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Abstract

This work intends to serve as an introduction to sampling theory. Basically,
sampling theory deals with the reconstruction of functions through their values
on an appropriate sequence of points by means of sampling expansions involving
these values. Reproducing kernel Hilbert spaces are suitable spaces for sampling
purposes since evaluation functionals are continuous. As a consequence, the
recovery of any function from a sequence of its samples depends on the basis
properties of the reproducing kernel at the sampling points.

Why Are RHSKs Suitable Spaces for Sampling Purposes?

Roughly speaking, sampling theory deals with the reconstruction of functions
through their values (samples) on an appropriate sequence of points by means
of sampling expansions involving these values. This is not always possible: for
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instance, a continuous function f on R is not completely determined by a sequence
{f(t,)} of its samples. As a consequence, one needs to impose some additional
condition on the function f. Hence, f must belong to some suitable spaces. For
example, assume that the function f belongs to a Hilbert space H of functions on
2 (generally, a subset of R or C) such that any evaluation functional E; : f € H
f(t) € Cisbounded, i.e., the space H is a reproducing kernel Hilbert space (RKHS
henceforth). Via Riesz representation theorem, for each ¢ € Q2 there exists a unique
k: € H such that f(z) = (f k;)y for every f € H. In this manner, the stable
reconstruction of any f € H from the sequence of samples { f(#,)} at {t,} C Q
depends on whether the sequence {k;, } is a frame for 7. Recall that a sequence
{x,} is a frame for a separable Hilbert space H if there exist two constants A, B > 0
(frame bounds) such that

Allx|? < Z:I()C,)Cn)l2 < B||x||* forallx € .

Given a frame {x,} for #, the representation property of any vector x € H as a
series x = Zn ¢, X, 1s retained, but, unlike the case of Riesz (orthonormal) bases,
the uniqueness of this representation is sacrificed. Suitable frame coefficients c,
which depend continuously and linearly on x are obtained by using the dual frames
{¥n} of {x,}, i.e., {¥n}nez is another frame for H such that

x = Z(x,y,,)x,, = Z(x,xn)y,, foreachx € H. 5.1

n n

In particular, frames in H include orthonormal and Riesz bases for . Recall
that a Riesz basis in a separable Hilbert space H is the image of an orthonormal
basis by means of a bounded invertible operator. Any Riesz basis {x,} has a
unique biorthogonal (dual) Riesz basis {y,}, i.e., (X,, Ym)# = 8u.m, such that the
expansion (5.1) hold for every x € H. An orthonormal basis is a self-dual Riesz
basis. For more details and proofs, see [8,39].

In case the sequence {k,,} forms a frame for the RKHS 7, and a dual frame
{S,(¢)} is available (a difficult problem in general), the sampling formula in H

F@O = {fk)uSu) =D ft)Su(). 1€

n

holds. Notice that convergence in an RKHS # of functions defined on € implies
pointwise convergence in 2. For simplicity, in what follows only orthonormal
and Riesz bases will be considered. An easy and straightforward sampling result
involving orthonormal bases is the following:

Theorem 1 (Sampling Theorem in an RKHS). Let H be an RKHS of functions
defined on a subset Q2 with reproducing kernel k. Assume that there exists a sequence
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{t,352, C Q2 such that {k (-, 1,)}°2 | is an orthogonal basis for H. Then, any f € H
can be expanded as

k(t,ty)
k(t,, 1))’

f@) =Y f) €Q, (5.2)
n=1

with convergence absolute and uniform on subsets of Q2 where the function t >
k(t,t) is bounded.

Proof. This result follows from the expansion of f € # in the orthonormal basis

{k (1)) k(. ta)} . Indeed, for each f € H we obtain

k( Iy k( tn k( tn .
S = Z< \/k(tn,t)> V(. 1) nZlf( )k(tn,tn) m A

Now, the convergence in norm in an RKHS #H implies pointwise convergence in
€ which is uniform on subsets of € where the function ¢t +— k(¢,¢) is bounded.
Moreover, since an orthonormal basis is an unconditional basis, the above sampling
series is pointwise unconditionally convergent for each ¢t € 2 and hence absolutely
convergent. O

The standard Hilbert space ¢>(N) is an RKHS with reproducing kernel k the
Kronecker delta, i.e., k(m,n) = §,,, m,n € N.In this case, for any {x(m)}>_, €
£2(N) formula (5.2) trivially reads: x(m) = Y oo, x(n) 8.0, m € N.

Any finite dimensional Euclidean space of functions defined on €2 is an RKHS;
next we give two interesting examples in this finite dimensional setting:

Trigonometric Polynomials

Consider the space Hy of 2m-periodic trigonometric polynomials of degree <
N. Hy is a closed subspace of L?[—x, ] endowed with the usual inner prod-
uct. An orthonormal basis for Hy is given by the set of exponential complex
{e'*" /27 })__ . Therefore, the reproducing kernel for Hy is

N
1 ; 1
ky(t, — ik(t=s) _ Dy(t —5).
N(t.s) =~ k=§_Ne 5, vt —s)

where Dy denotes the Nth Dirichlet kernel [28, p. 9]

sm(N+ )t

- ift e R\ 2nZ
Dy(t) := Z e’k s ! \ 27
Py IN+1 ifre2nz
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N

At the points 5, = 22 € [-x,n], —N < n < N, the sequence {kN (-,sn)}n=_N

2N+1
is an orthogonal basis for Hy since

1 sing(m—n) 2N +1

knCosn) kn Cosm)) oy or = kn(Smysn) = 5= Smn -
( n m )Lz[ 7.7 msOn T sin nz(;vn_‘_—’;) o mn
A direct application of the sampling formula (5.2) gives
N (2N 41 2
(1) = 1 Z p( 2 )sm( 2 = v t e -7 7)
N+ 1 2= 2N+ 1 sing (1 — 34) ’

for every trigonometric polynomial p(¢) = Z]]:’:_ v ceelk!

tion formula goes back to [7].

in ‘Hy. This interpola-

Orthogonal Polynomials

Another important class of examples is given by finite families of orthogonal
polynomials on an interval of the real line. Consider, as an example, the particular
case of the Legendre polynomials { P,}°2 ; defined, for instance, by means of their
Rodrigues formula

n

P = 2'nl dt"

[*-D"], n=0,1,....

It is known that they form an orthogonal basis for L?[—1,1] and that || P,||*> =
(n+H

Consider the finite subspace Hy of L*[-1,1] spanned by { Py, Py, ..., Py}. The
Christoffel-Darboux formula for Legendre polynomials gives its reproducing kernel

N

kn(t.s)=Y" (n + %) P,()Py(s) = 2N2+ ! PN“(I)PN(SZ):fN(t)PN“(S) .
n=0
Note that
2N +1
kn(t.1) = “8 " [Plyy () Py (t) — Ply(t) Py 1 (2)].

We seek points {s,}_, in [~1, 1] such that ky (s,n, 5,) = 0 form # n, i.e.,

Py 1(sm) _ Py 1(sn)
PN (Sm) PN(Sn)

In particular we can take for {s,}"_, the N + 1 simple roots of Py in (-1, 1).

Thus, for every f () = Z]]C\;O crqf(k + %)Pk (¢) the finite sampling formula
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Pyy1()

—, teR
(¢ _Sn)P1/\1+1(5n)

N
SO =) f(s)
n=0

holds. This formula is nothing but Lagrange interpolation formula for the samples
{f (s,,)}flvzo. In general, one can take as sampling points {s, };]1\,:0 the N + 1 simple
roots of the polynomial Py(t) — cPy(t) in (—1, 1), where ¢ € R. The details on
orthogonal polynomials can be found in [31, 35].

A Paradigmatic Example: Paley-Wiener Spaces

A function f € L*(R) is said to be band-limited to the interval [—7, 7] if its Fourier
transform f vanishes outside [, 7], i.e., f is supported in [—7, 7]. The space of
band-limited functions to [—, 7] is known in the mathematical literature as the
Paley—Wiener space and denoted by P W,;. That is,

PW, = {f e L’(R) : suppf C [—n,n]}.

 The space P W, is a closed subspace of L?(R) since the Fourier transform F :
L*(R) — L?*(R) is a unitary operator and P W, = F~! (LZ[—JT, 71]); the space
L?[—m, ] is identified to a closed subspace of L?(R) by extending to 0 on R the
functions of L?[—, 7r]. Here, the Fourier transform is defined in L' (R) N L?(R)
as f(w) = ﬁ f_ozo f(t)e ™" dt, and extended to L*(R) in the usual way.

* By using the inverse Fourier transform, any f € P W, can be expressed as

1 T ) n e—iwt
_ T I . teR. 53
0= gz [ Fweran={fS0) L rers 63

Cauchy—Schwarz’s inequality and Parseval equality, || f||,2®) = |l f [T,
give, for every ¢t € R,

—iwt

lf O] = IIfIILZ[_n,n]IIEIILZ[_H,JT] =l fe€PWsr.

In other words, evaluation functionals are bounded on P W, which consequently
. i

is an RKHS. Its reproducing kernel is k, (¢, s) = %, t,s € R; indeed,
w(t—s

using Plancherel-Parseval theorem

r L’W _ sinrr('—s)>
f(s) - <f’ m>l‘2[_”’n] <f; ]T( _ S) LZ(R) 5 NS R
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Notice that
—iws

]—"‘l(m

sin(t —s)

, teR.
w(t—s)

X[—7.7] (W)) () =

—inw

* Since the sequence {e e } is an orthonormal basis for L?[—m, 7] and F~ ! is
nez

a unitary operator we obtain that the sequence
sinm(t —n
{—( ) } (5.4)
ne€z

w(t —n)

is an orthonormal basis for the Paley—Wiener space P W,,.
* Moreover, having in mind that k,(¢,¢#) = 1 for all t € R, formula (5.2) yields
the famous Shannon’s sampling theorem [33]:

Theorem 2 (Shannon’s Sampling Theorem). Any function f € PW,, i.e.,
band-limited to [—m, x|, can be recovered from the sequence of its samples

{f(n)}nez by means of the formula

f =% fondre-m

= t eR. (5.5)

n=—0o0

The convergence of the series is absolute and uniform on R.

Another proof of the above theorem is the following [18]: Given f € PW,,
the expansion of its Fourier transform f € L?[—m, ] with respect to the

. o0
orthonormal basis {e_’”w/ «/271} for L*[—m, 7] gives
n=—00

[e.]

f=2 <f i;—w>j— Z f();ﬂ in L*[-m,7].  (5.6)

n=—0oo n=—oo

The inverse Fourier transform F~! in (5.6) gives

e~inw > sinw(t —n) .
=Y swE (= Jz_x[_m](m) Y S i ).

n=—0o0 n=—0oo

The convergence properties come again since P W, is an RKHS.

e Shannon’s sampling formula is an orthonormal expansion in P W, ; Parseval’s
identity says that || |2 = > oo _ . | f(n)]* forall f € PW,.In other words, the
energy E; := || f||* of the band-limited function f € P W, is contained in its
samples { f (n)}n 7~ The following commutative diagram goes into the meaning
of the sampling formula in P W;:
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fePW, SN f e L[-n, 7

s |7

F A
{f(W}nez € C(2Z) —— fp € Ly[-n.7]
All mappings included in this diagram are unitary operators:

(a) S denotes the sampling mapping with sampling period 7Ty = 1.

(b) P is the 2m-periodization mapping which extends a function f in [—m, ] to
the whole R with period 2.

(c) The other two mappings are, respectively, the functional Fourier transform in
L?(R) and the Fourier transform in £(Z), defining the latter as F({a, })(w) :=

00 e—inw
Y=o tn <=

The situation described by the diagram is depicted in Fig. 5.1.

* As the space PW, is an RKHS contained in the Hilbert space L?(R), the
reproducing formula when applied to any f € L2?(R) gives its orthogonal
projection onto P W,

sin(-—s)

Ppw, f(s) = (/. T —s)

)Lz(R) = (f *sinc)(s), s€R,

where * means the convolution operator and sinc denotes the cardinal sine
function sinct := sinxt/mt, ¢t € R.

* The crucial feature in P W, is that the sampling period is 7y = 1 and it is not rel-
evant to the points where the samples are taken. In fact, any function f € PW,

! t i} —Tr ! b O]

s| |7

{f(n)} _ o)

N

-‘M’TTTH | h\ﬂ’ﬁ\f\ F

— 3n - ! =x 3t ®

Fig. 5.1 Time-frequency interpretation of Shannon’s sampling theorem
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can be recovered from the sequence of samples { f(n+ a)}zoz_oo, forafixeda €
R. Observe that {e_i (ntayw /o 271} is also an orthonormal basis for L2[—r, 7]
ne€z
sint(t —n —a)
—} for
w(t —n—a) )nez

PW,. The expansion of any f € PW, with respect to this basis yields the
new sampling formula

which goes, via F~1 onto the orthonormal basis {

) = Z f(n+a)sinzr(t—n—a)

——~, teR.
n(t —n—a)

n=—0o0

Shannon’s sampling formula (5.5) is nothing but a Lagrange-type interpolation
series. Indeed, formula (5.5) can be rewritten as

=3 fa ) 1) LLEI o Wt e,

e n=t0 ()t —n)~

where P (t) :=sinnt, t € R.
In general, one can consider the Paley—Wiener space P W;,, 0 > 0, of band-
limited functions to [-7o, wo] defined as

PW., = {f e L*(R) : suppf - [—Jm,rm]} .

In this case the associated sampling period is Ty = 1/0. Indeed, for f € PW,,
define g(¢t) := f(¢t/o). Since g(w) = o f(ow), the function g € PW,.
Therefore

g)=ft/o) = Z f(n/a)sinn(z_n)

—F , teR.
= n(t —n)

The change of variable t /o = s gives, for any f € P Wp,, the sampling formula

sinw(os —n)

fls) = Zf(/) sER.

= n(os —n)

The reproducing kernel for P Wy, is kx4 (t,5) = o sinca(t —s),t,s € R.
Usually, the band of frequencies is centered at O since this is the case for real
band-limited functions. Indeed, for a real-valued function f one has | f w)|? =
f (w) f w) = f (w) f (—w), i.e., it is an even function. Let f be a function in
L*(R) band-limited to the interval [wy — 7, wo + ). Since §(w) = f (w + wy),
the function g(¢) := e ™ f(¢) is band-limited to the interval [—7m, ]. As a
consequence,
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t
(O = f = Y e T g
e m(t —n)
from which the sampling formula for f reads
o0 .
4 t —
f@) = Z £ (n)eot=m sinx(t —n) , teR.

w(t —n)

n=—oo

Undersampling and Oversampling

If one samples a function f in PW, with a general sampling period 7; > 0, the
question arises whether it is possible to reconstruct it from its samples { f (nT})}.
It is indeed possible in the case where 0 < T; < 1, i.e., sampling the signal at a
frequency higher than that given by its bandwidth [, 7]. For sampling periods
T; > 1, we cannot reconstruct the signal due to the aliasing phenomenon, which
will be explained below.

Firstly, it is easy to study the relationship between to sample f and to periodize
its Fourier transform f . To this end, consider the sequence of samples { ' (nT;)},ez
taken from a function f € PW, with a sampling period 7; > 0. Let f; be the

7 periodized version off ie. fp(w) =3 - f(w + 2—”n)

Obv1ously, fp isa 2 perlodlc function which belongs to L?[0, 2”] Its Fourier

expansion with respect to the orthonormal basis { \/ 2T—jT e~imho }m ez of L?[0, 2%] has
Fourier coefficients

2

T, (T 7, [+ & 2
Cm = ﬁ (@™ do = ﬁ/o ‘ n;oof(w + Tsn)e””n‘”d(u
‘/ Z / (a) + —n)e’mrs“’dw meZ.

n=—0o0

The change of variable w + 2 n = x allows us to obtain

Fa+) - T, [T « -
Cm = Z /”n f(x)e”" Tdx = E/_n f(x)e™ s dx

n=—oo

= VT, f(mT,).
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Thus, the Fourier expansion for f; is

—1mTS

fo(w) = Z f( +—n)—T Z f(mTy) Wik (5.7)

n=—0oo m=—0Q

Formula (5.7) is the so-called Poisson summation formula applied to f with period
27 /T. It says that:

The Fourier transform of the sequence { f (mTy)}mez, i.e., the sampled function, is
precisely (up to a scale factor) the ZT—f-periodized version of the Fourier transform

foff.

e In the oversampling case, where 0 < T; < 1, the Fourier transform f of f
can be recovered from the Fourier transform of the sampled function. Hence, the
function f can be also recovered. In terms of Shannon sampling theorem, the
explanation is easy: if a function is band-limited to the interval [—, 7], it is also
band-limited to any interval [-7o, o] with o > 1. This situation is depicted in
Fig.5.2.

e Inthe undersampling case, where Ty > 1, we cannot obtain the Fourier transform
of f from the Fourier transform of the sampled function because the copies of
f overlap in f »- Hence, it is impossible to recover the function from its samples.
The alluded overlap produces the aliasing phenomenon, i.e., some frequencies
go under the name of other ones. As pointed out in [17], this is a familiar
phenomenon to the watchers of TV and western movies. As the stage coach starts
up, the wheels start going faster and faster, but then they gradually slow down,
stop, go backwards, slow down, stop, go forward, etc. This effect is due solely to
the sampling the picture makes of the real scene. The undersampling situation is
depicted in Fig. 5.3.

{f(nTy)} (o)

WWTHH’IHWWTM\ i) /\A/\_n ! nmm

t

Fig. 5.2 Oversampling case

{fnTy} . )|

et 1 1‘ T\T'T'T“r\ e

t ®

Fig. 5.3 Undersampling case



5 Sampling Theory and Reproducing Kernel Hilbert Spaces 97

This undersampling/oversampling discussion clarifies the crucial role of the
critical Nyquist period which is given by T; = 1/0 whenever supp f C [—7o, no].

Robust Reconstruction: Oversampling Technique The actual computation of the
cardinal series presents some numerical difficulties since the cardinal sine function
behaves like 1/¢ as |t| — oco. An easy example is given by the numerical calculation
of f(1/2), forafunction f in P Wn, from a noisy sequence of samples { f (1) +§,}.
( 1)

The error in this case ‘ Z , even when all |§,| < §, could be infinity.

One way to overcome th1s dlfﬁculty is the oversampling technique, i.e., sampling
the signal at a frequency higher than that given by its bandwidth. In this way we
obtain sampling functions converging to zero at infinity faster than the cardinal sine
functions. Indeed, consider the band-limited function

o

\/_ —Tno

F(w)e'” dw with F € L*[-no,n0] ando < 1.

f) =—=

Extending F to be zero in [—n, 7] \ [-7o, 7o), we have

—lVla)
in L’ [—x, 7).

F(w) = Z f(n)

n=—0o0

Let 8(w) be a smooth function taking the value 1 in [—mo, wo], and O outside
[—7, ]. As a consequence,

—ll‘la)

in L*[-m, 7],

F() = 0(@)F () = Z (@) ir

and the sampling expansion

f@y= > fmSet—n). t€eR,

n=—0o0

holds, where Sy(¢) is the inverse Fourier transform F ! of the function 6(w)/~/27.
Consequently, Sg(t —n) = F~'[(w)e™"®/+/27](t). Furthermore, using the
properties of the Fourier transform, as smoother 6 is, the faster the decay of Sy is
as |t| — oo. However, the new sampling functions {Sg(t — n)}2 are no longer
orthogonal and they do not belong to P Wy,

Next, let us consider an illustrative example. Take 0 = 1 — e with 0 < € < 1,
and consider for 8(w) the trapezoidal function

n=—oo
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1 si|w| < x(l —e¢),
1 |w| .
Olw)=1-(1-—=) sin(l—¢) <|o| <m,

€ b1

0 si |w| > 7.
i t si t

One can easily obtain Sy(¢) = sme;r sm;r , t € R, which behaves like 1/ 1% as

€ b4

|t| — oco. The corresponding sampling expansion takes the form

sinex(t —n) sinz(t —n)
en(t—n) w(t—n)

fo=>Y fm

n=—0oo

, teR.

In this example, if each sample f (n) is subject to an error §, such that |§,| < 4,
then the total error in the above calculated f'(¢) is bounded by a constant depending
only on § and € [28, p. 211].

The Paley-Wiener Space PW,, as an RKHS of Entire Functions
Any function f € P W, can be extended to any z € C as

f@) = f (@)™ dw. (5.8

«/__n

This extended function f is proved to be a continuous function on C by using
a standard argument allowing interchange the limit with the integral. Taking y :
[a,b] —> C aclosed curve in C, the integral

/yf(z)dz— \/_/ ( - f(a))e’y(’)“’da))y (t)dt

is shown to be zero by interchanging the order of the integrals. Hence, Morera’s
theorem says that f is an entire function.

Moreover, f is a function of exponential type at most m, i.e., f satisfies an
inequality | £ (z)| < Ae”Fl for all z € C and some positive constant A. It follows
from (5.8) by using the Cauchy—Schwarz inequality. Indeed, for z = x +iy € C
one has

|yl
< r _nlf(w)le 0 do < 3%

Conversely, Paley—Wiener theorem, whose proof can be found, for instance, in [39,
p- 101] says us that these properties characterize the space P W, :

|f (e+iy)] <

/_ 1 @) do < ) £ o,

Theorem 3 (Paley—Wiener Theorem). Let [ be an entire function such that
| f ()| < Ce™ for any z € C, and flz € L*(R). Then there exists a function
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F € L*[—m, 7] such that

1 T .
7) = — Fw)e™dw, zeC.
r@ == Fw

Consequently, PW, = {f € HC) : |f@| < 4e™ |z e LZ(R)}.
Considering the space P W, as an RKHS of entire functions, its reproducing kernel
is given by

ky(z,w) = sinc(z—w), z,weC,

since

e [, sinm(-—w)
fw) = <fa «/E>L2[—n,n] = <f, A >L2(R) for any w € C.

Irregular Sampling: Paley-Wiener-Levinson’s Theorem

Let {t,},ez be a sequence of real numbers such that D := sup, ¢z |t, — 1| < 1/4;
hence, by %-Kadec’s theorem [39, p. 42] the sequence {e_i YNGY }n <7 1s a Riesz
basis for L*[—z, ). Consider its dual Riesz basis {h,},ez in L?[—m,n]; given
f € PW,, expand its Fourier transform f € L?[—m, mr] with respect to {h, },ez
obtaining

o0 o0
f= Y (fe/Nam)hy= Y flt)h, inL-m.7].
n=—0oo n=—oo
The inverse Fourier transform F ! gives in P W, the sampling formula
o0
f@ =Y ft)(F'h)@), teR. (5.9)
n=—00

The problem consists of identifying the sampling functions (F~'4,)(¢). By using
entire functions techniques, Paley—Wiener—Levinson [24] proved that

o GO N - (CREA YA
(]: hn)(t) - (l _ tn)G/(tn) where G(Z) - (Z ZO)}:[I (1 tn)(l t_n) '

In other words, sampling formula (5.9) is again a Lagrange-type interpolation series.
As a consequence, the sequences

inz(r —ty) G(@)
{%}nez and {(Z—tn)tG/(tn)}neZ

form a pair of dual Riesz bases for P W,,.
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The irregular sampling studied here corresponds to that associated with the time-
jitter error, i.e., t, = n + &,, n € Z. The general case concerns with real sequences
{t, },ez for which there exist constants 0 < A < B < oo such that

AIfIP <Y If @) < BIfIP forall f € PW,.

nez

This means that the sequence {e_””W/ v Zﬁ}nez is a frame for L2[—m, ]. See, for
instance, [4,9, 10].

Sampling by Using Samples of the Derivative

It is possible to recover any function f € P W, by using its samples { f (2n)},ez
taken at half the due sampling rate, along with the samples { f'(2n)},ez taken from
its first derivative. Namely,Any function f € P W, can be recovered from the two
sets of samples { f (2n)}nez and { f'(2n) }nez by means of the formula

= , sinZ(t —2n)7?
f@) = Z {f@n)+ (t —2n) f'(2n)} [W} , teER.

n=—oo

For the proof, let f € L*[—m, 7] be the Fourier transform of f; having in mind its
27 -periodic extension, the following Fourier expansions in L?[—, 7] hold

—ll‘la) —ll‘la)

Z f(n) and f(w—m) = Z( 1)"f(n)\/—

n=—0o0 n=—0o0

1 4 A
As a consequence, the function S (w) = 5[ f(w) + f(w— m))] admits the Fourier

expansion
eieo
S(w) = n;oof(Zn) S n L0, 7].
In a similar way, since
7 A .
@)= «/__ _ﬂza)f(a))e”“’da), teR,
the following expansions in L?[—, 7] hold

iof() = Z f(n) andi(w—n)f(w—m: Z( ' £ (m)°

n=—0o0 n=—0o0

Wk
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Hence, the function R(w) = %[w f (w) + (w —7m) f (w — m)] admits the Fourier
expansion

—12nw

i

R(w) = Z ons in L?[0, 7].

n=—0o0

Grouping both expansions, for @ € [0, ], we have
(S(w)) _1 ( o ) f()
Rw)) 2\ivwiw-m)\ flo-m)]"
or, inverting the matrix
f@) \_ 2 (i(w-n)-1)(S)
(f(w—n)) =2 (7)) (k) 10

Introducing this splitting of f into (5.3) yields after some calculations

fo=—— [ ferdo

Vo J-
:\/Lz—,,/ ioo[ (@+m)f (@n) + 2 f(2 )}e:/li; 10 J o
J__/ _i: [ (- w)f(2n)——f (2n )} ;2_7:) e d e
- S L) e
v 2 [T EIE) e, e,

The desired result comes by using the Fourier duals

. (z) ) (m) 1 (7 (—isgnw) ito g
sinc{ —J)simnj| — = € w
2 2 /\/ZJT - \/27[

sinc? (2) \/_/_ﬂ \/7 |a)| e"’dw

For derivative sampling, see [21] and references therein.

and
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Generalizing Paley-Wiener Spaces

Paley—Wiener spaces can be generalized in different ways; two of these genera-
lizations are briefly developed:

1. The first one consists in substituting the Hilbert space L?[—, 7] and the Fourier
kernel in expression (5.3) by an arbitrary Hilbert space # and a kernel K : 2 >
t — K(t) € H, and thus consider, for each x € #H, the function f,(¢) =
(x, K(t))H, teq.

2. According to Shannon’s sampling theorem, Paley—Wiener space PW, is a
shift-invariant subspace in L?(R) generated by the sinc function, i.e., it can
be described as PW, = {ZnEZ ay sinc(t — n) where {a,} € Ez(Z)}. Other
generalization consists of replacing the sinc function by another generating
function ¢ € L?(R) having better properties.

Of course, these generalizations do not cover all the possible situations. For
example, de Branges spaces are RKHSs of entire functions which also generalize
Paley—Wiener spaces. Sampling results in de Branges spaces can be found in
[15,27].

RKHSs Obtained by Duality from an Arbitrary Hilbert Space
Let H be a separable Hilbert space and let K : 2 —> H be an H-valued mapping.
Assume that there exists a sequence {t, }°>, in 2 such that the sequence {K (¢,)}°2 ,

is an orthogonal basis for H. Under these circumstances:

1. Consider the set of functions defined on 2
Hi ={fr 1 Q—>C: fi(t) = (x,K(1)) where x € H}.

The map Tx : H — Hg defined by Tx(x) := f; is a linear and bijective
mapping. To obtain that Tx is one-to-one, suppose that f, = 0 in Hg. In
particular,

fe(ty) =0=(x,K(t,))y forallm e N,

which implies x = 0 since the sequence {K(#,)}°2, is a complete set in H.

2. The space Hx endowed with the inner product (fy, fy)n, = {(x,y)n is a
Hilbert space which inherits the Hilbertian structure of 7. Moreover, it is an
RKHS; indeed, for each ¢t € R, the evaluation functional at t € Q2 is bounded
since Cauchy—Schwarz’s inequality gives

| O] = (. KO)nl| < IxllnIKOllr = I fellng IKOll3e . f € Hi
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Besides, the mapping Tk is, obviously, a unitary operator between the spaces H
and H . The reproducing kernel in Hg is

k(t,s) = (K(s), K(t))3, t,s€Q.

Indeed, for each fixed s € €2, the function k(-,s) = T (K (s)) belongs to Hg,
and the reproducing property

fx(8) = (x, K)o = (T (), Te (K () g = (o k(- 8)) g 5 € Q2
fx € HK P

holds. One can find these spaces, for instance, in [29, 30].

3. Since (k(-, t,), k(s tm))rnx = k(tm,t,) = (K(t), K(tm))n, it is easy to check
that the sequence {K (t,,)}oo=1 is an orthogonal basis for the auxiliary Hilbert
space H if and only if the sequence {k( t, )} | 1s an orthogonal basis for the
RKHS Hg. Thus, in this context, for any f € ’H, k the sampling formula (5.2)
reads

(K (1), K (1)1

, 1e€f.
| K ()]

f@) =Y ft)
n=1

The convergence is absolute and uniform on subsets of 2 where the function
t > || K(2)| % is bounded. The above sampling formula is nothing but an abstract
version of the Kramer sampling theorem; see [16,20,40], for instance.

Some lllustrative Examples

Next, some examples following the above construction are exhibited; for the omitted
details see [12,13]:

1. Consider the Hilbert space H := L>[0, ], the mapping K. : R — L?[0, ]

such that K (¢#)(w) := costw, w € [0, ], and the sequence {f,} = {0} U N.
Then, any function f defined as

F@O) = (F.Ke®) ooy = /Oﬂ F(w)costwdw, 1€R,

for some F € LZ[O, 7], can be recovered from the sampling formula

fo=ronr, 2 Zf( yEDLST k.

The reproducing kernel of the corresponding H g, space is
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1 . .
ke(t,s) = m[t sinzt cosms —scosmisinws|, t,s €R.

2. Analogously, considering K (¢)(w) := sintw, w € [0, ], and the sequence
{t,} = N one obtains the sampling formula

(— 1) nsint
f@) = Zf() ., L€R,
for any function f having the form
f(f)Z(F,Ks(Z))LZ[On] 2/ F(w)sintwdw, teR,
’ 0

where F € L?[0, r].
Functions in example (1) coincide with even functions in the Paley—Wiener
P W, , whilst functions in example (2) coincide with odd functions in PW,,. In
fact, the orthogonal sum P W, = Hg, @ Hg, holds.
3. The Fourier—Bessel set {\/_ Jy,(wty) } | is known to be an orthogonal basis for
L?[0, 1], where t, is the nth positive zero of the Bessel function J, (), v > —1.
The Bessel function of order v is given by

J(t)=L[1+i =D" (i)zn] {eR
! 22T+ 1) Znl(1+v)-(n+v) \2 ’ '

For any ¢ € R, consider K, (t) € L?[0, 1] defined by K, (t)(w) := /wt J,(wt),
w € [0, 1], and the sequence of zeros {t,}°2,. Any function f defined as

1
f(t) = (Fv KV(I))LZ[O.I] :/(; F(W)\/WJU(WZ‘) dW, (S R,

where F € L?[0, 1], can be recovered by means of the sampling formula

211, J,(1)

——, tEeR.
J\ﬁ(tn)(tz - t}%)

f@O) =Y f)
n=1

The reproducing kernel of the corresponding RKHS #,, is

k,(s,t) = f [IJH_I(I)J (s) —sh1(s)Lu ()], t.seR.

4. Finally, consider K : R —> L*[—m, 7] defined by K (r)(w) := el (*+w=wi),
w € [—m, r]. For the sampling points {t,} = Z, the sequence {K(¢,)},ecz is an
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orthogonal basis for L?[—, ]. Hence, any function f given as

w

O ={F K@)y = [ Fne @ 0w, e,

-

where F € L*[—m, 7], can be expressed as the sampling series

sin(t —n)

reR.
w(t —n)

f@= 3" fmye

n=—0oo

The above formula is the corresponding sampling formula valid for band-limited
functions to the interval [—r, 7] in the sense of the fractional Fourier transform
(FRFT).

Shift-Invariant Subspaces in L?(R)

Although Shannon’s sampling theory has had an enormous impact, it has a number
of problems, as pomted out in [36]: It relies on the use of ideal filters (in other
words, in Fig.5.1, f can be obtained from fp multiplying by the characteristic
function Y[ x]); the band-limited hypothesis is in contradiction with the idea of a
finite duration signal ( f is an entire function); the band-limiting operation generates
Gibbs oscillations; and finally, the sinc function has a very slow decay at infinity
which makes computation in the signal domain very inefficient. Moreover, many
applied problems impose different a priori constraints on the type of signals. For
this reason, sampling and reconstruction problems have been investigated in spline
spaces, wavelet spaces, and general shift-invariant spaces; signals are assumed to
belong to some shift-invariant space of the form: V(f := span; 2 {¢(t —n)},ez Where
the function ¢ in L*(R) is called the generator of V2.

Let sz = W{(p(- - n)}n <7 be a shift-invariant space with stable generator
¢ € L*(R) which means that the sequence {¢(- — 1) },¢z is a Riesz basis for V(pz.

The sequence {¢(- — n)},ez is a Riesz sequence in L*(R), i.e., a Riesz basis for
V(p2 if and only if there exist two positive constants 0 < A < B such that

A< pw+bP<B. ae.wel0.1].
kez

where ¢ stands for the Fourier transform of ¢ (here, it is defined in L'(R) N L*(R)
as p(w) := f_ozo @(t) e 2" dt ) [8, p. 143]. Thus we have that

= { > ayo(-—n) : {a,} € (Z); C L*(R).

nez
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It is also assumed that the functions in the shift-invariant space V.2 are continuous on
R. This is equivalent to say that the generator ¢ is continuous on R and the function
t + Y. o |9 —n)|? is bounded on R as proved in [42]. Thus, any f € V(p2 is
defined on R as the pointwise sum f(¢) = >, ., a,@(t —n) foreacht € R.

On the other hand, the space V(p2 is the image of the Hilbert space L?[0, 1] by
means of the isomorphism

T,: L0.1] — V2

{e_zmnx}nez > {o(t —n)}nez,

which maps the orthonormal basis {e™27""}, 7 for L*[0, 1] onto the Riesz basis
{@(t —n)}nez for V2. Forany f € V72, there exists F € L?[0, 1] such that

f(t) = %F(z) — Z(F’ e—2ﬂinx)¢(t _n) — <F, Zme—bﬂnx>

nez nez

:(F,K[>, ZGR,
(5.11)

where, for each ¢ € R, the function K, € L?[0, 1] is given by

K, (x) := Z(p(t —n)e TinY = Z(p(t + n)e 2miny = Zo(t, x). (5.12)

nez nez

Here, Zo(t,x) := Y, c; ¢(t + n)e”?""~ is just the Zak transform of the function
@; see [8, p. 215] for properties and uses of the Zak transform. As a consequence,
the shift-invariant space V(f is an RKHS in L*(R). The mapping 7, has the shifting
property T, (e "™*F)(t) = (T,F)(t —m), t € Randm € Z.

From (5.11), fora € [0, 1) fixed and m € Z we have

fla+m)=(F, Kogm) 2o = (F.e "™ K) 200, F = T, f.

In order to obtain a sampling formula in V(f, we look for sampling points of the
form #,, :== a + m, m € Z, such that the sequence {e~>""*K,, ()c)}mEZ is a Riesz
basis for L2[0, 1].

Recalling that the multiplication operator m, : L*[0, 1] — L?[0, 1] given as the
product mg(f) = gf is well defined if and only if g € L°[0, 1], and then, it is
bounded with norm ||mg|| = ||g|leo, the following result comes out:

The sequence of functions {e_z”i’"""Ka (x)}mEZ is a Riesz basis for L*[0,1] if and
only if the inequalities 0 < || Killo < |[Kulloo < o0 hold, where | K |0 =

essinfyefo,1] | Ka(x)| and || Kylloo := esssup,ep 1) | Ka(x)|. Moreover, its dual Riesz
basis is {e_Z”imX/Ka (x)}

mez’
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In particular, the sequence {f:_Z”"”“‘I(a(x)}mGZ is an orthonormal basis in
L?[0, 1] if and only if |[K,(x)| = 1 a.e.in [0, 1].

Let a be a real number in [0, 1) such that 0 < ||K;]lo < [|Kslleo < 00. Any
F € L?[0, 1] can be expanded as

e—2m'mx e—2m'mx

F=Y (Fe?™mK)——=3"fa+m) <0

in L[0, 1].
mez K“(x) meZ

(5.13)
Having in mind the shifting property of 7,

(e2mm Ky (x), Ky (x)) (e /Ka(0)) () = Sult =m) . 1 €R,

L2o1] —

where S, := T,(1/K,) € V2. Thus, the isomorphism 7, acting in formula (5.13)
gives the sampling result in VWZ:

Any function f € V(p2 can be expanded as the sampling series

fO =Y fla+mSut—n), (€R. (5.14)

n=—oo

The convergence of the series in (5.14) is absolute and uniform on R since the
functiont — ||K/||*> =Y, l(t —n)|? is bounded on R.

Some Examples Involving B-Splines

Consider the space sz for the generator ¢ := N,, where N,, is the B-spline of order
m—1,i.e.,, Ny := Ny Ny*---% Ny (m times) and N| := o1, i.€., the characteristic
function of the interval [0, 1]. It is known that the sequence {Nm (¢ —n)}n <y isaRiesz
basis for Vﬁm [8, p. 69]. For example, the following sampling formulas hold:

1. For the quadratic spline N3, we have ZN3(¢t, x) = % + [% —(t— %)2]24- %Zz
where 7 = e72"*_ Thus, fort = 0 we have ZN3(0, x) = 5 (1+2) which vanishes
at x = 1/2. However, for t = 1/2 we have ZN5(1/2,x) = é(l + 6z + 2%);
according to (5.12) we deduce 0 < ||Ki/2llo0 < [|Ki,2]l0 < 00. Hence, for any
fe Vﬁ}, we have

FO= Y e+ )Siat-m. 1€k,

n=—oo

where S15(1) = V2322 (24/2 — 3)"*11 N5(¢t — n). This function has been

obtained from the Laurent expansion of the function 8(1 + 6z + z?)~! in the
annulus 3 — 2+/2 < |z] < 3 4+ 2v/2.
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2. Since ZN4(0,x) = %(1 + 47 + Zz) = £(z—A)(z—1/) where z = e=27ix and
A = /3 — 2, according to (5.12) we deduce that 0 < ||Kollo < || Kolleo < 00.
Thus, for any f € V1%4 we have

f@y= Y fm)Sot—n), teR,

n=—0oo

where So(1) = /3 Y (=DM (2— V3)I"l Ny(t—n+2). To obtain the function
So, we have used the Laurent expansion of the function 6(z + 4z> + z3)™! in the
annulus 2 — /3 < |z] < 2 + /3.

Conclusion

In this introductory work, the basic sampling theory in an RKHS is exhibited. The
leitmotiv was the classical sampling theory in Paley—Wiener spaces, which includes
the well-known Shannon’s sampling theorem, and some of its generalizations,
including shift-invariant spaces in L>(R). In the literature one can find nice surveys
[5,19,22,27,38] or books [20,40] on this subject.

Although sampling theory is not only privative of RKHSs [6,20,25,26,41], this is
the setting where the theory becomes more natural. Besides, another important topic
concerns to sampling and interpolation in spaces of analytic functions, including,
in particular, RKHSs of entire functions; see, for instance, [32] and the references
therein.

The first sampling result in shift-invariant spaces was published in 1982 [37];
it was the beginning of a significant literature on sampling and reconstruction
problems in spline spaces, wavelet spaces, and general shift-invariant spaces.
Moreover, in many common situations, the available data are samples of some
filtered (convolved) versions f * h;, j = 1,2,...,s, of the function f itself,
where each average function /; reflects the characteristics of an acquisition device.
This leads to generalized or average sampling in shift-invariant spaces; notice
that derivative sampling in Paley—Wiener spaces is a particular case. See [l-
3,11, 14,23,34,42] and the references therein.
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