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Abstract
A brief survey of the commutant lifting theorem is presented. This is initially
done in the Hilbert space context in which the commutant lifting problem
was initially considered, both in Sarason’s original form and that of the later
generalization due to Sz.-Nagy and Foias. A discussion then follows of the
connection with contraction operator matrix completion problems, as well as
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with the Sz.-Nagy and Andô dilation theorems. Recent work in abstract dilation
theory is outlined, and the application of this to various generalizations of the
commutant lifting theorem are indicated. There is a short survey of the relevant
Kreı̆n space operator theory, focusing in particular on contraction operators
and highlighting the fundamental differences between such operators on Kreı̆n
spaces and Hilbert spaces. The commutant lifting theorem is formulated in the
Kreı̆n space context, and two proofs are sketched, the first using a multistep
extension procedure with a Kreı̆n space version of the contraction operator
matrix completion theorem, and the second diagrammatic approach which is a
variation on a method due to Arocena. Finally, the problem of lifting intertwining
operators which are not necessarily contractive is mentioned, as well as some
open problems.

Introduction

The commutant lifting problem was originally formulated and solved in the Hilbert
space setting by Donald Sarason in the 1960s [43]. Not long after, Sz.-Nagy and
Foias presented and proved an abstract generalization of Sarason’s theorem [44].
Since then many different proofs have been discovered and connections with
other important theorems and applications have been noted, especially in complex
function theory, and particularly as applied to interpolation problems [32]. Many
of these purely mathematical ideas were driven by the needs of applied math-
ematicians and engineers working in such areas as signal processing and linear
control.

It happens that the concepts needed to state the commutant lifting problem in
Hilbert spaces have analogues in Kreı̆n spaces, and these neatly revert to the original
forms when the Kreı̆n spaces under consideration happen to be Hilbert spaces.
Despite this, there were major hurdles to be overcome in finding a proof of a
commutant lifting theorem in the Kreı̆n space setting, primarily because even though
the condition for being a contraction has an equivalent algebraic formulation in
both Hilbert and Kreı̆n spaces, in the latter contractions can no longer be described
metrically.

The Commutant Lifting Problem on Hilbert Spaces

The Sz.-Nagy and Foias Version of the Problem

Problem 1 (The Commutant Lifting Problem). Let T1 2 L .H1/, T2 2 L .H2/

be Hilbert space contractions, and let V1 2 L .K1/, V2 2 L .K2/ be minimal
isometric dilations of T1 and T2. Suppose that A 2 L .H1;H2/ is a contraction and
that AT1 D T2A. Does there exist QA 2 L .K1;K2/ lifting A with the property that
QAV1 D V2

QA?
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The commutant lifting theorem states that a positive solution exists to this
problem. Further on, methods are discussed for proving the commutant lifting
theorem when the problem is reformulated in the Kreı̆n space setting.

Here is an explanation of some of the terminology. An operator T on a Hilbert
space H is a contraction if it has norm less than or equal to one. Equivalently,
1 � T �T � 0 in the usual ordering for self-adjoint operators, where 1 is used to
denote the identity operator. Since on a Hilbert space the norm of an operator and
that of its adjoint are equal, it is automatic that 1 � T T � � 0. Write QD and D for
the closures of the ranges of 1� T �T and 1� T T �. These are referred to as defect
spaces for the operators T and T �, while the operators QD WD .1 � T �T /1=2 W QD !
H and D WD .1 � T T �/1=2 W D ! H are the corresponding defect operators.
It is clear that if the defect spaces and operators are altered up to isomorphism,
then they still function in the same fashion, and so these will usually be chosen in
a manner convenient to the context, referring to a rather than the defect operator

and defect space. The operator

�
T
QD�
�

is an isometry and it can be verified that

there is an operator L W QD ! D such that

�
D

�L�
�

is its defect operator (see [31,

Theorem 2.3]). As a consequence, there exists a unitary operator

�
T D
QD� �L�

�
W

H ˚D ! H ˚ QD , called a Julia operator. Note that in this context L is just the
restriction of T to QD when the explicit choices of QD and D given above are made,
since T .1 � T �T /1=2 D .1 � T T �/1=2T .

The operator V 2 L .K / is an isometric dilation of T 2 L .H / if H � K
and T � is the restriction of V � to an invariant subspace (equivalently stated, T is the
restriction of V to the co-invariant subspace H ). It will then automatically be the
case that V is a so-called power dilation of T ; that is, for n D 0; 1; 2; : : : , T nPH D
PH V n, where PH is the orthogonal projection from K to H . The isometric
dilation is minimal if the only subspace K 0 � K containing H such that V jK 0

is an isometry is K itself. Equivalently, the closed linear span of the spaces V nH
is K . The notion of a lifting is closely allied; QA 2 L .K1;K2/ lifts the operator
A 2 L .H1;H2/ if AjH1 D PH2

QA and k QAk � kAk. Obviously, if A is assumed
to be a contraction, then the lifting QA is also required to be a contraction. Because
of the form of liftings and dilations, if T2 D T1 D T , T;A 2 L .H / and n;m D
0; 1; 2; : : : , then AmT nPH D PH V n QAm, where V is an isometric dilation of T .

In addition to the isometric dilation of an operator T 2 L .H /, it is also possible
to construct a unitary dilation. This is a unitary operator U 2 L . QK / with the
property that H � QK and H is a semi-invariant subspace for U ; that is, it is
the intersection of two subspaces of QK , one of which is invariant for U while the
other is co-invariant (invariant for U �). There is a similar notion of minimality for
unitary dilations. Semi-invariance ensures that U is in fact a power dilation, in that
for n D 0; 1; 2; : : : , T n D PH UnjH and T �n D PH U�njH , where restriction
operator jH is the adjoint of PH . Sz.-Nagy was the first to note the existence of a
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minimal unitary dilation U of a contraction T . His proof is constructive. Define the
space QK DL1

1 D ˚H ˚L1
1

QD and on QK set

U D

0

BBBBBBBBBBBBB@

: : :

1

1

D T

�L� QD�
1

1

: : :

1

CCCCCCCCCCCCCA

; (11.1)

where unspecified entries are 0 and T maps H to itself in QK . In essence the unitary
dilation of T is a Julia operator padded with a unilateral shift and the adjoint of a
unilateral shift so as to make up for the fact that in general the Julia operator acts
between different spaces.

Once the unitary dilation is available, the isometric dilation V comes for free by
restricting U to the invariant subspace, K D H ˚L1

1
QD . Explicitly,

V D

0

BBBBB@

T
QD�

1

1
: : :

1

CCCCCA
: (11.2)

It is not hard to verify that V constructed in this way also enjoys the additional
property of being minimal. Furthermore, all minimal unitary dilations of T are uni-
tarily equivalent, as are all minimal isometric dilations, and so these constructions
are canonical.

In case the commutant lifting theorem holds, it follows that it also holds when
isometric dilations are replaced by unitary dilations. This can be seen by first using
the theorem to lift with isometric dilations, taking adjoints, isometrically dilating
V �
1 and V �

2 to obtain unitary operators, and then employing the commutant lifting
theorem one more time.

Many times the commutant lifting problem is stated with the assumption that
the intertwining operator A is simply bounded rather than being a contraction,
though without loss of generality, A can always be scaled to be a contraction if
it is not already one. There are various other restrictions which can be made to
simplify solving the problem though still allowing for the obtaining of a solution of
the general problem. For example, T1 and T2 can be replaced by a single operator

T D T1 ˚ T2 and A by A0 D
�
0 0

A 0

�
to get TA0 D A0T . The direct sum of minimal
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isometric dilations of T1 and T2 will be a minimal isometric dilation of T , and a
dilation of A is easily constructed from one of A0.

Alternatively, T1 can be replaced by its minimal isometric dilation V1 and A by
the direct sum of A with 0s on the defect spaces of T1.

Finally, a problem which has also occupied a number of authors has been to
parameterize the set of solutions of the commutant lifting problem [24,32,35]. More
will be said about some of these matters below.

The Commutant Lifting Problem as Formulated by Sarason

In the Sarason version of the commutant lifting problem [43], it is assumed that the
adjoints of T1 and T2 are the restrictions of adjoints of unilateral shift operators (with
multiplicities) to invariant subspaces. The problem then reduces to asking whether
a contractive intertwining operator A lifts to a contraction QA intertwining these shift
operators. Following the terminology of Rosenblum and Rovnyak [42], an operator
commuting with a unilateral shift is said to be analytic, since analytic functions are
precisely those which commute with multiplication by z. It is this which makes
the solution of the commutant lifting problem so useful in such applications as
interpolation.

The Operator Matrix Completion Problem

As was noted, the Julia operator provides a way of embedding a Hilbert space
contraction operator inside of a unitary operator. This motivates the following
related problems: given a contraction T 2 L .H /, is there some useful way of
describing the operators X and Y such that

C WD
�
T

X

�
and R WD �

T Y
�

are contractions? Moreover, supposing that the operator T has fixed contractive
column and row completions C and R, is there a useful description of those Z

making

A WD
�
T Y

X Z

�

a contraction? This latter question is known as the Parrott completion problem. It
will be seen to be intimately bound up with the commutant lifting problem [38].

The column completion problem is addressed by first considering the apparently
simpler problem of describing those operators X such that C is an isometry; that
is, those X for which 1 � T �T � X�X D 0. Equivalently, X�X D 1 � T �T D
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QD QD�, where as before, QD W QD ! H is a defect operator for T . By Douglas’
lemma, there is an isometry V such that X D V QD�. Now returning to the original
problem where the column C is simply assumed to be contractive, observe that

by appending a defect operator, an isometry

�
C
QD�
C

�
is obtained, and so

�
X
QD�
C

�
D

V QD� for some isometry V . Consequently, there is a contraction QG such that X D
QG� QD�. Obviously the converse is also true; namely, if X has this form, then C is a

contraction. As a bonus, it is found that QDC D QDD QG , where D QG is a defect operator
for QG�.

The row completion question can be addressed by taking adjoints in the column
case, but since this will not necessarily work when it comes to considering
contractions on Kreı̆n spaces, an alternative approach is sketched, hinging on the
simple observation that both

�
R DR

�
and

�
T D

�
are co-isometries, where DR is

the defect operator for R� and D is the defect operator for T �. Then by Douglas’
lemma, there is a co-isometry W such that

�
Y DR

� D DW . From it is read off
that Y D DG, where G, being a restriction of W , is a contraction. Again it is clear
that if Y has this form, then R is a contraction, and that it is possible to choose
DR D DDG , where DG is a defect operator for G�.

The solution to the Parrott completion problem is an application of the row and
column results. Based on the assumptions made, there are contractions QG and G so

that C D
�

T
QG� QD�

�
and R D �

T DG
�
. A straightforward calculation shows that a

defect operator for C � is

DC D
�

D 0

� QG�L� QD QG

�
;

where QD QG is a defect operator for QG. By the solution to the row completion problem,

A D �
C DCE

�
for some contraction E D

�
E1

E2

�
. Examining the first entry of

DCE , it is seen that E1 D G. By the solution to the column completion problem,
E2 D F QD�

G for some contraction F , and so the second entry of DCE , which is just
Z, has the form � QG�L�G C QD QGF QD�

G . A somewhat tedious calculation shows that
whenever X , Y , and Z have these explicit forms, the operator A is a contraction.
The work can be simplified by considering the product of unitary operators

0

BBB@

1
QG� QD QG
D�

QG �L QG
1

1

CCCA

0
BB@

T D
QD� �L�

F DF

QD�
F �L�

F

1
CCA

0
BB@

1

G DG

QD�
G �L�

G

1

1
CCA
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(unspecified entries 0), since A is then the compression to the upper left 2� 2 block
of this product [31]. It is also possible to identify defect operators and spaces for A,
as well as a link operator in the Julia operator for A in this way.

Commutant Lifting and Andô’s Theorem

There is a two variable analogue of the Sz.-Nagy dilation theorem, called Andô’s
theorem. It states that a pair of commuting contractions T1 and T2 on a Hilbert
space H dilate to a pair of commuting unitary operators U1 and U2. As in the case
of the Sz.-Nagy dilation theorem, these are the so-called power dilations; that is, for
n;m D 0; 1; 2; : : : , T n

1 T
m
2 D PH Un

1 U
m
2 jH . Of course Andô’s theorem implies the

commutant lifting theorem in Hilbert spaces [2, Theorem 10.29], since as was noted
above, there is no loss of generality in assuming T1 D T2 in the statement of the
commutant lifting problem.

The converse is also true. If it is assumed that the commutant lifting theorem
is valid, then it is possible to prove Andô’s theorem [38]. Though not Parrott’s
original argument, here is a rough sketch of a way of proving this following ideas
from [28]. Without loss of generality, take T2 D T1 D T 2 L .H / with isometric
dilation V1. (Throughout, all isometric dilations are taken to be of the canonical
form as in (11.2).) By assumption the contraction A such that AT D TA lifts to
a contraction, denoted by W1, such that W1V1 D V1W1. Let W2 be the canonical
minimal isometric dilation of W1 and lift V1 to a contraction V2 which commutes
with this. Since V1 is an isometry and since it is assumed that W2 is in canonical
form, it is not difficult to see that V2 is the direct sum of V1 and

L1
nD1 V1

0, where
V1

0 is a contraction. Continue in this manner alternating dilating and lifting of
the V s and W s. Taking a direct limit to obtain operators V1 and W1 on some
Hilbert space H1. Define K D W1

m;nD0 V
m1W n1H , an invariant subspace for

both V1 and W1. Set V D V1jK and W D W1jK to get two commuting
isometries dilating T and A, respectively. Taking adjoints of V and W and applying
the same argument yields unitary operators with the properties stated in Andô’s
theorem.

Further Generalizations and Some Applications

The commutant lifting problem has given rise to a number of generalizations over
the years. Just a few of these are now mentioned.

As observed in the last section, Andô’s theorem gives that commuting contrac-
tions have commuting isometric dilations. So suppose now that there are three
commuting contractions and two of these are dilated in this manner. Is there a lifting
of the third which commutes with these dilations? There are a number of examples,
starting with one due to Varopoulos [45], which show that in general it is impossible
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to construct a lifting. However under certain restrictions it is possible to lift. If, as
in Sarason’s version of the commutant lifting problem, the dilated operators are
unilateral shifts and certain restrictions are placed on the intertwining operator, then
a lifting will exist [5, 13, 37].

Another variation is to assume that a row contraction T WD �
T1 � � � Td

�
is given.

This means that
Pd

1 kTkk2 � 1) and A intertwines T entrywise. Note that there is
no a priori assumption that the operators in T commute. Without the assumption
of commutativity (which would then naturally require that entries of the dilation
also commute), it is not necessary to alter by much the standard proofs of the
classical commutant lifting theorem to find a proof in this context [33, 41]. A more
challenging problem is to find such a theorem in the commutative case. This has
recently been accomplished in [22] (see also [14]).

There is a somewhat more general framework which is worthwhile considering.
For T 2 L .H / the map p 7! p.T / defines a unital representation of the
algebra of polynomials A with norm kpk the supremum norm over the unit disk.
If the operator norm kp.T /k � kpk for all p 2 A , the representation is said
to be contractive. Since any contraction T has a unitary dilation by the Sz.-Nagy
dilation theorem, it follows from the functional calculus for unitary operators that
an operator T defines a contractive representation of A if and only if T is a
contraction (this is essentially a restatement of the von Neumann inequality). The
same argument shows that for any n 2 N and p 2 Mn.C/˝A , the algebra of n�n

matrix-valued polynomials with norm the supremum of the operator norm of p.z/ as
z ranges over D, it is the case that kp.T /k � kpk. In other words, the representation
is completely contractive. A straightforward argument using the Arveson extension
theorem and the Stinespring dilation theorem (giving an alternate proof of the
existence of a unitary dilation of a contraction) implies that � W A ! L .H / is a
completely contractive representation if and only if �.z/ D T for some contraction
T (see, for example, [39]).

This is a special example of the following [28]. Let A be a unital operator
algebra (this can either be thought of concretely, or else abstractly as an algebra
with a matricial norm structure obeying the Blecher-Effros-Ruan axioms [39]).
Consider the collection R of all completely contractive representations of A . These
can be partially ordered, in the sense that for �1; �2 2 R mapping into L .H1/

and L .H2/, respectively, �2 � �1 if H1 � H2, H1 is invariant for �2, and
�2jH1 D �1. A representation is called �1 extremal if whenever �2 � �1, �2

contains �1 as a direct summand. It can be shown that all representations in R dilate
to extremal representations [28], and they play the role of the adjoints of isometric
dilations of contractions.

One can likewise partially order the elements of R by �2 � �1 if H1 � H2, H1

is semi-invariant for �2 and PH1�2jH1 D �1. Those irreducible representations
�1 which have the property that, �2 � �1 with respect to this partial ordering
implies �2 contains �1 as a direct summand, are called boundary representations.
The existence of such representations without the condition of irreducibility was
first proved in [28], and a refined version of the arguments found there were given
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in [21] showing that all completely contractive representations extend to boundary
representations (see also [10]). Boundary representations play the role of minimal
unitary dilations of contractions.

While the abstract theory is satisfying in that it ensures the existence of
representations playing the role of isometric and unitary dilations, for any fixed
algebra there is often a difficult hurdle which needs to be overcome at the start;
namely, concretely characterize the set R of completely contractive representations.
There are a few instances in which this can be done. For example, by the Sz.-
Nagy dilation theorem and Andô’s theorem, completely contractive representations
of the algebra of polynomials with supremum norm on the disk and bi-disk are
obtained from contractions and pairs of commuting contractions, respectively,
though for higher dimensional polydisks this fails (this is the interpretation of
Varopoulos’ example in the present context), and an example due to Parrott shows
that contractive representations over higher dimensional polydisks need not be
completely contractive [38]. There is a positive solution in the case of the annulus,
since contractive representations of the algebra of rational functions with poles off of
the domain are completely contractive [1], but over domains of higher connectivity,
again this fails to be the case [3, 29, 40]. The question as to whether over a
bounded domain in C

d the collection of contractive representations coincides with
the collection of completely contractive representations for the algebra of rational
functions with poles off of the domain is known as the rational dilation problem.

The commutant lifting problem in this context is as follows.

Problem 2 (Abstract Commutant Lifting Problem). Let A be an operator
algebra with collection of completely contractive representations R. Suppose that
�1; �2 2 R and that there is a contraction a such that for all p 2 A , a�1.p/ D
�2.p/a, and let Q�1, Q�2 be extremal representations dilating �1 and �2, respectively.
Does there exist a lifting Qa of a such that for all p 2 A , Qa Q�1.p/ D Q�2.p/ Qa?

A lifting here is defined exactly as before, and a positive solution to the problem
for a given algebra is called a commutant lifting theorem. As was seen in the example
of the algebra of polynomials over the bi-disk, a commutant lifting theorem may not
exist in general. There are some examples where there are positive solutions though.
See, for example, [14, 20, 36].

The Commutant Lifting Problem on Kreı̆n Spaces

A Précis of Kreı̆n Space Operator Theory and Notation Used

A Kreı̆n space H is the direct sum of two Hilbert spaces H D HC ˚H� with an
indefinite inner product defined

hfC ˚ f�; gC ˚ g�iH D hfC; gCiHC

� hf�; g�iH�

:
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It is assumed in all cases that the underlying field is that of the complex numbers,
though some of what follows can also be done over the reals. The usual axioms
for inner products hold, except that it no longer the case that hf; f i � 0 or that
hf; f i D 0 implies that f D 0. The space H� with inner product being the negative
of the usual Hilbert space inner product is sometimes referred to as the anti-space
of a Hilbert space, and it is then said that a Kreı̆n space is the direct sum of a Hilbert
space and the anti-space of a Hilbert space. If dimH� < 1, H is usually called a
Pontryagin space.

Generally, Kreı̆n spaces have lots of subspaces (closed linear manifolds in
the Hilbert space topology), though most of these will not themselves be Kreı̆n
spaces. A subspace in which all vectors have non-positive self inner product is
called a negative subspace. Positive subspaces are defined analogously, and neutral
subspaces are those in which all self inner products (and hence all inner products)
are 0. Those positive or negative subspaces which are themselves Hilbert spaces or
anti-spaces of Hilbert spaces are said to be uniformly positive or negative. Maximal
positive or negative subspaces are those which are not properly contained in any
subspace of the same kind, while maximal uniformly definite (i.e., positive or
negative) subspaces are maximal subspaces which are also uniformly definite. It can
be shown that all definite subspaces are contained in maximal definite subspaces,
and these can be chosen to be uniformly definite if the original space is [31].

For a Kreı̆n space H , the dimensions of HC and H� are called the positive
and negative indices of the Kreı̆n space H , and are notated as ind˙ H . Hilbert
spaces are precisely those spaces for which ind� H D 0, while Pontryagin spaces
have ind� H < 1. There is no fixed convention for notation in this field. This
article follows the camp which uses Hilbert space notation with Kreı̆n spaces, in
part because Hilbert spaces are special cases of Kreı̆n spaces, and also to stress the
similarity between many Kreı̆n space results and their Hilbert space counterparts.
Details for much of what follows in this section can be found in a number of
sources [4, 11, 15, 30, 31]. Notationally, the present paper is closest to [31].

The Kreı̆n space defined above has associated to it an operator J D
�
1 0

0 �1
�

with respect to the given decomposition, known as a fundamental symmetry. Except
in trivial cases, neither the decomposition nor the fundamental symmetry is unique.
However each decomposition of a Kreı̆n space H gives rise to an associated Hilbert
space, and all of these Hilbert spaces have equivalent topologies. Consequently, the
class of bounded linear operators L .H / on H is well defined.

Outside of being used in defining a Kreı̆n space in the first place and a small
number of proofs, the decomposition of a Kreı̆n space and its fundamental symmetry
play no role in what is done. What is more important, as well as being invariant
under the choice of decomposition, are the positive and negative indices.

The notion of the adjoint T � of an operator T 2 L .H / is defined on a Kreı̆n
space as it is in a Hilbert space, and this can be related to the Hilbert space adjoint on
an associated Hilbert space via multiplication with a fundamental symmetry to see
that T � 2 L .H /. Since Kreı̆n spaces are almost exclusively used without referring
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to an underlying Hilbert space, here and elsewhere no bother is made to add the
words “Kreı̆n space” in front of “adjoint” or any of the other notions introduced
having Hilbert space counterparts unless there is some chance of confusion. In
particular, from here on all spaces will be Kreı̆n spaces unless otherwise noted.

Once adjoints of operators on Kreı̆n spaces are defined, by mimicking what is
done in Hilbert spaces it is straightforward to give definitions for a host of classes
of operators. Here is a list of some of the more useful ones. Let T 2 L .H ;K /.
Then T is self-adjoint if K D H and T � D T , and it is positive (written T � 0)
if it is self-adjoint and for h 2 H , hTf ; f i � 0. It is a projection if it is self-adjoint
and T 2 D T . While projections in Kreı̆n spaces need not be positive operators, such
an operator has the property that the range is also a Kreı̆n space. An operator T is
an isometry if it preserves inner products; that is, 1 � T �T D 0. A co-isometry is
the adjoint of an isometry. It is a partial isometry if T D T T �T .

For the purposes of this article, a particularly important class of operators is that
of the contractions. On a Hilbert space, such an operator has several equivalent
definitions. The one that works on Kreı̆n spaces is that T is a contraction if
hf; f i � hTf ; Tf i � 0 for all f , or equivalently, assuming that T is bounded,
1�T �T � 0. Unlike the situation on Hilbert spaces, there is no metrical equivalent
to this condition. Indeed, there exist unbounded operators which are contractions.
Furthermore, even if an operator T is a contraction, this does not guarantee that
its adjoint is a contraction, contrary to what happens on Hilbert spaces. A simple
example illustrating this is to take H˙ to be one dimensional, and T 2 L .H /

to be any operator such that THC D H� and TH� D f0g. While isometries are
obviously contractions, it is not difficult to come up with examples of co-isometries
which are not. Likewise, partial isometries and projections need not be contractions.

Those operators T which have the property that both T and T � are contractions
are called bicontractions. Contractions and bicontractions have special properties
when it comes to how they map certain positive and negative subspaces. For
example, the kernel of a contraction is uniformly positive. Also, it is clear that
contractions must map negative subspaces to negative subspaces, and the same
goes for uniformly negative subspaces. As it happens, this gives a geometric
characterization of bicontractions: these are precisely the contractions which map
maximal uniformly negative subspaces to maximal uniformly negative subspaces.
By a fixed point argument, it can be shown that there is a maximal uniformly
negative subspace H� such that TH� D H� when T is a bicontraction (see, for
example, [31]).

While not all contractions are bicontractions, there are circumstances in which
this is the case. In particular, if T 2 L .H / is a contraction on a Pontryagin space
H , then T is a bicontraction.

The proofs of some of these results use an interesting connection between
bicontractions and Hilbert space contractions via the so-called Potopov-Ginsburg
transform. If T 2 L .H / is a bicontraction and H� is a maximal uniformly
negative subspace fixed by T , then there is a fundamental decomposition H D
HC ˚ H�. Write T D

�
T11 T12

T21 T22

�
with respect to this decomposition. Changing
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the sign of the inner product on H� so that H becomes a Hilbert space, the
operator

S D
 
T11 � T12T

�1
22 T21 T12T

�1
22

�T �1
22 T21 T �1

22

!

is a Hilbert space contraction. There is an interpretation of S as the scattering matrix
for a linear system, and the upper left corner is a Schur complement. Given a Hilbert
space contraction S , it is also possible to recover a Kreı̆n space bicontraction T via
an inverse transform. See Section 1.3 of [30] for more details.

Dilations and Operator Matrix Completions in Kreı̆n Spaces

As was seen, contractions on Hilbert spaces have associated to them unitary
operators called Julia operators, and with these can be used to construct in a
canonical way minimal isometric and unitary dilations. The situation is similar on
Kreı̆n spaces, though in this setting, a Julia operator can be found for any operator,
and as a consequence, isometric and unitary dilations always exist, even when the
operator is not a contraction [23].

In order to see why this is the case, the following lemma is needed.

Lemma 1 (Bognár–Krámli Factorization [16]). On a Kreı̆n space H , for any
self-adjoint operator A 2 L .H /, there is a Kreı̆n space D and D 2 L .D ;H /

with kerD D f0g such that A D DD�. Furthermore, A � 0 if and only if D is a
Hilbert space.

The proof of this is one of the few circumstances where it seems that fundamental
symmetries and associated Hilbert spaces must be used. The argument essentially
reduces to the polar decomposition of a Hilbert space self-adjoint operator. Details
can be found in [31]. The notation ind˙ A WD ind˙ D is used for the positive and
negative indices of the self-adjoint operator A. Positive operators are those self-
adjoint operators for which ind� A D 0. Even up to isomorphism of the intermediate
space D , the factorization will not in general be unique, though it is if either indC A

or ind� A is finite [17, 31].
The Bognár-Krámli factorization lemma now allows for the definition of defect

operators for any operator T 2 L .H ;K /. Factor 1 � T �T D QD QD�, QD 2
L . QD ;H / with ker QD D f0g and 1 � T T � D DD�, D 2 L .D ;K / with
kerD D f0g. Call QD and QD a defect operator and defect space for T , and D

and D a defect operator and defect space for T �. Following the method outlined

in the Hilbert space case, construct a Julia operator for T ,

�
T D
QD� �L�

�
, where

L 2 L . QD ;D/ is again referred to as the link operator. See also [9]. It is also
possible to construct minimal isometric and unitary dilations, but this time for
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any bounded operator on a Kreı̆n space. It should be noted though that unless the
operator is a bicontraction, at least one of the defect spaces will be a Kreı̆n space.
For a contraction T , 1�T �T � 0 and so the defect space QD will be a Hilbert space,
while if T is a bicontraction (so in particular, if it is a contraction on a Pontryagin
space or Hilbert space), it is also the case that 1 � T T � � 0, which means that in
addition the defect space D is a Hilbert space. It is not difficult to see that minimal
isometric dilations of contractions are isomorphic, while minimal unitary dilations
are isomorphic for bicontractions (see Section 3 of [30]).

One can try to characterize contractive matrix extensions of an operator T 2
L .H ;K / as before. Unfortunately the sort of decomposition in terms of defect
operators and contractions which was seen in section “The Operator Matrix
Completion Problem” may fail. As a simple example, let T be an isometry, so that
QD D f0g, and N be a non-zero operator such that N �N D 0, meaning that the

range of N is contained in a neutral subspace. Then

�
T

N

�
is an isometry (and so a

contraction), yet it is not possible to write N D QG� QD� as QD D 0.
There are conditions which can be placed on T and the extension spaces which

then give rise to the sorts of decompositions found for Hilbert space contractions in
section “The Operator Matrix Completion Problem”, details of which can be found
in Section 3 of [31]. Only a special case is considered here, since this suffices for
giving a proof of a commutant lifting theorem.

Assume that T 2 L .H ;K / is a contraction with defect operators and spaces
labeled as above, E is a Kreı̆n space, and F a Hilbert space. The operator matrices

C WD
�
T

X

�
2 L .H ;K ˚F / and R WD �

T Y
� 2 L .H ˚ E ;K /

are contractions if and only if X D QG� QD� and Y D DG, where QG and G are
contractions. (Note in this case that QG will be a contraction between Hilbert spaces.)
It can be shown that ind� .1�RR�/ � ind� .1�T T �/ with equality if and only if E
is a Hilbert space and that R is a bicontraction if and only if G is one. On the other
hand operator ind� .1 � CC �/ D ind� .1 � T T �/, so C will be a bicontraction
precisely when T is. The proofs of these statements are virtually identical to that
sketched for contractions on Hilbert spaces.

The Parrott extension problem also has an analogous statement and solution in
this setting. It is assumed once again that T 2 L .H ;K / is a contraction with
defect operators and spaces labeled as above, E is a Kreı̆n space, and F a Hilbert
space. It is also assumed that fixed contractive column and row completions C and
R of T as above are given. Then

A WD
�
T Y

X Z

�
2 L .H ˚ E ;K ˚F /
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is a contraction if and only if Z D � QG�L�G C QD QGF QD�
G , where, since the defect

spaces for G and QG are Hilbert spaces, the operatorF is a Hilbert space contraction.
Again, the proof outlined in the Hilbert space case works equally well here. The
operator A will be a bicontraction if G is one. In particular, if T is a bicontraction,
E will need to be a Hilbert space if G is going to be a contraction, and thus it will be
automatic in this case that G is bicontractive, and so likewise for A ([30, Cor. 2.4.3]
and [31, Section 3]).

A Solution to the Commutant Lifting Problem

Theorem 1 (The Commutant Lifting Theorem for Contractions). Let T1 2
L .H1/, T2 2 L .H2/ be Kreı̆n space contractions, and let V1 2 L .K1/,
V2 2 L .K2/ be isometric dilations of T1 and T2. Suppose that A 2 L .H1;H2/ is
a contraction and that AT1 D T2A. Then there exists a contraction QA 2 L .K1;K2/

lifting A with the property that QAV1 D V2
QA.

There have been a number of different proofs of the commutant lifting theorem
for contractions on Hilbert spaces [32], as well as several on Kreı̆n spaces. Below is
sketched one using the matrix completion ideas from the previous subsection. Full
details can be found in [30, Theorem 3.2.1].

Let T1 2 L .H1/, T2 2 L .H2/ be two contractions on Kreı̆n spaces H1;H2

with isometric dilations V1 2 L .K1/, V2 2 L .K2/. The spaces
W1

kD0 V
k
i Hj , are

invariant for Vi , i D 1; 2, and when V1 and V2 are restricted to these subspaces, they
give rise to minimal isometric dilations for T1 and T2. If a lifting intertwining the
minimal isometric dilations can be found, then padding with zeros gives a lifting
intertwining the original isometric dilations. Hence without loss of generality, it is
assumed that V1 and V2 are minimal. Then since any two minimal isometric dilations
of a contraction are isomorphic, there is no loss in generality in assuming these
dilations have the canonical form

Vi D

0

BBBBB@

Ti

QD�
i

1

1
: : :

1

CCCCCA
2 L .Hi ˚ QDi ˚ QDi � � � / i D 1; 2:

For i D 1; 2, set Ki;0 D Hi and for j D 1; 2; : : : , define Ki;j D Hi˚ QDi˚� � �˚ QDi ,
where there are j copies of QDi . Then set Vi;j to be the compression of Vi to Ki;j .
These are contractions since QD1 and QD2 are Hilbert spaces.

For the commutant lifting problem, a contraction A 2 L .H1;H2/ such that
AT1 D T2A is given, and it is desired to lift this to QA 2 L .K1;K2/. The
intertwining relation AT1 D T2A can be rewritten as A0V1;0 D V2;0A0, where
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A0 D A. The proof then proceeds by induction. Assume that for j D 1; : : : ; n,
contractions Aj have been found such that

Aj�1PK1;j�1 D PK2;j�1Aj ; (11.3)

AjV1;j D V2;jAj : (11.4)

Notice that (11.3) implies that each Aj is a lower triangular operator matrix and that
APH1 D PH2An on K1;n.

Decompose K1;nC1 D V1;nC1K1;nC1 ˚ .K1;nC1 	V1;nC1K1;nC1/ and K2;nC1 D
K2;n ˚ .K2;nC1 	K2;n/, and write

AnC1 D
�
C11 C12

C21 C22

�

with respect to this decomposition. It is necessary to ensure that however AnC1 is
chosen, it is a contraction satisfying (11.3) and (11.4) when j D nC 1. Because of
the form of V2;nC1, V2;nC1AnC1 D V2;nC1PK2;nAnjK2;n , and since it is assumed that
An is given, the equation AnC1V1;nC1 D V2;nC1AnC1 specifies AnC1 on the range of

V1;nC1; that is, it fixes C D
�
C11

C21

�
. Likewise, (11.3) fixes R D �

C11 C22

�
. These

should give the same operator for C11, which is the case since both are seen to be
given by PK2;nAnC1jV1;nC1K1;nC1

. By assumption An is a contraction, and as noted,
for all j , V1;j and V2;j are contractions. Hence both C and R are contractions.
Finally, observe that K2;nC1 	 K2;n is isomorphic to QD2 which is a Hilbert space.
Apply the Kreı̆n space version of the Parrott extension found in the last subsection
to obtain an operator C22 such that AnC1 is a contraction.

Next take a directed limit of the Ans. This requires that they be uniformly
bounded on an associated Hilbert spaces, which can be shown to be the case, thus
yielding the lifting QA. In the next section, a proof which uses a single application of
the Parrott extension theorem is given, thus avoiding the need to take limits and find
bounds.

There is a version of this theorem with unitary dilations rather than isometric
dilations. However, to be able to use the solution of the Parrott extension problem
then requires that the operators T1 and T2 are bicontractions in order to guarantee
that the bottom row of the matrix extension continues to map into a Hilbert space.
Other than this, the proof can be done in a more or less identical fashion to that
sketched above for contractions and isometric dilations [26, 30].

Theorem 2 (The Commutant Lifting Theorem with Unitary Dilations). Let
T1 2 L .H1/, T2 2 L .H2/ be Kreı̆n space bicontractions, and let U1 2
L .K1/, U2 2 L .K2/ be minimal unitary dilations of T1 and T2. Suppose that
A 2 L .H1;H2/ is a bicontraction and that AT1 D T2A. Then there exists a
bicontraction QA 2 L .K1;K2/ lifting A with the property that QAU1 D U2

QA.
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There is also a version of Andô’s theorem in Kreı̆n spaces stating that two
commuting contractions lift to commuting isometric dilations. If the operators
are bicontractions, then taking adjoints and applying the isometric version of the
theorem a second time gives a lifting to commuting unitary dilations. The proof
follows the lines of the standard one on Hilbert spaces [12, Lemma 2.1].

An Approach to Commutant Lifting Via Diagram Chasing

There is an alternate way of approaching the commutant lifting theorem in terms of
commutative diagrams. Details can be found in [27]. A different proof in the Hilbert
space case which is closer to a diagrammatic version of the proof given in the last
section can be found in [25].

As is standard, CŒz
 is used to denote the algebra of complex polynomials in one
variable. Representations of algebras have already been briefly mentioned. This has
an equivalent viewpoint in terms of modules, which is stated only for this particular
algebra. Any unital representation � of CŒz
 is determined by �.z/, which in the
present context will be some operator T 2 L .H /, where H is a Kreı̆n space.
Alternatively, it is possible to think of H as a (left) CŒz
-module, where the action
of CŒz
 on H (i.e., the map taking CŒz
�H to H obeying the various module rules,
such as distributivity of addition in H ) is given by p � f D p.T /f for p 2 CŒz

and f 2 H . Since the module action is determined by where the generator is sent,
HT is often written for the module where z � f D Tf .

A module map ˛ W HT1 ! HT2 is a bounded linear map satisfying ˛.T1f / D
T2˛.f /; in other words, ˛ acts as an intertwining map. For example, in the setup
for the commutant lifting problem, ˛.f / D Af and the assumed property that
AT1 D T2A is what makes this into a module map. In the particular category that
this construction is carried out, modules are assumed to be contractive, in that z is
mapped to a contraction, and all intertwining maps are assumed to be contractive.
Note that if A and T are contractions, then

1 �A�T �TA D 1 � A�AC A�.1� T �T /A � 0;

implies that composition of contractive maps is contractive and so the category is
well defined.

There are other circumstances where module maps naturally occur. For example,
if V is an isometric dilation of T , then the map � projecting from HV onto HT is
a module map since HT is an invariant subspace for V �. In this example, the map
� is a contractive co-isometry as well, and somewhat confusingly, in the language
of categories, � is called a cokernel, while if it is isometric, it is a kernel (note that
these are not the proper definitions of kernel and cokernel, but happens to be what
they amount to in this context).

The notion of an extension of a module is also needed. This is given by a diagram
of the form where LX is a Hilbert space, � is an isometry (i.e., a kernel), � is a
contractive co-isometry (i.e., a cokernel), and the range of � equals the kernel of
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�. That is, A is (isometrically isomorphic to) an operator of the form

�
T 0

Q X

�
W

HT ˚LX ! HT ˚LX , where Q is such that the operator matrix is a contraction.
Let QHV and QHW be minimal isometric extensions of HT . As was noted, this

means that there exist contractive co-isometric module maps �V and �W from
QHV and QHW to HT . The fact that minimal isometric extensions are isomorphic

is expressed diagrammatically by the existence of an isometric module map ˇ W
QHV ! QHW such that the adjoint ˇ� W QHW ! QHV is also an isometric module map

and the following diagram commutes:

If on the other hand, V is not minimal, it is still true that ˇ is a contractive co-
isometric module map.

The idea behind the Parrott extension theorem can also b expressed diagrammati-
cally. Let HT1 and HT2 be contractive Kreı̆n modules, ˛ W HT1 ! HT2 a contractive
module map. The theorem then reads that there exists a contractive Kreı̆n module
HC , an isometric module map ' W HT1 ! HC , and a contractive co-isometric
module map � W HC ! HT2 such that the following diagram commutes:

If, in addition, the module HT1 is isometric (i.e., T1 is an isometry), then C can
be replaced by its minimal isometric dilation meaning that C will be an isometric
dilation of T2 and so HC is isometric. While the last statement was never verified, it
is easily seen from looking at the defect operator for C which can be deduced from
its Julia operator.

The first statement gives the form of C on the range of ' (so in a sense fixes
a column of C ), while � specifies the form of C on a row. The fact that ' and
� are module maps guarantees that the row and column agree where they overlap.
Parrott’s theorem then ensures that the map ˛ exists.

The commutant lifting problem may be abstractly formulated as follows. Sup-
poseHT1 , HT2 are contractive Kreı̆n modules with QHV1 , and QHV2 the Kreı̆n modules
corresponding to their minimal isometric dilations. So �1 and �2 are cokernels
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(i.e., contractive co-isometric module maps), and it is further assumed that A is
a contractive module map:

The desire is to find QA so that the diagram commutes. By composing �1 and A

and doing some relabeling this can be changed to the following equivalent problem.
Find a contractive module map QA so that the following diagram commutes:

with � a cokernel, and A is a contractive module map.
With the given setup, a diagrammatic proof of the commutant lifting theorem

is now obtained, roughly translating a Hilbert space proof due to Arocena [6] (see
also [35]). Details can be found in [27].

Using the diagrammatic form of Parrott’s lemma, factor the map A as

where 'C and �C are isometric and co-isometric module maps, and HC is an
isometric module. This module may not correspond to a minimal isometric dilation,
but as noted above, there will in any case be a contractive co-isometric module map
ˇ W HC ! QHV2 so that the following diagram commutes:
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Combining this diagram with the last one and setting QA D ˇ ı 'C , the required
lifting results.

A slightly more detailed argument can be used to prove that not only does the
contraction A lift to a contraction QA, but that ind� .1 � QA QA�/ D ind� .1 � AA�/,
see [27]. Consequently, if A is a bicontraction, then QA is one as well.

Intertwining Operators with a Finite Number of Negative Squares
and Some Open Questions

What happens if the condition that the intertwining operatorA in the statement of the
commutant lifting problem is a contraction is relaxed? On Hilbert spaces this would
not be a problem since in this setting it is possible to scale A to be a contraction, but
on Kreı̆n spaces, the problem does not have a solution in general [18]. Nevertheless,
there will be a lifting, at least upon restricting to a certain subspace of co-dimension
equal to ind� .1 � A�A/. See [7, 8, 18, 19].

As indicated earlier, the study of operator systems and operator spaces has
revolutionized dilation theory and commutant lifting. However these all rely on
tools that are essentially Hilbert space based. Notions such as complete positivity
and complete contractivity may be defined for maps into the bounded operators
on a Kreı̆n space, but even the most basic results for such maps into the bounded
operators on a Hilbert space do not appear to have obvious analogues. Can a similar
theory be derived in the Kreı̆n space context?

One could also ask about applications. As mentioned earlier, the Hilbert space
commutant lifting theorem has been particularly useful in addressing interpolation
problems. What are the analogous problems to which the Kreı̆n space version of the
commutant lifting theorem might be applied? Kreı̆n spaces do appear naturally in
certain interpolation problems [34], and the original question as to whether there
is a Kreı̆n space version of the commutant lifting theorem for contractions was
motivated by de Branges’ work on the Bieberbach conjecture.
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