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Activation of the TCR Complex by Small

Chemical Compounds

Christine Louis-Dit-Sully and Wolfgang W.A. Schamel

Abstract Small chemical compounds and certain metal ions can activate T cells,

resulting in drug hypersensitivity reactions that are a main problem in pharmacol-

ogy. Mostly, the drugs generate new antigenic epitopes on peptide-major histo-

compatibility complex (MHC) molecules that are recognized by the T-cell antigen

receptor (TCR). In this review we discuss the molecular mechanisms of how the

drugs alter self-peptide-MHC, so that neo-antigens are produced. This includes

(1) haptens covalently bound to peptides presented by MHC, (2) metal ions and

drugs that non-covalently bridge self-pMHC to the TCR, and (3) drugs that allow

self-peptides to be presented by MHCs that otherwise are not presented. We also

briefly discuss how a second signal—next to the TCR—that naı̈ve T cells require to

become activated is generated in the drug hypersensitivity reactions.

3.1 Introduction

Adverse drug reactions are a major health problem worldwide, but they are difficult

to predict. The propensity for an individual to develop a reaction depends on the

chemistry of the drugs or chemicals, on environmental factors, and on the biology

of the patient. A good proportion of these reactions are immune mediated, which

are also called allergic drug reactions or drug hypersensitivity reactions. These drug
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hypersensitivity reactions are due to several distinct immune mechanisms, but all

types eventually involve stimulation of T cells by the drug.

For a T-cell-dependent immune response to occur, the drug must stimulate the

T-cell antigen receptor (TCR). Drugs, which are usually small chemical compounds

of low molecular weight (less than 1,000 Da) and metal ions, are thought to be too

small to be antigenic per se. How they are able to stimulate an immune response

often is an important open question left to answer.

The TCR is composed of the TCRαβ (or TCRγδ), CD3εδ, CD3εγ, and CD3ζζ
dimers (Alarcon et al. 2003) (Fig. 3.1a). TCRαβ possesses variable immunoglob-

ulin domains that bind the ligand, an antigenic peptide bound to major histocom-

patibility complex (pMHC) molecules (Garboczi et al. 1996; Garcia et al. 1996)

(Fig. 3.1b). Foreign peptides, such as derived from viruses or bacteria, presented by

MHC have a high affinity for their appropriate TCR and thus elicit an immune

response. Peptides derived from endogenous proteins (self-peptides) are also

presented. However, due to negative selection processes in the thymus, mature T

cells only show weak affinity to self-peptide-MHC, so that T cells are not stimu-

lated and autoimmune diseases are prevented. In addition, superantigens can bridge

MHC and TCR peptide independently and stimulate T cells (Fig. 3.1c).

The CD3 chains contain tyrosine residues in their cytoplasmic tails, that are

phosphorylated upon successful ligand binding to TCRαβ and that transmit the

signal inside the cell. Phosphorylation of the tyrosines in these cytoplasmic tails is

the critical event initiating signaling cascades. Phosphotyrosines serve as binding

sites for signaling proteins with Src-homology 2 (SH2) domains.

The molecular mechanism as to how ligand binding induces CD3 phosphoryla-

tion is still a matter of debate. In the conformational change models (Aivazian and

Stern 2000; DeFord-Watts et al. 2011; Gil et al. 2002; Minguet et al. 2007; Schamel

et al. 2006; Xu et al. 2008), pMHC binding induces a structural change in CD3 that

enables phosphorylation of the cytoplasmic domains. In other models the kinase-

phosphatase equilibrium is disturbed in the vicinity of the TCR by excluding

phosphatases (Choudhuri and van der Merwe 2007; Choudhuri et al. 2005; Davis

and van der Merwe 2006; James and Vale 2012) or by enhancing the concentration

of kinases (Boniface et al. 1998; Cochran et al. 2000; Irvine et al. 2002). These

models are discussed in detail in the preceding review “Activation of the TCR

complex by peptide-MHC and superantigens.”

Here, we want to discuss models, which have emerged in the recent years to

explain how small chemicals or metals can stimulate the TCR.

3.1.1 Chemicals Acting as Haptens

The term “hapten” was introduced by Landsteiner and Jacobs in 1935. Haptens are

chemically reactive compounds that form a covalent bond with endogenous pro-

teins. In 1992 it was demonstrated that hapten recognition by T cells required

covalent hapten attachment to MHC-associated peptides (Ortmann et al. 1992).
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In general hapten-modified proteins are processed by the antigen-presenting

machineries and haptenated peptides displayed on MHC class I or II to T cells. In

contrast to self-pMHC, which only weakly binds to the TCR and does not stimulate

T cells (Fig. 3.2a), haptenated self-pMHC can possess strong binding to an appro-

priate TCR, and the T cell is stimulated (Fig. 3.2b). These haptenated self-pMHCs

were absent during thymocyte development and negative selection, so that the

specific TCRs reacting to these haptenated self-pMHCs were not removed from

the T-cell population. One example for haptens are β-lactam antibiotics, such as

penicillin, which covalently bind to lysine residues of many proteins, such as serum

albumin (Batchelor et al. 1965; Jenkins et al. 2009; Levine and Ovary 1961;

Schneider and De Weck 1965). One study, using the synthetic penicillin

Flucloxacillin, showed that the modification of the lysine residues in human

serum albumin occurs in a dose-, time-, and site-dependent manner (Jenkins

et al. 2009). However, the exact mechanisms for the immune responses to penicillin

are still not clear and create difficulties in the development of effective diagnostics

methods (Blanca et al. 2009).
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Fig. 3.1 The T-cell antigen receptor (TCR). (a) The TCR comprises the pMHC-binding TCRαβ
and the signal-transducing CD3εδ, CD3εγ, and CD3ζζ dimers. (b) Foreign peptide-MHC has a

high affinity for the responding TCR. The peptide and the MHC molecule have contacts with

TCRαβ, triggering intracellular signaling events, such as the activation of PLCγ and other

signaling proteins, leading to T-cell activation. (c) Superantigens simultaneously bind to MHC

in a peptide-independent manner and to the constant regions of TCRαβ. Thus, pMHC is bridged to

the TCR largely independent of pMHC-TCRαβ contacts. Superantigen stimulation leads to the

activation of PLCβ and other signaling proteins, resulting in T-cell activation
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3.1.2 Chemicals Acting as Prohaptens

Prohaptens are chemicals that only become active after a metabolic reaction. Often

bioactivation of prohaptens involves oxidative processes, with the cytochrome

P450-dependent metabolism playing a major role. In the liver, for example, sulfa-

methoxazole is converted by P450 to sulfamethoxazole hydroxylamine (Cribb and

Spielberg 1992), and autooxidation of the latter compound generates the metabolite

nitroso sulfamethoxazole (SMX-NO), which reacts with cysteine residues of pro-

teins (Callan et al. 2009). Indeed, the peptides derived from the SMX-NO-modified

proteins after antigen processing can possess high affinity for the appropriate TCR

and thus are potent antigens to the specific T cells (Castrejon et al. 2010).

db c

self
peptide

self
peptide

self
protein

drug

self
peptide

metal ion
or drug

self
protein

a

self
peptide

self
protein

MHC

TCRαβ

e

peptide
independ.

high affinity high affinity
low affinity

high affinity high affinity

PLCγ, ... PLCβ, ...PLCγ, ... PLCγ, ...

self
protein

metal ion
or drug

any self
protein

metal ion
or drug

Fig. 3.2 pMHC-TCRαβ interactions mediated by small chemical compounds I. (a) Negative

selection in the thymus ensures that self-peptide-MHC only has a weak affinity for TCRs in

peripheral T cells. Self-pMHC does not perfectly fit to TCRαβ, thus not triggering their TCR. (b)

Haptens bind covalently to endogenous proteins, thus generating haptenated self-peptides that

together with MHC can form high affinity ligands for the TCR. (c) Transitional metal ions or drugs

can non-covalently bind to the common self-peptide-MHC surface and thus potentially generate a

high affinity ligand for the TCR. (d) Metal ions or drugs might also non-covalently bind to the

MHC only. This could also form a complementary structure to some TCRαβ, forming a high

affinity ligand. (e) Similar to superantigens, Fig. 3.1c, metal ions or drugs might bridge MHC with

TCRαβ with high affinity without the involvement of the peptide. Thus, a large fraction of MHC

might become competent in stimulation of TCRs. The stimulation of PLCγ (or PLCβ in case of

superantigen-like ions/drugs) and other intracellular signaling molecules induced by high affinity

TCR binding is indicated. This leads to activation of the T cell
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Prohaptens are a major problem for drug development as the different metabolic

systems in a whole organism have to be investigated to make sure that an initially

nonreactive drug does not become reactive upon metabolism.

3.1.3 Haptens as Tools in Basic Research

Traditionally haptens have been an important tool in studying the immune response.

For example, trinitrophenol and dinitrophenol have been used to demonstrate the

exquisite specificity of the immune system (Weltzien et al. 1996). More recently,

haptenated peptides were synthesized to generate TCR antigens with defined

properties. For example, photoreactive 4-azidobenzoic acid on the lysine of the

peptide SYIPSAEKI was used and the haptenated peptide bound to MHC class

I. Specific TCRs could bind, and using a short pulse of UV light, a covalent link

between the peptide-MHC molecule and the bound TCR was made, thus “freezing”

the otherwise transient peptide-MHC-TCR interaction (Gregoire et al. 1996;

Luescher et al. 1995). Using this system we could show that bivalent peptide-

MHC binding was required to induce an activatory conformational change in the

CD3 subunits of the TCR (Minguet et al. 2007).

3.1.4 Transitional Metal Ions

Nickel (Ni) allergy is the most common and best studied of all metal hypersensi-

tivities, again stimulating T cells. Reactions to other metals such as cobalt (Co),

chromium (Cr), platinum (Pt), beryllium (Be), mercury (Hg), and gold (Au) are also

reported. These transitional metals are only active as ions (e.g., Ni2+) after their

oxidation that can take place on the skin. Metal ions cannot form covalent bonds to

peptides and thus are not classical haptens. Instead, metal ions form geometrically

highly defined non-covalent coordination bonds with four or six electron donors.

The electron donors are mainly nitrogen or oxygen in the amino acid side chains of

proteins (Zhang and Wilcox 2002). Thus, metal ions can form very specific

complexes with proteins. Ni is studied best (Thierse et al. 2005) and thus serves

as an example here.

T-cell activation by Ni-treated APCs did not require antigen processing in some

cases (Moulon et al. 1995), being in contrast to the classical haptens. In some cases,

Ni bound to the MHC molecule and the peptide, thus forming a new surface to be

recognized by the TCR (Fig. 3.2c) (Lu et al. 2003). This might require a certain

MHC haplotype, a limited set of peptides and some specific TCR. However, if the

hypervariable regions of the TCR are not required to make the contact, then a large

number of different TCRs (e.g., those containing a certain Vα and/or Vβ segment)

might be stimulated (Vollmer et al. 1997). Unfortunately, a crystal structure of a

pMHC-Ni-TCRαβ complex does not exist. However, mimotopic peptides have
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been used to substitute for the Ni and the self-peptide. The structure shows that the

same diagonal orientation of the pMHC-TCRαβ interaction as for the classical

pMHC-TCRαβ exists (Yin et al. 2012). This might suggest that the canonical PLCγ
pathway is used (Fig. 3.2c). Unfortunately, it is unknown whether metal ions also

allow other orientations than the diagonal one. In this case the interaction might

resemble more the one of superantigen-mediated TCR activation and thus also

activate PLCβ (Bueno et al. 2006, 2007).

It could also be possible that the metal ion only contacts MHC and TCR

(Fig. 3.2d).

In another case, Ni activated the TCR with the correct MHC haplotype, but

independent of any peptide (Gamerdinger et al. 2003). Thus, it was proposed that Ni

acted in a similar manner as superantigens (Fig. 3.2e). However, in this case the

hypervariable regions of the TCR were used as a contact site; thus, only very few

TCRs might be activated. This is in contrast to superantigens that can activate all

TCRs of a given Vβ region (Fraser and Proft 2008; Petersson et al. 2004). It was

suggested that self-pMHC first binds to the TCR and that Ni then stabilizes the

complex, in order to generate a high affinity interaction (Thierse et al. 2005).

Whether in these cases PLCβ is simulated is unknown.

3.1.5 The “Pharmacological Interaction of Drugs with
Immune Receptors (p-i) Concept”

The mechanisms of generating high affinity pMHC ligands for the TCR that we

have just discussed for metal ions (Fig. 3.2) might also hold true for small organic

compounds that do not covalently bind to peptides but still activate T-cell

responses. These mechanisms were proposed in the “pharmacological interaction

of drugs with immune receptors (p-i) concept” (Adam et al. 2011; Pichler 2005) and

have gained much experimental support in the last years.

This model accounts for the observation that T cells could be activated, in an

MHC-dependent mechanism, even in the presence of glutaraldehyde-fixed APCs

(unable to process antigens) and the nonreactive drug (Schnyder et al. 1997; Zanni

et al. 1998). Furthermore, the speed in which T cells could be activated (visualized

by calcium influx) after introduction of the drug was too fast for antigen processing

to have occurred (Zanni et al. 1998). Thus, these chemicals form reversible,

non-covalent bonds (electric, van der Waals, hydrophobic, and hydrogen bonding

forces) with pMHC and TCRαβ.
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3.1.6 Drugs Binding Non-covalently to pMHC

Strong associations between drug hypersensitivity reactions and specific HLA

alleles (human leukocyte antigen, HLA, is the name for human MHC) have been

described, although the exact mechanisms for the TCR-stimulating activity of the

drugs are often unclear. For example, strong associations between HLA-B*5801

and allopurinol-induced or HLA-B*1502 and carbamazepine-induced Stevens-

Johnson syndrome or between HLA-B*5701 and flucloxacillin-induced reactions

have been reported (Chung et al. 2004; Daly et al. 2009; Tassaneeyakul et al. 2009).

In fact, carbamazepine seems to bind directly but non-covalently to endogenous

peptide-loaded HLA-B*1502 (Wei et al. 2012; Yang et al. 2007). Thus, the pMHC-

binding mechanisms shown in Fig. 3.2c, d might hold true. The 5-carboxamide

chemical moiety of carbamazepine was seen to be required for presentation with

HLA-B*1502, and three key residues in the peptide-binding groove of

HLA-B*1502 were identified (Wei et al. 2012).

3.1.7 Drugs Altering the Self-Peptide Repertoire Bound to
MHC

The antiviral drug abacavir causes severe adverse reactions exclusively in

HIV-infected individuals expressing HLA-B*5701. As one example for personal-

ized medicine, it is now common practice to genotype a patient for HLA-B*5701

before prescribing abacavir. The adverse reactions are mediated by the activation of

cytokine-producing cytotoxic CD8+T cells, and the specificity of the abacavir-HLA

interaction was mapped to the F pocket of the peptide-binding cleft of the MHC

molecule (Chessman et al. 2008). Several groups showed recently that abacavir

binds non-covalently to amino acid residues within the F pocket and thus changes

the shape and chemistry of the cleft (Illing et al. 2012; Ostrov et al. 2012), changing

the repertoire of self-peptides bound to and presented by HLA-B*5701 (Fig. 3.3a).

The X-ray crystal structure of HLA-B*5701 bound to pep-V in the presence of

abacavir suggests that the peptide is bound in the MHC molecule in a normal

antigen conformation allowing for conventional pMHC-TCR interaction (Ostrov

et al. 2012). So, self-peptides, that can bind to HLA-B*5701 only in the presence of

abacavir, will then form new pMHC complexes not present in the thymus during

negative selection of T cells. Thus, the abacavir hypersensitivity syndrome is a

model of drug-induced autoimmunity in which the drug alters the self-peptide

repertoire presented by MHC and so drives responses of T cells recognizing these

neo-self epitopes (Illing et al. 2012; Norcross et al. 2012; Ostrov et al. 2012).

A different mechanism for the presentation of new self-peptides was suggested

for metal ions, in cases where antigen processing was required to stimulate

Ni-specific T cells by APCs. It was suggested that the presence of Ni altered antigen

processing, so that new self-peptides are presented (Fig. 3.3b). Thus, the T cells
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might recognize these Ni-induced cryptic self-peptides, but not Ni itself (Griem

et al. 1998).

3.1.8 Drugs Binding to TCRαβ

In principle drugs that bridge pMHC and TCRαβ (Fig. 3.2c, d, e) could have a

higher affinity for pMHC or a higher affinity for TCRαβ, thus either first binding to
pMHC or to TCRαβ before the pMHC-drug-TCRαβ complex forms. At first sight, it

might seem irrelevant for the complex, and thus for T-cell activation, whether

pMHC or TCRαβ binds first (Fig. 3.3c, d). However, the flexibility of the large

TCRαβ hypervariable loops reduces the on-rate of the pMHC-TCR interaction and

thus might act negatively on T-cell activation (Aleksic et al. 2010). If the drug binds
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Fig. 3.3 pMHC-TCRαβ interactions mediated by small chemical compounds II. (a) In at least one

documented case, the drug binds to the peptide-binding cleft of the MHC molecule. This allows

peptides that otherwise cannot bind to the MHC, to bind and be presented. Since these new self-

peptides are not presented in the thymus, reactive T cells are present in the periphery. (b) A drug or

metal ion might influence proteins of the antigen processing pathways, such that new self-peptides

are made and presented on MHC. (c) As seen in Fig. 3.2, metal ions or drugs can bind to pMHC

and thus create a high affinity docking site for specific TCRs. (d) The same pMHC-drug-TCRαβ
complex as in (c) can be accomplished, if the drug (or metal ion) binds to TCRαβ. TCR-induced
downstream signaling via PLCγ and other pathways is indicated
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first to TCRαβ and thereby fixes the conformation of the hypervariable loops in the

pMHC-permissive binding state, then the on-rate would be enhanced and T-cell

activation would be favored. Thus, although hypothetical, drug binding to TCRαβ
first might have different effects than binding to pMHC first.

The antibacterial sulfonamide sulfamethoxazole (SMX) is one of the drugs

suggested to bind mainly or firstly to the TCR (in addition, to be a prohapten).

TCRs from several SMX-specific T-cell clones isolated from patients with hyper-

sensitivity to SMX reacted to SMX only in the presence of APCs indicating that the

TCR stimulation by the drug was MHC dependent but antigen processing indepen-

dent (Depta et al. 2004). Recent modeling of the drug-TCRαβ interaction suggested
several candidate SMX binding sites on the CDR2 and CDR3 hypervariable loops

of the TCRα and TCRβ chains (Pichler et al. 2011). Thus, SMX might be one

example in which the drug binds stably to TCRαβ (Fig. 3.3d). Since the

MHC-bound peptide did not affect the reactivity of SMX-specific T cells (Burkhart

et al. 2002), the drug-TCRαβ complex might bind to the MHCmolecule without the

involvement of the peptide, thus resembling the way that superantigens use to bride

TCRs to MHCs (Figs. 3.1c and 3.2e) with the difference that superantigens do not

bind to the CDR loops of TCRαβ.

3.1.9 Drug-Induced MHC-Independent TCR Triggering

TCRs can be activated independently of pMHC, such as multivalent anti-TCRαβ
and anti-CD3 antibodies (Chang et al. 1981; Kaye and Janeway 1984) or activation

of a chimeric TCR by artificial ligands (Minguet et al. 2007). Even in vivo

MHC-independent TCR activation was shown. In mice deficient for MHC class I,

MHC class II, the coreceptors CD4 and CD8 thymocyte selection produced mature

αβ T cells recognizing ligands independently of MHC (Van Laethem et al. 2007).

The TCRs of two T-cell clones derived from these mice recognized glycosylation-

dependent epitopes of the self-protein CD155 (Tikhonova et al. 2012). Thus, it is

possible that drugs could bind to some endogenous proteins that are not pMHC,

thereby creating new ligands for the TCRαβ or CD3 that could stimulate T cells in

an MHC-independent manner.

3.1.10 The Second Signal of T-Cell Activation

The theory stipulating that an immune cell needs two signals to be activated was

first developed in 1970 (Bretscher and Cohn 1970). TCR triggering is an important

step in naı̈ve T-cell activation, but it is usually not sufficient to release the T cells

(αβ T cells) from their quiescent state. If TCR triggering (signal 1) is the only

signal, the naı̈ve cells usually become anergic and cannot be stimulated further

(Jenkins et al. 1990; Schwartz 2003). To avoid the anergic, nonresponsive state,
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naı̈ve T cells require signal 2, provided by a costimulatory receptor such as CD28

(Rudd et al. 2009). In addition, other members of this family (CD2, ICOS) or of the

tumor necrosis factor receptor family (including OX40 and 4-1BB) have been

shown to be critical as stimulatory co-signals for T-cell activation (Sharpe 2009).

So, a small chemical should require the presence of a costimulatory signal, in order

to stimulate naı̈ve T cells inducing proliferation and effector functions. Very often,

in drug/metal hypersensitivities, the drug or metal also activates the innate immune

system leading to the expression of costimulatory ligands by the APCs. Alterna-

tively, the second signal could come from an ongoing infection or autoimmune

reaction that takes place at the same time.

However, it is quite possible to imagine that some chemicals would directly

stimulate effector or memory T cells where the requirement for a costimulatory

signal is smaller (Boesteanu and Katsikis 2009; Kannan et al. 2012), thus over-

coming the requirement for simultaneous stimulation of the innate immune system.

In addition, effector or memory T cells have a lower affinity threshold for activation

than naı̈ve T cells (Bachmann et al. 1999; Cho et al. 1999; Iezzi et al. 1998; Kedl

and Mescher 1998; Zimmermann et al. 1999) and respond to lower amounts of

antigen than naı̈ve T cells (Kimachi et al. 1997; London et al. 2000; Pihlgren

et al. 1996; Rogers et al. 2000). The increased sensitivity to antigenic stimulation

by effector and memory cells is partly caused by enhanced pre-clustering of the

TCR (Kumar et al. 2011). This pre-clustering increases the avidity towards pMHC

(Molnar et al. 2010, 2012). So an effector or memory T cell could be activated by a

chemical without the need for a high affinity pMHC interaction with the TCR or

even the need for costimulation.

3.2 Conclusion

The molecular mechanisms that small chemical compounds or metal ions use, in

order to generate novel peptide-MHC surfaces that can bind with high affinity to

TCRs, is an important topic in pharmacologic research. Beginning with the discov-

ery that haptens can covalently bind to proteins whose peptides are presented by

MHC in the last century, up to the recent demonstration that a drug altered the kind

of self-peptides that are presented by a certain MHC haplotype, a number of

different mechanisms have emerged. We believe that novel mechanisms will be

discovered in the next years and decades. Detailed insight into these mechanisms

might help in treating drug hypersensitivity reactions.
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