Q2Y → Y. (3.19)

In fact, the relation presented in the first line of (3.11) may be viewed as
a particular form of an equivalence after extension relation since the extension is
made from one side only. Namely, we have there

W ⊕ IQ2 ∼ (AP1|Q2), (3.20)

which is a so-called equivalence after one-sided extension. The equivalence after
one-sided extension concept, being stronger than the equivalence after extension, is
intimately related with the Schur coupling notion [5, 32]. Schur coupled operators
allow even more direct relationships between their null spaces and range spaces
than in the equivalence after extension relation (cf. [3, §2–3] for extra details and
still existing open problems within the Schur coupling theory).

We also would like to point out that in [46], Chapter 0 by S. Puntanen and
G.P.H. Styan, we may find a very pleasant historical introduction about the Schur
complement. There, the last formula of page 4 presents in fact an equivalence
after one-sided extension which yields a very direct proof of the famous Schur
(determinant) lemma [32].

Theorem 3.8 (Bart–Tsekanovsky 1991). Let S and T be bounded linear operators

in Banach spaces. Then S
∗∼ T if and only if S and T are matrically coupled.

Remark 3.9. The importance of this theorem for us consists in the consequence,
that an inverse of T can be computed from an inverse of S (and vice versa, if E−1

and F−1 are known). This is obvious from (3.18) but not from (3.16) – and was a
celebrated fact in the 1980s [1].

The sufficiency (“if”) part was already proved in [1], the necessity part (“only
if”) later in [4].

However it was observed in [2] that the sufficiency part in the symmetric case
(where X = Y, P1 = P2) is an interpretation of a well-known formula, see, e.g.,
[17, 29]

PAP +Q = (AP +Q)(I −QAP ) = A(P +A−1Q)(I −QAP )

= A(P +QA−1Q)(I + PA−1Q)(I −QAP ).
(3.21)

In the asymmetric case, it is a consequence of the formula (3.11), which can be
regarded as a direct generalization of (3.21).
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At the end, the second (necessity) part of Theorem 3.8 is not so evident,
particularly the construction of a coupling relation from an equivalence after ex-
tension relation, see [4]. However the conclusion that is most important in our
applications can be proved independently and more directly as follows.

Theorem 3.10 (Speck 1985). Let S and T be bounded linear operators in Banach
spaces which are matrically coupled, i.e., S = W = P2A|P1X and T = W∗ =
Q1A

−1|Q2Y in the above notation. Further let V be a generalized inverse of W ,
i.e., WVW = W . Then a generalized inverse of W∗ is given by

V∗ = Q2(A−AP1V P2A)|Q1X . (3.22)

Proof. Formula (3.22) is a consequence of the first part of Theorem 3.8 (matrically
coupled operators are equivalent after extension) and formula (3.11) that implies:
a generalized inverse of W yields a generalized inverse of the matrix on the left
which yields a generalized inverse of the second factor of the second line which
yields a generalized inverse of W∗. �

An earlier detailed and independent proof can be found in [37], pp. 21–22.
Note that the present proof is constructive. In [37] the formula (3.22) was just
guessed and verified. Clearly it includes the cases of one-sided invertibility, Fred-
holmness, and invertibility that is needed here.

4. Construction of the projectors P and Π onto/along H
±1/2
Σ

In order to determine the WHO inverses needed in Theorem 2.3 and 2.4, we are
now going to calculate the corresponding projectors (related by Corollary 3.6).
Clearly all these operators exist and are unique as seen before in the introduction
and in Theorem 3.5.

For convenience let us recall the relevant notation. Actually there appear
various sceneries: (1) The abstract setting (with orthogonal and non-orthogonal
projectors), (2) the concrete realizations (of Section 3.1) where Σ is an E-domain
(with two cases concerning the Dirichlet and the Neumann problem, respectively),
and (3) the special situations where Σ has particular form (half-plane, convex
PCD, etc.). In the abstract setting we continue to consider the projectors

Π onto AP1X along Q2Y

P onto P1X along A−1Q2Y
(4.1)

where A ∈ L(X,Y ) is boundedly invertible, P1 ∈ L(X), P2 ∈ L(Y ) arbitrary pro-
jectors and Q1 = IX − P1, Q2 = IY − P2. Using partly the same letters (for iden-
tification) we further consider the following realization where Σ is an E-domain,
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s ∈ R and

A = At2s = F−1 t2s · F : Hs(R2) → H−s(R2)

P1 is any projector in Hs(R2) onto Hs
Σ (4.2)

P2 is any projector in H−s(R2) along H−s
Σ′ .

For the Dirichlet problem we have A = At−1 , i.e., s = −1/2, for the Neumann
problem A = At, i.e., s = 1/2. However, many of the following considerations
work for general s ∈ R.

The simplest case appears when Σ is a half-plane and k = i. Here we obtain
formulas in closed analytical form and orthogonal projectors as follows:

Example. Consider the half-plane Σ = R2
1+ = {x ∈ R2 : x1 > 0}, the (orthogonal)

projectors P+ = �0r+ : L2(R2) → L2(R2) onto L2
Σ = L2

R2
1+
, P− = I − P+ and the

Bessel potential operators [11, 12, 16] of order s ∈ R:

Λs
+ = Aλs

+
, λs

+(ξ) =

(
ξ1 + i

√
ξ22 + 1

)s

, ξ ∈ R2

Λs
− = Aλs

− , λs
−(ξ) =

(
ξ1 − i

√
ξ22 + 1

)s

, ξ ∈ R2.

For any s ∈ R we find the orthogonal projectors [7]

P s
+ = Λ−s

+ P+ Λs
+ onto Hs

Σ

P s
− = Λ−s

− P− Λs
− onto Hs

Σ′

Πs
+ = Λ−s

− P+ Λs
− along Hs

Σ′

Πs
− = Λ−s

+ P− Λs
+ along Hs

Σ.

Hence P s
+ +Πs

− = IHs and P s
− +Πs

+ = IHs .

If we specify Σ = R2
1+ = {x ∈ R2 : x1 > 0} and k = i in the second scenery,

then P1 = P s
+ and P2 = Π−s

+ satisfy (4.2). If we specify moreover A = At2s in the

first scenery, then P = P1 = P s
+ and Π = P2 = Π−s

+ satisfy (4.1).

The projector �0r+ in L2(R2) coincides with the multiplication by the char-
acteristic functions χ+ of the half-space R2

1,+. This observation can be generalized

to �0rΣ acting in the spaces Hs(R2) if |s| < 1/2 provided Σ is a Lipschitz domain
or an E-domain in R2, e.g., instead of the half-space R2

1,+.

4.1. Preliminaries

First we mention two facts which are independent of the choice of Σ. The first is
a consequence of (1.12), the second is known from [19].

Lemma 4.1. The projectors Π, P of (4.1) in the situation (4.2) are orthogonal with
respect to the inner product (1.12) if k = i.

Proof. Orthogonality of the two projectors is equivalent to the fact that

〈Atϕ, ψ〉−s = 0 for ϕ ∈ Hs
Σ , ψ ∈ H−s

Σ′ .
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It suffices to consider smooth, rapidly decreasing functions, which are dense in
these spaces, ϕ ∈ SΣ =

{
ϕ ∈ S : suppϕ ⊂ Σ

}
and ψ ∈ SΣ′ . These must satisfy∫

R2

Aφϕ(ξ)ψ(ξ)dξ = 0 where φ =

(
t(ξ)

λ(ξ)

)2s

=
(ξ2 − k2)s

(ξ2 + 1)s
.

Now suppAφϕ ⊂ Σ for all ϕ ∈ SΣ with suppϕ ⊂ Σ obviously holds if k = i, i.e.,
t = λ. �
Lemma 4.2 (Halmos 1982, Problem 96). Given any Hilbert space H and orthogonal
projectors p1, p2, . . . , pm ∈ L(H), the orthogonal projector onto im p1 ∩ im p2 is
given by the so-called infimum of the two projectors:

p1 ∧ p2 =

∞∏
j=1

(p1p2)
j = lim

N→∞

N∏
j=1

(p1p2)
j (4.3)

which converges strongly. The orthogonal projector p onto im p1 ∩ · · · ∩ im pm is
given by

p = p1 ∧ · · · ∧ pm = ∧mj=1 pj (4.4)

that is defined by iteration and represents an associative operation.

4.2. Case k = i, convex PCDs

In this section we assume At = Λ = Aλ, i.e., k = i (see (1.13)) and use the
following brief notation. For any open half-plane Σ ⊂ R2 let

MΣ : Σ → R2
1+ = {x ∈ R2 : x1 > 0} (4.5)

be the canonical linear transformation that transforms Σ onto R2
1+, i.e., by a

minimal dilation plus a rotation in the mathematical positive sense, say. Moreover
let

JΣf(x) = f(MΣ x) , x ∈ Σ or x ∈ R2, (4.6)

for functions and distributions defined on Σ or defined on R2, as well.

Theorem 4.3. Let Σ be a convex PCD, i.e., Σ = ∩mj=1Σj with half-planes Σj ⊂
R2, j = 1, . . . ,m and s ∈ R. Then the orthogonal projector P s

Σ onto P1X = Hs
Σ

projects along Λ−2sH−s
Σ′ and is given by

P s
Σ = ∧mj=1P

s
Σj

P s
Σj

= J−1
Σj

P s
+ JΣj , j = 1, . . . ,m.

(4.7)

The orthogonal projector Π onto Λ2s Hs
Σ projects along Q2Y = H−s

Σ′ and is given by

Π−s
Σ = Λ2s P s

Σ Λ−2s. (4.8)

Proof. As Hs
Σ is a closed subspace of the Hilbert space Hs, it is complemented

and the orthogonal projector onto Hs
Σ exists and is unique. Lemma 4.2 implies

that the orthogonal projector onto Hs
Σ is given by formula (4.7).

Every projector P s
Σj

projects along Λ−2sH−s
Σ′

j
. Since Σ =

⋂
Σj , the orthogonal

projector onto Hs
Σ projects along Λ−2sH−s

Σ′ , because Σ′ = int
⋃
Σ′

j .
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The second part of the theorem with formula (4.8) is a consequence of the
first part, exchanging the roles of Σ and Σ′, of s and −s, and thinking of the
complementary projector (exchanging “onto” and “along”). �

4.3. Case k = i, arbitrary PCDs

Theorem 4.4. Let Σ ⊂ A2, i.e., Σ = int
⋃

j=1,...,n closΣj where Σj are convex
PCDs, and assume that s ∈ R. Then the orthogonal projector P s

Σ onto Hs
Σ projects

along Λ−2sH−s
Σ′ , i.e., P s

Σ = I −Πs
Σ′ and is given by

P s
Σ = I − ∧mj=1Π

s
Σ′

j
= I − ∧mj=1(I − P s

Σj
) (4.9)

with P s
Σj

taken from Theorem 4.3 (representing each Σj as intersection of half-

planes).

Proof. The assumption Σ ⊂ A2 implies that Σ′ =
⋂m

j=1 Σ
′
j where Σ′

j = R2 \
Σj . Looking at (4.9), P s

Σj
projects onto Hs

Σj
along Λ−2sH−s

Σ′
j
. Hence I − P s

Σj

projects along Hs
Σj

onto Λ−2sH−s
Σ′

j
and ∧(I − P s

Σj
) is the orthogonal projector

onto
⋂
(Λ−2sH−s

Σ′
j
) = Λ−2s

⋂
H−s

Σ′
j
, thus projecting along Hs

Σ. This implies that P s
Σ

as given by (4.9) projects orthogonally onto Hs
Σ. �

4.4. Case k ∈ iR+, i.e., �ek = 0, �mk > 0

In this section we show that the previous results remain valid for k ∈ iR+ if we
change the topology to another equivalent one. I.e., we remain in the same Hilbert
spaces but infinite series and infinite products converge in a different sense, with
respect to a modified norm.

Definition 4.5.
〈ϕ, ψ〉s,k = 〈As

tϕ , As
tψ〉0

=

∫
Rn

As
tϕ(x) · As

tψ(x) dx

=

∫
Rn

ϕ̂(ξ) ψ̂(ξ) |ξ2 − k2|s dξ.

(4.10)

Proposition 4.6. For any k ∈ C \ R, Hs,k(Rn) is a Hilbert space with norm

‖ϕ‖s,k = 〈ϕ, ϕ〉1/2s,k (4.11)

that is equivalent to the norm of Hs(Rn).

Proof. It is a consequence of the fact that As
t : Hs(Rn) → L2(Rn) is a linear

homeomorphism. �

Remark 4.7. Obviously we haveHs,i(Rn) = Hs(Rn). The spacesHs,k(Σ), H̃s,k(Σ),

Hs,k
Σ may be defined by analogy to the spaces where k = i. Evidently the analogue

of Proposition 4.6 holds for these spaces, as well.
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Remark 4.8. The spaces Hs(Rn) = Hs,i(Rn) and Hs,k(Rn) are isomorphic for all
k ∈ iR and the norms in these spaces are equivalent, because both of them are
isomorphic to L2(Rn). The isomorphism is performed by the Fourier convolution
operator Aωs,k

= F−1ωs,kF with the symbol

ωs,k(ξ) :=

(
ξ2 − k2

ξ2 + 1

)s

which is invertible by Aω−1
s,k

.

Proposition 4.9. For any domain Σ, any number n = 2, 3, . . . and s ∈ R the

subspaces A2s
t Hs,k

Σ and H−s,k
Σ′ where Σ′ = int (R2 \ Σ) are orthogonal to each

other if k ∈ iR+.

Proof. The algebraic decomposition

A2s
t Hs,k

Σ +̇H−s,k
Σ′ = H−s,k (4.12)

is clear from the case k = i, see Section 3.2. By definition Hs,k
Σ and H−s,k

Σ′ are

closed subspaces and, for ϕ ∈ Hs,k
Σ , ψ ∈ H−s,k

Σ′ , we have

〈A2s
t ϕ , ψ〉−s,k = 〈As

tϕ , A−s
t ψ〉0

=

∫
Rn

ϕ̂(ξ)(ξ2 − k2)s/2 ψ̂(ξ) (ξ2 − k2)−s/2 dξ
(4.13)

which disappears for any such pair ϕ, ψ if k2 is real. �

Evidently, the analogue of Theorem 4.4 for k ∈ iR+ instead of k = i is valid,
as well.

Corollary 4.10. Let Σ be a PCD, k ∈ iR+ and s ∈ R. Then the following orthogonal
projectors can be presented explicitly:

P s
Σ = I − ∧mj=1Π

s
Σ′

j
= I − ∧mj=1(I − P s

Σj
) onto Hs

Σ

P s
Σ′ = I − A−2s

t P−s
Σ A2s

t onto Hs
Σ′

Πs
Σ = A−2s

t P−s
Σ A2s

t along Hs
Σ′

Πs
Σ′ = I − P s

Σ along Hs
Σ

where the decomposition of Σ from Theorem 4.3 is used and the infinite products
converge in the sense of the norm (4.11).

4.5. Case �ek �= 0, �mk > 0

Now a modification of the scalar product (4.10) does not help anymore. Thus
we shall use a different idea coming up from [24] to present the (non-orthogonal)

projectors Π
±1/2
Σ etc. by Neumann series approximation using the orthogonal pro-

jectors constructed before. Therefore we extend the notation by

Πs
Σ,k – the projector onto At−2sH−s

Σ along Hs
Σ′

Πs
Σ,i – the projector onto Λ−2sH−s

Σ along Hs
Σ′

(4.14)
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where the latter coincides with the first for k = i and is orthogonal. Further
projectors can be defined and treated by analogy. So we have:

P s
Σ,k – the projector onto Hs

Σ along At−2sH−s
Σ′

P s
Σ,k = I − Πs

Σ′,k
(4.15)

which we employ basically for s = ±1/2 and call them briefly Π-projectors and
P-projectors.

Proposition 4.11. Abbreviate Π = Π
1/2
Σ,i . Then the projector Π

1/2
Σ,k is given by

Π
1/2
Σ,k = At−1 ΛW−1

0 Π , W0 = ΠAt−1 Λ|ΠH1/2 (4.16)

(using the convention) where the inverse W−1
0 is given by a Neumann series.

Proof. The operator W0 = ΠAt−1 Λ|ΠH1/2 is invertible by a Neumann series, since
%eAt−1 Λ > 0 and Π is orthogonal, see [10, 24, 37].

The operator Π
1/2
Σ,k in (4.16) is obviously linear, bounded and idempotent,

hence it is a projector. W−1
0 maps onto ΠH1/2 = Λ−1H

−1/2
Σ , thus At−1 ΛW−1

0 Π

maps onto At−1H
−1/2
Σ . Finally its kernel is obviously H−s

Σ′ and the proof is com-
plete. �

The following result is analogous.

Proposition 4.12. Abbreviate Π = Π
−1/2
Σ,i . Then the projector Π

−1/2
Σ,k is given by

Π
−1/2
Σ,k = At Λ

−1W−1
0 Π , W0 = ΠAt Λ

−1|ΠH−1/2 (4.17)

(using the convention) where the inverse W−1
0 is given by a Neumann series.

4.6. Equivalent constructions

Here we show that the construction of various involved operators is equivalent, i.e.,
they can be obtained easily from each other. As a matter of fact, this has nothing
to do with the form of Σ nor with Wiener–Hopf factorization, but with the features
exposed in Sections 3.2 and 3.3: the geometric perspective and matrical coupling.

Theorem 4.13. Let Σ be an E-domain. Consider the Dirichlet problem for Σ (as
described in (1.3)–(1.5)) and the Neumann problem for Σ′ (by analogy). Then the
two resolvent operators (see (2.7), (2.9)), the WHOs therein, and corresponding
P-projectors and Π-projectors (see (4.14), (4.15)) can be computed from each other.

Proof. Clearly each of the P-projectors yield the corresponding Π-projector by
definition, see (4.15), and the corresponding WHO inverses by Corollary 3.6 which
yield the corresponding resolvent operators, see Theorem 2.3 and Theorem 2.4.
For clarity we summarize these very direct relations:

P
−1/2
Σ,k = I − Π

−1/2
Σ′,k = W−1

t−1,Σ rΣ At−1 onto H
−1/2
Σ along AtH

1/2
Σ′

P
1/2
Σ′,k = I − Π

1/2
Σ,k = W−1

t,Σ′ rΣ At onto H
1/2
Σ′ along At−1H

−1/2
Σ
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according to the WHO inverses (– appearing in)

W−1
t−1,Σ = P

−1/2
Σ,k At � – Dirichlet problem for Σ

W−1
t,Σ′ = P

1/2
Σ′,k At−1 � – Neumann problem for Σ′.

Herein � denotes any extension operator from H1/2(Σ) into H1/2(R2) or from
H−1/2(Σ) into H−1/2(R2), respectively.

Conversely, from the resolvent operators we obtain the corresponding projec-
tors and WHO inverses by composition with trace and symmetrization operators,
e.g., W−1

t−1,Σ : g �→ u �→ u+
0 − u−

0 etc. (see Theorem 2.3 and Theorem 2.4).

Now the geometric perspective (see Theorem 3.5 and Corollary 3.6) implies
that the projectors in the above list are related by

P
−1/2
Σ,k = At Π

1/2
Σ,k At−1 . (4.18)

An alternative proof, instead of using (4.18), can be based upon the fact that
the two WHOs in the above scheme, W−1

t−1,Σ and W−1
t,Σ′ , are matrically coupled (see

Lemma 3.3). Again the relationship with the resolvent operators is evident from
the representation formulas. �

Exchanging the roles of Σ and Σ′ we observe that the operators corresponding
to the Dirichlet problem for Σ′ and the Neumann problem for Σ are related in a
similar way.

5. Explicit solution of the BVPs

We come to the final results in concrete form presenting the details of the proof
of Theorem 1.3.

Theorem 5.1. Let Σ ⊂ R2 be a PCD and k ∈ C , $mk > 0. The resolvent operators
for the Dirichlet and Neumann problems are given by Theorem 2.3 and Theorem
2.4, respectively, where

W−1
t−1,Σ = At Π

1/2
Σ,k � = P

−1/2
Σ,k At � : H1/2(Σ)→ H

−1/2
Σ (5.1)

W−1
t,Σ = A−1

t Π
−1/2
Σ,k � = P

1/2
Σ,k A−1

t � : H−1/2(Σ)→ H
1/2
Σ (5.2)

with arbitrary extension operators � into H1/2 or H−1/2, respectively, and the
projectors are also explicitly given in

• Theorem 4.3 for convex PCDs and k = i,
• Theorem 4.4 for arbitrary PCDs and k = i,
• Corollary 4.9 for arbitrary PCDs and k ∈ iR+,
• Proposition 4.10 for arbitrary PCDs, $mk > 0, the Dirichlet problem,
• Proposition 4.11 for arbitrary PCDs, $mk > 0, the Neumann problem.

Proof. All that results directly from the previous as referred to. �
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Remark 5.2. There are few cases where the resolvent operators can be obtained in
closed analytical form (in a representation without infinite series and products).
Half-plane screens represent one of them, see Section 4. The possibility of applying
factorization methods to other screen problems with conical configurations is not
positively answered till now in the authors opinion (in contrast to wedge problems,
see [8, 14, 15, 41]).

Let us consider the special geometrical case where Σ is a cone, moreover con-
nected and convex. V.B. Vasil’ev proposed in his book [44] to solve the diffraction
problem by use of a so-called wave factorization of the function t(ξ) = (ξ2−k2)1/2

into two factors, holomorphic in certain tube domains. However, looking at the
explicit form of the two factors, it turns out that they vanish within the corre-
sponding tube domains, see [44], pages 28–29 and 38–39. This means that the given
factorization is not a wave factorization in the sense of the author’s own Definition
5.1 and therefore not helpful for the solution of the problem. The authors of the
present article do not know any other example from mathematical physics where
the method of wave factorization is applicable.

Other canonical screen problems such as the diffraction from a flat circular
disc (see [21, 45], for instance) end up with Fredholm integral equations and series
expansion, as well, but not with a solution in closed analytic form.

In view of the complexity of the derived formulas, some simplification can
be obtained for a screen that is complementary to a convex PCD by the following
corollaries. The idea is known as a sort of abstract Babinet principle [39].

Corollary 5.3. Let Σ be an E-domain. Assume that the inverse of Wt,Σ is known
(which provides the resolvent to the Neumann problem for Σ by Theorem 2.4). Then
the Dirichlet problem for Σ′ is uniquely solved by Theorem 2.4 where W−1

t−1,Σ′ is

obtained from Theorem 3.10, substituting V = W−1
t,Σ and the corresponding other

terms.

Corollary 5.4. Let Σ be an E-domain. Assume that the inverse of Wt−1,Σ is known
(which provides the resolvent to the Dirichlet problem for Σ by Theorem 2.3).
Then the Neumann problem for Σ′ is uniquely solved by Theorem 2.3 where W−1

t,Σ′

is obtained from Theorem 3.10, substituting V = W−1
t−1,Σ and the corresponding

other terms.

We finish with a result on the low regularity of solutions to the BVPs.

Theorem 5.5. Let Σ ⊂ R2 be a PCD, $mk > 0 and ε ∈]0, 1/2[.
I. If g ∈ H1/2+ε(Σ)2∼ and u ∈ H1(Ω) is a solution of the Dirichlet problem for Σ,
then u ∈ H1+ε(Ω), i.e., u± ∈ H1+ε(Ω±), see (1.2)–(1.5). Moreover the resolvent
operator (2.7) restricted to these spaces represents a linear homeomorphism:

Kε
D,Ω : H1/2+ε(Σ)2∼ → H1+ε(Ω). (5.3)

II. If g ∈ H−1/2+ε(Σ)2 and u ∈ H1(Ω) is a solution of the Neumann problem for Σ,
then u ∈ H1+ε(Ω), i.e., u± ∈ H1+ε(Ω±), see (1.2)–(1.5). Moreover the resolvent
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operator (2.7) restricted to these spaces represents a linear homeomorphism:

Kε
N,Ω : H−1/2+ε(Σ)2 → H1+ε(Ω). (5.4)

Proof. Following all the way long the foregoing construction of resolvent operators
we realize that there is no problem to include the parameter ε ∈]0, 1/2[. Notice that
there is no compatibility condition in the second statement II since H̃−1/2+ε(Σ) =
H−1/2+ε(Σ) for ε ∈]0, 1/2[. �

6. Open problems

At the end we would like to formulate some unsolved problems that we found
interesting.

Problem 6.1. How can we treat other boundary conditions like impedance, oblique
derivative etc.? It is known that these BVPs lead to WHOs of the form Wφ,Σ =
rΣAφ where the Fourier symbol φ is more complicated and a matrical coupling
relation and orthogonal projectors can not be seen.

Problem 6.2. In non-Hilbert spaces W s,p we have no orthogonality. Is there any
alternative approach, perhaps working with sesquilinear forms (as a generalization
of the Halmos Theorem)?

Problem 6.3. Replacing the Helmholtz equation by the Lamé or Maxwell equa-
tions, can we obtain analogous results considering matrix WHOs?

Problem 6.4. Slit domains and cracks may be tackled by certain space modifica-
tions. Are there any interesting new results, techniques, applications?

Problem 6.5. Arbitrary convex screens could be formally treated by an infinite
product ∧∞j=1Pj considering Σ as an intersection of infinitely many half-planes.
What about convergence?
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[27] S.G. Mikhlin and S. Prössdorf, Singular Integral Operators. Extended and partly
modified translation from the German by A. Böttcher and R. Lehmann. Springer,
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Abstract. We consider generalized Orlicz–Morrey spaces MΦ,ϕ(R
n) including

their weak versions. In these generalized spaces we prove the boundedness
of the Hardy–Littlewood maximal operator and Calderón–Zygmund singular
operators with standard kernel. In all the cases the conditions for the bound-
edness are given either in terms of Zygmund-type integral inequalities on ϕ(r)
without assuming any monotonicity property of ϕ(r), or in terms of supremal
operators, related to ϕ(r).
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1. Introduction

Inequalities involving classical operators of harmonic analysis, such as maximal
functions, fractional integrals and singular integrals of convolution type have been
extensively investigated in various function spaces. Results on weak and strong
type inequalities for operators of this kind in Lebesgue spaces are classical and
can be found for example in [3, 41, 42, 44]. Generalizations of these results to
Zygmund spaces are presented in [3]. An exhaustive treatment of the problem of
boundedness of such operators in Lorentz and Lorentz–Zygmund spaces is given
in [2]. See also [10, 11] for further extensions in the framework of generalized
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Lorentz–Zygmund spaces. As far as Orlicz spaces are concerned, we refer to the
books [21, 23, 37] and note that a characterization of Young functions A for which
the Hardy–Littlewood maximal operator or the Hilbert and Riesz transforms are
of weak or strong type in Orlicz space LA is known (see for example [5, 21]). In
[33, 44] conditions on Young functions A and B are given for the fractional integral
operator to be bounded from LA into LB under some restrictions involving the
growth and certain monotonicity properties of A and B (see also [5]).

Orlicz spaces, introduced in [34, 35], are generalizations of Lebesgue spaces
Lp. They are useful tools in harmonic analysis and its applications. For example,
the Hardy–Littlewood maximal operator is bounded on Lp for 1 < p <∞, but not
on L1. Using Orlicz spaces, we can investigate the boundedness of the maximal
operator near p = 1 more precisely (see [17, 18] and [5]).

In the study of local properties of solutions to of partial differential equa-
tions, together with weighted Lebesgue spaces, Morrey spaces Mp,λ(Rn) play an
important role, see [12]. Introduced by C. Morrey [29] in 1938, they are defined by
the norm

‖f‖Mp,λ
:= sup

x, r>0
r−

λ
p ‖f‖Lp(B(x,r)), (1.1)

where 0 ≤ λ ≤ n, 1 ≤ p < ∞. Here and everywhere in the sequel B(x, r) stands
for the ball in Rn of radius r centered at x. Let |B(x, r)| be the Lebesgue measure
of the ball B(x, r) and |B(x, r)| = vnr

n, where vn = |B(0, 1)|.
Note that Mp,0 = Lp(Rn) and Mp,n = L∞(Rn). If λ < 0 or λ > n, then

Mp,λ = Θ, where Θ is the set of all functions equivalent to 0 on Rn.

We also denote by WMp,λ ≡ WMp,λ(Rn) the weak Morrey space of all
functions f ∈WLloc

p (Rn) for which

‖f‖WMp,λ
= sup

x∈Rn, r>0
r−

λ
p ‖f‖WLp(B(x,r)) <∞.

We refer in particular to [24] for the classical Morrey spaces. Observe that
Morrey spaces with rλ replaced by a function ϕ(r) first appeared in [9] and [46];
we also refer to the survey paper [36] for more various definitions of generalized
Morrey spaces and note that study of classical operators of harmonic analysis in
generalized Morrey spaces started in [13], [14], [30], up to authors’ knowledge.

Last two decades there is an increasing interest to the study of variable ex-
ponent spaces and operators with variable parameters, in such spaces, we refer to
the recent books [6], [8] and surveying papers [7], [20], [22], [38].

Orlicz–Morrey spaces and maximal and singular operators in such spaces
were studied in [31], [32]. The most general spaces of such a type, Musielak–
Orlicz–Morrey spaces, unifying the classical and variable exponent approaches,
were studied in the recent paper [28], where potential operators were studied to-
gether with the corresponding Sobolev embeddings.

In this paper we study the maximal and singular operators in Orlicz–Morrey
spaces, introduced in a less generality, but advance in the following two directions:
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1) we make minimal assumptions on the functions defining the space avoiding
any kind of monotonicity or growth condition, required, for instance, in [30],
[31], [32],

2) we prove weak-type inequalities.

Our conditions for the boundedness are sufficient. We do not discuss their
necessity in this paper but hope to do that in another paper.

We define the generalized Orlicz–Morrey space MΦ,ϕ(Rn) in question by the
norm

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 ‖f‖LΦ(B(x,r)).

where ϕ(x, r) be a positive measurable function on Rn × (0,∞) and Φ a Young
function, but refer to Section 2 for all the precise definitions and comparison with
other norms.

The main purpose of this paper is to find sufficient conditions on general
Young function Φ and functions ϕ1, ϕ2 ensuring that the operators under consider-
ation are of weak or strong type from generalized Orlicz–Morrey spacesMΦ,ϕ1(R

n)
into MΦ,ϕ2(R

n). Our results for the maximal operator are presented in Section 4,
while Section 5 deals with singular integrals.

1.1. Operators under consideration

We study the following operators: the maximal operator

Mf(x) = sup
r>0

1

|B(x, r)|

∫
B(x,r)

|f(y)|dy,

Calderón–Zygmund type singular operators; by this we mean operators bounded
in L2(Rn) of the form

Tf(x) =

∫
Rn

K(x, y)f(y)dy,

whereK(x, y) is a “standard singular kernel”, that is, a continuous function defined
on {(x, y) ∈ Rn × Rn : x �= y} and satisfying the estimates

|K(x, y)| ≤ C|x− y|−n for all x �= y,

|K(x, y)−K(x, z)| ≤ C
|y − z|σ
|x− y|n+σ

, σ > 0, if |x− y| > 2|y − z|,

|K(x, y)−K(ξ, y)| ≤ C
|x− ξ|σ
|x− y|n+σ

, σ > 0, if |x− y| > 2|x− ξ|.

Our main results are obtained in Theorems 4.6 and 5.5, where we use re-
cent results presented in Theorems 2.11 and 2.12 to obtain a generalization of
known conditions for the boundedness of maximal and singular operators in Orlicz–
Morrey spaces, it is given in terms of conditions (4.8) and (5.7), respectively,
without any assumption of monotonicity type on the functions ϕ1 and ϕ2 as, for
instance, used in [28], [31] and other sources.
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2. Some preliminaries on Orlicz and Orlicz–Morrey spaces

Definition 2.1. A function Φ : [0,+∞]→ [0,∞] is called a Young function if Φ is
convex, left-continuous, lim

r→+0
Φ(r) = Φ(0) = 0 and lim

r→+∞Φ(r) = Φ(∞) =∞.

From the convexity and Φ(0) = 0 it follows that any Young function is
increasing. If there exists s ∈ (0,+∞) such that Φ(s) = +∞, then Φ(r) = +∞ for
r ≥ s.

We say that Φ ∈ Δ2, if for any a > 1, there exists a constant Ca > 0 such
that Φ(at) ≤ CaΦ(t) for all t > 0. A Young function Φ is said to satisfy the
∇2-condition, denoted also by Φ ∈ ∇2, if

Φ(r) ≤ 1

2k
Φ(kr), r ≥ 0,

for some k > 1. The function Φ(r) = r satisfies the Δ2-condition but does not sat-
isfy the ∇2-condition. If 1 < p <∞, then Φ(r) = rp satisfies both the conditions.
The function Φ(r) = er − r − 1 satisfies the ∇2-condition but does not satisfy the
Δ2-condition. The following two indices

qΦ = inf
t>0

tϕ(t)

Φ(t)
, pΦ = sup

t>0

tϕ(t)

Φ(t)
,

of Φ, where ϕ(t) is the right-continuous derivative of Φ, are well known in the
theory of Orlicz spaces. As is well known,

pΦ <∞ ⇐⇒ Φ ∈ Δ2,

and the function Φ is strictly convex if and only if qΦ > 1. If 0 < qΦ ≤ pΦ < ∞,

then Φ(t)
tqΦ is increasing and Φ(t)

tpΦ is decreasing on (0,∞).

Lemma 2.2. ([21], Lemma 1.3.2) Let Φ ∈ Δ2. Then there exist p > 1 and b > 1
such that

Φ(t2)

tp2
≤ bΦ(t1)

tp1
for 0 < t1 < t2.

Recall that a function Φ is said to be quasiconvex if there exist a convex
function ω and a constant c > 0 such that

ω(t) ≤ Φ(t) ≤ cω(ct), t ∈ [0,∞).

Let Y be the set of all Young functions Φ such that

0 < Φ(r) < +∞ for 0 < r < +∞ (2.1)

If Φ ∈ Y, then Φ is absolutely continuous on every closed interval in [0,+∞) and
bijective from [0,+∞) to itself.

Definition 2.3 (Orlicz Space). For a Young function Φ, the set

LΦ(R
n) =

{
f ∈ Lloc

1 (Rn) :

∫
Rn

Φ(k|f(x)|)dx < +∞ for some k > 0

}
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is called Orlicz space. The space Lloc
Φ (Rn) endowed with the natural topology is

defined as the set of all functions f such that fχ
B
∈ LΦ(Rn) for all balls B ⊂ Rn.

Note that, LΦ(Rn) is a Banach space with respect to the norm

‖f‖LΦ = inf

{
λ > 0 :

∫
Rn

Φ
( |f(x)|

λ

)
dx ≤ 1

}
,

see, for example, [37], Section 3, Theorem 10, so that∫
Rn

Φ
( |f(x)|
‖f‖LΦ

)
dx ≤ 1.

For a measurable set Ω ⊂ Rn, a measurable function f and t > 0, let

m(Ω, f, t) = |{x ∈ Ω : |f(x)| > t}|.
In the case Ω = Rn, we shortly denote it by m(f, t).

Definition 2.4. The weak Orlicz space

WLΦ(R
n) = {f ∈ Lloc

1 (Rn) : ‖f‖WLΦ < +∞}
is defined by the norm

‖f‖WLΦ = inf
{
λ > 0 : sup

t>0
Φ(t)m

(f
λ
, t

)
≤ 1

}
.

For Young functions Φ and Ψ, we write Φ ≈ Ψ if there exists a constant
C ≥ 1 such that

Φ(C−1r) ≤ Ψ(r) ≤ Φ(Cr) for all r ≥ 0

If Φ ≈ Ψ, then LΦ(Rn) = LΨ(Rn) with equivalent norms. We note that, for Young
functions Φ and Ψ, if there exist C,R ≥ 1 such that

Φ(C−1r) ≤ Ψ(r) ≤ Φ(Cr) for r ∈ (0, R−1) ∪ (R,∞),

then Φ ≈ Ψ.
For a Young function Φ and 0 ≤ s ≤ +∞, let

Φ−1(s) = inf{r ≥ 0 : Φ(r) > s} (inf ∅ = +∞).

If Φ ∈ Y, then Φ−1 is the usual inverse function of Φ. We note that

Φ(Φ−1(r)) ≤ r ≤ Φ−1(Φ(r)) for 0 ≤ r < +∞.

For a Young function Φ, the complementary function Φ̃(r) is defined by

Φ̃(r) =

{
sup{rs− Φ(s) : s ∈ [0,∞)} , r ∈ [0,∞)

+∞ , r = +∞.
(2.2)

The complementary function Φ̃ is also a Young function and
˜̃
Φ = Φ. If Φ(r) = r,

then Φ̃(r) = 0 for 0 ≤ r ≤ 1 and Φ̃(r) = +∞ for r > 1. If 1 < p < ∞,

1/p + 1/p′ = 1 and Φ(r) = rp/p, then Φ̃(r) = rp
′
/p′. If Φ(r) = er − r − 1, then

Φ̃(r) = (1 + r) log(1 + r)− r.
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Remark 2.5. Note that Φ ∈ ∇2 if and only if Φ̃ ∈ Δ2. Also, if Φ is a Young
function, then Φ ∈ ∇2 if and only if Φγ be quasiconvex for some γ ∈ (0, 1) (see,
for example, [21], p. 15).

It is known that

r ≤ Φ−1(r)Φ̃−1(r) ≤ 2r for r ≥ 0. (2.3)

The following analogue of the Hölder inequality is known, see [45].

Theorem 2.6 ([45]). For a Young function Φ and its complementary function Φ̃,
the following inequality is valid

‖fg‖L1(Rn) ≤ 2‖f‖LΦ‖g‖LΦ̃
.

Note that Young functions satisfy the property

Φ(αt) ≤ αΦ(t) (2.4)

for all 0 < α < 1 and 0 ≤ t < ∞, which is a consequence of the convexity:
Φ(αt) = Φ(αt+ (1− α)0) ≤ αΦ(t) + (1− α)Φ(0) = αΦ(t).

The following lemma is valid.

Lemma 2.7 ([3, 25]). Let Φ be a Young function and B a set in Rn with finite
Lebesgue measure. Then

‖χ
B
‖WLΦ(Rn) = ‖χB

‖LΦ(Rn) =
1

Φ−1 (|B|−1)
.

In the next sections where we prove our main estimates, we use the following
lemma, which follows from Theorem 2.6 and Lemma 2.7.

Lemma 2.8. For a Young function Φ and B = B(x, r), the following inequality is
valid

‖f‖L1(B) ≤ 2|B|Φ−1
(
|B|−1

)
‖f‖LΦ(B).

Definition 2.9. (Orlicz–Morrey space). For a Young function Φ and 0 ≤ λ ≤ n, we
denote by MΦ,λ(R

n) the Orlicz–Morrey space, defined as the space of all functions
f ∈ Lloc

Φ (Rn) with finite quasinorm

‖f‖MΦ,λ
= sup

x∈Rn, r>0
Φ−1

(
r−λ

)
‖f‖LΦ(B(x,r)).

Note that MΦ,λ

∣∣
λ=0

= LΦ(Rn).

We also denote by WMΦ,λ(Rn) the weak Morrey space which consists of all
functions f ∈WLloc

Φ (Rn) for which

‖f‖WMΦ,λ
= sup

x∈Rn, r>0
Φ−1

(
r−λ

)
‖f‖WLΦ(B(x,r)) <∞,

where WLΦ(B(x, r)) denotes the weak LΦ-space of measurable functions f for
which

‖f‖WLΦ(B(x,r)) ≡ ‖fχB(x,r)
‖WLΦ(Rn).
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Definition 2.10 (Generalized Orlicz–Morrey Space). Let ϕ(x, r) be a positive mea-
surable function onRn×(0,∞) and Φ any Young function. We denote byMΦ,ϕ(Rn)
the generalized Morrey space, the space of all functions f ∈ Lloc

Φ (Rn) with finite
quasinorm

‖f‖MΦ,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 ‖f‖LΦ(B(x,r)).

It may be easily shown that ‖f‖MΦ,ϕ is a norm and MΦ,ϕ is a Banach space, for
any Young function Φ.

By WMΦ,ϕ(Rn) we denote the weak generalized Morrey space of all functions
f ∈WLloc

Φ (Rn) for which

‖f‖WMΦ,ϕ = sup
x∈Rn,r>0

ϕ(x, r)−1 ‖f‖WLΦ(B(x,r)) <∞.

If Φ satisfies the Δ2-condition, then the norm ‖f‖MΦ,ϕ is equivalent (see [28],
p. 416) to the norm

‖f‖MΦ,ϕ
= inf

{
λ > 0 : sup

x∈Rn,r>0
ϕ(x, r)−1

∫
B(x,r)

Φ
( |f(x)|

λ

)
dx ≤ 1

}
.

The latter was used in [28, 31, 32, 39], see also references there.

Definition 2.10 recovers the spaces MΦ,λ and WMΦ,λ under the choice ϕ(x, r) =
1/Φ−1

(
r−λ

)
and the spaces Mp,ϕ and WMp,ϕ under the choice Φ(r) = rp.

The following statement was proved in [1] (see also [4]).

Theorem 2.11. Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfies the condition

sup
r<t<∞

ess sup inf
t<s<∞ϕ1(x, s) t

−n/p ≤ C ϕ2(x, r) r
−n/p, (2.5)

where C does not depend on x and r. Then the maximal operator M is bounded
from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1 to WM1,ϕ2. Moreover, for p > 1

‖Mf‖Mp,ϕ2
� ‖f‖Mp,ϕ1

, and for p = 1 ‖Mf‖WM1,ϕ2
� ‖f‖M1,ϕ1

.

The following statement, containing results obtained in [13, 14, 15, 27, 30]
was proved in [1] (see also [16]).

Theorem 2.12. Let 1 ≤ p <∞ and (ϕ1, ϕ2) satisfies the condition∫ ∞

r

ess sup inf
t<s<∞ϕ1(x, s) t

−n/p dt

t
≤ C ϕ2(x, r) r

−n/p,

where C does not depend on x and r. Then the singular operator T is bounded
from Mp,ϕ1 to Mp,ϕ2 for p > 1 and from M1,ϕ1 to WM1,ϕ2. Moreover, for p > 1

‖Tf‖Mp,ϕ2
� ‖f‖Mp,ϕ1

, and for p = 1 ‖Tf‖WM1,ϕ2
� ‖f‖M1,ϕ1

.
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3. Some supremal and Hardy type inequalities

Let v be a weight. We denote by L∞,v(0,∞) the space of all functions g(t), t > 0
with finite norm

‖g‖L∞,v(0,∞) = sup
t>0

v(t)|g(t)|

and L∞(0,∞) ≡ L∞,1(0,∞). Let M(0,∞) be the set of all Lebesgue-measurable
functions on (0,∞) andM+(0,∞) its subset of all nonnegative functions on (0,∞).
We denote by M+(0,∞;↑) the cone of all functions in M+(0,∞) which are non-
decreasing on (0,∞) and

A =

{
ϕ ∈M+(0,∞; ↑) : lim

t→0+
ϕ(t) = 0

}
.

Let u be a continuous and non-negative function on (0,∞). We define the supremal
operator Su on g ∈M(0,∞) by

(Sug)(t) := ‖u g‖L∞(t,∞), t ∈ (0,∞).

The following theorem was proved in [4].

Theorem 3.1. Let v1, v2 be non-negative measurable functions satisfying 0 <
‖v1‖L∞(t,∞) < ∞ for any t > 0 and let u be a continuous non-negative func-

tion on (0,∞). Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞)
on the cone A if and only if∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

<∞. (3.1)

We will use the following statement on the boundedness of the weighted
Hardy operator

H∗
wg(t) :=

∫ ∞

t

g(s)w(s)ds, 0 < t <∞,

where w is a weight.
The following theorem in the case w = 1 was proved in [4].

Theorem 3.2. Let v1, v2 and w be weights on (0,∞) and v1(t) be bounded outside
a neighborhood of the origin. The inequality

sup
t>0

v2(t)H
∗
wg(t) ≤ C sup

t>0
v1(t)g(t) (3.2)

holds for some C > 0 for all non-negative and non-decreasing g on (0,∞) if and
only if

B := sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ)
<∞. (3.3)

Moreover, the value C = B is the best constant for (3.2).

Remark 3.3. In (3.2) and (3.3) it is assumed that 1
∞ = 0 and 0 · ∞ = 0.
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Proof. Sufficiency. Suppose that (3.3) holds. Whenever F , G are non-negative
functions on (0,∞) and F is non-decreasing, then

sup
t>0

F (t)G(t) = sup
t>0

F (t) sup
s>t

G(s), t > 0. (3.4)

By (3.4) we have

sup
t>0

v2(t)H
∗
wg(t) = sup

t>0
v2(t)

∫ ∞

t

g(s)w(s)
sups<τ<∞ v1(τ)

sups<τ<∞ v1(τ)
ds

≤ sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ)
sup
t>0

g(t) sup
t<τ<∞

v1(τ)

= sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ)
sup
t>0

g(t)v1(t)

≤ B sup
t>0

g(t)v1(t),

so that (3.2) holds with C = B.

Necessity. Suppose that the inequality (3.2) holds with some C > 0. The function

g(t) =
1

supt<τ<∞ v1(τ)
, t > 0

is nonnegative and non-decreasing on (0,∞). Thus

B = sup
t>0

v2(t)

∫ ∞

t

w(s)ds

sups<τ<∞ v1(τ)
≤ C sup

t>0

v1(t)

supt<τ<∞ v1(τ)
≤ C,

which competes the proof. �

4. Boundedness of the maximal operator in the spaces MΦ,ϕ(Rn)

In this section sufficient conditions on ϕ for the boundedness of M in generalized
Orlicz–Morrey spaces MΦ,ϕ(Rn) have been obtained.

Definition 4.1. The operator T is said to be of strong type (Φ,Ψ) if there exists a
positive constant k such that

‖Tf‖LΨ ≤ k‖f‖LΦ

for all f ∈ LΦ(Rn).

The operator T is said to be of weak type (Φ,Ψ) if there exists a positive
constant k such that

|{y ∈ Rn : |Tf(y)| > t}| ≤ 1/Ψ

(
t

k‖f‖LΦ

)
for all t > 0 and all f ∈ LΦ(R

n).
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Necessary and sufficient conditions on Φ for the boundedness of M in Orlicz
spaces LΦ(Rn) have been obtained in [19], Theorem 2.1 and [21], Theorem 1.2.1.
With Remark 2.5 taken into account, the known boundedness statement runs as
follows.

The strong estimate in the following theorem is well known, proved in fact in
[21], [5], although not stated directly in the form we need (they may be also derived
from the Lorentz–Shimogaki theorem (see [3], p. 154) on the boundedness of the
maximal operator on rearrangement invariant spaces and Boyd’s interpolation
theorem. So we present the proof only of the weak estimate.

Theorem 4.2. Let Φ be a Young function. Then the maximal operator M is bounded
from LΦ(Rn) to WLΦ(Rn) and for Φ ∈ ∇2 bounded in LΦ(Rn).

Proof. To prove the weak estimate, we take f ∈ LΦ satisfying ‖f‖LΦ = 1 so that
ρΦ(f) :=

∫
Rn Φ(|f(x)|)dx ≤ 1. By Jensen’s inequality,

Φ

(
1

|B|

∫
B

|f(y)|dy
)
≤ 1

|B|

∫
B

Φ(|f(y)|)dy (4.1)

for all balls B. Using (4.1) and definition of the maximal operator, we have

Φ(Mf(x)) ≤M [(Φ ◦ f)(x)]. (4.2)

Then by (4.2) and the weak (1, 1)-boundedness of the maximal operator we get

|{x : Mf(x) > t}| = |{x : Φ(Mf(x)) > Φ(t)}| ≤ |{x : M(Φ ◦ f)(x) > Φ(t)}|

≤ C

Φ(t)

∫
Rn

Φ(|f(x)|)dx ≤ C

Φ(t)
≤ 1

Φ( t
C‖f‖LΦ

)
,

since ‖f‖LΦ = 1 and 1
CΦ (t) ≥ Φ

(
t
C

)
, C ≥ 1. By the homogeneity of the norm

‖ · ‖LΦ , we then have

|{x : Mf(x) > t}| ≤ 1

Φ( t
C‖f‖LΦ

)

for every f ∈ LΦ, which completes the proof. �

The following lemma is valid.

Lemma 4.3. Let f ∈ Lloc
Φ (Rn) and B = B(x, r). Then

‖Mf‖LΦ(B) � ‖f‖LΦ(B(x,2r)) +
1

Φ−1
(
r−n

) sup
t>2r

t−n‖f‖L1(B(x,t)), (4.3)

for any Young function Φ ∈ ∇2 and

‖Mf‖WLΦ(B) � ‖f‖LΦ(B(x,2r)) +
1

Φ−1
(
r−n

) sup
t>2r

t−n‖f‖L1(B(x,t)) (4.4)

for any Young function Φ.
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Proof. Let Φ ∈ ∇2. We put f = f1+f2, where f1 = fχB(x,2r) and f2 = fχ �
B(x,2r)

and have

‖Mf‖LΦ(B) ≤ ‖Mf1‖LΦ(B) + ‖Mf2‖LΦ(B).

By the boundedness of the operator M on LΦ(Rn) provided by Theorem 4.2 we
have

‖Mf1‖LΦ(B) � ‖f‖LΦ(B(x,2r)).

Let y be an arbitrary point from B. If B(y, t)∩ �
(B(x, 2r)) �= ∅, then t > r. Indeed,

if z ∈ B(y, t) ∩ �
(B(x, 2r)), then t > |y − z| ≥ |x− z| − |x− y| > 2r − r = r.

On the other hand, B(y, t) ∩ �
(B(x, 2r)) ⊂ B(x, 2t). Indeed, if z ∈ B(y, t) ∩

�
(B(x, 2r)), then we get |x− z| ≤ |y − z|+ |x− y| < t+ r < 2t.

Hence

Mf2(y) = sup
t>0

1

|B(y, t)|

∫
B(y,t)∩ �(B(x,2r))

|f(z)|dz

≤ 2n sup
t>r

1

|B(x, 2t)|

∫
B(x,2t)

|f(z)|dz = 2n sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(z)|dz.

Therefore, for all y ∈ B we have

Mf2(y) ≤ 2n sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(z)|dz. (4.5)

Thus

‖Mf‖LΦ(B) � ‖f‖LΦ(B(x,2r)) +
1

Φ−1
(
r−n

) (
sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(z)|dz
)
.

Let now Φ be an arbitrary Young function. It is obvious that

‖Mf‖WLΦ(B) ≤ ‖Mf1‖WLΦ(B) + ‖Mf2‖WLΦ(B)

for every ball B = B(x, r).
By the boundedness of the operator M from LΦ(Rn) to WLΦ(Rn), provided

by Theorem 4.2, we have

‖Mf1‖WLΦ(B) � ‖f‖LΦ(B(x,2r)).

Then by (4.5) we get the inequality (4.4). �

Lemma 4.4. Let f ∈ Lloc
Φ (Rn) and B = B(x, r). Then

‖Mf‖LΦ(B) �
1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t)) (4.6)

for any Young function Φ ∈ ∇2 and

‖Mf‖WLΦ(B) �
1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t)) (4.7)

for any Young function Φ.
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Proof. Let Φ ∈ ∇2. Denote

M1 : =
1

Φ−1
(
r−n

) (
sup
t>2r

1

|B(x, t)|

∫
B(x,t)

|f(z)|dz
)
,

M2 : = ‖f‖LΦ(B(x,2r)).

Applying Hölder’s inequality provided by Lemma 2.8, we get

M1 � 1

Φ−1
(
r−n

) sup
t>2r

1

|B(x, t)| ‖f‖LΦ(B(x,t))‖1‖LΦ̃(B(x,t))

� 1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t)).

On the other hand,

1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t))

� 1

Φ−1
(
r−n

) sup
t>2r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,2r)) ≈M2.

Since ‖Mf‖LΦ(B) ≤M1+M2 by Lemma 4.3, we arrive at (4.6). Finally, when Φ is
an arbitrary Young function. the inequality (4.7) directly follows from (4.4). �

Corollary 4.5. [1] Let 1 ≤ p <∞ and f ∈ Lloc
p (Rn), B = B(x0, r), x0 ∈ Rn, r > 0.

Then, for 1 < p <∞
‖Mf‖Lp(B(x0,r)) � r

n
p sup

t>2r
t−

n
p ‖f‖Lp(B(x0,t))

and for p = 1

‖Mf‖WL1(B(x0,r)) � rn sup
t>2r

t−n‖f‖L1(B(x0,t)).

Theorem 4.6. Let Φ be a Young function, the functions ϕ1, ϕ2 and Φ satisfy the
condition

sup
r<t<∞

ess inf
t<s<∞ϕ1(x, s)Φ

−1
(
t−n

)
≤ C ϕ2(x, r)Φ

−1
(
r−n

)
, (4.8)

where C does not depend on x and r. Then the maximal operator M is bounded
from MΦ,ϕ1(R

n) to WMΦ,ϕ2(R
n) and for Φ ∈ ∇2, the operator M is bounded from

MΦ,ϕ1(R
n) to MΦ,ϕ2(R

n).

Proof. By Lemma 4.4 and Theorem 3.1 with u(r) = Φ−1(r−n), v1(r) = ϕ1(x, r)
−1,

v2(r) =
1

ϕ2(x,r)Φ−1(r−n) and g(r) = ‖f‖LΦ(B(x,r)) we get

‖Mf‖MΦ,ϕ2
� sup

x∈Rn,r>0

1

ϕ2(x, r)Φ−1
(
r−n

) sup
t>r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t))

� sup
x∈Rn,r>0

ϕ1(x, r)
−1 ‖f‖LΦ(B(x,r))

= ‖f‖MΦ,ϕ1
,
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if Φ ∈ ∇2 and

‖Mf‖WMΦ,ϕ2
� sup

x∈Rn,r>0

1

ϕ2(x, r)Φ−1
(
r−n

) sup
t>r

Φ−1
(
t−n

)
‖f‖LΦ(B(x,t))

� sup
x∈Rn,r>0

ϕ1(x, r)
−1 ‖f‖LΦ(B(x,r)) = ‖f‖MΦ,ϕ1

,

if Φ is an arbitrary Young function. �

Remark 4.7. Note that, in the case Φ(t) = tp from Theorem 4.6 we get Theorem
2.11.

In the case ϕ1(x, r) = 1

Φ−1
(
r−λ1

) , ϕ2(x, r) = 1

Φ−1
(
r−λ2

) of Orlicz–Morrey

spaces from Theorem 4.6 we get

Corollary 4.8. Let Φ be any Young function, 0 ≤ λ1, λ2 < n and

sup
r<t<∞

Φ−1
(
t−n

)
Φ−1

(
t−λ1

) ≤ C
Φ−1

(
r−n

)
Φ−1

(
r−λ2

) . (4.9)

Then the maximal operator M is bounded from MΦ,λ1(R
n) to WMΦ,λ2(R

n) and
for Φ ∈ ∇2 the operator M is bounded from MΦ,λ1(R

n) to MΦ,λ2(R
n).

5. Calderón–Zygmund operators in the spaces MΦ,ϕ

In this section, sufficient conditions on ϕ for the boundedness of the operator T
in generalized Orlicz–Morrey spaces MΦ,ϕ(Rn) are obtained.

Sufficient conditions on Φ for the boundedness of the operator T in Orlicz
spaces LΦ(Rn), as stated in the following theorem are known, see [21], Theorem
1.4.3 and [43], Theorem 3.3, and also [40]; in the next Theorem 5.2 we present the
proof of the corresponding weak estimate.

Theorem 5.1. Let Φ be a Young function and T a singular integral operator. If
Φ ∈ Δ2

⋂
∇2, then the operator T is bounded on LΦ(Rn).

Theorem 5.2. Let Φ be a Young function and T a singular integral operator. If
Φ ∈ Δ2, then the operator T is bounded from LΦ(Rn) to WLΦ(Rn).

Proof. Let ‖f‖LΦ = 1. Fix λ > 0 and put f = f1 + f2, where f1 = χ{|f |>λ} · f and
f2 = χ{|f |≤λ} · f . We have

|{|Tf | > λ}| ≤ |{|Tf1| > λ/2}|+ |{|Tf2| > λ/2}|
and

Φ(λ)|{|Tf | > λ}| ≤ |Φ(λ){|Tf1| > λ/2}|+Φ(λ)|{|Tf2| > λ/2}|.
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By the weak (p, p)-boundedness of T, p ≥ 1 we get

{|T (χ{|f |>λ} · f)| > λ}| � 1

λ

∫
{|f |>λ}

|f |,

{|T (χ{|f |≤λ} · f)| > λ}| � 1

λp

∫
{|f |≤λ}

|f |p.

Since f1 ∈WL1(Rn) and Φ(λ)
λ is increasing, we have

Φ(λ)
∣∣{x ∈ Rn : |Tf1(x)| >

λ

2

}∣∣ � Φ(λ)

λ

∫
Rn

|f1(x)|dx

=
Φ(λ)

λ

∫
{x∈Rn:|f(x)|>λ}

|f(x)|dx

�
∫
Rn

|f(x)|Φ(|f(x)|)|f(x)| dx =

∫
Rn

Φ(|f(x)|)dx.

By Lemma 2.2 we have

Φ(λ)
∣∣{x ∈ Rn : |Tf2(x)| >

λ

2

}∣∣ � Φ(λ)

λp

∫
Rn

|f2(x)|pdx

=
Φ(λ)

λp

∫
{x∈Rn:|f(x)|≤λ}

|f(x)|pdx

�
∫
Rn

|f(x)|pΦ(|f(x)|)|f(x)|p dx =

∫
Rn

Φ(|f(x)|)dx.

Thus we get

|{x ∈ Rn : |Tf(x)| > λ}| ≤ C

Φ(λ)

∫
Rn

Φ(|f(x)|)dx ≤ 1

Φ
(

λ
C‖f‖LΦ

) . �

Lemma 5.3. Let Φ be any Young function and f ∈ Lloc
Φ (Rn), B = B(x0, r), x0 ∈

Rn, r > 0 and T a singular integral operator. Then

‖Tf‖LΦ(B) �
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
,

when Φ ∈ Δ2

⋂
∇2 and

‖Tf‖WLΦ(B) �
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
, (5.1)

when Φ ∈ Δ2.

Proof. Let Φ ∈ Δ2

⋂
∇2 first. With the notation 2B = B(x0, 2r), we represent f

as

f = f1 + f2, f1(y) = f(y)χ2B(y), f2(y) = f(y)χ �(2B)
(y), (5.2)

and then

‖Tf‖LΦ(B) ≤ ‖Tf1‖LΦ(B) + ‖Tf2‖LΦ(B).
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Since f1 ∈ LΦ(Rn), by the boundedness of T in LΦ(Rn) provided by Theorem 5.2,
it follows that

‖Tf1‖LΦ(B) ≤ ‖Tf1‖LΦ(Rn) ≤ C‖f1‖LΦ(Rn) = C‖f‖LΦ(2B).

Next, observe that the inclusions x ∈ B, y ∈ �
(2B) imply 1

2 |x0−y| ≤ |x−y| ≤
3
2 |x0 − y|. Then we get

|Tf2(x)| ≤ C

∫
�(2B)

|f(y)|
|x0 − y|n dy.

By Fubini’s theorem we have∫
�(2B)

|f(y)|
|x0 − y|n dy ≈

∫
�(2B)

|f(y)|
∫ ∞

|x0−y|

dt

tn+1
dy

≈

∫ ∞

2r

∫
2r≤|x0−y|<t

|f(y)|dy dt

tn+1
�

∫ ∞

2r

∫
B(x0,t)

|f(y)|dy dt

tn+1
.

Applying the Hölder’s inequality (see, Lemma 2.8), we get∫
�(2B)

|f(y)|
|x0 − y|n dy �

∫ ∞

2r

‖f‖LΦ(B(x0,t))‖1‖LΦ̃(B(x0,t))
dt

tn+1

=

∫ ∞

2r

‖f‖LΦ(B(x0,t))
1

Φ̃−1(|B(x0, t)|−1)

dt

tn+1

≈

∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
.

(5.3)

Moreover,

‖Tf2‖LΦ(B) �
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
. (5.4)

Thus

‖Tf‖LΦ(B) � ‖f‖LΦ(2B) +
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
.

On the other hand, by (2.3) we get

Φ−1
(
r−n

)
≈ Φ−1

(
r−n

)
rn

∫ ∞

2r

dt

tn+1
�

∫ ∞

2r

Φ−1
(
t−n

)dt
t

and then

‖f‖LΦ(2B) �
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
. (5.5)

Thus

‖Tf‖LΦ(B) �
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
.
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Let Φ ∈ Δ2. By the weak boundedness of T on Orlicz space and (5.5) it
follows that:

‖Tf1‖WLΦ(B) ≤ ‖Tf1‖WLΦ(Rn) � ‖f1‖LΦ(Rn)

= ‖f‖LΦ(2B) �
1

Φ−1
(
r−n

) ∫ ∞

2r

‖f‖LΦ(B(x0,t))Φ
−1

(
t−n

)dt
t
.

(5.6)

Then by (5.4) and (5.6) we get the inequality (5.1). �

Corollary 5.4. [13, 14, 15] Let 1 ≤ p < ∞ and f ∈ Lloc
p (Rn), B = B(x0, r), x0 ∈

Rn, r > 0 and T a singular integral operator. Then, for 1 < p <∞

‖Tf‖Lp(B(x0,r)) � r
n
p

∫ ∞

2r

t−
n
p −1‖f‖Lp(B(x0,t))dt

and for p = 1

‖Tf‖WL1(B(x0,r)) � rn
∫ ∞

2r

t−n−1‖f‖L1(B(x0,t))dt.

The following theorem contains Theorem 2.12 under the choice in the case
Φ(t) = tp.

Theorem 5.5. Let Φ any Young function, ϕ1, ϕ2 and Φ satisfy the condition

sup
x∈Rn, r>0

1

ϕ2(x, r)Φ−1
(
r−n

) ∫ ∞

r

ess inf
t<s<∞ϕ1(x, s)Φ

−1
(
t−n

)dt
t

<∞. (5.7)

Then the operator T is bounded from MΦ,ϕ1(R
n) to MΦ,ϕ2(R

n) for Φ ∈ Δ2 ∩ ∇2

and from MΦ,ϕ1(R
n) to WMΦ,ϕ2(R

n) for Φ ∈ Δ2.

Proof. By Lemma 5.3 and Theorem 3.2 with w(r) = Φ−1(r−n)
r , v1(r) = ϕ1(x, r)

−1,

v2(r) =
1

ϕ2(x,r)Φ−1(r−n) and g(r) = ‖f‖LΦ(B(x,r)), we have

‖Tf‖MΦ,ϕ2
= sup

x∈Rn, r>0
ϕ2(x, r)

−1‖Tf‖LΦ(B(x,r))

� sup
x∈Rn, r>0

1

ϕ2(x, r)Φ−1
(
r−n

) ∫ ∞

r

‖f‖LΦ(B(x,t))Φ
−1

(
t−n

)dt
t

� sup
x∈Rn, r>0

ϕ1(x, r)
−1‖f‖LΦ(B(x,r)) � ‖f‖MΦ,ϕ1

.

if Φ ∈ Δ2 ∩ ∇2 and

‖Tf‖WMΦ,ϕ2
= sup

x∈Rn, r>0
ϕ2(x, r)

−1‖Tf‖WLΦ(B(x,r))

� sup
x∈Rn, r>0

1

ϕ2(x, r)Φ−1
(
r−n

) ∞∫
r

‖f‖LΦ(B(x,t))Φ
−1

(
t−n

)dt
t

� sup
x∈Rn, r>0

ϕ1(x, r)
−1‖f‖LΦ(B(x,r)) � ‖f‖MΦ,ϕ1

.

if Φ ∈ ∇2. �



Operators on Generalized Orlicz–Morrey Spaces 155

Remark 5.6. The condition (4.8) is weaker than (5.7). Indeed, (5.7) implies (4.8):

ϕ2(x, r)Φ
−1

(
r−n

)
�

∫ ∞

r

ess inf
t<τ<∞ϕ1(x, τ)Φ

−1
(
t−n

)dt
t

�
∫ ∞

s

ess inf
t<τ<∞ϕ1(x, τ)Φ

−1
(
t−n

)dt
t

� ess inf
s<τ<∞ϕ1(x, τ)

∫ ∞

s

Φ−1
(
t−n

)dt
t

≈ ess inf
s<τ<∞ϕ1(x, τ)Φ

−1
(
s−n

)
,

where we took s ∈ (r,∞), so that

sup
s>r

ess inf
s<τ<∞ϕ1(x, τ)Φ

−1
(
s−n

)
� ϕ2(x, r)Φ

−1
(
r−n

)
.

On the other hand the functions ϕ1(x, t) = ϕ2(x, t) =
1

Φ−1
(
t−n

) satisfy the condi-

tion (4.8), but do not satisfy the condition (5.7).

Corollary 5.7. Let Φ be any Young function, 0 ≤ λ1, λ2 < n and∫ ∞

r

Φ−1
(
t−n

)
Φ−1

(
t−λ1

) dt
t
≤ C

Φ−1
(
r−n

)
Φ−1

(
r−λ2

) . (5.8)

Then for Φ ∈ Δ2 ∩ ∇2, the singular operator T is bounded from MΦ,λ1(R
n) to

MΦ,λ2(R
n) and for Φ ∈ Δ2 is bounded from MΦ,λ1(R

n) to WMΦ,λ2(R
n).

Proof. Choose ϕ1(x, r) =
1

Φ−1
(
r−λ1

) , ϕ2(x, r) =
1

Φ−1
(
r−λ2

) in Theorem 5.5. �
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Abstract. We give necessary and sufficient conditions for the applicability
of the finite section method to an arbitrary operator in the Banach algebra
generated by the operators of multiplication and the convolution operators
with piecewise continuous generating functions on Lp(R), 1 < p < ∞ using a
variation from the standard technique. We prove that it is possible to arrive
to this result using only strong-limit homomorphism and with considerable
simplification of the standard identification procedure for the local algebras.
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1. Introduction

Given 1 < p <∞, let B := B(Lp(R)) denote the Banach algebra of all bounded lin-
ear operators on the Lebesgue space Lp(R). Let PC be the smallest C∗-subalgebra
of L∞(R) containing all piecewise continuous functions on Ṙ, the one point com-
pactification of the real line, and let PCp stand for its Fourier multiplier analogue,
which is a Banach subalgebra ofMp, the Banach algebra of all Fourier multipliers
on Lp(R). The Fredholm theory for the smallest Banach subalgebra of B(Lp(R))
that contains all the convolution type operators aF−1bF where F is the Fourier
transform and a ∈ PC, b ∈ PCp is well known (see, for instance, [11, Chapter 5]).

The authors wish to thank Markus Seidel, without whom there would be no question to answer.
This work is partially supported by CEAF-IST, under Fundação para a Ciência e Tec-
nologia (FCT)-funded project PEst-OE/MAT/UI4032/2011; Davor Dragičević was supported
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Let R+ := (0,∞) and R− := (−∞, 0). For τ ∈ R+, consider the operators

(Pτu)(t) :=

{
u(t) if |t| < τ,
0 if |t| > τ,

Qτ := I − Pτ

acting on Lp(R) with norm 1. Clearly, Pτ → I and Qτ → 0 strongly as τ → ∞.
One says that the finite section method applies to an operator A ∈ B(Lp(R)) if
there exists a positive constant τ0, such that for any τ > τ0 and any f ∈ Lp(R)
there exists a unique solution uτ of the equation

Aτuτ := (PτAPτ +Qτ )uτ = f (1.1)

and uτ converges in the norm of Lp(R) to a solution of the equation Au = f as
τ →∞.

The above is equivalent to the stability of the sequence (Aτ )τ>0 defined in
(1.1). We say that a sequence is stable if there is a τ0 > 0 such that the elements
Aτ are invertible for τ > τ0 and the norms of the inverses are uniformly bounded.

We refer to the monographs by Gohberg and Feldman [2], Prössdorf and
Silbermann [7], Hagen, Roch and Silbermann [3, 4], Roch, Santos and Silbermann
[11] for a general theory of projection methods as well as for more specific issues
of the finite section method for convolution type operators and algebras generated
by them.

Roch, Silbermann, and one of the authors studied in [10] the applicability of
the finite section method for an arbitrary operator in the Banach algebra generated
by the operators of multiplication by piecewise continuous functions (PC) and by
the convolution operators with piecewise continuous Fourier multipliers (PCp).

The usual approach to analyze the applicability of the finite sections method
follows a general scheme to treat approximation problems. This scheme goes back
to Kozak [6] and Silbermann [13] and relates stability problems in numerical anal-
ysis with invertibility problems in suitably chosen Banach algebras. This scheme
can be summarized as follows (see also [11, Sections 6.1–6.3]). Let A be a set of
(generalized) sequences that contains all sequences of the form

(Aτ ) = (PτAPτ +Qτ ) (τ ∈ R+). (1.2)

1. Algebraization: Find a unital Banach algebra E containing A and a closed
ideal G of E such that the original problem becomes equivalent to an invert-
ibility problem in the quotient algebra E/G.

2. Essentialization: Find a closed unital subalgebra F of E containing A such
that F/G is inverse closed in E/G and a closed ideal J of F containing G
such that J can be lifted. The latter means that one has full control about
the difference between the invertibility of a coset of a sequence (Aτ ) ∈ F in
the algebra F/G and the invertibility of the coset of the same sequence in
F/J . This control is usually guaranteed by a lifting theorem and involves
the use of a collection Wt, t in some set T, of homomorphisms from F to B.

3. Localization: Find a unital subalgebra L of F such that
(a) A,J ⊂ L;
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(b) L/J is inverse closed in F/J ;
(c) the quotient algebra L/J has a large center.

Use a local principle to translate the invertibility problem in the algebra L/J
to a family of simpler invertibility problems in the local algebras.

4. Identification: Find conditions for the invertibility of the cosets of sequences
in A in the local algebras. Here one uses another collection of homomorphisms
Hη, indexed on the maximal ideal space used in the localization. In some cases,
like the points at “infinity”, the homomorphism was not known and other
techniques are usually used, such as the two projections theorem.

During a break in a workshop in Altenberg in 2011, Markus Seidel posed the
following question to one of the authors: “Would it be possible to use the second
family of homomorphisms (the Hη above) in the essentialization step? What would
happen then to the local algebras?”

The answer to his question is in this paper. It turns out that it is indeed
possible to use all homomorphisms in the essentialization step, but several technical
issues had to be resolved. This alternate procedure then simplifies considerably
the identification step. For instance, there is no need to apply the two-projections
theorem anymore. We will exemplify the use of the modified technique for the
problem treated in [10], that is, finite section method applied to operators in
the algebra of multiplication and convolution operators generated by piecewise
continuous symbol acting on the Lebesgue spaces Lp(R), 1 < p < ∞. In this
way we have a Banach algebra (and not the simpler C∗-algebra) problem, but the
operators are relatively simple (i.e., no slowly oscillating generating functions and
no flip) so that the new techniques do not become obfuscated by technical detail.
But in fact, with the necessary adaptations, it is possible to use this modified
technique to treat larger algebras.

The paper is organized as follows. The next section are the basic definitions
and several results on the limits of certain sequences of operators that will be
needed later. Sections 3, 4 and 5 then follow the usual procedure regarding alge-
braization, essentialization and localization using the modified technique.

2. Notation and basic results

This paper follows closely the notation of [10]. As mentioned in the introduction,
we will consider the operators acting on the Lebesgue space Lp(R), 1 < p < ∞
and write the Fourier transform F on the Schwartz space of rapidly decreasing
infinite differentiable functions as

(Fu)(y) =

∫ +∞

−∞
e−2πiyxu(x) dx, y ∈ R. (2.1)

Then its inverse is given by

(F−1v)(x) =

∫ +∞

−∞
e2πixyv(y) dy, x ∈ R. (2.2)
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It is well known that the operators F and F−1 can be extended continuously to
bounded and unitary operators on the Hilbert space L2(R) and that F extends
continuously to a bounded operator from Lp(R) to Lq(R) where q := p/(p− 1) if
1 < p ≤ 2 (see, for instance, [14, Theorem 74]).

LetMp denote the set of all Fourier multipliers, i.e., the set of all functions a ∈
L∞(R) with the following property: if u ∈ L2(R)∩Lp(R), then F−1aFu ∈ Lp(R),
and there is a constant cp independent of u such that ‖F−1aFu‖p ≤ cp‖u‖p.
If a ∈ Mp, then the operator F−1aF : (L2(R) ∩ Lp(R)) → Lp(R) extends con-
tinuously to a bounded operator on Lp(R). This extension is called a (Fourier)
convolution operator , and we denote it by W 0(a). The function a is also called
the generating function (or the symbol or presymbol) of W 0(a). The set Mp of
all Fourier multipliers forms a Banach algebra when equipped with the operations
inherited from L∞(R) and the norm

‖a‖Mp := ‖W 0(a)‖L(Lp(R)). (2.3)

We call a function a ∈ L∞(R) piecewise constant (resp. piecewise linear) if
there is a partition −∞ = t0 < t1 < · · · < tn = +∞ of the real line such that
a is constant (resp. linear) on each interval [tk, tk+1]. Stetchkin’s inequality (see,
for instance, [1]) entails that the multiplier algebra Mp contains the (non-closed)

algebras C0 of all continuous and piecewise linear functions on Ṙ and PC0 of all
piecewise constant functions on R. Let Cp and PCp denote the closures of C0 and
PC0 in Mp, respectively.

We introduce now the building blocks for the homomorphisms. They are three
shifts.

For s, t ∈ R and τ ∈ (0,∞), consider the operators

Us : L
p(R) �→ Lp(R), (Usu)(x) = e−2πixsu(x), (2.4)

Vs : L
p(R) �→ Lp(R), (Vsu)(x) = u(x− s), (2.5)

Zτ : Lp(R) �→ Lp(R), (Zτu)(x) := τ−1/pu(x/τ). (2.6)

Clearly, U−1
s = U−s, V

−1
t = V−t, and Z−1

τ = Zτ−1, and these operators have norm
1. Vt is an additive shift in the normal space, Us is the corresponding additive shift
in the Fourier image space, and Zτ is a multiplicative shift (in both the base space
and the Fourier image space).

The following simple results can be proved by writing the operators explicitly.

Lemma 2.1. If a ∈ Mp and s ∈ R, then U−sW
0(a)Us = W 0(VsaV−s) and

VsW
0(a)V−s = W 0(a). Moreover, if p = 2 then

UsF
−1 = F−1V−s, FUs = V−sF, VsF

−1 = F−1Us, FVsu = UsF.

Recall that a sequence (Aτ ) with Aτ ∈ B(X) tends weakly to an operator
A ∈ B(X) as τ →∞ if

〈v, (Aτ −A)u〉 → 0, for any fixed u ∈ X, v ∈ X∗ (2.7)
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with 〈· , ·〉 standing for the duality product. When X is Lp(R) and the sequence
is bounded, in order to check its weak convergence it is enough to show that, for
arbitrary a, b, c, d ∈ R, with a < b and c < d, one has

〈χ[c,d], (Aτ −A)χ[a,b]〉 → 0

since the linear combinations of characteristic functions form a dense subset of
Lp(R). This fact will be used in the proofs below.

Lemma 2.2.

(a) The operators Vs and Us converge weakly to zero as s→ ±∞.

(b) The operators Z±1
τ converge weakly to zero as τ →∞.

Proof. The result for Zτ and Vs are in [10, Lemma 2.2]. In the case of Us, consider
the characteristic function χ[a,b] of an interval [a, b] of the real line, with b > a. We

observe that e−2πixs is a periodic function with period 1/s and that the integral
over a full period of the function gives 0. Then for s large, it is easy to see that
there exist integers k1,s, k2,s such that∫

R

(Usχ[a,b])(x) dx =

∫ b

a

e−2πixs dx =

∫ k1,s/s

a

e−2πixs dx+

∫ b

k2,s/s

e−2πixs dx

with |k1,s/s−a| → 0, |b−k2,s/s| → 0, which means the value of the integral tends
to zero as s goes to infinity. Thus

〈χ[c,d], Usχ[a,b]〉 → 0 as s→∞

for any two characteristic functions of intervals of R, which implies by a density
argument that Us converge weakly to zero. �

We will also need the following less trivial weak limits

Lemma 2.3. The following sequences tend weakly to 0 as τ →∞, for fixed s, t ∈ R.

(i) Z−1
τ Us, ZτVs;

(ii) Z−1
τ UsV±τ , ZτVsV±τ ;

(iii) Z−1
τ UsVtZ

−1
τ , ZτVsUtZτ ;

(iv) Z−1
τ UsV±τZ

−1
τ , ZτV∓τUsZτ ;

(v) ZτV−sV±τZ
−1
τ , ZτV∓τVsZ

−1
τ ;

(vi) Z−1
τ UsUtZτ , ZτVsVtZ

−1
τ , for s �= −t.

Proof. The weak limits of (i) come directly from Lemma 2.2 and the definition
(2.7) because Usu and Vsu are fixed functions in Lp(R). Take now a, b, c, d ∈ R,
with a < b and c < d. To prove the first part of (ii) note that

(Z−1
τ UsV±τχ[a,b])(x) = τ1/pe−2πiτxsχ[a,b](τx ∓ τ)

= τ1/pe−2πiτxsχ[ aτ ±1, bτ ±1](x).
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Now, ∣∣〈χ[c,d], Z
−1
τ UsV±τχ[a,b]〉

∣∣ = ∣∣∣∣∫ d

c

τ1/pe−2πiτxsχ[ aτ ±1, bτ ±1](x) dx

∣∣∣∣
≤ τ1/p

∫ d

c

χ[ aτ ±1, bτ ±1](x) dx

≤ τ1/p
b− a

τ
= τ1/p−1(b− a)→ 0

since χ[ aτ ±1, bτ ±1] is different from zero in a interval of length (b− a)/τ and p > 1.

For the second part of (ii) write

(ZτVsV±τχ[a,b])(x) = τ−1/pχ[a,b](x/τ − s∓ τ)

= τ−1/pχ[τ(a+s±τ),τ(b+s±τ)](x)

and ∣∣〈χ[c,d], ZτVsV±τχ[a,b]〉
∣∣ = ∣∣∣∣∫ d

c

τ−1/pχ[τ(a+s±τ),τ(b+s±τ)](x), dx

∣∣∣∣
≤ τ−1/p(d− c)→ 0.

The weak limits in (iii) are proved in the same way as those in (ii). Regarding
those in (iv),

(Z−1
τ UsV±τZ

−1
τ χ[a,b])(x) = τ2/pe−2πiτxsχ[a,b](τ

2x∓ τ2)

= τ2/pe−2πiτxsχ[ a
τ2 ±1, b

τ2 ±1](x)

and ∣∣〈χ[c,d], Z
−1
τ UsV±τZ

−1
τ χ[a,b]〉

∣∣ = ∣∣∣∣∫ d

c

τ2/pe−2πiτxsχ[ a
τ2 ±1, b

τ2 ±1](x) dx

∣∣∣∣
≤ τ2/p

∫ d

c

χ[ a
τ2 ±1, b

τ2 ±1](x) dx

≤ τ2/p
b− a

τ2
= τ2/p−2(b − a)→ 0

since χ[ a
τ2 ±1, b

τ2 ±1] is different from zero in a interval of length (b−a)/τ2 and p > 1.

Finally,

(ZτV∓τUsZτχ[a,b])(x) = τ−2/pe−2πi( x
τ ±τ)sχ[a,b](x/τ

2 ± 1)

= τ−2/pe−2πi( x
τ ±τ)sχ[τ2a∓τ2,τ2b∓τ2](x)∣∣〈χ[c,d], ZτV∓τUsZτχ[a,b]〉

∣∣ = ∣∣∣∣∫ d

c

τ−2/pe−2πi( x
τ ±τ)sχ[τ2a∓τ2,τ2b∓τ2](x) dx

∣∣∣∣
≤ τ−2/p

∫ d

c

χ[τ2a∓τ2,τ2b∓τ2](x) dx

≤ τ−2/p(d− c)→ 0.
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Assertion (v) is a direct consequence of Lemma 2.2 after writing

ZτV−sV±τZ
−1
τ = Vτ(−s±τ) and ZτV∓τVsZ

−1
τ = Vτ(s∓τ).

The weak limits in (vi) are proved in the same way as those in (v). Note that

Z−1
τ UsUtZτ = Uτ(s+t) and ZτVsVtZ

−1
τ = Vτ(s+t). �

3. Algebraization

The algebraization step is not changed from the standard technique. We let E be
the set formed by all the sequences (Aτ ) of operators Aτ ∈ B such that

sup
τ∈R+

‖Aτ‖B <∞.

The set E with the operations

(Aτ ) + (Bτ ) := (Aτ +Bτ ),

(Aτ )(Bτ ) := (AτBτ ),

λ(Aτ ) := (λAτ ) (λ ∈ C),

the identity element (I), and the norm

‖(Aτ )‖E := sup
τ∈R+

‖Aτ‖B

forms a unital Banach algebra. The set G ⊂ E of sequences (Gτ ) such that ‖Gτ‖ →
0 when τ →∞ forms a closed two-sided ideal of E .

The product of the algebraization step is the following result (see, for instance,
[11, Theorem 6.2.2]:

Theorem 3.1. The sequence (Aτ ) defined in (1.1) is stable if and only if the coset
(Aτ ) + G is invertible in E/G.

4. Essentialization

We will say that a sequence of operators on a Banach space converges *-strongly if
it converges strongly and the sequence of the adjoint operators converges strongly
on the dual space.

Let F denote the set of all sequences A = (Aτ ) ∈ E for which there ex-
ist operators Wt(A), t ∈ {−1, 0,−1}, H(x,∞)(A), H(∞,y)(A), for x, y ∈ R, and
H(∞,∞)±(A) ∈ B such that following limits exist in the *-strong sense for the
sequences in the images of the algebra automorphisms (the limit operators that
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correspond to each homomorphism are indicated inside the square parenthesis):

I• : (Aτ ) �→ (Aτ )
[ ∗→W0(A)

]
;

W±1,• : (Aτ ) �→ (V∓τAτV±τ )
[ ∗→W±1(A)

]
;

H(x,∞),• : (Aτ ) �→ (ZτV−xAτVxZ
−1
τ )

[ ∗→ H(x,∞)(A)
]
;

H(∞,y),• : (Aτ ) �→ (Z−1
τ UyAτU−yZτ )

[ ∗→ H(∞,y)(A)
]
;

H(∞,∞)±,• : (Aτ ) �→ (ZτV∓τAτV±τZ
−1
τ )

[ ∗→ H∞±(A)
]
.

(4.1)

We represent the (operator) value of one of the above sequences at the point
τ by substituting the symbol “•” for τ .

The proof of the following result is the same as for Proposition 4.1 in [10]:

Proposition 4.1.

(i) The set F is a unital closed subalgebra of E. The strong limit mappings (4.1)
act as bounded homomorphisms on F , and the ideal G of F lies in the kernel
of each these homomorphisms.

(ii) The algebra F is inverse-closed in E, and the algebra F/G is inverse-closed
in E/G.

The algebra E/G is very large. The objective of the essentialization step is
to change the invertibility problem in E/G to a invertibility problem in the more
amenable algebra F/J , with some homomorphisms controlling the difference. For
that one uses a lifting theorem. We say that an homomorphism Wt lifts an ideal
Jt if Ker Wt ∩ Jt is in the radical of F/G. The theorem reads as follows (see also
[11, Section 6.3]):

Theorem 4.2 (Lifting). For every element t of a certain set T , let Jt be an ideal of
F which is lifted by a unital homomorphism Wt into B. Suppose furthermore that
Wt(Jt) is an ideal of B. Let J stand for the smallest ideal of F which contains all
ideals Jt. Then an element a ∈ F/G is invertible if and only if the coset a+ J is
invertible in F/J and if all elements Wt(a) are invertible in B.

To use this theorem, for each homomorphism Wt to be used it is necessary to
find a suitable ideal Jt. The known ideals are related the homomorphisms W−1,0,1

and give the ideal J used in [10]:

J := {(VτK1V−τ ) + (K0) + (V−τK−1Vτ ) +G : K−1,K0,K1 ∈ K, G ∈ G}.

In order to be able to use the homomorphisms H∗ here, one needs to find
the corresponding ideals. Analyzing the structure of the algebra automorphisms,
the key observation is that it is possible to build such ideals using the inverse
of the automorphisms applied to the constant sequence set K ⊂ F . Let η ∈
{(x,∞), (∞, y), (∞,∞)± : x, y ∈ R}. Define

Jη := H−1
η,•(K).
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Specifying, we have

Jx,∞ = {(VxZ
−1
τ KZτV−x) +G : K ∈ K, G ∈ G}; (4.2)

J∞,y = {(U−yZτKZ−1
τ Uy) +G : K ∈ K, G ∈ G}; (4.3)

J(∞,∞)± = {(V±τZ
−1
τ KZτV∓τ ) +G : K ∈ K, G ∈ G}. (4.4)

Please note that the automorphisms and their inverses have norm 1. Thus
H−1

η,•(G) ⊂ G.
For ξ ∈ {(x,∞), (∞, y), (∞,∞)± : x, y ∈ R} we obtain the following result,

usually known as the separation property of the strong limits.

Proposition 4.3. For every compact operator K the sequence Jη = H−1
η,•(K) belongs

to F and

Wt(Jη) = 0, t ∈ {−1, 0, 1};

Hξ(Jη) =

{
0 if ξ �= η;

K if ξ = η.

Proof. The case ξ = η can be seen by direct computation. In the other cases,
the resulting sequence is of the form (YτKXτ), with Yτ uniformly bounded, K
a compact operator, and Xτ tending weakly to zero as seen in Lemma 2.3. The
product KXτ tends strongly to zero as a consequence of the uniform boundedness
principle (see, for instance, [11, Lemma 1.4.6]) and the results follow. �

It is also necessary to show that the sets Jη ⊂ F are ideals.

Proposition 4.4. Let η ∈ {(x,∞), (∞, y), (∞,∞)± : x, y ∈ R}. Then the sets Jη
are closed two-sided ideals of F .

Proof. We will show that it is a left ideal. The proof for right ideal is similar, by
taking adjoints. Let A = (Aτ ) ∈ F . We have

(Aτ )H
−1
η,•(K) = H−1

η,• (Hη,•(Aτ )K)

= H−1
η,• ((Hη,•(Aτ )− Hη(A) + Hη(A))K)

= H−1
η,• ((Hη,•(Aτ )− Hη(A))K) + H−1

η,• (Hη(A)K) .

The sequence (Hη,•(Aτ ) − Hη(A))K is in G, so the first summand is in G. And
because Hη(A)K is a compact operator, the coset corresponding to H−1

η,• (Hη(A)K)
belongs to Jη. The proof of the closedness is standard (see, for instance, [11,
Proposition 6.4.3]). �

Let now J be the smallest closed two-sided ideal of F containing the ideals
Jt, t ∈ {−1, 0, 1} and the ideals Jη. We are thus now in the conditions to apply
the lifting theorem, and obtain:

Theorem 4.5. Let A ∈ F . Then A is stable if and only if the operators Wt(A),
Hη(A), with t ∈ {−1, 0, 1}, η ∈ {(x,∞), (∞, y), (∞,∞)± : x, y ∈ R} are invert-
ible, and the coset A+ J is invertible in F/J .
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5. Localization

By including all homomorphisms in the previous step, there should be no new
information about invertibility in the “rump” algebra F/J , at least in the case
of sequences of finite section of convolution and multiplication operators. That is
what we want to show now. For that we introduce an inverse-closed subalgebra of F
which is a commutant modulo J with regards to constant sequences of convolution
and multiplication operators with continuous generating function.

Let L be the set of all sequences in F that commute modulo J with the
constant sequences (fI), f ∈ C(Ṙ), and (W 0(g)), g ∈ Cp. Then we have the
following result, whose proof is also standard (see [5, Lemma 6.2]).

Proposition 5.1. Let the set L be as above. Then:

(i) The set L is a closed and inverse-closed subalgebra of F that contains J .
(ii) The algebra L/G is inverse-closed in F/G.

The cosets (fI) + J , f ∈ C(Ṙ), and (W 0(g)) + J , g ∈ Cp, form thus a
central subalgebra of L/J . The maximal ideal space of this subalgebra is the

subset (Ṙ × {∞}) ∪ ({∞} × Ṙ) of the torus Ṙ × Ṙ. Denote by Is,t the smallest
closed two-sided ideal of the quotient algebra L/J that contains the maximal ideal
corresponding to the point (s, t), and denote by ΦJ

s,t the canonical homomorphism

from L/J onto the quotient algebra LJs,t := (L/J )/Is,t. Then we use Allan’s local
principle (see, for instance, [11, Theorem 2.2.2]):

Theorem 5.2. The element A+J is invertible in L/J if and only if for all (s, t) ∈
(Ṙ× {∞}) ∪ ({∞} × Ṙ) the cosets ΦJ

s,t(A+ J ) are invertible in LJs,t.

At the point (∞,∞), it can be shown that the coset ΦJ
∞,∞(χ+ +J ) belongs

to the center of the local algebra (see [10]), thus allowing a second localization into
two other local algebras, corresponding to (∞,∞)− and (∞,∞)+.

For η ∈ {(x,∞), (∞, y), (∞,∞)±}, the strong limit homomorphisms Hη are
defined from F into B, with Hη(J ) = K. The following theorem relates the invert-
ibility (and Fredholm) property of the strong limits with invertibility in the local
algebras. Let Dη ⊂ B be the set such that if A ∈ Dη, then H−1

η,•(A) ∈ L. Because L
is inverse-closed in E , it easy to see that the algebra Dη is inverse-closed in B. In
fact, if A is invertible, then H−1

η,•(A
−1) ∈ E , but H−1

η,•(A
−1) is the inverse of H−1

η,•(A)
and so must be in L. But to obtain the result of Theorem 5.4 we need a stronger
result, namely that also the regularizers of Fredholm operators in Dη can be lifted
to a sequence in the sequence algebra L.
Proposition 5.3. Let A∈Dη be a Fredholm operator with regularizer B∈B. Then
B∈Dη.

Proof. If B is a regularizer for A, we have that there exist compact operators K
and K ′ such that BA− I = K and AB − I = K ′.

Let Aη := H−1
η,•(A), Bη := H−1

η,•(B) and Kη := H−1
η,•(K) for

η ∈ {(x,∞), (∞, y), (∞,∞)±}.
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The above implies BηAη −Kη = I. Now let Oξ,•, with

ξ ∈ {−1, 0, 1, (x,∞), (∞, y), (∞,∞)±}

represent one of the automorphisms defined in (4.1).

If η = ξ, then Oη,τ (Bη) = B is constant and there is nothing to prove.
Consider η �= ξ. Then I = Oξ,τ (Bη)Oξ,τ (Aη)− Oξ,τ (Kη) for τ > 0. Thus

‖u‖p = ‖(Oξ,τ (Bη)Oξ,τ (Aη)− Oξ,τ (Kη))u‖p
≤ ‖Oξ,τ (Bη)Oξ,τ (Aη)u‖p + ‖Oξ,τ (Kη)u‖p
≤ ‖B‖ ‖Oξ,τ (Aη)u‖p + ‖Oξ,τ (Kη)u‖p .

Passing to the strong limits, we obtain that ‖u‖p ≤ ‖B‖‖Oξ(Aη)u‖ hence Oξ(Aη)
has trivial kernel and closed image. Applying the same arguments for the adjoint
A∗

η one gets that Oξ(A
∗
η) = Oξ(Aη)

∗ has trivial kernel also. This implies that

Oξ(Aη) is invertible. Now we show that Oξ,τ (Bη)
∗→ Oξ(Aη)

−1.

‖(Oξ,τ (Bη)− Oξ(Aη)
−1)u‖p

= ‖Oξ,τ (Bη)u− (Oξ,τ (Bη)Oξ,τ (Aη)− Oξ,τ (Kη))Oξ(Aη)
−1)u‖p

≤ ‖Oξ,τ (Bη)(I − Oξ,τ (Aη)Oξ,τ (Aη)
−1))u‖p + ‖Oξ,τ (Kη))Oξ(Aη)

−1)u‖p
≤ ‖B‖‖(I − Oξ,τ (Aη)Oξ,τ (Aη)

−1))u‖p + ‖Oξ,τ (Kη))Oξ(Aη)
−1)u‖p.

Since both terms tend to 0 as τ → ∞ we get that Oξ,τ (Bη) → Oξ(Aη)
−1.

The same argument when applied to B∗ shows that Oξ,τ (Bη)
∗ → Oξ(A

∗
η)

−1. This

proves that Oξ(Bη) = Oξ(Aη)
−1, that is, the *-strong limits exist for η �= ξ. We

conclude that Bη ∈ F .
Now, let C be one of the sequences that commute with elements of L modulo

J . We have

CAη −AηC ∈ J ⇒ BηCAηBη −BηAηCBη ∈ J ⇒ BηC−CBη ∈ J ,

which ends the proof. �

Theorem 5.4. Let A ∈ L such that Hη(A) ∈ Dη and ΦJ
η

(
H−1

η,• (Hη(A))
)
= ΦJ

η (A).
Then

(i) if the coset ΦJ
η (A) is invertible in LJη then Hη(A) is Fredholm in B;

(ii) If Hη(A) is Fredholm in B, then the coset ΦJ
η (A) is invertible in LJη .

Proof. Part (i) is immediate because the homomorphism is unital. If Hη(A) is
Fredholm, then there exist an operator B ∈ B, K and K ′ compact operators
such that Hη(A)B = I +K and BHη(A) = I +K ′. By the previous proposition,
B ∈ Dη. Considering, for instance, the first equation, it is then possible to apply
the homomorphism H−1

η,• to both sides and obtain

H−1
η,•(Hη(A))H−1

η,•(B) = I + J in L,
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with J ∈ J . Now, using the canonical homomorphism gives

ΦJ
η

(
H−1

η,• (Hη(A))
)
ΦJ

η

(
H−1

η,•(B)
)
= ΦJ

η (I)

ΦJ
η (A)ΦJ

η

(
H−1

η,•(B)
)
= ΦJ

η (I)

which shows the right invertibility of ΦJ
η (A). The same reasoning can be applied

to obtain the left invertibility. �
The above result answers the second part of Markus Seidel’s question. By

factoring out the compact-like ideals at the essentialization step, the new local
algebras can be thought as the Calkin counterpart to the usual local algebras.
Thus, invertibility in the new local algebras of an element ΦJ

η (A) is related to the
Fredholm property of the corresponding homomorphism Hη(A), while the classical
result for the old local algebras would relate to the invertibility of Hη(A).

It is possible now to give a final result on stability of sequences in L.
Theorem 5.5. Let A ∈ L such that Hη(A) ∈ Dη and ΦJ

η

(
H−1

η,• (Hη(A))
)
= ΦJ

η (A).
Then A is stable if and only if the operators Wt(A), Hη(A), with t ∈ {−1, 0, 1},
η ∈ {(x,∞), (∞, y), (∞,∞)± : x, y ∈ R} are invertible.

As a particular case of the main result above, one can recover, for instance,
the results in [10]–[12]:

Corollary 5.6. Let A : Lp(R)→ Lp(R) be an operator belonging to the algebra gen-
erated by operators of multiplication by piecewise continuous functions and convo-
lution operators with piecewise continuous multiplier generating functions. Then
the sequence A = (Aτ ) := (PτAPτ + Qτ ) if and only if the following conditions
are fulfilled:

(i) The operators A and χ∓W±1(A)χ∓I + χ±I are invertible;
(ii) The operators and χ[−1,1]H(∞,x)(A)χ[−1,1] are invertible in Lp([−1, 1]) for

x ∈ R.

Proof. One first has to check that the sequence (Aτ ) belongs to L. That the se-
quence is in F comes from [10, Propositions 4.5-4.7] and [12, Lemma 2]. The
commutation modulo J with the sequences that define L is given in [10, Propo-
sition 4.12]. On the other hand, the same propositions give that Hη(A), η ∈
{(x,∞), (∞, y), (∞,∞)±} are elements of the algebra generated by convolution
and multiplication operators, and so belong to Dη. The last condition one needs
to check in order to be able to apply Theorem 5.5 is that ΦJ

η

(
H−1

η,• (Hη(A))
)
=

ΦJ
η (A). This was exactly the main arguments in the proofs of Theorems 4.13 and

4.16 in [10].
Now, the operators in (i) and (ii) result from the direct application of the

homomorphims in Theorem 5.5 to the specific sequence A. Note that because
H(x,∞)((Pτ )) = I for x ∈ R, H(x,∞)(A) = H(x,∞)(A) and this operator is invertible
if A is invertible. The homomorphisms H(∞,∞)±(A) coincide in this case with
H0,∞ ◦W±1, as can be easily checked, and so the invertibility of W±1(A) imply
automatically that of H(∞,∞)±(A). �
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6. Concluding remarks

With this work we have tried to gain a deeper understanding of the role and
meaning of the strong limits that have been used since Silbermann’s pioneering
paper [13] and their relation to the “compact-like” sequence ideals to which they
need to be connected. This attempt was primed by Markus Seidel question on the
relation between the “lifting homomorphisms” and “localization homomorphisms”
that until now appeared like mathematical objects of different kinds. We have
succeeded in uniting them in a single concept, and, at the same time, understand
the necessary properties they need to have for obtaining the usual stability results.

In this case, the strong limits are related to sequence algebra automorphisms,
and the ideals result from the application of the inverses of these automorphisms
to the set of (the constant sequences of) compact operators. In principle, a similar
result can be obtained in the cases where the strong limits are given by matrix
operators, as in [8] or [9], but there can arise some technical difficulties due to the
fact that, in this case, the sequence algebra homomorphisms are not invertible in
the large sequence algebra E .
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Invertibility in Groupoid C∗-algebras

Ruy Exel

Abstract. Given a second-countable, Hausdorff, étale, amenable groupoid G
with compact unit space, we show that an element a in C∗(G) is invertible
if and only if λx(a) is invertible for every x in the unit space of G, where λx

refers to the regular representation of C∗(G) on �2(Gx). We also prove that,

for every a in C∗(G), there exists some x ∈ G(0) such that ‖a‖ = ‖λx(a)‖.
Mathematics Subject Classification (2010). Primary 22A22; Secondary 46L05,
46L55.

Keywords. C∗-algebras, induced representations, topological groupoids, amen-
able groupoids.

1. Introduction

The structure of certain C∗-algebras is often best studied via large families of
*-representations. According to this point of view, one tries to deduce the proper-
ties of any given element of the algebra by means of the properties of its images
under the representations provided. Here we shall mostly be interested in invert-
ibility questions, and thus on families of representations of a given C∗-algebra
which are large enough to determine when an element is invertible.

One of the first, and arguably also the most influential such result is the
Allan–Douglas local principle [1, Corollary 2.10], [4, Theorem 7.47], which asserts
that an element in a unital Banach algebra is invertible if and only if it is invertible
modulo certain ideals associated to the points of the spectrum of a given central
subalgebra. This principle has been generalized to nonlocal algebras (see [7] and
the references given there) and has successfully been applied to study Fredholm
singular integral operators with semi-almost periodic coefficients [3].

The present paper is an attempt to transpose the local-trajectory method of
[7] to the context of groupoid C∗-algebras. Since invertibility only makes sense
on unital algebras, and since the C∗-algebra of a groupoid is unital only when
the groupoid is étale and has a compact unit space, we restrict ourselves to this

Partially supported by CNPq.
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case (however our work suggests questions that might be relevant for more gen-
eral groupoids). To be precise, our main result, Theorem 2.10 applies to second-
countable, Hausdorff, étale, amenable groupoids with compact unit space. Given
such a groupoid G, we show that an element a in the groupoid C∗-algebra C∗(G)
is invertible if and only, for every x in the unit space of G, one has that λx(a) is
invertible, where λx is the regular representation of C∗(G) on �2(Gx).

A crucial tool used to prove our main result is the theory of induced repre-
sentations started by Renault in [9, Chap. II, §2] and improved by Ionescu and
Williams in [5] and [6].

Since G is amenable, we have by [2, Theorem 6.1.4(iii)] that

‖a‖ = sup
x∈G(0)

‖λx(a)‖, ∀a ∈ C∗(G). (1.1)

As a byproduct of our work we have found a small improvement of this result,
namely Corollary 3.3, below, which asserts that

‖a‖ = max
x∈G(0)

‖λx(a)‖, ∀a ∈ C∗(G), (1.2)

which is to say that the supremum in (1.1) is in fact attained for every a. The
proof of this fact is a straightforward combination of Theorem 2.10 with a result
of S. Roch [10], which we carefully describe below.

Even though the invertibility question treated in Theorem 2.10 only makes
sense for groupoids with compact unit space, (1.2) applies to a wider context. A
sensible question to be asked at this point is therefore whether or not (1.2) holds
in the absence of the compactness hypothesis.

Dropping the assumption that G is amenable, it is well known that (1.1) holds
as long as we replace the full by the reduced groupoid C∗-algebra. So it makes
sense to ask whether or not

‖a‖ = max
x∈G(0)

‖λx(a)‖, ∀a ∈ C∗
r (G) ? (1.3)

Unfortunately we have not been able to answer any of these questions, which we
are then forced to leave as open problems.

Attaining the supremum is a well-known property of continuous functions on
compact spaces, so a proof of (1.3) could be obtained, at least in the case of a
compact unit space, should we be able to prove that the function

x �→ ‖λx(a)‖
is continuous for every a ∈ C∗

r (G). However sensible this appears to be, we have
not been able to determine its validity.

Last, but not least, I would like to thank Amélia Bastos and the members of
“The Center for Functional Analysis and Applications – CEAF” of the “Instituto
Superior Técnico de Lisboa” for bringing their work to my attention and also for
their warm hospitality during two visits there where many interesting conversations
on these topics took place and where the ideas for the present work developed. I
would also like to thank Jean Renault for helpful e-mail exchanges.
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2. Sufficient family of representations

Let A be a unital C∗-algebra. The following concept appears in [10, Section 5].

Definition 2.1. A family F of non-degenerated representations (always assumed
to preserve the involution) of A is called sufficient if, for every a in A, one has that

a is invertible ⇐⇒ π(a) is invertible for all π ∈ F .

Observe that the implication “⇒” is always true, so the relevant property
conveyed by this definition is the implication “⇐”.

Proposition 2.2. The set of all irreducible representations of A is a sufficient family
of representations.

Proof. If a is a non-invertible element of A, then either a∗a or aa∗ are non-
invertible. So we may assume, without loss of generality that a∗a is non-invertible.
Let B be the closed *-subalgebra of A generated by a∗a and 1, and let X be the
compact spectrum of B. Since a∗a is non-invertible, there exists some point x0 in
X such that â∗a(x0) = 0, where the hat indicates the Gelfand transform.

The map

φ : b ∈ B �→ b̂(x0) ∈ C

is therefore a pure state of B, which may be extended to a pure state ψ on A.
Let π be the GNS representation associated to ψ, so that π is an irreducible
representation. If ξ is the associated cyclic vector we have

‖π(a)ξ‖2 = 〈π(a)ξ, π(a)ξ〉 = 〈π(a∗a)ξ, ξ〉 = ψ(a∗a) = φ(a∗a) = â∗a(x0) = 0.

It follows that the operator π(a) is not injective and hence non-invertible. �

� From now on we will be interested in the question of sufficiency for groupoid
C∗-algebras. We therefore fix a second-countable, Hausdorff, étale groupoid G,
with source and range maps denoted by “s” and “r”, respectively.

Given x in the unit space G(0) of G, we shall use the following standard
notations:

Gx = {γ ∈ G : s(γ) = x},

Gx = {γ ∈ G : r(γ) = x}, and

G(x) = Gx ∩ Gx.
Consider the Hilbert space Hx = �2(Gx) and the regular representation λx of

Cc(G) on Hx, given by

λx(f)ξ|γ =
∑

γ′γ′′=γ

f(γ′)ξ(γ′′), ∀f ∈ Cc(G), ∀ξ ∈ Hx, ∀γ ∈ Gx,

which is well known to extend to C∗(G). For each γ in Gx, let eγ be the basis
vector of Hx corresponding to γ.
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Proposition 2.3. For every γ1 and γ2 in Gx, and all f in Cc(G), one has that

〈λx(f)eγ1 , eγ2〉 = f(γ2γ
−1
1 ).

Proof. We have

〈λx(f)eγ1 , eγ2〉 = λx(f)eγ1 γ2
=

∑
γ′γ′′=γ2

f(γ′)eγ1(γ
′′)

=
∑

γ′γ1=γ2

f(γ′) = f(γ2γ
−1
1 ). �

Proposition 2.4. Let H be a closed sub-groupoid of G, viewed as a topological
groupoid with the relative topology. Then the following are equivalent:

(i) the restriction of the range map r to H, viewed as a mapping

r|H : H → H(0),

is an open mapping,
(ii) H is étale.

Proof. Assuming (i), let γ ∈ H and choose an open set U ⊆ G such that r is a
homeomorphism from U onto the open set r(U) ⊆ G(0). Then U ∩ H is open in
the relative topology of H and, by (i), we have that r(U ∩H) is open in H(0). It is
then clear that r is a homeomorphism from U ∩H to r(U ∩H), showing that r|H
is a local homeomorphism and hence that H is étale. The converse is evident. �

� From now on we fix a closed sub-groupoid H ⊆ G, satisfying the equivalent
conditions above. We will denote the unit spaces of G and H as follows

X := G(0), and Y := H(0).

Since H is closed in G and since Y = H ∩X , we see that Y is a closed subspace
of X .

Let us briefly describe the process of inducing representations from C∗(H) to
C∗(G), cf. [9, Chap. II, §2] and [6, Section 2]. Given a representation L of C∗(H)
on a Hilbert space HL, we want to produce a representation IndG

H L of C∗(G) on
a Hilbert space HIndL. In order to do so, consider the closed subset of G given by

GY = s−1(Y ) = {γ ∈ G : s(γ) ∈ Y }.
For ϕ and ψ in Cc(GY ), define 〈ϕ, ψ〉∗ in Cc(H), by

〈ϕ, ψ〉∗(ζ) =
∑

γ1γ2=ζ

ϕ(γ−1
1 )ψ(γ2), ∀ζ ∈ H.

It should be noticed that the above sum ranges over all pairs of elements γ1 and
γ2 in G (as opposed to H), whose product equals ζ. In this case notice that both
r(γ1) and s(γ2) lie in Y , so that γ−1

1 and γ2 indeed belong to the domain of ϕ and
ψ, respectively.

By [8, Theorem 2.8], one has that in fact Cc(GY ) may be completed to a
right C∗(H)-Hilbert module, which we will denote by M , the appropriate right
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multiplication being that which is described in [8, page 11]. It is therefore profitable
to view 〈· , ·〉∗ as a C∗(H)-valued map.

The spaceHIndL, on which the induced representation will act, is then defined
to be the completion of

Cc(GY )⊗HL,

relative to the inner-product

〈ϕ⊗ ξ, ψ ⊗ η〉 :=
〈
L
(
〈ψ, ϕ〉∗

)
ξ, η

〉
, ∀ϕ, ψ ∈ Cc(GY ), ∀ξ, η ∈ HL.

One next gives Cc(GY ) the structure of a left Cc(G)–module by setting

(f ∗ ϕ)(γ) :=
∑

γ1γ2=γ

f(γ1)ϕ(γ2), ∀f ∈ Cc(G), ∀ϕ ∈ Cc(GY ), ∀γ ∈ GY .

Again by [8, Theorem 2.8], the above left-module structure may be extended to a
bounded multiplication operation

(a, x) ∈ C∗(G) ×M �→ ax ∈M.

In order to define the induced representation one may either work with the
completionM described above or take the more pedestrian point of view of sticking
to compactly supported functions. Taking the latter approach, for f ∈ Cc(G) one
initially defines IndG

H L(f) on the dense subspace Cc(GY ) ⊗HL ⊆ HIndL, by the
formula

IndG

H L(f)(ϕ⊗ ξ) := (f ∗ ϕ)⊗ ξ, ∀ϕ ∈ Cc(GY ), ∀ξ ∈ HL,

and then extend it by continuity to HIndL. This provides a *-representation of
Cc(G) on HIndL which, in turn, may be extended to the whole of C∗(G).

The resulting representation of C∗(G) on HIndL is denoted by IndG

H L, and is
called the representation induced by L from H up to G. For more details, see [9,
Chap. II, §2] and [6, Section 2].

� Fix, for the time being, an element x ∈ X .

We would now like to consider the question of inducing representations from
H := G(x) up to G. Observing that

Y = G(x)(0) = {x},
we have that GY = Gx, which is a discrete topological space. Consequently Cc(GY )
is linearly generated by the set

{eγ : γ ∈ Gx},
where eγ denotes the characteristic function of the singleton {γ}.

Proposition 2.5. Given γ, γ′ ∈ Gx, we have that

〈eγ , eγ′〉∗ =

{
δγ−1γ′ , if r(γ) = r(γ′),
0, otherwise,

where, for each h ∈ G(x), we denote by δh the characteristic function of the sin-
gleton {h}, viewed as an element of Cc

(
G(x)

)
⊆ C∗(G(x)).
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Proof. We have, for every ζ ∈ G(x), that

〈eγ , eγ′〉∗(ζ) =
∑

γ1γ2=ζ

eγ(γ
−1
1 )eγ′(γ2) =

[
γ−1γ′=ζ

]
where the brackets denote the Boolean value of the expression inside, with the
convention that a syntactically incorrect expression, e.g., when the multiplication
γ−1γ′ is illegal, the value is zero.

Thus, when r(γ) = r(γ′), we have that the product γ−1γ′ is defined, evidently
giving an element of G(x) and, in this case,

〈eγ , eγ′〉∗ = δγ−1γ′ ,

On the other hand, when r(γ) �= r(γ′), we clearly have that 〈eγ , eγ′〉∗ = 0. �

The following elementary result is included in order to illustrate a simple
example.

Proposition 2.6. Let Λ be the left-regular representation of C∗(G(x)) on �2(G(x)).
Then IndG

G(x)
Λ is unitarily equivalent to λx.

Proof. For each element γ ∈ Gx, and each g ∈ G(x), consider the element

ϕγ,g = eγ ⊗ eg ∈ Cc(Gx)⊗ �2(G(x)) ⊆ HIndΛ.

We first claim that

〈ϕγ,g, ϕγ′,g′〉 =
[
γg=γ′g′

]
, ∀γ, γ′ ∈ Gx, ∀g, g′ ∈ G(x). (2.1)

In fact, we have

〈ϕγ,g, ϕγ′,g′〉 =
〈
eγ ⊗ er(γ), eγ′ ⊗ er(γ′)

〉
=

〈
Λ
(
〈eγ′ , eγ〉∗

)
er(γ), er(γ′)

〉
= (†)

Consequently, if r(γ) �= r(γ′) we have by Proposition 2.5 that 〈ϕγ,g, ϕγ′,g′〉 = 0,
which proves (2.1) in this case. If r(γ) = r(γ′) then, again by Proposition 2.5, it
follows that

(†) =
〈
Λ
(
δγ′−1γ

)
eg, eg′

〉
=

〈
eγ′−1γg, eg′

〉
=

[
γ′−1γg=g′

]
=

[
γg=γ′g′

]
,

proving (2.1). In particular, this implies that

〈ϕγ,g, ϕγ′,g′〉 = 〈ϕγg,x, ϕγ′,g′〉,
and since the collection of all ϕγ′,g′ evidently spans HIndΛ, we have that ϕγ,g =
ϕγg,x, and it is then clear that the mapping

eγ �→ ϕγ,x

extends to a unitary operator U : Hx → HIndΛ. Given f ∈ Cc(G), we claim that〈
U∗(IndG

H
Λ(f))Ueγ , eγ′

〉
= 〈λx(f)eγ , eγ′〉, ∀γ, γ′ ∈ Gx. (2.2)

In order to verify it observe that the left-hand side equals〈
IndG

H Λ(f)(ϕγ,x), ϕγ′,x
〉
=

〈
(f ∗ eγ)⊗ ex, eγ′ ⊗ ex′

〉
=

〈
Λ
(
〈eγ′ , f ∗ eγ〉∗

)
ex, ex

〉
= (♦)
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After checking that

f ∗ eγ =
∑
η∈Gx

f(ηγ−1)eη,

we conclude that

(♦) =
∑
η∈Gx

f(ηγ−1)
〈
Λ
(
〈eγ′ , eη〉∗

)
ex, ex

〉
=

∑
η∈Gx

r(γ′)=r(η)

f(ηγ−1)
〈
Λ
(
γγ′−1η

)
ex, ex

〉
=

∑
η∈Gx

r(γ′)=r(η)

f(ηγ−1)
〈
eγ′−1η, ex

〉
= f(γ′γ−1)

P.2.3
= 〈λx(f)eγ , eγ′〉.

This proves (2.2), and taking into account that γ and γ′ are arbitrary, we conclude
that U∗(IndG

H
Λ(f))U = λx(f), finishing the proof. �

Notice that there are two completions of Cc(Gx) which are relevant to us.
On the one hand M is the completion under the C∗(G(x))-valued inner-product
〈· , ·〉∗ , and, on the other, Hx is the completion for the 2-norm. These two spaces
are related to each other by the following.

Proposition 2.7. There is a bounded linear map

j : M → Hx,

such that j(ϕ) = ϕ, for every ϕ ∈ Cc(Gx).

Proof. Given ϕ ∈ Cc(Gx), notice that

‖ϕ‖22 =
∑
γ∈Gx

ϕ(γ)ϕ(γ) = 〈ϕ, ϕ〉∗(1) ≤ ‖〈ϕ, ϕ〉∗‖C∗(G(x))
= ‖ϕ‖2M .

This implies that the identity map on Cc(Gx) is continuous for ‖·‖M on its do-
main and the 2-norm on its codomain. The required map is then obtained by a
continuous extension. �

If ζ ∈ G(x), we have a well-defined bijective map

γ ∈ Gx �→ γζ ∈ Gx,
and hence the map

Rζ : Hx → Hx,

defined by

Rζ(ξ)γ = ξ(γζ), ∀ξ ∈ Hx, ∀γ ∈ Gx,
is a unitary operator. It is also easy to see that Rζ1 ◦Rζ2 = Rζ1ζ2 , which is to say
that R is a unitary representation of G(x) on Hx.

This representation will play an important role in our next result, but before
stating it, we need to introduce a notation.
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Given any discrete group G, and any ζ ∈ G, the map

f ∈ Cc(G) �→ f(ζ) ∈ C

is well known to extend to a bounded linear functional on C∗(G), which we will
denote by

a ∈ C∗(G) �→ â(ζ) ∈ C.

Proposition 2.8. For every a ∈ C∗(G), every x, y ∈ M , and every ζ ∈ G(x), we
have that

̂〈x, ay〉∗(ζ) =
〈
λx(a)Rζ

(
j(y)

)
, j(x)

〉
.

Proof. Given f ∈ Cc(G), and ψ, ϕ ∈ Cc(Gx), we have

〈ϕ, f ∗ ψ〉∗(ζ) =
∑

γ1γ2=ζ

ϕ(γ−1
1 )(f ∗ ψ)(γ2) =

∑
γ1γ2γ3=ζ

ϕ(γ−1
1 )f(γ2)ψ(γ3) = · · ·

With the change of variables “γ′
3 = γ3ζ

−1” the above equals

· · · =
∑

γ1γ2γ′
3=x

ϕ(γ−1
1 )f(γ2)ψ(γ

′
3ζ)

=
∑

γ1γ2γ′
3=x

ϕ(γ−1
1 )f(γ2)Rζ(ψ)(γ

′
3) =

〈
f ∗Rζ(ψ), ϕ

〉
.

This gives that

〈ϕ, f ∗ ψ〉∗(ζ) =
〈
f ∗Rζ(ψ), ϕ

〉
,

and the proof is concluded upon replacing

• f by the terms of a sequence {fn}n converging to a in C∗(G(x)),
• ϕ by the terms of a sequence {ϕn}n converging to x in M , and finally

• ψ by the terms of a sequence {ψn}n converging to y in M . �

Corollary 2.9. Given x ∈ X, suppose that a is an element of C∗(G) such that
λx(a) = 0. Then

IndG
G(x) L(a) = 0,

for any representation L of C∗(G(x)) which is weakly contained in Λ.

Proof. By Proposition 2.8, we deduce that

̂〈x, ay〉∗(ζ) = 0, ∀ζ ∈ G(x), ∀x, y ∈M.

Temporarily fixing x and y, we then deduce that Λ
(
〈x, ay〉∗

)
= 0, and hence that

L
(
〈x, ay〉∗

)
= 0, (2.3)

for any L as in the statement. Given f ∈ Cc(G), ϕ, ψ ∈ Cc(Gx) and ξ, η ∈ HL, we
have that〈

IndG
G(x) L(f)(ϕ⊗ ξ), ψ ⊗ η

〉
=

〈
(f ∗ ϕ)⊗ ξ, ψ ⊗ η

〉
=

〈
L
(
〈ψ, f ∗ ϕ〉∗

)
ξ, η

〉
.



Invertibility in Groupoid C∗-algebras 181

Applying this for f ranging in a sequence {fn}n converging to a in C∗(G(x)), we
conclude that〈

IndG
G(x)

L(a)(ϕ⊗ ξ), ψ ⊗ η
〉
=

〈
L
(
〈ψ, aϕ〉∗

)
ξ, η

〉 (2.3)
= 0,

from where the conclusion follows easily. �
We may now prove our main result:

Theorem 2.10. Let G be a second-countable, Hausdorff, étale groupoid, such that
G(0) is compact. Suppose moreover that G is amenable. Then {λx}x∈G(0) is a suf-
ficient family of representations for C∗(G). In other words, if a ∈ C∗(G) is such
that λx(a) is invertible for every x in the unit space of G, then a is necessarily
invertible.

Proof. Suppose, by way of contradiction, that a is non-invertible. By Proposi-
tion 2.2 there exists an irreducible representation π of C∗(G) such that π(a) is
non-invertible. Employing [5, Theorem 2.1] we have that, for some x ∈ G(0), there
exists an irreducible representation L of C∗(G(x)) such that π and IndG

G(x)
L share

null spaces.
Since G is amenable we have that G(x) is also amenable by [2, Proposition

5.1.1], and hence that L is weakly contained in the left-regular representation. We
may therefore employ Corollary 2.9 to conclude that

Ker (λx) ⊆ Ker
(
IndG

G(x)
L
)
= Ker (π).

By hypothesis a is invertible modulo Ker (λx), and hence it must also be invertible
modulo Ker (π), a contradiction. �

3. Strictly norming family of representations

A family F of representations of a C∗-algebra A is often called norming, when

‖a‖ = sup
π∈F
‖π(a)‖, ∀a ∈ A. (3.1)

As an example, the family {λx}x∈G(0) is norming for the reduced groupoid C∗-
algebra C∗

r (G), for every (non-necessarily amenable) groupoid G. Based on this
concept, let us give the following:

Definition 3.1. A family F of representations of a C∗-algebra A will be called
strictly norming when it is norming and, in addition, the supremum in (3.1) is
attained for every a in A.

The next result, due to Roch, relates strictly norming and sufficient families
in an interesting way. Its proof is included for the convenience of the reader and
also because it is slightly simpler than the proof given by Roch in [10].

Theorem 3.2 ([10, Theorem 5.7]). Let F be a family of non-degenerated represen-
tations of a unital C∗-algebra A. Then F is strictly norming if and only if it is
sufficient.
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Proof. Arguing by contradiction, suppose that F is sufficient, but there exists
a ∈ A such that ‖π(a)‖ < ‖a‖, for all π in F . Replacing a by a∗a, we may assume
that a is positive. For every π in F , we then have that

σ
(
π(a)

)
⊆

[
0, ‖π(a)‖

]
⊆

[
0, ‖a‖

)
.

Setting b = a− ‖a‖, we then have by the spectral mapping theorem that

σ
(
π(b)

)
= σ

(
π(a)− ‖a‖

)
= σ

(
π(a)

)
− ‖a‖ ⊆

[
− ‖a‖, 0

)
.

It follows that 0 /∈ σ
(
π(b)

)
, and hence that π(b) is invertible for every π in F ,

but, since ‖a‖ belongs to the spectrum of a, we see that b is not invertible, a
contradiction.

To verify the “only if ” part of the statement, let a be non-invertible. We thus
need to find some π ∈ F , such that π(a) is non-invertible.

Since a is non-invertible, then either a∗a or aa∗ is non-invertible. We suppose
without loss of generality that the former is true, that is, that the element c := a∗a
is non-invertible. We then have that

0 ∈ σ(c) ⊆
[
0, ‖c‖

]
.

With b = ‖c‖ − c, we conclude from the spectral mapping theorem that

‖c‖ ∈ σ(b) ⊆ ‖c‖ −
[
0, ‖c‖

]
=

[
0, ‖c‖

]
,

so ‖b‖ = ‖c‖, and by hypothesis there exists π ∈ F , such that ‖π(b)‖ = ‖c‖. Since
π(b) is positive, this implies that ‖c‖ lies in its spectrum, which is to say that
‖c‖ − π(b) is non-invertible, but

‖c‖ − π(b) = π(c),

so π(c) is non-invertible which implies that π(a) is non-invertible. �
Putting Theorem 2.10 and Theorem 3.2 together, we therefore deduce the

following important consequence:

Corollary 3.3. Suppose we are given a second-countable, Hausdorff, étale, amenable
groupoid G with G(0) compact. Then, for every a ∈ C∗(G), there exists x ∈ G(0),
such that

‖a‖ = ‖λx(a)‖.
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Abstract. We show that if the Hardy–Littlewood maximal operator is bound-
ed on a separable Banach function space X(Rn) and on its associate space
X ′(Rn), then a pseudodifferential operator Op(a) is bounded on X(Rn) when-

ever the symbol a belongs to the Hörmander class S
n(ρ−1)
ρ,δ with 0 < ρ ≤ 1,

0 ≤ δ < 1 or to the Miyachi class S
n(ρ−1)
ρ,δ (κ, n) with 0 ≤ δ ≤ ρ ≤ 1,

0 ≤ δ < 1, and κ > 0. This result is applied to the case of variable Lebesgue
spaces Lp(·)(Rn).
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1. Introduction

We denote the usual operators of first-order partial differentiation on Rn by ∂xj :=
∂/∂xj . For every multi-index α = (α1, . . . , αn) with non-negative integers αj , we
write ∂α := ∂α1

x1
. . . ∂αn

xn
. Further, put |α| := α1 + · · · + αn, and for each vector

ξ = (ξ1, . . . , ξn) ∈ Rn, define ξα := ξα1
1 . . . ξαn

n . Let 〈·, ·〉 stand for the scalar

product in Rn and |ξ| :=
√
〈ξ, ξ〉 for ξ ∈ Rn.

Let C∞
0 (Rn) denote the set of all infinitely differentiable functions with com-

pact support. Recall that, given u ∈ C∞
0 (Rn), a pseudodifferential operator Op(a)

is formally defined by the formula

(Op(a)u)(x) :=
1

(2π)n

∫
Rn

dξ

∫
Rn

a(x, ξ)u(y)ei〈x−y,ξ〉dy,

The author is partially supported by FCT project PEstOE/MAT/UI4032/2011 (Portugal).



186 A.Yu. Karlovich

where the symbol a is assumed to be bounded in both the spatial variable x and
the frequency variable ξ, and satisfies certain regularity conditions.

An example of symbols one might consider is the Hörmander class Sm
ρ,δ in-

troduced in [16] and consisting of a ∈ C∞(Rn × Rn) with

|∂α
ξ ∂

β
xa(x, ξ)| ≤ Cα,β(1 + |ξ|)m−ρ|α|+δ|β| (x, ξ ∈ Rn),

where

m ∈ R, 0 ≤ δ, ρ ≤ 1

and the positive constantsCα,β depend only on α and β. Along with the Hörmander
class Sm

ρ,δ, we will consider the generalized Hörmander class Sm
ρ,δ(κ,κ

′) introduced
by Miyachi [29]. We will call Sm

ρ,δ(κ,κ
′) the Miyachi class of symbols. Its quite

technical definition is postponed to Subsection 2.1. Here we only note that symbols
in the Miyachi classes may lie beyond C∞(Rn×Rn) (that is, they are non-smooth,
in general).

Let f ∈ L1
loc(R

n). For a cube Q ⊂ Rn, put

fQ :=
1

|Q|

∫
Q

f(x)dx.

Here, and throughout, cubes will be assumed to have their sides parallel to the
coordinate axes and |Q| will denote the volume of Q. The Fefferman–Stein sharp
maximal operator f �→ f# is defined by

f#(x) := sup
Q
x

1

|Q|

∫
Q

|f(x)− fQ|dx (x ∈ Rn),

where the supremum is taken over all cubes Q containing x. Let 1 ≤ q <∞. Given
f ∈ Lq

loc(R
n), the qth maximal operator is defined by

(Mqf)(x) := sup
Q
x

(
1

|Q|

∫
Q

|f(y)|qdy
)1/q

(x ∈ Rn),

where the supremum is taken over all cubes Q containing x. For q = 1 this is the
usual Hardy–Littlewood maximal operator, which will be denoted by M .

The boundedness of pseudodifferential operators with smooth and non-
smooth symbols on the classical Lebesgue spaces Lp(Rn) was studied by many
authors. We refer to the monographs by Coifman and Meyer [8], Kumano-go [21],
Journé [18], Taylor [37], Stein [36], Hörmander [17], Abels [1] and also to the pa-
pers by Miyachi [29] and Ashino, Nagase, and Vaillancourt [5] for corresponding
results and further references.

Miller [27] proved the boundedness of pseudodifferential operators with sym-
bols a ∈ S0

1,0 on the weighted Lebesgue spaces Lp(Rn, w) with 1 < p < ∞ and
Muckenhoupt weights w ∈ Ap(Rn). One of the key ingredients in his proof was
the pointwise estimate

(Op(a)f)#(x) ≤ Cq(Mqf)(x) (x ∈ Rn), (1)



Boundedness of PDO on Banach Function Spaces 187

where q ∈ (1,∞) and Cq > 0 is independent of f ∈ C∞
0 (Rn). Another ingredients

are the Fefferman–Stein inequality (see, e.g., [15, Theorem 5]) and self-improving
properties of Muckenhoupt weights. Further, estimate (1) and the boundedness
results for Op(a) on Lp(Rn, w) with p ∈ (1,∞) and w ∈ Ap(Rn) were extended
to other classes of smooth and non-smooth symbols. We refer, for instance, to the
works by Nishigaki [33], Yabuta [38, 39, 40, 41], Miyachi and Yabuta [30], Álvarez

and Hounie [2], Álvarez, Hounie, and Pérez [3], Michalowski, Rule, and Staubach
[26] and the references therein.

Rabinovich and Samko [35, Theorem 5.1] proved the boundedness of pseudo-
differential operators with symbols a ∈ S0

1,0 on so-called variable Lebesgue spaces

Lp(·)(Rn) (see Subsection 3.1). Their proof did not rely on (1). Instead, they ob-
tained another (more precise) pointwise estimate for (Op(a)f)#(x) in the spirit of
[4]. Recently the author and Spitkovsky [19, Theorem 1.2] proved the bounded-

ness of Op(a) on variable Lebesgue spaces Lp(·)(Rn) for the symbols a ∈ S
n(ρ−1)
ρ,δ

with 0 < ρ ≤ 1 and 0 ≤ δ < 1. That proof relies on (1) (obtained in [26]),
on the Fefferman–Stein inequality for variable Lebesgue spaces, and on a certain
self-improving property of the Hardy–Littlewood maximal function on Lp(·)(Rn).

The aim of the present paper is to extend the results of [19, 35] to the case
of so-called Banach function spaces. Our proof is based on estimate (1), on the
Fefferman–Stein inequality for Banach function spaces proved recently by Lerner
[23], and on a self-improving property of the Hardy–Littlewood maximal function
on Banach function spaces proved by Lerner and Pérez [25]. Note that our results
are true for all symbols classes admitting estimate (1). We choose here the classical
Hörmander classes Sm

ρ,δ of smooth symbols and the Miyachi classes Sm
ρ,δ(κ,κ

′) of
non-smooth symbols just as an illustration of the fact that the assumptions on
smoothness of symbols imposed in [19, 35] can be essentially relaxed.

The set of all Lebesgue measurable complex-valued functions onRn is denoted
by M. Let M+ be the subset of functions in M whose values lie in [0,∞]. The
characteristic function of a measurable set E ⊂ Rn is denoted by χE and the
Lebesgue measure of E is denoted by |E|.

Definition 1.1 ([6, Chap. 1, Definition 1.1]). A mapping ρ :M+ → [0,∞] is called a
Banach function norm if, for all functions f, g, fn (n ∈ N) inM+, for all constants
a ≥ 0, and for all measurable subsets E of Rn, the following properties hold:

(A1) ρ(f) = 0⇔ f = 0 a.e., ρ(af) = aρ(f), ρ(f + g) ≤ ρ(f) + ρ(g),

(A2) 0 ≤ g ≤ f a.e. ⇒ ρ(g) ≤ ρ(f) (the lattice property),

(A3) 0 ≤ fn ↑ f a.e. ⇒ ρ(fn) ↑ ρ(f) (the Fatou property),

(A4) |E| <∞⇒ ρ(χE) <∞,

(A5) |E| <∞⇒
∫
E
f(x) dx ≤ CEρ(f)

with CE ∈ (0,∞) which may depend on E and ρ but is independent of f .

When functions differing only on a set of measure zero are identified, the set
X(Rn) of all functions f ∈ M for which ρ(|f |) < ∞ is called a Banach function
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space. For each f ∈ X(Rn), the norm of f is defined by

‖f‖X(Rn) := ρ(|f |).

The set X(Rn) under the natural linear space operations and under this norm
becomes a Banach space (see [6, Chap. 1, Theorems 1.4 and 1.6]).

If ρ is a Banach function norm, its associate norm ρ′ is defined onM+ by

ρ′(g) := sup

{∫
Rn

f(x)g(x) dx : f ∈ M+, ρ(f) ≤ 1

}
, g ∈M+.

It is a Banach function norm itself [6, Chap. 1, Theorem 2.2]. The Banach function
space X ′(Rn) determined by the Banach function norm ρ′ is called the associate
space (Köthe dual) of X(Rn). The Lebesgue space Lp(Rn), 1 ≤ p ≤ ∞, are
the archetypical example of Banach function spaces. Other classical examples of
Banach function spaces are Orlicz spaces, rearrangement-invariant spaces, and
variable Lebesgue spaces Lp(·)(Rn).

Note that we do not assume that X(Rn) is rearrangement-invariant (see [6,
Chap. 2]). Therefore, we are not allowed to use the interpolation theory to study
the boundedness of Op(a) on X(Rn).

Theorem 1.2 (Main result). Let X(Rn) be a separable Banach function space such
that the Hardy–Littlewood maximal operator M is bounded on X(Rn) and on its
associate space X ′(Rn). If a belongs to one of the following symbol classes:

(a) the Hörmander class S
n(ρ−1)
ρ,δ with 0 < ρ ≤ 1 and 0 ≤ δ < 1;

(b) the Miyachi class S
n(ρ−1)
ρ,δ (κ, n) with 0 ≤ δ ≤ ρ ≤ 1, 0 ≤ δ < 1, and κ > 0;

then Op(a) extends to a bounded operator on X(Rn).

The paper is organized as follows. Section 2 is devoted to the proof of The-
orem 1.2. First, we collect the main ingredients. We give the precise definition of
the Miyachi class Sm

ρ,δ(κ,κ
′) in Subsection 2.1. The Fefferman–Stein inequality for

Banach function spaces is stated in Section 2.3. A certain self-improving property
of the Hardy–Littlewood maximal operator on Banach function spaces is discussed
in Subsection 2.4. Precise assumptions on our symbols guaranteeing (1) are stated
in Subsection 2.5. Finally, we assemble these ingredients in Subsection 2.6 and
prove Theorem 1.2.

In Section 3 we apply Theorem 1.2 to the case of variable Lebesgue spaces
Lp(·)(Rn). In Subsection 3.1 we recall the definition and some basic properties of
variable Lebesgue spaces. In Subsection 3.2 we discuss the boundedness of the
Hardy–Littlewood maximal operator on Lp(·)(Rn). In particular, we recall that
M is bounded on Lp(·)(Rn) if and only if M is bounded on its associate space.
This allows us to simplify little bit the formulation of Theorem 1.2 for Lp(·)(Rn)
in Subsection 3.3.
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2. Proof of the main result

2.1. The Miyachi class

The following class of symbols was introduced by Miyachi [29] (see also [28, 30]).
If h ∈ Rn and f is a function on Rn, then the first and the second differences are
denoted by

Δx(h)f(x) := f(x+ h)− f(x),

Δ2
x(h)f(x) := f(x+ 2h)− 2f(x+ h) + f(x).

Let
m ∈ R, 0 ≤ δ, ρ ≤ 1, κ > 0, κ′ > 0.

Let k and k′ be nonnegative integers satisfying

k < κ ≤ k + 1, k′ < κ′ ≤ k′ + 1.

The Miyachi class Sm
ρ,δ(κ,κ

′) consists of all functions a on Rn ×Rn such that the

derivatives ∂β
x∂

α
ξ a(x, ξ) exist in the classical sense for |β| ≤ k and |α| ≤ k′ and the

following four conditions are fulfilled:

(i) if |β| ≤ k and |α| ≤ k′, then

|∂β
x∂

α
ξ a(x, ξ)| ≤ A(1 + |ξ|)m+δ|β|−ρ|α|;

(ii) if |β| = k and |α| ≤ k′, h ∈ Rn, and |h| ≤ (1 + |ξ|)−δ, then

|Δ2
x(h)∂

β
x∂

α
ξ a(x, ξ)| ≤ A(1 + |ξ|)m+δκ−ρ|α||h|κ−k;

(iii) if |β| ≤ k and |α| = k′, η ∈ Rn and |η| ≤ (1 + |ξ|)ρ/4, then
|Δ2

ξ(η)∂
β
x∂

α
ξ a(x, ξ)| ≤ A(1 + |ξ|)m+δ|β|−ρκ′ |η|κ′−k′

;

(iv) if |β| = k and |α| = k′, h, η ∈ Rn, and |h| ≤ (1 + |ξ|)−δ, |η| ≤ (1 + |ξ|)ρ/4,
then

|Δ2
x(h)Δ

2
ξ(η)∂

β
x∂

α
ξ a(x, ξ)| ≤ A(1 + |ξ|)m+δκ−ρκ′

|h|κ−k|η|κ
′−k′

.

Here the constant A is independent of the multi-indices α, β and the variables
x, ξ, h, η ∈ Rn. The smallest such constant is denoted by ‖a‖m,ρ,δ,κ,κ′.

It is not difficult to see that if κ2 ≤ κ1 and κ′
2 ≤ κ′

1, then

Sm
ρ,δ ⊂ Sm

ρ,δ(κ1,κ
′
1) ⊂ Sm

ρ,δ(κ2,κ
′
2) and ‖a‖m,ρ,δ,κ2,κ′

2
≤ const‖a‖m,ρ,δ,κ1,κ′

1
.

If κ (resp. κ′) is not integer, then Δ2
x(h) (resp. Δ

2
ξ(η)) can be replaced by Δ1

x(h)

(resp. Δ1
ξ(η)). It should also be remarked that the assumptions |h| ≤ (1 + |ξ|)−δ

and |η| ≤ (1 + |ξ|)ρ/4 can be replaced by h ∈ Rn and |η| ≤ (1 + |ξ|)/4 if one
modifies the constant A.

2.2. Density of smooth compactly supported functions

Lemma 2.1. The set C∞
0 (Rn) is dense in a separable Banach function space X(Rn).

The proof is standard. For details, see [20, Lemma 2.10(b)], where this fact
is proved for n = 1. The proof for arbitrary n is a minor modification of that one.
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2.3. The Fefferman–Stein inequality for Banach function spaces

Let S0(Rn) be the space of all measurable functions f on Rn such that

|{x ∈ Rn : |f(x)| > λ}| <∞
for any λ > 0. Chebyshev’s inequality

|{x ∈ Rn : |f(x)| > λ}| ≤ 1

λq

∫
Rn

|f(x)|q dx

holds for every q ∈ (0,∞) and λ > 0. In particular, it implies that⋃
q∈(0,∞)

Lq(Rn) ⊂ S0(R
n).

It is obvious that f# is pointwise dominated by Mf . Hence, by Axiom (A2),

‖f#‖X(Rn) ≤ const‖f‖X(Rn) for f ∈ X(Rn)

whenever M is bounded on X(Rn). The converse inequality for Lebesgue spaces
Lp(Rn), 1 < p <∞, was proved by Fefferman and Stein (see [15, Theorem 5] and
also [36, Chap. IV, Section 2.2]). The following extension of the Fefferman–Stein
inequality to Banach function spaces was proved in [23, Corollary 4.2].

Theorem 2.2 (Lerner). Let M be bounded on a Banach function space X(Rn).
Then M is bounded on its associate space X ′(Rn) if and only if there exists a
constant C# > 0 such that, for all f ∈ S0(Rn),

‖f‖X(Rn) ≤ C#‖f#‖X(Rn).

2.4. Self-improving property of maximal operators on Banach function spaces

If 1 < q <∞, then from the Hölder inequality one can immediately get that

(Mf)(x) ≤ (Mqf)(x) (x ∈ Rn).

Thus, the boundedness of any Mq, 1 < q <∞, on a Banach function space X(Rn)
immediately implies the boundedness of M . A partial converse of this fact, called
a self-improving property of the Hardy–Littlewood maximal operator, is also true.
It was proved in [25, Corollary 1.3] (see also [24] for another proof) in a more
general setting of quasi-Banach function spaces.

Theorem 2.3 (Lerner–Pérez). Let X(Rn) be a Banach function space. Then M is
bounded on X(Rn) if and only if Mq is bounded on X(Rn) for some q ∈ (1,∞).

2.5. The crucial pointwise estimate

Theorem 2.4. If a belongs to one of the following symbol classes:

(a) the Hömander class S
n(ρ−1)
ρ,δ with 0 < ρ ≤ 1 and 0 ≤ δ < 1;

(b) the Miyachi class S
n(ρ−1)
ρ,δ (κ, n) with 0 ≤ δ ≤ ρ ≤ 1, 0 ≤ δ < 1, and κ > 0;

then for every q ∈ (1,∞) there exists a constant Cq > 0 such that

(Op(a)f)#(x) ≤ Cq(Mqf)(x) (x ∈ Rn) (2)

for all f ∈ C∞
0 (Rn).
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Part (a) was recently proved by Michalowski, Rule, and Staubach [26, The-
orem 3.3]. Their estimate generalizes the pointwise estimate by Miller [27, Theo-

rem 2.8] for a ∈ S0
1,0 and by Álvarez and Hounie [2, Theorem 4.1] for a ∈ Sm

ρ,δ with

the parameters satisfying 0 < δ ≤ ρ ≤ 1/2 and m ≤ n(ρ − 1). Part (b) follows
from the estimate by Miyachi and Yabuta [30, Theorem 2.4].

Corollary 2.5. If the conditions of Theorem 2.4 are fulfilled, then Op(a)f ∈ S0(Rn)
for every f ∈ C∞

0 (Rn).

Proof. By using the well-known Lp-estimates for the sharp maximal function (see
[15, Theorem 5]) and for the maximal function Mq, one can show that if (2) holds
for all f ∈ C∞

0 (Rn), then Op(a) extends to a bounded operator on Lp(Rn) for
q < p < ∞. In particular, this implies that Op(a)f ∈ S0(Rn) for every function
f ∈ C∞

0 (Rn). �

2.6. Proof of Theorem 1.2

The presented proof is an adaptation of the proof of [19, Theorem 1.2]. Its idea
goes back to Miller [27]. Suppose f ∈ C∞

0 (Rn). Then Op(a)f ∈ S0(Rn) in view of
Corollary 2.5. By Lerner’s theorem (Theorem 2.2), there exists a constant C# > 0
such that

‖Op(a)f‖X(Rn) ≤ C#‖(Op(a)f)#‖X(Rn) (3)

Further, by the crucial pointwise estimate (Theorem 2.4), for every q ∈ (1,∞),
there is a constant Cq > 0 such that

(Op(a)f)#(x) ≤ Cq(Mqf)(x) (x ∈ Rn)

Hence, by Axioms (A1) and (A2),

‖(Op(a)f)#‖X(Rn) ≤ Cq‖Mqf‖X(Rn). (4)

On the other hand, since M is bounded on X(Rn), by the Lerner–Pérez theorem
(Theorem 2.3), there is a constant exponent q0 ∈ (1,∞) and a constant C′

q0 > 0
such that

‖Mq0f‖X(Rn) ≤ C′
q0‖f‖X(Rn). (5)

Thus, combining (3)–(5), we arrive at

‖Op(a)f‖X(Rn) ≤ C#Cq0C
′
q0‖f‖X(Rn)

for all f ∈ C∞
0 (Rn). It remains to recall that, in view of Lemma 2.1, C∞

0 (Rn) is
dense in X(Rn) whenever X(Rn) is separable. Thus, Op(a) extends to a bounded
operator on the whole space X(Rn) by continuity. �
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3. Pseudodifferential operators on variable Lebesgue spaces

3.1. Variable Lebesgue spaces

Let p : Rn → [1,∞] be a measurable a.e. finite function. By Lp(·)(Rn) we denote
the set of all complex-valued functions f on Rn such that

Ip(·)(f/λ) :=
∫
Rn

|f(x)/λ|p(x)dx <∞

for some λ > 0. This set becomes a Banach function space when equipped with
the norm

‖f‖p(·) := inf
{
λ > 0 : Ip(·)(f/λ) ≤ 1

}
.

It is easy to see that if p is constant, then Lp(·)(Rn) is nothing but the standard
Lebesgue space Lp(Rn). The space Lp(·)(Rn) is referred to as a variable Lebesgue
space.

We will always suppose that

1 < p− := ess inf
x∈Rn

p(x), ess sup
x∈Rn

p(x) =: p+ <∞. (6)

Under these conditions, the space Lp(·)(Rn) is separable and reflexive, and its

associate space is isomorphic to Lp′(·)(Rn), where

1/p(x) + 1/p′(x) = 1 (x ∈ Rn)

(see, e.g., [9, Chap. 2] or [14, Chap. 3]).

3.2. The Hardy–Littlewood maximal function on variable Lebesgue spaces

By M(Rn) denote the set of all measurable functions p : Rn → [1,∞] such that
(6) holds and the Hardy–Littlewood maximal operator is bounded on Lp(·)(Rn).

Assume that (6) is fulfilled. Diening [12] proved that if p satisfies

|p(x) − p(y)| ≤ c

log(e+ 1/|x− y|) (x, y ∈ Rn) (7)

for some c > 0 independent of x, y ∈ Rn and p is constant outside some ball, then
p ∈ M(Rn). Further, the behavior of p at infinity was relaxed by Cruz-Uribe,
Fiorenza, and Neugebauer [10, 11], where it was shown that if p satisfies (7) and
there exists a p∞ > 1 such that

|p(x)− p∞| ≤
c

log(e + |x|) (x ∈ Rn) (8)

with c > 0 independent of x ∈ Rn, then p ∈ M(Rn). Following [14, Section 4.1],
we will say that if conditions (7)–(8) are fulfilled, then p is globally log-Hölder con-
tinuous. The class of all globally log-Hölder continuous exponents will be denoted
by P log(Rn).

Conditions (7) and (8) are optimal for the boundedness of M in the pointwise
sense; the corresponding examples are contained in [34] and [10]. However, neither
(7) nor (8) is necessary for p ∈ M(Rn). Nekvinda [31] proved that if p satisfies
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(6)–(7) and ∫
Rn

|p(x) − p∞|c1/|p(x)−p∞| dx <∞ (9)

for some p∞ > 1 and c > 0, then p ∈ M(Rn). One can show that (8) implies (9),
but the converse, in general, is not true. The corresponding example is constructed
in [7]. Nekvinda further relaxed condition (9) in [32]. Lerner [22] (see also [14,
Example 5.1.8]) showed that there exist discontinuous at zero or/and at infinity
exponents, which nevertheless belong to M(Rn). Thus, the class of exponents in
P log(Rn) satisfying (6) is a proper subset of the classM(Rn).

We will need the following remarkable result proved in [13, Theorem 8.1] (see
also [14, Theorem 5.7.2]).

Theorem 3.1 (Diening). We have p ∈M(Rn) if and only if p′ ∈ M(Rn).

We refer to the recent monographs [9, 14] for further discussions concerning
the classM(Rn).

3.3. Boundedness of pseudodifferential operators on variable Lebesgue spaces

Combining Theorem 1.2 and Theorem 3.1, we immediately arrive at the following.

Theorem 3.2. Suppose p ∈ M(Rn). If a belongs to one of the following symbol
classes:

(a) the Hörmander class S
n(ρ−1)
ρ,δ with 0 < ρ ≤ 1 and 0 ≤ δ < 1;

(b) the Miyachi class S
n(ρ−1)
ρ,δ (κ, n) with 0 ≤ δ ≤ ρ ≤ 1, 0 ≤ δ < 1, and κ > 0;

then Op(a) extends to a bounded operator on Lp(·)(Rn).

Part (a) of the above theorem was obtained by the author and Spitkovsky in
[19, Theorem 1.2]. Part (b) is new.

Corollary 3.3 (Rabinovich–Samko). Let p ∈ P log(Rn) satisfy (6). If a ∈ S0
1,0, then

Op(a) extends to a bounded operator on Lp(·)(Rn).

Proof. This statement immediately follows from part (a) of the previous result
because P log(Rn) is a (proper!) subset ofM(Rn). �

This result was proved in [35, Theorem 5.1].
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Abstract. Some estimates for the dimension of the kernel of the singular in-
tegral operator I − cUP+: L

n
2 (T) → Ln

2 (T), with a non-Carleman shift are
obtained, where P+ is the Cauchy projector, U is an isometric shift operator
and c(t) is a continuous matrix function. It is supposed that the shift has a
finite set of fixed points and all the eigenvalues of the matrix c(t) at the fixed
points, simultaneously belong either to the interior of the unit circle T or to
its exterior. Moreover, we show that some of the obtained results can be used
in the case of an operator with a general shift.
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1. Introduction

Let T denote the unit circle and ω be a homeomorphism of T onto itself, which
is differentiable on T and whose derivative does not vanish there. The function
ω : T→ T is called a shift function or simply a shift on T. By

ωk(t) ≡ ω[ωk−1(t)], ω1(t) ≡ ω(t), ω0(t) ≡ t, t ∈ T,

we denote the kth iteration of the shift, k ≥ 2, k ∈ N.
A shift ω is called a (generalized) Carleman shift of order n ∈ N \ {1} if

ωn(t) ≡ t, but ωk(t) �≡ t for k = 1, n− 1. Otherwise, if ω is not a Carleman shift,
it is called a non-Carleman shift. In what follows we will consider six different
shifts, i.e., ω = ζ, η, α, β, γ, δ: ζ, η and γ are general shifts, in the sense Carleman
or non-Carleman shifts; α, β and δ are non-Carleman shifts having a finite set of

This research was supported by Fundação para a Ciência e Tecnologia (Portugal) through Centro
de Análise Funcional e Aplicações of Instituto Superior Técnico.
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fixed points {τ1, τ2, . . . , τs}, s ≥ 1. Other properties of these shifts will be specified
later on whenever necessary.

On the Lebesgue spaces Ln
p (T), p ∈ (1,∞), we consider a shift operator Uω,

associated with a shift ω, defined by

(Uωϕ)(t) = uω(t)ϕ[ω(t)], t ∈ T,

where the function uω is chosen in such way that the following properties hold for
Uω

1:
i) Uω is isometric, i.e., ‖Uωϕ‖Ln

p
= ‖ϕ‖Ln

p
, ω = ζ, η, α, β, γ, δ.

ii) UωS = SUω, where S is the operator of singular integration with Cauchy
kernel (see bellow), ω = η, β, γ, δ.

In this paper, we consider the singular integral operator (SIO) with shift
Tω : Ln

p (T)→ Ln
p (T), ω = ζ, η, α, β, γ, δ, defined by

Tω = I − cUωP+; (1)

where I is the identity operator, c ∈ Cn×n(T) is a continuous matrix function, Uω

is the isometric shift operator defined above,

P± =
1

2
(I ± S)

are the mutually complementary projection operators and

(Sϕ)(t) = (πi)−1

∫
T

ϕ(τ)(τ − t)−1dτ

is the operator of singular integration with the Cauchy kernel.
We note that for the SIO with shift of the form

T (A1, A2) = A1P+ +A2P−, (2)

where
A1 = a1I + b1Uω, A2 = a2I + b2Uω

and a1, a2, b1, b2 ∈ Cn×n(T), the Fredholmness conditions and the index formulas
are known [7]. The Fredholm criterion can be formulated as follows: the operator
T (A1, A2) is Fredholm in Ln

p (T) if and only if the functional operators A1 and
A2 are continuously invertible in Ln

p (T). The spectral properties of the operator
T (A1, A2) have been less studied (see [3], [8], [9], [10] and [11]), even for the case
of a Carleman shift. For the case of a non-Carleman shift, the only works known
to the authors are [1], [12] and [13].

We can also write the operator Tω defined by (1) in the form

Tω = (I − cUω)P+ + P−.

So the question of Fredholmness of the operator Tω is reduced to the question of
continuous invertibility of the operator I − cUω.

1Given a shift ω, the property i) is always satisfied taking uω(t) = |ω′(t)| 1p . To verify the property

ii) the function uω has to be chosen depending on the concrete shift ω (see Section 3.2), which
is not always possible.
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We must say that, in general, in the case of a non-Carleman shift having a
finite set of fixed points {τ1, τ2, . . . , τs}, s ≥ 1, the shift α and the corresponding
shift operator Uα considered in Section 3 of this paper, the necessary and sufficient
conditions of invertibility for the operator I − cUα, can not be expressed in an
explicit form. A specificity of the conditions is expressed by a particular choice of
a, so-called, α-solutions of the homogeneous functional equation associated with
the operator I − cUα (see Sections 3.4.1–3.4.11, pp. 118–142, in [7]). The two
extreme forms of these conditions are:

Case 1. σ[c(τj)] ⊂ T+, j = 1, s;

Case 2. σ[c(τj)] ⊂ T−, j = 1, s, and det c(t) �= 0 for all t ∈ T;

here and below, T+ and T− denote the interior and the exterior of the unit disk,
σ(g), ρ(g) and ‖g‖2, denote the spectrum, the spectral radius and the spectral
norm of a matrix g ∈ Cn×n, respectively.

In [1] (see also Chapter 9 in [16]), on the Hilbert space L2(T), an estimate
for the defect number dimkerTα was obtained for the operator Tα = I − cUαP+,
satisfying the condition |c(τj)| < 1 (the case 1, with c ∈ C(T)).

In [12], on the Hilbert space Ln
2 (T), we obtained estimates for dim kerTω for

the operator Tω = I − cUωP+ (ω = α, β) with matrix coefficient, satisfying one
of the two sets of Fredholmness conditions: the cases 1 (ω = α) and 2 (ω = β),
above. In [13], on the real line, analogous estimates were obtained, considering an
operator with polynomial coefficient relative to the shift operator, under conditions
corresponding to the matrix cases 1 and 2, above.

In the present paper we revisit the mentioned works [12] and [13]. We show
that some of the obtained results can be used in the case of an operator with a
general shift (Section 2). Then we review our results in [12] and [13]; we propose
new proofs and make some minor corrections (Section 3). Finally we formulate the
results on the scalar case and consider two examples (Section 4). The “auxiliary
results” are formulated on the Banach spaces Ln

p (T), p ∈ (1,∞), and the “main
results”, the estimates for dim kerTω, on the Hilbert space Ln

2 (T). As far as we
know this work is the “state of art” of the research on “the very difficult question
related to the solvability theory of the SIO of type (2) with a non-Carleman shift”
(G.S. Litvinchuk in [16], p. XVI).

2. A SIO with a general shift

2.1. Estimate one

Let us begin considering a general shift ζ : T → T, the associated isometric shift
operator Uζ , and the SIO with shift defined by (1) (with ω = ζ)

Tζ = I − cUζP+. (3)

The following results take place.
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Proposition 2.1. Let

N = I − aUζP+, (4)

R = rP− + (I − aUζ)P+, (5)

M = I − rP+r
−1P−N−1, (6)

where N is an invertible operator; a, r ∈ Cn×n(T), the matrix function r is invert-
ible and satisfies the condition

P+r
±1P+ = r±1P+. (7)

Then the following equality holds

dimkerR = dimkerM. (8)

Proof. Consider the invertible operator2, whose kernel is trivial,

X = (P+ + P−r−1P−)N−1.

We show that
RX = M.

Indeed we have

R = rP− + I − P− − aUζP+ = (r − I)P− +N

and so

RX = [(r − I)P− +N ](P+ + P−r−1P−)N−1

= rP−r−1P−N−1 − P−r−1P−N−1 +NP+N
−1 +NP−r−1P−N−1

= r(I − P+)r
−1P−N−1 + I − P−N−1 = M.

Thus, the equality (8) follows. �
Theorem 2.1. Let Tζ = I − cUζP+, N = I − aUζP+ and M = I − rP+r

−1P−N−1

be the operators defined by (3), (4) and (6), respectively, and r an invertible ma-
trix satisfying the condition (7). Let a(t) = r(t)c(t)r−1[ζ(t)]. If the operator N is
invertible, then the following equality holds

dimkerTζ = dimkerM. (9)

Proof. We can write Tζ as a product of the operators

Tζ = I − cUζP+ = r−1[rP− + (I − aUζ)P+](P− + rP+).

Both operators r−1I and P−+rP+ are continuously invertible so that their kernels
are trivial. Then

dim kerTζ = dimkerR,

where R is the operator defined by (5). Now we apply Proposition 2.1. This im-
plies (9). �
2The inverse of the operator P+ + P−r−1P− has the form

(P+ + P−r−1P−)−1 = (r−1P+ + P− + P+r−1P−)rI.
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Proposition 2.2. Let M be the operator defined by (6) and r a (n× n) polynomial
matrix satisfying the condition (7); let

l1(r) =

n∑
i=1

max
j=1,n

li,j, (10)

where li,j is the degree of the element ri,j of the polynomial matrix r. Then the
following inequality holds

dimkerM ≤ l1(r). (11)

Proof. We have

p ∈ kerM ⇔ (I − rP+r
−1P−N−1)p = 0⇔ p = rP+r

−1P−N−1p.

Making use of (7) and P+ = I − P− we get

p = −P+rP−r−1P−N−1p,

which means that p belongs to the image of the finite-dimensional operator P+rP−,
i.e., kerM ⊂ imP+rP−. It is easy to see that

dim imP+rP− = l1(r).

From this fact follows the inequality (11). �

We can state the following result.

Theorem 2.2. Let Tζ = I − cUζP+ be the operator defined by (3) on the Hilbert
space Ln

2 (T), and r a polynomial matrix satisfying the conditions (7) and

max
t∈T

∥∥r(t)c(t)r−1 [ζ(t)]
∥∥
2
< 1. (12)

Let Rc be the set of all such matrices r, l1(r) be the number defined by (10) for
each matrix r and

l(c) = min
r∈Rc

{l1(r)}. (13)

If the set Rc is not empty, then the following estimate holds

dimkerTζ ≤ l(c).

Proof. We set a(t) = r(t)c(t)r−1 [ζ(t)]; with (12) we can show that the operator
defined by (4) is invertible. Indeed, since maxt∈T ‖a(t)‖2 < 1, ‖Uζ‖L2

= 1 and

‖P+‖L2
= 1, it follows that N = I−aUζP+ is an invertible operator whose inverse

is given by the Neumann series

N−1 = I + aUζP+ + (aUζP+)
2 + · · · .

Taking into account Theorem 2.1 and Proposition 2.2, the result follows. �
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2.2. Estimate two

The following result takes place.

Proposition 2.3. Let
A : Ln

p (T)→ Ln
p (T),

be a linear bounded operator, and

D = diag{D−, D+},
a diagonal matrix, where

D− = diag{tk1 , tk2 , . . . , tkp}, D+ = diag{tm1 , tm2 , . . . , tmq},
kj < 0, j = 1, p, mi ≥ 0, i = 1, q, p+ q = n.

The following inequalities hold

dimker(P− +AP+) +

p∑
j=1

kj ≤ dimker(DP− +AP+), (14)

dimker(DP− +AP+) ≤ dimker(P− +AP+) +

q∑
i=1

mi. (15)

Proof. Let En denote the (n× n) identity matrix,

D1 = diag{D−, Eq}, D2 = diag{Ep, D+};
and consider the left invertible operators

B1 = D1P− + P+, B2 = D−1
2 P− + P+.

Then we have
dimkerB1 = dimkerB2 = 0,

dim cokerB1 = −
p∑

j=1

kj , dim cokerB2 =

q∑
i=1

mi.

The following equality holds

(DP− +AP+)B2 = (P− +AP+)B1 (16)

= B,

where we denote
B = D1P− +AP+.

It follows from (16) that

dimkerB ≤ dimker(DP− +AP+)

and
dimker(DP− +AP+) ≤ dimkerB + dim cokerB2;

then

dimkerB ≤ dimker(DP− +AP+) ≤ dimkerB +

q∑
i=1

mi. (17)
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Moreover, also it follows from (16) that

dim kerB ≤ dimker(P− +AP+)

and

dim ker(P− +AP+) ≤ dimkerB + dim cokerB1;

then

dimkerB ≤ dimker(P− +AP+) ≤ dim kerB −
p∑

j=1

kj . (18)

Putting together (17) and (18) we obtain the inequalities (14) and (15). �
Consider now a shift η such that the corresponding shift operator Uη satisfies

the additional property
UηS = SUη; (19)

and the SIO with shift (1) (with ω = η)

Tη = I − cUηP+. (20)

Moreover we suppose that the matrix function c ∈ Cn×n(T) has the property

det c(t) �= 0, ∀t ∈ T. (21)

Under condition (21) the continuous matrix function c admits the factorization in
Ln×n
p (T) (see, for instance, Theorem 1.1, p. 165, in [2]; see also [17])

c = c−Λc+, (22)

where
c±1
− ∈

[
L−
p (T)

]n×n
, c±1

+ ∈
[
L+
p (T)

]n×n
, Λ = diag{tκj},

κj ∈ Z, j = 1, n, with κ1 ≥ κ2 ≥ · · · ≥ κn, and, as usual, L+
p = P+Lp and

L−
p = P−Lp ⊕ C. The integers κj are uniquely defined by the matrix function c

and are called its partial indices. It is assumed that

c±1
± ∈ Cn×n(T). (23)

We continue with the following result.

Theorem 2.3. Let Tη be the operator defined by (20), where c ∈ Cn×n(T) satisfies
the conditions (21), (22) and (23); then the following estimate holds

dimkerTη ≤ dimker(I − c̃U−1
η P+) +

∑
κj<0

|κj | , (24)

where c̃ = c+c
−1c−1

+ (η−1).

Proof. We multiply Tη by the continuously invertible operator3,

Y = c−P− − c−1
+ (η−1)U

−1
η P+.

3The inverse of the operator Y has the form

c−1
− P− − c+(η−1)UηP+.
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We have

TηY = (I − c−Λc+UηP+)(c−P− − c−1
+ (η−1)U

−1
η P+)

= c−Λ(DP− +AP+),

where we make use of (19) and had denoted

D = Λ−1 = diag{t−κj},
A = I − c̃U−1

η ,

c̃ = Λ−1c−1
− c−1

+ (η−1) = c+c
−1c−1

+ (η−1).

As c−Λ is a continuously invertible operator, we get

dim kerTη = dimker(DP− +AP+).

We have

DP− +AP+ = I − c̃U−1
η P+.

The inequality (15) in Proposition 2.3, with mj = −κj, κj < 0 (mj ≥ 0), yields
the estimate (24). �

Now, supposing that the operator I − c̃U−1
η P+ is under the conditions of

Theorem 2.2, we can state the following result.

Theorem 2.4. Let Tη = I − cUηP+ be the operator defined by (20) on the Hilbert
space Ln

2 (T), where c ∈ Cn×n(T) satisfies the conditions (21), (22) and (23); and
r a polynomial matrix satisfying the conditions (7) and

max
t∈T

∥∥r(t)c̃(t)r−1[η(t)]
∥∥
2
< 1,

where c̃ = c+c
−1c−1

+ (η−1). Let Rc̃ be the set of all such matrices r and l(c̃) the
number defined by (13) for the matrix c̃.

If the set Rc̃ is not empty, then the following estimate holds

dimkerTη ≤ l(c̃) +
∑
κj<0

|κj | ,

where κj ∈ Z, j = 1, n are the partial indices of the matrix c.

Proof. Since the operators Uη and U−1
η verify similar properties, the operator

I − c̃U−1
η P+ satisfies all the conditions of Theorem 2.2; thus

dim ker(I − c̃U−1
η P+) ≤ l(c̃).

With (24) the result follows. �
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2.3. An operator with polynomial coefficient relative to the shift operator

Now let us consider the SIO with shift of the form

Kη = AηP+ + P− : Lp(T)→ Lp(T), (25)

where

Aη = I +

n∑
i=1

aiU
i
η,

ai ∈ C(T), i = 1, n, and Uη is the shift operator satisfying the property (19).

Consider also the matrix operator (see [13], [7], and [14])

T̃η = ÃηP+ + P− : Ln
p (T)→ Ln

p (T), (26)

with

Ãη = I + aUη,

where

a =

(
a1 a2 · · · an−1 an

−En−1 O(n−1)×1

)
.

The following result holds

Proposition 2.4. Let Kη and T̃η be the operators defined by (25) and (26), respec-
tively. The operator Kη is a Fredholm operator on Lp(T) if and only if the oper-

ator T̃η is a Fredholm operator on Ln
p (T). In the affirmative case, dimkerKη =

dimker T̃η and dim cokerKη = dim coker T̃η.

Proof. This result is formulated in [13], Proposition 2.1, on the real line, consid-

ering the shift βr(t) = t + μ, t ∈
◦
R = R ∪ {∞}, μ is a fixed real number. Since

UηP+ = P+Uη, we can prove this result on the unit circle, in a similar way. �

Obviously the operator T̃η is a particular case of the operator Tη defined by
(20). Then, taking into account Proposition 2.4, Theorems 2.2 and 2.4 can be used
to study the operator Kη.

3. A SIO with a non-Carleman shift

The estimate of the dimension of the kernel of the operator Tω, ω = ζ, η, α, β, γ, δ,
is related with the construction of the polynomial matrix r (see Theorems 2.2 and
2.4); below we perform this task, in the case of a non-Carleman shift, ω = α, β, δ,
under certain conditions for the operator Tω: cases 1 and 2 mentioned in the
Introduction. Indeed, then we show that the set Rc (Rc̃) introduced in Theorem
2.2 (Theorem 2.4) is not empty in case 1 (case 2).
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3.1. Case 1

On the Hilbert space Ln
2 (T), we consider the SIO

Tα = I − cUαP+, (27)

with a non-Carleman shift α : T → T, which has a finite set of fixed points
{τ1, τ2, . . . , τs}, s ≥ 1; Uα is the associated isometric shift operator.

The following results take place4.

Proposition 3.1. For every continuous matrix function d ∈ Cn×n(T) such that

σ[d(τj)] ⊂ T+, j = 1, s, (28)

there exists a polynomial matrix r satisfying the conditions

max
t∈T

∥∥r(t)d(t)r−1 [α(t)]
∥∥
2
< 1 (29)

and

P+r
±1P+ = r±1P+. (30)

Proof. We consider only the case when maxt∈T ‖d(t)‖2 > 1, because otherwise we
have simply r = En.

Let

ρj ≡ ρ[d(τj)], j = 1, s.

Under condition (28) naturally we have that

ρj < 1, j = 1, s.

Then, for each matrix d(τj) ∈ Cn×n satisfying the condition (28), there exists a
non-singular matrix Bj ∈ Cn×n such that (see, for instance, p. 316 in [4])∥∥Bjd(τj)B

−1
j

∥∥
2
< 1, j = 1, s.

Now let B be the non-singular polynomial matrix, without zeros on the closure of
T+, defined by (see, for instance, Sections 0.9.11 in [4] and 6.1 in [5])

B(t) = B1L1(t) +B2L2(t) + · · ·+BsLs(t), (31)

where

Lj(t) =

s∏
i=1
i	=j

(t− τi)

s∏
i=1
i	=j

(τj − τi)

, j = 1, s,

are the Lagrange interpolating polynomials.
Then we define the continuous matrix function

b(t) = B(t)d(t)B−1[α(t)]. (32)

4Proposition 3.1 substitutes Proposition 2.1 in [12].
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We represent the function b(t) in the form

b(t) = u(t)v(t), (33)

where

u(t) ∈ Cn×n(T), max
t∈T
‖u(t)‖2 = γ < 1, (34)

and v(t) is a continuous real-valued function on T such that

v(t) ≥ δ > 0, t ∈ T, (35)

v(τj) < 1, j = 1, s. (36)

Proceeding analogously as in the proof of Lemma 2.1 in [1], we construct a con-
tinuous real positive function f(t) by the following way

f(t) = v[α−1(t)] + v[α−1(t)]v[α−2(t)] + · · ·+
m∏

k=1

v[α−k(t)],

where α−1[α(t)] ≡ t, α−k(t) ≡ α−1[α−k+1(t)].
Taking into account (35) we have

inf
t∈T
{f(t)} ≥ δ > 0. (37)

Moreover, due to conditions (35) and (36) and known properties of a shift function
α(t) (see, for instance, Lemma 2, p. 28, in [7]; see also Lemma 2.2, p. 23, in [15]),
the following inequality is valid for a sufficiently large m:

m∏
k=1

v[α−k(t)] < 1. (38)

With (38) we can show that

f [α(t)] ≥ f(t)v(t). (39)

Now we introduce the function (see, for instance, Chapter IV in [6]; see also
Chapter 4 in [20])

g(z) = exp

{
1

2π

∫
T

t+ z

t− z
ln f(t)|dt|

}
.

The function g(z) is continuous on T, analytic on T+, and satisfies the following
properties

a) |g(t)| = f(t), ∀t ∈ T;
b) g(z) �= 0, ∀z ∈ T ∪ T+;
c) g(t) can be uniformly approximated on the closure of T+ by a polynomial of

a finite degree with any prescribed exactness ε (see, for instance, Volume 3,
Section 12, pp. 97–100, in [18]; see also Section IV.E.1, p. 78, in [6]); due to
property b) all the zeros of this polynomial belong to T−. Let s0(t) be such
a polynomial and ε < δ; therefore

|g(t)− s0(t)| < ε < δ. (40)
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Then we consider

s(t) = Ens0(t).

Taking into account (33), (34), (37), (39), (40) and the property a) above,
we can estimate the norm of the function s(t)b(t)s−1[α(t)]. We have

max
t∈T

∥∥s(t)b(t)s−1[α(t)]
∥∥
2
≤ γ

∥∥s0(t)v(t)s−1
0 [α(t)]

∥∥
C(T)

.

Compare with (2.9), p. 6, in [1]; from here, doing exactly as in [1], pp. 6–7, we
obtain

max
t∈T

∥∥s(t)b(t)s−1[α(t)]
∥∥
2
< 1.

Finally, recalling (32) and setting r(t) = s(t)B(t), we obtain the inequality (29).
Moreover, the polynomial matrix r(t) = s(t)B(t) = Ens0(t)B(t) satisfies the con-
dition (30) (recall (31) and the property c) above). �

Theorem 3.1. Let Tα = I − cUαP+ be the operator defined by (27), where
c ∈ Cn×n(T) satisfies the condition (28). Then the following estimate holds

dimkerTα ≤ l(c),

where l(c) is the number defined by (13) for the matrix c.

Proof. According to Proposition 3.1, there exists a polynomial matrix r such that
the conditions (29) and (30) are verified for the matrix c. Taking into account
Theorem 2.2, the result follows. �

3.2. Case 2

Now we consider a linear fractional non-Carleman shift preserving the orientation
on T

β(t) =
at+ b

bt+ a
, t ∈ T, (41)

where a, b ∈ C are such that |a|2 − |b|2 = 1. This shift has two fixed points, τ1
and τ2

5, given by the formula

τ1,2 =
a− a±

√
(a+ a)2 − 4

2b
.

Obviously τ1 �= τ2 if |Re a| �= 1.

5We note that in the case of a linear fractional shift with two fixed points, τ1 and τ2, the matrix
defined by (31) in the proof of Proposition 3.1 has the simple form

B(t) = B1
t− τ2

τ1 − τ2
+B2

t− τ1

τ2 − τ1
.

In the case of a linear fractional shift having one fixed point (τ1 = τ2 if |Re a| = 1, as we see
below) the matrix defined by (31) is simply

B(t) = B1 ∈ Cn×n.

To this case corresponds the shift on the real line βr(t) = t + μ, t ∈
◦
R = R ∪ {∞}, μ is a fixed

real number; the shift βr(t) has the only fixed point at infinity.
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The shift β(t) admits the factorization

β(t) = β+(t)tβ−(t),

where

β+(t) =
1

bt+ a
, β−(t) =

at+ b

t
.

We see that the functions β±, β−1
± are analytic in T± and continuous in the closure

of T±, respectively.
For the linear fractional shift β(t), it is convenient to consider the isometric

shift operator

(Uβϕ)(t) = β+(t)ϕ[β(t)], (42)

because Uβ satisfies the additional property

UβS = SUβ.

Then we consider the operator (1) (with ω = β)

Tβ = I − cUβP+ : Ln
2 (T)→ Ln

2 (T), (43)

where we suppose now that c ∈ Cn×n(T) has the properties

σ[c(τj)] ⊂ T−, j = 1, 2,

det c(t) �= 0, ∀t ∈ T.
(44)

The non-singular continuous matrix function c admits the factorization (22) in
Ln×n
2 (T) and (23) is assumed. Then we apply Theorem 2.3 to the operator (43);

this implies the estimate

dim kerTβ ≤ dim ker(I − c̃U−1
β P+) +

∑
κj<0

|κj | , (45)

where c̃ = c+c
−1c−1

+ (β−1).

Now we analyze the operator I − c̃U−1
β P+.

We note that the matrices c̃(t) and c−1(t) are similar at the fixed points of
the shift; indeed at τj , j = 1, 2,

c̃ = c+c
−1c−1

+ .

We have that σ[c(τj)] ⊂ T−; then

σ[c−1(τj)] = σ[c̃(τj)] ⊂ T+, j = 1, 2.

Therefore the operator I − c̃U−1
β P+ satisfies all the conditions of Theorem 3.1;

thus

dim ker(I − c̃U−1
β P+) ≤ l(c̃).

Finally, with (45) we get the following estimate.
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Theorem 3.2. Let Tβ = I − cUβP+ be the operator defined by (43), where c ∈
Cn×n(T) satisfies the conditions (44), (21), (22) and (23). Then the following
estimate holds

dimkerTβ ≤ l(c̃) +
∑
κj<0

|κj | ,

where l(c̃) is the number defined by (13) for the matrix c̃ = c+c
−1c−1

+ (β−1) and

κj ∈ Z, j = 1, n are the partial indices of the matrix c.

3.3. The case of an operator with polynomial coefficient relative
to the shift operator

Let ind f denote the Cauchy index of a continuous function f ∈ C(T), i.e.,

ind f =
1

2π
{arg f(t)}t∈T;

as usual, IndK denotes the index of a Fredholm operator K, i.e.,

IndK = dim kerK − dim cokerK.

Now we consider the SIO with shift of the form

Kβ = AβP+ + P− : L2(T)→ L2(T), (46)

where

Aβ = I +

n∑
i=1

aiU
i
β, (47)

ai ∈ C(T), i = 1, n, and Uβ is the shift operator defined by (42).
We define the nth degree polynomials

Aj(ξ) = 1 +
n∑

i=1

ai(τj)ξ
i, ξ ∈ T, j = 1, 2, (48)

where τ1 and τ2 are the fixed points of the linear fractional shift β.
The invertibility of the operator (47) implies (see Section 3.4.12, pp. 142–145,

in [7])

Aj(ξ) �= 0, ξ ∈ T, j = 1, 2, (49)

and the equality between the Cauchy indices of the polynomials A1 and A2

indA1 = indA2 =: indA, (50)

where “=:” means “we denote”. Therefore

0 ≤ indA ≤ n.

Consider also the matrix operator

T̃β = ÃβP+ + P− : Ln
2 (T)→ Ln

2 (T), (51)

with

Ãβ = I + aUβ , (52)
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where

a =

(
a1 a2 · · · an−1 an

−En−1 O(n−1)×1

)
. (53)

Now we define the polynomials

Ãj(ξ) = det[En + a(τj)ξ], ξ ∈ T, j = 1, 2.

The invertibility of the operator (52) implies (see Section 3.4.1, pp. 118–120,
in [7])

Ãj(ξ) �= 0, ξ ∈ T, j = 1, 2,

and the equality

ind Ã1 = ind Ã2 =: ind Ã.

Therefore

0 ≤ ind Ã ≤ n.

We note that

Ãj(ξ) = Aj(ξ), ξ ∈ T, j = 1, 2. (54)

Then

ind Ã = indA =: indA.

Furthermore, denoting by λi(a, τj), the eigenvalues of the matrices a(τj), j = 1, 2,
and by ξi(τj) the roots of the polynomials Aj(ξ), j = 1, 2, we have that

λ−1
i (a, τj) = −ξi(τj), i = 1, n, j = 1, 2,

taking into account equality (54). Therefore we note that indA coincides with the
number of the roots of the polynomials Aj(ξ), j = 1, 2, that are situated inside
the unit disk, or, equivalently, with the eigenvalues of the matrices a(τj), j = 1, 2,
that are situated outside the unit disk.

Analogously to the matrix case, the necessary and sufficient conditions of
invertibility for the operator (47), and so the Fredholmness conditions for the
operator (46), can not be expressed in an explicit form. In the two extreme cases,
these conditions can be written in a simple form (see Section 3.5.1, pp. 148–151,
in [7]):

Proposition 3.2. [7] Let Kβ be the operator defined by (46), Aj(ξ), be the polyno-
mials defined by (48) and let (49) and (50) be fulfilled. The following assertions
hold:

i) If indA = 0, then the operator Kβ is Fredholm and

IndKβ = 0.

ii) If indA = n and an(t) �= 0 for all t ∈ T, then the operator Kβ is Fredholm
and

IndKβ = ind a−1
n .
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Remark. If n = 1, then the conditions i) and ii) of Proposition 3.2 are not only suf-
ficient but also necessary for the Fredholmness of the operator Kβ . This particular
case is treated in Corollaries 4.3 and 4.4 below.

Then we can state the following results.

Theorem 3.3. Let Kβ be the operator defined by (46), the conditions of Proposition
3.2 be satisfied and a be the matrix function defined by (53). If indA = 0, then the
following estimate holds

dimkerKβ ≤ l(a),

where l(a) is the number defined by (13) for the matrix a.

Proof. Since indA = 0, i.e., σ[a(τj)] ⊂ T+, j = 1, 2, we can apply Theorem 3.1
to the matrix operator defined by (51). Taking into account Proposition 2.4, the
result follows. �

Theorem 3.4. Let Kβ be the operator defined by (46), the conditions of Proposition
3.2 be satisfied and a be the matrix function defined by (53). If indA = n and
an(t) �= 0 for all t ∈ T, then the following estimate holds

dimkerKβ ≤ l(ã) +
∑
κj<0

|κj | ,

where l(ã) is the number defined by (13) for the matrix ã = a+a
−1a−1

+ (β−1), a±
and κj ∈ Z, j = 1, n are the external factors and the partial indices, respectively,
of the factorization (22) of the matrix a, and (23) is fulfilled.

Proof. As an(t) �= 0, we have that det a(t) �= 0 for all t ∈ T; then the continuous
matrix function a admits the factorization (22).

Since indA = n, i.e., σ[a(τj)] ⊂ T−, j = 1, 2, we can apply Theorem 3.2 to
the matrix operator defined by (51). With Proposition 2.4 we are done. �

Corollary 3.1. Let the conditions of Theorem 3.4 be satisfied; if n = 2, then the
following estimate holds

dimkerKβ ≤ l(ã) + max(0,− inda2).

Proof. If n = 2 the matrix a has the form

a =

(
a1 a2
−1 0

)
.

We compute (
0 1
1 0

)
aT =

(
a2 0
a1 −1

)
.

The partial indices κ1,2 of the factorization

aT = b+Λb−,
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are equal to ind a2 and 0 if ind a2 ≤ 1 (see pp. 147–148 in [17]). Obviously the
partial indices of the factorization

a = a−Λa+,

are the same. Therefore negative partial indices are possible only if ind a2 < 0 and
it follows the result. �

4. On the scalar case

4.1. The case of a general shift

Let us formulate the obtained results for the operator (3) in the scalar case:

Tζ = I − cUζP+ : L2(T)→ L2(T). (55)

Corollary 4.1. Let Tζ be the operator defined by (55); if there exists a polynomial
r of degree m, with zeros in T−,

r(t) =

m∏
k=1

(t− λk), |λk| > 1, k = 1,m,

such that ∣∣r(t)c(t)r−1 [ζ(t)]
∣∣ < 1, ∀t ∈ T, (56)

then

dimkerTζ ≤ m.

Proof. Follows from Theorem 2.2 with n = 1. �

Now we consider the operator (20) in the scalar case:

Tη = I − cUηP+ : L2(T)→ L2(T), (57)

where c ∈ C(T) has the property

c(t) �= 0, ∀t ∈ T. (58)

The continuous function c admits the factorization in L2(T)

c = c−tκc+, (59)

where

c±1
− ∈ L−

2 (T), c±1
+ ∈ L+

2 (T), κ = ind c.

It is assumed that

c±1
± ∈ C(T). (60)

Suppose that a polynomial matrix r, satisfying the condition (56) for the function
c and the shift η, does not exist, but there exists such one that (56) holds for the
function c̃ = c+c

−1c−1
+ (η−1). In this case we can state the following result.
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Corollary 4.2. Let Tη be the operator defined by (57). Then the following estimate
holds

dimkerTη ≤ m+max(0,− ind c),

where m is the degree of the polynomial r defined in Corollary 4.1 for the function
c̃ = c+c

−1c−1
+ (η−1) and ind c is the Cauchy index of the function c.

Proof. Follows from Theorem 2.4 with n = 1. �

4.2. The case of a non-Carleman shift

Consider the operator (27) on L2(T), with c ∈ C(T),

Tα = I − cUαP+. (61)

Corollary 4.3. For every continuous function c ∈ C(T) such that

|c(τj)| < 1, j = 1, s,

there exists a polynomial r of degree m, with zeros in T−,

r(t) =

m∏
k=1

(t− λk), |λk| > 1, k = 1,m,

such that ∣∣r(t)c(t)r−1[α(t)]
∣∣ < 1, ∀t ∈ T. (62)

Moreover

dimkerTα ≤ m,

where Tα is the operator defined by (61).

Proof. [1]; follows from Theorem 3.1 with n = 1. �

Now consider the operator (43) on L2(T),

Tβ = I − cUβP+, (63)

where c ∈ C(T) satisfies the properties (58), (59), (60) and

|c(τj)| > 1, j = 1, 2.

Corollary 4.4. Let Tβ be the operator defined by (63). Then the following estimate
holds

dimkerTβ ≤ m+max(0,− ind c),

where m is the degree of the polynomial r defined in Corollary 4.3 for the function
c̃ = c+c

−1c−1
+ (β−1) and ind c is the Cauchy index of the function c.

Proof. Follows from Theorem 3.2 with n = 1. �
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4.3. Two examples

Example 1. Let us consider the following shift, a rotation on the unit circle,

γ(t) = eiθt, θ ∈ [0, 2π[, t ∈ T.

Note that, if
θ

2π
∈ Q, then γ is a Carleman shift, and if

θ

2π
∈ R \ Q, then γ is a

non-Carleman shift with an empty set of periodic points (a so-called ergodic shift).
The corresponding isometric shift operator is defined as follows

(Uγϕ)(t) = ϕ(eiθt).

Then we consider the SIO with shift on L2(T), with c ∈ C(T),

Tγ = I − cUγP+. (64)

We recall the inequality (56)∣∣r(t)c(t)r−1[γ(t)]
∣∣ < 1,

or

|c(t)| <
∣∣r−1(t)r[γ(t)]

∣∣⇔ |c(t)|2 <
∣∣r−1(t)r[γ(t)]

∣∣2 ⇔
|c(t)|2 <

∣∣∣∣∣
m∏

k=1

γ(t)− λk

t− λk

∣∣∣∣∣
2

⇔ |c(t)|2 <
m∏

k=1

∣∣∣∣γ(t)− λk

t− λk

∣∣∣∣2 .
Let

t = eix = cosx+ i sinx, x ∈]− π, π],

and

λk = ρke
iϕk = ρk cosϕk + iρk sinϕk, ρk > 1, ϕk ∈]− π, π], k = 1,m.

Then we have ∣∣c(eix)∣∣2 <

m∏
k=1

y(x, ρk, ϕk), (65)

where we denote

y(x, ρk, ϕk) =
1 + ρ2k − 2ρk cos(x+ θ − ϕk)

1 + ρ2k − 2ρk cos(x − ϕk)
.

From Corollary 4.1 we can state

Corollary 4.5. Let Tγ be the operator defined by (64) and the conditions above be
satisfied. If there exist numbers

ρk, ϕk : ρk > 1, ϕk ∈]− π, π], k = 1,m,

such that the inequality (65) is fulfilled for all x ∈]− π, π], then

dimkerTγ ≤ m.
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Suppose now that the function c ∈ C(T) satisfies the properties (58), (59)
and (60) and that the inequality (65) does not hold for the function c, but it is
fulfilled for the function c̃ = c+c

−1c−1
+ (γ−1), i.e.,∣∣c̃(eix)∣∣2 <

m∏
k=1

y(x, ρk, ϕk). (66)

With Corollary 4.2, we can write

Corollary 4.6. Let Tγ be the operator defined by (64), where c ∈ C(T) satisfies the
properties (58), (59) and (60). If there exist numbers

ρk, ϕk : ρk > 1, ϕk ∈]− π, π], k = 1,m,

such that the inequality (66) is fulfilled for all x ∈]− π, π], then

dimkerTγ ≤ m+max(0,− ind c),

where ind c is the Cauchy index of the function c.

Remark. As an illustrative example, let us consider r a first degree polynomial
and analyze the function

∣∣r−1(t)r[γ(t)]
∣∣. By Γpq, p, q = 0, 1, 2, we will denote the

length of the arc Γpq; we have that∣∣r−1(t)r[γ(t)]
∣∣ = {

< 1, t ∈ Γ10

≥ 1, t ∈ Γ20
,

where

Γ10 ∪ Γ20 = T, Γ10 = Γ20 = π.

For instance, consider θ = 1 and the function y1(x) = y(x; 10; 0), x ∈] − π, π];
we have that y1(−0, 5) = y1(−0, 5 + π) = 1, the minimum of y1 is 0, 824 (for
x = −1, 821) and the maximum is 1, 213 (for x = 1, 321).

So, given a function c ∈ C(T), coefficient of the operator defined by (64),
with

|c(t)| =
{

< 1, t ∈ Γ01

≥ 1, t ∈ Γ02
, Γ01 ∪ Γ02 = T,

if Γ01 > Γ02, we should try to apply Corollary 4.5, and, if Γ01 < Γ02, the Corollary
4.6. Note that if Γ01 ≡ T, then dimkerTγ = 0 and the operator Tγ is invertible.

Example 2. Let us recall the linear fractional non-Carleman shift defined by (41)
(see Section 3.2)

β(t) =
at+ b

bt+ a
, t ∈ T,

where a, b ∈ C: |a|2 − |b|2 = 1, a = |a| eiμ, b = |b| eiν , μ, ν ∈]− π, π]; this shift has
two fixed points, τ1 and τ2. The associated shift operator is defined by (42)

(Uβϕ)(t) =
1

bt+ a
ϕ[β(t)].
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Consider the SIO with shift on L2(T),

Tβ = I − cUβP+, (67)

where c ∈ C(T) is such that |c(τj)| < 1, j = 1, 2.
Proceeding analogously to that we did in the previous example, from the

inequality (62) ∣∣r(t)c(t)r−1 [β(t)]
∣∣ < 1,

we have

|c(t)|2 <
∣∣r−1(t)r[β(t)]

∣∣2 ⇔ |c(t)|2 <
∏m

k=1

∣∣∣∣β(t) − λk

t− λk

∣∣∣∣2 .
We set

t = eix = cosx+ i sinx, x ∈]− π, π],

and

λk = ρke
iϕk = ρk cosϕk + iρk sinϕk, ρk > 1, ϕk ∈]− π, π], k = 1,m.

Then ∣∣c(eix)∣∣2 <
∏m

k=1
z(x, ρk, ϕk), (68)

where we denote

z(x, ρk, ϕk) =
A

B
,

A = (1 + ρ2k)[|a|
2 + |b|2 + 2 |a| |b| cos(x+ μ− ν)]− 2ρk

× [2 |a| |b| cos(ϕk − μ− ν) + |a|2 cos(x− ϕk + 2μ) + |b|2 cos(x + ϕk − 2ν)],

B = [1 + ρ2k − 2ρk cos(x− ϕk)][|a|2 + |b|2 + 2 |a| |b| cos(x+ μ− ν)].

From Corollary 4.3 we can state

Corollary 4.7. For every continuous function c ∈ C(T) such that

|c(τj)| < 1, j = 1, 2,

there exist numbers

ρk, ϕk : ρk > 1, ϕk ∈]− π, π], k = 1,m,

such that the inequality (68) is fulfilled for all x ∈]− π, π]. Moreover

dimkerTα ≤ m, (69)

where Tβ is the operator defined by (67).

Suppose now that the function c ∈ C(T) satisfies the properties (58), (59),
(60) and

|c(τj)| > 1, j = 1, 2. (70)

Corollary 4.4 and the considerations above yield the inequality∣∣c̃(eix)∣∣2 <
∏m

k=1
z(x, ρk, ϕk), (71)

where c̃ = c+c
−1c−1

+ (β−1).
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Therefore we can write

Corollary 4.8. Let Tβ be the operator defined by (67), where c ∈ C(T) satisfies the
properties (58), (59), (60) and (70). Then there exist numbers

ρk, ϕk : ρk > 1, ϕk ∈]− π, π], k = 1,m,

such that the inequality (71) is fulfilled for all x ∈]− π, π]. Moreover

dimkerTβ ≤ m+max(0,− ind c),

where ind c is the Cauchy index of the function c.

Remark. Again, as an illustrative example, consider the particular linear fractional
non-Carleman shift

δ(t) =

√
2t+ 1

t+
√
2
, t ∈ T,

which has two fixed points τ1 = 1 and τ2 = −1. The associated shift operator is
given by

(Uδϕ)(t) =
1

t+
√
2
ϕ

(√
2t+ 1

t+
√
2

)
,

and consider the SIO with shift on L2(T),

Tδ = I − cUδP+,

where c ∈ C(T) is such that |c(τj)| < 1, j = 1, 2.

The function z in the inequality (68) is given by

z(x, ρk, ϕk)

=
(1 + ρ2k)(3 + 2

√
2 cosx)− 2ρk[2

√
2 cosϕk + 2 cos(x− ϕk) + cos(x+ ϕk)]

[1 + ρ2k − 2ρk cos(x− ϕk)](3 + 2
√
2 cosx)

.

For instance, consider the function z1(x) = z(x; 1, 1;−π), x ∈]−π, π]; note that the
minimum of z1 is 1 (at the fixed points of the shift: τ1,2 = ±1↔ x = 0,±π). Then,
given a function c ∈ C(T), coefficient of the operator defined by (67), satisfying the
conditions of Corollary 4.7, we can simply take a power m of the function z1, such
that the inequality (68) holds. Evidently to get the best (optimal) estimate (69)
we have to carefully choose the functions z(x, ρk, ϕk), i.e., the roots λk = ρke

iϕk

of the polynomial r. In [19] we constructed some examples which illustrate and
show that the estimate (69), in a certain sense, is sharp.
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Abstract. The close connection between equations and inequalities will be
illustrated on the example of the Hardy inequality.
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1. No doubt, that there is a close, friendly and fruitful connection between (dif-
ferential) equations and (integral) inequalities. Here, we want to show, on some
simple examples, the symbiosis of these two phenomena and the way

(A) from inequalities to equations

and, vice versa,

(B) from equations to inequalities.

2. Everyone, who is dealing with differential equations, will need, after some
time, an appropriate inequality. Let us quote G.H. Hardy, who at his election for
President of the London Mathematical Society in 1926 told:

“All analysts spend half their time hunting through the literature for in-
equalities which they want to use and cannot prove.”

Example 1. The Friedrichs inequality∫
Ω

|f(x)|2dx ≤ C

∫
Ω

|∇f(x)|2dx (1)

with Ω a domain in RN holds for all functions f ∈ C∞
0 (Ω) and is closely connected

with the spectral problem for the Laplace operator Δ:

−Δf = λf on Ω (2)

The author was supported by RVO: 67985840.
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with homogeneous Dirichlet boundary condition: The (best) constant C in (1)
depends on Ω and gives a lower bound for the spectrum,

λ ≥ 1

C
.

This example illustrates the way (A): inequality (1) allows to describe the
properties of the solution of equation (2).

3. As far as concerns the opposite way (B), many inequalities can be formulated
as extrema of some functionals, e.g., of the type

J(y) =

∫ b

a

F (x, y, y′)dx, (3)

which leads to the solution of a differential equation, namely the Euler–Lagrange
equation

∂F

∂y
=

d

dx

(∂F
∂y′

)
.

Even in the famous book “Inequalities” [1], there is a chapter entitled “Some
Applications of the Calculus of Variations”. The following example is taken from
this book.

Example 2. The inequality∫ 1

0

y2(x)

x2
dx ≤ C

∫ 1

0

y′2(x)dx (4)

can be investigated via the infimum of the functional

J(y) =

∫ 1

0

[
Cy′2(x)− y2(x)

x2

]
dx,

i.e., of the functional J from (3) with F (x, y, y′) = Cy′2− y2

x2 , C ≥ 4, for functions

y such that y′ ∈ L2(0, 1), y(0) = 0, y(1) = 1. The corresponding Euler–Lagrange
equation,

x2y′′ + λy = 0, λ =
1

C
,

has only one solution (up to a multiple constant), satisfying the conditions, namely

Y (x) = x
1
2+a, a =

1

2

√
1− 4

C

(since the second solution, Z(x) = x
1
2−a, does not satisfy Z ′ ∈ L2(0, 1)). We can

easily show that J(Y ) = 2
1−2a , and

J(y) =

∫ 1

0

(
Cy′2 − y2

x2

)
dx ≥ J(Y ) > 0

implies (4).
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4. Here, we want to illustrate the connection between equations and inequalities
on the N -dimensional Hardy inequality(∫

Ω

|f(x)|qu(x)dx
)1/q

≤ C

(∫
Ω

|∇f(x)|pv(x)dx
)1/p

(5)

with Ω ⊂ RN for functions f ∈ C∞
0 (Ω); here the parameters p, q satisfy 1 < p, q <

∞, and u = u(x), v = v(x) are appropriate weight functions, positive a.e. in Ω.

Let us consider the spectral problem

−div(|∇f |p−2∇f · v) = λ|f |q−2fu on Ω (6)

with homogeneous Dirichlet boundary conditions on the boundary ∂Ω of Ω. As-
sume that there exists a weak solution of this problem, i.e., a function f on Ω such
that ∇f ∈ Lp(Ω, v) and that the integral identity∫

Ω

|∇f |p−2∇fv∇gdx = λ

∫
Ω

|f |q−2fugdx

holds for every g ∈ C∞
0 (Ω). If we choose g = f we obtain that∫

Ω

|∇f |pvdx = λ

∫
Ω

|f |qudx,

and the Hardy inequality implies∫
Ω

|∇f |pvdx ≤ λCq

(∫
Ω

|∇f |pvdx
)q/p

.

If we take q = p (or consider “normalized” functions f , i.e., such that∫
Ω
|∇f |pvdx = 1), we obtain finally that

λ ≥ 1

Cq
.

This allows to formulate the following proposition: If the Hardy inequality (5) for
p = q holds, then the spectrum of the boundary value problem (6) is bounded from
below.

Remark 1. This proposition is in accordance with the result from Example 1,
where the case p = q = 2, u(x) = v(x) = 1 was considered.

5. Much more information we can obtain, if we consider the one-dimensional case.
The analogue of the Hardy inequality (5) for the case N = 1, Ω = (a, b) reads(∫ b

a

|f(x)|qu(x)dx
)1/q

≤ C

(∫ b

a

|f ′(x)|pv(x)dx
)1/p

. (7)

We will consider this inequality for functions f ∈ AC(a, b), for which it is ‖f ′‖pp,v :=∫ b

a
|f ′(x)|pv(x)dx < ∞ and which satisfy f(a) = 0. This set of functions, normed

by ‖f ′‖p,v, will be denoted W 1,p
L (a, b; v) and called a weighted Sobolev space.
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Let us recall (for details see, e.g., [2]) that the Hardy inequality (7) holds for

all f ∈W 1,p
L (a, b; v) and for 1 < p ≤ q <∞ if and only if

sup
x∈(a,b)

AM (x) <∞ (8)

where

AM (x) :=

(∫ b

x

u(t)dt

)1/q(∫ x

a

v1−p′
(t)dt

)1/p′

(9)

with p′ = p
p−1 .

Inequality (7) tells that the imbedding of the weighted Sobolev space

W 1,p
L (a, b; v) into the weighted Lebesgue space Lq(a, b;u) is continuous,

W 1,p
L (a, b; v) ↪→ Lq(a, b;u), (10)

if and only if, for 1 < p ≤ q < ∞, condition (8) is satisfied. Moreover, the
imbedding (10) is compact if and only if, in addition, the conditions

lim
x→a+

AM (x) = lim
x→b−

AM (x) = 0 (11)

are satisfied.

6. The connection between the Hardy inequality (7) and some differential equation
has been investigated by P.R. Beesack [3] (for 1 < p ≤ q <∞) and G.A. Tomaselli
[4] (for p = q). The corresponding result, whose proof can be found in [5, Theo-
rem 4.1], reads:

Theorem 2. Let be 1 < p ≤ q <∞, u and v weights, v ∈ AC(a, b),
∫ x

a
v1−p′

(t)dt <

∞ for x ∈ (a, b). Then the Hardy inequality (7) holds for every f ∈ W 1,p
L (a, b; v)

if and only if there is a number λ > 0 such that the differential equation

d

dx

[
vq/p(x)

(dy

dx

)q/p′]
+ λu(x)yq/p

′
(x) = 0 (12)

has a solution y satisfying

y′ ∈ AC(a, b), y(x) > 0, y′(x) > 0 for x ∈ (a, b).

Now, let us denote, for s ∈ R and r > 1,

φr(s) := |s|r−2s = |s|r−1sgn s.

We will consider the equation

−(v(x)Φp(y
′(x)))′ = λu(x)Φq(y(x)) on (a, b) (13)

with homogeneous Dirichlet boundary conditions.

Definition 3. Equation (13) is for p, q �= 2 nonlinear. For p = q (�= 2) it is called
halflinear, since it is homogeneous (with y, also cy is a solution) but not addi-
tive. – We say that equation (13) (or its eigenvalue λ) has the BD-property, if the
spectrum is bounded from below and discrete.
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Remark 4. Similarly as in the N -dimensional case (see Section 4 above) we can
show that the validity of the Hardy inequality (7) implies (in the case p = q) that
λ ≥ 1

Cp , i.e., the boundedness of the spectrum from below. But in some cases, the
validity of the Hardy inequality is not only sufficient, but also necessary. Let us give
some examples, which show, what is necessary and sufficient for the BD-property.

Example 3. (i) In the paper of I.S. Kac and M.G. Krein [6] it was shown, that the
spectrum of the initial value problem

−y′′ = λρ(x)y, y(0) = 0, y′(0) = 1, x ∈ (0,∞) (14)

is bounded from below if there exists a constant C0 such that

A(x) := x

∫ ∞

x

ρ(t)dt < C0 for every x ∈ (0,∞) (15)

(with lower bound 1/(4C0)), and it is discrete if and only if

lim
x→∞A(x) = 0. (16)

In this case, we have the equation (13) with (a, b) = (0,∞), p = q = 2,
v(x) ≡ 1 and u(x) = ρ(x), and the function A(x) from (15) is the square of the
function AM (x) from (9). Hence, we see that in this case the spectrum of (14) has
the BD-property if and only if the corresponding imbedding, realized by the Hardy
inequality, is compact. (Note that (16) is one of the conditions (11); the second is
satisfied automatically, if we suppose ρ ∈ L1(0,∞).)

(ii) If we consider the Hardy inequality (7) for functions f which satisfy f(b) = 0,
we have to replace the function AM (x) from (9) by

ÃM (x) :=

(∫ x

a

u(t)dt

)1/q(∫ b

x

v1−p′
(t)dt

)1/p′

(17)

and replace AM by ÃM also in the criteria (8) and (11) of the continuity and
compactness, respectively, of the corresponding imbedding.

For the spectral problem

−(v(x)y′)′ = λy(x), x ∈ (0,∞), y(∞) = 0, (18)

we have again equation (13) with (a, b) = (0,∞), p = q = 2, u(x) ≡ 1, and

Ã2
M (x) = x

∫ ∞

x

1

v(t)
dt.

Several authors have shown that the condition

lim
x→∞x

∫ ∞

x

1

v(t)
dt = 0 (19)

is necessary and sufficient for the spectrum of (18) to have the BD-property.
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If we formulate the conjecture, that for the case p = q, the spectrum of the
halflinear equation (13) has the BD-property if and only if the corresponding imbed-
ding, described by the Hardy inequality, is compact, then the foregoing examples
confirm that this conjecture is true for p = 2.

7. The foregoing conjecture was confirmed for p > 1 in the following theorem,
which is in fact an extension of the Sturm–Liouville theory from the linear to the
halflinear case.

Theorem 5 (P. Drábek, A. Kufner [7]). Let us consider equation (13) on (0,∞)
for p = q > 1 with boundary conditions y′(0) = 0, y(∞) = 0 and with u(x) and

v(x) positive and continuous on [0,∞). Suppose that the function ÃM (x) from (17)
satisfies

lim
x→∞ ÃM (x) = 0. (20)

Then the set of all eigenvalues forms an increasing sequence {λn}∞n=1 such that
λ1 > 0 and lim

n→∞λn =∞. Every eigenvalue λn is simple and the eigenfunction yn

corresponding to λn has exactly n − 1 zeros in (0,∞). In particular, y1 does not
change sign in (0,∞) and for n ≥ 3, between two consecutive zeros of yn−1 there
is exactly one zero of yn.

Remark 6. Note that condition (20) guarantees the compactness of the corre-
sponding imbedding. If condition (20) is violated, then examples show that there

is either no eigenvalue at all, or (if ÃM (x) is bounded) we have a continuum of
eigenvalues, and the spectrum is bounded from below but not discrete.

Remark 7 (the case p �= q). By our knowledge, there is no analogous result
concerning the BD-property in connection with the Hardy inequality for nonlinear
equations.

Remark 8 (the higher-order case). There are also results about the BD-property
for higher-order differential equations. For example, in R.T. Lewis [8] it is shown
that the condition

lim
x→∞x2n−1

∫ ∞

x

1

v(t)
dt = 0 (21)

is necessary and sufficient for the equation

(−1)n(v(x)y(n)(x))(n) = λy(x) on (0,∞)

to have the BD-property. [Notice, that the special case n = 1 was considered in
Example 3 (ii) – see (18) and (19).]

This result is connected with the higher-order Hardy inequality(∫ b

a

|f(x)|qu(x)dx
)1/q

≤ C

(∫ b

a

|f (n)(x)|pv(x)dx
)1/p

.

Condition (21) guarantees (in the case (a, b) = (0,∞), p = q = 2 and u(x) ≡ 1)
the compactness of the corresponding imbedding.



Inequalities Against Equations? 227

Remark 9 (the N -dimensional case). For the case N ≥ 2, there are not simple
general criteria of the validity of the Hardy inequality (5). But we have a result
analogous to Theorem 1, even for the more general extended (nonisotropic) Hardy
inequality (∫

Ω

|f(x)|qu(x)dx
)1/q

≤ C

( N∑
i=1

∫
Ω

∣∣∣ ∂f
∂xi

(x)
∣∣∣pvi(x)dx)1/p

. (22)

Inequality (22) holds for f ∈ C∞
0 (Ω) and for p = q, if there exists a solution y of

the partial differential equation

−
N∑
i=1

∂

∂xi

(
vi(x)

∣∣∣ ∂y
∂xi

∣∣∣p−1

sgn
∂y

∂xi

)
= u(x)|y(x)|p−1sgn y(x) (23)

such that y �= 0, ∂y
∂xi
�= 0 a.e. in Ω.

Equation (23) can be considered as the Euler–Lagrange equation for the
functional

J(y) =

∫
Ω

( N∑
i=1

∣∣∣ ∂y
∂xi

∣∣∣pvi − |y|pu)dx.
(For details, see [5, Section 14.1].)
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Žitná 25
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C∗-Algebra Generated by Mapping
Which Has Finite Orbits

Alla Kuznetsova

Abstract. We consider the C∗-subalgebra of the algebra of all bounded oper-
ators on Hilbert space of square-summable functions on some countable set.
The algebra being investigated is generated by a family of partial isometries.
These isometries satisfy the relations defined by a preassigned mapping on the
set. It is assumed that the mapping has elements with finite orbits. Under this
assumption the algebra we consider contains the subalgebra of compact oper-
ators and its quotient algebra is Z-graded. We consider the covariant system
associated with the quotient algebra and construct the conditional expecta-
tion onto the fixed point subalgebra. We prove that the quotient algebra is
nuclear and so is the algebra generated by mapping.
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Keywords. C∗-algebra, partial isometry, conditional expectation, covariant
system.

Introduction

In this paper we continue to investigate the algebra C∗
ϕ(X) which was introduced

in [7, 8]. The algebra is generated by finite or countable family of partial isometries
{Uk}. These are defined by the given mapping ϕ : X −→ X . In a simplest case
when ϕ is injection (not bijection) the C∗

ϕ(X) is isomorphic to the Toeplitz algebra.

Cuntz in [1] first considered the algebra On generated by a finite family
of noncommuting isometries U1, U2, . . . , Un whose range projections are summed
to the identity. Later in some papers (for instance, see [2]–[6]) authors regarded
the C∗-algebras generated by different families of partial isometries whose range
and initial projections satisfy a specified set of conditions. The classical examples
of such algebras are given by the Cuntz–Krieger algebra [3] and Cuntz–Pimsner
algebra [4, 5].

Research partially supported by RFBR grant No 12-01-97016.
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In papers [7, 8] it was proposed the construction of C∗-algebra C∗
ϕ(X) gener-

ated by a finite family of partial isometries {Uk}mk=1 (or by generator Tϕ which is
a linear combination of these isometries). Their range and initial projections are
summed to the noncommuting projections defined by a preassigned mapping ϕ on
a countable set X .

Algebra C∗
ϕ(X) generated by a countable family of partial isometries {Uk}∞k=1

was considered in [11].

In [12] it was proposed the construction of C∗-algebra Mϕ. The last is gen-
erated by a family of partial isometries {Uk}∞k=1 satisfying the same relations and
the multiplier algebra on l2(X).

In these papers the requirement on ϕ was that there is no element in X
with finite orbit. All analyzed C∗-algebras are nuclear and Z-graded with AF -
subalgebra responding to zero.

In this paper the mapping ϕ need not satisfy the above-mentioned assump-
tion. We show that in general case C∗

ϕ(X) is still nuclear and has nontrivial AF -
subalgebra but it is not Z-graded.

The paper is organized as follows. Section 1 is intended to give the main
notations and terminology. We briefly sketch the properties of the operator Tϕ

and define C∗
ϕ(X). For the proofs we refer the reader to [8], [10], [11].

In Section 2 it is shown that C∗
ϕ(X) contains the subalgebra of compact

operators. For the quotient algebra C∗
ϕ we introduce the notion of monomial and

its index.

Section 3 is devoted to the study of structure of C∗
ϕ. The last is Z-graded with

AF -subalgebra responding to zero. Also we construct the conditional expectation
to AF -subalgebra.

In Section 4 we consider the circle action on C∗
ϕ. We prove that C∗

ϕ is nuclear
and so is C∗

ϕ(X).

1. The necessary information

Let ϕ : X −→ X be a mapping of a countable set X into itself. We will denote by
Ey the preimage of the element y ({x ∈ X : ϕ(x) = y}). Let γ(y) = cardEy. We
call an element y ∈ X ϕ-initial (initial for short) if γ(y) = 0. We call an element
y ∈ X ϕ-cyclic (cyclic for short) if there is an n ∈ N such that ϕn(y) = y.

The family of functions {ex}x∈X on X such that ex(y) = δx,y (δx,y is the

Kronecker delta), forms an orthonormal basis in Hilbert space l2(X) = {f : X →
C :

∑
x∈X

|f(x)|2 <∞}.

Mapping ϕ induces a mapping

Tϕ : {ex}x∈X → {ex}x∈X

given by Tϕex = eϕ(x). This mapping can be extended to a bounded linear operator

on l2(X) (we denote it by Tϕ again) if and only if the cardinalities of preimages
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are bounded in common under the action of mapping ϕ, (Tϕf)(y) =
∑

x∈Ey

f(x). If

this is not the case and the preimage’s cardinality is only bounded then Tϕ can be
extended to a closed operator on l2(X). The algebras associated with mapping in
the latter case were considered in [11].

Represent X as the union of the disjoint sets Xk = {y ∈ X : γ(y) = k},
we suppose sup

y∈X
γ(y) = m < ∞. Correspondingly, the Hilbert space l2(X) can

be represented as the direct sum of pairwise orthogonal Hilbert spaces l2(Xk),
0 ≤ k ≤ m. If Xk = ∅ we suppose l2(Xk) = {0}. Note that TϕT

∗
ϕf = kf for every

f ∈ l2(Xk). Therefore, TϕT
∗
ϕ =

m
⊕
k=1

kPk, where Pk is the projection from l2(X)

onto l2(Xk).
Similarly, l2(X) can be represented as the direct sum of l2k, where

l2k = {f ∈ l2(X) : T ∗
ϕTϕf = kf} if 1 ≤ k ≤ m. In case k = 0 the subspace l20

is defined as the orthogonal complement to all other l2k. It follows that T ∗
ϕTϕ =

m
⊕
p=1

kQk, where Qk is the projection from l2(X) onto l2k.

The family of functions {ex}x∈Xk
forms an orthogonal basis in the subspace

l2(Xk) and the family of {gy}y∈Xk
, gy = 1√

k

∑
x∈Ey

ex, does so for l2k.

Introduce the operator of partial isometry Uk, k �= 0, by setting Uk =
1√
k
TϕPk. It can be easily checked that

Ukgy =

{
ey, if y ∈ Xk;

0, if y /∈ Xk.
Hence U∗

k ey =

{
gy, if y ∈ Xk;

0, if y /∈ Xk;

and Tϕ = U1 +
√
2U2 + · · · +

√
mUm. Note that the family of partially isometric

operators {Uk} satisfies the relations:{
U∗
1U1 + U∗

2U2 + · · ·+ U∗
mUm = Q1 +Q2 + · · ·+Qm = Q;

U1U
∗
1 + U2U

∗
2 + · · ·+ UmU∗

m = P1 + P2 + · · ·+ Pm = P.

Let C∗
ϕ(X) be the uniformly closed subalgebra of the algebra of all bounded

operators on l2(X) generated by the operator Tϕ. Since the spectra of the operators
TϕT

∗
ϕ and T ∗

ϕTϕ are finite sets, we conclude that operators Pk and Qk belong to
C∗

ϕ(X) as well as the operator Uk. Therefore the C∗-algebra C∗
ϕ(X) is generated

by the family of partial isometries {Uk}mk=1.
We call an element from {Uk}mk=1 ∪ {U∗

k}mk=1 the primary monomial. We
define -1 (or 1) to be the index of primary monomial which is an element of the
set {Uk}mk=1 (or {U∗

k}mk=1). We call V the monomial if it is any finite product
of primary monomials not identically zero. Clearly, the same monomial can have
different representations. We denote by d (V ) the length of V – the least quantity
of monomials in its representation.

Let {V } be the family of all monomials of C∗
ϕ(X). We can assume that {V }

contains zero monomial, then {V } is an involutive semigroup with zero element.
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We call the elements x1, x2 ∈ X ϕ-equivalent (equivalent for short) in the
kth-order if ϕk(x1) = ϕk(x2) = y. Let Ek

y = {x ∈ X : ϕk(x) = y}, where k =

0, 1, 2, . . .. We assume E0
y = {y} and E1

y = Ey. Since cardEy ≤ m, cardEk
y ≤ mk

and if y1 �= y2, then Ek
y1
∩ Ek

y2
= ∅. Therefore, the Hilbert space l2(X) can be

represented as a direct sum of l2(Ek
y ) for each fixed k,

l2(X) =
⊕
y∈X

l2(Ek
y ).

The lemma below was proved in [10]. It is still true for mapping with cyclic
elements (or elements with finite orbits) and will be useful later on. For this purpose
we adduce it in this paper.

Lemma 1.1. Assume that the monomial V can be represented as a product of s
factors from the set {Up}mp=1 and l factors from the set {U∗

p}mp=1. Then V maps

the subspace l2(Ek
y ) into l2(Ek−s+l

y ) for each k ≥ s and V ey is contained in the

Hilbert space l2(Ek+l
ϕs(y)).

Proof. Let Upex �= 0 for some ex from l2(Ek
y ). Hence Upex = 1√

peϕ(x). Since

x ∈ Ek
y , we conclude that ϕ(x) ∈ Ek−1

y and Up maps l2(Ek
y ) into l2(Ek−1

y ) for all

p = 1,m. Similarly, U∗
p ex = gx ∈ l2(Ek+1

y ) if U∗
p ex does not vanish, hence U∗

p maps

l2(Ek
y ) into l2(Ek+1

y ) for all p = 1,m.

Thus, if the monomial V consists of s factors from {Up}mp=1 and l factors

from {U∗
p }mp=1, then it maps the subspace l2(Ek

y ) into l2(Ek−s+l
y ). To complete

the proof, note that from the definition of the set Ek
y it follows that the space

l2(Ek−s+l
y ) is the subspace of l2(Ek+l

ϕs(y)). Hence V ey belongs to l2(Ek+l
ϕs(y)). �

Let the monomial V can be represented as a product of s1 factors from the set
{Up}mp=1 and l1 factors from the set {U∗

p}mp=1 as well as s2 factors from {Up}mp=1

and l2 factors {U∗
p}mp=1. By Lemma 1.1, V moves the subspace l2(Ek

y ) into the

subspace l2(Ek−s1+l1
y ) as well as into l2(Ek−s2+l2

y ). If there is no element with
finite orbit it immediately follows that −s1 + l1 = −s2 + l2.

The index of monomial V , denoted by ind V , is defined to be the sum of
indices of primary monomials participating in it’s representation. In a case of
absence of cyclic elements C∗

ϕ(X) can be graded over the index of monomial.
The subalgebra responding to zero (generated by monomials of zero index) is an
AF -algebra. One can imbed the unit circle into the group of automorphisms of
C∗

ϕ(X), thus there is a covariant system (C∗
ϕ(X), S1, κ), in addition the fixed point

subalgebra is an AF -algebra. The reader can find the detailed presentation of these
results in [9, 10].

The purpose of the present work is to show that C∗
ϕ(X) is a nuclear C∗-

algebra with nontrivial AF -subalgebra in case of mapping with cyclic elements,
and there is a covariant system associated with the last-mentioned mapping.
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2. Monomials in C∗
ϕ

Let ϕ : X −→ X be a mapping with cyclic element x0, i. e. ϕ
n(x0) = x0 for some

n ≥ 1. We will denote by Γx0 the orbit of the element x0. Let us associate the
oriented graph (X,ϕ) with vertices in the points of X and edges (x, ϕ(x)) with
a fixed mapping on the set. Without loss of generality we can assume (X,ϕ) to
be connected (if it is not the case all arguments below are true for its connected
components). Therefore any two cyclic elements are in Γx0 .

The problem is that there may be a monomial V , which has two repre-
sentations: V = U ′

j1U
′
j2 . . . U

′
jp ; V = U ′′

i1U
′′
i2 . . . U

′′
il
, where U ′

js and U ′′
is are from

{U∗
k}mk=1 ∪ {Uk}mk=1 and

p∑
s=1

indU ′
js �=

l∑
s=1

indU ′′
is . Hence in general case C∗

ϕ(X) is

not Z-graded.

Lemma 2.1. Let V0 be a monomial such that two representations exist: V0 =

U ′
j1
U ′
j2
. . . U ′

jp
; V0 = U ′′

i1
U ′′
i2
. . . U ′′

il
, and

p∑
s=1

indU ′
js
�=

l∑
s=1

indU ′′
is
. Then V0 is an

operator of finite rank.

Proof. Let us denote by n′ (n′′) the number of elements from the set {Uk}mk=1 par-
ticipating in representation V0 and by m′ (m′′) the ones from {U∗

k}mk=1 correspond-
ingly. Note that m′ − n′ �= m′′ − n′′. Let F = {x ∈ X : ϕr(x) ∈ Γx0 where r =
1+ l+p+cardΓx0}. It is obvious that F is a finite set. Consider the action of V0 on
ey for an arbitrary y from X \F . By Lemma 1.1, V0ey belongs to the Hilbert space

l2(Em′
ϕn′(y)) as well as to l2(Em′′

ϕn′′ (y)). But E
m′
ϕn′(y) ∩E

m′′
ϕn′′ (y) = ∅ since V0ey = 0 for

every y from X \ F . Therefore V0 is an operator of finite rank. �

From Lemma 2.1 it follows that if the cyclic elements exist, then semigroup
{V } contains nontrivial subsemigroup of compact monomials {V0}. Let {Vinf} =
{V } \ {V0}.

Corollary 2.2. Let monomial V from {Vinf} can be represented as

V = U ′
j1U

′
j2 . . . U

′
jk as well as V = U ′′

i1U
′′
i2 . . . U

′′
il .

Then
k∑

s=1
indU ′

js
=

l∑
s=1

indU ′′
is
.

Thus we can define the index of monomials from {Vinf}. Similarly to section
1 the index of V ∈ {Vinf}, denoted by indV , is defined to be the sum of indices of
primary monomials participating in it’s representation.

Let FN denote the set {x ∈ X : ϕN (x) ∈ Γx0}. It is obvious that FN is finite
and FN ⊂ FN+1. There is no cyclic element in the set XN = X \ FN for every N ,
and for every V ∈ {Vinf} and N there exists an x in XN with V ex �= 0 (otherwise
V is a compact operator).

Let PN be a projection from l2(X) onto l2(FN ). Let us show that PN belongs
to C∗

ϕ(X).
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Let V0 ∈ {V0}. Then the self-adjoint operator V0V
∗
0 is diagonable hence

C∗
ϕ(X) contains the finite-dimensional projections. Suppose Pf is one of these pro-

jections. Consider the action of the operator PfT
∗
ϕ
k on l2(Γx0). By the properties

of T ∗
ϕ it is obvious that one can select such a k that

PfT
∗
ϕ
kex = 0, if ex /∈ Γx0 , and PfT

∗
ϕ
kex �= 0, if ex ∈ Γx0 .

One can check at once that the self-adjoint operator Tϕ
kPfPfT

∗
ϕ
k = Tϕ

kPfT
∗
ϕ
k

moves the space l2(Γx0) ≡ l2(F0) onto itself. Therefore there is projection P0 ∈
C∗

ϕ(X).

Now consider the operator T ∗
ϕP0. By construction

T ∗
ϕP0 : l2(Γx0) −→ l2(F1).

Similarly we consider the operator T ∗
ϕP0Tϕ and obtain projection P1. Continuing

in the same manner we deduce that projection PN belongs to C∗
ϕ(X) (and so

does P⊥
N ).

Let V1 and V2 be monomials from {Vinf} of different indices with length s
and n correspondingly. If we assume y ∈ X to be an element with the property
ϕs+n(y) ∈ XNx0

, then, by Lemma 1.1,

(V1ey, V2ey) = 0.

The following assertion will be useful later on. Let B be a non compact
bounded operator on Hilbert space H and Hn be a finite-dimensional subspace of
the last generated by the vectors e1, e2, . . . , en of orthonormal basis {ei}∞i=1 in H .
Then H = Hn ⊕H⊥

n and

lim
n→∞ ‖P

⊥
n BP⊥

n ‖ > 0,

the projection P⊥
n : H −→ H⊥

n here being orthogonal to Pn : H −→ Hn (P⊥
n +

Pn = I).

One can represent the operator B in a form

B = PnBPn + PnBP⊥
n + P⊥

n BPn + P⊥
n BP⊥

n .

The first three are compact operators in contrast to the forth, therefore we deduce

lim
n→∞ ‖B − PnBPn + PnBP⊥

n + P⊥
n BPn‖ = δ > 0.

Corollary 2.3. Let V1 and V2 be monomials from {Vinf} of different indices. Then
V1 − V2 is not a compact operator.

By Lemma 2.1 it follows that C∗
ϕ(X) contains the compact operators. Let

Jϕ be an ideal of compact operators. If C∗
ϕ(X) is irreducible then Jϕ coincides

with K(l2(X)) – the set of all compact operators on l2(X). In general case Jϕ =
K(l2(X))

⋂
C∗

ϕ(X). Throughout the paper, K denotes a compact operator in
C∗

ϕ(X).
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We denote by C∗
ϕ the quotient algebra of C∗

ϕ(X) over Jϕ. The image of partial
isometry Uk under the canonical mapping

C∗
ϕ(X) −→ C∗

ϕ

will be denoted by Wk. It is obvious that the images of some partial isometries can
be zero. Let {Wi}i∈I (I is a subset of integers from 1 to m depending on mapping
ϕ) be non zero images of operators {Ui}mi=1. Since WiW

∗
i is an image of projection

Pi not equal to zero and under the canonical mapping the projection is moved
either into zero or into projection, then WiW

∗
i is a projection in C∗

ϕ, hence the
family {Wi}i∈I is the family of partial isometries which generates the C∗-algebra
C∗
ϕ (because the family {Ui}mi=1 generates C∗

ϕ(X)).

As before, we will call the finite product of elements from {Wi}i∈I∪{W ∗
i }i∈I

themonomial. The family {W} of all monomials in C∗
ϕ together with zero monomial

forms the involutive semigroup {W} with zero element.

The index of monomial W = W ′
j1
W ′

j2
. . .W ′

jk
is defined to be the number

indW =

k∑
s=1

indW ′
js , where indW ′

js = ±1,

in accordance with W ′
js being from {W ∗

i }i∈I or {Wi}i∈I correspondingly.

Lemma 2.4. The index of monomial W does not depend on its representation as
a product.

Proof. Assume this is not the case. We consider the monomial W to have the
representation

W = W ′
j1W

′
j2 . . .W

′
jk

as well as W = W ′′
i1W

′′
i2 . . .W

′′
il
,

and
k∑

s=1

indW ′
js �=

l∑
s=1

indW ′′
is .

Then in the preimage of W there exists an operator V from C∗
ϕ(X) such that from

the one hand

V = U ′
j1U

′
j2 . . . U

′
jk

and from the other

V = U ′′
i1U

′′
i2 . . . U

′′
il +K.

Here U ′
js

and U ′′
is

are preimages of W ′
js

and W ′′
is
. Since W �= 0, V is not compact

operator in C∗
ϕ(X). We have

U ′
j1U

′
j2 . . . U

′
jk
− (U ′′

i1U
′′
i2 . . . U

′′
il
+K) = V − V = 0.

But from Corollary 2.3 the difference U ′
j1U

′
j2 . . . U

′
jk
−U ′′

i1U
′′
i2 . . . U

′′
il
is not compact

operator. The proof is complete. �
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3. Structure of the algebra C∗
ϕ

Let C∗
ϕ,n denote the closed linear subspace in C∗

ϕ generated by monomials of in-
dex n.

Lemma 3.1. The following conditions hold:

1) C∗
ϕ,nC

∗
ϕ,s = C∗

ϕ,n+s;

2) C∗
ϕ,n ∩ C∗

ϕ,s = {0}, if n �= s.

Proof. The proof of the first statement immediately follows from the definition of
the index of monomial. Let us prove the second by contradiction. Let C∗′

ϕ,n be the
preimage of C∗

ϕ,n under the canonical mapping of C∗
ϕ(X) into C∗

ϕ. There is no loss
of generality in assuming

C∗
ϕ,0 ∩ C∗

ϕ,n �= {0}.
Then there exists a nonzero element

A ∈ C∗′
ϕ,0 ∩ C∗′

ϕ,n,

which one of the preimages of some nonzero element of C∗
ϕ,0 ∩C∗

ϕ,n. Since A is not
compact,

lim
N→∞

‖P⊥
NAP⊥

N‖ = ε > 0.

The preimages of monomial W from C∗
ϕ contain the monomial V ∈ {Vinf}

from C∗
ϕ(X). The primary monomials Uji and U∗

jl
, i, j = 1,m, participating in rep-

resentation of V , are the preimages of the elements Wji and W ∗
jl
, i, j = 1,m′ ≤ m

in representation of monomial W . By Corollary 2.2,

indW = indV.

Therefore there exist elements

A′ =
l∑

i=1

α′
iV

′
i +K ′ ∈ C∗′

ϕ,0 and A′′ =
k∑

j=1

α′′
j V

′′
j +K ′′ ∈ C∗′

ϕ,n

such that

‖A′ −A‖ < ε

8
, ‖A′′ −A‖ < ε

8
,

in addition indV ′
i = 0 = s′ − n′ for all i = 1, l and indV ′′

j = n = s′′ − n′′ for all

j = 1, k. Then

lim
N→∞

‖P⊥
NA′P⊥

N‖ ≥ lim
N→∞

‖P⊥
NAP⊥

N‖ − lim
N→∞

‖P⊥
N(A−A′)P⊥

N‖ ≥ ε− ε

8
=

7ε

8
.

Similarly,

lim
N→∞

‖P⊥
NA′′P⊥

N‖ >
7ε

8
.

K ′ and K ′′ are compact, which gives

lim
N→∞

‖P⊥
NA′P⊥

N‖ = lim
N→∞

∥∥∥∥∥P⊥
N

(
l∑

i=1

α′
iV

′
i

)
P⊥
N

∥∥∥∥∥
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and

lim
N→∞

‖P⊥
NA′′P⊥

N‖ = lim
N→∞

∥∥∥∥∥∥P⊥
N

⎛⎝ k∑
j=1

α′′
j V

′′
j

⎞⎠P⊥
N

∥∥∥∥∥∥ .
Let N > 2

l∑
i=1

n′
i +

k∑
j=1

(s′′j + n′′
j ). Consider the Hilbert space

HN =
⊕

y∈X\FN

l2(EN
y ).

From the definition of EN
y , it follows that if P⊥

N is projection onto the space

l2(X \ FN ), then P⊥
2N is projection onto HN . N is chosen to be such that for all

y from X \ FN the space l2(EN
y ) is invariant in l2(X) for linear combination of

monomials of index zero and the linear combination
k∑

j=1

α′′
j V

′′
j moves l2(EN

y ) onto

l2(EN+s
y ) (follows from Lemma 1.1). Hence∥∥∥∥∥

l∑
i=1

α′
iV

′
i |HN

∥∥∥∥∥ = sup
y∈X\FN

∥∥∥∥∥
l∑

i=1

α′
iV

′
i |l2(EN

y )

∥∥∥∥∥ .
Using the relations above and taking into account that operators A′ and A′′

are not compact, P⊥
2N is projection onto HN which is invariant for

l∑
i=1

α′
iV

′
i as well

as the every l2(EN
y ), and

k∑
j=1

α′′
j V

′′
j moves the latter into the subspace l2(EN+s

y )

(the subspaces being orthogonal to each other), we obtain

ε

4
> ‖A′ −A′′‖ ≥ lim

N→∞
‖P⊥

NA′P⊥
N − P⊥

NA′′P⊥
N‖

= lim
N→∞

∥∥∥∥∥∥P⊥
2N

(
l∑

i=1

α′
iV

′
i

)
P⊥
2N − P⊥

2N

⎛⎝ k∑
j=1

α′′
j V

′′
j

⎞⎠P⊥
2N

∥∥∥∥∥∥
≥ lim

N→∞
sup

y∈X\FN

∥∥∥∥∥∥
⎛⎝P⊥

2N

(
l∑

i=1

α′
iV

′
i

)
P⊥
2N − P⊥

2N

⎛⎝ k∑
j=1

α′′
j V

′′
j

⎞⎠P⊥
2N

⎞⎠ |l2(EN
y )

∥∥∥∥∥∥
≥ lim

N→∞
sup

y∈X\FN

∥∥∥∥∥P⊥
2N

(
l∑

i=1

α′
iV

′
i

)
P⊥
2N |l2(EN

y )

∥∥∥∥∥
= lim

N→∞

∥∥∥∥∥P⊥
2N

(
l∑

i=1

α′
iV

′
i

)
P⊥
2N

∥∥∥∥∥ >
3ε

4
,

a contradiction. The lemma is proved. �
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An important consequence is:

Corollary 3.2. Let B from C∗
ϕ have the form

B =

n∑
k=−n

Bk,

where Bk from C∗
ϕ,k. Then for all k

‖Bk‖ ≤ ‖B‖.

Proof. Let us consider an element B ∈ C∗
ϕ and an arbitrary element A ∈ C∗

ϕ(X)
from the coset [B]. We can write the latter in a form

A = PNAPN + PNAP⊥
N + P⊥

NAPN + P⊥
NAP⊥

N .

it is obvious that P⊥
NAP⊥

N ∈ [B].
For every A ∈ [B], ‖B‖ ≤ ‖A‖. From the other hand, for all ε > 0 there is

an operator A0 such that ‖A0‖ < ‖B‖+ ε, which gives

‖B‖ ≤ lim
N→∞

‖P⊥
NAP⊥

N‖ = lim
N→∞

‖P⊥
N (A0 +K)P⊥

N‖

≤ lim
N→∞

‖P⊥
NA0P⊥

N‖+ lim
N→∞

‖P⊥
NKP⊥

N‖

= lim
N→∞

‖P⊥
NA0P⊥

N‖ ≤ ‖A0‖ < ‖B‖+ ε,

and finally that

‖B‖ = lim
N→∞

‖P⊥
NAP⊥

N‖.

Assertion being proved follows from the concluding inequalities of Lemma’s 3.1
proof. �

In [10] it was shown that under the assumption of absence of cyclic elements
the monomials of index zero generate AF -algebra C∗

ϕ,0. We now show that there
exists a nontrivial AF -subalgebra of C∗

ϕ(X) even in case we refuse this assumption.
Actually, if there are cyclic elements for ϕ then, by Lemma 2.1, C∗

ϕ(X) contains
the algebra of compact operators as well as the algebra generated by all monomials
of zero index from {Vinf}, we denote the latter by C∗

ϕ,0. Then C∗
ϕ,0 + Jϕ is closed

subalgebra of C∗
ϕ(X) and, clearly, AF -algebra. Hence the quotient algebra

(
C∗

ϕ,0+

Jϕ
)
/Jϕ = C∗

ϕ,0 is AF -algebra.
From Lemma 3.1 and arguments mentioned above it immediately follows the

theorem:

Theorem 3.3. C∗-algebra C∗
ϕ is Z-graded with AF -subalgebra responding to zero.

Remind that the conditional expectation from C∗-algebra A to C∗-subalgebra
B is, by definition, the completely positive contracting mapping θ : A −→ B such
that θ(B) = B and θ(B1AB2) = B1θ(A)B2 for all B,B1, B2 ∈ B and A ∈ A
([13], [14]). In other words the conditional expectation is a projection of norm 1.
Tomiyama proved in [15] that the inverse statement is true ([13], [16]).
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Lemma 3.4. In C∗
ϕ there is a conditional expectation onto the subalgebra C∗

ϕ,0.

Proof. Define a mapping

P : C∗
ϕ −→ C∗

ϕ,0,

on a set being dense everywhere by P
( n∑

k=−n

Ak

)
= A0, where Ak ∈ C∗

ϕ,k and

A0 ∈ C∗
ϕ,0, and extend it by continuity.

In [11, Theorem 3] it was proved that C∗
ϕ(X) generated by a finite family

of partial isometries is unital. It is clear that C∗
ϕ,0 contains the unit, hence, by

Corollary 3.2, ‖P‖ = 1. �

4. Covariant system associated with C∗
ϕ(X)

In this section, in much the same way as in [10], we construct the covariant system
associated with C∗

ϕ(X) in general case.

Define C∗
ϕ-valued function W̃ on the unit circle for every monomial W from

semigroup {W}:
W̃ (eiθ) = eiindWθW.

Thus we obtain the family of functions on S1, we denote it by {W̃}. It is clear that
{W̃} is a semigroup isomorphic to {W}. Let C̃∗

ϕ be a C∗-subalgebra of C(S1,C∗
ϕ)

generated by the semigroup {W̃}. Since

W̃ (eiθ0eiθ) = eiindWθ0W̃ (eiθ)

for all W̃ from {W̃}, C̃∗
ϕ is invariant with respect to the shifts by elements of S1.

Therefore we can define the covariant system

(C̃∗
ϕ, S

1, κ),

where κ : S1 −→ AutC̃∗
ϕ is a group homomorphism generated by shift operators,

(κ(eiθ0)B̃)(eiθ) = B̃(ei(θ+θ0)).

Let

C̃∗
ϕ,n = {B̃ ∈ C̃∗

ϕ : κ(eiθ)(B̃) = einθB̃}.

Theorem 4.1. C∗-algebras C̃∗
ϕ and C∗

ϕ are isomorphic.

Proof. The mapping

B̃ −→ B̃(ei0)

generates the continuous surjective ∗-homomorphism

Φ : C̃∗
ϕ −→ C∗

ϕ.



240 A. Kuznetsova

Let B̃ be a function from kerΦ with Fourier series
∞∑

n=−∞
B̃n. Then

∞∑
n=−∞

B̃n(e
i0)

is Fourier series of the image B̃ from C∗
ϕ. By Corollary 3.2, B̃n(e

i0) = 0. Since

B̃n(e
iθ) = einθBn,

Bn from C∗
ϕ,n, we obtain ‖B̃n‖ = 0. Hence B̃ = 0 and Φ is isomorphism. �

It follows that there is a covariant system (C∗
ϕ, S

1, κ) isomorphic to (C̃∗
ϕ, S

1, κ).
The action of a circle on C∗-algebras was studied in details in [17, 18] It is

obvious that C∗
ϕ,n is the nth spectral subspace for κ. Summarizing all mentioned

above, we have the following theorem:

Theorem 4.2. If there are cyclic elements for ϕ then the last generates the covariant
system (C∗

ϕ, S
1, κ) with a semi-saturated action κ and the fixed point subalgebra

C∗
ϕ,0 is AF -algebra.

Note that the conditional expectation constructed in previous section is the
one onto the fixed point subalgebra with respect to the action of the circle as a
group of automorphisms of C∗

ϕ ([13, II.6.10.4]).

Corollary 4.3. Algebra C∗
ϕ(X) is nuclear.

Proof. We first show that C∗
ϕ is nuclear. C∗

ϕ,0 is a fixed point subalgebra with

respect to continuous action of compact group S1 and AF -algebra by Theorem
3.3. Hence, by [[19], 4.5.2], C∗

ϕ is nuclear. As far as Jϕ is an ideal of compact
operators (AF -algebra), C∗

ϕ(X) is nuclear C∗-algebra ([13, IV.3.1.3]). �
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On Spectral Subspaces and Inner
Endomorphisms of Some Semigroup
Crossed Products
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Abstract. This note provides a look into some of the abstract properties of the
semigroup crossed product of a unital C∗-algebra by an action consisting of
endomorphisms for which there is a left inverse. The objective is to describe
in general terms some of the relations between spectral subspaces for the
canonical coaction on the crossed product and certain eigenspaces of a time-
evolution on the crossed product. The present analysis is inspired by certain
constructions due to Cornelissen and Marcolli [2].
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Introduction

Semigroup crossed products as models for C∗-algebras arising in number theory
were first considered by Laca and Raeburn in [8], with motivation provided by the
work in [1]. In employing techniques of the theory of semigroup crossed products
they were able to offer simplifications of the presentation of the reduced Hecke C∗-
algebra in [1] and show that this algebra possessed a universal property. Similar
classes of semigroup crossed products were studied later by many authors, and
recently they appeared in work of Cornelissen and Marcolli [2].

The starting point in [2], from the point of view of semigroup crossed prod-
ucts, is common to many of the previous studies, and consists of a dynamical sys-
tem (A,S, α) where A is a unital C∗-algebra, S is a semigroup with nice properties
(typically part of a lattice ordered group (G,S)), and α is an action of S by injec-
tive endomorphisms of A for which there is a left inverse. The interest in [2] is in
the crossed product A = A�αS as part of a quantum statistical mechanical system
(A, σ) arising from a time-evolution σt on A for t ∈ R. Cornelissen and Marcolli’s



244 N.S. Larsen

study of isomorphism of two quantum statistical mechanical systems (A, σ) and
(A′, σ′) associated to two number fields is heavily dependent on delicate number
theoretic facts and arguments. However some of the ingredients introduced along
the way pertain to the semigroup crossed product and may be looked at in general
terms. This is the objective of the present note. We study here relations between
the spectral subspaces of A�αS associated to the canonical coaction of G and the
eigenspaces of a time evolution σ on the crossed product. As application we iden-
tify inner endomorphisms (in the terminology of Cornelissen–Marcolli) of (A, σ)
that are dagger inner endomorphisms of A �α S, where the dagger subalgebra is
another new ingredient introduced in [2]. A crucial aspect in [2] is preservation of
the dagger subalgebra under inner endomorphisms, and one of their results relies
on characterizing dagger inner endomorphisms as those inner endomorphisms pre-
serving the dagger subalgebra. It is a natural question whether it is possible to
identify in greater generality elements among the inner endomorphisms that are
dagger inner isomorphisms. We shall provide an affirmative answer to this question
under some suitable conditions.

I thank the referee for a number of useful comments and suggestions.

1. Semigroup crossed products

Suppose that S is a subsemigroup of a (discrete) group G containing the identity
element e and α : S → End(A) is an action of S by endomorphisms of a unital
C∗-algebra A. The semigroup crossed product A �α S is the unital C∗-algebra
generated by (the image of) a pair (iA, iS) in which iA a ∗-homomorphism of A
and iS is a semigroup homomorphism of S satisfying the covariance condition

iS(s)iA(a)iS(s)
∗ = iA(αs(a)) (1.1)

for all s ∈ S and a ∈ A; the pair (iA, iS) is universal in the sense that any
pair (π, V ) (into B(H) for some Hilbert space H) satisfying the analogue of (1.1)
factors through (iA, iS). If the system admits a pair (π, V ) satisfying the covariance
condition with π injective, then iA is injective. We shall assume henceforth that
iA is injective.

We identify g in G with its image as a generating unitary inside C∗(G). It is
known that there is a homomorphism iG from C∗(G) into C∗(G) ⊗ C∗(G), with
⊗ denoting the minimal tensor product, such that iG : g �→ g ⊗ g. Recall that a
coaction δ of G on a unital C∗-algebra A is an injective homomorphism δ : A →
A�C∗(G) which satisfies (δ◦idC∗(G))◦δ = (idA⊗iG)◦δ and span(δ(A)(1⊗C∗(G)))
is dense in A⊗C∗(G). We refer to [10] for basic properties of coactions of discrete
groups on C∗-algebras.

With the notation of the first paragraph of this section, [7, Proposition 6.1]
(see also their Remark 6.2 which says that one can work with the minimal tensor
product), shows that there is a coaction δ of G on A �α S such that δ(iA(a)) =
iA(a)⊗ e and δ(iS(s)) = iS(s)⊗ s for a ∈ A and s ∈ S.
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Proposition 1.1. The cosystem (A �α S,G, δ) is a maximal coaction in the sense
of [4].

Proof. Let A be the Fell bundle associated to (A �α S,G, δ), and let C∗(A) be
its full sectional C∗-algebra. Then the universal properties of both algebras imply
that A �α S ∼= C∗(A), and the result follows because C∗(A) with its canonical
coaction of G is a maximal coaction system. �

Let S be a cancellative semigroup with identity e. We say that S is right-
reversible (or S is an Ore semigroup) provided that Ss ∩ Ss′ �= ∅ for any pair
s, s′ ∈ S. It follows that S embeds in its group of left quotients G = S−1S. If
S ∩ S−1 = {e}, then x ≤r y ⇐⇒ yx−1 ∈ S is a right-invariant order on G. Note
that the right-reversibility condition ensures that any two elements s, s′ ∈ S have
a common upper bound in S. In the next section we shall assume that there exists
a least upper bound for any two elements in S (and in G).

It is known that A �α S is the closed span of monomials iS(s)
∗iA(a)iS(s′)

for a ∈ A and s, s′ ∈ S, see [6, 9]. The algebraic crossed product is

A�alg
α S = span{iS(s)∗iA(a)iS(s′) | s, s′ ∈ S, a ∈ A}.

By extending the terminology from [2] for a certain class of semigroup crossed
products, the dagger subalgebra (A�α S)† of A�α S is the algebra generated by
iA(A) and the isometries iS(s) for s ∈ S. In this case, (A�αS)

† = span{iA(a)iS(s) |
a ∈ A, s ∈ S}.

The next result was claimed in [9] without proof. We include some details of
the proof here because they will be useful later. Recall that the spectral subspace
at g ∈ G for the coaction δ on A�αS is the space (A�αS)g consisting of x ∈ A�αS
such that δ(x) = x⊗ g.

Lemma 1.2. The spectral subspaces corresponding to δ are given by

(A�α S)δg = span {iS(s)∗iA(a)iS(s′) : g = s−1s′, s, s′ ∈ S, a ∈ A}, (1.2)

for g ∈ G. In particular, the fixed point algebra (A�α S)δe for δ is

(A�α S)δe = span {iS(s)∗iA(a)iS(s) : s ∈ S, a ∈ A}. (1.3)

Proof. We prove first (1.3). Clearly span {iS(s)∗iA(a)iS(s) : s ∈ S, a ∈ A} is
contained in (A�αS)e. For the other inclusion, let c ∈ (A�αS)e. We may assume
c =

∑n
j=1 iS(sj)

∗iA(aj)iS(s′j) for sj , s
′
j ∈ S and aj ∈ A. Let λG be the regular

representation of G (extended to C∗(G)), and let irG denote the embedding of G

as unitaries in C∗
r (G). The canonical trace τ on C∗

r (G) carries irG(s
−1
j s′j) to 1 if

s−1
j s′j = e and to zero otherwise. Since δ(c) − c ⊗ e = 0 in (A �α S) ⊗ C∗(G),

by applying (id⊗τ) ◦ (id⊗λG) to the difference we get that the sum of terms
iS(sj)

∗iA(aj)iS(s′j) in c in which s−1
j s′j �= e is zero. This proves (1.3).

To prove the general case note that the right to left inclusion in (1.2) follows
from the definition of δ. For the other inclusion let c ∈ (A�α S)g for some g ∈ G.
Then c∗c ∈ (A �α S)∗g(A �α S)g, which is included in (A �α S)e by [10, Lemma
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1.3]. Assume c =
∑n

j=1 iS(sj)
∗iA(aj)iS(s′j) for sj , s

′
j ∈ S and aj ∈ A. To simplify

notation, let Mj = iS(sj)
∗iA(aj)iS(s′j). Then

c∗c =
(∑

j

Mj

)∗(∑
k

Mk

)
=

∑
j

M∗
j Mj +

∑
j 	=k

M∗
j Mk

=
∑
j

iS(s
′
j)

∗iA(a∗jαsj (1)aj)iS(s
′
j) +

∑
j 	=k

M∗
j Mk;

we compute the second sum separately. For each pair (j, k) with j, k = 1, . . . , n
and j �= k we choose u(j,k), v(j,k) ∈ S such that sjs

−1
k = u−1

(j,k)v(j,k). Then w(j,k) :=

u(j,k)sj = v(j,k)sk. Letting

b(j,k) := αu(j,k)
(a∗j )αw(j,k)

(1)αv(j,k)
(ak)

for j �= k we obtain

c∗c =
∑
j

iS(s
′
j)

∗iA(a∗jαsj (1)aj)iS(s
′
j) +

∑
j 	=k

M∗
j Mk

=
∑
j

iS(s
′
j)

∗iA(a∗jαsj (1)aj)iS(s
′
j) +

∑
j 	=k

iS(u(j,k)s
′
j)

∗iA(bj,k)iS(v(j,k)s′k).

Since c∗c ∈ (A�α S)e, we obtain from two applications of (1.3) that

(u(j,k)s
′
j)

−1v(j,k)s
′
k = e

for all j, k with j �= k. Thus we must have (s′j)
−1sjs

−1
k s′k = e or, equivalently,

s−1
j s′j = s−1

k s′k for all j, k with j �= k. This means that

g′ := s−1
j s′j for all j = 1, . . . , n.

Then δ(c) = c⊗ g = c⊗ g′, so g = g′ = s−1
j s′j for all j. �

2. Semigroup dynamical systems with left inverses

Semigroup dynamical systems of the form (A,S, α) with S a right-reversible Ore
semigroup and α an action by injective endomorphisms of a unital C∗-algebra A
are useful models of some C∗-algebras arising in number theory. In such examples,
the action α has a left inverse. To formalise this, a left inverse for α is an action
α′ : S → End(A) such that α′

s ◦ αs = id and αs ◦ α′
s is multiplication by the

projection αs(1) for all s ∈ S. We shall assume that αe(1) = 1 and αs(1) �= 1
for s ∈ S \ {e}. If (A,S, α, α′) is such a system, then iA induces an isomorphism

iA : A
∼=→ (A �α S)e, see, e.g., [9, Proposition 3.1(1)] (note that the properties

(iii)–(iv) are not needed for assertion (1) in that proposition). Note also that
α′
s(a) = iS(s)

∗iA(a)iS(s) for all s ∈ S and a ∈ A. We next note that such systems
have a gauge-invariant uniqueness property.
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Proposition 2.1 (The gauge-invariant uniqueness property). Let S be an Ore semi-
group with enveloping group G = S−1S and α : S → End(A) an action of S on a
unital C∗-algebra A for which there is a left inverse α′ : S → End(A). A surjective
homomorphism ϕ : A�α S → C is injective if and only if ϕ|iA(A) is injective and
there is a maximal coaction η of G on C such that ϕ is δ–η-equivariant.

Proof. Since δ is maximal, this follows from the gauge-invariant uniqueness theo-
rem for maximal coactions from [5, Corollary A.2]. �

Given a right-reversible semigroup S such that S ∩S−1 = {e}, assume more-
over that for any two elements s, s′ ∈ S there is s̃ ∈ S satisfying Ss ∩ Ss′ = Ss̃.
Then the element s̃ is the least upper bound of s, s′ with respect to the order ≤r.
We denote s̃ = s ∨r s′, and refer to S as being right-lattice ordered whenever any
two elements admit a ∨r.

Suppose that S is right-lattice ordered. Let G = S−1S be its group of left
quotients. If x = s−1t ∈ G, then x ≤r t, so every element in G admits a right
upper bound in S. It is not true in general that any x ∈ G admits a least upper
bound in S. Assume that every element in G admits a least upper bound in S
with respect to ≤r, in which case we refer to (G,S) as being right-lattice ordered.
Then similar to the argument of [3, Lemma 7], which deals with the case of left-
invariant orders, it follows that (G,S) is right-lattice ordered precisely when for
each g ∈ G = S−1S, there is a unique pair of elements s, s′ ∈ S such that:

1. s ∧l s′ = e (where ∧l denotes greatest lower bound in G with respect to the
left-invariant order x ≤l y ⇐⇒ x−1y ∈ S),

2. g = s−1s′, and
3. for any decomposition g = z−1z′ with z, z′ ∈ S we have s ≤r z and s′ ≤r z

′.
We denote g− := s and g+ := s′ and refer to (g−, g+) as the minimal pair in S×S
associated to g.

Under these assumptions, the spectral subspaces admit a particularly nice
description.

Corollary 2.2. Assume that (A,S, α) is a dynamical system where A is unital,
(G,S) is right-lattice ordered, and α is an action by endomorphisms for which there
is a left-inverse α′. Then for each g ∈ G with associated minimal pair (g−, g+) ∈
S × S we have

(A�α S)g = span {iS(g−)∗iA(a)iS(g+) : a ∈ A}.

Proof. By (1.2), it suffices to prove the left to right inclusion. Let z, z′ ∈ S such
that g = z−1z′. Then g− ≤r z and g+ ≤r z′ with z(g−)−1 = z′(g+)−1 ∈ S, and
the claim follows from the calculations

iS(z)
∗iA(a)iS(z′) = iS(g−)∗iS(z(g−)−1)∗iA(a)iS(z′(g+)−1)iS(g+)

= iS(g−)∗iA(α′
z(g−)−1(a))iS(g+). �

Let (G,S) be a right-lattice ordered group and (A,S, α) a semigroup dy-
namical system with injective endomorphisms of the unital C∗-algebra A. Let δ
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be the canonical coaction of G on A �α S. Suppose that NG : G → (0,∞) is a
homomorphism, where (0,∞) has its multiplicative structure. The universal prop-
erty of A �α S implies that there is a one-parameter group of automorphisms
σ : R→ Aut(A�α S) such that

σt(iS(s)
∗iA(a)iS(s′)) = NG(s

−1s′)itiS(s)∗iA(a)iS(s′). (2.1)

We need to recall some terminology from [2]. A quantum statistical me-
chanical system (A, σ) consists of a C∗-algebra A with a one-parameter group of
automorphisms (a time evolution) σ. An element c ∈ A is an eigenvector of σ if
there is λ ∈ (0,∞) such that σt(c) = λitc for all t ∈ R. An endomorphism of (A, σ)
is a ∗-homomorphism ϕ : A → A such that ϕ ◦ σt = σt ◦ ϕ for all t ∈ R.

Definition 2.3 ([2, Definition 1.8]). Suppose that (A, σ) is a quantum statistical
mechanical system. An inner endomorphism of (A, σ) is an endomorphism ϕ of
(A, σ) such that there exists u an isometry in A and an eigenvector of σ for which
ϕ(x) = uxu∗ for all x ∈ A.

To simplify notation, we let Aσ
λ denote the space of eigenvectors c of σ such

that σt(c) = λitc for all t ∈ R. By (2.1), (A�α S)g ⊆ (A�α S)σNG(g) for all g ∈ G.

The next couple of results present partial converses to this inclusion.

Remark 2.4. Suppose (G,S) is a right-lattice ordered group, (A,S, α) is a semi-
group dynamical system with a left inverse α′, and σ is a time-evolution on A�αS
given as in (2.1). Let (A�αS)

† be the dagger subalgebra of A�αS. Suppose that S
is abelian. We claim that every inner endomorphism of (A�αS, σ) preserves the clo-
sure of the dagger subalgebra. To see this, assume first that u = iS(s)

∗iA(b)iS(s′)
and x = iA(a)iS(p) ∈ (A�α S)†. Then

uxu∗ = iA
(
α′
s(bαs′(a)αp(αs′(1)b

∗))
)
iS(p) ∈ (A�α S)†.

By continuity, we have u(A�α S)†u∗ ⊆ (A�α S)† for any isometry u ∈ A �α S,
showing the claim.

There is no reason to expect in general that an endomorphism of (A�α S, σ)
that preserves the dagger subalgebra necessarily must be an inner endomorphism.
In [2, Definition 1.8], a dagger inner endomorphism of (A, σ) is an inner endomor-
phism of the form ϕ(x) = uxu∗ for all x ∈ A, where u ∈ (A�α S)† is an isometry
and an eigenvector of σ. We make the following slight modification of this notion.

Definition 2.5. A dagger inner endomorphism of (A, σ) is an inner endomorphism ϕ

such that for some u ∈ (A�α S)† which is an eigenvector of σ we have ϕ(x) = uxu∗

for all x ∈ A.
In the proof of [2, Proposition 10.1], it is observed that for the particular

systems under consideration, inner endomorphisms that preserve the dagger sub-
algebra coincide with the dagger inner endomorphisms. Thus a natural question is
whether it is possible to identify in greater generality elements among the inner en-
domorphisms that are dagger inner isomorphisms. We shall provide an affirmative
answer to this question under some suitable conditions.
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Assume that the homomorphism NG which induces the time evolution in
(2.1) satisfies the following two conditions:

Hom1. NG(S) ⊆ N \ {0}, and
Hom2. NG(s) and NG(s

′) are co-prime whenever s, s′ ∈ S \ {e} and s ∧l s′ = e.

Lemma 2.6. Suppose (G,S) is a right-lattice ordered group, (A,S, α) is a semigroup
dynamical system with a left inverse α′, and σ is the time-evolution on A �α S
associated to a homomorphism NG that satisfies (Hom1) and (Hom2).

Let c ∈ (A �α S) ∩ (A �α S)σm/n, where m,n are positive integers such that

m,n are coprime. If c∗c ∈ (A �α S)e, then there is g ∈ G with NG(g+) = m and
NG(g−) = n such that c ∈ (A�α S)g.

Proof. From the hypothesis we have σt(c) = (mn )
it
c. Suppose first that c =∑J

j=1 iS(sj)
∗iA(aj)iS(s′j) for sj, s

′
j ∈ S and aj ∈ A. As in the proof of (1.2), the

assumption that c∗c ∈ (A�α S)e implies that there is g ∈ G such that g = s−1
j s′j

for all j = 1, . . . , J . By Corollary 2.2, we may assume c ∈ iS(g−)∗iA(A)iS(g+),
where g = (g−)−1g+ is the minimal decomposition of g such that g− ∧l g+ = e.
Then σt(c) = (NG((g−)−1g+))

itc, and thus NG(g−)−1NG(g+) = m/n. By (Hom2),
we must have NG(g−) = n and NG(g+) = m, and the lemma follows. �

As a consequence of Lemma 2.6, it follows that the set of fixed-points of σt

is exactly iA(A).

Corollary 2.7. We have iA(A) = (A�α S)σ1 .

Proof. Clearly the set of fixed-points of σt is a C∗-subalgebra of A �α S that
contains iA(A) by the definition of σ. Let u ∈ A �α S be a unitary such that
σt(u) = u. Lemma 2.6 implies that there are s, s′ ∈ S with NG(s) = NG(s

′) and
s∧l s′ = e such that u ∈ iS(s)

∗iA(A)iS(s′). This in connection with (Hom2) forces
s = s′ = e and the corollary follows. �

In examples, a system of the form (A,S, α, α′) often has an additional feature.
Denoting vs := iS(s) for s ∈ S, assume that

v∗s′vs = vsv
∗
s′ when s ∧l s′ = e in S. (2.2)

Assuming (2.2), it follows that for every a ∈ A, we have

iA(α
′
s′(αs(a))) = v∗s′ iA(αs(a))vs′ = v∗s′vsiA(a)v

∗
svs′

= vsv
∗
s′ iA(a)vs′v

∗
s = iA(αs(α

′
s′ (a))).

Thus (2.2) says that the actions α and α′ satisfy the identity

α′
s′ ◦ αs = αs ◦ α′

s′ whenever s, s
′ ∈ S with s ∧l s′ = e. (2.3)

Note that the converse is valid, too: applying (2.3) to a = 1 and writing out the
identity using the isometries v gives (2.2).
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Lemma 2.8. Assume that the actions α and α′ satisfy (2.3) and αs(1) are central
projections in A for all s ∈ S. Let u ∈ A�αS be an isometry with u ∈ (A�αS)

σ
m/n

for positive integers m,n such that m,n are coprime. Then n = 1 and there exists
s′ ∈ S such that NG(s

′) = m and u ∈ (A �α S)s′ . In particular, u belongs to the
closure of (A�α S)†.

Proof. By Lemma 2.6, we may assume that u = iS(s)
∗iA(a)iS(s′) for s, s′ ∈ S

with NG(s) = n,NG(s
′) = m and s ∧l s′ = e. Then

u∗u = iA
(
α′
s′(a

∗αs(1)a)
)

= iA
(
α′
s′(αs(1)a

∗a)
)
since αs(1) is central

= iA(α
′
s′ ◦ αs ◦ α′

s(a
∗a))

= iA(αs ◦ α′
s′ ◦ α′

s(a
∗a))) by (2.3).

The assumption u∗u = 1 implies that αs(a
′) = 1 for a′ = α′

s′ ◦α′
s(a

∗a), from which
we infer that a′ = α′

s(αs(a
′)) = α′

s(1) = 1. Thus αs(1) = 1, which necessarily
implies that s = e, and in particular that n = 1. The lemma follows. �
Theorem 2.9. Suppose (G,S) is a right-lattice ordered group, (A,S, α) is a semi-
group dynamical system with a left inverse α′, and σ is the time-evolution on
A �α S associated to a homomorphism NG that satisfies (Hom1) and (Hom2).
Assume further that α and α′ satisfy (2.3) and αs(1) are central projections in A
for all s ∈ S.

Then every inner endomorphism of (A �α S, σ) corresponding to a positive
rational eigenvalue of the time evolution is a dagger inner endomorphism.

Proof. Assume that ϕ is an inner endomorphism of the form ϕ(x) = uxu∗ for
x ∈ A �α S, where u ∈ (A �α S)σq for some rational q. Writing q = m/n for
m,n ∈ N, n �= 0, m,n co-prime, it follows from Lemma 2.8 that u is in the closure
of (A�α S)†, as claimed. �

Given systems (A,S, α) and (B,R, β) where (G,S) and (K,R) are right-
lattice ordered, assume α′ is a left-inverse for α such that α′

s(1) = 1, αs(1) is central
in A for all s ∈ S and α, α′ satisfy (2.3), and similarly β′ is a left-inverse for β
such that β′

r(1) = 1, βr(1) are central in B for all r ∈ R and β, β′ satisfy (2.3). Let
NG : G → (0,∞) and NK : K → (0,∞) be homomorphisms satisfying (Hom1)–
(Hom2), and let σ and τ , respectively, be the time evolutions on A�αS and B�βR
given as in (2.1). Suppose that φ : A�α S → B�β R is an isomorphism such that
φ ◦ σt = τt ◦ φ for all t ∈ R. The first observation is that φ|iA(A) : iA(A)→ iB(B)
is an isomorphism. Indeed, since φ(iA(a)) is a fixed point of τt, it follows that
φ(iA(a)) ∈ iB(B) by Corollary 2.7. Hence φ(iA(A)) ⊆ iB(B), and the opposite
direction is similar using the inverse φ−1.

Let y ∈ (A �α S)δs where NG(s) = m for some positive integer m ≥ 1. The

equivariance of φ with respect to σ and τ shows that φ(y) ∈ (B�alg
β R)∩(B�βR)τm.

Thus by Lemma 2.6 there is r ∈ R with NK(r) = m such that φ(y) ∈ (B �β

R)εr. It is not clear in general that an isomorphism φ as above will preserve the
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dagger subalgebras. In the situation of [2], it is part of the assumptions that an
isomorphism between (A, σ) and (B, τ) preserves the dagger subalgebras. In the
present setup, the following partial result holds true.

Corollary 2.10. If φ is an isomorphism of quantum statistical mechanical systems
(A�α S, σ) and (B �β R, τ) as above, then for every m ≥ 1, φ is an isomorphism

φ : (A�α S)† ∩ (A�α S)σm → (R �β R)† ∩ (B �β R)εm.
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Ut-Majorization on Rn and its Linear
Preservers

Asma Ilkhanizadeh Manesh and Ali Armandnejad

Abstract. Let Mn be the set of all n×n real matrices. A matrix R ∈ Mn with
nonnegative entries is called row stochastic if Re = e, where e = (1, . . . , 1)t ∈
Rn. For x, y ∈ Rn, we say that x is upper triangular majorized by y (written
as x ≺ut y ) if there exists an upper triangular row stochastic matrix R such
that x = Ry. In the present paper, some properties of ut-majorization are
investigated. Also, the structure of all linear functions T : Rn → Rn preserving
(resp. strongly preserving) ut-majorization with additional condition Te1 �= 0
(resp. with no condition) will be characterized.

Mathematics Subject Classification (2010). Primary 15A04; 15A21; Secondary
15A51 .

Keywords. Linear preserver, strong linear preserver, row stochastic matrices,
ut-majorization.

1. Introduction

Majorization is a topic of much interest in various areas of mathematics and sta-
tistics. In recent years, this concept has been attended specially. A matrix R with
nonnegative entries is called row stochastic if the sum of every row of R is 1.
The following notation will be fixed throughout the paper: Rn for the set of all
n×1 (column) real vectors; Rut

n for the collection of all n × n row stochastic up-
per triangular matrices; {e1, . . . , en} for the standard basis of Rn; A[α1, . . . , αk]
for the submatrix of A with aαiαj as (i, j) entry, where A = (aij) ∈ Mn and
{α1, . . . , αk} ⊆ {1, 2, . . . , n}; Nk for the set {1, . . . , k} ⊂ N; P(n) for the set of
all n× n permutation matrices; At for the transpose of a given matrix A; [T ] for
the matrix representation of a linear function T : Rn → Rn with respect to the
standard basis.

Let ∼ be a relation on Rn. A linear function T : Rn → Rn is said to be a
linear preserver (or strong linear preserver) of ∼, if Tx ∼ Ty whenever x ∼ y (or
Tx ∼ Ty if and only if x ∼ y).
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Let x, y ∈ Rn. Then x is said to be left matrix majorized by y, denoted
x ≺l y, if x = Ry for some row stochastic matrix R. In [4] and [5], the authors
described the structure of all linear functions T : Rn → Rn preserving left matrix
majorization as follows.

Proposition 1.1. Let T : Rn → Rn be a linear function. Then T preserves ≺l if and
only if Tx = (aI + bQ)x for all x ∈ Rn, where Q ∈ P(n), Q �= I, and a and b are
real numbers such that ab ≤ 0, and, if n �= 2, ab = 0. In case n �= 2, aI+bQ = cP ,
for some c ∈ R and some P ∈ P(n) and, hence, Tx = dPx for some d ∈ R.

Proposition 1.2. A linear function T : Rn → Rn strongly preserves ≺l if and only
if there exist an n × n permutation matrix P and a nonzero real number a such
that Tx = aPx for all x ∈ Rn.

In this paper, we define the relation ≺ut on Rn and characterize all linear
functions preserving ut-majorization with additional condition Te1 �= 0 and linear
functions strongly preserving ut-majorization on Rn. Some types of majorization
and their linear preservers are presented in [1], [2], [3] and [6].

2. Ut-majorization on Rn

In this section, first we state an equivalent condition for ≺ut on Rn and afterwards
obtain some facts for finding the structure of all (strong) linear preserver of this
relation on Rn.

Definition 2.1. For x, y ∈ Rn, it is said that x is ut-majorized by y, denoted
x ≺ut y, if there exists R ∈ Rut

n such that x = Ry.

For a subset A ⊂ Rn the convex hull of A is the following set:

Co(A) :=

{
m∑
i=1

λiai | m ∈ N, λi ≥ 0,

m∑
i=1

λi = 1, ai ∈ A, i ∈ Nm

}
.

Note that if A ⊆ R is compact, then Co(A) = [minA,maxA]. The following
remark gives an equivalent condition for ut-majorization on Rn.

Remark 2.2. Let x = (x1, . . . , xn)
t, y = (y1, . . . , yn)

t ∈ Rn. Then x ≺ut y if and
only if

xi ∈ Co{yi, . . . , yn}, ∀i ∈ Nn.

The following set-theoretic representation of ≺l and ≺ut on R2 may be of
interest. Suppose that a ≤ b, then

{(x, y)t : (x, y)t ≺� (a, b)
t} = [a, b]× [a, b],

{(x, y)t : (x, y)t ≺ut (a, b)
t} = [a, b]× {b}.

We use the following lemmas to prove the main results.
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Lemma 2.3. Let T : Rn → Rn be a linear preserver of ≺ut. Assume S : Rn−1 →
Rn−1 is a linear function such that [S] = [T ][2, 3, . . . , n]. Then S preserves ≺ut on
Rn−1.

Proof. Let x′ = (x2, . . . , xn)
t, y′ = (y2, . . . , yn)

t ∈ Rn−1 and let x′ ≺ut y
′. Then, by

Remark 2.2, x := (0, x2, . . . , xn)
t ≺ut y := (0, y2, . . . , yn)

t and hence Tx ≺ut Ty.
This implies that Sx′ ≺ut Sy

′. Therefore, S preserves ≺ut on Rn−1. �
Lemma 2.4. Let T : Rn → Rn be a linear preserver of ≺ut. Then [T ] is an upper
triangular matrix.

Proof. Let [T ] = [aij ]. Use induction on n. For n = 1, there is nothing to prove. If
n = 2, then we only to prove that a21 = 0. Set x = e1 and y = 2e1. Since x ≺ut y,
it implies that Tx ≺ut Ty. So a21 = 2a21 and hence a21 = 0. For n > 2, assume
that the matrix representation of every linear preservers of ≺ut on Rn−1 is an
upper triangular matrix. Let S : Rn−1 → Rn−1 be the linear function with [S] =
[T ][2, 3, . . . , n]. By Lemma 2.3, the linear function S preserves ≺ut on Rn−1. The
induction hypothesis insures that [S] is an n− 1× n− 1 upper triangular matrix.
So it is enough to show that a21 = a31 = · · · = an1 = 0. Put x = e1 and y = e2.
Then x ≺ut y and hence Tx = (a11, a21, . . . , an−11, an1)

t ≺ut (a12, a22, 0, . . . , 0)
t =

Ty. By Remark 2.2, it implies that a31 = a41 = · · · = an1 = 0. So it is enough to
show that a21 = 0. Assume that a21 �= 0. Set x = e1 and y = (−a22

a21
, 1, 0, . . . , 0)t. So

x ≺ut y and hence Tx ≺ut Ty. It follows that a21 ∈ Co{0} and so a21 = 0, which
is a contradiction. Thus a21 = 0 and hence the induction argument is completed.
Therefore, [T ] is an upper triangular matrix. �

The following theorem characterizes the linear functions T : Rn → Rn pre-
serving ut-majorization with additional condition Te1 �= 0.

Theorem 2.5. Let T : Rn → Rn be a linear function. Assume [T ] = [aij ], and
Te1 �= 0. Then T preserves ≺ut if and only if

[T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 . . . 0 0 a1n
0 a22 0 . . . 0 0 a2n
0 0 a33 . . . 0 0 a3n
...

...
... . . .

...
...

...
0 0 0 . . . 0 an−1n−1 an−1n

0 0 0 . . . 0 0 ann

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

such that a11 + a1n = a22 + a2n = · · · = an−1n−1 + an−1n = ann, and the finite
sequence (0, a11, a22, . . . , an−1n−1) is monotonically increasing or decreasing.

Proof. It is clear that T preserves ≺ut if and only if αT preserves ≺ut, for all α ∈
R\{0}. So we may and shall assume without loss of generality that, a11 = 1. First,
suppose T preserves ≺ut. The result is trivial for n = 1. Suppose that n = 2. By
Lemma 2.4, it is enough to show that a11+a12 = a22. Let y = ((a22−a12)/a11, 1)

t

and x = (1, 1)t. Thus x ≺ut y and hence Tx = (a11+a12, a22)
t ≺ut (a22, a22)

t = Ty.
Therefore, a11+a12 = a22. Now assume that n > 2. By Lemma 2.4, [T ] is an upper
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triangular matrix. We show that a1j = 0 whenever 2 ≤ j ≤ n − 1. Assume that
there is some j (2 ≤ j ≤ n− 1) such that a1j �= 0. Let ε =

a1j

|a1j | . Choose x1, y1 ∈ R

such that x1 − |a1j | < y1 < x1 < min{0, ε, εa2j, εa3j , . . . , εajj}. Set x = x1e1 and
y = y1e1 + εej . Since y1 < x1 < ε, it follows that x ≺ut y and, hence Tx ≺ut Ty.
This implies that

x1 ∈ Co{y1 + |a1j |, εa2j, εa3j , . . . , εajj , 0};

a contradiction. Therefore, a1j = 0, whenever 2 ≤ j ≤ n− 1.
Now, we prove a22 ≥ 1. Since e1 ≺ut e2, Te1 ≺ut Te2 and so 1 ∈ Co{0, a22}. Thus
a22 ≥ 1.

Let S : Rn−1 → Rn−1 be the linear function with [S] = [T ][2, 3, . . . , n]. By
Lemma 2.3, S preserves ≺ut on Rn−1. Since a22 > 0, it follows from the induction
hypothesis that,

[S] =

⎛⎜⎜⎜⎜⎜⎝
a22 0 0 . . . 0 0 a2n
0 a33 0 . . . 0 0 a3n
...

...
... . . .

...
...

...
0 0 0 . . . 0 an−1n−1 an−1n

0 0 0 . . . 0 0 ann

⎞⎟⎟⎟⎟⎟⎠ ,

a22+a2n = a33+a3n = · · · = an−1n−1+an−1n = ann, and (0, a22, a33, . . . , an−1n−1)
is monotone. Thus, by the previous discussion,

[T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 . . . 0 0 a1n
0 a22 0 . . . 0 0 a2n
0 0 a33 . . . 0 0 a3n
...

...
... . . .

...
...

...
0 0 0 . . . 0 an−1n−1 an−1n

0 0 0 . . . 0 0 ann

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Since (0, a22, . . . , an−1n−1) is increasing and a22 ≥ 1, it follows that the finite
sequence (0, 1, a22, . . . , an−1n−1) is increasing. It remains to prove 1 + a1n = ann.
If 1+ a1n �= ann, then choose ε ∈ R \ {0} such that 1+ a1n �∈ Co{1+ a1n+ ε, ann}.
Set x = (1, . . . , 1)t and y = (1 + ε, 1, . . . , 1)t. Thus x ≺ut y and hence Tx ≺ut Ty.
It follows that 1+ a1n ∈ Co{1+ ε+ a1n, ann}, which is a contradiction. Therefore,
1 + a1n = ann.

To prove the sufficiency, we proceed by induction on n. Clearly, the assertion
holds for n = 1. Assume it holds in any space of dimension at most n − 1. Let
x = (x1, . . . , xn)

t, y = (y1, . . . , yn)
t ∈ Rn and let x ≺ut y. Since xn = yn, it is easy

to see that

Tx = (x1 + a1nyn, a22x2 + a2nyn, . . . , an−1n−1xn−1 + an−1nyn, annyn)
t

and

Ty = (y1 + a1nyn, a22y2 + a2nyn, . . . , an−1n−1yn−1 + an−1nyn, annyn)
t.
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Let S : Rn−1 → Rn−1 be the linear function with [S] = [T ][2, 3, . . . , n]. Put x′ =
(x2, . . . , xn)

t and y′ = (y2, . . . , yn)
t. Then x′ ≺ut y

′ and hence

Sx′ = (a22x2 + a2nyn, . . . , an−1n−1xn−1 + an−1nyn, annyn)
t

and

Sy′ = (a22y2 + a2nyn, . . . , an−1n−1yn−1 + an−1nyn, annyn)
t.

By induction hypothesis, Sx′ ≺ut Sy
′. To prove Tx ≺ut Ty it is enough to show

that

x1 + a1nyn ∈ Co{y1 + a1nyn, a22y2 + a2nyn, . . . , an−1,n−1yn−1 + an−1,nyn, annyn}.
Write x1 = s1y1+· · ·+snyn with

∑
i si = 1 and si ≥ 0 for i = 1, 2, . . . , n. Note that

0 ≤ ti :=
si
aii
≤ 1 for i = 1, 2, . . . , n−1 and

∑n−1
i=1 ti ≤

∑n−1
i=1 si ≤ 1. Then 0 ≤ tn :=

1− t1− t2−· · ·− tn−1 ≤ 1 and x1+a1nyn =
∑n−1

i=1 ti(aiiyi+ainyn)+ tnannyn. �

Corollary 2.6. If T : Rn → Rn is a linear preserver of ≺ut such that Te1 �= 0,
then rank[T ] ≥ n− 1.

As a consequence of Proposition 1.1, one can show that for n ≥ 3 every linear
preserver of left matrix majorization on Rn has rank 0 or n. But the following
example demonstrates that this is not true for ut-majorization on Rn. In fact it
shows that for every k ∈ Nn there exists a linear preserver of ≺ut of rank k.

Example. Let k ∈ Nn. Put A =

(
0 0
0 I

)
∈ Mn, where I ∈ Mk and define T : Rn

→ Rn by Tx = Ax.

We need the following lemma to prove the last result of the paper.

Lemma 2.7. Let T : Rn → Rn be a linear function that strongly preserves ≺ut.
Then T is invertible.

Proof. Let x ∈ Rn and let Tx = 0. Since Tx = T 0 and T strongly preserves ≺ut,
x ≺ut 0. So x = 0. Therefore, T is invertible. �

The following theorem characterizes all the linear functions T : Rn → Rn

which strongly preserve ut-majorization.

Theorem 2.8. A linear function T : Rn → Rn strongly preserves ≺ut if and only
if there exist a, b ∈ R such that a, a+ b �= 0, and

[T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a 0 0 . . . 0 0 b
0 a 0 . . . 0 0 b
0 0 a . . . 0 0 b
...

...
... . . .

...
...

...
0 0 0 . . . 0 a b
0 0 0 . . . 0 0 a+ b

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.1)
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Proof. First, assume T strongly preserves ≺ut. By Lemma 2.7, T is invertible and
hence Te1 �= 0. Now, by applying Theorem 2.5,

[T ] =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

a11 0 0 . . . 0 0 a1n
0 a22 0 . . . 0 0 a2n
0 0 a33 . . . 0 0 a3n
...

...
... . . .

...
...

...
0 0 0 . . . 0 an−1n−1 an−1n

0 0 0 . . . 0 0 ann

⎞⎟⎟⎟⎟⎟⎟⎟⎠
,

where a11 + a1n = a22 + a2n = · · · = an−1n−1 + an−1n = ann �= 0, and the finite
sequence (0, a11, a22, . . . , an−1n−1)

t is monotone. By a simple calculation, one can
show that

[T−1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a11

0 0 . . . 0 0 −a1n

a11ann

0 1
a22

0 . . . 0 0 −a2n

a22ann

0 0 1
a33

. . . 0 0 0

...
...

... . . .
...

...
...

0 0 0 . . . 0 1
an−1n−1

−an−1n

an−1n−1ann

0 0 0 . . . 0 0 1
ann

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Since T strongly preserves ≺ut, the operator T−1 is a linear preserver of ≺ut and
hence (0, 1

a11
, 1
a22

, . . . , 1
an−1n−1

)t is monotone, by Theorem 2.5. On the other hand

(0, a11, a22, . . . , an−1n−1)
t is monotone and thus a11 = a22 = · · · = an−1n−1, as

desired.
Conversely, assume that there exist a, b ∈ R such that a, a+ b �= 0 and (2.1)

holds. It easy to see that

[T−1] =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
a 0 0 . . . 0 0 −b

a(a+b)

0 1
a 0 . . . 0 0 −b

a(a+b)

0 0 1
a . . . 0 0 −b

a(a+b)

...
...

... . . .
...

...
...

0 0 0 . . . 0 1
a

−b
a(a+b)

0 0 0 . . . 0 0 1
a+b

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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Then both of T and T−1 preserve ≺ut, by Theorem 2.5, and therefore, T strongly
preserves ≺ut. �

In view of Proposition 1.1, for n ≥ 3 it is easy to see that every invertible
linear preserver of ≺l is strong. But the following example shows that this is not
true for ≺ut.

Example. Let A =

⎛⎝1 0 2
0 2 1
0 0 3

⎞⎠ . Define T : R3 → R3 by Tx = Ax. It is clear

that T is invertible and, by Theorem 2.5, T preserves ≺ut. But T is not strong,
by Theorem 2.8.
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Arithmetic Aspect of C∗
rSL(2)

Sérgio Mendes

Abstract. Let G = SL(2, F ) where F is a local field of characteristic zero.
We use R-groups to study the reducibility of the unitary principal series of
G. We show how the arithmetic of F has implications on the topology of
the tempered dual of G and on the structure of the underlying reduced C∗-
algebra.
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1. Introduction

Let F be a local field with characteristic zero. Artin reciprocity studies the fi-
nite extensions E/F such that the Galois group Gal(E/F ) is commutative. Many
aspects of the arithmetic of the field F are encoded in reciprocity laws [17].

The unitary principal series representations of the special linear group
SL(n, F ) consists of the representations unitarily induced from a continuous uni-
tary character of the upper triangular group. Unlike the case of the general linear
group GL(n, F ) where these representations are always irreducible, for SL(n, F )
reducibility may occur, see [7, 8].

In this article we consider the case of SL(2) over a local field. To study re-
ducibility, the direct analytic approach of [8] (see also [21] for a modern survey)
consists of computing explicitly intertwining operators. And those operators de-
pend on the residue characteristic. For instance, the case of Q2 is absent from
[8, 21] (see [21, p. 46] for a comment on the difficulty of computing intertwining
operators for SL(2,Q2)). The case of the archimedean local fields R and C, are
also analytically dealt differently. Although an intricate theory, R-groups [9, 12]
have the advantage of being a tool that works for any local field of characteristic
zero, including Q2 and the archimedean fields. Since, as far as we know, there is no
notion of R-groups in positive characteristic, we exclude the case of local function
fields. See [16] for an account of SL(2) over a local function field.
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Intense research has been made to study the topology of the dual spaces of
C∗-algebras, particularly reduced group C∗-algebras, see Connes’ book [3] and [5],
[10], [11], [13], [14], [16], [18], [19], [20], [22]. It is well known that the arithmetic
of the ground field is related with the topology of the dual space. In [15], Plymen
and the author uncovered a relationship between the topological K-theory of the
tempered dual of GL(n, F ) and some arithmetic invariants of F , where F is a
finite Galois extension of Qp.

The unitary principal series representations for SL(2,Qp) are (unitarily) par-
abolic induced from characters of Q×

p , see §3. When the character is quadratic,
the induced representation is reducible. The principal series representations de-
compose as a direct sum of two irreducible components [8, 21]. We prove this
result (Theorem 3.10) by using R-groups.

The tempered dual Irrt(G) of G = SL(2,Qp) has a topology, called the
hull-kernel topology. Let G∧

P denote the union of the irreducible unitary principal
series and the irreducible components of the reducible unitary principal series.
Then, G∧

P ⊂ Irrt(G). The parameter space Q has also a natural topology [19, 20].
The hull-kernel and the natural topology coincide [19]. The tempered dual fails
to be Hausdorff as a consequence of G admitting reducible representations. We
illustrate this with the unitary principal series representations of G = SL(2, F ) for
F = Qp,R and C. If F = C, the unitary principal series representations are always
irreducible. If F = R or Qp reducibility may occur. The link with the topology of
the dual space and the arithmetic of the ground field is the following: quadratic
characters are attached to quadratic extensions E/F via class field theory. The
Artin symbol (., E/F ) : F× → Gal(E/F ) can be used to manufacture a quadratic
character, and all the quadratic characters of F× are of this form. In §4 we show
how the arithmetic of F influences the topology on the tempered dual of SL(2, F )
(Theorem 3.10 and §4.2).

The reducibility of the principal series of SL(2, F ) has also implications in
the structure of the reduced C∗-algebra A = C∗

rSL(2, F ). In fact, the arithmetic of
F determine the existence of sub-C∗-algebras of A which are the crossed product
of a commutative algebra by a finite group (the R-group to be precise) [10, 13].
As a result, A has noncommutative summands. We explain this relationship in the
main result of §5, Theorem 5.2.

Our intention in this work is to show that even for a simple example as
SL(2), the arithmetic of the ground field already influence the structure of the
underlying C∗-algebra. By working with both archimedean and nonarchimedean
fields we intend to illustrate with the example of SL(2) the Lefschetz principle
as formulated by Harish-Chandra, which says whatever is true for real reductive
groups is also true for p-adic groups.

I would like to thank Roger Plymen for a valuable exchange of emails and
the referee for several constructive comments. The title is, of course, borrowed
from [13].
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2. Local fields

Let F be a local field with zero characteristic. Then F is one of the archimedean
fields R and C, or it is nonarchimedean, i.e., a finite extension of the field Qp of
p-adic numbers, where p is a prime number. We will not consider local fields with
positive characteristic, i.e., finite extensions of the field of Laurent series Fp((x)).
If F is nonarchimedean we denote by |.|F the absolute value on F . The ring of
integers is denoted by o and p ⊂ o denotes its maximal ideal. An element � ∈ p
such that p = �o is called a uniformizer. ν denotes a normalized valuation on F
so that ν(�) = 1 and ν(F ) = Z ∪ {∞}. The group of units is denoted by o×. The
residue field is kF = o/p, and �kF = pf . The valuation and the absolute value are
related by |x|F = q−ν(x), for every x ∈ F .

When F = Qp we use the standard notation. Zp is the ring of integers, pZp

its maximal ideal, p is a uniformizer and Z×
p is the group of units. The residue

field of Qp is Fp = Zp/pZp. When F = Qp we write simply | | := | |F instead of
the common notation | |p.

The group F× is a locally compact, Hausdorff topological abelian group.
There is a canonical isomorphism of topological groups

F× � 〈�〉 × o× � Z× o×. (2.1)

The group o× is compact. In particular,

Q×
p � 〈p〉 × Z×

p � Z× Z×
p . (2.2)

There is also a canonical isomorphism for archimedean fields

R× � R>0 × Z/2Z (2.3)

and

C× � R>0 × T (2.4)

where T = {z ∈ C : |z| = 1} is the unit circle.

Definition 2.1. A quasi-character of Q×
p is a continuous group homomorphism

χ : Q×
p → C×. A character is a unitary quasi-character.

The set of characters of Q×
p will be denoted Q×∧

p and is called the Pontryagin

dual of Q×
p . Note that Q×∧

p is an abelian group under pointwise multiplication.

From 2.2, a character of Q×
p may be written as

χ(pν(x)u) = zν(x)χ∗(u), (2.5)

where x = pν(x)u, z ∈ T, u ∈ Z×
p and χ∗ ∈ Z×∧

p .

Definition 2.2. A character χ ∈ Q×∧
p is called unramified if it is trivial when

restricted to Z×
p , i.e., χ

∗ ≡ 1.

Definition 2.3. A character χ ∈ Q×∧
p is called quadratic if χ2 = 1 and χ �= 1.

Note that χ ∈ Q×
p is quadratic if and only if χ ∈ (Q×

p /Q
×2
p )∧ and χ �= 1.
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The central result of local class field theory is Artin’s reciprocity law, see
[17]. Let E be a finite Galois extension of Qp. The local reciprocity law is an
isomorphism of topological groups

ArtE/Qp
: Q×

p /NE/Qp
(E×)→ Gal(E/Qp)

ab, (2.6)

whereNE/Qp
is the norm map and Gal(E/Qp)

ab is the abelianization of Gal(E/Qp).
Composing with the canonical morphism we obtain a map

Q×
p → Q×

p /NE/Qp
(E×)→ Gal(E/Qp)

ab.

We denote the composition map by

x �→ (x,E/Qp),

and call (x,E/Qp) the Artin symbol associated with E/Qp and x.

Remark 2.4. (Archimedean reciprocity) There is also an archimedean reciprocity
law. The field C is algebraically closed and therefore does not have nontrivial finite
extensions. The only nontrivial finite extension of R is C/R, and we have an Artin
symbol

R× → Gal(C/R), x �→ (x,C/R)

with kernel

NC/R(C
×) = {z.z : z ∈ C} = {|z|2 : z ∈ C} � R>0.

Hence

R×/NC/R(C
×) � R×/R>0 � Z/2Z = Gal(C/R).

As a consequence of Artin’s reciprocity, if E/Qp is a finite extension then the
index (Q×

p : NE/Qp
(E×)) is finite. In general, it divides [E : Qp], being equal if

and only if the extension is abelian. Moreover, if we fix an algebraic closure Qp

of Qp, there is a one-one correspondence between finite abelian Galois extensions

E/Qp, Qp ⊂ E ⊂ Qp, and open subgroups of Q×
p with finite index

E �→ NE/Qp
(E×).

See [17] for more details.

Quadratic extensions of Qp. When p is odd, we have

Q×
p /Q

×2
p � Z/2Z× Z/2Z.

Therefore, there are exactly three quadratic extensions of Qp, up to isomorphism,
one for each nontrivial class in Q×

p /Q
×2
p . These quadratic extensions are given by

Qp(
√
a), for a ∈ {ε, p, εp}, where ε ∈ Z×

p \Z×2
p is the smallest nonquadratic residue

of p, i.e., ( εp ) = −1, where ( .
p ) is the Legendre symbol. The extension Qp(

√
ε) is

unramified. The remaining extensions, Qp(
√
p) and Qp(

√
εp), are totally ramified.

Quadratic extensions of Q2. In this case, we have

Q×
2 /Q

×2
2 � Z/2Z× Z/2Z× Z/2Z.
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As a consequence, there are exactly seven quadratic extensions of Q2, up to iso-
morphism, one for each nontrivial class in Q×

2 /Q
×2
2 . We may choose the following

representatives of the nontrivial equivalent classes:

{−1,±2,±5,±10}.

Q2(
√
5) is the (unique) quadratic unramified extension of Q2, up to isomorphism.

The remaining extensions

Q2(
√
−1),Q2(

√
−5),Q2(

√
2),Q2(

√
10),Q2(

√
−2),Q2(

√
−10)

are totally ramified.

Proposition 2.5. Let Qp(
√
a) be a quadratic extension of Qp, where a is a nontrivial

class in Q×
p /Q

×2
p . The quadratic character assigned by local class field theory to

Qp(
√
a) is precisely the Artin symbol (.,Qp(

√
a)/Qp) associated with Qp(

√
a), with

kernel

NQp(
√
a)/Qp

(Qp(
√
a)×).

Proof. Let Qp(
√
a)/Qp be a quadratic extension. The reciprocity law for local

fields yields an isomorphism

Q×
p /NQp(

√
a)/Qp

(Qp(
√
a)×) � Gal(Qp(

√
a)/Qp) � Z/2Z.

Let μ2(C) = {±1} denote the group of roots of unity. Then, composing the Artin
symbol with the isomorphism Z/2Z � μ2(C), we obtain a quadratic character χa

which we still denote by χa = (.,Qp(
√
a)/Qp) �

Example. (Quadratic characters of Q×
p for odd p)

Let x = pnu ∈ Q×
p , with n ∈ Z and u ∈ Z×

p . The quadratic character associated

with the unramified quadratic extension Qp(
√
ε)/Qp is given by

(pnu,Qp(
√
ε)/Qp) = (−1)n.

Note that (n �→ (−1)n) is the unique quadratic character of the group 〈p〉 � Z. The
quadratic extension Qp(

√
p)/Qp has an associated quadratic character given by

(pnu,Qp(
√
p)/Qp) =

(
u

p

)
,

where ( .
p ) is the Legendre symbol and u denotes the class of u ∈ Z×

p in F×
p . For

Qp(
√
εp)/Qp, the associated quadratic character is

(pnu,Qp(
√
εp)/Qp) = (−1)n

(
u

p

)
.
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3. Unitary principal series

Let G = SL(2,Qp). We define the following subgroups of G.
The Borel subgroup, given by

B =

{(
a b
0 a−1

)
: a ∈ Q×

p , b ∈ Qp

}
,

The maximal torus

T =

{(
a 0
0 a−1

)
: a ∈ Q×

p

}
� Q×

p ,

and the subgroups

N =

{(
1 b
0 1

)
: b ∈ Qp

}
� Qp and N =

{(
1 0
c 1

)
: c ∈ Qp

}
� Qp.

Note that N and N are normal in B. The product B = NT is called the Levi
decomposition of B. Now, every character of T (which is, in fact, a character of
Q×

p since T � Q×
p ) may be extended trivially to B, also denoted by χ, by setting

χ(an) = χ(a),

for any a ∈ T and n ∈ N . Note that χ is well defined since N is a normal subgroup.

Definition 3.1. The set of all representations which are unitary induced to G from
representations of B that arise in this way is called the unitary principal series
representations of G and is denoted

π(χ) = IndGB χ.

The representation π(χ), corresponding to g =

(
a b
c d

)
, is defined in the sepa-

rable Hilbert space L2(N) (identified with L2(Qp)) as follows:

π(χ)(g)f(x) = f

(
ax+ c

bx+ d

)
χ(bx+ d)|bx+ d|−1,

with χ ∈ Q×∧
p and f ∈ L2(Qp).

Remark 3.2. Since χ is unitary it can be shown that the induced representation
IndGB χ is also unitary.

Remark 3.3. The definition of the unitary principal series of SL(2) over R and C
is analogous. See [14] for the real case. For F = C, |bx + d|−1 should be replaced
by |bx+ d|−2, see [6].

Let χ ∈ Q×
p . We will use the theory of R-groups to study the reducibility

of π(χ). As we will see, the representation π(χ) is reducible if and only if χ is
quadratic. The reducibility of the unitary principal series of SL(2,R) was handled
in [14], and for SL(2,Qp), odd p, in [8]. The case of SL(2,Q2) could be handled
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in a similar analytic way (see [8, p. 198]), but presents more difficulties, see [21, p.
46]. The use of R-groups is independent of the residue characteristic and applies
to archimedean fields also.

Let W = W (T ) = NG(T )/T denote the Weyl group of T , where NG(T ) is
the normalizer of T in G. Then, W = Z/2Z = 〈ω〉.

Given χ, η ∈ Q×∧
p , the representations π(χ) and π(η) are unitarily equivalent

if and only if χ = η or χ = η−1, see [8, p. 163] and [19, p. 411].

The Weyl group acts on T simply by permuting the elements:

ω.

(
a 0
0 a−1

)
=

(
a−1 0

0 a

)
, a ∈ Q×

p . (3.1)

Hence, it acts on Q×
p by inverting the elements, and on its unitary dual Q×∧

p . Since

Q×∧
p � T × Z×∧

p , a character χ ∈ Q×∧
p will split as a pair χ = (z, χ∗) ∈ T× Z×∧

p .

The action of W on Q×∧
p is as follows

ω.χ = (z−1, χ∗−1). (3.2)

We have [12, p. 351]

IndGB χ � IndGB ωχ.

Denote by Wχ = {w ∈ W : wχ = χ} the isotropy subgroup of χ in W . It is

known (by Bruhat theory) that the length of the composition series of IndGB χ is
bounded by |Wχ| [12, p. 352].

Remark 3.4. It follows from the above discussion that IndGB χ is irreducible if

Wχ = {1}. Moreover, since W = Z/2Z, if IndGB χ is reducible it has at most two
irreducible components.

Gelbart and Knapp studied in detail the problem of reducibility of the unitary
principal series of SL(n) over a nonarchimedean field with characteristic zero, see
[7]. Their results were extended further by Goldberg [9]. We will apply these results

to the case of G = SL(2). In order to understand the reducibility of π(χ) = IndGB χ,

one should look into the commuting algebra EndG(Ind
G
B χ). An important tool to

understand this commuting algebra is a finite group R(χ), the so-called R-group,
introduced by Knapp–Stein, see [12, p. 363] and [9, p. 81]. In fact, it is known

that the commuting algebra EndG(Ind
G
B χ) has a basis of operators parametrized

by R(χ), see [7, p. 315], [12, p. 365].

We will use the framework and notation as in [9]. Let E2(G) denote the
equivalence classes of irreducible square integrable representations of G. These
representations are called discrete series. The discrete series are tempered hence
we have E2(G) ⊂ Irrt(G), where Irrt(G) denotes the tempered dual of G.

Now, let G = SL(2,Qp) and let G̃ = GL(2,Qp). Let T ⊂ SL(2,Qp) denote
the maximal torus. Then the elements of E2(T ) are the characters of T � Q×

p . The
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maximal split torus T̃ of G̃ is

T̃ =

{(
a1 0
0 a2

)
: a1, a2 ∈ Q×

p

}
� Q×

p ×Q×
p ,

and an element of E2(T̃ ) is a character χ̃ of T̃ , which in fact is a product χ̃ = χ1χ2

of two characters χ1 and χ2 of Q×
p . If we denote an element g =

(
a1 0
0 a2

)
∈ T̃

simply by g = (a1, a2), then χ̃(a1, a2) = χ1(a1)χ2(a2).

The Weyl group W = Z/2Z acts also on E2(T̃ ), the set of characters of T̃ :

ω.χ̃(a1, a2) = χ̃(aω(1), aω(2)).

Let χ ∈ E2(T ). We will now manufacture a particular character of T̃ associ-
ated with χ. By [9, p. 82] Theorem 1.6(c), there is an element

πχ ∈ E2(T̃ ), (3.3)

such that πχ|T ⊃ χ.

Definition 3.5. The character πχ ∈ E2(T̃ ) takes the form πχ = χ1χ2, where χ1 = χ
and χ2 ≡ 1 is the trivial character.

The representation IndGB χ is equivalent to the restriction of the representa-

tion IndG̃
B̃
πχ.

Remark 3.6. We are using two different notations here. On one hand, π(χ) =

IndGB χ denotes the unitary principal series induced by a character χ of Q×
p . On

the other hand, πχ ∈ E2(T̃ ) denotes the character of T̃ defined above.

As in [9, p. 85], we denote πχ ⊗ η ◦ det by πχ ⊗ η, where η is a character of
Q×

p and det is the determinant. We will use a realization of the R-group due to

Goldberg. Define the following subgroups of Q×∧
p :

L(πχ) = {η ∈ Q×∧
p : πχ ⊗ η � wπχ, for some w ∈ W},

X(πχ) = {η ∈ Q×∧
p : πχ ⊗ η � πχ}.

Definition 3.7. The R-group of χ is given by

R(χ) � L(πχ)/X(πχ).

(See [9, p. 87], Theorem 2.4.)

Remark 3.8. For unitary principal series of SL(2,Qp), the formula is even simpler.
In fact,

X(πχ) = {η ∈ Q×∧
p : πχ ⊗ η � πχ} = {η ∈ Q×∧

p : χη � χ} = {1}.

Therefore, for unitary principal series of SL(2,Qp), R(χ) � L(πχ). (See Remark
on [9, p. 87].)
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The following lemma is a particular case of Keys’ result [12, p. 365], adapted
to SL(2).

Lemma 3.9. Let χ ∈ Q×∧
p . Then,

(a) The number of inequivalent irreducible components of IndGB χ is equal to the
order of R(χ);

(b) The multiplicity of each irreducible component of IndGB χ is equal to 1;

(c) EndG(Ind
G
B χ) � C[R(χ)].

Proof. It follows from [12, p. 365], Corollary 1. (a) follows from the fact that R(χ)
is abelian (R(χ) ⊂W = Z/2Z), and so the number of conjugacy classes equals the
order of R(χ). �

We may now use the R-groups to study the reducibility of the unitary princi-
pal series of SL(2,Qp). We emphasize that the result is independent of the prime p.

Theorem 3.10. Let χ be a character of Q×
p . Then, R(χ) = Z/2Z if and only if

χ is quadratic, in which case π(χ) = IndGB χ is reducible. Moreover, in case of

reducibility, the representation π(χ) = IndGB χ decomposes into a direct sum with
precisely two irreducible components

π(χ) = π−(χ)⊕ π+(χ).

Proof. Let χ be a character of Q×
p . The isotropy subgroup of χ in W is

Wχ = {w ∈W : wχ = χ}.
Since

ωχ = χ⇔ χ−1 = χ⇔ χ2 = 1,

we conclude the following:
If χ is not quadratic then Wχ = {1}. Since the length of the composition

series of IndGB χ is bounded by |Wχ| it follows that IndGB χ is irreducible.
If χ is quadratic thenWχ = Z/2Z. From Remark 3.8, we have only to compute

L(πχ). Then, for g = (a1, a2) ∈ T̃ ,

(πχ ⊗ η)(a1, a2) = (ω.πχ)(a1, a2)⇔ χ(a1)η ◦ det(a1, a2) = χ(a2)

⇔ η(a1a2) = χ−1(a1)χ(a2)⇔ η(a1a2) = χ(a1a2).

Therefore, R(χ) = 〈χ〉 � Z/2Z and IndG
B χ is reducible by Lemma 3.9. From

Remark 3.2, the representation is unitary and so it is semisimple. From Remark
3.4, we conclude that π(χ) decomposes into a direct sum of precisely two irreducible
components,

π(χ) = π−(χ)⊕ π+(χ).

Finally, suppose χ ≡ 1 is trivial. Then, Wχ = Z/2Z. We have, for g =

(a1, a2) ∈ T̃ ,

(π1 ⊗ η)(a1, a2) = (ω.π1)(a1, a2)⇔ 1(a1)η ◦ det(a1, a2) = 1(a2)

⇔ η(a1a2) = 1.
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And so
R(1) � L(π1) = {1}.

We conclude from Lemma 3.9 that π(1) = IndGB(1) is irreducible forG = SL(2,Qp).
�

Now, we use the theory of R-groups to discuss the reducibility of the unitary
principal series of SL(2) over archimedean fields.

The case of SL(2,C). The multiplicative group C× has no nontrivial characters

of finite order. Hence, R(χ) = {1} and IndGB χ is irreducible for every character of
C×. In fact, this result holds not only for SL(2,C) but for every Chevalley group
over C, see [12, p. 353].

The case of SL(2,R). The field F = R has only one nontrivial finite extension,
C/R, which is quadratic. Therefore, R× has only one nontrivial quadratic charac-
ter, given by

sgn(x) = x/|x|,
or, in the notation of Section 2, sgn(x) = (x,C/R), where (.,C/R) is the archimed-
ean Artin symbol. It follows R(sgn) = Z/2Z and

π(sgn) = IndGB(sgn) = π−(sgn)⊕ π+(sgn).

For any other character χ of R×, R(χ) = {1} and π(χ) = IndGB(χ) is irreducible.
Note that this result also holds other Chevalley groups over R, see [12, p. 353].

4. The tempered dual

The tempered dual Irrt(G) of G = SL(2, F ) comprises the discrete series and the
irreducible components in the unitary principal series. This is a consequence of the
Plancherel theorem of Harish-Chandra, which is valid for any local field F .

Let F be nonarchimedean. There is a Bernstein decomposition [1, 2]

Irrt(G) =
⊔

s∈B(G)

Irrt(G)s (4.1)

where the index setB(G) is called the Bernstein spectrum of G. For G = SL(2, F ),
a point s of the Bernstein spectrum corresponds to either supercuspidal represen-
tations or parabolically induced representations of G. For the latter, the only ones
we will consider, a point s in B(G) is of the form s = [T, χ]G, where T ∼= F× is
the standard maximal torus of F and χ is a character of F×.

In [20], Plymen described the topology on the tempered dual Irrt(G) of a
reductive p-adic group. It has a canonical topology, called the hull-kernel topology,
see [5]. Let A = C∗

r (G) denote the reduced C∗-algebra of G (see next section for

the definition of C∗
r (G)). The C∗-dual Â may be identified with the tempered dual

of G [4]:

Â � Irrt(G) (4.2)
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Let G∧
P be the union of the irreducible unitary principal series and the irre-

ducible components of the reducible unitary principal series. Hence G∧
P ⊂ Irrt(G).

According to [20], A = C∗
r (SL(2,Qp)) is a C∗-direct sum of certain fixed

C∗-algebras. Let AP ⊂ A denote the sub-C∗-algebra which correspond to unitary

principal series. Then, ÂP � G∧
P . We conclude that AP is a C∗-direct sum indexed

by characters of Q×
p .

The space Q×∧
p is given the Pontryagin dual topology, so that Q×∧

p has count-
ably many components. Each component is a circle in its Euclidean topology.
Recall that the Weyl group W = Z/2Z acts on Q×∧

p .

Definition 4.1. The parameter space of the unitary principal series is the space

Q = Q×∧
p /W = (T× Z×∧

p )/W

with the quotient topology.

4.1. Extended quotient

In order to understand the parameter space we introduce the concept of extended
quotient, which is central in a recent geometric conjecture due to Aubert, Baum
and Plymen, see [1, 2].

Let Γ be a finite abelian group and let X be a compact Hausdorff topological
space. Suppose Γ is acting on X as continuous automorphisms of X . Define

X̃ = {(γ, x) ∈ Γ×X : γx = x}.

Then Γ acts on X̃:

α(γ, x) = (αγα−1, αx), with (γ, x) ∈ X̃, α ∈ Γ.

Definition 4.2. The extended quotient, denoted X//Γ, is defined to be

X//Γ := X̃/Γ.

Thus the extended quotient is the ordinary quotient for the action of Γ on

X̃. The extended quotient always contains the ordinary quotient. The projection
Γ×X → X , (γ, x) �→ x induces a map

θ : X//Γ→ X , Γ(γ, x) �→ Γx

called the projection of the extended quotient on to the ordinary quotient.

In [19], Plymen proved that the topology on G∧
P and the quotient topology

on the parameter space Q coincide. The connected components of Q have been
identified with extended quotients T//W , see [1, 2]. For G = SL(2,Qp) it has been
proved that, for any s = [T, χ]G ∈ B(SL(2,Qp)), there is a natural bijection

Irrt(G)s ∼= T//Ws. (4.3)

Ws is trivial if and only if the character χ associated with s = [T, χ]G is
nonquadratic and ramified. Otherwise, Ws = Z/2Z is the Weyl group of SL(2).
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Therefore, the extended quotient T//Ws is either T or a disjoint union of the
ordinary quotient with two isolated points

T//Ws = T/W 0 {−1} 0 {1}.
We now describe bijection (4.3).

Case 1: s = [T, χ], χ ramified and χ2 �= 1. Then Ws = {1}. Let ξ be an unramified
character of T . Then, there is a natural bijection

Irrt(G)s ∼= T, π(ξχ) �→ ξ(�)

Case 2: s = [T, χ], χ ramified and χ2 = 1. Then Ws = Z/2Z. Let ε be the
unique quadratic unramified character of T . Let (π+(χ), π−(χ)) denote the pair of
irreducible constituents of π(χ) and (π+(εχ), π−(εχ)) denote the pair of irreducible
constituents of π(εχ). There is a bijective map

Irrt(G)s ∼= T//Ws,

given by

(i) ξ2 �= 1, π(ξχ) �→ ξ(�) ∈ T/Ws

(ii) ξ = 1, (π+(χ), π−(χ)) �→ 1 ∈ T//Ws

(iii) ξ = ε, (π+(εχ), π−(εχ)) �→ −1 ∈ T//Ws

Case 3: s = [T, χ], χ unramified. Then Ws = Z/2Z. Let trivG, StG denote, respec-
tively, the trivial representation and the Steinberg representation of G. There is a
bijective continuous map which is not a homeomorphism

Irrt(G)s ∼= T//Ws,

defined by

(i) ξ2 �= 1, π(ξχ) �→ ξ(�) ∈ T/Ws

(ii) ξ = 1, (trivG, StG) �→ 1 ∈ T//Ws

(iii) ξ = ε, (π+(ε), π−(ε)) �→ −1 ∈ T//Ws

We conclude the following result on the tempered dual corresponding to
induced elements.

Theorem 4.3. There is a Bernstein decomposition of the parameter space as a
disjoint union

Q =
⊔

s=[T,χ]

T//Ws

where each connected component is an extended quotient. The extended quotient is
as follows:

(a) a circle, if χ is a non quadratic and ramified character of Q×
p ;

(b) a closed semi-circle with two double-points, if χ is a ramified quadratic char-
acter Q×

p ;
(c) a closed semi-circle with one double-point, if χ is an unramified character

of Q×
p .
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Along the lines of [19], we will now give a portrayal of the extended quotients,
i.e., of the topology in the tempered dual associated with induced elements.

The quadratic characters (.,Qp(
√
p)/Qp) and (.,Qp(

√
εp)/Qp) pair together

in the same semi-circle, since

(.,Qp(
√
p)/Qp)|Z×

p
= (.,Qp(

√
εp)/Qp)|Z×

p
= (

.

p
),

where ( .
p ) is the Legendre symbol.

The unramified quadratic character (.,Qp(
√
ε)/Qp) and the trivial character

χ ≡ 1 belong to the same semi-circle, since

(.,Qp(
√
ε)/Qp)|Z×

p
= 1.

Let π(χa) denote the unitary principal series associated with the quadratic
character χa = (.,Qp(

√
a)/Qp). When p is odd, we have

The double points in the above picture correspond to the irreducible con-
stituents (π+(χa), π

−(χa)) of π(χa), i.e., to quadratic characters. There are count-
ably many nonquadratic characters and their contribution to Q is a disjoint union
of countably many unit circles.

When p = 2, if we choose representatives {−1,±2,±5,±10} to represent the
quadratic extensions of Q2, we have:

There are countably many nonquadratic characters and their contribution
to Q is with a disjoint union of countably many unit circles. The existence of
nontrivial quadratic characters is responsible for the failure of the tempered dual
to be Hausdorff.

4.2. The archimedean case

As far as we know, the geometric conjecture [1, 2] has not been even stated for
reductive real or complex groups.

For G = SL(2,C) we have the following result: the space G∧
P coincides with

the all tempered dual

G∧
P = Irrt(SL(2,C)).

The unitary principal series representations of SL(2,C) are parametrized by char-
acters

(ν, μ) ∈ C×∧ � Z× R,



274 S. Mendes

modulo the action of the Weyl group W = Z/2Z. Each character (ν, μ) ∈ Z × R
determines an irreducible unitary principal series representation π(ν, μ). The only
equivalence relation is the following

π(ν, μ) � π(−ν,−μ).

Therefore,

Q = C×∧/(Z/2Z) � {0} × [0,∞) 0 {1} × R 0 {2} × R 0 {3} × R 0 · · · .

The space Q is a disjoint union of an half-line and countably many real lines

[0,∞)

R R R

{0} {1} {2} {3}

· · ·

There are no nontrivial quadratic characters of C×. The tempered dual of
SL(2,C) is Hausdorff.

The unitary principal series representations of SL(2,R) are parametrized by
characters

(ν, μ) ∈ R×∧ � Z/2Z× R,

modulo the action of the Weyl group W = Z/2Z. Here, unlike the complex case,
the representation π(−1, 0) is reducible and decomposes as a direct sum

π(−1, 0) = π−(−1)⊕ π+(−1).

The irreducible representations {π−(−1), π+(−1)} are called “limits of discrete
series”. Therefore, we have a disjoint union

Q = R×∧/(Z/2Z) � {+1} × [0,∞) 0 {−1} × [0,∞).

Here, +1 and −1 denote the trivial and the nontrivial character of Z/2Z, respec-
tively. The space Q is a disjoint union of two half-lines, one of them with a double
point.

[0,∞)

� ��

[0,∞)

{+1} {−1}

The group R× has a unique quadratic character sgn(.) = (.,C/R), responsible
for the double point in Q. As a consequence, the tempered dual Irrt(SL(2,R)) fails
to be Hausdorff.
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5. The C∗-algebra C∗
rSL(2)

Let F be either Qp, R or C. The reducibility of the unitary principal series of
SL(2, F ) has also implications in the structure of the reduced C∗-algebra A =
C∗

rSL(2, F ). The arithmetic link is the following: depending on F having quadratic
extensions, the C∗-algebra A has summands which are not commutative. Quite
explicit, these summands are crossed products of a commutative algebra by a
finite group. The finite group is precisely the R-group, see [13] and [10]. Note
that this fits into the framework of noncommutative geometry [3], where a well-
known dictionary relates the topological property of a space being Hausdorff with
the algebraic property of the algebra of continuous functions on that space being
commutative.

We start by recalling the definition of a reduced group C∗-algebra. The defini-
tion works for any locally compact group. We choose a left invariant Haar measure
on G and form the Hilbert space L2(G). The left regular representation λ of L1(G)
on L2(G) is given by

(λ(f))(h) = f ∗ h,
where f ∈ L1(G), h ∈ L2(G) and ∗ denotes the convolution. The C∗-algebra
generated by the image of λ is the reduced C∗-algebra C∗

r (G).

The C∗-algebra A = C∗
rSL(2, F ) was studied in full detail independently by

Plymen [19] and Tadić [22] for F nonarchimedean, by Miličić [14] for F = R, and
by Fell [6] for F = C. In [13], Plymen and Leung have determined the structure of
those fixed-algebras whose duals contains a particular class of representations of
SL(�), with � prime. In [10], Plymen and Jawdat extended those results for SL(N)
with N not necessarily prime.

Let K denote the C∗-algebra of compact operators on some separable Hilbert
spaceH. We now define the notion of stably isomorphic C∗-algebras (See [3, p. 152]
for more details).

Definition 5.1. A C∗-algebra A is said to be stable if A ⊗ K � A. We call A ⊗ K
the stabilization of A. Two C∗-algebra A and B are called stably isomorphic (or
stably equivalent) when A⊗K � B⊗K.

We now quote a result of Plymen and Leung on the structure of the reduced
C∗-algebra of SL(�). The standard maximal torus T of SL(�) is a minimal Levi
subgroup and contributes to the reduced C∗-algebra, see [13, p. 256], Theorem 2.5.
Part of that contribution is given by a noncommutative component. Quite explicit,
Leung and Plymen proved in [13, Theorem 5.4] that the reduced C∗-algebra of the
p-adic group SL(�) admits � direct summands stably isomorphic to

C(T�/T)� Z/�Z.

Now, consider the case of SL(2,Qp). The above quotient becomes T2/T.
Let (z1 : z2) ∈ T2/T be a homogeneous coordinate, with |z1| = |z2| = 1. Since
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(z1 : z2) ∼ (z1/z2 : 1), there is a homeomorphism

T2/T ∼= T, (z : 1) �→ z.

Therefore, by [13, Theorem 5.4], the reduced C∗-algebra of SL(2,Qp) admits sum-
mands stably isomorphic to

C(T2/T)� Z/2Z ∼= C(T) � Z/2Z.

The number of such summands is determined by pairs of Artin symbols,
which correspond to tamely ramified quadratic extensions of the ground field. For
odd p there is only one pair

(.,Qp(
√
p)/Qp) , (.,Qp(

√
εp)/Qp).

Although Leung and Plymen considered only the case of odd residue charac-
teristic, the result can be extended to Q2. There are three pairs of Artin symbols

(.,Q2(
√
−1)/Q2) , (.,Q2(

√
−5)/Q2).

(.,Q2(
√
2)/Q2) , (.,Q2(

√
10)/Q2).

(.,Q2(
√
−2)/Q2) , (.,Q2(

√
−10)/Q2).

Note that AP contains also countably many commutative summands of the
form C(T), which correspond to irreducible representations π(χ) induced by non-
quadratic and nontrivial characters χ of Q×

p , and also the contribution of the
unitary unramified principal series representations (see Remark 5.3 bellow).

We now concentrate on the case when the ground field F is archimedean. Let
X denote a locally compact Hausdorff topological space and denote by C0(X) the
C∗-algebra of complex-valued continuous functions onX , vanishing at infinity, i.e.,
for each ε > 0 there is a compact subset K ⊂ X such that |f(x)| ≤ ε, ∀x ∈ X\K.

For SL(2,R), the C∗-algebra AP is noncommutative and is stably isomorphic
to the following C∗-direct sum (cf. §4.2)

AP ∼s C0(R/(Z/2Z))⊕ C0(R)� Z/2Z,

where ∼s means stably isomorphic.
The noncommutative summand C0(R) � Z/2Z corresponds to the unique

nontrivial quadratic extension of R and so is induced by the archimedean Artin
symbol (.,R/C).

The remaining case is the complex group SL(2,C), where all the contribution
for the tempered dual comes from the unitary principal series representations. In
other words, AP = A.

The C∗-algebra A is stably isomorphic to the following commutative C∗-
direct sum (cf. §4.2)

A ∼s C0([0,∞))⊕

⎛⎝⊕
n≥1

C0(R)

⎞⎠ .
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In this case, there is no noncommutative summand since there is no quadratic
extension of C.

Putting together sections 3, 4 and the present section, we have the following
rather general result for C∗

rSL(2) over any local field F of zero characteristic.

Theorem 5.2. Let F be a local field of characteristic zero. Let AP denote the sub-
C∗-algebra whose tempered dual corresponds to the unitary principal series rep-
resentations. Then, the Artin symbol determine the existence of noncommutative
summands in AP , depending on whether or not F admits quadratic extensions.

Remark 5.3. Denote the sub-C∗-algebra of C∗
rSL(2,Qp) corresponding to the uni-

tary unramified principal series representations by As. This is called the spherical
C∗-algebra of SL(2,Qp). According to [11, p. 113], for SL(2,Qp), As can be be
identified with the fixed-point algebra

As
∼= C(T,K)W .

Surprisingly, for more general p-adic groups, As has a very subtle structure. Even
without realizing the spherical C∗-algebra as a crossed product (modulo Morita
equivalence), Kamran and Plymen where able to compute its K-theory for any
split, simply connected, almost simple p-adic group, see [11, Theorem 3.1].
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Abstract. It is a close connection between various kinds of inequalities and
the concept of convexity. The main aim of this paper is to illustrate this fact
in a unified way as an introduction of this area. In particular, a number of
variants of classical inequalities, but also some new ones, are derived and
discussed in this general frame.
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1. Introduction

Different kinds of inequalities are very important in various areas of mathematics
and its applications. Today the knowledge about inequalities has been developed
to be an independent area with many papers, Journals, conferences and books
(see, e.g., [6], [13], [18], [20], [21], and the references given there). Moreover, there
are also some books fully or partly devoted to convexity techniques (see, e.g., [14],
[22], [28], and the references given there). These areas are of independent interest
but there are also a huge numbers of examples how these subjects have supported
each other in the further developments of these areas but also of other areas within
mathematical sciences and even in other more applied areas.

Already G.H. Hardy, J.E. Littlewood and G. Polya in their classical book [13]
clearly understood the crucial role of convexity to develop the theory of inequali-
ties. Our intention with this paper is to complement and on some points further
develop the content of this book. The main idea is to further explain and use the
crucial role of convexity (Jensen’s inequality), to further develop and explain the
rich area of inequalities in an elementary and unified way.

The work was partially supported by CEAF under FCT project PEst-OE/MAT/UI4032/2011.
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As an example of the importance of inequalities we mention the following
classical sentence by G.H. Hardy in his Presidental address at the meeting of the
London Mathematical Society in November 8, 1928: “All analysts spend half their
time hunting through the literature for inequalities which they want to use and
cannot prove”. Our hope and main aim is that this paper can help these researchers
to find what they are looking for, e.g., by directly finding the inequality and if not
to give powerful ideas and hints to be able to derive even inequalities not explicitly
stated in our paper.

It is maybe a matter of fate that Hardy himself never discovered that also
his famous inequality (6.1) (after a simple substitution) in fact follows directly
from Jensen’s inequality. Moreover, also his first powerweighted versions of his
inequality is a consequence of the same simple technique. And maybe even more
remarkable is that “all” powerweighted Hardy inequalities (for p = q) are, in fact,
equivalent to the simple inequality∫ ∞

0

(
1

x

∫ x

0

f(x)

)p
dx

x
≤

∫ ∞

0

fp(x)
dx

x
, p ≥ 1, (1.1)

which easily follows from Jensen’s inequality. Moreover, also a number of other
classical inequalities (including those by Carleman, Pólya–Knopp etc.) follows di-
rectly from this fact.

We pronounce that all inequalities derived in this paper are sharp.
The content is organized as follows: In Section 2 we point out a number of

elementary inequalities which follow more or less directly from convexity (Young’s
inequality. Clarcson’s discrete inequality, two fundamental inequalities [6], etc.). In
Section 3 we reformulate Jensen’s inequality as an equivalence theorem connected
to the concept of convexity. In the next sections the following inequalities are
derived and analyzed by using convexity arguments from Sections 2–3.

Section 4: Classical Hölder’s inequality and various variants of this inequality
(including a version for infinite many Lebesgue spaces).

Section 5: Classical Minkowski’s inequality and various variants of this in-
equality (including an integral version of Fubini type).

Section 6: Some classical inequalities (by Hardy, CarlemanandPólya–Knopp).
It is also pointed out that all these inequalities (via substitutions and limit

arguments) can be derived from the same basic inequality (1.1), which, in turn,
follows from Jensen’s inequality. In particular, these calculations show that “all”
powerweighted Hardy inequalities are in fact equivalent because they are equivalent
to this basic inequality.

Section 7: Some more Hardy type inequalities including variants with finite
intervals involved (a precise equivalence result is proved, and thus improving and
making the statements in Section 6 more clear).

Section 8 is reserved for some further results and final remarks. It is shortly
mentioned how also interpolation theory is closely related to the concept of con-
vexity. This fact is further explained and developed in [25]. As an example there
we just derive Young’s integral inequality (including a limit case) via interpolation
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and convexity. We also mention a fairly new idea that Jensen’s inequality can be
“refined” if convex functions are replaced by superquadratic functions. We point
out that in particular our technique and this fact implies a new refined Hardy
type inequality with “breaking point” p = 2 (for p = 2 we even get a new integral
identity). This is in contrast to usual Hardy type inequalities where the “breaking
point” is p = 1.

2. Convexity – some elementary inequalities

Let I denote a finite or infinite interval on R+. We say that a function f is convex
on I if, for 0 < λ < 1, and all x, y ∈ I,

f((1− λ)x + λy) ≤ (1− λ)f(x) + λf(y).

If the inequality holds in the reversed direction, then we say that the function f
is concave.

Moreover, we say that the function f is midpoint convex on I if, for all
x, y ∈ I,

f

(
x+ y

2

)
≤ f(x) + f(y)

2
.

There are many well-known facts concerning convex functions, see, e.g., the book
[22] by C.P. Niculescu and L.E. Persson. Here we just mention a few introductory
but useful facts:

∗ It follows directly from the definition of convexity that if f is convex on
I = [a, b], then, for all x ∈ [a, b],

f(x) ≤ f(a) +
f(b)− f(a)

b− a
(x− a). (2.1)

∗ Assume that f(x) is continuous on I. Then
a) f is convex if and only if it is midpoint convex,
b) f is convex if and only if

f(x+ h) + f(x− h)− 2f(x) ≥ 0.

Example 1. The function f(x) = xp, p ≥ 1, x ≥ 1, is an elementary example of a
convex function and as we will see later on this simple fact implies, e.g., the Hardy
inequality (see (6.1)). And since this function is convex also when p < 0 this
inequality holds also for p < 0, a fact which was also not noted by Hardy himself.
Another elementary example of convex function is f(x) = ex and by using this
function in a similar way we obtain a “trivial” proof of the Pólya–Knopp inequality
(6.4), see Examples 23 and 25, and Remark 6.4.

But there are also many non-trivial examples of convex functions which have
been important for the development. We will here only present one example which
we will use later, namely the following one by M. Riesz which was crucial when
he proved his convexity theorem, which was very important when interpolation
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theory was initiated via the famous Riesz–Thorin interpolation theorem, see, e.g.,
the book [7] by J. Bergh and J. Löfström.

Example 2. Let a and b be complex numbers. Then the function

f(α, β) = logmax

(
|a+ b|1/α + |a− b|1/α

)α(
|a|1/β + |b|1/β

)β
is convex on the triangle T : 0 ≤ α ≤ β ≤ 1.

We shall now present some useful elementary inequalities, which follow di-
rectly from convexity, sometimes combined by some other argument from calculus.

Example 3. Let a, b > 0. Then

ap + bp ≤ (a+ b)p ≤ 2p−1(ap + bp), p ≥ 1,

2p−1(ap + bp) ≤ (a+ b)p ≤ ap + bp, 0 < p ≤ 1.

Proof. The function f(u) = up is convex when p ≥ 1 and concave when 0 < p < 1.
Hence,

if p ≥ 1, then

(
a+ b

2

)p

≤ ap + bp

2
, i.e., (a+ b)p ≤ 2p−1(ap + bp),

and

if 0 < p < 1, then

(
a+ b

2

)p

≥ ap + bp

2
, i.e., (a+ b)p ≥ 2p−1(ap + bp).

We may without loss of generality assume that b ≤ a. Consider the function

f(t) = (1 + t)p − tp, [t = b/a]

and note that

f ′(t) = p(1 + t)p−1 − ptp−1.

Hence f ′(t) ≥ 0 for p ≥ 1 and f ′(t) ≤ 0 for 0 < p < 1. Moreover, f(0) = 1 and
we conclude that

f(t) ≥ 0 for p ≥ 1⇔
(
1 +

b

a

)p

− 1−
(
b

a

)p

≥ 0 for p ≥ 1

⇔ ap + bp ≤ (a+ b)p for p ≥ 1,

and

f(t) ≤ 0 for 0 < p ≤ 1⇔
(
1 +

b

a

)p

− 1−
(
b

a

)p

≤ 0 for 0 < p < 1

⇔ (a+ b)p ≤ ap + bp for 0 < p < 1. �
Remark 2.1. The inequalities in Example 3 can be unified as follows

c1(a
p + bp) ≤ (a+ b)p ≤ c2(a

p + bp), p > 0, (2.2)

where c1 = min{2p−1, 1} and c2 = max{2p−1, 1}. When (2.2) holds for some
positive numbers c1 and c2, we also write (a + b)p ≈ (ap + bp). This equivalence
notion can be generalized to more general situations in a natural way.
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By using induction we can generalize Example 3 as follows:

Example 4. Let a1, a2, . . . , an be positive numbers. Then

(a)

n∑
i=1

api ≤
(

n∑
i=1

ai

)p

≤ np−1
n∑

i=1

api , p ≥ 1,

(b) np−1
n∑

i=1

api ≤
(

n∑
i=1

ai

)p

≤
n∑

i=1

api , 0 < p ≤ 1.

Example 5. (Two fundamental inequalities). If x > 0 and α ∈ R, then{
xα − αx+ α− 1 ≥ 0 for α > 1 and α < 0
xα − αx+ α− 1 ≤ 0 for 0 < α < 1.

(2.3)

Remark 2.2. In the book [6] E.F. Beckenbach and R. Bellman called (2.3) “A
fundamental relationship” (see page 12). In particular, they showed later in the
book that several well-known inequalities follow directly from (2.3), e.g., the AG-
inequality, Hölder’s inequality, Minkowski’s inequality, etc. In [6] it was given two
different proofs of (2.3) but in view of the main argument in this paper we mention
another “proof” namely that (2.3) follows directly from the fact that the function
f(x) = xα is convex for α > 1 and α < 0 and concave for 0 < α < 1. In fact, if
f(x) = xα, then the equation for the tangent at x = 1 is equal to y = α(x− 1)+ 1
and (2.3) follows directly. Moreover, this proof shows that we have equality in both
inequalities in (2.3) if and only if x = 1 for all α.

Example 6 (Discrete Young inequality). For any a, b > 0, p, q ∈ R\ {0}, 1p +
1
q = 1,

it yields that

ab ≤ ap

p
+

bq

q
, if p > 1 (2.4)

and

ab ≥ ap

p
+

bq

q
, if p < 1, p �= {0}. (2.5)

Proof. In fact, (2.4) follows directly from (2.3) applied with x = a
b and α = 1

p (the

case 0 < α < 1) and (2.5) follows from (2.3) in the same way by instead applying
(2.3) in the cases α > 1 and α < 0. �

Remark 2.3. Another proof of (2.4) is obtained by directly using the fact that
f(x) = ex is convex:

ab = eln ab = e
1
p ln ap+ 1

q ln bq ≤ 1

p
elnap

+
1

q
eln bq =

1

p
ap +

1

q
bq.

By using the same argument and induction (cf. also Proposition 3.1) we obtain
the following generalization of Young’s inequality (2.4): Let ai > 0, pi > 1, n =
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1, 2, . . . , n, n ∈ Z+, n ≥ 2,
∑n

i=1
1
pi

= 1. Then

n∏
i=1

ai ≤
n∑

i=1

1

pi
api

i .

It seems not to be possible to derive a similar generalization of (2.5).

Example 7 (A generalization of (2.3)). Our simple proof of (2.3) gives directly
the following more general result: Let Φ(x) be a convex function on R+, which is
differentiable at x = 1. Then

Φ(x) − Φ′(1)x+Φ′(1)− Φ(1) ≥ 0. (2.6)

If instead Φ(x) is concave, then (2.6) holds in the reverse direction.

Another way to understand and generalize (2.4) is as follows:

Example 8 (Generalized discrete Young inequality). Let Φ(x) be a continuous and
strictly increasing function for x ≥ 0 and Φ(0) = 0. The inverse of Φ is denoted
Ψ (draw the figure of the situation). By examining the areas in this figure we see
that

ab ≤
∫ a

0

Φ(x)dx +

∫ b

0

Ψ(y)dy. (2.7)

Inequality (2.4) is obtained by applying (2.7) with Φ(x) = xp−1, p > 1. This
argument also shows that we have equality in (2.7) exactly when b = Φ(a), in
particular we have equality in (2.4) exactly when b = ap−1. It seems not to be
possible to have some similar generalization of inequality (2.5).

We finish this section by showing that also another useful inequality follows
from convexity via Example 2.

Example 9 (Discrete Clarkson inequality). Let a, b ∈ R, 1 < p ≤ 2 and q = p
p−1 .

Then

(|a+ b|q + |a− b|q)1/q ≤ 21/q (|a|p + |b|p)1/p . (2.8)

The inequality is sharp, i.e., 21/q can not be replaced by any smaller number.

Proof. Consider the convex function f(α, β) defined in Example 2. By using the
parallelogram law

|a+ b|2 + |a− b|2 = 2(|a|2 + |b|2) (2.9)

we see that f(1/2, 1/2) = 1
2 log 2. Moreover, we easily find that f(0+, 0+) = log 2

and f(0+, 1−) = 0.
The linear function g(α, β) that coincides with f(α, β) at the points (1/2, 1/2),

(0, 0) and (0, 1) is g(α, β) = (1 − β) log 2. Moreover, the convexity implies that
f(α, β) ≤ g(α, β) = (1 − β) log 2, and by choosing β = 1/p, 1 ≤ p ≤ 2, and
α = 1− β = 1/q we obtain that

log
(|a+ b|q + |a− b|q)1/q

(|a|p + |b|p)1/p
≤ 1

q
log 2 = log 21/q
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and (2.8) is proved. Finally, we note that by putting a = b in (2.8) we have equality
in (2.8). The proof is complete. �

Remark 2.4. We see that in the case p = q = 2, we have even equality in (2.8) via
the parallelogram law (2.9) and in the other extreme case when p→ 1 we have

max(|a+ b|, |a− b|) ≤ (|a|+ |b|), (2.10)

which is just the triangle inequality. Hence, (2.8) is just some “interpolated” in-
equality between these two extreme cases. This argument can be formalized to a
formal proof by considering the operator T : (a, b)→ (a+ b, a− b) and note that

it maps �22 → �22 with norm
√
2 (see (2.9)) and �21 → �2∞ with norm 1 (see (2.10))

and the usual Riesz–Thorin interpolation theorem (see [7]) gives the result.

Remark 2.5. Inequality (2.8) is fundamental for proving Clarkson type inequalities
and its applications to uniformly convex spaces. Moreover, by combining (2.8)
with other convexity inequalities we obtain more general inequalities, which are
also important for applications.

3. Convexity = Jensen’s inequality

Proposition 3.1. (Discrete Jensen inequality). Let n ∈ {2, 3, . . .} and let a = {ak}n1
be a sequence of positive real numbers. If Φ(x) is convex on an interval including
a, then, for λk > 0,

∑n
k=1 λk = 1, it yields that

Φ

(
n∑

k=1

λkak

)
≤

n∑
k=1

λkΦ(ak). (3.1)

Proof. In fact, for n = 2 it is just the definition of convexity and for n = 3 it
follows by using the definition two times:

Φ(λ1a1 + λ2a2 + λ1a3) = Φ

(
λ1a1 + (λ1 + λ2)

[
λ2

λ2 + λ3
a2 +

λ3

λ2 + λ3
a3

])
≤ λ1Φ(a1) + (λ2 + λ3)Φ

(
λ2

λ2 + λ3
a2 +

λ3

λ2 + λ3
a3

)
≤ λ1Φ(a1) + λ2Φ(a2) + λ3Φ(a3).

The proof follows by repeating this argument and formalize it via induction. �

Of course the above argument shows that in fact the discrete Jensen in-
equality is equivalent to the definition of convexity. We shall now continue by
reformulating the classical Jensen inequality

Φ

(∫
Ω

fdμ

)
≤

∫
Ω

Φ(f)dμ, (3.2)

where μ(Ω) = 1, as a more general form of such an equivalence statement.
Here and in the sequel we let μ denote a positive measure on a σ-algebra in

a set Ω.
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Theorem 3.2. Let f be a real μ-measurable function on Ω such that −∞ ≤ a <
f(x) < b ≤ +∞ for all x ∈ Ω and Φ be a function on I = (a, b). Then the following
conditions are equivalent:

(i) Φ is convex,
(ii) the inequality

Φ

(
1

μ(Ω)

∫
Ω

fdμ

)
≤ 1

μ(Ω)

∫
Ω

Φ(f)dμ (3.3)

holds for all measures such that 0 < μ(Ω) <∞.

Proof. (ii)⇒(i): Apply (3.3) with the measure μ defined as the point mass 1 −
λ, (0 < λ < 1) at x and λ at y for x, y ∈ I and we find by (3.3) that

Φ((1− λ)x + λy) ≤ (1− λ)Φ(x) + λΦ(y),

i.e., Φ is convex.
(i)⇒(ii): It is obviously sufficient to prove (3.3) with the restriction μ(Ω) = 1, i.e.,
that (3.2) holds. First we note that since Φ is convex (cf. (2.1)) it yields that

Φ(t)− Φ(s)

t− s
≤ Φ(u)− Φ(t)

u− t
(3.4)

whenever a < s < t < u < b.
Let t =

∫
Ω
fdμ. Then a < t < b.

Put β = supremum of all quotients to the left in (3.4) for fixed u ∈ (t, b).

Hence Φ(t)−Φ(s)
t−s ≤ β so that Φ(s) ≥ Φ(t) + β(s− t).

Thus, for all x ∈ Ω (with s = f(x)) it yields that

Φ(f(x)) − Φ(t)− β(f(x) − t) ≥ 0.

We integrate and get that∫
Ω

Φ(f(x))dμ−
∫
Ω

Φ(t)dμ− β

∫
Ω

(f(x)− t)dμ

=

∫
Ω

Φ(f(x))dμ − Φ(t)− β

∫
Ω

f(x)dμ+ β

∫
Ω

tdμ

=

∫
Ω

Φ(f(x))dμ − Φ

(∫
Ω

fdμ

)
− β

∫
Ω

f(x)dμ+ β

∫
Ω

f(x)dμ

=

∫
Ω

Φ(f(x))dμ − Φ

(∫
Ω

fdμ

)
≥ 0.

The proof is complete. �

Remark 3.3. The arguments in the proof of (i)⇒(ii) are the same as those in most
Functional Analysis books but the formulation of Theorem 3.2 as an equivalence
theorem is important and done for our further purposes.

Our proof of Theorem 3.2 shows that we also have the following characteri-
zation of concave functions:
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Theorem 3.4. Let f and Φ be defined as in Theorem 3.2. Then the following con-
ditions are equivalent:

(iii) Φ is concave,
(iv) the inequality (3.3) holds in the reversed direction for all measures μ such

that 0 < μ(Ω) <∞.

Remark 3.5. If Ω = R+, n = 2, 3, . . . , μ =
∑n

k=1 λkδk (δk is the unity mass at
t = k), λk > 0 and

∑n
k=1 λk = 1, then Jensen’s inequality (3.2) coincides with the

discrete Jensen inequality (3.1), with f(k) = ak. Moreover, if Φ is concave, then
Theorem 3.4 shows that (3.1) holds in the reversed direction.

The original forms of Jensen’s inequality traces back to his original papers
[15] and [16] from 1905–06.

4. Various variants of Hölder’s inequality via convexity

As usual, the space Lp = Lp(μ), 0 < p ≤ ∞, consists of all functions f on Ω such
that

‖f‖Lp :=

(∫
Ω

|f |pdμ
)1/p

<∞, if 0 < p <∞,

and

‖f‖L∞ := ess sup
x∈Ω

|f(x)| <∞, if p =∞.

Example 10 (Hölder’s inequality). Let p > 1 and 1
p + 1

q = 1. Then

‖fg‖L1 ≤ ‖f‖Lp‖g‖Lq ,

i.e., ∫
Ω

|fg|dμ ≤
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q

. (4.1)

Proof 1. First we let ‖f0‖Lp = ‖g0‖Lq = 1 and use convexity of the exponential
function via Young’s inequality (2.4) and find that∫

Ω

|f0g0|dμ ≤
1

p

∫
Ω

|f0|pdμ+
1

q

∫
Ω

|g0|qdμ =
1

p
· 1 + 1

q
· 1 = 1.

Apply this inequality with f0 = f
‖f‖Lp

and g0 = g
‖g‖Lq

and (4.1) is proved. �

Another even more direct convexity proof is the following one:

Proof 2. We may without loss of generality assume that 0 <
∫
Ω
|g|dμ < ∞ and

apply Jensen’s inequality (3.2) with the convex function Φ(u) = up to obtain that(
1∫

Ω
|g|dμ

∫
Ω

|fg|dμ
)p

≤
(∫

Ω

|g|dμ
)−1 ∫

Ω

|f |p|g|dμ,
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i.e., that ∫
Ω

|fg|dμ ≤
(∫

Ω

|g|dμ
)1−1/p (∫

Ω

|f |p|g|dμ
)1/p

.

Put |f ||g|1/p = |f1| and |g|1/q = |g1| and we find that∫
Ω

|f1g1|dμ ≤
(∫

Ω

|f1|pdμ
)1/p (∫

Ω

|g1|qdμ
)1/q

.

We just change notation and (4.1) is proved. �

Remark 4.1. It is easy to use the first proof to find (all) cases of equality in
Hölder’s inequality namely when g(x) = (f(x))p−1 (see Example 8). In particular,
this means that the following important relation(∫

Ω

|f |pdμ
)1/p

= sup

∫
Ω

|f |ϕdμ, (4.2)

yields for each p > 1, where supremum is taken over all ϕ ≥ 0 such that
∫
Ω ϕqdμ =

1. This technique is example of a technique called quasi-linearization.

Example 11 (Hölder’s inequality – the reversed form). Let 1
p + 1

q = 1, 0 < p < 1.

Then ∫
Ω

|fg|dμ ≥
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q

. (4.3)

Proof. Note that the function Φ(u) = up is convex also for p < 0. Therefore as in
the second proof of Hölder’s inequality we find that (with the same notation)(∫

Ω

|f1g1|dμ
)p

≤
∫
Ω

|f1|pdμ
(∫

Ω

|g1|qdμ
)p−1

.

Hence ∫
Ω

|f1g1|dμ ≥
(∫

Ω

|f1|pdμ
)1/p (∫

Ω

|g1|qdμ
)1/q

for p < 0 (and 0 < q < 1) and, hence, by interchanging the completely symmetric
roles of p and q and change notation we obtain (4.3) and the proof is complete. �

We shall now formulate a more general result, which includes Examples 10
and 11 as special cases.

Example 12 (Hölder’s inequality – completely symmetric form). Let p, q and r be
real numbers �= 0 such that 1

p + 1
q = 1

r . Then

(a)

(∫
Ω

|fg|rdμ
) 1

r

≤
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q

if p > 0, q > 0, r > 0 or p < 0, q > 0, r < 0 or p > 0, q < 0, r < 0, and

(b)

(∫
Ω

|fg|rdμ
) 1

r

≥
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|g|qdμ
)1/q
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if p > 0, q < 0, r > 0 or p < 0, q > 0, r > 0 or p < 0, q < 0, r < 0. (Whenever some
parameter is negative we assume that the involved function is strictly positive.)

Proof. The case p > 0, q > 0, r > 0. First we note that the convexity of the function
f(u) = eu implies that

|f(t)g(t)|r = exp(r(ln |f(t)|+ ln |g(t)|))

= exp

(
r

p
ln |f(t)|p + r

q
ln |g(t)|q

)
≤ r

p
|f(t)|p + r

q
|g(t)|q.

By now integrating and discussing as in the proof of the special case r = 1 (see
Proof 1 of Example 10) we obtain (a).

The case p > 0, q < 0, r > 0. By using the estimate we just have proved we
find that(∫

Ω

|f(t)|pdμ
)1/p

=

(∫
Ω

|f(t)g(t)|p 1

|g(t)|p dμ
)

≤
(∫

Ω

|f(t)g(t)|rdμ
)1/r

(∫
Ω

∣∣∣∣ 1

g(t)

∣∣∣∣−q

dμ

)1/−q

,

i.e., (∫
Ω

|f(t)|pdμ
)1/p (∫

Ω

|g(t)|qdμ
)1/q

≤
(∫

Ω

|f(t)g(t)|rdμ
)1/r

,

which means that (b) holds.
By symmetry we see that (b) holds also for the case p < 0, q > 0, r > 0.
For the cases p < 0, q > 0, r < 0. and p > 0, q < 0, r < 0, we use the obtained

results with r, p, q replaced by −r,−p,−q, respectively, and obtain that(∫
Ω

|f(t)g(t)|rdμ
)1/r

=

(∫
Ω

∣∣∣∣ 1

f(t)g(t)

∣∣∣∣−r

dμ

)1/−r

≤
(∫

Ω

∣∣∣∣ 1

f(t)

∣∣∣∣−p

dμ

)1/−p /(∫
Ω

∣∣∣∣ 1

g(t)

∣∣∣∣−q

dμ

)1/−q

,

which means that (a) holds.
The proof of the case p < 0, q < 0, r < 0 is similar. �

Another well-known generalization of Example 10 is the following:

Example 13 (Hölder’s inequality for n−Lp spaces). Let p1, p2, . . . , pn, n = 2, 3, . . . ,
be positive numbers such that 1

p1
+ 1

p2
+ · · ·+ 1

pn
= 1. Then∫

Ω

|f1f2 · · · fn|dμ ≤
(∫

Ω

|f1|p1dμ

)1/p1

· · ·
(∫

Ω

|fn|pndμ

)1/pn

. (4.4)

The proof follows by just using (4.1) and induction or by using directly the
discrete Jensen inequality (3.1) and discussing as in Proof 1 of (4.1).
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Remark 4.2. Note that if we put 1/p = θ, 0 < θ < 1, and replace |f | by |f |θ and
|g| by |g|1−θ, then Hölder’s inequality (4.1) can be written∫

Ω

|f |θ|g|1−θdμ ≤
(∫

Ω

|f |dμ
)θ (∫

Ω

|g|dμ
)1−θ

, (4.5)

where 0 < θ < 1.

Remark 4.3. If a and b are positive numbers, then the number a1−θbθ, 0 < θ < 1,
is a geometric type mean of the numbers a and b (for θ = 1/2 we have the usual
geometric mean). Moreover, the geometric mean of a positive function f over an
interval [0, b] is defined as follows

Gf := exp

(
1

b

∫ x

0

ln f(t)dt

)
.

Accordingly to the Remarks 4.2 and 4.3 it is tempting to think that Example
14 can be generalized to the case with infinite many Lp spaces (cf. (4.7) below)
and in fact this is also true. The reader shall here think of that the functions
ft(x), t ∈ (0, b), belongs to the space Lp(t), where p(t) is sufficiently “smooth” so
the involved integrals make sense.

Example 14 (A Hölder inequality for infinite many functions involved). Let p(t)
be positive on [0, b] and let p be defined by

1

p
=

1

b

∫ b

0

1

p(t)
dt. (4.6)

Then (∫
Ω

(
exp

1

b

∫ b

0

log |ft(x)|dt
)p

dμ

)1/p

≤ exp
1

b

∫ b

0

log

(∫
Ω

|ft(x)|p(t)dμ
)1/p(t)

dt.

(4.7)

Remark 4.4. If we put b = 1, 0 = a0 < a1 < a2 < · · · < an = 1, αi = ai+1 − ai, i =
1, 2, . . . , n, ft(x) = fi(x) for ai < t ≤ ai+1, i = 1, 2, . . . , n, then p(t) = 1

ai
, i =

1, 2, . . . , n, so (4.7) reads∫
Ω

(
n∏

i=1

|fi(x)|αi

)
dμ ≤

n∏
i=1

(∫
Ω

|fi(x)|dμ
)αi

,

where
∑n

i=1 αi = 1, which is a generalization of (4.5) and equivalent to (4.4).

Remark 4.5. Inequality (4.7) was stated and proved in a little different form in the
paper [23] by L. Nikolova and L.E. Persson, where they used the theory of inter-
polation between infinite many Banach spaces. However, here we shall finish this
section by presenting another proof, which shows that also (4.7) follows essentially
from Jensen’s inequality (convexity).
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Proof. To prove (4.7) first we note that it is sufficient to prove that

I0 :=

∫
Ω

(
exp

1

b

∫ b

0

log |gt(x)|dt
)p

dμ ≤ 1, (4.8)

where

gt = gt(x) =
ft(x)(∫

Ω
|ft(x)|p(t)dμ

)1/p(t) .
Since (

exp
1

b

∫ b

0

log |gt(x)|dt
)p

= exp

∫ b

0

log |gt(x)|p(t)
p

p(t)

1

b
dx

the function Φ(u) = eu is convex and, by (4.6),
∫ b

0
p

p(t)
1
bdt = 1, we can use Jensen’s

inequality to obtain that(
exp

1

b

∫ b

0

log |gt(x)|dt
)p

≤ 1

b

∫ b

0

|gt(x)|p(t)
p

p(t)
dt.

Hence, by integrating and using Fubini’s theorem and (4.6), we find that

I0 ≤
∫
Ω

(
p

b

∫ b

0

|gt(x)|p(t)
1

p(t)
dt

)
dμ =

∫ b

0

p

b

1

p(t)

∫
Ω

(
|ft(x)|p(t)∫

Ω |ft(x)|p(t)dμ

)
dμ

=

∫ b

0

p

b

1

p(t)
dt = 1,

and (4.8) is proved. The proof is complete. �

5. Various variants of Minkowski’s inequality via convexity

The standard variant of Minkowski’s inequality reads:

Example 15 (Minkowski’s inequality). If p ≥ 1, then(∫
Ω

|f + g|pdμ
)1/p

≤
(∫

Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

. (5.1)

Remark 5.1. The inequality (5.1) can be written

‖f + g‖Lp(Ω) ≤ ‖f‖Lp(Ω) + ‖g‖Lp(Ω),

which is the triangle inequality in Lp(Ω)-spaces. This is the crucial property that
the spaces Lp(Ω) are normed spaces, even Banach spaces, for p ≥ 1.

Proof 1. By the triangle inequality and Hölder’s inequality we have that∫
Ω

|f + g|pdμ =

∫
Ω

|f + g|p−1|f + g|dμ ≤
∫
Ω

|f + g|p−1(|f |+ |g|)dμ

=

∫
Ω

|f + g|p−1|f |dμ+

∫
Ω

|f + g|p−1|g|dμ
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≤
(∫

Ω

|f |pdμ
)1/p (∫

Ω

|f + g|pdμ
)1/q

+

(∫
Ω

|g|pdμ
)1/p (∫

Ω

|f + g|pdμ
)1/q

=

(∫
Ω

|f + g|pdμ
)1/q

[(∫
Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

]
.

Hence (∫
Ω

|f + g|pdμ
)1−1/q

≤
(∫

Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

and since 1− 1/q = 1/p we obtain (5.1). �

Proof 1 is the most common proof in Functional Analysis books but we
present here also another proof of (5.1), which is easier to generalize and which is
a special case of a general technique called quasi-linearization. In our case we do
this linearization by using (4.2).

Proof 2. The fact that we have equality in Hölder’s inequality means that(∫
Ω

|f |pdμ
)1/p

= sup
ϕ≥0

∫
Ω

|f |ϕdμ,

(see (4.2)), where supremum is taken over all ϕ such that for q = p/(p− 1)(∫
Ω

ϕqdμ

)1/q

≡ 1.

Hence, by the usual triangle inequality for numbers and an obvious estimate, we
have that(∫

Ω

|f + g|pdμ
)1/p

= sup
ϕ≥0

∫
Ω

|f + g|ϕdμ ≤ sup
ϕ≥0

∫
Ω

(|f |ϕ+ |g|ϕ)dμ

≤ sup
ϕ≥0

∫
Ω

|f |ϕdμ+ sup
ϕ≥0

∫
Ω

|g|ϕdμ =

(∫
Ω

|f |pdμ
)1/p

+

(∫
Ω

|g|pdμ
)1/p

. �

A generalization of (5.1) reads:

Example 16 (Minkowski’s inequality for n functions f1, f2, . . . , fn). If p ≥ 1,
n = 2, 3, . . . , then(∫

Ω

|f1 + f2 + · · ·+ fn|pdμ
)1/p

≤
(∫

Ω

|f1|pdμ
)1/p

+ · · ·+
(∫

Ω

|fn|pdμ
)1/p

.

The proof of this inequality follows by generalizing Proof 2 above of (5.1) in
an obvious way or simply by using induction and (5.1).

Next we shall present Minkowski’s inequality for infinite many functions
Ky(x) = K(x, y), which usually is called Minkowski’s integral inequality.
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Example 17 (Minkowski’s integral inequality). Let −∞ ≤ a ≤ b ≤ ∞,−∞ ≤ c ≤
d ≤ ∞, and let K(x, y) be measurable on [a, b]× [c, d].
If p ≥ 1, then(∫ b

a

(∫ d

c

K(x, y)dy

)p

dx

)1/p

≤
∫ d

c

(∫ b

a

Kp(x, y)dx

)1/p

dy. (5.2)

Proof. Let p > 1. We use again the quasi-linearization idea from (4.2) and obtain
that

I0 :=

(∫ b

a

(∫ d

c

K(x, y)dy

)p

dx

)1/p

= sup
ϕ≥0

∫ b

a

ϕ(x)

∫ d

c

K(x, y)dydx,

where the supremum is taken over all measurable ϕ such that
∫ b

a
ϕq(x)dx = 1, q =

p/(p− 1). Hence, by using the Fubini theorem and an obvious estimate, we have
that

I0 = sup
ϕ≥0

∫ d

c

∫ b

a

K(x, y)ϕ(x)dx dy ≤
∫ d

c

(
sup
ϕ≥0

∫ b

a

K(x, y)ϕ(x)dx

)
dy

=

∫ d

c

(∫ b

a

Kp(x, y)dx

)1/p

dy.

For p = 1 we have even equality in (5.2) because of the Fubini theorem, so the
proof is complete. �

Next we shall consider a special case of Example 17, which is useful, e.g.,
when working with mixed-norm Lp spaces and we need some estimate replacing
the Fubini theorem. More exactly, we put

K(x, y) =

{
k(x, y)Ψ(y)Ψ

1/p
0 (x), a ≤ y ≤ x,

0 , x < y ≤ b,

where k(x, y),Ψ(y) and Ψ0(x) are measurable so that Minkowski’s integral in-
equality (5.2) can be used. Under this assumption we have the following:

Example 18 (Minkowski’s integral inequality of Fubini type). If p ≥ 1,−∞ ≤ a <
b ≤ ∞, then (∫ b

a

(∫ x

a

k(x, y)Ψ(y)dy

)p

Ψ0(x)dx

)1/p

≤
∫ b

a

(∫ b

y

kp(x, y)Ψ0(x)dx

)1/p

Ψ(y)dy.

(5.3)

Remark 5.2. With the same proof as above we can also formulate more general
forms of the estimates (5.2) and (5.3) by replacing the measures dx and dy by
general measures dμ(x) and dμ(y), respectively, and thus, e.g., also cover cases
with double sums instead of double integrals.
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In particular, we have the following discrete variant of (5.3):

Example 19. Let p ≥ 1 and let {ak�}∞,∞
k,�=1, {bk}∞k=1 and {ck}∞k=1 be positive se-

quences. Then ( ∞∑
k=1

(
k∑

�=1

ak�b�

)p

ck

)1/p

≤
∞∑
�=1

( ∞∑
k=�

apk�ck

)1/p

b�. (5.4)

Remark 5.3. In the same way we can prove the following associate variants of (5.3)
and (5.4): (∫ b

a

(∫ b

x

k(x, y)Ψ(y)dy

)p

Ψ0(x)dx

)1/p

≤
∫ b

a

(∫ y

a

kp(x, y)Ψ0(x)dx

)1/p

Ψ(y)dy,

respectively, ( ∞∑
k=1

( ∞∑
�=k

ak�b�

)p

ck

)1/p

≤
∞∑
�=1

(
�∑
1

apk�ck

)1/p

b�.

6. Some classical inequalities (by Hardy, Carleman and
Pólya–Knopp) via convexity

The main information in this and the next section is mainly taken from the recent
paper [27] (cf. also [26]) by L.E. Persson and N. Samko. But the formulation of
some crucial results are different and put to this more general frame.

Example 20 (Hardy’s inequality (continuous form)). If f is non-negative and p-
integrable over (0,∞), then∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx, p > 1. (6.1)

Example 21 (Hardy’s inequality (discrete form)). If {an}∞1 is a sequence of non-
negative numbers, then

∞∑
n=1

(
1

n

n∑
n=1

ai

)p

≤
(

p

p− 1

)p ∞∑
n=1

apn, p > 1. (6.2)

Remark 6.1. The dramatic more than 10 years period of research until Hardy
stated in 1920 (see [10]) and proved in 1925 (see [11]) his inequality (6.1) was
recently described in [19]. It is historically clear that Hardy’s original motivation
when he discovered his inequalities was to find a simple proof of Hilbert’s double
series inequality, so first he even only considered the case p = 2.
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Remark 6.2. It is clear that (6.1)⇒ (6.2), which can be seen by applying (6.1) with
step functions. This was pointed out to Hardy in a private letter from F. Landau
already in 1921 and here Landau even included a proof of (6.2).

Example 22 (Carleman’s inequality). If {an}∞1 is a sequence of positive numbers,
then ∞∑

n=1

n
√
a1 · · · an ≤ e

∞∑
n=1

an. (6.3)

Remark 6.3. This inequality was proved by T. Carleman in 1922 (see [8]) in con-
nection to this important work on quasianalytical functions. Carleman’s idea of
proof was to find maximum of

∑n
i=1(a1 · · · ai)1/i under the constraint

∑n
i=1 ai =

1, n ∈ Z+. However, (6.3) is in fact a limit inequality (as p→∞) of the inequalities
(6.2) according to the following:

Replace ai with a
1/p
i in the Hardy discrete inequality (6.2) and we obtain

that
∞∑

n=1

(
1

n

n∑
n=1

a
1/p
i

)p

≤
(

p

p− 1

)p ∞∑
n=1

an, p > 1.

Moreover, when p→∞ we have that(
1

n

n∑
i=1

a
1/p
i

)p

→
(

n∏
i=1

ai

)1/n

and

(
p

p− 1

)p

→ e.

In view of the fact that Carleman and Hardy had a direct cooperation at
that time (see, e.g., [9]) it is maybe a surprise that Carleman did not mention this
fact and simpler proof in his paper.

Example 23 (The Pólya–Knopp inequality). If f is a positive and integrable func-
tion on (0,∞), then∫ ∞

0

exp

(
1

x

∫ x

0

ln f(y)dy

)
dx ≤ e

∫ ∞

0

f(x)dx. (6.4)

Remark 6.4. Sometimes (6.4) is referred to as the Knopp inequality with reference
to his 1928 paper [17]. But it is clear that it was known before and in his 1925
paper [11] Hardy informed that G. Pólya had pointed out the fact that (6.4) is in
fact a limit inequality (as p→∞) of the inequality (6.1) and the proof is literally
the same as that above that (6.2) implies (6.3), see Remark 6.3. Accordingly,
nowadays (6.4) is many times referred to as the Pólya–Knopp inequality and we
have adopted this terminology.

All inequalities above are sharp, i.e., the constants in the inequalities can not
be replaced by any smaller constants.

In particular, the discussion above shows that indeed all the inequalities (6.1)–
(6.4) are proved as soon as (6.1) is proved. Our next aim is to present a really simple
(“miracle”) proof of this inequality via convexity, but first we need the following:
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Basic observation 6.5. We note that for p > 1 it yields that∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ ∞

0

fp(x)dx, (6.5)

⇔∫ ∞

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ 1 ·

∫ ∞

0

gp(x)
dx

x
, (6.6)

where f(x) = g(x1−1/p)x−1/p. In fact, consider (6.5) (= (6.1)) and we find that:(
p

p− 1

)p ∫ ∞

0

fp(x)dx =

(
p

p− 1

)p ∫ ∞

0

gp(x1−1/p)
dx

x

=

(
p

p− 1

)p+1 ∫ ∞

0

gp(y)
dy

y
,

and∫ ∞

0

(
1

x

∫ x

0

g(t1−1/p)t−1/pdt

)p

dx =

(
p

p− 1

)p ∫ ∞

0

(
1

x

∫ x1−1/p

0

g(s)ds

)p

dx

=

(
p

p− 1

)p+1 ∫ ∞

0

(
1

y

∫ y

0

g(s)ds

)p
dy

y
,

which proves this statement.

According to the Basic observation 6.5 we have proved (6.1) (and thus also
(6.2)–(6.4)) as soon as (6.6) is proved and here is the (“miracle”) proof of (6.1):
By Jensen’s inequality and Fubini’s theorem we have that∫ ∞

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤

∫ ∞

0

(
1

x

∫ x

0

gp(y)dy

)
dx

x

=

∫ ∞

0

gp(y)

∫ ∞

y

dx

x2
dy =

∫ ∞

0

gp(y)
dy

y
.

(6.7)

Remark 6.6. Since the function Φ(u) = up is convex also when p < 0 this simple
proof shows that (6.1) in fact also holds for p < 0, a fact which was not noted by
Hardy himself.

Remark 6.7. In 1927 G.H. Hardy himself (see [12]) proved the first weighted version
of his inequality (6.1) namely the following: The inequality∫ ∞

0

(
1

x

∫ x

0

f(y)dy

)p

xadx ≤
(

p

p− 1− a

)p ∫ ∞

0

fp(x)xadx (6.8)

holds for all measurable and non-negative functions f on (0,∞) whenever a <
p− 1, p ≥ 1.

Hardy obviously believed that this was a generalization of (6.1) but, in fact,
by making the substitution

f(t) = g(t
p−1−α

p )t−
1+α
p
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and calculations like in the Basic observation 6.5 we see that also (6.8) for any
considered α is equivalent to (6.6).

Remark 6.8. There exists also an associate variant of (6.8), namely the following:∫ ∞

0

(
1

x

∫ ∞

x

f(y)dy

)p

xα0dx ≤
(

p

α0 + 1− p

)p ∫ ∞

0

fp(x)xα0dx, (6.9)

which holds for all measurable and non-negative functions on (0,∞) whenever α0 >
p− 1, p ≥ 1. In fact, also this inequality is equivalent to the basic inequality (6.6)
so, in particular, (6.8) and (6.9) are equivalent (with the relation α0 = −α−2+2p
as we will see later on). Moreover, since the function Φ(u) = up is convex also for
p < 0 it yields that

a) (6.8) holds also in the case p < 0, α > p− 1,
b) (6.9) holds also in the case p < 0, α0 < p− 1,

and these inequalities are equivalent also then.
Finally, we note that since the function Φ(u) = up is concave for 0 < p < 1

it yields that (6.8) and (6.9) hold in the reversed direction for 0 < p < 1 with the
same restrictions on α and α0.

This important remark is a special case of a more general statement (Propo-
sition 7.3) proved and discussed in detail in our next section.

7. More Hardy type inequalities via convexity

The same convexity argument as that in the proof (see (6.7)) of the basic inequality
(6.6) shows that we have the following more general statement:

Example 24. Let f be a measurable function on R+ and let Φ be a convex function
on Df = {f(x)}. Then∫ ∞

0

Φ

(
1

x

∫ x

0

f(y)dy

)
dx

x
≤

∫ ∞

0

Φ
(
f(x)

)dx
x
. (7.1)

If Φ instead is positive and concave, then the reversed inequality holds.
In fact, by Jensen’s inequality and Fubini’s theorems we have that∫ ∞

0

Φ

(
1

x

∫ x

0

f(y)dy

)
dx

x
≤

∫ ∞

0

∫ x

0

Φ(f(y))dy
dx

x2

=

∫ ∞

0

Φ(f(y))

∫ ∞

y

1

x2
dx dy =

∫ ∞

0

Φ(f(y))
dy

y
.

If Φ is concave, then the only inequality holds in the reverse direction.

Example 25. Consider the convex function Φ(u) = eu and replace f(y) with
ln f(y). Then (7.1) reads∫ ∞

0

exp

(
1

x

∫ x

0

ln f(y)dy

)
dx

x
≤

∫ ∞

0

f(x)
dx

x
. (7.2)
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By now making the substitution f(x) = xg(x) we transform (7.2) to the inequality∫ ∞

0

exp

(
1

x

∫ x

0

ln g(y)dy

)
dx ≤ e

∫ ∞

0

g(x)dx,

i.e., we obtain another proof of the Pólya–Knopp inequality (6.4) without going
via the limit argument mentioned in the Remark 6.4.

It is also known that the Hardy inequality (6.1) holds for finite intervals, e.g.,
that ∫ �

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ �

0

fp(x)dx, p > 1, (7.3)

holds for any �, 0 < � ≤ ∞, and the constant
(

p
p−1

)p

is still sharp also for � <∞.

But the inequality (7.3) can be improved to the following:∫ �

0

(
1

x

∫ x

0

f(y)dy

)p

dx ≤
(

p

p− 1

)p ∫ �

0

fp(x)

[
1−

(x
�

) p−1
p

]
dx, (7.4)

where p > 1 or p < 0.
This fact is a special case of the more general result (Proposition 7.3) we next

aim to prove and discuss. As a preparation of independent interest we first state
the following generalization of our previous basic inequality (6.6):

Lemma 7.1. Let g be a non-negative and measurable function on (0, �), 0 < � ≤ ∞.

a) If p < 0 or p ≥ 1, then∫ �

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ 1 ·

∫ �

0

gp(x)
(
1− x

�

) dx

x
. (7.5)

(In the case p < 0 we assume that g(x) > 0, 0 < x ≤ �.)
b) If 0 < p ≤ 1, then (7.5) holds in the reversed direction.
c) The constant C = 1 is sharp in both a) and b).

Proof. By using Jensen’s inequality with the convex function Φ(u) = up, p ≥ 1 or
p < 0, and reversing the order of integration, we find that∫ �

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤

∫ �

0

1

x

∫ x

0

gp(y)dy
dx

x
=

∫ �

0

gp(y)

(∫ �

y

1

x2
dx

)
dy

=

∫ �

0

gp(y)

(
1

y
− 1

�

)
dy =

∫ �

0

gp(y)
(
1− y

�

) dy

y
.

The only inequality in this proof holds in the reversed direction when 0 < p ≤ 1
so the proof of b) follows in the same way.

Concerning the sharpness of the inequality (7.5) we first let � < ∞ and
assume that ∫ �

0

(
1

x

∫ x

0

g(y)dy

)p
dx

x
≤ C ·

∫ �

0

gp(x)
(
1− x

�

) dx

x
(7.6)
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for all non-negative and measurable functions g on (0, �) with some constant C, 0 <
C < 1. Let p ≥ 1 and ε > 0 and consider gε(x) = xε (for the case p < 0 we assume
that −1 < ε < 0). By inserting this function into (7.6) we obtain that

C ≥ (εp+ 1)(ε+ 1)−p,

so that, by letting ε→ 0+ we have that C ≥ 1. This contradiction shows that the
best constant in (7.5) is C = 1. In the same way we can prove that the constant
C = 1 is sharp also in the case b). For the case � = ∞ the sharpness follows
by just making a limit procedure with the result above in mind. The proof is
complete. �

Remark 7.2. For the case � = ∞ (7.5) coincides with the basic inequality (6.6)
and, thus, the constant C = 1 is sharp, which, in its turn, implies the well-known

fact that the constant C =
(

p
p−1

)p

in Hardy’s inequality (6.1) is sharp for p > 1

and as we see above this holds also for p < 0.

Moreover, since also the weighted variants (6.8) and (6.9) are equivalent to
the basic inequality (6.6) via substitutions we conclude that also these constants
are sharp in all considered cases.

We are now ready to formulate our main result in this section.

Proposition 7.3. Let 0 < � ≤ ∞, �0 = 1/�, a, a0 ∈ R and let p ∈ R \ {0} be a fixed
number and f be a non-negative function.

a) Let f be a measurable function on (0, �]. Then∫ �

0

(
1

x

∫ x

0

f(y)dy

)p

xadx

≤
(

p

p− 1− a

)p ∫ �

0

fp(x)xa

[
1−

(x
�

) p−a−1
p

]
dx

(7.7)

holds for the following cases:

a1) p ≥ 1, a < p− 1,
a2) p < 0, a > p− 1.

b) For the case 0 < p < 1, a < p − 1, inequality (7.7) holds in the reversed
direction in both cases a1) and a2).

c) Let f be a measurable function on [�,∞). Then∫ ∞

�0

(
1

x

∫ ∞

x

f(y)dy

)p

xa0dx

≤
(

p

a0 + 1− p

)p ∫ ∞

�0

fp(x)xa0

[
1−

(
�0
x

) a0+1−p

p

]
dx

(7.8)

holds for the following cases:

c1) p ≥ 1, a0 > p− 1,
c2) p < 0, a0 < p− 1.
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d) For the case 0 < p ≤ 1, a0 > p − 1 inequality (7.8) holds in the reversed
direction in both cases c1) and c2).

e) All inequalities above are sharp.

f) Let p ≥ 1 or p < 0. Then, the inequalities (7.7) and (7.8) are equivalent for
all permitted a and a0 because they are in all cases equivalent to (7.5) via
substitutions.

g) Let 0 < p < 1. Then, the reversed inequalities (7.7) and (7.8) are equivalent
for all permitted a and a0.

Remark 7.4. The formal relation between the parameters a and a0 is that a =
2p− a0 − 2, but this is not important according to f) and g).

Proof. First we prove that (7.7) in the case (a1) in fact is equivalent to (7.5) via
the relation

f(x) = g
(
x

p−a−1
p

)
x− a+1

p .

In fact, with f(x) = g
(
x

p−a−1
p

)
x− a+1

p and �0 = �
p

p−a−1 , in (7.7) we get that

(
p

p− 1− a

)p ∫ �0

0

gp
(
x

p−a−1
p

)[
1−

(
x

�0

) p−1−a
p

]
dx

x

=

(
p

p− 1− a

)p+1 ∫ �
p−a−1

p

0

gp(y)

⎡⎣1− y

�
p−1−a

p

0

⎤⎦ dy

y

=

(
p

p− 1− a

)p+1 ∫ �

0

gp(y)
[
1− y

�

] dy

y
,

where y = x
p−a−1

p , dy = x− a+1
p

(
p−1−a

p

)
dx, and∫ �0

0

(
1

x

∫ x

0

g
(
y

p−a−1
p

)
y−

a+1
p dy

)p

xadx

=

(
p

p− 1− a

)p ∫ �0

0

⎛⎝ 1

x
p−a−1

p

∫ x
p−a−1

p

0

g(s)ds

⎞⎠p

dx

x

=

(
p

p− 1− a

)p+1 ∫ �

0

(
1

y

∫ y

0

g(s)ds

)p
dy

y
.

Since we have only equalities in the calculations above we conclude that (7.5) and
(7.7) are equivalent and, thus, by Lemma 7.1, a) is proved for the case (a1).

For the case (a2) all calculations above are still valid and, according to Lemma
7.1, (7.5) holds also in this case and a) is proved also for the case (a2).

For the case 0 < p ≤ 1, a < p − 1, all calculations above are still true and
both (7.5) and (7.7) hold in the reversed direction according to Lemma 7.1. Hence
also b) is proved.
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For the proof of c) we consider (7.7) with f(x) replaced by f(1/x), with a
replaced by a0 and with � replaced by �0 = 1/� :∫ �0

0

(
1

x

∫ x

0

f(1/y)dy

)p

xa0dx

≤
(

p

p− 1− a0

)p ∫ �0

0

fp(1/x)xa0

[
1−

(
x

�0

) p−a0−1
p

]
dx.

(7.9)

Moreover, by making first the variable substitution x = 1/s and after that y = 1/x,
we find that left-hand side of (7.9) is equal to∫ �0

0

(
1

x

∫ ∞

1/x

f(s)

s2
ds

)p

xa0dx =

∫ ∞

�

(
y

∫ ∞

y

f(s)

s2
ds

)p

y−a0−2dy

=

∫ ∞

�

(
1

y

∫ ∞

y

f(s)

s2
ds

)p

y−a0−2+2pdy

[Put f(s)
s2 = g(s)]

=

∫ ∞

�

(
1

y

∫ ∞

y

gp(y)

)p

y2p−a0−2dy,

and, by using the substitution y = 1/x, we obtain that right-hand side of (7.9) is
equal to (

p

p− 1− a0

)p ∫ ∞

�

fp(y)y−a0

[
1−

(
�

y

) p−a0−1
p

]
y−2dy

=

(
p

p− 1− a0

)p ∫ ∞

�

gp(y)y2p−a0−2

[
1−

(
�

y

) p−a0−1

p

]
dy.

Now replace 2p−a0−2 by a and g by f and we have that a0 = 2p−a−2, p−1−a0 =
a+ 1− p. Hence, it yields that∫ ∞

�

(
1

x

∫ ∞

x

f(s)ds

)p

xadx ≤
(

p

a+ 1− p

)p ∫ ∞

�

fp(x)xa

[
1−

(
�

x

) a+1−p
p

]
dx

and, moreover,

a0 < p− 1⇔ 2p− a− 2 < p− 1⇔ a > p− 1.

By changing notation and using the symmetry between the parameters, we find
that c) with the conditions (c1) and (c2) are in fact equivalent to a) with the
conditions (a1) and (a2), respectively, and also c) is proved. (The formal relation
between the parameters is a = 2p− a0 − 2 and �0 = 1/�.)

The calculations above hold also in the case d) and the only inequality holds
in the reversed direction in this case so also d) is proved.

Finally, we note that the proof above only consists of suitable substitutions
and equalities to reduce all inequalities to the sharp inequality (7.5), or the reversed
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inequality (7.5), and we obtain a proof also of the statements e) and f) according
to Lemma 7.1. The proof is complete. �

8. Some further results and final remarks

Remark 8.1. Our presented simple convexity technique to prove powerweighted
Hardy inequalities can be useful for several generalizations. We only present here
the following generalization of our fundamental inequality (7.5) for the case of
piecewise-constant p(x) :

Example 26. Let

p(x) =

{
p0, 0 ≤ x ≤ 1,

p1, x > 1,
(8.1)

where p0, p1 ∈ R \ {0}. Let 0 < � ≤ ∞, and let p(x) be defined by (8.1). Then, for
every non-negative and measurable function f,∫ �

0

(
1

x

∫ x

0

f(t)dt

)p(x)
dx

x
≤ 1 ·

∫ �

0

(f(x))p(x)
(
1− x

�

) dx

x
(8.2)

+ max

{
0, 1− 1

�

}∫ 1

0

[(f(x))p1 − (f(x))p0 ] dx,

whenever p(x) ≥ 1 or p(x) < 0 (for the case p(x) < 0 we also assume that
f(x) > 0.)

For the case 0 < p(x) < 1 inequality (8.2) holds in the reversed direction.
The constant C = 1 in front of the first integral is sharp.

Remark 8.2. The proof of this and more general statements of this type can be
found in [27]. Note that for the case p0 = p1 = p (8.2) coincides with (7.5).
Hence, our inequality (8.2) is a genuine generalization not only of (7.5) but also
of all Hardy type inequalities we have derived from (7.5) in this paper (see, e.g.,
Proposition 7.3).

Remark 8.3. We have already mentioned that convexity was very important when
modern interpolation theory was initiated (see Example 2 and [7]). Hence, it is
not surprising that interpolation theory is also very important tool when proving
inequalities. The main aim of [25] is to illustrate and develop this close connec-
tion between Convexity, Interpolation and Inequalities. Here we just mention the
following example:

Example 27 (Young’s integral inequality). Consider the convolution operator T
defined by

Tf(x) =

∫ +∞

−∞
k(x− y)f(y)dy = k ∗ f(x).

If k ∈ Lr = Lr(−∞,+∞) and f ∈ Lp = Lp(−∞,+∞), where 1 < p < r′ =
r/(r − 1), then k ∗ f ∈ Lq, where 1/q + 1/p− 1/r′ and

‖k ∗ f‖Lq ≤ ‖k‖Lr‖f‖Lp . (8.3)



Inequalities and Convexity 303

Proof. By our variant of Minkowski’s inequality we have that

‖Tf‖Lr ≤ ‖k‖Lr‖f‖L1

and, by Hölder’s inequality,

‖Tf‖L∞ ≤ ‖k‖Lr‖f‖Lr′ .

This means that T : L1 → Lr and T : Lr′ → L∞ with norm ‖k‖Lr in both
cases. By interpolating between these two situations with the usual relation for
the parameters in intermediate spaces we obtain (8.3) and the proof is complete
(cf. [7], p. 6). �
Remark 8.4. Note that this argument of proof does not work for the case r = 1
(so that p = q) but this limit case holds also, which can be seen by just using a
direct convexity argument.

Example 28. If f ∈ Lp, 1 ≤ p ≤ ∞, and g ∈ L1, then f ∗ g ∈ Lp and, moreover,

‖f ∗ g‖Lp ≤ ‖g‖L1‖f‖Lp.

Proof. We shall prove that(∫ +∞

−∞

∣∣∣∣∫ +∞

−∞
f(y)g(x− y)dy

∣∣∣∣p dx
)1/p

≤
∫ +∞

−∞
|g(x)|dx

(∫ +∞

−∞
|f(x)|pdx

)1/p

.

The cases p = 1 and p = ∞ are trivial so we assume that 1 < p < ∞. First we
note that, by Hölder’s inequality, for each x ∈ R we have that

|f ∗ g(x)| =
∣∣∣∣∫ +∞

−∞
f(y)g(x− y)dy

∣∣∣∣ ≤ ∫ +∞

−∞
|f(y)||g(x− y)|1/p|g(x− y)|1/p

′
dy

≤
(∫ +∞

−∞
|f(y)|p|g(x− y)|dy

)1/p (∫ +∞

−∞
|g(x− y)|dy

)1/p′

.

We now take the Lp norm of both sides and use Fubini’s theorem to obtain
that

‖f ∗ g‖Lp ≤ (‖g‖L1)
1/p′

(∫ +∞

−∞
|f(y)|p

(∫ +∞

−∞
|g(x− y)|dx

)
dy

)1/p

= (‖g‖L1)
1/p′

(‖g‖L1)
1/p

(∫ +∞

−∞
|f(y)|pdy

)1/p

= ‖g‖L1‖f‖Lp. �

Remark 8.5. We claim that also a number of other classical and new inequalities
can be derived and understood in this uniform way via convexity and interpolation.
For further information concerning this we refer to [25].

We shall finish this section by shortly discussing the possibility to change the
concept of convexity a little and thus be able to prove some refined versions of
classical inequalities.

In this connection we mention that the following concept of super-quadratic
(sub-quadratic) function was introduced in 2004 by S.Abramovich et al. in [2]:
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Definition 8.6. [2, Definition 2.1]. A function ϕ : [0,∞) → R is superquadratic
provided that for all x ≥ 0 there exists a constant Cx ∈ R such that

ϕ(y)− ϕ(x) − ϕ (|y − x|) ≥ Cx (y − x)

for all y ≥ 0.
We say that f is subquadratic if −f is superquadratic.

Remark 8.7. It is easy to see that the function f(u) = up is super-quadratic for
p ≥ 2 and sub-quadratic for 1 < p ≤ 2.

In the paper [2] the authors proved the following remarkable refinement of
Jensen’s inequality for super-quadratic functions:

Theorem 8.8. Let (Ω, μ) be a measure space with μ(Ω) = 1. The inequality

ϕ

(∫
Ω

f(s)dμ(s)

)
≤

∫
Ω

ϕ(f(s))dμ(s)−
∫
Ω

ϕ

(∣∣∣∣f(s)− ∫
Ω

f(s)dμ(s)

∣∣∣∣) dμ(s) (8.4)

holds for all probability measures μ and all nonnegative μ-integrable functions f if
and only if ϕ is super-quadratic. Moreover, (8.4) holds in the reversed direction if
and only if ϕ is sub-quadratic.

In view of Remark 8.7 we have the following important special case of The-
orem 8.8:

Example 29. Let (Ω, μ) be a measure space with μ(Ω) = 1. If p ≥ 2, then(∫
Ω

f(s)dμ(s)

)p

≤
∫
Ω

(f(s))pdμ(s)−
∫
Ω

∣∣∣∣f(s)− ∫
Ω

f(s)dμ(s)

∣∣∣∣p dμ(s) (8.5)

holds and the reversed inequality holds when 1 < p ≤ 2 (see also [1, Example 1,
p. 1448]).

By now using the same technique as in our previous sections but with this
refined Jensen inequality (see Example 29) we can obtain for example the following
refined Hardy type inequalities (the details in the calculations can be found in the
paper [24] by J. Oguntuase and L.E. Persson).

Example 30. Let p > 1, k > 1, 0 < b ≤ ∞, and let the function f be locally

integrable on (0, b) such that 0 <
b∫
0

xp−kfp(x)dx <∞.

(i) If p ≥ 2, then∫ b

0

x−k

(∫ x

0

f(t)dt

)p

dx+
k − 1

p

∫ b

0

∫ b

t

∣∣∣ p

k − 1

(
t

x

)1−k−1
p

f(t)

− 1

x

∫ x

0

f(t)dt
∣∣∣p · xp−k− k−1

p dxt
k−1
p −1dt

≤
(

p

k − 1

)p ∫ b

0

[
1−

(x
b

)k−1
p

]
xp−kfp(x)dx.

(8.6)

(ii) If 1 < p ≤ 2, then inequality (8.6) holds in the reversed direction.
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Remark 8.9. Note that (8.6) with b = ∞ means that if p ≥ 2, then the classical
Hardy inequality for k > 1 can be refined by adding a second term on the left-hand
side. In fact, this factor is so big that the inequality holds in the reversed direction
for 1 < p ≤ 2 so that, in particular, for p = 2 we have the following identity:∫ ∞

0

x−k

(∫ x

0

f(t)dt

)2

dx+
k − 1

2

∫ ∞

0

∫ ∞

t

( 2

k − 1

(
t

x

)1− k−1
2

f(t)

− 1

x

∫ x

0

f(t)dt
)2

· x2−k− k−1
2 dxt

k−1
2 −1dt =

(
2

k − 1

)2 ∫ ∞

0

x2−kf2(x)dx.

Remark 8.10. As we have seen the “normal” behaviour in Hardy type inequalities
is that the natural “breaking point” (the point where it reverses) is p = 1 but in
the refined Hardy inequality (8.6) the “breaking point” is p = 2. Further research
in this direction can be found in recent papers by S. Abramovich and the present
authors (see [3], [4] and [5]).
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On a Question by M. Seidel and
the Answer by D. Dragičević et al.

Steffen Roch

Dedicated to Prof. António Ferreira dos Santos

Abstract. According to [1], Markus Seidel asked whether certain homomor-
phisms which identify local algebras can be also viewed as lifting homomor-
phisms. The authors of [1] give an affirmative answer in the context of concrete
Banach algebras. The purpose of this short note is to show that this question
always has an affirmative answer, with the meaning of “always” explained
below.

Mathematics Subject Classification (2010). Primary 65R20; Secondary 46L99,
47N40.

Keywords. Lifting theorem, central localization, strong limit homomorphism.

Introduction. To keep the paper simple and short, we consider the Hilbert space
setting only. In principle, all notions can be adapted to the setting of separable
reflexive Banach spaces as well, and the basic arguments remain valid in this
context.

Given a sequence of separable Hilbert spaces Hn with identity operators In,
write F for the set of all bounded sequences (An)n∈N of operators An ∈ L(Hn).
Provided with pointwise defined operations and the supremum norm, F becomes
a C∗-algebra, and the set G of all sequences (Gn) ∈ F with ‖Gn‖ → 0 is a closed
ideal of F . A basic task of numerical analysis is, for a given unital C∗-subalgebra
A of F which contains G, to examine the stability of sequences (An) in A or,
equivalently, the invertibility of the coset (An) + G in F/G.

This task is usually performed in two steps: a lifting step, which provides us
with a C∗-subalgebra FJ of F which contains A, and with a closed ideal J of FJ

which contains G, such that the invertibility of a coset (An) + J can be lifted by
a family of lifting homomorphisms and such that the quotient FJ /J possesses a
sufficiently large C∗-algebra C in its center, and a second, localization, step where
localization over C is employed in order to study invertibility in FJ /J . The basic
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tools of these steps, the lifting theorem and the local principle by Allan–Douglas,
are briefly described in the following paragraphs.

A basic technical ingredient employed in both steps are strong limit homo-
morphisms. These are defined in terms of a sequence E := (En) of isometries En

on Hn with values in an Hilbert space HE, i.e., it is E∗
nEn = In, and we assume

that the projections EnE
∗
n converge strongly to the identity operator IE on HE .

Note that the latter requirement ensures the separability of HE . Let FE be the
set of all sequences A = (An) in F for which the limits

WE(A) := s-limEnAnE
∗
n and s-limEnA

∗
nE

∗
n

exist in the strong operator topology (in which case we call (EnAnE
∗
n) a

∗-strongly
convergent sequence). Then FE is a closed unital subalgebra of F , WE is a unital
∗-homomorphism from FE to L(HE), and the set

J E := {(E∗
nKEn +Gn) : K ∈ L(HE) compact, (Gn) ∈ G}

is a closed ideal of FE .

Lifting. Let now {Et}t∈T be a family of sequences Et = (Et
n) of isometries as

above and with the additional property that

Es
n(E

t
n)

∗ → 0 weakly as n→∞ whenever s �= t. (1)

For t ∈ T , we put Wt := WEt

and Jt := J Et

, We further set FT := ∩t∈TFEt

and write JT for the smallest closed ideal of FT which contains all ideals Jt with
t ∈ T . The condition (1) implies that Js ∩ Jt = G whenever s �= t (use Theorem
5.51 in [2]). We therefore refer to (1) as the ideal separation condition.

Theorem 1 (Lifting theorem). (Theorems 5.37 and 5.51 in [2]). Let the family
{Et}t∈T satisfy the ideal separation condition (1). Then a sequence A ∈ FT is
stable if and only if the operators Wt(A) are invertible for every t ∈ T and if the
coset A+ JT is invertible in FT /JT .

Localization. Let A be a closed unital C∗-subalgebra of F . In many circumstances,
one is able to find a family {Et}t∈T of sequences of isometries which satisfy the
ideal separation condition (1) and for which

• A ⊆ FT and
• the quotient algebra (A+ JT )/JT has a non-trivial center C.

In this setting, it is an evident idea to use central localization in order to study
the invertibility of a coset A+JT in (A+JT )/JT (equivalently, in FT /JT ). The
context of the general central localization theorem by Allan and Douglas is as
follows. We are given a unital C∗-algebra B and a C∗-subalgebra C of the center of
B which contains the unit element. For every maximal ideal s of the commutative
C∗-algebra C, let Is denote the smallest closed ideal of B which contains s, and
write Φs for the canonical homomorphism from B to B/Is. In this context the
following holds.
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Theorem 2 (Allan–Douglas). An element b ∈ B is invertible in B if and only if
Φs(b) is invertible in B/Is for every maximal ideal s of C.

The question. Applying the local principle in order to study invertibility in (A+
JT )/JT requires to study the local algebras ((A + JT )/JT )/Is, where s ∈ S, the
maximal ideal space of C. We suppose that this can be done again by a family of
strong limit homomorphisms {F s}s∈S , i.e., for every s ∈ S, there is a sequence
F s = (F s

n) of isometries such that

• A+ JT ⊆ FF s

, JT ⊆ kerWF s

, and
• the quotient mapping WF s

/JT : A + JT �→ WF s

(A) has the ideal Is in
its kernel, and the quotient mapping (WF s

/JT )/Is is injective on ((A +
JT )/JT )/Is (thus, a coset (A + JT ) + Is in ((A + JT )/JT )/Is is invertible
if and only if the operator WF s

(A) in invertible on HF s

).

We thus have two families of strong limit homomorphisms: one which provides
us with the lifting mechanism, and one which identifies local algebras. Markus
Seidel’s question was if one can include both families into a large family which
still satisfies the conditions of the lifting theorem, and how this would affect the
structure of the local algebras.

The answer. We formulate the first part of Seidel’s question in a slightly more
general way. Suppose we are given two families of strong limit homomorphisms:
one defined by a family {Et}t∈T of sequences of isometries which satisfies the ideal
separation condition (1), and one by a family {F s}s∈S of sequences of isometries
with JT ⊆ kerWF s

for all s which satisfies the following point separation condition

• for every pair of distinct points s1, s2 ∈ S, there is a sequence A ∈ A such
that WF s1

(A) = I and WF s2
(A) = 0.

It is clear that a family which allows identification of the local algebras satisfies
this condition (the algebra of the Gelfand transforms of a commutative C∗-algebra
separates the points of the maximal ideal space).

The only thing we have to check is if the family {Et}t∈T ∪ {F s}s∈S satisfies
the ideal separation condition (1). We employ the following elementary observation
for sequences (An), (Bn) of bounded linear operators:

1. If An → A strongly and Bn → B weakly, then BnAn → BA weakly.
2. If A∗

n → A∗ strongly and Bn → B weakly, then AnBn → AB weakly.
3. If An → 0 strongly and (Bn) is bounded, then BnAn → 0 strongly.

Let E = (En) and F = (Fn) be sequences in {Et}t∈T ∪ {F s}s∈S .

We distinguish between three cases.

Case 1: E, F ∈ {Et}t∈T . Then (1) holds by assumption.

Case 2: E ∈ {Et}t∈T and F ∈ {F s}s∈S. Then the ideal J E lies in kerWF

by assumption. Hence, FnE
∗
nKEnF

∗
n → 0 strongly for every compact operator K.

This implies the weak convergence of EnF
∗
n to zero as in the proof of Theorem

5.51 in [2]. Taking adjoints we get the weak convergence of FnE
∗
n to zero as well.
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Case 3: E, F ∈ {Fs}s∈S . By the point separation condition, there is a sequence
A = (An) such that EnAnE

∗
n → I and FnAnF

∗
n → 0 ∗-strongly. In particular,

with Yn := FnE
∗
n,

EnAnE
∗
n = En(F

∗
nFn)An(F

∗
nFn)E

∗
n = Y ∗

nFnAnF
∗
nYn → I (2)

∗-strongly. Since YnY
∗
n = FnE

∗
nEnF

∗
n = FnF

∗
n → I and FnAnF

∗
n → 0 ∗-strongly,

we conclude that YnY
∗
nFnAnF

∗
n → 0 ∗-strongly.

Suppose that Yn → Y weakly for some operator Y . From Observation 2 and
(2) we then conclude that YnY

∗
nFnAnF

∗
nYn → 0 weakly. On the other hand, we can

use Observation 3 to conclude from (2) that YnY
∗
nFnAnF

∗
nYn − Yn → 0 strongly.

Hence, Yn → 0 weakly. The same argument shows that whenever a subsequence
of (Yn) converges weakly, then it converges weakly to zero.

It remains to show that the sequence (Yn) indeed converges weakly to 0.
Suppose it does not. Then there are vectors x ∈ HE , y ∈ HF and an ε > 0 such
that |〈Ynk

x, y〉| ≥ ε for all elements in an (infinite) subsequence (Ynk
) of (Yn). A

standard diagonal argument yields that this subsequence has a weakly convergent
subsequence1, which then converges weakly to zero as shown before. Contradiction.

In particular, we have seen that the point separation property implies the
ideal separation property. Thus, whenever the combination of lifting theorem and
local principle makes sense, the first part of Seidel’s question has an affirmative
answer (the general answer to the second part is already in [1]).
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1Choose dense countable subsets HE ⊆ HE and HF ⊆ HF and let n 
→ (x(n), y(n)) be a

bijection from N onto HE × HF . Set Y
(0)
k := Ynk . For every n ≥ 1, choose a subsequence

(Y
(n)
k )k≥1 of (Y

(n−1)
k )k≥1 such that 〈Y (n)

k x(n), y(n)〉 converges as k → ∞. Set Zk := Y
(k)
k .

Then (Zk) is the desired subsequence.
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Abstract. We prove that all compact operators acting on Lp(R) belong to
the algebra generated by the operator of multiplication by the characteris-
tic function of the positive half-axis and by the convolution operators with
continuous generating function. This result, together with the similar clas-
sical result on the algebra generated by the operators of multiplication and
the singular integral operator, is then used to prove that certain ideals of
compact-like operator sequences in infinite products of Banach algebras are
included in the algebra generated by convolution and multiplication operators
and the finite section projection sequence.
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1. Introduction

In [10], we studied the finite sections method for operators which are composed
by operators of multiplication by a piecewise continuous function, operators of
(Fourier) convolution by a piecewise continuous Fourier multiplier, and by a certain
flip operator. This class of operators is extremely large; some prominent members
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of this class are Toeplitz plus Hankel operators on Hardy spaces Hp, and Wiener–
Hopf plus Hankel operators on Lebesgue spaces Lp. The techniques we used to
tackle the stability problem for these operators were of algebraic nature; for exam-
ple the stability of a sequence is equivalent to the invertibility of an associated ele-
ment in a suitably constructed Banach algebra (some details will be given below).

At some point in [10] we needed that certain sequences with very special
properties (the sequences of compact type, mentioned in the title of the paper)
belong to our algebra and form a closed ideal there. Roughly speaking, the only
reason why we needed these sequences was to be able to factor them out. That’s
why we decided not to spend much time with them; we just made our algebra a
little bit larger by including all desired and needed sequences by hand. Although
this practice was successful, we were not satisfied with it. The question remained
if the enlargement of the algebra was really necessary, or if the needed sequences
were already contained in the smaller original algebra.

Questions of this type occur frequently in operator theory and numerical
analysis. For a concrete example, suppose we are interested in the Fredholm theory
of singular integral operators aI + bS. Here I is the identity operator, a and b are
operators of multiplication by (say, continuous) functions, and S is the singular
integral operator

(SΓu)(x) :=
1

πi

∫
Γ

u(y)

y − x
dy, x ∈ Γ, (1.1)

with the integral understood in the sense of the Cauchy principal value. It is well
known that this operator is bounded on Lp(Γ) if 1 < p < ∞ and if Γ is the unit
circle T in the complex plane C or the real line R, for instance.

Since the Fredholm property of a bounded operator A on Lp(Γ) is equivalent
to its invertibility modulo the ideal of the compact operators on Lp(Γ), and since
invertibility problems are typically studied in algebras which should not be too
large, this leads naturally to the question: Is the ideal of the compact operators
contained in the smallest closed algebra which contains all operators aI + bS we
are interested in? In this setting, the answer is well known and turns out to be
YES, and the following is a (well-known) prototype of the results we will meet in
this paper.

Theorem 1.1. The ideal of the compact operators on Lp(Γ) is contained in the
smallest closed algebra which contains all singular integral operators aI + bS with
a, b continuous on Γ if Γ = T and continuous on the one point compactification of
Γ if Γ = R.

So we decided to tackle the above-mentioned problem again, and after some
efforts we were indeed able to show that the original algebra was already large
enough to include all needed sequences. On the way to this result we will encounter
a lot of results in the same spirit, both in the context of operator theory and of
numerical analysis.

Throughout this paper, we let 1 < p < ∞. Moreover, for a Banach space
X , we denote the Banach algebra of all bounded linear operators on X by B(X)
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and the set of the compact operators on X by K(X). If A is a non-empty subset
of B(X) then algA and clos algA stand for the smallest subalgebra and for the
smallest closed subalgebra of B(X) which contain all operators in A, respectively.

We are grateful to Peter Junghanns for stimulating discussions and for bring-
ing the reference [6] to our attention.

2. On the unit circle T

We start our tour on the unit circle T in the complex plane C. Let PT stand for
the algebra of all trigonometric polynomials on T. We write the elements of PT as

∞∑
r=−∞

frt
r, fr ∈ C,

where only a finite number of the fr do not vanish. Throughout what follows we
suppose that α ∈ R is such that

0 <
1

p
+ α < 1. (2.1)

Let Lp(T, α) denote the space of all Lebesgue-integrable functions f on T with

‖f‖Lp(T,α) :=

(∫
T

|f(t)|p|1− t|αp |dt|
)1/p

<∞.

Lemma 2.1. The following statements hold:

(i) PT is dense in Lp(T, α).
(ii) The operator

PT : PT → PT,

∞∑
r=−∞

frt
r �→

∞∑
r=0

frt
r

extends to a bounded linear operator on Lp(T, α).
(iii) Let m ∈ Z. The operator

MT
m : PT → PT,

∞∑
r=−∞

frt
r �→

∞∑
r=−∞

frt
r+m

extends to a bounded linear operator on Lp(T, α), the operator of multiplica-
tion by tm.

Assertions (i) and (ii) are taken from [2, 1.44 and 5.9], whereas (iii) is evident
since |tm| = 1. We denote the extensions of the operators in (ii) and (iii) by PT

and MT
m again and remark that ‖MT

m‖L(Lp(T,α)) = 1 for m ∈ Z.
For u, v ∈ PT, consider the operator

Ku,v : PT → PT, f �→ 〈f, u〉 v

where 〈f, u〉 :=
∫
T
f(t)u(t) |dt|.
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Lemma 2.2. Ku,v ∈ alg
{
PT,M

T
±1

}
for u, v ∈ PT.

Proof. It is sufficient to prove the assertion for u(t) = tk and v(t) = tl, with
k, l ∈ Z. For these u,v and for f ∈ PT, we have

Ku,vf = 〈f, u〉 v =
〈
f,MT

k 1
〉
MT

l 1 =
〈
MT

−kf,1
〉
MT

l 1

which implies that

Ku,v = MT
l K1,1M

T
−k = (MT

1 )
lK1,1(M

T
−1)

k, (2.2)

where 1 refers to the constant function t �→ 1 on T. Further,

K1,1 = PT −MT
1 PTM

T
−1. (2.3)

The identities (2.2) and (2.3) imply that Ku,v ∈ alg
{
PT,M

T±1

}
for all k, l ∈ Z,

whence the assertion follows. �

Since PT is dense in Lp(T, α) and in (Lp(T, α))∗ = Lq(T,−α), with 1/p +
1/q = 1, by Lemma 2.1, the operators Ku,v, with u, v ∈ PT, span a dense subset
of K(Lp(T, α)). So we conclude the following result from Lemma 2.2 (see also [1,
Lemma 8.23], where this result is proved in a more general setting).

Theorem 2.3. K(Lp(T, α)) ⊆ clos alg
{
PT,M

T
±1

}
= clos alg {PT, C(T)I}.

3. From T to R

Given p ∈ (1,∞), we now specify α := 1− 2/p. Note that then

1 < p <∞⇔ 0 < 1/p < 1⇔ 0 < 1− 1/p < 1⇔ 0 < 1/p+ α < 1

for this special value of α. Hence, the pair (p, α) satisfies (2.1). The basic obser-
vation to pass from T to R is given by the following lemma, whose proof can be
found in [5, Chapter 1, Theorem 5.1] and [7, page 56]. Similar operators (which
leave the natural orientations of R and T invariant, in contrast to the B±1 below)
are also used in [2, Section 9.1].

Lemma 3.1. The operator

B : Lp(R)→ Lp(T, α), (Bϕ)(t) :=
1

t− 1
ϕ

(
i
t+ 1

t− 1

)
(t ∈ T)

is bounded and invertible. Its inverse is given by

B−1 : Lp(T, α)→ Lp(R), (Bψ)(s) :=
2i

s− i
ψ

(
s+ i

s− i

)
(s ∈ R).

Assertion (i) of the following lemma is evident; assertion (ii) is proved in [7,
page 56], [5, Chapter 1, Theorem 5.2] and [1, pages 370–371], with the difference
that the authors of the first mentioned reference arrive at B−1STB = +SR (with
a plus sign). For that reason, we sketch the proof here.
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Lemma 3.2.

(i) B−1MT
mB =: MR

m is the operator of multiplication by the function s �→
( s+i
s−i )

m for every m ∈ Z;

(ii) B−1STB = −SR.

Proof. As already mentioned, we only prove the second assertion. First note that

(B−1STBϕ)(s) =
2i

πi(s− i)

∫
T

ϕ(ix+1
x−1 )

(x− 1)(x− s+i
s−i )

dx. (3.1)

We substitute ix+1
x−1 = t, respective x = t+i

t−i , and

dx

dt
=

(t− i)− (t+ i)

(t− i)2
=
−2i

(t− i)2
.

Note that if t moves on R from 0 to +∞, then x moves on T in the clockwise
direction. Since the standard orientation on T is the counter-clockwise one, this
gives a minus sign. Thus, (3.1) becomes

(B−1STBϕ)(s) =
−2

π(s− i)

∫
R

ϕ(t)

( t+i
t−i − 1)( t+i

t−i −
s+i
s−i )

−2i
(t− i)2

dt

=
4i

π(s− i)

∫
R

ϕ(t)

(t+ i− (t− i))
(
t+ i− (s+i)(t−i)

s−i

) dt
=

4i

π

∫
R

ϕ(t)

(t+ i− (t− i))((t+ i)(s− i)− (s+ i)(t− i))
dt

=
4i

π

∫
R

ϕ(t)

2i(is− it− it+ is)
dt

= − 1

iπ

∫
R

ϕ(t)

t− s
dt = −(SRϕ)(s). �

Corollary 3.3. With PΓ := (I + SΓ)/2 and QΓ := (I − SΓ)/2, one obtains

B−1PTB = QR, B−1QTB = PR.

The following is just a translation of the corresponding results on T stated
in Lemmas 2.1 and 2.2 and in Theorem 2.3.

Lemma 3.4.

(i) The set PR := B−1PT is dense in Lp(R).
(ii) For u, v ∈ PR the operator Ku,v : PR → PR, f �→ 〈f, u〉R v belongs to

alg
{
QR,M

R
±1

}
.

(iii) K(Lp(R)) ⊆ clos alg
{
QR,M

R
±1

}
.

Let J : Lp(R) → Lp(R) denote the flip operator (Jf)(t) := f(−t). It is well
known that

JPRJ = QR, JQRJ = PR (3.2)
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and easy to check that

(JMR
mJf)(s) =

(
−s+ i

−s− i

)m

f(s) =

(
s+ i

s− i

)−m

f(s),

whence
JMR

mJ = MR
−m for m ∈ Z. (3.3)

Summarizing Lemma 3.4 (iii) and (3.2)–(3.3) we arrive at the next stop of our
tour.

Theorem 3.5. K(Lp(R)) ⊆ clos alg
{
PR,M

R
±1

}
= clos alg

{
PR, C(Ṙ)

}
.

Here, Ṙ stands for the compactification of the real line by one point ∞.

4. From R to R by Fourier transform

The next step will lead us to a statement which can be viewed as the Fourier-
symmetric version of Theorem 3.5. We define the Fourier transform for functions
in the Schwartz space by

(Fu)(y) =

∫ ∞

−∞
e−2πiyxu(x) dx, y ∈ R. (4.1)

Then its inverse is given by

(F−1v)(x) =

∫ ∞

−∞
e2πixyv(y) dy, x ∈ R. (4.2)

It is well known that F and F−1 extend continuously to bounded and unitary
operators on the Hilbert space L2(R), which we denote by F and F−1 again.
Thus, if A is a bounded operator on L2(R), then the composition F−1AF is well
defined, and it is bounded on L2(R) again.

We call an operator A ∈ B(L2(R)) a p-Fourier multiplier if F−1AFu ∈ Lp(R)
whenever u ∈ L2(R) ∩ Lp(R) and there is a constant cp such that ‖F−1AFu‖p ≤
cp‖u‖p for all u ∈ L2(R) ∩ Lp(R). If A owns this property, then the composition
F−1AF extends continuously to a bounded operator on Lp(R). We denote this
extension by AF and call it the Fourier image of A. For some general facts on
these operators, see [10].

It is well known that PR and MR
±1 are p-Fourier multipliers for every p ∈

(1, ∞) (note that the functions s �→ ( s+i
s−i)

m have bounded total variation on R; so

they are Fourier multipliers by Stechkin’n inequality, see [2, 9.3 (e)]) and that PF
R

is the operator of multiplication by the characteristic function of [0,∞). It makes
thus sense to consider

alg
{
PF
R , (MR

±1)
F
}
= alg

{
χ

+I, (MR
±1)

F
}
.

By Lemma 3.4(ii), this algebra contains all operators KF
u,v with u, v ∈ PR (here

we only use the algebraic properties of the mapping A �→ AF ). Since

KF
u,vϕ = 〈Fϕ, u〉F−1v =

〈
ϕ, F−1u

〉
F−1v = KF−1u, F−1vϕ,
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it follows that KF
u,v = KF−1u,F−1v, and we conclude that

KF−1u,F−1v ∈ alg
{
χ

+I, (MR
±1)

F
}

for u, v ∈ PR. (4.3)

It would follow from this line that clos alg
{
χ

+I, (MR
±1)

F
}
contains all compact

operators if we would know that the linear span of
{
KF−1u,F−1v : u, v ∈ PR

}
is

dense in K(Lp(R)). This, on its hand, would be clear if we would know that F−1PR

is dense in Lp(R), for every p ∈ (1,∞). We are going to show this now.
Recall that PR = B−1PT is generated by the functions

s �→ 1

s− i

(
s+ i

s− i

)m

, m ∈ Z.

The inverse Fourier transforms of these functions can be calculated using residue
calculus (see the theorem in [9, Section 14.2.1]). What results is the known fact
that F−1PR consists of all functions of the form

r(t) =

{
e2πtp1(t) if t < 0

e−2πtp2(t) if t ≥ 0
(4.4)

where p1 and p2 are (algebraic) polynomials. The functions in (4.4) are dense in
L1(R) (see [4, Section I.8]). We need the same property for Lp(R) with p > 1. It
is clearly sufficient to prove this for the semi-axes considered separately.

Lemma 4.1. {e−atf(t) : f a polynomial} is dense in Lp(R+) for p > 1 and a > 0.

Proof. The result is essentially stated in [6]. The argument runs as follows. Rescal-
ing we can assume that a = 1. Because C∞

0 is dense in Lp(R+), it suffices to show
that every function in C∞

0 can be approximated in the Lp norm by functions of
the form e−tf(t) with f a polynomial. So let u ∈ C∞

0 . Then etu is still in C∞
0 . If

now Πn denotes the set of all polynomials of degree less than or equal to n then,
by [6, 2.5.32],

inf
p∈Πn

∥∥etu− f
∥∥
Lp(R+,e−t)

≤ Cw(etu, 1/
√
n), (4.5)

where w is a (certain) module of continuity introduced in [6]. Since∥∥etu− f
∥∥
Lp(R+,e−t)

=
∥∥(etu− f)e−t

∥∥
Lp(R+)

=
∥∥u− e−tp

∥∥
Lp(R+)

and w(etu, 1/
√
n) → 0 as n → ∞, the estimate (4.5) indeed implies the desired

density result. �
Corollary 4.2. The following holds for every p ∈ (1,∞):

(i) F−1PR is dense in Lp(R);
(ii) span

{
KF−1u,F−1v : u, v ∈ PR

}
is dense in K(Lp(R)).

We already mentioned that every operator of multiplication by a continuous
function a with bounded total variation on R is a Fourier multiplier. We denote
the closure in the norm of B(Lp(R)) of the set of all operators (aI)F with a of
this form by W 0(Cp), in accordance with the notation in [10]. Thus, W 0(Cp) is a
closed subalgebra of B(Lp(R)). The following is then an immediate consequence
of the preceding corollary.
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Theorem 4.3. K(Lp(R)) ⊆ clos alg
{
χ

+I, (MR
±1)

F
}
= clos alg

{
χ

+I, W 0(Cp)
}
.

This is the end point on the operator theory side of our tour. We would not
like to stop without mentioning that there is a lot of results of the same spirit in
the literature; see, e.g., [2, 9.9] and [8, Proposition 3.3.1].

5. On the side of numerical analysis

Now we turn to the side of numerical analysis. First we introduce an algebra the
role of which is comparable with that of the algebra B(Lp(R)) in operator theory.
Let E denote the set of all bounded functions A : (0,∞) → B(Lp(R)), and write
Aτ for the value of A ∈ E at τ ∈ (0,∞). Sometimes we will also use the notation
(Aτ )τ>0 in place of A. Provided with pointwise defined operations and the norm

‖A‖E := sup
τ∈(0,∞)

‖Aτ‖B(Lp(Γ)),

E becomes a Banach algebra, and the set G of all functions G ∈ E for which
limτ→∞ ‖Gτ‖ = 0 forms a closed two-sided ideal of E . Every operator A ∈
B(Lp(R)) gives rise to a constant function τ �→ A in E which we denote by A
again. The importance of the quotient algebra E/G stems from the following ele-
mentary, but basic, observation: a function A = (Aτ ) ∈ E is stable in the sense
of numerical analysis if and only if the coset A + G is invertible in E/G (see, for
instance, [12, Section 6.2]).

To state our results we need some more notation. For s ∈ R, let (Vsu)(x) :=
u(x − s) be the operator of shift by s on Lp(R), and let Us be the operator of
multiplication by the function x �→ e−2πixs. For τ > 0 let Pτ denote the operator
of multiplication by the characteristic function of the interval [−τ, τ ], set Qτ :=
I − Pτ , and define Rτ , Sτ and S−τ by

(Rτu)(x) =

⎧⎨⎩ u(τ − x) if 0 < x < τ
u(−τ − x) if −τ < x < 0
0 if |x| > τ

, (5.1)

(Sτu)(x) =

⎧⎨⎩ 0 if |x| < τ
u(x− τ) if x > τ
u(x+ τ) if x < −τ

, (5.2)

(S−τu)(x) =

{
u(x+ τ) if x > 0
u(x− τ) if x < 0

. (5.3)

These operators are bounded and have norm 1 on every Lp(R). If χ± denotes the
characteristic function of the positive (negative) semi-axis of R, then

χ±Pτ = χ±V±τχ∓V∓τχ± = χ±V±τχ∓V∓τ = V±τχ∓V∓τχ± , (5.4)

χ±Rτ = Jχ∓V∓τχ±I = χ±V±τχ∓J, (5.5)

χ±Sτ = V±τχ±I, (5.6)

χ±S−τ = χ±V∓τ . (5.7)
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Further we adopt our earlier notation and let now clos algM stand for the small-
est closed subalgebra of E which contains all sequences in the subset M of E .
(There will be no confusion because if M consists of constant sequences only, then
clos algM also consists of constant sequences and can, hence, be identified with a
subalgebra of B(Lp(R)).)

The sequences in Theorems 5.1, 5.2 and 5.3 below are the “compact type
sequences” addressed to in the title of the paper.

Theorem 5.1. Let K1, K2, K3 ∈ K(Lp(R)). Then the sequence (K1 + V−τK2Vτ +
VτK3V−τ )τ>0 belongs to the algebra clos alg

{
χ

+I,W 0(Cp), (Pτ )τ>0

}
.

Proof. Let K ∈ K(Lp(R)). Then K ∈ clos alg
{
χ

+I,W 0(Cp)
}

by Theorem 4.3.

Hence, and because the operators in W 0(Cp) are shift invariant,

(V−τKVτ )τ>0 ∈ clos alg
{
(V−τχ+Vτ )τ>0, W

0(Cp)
}

= clos alg
{
(χ[−τ,∞))τ>0, W

0(Cp)
}

= clos alg
{
(Pτ + χ

+Qτ )τ>0, W
0(Cp)

}
.

Similarly,

(VτKV−τ )τ>0 ∈ clos alg
{
(Vτχ+V−τ )τ>0, W

0(Cp)
}

= clos alg
{
(χ[τ,∞))τ>0, W

0(Cp)
}

= clos alg
{
(χ+Qτ )τ>0, W

0(Cp)
}
,

which implies the assertion. �

Theorem 5.2. Let K1, K2, K3,K4 ∈ K(Lp(R)). Then the sequence

(RτK1Rτ +RτK2S−τ + SτK3Rτ + SτK4S−τ )τ>0

belongs to the algebra clos alg
{
J, χ+I, W 0(Cp), (Pτ )τ>0

}
.

Proof. First consider (RτKRτ )τ>0 with K compact. Write this sequence as

(Rτχ+Kχ
+Rτ ) + (Rτχ+Kχ−Rτ ) + (Rτχ−Kχ

+Rτ ) + (Rτχ−Kχ−Rτ ).

By (5.5)–(5.7), the latter is equal to

(χ+Vτχ−JKJχ−V−τχ+I) + (χ+Vτχ−JKJχ+Vτχ−I)

+ (χ−V−τχ+JKJχ−V−τχ+I) + (χ−V−τχ+JKJχ+Vτχ−I)
(5.8)

The first and the last sequence in (5.8) are of the form

(χ+VτK1V−τχ+I) and (χ−V−τK2Vτχ−I), (5.9)

with K1 := χ−JKJχ− and K2 := χ
+JKJχ+ compact. These sequences are in

clos alg
{
χ+I,W 0(Cp), (Pτ )τ>0

}
.

by Theorem 5.1. The second sequence in (5.8) can be written as

(Jχ−V−τχ+KJχ+Vτχ−I) = (Jχ−V−τK3Vτχ−I)
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with K3 := χ
+KJχ+I compact. Again by Theorem 5.1, this sequence is in

clos alg
{
J, χ+I,W 0(Cp), (Pτ )τ>0

}
.

Similarly, the third sequence in (5.8) is in this algebra. Thus, the assertion is proved
for the sequences (RτKRτ ). The other sequences can be treated similarly. �

Theorem 5.3. Let K1, K2, K3,K4 ∈ K(Lp(R)). Then the sequence

(RF
τ K1R

F
τ +RF

τ K2S
F
−τ + SF

τ K3R
F
τ + SF

τ K4S
F
−τ )τ>0

belongs to the algebra clos alg
{
J, PR, C(Ṙ), (PF

τ )
}
.

Proof. Let K be a compact operator. Again starting from Theorem 3.5, we get

K ∈ clos alg
{
PR, C(Ṙ)

}
and, since the operators in C(Ṙ) commute with the Us,

(U−sKUs)s>0 ∈ clos alg
{
(U−sPRUs)s>0, C(Ṙ)

}
.

Now, from

U−sPRUs = U−sW
0(χ+)Us = F−1Vsχ+V−sF

= W 0(χ[s,∞))

= W 0(χ+)W 0(χ(−∞,−s] + χ[s,∞))

= PRQ
F
s = PR(1 − PF

s ),

we conclude that (U−sKUs)s>0 ∈ clos alg
{
PR, C(Ṙ), (PF

τ )
}
. Similarly, the se-

quence (UsKU−s)s>0 belongs to this algebra. We now continue as in the proof of
the previous theorem to get the assertion. �

6. Why we need these results

We will now briefly indicate where and why the results of Theorems 5.1, 5.2 and
5.3 are useful.

We say that a bounded function A : (0,∞)→ B(Lp(R)) converges *-strongly
if it converges strongly as τ → ∞ and if the adjoint function A∗ (which takes
the value A∗

τ at the point τ) converges strongly on the dual space as τ → ∞.
The *-strong limit of A is denoted by s-lim*A. Let now E be the set formed
by all bounded functions A. With pointwise-defined sum and product, and the
supremum norm, E becomes a Banach algebra which contains the ideal G of all
operator-valued functions converging (in the operator norm) to zero as τ → ∞.
The quotient algebra E/G is an example of a “suitable constructed Banach algebra”
that was referred in the Introduction. In fact, a bounded sequence of operators is
an element of E and its stability is equivalent to invertibility of the corresponding
coset in E/G.

Unfortunately, it is not possible to characterize invertibility in the very large
algebra E/G. So one tries to find smaller algebras where invertibility can be tackled.
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One way is to consider additional families of strong limits, generated through
(auto)morphisms over E . These strong limits highlight properties of the operator
function, and its existence defines a subalgebra with a rich ideal structure and
whose elements are, in some sense, nicer. Of course, care must be taken so that
the concrete operator functions (i.e., sequences) we are interested belong to this
smaller algebra.

Let {Wt,•}t∈T be a family of algebra automorphisms with the following prop-
erties:

1. 0 ∈ T, and W0,• is the identity automorphism;
2. ‖Wt,•‖ = 1 for every t ∈ T;
3. Wt,•(A)∗ = Wt,•(A∗) for every A ∈ E and t ∈ T;
4. s-lim*Wt,•(W−1

s,•(A)) = 0 for every A ∈ E and t �= s.

Define now F as the set of all functions A ∈ E with the property that, for
every t ∈ T, the function Wt,•(A) converges *-strongly, and set

Wt(A) := s-lim*Wt,•(A).

The set F is a closed and inverse-closed subalgebra of E that includes the ideal G,
the mappings Wt act as bounded homomorphisms on F , and the ideal G is in the
kernel of each of these homomorphisms [11, Proposition 4.1]. Moreover, the sets

Jt := W−1
t,• (K) + G, (6.1)

where K is the ideal of compact operators, are closed two-sided ideals of F . The
relation between the ideals Jt and the algebra F can be seen as the analogue of
the relation between K and B(Lp(Γ)).

Moreover, given a suitable choice of the strong limits family (equivalently, of
the morphisms), defining the ideal J as the smallest ideal containing all ideals Jt
and using a lifting theorem (see, for instance, [12, Section 6.3]) it is even possible
to completely characterize invertibility for (interesting) elements of F with the
invertibility of the images of associated strong limit homomorphisms. This happens
when invertibility of cosets in F/J already follows from the invertibility of those
images. An example of the procedure, using the above notation is presented in [3].
When the chosen strong limits family does not completely characterize stability,
further steps must be performed to characterize invertibility in F/J , using, for
instance, the two projections theorem to identify local algebras that result after
applying local principles to a suitable subalgebra of F/J (as was done in [10]
and [11]).

For a more concrete setting, given a family of operators in B(Lp(R)) and a
sequence of projections Pτ with complementary projections Qτ := I − Pτ such
that s-lim*Pτ = I, that generate an algebra A ∈ F , one tries to find a suitable
family of compatible automorphisms {Wt,•}t∈T so that it is possible to characterize
invertibility in F/G, and thus the stability of the related operator sequences. If the
family of operators belongs to the subalgebra of multiplication and convolution
operators on Lp(R) generated by piecewise continuous functions, and if Pτ =
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χ
[−τ,τ ]I, the operator of multiplication by the characteristic function of the interval

[−τ, τ ], then the relevant automorphisms Wt,• are

W0,• : (Aτ ) �→ (Aτ );

W−1,• : (Aτ ) �→ (V−τAτVτ );

W1,• : (Aτ ) �→ (VτAτV−τ )

(see [11]). This simple picture changes if one also wants to consider Hankel op-
erators. Then it is necessary to include the flip operator (Ju)(x) := u(−x) into
the family of operators. But because the (constant) sequence (J) is not included
in the algebra F defined by the above family of automorphisms, a more complex
construction is necessary.

Instead of considering only automorphisms in E we consider now also a ho-
momorphism between the algebras E and E2×2 given by

W1,• : (Aτ ) �→
([

Rτ

S−τ

]
Aτ

[
Rτ Sτ

])
(6.2)

(see [10]). In this regard note that[
Rτ Sτ

] [ Rτ

S−τ

]
= RτRτ + SτS−τ = Pτ +Qτ = I.

It is also possible to consider the projection PF
τ := F−1PτF associated with the

Fourier finite section method. In this case, the homomorphism is defined as [10]:

WF
1,• : (Aτ ) �→

([
RF

τ

SF−τ

]
Aτ

[
RF

τ SF
τ

])
. (6.3)

Summarizing, the results in Section 5 show that the ideal J1 defined by (6.1)
using the inverse of (6.2) applied to K2×2 belongs to the subalgebra of F generated
by the constant sequences of the singular integral operator and the operators of
multiplication by continuous functions, and the non-constant projection sequence
(Pτ ). The same holds in the Fourier-symmetric setting, that is, the ideal J F

1

related to (6.3) is generated by convolution operators with continuous symbol by
the operator of multiplication by the characteristic function of the positive half-
axis, and by the projection sequence (PF

τ ).
Note that we have not proved that the ideal G belongs to the algebra

clos alg
{
PC(R),W 0(PCp), J, (Pτ ), (P

F
τ )

}
. Thus, Theorems 5.2 and 5.3 do not im-

ply that the ideals J1 and J F
1 belong to that algebra. But the ideal G can be

explicitly introduced and then be factored out, because one is usually interested
in invertibility on E/G. In any case, we have

J0/G, J1/G, J F
1 /G ⊆ clos alg

{
PC, PCp,J , (Pτ ), (P

F
τ ),G

}
/G.
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A Chen-type Modification of Hadamard
Fractional Integro-Differentiation
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Abstract. The so-called Chen modification of the Liouville fractional integrals
(LFI) allows to study LFI of functions which may have arbitrary behaviour
at both −∞ and +∞. We develop a similar approach for dilation invari-
ant Hadamard fractional integro-differentiation on R+. We introduce several
types of truncation of the corresponding Marchaud form of fractional Chen–
Hadamard fractional derivatives and show that these truncations applied to
Chen–Hadamard fractional integral of a function f in Lp

loc(R+) or Lp(R+)
converge to this function in Lp-norm, locally or globally, respectively. In the
local case, we admit functions f with an arbitrary growth both at the origin
and infinity.

Mathematics Subject Classification (2010). Primary 26A33.

Keywords. Fractional integral, fractional derivative, Hadamard fractional inte-
gro-differentiation, Marchaud fractional derivatives, truncation of Marchaud
derivatives.

1. Introduction

The fractional integro-differentiation introduced by J. Hadamard [5], is applied to
functions defined on the half-axis R+ and is dilation invariant, i.e., it commutes
with the operator

(Πtf) (x) = f(tx), t > 0.

Hadamard fractional integration of order α > 0 is realized in the form

$α
+ϕ =

1

Γ(α)

x∫
0

ϕ(t)(
ln x

t

)1−α

dt

t
, $α

−ϕ =
1

Γ(α)

∞∫
x

ϕ(t)(
ln t

x

)1−α

dt

t
. (1.1)
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For properties of the Hadamard fractional integro-differentiation we refer to Sec-
tion 18 in the book [8]. After the book [8] appeared, further advances in the study
of Hadamard constructions have been made in [1], [2], [3], [6], [7].

As can be seen from (1.1), the construction of the Hadamard fractional in-
tegration may be applied only to functions vanishing at the origin (in the case
of the left-hand-sided integral) or at infinity (in the case of the right-hand-sided
integral), similarly to the case where the Liouville fractional integrals are applied
to functions vanishing at the corresponding infinity.

A modification of the Liouville fractional integrals which may be applied to
functions with an arbitrary behaviour at both infinities, suggested by Y.W. Chen
in [4], was developed in [9], [10], where the inversion of this modification with
Lp-densities was obtained by means of the Chen–Marchaud type constructions. In
this paper we develop a similar approach to the corresponding Chen–Hadamard
type fractional integrals and Chen–Hadamard–Marchaud fractional derivatives.

In Section 2 we present necessary definitions and various auxiliary prop-
erties of the Hadamard–Chen fractional integro-differentiation, and in Section 3
we propose different methods of “truncation” of the Marchaud–Hadamard–Chen
fractional derivative. In Section 4, which is central in a sense from the point of
view of the technique of the proofs, we we prove integral representations for trun-
cated fractional derivatives applied to fractional derivatives of functions in Lp,
and in Section 5 we prove the main results: the correspondingly defined conver-
gence of truncated Chen–Hadamard fractional derivatives generates inversion of
Chen–Hadamard fractional integrals of functions in Lp.

In the sequel, by Lp
loc (R+) we denote the space of functions f on R+, whose

restrictions on an interval (a, b) are p-integrable on (a, b) for all 0 < a < b < ∞,
which will be equipped with the natural topology of convergence in Lp-norm on
any such interval.

We also use the standard notation xa
+ =

{
xa, x > 0,

0, x < 0.

2. On Hadamard–Chen fractional integro-differentiation

We will also need the Hadamard fractional differentiation in the Marchaud form:

Dα
+f(x) :=

α

Γ(1− α)

x∫
0

f(x)− f(t)(
ln x

t

)1+α

dt

t
, (2.1)

and

Dα
−f(x) :=

α

Γ(1− α)

∞∫
x

f(x)− f(t)(
ln t

x

)1+α

dt

t
, (2.2)

see [8], p. 332.
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2.1. Main constructions

Definition 2.1. Let 0 < c <∞ be any fixed point and α > 0. We refer to

($α
c ϕ)(x) :=

⎧⎪⎪⎨⎪⎪⎩
1

Γ(α)

c∫
x

ϕ(t)

(ln t
x )

1−α
dt
t , 0 < x < c,

1
Γ(α)

x∫
c

ϕ(t)

(ln x
t )

1−α
dt
t , c < x <∞,

(2.3)

as the Hadamard–Chen fractional integral of order α, or Chen-type modification
of the Hadamard fractional integrals.

Note that the Chen-type modification of Liouville fractional integrals was
studied in [9].

In the notation

(Pc+ϕ) (x) = ϕc+(x) =

{
ϕ(x), x > c,
0, x < c,

(Pc−ϕ) (x) = ϕc−(x) =
{

0, x > c,
ϕ(x), x < c

the fractional integration (2.3) has the form

($α
c ϕ)(x) = (Iα+ϕc+)(x) + ($α

−ϕc−)(x),

or in the operator form

$α
c = $α

+Pc+ + $α
−Pc− = Pc+$α

+Pc+ + Pc−$α
−Pc−,

so that the operators $α
c possess the semi-group property

$α
c $β

cϕ = $α+β
c ϕ

for ϕ ∈ Lp
loc (R+) and α > 0, β > 0.

The Hadamard–Chen fractional differentiation is then correspondingly de-
fined as

(Dα
c f)(x) := ($α

c )
−1f(x) =

1

Γ(1− α)

⎧⎪⎪⎨⎪⎪⎩
x d
dx

x∫
c

f(t)

(ln x
t )

α
dt
t , c < x <∞,

−x d
dx

c∫
x

f(t)

(ln t
x )

α
dt
t , 0 < x < c

(2.4)

when 0 < α < 1, and for α ≥ 1 we put

(Dα
c f)(x) = (D[α]

c D{α}
c f)(x) = [sign(x− c)]

[α]

(
x
d

dx

)[α]

D{α}
c f,

where α = [α] + {α}. Making use of the Marchaud form for Hadamard fractional
differentiation (see [8], formula (18.58)), we arrive at the following Marchaud type
form for the differentiation (2.4)

(Dα
c f)(x) =

f(x)

Γ(1− α)
∣∣ln x

c

∣∣α +
α

Γ(1− α)

max(x,c)∫
min(x,c)

f(x)− f(t)∣∣ln x
t

∣∣1+α

dt

t
. (2.5)
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for 0 < α < 1, at the least for “nice” functions f , so that (Dα
c f) (x) = (Dα

c f) (x)
for such functions. In terms of the left- and right-hand-sided Marchaud forms
(2.1)–(2.2) of the Hadamard fractional differentiation in has the form

Dα
c f =

α

Γ(1 − α)

1∫
0

f(x)− fc+(xt) − fc−(xt−1)

|ln t|1+α

dt

t
= Dα

+fc+ +Dα
−fc−. (2.6)

As is known, when applied to “not so nice” functions, for instance, to fractional
integrals of Lp-functions, the Marchaud construction should be interpreted as the
limit of the corresponding truncations of the hypersingular integral in these con-
structions. The appearance of the point c ∈ (0,∞) in our constructions, which
breaks the invariance with respect to dilations, leads to certain problems in these
interpretation. We consider this question in the next section.

3. On different approaches to truncation of the fractional
derivative (2.6)

Since the construction (2.6) contains the truncations fc± of the function f it-
self, related to the point c, we have to co-ordinate the truncation of the integral
with those of the function. It may be done in different ways. We consider several
ways, the first one made with a constant step in the truncation of the integral,
and second one with this step depending on the point x (more precisely, on the
distance |lnx− ln c|). The first way might be called “quasi-convolution dilation
invariant” by the reason which will be clear below. One more modification of
“quasi-difference” approach to truncation will be also considered.

3.1. Quasi-convolution truncation

Let 0 < ρ < 1. For 0 < α < 1, we put

Dα
c,1−ρf =

α

Γ(1− α)

ρ∫
0

f(x)− fc+(xt) − fc−(xt−1)

|ln t|1+α

dt

t

= Dα
+,1−ρfc+ +Dα

−,1−ρfc−,

(3.1)

where Dα
±,1−ρ are the corresponding truncations of the Hadamard–Chen–Mar-

chaud derivatives (2.1) and call the constructions (3.1) Hadamard–Chen–Mar-
chaud truncated fractional derivative. For “not so nice” functions f we put by
definition

Dα
c f = lim

ρ→1−0
Dα

c,1−ρf

The components Dα
±,1−ρfc± in (3.1), can be explicitly written:

Dα
±,1−ρfc± =

f(x)

Γ(1− α)
∣∣ln x

c

∣∣α +
α

Γ(1− α)
ψ±,1−ρ(x), (3.2)
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where

ψ+,1−ρ(x) =

⎧⎪⎪⎨⎪⎪⎩
xρ∫
c

f(x)−f(t)

(ln x
t )

1+α
dt
t , x > c

ρ

f(x)
α

[
1

(ln 1
ρ )

α − 1

(ln x
c )

α

]
, c < x < c

ρ ,
(3.3)

and

ψ−,1−ρ(x) =

⎧⎪⎪⎨⎪⎪⎩
c∫
x
ρ

f(x)−f(t)

(ln t
x )

1+α
dt
t , x < cρ,

f(x)
α

[
1

(ln 1
ρ )

α − 1

(ln c
x )

α

]
, cρ < x < c.

(3.4)

The equalities (3.3)–(3.4) actually mean that Dα
±,1−ρfc± have been built as the

corresponding truncations of Hadamard–Marchaud derivatives of the function f(x)
continued as identical zero from one of the portions (0, c), (c,∞) to another one.

We can also rewrite this truncation in the form

Dα
c,1−ρf =

f(x)

Γ(1− α)
∣∣ln x

c

∣∣α
+

⎧⎪⎪⎪⎨⎪⎪⎪⎩
α

Γ(1−α)

|ln x
c |∫

ln 1
ρ

f(x)−f(xe−t sign(x−c))
t1+α dt, x /∈

(
cρ, c

ρ

)
,

0, x ∈
(
cρ, c

ρ

)
.

(3.5)

Note that so introduced truncation “quasi commutes” with the dilation op-
erator Πδ in the following sense:

Dα
c,1−ρΠδf = ΠδD

α
cδ,1−ρf. (3.6)

3.2. Truncation in dependence on
∣∣ln x

c

∣∣
We will see that for the Chen type constructions it is natural and convenient to
introduce also a truncation depending on the distance |lnx− ln c|. Namely, we
denote

ρ̃ = �̃(x) :=
∣∣∣ln x

c

∣∣∣ ln 1

ρ
, where

1

e
< ρ < 1,

and introduce the following truncation:

Dα
c,1−ρ̃f : =

{
Dα

c+,1−ρ̃f, x > c
Dα

c−,1−ρ̃f, x < c
(3.7)

where

Dα
c±,1−ρ̃f :=

f(x)

Γ(1− α)
∣∣ln x

c

∣∣α + ψ±,ρ̃(x)

and

ψ+,ρ̃(x) =

xρln x
c∫

c

f(x)− f(t)(
ln x

t

)1+α

dt

t
=

ρln x
c∫

c
x

f(x)− f(xy)(
ln 1

y

)1+α

dy

y
, x > c, (3.8)
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ψ−,ρ̃(x) =

c∫
x

ρ
ln c

x

f(x)− f(t)(
ln t

x

)1+α

dt

t
=

ρln c
x∫

x
c

f(x)− f(xy−1)(
ln 1

y

)1+α

dy

y
, x < c. (3.9)

Under this way (3.7)–(3.8) of truncation one does not need a separate definition
of the functions ψ±,ρ̃(x) on an interval cρ < x < c

ρ , small as ρ→ 1, i.e., we do not

use the zero continuation of the function f(x) but deal with proper values of the
function f(x) on the semi-axis.

This truncation does not have the quasi-commutation property (3.6). Note
also that

{
ψ+,ρ̃, x > c
ψ−,ρ̃, x < c

=
α

Γ(1− α)

|ln x
c |∫

|ln x
c | ln 1

ρ

f(x)− f
(
xe−t sign(ln x

c )
)

t1+α
dt.

Then we define

(Dα
c f) (x) = lim

ρ→1
(Dα

c,1−ρ̃f)(x). (3.10)

It is clear that definitions (2.1) and (3.10) coincide on sufficiently nice func-
tions f(x). In the sequel, we will study their coincidence in the case of “not so
nice” functions.

3.3. Modification of the “quasi-convolutive” truncation

As mentioned above, in (3.3)–(3.4) we used the zero continuation of the function
f(x) when necessary. Such a method is natural in the study of left-sided or right-
sided fractional differentiation, when the functions are given only unilaterally from
the initial point (in our case point c). In our consideration the function f(x) is
given on the whole semi-axis, and it is more natural to have truncations with the
use of its proper values instead of the zero continuation.

Such a truncation is provided by (3.7)–(3.9). On the other hand, it is not well
suited to dilations on R+ since it has no property (3.6). By this reason, together
with the above two constructions, we introduce also the following truncation

Ḋα
c,1−ρf =

f(x)

Γ(1− α)
∣∣ln x

c

∣∣α +
α

Γ(1− α)

|ln x
c |∫

ln 1
ρ

f(x)− f
(
xe−t sign(x−c)

)
t1+α

dt, (3.11)

for all x ∈ (0,∞) where both the cases
∣∣ln x

c

∣∣ > ln 1
ρ and

∣∣ln x
c

∣∣ < ln 1
ρ are admitted.

This way of truncation achieves both the goals, i.e., it satisfies the quasi-
commutation condition (3.6) and does not use the zero continuation, leads to
more complicated integral representations for truncated derivatives of fractional
integrals, this complication having place on the “small” interval cρ < x < c

ρ .
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4. Integral representations for truncated fractional derivatives

By
$α

c (X) = {f : f(x) = ($α
c ϕ)(x), ϕ(x) ∈ X},

we denote the range of the Hadamard–Chen fractional integration operator over
a function space X. We will work with the space X = Lp

loc (R+) . In the next
statements we provide integral representations of different truncated fractional
derivatives of functions in such a range $α

c (L
p
loc (R+)).

Lemma 4.1. The operator $α
c , α > 0 is continuous in the space Lp

loc (R+) , 1 ≤ p <
∞ and admits the estimate

‖$α
c ϕ‖Lp(a,b)

≤ C ‖ϕ‖Lp(a∗,b∗)
, when (a, b) � c, (4.1)

where 0 < a < b <∞, a∗ = min
(
a, c2

b

)
, b∗ = max

(
b, c

2

a

)
and C = C(a, b, c; p, α).

Proof. We consider only the case a < c < b, the case c /∈ (a, b) is easy. We have

‖$α
c ϕ‖Lp(a,b) ≤

⎧⎪⎨⎪⎩
b∫

c

∣∣∣∣∣∣∣
1

Γ(α)

1∫
c
b

ϕ(xy)(
ln 1

y

)1−α

dy

y

∣∣∣∣∣∣∣
p

dx

⎫⎪⎬⎪⎭
1/p

+

⎧⎪⎨⎪⎩
c∫

a

∣∣∣∣∣∣∣
1

Γ(α)

1∫
a
c

ϕ(xy−1)(
ln 1

y

)1−α

dy

y

∣∣∣∣∣∣∣
p

dx

⎫⎪⎬⎪⎭
1/p

.

Therefore,

‖$α
c ϕ‖Lp(a,b) ≤

1

Γ(α)

1∫
c
b

(
ln

1

y

)α−1
dy

y

⎧⎨⎩
b∫

c

|ϕ(xy)|p dx

⎫⎬⎭
1
p

+
1

Γ(α)

1∫
a
c

(
ln

1

y

)α−1
dy

y

⎧⎨⎩
c∫

a

∣∣ϕ(xy−1)
∣∣p dx

⎫⎬⎭
1
p

.

After the substitutions xy = ξ and xy−1 = η, we have

‖$α
c ϕ‖Lp(a,b) ≤

1

Γ(α)

1∫
c
b

(
ln

1

y

)α−1
dy

y1+
1
p

⎧⎨⎩
by∫

cy

|ϕ(ξ)|p dξ

⎫⎬⎭
1
p

+
1

Γ(α)

1∫
a
c

(
ln

1

y

)α−1
dy

y1−
1
p

⎧⎪⎨⎪⎩
c
y∫

a
y

|ϕ(η)|p , dη

⎫⎪⎬⎪⎭
1
p

.

from which (4.1) follows. �
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Lemma 4.2. Let 1 ≤ p < ∞ and 0 < α < 1. The truncated fractional derivative
Dα

c,1−ρf has the following representation for functions f = $α
c ϕ, ϕ ∈ Lp

loc (R+) :

(
Dα

c,1−ρf
)
(x) =

∞∫
0

K+
α (y)

[
ϕc+(xρ

y) + ϕc−(xρ−y)
]
dy

=

r(x,ρ)∫
0

K+
α (y) ϕ

(
xρy sign(ln x

c )
)
dy,

where r(x, ρ) =
∣∣ln x

c

∣∣ / ln 1
ρ ,

K+
α (y) =

sinαπ

π

yα+ − (y − 1)α+
y

∈ L1 (R+) and

∞∫
0

K+
α (y)dy = 1. (4.2)

Proof. For 0 < t < 1 we have

fc+(x)− fc+(xt) + fc−(x) − fc−(xt−1)

=

(
ln

1

t

)α
∞∫
0

kα(y)
[
ϕc+(xt

y) + ϕc−(xt−y)
]
dy,

where

kα(y) =
1

Γ(α)

{
yα−1, 0 < y < 1,
yα−1 − (y − 1)α−1, y > 1.

It is known that kα(y) ∈ L1 (R+) and
∞∫
0

kα(y)dy = 0, see [8], p. 124. From (3.8)

we obtain

Dα
c,1−ρf =

α

Γ(1− α)

ρ∫
0

1

ln 1
t

dt

t

∞∫
0

kα(y)
[
ϕc+(xt

y) + ϕc−(xt−y)
]
dy

=
α

(1− α)

∞∫
ln 1

ρ

dξ

ξ2

∞∫
0

kα

(
τ

ξ

)[
ϕc+(xe

−τ ) + ϕc−(xeτ )
]
dτ

after the substitutions ln 1
t = ξ and yξ = τ . Hence

Dα
c,1−ρf =

α

Γ(1− α)

∞∫
0

[
ϕc+(xe

−τ ) + ϕc−(xeτ )
] ∞∫
ln 1

ρ

kα

(
τ

ξ

)
dξ

ξ2

=
α

Γ(1− α)

∞∫
0

[
ϕc+(xρ

t) + ϕc−(xρ−t)
] ⎛⎝1

t

t∫
0

kα(s)ds

⎞⎠ dt,

which proves the lemma. Properties (4.2) of the function kα(t) are known (see [8],
p. 125). �
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Corollary 4.3. Let 1 ≤ p < ∞ and 0 < α < 1. The truncated fractional de-
rivative Dα

c,1−ρ̃fhas the following representation for functions f(x) = ($α
c ϕ)(x),

ϕ ∈ Lp
loc (R+):

Dα
c,1−ρ̃f =

1

ln 1
ρ∫

0

K+
α (y)ϕ

(
xρy ln x

c

)
dy.

Actually, it suffices to replace ln 1
ρ by ρ̃ =

∣∣ln x
c

∣∣ ln 1
ρ in Lemma 4.2.

Lemma 4.4. Let 1 ≤ p < ∞ and 0 < α < 1. The truncated fractional derivative

Ḋα
c,1−ρ f, 0 < ρ < 1, of fractional integrals f = $α

c ϕ with ϕ ∈ Lp
loc (R+), has the

following representation

Ḋα
c,1−ρf =

1∫
0

Kc (x, ρ; t)ϕ
(
xρt sign(x−c)

)
dt, (4.3)

for the case cρ < x < c
ρ , where

Kc (x, ρ; t) =
sinαπ

π

⎧⎪⎨⎪⎩
tα−1, 0 < t <

|ln x
c |

ln 1
ρ

,

(1−t)α

t ,
|ln x

c |
ln 1

ρ

< t < 1.

Proof. For f(x) = ($α
c+ϕ)(x) we have

f(x)− f(xt) =
1

Γ(α)

x∫
c

ϕ(τ)(
ln x

τ

)1−α

dτ

τ
− 1

Γ(α)

c∫
x t

ϕ(τ)(
ln τ

xt

)1−α

dτ

τ

when c < x < c
ρ , and

f(x)− f(xt−1) =
1

Γ(α)

c∫
x

ϕ(τ)(
ln τ

x

)1−α

dτ

τ
− 1

Γ(α)

c∫
xt−1

ϕ(τ)(
ln xt−1

τ

)1−α

dτ

τ
,

when cρ < x < c. Hence, after the substitutions τ = xty , τ = xt−y, we obtain

f(x)− f(xt) =

(
ln 1

t

)α
Γ(α)

⎡⎢⎢⎢⎣
ln x

c

ln 1
t∫

0

yα−1ϕ(xty)dy −
1∫

ln x
c

ln 1
t

ϕ(xty)

(1 − y)1−α
dy

⎤⎥⎥⎥⎦
and

f(x)− f(xt−1) =

(
ln 1

t

)α
Γ(α)

⎡⎢⎢⎢⎣
ln c

x
ln 1

t∫
0

yα−1ϕ(xt−y)dy −
1∫

ln c
x

ln 1
t

ϕ(xt−y)

(1 − y)1−α
dy

⎤⎥⎥⎥⎦ .
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We substitute this into the following expressions of the truncated derivatives

ϕ+,ρ(x) :=−

c
x∫

ρ

f(x)− f(xt)(
ln 1

t

)1+α

dt

t
, x <

c

ρ
,

ϕ−,ρ(x) :=−

x
c∫

ρ

f(x)− f(xt−1)(
ln 1

t

)1+α

dt

t
, x > cρ,

and get

ϕ+,ρ(x) = −
1

Γ(α)

c
x∫

ρ

1

ln2 1
t

dt

t

⎛⎜⎝ 1∫
c
x

ϕ(xτ)(
ln 1

τ

ln 1
t

)1−α

dτ

τ
−

c
x∫

t

ϕ(xτ)(
1− ln 1

τ

ln 1
t

)1−α

dτ

τ

⎞⎟⎠ ,

ϕ−,ρ(x) = −
1

Γ(α)

x
c∫

ρ

1

ln2 1
t

dt

t

⎛⎜⎝ 1∫
x
c

ϕ(xτ−1)(
ln 1

τ

ln 1
t

)1−α

dτ

τ
−

x
c∫

t

ϕ(xτ−1)(
1− ln 1

τ

ln 1
t

)1−α

dτ

τ

⎞⎟⎠ ,

with the substitution ty = τ taken into account. Changing the order of integration
on the right-hand side, we arrive at

ϕ+,ρ(x) =−
1

Γ(α)

[ 1∫
c
x

ϕ(xτ)
dτ

τ

c
x∫

ρ

(
ln 1

τ

ln 1
t

)α−1
dt

t ln2 1
t

−

c
x∫

ρ

ϕ(xτ)
dτ

τ

τ∫
ρ

(
1−

ln 1
τ

ln 1
t

)α−1
dt

t ln2 1
t

]
,

ϕ−,ρ(x) =−
1

Γ(α)

[ 1∫
x
c

ϕ(xτ−1)
dτ

τ

x
c∫

ρ

(
ln 1

τ

ln 1
t

)α−1
dt

t ln2 1
t

−

x
c∫

ρ

ϕ(xτ−1)
dτ

τ

τ∫
ρ

(
1−

ln 1
τ

ln 1
t

)α−1
dt

t ln2 1
t

]
.

Substitution
ln 1

τ

ln 1
t

= ξ gives the following representation

ϕ+,ρ(x) = −
1

Γ(α)

⎡⎢⎢⎢⎢⎣
1∫

c
x

ϕ(xτ)dτ

τ ln 1
τ

ln 1
τ

ln x
c∫

ln 1
τ

ln 1
ρ

dξ

ξ1−α
−

c
x∫

ρ

ϕ(xτ)dτ

τ ln 1
τ

1∫
ln 1

τ
ln 1

ρ

dξ

(1 − ξ)1−α

⎤⎥⎥⎥⎥⎦ ,
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and

ϕ−,ρ(x) = −
1

Γ(α)

[ 1∫
x
c

ϕ (x/τ) dτ

τ ln 1
τ

ln 1
τ

ln c
x∫

ln 1
τ

ln 1
ρ

dξ

ξ1−α
−

x
c∫

ρ

ϕ (x/τ) dτ

τ ln 1
τ

1∫
ln 1

τ

ln 1
ρ

dξ

(1− ξ)1−α

]
.

Further we obtain

ϕ+,ρ(x) = −
f(x)

α
(
ln x

c

)α +
1

αΓ(α)

⎡⎢⎢⎢⎢⎣
ln x

c

ln 1
ρ∫

0

ϕ (xρy)

y1−α
dy +

1∫
ln x

c

ln 1
ρ

(1− y)α

y
ϕ(xρy)dy

⎤⎥⎥⎥⎥⎦ ,

ϕ−,ρ(x) = −
f(x)

α
(
ln c

x

)α +
1

αΓ(α)

⎡⎢⎢⎢⎢⎣
ln c

x

ln 1
ρ∫

0

ϕ
(

x
ρy

)
y1−α

dy +

1∫
ln c

x

ln 1
ρ

(1− y)α

y
ϕ(

x

ρy
)dy

⎤⎥⎥⎥⎥⎦ .

With the notation r(x, ρ) =
|ln x

c |
ln 1

ρ

we can also rewrite the last formulas in the form

ϕ±,ρ(x) =−
f(x)

α
∣∣ln x

c

∣∣α +
1

αΓ(α)

[ r(x,ρ)∫
0

yα−1ϕ
(
xρy sign(ln x

c )
)
dy

+

1∫
r(x,ρ)

(
(1 − y)α

y
ϕ(xρy sign(ln x

c )
)
dy

]

for cρ < x < c
ρ . From (3.11) we obtain

Ḋα
c,1−ρf =

1

Γ(1− α)Γ(α)

[ r(x,ρ)∫
0

yα−1ϕ
(
xρy sign(x−c)

)
dy

+

1∫
r(x,ρ)

(
(1− y)α

y
ϕ(xρy sign(x−c)

)
dy

]

for cρ < x < c
ρ , which proves (4.3). �
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5. The inversion theorem in terms of “quasi-convolution”
truncated fractional derivatives

Theorem 5.1. Let f(x) = ($α
c )(x), where ϕ ∈ Lp (R+) , 1 ≤ p < ∞, 0 < α < 1.

Then

ϕ(x) = (Dα
c f)(x),

where (Dα
c f)(x) is interpreted as

Dα
c f = lim

ρ→1−0
(Lp(R+))

(
Dα

c,1−ρf
)
(x).

Proof. Theorem 5.1 is proved by means of the representation proved in Lemma 4.2.
By that representation we have

Dα
c,1−ρf − ϕ =

∞∫
0

K+
α (t)

[
ϕc+(xρ

t) + ϕc−(xρ−t)− ϕ(t)
]
dt.

Hence by the Minkowski inequality we obtain

∥∥Dα
c,1−ρf − ϕ

∥∥
Lp ≤

∞∫
0

K+
α (t)

∥∥ϕc+(xρ
t) + ϕc−(xρ−t)ϕ(x) − ϕ(t)

∥∥
Lp dy

≤
∞∫
0

K+
α (t)

(∥∥ϕ(xρt)− ϕ(x)
∥∥
Lp +

∥∥ϕ(xρ−t)− ϕ(x)
∥∥
Lp

)
dt→ 0

as ρ → 1, in view of mean continuity of functions f ∈ Lp and the Lebesgue
dominated convergence theorem. �

Theorem 5.2. Let f(x) = ($α
c ϕ)(x), where ϕ ∈ Lp

loc (R+) , 1 ≤ p <∞, 0 < α < 1.
Then

(Dα
c f)(x) = lim

ρ→1−0
Dα

c,1−ρf = ϕ(x).

in the topology of the space Lp
loc (R+).

Proof. Making use of Lemma 4.2, we get

(
Dα

c,1−ρ

)
(x) − ϕ(x) =

|ln x
c |

ln 1
ρ∫

0

K+
α (y)

[
ϕ
(
xρy sign(x−c)

)
− ϕ(x)

]
dy,
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for
∣∣ln x

c

∣∣ > ln 1
ρ , while for

∣∣ln x
c

∣∣ < ln 1
ρ , according to (3.5), we have

(
Dα

c,1−ρf
)
(x) − ϕ(x) =

f(x)

Γ(1− α)
(
ln 1

ρ

)α

=
1

Γ(1− α)Γ(α)
(
ln 1

ρ

)α

max(x,c)∫
min(x,c)

ϕ(cxy−1)∣∣ln y
c

∣∣1−α

dy

y
.

Let (a, b) be any interval on R+ containing the point c. We have∥∥Dα
c,1−ρf − ϕ

∥∥
Lp(a,b)

≤
∫ ∞

0

∣∣K+
α (y)

∣∣ {∫ b

c
ρ

∣∣∣∣θ+ (
ln

x

c
− y ln

1

ρ

)
ϕ(xρy)− ϕ(x)

∣∣∣∣p dx
} 1

p

dy

+

∫ ∞

0

∣∣K+
α (y)

∣∣ {∫ cρ

a

∣∣∣∣θ− (
ln

x

c
+ y ln

1

ρ

)
ϕ(xρ−y)− ϕ(x)

∣∣∣∣p dx}
1
p

dy

+
1

Γ(1− α)Γ(α)
(
ln 1

ρ

)α

[∫ c

cρ

(
ln

c

y

)α−1
dy

y

{∫ y

cρ

∣∣∣∣ϕ(
x
c

y

)∣∣∣∣p dx}
1
p

+

∫ c
ρ

c

(
ln

y

c

)α−1 dy

y

{∫ c
ρ

y

∣∣∣∣ϕ(
x
c

y

)∣∣∣∣p dx
} 1

p
]
.

Hence∥∥Dα
c,1−ρf − ϕ

∥∥
Lp(a,b)

≤
∫ ∞

0

∣∣K+
α (y)

∣∣ ∥∥∥∥θ+ (
ln

x

c
− y ln

1

ρ

)
ϕ(xρy)− ϕ(x)

∥∥∥∥
Lp( c

ρ ,b)
dy

+

∫ ∞

0

K+
α

∥∥∥∥θ− (
ln

x

c
+ y ln

1

ρ

)
ϕ(xρ−y)− ϕ(x)

∥∥∥∥
Lp(a,cρ)

dy + d ‖ϕ‖Lp(cρ, cρ )
,

where d = sinαπ
απ

(
1 + ( 1ρ)

1
p

)
. The passage to the limit in the above estimate is

now justified by the Lebesgue dominated convergence theorem. �

Theorem 5.3. Let f(x) = (Iαc ϕ)(x), where ϕ ∈ Lp(R+) or Lp
loc(R+), 1 < p < ∞,

0 < α < 1, c > 0. Then(
Ḋα

c f
)
(x) = lim

ρ→1−0

(
Ḋα

c,1−ρf
)
(x) = ϕ(x),

in the topology of the space Lp(R+), or Lp
loc(R+), respectively.

Proof. We consider the case where ϕ ∈ Lp(R+). The proof for the space Lp
loc(R+)

follow the same lines.
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The proof is prepared by Lemma 4.4. Since(
Ḋα

c,1−ρf
)
(x) =

(
Dα

c,1−ρ

)
(x) for x /∈

[
cρ,

c

ρ

]
,

we have∥∥∥Ḋα
c,1−ρf − ϕ

∥∥∥
Lp(R+)

≤
∥∥Dα

c,1−ρf − ϕ
∥∥
Lp(R+\(cρ, cρ ))

+
∥∥∥Ḋα

c,1−ρf − ϕ
∥∥∥
Lp(cρ, cρ )

≤
∥∥Dα

c,1−ρf − ϕ
∥∥
Lp(R+)

+
∥∥∥Ḋα

c,1−ρf − ϕ
∥∥∥
Lp(cρ, cρ )

+ ‖ϕ‖Lp(cρ, cρ )
.

Here the first term on the right-hand side tends to zero by Theorem 3.5,
the same is obvious for the third one. To estimate the middle term, in view of
the symmetry, we will consider this term with integration only along the integral
(c, c/ρ), estimation along the left interval (cρ, c) being similar. By (4.3) we have∥∥∥Ḋα

c,1−ρf
∥∥∥
Lp(c,c/ρ)

≤
∥∥∥∥∫ 1

0

K(x, ρ; t)ϕ(xρt)dt

∥∥∥∥
Lp(c,c/ρ)

≤ d

∥∥∥∥ ∫ ln x
c / ln 1

ρ

0

tα−1ϕ(xρt)dt

∥∥∥∥
Lp((c,c/ρ))

+ d

∥∥∥∥∥
∫ 1

ln x
c / ln 1

ρ

(1− t)α
1

t
ϕ(xϕt)dt

∥∥∥∥∥
Lp((c,c/ρ)

=: I1 + I2,

where d = sinαπ
α . For I1 by the Minkowski inequality, we obtain

I1 ≤ d

∫ 1

0

tα−1

{∫ c/ρ

c

∣∣∣∣θ+ (
ln

x

c
/ ln

1

ρ
− t

)
ϕ(xρt)

∣∣∣∣pdx}1/p

dt

≤ C

∫ 1

0

tα−1ρ−
1
p t

{∫ cρt−1

c

|ϕ(y)|pdy
}1/p

dt ≤ C1‖ϕ‖Lp(c,c/ρ).

For I2, with the changes ρt =
(

x
c

)−y

and ln x
c = 1

z ln
1
ρ give:

I2 ≤ C

∥∥∥∥ ∫ 1

ln x
c / ln 1

ρ

(1− t)α
1

t
ϕ(xρt)dt

∥∥∥∥
Lp(c,c/ρ)

≤ C

{∫ ∞

1

∣∣∣∣ ∫ z

1

(
1− y

z

)α

ϕ

(
c

(
1

ρ

) 1−y
z

)
dy

y

∣∣∣∣pc(1

ρ

) 1
z

ln
1

ρ

dz

z2

}1/p

.

Applying the Minkowski inequality, we get

I2 ≤ C

(
c ln

1

ρ

) 1
p
∫ ∞

1

{∫ ∞

y

∣∣∣∣ϕ(c(1

ρ

) 1−y
z )∣∣∣∣p (1

ρ

) 1
z dz

z2

}1/p
dy

y

and then the change c
(

1
ρ

) 1−y
z

= ξ yields

I2 ≤ C2

∫ ∞

1

{∫ c

c( 1
p )

1−y
y

|ϕ(ξ)|pξ 1
1−y−1c−

1
1−y dξ

}1/p
dy

y(y − 1)1/p
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≤ C2

∫ ∞

1

{∫ c

cρ

|ϕ(ξ)|pdξ
}1/p

dy

y(y − 1)1/p
= C3‖ϕ‖Lp(cρ,c) → 0

as ρ→ 1, which completes the proof. �
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and Difference Galois Theory
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Abstract. We discuss the lift of Poisson structures associated with auxiliary
linear problems for the differential and difference Lax equations to the space
of wave functions. Due to a peculiar symmetry breaking, the corresponding
differential and difference Galois groups become Poisson Lie Groups.
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1. Virasoro algebra and its Galois extension

The study of Poisson structures on the spaces of differential and difference opera-
tors is motivated by applications to non-linear equations of Lax type which arise as
compatibility conditions for linear differential and difference equations. Our first
object to discuss is the space of second-order Schrödinger differential operators on
the line. This space carries a natural Poisson structure (in fact, even several com-
patible ones, but we shall not dwell upon that), such that spectral invariants of a
second-order differential operator form a maximal involutive family. This Poisson
structure admits several descriptions; perhaps the most straightforward one is the
identification of the space of Schrödinger operators on the line with a hyperplane
in the dual space of the Virasoro algebra. Recall that the dual space of any Lie
algebra carries a natural Poisson bracket, called the Lie–Poisson bracket, and its
symplectic leaves are the coadjoint orbits of the associated Lie group. The Vira-
soro algebra is a central extension of the Lie algebra VectS1 of vector fields on
the circle S1 = R/Z. The elements of VectS1 are linear differential operators on
the line with periodic coefficients of the form ξf = f ∂x, f ∈ C∞(S1) with the Lie
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bracket
[ξf , ξg] = ξw(f,g), where w(f, g) = f ′g − g′f. (1.1)

The dual space of smooth linear functionals on VectS1 consists of quadratic differ-
entials Fu = u dx2, u ∈ C∞(S1); the action of a linear functional Fu on a vector
field is given by the coupling

Fu(ξf ) =

∫
〈u dx2, ξf 〉 =

∫
u f dx. (1.2)

The Lie group which corresponds to VectS1 is the group Diff S1 of diffeomorphisms
of the circle; its adjoint and coadjoint representations correspond to the standard
change of variables for a vector field and for a quadratic differential, respectively.
We have

Ad∗ φ · Fu = (φ−1)∗Fu = φ′(x)−2u(φ−1(x)) dx2. (1.3)

According to a fundamental theorem of Gelfand and Fuchs, the second cohomology
group of VectS1 is one-dimensional; it is generated by the 2-cocycle

Ω(ξf , ξg) =

∫
f ′′′g dx. (1.4)

The central extension of VectS1 associated with the cocycle (1.4) is called the
Virasoro algebra. Commutation relations in the Virasoro algebra are frequently
written with the help of a standard basis in the complexified Lie algebra of vector
fields,

ξk = ieikx∂x, k ∈ Z;

Remark 1.1. Vector fields ξ0, ξ1, ξ−1 generate the Lie algebra sl(2,C); since this
algebra is simple, the restriction of the Gelfand–Fuchs cocycle to this algebra
is trivial. It is convenient to modify the cocycle (1.4) in such a way that this
restriction is identically zero. The modified cocycle is given by

Ω̂(ξf , ξg) =

∫
(f ′′′g − f ′g) dx. (1.5)

With these conventions the commutation relations in the Virasoro algebra take
the form

[ξk, ξl] = (k − l)ξk+l + e (k3 − k)δk+l,0. (1.6)

The coadjoint representation of the Virasoro algebra is in fact a representa-
tion of the quotient algebra Vect(S1) and integrates to the group Diff S1.

Proposition 1.1. The coadjoint representation of Diff S1 on

V̂ir
∗
� Vect(S1)∗+̇R

is given by
Ad∗ φ · (Fu, e) =

(
(φ−1)∗Fu + e S(φ−1)dx2, e

)
, (1.7)

where

S(φ) =
φ′′′

φ′ −
3

2

(φ′′)2

(φ′)2
(1.8)

is the Schwarzian derivative of φ.
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The Schwarz derivative of a function φ is identically zero if and only if φ
is a fractional linear transformation; thus the additional term in (1.7) vanishes
precisely on the projective group PSL(2,R) ⊂ Diff S1.

The complicated formula (1.7) is related to the change of variables in an
auxiliary linear problem. Namely, consider the Schrödinger equation with periodic
potential on the line,

Huψ = −ψ′′ + uψ = 0. (1.9)

Let us denote by Ωα the space of degree α densities on the line. We shall regard
the Schrödinger operator as a mapping

Hu : Ω−1/2 −→ Ω3/2,

i.e., we assume that under the change of variables φ the wave function transforms
according to the rule

ψ �−→ φ∗ψ = (φ′)−
1
2ψ ◦ φ, (1.10)

and Huψ acquires an extra square of derivative. This transformation law is in fact
the only one possible in order to preserve the form of the Schrödinger equation.

Lemma 1.2. Under the change of variables φ the potential in the Schrödinger equa-
tion goes to (φ′)2u(φ(x)) − 1

2S(φ).

We conclude that the space H of Schrödinger operators may be identified
with a hyperplane in the dual space of the Virasoro algebra (with central charge
e = −1/2); accordingly, this space carries a natural Poisson structure, the Lie–
Poisson bracket of the Virasoro algebra. This bracket is completely characterized
by the Poisson bracket relations for linear functions on H which, by definition,
coincide with the commutation relations in the Virasoro algebra and are explicitly
given by formula (1.6).

The space H is precisely the phase space for the celebrated KdV hierarchy.
The Hamiltonians for the KdV equation and its higher analogs are spectral in-
variants of Schrödinger operator; explicitly they are expressed as integrals of local
densities which are polynomial in u and its derivatives. The question which we
shall address in this section is the existence of a natural Poisson structure on the
space of wave functions, i.e., the solutions of the Schrödinger equation. This ques-
tion is of practical interest in applications to a family of KdV-like equations. Its
particular interest lies in the rather non-trivial character of the answer.

For a given u the space V = Vu of solutions of the Schrödinger equation is
2-dimensional and for any two solutions φ, ψ their wronskian W = φψ′ − φ′ψ is
constant. Any w ∈ V may be regarded as a non-degenerate quasi-periodic plane
curve (the non-degeneracy condition means that w ∧ w′ is nowhere zero). There
exists a matrixM ∈ SL(2,R) (the monodromy matrix) such that, writing elements
of V as row vectors w = (φ, ψ),

w(x+ 2πn) = w(x)Mn, n ∈ Z.

It is useful to pass to the corresponding projective curve with values in RP1 � S1.
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Theorem 1.3 ([8]).

(i) Any pair of linearly independent solutions of the Schrödinger equation defines
a non-degenerate1 quasi-periodic projective curve γ : R → RP1 such that
γ(x+ 2π) = γ(x)M .

(ii) Conversely, any such curve uniquely defines a second-order differential on
the line with periodic potential; any two projective curves associated with a
given Schrödinger equation are related by a global projective transformation.

Without restricting the generality we may fix an affine coordinate on CP1

in such a way that ∞ corresponds to the zeros of the second coordinate ψ of
the point on the plane curve; with this choice γ is replaced with the affine curve
x �→ η(x) = φ(x)/ψ(x). The potential u may be restored from η by the formula

u = 1
2S(η), (1.11)

where S is the Schwarzian derivative.

We may regard the space of wave functions as a kind of extension of the space
of potentials. In fact, there is an interesting class of non-linear evolution equations
of KdV type which can be defined on this space. These equations are related to
each other by differential substitutions. At the top of this tower of “KdV-like
equations” is the “Schwarz–KdV equation”

ηt = S(η)ηx,

This equation has got a peculiar invariance property: if η is its solution, so is aη+c
bη+d

for all g =
(
a b
c d

)
∈ SL(2). The original KdV equation holds for u = 1

2S(η) which is
PSL(2)-invariant. Other KdV-like equations are related to differential invariants
of various subgroups of PSL(2).

In the spirit of elementary variational calculus we may associate observables
for various KdV-like equations with densities which are rational functions of ψ1, ψ2

and its derivatives. In the language of differential Galois theory (which was first
applied to the study of KdV-like equations by G. Wilson [11]), we define the
differential field F = C〈ψ1, ψ2〉 as a free algebra of rational functions in an infi-
nite set of variables ψ1, ψ2, ψ

′
1, ψ

′
2, ψ

′′
1 , ψ

′′
2 , . . . with a formal derivation ∂ such that

∂ψ
(n)
i = ψ

(n+1)
i . A differential automorphism is an automorphism of C〈ψ1, ψ2〉 (as

an algebra) which commutes with ∂. All differential automorphisms are induced
by linear transformations (ψ1, ψ2) �→ (ψ1, ψ2) · g, g ∈ GL(2,C). Automorphisms
which preserve the wronskian W = ψ1ψ

′
2 − ψ′

1ψ2 belong to G = SL(2). Observ-
ables for the KdV equations form its differential subfield generated by the potential
u = 1

2S(ψ1/ψ2) which may be characterized as the subfield of invariants of the
differential Galois group G = SL(2) which acts on wave functions. Different sub-
groups of G give rise to intermediate subfields of F . Let Z = {±1} be the center
of G and N , A, B = AN its standard subgroups (nilpotent, split Cartan & Borel).

1A parameterized curve γ : R → RP1 is called nondegenerate if its velocity is nowhere zero.
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The subfields of invariants form a tower of extensions

It is easy to see that each subfield of invariants is a free differential algebra gener-
ated by a single function (a differential invariant of the corresponding subgroup),
C〈φ, ψ〉Z = C〈η〉, η = φ/ψ, C〈η〉A = C〈ρ〉, ρ = η′/η, C〈η〉N = C〈θ〉, θ = η′,
C〈η〉B = C〈v〉, v = η′′/η′, C〈η〉G = C〈u〉, u = S(η). The tower of compatible
integrable KdV-like equations associated with subgroups of PSL(2) is represented
in the diagram of the tower of KdV-like equations below.

As already mentioned, the KdV equation is Hamiltonian with respect to
the Poisson bracket associated with the Virasoro algebra. It is natural to expect
that there is a Poisson structure on all levels of the extension tower such that all
KdV-like equations are Hamiltonian and all differential substitutions are Poisson
mappings. However, the extension of the Virasoro–Poisson bracket to upper levels
of the tower proves to be non-trivial, since all arrows go in the ‘wrong’ direction:
Poisson brackets cannot be pulled back.2 The final result looks somewhat fancy,
since it incorporates a peculiar symmetry breaking: it is possible to define the

2An alternative idea is to use the symplectic form [11], but this option also leads to unexpected
obstructions, due to the monodromy of the wave functions.
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appropriate Poisson brackets, but they are not G-invariant. More precisely, the
differential Galois group G = SL(2) becomes a Poisson Lie group and all relevant
Poisson brackets are Poisson covariant. We shall recall the main definitions related
to Poisson Lie groups in the next section; here we simply quote the final formulae
for the Poisson brackets [7] which give the Poisson bracket relations for the evalu-
ation functionals on our phase space which assign the value u(x) to the function
u (by an abuse of language, which is generally adopted in the physics literature,
we do not distinguish these evaluation functionals and their values on u)3:

{η(x), η(y)} = η(x)2 − η(y)2 − sign(x− y) (η(x) − η(y))
2
. (1.12)

For θ = η′ we have

{θ(x), θ(y)} = 2 sign(x− y)θ(x)θ(y).

For v = 1
2η

′′/η′ = 1
2θ

′/θ we have

{v(x), v(y)} = 1
2δ

′(x− y). (1.13)

For u = 1
2v

′ − v2 = S(η) we have

{u(x), u(y)} = 1
2δ

′′′(x− y) + δ′(x− y) [u(x) + u(y)] . (1.14)

In these formulas sign(x − y) is the distribution kernel of the operator 2∂−1
x and

δ′(x − y) is the distribution kernel of ∂x.
It is easy to see that (1.14) is precisely the Lie–Poisson bracket for the Vira-

soro algebra (formula (1.14) gives the Poisson bracket relations for the evaluation
functionals, while (1.6) gives Poisson brackets for the functionals ξk which assign
to u its Fourier coefficients).

The potential v, which satisfies the modified KdV equation, is associated with
the factorized form of the Schrödinger operator

D2 + u = (D + v)(D − v), (1.15)

which implies the relation u = v′ − v2 called Miura transform.

2. First-order difference operators

The choice of the Poisson structure for the wave functions becomes more trans-
parent if we pass to first-order matrix differential operators and then to difference
operators, which are the main subject of the present paper. Let us recall that
the space of first-order matrix differential operators on the line carries a natu-
ral Poisson structure (sometimes called the Schwinger–Poisson structure); indeed,
it may be identified with the dual space of the canonical central extension of
the associated loop algebra. The passage to the case of second order (or, more
generally, nth-order) scalar differential operators is the subject of the so-called
Drinfeld–Sokolov theory [3]. Its starting point is the well-known equivalence of a

3Formula (1.12) was introduced independently in the study of zero modes of the Liouville model
by Faddeev and Takhtajan [5]
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second-order differential equation to a matrix 2× 2 first-order equation. Drinfeld
and Sokolov proved that the Poisson–Virasoro algebra associated with second-
order differential operators arises from that for matrix 2× 2 1st-order differential
operators by Hamiltonian reduction. The analogue of the Drinfeld–Sokolov theory
for first-order difference operators is more complicated (and less widely known).
The study of difference operators starts with the definition of suitable Poisson
structures. Poisson structures on the space of first-order matrix difference opera-
tors are not quite easy to describe; they are also much less canonical than in the
differential case, since the choice of such a structure depends on the choice of a
classical r-matrix. For abstract difference operators this choice is largely arbitrary.
However, in the special case of higher-order scalar difference operators this choice
is in fact very rigid, so that there are no free parameters left. The next question
which will be of primary interest for us in the present paper is the extension of
the Poisson structure originally defined on the space of difference operators to the
space of ‘wave functions’, i.e., of solutions of difference equations. We shall discuss
the generalized Drinfeld–Sokolov theory in Section 5. In the present section we
discuss abstract first-order difference equations. We start with the definition of
abstract difference operators.

Let G be a Lie group equipped with an automorphism τ Let G = Gτ be the
group of “quasi-constants”, G = {g ∈ G; gτ = g}. We suppose, in addition, that
the Lie algebra g of G is equipped with a non-degenerate invariant inner product
and that the induced automorphism of g is orthogonal.

Three basic examples are constructed as follows:

1. G = GΓ is the group of functions on the lattice Γ = Z with values in G =
GL(n) and with pointwise multiplication, and τ is the translation, gτn = gn+1.

2. G is the group of functions on the line with values in G = GL(n), and τ is
the shift, gτ (x) = g(x+ 1).

3. G is the group of functions with values in G = GL(n) which are meromorphic
in the punctured complex plane C∗, and τ is the dilation automorphism,
gτ (z) = g(qz), with q ∈ C, |q| ≤ 1.

The “auxiliary linear problem” reads:

ψτψ−1 = L. (2.1)

The natural action of G on itself by left multiplication induces gauge trans-
formations for L:

g : ψ �→ g · ψ, L �→ gτLg−1. (2.2)

The quasi-constants act by right multiplications, ψ �→ ψh and leave L invariant.We
shall call ‘potentials’ L in the auxiliary linear problem (2.1) difference connections.
Solutions of the auxiliary linear problem will be called wave functions.

In the case of first-order differential equations the space of potentials carries
a natural Poisson structure (the Lie–Poisson bracket of the central extension of
the loop algebra) and gauge transformations are Hamiltonian. The case of first-
order difference operators is more complicated: now the set of potentials is a group
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manifold and the gauge action is not Hamiltonian. Rather, the gauge group must
be treated as a Poisson group and the gauge action becomes a Poisson action. The
choice of the Poisson bracket on the gauge group represents an extra structure;
its choice is further restricted (and becomes partially or totally rigid) when we
pass from the first-order matrix difference operators to nth-order scalar difference
operators. Let us recall that a Poisson group G is a Lie group equipped with a
multiplicative Poisson structure. i.e., a Poisson bracket such that the multiplication

m : G×G→ G

is a Poisson mapping. An action G×M →M of G on a smooth Poisson manifold
M is called a Poisson action if the mapping

G×M→M : (g, x) �→ g · x

is Poisson. In both definitions it is assumed that the Cartesian products G × G,
G × M are equipped with the product Poisson structure. In typical cases, the
Poisson structure on a Lie groupG is given by the Sklyanin bracket associated with
a classical r-matrix. We shall assume that the Lie algebra g of G is equipped with
a non-degenerate invariant inner product; in this case we may regard a classical
r-matrix as a skew-symmetric linear operator r ∈ End g; the Sklyanin bracket of
smooth functions φ, ψ ∈ C∞(G) is given by

{φ, ψ} = 1
2 〈r(∇φ), ∇ψ〉 − 1

2 〈r(∇
′
φ), ∇′

ψ〉, (2.3)

where ∇φ,∇′
φ are left and right gradients of φ defined by

〈∇φ(x), ξ〉 =
(

d
dt

)
t=0

φ(etξx), 〈∇′
φ(x), ξ〉 =

(
d
dt

)
t=0

φ(xetξ).

The Jacobi identity for the Sklyanin bracket imposes strong restrictions on the
choice of r; a sufficient condition is the famous classical Yang–Baxter identity

[rX, rY ]− r([rX, Y ] + [X, rY ]) = −[X,Y ], X, Y ∈ g. (2.4)

Example. Let P+, P−, P0 be the complementary projection operators associated
with the decomposition of matrices into upper triangular, lower triangular and
diagonal parts. Then r = P+−P− ∈ End sl(n) satisfies (2.4) and is skew-symmetric
with respect to the inner product 〈X, Y 〉 = trXY . This r-matrix defines the so-
called standard Poisson structure on G = SL(n). In the special case n = 2 one
can show [7] that the projective action

η �→ aη + c

bη + d

of SL(2) equipped with the standard Poisson structure on the space of wave func-
tions η = ψ1/ψ2 with the bracket (1.12) is a Poisson group action.

Let us now fix an r-matrix R defining a multiplicative Poisson bracket on the
gauge group G acting by gauge transformations (2.2) on the space of difference
connections.
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Theorem 2.1 ([9]). There exists a unique Poisson structure on the space C of differ-
ence connections which makes the gauge action (2.2) a Poisson action. Explicitly,
this structure is given by

{ϕ, ψ}τ = 1
2 〈R (∇ϕ) ,∇ψ〉+ 1

2 〈R (∇′ϕ) ,∇′ψ〉
− 〈τ ◦R+ (∇′ϕ) , Y 〉 −

〈
R− ◦ τ−1 (∇ϕ) ,∇′ψ

〉
,

(2.5)

where R± = 1
2 (R ± Id).

The key feature of the bracket (2.5) is the presence of two terms of ‘mixed
chirality’ (left gradients coupled to right gradients) which also contain the auto-
morphism τ and its inverse.

Our main goal will be now to extend the Poisson structure to the space of
wave functions in a way which is consistent with the bracket (2.5) on the space
of difference connections. An appropriate class of Poisson structures which are
compatible with the expected covariance properties are the so-called affine Poisson
structures ; they are defined by the formula

{f1, f2} = 1
2 〈l(∇f1),∇f2〉+ 1

2 〈r(∇
′
f1 ),∇

′
f2〉, (2.6)

where l and r are two (a priori, different) r-matrices. We denote by G(l,r) the
Lie group G equipped with this Poisson structure. Let Gl, Gr be two copies of G
equipped with the Sklyanin bracket associated with l and r, respectively. It is easy
to check that the action

Gl ×G(l,r) ×Gr → G(l,r) : (g, ψ, h) �→ gψh

is Poisson; in other words,G(l,r) may be regarded as a principle homogeneous space
for the left action of Gl and the right action of Gr. Remarkably, in the category
of Poisson spaces principle homogeneous spaces for left and right actions are not
unique: one can vary the choice of Poisson structure.

At first glance, the choice of left and right r-matrices in (2.6) is totally free.
One condition which links them comes from the Yang–Baxter equation: to ensure
the Jacobi identity for the bracket (2.6) both l and r must satisfy the Yang–Baxter
identity (2.4) with the same normalization of the r. h. s.4 We shall see now that the
choice of l and r which is compatible with the Poisson structure (2.5) on the space
of difference connections is very rigid; both l and r are fixed completely, although
their rôles are very different.

Let us write

{f1, f2}l = 1
2 〈l(∇f1),∇f2〉, {f1, f2}r = 1

2 〈r(∇
′
f1 ),∇

′
f2〉. (2.7)

(Note that separately these brackets do not necessarily satisfy the Jacobi iden-
tity.) Let us study first the ‘left’ bracket. Let us choose F1, F2 ∈ C∞(G); let
f1(ψ) = F1(ψ

τψ−1), f2(ψ) = F2(ψ
τψ−1). We denote by X1, X2, X

′
1, X

′
2 left and

right gradients of F1, F2, respectively.

4One can replace −[X, Y ] in the r. h. s. of (2.4) by its multiple, e.g., by rescaling r, which
does not affect the Jacobi identity for (2.3); for the bracket (2.6) such rescaling must be done
simultaneously for l and r.
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Proposition 2.1. Left bracket on G admits reduction to the space C of difference
connections. The quotient bracket is given by

{F1, F2}l (ψτψ−1) := {f1, f2}l (ψ) (2.8)

= 1
2 〈l(X1), X2〉+ 1

2 〈l(X
′
1), X

′
2〉 − 1

2 〈l ◦ τ
−1(X1), X

′
2〉 − 1

2 〈τ ◦ l(X
′
1), X2〉. (2.9)

Formula (2.8) resembles (2.5) (with l = R), but differs from it in some crucial
terms: in fact, it contains l everywhere rather than l±, as in (2.5). This difference
is very important; as expected, when l satisfies (2.4), the bracket (2.8) does not
satisfy the Jacobi identity. The remedy should come from the contribution of the
right bracket, however, at first glance this seems impossible: indeed, since right
gradients are not right-invariant, the right bracket {f1, f2}r depends in principle
on ψ and not on the combination ψτψ−1. Explicitly, we have:

Proposition 2.2. The right bracket of f1, f2 is given by

{f1, f2}r (ψ) = 1
2 〈(1− τ)r(1 − τ−1)Adψ−1X ′

1,Ad(ψ
τ )−1X2〉. (2.10)

The proof of (2.10) is based on the following simple formula for the right
gradient of f .

Lemma 2.2. The right gradient of f : ψ �→ F (ψτψ−1) is given by

∇′f(ψ) = (τ−1 − 1)Adψ−1X ′
F = (τ−1 − 1)Ad(ψτ )−1XF . (2.11)

Theorem 2.3. The mapping ψ �→ ψτψ−1 is Poisson if and only if

(1− τ)r(1 − τ−1) = τ − τ−1. (2.12)

We shall assume that r commutes with τ ; in that case (2.12) amounts to

2r − τ · r − r · τ−1 = τ − τ−1. (2.13)

The Lie algebra g admits an orthogonal decomposition g = Im(1 − τ) ⊕ g0,
where g0 = Ker (1 − τ) is the subalgebra of quasi-constants. It is clear that on
g0 condition (2.12) is void, so it is important to define r on the subspace g′ =
Im(1− τ) ⊂ g.

Proposition 2.3. The restriction of r to g′ is the Cayley transform,

r = (1 + τ)(1 − τ)−1. (2.14)

Proof. It is clear that if r = (1 + τ)(1 − τ)−1, condition (2.12) is satisfied. Since
1− τ is invertible on g′, the converse is also true.

We now come up to the check of condition (2.12). The mapping ψ �→ ψτψ−1

is Poisson if and only Adψ, Ad(ψτ ) disappear in the r. h. s. of (2.10). Let us assume
that (2.12) holds. Since Adψ−1X ′

i = Ad(ψτ )−1Xi, i = 1, 2, we get

2 {f1, f2}r (ψ) = 〈(τ − τ−1) · Adψ−1X ′
1, Ad(ψ

τ )−1X2〉
= 〈τ · Ad ψ−1 ·X ′

1,Ad(ψ
τ )−1 ·X2〉 − 〈τ−1 ·Ad(ψτ )−1X1, Adψ

−1X ′
2〉

= 〈Ad(ψτ )−1 · τ ·X ′
1, Ad(ψ

τ )−1 ·X ′
2〉 − 〈Adψ−1τ−1 ·X1, Adψ

−1〉
= 〈τ ·X ′

1, X2〉 − 〈X1, τ ·X ′
2〉;

(2.15)
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At the final stage, to get rid of the operators Ad(ψτ )−1,Adψ−1 we used the invari-
ance of the inner product. It is clear that this argument is reversible, and hence
condition (2.12) is necessary and sufficient.

Let us note that (2.15) provides precisely the two terms which were missing
in the left bracket (2.8) in order to convert it into the correct Poisson bracket (2.5)
on the space of difference connections.

So far we did not discuss the Jacobi identity for the right bracket. Note that
the condition imposed on r amounts to a linear equation in the vector space End g.
This condition is already quite rigid, so there is not too much space for maneuver.

Proposition 2.4. (i) Operator (2.14) on g′ satisfies the classical Yang–Baxter iden-
tity (2.4). (ii) Put

[X,Y ]r = 1
2 ([rX, Y ] + [x, rY ]) , X, Y ∈ g′. (2.16)

Then [X,Y ]r ∈ g′ and formula (2.16) defines the structure of a Lie algebra on g′.

Proof. Suppose that X,Y ∈ Im(1− τ), X = (1 − τ)ξ, Y = (1− τ)η. Then

2[X,Y ]r = [(1 + τ)ξ, (1 − τ)η] + [(1− τ)ξ, (1 + τ)η]

= [ξ, η] + [τξ, η]− [ξ, τη] − [τξ, τη] + [ξ, η]− [τξ, η] + [ξ, τη] − [τξ, τη]

= 2(1− τ)[ξ, η].

Hence r ([rX, Y ] + [x, rY ]) = 2(1 + τ)[ξ, η]. On the other hand,

[rX, rY ] + [X,Y ] = [(1 + τ)ξ, (1 + τ)η] + [(1− τ)ξ, (1 − τ)η]

= (1 + τ)[ξ, η] + [ξ, τη] + [τξ, η] + (1 + τ)[ξ, η]− [ξ, τη] − [τξ, η]

= 2(1 + τ)[ξ, η]. �

3. Exchange r-matrices and singular integrals

Let us start with the following simple example. In the lattice case (Example 1
on page 347) the functional equation (2.13) may be solved explicitly. We identify
linear operators acting in the Lie algebra gΓ with their kernels, i.e., elements of
gΓ ⊗ gΓ with the help of the invariant inner product in g. We denote t ∈ g⊗ g the
Casimir element (the kernel of the identity operator in g). Set

r(n,m) = 1
2 tε(n−m) + r0, (3.1)

where

ε(n) = signn =

⎧⎪⎨⎪⎩
1, n > 0,

0, n = 0,

−1, n < 0.

and r0 ∈ g ⊗ g is a constant r-matrix independent of n,m. The automorphism
τ acts on r(n,m) by translation of n, rτ (n,m) = r(n + 1 −m); clearly, we have
ε(n+1−m)−ε(n−m) = δ(n+1−m), ε(n−1−m)−ε(n−m) = δ(n−1−m), where
δ(n−m) is the Kronecker delta. The constant r-matrix r0 is chosen so as to satisfy
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the classical Yang–Baxter identity. Instead of r0 one can introduce 0r± = 1
2 (r0±t).

One has:
0r+ +0r− = r0,

0r+ −0r− = t,

and the r-matrix (3.1) may be rewritten as

r(n,m) =0 r+θ(n−m) +0r−θ(m− n), (3.2)

where

θ(n) =

{
1, n ≥ 0,

0, n < 0.

Poisson algebra with this r is usually called lattice exchange algebra.
This example is in fact quite similar to the continuous case. Let C(g) be the

space of connections on the line with values in a Lie algebra g equipped with a non-
degenerate invariant inner product. C(g) may be identified with (a hyperplane in)
the dual space of the central extension of the current algebra C∞(R; g) and hence
carries a natural Poisson structure (the so-called Schwinger–Poisson bracket). The
current group C∞(R;G) acts on C(g) by gauge transformations,

g : L �→ Adg · L+ ∂xg · g−1. (3.3)

Let W (g) be the space of wave functions, i.e., of G-valued solutions of the differ-
ential equation

∂xψ = Lψ.

Gauge transformations act on W (g) by left translations, g : ψ �→ g · ψ. We want
to equip W (g) with a Poisson structure such that the natural mapping

W (g)→ C(g) : ψ �→ ∂xψ · ψ−1

is Poisson. Since the gauge action (3.3) is Hamiltonian with respect to the natural
Poisson structure on C(g), the Poisson structure on W (g) should be left-invariant.
In complete analogy with (3.1) let choose this Poisson structure in the following
form:

{ψ1(x), ψ2(y)} = ψ1(x)ψ2(y)r12(x− y), (3.4)

where

r(x − y) = r+θ(x− y) + r−θ(y − x) (3.5)

and r+, r− ∈ g ⊗ g have the same meaning as above. (Here and in the sequel we
freely use the tensor notation for the kernels of our Poisson operators.) With this
choice we get the Poisson brackets for L(x) = ψ′(x)ψ−1(x):

{L1(x), L2(y)} =
∂2

∂x∂y
(ψ1ψ2r12)ψ

−1
1 ψ−1

2 − L2
∂

∂x
(ψ1ψ2r12)ψ

−1
1 ψ−1

2

− L1
∂

∂y
(ψ1ψ2r12)ψ

−1
1 ψ−1

2 + L1L2ψ1ψ2r12ψ
−1
1 ψ−1

2 .

(3.6)

Taking into account that

r′x(x− y) = −r′y(x− y) = tδ(x− y), r′′xy(x− y) = −tδ′(x− y), (3.7)



Poisson Geometry of Difference Lax Operators 353

we get, after several remarkable cancellations based on the identity

0r+ −0 r− = t

and on the standard properties of the Casimir element t:

{L1(x), L2(y)} = [t, L1(x)− L2(y)]δ(x − y)− tδ′(x − y), (3.8)

i.e., the correct Schwinger–Poisson structure on C(g). The bracket (3.4) is called
the (continuous) exchange bracket. The kernel (3.2) may be written equivalently
as r(x− y) = 1

2 tε(x− y) + r0; of course, ε(x− y) is the distribution kernel of ∂−1
x .

In other words, r is an extension of the partially defined operator ∂−1
x .

It is instructive to rewrite the r-operator (3.2) in the Fourier representation.
Setting as usual

X̂(k) =
1

2π

∫ ∞

−∞
X(x)e−ikx dx,

we get, using the standard Fourier transform of step function,

rX(x) = r0(X̂(0)) + v.p.
1

2π

∫ ∞

−∞

X̂(k)

ik
eikx dk, (3.9)

or, equivalently,

rX(x) =0 r+

(
1

πi

∫ ∞

−∞

X̂(k)

k + i0
eikx dk

)
+0 r−

(
1

πi

∫ ∞

−∞

X̂(k)

k − i0
eikx dk

)
, (3.10)

where we assume that the finite-dimensional r-matrices 0r± are acting pointwise
on the values of the integral. In other words, the exchange r-matrix is a regularized
singular integral operator; the finite-dimensional r-matrix is necessary to correctly
regularize the zero Fourier modes.

When τ is a translation operator, gτ (x) = g(x + 1), the Cayley transform
r = (1+τ)(1−τ)−1 is again a singular integral operator which is formally given by

(rf)(x) =
1

2πi

∫ ∞

−∞
cotan(k/2)f̂(k)eikx dk. (3.11)

For f ∈ C∞
0 (R; g) we set

F (x) =

∞∑
n=−∞

f(x+ n);

clearly, F is 1-periodic and hence lies in the kernel of 1− τ . In order to regularize
(3.11) we use the standard decomposition of cotan(k/2) into simple fractions and
the Poisson formula

F (x) =

∞∑
n=−∞

f̂(2πn)e2πinx.
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The proper way to regularize (3.11) is given by the formula

(rf)(x) = 0r+

(
1

2πi

∫ ∞

−∞
X̂(k) cotan(k + i0)eikx dk

)
+ 0r−

(
1

2πi

∫ ∞

−∞
X̂(k) cotan(k − i0)eikx dk

)
,

(3.12)

in complete analogy with (3.10). Using the Sokhotsky and Poisson formulas. we
can rewrite (3.12) in equivalent form:

(rf)(x) = r0(F (x)) + v.p.
1

2π

∫ ∞

−∞
cotan(k/2)f̂(k)eikx dk, (3.13)

where r0 is acting pointwise in the subspace of quasiconstants.
In the q-difference case, when gτ (z) = g(qz), the Cayley transform r =

(1+ τ)(1− τ)−1 is completely characterized by its distribution kernel given by the
formal series

r(z, z′) = rδ(z/z′), where δ(z/z′) =
∞∑

n=−∞
(z/z′)n

is the Dirac delta function. Set z/z′ = t; we get

r(z, z′) =
∞∑

n=−∞,n	=0

1 + qn

1− qn
tn =

∞∑
n=1

(
1 + qn

1− qn
tn +

1 + q−n

1− q−n
t−n

)

=

∞∑
n=1

(tn − t−n) + 2

∞∑
n=1

qn

1− qn
(tn − t−n)

=
t+ 1

t− 1
+ 2

∞∑
n=1

qn

1− qn
(tn − t−n).

Put z = eix, z′ = eix
′
; we get a Fourier series expansion of r(z, z′) on the unit

circle,

r(z, z′) =
1

i
cotan(x− x′/2) + 4i

∞∑
n=1

qn

1− qn
sinn(x− x′). (3.14)

It is easy to see that the r.h.s. is essentially the logarithmic derivative of Jacobi’s
theta function θ1 (the difference is due to the fact that in the standard definition
the (quasi)-periods of θ1 are 2 and q2 = e2πiτ , while in our case they are 2π and q).
Note also that r(z, z′) is not quite ‘elliptic’, since the logarithmic derivative of θ1
is invariant with respect to translations by 2πiτ only up to an additive constant.
If we regard (3.14) as the kernel of a singular integral operator on the unit circle,
its regularization may be achieved in the same way as above (now the only pole of
the kernel which lies on the unit circle is x = 0 (other poles, which coincide with
the roots of θ1 are associated with the points of the multiplicative lattice qn).

Remark. As in rational and trigonometric case, the regularization introduces just
a finite-dimensional r-matrix r0. This simple prescription is in fact perfectly in
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line with the difference Galois theory: according to a theorem of P. Etingof [4], the
difference Galois group associated with the difference equation ψ(qz) = L(z)ψ(z)
is a finite-dimensional; it consists of constant matrices (and hence is a subgroup of
the infinite-dimensional group of quasi-constants) and is generated by the values
of the associated Birkhoff transition matrix. This finite-dimensional group natu-
rally inherits the Poisson structure induced by the finite-dimensional r-matrix r0.
Generically, this group coincides with the full special linear group SL(n).

4. Poisson brackets for the monodromy matrix

Let us return to the lattice case and assume that the ‘potential’ in the auxiliary
linear problem is N -periodic, Ln+N = Ln. We also assume that the gauge group
acting by left translations to consists of N -periodic functions on the lattice. In
that case the wave functions are of course only quasi-periodic, which leads to
the standard notion of monodromy. There are two definitions of the monodromy
matrix in this setting:

• M = ψNψ−1
0 , or

• M̃ = ψ−1
0 ψN .

Of course, M and M̃ are conjugate, but their transformation properties are very
different: M is invariant with respect to the right action of the group of quasi-
constants (generically, in the lattice case it coincides with the difference Galois

group), while M̃ is gauge invariant. Hence M̃ is adapted to reduction over the
subgroups of the gauge group (this reduction will be the main subject of sections
5, 6). On the other hand, we have obviously

M =

�∏
n
Ln,

and hence the Poisson bracket relations for M are easily computable. Explicitly
we have:

Theorem 4.1. Let us assume that the space of difference connections on gΓ carries
the Poisson bracket (2.5) (with R = l). (i) Equip G with the Poisson bracket

{f1, f2}l (M) = 〈l(X1), X2〉+ 〈l(X ′
1), X

′
2〉 − 〈l+(X1), X

′
2〉 − 〈l−(X ′

1), X2〉,

where as usual X1, X2, X
′
1, X

′
2 stand for left and right gradients of f1, f2. The

mapping

G→ G : (Ln) �→M =

�∏
Ln

is Poisson. (ii) Gauge action of the gauge group (equipped with the Sklyanin bracket
associated with l) on the monodromy by conjugation is Poisson.

By contrast, Poisson bracket relations for M̃ depend mainly on r. Using the
explicit form of r described in (3.2) it is easy to prove the following assertion.
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Theorem 4.2.
(i) The mapping M̃ : G → G : ψ �→ ψ−1

0 ψN is Poisson with respect to the dual
Poisson bracket on G associated with r0,

{f1, f2}r0 (M̃) = 1
2 〈r0(X1), X2〉+ 1

2 〈r0(X
′
1), X

′
2〉

− 〈r0+(X1), X
′
2〉 − 〈r0−(X ′

1), X2〉.
(4.1)

(ii) We equip the group of quasi-constants (alias, the difference Galois group) with
the Sklyanin bracket associated with r0. The bracket (4.1) is Poisson covariant
with respect to the action of the difference Galois group by conjugation.

There is a simple way to reconcile the Poisson structures associated with two
alternative definitions of the monodromy matrix: just choose r0 = l. This simple
choice eliminates the residual freedom in the definition of r (once l is chosen) and is
almost satisfactory (we shall see that in applications to difference Drinfeld–Sokolov
reduction it has to be slightly modified).

5. Difference Drinfeld–Sokolov theory

So far the choice of the ‘left’ r-matrix remains arbitrary. There exists an important
special case in which this choice is totally rigid: this is the theory of higher-order
difference equations. Before passing to the study of difference operators we shall
briefly recall the treatment of the differential case. Recall that an nth-order dif-
ferential equation

Dnφ+ un−1D
n−1φ+ un−2D

n−2φ+ · · ·+ u1Dφ+ u0φ = 0 (5.1)

may be rewritten as a first-order matrix equation

Dψ + Lψ = 0, (5.2)

where the column vector ψ = (φ, φ′, . . . , φ(n−1))t and L is the companion matrix,

L =

⎛⎜⎜⎜⎜⎝
0 −1 0 . . .
0 0 −1 0 . . .
. . . . . . . . . . . .
0 0 . . . 0 −1
u0 u1 . . . un−2 un−1

⎞⎟⎟⎟⎟⎠ . (5.3)

Without restriction of generality we may assume that trL = un−1 = 0.
The assignment φ �→ (φ, φ′, . . . , φ(n−1))t is in fact not canonical: we may

replace φ(k) by its linear combination with all derivatives of smaller order. This
introduces the natural gauge group consisting of lower triangular (unipotent) ma-
trices. The gauge group acts freely on the set of potentials of the form

L =

⎛⎜⎜⎜⎜⎝
∗ −1 0 . . .
∗ ∗ −1 0 . . .
. . . . . . . . . . . .
∗ ∗ . . . ∗ −1
∗ ∗ . . . ∗ ∗

⎞⎟⎟⎟⎟⎠ . (5.4)
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The set of companion matrices of the form (5.3) gives a (non-canonical)
global cross-section of gauge action, hence the space of scalar nth-order differential
operators may be identified with the quotient space over the action of gauge group;
the set of companion matrices (5.3) provides a model for this quotient space.
As noticed by Drinfeld and Sokolov, this description of higher-order differential
operator matches perfectly well with the Hamiltonian reduction. Let g be the Lie
algebra sl(n) equipped with the standard invariant inner product, 〈X, Y 〉 = trXY ,
and n± its nilpotent subalgebras of upper (lower) triangular matrices. Note that
n+ and n− are set in duality by this inner product, so that n+ � n∗−. Recall
that the space of first-order differential operators with potential L ∈ C∞(R, g)
carries a natural Poisson bracket, the Lie–Poisson bracket of the central extension
of the loop algebra C∞(R, g) of the Lie algebra g, alias the Schwinger–Poisson
bracket which we have already briefly discussed in section 3 (formula (3.8)). The
action of the unipotent gauge group C∞(R, N−) is Hamiltonian and admits a
natural moment map μ : C∞(R, g) → C∞(R, n−)∗ � C∞(R, n+). The set Uf of
constrained potentials of the form (5.4) is the level set of the moment map μ,
Uf = μ−1(f), where

f =

⎛⎜⎜⎜⎜⎝
0 −1 0 . . . 0
0 0 −1 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . 0 −1
0 0 . . . 0 0

⎞⎟⎟⎟⎟⎠ (5.5)

is the standard nilpotent matrix (a principal nilpotent element of g) regarded as an
element of the dual space C∞(R, n−)∗ � C∞(R, n+). An important point is that
f ∈ n+ � n∗− defines a character of the Lie algebra n−; this implies the important
technical property of the set of constraints which define the level surface (5.4): these
constraints are first class according to Dirac, i.e., their Poisson brackets vanish on
the level surface. As a result, the level surface Uf is invariant with respect to the
action of the entire gauge group C∞(R, N−) and its quotient is isomorphic to the
Hamiltonian reduced space (over the point f). For n = 2 the quotient Poisson
structure is precisely the Poisson–Virasoro algebra, for n > 2 this is the so-called
classical W-algebra.

After this brief reminder, we pass to the study of the difference case. In
complete analogy with (5.3), an nth-order difference equation

τnφ+ un−1τ
n−1 · φ+ un−2τ

n−2 · φ+ · · ·+ u1τ · φ+ φ = 0 (5.6)

may be rewritten as a matrix first-order equation

τ · ψ + Lψ = 0,

where ψ = (φ, φτ , . . . , φτn−1

)t and L is a companion matrix, as in (5.3). This time,
however, L satisfies the normalization condition detL = 1 (rather than trL = 0, as
in the differential case); hence we have u0 = 1. This marks an important difference
with the differential case: the potential L admits a canonical factorization L = Us,
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where

s =

⎛⎜⎜⎜⎜⎝
0 −1 0 . . . 0
0 0 −1 0 . . .
. . . . . . . . . . . . . . .
0 0 . . . 0 −1
1 0 . . . 0 0

⎞⎟⎟⎟⎟⎠ (5.7)

and U is a unipotent matrix,

U =

⎛⎜⎜⎜⎜⎝
1 0 0 . . . 0
0 1 0 . . . . . .
. . . . . . . . . . . . . . .
0 . . . . . . 1 0
u1 u2 . . . un−1 1

⎞⎟⎟⎟⎟⎠ . (5.8)

Note that unlike f in (5.5) s is an invertible semi-simple matrix; this is in fact
a Coxeter element, i.e., conjugation by s induces an outer automorphism of the
Cartan subgroup H ⊂ SL(n) consisting of diagonal matrices which is the product
of all simple reflections. The abelian unipotent groupN0 ⊂ N− of one-row matrices
of the form (5.8) is generated by the root vectors associated with the negative roots
which change sign under the Coxeter transformation.

The natural gauge group N− associated with nth-order difference operators
consists again of functions with values in the unipotent group N− ⊂ SL(n). The
constrained set of potentials which are gauge equivalent to L = Us are again given
by (5.4). One can prove that the gauge group acts freely on this set and that
matrices of the form L = Us, U ∈ N0, provide a global cross-section of the gauge
action.

The Poisson theory of nth-order difference equations starts with the choice of
an appropriate classical r-matrix. The Poisson structure on the space of difference
SL(n)-connections is given by (2.5) and is Poisson covariant with respect to the
action of the ‘big’ gauge group equipped with the corresponding Sklyanin bracket.
The counterpart of Hamiltonian reduction in our case is Poisson reduction. A
subgroup of the gauge group is called admissible if its invariants in the algebra of
functions form a Lie subalgebra with respect to the chosen Poisson bracket (i.e.,
the Poisson bracket of two invariant functions is again an invariant function). The
r-matrix should be chosen in such a way that the ‘little’ gauge group consisting of
functions with values in the unipotent group N− ⊂ SL(n) is admissible. Let

g = n−+̇ h+̇ n+ (5.9)

be the standard triangular decomposition in the Lie algebra g = sl(n). We denote
by h,n−,n+ the Lie algebras of functions with values in h, n−, n+ (our choice of the
algebra of function corresponds to one of the three basic examples described on p.
347). We denote by P+, P−, P0 the projection operators onto n+, n−, h parallel to
the complement in the decomposition (5.9); let P+,P−,P0 be the corresponding
pointwise projection operators in g.
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Proposition 5.1. The subgroup N− of the gauge group is admissible if and only if
the r-matrix R ∈ Endg has the form

R = P+ −P− + ρ ·P0, (5.10)

where ρ ∈ Endh is a skew symmetric linear operator.

The residual freedom in the definition of the classical r-matrix, which is repre-
sented by the possibility to choose ρ ∈ Endh, is a well-known phenomenon which
goes back to [2]. In the present case it plays a crucial role.

The key condition which has now to be taken into account is the Poisson
properties of the constraint set (5.4). Unlike the differential case, in general these
constraints are now second class (i.e., their Poisson brackets computed according
to (2.5) do not vanish on the constraint surface). If this is the case, the description
of the space of difference operators as a quotient over the gauge group will be
inconsistent with our choice of the Poisson structure (the quotient will not be a
Poisson submanifold in the reduced manifold C/N−). Luckily, there is a smart way
to avoid this difficulty by an appropriate choice of ρ. Let Ts ∈ End h be the linear
operator induced by the Coxeter element of the Weyl group; we shall denote by
the same letter its pointwise extension to h, Ts(f)(x) = Ts(f(x)).

Theorem 5.1. The constraints (5.4) are first class with respect to the Poisson
bracket (2.5) on the space of difference connections if and only if

ρ = (I + τ ◦ T−1
s )(I − τ ◦ T−1

s )−1. (5.11)

In the special case when n = 2 we have Ts = −I and ρ = (I − τ)(I + τ)−1.

Once the r-matrix is chosen in this specific way, it is easy to compute the
Poisson bracket relations for the coefficients of the difference operator (5.6). The
corresponding Poisson algebra is called the deformed W-algebra (or, for n = 2, the
deformed Poisson–Virasoro algebra). We shall give explicit formulas only for the
deformed Virasoro case; the general case is treated similarly, but leads to rather
bulky expressions. It is technically convenient to start with an extended algebra
generated by the coefficients of the factorized operator

τ2 + uτ + 1 = (τ + v)(τ + v−1) (5.12)

Clearly, we have

u = v + (v−1)τ .

The mapping v �→ v + (v−1)τ is the generalized Miura transform which replaces
ordinary Miura transform described in Section 1 (formula (1.15)). The main sim-
plification in the case when n = 2 is due to the fact that the Coxeter transform is
scalar, Ts = −1. As a consequence, in the q-difference case the correction term in
the definition of r-matrix amounts to a scalar function

ϕ(z/z′) =
∞∑

n=−∞

1− qn

1 + qn
(z/z′)n. (5.13)
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Note that ϕ is elliptic and the series (5.13) essentially coincides with the Fourier ex-
pansion of the Jacobi elliptic function dn (q1/2z/z′). The Poisson bracket relations
for v is best written in form of he generating series,

{v(z), v(w)} = ϕ
(w
z

)
v(z)v(w). (5.14)

Expressing u(z) by means of the q-Miura transform we then get:

{u(z), u(w)} = ϕ
(w
z

)
u(z)u(w) + δ

(wq
z

)
− δ

(
w

zq

)
, (5.15)

where, as usual,

δ (z) =
∞∑

n=−∞
zn.

In the case of difference on the line the same calculations lead to the singular
kernel

ϕ(x− x′) = v.p.
1

2πi

∫ ∞

−∞
tan

(
k

2

)
eik(x−x′) dk (5.16)

and to the Poisson bracket relations

{v(x), v(x′)} = ϕ(x− x′)v(x)v(x′),

{u(x), u(x′)} = ϕ(x− x′)u(x)u(x′) + δ(x − x′ − 1)− δ(x− x′ + 1).
(5.17)

6. Difference Drinfeld–Sokolov theory. II.
The space of wave functions

We now come up to the extension of the deformed Poisson–Virasoro structure to
the space of wave functions. Fundamental solutions of the first-order linear prob-
lem ψτ = Lψ are functions with values in G. By contrast, wave functions of a
scalar nth-order difference equation form an n-tuple (φ1, . . . , φn) ∈ Cn \ {0}. Up
to a natural equivalence this set of wave functions defines a point in CPn−1. To
match these descriptions note that the gauge group N− acts on wave functions by
left translations, n · ψ(x) = n(x)ψ(x). The quotient space N−\G may be identi-
fied with the space of functions with values in the principal affine space N−\G.
The Cartan subgroup H ⊂ G normalizes N− and hence there is a natural action
H × N−\G → N−\G and the associated pointwise action H × N−\G → N−\G.
When G = SL(2,C), the quotient HN−\G is isomorphic to the projective space
CP1 and HN−\G is the space of projectivized wave functions of the second-order
difference equation.

In the general case, when the potential of the first order matrix difference
equation in canonical form L = Us as in (5.7–5.8), its matrix wave function ψ has
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the simple ‘Vandermonde’ form,

ψ =

⎛⎜⎜⎝
φ1 φ2 . . . φn

φτ
1 φτ

2 . . . φτ
n

. . . . . . . . .

φτn−1

1 φτn−1

2 . . . φτn−1

n

⎞⎟⎟⎠ . (6.1)

and is completely determined by its first row. Let H0 ⊂ H ⊂ SL(n) be the
1-dimensional subgroup consisting of degenerate diagonal matrices h = diag(t,
. . . , t, s), deth = 1. Let M ′

0 be the centaliser of H0 in G = SL(n) and M0 its
maximal semisimple subgroup; let N0 ⊂ N− be the unipotent subgroup defined
in (5.8). The subgroup P0 = M0H0N0 ⊂ G is a maximal parabolic subgroup
which contains the standard Borel subgroup B = HN−. We regard M0N0\G as
an affine algebraic variety; its affine ring A(M0N0\G) is generated by the matrix
coefficients of the first row of the matrix g ∈ G. Since M0N0 ⊃ N , this affine ring
is canonically embedded into the affine ring of N−\G. The multi-scaling action
of the Cartan subgroup H on the affine ring A(N\G) induced by the natural
action H × N−\G → N−\G may be restricted to A(M0N0\G) and amounts to
the scaling action of the rank 1 subgroup H0 ⊂ H . The quotient M0H0N0\G is
isomorphic to the projective space CPn−1; the associated space of functions with
values in M0H0N0\G is precisely the space of projectivized wave functions of the
n-th order difference equations (cf. [8], where the authors treat the case of n-th
order differential equations).

If we take and the natural projection G → M0N0\G assigns to this matrix
its first row. The natural idea is to endow G (and hence also its quotient N−\G)
with the Poisson structure such that the affine ring

A(M0N0\G) ⊂ A(N−\G)

inherits a Poisson structure compatible with that of the deformed W-algebra de-
scribed in the previous section.

Following the pattern described above in Sections 2 and 4, we chose the left
r-matrix as in (5.10); note that this r-matrix is slightly more general than those
considered, since it explicitly depends on τ . As a result, we must modify the choice
of the right r-matrix r0 acting in the space of quasiconstants: we simply take

r0 = P+ − P− + ρ0P0, where ρ0 = (I + T−1
s )(I − T−1

s )−1 (6.2)

(cf. formulae (5.10, 5.11) above). It is easy to see that with this choice of the right
r-matrix the Poisson properties of the monodromy matrix described in Theorem
4.1 are maintained. Note that for G = SL(2) we have ρ0 = 0 and hence the right
r-matrix coincides with the standard r-matrix on sl(2).

We may regard the image of the Vandermonde map as a constrained set in
G; our condition on the choice of left r-matrix assures that the corresponding con-
straints are again first class; this allows to compute the quotient Poisson brackets
for the wave functions simply by computing the Poisson brackets in G and then
restricting them to the image of the Vandermonde map. This computation is par-
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ticularly easy in the sl(2) case and yields the exchange algebra Poisson brackets
relations for the wave functions of the second-order difference operator as described
in [7]. The details of this computation in the general case will be described in a
separate publication.
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Institut Mathématique de Bourgogne, 9 avenue A. Savary, F-21078 Dijon, France

and

Steklov Mathematical Institute, 191023, 27 Fontanka, St. Petersburg, Russia
e-mail: semenov@u-bourgogne.fr

mailto:semenov@u-bourgogne.fr


Operator Theory:
Advances and Applications, Vol. 242, 363–373
c© 2014 Springer Basel

The Boundedness of the Riesz Potential
Operator from Generalized Grand Lebesgue
Spaces to Generalized Grand Morrey Spaces

Salaudin Umarkhadzhiev

Dedicated to Professor A.F. dos Santos

Abstract. We introduce weighted generalized Grand Morrey spaces and prove
that the boundedness of linear operators from the generalized Grand Lebesgue
spaces to generalized Morrey spaces may be derived from their boundedness
from classical weighted Lebesgue spaces into weighted Morrey spaces. As an
application we prove a theorem on mapping properties of the Riesz poten-
tial operator from weighted generalized Grand Lebesgue spaces to weighted
generalized Grand Morrey spaces with Muckenhoupt–Wheeden Ap,q-weights,
under some natural assumptions on the way how we generalize grand spaces.

Mathematics Subject Classification (2010). Primary 46E15; Secondary 42B35.

Keywords. Grand Lebesgue space, Grand Morrey space, interpolation theo-
rem, Riesz potential, Muckenhoupt–Wheeden weight.

1. Introduction

Morrey spaces introduced by Charles B. Morrey, jr. [20] in 1938 for the study
of regularity properties of solutions to differential equations, nowadays are widely
used not only in the theory of PDE, but also for the study of operators of harmonic
analysis. The boundedness of classical operators of harmonic analysis, such as
maximal, singular and potential type operators and others, in Morrey spaces were
investigated, for instance, in [1, 2, 3, 7, 22, 27, 8], see also references therein.

In 1992 T. Iwaniec and C. Sbordone [10] introduces a new class of function
spaces called grand Lebesgue spaces. Such spaces and their generalizations were
afterwards studied in [4, 6, 9, 11, 12, 13, 15, 16, 17] on bounded sets.

In [26] there were introduced such Grand Lebesgue spaces on sets of infinite
measure, where the “Grandization” of the space was made by introducing an
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additional parameter, corresponding to a weight introduced to control behaviour
of functions at infinity.

The ideas of [26] were further developed in the recent paper [30], where
there were introduce generalized Grand Lebesgue spaces, depending on a func-
tional parameter and studied the boundedness of Hardy–Littlewood maximal and
Calderón–Zygmund singular operators in such weighted Grand Lebesgue spaces.

Grand Morrey spaces were introduced in [18, 19] similarly to the approach for
Grand Lebesgue spaces on bounded sets, i.e., with “grandization” with respect to p.
Recently in [23] and [14] there were introduced more general Grand Morrey spaces
with “grandization” with respect both to p and λ. and proved the boundedness of
some classical operators of harmonic analysis.

We generalize the notion of Grand Morrey spaces via the “grandization” of
weighed Morrey spaces with respect to p, λ and also the weight function w.

The paper is organized as follows. In Section 2 we give some preliminaries on
generalized Grand Lebesgue spaces. In Section 3 we introduce generalized Grand

Morrey spaces Lp),λa,ν (Ω, w). the main statements are contained in Sections 4 and
5. In Theorem 4.1 we prove, under some assumptions on the weight w, that lin-

ear operators are bounded from generalized Grand Lebesgue L
p)
a (Ω, w) space into

generalized Grand Morrey space Lp),λa,ν (Ω, w), if, roughly speaking, they have such
a property in the classical setting. In this “transference result” an essential role is
played by an interpolation theorem from Lebesgue to Morrey spaces with change of
weights, proved in [29]. By means of Theorem 4.1 in Section 5 we prove the bound-
edness of the Riesz potential operator from weighted generalized Grand Lebesgue
space to a weighted generalized Grand Morrey space, under some assumptions on
the weight.

Notation

C, c are various absolute positive constants not depending on the involved vari-
ables. which may have different values even in the same line;

Ω is an open set in Rn;
|A| is the Lebesgue measure of a measurable set A ⊂ Ω; Q is an arbitrary cube

in Rn with sides parallel to coordinate planes;
w is a weight on Ω, i.e., a non-negative locally integrable function with |{x ∈

Ω : w(x) = 0}| = 0;
B(x, r) = {y ∈ Rn : |y − x| < r};
B̃(x, r) = B(x, r) ∩ Ω;
↪→ stands for continuous embedding;

We use the following notation

Lp(Ω, w) =

{
f : ‖f‖Lp(Ω) :=

(∫
Ω

|f(x)|pw(x)dx <∞
) 1

p

<∞
}

for weighted Lebesgue spaces.



The Boundedness of the Riesz Potential Operator 365

2. Preliminaries

2.1. Generalized Grand Lebesgue spaces

The Grand Lebesgue space Lp)(Ω) on a bounded set Ω, introduced in [10] is defined
by the norm

‖f‖Lp)(Ω) := sup
0<ε<p−1

ε
1

p−ε ‖f(x)‖Lp−ε(Ω), 1 < p <∞. (2.1)

For unbounded sets we base ourselves on the following generalization of weighted
Grand Lebesgue spaces introduced in [30].

Definition 2.1. Let 1 < p <∞, Ω ⊆ Rn and w be a weight on Ω. By the generalized

Grand Lebesgue space L
p)
a (Ω, w) we call the space, defined by the norm

‖f‖
L

p)
a (Ω,w)

:= sup
0<ε<p−1

ε
1

p−ε ‖f‖Lp−ε(Ω,waε), (2.2)

where the weight a is suppose to satisfy the condition a ∈ Lp(Ω, w).

2.2. Auxiliary lemmas

Let W (x) be the Lambert function, i.e., the solution of the equation W (x) ×
eW (x) = x. It has two branches with domains in [−e−1, +∞) and [−e−1, 0) and
value in [−1,∞) and (−∞,−1], respectively. In the sequel W stands for the first
of these branches.

Lemma 2.2. Let p > 1, s > 0 and t ∈ [0, p− 1). Then

sup
t<x<p−1

(xs)
1

p−x =

⎧⎪⎪⎨⎪⎪⎩
(p− 1)s, s ≤ 1

p−1e
− 1

p−1

eW (−pse−1)/p, 1
p−1e

− 1
p−1 < s < 1

t e
1− 1

t

(ts)1/(p−t), s ≥ 1
t e

1− 1
t .

Proof. We have
(
(xs)1/(p−x)

)′
x
= 0 ⇔ ln x + ln s + p

x − 1 = 0 ⇔ W (−pse−1) =

− p
x < −1 ⇒ xmax = − p

W (−pse−1) . Treating separately the cases 0 < xmax ≤ t,

t < xmax < p− 1 and xmax ≥ p− 1, we arrive at the statement of the lemma. �

By Ap, 1 < p <∞, we denote the Muckenhoupt class of weights w satisfying
the condition

sup
Q⊂Rn

(
1

|Q|

∫
Q

w(x)dx

)(
1

|Q|

∫
Q

w(x)−
1

p−1 dx

)p−1

<∞,

and by A(p, q), 1 < p, q < ∞, we denote the Muckenhoupt–Wheeden class od
weights w satisfying the condition

sup
Q⊂Rn

(
1

|Q|

∫
Q

[w(x)]
q
p dx

) p
q
(

1

|Q|

∫
Q

w(x)−
1

p−1 dx

)p−1

<∞.

As is known, w ∈ A(p, q) if and only if w
q
p ∈ A1+ q

p′
.

We will need the following lemma.
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Lemma 2.3. Let 1 < p < ∞ and w ∈ A(p, p∗), where 1
p∗ = 1

p − γ, 0 < γ < 1
p . If

vδ ∈ A(p − δ, (p− δ)∗) for some δ ∈ (0, p− 1), then there exists a ε ∈ (0, δ) such
that wvε ∈ A(p− ε, (p− ε)∗).

Proof. We have to show that

Δ1 ·Δ2 :=

(
1

|Q|

∫
Q

[w(x)v(x)ε ]
(p−ε)∗
p−ε dx

) p−ε
(p−ε)∗

×
(

1

|Q|

∫
Q

[w(x)v(x)ε]−
1

p−ε−1 dx

)p−ε−1

<∞.

From the assumption w ∈ A(p, p∗) by properties of Muckenhoupt weights there
exists a θ > 1 such that wθ ∈ A(p, p∗), i.e.,

Δ := sup
Q⊂Rn

(
1

|Q|

∫
Q

[w(x)]
θp∗
p dx

) p
p∗

(
1

|Q|

∫
Q

w(x)−
θ

p−1 dx

)p−1

<∞. (2.3)

To estimate the factor Δ1, we use the Hölder inequality with the exponent t =
p∗(p−ε)
p(p−ε)∗ θ > 1 and obtain

Δ1 ≤
(

1

|Q|

∫
Q

[w(x)]
θp∗
p dx

) p
θp∗

(
1

|Q|

∫
Q

[v(x)ε]
t′(p−ε)∗

p−ε dx

) p−ε

t′(p−ε)∗
.

For Δ2 we use the Hölder inequality with the exponent τ = p−ε−1
p−1 θ > 1 (assuming

that ε < p−1
θ′ ). Then

Δ2 ≤
(

1

|Q|

∫
Q

[w(x)]−
θ

p−1 dx

) p−1
θ

(
1

|Q|

∫
Q

[v(x)ε]−
τ′

p−ε−1 dx

) p−ε−1

τ′
.

Consequently

Δ1 ·Δ2 ≤ Δ
1
θ Δ3,

where

Δ3 =

(
1

|Q|

∫
Q

[v(x)ε]
t′(p−ε)∗

p−ε dx

) p−ε
t′(p−ε)∗

(
1

|Q|

∫
Q

[v(x)ε]−
τ′

p−ε−1 dx

) p−ε−1
τ′

.

After easy transformations we arrive at

Δθ′
3 =

(
1

|Q|

∫
Q

[v(x)εθ
′
]
1
r dx

)r (
1

|Q|

∫
Q

[v(x)εθ
′
]−

1
s dx

)s

,

where

r =

(
p− ε

(p− ε)∗
− p

p∗

)
θ′ +

p

p∗
, s = p− εθ′ − 1.

This completes the proof after replacing εθ′ by δ. �
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3. Generalized Grand Morrey spaces

3.1. Weighted Morrey spaces

Let 1 ≤ p <∞, 0 ≤ λ < n w a weight on Ω. The classical weighted Morrey space
denoted by Lp,λ(Ω, w) is defined by the norm

‖f‖Lp,λ(Ω,w) := sup
x∈Ω,r>0

r−
λ
p ‖f‖Lp(B̃(x,r),w). (3.1)

In the case λ = 0 it recovers the weighted Lebesgue space Lp(Ω, w).
Examples with “limiting exponents” given below illustrate the inclusion of

power functions into Morrey spaces, see, for instance, [24, 25]:

1) |x|−n
p /∈ Lp(Rn), |x|

λ−n
p ∈ Lp,λ(Rn), λ > 0;

2) |x|
λ−n

p lnν 1
|x| /∈ Lp,λ(B(0, 1)), ν > 0.

The following lemma on embedding of weighted Morrey spaces is proved by
means of the corresponding Hölder inequality.

Lemma 3.1. Let 1 ≤ p1 < p2 <∞, 0 ≤ λ1, λ2 < n. If the weights w1 and w2 on Ω
satisfy the condition

K := sup
x∈Ω,r>0

r
λ2
p2

−λ1
p1

{∫
B̃(x,r)

(
w1(y)

p2

w2(y)p1

) 1
p2−p1

dy

} 1
p1

− 1
p2

<∞, (3.2)

then
‖f‖Lp1,λ1 (Ω,w1) ≤ K‖f‖Lp2,λ2 (Ω,w2). (3.3)

In the case p1 = p2, the condition (3.2) should be replaced by

K = sup
x∈Ω,r>0

rλ2−λ1 sup
y∈B̃(x,r)

w1(y)

w2(y)
<∞.

3.2. Riesz–Thorin–Stein–Weiss Lp(Ω, v) → Lq,λ(Ω, w)-interpolation theorem

In [28] there was proved an Lp → Lp-interpolation theorem for linear operators
with change of measure. We will use the following version of such a result, in terns
of change of weights, for operators from Lebesgue to Morrey spaces, proved in [29].

Theorem 3.2. Let pi, qi ∈ [1,∞) and vi, wi, i = 1, 2, be weights on Ω, and T a
linear operator defined on Lp1(Ω, v1) ∪ Lp2(Ω, v2). If

‖Tf‖Lqi,λi (Ω,wi) ≤ Ki‖f‖Lpi(Ω,vi)

for all f ∈ Lpi(Ω, vi), i = 1, 2, then the operator T is bounded from Lp(Ω, v) to
Lq,λ(Ω, w), where p, q, λ and the weights v, w are defined by

1

p
=

1− t

p1
+

t

p2
,

1

q
=

1− t

q1
+

t

q2
,

λ

q
= (1− t)

λ1

q1
+ t

λ2

q2
,

v = v
(1−t) p

p1

1 v
t p
p2

2 , w = w
(1−t) q

q1

1 w
t q
q2

2

and
‖Tf‖Lq,λ(Ω,w) ≤ K1−t

1 Kt
2‖f‖Lp(Ω,v), 0 ≤ t ≤ 1. (3.4)
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3.3. Definition of generalized Grand Morrey spaces

We define generalized weighted Morrey spaces Lp,λ(Ω, w), making these spaces
grand with respect to p, λ (as in [23, 14]) and also the weight w. The change of
the weight function w(x) is taken in the form w(x)[a(x)]ε with a non-negative
function a(x), which is natural from the point of view of the usage of interpolation
technique.

Definition 3.3. Let 1 < p <∞, 0 ≤ λ < n, and w a weight on Ω. The generalized

Grand Morrey space Lp),λa,ν (Ω, w) is defined as the set of functions f : Ω → R
having the finite norm

‖f‖Lp),λ
a,ν (Ω,w)

:= sup
0<ε<p−1

ε
1

p−ε ‖f‖Lp−ε,λ−νε(Ω,waε), (3.5)

where ν is a real number and a is a non-negative function on Ω.

In the following lemma we show that the weighted Morrey space is contained
in such a weighted generalized Grand Morrey space under some natural assump-
tions on the choices of the function a and of the parameter ν.

Lemma 3.4. Let p > 1. If a ∈ Lp,λ−νp(Ω, w) and −n−λ
p < ν ≤ λ

p , then the

embedding
Lp,λ(Ω, w) ↪→ Lp),λa,ν (Ω, w) (3.6)

holds and
‖f‖Lp),λ

a,ν (Ω,w)
≤ Cp,a,ν‖f‖Lp,λ(Ω,w) (3.7)

where

Cp,a,ν =

{
(p− 1)‖a‖p−1

L , ‖a‖pL ≤ 1
p−1e

− 1
p−1

‖a‖−1
L eW (−p‖a‖p

Le−1)/p, ‖a‖pL > 1
p−1e

− 1
p−1 ,

‖a‖L = ‖a‖Lp,λ−νp. In the case ν = 0 the norm of the operator of this embedding
is Cp,a,0.

Proof. We have

‖f‖Lp),λ
a,ν (Ω,w)

= sup
0<ε<p−1

ε
1

p−ε ‖f‖Lp−ε,λ−νε(Ω,waε).

Now we make use of Lemma 3.1 with

p1 = p, p2 = p− ε, w1 = w, w2 = waε, λ1 = λ, λ2 = λ− νε.

We obtain

K = sup
x∈Ω,r>0

r
λ−νε
p−ε −λ

p

{∫
B̃(x,r)

w(y)[a(y)]pdy

} 1
p−ε− 1

p

= ‖a‖
ε

p−ε

Lp,λ−νp(Ω,w)
<∞, 0 < ε < p− 1.

Hence

‖f‖Lp),λ
a,ν (Ω,w)

≤ ‖a‖−1
Lp,λ−νp(Ω,w)

sup
0<ε<p−1

(
ε‖a‖pLp,λ−νp(Ω,w)

) 1
p−ε ‖f‖Lp,λ(Ω,w).
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It remains to use Lemma 2.2 with t = 0, x = ε and s = ‖a‖pLp,λ−νp(Ω,w)
.

In the case ν = 0 we have

‖a‖Lp),λ
a,0 (Ω,w)

= sup
0<ε<p−1

ε
1

p−ε ‖a‖Lp−ε,λ(Ω,waε)

= sup
0<ε<p−1

ε
1

p−ε sup
x,r

(
r−λ

∫
B(x,r)

ap−εaεwdy

) 1
p−ε

= sup
0<ε<p−1

ε
1

p−ε ‖a‖
p

p−ε

Lp,λ(Ω,w)

= sup
0<ε<p−1

ε
1

p−ε ‖a‖
ε

p−ε

Lp,λ(Ω,w)
‖a‖Lp,λ(Ω,w)

=Cp,a,0‖a‖Lp,λ(Ω,w). �

The statement of the next lemma follows from the definition of the norm in
the generalized Grand Morrey space.

Lemma 3.5. If a ∈ Lp,λ−νp(Ω, w), −n−λ
p < ν ≤ λ

p , then for every 0 < ε < p − 1

the embedding

Lp),λa,ν (Ω, w) ↪→ Lp−ε,λ−νε(Ω, waε)

is valid.

By standard means the following lemma is proved.

Lemma 3.6. Lp),λa,ν (Ω, w) is a Banach space.

Note that the generalized Grand Morrey space coincides with the generalized
Grand Lebesgue space when λ = ν = 0:

Lp),0a,0 (Ω, w) = Lp)
a (Ω, w).

Below we give examples illustrating inclusion of power-logarithmic functions

into generalized Morrey spaces Lp),λa,ν (Ω, w).

Example. Let 1 < p <∞ and 0 ≤ λ < n. Then

a) |x|
λ−n

p ∈ Lp,λ(Rn),

b) |x|
λ−n

p /∈ Lp−ε,λ−νε(Rn), ∀ε ∈ (0, p− 1), ∀ν ∈
(
−n−λ

p , λ
p

]
,

c) |x|
λ−n

p /∈ Lp),λ1,ν (Rn),

d) |x|
λ−n

p ∈ Lp),λ1,ν (Ω) in the case Ω is bounded,

e) |x|
λ−n

p ∈ Lp),λa,ν (Rn), where a(x) = (1 + |x|)
λ−n

p .
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4. The boundedness of linear operators from generalized Grand
Lebesgue spaces to generalized Grand Morrey spaces

4.1. The main statement

In [30] under some assumptions on the weight w there was studied the boundedness

of linear operators in generalized Grand Lebesgue spaces L
p)
a (Ω, w). The next

theorem represents a version of such a study for the case of linear operators from

generalized Grand Lebesgue spaces L
p)
a (Ω, w) to generalized Grand Morrey spaces

Lp),λa,ν (Ω, w).

Theorem 4.1. Let 1 < p0 < p < ∞ and λ, λ0 ∈ [0, n). Suppose that a linear
operator T

i) is bounded from the Lebesgue space Lp(Ω, u) into the Morrey space Lp,λ(Ω, v)
with the norm M1,

ii) is bounded from the Lebesgue space Lp0(Ω, uap−p0) into the Morrey space
Lp0,λ0(Ω, vbp−p0) with the norm M2, for some non-negative on Ω functions
a ∈ Lp(Ω, u) and b ∈ Lp,λ−νp(Ω, v), ν = λ−λ0

p−p0
.

Then T is bounded from the generalized Grand Lebesgue space L
p)
a (Ω, u) into

the generalized Grand Morrey space Lp),λb,ν (Ω, v) with the norm M ≤ max{M1,M2}.

Proof. We have

‖Tf‖Lp),λ
b,ν (Ω,v)

= sup
0<ε<p−1

ε
1

p−ε ‖Tf‖Lp−ε,λ−νε(Ω,vbε) = max{A,B},

where

A = sup
0<ε≤p−p0

ε
1

p−ε ‖Tf‖Lp−ε,λ−νε(Ω,vbε),

B = sup
p−p0<ε<p−1

ε
1

p−ε ‖Tf‖Lp−ε,λ−νε(Ω,vbε).

Estimation of A. By the assumptions of the theorem ‖Tf‖Lp,λ(Ω,v) ≤
M1‖f‖Lp(Ω,u) and ‖Tf‖Lp0,λ0(Ω,vbp−p0 ) ≤ M2‖f‖Lp0(Ω,uap−p0 ). We make use of
the interpolation theorem 3.2 with

p1 = q1 = p, p2 = q2 = p0, v1 = u, w1 = v, v2 = uap−p0 , w2 = vbp−p0 ,

λ1 = λ, λ2 = λ0

and notation
(

1−t
p + t

p0

)−1

=: p − ε. We obtain that the operator T is bounded

from the space Lp−ε(Ω, uaε) into the space Lp−ε,λ−νε(Ω, vbε), ν = λ−λ0

p−p0
, i.e.,

‖Tf‖Lp−ε,λ−νε(Ω,vbε) ≤ K‖f‖Lp−ε(Ω,uaε), (4.1)

and K = M1−t
1 M t

2, where t = εp0

(p−ε)(p−p0)
.
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Consequently,

A ≤ sup
0<ε≤p−p0

M1−t
1 M t

2ε
1

p−ε ‖f‖Lp−ε(Ω,uaε)

= sup
0<ε≤p−p0

M1−t
1 M t

2‖f‖Lp)
a (Ω,u)

= max{M1,M2}‖f‖Lp)
a (Ω,u)

.

Estimation of B. We apply Lemma 3.1 and obtain

‖Tf‖Lp−ε,λ−νε(Ω,vbε) ≤ ‖b‖
p
(

1
p0

− 1
p−ε

)
Lp,λ−νp(Ω,v)

‖Tf‖Lp0,λ−ν(p−p0)(Ω,vb(p−p0)),

so that

B ≤ sup
p−p0<ε<p−1

ε
1

p−ε ‖b‖
p
(

1
p−ε− 1

p0

)
Lp,λ−νp(Ω,v)

‖Tf‖Lp0,λ0 (Ω,vbp−p0)

= (p− p0)
− 1

p0 ‖b‖
− p

p0

Lp,λ−νp(Ω,v)

× sup
p−p0<ε<p−1

ε
1

p−ε ‖b‖
p

p−ε

Lp,λ−νp(Ω,v)
(p− p0)

1
p0 ‖Tf‖Lp0,λ−ν(p−p0)(Ω,vbp−p0)

≤ inf
0<p−p0<p−1

(
[h(p− p0)]

−1 sup
p−p0<ε<p−1

h(ε)

)
· A = A,

where we denoted h(ε) := ε
1

p−ε ‖b‖
p

p−ε

Lp,λ−νp(Ω,v)
.

It remains to gather the estimates for A and B. �

5. Application to the Riesz potential operator

Let

Iαf :=

∫
Ω

|x− y|α−nf(y)dy, 0 < α < n,

be the Riesz potential on Ω ⊆ Rn. The following result is well known ([21]).

Theorem 5.1. Let Ω = Rn, 0 < α < n, 1 < p < n/α, 1
q = 1

p −
α
n . The operator Iα

is bounded from Lp(Rn, w) into Lq(Rn, wq/p), if and only if w ∈ A(p, q).

The following theorem can be derived from Theorem 5.1. It gives us an ex-
ample of a bounded linear operator acting from a weighted Lebesgue space into a
weighted Morrey space.

Theorem 5.2. Let 0 < α < n, 1 < p < n/α, 1
q = 1

p −
α
n , and w be a restriction to

Ω of a weight in the class A(p, q). Then

‖Iαf‖Lp,λ(Ω,w) ≤ c‖f‖Lp(Ω,w)

for λ ≤ pα, if Ω is bounded and λ = pα, otherwise.
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Proof. By the Hölder inequality with the exponent q/p, we get

‖Iαf‖Lp,λ(Ω,w) = sup
x∈Ω,0<r≤diamΩ

r−
λ
p

{∫
B(x,r)

|Iαf |pw(y)dy
} 1

p

≤ sup
x∈Ω,0<r≤diamΩ

r−
λ
p+n q−p

qp ‖Iαf‖Lq(Ω,wq/p).

To complete the proof, it remains to apply Theorem 5.1. �

Theorem 5.3. Let 0 < α < n, 1 < p < n
α ,

1
q = 1

p −
α
n . Suppose that

1) w ∈ A(p, q),
2) a ∈ Lp(Rn, w) and aδ ∈ A(p − δ, qδ) for some δ ∈ (0, p − 1), where 1

q δ
=

1
p−δ −

α
n .

Then the operator Iα is bounded from the generalized Grand Lebesgue space

L
p)
a (Rn, w) into the generalized Grand Morrey space Lp),αpa,α (Rn, w).

Proof. It suffices to show that the operator T = Iα satisfies the conditions i)–ii)
of Theorem 4.1. The former follows by the assumption 1) and Theorem 5.2. The
latter follows by Lemma 2.3 and Theorem 5.2. �
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