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Abstract
This work intends to serve as an introduction to sampling theory. Basically,
sampling theory deals with the reconstruction of functions through their values
on an appropriate sequence of points by means of sampling expansions involving
these values. Reproducing kernel Hilbert spaces are suitable spaces for sampling
purposes since evaluation functionals are continuous. As a consequence, the
recovery of any function from a sequence of its samples depends on the basis
properties of the reproducing kernel at the sampling points.

Why Are RHSKs Suitable Spaces for Sampling Purposes?

Roughly speaking, sampling theory deals with the reconstruction of functions
through their values (samples) on an appropriate sequence of points by means
of sampling expansions involving these values. This is not always possible: for
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instance, a continuous function f on R is not completely determined by a sequence
ff .tn/g of its samples. As a consequence, one needs to impose some additional
condition on the function f . Hence, f must belong to some suitable spaces. For
example, assume that the function f belongs to a Hilbert space H of functions on
� (generally, a subset of R or C) such that any evaluation functional Et W f 2 H 7!
f .t/ 2 C is bounded, i.e., the space H is a reproducing kernel Hilbert space (RKHS
henceforth). Via Riesz representation theorem, for each t 2 � there exists a unique
kt 2 H such that f .t/ D hf; kt iH for every f 2 H. In this manner, the stable
reconstruction of any f 2 H from the sequence of samples ff .tn/g at ftng � �

depends on whether the sequence fktng is a frame for H. Recall that a sequence
fxng is a frame for a separable Hilbert space H if there exist two constants A;B > 0

(frame bounds) such that

Akxk2 �
X

n

jhx; xnij2 � Bkxk2 for all x 2 H :

Given a frame fxng for H, the representation property of any vector x 2 H as a
series x D P

n cn xn is retained, but, unlike the case of Riesz (orthonormal) bases,
the uniqueness of this representation is sacrificed. Suitable frame coefficients cn
which depend continuously and linearly on x are obtained by using the dual frames
fyng of fxng, i.e., fyngn2Z is another frame for H such that

x D
X

n

hx; ynixn D
X

n

hx; xniyn for each x 2 H : (5.1)

In particular, frames in H include orthonormal and Riesz bases for H. Recall
that a Riesz basis in a separable Hilbert space H is the image of an orthonormal
basis by means of a bounded invertible operator. Any Riesz basis fxng has a
unique biorthogonal (dual) Riesz basis fyng, i.e., hxn; ymiH D ın;m, such that the
expansion (5.1) hold for every x 2 H. An orthonormal basis is a self-dual Riesz
basis. For more details and proofs, see [8, 39].

In case the sequence fktng forms a frame for the RKHS H, and a dual frame
fSn.t/g is available (a difficult problem in general), the sampling formula in H

f .t/ D
X

n

hf; kt iH Sn.t/ D
X

n

f .tn/ Sn.t/ ; t 2 �

holds. Notice that convergence in an RKHS H of functions defined on � implies
pointwise convergence in �. For simplicity, in what follows only orthonormal
and Riesz bases will be considered. An easy and straightforward sampling result
involving orthonormal bases is the following:

Theorem 1 (Sampling Theorem in an RKHS). Let H be an RKHS of functions
defined on a subset� with reproducing kernel k. Assume that there exists a sequence
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ftng1nD1 � � such that fk.�; tn/g1nD1 is an orthogonal basis for H. Then, any f 2 H
can be expanded as

f .t/ D
1X

nD1

f .tn/
k.t; tn/

k.tn; tn/
; t 2 � ; (5.2)

with convergence absolute and uniform on subsets of � where the function t 7!
k.t; t/ is bounded.

Proof. This result follows from the expansion of f 2 H in the orthonormal basis˚
k.�; tn/=

p
k.tn; tn/

�1
nD1

. Indeed, for each f 2 H we obtain

f D
1X

nD1

*
f;

k.�; tn/p
k.tn; tn/

+

H

k.�; tn/p
k.tn; tn/

D
1X

nD1

f .tn/
k.�; tn/
k.tn; tn/

in H :

Now, the convergence in norm in an RKHS H implies pointwise convergence in
� which is uniform on subsets of � where the function t 7! k.t; t/ is bounded.
Moreover, since an orthonormal basis is an unconditional basis, the above sampling
series is pointwise unconditionally convergent for each t 2 � and hence absolutely
convergent. ut

The standard Hilbert space `2.N/ is an RKHS with reproducing kernel k the
Kronecker delta, i.e., k.m; n/ D ım;n, m; n 2 N. In this case, for any fx.m/g1mD1 2
`2.N/ formula (5.2) trivially reads: x.m/ DP1

nD1 x.n/ ım;n, m 2 N.
Any finite dimensional Euclidean space of functions defined on � is an RKHS;

next we give two interesting examples in this finite dimensional setting:

Trigonometric Polynomials
Consider the space HN of 2�-periodic trigonometric polynomials of degree �
N . HN is a closed subspace of L2Œ��; �
 endowed with the usual inner prod-
uct. An orthonormal basis for HN is given by the set of exponential complex
feikt=p2�gNkD�N . Therefore, the reproducing kernel for HN is

kN .t; s/ D 1

2�

NX

kD�N

eik.t�s/ D 1

2�
DN .t � s/ ;

where DN denotes the N th Dirichlet kernel [28, p. 9]

DN .t/ WD
NX

kD�N

eikt D
8
<

:

sin.NC 1
2 /t

sin t
2

if t 2 R n 2�Z
2N C 1 if t 2 2�Z
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At the points sn D 2�n
2NC1

2 Œ��; �
, �N � n � N , the sequence
˚
kN .�; sn/

�N
nD�N

is an orthogonal basis for HN since

˝
kN .�; sn/; kN .�; sm/

˛
L2Œ��;�


D kN .sm; sn/ D 1

2�

sin�.m � n/

sin �.m�n/

2NC1

D 2N C 1

2�
ımn :

A direct application of the sampling formula (5.2) gives

p.t/ D 1

2N C 1

NX

nD�N

p
� 2�n

2N C 1

� sin
�
2NC1

2

��
t � 2�n

2NC1

�

sin 1
2

�
t � 2�n

2NC1

� ; t 2 Œ��; �/

for every trigonometric polynomial p.t/ D PN
kD�N cke

ikt in HN . This interpola-
tion formula goes back to [7].

Orthogonal Polynomials
Another important class of examples is given by finite families of orthogonal
polynomials on an interval of the real line. Consider, as an example, the particular
case of the Legendre polynomials fPng1nD0 defined, for instance, by means of their
Rodrigues formula

Pn.t/ D 1

2nnŠ

dn

dtn

�
.t2 � 1/n

	
; n D 0; 1; : : : :

It is known that they form an orthogonal basis for L2Œ�1; 1
 and that kPnk2 D
.nC 1

2
/�1.

Consider the finite subspace HN of L2Œ�1; 1
 spanned by fP0; P1; : : : ; PN g. The
Christoffel–Darboux formula for Legendre polynomials gives its reproducing kernel

kN .t; s/D
NX

nD0

�
nC 1

2

�
Pn.t/Pn.s/D 2N C 1

2

PNC1.t/PN .s/�PN .t/PNC1.s/

t � s
:

Note that

kN .t; t/ D 2N C 1

2

�
P 0
NC1.t/PN .t/ � P 0

N .t/PNC1.t/
	
:

We seek points fsngNnD0 in Œ�1; 1
 such that kN .sm; sn/ D 0 for m ¤ n, i.e.,

PNC1.sm/

PN .sm/
D PNC1.sn/

PN .sn/
:

In particular we can take for fsngNnD0 the N C 1 simple roots of PNC1 in .�1; 1/.
Thus, for every f .t/ DPN

kD0 ck

q
.k C 1

2
/Pk.t/ the finite sampling formula
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f .t/ D
NX

nD0

f .sn/
PNC1.t/

.t � sn/P
0
NC1.sn/

; t 2 R

holds. This formula is nothing but Lagrange interpolation formula for the samples
ff .sn/gNnD0. In general, one can take as sampling points fsngNnD0 the N C 1 simple
roots of the polynomial PNC1.t/ � cPN .t/ in .�1; 1/, where c 2 R. The details on
orthogonal polynomials can be found in [31, 35].

A Paradigmatic Example: Paley–Wiener Spaces

A function f 2 L2.R/ is said to be band-limited to the interval Œ��; �
 if its Fourier
transform Of vanishes outside Œ��; �
, i.e., Of is supported in Œ��; �
. The space of
band-limited functions to Œ��; �
 is known in the mathematical literature as the
Paley–Wiener space and denoted by PW� . That is,

PW� WD
n
f 2 L2.R/ W supp Of � Œ��; �


o
:

• The space PW� is a closed subspace of L2.R/ since the Fourier transform F W
L2.R/ �! L2.R/ is a unitary operator and PW� D F�1

�
L2Œ��; �
�; the space

L2Œ��; �
 is identified to a closed subspace of L2.R/ by extending to 0 on R the
functions of L2Œ��; �
. Here, the Fourier transform is defined in L1.R/\L2.R/

as Of .w/ WD 1p
2�

R1
�1 f .t/ e�iwt dt , and extended to L2.R/ in the usual way.

• By using the inverse Fourier transform, any f 2 PW� can be expressed as

f .t/ D 1p
2�

Z �

��

Of .w/eiwt dw D

Of ;

e�iwt

p
2�

�

L2Œ��;�


; t 2 R : (5.3)

Cauchy–Schwarz’s inequality and Parseval equality, kf kL2.R/ D k Of kL2Œ��;�
,
give, for every t 2 R,

jf .t/j � k Of kL2Œ��;�
ke�iwt

p
2�

kL2Œ��;�
 D kf kL2.R/ ; f 2 PW� :

In other words, evaluation functionals are bounded on PW� , which consequently

is an RKHS. Its reproducing kernel is k�.t; s/ D sin�.t � s/

�.t � s/
, t; s 2 R; indeed,

using Plancherel–Parseval theorem

f .s/ D

Of ;

e�iws

p
2�

�

L2Œ��;�


D

f;

sin�.� � s/

�.� � s/

�

L2.R/

; s 2 R :
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Notice that

F�1
�e�iws

p
2�

Œ��;�
.w/
�
.t/ D sin�.t � s/

�.t � s/
; t 2 R :

• Since the sequence
n

e�inwp
2�

o

n2Z is an orthonormal basis for L2Œ��; �
 and F�1 is

a unitary operator we obtain that the sequence

n sin�.t � n/

�.t � n/

o

n2Z (5.4)

is an orthonormal basis for the Paley–Wiener space PW� .
• Moreover, having in mind that k�.t; t/ D 1 for all t 2 R, formula (5.2) yields

the famous Shannon’s sampling theorem [33]:

Theorem 2 (Shannon’s Sampling Theorem). Any function f 2 PW� , i.e.,
band-limited to Œ��; �
, can be recovered from the sequence of its samples˚
f .n/

�
n2Z by means of the formula

f .t/ D
1X

nD�1
f .n/

sin�.t � n/

�.t � n/
; t 2 R : (5.5)

The convergence of the series is absolute and uniform on R.

Another proof of the above theorem is the following [18]: Given f 2 PW� ,
the expansion of its Fourier transform Of 2 L2Œ��; �
 with respect to the

orthonormal basis
n
e�inw=

p
2�
o1
nD�1 for L2Œ��; �
 gives

Of D
1X

nD�1


Of ;

e�inw

p
2�

�
e�inw

p
2�

D
1X

nD�1
f .n/

e�inw

p
2�

in L2Œ��; �
 : (5.6)

The inverse Fourier transform F�1 in (5.6) gives

f D
1X

nD�1
f .n/F�1

�e�inw

p
2�

Œ��;�
.w/
�
D

1X

nD�1
f .n/

sin�.t � n/

�.t � n/
in L2.R/ :

The convergence properties come again since PW� is an RKHS.
• Shannon’s sampling formula is an orthonormal expansion in PW� ; Parseval’s

identity says that kf k2 DP1
nD�1 jf .n/j2 for all f 2 PW� . In other words, the

energy Ef WD kf k2 of the band-limited function f 2 PW� is contained in its
samples

˚
f .n/

�
n2Z. The following commutative diagram goes into the meaning

of the sampling formula in PW� :
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f 2 PW�

F�����! Of 2 L2Œ��; �

S
??y

??yP

ff .n/gn2Z 2 `2.Z/
F�����! Ofp 2 L2

pŒ��; �


All mappings included in this diagram are unitary operators:

(a) S denotes the sampling mapping with sampling period Ts D 1.
(b) P is the 2�-periodization mapping which extends a function Of in Œ��; �
 to

the whole R with period 2� .
(c) The other two mappings are, respectively, the functional Fourier transform in

L2.R/ and the Fourier transform in `2.Z/, defining the latter as F.fang/.w/ WDP1
nD�1 an

e�inwp
2�

.

The situation described by the diagram is depicted in Fig. 5.1.
• As the space PW� is an RKHS contained in the Hilbert space L2.R/, the

reproducing formula when applied to any f 2 L2.R/ gives its orthogonal
projection onto PW�

PPW� f .s/ D ˝
f;

sin�.� � s/

�.� � s/

˛
L2.R/

D �
f � sinc

�
.s/ ; s 2 R ;

where � means the convolution operator and sinc denotes the cardinal sine
function sinc t WD sin�t=�t , t 2 R.

• The crucial feature in PW� is that the sampling period is Ts D 1 and it is not rel-
evant to the points where the samples are taken. In fact, any function f 2 PW�

f(t)

{f(n)}

ω−π π

ω−π π 3π−3π

|f(ω)|
∧

|fp(ω)|
∧

t

t

Fig. 5.1 Time-frequency interpretation of Shannon’s sampling theorem
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can be recovered from the sequence of samples
˚
f .nCa/

�1
nD�1, for a fixed a 2

R. Observe that
n
e�i .nCa/w=

p
2�
o

n2Z is also an orthonormal basis for L2Œ��; �

which goes, via F�1, onto the orthonormal basis

n sin�.t � n � a/

�.t � n � a/

o

n2Z for

PW� . The expansion of any f 2 PW� with respect to this basis yields the
new sampling formula

f .t/ D
1X

nD�1
f .nC a/

sin�.t � n � a/

�.t � n � a/
; t 2 R :

• Shannon’s sampling formula (5.5) is nothing but a Lagrange-type interpolation
series. Indeed, formula (5.5) can be rewritten as

f .t/ D
1X

nD�1
f .n/

.�1/n sin�t

�.t � n/
D

1X

nD�1
f .n/

P .t/

P 0.n/.t � n/
; t 2 R :

where P.t/ WD sin�t , t 2 R.
• In general, one can consider the Paley–Wiener space PW�� , � > 0, of band-

limited functions to Œ���; ��
 defined as

PW�� WD
n
f 2 L2.R/ W supp Of � Œ���; ��


o
:

In this case the associated sampling period is Ts D 1=� . Indeed, for f 2 PW��

define g.t/ WD f .t=�/. Since Og.w/ D � Of .�w/, the function g 2 PW� .
Therefore

g.t/ D f .t=�/ D
1X

nD�1
f .n=�/

sin�.t � n/

�.t � n/
; t 2 R :

The change of variable t=� D s gives, for any f 2 PW�� , the sampling formula

f .s/ D
1X

nD�1
f .n=�/

sin �.�s � n/

�.�s � n/
; s 2 R :

The reproducing kernel for PW�� is k��.t; s/ D � sinc �.t � s/, t; s 2 R.
• Usually, the band of frequencies is centered at 0 since this is the case for real

band-limited functions. Indeed, for a real-valued function f one has j Of .w/j2 D
Of .w/ Of .w/ D Of .w/ Of .�w/, i.e., it is an even function. Let f be a function in
L2.R/ band-limited to the interval Œw0 � �;w0 C �
. Since Og.w/ D Of .w C w0/,
the function g.t/ WD e�iw0t f .t/ is band-limited to the interval Œ��; �
. As a
consequence,
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g.t/ D e�iw0t f .t/ D
1X

nD�1
e�iw0nf .n/

sin�.t � n/

�.t � n/
; t 2 R ;

from which the sampling formula for f reads

f .t/ D
1X

nD�1
f .n/ eiw0.t�n/ sin�.t � n/

�.t � n/
; t 2 R :

Undersampling and Oversampling
If one samples a function f in PW� with a general sampling period Ts > 0, the
question arises whether it is possible to reconstruct it from its samples ff .nTs/g.
It is indeed possible in the case where 0 < Ts � 1, i.e., sampling the signal at a
frequency higher than that given by its bandwidth Œ��; �
. For sampling periods
Ts > 1, we cannot reconstruct the signal due to the aliasing phenomenon, which
will be explained below.

Firstly, it is easy to study the relationship between to sample f and to periodize
its Fourier transform Of . To this end, consider the sequence of samples ff .nTs/gn2Z
taken from a function f 2 PW� with a sampling period Ts > 0. Let Ofp be the
2�
Ts

-periodized version of Of , i.e., Ofp.!/ DP1
nD�1 Of �! C 2�

Ts
n
�
.

Obviously, Ofp is a 2�
Ts

-periodic function which belongs to L2Œ0; 2�
Ts

. Its Fourier

expansion with respect to the orthonormal basis
˚q

Ts
2�

e�imTs!
�
m2Z of L2Œ0; 2�

Ts

 has

Fourier coefficients

cm D
r

Ts

2�

Z 2�
Ts

0

Ofp.!/eimTs!d! D
r

Ts

2�

Z 2�
Ts

0

1X

nD�1
Of
�
! C 2�

Ts

n

�
eimTs!d!

D
r

Ts

2�

1X

nD�1

Z 2�
Ts

0

Of
�
! C 2�

Ts

n

�
eimTs!d! ; m 2 Z :

The change of variable ! C 2�
Ts
n D x allows us to obtain

cm D
r

Ts

2�

1X

nD�1

Z 2�
Ts

.nC1/

2�
Ts

n

Of .x/eimTsxdx D
r

Ts

2�

Z �

��

Of .x/eimTsxdx

D
p
Tsf .mTs/ :
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Thus, the Fourier expansion for Ofp is

Ofp.!/ D
1X

nD�1
Of
�
! C 2�

Ts

n

�
D Ts

1X

mD�1
f .mTs/

e�imTs!

p
2�

: (5.7)

Formula (5.7) is the so-called Poisson summation formula applied to Of with period
2�=Ts. It says that:
The Fourier transform of the sequence ff .mTs/gm2Z, i.e., the sampled function, is
precisely (up to a scale factor) the 2�

Ts
-periodized version of the Fourier transform

Of of f .

• In the oversampling case, where 0 < Ts � 1, the Fourier transform Of of f

can be recovered from the Fourier transform of the sampled function. Hence, the
function f can be also recovered. In terms of Shannon sampling theorem, the
explanation is easy: if a function is band-limited to the interval Œ��; �
, it is also
band-limited to any interval Œ���; ��
 with � � 1. This situation is depicted in
Fig. 5.2.

• In the undersampling case, where Ts > 1, we cannot obtain the Fourier transform
of f from the Fourier transform of the sampled function because the copies of
Of overlap in Ofp . Hence, it is impossible to recover the function from its samples.

The alluded overlap produces the aliasing phenomenon, i.e., some frequencies
go under the name of other ones. As pointed out in [17], this is a familiar
phenomenon to the watchers of TV and western movies. As the stage coach starts
up, the wheels start going faster and faster, but then they gradually slow down,
stop, go backwards, slow down, stop, go forward, etc. This effect is due solely to
the sampling the picture makes of the real scene. The undersampling situation is
depicted in Fig. 5.3.

F−→
{f(nTs)}

t ω−π π

|fp(ω)|
∧

Fig. 5.2 Oversampling case

F−→
{f(nTs)}

t ω

|fp(ω)|
∧

Fig. 5.3 Undersampling case
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This undersampling/oversampling discussion clarifies the crucial role of the
critical Nyquist period which is given by Ts D 1=� whenever supp Of � Œ���; ��
.

Robust Reconstruction: Oversampling Technique The actual computation of the
cardinal series presents some numerical difficulties since the cardinal sine function
behaves like 1=t as jt j ! 1. An easy example is given by the numerical calculation
of f .1=2/, for a function f in PW� , from a noisy sequence of samples ff .n/Cıng.
The error in this case

ˇ̌
ˇ
P

n
.�1/nın

�.n� 1
2 /

ˇ̌
ˇ, even when all jınj � ı, could be infinity.

One way to overcome this difficulty is the oversampling technique, i.e., sampling
the signal at a frequency higher than that given by its bandwidth. In this way we
obtain sampling functions converging to zero at infinity faster than the cardinal sine
functions. Indeed, consider the band-limited function

f .t/ D 1p
2�

Z ��

���

F .!/ ei!t d! with F 2 L2Œ���; ��
 and � < 1 :

Extending F to be zero in Œ��; �
 n Œ���; ��
, we have

F .!/ D
1X

nD�1
f .n/

e�in!

p
2�

in L2Œ��; �
 :

Let �.!/ be a smooth function taking the value 1 in Œ���; ��
, and 0 outside
Œ��; �
. As a consequence,

F .!/ D �.!/F .!/ D
1X

nD�1
f .n/�.!/

e�in!

p
2�

in L2Œ��; �
 ;

and the sampling expansion

f .t/ D
1X

nD�1
f .n/S�.t � n/ ; t 2 R ;

holds, where S�.t/ is the inverse Fourier transform F�1 of the function �.w/=
p
2� .

Consequently, S�.t � n/ D F�1Œ�.!/ e�in!=
p
2�
.t/. Furthermore, using the

properties of the Fourier transform, as smoother � is, the faster the decay of S� is
as jt j ! 1. However, the new sampling functions fS�.t � n/g1nD�1 are no longer
orthogonal and they do not belong to PW�� .

Next, let us consider an illustrative example. Take � D 1 � � with 0 < � < 1,
and consider for �.w/ the trapezoidal function
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�.!/ D

8
ˆ̂<

ˆ̂:

1 si j!j � �.1 � �/;

1

�

�
1 � j!j

�

�
si �.1 � �/ � j!j � �;

0 si j!j � �:

One can easily obtain S�.t/ D sin ��t

��t

sin�t

�t
, t 2 R, which behaves like 1=t2 as

jt j ! 1. The corresponding sampling expansion takes the form

f .t/ D
1X

nD�1
f .n/

sin ��.t � n/

��.t � n/

sin�.t � n/

�.t � n/
; t 2 R :

In this example, if each sample f .n/ is subject to an error ın such that jınj � ı,
then the total error in the above calculated f .t/ is bounded by a constant depending
only on ı and � [28, p. 211].

The Paley–Wiener Space PW� as an RKHS of Entire Functions
Any function f 2 PW� can be extended to any z 2 C as

f .z/ D 1p
2�

Z �

��

Of .!/eiz!d! : (5.8)

This extended function f is proved to be a continuous function on C by using
a standard argument allowing interchange the limit with the integral. Taking � W
Œa; b
 �! C a closed curve in C, the integral

Z

�

f .z/ d z D 1p
2�

Z b

a

�Z �

��

Of .!/ei�.t/!d!

�
� 0.t/dt

is shown to be zero by interchanging the order of the integrals. Hence, Morera’s
theorem says that f is an entire function.

Moreover, f is a function of exponential type at most � , i.e., f satisfies an
inequality jf .z/j � Ae�jzj for all z 2 C and some positive constant A. It follows
from (5.8) by using the Cauchy–Schwarz inequality. Indeed, for z D x C iy 2 C

one has

jf .xCiy/j � 1p
2�

Z �

��

j Of .!/j e�y! d! � e�jyjp
2�

Z �

��

j Of .!/j d! � e�jzjkf kPW� :

Conversely, Paley–Wiener theorem, whose proof can be found, for instance, in [39,
p. 101] says us that these properties characterize the space PW� :

Theorem 3 (Paley–Wiener Theorem). Let f be an entire function such that
jf .z/j � C e�jzj, for any z 2 C, and f jR 2 L2.R/. Then there exists a function
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F 2 L2Œ��; �
 such that

f .z/ D 1p
2�

Z �

��

F .w/ eizwdw ; z 2 C :

Consequently, PW� 
n
f 2 H.C/ W jf .z/j � Ae�jzj; f jR 2 L2.R/

o
.

Considering the space PW� as an RKHS of entire functions, its reproducing kernel
is given by

k�.z;w/ D sinc.z � w/ ; z;w 2 C ;

since

f .w/ D

Of ;

e�iw�
p
2�

�

L2Œ��;�


D

f;

sin�.� � w/

�.� � w/

�

L2.R/

for any w 2 C :

Irregular Sampling: Paley–Wiener–Levinson’s Theorem
Let ftngn2Z be a sequence of real numbers such that D WD supn2Z jtn � nj < 1=4;
hence, by 1

4
-Kadec’s theorem [39, p. 42] the sequence

˚
e�i tnw=

p
2�
�
n2Z is a Riesz

basis for L2Œ��; �
. Consider its dual Riesz basis fhngn2Z in L2Œ��; �
; given
f 2 PW� , expand its Fourier transform Of 2 L2Œ��; �
 with respect to fhngn2Z
obtaining

Of D
1X

nD�1
h Of ; e�i tnw=

p
2�i hn D

1X

nD�1
f .tn/ hn in L2Œ��; �
 :

The inverse Fourier transform F�1 gives in PW� the sampling formula

f .t/ D
1X

nD�1
f .tn/ .F�1hn/.t/ ; t 2 R : (5.9)

The problem consists of identifying the sampling functions .F�1hn/.t/. By using
entire functions techniques, Paley–Wiener–Levinson [24] proved that

.F�1hn/.t/ D G.t/

.t � tn/G0.tn/
where G.t/ D .t � t0/

1Y

nD1

�
1� t

tn

��
1� t

t�n

�
:

In other words, sampling formula (5.9) is again a Lagrange-type interpolation series.
As a consequence, the sequences

n sin�.t � tn/

�.t � tn/

o

n2Z and
n G.t/

.t � tn/G0.tn/

o

n2Z

form a pair of dual Riesz bases for PW� .
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The irregular sampling studied here corresponds to that associated with the time-
jitter error, i.e., tn D nC ın, n 2 Z. The general case concerns with real sequences
ftngn2Z for which there exist constants 0 < A � B < 1 such that

Akf k2 �
X

n2Z
jf .tn/j2 � Bkf k2 for all f 2 PW� :

This means that the sequence
˚
e�i tnw=

p
2�
�
n2Z is a frame for L2Œ��; �
. See, for

instance, [4, 9, 10].

Sampling by Using Samples of the Derivative
It is possible to recover any function f 2 PW� by using its samples ff .2n/gn2Z
taken at half the due sampling rate, along with the samples ff 0.2n/gn2Z taken from
its first derivative. Namely,Any function f 2 PW� can be recovered from the two
sets of samples ff .2n/gn2Z and ff 0.2n/gn2Z by means of the formula

f .t/ D
1X

nD�1

˚
f .2n/C .t � 2n/f 0.2n/

� � sin �
2
.t � 2n/

�
2
.t � 2n/

�2
; t 2 R :

For the proof, let Of 2 L2Œ��; �
 be the Fourier transform of f ; having in mind its
2�-periodic extension, the following Fourier expansions in L2Œ��; �
 hold

Of .!/ D
1X

nD�1
f .n/

e�in!

p
2�

and Of .! � �/ D
1X

nD�1
.�1/nf .n/

e�in!

p
2�

:

As a consequence, the function S.!/ D 1

2
Œ Of .!/C Of .! � �//
 admits the Fourier

expansion

S.!/ D
1X

nD�1
f .2n/

e�i2n!

p
2�

in L2Œ0; �
 :

In a similar way, since

f 0.t/ D 1p
2�

Z �

��

i! Of .!/ei t!d! ; t 2 R ;

the following expansions in L2Œ��; �
 hold

i! Of .!/ D
1X

nD�1
f 0.n/

e�in!

p
2�

and i.! � �/ Of .! � �/ D
1X

nD�1
.�1/nf 0.n/

e�in!

p
2�

:
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Hence, the function R.!/ D i

2
Œ! Of .!/ C .! � �/ Of .! � �/
 admits the Fourier

expansion

R.!/ D
1X

nD�1
f 0.2n/

e�i2n!

p
2�

in L2Œ0; �
 :

Grouping both expansions, for ! 2 Œ0; �
, we have

�
S.!/

R.!/

�
D 1

2

�
1 1

i! i.! � �/

� Of .!/
Of .! � �/

!
;

or, inverting the matrix

 Of .!/
Of .! � �/

!
D 2i

�

�
i.! � �/ �1
�i! 1

��
S.!/

R.!/

�
: (5.10)

Introducing this splitting of Of into (5.3) yields after some calculations

f .t/ D 1p
2�

Z �

��

Of .!/ei t!d!

D 1p
2�

Z 0

��

1X

nD�1

�
2

�
.! C �/f .2n/C 2i

�
f 0.2n/

�
e�i2n!

p
2�

ei t!d!

C 1p
2�

Z �

0

1X

nD�1

�
2

�
.� � !/f .2n/ � 2i

�
f 0.2n/

�
e�i2n!

p
2�

ei t!d!

D 1p
2�

1X

nD�1

n Z �

��

r
2

�

�
1 � j!j

�

�
f .2n/ei .t�2n/!d!

C 2

�

Z �

��

.�i sgn!/p
2�

f 0.2n/ei .t�2n/!d!
o
; t 2 R :

The desired result comes by using the Fourier duals

sinc

�
t

2

�
sin

�
�t

2

�
D 1p

2�

Z �

��

.�i sgn!/p
2�

ei t!d!

and

sinc2
�
t

2

�
D 1p

2�

Z �

��

r
2

�

�
1 � j!j

�

�
ei t!d! :

For derivative sampling, see [21] and references therein.
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Generalizing Paley–Wiener Spaces

Paley–Wiener spaces can be generalized in different ways; two of these genera-
lizations are briefly developed:

1. The first one consists in substituting the Hilbert space L2Œ��; �
 and the Fourier
kernel in expression (5.3) by an arbitrary Hilbert space H and a kernel K W � 3
t 7! K.t/ 2 H, and thus consider, for each x 2 H, the function fx.t/ D˝
x;K.t/

˛
H, t 2 �.

2. According to Shannon’s sampling theorem, Paley–Wiener space PW� is a
shift-invariant subspace in L2.R/ generated by the sinc function, i.e., it can
be described as PW�  ˚P

n2Z an sinc.t � n/ where fang 2 `2.Z/
�
. Other

generalization consists of replacing the sinc function by another generating
function ' 2 L2.R/ having better properties.

Of course, these generalizations do not cover all the possible situations. For
example, de Branges spaces are RKHSs of entire functions which also generalize
Paley–Wiener spaces. Sampling results in de Branges spaces can be found in
[15, 27].

RKHSs Obtained by Duality from an Arbitrary Hilbert Space

Let H be a separable Hilbert space and let K W � �! H be an H-valued mapping.
Assume that there exists a sequence ftng1nD1 in � such that the sequence fK.tn/g1nD1

is an orthogonal basis for H. Under these circumstances:

1. Consider the set of functions defined on �

HK WD ˚
fx W � ! C W fx.t/ D hx;K.t/iH where x 2 H

�
:

The map TK W H ! HK defined by TK.x/ WD fx is a linear and bijective
mapping. To obtain that TK is one-to-one, suppose that fx D 0 in HK . In
particular,

fx.tn/ D 0 D hx;K.tn/iH for all n 2 N ;

which implies x D 0 since the sequence fK.tn/g1nD1 is a complete set in H.
2. The space HK endowed with the inner product hfx; fyiHK WD hx; yiH is a

Hilbert space which inherits the Hilbertian structure of H. Moreover, it is an
RKHS; indeed, for each t 2 R, the evaluation functional at t 2 � is bounded
since Cauchy–Schwarz’s inequality gives

jfx.t/j D jhx;K.t/iHj � kxkHkK.t/kH D kfxkHKkK.t/kH ; f 2 HK :
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Besides, the mapping TK is, obviously, a unitary operator between the spaces H
and HK . The reproducing kernel in HK is

k.t; s/ D hK.s/;K.t/iH ; t; s 2 � :

Indeed, for each fixed s 2 �, the function k.�; s/ D TK
�
K.s/

�
belongs to HK ,

and the reproducing property

fx.s/ D hx;K.s/iH D hTK.x/; TK
�
K.s/

�iHK D hfx; k.�; s/iHK ; s 2 �

fx 2 HK ;

holds. One can find these spaces, for instance, in [29, 30].
3. Since hk.�; tn/; k.�; tm/iHK D k.tm; tn/ D hK.tn/;K.tm/iH, it is easy to check

that the sequence
˚
K.tn/

�1
nD1

is an orthogonal basis for the auxiliary Hilbert

space H if and only if the sequence
˚
k.�; tn/

�1
nD1

is an orthogonal basis for the
RKHS HK . Thus, in this context, for any f 2 HK the sampling formula (5.2)
reads

f .t/ D
1X

nD1

f .tn/
hK.tn/;K.t/iH

kK.tn/k2 ; t 2 � :

The convergence is absolute and uniform on subsets of � where the function
t 7! kK.t/kH is bounded. The above sampling formula is nothing but an abstract
version of the Kramer sampling theorem; see [16, 20, 40], for instance.

Some Illustrative Examples
Next, some examples following the above construction are exhibited; for the omitted
details see [12, 13]:

1. Consider the Hilbert space H WD L2Œ0; �
, the mapping Kc W R �! L2Œ0; �


such that Kc.t/.w/ WD cos tw, w 2 Œ0; �
, and the sequence ftng D f0g [ N.
Then, any function f defined as

f .t/ D ˝
F;Kc.t/

˛
L2Œ0;�


D
Z �

0

F .w/ cos twdw ; t 2 R ;

for some F 2 L2Œ0; �
, can be recovered from the sampling formula

f .t/ D f .0/
sin�t

�t
C 2

�

1X

nD1

f .n/
.�1/n t sin�t

t2 � n2
; t 2 R :

The reproducing kernel of the corresponding HKc space is
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kc.t; s/ D 1

t2 � s2

�
t sin�t cos�s � s cos�t sin�s

	
; t; s 2 R :

2. Analogously, considering Ks.t/.w/ WD sin tw, w 2 Œ0; �
, and the sequence
ftng D N one obtains the sampling formula

f .t/ D 2

�

1X

nD1

f .n/
.�1/nn sin�t

t2 � n2
; t 2 R ;

for any function f having the form

f .t/ D ˝
F;Ks.t/

˛
L2Œ0;�


D
Z �

0

F .w/ sin twdw ; t 2 R ;

where F 2 L2Œ0; �
.
Functions in example (1) coincide with even functions in the Paley–Wiener

PW� , whilst functions in example (2) coincide with odd functions in PW� . In
fact, the orthogonal sum PW� D HKc ˚HKs holds.

3. The Fourier–Bessel set
˚p

wJ�.wtn/
�1
nD1

is known to be an orthogonal basis for
L2Œ0; 1
, where tn is the nth positive zero of the Bessel function J�.t/, � > �1.
The Bessel function of order � is given by

J�.t/ D t�

2��.� C 1/

h
1C

1X

nD1

.�1/n
nŠ.1C �/ � � � .nC �/

�
t

2

�2n i
; t 2 R :

For any t 2 R, consider K�.t/ 2 L2Œ0; 1
 defined by K�.t/.w/ WD
p

wt J�.wt/,
w 2 Œ0; 1
, and the sequence of zeros ftng1nD1. Any function f defined as

f .t/ D ˝
F;K�.t/

˛
L2Œ0;1


D
Z 1

0

F .w/
p

wt J�.wt/ dw ; t 2 R ;

where F 2 L2Œ0; 1
, can be recovered by means of the sampling formula

f .t/ D
1X

nD1

f .tn/
2
p
t tnJ�.t/

J 0
�.tn/.t

2 � t2n /
; t 2 R :

The reproducing kernel of the corresponding RKHS H� is

k�.s; t/ D
p
st

t2 � s2

�
tJ�C1.t/J�.s/� sJ�C1.s/J�.t/

	
; t; s 2 R :

4. Finally, consider K W R �! L2Œ��; �
 defined by K.t/.w/ WD ei .t
2Cw2�wt /,

w 2 Œ��; �
. For the sampling points ftng D Z, the sequence fK.tn/gn2Z is an
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orthogonal basis for L2Œ��; �
. Hence, any function f given as

f .t/ D ˝
F;K.t/

˛
L2Œ��;�


D
Z �

��

F .w/ e�i .t2Cw2�wt / dw ; t 2 R ;

where F 2 L2Œ��; �
, can be expressed as the sampling series

f .t/ D
1X

nD�1
f .n/ e�i .t2�n2/ sin�.t � n/

�.t � n/
; t 2 R :

The above formula is the corresponding sampling formula valid for band-limited
functions to the interval Œ��; �
 in the sense of the fractional Fourier transform
(FRFT).

Shift-Invariant Subspaces in L2.R/

Although Shannon’s sampling theory has had an enormous impact, it has a number
of problems, as pointed out in [36]: It relies on the use of ideal filters (in other
words, in Fig. 5.1, Of can be obtained from Ofp multiplying by the characteristic
function Œ��;�
); the band-limited hypothesis is in contradiction with the idea of a
finite duration signal (f is an entire function); the band-limiting operation generates
Gibbs oscillations; and finally, the sinc function has a very slow decay at infinity
which makes computation in the signal domain very inefficient. Moreover, many
applied problems impose different a priori constraints on the type of signals. For
this reason, sampling and reconstruction problems have been investigated in spline
spaces, wavelet spaces, and general shift-invariant spaces; signals are assumed to
belong to some shift-invariant space of the form: V 2

' WD spanL2f'.t �n/gn2Z where
the function ' in L2.R/ is called the generator of V 2

' .
Let V 2

' WD span
˚
'.� � n/

�
n2Z be a shift-invariant space with stable generator

' 2 L2.R/ which means that the sequence f'.� � n/gn2Z is a Riesz basis for V 2
' .

The sequence f'.� � n/gn2Z is a Riesz sequence in L2.R/, i.e., a Riesz basis for
V 2
' if and only if there exist two positive constants 0 < A � B such that

A �
X

k2Z
j O'.w C k/j2 � B ; a.e. w 2 Œ0; 1
 ;

where O' stands for the Fourier transform of '
�
here, it is defined in L1.R/ \ L2.R/

as O'.w/ WD R1
�1 '.t/ e�2� iwt dt

�
[8, p. 143]. Thus we have that

V 2
' D


X

n2Z
an '.� � n/ W fang 2 `2.Z/

�
� L2.R/ :
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It is also assumed that the functions in the shift-invariant space V 2
' are continuous on

R. This is equivalent to say that the generator ' is continuous on R and the function
t 7! P

n2Z j'.t � n/j2 is bounded on R as proved in [42]. Thus, any f 2 V 2
' is

defined on R as the pointwise sum f .t/ DP
n2Z an'.t � n/ for each t 2 R.

On the other hand, the space V 2
' is the image of the Hilbert space L2Œ0; 1
 by

means of the isomorphism

T' W L2Œ0; 1
 �! V 2
'

fe�2�inxgn2Z 7�! f'.t � n/gn2Z ;

which maps the orthonormal basis fe�2�inwgn2Z for L2Œ0; 1
 onto the Riesz basis
f'.t � n/gn2Z for V 2

' . For any f 2 V 2
' , there exists F 2 L2Œ0; 1
 such that

f .t/ D T'F .t/ D
X

n2Z
hF; e�2�inxi'.t � n/ D


F;
X

n2Z
'.t � n/e�2�inx

�

D ˝
F;Kt

˛
; t 2 R ;

(5.11)

where, for each t 2 R, the function Kt 2 L2Œ0; 1
 is given by

Kt.x/ WD
X

n2Z
'.t � n/e�2�inx D

X

n2Z
'.t C n/e�2�inx D Z'.t; x/ : (5.12)

Here, Z'.t; x/ WD P
n2Z '.t C n/e�2�inx is just the Zak transform of the function

'; see [8, p. 215] for properties and uses of the Zak transform. As a consequence,
the shift-invariant space V 2

' is an RKHS in L2.R/. The mapping T' has the shifting
property T'.e�2�imxF /.t/ D .T'F /.t �m/, t 2 R and m 2 Z.
From (5.11), for a 2 Œ0; 1/ fixed and m 2 Z we have

f .aCm/ D hF;KaCmiL2Œ0;1
 D hF; e�2�imxKaiL2Œ0;1
 ; F D T �1
' f :

In order to obtain a sampling formula in V 2
' , we look for sampling points of the

form tm WD a C m, m 2 Z, such that the sequence
˚
e�2�imxKa.x/

�
m2Z is a Riesz

basis for L2Œ0; 1
.
Recalling that the multiplication operator mg W L2Œ0; 1
 ! L2Œ0; 1
 given as the

product mg.f / D gf is well defined if and only if g 2 L1Œ0; 1
, and then, it is
bounded with norm kmgk D kgk1, the following result comes out:
The sequence of functions

˚
e�2�imxKa.x/

�
m2Z is a Riesz basis for L2Œ0; 1
 if and

only if the inequalities 0 < kKak0 � kKak1 < 1 hold, where kKak0 WD
ess infx2Œ0;1
 jKa.x/j and kKak1 WD ess supx2Œ0;1
 jKa.x/j. Moreover, its dual Riesz

basis is
˚
e�2�imx=Ka.x/

�
m2Z.
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In particular, the sequence
˚
e�2�imxKa.x/

�
m2Z is an orthonormal basis in

L2Œ0; 1
 if and only if jKa.x/j D 1 a.e. in Œ0; 1
.
Let a be a real number in Œ0; 1/ such that 0 < kKak0 � kKak1 < 1. Any

F 2 L2Œ0; 1
 can be expanded as

F D
X

m2Z
hF; e�2�imx Kaie�2�imx

Ka.x/
D
X

m2Z
f .aCm/

e�2�imx

Ka.x/
in L2Œ0; 1
 :

(5.13)
Having in mind the shifting property of T' ,

˝
e�2�imx=Ka.x/;Kt .x/

˛
L2Œ0;1


D T'
�
e�2�imx=Ka.x/

�
.t/ D Sa.t �m/ ; t 2 R ;

where Sa WD T'
�
1=Ka

� 2 V 2
' . Thus, the isomorphism T' acting in formula (5.13)

gives the sampling result in V 2
' :

Any function f 2 V 2
' can be expanded as the sampling series

f .t/ D
1X

nD�1
f .aC n/Sa.t � n/ ; t 2 R : (5.14)

The convergence of the series in (5.14) is absolute and uniform on R since the
function t 7! kKtk2 DP

n2Z j'.t � n/j2 is bounded on R.

Some Examples Involving B-Splines
Consider the space V 2

' for the generator ' WD Nm where Nm is the B-spline of order
m�1, i.e., Nm WD N1�N1�� � ��N1 (m times) and N1 WD Œ0;1
, i.e., the characteristic
function of the interval Œ0; 1
. It is known that the sequence

˚
Nm.t�n/

�
n2Z is a Riesz

basis for V 2
Nm

[8, p. 69]. For example, the following sampling formulas hold:

1. For the quadratic spline N3, we have ZN3.t; x/ D t 2

2
C� 3

4
� .t � 1

2
/2
	
zC .1�t /2

2
z2

where z D e�2�ix . Thus, for t D 0 we haveZN3.0; x/ D z
2
.1Cz/ which vanishes

at x D 1=2. However, for t D 1=2 we have ZN3.1=2; x/ D 1
8
.1 C 6z C z2/;

according to (5.12) we deduce 0 < kK1=2k0 � kK1=2k1 < 1. Hence, for any
f 2 V 2

N3
, we have

f .t/ D
1X

nD�1
f .nC 1

2
/ S1=2.t � n/ ; t 2 R ;

where S1=2.t/ D
p
2
P1

nD�1.2
p
2 � 3/jnC1j N3.t � n/. This function has been

obtained from the Laurent expansion of the function 8.1 C 6z C z2/�1 in the
annulus 3 � 2

p
2 < jzj < 3C 2

p
2.
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2. Since ZN4.0; x/ D z
6

�
1C 4z C z2

� D z
6
.z � �/.z � 1=�/ where z D e�2�ix and

� D p
3 � 2, according to (5.12) we deduce that 0 < kK0k0 � kK0k1 < 1.

Thus, for any f 2 V 2
N4

we have

f .t/ D
1X

nD�1
f .n/ S0.t � n/ ; t 2 R ;

where S0.t/ D
p
3
P1

nD�1.�1/n.2�p3/jnj N4.t�nC2/. To obtain the function
S0, we have used the Laurent expansion of the function 6.z C 4z2 C z3/�1 in the
annulus 2 �p

3 < jzj < 2Cp
3.

Conclusion

In this introductory work, the basic sampling theory in an RKHS is exhibited. The
leitmotiv was the classical sampling theory in Paley–Wiener spaces, which includes
the well-known Shannon’s sampling theorem, and some of its generalizations,
including shift-invariant spaces in L2.R/. In the literature one can find nice surveys
[5, 19, 22, 27, 38] or books [20, 40] on this subject.

Although sampling theory is not only privative of RKHSs [6,20,25,26,41], this is
the setting where the theory becomes more natural. Besides, another important topic
concerns to sampling and interpolation in spaces of analytic functions, including,
in particular, RKHSs of entire functions; see, for instance, [32] and the references
therein.

The first sampling result in shift-invariant spaces was published in 1982 [37];
it was the beginning of a significant literature on sampling and reconstruction
problems in spline spaces, wavelet spaces, and general shift-invariant spaces.
Moreover, in many common situations, the available data are samples of some
filtered (convolved) versions f � hj , j D 1; 2; : : : ; s, of the function f itself,
where each average function hj reflects the characteristics of an acquisition device.
This leads to generalized or average sampling in shift-invariant spaces; notice
that derivative sampling in Paley–Wiener spaces is a particular case. See [1–
3, 11, 14, 23, 34, 42] and the references therein.

Cross-References
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