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Abstract. Given a ∗-homomorphism 𝜎 : 𝐶(𝑀)→ L (ℋ) on a Hilbert space ℋ
for a compact metric space 𝑀 , a projection 𝑃 onto a subspace 𝒫 in ℋ is said
to be essentially normal relative to 𝜎 if [𝜎(𝜑), 𝑃 ] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀), where 𝒦
is the ideal of compact operators on ℋ. In this note we consider two notions
of span for essentially normal projections 𝑃 and 𝑄, and investigate when they
are also essentially normal. First, we show the representation theorem for two
projections, and relate these results to Arveson’s conjecture for the closure
of homogenous polynomial ideals on the Drury–Arveson space. Finally, we
consider the relation between the relative position of two essentially normal
projections and the 𝐾 homology elements defined for them.
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1. Introduction

Spurred by a question of Arveson [1, 2, 3, 4], several researchers have been consider-
ing when certain submodules of various Hilbert modules of holomorphic functions
on the unit ball in ℂ𝑛 are essentially normal. In particular, Guo and the sec-
ond author showed in [17] that the closure of a principal homogenous polynomial
ideal in the Drury–Arveson space in 𝔹𝑛 is essentially normal. More recently, the
authors have shown in [13] that the closure of all principal polynomial ideals in
the Bergman module on the unit ball are essentially normal. Other results have
been obtained by Arveson [5], Douglas [10, 11], the first author and Sarkar [12],
Eschmeier [14], Kennedy [19], and Shalit [20].

The second author was supported by NSFC 11271075, the Department of Mathematics at Texas
A&M University and Laboratory of Mathematics for Nonlinear Science at Fudan University.



160 R.G. Douglas and K. Wang

The Arveson conjecture concerns the closure of an arbitrary homogeneous
polynomial ideal which, in general, is not singly generated. For the case of 𝑛 = 1,
one knows that a pure hyponormal operator submodule is essentially normal if it
is finitely generated. The basis on which this result depends is the Berger–Shaw
Theorem [8].

For ideals that are not principal, or singly generated, the results in the several
variable case are few. Guo in [15] firstly proved Arveson’s conjecture in case of the
dimension 𝑛 = 2. Guo and the second author established in [16, 17] essential
normality when 𝑛 = 3 or the dimension of the zero variety of the homogeneous
ideal is one or less, the opposite extreme, more or less, of the case of principal
ideals. There is also a result of Shalit [20] which holds for ideals having a “very
nice” basis relative to the norm. More recently, Kennedy [19] extended that result
in another direction, considering when the linear span of the closures of polynomial
ideals is closed. He gives some examples, but it would appear that not all non-
principal ideals are covered by this result. One should note that these results when
the linear span of two essentially normal submodules is closed is implicit in the
work of Arveson [5, Theorem 4.4].

In this note, we explore a more general version of the question of when the
linear span of two essentially normal submodules is also essentially normal. We
show that this result contains one aspect of the results of Shalit and Kennedy.

Our work does not depend on the special nature of the submodules; that is,
we do not assume any connection with any underlying algebraic structure, only
the fact that the linear span is closed.

There is more than one sense of the span of two submodules relevant in this
context: the first is the obvious one defined to be the closure of the linear span
of two submodules 𝒫 and 𝒬, while the second one considers the span modulo the
ideal of compact operators. If 𝑃 and 𝑄 denote the orthogonal projections onto
𝒫 and 𝒬, respectively, then we will show that this notion makes sense if 0 is an
isolated point in the essential spectrum of 𝑃 +𝑄.

We consider the first notion in Section 2, and the results obtained are based
on the structure theorem for two projections. The latter notion of the essential
span is taken up in Section 3. We apply these results to the context of Arveson’s
conjecture and raise some questions. In particular, we assume that there is a ∗-
homomorphism 𝜎 of 𝐶(𝑀) for some compact metric space 𝑀 and the projections
essentially commute with the range of 𝜎. Finally, in Section 4 we observe that
an essentially normal projection determines an element of the odd 𝐾-homology
group for some compact subset of 𝑀 and consider the relation of the K-homology
elements defined by two essentially normal submodules and their sum.

2. Refinement of the two projection representation

Our results in this section are based on refinements of the structure theorem for
two projections [6, 18].
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Let 𝑃 and 𝑄 be two projections on the Hilbert space ℋ. Then there exist
operators 𝑆1 : 𝒫 → 𝒫 , 𝑆2 : 𝒫⊥ → 𝒫⊥ and 𝑋 : 𝒫⊥ → 𝒫 , where 𝒫 = ran𝑃 with
0𝒫 ≤ 𝑆1 ≤ 𝐼𝒫 , 0𝒫⊥ ≤ 𝑆2 ≤ 𝐼𝒫⊥ and ∥𝑋∥ ≤ 1, such that

𝑃 =

(
𝐼𝒫 0
0 0𝒫⊥

)
and 𝑄 =

(
𝑆1 𝑋
𝑋∗ 𝑆2

)
.

Moreover, if we set 𝒫 = 𝒫1⊕𝒫2⊕𝒫3 and 𝒫⊥ = 𝒬1⊕𝒬2⊕𝒬3, where 𝒫1 = {𝑥 ∈ 𝒫 :
𝑆1𝑥 = 0},𝒫2 = {𝑥 ∈ 𝒫 : 𝑆1𝑥 = 𝑥}, 𝒫3 = 𝒫⊖(𝒫1⊕𝒫2),𝒬2 = {𝑥 ∈ 𝒫⊥ : 𝑆2𝑥 = 𝑥},
𝒬3 = {𝑥 ∈ 𝒫⊥ : 𝑆2𝑥 = 0}, and 𝒬1 = 𝒫⊥ ⊖ (𝒬2 ⊕𝒬3), then we have

𝑆1 =

⎛⎝ 0𝒫1 0 0
0 𝐼𝒫2 0
0 0 𝑆′1

⎞⎠ ∈ L (𝒫1 ⊕ 𝒫2 ⊕ 𝒫3) with 𝑆′1 ∈ L (𝒫3),

𝑆2 =

⎛⎝ 𝑆′2 0 0
0 𝐼𝒬2 0
0 0 0𝒬3

⎞⎠ ∈ L (𝒬1 ⊕𝒬2 ⊕𝒬3) with 𝑆′2 ∈ L (𝒬1), and

𝑋 =

⎛⎝ 0 0 0
0 0 0
𝑋 ′ 0 0

⎞⎠ ∈ L (𝒬1 ⊕𝒬2 ⊕𝒬3,𝒫1 ⊕ 𝒫2 ⊕ 𝒫3) with 𝑋 ′ ∈ L (𝒬1,𝒫3).

These results are all straightforward.
Further, using matrix computations and the fact that 𝑄2 = 𝑄 = 𝑄∗, one

shows that there exists an isometry 𝑉 from 𝒬1 onto 𝒫3 such that 𝑉 ∗𝑆′1𝑉 =
𝐼𝒬1 − 𝑆′2. We refer the reader to [18] for a detailed argument. Therefore, we have
derived the standard model for two projections.

Theorem 2.1. Two projections 𝑃 and 𝑄 on a Hilbert space ℋ are determined by
(1) a decomposition ℋ = ℋ0 ⊕ℋ1 ⊕ℋ′ ⊕ℋ′ ⊕ℋ2 ⊕ℋ3, and
(2) a positive contraction 𝑆 ∈ ℒ(ℋ′) with {0, 1} not in its point spectrum.
In this case, one has

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝐼ℋ′ 0 0 0
0 0 0 0ℋ′ 0 0
0 0 0 0 0ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠
and

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝
0ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝑆 𝑋 0 0
0 0 𝑋 𝐼ℋ′ − 𝑆 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 𝑋 =
√

𝑆(𝐼ℋ′ − 𝑆) ∈ ℒ(ℋ′).
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Proof. Again, the representation results follow from standard matrix computa-
tions. □

The following question happens frequently in many concrete problems in
operator theory.

Question 2.2. When is 𝒫 +𝒬 closed in ℋ, where 𝒫 = ran𝑃 and 𝒬 = ran𝑄?

Note we have:

𝒫 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥0
𝑥1
𝑥′

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ : 𝑥0 ∈ ℋ0, 𝑥1 ∈ ℋ1, 𝑥
′ ∈ ℋ′

⎫⎬⎭
and

𝒬 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
0
𝑥1

𝑆𝑥′ +𝑋𝑦′

𝑋𝑥′ + (𝐼ℋ′ − 𝑆)𝑦′

𝑥2
0

⎞⎟⎟⎟⎟⎟⎟⎠ : 𝑥1 ∈ ℋ1, 𝑥
′, 𝑦′ ∈ ℋ′, 𝑥2 ∈ ℋ2

⎫⎬⎭
.

Therefore,

𝒫 +𝒬 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥0
𝑥1
𝑥′

𝑧
𝑥2
0

⎞⎟⎟⎟⎟⎟⎟⎠
: 𝑥0 ∈ ℋ0, 𝑥1 ∈ ℋ1, 𝑥

′ ∈ ℋ′,
𝑧 ∈ ran𝑋 + ran(𝐼ℋ′ − 𝑆), 𝑥2 ∈ ℋ2

⎫⎬⎭
.

This implies that 𝒫 + 𝒬 is closed if and only if ran𝑋 + ran(𝐼ℋ′ − 𝑆) is closed.

Since 𝑋 =
√

𝑆(𝐼ℋ′ − 𝑆), we have that ran𝑋 ⊆ ran(𝐼ℋ′ − 𝑆)
1
2 . Moreover, by the

spectral theorem for the positive contraction 𝑆, one sees that
√
𝑆 +

√
𝐼ℋ′ − 𝑆 is

invertible onℋ′. This implies that ran𝑋+ran(𝐼ℋ′−𝑆) ⊇ ran(𝐼ℋ′−𝑆)
1
2 . Therefore,

ran𝑋 +ran(𝐼ℋ′ −𝑆) is closed if and only if ran(𝐼ℋ′ −𝑆)
1
2 is closed. Since 1 is not

in the point spectrum of 𝑆, it follows from the spectral theorem that ran(𝐼ℋ′−𝑆)
1
2

is closed if and only if 1 is not in the spectrum of 𝑆. Hence we have the following
result.

Theorem 2.3. For two projections 𝑃 and 𝑄 on the Hilbert space ℋ with 𝒫 = ran𝑃
and 𝒬 = ran𝑄, the linear span 𝒫 + 𝒬 is closed if and only if 1 /∈ 𝜎(𝑆), or
equivalently, 𝜎(𝑃𝑄𝑃 ) ∩ (𝜀, 1) = 𝜙 for some 0 < 𝜀 < 1, where 𝑆 is the same as in
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Theorem 2.1. Moreover, in the case that ℛ = 𝒫 + 𝒬 is closed, the projection 𝑅
onto ℛ has the form

𝑅 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝐼ℋ′ 0 0 0
0 0 0 𝐼ℋ′ 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠
Proof. Only the last statement remains to be proved and that follows from the fact
that 1 /∈ 𝜎(𝑆) if and only if 0 /∈ 𝜎(𝐼ℋ′ −𝑆), which implies ran(𝐼ℋ′ −𝑆) = ℋ′. □

A nearly immediate consequence of the representation theorem is the follow-
ing characterization of the 𝐶∗-algebra 𝒜(𝑃,𝑄, 𝐼) generated by projections 𝑃 , 𝑄
and the identity operator on the Hilbert space ℋ. This is usually attributed to
Dixmier [9].

Theorem 2.4. Let 𝑃 and 𝑄 be the projections onto the subspaces 𝒫 and 𝒬 of the
Hilbert space ℋ, respectively. If 𝒫∩𝒬 = 𝒫⊥∩𝒬 = 𝒫∩𝒬⊥ = 𝒫⊥∩𝒬⊥ = {0}, then
𝒜(𝑃,𝑄, 𝐼) is ∗-algebraically isomorphic to a ∗-subalgebra 𝒞 of 𝑀2(𝐶(𝑀)), where
𝑀 = 𝜎(𝑃𝑄𝑃 ), 𝑀2(𝐶(𝑀)) denotes the algebra of two by two matrices with entries
in 𝐶(𝑀) and

𝒞 =
{(

𝜙11 𝜙12
𝜙21 𝜙22

)
∈𝑀2(𝐶(𝑀)) : 𝜙12(𝑖) = 𝜙21(𝑖) = 0, if 𝑖 = 0, 1 and 𝑖 ∈𝑀

}
.

Proof. Applying the spectral theorem to the operators 𝐼𝒫 and 𝑆, one obtains the
correspondence from which the result follows:

𝑃 =

(
𝐼𝒫 0
0 0

)
∼

(
1 0
0 0

)
∈𝑀2(𝐶(𝑀))

and

𝑄 =

(
𝑆

√
𝑆(1− 𝑆)√

𝑆(1− 𝑆) 1− 𝑆

)
∼

(
𝜒

√
𝜒(1− 𝜒)√

𝜒(1 − 𝜒) 1− 𝜒

)
∈𝑀2(𝐶(𝑀)),

where 1 and 𝜒 denote the functions on 𝑀 defined by 1(𝑥) = 1 and 𝜒(𝑥) = 𝑥 for
𝑥 ∈ 𝑀 . The fact that the functions 𝜙12 and 𝜙21 in the definition of 𝒞 vanish at
0, 1 ∈𝑀 follows from the fact that the function

√
𝜒(1− 𝜒) does. □

We now use the characterization of the 𝐶∗-algebra generated by two projec-
tions to get our first result on the essential normality of the projection onto the
linear span when it is closed.

Theorem 2.5. For two projections 𝑃 and 𝑄 on the Hilbert space ℋ, if ℛ = ran𝑃 +
ran𝑄 is closed, then the 𝐶∗-algebra 𝒜(𝑃,𝑄, 𝐼ℋ) generated by 𝑃,𝑄 and the identity
operator 𝐼ℋ contains the projection 𝑅 onto the subspace ℛ.
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Proof. Using a direct matrix computation, one sees that the operator 𝑃 + (𝐼 −
𝑃 )𝑄(𝐼 − 𝑃 ), which is in the 𝐶∗-algebra 𝒜(𝑃,𝑄, 𝐼), has the form

𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝐼ℋ′ 0 0 0
0 0 0 𝐼ℋ′ − 𝑆 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠ .

This implies that 𝜎(𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )) ⊆ {0} ∪ [𝜀, 1] for some 0 < 𝜀 < 1.
Since [𝜀, 1]∩𝜎(𝑃 +(𝐼−𝑃 )𝑄(𝐼−𝑃 )) is an open and closed subset of the spectrum
𝜎(𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )), it follows from the spectral theorem that the spectral
projection 1[𝜀,1](𝑃 + (𝐼 −𝑃 )𝑄(𝐼 −𝑃 )) is in 𝒜(𝑃,𝑄, 𝐼), which leads to the desired
result since 1[𝜀,1](𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )) = 𝑅. □

We now relate the representation result to a question in the context of Arve-
son’s conjecture. We will provide a more precise statement in Section 4.

Theorem 2.6. Suppose 𝜎 : 𝐶(𝑀)→ ℒ(ℋ) is a ∗-homomorphism for some compact
metric space 𝑀 , and 𝑃,𝑄 are projections on the Hilbert space ℋ such that the
commutators [𝜎(𝜑), 𝑃 ] ∈ 𝒦 and [𝜎(𝜑), 𝑄] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀), where 𝒦 denotes
the ideal of compact operators on ℋ. If ℛ = ran𝑃 + ran𝑄 is closed and 𝑅 is the
projection onto ℛ, then [𝜎(𝜑), 𝑅] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀).

Proof. Using an elementary 𝐶∗-algebra argument, one shows that [𝜎(𝜑), 𝑇 ] ∈ 𝒦 for
any operator 𝑇 ∈ 𝒜(𝑃,𝑄, 𝐼). Combining this fact with Theorem 2.5, one obtains
the desired result. □

Corollary 2.7. With the same hypotheses, the projection �̃� onto 𝒫 ∩𝒬 essentially
commutes with the range of 𝜎.

Proof. This is an immediate consequence of Theorem 1 in [11] and the exact
sequence

0→ �̃�
𝑖→ 𝒫 ⊕𝒬 𝑗→ ℛ→ 0,

where 𝑖(𝑟) = (𝑟,−𝑟), and 𝑗(𝑝, 𝑞) = 𝑝+ 𝑞 for 𝑟 ∈ �̃�, 𝑝 ∈ 𝒫 , 𝑞 ∈ 𝒬. □

Remark 2.8. In both the theorem and corollary, 𝐶(𝑀) can be replaced by any
𝐶*-subalgebra of L (ℋ).
Remark 2.9. These results are related to a theorem of Arveson [5, Theorem 4.4]
and the more recent work of Kennedy [19] in which essential normality is replaced
by 𝑝-essential normality, where the commutators are assumed to be in the Schat-
ten 𝑝-class for 1 ≤ 𝑝 <∞. If one examines the proof of Theorem 2.5 more closely,
the preceding arguments can be refined to obtain analogous results for 𝑝-essential
normality. Basically, this is true because the functional calculus which yields the
spectral projection 1[𝜀,1](𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )) can be approximated on a neigh-
borhood of the spectrum with analytic functions.
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We can extend these results somewhat using the following reduction which
is essentially algebraic.

Theorem 2.10. Suppose 𝒫 and 𝒬 are subspaces of the Hilbert space ℋ and ℛ♯ is
a subspace of 𝒫 ∩ 𝒬. Then 𝒫 +𝒬 is closed if and only if 𝒫/ℛ♯ +𝒬/ℛ♯ is closed
in ℋ/ℛ♯.

Proof. It follows from the fact that 𝒫/ℛ♯ + 𝒬/ℛ♯ = (𝒫 + 𝒬)/ℛ♯ and the fact
that for any linear manifold ℒ containing ℛ♯, ℒ/ℛ♯ is closed if and only if ℒ is
closed. □

Corollary 2.11. With the same hypotheses, the closeness of 𝒫/ℛ♯+𝒬/ℛ♯ is equiv-
alent to the closeness of 𝒫/(𝒫 ∩ 𝒬) +𝒬/(𝒫 ∩ 𝒬).
Proof. Both of these statements are equivalent to 𝒫 +𝒬 being closed in ℋ. □

3. Essential span of subspaces

The following question and corresponding result are important for considering the
notion of essential span in this section.

Question 3.1. When do two projections 𝑃 and 𝑄 on a Hilbert space ℋ almost
commute; that is, when is [𝑃,𝑄] ∈ 𝒦(ℋ)?

Using the representation theorem for 𝑃 and 𝑄 above, we see that [𝑃,𝑄] ∈ 𝒦
if and only if 𝑋 ∈ 𝒦 and so we have the following result.

Theorem 3.2. For projections 𝑃 and 𝑄 onto subspaces 𝒫 and 𝒬, respectively, on a
Hilbert space ℋ, [𝑃,𝑄] ∈ 𝒦 if and only if 𝜎𝑒(𝑆) ⊂ {0, 1}. Moreover, 𝑃𝑄 ∈ 𝒦 if and
only if 𝑆 ∈ 𝒦 and dim𝒫 ∩𝒬 <∞ in the representation appearing in Theorem 2.1.

Proof. The proof follows from a matrix calculation in the above representation
theorem which shows that [𝑃,𝑄] ∈ 𝒦 if and only if 𝑋 =

√
𝑆(𝐼ℋ′ − 𝑆) is compact.

For 𝑃𝑄 ∈ 𝒦, it is necessary and sufficient for 𝑆 and 𝐼ℋ1 to be compact. □

If 𝑃 and 𝑄 are projections on the Hilbert space ℋ, then another notion of the
span of the ranges of 𝑃 and 𝑄 is relevant when considering questions of essential
normality, which involves the images of 𝑃 and 𝑄 in the Calkin algebra. If 0 is an
isolated point in the essential spectrum, 𝜎𝑒(𝑃 +𝑄), of 𝑃 +𝑄, or 0 /∈ 𝜎𝑒(𝑃 +𝑄),
then the image in the Calkin algebra of the spectral projection, 𝑃

⋁
𝑒 𝑄, for [𝜀,∞],

where (0, 𝜀) ∩ 𝜎𝑒(𝑃 +𝑄) = 𝜙, can be thought of as the “essential span” of ran𝑃
and ran𝑄. (Note that the image of this spectral projection in the Calkin algebra
does not depend on 𝜀 whenever (0, 𝜀)∩ 𝜎𝑒(𝑃 +𝑄) = 𝜙.) One result related to this
notion is the following.

Theorem 3.3. If [𝑃,𝑄] ∈ 𝒦, then 0 is isolated in 𝜎𝑒(𝑃 +𝑄). Moreover, if 𝑃 and 𝑄
almost commute with a 𝐶∗-algebra 𝔄, then so does any projection on ℋ with the
image 𝑃

⋁
𝑒 𝑄 in the Calkin algebra.
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Proof. Considering the standard model for two projection in Section 2, one sees
that [𝑃,𝑄] ∈ 𝒦 implies that 𝑋 is compact and 𝜎𝑒(𝑃 +𝑄) ⊆ {0, 1, 2}. This implies
that [𝜀, 2] is an open and closed subset of 𝜎(𝑃 +𝑄) for some 0 < 𝜀 < 1 and hence
1[𝜀,2](𝑃+𝑄) is in 𝒜(𝑃,𝑄, 𝐼), where 𝒜(𝑃,𝑄, 𝐼) is the 𝐶∗-algebra generated by 𝑃,𝑄
and the identity operator 𝐼. Therefore, its image in the Calkin algebra, 𝑃

⋁
𝑒 𝑄,

commutes with the image of 𝔄, which completes the proof. □

One thing one needs to be clear on is that the image of 𝑃
⋁

𝑄 in the Calkin
algebra and 𝑃

⋁
𝑒 𝑄 are not necessarily the same. Consider, for example, the sub-

spaces 𝒫 = span{𝑒𝑛⊕0 : 𝑛 ∈ ℕ} in ℓ2⊕ℓ2 and 𝒬 = span{𝑒𝑛⊕ 1
𝑛𝑒𝑛 : 𝑛 ∈ ℕ}. These

subspaces have the images of 𝜋(𝑃
⋁

𝑄) and 𝑃
⋁

𝑒 𝑄 in the Calkin algebra which
are the images of the projections onto ℓ2⊕ ℓ2 and ℓ2⊕ (0), respectively. Note that
in this case 𝒫 +𝒬 is not closed, which is the key as the following result shows.

Theorem 3.4. Let 𝑃,𝑄 be the projections onto the subspaces 𝒫 and 𝒬 of a Hilbert
space ℋ, respectively. Then 𝒫 +𝒬 is closed if and only if 𝜋(𝑃 ⋁

𝑄) = 𝑃
⋁

𝑒 𝑄.

Proof. We first suppose that 𝒫 +𝒬 is closed. Using the notation in Theorem 2.1,
we have that

𝑃 +𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐼ℋ0 0 0 0 0 0
0 2𝐼ℋ1 0 0 0 0

0 0 𝐼ℋ′ + 𝑆
√

𝑆(𝐼ℋ′ − 𝑆) 0 0

0 0
√

𝑆(𝐼ℋ′ − 𝑆) 𝐼ℋ′ − 𝑆 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠ .

By Theorem 2.3 we know that 1 /∈ 𝜎(𝑆) when 𝒫 + 𝒬 is closed. Applying the
spectral theorem to the operator 𝑆, one obtains that 0 is isolated in 𝜎(𝑃 + 𝑄).
This implies that the notion 𝑃

⋁
𝑒 𝑄 makes sense and, in fact, it is the image in

the Calkin algebra of the projection onto ran(𝑃 + 𝑄). Moreover, by the above
representation of 𝑃 +𝑄, one sees that

ran(𝑃 +𝑄) = ℋ0 ⊕ℋ1 ⊕ℋ′ ⊕ℋ′ ⊕ℋ2 = 𝒫 +𝒬.

It follows that 𝑃
⋁

𝑒 𝑄 is the image of the projection onto 𝒫 +𝒬.
On the other hand, in case that 𝜋(𝑃

⋁
𝑄) = 𝑃

⋁
𝑒 𝑄, there exists 0 < 𝜀 < 1

such that (0, 𝜀)∩𝜎𝑒(𝑃 +𝑄) = 𝜙 and 𝑃
⋁

𝑄−1[𝜀,∞](𝑃 +𝑄) is a finite-dimensional
projection. Applying the spectral theorem for 𝑆 to the matrix representation of 𝑃+
𝑄, one sees that the spectral projection of 𝑆 for (1−𝜀, 1) is also a finite-dimensional
projection. Combing this fact with that 1 is not in the point spectrum of 𝑆, we
have that 1 /∈ 𝜎(𝑆), which leads to the desired result using Theorem 2.3. □

While it seems inconceivable that [𝑝] + [𝑞] is always closed for polynomials 𝑝
and 𝑞 in ℂ[𝑧1, . . . , 𝑧𝑛]; here [⋅] denotes the closure in the Hardy, Bergman or Drury–
Arveson modules on the unit ball, it seems quite possible that the projections
onto [𝑝] and [𝑞] always almost commute. One thing making the answering of such
a question difficult is the fact that [𝑝] ∩ [𝑞] is always large containing [𝑝𝑞]. One
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possible way to circumvent this problem might be to consider the quotient modules
[𝑝]⊥ and [𝑞]⊥. We’ll have something more to say about them in the next section.

Another possibility to handle the fact that [𝑝] ∩ [𝑞] is large might be to use
Theorem 2.10 to reduce the matter to [𝑝]/([𝑝]∩ [𝑞]) and [𝑞]/([𝑝]∩ [𝑞]). In this case,
[𝑝]/([𝑝]∩ [𝑞]) and [𝑞]/([𝑝]∩ [𝑞]) are semi-invariant modules. We will obtain a result
using this approach in the following section.

4. Locality of essentially normal projections

Let 𝑀 be a compact metric space and 𝜎 : 𝐶(𝑀)→ L (ℋ) be a ∗-homomorphism
for a Hilbert space ℋ. We say that a projection 𝑃 on ℋ is essentially normal
relative to 𝜎 if [𝜎(𝜑), 𝑃 ] ∈ 𝒦 for any 𝜑 ∈ 𝐶(𝑀). This implies that the map
𝜎𝑃 : 𝜑 → 𝜋(𝑃𝜎(𝜑)𝑃 ) ∈ Q(ℋ) into the Calkin algebra Q(ℋ) = L (ℋ)/𝒦(ℋ) is a
∗-homomorphism. Hence, there exists a compact subset 𝑀𝑃 of 𝑀 such that the
following diagram commutes:

𝐶(𝑀)
𝜎−→ L (ℋ)

↓ ↓
𝐶(𝑀𝑃 )

�̂�𝑃−→ Q(𝑃ℋ)
.

Here the vertical arrow on the left is defined by restriction; that is, 𝜑 → 𝜑∣𝑀𝑃 ,
and the one on the right is the compression to ran𝑃 followed by the map onto
the Calkin algebra. Therefore, using [7], one knows that (𝜎, 𝑃 ) defines an element
[𝜎, 𝑃 ] ∈ 𝐾1(𝑀𝑃 ). An interesting question concerns the relation of elements [𝜎, 𝑃 ]
and [𝜎,𝑄] for two essentially normal projections 𝑃 and 𝑄 relative to 𝜎.

Now this relationship can’t be too simple. In particular, consider the repre-
sentation 𝜏 of 𝐶(𝑐𝑙𝑜𝑠𝔹𝑛) in 𝐿2(𝔹𝑛) and the projection 𝑃 onto the Bergman space
𝐿2𝑎(𝔹

𝑛). For 𝑝 ∈ ℂ[𝑧1, . . . , 𝑧𝑛], one knows [13] that the projection 𝑄𝑝 of 𝐿
2(𝔹𝑛)

onto the closure [𝑝] of the ideal (𝑝) in ℂ[𝑧1, . . . , 𝑧𝑛] generated by 𝑝 is essentially nor-
mal; that is, [𝜏(𝜑), 𝑄𝑝] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑐𝑙𝑜𝑠𝔹𝑛). Further, we have that 𝑅𝑝 = 𝑃 −𝑄𝑝

is also essentially normal and 𝑀[𝜏,𝑅𝑝] ⊆ 𝑍(𝑝)∩∂𝔹𝑛, where 𝑍(𝑝) is the zero variety
of the polynomial 𝑝. It follows that the image of [𝜏, 𝑅𝑝] ∈ 𝐾1(∂𝔹𝑛) is zero since
𝑍(𝑝)∩ ∂𝔹𝑛 is a proper subset of ∂𝔹𝑛. Therefore, one has [𝜏, 𝑃 ] = [𝜏,𝑄𝑝] for every
polynomial 𝑝 ∈ ℂ[𝑧1, . . . , 𝑧𝑛]. Hence, there is a great variety of essentially normal
projections defining the same element in 𝐾1(∂𝔹𝑛).

However, we do have a result for what happens at the opposite extreme.

Theorem 4.1. Suppose that 𝑃 and 𝑄 are essentially normal projections on the
Hilbert space ℋ for the ∗-homomorphism 𝜎 : 𝐶(𝑀) → L (ℋ) for some compact
space 𝑀 . If 𝑀𝑃 ∩𝑀𝑄 = 𝜙, then 𝑃𝑄 ∈ 𝒦.

Proof. By the assumption that 𝑃 and 𝑄 are essentially normal relative to 𝜎, one
sees that the operator 𝑃𝑄 almost intertwines the two representations 𝜎∣𝐶(𝑀𝑃 ) and
𝜎∣𝐶(𝑀𝑄); that is, one has that 𝑃𝜎(𝜑)𝑃 (𝑃𝑄) − (𝑃𝑄)𝑄𝜎(𝜑)𝑄 ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀).
Thus, in the Calkin algebra, if 𝜑 ∈ 𝐶(𝑀) satisfies 𝜑∣𝑀𝑃 ≡ 1 and 𝜑∣𝑀𝑄 ≡ 0,
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we obtain that 𝜋(𝑃𝜎(𝜙)𝑃 )𝜋(𝑃𝑄) = 𝜋(𝑃𝑄)𝜋(𝑄𝜎(𝜙)𝑄). But, 𝜋(𝑄𝜎(𝜑)𝑄) = 0 and
𝜋(𝑃𝜎(𝜑)𝑃 ) = 𝜋(𝑃 ), this means that 𝜋(𝑃𝑄) = 0, which implies 𝑃𝑄 ∈ 𝒦 and
completes the proof. □

We can use this theorem to obtain a partial result concerning the relation of
the projections onto [𝑝] and [𝑞] for 𝑝, 𝑞 ∈ ℂ[𝑧1, . . . , 𝑧𝑛].

Corollary 4.2. For two polynomials 𝑝, 𝑞 ∈ ℂ[𝑧1, . . . , 𝑧𝑛], let 𝑃 and 𝑄 be the projec-
tions onto the submodules 𝒫 = [𝑝],𝒬 = [𝑞] on 𝐿2𝑎(𝔹

𝑛), respectively. If 𝑝, 𝑞 satisfy
𝑍(𝑝) ∩ 𝑍(𝑞) ∩ ∂𝔹𝑛 = 𝜙, then we have that [𝑃,𝑄] ∈ 𝒦.
Proof. Note that 𝐼 − 𝑃, 𝐼 −𝑄 are the projections onto the quotient modules 𝒫⊥
and 𝒬⊥, respectively. Using the notation in the above, by [13] we know that
𝑀𝐼−𝑃 ⊆ 𝑍(𝑝)∩ ∂𝔹𝑛 and 𝑀𝐼−𝑄 ⊆ 𝑍(𝑞)∩ ∂𝔹𝑛. It follows from the hypothesis that
𝑀𝐼−𝑃 ∩𝑀𝐼−𝑄 = 𝜙. By Theorem 4.1 we have that (𝐼−𝑃 )(𝐼−𝑄) and (𝐼−𝑄)(𝐼−𝑃 )
are compact. Therefore, one sees that [𝑃,𝑄] ∈ 𝒦, which completes the proof. □

We can extend this result using Theorem 2.10 as follows.

Corollary 4.3. For polynomials 𝑝, 𝑞, 𝑟 ∈ ℂ[𝑧1, . . . , 𝑧𝑛] with 𝑍(𝑝) ∩ 𝑍(𝑞) ∩ ∂𝔹𝑛 = 𝜙,
let 𝒫 = [𝑝𝑟] and 𝒬 = [𝑞𝑟] be the submodules in 𝐿2𝑎(𝔹

𝑛). Then one has [𝑃,𝑄] ∈ 𝒦,
where 𝑃,𝑄 are the projections onto 𝒫 and 𝒬, respectively.
Proof. One can generalize the argument in [13] to show that

𝑀[𝑝𝑟]⊥/[𝑟]⊥ ⊆ 𝑍(𝑝) ∩ ∂𝔹𝑛 𝑎𝑛𝑑𝑀[𝑞𝑟]⊥/[𝑟]⊥ ⊆ 𝑍(𝑞) ∩ ∂𝔹𝑛.

By Theorem 4.1, this implies that (𝑅 − 𝑃 )(𝑅 − 𝑄) and (𝑅 − 𝑄)(𝑅 − 𝑃 ) are
compact, where 𝑅 is the projection onto the submodule [𝑟]. This means that
[𝑃,𝑄] = [𝑅− 𝑃,𝑅 −𝑄] ∈ 𝒦, which completes the proof. □

Another example of the application of the notion of the locality of essentially
normal projection is the following result which is more or less the opposite situation
of the previous theorem.

Theorem 4.4. Assume that 𝜎 : 𝐶(𝑀)→ Q(ℋ) is a ∗-homomorphism on the Hilbert
space ℋ for a compact metric space 𝑀 , and 𝑃 and 𝑄 are two essentially normal
projections such that 𝒫 ∩ 𝒬⊥ = 𝒫⊥ ∩ 𝒬 = {0}, where 𝒫 = ran𝑃 and 𝒬 = ran𝑄.
If 𝒫 +𝒬⊥ is closed, then 𝑀𝑃 =𝑀𝑄 and [�̂�𝑃 ] = [�̂�𝑄] ∈ 𝐾1(𝑀𝑃 ).

Proof. In the representation theorem for 𝑃,𝑄, the spaces ℋ0 and ℋ2 are {0} by
assumption and we can write 𝒫 = ℋ1 ⊕ 𝒫 ′ and 𝒬 = ℋ1 ⊕ 𝒬′ corresponding to
𝑃 ′ = 𝑃 − 𝐼ℋ1 and 𝑄′ = 𝑄 − 𝐼ℋ1 . As in the proof of Theorem 4.1, the image
𝜋(𝑃 ′𝑄′) of 𝑃 ′𝑄′ in the Calkin algebra intertwines the operators 𝜋(𝑃 ′𝜎(𝜑)𝑃 ′) and
𝜋(𝑄′𝜎(𝜑)𝑄′). Using Theorem 2.3 and the assumption 𝒫+𝒬⊥ is closed, we have 0 /∈
𝜎(𝑆) = 𝜎(𝑃 ′𝑄′𝑃 ′). Combining this with the fact ker𝑃 ′𝑄′ = 𝒫 ′⊥ ∩ 𝒬′ = {0}, one
sees that 𝑃 ′𝑄′ : 𝒬′ → 𝒫 ′ is invertible. Therefore, using the polar decomposition
in the Calkin algebra, one sees that 𝑀𝑃 = 𝑀𝑄 and that the 𝐾1 elements are
equal. □
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There would seem to be a limit to what can be concluded about the 𝐾1 ele-
ment. If 𝑘 ∈ 𝐾1(𝑀𝑃 ) for some essentially normal projection 𝑃 on the Hilbert space
ℋ with a ∗-homomorphism 𝜎 : 𝐶(𝑀) → L (ℋ), then there exists an essentially
normal projection 𝑄 ≤ 𝑃 such that [𝜎,𝑄] = 𝑘 ∈ 𝐾1(𝑀𝑃 ).
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