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Abstract
This is a follow-up of the chapter �The Reproducing Kernel Property and Its
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author appearing in this handbook under the common title “The Reproducing
Kernel Property and Its Space.”

Introduction

The applications in question are:

spaces of holomorphic functions;
dilation theory.

The latter has been sketched very much due to the limited capacity of this chapter.
For more information, we refer to the introductory part of the chapter �The
Reproducing Kernel Property and its Space: The Basics appearing in this handbook.

Spaces of Holomorphic Functions

General Constructions

The following observation is basic.

Proposition 1. Let ˝ � C
d be an open set. Furthermore, let K be a positive-

definite kernel on ˝ and H its Hilbert space ˝ . Then the following conditions are
equivalent:

• For any z 2 ˝ , the function Kz is holomorphic.
• Any function f 2 H is holomorphic.
• If .e˛/˛ is an arbitrary basis in H, then every e˛ is holomorphic.

If K satisfies any of the equivalent conditions of Proposition 1, it is called a
holomorphic kernel on ˝ though it is holomorphic in the first variable and anti-
holomorphic in the second.

As long as d > 1, the multi-index is used; it is easy to be recognized in any
context, like that which follows. Let ˝ be a subject to the following condition:

z 2 ˝ and w 2 C
d , and jwi j � jzi j, 1 � i � d , imply w 2 ˝ . (�)

In other words, ˝ is the union of all polycylinders at 0 contained in it
Both polycylinders and the ball B.aIR/ (at center a and radius R 6 C1) satisfy

.�/, and this is enough for this survey (polydisc is preferred for polycylinders if they
are bounded).

Under (�) for any function f in O.˝/ (O.˝/ stands for the totality of all
holomorphic functions on ˝ � C

d ), there is a unique power series

http://dx.doi.org/10.1007/978-3-0348-0667-1_65
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X

˛2Ad

c˛z˛; (2.1)

convergent to f .z/ in every z 2 ˝; in other words, this is a global expansion in the
whole of ˝ .

One of the most frequent ways of generating reproducing kernel couples based
on holomorphic functions is to follow the procedure (A), cf. [24]. The fact which is
isolated here concerns that and is included in the following:

Proposition 2. Let ˝ be an open set in C
d and � nonnegative measure on ˝. The

inner product space

H2.�/
defDL2.�/ \O.˝/;

with the norm k � kL2.�/, is a Hilbert space if and only if for every z 2 ˝ there is
cz > 0 such that for any f 2 H2.�/

jf .z/j2 � cz

Z

˝

jf .w/j2 �.dw/; (2.2)

where cz is bounded on ˝s which are compact.

Corollary 1. If the Radon–Nikodym derivative h of the part �a of � which is
absolutely continuous with respect to the 2d -dimensional Lebesgue measure m2d

satisfies the condition

for every polydisc D.a; r/, D.a; r/ � ˝ , there is

C > 0 such that h � C on D.a; r/ m2d -almost everywhere,

then H2.�/ is a Hilbert space with reproducing kernel.

Proposition 2 simplifies a lot if one starts from a closed subspace.

Proposition 3. Let ˝ be an open set in C
d and � nonnegative measure on ˝ .

Suppose

H � L2.�/ \O.˝/

is a closed subspace of L2.�/. The Hilbert space H is a RKHS if and only if for
every z 2 ˝ there is cz > 0 such that for every function f 2 H the estimation (2.2)
holds.
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A Scheme

Let A stand for a set of indices. As is the “s-time product” A � � � � � A. Given a
family k D .k˛/˛2As of nonnegative numbers and a family .f˛/˛2As of functions in

O.˝ �˝�/ (˝� defDfzW z 2 ˝g). Define the kernel

K.z;w/
defD
X

˛2As

k˛f˛.z; Nw/; z;w 2 ˝: (2.3)

The kernel K is positive definite if, in particular, for each ˛ 2 As

X

i;j

�i
N�jf˛.zi ; Nzj / � 0; .�i /i � C; .zi /i � ˝ (2.4)

and then

X

˛2As

k˛f˛.z; Nz/ < C1; z 2 ˝

is sufficient for (2.3) to be finite. Consequently, (2.4) leads to a reproducing kernel
couple .K;H/ such that, due to Proposition 1, members of H are in O.˝/. This
procedure will be specified later on.

Notice that (2.4) is certainly satisfied if for each ˛

f˛.z; Nw/ D g˛.z/g˛.w/; g˛ 2 O.˝/; z;w 2 ˝:

Kernels on Polycylinders

Think of the polycylinder

D
defDD.0; r/, r D .r1; : : : ; rd /, for every i ri D 1 or ri D C1. (2.5)

Now k D .k˛/˛2Ad is a family of nonnegative numbers such that

X

˛2Ad

k˛z˛ Nz˛ < C1; z 2 D:

The kernel K defined by (2.4) taking now the form

K.z;w/
defD
X

˛2Ad

k˛z˛ Nw˛; z;w 2 D; (2.6)
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is positive definite, and the monomials
�
k˛

1=2Z˛
�

˛2Ad
form an orthonormal basis

(notice that Proposition 9 in [24] guaranties the polynomials CŒZ
 are in H) of H,
the Hilbert space corresponding to K . According to Proposition 1, H is composed
of functions holomorphic on D. Even more, the Parseval identity yields

f 2 H ” kf k2 D
X

˛2Ad

ja˛j2k�1
˛ < C1; f D

X

˛2Ad

a˛Z
˛: (2.7)

The following is immediate.

Proposition 4. Let K be defined by (2.6) with k˛’s being nonzero, and let H be
the corresponding Hilbert space. Moreover, let � be a nonnegative measure on C

d .
Then the mapping V WH! L2.�/ defined as

VpH D pL2.�/

(subscript indicates the space to which the polynomial p belongs to) is an isometry
if and only if

Z

Cd

z˛ Nzˇ�.d z/ D k�1
˛ ı˛;ˇ; ˛; ˇ 2 Ad :

Proposition 4 does not treat explicitly the question whether there is a relation
between D and supp�. What becomes interesting in the sequel is to describe the
ingredient appearing in Proposition 4. For this, go back to Proposition 2.

Let D be as in (2.5). Set

P
defD �1 � � � � � �d ; where �i D

(
Œ0; 1
 if ri D 1

Œ0;C1/ if ri D C1

and let � be a probability measure on P with finite moments, that is,

�˛
defD
Z

P

r˛ �.d r/ < C1 for all ˛ 2 Ad :

Because supp � � P ,

lim
n!C1 �

1=n

˛Œn;i 
 � ri ;

where ˛Œn; i 

defD.0; : : : ; n; : : : ; 0/ 2 Ad with n located at the i -th position (the limit

always exists as the sequence is logarithmically convex).
The moments of the measure � given as (� stands for the characteristic

(indicator) function of the set �)
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�.�/
defD 1

.2�/d

Z

P

Z

Œ0;2�
d
� .r1 ei t1 ; : : : ; rd ei td / d t �.d r/;

t D .t1; : : : ; td /; r D .r1; : : : ; rd / (2.8)

are precisely

�˛;ˇ
defD
Z

Cd

z˛ Nzˇ�.d z/ D �˛Cˇ ı˛;ˇ; ˛; ˇ 2 Ad :

Now the kernel (2.6) is at hand if k˛
defD ��1

2˛ , namely,

K.z;w/
defD
X

˛2Ad

��1
2˛ z˛ Nw˛; z;w 2 D: (2.9)

Let H be the corresponding Hilbert space. The aim is to identify H with a subspace
of L2.�/.

Lemma 1. Suppose the measure � is such that

D.R; : : : ; R/ � D implies �.ŒR;C1/d \ P/ > 0. (2.10)

If � is defined by (2.8), then for an arbitrary function f 2 O.D/ and an arbitrary
subset X of D, there is C > 0 such that

jf .z/j � C

�Z

D

jf .z/j2�.d z/

�1=2

; z 2 X; (2.11)

provided the integral involved is finite.

Remark 1. The integral in (2.11) is finite at least in two cases which are the interest
here:

1o The measure � satisfies

�.P / D �.Œ0; r1/ � � � � � Œ0; rd //; (2.12)

for any f 2 L2.�jD/ D L2.�/;
2o For f 2 O.˝/ with open ˝ containing the closure of D.

Theorem 1. Let � be such that (2.10) and (2.12) hold. If � is as in (2.8), then

H D H2.�/
defDL2.�/ \O.D/:
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If � does not satisfy (2.12), another way to go around has to be chosen; point
2o of Remark 1 is going to help. Take 0 < t < 1 and let ft the composition of f

with z 7! tz, that is, ft .z/
defD f .tz/, z 2 D. If f is in O.D/, then ft is in O.t�1D/.

Therefore, if f D P
˛2Ad a˛Z

˛ is in H, then ft is in H as well. Because ft DP
˛2Ad a˛t

j˛jZ˛ and, due to (2.7) and (2.9),

kftkH D
X

˛2Ad

ja˛j2t2j˛j�2˛: (2.13)

This implies

lim
t!1� kftkH D sup

t!1�
kftkH D kf kH: (2.14)

Consequently, for f 2 O.D/

kftkL2.�/ D
X

˛2Ad

ja˛j2t2j˛j�2˛; (2.15)

which compared with (2.13), yields ft 2 H and

kftkH D kftkL2.�/: (2.16)

Taking into account that ft 2 H and also that the right-hand side of (2.15) is equal
to kftkH, one gets from (2.14) the equality

lim
t!1� kftkL2.�/ D kf kH: (2.17)

On the other hand, if f 2 H, then, becauseD � t�1D, ft 2 O.t�1D/. Applying
point 2o of Remark 1 (notice that it follows from (2.17) that the involved integral is
finite), one has

jft.z/j � C

�Z

D

jft .z/j2�.d z/

�1=2

; z 2 X

for every compact X contained in D. This entails that Ht
defDfft W f 2 Hg is a closed

subspace of L2.�/ composed of holomorphic functions, which, by the way, is a
RKHS.

Some definitions:

l.f /
defD sup

0<t<1

Z

D

jf .tz/j2�.d z/; f 2 O.D/;

L2.D;�/
defD ff 2 L.D/W l.f / < C1g;

kf kL2.D;�/
defD l.f /1=2; f 2 L2.D;�/:
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If f 2 L2.D;�/, then from (2.16) and (2.14), one can derive f 2 H and

lim
t!1�

Z

D

jf .tz/j2�.d z/ D sup
0<t<1

Z

D

jf .tz/j2�.d z/ D kf k2H:

Remark 2. One has to distinguish H2.�/ from just-defined H2.D;�/. The latter
could be different than the previous, because (2.12) may not hold; the measure �

may live out of D (however, if (2.12) is satisfied, then both notations H2.�/ and
H2.D;�/ are exchangeable; from (2.17), one gets finiteness of the integral). Details
will appear later on.

Theorem 2. Let � be such that (2.10) holds. If � is defined as in (2.8), then the
space H corresponding to the kernel K defined by (2.9) coincides with H2.D;�/.

Remark 3. Notice a kind of dichotomy depending on whether (2.12) is satisfied or
not. The choice is between Theorem 1 and Theorem 2.

Remark 4. The identification of the Hilbert space H with the kernel K defined
by (2.9) that is offered by Theorems 1 and 2 has the property that it replaces
the coefficient in the power series expansion by those appearing in the Fourier
expansion in H. More precisely,

f D
X

˛2Ad

a˛z˛; z 2 D;

for f 2 H2.D;�/ (or, equivalently, f 2 H2.D/) if and only if .
p
�2˛ a˛/˛2Ad 2

`2.Ad /, that is if
X

˛2Ad

jaj2˛�2˛ < C1:

If this happens

X

˛2Ad

jaj2˛�2˛ D kf k2H2.D;�/
and

X

˛2Ad

jaj2˛�2˛ D kf k2H2.D/
.

Kernels on the Ball

The temporary convention is either B stands for the ball B.0; 1/ or for the whole
space C

d which can be considered as a ball of infinite radius. The latter does not
differ from a polycylinder, but the kernel proposed here is unlike.

Remind that for two vectors z D .z1; : : : ; zd / and w D .w1; : : : ;wd / in C
d

their inner product is as follows: hz;wid defD z1w1 C � � � C zdwd . Going back to the
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formula (2.3), consider s D 1 and take a sequence .kn/1nD0 of nonnegative numbers
such that

1X

nD0

knzn < C1 either for jzj < 1 or for z 2 C.

Then the kernel K given by

K.z;w/
defD
X

n

kn.hz;wid /n; z;w 2 B (2.18)

is invariant under the group of unitary mappings of Cd , that is,

K.U z; Uw/ D K.z;w/ for an arbitrary unitar operator U on C
d .

For d D 1, the kernels (2.6) and (2.18) coincide.
The most interesting kernels of the form are (2.18) The above kernel can be

obtained from a formulae like (2.6), because the monomials are orthonormal in the
respective spaces; normalization determines the spaces accurately.

K B Kernel

.1� hz;wid /�.dC1/ B.0; 1/ Bergman

.1� hz;wid /�d B.0; 1/ Cauchy, d D 1 Szegő

.1� hz;wid /�1 B.0; 1/ d D 1 Szegő’s, otherwise Drury-Arveson

ehz;wid C
d Segal–Bargmann

The first two kernels are presented in [15]; for the Segal–Bargmann space special
attention will be paid to later. The Bergman space is originated with d D 1 in [7]
while Segal-Bargmann’s (any d ) is in [18] and [6]. Szgő’s (again d D 1) is in [25].

Bergman Space

This is the space O.D/ \ L2.B; ��1m2/ (remind the standard notation:

D
defDfz 2 CW jzj < 1g – the unit disc and T

defDfz 2 CW jzj D 1g – the circle). Its
kernel

K.z;w/ D .1� z Nw/�2; z;w 2 D

can be defined in several ways, for instance, from the normalization of the
monomials as .

p
nC 1Zn/1nD0. However, for f 2 H2.D/

kf k2 D
1X

nD0

janj2
nC 1

; f D
X

n

anZ
n:
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In trying to monitor what happens in several variables, consider the polydisc first.
Let � D 2dr md .d r/, where md is d -dimensional Lebesgue measure on Œ0; 1
d . Its
moments are �˛ D 2d

�
.˛1 C 2/ � � � .˛d C 2/

��1
, ˛ 2 Ad . Defining � as in (2.8),

one can deduce that it is the restriction of the measure ��dm2d to D
d . According

to (2.9), the kernel K takes the form

K.z;w/
defD
X

˛2Ad

1

.˛1 C 1/ � � � .˛d C 1/
z˛ Nw˛ D

dY

iD1

.1 � zi Nwi /
�2; z;w 2 D

d :

Because � satisfies (2.10) and (2.12), Theorem 1 is applicable, ensuring the Hilbert
space corresponding to K is nothing but H2.��dm2d /. Notice the formula

kf k2 D
X

˛2Ad

ja˛j2
.˛1 C 1/ � � � .˛d C 1/

; f D
X

˛2Ad

a˛Z
˛:

On the other hand, the orthonormal basis in B.0; 1/ � C
d is given as

s
dŠ ˛Š

.d C j˛j/Š Z
˛; ˛ 2 Ad ;

and therefore, the kernel is precisely .z; Nw/ 7! .1 � z � Nw/�.dC1/, cf. [15].

Hardy Space

It is right time to consider another classical space. Here, the situation is more
delicate than in the Bergman case. Now it is more convenient to employ Theorem 2
instead of Theorem 1 as done before. The reason is (2.12) is not satisfied.

Referring to Theorem 2, take as � the point mass at x D 1, that is, � D ı1. Now
� is nothing else than the Lebesgue measure on T, which is going to be denoted as
mT.

According to Remark 4 to every f in H2.D; mT/, there corresponds .a.f /
n /n 2

`2, such that f 7! .a.f /n/n is a unitary operator. On the other hand, given a D
.a

.f /
n /n from `2, there is a function f .a/ in L2.T/, for which the sequence .a

.f /
n /n

constitutes the sequence of Fourier coefficients (more precisely, .Zn/C1
nC�1 is an

orthonormal basis in L2.T/ with respect to which negative Fourier coefficients of f
vanish). In other words,

f .a/ defD
1X

nD0

anZ
n in the norm of L2.T/:
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Denoting by H2.T/ the image, that is, all the functions L2.T/ obtained in this way,
another unitary operator appears. The carried-out diagram

`2

. -
H2.T/ H2.D; mT/

has to be completed at the bottom by another unitary, this time from H2.D; mT/ to
H2.T/. The steps in achieving this are as follows, cf. [12] for the tools.

The classical result quoted below makes an isometry H2.T/! H2.D; mT/.

Theorem 3. If f is in H2.T/, then the function Qf defined as

Qf .r ei t /
defD 1

2�

Z �

��

f .ei s/Pr.t � s/ d s; 0 � r < 1; t 2 R; (2.19)

where

Pr.s/
defD 1 � r2

1 � 2r cos s C r2
; Pr is the Poisson kernel;

is in H2.D; mT/.

Surjectivity or in other words, the return from H2.D; mT/ to H2.T/ results from
Fatou’s theorem.

Theorem 4. If F is in H2.D; mT/, then for almost every z in T

f .z/ D lim
r!1�F .rz/

exists and the function f belongs to H2.T/. Moreover, the relation between f and
Qf appearing in (2.19) holds.

Remark 5. The mapping

V WH2.D; mT/ 3 f 7! Qf 2 H2.T/

materializes the unitary operator Proposition 4 mentions.

The diagram considered before now looks like

`2

. -
H2.T/  ! H2.D; mT/
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The kernel of the Hardy space is

.1 � z Nw/�1; z;w 2 D;

and is, surprisingly, called after Szegő; this duality in names reflects complexity of
the above construction.

What about more variables? The kernels are:

1

.1 � z1 Nw1/ � � � .1 � zd Nwd /
; z;w 2 D

d (polydisc),

1

.1 � z � Nw/d ; z;w 2 B.0; 1/ (the ball):

Segal–Bargmann Space

This space is deeply settled in quantum optics. It can be introduced by means of
Proposition 1.

The starting point is the space L2.��d e�z�Nz d z/ D L2.Cd ; ��d e�z�Nz d z/ of
functions on C

d square integrable with respect to the Gaussian measure ��d e�z�Nz.
Take the holomorphic part of this space, that is,

H2.Cd ; ��d e�z�Nz d z/
defDO.Cd /\ L2.��d e�z�Nz d z/:

Because the Gaussian measure fits in Proposition 1, the resulting space
L2.Cd ; ��d e�z�Nz d z/ is a RKHS. The functions

e˛ W z! z˛p
˛Š

; ˛ 2 Ad (2.20)

constitute an orthonormal set in H2.Cd ; ��d e�z�Nz d z/. Let f be a function from
H2.Cd ; ��d e�z�Nz d z/ orthogonal to (2.20). Developing it as in (2.1), one gets

0 D ��d

Z

Cd

X

˛2Ad

c˛z˛eˇ.z/ e�hz;zi d z D ��d
X

˛2Ad

c˛
p
˛Š

Z

Cd

e˛.z/eˇ.z/ e�hz;zi d z;

which makes all the c˛s zero. Thus, .e˛/˛ is complete, hence a basis in
H2.Cd ; ��d e�z�Nz d z/. The Zaremba formula defines the kernel as

K.z;w/ D
X

˛2Ad

z˛p
˛Š

Nw˛

p
˛Š
D
X

˛2Ad

dY

iD1

.zi Nwi /
˛i

˛i Š
D ehz;wi; z;w 2 C

d :
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The Segal–Bargmann space H2.Cd ; ��d e�z�Nz d z/ is unitary equivalent to L2.Rd /

by means of an integral transform. It is more convenient to define the inverse to the
transformation in question, that is, a mapping from L2.Rd / to H2.Cd ; ��d e�z�Nz d z/
by

��d=4

Z

Rd

e� 1
2 .z�NzCx�x/Cp

2 z�x �.x/ dx; z 2 C
d ; � 2 L2.Rd /: (2.21)

Formula (2.21) defines a unitary transformation of L2.Rd / onto H2.Cd ; ��d e�z�Nz
d z/, which transforms the bases as

h˛ 7! e˛; ˛ 2 Ad ;

where h˛ are Hermite functions

h˛.x/
defD
q
2˛˛Š
p
� e� x�x

2 H˛.x/; x 2 R

where H˛ are d -dimensional (product) Hermite polynomials. The image of

x 7! ��d=4 e�
1
2 .w� NwCx�x/Cp

2 Nw�x

from L2.R/ via the transformation (2.21) is in H2.Cd ; ��d e�z�Nz d z/ the kernel
function z 7! ez Nw.

The inverse transformation is of integral form as well with the kernel being the
conjugate of (2.21).

Integrability of Positive-Definite Kernels

Let ˝ be an open set in C
d satisfying (�), K be a holomorphic kernel on ˝ (cf.

Proposition 1), and H the corresponding RKHS. Because (�) guarantees the Taylor
expansion, and by Proposition (9) from [24] does the polynomials are in H. A couple
.H; K/ (and each of its members) is called integrable, if there is a nonnegative
measure � on C

d isometry V WH! L2.�/ such that

V p˝ D psupp�; p 2 CŒZ1; : : : ; Zd 
: (2.22)

Most of the spaces of holomorphic function is integrable; some (even of analytic in
nature) are not (warning!), cf. Dirichlet spaces.

Proposition 5. A couple .H; K/ is integrable if and only if the (bi)sequence
.c˛;ˇ/˛;ˇ2Ad

c˛;ˇ
defDhZ˛;ZˇiH; ˛; ˇ 2 Ad (2.23)
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is a complex moment sequence (for complex moment problem, refer to [11]), that is,
� on C

d such that

c˛;ˇ D
Z

Cd

z˛ Nzˇ�.d z/; ˛; ˇ 2 Ad :

Because L2.�/ is closed with respect to complex conjugation and H is not, the
following observation is not surprising.

Proposition 6. If a couple .H; K/ is integrable, then

X

˛;ˇ;�;ı2Ad

hZ˛Cı; ZˇC� iH �˛;ˇ
N��;ı � 0; .�˛;ˇ/˛;ˇ2Ad � C: (2.24)

The problem is in the fact that (2.24) is nothing but a necessary condition. Though
there are essential reasons behind like Hilbert’s example concerning positive
polynomials in two variables or Nelson’s type examples concerning commutativity
of essential self-adjoint operators, a direct construction is rather elaborate.

Example 1. This is based on [10] where further details can be found. Define a
mapping mW f0; 1; 2 : : : g2 ! f1; 2 : : : g as follows:

m.i; j / D 1
2
.i C j /.i C j C 1/C j C 1; for i C j � 4

m.0; 0/ D 1; m.1; 2/ D 2; m.2; 1/ D 3; m.1; 1/ D 4; m.1; 0/ D 5

m.0; 1/ D 6; m.0; 2/ D 7; m.3; 0/ D 8; m.0; 3/ D 9:

m is a bijection, and therefore,

b2iC1;2jC1 D b2iC1;2j D b2i;2jC1 D 0; b2i;2j D gm.i;j /; i; j D 0; 1; : : :

where g1 D g2 D g3 D 1, g4 D 4, gn D nŠ.nC1/Š for n � 5.
One can check repeating the arguments of [10] that the sequence

cm;n D
mX

iD0

nX

jD0

 
m

i

! 
n

j

!
im�i in�j biCj;mCn�i�j ; m; n D 0; 1; : : : ;

is positive definite in a sense which is close to (2.24), though it is not a complex
moment sequence.

Another example of this kind is in [8]; Dirichlet space, which follows, is not
integrable, but in this case, the necessary condition (2.24) fails to hold.

Now something productive. Consider d D 1, D D D or D D C and start with
the following:
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Proposition 7. Let H be a space of holomorphic functions on D � C and its kernel
K defined by (2.6), that is,

K.z;w/
defD

1X

nD0

knzn Nwn; z;w 2 D: (2.25)

The following conditions are equivalent:

(a) The couple .H; K/ is integrable.
(b) Equation (2.24) holds.
(c) The sequence .cm;n/

1
m;nD0 defined by (2.23) is of the form

cm;n D k�1
n ım;n; m; n D 0; 1; : : : (2.26)

and moreover,

NX

m;nD0

k�1
mCn�m

N�n � 0;

NX

m;nD0

k�1
mCnC1�m

N�n � 0; .�n/
N
nD0 � C:

(d) The sequence .cm;n/
1
m;nD0 defined by (2.23) is as in (2.26) and there is a

nonnegative measure � on Œ0;C1/ such that

kn D
Z C1

0

xn�.dx/; n D 0; 1; : : :

The second case refers rather to Proposition 5 than to Proposition 7.

Theorem 5. .cm;n/
1
mn;D0 is a complex moment sequence if there exists a function

!W f.m; n/W mC n > 0g ! C such that

X

mCn�0
pCq�0

!.mC q; nC p/�m;n
N�p;q � 0; .�m;n/mCn�0 � C

and

cm;n D !.m; n/; m; n D 0; 1; : : :

The above theorem is in [19] where backward references can be found as well.
For integrable RKHSs, a kind of converse to a fact included in Proposition 21 of

[24] holds.
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Proposition 8. Let .H; K/ be an integrable couple and the isometry V determined
by (2.22) be a multiplicative operator such that

supz2supp� jV '.z/j D supz2˝ j'.z/j, if both suprema are finite (2.27)

If ' is a multiplier of .H; K/, then kM'kH � supz2supp� j'.z/j.

Together with Proposition 21 of [24], one has the following:

Corollary 2. If a couple .H; K/ is as in Proposition 8 and K.z; z/ > 0 for z 2 ˝ ,
then ' is a multiplier if and only if supz2˝ j'.z/j < C1. Then

kM'kH D sup
z2˝
j'.z/j: (2.28)

In the Hardy space case, though ˝ and supp� are disjoint, the isometry V from
Remark 5 satisfies condition (2.27). This is in fact a variant of Fatou’s theorem (cf.
[12]), which identifies bounded functions from H.D; mT/ by its radial limits (as in
Theorem 4) with members of L1.T/, allowing the formally looking definition

H1.T/
defDH.D/\ L1.T/

to make sense. Consequently, (2.28) looks like

kM'kH D sup
z2˝
j'.z/j D k Q'kL1.T/:

Integrability of RKHSs allows to characterize densely defined multipliers as in
the known theorem of Newman–Shapiro, cf. [13] and also [20].

In addition to the above integrability is a natural environment for considering the
so-called Bergman projections.

Dirichlet Spaces

The common meaning of Dirichlet space D is for holomorphic functions on D with
the following inner product

hf; giD2.D/
defD h@f; @giH2.��1m2/ C hf; giH2.T;mT/;

f; g 2 H.D/; @f; @g 2 H2.��1m2/:
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The space D2.D/ is complete. Like the spaces considered so far, it satisfies the basic
condition (A) from [24]. Its kernel is just

� 1

z Nw log .1 � z Nw/; z;w 2 D;

with an orthonormal basis .
p
nC 1Zn/n. Moreover,

kf k2
D2.D/

D
1X

nD0

.nC 1/janj2; f .z/ D
1X

nD0

anzn; z 2 D:

The Dirichlet space is not integrable because (2.24) is not satisfied though the
kernel is of the form (2.25). This means that (2.28) does not hold.

Looking at all those spaces defined on D considered so far, one may conclude
that they belong to a one-parameter family of RKHS with norms defined as

kf k2
D2

s .D/
D

1X

nD0

.nC 1/�sjanj2; f .z/ D
1X

nD0

anzn; z 2 D;

where s is a real parameter.
The close relative of D2.D/ is a Sobolev space W2

1 Œ01
, which is also an RKHS.

de Branges–Rovnyak Spaces

This is the whole family of spaces serving for building models of contraction. For �
in H.D/, consider the kernel

K�.z;w/
defD 1 � �.z/�.w/

1 � z Nw ; z;w 2 D:

Proposition 9. The kernel K� is positive definite if and only if j�.z/j � 1, z 2 D,
and this happens if and only if � is a multiplier of H2.D; mT/ and kM�k � 1.

If K stands now for the Szegő kernel, the obvious equality K � K� D
K�. � /�.� /, by Schur’s lemma, yields

K� 
 K;

which makes it possible to apply any of the conditions in (e) of [24]. In particular,
one gets a contractive imbedding of the de Branges–Rovnyak space into the Hardy
one, the topic analyzed in [17].
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q–Spaces

Some definitions first. For x a positive integer and q 2 C, set

Œx
q
defD 1C q � � � C qx�1:

Furthermore,

.aI q/0 defD 1; .aI q/k defD.1� a/.1� aq/.1� aq2/ � � � .1� aqk�1/; k D 1; 2; 3; : : :

With Œn
q Š
defDŒ1
q � � � Œn
q for n > 0 and Œ0
qŠ

defD 1, one has Œn
q Š D .q; q/n.1 � q/�n.
Moreover,

.aI q/1 defD
1Y

kD0

.1 � aqk/; jqj < 1:

The q-exponential can be defined in two ways (both tend to the standard
exponential if q ! 1 and satisfy the Cauchy functional equation for q-commuting
variables).

eq.z/
defD

1X

kD0

1

.qI q/k zk; z 2 !q;

Eq.z/
defD

1X

kD0

q.
k
2/

.qI q/k zk; z 2 !q�1 ; q ¤ 0;

where

!q
defD
(
fzW jzj < 1g gdy jqj < 1,

C otherwise:

Some details can be found in [4].
For jqj < 1, one gets eq.z/ D ..z; q/1//�1 and Eq.z/ D .�z; q/1. On the other

hand, from

.q; q/k D .�1/k .q�1/.
k
2/

.q�1I q�1/k
; k D 0; 1; : : : ; q ¤ 0

the functions are related as

eq.z/ D Eq�1 .�z/; z 2 !q; q ¤ 0: (2.29)
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This is a kind of duality which allows to make a replacement

q  ! q�1

in some formulae.
The q-derivative Dq defined as

Dqf .z/
defD
(

f .z/�f .qz/
.1�q/z if z ¤ 0

f 0.z/ if z D 0

acts on CŒZ
 as DqZ
n D Œn
qZ

n�1 and

Dqeq.z/ D eq.z/; DqEq.z/ D Eq.z/:

Look how replacing the standard exponential by its q version impacts the Segal–
Bargmann space.

The only kernel of the form (2.6) or, what is equivalent to, (2.18), and which
mimics the Segal–Bargmann space, is

K.z;w/
defD

1X

kD0

1

Œk
q Š
zk Nwk D eq..1 � q/z Nw/ for z;w 2 j1 � qj�1=2!q: (2.30)

Now there are two possibilities, completely different: 0 < q < 1 and q > 1, cf.
[22].

a� Consider the kernel (2.30) for 0 < q < 1. Then the operatorMZ is bounded in
the corresponding RKHS and kMZk � .1�q/�1=2. The couple .K;H/ is integrable
(cf. [3]) and the only measure is � D Gm2,

G.z/
defD

8
ˆ̂<

ˆ̂:

1
2�
Œq�k.1 � q/
1=2Eq.�q.1 � q/jzj2/ if jzj D Œqk.1 � q/�1
1=2;

k D 0;˙1;˙2; : : :
0 otherwise

:

These spaces realize a kind of interpolation between the Hardy space (q ! 0C)
and the Segal–Bargmann one (q ! 1�).

b� The case q > 1 can be derived from that 0 < q < 1, employing (2.29)

K.z;w/
defDEq..1 � q/z Nw/; z;w 2 j1 � qj�1=2!q: (2.31)

However, one can proceed in another way. Take 0 < q < 1, and after setting

kn
defD qnC.

n
2/.1 � q/n

.qI q/n ;
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define the kernel K as

K.z;w/
defD

1X

kD0

knzn Nwn; z;w 2 C:

Then

K.z;w/ D Eq.q.1 � q/z Nw/

is just precisely equal to the kernel defined by (2.31) with q replaced by 1� qC q2.

With Aq
defD.R1

0
eq.�.1�q/t/ d t/�1 i Bq

defD.PC1
kD�1 eq.�.1�q/qk//�1, making use

of calculations included in [5] (see also [22]), one gets two measures �i D Gi m2,
i D 1; 2, where

G1.z/ D 1

�
Aqeq.�.1 � q/jzj2/

and

G2.z/
defD
(

1
2�
Bqq

1
2 keq.�.1 � q/jzj2/ if jzj D q

1
2 k , k D 0;˙1;˙2; : : :

0 otherwise

determining two different in nature L2 spaces in which the same RKHS H
is contained. One of them, �1 is absolutely continuous with respect to the 2-
dimensional Lebesgue measure, the other, �2, sits on a countable number of circles
tending to the origin and from the other side to infinity; needless to say that each
convex combination of these two (as well as weak limits) generates still another L2

“superspaces”. |)

Pick–Nevanlinna Interpolation Problem

A beautiful example of usefulness of the developed theory so far is in the
interpolation problem of Pick-Nevanlinna type, which goes back to the beginning
of the twentieth century. It can be stated as follows:

Given .z˛/˛2A � D and .w˛/˛2A � C, does there exist
A function ' 2 H.D/ such that j'.z/j � 1 for z 2 D

And '.z˛/ D w˛ for every ˛ 2 A?

The solution comes from Pick (A finite) and Nevanlinna (A arbitrary). The answer:
this is possible if and only if

X

i;j

1 � w˛i Nw˛j

1 � z˛i Nz˛j
�i
N�j � 0; .˛i /i � A; .�i /i � C: (2.32)
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For more about this, look at [1, 2]. Besides analytic solution, so to speak, there are
operator theoretic ones. Two of them are going to be outlined here.

Lifting Commutant Method

Notice that in (2.32), the appearing kernel is Szegő’s; denote it by K . In the Hardy
space H2.D; mT/, introduce the subspace HA equal to clolinfKz˛ W ˛ 2 Ag and
consider the operator R acting on (some) kernel functions as

RWHA 3 Kz˛ 7! Nw˛Kz˛ 2 H˛:

Condition (2.32) says that R is a contraction in HA. If T is an operator PMZ jHA,
where MZ is the multiplication by the independent variable in H2.D; mT/ and P is
the orthogonal projection on HA, then R commutes with T �. Apply now the well-
known theorem on lifting commutant to the couple T � (contraction) and R (operator
from the commutant of T �). Because M �

Z is a coisometry, one gets an extension S

of R to the whole space H2.D; mT/ which preserves the norm as well as commutes
with M �

Z . Thus, kSk � 1, because kRk 6 1. Now the culminating moment: because
S� commutes with MZ , it does so with every polynomial in MZ and consequently
with every MKz (Kz is a multiplier because it is bounded). Finally from Corollary 26
of [24] has S� D M' , with ' D S�1. Therefore, ' 2 M.H2.D; mT// and
supz2D j'.z/j � 1. A subtle calculation

'.z˛/ D h';Kz˛iH2.D;mT/ D hM'1;Kz˛iH2.D;mT/

D hS�1;Kz˛iH2.D;mT/ D h1; SKz˛iH2.D;mT/

D h1;RKz˛iHA D w˛:

completes the argument. Basic references are in [16] and [9].

Korány–Sz.-NagyMethod

Another operator method, less known, is this proposed in [26]. The tool for that
consists in properties of resolvents of self-adjoint operators. In this way, the Pick–
Nevanlinna interpolation involving Hardy space on a halfplane (see [14] for more
details) comes out.

Elements of Dilation Theory

The previous section deals with the branch (A) encoded in [24] the present one
shows some possibilities which opens the subdivision .B/. Much more details are
in Chapter 2 of [21] and extensions to C�–Hilbert modules as well as most of the
references can be found in [23].



52 F.H. Szafraniec

Operator Kernels and Their Generalizations

There is plenty of situations in which one considers kernels whose values are
operators (bounded and unbounded) rather than scalars. The most common example
is the kernel

K WX �X ! B.H/:

Positive definiteness of K means now

NX

i;jD1

hK .xi ; xj /fi ; Nfj i � 0; x1; : : : ; xN 2 X; f1; : : : fN 2 H:

An easy trick reduces this situation to the scalar case. Instead of the set X , consider
X � H; then .x; f; y; g/ 7! hg;K .x; y/f iH becomes a scalar kernel; positive
definiteness of the new kernel will be sorted out immediately.

Declare, once and for all in this section, the following situation happens: given a
set X , a linear space E and a kernel K on X � E ; reorder variables of the kernel K
having it defined as KWX �X � E � E ! C. Moreover, assume that always

g 7! K.x; y; f; g/ is a linear function with fixed x; y 2 X and f 2 E .

Having in mind that the first variable from the previous section is now the “first-
third variable” group and the second variable is the “second-fourth variable” group,
positive definiteness of a scalar valued kernel reads as

NX

i;jD1

K.xi ; xj ; fi ; fj /�i
N�j � 0; .x1; f1/; : : : ; .xN ; fN / 2 X � E ; �1; : : : �N 2 C:

(2.33)
Symmetry of the kernel which satisfies the above condition of positive definiteness
means now

K.x; y; f; g/ D K.y; x; g; f /; x; y 2 X; f; g 2 E ;

which in turn implies that with fixed x; y 2 X and g 2 E , the map f 7!
K.x; y; f; g/ is a linear function. As a result, positive definiteness in the sense
of (2.33) is equivalent to

NX

i;jD1

K.xi ; xj ; fi ; fj / � 0; x1; : : : ; xN 2 X; f1; : : : fN 2 E ; (2.34)

which becomes the certified definition of positive definiteness of kernels considered
here.
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Thus, H is a Hilbert space of functions on X �E with reproducing kernel KWX�
X � E � E ! C on X � E , kernel functions Kx;f

defDK. � ;�; x; f /, .x; f / 2 X � E
belonging to H and the reproduction property

F .x; f / D hF;Kx;f i; f 2 H; x 2 X; f 2 E : (2.35)

From the general theory presented in [24], repeat the Corollary 6 of [24] giving
it a status of:

Theorem 6. If K is a positive-definite kernel on X � E , then there exists a Hilbert
space H and a map X � E 3 .x; f / 7! Kx;f 2 H such that

H D clolin fKx;f W .x; f / 2 X � Eg;
K.x; f; y; g/ D hKy;g;Kx;f i; .x; f /; .y; g/ 2 X � E :

For every x 2 X map E 3 f 7! Kx;f 2 H is linear. Space H is a Hilbert space
with reproducing kernel K on X � E whose elements are functions F on X � E
which are antilinear in the second variable.

Dilations on Semigroups

Assume additional structure on the set X .

X D S is a (multiplicative) semigroup.

Since S is not assumed to be commutative, it is written, as usually, the multiplicative
notation for the semigroup operation. One can also consider X to be an arbitrary set,
and S a semigroup of the action on X , that is, if s 2 S, then sWX ! X , no difficulty
in carrying out alternative versions of the present investigations.

Assume that S is a unital semigroup, that is, there exists an element 1 2 S such
that s1 D 1s D s for every s 2 S. Kernel K will be called non-degenerate, if
K.1; f; 1; f / D 0 implies f D 0. In case where E is a normed space, say the kernel
K is isometric, if K.1; f; 1; f / D kf k2. Putting

V W E 3 f ! K1;f 2 H; (2.36)

one obtains a linear map, which in case of non-degenerate kernel is an injection and
in case of isometric kernel is an isometry. Take u 2 S, and for F 2 H, define a map
Fu on X � E by

Fu.s; t/
defDF .us; f /; .s; t/ 2 X � E ; (2.37)
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and a linear space

D.u/
defDfF 2 HW Fu 2 Hg:

Define now two linear operators in H related to u 2 S. First of them, ˚.u/, by

D.˚.u//
defDD.u/; ˚.u/F

defDFu; F 2 D.u/:

The second, ˚u, will be given by

D.˚u/
defDDK; ˚u

X
i
�iKsi ;fi D

X
i
�iKusi ;fi ; .si /i � S; .fi /i � E

is well defined if and only if

X
i
�iKsi ;fi D 0 H)

X
i
�iKusi ;fi D 0: (2.38)

Their basic properties are collected in the following:

Proposition 10. If (2.38) holds, then

h˚.u/F;Ks;f i D hF;˚uKs;f i; F 2 D.u/; .s; f / 2 X �S (2.39)

and the operator ˚.u/ is closed. Moreover, ˚�
u D ˚.u/; ˚u is closable if and only

if ˚.u/ is densely defined, and then N̊u D ˚.u/�.

Remark 6. The proof above implies that ˚.u/ is always closed.

Boundedness of the operators ˚.u/ is determined by:

Proposition 11. ˚u is a well-defined operator, which is a bounded operator if and
only if there exists c.u/ � 0 such that

NX

i;jD1

K.usi ; usj ; fi ; fj / � c.u/

NX

i;jD1

K.si ; sj ; fi ; fj /;

s1; : : : ; sN 2 S; f1; : : : fN 2 E : (2.40)

In such cases, ˚.u/ is a densely defined bounded operator, and k˚uk D k˚.u/k �
c.u/ and a posteriori (2.38) holds.

Have a look at algebraic properties of maps u 7! ˚.u/ and u 7! ˚u.
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Proposition 12. Suppose that for each u 2 S (2.38) holds. ThenD.˚u/ in invariant
on ˚u, that is, ˚uD.˚u/ � D.˚u/, and the map u 7! ˚u is multiplicative, that is,

˚uvF D ˚u˚vF; u; v 2 S; F 2 DK:

The map u 7! ˚.u/ is anti-multiplicative, which here means that

˚.u/˚.v/F D ˚.vu/F; u; v 2 S; F 2 D.˚.u/˚.v//:

Since all the ingredients are ready, it is time for the first and most general dilation
theorem.

Theorem 7. Let S be a unital semigroup, E a normed space, and K a positive-
definite kernel on X � S which is isometric. Then, in the Hilbert space H with the
kernel K , one has formulae

H D clolinf˚uf W u 2 S; f 2 Eg;
K.s; t; f; g/ D h˚tVg;˚sVf i; .s; f /; .t; g/ 2 S � E ;

where all the objects mentioned in the conclusion have been already defined.

Dilations on Semigroups with Involution

Enrich the structure of the semigroup S, assuming that it is a semigroup with an
involution or, alternatively, �-semigroup, that is, there exists a map S 3 s 7! s� 2
S such that s�� D s, .st/� D t�s�, and 1� D 1, the latter if S is unital. An
accompanying assumption is the kernel K to be invariant with respect to involution
in S in the sense that

K.us; t; f; g/ D K.s; u�t; f; g/; u; s; t 2 S; f; g 2 E : (2.41)

If S is unital, then

!.s; f; g/
defDK.s; 1; f; g/

restores K and positive definiteness as in (2.34) takes the following form

NX

i;jD1

!.s�j si ; fi ; fj / � 0; s1; : : : ; sN 2 S; f1; : : : fN 2 E : (2.42)

Everything done in the preceding subsection applies here. However, because the
structure of S is now richer, some additional facts have to be pointed out.
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Proposition 13. Implication (2.38) is true, which means that for each u 2 S, an
operator ˚u is well defined. As a consequence,

for each u 2 S, D! � D.˚.u// and ˚u D ˚.u�/jD! , (2.43)

an operator ˚u is closable and N̊u D ˚.u/� D ˚.u�/.

Note also that for semigroups with involution, much more can be said about the
boundedness condition (2.40).

Lemma 2. Let S be a unital �-semigroup. If the form ! on .S; X/ is positive
definite, then the following conditions are equivalent:

• For every u 2 S, there exists c.u/ > 0 such that the inequality (2.40) holds, that
is,

XN

i;jD1
!.s�i u�usj ; fi ; fj / � c.u/

NX

i;jD1

!.s�i sj ; fi ; fj /;

s1; : : : ; sN 2 S; f1; : : : fN 2 E I (2.44)

• For every u 2 S exists d.u/ � 0 such that

!.s�u�us; f; f / � d.u/!.s�s; f; f /; s 2 S; f 2 E I (2.45)

• There exists a function ˛WS ! RC such that ˛.st/ � ˛.s/˛.t/ for s; t 2 S,
satisfying the following condition: for any f 2 E , there exists a constant C D
C.f / which allows for an evaluation

j!.u; f; f /j � C˛.u/; u 2 SI (2.46)

• There exists a function ˛WS ! RC such that ˛.st/ � ˛.s/˛.t/ for s and t such
that s D s� oraz t D t� satisfying the following condition: for every s; t 2
S i f; g 2 E there exists a constant C D C.s; t; f; g/ which allows for an
evaluation

j!.sut; f; g/j � C˛.u/; u D u�I

• For every s; t 2 S and f; g 2 E

lim sup
k!1

j!.su2k t; f; g/j2�k

< C1; u D u�I

• For every s1; : : : ; sN 2 S and f1; : : : fN 2 E



2 The Reproducing Kernel Property and Its Space: More or Less Standard. . . 57

lim inf
k!1

XN

i;jD1
!.siu

2k sj ; fi ; fj /
2�k

< C1; u D u�: (2.47)

Corollary 3. If E is a Hilbert space and ! is positive definite, that is, (2.42) is
satisfied as well as it satisfies any of equivalent conditions of Lemma 2, then the are
operators ˚u and ˚.u/, u 2 S, and an isometry V such that

!.s/ D V �˚sV; s 2 S: (2.48)

Remark 7. Formula (2.48) can be given in another, more suitable for a traditional
meaning of the word dilation, form:

!.s/ D P˚sjHE ; s 2 S;

where P is an orthogonal projection H onto HE .

Subsequent Instances

This general scheme of dilating kernels contains among others the following
topics: Stinespring and Powers theorems, GNS construction, dilations on groups
(in particular, the Sz.-Nagy dilation theorem), dilations of positive operator valued
measures (Naı̆mark’s dilation), normal extensions (including those of unbounded
operators, closely related to integrability of RKHSs already discussed in this
chapter), and more.
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