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Abstract
Generalizing the complex one-dimensional function theory the class of
quaternion-valued functions, defined in domains of R

4, will be considered.
The null solutions of a generalized Cauchy–Riemann operator are defined as
the H-holomorphic functions. They show a lot of analogies to the properties
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of classical holomorphic functions. An operator calculus is studied that leads
to integral theorems and integral representations such as the Cauchy integral
representation, the Borel–Pompeiu representation, and formulas of Plemelj–
Sokhotski type. Also a Bergman–Hodge decomposition in the space of square
integrable functions can be obtained. Finally, it is demonstrated how these tools
can be applied to the solution of non-linear boundary value problems.

Introduction

Quaternionic analysis stands for the function theory of a generalized Cauchy–
Riemann operator or a Dirac operator, respectively. In this way it is a generalization
or extension of complex analysis for holomorphic functions depending on one
complex variable. Starting with the problem of extending the field of complex
numbers it can be seen that real quaternions share a lot of algebraic and geometric
properties with complex numbers. At the same time quaternions can be identified
with vectors in the Euclidean space R

4 analogously to the identification of C with
R
2. In this way it is tried to unify the advantages of numbers with the theory of

Euclidean vector spaces. It is then a natural idea to consider quaternion-valued
functions defined in R

4 and to look for a class of functions that unifies results and
strategies analogously to holomorphic functions with results known from vector
analysis.

Looking at the notation “quaternionic analysis” it must be mentioned that there
are different interpretations, depending on the historical development, the way of
defining H-holomorphic functions and on the desired field of applications. Fueter,
for instance, worked in his pioneering works [7,8] with quaternion-valued functions,
depending on a quaternion-valued variable and defined the regular functions as
null solutions of a generalized Cauchy–Riemann operator, nowadays often called
Cauchy–Fueter operator. Later on, in [2], monogenic functions are defined again not
only as null solutions of a generalized Cauchy–Riemann operator but also as null
solutions of a Dirac operator. Restricting the contents of [2] to there here considered
case of quaternion-valued functions it became also possible to consider functions,
defined in R

3 with values in the full quaternions. This can be done by a reduced
generalized Cauchy–Riemann operator or by the Moisil–Teodorescu operator, see
[24]. For a complete survey it is recommended to read the paper [1]. The reduced
Cauchy–Riemann operator can also be studied for functions, defined in R

3 with
values in R

3, identified with the reduced quaternions. This leads to a special case
of the Riesz system and was recently studied in [25] and earlier in [22]. All these
approaches lead to very similar results concerning Cauchy integral formulas, Taylor
series expansions, and power series representations. Therefore, in this chapter only
one of these cases will be discussed.

Another line goes back to K. Habetha who pointed out (see, e.g., [17]) that
a generalized function theory must have a Cauchy integral formula. This relates
monogenic functions with integral operators and in the following the theory of
right invertible operators [28] began to play a role in quaternionic analysis. With
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the identity operator I , the differential operator D (a generalized Cauchy–Riemann
operator or a Dirac operator), and a right inverse T (Teodorescu operator) the
initial value operator F is defined by F WD I � TD and one can show that this
initial value operator from the theory of right invertible operators is the generalized
Cauchy–Riemann operator. This operator relates the boundary values of an H-
holomorphic (monogenic, regular) function with its values in the whole domain
and this property is what is needed for the solution of boundary value problems by
integral representations. A first complete description of this approach can be found
in [12] and [14]. In this chapter it will be shown how quaternionic analysis in the
latter sense can be applied for the solution of boundary value problems and therefore
the discussion of H-holomorphic functions will be restricted to this goal.

The class of H-holomorphic functions will be defined in this chapter as the set
of functions belonging to the kernel of a generalized Cauchy–Riemann operator.
Elements of a function theory for these functions will be described. The main goal
is to obtain integral theorems and integral representations for the H-holomorphic
functions and to study their jumps on the boundary of a smoothly bounded domain.
The consideration will be focused to this approach because it allows a direct and
straight approach to the solution of boundary value problems and the representation
of their solutions. Other equivalent approaches to such a function theory also in
more general situations are contained in subsequent chapters. Basic idea in the
presented approach is to derive all representations by using an operator calculus
of the generalized Cauchy–Riemann operator, a right inverse that is defined by the
convolution of the fundamental solution of the Cauchy–Riemann operator with the
functions and the identity operator. Studying these operators, due to the factorization
of the Laplace operator by the Cauchy–Riemann operator and its adjoint, also
harmonic analysis is touched and it becomes visible that the considered function
theory includes a refinement of harmonic analysis.

The most important result to connect the integral formulas and the H-
holomorphic functions with the solutions of general boundary value problems
is the Bergman–Hodge decomposition. This orthogonal decomposition describes
the complementary subspace of the subspace of square integrable H-holomorphic
functions in L2. The Bergman projection together with the operators of the operator
calculus and the Plemelj projections are the building blocks for constructing
representation formulas for the solutions of boundary value problems. As an
example a boundary value problem for the stationary Navier–Stokes equations
will be studied.

Quaternions

Historical Notes

In 1833 Sir William Rowan Hamilton, one of the most fascinating scientists of the
nineteenth century, proved that complex numbers form a so-called division algebra,
i.e. there exist a unit element 1 ¤ 0 and all nonzero elements have a multiplicative
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inverse. All arithmetic operations (addition, subtraction, multiplication and division
(for nonzero elements)) are defined and satisfy the usual rules. Hamilton recognized
that there are two units: 1 and i with the algebraical rules

12 D 1 and i 2 D �1:

Every element can be written as x C iy with x; y 2 R. In the following ten years
he tried to extend this result to triples, i.e., the real unit 1 and two further imaginary
units i and j . Such triples he called vectors. Over years he did not succeed in
finding a division rule for vectors. In 1843 only after introducing a further imaginary
unit and dropping the commutativity Hamilton was able to divide vectors. On the
discovery the following story is told:

Hamilton had to chair a meeting at the Royal Irish Academy. His wife walked
with him along the Royal Canals in Dublin. Suddenly he had an ingenious idea,
took his pocket knife, and carved the fundamental relations of the skew-field of
quaternions in a stone of the Brougham Bridge:

Here as he walked by on the 16th of October in 1843 Sir William Rowan
Hamilton in a flash of genius discovered the fundamental formula for quaternion
multiplication:

i 2 D j 2 D k2 D ijk D �1

cut it on a stone of this bridge.
On November 14 in 1843 a first paper on quaternions appears in the Council

Books of the Royal Academy.
W. Blaschke, celebrating the occasion of the 250th birth anniversary of Leonard

Euler in his conference talk entitled: Euler und die Geometrie (Berlin 23.03.1957)
stated that Euler had been the first one to define quaternions. This was done
in a letter to Christian Goldbach on May, 4th in 1748 in his researches on
parametric representations of movements in Euclidean space. Obviously, Euler
defined (vectorial) quaternions without explicitly naming them.

Carl Friedrich Gauss was working with transformations of spaces in 1819 and he
had to compose real quadruples. Given .a; b; c; d / and .˛; ˇ; �; ı/ in R

4 he obtained
for the composite quadruple

.˛a�ˇb��c�ıd; aˇCb˛�cı C d�; a� C bı C c˛�dˇ; aı � b� C cˇ C d˛/:

After transposition of the second and third coordinates one gets the today usual
notation of quaternionic multiplication (see also in [9, 20]).

Quaternion means in Latin set of four, the Greek translation of this word is
“tetractys.” Hamilton who knew the Greek language in depth and idolized the
Pythagorean school has built a bridge between his structure and the Pythagorean
tetractys, which was considered as the source of all things (P.G. Tait).
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Calculation Rules and Representations

Let H be the skew-field of real quaternions and a 2 H, then a D ˛0e0 C ˛1e1 C
˛2e2 C ˛3e3 with f˛kg � R. The multiplication is defined by

eiej C ej ei D �2ıij e0 and e0ej D ej e0I e20 D e0I e1e2 D e3 i; j D 1; 2; 3:

The quaternionic conjugation is defined by

e0 D e0; ek D �ek .k D 1; 2; 3/; x D x0 �
X

˛kek D x0 � x:

x DW Vec.x/ is called after Hamilton vector (part) and x0 DW Sc.x/ scalar (part).
Further, we have

xx D jxj2
R4 DW jxj2

H
; x�1 WD 1

jxj2 x for x ¤ 0; xy D y x:

Let ' D arccos x0jxj and !.x/ D x
jxj 2 S2. Then we have for any quaternion x with

x D jxj.cos' C !.x/sin'/ de Moivre’s formula

.cos' C !.x/sin'/n D cosn' C !.x/sinn':

For vectors we obtain:

x y D �x � y C x � y:

The inner product (scalar product) was introduced by H.G. Grassmann [11] and the
cross product by J.W. Gibbs (1881) [5]. The following algebraical properties can be
proved immediately:

.i/ x � y D �1

2
.xy C yx/; x � y D 1

2
.xy � yx/;

.i i/ x 2 R if and only if xy D yx for any y 2 H;

.i i i/ From x2 D y2 it does not follow that x D ˙y:

There are simple relations between quaternions and vectors:

Proposition 1. Let x 2 H then there exists a vector y ¤ 0 such that xy is a vector.
Any quaternion x is the product of two vectors. The inverse of a vector is again a
vector.
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Corollary 1. In H there exist scalars and vectors.

The advantage of the skew-field of real quaternions compared with the Euclidean
vector spaces R

3 or R
4, respectively, becomes visible when one looks for a

convenient descriptions of rotations.
Let �y.x/ WD yxy�1 for y 2 H and x 2 R

3. This mapping is an automorphism
of R3. One has:

�y.x/ � �y.x0/ D �y.x � x0/:

Euler–Rodrigues formula describes a rotation completely. We obtain

x0 WD �y.x/ D x cos 2' C .! � x/ sin 2' C .1� cos 2'/.! � x/!

with y0 D cos', ! D y
jyj and jyj D sin '. Moreover, Cayley’s theorem can be

proved.

Theorem 1. The rotations in H are exactly the mappings x ! x0 D axb with
jaj D jbj D 1 and a; b 2 H.

For unimodular quaternions a nice representation formula exists. Let u WD x0C ix1,
v WD x2Cix3 with juj2Cjvj2 D 1 and the quaternionx can be written as x D uCjv.
Then x can be represented by the matrix

X D
�

u v

�v u

�
:

With Re u D cos t
2

the N th power is given by [27]

XN D sinN t
2

sin t
2

X � sin.N � 1/ t
2

sin t
2

I:

One denotes by H.C/ the set of quaternions with complex coefficients ˛k D ˛1
k C

i˛2
k .˛

i
k 2 R/, i.e.,

a D ˛0e0 C ˛1e1 C ˛2e2 C ˛3e3 D a1 C ia2; .aj 2 H/:

Because of iek D eki , the denotation CH D H.C/ can be used. In the case of
complex quaternions there are three possible conjugations:

(i) aC WD a1 � ia2;

(ii) aH WD a1 C ia2;

(iii) aCH WD a1 � ia2.
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Formally, one gets a complex valued norm:

jaj2
C
D aa D ja1j2 C ja2j2 C 2iŒ˛1

0˛
2
0 C a1 � a2
:

A corresponding norm is then given by kak4 WD jjaj2
C
j2. In H.C/ we have to

distinguish between scalars, vectors, bivectors, and pseudoscalars.
As is known, all real or complex .n � n/ matrices form a ring, called the full

matrix ring R
n�n and C

n�n. It is often useful to look how to represent algebraic
structures as isomorphic images in the matrix ring by automorphisms of R4 or also
of C2. Let x D x0 C x1e1 C x2e2 C x3e3 and y D y0 C y1e1 C y2e2 CCy3e3 be
two arbitrary quaternions. By multiplication xy, one obtains

xy D .x0y0 � x1y1 � x2y2 � x3y3/

C.x0y1 C x1y0 C x2y3 � x3y2/e1

C.x0y2 � x1y3 C x2y0 C x3y1/e2

C.x0y3 C x1y2 � x2y1 C x3y0/e3:

By means of the usual isomorphism this quaternion will be associated with the R
4-

vector

0
BBBB@

x0y0 � x1y1 � x2y2 � x3y3

x1y0 C x0y1 � x3y2 C x2y3

x2y0 C x3y1 C x0y2 � x1y3

x3y0 � x2y1 C x1y2 C x0y3

1
CCCCA
:

Identifying the quaternion y with the R4-vector y D .y0; y1; y2; y3/> and introduc-
ing the matrix

Lx WD

0
BBBB@

x0 �x1 �x2 �x3
x1 x0 �x3 x2

x2 x3 x0 �x1
x3 �x2 x1 x0

1
CCCCA

it is easy to check that

0

BBBB@

x0y0 � x1y1 � x2y2 � x3y3

x1y0 C x0y1 � x3y2 C x2y3

x2y0 C x3y1 C x0y2 � x1y3

x3y0 � x2y1 C x1y2 C x0y3

1

CCCCA
D Lxy:
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Thus, the quaternion x is associated with the matrix Lx in a natural way

x ! Lx with xy D Lxy

for all y 2 H, such that Lx is called a left representation of the quaternion x in R
4�4.

It is not difficult to prove the following properties:

.i/ L1 D E;

.ii/ Lx D L>
x ;

.iii/ Lx Qx D LxLQx;

.iv/ detLx D jxj4:

Finally, one has the decomposition

Lx D x0E CX

with X> D �X .
Analogously one gets a right representation

Rx D

0

BBB@

x0 �x1 �x2 �x3
x1 x0 x3 �x2
x2 �x3 x0 x1

x3 x2 �x1 x0

1

CCCA

of the quaternion x obtained in R
4�4, where yx D Rxy. The properties (i), (ii), and

(iv) keep being valid, while (iii) is replaced by

Rx Qx D RQxRx:

Other matrix representations in R
4�4 are possible, but will not be considered here.

One can show:

Le1Le2Le3 D �E; Re1Re2Re3 D E;

where E is the identity matrix in the R
4�4.

Quaternions can be represented as matrices in C
2�2. Physicists prefer the

following assignment

x0e0 C e1x1 C e2x2 C e3x3 !
 
x0 � ix3 ix1 � x2

�ix1 C x2 x0 C ix3

!
:
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This assignment appears naturally to the orthogonal unit vectors e0; e1; e2; e3 using
the so-called Pauli matrices, which are given by

�0 WD
�
1 0

0 1

�
; �1 WD

�
0 1

1 0

�
; �2 WD

�
0 �i
i 0

�
; �3 WD

�
1 0

0 �1
�
:

One has to identify subsequently e0; e1; e2; e3 with �0;�i�1;�i�2;�i�3 D �1�2.
One gets a subalgebra of C2�2.

More information can be found in the books [13, 16].

Quaternion-Valued Elementary Functions

Only as an example the exponential function of a quaternion variable and its
inverse will be defined. Starting from this one is able to deduce all other interesting
elementary functions. A good source for such questions is the book [26].

The function ex , x is a quaternion variable, defined by

ex D ex0.cos jxj C sgn.x/ sin jxj/ (47.1)

is called quaternion natural exponential function. In the case that x is a real number,
the definition of ex is naturally extended to comply with the usual exponential
function of real numbers. The previous representation is explained in the following
calculation. For this purpose it will be necessary to define ex WD P1

kD0
xk

kŠ
. The

reader should notice that this series converges normally for all x in analogy to
the complex case, since we have jxkj � jxjk for any quaternion x. Because ejxj
converges, the comparison test yields that ex converges for all x. Clearly, the
series expansions

P1
kD0

x0
k

kŠ
and

P1
kD0

xk

kŠ
converge normally. Therefore the Cauchy

product of ex0 and ex leads to

1X

kD0

(
kX

jD0

x0/
j

j Š

xk�j

.k � j /Š

)
D

1X

kD0

1

kŠ

kX

jD0

 
k

j

!
.x0/

jxk�j

D
1X

kD0

.x0 C x/k

kŠ
:

Consequently, ex D ex0Cx D ex0ex. For the remaining term ex, it holds:

1X

kD0

xk

kŠ
D

1X

jD0

x2j

.2j /Š
C

1X

jD0

x2jC1

.2j C 1/Š

D
1X

jD0

.�1/j jxj2j
.2j /Š

C x
jxj

1X

jD0

.�1/jC1 jxj2jC1

.2j C 1/Š

D cos jxj C sgn.x/ sin jxj:
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From the practical point of view, the quaternion exponential function is an example
of one that is defined by specifying its scalar and vector parts. More precisely, the
scalar and vector parts of ex are, respectively, Sc.ex/ D ex0 cos jxj and Vec.ex/ D
ex0sgn.x/ sin jxj. Thus, values of this quaternion function are found by expressing
the point x as x D x0 C x1i C x2j C x3k, and then substituting the values of x0,
x1, x2 and x3 in the given expression. The following properties of the quaternion
exponential function can be proved:

(i) ex ¤ 0, for all x 2 H,
(ii) e�xex D 1, ex� D �1,

(iii) .ex/n D enx for n D 0;˙1;˙2; : : : (de Moivre’s formula),
(iv) e.x

1/e.x
2/ ¤ e.x

1Cx2/ in general, unless x1 and x2 commute.

In particular, exe�x D e0H D 1. Then, by induction .ex/n D enx, where n is any
positive or negative integer. For the latter, take, for example, e�i e�j D .�1/.�1/ D
1, and e�iC�j D cos.�

p
2/C iCjp

2
sin.�

p
2/ ¤ 1.

This example shows that it depends very much on the property that has been
generalized what the result will be. It is easy to prove that this elementary function
is not an H-holomorphic function. An alternative version of a quaternion exponential
function is introduced in [13]. A. Hommel and K. Gürlebeck constructed in 2005
the following H-holomorphic exponential function

E.x/ D ex0
��

cos
x1 C x2 C x3p

3
C sin

x1p
3

sin
x2p
3

sin
x3p
3

�

C 1p
3

�
.e1 C e2 C e3/ sin

x1 C x2 C x3p
3

� e1 cos
x1p
3

sin
x2p
3

sin
x3p
3

�e2 sin
x1p
3

cos
x2p
3

sin
x3p
3
� e3 sin

x1p
3

sin
x2p
3

cos
x3p
3

��
:

Both mentioned exponential functions are H-holomorphic extensions of the real-
valued exponential function exp.x0/. Here, the property of the exponential function
to coincide with its derivative is the main point in the generalization.

Remark 1. The quaternion natural logarithm [26] function ln.x/ is defined by

ln.x/ D loge jxj C sgn.x/ arg.x/: (47.2)

where sgn.x/ D x=jxj. Here loge jxj is the usual real natural logarithm of the posi-
tive number jxj (and hence it is defined unambiguously). This quaternion function is
another example of one that is defined by specifying its scalar and vector parts. More
precisely, the scalar and vector parts of ln.x/ are, respectively, Sc.ln.x// D loge jxj
and Vec.ln.x// D sgn.x/ arg.x/. Because there are intrinsically infinitely many
arguments of x, it is clear that the representation gives infinitely many solutions w
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to the equation ew D x whether x is a nonzero quaternion number. By switching
to polar form, one obtains the following alternative description of the quaternion
logarithm:

ln.x/ D
(

loge jxj C sgn.x/
�

arccos x0jxj C 2�n
�
; jxj ¤ 0;

loge jx0j ; jxj D 0;

D
(

loge jxj C sgn.x/
�

arctan jxj
x0

C 2�n
�
; x0 > 0;

loge jxj C sgn.x/
�
�
2
C 2�n

�
; x0 D 0;

where n D 0;˙1;˙2; : : : . Observe that the different values of ln.x/ all have the
same scalar part and that their vector parts differ by 2�n. Each value of n determines
what is known as a branch (or sheet), a single-valued component of the multiple-
valued logarithmic quaternion function. When n D 0, one has a special situation.

H-Holomorphic Functions and Quaternion Operator Calculus

H-Holomorphic Functions

The main idea in the studies of quaternion-valued functions is to provide structures
of vector fields with an algebraic structure to refine the well-known harmonic
analysis and to generalize the complex analysis to higher dimensions. For this
purpose one has to define the class of functions that should replace the holomorphic
functions. Having in mind the corresponding complex approaches one will look for
differentiability, directional derivatives, a generalized Cauchy–Riemann system and
power (or polynomial) series expansions. The best and desired situation is that all
these approaches can be generalized and keep their equivalence from the complex
case. To speak about a function theory one should have at least a class of functions
where the approaches found by Riemann, Cauchy, and Weierstrass, respectively, are
equivalent. A detailed study of these approaches can be found in [13] and [21].

Here it will be used only the most popular way to define the desired class of
functions as null solutions of a generalized Cauchy–Riemann system. The starting
point is the definition of the differential operator

@ WD @

@x0
C @

@x1
e1 C @

@x2
e2 C @

@x3
e3:

One sees easily that 1
2
@ is a formal generalization of the complex differential

operator

@z WD 1

2
.@x C i@y/:
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One can further see that the differential operator 1
2
@ with

@ WD @

@x0
� @

@x1
e1 � @

@x2
e2 � @

@x3
e3

corresponds to

@z WD 1

2
.@x � i@y/:

Therefore, the operators 1
2
N@ and 1

2
@ are called generalized Cauchy–Riemann opera-

tor and adjoint Cauchy–Riemann operator, respectively. An easy calculation shows
that @ and @ factorize the Laplacian, i.e.,

@@ D @@ D �:

his property is analogous to the complex one-dimensional case and shows that one
can get in this way a refinement of the harmonic analysis.

Definition 1. A function f 2 C1.G/ in a domain G � H and with values in H is
there right- resp. left-H-holomorphic if and only if

f @ D 0 resp: @f D 0:

These differential equations are also called Cauchy–Riemann differential equations
(in H). It should be mentioned that instead of “H-holomorphic” synonymously the
words “monogenic” or “regular” are in use.

In the special case that functions from R
3 into H are considered there are two

mainly discussed possibilities to embed the three-dimensional Euclidean space in H.
By identifying x D .x0; x1; x2/ with the reduced quaternion x D x0e0Cx1e1Cx2e2
the (reduced) Cauchy–Riemann operator will be N@ D e0@0 C e1@1 C e2@2. The
resulting Cauchy–Riemann system is then the well-known Riesz system. A special
property of this system is that its null solutions are left- and right-monogenic at
the same time. If x D .x1; x2; x3/, identified with x D x1e1 C x2e2 C x3e3 is
used, then the corresponding differential operator is D D e1@1 C e2@2 C e3@3. This
operator is called Dirac operator and the system of partial differential equations
leads to the so-called Dirac equation. In this special case the operator is also known
as the Moisil–Teodorescu operator. Identifying a quaternion-valued function f D
f0e0Cf1e1Cf2e2Cf3e3 with the vector valued function f D f0C f the action of
the Dirac operator D can be written in terms of the classical operators from vector
analysis as Df D �div f C gradf0 C curl f. This opens the possibility to switch
between both theories if it is necessary.

For several purposes it is useful to have the fundamental solution of the
generalized Cauchy–Riemann operator available.
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Definition 2. The function

E3.x/ WD 1

�3

x

jxj4 .x ¤ 0/;

defined in R
4 n f0g, is called Cauchy kernel. Here �3 is the surface area of the unit

sphere S3 in R
4. Using the Gamma function one has (see [13])

�3 D 2 �4

�
1

2

�
D 2�2:

In C the Cauchy kernel simplifies to

E1.x/ D 1

2�

1

x
:

It can be easily seen

Proposition 2. The Cauchy kernel is left- and right-H-holomorphic, i.e. @u D 0

and .u@/ D 0.

It can be shown that the Cauchy kernel is just the fundamental solution of the
Cauchy–Riemann operator. Therefore, the convolution with the Cauchy kernel over
the domain G defines a right inverse to the Cauchy–Riemann operator. From
the theory of right invertible operators is known (see e.g. [28] and [30]) that
the commutator of the Cauchy–Riemann operator and the convolution with the
fundamental solution over the domain G defines the so-called initial operator.
This operator is acting on functions defined on the boundary of G and it will be
recognized as a generalized Cauchy integral operator. This fundamental property
connects boundary values with solutions of partial differential equations in a
convenient way (not only for the case of the Cauchy–Riemann operator). This
operator calculus has to be introduced in the following. The main tool for obtaining
all these results are the famous Gauss’ and Stokes’ theorems together with Green’s
formulae. The fundamental theorem is a formula of Borel–Pompeiu type as it is in
any complex and hypercomplex analysis.

Integral Theorems for Quaternion-Valued Holomorphic Functions

Theorem 2 (Formula of Borel–Pompeiu). Let G � R
4 and @G D � be a

bounded domain with sufficiently smooth boundary and an outward pointing normal
vector. Then one has for any u 2 C1.G/

Z

@G

E3.y � x/u.y/d�y �
Z

G

E3.y � x/.@u/.y/dGy D



u.x/; x 2 G;

0 ; x 2 R
4 nG:
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The operators TG and F� , defined by

.TGu/.x/ WD �
Z

G

E.y � x/u.y/dGy I .F�u/.x/ WD
Z

�

E.y � x/�.y/u.y/d�y

are called Teodorescu transform and Cauchy–Fueter operator, respectively, where
d� stands for the Lebesgue surface measure and dG denotes the volume measure.
With these notations the relations @ TGu D u in G and F�uC TG

N@u D u in G have
been proved with the theorem above.

The most important consequence of Borel–Pompeiu’s formula is Cauchy’s
integral formula, which appears as a simple corollary applying Borel–Pompeiu’s
formula to a left-holomorphic function u:

Theorem 3 (Cauchy’s Integral Formula). Let G 2 R
4 be a bounded domain with

sufficiently smooth boundary and outward-pointing normal unit vector n. For a left-
holomorphic function u 2 C1.G/ one has:

Z

@G

E3.y � x/n.y/u.y/d� D



u.x/ ; x 2 G;

0 ; x 2 R
4 nG:

For a right-H-holomorphic function u and E3.y � x/ one has to interchange their
positions.

Some consequences of Cauchy’s formula will be mentioned, firstly an integral
formula for the exterior domain. For this purpose it is assumed a Jordan surface
� , which is a piecewise smoothly bounded manifold whose complement relatively
to R

4 consists of only two domains. Thus, R4 is split by � into two domains, one of
them having the point 1 as boundary point: this is called the exterior domain G�
of � . Correspondingly GC D R

4 n .� [ G�/ is called interior domain of � . Then
it holds

Theorem 4 (Cauchy’s Integral Formula for the Exterior Domain). Let � be
a Jordan surface with the exterior domain G� and the interior domain GC. The
orientation of � is to be chosen so that the normal points into G�. The function u
is assumed to be left-holomorphic in G� and continuously differentiable in G� [�

and to have a limit value u.1/ at x D 1. We then have:

Z

�

E3.y � x/n.y/u.y/d�y/ D

 �u.x/C u.1/; x 2 G�;

u.1/; x 2 GC:

There are other important theorems for H-holomorphic functions. The first one
is the mean value theorem, which is nothing more than the application of Cauchy’s
formula to a ball.
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Corollary 2 (Mean Value Property). An H-holomorphic function u possesses the
mean value property, i.e., for all x0 2 G and for all balls (disks) fx W jx � x0j �
�g � G we have:

u.x/ D 1

�3

Z

jyjD1

u.x0 C �y/dS3
y; .S3 D @B1.0//:

That means that the value of u in the center of the ball is equal to the normalized
integral mean of u over the boundary of the ball. By integrating over � one gets a
mean value theorem over the whole ball of radius �.

The next theorem concerns a maximum principle.

Theorem 5 (Maximum Principle). Let u be H-holomorphic and bounded in a
domain G � R

4, i.e., supx2G ju.x/j D M < 1. If juj attains the value M at a
point of G, then u is constant in G with ju.x/j D M .

Schwarz Formula for Quaternion-Valued Functions

It is necessary to introduce the notion of a Hardy space

Definition 3. Let p 2 .0;1/, then an H-holomorphic function f in B1.0/ � H

belongs to the Hardy space (or H-holomorphic Hardy space) Hp.B1.0// if the
condition

kf kHp WD

0

B@ sup
0<r<1

Z

jxjD1

jf .rx/jpjdS3j

1

CA

1=p

< 1 (47.3)

is satisfied.

Given a function u; which is defined on S3 D @B1.0/ D @B . It is assumed that
u 2 L2.S3/. Without loss of generality it can be further assumed that u is real-
valued (otherwise u will be considered componentwise). Looking now for a function
U 2 H2.B1.0// that satisfies

lim
r!1�

Sc.U .r�// D u.�/; a.e. on S3;

then, following the idea proposed in [2] and [29], such a function U can be
constructed explicitly (not necessarily uniquely) by

U .x/ D .T u/.x/ D
Z

j!jD1

S.x; !/u.!/do.!/; jxj < 1;
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where S.x; !/ WD P.x; !/CQ.x; !/ is called quaternionic Schwarz kernel, with
the Poisson kernel

P.x; !/ D 1

2�2

1 � jxj2
jx � !j4

as well as

Q.x; !/ D Vec
� Z 1

0

t2.@P /.tx; !/xdt
�
D
� 1

2�2

Z 1

0

4t2.1 � t2jxj2/
jtx � !j6 dt

�
Vec.!x/

D 1

2�2

2
6664
.3C jxj2/.3 � Sc.!x// � 8

jx � !j4 �
arctan

pjxj2 � .Sc.!x//2

1 � Sc.!x/pjxj2 � .Sc.!x//2

3
7775

� Vec.!x/

jxj2 � .Sc.!x//2
:

The kernelQ.x; !/ can be seen as a Cauchy-type harmonic conjugate of the Poisson
kernel on the unit sphere. Similar to [29], one can prove that T is a bounded operator
from L2.S/ to H2.B/. This approach can be used to solve the problem of harmonic
conjugates to given harmonic functions.

Formulae of Plemelj–Sokhotski Type

Analogously to the principle value integral of Cauchy type in the complex plane

.S�u/.z/ WD 1

�i

Z

�

u.t/

t � z
dt

where � is a Liapunov curve, u a Hölder continuous C-valued function, one
introduces a corresponding integral over Liapunov surfaces in H

.S�u/.x/ WD
Z

�

E3.y � x/�.y/u.y/d�y .x 2 �/

where � � H is the piecewise Liapunov boundary of a domain in H and � denotes
the outward-pointing normal unit vector. It also exists as principle value integral.
The operator S� is called operator of Cauchy–Bitzadse type. It should be noted that
analogous to the plane case the algebraic identity S2

� D I holds.
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Remark 2. In 1953 A.W. Bitzadse generalized the complex Cauchy integral to a
principle value integral

.S�u/.x/ WD 1

4�

Z

�

x � y

jx � yj3 �.y/u.y/d�y .x 2 �/

over vector functions on a Liapunov surface � � R
3. Using a matrix calculus L.G.

Magnaradse proved in 1957 the algebraic property S2
� D I . Already in 1955 T.G.

Gegelia [10] proved the continuity of the operator S� in Lp.�/; p > 1, i.e.

kS�ukp � Ckukp:

It was A. McIntosh, who generalized in 1995 this result to Lipschitz surfaces.

What happens when the free variable in Cauchy–Fueter’s integral tends to the
boundary?

Let u 2 C0;˛.�/; 0 < ˛ � 1; � a piecewise Liapunov surface. Then for any
regular point x0 2 �

lim
x!x0

x2G˙

.F�u/.x/ D 1

2
.˙u.x0/C .S�u/.x0// .Plemelj–Sokhotskiformulae/

with GC WD G and G� WD R
3 n GC. The name of this formula goes back to J.W.

Sokhotski and J. Plemelj who got corresponding results for smooth curves in the
plane. The operators

P� WD 1

2
.I C S�/ and Q� WD 1

2
.I � S�/

are called Plemelj projections.

Theorem 6. Plemelj projections have the following properties:

(i)

P2
� D P�; Q

2
� D Q� ;P�Q� D Q�P� D 0;

(ii) im P� consists of all functions, which can be H-holomorphically extended into
GC,

(iii) im Q� consists of all functions, which can be H-holomorphically extended into
G� and vanish at infinity.

Remark 3. The operators P�;Q� have continuous extensions onto Lp.�/.
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Bergman–Hodge Type Decompositions

To find the orthogonal complement of the square integrable H-holomorphic func-
tions in the quaternionic Hilbert space L2.G/ turns out to be very important for the
treatment of boundary value problems. The following statement holds:

Theorem 7. The sets ker @.G/ \ Cm;�.G/ and ker @.G/ \ W k
p .G/ are closed

subspaces in Cm;�.G/, W k
p .G/, respectively, and are called Bergman type spaces.

In some applications it is useful to have the following generalization of the
Bergman–Hodge decomposition.

Corollary 3. Let A be an R–linear L2�homeomorphism with B D A�1. Introduc-
ing in L2.G/ the R-linear scalar product

.u; v/A WD
Z

G

BuBvdG 2 H;

then the decomposition

L2.G/ D .A kerN@ \L2/.G/˚A @
ı
W

1

2 .G/

holds.

This theorem is applied to stationary boundary value problems for pseudoparabolic
equations, Navier–Stokes equations (NSE) with variable viscosity (also with heat
conduction and magnetic dependence (Benard problem)), electro-magnetic equa-
tions with variable material coefficients, equations of linear elasticity with variable
Young-modulus. Time-dependent boundary value problems of partial differential
equations require an operator calculus for .@ C i˛/ with .˛ 2 C/: A collection of
applications can be found in [4, 14–16, 18, 19, 23] and a series of journal papers.

Bergman–Hodge decompositions also exist on lattices in the framework of
discrete quaternionic analysis. In this exampleR3 has to be considered as isomorphi-
cally embedded in H. A corresponding result for the discrete Dirac operator reads
as follows. Let Gh D G \ R

3
h with R

3
h D f.ih; jh; kh/T W h > 0; i; j; k integer

numbers}. Further, let

hu; vih D
X

s2Gh

u.s/v.s/h3

be the corresponding scalar product in L2;h.Gh/ and let the discrete Dirac operator
Dḣ be given by

.D˙

h u/.x/ D
3X

iD1

ei .Di;hu/.x/; .D˙

i;hu/.x/ D ˙.u.V ˙

i;h x/� u.x//

h
; where V ˙

i;h x D x ˙ hei :
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Then

L2;h.Gh/ D kerDḣ .intGh/˚D�
h

ı
W

1;�
2 .Gh/:

Notice that D�
h

ı
W

1;�
.Gh/2 D D�

h .u W t r�u D 0g: On the boundary we have
the following decomposition

L2;h.�h/ D imt r�Fḣ;� ˚ imt r�Tḣ

Fḣ;� , Tḣ are the discrete Cauchy–Fueter transform and discrete Teodorescu
transform, respectively. This approach was introduced in [12] and applied also in
[16]. Further approaches to discrete function theories the reader can find in [6]
and [3].

Remark 4. Similarly, a decomposition of for more general hypoelliptic operators
[31] can be obtained. Let

P.@1; : : : ; @3/ D
m1;:::;m3X

j0;:::;j3D0

aj0:::j3@
j0
1 : : : @

j3
3

where aj0:::j3 are real constants. The adjoint operator is defined similarly by

QP.@0; : : : ; @3/ D
m0;:::;m3X

j0;:::;j3D0

.�1/j0C���Cj3aj0:::j3@
j0
0 : : : @

j3
3 :

Assume that P is hypoelliptic and maps P u 2 C1.G/ ! u 2 C1.G/. Then one
has the decomposition

L2.G/ D kerP ˚ QP ı
W2

m0C���Cm3

.G/:

Quaternionic Analysis in FluidMechanics

Assume for the moment that the domain G is bounded by a piecewise smooth
Liapunov surface. During the last years these assumptions could be considerably
weakened. For this part T stands for the Teodorescu transform and Q is the
Bergman projection onto the orthogonal complement of the subspace of square
integrable H-holomorphic functions. For the problems considered below one can
work with the identity mapping instead of the more general mapping A from
section “Bergman–Hodge Type Decompositions”.
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Linear Equations of Stokes’ Type

��u C 1

	
rp D �

	
f in G

div u D f0 in G

u D g on �:

Here 	 is the viscosity and � the density of the fluid. We have to look for the velocity
u and the hydrostatic pressure p. Between f0 and g we need the compatibility
condition:

Z

G

f0dx D
Z

�

� � gd�:

For g D 0 then the measure of compressibility f0 has to satisfy the identity
Z

G

f0dx D 0:

For all such real functions f0 the unique solution can be represented (p is unique up
to a real additive constant) as follows:

Theorem 8 ([16]). Let f WD f0C f 2 W k
p .G/ .k � 0; 1 < p < 1/. Then we have

u D �

	
T Vec T f � �

	
T Vec F�.t r�TVec F�/

�1t r�TVec T f � Tf0;

p D �ScT f � �Sc F�.t r�TVecF�/
�1tr�TVec T f C 	f0:

In that way one separates velocity and pressure.

Problems of Navier–Stokes Type

In the stationary case Navier–Stokes equations are described in the following way:

��u C �

	
.u � r/u C 1

	
rp D �

	
f in G; (47.4)

div u D 0 in G;

u D 0 on �:

We will abbreviate M.u/ WD M �.u/ � f, where M �.u/ WD .u � grad/u. The main
result is now the following:
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Theorem 9 ([12, 16]).

1. Let f 2 L2.G/; p 2 W 1
2 .G/. Every solution of (47.4) permits the operator

integral representation

u D ��

	
TQTM.u/� 1

	
TQp (47.5)

�

	
Sc:TM.u/� 1

	
ScQp D 0:

2. The system (47.5) has a unique solution fu; pg 2 ı
W

1

2 .G/ \ ker.div/ � L2.G/,
where p is unique up to a real constant, if

.i/ kfkp � .18K2C1/
�1

with K WD �

	
kT kŒL2\imQ;W 1

2 

kT kŒLp ;L2


.i i/ u0 2
ı
W

1

2 .G/ \ ker.div/

with ku0k2;1 � min

�
V;

1

4KC1

CW

�

holds, with V WD 2KC1/
�1, W WD Œ.4KC1/

�2 � �kf kp
	C1



1
2 and C1 D 9

1
p C , where

C is the embedding constant from W 1
2 in L2. The iteration procedure (starting

with u0)

un D �

	
TQTM.un�1/� 1

	
TQTDpn

�

	
ScQTM.un�1/ D �1

	
ScQpn

.u0 2
ı
W

1

2 .G/\ kerdiv/

converges in W 1
2 .G/ �L2.G/ to the solution .u; p/.

Conclusions

Quaternionic analysis as the function theory of a generalized Cauchy–Riemann
operator shows a lot of analogies to complex analysis in case of functions depending
on one complex variable. As demonstrated here one can obtain all important
integral theorems, integral representation formulas, including the Cauchy integral
formula and the Borel–Pompeiu formula as well as jump formulas of Plemelj–
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Sokhotski type. This is based on an operator calculus built by the identity operator
I , the Cauchy–Riemann operator N@, and a right inverse T to N@. Through the
integral formulas it becomes also visible that quaternionic analysis can be seen
as a refinement of harmonic analysis due to the factorization � D N@@ D @N@. An
orthogonal Bergman–Hodge decomposition is a direct consequence and it can be
seen that already with these few tools one has a powerful tool for the solution
of boundary value problems available, including non-linear problems. Discrete
versions of the operator calculus allow to establish efficient numerical methods
by using finite difference methods. The presented method gives also possibilities
to study qualitative properties of the solutions to boundary value problems as,
for instance, existence and uniqueness, stability and well-posedness as well as a
convergence analysis for the derived numerical methods. The presented concept can
cover more general boundary value problems like parabolic or hyperbolic equations.
This requires the generalization to complex quaternions and the corresponding
function theory of the Cauchy–Riemann operator.
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