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Abstract
This chapter gives an overview of the theory of hypercomplex Fourier transforms,
which are generalized Fourier transforms in the context of Clifford analysis. The
emphasis lies on three different approaches that are currently receiving a lot of
attention: the eigenfunction approach, the generalized roots of �1 approach,
and the characters of the spin group approach. The eigenfunction approach
prescribes complex eigenvalues to the L2 basis consisting of the Clifford–
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Hermite functions and is therefore strongly connected to the representation
theory of the Lie superalgebra osp.1j2/. The roots of �1 approach consists
of replacing all occurrences of the imaginary unit in the classical Fourier
transform by roots of �1 belonging to a suitable Clifford algebra. The resulting
transforms are often used in engineering. The third approach uses characters to
generalize the classical Fourier transform to the setting of the group Spin.4/,
resp. Spin.6/ for application in image processing. For each approach, precise
definitions of the transforms under consideration are given, important special
cases are highlighted, and a summary of the most important results is given. Also
directions for further research are indicated.

Introduction

The classical Fourier transform (FT), defined over Rm, is given by

F.f /.y/ WD .2�/�
m
2

Z

Rm

e�ihx;yif .x/dx (58.1)

for functions f 2 L1.R
m/, where hx; yi D Pm

jD1 xj yj is the standard inner
product. Without any doubt, it is one of the most important tools of modern
mathematics, with a myriad of applications in virtually all branches of engineering
and physics. Its mathematical foundation (see, e.g., [53]) is studied in the field of
harmonic analysis, i.e. the function theory of the Laplace operator.

In Clifford analysis the Laplace operator is replaced by its square root, namely
the Dirac operator. It then becomes a natural problem to investigate generalized
Fourier transforms in this framework, both for theoretical reasons and for use in
applications. In the recent literature three different approaches to these so-called
hypercomplex FTs have been considered. They can be identified as follows:

• A: Eigenfunction approach
• B: Generalized roots of �1 approach
• C: Characters of spin group approach

The first approach A is mainly studied in, e.g., [8–10, 19–23], and aims at
constructing new hypercomplex transforms by prescribing eigenvalues to a suitable
basis of a Clifford-algebra valued L2 space. The choice of eigenvalues implies
that there is a huge design freedom in this approach. The transforms of this class
also reveal a deep connection with quantum mechanics and exhibit a particular
underlying algebraic structure, namely that of the Lie superalgebra osp.1j2/. For
a recent review from this point of view, see [18].

The second approach B is mainly advocated in [13, 14] and boils down to
replacing the imaginary unit i in the exponent of the ordinary Fourier transform
by a generalized root of �1, belonging to a Clifford algebra (see, e.g., [35, 37] for a
detailed study of such roots). It encompasses several of the hypercomplex FTs often
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used in applications, such as the quaternionic Fourier transform [31], the Sommen–
Bülow transform [15, 49], the Clifford Fourier transform (written without hyphen)
introduced in [28] and further extended in [1, 36]. Again this approach exhibits a
huge design freedom, as the set of roots of�1 is very big and as the roots can in prin-
ciple be chosen independently for each application. Note that an interesting compar-
ison between approach A and B is given in the paper [12], especially concerning the
different types of convolution products that can be defined in this context.

Finally, a third approach C is given in [2–4], and reinterprets the notion of
character as a group morphism in order to generalize the ordinary Fourier transform
to the setting of the group Spin.4/, resp. Spin.6/ for direct application in gray
scale, resp. color image processing.

In this chapter, an overview will be given of these three approaches. After stating
the definition in each case, the emphasis will lie on eigenfunctions and eigenvalues,
as well as computation of the inverse transform. For each approach, the examples
that have attracted the most attention will be discussed separately. Also an overview
of the main results will be given. In a final section, various open problems are
indicated.

Readers interested in other aspects of signal processing in Clifford analysis may
wish to consult [6] concerning wavelets, and [16] concerning monogenic signals.

Preliminaries on Clifford Algebras and Analysis

The Clifford algebra Cl0;m over Rm is the algebra generated by ei , i D 1; : : : ; m,
under the relations

eiej C ej ei D 0; i ¤ j

e2i D �1:
This algebra has dimension 2m as a vector space over R. It can be decomposed as
Cl0;m D ˚m

kD0Clk0;m with Clk0;m the space of k-vectors defined by

Clk0;m WD spanfei1 : : : eik ; i1 < � � � < ikg:
In the applied literature, Clifford algebras are usually called geometric algebras. A
detailed exposition from this point of view, including geometric interpretations and
applications in computer vision, can be found in, e.g., [27].

In the rest of the text, unless stated otherwise, functions f taking values in Cl0;m
will be considered. Such functions can be decomposed as

f D f0 C
mX

iD1
eifi C

X

i<j

eiej fij C � � � C e1 : : : emf1:::m

with f0; fi ; fij ; : : : ; f1:::m all real- or complex-valued functions on R
m.
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The Dirac operator is given by @x WD Pm
jD1 @xj ej and the vector variable by

x WD Pm
jD1 xj ej . The square of the Dirac operator equals, up to a minus sign,

the Laplace operator in R
m: @2x D ��. For more information regarding Clifford

analysis, see, e.g., [7, 25] and [51].
Denote by P the space of polynomials taking values in Cl0;m, i.e.

P WD RŒx1; : : : ; xm
˝ Cl0;m:

The space of homogeneous polynomials of degree k is then denoted by Pk. The
space Mk WD ker @x \ Pk is called the space of spherical monogenics of degree k.

Next the inner product and the wedge product of two vectors x and y are
defined by

hx; yi WD
mX

jD1
xj yj

x ^ y WD
X

j<k

ej ek.xj yk � xkyj /:

There exist two important different bases for the space S.Rm/˝Cl0;m, where S.Rm/
denotes the Schwartz space. Define the functions  j;k;` by

 2j;k;` WD L
m
2 Ck�1
j .jxj2/M .`/

k e�jxj2=2;

 2jC1;k;` WD L
m
2 Ck
j .jxj2/xM .`/

k e�jxj2=2;
(58.2)

where j; k 2 N, fM.`/

k 2 Mk W ` D 1; : : : ; dimMkg is a basis for Mk , and L˛j are
the Laguerre polynomials. The set f j;k;`g forms a basis of S.Rm/˝Cl0;m, see [50].
This basis is called the Clifford–Hermite basis or the spherical basis. Alternatively,
define the one-dimensional Hermite functions (see, e.g., [54]) by

 k.x/ WD
�
x � d

dx

�k
e�x2=2

D Hk.x/e
�x2=2

for k 2 N. Then the set f j1;j2;:::;jmg with

 j1;j2;:::;jm D  j1.x1/ j2.x2/ : : :  jm.xm/

and j1; : : : ; jm 2 N is also a basis of S.Rm/ ˝ Cl0;m, called the tensor product or
cartesian basis. Both bases interact nicely with the ordinary FT. One has

F
�
 j;k;`

� D .�i/jCk j;k;` (58.3)

F
�
 j1;j2;:::;jm

� D .�i/j1C���Cjm j1;j2;:::;jm: (58.4)
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It is interesting to compare this result with the subsequent Theorems 1 and 4. For
more information about these two bases, see [17].

Remark 1. The definition of Clifford algebra immediately generalizes to arbitrary
signature. Indeed, the algebra Clp;q over Rp;q is generated by ei , i D 1; : : : ; p C q,
under the relations

eiej C ej ei D 0; i ¤ j;

e2i D 1; i � p

e2i D �1; i > p:

Note, however, that one has to take care with the study of the Dirac operator in
arbitrary signature because it no longer remains elliptic.

Hypercomplex Fourier Transforms in Approach A

Definition, Eigenvalues and Eigenfunctions

In this section a general integral kernel of the following form is considered

K.x; y/ D
�
A.w; Qz/C .x ^ y/B.w; Qz/

�
e
i
2 .cot˛/.jxj2Cjyj2/ (58.5)

with

A.w; Qz/ D
C1X

kD0
˛k .Qz/��JkC�.Qz/C �

k .w/

B.w; Qz/ D
C1X

kD1
ˇk .Qz/���1JkC�.Qz/C �C1

k�1 .w/

and ˛k; ˇk 2 C, Qz D .jxjjyj/= sin˛, w D hx; yi=.jxjjyj/, � D .m � 2/=2 and
˛ 2 Œ��; �
. Here, J� is the Bessel function and C�

k the Gegenbauer polynomial.
The cases where ˛ D 0 or ˛ D ˙� will be excluded in the sequel, as they lead to
distributions rather than integral transforms.

The integral transform associated with this kernel is defined by

FK .f / .y/ D �˛;m

Z

Rm

K.x; y/ f .x/ dx (58.6)

with

�˛;m D .�.1 � e�2i˛//�m=2
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and with dx the standard Lebesgue measure on R
m. The precise form of the

kernel in formula (58.5) is inspired by the results obtained in [20]. In particular,
it encompasses all previously studied kernels in the eigenfunction approach A and
yields transforms which are diagonalized by the basis (58.2) of S.Rm/˝ Cl0;m.

Remark 2. In order to ensure good analytic behavior of the transform (58.6), both
A.w; Qz/ and B.w; Qz/ should satisfy at least polynomial bounds of the following type

jA.w; Qz/j � c.1C jxj/j .1C jyj/j ;
jB.w; Qz/j � c.1C jxj/j .1C jyj/j ;

with j 2 N and c a constant.
This is the case for all subsequent examples, and allows for proving that the

transform (58.6) yields a continuous map on S.Rm/ ˝ Cl0;m, using the method
of [20].

It is now possible to compute the action of the transform (58.6) on the basis (58.2)
of S.Rm/˝ Cl0;m. First the radial behavior of the integral transform is determined:

Proposition 1. Let Mk 2 Mk be a spherical monogenic of degree k. Let f .x/ D
f0.jxj/ be a real-valued radial function in S.Rm/. Further, put � D x=jxj and
	 D y=jyj. Then one has, putting ˇ0 D 0,

FK .f .r/Mk/ .y/ D cm

�
�

�C k
˛k � sin˛

k

2.k C �/
ˇk

�
e
i
2 .cot˛/jyj2Mk.	/

�
Z C1

0

rmCk�1f0.r/ .Qz/��JkC�.Qz/ e i2 .cot˛/r2dr

and

FK .f .r/xMk/ .y/ D cm

�
�

�C k C 1
˛kC1 C sin ˛

k C 1C 2�

2.k C 1C �/
ˇkC1

�

� e i2 .cot˛/jyj2 	 Mk.	/

�
Z C1

0

rmCkf0.r/ .Qz/��JkC1C�.Qz/ e i2 .cot˛/r2dr

with Qz D .r jyj/= sin˛, � D .m � 2/=2 and

cm D 2

�
�
m
2

�
.1 � e�2i˛/m=2 :
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Proof. The proof goes along similar lines as the proof of Theorem 6.4 in [23]. ut
The eigenvalues and eigenfunctions of FK are then given in the following

theorem.

Theorem 1. One has, putting ˇ0 D 0,

FK. 2j;k;`/ D 2��

�.�C 1/

�
�

�C k
˛k � sin˛

k

2.�C k/
ˇk

�
ike�i˛.kC2j /  2j;k;`

and

FK. 2jC1;k;`/ D 2��

�.�C 1/

�
�

�C k C 1
˛kC1 C sin˛

k C 1C 2�

2.�C k C 1/
ˇkC1

�

� ikC1e�i˛.kC2jC1/ 2jC1;k;`:

Proof. This follows from the explicit expression (58.2) of the basis and the identity
(see [33, p. 847, formula 7.421, number 4 with ˛ D 1]):

Z C1

0
x�C1e�ˇx2L�n.x2/J�.xy/dx D 2���1ˇ���n�1.ˇ � 1/ny�e�

y2

4ˇ L�n

 
y2

4ˇ.1 � ˇ/

!
:

ut
Theorem 1 is very important; it allows for designing a hypercomplex Fourier

transform FK by prescribing the eigenvalues on the basis f j;k;`g via

FK. 2j;k;`/ D �ke
�i˛2j  2j;k;`

FK. 2jC1;k;`/ D �ke
�i˛.2jC1/ 2jC1;k;`

for any set of numbers �k; �k 2 C. Indeed, it suffices to solve the system of
equations

�k D 2��

�.�C 1/

�
�

�C k
˛k � sin ˛

k

2.�C k/
ˇk

�
ike�i˛k

�k D 2��

�.�C 1/

�
�

�C k C 1
˛kC1 C sin˛

k C 1C 2�

2.�C k C 1/
ˇkC1

�
ikC1e�i˛k

to determine the integral kernel K.x; y/ in terms of the coefficients ˛k and ˇk .
It is possible to obtain the inverse of the general transform FK on the basis

f j;k;`g.
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Theorem 2. The inverse of FK on the basis f j;k;`g is given by

F�1
K .f / .y/ D ��˛;m

Z

Rm

BK.x; y/ f .x/ dx;

with

BK.x; y/ D
�
C.w; Qz/C .x ^ y/D.w; Qz/

�
e�

i
2 .cot˛/.jxj2Cjyj2/

where

C.w; Qz/ D
C1X

kD0

1

N�
k

.˛k C ˇk sin˛/ .Qz/��JkC�.Qz/C �
k .w/

D.w; Qz/ D �
C1X

kD1

1

N�
k

ˇk .Qz/���1JkC�.Qz/C �C1
k�1 .w/;

and

N�
k D 1

22�.�.�C 1//2

�
�

�C k
˛k � sin˛

k

2.�C k/
ˇk

��
�

�C k
˛k C sin˛

k C 2�

2.�C k/
ˇk

�
:

This result was obtained in [12], by first computing the radial behavior of F�1
K

as in Proposition 1. Subsequently, one can compute the eigenvalues on the basis
f j;k;`g and check that they are inverse to the ones obtained in Theorem 1.

Important Special Cases

In the special case where ˛ D �=2, the kernel (58.5) takes the form

K.x; y/ D A.w; z/C .x ^ y/ B.w; z/ (58.7)

with

A.w; z/ D
C1X

kD0
˛k z��JkC�.z/C �

k .w/

B.w; z/ D
C1X

kD1
ˇk z���1JkC�.z/C �C1

k�1 .w/

and z D jxjjyj, w D hx; yi=.jxjjyj/, � D .m � 2/=2. The corresponding integral
transform is given by

FK .f / .y/ D ��
2 ;m

Z

Rm

K.x; y/ f .x/ dx

where ��
2 ;m

D .2�/�m=2.
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Note that the kernel of the classical Fourier transform (58.1), which can equally
be expressed as the operator exponential e

i�m
4 e

i�
4 .��jxj2/, takes the form (58.7) with

˛k D 2��.�/.k C �/.�i/k
ˇk D 0:

Also the Clifford–Fourier transform (see [8–10,23]), a generalization of the classical
Fourier transform in the framework of Clifford analysis, takes this form. It is defined
by the following operator exponential

F˙ WD e
i�m
4 e

i�
4 .��jxj2�2�/;

with

� WD �
X

j<k

ej ek.xj @xk � xk@xj /:

In case of the Clifford–Fourier transformF�, the coefficients ˛k and ˇk in the kernel
(58.7) take the form:

˛k D 2��1�.�C 1/.i2�C2 C .�1/k/� 2��1�.�/ .k C �/.i2�C2 � .�1/k/
ˇk D �2��.�C 1/.i2�C2 C .�1/k/;

as was obtained in [23]. For the transform FC, similar expressions hold. Moreover,
in [19], an entire class of kernels of the form (58.7), for particular values of the
coefficients ˛k and ˇk , was determined. They yield new integral transforms that
have the same calculus properties (i.e., interaction with the Dirac operator) as the
original Clifford–Fourier transform, but with different spectrum.

Also for general ˛, concrete examples have been studied. The fractional Fourier
transform (see [43]) is a generalization of the classical Fourier transform. It is
usually defined using the operator expression

F˛ D e
i˛m
2 e

i˛
2 .��jxj2/; ˛ 2 Œ��; �
:

Recently, a fractional version of the Clifford–Fourier transform was introduced (see
[20]). It is defined by the following exponential operator

F˛;ˇ D e
i˛m
2 eiˇ�e

i˛
2 .��jxj2/; ˛; ˇ 2 Œ��; �
:

The integral kernel of this transform takes the form (58.5) with

˛k D 2��1�.�/.k C �/i�k.eiˇ.kC2�/ C e�iˇk/� 2��1�.�C 1/i�k.eiˇ.kC2�/ � e�iˇk/

ˇk D 2��.�C 1/

sin˛
i�k.eiˇ.kC2�/ � e�iˇk/:
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There are many other examples of transforms belonging to approach A, such as
the class of hypercomplex radially deformed FTs (see [21,22]), which is constructed
using a deformation of the classical Dirac operator. The kernels of the related
integral transforms have series expansions similar to formula (58.7).

Results

The most difficult problem related to approach A is obtaining closed formulas for
series expansions as in formula (58.5) or (58.7). This can be illustrated nicely with
the Clifford–Fourier transform. Until recently, its integral kernel was only known
explicitly in the case m D 2 (see [9]); for higher even dimensions, a complicated
iterative procedure for constructing the kernel was given in [11], which could only
be used practically in low dimensions. A breakthrough was obtained in [23]. In this
paper it is found that for m even the kernel can be expressed as follows in terms of
a finite sum of Bessel functions:

KC.x; y/ D
��
2

�1=2 �
A.s; t/C B.s; t/C .x ^ y/ C .s; t/

�

with

A.s; t/ D
bm4 � 3

4 cX

`D0
sm=2�2�2`

1

2``Š

�
�
m
2

�

�
�
m
2
� 2`� 1�

QJ.m�2`�3/=2.t/

B.s; t/ D
bm4 � 1

2 cX

`D0
sm=2�1�2`

1

2``Š

�
�
m
2

�

�
�
m
2
� 2`�

QJ.m�2`�3/=2.t/

C .s; t/ D �
bm4 � 1

2 cX

`D0
sm=2�1�2`

1

2``Š

�
�
m
2

�

�
�
m
2
� 2`�

QJ.m�2`�1/=2.t/:

(58.8)

Here, the notations s D hx; yi, t D jx ^ yj D
q
jxj2jyj2 � hx; yi2 and QJ˛.t/ D

t�˛J˛.t/ are used. Moreover, it is shown that KC.x; y/ D K�.x;�y/ holds for m
even. Form odd, the question of determining the kernel explicitly was reduced to the
case of m D 3. There, a more or less complicated integral expression of the kernel
was obtained (see [23, Lemma 4.5]). A relatively simple expression as in formula
(58.8) is not known in this case. Also for other hypercomplex Fourier transforms in
approach A, expressions similar to (58.8) have been obtained, see [19, 20].

Next, it is worthwhile to note that all the examples discussed in this section
are generated by an underlying Lie superalgebra, namely osp.1j2/. More details
on this aspect of the theory can be found in the review [18]. For more information
on representation theory and in particular Lie superalgebras in Clifford analysis,
see [52].
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Another interesting problem is to determine a suitable convolution product for
a hypercomplex FT with kernel as in (58.5). The classical FT and its convolution
product serve as a guide to achieve this. Recall that the classical convolution product
for two functions f and g is defined by

f � g.x/ WD
Z

Rm

f .y/�yg.x/dy; �yg.x/ WD g.x � y/

and interacts nicely with the FT:

F.f � g/ D .2�/m=2F.f /F.g/:

A first way to generalize the convolution product is obtained by introducing a
generalization of the (geometric) translation operator �y , a strategy which is, e.g.,
also used for the Dunkl transform (see [45, 55]). This can be easily illustrated for
the ordinary FT. First, the FT of the translation over z of a function f is computed:

F.�zf /.y/ D .2�/�
m
2

Z

Rm

e�ihx;yif .x � z/dx

D e�ihz;yi.2�/�m
2

Z

Rm

e�ihx;yif .x/dx

D e�ihz;yiF.f /.y/:

This means that, formally, ordinary translation is recovered via

�zf .u/ D F�1
�
e�ihz;yiF.f /.y/

�
: (58.9)

Here, the inverse FT acts on the y variable and yields the u variable.
A generalized translation operator related to the integral transform FK defined

in section “Definition, Eigenvalues and Eigenfunctions” can therefore be defined,
following (58.9), as

Definition 1. Let f 2 S.Rm/ ˝ Cl0;m. For y 2 R
m the generalized translation

operator f 7�! �Ky f is defined by

FK.�Ky f /.x/ D K.y; x/ FK .f / .x/; x 2 R
m:

It can be expressed, by the inverse of FK (see Theorem 2), as an integral operator

�Ky f .x/ D ��˛;m
Z

Rm

BK.�; x/ K.y; �/ FK .f / .�/ d�:
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When the generalized translation operator acts on a radial function, the result can
be computed explicitly. This was first done in the context of the Clifford–Fourier
transform in [23] and subsequently generalized in [12] to:

Theorem 3. Let f 2 S.Rm/ be a real-valued radial function on R
m, i.e. f .x/ D

f0.jxj/ with f0 W RC 7�! R, then

�Ky f .x/ D
2˛0

�.�C 1/
.1 � e2i˛/�m=2e� i

2 .cot˛/.jxj2�jyj2/H� ŒF˛ .f /

� jx � yj

sin ˛

�

with � D .m � 2/=2, F˛ the fractional version of the classical Fourier transform
given by the integral transform

F˛ .f / .y/ D �˛;m

Z

Rm

e�
ihx;yi
sin˛ e

i
2 cot˛.jxj2Cjyj2/f .x/dx

andH� the Hankel transform defined by

H�f .s/ WD
Z 1

0

f .r/
J�.rs/

.rs/�
r2�C1dr:

In the special case when ˛ D �=2, it follows from the previous result that
the generalized translation operator �Ky coincides, up to a constant, with geometric
translation if f is a radial function:

�Ky f .x/ D
2��˛0
�.�C 1/

f .jx � yj/: (58.10)

Using this generalized translation, two types of convolution for functions with
values in the Clifford algebra are obtained:

Definition 2. For f; g 2 S.Rm/˝ Cl0;m, the generalized convolution f �L g, resp.
f �R g, is defined for x 2 R

m by

.f �L g/ .x/ WD
Z

Rm

Œ�Ky f .x/
 g.y/ dy

resp.

.f �R g/ .x/ WD
Z

Rm

f .y/Œ�Ky g.x/
dy;

with �Ky f and �Ky g as in Definition 1.
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The importance of the generalized translation and the related convolution product
lies in obtaining inversion theorems for hypercomplex FTs that go beyond the
Schwartz space. For the Clifford–Fourier transform this was achieved in Theo-
rem 8.4 in [23], by making use of formula (58.10) applied to a scaled gaussian.

Hypercomplex Fourier Transforms in Approach B

Definition, Eigenvalues and Eigenfunctions

The so-called geometric Fourier transform (GFT) can be defined in the following
way.

Definition 3. Denote by Im the set fi 2 Cl0;mji 2 D �1g of geometric square roots
of minus one. Let F1 WD fi1; : : : ; i�g; F2 WD fi�C1; : : : ; img be two ordered finite
sets of such square roots, ik 2 Im;8k D 1; : : : ; m. The GFT FF1;F2 of a function
f W Rm ! Cl0;m takes the form:

FF1;F2.f /.u/ WD .2�/�
m
2

Z

Rm

 
�Y

kD1
e�ikxkuk

!
f .x/

0

@
mY

kD�C1
e�ikxkuk

1

Adx:

This definition yields a subset of the set of all general GFTs as introduced in
[13], where also non-linear functions in the exponentials are allowed. The restriction
to linear factors as in Definition 3 and following [12] allows for obtaining the
eigenvalues and eigenfunctions of the GFT. They are given in the following theorem.

Theorem 4. The basis f j1;j2;:::;jmg of S.Rm/ ˝ Cl0;m diagonalizes the GFT. One
has

FF1;F2. j1;j2;:::;jm/ D
 

�Y

kD1
.�ik/jk

!
 j1;j2;:::;jm

0

@
mY

kD�C1
.�ik/jk

1

A :

Proof. By direct computation it follows that

FF1;F2 . j1;j2;:::;jm/ D .2�/�
m
2

Z

Rm

 
�Y

kD1
e�ikxkuk

!
 j1;j2;:::;jm.x/

0

@
mY

kD�C1
e�ikxkuk

1

Adx

D
 

�Y

kD1
.2�/�

1
2

Z

R

e�ikxkuk jk .xk/dxk

!
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�
0

@
mY

kD�C1
.2�/�

1
2

Z

R

 jk .xk/e
�ikxkuk dxk

1

A

D
 

�Y

kD1
.�ik/jk jk .uk/

!0

@
mY

kD�C1
 jk .uk/.�ik/jk

1

A

D
 

�Y

kD1
.�ik/jk

!
 j1;j2;:::;jm

0

@
mY

kD�C1
.�ik/jk

1

A :

Here, use was made of

.2�/�
1
2

Z

R

 jk .xk/e
�ikxkuk dxk D .�ik/jk jk .uk/;

which is a special case of formula (58.4). ut
As a consequence of this theorem, the inverse transform of any GFT is a GFT

itself, given by

F�1
F1;F2

D Ff�i�;:::;�i1g;f�im;:::;�i�C1g:

Remark 3. Note that all results in this section also carry over to the more general
setup of functions f W Rm ! Clp;q , compare [13]. However, this is not the case for
the transforms of approach A, due to the fact that the Dirac operator is no longer
elliptic in arbitrary signature.

Important Special Cases

Several examples of GFTs have received considerable attention in the literature,
before the general definition was stated in [13].

Historically, the first example of a GFT was given by Sommen in [49] and studied
further by Bülow and Sommer in, e.g., [15]. In this case, one considers the Clifford
algebra Cl0;m. The transform takes the form

F.f /.y/ WD
Z

Rm

f .x/ ee1x1y1 : : : eemxmymdx:

Derivation properties of this transform can, e.g., be found in [7].
Another example is the Clifford Fourier transform (written without hyphen)

introduced by Ebling and Scheuermann in [28] and extended by Bahri and Hitzer
[1,36]. This transform is defined for Clm;0 withm D 2 mod 4 orm D 3 mod 4 by



58 Fourier Transforms in Clifford Analysis 1665

F.f /.y/ WD
Z

Rm

f .x/ ee1:::mhx;yidx:

with e1:::m D e1e2 : : : em the pseudoscalar in Clm;0. Note the different signature of
the Clifford algebra involved.

The most important example is probably the quaternionic FT (qFT). First remark
that the quaternion algebra H is isomorphic with the Clifford algebra Cl0;2 under
the identification i D e1, j D e2 and k D e1e2. Let �; � 2 H be quaternions with
�2 D �2 D �1. Then, following [38], the two-sided qFT is defined as

F�;�.f /.y1; y2/ WD .2�/�1
Z

R2

e��x1y1f .x1; x2/e��x2y2dx1dx2

for functions f 2 L1.R2IH/. The first definition of this two-sided transform, with
� D j and � D k, was introduced in the Ph.D. thesis [29]. In earlier work, devoted
to nuclear magnetic resonance (NMR) imaging, a one sided version was given by
Ernst et al. [32] and by Delsuc [26]. The applicability of the qFT to color image
processing was first demonstrated in [47] using a discrete version. At that point, the
switch was made to two general orthogonal axes � and � instead of j and k. Indeed,
for color image processing there is a preferred axis of the gray-line in color space,
so the transform kernel axes are generally aligned to or perpendicular to this axis.
At the same time [48], a change was again made to one-sided transforms, mostly
driven by the complexity of the resulting operational formula when using the two-
sided qFT definition. Finally, the orthogonality condition on � and � was relaxed
in [38]. For a recent review on the use of the qFT in image processing, the reader
may consult [31]. An overview of all variants of the qFT can be found in [30]. More
information on quaternionic analysis from the mathematical point of view can be
found in [34].

Results

Recently, there has been an increased interest in applying GFTs in various aspects
of signal processing where higher dimensional or vector signals are used, such
as color image processing [31], flow visualization [28], and even spoken word
recognition [5]. The main idea behind these applications is the representation of a
signal (say, a color image) as a pure quaternion or as an element of a suitable Clifford
algebra. This representation is subsequently analysed using a GFT, which takes
into account the multi-dimensional and multi-component nature of the signal under
consideration. This stands in stark contrast to a component based classical analysis,
sometimes also called marginal analysis. Successful further developments of the
hypercomplex approach include the design of a color edge filter [46], construction
of FFT methods to compute qFTs [44], etc.
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The main issue that hinders further development of applications (and in particular
of filter design not based on ad hoc assumptions or ideas) is the lack of a
suitable convolution theorem. Indeed, in [14] it was shown that GFTs, as given
in Definition 3, do not interact nicely with the classical convolution product,
but instead lead to very complicated expressions in the Fourier domain. This
means that, up to now, no filter design was possible in the Fourier domain, and
hence that no fast implementations as multiplication operators have been obtained
so far.

A first step towards solving this problem was undertaken in [12]. There, a new
convolution product for GFTs was defined, based on the observation that in the
classical case the following interaction between convolution and Fourier transform
holds:

F.f � g/ D .2�/m=2F .f /F .g/ :

This was first exploited in a different context by Mustard [42] to define a new
convolution product for the fractional Fourier transform. Based on his idea, a
generalized convolution can then be defined for any GFT as follows:

Definition 4. For any GFT FF1;F2 the convolution �F1;F2 is given by

.f �F1;F2 g/.x/ WD .2�/
m
2 F�1

F1;F2
.FF1;F2.f /FF1;F2.g//.x/:

An important problem is to express the convolution �F1;F2 by means of the
standard convolution

.f � g/.x/ D
Z

Rm

f .y/g.x � y/ dy:

Using the following notation

Definition 5. For functions f; g W Rm ! Cl0;m and multi-indices E�; E� 2 f0; 1gm,
put

f
E�.x/ WD f ..�1/�1x1; : : : ; .�1/�mxm/;
gE� .x/ WD g..�1/�1x1; : : : ; .�1/�mxm/:

the result can be written as follows (see [12]):

Theorem 5. Let J D f0; 1g4�m with j1;k C j2;k C j3;k 2 f0; 2g and j4;k D 0 for
all k D 1; : : : ; m be a set of multi-indices. Any generalized convolution �F1;F2 from
Definition 4 can be expressed as a sum of classical convolutions using Definition 5
by
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.f �F1;F2 g/.x/ D
1

4m

X

Ej2J

X

E�;E�2f0;1gm
c Ej ;E�;E�

0

@
1Y

kD�
.ik/

j1;k

�Y

kD1
.�ik/j2;k f E�

mY

kD�C1
.�ik/j2;k

1

A

�
0

@
�Y

kD1
.�ik/j3;k gE�

mY

kD�C1
.�ik/j3;k

�C1Y

kDm
.ik/

j1;k

1

A .x/

with the sign c Ej ;E�;E� given by

c Ej ;E�;E� D
mY

kD1
.�1/.j.2�kC�kC1;k/C1/.ı.j1;kCj2;kCj3;k /

�1/
;

where

ı.`/ WD
(
1; if ` D 0;

0; if ` 6D 0:

Hypercomplex Fourier Transforms in Approach C

Definition

The general definition used in this approach was established in [2]. The transform
acts on functions on R

2, taking values in the vector part of Cln;0 when n is even,
and in the vector part of ClnC1;0 when n is odd. Here, only the case n even will be
treated. Note also the different signature of Clifford algebra compared to section
“Hypercomplex Fourier Transforms in Approach A”. Let � be a group morphism
(or spin character, in the terminology of [2]) from the abelian group R

2 to Spin.n/.
Then the transform is defined as

Of .�/ WD
Z

R2

f .x; y/ ? �.�x;�y/dxdy

D
Z

R2

�.x; y/f .x; y/�.�x;�y/dxdy
(58.11)

where ? denotes the natural action of Spin.n/ on n-dimensional vectors. The result
of the transform is again a Cln;0 vector-valued function.

Important Special Cases

In [2], particular attention is paid to the case where the value space has dimension
four. First one computes all group morphisms fromR

2 to Spin.4/ as follows. Define
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the set S23;0 of unit bivectors as the set of bivectors B in Cl23;0 with B2 D �1. Then

the group morphisms from R
2 to Spin.4/ are the morphisms Q�u;v;B;w;z;C that send

.x; y/ to

e
1
4 Œx.uCw/Cy.vCz/
ŒBCCCI .B�C/
e

1
4 Œx.u�w/Cy.v�z/
ŒB�CCI .BCC/


with u; v;w; z real, B;C two elements of S23;0 and I D e1e2e3e4 the pseudoscalar.
Putting

D D 1

2
.B C C C I .B � C//;

this allows for simplifying the definition of the generalized Fourier transform
(58.11) to

Definition 6. Let f W R2 ! Cl .1/4;0 be a vector-valued function. Its Clifford Fourier
transform is then defined as follows:

QF.f /.u; v;w; z;D/ D
Z

R2

e
1
2 Œ.x.uCw/Cy.vCz//D
e

1
2 Œ.x.u�w/Cy.v�z//ID
f .x; y/

e�
1
2 Œ.x.uCw/Cy.vCz//D
e�

1
2 Œ.x.u�w/Cy.v�z//ID
dxdy:

In the specific case of w D z D 0, one obtains

F.f /.u; v;D/D
Z

R2
e
1
2 .xuCyv/De 12 .xuCyv/IDf .x; y/e� 1

2 .xuCyv/De� 1
2 .xuCyv/IDdxdy:

Note that D is a bivector in Cl4;0 with D2 D �1. The resulting transforms are
invertible, and simple formulas can be found in [2].

Results

In [2], the generalized FT from Definition 6 is applied to color images, allowing
to perform low pass, high pass, and directional filtering in the Fourier domain. For
these applications, it is important to make suitable choices for the bivectorD in the
definition of the transform.

Discrete counterparts of the continuous transforms discussed in this section were
obtained in [3].

In order to take the geometry of the color image to be analyzed even better into
account, a generalization of the transform in Definition 6 was proposed in [4]. The
essential change is to make the bivector D depend locally on the geometry of the
image (interpreted as a Riemann surface), thus better incorporating all of its features.
The resulting transform is of course more complicated to handle, but nevertheless
remains invertible and shows nice properties.
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Conclusion and Future Directions

In the present chapter, an overview has been given of the three main approaches to
the study of hypercomplex Fourier transforms. In this final section, some important
open problems and directions for future research are indicated.

The most important problem in approach A is to find explicit closed formulas for
the integral kernels that are only available as a series expansion. For the Clifford–
Fourier transform, the kernel is, e.g., not known explicitly in the case of odd
dimension (see [23]). The kernel of the radially deformed hypercomplex FT (see
[22]) depends on a deformation parameter c > �1. It is only computed explicitly
for c D 0 (which corresponds with the ordinary FT). Especially in order to obtain
sharp bounds on the kernel functions, it is crucial to have such explicit formulas
available.

However, it seems that finding these closed formulas is a hard problem, as
there is no transparent method available for that purpose. Rather, for each kernel
a combination of ad hoc methods is necessary. One possibility would be to try and
find a method that allows to compute bounds on kernel functions without needing
the closed formula (in analogy with the work done for the Dunkl transform in [24]).
An additional difficulty is that there seems to be a huge difference between the even
and odd dimensional cases. This is due to the fact that one often exploits a recursion
of size 2 on the dimensions, combined with an explicit, manageable computation in
dimension 2. The odd dimensional case turns out to be much harder, because one
cannot go from dimension m D 1 (where the kernel is usually explicitly known) to
dimensionm D 3.

An important issue regarding approach B is the so-called implementation
problem. As explained in section “Results”, the transforms in this approach are used,
e.g., in color image processing and the main issue that hinders further development
of applications, and in particular of filter design not based on ad hoc assumptions or
ideas, is the lack of a suitable convolution theorem. A first step towards solving
this problem was undertaken in [12], by designing a new convolution product,
which can still be expressed in terms of classical convolution (see Theorem 5).
The main challenge now is twofold. First, as guiding example one should consider
the quaternionic color edge filter [46], which generalizes the classical Prewitt edge
detector and detects sharp changes of color in images. Its definition is based on a
representation of the color RGB space in terms of quaternions. It is still implemented
using the classical convolution product, thus leading to a slow algorithm as the qFT
cannot be applied in a meaningful way. It is expected that application of Theorem 5
will lead to a faster and much more elegant implementation. Second, one should
use the result to construct a general theoretical framework for the filtering of color
images, based on the qFT and the related convolution product.

Concerning approach C, a deeper mathematical study of the transforms it
contains is required. A first step would be the computation of eigenfunctions
and eigenvalues, as well as the interaction with Dirac type differential operators.
Subsequently, also here one could investigate the possibility of defining suitable
convolution products.
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Finally, not all hypercomplex transforms studied so far are covered by the three
approaches mentioned in this chapter. Most notably, the transform obtained by
considering the monogenic extension of the usual exponential kernel is not included.
For a detailed study, we refer the reader to the papers [39–41]. Also the so-called
cylindrical Fourier transform (see [10]), defined by

F.f /.y/ WD
Z

Rm

e x^y f .x/dx;

is not included in the restricted version of approach B presented here. It does
however belong to the entire class as described in [13]. It remains a difficult open
problem to obtain its eigenvalues and eigenfunctions in closed form.
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21. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: Dunkl operators and a family of realizations
of osp.1j2/. Trans. Am. Math. Soc. 364, 3875–3902 (2012)
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