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Products of Toeplitz and Hankel Operators
on the Hardy Space of the Unit Sphere

Hocine Guediri

Abstract. The aim of this note is to discuss boundedness and compactness
of Hankel products and mixed Toeplitz–Hankel products on the Hardy space
of the unit sphere in several complex variables. The main adopted tool is
an auxiliary pioneering operator involved in an earlier investigation of dual
Toeplitz operators on the orthogonal complement of the Hardy space on the
unit sphere.
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1. Introduction

Dual Toeplitz operators on the orthogonal complement of the Bergman space have
been introduced and well investigated by Stroethoff and Zheng [11]. The higher-
dimensional case of dual Toeplitz operators in both Hardy and Bergman space
settings has been studied in [2, 5]; see also the relevant references therein. On
the other hand, Toeplitz and Hankel operators in the latter setting have been
extensively studied; in this respect we refer to [3, 4, 7, 8, 9, 12, 13].

For our purpose, let 𝔹𝑛, 𝑛 > 1, be the unit ball of ℂ𝑛 and 𝕊𝑛 be its boundary
(the unit sphere). Denote by 𝐿2(𝕊𝑛) the Lebesgue space of square integrable func-
tions and by ℋ2(𝕊𝑛) its Hardy subspace, (for more details see [1, 3, 10, 15]). While
on the circle the orthogonal complement of the Hardy space can be characterized
by (𝐻2)⊥ = 𝑧𝐻2, the matter is much more involved in higher dimensions because

𝐿2(𝕊𝑛)⊖
{
ℋ2(𝕊𝑛) +ℋ2(𝕊𝑛)

}
is large enough to cause capital differences from the one-dimensional case.
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Therefore, in contrast to the case of the circle, (where dual Toeplitz operators
are anti-unitarily equivalent to Toeplitz operators in view of the above symmetry
between (𝐻2)⊥ and 𝐻2, [11] or [5]), dual Toeplitz operators on the orthogonal
complement of the Hardy space on the unit sphere cannot be analogously reduced
to Toeplitz operators. Accordingly, they may constitute a worth studying new
class of Haplitz-type operators. In [5], such dual Toeplitz operators have been
introduced and studied from various points of view.

An interesting auxiliary operator, namely S𝑤, has been introduced and used
in studying products of these dual Toeplitz operators. In particular, commuting
dual Toeplitz operators have then been characterized through certain necessary
and sufficient conditions on the symbols. Besides, a Brown–Halmos type theorem
has been proved; it tells us when exactly the product of two dual Toeplitz operators
is again a dual Toeplitz operator. Several consequences of the two latter issues,
such as the characterization of zero divisors, have been also inferred. For the sake of
completeness, we summarize a few of these results here and refer to [5] for details.

Sarason’s problem related to the boundedness of Toeplitz products has been
extensively investigated by many authors, we refer to [6, 14] for details. The higher-
dimensional case of Toeplitz products and Hankel products has been considered
by many authors [2, 7, 8, 9, 12, 13]; see also the relevant references therein.

In the present paper, a more prominent role of the operator S𝑤 is empha-
sized. More precisely, making use of this transformation, we discuss necessary
conditions ensuring boundedness and compactness of products of Hankel operators
𝐻𝑓𝐻

∗
𝑔 , (equivalently the “dual” semicommutators 𝒮𝑓𝑔−𝒮𝑓𝒮𝑔), and mixed Hankel–

Toeplitz products 𝑇𝑓𝐻
∗
𝑔 and 𝐻𝑔𝑇𝑓 ; as well as the commutators 𝒮𝑓𝒮𝑔−𝒮𝑔𝒮𝑓 . These

represent the main results of this communication.

2. Preliminaries

For 𝑓 ∈ 𝐿∞(𝕊𝑛), define the dual Toeplitz operator 𝒮𝑓 as the operator on
(ℋ2(𝕊𝑛)

)⊥
defined to be a multiplication followed by a projection as follows:

𝒮𝑓 :
(ℋ2(𝕊𝑛)

)⊥ −→ (ℋ2(𝕊𝑛)
)⊥

𝑢 −→ 𝒮𝑓 (𝑢) := 𝒬(𝑓𝑢).
Here, 𝒬 is the orthogonal projection from 𝐿2(𝒮𝑛) onto

(ℋ2(𝕊𝑛)
)⊥

defined by

𝒬 : 𝐿2(𝕊𝑛) −→ (ℋ2(𝕊𝑛)
)⊥

𝑔 −→ 𝒬(𝑔) := (𝐼 − 𝒫)(𝑔),
with 𝒫 being the customary (Hardy) orthogonal projection from 𝐿2(𝕊𝑛) onto
the Hardy space ℋ2(𝕊𝑛). Since the projection 𝒬 has norm 1, then for any ℎ ∈(ℋ2(𝕊𝑛)

)⊥
, we have

∣∣𝒮𝑓 (ℎ)∣∣2 = ∣∣𝒬(𝑓ℎ)∣∣2 ≤ ∣∣𝑓ℎ∣∣2 ≤ ∣∣𝑓 ∣∣∞∣∣ℎ∣∣2.
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Immediate algebraic properties of dual Toeplitz operators can be easily observed;
for instance for 𝑓, 𝑔 ∈ 𝐿∞(𝕊𝑛), 𝛼, 𝛽 ∈ ℂ, we have

𝒮∗𝑓 = 𝒮𝑓 and 𝒮𝛼𝑓+𝛽𝑔 = 𝛼𝒮𝑓 + 𝛽𝒮𝑔.
Dual Toeplitz operators appear naturally if one observes that under the orthogonal
decomposition:

𝐿2(𝒮𝑛) = ℋ2(𝕊𝑛)⊕
(ℋ2(𝕊𝑛)

)⊥
,

the multiplication operatorℳ𝑓 , 𝑓 ∈ 𝐿∞(𝕊𝑛), can be represented as follows:

ℳ𝑓 =

(
𝑇𝑓 𝐻∗

𝑓

𝐻𝑓 𝒮𝑓

)
,

where the Toeplitz and Hankel operators are defined respectively by

𝑇𝑓 : ℋ2(𝕊𝑛) −→ ℋ2(𝕊𝑛)

𝑔 −→ 𝑇𝑓 (𝑔) := 𝒫(𝑓𝑔),
and

𝐻𝑓 : ℋ2(𝕊𝑛) −→ (ℋ2(𝕊𝑛)
)⊥

𝑔 −→ 𝐻𝑓 (𝑔) := 𝒬(𝑓𝑔).
This representation gives rise to dual Toeplitz operators on

(ℋ2(𝕊𝑛)
)⊥
. At once,

we observe the following algebraic relationships connecting them with Haplitz
operators, namely: for 𝑓, 𝑔 ∈ 𝐿∞(𝕊𝑛), the product identityℳ𝑓ℳ𝑔 =ℳ𝑓𝑔 implies
that (

𝑇𝑓 𝐻∗
𝑓

𝐻𝑓 𝒮𝑓

)(
𝑇𝑔 𝐻∗

𝑔

𝐻𝑔 𝒮𝑔
)
=

(
𝑇𝑓𝑔 𝐻∗

𝑓𝑔

𝐻𝑓𝑔 𝒮𝑓𝑔

)
.

Hence, we infer that
𝑇𝑓𝑔 = 𝑇𝑓𝑇𝑔 +𝐻∗

𝑓
𝐻𝑔.

𝒮𝑓𝑔 = 𝐻𝑓𝐻
∗
𝑔 + 𝒮𝑓𝒮𝑔.

𝐻𝑓𝑔 = 𝐻𝑓𝑇𝑔 + 𝒮𝑓𝐻𝑔.

(2.1)

It follows that the commutator [ 𝒮𝑓 , 𝒮𝑔] = 𝒮𝑓𝒮𝑔 − 𝒮𝑔𝒮𝑓 is given by
[ 𝒮𝑓 , 𝒮𝑔] = 𝐻𝑔𝐻

∗
𝑓
−𝐻𝑓𝐻

∗
𝑔 . (2.2)

In particular, such identities reduce to the following ones, since the Hankel operator
is trivial if the symbol is analytic:

Lemma 2.1. Let 𝑓 ∈ ℋ∞(𝕊𝑛), then we have

i) 𝐻𝑔𝑇𝑓 = 𝒮𝑓𝐻𝑔.
ii) 𝑇𝑓𝐻

∗
𝑔 = 𝐻∗

𝑔𝒮𝑓 .
iii) 𝒮𝑓𝑔 = 𝒮𝑓𝒮𝑔.
iv) 𝒮𝑔𝑓 = 𝒮𝑔𝒮𝑓 .

A key property which usually proves very useful in establishing more funda-
mental properties of Toeplitz type operators is the so-called the spectral inclusion
theorem. It turns out [5] that our dual Toeplitz operators do satisfy such property.
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Let us denote by R(𝑓) the essential range of the essentially bounded function
𝑓 , and by 𝜎(𝑇 ) the spectrum of an operator 𝑇 . Then, we have

Proposition 2.2. [5]

1. If 𝑓 is in 𝐿∞(𝕊𝑛), then R(𝑓) = 𝜎(𝑀𝑓 ) ⊆ 𝜎(𝒮𝑓 ).
2. Let 𝑓 be in 𝐿∞(𝕊𝑛). Then, we have ∣∣𝒮𝑓 ∣∣ = ∣∣𝑓 ∣∣∞.
3. If 𝑓 is in 𝐿∞(𝕊𝑛), then 𝒮𝑓 = 0 if and only if 𝑓 = 0.

3. The auxiliary operator S𝒘

Let 𝑧, 𝑤 be in 𝔹𝑛, and recall that the Hardy space ℋ2(𝔹𝑛) is a reproducing kernel
Hilbert space with kernel function given by

𝐾𝑤(𝑧) =
1

(1− ⟨𝑧, 𝑤⟩)𝑛 ,

while the normalized reproducing kernel is denoted by 𝑘𝑤.
For 𝑓 and 𝑔 in 𝐿2(𝕊𝑛), consider the rank one operator defined by (𝑓 ⊗ 𝑔)ℎ =

⟨ℎ, 𝑔⟩ 𝑓, ∀𝑓 ∈ 𝐿2(𝕊𝑛); and note that ∥𝑓 ⊗ 𝑔∥ = ∥𝑓∥ ∥𝑔∥.
The unitary operator 𝕌𝑤 is defined by

𝕌𝑤𝑓 = (𝑓 ∘ 𝜑𝑤)𝑘𝑤 . (3.1)

Observe that 𝕌𝑤1 = 𝑘𝑤. Also, for a Toeplitz operator, we have

𝕌𝑤𝑇𝑓𝕌𝑤 = 𝑇𝑓∘𝜑𝑤 . (3.2)

Further, we know that

⟨𝑧, 𝑤⟩𝑗 =
∑
∣𝑚∣=𝑗

𝑗!

𝑚!
𝑧𝑚 𝑤𝑚.

Thus, by the binomial rule, we obtain

𝐾−1
𝑤 (𝑧) = (1− ⟨𝑧, 𝑤⟩)𝑛 =

𝑛∑
𝑗=0

𝑛!

𝑗!(𝑛− 𝑗)!
(−1)𝑗 ⟨𝑧, 𝑤⟩𝑗

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

(−1)𝑗𝑛!
𝑗!(𝑛− 𝑗)!

𝑗!

𝑚!
𝑧𝑚𝑤𝑚

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝑧𝑚𝑤𝑚, with 𝜆𝑗,𝑚 =
(−1)𝑗𝑛!
(𝑛− 𝑗)!𝑚!

. (3.3)

On the other hand, the customary ball automorphism 𝜑𝑤 ∈ 𝔸𝑢𝑡(𝔹𝑛) is de-
fined by

𝜑𝑤(𝑧) =
𝑤 − 𝑃𝑤(𝑧)−

√
1− ∣𝑤∣2𝑄𝑤(𝑧)

1− ⟨𝑧, 𝑤⟩ , 𝑧, 𝑤 ∈ 𝔹𝑛, (3.4)

where 𝑃𝑤 denotes the orthogonal projection onto the subspace generated by 𝑤

defined by 𝑃0 = 0 and 𝑃𝑤(𝑧) =
⟨𝑧,𝑤⟩
⟨𝑤,𝑤⟩ , 𝑤 ∕= 0, and 𝑄𝑤 denotes the orthogonal pro-

jection onto its orthogonal complement given by 𝑄𝑤(𝑧) = 𝑧−𝑃𝑤(𝑧). In particular,



Toeplitz and Hankel Operators on the Sphere 247

it satisfies the universal identity:

1− ∣𝜑𝑤(𝑧)∣2 =
(
1− ∣𝑤∣2) (1− ∣𝑧∣2)
∣1− ⟨𝑧, 𝑤⟩ ∣2 , 𝑧, 𝑤 ∈ 𝔹𝑛. (3.5)

Finally, for operators T and S, we can easily verify that:

T(𝑓 ⊗ 𝑔)S∗ = T𝑓 ⊗ S𝑔. (3.6)

Matching all that together, we obtain the following key assertion:

Proposition 3.1. On the Hardy space of the unit sphere ℋ2(𝕊𝑛), we have

𝑘𝑤 ⊗ 𝑘𝑤 =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚 , ∀𝑤 ∈ 𝐵𝑛, (3.7)

with 𝜆𝑗,𝑚 as in (3.3) above.

Proof. Consider a Hardy function 𝑓 ∈ ℋ2(𝔹𝑛). The invariant volume mean value
property tells us that

𝑓(𝜓(0)) =

∫
𝔹𝑛

(𝑓 ∘ 𝜓)(𝑤)𝑑𝜈(𝑤), ∀𝑓 ∈ 𝐿∞(𝔹𝑛), ∀𝜓 ∈ 𝔸𝑢𝑡(𝔹𝑛).

In particular, for the identity map which is in 𝔸𝑢𝑡(𝔹𝑛), we get

𝑓(0) =

∫
𝔹𝑛

𝑓(𝑤)𝑑𝐴(𝑤), ∀𝑓 ∈ ℋ∞(𝔹𝑛).

Inserting 𝐾𝑤(𝑧)𝐾
−1
𝑤 (𝑧) and noticing that (1⊗ 1)𝑓 = 𝑓(0), we obtain

(1⊗ 1)𝑓 =
∫
𝔹𝑛

𝐾−1
𝑤 (𝑧)𝐾𝑤(𝑧)𝑓(𝑤)𝑑𝐴(𝑤), ∀𝑓 ∈ ℋ∞(𝔹𝑛). (3.8)

Owing to Formula (3.3), we infer that

(1⊗ 1)𝑓 =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑧𝑚
∫
𝔹𝑛

𝑤𝑚𝑓(𝑤)𝐾𝑧(𝑤)𝑑𝐴(𝑤)

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑧𝑚 (𝑇𝑤𝑚𝑓) (𝑧), ∀𝑓 ∈ ℋ∞(𝔹𝑛).

Therefore, we obtain the following operator identity

(1⊗ 1) =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝑧𝑚𝑇𝑤𝑚 .

Introducing the unitary operator 𝕌𝑤, we get

𝕌𝑤(1 ⊗ 1)𝕌𝑤 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 (𝕌𝑤𝑇𝑧𝑚𝕌𝑤) (𝕌𝑤𝑇𝑤𝑚𝕌𝑤) .
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Notice also that by Formulas (3.1) and (3.6), we have

𝕌𝑤(1 ⊗ 1)𝕌𝑤 = (𝕌𝑤1)⊗ (𝕌𝑤1) = 𝑘𝑤 ⊗ 𝑘𝑤.

Using the latter two equations along with Identity (3.2), we infer that on ℋ2(𝔹𝑛)
we have

𝑘𝑤 ⊗ 𝑘𝑤 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚 , ∀𝑤 ∈ 𝐵𝑛,

which is valid on the sphere as well. □

Proposition 3.1 suggests the introduction of the following transformation of

operators: for a bounded linear operator 𝑇 on
(ℋ2(𝕊𝑛)

)⊥
and 𝑤 ∈ 𝔹𝑛, define the

linear operator S𝑤(𝑇 ) by

S𝑤(𝑇 ) =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 . (3.9)

This pioneering operator S𝑤 has an amazing story. It has been discovered
first by K. Stroethoff and D. Zheng [11] in the Bergman space setting, where it
looks like a two-term perturbation of the identity. In the setting of the Hardy
space on the circle, it was adopted by H. Guediri and took the form of a one-term
perturbation of the identity. In Lu & Chang [8], in H. Guediri [5] and in the present
paper it takes the form of a multi-term perturbation of the identity as in the latter
formula (3.9). This phenomenon seems to be very connected to the degree of the
denominator, (equivalently to the dimension of the manifold), in the reproducing
kernel expression of the underlying space.

The operator S𝑤 reveals on a characterization of Hardy space dual Toeplitz
operators:

Proposition 3.2. If 𝒮𝑓 is a dual Toeplitz operator on
(ℋ2(𝕊𝑛)

)⊥
, then

S𝑤(𝒮𝑓 ) = 0, for all 𝑤 ∈ 𝔹𝑛.

Proof. Fix a 𝑤 ∈ 𝔹𝑛 and consider a dual Toeplitz operator 𝒮𝑓 on
(ℋ2(𝕊𝑛)

)⊥
, with

symbol 𝑓 ∈ 𝐿∞(𝕊𝑛). By (3.9), we have

S𝑤(𝒮𝑓 ) =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝒮𝜑𝑚
𝑤
𝒮𝑓𝒮𝜑𝑤

𝑚 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝒮∣𝜑𝑚
𝑤 ∣2𝑓 = 𝒮Ψ,

with Ψ = 𝑓
∑𝑛

𝑗=0

∑
∣𝑚∣=𝑗 𝜆𝑗,𝑚∣𝜑𝑚

𝑤 ∣2.
Now, applying Formula (3.3) to 𝜑𝑤(𝑧) with 𝑧 ∈ 𝕊𝑛, and invoking Identity

(3.5), we see that
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚∣𝜑𝑚
𝑤 (𝑧)∣2 = (1− ⟨𝜑𝑤(𝑧), 𝜑𝑤(𝑧)⟩)𝑛 = 0.

Therefore, we see that S𝑤(𝒮𝑓 ) = 0. □
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Remark 3.3. Theorem 3.2 can be restated as follows: if 𝑇 is a dual Toeplitz oper-

ator, then 𝑇 ∈
∩
𝑤∈𝔻

kerS𝑤.

It seems to be interesting to see whether the following complete characterization is
valid: given 𝑤 ∈ 𝔻 (fixed), 𝑇 is a dual Toeplitz operator if and only if S𝑤(𝑇 ) = 0?

The following novel assertion plays a central role in the sequel:

Theorem 3.4. Let 𝑇 be a compact operator on
(ℋ2(𝕊𝑛)

)⊥
, then ∥S𝑤(𝑇 )∥ −→ 0

as ∣𝑤∣ → 1−.

Proof. First, we claim that the operator S𝑤 admits the following representation:

S𝑤(𝑇 ) =

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤

(
𝑇 −

𝑛∑
𝑖=1

𝒮𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

)
𝒮𝜑𝑤

𝑚 , (3.10)

where 𝜑𝑤,𝑖 denotes the ith component of 𝜑𝑤 and 𝜆
(𝑛−1)
𝑗,𝑚 =

(−1)𝑗(𝑛− 1)!
(𝑛− 1− 𝑗)!𝑚!

.

Indeed, setting 𝛼𝑖 = ( 0, 0, . . . , 1︸ ︷︷ ︸
𝑖th component

, 0, . . . , 0) for 1 ≤ 𝑖 ≤ 𝑛, we have

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤

(
𝑇 −

𝑛∑
𝑖=1

𝒮𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

)
𝒮𝜑𝑤

𝑚

=

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚 −
𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚

𝑛∑
𝑖=1

𝒮
𝜑

𝑚+𝛼𝑖
𝑤

𝑇𝒮𝜑𝑤
𝑚+𝛼𝑖

=

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚 −
𝑛∑

𝑘=1

∑
∣𝑝∣=𝑘

∣𝑝∣𝜆(𝑛−1)𝑘−1,𝑝𝒮𝜑𝑝
𝑤
𝑇𝒮𝜑𝑤

𝑝

= 𝑇 +

𝑛−1∑
𝑗=1

∑
∣𝑚∣=𝑗

(
𝜆
(𝑛−1)
𝑗,𝑚 − ∣𝑚∣𝜆(𝑛−1)𝑗−1,𝑚

)
𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚 −
∑
∣𝑚∣=𝑛

𝑛𝜆
(𝑛−1)
𝑛−1,𝑚𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚

= 𝑇 +

𝑛−1∑
𝑗=1

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 +
∑
∣𝑚∣=𝑛

𝜆𝑛,𝑚𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 = S𝑤(𝑇 ).

Next, using identity (3.10), we only need to verify that∥∥∥∥∥𝑇 −
𝑛∑

𝑖=1

𝒮𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

∥∥∥∥∥ −→ 0 as ∣𝑤∣ −→ 1−. (3.11)

Owing to the density of finite rank operators in the set of compact operators,

we only need to verify the latter for rank one operators. For let 𝑓, 𝑔 ∈ (ℋ2(𝕊𝑛)
)⊥
;
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then one has∥∥∥∥∥𝑓 ⊗ 𝑔 −
𝑛∑

𝑖=1

𝒮𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥∥∥ =
∥∥∥∥∥

𝑛∑
𝑖=1

{
(𝜁𝑖𝑓)⊗ (𝜁𝑖𝑔)−

(𝒮𝜑𝑤,𝑖𝑓
)⊗ (𝒮𝜑𝑤,𝑖𝑔

)}∥∥∥∥∥
≤

𝑛∑
𝑖=1

{∥∥(𝜁𝑖𝑓 − 𝒮𝜑𝑤,𝑖𝑓
)⊗ (𝜁𝑖𝑔)∥∥+ ∥∥(𝒮𝜑𝑤,𝑖𝑓

)⊗ (
𝜁𝑖𝑔 − 𝒮𝜑𝑤,𝑖𝑔

)∥∥} . (3.12)

Now, for 𝑧 ∈ 𝕊𝑛 and 𝑤 ∈ 𝔹𝑛, observe that 𝑤 − 𝜑𝑤(𝑧) −→ 0 𝑎.𝑒. as ∣𝑤∣ → 1−;
and thus componentwise, for 𝑖 = 1, 2, 3, . . . , 𝑛, we have 𝑤𝑖 − 𝜑𝑤,𝑖(𝑧) −→ 0 𝑎.𝑒. as
∣𝑤∣ → 1−. Making appeal to the dominated convergence theorem, we infer that
for 𝑓 ∈ (ℋ2(𝕊𝑛)

)⊥
one has

∥𝑤𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥22 =
∫
𝕊𝑛

∣𝑤𝑖𝑓(𝑧)− 𝜑𝑤,𝑖(𝑧)𝑓(𝑧)∣2 𝑑𝜎(𝑧) −→ 0 as ∣𝑤∣ −→ 1−.

Hence, for 𝑖 = 1, 2, 3, . . . , 𝑛, we see that ∥𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→
𝜁 ∈ 𝕊𝑛. Because of the identity (𝐼 − 𝒫)(𝜁𝑖𝑓(𝑧)) = 𝜁𝑖𝑓(𝑧), we see that∥∥𝜁𝑖𝑓 − 𝒮𝜑𝑤,𝑖𝑓

∥∥
2
= ∥(𝐼 − 𝒫) (𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓)∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛.

The latter together with Inequality (3.12) yield:∥∥∥∥∥𝑓 ⊗ 𝑔 −
𝑛∑

𝑖=1

𝒮𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥∥∥ −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛. □

4. Products of dual Toeplitz operators

Lemma 2.1 suggests that 𝒮𝑓 and 𝒮𝑔 commute if 𝑓 and 𝑔 are both analytic or
conjugate analytic. If a non-trivial linear combination of the symbols 𝑓 and 𝑔 is
constant, they do commute as well. In this section, we are interested to see whether
these are the only cases where commutativity holds. The same question in related
settings has been considered for instance in [2, 11]. An answer to this question [5]
is reported again in the following:

Theorem 4.1. Suppose that 𝜑, 𝜓 are bounded functions on the unit sphere 𝕊𝑛.

Then, the corresponding dual Toeplitz operators commute on
(ℋ2(𝕊𝑛)

)⊥
, (i.e.,

𝒮𝜑𝒮𝜓 = 𝒮𝜓𝒮𝜑), if and only if 𝜑 and 𝜓 satisfy one of the following conditions:

1. They are both analytic on 𝕊𝑛.
2. They are both co-analytic on 𝕊𝑛.
3. One of them is constant on 𝕊𝑛.
4. A non-trivial linear combination of them is constant on 𝕊𝑛.

Proof. The if part is trivial due to Lemma 2.1. Regarding the only if part, observe
that by Proposition 3.1 and parts (i) and (ii) of Lemma 2.1 one has

𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚

(𝒮𝜑𝑚
𝑤
𝐻𝑓

) (
𝐻∗

𝑔𝒮𝜑𝑤
𝑚

)
= S𝑤(𝐻𝑓𝐻

∗
𝑔 ). (4.1)
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Similarly, we have

𝐻𝑔(𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑓
= S𝑤(𝐻𝑔𝐻

∗
𝑓
). (4.2)

Combining the two latter identities and owing again to Identity (3.6) as well as to
Equation (2.2), we see that

(𝐻𝑔𝑘𝑤)⊗ (𝐻𝑓𝑘𝑤)− (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤) = S𝑤([𝒮𝑓 ,𝒮𝑔]).
By assumption, we get

(𝐻𝑔𝑘𝑤)⊗ (𝐻𝑓𝑘𝑤) = (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤) , ∀𝑤 ∈ 𝔹𝑛.

In particular, for 𝑤 = 0 one has 𝑘0 = 1; whence 𝐻𝑔1 ⊗𝐻𝑓1 = 𝐻𝑓1⊗𝐻𝑔1, which
can be rewritten as〈

ℎ,𝐻𝑓1
〉
𝐻𝑔1 = ⟨ℎ,𝐻𝑔1⟩𝐻𝑓1, ∀ℎ ∈

(ℋ2(𝔹𝑛)
)⊥

.

At this stage, we distinguish several cases:

1) If 𝐻𝑔1 = 0, then 𝑔 is analytic. Also we must have either 𝐻𝑓1 = 0 or 𝐻𝑔1 = 0,
which means that either 𝑓 is analytic, (which corresponds to condition (1)),
or 𝑔 is co-analytic, (in this case 𝑔 must be constant, which corresponds to
condition (3)).

2) If 𝐻𝑔1 = 0, then 𝑔 is co-analytic. Also we see that either 𝐻𝑔1 = 0 or 𝐻𝑓1 = 0.

This means that either 𝑔 is analytic, (which implies that 𝑔 is constant and
corresponds to condition (3)), or 𝑓 is co-analytic, (which agrees with condition
(2)).

3) If both 𝐻𝑔1 ∕= 0 and 𝐻𝑔1 ∕= 0, then there exists a complex number 𝜆 ∕= 0 such
that 𝐻𝑓1 = 𝜆𝐻𝑔1 and 𝐻𝑓1 = 𝜆𝐻𝑔1. That is to say 𝒬(𝑓 −𝜆𝑔) = 𝒬(𝑓 −𝜆𝑔) =

0; whence 𝑓 − 𝜆𝑔 and 𝑓 − 𝜆𝑔 are both analytic. Thus 𝑓 − 𝜆𝑔 is constant,
which corresponds to condition (4). □

Products of bounded dual Toeplitz operators can be bounded operators in
numerous cases. But the crucial question is when does the product of two dual
Toeplitz operators produce a dual Toeplitz operator? The answer of this question
[5] is given in the following Brown-Halmos type theorem:

Theorem 4.2. Let 𝑓 and 𝑔 be in 𝐿∞(𝕊𝑛). Then, the dual Toeplitz product 𝒮𝑓𝒮𝑔 is
again a dual Toeplitz operator if and only if one of the following conditions holds:

1. 𝑓 is analytic.
2. 𝑔 is co-analytic.

In either cases 𝒮𝑓𝒮𝑔 = 𝒮𝑓𝑔.
Proof. From the elementary properties of dual Toeplitz operators, namely Lemma
2.1, the “if part” is obvious, whereas the “only if part” is less trivial. For, suppose
that 𝒮𝑓𝒮𝑔 = 𝒮ℎ for some ℎ ∈ 𝐿∞(𝕊𝑛). From Identity (2.1), we have

0 = 𝒮ℎ − 𝒮𝑓𝒮𝑔 = 𝒮ℎ−𝑓𝑔 +𝐻𝑓𝐻
∗
𝑔 .
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Introducing the operator S𝑤, we see from Relation (4.1) that

S𝑤(𝒮𝑓𝑔−ℎ) = S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)
= 𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻

∗
𝑔 . (4.3)

Since 𝑆𝑓𝑔−ℎ is a dual Toeplitz operator, Proposition 3.2 reduces Equation (4.3) to

(𝐻𝑓 (𝑘𝑤))⊗ (𝐻𝑔(𝑘𝑤)) = 0.

In particular, if 𝑤 = 0 one gets 𝑘0 = 1; whence we obtain

(𝐻𝑓1)⊗ (𝐻∗
𝑔 1) = 0.

Since ∥𝐻𝑓1⊗𝐻𝑔1∥ = ∥𝐻𝑓1∥ ∥𝐻𝑔1∥, we see that at least one of the two factors
vanishes. Therefore, we have two possibilities

∙ If 𝐻𝑓1 = 0, we see that 𝑓 is analytic, (which corresponds to condition (1)).
∙ If 𝐻𝑔1 = 0, then 𝑔 is analytic, whence 𝑔 is co-analytic, (which corresponds
to (2)).

The additional conclusion of the theorem, then, follows from Lemma 2.1. □

The so-called zero product problem is then a simple corollary of the latter:

Corollary 4.3. 𝒮𝑓𝒮𝑔 = 0 if and only if either 𝑓 = 0 or 𝑔 = 0; i.e., among the class
of dual Toeplitz operators on

(ℋ2(𝔹𝑛)
)⊥
there are no zero divisors.

5. Haplitz products

Based on the above concepts, (namely the operator S𝑤 defined by (3.9), Proposi-
tion 3.1 and Theorem 3.4), we now discuss certain characterizations of boundedness
and compactness of Hankel products 𝐻𝑓𝐻

∗
𝑔 as well as of mixed Haplitz products

𝑇𝑓𝐻
∗
𝑔 and 𝐻𝑔𝑇𝑓 on the sphere. Notice that Toeplitz products on the circle have

been studied by Zheng [14], whereas Hankel and mixed Haplitz products have been
discussed by Hamada [6]. In case of several complex variables, analog investigations
have been done by Zheng [13], Nie [9], Xia [12], Le [7] and Lu & Shang [8].

The following theorem gives a necessary condition for the boundedness of a
Hankel product 𝐻𝑓𝐻

∗
𝑔 :

Theorem 5.1. Let 𝑓 and 𝑔 be in 𝐿2(𝕊𝑛). If the Hankel product 𝐻𝑓𝐻
∗
𝑔 is bounded,

then

sup
𝑤∈𝔹𝑛

∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 <∞. (5.1)

Proof. According to Zheng [13], we have

∥𝐻𝑓𝑘𝑤∥2 ∥𝐻𝑔𝑘𝑤∥2 = ∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 . (5.2)

On the other hand, by the above norm formula of rank one operators and
Equation (3.6), we have

∥𝐻𝑓𝑘𝑤∥2 ∥𝐻𝑔𝑘𝑤∥2 = ∥(𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤)∥ =
∥∥𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻

∗
𝑔

∥∥ . (5.3)

So, it suffices that the R.H.S. of the latter is bounded.
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Since 𝜑𝑤 ∈ ℋ∞(𝕊𝑛), we see by Lemma 2.1 that 𝐻𝑓𝑇𝜑𝑤 = 𝒮𝜑𝑤𝐻𝑓 and
𝑇𝜑𝑤

𝐻∗
𝑔 = 𝐻∗

𝑔𝒮𝜑𝑤
. Thus, inserting 𝐻𝑓 and 𝐻∗

𝑔 into Formula (3.7), we see that

𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝐻𝑓𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚𝐻∗
𝑔

=
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝒮𝜑𝑚
𝑤

(
𝐻𝑓𝐻

∗
𝑔

)𝒮𝜑𝑤
𝑚 = S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)
. (5.4)

By Proposition 2.2, we have
∥∥𝒮𝜑𝑚

𝑤

∥∥ = ∥𝒮𝜑𝑤
𝑚∥ = ∥𝜑𝑚

𝑤 ∥∞ ≤ 1. Thus, we infer that∥∥𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔

∥∥ ≤ 𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

∣𝜆𝑗,𝑚∣
∥∥𝒮𝜑𝑚

𝑤

∥∥ ∥∥𝐻𝑓𝐻
∗
𝑔

∥∥ ∥𝒮𝜑𝑤
𝑚∥

≤ ∥∥𝐻𝑓𝐻
∗
𝑔

∥∥ 𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

∣𝜆𝑗,𝑚∣ <∞; (5.5)

whence, the theorem is proved. □

The following result gives a necessary condition for the compactness of a
Hankel product 𝐻𝑓𝐻

∗
𝑔 . Notice that the compactness matter in the “dual case”

of 𝐻∗
𝑓𝐻𝑔 has been considered by J. Xia [12]. In that paper, J. Xia proves that

Condition (5.6) fails to be necessary for the compactness of 𝐻∗
𝑓𝐻𝑔. Later on, T.

Le [7] provided a certain progress in this direction.

Theorem 5.2. Let 𝑓 and 𝑔 be in 𝐿2(𝕊𝑛). If the Hankel product 𝐻𝑓𝐻
∗
𝑔 is compact,

then
lim

𝑤→𝕊𝑛

∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 = 0. (5.6)

Proof. By Equations (5.2), (5.3) and (5.4), we see that

∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 =
∥∥S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)∥∥ . (5.7)

Consequently, if 𝐻𝑓𝐻
∗
𝑔 is compact, we see by Theorem 3.4 that

lim
𝑤→𝕊𝑛

∥∥S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)∥∥ = 0,
and the claimed assertion follows. □

Similar characterizations of bounded and compact mixed Haplitz products
𝑇𝑓𝐻

∗
𝑔 and 𝐻𝑔𝑇𝑓 are given as follows:

Theorem 5.3. Let 𝑓 be in ℋ2(𝕊𝑛) and 𝑔 be in 𝐿2(𝕊𝑛). If one of the mixed Haplitz
products 𝑇𝑓𝐻

∗
𝑔 or 𝐻𝑔𝑇𝑓 is bounded, then

sup
𝑤∈𝔹𝑛

∥𝑓 ∘ 𝜑𝑤∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 <∞.

Proof. Relying on the fact that 𝜑𝑤 ∈ ℋ∞(𝕊𝑛) and owing to the analyticity of 𝑓 ,
we see by Lemma 2.1 that 𝑇𝑓𝑇𝜑𝑤 = 𝑇𝜑𝑤𝑇𝑓 and 𝑇𝜑𝑤𝐻∗

𝑔 = 𝐻∗
𝑔𝒮𝜑𝑤 . Thus, as in the
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proof of Theorem 5.1, inserting 𝑇𝑓 and 𝐻∗
𝑔 into Formula (3.7), we see that

𝑇𝑓(𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝑓𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚𝐻∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤

(
𝑇𝑓𝐻

∗
𝑔

)𝒮𝜑𝑤
𝑚 .

(5.8)

Estimating the norms of Toeplitz and dual Toeplitz operators with automorphic
symbols, we get

∥∥𝑇𝜑𝑚
𝑤

∥∥ ≤ 1 and ∥𝒮𝜑𝑤
𝑚∥ ≤ 1. Thus, if 𝑇𝑓𝐻

∗
𝑔 is bounded, we infer

that ∥∥𝑇𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔

∥∥ ≤ ∥∥𝑇𝑓𝐻
∗
𝑔

∥∥∑𝑛

𝑗=0

∑
∣𝑚∣=𝑗

∣𝜆𝑗,𝑚∣ <∞. (5.9)

Whence, as in Equations (5.2) and (5.3), we obtain the claimed estimate. Similar
argument can be used to handel the remaining case. □

Compact mixed Haplitz products can also be characterized similarly:

Theorem 5.4. Let 𝑓 ∈ ℋ∞(𝕊𝑛) and 𝑔 ∈ 𝐿2(𝕊𝑛). If one of the mixed Haplitz
products 𝑇𝑓𝐻

∗
𝑔 or 𝐻𝑔𝑇𝑓 is compact, then

lim
𝑤→𝕊𝑛

∥𝑓 ∘ 𝜑𝑤∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 = 0.

Proof. As in the proof of Theorem 3.4, for any operator 𝑇 :
(ℋ2(𝕊𝑛)

)⊥ −→
ℋ2(𝕊𝑛), we have

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 =

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝑇𝜑𝑚

𝑤

(
𝑇 −

𝑛∑
𝑖=1

𝑇𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

)
𝒮𝜑𝑤

𝑚 .

(5.10)
We claim that if such a 𝑇 is compact, then

lim
∣𝑤∣−→1−

∑𝑛

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 = 0. (5.11)

By Identity (5.10), we only need to verify that∥∥∥𝑇 −∑𝑛

𝑖=1
𝑇𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

∥∥∥ −→ 0 as ∣𝑤∣ −→ 1−. (5.12)

Using the density of finite rank operators in the set of compact operators, we

only need to verify the latter for rank one operators acting from
(ℋ2(𝕊𝑛)

)⊥
into

ℋ2(𝕊𝑛). For let 𝑓 ∈ ℋ2(𝕊𝑛) and 𝑔 ∈ (ℋ2(𝕊𝑛)
)⊥
. Then, one has∥∥∥𝑓 ⊗ 𝑔 −

∑𝑛

𝑖=1
𝑇𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥ (5.13)

≤
∑𝑛

𝑖=1

{∥∥(𝜁𝑖𝑓 − 𝑇𝜑𝑤,𝑖𝑓
)⊗ (𝜁𝑖𝑔)∥∥+ ∥∥(𝑇𝜑𝑤,𝑖𝑓

)⊗ (
𝜁𝑖𝑔 − 𝒮𝜑𝑤,𝑖𝑔

)∥∥} .

Now, for 𝑧 ∈ 𝕊𝑛 and 𝑤 ∈ 𝔹𝑛, observe that 𝑤−𝜑𝑤(𝑧) −→ 0 𝑎.𝑒. as ∣𝑤∣ → 1−;
and thus componentwise, for 𝑖 = 1, 2, 3, . . . , 𝑛, we have 𝑤𝑖 − 𝜑𝑤,𝑖(𝑧) −→ 0 𝑎.𝑒. as
∣𝑤∣ → 1−. Making use of the dominated convergence theorem, we infer that for
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𝑓 ∈ ℋ2(𝕊𝑛) and 𝑔 ∈ (ℋ2(𝕊𝑛)
)⊥

one has

∥𝑤𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥22 =
∫
𝕊𝑛

∣𝑤𝑖𝑓(𝑧)− 𝜑𝑤,𝑖(𝑧)𝑓(𝑧)∣2 𝑑𝜎(𝑧) −→ 0 as ∣𝑤∣ −→ 1−,

and

∥𝑤𝑖𝑔 − 𝜑𝑤,𝑖𝑔∥22 =
∫
𝕊𝑛

∣𝑤𝑖𝑔(𝑧)− 𝜑𝑤,𝑖(𝑧)𝑔(𝑧)∣2 𝑑𝜎(𝑧) −→ 0 as ∣𝑤∣ −→ 1−.

Hence, for 𝑖 = 1, 2, 3, . . . , 𝑛, we see that

∥𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥2 −→ 0 and ∥𝜁𝑖𝑔 − 𝜑𝑤,𝑖𝑔∥2 −→ 0

as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛. Because of the identities 𝒫(𝜁𝑖𝑓(𝑧)) = 𝜁𝑖𝑓(𝑧) and (𝐼 −
𝒫)(𝜁𝑖𝑔(𝑧)) = 𝜁𝑖𝑔(𝑧), we see that∥∥𝜁𝑖𝑓 − 𝑇𝜑𝑤,𝑖𝑓

∥∥
2
= ∥𝒫 (𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓)∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛,

and ∥∥𝜁𝑖𝑔 − 𝒮𝜑𝑤,𝑖𝑔
∥∥
2
= ∥(𝐼 − 𝒫) (𝜁𝑖𝑔 − 𝜑𝑤,𝑖𝑔)∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛.

Combining the latter two limits together with Inequality (5.13), we infer that∥∥∥∥∥𝑓 ⊗ 𝑔 −
𝑛∑

𝑖=1

𝑇𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥∥∥ −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛;

which proves (5.11).

Next, suppose for instance that 𝑇𝑓𝐻
∗
𝑔 is compact, (the other case related to

𝐻𝑔𝑇𝑓 , can be handled similarly), then by (5.8) and (5.11), we see that∥∥𝑇𝑓(𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔

∥∥ −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛.

Thus, as in Equations (5.2) and (5.3), we obtain the claimed condition. □

Owing to the alternative representation (2.2) of the commutator of two dual
Toeplitz operators, we can characterize its compactness:

Theorem 5.5. Let 𝑓 and 𝑔 be bounded measurable on 𝕊𝑛. If the commutator
[ 𝒮𝑓 , 𝒮𝑔] is compact, then∥∥(𝐻𝑔𝑘𝑤)⊗

(
𝐻𝑓𝑘𝑤

)− (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤)
∥∥ −→ 0 as ∣𝑤∣ → 1−.
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Proof. Making use of Formulas (2.2) and (5.4), we obtain:

S𝑤 ([ 𝒮𝑓 , 𝒮𝑔]) = (𝐻𝑔𝑘𝑤)⊗
(
𝐻𝑓𝑘𝑤

)− (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤) .

So, if the commutator is compact, then the result follows from Theorem 3.4. □
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