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Abstract. We study non-negative self-adjoint extensions of a non densely de-
fined non-negative symmetric operator �̇� with the exit in the rigged Hilbert
space constructed by means of the adjoint operator �̇�∗ (bi-extensions). Cri-
teria of existence and descriptions of such extensions and associated closed
forms are obtained. Moreover, we introduce the concept of an extremal non-
negative bi-extension and provide its complete description. After that we state
and prove the existence and uniqueness results for extremal non-negative bi-
extensions in terms of the Krĕın–von Neumann and Friedrichs extensions of
a given non-negative symmetric operator. Further, the connections between
positive boundary triplets and non-negative self-adjoint bi-extensions are pre-
sented.

Mathematics Subject Classification (2010). Primary 47A10, 47B44;
Secondary 46E20, 46F05.

Keywords. Non-negative symmetric operator, self-adjoint bi-extension, non-
negative self-adjoint bi-extension, extremal bi-extension.

1. Introduction

In order to describe the main ideas and results of the current paper, we first recall
the notion of the rigged Hilbert spaces. A triplet ℋ+ ⊂ ℋ ⊂ ℋ− is a rigged

Hilbert space constructed upon a symmetric operator �̇� in a Hilbert space ℋ if
ℋ+ = Dom(�̇�

∗) with an inner product defined by

(𝑓, 𝑔)+ = (𝑓, 𝑔) + (�̇�
∗𝑓, �̇�∗𝑔), 𝑓, 𝑔 ∈ Dom(𝐴∗). (1.1)

and ℋ− is the space of all anti-linear functional on ℋ+ that are continuous w.r.t.
∥ ⋅ ∥+. An extension theory of symmetric operators in rigged Hilbert spaces was
thoroughly covered in [7]. One of the objects of this theory is a self-adjoint bi-

extension 𝔸 of a symmetric operator �̇� whose definition is given below in Pre-
liminaries section. Throughout this entire article, by a non-negative operator in a
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rigged Hilbert space we understand an operator 𝕋 such that (𝕋𝑓, 𝑓) ≥ 0 for all
𝑓 ∈ Dom(𝕋). In this paper we put our main focus on non-negative bi-extensions of
a non-negative symmetric operator. The theory of extensions of non-negative sym-
metric operators originates in the works of von Neumann, Friedrichs, and Krĕın
(see survey [12]). That is why most of the main results of the paper are given in
terms of the Krĕın–von Neumann and Friedrichs extensions of a given non-negative
symmetric operator that are described in details in Section 3. The existence con-
ditions for non-negative bi-extensions are presented in Section 4 and rely on the
concepts if disjointness and transversality of self-adjoint extensions that were in-
troduced in Preliminaries. Here we also give a descriptions of the non-negative
self-adjoint bi-extensions and associated closed quadratic forms. Section 5 is solely
dedicated to extremal self-adjoint bi-extensions and contains existence and unique-
ness results. The connections between non-negative self-adjoint bi-extensions and
boundary triplets is established in Section 6.

The results of the current paper complement and enhance the classical results
of the theory of extensions of non-negative symmetric operators as well as some
new developments of this theory in rigged Hilbert spaces discussed in [7], [8]. Ap-
plications of these results may be used in solving realization problems for Stieltjes
and inverse Stieltjes functions in infinite-dimensional Hilbert spaces similarly to
finite-dimensional cases treated in [13] and [14].

2. Preliminaries

For a pair of Hilbert spaces ℋ1, ℋ2 we denote by [ℋ1,ℋ2] the set of all bounded

linear operators from ℋ1 to ℋ2. Let �̇� be a closed, densely defined, symmetric
operator in a Hilbert space ℋ with inner product (𝑓, 𝑔), 𝑓, 𝑔 ∈ ℋ.

Consider the rigged Hilbert space (see [15], [31]) ℋ+ ⊂ ℋ ⊂ ℋ−, where ℋ+ =

Dom(�̇�∗) and (𝑓, 𝑔)+ is defined by (1.1). Note that by the second representation
theorem [20] we have

Dom(𝐼 + �̇��̇�∗)1/2 = ℋ+, Ran(𝐼 + �̇��̇�∗)1/2 = ℋ,

and

(𝑓, 𝑔)+ = ((𝐼 + �̇��̇�∗)1/2𝑓, (𝐼 + �̇��̇�∗)1/2𝑔), 𝑓, 𝑔 ∈ ℋ.

The Hilbert space ℋ+ admits the following (+)-orthogonal decomposition

ℋ+ = Dom(�̇�)⊕𝔑−𝑖 ⊕𝔑𝑖,

where 𝔑𝜆 := ker(�̇�
∗ − 𝜆𝐼), Im𝜆 ∕= 0 is the defect subspace of �̇�. Denote

𝔐 = 𝔑−𝑖 ⊕𝔑𝑖

and let

𝑃+

Dom(�̇�)
, 𝑃+

𝔑−𝑖
, 𝑃+

𝔑𝑖
, 𝑃+

𝔐

be (+)-orthogonal projections in ℋ+ onto Dom(�̇�), 𝔑−𝑖, 𝔑𝑖, and𝔐, respectively.
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Recall that ℋ− can be identified with the space of all anti-linear functional
on ℋ+ and continuous w.r.t. ∣∣ ⋅ ∣∣+. Let ℛ be the Riesz–Berezansky operator (see
[7]) which maps ℋ− onto ℋ+ such that (𝑓, 𝑔) = (𝑓,ℛ𝑔)+ and ∥ℛ𝑔∥+ = ∥𝑔∥− for
all 𝑓 ∈ ℋ+, 𝑔 ∈ ℋ−. Clearly

ℛ↾ℋ = (𝐼 + �̇��̇�∗)−1.

Definition 2.1. Let 𝔸 be a linear operator with Dom(𝔸) dense in ℋ+ and with
values in ℋ−. Then the adjoint operator 𝔸∗ is defined as follows:

Dom(𝔸∗) = {𝑢 ∈ ℋ+ : ∃ 𝜓 ∈ ℋ− ∣ (𝑢,𝔸𝑓) = (𝜓, 𝑓) for all 𝑓 ∈ Dom(𝔸)} ,
𝔸∗𝑢 = 𝜓.

It is easy to see ℛ𝔸∗ : ℋ+ ⊇ Dom(𝔸∗)→ ℋ+ is the (+)-adjoint operator to
ℛ𝔸 acting in ℋ+.

Definition 2.2. An operator 𝔸 : ℋ+ ⊃ Dom(𝔸) → ℋ− is called a generalized
self-adjoint if Dom(𝔸) is dense in ℋ+ and 𝔸∗ = 𝔸.

Definition 2.3. A generalized self-adjoint operator ℋ+ ⊃ Dom(𝔸)→ ℋ− is called
self-adjoint bi-extension of a symmetric operator �̇� if 𝔸 ⊃ �̇�.

The formula (see [9], [7])

𝔸 = �̇�∗ +ℛ−1
(
𝒮 − 𝑖

2
𝑃+
𝔑𝑖
+

𝑖

2
𝑃+
𝔑−𝑖

)
𝑃+
𝔐 = �̇�∗ +ℛ−1

(
𝒮 − 1

2
�̇�∗

)
𝑃+
𝔐 (2.1)

establishes a one-to-one correspondence between the set of all self-adjoint bi-
extensions of �̇� and the set of all (+)-self-adjoint operators 𝒮 in 𝔐.

Let 𝔸 be a self-adjoint bi-extension of �̇� and let the operator 𝐴 in ℋ be
defined as follows:

Dom(𝐴) = {𝑓 ∈ ℋ+ : 𝐴𝑓 ∈ ℋ}, 𝐴 = 𝔸↾Dom(𝐴).

The operator 𝐴 is called a quasi-kernel of a self-adjoint bi-extension 𝔸 (see [31]).

We say that a self-adjoint bi-extension 𝔸 of �̇� is twice-self-adjoint or t-self-adjoint

(see [7]) if its quasi-kernel 𝐴 is a self-adjoint operator in ℋ.
For the existence, description, and analog of von Neumann’s formulas for

bounded self-adjoint bi-extensions and (∗)-extensions see [7] and references therein.
In what follows we suppose that �̇� has equal deficiency indices. Recall that two
self-adjoint extensions 𝐴1 and 𝐴0 of �̇� are called disjoint if

Dom(𝐴1) ∩Dom(𝐴0) = Dom(�̇�) (2.2)

and transversal if

Dom(𝐴1) + Dom(𝐴0) = Dom(�̇�
∗).

Note that it immediately follows from von Neumann formulas that two transversal
self-adjoint extensions are automatically disjoint.
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The following statements for two self-adjoint extensions 𝐴1 and 𝐴0 of �̇� are
evident:

𝐴1, 𝐴0 are disjoint ⇐⇒ Ran
(
(𝐴1 − 𝜆𝐼)−1 − (𝐴0 − 𝜆𝐼)−1

)
= 𝔑𝜆,

𝐴1, 𝐴0 are transversal ⇐⇒ Ran
(
(𝐴1 − 𝜆𝐼)−1 − (𝐴0 − 𝜆𝐼)−1

)
= 𝔑𝜆

for at least one 𝜆 ∈ 𝜌(𝐴1) ∩ 𝜌(𝐴0).

Thus, if the deficiency numbers of �̇� are finite (and equal), then two self-

adjoint extensions of �̇� are transversal if and only they are disjoint.

Let �̇� be a closed densely defined symmetric operator and let 𝐴1 be its self-
adjoint extension. It has been shown in [2], [9] that any self-adjoint bi-extension

𝔸 of �̇� such that 𝔸 ⊃ 𝐴1 is generated by a disjoint to 𝐴1 self-adjoint extension 𝐴0

of �̇� via the formulas

Dom(𝔸) = Dom(𝐴1) + Dom(𝐴0),

𝔸𝑓 = �̇�∗𝑓 −ℛ−1�̇�∗𝒫𝐺𝑓, 𝑓 ∈ Dom(𝔸),
where 𝒫𝐺 is a skew projection operator in Dom(𝔸) onto 𝐺 parallel to Dom(𝐴1)
and 𝐺 is defined from the (+)-orthogonal decomposition

Dom(𝐴0) = Dom(�̇�)⊕𝐺. (2.3)

The operator 𝒮 corresponding to 𝔸 in (2.1) is of the form

𝒮𝑓 = 1

2
�̇�∗𝑓, 𝑓 ∈ Dom(𝐴1)⊖Dom(�̇�),

𝒮𝑔 = −1
2
�̇�∗𝑔, 𝑔 ∈ Dom(𝐴0)⊖Dom(�̇�).

(2.4)

In particular,

𝔸𝑔 = (�̇�∗ −ℛ−1�̇�∗𝑃+
𝔐)𝑔, 𝑔 ∈ Dom(𝐴0).

The following formula immediately follows from (2.3)

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0), (2.5)

where 𝑓 = 𝑓1 + 𝑓0, 𝑓𝑙 ∈ Dom(𝐴𝑙), (𝑙 = 0, 1).

Let 𝔸 be a self-adjoint bi-extension of �̇�. We define a dual extension 𝔸′ on
Dom(𝔸) by the formula

(𝔸′𝑓, 𝑔) = (�̇�∗𝑓, 𝑔) + (𝑓, �̇�∗𝑔)− (𝔸𝑓, 𝑔), 𝑓, 𝑔 ∈ Dom(𝔸). (2.6)

We note that �̇�∗ ∈ [ℋ+,ℋ] ⊂ [ℋ+,ℋ−] and the generalized adjoint of �̇�∗ takes
the form [7] (

�̇�∗
)∗
= �̇�∗ −ℛ−1�̇�∗𝑃+

𝔐. (2.7)

It follows from (2.1) that if

𝔸 = �̇�∗ +ℛ−1
(
𝒮 − 𝑖

2
𝑃+
𝔑𝑖
+

𝑖

2
𝑃+
𝔑−𝑖

)
𝑃+
𝔐
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is a self-adjoint bi-extension of �̇�, then 𝔸′ is of the form

𝔸′ = �̇�∗ +ℛ−1
(
−𝒮 − 𝑖

2
𝑃+
𝔑𝑖
+

𝑖

2
𝑃+
𝔑−𝑖

)
𝑃+
𝔐.

So, if 𝔸 is a self-adjoint bi-extension of �̇�, then 𝔸′ is a self-adjoin bi-extension of
�̇� as well. It was also shown in [2] that if 𝔸 is a t-self-adjoint of �̇�, then 𝔸′ is also
a t-self-adjoint bi-extension of �̇�. Moreover, if 𝐴 is a quasi-kernel of 𝔸 and 𝔸 is
generated by a disjoint to 𝐴 self-adjoint extension 𝐴, then the quasi-kernel of 𝔸′

coincides with 𝐴 and 𝔸′ is generated by 𝐴. Clearly, (𝔸′)′ = 𝔸.
Notice that from (2.6) and the inequality

2∣(�̇�∗𝑓, 𝑓)∣ ≤ 2∣∣𝑓 ∣∣ ∣∣�̇�∗𝑓 ∣∣ ≤ ∣∣𝑓 ∣∣2 + ∣∣�̇�∗𝑓 ∣∣2 = ∣∣𝑓 ∣∣2+,
we get

−∣∣𝑓 ∣∣2+ ≤ (𝔸𝑓, 𝑓) + (𝔸′𝑓, 𝑓) ≤ ∣∣𝑓 ∣∣2+.

3. The Friedrichs and Krĕın–von Neumann extensions

Let 𝜏 [⋅, ⋅] be a sesquilinear form in a Hilbert space ℋ defined on a linear manifold

Dom(𝜏). The form 𝜏 is called symmetric if 𝜏 [𝑢, 𝑣] = 𝜏 [𝑣, 𝑢] for all 𝑢, 𝑣 ∈ Dom(𝜏)
and non-negative if 𝜏 [𝑢] := 𝜏 [𝑢, 𝑢] ≥ 0 for all 𝑢 ∈ Dom(𝜏).

A sequence {𝑢𝑛} is called 𝜏 -converging to the vector 𝑢 ∈ ℋ [20] if

lim
𝑛→∞𝑢𝑛 = 𝑢 and lim

𝑛,𝑚→∞ 𝜏 [𝑢𝑛 − 𝑢𝑚] = 0.

The form 𝜏 is called closed if for every sequence {𝑢𝑛} 𝜏 - converging to a vector 𝑢
it follows that 𝑢 ∈ Dom(𝜏) and lim

𝑛→∞ 𝜏 [𝑢 − 𝑢𝑛] = 0. The form 𝜏 is closable [20],

i.e., there exists a minimal closed extension (the closure) of 𝜏 . We recall that a

symmetric operator �̇� is called non-negative if

(�̇�𝑓, 𝑓) ≥ 0, ∀𝑓 ∈ Dom(�̇�).
If 𝜏 is a closed, densely defined non-negative form, then according to First Repre-
sentation Theorem [23], [20] there exists a unique self-adjoint non-negative oper-
ator 𝑇 in ℌ, associated with 𝜏 , i.e.,

(𝑇𝑢, 𝑣) = 𝜏 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝑇 ) and for all 𝑣 ∈ Dom(𝜏).
According to the Second Representation Theorem [23], [20] the identities hold:

Dom(𝜏) = Dom(𝑇 1/2), 𝜏 [𝑢, 𝑣] = (𝑇 1/2𝑢, 𝑇 1/2𝑣).

Let �̇� be a non-negative symmetric operator in a Hilbert spaceℋ. It is known
[20] that the non-negative sesquilinear form 𝜏�̇� [𝑓, 𝑔] = (�̇�𝑓, 𝑔),Dom(𝜏) = Dom(�̇�),

is closable. Following the M. Krĕın notations we denote by �̇�[⋅, ⋅] the closure of 𝜏�̇�
and by 𝒟[�̇�] its domain. By definition �̇�[𝑢] = �̇�[𝑢, 𝑢] for all 𝑢 ∈ 𝒟[�̇�]. Because
�̇�[𝑢, 𝑣] is closed, it possesses the property: if

lim
𝑛→∞𝑢𝑛 = 𝑢 and lim

𝑛,𝑚→∞ �̇�[𝑢𝑛 − 𝑢𝑚] = 0,
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then lim
𝑛→∞ �̇�[𝑢− 𝑢𝑛] = 0. For a densely defined �̇�, the Friedrichs extension 𝐵𝐹 of

�̇� is defined as a non-negative self-adjoint operator associated with the form �̇�[⋅, ⋅]
by the First Representation Theorem. If �̇� is densely defined then, clearly,

Dom(𝐵𝐹 ) = 𝒟[�̇�] ∩Dom(�̇�∗), 𝐵𝐹 = �̇�∗↾Dom(𝐵𝐹 ).

The Friedrichs extension 𝐵𝐹 is a unique non-negative self-adjoint extension having
the domain in 𝒟[�̇�]. Notice that by the Second Representation Theorem [20] one
has

𝒟[�̇�] = 𝒟[𝐵𝐹 ] = Dom(𝐵
1/2
𝐹 ), �̇�[𝑢, 𝑣] = (𝐵

1/2
𝐹 𝑢,𝐵

1/2
𝐹 𝑣), 𝑢, 𝑣 ∈ 𝒟[�̇�].

If �̇� is non-densely defined, then its Friedrichs extension 𝐵𝐹 is a non-negative
linear relation of the form (see [28])

𝐵𝐹 =
{〈

𝑥, (�̇�0)𝐹𝑥
〉
, 𝑥 ∈ Dom((�̇�0)𝐹 )

}
⊕ ⟨0,𝔅⟩ ,

where (𝐵0)𝐹 is the Friedrichs extension of the operator �̇�0 := 𝑃Dom(�̇�)�̇� in the

subspace Dom(�̇�) and 𝔅 = ℋ⊖Dom(�̇�).
The Krĕın–von Neumann extension is defined as follows [1], [16]:

�̇�𝐾 = ((�̇�−1)𝐹 )−1,

where �̇�−1 is the linear relation inverse to the graph of �̇�.

Theorem 3.1 ([1]). The following relations describing 𝒟[𝐵𝐾 ] and 𝐵𝐾 [𝑢] hold:

𝒟[𝐵𝐾 ] =

{
𝑢 ∈ ℋ : sup

𝑓∈Dom(�̇�)

∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

<∞
}

,

𝐵𝐾 [𝑢] = sup
𝑓∈Dom(�̇�)

∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

, 𝑢 ∈ 𝒟[𝐵𝐾 ].

(3.1)

We note the equalities for an arbitrary non-negative self-adjoint operator 𝐵
in a Hilbert space ℋ:

Ran(𝐵1/2) =
{
𝑔 ∈ ℋ : sup

𝑓∈Dom(𝐵)

∣(𝑓, 𝑔)∣2
(𝐵𝑓, 𝑓)

<∞
}
,

∥𝐵[−1/2]𝑔∥2 = sup
𝑓∈Dom(𝐵)

∣(𝑓, 𝑔)∣2
(𝐵𝑓, 𝑓)

, 𝑔 ∈ Ran(𝐵1/2),

where 𝐵[−1] is the Moore–Penrose inverse. The Krĕın–von Neumann extension
of a non-densely defined non-negative operator �̇� is an operator (not just a lin-
ear relation) if and only if the domain 𝒟[𝐵𝐾 ] is dense in ℌ. According to [1] a

non-negative operator �̇� is called positively closable if from lim
𝑛→∞ �̇�𝜑𝑛 = 𝑔 and

lim
𝑛→∞(�̇�𝜑𝑛, 𝜑𝑛) = 0 follows 𝑔 = 0 ({𝜑𝑛} ⊂ Dom(�̇�)). Notice that a densely de-

fined �̇� is positively closable. A theorem of Ando and Nishio [1] states that �̇�
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admits non-negative self-adjoint extensions, which are operators, if and only if �̇�
is positively closable.

A non-negative self-adjoint extension 𝐵 of �̇� is called extremal [3], [5], [6] if
the relation

inf
{(

𝐵(𝑢 − 𝜑), 𝑢− 𝜑
)
: 𝜑 ∈ Dom(�̇�)

}
= 0

holds for every 𝑢 ∈ Dom(𝐵). A characterization of the Krĕın–von Neumann ex-
tension 𝐵𝐾 is obtained in [5] and [6]: the Krĕın–von Neumann extension 𝐵𝐾 is the

unique extremal non-negative self-adjoint extension of �̇� having maximal domain
of its closed associated sesquilinear form.

Theorem 3.2. Let 𝐵 be a non-negative self-adjoint extension of �̇�. Then

𝐵𝐾 ≤ 𝐵 ≤ 𝐵𝐹 (3.2)

in the sense of quadratic forms. More precisely

𝒟[�̇�] ⊆ 𝒟[𝐵] ⊆ 𝒟[𝐵𝐾 ],

𝐵[𝑢] ≥ 𝐵𝐾 [𝑢] for all 𝑢 ∈ 𝒟[𝐵],
𝐵[𝑣] = �̇�[𝑣] for all 𝑣 ∈ 𝒟[�̇�].

Besides,

𝒟[𝐵] = 𝒟[�̇�]+̇(𝒟[𝐵] ∩ 𝒩𝑧), (3.3)

where 𝒩𝑧 is the defect subspace of �̇�, 𝑧 ∈ ℂ ∖ [0,+∞).
For a densely defined non-negative �̇� inequalities (3.2) in the equivalent form

(𝐵𝐹 + 𝐼)−1 ≤ (𝐵 + 𝐼)−1 ≤ (𝐵𝐾 + 𝐼)−1

and equality (3.3) for 𝑧 < 0 were established by M. Krĕın [23]. For a sectorial

operator �̇� with vertex at zero and for sectorial linear relations all statements of
Theorem 3.2 can be found in [5] and [6].

The next theorem gives a descriptions of all closed forms associated with
non-negative self-adjoint extensions of �̇�.

Theorem 3.3 ([5]). If 𝐵 is a non-negative self-adjoint extension of a non-negative

symmetric operator �̇�, then the form

(𝐵𝑢, 𝑣)−𝐵𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ Dom(𝐵)
is non-negative and closable in the Hilbert space 𝒟[𝐵𝐾 ]. Moreover, the formulas

𝒟[𝐵] = 𝒟[𝜏 ],
𝐵[𝑢, 𝑣] = 𝐵𝐾 [𝑢, 𝑣] + 𝜏 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐵]

give a one-to-one correspondence between all closed forms 𝑆[⋅, ⋅] associated with
non-negative self-adjoint extensions 𝐵 of �̇� and all non-negative forms 𝜏 [⋅, ⋅] closed
in the Hilbert space 𝒟[𝐵𝐾 ] and such that 𝜏 [𝜑] = 0 for all 𝜑 ∈ 𝒟[�̇�].
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In addition, the closed forms associated with extremal extensions are closed
restrictions of the form 𝐵𝐾 [⋅, ⋅] on the linear manifolds ℳ such that

𝒟[�̇�] ⊆ℳ ⊆ 𝒟[𝐵𝐾 ].

The next theorem can be found in [29], [30], [6], [19].

Theorem 3.4. Let �̇� be a bounded non-densely defined non-negative symmetric
operator in a Hilbert space ℋ, Dom(�̇�) = ℋ0. Let �̇�

∗ ∈ [ℋ,ℋ0] be the adjoint of

�̇�. Put �̇�0 = 𝑃ℋ0�̇�, 𝒩 = ℋ ⊖ ℋ0, where 𝑃ℋ0 is an orthogonal projection in ℋ
onto ℋ0. Then the following statements are equivalent

(i) �̇� admits bounded non-negative self-adjoint extensions in ℋ;
(ii) sup

𝑓∈ℋ0

∣∣�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞;

(iii) �̇�∗𝒩 ⊆ Ran(�̇�1/2
0 ).

Let �̇� be a non-negative closed symmetric operator. Consider the symmetric
contractions

�̇� = (𝐼 − �̇�)(𝐼 + �̇�)−1,

defined on Dom(�̇�) = (𝐼 + �̇�)Dom(�̇�). Notice that the orthogonal complement

𝔑 = ℋ⊖Dom(�̇�) coincides with the defect subspace 𝔑−1 of the operator �̇�. There
is a one-to-one correspondence given by the Cayley transform

𝐵 = (𝐼 − 𝑆)(𝐼 + 𝑆)−1, 𝑆 = (𝐼 −𝐵)(𝐼 +𝐵)−1,

between all non-negative self-adjoint extensions 𝐵 (linear relations in general) of

the operator �̇� and all self-adjoint contractive (𝑠𝑐) extensions 𝑆 of �̇�. As was

established by M. Krĕın in [23], [24] the set of all 𝑠𝑐-extensions of �̇� forms an
operator interval [𝑆𝜇, 𝑆𝑀 ]. Following M. Krĕın’s notations we call the endpoints
𝑆𝜇 and 𝑆𝑀 by the rigid and the soft extensions, respectively. They possess the
properties

inf
𝜑∈Dom(�̇�)

((𝐼 + 𝑆𝜇)(𝑓 − 𝜑), (𝑓 − 𝜑) = 0,

inf
𝜑∈Dom(�̇�)

((𝐼 − 𝑆𝑀 )(𝑓 − 𝜑), (𝑓 − 𝜑) = 0,
(3.4)

for all 𝑓 ∈ ℋ. The operator interval [𝑆𝜇, 𝑆𝑀 ] can be parameterized as follows

𝑆 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋(𝑆𝑀 − 𝑆𝜇)
1/2, (3.5)

where 𝑋 is a self-adjoint contraction in the subspace Ran(𝑆𝑀 − 𝑆𝜇)(⊆ 𝔑).
Notice that for each 𝑆 ∈ [𝑆𝜇, 𝑆𝑀 ] the equalities (3.4) imply

inf
𝜑∈Dom(�̇�)

((𝐼 + 𝑆)(𝑓 − 𝜑), (𝑓 − 𝜑) = ((𝑆 − 𝑆𝜇)𝑓, 𝑓),

inf
𝜑∈Dom(�̇�)

((𝐼 − 𝑆)(𝑓 − 𝜑), (𝑓 − 𝜑) = ((𝑆𝑀 − 𝑆)𝑓, 𝑓), 𝑓 ∈ ℋ.
(3.6)
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Using the relation (see [23])

inf
𝜑∈Dom(�̇�)

((𝐼 + 𝑆)(𝑓 − 𝜑), (𝑓 − 𝜑) = ∣∣𝑃Ω(𝐼 + 𝑆)1/2𝑓 ∣∣2,

where
Ω = {𝑔 ∈ ℋ : (𝐼 + 𝑆)1/2𝑔 ∈ 𝔑},

from (3.6) we get the equalities

(𝐼 + 𝑆)1/2Ω = Ran((𝑆 − 𝑆𝜇)
1/2),

∣∣(𝐼 + 𝑆)[−1/2]𝑓 ∣∣ = ∣∣(𝑆 − 𝑆𝜇)
[−1/2]𝑓 ∣∣2, 𝑓 ∈ Ran((𝑆 − 𝑆𝜇)

1/2).
(3.7)

Let 𝐿 be a bounded non-negative self-adjoint operator in the Hilbert space ℋ and
let ℳ be a subspace in ℋ. The Krĕın shorted operator 𝐿ℳ [23], [1] is given by
the following definition

𝐿ℳ = max{𝑋 ≤ 𝐿 ∣ Ran(𝑋) ⊆ℳ}.
It is shown in [23], that

𝐿ℳ = 𝐿1/2𝑄𝐿1/2, (3.8)

where𝑄 is an orthoprojection operator onto the subspace Ran(𝑄) = (𝐿1/2)−1(ℳ).
Moreover, [23]

(𝐿ℳ𝑓, 𝑓) = inf
𝜑∈ℋ⊖ℳ

(𝐿(𝑓 − 𝜑), 𝑓 − 𝜑), 𝑓 ∈ ℋ. (3.9)

Thus, from (3.6) we have

(𝐼 + 𝑆)𝔑 = 𝑆 − 𝑆𝜇, (𝐼 − 𝑆)𝔑 = 𝑆𝑀 − 𝑆.

The next result describes the sesquilinear form 𝐵[𝑢, 𝑣] by the means of the fraction-
al-linear transformation 𝑆 = (𝐼 −𝐵)(𝐼 +𝐵)−1. The following proposition can be
found in [7].

Proposition 3.5.
(1) Let 𝐵 be a non-negative self-adjoint operator and let 𝑆 = (𝐼 − 𝐵)(𝐼 + 𝐵)−1

be its Cayley transform. Then

𝒟[𝐵] = Ran((𝐼 + 𝑆)1/2),

𝐵[𝑢, 𝑣] = −(𝑢, 𝑣) + 2
(
(𝐼 + 𝑆)−1/2𝑢, (𝐼 + 𝑆)−1/2𝑣

)
, 𝑢, 𝑣 ∈ 𝒟[𝐵].

(2) Let �̇� be a closed densely defined non-negative symmetric operator and let

𝐵 be its non-negative self-adjoint extension. If �̇� = (𝐼 − �̇�)(𝐼 + �̇�)−1, 𝑆 =
(𝐼 −𝐵)(𝐼 +𝐵)−1, then

𝒟[𝐵] = Ran(𝐼 + 𝑆𝜇)
1/2 ∔ Ran(𝑆 − 𝑆𝜇)

1/2. (3.10)

We note that Ran(𝐵1/2) = Ran((𝐼 − 𝑆)1/2). Now let 𝑆𝜇 and 𝑆𝑀 be the

rigid and the soft extensions of �̇�. Then the Friedrichs and Krĕın–von Neumann
extensions of �̇� are given by

𝐵𝐹 = (𝐼 − 𝑆𝜇)(𝐼 + 𝑆𝜇)
−1, 𝐵𝐾 = (𝐼 − 𝑆𝑀 )(𝐼 + 𝑆𝑀 )

−1.
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4. Non-negative self-adjoint bi-extensions

4.1. Disjointness and tranversality of non-negative self-adjoint extensions

Proposition 4.1. Let �̇� be a non-negative closed densely defined operator. Then the
following statements hold true for a non-negative self-adjoint extensions 𝐴 of �̇�:

𝐴 is disjoint with 𝐴𝐹 ⇐⇒ 𝒟[𝐴] ∩ℋ+ is dense in ℋ+,

𝐴 is transversal with 𝐴𝐹 ⇐⇒ 𝒟[𝐴] ⊃ ℋ+.

Proof. Using equality (3.3) in the form

𝒟[𝐴] = 𝒟[�̇�]+̇ (𝔑−1 ∩ 𝒟[𝐴])
and the relation Dom(𝐴𝐹 ) = 𝒟[�̇�] ∩Dom(�̇�∗), we get that

𝒟[𝐴] ∩ℋ+ = Dom(𝐴𝐹 )+̇ (𝔑−1 ∩ 𝒟[𝐴]) , (4.1)

where 𝔑𝜆 is the defect subspace of �̇�. Taking into account the equality

ℋ+ = Dom(𝐴𝐹 )+̇𝔑−1,

we get that 𝒟[𝐴] ∩ ℋ+ is dense in ℋ+ if and only if 𝔑−1 ∩ 𝒟[𝐴] is dense in 𝔑−1
and

𝒟[𝐴] ∩ℋ+ = ℋ+ ⇐⇒ 𝔑−1 ⊂ 𝒟[𝐴].
Put

�̇� = (𝐼 − �̇�)(𝐼 + �̇�), 𝑆𝜇 = (𝐼 −𝐴𝐹 )(𝐼 +𝐴𝐹 ), 𝑆 = (𝐼 −𝐴)(𝐼 +𝐴).

Then

𝑆 − 𝑆𝜇 = (𝐴+ 𝐼)−1 − (𝐴𝐹 + 𝐼)−1. (4.2)

Now the equality (see (3.10))

𝒟[𝐴] = 𝒟[�̇�]+̇Ran(𝑆 − 𝑆𝜇)
1/2 (4.3)

implies the validity of the statements in the proposition. □

From (4.2) and (4.3) we get the following equalities

𝒟[𝐴] ∩ℋ+ = Dom(𝐴𝐹 )+̇Ran(𝑆 − 𝑆𝜇)
1/2 = Dom(𝐴)+̇Ran(𝑆 − 𝑆𝜇)

1/2.

Notice that the equivalence

𝐴𝐹 and 𝐴𝐾 are transversal ⇐⇒ Dom(�̇�∗) ⊆ 𝒟[𝐴𝐾 ]

has been shown in [25] (see also [11]). The next statement provides one more
criteria for 𝐴𝐹 and 𝐴𝐾 to be transversal.

Proposition 4.2.

𝐴𝐹 and 𝐴𝐾 are transversal ⇐⇒ sup
𝑓∈Dom(�̇�)

∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞. (4.4)
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Proof. Let 𝐴 be a non-negative self-adjoint extension of �̇�. Since 𝐴1/2 is closed in
ℋ, the closed graph theorem yields that

ℋ+ ⊂ 𝒟[𝐴] = Dom(𝐴1/2) ⇐⇒ 𝐴1/2↾ℋ+ ∈ [ℋ+,ℋ],
i.e., there exists a number 𝑐 > 0 such that

∣∣𝐴1/2𝑢∣∣2 = 𝐴[𝑢] ≤ 𝑐∣∣𝑢∣∣2+ for all 𝑢 ∈ ℋ+.

Take 𝐴 = 𝐴𝐾 . Then for 𝑢 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+

∣∣𝐴1/2
𝐾 𝑢∣∣2 = sup

𝑓∈Dom(�̇�)

∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

= sup
𝑓∈Dom(�̇�)

∣(ℛ�̇�𝑓, 𝑢)+∣2
(�̇�𝑓, 𝑓)

.

Hence

∣(ℛ�̇�𝑓, 𝑢)+∣2 ≤ ∣∣𝐴1/2
𝐾 𝑢∣∣2 (�̇�𝑓, 𝑓).

Then

ℋ+ ⊂ 𝒟[𝐴𝐾 ] ⇐⇒ ∣(ℛ�̇�𝑓, 𝑢)+∣2 ≤ 𝑐∣∣𝑢∣∣2+ (�̇�𝑓, 𝑓), ∀𝑢 ∈ ℋ+, ∀𝑓 ∈ Dom(�̇�)

⇐⇒ ∣∣ℛ�̇�𝑓 ∣∣2+ = sup
𝑢∈ℋ+

∣(ℛ�̇�𝑓, 𝑢)+∣2
∣∣𝑢∣∣2+

≤ 𝑐 (�̇�𝑓, 𝑓), ∀𝑓 ∈ Dom(�̇�)

⇐⇒ sup
𝑓∈Dom(�̇�)

∣∣ℛ�̇�𝑓 ∣∣2+
(�̇�𝑓, 𝑓)

<∞.

Since

∣∣ℛ𝑔∣∣2+ = ∣∣(𝐼 + �̇��̇�∗)−1/2𝑔∣∣2, 𝑔 ∈ ℋ,

we arrive at (4.4). □

Notice that due to Theorem 3.4 condition

sup
𝑓∈Dom(�̇�)

∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞

means that the operator ℛ�̇� admits (+)-bounded (+)-self-adjoint non-negative
extensions. It is not difficult to show that

(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 = �̇�(𝐼 + �̇�∗�̇�)−1/2𝑓, 𝑓 ∈ Dom(�̇�).
This relation implies that if �̇� is positively definite, then 𝐴𝐹 and 𝐴𝐾 are transver-
sal. Indeed,

∣∣(𝐼+ �̇��̇�∗)−1/2�̇�𝑓 ∣∣2 = ∣∣�̇�(𝐼+ �̇�∗�̇�)−1/2𝑓 ∣∣2 ≤ 𝐶∣∣𝑓 ∣∣2 ≤ 𝑚(�̇�𝑓, 𝑓), 𝑓 ∈ Dom(�̇�).
Hence,

sup
𝑓∈Dom(�̇�)

∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞.
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4.2. Non-negative self-adjoint bi-extensions

Existence. Let ℌ+ ⊂ ℌ ⊂ ℌ− be a rigged Hilbert space. If 𝒯 is a non-negative,
densely defined in ℌ+ and closed sesquilinear form in ℌ+, then there exists a
non-negative generalized self-adjoint operator 𝕋 acting from Dom(𝕋) into ℋ− as-
sociated with the form 𝒯 in the following sense

(𝕋𝑢, 𝑣) = 𝒯 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝕋) and all 𝑣 ∈ Dom(𝒯 ). (4.5)

Actually, due to the First Representation Theorem, there is a (+)-non-negative
self-adjoint operator 𝔗 associated with the form 𝒯 in ℌ+, i.e.,

(𝔗𝑢, 𝑣)+ = 𝒯 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝔗) and all 𝑣 ∈ Dom(𝒯 ).
If 𝒥 ∈ [ℌ−,ℌ+] is the Riesz–Berezansky operator, then 𝕋 = 𝒥 −1𝔗 satisfies (4.5).
If a non-negative form is defined on ℌ+ and is bounded in ℌ+, then, clearly, the
associated non-negative self-adjoint operator belongs to [ℌ+,ℌ−].

If 𝔗 : ℌ+ ⊇ Dom(𝔗)→ ℌ− is a non-negative generalized self-adjoint operator
in the rigged Hilbert space ℌ+ ⊂ ℌ ⊂ ℌ−, i.e., (𝔗𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ Dom(𝔗)
and 𝔗 = 𝔗∗, then the sesquilinear form

𝒯𝔗[𝑓, 𝑔] = (𝔗𝑓, 𝑔), Dom(𝒯𝔗) = Dom(𝔗)
is closable in ℌ+. We will denote by 𝔗[⋅, ⋅] its closure and by 𝒟[𝔗] its domain.

Now we consider a closed non-negative symmetric densely defined operator
�̇�. Letℋ+ ⊂ ℋ ⊂ ℋ− be the rigged Hilbert space, whereℋ+ = Dom(�̇�

∗) and (+)-
inner product is defined by (1.1). We are going to study non-negative self-adjoint

bi-extensions of the operator �̇�. Clearly, the operator

�̇� = ℛ�̇�

is non-densely defined in ℋ+, (+)-bounded and (+)-non-negative. Each non-nega-

tive (+)-self-adjoint extension 𝐵 of �̇� in ℋ+, which is an operator, determines a

non-negative self-adjoint bi-extension of �̇� by the formula 𝔸 = ℛ−1𝐵. Since
∣∣�̇�𝜑∣∣+ = ∣∣ℛ�̇�𝜑∣∣+ = ∣∣(𝐼 + �̇��̇�∗)−1�̇�𝜑∣∣+ = ∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝜑∣∣, 𝜑 ∈ �̇�,

and (�̇�𝜑, 𝜑)+ = (�̇�𝜑, 𝜑), we can use the Ando and Nishio theorem (see [1]) about
positively closable symmetric operator and get the following statement.

Proposition 4.3. A non-negative densely defined closed symmetric operator �̇� ad-
mits non-negative self-adjoint bi-extension if and only if from

lim
𝑛→∞(𝐼 + �̇��̇�∗)−1/2�̇�𝜑𝑛 = 𝑔 𝑎𝑛𝑑 lim

𝑛→∞(�̇�𝜑𝑛, 𝜑𝑛) = 0

follows 𝑔 = 0, where {𝜑𝑛} ⊂ Dom(�̇�).
Theorem 4.4. Let �̇� be a non-negative closed densely defined operator. The follow-
ing conditions are equivalent:

(i) �̇� admits a non-negative self-adjoint bi-extension,

(ii) �̇� admits t-self-adjoint bi-extension with quasi-kernel 𝐴𝐾 ,

(iii) the Friedrichs and Krĕın–von Neumann extensions of �̇� are disjoint.
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Proof. Clearly (ii)⇒(i). Let us show that (iii)⇒(ii). Suppose that the Friedrichs
extension 𝐴𝐹 and the Krĕın–von Neumann extension 𝐴𝐾 of the operator �̇� are
disjoint. Then Dom(𝐴𝐹 ) + Dom(𝐴𝐾) is (+)-dense in ℋ+ or coincides with ℋ+

(when 𝐴𝐹 and 𝐴𝐾 are transversal). Then it follows that 𝒟[𝐴𝐾 ]∩ℋ+ is (+)-dense
in ℋ+ or coincides with ℋ+. Clearly, the sesquilinear form

𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+,

is closed in ℋ+. Because it is at least (+)-densely defined in ℋ+, there is an
associated self-adjoint non-negative operator 𝔸𝐾 : ℋ+ ⊇ Dom(𝔸𝐾)→ ℋ−, i.e.,

(𝔸𝐾𝑢, 𝑣) = 𝐴𝐾 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝔸𝐾) and for all 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+.

Because (𝐴𝐾𝑢, 𝑣) = 𝐴𝐾 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝐴𝐾) and all 𝑣 ∈ 𝒟[𝐴𝐾 ], we get that
𝔸𝐾 ⊃ 𝐴𝐾 , i.e., the quasi-kernel of 𝔸𝐾 is 𝐴𝐾 and therefore, 𝐴𝐾 is t-self-adjoint
bi-extension of �̇�.

Let us prove (i)⇒(iii). Suppose that �̇� admits non-negative self-adjoint bi-

extensions. Then the Krĕın–von Neumann extension 𝐵𝐾 of the operator �̇� = ℛ�̇�
in ℋ+ is an operator. Due to the formula (3.1) the domain 𝒟[𝐵𝐾 ] is at least dense
in ℋ+. On the other hand since

∣(�̇�𝑓, 𝑢)+∣2
(�̇�𝑓, 𝑓)+

=
∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

,

from (3.1) we get

𝒟[𝐵𝐾 ] = 𝒟[𝐴𝐾 ] ∩ℋ+

and 𝐵𝐾 [𝑢] = 𝐴𝐾 [𝑢] for all 𝑢 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+. It follows from (4.1) that

𝒟[𝐴𝐾 ] ∩ℋ+ = Dom(𝐴𝐹 )+̇(𝔑−1 ∩ 𝒟[𝐴𝐾 ]).

Therefore, the density of 𝒟[𝐴𝐾 ]∩ℋ+ implies the density of 𝔑−1 ∩𝒟[𝐴𝐾 ] in 𝔑−1.
Equality (3.10) yields that

Ran
(
(𝐴𝐾 + 𝐼)−1 − (𝐴𝐹 + 𝐼)−1

)
= 𝔑−1,

i.e., 𝐴𝐹 and 𝐴𝐾 are at least disjoint. □

Theorem 4.5.
1) Let 𝐴 be a non-negative self-adjoint extension of �̇�. Then there exists a t-self-

adjoint bi-extension 𝔸 of �̇� with quasi-kernel 𝐴 if and only if 𝐴 is disjoint
with 𝐴𝐹 .

2) If a non-negative self-adjoint extension 𝐴 of �̇� is disjoint with 𝐴𝐹 , then t-self-
adjoint bi-extension 𝔸 with quasi-kernel 𝐴 and generated by 𝐴𝐹 is associated
with the sesquilinear form 𝐴[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴] ∩ℋ+.

Proof. The form 𝐴[𝑢, 𝑣] defined on 𝒟[𝐴] ∩ ℋ+ is closed in ℋ+. By Proposition
4.1 𝐴 is disjoint with 𝐴𝐹 if and only if the linear manifold 𝒟[𝐴] ∩ ℋ+ is dense
in ℋ+ in which case the non-negative sesquilinear form 𝐴[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴] ∩ ℋ+

is closed in ℋ+. The latter implies the existence of a non-negative self-adjoint
operator 𝔸 : ℋ+ ⊇ Dom(𝔸) → ℋ− associated with 𝐴[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴] ∩ ℋ+.
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Since (𝐴𝑢, 𝑣) = 𝐴[𝑢, 𝑣] for all 𝑢 ∈ Dom(𝐴) and all 𝑣 ∈ 𝒟[𝐴], we get that 𝔸 ⊃ 𝐴,

i.e., the quasi-kernel of 𝔸 is 𝐴 and therefore, 𝐴 is t-self-adjoint bi-extension of �̇�.
Further we use the following equality (see [6])

𝐴[𝜑, 𝑢] = (𝜑, �̇�∗𝑢), 𝜑 ∈ 𝒟[�̇�], 𝑢 ∈ 𝒟[𝐴] ∩ℋ+.

Using (2.7) we get for all 𝜑 ∈ Dom(𝐴𝐹 ) and all 𝑢 ∈ 𝒟[𝐴] ∩ℋ+:

𝐴[𝜑, 𝑢] = (𝜑, �̇�∗𝑢) = ((�̇�∗)∗𝜑, 𝑢) = ((�̇�∗ −ℛ−1�̇�∗𝑃+
𝔐)𝜑, 𝑢).

Hence, Dom(𝐴𝐹 ) ⊂ Dom(𝔸) and
𝔸𝜑 = (�̇�∗ −ℛ−1�̇�∗𝑃+

𝔐)𝜑, 𝜑 ∈ Dom(𝐴𝐹 ).

Since Dom(𝐴) ⊂ Dom(𝔸) and 𝔸 is a t-self-adjoint bi-extension of �̇� with quasi-
kernel 𝐴, we get

Dom(𝔸) = Dom(𝐴) + Dom(𝐴𝐹 ).

Taking into account (2.3), we conclude that 𝔸 is generated by 𝐴𝐹 . □

The following statement is an immediate consequence of Theorems 4.4 and 4.5.

Corollary 4.6 ([7]). The operator �̇� admits non-negative self-adjoint bi-extensions
in [ℋ+,ℋ−] if and only if 𝐴𝐾 and 𝐴𝐹 are transversal.

It was announced in [26] that the transversality condition in Corollary 4.6 is
necessary (and sufficient for the case of finite deficiency indices) for the existence
of non-negative self-adjoint bi-extensions in [ℋ+,ℋ−].

Denote by 𝒫(�̇�) the set of all non-negative self-adjoint bi-extensions of �̇�.

As has been proved in Theorem 4.4 the set 𝒫(�̇�) is nonempty if and only if 𝐴𝐹

and 𝐴𝐾 are disjoint in which case the set 𝒫(�̇�) contains the operator 𝔸𝐾 with the
following properties:

1. the operator 𝔸𝐾 is associated with the closed form 𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴𝐾 ]∩
ℋ+, i.e.,

𝒟[𝔸𝐾 ] = 𝒟[𝐴𝐾 ] ∩ℋ+,

𝔸𝐾 [𝑢, 𝑣] = 𝐴𝐾 [𝑢, 𝑣], 𝑢 ∈ Dom(𝔸𝐾), 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+,

2. the operator 𝔸𝐾 is a t-self-adjoint bi-extension of �̇� with quasi-kernel 𝐴𝐾

and generated by 𝐴𝐹 ,
3. 𝒫(�̇�) ∋ 𝔸⇒ 𝒟[𝔸] ⊆ 𝒟[𝔸𝐾 ], 𝔸[𝑢] ≥ 𝔸𝐾 [𝑢] = 𝐴𝐾 [𝑢], 𝑢 ∈ 𝒟[𝔸].

Thus, 𝔸𝐾 is the minimal element of 𝒫(�̇�) and is an analog of Krĕın–von Neumann
extension. The minimality property is a consequence of Theorem 3.2. Notice that
if 𝐴𝐾 and 𝐴𝐹 are transversal and the deficiency number of �̇� is infinite, then the
set 𝒫(�̇�) contains +→ − bounded and unbounded operators.

Let 𝐴1 be a non-negative self-adjoint extension of �̇�. Let 𝒫(𝐴1) be the set of

all non-negative t-self-adjoint bi-extension of �̇� with quasi-kernel 𝐴1. According
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to Theorem 4.5 the set 𝒫(𝐴1) ∕= ∅ if and only if 𝐴1 is disjoint with 𝐴𝐹 . Using
Theorem 3.1, and the equalities

𝒟[𝐴1] =

{
𝑓 ∈ ℋ : sup

ℎ∈Dom(𝐴1)

∣(𝐴1ℎ, 𝑓)∣2
(𝐴1ℎ, ℎ)

<∞
}

,

∣(ℛ𝐴1ℎ, 𝑓)+∣2
(ℛ𝐴1ℎ, ℎ)+

=
∣(𝐴1ℎ, 𝑓)∣2
(𝐴1ℎ, ℎ)

, 𝑓 ∈ ℋ+,

we get: if 𝐴1 and𝐴𝐹 are disjoint, then the operator𝔸1𝐾 : ℋ+ ⊇ Dom(𝔸1𝐾)→ ℋ−,
associated with closed in ℋ+ non-negative form 𝐴1[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴1]∩ℋ+, is the
minimal element of the set 𝒫(𝐴1) in the sense of quadratic forms. According
to Theorem 4.5 this operator is generated by 𝐴𝐹 . It is an analog of the Krĕın–
von Neumann type extension of 𝐴1 in the rigged Hilbert space ℋ+ ⊂ ℋ ⊂ ℋ−.
The operator 𝔸𝐾 is the minimal element of the sets 𝒫(𝐴𝐾) and 𝒫(�̇�). The next
theorem parameterizes the set 𝒫(𝐴1).

Theorem 4.7. Let �̇� be a non-negative closed symmetric operator with disjoint
non-negative self-adjoint extensions 𝐴𝐹 and 𝐴𝐾 . Suppose 𝔸 is a t-self-adjoint bi-
extension of �̇� with quasi-kernel 𝐴1 and generated by 𝐴0. Then 𝔸 is non-negative
if and only if

𝐴0 ≥ 𝐴1 ≥ 0.
Proof. We will use (2.5)

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0),

for 𝑓 = 𝑓1+ 𝑓0, 𝑓1 ∈ Dom(𝐴1), 𝑓0 ∈ Dom(𝐴0). It follows that 𝐴1 ≥ 0 and 𝐴0 ≥ 0.
Replacing 𝑓1 by 𝜆𝑓1 and 𝑓0 by 𝜇𝑓0 we have

∣𝜆∣2(𝐴1𝑓1, 𝑓1) + ∣𝜇∣2(𝐴0𝑓0, 𝑓0) + 𝜆�̄�(𝐴1𝑓1, 𝑓0) + 𝜇�̄�(𝑓0, 𝐴1𝑓1) ≥ 0
for all 𝜆, 𝜇 ∈ ℂ. Thus, the 2× 2 matrix(

(𝐴1𝑓1, 𝑓1) (𝐴1𝑓1, 𝑓0)
(𝑓0, 𝐴1𝑓1) (𝐴0𝑓0, 𝑓0)

)
is non-negative. Hence

∣(𝐴1𝑓1, 𝑓0)∣2 ≤ (𝐴1𝑓1, 𝑓1)(𝐴0𝑓0, 𝑓0)

and

sup
𝑓1∈Dom(𝐴1)

∣(𝐴1𝑓1, 𝑓0)∣2
(𝐴1𝑓1, 𝑓1)

≤ (𝐴0𝑓0, 𝑓0). (4.6)

This means that

𝑓0 ∈ 𝒟[𝐴1] and 𝐴1[𝑓1] ≤ (𝐴0𝑓0, 𝑓0) (= 𝐴0[𝑓0]) .

If {𝑓 (𝑛)2 }∞𝑛=1 ⊂ Dom(𝐴0) and 𝐴0-converges to 𝜑0 ∈ 𝒟[𝐴0], then (4.6) yields

sup
𝑓1∈Dom(𝐴1)

∣(𝐴1𝑓1, 𝜑0)∣2
(𝐴1𝑓1, 𝑓1)

≤ 𝐴0[𝜑0].
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Thus

𝒟[𝐴0] ⊂ 𝒟[𝐴1] and 𝐴1[𝜑0] ≤ 𝐴0[𝜑0] for all 𝜑0 ∈ 𝒟[𝐴0],

i.e., 𝐴1 ≤ 𝐴0.
Conversely. Suppose 0 ≤ 𝐴1 ≤ 𝐴0. Then for an arbitrary 𝑓1 ∈ Dom(𝐴1),

𝑓0 ∈ Dom(𝐴0) we get

(𝔸(𝑓1 + 𝑓0), 𝑓1 + 𝑓0) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0)

= ∣∣𝐴1/2
1 𝑓1∣∣2 + ∣∣𝐴1/2

0 𝑓0∣∣2 + 2Re (𝐴1/2
1 𝑓1, 𝐴

1/2
1 𝑓0)

= ∣∣𝐴1/2
1 (𝑓1 + 𝑓0)∣∣2 + ∣∣𝐴1/2

0 𝑓0∣∣2 − ∣∣𝐴1/2
1 𝑓0∣∣2 ≥ 0.

This proves the theorem. □

Let 𝐴1 and 𝐴0 be two non-negative self-adjoint extensions of �̇�. Consider a
form defined on Dom(𝐴1)×Dom(𝐴0) as follows

ℬ(𝑓1, 𝑓0) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0), (4.7)

where 𝑓𝑙 ∈ Dom(𝐴𝑙), (𝑙 = 0, 1). Let

𝜙𝑙 =
1

2
(𝐼 +𝐴𝑙)𝑓𝑙, 𝑆𝑙𝜙𝑙 =

1

2
(𝐼 −𝐴𝑙)𝑓𝑙,

be the Cayley transform of 𝐴𝑙 for 𝑙 = 0, 1. Then

𝑓𝑙 = (𝐼 + 𝑆𝑙)𝜙𝑙, 𝐴𝑙𝑓𝑙 = (𝐼 − 𝑆𝑙)𝜙𝑙, (𝑙 = 0, 1). (4.8)

Substituting (4.8) into (4.7) we obtain a form defined on ℋ×ℋ
ℬ̃(𝜙1, 𝜙0) = ∥𝜙1 + 𝜙0∥2 − ∥𝑆1𝜙1 + 𝑆0𝜙0∥2 − 2Re ((𝑆1 − 𝑆0)𝜙1, 𝜙0) . (4.9)

Let us set

𝐹 =
1

2
(𝑆1 − 𝑆0), 𝐺 =

1

2
(𝑆1 + 𝑆0), 𝑢 =

1

2
(𝜙1 + 𝜙2), 𝑣 =

1

2
(𝜙1 − 𝜙0). (4.10)

Then

ℬ̃(𝜙1, 𝜙0) = 4𝐻(𝑢, 𝑣) := ∥𝑢∥2 + (𝐹𝑣, 𝑣) − (𝐹𝑢, 𝑢)− ∥𝐹𝑣 +𝐺𝑢∥2. (4.11)

Moreover, 𝐹 ±𝐺 are contractive operators. From the above reasoning we conclude
that non-negativity of the form ℬ(𝑓1, 𝑓0) on Dom(𝐴1)×Dom(𝐴0) is equivalent to
non-negativity of the form 𝐻(𝑢, 𝑣) on ℋ ×ℋ. The next statement is established
in [3], see also [7].

Proposition 4.8. The form 𝐻(𝑢, 𝑣) in (4.11) is non-negative for all 𝑢, 𝑣 ∈ ℋ if and
only if operator 𝐹 defined in (4.10) is non-negative.

Proposition 4.8 can be used for another proof of Theorem 4.7 (see [3]).

Let 𝐴1 and 𝐴0 be two disjoint non-negative self-adjoint extensions of �̇�. We
say that 𝐴1 and 𝐴0 form an admissible pair ⟨𝐴1, 𝐴0⟩ if

𝐴0 ≥ 𝐴1 ⇐⇒ (𝐴1 + 𝐼)−1 ≥ (𝐴0 + 𝐼)−1.



Non-negative Self-adjoint Extensions in Rigged Hilbert Space 27

If 𝑆𝑗 = (𝐼 − 𝐴𝑗))(𝐼 + 𝐴𝑗)
−1, 𝑗 = 1, 2, then the pair ⟨𝐴1, 𝐴0⟩ is admissible if and

only if ker(𝑆1 − 𝑆0) = Dom(�̇�) and 𝑆1 ≥ 𝑆0. Let 𝑋𝑗 , 𝑗 = 0, 1 be self-adjoint
contractions in 𝔑 such that

𝑆𝑗 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋𝑗(𝑆𝑀 − 𝑆𝜇)
1/2.

Then it follows from (3.5) that the pair of non-negative self-adjoint extensions
𝐴𝑗 = (𝐼 − 𝑆𝑗)(𝐼 + 𝑆𝑗)

−1, 𝑗 = 0, 1 is admissible if and only if

ker(𝑋1 −𝑋0) ∩ Ran((𝑆𝑀 − 𝑆𝜇)
1/2) = {0} and 𝑋1 −𝑋0 ≥ 0.

Associated closed forms. The next statement describes 𝔸[𝑢, 𝑣] (the closure of the
form (𝔸𝑓, 𝑓)), where 𝔸 is a non-negative t-self-adjoint bi-extension of �̇� with
quasi-kernel 𝐴1 and generated by 𝐴0 (compare with Theorem 3.3).

Theorem 4.9. Let ⟨𝐴1, 𝐴0⟩ be an admissible pair and let 𝔸 be a non-negative t-
self-adjoint bi-extension of �̇� with quasi-kernel 𝐴1 and generated by 𝐴0. Let 𝔸[⋅, ⋅]
be the closure of the form (𝔸𝑓, 𝑔), 𝑓, 𝑔 ∈ Dom(�̇�). Then

𝒟[𝔸] = Dom(𝐴1)+̇Ran
(
(𝑆1 − 𝑆0)

1/2
)
= Dom(𝐴0)+̇Ran

(
(𝑆1 − 𝑆0)

1/2
)
,

𝔸[𝑢] = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2

= 𝐴1[𝑢] + ∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2 − ∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2,
𝑢 = (𝐼 + 𝑆1)ℎ+ 𝑤, (4.12)

where 𝑆𝑙 = (𝐼 −𝐴𝑙)(𝐼 +𝐴𝑙), 𝑙 = 0, 1, ℎ ∈ ℋ, 𝑤 ∈ Ran
(
(𝑆1 − 𝑆0)

1/2
)
.

Proof. Let 𝑓 = 𝑓1 + 𝑓0, 𝑓1 ∈ Dom(𝐴1), 𝑓0 ∈ Dom(𝐴0). Then

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0).

Due to (4.9)

(𝔸𝑓, 𝑓) = ℬ̃(𝜙1, 𝜙0) = ∥𝜙1 + 𝜙0∥2 − ∥𝑆1𝜙1 + 𝑆0𝜙0∥2 − 2Re ((𝑆1 − 𝑆0)𝜙1, 𝜙0) ,

where

𝜙𝑙 =
1

2
(𝐼 +𝐴𝑙)𝑓𝑙, 𝑆𝑙𝜙𝑙 =

1

2
(𝐼 −𝐴𝑙)𝑓𝑙, 𝑓𝑙 = (𝐼 + 𝑆𝑙)𝜙𝑙, 𝐴𝑙𝑓𝑙 = (𝐼 − 𝑆𝑙)𝜙𝑙, 𝑙 = 0, 1.

Represent 𝑓 = 𝑓1 + 𝑓0 = (𝐼 + 𝑆1)𝜙1 + (𝐼 + 𝑆0)𝜙0 in the form

𝑓 = (𝐼 + 𝑆1)(𝜙1 + 𝜙0)− (𝑆1 − 𝑆0)𝜙0.

Then

(𝔸𝑓, 𝑓) = ∥𝜙1 + 𝜙0∥2 − ∥𝑆1(𝜙1 + 𝜙0)− (𝑆1 − 𝑆0)𝜙0∥2
− 2Re (𝜙1 + 𝜙0, (𝑆1 − 𝑆0)𝜙0) + 2∣∣(𝑆1 − 𝑆0)

1/2𝜙0∣∣2.
(4.13)

Suppose that

lim
𝑛→∞ 𝑓 (𝑛) = 𝑢 in ℋ+, and lim

𝑛→∞(𝔸(𝑓
(𝑛) − 𝑓 (𝑚)), 𝑓 (𝑛) − 𝑓 (𝑚)) = 0.
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We have

𝑓 (𝑛) = (𝐼 + 𝑆1)(𝜙
(𝑛)
1 + 𝜙

(𝑛)
0 )− (𝑆1 − 𝑆0)𝜙

(𝑛)
0 .

Due to the direct decomposition

ℋ+ = Dom(𝐴1)+̇𝔑−1

and inclusions {(𝐼+𝑆1)(𝜙
(𝑛)
1 +𝜙

(𝑛)
0 )} ⊂ Dom(𝐴1), {(𝑆1−𝑆0)𝜙

(𝑛)
0 } ⊂ 𝔑−1, we get

that the sequences {(𝐼+𝑆1)(𝜙
(𝑛)
1 +𝜙

(𝑛)
0 )} and {(𝑆1−𝑆0)𝜙

(𝑛)
0 } converge in ℋ+. By

definition ∣∣𝑤∣∣2+ = 2∣∣𝑤∣∣2, ∀𝑤 ∈ 𝔑−1. Hence {(𝑆1 − 𝑆0)𝜙
(𝑛)
0 } converges in ℋ. On

the other hand convergence of {(𝐼 +𝑆1)(𝜙
(𝑛)
1 +𝜙

(𝑛)
0 )} in ℋ+ yields convergence of

{𝜙(𝑛)1 + 𝜙
(𝑛)
0 } in ℋ. Let

ℎ = lim
𝑛→∞(𝜙

(𝑛)
1 + 𝜙

(𝑛)
0 ) in ℋ,

Dom(𝒜1) ∋ 𝑦 = lim
𝑛→∞(𝐼 + 𝑆1)(𝜙

(𝑛)
1 + 𝜙

(𝑛)
0 ) in ℋ+,

𝑤′ = lim
𝑛→∞(𝑆1 − 𝑆0)𝜙

(𝑛)
0 .

From lim
𝑛→∞(𝔸(𝑓

(𝑛)−𝑓 (𝑚)), 𝑓 (𝑛)−𝑓 (𝑚)) = 0 and (4.13) we obtain that the sequence

{(𝑆1 − 𝑆0)
1/2𝜙

(𝑛)
0 } converges in ℋ. Let

𝑔 = lim
𝑛→∞(𝑆1 − 𝑆0)

1/2𝜙
(𝑛)
0 .

Then 𝑤′ = (𝑆1 − 𝑆0)
1/2𝑔. Set 𝑤 = −𝑤′. Thus

𝑢 = 𝑦 + 𝑤,

where 𝑦 = (𝐼 + 𝑆1)ℎ ∈ Dom(𝐴1), 𝑤 ∈ Ran
(
(𝑆1 − 𝑆0)

1/2
)
. We get that

lim
𝑛→∞(𝔸𝑓 (𝑛), 𝑓 (𝑛)) = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ− (𝑆1 − 𝑆0)

1/2𝑔∣∣2

− 2Re (ℎ, (𝑆1 − 𝑆0)
1/2𝑔) + 2∣∣𝑔∣∣2

= ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2.

Now let us prove that the quadratic form

𝜂(𝑢) = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2,

𝑢 = (𝐼 + 𝑆1)ℎ+ 𝑤, ℎ ∈ ℋ, 𝑤 ∈ Ran(𝑆1 − 𝑆0)
1/2

is non-negative and closed in ℋ+ as defined on

Dom(𝜂) = Dom(𝐴1)+̇Ran
(
(𝑆1 − 𝑆0)

1/2
)
.

Notice that the equality 𝑆1 − 𝑆0 = 2(𝐴1 + 𝐼)−1 − 2(𝐴0 + 𝐼)−1 yields

Dom(𝐴1)+̇Ran
(
(𝑆1 − 𝑆0)

1/2
)
= Dom(𝐴0)+̇Ran

(
(𝑆1 − 𝑆0)

1/2
)
.

First we calculate 𝐴1[𝑢] for 𝑢 ∈ Dom(𝐴1)+̇(𝒟[𝐴1] ∩𝔑−1). Let us represent 𝑢 as

𝑢 = (𝐼 + 𝑆1)ℎ+ (𝐼 + 𝑆1)
1/2𝜔,
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where ℎ ∈ ℋ, 𝜔 ∈ Ω = {𝑔 ∈ ℋ : (𝐼 + 𝑆1)
1/2𝜔 ∈ 𝔑−1}. Recall that by (3.7) and

(3.10) we have

Ran((𝑆1 − 𝑆𝜇)
1/2) = (𝐼 + 𝑆1)

1/2Ω = 𝒟[𝐴1] ∩𝔑−1.

Using (3.5) we obtain

𝐴1[𝑢] = − ∣∣𝑢∣∣2 + 2∣∣𝐼 + 𝑆1)
−1/2𝑢∣∣2

= − ∣∣(𝐼 + 𝑆1)ℎ+ (𝐼 + 𝑆1)
1/2𝜔∣∣2 + 2∣∣(𝐼 + 𝑆1)

1/2ℎ+ 𝜔∣∣2
= − ∣∣𝐼 + 𝑆1)ℎ∣∣2 − ∣∣(𝐼 + 𝑆1)

1/2𝜔∣∣2 − 2Re ((𝐼 + 𝑆1)ℎ, (𝐼 + 𝑆1)
1/2𝜔)

+ 2∣∣(𝐼 + 𝑆1)
1/2ℎ∣∣2 + 2∣∣𝜔∣∣2 + 4Re ((𝐼 + 𝑆1)

1/2ℎ, 𝜔)

= ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ∣∣2 − ∣∣(𝐼 + 𝑆1)
1/2𝜔∣∣2 − 2Re (𝑆1ℎ, (𝐼 + 𝑆1)

1/2𝜔)

+ 2Re (ℎ, (𝐼 + 𝑆1)
1/2𝜔) + 2∣∣𝜔∣∣2

= ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ (𝐼 + 𝑆1)
1/2𝜔∣∣2 + 2∣∣𝜔∣∣2 + 2Re (ℎ, (𝐼 + 𝑆1)

1/2𝜔).

Denoting 𝑤 = (𝐼 +𝑆1)
1/2𝜔 and using the equality (see (3.7)) ∣∣(𝑆1−𝑆𝜇)

−1/2𝑤∣∣ =
∣∣(𝐼 + 𝑆1)

−1/2𝑤∣∣2, we arrive at the equality
𝐴1[𝑢] = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2 ≥ 0.
Furthermore, since 𝑆1 − 𝑆𝜇 ≥ 𝑆1 − 𝑆0, we get that

Ran((𝑆1 − 𝑆𝜇)
1/2) ⊃ Ran((𝑆1 − 𝑆0)

1/2)

and ∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2 ≥ ∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2 for all 𝑤 ∈ Ran((𝑆1 − 𝑆0)
1/2). So,

𝜂(𝑢) = 𝐴1[𝑢] + ∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2 − ∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2 ≥ 0,
𝑢 ∈ Dom(𝐴1)+̇Ran((𝑆1 − 𝑆0)

1/2) ≥ 0.
In addition, one can easily see that the right-hand side of (4.12) is closed on
Dom(𝐴1)+̇Ran((𝑆1−𝑆0)

1/2) in ℋ+. Now we can conclude that (4.12) is valid. □

Define for 𝔸 ∈ 𝒫(�̇�) the “dual” quadratic form
𝔸′[𝑢] = 2Re (�̇�∗𝑢, 𝑢)− 𝔸[𝑢], 𝑢 ∈ 𝒟[𝔸]

and let

𝐴′𝐾 [𝑢] = 2Re (�̇�
∗𝑢, 𝑢)−𝐴𝐾 [𝑢], 𝑢 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+. (4.14)

Recall that a linear operator 𝑇 in a Hilbert space ℌ is called accretive [20] if
Re (𝑇𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ Dom(𝑇 ) and maximal accretive (𝑚-accretive) if it
is accretive and has no accretive extensions in ℌ. The following statements are
equivalent [27]:

(i) the operator 𝑇 is 𝑚-accretive;
(ii) the operator 𝑇 is accretive and its resolvent set contains points from the left

half-plane;
(iii) the operators 𝑇 and 𝑇 ∗ are accretive.
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Theorem 4.10. If 𝐴𝐹 and 𝐴𝐾 are disjoint, then each non-negative self-adjoint
bi-extension 𝔸 of �̇� possess the properties

𝒟[𝔸] ⊆ 𝒟[𝐴𝐾 ], 𝔸[𝑢] ≥ 𝐴𝐾 [𝑢], 𝔸′[𝑢] ≤ 𝐴′𝐾 [𝑢], 𝑢 ∈ 𝒟[𝔸]. (4.15)

In addition, if 𝑇 is quasi-selfadjoint accretive extension of �̇� (�̇� ⊂ 𝑇 ⊂ �̇�∗), then

𝐴𝐾 [𝑢] ≤ Re (𝑇𝑢, 𝑢) ≤ 𝐴′𝐾 [𝑢], 𝑢 ∈ Dom(𝑇 ). (4.16)

Proof. As it follows from the proofs of Theorems 4.4 and 4.5 in ℋ+ the Krĕın–

von Neumann extension of the operator �̇� = ℛ�̇� coincides with the Krĕın–von
Neumann extension of the operator �̇�′ = ℛ𝐴𝐾 . Therefore, using the minimality
of 𝐴𝐾 among all non-negative self-adjoint extensions of �̇� we arrive at (4.15).

It is established in [4] that for each quasi-self-adjoint accretive extension 𝑇

of �̇� one has

Dom(𝑇 ) ⊂ 𝒟[𝐴𝐾 ], 𝐴𝐾 [𝑢] ≤ Re (𝑇𝑢, 𝑢), 𝑢 ∈ Dom(𝑇 ).
Using the above and (4.14) we get (4.16). □
Explicit expressions for non-negative t-self-adjoint bi-extensions. Evidently, the
linear manifold Dom(𝐴𝐹 ) is a subspace in ℋ+. Let 𝔑𝐹 be the orthogonal com-

plement to Dom(�̇�) in Dom(𝐴𝐹 ) with respect to the inner product (⋅, ⋅)+ and let
𝔐𝐹 = ℋ+ ⊖ Dom(𝐴𝐹 ). Then 𝔐𝐹 = 𝐴𝐹𝔑𝐹 . Thus we have the (+)-orthogonal
decomposition

ℋ+ = Dom(�̇�)⊕𝔑𝐹 ⊕𝔐𝐹 .

Let
𝔑0 = Ran(𝐴

1/2
𝐹 ) ∩𝔑𝐹 .

Clearly, 𝐴
− 1

2

𝐹 (𝔑0) ⊂ Dom(𝐴𝐹 ). The following equalities take place

�̇�∗𝐴𝐹 𝑒 = −𝑒, 𝑒 ∈ 𝔑𝐹 ,

𝐴𝐹 �̇�∗𝑔 = −𝑔, 𝑔 ∈𝔐𝐹 .

Theorem 4.11 ([11]). The condition 𝔑0 = {0} is necessary and sufficient for the
uniqueness of non-negative self-adjoint extension of �̇�. Suppose 𝔑0 ∕= {0}. Then
the formulas

Dom(𝐴) = Dom(�̇�)⊕ (𝐼 +𝐴𝐹𝑈)Dom(𝑈),

𝐴(𝑥+ ℎ+𝐴𝐹𝑈ℎ) = 𝐴𝐹 (𝑥 + ℎ)− 𝑈ℎ, 𝑥 ∈ Dom(�̇�), ℎ ∈ Dom(𝑈)
(4.17)

give a one-to-one correspondence between all non-negative self-adjoint extensions

𝐴 of �̇� and all (+)-self-adjoint operators 𝑈 in 𝔑𝐹 satisfying the condition

0 ≤ 𝑈 ≤𝑊−1
0

where 𝑊−1
0 determines the operator inverse with respect to the (+)-non-negative

self-adjoint relation 𝑊0 in 𝔑𝐹 associated with the (+)-closed in 𝔑𝐹 non-negative
form

𝜔0[𝑥, 𝑦] = (𝐴
[−1/2]
𝐹 𝑥,𝐴

[−1/2]
𝐹 𝑦)+ = (𝐴

1/2
𝐹 𝑥,𝐴

1/2
𝐹 𝑦)+(𝐴

[−1/2]
𝐹 𝑥,𝐴

[−1/2]
𝐹 𝑦), 𝑥, 𝑦 ∈ 𝔑0.
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Here 𝐴
[−1/2]
𝐹 is the Moore–Penrose pseudo-inverse. Operator 𝐴 coincides with

the Krĕın–von Neumann non-negative self-adjoint extension 𝐴𝐾 if and only if

𝑈 =𝑊−1
0 .

Moreover,

∙ the extensions 𝐴𝐹 and 𝐴𝐾 are disjoint ⇐⇒ 𝔑0 is dense in 𝔑𝐹 ,
∙ the extensions 𝐴𝐹 and 𝐴𝐾 are transversal ⇐⇒ 𝔑0 = 𝔑𝐹 .

The associated with 𝐴 closed form is given by the following equalities:

𝒟[𝐴] = 𝒟[�̇�]+̇𝐴𝐹ℛ(𝑈1/2), (4.18)

𝐴[𝜑+𝐴𝐹ℎ] = ∣∣𝐴1/2
𝐹 𝜑−𝐴

[−1/2]
𝐹 ℎ∣∣2 + 𝑈−1[ℎ]− 𝑤0[ℎ], 𝜑 ∈ 𝒟[𝐴], ℎ ∈ ℛ(𝑈1/2).

Let 𝐴1 and 𝐴0 be two non-negative self-adjoint extensions. From (4.17) and
(4.18) it follows that 𝐴1 and 𝐴0, determined by parameters 𝑈1 and 𝑈0, respectively,
then

∙ 𝐴1 and 𝐴0 are disjoint if and only if𝔑0 is dense in𝔑𝐹 and ker(𝑈1−𝑈0) = {0},
∙ 𝐴1 ≤ 𝐴0 if and only if 𝑈1 ≥ 𝑈0,
∙ 𝐴1 ≤ 𝐴0 and 𝐴1 and 𝐴0 are transversal if and only if 𝔑0 = 𝔑𝐹 , Ran(𝑈1) =
𝔑𝐹 , 𝑈1 ≥ 𝑈0, and Ran(𝐼 − 𝑈−11 𝑈0) = 𝔑𝐹 .

Denote by 𝑃+
𝔑𝐹
, 𝑃+

𝔐𝐹
the orthogonal projection inℋ+ onto𝔑𝐹 and𝔐𝐹 = 𝐴𝐹𝔑𝐹 .

Notice that

𝔐 = 𝔑𝑖 ⊕𝔑−𝑖 = 𝔑𝐹 ⊕𝔐𝐹 .

Recall that each self-adjoint bi-extensions of �̇� is of the form (2.1), where 𝒮 is a
(+)-self-adjoint operator in 𝔐.

Theorem 4.12. Suppose 𝐴𝐾 and 𝐴𝐹 are disjoint. Then

1. the operator 𝔸𝐾 is of the form

𝔸𝐾 = �̇�∗ −ℛ−1𝐴𝐹 (𝑃
+
𝔑𝐹

+𝑊0�̇�
∗𝑃+

𝔐𝐹
); (4.19)

2. the operator 𝔸 = 𝐴∗ +ℛ−1(𝒮 − �̇�∗/2)𝑃+
𝔐 belongs to 𝒫(�̇�) if and only if

𝒮 ≥ 𝒮𝐾 = −𝐴𝐹𝑊0�̇�
∗𝑃+

𝔐𝐹
+
1

2

(
�̇�∗𝑃+

𝔐𝐹
−𝐴𝐹𝑃+

𝔑𝐹

)
in the sense of quadratic forms;

3. if 𝐴1 is a non-negative self-adjoint extension of �̇� disjoint with 𝐴𝐹 and if
𝐴0 ≥ 𝐴1, then the non-negative t-self-adjoint bi-extension of �̇� with quasi-
kernel 𝐴1 and generated by 𝐴0 is of the form

𝔸 = �̇�∗ +ℛ−1
(
𝒮 − 1

2
�̇�∗

)
𝑃+
𝔐,
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where 𝒮 is a (+)-self-adjoint operator in 𝔐 given by⎧⎨⎩

Dom(𝒮) = (𝐼 +𝐴𝐹𝑈1)Dom(𝑈1)+̇(𝐼 +𝐴𝐹𝑈0)Dom(𝑈0)

𝒮(𝐼 +𝐴𝐹𝑈1)𝑒 =
1

2
(𝐴𝐹 − 𝑈1)𝑒, 𝑒 ∈ Dom(𝑈1)

𝒮(𝐼 +𝐴𝐹𝑈0)𝑔 =
1

2
(−𝐴𝐹 + 𝑈0)𝑔, 𝑔 ∈ Dom(𝑈0)

, (4.20)

and 𝑈1, 𝑈0 determine 𝐴1 and 𝐴0 in formulas (4.17). In particular, if 𝐴0 =
𝐴𝐹 , then

𝒮 = −𝐴𝐹𝑈−11 �̇�∗𝑃+
𝔐𝐹

+
1

2

(
�̇�∗𝑃+

𝔐𝐹
−𝐴𝐹𝑃+

𝔑𝐹

)
. (4.21)

Proof. From (4.17) we get the equality

Dom(𝐴)⊖Dom(�̇�) = (𝐼 +𝐴𝐹𝑈)Dom(𝑈)

for an arbitrary non-negative self-adjoint extension 𝐴 of �̇�. Then equalities (2.4)
yield (4.20). When 𝐴0 = 𝐴𝐹 , we have 𝑈0 = 0. This gives the equality

𝑓 = (𝐼 +𝐴𝐹𝑈1)(−𝑈−11 �̇�∗)𝑃+
𝔐𝐹

𝑓 + (𝑃+
𝔑𝐹

+ 𝑈−11 �̇�∗𝑃+
𝔐𝐹

)𝑓.

Then by virtue of (4.20) we obtain (4.21). The case 𝐴1 = 𝐴𝐾 holds true if and
only if 𝑈1 =𝑊−1

0 and leads to

𝒮𝐾 = −𝐴𝐹𝑊0�̇�
∗𝑃+

𝔐𝐹
+
1

2

(
�̇�∗𝑃+

𝔐𝐹
−𝐴𝐹𝑃+

𝔑𝐹

)
.

Then applying (2.1) we get (4.19). Statement (2.) follows from the fact that 𝔸𝐾

is the minimal element of 𝒫(�̇�). □

5. Extremal non-negative self-adjoint bi-extensions

Let �̇� be a symmetric contraction defined in subspace Dom(𝑆). We call a sc-

extension 𝑆 of �̇� extremal if

inf
𝑔𝑆∈Dom(�̇�)

∥(𝐼 − 𝑆2)1/2(𝑔 − 𝑔𝑆)∥ = 0, ∀𝑔 ∈ ℋ.

We can also offer an equivalent definition of an extremal sc-extension. Let 𝔑 =
ℋ ⊖ Dom(𝑆). We call a sc-extension 𝑆 of �̇� extremal if (𝐼 − 𝑆2)𝔑 = 0, where
(𝐼 − 𝑆2)𝔑 is the Krĕın shorted operator (see (3.8), (3.9)). The following equality
was proved in [10]

(𝐼 − 𝑆2)𝔑 = (𝑆𝑀 − 𝑆𝜇)
1/2(𝐼 −𝑋2)(𝑆𝑀 − 𝑆𝜇)

1/2, (5.1)

where 𝑋 is corresponding to 𝑆 (via formula (3.5)) contraction in Ran(𝑆𝑀 − 𝑆𝜇).
Formula (5.1) implies that 𝑆 is extremal if and only if 𝑋 is self-adjoint and unitary,
i.e., 𝑋 = 𝑋∗ and 𝑋2 = 𝐼.
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Now let �̇� be a non-negative closed densely defined symmetric operator.
Recall (see Section 3) that a non-negative self-adjoint extension 𝐴 of �̇� is extremal
[3] if

inf
𝜑∈Dom(�̇�)

(𝐴(ℎ− 𝜑), ℎ− 𝜑) = 0, ∀ℎ ∈ Dom(𝐴).

If

�̇� = (𝐼 − �̇�)(𝐼 + �̇�)−1, 𝑆 = (𝐼 −𝐴)(𝐼 +𝐴)−1, (5.2)

then (𝐴ℎ, ℎ) = ((𝐼 − 𝑆2)𝑔, 𝑔) where 𝑔 = (𝐼 + 𝑆)−1ℎ. This yields

inf
𝜑∈Dom(�̇�)

(𝐴(ℎ− 𝜑), ℎ− 𝜑) = inf
𝑔𝑆∈Dom(�̇�)

∥(𝐼 − 𝑆2)1/2(𝑔 − 𝑔𝑆)∥2,

where Dom(�̇�) = (𝐼 + �̇�)Dom(�̇�). Therefore, 𝐴 is extremal non-negative self-

adjoint extension of �̇� if and only if 𝑆 is extremal sc-extension of symmetric
contraction �̇�. The Friedrichs and Krĕın–von Neumann extensions are extremal.

Let 𝔸 be a non-negative self-adjoint bi-extension of the symmetric operator
�̇�. We call the operator 𝔸 an extremal bi-extension if

inf
𝜑∈Dom(�̇�)

(𝔸(𝑓 − 𝜑), 𝑓 − 𝜑) = 0, ∀𝑓 ∈ Dom(𝔸).

In what follows we assume that the operators 𝐴𝐹 and 𝐴𝐾 are disjoint.

Theorem 5.1. A t-self-adjoint bi-extension 𝔸 is extremal if and only if it is gener-
ated by an admissible pair ⟨𝐴1, 𝐴0⟩ of extremal non-negative self-adjoint extensions
of �̇�.

Proof. Let 𝐴1 and 𝐴0 be the quasi-kernels of 𝔸 and 𝔸′, respectively. Let also 𝔸
be an extremal self-adjoint bi-extension. It follows from (2.5) then that

(𝔸𝑓𝑘, 𝑓𝑘) = (𝐴𝑘𝑓𝑘, 𝑓𝑘), ∀𝑓𝑘 ∈ Dom(𝐴𝑘), 𝑘 = 0, 1.

Since 𝔸 extends 𝐴1 and is generated by 𝐴0, it follows from (2.5) that

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0) = ℬ(𝑓1, 𝑓0),
where 𝑓 ∈ Dom(𝔸), 𝑓 = 𝑓1 + 𝑓0, 𝑓𝑘 ∈ Dom(𝐴𝑘), 𝑘 = 0, 1. Applying (4.10) and
(4.11) we get

inf
𝜑∈Dom(�̇�)

(𝔸(𝑓 − 𝜑), 𝑓 − 𝜑) = inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑦)

= inf
ℎ𝑆∈Dom(�̇�)

(∥𝑥− ℎ𝑆∥2 − (𝑥, 𝐹𝑥) + (𝑦, 𝐹𝑦)− ∥𝐹𝑦 +𝐺(𝑥− ℎ𝑠)∥2
)
.

(5.3)

Since inf𝑓𝐴∈Dom(�̇�)(𝔸(𝑓𝑘 − 𝑓𝐴), 𝑓𝑘 − 𝑓𝐴) = 0 for all 𝑓𝑘 ∈ Dom(𝐴𝑘), 𝑘 = 0, 1, the

operators 𝐴1 and 𝐴0 are extremal non-negative self-adjoint extensions of �̇�.
Hence, the extremality of 𝔸 implies that the non-negative self-adjoint ex-

tensions 𝐴1 and 𝐴0 are also extremal. Since 𝔸 is a non-negative self-adjoint bi-
extension, then the pair ⟨𝐴1, 𝐴0⟩ is an admissible extremal pair.

Conversely, let us assume that ⟨𝐴1, 𝐴0⟩ is an admissible pair of extremal non-
negative self-adjoint extensions of �̇�. We are going to prove that the corresponding
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non-negative self-adjoint bi-extension 𝔸 with quasi-kernel 𝐴1 and generated by 𝐴0

is extremal. The corresponding (via (5.2)) to 𝐴1 and 𝐴0 sc-extensions 𝑆1 and
𝑆0 are extremal. Also, the fact that ⟨𝐴1, 𝐴0⟩ is an admissible pair, implies that
𝑆1 − 𝑆0 ≥ 0.

Let

𝑆𝑘 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋𝑘(𝑆𝑀 − 𝑆𝜇)
1/2, 𝑘 = 0, 1,

where 𝑋𝑘, 𝑘 = 0, 1 are self-adjoint contractions in 𝔑. Since 𝑆𝑘, 𝑘 = 0, 1 are
extremal sc-extensions, then 𝑋𝑘, 𝑘 = 0, 1, are self-adjoint unitary operators and
hence 𝑃𝑘 = (𝐼 +𝑋𝑘)/2, 𝑘 = 0, 1, are orthogonal projections. Also, 𝑋1 −𝑋0 ≥ 0
implies that 𝑃1 − 𝑃0 ≥ 0 and Ran(𝑃1) ⊃ Ran(𝑃0). Since 𝑋𝑘 = 2𝑃𝑘 − 𝐼, 𝑘 = 0, 1,
then

𝐺 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2(𝑃1 + 𝑃0 − 𝐼)(𝑆𝑀 − 𝑆𝜇)
1/2,

and

𝐹 = (𝑆𝑀 − 𝑆𝜇)
1/2(𝑃1 − 𝑃0)(𝑆𝑀 − 𝑆𝜇)

1/2.

Since 𝐼 − (𝑃1 + 𝑃0 − 𝐼)2 = 𝑃1 − 𝑃0, then (5.1) implies that (𝐼 − 𝐺2)↾𝔑 = 𝐹 .
Consequently, applying the definition of the operator (𝐼 −𝐺2)↾𝔑 we obtain

𝐹 = (𝐼 −𝐺2)1/2𝑃𝐺(𝐼 −𝐺2)1/2,

where 𝑃𝐺 is an orthoprojection onto the subspace

ℋ𝐺 = ((𝐼 −𝐺2)1/2)−1{𝔑} ∩ Ran ((𝐼 −𝐺2)1/2).

Therefore,

𝐻(𝑥−ℎ𝑠,𝑦)=∥𝑥−ℎ𝑆∥2−(𝑥,𝐹𝑥)+(𝑦,𝐹𝑦)−∥𝐹𝑦+𝐺(𝑥−ℎ𝑠)∥2
=∥(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)∥2−∥𝑃𝐺(𝐼−𝐺2)1/2𝑥∥2+∥𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2
−∥(𝐼−𝐺2)1/2𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2−2Re((𝐼−𝐺2)1/2𝑃𝐺(𝐼−𝐺2)1/2𝑦,𝐺(𝑥−ℎ𝑠))

=∥(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)∥2−∥𝑃𝐺(𝐼−𝐺2)1/2𝑥∥2+∥𝐺𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2

−2Re
(
𝐺𝑃𝐺(𝐼−𝐺2)1/2𝑦,(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)

)
=∥(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)−𝐺𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2−∥𝑃𝐺(𝐼−𝐺2)1/2𝑥∥2.

Thus, since (𝐼 −𝐺2)1/2Dom(�̇�) ⊥ ℋ𝐺, then

inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑦) = ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥− 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑦∥2

− ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2, ∀𝑥, 𝑦 ∈ ℋ.
(5.4)

Since 𝐴1 and 𝐴0 are extremal non-negative self-adjoint extensions, then the defi-
nition of the functional 𝐻 and (4.11) imply

inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑥) = 0, inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 ,−𝑥) = 0,
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for all 𝑥 ∈ ℋ. Relation (5.4) yields
∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥− 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 − ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 = 0,

and

∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥+ 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 − ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 = 0,
for all 𝑥 ∈ ℋ. Thus, 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑥 = 0 for all 𝑥 ∈ ℋ. Applying (5.4) again
we get

inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑦) = 0, ∀𝑥, 𝑦 ∈ ℋ.

Now we can use (5.3) to confirm that

inf
𝑓𝐴∈Dom(�̇�)

(𝔸(𝑓 − 𝑓𝐴), 𝑓 − 𝑓𝐴) = 0,

which means that 𝔸 is an extremal non-negative self-adjoint bi-extension. □

Recall that the non-negative self-adjoint bi-extension 𝔸𝐾 is associated with
the closed in ℋ+ form 𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ ℋ+. The quasi-kernel of 𝔸𝐾 is
the Krĕın–von Neumann extension 𝐴𝐾 and 𝔸𝐾 is generated by 𝐴𝐹 . Clearly, 𝔸𝐾

is extremal non-negative self-adjoint bi-extension of �̇�.

Theorem 5.2.
(1) Let 𝐴𝐹 and 𝐴𝐾 be transversal. Then the operator 𝔸𝐾 is the unique extremal
non-negative t-self-adjoint bi-extension.

(2) Let 𝐴𝐹 and 𝐴𝐾 be disjoint but not transversal. Then except 𝔸𝐾 there exist
infinitely many extremal non-negative t-self-adjoint bi-extensions.

Proof. (1) Suppose that 𝐴𝐹 and 𝐴𝐾 are transversal. Let also 𝔸 be an extremal
t-self-adjoint bi-extension with the quasi-kernel 𝐴1 and 𝐴0 be the quasi-kernel of
𝔸′. According to Theorem 5.1 for 𝑆𝑘 = (𝐼 −𝐴𝑘)(𝐼 +𝐴𝑘)

−1, 𝑘 = 0, 1 the following
relations hold

𝑆𝑘 = 𝑆𝜇 + (𝑆𝑀 − 𝑆𝜇)
1/2𝑃𝑘(𝑆𝑀 − 𝑆𝜇)

1/2, 𝑘 = 0, 1, (5.5)

where 𝑃𝑘, 𝑘 = 0, 1, are orthoprojections in 𝔑. Since 𝐴1 and 𝐴0 are disjoint, we
have ker((𝑆1 − 𝑆0)↾𝔑 = {0}. But

ker((𝑆1 − 𝑆0)↾𝔑 = ker((𝑆𝑀 − 𝑆𝜇)
1/2(𝑃1 − 𝑃0)(𝑆𝑀 − 𝑆𝜇)

1/2↾𝔑).
Since 𝑃1−𝑃0 ≥ 0, then 𝑄 = 𝑃1−𝑃0 is an orthoprojection. Also, Ran(𝑆𝑀−𝑆𝜇) = 𝔑
implies ker(𝑃1 − 𝑃0) = {0} or equivalently 𝑃1 − 𝑃0 = 𝐼. The latter yields 𝑃1 = 𝐼
and 𝑃0 = 0. Consequently, 𝑆1 = 𝑆𝑀 , 𝑆0 = 𝑆𝜇 and the quasi-kernels of 𝔸 and 𝔸′

coincide with 𝐴𝐹 and 𝐴𝐾 .
(2) Let𝐴𝐹 and𝐴𝐾 be disjoint but not transversal. Then Ran((𝑆𝑀−𝑆𝜇)

1/2) ∕=
𝔑 and ker((𝑆𝑀 − 𝑆𝜇)

1/2) = {0}. We chose a subspace 𝔏 ⊂ 𝔑 in a way that

𝔏 ∩ Ran(𝑆𝑀 − 𝑆𝜇)
1/2 = {0}. Let 𝔑1 be such that {0} ⊆ 𝔑1 ⊆ 𝔏. Let also 𝑃1 be

an orthogonal projection operator on 𝔑⊖𝔑1, 𝑄 an orthoprojection on 𝔑⊖𝔏, and
𝑃0 = 𝑃1 −𝑄. Then 𝑃1 − 𝑃0 = 𝑄 ≥ 0 and ker(𝑃1) ∩ Ran(𝑆𝑀 − 𝑆𝜇)

1/2 = {0}. Let
𝑆𝑘, 𝑘 = 0, 1, be defined by (5.5). Hence, 𝑆1 and 𝑆0 are extremal sc-extensions and
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𝐴𝑘, 𝑘 = 0, 1 are extremal non-negative self-adjoint extensions of �̇� and ⟨𝐴1, 𝐴0⟩
is an admissible pair. Therefore, according to Theorem 5.1, if 𝔸 ⊃ 𝐴1 and 𝔸 is
generated by 𝐴0, then 𝔸 is extremal t-self-adjoint bi-extension of �̇�. It follows from
the construction of 𝔸 that there is infinite number of these bi-extensions. □

6. Boundary triplets and self-adjoint bi-extensions

Let �̇� be a closed densely defined symmetric operator in ℋ with equal deficiency
numbers.

Definition 6.1 ([21]). The triplet Π = {𝒩 ,Γ1,Γ0} is called a boundary triplet for
�̇�∗ if 𝒩 is a Hilbert space and Γ0,Γ1 are bounded linear operators from the Hilbert
spaceℋ+ = Dom(�̇�

∗) (with the inner product (1.1)) into 𝒩 such that the mapping

Γ :=
〈
Γ0,Γ1

〉
: ℋ+ → 𝒩 ⊕𝒩 ,

is surjective and the abstract Green identity(
�̇�∗𝑓, 𝑔

)
−
(
𝑓, �̇�∗𝑔

)
= (Γ1𝑓,Γ0𝑔)𝒩 − (Γ0𝑓,Γ1𝑔)𝒩 ,

holds for all 𝑓, 𝑔 ∈ ℋ+.

It follows from Definition 6.1 (see [17], [18]) that the operators

Dom(𝐴𝑘) := kerΓ𝑘, 𝐴𝑘 := �̇�∗↾Dom(𝐴𝑘), (𝑘 = 0, 1),

are self-adjoint extensions of �̇�. Moreover, they are transversal, i.e.,

Dom(�̇�∗) = Dom(𝐴0) + Dom(𝐴1).

Notice that if Π = {𝒩 ,Γ1,Γ0} is a boundary triplet for �̇�∗, then Π′ = {𝒩 ,−Γ0,Γ1}
is the boundary triplet for �̇�∗ too.

We are going to provide connections between self-adjoint bi-extensions and
boundary triplets [7]. The proposition below follows from Definition 6.1.

Theorem 6.2. Let �̇� be a closed densely defined symmetric operator with equal
deficiency indices in the Hilbert space ℋ. Suppose 𝒩 is a Hilbert space, Γ0,Γ1 ∈
[ℋ+,𝒩 ], and the operator

〈
Γ0,Γ1

〉 ∈ [ℋ+,𝒩⊕𝒩 ] is surjective. Then the following
statements are equivalent.

(i) Π = {𝒩 ,Γ1,Γ0} is the boundary triplet for �̇�∗;
(ii) the sesquilinear form

𝑤(𝑓, 𝑔) := (�̇�∗𝑓, 𝑔)− (Γ1𝑓,Γ0𝑔)𝒩 , 𝑓, 𝑔 ∈ ℋ+ = Dom(�̇�
∗) (6.1)

is Hermitian, i.e., 𝑤(𝑓, 𝑔) = 𝑤(𝑔, 𝑓);
(iii) the sesquilinear form

𝑤′(𝑓, 𝑔) := (�̇�∗𝑓, 𝑔) + (Γ0𝑓,Γ1𝑔)𝒩 , 𝑓, 𝑔 ∈ ℋ+ = Dom(�̇�
∗) (6.2)

is Hermitian,
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If ℋ+ ⊂ ℋ ⊂ ℋ− is a rigged Hilbert space, 𝒩 is a Hilbert space, and
Γ ∈ [ℋ+,𝒩 ], then by Γ× we will denote the adjoint operator from [𝒩 ,ℋ−], i.e.,
(Γℎ, 𝑔)𝒩 = (ℎ,Γ×𝑔) for all ℎ ∈ ℋ+ and all 𝑔 ∈ 𝒩 .

The following theorem [7] sets up the connection between boundary triplets
and t-self-adjoint bi-extensions.

Theorem 6.3. Let �̇� be a closed densely defined symmetric operator with equal
deficiency numbers in the Hilbert space ℋ. Consider the rigged Hilbert space ℋ+ ⊂
ℋ ⊂ ℋ− generated by �̇�.

1. Let Π = {𝒩 ,Γ1,Γ0} for �̇�∗ be a boundary triplet for �̇�∗. Define operators 𝔸
and 𝔸′

𝔸 := �̇�∗ − Γ×0 Γ1, 𝔸′ := �̇�∗ + Γ×1 Γ0,

where Γ×0 and Γ
×
1 ∈ [𝒩 ,ℋ−] are the adjoint operators to Γ0 and Γ1, respec-

tively. Then 𝔸 and 𝔸′ belong to [ℋ+,ℋ−] and are t-self-adjoint bi-extensions
of �̇�. Moreover,

𝔸 ⊃ 𝐴1, 𝔸′ ⊃ 𝐴0.

2. If 𝔸 is a t-self-adjoint bi-extension of �̇� with quasi-kernel 𝐴1 and generated
by 𝐴0, then there exists a boundary triplet Π = {𝒩 ,Γ1,Γ0} for �̇�∗ such that
�̇�∗↾ kerΓ1 = 𝐴1 and 𝔸 = �̇�∗ − Γ×0 Γ1.
It is shown in the proof of Theorem 6.3 that the form 𝑤(𝑓, 𝑔) in (6.1) cor-

responds to 𝔸, the boundary triplet Π = {𝒩 ,Γ1,Γ0}, and 𝑤(𝑓, 𝑔) = (𝔸𝑓, 𝑔).
Similarly, 𝑤′(𝑓, 𝑔) = (𝔸′𝑓, 𝑔), where 𝑤′(𝑓, 𝑔) is defined in (6.2), and the boundary
triplet is Π′ = {𝒩 ,−Γ0,Γ1}.
Definition 6.4 ([3]). Suppose that �̇� is a non-negative symmetric operator. A
boundary triplet Π = {𝒩 ,Γ1,Γ0} is called non-negative if

𝑤(𝑓, 𝑓) = (�̇�∗𝑓, 𝑓)− (Γ1𝑓,Γ0𝑓)𝒩 ≥ 0 for all 𝑓 ∈ ℋ+.

The operator 𝔸 = �̇�∗ − Γ×0 Γ1 corresponding to the boundary triplet Π =

{𝒩 ,Γ1,Γ0} is [3] a t-self-adjoint non-negative bi-extension of �̇� and belongs to

[ℋ+,ℋ+]. If �̇� is a positive-definite operator, then for the positive-definite self-

adjoint extension 𝐴 we have ℋ+ = Dom(�̇�
∗) = Dom(𝐴)+̇ ker(�̇�∗). Consequently,

𝐴𝐹 and 𝐴𝐾 are transversal. Let 𝑃 be a projection in ℋ+ onto Dom(𝐴) parallel to

ker(�̇�∗), Π = {𝒩 ,Γ𝐾 ,Γ} be a boundary triplet such that ker(Γ𝐾) = Dom(𝐴𝐾),
Then

(�̇�∗𝑓, 𝑓)− (Γ𝐾𝑓,Γ𝑓)𝒩 = (𝐴𝑃𝑓, 𝑃𝑓), 𝑓 ∈ ℋ+,

i.e., {𝒩 ,Γ𝐾 ,Γ} is a positive boundary triplet. The latter equality has been assumed
as the definition of a positive boundary triplet (the space of boundary values) in

the case of a positive-definite operator �̇� in [22].
It was shown in [3] that a positive boundary triplet exists if and only if 𝐴𝐹 and

𝐴𝐾 are transversal. The following theorem naturally follows from the preceding
discussion.
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Theorem 6.5. Let �̇� be a closed densely defined non-negative symmetric operator
such that 𝐴𝐹 and 𝐴𝐾 are transversal. Then

1. to every non-negative boundary triplet Π = {𝒩 ,Γ1,Γ0} there corresponds a
non-negative t-self-adjoint bi-extension 𝔸 = �̇�∗ − Γ×0 Γ1;

2. to every non-negative t-self-adjoint bi-extension 𝔸 there corresponds (up to
equivalence1) a non-negative boundary triplet.

Let Π = {𝒩 ,Γ𝐹 ,Γ𝐾} be a non-negative boundary triplet such that
Dom(𝐴𝐾) = kerΓ𝐾 , and Dom(𝐴𝐹 ) = ker Γ𝐹 . In [3] this boundary triplet is called
basic. It is not hard to see that the corresponding to the basic boundary triplet
non-negative t-self-adjoint bi-extension

𝔸0 = �̇�∗ − Γ×𝐹Γ𝐾 (6.3)

is such that the quasi-kernel of 𝔸0 is 𝐴𝐾 . At the same time, 𝐴𝐹 is the quasi-kernel
of the bi-extension 𝔸′0 = �̇�∗ + Γ×𝐾Γ𝐹 . It follows that 𝔸0 = 𝔸𝐾 is the minimal

element of 𝒫(�̇�). The following theorem is established in [3].

Theorem 6.6. Let Π = {𝒩 ,Γ𝐹 ,Γ𝐾} be a basic boundary triplet. Then a boundary
triplet Π̃ =

{
𝒩 , Γ̃1, Γ̃0

}
is non-negative if and only if

Γ̃1 = 𝑋(Γ𝐾 −𝐵1Γ𝐹 ), Γ̃0 = 𝑋∗−1[(𝐼 +𝐵2𝐵1)Γ𝐹 −𝐵2Γ𝐾 ],

where 𝐵1, 𝐵2 are non-negative bounded operators in ℋ and 𝑋 is a linear homeo-

morphism from ℋ onto ℋ̃.
Theorem 6.6 essentially provides us with another way to describe all non-

negative t-self-adjoint bi-extensions in [ℋ+,ℋ−]. Namely, if Π = {𝒩 ,Γ𝐹 ,Γ𝐾} is a
basic non-negative boundary triplet, then the formula

𝔸 = �̇�∗ − [Γ×𝐹 (𝐼 +𝐵1𝐵2)− Γ×𝐾𝐵2](Γ𝐾 −𝐵1Γ𝐹 ), (6.4)

where 𝐵1, 𝐵2 are non-negative bounded operators in ℋ, gives that description.
Formulas (6.3) and (6.4) yield the following expression for quadratic forms

(𝔸𝑓, 𝑓) = (𝔸0𝑓, 𝑓) + 𝑏(𝑓, 𝑓), 𝑓 ∈ ℋ+,

where

𝑏(𝑓, 𝑓) = (𝐵1Γ𝐹 𝑓,Γ𝐹 𝑓) + (𝐵2Γ𝐾𝑓,Γ𝐾𝑓) + (𝐵1Γ𝐹 𝑓,𝐵2𝐵1Γ𝐹 𝑓)

− 2Re (𝐵1Γ𝐾𝑓,𝐵2Γ𝐾𝑓)

= ∣∣𝐵1/2
1 Γ𝐹 𝑓 ∣∣2𝒩 + ∣∣𝐵1/2

2 (𝐵1Γ𝐹 − Γ𝐾)𝑓 ∣∣2𝒩 .

For the corresponding dual self-adjoint bi-extension

𝔸′ = �̇�∗ + (Γ×𝐾 − Γ×𝐹𝐵1)((𝐼 + 𝐵2𝐵1)Γ𝐹 −𝐵2Γ𝐾),

1Two boundary triplets {𝒩 ,Γ1,Γ0} and
{
𝒩 , Γ̃1, Γ̃0

}
are called equivalent [3] if ker Γ𝑘 = ker Γ̃𝑘,

𝑘 = 0, 1.
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we have

(𝔸′𝑓, 𝑓) = (𝔸′0𝑓, 𝑓)− 𝑏(𝑓, 𝑓), ∀𝑓 ∈ ℋ+.

Set

𝒩 = 𝔑𝐹 , Γ0 = −�̇�∗𝑃+
𝔐𝐹

, Γ1 = 𝑃+
𝔑𝐹

.

One can easily check that {𝒩 ,Γ1,Γ0} is a boundary triplet for �̇�∗. Clearly
ker(Γ0) = Dom(𝐴𝐹 ).

Calculating Γ×0 and Γ
×
1 one obtains

Γ×0 = ℛ−1𝐴𝐹𝑃+
𝔑𝐹

, Γ×1 = ℛ−1𝑃+
𝔑𝐹

.

Using Theorem 4.11 we get that the domains of all non-negative self-adjoint ex-

tensions 𝐴 of �̇� takes the form

Dom(𝐴) = {𝑣 ∈ Dom(�̇�∗) : Γ0𝑣 = 𝑈Γ1𝑣},
where 𝑈 is an arbitrary (+)-self-adjoint and non-negative operator in 𝔑𝐹 , satis-

fying 0 ≤ 𝑈 ≤𝑊−1
0 , and

Dom(𝐴𝐾) = {𝑣 ∈ Dom(�̇�∗) : Γ0𝑣 =𝑊−1
0 Γ1𝑣}.

Now suppose that 𝐴𝐹 and 𝐴𝐾 are disjoint (transversal). Then 𝑊0 is a densely de-
fined (everywhere defined) in𝔑𝐹 and (+)-self-adjoint and we can rewrite Dom(𝐴𝐾)
as

Dom(𝐴𝐾) = ker(Γ1 −𝑊0Γ0).

The operator

𝔸𝐾 = �̇�∗ − Γ×0 (Γ1 −𝑊0Γ0)

is t-self-adjoint bi-extension with quasi-kernel 𝐴𝐾 and generated by 𝐴𝐹 . This is
the minimal element of the set 𝒫(�̇�). Then we get the explicit expressions for 𝔸𝐾

and 𝔸′𝐾 (cf. (4.19)):

𝔸𝐾 = �̇�∗ −ℛ−1𝐴𝐹 (𝑃
+
𝔑𝐹

+𝑊0�̇�
∗𝑃+

𝔐𝐹
),

𝔸′𝐾 = �̇�∗ −ℛ−1(𝑃+
𝔑𝐹
−𝐴𝐹𝑊0𝑃

+
𝔑𝐹
)�̇�∗𝑃+

𝔐𝐹
.

If 𝐴𝐹 and 𝐴𝐾 are transversal, then we set

Γ𝐹 = Γ0 = −�̇�∗𝑃+
𝔐𝐹

, Γ𝐾 = Γ1 −𝑊0Γ0 = 𝑃+
𝔑𝐹

+𝑊0�̇�
∗𝑃+

𝔐𝐹
.

Consequently, we obtain that {𝔑𝐹 ,Γ𝐾 ,Γ𝐹 } is a basic boundary triplet for �̇�∗.
Applying (6.4) we get a complete description of the set of all t-self-adjoint non-

negative bi-extensions of �̇� in [ℋ+,ℋ−] given by the following formula
𝔸 = �̇�∗ −ℛ−1 [𝐴𝐹 (𝐼 + (𝑊0 +𝐵1)𝐵2)−𝐵2]

[
𝑃+
𝔑𝐹

+ (𝑊0 +𝐵1)𝐴
∗𝑃+

𝔐𝐹

]
,

where 𝐵1 and 𝐵2 are an arbitrary (+)-bounded and non-negative self-adjoint op-
erators in 𝔑𝐹 .
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