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A. Perälä, A. Schuster and J.A. Virtanen
Hankel Operators on Fock Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

R. Picard and B.A. Watson
Evolutionary Problems Involving Sturm–Liouville Operators . . . . . . . . 391

S.C. Power
Crystal Frameworks, Matrix-valued Functions
and Rigidity Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

E. Rela
Refined Size Estimates for Furstenberg Sets via Hausdorff Measures:
A Survey of Some Recent Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421

A. Sahmurova and V.B. Shakhmurov
Singular Degenerate Problems Occurring in Atmospheric
Dispersion of Pollutants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455

A. Sergeev
Harmonic Spheres Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

D.T. Stoeva and P. Balazs
Riesz Bases Multipliers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475

A. Torokhti
Operator Approximation for Processing of Large Random
Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

A.A. Vladimirov and I.A. Sheipak
On Spectral Periodicity for the Sturm–Liouville Problem:
Cantor Type Weight, Neumann and Third Type Boundary
Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

V.V. Vlasov and N.A. Rautian
Spectral Analysis and Representations of Solutions of Abstract
Integro-differential Equations in Hilbert Space . . . . . . . . . . . . . . . . . . . . . . 517





Operator Theory:
Advances and Applications, Vol. 236, ix–xvi
c⃝ 2014 Springer Basel

Israel Gohberg Memorial Session

This text is composed by the Editors from the speeches given at the Memorial
Session preceding the Conference Dinner.

Opening

Rien Kaashoek (VU University, Amsterdam)

Ladies and gentlemen, dear friends and colleagues.

Israel Gohberg passed away on October 12, 2009. I welcome you at this special
session dedicated to his memory. I am speaking on behalf of the IWOTA Steering
Committee. IWOTA stands for International Workshop on Operator Theory and
its Applications. As many of you know, professor Israel Gohberg was the first
and only president of the Steering Committee. Together with William Helton he
initiated in 1974 the IWOTA idea and as president he determined from the very
beginning until the end of his life the general principles and the main directions
of the IWOTA meetings.

I am very grateful to Alfonso Rodrigues, the chief organizer of the present
IWOTA, for dedicating the conference to the memory of Israel Gohberg and orga-
nizing this special session. On the web site of the conference the following words
were used: Being one of the main promoters of the IWOTA series Gohberg’s kind
courageous humor will not be forgotten.

This evening, just before the conference banquet, we have this special session
to commemorate Gohberg’s great mathematical legacy, his outstanding work and
his wonderful personality. We do that in the presence of his wife Bella Gohberg,
who also will contribute to this session, his sister Feija, and his two daughters
Zvia and Yanina. I am very happy that they are here. I hope that they will expe-
rience the great influence their husband, brother and father, had on us, his former
colleagues, students, co-workers, friends, and on the field we are working in.

The session begins with a mathematical oriented contribution, a short review
of Israel Gohberg’s research work by Leiba Rodman, the first Ph.D. student of
Gohberg after his emigration in 1974 from Kishinev, Moldavia to Israel. Next the
program consists of personal reminiscences on Israel Gohberg by Nikolai Nikolski,
a colleague from the very beginning, Yuli Eidelman, who was his co-worker in the
field of numerical analysis, and Henri Landau, a life long friend of Gohberg and
the Gohberg family. The session will be concluded by Mrs. Bella Gohberg who will
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speak on behalf of the family. Her speech will be in Russian and will be translated
by her oldest daughter Zvia Faro.

I wish all of you an inspiring session.

The review of Gohberg’s research work presented by Leiba Rodman appears as the
first paper in these proceedings.

Remembering Israel Gohberg – personal pieces of past

Nikolai Nikolski (University Bordeaux 1/Steklov Institute of Mathematics, St. Pe-
tersburg)

I think I first met Israel Gohberg at the 1966 Moscow ICM. This was a time
marked by the famous Gohberg-and-Krĕın treatises on operator theory: the first
volume “Introduction to the theory of non-selfadjoint operators” had already tri-
umphantly appeared, the second one was announced on editors prospects, and
many people (including the authors) spoke of a third (never published). It was a
time of great enthusiasm towards operator theory and its value in mathematics.
In particular, in the Soviet Union, the (until then classified) results of M. Keldysh
in perturbation theory were published, results which played a role in reducing
the “fluttering effect” of the first supersonic aircrafts. The Gohberg–Krĕın books
revolutionised the subject and allowed it to enter an age of maturity.

However, my distant acquaintance with Gohberg’s mathematics started ear-
lier, during my undergraduate university years. I was delighted to read two book
size survey articles (1957 and 1958) by Israel Gohberg and Mark Krĕın in “Uspehi
Matematicheskih Nauk” (“Soviet Surveys – Uspehi”); they formed part of my en-
tering graduate study examination in 1963. Their completeness, novelty and rigor
have had a life-lasting influence on my own understanding of how to do and how
to expose mathematics.

During the 1966 ICM Congress, I had many occasions to meet Israel – with
an admiration and respect for one of the brilliant young leaders of mathematics in
the second half of the twentieth century. In particular, I asked him the favor to be
a referee (an “official opponent”, following the Russian wording) for my Ph.D. de-
fence, which I had prepared about this time at Leningrad State University. Having
his agreement and returning to my University, I approached the President of the
Scientific Council who was responsible for the defence. For a non-Russian reader,
I would like to mention that the Russian (then Soviet) system of scientific degrees
was (and maybe is) much more sophisticated and effective than the existing one
in the West. First, there existed two degrees “Candidate of Science” (a qualifica-
tion for a first job as a mathematician – university assistant or docent (associate
professor)) and “Doctor of Science” (making accessible full professor positions).
Defences were possible in sessions of special Scientific Councils assigned by the
president of the university. In my time, for my Ph.D. (and later for full doctor) de-
fences at the Leningrad University the Council numbered more than 40 members,
representing all mathematical disciplines; the quorum was at 2/3 of the Council
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list. A dissertation passed many stages before the defence, in particular, a so-called
“external report” – an “official evaluation” of the thesis by another mathematical
institute (a university mathematical department or an institute of the Academy
of Sciences). If a Council decided to accept a thesis for a defence, it would assign
two (for full doctor degree – three) “official opponents” – approved experts in the
field, who would give 15–20 minute speeches during the defence explaining to the
Council why it should/should not award the candidate the desired degree. Similar
speeches would be given by the thesis advisor (in a Ph.D. case) and by the thesis
author himself. The session ended with a secret vote by the Council members, and
the desired degree was attributed if no fewer than 2/3 votes were positive (with
fractions rounded for the candidate’s advantage). So, it was a spectacular, valuable
and testing procedure, sometimes, with an unexpected outcome (notwithstanding
the fact that a thesis cannot be submitted before a candidate has at least two
publications in refereed journals). On the whole, this was one of the rare systems
of the Russian-Soviet academic life which were undoubtedly effective.

Returning to my case, I approached the President of the Council (an out-
standing applied mathematician and a fighter pilot during World War 2) and
asked him to include Israel Gohberg on the list of referees. He showed his surprise:
“How come you are such a big boy and yet do not know the ‘2/5 rule’?” I had
never heard before about that and asked for an explanation. He said (it was just
a private conversation in a corridor) that there are five active participants in a
Ph.D. defence (the author, a thesis scientific advisor, two opponents, and an ex-
ternal referee) and communist party advisors required that the team contained no
more than two Jews. He added that he had no intention to try to cut through the
barrier in my case. I already had in the team Victor Havin (my beloved advisor)
and Boris Mityagin of Moscow as a referee (arranged previously and, in fact, hav-
ing proposed the entire subject of my research – invariant subspaces of weighted
shift operators). It was a dead end and I was forced to accept this anti-semitic
“2/5 rule”. (My second referee became yet another prominent mathematician.)
Perhaps elsewhere there were exceptions from the “rule” but, being alone against
a hard system, as the Soviet system was, and having absolutely no information
about other similar cases, one had no choice. I sent my apologies to Israel, and he
understood the circumstances.

Later on, I visited several times Kishinev for Gohberg’s lovely seminar (with
A. Markus, I. Feldman, N. Krupnik and others). I subsequently met Israel after
the “iron curtain” started to be raised and I was permitted to go abroad. The first
such meeting happened during the memorable Lancaster NATO ASI in operator
theory in 1984. During this meeting the following small but indicative exchange
happened showing the influence and moral authority that Gohberg had on the
community. Having in my talk frequently repeated the expression “Hankel and
Toeplitz operators” and being tired to pronounce it tens of times, I decided to
shorten it to “Ha-plitz operators”. Many people appreciated my neologism but
Israel approached me after the talk to say that this curious invention may be
incorrect because it distorts proper names. After reflection I accepted and laid
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aside forever this jokey terminology. (However apparently some other people still
use this shortening.)

From the beginning of the 1990’s meetings with Gohberg became regular. The
mathematical conversations were always deep and influential. Now, I understand
well how much I have gathered from so generous and rich a personality as Israel
Gohberg was.

Reminiscences of Israel Gohberg

Yuli Eidelman (Tel-Aviv University)

There were two periods in my acquaintance with Israel Gohberg. The first one
began in my early childhood. My father and he were great friends. They had a lot
in common, in their outlook of life and in their fanatical passion for mathematics.
Uncle Iz’a was mentioned often in the family discussions. From about the age
eleven, I remember his association with my father and the deep impression Israel
made on me, as a large and kind man with much humor, who called me “druzhische
(my friend)”.

In 1966 my family went on vacation in Odessa. Israel was also there and
spent quite a lot of time with us; some of which was at Mark Krĕın’s summer
house in Arkadia; I knew Krĕın’s grandson. It was only many years later that I
realized what a historical place I have visited, what mathematical masterpieces
had been created there. In 1967 Israel attended the very first Voronezh Winter
Mathematical School and visited our home during his trip. These schools became
a notable event in soviet mathematical life. The friendship between Israel and my
father, which began in ’50s lasted until my father passed away in 2005.

I did not cross paths with Israel until 27 years later, as a very new immigrant
I came to look for work at Tel-Aviv University. Israel greeted me very warmly but
in the same time explained the situation to me very clearly. He recommended to
change my direction of research, and suggested that I work in numerical methods
for structured matrices. Such a topic seemed to surprise some of his colleagues as
Israel was renowned as an outstanding expert in pure mathematics. In particular
my father said that if some time ago somebody would have told him that Gohberg
is involved in such a field of interest he would not have believed it. However, I was
not the first to get involved in this direction of his work. On the moment of my
appearance in Tel-Aviv my two predecessors in this field were Israel Koltracht and
Vadim Olshevsky; they continued their careers in the USA. It was not easy for me
to make the switch to numerical issues, but in time I got used to it and also my
previous programming experience turned out to be useful in this.

My joint work with Israel was devoted to an interesting and important class
of structured matrices. This class contains the band matrices, the semiseparable
matrices, inverses of band and of semiseparable matrices, and other interesting
examples. Various algorithms for such matrices are the subject of my interest
till now. Not only my involvement in this direction has grown but also that of
other researchers, which points to how topical it has become. In working so closely
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together, I have witnessed Israel’s great intuition, how he follows the “scent” to
use an expression by Iz’a Koltracht. One could absolutely rely on Israel’s innate
ability to understand what is worth paying attention to, what is worth making an
effort to achieve, and what is not worth pursuing. We had a series of papers on our
results: by ourselves and later jointly with our colleagues Vadim Olshevsky, Tom
Bella, Israel Koltracht and Pavel Zhlobich from Storrs (Connecticut, USA), Dario
Bini, Luca Gemignani and Paola Boito from Pisa, and Eugene Tyrtyshnikov from
Moscow. Together with our colleague Iulian Haimovici we started to work on a
large monograph devoted to a systematic presentation of the results in the field of
our interest. Now we must finish this work without Israel.

Once Israel said about our long-standing acquaintance and my present age
that now every young guy is 50 years old (in Russian “seichas kazhdomu soplyaku
50 let”). He was a very wise man, I got from him valuable advice not only on
mathematics but also on life.

It was not an easy task to work together with Israel, my colleagues surely
can confirm this. But the stronger requirements he applied to himself, his work
was a very important part of his life.

Our collaboration continued 15 years, till the very end. A few days before
Israel passed away there was a day when he felt better, and in our talk by phone
we discussed as usually our issues. He said that it will be difficult to continue our
discussions in the university but we will go on at his home. But what happened
has happened. And I’d like to say that I and many of us were very happy to meet
such a person in our life. We must remember him.

Recollections

Henry J. Landau (Bell Labs, Murray Hill, NJ )

Now at the end of this great conference with its breadth – eight parallel sessions!
– depth and variety, I think that Israel Gohberg is the only person who could
understand and appreciate every talk, and I picture how he would have enjoyed it.
My great luck was to have known him for many years as collaborator and friend
so I wanted to say a few words about him, although a much better account is the
wonderful book, Israel Gohberg and Friends, by Harm Bart, Thomas Hempfling,
and Rien Kaashoek. Thinking about him as I so often do, I said to my wife how
much pleasure he took in mathematics. “In everything,” she said, which is the
essence of it all. We see him in the sea, the image of delight, or with his friends, or
in his office with the entire wall behind his desk lined with books and journals he
created, or with his marvelous family. It was Cora Sadosky who expressed it best
when she spoke of his inclusiveness, in mathematics, with people, the warmth with
which he brought us all together, pulling us in from every continent like a magnet.
But I would like here to give just a glimpse of the hardships, which without respite
he had to overcome, that were hidden behind his unfailing optimism.

Nowadays, living as we do, we believe in fairness, in recognizing high merit,
but in totalitarian regimes it is entirely different. The worst people come to the
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top and rule arbitrarily, by fear. And so it was exactly on Israel’s 12th birthday,
two months after the Soviets took over Tarutino, the small town where he lived
with his parents and younger sister, that three of the secret police came to their
house and took away his father, for no reason of course. He was never seen again.
Decades later the family received notification that he had been “free of guilt”
and died in a gulag, but for the present the mere fact that he had been taken
would have ostracized them, and so had to be hidden. A year later the Nazis
invaded, and their mother set out to get the children away, in the total chaos of
war. Try to imagine having to leave everything familiar behind, taking only what
you can carry, not knowing at any point where you are and whether to move left
or right, but knowing that everything hinges on making the correct choice. I will
tell only one incident, which stops the heart. Israel’s mother was a midwife so
presenting herself as a nurse to accompany the wounded, managed somehow to
keep the children with her, and started on their way east on such trains as she
could manage to board, sometimes riding inside, sometimes in open wagons, each
destination uncertain. Their train halted in a small town where it was supposed to
remain all day, so she ventured out to try to barter something for a little food, but
when she returned the train was gone!! She was told that the town had another
station where perhaps the train had been shunted so, desperate, she gave away
her only warm coat to be taken to it – providentially, the train was there and they
were reunited. Ultimately they found themselves in Kyrgyzstan, in the north near
China on a collective farm, all working in the fields.

School was always their focus however, and somehow even there Israel’s talent
was noticed; he got a scholarship and ultimately was sent alone to Kishinev, five
days’ travel away from his family. There, working independently, he found his way
to research problems and had results published (in Doklady!) while still a student.
Pervasive antisemitism blocked the way to any job, and even with his qualifications
it needed intervention by a well-placed official to find him a post in a two-year insti-
tute for training elementary school teachers, where he had to teach in Moldavian,
a dialect he didn’t know. Minimal though this position was, it required character
to resist the prevailing baseness, and he never forgot those who helped him in these
early years1. In that period, Mark Grigorievich Krĕın, a great mathematician of
our time, was lecturing at a military institute in nearby Odessa, so Israel, always
enterprising and daring, managed to slip by the guards to find him. They soon be-
came collaborators and close friends (for 24 years! with one room in Krĕın’s small
apartment designated as “Iz’ia’s room” for his visits) working as equals on a host of
fundamental questions in operator theory. In time, a group of outstanding students
and an international reputation crystalized itself around him. He became profes-
sor and member of the Moldavian Academy, but with official antisemitism rapidly

1Among those who are now perhaps less known but who deserve to be remembered are M.S.
Shumbarsky, his teacher in high school in Kyrgyzstan; G.Ya. Sukhomlinov, G.A. Bykov, and
especially D.L. Picus who taught him later, and T.A. Itskovich in Kishinev; V.A. Andrunakevich

and I.F. Volkov, his former professors, who recommended him to Mrs. A.N. Krachun, then
Minister of Education for Moldavia; and V.G. Ceban, his colleague in Beltsy and Kishinev.
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rising again he foresaw that, despite these advantages, the children’s lives there
would become unbearably distorted. Acting purely on his intuition about the West,
since everything they heard about it was only hostile propaganda, he persuaded
his entire familiy to apply for emigration. A full storm of enmity and vilification
from all officialdom then broke over them. Both his wife and sister lost their jobs
as doctors, his children were denounced at school, friends feared to be seen with
them, but they remained steadfast and ultimately, with the help of the interna-
tional mathematical community, were able to leave. Once again he was in a new
world without a language – immediately invited to Stony Brook, he memorized his
lectures phonetically – but soon began the deep currents of work that we see today.

There was an ironic but touching postscript to this period. Exactly thirty
years after expelling him from his positions, the university in Kishinev and the
Moldavian Academy invited him back for an honorary doctorate. It was problem-
atic but the whole family went. The official ceremony did not mention the past,
although Israel accepted in Moldavian and Hebrew, but the meaningful event took
place later in an informal meeting with the faculty. Israel said frankly that people
had not acted well but that he understood the pressures, and then there came an
outpouring of emotion from the others, who clearly had so treasured their memo-
ries of his time with them. They spoke of his openness, his help to them, and the
joy of mathematics that he brought them – just as all of us remember him now.

He lived squarely in the real world: he could repair shoes, select a good
watermelon, grow grapes, make wine. There are two expressions I associate with
him. When faced with a question, particularly one involving people, his verdict
would often be “it’s not simple”, but if it came to something in his power to do,
it was invariably “no problems!” Then there is his phenomenal work among us:
over 500 papers and books, many in collaboration as befitted his inviting nature,
each marked by something unmistakably his, an important idea or a step in a
new direction. He traveled extensively, and wherever he went operator theory and
friendship blossomed together – there are wonderful tributes to him from all over
the world in the book that I mentioned. But, tragically, his health began to decline.
His heart weakened and his kidneys began to fail; in time, he was spending five
hours a day, five days a week, in dialysis. Yet never did he so much as mention it.
He only joked: two friends meet on the street. “How are things?” says one. “In one
word?” asks the other. “Yes.” “Good.” “And in two words?” “Not good.” His mind
was always on celebration of life. Accordingly, for their 50th wedding anniversary
he and Bella decided that as their original wedding had been in a drab office in
Moscow they should have a real one in Israel. And so they did, with over 200
guests! There is a photograph showing their portraits on the two occasions, fifty
years apart, the light in their faces exactly the same.

Is it possible to live with such commitment and integrity, such courage, such
harmony among one another, and between life and work? Israel and his family
give us a proof of existence. And also, I believe, of uniqueness.
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Closing remarks

Mrs. Bella Gohberg (Ra’anana, Israel)

Dear Conference Committee, friends and IWOTA participants,
I have attended many conferences together with my husband Israel Gohberg (Z′′L),
but IWOTA 2011 is different, because he is not here with us. This is the first time
that I am present at the conference in his honor without him.

I have mixed feelings tonight. On one hand, I am extremely happy to be here
with Israel’s sister Feya and my daughters. I feel a lot of warmth, attention and
am glad to meet our friends and Israel’s colleagues.

On the other hand it is very sad that my husband (Z′′L) is not here to enjoy
it with us. I vividly remember IWOTA 2008 in Williamsburg. It was a happy
occasion – the celebration of his 80th birthday. We are grateful that all our family
could share the celebration with him.

Israel was an amazing person, who loved life and was an eternal optimist. He
loved mathematics; it was his hobby, his profession, his inspiration and muse. He
followed his passion traveling around the world and wherever he went he published
new papers, formed new collaborations and met new friends.

Israel (Z′′L) was not a healthy person, but this never slowed him down or
stopped him. Many of his colleagues were not aware of his health condition, because
he never complained and continued working till his last day. He inspired others
and defeated his disease. Doctors classified Israel as a medical miracle, an example
of the power of mind over body. Israel’s (Z′′L) courage and sense of humor helped
him in the most critical and even hopeless of situations.

Israel’s wisdom, kindness and generous heart attracted collaborators, col-
leagues and friends. Although in his professional world Professor Gohberg resided
in the abstract multi/infinite-dimensional spaces, he was a humble down to earth
person, devoted family man, reliable colleague and loyal friend.

Losing Israel was very painful and extremely difficult for our family. We
are grateful to his colleagues and friends for the kind words, letters and support
during this hard time. Thank you for the wonderful In Memoriams, journals and
publications in his honor.

They say that the person dies when he is forgotten, but those who are re-
membered keep living. Thank you for keeping his memory alive.

I would like to express my gratitude to the conference committee for invit-
ing me to participate at this event. Special thanks to Professor Alfonso Montes
Rodriguez for his generosity, warm hospitality and for organizing my travel ar-
rangements and accommodations.

I wish you all a long and healthy life, professional success and all the best.
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1. Introduction

I am honored to talk here about research work of Israel Gohberg. Many of us knew,
and were greatly influenced by, Israel Gohberg (1928–2009), a brilliant and charis-
matic mathematician. His mathematical legacy is fundamental and extensive: more
than 450 mathematical articles, 40 Ph.D. students, 27 co-authored books. These
are very impressive numbers. But the numbers are not the whole story, and per-
haps even not the main story. There are people who would crank up a paper every
two weeks or so without regard to quality or interest. Gohberg was definitely not
one of them. On the contrary, every research paper by Israel Gohberg displays
creative ideas and novel insights.

Gohberg’s contributions are mainly in analysis, operator theory, linear alge-
bra, numerical analysis, and control theory. His work is leading in the following
research areas:

∙ singular integral equations and their discrete analogues;
∙ Toeplitz operators and equations;
∙ the theory of nonselfadjoint operators;
∙ spectral theory of matrix and operator functions;
∙ factorizations of matrix and operator functions;
∙ inversion problems for structured matrices.

Gohberg’s numerous honors and awards include:

∙ Foreign Member of the Netherlands Academy of Arts and Science (1985);
∙ Landau Prize (1976);
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∙ Rothschild Prize in Mathematics (1986);
∙ Humboldt Research Prize (1992);
∙ Hans Schneider Prize in Linear Algebra (1994);
∙ M.G. Krĕın prize of the Ukrainian National Academy of Sciences (2007);
∙ SIAM Fellowship (2009);
∙ honorary doctorates: Technical University Darmstadt (1997), Technical Uni-
versity Vienna (2001), University of Timisoara (2002), University of Kishinev
(2002), University of Balti (2002), Technion (2008).

Obviously, it is impossible to cover much of Gohberg’s research work dur-
ing this short 20 minutes presentation. Bona fide applications were always part of
his research outlook. I have decided therefore to mention here only two areas of
seminal, lasting, and influential contributions of Israel Gohberg that are related to
applications in control theory. My apologies to non-mathematicians in the audi-
ence: I cannot talk meaningfully about Gohberg’s research work without resorting
to mathematical lingo.

2. The state space method

The state space model of a linear time invariant differential equation is given by

�̇� = 𝐴𝑥+𝐵𝑢, 𝑦 = 𝐶𝑥+𝐷𝑢, (2.1)

where 𝐴,𝐵,𝐶,𝐷 are matrices of suitable sizes, and where 𝑢, 𝑥, and 𝑦 are the input,
state, and output of the model. This is the most basic model of control systems. The
function 𝐺(𝑠) = 𝐷+𝐶(𝑠𝐼 −𝐴)−1𝐵 is known as the transfer function of the state
space model. The realization theory for this model, in other words construction of
𝐴,𝐵,𝐶,𝐷 by given rational matrix function 𝐺(𝑠), has been developed by Kalman,
Gilbert, and others in the 1960’s.

A large part of research of Israel Gohberg and his circle of close collaborators
and friends in the last thirty years has been devoted to expanding this state space
method into various areas, including:

∙ interpolation with applications to 𝐻∞ (worst case) control [4, 5];
∙ integral equations [6, 7, 9];
∙ canonical systems, direct and inverse spectral problems [1, 2, 3, 15, 16].
A key application of the state space method is the factorization principle

formulated in [6, 10], see also the books [8, 9]. Minimal cascade decompositions
of systems, or alternatively minimal factorizations of the respective transfer func-
tions, can be explicitly described in one-to-one fashion in terms of certain invariant
subspaces of their corresponding state space operators. In the case of systems writ-
ten in the form (2.1) with invertible𝐷, these are pairs of complementary subspaces,
one invariant for 𝐴, the other invariant for 𝐴−𝐵𝐷−1𝐶. This geometric principle of
factorization will be illustrated with one basic example of canonical factorization.
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Let 𝐺(𝑠) be a rational 𝑚×𝑚 matrix function with no poles on the imaginary
axis and at infinity. Consider factorization problem:

𝐺(𝑠) = 𝐺−(𝑠)𝐺+(𝑠), (2.2)

where 𝐺+(𝑠) and 𝐺−(𝑠) are biproper rational 𝑚×𝑚 matrix functions such that:

∙ 𝐺+(𝑠) and 𝐺+(𝑠)
−1 have all their poles in the open right half-plane ℂright;

∙ 𝐺−(𝑠) and 𝐺−(𝑠)−1 have all their poles in the open left half-plane ℂleft.

Such factorizations are called (right) canonical factorizations.

If 𝐺 admits a canonical factorization, then 𝐺(𝑠) is nonsingular for each 𝑠 on
the imaginary axis and at infinity.

Since 𝐺 has no poles on the imaginary axis and at infinity, it admits a real-
ization

𝐺(𝑠) = 𝐷 + 𝐶(𝑠𝐼𝑛 −𝐴)−1𝐵

such that the matrices 𝐴, 𝐵 and 𝐶 are partitioned:

𝐴 =

[
𝐴1 0
0 𝐴2

]
, 𝐵 =

[
𝐵1

𝐵2

]
, 𝐶 =

[
𝐶1 𝐶2

]
,

so that 𝐴1, 𝐴2 are matrices of sizes 𝑛1×𝑛1, 𝑛2×𝑛2 (𝑛1+𝑛2 = 𝑛), and 𝜎(𝐴1) ⊂ ℂleft,
𝜎(𝐴2) ⊂ ℂright, i.e., 𝐴1 and −𝐴2 are stable.

Assume that 𝐺(𝑠) is nonsingular for every 𝑠 on the imaginary axis and at
infinity (necessary condition for existence of canonical factorization). Then 𝐷 is
nonsingular, and the matrix 𝐴× := 𝐴−𝐵𝐷−1𝐶 has no eigenvalues on the imagi-
nary axis. Consider the subspace

𝑀 =

{[
𝑥
0

]
∣ 𝑥 ∈ ℂ𝑛1

}
It is the spectral subspace consisting of all eigenvectors and generalized eigenvec-
tors of 𝐴 corresponding to the eigenvalues in ℂleft. Let 𝑀× be the 𝐴×-invariant
subspace consisting of all eigenvectors and generalized eigenvectors of 𝐴× corre-
sponding to the eigenvalues in ℂright. Then the factorization principle states that 𝐺
admits a right canonical factorization if and only if𝑀 and𝑀× are complementary
subspaces in ℂ𝑛.

Moreover, as it turns out, the factorization, when it exists, can be further
described in terms of formulas involving solutions to certain Riccati equations.
Indeed, 𝐺 admits a right canonical factorization if and only if the Riccati equation

𝑅𝐵2𝐷
−1𝐶1𝑅−𝑅(𝐴2 −𝐵2𝐷

−1𝐶2) + (𝐴1 −𝐵1𝐷
−1𝐶1)𝑅 −𝐵1𝐷

−1𝐶2 = 0

has a solution 𝑅 satisfying the spectral constraints

𝜎
(
𝐴1 − (𝐵1 −𝑅𝐵2)𝐷

−1𝐶1
) ⊂ ℂleft,

𝜎
(
𝐴2 −𝐵2𝐷

−1(𝐶1𝑅+ 𝐶2)
) ⊂ ℂright
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(such solution is necessarily unique). If the above conditions are satisfied, a right
canonical factorization 𝐺(𝑠) = 𝐺−(𝑠)𝐺+(𝑠) of 𝐺 is given by

𝐺−(𝑠) = 𝐷1 + 𝐶1(𝑠𝐼𝑛1 −𝐴1)
−1(𝐵1 −𝑅𝐵2)𝐷

−1
2 ,

𝐺+(𝑠) = 𝐷2 +𝐷−1
1 (𝐶1𝑅+ 𝐶2)(𝑠𝐼𝑛2 −𝐴2)

−1𝐵2.

and

𝐺−1− (𝑠) = 𝐷−1
1 −𝐷−1

1 𝐶1(𝑠𝐼𝑛1 −𝐴×1 )
−1(𝐵1 −𝑅𝐵2)𝐷

−1,

𝐺−1+ (𝑠) = 𝐷−1
2 −𝐷−1(𝐶1𝑅+ 𝐶2)(𝑠𝐼𝑛2 −𝐴×2 )

−1𝐵2𝐷
−1
2 ,

where

𝐴×1 = 𝐴1 − (𝐵1 −𝑅𝐵2)𝐷
−1𝐶1, 𝐴×2 = 𝐴2 −𝐵2𝐷

−1(𝐶1𝑅 + 𝐶2),

and where 𝐷 = 𝐷1𝐷2 is a factorization of 𝐷 with invertible 𝐷1 and 𝐷2.
The factorization principle bears the distinctive characteristics of Gohberg’s

results: it is complete (if and only if statement), explicit (formulas are given), well
motivated, rooted in applications, connects diverse ideas and approaches (algebra
of factorizations vs geometry of invariant subspaces), and inspired many further
developments. As an example of such further developments, let me mention non-
canonical factorizations (more general than (2.2)), which also can be described in
terms of invariant subspaces. In this case however the factorization principle is
more involved because the subspaces in question are not anymore direct comple-
ments to each other.

3. Gohberg–Semencul formula

Toeplitz matrices model many types of processes in which certain shift invariance,
either in time or in space, is present. This includes time series analysis and signal
processing. The Gohberg–Semencul formula for inverting Toeplitz matrices was
originally published in 1972 [17] (for matrices with scalar entries), and extended
in [13, 14] for matrices with non-commutative entries, in particular block Toeplitz
matrices.

The original version of the formula for complex matrices is now presented.
Let 𝑇𝑛 be an 𝑛× 𝑛 complex Toeplitz matrix. Consider the equations

𝑒0 = 𝑇𝑛

[
𝛼0 𝛼1 ⋅ ⋅ ⋅ 𝛼𝑛−2 𝛼𝑛−1

]𝑡𝑟
, (3.1)

𝑒𝑛−1 = 𝑇𝑛

[
𝛽0 𝛽1 ⋅ ⋅ ⋅ 𝛽𝑛−2 𝛽𝑛−1

]𝑡𝑟
, (3.2)

where 𝑒0 is the vector in ℂ𝑛 with one in the first position and all the other entries
zero, and 𝑒𝑛−1 is the vector in ℂ𝑛 with one in the last position and all the other
entries zero. If there exists a solution to 𝑇𝑛𝛼 = 𝑒0 and 𝑇𝑛𝛽 = 𝑒𝑛−1, where 𝛼0 ∕= 0,
then 𝑇𝑛 is invertible, 𝛼0 = 𝛽𝑛−1, and

𝑇−1𝑛 =
1

𝛼0
(𝐿1𝑈2 − 𝐿3𝑈4) ,
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where 𝐿1 and 𝐿3 are the lower triangular Toeplitz matrices, 𝑈2 and 𝑈4 are the
upper triangular Toeplitz matrices given by the following formulas:

𝐿1 =

⎡⎢⎢⎢⎣
𝛼0 0 ⋅ ⋅ ⋅ 0
𝛼1 𝛼0 ⋅ ⋅ ⋅ 0
...

...
. . .

...
𝛼𝑛−1 𝛼𝑛−2 ⋅ ⋅ ⋅ 𝛼0

⎤⎥⎥⎥⎦ , 𝐿3 =

⎡⎢⎢⎢⎣
0 0 ⋅ ⋅ ⋅ 0
𝛽0 0 ⋅ ⋅ ⋅ 0
...

...
. . .

...
𝛽𝑛−2 𝛽𝑛−3 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎦ ,

𝑈2 =

⎡⎢⎢⎢⎣
𝛽𝑛−1 𝛽𝑛−2 ⋅ ⋅ ⋅ 𝛽0
0 𝛽𝑛−1 ⋅ ⋅ ⋅ 𝛽1
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝛽𝑛−1

⎤⎥⎥⎥⎦ , 𝑈4 =

⎡⎢⎢⎢⎣
0 𝛼𝑛−1 ⋅ ⋅ ⋅ 𝛼1
0 0 ⋅ ⋅ ⋅ 𝛼2
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 0

⎤⎥⎥⎥⎦ .

The Gohberg–Semencul formula led to many developments, including:

∙ inversion of structured matrices;
∙ displacement structure;
∙ continuous time analogues;
∙ non-commutative analogues;
∙ applications in signal processing, filtering;
∙ inversion of multilevel and multivariable Toeplitz matrices;
∙ numerical algorithms for fast inversion.
The importance and influence of the Gohberg–Semencul formula in mathe-

matics and engineering cannot be overestimated. As an indication, note that the
Google scholar shows 496 hits for the formula and 549 hits for Gohberg–Semencul
(as of July 2011), mostly in engineering literature.

Reviews of the mathematical work of Gohberg, authored by Kaashoek and
by Kaashoek and Lerer, are given in Part 2 of [11].
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[4] J.A. Ball, I. Gohberg, and L. Rodman, Interpolation of rational matrix functions,
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ase and L.-E. Persson proved a refined Hardy type inequality with breaking
point at 𝑝 = 2. In this paper we show that this refinement is not unique
and can be replaced by another refined Hardy type inequality with breaking
point at 𝑝 = 2. Moreover, a new refined Hardy type inequality with breaking
point at 𝑝 = 3 is obtained. One key idea is to prove some new Jensen type
inequalities related to convex or superquadratic funcions, which are also of
independent interest.
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1. Introduction

First we consider the following well-known Hardy-type inequality: If the function
𝑓 is non-negative and measurable on (0,∞), then∫ 𝑏

0

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑦) 𝑑𝑦

)𝑝

𝑥𝛼𝑑𝑥 ≤
(

𝑝

𝑝− 1− 𝛼

)𝑝 ∫ 𝑏

0

𝑓𝑝 (𝑥)𝑥𝛼

(
1−

(𝑥

𝑏

) 𝑝−𝛼−1
𝑝

)
𝑑𝑥,

(1.1)
where 𝑝 ≥ 1 and 𝛼 < 𝑝 − 1. The constant on the right-hand side is sharp. A
simple proof of this inequality was recently presented in [12], where also some
historical remarks can be found. In particular, for 𝛼 = 0 and for 𝑏 = ∞ (1.1) is
the classical Hardy inequality, stated by G.H. Hardy in 1920 (see [2]) and where
it was finally proved in 1925 (see [3]). Moreover, for 𝑏 = ∞ (1.1) coincides with
the first weighted version also proved by Hardy himself in 1928 (see [4]). Further
development of Hardy-type inequalities can be found in the books [6], [7] and
[8]. Even if the inequality (1.1) is sharp, it is possible to refine it by inserting a
second positive term in the left-hand side of (1.1). Such a result was first proved



2 S. Abramovich and L.-E. Persson

by C.O. Imoru in 1977 (see [5], and also its generalization in [10]). In all cases the
“breaking point”, i.e., the point where the inequality reverses is 𝑝 = 1. In 2008
J.A. Oguntuase and L.-E. Persson proved the following refined Hardy inequality
with “breaking point” 𝑝 = 2 (see [9] and cf. also [11]): Let 𝑝 ≥ 1, 𝛼 < 𝑝 − 1 and
0 < 𝑏 ≤ ∞. If 𝑝 ≥ 2, and the function 𝑓 is non-negative and locally integrable on

(0, 𝑏) and
∫ 𝑏

0
𝑥𝛼𝑓𝑝 (𝑥) 𝑑𝑥 <∞, then∫ 𝑏

0

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑦) 𝑑𝑦

)𝑝

𝑥𝛼𝑑𝑥+
𝑝− 1− 𝛼

𝑝

∫ 𝑏

0

∫ 𝑏

𝑡

∣∣∣∣∣ 𝑝

𝑝− 𝛼− 1
(

𝑡

𝑥

)1− 𝑝−𝛼−1
𝑝

𝑓 (𝑡)

− 1
𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣𝑝 𝑥𝛼− 𝑝−𝛼−1
𝑝 𝑑𝑥 ⋅ 𝑡 𝑝−𝛼−1

𝑝 −1𝑑𝑡

≤
(

𝑝

𝑝− 𝛼− 1
)𝑝 ∫ 𝑏

0

𝑓𝑝 (𝑥) 𝑥𝛼

(
1−

(𝑥

𝑏

) 𝑝−𝛼−1
𝑝

)
𝑑𝑥. (1.2)

If 1 < 𝑝 ≤ 2, then (1.2) holds in the reversed direction. In particular, for 𝑝 = 2 we
have equality in (1.2).

In this paper we derive a new refined Hardy type inequality different than
(1.2) but again, with a natural breaking point at 𝑝 = 2 (see Theorem 3.2). We also
present and prove another new refined Hardy type inequality with breaking point
at 𝑝 = 3 (see Theorem 3.4).

One key idea is to prove some new Jensen type inequalities connected to func-
tions of the type 𝐹 (𝑥) = 𝑥𝜑(𝑥), where 𝜑 is convex/concave or supequadratic/sub-
quadratic. These results are of independent interest. Next we present and prove
some new inequalities for such functions (see Propositions 3.1 and 3.3), which, in
their turn, are crucial for the proofs of the new Hardy type inequalities.

The paper is organized as follows: In order not to disturb our discussions
later on, the new Jensen type inequalities and other preliminaries are collected in
Section 2. The main results concerning refined Hardy type inequalities are stated
and discussed in Section 3 and the proofs are given in Section 4.

2. Preliminaries

Our first important Lemma reads:

Lemma 2.1. Let 𝐾 (𝑥) = 𝑥𝜑 (𝑥) , where 𝜑 (𝑥) is convex on [0, 𝑏). Then

𝐾 (𝑦)−𝐾 (𝑥) ≥ 𝜑 (𝑥) (𝑦 − 𝑥) + 𝐶𝜑 (𝑥) 𝑦 (𝑦 − 𝑥) , (2.1)

holds for 𝑥 ∈ [0, 𝑏) , 𝑦 ∈ [0, 𝑏) , 𝐶𝜑 is the constant in the definition of convexity
and the inequality∫

Ω

𝐾 (𝑓 (𝑠)) 𝑑𝜇 (𝑠) −𝐾

(∫
Ω

𝑓 (𝑠) 𝑑𝜇 (𝑠)

)
(2.2)

≥
∫
Ω

𝐶𝜑 (𝑥) 𝑓 (𝑠) (𝑓 (𝑠)− 𝑥) 𝑑𝜇 (𝑠) =

∫
Ω

𝐶𝜑 (𝑥) (𝑓 (𝑠)− 𝑥)
2
𝑑𝜇 (𝑠)
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holds, where f is any non-negative 𝜇-integrable function on the probability measure
space (Ω, 𝜇) and 𝑥 =

∫
Ω
𝑓𝑑𝜇. The inequalities (2.1) and (2.2) hold in the reverse

direction when 𝜑 is concave.

Example. The inequalities (2.1) and (2.2) are satisfied in particular by 𝐾 (𝑥) = 𝑥𝑝,
𝑝 ≥ 2. For 1 < 𝑝 ≤ 2 the reverse inequalities hold. They reduce to equalities for
𝑝 = 2.

Proof of Lemma 2.1. Multiplying by 𝑦 the inequality satisfied by any convex func-
tion

𝜑 (𝑦)− 𝜑 (𝑥) ≥ 𝐶𝜑 (𝑥) (𝑦 − 𝑥) , (2.3)

by simple manipulations we get that 𝐾 (𝑥) = 𝑥𝜑 (𝑥) satisfies (2.1) when 𝜑 is
convex.

By putting 𝑦 = 𝑓 (𝑠) and 𝑥 =
∫
Ω
𝑓𝑑𝜇 in (2.1) and integrating with respect to

the probability measure 𝜇 we arrive at (2.2). Moreover, if 𝜑 is concave, then (2.3)
holds in the reverse direction so the same proof as above shows that in fact (2.1)
and (2.2) both hold in the reverse direction when 𝐾 (𝑥) = 𝑥𝜑 (𝑥) , where 𝜑 (𝑥) is
concave. □

Remark 2.2. Inequality (2.2) may be regarded as a new type of Jensen inequality,
for the functions 𝐾(𝑥) = 𝑥𝜑 (𝑥) , where 𝜑 is convex/concave.

Next we define the crucial concept of superquadratic and subquadratic func-
tions (see [1]).

Definition 2.3. Let 𝜑 : [0, 𝑏)→ ℝ. The function 𝜑 is superquadratic if for all 𝑥 ∈
[0, 𝑏) there exists 𝐶𝜑 ∈ ℝ such that

𝜑 (𝑦)− 𝜑 (𝑥) ≥ 𝐶𝜑 (𝑥) (𝑦 − 𝑥) + 𝜑 (∣𝑦 − 𝑥∣) (2.4)

for all 𝑦 ∈ [0, 𝑏).
The function 𝜑 is subquadratic if −𝜑 is superquadratic and the reverse in-

equality of (2.4) holds.

Remark 2.4. Inequality (2.4) holds for all 𝜑 (𝑥) = 𝑥𝑝, 𝑥 ≥ 0, 𝑝 ≥ 2. It holds in
the reverse direction if 0 < 𝑝 < 2 and it reduces to equality for 𝜑 (𝑥) = 𝑥2.

The following result is useful (see [1, Lemma 2.1]):

Lemma 2.5. Let 𝜑 be a superquadratic function with 𝐶𝜑 (𝑥) as in (2.4).

(i) Then 𝜑 (0) ≤ 0.
(ii) If 𝜑 (0) = 𝜑′ (0) = 0, then 𝐶𝜑 (𝑥) = 𝜑′ (𝑥) whenever 𝜑 is differentiable

at 𝑥 > 0.

(iii) If 𝜑 ≥ 0, then 𝜑 is convex and 𝜑 (0) = 𝜑′ (0) = 0.

We are now ready to formulate the similar result as in Lemma 2.1 but when
𝜑 is superquadratic instead of convex.
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Lemma 2.6. Let 𝐾 (𝑥) = 𝑥𝜑 (𝑥) , where 𝜑 (𝑥) is superquadratic on [0, 𝑏). Then

𝐾 (𝑦)−𝐾 (𝑥) ≥ 𝜑 (𝑥) (𝑦 − 𝑥) + 𝐶𝜑 (𝑥) 𝑦 (𝑦 − 𝑥) + 𝑦𝜑 (∣𝑦 − 𝑥∣) (2.5)

holds for 𝑥 ∈ [0, 𝑏) , 𝑦 ∈ [0, 𝑏) , 𝐶𝜑 (𝑥) is defined by (2.4) and∫
Ω

𝐾 (𝑓 (𝑠)) 𝑑𝜇 (𝑠) −𝐾

(∫
Ω

𝑓 (𝑠) 𝑑𝜇 (𝑠)

)
(2.6)

≥
∫
Ω

[𝐶𝜑 (𝑥) 𝑓 (𝑠) (𝑓 (𝑠)− 𝑥) + 𝑓 (𝑠)𝜑 (∣𝑓 (𝑠)− 𝑥∣)] 𝑑𝜇 (𝑠)

holds, where f is any non-negative 𝜇-integrable function on the probability measure
space (Ω, 𝜇) and 𝑥 =

∫
Ω 𝑓𝑑𝜇. The inequalities (2.5) and (2.6) hold in the reverse

direction when 𝜑 is subquadratic.

Example. The inequalities (2.5) and (2.6) are satisfied in particular by 𝐾 (𝑥) = 𝑥𝑝,
𝑝 ≥ 3. For 1 < 𝑝 ≤ 3 the reverse inequalities hold. They reduce to equalities for
𝑝 = 3.

Proof of Lemma 2.6. Multiplying (2.4) by 𝑦, by simple manipulations we get that
𝐾 (𝑥) = 𝑥𝜑 (𝑥) satisfies (2.5) when 𝜑 is superquadratic.

Next we consider (2.5) with 𝑥 =
∫
Ω
𝑓𝑑𝜇 and 𝑦 = 𝑓 (𝑠) , and integrate with

respect to the probability measure 𝜇 and obtain (2.6). Furthermore, if 𝜑 is sub-
quadratic, then (2.4) holds in the reverse direction and the same proof as above
shows that (2.5) and (2.6) hold in the reverse direction in this case. □

Remark 2.7. Inequality (2.6) may be regarded as a new Jensen type inequality for
the functions 𝐾 (𝑥) = 𝑥𝜑 (𝑥) where 𝜑 is superquadratic/subquadratic.

3. The main results

In this section we state the main results concerning Hardy type inequalities related
to 𝐾(𝑥) = 𝑥𝜑(𝑥), where 𝜑(𝑥) is convex/concave and then to 𝐾(𝑥) = 𝑥𝜑(𝑥), where
𝜑(𝑥) is superquadratic/subquadratic. The proofs are given in the next section.

The following result is crucial for the proof of Theorem 3.2 and of independent
interest.

Proposition 3.1. Let 0 < 𝑏 ≤ ∞, 𝑢 : (0,∞) → ℝ be a non-negative weight func-
tion such that 𝑢(𝑥)

𝑥2 is locally integrable on (0,∞) and let the weight function 𝑣 be
defined by

𝑣(𝑡) = 𝑡

∫ 𝑏

𝑡

𝑢(𝑥)

𝑥2
𝑑𝑥, 𝑡 ∈ (0, 𝑏) . (3.1)
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If the function 𝜑 is integrable and convex on [0, 𝑏) and 𝐾 (𝑥) = 𝑥𝜑 (𝑥) , then the
inequality∫ 𝑏

0

𝐾(𝑓(𝑥))
𝑣(𝑥)

𝑥
𝑑𝑥−

∫ 𝑏

0

𝐾

(
1

𝑥

∫ 𝑥

0

(𝑓(𝑡)𝑑𝑡)

)
𝑢(𝑥)

𝑥
𝑑𝑥 (3.2)

≥
∫ 𝑏

0

∫ 𝑏

𝑡

𝑓(𝑡)

(
𝑓(𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑥𝑑𝑡

=

∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓(𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑥𝑑𝑡

holds for all non-negative locally integrable functions 𝑓 and with 𝐶𝜑 defined by
(2.3). If 𝜑 is concave, then (3.2) holds in the reverse direction.

Example. From Proposition 3.1 for 𝜑 (𝑥) = 𝑥𝑝−1, 𝑝 ≥ 2 (therefore 𝐶𝜑 (𝑥) =

𝜑
′
(𝑥) = (𝑝− 1)𝑥𝑝−2), choosing 𝑢 (𝑥) = 1, we find that∫ 𝑏

0

(
1− 𝑥

𝑏

)
𝑓𝑝 (𝑥)

𝑑𝑥

𝑥
−
∫ 𝑏

0

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)𝑝
𝑑𝑥

𝑥
(3.3)

≥ (𝑝− 1)
∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)𝑝−2
𝑑𝑥

𝑥2
𝑑𝑡.

The inequality (3.3) holds in the reverse direction for 1 < 𝑝 < 2.

By using (3.3) we are now ready to derive our new refined Hardy type in-
equality with breaking point 𝑝 = 2.

Theorem 3.2. Let 𝑝 ≥ 2, 𝑘 > 1, 0 < 𝑏 ≤ ∞, and let the function 𝑓 be non-negative
and locally integrable on (0, 𝑏) . Then(

𝑝

𝑘 − 1
)𝑝 ∫ 𝑏

0

(
1−

(𝑥

𝑏

)𝑘−1
𝑝

)
𝑥𝑝−𝑘𝑓𝑝 (𝑥) 𝑑𝑥−

∫ 𝑏

0

𝑥−𝑘

(∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)𝑝

𝑑𝑥

≥ (𝑝− 1)
𝑝

(𝑘 − 1)
∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓 (𝑡)

𝑝

𝑘 − 1
(

𝑡

𝑥

)1− 𝑘−1
𝑝

− 1

𝑥

∫ 𝑥

0

𝑓 (𝜎) 𝑑𝜎

)2

⋅
(
1

𝑥

∫ 𝑥

0

𝑓 (𝜎) 𝑑𝜎

)𝑝−2
𝑥(1−

𝑘−1
𝑝 )(𝑝+1)𝑡

𝑘−1
𝑝 −1 𝑑𝑥

𝑥2
𝑑𝑡. (3.4)

Moreover, the double integral of the right-hand side of (3.4) is non-negative.
If 1 < 𝑝 ≤ 2, then the inequality (3.4) holds in reverse direction. Equality holds
when 𝑝 = 2.

Next we formulate a result which is similar to Proposition 3.1 but where 𝜑 (𝑥)
is superquadratic instead of convex.

Proposition 3.3. Let 0 < 𝑏 ≤ ∞, 𝑢 : (0,∞) → ℝ be a non-negative weight func-
tion such that 𝑢(𝑥)

𝑥2 is locally integrable on (0,∞) and let the weight function 𝑣 be
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defined by

𝑣(𝑡) = 𝑡

∫ 𝑏

𝑡

𝑢(𝑥)

𝑥2
𝑑𝑥, 𝑡 ∈ (0, 𝑏) . (3.5)

If the function 𝜑 is integrable and superquadratic on [0, 𝑏) and 𝐾 (𝑥) = 𝑥𝜑 (𝑥) ,
then the inequality∫ 𝑏

0

𝐾(𝑓(𝑥))
𝑣(𝑥)

𝑥
𝑑𝑥−

∫ 𝑏

0

𝐾

(
1

𝑥

∫ 𝑥

0

(𝑓(𝑡)𝑑𝑡)

)
𝑢(𝑥)

𝑥
𝑑𝑥 (3.6)

≥
∫ 𝑏

0

∫ 𝑏

𝑡

𝑓(𝑡)

(
𝑓(𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑥𝑑𝑡

+

∫ 𝑏

0

∫ 𝑏

𝑡

𝑓(𝑡)𝜑

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣) 𝑢 (𝑥)

𝑥2
𝑑𝑥𝑑𝑡

=

∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓(𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑥𝑑𝑡

+

∫ 𝑏

0

∫ 𝑏

𝑡

𝑓(𝑡)𝜑

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣) 𝑢 (𝑥)

𝑥2
𝑑𝑥𝑑𝑡,

holds for all non-negative locally integrable functions 𝑓 and with 𝐶𝜑 defined by
(2.4). If the function 𝜑 is subquadratic, then (3.6) holds in the reverse direction.

By using (3.6) we are now ready to state our next new refined Hardy type
inequality with breaking point 𝑝 = 3.

Theorem 3.4. Let 𝑝 ≥ 3, 𝑘 > 1, 0 < 𝑏 ≤ ∞, and let the function 𝑓 be non-negative
and locally integrable on (0, 𝑏) . Then(

𝑝

𝑘 − 1
)𝑝 ∫ 𝑏

0

(
1−

(𝑥

𝑏

) 𝑘−1
𝑝

)
𝑥𝑝−𝑘𝑓𝑝 (𝑥) 𝑑𝑥−

∫ 𝑏

0

𝑥−𝑘

(∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)𝑝

𝑑𝑥 (3.7)

≥ 𝑝− 1
𝑝

(𝑘 − 1)
∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓 (𝑡)

𝑝

𝑘 − 1
(

𝑡

𝑥

)1− 𝑘−1
𝑝

− 1

𝑥

∫ 𝑥

0

𝑓 (𝜎) 𝑑𝜎

)2

⋅
(
1

𝑥

∫ 𝑥

0

𝑓 (𝜎) 𝑑𝜎

)𝑝−2
𝑥(1−

𝑘−1
𝑝 )(𝑝+1)𝑡

𝑘−1
𝑝 −1 𝑑𝑥

𝑥2
𝑑𝑡

+

∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓 (𝑡) 𝑡1−

𝑘−1
𝑝

)(∣∣∣∣∣𝑓 (𝑡) 𝑝

𝑘 − 1
(

𝑡

𝑥

)1− 𝑘−1
𝑝

− 1

𝑥

∫ 𝑥

0

𝑓 (𝜎) 𝑑𝜎

∣∣∣∣∣
)𝑝−1

⋅ 𝑥(1− 𝑘−1
𝑝 )𝑝𝑡

𝑘−1
𝑝 −1 𝑑𝑥

𝑥2
𝑑𝑡.

Moreover, each double integral of the right-hand side of (3.7) is non-negative.
If 1 < 𝑝 ≤ 3, then the inequality (3.7) holds in the reverse direction. Equality holds
when 𝑝 = 3.
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4. Proofs

Proof of Proposition 3.1. Let us choose in (2.2) the probability measure 𝑑𝜇 (𝑡) =
1
𝑥𝑑𝑡, 0 ≤ 𝑡 ≤ 𝑥. Then

1

𝑥

∫ 𝑥

0

𝐾 (𝑓 (𝑡)) 𝑑𝑡−𝐾

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
(4.1)

≥ 𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
1

𝑥

∫ 𝑥

0

𝑓 (𝑡)

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑑𝑡

= 𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
1

𝑥

∫ 𝑥

0

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
𝑑𝑡.

Multiplying (4.1) by 𝑢(𝑥)
𝑥 and integrating over 0 ≤ 𝑥 ≤ 𝑏, we get that∫ 𝑏

0

∫ 𝑥

0

𝐾 (𝑓 (𝑡)) 𝑑𝑡
𝑢 (𝑥)

𝑥2
𝑑𝑥−

∫ 𝑏

0

𝐾

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
𝑢 (𝑥)

𝑥
𝑑𝑥 (4.2)

≥
∫ 𝑏

0

∫ 𝑥

0

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥.

Now, by using (3.1) and Fubini’s theorem, we find that∫ 𝑏

0

∫ 𝑥

0

𝐾 (𝑓 (𝑡))
𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥 =

∫ 𝑏

0

𝐾 (𝑓 (𝑡))

𝑡

(
𝑡

∫ 𝑏

𝑡

𝑢 (𝑥)

𝑥2
𝑑𝑥

)
𝑑𝑡 (4.3)

=

∫ 𝑏

0

𝐾 (𝑓 (𝑡))
𝑣 (𝑡)

𝑡
𝑑𝑡 =

∫ 𝑏

0

𝐾 (𝑓 (𝑥))
𝑣 (𝑥)

𝑥
𝑑𝑥.

(4.2) and (4.3) lead to (3.2). In the case that 𝐾 (𝑥) = 𝑥𝜑 (𝑥) and 𝜑 is concave
then (4.1), (4.2) and (4.3) hold in the reverse direction, which leads to the reverse
of (3.2). The proof is complete. □

Proof of Theorem 3.2. We denote the right-hand side of (3.3) by 𝑅 and replace

the parameter 𝑏 by 𝑏
𝑘−1
𝑝 and 𝑓 (𝑥) by 𝑓

(
𝑥

𝑝
𝑘−1

)
𝑥

𝑝
𝑘−1−1. Then

𝑅 =

∫ 𝑏
𝑘−1
𝑝

0

∫ 𝑏
𝑘−1
𝑝

𝑡

(
𝑓
(
𝑡

𝑝
𝑘−1

)
𝑡

𝑝
𝑘−1−1 − 1

𝑥

∫ 𝑥

0

𝑓
(
𝜏

𝑝
𝑘−1

)
𝜏

𝑝
𝑘−1−1𝑑𝜏

)2
(4.4)

⋅ (𝑝− 1)
(
1

𝑥

∫ 𝑥

0

𝑓
(
𝜏

𝑝
𝑘−1

)
𝜏

𝑝
𝑘−1−1𝑑𝜏

)𝑝−2
𝑑𝑥

𝑥2
𝑑𝑡 .

We now make the substitutions

𝑦 = 𝑥
𝑝

𝑘−1 and 𝑠 = 𝑡
𝑝

𝑘−1 ⇔ 𝑥 = 𝑦
𝑘−1
𝑝 𝑡 = 𝑠

𝑘−1
𝑝

from which it follows that

𝑡 = 𝑏
𝑘−1
𝑝 ⇒ 𝑠 = 𝑏, 𝑥 = 𝑏

𝑘−1
𝑝 ⇒ 𝑦 = 𝑏, 𝑑𝑡 = 𝑘−1

𝑝 𝑠
𝑘−1
𝑝 −1𝑑𝑠, 𝑘−1

𝑝 𝑑𝑠 = 𝑡
𝑝

𝑘−1−1𝑑𝑡,

𝑑𝑥 = 𝑦
𝑘−1
𝑝 −1 𝑘−1

𝑝 𝑑𝑦, 𝑑𝑦 = 𝑝
𝑘−1𝑥

𝑝
𝑘−1−1𝑑𝑥, and 𝑡

𝑝
𝑘−1−1 = 𝑠1−

𝑘−1
𝑝 .
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By using these substitutions we get from (4.4) that

𝑅 = (𝑝− 1)
(
𝑘 − 1

𝑝

)𝑝+2 ∫ 𝑏

0

∫ 𝑏

𝑠

(
𝑝

𝑘 − 1𝑓 (𝑠)
(

𝑠

𝑦

)(1− 𝑘−1
𝑝 )

− 1

𝑦

∫ 𝑦

0

𝑓 (𝜎) 𝑑𝜎

)2

⋅
(
1

𝑦

∫ 𝑦

0

𝑓 (𝜎) 𝑑𝜎

)𝑝−2
𝑦(1−

𝑘−1
𝑝 )(𝑝+1)𝑠

𝑘−1
𝑝 −1 𝑑𝑦

𝑦2
𝑑𝑠 . (4.5)

Now we make the same changes on the left-hand side of (3.3), denoted by 𝐿,

that is, we replace 𝑏 by 𝑏
𝑘−1
𝑝 and 𝑓 (𝑥) by 𝑓

(
𝑥

𝑝
𝑘−1

)
𝑥

𝑝
𝑘−1−1 and by the substitution

𝑦 = 𝑥
𝑝

𝑘−1 we get that

𝐿 =

∫ 𝑏

0

𝑘 − 1
𝑝

(
1−

(𝑦

𝑏

) 𝑘−1
𝑝

)
𝑦𝑝−𝑘 (𝑓 (𝑦))𝑝 𝑑𝑦 (4.6)

−
(
𝑘 − 1

𝑝

)𝑝+1 ∫ 𝑏

0

𝑦−𝑘

(∫ 𝑦

0

𝑓 (𝑠) 𝑑𝑠

)𝑝

𝑑𝑦.

Therefore from (4.4)–(4.6), after dividing 𝐿 and 𝑅 by ((𝑘 − 1)/𝑝)𝑝+1 , we get (3.4).
The reverse of the crucial inequality (3.4) holds for 1 < 𝑝 ≤ 2 because in this

case the function 𝜑 (𝑥) = 𝑥𝑝−1, 𝑥 > 0, is concave. Hence the proof follows in the
same way also in this case.

This completes the proof of the theorem. □

Proof of Proposition 3.3. Let us choose in (2.6) the probability measure 𝑑𝜇 (𝑡) =
1
𝑥𝑑𝑡, 0 ≤ 𝑡 ≤ 𝑥. Then

1

𝑥

∫ 𝑥

0

𝐾 (𝑓 (𝑡)) 𝑑𝑡−𝐾

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
(4.7)

≥ 𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
1

𝑥

∫ 𝑥

0

𝑓 (𝑡)

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑑𝑡

+
1

𝑥

∫ 𝑥

0

𝑓 (𝑡)𝜑

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣) 𝑑𝑡

= 𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
1

𝑥

∫ 𝑥

0

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
𝑑𝑡

+
1

𝑥

∫ 𝑥

0

𝑓 (𝑡)𝜑

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣) 𝑑𝑡.

Multiplying (4.7) by 𝑢(𝑥)
𝑥 and integrating over 0 ≤ 𝑥 ≤ 𝑏, we find that∫ 𝑏

0

∫ 𝑥

0

𝐾 (𝑓 (𝑡)) 𝑑𝑡
𝑢 (𝑥)

𝑥2
𝑑𝑥−

∫ 𝑏

0

𝐾

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)
𝑢 (𝑥)

𝑥
𝑑𝑥 (4.8)

≥
∫ 𝑏

0

∫ 𝑥

0

𝑓 (𝑡)

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥
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+

∫ 𝑏

0

∫ 𝑥

0

𝑓 (𝑡)𝜑

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣) 𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥

=

∫ 𝑏

0

∫ 𝑥

0

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
𝐶𝜑

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥

+

∫ 𝑏

0

∫ 𝑥

0

𝑓 (𝑡)𝜑

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣) 𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥.

Now, by using (3.5) and Fubini’s theorem, we obtain that∫ 𝑏

0

∫ 𝑥

0

𝐾 (𝑓 (𝑡))
𝑢 (𝑥)

𝑥2
𝑑𝑡𝑑𝑥 =

∫ 𝑏

0

𝐾 (𝑓 (𝑡))

𝑡

(
𝑡

∫ 𝑏

𝑡

𝑢 (𝑥)

𝑥
𝑑𝑥

)
𝑑𝑡 (4.9)

=

∫ 𝑏

0

𝐾 (𝑓 (𝑡))
𝑣 (𝑡)

𝑡
𝑑𝑡 =

∫ 𝑏

0

𝐾 (𝑓 (𝑥))
𝑣 (𝑥)

𝑥
𝑑𝑡.

By combining (4.8) and (4.9) we obtain (3.6).

If 𝜑 is subquadratic, then the crucial inequality (2.6) holds in the reverse
direction. Hence, the proof follows in the same way also in this case. □

Proof of Theorem 3.4. First we note that by using Proposition 3.3 with 𝜑 (𝑥) =

𝑥𝑝−1, 𝑝 ≥ 3 (therefore 𝐶𝜑 (𝑥) = 𝜑
′
(𝑥) = (𝑝− 1)𝑥𝑝−2), choosing 𝑢 (𝑥) = 1, we

obtain that∫ 𝑏

0

(
1− 𝑥

𝑏

)
𝑓𝑝 (𝑥)

𝑑𝑥

𝑥
−
∫ 𝑏

0

(
1

𝑥

∫ 𝑥

0

𝑓 (𝑡) 𝑑𝑡

)𝑝
𝑑𝑥

𝑥
(4.10)

≥
∫ 𝑏

0

∫ 𝑏

𝑡

𝑓 (𝑡)

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)
(𝑝− 1)

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)𝑝−2
𝑑𝑥

𝑥2
𝑑𝑡

+

∫ 𝑏

0

∫ 𝑏

𝑡

𝑓 (𝑡)

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣)𝑝−1
𝑑𝑥

𝑥2
𝑑𝑡

=

∫ 𝑏

0

∫ 𝑏

𝑡

(
𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)2
(𝑝− 1)

(
1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

)𝑝−2
𝑑𝑥

𝑥2
𝑑𝑡

+

∫ 𝑏

0

∫ 𝑏

𝑡

𝑓 (𝑡)

(∣∣∣∣𝑓 (𝑡)− 1

𝑥

∫ 𝑥

0

𝑓 (𝜏) 𝑑𝜏

∣∣∣∣)𝑝−1
𝑑𝑥

𝑥2
𝑑𝑡.

By now making the same steps and variable substitutions as in the proof of The-
orem 3.2 but now with (4.10) as the crucial inequality instead of (3.3) we obtain
the proof of Theorem 3.4. We leave out the details. □
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Abstract. We study non-negative self-adjoint extensions of a non densely de-
fined non-negative symmetric operator �̇� with the exit in the rigged Hilbert
space constructed by means of the adjoint operator �̇�∗ (bi-extensions). Cri-
teria of existence and descriptions of such extensions and associated closed
forms are obtained. Moreover, we introduce the concept of an extremal non-
negative bi-extension and provide its complete description. After that we state
and prove the existence and uniqueness results for extremal non-negative bi-
extensions in terms of the Krĕın–von Neumann and Friedrichs extensions of
a given non-negative symmetric operator. Further, the connections between
positive boundary triplets and non-negative self-adjoint bi-extensions are pre-
sented.
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1. Introduction

In order to describe the main ideas and results of the current paper, we first recall
the notion of the rigged Hilbert spaces. A triplet ℋ+ ⊂ ℋ ⊂ ℋ− is a rigged

Hilbert space constructed upon a symmetric operator �̇� in a Hilbert space ℋ if
ℋ+ = Dom(�̇�

∗) with an inner product defined by

(𝑓, 𝑔)+ = (𝑓, 𝑔) + (�̇�
∗𝑓, �̇�∗𝑔), 𝑓, 𝑔 ∈ Dom(𝐴∗). (1.1)

and ℋ− is the space of all anti-linear functional on ℋ+ that are continuous w.r.t.
∥ ⋅ ∥+. An extension theory of symmetric operators in rigged Hilbert spaces was
thoroughly covered in [7]. One of the objects of this theory is a self-adjoint bi-

extension 𝔸 of a symmetric operator �̇� whose definition is given below in Pre-
liminaries section. Throughout this entire article, by a non-negative operator in a
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rigged Hilbert space we understand an operator 𝕋 such that (𝕋𝑓, 𝑓) ≥ 0 for all
𝑓 ∈ Dom(𝕋). In this paper we put our main focus on non-negative bi-extensions of
a non-negative symmetric operator. The theory of extensions of non-negative sym-
metric operators originates in the works of von Neumann, Friedrichs, and Krĕın
(see survey [12]). That is why most of the main results of the paper are given in
terms of the Krĕın–von Neumann and Friedrichs extensions of a given non-negative
symmetric operator that are described in details in Section 3. The existence con-
ditions for non-negative bi-extensions are presented in Section 4 and rely on the
concepts if disjointness and transversality of self-adjoint extensions that were in-
troduced in Preliminaries. Here we also give a descriptions of the non-negative
self-adjoint bi-extensions and associated closed quadratic forms. Section 5 is solely
dedicated to extremal self-adjoint bi-extensions and contains existence and unique-
ness results. The connections between non-negative self-adjoint bi-extensions and
boundary triplets is established in Section 6.

The results of the current paper complement and enhance the classical results
of the theory of extensions of non-negative symmetric operators as well as some
new developments of this theory in rigged Hilbert spaces discussed in [7], [8]. Ap-
plications of these results may be used in solving realization problems for Stieltjes
and inverse Stieltjes functions in infinite-dimensional Hilbert spaces similarly to
finite-dimensional cases treated in [13] and [14].

2. Preliminaries

For a pair of Hilbert spaces ℋ1, ℋ2 we denote by [ℋ1,ℋ2] the set of all bounded

linear operators from ℋ1 to ℋ2. Let �̇� be a closed, densely defined, symmetric
operator in a Hilbert space ℋ with inner product (𝑓, 𝑔), 𝑓, 𝑔 ∈ ℋ.

Consider the rigged Hilbert space (see [15], [31]) ℋ+ ⊂ ℋ ⊂ ℋ−, where ℋ+ =

Dom(�̇�∗) and (𝑓, 𝑔)+ is defined by (1.1). Note that by the second representation
theorem [20] we have

Dom(𝐼 + �̇��̇�∗)1/2 = ℋ+, Ran(𝐼 + �̇��̇�∗)1/2 = ℋ,

and

(𝑓, 𝑔)+ = ((𝐼 + �̇��̇�∗)1/2𝑓, (𝐼 + �̇��̇�∗)1/2𝑔), 𝑓, 𝑔 ∈ ℋ.

The Hilbert space ℋ+ admits the following (+)-orthogonal decomposition

ℋ+ = Dom(�̇�)⊕𝔑−𝑖 ⊕𝔑𝑖,

where 𝔑𝜆 := ker(�̇�
∗ − 𝜆𝐼), Im𝜆 ∕= 0 is the defect subspace of �̇�. Denote

𝔐 = 𝔑−𝑖 ⊕𝔑𝑖

and let

𝑃+

Dom(�̇�)
, 𝑃+

𝔑−𝑖
, 𝑃+

𝔑𝑖
, 𝑃+

𝔐

be (+)-orthogonal projections in ℋ+ onto Dom(�̇�), 𝔑−𝑖, 𝔑𝑖, and𝔐, respectively.
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Recall that ℋ− can be identified with the space of all anti-linear functional
on ℋ+ and continuous w.r.t. ∣∣ ⋅ ∣∣+. Let ℛ be the Riesz–Berezansky operator (see
[7]) which maps ℋ− onto ℋ+ such that (𝑓, 𝑔) = (𝑓,ℛ𝑔)+ and ∥ℛ𝑔∥+ = ∥𝑔∥− for
all 𝑓 ∈ ℋ+, 𝑔 ∈ ℋ−. Clearly

ℛ↾ℋ = (𝐼 + �̇��̇�∗)−1.

Definition 2.1. Let 𝔸 be a linear operator with Dom(𝔸) dense in ℋ+ and with
values in ℋ−. Then the adjoint operator 𝔸∗ is defined as follows:

Dom(𝔸∗) = {𝑢 ∈ ℋ+ : ∃ 𝜓 ∈ ℋ− ∣ (𝑢,𝔸𝑓) = (𝜓, 𝑓) for all 𝑓 ∈ Dom(𝔸)} ,
𝔸∗𝑢 = 𝜓.

It is easy to see ℛ𝔸∗ : ℋ+ ⊇ Dom(𝔸∗)→ ℋ+ is the (+)-adjoint operator to
ℛ𝔸 acting in ℋ+.

Definition 2.2. An operator 𝔸 : ℋ+ ⊃ Dom(𝔸) → ℋ− is called a generalized
self-adjoint if Dom(𝔸) is dense in ℋ+ and 𝔸∗ = 𝔸.

Definition 2.3. A generalized self-adjoint operator ℋ+ ⊃ Dom(𝔸)→ ℋ− is called
self-adjoint bi-extension of a symmetric operator �̇� if 𝔸 ⊃ �̇�.

The formula (see [9], [7])

𝔸 = �̇�∗ +ℛ−1
(
𝒮 − 𝑖

2
𝑃+
𝔑𝑖
+

𝑖

2
𝑃+
𝔑−𝑖

)
𝑃+
𝔐 = �̇�∗ +ℛ−1

(
𝒮 − 1

2
�̇�∗

)
𝑃+
𝔐 (2.1)

establishes a one-to-one correspondence between the set of all self-adjoint bi-
extensions of �̇� and the set of all (+)-self-adjoint operators 𝒮 in 𝔐.

Let 𝔸 be a self-adjoint bi-extension of �̇� and let the operator 𝐴 in ℋ be
defined as follows:

Dom(𝐴) = {𝑓 ∈ ℋ+ : 𝐴𝑓 ∈ ℋ}, 𝐴 = 𝔸↾Dom(𝐴).

The operator 𝐴 is called a quasi-kernel of a self-adjoint bi-extension 𝔸 (see [31]).

We say that a self-adjoint bi-extension 𝔸 of �̇� is twice-self-adjoint or t-self-adjoint

(see [7]) if its quasi-kernel 𝐴 is a self-adjoint operator in ℋ.
For the existence, description, and analog of von Neumann’s formulas for

bounded self-adjoint bi-extensions and (∗)-extensions see [7] and references therein.
In what follows we suppose that �̇� has equal deficiency indices. Recall that two
self-adjoint extensions 𝐴1 and 𝐴0 of �̇� are called disjoint if

Dom(𝐴1) ∩Dom(𝐴0) = Dom(�̇�) (2.2)

and transversal if

Dom(𝐴1) + Dom(𝐴0) = Dom(�̇�
∗).

Note that it immediately follows from von Neumann formulas that two transversal
self-adjoint extensions are automatically disjoint.
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The following statements for two self-adjoint extensions 𝐴1 and 𝐴0 of �̇� are
evident:

𝐴1, 𝐴0 are disjoint ⇐⇒ Ran
(
(𝐴1 − 𝜆𝐼)−1 − (𝐴0 − 𝜆𝐼)−1

)
= 𝔑𝜆,

𝐴1, 𝐴0 are transversal ⇐⇒ Ran
(
(𝐴1 − 𝜆𝐼)−1 − (𝐴0 − 𝜆𝐼)−1

)
= 𝔑𝜆

for at least one 𝜆 ∈ 𝜌(𝐴1) ∩ 𝜌(𝐴0).

Thus, if the deficiency numbers of �̇� are finite (and equal), then two self-

adjoint extensions of �̇� are transversal if and only they are disjoint.

Let �̇� be a closed densely defined symmetric operator and let 𝐴1 be its self-
adjoint extension. It has been shown in [2], [9] that any self-adjoint bi-extension

𝔸 of �̇� such that 𝔸 ⊃ 𝐴1 is generated by a disjoint to 𝐴1 self-adjoint extension 𝐴0

of �̇� via the formulas

Dom(𝔸) = Dom(𝐴1) + Dom(𝐴0),

𝔸𝑓 = �̇�∗𝑓 −ℛ−1�̇�∗𝒫𝐺𝑓, 𝑓 ∈ Dom(𝔸),
where 𝒫𝐺 is a skew projection operator in Dom(𝔸) onto 𝐺 parallel to Dom(𝐴1)
and 𝐺 is defined from the (+)-orthogonal decomposition

Dom(𝐴0) = Dom(�̇�)⊕𝐺. (2.3)

The operator 𝒮 corresponding to 𝔸 in (2.1) is of the form

𝒮𝑓 = 1

2
�̇�∗𝑓, 𝑓 ∈ Dom(𝐴1)⊖Dom(�̇�),

𝒮𝑔 = −1
2
�̇�∗𝑔, 𝑔 ∈ Dom(𝐴0)⊖Dom(�̇�).

(2.4)

In particular,

𝔸𝑔 = (�̇�∗ −ℛ−1�̇�∗𝑃+
𝔐)𝑔, 𝑔 ∈ Dom(𝐴0).

The following formula immediately follows from (2.3)

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0), (2.5)

where 𝑓 = 𝑓1 + 𝑓0, 𝑓𝑙 ∈ Dom(𝐴𝑙), (𝑙 = 0, 1).

Let 𝔸 be a self-adjoint bi-extension of �̇�. We define a dual extension 𝔸′ on
Dom(𝔸) by the formula

(𝔸′𝑓, 𝑔) = (�̇�∗𝑓, 𝑔) + (𝑓, �̇�∗𝑔)− (𝔸𝑓, 𝑔), 𝑓, 𝑔 ∈ Dom(𝔸). (2.6)

We note that �̇�∗ ∈ [ℋ+,ℋ] ⊂ [ℋ+,ℋ−] and the generalized adjoint of �̇�∗ takes
the form [7] (

�̇�∗
)∗
= �̇�∗ −ℛ−1�̇�∗𝑃+

𝔐. (2.7)

It follows from (2.1) that if

𝔸 = �̇�∗ +ℛ−1
(
𝒮 − 𝑖

2
𝑃+
𝔑𝑖
+

𝑖

2
𝑃+
𝔑−𝑖

)
𝑃+
𝔐
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is a self-adjoint bi-extension of �̇�, then 𝔸′ is of the form

𝔸′ = �̇�∗ +ℛ−1
(
−𝒮 − 𝑖

2
𝑃+
𝔑𝑖
+

𝑖

2
𝑃+
𝔑−𝑖

)
𝑃+
𝔐.

So, if 𝔸 is a self-adjoint bi-extension of �̇�, then 𝔸′ is a self-adjoin bi-extension of
�̇� as well. It was also shown in [2] that if 𝔸 is a t-self-adjoint of �̇�, then 𝔸′ is also
a t-self-adjoint bi-extension of �̇�. Moreover, if 𝐴 is a quasi-kernel of 𝔸 and 𝔸 is
generated by a disjoint to 𝐴 self-adjoint extension 𝐴, then the quasi-kernel of 𝔸′

coincides with 𝐴 and 𝔸′ is generated by 𝐴. Clearly, (𝔸′)′ = 𝔸.
Notice that from (2.6) and the inequality

2∣(�̇�∗𝑓, 𝑓)∣ ≤ 2∣∣𝑓 ∣∣ ∣∣�̇�∗𝑓 ∣∣ ≤ ∣∣𝑓 ∣∣2 + ∣∣�̇�∗𝑓 ∣∣2 = ∣∣𝑓 ∣∣2+,
we get

−∣∣𝑓 ∣∣2+ ≤ (𝔸𝑓, 𝑓) + (𝔸′𝑓, 𝑓) ≤ ∣∣𝑓 ∣∣2+.

3. The Friedrichs and Krĕın–von Neumann extensions

Let 𝜏 [⋅, ⋅] be a sesquilinear form in a Hilbert space ℋ defined on a linear manifold

Dom(𝜏). The form 𝜏 is called symmetric if 𝜏 [𝑢, 𝑣] = 𝜏 [𝑣, 𝑢] for all 𝑢, 𝑣 ∈ Dom(𝜏)
and non-negative if 𝜏 [𝑢] := 𝜏 [𝑢, 𝑢] ≥ 0 for all 𝑢 ∈ Dom(𝜏).

A sequence {𝑢𝑛} is called 𝜏 -converging to the vector 𝑢 ∈ ℋ [20] if

lim
𝑛→∞𝑢𝑛 = 𝑢 and lim

𝑛,𝑚→∞ 𝜏 [𝑢𝑛 − 𝑢𝑚] = 0.

The form 𝜏 is called closed if for every sequence {𝑢𝑛} 𝜏 - converging to a vector 𝑢
it follows that 𝑢 ∈ Dom(𝜏) and lim

𝑛→∞ 𝜏 [𝑢 − 𝑢𝑛] = 0. The form 𝜏 is closable [20],

i.e., there exists a minimal closed extension (the closure) of 𝜏 . We recall that a

symmetric operator �̇� is called non-negative if

(�̇�𝑓, 𝑓) ≥ 0, ∀𝑓 ∈ Dom(�̇�).
If 𝜏 is a closed, densely defined non-negative form, then according to First Repre-
sentation Theorem [23], [20] there exists a unique self-adjoint non-negative oper-
ator 𝑇 in ℌ, associated with 𝜏 , i.e.,

(𝑇𝑢, 𝑣) = 𝜏 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝑇 ) and for all 𝑣 ∈ Dom(𝜏).
According to the Second Representation Theorem [23], [20] the identities hold:

Dom(𝜏) = Dom(𝑇 1/2), 𝜏 [𝑢, 𝑣] = (𝑇 1/2𝑢, 𝑇 1/2𝑣).

Let �̇� be a non-negative symmetric operator in a Hilbert spaceℋ. It is known
[20] that the non-negative sesquilinear form 𝜏�̇� [𝑓, 𝑔] = (�̇�𝑓, 𝑔),Dom(𝜏) = Dom(�̇�),

is closable. Following the M. Krĕın notations we denote by �̇�[⋅, ⋅] the closure of 𝜏�̇�
and by 𝒟[�̇�] its domain. By definition �̇�[𝑢] = �̇�[𝑢, 𝑢] for all 𝑢 ∈ 𝒟[�̇�]. Because
�̇�[𝑢, 𝑣] is closed, it possesses the property: if

lim
𝑛→∞𝑢𝑛 = 𝑢 and lim

𝑛,𝑚→∞ �̇�[𝑢𝑛 − 𝑢𝑚] = 0,
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then lim
𝑛→∞ �̇�[𝑢− 𝑢𝑛] = 0. For a densely defined �̇�, the Friedrichs extension 𝐵𝐹 of

�̇� is defined as a non-negative self-adjoint operator associated with the form �̇�[⋅, ⋅]
by the First Representation Theorem. If �̇� is densely defined then, clearly,

Dom(𝐵𝐹 ) = 𝒟[�̇�] ∩Dom(�̇�∗), 𝐵𝐹 = �̇�∗↾Dom(𝐵𝐹 ).

The Friedrichs extension 𝐵𝐹 is a unique non-negative self-adjoint extension having
the domain in 𝒟[�̇�]. Notice that by the Second Representation Theorem [20] one
has

𝒟[�̇�] = 𝒟[𝐵𝐹 ] = Dom(𝐵
1/2
𝐹 ), �̇�[𝑢, 𝑣] = (𝐵

1/2
𝐹 𝑢,𝐵

1/2
𝐹 𝑣), 𝑢, 𝑣 ∈ 𝒟[�̇�].

If �̇� is non-densely defined, then its Friedrichs extension 𝐵𝐹 is a non-negative
linear relation of the form (see [28])

𝐵𝐹 =
{〈

𝑥, (�̇�0)𝐹𝑥
〉
, 𝑥 ∈ Dom((�̇�0)𝐹 )

}
⊕ ⟨0,𝔅⟩ ,

where (𝐵0)𝐹 is the Friedrichs extension of the operator �̇�0 := 𝑃Dom(�̇�)�̇� in the

subspace Dom(�̇�) and 𝔅 = ℋ⊖Dom(�̇�).
The Krĕın–von Neumann extension is defined as follows [1], [16]:

�̇�𝐾 = ((�̇�−1)𝐹 )−1,

where �̇�−1 is the linear relation inverse to the graph of �̇�.

Theorem 3.1 ([1]). The following relations describing 𝒟[𝐵𝐾 ] and 𝐵𝐾 [𝑢] hold:

𝒟[𝐵𝐾 ] =

{
𝑢 ∈ ℋ : sup

𝑓∈Dom(�̇�)

∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

<∞
}

,

𝐵𝐾 [𝑢] = sup
𝑓∈Dom(�̇�)

∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

, 𝑢 ∈ 𝒟[𝐵𝐾 ].

(3.1)

We note the equalities for an arbitrary non-negative self-adjoint operator 𝐵
in a Hilbert space ℋ:

Ran(𝐵1/2) =
{
𝑔 ∈ ℋ : sup

𝑓∈Dom(𝐵)

∣(𝑓, 𝑔)∣2
(𝐵𝑓, 𝑓)

<∞
}
,

∥𝐵[−1/2]𝑔∥2 = sup
𝑓∈Dom(𝐵)

∣(𝑓, 𝑔)∣2
(𝐵𝑓, 𝑓)

, 𝑔 ∈ Ran(𝐵1/2),

where 𝐵[−1] is the Moore–Penrose inverse. The Krĕın–von Neumann extension
of a non-densely defined non-negative operator �̇� is an operator (not just a lin-
ear relation) if and only if the domain 𝒟[𝐵𝐾 ] is dense in ℌ. According to [1] a

non-negative operator �̇� is called positively closable if from lim
𝑛→∞ �̇�𝜑𝑛 = 𝑔 and

lim
𝑛→∞(�̇�𝜑𝑛, 𝜑𝑛) = 0 follows 𝑔 = 0 ({𝜑𝑛} ⊂ Dom(�̇�)). Notice that a densely de-

fined �̇� is positively closable. A theorem of Ando and Nishio [1] states that �̇�
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admits non-negative self-adjoint extensions, which are operators, if and only if �̇�
is positively closable.

A non-negative self-adjoint extension 𝐵 of �̇� is called extremal [3], [5], [6] if
the relation

inf
{(

𝐵(𝑢 − 𝜑), 𝑢− 𝜑
)
: 𝜑 ∈ Dom(�̇�)

}
= 0

holds for every 𝑢 ∈ Dom(𝐵). A characterization of the Krĕın–von Neumann ex-
tension 𝐵𝐾 is obtained in [5] and [6]: the Krĕın–von Neumann extension 𝐵𝐾 is the

unique extremal non-negative self-adjoint extension of �̇� having maximal domain
of its closed associated sesquilinear form.

Theorem 3.2. Let 𝐵 be a non-negative self-adjoint extension of �̇�. Then

𝐵𝐾 ≤ 𝐵 ≤ 𝐵𝐹 (3.2)

in the sense of quadratic forms. More precisely

𝒟[�̇�] ⊆ 𝒟[𝐵] ⊆ 𝒟[𝐵𝐾 ],

𝐵[𝑢] ≥ 𝐵𝐾 [𝑢] for all 𝑢 ∈ 𝒟[𝐵],
𝐵[𝑣] = �̇�[𝑣] for all 𝑣 ∈ 𝒟[�̇�].

Besides,

𝒟[𝐵] = 𝒟[�̇�]+̇(𝒟[𝐵] ∩ 𝒩𝑧), (3.3)

where 𝒩𝑧 is the defect subspace of �̇�, 𝑧 ∈ ℂ ∖ [0,+∞).
For a densely defined non-negative �̇� inequalities (3.2) in the equivalent form

(𝐵𝐹 + 𝐼)−1 ≤ (𝐵 + 𝐼)−1 ≤ (𝐵𝐾 + 𝐼)−1

and equality (3.3) for 𝑧 < 0 were established by M. Krĕın [23]. For a sectorial

operator �̇� with vertex at zero and for sectorial linear relations all statements of
Theorem 3.2 can be found in [5] and [6].

The next theorem gives a descriptions of all closed forms associated with
non-negative self-adjoint extensions of �̇�.

Theorem 3.3 ([5]). If 𝐵 is a non-negative self-adjoint extension of a non-negative

symmetric operator �̇�, then the form

(𝐵𝑢, 𝑣)−𝐵𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ Dom(𝐵)
is non-negative and closable in the Hilbert space 𝒟[𝐵𝐾 ]. Moreover, the formulas

𝒟[𝐵] = 𝒟[𝜏 ],
𝐵[𝑢, 𝑣] = 𝐵𝐾 [𝑢, 𝑣] + 𝜏 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐵]

give a one-to-one correspondence between all closed forms 𝑆[⋅, ⋅] associated with
non-negative self-adjoint extensions 𝐵 of �̇� and all non-negative forms 𝜏 [⋅, ⋅] closed
in the Hilbert space 𝒟[𝐵𝐾 ] and such that 𝜏 [𝜑] = 0 for all 𝜑 ∈ 𝒟[�̇�].



18 Yu. Arlinskĭı and S. Belyi

In addition, the closed forms associated with extremal extensions are closed
restrictions of the form 𝐵𝐾 [⋅, ⋅] on the linear manifolds ℳ such that

𝒟[�̇�] ⊆ℳ ⊆ 𝒟[𝐵𝐾 ].

The next theorem can be found in [29], [30], [6], [19].

Theorem 3.4. Let �̇� be a bounded non-densely defined non-negative symmetric
operator in a Hilbert space ℋ, Dom(�̇�) = ℋ0. Let �̇�

∗ ∈ [ℋ,ℋ0] be the adjoint of

�̇�. Put �̇�0 = 𝑃ℋ0�̇�, 𝒩 = ℋ ⊖ ℋ0, where 𝑃ℋ0 is an orthogonal projection in ℋ
onto ℋ0. Then the following statements are equivalent

(i) �̇� admits bounded non-negative self-adjoint extensions in ℋ;
(ii) sup

𝑓∈ℋ0

∣∣�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞;

(iii) �̇�∗𝒩 ⊆ Ran(�̇�1/2
0 ).

Let �̇� be a non-negative closed symmetric operator. Consider the symmetric
contractions

�̇� = (𝐼 − �̇�)(𝐼 + �̇�)−1,

defined on Dom(�̇�) = (𝐼 + �̇�)Dom(�̇�). Notice that the orthogonal complement

𝔑 = ℋ⊖Dom(�̇�) coincides with the defect subspace 𝔑−1 of the operator �̇�. There
is a one-to-one correspondence given by the Cayley transform

𝐵 = (𝐼 − 𝑆)(𝐼 + 𝑆)−1, 𝑆 = (𝐼 −𝐵)(𝐼 +𝐵)−1,

between all non-negative self-adjoint extensions 𝐵 (linear relations in general) of

the operator �̇� and all self-adjoint contractive (𝑠𝑐) extensions 𝑆 of �̇�. As was

established by M. Krĕın in [23], [24] the set of all 𝑠𝑐-extensions of �̇� forms an
operator interval [𝑆𝜇, 𝑆𝑀 ]. Following M. Krĕın’s notations we call the endpoints
𝑆𝜇 and 𝑆𝑀 by the rigid and the soft extensions, respectively. They possess the
properties

inf
𝜑∈Dom(�̇�)

((𝐼 + 𝑆𝜇)(𝑓 − 𝜑), (𝑓 − 𝜑) = 0,

inf
𝜑∈Dom(�̇�)

((𝐼 − 𝑆𝑀 )(𝑓 − 𝜑), (𝑓 − 𝜑) = 0,
(3.4)

for all 𝑓 ∈ ℋ. The operator interval [𝑆𝜇, 𝑆𝑀 ] can be parameterized as follows

𝑆 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋(𝑆𝑀 − 𝑆𝜇)
1/2, (3.5)

where 𝑋 is a self-adjoint contraction in the subspace Ran(𝑆𝑀 − 𝑆𝜇)(⊆ 𝔑).
Notice that for each 𝑆 ∈ [𝑆𝜇, 𝑆𝑀 ] the equalities (3.4) imply

inf
𝜑∈Dom(�̇�)

((𝐼 + 𝑆)(𝑓 − 𝜑), (𝑓 − 𝜑) = ((𝑆 − 𝑆𝜇)𝑓, 𝑓),

inf
𝜑∈Dom(�̇�)

((𝐼 − 𝑆)(𝑓 − 𝜑), (𝑓 − 𝜑) = ((𝑆𝑀 − 𝑆)𝑓, 𝑓), 𝑓 ∈ ℋ.
(3.6)
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Using the relation (see [23])

inf
𝜑∈Dom(�̇�)

((𝐼 + 𝑆)(𝑓 − 𝜑), (𝑓 − 𝜑) = ∣∣𝑃Ω(𝐼 + 𝑆)1/2𝑓 ∣∣2,

where
Ω = {𝑔 ∈ ℋ : (𝐼 + 𝑆)1/2𝑔 ∈ 𝔑},

from (3.6) we get the equalities

(𝐼 + 𝑆)1/2Ω = Ran((𝑆 − 𝑆𝜇)
1/2),

∣∣(𝐼 + 𝑆)[−1/2]𝑓 ∣∣ = ∣∣(𝑆 − 𝑆𝜇)
[−1/2]𝑓 ∣∣2, 𝑓 ∈ Ran((𝑆 − 𝑆𝜇)

1/2).
(3.7)

Let 𝐿 be a bounded non-negative self-adjoint operator in the Hilbert space ℋ and
let ℳ be a subspace in ℋ. The Krĕın shorted operator 𝐿ℳ [23], [1] is given by
the following definition

𝐿ℳ = max{𝑋 ≤ 𝐿 ∣ Ran(𝑋) ⊆ℳ}.
It is shown in [23], that

𝐿ℳ = 𝐿1/2𝑄𝐿1/2, (3.8)

where𝑄 is an orthoprojection operator onto the subspace Ran(𝑄) = (𝐿1/2)−1(ℳ).
Moreover, [23]

(𝐿ℳ𝑓, 𝑓) = inf
𝜑∈ℋ⊖ℳ

(𝐿(𝑓 − 𝜑), 𝑓 − 𝜑), 𝑓 ∈ ℋ. (3.9)

Thus, from (3.6) we have

(𝐼 + 𝑆)𝔑 = 𝑆 − 𝑆𝜇, (𝐼 − 𝑆)𝔑 = 𝑆𝑀 − 𝑆.

The next result describes the sesquilinear form 𝐵[𝑢, 𝑣] by the means of the fraction-
al-linear transformation 𝑆 = (𝐼 −𝐵)(𝐼 +𝐵)−1. The following proposition can be
found in [7].

Proposition 3.5.
(1) Let 𝐵 be a non-negative self-adjoint operator and let 𝑆 = (𝐼 − 𝐵)(𝐼 + 𝐵)−1

be its Cayley transform. Then

𝒟[𝐵] = Ran((𝐼 + 𝑆)1/2),

𝐵[𝑢, 𝑣] = −(𝑢, 𝑣) + 2
(
(𝐼 + 𝑆)−1/2𝑢, (𝐼 + 𝑆)−1/2𝑣

)
, 𝑢, 𝑣 ∈ 𝒟[𝐵].

(2) Let �̇� be a closed densely defined non-negative symmetric operator and let

𝐵 be its non-negative self-adjoint extension. If �̇� = (𝐼 − �̇�)(𝐼 + �̇�)−1, 𝑆 =
(𝐼 −𝐵)(𝐼 +𝐵)−1, then

𝒟[𝐵] = Ran(𝐼 + 𝑆𝜇)
1/2 ∔ Ran(𝑆 − 𝑆𝜇)

1/2. (3.10)

We note that Ran(𝐵1/2) = Ran((𝐼 − 𝑆)1/2). Now let 𝑆𝜇 and 𝑆𝑀 be the

rigid and the soft extensions of �̇�. Then the Friedrichs and Krĕın–von Neumann
extensions of �̇� are given by

𝐵𝐹 = (𝐼 − 𝑆𝜇)(𝐼 + 𝑆𝜇)
−1, 𝐵𝐾 = (𝐼 − 𝑆𝑀 )(𝐼 + 𝑆𝑀 )

−1.
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4. Non-negative self-adjoint bi-extensions

4.1. Disjointness and tranversality of non-negative self-adjoint extensions

Proposition 4.1. Let �̇� be a non-negative closed densely defined operator. Then the
following statements hold true for a non-negative self-adjoint extensions 𝐴 of �̇�:

𝐴 is disjoint with 𝐴𝐹 ⇐⇒ 𝒟[𝐴] ∩ℋ+ is dense in ℋ+,

𝐴 is transversal with 𝐴𝐹 ⇐⇒ 𝒟[𝐴] ⊃ ℋ+.

Proof. Using equality (3.3) in the form

𝒟[𝐴] = 𝒟[�̇�]+̇ (𝔑−1 ∩ 𝒟[𝐴])
and the relation Dom(𝐴𝐹 ) = 𝒟[�̇�] ∩Dom(�̇�∗), we get that

𝒟[𝐴] ∩ℋ+ = Dom(𝐴𝐹 )+̇ (𝔑−1 ∩ 𝒟[𝐴]) , (4.1)

where 𝔑𝜆 is the defect subspace of �̇�. Taking into account the equality

ℋ+ = Dom(𝐴𝐹 )+̇𝔑−1,

we get that 𝒟[𝐴] ∩ ℋ+ is dense in ℋ+ if and only if 𝔑−1 ∩ 𝒟[𝐴] is dense in 𝔑−1
and

𝒟[𝐴] ∩ℋ+ = ℋ+ ⇐⇒ 𝔑−1 ⊂ 𝒟[𝐴].
Put

�̇� = (𝐼 − �̇�)(𝐼 + �̇�), 𝑆𝜇 = (𝐼 −𝐴𝐹 )(𝐼 +𝐴𝐹 ), 𝑆 = (𝐼 −𝐴)(𝐼 +𝐴).

Then

𝑆 − 𝑆𝜇 = (𝐴+ 𝐼)−1 − (𝐴𝐹 + 𝐼)−1. (4.2)

Now the equality (see (3.10))

𝒟[𝐴] = 𝒟[�̇�]+̇Ran(𝑆 − 𝑆𝜇)
1/2 (4.3)

implies the validity of the statements in the proposition. □

From (4.2) and (4.3) we get the following equalities

𝒟[𝐴] ∩ℋ+ = Dom(𝐴𝐹 )+̇Ran(𝑆 − 𝑆𝜇)
1/2 = Dom(𝐴)+̇Ran(𝑆 − 𝑆𝜇)

1/2.

Notice that the equivalence

𝐴𝐹 and 𝐴𝐾 are transversal ⇐⇒ Dom(�̇�∗) ⊆ 𝒟[𝐴𝐾 ]

has been shown in [25] (see also [11]). The next statement provides one more
criteria for 𝐴𝐹 and 𝐴𝐾 to be transversal.

Proposition 4.2.

𝐴𝐹 and 𝐴𝐾 are transversal ⇐⇒ sup
𝑓∈Dom(�̇�)

∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞. (4.4)
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Proof. Let 𝐴 be a non-negative self-adjoint extension of �̇�. Since 𝐴1/2 is closed in
ℋ, the closed graph theorem yields that

ℋ+ ⊂ 𝒟[𝐴] = Dom(𝐴1/2) ⇐⇒ 𝐴1/2↾ℋ+ ∈ [ℋ+,ℋ],
i.e., there exists a number 𝑐 > 0 such that

∣∣𝐴1/2𝑢∣∣2 = 𝐴[𝑢] ≤ 𝑐∣∣𝑢∣∣2+ for all 𝑢 ∈ ℋ+.

Take 𝐴 = 𝐴𝐾 . Then for 𝑢 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+

∣∣𝐴1/2
𝐾 𝑢∣∣2 = sup

𝑓∈Dom(�̇�)

∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

= sup
𝑓∈Dom(�̇�)

∣(ℛ�̇�𝑓, 𝑢)+∣2
(�̇�𝑓, 𝑓)

.

Hence

∣(ℛ�̇�𝑓, 𝑢)+∣2 ≤ ∣∣𝐴1/2
𝐾 𝑢∣∣2 (�̇�𝑓, 𝑓).

Then

ℋ+ ⊂ 𝒟[𝐴𝐾 ] ⇐⇒ ∣(ℛ�̇�𝑓, 𝑢)+∣2 ≤ 𝑐∣∣𝑢∣∣2+ (�̇�𝑓, 𝑓), ∀𝑢 ∈ ℋ+, ∀𝑓 ∈ Dom(�̇�)

⇐⇒ ∣∣ℛ�̇�𝑓 ∣∣2+ = sup
𝑢∈ℋ+

∣(ℛ�̇�𝑓, 𝑢)+∣2
∣∣𝑢∣∣2+

≤ 𝑐 (�̇�𝑓, 𝑓), ∀𝑓 ∈ Dom(�̇�)

⇐⇒ sup
𝑓∈Dom(�̇�)

∣∣ℛ�̇�𝑓 ∣∣2+
(�̇�𝑓, 𝑓)

<∞.

Since

∣∣ℛ𝑔∣∣2+ = ∣∣(𝐼 + �̇��̇�∗)−1/2𝑔∣∣2, 𝑔 ∈ ℋ,

we arrive at (4.4). □

Notice that due to Theorem 3.4 condition

sup
𝑓∈Dom(�̇�)

∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞

means that the operator ℛ�̇� admits (+)-bounded (+)-self-adjoint non-negative
extensions. It is not difficult to show that

(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 = �̇�(𝐼 + �̇�∗�̇�)−1/2𝑓, 𝑓 ∈ Dom(�̇�).
This relation implies that if �̇� is positively definite, then 𝐴𝐹 and 𝐴𝐾 are transver-
sal. Indeed,

∣∣(𝐼+ �̇��̇�∗)−1/2�̇�𝑓 ∣∣2 = ∣∣�̇�(𝐼+ �̇�∗�̇�)−1/2𝑓 ∣∣2 ≤ 𝐶∣∣𝑓 ∣∣2 ≤ 𝑚(�̇�𝑓, 𝑓), 𝑓 ∈ Dom(�̇�).
Hence,

sup
𝑓∈Dom(�̇�)

∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝑓 ∣∣2
(�̇�𝑓, 𝑓)

<∞.
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4.2. Non-negative self-adjoint bi-extensions

Existence. Let ℌ+ ⊂ ℌ ⊂ ℌ− be a rigged Hilbert space. If 𝒯 is a non-negative,
densely defined in ℌ+ and closed sesquilinear form in ℌ+, then there exists a
non-negative generalized self-adjoint operator 𝕋 acting from Dom(𝕋) into ℋ− as-
sociated with the form 𝒯 in the following sense

(𝕋𝑢, 𝑣) = 𝒯 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝕋) and all 𝑣 ∈ Dom(𝒯 ). (4.5)

Actually, due to the First Representation Theorem, there is a (+)-non-negative
self-adjoint operator 𝔗 associated with the form 𝒯 in ℌ+, i.e.,

(𝔗𝑢, 𝑣)+ = 𝒯 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝔗) and all 𝑣 ∈ Dom(𝒯 ).
If 𝒥 ∈ [ℌ−,ℌ+] is the Riesz–Berezansky operator, then 𝕋 = 𝒥 −1𝔗 satisfies (4.5).
If a non-negative form is defined on ℌ+ and is bounded in ℌ+, then, clearly, the
associated non-negative self-adjoint operator belongs to [ℌ+,ℌ−].

If 𝔗 : ℌ+ ⊇ Dom(𝔗)→ ℌ− is a non-negative generalized self-adjoint operator
in the rigged Hilbert space ℌ+ ⊂ ℌ ⊂ ℌ−, i.e., (𝔗𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ Dom(𝔗)
and 𝔗 = 𝔗∗, then the sesquilinear form

𝒯𝔗[𝑓, 𝑔] = (𝔗𝑓, 𝑔), Dom(𝒯𝔗) = Dom(𝔗)
is closable in ℌ+. We will denote by 𝔗[⋅, ⋅] its closure and by 𝒟[𝔗] its domain.

Now we consider a closed non-negative symmetric densely defined operator
�̇�. Letℋ+ ⊂ ℋ ⊂ ℋ− be the rigged Hilbert space, whereℋ+ = Dom(�̇�

∗) and (+)-
inner product is defined by (1.1). We are going to study non-negative self-adjoint

bi-extensions of the operator �̇�. Clearly, the operator

�̇� = ℛ�̇�

is non-densely defined in ℋ+, (+)-bounded and (+)-non-negative. Each non-nega-

tive (+)-self-adjoint extension 𝐵 of �̇� in ℋ+, which is an operator, determines a

non-negative self-adjoint bi-extension of �̇� by the formula 𝔸 = ℛ−1𝐵. Since
∣∣�̇�𝜑∣∣+ = ∣∣ℛ�̇�𝜑∣∣+ = ∣∣(𝐼 + �̇��̇�∗)−1�̇�𝜑∣∣+ = ∣∣(𝐼 + �̇��̇�∗)−1/2�̇�𝜑∣∣, 𝜑 ∈ �̇�,

and (�̇�𝜑, 𝜑)+ = (�̇�𝜑, 𝜑), we can use the Ando and Nishio theorem (see [1]) about
positively closable symmetric operator and get the following statement.

Proposition 4.3. A non-negative densely defined closed symmetric operator �̇� ad-
mits non-negative self-adjoint bi-extension if and only if from

lim
𝑛→∞(𝐼 + �̇��̇�∗)−1/2�̇�𝜑𝑛 = 𝑔 𝑎𝑛𝑑 lim

𝑛→∞(�̇�𝜑𝑛, 𝜑𝑛) = 0

follows 𝑔 = 0, where {𝜑𝑛} ⊂ Dom(�̇�).
Theorem 4.4. Let �̇� be a non-negative closed densely defined operator. The follow-
ing conditions are equivalent:

(i) �̇� admits a non-negative self-adjoint bi-extension,

(ii) �̇� admits t-self-adjoint bi-extension with quasi-kernel 𝐴𝐾 ,

(iii) the Friedrichs and Krĕın–von Neumann extensions of �̇� are disjoint.
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Proof. Clearly (ii)⇒(i). Let us show that (iii)⇒(ii). Suppose that the Friedrichs
extension 𝐴𝐹 and the Krĕın–von Neumann extension 𝐴𝐾 of the operator �̇� are
disjoint. Then Dom(𝐴𝐹 ) + Dom(𝐴𝐾) is (+)-dense in ℋ+ or coincides with ℋ+

(when 𝐴𝐹 and 𝐴𝐾 are transversal). Then it follows that 𝒟[𝐴𝐾 ]∩ℋ+ is (+)-dense
in ℋ+ or coincides with ℋ+. Clearly, the sesquilinear form

𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+,

is closed in ℋ+. Because it is at least (+)-densely defined in ℋ+, there is an
associated self-adjoint non-negative operator 𝔸𝐾 : ℋ+ ⊇ Dom(𝔸𝐾)→ ℋ−, i.e.,

(𝔸𝐾𝑢, 𝑣) = 𝐴𝐾 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝔸𝐾) and for all 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+.

Because (𝐴𝐾𝑢, 𝑣) = 𝐴𝐾 [𝑢, 𝑣] for all 𝑢 ∈ Dom(𝐴𝐾) and all 𝑣 ∈ 𝒟[𝐴𝐾 ], we get that
𝔸𝐾 ⊃ 𝐴𝐾 , i.e., the quasi-kernel of 𝔸𝐾 is 𝐴𝐾 and therefore, 𝐴𝐾 is t-self-adjoint
bi-extension of �̇�.

Let us prove (i)⇒(iii). Suppose that �̇� admits non-negative self-adjoint bi-

extensions. Then the Krĕın–von Neumann extension 𝐵𝐾 of the operator �̇� = ℛ�̇�
in ℋ+ is an operator. Due to the formula (3.1) the domain 𝒟[𝐵𝐾 ] is at least dense
in ℋ+. On the other hand since

∣(�̇�𝑓, 𝑢)+∣2
(�̇�𝑓, 𝑓)+

=
∣(�̇�𝑓, 𝑢)∣2
(�̇�𝑓, 𝑓)

,

from (3.1) we get

𝒟[𝐵𝐾 ] = 𝒟[𝐴𝐾 ] ∩ℋ+

and 𝐵𝐾 [𝑢] = 𝐴𝐾 [𝑢] for all 𝑢 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+. It follows from (4.1) that

𝒟[𝐴𝐾 ] ∩ℋ+ = Dom(𝐴𝐹 )+̇(𝔑−1 ∩ 𝒟[𝐴𝐾 ]).

Therefore, the density of 𝒟[𝐴𝐾 ]∩ℋ+ implies the density of 𝔑−1 ∩𝒟[𝐴𝐾 ] in 𝔑−1.
Equality (3.10) yields that

Ran
(
(𝐴𝐾 + 𝐼)−1 − (𝐴𝐹 + 𝐼)−1

)
= 𝔑−1,

i.e., 𝐴𝐹 and 𝐴𝐾 are at least disjoint. □

Theorem 4.5.
1) Let 𝐴 be a non-negative self-adjoint extension of �̇�. Then there exists a t-self-

adjoint bi-extension 𝔸 of �̇� with quasi-kernel 𝐴 if and only if 𝐴 is disjoint
with 𝐴𝐹 .

2) If a non-negative self-adjoint extension 𝐴 of �̇� is disjoint with 𝐴𝐹 , then t-self-
adjoint bi-extension 𝔸 with quasi-kernel 𝐴 and generated by 𝐴𝐹 is associated
with the sesquilinear form 𝐴[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴] ∩ℋ+.

Proof. The form 𝐴[𝑢, 𝑣] defined on 𝒟[𝐴] ∩ ℋ+ is closed in ℋ+. By Proposition
4.1 𝐴 is disjoint with 𝐴𝐹 if and only if the linear manifold 𝒟[𝐴] ∩ ℋ+ is dense
in ℋ+ in which case the non-negative sesquilinear form 𝐴[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴] ∩ ℋ+

is closed in ℋ+. The latter implies the existence of a non-negative self-adjoint
operator 𝔸 : ℋ+ ⊇ Dom(𝔸) → ℋ− associated with 𝐴[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴] ∩ ℋ+.
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Since (𝐴𝑢, 𝑣) = 𝐴[𝑢, 𝑣] for all 𝑢 ∈ Dom(𝐴) and all 𝑣 ∈ 𝒟[𝐴], we get that 𝔸 ⊃ 𝐴,

i.e., the quasi-kernel of 𝔸 is 𝐴 and therefore, 𝐴 is t-self-adjoint bi-extension of �̇�.
Further we use the following equality (see [6])

𝐴[𝜑, 𝑢] = (𝜑, �̇�∗𝑢), 𝜑 ∈ 𝒟[�̇�], 𝑢 ∈ 𝒟[𝐴] ∩ℋ+.

Using (2.7) we get for all 𝜑 ∈ Dom(𝐴𝐹 ) and all 𝑢 ∈ 𝒟[𝐴] ∩ℋ+:

𝐴[𝜑, 𝑢] = (𝜑, �̇�∗𝑢) = ((�̇�∗)∗𝜑, 𝑢) = ((�̇�∗ −ℛ−1�̇�∗𝑃+
𝔐)𝜑, 𝑢).

Hence, Dom(𝐴𝐹 ) ⊂ Dom(𝔸) and
𝔸𝜑 = (�̇�∗ −ℛ−1�̇�∗𝑃+

𝔐)𝜑, 𝜑 ∈ Dom(𝐴𝐹 ).

Since Dom(𝐴) ⊂ Dom(𝔸) and 𝔸 is a t-self-adjoint bi-extension of �̇� with quasi-
kernel 𝐴, we get

Dom(𝔸) = Dom(𝐴) + Dom(𝐴𝐹 ).

Taking into account (2.3), we conclude that 𝔸 is generated by 𝐴𝐹 . □

The following statement is an immediate consequence of Theorems 4.4 and 4.5.

Corollary 4.6 ([7]). The operator �̇� admits non-negative self-adjoint bi-extensions
in [ℋ+,ℋ−] if and only if 𝐴𝐾 and 𝐴𝐹 are transversal.

It was announced in [26] that the transversality condition in Corollary 4.6 is
necessary (and sufficient for the case of finite deficiency indices) for the existence
of non-negative self-adjoint bi-extensions in [ℋ+,ℋ−].

Denote by 𝒫(�̇�) the set of all non-negative self-adjoint bi-extensions of �̇�.

As has been proved in Theorem 4.4 the set 𝒫(�̇�) is nonempty if and only if 𝐴𝐹

and 𝐴𝐾 are disjoint in which case the set 𝒫(�̇�) contains the operator 𝔸𝐾 with the
following properties:

1. the operator 𝔸𝐾 is associated with the closed form 𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴𝐾 ]∩
ℋ+, i.e.,

𝒟[𝔸𝐾 ] = 𝒟[𝐴𝐾 ] ∩ℋ+,

𝔸𝐾 [𝑢, 𝑣] = 𝐴𝐾 [𝑢, 𝑣], 𝑢 ∈ Dom(𝔸𝐾), 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+,

2. the operator 𝔸𝐾 is a t-self-adjoint bi-extension of �̇� with quasi-kernel 𝐴𝐾

and generated by 𝐴𝐹 ,
3. 𝒫(�̇�) ∋ 𝔸⇒ 𝒟[𝔸] ⊆ 𝒟[𝔸𝐾 ], 𝔸[𝑢] ≥ 𝔸𝐾 [𝑢] = 𝐴𝐾 [𝑢], 𝑢 ∈ 𝒟[𝔸].

Thus, 𝔸𝐾 is the minimal element of 𝒫(�̇�) and is an analog of Krĕın–von Neumann
extension. The minimality property is a consequence of Theorem 3.2. Notice that
if 𝐴𝐾 and 𝐴𝐹 are transversal and the deficiency number of �̇� is infinite, then the
set 𝒫(�̇�) contains +→ − bounded and unbounded operators.

Let 𝐴1 be a non-negative self-adjoint extension of �̇�. Let 𝒫(𝐴1) be the set of

all non-negative t-self-adjoint bi-extension of �̇� with quasi-kernel 𝐴1. According
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to Theorem 4.5 the set 𝒫(𝐴1) ∕= ∅ if and only if 𝐴1 is disjoint with 𝐴𝐹 . Using
Theorem 3.1, and the equalities

𝒟[𝐴1] =

{
𝑓 ∈ ℋ : sup

ℎ∈Dom(𝐴1)

∣(𝐴1ℎ, 𝑓)∣2
(𝐴1ℎ, ℎ)

<∞
}

,

∣(ℛ𝐴1ℎ, 𝑓)+∣2
(ℛ𝐴1ℎ, ℎ)+

=
∣(𝐴1ℎ, 𝑓)∣2
(𝐴1ℎ, ℎ)

, 𝑓 ∈ ℋ+,

we get: if 𝐴1 and𝐴𝐹 are disjoint, then the operator𝔸1𝐾 : ℋ+ ⊇ Dom(𝔸1𝐾)→ ℋ−,
associated with closed in ℋ+ non-negative form 𝐴1[𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴1]∩ℋ+, is the
minimal element of the set 𝒫(𝐴1) in the sense of quadratic forms. According
to Theorem 4.5 this operator is generated by 𝐴𝐹 . It is an analog of the Krĕın–
von Neumann type extension of 𝐴1 in the rigged Hilbert space ℋ+ ⊂ ℋ ⊂ ℋ−.
The operator 𝔸𝐾 is the minimal element of the sets 𝒫(𝐴𝐾) and 𝒫(�̇�). The next
theorem parameterizes the set 𝒫(𝐴1).

Theorem 4.7. Let �̇� be a non-negative closed symmetric operator with disjoint
non-negative self-adjoint extensions 𝐴𝐹 and 𝐴𝐾 . Suppose 𝔸 is a t-self-adjoint bi-
extension of �̇� with quasi-kernel 𝐴1 and generated by 𝐴0. Then 𝔸 is non-negative
if and only if

𝐴0 ≥ 𝐴1 ≥ 0.
Proof. We will use (2.5)

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0),

for 𝑓 = 𝑓1+ 𝑓0, 𝑓1 ∈ Dom(𝐴1), 𝑓0 ∈ Dom(𝐴0). It follows that 𝐴1 ≥ 0 and 𝐴0 ≥ 0.
Replacing 𝑓1 by 𝜆𝑓1 and 𝑓0 by 𝜇𝑓0 we have

∣𝜆∣2(𝐴1𝑓1, 𝑓1) + ∣𝜇∣2(𝐴0𝑓0, 𝑓0) + 𝜆�̄�(𝐴1𝑓1, 𝑓0) + 𝜇�̄�(𝑓0, 𝐴1𝑓1) ≥ 0
for all 𝜆, 𝜇 ∈ ℂ. Thus, the 2× 2 matrix(

(𝐴1𝑓1, 𝑓1) (𝐴1𝑓1, 𝑓0)
(𝑓0, 𝐴1𝑓1) (𝐴0𝑓0, 𝑓0)

)
is non-negative. Hence

∣(𝐴1𝑓1, 𝑓0)∣2 ≤ (𝐴1𝑓1, 𝑓1)(𝐴0𝑓0, 𝑓0)

and

sup
𝑓1∈Dom(𝐴1)

∣(𝐴1𝑓1, 𝑓0)∣2
(𝐴1𝑓1, 𝑓1)

≤ (𝐴0𝑓0, 𝑓0). (4.6)

This means that

𝑓0 ∈ 𝒟[𝐴1] and 𝐴1[𝑓1] ≤ (𝐴0𝑓0, 𝑓0) (= 𝐴0[𝑓0]) .

If {𝑓 (𝑛)2 }∞𝑛=1 ⊂ Dom(𝐴0) and 𝐴0-converges to 𝜑0 ∈ 𝒟[𝐴0], then (4.6) yields

sup
𝑓1∈Dom(𝐴1)

∣(𝐴1𝑓1, 𝜑0)∣2
(𝐴1𝑓1, 𝑓1)

≤ 𝐴0[𝜑0].
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Thus

𝒟[𝐴0] ⊂ 𝒟[𝐴1] and 𝐴1[𝜑0] ≤ 𝐴0[𝜑0] for all 𝜑0 ∈ 𝒟[𝐴0],

i.e., 𝐴1 ≤ 𝐴0.
Conversely. Suppose 0 ≤ 𝐴1 ≤ 𝐴0. Then for an arbitrary 𝑓1 ∈ Dom(𝐴1),

𝑓0 ∈ Dom(𝐴0) we get

(𝔸(𝑓1 + 𝑓0), 𝑓1 + 𝑓0) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0)

= ∣∣𝐴1/2
1 𝑓1∣∣2 + ∣∣𝐴1/2

0 𝑓0∣∣2 + 2Re (𝐴1/2
1 𝑓1, 𝐴

1/2
1 𝑓0)

= ∣∣𝐴1/2
1 (𝑓1 + 𝑓0)∣∣2 + ∣∣𝐴1/2

0 𝑓0∣∣2 − ∣∣𝐴1/2
1 𝑓0∣∣2 ≥ 0.

This proves the theorem. □

Let 𝐴1 and 𝐴0 be two non-negative self-adjoint extensions of �̇�. Consider a
form defined on Dom(𝐴1)×Dom(𝐴0) as follows

ℬ(𝑓1, 𝑓0) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0), (4.7)

where 𝑓𝑙 ∈ Dom(𝐴𝑙), (𝑙 = 0, 1). Let

𝜙𝑙 =
1

2
(𝐼 +𝐴𝑙)𝑓𝑙, 𝑆𝑙𝜙𝑙 =

1

2
(𝐼 −𝐴𝑙)𝑓𝑙,

be the Cayley transform of 𝐴𝑙 for 𝑙 = 0, 1. Then

𝑓𝑙 = (𝐼 + 𝑆𝑙)𝜙𝑙, 𝐴𝑙𝑓𝑙 = (𝐼 − 𝑆𝑙)𝜙𝑙, (𝑙 = 0, 1). (4.8)

Substituting (4.8) into (4.7) we obtain a form defined on ℋ×ℋ
ℬ̃(𝜙1, 𝜙0) = ∥𝜙1 + 𝜙0∥2 − ∥𝑆1𝜙1 + 𝑆0𝜙0∥2 − 2Re ((𝑆1 − 𝑆0)𝜙1, 𝜙0) . (4.9)

Let us set

𝐹 =
1

2
(𝑆1 − 𝑆0), 𝐺 =

1

2
(𝑆1 + 𝑆0), 𝑢 =

1

2
(𝜙1 + 𝜙2), 𝑣 =

1

2
(𝜙1 − 𝜙0). (4.10)

Then

ℬ̃(𝜙1, 𝜙0) = 4𝐻(𝑢, 𝑣) := ∥𝑢∥2 + (𝐹𝑣, 𝑣) − (𝐹𝑢, 𝑢)− ∥𝐹𝑣 +𝐺𝑢∥2. (4.11)

Moreover, 𝐹 ±𝐺 are contractive operators. From the above reasoning we conclude
that non-negativity of the form ℬ(𝑓1, 𝑓0) on Dom(𝐴1)×Dom(𝐴0) is equivalent to
non-negativity of the form 𝐻(𝑢, 𝑣) on ℋ ×ℋ. The next statement is established
in [3], see also [7].

Proposition 4.8. The form 𝐻(𝑢, 𝑣) in (4.11) is non-negative for all 𝑢, 𝑣 ∈ ℋ if and
only if operator 𝐹 defined in (4.10) is non-negative.

Proposition 4.8 can be used for another proof of Theorem 4.7 (see [3]).

Let 𝐴1 and 𝐴0 be two disjoint non-negative self-adjoint extensions of �̇�. We
say that 𝐴1 and 𝐴0 form an admissible pair ⟨𝐴1, 𝐴0⟩ if

𝐴0 ≥ 𝐴1 ⇐⇒ (𝐴1 + 𝐼)−1 ≥ (𝐴0 + 𝐼)−1.
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If 𝑆𝑗 = (𝐼 − 𝐴𝑗))(𝐼 + 𝐴𝑗)
−1, 𝑗 = 1, 2, then the pair ⟨𝐴1, 𝐴0⟩ is admissible if and

only if ker(𝑆1 − 𝑆0) = Dom(�̇�) and 𝑆1 ≥ 𝑆0. Let 𝑋𝑗 , 𝑗 = 0, 1 be self-adjoint
contractions in 𝔑 such that

𝑆𝑗 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋𝑗(𝑆𝑀 − 𝑆𝜇)
1/2.

Then it follows from (3.5) that the pair of non-negative self-adjoint extensions
𝐴𝑗 = (𝐼 − 𝑆𝑗)(𝐼 + 𝑆𝑗)

−1, 𝑗 = 0, 1 is admissible if and only if

ker(𝑋1 −𝑋0) ∩ Ran((𝑆𝑀 − 𝑆𝜇)
1/2) = {0} and 𝑋1 −𝑋0 ≥ 0.

Associated closed forms. The next statement describes 𝔸[𝑢, 𝑣] (the closure of the
form (𝔸𝑓, 𝑓)), where 𝔸 is a non-negative t-self-adjoint bi-extension of �̇� with
quasi-kernel 𝐴1 and generated by 𝐴0 (compare with Theorem 3.3).

Theorem 4.9. Let ⟨𝐴1, 𝐴0⟩ be an admissible pair and let 𝔸 be a non-negative t-
self-adjoint bi-extension of �̇� with quasi-kernel 𝐴1 and generated by 𝐴0. Let 𝔸[⋅, ⋅]
be the closure of the form (𝔸𝑓, 𝑔), 𝑓, 𝑔 ∈ Dom(�̇�). Then

𝒟[𝔸] = Dom(𝐴1)+̇Ran
(
(𝑆1 − 𝑆0)

1/2
)
= Dom(𝐴0)+̇Ran

(
(𝑆1 − 𝑆0)

1/2
)
,

𝔸[𝑢] = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2

= 𝐴1[𝑢] + ∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2 − ∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2,
𝑢 = (𝐼 + 𝑆1)ℎ+ 𝑤, (4.12)

where 𝑆𝑙 = (𝐼 −𝐴𝑙)(𝐼 +𝐴𝑙), 𝑙 = 0, 1, ℎ ∈ ℋ, 𝑤 ∈ Ran
(
(𝑆1 − 𝑆0)

1/2
)
.

Proof. Let 𝑓 = 𝑓1 + 𝑓0, 𝑓1 ∈ Dom(𝐴1), 𝑓0 ∈ Dom(𝐴0). Then

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0).

Due to (4.9)

(𝔸𝑓, 𝑓) = ℬ̃(𝜙1, 𝜙0) = ∥𝜙1 + 𝜙0∥2 − ∥𝑆1𝜙1 + 𝑆0𝜙0∥2 − 2Re ((𝑆1 − 𝑆0)𝜙1, 𝜙0) ,

where

𝜙𝑙 =
1

2
(𝐼 +𝐴𝑙)𝑓𝑙, 𝑆𝑙𝜙𝑙 =

1

2
(𝐼 −𝐴𝑙)𝑓𝑙, 𝑓𝑙 = (𝐼 + 𝑆𝑙)𝜙𝑙, 𝐴𝑙𝑓𝑙 = (𝐼 − 𝑆𝑙)𝜙𝑙, 𝑙 = 0, 1.

Represent 𝑓 = 𝑓1 + 𝑓0 = (𝐼 + 𝑆1)𝜙1 + (𝐼 + 𝑆0)𝜙0 in the form

𝑓 = (𝐼 + 𝑆1)(𝜙1 + 𝜙0)− (𝑆1 − 𝑆0)𝜙0.

Then

(𝔸𝑓, 𝑓) = ∥𝜙1 + 𝜙0∥2 − ∥𝑆1(𝜙1 + 𝜙0)− (𝑆1 − 𝑆0)𝜙0∥2
− 2Re (𝜙1 + 𝜙0, (𝑆1 − 𝑆0)𝜙0) + 2∣∣(𝑆1 − 𝑆0)

1/2𝜙0∣∣2.
(4.13)

Suppose that

lim
𝑛→∞ 𝑓 (𝑛) = 𝑢 in ℋ+, and lim

𝑛→∞(𝔸(𝑓
(𝑛) − 𝑓 (𝑚)), 𝑓 (𝑛) − 𝑓 (𝑚)) = 0.
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We have

𝑓 (𝑛) = (𝐼 + 𝑆1)(𝜙
(𝑛)
1 + 𝜙

(𝑛)
0 )− (𝑆1 − 𝑆0)𝜙

(𝑛)
0 .

Due to the direct decomposition

ℋ+ = Dom(𝐴1)+̇𝔑−1

and inclusions {(𝐼+𝑆1)(𝜙
(𝑛)
1 +𝜙

(𝑛)
0 )} ⊂ Dom(𝐴1), {(𝑆1−𝑆0)𝜙

(𝑛)
0 } ⊂ 𝔑−1, we get

that the sequences {(𝐼+𝑆1)(𝜙
(𝑛)
1 +𝜙

(𝑛)
0 )} and {(𝑆1−𝑆0)𝜙

(𝑛)
0 } converge in ℋ+. By

definition ∣∣𝑤∣∣2+ = 2∣∣𝑤∣∣2, ∀𝑤 ∈ 𝔑−1. Hence {(𝑆1 − 𝑆0)𝜙
(𝑛)
0 } converges in ℋ. On

the other hand convergence of {(𝐼 +𝑆1)(𝜙
(𝑛)
1 +𝜙

(𝑛)
0 )} in ℋ+ yields convergence of

{𝜙(𝑛)1 + 𝜙
(𝑛)
0 } in ℋ. Let

ℎ = lim
𝑛→∞(𝜙

(𝑛)
1 + 𝜙

(𝑛)
0 ) in ℋ,

Dom(𝒜1) ∋ 𝑦 = lim
𝑛→∞(𝐼 + 𝑆1)(𝜙

(𝑛)
1 + 𝜙

(𝑛)
0 ) in ℋ+,

𝑤′ = lim
𝑛→∞(𝑆1 − 𝑆0)𝜙

(𝑛)
0 .

From lim
𝑛→∞(𝔸(𝑓

(𝑛)−𝑓 (𝑚)), 𝑓 (𝑛)−𝑓 (𝑚)) = 0 and (4.13) we obtain that the sequence

{(𝑆1 − 𝑆0)
1/2𝜙

(𝑛)
0 } converges in ℋ. Let

𝑔 = lim
𝑛→∞(𝑆1 − 𝑆0)

1/2𝜙
(𝑛)
0 .

Then 𝑤′ = (𝑆1 − 𝑆0)
1/2𝑔. Set 𝑤 = −𝑤′. Thus

𝑢 = 𝑦 + 𝑤,

where 𝑦 = (𝐼 + 𝑆1)ℎ ∈ Dom(𝐴1), 𝑤 ∈ Ran
(
(𝑆1 − 𝑆0)

1/2
)
. We get that

lim
𝑛→∞(𝔸𝑓 (𝑛), 𝑓 (𝑛)) = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ− (𝑆1 − 𝑆0)

1/2𝑔∣∣2

− 2Re (ℎ, (𝑆1 − 𝑆0)
1/2𝑔) + 2∣∣𝑔∣∣2

= ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2.

Now let us prove that the quadratic form

𝜂(𝑢) = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2,

𝑢 = (𝐼 + 𝑆1)ℎ+ 𝑤, ℎ ∈ ℋ, 𝑤 ∈ Ran(𝑆1 − 𝑆0)
1/2

is non-negative and closed in ℋ+ as defined on

Dom(𝜂) = Dom(𝐴1)+̇Ran
(
(𝑆1 − 𝑆0)

1/2
)
.

Notice that the equality 𝑆1 − 𝑆0 = 2(𝐴1 + 𝐼)−1 − 2(𝐴0 + 𝐼)−1 yields

Dom(𝐴1)+̇Ran
(
(𝑆1 − 𝑆0)

1/2
)
= Dom(𝐴0)+̇Ran

(
(𝑆1 − 𝑆0)

1/2
)
.

First we calculate 𝐴1[𝑢] for 𝑢 ∈ Dom(𝐴1)+̇(𝒟[𝐴1] ∩𝔑−1). Let us represent 𝑢 as

𝑢 = (𝐼 + 𝑆1)ℎ+ (𝐼 + 𝑆1)
1/2𝜔,
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where ℎ ∈ ℋ, 𝜔 ∈ Ω = {𝑔 ∈ ℋ : (𝐼 + 𝑆1)
1/2𝜔 ∈ 𝔑−1}. Recall that by (3.7) and

(3.10) we have

Ran((𝑆1 − 𝑆𝜇)
1/2) = (𝐼 + 𝑆1)

1/2Ω = 𝒟[𝐴1] ∩𝔑−1.

Using (3.5) we obtain

𝐴1[𝑢] = − ∣∣𝑢∣∣2 + 2∣∣𝐼 + 𝑆1)
−1/2𝑢∣∣2

= − ∣∣(𝐼 + 𝑆1)ℎ+ (𝐼 + 𝑆1)
1/2𝜔∣∣2 + 2∣∣(𝐼 + 𝑆1)

1/2ℎ+ 𝜔∣∣2
= − ∣∣𝐼 + 𝑆1)ℎ∣∣2 − ∣∣(𝐼 + 𝑆1)

1/2𝜔∣∣2 − 2Re ((𝐼 + 𝑆1)ℎ, (𝐼 + 𝑆1)
1/2𝜔)

+ 2∣∣(𝐼 + 𝑆1)
1/2ℎ∣∣2 + 2∣∣𝜔∣∣2 + 4Re ((𝐼 + 𝑆1)

1/2ℎ, 𝜔)

= ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ∣∣2 − ∣∣(𝐼 + 𝑆1)
1/2𝜔∣∣2 − 2Re (𝑆1ℎ, (𝐼 + 𝑆1)

1/2𝜔)

+ 2Re (ℎ, (𝐼 + 𝑆1)
1/2𝜔) + 2∣∣𝜔∣∣2

= ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ (𝐼 + 𝑆1)
1/2𝜔∣∣2 + 2∣∣𝜔∣∣2 + 2Re (ℎ, (𝐼 + 𝑆1)

1/2𝜔).

Denoting 𝑤 = (𝐼 +𝑆1)
1/2𝜔 and using the equality (see (3.7)) ∣∣(𝑆1−𝑆𝜇)

−1/2𝑤∣∣ =
∣∣(𝐼 + 𝑆1)

−1/2𝑤∣∣2, we arrive at the equality
𝐴1[𝑢] = ∣∣ℎ∣∣2 − ∣∣𝑆1ℎ+ 𝑤∣∣2 + 2Re (ℎ,𝑤) + 2∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2 ≥ 0.
Furthermore, since 𝑆1 − 𝑆𝜇 ≥ 𝑆1 − 𝑆0, we get that

Ran((𝑆1 − 𝑆𝜇)
1/2) ⊃ Ran((𝑆1 − 𝑆0)

1/2)

and ∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2 ≥ ∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2 for all 𝑤 ∈ Ran((𝑆1 − 𝑆0)
1/2). So,

𝜂(𝑢) = 𝐴1[𝑢] + ∣∣(𝑆1 − 𝑆0)
−1/2𝑤∣∣2 − ∣∣(𝑆1 − 𝑆𝜇)

−1/2𝑤∣∣2 ≥ 0,
𝑢 ∈ Dom(𝐴1)+̇Ran((𝑆1 − 𝑆0)

1/2) ≥ 0.
In addition, one can easily see that the right-hand side of (4.12) is closed on
Dom(𝐴1)+̇Ran((𝑆1−𝑆0)

1/2) in ℋ+. Now we can conclude that (4.12) is valid. □

Define for 𝔸 ∈ 𝒫(�̇�) the “dual” quadratic form
𝔸′[𝑢] = 2Re (�̇�∗𝑢, 𝑢)− 𝔸[𝑢], 𝑢 ∈ 𝒟[𝔸]

and let

𝐴′𝐾 [𝑢] = 2Re (�̇�
∗𝑢, 𝑢)−𝐴𝐾 [𝑢], 𝑢 ∈ 𝒟[𝐴𝐾 ] ∩ℋ+. (4.14)

Recall that a linear operator 𝑇 in a Hilbert space ℌ is called accretive [20] if
Re (𝑇𝑓, 𝑓) ≥ 0 for all 𝑓 ∈ Dom(𝑇 ) and maximal accretive (𝑚-accretive) if it
is accretive and has no accretive extensions in ℌ. The following statements are
equivalent [27]:

(i) the operator 𝑇 is 𝑚-accretive;
(ii) the operator 𝑇 is accretive and its resolvent set contains points from the left

half-plane;
(iii) the operators 𝑇 and 𝑇 ∗ are accretive.
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Theorem 4.10. If 𝐴𝐹 and 𝐴𝐾 are disjoint, then each non-negative self-adjoint
bi-extension 𝔸 of �̇� possess the properties

𝒟[𝔸] ⊆ 𝒟[𝐴𝐾 ], 𝔸[𝑢] ≥ 𝐴𝐾 [𝑢], 𝔸′[𝑢] ≤ 𝐴′𝐾 [𝑢], 𝑢 ∈ 𝒟[𝔸]. (4.15)

In addition, if 𝑇 is quasi-selfadjoint accretive extension of �̇� (�̇� ⊂ 𝑇 ⊂ �̇�∗), then

𝐴𝐾 [𝑢] ≤ Re (𝑇𝑢, 𝑢) ≤ 𝐴′𝐾 [𝑢], 𝑢 ∈ Dom(𝑇 ). (4.16)

Proof. As it follows from the proofs of Theorems 4.4 and 4.5 in ℋ+ the Krĕın–

von Neumann extension of the operator �̇� = ℛ�̇� coincides with the Krĕın–von
Neumann extension of the operator �̇�′ = ℛ𝐴𝐾 . Therefore, using the minimality
of 𝐴𝐾 among all non-negative self-adjoint extensions of �̇� we arrive at (4.15).

It is established in [4] that for each quasi-self-adjoint accretive extension 𝑇

of �̇� one has

Dom(𝑇 ) ⊂ 𝒟[𝐴𝐾 ], 𝐴𝐾 [𝑢] ≤ Re (𝑇𝑢, 𝑢), 𝑢 ∈ Dom(𝑇 ).
Using the above and (4.14) we get (4.16). □
Explicit expressions for non-negative t-self-adjoint bi-extensions. Evidently, the
linear manifold Dom(𝐴𝐹 ) is a subspace in ℋ+. Let 𝔑𝐹 be the orthogonal com-

plement to Dom(�̇�) in Dom(𝐴𝐹 ) with respect to the inner product (⋅, ⋅)+ and let
𝔐𝐹 = ℋ+ ⊖ Dom(𝐴𝐹 ). Then 𝔐𝐹 = 𝐴𝐹𝔑𝐹 . Thus we have the (+)-orthogonal
decomposition

ℋ+ = Dom(�̇�)⊕𝔑𝐹 ⊕𝔐𝐹 .

Let
𝔑0 = Ran(𝐴

1/2
𝐹 ) ∩𝔑𝐹 .

Clearly, 𝐴
− 1

2

𝐹 (𝔑0) ⊂ Dom(𝐴𝐹 ). The following equalities take place

�̇�∗𝐴𝐹 𝑒 = −𝑒, 𝑒 ∈ 𝔑𝐹 ,

𝐴𝐹 �̇�∗𝑔 = −𝑔, 𝑔 ∈𝔐𝐹 .

Theorem 4.11 ([11]). The condition 𝔑0 = {0} is necessary and sufficient for the
uniqueness of non-negative self-adjoint extension of �̇�. Suppose 𝔑0 ∕= {0}. Then
the formulas

Dom(𝐴) = Dom(�̇�)⊕ (𝐼 +𝐴𝐹𝑈)Dom(𝑈),

𝐴(𝑥+ ℎ+𝐴𝐹𝑈ℎ) = 𝐴𝐹 (𝑥 + ℎ)− 𝑈ℎ, 𝑥 ∈ Dom(�̇�), ℎ ∈ Dom(𝑈)
(4.17)

give a one-to-one correspondence between all non-negative self-adjoint extensions

𝐴 of �̇� and all (+)-self-adjoint operators 𝑈 in 𝔑𝐹 satisfying the condition

0 ≤ 𝑈 ≤𝑊−1
0

where 𝑊−1
0 determines the operator inverse with respect to the (+)-non-negative

self-adjoint relation 𝑊0 in 𝔑𝐹 associated with the (+)-closed in 𝔑𝐹 non-negative
form

𝜔0[𝑥, 𝑦] = (𝐴
[−1/2]
𝐹 𝑥,𝐴

[−1/2]
𝐹 𝑦)+ = (𝐴

1/2
𝐹 𝑥,𝐴

1/2
𝐹 𝑦)+(𝐴

[−1/2]
𝐹 𝑥,𝐴

[−1/2]
𝐹 𝑦), 𝑥, 𝑦 ∈ 𝔑0.
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Here 𝐴
[−1/2]
𝐹 is the Moore–Penrose pseudo-inverse. Operator 𝐴 coincides with

the Krĕın–von Neumann non-negative self-adjoint extension 𝐴𝐾 if and only if

𝑈 =𝑊−1
0 .

Moreover,

∙ the extensions 𝐴𝐹 and 𝐴𝐾 are disjoint ⇐⇒ 𝔑0 is dense in 𝔑𝐹 ,
∙ the extensions 𝐴𝐹 and 𝐴𝐾 are transversal ⇐⇒ 𝔑0 = 𝔑𝐹 .

The associated with 𝐴 closed form is given by the following equalities:

𝒟[𝐴] = 𝒟[�̇�]+̇𝐴𝐹ℛ(𝑈1/2), (4.18)

𝐴[𝜑+𝐴𝐹ℎ] = ∣∣𝐴1/2
𝐹 𝜑−𝐴

[−1/2]
𝐹 ℎ∣∣2 + 𝑈−1[ℎ]− 𝑤0[ℎ], 𝜑 ∈ 𝒟[𝐴], ℎ ∈ ℛ(𝑈1/2).

Let 𝐴1 and 𝐴0 be two non-negative self-adjoint extensions. From (4.17) and
(4.18) it follows that 𝐴1 and 𝐴0, determined by parameters 𝑈1 and 𝑈0, respectively,
then

∙ 𝐴1 and 𝐴0 are disjoint if and only if𝔑0 is dense in𝔑𝐹 and ker(𝑈1−𝑈0) = {0},
∙ 𝐴1 ≤ 𝐴0 if and only if 𝑈1 ≥ 𝑈0,
∙ 𝐴1 ≤ 𝐴0 and 𝐴1 and 𝐴0 are transversal if and only if 𝔑0 = 𝔑𝐹 , Ran(𝑈1) =
𝔑𝐹 , 𝑈1 ≥ 𝑈0, and Ran(𝐼 − 𝑈−11 𝑈0) = 𝔑𝐹 .

Denote by 𝑃+
𝔑𝐹
, 𝑃+

𝔐𝐹
the orthogonal projection inℋ+ onto𝔑𝐹 and𝔐𝐹 = 𝐴𝐹𝔑𝐹 .

Notice that

𝔐 = 𝔑𝑖 ⊕𝔑−𝑖 = 𝔑𝐹 ⊕𝔐𝐹 .

Recall that each self-adjoint bi-extensions of �̇� is of the form (2.1), where 𝒮 is a
(+)-self-adjoint operator in 𝔐.

Theorem 4.12. Suppose 𝐴𝐾 and 𝐴𝐹 are disjoint. Then

1. the operator 𝔸𝐾 is of the form

𝔸𝐾 = �̇�∗ −ℛ−1𝐴𝐹 (𝑃
+
𝔑𝐹

+𝑊0�̇�
∗𝑃+

𝔐𝐹
); (4.19)

2. the operator 𝔸 = 𝐴∗ +ℛ−1(𝒮 − �̇�∗/2)𝑃+
𝔐 belongs to 𝒫(�̇�) if and only if

𝒮 ≥ 𝒮𝐾 = −𝐴𝐹𝑊0�̇�
∗𝑃+

𝔐𝐹
+
1

2

(
�̇�∗𝑃+

𝔐𝐹
−𝐴𝐹𝑃+

𝔑𝐹

)
in the sense of quadratic forms;

3. if 𝐴1 is a non-negative self-adjoint extension of �̇� disjoint with 𝐴𝐹 and if
𝐴0 ≥ 𝐴1, then the non-negative t-self-adjoint bi-extension of �̇� with quasi-
kernel 𝐴1 and generated by 𝐴0 is of the form

𝔸 = �̇�∗ +ℛ−1
(
𝒮 − 1

2
�̇�∗

)
𝑃+
𝔐,
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where 𝒮 is a (+)-self-adjoint operator in 𝔐 given by⎧⎨⎩

Dom(𝒮) = (𝐼 +𝐴𝐹𝑈1)Dom(𝑈1)+̇(𝐼 +𝐴𝐹𝑈0)Dom(𝑈0)

𝒮(𝐼 +𝐴𝐹𝑈1)𝑒 =
1

2
(𝐴𝐹 − 𝑈1)𝑒, 𝑒 ∈ Dom(𝑈1)

𝒮(𝐼 +𝐴𝐹𝑈0)𝑔 =
1

2
(−𝐴𝐹 + 𝑈0)𝑔, 𝑔 ∈ Dom(𝑈0)

, (4.20)

and 𝑈1, 𝑈0 determine 𝐴1 and 𝐴0 in formulas (4.17). In particular, if 𝐴0 =
𝐴𝐹 , then

𝒮 = −𝐴𝐹𝑈−11 �̇�∗𝑃+
𝔐𝐹

+
1

2

(
�̇�∗𝑃+

𝔐𝐹
−𝐴𝐹𝑃+

𝔑𝐹

)
. (4.21)

Proof. From (4.17) we get the equality

Dom(𝐴)⊖Dom(�̇�) = (𝐼 +𝐴𝐹𝑈)Dom(𝑈)

for an arbitrary non-negative self-adjoint extension 𝐴 of �̇�. Then equalities (2.4)
yield (4.20). When 𝐴0 = 𝐴𝐹 , we have 𝑈0 = 0. This gives the equality

𝑓 = (𝐼 +𝐴𝐹𝑈1)(−𝑈−11 �̇�∗)𝑃+
𝔐𝐹

𝑓 + (𝑃+
𝔑𝐹

+ 𝑈−11 �̇�∗𝑃+
𝔐𝐹

)𝑓.

Then by virtue of (4.20) we obtain (4.21). The case 𝐴1 = 𝐴𝐾 holds true if and
only if 𝑈1 =𝑊−1

0 and leads to

𝒮𝐾 = −𝐴𝐹𝑊0�̇�
∗𝑃+

𝔐𝐹
+
1

2

(
�̇�∗𝑃+

𝔐𝐹
−𝐴𝐹𝑃+

𝔑𝐹

)
.

Then applying (2.1) we get (4.19). Statement (2.) follows from the fact that 𝔸𝐾

is the minimal element of 𝒫(�̇�). □

5. Extremal non-negative self-adjoint bi-extensions

Let �̇� be a symmetric contraction defined in subspace Dom(𝑆). We call a sc-

extension 𝑆 of �̇� extremal if

inf
𝑔𝑆∈Dom(�̇�)

∥(𝐼 − 𝑆2)1/2(𝑔 − 𝑔𝑆)∥ = 0, ∀𝑔 ∈ ℋ.

We can also offer an equivalent definition of an extremal sc-extension. Let 𝔑 =
ℋ ⊖ Dom(𝑆). We call a sc-extension 𝑆 of �̇� extremal if (𝐼 − 𝑆2)𝔑 = 0, where
(𝐼 − 𝑆2)𝔑 is the Krĕın shorted operator (see (3.8), (3.9)). The following equality
was proved in [10]

(𝐼 − 𝑆2)𝔑 = (𝑆𝑀 − 𝑆𝜇)
1/2(𝐼 −𝑋2)(𝑆𝑀 − 𝑆𝜇)

1/2, (5.1)

where 𝑋 is corresponding to 𝑆 (via formula (3.5)) contraction in Ran(𝑆𝑀 − 𝑆𝜇).
Formula (5.1) implies that 𝑆 is extremal if and only if 𝑋 is self-adjoint and unitary,
i.e., 𝑋 = 𝑋∗ and 𝑋2 = 𝐼.
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Now let �̇� be a non-negative closed densely defined symmetric operator.
Recall (see Section 3) that a non-negative self-adjoint extension 𝐴 of �̇� is extremal
[3] if

inf
𝜑∈Dom(�̇�)

(𝐴(ℎ− 𝜑), ℎ− 𝜑) = 0, ∀ℎ ∈ Dom(𝐴).

If

�̇� = (𝐼 − �̇�)(𝐼 + �̇�)−1, 𝑆 = (𝐼 −𝐴)(𝐼 +𝐴)−1, (5.2)

then (𝐴ℎ, ℎ) = ((𝐼 − 𝑆2)𝑔, 𝑔) where 𝑔 = (𝐼 + 𝑆)−1ℎ. This yields

inf
𝜑∈Dom(�̇�)

(𝐴(ℎ− 𝜑), ℎ− 𝜑) = inf
𝑔𝑆∈Dom(�̇�)

∥(𝐼 − 𝑆2)1/2(𝑔 − 𝑔𝑆)∥2,

where Dom(�̇�) = (𝐼 + �̇�)Dom(�̇�). Therefore, 𝐴 is extremal non-negative self-

adjoint extension of �̇� if and only if 𝑆 is extremal sc-extension of symmetric
contraction �̇�. The Friedrichs and Krĕın–von Neumann extensions are extremal.

Let 𝔸 be a non-negative self-adjoint bi-extension of the symmetric operator
�̇�. We call the operator 𝔸 an extremal bi-extension if

inf
𝜑∈Dom(�̇�)

(𝔸(𝑓 − 𝜑), 𝑓 − 𝜑) = 0, ∀𝑓 ∈ Dom(𝔸).

In what follows we assume that the operators 𝐴𝐹 and 𝐴𝐾 are disjoint.

Theorem 5.1. A t-self-adjoint bi-extension 𝔸 is extremal if and only if it is gener-
ated by an admissible pair ⟨𝐴1, 𝐴0⟩ of extremal non-negative self-adjoint extensions
of �̇�.

Proof. Let 𝐴1 and 𝐴0 be the quasi-kernels of 𝔸 and 𝔸′, respectively. Let also 𝔸
be an extremal self-adjoint bi-extension. It follows from (2.5) then that

(𝔸𝑓𝑘, 𝑓𝑘) = (𝐴𝑘𝑓𝑘, 𝑓𝑘), ∀𝑓𝑘 ∈ Dom(𝐴𝑘), 𝑘 = 0, 1.

Since 𝔸 extends 𝐴1 and is generated by 𝐴0, it follows from (2.5) that

(𝔸𝑓, 𝑓) = (𝐴1𝑓1, 𝑓1) + (𝐴0𝑓0, 𝑓0) + 2Re (𝐴1𝑓1, 𝑓0) = ℬ(𝑓1, 𝑓0),
where 𝑓 ∈ Dom(𝔸), 𝑓 = 𝑓1 + 𝑓0, 𝑓𝑘 ∈ Dom(𝐴𝑘), 𝑘 = 0, 1. Applying (4.10) and
(4.11) we get

inf
𝜑∈Dom(�̇�)

(𝔸(𝑓 − 𝜑), 𝑓 − 𝜑) = inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑦)

= inf
ℎ𝑆∈Dom(�̇�)

(∥𝑥− ℎ𝑆∥2 − (𝑥, 𝐹𝑥) + (𝑦, 𝐹𝑦)− ∥𝐹𝑦 +𝐺(𝑥− ℎ𝑠)∥2
)
.

(5.3)

Since inf𝑓𝐴∈Dom(�̇�)(𝔸(𝑓𝑘 − 𝑓𝐴), 𝑓𝑘 − 𝑓𝐴) = 0 for all 𝑓𝑘 ∈ Dom(𝐴𝑘), 𝑘 = 0, 1, the

operators 𝐴1 and 𝐴0 are extremal non-negative self-adjoint extensions of �̇�.
Hence, the extremality of 𝔸 implies that the non-negative self-adjoint ex-

tensions 𝐴1 and 𝐴0 are also extremal. Since 𝔸 is a non-negative self-adjoint bi-
extension, then the pair ⟨𝐴1, 𝐴0⟩ is an admissible extremal pair.

Conversely, let us assume that ⟨𝐴1, 𝐴0⟩ is an admissible pair of extremal non-
negative self-adjoint extensions of �̇�. We are going to prove that the corresponding
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non-negative self-adjoint bi-extension 𝔸 with quasi-kernel 𝐴1 and generated by 𝐴0

is extremal. The corresponding (via (5.2)) to 𝐴1 and 𝐴0 sc-extensions 𝑆1 and
𝑆0 are extremal. Also, the fact that ⟨𝐴1, 𝐴0⟩ is an admissible pair, implies that
𝑆1 − 𝑆0 ≥ 0.

Let

𝑆𝑘 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2𝑋𝑘(𝑆𝑀 − 𝑆𝜇)
1/2, 𝑘 = 0, 1,

where 𝑋𝑘, 𝑘 = 0, 1 are self-adjoint contractions in 𝔑. Since 𝑆𝑘, 𝑘 = 0, 1 are
extremal sc-extensions, then 𝑋𝑘, 𝑘 = 0, 1, are self-adjoint unitary operators and
hence 𝑃𝑘 = (𝐼 +𝑋𝑘)/2, 𝑘 = 0, 1, are orthogonal projections. Also, 𝑋1 −𝑋0 ≥ 0
implies that 𝑃1 − 𝑃0 ≥ 0 and Ran(𝑃1) ⊃ Ran(𝑃0). Since 𝑋𝑘 = 2𝑃𝑘 − 𝐼, 𝑘 = 0, 1,
then

𝐺 =
1

2
(𝑆𝑀 + 𝑆𝜇) +

1

2
(𝑆𝑀 − 𝑆𝜇)

1/2(𝑃1 + 𝑃0 − 𝐼)(𝑆𝑀 − 𝑆𝜇)
1/2,

and

𝐹 = (𝑆𝑀 − 𝑆𝜇)
1/2(𝑃1 − 𝑃0)(𝑆𝑀 − 𝑆𝜇)

1/2.

Since 𝐼 − (𝑃1 + 𝑃0 − 𝐼)2 = 𝑃1 − 𝑃0, then (5.1) implies that (𝐼 − 𝐺2)↾𝔑 = 𝐹 .
Consequently, applying the definition of the operator (𝐼 −𝐺2)↾𝔑 we obtain

𝐹 = (𝐼 −𝐺2)1/2𝑃𝐺(𝐼 −𝐺2)1/2,

where 𝑃𝐺 is an orthoprojection onto the subspace

ℋ𝐺 = ((𝐼 −𝐺2)1/2)−1{𝔑} ∩ Ran ((𝐼 −𝐺2)1/2).

Therefore,

𝐻(𝑥−ℎ𝑠,𝑦)=∥𝑥−ℎ𝑆∥2−(𝑥,𝐹𝑥)+(𝑦,𝐹𝑦)−∥𝐹𝑦+𝐺(𝑥−ℎ𝑠)∥2
=∥(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)∥2−∥𝑃𝐺(𝐼−𝐺2)1/2𝑥∥2+∥𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2
−∥(𝐼−𝐺2)1/2𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2−2Re((𝐼−𝐺2)1/2𝑃𝐺(𝐼−𝐺2)1/2𝑦,𝐺(𝑥−ℎ𝑠))

=∥(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)∥2−∥𝑃𝐺(𝐼−𝐺2)1/2𝑥∥2+∥𝐺𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2

−2Re
(
𝐺𝑃𝐺(𝐼−𝐺2)1/2𝑦,(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)

)
=∥(𝐼−𝐺2)1/2(𝑥−ℎ𝑠)−𝐺𝑃𝐺(𝐼−𝐺2)1/2𝑦∥2−∥𝑃𝐺(𝐼−𝐺2)1/2𝑥∥2.

Thus, since (𝐼 −𝐺2)1/2Dom(�̇�) ⊥ ℋ𝐺, then

inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑦) = ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥− 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑦∥2

− ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2, ∀𝑥, 𝑦 ∈ ℋ.
(5.4)

Since 𝐴1 and 𝐴0 are extremal non-negative self-adjoint extensions, then the defi-
nition of the functional 𝐻 and (4.11) imply

inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑥) = 0, inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 ,−𝑥) = 0,
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for all 𝑥 ∈ ℋ. Relation (5.4) yields
∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥− 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 − ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 = 0,

and

∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥+ 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 − ∥𝑃𝐺(𝐼 −𝐺2)1/2𝑥∥2 = 0,
for all 𝑥 ∈ ℋ. Thus, 𝑃𝐺𝐺𝑃𝐺(𝐼 −𝐺2)1/2𝑥 = 0 for all 𝑥 ∈ ℋ. Applying (5.4) again
we get

inf
ℎ𝑆∈Dom(�̇�)

𝐻(𝑥− ℎ𝑆 , 𝑦) = 0, ∀𝑥, 𝑦 ∈ ℋ.

Now we can use (5.3) to confirm that

inf
𝑓𝐴∈Dom(�̇�)

(𝔸(𝑓 − 𝑓𝐴), 𝑓 − 𝑓𝐴) = 0,

which means that 𝔸 is an extremal non-negative self-adjoint bi-extension. □

Recall that the non-negative self-adjoint bi-extension 𝔸𝐾 is associated with
the closed in ℋ+ form 𝐴𝐾 [𝑢, 𝑣], 𝑢, 𝑣 ∈ 𝒟[𝐴𝐾 ] ∩ ℋ+. The quasi-kernel of 𝔸𝐾 is
the Krĕın–von Neumann extension 𝐴𝐾 and 𝔸𝐾 is generated by 𝐴𝐹 . Clearly, 𝔸𝐾

is extremal non-negative self-adjoint bi-extension of �̇�.

Theorem 5.2.
(1) Let 𝐴𝐹 and 𝐴𝐾 be transversal. Then the operator 𝔸𝐾 is the unique extremal
non-negative t-self-adjoint bi-extension.

(2) Let 𝐴𝐹 and 𝐴𝐾 be disjoint but not transversal. Then except 𝔸𝐾 there exist
infinitely many extremal non-negative t-self-adjoint bi-extensions.

Proof. (1) Suppose that 𝐴𝐹 and 𝐴𝐾 are transversal. Let also 𝔸 be an extremal
t-self-adjoint bi-extension with the quasi-kernel 𝐴1 and 𝐴0 be the quasi-kernel of
𝔸′. According to Theorem 5.1 for 𝑆𝑘 = (𝐼 −𝐴𝑘)(𝐼 +𝐴𝑘)

−1, 𝑘 = 0, 1 the following
relations hold

𝑆𝑘 = 𝑆𝜇 + (𝑆𝑀 − 𝑆𝜇)
1/2𝑃𝑘(𝑆𝑀 − 𝑆𝜇)

1/2, 𝑘 = 0, 1, (5.5)

where 𝑃𝑘, 𝑘 = 0, 1, are orthoprojections in 𝔑. Since 𝐴1 and 𝐴0 are disjoint, we
have ker((𝑆1 − 𝑆0)↾𝔑 = {0}. But

ker((𝑆1 − 𝑆0)↾𝔑 = ker((𝑆𝑀 − 𝑆𝜇)
1/2(𝑃1 − 𝑃0)(𝑆𝑀 − 𝑆𝜇)

1/2↾𝔑).
Since 𝑃1−𝑃0 ≥ 0, then 𝑄 = 𝑃1−𝑃0 is an orthoprojection. Also, Ran(𝑆𝑀−𝑆𝜇) = 𝔑
implies ker(𝑃1 − 𝑃0) = {0} or equivalently 𝑃1 − 𝑃0 = 𝐼. The latter yields 𝑃1 = 𝐼
and 𝑃0 = 0. Consequently, 𝑆1 = 𝑆𝑀 , 𝑆0 = 𝑆𝜇 and the quasi-kernels of 𝔸 and 𝔸′

coincide with 𝐴𝐹 and 𝐴𝐾 .
(2) Let𝐴𝐹 and𝐴𝐾 be disjoint but not transversal. Then Ran((𝑆𝑀−𝑆𝜇)

1/2) ∕=
𝔑 and ker((𝑆𝑀 − 𝑆𝜇)

1/2) = {0}. We chose a subspace 𝔏 ⊂ 𝔑 in a way that

𝔏 ∩ Ran(𝑆𝑀 − 𝑆𝜇)
1/2 = {0}. Let 𝔑1 be such that {0} ⊆ 𝔑1 ⊆ 𝔏. Let also 𝑃1 be

an orthogonal projection operator on 𝔑⊖𝔑1, 𝑄 an orthoprojection on 𝔑⊖𝔏, and
𝑃0 = 𝑃1 −𝑄. Then 𝑃1 − 𝑃0 = 𝑄 ≥ 0 and ker(𝑃1) ∩ Ran(𝑆𝑀 − 𝑆𝜇)

1/2 = {0}. Let
𝑆𝑘, 𝑘 = 0, 1, be defined by (5.5). Hence, 𝑆1 and 𝑆0 are extremal sc-extensions and
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𝐴𝑘, 𝑘 = 0, 1 are extremal non-negative self-adjoint extensions of �̇� and ⟨𝐴1, 𝐴0⟩
is an admissible pair. Therefore, according to Theorem 5.1, if 𝔸 ⊃ 𝐴1 and 𝔸 is
generated by 𝐴0, then 𝔸 is extremal t-self-adjoint bi-extension of �̇�. It follows from
the construction of 𝔸 that there is infinite number of these bi-extensions. □

6. Boundary triplets and self-adjoint bi-extensions

Let �̇� be a closed densely defined symmetric operator in ℋ with equal deficiency
numbers.

Definition 6.1 ([21]). The triplet Π = {𝒩 ,Γ1,Γ0} is called a boundary triplet for
�̇�∗ if 𝒩 is a Hilbert space and Γ0,Γ1 are bounded linear operators from the Hilbert
spaceℋ+ = Dom(�̇�

∗) (with the inner product (1.1)) into 𝒩 such that the mapping

Γ :=
〈
Γ0,Γ1

〉
: ℋ+ → 𝒩 ⊕𝒩 ,

is surjective and the abstract Green identity(
�̇�∗𝑓, 𝑔

)
−
(
𝑓, �̇�∗𝑔

)
= (Γ1𝑓,Γ0𝑔)𝒩 − (Γ0𝑓,Γ1𝑔)𝒩 ,

holds for all 𝑓, 𝑔 ∈ ℋ+.

It follows from Definition 6.1 (see [17], [18]) that the operators

Dom(𝐴𝑘) := kerΓ𝑘, 𝐴𝑘 := �̇�∗↾Dom(𝐴𝑘), (𝑘 = 0, 1),

are self-adjoint extensions of �̇�. Moreover, they are transversal, i.e.,

Dom(�̇�∗) = Dom(𝐴0) + Dom(𝐴1).

Notice that if Π = {𝒩 ,Γ1,Γ0} is a boundary triplet for �̇�∗, then Π′ = {𝒩 ,−Γ0,Γ1}
is the boundary triplet for �̇�∗ too.

We are going to provide connections between self-adjoint bi-extensions and
boundary triplets [7]. The proposition below follows from Definition 6.1.

Theorem 6.2. Let �̇� be a closed densely defined symmetric operator with equal
deficiency indices in the Hilbert space ℋ. Suppose 𝒩 is a Hilbert space, Γ0,Γ1 ∈
[ℋ+,𝒩 ], and the operator

〈
Γ0,Γ1

〉 ∈ [ℋ+,𝒩⊕𝒩 ] is surjective. Then the following
statements are equivalent.

(i) Π = {𝒩 ,Γ1,Γ0} is the boundary triplet for �̇�∗;
(ii) the sesquilinear form

𝑤(𝑓, 𝑔) := (�̇�∗𝑓, 𝑔)− (Γ1𝑓,Γ0𝑔)𝒩 , 𝑓, 𝑔 ∈ ℋ+ = Dom(�̇�
∗) (6.1)

is Hermitian, i.e., 𝑤(𝑓, 𝑔) = 𝑤(𝑔, 𝑓);
(iii) the sesquilinear form

𝑤′(𝑓, 𝑔) := (�̇�∗𝑓, 𝑔) + (Γ0𝑓,Γ1𝑔)𝒩 , 𝑓, 𝑔 ∈ ℋ+ = Dom(�̇�
∗) (6.2)

is Hermitian,
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If ℋ+ ⊂ ℋ ⊂ ℋ− is a rigged Hilbert space, 𝒩 is a Hilbert space, and
Γ ∈ [ℋ+,𝒩 ], then by Γ× we will denote the adjoint operator from [𝒩 ,ℋ−], i.e.,
(Γℎ, 𝑔)𝒩 = (ℎ,Γ×𝑔) for all ℎ ∈ ℋ+ and all 𝑔 ∈ 𝒩 .

The following theorem [7] sets up the connection between boundary triplets
and t-self-adjoint bi-extensions.

Theorem 6.3. Let �̇� be a closed densely defined symmetric operator with equal
deficiency numbers in the Hilbert space ℋ. Consider the rigged Hilbert space ℋ+ ⊂
ℋ ⊂ ℋ− generated by �̇�.

1. Let Π = {𝒩 ,Γ1,Γ0} for �̇�∗ be a boundary triplet for �̇�∗. Define operators 𝔸
and 𝔸′

𝔸 := �̇�∗ − Γ×0 Γ1, 𝔸′ := �̇�∗ + Γ×1 Γ0,

where Γ×0 and Γ
×
1 ∈ [𝒩 ,ℋ−] are the adjoint operators to Γ0 and Γ1, respec-

tively. Then 𝔸 and 𝔸′ belong to [ℋ+,ℋ−] and are t-self-adjoint bi-extensions
of �̇�. Moreover,

𝔸 ⊃ 𝐴1, 𝔸′ ⊃ 𝐴0.

2. If 𝔸 is a t-self-adjoint bi-extension of �̇� with quasi-kernel 𝐴1 and generated
by 𝐴0, then there exists a boundary triplet Π = {𝒩 ,Γ1,Γ0} for �̇�∗ such that
�̇�∗↾ kerΓ1 = 𝐴1 and 𝔸 = �̇�∗ − Γ×0 Γ1.
It is shown in the proof of Theorem 6.3 that the form 𝑤(𝑓, 𝑔) in (6.1) cor-

responds to 𝔸, the boundary triplet Π = {𝒩 ,Γ1,Γ0}, and 𝑤(𝑓, 𝑔) = (𝔸𝑓, 𝑔).
Similarly, 𝑤′(𝑓, 𝑔) = (𝔸′𝑓, 𝑔), where 𝑤′(𝑓, 𝑔) is defined in (6.2), and the boundary
triplet is Π′ = {𝒩 ,−Γ0,Γ1}.
Definition 6.4 ([3]). Suppose that �̇� is a non-negative symmetric operator. A
boundary triplet Π = {𝒩 ,Γ1,Γ0} is called non-negative if

𝑤(𝑓, 𝑓) = (�̇�∗𝑓, 𝑓)− (Γ1𝑓,Γ0𝑓)𝒩 ≥ 0 for all 𝑓 ∈ ℋ+.

The operator 𝔸 = �̇�∗ − Γ×0 Γ1 corresponding to the boundary triplet Π =

{𝒩 ,Γ1,Γ0} is [3] a t-self-adjoint non-negative bi-extension of �̇� and belongs to

[ℋ+,ℋ+]. If �̇� is a positive-definite operator, then for the positive-definite self-

adjoint extension 𝐴 we have ℋ+ = Dom(�̇�
∗) = Dom(𝐴)+̇ ker(�̇�∗). Consequently,

𝐴𝐹 and 𝐴𝐾 are transversal. Let 𝑃 be a projection in ℋ+ onto Dom(𝐴) parallel to

ker(�̇�∗), Π = {𝒩 ,Γ𝐾 ,Γ} be a boundary triplet such that ker(Γ𝐾) = Dom(𝐴𝐾),
Then

(�̇�∗𝑓, 𝑓)− (Γ𝐾𝑓,Γ𝑓)𝒩 = (𝐴𝑃𝑓, 𝑃𝑓), 𝑓 ∈ ℋ+,

i.e., {𝒩 ,Γ𝐾 ,Γ} is a positive boundary triplet. The latter equality has been assumed
as the definition of a positive boundary triplet (the space of boundary values) in

the case of a positive-definite operator �̇� in [22].
It was shown in [3] that a positive boundary triplet exists if and only if 𝐴𝐹 and

𝐴𝐾 are transversal. The following theorem naturally follows from the preceding
discussion.
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Theorem 6.5. Let �̇� be a closed densely defined non-negative symmetric operator
such that 𝐴𝐹 and 𝐴𝐾 are transversal. Then

1. to every non-negative boundary triplet Π = {𝒩 ,Γ1,Γ0} there corresponds a
non-negative t-self-adjoint bi-extension 𝔸 = �̇�∗ − Γ×0 Γ1;

2. to every non-negative t-self-adjoint bi-extension 𝔸 there corresponds (up to
equivalence1) a non-negative boundary triplet.

Let Π = {𝒩 ,Γ𝐹 ,Γ𝐾} be a non-negative boundary triplet such that
Dom(𝐴𝐾) = kerΓ𝐾 , and Dom(𝐴𝐹 ) = ker Γ𝐹 . In [3] this boundary triplet is called
basic. It is not hard to see that the corresponding to the basic boundary triplet
non-negative t-self-adjoint bi-extension

𝔸0 = �̇�∗ − Γ×𝐹Γ𝐾 (6.3)

is such that the quasi-kernel of 𝔸0 is 𝐴𝐾 . At the same time, 𝐴𝐹 is the quasi-kernel
of the bi-extension 𝔸′0 = �̇�∗ + Γ×𝐾Γ𝐹 . It follows that 𝔸0 = 𝔸𝐾 is the minimal

element of 𝒫(�̇�). The following theorem is established in [3].

Theorem 6.6. Let Π = {𝒩 ,Γ𝐹 ,Γ𝐾} be a basic boundary triplet. Then a boundary
triplet Π̃ =

{
𝒩 , Γ̃1, Γ̃0

}
is non-negative if and only if

Γ̃1 = 𝑋(Γ𝐾 −𝐵1Γ𝐹 ), Γ̃0 = 𝑋∗−1[(𝐼 +𝐵2𝐵1)Γ𝐹 −𝐵2Γ𝐾 ],

where 𝐵1, 𝐵2 are non-negative bounded operators in ℋ and 𝑋 is a linear homeo-

morphism from ℋ onto ℋ̃.
Theorem 6.6 essentially provides us with another way to describe all non-

negative t-self-adjoint bi-extensions in [ℋ+,ℋ−]. Namely, if Π = {𝒩 ,Γ𝐹 ,Γ𝐾} is a
basic non-negative boundary triplet, then the formula

𝔸 = �̇�∗ − [Γ×𝐹 (𝐼 +𝐵1𝐵2)− Γ×𝐾𝐵2](Γ𝐾 −𝐵1Γ𝐹 ), (6.4)

where 𝐵1, 𝐵2 are non-negative bounded operators in ℋ, gives that description.
Formulas (6.3) and (6.4) yield the following expression for quadratic forms

(𝔸𝑓, 𝑓) = (𝔸0𝑓, 𝑓) + 𝑏(𝑓, 𝑓), 𝑓 ∈ ℋ+,

where

𝑏(𝑓, 𝑓) = (𝐵1Γ𝐹 𝑓,Γ𝐹 𝑓) + (𝐵2Γ𝐾𝑓,Γ𝐾𝑓) + (𝐵1Γ𝐹 𝑓,𝐵2𝐵1Γ𝐹 𝑓)

− 2Re (𝐵1Γ𝐾𝑓,𝐵2Γ𝐾𝑓)

= ∣∣𝐵1/2
1 Γ𝐹 𝑓 ∣∣2𝒩 + ∣∣𝐵1/2

2 (𝐵1Γ𝐹 − Γ𝐾)𝑓 ∣∣2𝒩 .

For the corresponding dual self-adjoint bi-extension

𝔸′ = �̇�∗ + (Γ×𝐾 − Γ×𝐹𝐵1)((𝐼 + 𝐵2𝐵1)Γ𝐹 −𝐵2Γ𝐾),

1Two boundary triplets {𝒩 ,Γ1,Γ0} and
{
𝒩 , Γ̃1, Γ̃0

}
are called equivalent [3] if ker Γ𝑘 = ker Γ̃𝑘,

𝑘 = 0, 1.
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we have

(𝔸′𝑓, 𝑓) = (𝔸′0𝑓, 𝑓)− 𝑏(𝑓, 𝑓), ∀𝑓 ∈ ℋ+.

Set

𝒩 = 𝔑𝐹 , Γ0 = −�̇�∗𝑃+
𝔐𝐹

, Γ1 = 𝑃+
𝔑𝐹

.

One can easily check that {𝒩 ,Γ1,Γ0} is a boundary triplet for �̇�∗. Clearly
ker(Γ0) = Dom(𝐴𝐹 ).

Calculating Γ×0 and Γ
×
1 one obtains

Γ×0 = ℛ−1𝐴𝐹𝑃+
𝔑𝐹

, Γ×1 = ℛ−1𝑃+
𝔑𝐹

.

Using Theorem 4.11 we get that the domains of all non-negative self-adjoint ex-

tensions 𝐴 of �̇� takes the form

Dom(𝐴) = {𝑣 ∈ Dom(�̇�∗) : Γ0𝑣 = 𝑈Γ1𝑣},
where 𝑈 is an arbitrary (+)-self-adjoint and non-negative operator in 𝔑𝐹 , satis-

fying 0 ≤ 𝑈 ≤𝑊−1
0 , and

Dom(𝐴𝐾) = {𝑣 ∈ Dom(�̇�∗) : Γ0𝑣 =𝑊−1
0 Γ1𝑣}.

Now suppose that 𝐴𝐹 and 𝐴𝐾 are disjoint (transversal). Then 𝑊0 is a densely de-
fined (everywhere defined) in𝔑𝐹 and (+)-self-adjoint and we can rewrite Dom(𝐴𝐾)
as

Dom(𝐴𝐾) = ker(Γ1 −𝑊0Γ0).

The operator

𝔸𝐾 = �̇�∗ − Γ×0 (Γ1 −𝑊0Γ0)

is t-self-adjoint bi-extension with quasi-kernel 𝐴𝐾 and generated by 𝐴𝐹 . This is
the minimal element of the set 𝒫(�̇�). Then we get the explicit expressions for 𝔸𝐾

and 𝔸′𝐾 (cf. (4.19)):

𝔸𝐾 = �̇�∗ −ℛ−1𝐴𝐹 (𝑃
+
𝔑𝐹

+𝑊0�̇�
∗𝑃+

𝔐𝐹
),

𝔸′𝐾 = �̇�∗ −ℛ−1(𝑃+
𝔑𝐹
−𝐴𝐹𝑊0𝑃

+
𝔑𝐹
)�̇�∗𝑃+

𝔐𝐹
.

If 𝐴𝐹 and 𝐴𝐾 are transversal, then we set

Γ𝐹 = Γ0 = −�̇�∗𝑃+
𝔐𝐹

, Γ𝐾 = Γ1 −𝑊0Γ0 = 𝑃+
𝔑𝐹

+𝑊0�̇�
∗𝑃+

𝔐𝐹
.

Consequently, we obtain that {𝔑𝐹 ,Γ𝐾 ,Γ𝐹 } is a basic boundary triplet for �̇�∗.
Applying (6.4) we get a complete description of the set of all t-self-adjoint non-

negative bi-extensions of �̇� in [ℋ+,ℋ−] given by the following formula
𝔸 = �̇�∗ −ℛ−1 [𝐴𝐹 (𝐼 + (𝑊0 +𝐵1)𝐵2)−𝐵2]

[
𝑃+
𝔑𝐹

+ (𝑊0 +𝐵1)𝐴
∗𝑃+

𝔐𝐹

]
,

where 𝐵1 and 𝐵2 are an arbitrary (+)-bounded and non-negative self-adjoint op-
erators in 𝔑𝐹 .
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Matrices with Bidiagonal Decomposition,
Accurate Computations
and Corner Cutting Algorithms

A. Barreras and J.M. Peña

Abstract. Some important classes of matrices admit a factorization known
as bidiagonal decomposition. Bidiagonal decompositions can provide natural
parameters to perform computations with high relative accuracy. We prove
that corner cutting algorithms provide bidiagonal decompositions with high
relative accuracy.
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1. Introduction

Some classes of matrices important in applications can be characterized by their
bidiagonal decomposition, which uses bidiagonal matrices with unit diagonal and
a diagonal matrix. In Section 2 we recall the uniqueness of this decomposition and
that its entries can be used as natural parameters to derive algorithms with high
relative accuracy.

In Computer Aided Geometric Design, the most important family of algo-
rithms is formed by the corner cutting algorithms. In Section 3 we prove that a
corner cutting algorithm allows us to obtain the bidiagonal decomposition of the
associated matrix with high relative accuracy. Therefore many computations with
this matrix can be performed with high relative accuracy, such as the inversion,
the calculation of singular values and the calculation of eigenvalues.

Research Partially Supported by the Spanish Research GrantMTM2009-07315, by Gobierno de
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2. Bidiagonal decompositions and accurate computations

A matrix is totally positive (TP) if all its minors are non-negative. TP matrices
are also called totally non-negative matrices. This class of matrices have applica-
tions in many fields: see the surveys [1, 5], the classical book [10] and the recent
books [6, 16].

Some classes of matrices, including the TP matrices, can be expressed as a
product of bidiagonal matrices of the form

𝐿(𝑘) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1

. . .
. . .

0 1

𝑙
(𝑘)
𝑛−𝑘 1

. . .
. . .

𝑙
(𝑘)
𝑛−1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, 𝑈 (𝑘) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0

. . .
. . .

1 0

1 𝑢
(𝑘)
𝑛−𝑘

. . .
. . .

1 𝑢
(𝑘)
𝑛−1

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where 𝑘 = 1, . . . , 𝑛− 1.
We now introduce the concept of bidiagonal decomposition of a matrix.

Definition 2.1. Let 𝐴 be a nonsingular 𝑛 × 𝑛 matrix. Suppose that we can write
𝐴 as a product of bidiagonal matrices

𝐴 = 𝐿(1) ⋅ ⋅ ⋅𝐿(𝑛−1)𝐷𝑈 (𝑛−1) ⋅ ⋅ ⋅𝑈 (1), (2.1)

where 𝐷 = diag(𝑑1, . . . , 𝑑𝑛), and, for 𝑘 = 1, . . . , 𝑛−1, 𝐿(𝑘) and 𝑈 (𝑘) are (as above)
unit diagonal lower and upper bidiagonal matrices respectively, with off-diagonal

entries 𝑙
(𝑘)
𝑖 := (𝐿(𝑘))𝑖+1,𝑖 and 𝑢

(𝑘)
𝑖 := (𝑈 (𝑘))𝑖,𝑖+1, (𝑖 = 1, . . . , 𝑛− 1) satisfying

1. 𝑑𝑖 ∕= 0 for all 𝑖,
2. 𝑙

(𝑘)
𝑖 = 𝑢

(𝑘)
𝑖 = 0 for 𝑖 < 𝑛− 𝑘,

3. 𝑙
(𝑘)
𝑖 = 0⇒ 𝑙

(𝑘−𝑠)
𝑖+𝑠 = 0 for 𝑠 = 1, . . . , 𝑘 − 1 and

𝑢
(𝑘)
𝑖 = 0⇒ 𝑢

(𝑘−𝑠)
𝑖+𝑠 = 0 for 𝑠 = 1, . . . , 𝑘 − 1.

Then we denote (2.1) by ℬ𝒟(𝐴), a bidiagonal decomposition of 𝐴 satisfying the
conditions of this definition.

Recently, matrices with the bidiagonal decomposition presented in Defini-
tion 2.1 have been studied (see [11, 12, 13, 14]). Although in general, a bidiagonal
decomposition of a matrix is not unique, the following result of [2] uses Theorem 2.2
of [8] to ensure that a bidiagonal factorization as in Definition 2.1 is unique.

Proposition 2.2. Let 𝐴 be a nonsingular matrix. If a ℬ𝒟(𝐴) exists, then it is
unique.

In fact, by Theorem 2.2 of [8], the entries 𝑙
(𝑘)
𝑖 , 𝑢

(𝑘)
𝑖 of the bidiagonal factor-

ization in the previous proposition coincide with the multipliers of an elimination
procedure called Neville elimination. This procedure is used in several papers re-
lated with TP matrices (cf. [7, 8]).
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The following result is a consequence of Theorem 4.2 of [8] and describes the
unique bidiagonal decomposition of a nonsingular TP matrix.

Theorem 2.3. A nonsingular 𝑛 × 𝑛 matrix 𝐴 is TP if and only if there exists a
(unique) ℬ𝒟(𝐴) such that
1. 𝑑𝑖 > 0 for all 𝑖,

2. 𝑙
(𝑘)
𝑖 ≥ 0, 𝑢(𝑘)𝑖 ≥ 0 for 1 ≤ 𝑘 ≤ 𝑛− 1 and 𝑛− 𝑘 ≤ 𝑖 ≤ 𝑛− 1.
Let us recall that an algorithm can be performed with high relative accuracy

if it does not include subtractions (except of the initial data), that is, if it only
includes products, divisions, sums (of numbers of the same sign) and subtractions
of the initial data (cf. [3, 4, 15]).

The nontrivial entries of the matrices in ℬ𝒟(𝐴) (see (2.1)) have been consid-
ered natural parameters associated with 𝐴 in many recent references ([11, 12, 14]).
In many cases, we can assume that we know them with high relative accuracy. If
we assume it for a nonsingular totally positive matrix 𝐴, then algorithms with
high relative accuracy can be applied (see [11, 12, 13, 14]) to compute the singular
values of 𝐴, the eigenvalues, the inverse or solving certain linear systems 𝐴𝑥 = 𝑏.

Let us now introduce a class of matrices with bidiagonal decomposition that
will generalize the class of nonsingular TP matrices. Let us denote a signature by
𝜀, which is a vector 𝜀 = (𝜀1, . . . , 𝜀𝑚) with 𝜀𝑗 ∈ {±1} for 𝑗 = 1, . . . ,𝑚.
Definition 2.4. Given a signature 𝜀 = (𝜀1, . . . , 𝜀𝑛−1) and a nonsingular 𝑛×𝑛matrix
𝐴, we say that 𝐴 has a signed bidiagonal decomposition with signature 𝜀 if there
exists a ℬ𝒟(𝐴) (unique by Proposition 2.2) such that
1. 𝑑𝑖 > 0 for all 𝑖,

2. 𝑙
(𝑘)
𝑖 𝜀𝑖 ≥ 0, 𝑢(𝑘)𝑖 𝜀𝑖 ≥ 0 for 1 ≤ 𝑘 ≤ 𝑛− 1 and 𝑛− 𝑘 ≤ 𝑖 ≤ 𝑛− 1.
We say that 𝐴 has a signed bidiagonal decomposition if it has a signed bidi-

agonal decomposition with some signature 𝜀. By Theorem 2.3, we know that
a nonsingular TP matrix has a signed bidiagonal decomposition with signature
𝜀 = (1, . . . , 1).

If we assume that we know with high relative accuracy the entries of the bidi-
agonal factors for a signed bidiagonal matrix 𝐴, then we can find algorithms with
high relative accuracy to perform many computations with 𝐴 (see [2]), including
the inversion and the calculation of singular values and eigenvalues.

3. Corner cutting algorithms and accurate computations

Corner cutting algorithms form the most important family of algorithms in Com-
puter Aided Geometric Design (C.A.G.D.) due to their numerical stability prop-
erties as well as to their nice geometric interpretations. They are associated with
the factorization of nonsingular stochastic totally positive matrices. Let us recall
that a non-negative matrix is called stochastic if the entries of each row sum up
to 1. Let us now introduce the main definition.
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Figure 1. Elementary corner cuttings (3.1) and (3.2).

An elementary corner cutting is a transformation which maps any polygon
𝑃0 ⋅ ⋅ ⋅𝑃𝑛 into another polygon 𝐵0 ⋅ ⋅ ⋅𝐵𝑛 defined by one of the following ways

𝐵𝑗 = 𝑃𝑗 , 𝑗 ∕= 𝑖,

𝐵𝑖 = (1− 𝜆)𝑃𝑖 + 𝜆𝑃𝑖+1,
(3.1)

for some 𝑖 ∈ {0, . . . , 𝑛− 1}, 0 ≤ 𝜆 < 1, or

𝐵𝑗 = 𝑃𝑗 , 𝑗 ∕= 𝑖,

𝐵𝑖 = (1− 𝜆)𝑃𝑖 + 𝜆𝑃𝑖−1,
(3.2)

for some 𝑖 ∈ {1, . . . , 𝑛} , 0 ≤ 𝜆 < 1. (See Figure 1).

Clearly, the matrix form of the elementary corner cutting (3.1) is

(𝐵0, . . . , 𝐵𝑛)
𝑇 = 𝑈(𝜆𝑖)(𝑃0, . . . , 𝑃𝑛)

𝑇 ,

where 𝑈(𝜆𝑖) is the bidiagonal, nonsingular and upper triangular matrix

𝑈(𝜆𝑖) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
1 0

. . .
. . .

1− 𝜆𝑖 𝜆𝑖

. . .
. . .

1 0
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Analogously, a lower triangular matrix can be used for the elementary corner
cutting (3.2).

A corner cutting algorithm is any composition of elementary corner cuttings
(see [9, 17]). An elementary corner cutting is defined by a bidiagonal, nonsingular,
totally positive and stochastic matrix, which is upper (resp., lower) triangular in
the case (3.1) (resp., (3.2)). So a corner cutting algorithm is defined by a product
of matrices that are simultaneously bidiagonal, nonsingular, totally positive and
stochastic. In fact, any upper (resp., lower) triangular bidiagonal, nonsingular,
totally positive and stochastic matrix determines a corner cutting algorithm by
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the factorization⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1− 𝜆0 𝜆0

1− 𝜆1 𝜆1

. . .
. . .

1− 𝜆𝑖 𝜆𝑖

. . .
. . .

1− 𝜆𝑛−1 𝜆𝑛−1

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 𝑈(𝜆𝑛−1)𝑈(𝜆𝑛−2) ⋅ ⋅ ⋅𝑈(𝜆0)

(an analogous factorization can be performed for the lower triangular case).

A corner cutting algorithm described by a nonsingular, totally positive and
stochastic matrix can be expressed as a product of bidiagonal, nonsingular, to-
tally positive and stochastic matrices, as shown by the following result, which
corresponds to Theorem 4.5 of [8] and summarizes this fact.

Theorem 3.1. A nonsingular 𝑛 × 𝑛 matrix 𝐴 is stochastic and totally positive if
and only if it can be factorized in the form

𝐴 = 𝐹𝑛−1𝐹𝑛−2 ⋅ ⋅ ⋅𝐹1𝐺1 ⋅ ⋅ ⋅𝐺𝑛−2𝐺𝑛−1, (3.3)

with

𝐹𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0 1
. . .

. . .

0 1
𝛼𝑖+1,1 1− 𝛼𝑖+1,1

. . .
. . .

𝛼𝑛,𝑛−𝑖 1− 𝛼𝑛,𝑛−𝑖

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and

𝐺𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0
. . .

. . .

1 0
1− 𝛼1,𝑖+1 𝛼1,𝑖+1

. . .
. . .

1− 𝛼𝑛−𝑖,𝑛 𝛼𝑛−𝑖,𝑛

1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

where, ∀(𝑖, 𝑗), 0 ≤ 𝛼𝑖,𝑗 < 1 satisfies

𝛼𝑖𝑗 = 0⇒ 𝛼ℎ𝑗 = 0 ∀ℎ > 𝑖 if 𝑖 > 𝑗,

𝛼𝑖𝑗 = 0⇒ 𝛼𝑖𝑘 = 0 ∀𝑘 > 𝑗 if 𝑖 < 𝑗.
(3.4)

Under these conditions, the factorization is unique.
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The previous condition for the 𝛼𝑖𝑗 ’s is only used to guarantee the uniqueness
of the factorization, analogously to the conditions of zero entries in Definition 2.1.

Many crucial algorithms for the design of curves, such as evaluation, subdivi-
sion, degree elevation or knot insertion algorithms, are corner cutting algorithms.

The following result proves that, from a corner cutting algorithm, we can
construct with high relative accuracy and 𝒪(𝑛2) elementary operations the bidi-
agonal decomposition ℬ𝒟(𝐴) of the associated 𝑛× 𝑛 matrix 𝐴. Therefore, by the
results and methods commented in the previous sections, many computations with
𝐴 can be performed with high relative accuracy, including the inversion and the
calculation of singular values and eigenvalues.

Theorem 3.2. Let us consider a corner cutting algorithm associated to the matrix
factorization (3.3) of a nonsingular totally positive matrix 𝐴. If we know the entries
of 𝐹𝑖, 𝐺𝑖 𝑖 = 1, . . . , 𝑛 − 1 with high relative accuracy, then we can compute a
bidiagonal decomposition ℬ𝒟(𝐴) with high relative accuracy with 5

2𝑛
2 − 5

2𝑛 + 3

products and 1
2𝑛

2 − 3
2𝑛+ 1 quotients.

Proof. We are going to prove that

ℬ𝒟(𝐴) = 𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1𝐷�̂�1 ⋅ ⋅ ⋅ �̂�𝑛−1, (3.5)

can be computed from the entries of (3.3) without subtractions.
First, let us show that we can write

𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1 = 𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1𝐷(𝐹 )
1 (3.6)

with 𝐷
(𝐹 )
𝑖 = diag(Fn-1) ⋅ ⋅ ⋅diag(Fi), denoting by diag(𝐹𝑗) the diagonal matrix

whose diagonal entries coincide with those of 𝐹𝑗 .

We have that 𝐹𝑛−1 = 𝐹𝑛−1𝐷
(𝐹 )
𝑛−1, where

𝐹𝑛−1 =

⎛⎜⎜⎜⎝
1

. . .

1
𝛼𝑛1 1

⎞⎟⎟⎟⎠ .

Besides, it can be checked that, for all 𝑖 = 𝑛−1, . . . , 2,𝐷(𝐹 )
𝑖 𝐹𝑖−1 = 𝐹𝑖−1𝐷

(𝐹 )
𝑖−1,

where

𝐹𝑖 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
. . .

1
𝛼𝑖+1,1 1

𝛼𝑖+2,2(1−𝛼𝑖+2,1)
1−𝛼𝑖+1,1

1

. . .
. . .

1
(1−𝛼𝑛1)⋅⋅⋅(1−𝛼𝑛,𝑛−𝑖−1)𝛼𝑛,𝑛−𝑖

(1−𝛼𝑛−1,1)⋅⋅⋅(1−𝛼𝑛−1,𝑛−𝑖−1)
1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,
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which has the entry 𝛼𝑖+1,1 in place (𝑖+1, 𝑖). Thus, we conclude that 𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1 =
𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1𝐷(𝐹 )

1 .

Analogously, we can deduce that 𝐺1 ⋅ ⋅ ⋅𝐺𝑛−1 = 𝐷
(𝐺)
1 �̂�1 ⋅ ⋅ ⋅ �̂�𝑛−1, with 𝐷

(𝐺)
1

a diagonal matrix and �̂�𝑗 a bidiagonal upper triangular matrix with unit diagonal.
Then, we have that

𝐴 = 𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1𝐺1 ⋅ ⋅ ⋅𝐺𝑛−1

= 𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1𝐷(𝐹 )
1 𝐷

(𝐺)
1 �̂�1 ⋅ ⋅ ⋅ �̂�𝑛−1

= 𝐹𝑛−1 ⋅ ⋅ ⋅𝐹1𝐷�̂�1 ⋅ ⋅ ⋅ �̂�𝑛−1
= ℬ𝒟(𝐴),

where 𝐷 := 𝐷
(𝐹 )
1 𝐷

(𝐺)
1 .

If we denote by 𝑓
(𝑖)
𝑗 the (𝑗, 𝑗 − 1) entry of the matrix 𝐹𝑖, it can be checked

that it is possible to compute the 𝑓
(𝑖)
𝑗 entry from 𝑓

(𝑖+1)
𝑗 by using the following

formula for 𝑗 = 2, . . . , 𝑛 and 𝑖 = 1, . . . , 𝑗 − 2,

𝑓
(𝑖)
𝑗 =

𝛼𝑗,𝑗−𝑖(1− 𝛼𝑗,𝑗−𝑖−1)
𝛼𝑗,𝑗−𝑖−1(1− 𝛼𝑗−1,𝑗−𝑖−1)

𝑓
(𝑖+1)
𝑗 . (3.7)

An analogous formula exists for the entries of �̂�𝑖. By conditions (3.4) and the
previous formula, it can be checked that the zero patterns of Definition 2.1 are

satisfied for 𝐹𝑖, �̂�𝑖 and 𝐷, and so, we have the ℬ𝒟(𝐴).
Besides, as we can compute the entries of 𝐹𝑖, �̂�𝑖 and 𝐷 from the entries of 𝐹𝑗

and 𝐺𝑗 (𝑗 = 𝑖+1, . . . , 𝑛) without subtractions, we have computed the factorization
with high relative accuracy.

Taking into account (3.7) and the definition of the matrix 𝐷, we can conclude
that to compute the bidiagonal decomposition ℬ𝒟(𝐴) are necessary 𝑛(𝑛 + 2) +∑2

𝑗=𝑛

∑1
𝑖=𝑗−2 3 =

5
2𝑛

2 − 5
2𝑛 + 3 products and

∑2
𝑗=𝑛

∑1
𝑖=𝑗−2 1 =

1
2𝑛

2 − 3
2𝑛 + 1

quotients. □

We finish with the algorithm corresponding to the proof of the previous result
to compute ℬ𝒟(𝐴) from the factorization (3.3). Let us recall that we have denoted

by 𝑓
(𝑖)
𝑗 the (𝑗, 𝑗 − 1) entry of 𝐹𝑖 (resp. by 𝑔

(𝑖)
𝑗 the (𝑗 − 𝑖, 𝑗) entry of �̂�𝑖). Let us

also initialize the matrix 𝐷 := diag(𝐺1(1, 1), . . . , 𝐺𝑛(𝑛, 𝑛)).

Algorithm to compute the bidiagonal factorization of a corner cutting algorithm
Input: nontrivial entries of matrices 𝐹𝑖 and 𝐺𝑖 of (3.3).

Output: matrices 𝐹𝑖, 𝐷 and �̂�𝑖 of (3.5).

Compute the matrices 𝐹𝑛−1 and �̂�𝑛−1
for 𝑖 = 𝑛− 2 to 1

𝑓
(𝑖)
𝑖+1 = 𝛼𝑖+1,1

𝑔
(𝑖)
𝑖+1 =

𝛼1,𝑖+1(1−𝛼1,𝑖+2)
1−𝛼1,𝑖+1

endfor
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for 𝑗 = 𝑛 to 2
for 𝑖 = 𝑗 − 2 to 2

𝑓
(𝑖)
𝑗 =

𝛼𝑗,𝑗−𝑖(1−𝛼𝑗,𝑗−𝑖−1)
𝛼𝑗,𝑗−𝑖−1(1−𝛼𝑗−1,𝑗−𝑖−1)

𝑓
(𝑖+1)
𝑗

𝑔
(𝑖)
𝑗 =

𝛼𝑗−𝑖,𝑗(1−𝛼𝑗−𝑖,𝑗+1)
𝛼𝑗−𝑖−1,𝑗(1−𝛼𝑗−𝑖,𝑗)

𝑔
(𝑖+1)
𝑗

endfor
for 𝑘 = 1 to 𝑗 − 1

𝐷(𝑗, 𝑗) = 𝐷(𝑗, 𝑗) ∗ 𝐹𝑘(𝑗, 𝑗) ∗𝐺𝑘(𝑗, 𝑗)
endfor

endfor
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Abstract. This paper presents a survey of recent results, methods, and open
problems in the theory of higher-order elliptic boundary value problems on
Lipschitz and more general non-smooth domains. The main topics include
the maximum principle and pointwise estimates on solutions in arbitrary do-
mains, analogues of the Wiener test governing continuity of solutions and
their derivatives at a boundary point, and well-posedness of boundary value
problems in domains with Lipschitz boundaries.
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1. Introduction

The last three decades have witnessed a surge of activity on boundary value prob-
lems on Lipschitz domains. The Dirichlet, Neumann, and regularity problems for
the Laplacian are now well understood for data in 𝐿𝑝, Sobolev, and Besov spaces.
More generally, well-posedness in 𝐿𝑝 has been established for divergence form ellip-
tic equations with non-smooth coefficients − div𝐴∇ and, at least in the context of
real symmetric matrices, the optimal conditions on 𝐴 needed for solvability of the
Dirichlet problem in 𝐿𝑝 are known. We direct the interested reader to Kenig’s 1994
CBMS book [Ken94] for an excellent review of these matters and to [KKPT00,
KR09, Rul07, AAA+11, DPP07, DR10, AAH08, AAM10, AA11, AR11, HKMP12]
for recent results.

Svitlana Mayboroda is partially supported by the Alfred P. Sloan Fellowship, the NSF CAREER
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Unfortunately, this beautiful and powerful theory has mostly been restricted
to the case of second-order operators. Higher-order elliptic boundary problems,
while having abundant applications in physics and engineering, have mostly been
out of reach of the methods devised to study the second-order case. The present
survey is devoted to major recent results in this subject, new techniques, and
principal open problems.

The prototypical example of a higher-order elliptic operator is the bilaplacian
Δ2 = Δ(Δ) or, more generally, the polyharmonic operator Δ𝑚, 𝑚 ≥ 2. The
biharmonic problem in a domain Ω ⊂ ℝ𝑛 with Dirichlet boundary data consists,
roughly speaking, of finding a function 𝑢 such that for given 𝑓 , 𝑔, ℎ,

Δ2𝑢 = ℎ in Ω, 𝑢
∣∣
∂Ω
= 𝑓, ∂𝜈𝑢

∣∣
∂Ω
= 𝑔,

subject to the appropriate estimates on 𝑢 in terms of the data. To make it precise,
as usual, one needs to properly interpret restriction of solution to the boundary
𝑢
∣∣
∂Ω

and its normal derivative ∂𝜈𝑢
∣∣
∂Ω
, as well as specify the desired estimates.

The biharmonic equation arises in numerous problems of structural engineering.
It models the displacements of a thin plate clamped near its boundary, the stresses
in an elastic body, the stream function in creeping flow of a viscous incompressible
fluid, to mention just a few applications (see, e.g., [Mel03]).

The primary goal of this survey is to address the biharmonic problem and
more general higher-order partial differential equations in domains with non-
smooth boundaries, specifically, in the class of Lipschitz domains. However, the
analysis of such delicate questions as well-posedness in Lipschitz domains requires
preliminary understanding of fundamental properties of the solutions, such as
boundedness, continuity, and regularity near a boundary point. For the Laplacian,
these properties of solutions in general domains are described by the maximum
principle and by the 1924 Wiener criterion; for the bilaplacian, they turn out to be
highly nontrivial and partially open to date. For the purposes of the introduction,
let us mention just a few highlights and outline the paper.

In Section 3, we discuss the maximum principle for higher-order elliptic equa-
tions. Loosely, one expects that for a solution 𝑢 to the equation 𝐿𝑢 = 0 in Ω, where
𝐿 is a differential operator of order 2𝑚, there holds

max
∣𝛼∣≤𝑚−1

∥∂𝛼𝑢∥𝐿∞(Ω) ≤ 𝐶 max
∣𝛽∣≤𝑚−1

∥∂𝛽𝑢∥𝐿∞(∂Ω),

with the usual convention that the zeroth-order derivative of 𝑢 is simply 𝑢 itself.
For the Laplacian (𝑚 = 1), this formula is a slightly weakened formulation of the
maximum principle. In striking contrast with the case of harmonic functions, the
maximum principle for an elliptic operator of order 2𝑚 ≥ 4 may fail, even in a
Lipschitz domain. To be precise, in general, the derivatives of order (𝑚 − 1) of a
solution to an elliptic equation of order 2𝑚 need not be bounded. We discuss rel-
evant counterexamples, known positive results, as well as a more general question
of pointwise bounds on solutions and their derivatives in arbitrary domains, e.g.,
whether 𝑢 (rather than ∇𝑚−1𝑢) is necessarily bounded in Ω.
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Section 4 is devoted to continuity of solutions to higher-order equations and
their derivatives near the boundary of the domain. Specifically, if for some operator
the aforementioned boundedness of the (𝑚 − 1)-st derivatives holds, one next
would need to identify conditions assuring their continuity near the boundary. For
instance, in the particular case of the bilaplacian, the gradient of a solution is
bounded in an arbitrary three-dimensional domain, and one would like to study
the continuity of the gradient near a boundary point. As is well known, for second-
order equations, necessary and sufficient conditions for continuity of the solutions
have been provided by the celebrated Wiener criterion. Analogues of the Wiener
test for higher-order PDEs are known only for some operators, and in a restricted
range of dimensions. We shall discuss these results, testing conditions, and the
associated capacities, as well as similarities and differences with their second-order
antecedents.

Finally, Sections 5 and 6 are devoted to boundary-value problems in Lipschitz
domains. The simplest example is the Dirichlet problem for the bilaplacian,

Δ2𝑢 = 0 in Ω, 𝑢
∣∣
∂Ω
= 𝑓 ∈ 𝑊 𝑝

1 (∂Ω), ∂𝜈𝑢
∣∣
∂Ω
= 𝑔 ∈ 𝐿𝑝(∂Ω), (1.1)

in which case the expected sharp estimate on the solution is

∥𝑁(∇𝑢)∥𝐿𝑝(∂Ω) ≤ 𝐶∥∇𝜏𝑓∥𝐿𝑝(∂Ω) + 𝐶∥𝑔∥𝐿𝑝(∂Ω), (1.2)

where 𝑁 denotes the non-tangential maximal function and𝑊 𝑝
1 (∂Ω) is the Sobolev

space of functions with one tangential derivative in 𝐿𝑝 (cf. Section 2 for pre-
cise definitions). In Sections 5.1–5.6 we discuss (1.1) and (1.2), and more general
higher-order homogeneous Dirichlet and regularity boundary value problems with
constant coefficients, with boundary data in 𝐿𝑝. Section 5.7 describes the specific
case of convex domains. The Neumann problem for the bilaplacian is addressed in
Section 5.8. In Section 5.9, we discuss inhomogeneous boundary value problems
with data in Besov and Sobolev spaces, which, in a sense, are intermediate be-
tween those with Dirichlet and regularity data. Finally, in Section 6, we discuss
boundary-value problems with variable coefficients.

The sharp range of 𝑝, such that the aforementioned biharmonic (or any other
higher-order) Dirichlet problem with data in 𝐿𝑝 is well posed in Lipschitz domains,
is not yet known in high dimensions. However, over the recent years numerous ad-
vances have been made in this direction and some new methods have emerged.
For instance, several different layer potential constructions have proven to be use-
ful (again, note the difference with the second-order case when the relevant layer
potentials are essentially uniquely defined by the boundary problem), as well as re-
cently discovered equivalence of well-posedness to certain reverse Hölder estimates
on the non-tangential maximal function. It is interesting to point out that the
main local estimates which played a role in recent well-posedness results actually
come from the techniques developed in connection with the Wiener test discussed
above. Thus, in the higher-order case the two issues are intimately intertwined;
this was one of the reasons for the particular choice of topics in the present survey.
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The Neumann problem and the variable coefficient case are even more puz-
zling. The details will be presented in the body of the paper. Here, let us just
point out that in both cases even the proper statement of the “natural” boundary
problem presents a challenge. For instance, in the higher-order case the choice of
Neumann data is not unique. Depending on peculiarities of the Neumann opera-
tor, one can be led to well-posed and ill-posed problems even for the bilaplacian,
and more general operators give rise to new issues related to the coercivity of the
underlying form. However, despite the aforementioned challenges, the first well-
posedness results have recently been obtained and will be discussed below.

To conclude this introduction, we refer the reader to the excellent exposi-
tory paper [Maz99b] by Vladimir Maz’ya on the topic of the Wiener criterion and
pointwise estimates. This paper largely inspired the corresponding sections of the
present manuscript, and its exposition of the related historical material extends
and complements that in Sections 3 and 4. Our main goal here, however, was to
discuss the most recent achievements (some of which appeared after the aforemen-
tioned survey was written) and their role in the well-posedness results on Lipschitz
domains which constitute the main topic of the present review. We also would like
to mention that this paper does not touch upon the methods and results of the
part of elliptic theory studying the behavior of solutions in the domains with iso-
lated singularities, conical points, cuspidal points, etc. Here, we have intentionally
concentrated on the case of Lipschitz domains, which can display accumulating
singularities – a feature drastically affecting both the available techniques and the
actual properties of solutions.

2. Definitions

As we pointed out in the introduction, the prototypical higher-order elliptic equa-
tion is the biharmonic equation Δ2𝑢 = 0, or, more generally, the polyharmonic
equation Δ𝑚𝑢 = 0 for some integer 𝑚 ≥ 2. It naturally arises in numerous appli-
cations in physics and in engineering, and in mathematics it is a basic model for
a higher-order partial differential equation. These operators may be generalized
to constant-coefficient differential operators of order 2𝑚, or to variable-coefficient
operators in either divergence or nondivergence form.

Let us discuss the details. To start, a general constant coefficient elliptic
operator is defined as follows.

Definition 2.1. Let 𝐿 be an operator acting on functions 𝑢 : ℝ𝑛 1→ ℂℓ. Suppose
that we may write

(𝐿𝑢)𝑗 =

ℓ∑
𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

∂𝛼𝑎𝑗𝑘
𝛼𝛽∂

𝛽𝑢𝑘 (2.2)

for some coefficients 𝑎𝑗𝑘
𝛼𝛽 defined for all 1 ≤ 𝑗, 𝑘 ≤ ℓ and all multiindices 𝛼, 𝛽 of

length 𝑛 with ∣𝛼∣ = ∣𝛽∣ = 𝑚. Then we say that 𝐿 is a differential operator of
order 2𝑚.
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Suppose the coefficients 𝑎𝑗𝑘
𝛼𝛽 are constant and satisfy the Legendre–Hadamard

ellipticity condition

Re

ℓ∑
𝑗,𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

𝑎𝑗𝑘
𝛼𝛽𝜉

𝛼𝜉𝛽𝜁𝑗𝜁𝑘 ≥ 𝜆∣𝜉∣2𝑚∣𝜁∣2 (2.3)

for all 𝜉 ∈ ℝ𝑛 and all 𝜁 ∈ ℂℓ, where 𝜆 > 0 is a real constant. Then we say that 𝐿
is an elliptic operator of order 2𝑚.

If ℓ = 1 we say that 𝐿 is a scalar operator and refer to the equation 𝐿𝑢 = 0 as
an elliptic equation; if ℓ > 1 we refer to 𝐿𝑢 = 0 as an elliptic system. If 𝑎𝑗𝑘 = 𝑎𝑘𝑗 ,

then we say the operator 𝐿 is symmetric. If 𝑎𝑗𝑘
𝛼𝛽 is real for all 𝛼, 𝛽, 𝑗, and 𝑘, we

say that 𝐿 has real coefficients.

Here if 𝛼 is a multiindex of length 𝑛, then ∂𝛼 = ∂𝛼1
𝑥1

. . . ∂𝛼𝑛
𝑥𝑛
.

Now let us discuss the case of variable coefficients. A divergence-form higher-
order elliptic operator is given by

(𝐿𝑢)𝑗(𝑋) =
ℓ∑

𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

∂𝛼(𝑎𝑗𝑘
𝛼𝛽(𝑋)∂

𝛽𝑢𝑘(𝑋)). (2.4)

This form affords a notion of weak solution; we say that 𝐿𝑢 = ℎ weakly if

ℓ∑
𝑗=1

ˆ
Ω

𝜑𝑗 ℎ𝑗 =
∑

∣𝛼∣=∣𝛽∣=𝑚

ℓ∑
𝑗,𝑘=1

(−1)𝑚
ˆ
Ω

∂𝛼𝜑𝑗 𝑎
𝑗𝑘
𝛼𝛽 ∂𝛽𝑢𝑘 (2.5)

for any function 𝜑 : Ω 1→ ℂℓ smooth and compactly supported.

If the coefficients 𝑎𝑗𝑘
𝛼𝛽 : ℝ

𝑛 → ℂ are sufficiently smooth, we may rewrite (2.4)
in nondivergence form

(𝐿𝑢)𝑗(𝑋) =

ℓ∑
𝑘=1

∑
∣𝛼∣≤2𝑚

𝑎𝑗𝑘
𝛼 (𝑋)∂

𝛼𝑢𝑘(𝑋). (2.6)

This form is particularly convenient when we allow equations with lower-order
terms (note their appearance in (2.6)).

A simple criterion for ellipticity of the operators 𝐿 of (2.6) is the condition

that (2.3) holds with 𝑎𝑗𝑘
𝛼𝛽 replaced by 𝑎𝑗𝑘

𝛼 (𝑋) for any 𝑋 ∈ ℝ𝑛, that is, that

Re

ℓ∑
𝑗,𝑘=1

∑
∣𝛼∣=2𝑚

𝑎𝑗𝑘
𝛼 (𝑋)𝜉

𝛼𝜁𝑗𝜁𝑘 ≥ 𝜆∣𝜉∣2𝑚∣𝜁∣2 (2.7)

for any fixed 𝑋 ∈ ℝ𝑛 and for all 𝜉 ∈ ℝ𝑛, 𝜁 ∈ ℂ2. This means in particular that
ellipticity is only a property of the highest-order terms of (2.6); the value of 𝑎𝑗𝑘

𝛼 ,
for ∣𝛼∣ < 𝑚, is not considered.

For divergence-form operators, some known results use a weaker notion of

ellipticity, namely that ⟨𝜑,𝐿𝜑⟩ ≥ 𝜆∥∇𝑚𝜑∥2𝐿2 for all smooth compactly supported
functions 𝜑; this notion is written out in full in Formula (6.5) below.
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Finally, let us mention that throughout we let 𝐶 and 𝜀 denote positive con-
stants whose value may change from line to line. We let

ffl
denote the average

integral, that is,
ffl
𝐸 𝑓 𝑑𝜇 = 1

𝜇(𝐸)

´
𝐸 𝑓 𝑑𝜇. The only measures we will consider are

the Lebesgue measure 𝑑𝑋 (on ℝ𝑛 or on domains in ℝ𝑛) or the surface measure 𝑑𝜎
(on the boundaries of domains).

3. The maximum principle and pointwise estimates on solutions

The maximum principle for harmonic functions is one of the fundamental results in
the theory of elliptic equations. It holds in arbitrary domains and guarantees that
every solution to the Dirichlet problem for the Laplace equation, with bounded
data, is bounded. Moreover, it remains valid for all second-order divergence-form
elliptic equations with real coefficients.

In the case of equations of higher order, the maximum principle has been
established only in relatively nice domains. It was proven to hold for operators with
smooth coefficients in smooth domains of dimension two in [Mir48] and [Mir58],
and of arbitrary dimension in [Agm60]. In the early 1990s, it was extended to
three-dimensional domains diffeomorphic to a polyhedron ([KMR01, MR91]) or
having a Lipschitz boundary ([PV93, PV95b]). However, in general domains, no
direct analog of the maximum principle exists (see Problem 4.3, p. 275, in Nečas’s
book [Neč67]). The increase of the order leads to the failure of the methods which
work for second-order equations, and the properties of the solutions themselves
become more involved.

To be more specific, the following theorem was proved by Agmon.

Theorem 3.1 ([Agm60, Theorem 1]). Let 𝑚 ≥ 1 be an integer. Suppose that Ω is
domain with 𝐶2𝑚 boundary. Let

𝐿 =
∑

∣𝛼∣≤2𝑚
𝑎𝛼(𝑋)∂

𝛼

be a scalar operator of order 2𝑚, where 𝑎𝛼 ∈ 𝐶∣𝛼∣(Ω). Suppose that 𝐿 is elliptic
in the sense of (2.7). Suppose further that solutions to the Dirichlet problem for
𝐿 are unique.

Then, for every 𝑢 ∈ 𝐶𝑚−1(Ω) ∩ 𝐶2𝑚(Ω) that satisfies 𝐿𝑢 = 0 in Ω, we have

max
∣𝛼∣≤𝑚−1

∥∂𝛼𝑢∥𝐿∞(Ω) ≤ 𝐶 max
∣𝛽∣≤𝑚−1

∥∂𝛽𝑢∥𝐿∞(∂Ω). (3.2)

We remark that the requirement that the Dirichlet problem have unique
solutions is not automatically satisfied for elliptic equations with lower-order terms;
for example, if 𝜆 is an eigenvalue of the Laplacian then solutions to the Dirichlet
problem for Δ𝑢− 𝜆𝑢 are not unique.

Equation (3.2) is called the Agmon–Miranda maximum principle. In [Šul75],
Šul’ce generalized this to systems of the form (2.6), elliptic in the sense of (2.7),
that satisfy a positivity condition (strong enough to imply Agmon’s requirement
that solutions to the Dirichlet problem be unique).
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Thus the Agmon–Miranda maximum principle holds for sufficiently smooth
operators and domains. Moreover, for some operators, the maximum principle is
valid even in domains with Lipschitz boundary, provided the dimension is small
enough. We postpone a more detailed discussion of the Lipschitz case to Sec-
tion 5.6; here we simply state the main results. In [PV93] and [PV95b], Pipher and
Verchota showed that the maximum principle holds for the biharmonic operator
Δ2, and more generally for the polyharmonic operator Δ𝑚, in bounded Lipschitz
domains in ℝ2 or ℝ3. In [Ver96, Section 8], Verchota extended this to symmet-
ric, strongly elliptic systems with real constant coefficients in three-dimensional
Lipschitz domains.

For Laplace’s equation and more general second-order elliptic operators,
the maximum principle continues to hold in arbitrary bounded domains. In con-
trast, the maximum principle for higher-order operators in rough domains gener-
ally fails.

In [MNP83], Maz’ya, Nazarov and Plamenevskii studied the Dirichlet prob-
lem (with zero boundary data) for constant-coefficient elliptic systems in cones.
Counterexamples to (3.2) for systems of order 2𝑚 in dimension 𝑛 ≥ 2𝑚+1 imme-
diately follow from their results. (See [MNP83, Formulas (1.3), (1.18) and (1.28)].)
Furthermore, Pipher and Verchota constructed counterexamples to (3.2) for the
biharmonic operator Δ2 in dimension 𝑛 = 4 in [PV92, Section 10], and for the
polyharmonic equation Δ𝑚𝑢 = 0 in dimension 𝑛, 4 ≤ 𝑛 < 2𝑚 + 1, in [PV95b,
Theorem 2.1]. Independently Maz’ya and Rossmann showed that (3.2) fails in the
exterior of a sufficiently thin cone in dimension 𝑛, 𝑛 ≥ 4, where 𝐿 is any constant-
coefficient elliptic scalar operator of order 2𝑚 ≥ 4 (without lower-order terms).
See [MR92, Theorem 8 and Remark 3].

Moreover, with the exception of [MR92, Theorem 8], the aforementioned
counterexamples actually provide a stronger negative result than simply the failure
of the maximum principle: they show that the left-hand side of (3.2) may be infinite
even if the data of the elliptic problem is as nice as possible, that is, smooth and
compactly supported.

The counterexamples, however, pertain to high dimensions and do not in-
dicate, e.g., the behavior of the derivatives of order (𝑚 − 1) of a solution to an
elliptic equation of order 2𝑚 in the lower-dimensional case.

Recently in [MM09b], the second author of the present paper together with
Maz’ya have considered this question for the inhomogeneous Dirichlet problem

Δ2𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
2 (Ω). (3.3)

Here Ω is a bounded domain in ℝ3 or ℝ2, the Sobolev space �̊� 2
2 (Ω) is a completion

of 𝐶∞0 (Ω) in the norm ∥𝑢∥�̊� 2
2 (Ω)

= ∥∇2𝑢∥𝐿2(Ω), and ℎ is a reasonably nice function

(e.g., 𝐶∞0 (Ω)). We remark that if Ω is an arbitrary domain, defining ∇𝑢
∣∣
∂Ω

is
a delicate matter, and so considering the Dirichlet problem with homogeneous
boundary data is somewhat more appropriate.
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Motivated by (3.2), the authors showed that if 𝑢 solves (3.3), then ∇𝑢 ∈
𝐿∞(Ω), under no restrictions on Ω other than its dimension. Moreover, they proved
the following bounds on the Green function.

Let Ω be an arbitrary bounded domain in ℝ3 and let 𝐺 be the Green function
for the biharmonic equation. Then

∣∇𝑋∇𝑌 𝐺(𝑋,𝑌 )∣ ≤ 𝐶∣𝑋 − 𝑌 ∣−1, 𝑋, 𝑌 ∈ Ω, (3.4)

∣∇𝑋𝐺(𝑋,𝑌 )∣ ≤ 𝐶 and ∣∇𝑌 𝐺(𝑋,𝑌 )∣ ≤ 𝐶, 𝑋, 𝑌 ∈ Ω, (3.5)

where 𝐶 is an absolute constant.
The boundedness of the gradient of a solution to the biharmonic equation in

a three-dimensional domain is a sharp property in the sense that the function 𝑢
satisfying (3.3) generally does not exhibit more regularity. For example, let Ω be
the three-dimensional punctured unit ball 𝐵(0, 1) ∖ {0}, where 𝐵(𝑋, 𝑟) = {𝑌 ∈
ℝ3 : ∣𝑋 − 𝑌 ∣ < 𝑟}, and consider a function 𝜂 ∈ 𝐶∞0 (𝐵(0, 1/2)) such that 𝜂 = 1 on
𝐵(0, 1/4). Let

𝑢(𝑋) := 𝜂(𝑋)∣𝑋 ∣, 𝑋 ∈ 𝐵1 ∖ {0}. (3.6)

Obviously, 𝑢 ∈ �̊� 2
2 (Ω) and Δ

2𝑢 ∈ 𝐶∞0 (Ω). While ∇𝑢 is bounded, it is not continu-
ous at the origin. Therefore, the continuity of the gradient does not hold in general
and must depend on some delicate properties of the domain. These questions will
be addressed in Section 4 in the framework of the Wiener criterion.

In the absence of boundedness of the gradient ∇𝑢 of a harmonic function, or
the higher-order derivatives ∇𝑚−1𝑢 of a solution to a higher-order equation, we
may instead consider boundedness of a solution itself. Let

Δ𝑚𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
𝑚(Ω), (3.7)

and ℎ ∈ 𝐶∞0 (Ω). Observe that if Ω ⊂ ℝ𝑛 for 𝑛 ≤ 2𝑚− 1, then every 𝑢 ∈ �̊� 2
𝑚(Ω)

is Hölder continuous on Ω and so must necessarily be bounded.
In [Maz99b, Section 10], Maz’ya showed that the Green function 𝐺𝑚(𝑋,𝑌 )

for Δ𝑚 in an arbitrary bounded domain Ω ⊂ ℝ𝑛 satisfies

∣𝐺𝑚(𝑋,𝑌 )∣ ≤ 𝐶(2𝑚) log
𝐶 diamΩ

min(∣𝑋 − 𝑌 ∣, dist(𝑌, ∂Ω)) (3.8)

in dimension 𝑛 = 2𝑚, and satisfies

∣𝐺𝑚(𝑋,𝑌 )∣ ≤ 𝐶(𝑛)

∣𝑋 − 𝑌 ∣𝑛−2𝑚 (3.9)

if 𝑛 = 2𝑚 + 1 or 𝑛 = 2𝑚 + 2. If 𝑚 = 2, then (3.9) also holds in dimension
𝑛 = 7 = 2𝑚+3 (cf. [Maz79]). Whether (3.9) holds in dimension 𝑛 ≥ 8 (for 𝑚 = 2)
or 𝑛 ≥ 2𝑚+ 3 (for 𝑚 > 2) is an open problem; see [Maz99b, Problem 2].

If (3.9) holds, then solutions to (3.7) satisfy

∥𝑢∥𝐿∞(Ω) ≤ 𝐶(𝑚,𝑛, 𝑝) diam(Ω)2𝑚−𝑛/𝑝∥ℎ∥𝐿𝑝(∂Ω)

provided 𝑝 > 𝑛/2𝑚 (see, e.g., [Maz99b, Section 2]).
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Thus, if Ω ⊂ ℝ𝑛 is bounded for 𝑛 ≤ 2𝑚+ 2, 𝑛 ∕= 2𝑚, and if 𝑢 satisfies (3.7)
for a reasonably nice function ℎ, then 𝑢 ∈ 𝐿∞(Ω). This result also holds if Ω ⊂ ℝ7

and 𝑚 = 2.
As in the case of the Green function estimates, if Ω ⊂ ℝ𝑛 is bounded and

𝑛 ≥ 2𝑚 + 3, or if 𝑚 = 2 and 𝑛 ≥ 8, then the question of whether solutions 𝑢 to
(3.7) are bounded is open. In particular, it is not known whether solutions 𝑢 to

Δ2𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
2 (Ω)

are bounded if Ω ⊂ ℝ𝑛 for 𝑛 ≥ 8. However, there exists another fourth-order oper-
ator whose solutions are not bounded in higher-dimensional domains. In [MN86],
Maz’ya and Nazarov showed that if 𝑛 ≥ 8 and if 𝑎 > 0 is large enough, then
there exists an open cone 𝐾 ⊂ ℝ𝑛 and a function ℎ ∈ 𝐶∞0 (𝐾 ∖ {0}) such that the
solution 𝑢 to

Δ2𝑢+ 𝑎∂4𝑛𝑢 = ℎ in 𝐾, 𝑢 ∈ �̊� 2
2 (𝐾) (3.10)

is unbounded near the origin.
To conclude our discussion of Green’s functions, we mention two results from

[MM11]; these results are restricted to relatively well-behaved domains. In [MM11],
D. Mitrea and I. Mitrea showed that, if Ω is a bounded Lipschitz domain in ℝ3,
and 𝐺 denotes the Green function for the bilaplacian Δ2, then the estimates

∇2𝐺(𝑋, ⋅ ) ∈ 𝐿3(Ω), dist( ⋅ , ∂Ω)−𝛼∇𝐺(𝑋, ⋅ ) ∈ 𝐿3/𝛼,∞

hold, uniformly in 𝑋 ∈ Ω, for all 0 < 𝛼 ≤ 1.
Moreover, they considered more general elliptic systems. Suppose that 𝐿 is

an arbitrary elliptic operator of order 2𝑚 with constant coefficients, as defined by
Definition 2.1, and that 𝐺 denotes the Green function for 𝐿. Suppose that Ω ⊂ ℝ𝑛,
for 𝑛 > 𝑚, is a Lipschitz domain, and that the unit outward normal 𝜈 to Ω lies in
the Sarason space 𝑉 𝑀𝑂(∂Ω) of functions of vanishing mean oscillations on ∂Ω.
Then the estimates

∇𝑚𝐺(𝑋, ⋅ ) ∈ 𝐿
𝑛

𝑛−𝑚 ,∞(Ω), (3.11)

dist( ⋅ , ∂Ω)−𝛼∇𝑚−1𝐺(𝑋, ⋅ ) ∈ 𝐿
𝑛

𝑛−𝑚−1+𝛼 ,∞(Ω)

hold, uniformly in 𝑋 ∈ Ω, for any 0 ≤ 𝛼 ≤ 1.

4. The Wiener test

In this section, we discuss conditions that ensure that solutions (or appropriate
gradients of solutions) are continuous up to the boundary. These conditions parallel
the famous result of Wiener, who in 1924 formulated a criterion that ensured
continuity of harmonic functions at boundary points [Wie24]. Wiener’s criterion
has been extended to a variety of second-order elliptic and parabolic equations
([LSW63, FJK82, FGL89, DMM86, MZ97, AH96, TW02, Lab02, EG82]; see also
the review papers [Maz97, Ada97]). However, as with the maximum principle,
extending this criterion to higher-order elliptic equations is a subtle matter, and
many open questions remain.
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We begin by stating the classicalWiener criterion for the Laplacian. If Ω ⊂ ℝ𝑛

is a domain and 𝑄 ∈ ∂Ω, then 𝑄 is called regular for the Laplacian if every solution
𝑢 to

Δ𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
1 (Ω)

for ℎ ∈ 𝐶∞0 (Ω) satisfies lim𝑋→𝑄 𝑢(𝑋) = 0. According toWiener’s theorem [Wie24],
the boundary point 𝑄 ∈ ∂Ω is regular if and only if the equation

ˆ 1

0

cap2(𝐵(𝑄, 𝑠) ∖ Ω)𝑠1−𝑛 𝑑𝑠 =∞ (4.1)

holds, where

cap2(𝐾) = inf
{
∥𝑢∥2𝐿2(ℝ𝑛) + ∥∇𝑢∥2𝐿2(ℝ𝑛) : 𝑢 ∈ 𝐶∞0 (ℝ

𝑛), 𝑢 ≥ 1 on 𝐾
}
.

For example, suppose Ω satisfies the exterior cone condition at 𝑄. That is,
suppose there is some open cone 𝐾 with vertex at 𝑄 and some 𝜀 > 0 such that

𝐾 ∩ 𝐵(𝑄, 𝜀) ⊂ Ω𝐶 . It is elementary to show that cap2(𝐵(𝑄, 𝑠) ∖ Ω) ≥ 𝐶(𝐾)𝑠𝑛−2

for all 0 < 𝑠 < 𝜀, and so (4.1) holds and 𝑄 is regular. Regularity of such points was
known prior to Wiener (see [Poi90], [Zar09], and [Leb13]) and provided inspiration
for the formulation of the Wiener test.

By [LSW63], if 𝐿 = − div𝐴∇ is a second-order divergence-form operator,
where the matrix 𝐴(𝑋) is bounded, measurable, real, symmetric and elliptic, then
𝑄 ∈ ∂Ω is regular for 𝐿 if and only if 𝑄 and Ω satisfy (4.1). In other words, 𝑄 ∈ ∂Ω
is regular for the Laplacian if and only if it is regular for all such operators. Similar
results hold for some other classes of second-order equations; see, for example,
[FJK82], [DMM86], or [EG82].

One would like to consider the Wiener criterion for higher-order elliptic equa-
tions, and that immediately gives rise to the question of natural generalization of
the concept of a regular point. The Wiener criterion for the second-order PDEs
ensures, in particular, that weak �̊� 2

1 solutions are classical. That is, the solution
approaches its boundary values in the pointwise sense (continuously). From that
point of view, one would extend the concept of regularity of a boundary point as
continuity of derivatives of order 𝑚− 1 of the solution to an equation of order 2𝑚
up to the boundary. On the other hand, as we discussed in the previous section,
even the boundedness of solutions cannot be guaranteed in general, and thus, in
lower dimensions the study of the continuity up to the boundary for solutions
themselves is also very natural. We begin with the latter question, as it is better
understood.

Let us first define a regular point for an arbitrary differential operator 𝐿 of
order 2𝑚 analogously to the case of the Laplacian, by requiring that every solution
𝑢 to

𝐿𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
𝑚(Ω) (4.2)

for ℎ ∈ 𝐶∞0 (Ω) satisfy lim𝑋→𝑄 𝑢(𝑋) = 0. Note that by the Sobolev embedding

theorem, if Ω ⊂ ℝ𝑛 for 𝑛 ≤ 2𝑚− 1, then every 𝑢 ∈ �̊� 2
𝑚(Ω) is Hölder continuous
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on Ω and so satisfies lim𝑋→𝑄 𝑢(𝑋) = 0 at every point 𝑄 ∈ ∂Ω. Thus, we are only
interested in continuity of the solutions at the boundary when 𝑛 ≥ 2𝑚.

In this context, the appropriate concept of capacity is the potential-theoretic
Riesz capacity of order 2𝑚, given by

cap2𝑚(𝐾) = inf
{ ∑
0≤∣𝛼∣≤𝑚

∥∂𝛼𝑢∥2𝐿2(ℝ𝑛) : 𝑢 ∈ 𝐶∞0 (ℝ
𝑛), 𝑢 ≥ 1 on 𝐾

}
. (4.3)

The following is known. If 𝑚 ≥ 3, and if Ω ⊂ ℝ𝑛 for 𝑛 = 2𝑚, 2𝑚 + 1 or
2𝑚 + 2, or if 𝑚 = 2 and 𝑛 = 4, 5, 6 or 7, then 𝑄 ∈ ∂Ω is regular for Δ𝑚 if and
only if ˆ 1

0

cap2𝑚(𝐵(𝑄, 𝑠) ∖ Ω)𝑠2𝑚−𝑛−1 𝑑𝑠 =∞. (4.4)

The biharmonic case was treated in [Maz77] and [Maz79], and the polyharmonic
case for 𝑚 ≥ 3 in [MD83] and [Maz99a].

Let us briefly discuss the method of the proof in order to explain the restric-
tions on the dimension. Let 𝐿 be an arbitrary elliptic operator, and let 𝐹 be the
fundamental solution for 𝐿 in ℝ𝑛 with pole at 𝑄. We say that 𝐿 is positive with
weight 𝐹 if, for all 𝑢 ∈ 𝐶∞0 (ℝ

𝑛 ∖ {𝑄}), we have thatˆ
ℝ𝑛

𝐿𝑢(𝑋) ⋅ 𝑢(𝑋)𝐹 (𝑋) 𝑑𝑋 ≥ 𝑐
𝑚∑

𝑘=1

ˆ
ℝ𝑛

∣∇𝑘𝑢(𝑋)∣2∣𝑋 ∣2𝑘−𝑛 𝑑𝑋. (4.5)

The biharmonic operator is positive with weight 𝐹 in dimension 𝑛 if 4 ≤
𝑛 ≤ 7, and the polyharmonic operator Δ𝑚, 𝑚 ≥ 3, is positive with weight 𝐹
in dimension 2𝑚 ≤ 𝑛 ≤ 2𝑚 + 2. (The Laplacian Δ is positive with weight 𝐹
in any dimension.) The biharmonic operator Δ2 is not positive with weight 𝐹 in
dimensions 𝑛 ≥ 8, and Δ𝑚 is not positive with weight 𝐹 in dimension 𝑛 ≥ 2𝑚+3.
See [Maz99a, Propositions 1 and 2].

The proof of the Wiener criterion for the polyharmonic operator required
positivity with weight 𝐹 . In fact, it turns out that positivity with weight 𝐹 suffices
to provide a Wiener criterion for an arbitrary scalar elliptic operator with constant
coefficients.

Theorem 4.6 ([Maz02, Theorems 1 and 2]). Suppose Ω ⊂ ℝ𝑛 and that 𝐿 is a
scalar elliptic operator of order 2𝑚 with constant real coefficients, as defined by
Definition 2.1.

If 𝑛 = 2𝑚, then 𝑄 ∈ ∂Ω is regular for 𝐿 if and only if (4.4) holds.
If 𝑛 ≥ 2𝑚+1, and if the condition (4.5) holds, then again 𝑄 ∈ ∂Ω is regular

for 𝐿 if and only if (4.4) holds.

This theorem is also valid for certain variable-coefficient operators in diver-
gence form; see the remark at the end of [Maz99a, Section 5].

Similar results have been proven for some second-order elliptic systems. In
particular, for the Lamé system 𝐿𝑢 = Δ𝑢 + 𝛼 graddiv 𝑢, 𝛼 > −1, positivity with
weight 𝐹 and Wiener criterion have been established for a range of 𝛼 close to zero,
that is, when the underlying operator is close to the Laplacian ([LM10]). It was
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also shown that positivity with weight 𝐹 may in general fail for the Lamé system.
Since the present review is restricted to the higher-order operators, we shall not
elaborate on this point and instead refer the reader to [LM10] for more detailed
discussion.

In the absence of the positivity condition (4.5), the situation is much more
involved. Let us point out first that the condition (4.5) is not necessary for reg-
ularity of a boundary point, that is, the continuity of the solutions. There exist
fourth-order elliptic operators that are not positive with weight 𝐹 whose solutions
exhibit nice behavior near the boundary; there exist other such operators whose
solutions exhibit very bad behavior near the boundary.

Specifically, recall that (4.5) fails for 𝐿 = Δ2 in dimension 𝑛 ≥ 8. Nonetheless,
solutions to Δ2𝑢 = ℎ are often well behaved near the boundary. By [MP81], the
vertex of a cone is regular for the bilaplacian in any dimension. Furthermore, if
the capacity condition (4.4) holds with 𝑚 = 2, then by [Maz02, Section 10], any
solution 𝑢 to

Δ2𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
2 (Ω)

for ℎ ∈ 𝐶∞0 (Ω) satisfies lim𝑋→𝑄 𝑢(𝑋) = 0 provided the limit is taken along a
nontangential direction.

Conversely, if 𝑛 ≥ 8 and 𝐿 = Δ2 + 𝑎∂4𝑛, then by [MN86], there exists a cone
𝐾 and a function ℎ ∈ 𝐶∞0 (𝐾 ∖ {0}) such that the solution 𝑢 to (3.10) is not only
discontinuous but unbounded near the vertex of the cone. We remark that a careful
examination of the proof in [MN86] implies that solutions to (3.10) are unbounded
even along some nontangential directions.

Thus, conical points in dimension eight are regular for the bilaplacian and
irregular for the operator Δ2 + 𝑎∂4𝑛. Hence, a relevant Wiener condition must use
different capacities for these two operators. This is a striking contrast with the
second-order case, where the same capacity condition implies regularity for all
divergence-form operators, even with variable coefficients.

This concludes the discussion of regularity in terms of continuity of the solu-
tion. We now turn to regularity in terms of continuity of the (𝑚−1)-st derivatives.
Unfortunately, much less is known in this case. The first such result has recently
appeared in [MM09a]. It pertains to the biharmonic equation in dimension three.

We say that 𝑄 ∈ ∂Ω is 1-regular for the operator Δ2 if every solution 𝑢 to

Δ2𝑢 = ℎ in Ω, 𝑢 ∈ �̊� 2
2 (Ω) (4.7)

for ℎ ∈ 𝐶∞0 (Ω) satisfies lim𝑋→𝑄∇𝑢(𝑋) = 0. In [MM09a] the second author of this
paper and Maz’ya proved that in a three-dimensional domain the following holds.
If ˆ 𝑐

0

inf
𝑃∈Π1

cap𝑃 (𝐵(0, 𝑎𝑠) ∖𝐵(0, 𝑠) ∖ Ω) 𝑑𝑠 =∞ (4.8)

for some 𝑎 ≥ 4 and some 𝑐 > 0, then 0 is 1-regular. Conversely, if 0 ∈ ∂Ω is
1-regular for Δ2 then for every 𝑐 > 0 and every 𝑎 ≥ 8,

inf
𝑃∈Π1

ˆ 𝑐

0

cap𝑃 (𝐵(0, 𝑎𝑠) ∖𝐵(0, 𝑠) ∖ Ω) 𝑑𝑠 =∞. (4.9)
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Here

cap𝑃 (𝐾) = inf{∥Δ𝑢∥2𝐿2(ℝ3) : 𝑢 ∈ �̊� 2
2 (ℝ

3 ∖ {0}), 𝑢 = 𝑃 in a neighborhood of 𝐾}
and Π1 is the space of functions 𝑃 (𝑋) of the form 𝑃 (𝑋) = 𝑏0+𝑏1𝑋1+𝑏2𝑋2+𝑏3𝑋3

with coefficients 𝑏𝑘 ∈ ℝ that satisfy
√

𝑏20 + 𝑏21 + 𝑏22 + 𝑏23 = 1.
Note that the notion of capacity cap𝑃 is quite different from the classical

analogues, and even from the Riesz capacity used in the context of the higher-
order elliptic operators before (cf. (4.3)). Its properties, as well as properties of
1-regular and 1-irregular points, can be different from classical analogous as well.
For instance, for some domains 1-irregularity turns out to be unstable under affine
transformations of coordinates.

The slight discrepancy between the sufficient condition (4.8) and the neces-
sary condition (4.9) is needed, in the sense that (4.8) is not always necessary for
1-regularity. However, in an important particular case, there exists a single simpler
condition for 1-regularity. To be precise, let Ω ⊂ ℝ3 be a domain whose boundary
is the graph of a function 𝜑, and let 𝜔 be its modulus of continuity. Ifˆ 1

0

𝑡 𝑑𝑡

𝜔2(𝑡)
=∞, (4.10)

then every solution to the biharmonic equation (4.7) satisfies ∇𝑢 ∈ 𝐶(Ω). Con-
versely, for every 𝜔 such that the integral in (4.10) is convergent, there exists a
𝐶0,𝜔 domain and a solution 𝑢 of the biharmonic equation such that ∇𝑢 /∈ 𝐶(Ω).
In particular, as expected, the gradient of a solution to the biharmonic equation is
always bounded in Lipschitz domains and is not necessarily bounded in a Hölder
domain. Moreover, one can deduce from (4.10) that the gradient of a solution is

always bounded, e.g., in a domain with 𝜔(𝑡) ≈ 𝑡 log1/2 𝑡, which is not Lipschitz,
and might fail to be bounded in a domain with 𝜔(𝑡) ≈ 𝑡 log 𝑡. More properties of
the new capacity and examples can be found in [MM09a].

5. Boundary value problems in Lipschitz domains for elliptic
operators with constant coefficients

The maximum principle (3.2) provides estimates on solutions whose boundary
data lies in 𝐿∞. Recall that for second-order partial differential equations with
real coefficients, the maximum principle is valid in arbitrary bounded domains. The
corresponding sharp estimates for boundary data in 𝐿𝑝, 1 < 𝑝 <∞, are much more
delicate. They are not valid in arbitrary domains, even for harmonic functions,
and they depend in a delicate way on the geometry of the boundary. At present,
boundary-value problems for the Laplacian and for general real symmetric elliptic
operators of the second order are fairly well understood on Lipschitz domains. See,
in particular, [Ken94].

We consider biharmonic functions and more general higher-order elliptic
equations. The question of estimates on biharmonic functions with data in 𝐿𝑝
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was raised by Rivière in the 1970s ([CFS79]), and later Kenig redirected it to-
wards Lipschitz domains in [Ken90, Ken94]. The sharp range of well-posedness
in 𝐿𝑝, even for biharmonic functions, remains an open problem (see [Ken94, Prob-
lem 3.2.30]). In this section we shall review the current state of the art in the
subject, the main techniques that have been successfully implemented, and their
limitations in the higher-order case.

Most of the results we will discuss are valid in Lipschitz domains, defined as
follows.

Definition 5.1. A domain Ω ⊂ ℝ𝑛 is called a Lipschitz domain if, for every 𝑄 ∈ ∂Ω,
there is a number 𝑟 > 0, a Lipschitz function 𝜑 : ℝ𝑛−1 1→ ℝ with ∥∇𝜑∥𝐿∞ ≤ 𝑀 ,
and a rectangular coordinate system for ℝ𝑛 such that

𝐵(𝑄, 𝑟) ∩ Ω = {(𝑥, 𝑠) : 𝑥 ∈ ℝ𝑛−1, 𝑠 ∈ ℝ, ∣(𝑥, 𝑠) −𝑄)∣ < 𝑟, and 𝑠 > 𝜑(𝑥)}.
If we may take the functions 𝜑 to be 𝐶𝑘 (that is, to possess 𝑘 continuous

derivatives), we say that Ω is a 𝐶𝑘 domain.

The outward normal vector to Ω will be denoted 𝜈. The surface measure will
be denoted 𝜎, and the tangential derivative along ∂Ω will be denoted ∇𝜏 .

In this paper, we will assume that all domains under consideration have
connected boundary. Furthermore, if ∂Ω is unbounded, we assume that there is
a single Lipschitz function 𝜑 and coordinate system that satisfies the conditions
given above; that is, we assume that Ω is the domain above (in some coordinate
system) the graph of a Lipschitz function.

In order to properly state boundary-value problems on Lipschitz domains, we
will need the notions of non-tangential convergence and non-tangential maximal
function.

In this and subsequent sections we say that 𝑢
∣∣
∂Ω
= 𝑓 if 𝑓 is the nontangential

limit of 𝑢, that is, if

lim
𝑋→𝑄, 𝑋∈Γ(𝑄)

𝑢(𝑋) = 𝑓(𝑄)

for almost every (𝑑𝜎) 𝑄 ∈ ∂Ω, where Γ(𝑄) is the nontangential cone

Γ(𝑄) = {𝑌 ∈ Ω : dist(𝑌, ∂Ω) < (1 + 𝑎)∣𝑋 − 𝑌 ∣}. (5.2)

Here 𝑎 > 0 is a positive parameter; the exact value of 𝑎 is usually irrelevant to
applications. The nontangential maximal function is given by

𝑁𝐹 (𝑄) = sup{∣𝐹 (𝑋)∣ : 𝑋 ∈ Γ(𝑄)}. (5.3)

The normal derivative of 𝑢 of order 𝑚 is defined as

∂𝑚
𝜈 𝑢(𝑄) =

∑
∣𝛼∣=𝑚

𝜈(𝑄)𝛼
𝑚!

𝛼!
∂𝛼𝑢(𝑄),

where ∂𝛼𝑢(𝑄) is taken in the sense of nontangential limits as usual.
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5.1. The Dirichlet problem: definitions, layer potentials,
and some well-posedness results

We say that the 𝐿𝑝-Dirichlet problem for the biharmonic operator Δ2 in a domain
Ω is well posed if there exists a constant 𝐶 > 0 such that, for every 𝑓 ∈ 𝑊 𝑝

1 (∂Ω)
and every 𝑔 ∈ 𝐿𝑝(∂Ω), there exists a unique function 𝑢 that satisfies⎧⎨⎩

Δ2𝑢 = 0 in Ω,

𝑢 = 𝑓 on ∂Ω,

∂𝜈𝑢 = 𝑔 on ∂Ω,

∥𝑁(∇𝑢)∥𝐿𝑝(∂Ω) ≤ 𝐶∥𝑔∥𝐿𝑝(∂Ω) + 𝐶∥∇𝜏𝑓∥𝐿𝑝(∂Ω).

(5.4)

The 𝐿𝑝-Dirichlet problem for the polyharmonic operator Δ𝑚 is somewhat
more involved, because the notion of boundary data is necessarily more subtle.
We say that the 𝐿𝑝-Dirichlet problem for Δ𝑚 in a domain Ω is well posed if
there exists a constant 𝐶 > 0 such that, for every 𝑔 ∈ 𝐿𝑝(∂Ω) and every 𝑓 in
the Whitney–Sobolev space 𝑊𝐴𝑝

𝑚−1(∂Ω), there exists a unique function 𝑢 that
satisfies⎧⎨⎩

Δ𝑚𝑢 = 0 in Ω,

∂𝛼𝑢
∣∣
∂Ω
= 𝑓𝛼 for all 0 ≤ ∣𝛼∣ ≤ 𝑚− 2,

∂𝑚−1
𝜈 𝑢 = 𝑔 on ∂Ω,

∥𝑁(∇𝑚−1𝑢)∥𝐿𝑝(∂Ω) ≤ 𝐶∥𝑔∥𝐿𝑝(∂Ω + 𝐶
∑

∣𝛼∣=𝑚−2
∥∇𝜏𝑓𝛼∥𝐿𝑝(∂Ω).

(5.5)

The space 𝑊𝐴𝑝
𝑚(∂Ω) is defined as follows.

Definition 5.6. Suppose that Ω ⊂ ℝ𝑛 is a Lipschitz domain, and consider arrays
of functions 𝑓 = {𝑓𝛼 : ∣𝛼∣ ≤ 𝑚 − 1} indexed by multiindices 𝛼 of length 𝑛,
where 𝑓𝛼 : ∂Ω 1→ ℂ. We let 𝑊𝐴𝑝

𝑚(∂Ω) be the completion of the set of arrays

�̇� = {∂𝛼𝜓 : ∣𝛼∣ ≤ 𝑚− 1}, for 𝜓 ∈ 𝐶∞0 (ℝ
𝑛), under the norm∑

∣𝛼∣≤𝑚−1
∥∂𝛼𝜓∥𝐿𝑝(∂Ω) +

∑
∣𝛼∣=𝑚−1

∥∇𝜏∂
𝛼𝜓∥𝐿𝑝(∂Ω). (5.7)

If we prescribe ∂𝛼𝑢 = 𝑓𝛼 on ∂Ω for some 𝑓 ∈ 𝑊𝐴𝑝
𝑚(∂Ω), then we are pre-

scribing the values of 𝑢, ∇𝑢, . . . ,∇𝑚−1𝑢 on ∂Ω, and requiring that (the prescribed
part of) ∇𝑚𝑢

∣∣
∂Ω
lie in 𝐿𝑝(∂Ω).

The study of these problems began with biharmonic functions in 𝐶1 domains.
In [SS81], Selvaggi and Sisto proved that, if Ω is the domain above the graph of a
compactly supported 𝐶1 function 𝜑, with ∥∇𝜑∥𝐿∞ small enough, then solutions
to the Dirichlet problem exist provided 1 < 𝑝 < ∞. Their method used certain
biharmonic layer potentials composed with the Riesz transforms.

In [CG83], Cohen and Gosselin proved that, if Ω is a bounded, simply con-
nected 𝐶1 domain contained in the plane ℝ2, then the 𝐿𝑝-Dirichlet problem is well
posed in Ω for any 1 < 𝑝 < ∞. In [CG85], they extended this result to the com-
plements of such domains. Their proof used multiple layer potentials introduced
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by Agmon in [Agm57] in order to solve the Dirichlet problem with continuous
boundary data. The general outline of their proof parallelled that of the proof of
the corresponding result [FJR78] for Laplace’s equation.

As in the case of Laplace’s equation, a result in Lipschitz domains soon fol-
lowed. In [DKV86], Dahlberg, Kenig and Verchota showed that the 𝐿𝑝-Dirichlet
problem for the biharmonic equation is well posed in any bounded simply con-
nected Lipschitz domain Ω ⊂ ℝ𝑛, provided 2 − 𝜀 < 𝑝 < 2 + 𝜀 for some 𝜀 > 0
depending on the domain Ω.

In [Ver87], Verchota used the construction of [DKV86] to extend Cohen and
Gosselin’s results from planar 𝐶1 domains to 𝐶1 domains of arbitrary dimension.
Thus, the 𝐿𝑝-Dirichlet problem for the bilaplacian is well posed for 1 < 𝑝 <∞ in
𝐶1 domains.

In [Ver90], Verchota showed that the 𝐿𝑝-Dirichlet problem for the polyhar-
monic operator Δ𝑚 could be solved for 2 − 𝜀 < 𝑝 < 2 + 𝜀 in starlike Lipschitz
domains by induction on the exponent 𝑚. He simultaneously proved results for
the 𝐿𝑝-regularity problem in the same range; we will thus delay discussion of his
methods to Section 5.3.

All three of the papers [SS81], [CG83] and [DKV86] constructed biharmonic
functions as potentials. However, the potentials used differ. [SS81] constructed
their solutions as

𝑢(𝑋) =

ˆ
∂Ω

∂2𝑛𝐹 (𝑋 − 𝑌 ) 𝑓(𝑌 ) 𝑑𝜎(𝑌 ) +
𝑛−1∑
𝑖=1

ˆ
∂Ω

∂𝑖∂𝑛𝐹 (𝑋 − 𝑌 )𝑅𝑖𝑔(𝑌 ) 𝑑𝜎(𝑌 )

where 𝑅𝑖 are the Riesz transforms. Here 𝐹 (𝑋) is the fundamental solution to the
biharmonic equation; thus, 𝑢 is biharmonic in ℝ𝑛 ∖ ∂Ω. As in the case of Laplace’s
equation, well-posedness of the Dirichlet problem follows from the boundedness
relation ∥𝑁(∇𝑢)∥𝐿𝑝(∂Ω) ≤ 𝐶∥𝑓∥𝐿𝑝(∂Ω) +𝐶∥𝑔∥𝐿𝑝(∂Ω) and from invertibility of the

mapping (𝑓, 𝑔) 1→ (𝑢
∣∣
∂Ω

, ∂𝜈𝑢) on 𝐿𝑝(∂Ω)× 𝐿𝑝(∂Ω) 1→𝑊 𝑝
1 (∂Ω)× 𝐿𝑝(∂Ω).

The multiple layer potential of [CG83] is an operator of the form

ℒ𝑓(𝑃 ) = p.v.
ˆ
∂Ω

ℒ(𝑃,𝑄)𝑓(𝑄) 𝑑𝜎(𝑄) (5.8)

where ℒ(𝑃,𝑄) is a 3 × 3 matrix of kernels, also composed of derivatives of the
biharmonic equation, and 𝑓 = (𝑓, 𝑓𝑥, 𝑓𝑦) is a “compatible triple” of boundary data,
that is, an element of𝑊 1,𝑝(∂Ω)×𝐿𝑝(∂Ω)×𝐿𝑝(∂Ω) that satisfies ∂𝜏𝑓 = 𝑓𝑥𝜏𝑥+𝑓𝑦𝜏𝑦 .
Thus, the input is essentially a function and its gradient, rather than two functions,
and the Riesz transforms are not involved.

The method of [DKV86] is to compose two potentials. First, the function
𝑓 ∈ 𝐿2(∂Ω) is mapped to its Poisson extension 𝑣. Next, 𝑢 is taken to be the
solution of the inhomogeneous equation Δ𝑢(𝑌 ) = (𝑛+2𝑌 ⋅ ∇)𝑣(𝑌 ) with 𝑢 = 0 on
∂Ω. If 𝐺(𝑋,𝑌 ) is the Green function for Δ in Ω and 𝑘𝑌 is the harmonic measure



Boundary-value Problems for Higher-order Elliptic Equations 69

density at 𝑌 , we may write the map 𝑓 1→ 𝑢 as

𝑢(𝑋) =

ˆ
Ω

𝐺(𝑋,𝑌 )(𝑛+ 2𝑌 ⋅ ∇)
ˆ
∂Ω

𝑘𝑌 (𝑄) 𝑓(𝑄) 𝑑𝜎(𝑄) 𝑑𝑌. (5.9)

Since (𝑛+2𝑌 ⋅ ∇)𝑣(𝑌 ) is harmonic, 𝑢 is biharmonic, and so 𝑢 solves the Dirichlet
problem.

5.2. The 𝑳𝒑-Dirichlet problem: the summary of known results
on well-posedness and ill-posedness

Recall that by [Ver90], the 𝐿𝑝-Dirichlet problem is well posed in Lipschitz domains
provided 2− 𝜀 < 𝑝 < 2+ 𝜀. As in the case of Laplace’s equation (see [FJL77]), the
range 𝑝 > 2−𝜀 is sharp. That is, for any 𝑝 < 2 and any integers𝑚 ≥ 2, 𝑛 ≥ 2, there
exists a bounded Lipschitz domain Ω ⊂ ℝ𝑛 such that the 𝐿𝑝-Dirichlet problem for
Δ𝑚 is ill posed in Ω. See [DKV86, Section 5] for the case of the biharmonic operator
Δ2, and the proof of Theorem 2.1 in [PV95b] for the polyharmonic operator Δ𝑚.

The range 𝑝 < 2 + 𝜀 is not sharp and has been studied extensively. Proving
or disproving well-posedness of the 𝐿𝑝-Dirichlet problem for 𝑝 > 2 in general
Lipschitz domains has been an open question since [DKV86], and was formally
stated as such in [Ken94, Problem 3.2.30]. (Earlier in [CFS79, Question 7], the
authors had posed the more general question of what classes of boundary data
give existence and uniqueness of solutions.)

In [PV92, Theorem 10.7], Pipher and Verchota constructed Lipschitz domains
Ω such that the 𝐿𝑝-Dirichlet problem for Δ2 was ill posed in Ω, for any given
𝑝 > 6 (in four dimensions) or any given 𝑝 > 4 (in five or more dimensions). Their
counterexamples built on the study of solutions near a singular point, in particular
upon [MNP83] and [MP81]. In [PV95b], they provided other counterexamples to
show that the 𝐿𝑝-Dirichlet problem for Δ𝑚 is ill posed, provided 𝑝 > 2(𝑛−1)/(𝑛−
3) and 4 ≤ 𝑛 < 2𝑚 + 1. They remarked that if 𝑛 ≥ 2𝑚 + 1, then ill-posedness
follows from the results of [MNP83] provided 𝑝 > 2𝑚/(𝑚− 1).

The endpoint result at 𝑝 = ∞ is the Agmon–Miranda maximum principle
(3.2) discussed above. We remark that if 2 < 𝑝0 ≤ ∞, and the 𝐿𝑝0-Dirichlet prob-
lem is well posed (or (3.2) holds) then by interpolation, the 𝐿𝑝-Dirichlet problem
is well posed for any 2 < 𝑝 < 𝑝0.

We shall adopt the following definition (justified by the discussion above).

Definition 5.10. Suppose that 𝑚 ≥ 2 and 𝑛 ≥ 4. Then 𝑝𝑚,𝑛 is defined to be the
extended real number that satisfies the following properties. If 2 ≤ 𝑝 ≤ 𝑝𝑚,𝑛, then
the 𝐿𝑝-Dirichlet problem for Δ𝑚 is well posed in any bounded Lipschitz domain
Ω ⊂ ℝ𝑛. Conversely, if 𝑝 > 𝑝𝑚,𝑛, then there exists a bounded Lipschitz domain
Ω ⊂ ℝ𝑛 such that the 𝐿𝑝-Dirichlet problem for Δ𝑚 is ill posed in Ω. Here, well-
posedness for 1 < 𝑝 < ∞ is meant in the sense of (5.5), and well-posedness for
𝑝 =∞ is meant in the sense of the maximum principle (see (5.24) below).

As in [DKV86], we expect the range of solvability for any particular Lipschitz
domain Ω to be 2−𝜀 < 𝑝 < 𝑝𝑚,𝑛+𝜀 for some 𝜀 depending on the Lipschitz character
of Ω.
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Let us summarize here the results currently known for 𝑝𝑚,𝑛. More details will
follow in Section 5.3.

For any 𝑚 ≥ 2, we have that
∙ If 𝑛 = 2 or 𝑛 = 3, then the 𝐿𝑝-Dirichlet problem for Δ𝑚 is well posed in any
Lipschitz domain Ω for any 2 ≤ 𝑝 <∞. ([PV92, PV95b])

∙ If 4 ≤ 𝑛 ≤ 2𝑚+ 1, then 𝑝𝑚,𝑛 = 2(𝑛− 1)/(𝑛− 3). ([She06a, PV95b].)
∙ If 𝑛 = 2𝑚+2, then 𝑝𝑚,𝑛 = 2𝑚/(𝑚−1) = 2(𝑛−2)/(𝑛−4). ([She06b, MNP83].)
∙ If 𝑛 ≥ 2𝑚+3, then 2(𝑛−1)/(𝑛−3) ≤ 𝑝𝑚,𝑛 ≤ 2𝑚/(𝑚−1). ([She06a, MNP83].)

The value of 𝑝𝑚,𝑛, for 𝑛 ≥ 2𝑚+ 3, is open.

In the special case of biharmonic functions (𝑚 = 2), more is known.

∙ 𝑝2,4 = 6, 𝑝2,5 = 4, 𝑝2,6 = 4, and 𝑝2,7 = 4. ([She06a] and [She06b])
∙ If 𝑛 ≥ 8, then

2 +
4

𝑛− 𝜆𝑛
< 𝑝2,𝑛 ≤ 4

where

𝜆𝑛 =
𝑛+ 10 + 2

√
2(𝑛2 − 𝑛+ 2)

7
.

([She06c])
∙ If Ω is a 𝐶1 or convex domain of arbitrary dimension, then the 𝐿𝑝-Dirichlet
problem for Δ2 is well posed in Ω for any 1 < 𝑝 < ∞. ([Ver90, She06c,
KS11a].)

We comment on the nature of ill-posedness. The counterexamples of [DKV86]
and [PV95b] for 𝑝 < 2 are failures of uniqueness. That is, those counterexamples
are nonzero functions 𝑢, satisfying Δ𝑚𝑢 = 0 in Ω, such that ∂𝑘

𝜈𝑢 = 0 on ∂Ω for
0 ≤ 𝑘 ≤ 𝑚− 1, and such that 𝑁(∇𝑚−1𝑢) ∈ 𝐿𝑝(∂Ω).

Observe that if Ω is bounded and 𝑝 > 2, then 𝐿𝑝(∂Ω) ⊂ 𝐿2(∂Ω). Because
the 𝐿2-Dirichlet problem is well posed, the failure of well-posedness for 𝑝 > 2
can only be a failure of the optimal estimate 𝑁(∇𝑚−1𝑢) ∈ 𝐿𝑝(∂Ω). That is, if
the 𝐿𝑝-Dirichlet problem for Δ𝑚 is ill posed in Ω, then for some Whitney array
𝑓 ∈ 𝑊𝐴𝑝

𝑚−1(∂Ω) and some 𝑔 ∈ 𝐿𝑝(∂Ω), the unique function 𝑢 that satisfies

Δ𝑚𝑢 = 0 in Ω, ∂𝛼𝑢 = 𝑓𝛼, ∂
𝑚−1
𝜈 𝑢 = 𝑔 and 𝑁(∇𝑚−1𝑢) ∈ 𝐿2(∂Ω) does not satisfy

𝑁(∇𝑚−1𝑢) ∈ 𝐿𝑝(∂Ω).

5.3. The regularity problem and the 𝑳𝒑-Dirichlet problem

In this section we elaborate on some of the methods used to prove the Dirich-
let well-posedness results listed above, as well as their historical context. This
naturally brings up a consideration of a different boundary value problem, the
𝐿𝑞-regularity problem for higher-order operators.

Recall that for second-order equations the regularity problem corresponds
to finding a solution with prescribed tangential gradient along the boundary. In
analogy, we say that the 𝐿𝑞-regularity problem for Δ𝑚 is well posed in Ω if there
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exists a constant 𝐶 > 0 such that, whenever 𝑓 ∈𝑊𝐴𝑞
𝑚(∂Ω), there exists a unique

function 𝑢 that satisfies⎧⎨⎩
Δ𝑚𝑢 = 0 in Ω,

∂𝛼𝑢
∣∣
∂Ω
= 𝑓𝛼 for all 0 ≤ ∣𝛼∣ ≤ 𝑚− 1,

∥𝑁(∇𝑚𝑢)∥𝐿𝑞(∂Ω) ≤ 𝐶
∑

∣𝛼∣=𝑚−1
∥∇𝜏𝑓𝛼∥𝐿𝑞(∂Ω).

(5.11)

There is an important endpoint formulation at 𝑞 = 1 for the regularity prob-
lem. We say that the 𝐻1-regularity problem is well posed if there exists a constant
𝐶 > 0 such that, whenever 𝑓 lies in the Whitney–Hardy space 𝐻1

𝑚(∂Ω), there
exists a unique function 𝑢 that satisfies⎧⎨⎩

Δ𝑚𝑢 = 0 in Ω,

∂𝛼𝑢
∣∣
∂Ω
= 𝑓𝛼 for all 0 ≤ ∣𝛼∣ ≤ 𝑚− 1,

∥𝑁(∇𝑚𝑢)∥𝐿1(∂Ω) ≤ 𝐶
∑

∣𝛼∣=𝑚−1
∥∇𝜏𝑓𝛼∥𝐻1(∂Ω).

The space 𝐻1
𝑚(∂Ω) is defined as follows.

Definition 5.12. We say that �̇� ∈𝑊𝐴𝑞
𝑚(∂Ω) is a 𝐻1

𝑚(∂Ω)-𝐿
𝑞 atom if �̇� is supported

in a ball 𝐵(𝑄, 𝑟) ∩ ∂Ω and if∑
∣𝛼∣=𝑚−1

∥∇𝜏𝑎𝛼∥𝐿𝑞(∂Ω) ≤ 𝜎(𝐵(𝑄, 𝑟) ∩ ∂Ω)1/𝑞−1.

If 𝑓 ∈𝑊𝐴1
𝑚(∂Ω) and there are 𝐻1

𝑚-𝐿
2 atoms �̇�𝑘 and constants 𝜆𝑘 ∈ ℂ such that

∇𝜏𝑓𝛼 =

∞∑
𝑘=1

𝜆𝑘∇𝜏 (𝑎𝑘)𝛼 for all ∣𝛼∣ = 𝑚− 1

and such that
∑ ∣𝜆𝑘∣ < ∞, we say that 𝑓 ∈ 𝐻1

𝑚(∂Ω), with ∥𝑓∥𝐻1
𝑚(∂Ω)

being the

smallest
∑ ∣𝜆𝑘∣ among all such representations.

In [Ver90], Verchota proved well-posedness of the 𝐿2-Dirichlet problem and
the 𝐿2-regularity problem for the polyharmonic operator Δ𝑚 in any bounded
starlike Lipschitz domain by simultaneous induction.

The base case 𝑚 = 1 is valid in all bounded Lipschitz domains by [Dah79]
and [JK81b]. The inductive step is to show that well-posedness for the Dirichlet
problem for Δ𝑚+1 follows from well-posedness of the lower-order problems. In par-
ticular, solutions with ∂𝛼𝑢 = 𝑓𝛼 may be constructed using the regularity problem
for Δ𝑚, and the boundary term ∂𝑚

𝜈 𝑢 = 𝑔, missing from the regularity data, may be
attained using the inhomogeneous Dirichlet problem for Δ𝑚. On the other hand,
it was shown that the well-posedness for the regularity problem for Δ𝑚+1 follows
from well-posedness of the lower-order problems and from the Dirichlet problem
for Δ𝑚+1, in some sense, by realizing the solution to the regularity problem as an
integral of the solution to the Dirichlet problem.
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As regards a broader range of 𝑝 and 𝑞, Pipher and Verchota showed in [PV92]
that the 𝐿𝑝-Dirichlet and 𝐿𝑞-regularity problems for Δ2 are well posed in all
bounded Lipschitz domains Ω ⊂ ℝ3, provided 2 ≤ 𝑝 < ∞ and 1 < 𝑞 ≤ 2.
Their method relied on duality. Using potentials similar to those of [DKV86],
they constructed solutions to the 𝐿2-Dirichlet problem in domains above Lipschitz
graphs. The core of their proof was the invertibility on 𝐿2(∂Ω) of a certain potential
operator 𝑇 . They were able to show that the invertibility of its adjoint 𝑇 ∗ on
𝐿2(∂Ω) implies that the 𝐿2-regularity problem for Δ2 is well posed. Then, using the
atomic decomposition of Hardy spaces, they analyzed the 𝐻1-regularity problem.
Applying interpolation and duality for 𝑇 ∗ once again, now in the reverse regularity-
to-Dirichlet direction, the full range for both regularity and Dirichlet problems was
recovered in domains above graphs. Localization arguments then completed the
argument in bounded Lipschitz domains.

In four or more dimensions, further progress relied on the following theorem
of Shen.

Theorem 5.13 ([She06b]). Suppose that Ω ⊂ ℝ𝑛 is a Lipschitz domain. The fol-
lowing conditions are equivalent.

∙ The 𝐿𝑝-Dirichlet problem for 𝐿 is well posed, where 𝐿 is a symmetric elliptic
system of order 2𝑚 with real constant coefficients.

∙ There exists some constant 𝐶 > 0 and some 𝑝 > 2 such that( 
𝐵(𝑄,𝑟)∩∂Ω

𝑁(∇𝑚−1𝑢)𝑝 𝑑𝜎

)1/𝑝

≤ 𝐶

( 
𝐵(𝑄,2𝑟)∩∂Ω

𝑁(∇𝑚−1𝑢)2 𝑑𝜎

)1/2

(5.14)

holds whenever 𝑢 is a solution to the 𝐿2-Dirichlet problem for 𝐿 in Ω, with
∇𝑢 ≡ 0 on 𝐵(𝑄, 3𝑟) ∩ ∂Ω.

For the polyharmonic operator Δ𝑚, this theorem was essentially proven in
[She06a]. Furthermore, the reverse Hölder estimate (5.14) with 𝑝 = 2(𝑛−1)/(𝑛−3)
was shown to follow from well-posedness of the 𝐿2-regularity problem. Thus the
𝐿𝑝-Dirichlet problem is well posed in bounded Lipschitz domains in ℝ𝑛 for 𝑝 =
2(𝑛−1)/(𝑛−3). By interpolation, and because reverse Hölder estimates have self-
improving properties, well-posedness in the range 2 ≤ 𝑝 ≤ 2(𝑛− 1)/(𝑛− 3)+ 𝜀 for
any particular Lipschtiz domain follows automatically.

Using regularity estimates and square-function estimates, Shen was able to
further improve this range of 𝑝. He showed that with 𝑝 = 2+4/(𝑛−𝜆), 0 < 𝜆 < 𝑛,
the reverse Hölder estimate (5.14) is true, provided thatˆ

𝐵(𝑄,𝑟)∩Ω
∣∇𝑚−1𝑢∣2 ≤ 𝐶

( 𝑟

𝑅

)𝜆
ˆ
𝐵(𝑄,𝑅)∩Ω

∣∇𝑚−1𝑢∣2 (5.15)

holds whenever 𝑢 is a solution to the 𝐿2-Dirichlet problem in Ω with 𝑁(∇𝑚−1𝑢) ∈
𝐿2(∂Ω) and ∇𝑘𝑢

∣∣
𝐵(𝑄,𝑅)∩Ω ≡ 0 for all 0 ≤ 𝑘 ≤ 𝑚− 1.

It is illuminating to observe that the estimates arising in connection with the
pointwise bounds on the solutions in arbitrary domains (cf. Section 3) and the
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Wiener test (cf. Section 4), take essentially the form (5.15). Thus, Theorem 5.13
and its relation to (5.15) provide a direct way to transform results regarding local
boundary regularity of solutions, obtained via the methods underlined in Sections 3
and 4, into well-posedness of the 𝐿𝑝-Dirichlet problem.

In particular, consider [Maz02, Lemma 5]. If 𝑢 is a solution to Δ𝑚𝑢 = 0 in
𝐵(𝑄,𝑅) ∩ Ω, where Ω is a Lipschitz domain, then by [Maz02, Lemma 5] there is
some constant 𝜆0 > 0 such that

sup
𝐵(𝑄,𝑟)∩Ω

∣𝑢∣2 ≤
( 𝑟

𝑅

)𝜆0 𝐶

𝑅𝑛

ˆ
𝐵(𝑄,𝑅)∩Ω

∣𝑢(𝑋)∣2 𝑑𝑋 (5.16)

provided that 𝑟/𝑅 is small enough, that 𝑢 has zero boundary data on 𝐵(𝑄,𝑅)∩∂Ω,
and where Ω ⊂ ℝ𝑛 has dimension 𝑛 = 2𝑚+1 or 𝑛 = 2𝑚+2, or where 𝑚 = 2 and
𝑛 = 7 = 2𝑚+ 3. (The bound on dimension comes from the requirement that Δ𝑚

be positive with weight 𝐹 ; see equation (4.5).)
It is not difficult to see (cf., e.g., [She06b, Theorem 2.6]), that (5.16) implies

(5.15) for some 𝜆 > 𝑛−2𝑚+2, and thus implies well-posedness of the 𝐿𝑝-Dirichlet
problem for a certain range of 𝑝. This provides an improvement on the results
of [She06a] in the case 𝑚 = 2 and 𝑛 = 6 or 𝑛 = 7, and in the case 𝑚 ≥ 3
and 𝑛 = 2𝑚 + 2. Shen has stated this improvement in [She06b, Theorems 1.4
and 1.5]: the 𝐿𝑝-Dirichlet problem for Δ2 is well posed for 2 ≤ 𝑝 < 4 + 𝜀 in
dimensions 𝑛 = 6 or 𝑛 = 7, and the 𝐿𝑝-Dirichlet problem for Δ𝑚 is well posed if
2 ≤ 𝑝 < 2𝑚/(𝑚− 1) + 𝜀 in dimension 𝑛 = 2𝑚+ 2.

The method of weighted integral identities, related to positivity with weight 𝐹
(cf. (4.5)), can be further finessed in a particular case of the biharmonic equation.
[She06c] uses this method (extending the ideas from [Maz79]) to show that if 𝑛 ≥ 8,
then (5.15) is valid for solutions to Δ2 with 𝜆 = 𝜆𝑛, where

𝜆𝑛 =
𝑛+ 10 + 2

√
2(𝑛2 − 𝑛+ 2)

7
. (5.17)

We now return to the 𝐿𝑞-regularity problem. Recall that in [PV92], Pipher
and Verchota showed that if 2 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 < 1, then the 𝐿𝑝-
Dirichlet problem and the 𝐿𝑞-regularity problem for Δ2 are both well posed in
three-dimensional Lipschitz domains. They proved this by showing that, in the
special case of a domain above a Lipschitz graph, there is duality between the 𝐿𝑝-
Dirichlet and 𝐿𝑞-regularity problems. Such duality results are common. See [KP93],
[She07b], and [KR09] for duality results in the second-order case; although even
in that case, duality is not always guaranteed. (See [May10].) Many of the known
results concerning the regularity problem for the polyharmonic operator Δ𝑚 are
results relating the 𝐿𝑝-Dirichlet problem to the 𝐿𝑞-regularity problem.

In [MM10], I. Mitrea and M. Mitrea showed that if 1 < 𝑝 <∞ and 1/𝑝+1/𝑞 =
1, and if the 𝐿𝑞-regularity problem for Δ2 and the 𝐿𝑝-regularity problem for Δ
were both well posed in a particular bounded Lipschitz domain Ω, then the 𝐿𝑝-
Dirichlet problem for Δ2 was also well posed in Ω. They proved this result (in
arbitrary dimensions) using layer potentials and a Green representation formula
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for biharmonic equations. Observe that the extra requirement of well-posedness for
the Laplacian is extremely unfortunate, since in bad domains it essentially restricts
consideration to 𝑝 < 2 + 𝜀 and thus does not shed new light on well-posedness in
the general class of Lipschitz domains. As will be discussed below, later Kilty and
Shen established an optimal duality result for biharmonic Dirichlet and regularity
problems.

Recall that the formula (5.14) provides a necessary and sufficient condition for
well-posedness of the 𝐿𝑝-Dirichlet problem. In [KS11b], Kilty and Shen provided
a similar condition for the regularity problem. To be precise, they demonstrated
that if 𝑞 > 2 and 𝐿 is a symmetric elliptic system of order 2𝑚 with real constant
coefficients, then the 𝐿𝑞-regularity problem for 𝐿 is well posed if and only if the
estimate( 

𝐵(𝑄,𝑟)∩Ω
𝑁(∇𝑚𝑢)𝑞 𝑑𝜎

)1/𝑞

≤ 𝐶

( 
𝐵(𝑄,2𝑟)∩Ω

𝑁(∇𝑚𝑢)2 𝑑𝜎

)1/2

(5.18)

holds for all points 𝑄 ∈ ∂Ω, all 𝑟 > 0 small enough, and all solutions 𝑢 to the
𝐿2-regularity problem with ∇𝑘𝑢

∣∣
𝐵(𝑄,3𝑟)∩∂Ω = 0 for 0 ≤ 𝑘 ≤ 𝑚− 1. Observe that

(5.18) is identical to (5.14) with 𝑝 replaced by 𝑞 and 𝑚− 1 replaced by 𝑚.

As a consequence, well-posedness of the 𝐿𝑞-regularity problem in Ω for certain
values of 𝑞 implies well-posedness of the 𝐿𝑝-Dirichlet problem for some values of 𝑝.
Specifically, arguments using interior regularity and fractional integral estimates
(given in [KS11b, Section 5]) show that (5.18) implies (5.14) with 1/𝑝 = 1/𝑞 −
1/(𝑛−1). But recall from [She06b] that (5.14) holds if and only if the 𝐿𝑝-Dirichlet
problem for 𝐿 is well posed in Ω. Thus, if 2 < 𝑞 < 𝑛− 1, and if the 𝐿𝑞-regularity
problem for a symmetric elliptic system is well posed in a Lipschitz domain Ω,
then the 𝐿𝑝-Dirichlet problem for the same system and domain is also well posed,
provided 2 < 𝑝 < 𝑝0 + 𝜀 where 1/𝑝0 = 1/𝑞 − 1/(𝑛− 1).

For the bilaplacian, a full duality result is known. In [KS11a], Kilty and
Shen showed that, if 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1, then well-posedness of the
𝐿𝑝-Dirichlet problem for Δ2 in a Lipschitz domain Ω, and well-posedness of the
𝐿𝑞-regularity problem for Δ2 in Ω, were both equivalent to the bilinear estimate∣∣∣∣ˆ

Ω

Δ𝑢Δ𝑣

∣∣∣∣ ≤ 𝐶
(
∥∇𝜏∇𝑓∥𝐿𝑝 + ∣∂Ω∣−1/(𝑛−1)∥∇𝑓∥𝐿𝑝 + ∣∂Ω∣−2/(𝑛−1)∥𝑓∥𝐿𝑝

)
(5.19)

×
(
∥∇𝑔∥𝐿𝑞 + ∣∂Ω∣−1/(𝑛−1)∥𝑔∥𝐿𝑞

)
for all 𝑓 , 𝑔 ∈ 𝐶∞0 (ℝ

𝑛), where 𝑢 and 𝑣 are solutions of the 𝐿2-regularity problem
with boundary data ∂𝛼𝑢 = ∂𝛼𝑓 and ∂𝛼𝑣 = ∂𝛼𝑔. Thus, if Ω ⊂ ℝ𝑛 is a bounded
Lipschitz domain, and if 1/𝑝+1/𝑞 = 1, then the 𝐿𝑝-Dirichlet problem is well posed
in Ω if and only if the 𝐿𝑞-regularity problem is well posed in Ω.

All in all, we see that the 𝐿𝑝-regularity problem for Δ2 is well posed in
Ω ⊂ ℝ𝑛 if
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∙ Ω is 𝐶1 or convex, and 1 < 𝑝 <∞.
∙ 𝑛 = 2 or 𝑛 = 3 and 1 < 𝑝 < 2 + 𝜀.
∙ 𝑛 = 4 and 6/5− 𝜀 < 𝑝 < 2 + 𝜀.
∙ 𝑛 = 5, 6 or 7, and 4/3− 𝜀 < 𝑝 < 2 + 𝜀.
∙ 𝑛 ≥ 8, and 2− 4

4+𝑛−𝜆𝑛
< 𝑝 < 2 + 𝜀, where 𝜆𝑛 is given by (5.17). The above

ranges of 𝑝 are sharp, but this range is still open.

5.4. Higher-order elliptic systems

The polyharmonic operator Δ𝑚 is part of a larger class of elliptic higher-order op-
erators. Some study has been made of boundary-value problems for such operators
and systems.

The 𝐿𝑝-Dirichlet problem for a strongly elliptic system 𝐿 of order 2𝑚, as
defined in Definition 2.1, is well posed in Ω if there exists a constant 𝐶 such that,
for every 𝑓 ∈ 𝑊𝐴𝑝

𝑚−1(∂Ω 1→ ℂℓ) and every �⃗� ∈ 𝐿𝑝(∂Ω 1→ ℂℓ), there exists a

unique vector-valued function �⃗� : Ω 1→ ℂℓ such that⎧⎨⎩

(𝐿�⃗�)𝑗 =
ℓ∑

𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

∂𝛼𝑎𝑗𝑘
𝛼𝛽∂

𝛽𝑢𝑘 = 0 in Ω for each 1 ≤ 𝑗 ≤ ℓ,

∂𝛼�⃗� = 𝑓𝛼 on ∂Ω for ∣𝛼∣ ≤ 𝑚− 2,
∂𝑚−1
𝜈 �⃗� = �⃗� on ∂Ω,

∥𝑁(∇𝑚−1𝑢)∥𝐿𝑞(∂Ω) ≤ 𝐶
∑

∣𝛼∣=𝑚−2
∥∇𝜏𝑓𝛼∥𝐿𝑞(∂Ω) + 𝐶∥�⃗�∥𝐿𝑝(∂Ω).

(5.20)

The 𝐿𝑞-regularity problem is well posed in Ω if there is some constant 𝐶 such that,
for every 𝑓 ∈𝑊𝐴𝑝

𝑚(∂Ω 1→ ℂℓ), there exists a unique �⃗� such that⎧⎨⎩

(𝐿�⃗�)𝑗 =

ℓ∑
𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

∂𝛼𝑎𝑗𝑘
𝛼𝛽∂

𝛽𝑢𝑘 = 0 in Ω for each 1 ≤ 𝑗 ≤ ℓ,

∂𝛼�⃗� = 𝑓𝛼 on ∂Ω for ∣𝛼∣ ≤ 𝑚− 1,
∥𝑁(∇𝑚𝑢)∥𝐿𝑞(∂Ω) ≤ 𝐶

∑
∣𝛼∣=𝑚−1

∥∇𝜏𝑓𝛼∥𝐿𝑞(∂Ω).

(5.21)

In [PV95a], Pipher and Verchota showed that the 𝐿𝑝-Dirichlet and 𝐿𝑝-regu-
larity problems were well posed for 2− 𝜀 < 𝑝 < 2+ 𝜀, for any higher-order elliptic
partial differential equation with real constant coefficients, in Lipschitz domains of
arbitrary dimension. This was extended to symmetric elliptic systems in [Ver96].
A key ingredient of the proof was the boundary G̊arding inequality

𝜆

4

ˆ
∂Ω

∣∇𝑚𝑢∣(−𝜈𝑛) 𝑑𝜎

≤
ℓ∑

𝑗,𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

ˆ
∂Ω

∂𝛼𝑎𝑗𝑘
𝛼𝛽∂

𝛽𝑢𝑘(−𝜈𝑛) 𝑑𝜎 + 𝐶

ˆ
∂Ω

∣∇𝑚−1∂𝑛𝑢∣2 𝑑𝜎
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valid if 𝑢 ∈ 𝐶∞0 (ℝ
𝑛)ℓ, if 𝐿 = ∂𝛼𝑎𝑗𝑘

𝛼𝛽∂
𝛽 is a symmetric elliptic system with real

constant coefficients, and if Ω is the domain above the graph of a Lipschitz function.
We observe that in this case, (−𝜈𝑛) is a positive number bounded from below.
Pipher and Verchota then used this G̊arding inequality and a Green formula to
construct the nontangential maximal estimate. See [PV95b] and [Ver96, Sections
4 and 6].

As in the case of the polyharmonic operator Δ𝑚, this first result concerned
the 𝐿𝑝-Dirichlet problem and 𝐿𝑞-regularity problem only for 2 − 𝜀 < 𝑝 < 2 + 𝜀
and for 2 − 𝜀 < 𝑞 < 2 + 𝜀. The polyharmonic operator Δ𝑚 is an elliptic system,
and so we cannot in general improve upon the requirement that 2 − 𝜀 < 𝑝 for
well-posedness of the 𝐿𝑝-Dirichlet problem.

However, we can improve on the requirement 𝑝 < 2 + 𝜀. Recall that Theo-
rem 5.13 from [She06b], and its equivalence to (5.15), were proven in the general
case of strongly elliptic systems with real symmetric constant coefficients. As in
the case of the polyharmonic operator Δ𝑚, (5.14) follows from well-posedness of
the 𝐿2-regularity problem provided 𝑝 = 2(𝑛 − 1)/(𝑛 − 3), and so if 𝐿 is such a
system, the 𝐿𝑝-Dirichlet problem for 𝐿 is well posed in Ω provided 2 − 𝜀 < 𝑝 <
2(𝑛−1)/(𝑛−3)+𝜀. This is [She06b, Corollary 1.3]. Again, by the counterexamples
of [PV95b], this range cannot be improved if 𝑚 ≥ 2 and 4 ≤ 𝑛 ≤ 2𝑚+1; the ques-
tion of whether this range can be improved for general operators 𝐿 if 𝑛 ≥ 2𝑚+ 2
is still open.

Little is known concerning the regularity problem in a broader range of 𝑝.
Recall that (5.18) from [KS11b] was proven in the general case of strongly elliptic
systems with real symmetric constant coefficients. Thus, we known that for such
systems, well-posedness of the 𝐿𝑞-regularity problem for 2 < 𝑞 < 𝑛−1 implies well-
posedness of the 𝐿𝑝-Dirichlet problem for appropriate 𝑝. The question of whether
the reverse implication holds, or whether this result can be extended to a broader
range of 𝑞, is open.

5.5. The area integral

One of major tools in the theory of second-order elliptic differential equations is
the Lusin area integral, defined as follows. If 𝑤 lies in 𝑊 2

1,𝑙𝑜𝑐(Ω) for some domain

Ω ⊂ ℝ𝑛, then the area integral (or square function) of 𝑤 is defined for 𝑄 ∈ ∂Ω as

𝑆𝑤(𝑄) =

(ˆ
Γ(𝑄)

∣∇𝑤(𝑋)∣2 dist(𝑋, ∂Ω)2−𝑛𝑑𝑋

)1/2

.

In [Dah80], Dahlberg showed that if 𝑢 is harmonic in a bounded Lipschitz domain
Ω, if 𝑃0 ∈ Ω and 𝑢(𝑃0) = 0, then for any 0 < 𝑝 <∞,

1

𝐶

ˆ
∂Ω

𝑆𝑢𝑝 𝑑𝜎 ≤
ˆ
∂Ω

(𝑁𝑢)𝑝 𝑑𝜎 ≤ 𝐶

ˆ
∂Ω

(𝑆𝑢)𝑝 𝑑𝜎 (5.22)

for some constants 𝐶 depending only on 𝑝, Ω and 𝑃0. Thus, the Lusin area integral
bears deep connections to the 𝐿𝑝-Dirichlet problem. In [DJK84], Dahlberg, Jerison
and Kenig generalized this result to solutions to second-order divergence-form
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elliptic equations with real coefficients for which the 𝐿𝑟-Dirichlet problem is well
posed for at least one 𝑟.

If 𝐿 is an operator of order 2𝑚, then the appropriate estimate is

1

𝐶

ˆ
∂Ω

𝑁(∇𝑢𝑚−1)𝑝 𝑑𝜎 ≤
ˆ
∂Ω

𝑆(∇𝑢𝑚−1)𝑝 𝑑𝜎 ≤ 𝐶

ˆ
∂Ω

𝑁(∇𝑢𝑚−1)𝑝 𝑑𝜎. (5.23)

Before discussing their validity for particular operators, let us point out that such
square-function estimates are very useful in the study of higher-order equations.
In [She06b], Shen used (5.23) to prove the equivalence of (5.15) and (5.14), above.
In [KS11a], Kilty and Shen used (5.23) to prove that well-posedness of the 𝐿𝑝-
Dirichlet problem for Δ2 implies the bilinear estimate (5.19). The proof of the
maximum principle (3.2) in [Ver96, Section 8] (to be discussed in Section 5.6) also
exploited (5.23). Estimates on square functions can be used to derive estimates on
Besov space norms; see [AP98, Proposition S].

In [PV91], Pipher and Verchota proved that (5.23) (with 𝑚 = 2) holds for
solutions 𝑢 to Δ2𝑢 = 0, provided Ω is a bounded Lipschitz domain, 0 < 𝑝 <∞, and
∇𝑢(𝑃0) = 0 for some fixed 𝑃0 ∈ Ω. Their proof was an adaptation of Dahlberg’s
proof [Dah80] of the corresponding result for harmonic functions. They used the
𝐿2-theory for the biharmonic operator [DKV86], the representation formula (5.9),
and the 𝐿2-theory for harmonic functions to prove good-𝜆 inequalities, which, in
turn, imply 𝐿𝑝 estimates for 0 < 𝑝 <∞.

In [DKPV97], Dahlberg, Kenig, Pipher and Verchota proved that (5.23) held
for solutions 𝑢 to 𝐿𝑢 = 0, for a symmetric elliptic system 𝐿 of order 2𝑚 with real
constant coefficients, provided as usual that Ω is a bounded Lipschitz domain, 0 <
𝑝 < ∞, and ∇𝑚−1𝑢(𝑃0) = 0 for some fixed 𝑃0 ∈ Ω. The argument is necessarily
considerably more involved than the argument of [PV91] or [Dah80]. In particular,
the bound ∥𝑆(∇𝑚−1𝑢)∥𝐿2(∂Ω) ≤ 𝐶∥𝑁(∇𝑚−1𝑢)∥𝐿2(∂Ω) was proven in three steps.

The first step was to reduce from the elliptic system 𝐿 of order 2𝑚 to the
scalar elliptic operator𝑀 = det𝐿 of order 2ℓ𝑚, where ℓ is as in formula (2.2). The
second step was to reduce to elliptic equations of the form

∑
∣𝛼∣=𝑚 𝑎𝛼∂

2𝛼𝑢 = 0,

where ∣𝑎𝛼∣ > 0 for all ∣𝛼∣ = 𝑚. Finally, it was shown that for operators of this
form ∑

∣𝛼∣=𝑚

ˆ
Ω

𝑎𝛼 ∂𝛼𝑢(𝑋)2 dist(𝑋, ∂Ω) 𝑑𝑋 ≤ 𝐶

ˆ
∂Ω

𝑁(∇𝑚−1𝑢)2 𝑑𝜎.

The passage to 0 < 𝑝 <∞ in (5.23) was done, as usual, using good-𝜆 inequalities.
We remark that these arguments used the result of [PV95a] that the 𝐿2-Dirichlet
problem is well posed for such operators 𝐿 in Lipschitz domains.

It is quite interesting that for second-order elliptic systems, the only currently
known approach to the square-function estimate (5.22) is this reduction to a higher-
order operator.

5.6. The maximum principle in Lipschitz domains

We are now in a position to discuss the maximum principle (3.2) for higher-order
equations in Lipschitz domains.
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We say that the maximum principle for an operator 𝐿 of order 2𝑚 holds in the
bounded Lipschitz domain Ω if there exists a constant 𝐶 > 0 such that, whenever
𝑓 ∈ 𝑊𝐴∞𝑚−1(∂Ω) ⊂ 𝑊𝐴2

𝑚−1(∂Ω) and 𝑔 ∈ 𝐿∞(∂Ω) ⊂ 𝐿2(∂Ω), the solution 𝑢 to
the Dirichlet problem (5.20) with boundary data 𝑓 and 𝑔 satisfies

∥∇𝑚−1𝑢∥𝐿∞ ≤ 𝐶∥𝑔∥𝐿∞(∂Ω) + 𝐶
∑

∣𝛼∣=𝑚−2
∥∇𝜏𝑓𝛼∥𝐿∞(∂Ω). (5.24)

The maximum principle (5.24) was proven to hold in three-dimensional Lip-
schitz domains by Pipher and Verchota in [PV93] (for biharmonic functions), in
[PV95b] (for polyharmonic functions), and by Verchota in [Ver96, Section 8] (for
solutions to symmetric systems with real constant coefficients). Pipher and Ver-
chota also proved in [PV93] that the maximum principle was valid for biharmonic
functions in 𝐶1 domains of arbitrary dimension. In [KS11a, Theorem 1.5], Kilty
and Shen observed that the same techinque gives validity of the maximum principle
for biharmonic functions in convex domains of arbitrary dimension.

The proof of [PV93] uses the 𝐿2-regularity problem in the domain Ω to con-
struct the Green function 𝐺(𝑋,𝑌 ) for Δ2 in Ω. Then if 𝑢 is biharmonic in Ω with
𝑁(∇𝑢) ∈ 𝐿2(∂Ω), we have that

𝑢(𝑋) =

ˆ
∂Ω

𝑢(𝑄) ∂𝜈Δ𝐺(𝑋,𝑄) 𝑑𝜎(𝑄) +

ˆ
∂Ω

∂𝜈𝑢(𝑄)Δ𝐺(𝑋,𝑄) 𝑑𝜎(𝑄)

where all derivatives of 𝐺 are taken in the second variable 𝑄. If the 𝐻1-regularity
problem is well posed in appropriate subdomains of Ω, then ∇2∇𝑋𝐺(𝑋, ⋅ ) is in
𝐿1(∂Ω) with 𝐿1-norm independent of 𝑋 , and so the second integral is at most
𝐶∥∂𝜈𝑢∥𝐿∞(∂Ω). By taking Riesz transforms, the normal derivative ∂𝜈Δ𝐺(𝑋,𝑄)

may be transformed to tangential derivatives ∇𝜏Δ𝐺(𝑋,𝑄); integrating by parts
transfers these derivatives to 𝑢. The square-function estimate (5.23) implies that
the Riesz transforms of ∇𝑋Δ𝑄𝐺(𝑋,𝑄) are bounded on 𝐿1(∂Ω). This completes
the proof of the maximum principle.

Similar arguments show that the maximum principle is valid for more general
operators. See [PV95b] for the polyharmonic operator, or [Ver96, Section 8] for
arbitrary symmmetric operators with real constant coefficients.

An important transitional step is the well-posedness of the 𝐻1-regularity
problem. It was established in three-dimensional (or 𝐶1) domains in [PV93, The-
orem 4.2] and [PV95b, Theorem 1.2] and discussed in [Ver96, Section 7]. In each

case, well-posedness was proven by analyzing solutions with atomic data 𝑓 using a
technique from [DK90]. A crucial ingredient in this technique is the well-posedness
of the 𝐿𝑝-Dirichlet problem for some 𝑝 < (𝑛−1)/(𝑛−2); the latter is valid if 𝑛 = 3
by [DKV86], and (for Δ2) in 𝐶1 and convex domains by [Ver90] and [KS11a], but
fails in general Lipschitz domains for 𝑛 ≥ 4.
5.7. Biharmonic functions in convex domains

We say that a domain Ω is convex if, whenever 𝑋 , 𝑌 ∈ Ω, the line segment
connecting 𝑋 and 𝑌 lies in Ω. Observe that all convex domains are necessarily
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Lipschitz domains but the converse does not hold. Moreover, while convex domains
are in general no smoother than Lipschitz domains, the extra geometrical structure
often allows for considerably stronger results.

Recall that in [MM09a], the second author of this paper and Maz’ya showed
that the gradient of a biharmonic function is bounded in a three-dimensional
domain. This is a sharp property in dimension three, and in higher-dimensional
domains the solutions can be even less regular (cf. Section 3). However, using
some intricate linear combination of weighted integrals, the same authors showed
in [MM08] that second derivatives to biharmonic functions were locally bounded
when the domain was convex. To be precise, they showed that if Ω is convex, and
𝑢 ∈ �̊� 2

2 (Ω) is a solution to Δ
2𝑢 = ℎ for some ℎ ∈ 𝐶∞0 (Ω ∖ 𝐵(𝑄, 10𝑅)), 𝑅 > 0,

𝑄 ∈ ∂Ω, then

sup
𝐵(𝑄,𝑅/5)∩Ω

∣∇2𝑢∣ ≤ 𝐶

𝑅2

( 
Ω∩𝐵(𝑄,5𝑅)∖𝐵(𝑄,𝑅/2)

∣𝑢∣2
)1/2

. (5.25)

In particular, not only are all boundary points of convex domains 1-regular, but
the gradient ∇𝑢 is Lipschitz continuous near such points.

Kilty and Shen noted in [KS11a] that (5.25) implies that (5.18) holds in
convex domains for any 𝑞; thus, the 𝐿𝑞-regularity problem for the bilaplacian is well
posed for any 2 < 𝑞 < ∞ in a convex domain. Well-posedness of the 𝐿𝑝-Dirichlet
problem for 2 < 𝑝 < ∞ has been established by Shen in [She06c]. By the duality
result (5.19), again from [KS11a], this implies that both the 𝐿𝑝-Dirichlet and 𝐿𝑞-
regularity problems are well posed, for any 1 < 𝑝 < ∞ and any 1 < 𝑞 < ∞, in a
convex domain of arbitrary dimension. They also observed that, by the techniques
of [PV93] (discussed in Section 5.6 above), the maximum principle (5.24) is valid
in arbitrary convex domains.

It is interesting to note how, once again, the methods and results related to
pointwise estimates, the Wiener criterion, and local regularity estimates near the
boundary are intertwined with the well-posedness of boundary problems in 𝐿𝑝.

5.8. The Neumann problem for the biharmonic equation

So far we have only discussed the Dirichlet and regularity problems for higher-order
operators. Another common and important boundary-value problem that arises in
applications is the Neumann problem. Indeed, the principal physical motivation
for the inhomogeneous biharmonic equation Δ2𝑢 = ℎ is that it describes the equi-
librium position of a thin elastic plate subject to a vertical force ℎ. The Dirichlet
problem 𝑢

∣∣
∂Ω
= 𝑓 , ∇𝑢

∣∣
∂Ω
= 𝑔 describes an elastic plate whose edges are clamped,

that is, held at a fixed position in a fixed orientation. The Neumann problem,
on the other hand, corresponds to the case of a free boundary. Guido Sweers has
written an excellent short paper [Swe09] discussing the boundary conditions that
correspond to these and other physical situations.

More precisely, if a thin two-dimensional plate is subject to a force ℎ and
the edges are free to move, then its displacement 𝑢 satisfies the boundary value
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problem ⎧⎨⎩
Δ2𝑢 = ℎ in Ω,

𝜌Δ𝑢+ (1− 𝜌)∂2𝜈𝑢 = 0 on ∂Ω,

∂𝜈Δ𝑢+ (1− 𝜌)∂𝜏𝜏𝜈𝑢 = 0 on ∂Ω.

Here 𝜌 is a physical constant, called the Poisson ratio. This formulation goes
back to Kirchhoff and is well known in the theory of elasticity; see, for example,
Section 3.1 and Chapter 8 of the classic engineering text [Nad63]. We remark that
by [Nad63, Formula (8-10)],

∂𝜈Δ𝑢+ (1− 𝜌)∂𝜏𝜏𝜈𝑢 = ∂𝜈Δ𝑢 + (1− 𝜌)∂𝜏 (∂𝜈𝜏𝑢) .

This suggests the following homogeneous boundary value problem in a Lips-
chitz domain Ω of arbitrary dimension. We say that the 𝐿𝑝-Neumann problem is
well posed if there exists a constant 𝐶 > 0 such that, for every 𝑓0 ∈ 𝐿𝑝(∂Ω) and
Λ0 ∈𝑊 𝑝

−1(∂Ω), there exists a function 𝑢 such that⎧⎨⎩

Δ2𝑢 = 0 in Ω,

𝑀𝜌𝑢 := 𝜌Δ𝑢+ (1− 𝜌)∂2𝜈𝑢 = 𝑓0 on ∂Ω,

𝐾𝜌𝑢 := ∂𝜈Δ𝑢+ (1− 𝜌)
1

2
∂𝜏𝑖𝑗

(
∂𝜈𝜏𝑖𝑗𝑢

)
= Λ0 on ∂Ω,

∥𝑁(∇2𝑢)∥𝐿𝑝(∂Ω) ≤ 𝐶∥𝑓0∥𝑊𝑝
1 (∂Ω)

+ 𝐶∥Λ0∥𝑊𝑝
−1(∂Ω)

.

(5.26)

Here 𝜏𝑖𝑗 = 𝜈𝑖e𝑗 − 𝜈𝑗e𝑖 is a vector orthogonal to the outward normal 𝜈 and lying
in the 𝑥𝑖𝑥𝑗-plane.

In addition to the connection to the theory of elasticity, this problem is of
interest because it is in some sense adjoint to the Dirichlet problem (5.4). That is,
if Δ2𝑢 = Δ2𝑤 = 0 in Ω, then

´
∂Ω ∂𝜈𝑤𝑀𝜌𝑢−𝑤𝐾𝜌𝑢 𝑑𝜎 =

´
∂Ω ∂𝜈𝑢𝑀𝜌𝑤−𝑢𝐾𝜌𝑤 𝑑𝜎,

where 𝑀𝜌 and 𝐾𝜌 are as in (5.26); this follows from the more general formulaˆ
Ω

𝑤Δ2𝑢 =

ˆ
Ω

(𝜌Δ𝑢Δ𝑤 + (1− 𝜌)∂𝑗𝑘𝑢 ∂𝑗𝑘𝑤) +

ˆ
∂Ω

𝑤𝐾𝜌𝑢− ∂𝜈𝑤𝑀𝜌𝑢 𝑑𝜎

(5.27)

valid for arbitrary smooth functions. This formula is analogous to the classical
Green identity for the Laplacianˆ

Ω

𝑤Δ𝑢 = −
ˆ
Ω

∇𝑢 ⋅ ∇𝑤 +

ˆ
∂Ω

𝑤 𝜈 ⋅ ∇𝑢 𝑑𝜎. (5.28)

Observe that, contrary to the Laplacian or more general second-order oper-
ators, there is a family of relevant Neumann data for the biharmonic equation.
Moreover, different values (or, rather, ranges) of 𝜌 correspond to different natural
physical situations. We refer the reader to [Ver05] for a detailed discussion.

In [CG85], Cohen and Gosselin showed that the 𝐿𝑝-Neumann problem (5.26)
was well posed in 𝐶1 domains contained in ℝ2 for for 1 < 𝑝 < ∞, provided in
addition that 𝜌 = −1. The method of proof was as follows. Recall from (5.8)
that Cohen and Gosselin showed that the 𝐿𝑝-Dirichlet problem was well posed
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by constructing a multiple layer potential ℒ𝑓 with boundary values (𝐼 + 𝒦)𝑓 ,
and showing that 𝐼+𝒦 is invertible. We remark that because Cohen and Gosselin
preferred to work with Dirichlet boundary data of the form (𝑢, ∂𝑥𝑢, ∂𝑦𝑢)

∣∣
∂Ω
rather

than of the form (𝑢, ∂𝜈𝑢)
∣∣
∂Ω
, the notation of [CG85] is somewhat different from

that of the present paper. In the notation of the present paper, the method of
proof of [CG85] was to observe that (𝐼+𝒦)∗𝜃 is equivalent to (𝐾−1𝑣𝜃,𝑀−1𝑣𝜃)∂Ω𝐶 ,
where 𝑣 is another biharmonic layer potential and (𝐼+𝒦)∗ is the adjoint to (𝐼+𝒦).
Well-posedness of the Neumann problem then follows from invertibility of 𝐼 + 𝒦
on ∂Ω𝐶 .

In [Ver05], Verchota investigated the Neumann problem (5.26) in full general-
ity. He considered Lipschitz domains with compact, connected boundary contained
in ℝ𝑛, 𝑛 ≥ 2. He showed that if −1/(𝑛−1) ≤ 𝜌 < 1, then the Neumann problem is
well posed provided 2− 𝜀 < 𝑝 < 2 + 𝜀. That is, the solutions exist, satisfy the de-
sired estimates, and are unique either modulo functions of an appropriate class, or
(in the case where Ω is unbounded) when subject to an appropriate growth condi-
tion. See [Ver05, Theorems 13.2 and 15.4]. Verchota’s proof also used boundedness
and invertibility of certain potentials on 𝐿𝑝(∂Ω); a crucial step was a coercivity
estimate ∥∇2𝑢∥𝐿2(∂Ω) ≤ 𝐶∥𝐾𝜌𝑢∥𝑊 2

−1(∂Ω)
+𝐶∥𝑀𝜌𝑢∥𝐿2(∂Ω). (This estimate is valid

provided 𝑢 is biharmonic and satisfies some mean-value hypotheses; see [Ver05,
Theorem 7.6]).

In [She07a], Shen improved upon Verchota’s results by extending the range
on 𝑝 (in bounded simply connected Lipschitz domains) to 2(𝑛− 1)/(𝑛+ 1)− 𝜀 <
𝑝 < 2 + 𝜀 if 𝑛 ≥ 4, and 1 < 𝑝 < 2 + 𝜀 if 𝑛 = 2 or 𝑛 = 3. This result again
was proven by inverting layer potentials. Observe that the 𝐿𝑝-regularity problem
is also known to be well posed for 𝑝 in this range, and (if 𝑛 ≥ 6) in a broader
range of 𝑝; see Section 5.3. The question of the sharp range of 𝑝 for which the
𝐿𝑝-Neumann problem is well posed is still open.

It turns out that extending the well-posedness results for the Neumann prob-
lem beyond the case of the bilaplacian is an excruciatingly difficult problem, even
if one considers only fourth-order operators with constant coefficients.

The solutions to (5.26) in [CG85], [Ver05] and [She07a] were constructed
using layer potentials. It is possible to construct layer potential operators, and
to prove their boundedness, for a fairly general class of higher-order operators.
However, the problems arise at a much more fundamental level.

In analogy to (5.27) and (5.28), one can writeˆ
Ω

𝑤𝐿𝑢 = 𝐴[𝑢,𝑤] +

ˆ
∂Ω

𝑤𝐾𝐴𝑢− ∂𝜈𝑤𝑀𝐴𝑢 𝑑𝜎, (5.29)

where 𝐴[𝑢,𝑤] =
∑
∣𝛼∣=∣𝛽∣=2 𝑎𝛼𝛽

´
Ω
𝐷𝛽𝑢𝐷𝛼𝑤 is an energy form associated to the

operator 𝐿 =
∑
∣𝛼∣=∣𝛽∣=2 𝑎𝛼𝛽𝐷

𝛼𝐷𝛽 . Note that in the context of fourth-order op-

erators, the pair (𝑤, ∂𝜈𝑤) constitutes the Dirichlet data for 𝑤 on the boundary,
and so one can say that the operators 𝐾𝐴𝑢 and 𝑀𝐴𝑢 define the Neumann data
for 𝑢. One immediately faces the problem that the same higher-order operator 𝐿
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can be rewritten in many different ways and gives rise to different energy forms.
The corresponding Neumann data will be different. (This is the reason why there
is a family of Neumann data for the biharmonic operator.)

Furthermore, whatever the choice of the form, in order to establish well-
posedness of the Neumann problem, one needs to be able to estimate all second
derivatives of a solution on the boundary in terms of the Neumann data. In the
analogous second-order case, such an estimate is provided by the Rellich identity,
which shows that the tangential derivatives are equivalent to the normal derivative
in 𝐿2 for solutions of elliptic PDEs. In the higher-order scenario, such a result calls
for certain coercivity estimates which are still rather poorly understood. We refer
the reader to [Ver10] for a detailed discussion of related results and problems.

5.9. Inhomogeneous problems for the biharmonic equation and
other classes of boundary data

In [AP98], Adolfsson and Pipher investigated the inhomogeneous Dirichlet problem
for the biharmonic equation with data in Besov and Sobolev spaces. While resting
on the results for homogeneous boundary value problems discussed in Sections 5.1
and 5.3, such a framework presents a completely new setting, allowing for the
inhomogeneous problem and for consideration of the classes of boundary data
which are, in some sense, intermediate between the Dirichlet and the regularity
problems.

They showed that if 𝑓 ∈𝑊𝐴𝑝
1+𝑠(∂Ω) and ℎ ∈ 𝐿𝑝

𝑠+1/𝑝−3(Ω), then there exists
a unique function 𝑢 that satisfies{

Δ2𝑢 = ℎ in Ω,

Tr ∂𝛼𝑢 = 𝑓𝛼, for 0 ≤ ∣𝛼∣ ≤ 1 (5.30)

subject to the estimate

∥𝑢∥𝐿𝑝
𝑠+1/𝑝+1

(Ω) ≤ 𝐶∥ℎ∥𝐿𝑝
𝑠+1/𝑝−3

(Ω) + 𝐶∥𝑓∥𝑊𝐴𝑝
1+𝑠(∂Ω)

(5.31)

provided 2− 𝜀 < 𝑝 < 2+ 𝜀 and 0 < 𝑠 < 1. Here Tr𝑤 denotes the trace of 𝑤 in the
sense of Sobolev spaces; that these may be extended to functions 𝑢 ∈ 𝐿𝑝

𝑠+1+1/𝑝,

𝑠 > 0, was proven in [AP98, Theorem 1.12].
In Lipschitz domains contained in ℝ3, they proved these results for a broader

range of 𝑝 and 𝑠, namely for 0 < 𝑠 < 1 and for

max

(
1,

2

𝑠+ 1 + 𝜀

)
< 𝑝 <

{
∞, 𝑠 < 𝜀,
2

𝑠−𝜀 , 𝜀 ≤ 𝑠 < 1.
(5.32)

Finally, in 𝐶1 domains, they proved these results for any 𝑝 and 𝑠 with 1 < 𝑝 <∞
and 0 < 𝑠 < 1.

In [MMW11], I. Mitrea, M. Mitrea and Wright extended the three-dimen-
sional results to 𝑝 =∞ (for 0 < 𝑠 < 𝜀) or 2/(𝑠+1+𝜀) < 𝑝 ≤ 1 (for 1−𝜀 < 𝑠 < 1).

They also extended these results to data ℎ and 𝑓 in more general Besov or Triebel–
Lizorkin spaces.
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Let us define the function spaces appearing above. 𝐿𝑝
𝛼(ℝ

𝑛) is defined to be
{𝑔 : (𝐼 −Δ)𝛼/2𝑔 ∈ 𝐿𝑝(ℝ𝑛)}; we say 𝑔 ∈ 𝐿𝑝

𝛼(Ω) if 𝑔 = ℎ
∣∣
Ω
for some ℎ ∈ 𝐿𝑝

𝛼(ℝ
𝑛).

If 𝑘 is a non-negative integer, then 𝐿𝑝
𝑘 = 𝑊 𝑝

𝑘 . If 𝑚 is an integer and 0 < 𝑠 < 1,
then the Whitney–Besov space 𝑊𝐴𝑝

𝑚−1+𝑠 is defined analogously to 𝑊𝐴𝑝
𝑚 (see

Definition 5.6), except that we take the completion with respect to the Whitney–
Besov norm ∑

∣𝛼∣≤𝑚−1
∥∂𝛼𝜓∥𝐿𝑝(∂Ω) +

∑
∣𝛼∣=𝑚−1

∥∂𝛼𝜓∥𝐵𝑝,𝑝
𝑠 (∂Ω) (5.33)

rather than the Whitney–Sobolev norm∑
∣𝛼∣≤𝑚−1

∥∂𝛼𝜓∥𝐿𝑝(∂Ω) +
∑

∣𝛼∣=𝑚−1
∥∇𝜏∂

𝛼𝜓∥𝐿𝑝(∂Ω).

The general problem (5.30) was first reduced to the case ℎ = 0 (that is,
to a homogeneous problem) by means of trace/extension theorems, that is, sub-

tracting 𝑤(𝑋) =
´
ℝ𝑛 𝐹 (𝑋,𝑌 ) ℎ̃(𝑌 ) 𝑑𝑌 , and showing that if ℎ ∈ 𝐿𝑝

𝑠+1/𝑝−3(Ω) then
(Tr𝑤,Tr∇𝑤) ∈ 𝑊𝐴𝑝

1+𝑠(∂Ω). Next, the well-posedness of Dirichlet and regularity
problems discussed in Sections 5.1 and 5.3 provide the endpoint cases 𝑠 = 0 and
𝑠 = 1, respectively. The core of the matter is to show that, if 𝑢 is biharmonic, 𝑘 is
an integer and 0 ≤ 𝛼 ≤ 1, then 𝑢 ∈ 𝐿𝑝

𝑘+𝛼(Ω) if and only ifˆ
Ω

∣∇𝑘+1𝑢(𝑋)∣𝑝 dist(𝑋, ∂Ω)𝑝−𝑝𝛼 + ∣∇𝑘𝑢(𝑋)∣𝑝 + ∣𝑢(𝑋)∣𝑝 𝑑𝑋 <∞, (5.34)

(cf. [AP98, Proposition S]). With this at hand, one can use square-function es-
timates to justify the aforementioned endpoint results. Indeed, observe that for
𝑝 = 2 the first integral on the left-hand side of (5.34) is exactly the 𝐿2 norm
of 𝑆(∇𝑘𝑢). The latter, by [PV91] (discussed in Section 5.5), is equivalent to the
𝐿2 norm of the corresponding non-tangential maximal function, connecting the
estimate (5.31) to the nontangential estimates in the Dirichlet problem (5.4) and
the regularity problem 5.11. Finally, one can build an interpolation-type scheme
to pass to well-posedness in intermediate Besov and Sobolev spaces.

6. Boundary value problems with variable coefficients

In this section we discuss divergence-form operators with variable coefficients. At
the moment, well-posedness results for such operators are restricted in two serious
ways. First, the coefficients cannot oscillate too much. Secondly, the boundary
problems treated fall strictly between the range of 𝐿𝑝-Dirichlet and 𝐿𝑝-regularity,
in the sense of Section 5.9. That is, the 𝐿𝑝-Dirichlet, regularity, and Neumann
problems on Lipschitz domains with the usual sharp estimates in terms of the
non-tangential maximal function for these divergence-form operators seem to be
completely open.

To be more precise, recall from the discussion in Section 5.9 that the classical
Dirichlet and regularity problems, with boundary data in 𝐿𝑝, can be viewed as the
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𝑠 = 0, 1 endpoints of the boundary problem studied in [AP98] and [MMW11]

Δ2𝑢 = ℎ in Ω, ∂𝛼𝑢
∣∣
∂Ω
= 𝑓𝛼 for all ∣𝛼∣ ≤ 1

with 𝑓 lying in an intermediate smoothness space 𝑊𝐴𝑝
1+𝑠(∂Ω), 0 ≤ 𝑠 ≤ 1. In the

context of divergence-form higher-order operators with variable coefficients, essen-
tially the known results pertain only to boundary data of intermediate smoothness.

We now establish some terminology. A divergence-form operator 𝐿, acting on
𝑊 2

𝑚,𝑙𝑜𝑐(Ω 1→ ℂℓ), may be defined weakly via (2.5); we say that 𝐿𝑢 = ℎ if

ℓ∑
𝑗=1

ˆ
Ω

𝜑𝑗 ℎ𝑗 = (−1)𝑚
ℓ∑

𝑗,𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

ˆ
Ω

∂𝛼𝜑𝑗(𝑋) 𝑎
𝑗𝑘
𝛼𝛽(𝑋) ∂

𝛽𝑢𝑘(𝑋) 𝑑𝑋 (6.1)

for all 𝜑 smooth and compactly supported in Ω.
In [Agr07], Agranovich investigated the inhomogeneous Dirichlet problem, in

Lipschitz domains, for such operators 𝐿 that are elliptic (in the sense of (2.7)) and

whose coefficients 𝑎𝑗𝑘
𝛼𝛽 are Lipschitz continuous in Ω.

He showed that if ℎ ∈ 𝐿𝑝
−𝑚−1+1/𝑝+𝑠(Ω) and 𝑓 ∈ 𝑊𝐴𝑝

𝑚−1+𝑠(∂Ω), for some

0 < 𝑠 < 1, and if ∣𝑝− 2∣ is small enough, then the Dirichlet problem{
𝐿𝑢 = ℎ in Ω,

Tr ∂𝛼𝑢 = 𝑓𝛼 for all 0 ≤ ∣𝛼∣ ≤ 𝑚− 1 (6.2)

has a unique solution 𝑢 that satisfies the estimate

∥𝑢∥𝐿𝑝
𝑚−1+𝑠+1/𝑝

(Ω) ≤ 𝐶∥ℎ∥𝐿𝑝
−𝑚−1+1/𝑝+𝑠

(∂Ω) + 𝐶∥𝑓∥𝑊𝐴𝑝
𝑚−1+𝑠(∂Ω)

. (6.3)

Agranovich also considered the Neumann problem for such operators. As we
discussed in Section 5.8, defining Neumann problem is a delicate matter. In the
context of zero boundary data, the situation is a little simpler as one can take a
formal functional analytic point of view and avoid to some extent the discussion
of estimates at the boundary. First, observe that if the test function 𝜑 does not
have zero boundary data, then formula (6.1) becomes

ℓ∑
𝑗=1

ˆ
Ω

(𝐿𝑢)𝑗 𝜑𝑗 = (−1)𝑚
ℓ∑

𝑗,𝑘=1

∑
∣𝛼∣=∣𝛽∣=𝑚

ˆ
Ω

∂𝛼𝜑𝑗(𝑋) 𝑎
𝑗𝑘
𝛼𝛽(𝑋) ∂

𝛽𝑢𝑘(𝑋) 𝑑𝑋

+

𝑚−1∑
𝑖=0

ˆ
∂Ω

𝐵𝑚−1−𝑖𝑢 ∂𝑖
𝜈𝜑𝑑𝜎

where 𝐵𝑖𝑢 is an appropriate linear combination of the functions ∂𝛼𝑢 where ∣𝛼∣ =
𝑚 + 𝑖. The expressions 𝐵𝑖𝑢 may then be regarded as the Neumann data for 𝑢.
Notice that if 𝐿 is a fourth-order constant-coefficient operator, then 𝐵0 = −𝑀𝐴

and 𝐵1 = 𝐾𝐴, where 𝐾𝐴, 𝑀𝐴 are given by (5.29).
We say that 𝑢 solves the Neumann problem for 𝐿, with homogeneous bound-

ary data, if (6.1) is valid for all test functions 𝜑 compactly supported in ℝ𝑛 (but

not necessarily in Ω.) Agranovich showed that, if ℎ ∈ �̊�𝑝
−𝑚−1+1/𝑝+𝑠(Ω), then there
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exists a unique function 𝑢 ∈ 𝐿𝑝
𝑚−1+1/𝑝+𝑠(Ω) that solves this Neumann problem

with homogeneous boundary data, under the same conditions on 𝑝, 𝑠, 𝐿 as for
his results for the Dirichlet problem. He also provided some brief discussion (see
[Agr07, Section 5.2]) of the conditions needed to resolve the Neumann problem with

inhomogeneous boundary data. Here ℎ ∈ 𝐿𝑝
𝛼(Ω) if ℎ = 𝑔

∣∣
Ω
for some 𝑔 ∈ 𝐿𝑝

𝛼(ℝ
𝑛)

that in addition is supported in Ω̄.
In [MMS10], Maz’ya, M. Mitrea and Shaposhnikova considered the Dirichlet

problem, again with boundary data in intermediate Besov spaces, for much rougher
coefficients. They showed that if 𝑓 ∈ 𝑊𝐴𝑝

𝑚−1+𝑠, for some 0 < 𝑠 < 1 and some
1 < 𝑝 <∞, if ℎ lies in an appropriate space, and if 𝐿 is a divergence-form operator
of order 2𝑚 (as defined by (2.5)), then under some conditions, there is a unique
function 𝑢 that satisfies (6.2) subject to the estimate∑

∣𝛼∣≤𝑚

ˆ
Ω

∣∂𝛼𝑢(𝑋)∣𝑝 dist(𝑋, ∂Ω)𝑝−𝑝𝑠−1 𝑑𝑋 <∞. (6.4)

See [MMS10, Theorem 8.1]. The inhomogeneous data ℎ is required to lie in the
space 𝑉 𝑝

−𝑚,1−𝑠−1/𝑝(Ω), the dual space to 𝑉 𝑞
𝑚,𝑠+1/𝑝−1(Ω), where

∥𝑤∥𝑉 𝑝
𝑚,𝑎

=

( ∑
∣𝛼∣≤𝑚

ˆ
Ω

∣∂𝛼𝑢(𝑋)∣𝑝 dist(𝑋, ∂Ω)𝑝𝑎+𝑝∣𝛼∣−𝑝𝑚 𝑑𝑋

)1/𝑝
.

The conditions are that Ω be a Lipschitz domain whose normal vector 𝜈 lies in
𝑉 𝑀𝑂(∂Ω), and that the coefficients 𝑎𝑖𝑗

𝛼𝛽 lie in 𝑉 𝑀𝑂(ℝ𝑛). Recall that this con-

dition on Ω has also arisen in [MM11] (it ensures the validity of formula (3.11)).
The ellipticity condition they required was that the coefficients be bounded and
that ⟨𝜑,𝐿𝜑⟩ ≥ 𝜆∥∇𝑚𝜑∥2𝐿2 for all smooth compactly supported functions 𝜑, that
is, that

Re
∑

∣𝛼∣=∣𝛽∣=𝑚

ℓ∑
𝑗,𝑘=1

ˆ
Ω

𝑎𝑗𝑘
𝛼𝛽(𝑋)∂

𝛽𝜑𝑘(𝑋)∂
𝛼𝜑𝑗(𝑋) 𝑑𝑋 ≥ 𝜆

∑
∣𝛼∣=𝑚

ℓ∑
𝑘=1

ˆ
Ω

∣∂𝛼𝜑𝑘∣2

(6.5)
for all functions 𝜑 ∈ 𝐶∞0 (Ω 1→ ℂℓ). This is a weaker requirement than condi-
tion (2.7).

In fact, [MMS10] provides a more intricate result, allowing one to deduce
a well-posedness range of 𝑠 and 𝑝, given information about the oscillation of the

coefficients 𝑎𝑗𝑘
𝛼𝛽 and the normal to the domain 𝜈. In the extreme case, when the

oscillations for both are vanishing, the allowable range expands to 0 < 𝑠 < 1,
1 < 𝑝 <∞, as stated above.

We comment on the estimate (6.4). First, by [AP98, Propositon S] (listed
above as formula (5.34)), if 𝑢 is biharmonic then the estimate (6.4) is equivalent to

the estimate (6.3) of [Agr07]. Second, by (5.23), if the coefficients 𝑎𝑗𝑘
𝛼𝛽 are constant,

one can draw connections between (6.4) for 𝑠 = 0, 1 and the nontangential maximal
estimates of the Dirichlet or regularity problems (5.20) or (5.21). However, as we
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pointed out earlier, this endpoint case, corresponding to the true 𝐿𝑝-Dirichlet and
regularity problems, has not been achieved.

6.1. The Kato problem and the Riesz transforms

An important topic in elliptic theory, which formally stands somewhat apart from
the well-posedness issues, is the Kato problem and the properties of the Riesz
transform. In the framework of elliptic boundary problems, the related results can
be viewed as the estimates for the solutions with data in 𝐿𝑝 for certain operators
in block form.

Suppose that 𝐿 is a variable-coefficient operator in divergence form, that is,
an operator defined by (2.5). Suppose that 𝐿 satisfies the ellipticity estimate (6.5),
and the bounds∣∣∣∣ ∑

∣𝛼∣=∣𝛽∣=𝑚

ℓ∑
𝑗,𝑘=1

ˆ
ℝ𝑛

𝑎𝑗𝑘
𝛼𝛽∂

𝛽𝑓𝑘 ∂𝛼𝑔𝑗

∣∣∣∣ ≤ 𝐶∥∇𝑚𝑓∥𝐿2(ℝ𝑛)∥∇𝑚𝑔∥𝐿2(ℝ𝑛). (6.6)

(This is a weaker condition than the assumption of [MMS10] that 𝑎𝑖𝑗
𝛼𝛽 be bounded

pointwise.) Auscher, Hofmann, McIntosh and Tchamitchian [AHMT01] proved
that under these conditions, the Kato estimate

1

𝐶
∥∇𝑚𝑓∥𝐿2(ℝ𝑛) ≤ ∥

√
𝐿𝑓∥𝐿2(ℝ𝑛) ≤ 𝐶∥∇𝑚𝑓∥𝐿2(ℝ𝑛) (6.7)

is valid for some constant 𝐶. They also proved similar results for operators with
lower-order terms.

It was later observed in [Aus04] that by the methods of [AT98], if 1 ≤ 𝑛 ≤ 2𝑚,
then the bound on the Riesz transform ∇𝑚𝐿−1/2 in 𝐿𝑝 (that is, the first inequality
in (6.7)) extends to the range 1 < 𝑝 < 2+𝜀, and the reverse Riesz transform bound
(that is, the second inequality in (6.7)) extends to the range 1 < 𝑝 < ∞. This
also holds if the Schwartz kernel 𝑊𝑡(𝑋,𝑌 ) of the operator 𝑒−𝑡𝐿 satisfies certain
pointwise bounds (e.g., if the coefficients of 𝐴 are real).

In the case where 𝑛 > 2𝑚, the inequality ∥∇𝑚𝐿−1/2𝑓∥𝐿𝑝(ℝ𝑛) ≤ 𝐶∥𝑓∥𝐿𝑝(ℝ𝑛)

holds for 2𝑛/(𝑛 + 2𝑚) − 𝜀 < 𝑝 ≤ 2; see [BK04, Aus04]. The reverse inequality
holds for max(2𝑛/(𝑛 + 4𝑚) − 𝜀, 1) < 𝑝 < 2 by [Aus04, Theorem 18], and for
2 < 𝑝 < 2𝑛/(𝑛− 2𝑚) + 𝜀 by duality (see [Aus07, Section 7.2]).

Going further, let us consider the second-order divergence-form operator 𝕃 =
− div𝔸∇ in ℝ𝑛+1, where 𝔸 is an (𝑛+ 1)× (𝑛+ 1) matrix in block form; that is,
𝔸𝑗,𝑛+1 = 𝔸𝑛+1,𝑗 = 0 for 1 ≤ 𝑗 ≤ 𝑛, and 𝔸𝑛+1,𝑛+1 = 1. It is fairly easy to see that

one can formally realize the solution to 𝕃𝑢 = 0 in ℝ𝑛+1
+ , 𝑢

∣∣
ℝ𝑛 = 𝑓 , as the Poisson

semigroup 𝑢(𝑥, 𝑡) = 𝑒−𝑡
√
𝐿𝑓(𝑥), (𝑥, 𝑡) ∈ ℝ𝑛+1

+ . Then (6.7) essentially provides an
analogue of the Rellich identity-type estimate for the block operator 𝕃, that is,
the 𝐿2-equivalence between normal and tangential derivatives of the solution on
the boundary

∥∂𝑡𝑢( ⋅ , 0)∥𝐿2(ℝ𝑛) ≈ ∥∇𝑥𝑢( ⋅ , 0)∥𝐿2(ℝ𝑛).
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As we discussed in Section 5, such a Rellich identity-type estimate is, in a sense, a
core result needed to approach Neumann and regularity problems, and for second-
order equations it was formally shown that it translates into familiar well-posedness
results with the sharp non-tangential maximal function bounds. ([May10]; see also
[AAA+11].)

Following the same line of reasoning, one can build a higher-order “block-
type” operator 𝕃, for which the Kato estimate (6.7) would imply a certain com-
parison between normal and tangential derivatives on the boundary

∥∂𝑚
𝑡 𝑢( ⋅ , 0)∥𝐿2(ℝ𝑛) ≈ ∥∇𝑚

𝑥 𝑢( ⋅ , 0)∥𝐿2(ℝ𝑛).

It remains to be seen whether these bounds lead to standard well-posedness results.
However, we would like to emphasize that such a result would be restricted to very
special, block-type, operators.
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1. Introduction

Throughout this paper, 𝑋 and 𝑌 will denote infinite-dimensional complex Ba-
nach spaces and ℒ(𝑋) and ℒ(𝑌 ) will denote the algebras of all bounded linear
operators on 𝑋 and 𝑌 with unit 𝐼, respectively. For 𝑇 ∈ ℒ(𝑋) we will denote by
𝜎(𝑇 ), 𝜎𝑎𝑝(𝑇 ), and 𝜎𝑠𝑢(𝑇 ) := {𝜆 ∈ ℂ : 𝜆 − 𝑇 is not surjective} the spectrum, the
approximate point spectrum, and the surjectivity spectrum of 𝑇 ; respectively. The
local resolvent set of 𝑇 ∈ ℒ(𝑋) at a point 𝑥 ∈ 𝑋 , 𝜌𝑇 (𝑥), is the set of all 𝜆 ∈ ℂ for
which there exists an open neighborhood 𝑈𝜆 of 𝜆 in ℂ and an 𝑋-valued analytic
function on 𝑈𝜆 such that (𝜇− 𝑇 )𝑓(𝜇) = 𝑥 for all 𝜇 ∈ 𝑈𝜆. Its complement denoted
by 𝜎𝑇 (𝑥) is called the local spectrum of 𝑇 at 𝑥. We denote as usual the spectral
radius of 𝑇 by 𝑟(𝑇 ) := max{∣𝜆∣ : 𝜆 ∈ 𝜎(𝑇 )} which coincides, by Gelfand’s formula
for the spectral radius, with the limit of the convergent sequence (∥𝑇 𝑛∥ 1

𝑛 )𝑛. The
lower-boundedness spectral radius ℓ(𝑇 ) and the surjectivity spectral radius 𝜔(𝑇 )
of 𝑇 are given by

ℓ(𝑇 ) = sup{𝜀 ≥ 0 : 𝜆− 𝑇 is bounded below for ∣𝜆∣ < 𝜀},
𝜔(𝑇 ) = sup{𝜀 ≥ 0 : 𝜆− 𝑇 is surjective for ∣𝜆∣ < 𝜀}.

The authors thank the support and the hospitality of the organizers of the “22𝑛𝑑 International

Workshop on Operator Theory and its Applications, Sevilla, Spain, July 3–9, 2011”, where the
main result of this paper was announced.
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These quantities are quite useful for the localization of the approximate point (sur-
jectivity) spectrum and the spectrum; see for instance [1] and [9]. In [10], E. Makai
and J. Zemánek proved, in fact, that ℓ(𝑇 ) (resp. 𝜔(𝑇 )) is nothing but the minimum

modulus of 𝜎𝑎𝑝(𝑇 ) (resp. 𝜎𝑠𝑢(𝑇 )) that coincides with the limit lim𝑛→∞𝑚(𝑇 𝑛)
1
𝑛

(resp. lim𝑛→∞ 𝑞(𝑇 𝑛)
1
𝑛 ). Here 𝑚(𝑇 ) := inf{∥𝑇𝑥∥ : 𝑥 ∈ 𝑋, ∥𝑥∥ ≤ 1} (resp. 𝑞(𝑇 ) :=

sup{𝜀 ≥ 0; 𝜀𝐵(0, 1) ⊆ 𝑇 (𝐵(0, 1))}) is the so-called minimum (resp. surjectivity)
modulus of 𝑇 ; where 𝐵(0, 1) denotes the closed unit ball of 𝑋 . In the same paper
a counter-example was given showing that ℓ(𝑇 ) and 𝜔(𝑇 ) are not determined by
the spectrum of 𝑇 . The inner local spectral radius of 𝑇 at a point 𝑥 ∈ 𝑋 , 𝜄𝑇 (𝑥),
is defined by

𝜄𝑇 (𝑥) := sup{𝜀 ≥ 0 : 𝑥 ∈ 𝒳𝑇 (ℂ ∖𝐷(0, 𝜀))},
where 𝐷(0, 𝜀) denotes the open disc of radius 𝜀 centered at 0 and 𝒳𝑇 (ℂ ∖𝐷(0, 𝜀))
is the so-called local spectral subspace of 𝑇 associated with ℂ ∖ 𝐷(0, 𝜀), that is,
the set of all 𝑥 ∈ 𝑋 for which there is an 𝑋-valued analytic function 𝑓 on 𝐷(0, 𝜀)
such that (𝜆− 𝑇 )𝑓(𝜆) = 𝑥 for all 𝜆 ∈ 𝐷(0, 𝜀). The local spectral radius of 𝑇 at 𝑥
is given by

𝑟𝑇 (𝑥) := lim sup𝑛→+∞ ∥𝑇 𝑛𝑥∥ 1
𝑛 .

The inner local (resp. local) spectral radius of 𝑇 at 𝑥 coincides with the minimum
(resp. maximum) modulus of 𝜎𝑇 (𝑥) provided that 𝑇 has the single-valued extension
property; see [9] and [11]. Recall that 𝑇 is said to have the single-valued extension
property if for every open set 𝑈 of ℂ, the equation (𝑇−𝜆)𝜙(𝜆) = 0, (𝜆 ∈ 𝑈), has no
nontrivial analytic solution on 𝑈 . For more details and basic facts concerning the
spectral quantities ℓ(𝑇 ), 𝜔(𝑇 ), and 𝜄𝑇 (𝑥) we refer the reader to [1, 9, 10], and [11].

We will say that an additive map 𝜙 : ℒ(𝑋) → ℒ(𝑋) compresses the local
spectrum at a fixed nonzero vector 𝑒 ∈ 𝑋 if 𝜎𝜙(𝑇 )(𝑒) ⊆ 𝜎𝑇 (𝑒) holds for all 𝑇 ∈
ℒ(𝑋) and preserves the local spectrum (resp. local spectral radius) at 𝑒 if the
reverse set-inclusion holds too (resp. 𝑟𝜙(𝑇 )(𝑒) = 𝑟𝑇 (𝑒) for all 𝑇 ∈ ℒ(𝑋)).

In [7], Bračič and Müller characterized continuous surjective linear maps from
ℒ(𝑋) into itself that preserve the local spectrum and the local spectral radius at a
nonzero fixed vector in 𝑋 . In [4], the authors treated the problem of characterizing
locally spectrally bounded linear maps on the algebra ℒ(ℋ) of all bounded linear
operators on a complex Hilbert space ℋ, and they described continuous linear
maps from ℒ(ℋ) onto itself that compress the local spectrum at a fixed nonzero
vector in ℋ. The surjective continuous additive mappings 𝜙 on ℒ(𝑋) which are
local spectrum compressing or local spectral radius preserving at a nonzero vector
were characterized in [5].

In this paper, we first collect in the next section some results concerning addi-
tive maps from ℒ(𝑋) onto ℒ(𝑌 ) that preserve the lower-boundedness (surjectivity)
of operators in both directions and the ones that preserve the lower-boundedness
(surjectivity) spectral radius of operators. This allows us to characterize in the last
section additive maps from ℒ(𝑋) onto ℒ(𝑌 ) that preserve the inner local spectral
radius at a fixed nonzero vector. It should be pointed out that our proofs use some
arguments which are influenced by ideas from Bračič and Müller [7].
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2. Preliminaries

We first fix some notation and terminology. The duality between the Banach spaces
𝑋 and its dual, 𝑋∗, will be denoted by ⟨., .⟩. For 𝑥 ∈ 𝑋 and 𝑓 ∈ 𝑋∗, as usual we
denote by 𝑥 ⊗ 𝑓 the rank at most one operator on 𝑋 given by 𝑧 1→ ⟨𝑧, 𝑓⟩𝑥. For
𝑇 ∈ ℒ(𝑋) we will denote by ker(𝑇 ), range (𝑇 ), and 𝑇 ∗ the null space, the range,
and the adjoint of 𝑇 ; respectively. The operator 𝑇 is said to be semi-Fredholm if
range (𝑇 ) is closed and dim(ker(𝑇 )) or dim(𝑋/range (𝑇 )) is finite, and is said to
be semi-invertible if it is left or right invertible. An additive mapping 𝐴 : 𝑋 → 𝑌
is called semilinear if 𝐴(𝜆𝑥) = 𝜏(𝜆)𝐴(𝑥) holds for all scalars 𝜆 ∈ ℂ and vectors
𝑥 ∈ 𝑋 , where 𝜏 is a ring automorphism of ℂ. It is called conjugate linear if
𝐴(𝜆𝑥) = 𝜆𝐴(𝑥) holds for all scalars 𝜆 ∈ ℂ and vectors 𝑥 ∈ 𝑋 .

Recall that an additive map 𝜙 : ℒ(𝑋)→ ℒ(𝑌 ) is called unital if 𝜙(𝐼) = 𝐼, and
is said to preserve the lower-boundedness of operators in both directions provided
that 𝜙(𝑇 ) is bounded below if and only if 𝑇 is. The additive maps preserving the
surjectivity in both directions are defined in a similar way.

The following elementary lemmas, inspired by [3], are on the straightforward
side. We include them for the sake of completeness.

Lemma 2.1. Let 𝜙 : ℒ(𝑋) → ℒ(𝑌 ) be a surjective additive map. If 𝜙 either pre-
serves lower-boundedness or surjectivity of operators in both directions, then either

(i) there exist invertible bounded both linear or both conjugate linear operators
𝐴 : 𝑋 → 𝑌 and 𝐵 : 𝑌 → 𝑋 such that 𝜙(𝑇 ) = 𝐴𝑇𝐵 for all 𝑇 ∈ ℒ(𝑋), or

(ii) there exist invertible bounded both linear or both conjugate linear operators
𝐴 : 𝑋∗ → 𝑌 and 𝐵 : 𝑌 → 𝑋∗ such that 𝜙(𝑇 ) = 𝐴𝑇 ∗𝐵 for all 𝑇 ∈ ℒ(𝑋).

The last case occurs only if 𝑋 and 𝑌 are reflexive.

Proof. Assume that 𝜙 preserves the lower-boundedness of operators in both di-
rections. It is easy to check that 𝑇 is lower bounded if and only if 𝑇 is not left
topological divisor of zero; i.e., there is no sequence (𝑆𝑛)𝑛≥1 ⊆ ℒ(𝑋) satisfying
∥𝑆𝑛∥ = 1 and 𝑇𝑆𝑛 → 0 as 𝑛 → ∞. So, by using the same approach as in [8,
Theorem 3.1] one can see that 𝜙 is injective and either

(a) there exist semilinear bijective maps 𝐶 : 𝑋 → 𝑌 and 𝐷 : 𝑋∗ → 𝑌 ∗ such that
𝜙(𝑥 ⊗ 𝑓) = 𝐶𝑥⊗𝐷𝑓 for all 𝑥 ∈ 𝑋 and all 𝑓 ∈ 𝑋∗, or

(b) there exist semilinear bijective maps 𝐶 : 𝑋∗ → 𝑌 and 𝐷 : 𝑋 → 𝑌 ∗ such that
𝜙(𝑥 ⊗ 𝑓) = 𝐶𝑓 ⊗𝐷𝑥 for all 𝑥 ∈ 𝑋 and all 𝑓 ∈ 𝑋∗.
Now, let us show that 𝜙(𝐼) is invertible. Note that 𝜙(𝐼) is injective with

closed range, and let us show by way of contradiction that 𝜙(𝐼) is surjective. So,
assume that there exists a nonzero element 𝑦0 ∈ 𝑌 ∖ range (𝜙(𝐼)). We claim that
the operator 𝜙(𝐼) − 𝑦0 ⊗ 𝑔 is injective with closed range for all 𝑔 ∈ 𝑌 ∗. Indeed,
the operator 𝜙(𝐼) is semi-Fredholm since it is bounded below. Thus the operator
𝜙(𝐼)− 𝑦0⊗ 𝑔 is semi-Fredholm for every 𝑔 ∈ 𝑌 ∗. On the other hand, 𝜙(𝐼)− 𝑦0⊗ 𝑔
is injective because 𝜙(𝐼) is injective and 𝑦0∈/ range𝜙(𝐼). This yields the claim. So,
if the case (a) occurs we can find an element 𝑥0 ∈ 𝑋 and a linear functional
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𝑓0 ∈ 𝑋∗ such that 𝐴𝑥0 = 𝑦0 and ⟨𝑥0, 𝑓0⟩ = 1. Thus, we have 𝐼 −𝑥0⊗ 𝑓0 as well as
𝜙(𝐼−𝑥0⊗𝑓0) = 𝜙(𝐼)−𝐴𝑥0⊗𝐶𝑓0 is bounded below; which contradicts 𝜎(𝑥0⊗𝑓0) =
{0, 1}. By similarity, in the case when (b) occurs we get a contradiction, too. Hence
𝜙(𝐼) is invertible. Set

𝜒(𝑇 ) = 𝜙(𝐼)−1𝜙(𝑇 ), (𝑇 ∈ ℒ(𝑋)).
The map 𝜒 is a unital surjective additive map preserving lower-boundedness of
operators in both directions, and so by applying [8, Corollary 3.5] the map 𝜙 takes
one of the desired forms.

The case when 𝜙 preserves the surjectivity of operators in both directions is
treated in [3]; and the proof is therefore complete. □

Let us recall the following useful facts that will be often used in the sequel.
For 𝑇 ∈ ℒ(𝑋) it is straightforward that ℓ(𝑇 ) > 0 (resp. 𝜔(𝑇 ) > 0) if and only
if 𝑇 is bounded below (resp. surjective), that is equivalent in the Hilbert space
setting that 𝑇 is left (resp. right) invertible. Notice that 𝜎𝑎𝑝(𝑇 ) = 𝜎𝑠𝑢(𝑇

∗) and
𝜎𝑠𝑢(𝑇 ) = 𝜎𝑎𝑝(𝑇

∗), and so ℓ(𝑇 ) = 𝜔(𝑇 ∗) and 𝜔(𝑇 ) = ℓ(𝑇 ∗); see [9] and [10].
We will say that an additive map 𝜙 : ℒ(𝑋) → ℒ(𝑌 ) preserves the lower-

boundedness spectral radius if ℓ(𝜙(𝑇 )) = ℓ(𝑇 ) for all 𝑇 ∈ ℒ(𝑋). The additive
maps preserving the surjectivity spectral radius are defined analogously.

Lemma 2.2. Let 𝜑 : ℒ(𝑋) → ℒ(𝑌 ) be a surjective additive map. If 𝜑 either pre-
serves the lower-boundedness radius or surjectivity radius, then there exists a scalar
𝑐 ∈ ℂ of modulus one and either

(i) there exists an invertible bounded linear or conjugate linear operator 𝐴 : 𝑋 →
𝑌 such that 𝜑(𝑇 ) = 𝑐𝐴𝑇𝐴−1 for all 𝑇 ∈ ℒ(𝑋), or

(ii) there exists an invertible bounded linear or conjugate linear operator 𝐴 :
𝑋∗ → 𝑌 such that 𝜑(𝑇 ) = 𝑐𝐴𝑇 ∗𝐴−1 for all 𝑇 ∈ ℒ(𝑋).

The last case occurs only if 𝑋 and 𝑌 are reflexive.

Proof. Note that, if 𝜙 preserves the spectral radius ℓ(.) (resp. 𝜔(.)) then 𝜙 preserves
the lower-boundedness (resp. surjectivity) of operators in both directions; and thus
by Lemma 2.1 either

(a) there exist invertible bounded both linear or both conjugate linear operators
𝐴 : 𝑋 → 𝑌 and 𝐵 : 𝑌 → 𝑋 such that 𝜙(𝑇 ) = 𝐴𝑇𝐵 for all 𝑇 ∈ ℒ(𝑋), or

(b) there exist invertible bounded both linear or both conjugate linear operators
𝐴 : 𝑋∗ → 𝑌 and 𝐵 : 𝑌 → 𝑋∗ such that 𝜙(𝑇 ) = 𝐴𝑇 ∗𝐵 for all 𝑇 ∈ ℒ(𝑋).
To complete the proof it suffices to show that 𝐴𝐵 is a multiple of the unit

by a unimodular scalar.
Assume that 𝜙 preserves the lower-boundedness radius. First, we claim that

ℓ(𝑅𝑄) = ℓ(𝑄) (2.1)

for all 𝑄 ∈ ℒ(𝑌 ), where 𝑅 := 𝐵−1𝐴−1. Indeed, if the case (a) occurs we have

ℓ(𝑅𝜙(𝑇 )) = ℓ(𝑇 ) = ℓ(𝜙(𝑇 ))
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for all 𝑇 ∈ ℒ(𝑋), and the surjectivity of 𝜙 yields the claim. If the case (b) occurs
we have

ℓ(𝑅𝜙(𝑇 )) = ℓ(𝑇 ∗) = 𝜔(𝑇 )

for all 𝑇 ∈ ℒ(𝑋). Particulary we have
𝑇 is surjective ⇔ 𝜙(𝑇 ) bounded below

⇔ 𝑇 is bounded below

for all 𝑇 ∈ ℒ(𝑋). From this we infer that 𝜎𝑎𝑝(𝑇 ) = 𝜎𝑠𝑢(𝑇 ), and so ℓ(𝑅𝜙(𝑇 )) =
ℓ(𝑇 ) = ℓ(𝜙(𝑇 )) for all 𝑇 ∈ ℒ(𝑋). Again the surjectivity of 𝜙 yields the claim in
this case, too. Next, assume by way of contradiction that 𝑅 and 𝐼 are linearly
independent. So, we can find a nonzero element 𝑦0 ∈ 𝑌 such that 𝑦0 and 𝑅𝑦0
are linearly independent, and let 𝑊 be a topological complement of the linear
subspace spanned by {𝑦0, 𝑅𝑦0} in 𝑌 . Fix a nonzero complex number 𝛼 for which
∣𝛼∣ < 1, and define linearly the operator 𝑄0 ∈ ℒ(𝑌 ) by

𝑄0𝑦 :=

⎧⎨⎩
𝛼−1𝑅𝑦0 if 𝑦 = 𝑦0

𝛼𝑦0 if 𝑦 = 𝑅𝑦0

𝑦 if 𝑦 ∈𝑊

It easy to check that ℓ(𝑄0) = 1, and that 𝑅𝑄0(𝑅𝑦0) = 𝛼𝑅𝑦0. These show that

ℓ(𝑅𝑄0) ≤ ∣𝛼∣ < 1 = ℓ(𝑄0),

and lead to a contradiction; see (2.1). Thus 𝐴𝐵 as well as 𝑅 is a multiple of the
unit with a scalar 𝑐 ∈ ℂ, and ∣ 𝑐 ∣= ℓ(𝐴𝐵) = ℓ(𝐼) = 1.

By similarity, if 𝜙 preserves the surjectivity radius we have 𝜔(𝑄𝑅) = 𝜔(𝑄)
for all 𝑄 ∈ ℒ(𝑌 ); and so ℓ(𝑅∗𝑄∗) = ℓ(𝑄∗) for all 𝑄 ∈ ℒ(𝑌 ). Thus by what has
been shown above, we have 𝑅 as well as 𝑅∗ is a multiple of the unit by a scalar of
modulus one. The proof is therefore complete. □

In the finite-dimensional case, from the fact that a matrix 𝑇 in the algebra
𝑀𝑛(ℂ) of all complex 𝑛×𝑛 matrices is invertible if and only if it is semi-invertible,
one can see that

ℓ(𝑇 ) = 𝜔(𝑇 ),

for all 𝑇 ∈𝑀𝑛(ℂ).
The following characterizes additive maps from 𝑀𝑛(ℂ) onto itself that pre-

serve the lower-boundedness or surjectivity spectral radius of matrices.

Proposition 2.3. Let 𝜙 : 𝑀𝑛(ℂ) → 𝑀𝑛(ℂ) be a surjective additive map. The fol-
lowing are equivalent:

(i) ℓ(𝜙(𝑇 )) = ℓ(𝑇 ) for every 𝑇 ∈𝑀𝑛(ℂ).
(ii) 𝜔(𝜙(𝑇 )) = 𝜔(𝑇 ) for every 𝑇 ∈𝑀𝑛(ℂ).
(iii) There exist a scalar 𝑐 ∈ ℂ of modulus one and an invertible matrix 𝐴

in 𝑀𝑛(ℂ) such that either 𝜙(𝑇 ) = 𝑐𝐴𝑇𝐴−1, 𝜙(𝑇 ) = 𝑐𝐴𝑇 𝑡𝑟𝐴−1, 𝜙(𝑇 ) =
𝑐𝐴𝑇 ∗𝐴−1, or 𝜙(𝑇 ) = 𝑐𝐴(𝑇 𝑡𝑟)∗𝐴−1; for every 𝑇 ∈𝑀𝑛(ℂ). Here 𝑇 𝑡𝑟 denotes
the transpose of the matrix 𝑇 .
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Proof. As the sufficiency condition is obvious, we only need to prove the necessity.
So assume that 𝜙 preserves either the lower boundedness or surjectivity spectral
radius of matrices, and note that, in this case, 𝜙 is a bijective map preserving
invertibility in both directions. So, using the same approach as in [2, Theorem 4.1]
one can see that 𝜙 takes one of the desired forms; and the necessity condition is
established. □

3. Main result and proof

We will say that an additive map 𝜙 : ℒ(𝑋) → ℒ(𝑋) preserves the inner local
spectral radius at a fixed nonzero vector 𝑥 ∈ 𝑋 if 𝜄𝜙(𝑇 )(𝑥) = 𝜄𝑇 (𝑥) for all 𝑇 ∈ ℒ(𝑋).

The following is the main result of this paper. It characterizes additive maps
from ℒ(𝑋) onto itself that preserve the inner local spectral radius at a fixed nonzero
vector and extends [6, Theorem 2.1] from linear case to additive case. Its proof use
some arguments which are influenced by ideas from Bračič and Müller [7].

Theorem 3.1. Let 𝑒 be a fixed nonzero vector in 𝑋. An additive continuous map
𝜙 from ℒ(𝑋) onto itself preserves the inner local spectral radius at 𝑒 if and only
if there exist a scalar 𝑐 of modulus one and a linear or conjugate linear bijective
bounded operator 𝐴 : 𝑋 → 𝑋 such that 𝐴𝑒 = 𝑒, and 𝜙(𝑇 ) = 𝑐𝐴𝑇𝐴−1 for all
𝑇 ∈ ℒ(𝑋).

The proof of this theorem uses some auxiliary lemmas. The first is quoted
from Bračič and Müller [7, Lemma 2.2].

Lemma 3.2. Let 𝑒 be a fixed nonzero vector in 𝑋, and let 𝑇 ∈ ℒ(𝑋). If 𝜆 ∈ 𝜎𝑠𝑢(𝑇 ),
then for every 𝜀 > 0, there exists 𝑇 ′ ∈ ℒ(𝑋) such that ∥𝑇−𝑇 ′∥ < 𝜀 and 𝜆 ∈ 𝜎𝑇 ′(𝑒).

Proof. See [7, Lemma 2.2]. □
Lemma 3.3. Let 𝑒 be a fixed nonzero vector in 𝑋. For a linear or conjugate linear
bijective bounded operator 𝐴 : 𝑋 → 𝑋, the map 𝜙 : 𝑇 ∈ ℒ(𝑋) 1→ 𝐴𝑇𝐴−1 ∈ ℒ(𝑋)
preserves the inner local spectrum at 𝑒 if and only if 𝐴𝑒 = 𝜆𝑒 for some 𝜆 ∈ ℂ.

Proof. We shall only deal with the case when 𝐴 is conjugate linear, because the
linear case follows analogously. First, we claim that for every 𝑇 ∈ ℒ(𝑋) and 𝜀 > 0
we have 𝐴𝑒 ∈ 𝒳𝐴𝑇𝐴−1(ℂ ∖𝐷(0, 𝜀)) whenever 𝑒 ∈ 𝒳𝑇 (ℂ ∖𝐷(0, 𝜀)). Indeed, assume
that 𝑒 ∈ 𝒳𝑇 (ℂ∖𝐷(0, 𝜀)) and let 𝑓 be a 𝑋-valued analytic function on 𝐷(0, 𝜀) such
that (𝜇− 𝑇 )𝑓(𝜇) = 𝑥 for all 𝜇 ∈ 𝐷(0, 𝜀). We have

(𝜇𝜂 −𝐴𝑇𝐴−1)𝐴𝑓(𝜇) = 𝐴𝑒

for all 𝜇 ∈ 𝐷(0, 𝜀); where 𝜂 : ℂ→ ℂ is the complex conjugation. Set

𝑓(𝜇𝜂) := 𝐴𝑓(𝜇), (𝜇 ∈ 𝐷(0, 𝜀)),

and note that the map 𝑓 is an analytic function on 𝐷(0, 𝜀)𝜂 = 𝐷(0, 𝜀) since

lim
ℎ→0

𝑓(𝜇𝜂 + ℎ)− 𝑓(𝜇𝜂)

ℎ
= lim

ℎ→0
𝐴(

𝑓(𝜇+ ℎ𝜂)− 𝑓(𝜇)

ℎ𝜂
) = 𝐴𝑓 ′(𝜇)
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for all 𝜇 ∈ 𝐷(0, 𝜀), where 𝑓 ′(𝜇) is the derivative of 𝑓 at 𝜇. This shows that
𝐴𝑒 ∈ 𝒳𝑇 (ℂ∖𝐷(0, 𝜀)) and yields the claim. When 𝐴𝑒 and 𝑒 are linearly dependent,
the reverse implication can be obtained by similarity, and thus, we in fact have
𝑒 ∈ 𝒳𝑇 (ℂ∖𝐷(0, 𝜀)) if and only if 𝐴𝑒 ∈ 𝒳𝐴𝑇𝐴−1(ℂ∖𝐷(0, 𝜀)) for all 𝜀 > 0; which show
that 𝜄𝐴𝑇𝐴−1(𝑒) = 𝜄𝑇 (𝑒) and 𝜙 preserves the inner local spectrum at 𝑒 in this case.

Conversely, assume that 𝜙 preserves the inner local spectrum at 𝑒, but 𝐴𝑒 and
𝑒 are linearly independent. Let 𝑓 ∈ 𝑋∗ be a linear functional such that ⟨𝑒, 𝑓⟩ = 1
and ⟨𝐴−1𝑒, 𝑓⟩ = 0. Set 𝑇 =: 𝑒 ⊗ 𝑓 and note that 𝜄𝐴𝑇𝐴−1(𝑒) = 0 and 𝜄𝑇 (𝑒) = 1;
which leads to a contradiction and completes the proof. □

We have now collected all the necessary ingredients and are therefore in a
position to prove our main result.

Proof of Theorem 3.1. As the sufficiency condition is a consequence of the above
Lemma, we only need to prove the necessity. So, assume that 𝜙 preserves the
inner local spectral radius at 𝑒. We claim that 𝜙 preserves the spectral radius
function 𝜔(.). For this, let 𝑇 ∈ ℒ(𝑋) and let 𝜆 ∈ 𝜎𝑠𝑢(𝜙(𝑇 )) satisfy ∣𝜆∣ = 𝜔(𝜙(𝑇 )).
The Lemma 3.2 ensures that for each integer 𝑛 ≥ 1 there exists an operator 𝑇 ′𝑛
in ℒ(𝑋) such that ∥𝑇 ′𝑛 − 𝜙(𝑇 )∥ < 𝑛−1 and 𝜆 ∈ 𝜎𝑇 ′𝑛(𝑒). Since 𝜙 is continuous
and surjective, by the Banach open mapping theorem there exists 𝜂 > 0 such
that 𝜂𝐵(0, 1) ⊆ 𝜙(𝐵(0, 1)), where 𝐵(0, 1) denotes the open unit ball of ℒ(𝑋).
Therefore, for each 𝑛 there exists 𝑇𝑛 ∈ ℒ(𝑋) such that 𝜙(𝑇𝑛) = 𝑇 ′𝑛 and ∥𝑇𝑛−𝑇 ∥ ≤
𝜂−1∥𝑇 ′𝑛 − 𝜙(𝑇 ))∥ ≤ 𝜂−1𝑛−1. Thus 𝑇𝑛 → 𝑇 and 𝜆 ∈ 𝜎𝜙(𝑇𝑛)(𝑒) for all 𝑛 ≥ 1. On
the other hand, again by the Banach open mapping theorem and by applying [12,
Propositions 6.9 and 9.9] to the set of all surjective operators on𝑋 one can see that
the surjectivity spectrum is an upper semi-continuity function. Thus, the spectral
function 𝜔(.) is upper semi-continuous and so

𝜔(𝑇 ) ≤ lim inf
𝑛→∞ 𝜔(𝑇𝑛) ≤ lim inf

𝑛→∞ 𝜄𝑇𝑛(𝑒) = lim inf
𝑛→∞ 𝜄𝜙(𝑇𝑛)(𝑒) ≤ ∣𝜆∣ = 𝜔(𝜙(𝑇 )).

To establish the reverse inequality, pick an arbitrary 𝑇 ∈ ℒ(𝑋) and 𝜆 ∈ 𝜎𝑠𝑢(𝑇 )
such that ∣𝜆∣ = 𝜔(𝑇 ). By Lemma 3.2 there exists a sequence of operators (𝑇𝑛) in
ℒ(𝑋) converging to 𝑇 such that 𝜆 ∈ 𝜎𝑇𝑛(𝑒) for all 𝑛, and consequently we have

𝜔(𝜙(𝑇 )) ≤ lim inf
𝑛→∞ 𝜔(𝜙(𝑇𝑛)) ≤ lim inf

𝑛→∞ 𝜄𝜙(𝑇𝑛)(𝑒) = lim inf𝑛→∞ 𝜄𝑇𝑛(𝑒) ≤ ∣𝜆∣ = 𝜔(𝑇 ).

From this, we infer that 𝜔(𝜙(𝑇 )) = 𝜔(𝑇 ) for all 𝑇 ∈ ℒ(𝑋), and so by Theorem 2.2,
there exists a scalar 𝑐 of modulus one and either there exists a linear or conjugate
linear invertible bounded operator 𝐴 : 𝑋 → 𝑋 such that 𝜙(𝑇 ) = 𝑐𝐴𝑇𝐴−1 for all
𝑇 ∈ ℒ(𝑋), or there exists a linear or conjugate linear invertible bounded operator
𝐴 : 𝑋∗ → 𝑋 such that 𝜙(𝑇 ) = 𝑐𝐴𝑇 ∗𝐴−1 for all 𝑇 ∈ ℒ(𝑋). By the same argument
given in the end of the proof of Lemma 3.3, one can see that when 𝐴 is defined
from 𝑋∗ into 𝑋 we can find an operator 𝑇 ∈ ℒ(𝑋) such that 𝜄𝑇 (𝑒) = 1 and
𝜄𝐴𝑇∗𝐴−1(𝑒) = 0; which shows that the second form is excluded, and consequently
𝜙 takes only the first one with 𝐴𝑒 = 𝜆𝑒 for some nonzero 𝜆 ∈ ℂ. Dividing 𝐴 by 𝜆
or its complex conjugate 𝜆 if necessary, we may assume that 𝐴𝑒 = 𝑒, and thus the
necessity condition is established. □
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Abstract. On the real line we consider singular integral operators with a lin-

ear Carleman shift and complex conjugation, acting in �̃�2(ℝ), the real space
of all Lebesgue measurable complex value functions on ℝ with 𝑝 = 2 power.
We show that the original singular integral operator with shift and conju-
gation is, after extension, equivalent to a singular integral operator without
shift and with a 4× 4 matrix coefficients. By exploiting the properties of the
factorization of the symbol of this last operator, it is possible to describe the
solution of a generalized Riemann boundary value problem with a Carleman
shift.
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operators, Carleman shift, factorization.

1. Introduction

Let �̃�2(ℝ) denote the real space of all Lebesgue measurable complex-valued func-
tions on ℝ with 𝑝 = 2 power. We consider the generalized Riemann boundary
value problem:

Find �̃�2(ℝ) functions 𝜑+(𝑧) and 𝜑−(𝑧) analytic in Im 𝑧 > 0 and Im 𝑧 < 0,
respectively, satisfying the conditions

𝜑+ = 𝑎00𝜑− + 𝑎10𝜑−(𝛼) + 𝑎01𝜑− + 𝑎11𝜑−(𝛼), 𝜑−(∞) = 0, (1.1)

imposed on their boundary values on ℝ, where

𝛼(𝑡) = −𝑡+ ℎ, ℎ ∈ ℝ, (1.2)

is a Carleman shift on the real line, and 𝑎𝑖𝑘 ∈ �̃�∞(ℝ), 𝑖, 𝑘 = 0, 1.

Research supported by Centro de Análise Funcional e Aplicações do Instituto Superior Técnico
(CEAF), which is financed by FCT (Portugal).
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It is clear that 𝛼 is a backward Carleman shift of order 𝑛 = 2 which has on
ℝ one fixed point 𝑡0 =

ℎ
2 .

It is well known (see for instance, [5]) and [8]) that generalized Riemann
boundary value problems (BVP) found applications in physics, mechanics and
geometry of surfaces. Actually, already in the early 1959 was mentioned by I.
Vekua in his book [10], that the problem of rigidity of a closed surface which
consist of two glued pieces, leads to the solvability of generalized Riemann BVP
(1.1) with a non-Carleman shift. The above-mentioned BVP was studied in the
papers [6] and [7], where the authors constructed an estimate for the number of
linearly independent solutions.

The paper is organized as follows. In Section 2 we derive some basic prop-
erties and equalities that will be used in the rest of the paper. The Section 3
contains the main results of our work. There it is shown that the solution of the
considered generalized Riemann boundary value problem with a Carleman shift
and conjugation is, after extension, equivalent to description of the kernel of sin-
gular integral operator with 4 × 4 matrix coefficients. In Section 4 we state some
results about the generalized factorization of a matrix-function related to the BVP
under consideration.

2. Preliminaries

Associated with a Carleman shift (1.2) we consider the shift operator 𝑈 : �̃�2(ℝ)→
�̃�2(ℝ), defined by

𝑈𝜑 = 𝜑 ∘ 𝛼 := 𝜑(𝛼). (2.1)

By 𝐶 : �̃�2(ℝ) −→ �̃�2(ℝ) we denote a complex conjugation operator

𝐶𝜑 = 𝜑. (2.2)

The operators 𝑈 and 𝐶 possess a number of properties, namely:

(i) 𝑈2 = 𝐼, (ii) 𝐶2 = 𝐼, (iii) 𝐶𝑈 = 𝑈𝐶, (2.3)

(iv) 𝑃±𝑈 = 𝑈𝑃∓, (v) 𝑃±𝐶 = 𝐶𝑃∓, (2.4)

where 𝑃± are the pair of complementary projection operators,

𝑃± =
1

2
(𝐼 ± 𝑆),

generated by 𝑆, the singular operator with Cauchy kernel

𝑆𝜑(𝑡) =
1

𝜋𝑖

∫
ℝ

1

𝜏 − 𝑡
𝜑(𝜏) 𝑑𝜏,

where the integral is understood in the sense of principal value.
The homographic transformation

𝑧 = 𝜃(𝑡) =
𝑡− 𝑖

𝑡+ 𝑖
(2.5)
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is a homeomorphism of ℝ̇ onto 𝕋 (the unit circle) with inverse

𝜃−1(𝑧) = 𝑖
1 + 𝑧

1− 𝑧
.

Later the following factorization on ℝ will be useful,

𝜃 (𝛼) = 𝜃+𝜃
−1𝜃−, (2.6)

where the outer factors 𝜃+ and 𝜃− are given by

𝜃+ =
𝑡+ 𝑖− ℎ

𝑡+ 𝑖
, 𝜃− =

𝑡− 𝑖

𝑡− 𝑖 − ℎ
,

and satisfy the following relations:

𝜃± (𝛼) = 𝜃∓, 𝜃± = 𝜃−1∓ . (2.7)

3. Singular integral operators with linear-fractional Carleman shift
and conjugation

It is clear that the generalized Riemann BVP (1.1) is equivalent to the problem of
the description of the kernel of the paired operator

𝑇𝐴 = 𝑃+ −𝐴𝑃− (3.1)

where 𝐴 : �̃�2(ℝ) −→ �̃�2(ℝ) is the functional operator with conjugation of the form

𝐴 = 𝑎00𝐼 + 𝑎10𝑈 + 𝑎01𝐶 + 𝑎11𝑈𝐶. (3.2)

To find the kernel of operator 𝑇𝐴 we use similar ideas to those of [4]. In
fact, as we shall see, the study of operator (3.1) can be reduced to the study of a
singular integral operator without shift.

For Φ ∈ �̃�42(ℝ) put Φ = (Φ1, . . . ,Φ4). Let

𝔈 =
{
Φ ∈ �̃�42(ℝ) : Φ1 = ⋅ ⋅ ⋅ = Φ4

}
and define

𝜋 : �̃�2(ℝ)→𝔈 (3.3)

as the map that associates to the function 𝜑 ∈ �̃�2(ℝ) the vector function Φ ∈ 𝔈

with Φ𝑗 = 𝜑, 𝑗 = 1, . . . , 4. Further, consider the subspace �̃� with �̃� = imΔ, where

Δ : 𝔈→ �̃� denotes the invertible operator

Δ = diag (𝐼, 𝑈, 𝐶, 𝑈𝐶) ∣𝔈 . (3.4)

Proposition 3.1. The subspace �̃� is characterized by the equalities

𝑈Ψ =

( ℰ 0
0 ℰ

)
Ψ, 𝐶Ψ =

(
0 ℐ2
ℐ2 0

)
Ψ, Ψ ∈ �̃�, (3.5)

where ℰ is the 2× 2 constant matrix
ℰ =

(
0 1
1 0

)
, (3.6)
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ℐ2 is the 2 × 2 identity matrix and we suppose that the vector-valued operators 𝑈
and 𝐶 act componentwise.

Let us introduce the operator 𝑇 : 𝔈→ �̃�42(ℝ) defined by

𝑇 = diag (𝑇𝐴, . . . , 𝑇𝐴) ∣𝔈 .

The main advantage of considering this extension of the operator 𝑇𝐴 is the fact
that operator 𝑇 is similar to a singular integral operator without shift and matrix
coefficients, as stated in the next theorem.

Theorem 3.2. The following operator relation holds

𝑇 = Δ−1𝑆𝒜,ℬΔ, (3.7)

where 𝑆𝒜,ℬ : �̃�42(ℝ)→ �̃�42(ℝ) is a singular integral operator without either shift or
conjugation and with 4× 4 matrix coefficients,

𝑆𝒜,ℬ = 𝒜𝑃+ + ℬ 𝑃−,

and the matrix-functions 𝒜 and ℬ satisfy the following relations:

𝒜 =
( ℰ 0
0 ℰ

)
ℬ(𝛼)

( ℰ 0
0 ℰ

)
, (3.8)

𝒜 =
(
0 ℐ2
ℐ2 0

)
ℬ
(

0 ℐ2
ℐ2 0

)
. (3.9)

Proof. Let 𝜑 ∈ �̃�2(ℝ), set Φ = 𝜋𝜑, Ψ = ΔΦ. Then, making use of (2.3)–(2.4), we
successively obtain

𝑇𝐴 = 𝑃+ − 𝑎10𝑃+𝑈 − 𝑎01𝑃+𝐶 − 𝑎00𝑃− − 𝑎11𝑃−𝑈𝐶,

𝑈𝑇𝐴 = −𝑎00(𝛼)𝑃+𝑈 − 𝑎11(𝛼)𝑃+𝐶 − 𝑎10(𝛼)𝑃− + 𝑃−𝑈 − 𝑎01(𝛼)𝑃−𝑈𝐶,

𝐶𝑇𝐴 = −𝑎11𝑃+𝑈 − 𝑎00𝑃+𝐶 − 𝑎01𝑃− + 𝑃−𝐶 − 𝑎10𝑃−𝑈𝐶,

𝑈𝐶𝑇𝐴 = −𝑎01(𝛼)𝑃+𝑈 − 𝑎10(𝛼)𝑃+𝐶 + 𝑃+𝑈𝐶 − 𝑎11(𝛼)𝑃− − 𝑎00(𝛼)𝑃−𝑈𝐶.

If 𝒜 and ℬ are the matrix-functions

𝒜 =

⎛⎜⎜⎝
1 −𝑎10 −𝑎01 0
0 −𝑎00(𝛼) −𝑎11(𝛼) 0
0 −𝑎11 −𝑎00 0
0 −𝑎01(𝛼) −𝑎10(𝛼) 1

⎞⎟⎟⎠ (3.10)

and

ℬ =

⎛⎜⎜⎝
−𝑎00 0 0 −𝑎11
−𝑎10(𝛼) 1 0 −𝑎01(𝛼)
−𝑎01 0 1 −𝑎10
−𝑎11(𝛼) 0 0 −𝑎00(𝛼)

⎞⎟⎟⎠ , (3.11)

then we have

Δ𝑇Φ = (𝒜𝑃+ + ℬ𝑃−)Ψ = 𝑆𝒜,ℬΔΦ,
which completes the proof of (3.7), since Φ = 𝜋𝜑 is arbitrary.
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The other relations stated in the theorem are easily verified by direct com-
putation. □

Next we need to recall some results from the general theory of singular inte-
gral operators without shift (see [1] and [9]). We start with the notion of factoriza-
tion, the main tool for studying singular integral operators with matrix coefficients.

Definition 3.3. A matrix function 𝒞 ∈ 𝐿𝑛×𝑛
∞ (ℝ) is said to admit a generalized (left)

factorization in 𝐿𝑛
2 (ℝ) if the following two conditions hold:

(i) It can be given the form

𝒞 = 𝒞+Λ𝒞−
where

(𝑡+ 𝑖)−1𝒞±1+ ∈ �̂�+2 (ℝ), (𝑡− 𝑖)−1𝒞±1− ∈ �̂�−2 (ℝ),

Λ = diag {𝜃𝜅1 , . . . , 𝜃𝜅𝑛},
the integers 𝜅𝑗, 𝑗 = 1, . . . , 𝑛, with 𝜅1 ≥ ⋅ ⋅ ⋅ ≥ 𝜅𝑛 are the partial indices of

the factorization, 𝜃 is the function (2.5), �̂�±2 are the spaces of the Fourier
transforms of the 𝐿2(ℝ) functions which vanish on ℝ− (plus sign) or on ℝ+

(minus sign).
(ii) The linear operator 𝐷 acting according to the rule 𝐷𝜑 = 𝒞+𝑃−𝒞−1+ 𝜑 is

bounded in 𝐿𝑛
2 (ℝ).

The numbers 𝜅𝑗, 𝑗 = 1, . . . , 𝑛, taken in non-deceasing order as in the above
definition and then called partial indices of 𝒞, are uniquely determined by this
matrix-function and sometimes it is convenient to consider their number ℓ ≤ 𝑛
which are pairwise distinct and we will write Λ = diag {𝑡𝜅1 ℐ𝑑1 , . . . , 𝑡

𝜅ℓ ℐ𝑑ℓ
}, where

𝑑𝑖 is the multiplicity of the partial index 𝜅𝑖, 𝑖 = 1, . . . , ℓ.

Let 𝒜,ℬ ∈ 𝐿∞(ℝ)𝑛×𝑛 and consider in 𝐿2(ℝ)𝑛 the operator

𝑆𝒜,ℬ = 𝒜 𝑃+ + ℬ 𝑃−.

Theorem 3.4 ([9]). The operator 𝑆𝒜,ℬ is a Fredholm operator in 𝐿𝑛
2 (ℝ) if and only

if the following conditions hold:

(i) 𝒜,ℬ ∈ 𝒢𝐿𝑛×𝑛
∞ (ℝ) (the group of invertible elements in 𝐿𝑛×𝑛

∞ (ℝ)),
(ii) 𝒞 = 𝒜−1 ℬ admits a generalized factorization in 𝐿𝑛

2 (ℝ).

Moreover, in case 𝑆𝒜,ℬ is a Fredholm operator in 𝐿𝑛
2 (ℝ) its kernel can be

derived from a factorization of 𝒞 = 𝒜−1 ℬ, say 𝒞 = 𝒞+ Λ 𝒞−, as follows:
ker𝑆𝒜,ℬ =

{
𝜑 ∈ 𝐿𝑛

2 (ℝ) : 𝜑 =
(𝒞+ − 𝒞−1− Λ−1

)
𝑟+𝑣, 𝑣 ∈ 𝔓

}
, (3.12)

where 𝑟+(𝑡) = (𝑡+ 𝑖)−1, 𝑡 ∈ ℝ,

𝔓 =
{
𝑣 ∈ 𝐿𝑛

𝑝 (𝕋) : 𝑣𝑖 = 𝑝𝑖(𝜃), 𝑝𝑖 ∈ 𝑃 𝜅𝑖−1 if 𝜅𝑖 ∈ ℕ or 𝑝𝑖 ≡ 0 if 𝜅𝑖 ≤ 0
}
, (3.13)

and 𝑃 𝜅−1 denotes the space of all polynomials with degree at most 𝜅− 1 ∈ ℕ0.
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Proposition 3.5. Let 𝒜,ℬ ∈ 𝒢𝐿4×4∞ (ℝ) be the matrix-functions (3.10) and (3.11),
respectively. If

𝒞 = 𝒜−1ℬ, (3.14)

admits a factorization in 𝐿42(ℝ), say 𝒞 = 𝒞+ Λ 𝒞− with Λ = diag {𝜃𝜅1ℐ𝑑1 , . . . ,
𝜃𝜅ℓℐ𝑑ℓ

}, where 𝜅1 > ⋅ ⋅ ⋅ > 𝜅ℓ are the pairwise distinct partial indices of the fac-
torization, then the outer factors 𝒞+ and 𝒞− fulfill the following identities:

𝒞+ =
( ℰ 0
0 ℰ

)
𝒞−1− (𝛼) Λ−1+ ℋ1, (3.15)

𝒞− = Λ−1ℋ−11 ΛΛ−1− 𝒞−1+ (𝛼)

( ℰ 0
0 ℰ

)
, (3.16)

and

𝒞+ =
(
0 ℐ2
ℐ2 0

)(𝒞−)−1ℋ2, (3.17)

𝒞− = Λ−1ℋ−12 Λ
(𝒞+)−1( 0 ℐ2

ℐ2 0

)
, (3.18)

where Λ± = diag{𝜃𝜅1± ℐ𝑑1 , . . . , 𝜃
𝜅ℓ± ℐ𝑑ℓ

}, 𝜃± are the outer factors of the factorization
(2.6), ℰ denotes the matrix (3.6), ℐ2 is a 2× 2 identity matrix and ℋ𝑖, 𝑖 = 1, 2 is
a rational matrix-function, with an upper triangular block structure

ℋ𝑖 =

⎛⎜⎝ ℋ𝑖1 ∗ ∗
0

. . . ∗
0 0 ℋ𝑖𝑙

⎞⎟⎠ , (3.19)

where each block ℋ𝑖𝑗 , 𝑖 = 1, 2, 𝑗 = 1, . . . ℓ, in the main diagonal is a non-singular
constant matrix of order 𝑑𝑗, the multiplicity of the partial index 𝜅𝑗, and the possible
nonzero entries, marked with ∗ above, have the form

ℎ𝑚𝑠 = 𝑝𝑚𝑠 (𝜃) , 𝑚 < 𝑠, 𝑚, 𝑠 = 1, . . . , 4,

with 𝑝𝑚𝑠 polynomials of degree at most 𝜅𝑚 − 𝜅𝑠.

Proof. Taking into account that the matrix-functions (3.10) and (3.11) satisfy (3.8)
and (3.9), we can conclude that the matrix-function (3.14) enjoy the following
equalities:

𝒞 =
( ℰ 0
0 ℰ

)
𝒞−1 (𝛼)

( ℰ 0
0 ℰ

)
(3.20)

and

𝒞 =
(
0 ℐ2
ℐ2 0

)(𝒞)−1( 0 ℐ2
ℐ2 0

)
. (3.21)

Since Λ(𝛼) = Λ−Λ−1Λ+, we have

𝒞(𝛼) = 𝒞+(𝛼)Λ−Λ−1Λ+𝒞−(𝛼).
Thus, according to the last equality and (3.20), we have

𝒞 =
[( ℰ 0

0 ℰ
)
𝒞−1− (𝛼) Λ−1+

]
Λ

[
Λ−1− 𝒞−1+ (𝛼)

( ℰ 0
0 ℰ

)]
.
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So, we obtain another factorization of 𝒞 in 𝐿2(ℝ). It is very well known
(see, for instance, [1] and [9]) that exist a matrix-function ℋ1 with upper block
triangular structure (3.19), such that

𝒞+ =
( ℰ 0
0 ℰ

)
𝒞−1− (𝛼) Λ−1− ℋ1, 𝒞− = Λ−1ℋ−11 ΛΛ−1+ 𝒞−1+ (𝛼)

( ℰ 0
0 ℰ

)
.

On the other hand, as 𝜃(𝑡) = 𝜃−1(𝑡), 𝑡 ∈ ℝ, then(𝒞)−1 = (𝒞−)−1 Λ (𝒞+)−1 . (3.22)

Thus, using the last equality and (3.21), we have

𝒞 =
[(

0 ℐ2
ℐ2 0

)(𝒞−)−1] Λ [(𝒞+)−1( 0 ℐ2
ℐ2 0

)]
.

Similarly, we get yet another factorization of 𝒞 in 𝐿42(ℝ) and, therefore, there
exists a matrix-function ℋ2 such that

𝒞+ =
(
0 ℐ2
ℐ2 0

)(𝒞−)−1ℋ2, 𝒞− = Λ−1ℋ−12 Λ
(𝒞+)−1( 0 ℐ2

ℐ2 0

)
,

where ℋ2 has the structure (3.19). □
Proposition 3.6. Under the conditions of the previous proposition, the matrix ℋ1

satisfies the equality
ℋ1 (𝛼) = Λ−Λ−1ℋ−11 ΛΛ−1− , (3.23)

and for each block in the main diagonal ℋ1𝑗, 𝑗 = 1, . . . ℓ, there holds

ℋ2
1𝑗 = ℐ𝑑𝑗 . (3.24)

Proof. From (3.15) we have

ℋ1 (𝛼) = Λ+ (𝛼) 𝒞−
( ℰ 0
0 ℰ

)
𝒞+ (𝛼) .

Using (3.16) and Λ+(𝛼) = Λ− we obtain (3.23), with the result

Λ−Λ−1ℋ1ΛΛ
−1
− ℋ1 (𝛼) = ℐ4. (3.25)

Then, taking into account the ℋ1 block structure, the previous equality can be
written in the form: ⎛⎜⎝ ℋ2

11 ∗ ∗
0

. . . ∗
0 0 ℋ2

1ℓ

⎞⎟⎠ = ℐ4,

from which it follows that ℋ2
1𝑗 = ℐ𝑑𝑗 , 𝑗 = 1 . . . , ℓ. □

Proposition 3.7. Under the conditions of the Proposition 3.5, the matrix ℋ2 sat-
isfies the equality

ℋ2 = Λ
−1ℋ−12 Λ,

and for each block in the main diagonal ℋ2𝑗, 𝑗 = 1, . . . ℓ, there holds

ℋ2𝑗ℋ2𝑗 = ℐ𝑑𝑗 . (3.26)
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Proof. From (3.17), we have

𝒞+ =
(

0 ℐ2
ℐ2 0

,

)
𝒞−1− ℋ2

and, from (3.18), it follows that

𝒞+ =
(

0 ℐ2
ℐ2 0

)
𝒞−1− Λ−1ℋ−12 Λ.

Hence, ℋ2 = Λ−1ℋ−12 Λ and, using the block structure of ℋ2, we may conclude
that ⎛⎜⎝ ℋ21ℋ21 ∗ ∗

0
. . . ∗

0 0 ℋ2ℓℋ2ℓ

⎞⎟⎠ = ℐ4,

from which the second assertion follows. □

Now we can state the main result of the paper. To its formulation it is con-

venient to introduce the following notation. For 𝜅 ∈ ℕ let 𝑃 𝜅−1 denote the linear
space of all polynomials with degree at most 𝜅− 1, over the field of real numbers;
if 𝜅 ∈ ℤ ∖ ℕ, set 𝑃 𝜅−1 = {0}. For 𝜅1, . . . , 𝜅4 ∈ ℤ set

�̃� = {𝑣 ∈ �̃�42(ℝ) : 𝑣𝑖 = 𝑝𝑖(𝜃), 𝑝𝑖 ∈ 𝑃 𝜅𝑖−1, 𝑖 = 1, . . . , 4}.
Theorem 3.8. Let 𝑇𝐴 be the singular integral operator (3.1). If the matrix-functions
(3.10) and (3.11) are invertible in 𝐿4×4∞ (ℝ) and 𝒞 = 𝒜−1ℬ admits a generalized
factorization in 𝐿42(ℝ), say 𝒞 = 𝒞+Λ 𝒞− with Λ = diag {𝜃𝜅1 , . . . , 𝜃𝜅4}, then

dimker𝑇𝐴 = dim
(
ker𝑄1 ∣˜𝔓 ∩ ker𝑄2 ∣˜𝔓

)
,

ker𝑇𝐴 =
{
𝜋−1(Φ) : Φ = Δ−1

(𝒞+ − 𝒞−1− Λ−1
)
𝑟+𝑣

}
,

where 𝑟+(𝑡) = (𝑡+ 𝑖)−1, 𝑣 ∈ ker𝑄1 ∣˜𝔓 ∩ ker𝑄2 ∣˜𝔓, and 𝑄𝑖, 𝑖 = 1, 2, are the linear
operators

𝑄1 =
1

2

(
𝐼 − 𝜃𝜃−1− ℋ−11 ΛΛ−1− 𝑈

)
,

𝑄2 =
1

2

(
𝐼 + 𝜃−1ℋ−12 Λ𝐶

)
,

Δ is the invertible operator (3.4), 𝜋 is the map (3.3) and ℋ𝑖, 𝑖 = 1, 2, is the
rational matrix-function (3.19).

Proof. If 𝜑 ∈ ker𝑇𝐴, then, taking into account (3.7), Theorem 3.4 and (3.12), we
have

Ψ = Δ𝜋(𝜑) =
(𝒞+ − 𝒞−1− Λ−1

)
𝑟+𝑣,

𝑟+ = (𝑡+ 𝑖)−1 and 𝑣 ∈ �̃�. It is clear that

Ψ+ = 𝑃+Ψ = 𝒞+𝑟+𝑣, Ψ− = 𝑃−Ψ = −𝒞−1− Λ−1𝑟+𝑣.
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Since Ψ ∈ �̃�, it must satisfy the characterization conditions (3.5), whence

𝑃±𝑈Ψ =

( ℰ 0
0 ℰ

)
Ψ±, 𝑃±𝐶Ψ =

(
0 ℐ
ℐ 0

)
Ψ±,

and, from 𝑃±𝑈 = 𝑈𝑃∓, 𝐶𝑃± = 𝑃∓𝐶 (see 2.3), we get

𝑈Ψ± =
( ℰ 0
0 ℰ

)
Ψ∓, 𝐶Ψ± =

(
0 ℐ
ℐ 0

)
Ψ∓.

The last two equalities mean that

𝒞+(𝛼)𝑟+(𝛼)𝑈𝑣 = −
( ℰ 0
0 ℰ

)
𝒞−1− Λ−1𝑟+𝑣,

𝒞−1− (𝛼)Λ−1(𝛼)𝑟+(𝛼)𝑈𝑣 = −
( ℰ 0
0 ℰ

)
𝒞+𝑟+𝑣,

𝒞+𝐶𝑟+𝑣 = −
(
0 ℐ
ℐ 0

)
𝒞−1− Λ−1𝑟+𝑣,

(𝒞−)−1(Λ)−1𝐶𝑟+𝑣 = −
(
0 ℐ
ℐ 0

)
𝒞+𝑟+𝑣.

Since 𝑟+(𝛼) = −𝑟+𝜃𝜃
−1
− and using (3.15) and (3.16) we conclude that the

first two previous equalities imply that

𝜃𝜃−1− ℋ−11 ΛΛ−1− 𝑈𝑣 = 𝑣.

Using (3.17), (3.18) and 𝑟+𝑟−1+ = 𝜃−1, 𝜃 = (𝜃)−1 we conclude that the last two
previous equalities imply that

𝜃−1ℋ−12 Λ𝐶𝑣 = −𝑣,

it follows that 𝑄𝑖𝑣 = 0, 𝑖 = 1, 2.
Clearly the above reasoning can be reversed and, thus, if 𝑣 ∈ ker𝑄𝑖∣𝑣∈˜𝔓

, then

the function 𝜑 = 𝜋−1Δ−1(𝒞+ − 𝒞−1− Λ−1)𝑟+𝑣 belongs to ker𝑇𝐴, which completes
the proof. □

4. About the factorization of the matrix-function 퓒
In the last section was shown that the solution of the generalized BVP (1.1) is
closely related to the factorization of the matrix-function 𝒞 in (3.14). In this section
we study this factorization problem, which still open in general. However, in some
particular cases it is possible to derive some result concerning the factorization of 𝒞.

Let 𝒦 be the constant matrix-function

𝒦 =

⎛⎜⎜⎝
1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

⎞⎟⎟⎠ ,
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then (3.10) can be written as the following product:

𝒜 = 𝒦
( ℐ2 𝒜12

0 𝒜22
)
𝒦, (4.27)

where

𝒜12 = −
(

𝑎01 𝑎10
𝑎10(𝛼) 𝑎01(𝛼)

)
, 𝒜22 = −

(
𝑎00 𝑎11

𝑎11(𝛼) 𝑎00(𝛼)

)
.

Thus the matrix-function (3.14) admits the following representation:

𝒞 = 𝒦
( ℐ2 −𝒜12

0 ℐ2
)( 𝒜22 0

0 𝒜−122

)( ℐ2 0
𝒜12 ℐ2

)
𝒦. (4.28)

If 𝒜−122 admits a generalized factorization in 𝐿22(ℝ), say

𝒜−122 = 𝒟+ℒ𝒟−, (4.29)

introducing the notation

𝒜12 = ℱ+ + ℱ−, ℱ± = 𝑃±𝒜12,
and

ℳ = 𝒟−ℱ−𝒟+,

it is possible to rewrite (4.28) as follows,

𝒞 = ℛ+

( ℐ2 −ℳ
0 ℐ2

)( ℒ 0
0 ℒ

)( ℐ2 0

ℳ ℐ2
)
ℛ−,

where

ℛ+ = 𝒦
( ℐ2 −ℱ+

0 ℐ2
)( (𝒟−)−1 0

0 𝒟+

)
,

ℛ− =
( (𝒟+)−1 0

0 𝒟−

)( ℐ2 0

ℱ+ ℐ2
)
𝒦.

Finally, if

ℳ =ℳ+ +ℳ−, ℳ± = 𝑃±ℳ (4.30)

then

𝒞 = 𝒢+
( ℐ2 −ℳ−

0 ℐ2
)( ℒ 0

0 ℒ
)( ℐ2 0

ℳ− ℐ2
)
𝒢−,

with

𝒢+ = ℛ+

( ℐ2 −ℳ+

0 ℐ2
)

, 𝒢− =
( ℐ2 0

ℳ+ ℐ2
)
ℛ−.

Now we are in conditions to state some results about the factorization of the
matrix function 𝒞 in (3.14).
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Proposition 4.1. Let 𝒜12 and 𝒜22 be the blocks in the equality (4.27).
If ℱ− = 𝑃−𝒜12 ≡ 0 and (4.29) is a generalized factorization of 𝒜−122 in

𝐿22(ℝ), then

𝒞 = 𝒢+
( ℒ 0
0 ℒ

)
𝒢−,

where ℒ = diag (𝜃𝜆1 , 𝜃𝜆2), 𝜆1 ≥ 𝜆2 and the partial indices of 𝒞 are the integers
𝜅1 = 𝜅2 = 𝜆1, 𝜅3 = 𝜅4 = 𝜆2.

Proposition 4.2. If the matrix-function 𝒜−122 admits a generalized factorization
(4.29) with both partial indices equal to 𝜆, then

𝒞 = 𝜃𝜆𝒢+𝒩𝒢−,

where

𝒩 =

( ℐ2 −ℳ−
0 ℐ2

)( ℐ2 0
ℳ− ℐ2

)
,

andℳ− is the matrix-function (4.30), which additionally must be symmetric.
The partial indices of 𝒞 are given by

𝜅1 = 𝜇1 + 𝜆, 𝜅2 = 𝜇2 + 𝜆, 𝜅3 = −𝜇2 + 𝜆, 𝜅4 = −𝜇1 + 𝜆,

where 𝜇1, 𝜇2,−𝜇2,−𝜇1 are the partial indices of 𝒩 .
Proof. It is clear that we can pass from a factorization of 𝒞 to a factorization
of 𝒩 and vice versa. Thus, the factorization problem under consideration can be
reduced to the factorization of the Hermitian matrix-function(

0 ℐ2
ℐ2 0

)
𝒩

(
0 −ℐ2
ℐ2 0

)
.

According to [9], p. 258, the partial indices of 𝒩 , 𝜇𝑗 , 𝑗 = 1, . . . , 4, are related by
the equalities

𝜇1 + 𝜇4 = 0, 𝜇2 + 𝜇3 = 0. □

For deeper results about the factorization of the matrix-function 𝒩 , the
reader can consult [2, 9].

Above we mentioned some cases for which a factorization of 𝒞 can be derived
from a known factorization of 𝒜−122 . The factorization problem for 𝒜−122 can also be
handled, again not with full generality but in particular cases. Below we mention
one of them, that was already considered by two of the authors together with
V.G. Kravchenko in a former publication [3]. If the block 𝒜22 is an invertible
matrix function, then 𝒜−122 can be written in the form:

𝒜−122 =
(

𝑓 𝑔

𝑔(𝛼) 𝑓(𝛼)

)
.

We assume additionally that the functions 𝑓 and 𝑔 are connected by the relation:

𝑓 − 𝑔 = 𝑓(𝛼)− 𝑔(𝛼).
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Put ℎ = −𝑔(𝑓 − 𝑔)−1. Then 𝒜−122 = (𝑓 − 𝑔)ℋ with

ℋ =

(
1− ℎ −ℎ

−ℎ(𝛼) 1− ℎ(𝛼)

)
. (4.31)

So we are left with the factorization problem for ℋ. Concerning this prob-
lem here we just give the statement of a proposition. The proof of it and the
explicit formulas for the factors can be obtained following the lines of the proof of
Theorem 3.6 in [3].

Proposition 4.3. Let ℋ be the matrix function (4.31). Further, let 𝑑 = 𝑑+𝜃
𝜅𝑑− be

a factorization of 𝑑 = detℋ, let 𝑐 = (𝑎− 𝑎(𝛼))/2, decompose it, 𝑐 = 𝑐+ + 𝑐− with
𝑐± = 𝑃±𝑐, and set 𝑒± = 2𝑃±(𝑐+𝑑−1− ). Then, the factorization of ℋ is equivalent
to the factorization of

Λℰ+ =
(

𝜃𝜅 0
0 1

)(
1 0
𝑒+ 1

)
.

The sense of equivalence of factorization mentioned here means that from a
factorization of ℋ we can obtain a factorization of Λℰ+, vice versa and, moreover,
the partial indices of the two matrix functions coincide.
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Generalized Extremal Vectors
and Some New Properties

Gilles Cassier and Jérôme Verliat

Abstract. Extremal vectors were introduced by S. Ansari and P. Enflo in [2],
this method produced new and more constructive proofs of existence of invari-
ant subspaces. In this paper, our purpose is to introduce generalized extremal
vectors and to study their properties. We firstly check that general proper-
ties of extremal vectors also hold for generalized extremal vectors. We give
a new useful characterization of generalized extremal vectors. We show that
there exist relationships between these vectors and the famous Moore–Penrose
pseudo-inverse showing their intrinsic nature. Applications to weighted shift
operators are given. In particular, we discuss for quasinilpotent backward
weighted shifts the following question: Can the Ansari–Enflo method be used
in order to obtain all hyper-invariant subspaces?

Mathematics Subject Classification (2010). Primary 47A15, 47B37; Secondary
47A50, 47S30.

Keywords. Extremal vectors, Moore–Penrose pseudo-inverse, weighted shifts,
hyper-invariant subspaces.

1. Introduction

Given any operator 𝑇 acting on a separable infinite-dimensional complex Hilbert
space ℋ, it is quite natural to estimate its surjectivity default. This purpose, in the
particular case of operators with dense range, is the starting point of Ansari–Enflo
theory [2].

The method consists to obtain the best approximate solution of the equation
𝑇𝑦 = 𝑥. Applying to the powers of 𝑇 , this process allows Ansari and Enflo to
produce hyper-invariant subspace results. Afterward, many authors took up the
theory and made important investigations in the invariant subspace problem for
some classes of operators (see for instance [5]).

Consequently, the basic point of the theory, that is extremal vectors, deserves
to be clarified. The aim of this paper is to extend the notion of extremal vector
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to any arbitrary operator and to study these generalized extremal vectors. We
give a new characterization, which is useful for concrete calculus. We notice a
link between Ansari–Enflo theory and the Moore–Penrose pseudo-inverse which
emphasize that this method is constructive in other areas than the existence of
hyper-invariant subspaces. Finally, we study operator weighted shifts and we dis-
cuss the Ansari–Enflo method for unilateral weighted shifts.

2. Generalization of extremal vectors definition
for arbitrary operators

Lemma 1. Let 𝑇 be any operator of B(ℋ). Let 𝑥 be a vector of ℋ∖𝒩 (𝑇 ∗) and 𝜀 be
a scalar in ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. Thus there exists a unique vector 𝑦 with the smallest
norm such that

∥𝑇𝑦 − 𝑥∥ ⩽ 𝜀.

Proof. The set ℱ = {𝑧 ∈ ℋ; ∥𝑇𝑧 − 𝑥∥ ⩽ 𝜀} is a convex closed subspace of ℋ.
Moreover, it is not empty: indeed, suppose ℱ = ∅. Then ∀𝑧 ∈ ℋ, ∥𝑇𝑧 − 𝑥∥ > 𝜀.
It implies that d(𝑥;ℛ(𝑇 )) ≥ 𝜀, which is absurd. Consequently, the projection
theorem in Hilbert spaces claims the existence and unicity of 𝑦. □

Definition 2. Such a vector 𝑦 is called extremal (or minimal) vector associated
with (𝑇 ;𝑥; 𝜀). It will be denoted by 𝑦𝑇,𝑥,𝜀 in the sequel of the paper.

We can notice that the Banach structure cannot assure the unicity of 𝑦:
consider ℋ = ℓ∞(ℝ2), 𝑇 = Id and 𝑥 = (1; 0); then the set ℱ in the previous proof
is the segment [𝑎; 𝑏] where 𝑎 =

(
1
2 ;− 1

2

)
and 𝑏 =

(
1
2 ;

1
2

)
.

To find the previous vector 𝑦 amounts to a minimization problem on the
ball centered in 𝑥 and with radius 𝜀. Actually, we can only consider vectors of
(𝒩 (𝑇 ))⊥ such that their image by 𝑇 belongs to the sphere corresponding to that
minimization.

Remark 3. Let 𝑇 be any operator of B(ℋ). Let 𝑥 be a vector of ℋ∖𝒩 (𝑇 ∗) and
𝜀 be a scalar in ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. The extremal vector associated with (𝑇 ;𝑥; 𝜀) is
the vector 𝑦 in (𝒩 (𝑇 ))⊥ with the smallest norm such that

∥𝑇𝑦 − 𝑥∥ = 𝜀.

Proof. Let 𝑦 = 𝑦𝑇,𝑥,𝜀. Suppose that ∥𝑇𝑦 − 𝑥∥ < 𝜀. On the one hand, we can
write 𝛼 = 𝜀 − ∥𝑇𝑦 − 𝑥∥ > 0. On the other hand, there exists a real number
𝛿 > 0 such that ℬ(𝑦, 𝛿] ⊂ ℱ . Indeed, every vector 𝑧 belonging to ℬ(𝑦, 𝛿] satisfies:
∥𝑇𝑧 − 𝑥∥ ⩽ ∥𝑇 (𝑧 − 𝑦)∥+ ∥𝑇𝑦− 𝑥∥ ⩽ ∥𝑇 ∥𝛿 + 𝜀− 𝛼 ≤ 𝜀 for an appropriate choice
of 𝛿 > 0 provided that 𝛿 ⩽ 𝛼

∥𝑇∥ holds. Consequently,
(
1− 𝛿

2

)
𝑦 has a smaller norm

than 𝑦, which is impossible.
Write 𝑦 = 𝑦′ + 𝑦′′ with respect to the direct sum ℋ = 𝒩 (𝑇 ) ⊕ (𝒩 (𝑇 ))⊥.

Then 𝑇𝑦 = 𝑇𝑦′′. By ∥𝑇𝑦′′ − 𝑥∥ = ∥𝑇𝑦− 𝑥∥ = 𝜀, ∥𝑦′′∥ ≤ ∥𝑦∥ and the unicity of 𝑦,
we can affirm that 𝑦 = 𝑦′′ which means 𝑦 ∈ (𝒩 (𝑇 ))⊥. The proof is complete. □
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The collinearity between the two vectors 𝑇 ∗(𝑇𝑦𝑇,𝑥,𝜀 − 𝑥) and 𝑦𝑇,𝑥,𝜀 (see [2])
can be easily extended for generalized extremal vectors.

Lemma 4. Let 𝑇 be any operator of B(ℋ). Let 𝑥 be a vector of ℋ∖𝒩 (𝑇 ∗) and 𝜀
be a scalar in ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. There exists a positive number 𝑐 such that

𝑇 ∗(𝑇𝑦𝑇,𝑥,𝜀 − 𝑥) = −𝑐𝑦𝑇,𝑥,𝜀. (1)

Given any (𝑇 ;𝑥; 𝜀) ∈ B(ℋ)×ℋ×ℝ such that 𝑥 ∈ ℋ∖𝒩 (𝑇 ∗) and d(𝑥;ℛ(𝑇 )) <
𝜀 < ∥𝑥∥, the previous scalar 𝑐 is well defined and unique.
Definition 5. The previous scalar 𝑐 is called collinearity coefficient associated with
(𝑇 ;𝑥; 𝜀). It will be denoted by 𝑐𝑇,𝑥,𝜀 in the sequel.

For now, we propose a new reduction of the minimization place. We are only
satisfied with the minimization on a kind of cap of the sphere ∂ℬ(𝑥; 𝜀). A similar
proof as the one exposed in [11] allows us to state the following result.

Proposition 6. Let 𝑇 ∈ B(ℋ), 𝑥 ∈ ℋ∖𝒩 (𝑇 ∗) and 𝜀 ∈] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. The
minimal vector 𝑦𝑇,𝑥,𝜀 is the vector of smallest norm such that 𝑇𝑦𝑇,𝑥,𝜀 belongs to

𝒱𝑥,𝜀 = ∂ℬ(𝑥; 𝜀) ∩ ℬ(0;√∥𝑥∥2 − 𝜀2
[
,

where ∂ℬ(𝑎; 𝑟) and ℬ(𝑎; 𝑟[ denotes respectively the sphere and the open ball cen-
tered at 𝑎 with radius 𝑟.

We notice the next result, which gives an optimal bound for 𝑐𝑇,𝑥,𝜀.

Proposition 7. Let (𝑇 ;𝑥; 𝜀) ∈ B(ℋ) × ℋ × ℝ such that 𝑥 ∈ ℋ∖𝒩 (𝑇 ∗) and
d(𝑥;ℛ(𝑇 )) < 𝜀 < ∥𝑥∥. Then we have

𝑐𝑇,𝑥,𝜀 ⩽
𝜀∥𝑇 ∥2
∥𝑥∥ − 𝜀

.

Moreover this inequality is sharp.

Proof. Using Lemma 4, 𝑐𝑇,𝑥,𝜀 satisfies

⟨𝑇 ∗(𝑇𝑦𝑇,𝑥,𝜀 − 𝑥)∣𝑇 ∗𝑇𝑦𝑇,𝑥,𝜀⟩ = −𝑐𝑇,𝑥,𝜀⟨𝑦𝑇,𝑥,𝜀∣𝑇 ∗𝑇𝑦𝑇,𝑥,𝜀⟩ = −𝑐𝑇,𝑥,𝜀∥𝑇𝑦𝑇,𝑥,𝜀∥2
and we deduce

𝑐𝑇,𝑥,𝜀 =
∣⟨𝑇 ∗(𝑇𝑦𝑇,𝑥,𝜀 − 𝑥)∣𝑇 ∗𝑇𝑦𝑇,𝑥,𝜀⟩∣

∥𝑇𝑦𝑇,𝑥,𝜀∥2 .

However, according to Cauchy–Schwarz inequality, we get

∣⟨𝑇 ∗(𝑇𝑦𝑇,𝑥,𝜀 − 𝑥)∣𝑇 ∗𝑇𝑦𝑇,𝑥,𝜀⟩∣ ⩽ ∥𝑇 ∗(𝑇𝑦𝑇,𝑥,𝜀 − 𝑥)∥∥𝑇 ∗𝑇𝑦𝑇,𝑥,𝜀∥
⩽ ∥𝑇 ∗∥∥𝑇𝑦𝑇,𝑥,𝜀 − 𝑥∥∥𝑇 ∗∥∥𝑇𝑦𝑇,𝑥,𝜀∥ ⩽ 𝜀∥𝑇 ∥2∥𝑇𝑦𝑇,𝑥,𝜀∥.

Since 𝑦𝑇,𝑥,𝜀 ∈ 𝒱𝑥,𝜀, we have ∥𝑇𝑦𝑇,𝑥,𝜀∥2 ⩾ (∥𝑥∥ − 𝜀)2. It implies 1/∥𝑇𝑦𝑇,𝑥,𝜀∥ ⩽
1/(∥𝑥∥ − 𝜀) and 𝑐𝑇,𝑥,𝜀 ⩽ 𝜀∥𝑇 ∥2∥𝑇𝑦𝑇,𝑥,𝜀∥ ⩽ 𝜀∥𝑇 ∥2/(∥𝑥∥ − 𝜀).

Let us consider the classical bilateral shift 𝑆 acting on ℓ2(ℤ) and 𝑥 = (𝛿0,𝑛)𝑛∈ℤ
(where 𝛿𝑖,𝑗 denotes the Kronecker symbol). Using Proposition 21, we see that
𝑐𝑇,𝑥,𝜀 = 𝜀/(1 − 𝜀) = 𝜀∥𝑆∥2/(∥𝑥∥ − 𝜀). It clearly shows that this inequality is
sharp. □
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Corollary 8. Let (𝑇 ;𝑥; 𝜀) ∈ B(ℋ)×ℋ×ℝ such that 𝑥 ∈ ℋ∖(∪𝑛⩾1𝒩 (𝑇 ∗𝑛)) and 𝜀

is a real number in the open interval ] lim𝑛−→∞ d(𝑥;ℛ(𝑇 𝑛)); ∥𝑥∥[. Then we have
lim (𝑐𝑇𝑛,𝑥,𝜀)

1
𝑛 ⩽ 𝑟(𝑇 )2,

where 𝑟(𝑇 ) denotes the spectral radius of 𝑇 . In particular, when 𝑇 is a quasinilpo-
tent operator, we get lim𝑛→+∞(𝑐𝑇𝑛,𝑥,𝜀)

1/𝑛 = 0.

Proof. From Proposition 7, we obtain

lim (𝑐𝑇𝑛,𝑥,𝜀)
1
𝑛 ⩽ lim

𝜀
1
𝑛 ∥𝑇 𝑛∥ 2

𝑛

(∥𝑥∥ − 𝜀)
1
𝑛

= 𝑟(𝑇 )2. □

Recall that an operator 𝐶 is said to be stable if lim𝐶𝑛𝑥 = 0 for every 𝑥 ∈ ℋ.
Theorem 9. Let 𝑇 be an operator whose adjoint is stable, 𝑥 ∈ ℋ∖(∪𝑛⩾1𝒩 (𝑇 ∗𝑛))
and 𝜀 is a real number in the open interval ] lim𝑛−→∞ d(𝑥;ℛ(𝑇 𝑛)); ∥𝑥∥[. Then we
have

lim
𝑛−→+∞ 𝑐𝑇𝑛,𝑥,𝜀 = 0

Proof. Firstly, by using the Banach–Steinhaus theorem (see for instance [3]), we
observe that 𝑇 ∗, and hence 𝑇 is necessarily power bounded and we set 𝑀 =
sup{∥𝑇 𝑛∥;𝑛 ⩾ 0}. Suppose the contrary, that is 𝑐𝑛 := 𝑐𝑇𝑛,𝑥,𝜀 does not converge to
0. From Proposition 7, we easily see that the sequence (𝑐𝑛)𝑛⩾0 is bounded, then
we can consider a subsequence 𝑐𝜑(𝑛) converging to a positive real number 𝑐. Let
𝑛0 be such that 𝑐𝜑(𝑛) ⩾ 𝑐/2 for any 𝑛 ⩾ 𝑛0. For 𝑛 ⩾ 𝑛0, we have

∥𝑐𝜑(𝑛)(𝑐𝜑(𝑛)𝐼 + 𝑇𝜑(𝑛)𝑇 ∗𝜑(𝑛))−1𝑥− 𝑥∥ = ∥(𝑐𝜑(𝑛)𝐼 + 𝑇𝜑(𝑛)𝑇 ∗𝜑(𝑛))−1𝑇𝜑(𝑛)𝑇 ∗𝜑(𝑛)𝑥∥
⩽ 𝑀∥(𝑐𝜑(𝑛)𝐼 + 𝑇𝜑(𝑛)𝑇 ∗𝜑(𝑛))−1∥∥𝑇 ∗𝜑(𝑛)𝑥∥

⩽ 2𝑀

𝑐
∥𝑇 ∗𝜑(𝑛)𝑥∥ −→ 0.

Then, by using Corollary 12, we deduce that

𝜀 = lim
𝑛−→+∞∥𝑐𝜑(𝑛)(𝑐𝜑(𝑛)𝐼 + 𝑇𝜑(𝑛)𝑇 ∗𝜑(𝑛))−1𝑥∥ = ∥𝑥∥

which is a contradiction. □

3. A characterization of generalized extremal vectors

Instead of using the minimal condition associated with extremal vectors in order
to find them (which leads sometimes to some difficult computations), the following
criterion shows that it suffices to solve a system of two equations which can be
very useful for concrete operators.
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Theorem 10. Let 𝑇 be a dense range operator acting on a Hilbert space ℋ, 𝑥 ∈
ℋ∖𝒩 (𝑇 ∗) and 𝜀 ∈] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. Then the pair (𝑦𝑇,𝑥,𝜀, 𝑐𝑇,𝑥,𝜀) is the unique
solution (𝑦, 𝑐) ∈ ℋ× ℝ∗+ of the following system of equations{ ∥𝑇𝑦 − 𝑥∥ = 𝜀 ;

(𝑇 ∗𝑇 + 𝑐𝐼)𝑦 = 𝑇 ∗𝑥.

Proof. For any positive real number 𝑐, set:

𝑇𝑐 = 𝑇 (𝑇 ∗𝑇 + 𝑐𝐼)−1𝑇 ∗ − 𝐼.

Since the operator 𝑇 ∗𝑇 + 𝑐𝐼 is strictly positive, the operator 𝑇𝑐 is clearly well
defined. A key of the proof is to write 𝑇𝑐 in a different form. Firstly, notice that

𝑇𝑐 =
1
𝑐𝑇

(
𝐼+ 1

𝑐𝑇
∗𝑇

)−1
𝑇 ∗−𝐼 for every positive 𝑐. Then, for any 𝑐 > 1 the operator

(𝐼 + 1
𝑐𝑇

∗𝑇
)−1

can be developed into an infinite series and hence:

𝑇𝑐 =
1

𝑐
𝑇
(+∞∑

𝑘=0

(−1)𝑘
𝑐𝑘

(
𝑇 ∗𝑇

)𝑘)
𝑇 ∗ − 𝐼

=
( +∞∑

𝑘=0

(−1)𝑘
𝑐𝑘+1

𝑇
(
𝑇 ∗𝑇

)𝑘
𝑇 ∗

)
− 𝐼

= −
( +∞∑

𝑘=0

(−1)𝑘+1
𝑐𝑘+1

(
𝑇𝑇 ∗

)𝑘+1)− 𝐼

= −
( +∞∑

𝑘=1

(−1)𝑘
𝑐𝑘

(
𝑇𝑇 ∗

)𝑘)− 𝐼.

We recognize the development of −𝑐(𝑇𝑇 ∗+𝑐𝐼)−1, which coincides with 𝑇𝑐 as soon
as 𝑐 > 1. From the uniqueness of analytic continuation we then get

∀𝑐 > 0, 𝑇𝑐 = −𝑐(𝑇𝑇 ∗ + 𝑐𝐼)−1. (2)

Set F = {𝑐 > 0 ; ∥𝑇𝑐𝑥∥ = 𝜀}. Observe that it is enough to prove thatF is reduced
to the single set {𝑐𝑇,𝑥,𝜀}. We know that 𝑇𝑐𝑥 = 𝑇𝑦𝑇,𝑥,𝜀−𝑥 and that we necessarily
have ∥𝑇𝑦𝑇,𝑥,𝜀−𝑥∥ = 𝜀. Hence it implies 𝑐𝑇,𝑥,𝜀 ∈ F . Let us introduce the function
𝐹 defined on ℝ∗+ by: ∀𝑐 > 0, 𝐹 (𝑐) = ∥𝑇𝑐𝑥∥2. On the one hand, for any 𝑐 > 0 we
have

𝐹 (𝑐) = 𝑐2∥(𝑇𝑇 ∗ + 𝑐𝐼)−1𝑥∥2
= 𝑐2⟨(𝑇𝑇 ∗ + 𝑐𝐼)−2𝑥∣𝑥⟩

since (𝑇𝑇 ∗ + 𝑐𝐼) is a positive operator. On the other hand, using the functional
calculus for the positive operator 𝑇𝑇 ∗ we obtain

𝐹 (𝑐) =

∫ ∥𝑇∥2

0

𝑐2

(𝑡+ 𝑐)2
d𝐸𝑥,𝑥(𝑡),

where 𝐸𝑥,𝑥 is the scalar spectral measure associated with the pair (𝑥, 𝑥).
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Fix the positive parameter 𝑡, then we easily see that the function 𝑓 : 𝑐 1→
𝑐2

(𝑡+𝑐)2 is strictly increasing on ℝ∗+. Thus the function 𝐹 is increasing. Assume

that there exists 0 < 𝑐1 < 𝑐2 such that 𝐹 (𝑐1) = 𝐹 (𝑐2), we deduce that we have
necessarily

𝑐21
(𝑡+ 𝑐1)2

=
𝑐22

(𝑡+ 𝑐2)2

almost everywhere with respect to the measure 𝐸𝑥,𝑥. It implies that 𝐸𝑥,𝑥 ∈ ℝ∗+𝛿0
where 𝛿0 is the Dirac measure at 0, hence we have 𝑥 ∈ 𝒩 (𝑇 ∗), a contradiction.
Therefore, the function 𝐹 is one to one and F contains at most one point. Con-
sequently, F is reduced to 𝑐𝑇,𝑥,𝜀, and the result follows. □

Remark 11. In particular, it seems that the characterization given in Theorem
10 is sometime useful for studying concrete operators because the calculus of the
inverse of an operator is not required.

Besides, the following result states that we can completely determined 𝑐𝑇,𝑥,𝜀

by a single useful equation.

Corollary 12. Let 𝑇 be an dense range operator acting on a Hilbert space ℋ,
𝑥 ∈ ℋ∖𝒩 (𝑇 ∗) and 𝜀 ∈] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. Then 𝑐𝑇,𝑥,𝜀 is uniquely determined by the
following single relation

𝜀 = 𝑐𝑇,𝑥,𝜀∥(𝑇𝑇 ∗ + 𝑐𝑇,𝑥,𝜀𝐼)
−1𝑥∥.

Proof. Combining the two equations in the system given by Theorem 10, we easily
obtain

𝜀 = ∥(𝑇 (𝑇 ∗𝑇 + 𝑐𝐼)−1𝑇 ∗ − 𝐼)𝑥∥.
Then, we get the result by using (2). □

Remark 13. Notice that the end of the proof of Theorem 10 shows that 𝑐𝑇,𝑥,𝜀 is
the unique solution of the equation 𝜀 = 𝑐∥(𝑇𝑇 ∗ + 𝑐𝐼)−1𝑥∥.

4. Regularities for extremal vectors

In this section, we observe regularities of four maps that we define as follow. Either
(𝑇 ;𝑥) ∈ B(ℋ) ×ℋ is fixed such that 𝑥 ∈ ℋ∖𝒩 (𝑇 ∗), and we define the maps
𝑦𝑇,𝑥 : ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[ −→ ℋ

𝜀 1−→ 𝑦𝑇,𝑥,𝜀

𝑐𝑇,𝑥 : ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[ −→ ℋ
𝜀 1−→ 𝑐𝑇,𝑥,𝜀

or (𝑇 ; 𝜀) ∈ B(ℋ) × ℝ∗+ is fixed, and we define the maps

𝑦𝑇,𝜀 : 𝒦 −→ ℋ
𝑥 1−→ 𝑦𝑇,𝑥,𝜀

𝑐𝑇,𝜀 : 𝒦 −→ ℋ
𝑥 1−→ 𝑐𝑇,𝑥,𝜀

where 𝒦 = {
𝑥 ∈ ℋ∖(𝒩 (𝑇 )⊥ ∪ ℬ(0; 𝜀]); d(𝑥;ℛ(𝑇 )) < 𝜀

}
.

A same proof as the one exposed in [2] allows us to establish analyticity of
the two first maps.
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Proposition 14. Let (𝑇 ;𝑥) ∈ B(ℋ) × ℋ such that 𝑥 ∈ ℋ∖𝒩 (𝑇 ∗). Then the two
maps 𝑦𝑇,𝑥 and 𝑐𝑇,𝑥 are analytic over ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[.
Remark 15. With the same hypotheses, we can easily notice that the map 𝜀 1→
∥𝑦𝑇,𝑥,𝜀∥ is decreasing over ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[.

Our next aim is to study the local behavior of 𝑦𝑇,𝑥 and 𝑐𝑇,𝑥 around the bounds
of the set ] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[. We have chosen to emphasize the study of the particu-
lar bound d(𝑥;ℛ(𝑇 )) where we recognize a strong link between generalized minimal
vectors and the famous notion of Moore–Penrose pseudo-inverse. For that reason,
this study is kept for Section 5. For now, let us expose the behaviour around ∥𝑥∥.
Proposition 16. Let (𝑇 ;𝑥) ∈ B(ℋ) × ℋ such that 𝑥 ∈ ℋ∖𝒩 (𝑇 ∗). When 𝜀 tends
to ∥𝑥∥,
∙ 𝑦𝑇,𝑥 strongly converges to 0;
∙ 𝑐𝑇,𝑥 tends to +∞.

Proof. Let us prove that 𝑦𝑇,𝑥 weakly converges to 0 when 𝜀 tends to ∥𝑥∥.
Proposition 6 allows us to claim that for any 𝜀 ∈] d(𝑥;ℛ(𝑇 )); ∥𝑥∥[, we get

𝑇𝑦𝑇,𝑥 ∈ 𝒱𝑥,𝜀, and then

∥𝑇𝑦𝑇,𝑥∥ <
√
∥𝑥∥2 − 𝜀2.

It follows that ∥𝑇𝑦𝑇,𝑥∥ → 0, therefore 𝑇𝑦𝑇,𝑥 strongly converges to 0 when 𝜀 tends
to ∥𝑥∥. Moreover, using Remark 15, 𝜀 1→ ∥𝑦𝑇,𝑥∥ is decreasing and non-negative,
which means that ∥𝑦𝑇,𝑥∥ is convergent when 𝜀 tends to ∥𝑥∥. All the more, 𝑦𝑇,𝑥 is
bounded when 𝜀 is closed to ∥𝑥∥. Consequently, we can build a sequence (𝜀𝑘)𝑘∈ℕ
which tends to ∥𝑥∥ and such that (𝑦𝑇,𝑥,𝜀𝑘

)𝑘∈ℕ is weakly convergent to some vector
𝑏 ∈ ℋ. We set 𝑦𝑘 = 𝑦𝑇,𝑥,𝜀𝑘

in the sequel of the proof. We deduce that 𝑇𝑦𝑘 weakly
converges to 𝑇𝑏. But 𝑇𝑦𝑇,𝑥 strongly converges to 0 when 𝜀 tends to ∥𝑥∥, so 𝑇𝑦𝑘
strongly converges to 0. It implies 𝑇𝑏 = 0, that is 𝑏 ∈ 𝒩 (𝑇 ).

On an other hand, we can write

∀𝑘 ∈ ℕ, 𝑦𝑘 ∈ (𝒩 (𝑇 ))⊥.

Indeed, for any non-negative integer 𝑘, we decompose 𝑦𝑘 with respect to the direct
sum ℋ = 𝒩 (𝑇 )⊕ (𝒩 (𝑇 ))⊥:

𝑦𝑘 = 𝑦′𝑘 + 𝑦′′𝑘 with (𝑦′𝑘, 𝑦
′′
𝑘 ) ∈ (𝒩 (𝑇 ))× (𝒩 (𝑇 ))⊥.

Then we obtain 𝑇𝑦𝑘 = 𝑇𝑦′′𝑘 and ∥𝑇𝑦′′𝑘 − 𝑥∥ = 𝜀. But the inequality ∥𝑦′′𝑘∥ ⩽ ∥𝑦𝑘∥ is
obvious. The unicity of minimal vector 𝑦𝑘 allows us to affirm that 𝑦′′𝑘 = 𝑦𝑘, that
is 𝑦𝑘 ∈ (𝒩 (𝑇 ))⊥. Because the vector subspace (𝒩 (𝑇 ))⊥ is closed, the weak limit
𝑏 of the sequence (𝑦𝑘) belongs to (𝒩 (𝑇 ))⊥. As a result, we get

𝑏 ∈ 𝒩 (𝑇 ) ∩ (𝒩 (𝑇 ))⊥ = {0}.
Hence 0 is the only weak limit point of 𝑦𝑇,𝑥, so that 𝑦𝑇,𝑥 is weakly convergent to
0 when 𝜀 tends to ∥𝑥∥.

For now, we proceed by absurdum to show that 𝑐𝑇,𝑥 tends to +∞ when 𝜀
tends to ∥𝑥∥. Suppose that 𝑐𝑇,𝑥 does not tend to +∞. Therefore, there exists
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a sequence (𝜀𝑘)𝑘∈ℕ that tends to ∥𝑥∥ and such that (𝑐𝑇,𝑥,𝜀𝑘
) is bounded. Set

𝑐𝑘 = 𝑐𝑇,𝑥,𝜀𝑘
and 𝑦𝑘 = 𝑦𝑇,𝑥,𝜀𝑘

. Up to a subsequence, we may assume that (𝑐𝑘) is
convergent to some non-negative number 𝑐. On the one hand, (𝑇 ∗𝑇+𝑐𝑘𝐼) converges
in B(ℋ) to 𝑇 ∗𝑇 + 𝑐𝐼. On the other hand, using the previous argument, we can
say that (𝑦𝑘) weakly converges to 0. According to Theorem 10, we have

∀𝑘 ∈ ℕ, (𝑇 ∗𝑇 + 𝑐𝑘𝐼)𝑦𝑘 = 𝑇 ∗𝑥,

so 𝑇 ∗𝑥 = 0, that is 𝑥 ∈ 𝒩 (𝑇 ∗). But the equalities

𝒩 (𝑇 ∗) ⊂ 𝒩 (𝑇 ∗) = (ℛ(𝑇 ))⊥ = (ℛ(𝑇 ))⊥ = {0},
imply that 𝑥 = 0, which is a contradiction. Consequently, 𝑐𝑇,𝑥 tends to +∞.

According to Theorem 10, the equality 𝑦𝑇,𝑥 = (𝑇 ∗𝑇 + 𝑐𝑇,𝑥𝐼)
−1𝑇 ∗𝑥 holds.

Since 𝑐𝑇,𝑥 → +∞, (𝑇 ∗𝑇 + 𝑐𝑇,𝑥𝐼)
−1 converges in B(ℋ) to 0. We deduce that 𝑦𝑇,𝑥

strongly converges to 0, and the proof is ended. □

Finally, we focus on 𝑦𝑇,𝜀 et 𝑐𝑇,𝜀, defined at the beginning of the section. We
obtain the continuity of these two maps.

Theorem 17. Let (𝑇 ; 𝜀) ∈ B(ℋ) × ℝ∗+. Then the two maps 𝑦𝑇,𝜀 and 𝑐𝑇,𝜀 are

continuous on the open set 𝒦 = {
𝑥 ∈ ℋ∖(𝒩 (𝑇 )⊥ ∪ ℬ(0; 𝜀]); d(𝑥;ℛ(𝑇 )) < 𝜀

}
.

Proof. Using a similar proof as in [11], 𝑦𝑇,𝜀 is obviously continuous on 𝒦.
Let (𝑥𝑛)𝑛∈ℕ be a sequence of vectors in 𝒦 such that (𝑥𝑛) converges to some

vector 𝑥 ∈ 𝒦. Let 𝜌 ∈]0; ∥𝑥∥− 𝜀[. There exists a non-negative integer 𝑁 such that
∀𝑛 ⩾ 𝑁 , ∥𝑥𝑛∥ − 𝜀 ⩾ 𝜌 and d(𝑥𝑛;ℛ(𝑇 )) < 𝜀. Thus 𝑐𝑛 = 𝑐𝑇,𝑥𝑛,𝜀 and 𝑦𝑛 = 𝑦𝑇,𝑥𝑛,𝜀

are well defined from the rank 𝑁 . We also set 𝑐 = 𝑐𝑇,𝑥,𝜀 and 𝑦 = 𝑦𝑇,𝑥,𝜀. Let us
prove that the sequence (𝑐𝑛)𝑛⩾𝑁 converges to 𝑐. According to Proposition 7, we
get

∀𝑛 ⩾ 𝑁, 0 < 𝑐𝑛 ⩽ 𝜀∥𝑇 ∥2
∥𝑥𝑛∥ − 𝜀

⩽ 𝜀∥𝑇 ∥2
𝜌

.

Hence (𝑐𝑛)𝑛⩾𝑁 is bounded. Let 𝑐′ be any limit point of (𝑐𝑛)𝑛⩾𝑁 . There exists
a subsequence (𝑐𝜑(𝑛)) that converges 𝑐′. Moreover, since 𝑦𝑇,𝜀 is continuous at 𝑥,
𝑦𝜑(𝑛) → 𝑦. From Theorem 10, the equality

(𝑇 ∗𝑇 + 𝑐𝜑(𝑛)𝐼)𝑦𝜑(𝑛) = 𝑇 ∗𝑥𝜑(𝑛)

holds for any 𝑛 ∈ ℕ which leads to (𝑇 ∗𝑇 + 𝑐′𝐼)𝑦 = 𝑇 ∗𝑥. The uniqueness of the
solution of the system { ∥𝑇𝑦 − 𝑥∥ = 𝜀;

(𝑇 ∗𝑇 + 𝑐𝐼)𝑦 = 𝑇 ∗𝑥,

allows us to affirm that (𝑐′; 𝑦) = (𝑐; 𝑦) and obviously 𝑐′ = 𝑐. Thus 𝑐 is the only limit
point of the bounded sequence (𝑐𝑛)𝑛⩾𝑁 . It means that (𝑐𝑛)𝑛⩾𝑁 converges to 𝑐. □
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5. Relationships between generalized extremal vectors and
Moore–Penrose pseudo-inverse

The extremal vectors were introduced by Ansari and Enflo in order to supply to
the default of surjectivity for a densely range operator. It would be interesting to
test the notion of generalized extremal vectors in the following way: Let 𝑇 ∈ B(ℋ)
and 𝑥 ∈ ℛ(𝑇 ), what is the behavior of 𝑦𝑇,𝑥,𝜀 when 𝜀 goes to 0? An interesting case
will be the case where 𝑥 ∈ ℛ(𝑇 ).
Theorem 18. Let 𝑇 ∈ B(ℋ) and 𝑥 ∈ ℛ(𝑇 )∖{0}. The following assertions are
equivalent:

(i) 𝑥 ∈ ℛ(𝑇 );
(ii) 𝑦𝜀 weakly converges in ℋ when 𝜀 goes to 0;
(iii) 𝑦𝜀 is norm-convergent to the image of 𝑥 by the Moore–Penrose pseudo-inverse

of 𝑇 , when 𝜀 goes to 0.

Moreover, when 𝑥 /∈ ℛ(𝑇 ), we have ∥𝑦𝜀∥ −−−→
𝜀→0

+∞; in particular, 𝜀 1→ 𝑦𝜀 is

divergent when 𝜀 tends to 0.

Proof. Let us prove that (i) implies (iii). Assume 𝑥 ∈ ℛ(𝑇 ). Set
𝜌 = inf{∥𝑢∥;𝑇𝑢 = 𝑥}

and consider a minimizing sequence (𝑏𝑛), that is 𝑇𝑏𝑛 = 𝑥 and ∥𝑏𝑛∥ decreases to 𝜌.
Since the sequence (𝑏𝑛) is bounded, we can find a subsequence (𝑏𝜑(𝑛)) which weakly
converges to some vector 𝑏 ∈ ℋ. Therefore, it derives 𝑇𝑏 = 𝑥 and ∥𝑏∥ = 𝜌. Now
suppose that there is another vector 𝑐 satisfying 𝑇𝑐 = 𝑥 and ∥𝑐∥ = 𝜌. Obviously
we have 𝑇 (𝑡𝑎+ (1 − 𝑡)𝑐) = 𝑥, and using triangular inequality and the minimality
of 𝜌, we obtain ∥𝑡𝑎+ (1 − 𝑡)𝑐∥ = 𝜌. The strict convexity of ℋ ensures that 𝑏 = 𝑐.
We have thus shown that

∃!𝑏 ∈ 𝐻 ;𝑇𝑏 = 𝑥 and 𝜌 = ∥𝑏∥ . (3)

From ∥𝑇𝑏− 𝑥∥ = 0 and the minimality condition on 𝑦𝜀, it follows that

∥𝑦𝜀∥ ⩽ 𝜌 = ∥𝑏∥
for any 𝜀 > 0.

We will now prove that ∥𝑦𝜀 − 𝑏∥ → 0 when 𝜀 goes to 0. Suppose the contrary,
then there exist a positive number 𝛿 and a sequence 𝜀𝑛 ↓ 0 such that

∥𝑦𝜀𝑛 − 𝑏∥ ⩾ 𝛿.

We can extract a subsequence
(
𝑦𝜀𝜑(𝑛)

)
which converges weakly to some vector 𝑏′.

Observe that ∥𝑏′∥ ⩽ lim sup (∥𝑦𝜀𝑛∥) ⩽ 𝜌 = ∥𝑏∥. Since ∥∥𝑇𝑦𝜀𝜑(𝑛)
− 𝑥

∥∥ → 0, we

derive that 𝑇𝑏′ = 𝑥 and we have necessarily 𝜌 = ∥𝑏′∥. Therefore, from (3) we
get 𝑏′ = 𝑏. As the function 𝜀 → ∥𝑦𝜀∥ is decreasing, we see that the sequence(∥∥𝑦𝜀𝜑(𝑛)

∥∥) is increasing and bounded above by 𝜌 = ∥𝑏∥, hence convergent to some
𝑙 ⩽ 𝜌. Considering a subsequence

(
𝑦𝜀𝜓∘𝜑(𝑛)

)
weakly convergent to some 𝑏′′, from

(3) we deduce as before that 𝑏′′ = 𝑏 and 𝜌 = ∥𝑏′′∥ ⩽ 𝑙, hence 𝑙 = 𝜌. Finally,



126 G. Cassier and J. Verliat

we have proved that the subsequence
(
𝑦𝜀𝜑(𝑛)

)
is weakly convergent to 𝑏 and that

the sequence
(∥∥𝑦𝜀𝜑(𝑛)

∥∥) converges to ∥𝑏∥. In view of the Kadec–Klee property of

ℋ, we obtain that the subsequence (
𝑦𝜀𝜑(𝑛)

)
converges in norm to 𝑏, which is a

contradiction.
The implication (iii) =⇒ (ii) is clearly true. Next, we prove that (ii) implies

(i). Assume that 𝑦𝜀 converges weakly to some vector 𝑎 when 𝜀 tends to 0. On the
one hand 𝑇𝑦𝜀 is weakly convergent to 𝑇𝑎 and on the other hand the inequality
∥𝑇𝑦𝜀 − 𝑥∥ ⩽ 𝜀 implies 𝑇𝑦𝜀 → 𝑥. Therefore 𝑥 = 𝑇𝑎 ∈ ℛ(𝑇 ).

It remains to prove the last assertion. Assume the contrary, then there exists
a bounded sequence (𝑦𝜀𝑛) for which 𝜀𝑛 ↓ 0. Then, we can consider a subsequence(
𝑦𝜀𝜑(𝑛)

)
which is weakly convergent to a point 𝑐. As before, we derive that 𝑥 =

𝑇𝑐 ∈ ℛ(𝑇 ) which is absurd. It ends the proof of Theorem 18. □

Remark 19. The notion of extremal vector was extended by G. Androulakis in the
setting of super-reflexive Banach spaces [1]. In the previous proposition, when 𝑇
is densely defined we can replace ℋ by any super-reflexive Banach space which is
strictly convex and has the Kadec–Klee property.

Theorem 18 allows us to compute the limit of 𝑐𝑇,𝑥 when 𝜀 −→ 0.

Corollary 20. Let 𝑇 ∈ B(ℋ) and 𝑥 ∈ ℛ(𝑇 )∖{0}. Then, we have lim
𝜀→0

𝑐𝑇,𝑥,𝜀 = 0.

Proof. Since 𝑇𝑦𝑇,𝑥,𝜀 −−−→
𝜀→0

𝑥, using Theorem 10, we get

𝑐𝑇,𝑥,𝜀𝑦𝑇,𝑥,𝜀 = 𝑇 ∗(𝑥− 𝑇𝑦𝑇,𝑥,𝜀) −−−→
𝜀→0

𝑇 ∗(0) = 0.

We derive that 𝑐𝑇,𝑥,𝜀∥𝑦𝑇,𝑥,𝜀∥ −−−→
𝜀→0

0 and 𝑐𝑇,𝑥,𝜀 = 𝑜
𝜀→0

(
1/∥𝑦𝜀∥

)
. In the two following

cases, applying Proposition 18, we obtain:
∙ If 𝑥0 /∈ ℛ(𝑇 ), we have ∥𝑦𝑇,𝑥,𝜀∥ −−−→

𝜀→0
+∞, hence 1/∥𝑦𝑇,𝑥,𝜀∥ −−−→

𝜀→0
0 and

𝑐𝑇,𝑥,𝜀 −−−→
𝜀→0

0.

∙ If 𝑥0 ∈ ℛ(𝑇 ), then the function 𝜀 1→ 𝑦𝑇,𝑥,𝜀 converges to a non null vector, thus
the function 𝜀 1→ 1/∥𝑦𝑇,𝑥,𝜀∥ is bounded. Therefore, we deduce immediately
that 𝑐𝑇,𝑥,𝜀 −−−→

𝜀→0
0. □

6. Applications to weighted shifts

Let (𝐸𝑛)𝑛∈ℤ be a family of Hilbert spaces and ℋ = ⊕𝑛∈ℤ𝐸𝑛 be the direct sum
of this family of Hilbert spaces. We consider a bounded sequence of operators
(𝑊𝑛)𝑛∈ℤ such that 𝑊𝑛 ∈ 𝐵(𝐸𝑛, 𝐸𝑛+1) for any 𝑛 ∈ ℤ and we define the operator
weighted shift 𝑆 acting on 𝐻 by setting

𝑆(. . . , 𝑥−2, 𝑥−1, 𝑥0 , 𝑥1, 𝑥2, . . . )

= (. . . ,𝑊−2𝑥−2, 𝑊−1𝑥−1 ,𝑊0𝑥0,𝑊1𝑥1,𝑊2𝑥2, . . . )

where the components, which are contained in boxes, belong to 𝐸0.



Generalized Extremal Vectors 127

Proposition 21. Let 𝑥 = (𝑥𝑘)𝑘∈ℤ be in ℋ∖𝒩 (𝑇 ∗𝑛) where 𝑛 ∈ ℕ∗. Let

𝜀 ∈] d(𝑥;ℛ(𝑇 𝑛)); ∥𝑥∥[,
then the generalized extremal vector associated with (𝑇 𝑛, 𝑥, 𝜀) (resp. (𝑇 ∗𝑛, 𝑥, 𝜀)) is

𝑦𝑇𝑛,𝑥,𝜀 =
∑
𝑘∈ℤ

(𝑊 ∗
𝑘 . . .𝑊 ∗

𝑘+𝑛−1𝑊𝑘+𝑛−1 . . .𝑊𝑘 + 𝑐𝑛 Id𝐸𝑘
)−1𝑊 ∗

𝑘 . . .𝑊 ∗
𝑘+𝑛−1𝑥𝑘+𝑛

(resp.

𝑦𝑇∗𝑛,𝑥,𝜀 =
∑
𝑘∈ℤ

(𝑊𝑘−1 . . .𝑊𝑘−𝑛𝑊
∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1 + 𝑐𝑛 Id𝐸𝑘
)−1𝑊𝑘−1 . . .𝑊𝑘−𝑛𝑥𝑘−𝑛)

where 𝑐𝑛 (resp. 𝑐𝑛) is the unique positive real number satisfying the following equal-
ity

𝜀2 =
∑
𝑘∈ℤ

𝑐2𝑛∥(𝑊𝑘−1 . . .𝑊𝑘−𝑛𝑊
∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1 + 𝑐𝑛 Id𝐸𝑘
)−1𝑥𝑘∥2

(resp. 𝜀2 =
∑
𝑘∈ℤ

𝑐2𝑛∥(𝑊 ∗
𝑘 . . .𝑊 ∗

𝑘+𝑛−1𝑊𝑘+𝑛−1 . . .𝑊𝑘 + 𝑐𝑛 Id𝐸𝑘
)−1𝑥𝑘∥2).

Proof. Let 𝑥 ∈ ⊕𝑞
𝑛=−𝑞𝐸𝑛, according to Theorem 10, we have to solve the system

of equations {
(𝑇 ∗𝑛𝑇 𝑛 + 𝑐𝑛𝐼)𝑦 = 𝑇 ∗𝑛𝑥;
∥𝑇 𝑛𝑦 − 𝑥∥ = 𝜀.

(4)

The first equation leads to∑
𝑘∈ℤ

(𝑊 ∗
𝑘 . . .𝑊 ∗

𝑘+𝑛−1𝑊𝑘+𝑛−1 . . .𝑊𝑘 + 𝑐𝑛 Id𝐸𝑘
)𝑦𝑘 =

∑
𝑘∈ℤ

𝑊 ∗
𝑘 . . .𝑊 ∗

𝑘+𝑛−1𝑥𝑘+𝑛

where both sums are finite. Let 𝑘 ∈ ℤ, taking the projection onto the subspace 𝐸𝑘,
we see that (𝑊 ∗

𝑘 . . .𝑊 ∗
𝑘+𝑛−1𝑊𝑘+𝑛−1 . . .𝑊𝑘 + 𝑐𝑛 Id𝐸𝑘

)𝑦𝑘 = 𝑊 ∗
𝑘 . . .𝑊 ∗

𝑘+𝑛−1𝑥𝑘+𝑛,
hence

𝑦𝑘 = (𝑊
∗
𝑘 . . .𝑊 ∗

𝑘+𝑛−1𝑊𝑘+𝑛−1 . . .𝑊𝑘 + 𝑐𝑛 Id𝐸𝑘
)−1𝑊 ∗

𝑘 . . .𝑊 ∗
𝑘+𝑛−1𝑥𝑘+𝑛.

By a similar computation than in the proof of Theorem 10 we get

𝑊𝑘−1 . . .𝑊𝑘−𝑛(𝑊
∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1𝑊𝑘−1 . . .𝑊𝑘−𝑛 + 𝑐𝑛 Id𝐸𝑘−𝑛
)−1

×𝑊 ∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1 − Id𝐸𝑘

= −𝑐𝑛(𝑊𝑘−1 . . .𝑊𝑘−𝑛𝑊
∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1 + 𝑐𝑛 Id𝐸𝑘
)−1,

and taking into account the second equation in system (4), we obtain

𝜀2 =
∑
𝑘∈ℤ
∥𝑊𝑘−1 . . .𝑊𝑘−𝑛(𝑊

∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1𝑊𝑘−1 . . .𝑊𝑘−𝑛 + 𝑐𝑛 Id𝐸𝑘
)−1

×𝑊 ∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1𝑥𝑘 − 𝑥𝑘+𝑛∥2

=
∑
𝑛∈ℤ

𝑐2𝑛∥(𝑊𝑘−1 . . .𝑊𝑘−𝑛𝑊
∗
𝑘−𝑛 . . .𝑊 ∗

𝑘−1 + 𝑐𝑛 Id𝐸𝑘
)−1𝑥𝑘∥2.
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Let 𝑥 =
∑

𝑛∈ℤ 𝑥𝑛 ∈ ℋ∖𝒩 (𝑇 ∗) with respect to the direct sum decomposition ℋ =

⊕𝑛∈ℤ𝐸𝑛, we clearly have 𝑥 = lim𝑞−→+∞
∑𝑞

𝑛=−𝑞 𝑥𝑛. Using the continuity of the

two maps 𝑦𝑇𝑛,𝜀 and 𝑐𝑇𝑛,𝜀 (Theorem 17) we easily deduce the result in the general
case. In the same manner, we find formulas associated with 𝑦𝑇∗𝑛,𝑥,𝜀 and 𝑐𝑛. □

Remark 22. Taking 𝐸𝑛 = 0 when 𝑛 ⩽ −1 in Proposition 21, we get the character-
ization of the generalized extremal vector associated with a vector ℋ∖𝒩 (𝑇 ∗𝑛) for
𝑇 𝑛, where 𝑇 is a forward or backward unilateral operator weighted shift.

The following proposition is concerned with the weak closure of the sequence
(𝑇 𝑛𝑦𝑇𝑛,𝑥,𝜀)𝑛⩾1.

Proposition 23. Let 𝑇 ∈ 𝐵(ℋ), 𝑥 ∈ ℋ∖(∪𝑛⩾1𝒩 (𝑇 ∗𝑛)) and
𝜀 ∈] lim

𝑛−→∞ d(𝑥;ℛ(𝑇
𝑛)); ∥𝑥∥[.

Then, the null vector is not a weak limit point of the sequence (𝑇 𝑛𝑦𝑇𝑛,𝑥,𝜀)𝑛⩾1.

Proof. For convenience we set 𝑦(𝑛) := 𝑦𝑇𝑛,𝑥,𝜀 for the generalized extremal vector
associated with (𝑇 𝑛, 𝑥, 𝜀). We proceed by absurdum and suppose that there exists
a subsequence (𝑇𝜑(𝑛)𝑦𝜑(𝑛))𝑛⩾1 converging weakly to the null vector 0. Then, we
have

∥𝑥∥ ⩽ lim∥𝑇𝜑(𝑛)𝑦𝜑(𝑛) − 𝑥∥ = 𝜀,

which is a contradiction. □

Now we focus on classical unilateral weighted shifts. Firstly, we study the
variations of the sequence (𝑐𝑇𝑛,𝑥,𝜀) where 𝑇 is the adjoint of some classical weighted
shifts.

Proposition 24. We denote by 𝑇 a backward weighted shift acting on ℓ2(ℕ). We
suppose that the non-negative weight (𝑤𝑛)𝑛∈ℕ of 𝑇 ∗ tends to 0. Let us fix
𝑥 ∈ ℋ∖{0} and 𝜀 ∈]0; ∥𝑥∥[. Then there exists some positive integer 𝑁 such that
(𝑐𝑇𝑛,𝑥,𝜀)𝑛≥𝑁 is decreasing to 0.

Proof. Set 𝑐𝑛 = 𝑐𝑇𝑛,𝑥,𝜀 and 𝑦(𝑛) = 𝑦𝑇𝑛,𝑥,𝜀 for any 𝑛 ∈ ℕ∗: 𝑦(𝑛) = (𝑦
(𝑛)
𝑘 )𝑘∈ℕ ∈

ℓ2(ℕ). Using Proposition 21, we can see that

𝜀2 =

+∞∑
𝑖=0

𝑐2𝑛
(𝑤2

𝑖 ⋅ ⋅ ⋅𝑤2
𝑖+𝑛−1 + 𝑐𝑛)2

∣𝑥𝑖∣2 =
+∞∑
𝑖=0

𝑐2𝑛+1
(𝑤2

𝑖 ⋅ ⋅ ⋅𝑤2
𝑖+𝑛 + 𝑐𝑛+1)2

∣𝑥𝑖∣2.

It follows that

0 =

+∞∑
𝑖=0

[
𝑐2𝑛+1

(𝑤2
𝑖 ⋅⋅⋅𝑤2

𝑖+𝑛+𝑐𝑛+1)2
− 𝑐2𝑛

(𝑤2
𝑖 ⋅⋅⋅𝑤2

𝑖+𝑛−1+𝑐𝑛)2

]
∣𝑥𝑖∣2

=
+∞∑
𝑖=0

[
𝑐𝑛+1

𝑤2
𝑖 ⋅⋅⋅𝑤2

𝑖+𝑛+𝑐𝑛+1
− 𝑐𝑛

𝑤2
𝑖 ⋅⋅⋅𝑤2

𝑖+𝑛−1+𝑐𝑛

][
𝑐𝑛+1

𝑤2
𝑖 ⋅⋅⋅𝑤2

𝑖+𝑛+𝑐𝑛+1
+ 𝑐𝑛

𝑤2
𝑖 ⋅⋅⋅𝑤2

𝑖+𝑛−1+𝑐𝑛

]
∣𝑥𝑖∣2.
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Let us denote by 𝑆 the last sum. The sign of 𝐼, defined by

𝐼 =
𝑐𝑛+1

𝑤2
𝑖 ⋅ ⋅ ⋅𝑤2

𝑖+𝑛 + 𝑐𝑛+1
− 𝑐𝑛

𝑤2
𝑖 ⋅ ⋅ ⋅𝑤2

𝑖+𝑛−1 + 𝑐𝑛

=
𝑤2

𝑖 ⋅ ⋅ ⋅𝑤2
𝑖+𝑛−1[𝑐𝑛+1 − 𝑤2

𝑖+𝑛𝑐𝑛]

(𝑤2
𝑖 ⋅ ⋅ ⋅𝑤2

𝑖+𝑛 + 𝑐𝑛+1)(𝑤2
𝑖 ⋅ ⋅ ⋅𝑤2

𝑖+𝑛−1 + 𝑐𝑛)
,

is the same as the one of 𝑐𝑛+1 − 𝑤2
𝑖+𝑛𝑐𝑛. Since (𝑤𝑛) tends to 0 when 𝑛 tends to

+∞, there exists a positive integer 𝑁 such that for every 𝑛 ≥ 𝑁 , we have: ∀𝑖 ∈ ℕ,
𝑤𝑖+𝑛 < 1. Thus, ∀𝑛 ⩾ 𝑁 , 𝑐𝑛+1 ⩽ 𝑐𝑛. Indeed, if we suppose that 𝑐𝑛+1 > 𝑐𝑛, then
∀𝑖 ∈ ℕ, 𝑐𝑛+1 > 𝑤2

𝑖+𝑛𝑐𝑛 and we deduce that 𝑆 > 0, which is a contradiction.

As a direct consequence of Theorem 9, we obtain that (𝑐𝑛) converges to 0. □

A crucial point in the Ansari–Enflo method is to obtain norm convergence for
a subsequence of ({𝑇𝜑(𝑛)𝑦𝑇𝜑(𝑛),𝑥,𝜀})𝑛⩾1. In the following proposition, we see that
it is always the case when 𝑇 a bounded backward weighted shift acting on ℓ2(ℕ).

Proposition 25. We denote by 𝑇 a bounded backward weighted shift acting on
ℓ2(ℕ). Let us fix 𝑥 ∈ ℋ∖{0} and 𝜀 ∈]0; ∥𝑥∥[. Then the weak closure and the norm
closure of the set {𝑇 𝑛𝑦𝑇𝑛,𝑥,𝜀} coincide and do not contain 0. More precisely, every
subsequence {𝑇𝜑(𝑛)𝑦𝑇𝜑(𝑛),𝑥,𝜀} which is weakly convergent is also norm convergent.
Proof. Let (𝑇𝜑(𝑛)𝑦𝑇𝜑(𝑛),𝑥,𝜀})𝑛⩾1 be a weakly convergent subsequence and denote
by 𝑦 its limit. Then, we have

lim
𝑛−→+∞

𝑤2
𝑘 ⋅ ⋅ ⋅𝑤2

𝑘+𝜑(𝑛)−1
𝑤2

𝑘 ⋅ ⋅ ⋅𝑤2
𝑘+𝜑(𝑛)−1 + 𝑐𝜑(𝑛)

𝑥𝑘 = 𝑦𝑘

for any 𝑘 ∈ ℕ. Therefore, we get

𝑦𝑘 − 𝑥𝑘 = lim
𝑛−→+∞

𝑐𝜑(𝑛)
𝑤2

𝑘 ⋅ ⋅ ⋅𝑤2
𝑘+𝜑(𝑛)−1 + 𝑐𝜑(𝑛)

𝑥𝑘,

and applying the Lebesgue theorem, with respect to the discrete measure 𝜇 =∑+∞
𝑘=0∣𝑥𝑘∣2𝛿𝑘 and the bounded sequence of functions (𝑓𝑛)𝑛∈ℕ defined by setting

𝑓𝑛(𝑥) = 𝑐2𝜑(𝑛)/[𝑤[𝑥]
2 ⋅ ⋅ ⋅𝑤2

[𝑥]+𝜑(𝑛)−1]
2, we obtain

𝜀2 = ∥𝑇𝜑(𝑛)𝑦𝑇𝜑(𝑛),𝑥,𝜀 − 𝑥∥2 =
+∞∑
𝑘=0

𝑐2𝜑(𝑛)

(𝑤2
𝑘 ⋅ ⋅ ⋅𝑤2

𝑘+𝜑(𝑛)−1 + 𝑐𝜑(𝑛))2
∣𝑥𝑘∣2 −→ ∥𝑦 − 𝑥∥2.

Then, using the Kadec–Klee property, we see that the subsequence

(𝑇𝜑(𝑛)𝑦𝑇𝜑(𝑛),𝑥,𝜀})𝑛⩾1
is necessarily norm convergent. Finally, the fact that 0 is not a weak limit point
follows directly from Proposition 23. □

Recall that a operator 𝐴 is said to be unicellular if its lattice of invariant
subspaces is totally ordered by inclusion.
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Theorem 26. We denote by 𝑇 a quasinilpotent backward weighted shift acting on
ℓ2(ℕ). Then all its invariant subspaces can be obtained by using the Ansari–Enflo
method if and only if 𝑇 is unicellular.

Proof. We can extract a subsequence (𝑦(𝜑(𝑛))𝑛⩾0 such that the subsequences

(𝑇𝜑(𝑛)𝑦(𝜑(𝑛)))𝑛⩾0 and (𝑇𝜑(𝑛)−1𝑦(𝜑(𝑛)−1))𝑛⩾0

converge weakly respectively to 𝑦 and 𝑧. From Proposition 25, we derive that
both subsequences strongly converge and have non-zero limit points. Since 𝑇 is
quasinilpotent, using Lemma 1 in [2] we may suppose that ∥𝑦𝜑(𝑛)−1∥/∥𝑦𝜑(𝑛)∥ con-
verges to 0. Then, following the method of [2], we can see that the subspace
𝐸 = {𝑅𝑧 : 𝑅𝑇 = 𝑇𝑅} is a non-trivial hyper-invariant subspace of 𝑇 . Since we
have

𝑇𝜑(𝑛)−1𝑦(𝜑(𝑛)−1) =
+∞∑
𝑘=0

𝑤2
𝑘 ⋅ ⋅ ⋅𝑤2

𝑘+𝜑(𝑛)−2
𝑤2

𝑘 ⋅ ⋅ ⋅𝑤2
𝑘+𝜑(𝑛)−2 + 𝑐𝜑(𝑛)−1

𝑥𝑘𝑒𝑘, (5)

we that deduce that ∣𝑧𝑘∣ ⩽ ∣𝑥𝑘∣ and that 𝑧𝑘/𝑥𝑘 is non-negative when 𝑥𝑘 ∕= 0.
There is at least one component 𝑧𝑘 which is different from 𝑥𝑘. Suppose not, then
from Proposition 3 it follows that

∥𝑥∥2 = ∥𝑧∥2 ⩽ lim∥𝑇𝜑(𝑛)−1𝑦(𝜑(𝑛)−1)∥2 ⩽ ∥𝑥∥2 − 𝜀2

which is a contradiction. Let 𝑝 be the first integer such that 𝑧𝑝 ∕= 𝑥𝑝. Using
Equation 5, we easily obtain

𝑐𝜑(𝑛)−1
𝑤2

𝑝 ⋅ ⋅ ⋅𝑤2
𝑝+𝜑(𝑛)−2

−→ 𝑥𝑝

𝑧𝑝
− 1,

where we have made the convention that 𝑥𝑝/𝑧𝑝− 1 = +∞ if 𝑧𝑝 = 0. Let 𝑞 > 𝑝 and
suppose that 𝑧𝑞 ∕= 0. On the one hand we get, as before

𝑐𝜑(𝑛)−1
𝑤2

𝑞 ⋅ ⋅ ⋅𝑤2
𝑞+𝜑(𝑛)−2

−→ 𝑥𝑞

𝑧𝑞
− 1.

On the other hand, we see that

𝑐𝜑(𝑛)−1
𝑤2

𝑞 ⋅ ⋅ ⋅𝑤2
𝑞+𝜑(𝑛)−2

=
𝑤2

𝑝 ⋅ ⋅ ⋅𝑤2
𝑞−1

𝑤𝑝+𝜑(𝑛)−1 ⋅ ⋅ ⋅𝑤𝑞+𝜑(𝑛)−2

𝑐𝜑(𝑛)−1
𝑤2

𝑝 ⋅ ⋅ ⋅𝑤2
𝑝+𝜑(𝑛)−2

−→ (+∞)× (𝑥𝑝

𝑧𝑝
− 1) = +∞,

which leads to a contradiction. Thus, we necessarily have 𝑧𝑞 = 0. Consequently,
we obviously have 𝐸 = ℋ𝑝 := 𝑆𝑝𝑎𝑛{𝑒𝑘 : 𝑘 ⩽ 𝑚}. Conversely, using previous
properties, it is clear that if we take 𝑥 = 𝑒𝑝 we obtain 𝐸 = ℋ𝑝. It clearly proves
Theorem 26. □

Let 𝑇 be backward shift with positive weights (𝑤𝑛)𝑛⩾0, we set 𝜔0 := 1 and
𝜔𝑛 := 𝑤0 ⋅ ⋅ ⋅𝑤𝑛−1 when 𝑛 ⩾ 1.
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Remark 27. We refer to [6] for several results concerning non-unicellular quasinilpo-
tent operators, and for examples involving unicellular quasinilpotent operators see
for instance [7] and [9].

Corollary 28. We denote by 𝑇 a backward weighted shift acting on ℓ2(ℕ). Suppose
that for every 𝑖 ⩾ 0, there exists a number 𝑁𝑖 ⩾ 𝑖 such that∑

𝑛,𝑚⩾𝑁𝑖

𝜔𝑛+𝑚−𝑖

𝜔𝑛𝜔𝑚
< +∞.

Then all invariant subspaces of 𝑇 can be obtained by using the Ansari–Enflo
method.

Proof. The fact that 𝑇 is unicellular is a direct consequence of Theorem 2 in [9].
Notice that 𝑇 is necessarily quasinilpotent, then it suffices to apply Theorem 26.

□
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the Analytic Besov Spaces to BMOA
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Abstract. Let 𝜓 and 𝜑 be analytic functions on the open unit disk 𝔻 with
𝜑(𝔻) ⊆ 𝔻 and let 1 ≤ 𝑝 <∞. We characterize the bounded and the compact
weighted composition operators 𝑊𝜓,𝜑 from the analytic Besov space 𝐵𝑝 into
BMOA and into VMOA. We also show that there are no isometries among
the composition operators.
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1. Introduction

Let 𝑋 and 𝑌 be Banach spaces of analytic functions on a domain Ω in ℂ, 𝜓 an
analytic function on Ω and let 𝜑 be an analytic function mapping Ω into itself
such that 𝜓(𝑓 ∘ 𝜑) ∈ 𝑌 for each 𝑓 ∈ 𝑋 . The weighted composition operator with
symbols 𝜓 and 𝜑 from 𝑋 to 𝑌 is the operator 𝑊𝜓,𝜑 defined by

𝑊𝜓,𝜑𝑓 =𝑀𝜓𝐶𝜑𝑓 = 𝜓(𝑓 ∘ 𝜑), for 𝑓 ∈ 𝑋,

where 𝑀𝜓 denotes the multiplication operator with symbol 𝜓 and 𝐶𝜑 denotes the
composition operator with symbol 𝜑.

Recently, there has been an increasing interest in the study of the weighted
composition operators, since they arise naturally in the study of the isometries of
many functional Banach spaces.

In this work, we investigate the bounded and the compact weighted compo-
sition operators from the analytic Besov spaces 𝐵𝑝 (with 1 ≤ 𝑝 < ∞) into the
space BMOA of analytic functions of bounded mean oscillation as well as into
its subspace VMOA of functions of vanishing mean oscillation. To carry out this
study, we make use of different approaches, since research on composition opera-
tors on BMOA, has produced different criteria for compactness [5], [16], [20], and
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[22]. See also [18] for a special case. For general weighted composition operators
on BMOA and on VMOA, boundedness and compactness have been characterized
in [12] and new criteria were derived in [6]. The compact composition operators
on the Besov spaces have been characterized in [19] for the case 1 < 𝑝 <∞ and in
[7] (Proposition 5.3) and independently in [21] for the case 𝑝 = 1 in terms of the
norm in 𝐵𝑝 of the operator applied to the automorphisms of the open unit disk 𝔻.

The compact composition operators from the analytic Besov spaces to BMOA
were characterized in [18] in terms of the norm in BMOA of the operator applied
to the automorphisms of 𝔻. In fact, by Corollary 5 in [13], 𝐶𝜑 : 𝐵𝑝 → BMOA
(with 1 < 𝑝 <∞) is a compact operator if and only if 𝐶𝜑 : BMOA→ BMOA is a
compact operator.

In this paper, we obtain another proof of this result as well as a proof of
the equivalence between the compact composition operators on VMOA and those
from 𝐵𝑝 to VMOA, which we show also holds in the case 𝑝 = 1. This interesting
equivalence prompted us to explore whether a similar equivalence holds for the
weighted composition operators between these same spaces and whether the norm
of the operator applied to the automorphisms of 𝔻 plays a similar role.

In the present work, our main objective is to seek and extend this type of
result to the weighted composition operator for establishing both boundedness and
compactness. Parallel to this, we derive criteria in the spirit of those used in [12]
and [6]. As expected, the presence of a nonconstant multiplicative symbol affects
boundedness and compactness by adding at least one extra condition. Thus, the
norm of the operator applied to the automorphisms of 𝔻 alone is not sufficient to
characterize the bounded and the compact weighted composition operators.

After giving the background on the spaces under consideration, in Section 2,
we give several characterizations of the bounded weighted composition operators
from 𝐵𝑝 to BMOA and to VMOA for 1 ≤ 𝑝 < ∞ and show that there are no
isometries among the composition operators.

In Section 3, we derive a sufficient condition for compactness of the weighted
composition operator from 𝐵𝑝 to BMOA for 1 < 𝑝 ≤ 2 in terms of a limiting
weighted integral condition involving the symbols of the operator over sets of the
form

{𝑧 ∈ 𝔻 : ∣𝑧 − 𝑒𝑖𝜃∣ < ℎ},
where ℎ is a small positive number and 𝜃 ∈ ℝ. We then obtain characterizations of
compactness of the weighted composition operator mapping the Besov space 𝐵1

to BMOA under a restriction on the multiplicative symbol in relation to the set of
points where the composition symbol approaches the unit circle (which covers the
case when the symbol belongs to VMOA) and we use this result to characterize the
compact weighted composition operators from the Besov space 𝐵𝑝 (for 1 < 𝑝 <∞)
to BMOA without any restriction set on the symbols.

In Section 4, we characterize compactness of the weighted composition opera-
tors from the Besov spaces to VMOA. A comparison between these conditions, one
of which depends on the index 𝑝, to the conditions that characterize the compact
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weighted composition operators on VMOA obtained in [12], indicates that the
equivalence of compactness for the composition operators between these spaces
does not extend to the case of the weighted composition operators.

1.1. Preliminaries

Let 𝐴 denote the area measure on 𝔻 normalized by the condition 𝐴(𝔻) = 1 and
let 1 < 𝑝 <∞. The analytic Besov space 𝐵𝑝 is the Banach space consisting of the
analytic functions 𝑓 on 𝔻 such that

𝑏𝑝(𝑓)
𝑝 :=

∫
𝔻

(1− ∣𝑧∣2)𝑝−2∣𝑓 ′(𝑧)∣𝑝 𝑑𝐴(𝑧) <∞,

with Besov norm

∥𝑓∥𝐵𝑝 = ∣𝑓(0)∣+ 𝑏𝑝(𝑓).

For 𝑝 = 2, 𝐵𝑝 is the classical Dirichlet space 𝒟. An equivalent norm, called the
Dirichlet norm, is defined as

∥𝑓∥𝒟 =
(
∣𝑓(0)∣2 +

∫
𝔻

∣𝑓 ′(𝑧)∣2 𝑑𝐴(𝑧)
)1/2

.

The Besov spaces are Möbius invariant and the Dirichlet space is the unique
Möbius invariant Hilbert space that is continuously embedded in the Bloch
space [2].

The space BMOA is the space of functions 𝑓 on 𝔻 which are analytic Poisson
integrals of a function of bounded mean oscillation on the unit circle ∂𝔻. Equiv-
alently, BMOA may be defined as the set of functions 𝑓 in the Hardy space 𝐻2

such that

∥𝑓∥∗ = sup
𝑎∈𝔻

∥𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎)∥𝐻2 <∞,

where for 𝑔 ∈ 𝐻2,

∥𝑔∥𝐻2 = sup
0<𝑟<1

(∫
∂𝔻

∣𝑔(𝑟𝑒𝑖𝜃)∣2 𝑑𝑚(𝜃)
)1/2

.

Here 𝑚 is the one-dimensional Lebesgue measure on ∂𝔻 normalized by the condi-
tion 𝑚(∂𝔻) = 1 and

𝐿𝑎(𝑧) =
𝑎− 𝑧

1− 𝑎𝑧
, for 𝑧 ∈ 𝔻.

The correspondence 𝑓 1→ ∥𝑓∥∗ is a seminorm, and the norm defined as

∥𝑓∥BMOA = ∣𝑓(0)∣+ ∥𝑓∥∗
yields a Banach space structure on BMOA.

Another seminorm on BMOA equivalent to ∥ ⋅ ∥∗ is

∥𝑓∥∗∗ = sup
𝑞∈𝔻

(∫
𝒟
∣𝑓 ′(𝑧)∣2 (1 − ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)

)1/2
, for 𝑓 ∈ BMOA.
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The space VMOA of vanishing mean oscillation is defined as the subspace of
BMOA consisting of the functions 𝑓 such that

lim
∣𝑎∣→1

∥𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎)∥𝐻2 = 0,

or equivalently,

lim
∣𝑞∣→1

∫
𝔻

∣𝑓 ′(𝑧)∣2 (1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧) = 0.
It is well known (see, e.g., [18]) that if 1 < 𝑝 < 𝑞 <∞, then

𝐵𝑝 ⊂ 𝐵𝑞 ⊂ VMOA ⊂ BMOA ⊂ ℬ,
where ℬ is the Bloch space defined as the set of analytic functions 𝑓 on 𝔻 such
that

∥𝑓∥ = sup
𝑧∈𝔻

(1− ∣𝑧∣2)∣𝑓 ′(𝑧)∣ <∞.

In fact, 𝐵𝑝 is continuously embedded in 𝐵𝑞 and 𝐵𝑀𝑂𝐴 is continuously embedded
in the Bloch space, since for 𝑎 ∈ 𝔻 and 𝑓 ∈ 𝐵𝑀𝑂𝐴,

(1− ∣𝑎∣2)∣𝑓 ′(𝑎)∣ = ∣(𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎))′(0)∣ ≤ ∥𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎)∥𝐻2

so ∥𝑓∥ ≤ ∥𝑓∥∗. Note also that if 𝑓 ∈ 𝐻∞ and 𝑎 ∈ 𝔻, then

∥𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎)∥2𝐻2 =

∫
∂𝔻

∣𝑓(𝐿𝑎(𝜁))∣2 𝑑𝑚(𝜁)− ∣𝑓(𝑎)∣2 ≤ ∥𝑓∥2∞,

which implies that

∥𝑓∥𝐵𝑀𝑂𝐴 ≤ ∣𝑓(0)∣+ ∥𝑓∥∞ ≤ 2∥𝑓∥∞. (1)

The analytic Besov space 𝐵1 is defined as the set consisting of the functions
𝑓 on 𝔻 that admit the representation

𝑓(𝑧) =

∞∑
𝑛=1

𝑎𝑛𝐿𝜆𝑛(𝑧), 𝑧 ∈ 𝔻,

where {𝑎𝑛} ∈ ℓ1 and 𝜆𝑛 ∈ 𝔻 for 𝑛 ∈ ℕ. The norm in 𝐵1 is defined as

∥𝑓∥𝐵1 = inf

{ ∞∑
𝑛=1

∣𝑎𝑛∣ : 𝑓(𝑧) =
∞∑

𝑛=1

𝑎𝑛𝐿𝜆𝑛(𝑧), 𝑧 ∈ 𝔻

}
.

It is evident that 𝐵1 is a Möbius invariant subset of 𝐻
∞. In fact, as noted in [1],

the functions in 𝐵1 can be extended continuously to the closed unit disk. Moreover,
as is the case for the Besov spaces 𝐵𝑝 for 1 < 𝑝 < ∞, 𝐵1 is a subset of the little
Bloch space defined as the subspace ℬ0 of ℬ consisting of those 𝑓 ∈ ℬ such that

lim
∣𝑧∣→1

(1− ∣𝑧∣2)∣𝑓 ′(𝑧)∣ = 0.

(See [23]).
The space 𝐵1 was extensively studied in [3], where it was shown that 𝐵1 is

the smallest Möbius invariant space. For this reason, the Besov space 𝐵1 is also
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known as the minimal Möbius invariant space. Furthermore, in [3] and [23] it was
shown that there exists a constant 𝐶 > 0 such that for every 𝑓 ∈ 𝐵1,

𝐶−1
∫
𝔻

∣𝑓 ′′(𝑧)∣𝑑𝐴(𝑧) ≤ ∥𝑓 − 𝑓(0)− 𝑓 ′(0)𝑧∥𝐵1 ≤ 𝐶

∫
𝔻

∣𝑓 ′′(𝑧)∣𝑑𝐴(𝑧).

For 𝑓 ∈ 𝐵1, let

𝑏(𝑓) =

∫
𝔻

∣𝑓 ′′(𝑧)∣𝑑𝐴(𝑧).
The quantity ∥𝑓∥𝐵1,∗ := max{∣𝑓(0)∣, ∣𝑓 ′(0)∣, 𝑏(𝑓)} defines a non-Möbius-invariant
norm on 𝐵1 (see, e.g., [4]) equivalent to ∥ ⋅ ∥𝐵1 .

The Besov spaces 𝐵𝑝 are contained in the Hardy space 𝐻2. In fact, for 1 <
𝑝 < ∞, using the Möbius invariance of 𝐵𝑝, one can show (see (1.7) in [18]) that
for some 𝐶 > 0,

∥𝑓∥2∗ ≤ 𝐶∥𝑓∥𝑝𝐵𝑝
for 𝑓 ∈ 𝐵𝑝. (2)

From the inclusion 𝐵1 ⊂ 𝐻∞ ∩ ℬ0, we establish a relationship between the Bloch
seminorm and the norms in 𝐻∞ and 𝐵1. For 𝑓 =

∑∞
𝑘=1 𝑎𝑘𝐿𝜆𝑘

∈ 𝐵1, with {𝑎𝑘} ∈
ℓ1 and 𝜆𝑘 ∈ 𝔻, 𝑘 ∈ ℕ,

∥𝑓∥ ≤ ∥𝑓∥∞ ≤
∞∑
𝑘=1

∣𝑎𝑘∣∥𝐿𝜆𝑘
∥∞ =

∞∑
𝑘=1

∣𝑎𝑘∣.

Taking the infimum over all such sequences {𝑎𝑘} in the above representation of 𝑓 ,
we obtain

∥𝑓∥ ≤ ∥𝑓∥∞ ≤ ∥𝑓∥𝐵1.

For 1 < 𝑝 <∞, 𝐵1 is continuously embedded in 𝐵𝑝. Indeed, observe that for
𝑎 ∈ 𝔻, by the conformal invariance of the Besov seminorm,

∥𝐿𝑎∥𝐵𝑝 = ∣𝑎∣+ 𝑏𝑝(𝐿𝑎) = ∣𝑎∣+
(∫

𝔻

(1 − ∣𝑧∣2)𝑝−2 𝑑𝐴(𝑧)
)1/𝑝

< 1 +
1

(𝑝− 1)1/𝑝 . (3)

Therefore, for 𝑓 ∈ 𝐵1 represented as above, we have

∥𝑓∥𝐵𝑝 ≤
∞∑
𝑘=1

∣𝑎𝑘∣∥𝐿𝜆𝑘
∥𝐵𝑝 <

(
1 +

1

(𝑝− 1)1/𝑝
) ∞∑

𝑘=1

∣𝑎𝑘∣.

Thus, taking the infimum over all such sequences {𝑎𝑘} in the above representation
of 𝑓 , we obtain

∥𝑓∥𝐵𝑝 ≤
(
1 +

1

(𝑝− 1)1/𝑝
)
∥𝑓∥𝐵1 .

Another noteworthy property of the Besov spaces is that the polynomials are
dense in 𝐵𝑝 (1 ≤ 𝑝 <∞).

We recommend to the interested reader [3], [8], [9], and [24] for an in-depth
study on the spaces 𝐵𝑀𝑂, BMOA, and the analytic Besov spaces.

Throughout this paper we shall adopt the convention of denoting by 𝐶 a
positive constant which may differ from one occurrence to the next.
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2. Boundedness

We begin the section by recalling some useful results that shall be used later.

For 𝜓, 𝜑 analytic functions on 𝔻 with 𝜑(𝔻) ⊆ 𝔻 and 𝑎 ∈ 𝔻, define

𝛼(𝜓, 𝜑, 𝑎) = ∣𝜓(𝑎)∣∥𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎∥𝐻2 .

Lemma 2.1 ([12], Lemma 3.4). For 𝜓 ∈ BMOA and 𝜑 an analytic self-map of 𝔻,
there exists 𝐶 ≥ 1 such that

∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))(𝑓 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓(𝜑(𝑎)))∥2𝐻2 ≤ 𝐶∥𝜓∥∗∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2

and

∣𝜓(𝑎)∣ ∥𝑓 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓(𝜑(𝑎))∥𝐻2 ≤ 𝐶 𝛼(𝜓, 𝜑, 𝑎)∥𝑓∥∗
for all 𝑓 ∈ BMOA and all 𝑎 ∈ 𝔻.

Lemma 2.2 ([23]). For 𝑧 ∈ 𝔻 and 𝑡 > −1,∫
𝔻

(1 − ∣𝑤∣2)𝑡
∣1− 𝑤𝑧∣𝑡+2 𝑑𝐴(𝑤) ≍ log 2

1− ∣𝑧∣2 , as ∣𝑧∣ → 1.

Lemma 2.3 ([6], Corollary 2.1). Let 𝜑 be an analytic self-map of 𝔻. If 𝜓 ∈ BMOA,
then the sequence {∥𝜓𝜑𝑛∥BMOA} is bounded if and only if sup

𝑎∈𝔻
𝛼(𝜓, 𝜑, 𝑎) <∞.

Suppose 1 ≤ 𝑝 < ∞. In the following theorem, we characterize the bounded
weighted composition operators from 𝐵𝑝 to BMOA.

Let 𝜓 be an analytic function on 𝔻 and let 𝜑 be an analytic self-map of 𝔻.
For 𝑎 ∈ 𝔻, define

𝛾(𝜓, 𝜑, 𝑝, 𝑎) =

(
log

2

1− ∣𝜑(𝑎)∣2
)1−1/𝑝

∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 .

Theorem 2.1. Let 𝜓 be an analytic function on 𝔻, 𝜑 an analytic self-map of 𝔻,
and 1 ≤ 𝑝 <∞. The following statements are equivalent.
(a) The operator 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is bounded.
(b) 𝛼𝜓,𝜑 := sup

𝑎∈𝔻
𝛼(𝜓, 𝜑, 𝑎) <∞, and 𝛾𝜓,𝜑,𝑝 =: sup

𝑎∈𝔻
𝛾(𝜓, 𝜑, 𝑝, 𝑎) <∞.

(c) sup
𝑛∈ℕ

∥𝜓𝜑𝑛∥BMOA <∞, and 𝛾𝜓,𝜑,𝑝 <∞.

(d) sup
𝑞∈𝔻

∥𝜓(𝐿𝑞 ∘ 𝜑)∥BMOA <∞, and 𝛾𝜓,𝜑,𝑝 <∞.

Note that for 𝑝 = 1, the condition 𝛾𝜓,𝜑,𝑝 <∞ means 𝜓 ∈ BMOA.

Proof. (a) ⇒ (b) Assume 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is bounded. Then 𝜓 = 𝑊𝜓,𝜑1 ∈
BMOA. Suppose first 𝑝 = 1. Then for 𝑏 ∈ 𝔻, ∥𝐿𝑏∥𝐵1 ≤ 1. Thus, by the triangle
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inequality and the boundedness of 𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎, we obtain

𝛼(𝜓, 𝜑, 𝑎) = ∣𝜓(𝑎)∣∥𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎∥𝐻2

≤ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))(𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎)∥𝐻2

+ ∥(𝜓 ∘ 𝐿𝑎)(𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎)∥𝐻2

≤ ∥𝜓∥∗ + ∥𝑊𝜓,𝜑𝐿𝜑(𝑎)∥∗
≤ ∥𝜓∥∗ + ∥𝑊𝜓,𝜑∥∥𝐿𝜑(𝑎)∥𝐵1 ,

≤ ∥𝜓∥∗ + ∥𝑊𝜓,𝜑∥.

(4)

Therefore, 𝛼𝜓,𝜑 is finite, which, by the observation before the proof, proves (b) in
the case 𝑝 = 1.

Next suppose 1 < 𝑝 < ∞ and fix 𝑎 ∈ 𝔻. By the triangle inequality and the
boundedness of 𝐿𝜑(𝑎)∘𝜑∘𝐿𝑎 and of the operator𝑊𝜓,𝜑, recalling that 𝜓 ∈ BMOA,
as done in (4) and using (3), we obtain

𝛼(𝜓, 𝜑, 𝑎) ≤ ∥𝜓∥∗ + ∥𝑊𝜓,𝜑𝐿𝜑(𝑎)∥∗
≤ ∥𝜓∥∗ +

(
1 +

1

(𝑝− 1)1/𝑝
)
∥𝑊𝜓,𝜑∥,

(5)

which is finite and independent of 𝑎. Therefore, 𝛼𝜓,𝜑 is finite.
Next, we show that 𝛾𝜓,𝜑,𝑝 <∞. For 𝑎 ∈ 𝔻, define

𝑓𝑎(𝑧) =

(
log

2

1− ∣𝑎∣2
)−1/𝑝

log
2

1− 𝑎𝑧
, for 𝑧 ∈ 𝔻. (6)

By Lemma 2.2, we have that

𝑏𝑝(𝑓𝑎) =

(
log

2

1− ∣𝑎∣2
)−1/𝑝(∫

𝔻

(1− ∣𝑧∣2)𝑝−2
∣∣∣∣ 𝑎

1− 𝑎𝑧

∣∣∣∣𝑝 𝑑𝐴(𝑧)

)1/𝑝
is bounded by a constant independent of 𝑎. Thus,

𝑓𝑎 ∈ 𝐵𝑝 and 𝑀 = sup
𝑎∈𝔻

∥𝑓𝑎∥𝐵𝑝 <∞.

Since 𝑊𝜓,𝜑 is bounded, it follows that for each 𝑎 ∈ 𝔻,

∥(𝜓(𝑓𝜑(𝑎) ∘ 𝜑)) ∘ 𝐿𝑎)− 𝜓(𝑎)𝑓𝜑(𝑎)(𝜑(𝑎))∥𝐻2 ≤ ∥𝑊𝜓,𝜑𝑓𝜑(𝑎)∥BMOA ≤𝑀∥𝑊𝜓,𝜑∥.

Noting that 𝑓𝜑(𝑎)(𝜑(𝑎)) =
(
log 2

1−∣𝜑(𝑎)∣2
)1−1/𝑝

, we obtain

𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 𝑓𝜑(𝑎)(𝜑(𝑎))∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2

≤ ∥(𝜓(𝑓𝜑(𝑎) ∘ 𝜑)) ∘ 𝐿𝑎 − 𝜓(𝑎)𝑓𝜑(𝑎)(𝜑(𝑎))∥𝐻2

+ ∥(𝜓 ∘ 𝐿𝑎)(𝑓𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓𝜑(𝑎)(𝜑(𝑎)))∥𝐻2

≤𝑀∥𝑊𝜓,𝜑∥+ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))(𝑓𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓𝜑(𝑎)(𝜑(𝑎)))∥𝐻2

+ ∣𝜓(𝑎)∣∥𝑓𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓𝜑(𝑎)(𝜑(𝑎))∥𝐻2

=𝑀∥𝑊𝜓,𝜑∥+ 𝐼𝑎 + 𝐼𝐼𝑎, (7)
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where 𝐼𝑎 and 𝐼𝐼𝑎 are the second and the third term of the above sum. Recalling
that 𝐵𝑝 ⊂ BMOA, by Lemma 2.1, we obtain

𝐼𝑎 ≤ 𝐶∥𝜓∥1/2∗ ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥1/2𝐻2 ≤ 𝐶∥𝜓∥∗,
so sup𝑎∈𝔻 𝐼𝑎 <∞.

On the other hand, by Lemma 2.1 and (2), we have

𝐼𝐼𝑎 ≤ 𝐶 𝛼(𝜓, 𝜑, 𝑎)∥𝑓𝜑(𝑎)∥∗ ≤ 𝐶 𝛼(𝜓, 𝜑, 𝑎)∥𝑓𝜑(𝑎)∥𝑝/2𝐵𝑝
,

which is bounded by a constant independent of 𝑎. Therefore, by (7), taking the
supremum over all 𝑎 ∈ 𝔻, it follows that 𝛾𝜓,𝜑,𝑝 is finite.

(b) ⇒ (a) Suppose (b) holds. Note that for 𝑎 ∈ 𝔻,

∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 =

(
log

2

1− ∣𝜑(𝑎)∣2
) 1

𝑝−1
𝛾(𝜓, 𝜑, 𝑝, 𝑎) ≤ (log 2) 1

𝑝−1𝛾𝜓,𝜑,𝑝,

so 𝜓 ∈ BMOA.
Let 𝑓 ∈ 𝐵1, 𝑓(𝑧) =

∑
𝑎𝑛𝐿𝜆𝑛(𝑧) for 𝑧 ∈ 𝔻, with {𝑎𝑛} ∈ ℓ1 and 𝜆𝑛 ∈ 𝔻, 𝑛 ∈ ℕ.

Then ∣𝑓(𝑧)∣ ≤∑ ∣𝑎𝑛∣, so taking the infimum over all above atomic decompositions
of 𝑓 , we have

∣𝑓(𝑧)∣ ≤ ∥𝑓∥𝐵1. (8)

Next, let 𝑓 ∈ 𝐵𝑝 with 1 < 𝑝 <∞. Then by Theorem 9 in [24], we have

∣𝑓(𝑧)∣ ≤ 𝐶∥𝑓∥𝐵𝑝

(
log

2

1− ∣𝑧∣2
)1−1/𝑝

. (9)

By (8), condition (9) holds also for 𝑝 = 1.
Now suppose ∥𝑓∥𝐵𝑝 ≤ 1. For 𝑎 ∈ 𝔻, by the triangle inequality, we have

∥𝑊𝜓,𝜑𝑓 ∘ 𝐿𝑎 −𝑊𝜓,𝜑𝑓(𝑎)∥𝐻2 ≤ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))𝑓(𝜑(𝑎))∥𝐻2

+ ∥(𝜓 ∘ 𝐿𝑎)(𝑓 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓(𝜑(𝑎)))∥𝐻2

= 𝐼𝐼𝐼𝑎 + 𝐼𝑉𝑎, (10)

where, 𝐼𝐼𝐼𝑎 and 𝐼𝑉𝑎 are the first and second term, respectively, of the above sum.
Using (9), we have

sup
𝑎∈𝔻

𝐼𝐼𝐼𝑎 ≤ sup
𝑎∈𝔻

𝐶

(
log

2

1− ∣𝜑(𝑎)∣2
)1−1/𝑝

∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 ≤ 𝐶 𝛾𝜓,𝜑,𝑝, (11)

which is finite by the hypothesis. On the other hand, by the triangle inequality,
Lemma 2.1, and (2),

𝐼𝑉𝑎 = ∥(𝜓 ∘ 𝐿𝑎)(𝑓 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓(𝜑(𝑎)))∥𝐻2

≤ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))(𝑓 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓(𝜑(𝑎)))∥𝐻2

+ ∣𝜓(𝑎)∣∥𝑓 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓(𝜑(𝑎))∥𝐻2

≤ 𝐶∥𝜓∥1/2∗ ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥1/2𝐻2 + 𝐶 𝛼(𝜓, 𝜑, 𝑎)∥𝑓∥∗ (12)

≤ 𝐶 ∥𝜓∥∗ + 𝐶 𝛼𝜓,𝜑. (13)
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From (10), (11) and (13), we obtain

∥𝑊𝜓,𝜑𝑓∥∗ ≤ 𝐶(𝛾𝜓,𝜑,𝑝 + ∥𝜓∥∗ + 𝛼𝜓,𝜑).

Finally, using (9), we have

∥𝑊𝜓,𝜑𝑓∥BMOA ≤ ∣𝜓(0)𝑓(𝜑(0))∣+ 𝐶(𝛾𝜓,𝜑,𝑝 + ∥𝜓∥∗ + 𝛼𝜓,𝜑)

≤ 𝐶

(
∣𝜓(0)∣

(
log

2

1− ∣𝜑(0)∣2
)1−1/𝑝

+ 𝛾𝜓,𝜑,𝑝 + ∥𝜓∥∗ + 𝛼𝜓,𝜑

)
.

Therefore 𝑊𝜓,𝜑 is bounded.

The equivalence of (b) and (c) follows from Lemma 2.3.

(a) ⇒ (d) Since {∥𝐿𝑞∥𝐵𝑝 : 𝑞 ∈ 𝔻} is bounded, the boundedness of {∥𝜓(𝐿𝑞 ∘
𝜑)∥BMOA : 𝑞 ∈ 𝔻} follows immediately from the boundedness of 𝑊𝜓,𝜑. The finite-
ness of 𝛾𝜓,𝜑,𝑝 follows from the equivalence of (a) and (b) or (c).

(d)⇒ (a) By the equivalence of (a) and (b), it suffices to show that 𝛼𝜓,𝜑 <∞.
Fix 𝑎 ∈ 𝔻 and set 𝑀 = sup

𝑞∈𝔻
∥𝜓(𝐿𝑞 ∘ 𝜑)∥BMOA. As noted above, since 𝛾𝜓,𝜑,𝑝 <∞,

𝜓 ∈ BMOA. Then, by (4) and (5),
𝛼(𝜓, 𝜑, 𝑎) ≤ ∥𝜓∥∗ + ∥𝜓(𝐿𝜑(𝑎) ∘ 𝜑)∥∗ ≤ ∥𝜓∥∗ +𝑀,

completing the proof. □

Remark 2.1. For 1 ≤ 𝑝 < ∞, the boundedness of the sequence {∥𝜓𝜑𝑛∥BMOA} in
Theorem 2.1, which clearly holds if the symbol 𝜓 is bounded, cannot be shown
using the boundedness of𝑊𝜓,𝜑, because the sequence {𝑝𝑛} defined by 𝑝𝑛(𝑧) = 𝑧𝑛,
𝑧 ∈ 𝔻, is not bounded in 𝐵𝑝, as it will be shown in the proof of Theorem 2.2.

From Theorem 2.1 of [6] and Theorem 2.1 for the case when 𝑝 = 1, we deduce
the following result.

Corollary 2.1. Let 𝜓 and 𝜑 be analytic on 𝔻 with 𝜑(𝔻) ⊆ 𝔻. The following state-
ments are equivalent:

(a) The operator 𝑊𝜓,𝜑 : 𝐵1 → BMOA is bounded.
(b) sup

𝑎∈𝔻
𝛼(𝜓, 𝜑, 𝑎) <∞, and 𝜓 ∈ BMOA.

(c) sup
𝑛∈ℕ∪{0}

∥𝜓𝜑𝑛∥BMOA <∞.
(d) sup

𝑞∈𝔻
∥𝜓(𝐿𝑞 ∘ 𝜑)∥BMOA <∞, and 𝜓 ∈ BMOA.

(e) The operator 𝑊𝜓,𝜑 : 𝐻
∞ → BMOA is bounded.

For 1 < 𝑝 < ∞, define 𝑝 -𝐿𝑀𝑂𝐴 to be the space of analytic functions 𝑓 of
𝑝-logarithmic mean oscillation, that is, satisfying the condition

∥𝑓∥𝐿,𝑝 := sup
𝑎∈𝔻

(
log

2

1− ∣𝑎∣2
)1−1/𝑝

∥𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎)∥𝐻2 <∞.
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Clearly, the space 𝐿𝑀𝑂𝐴 of functions of logarithmic mean oscillation, defined as
the set of functions 𝑓 such that

sup
𝑎∈𝔻

log
2

1− ∣𝑎∣2 ∥𝑓 ∘ 𝐿𝑎 − 𝑓(𝑎)∥𝐻2 <∞,

is contained in 𝑝 -𝐿𝑀𝑂𝐴, which in turn is properly contained in VMOA. It is well
known (see [10], [17], and [14]) that a multiplication operator 𝑀𝜓 is bounded on
BMOA if and only if 𝜓 ∈ 𝐻∞ ∩ 𝐿𝑀𝑂𝐴.

In the degenerate case of the multiplication operator, we deduce the following
result.

Corollary 2.2. Let 𝜓 be analytic on 𝔻. Then

(a) 𝑀𝜓 : 𝐵1 → BMOA is bounded if and only if 𝜓 ∈ 𝐻∞.
(b) For 1 < 𝑝 < ∞, 𝑀𝜓 : 𝐵𝑝 → BMOA is bounded if and only if 𝜓 ∈ 𝐻∞∩

𝑝−𝐿𝑀𝑂𝐴.

Condition (a) follows from the fact that for 𝜑 equal to the identity, 𝛼𝜓,𝜑 =
sup𝑎∈𝔻 ∣𝜓(𝑎)∣, so 𝛼𝜓,𝜑 <∞ means that 𝜓 ∈ 𝐻∞.

We turn our attention to the search of the isometries among the composition
operators from the Besov spaces to BMOA. We now show that, although there is
a very rich supply of isometries among the composition operators on BMOA [11],
there are none from the Besov spaces to BMOA.

Theorem 2.2. For 1 ≤ 𝑝 < ∞, there are no isometries among the composition
operators from 𝐵𝑝 to BMOA.

Proof. Suppose 𝐶𝜑 : 𝐵𝑝 → BMOA is an isometry. For 𝑛 ∈ ℕ and 𝑧 ∈ 𝔻, let
𝑝𝑛(𝑧) = 𝑧𝑛. Then

∥𝜑𝑛∥BMOA = ∥𝐶𝜑𝑝𝑛∥BMOA = ∥𝑝𝑛∥𝐵𝑝 .

Since, by (1),

∥𝜑𝑛∥BMOA ≤ 2∥𝜑𝑛∥∞ ≤ 2,
to reach a contradiction it suffices to show that ∥𝑝𝑛∥𝐵𝑝 > 2 for 𝑛 sufficiently large.

This is clear for 𝑝 = 1 since, by Corollary 3.4 of [1],

∥𝑝𝑛∥𝐵1 =
𝑛+ 1

2

(
1 +

2

𝑛− 1
)𝑛−1

2

, 𝑛 ≥ 2.

Let us next consider the case 1 < 𝑝 <∞.
By the formula

∥𝑝𝑛∥𝑝𝐵𝑝
= 2𝑛𝑝

∫ 1

0

𝑟𝑛𝑝−𝑝+1(1− 𝑟2)𝑝−2 𝑑𝑟,

making the change of variable 𝑟2 = 𝑡, we obtain

∥𝑝𝑛∥𝑝𝐵𝑝
= 𝑛𝑝

∫ 1

0

𝑡(𝑛𝑝−𝑝)/2(1− 𝑡)𝑝−2 𝑑𝑡 = 𝑛𝑝𝐵

(
𝑛𝑝− 𝑝

2
+ 1, 𝑝− 1

)
, (14)
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where 𝐵(𝑥, 𝑦) =
∫ 1
0
𝑡𝑥−1(1− 𝑡)𝑝−1 𝑑𝑡 denotes the Beta function. Recalling that, by

Stirling’s formula, for 𝑥 large and 𝑦 fixed,

𝐵(𝑥, 𝑦) ≈ 𝑥−𝑦 ,

from (14), we obtain

∥𝑝𝑛∥𝑝𝐵𝑝
≈ 𝑛𝑝

(
𝑛𝑝− 𝑝

2
+ 1

)−𝑝+1

≈ 𝑛𝑝𝑛−𝑝+1 = 𝑛.

Thus, ∥𝑝𝑛∥𝑝𝐵𝑝
→∞ as 𝑛→∞, proving the result. □

We end the section by characterizing the bounded weighted composition op-
erators from the Besov space 𝐵𝑝 to VMOA.

Theorem 2.3. Let 1 ≤ 𝑝 <∞, 𝜓 an analytic function on 𝔻 and let 𝜑 be an analytic
self-map of 𝔻. Then the following statements are equivalent:

(a) 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is bounded.
(b) 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is bounded, 𝜓 ∈ VMOA and

lim
∣𝑎∣→1

∣𝜓(𝑎)∣∥𝜑 ∘ 𝐿𝑎 − 𝜑(𝑎)∥𝐻2 = 0. (15)

(c) 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is bounded, 𝜓 ∈ VMOA and

lim
∣𝑞∣→1

∫
𝔻

∣𝜓(𝑧)∣2∣𝜑′(𝑧)∣2(1 − ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧) = 0. (16)

Proof. (a) ⇒ (b) Assume 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is bounded. Then 𝑊𝜓,𝜑 is clearly
bounded as an operator from 𝐵𝑝 to BMOA, 𝜓 = 𝑊𝜓,𝜑1 ∈ VMOA, and 𝑊𝜓,𝜑id =
𝜓𝜑 ∈ VMOA, where id denotes the identity function on 𝔻. Thus, as shown in the
proof of Proposition 4.1 of [12], for 𝑎 ∈ 𝔻,

∣𝜓(𝑎)∣∥𝜑 ∘ 𝐿𝑎 − 𝜑(𝑎)∥𝐻2 ≤ ∥(𝜓𝜑) ∘ 𝐿𝑎 − 𝜓(𝑎)𝜑(𝑎)∥𝐻2

+ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))(𝜑 ∘ 𝐿𝑎)∥𝐻2

≤ ∥(𝜓𝜑) ∘ 𝐿𝑎 − 𝜓(𝑎)𝜑(𝑎)∥𝐻2 + ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 ,

which approaches 0 as ∣𝑎∣ → 1.

(b) ⇒ (a) Suppose 𝑊𝜓,𝜑 is bounded as an operator from 𝐵𝑝 to BMOA,
𝜓 ∈ VMOA and (15) holds. To prove (a) it suffices to show that for each 𝑓 ∈ 𝐵𝑝,
𝑊𝜓,𝜑𝑓 ∈ VMOA. Since the polynomials are dense in 𝐵𝑝, we only need to prove
this for the polynomials. This can be easily proved using the argument of the proof
of Proposition 4.1 of [12].

(a) ⇒ (c) Suppose (a) holds. Arguing as in (a) ⇒ (b), the functions 𝜓 and
𝜓𝜑 are in VMOA. Since for 𝑧 ∈ 𝔻,

∣𝜓(𝑧)𝜑′(𝑧)∣2 ≤ 2(∣(𝜓𝜑)′(𝑧)∣2 + ∣𝜓′(𝑧)𝜑(𝑧)∣2) ≤ 2(∣(𝜓𝜑)′(𝑧)∣2 + ∣𝜓′(𝑧)∣2),
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then, for 𝑞 ∈ 𝔻, we have∫
𝔻

∣𝜓(𝑧)∣2∣𝜑′(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)

≤ 2
∫
𝔻

∣(𝜓𝜑)′(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧) + 2
∫
𝔻

∣𝜓′(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)→ 0

as ∣𝑞∣ → 1.
(c) ⇒ (a) Assume 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is bounded, 𝜓 ∈ VMOA and

(16) holds. To prove that 𝑊𝜓,𝜑 is bounded as an operator mapping 𝐵𝑝 into
𝑉 𝑀𝑂𝐴, it suffices to show that 𝑊𝜓,𝜑𝑓 ∈ VMOA for any polynomial 𝑓 . Let

𝑓(𝑧) =
∑𝑁

𝑛=0 𝑎𝑛𝑧
𝑛, 𝑧 ∈ 𝔻, 𝑁 ∈ ℕ. Then, for 𝑞 ∈ 𝔻, we have∫

𝔻

∣𝜓′(𝑧)∣2∣𝑓(𝜑(𝑧))∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)

≤ ∥𝑓∥2∞
∫
𝔻

∣𝜓′(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)→ 0

(17)

as ∣𝑞∣ → 1. Moreover, noting that ∣𝑓 ′(𝜑(𝑧))∣ ≤ ∑𝑁
𝑛=1 𝑛∣𝑎𝑛∣ = 𝐶, by (16) we also

have ∫
𝔻

∣𝜓(𝑧)∣2∣(𝑓 ∘ 𝜑)′(𝑧)∣2(1 − ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)

≤ 𝐶2

∫
𝔻

∣𝜓(𝑧)∣2∣𝜑′(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)→ 0

(18)

as ∣𝑞∣ → 1.
From (17) and (18) it follows that∫

𝔻

∣(𝜓(𝑓 ∘ 𝜑))′(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧)→ 0

as ∣𝑞∣ → 1, completing the proof. □

For the composition operator, from part (ii) of Corollary 4.2 of [12], and as
a special case of Theorem 2.3 of [6], we deduce the following result.

Corollary 2.3. Let 1 ≤ 𝑝 <∞ and 𝜑 an analytic self-map of 𝔻. Then the following
statements are equivalent.

(a) 𝐶𝜑 : 𝐵𝑝 → VMOA is bounded.
(b) 𝐶𝜑 : VMOA→ VMOA is bounded.
(c) 𝐶𝜑 : 𝐻

∞ → VMOA is bounded.
(d) 𝜑 ∈ VMOA.

The equivalence of (b) and (d) was noted in [3], Theorem 12.
For the multiplication operator, note that by part (a) of Corollary 2.2, the

boundedness of 𝑀𝜓 : 𝐵1 → BMOA requires 𝜓 ∈ 𝐻∞. Moreover, if 𝜓 is bounded
and 𝜑 is the identity, then condition (15) is automatically satisfied. Thus, we obtain
the following result.
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Corollary 2.4. Let 𝜓 be analytic on 𝔻. Then, 𝑀𝜓 : 𝐵1 → VMOA is bounded if and
only if 𝜓 ∈ 𝐻∞ ∩ VMOA.

In the case 1 < 𝑝 < ∞, by part (b) of Corollary 2.2, the boundedness of
𝑀𝜓 : 𝐵𝑝 → BMOA requires 𝜓 ∈ 𝐻∞∩ 𝑝−𝐿𝑀𝑂𝐴, and in particular, 𝜓 ∈ VMOA.
Moreover, if 𝜓 is bounded and 𝜑 is the identity, then condition (15) is automatically
satisfied. Therefore, we obtain the following result.

Corollary 2.5. Let 1 < 𝑝 <∞ and 𝜓 be analytic on 𝔻. Then, the following propo-
sitions are equivalent:

(a) 𝑀𝜓 : 𝐵𝑝 → VMOA is bounded.
(b) 𝑀𝜓 : 𝐵𝑝 → BMOA is bounded.
(c) 𝜓 ∈ 𝐻∞ ∩ 𝑝−𝐿𝑀𝑂𝐴.

3. Compact weighted composition operators from 𝑩𝒑 to BMOA

The following compactness criterion can be easily proved using Lemma 3.7 of [19].

Lemma 3.1. Let 1 ≤ 𝑝 < ∞. A weighted composition operator 𝑊𝜓,𝜑 from 𝐵𝑝 to
BMOA is compact if and only if, for every bounded sequence {𝑓𝑛} in 𝐵𝑝 converging
to 0 uniformly on compact subsets of 𝔻, the sequence {∥𝑊𝜓,𝜑𝑓𝑛∥BMOA} approaches
0 as 𝑛→∞.
Notation 3.1. For 𝜃 ∈ [0, 2𝜋) and ℎ ∈ (0, 1), define

𝑆(ℎ, 𝜃) = {𝑧 ∈ 𝔻 : ∣𝑧 − 𝑒𝑖𝜃∣ < ℎ}.
The following result is an immediate corollary of Proposition 3.4 in [19].

Proposition 3.1. Let {𝜇𝑞 : 𝑞 ∈ 𝐼} be a collection of positive measures on 𝔻. Then,
for 1 < 𝑝 <∞, the following statements are equivalent:
(a) lim

ℎ→0
sup

𝜃∈[0,2𝜋),𝑞∈𝐼

𝜇𝑞(𝑆(ℎ, 𝜃))

ℎ𝑝
= 0.

(b) lim
∣𝑎∣→1

sup
𝑞∈𝐼

∫
𝔻

∣𝐿′𝑎(𝑤)∣𝑝 𝑑𝜇𝑞(𝑤) = 0.

We now provide a sufficient condition for compactness of the weighted com-
position operator from 𝐵𝑝 to BMOA for 1 < 𝑝 ≤ 2.
Theorem 3.1. Let 𝜓 be an analytic function on 𝔻, 𝜑 be an analytic self-map of 𝔻,
and 1 < 𝑝 ≤ 2. If lim

∣𝑎∣→1
∥𝜓(𝐿𝑎 ∘ 𝜑)− 𝑎𝜓∥∗∗ = 0 and, for some fixed 𝑡 > 0,

lim
ℎ→0

sup
𝑞∈𝔻,𝜃∈[0,2𝜋)

log 1
ℎ

ℎ2−𝑡

∫
𝜑−1(𝑆(ℎ,𝜃))

∣𝜓′(𝑤)∣2(1− ∣𝐿𝑞(𝑤)∣2)
(1 − ∣𝜑(𝑤)∣)𝑡 𝑑𝐴(𝑤) = 0,

then 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is a compact operator.
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Proof. Suppose that {𝑓𝑛} is a bounded sequence in 𝒟 converging to 0 uniformly
on compact subsets of 𝔻. Fix 𝜀 > 0 and let 𝛿 > 0 be such that for any 𝜃 ∈ [0, 2𝜋],
𝑞 ∈ 𝔻 and any ℎ ∈ (0, 𝛿),∫

𝜑−1(𝑆(ℎ,𝜃))

∣𝜓′(𝑤)∣2 (1− ∣𝐿𝑞(𝑤)∣2)
(1 − ∣𝜑(𝑤)∣)𝑡 𝑑𝐴(𝑤) < 𝜀

ℎ2−𝑡

log 1
ℎ

. (19)

For 𝑤 ∈ 𝔻, the mean value property and Jensen’s inequality yield,

∣𝑓𝑛(𝜑(𝑤))∣2 ≤ 4

(1 − ∣𝜑(𝑤)∣)2
∫
∣𝜑(𝑤)−𝑧∣<1−∣𝜑(𝑤)∣

2

∣𝑓𝑛(𝑧)∣2 𝑑𝐴(𝑧). (20)

Multiply (20) by ∣𝜓′(𝑤)∣2(1− ∣𝐿𝑞(𝑤)∣2), integrate and use Fubini’s theorem to get

𝐼 =

∫
𝔻

∣𝑓𝑛(𝜑(𝑤))∣2 ∣𝜓′(𝑤)∣2(1− ∣𝐿𝑞(𝑤)∣2) 𝑑𝐴(𝑤) (21)

≤
∫
𝔻

4

(1 − ∣𝜑(𝑤)∣)2
∫
∣𝜑(𝑤)−𝑧∣<1−∣𝜑(𝑤)∣

2

∣𝑓𝑛(𝑧)∣2 𝑑𝐴(𝑧) ∣𝜓′(𝑤)∣2(1− ∣𝐿𝑞(𝑤)∣2) 𝑑𝐴(𝑤)

=

∫
𝔻

∣𝑓𝑛(𝑧)∣2
∫
𝔻

4𝜒{𝑧:∣𝜑(𝑤)−𝑧∣<1−∣𝜑(𝑤)∣
2 }(𝑧)

(1− ∣𝜑(𝑤)∣)2−𝑡

∣𝜓′(𝑤)∣2(1− ∣𝐿𝑞(𝑤)∣2)
(1− ∣𝜑(𝑤)∣)𝑡 𝑑𝐴(𝑤) 𝑑𝐴(𝑧).

Note that, if ∣𝜑(𝑤) − 𝑧∣ < 1−∣𝜑(𝑤)∣
2 and 𝑧 = ∣𝑧∣𝑒𝑖𝜃 ∈ 𝔻, then

1− ∣𝜑(𝑤)∣ ≤ ∣𝜑(𝑤) − 𝑒𝑖𝜃∣ ≤ ∣𝜑(𝑤) − 𝑧∣+ ∣𝑧 − 𝑒𝑖𝜃∣

= ∣𝜑(𝑤) − 𝑧∣+ ∣∣𝑧∣ − 1∣ < 1− ∣𝜑(𝑤)∣
2

+ 1− ∣𝑧∣.

Hence 1−∣𝜑(𝑤)∣
2 ≤ 1−∣𝑧∣ and so ∣𝜑(𝑤)−𝑒𝑖𝜃∣ < 2(1−∣𝑧∣), or 𝜑(𝑤) ∈ 𝑆(2(1−∣𝑧∣), 𝜃).

Furthermore, 1− ∣𝑧∣ ≤ 1− ∣𝜑(𝑤)∣ + ∣𝜑(𝑤) − 𝑧∣ < 3
2 (1− ∣𝜑(𝑤)∣). So

1

2

1

1− ∣𝑧∣ ≤
1

1− ∣𝜑(𝑤)∣ ≤
3

2

1

1− ∣𝑧∣ .

Therefore (21) yields

𝐼≤𝐶

∫
𝔻

∣𝑓𝑛(𝑧)∣2
(1−∣𝑧∣)2−𝑡

∫
𝜑−1(𝑆(2(1−∣𝑧∣),𝜃))

∣𝜓′(𝑤)∣2(1−∣𝐿𝑞(𝑤)∣2)
(1−∣𝜑(𝑤)∣)𝑡 𝑑𝐴(𝑤)𝑑𝐴(𝑧)

=𝐶

∫
∣𝑧∣>1− 𝛿

2

∣𝑓𝑛(𝑧)∣2
(1−∣𝑧∣)2−𝑡

(∫
𝜑−1(𝑆(2(1−∣𝑧∣),𝜃))

∣𝜓′(𝑤)∣2(1−∣𝐿𝑞(𝑤)∣2)
(1−∣𝜑(𝑤)∣)𝑡 𝑑𝐴(𝑤)

)
𝑑𝐴(𝑧)

+𝐶

∫
∣𝑧∣≤1− 𝛿

2

∣𝑓𝑛(𝑧)∣2
(1−∣𝑧∣)2−𝑡

(∫
𝜑−1(𝑆(2(1−∣𝑧∣),𝜃))

∣𝜓′(𝑤)∣2(1−∣𝐿𝑞(𝑤)∣2)
(1−∣𝜑(𝑤)∣)𝑡 𝑑𝐴(𝑤)

)
𝑑𝐴(𝑧)

=𝐶 (𝐼1+𝐼2), (22)

for any 0 < 𝛿 < 1.
By (19) and (22), and since each 𝑓𝑛 ∈ 𝒟,

𝐼1 ≤ 𝐶 𝜀

∫
∣𝑧∣>1− 𝛿

2

∣𝑓𝑛(𝑧)∣2
log 2

1−∣𝑧∣
𝑑𝐴(𝑧) ≤ 𝐶 𝜀.
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Since 𝑓𝑛 → 0 uniformly on compact sets, there exists 𝑁 ∈ ℕ such that if 𝑛 ≥ 𝑁 ,
then ∣𝑓𝑛(𝑧)∣ ≤ 𝜀 for all 𝑧 with ∣𝑧∣ ≤ 1− 𝛿

2 . Therefore

𝐼2 ≤ 𝐶 ∥𝜓∥2∗∗ 𝜀.
Above we proved that

lim
𝑛→∞ sup𝑞∈𝔻

𝐼 = 0. (23)

Given any sequence {𝑎𝑛} in 𝔻 with ∣𝑎𝑛∣ → 1 as 𝑛 → ∞, we have that
lim

𝑛→∞ ∥𝜓𝐿𝑎𝑛 ∘ 𝜑− 𝑎𝑛𝜓∥∗∗ = 0, or

lim
𝑛→∞ sup𝑞∈𝔻

∫
𝔻

∣𝜓′(𝑧)𝐿𝑎𝑛(𝜑(𝑧))− 𝑎𝑛𝜓
′(𝑧) + 𝜓(𝑧)𝐿′𝑎𝑛

(𝜑(𝑧))𝜑′(𝑧)∣2

× (1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑤) = 0 .

(24)

Since {𝐿𝑎𝑛 − 𝑎𝑛} is a bounded sequence in 𝒟 that converges to 0 uniformly on
compact subsets of 𝔻, we may use an argument similar to the proof of (23) to get

lim
𝑛→∞ sup𝑞∈𝔻

∫
𝔻

∣𝜓′(𝑧)∣2 ∣𝐿𝑎𝑛(𝜑(𝑧))− 𝑎𝑛∣2 (1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧) = 0 .

Thus by (24) we conclude that

lim
𝑛→∞ sup𝑞∈𝔻

∫
𝔻

∣𝜓(𝑧)∣2 ∣𝐿′𝑎𝑛
(𝜑(𝑧))∣2 ∣𝜑′(𝑧)∣2 (1− ∣𝐿𝑞(𝑧)∣2)𝑑𝐴(𝑧) = 0.

Hence

lim
∣𝑎∣→1

sup
𝑞∈𝔻

∫
𝔻

∣𝜓(𝑧)∣2 ∣𝐿′𝑎(𝜑(𝑧))∣2 ∣𝜑′(𝑧)∣2 (1 − ∣𝐿𝑞(𝑧)∣2)𝑑𝐴(𝑧) = 0 .

Thus by making a non-univalent change of variables as done in [15, page 186], we
see that

lim
∣𝑎∣→1

sup
𝑞∈𝔻

∫
𝔻

∣𝐿′𝑎(𝑤)∣2 𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤) = 0,

where

𝑁(𝑤, 𝑞, 𝜑, 𝜓) =
∑

𝜑(𝑧)=𝑤

∣𝜓(𝑧)∣2(1− ∣𝐿𝑞(𝑧)∣2) .

Therefore, by Proposition 3.1,

lim
ℎ→0

sup
𝜃∈[0,2𝜋), 𝑞∈𝔻

1

ℎ2

∫
𝑆(ℎ,𝜃)

𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤) = 0 .

Fix 𝜀 > 0 and let 𝛿 > 0 be such that for any 𝜃 ∈ [0, 2𝜋) and any 𝑞 ∈ 𝔻, if ℎ < 𝛿
then ∫

𝑆(ℎ,𝜃)

𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤) < 𝜀ℎ2 .
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The mean value property and Jensen’s inequality yield

∣𝑓 ′𝑛(𝑤)∣2 ≤
4

(1− ∣𝑤∣)2
∫
∣𝑤−𝑧∣< 1−∣𝑤∣

2

∣𝑓 ′𝑛(𝑧)∣2 𝑑𝐴(𝑧) .

Thus, fixing 𝑞 ∈ 𝔻, we obtain

𝐼𝐼 =

∫
𝔻

∣𝑓 ′𝑛(𝑤)∣2 𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤)

≤
∫
𝔻

4

(1 − ∣𝑤∣)2
(∫

∣𝑤−𝑧∣<1−∣𝑤∣
2

∣𝑓 ′𝑛(𝑧)∣2 𝑑𝐴(𝑧)𝑁(𝑤, 𝑞, 𝜑, 𝜓)

)
𝑑𝐴(𝑤).

(25)

Note that if ∣𝑤 − 𝑧∣ < 1−∣𝑤∣
2 , then 𝑤 ∈ 𝑆(2(1− ∣𝑧∣), 𝜃) and

1

2

1

1− ∣𝑧∣ ≤
1

1− ∣𝑤∣ ≤
3

2

1

1− ∣𝑧∣ ,

where 𝑧 = ∣𝑧∣𝑒𝑖𝜃. Therefore by (25) and Fubini’s theorem, we have

𝐼𝐼 ≤ 𝐶

∫
𝔻

∣𝑓 ′𝑛(𝑧)∣2
(1− ∣𝑧∣)2

(∫
𝑆(2(1−∣𝑧∣,𝜃))

𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤)

)
𝑑𝐴(𝑧) . (26)

Next split the first integral in (26) into two pieces, one over the set {𝑧 ∈ 𝔻 : ∣𝑧∣ >
1− 𝛿

2} and the other over the complementary set. Then,∫
∣𝑧∣>1− 𝛿

2

∣𝑓 ′𝑛(𝑧)∣2
(1 − ∣𝑧∣)2

(∫
𝑆(2(1−∣𝑧∣),𝜃)

𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤)

)
𝑑𝐴(𝑧)

≤ 𝐶 𝜀

∫
∣𝑧∣>1− 𝛿

2

∣𝑓 ′𝑛(𝑧)∣2
(1 − ∣𝑧∣)2 (1− ∣𝑧∣)

2 𝑑𝐴(𝑧) ≤ 𝐶 𝜀∥𝑓𝑛∥2𝒟 < 𝐶 𝜀,

(27)

and∫
∣𝑧∣≤1− 𝛿

2

∣𝑓 ′𝑛(𝑧)∣2
(1 − ∣𝑧∣)2

(∫
𝑆(2(1−∣𝑧∣),𝜃)

𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤)

)
𝑑𝐴(𝑧)

≤ 𝐶

(
sup
𝑞∈𝔻

∫
𝔻

𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤)

)∫
∣𝑧∣≤1− 𝛿

2

∣𝑓 ′𝑛(𝑧)∣2 𝑑𝐴(𝑧) ≤ 𝐶 𝜀

(28)

for 𝑛 large enough, since 𝑓 ′𝑛 → 0 uniformly on {𝑧 ∈ 𝔻 : ∣𝑧∣ ≤ 1− 𝛿
2}.

Thus (26), (27), and (28) yield

sup
𝑞∈𝔻

∫
𝔻

∣𝑓 ′𝑛(𝑤)∣2 𝑁(𝑤, 𝑞, 𝜑, 𝜓) 𝑑𝐴(𝑤) < 𝐶 𝜀

for 𝑛 large enough, or

sup
𝑞∈𝔻

∫
𝔻

∣𝜓(𝑧)∣2∣𝑓 ′𝑛(𝜑(𝑧))∣2∣𝜑′(𝑧)∣2 (1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧) < 𝐶 𝜀 .

This shows that
lim

𝑛→∞ sup𝑞∈𝔻
𝐼𝐼 = 0 . (29)
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Note that

∥𝑊𝜓,𝜑𝑓𝑛∥2∗∗ = sup
𝑞∈𝔻

∫
𝔻

∣𝜓′(𝑧)𝑓𝑛(𝜑(𝑧)) + 𝜓(𝑧)𝑓 ′𝑛(𝜑(𝑧))𝜑
′(𝑧)∣2 (1− ∣𝐿𝑞(𝑧)∣2) 𝑑𝐴(𝑧) .

Thus, by (23) and (29), it follows that lim
𝑛→∞ ∥𝑊𝜓,𝜑𝑓𝑛∥∗∗ = 0, and Lemma 3.1

shows that the operator 𝑊𝜓,𝜑 : 𝒟 → BMOA is compact. Therefore, since 𝐵𝑝 is
continuously embedded in 𝒟 if 1 < 𝑝 ≤ 2, 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is also a compact
operator. □

We obtain compactness criteria for the weighted composition operator from
𝐵1 to BMOA under a restriction on the symbol 𝜓. In particular, under this re-
striction, we obtain that𝑊𝜓,𝜑 is compact as an operator from 𝐵1 to BMOA if and
only if it is compact as an operator from 𝐻∞ to BMOA.

For an analytic self-map 𝜑 of 𝔻, for 𝑡, 𝑅 ∈ (0, 1), and for 𝑎 ∈ 𝔻, define

�̃�(𝜑, 𝑎, 𝑡) = {𝜁 ∈ ∂𝔻 : ∣𝜑(𝐿𝑎(𝜁))∣ > 𝑡} and Ω𝑅 = {𝑎 ∈ 𝔻 : ∣𝜑(𝑎)∣ ≤ 𝑅}.
Theorem 3.2. Let 𝜓 be analytic on 𝔻, 𝜑 an analytic self-map of 𝔻 such that
𝑊𝜓,𝜑 : 𝐵1 → BMOA is bounded, and suppose

lim
∣𝜑(𝑎)∣→1

∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 = 0.

Then the following propositions are equivalent:

(a) 𝑊𝜓,𝜑 : 𝐵1 → BMOA is compact.
(b) lim

𝑛→∞ ∥𝜓𝜑𝑛∥BMOA = 0.

(c) lim
∣𝜑(𝑎)∣→1

𝛼(𝜓, 𝜑, 𝑎) = 0 and for all 𝑅 ∈ (0, 1),

lim
𝑡→1

sup
𝑎∈Ω𝑅

∫
�̃�(𝜑,𝑎,𝑡)

∣𝜓 ∘ 𝐿𝑎(𝜁)∣2 𝑑𝑚(𝜁) = 0. (30)

(d) 𝑊𝜓,𝜑 : 𝐻
∞ → BMOA is compact.

Proof. Note that by Corollary 2.1, 𝑊𝜓,𝜑 is bounded as an operator from 𝐵1 to
BMOA if and only if it is bounded as an operator from 𝐻∞ to BMOA.

The equivalence of (b), (c) and (d) was shown in [6]. Thus, it suffices to show
that (a) implies (c) and (d) implies (a).

(a) =⇒ (c) Suppose 𝑊𝜓,𝜑 : 𝐵1 → BMOA is compact. Proceeding as in
the proof of (b) implies (c) of Theorem 2.2 in [6], let {𝑎𝑛} be a sequence in 𝔻
such that ∣𝜑(𝑎𝑛)∣ → 1 and let {ℎ𝑛} be the bounded sequence in 𝐵1 defined by
ℎ𝑛 = 𝐿𝜑(𝑎𝑛) − 𝜑(𝑎𝑛). By the compactness of 𝑊𝜓,𝜑, we see that ∥𝑊𝜓,𝜑ℎ𝑛∥∗ → 0
as 𝑛→∞, and hence, as shown there, 𝛼(𝜓, 𝜑, 𝑎𝑛)→ 0 as 𝑛→∞. Moreover, since
the sequence {𝑝𝑛} defined as 𝑝𝑛(𝑧) =

1
𝑛𝑧

𝑛 is bounded in 𝐵1 and converges to 0

uniformly on compact subsets of 𝔻, by Lemma 3.1, it follows that ∥ 1𝑛𝜓𝜑𝑛∥BMOA →
0 as 𝑛 → ∞. Condition (30) now follows in a similar fashion as in the proof of
Proposition 2.1 of [6].

(d)⇒ (a) Since 𝐵1 is continuously embedded in 𝐻∞, if𝑊𝜓,𝜑 : 𝐻
∞ → BMOA

is a compact operator, then so is 𝑊𝜓,𝜑 : 𝐵1 → BMOA. □
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We now turn our attention to the case 1 < 𝑝 <∞. Unlike the case 𝑝 = 1, we
obtain full compactness criteria without setting any restriction on the symbols.

Theorem 3.3. Let 1 < 𝑝 < ∞, 𝜓 an analytic function on 𝔻 and 𝜑 an analytic
self-map of 𝔻. If 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is bounded, then the following statements
are equivalent:

(a) 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is compact.
(b) lim

∣𝜑(𝑎)∣→1
𝛼(𝜓, 𝜑, 𝑎) = 0, lim

∣𝜑(𝑎)∣→1
𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0, and condition (30) holds for

all 𝑅 ∈ (0, 1).
(c) lim

𝑛→∞ ∥𝜓𝜑𝑛∥BMOA = 0 and lim
∣𝜑(𝑎)∣→1

𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0.

Proof. (a) ⇒ (b) Suppose 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is compact. Since 𝐵1 is continu-
ously embedded in 𝐵𝑝, 𝑊𝜓,𝜑 is also compact as an operator from 𝐵1 to BMOA.
By Theorem 2.1, the boundedness of 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA implies that 𝛾𝜓,𝜑,𝑝

is finite. Let {𝑎𝑛} be a sequence in 𝔻 such that ∣𝜑(𝑎𝑛)∣ → 1 as 𝑛 → ∞. Since(
log 2

1−∣𝜑(𝑎𝑛)∣2
)1−1/𝑝

→ ∞ as 𝑛 → ∞, the quantity ∥𝜓 ∘ 𝐿𝑎𝑛 − 𝜓(𝑎𝑛)∥𝐻2 must

converge to 0. Thus, by Theorem 3.2, we deduce that lim∣𝜑(𝑎)∣→1 𝛼(𝜓, 𝜑, 𝑎) = 0
and (30) holds for each 𝑅 ∈ (0, 1).

Next, we wish to show that lim
𝑛→∞ 𝛾(𝜓, 𝜑, 𝑝, 𝑎𝑛) = 0.

For 𝑛 ∈ ℕ, let 𝑓𝜑(𝑎𝑛) be defined as in (6). Then, {𝑓𝜑(𝑎𝑛)} is bounded in
𝐵𝑝 and converges to 0 uniformly on compact subsets of 𝔻. Thus, by Lemma 3.1,
∥𝑊𝜓,𝜑𝑓𝜑(𝑎𝑛)∥BMOA → 0 as 𝑛→∞. In particular, for each 𝑛 ∈ ℕ, as shown in the
proof of Theorem 2.1, we have

𝛾(𝜓, 𝜑, 𝑝, 𝑎𝑛) = 𝑓𝜑(𝑎𝑛)(𝜑(𝑎𝑛))∥𝜓 ∘ 𝐿𝑎𝑛 − 𝜓(𝑎𝑛)∥𝐻2

≤ ∥(𝜓(𝑓𝜑(𝑎𝑛) ∘ 𝜑)) ∘ 𝐿𝑎𝑛 − 𝜓(𝑎𝑛)𝑓𝜑(𝑎𝑛)(𝜑(𝑎𝑛))∥𝐻2

+ ∥(𝜓 ∘ 𝐿𝑎𝑛)(𝑓𝜑(𝑎𝑛) ∘ 𝜑 ∘ 𝐿𝑎𝑛 − 𝑓𝜑(𝑎𝑛)(𝜑(𝑎𝑛)))∥𝐻2

≤ ∥𝑊𝜓,𝜑𝑓𝜑(𝑎𝑛)∥BMOA

+ ∥(𝜓 ∘ 𝐿𝑎𝑛 − 𝜓(𝑎𝑛))(𝑓𝜑(𝑎𝑛) ∘ 𝜑 ∘ 𝐿𝑎𝑛 − 𝑓𝜑(𝑎𝑛)(𝜑(𝑎𝑛)))∥𝐻2

+ ∣𝜓(𝑎𝑛)∣∥𝑓𝜑(𝑎𝑛) ∘ 𝜑 ∘ 𝐿𝑎𝑛 − 𝑓𝜑(𝑎𝑛)(𝜑(𝑎𝑛))∥𝐻2

≤ ∥𝑊𝜓,𝜑𝑓𝜑(𝑎𝑛)∥BMOA + 𝐶∥𝜓∥1/2∗ ∥𝜓 ∘ 𝐿𝑎𝑛 − 𝜓(𝑎𝑛)∥1/2𝐻2

+ 𝐶 𝛼(𝜓, 𝜑, 𝑎𝑛)∥𝑓𝜑(𝑎𝑛)∥𝑝/2𝐵𝑝
→ 0,

as 𝑛 → ∞, due to the boundedness of the sequence {∥𝑓𝜑(𝑎𝑛)∥𝐵𝑝}. Therefore (b)
holds.

(b) ⇒ (a) Suppose (b) holds. The proof of the compactness of 𝑊𝜓,𝜑 : 𝐵𝑝 →
BMOA is modeled after the proof of Theorem 3.1 in [12]. Let {𝑓𝑛} be a bounded se-
quence in 𝐵𝑝 converging to 0 uniformly on compact subsets of 𝔻. By Lemma 3.1, it
suffices to show that ∥𝑊𝜓,𝜑𝑓𝑛∥BMOA → 0 as 𝑛→∞. Fix 𝜀 ∈ (0, 1]. By the hypoth-
esis, there exist 𝑅 ∈ (

2
3 , 1

)
and 𝑡 ∈ [ 12 , 1) such that 𝛼(𝜓, 𝜑, 𝑎) < 𝜀, 𝛾(𝜓, 𝜑, 𝑝, 𝑎) < 𝜀
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for ∣𝜑(𝑎)∣ > 𝑅, and

sup
𝑎∈Ω𝑅

∫
�̃�(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)∣2 𝑑𝑚(𝜁) < 𝜀4.

For 𝑎 ∈ 𝔻, with ∣𝜑(𝑎)∣ > 𝑅, we have

∥(𝜓 ∘ 𝐿𝑎)(𝑓𝑛 ∘ 𝜑 ∘ 𝐿𝑎)− 𝜓(𝑎)𝑓𝑛(𝜑(𝑎))∥𝐻2

≤ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))𝑓𝑛(𝜑(𝑎))∥𝐻2

+ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))(𝑓𝑛 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓𝑛(𝜑(𝑎)))∥𝐻2

+ ∣𝜓(𝑎)∣ ∥𝑓𝑛 ∘ 𝜑 ∘ 𝐿𝑎 − 𝑓𝑛(𝜑(𝑎))∥𝐻2

= 𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼.

(31)

Then, by (9) and the boundedness of the sequence {𝑓𝑛} in 𝐵𝑝, for ∣𝜑(𝑎)∣ > 𝑅, we
obtain

𝐼 ≤ 𝐶 ∥𝑓𝑛∥𝐵𝑝

(
log

2

1− ∣𝜑(𝑎)∣2
)1−1/𝑝

∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 ≤ 𝐶 𝛾(𝜓, 𝜑, 𝑝, 𝑎) < 𝐶 𝜀.

On the other hand, by Lemma 2.1 and (2), we have

𝐼𝐼 ≤ 𝐶 ∥𝜓∥1/2∗ ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥1/2𝐻2 < 𝐶 𝜀1/2, and

𝐼𝐼𝐼 ≤ 𝐶 ∥𝑓𝑛∥∗𝛼(𝜓, 𝜑, 𝑎) ≤ 𝐶 ∥𝑓𝑛∥𝑝/2𝐵𝑝
𝛼(𝜓, 𝜑, 𝑎) < 𝐶 𝜀.

Therefore, from (31), it follows that for ∣𝜑(𝑎)∣ > 𝑅,

∥(𝜓 ∘ 𝐿𝑎)(𝑓𝑛 ∘ 𝜑 ∘ 𝐿𝑎)− 𝜓(𝑎)𝑓𝑛(𝜑(𝑎))∥𝐻2 < 𝐶 𝜀1/2.

Next, assume ∣𝜑(𝑎)∣ ≤ 𝑅. Then

∥(𝜓 ∘ 𝐿𝑎)(𝑓𝑛 ∘ 𝜑 ∘ 𝐿𝑎)− 𝜓(𝑎)𝑓𝑛(𝜑(𝑎))∥𝐻2

≤ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))𝑓𝑛(𝜑(𝑎))∥𝐻2 + ∥(𝜓 ∘ 𝐿𝑎)𝐹𝑛,𝑎∥𝐻2 = 𝐼𝑉 + 𝑉,

where 𝐹𝑛,𝑎 := 𝑓𝑛 ∘𝜑 ∘𝐿𝑎− 𝑓𝑛(𝜑(𝑎)). By the uniform convergence of {𝑓𝑛} to 0 on
compact subsets of 𝔻,

𝐼𝑉 ≤ ∥𝜓∥∗ max∣𝑧∣≤𝑅
∣𝑓𝑛(𝑧)∣ < 𝜀,

for all 𝑛 sufficiently large. On the other hand,

𝑉 ≤ sup
𝑎∈Ω𝑅

∫
∂𝔻∖𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)𝐹𝑛,𝑎(𝜁)∣2 𝑑𝑚(𝜁)

+ sup
𝑎∈Ω𝑅

∫
𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)𝐹𝑛,𝑎(𝜁)∣2 𝑑𝑚(𝜁),

where 𝐸(𝜑, 𝑎, 𝑡) := {𝜁 ∈ ∂𝔻 : ∣(𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎)(𝜁)∣ > 𝑡}. In [12] it was observed
that for all 𝜁 ∈ ∂𝔻 such that ∣(𝜑 ∘ 𝐿𝑎)(𝜁)∣ < 1 and ∣𝜑(𝑎)∣ ≤ 𝑅,

1−𝑅

1 +𝑅
≤ 1− ∣(𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎)(𝜁)∣2

1− ∣(𝜑 ∘ 𝐿𝑎)(𝜁)∣2 ≤ 1 +𝑅

1−𝑅
.
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In particular, it is easy to see that condition (30) is equivalent to

lim
𝑡→1

sup
𝑎∈Ω𝑅

∫
𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)∣2 𝑑𝑚(𝜁) = 0. (32)

Let us now obtain an upper estimate for 𝑉 . On page 37 in [12], it was shown that
letting 𝐺𝑛,𝑎 = 𝑓𝑛 ∘𝐿𝜑(𝑎) − 𝑓𝑛(𝜑(𝑎)) and 𝜆𝑎 = 𝐿𝜑(𝑎) ∘ 𝜑 ∘𝐿𝑎, one has 𝐺𝑛,𝑎(0) = 0
and 𝐹𝑛,𝑎 = 𝐺𝑛,𝑎 ∘ 𝜆𝑎. Furthermore, if ∣𝜑(𝑎)∣ ≤ 𝑅 and 𝜁 ∈ ∂𝔻∖𝐸(𝜑, 𝑎, 𝑡), then

∣𝐹𝑛,𝑎(𝜁)∣ = ∣𝐺𝑛,𝑎(𝜆𝑎(𝜁))∣ ≤ 2∣𝜆𝑎(𝜁)∣ max∣𝑤∣≤𝑡
∣𝐺𝑛,𝑎(𝑤)∣

≤ 2
(
max
∣𝑤∣≤𝑡

∣𝑓𝑛(𝐿𝜑(𝑎)(𝑤))∣ + ∣𝑓𝑛(𝜑(𝑎))∣
)

< 𝜀,

for all 𝑛 sufficiently large. Moreover, it was also shown that

∥(𝜓 ∘ 𝐿𝑎)𝜆𝑎∥𝐻2 ≤ ∥(𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎))𝜆𝑎∥𝐻2 + ∥𝜓(𝑎)𝜆𝑎∥𝐻2

≤ ∥𝜓∥∗∥𝜆𝑎∥∞ + 𝛼𝜓,𝜑 <∞.

Therefore

sup
𝑎∈Ω𝑅

∫
∂𝔻∖𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)𝐹𝑛,𝑎(𝜁)∣2 𝑑𝑚(𝜁) ≤ 𝐶 𝜀2 (33)

for all 𝑛 sufficiently large, where 𝐶 is a positive constant depending only on 𝜓 and
𝛼𝜓,𝜑.

Using Hölder’s inequality, we have

sup
𝑎∈Ω𝑅

∫
𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)𝐹𝑛,𝑎(𝜁)∣2 𝑑𝑚(𝜁)

≤ sup
𝑎∈Ω𝑅

(∫
𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)∣2 𝑑𝑚(𝜁)
)1/2

×
(∫

𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)∣2∣𝐹𝑛,𝑎(𝜁)∣4 𝑑𝑚(𝜁)
)1/2

.

(34)

On the other hand, again using Hölder’s inequality, we obtain∫
𝐸(𝜑,𝑎,𝑡)

∣(𝜓 ∘ 𝐿𝑎)(𝜁)∣2∣𝐹𝑛,𝑎(𝜁)∣4 𝑑𝑚(𝜁) ≤ ∥(𝜓 ∘ 𝐿𝑎)𝐹𝑛,𝑎∥𝐻4∥𝐹𝑛,𝑎∥𝐻4 .

Since, as shown on page 38 in [12], ∥(𝜓 ∘ 𝐿𝑎)𝐹𝑛,𝑎∥𝐻4 and ∥𝐹𝑛,𝑎∥𝐻4 are bounded
by constants independent of 𝑎, from (32), (33) and (34) we obtain

𝑉 < 𝐶 𝜀2,

for some positive constant 𝐶. Hence ∥𝑊𝜓,𝜑𝑓𝑛∥∗ → 0 as 𝑛→∞.
Since ∣𝜓(0)𝑓𝑛(𝜑(0))∣ → 0, it follows that ∥𝑊𝜓,𝜑𝑓𝑛∥BMOA → 0 as 𝑛 → ∞,

as desired. Finally, note that the equivalence of (b) and (c) follows at once from
Theorem 3.2. □

By Theorem 2 in [13], 𝐶𝜑 is a compact operator on BMOA if and only if

lim
∣𝜑(𝑎)∣→1

∥𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎∥𝐻2 = 0.
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Therefore, from Theorem 3.3 we obtain the following result.

Corollary 3.1.
(a) Let 𝜑 be an analytic self-map of 𝔻. Then 𝐶𝜑 : 𝐵𝑝 → BMOA is a compact
operator if and only if 𝐶𝜑 : BMOA→ BMOA is a compact operator.

(b) The only compact multiplication operator from 𝐵𝑝 to BMOA has symbol iden-
tically 0.

We end the section with the following:

Open Question. Does 𝑊𝜓,𝜑 : 𝐵1 → BMOA compact imply that
lim

∣𝜑(𝑎)∣→1
∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 = 0?

4. Compact weighted composition operators from 𝑩𝒑 to VMOA

We begin the section with two lemmas that will be needed to prove the main result
of this section.

Lemma 4.1. Assume 1 < 𝑝 < ∞, 𝜓 is analytic on 𝔻 and 𝜑 is an analytic
self-map of 𝔻. Then, lim∣𝑎∣→1 𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0 if and only if 𝜓 ∈ VMOA and
lim∣𝜑(𝑎)∣→1 𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0.

Proof. Suppose lim∣𝑎∣→1 𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0. Then, for 𝑎 ∈ 𝔻, we have

(log 2)1−1/𝑝∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 ≤ 𝛾(𝜓, 𝜑, 𝑝, 𝑎)→ 0

as ∣𝑎∣ → 1. Thus, 𝜓 ∈ VMOA. Moreover, if ∣𝜑(𝑎)∣ → 1, then ∣𝑎∣ → 1, so
𝛾(𝜓, 𝜑, 𝑝, 𝑎)→ 0.

Conversely, suppose 𝜓 ∈ VMOA and 𝛾(𝜓, 𝜑, 𝑝, 𝑎) → 0 as ∣𝜑(𝑎)∣ → 1. Then,
for every 𝜀 > 0, there exists 𝑟 ∈ (0, 1) such that 𝛾(𝜓, 𝜑, 𝑝, 𝑎) < 𝜀 for 𝑟 < ∣𝜑(𝑎)∣ < 1.
Since 𝜓 ∈ VMOA, there exists a 𝛿 ∈ (0, 1), such that ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 < 𝜀 for
𝛿 < ∣𝑎∣ < 1.

Therefore, if 𝛿 < ∣𝑎∣ < 1 and 𝑟 < ∣𝜑(𝑎)∣ < 1, then 𝛾(𝜓, 𝜑, 𝑝, 𝑎) < 𝜀. On the
other hand, if ∣𝜑(𝑎)∣ ≤ 𝑟 and 𝛿 < ∣𝑎∣ < 1, then

𝛾(𝜓, 𝜑, 𝑝, 𝑎) ≤
(
log

2

1− 𝑟2

)1−1/𝑝
∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 <

(
log

2

1− 𝑟2

)1−1/𝑝
𝜀.

The result follows at once. □
Lemma 4.2. Let 𝜓 be analytic on 𝔻 and 𝜑 is an analytic self-map of 𝔻. Then
lim∣𝑎∣→1 𝛼(𝜓, 𝜑, 𝑎) = 0 if and only if lim∣𝑎∣→1 ∣𝜓(𝑎)∣∥𝜑 ∘ 𝐿𝑎 − 𝜑(𝑎)∥𝐻2 = 0 and
lim∣𝜑(𝑎)∣→1 𝛼(𝜓, 𝜑, 𝑎) = 0.

Proof. Suppose lim∣𝑎∣→1 𝛼(𝜓, 𝜑, 𝑎) = 0. Then, by Lemma 2.1 applied to the iden-
tity function, for 𝑎 ∈ 𝔻, we have

∣𝜓(𝑎)∣∥𝜑 ∘ 𝐿𝑎 − 𝜑(𝑎)∥𝐻2 ≤ 𝐶 𝛼(𝜓, 𝜑, 𝑎)→ 0

as ∣𝑎∣ → 1. Furthermore, if ∣𝜑(𝑎)∣ → 1, then ∣𝑎∣ → 1, so 𝛼(𝜓, 𝜑, 𝑎)→ 0.
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Conversely, suppose lim∣𝑎∣→1 ∣𝜓(𝑎)∣∥𝜑∘𝐿𝑎−𝜑(𝑎)∥𝐻2 = 0 and 𝛼(𝜓, 𝜑, 𝑎)→ 0
as ∣𝜑(𝑎)∣ → 1. Then, for every 𝜀 > 0, there exists 𝑅 ∈ (0, 1) such that 𝛼(𝜓, 𝜑, 𝑎) < 𝜀
for 𝑅 < ∣𝜑(𝑎)∣ < 1. Also, there exists a number 𝛿 ∈ (0, 1), such that ∣𝜓(𝑎)∣∥𝜑 ∘
𝐿𝑎 − 𝜑(𝑎)∥𝐻2 < 𝜀 for 𝛿 < ∣𝑎∣ < 1.

Therefore, if 𝛿 < ∣𝑎∣ < 1 and 𝑅 < ∣𝜑(𝑎)∣ < 1, then 𝛼(𝜓, 𝜑, 𝑎) < 𝜀. On the
other hand, if ∣𝜑(𝑎)∣ ≤ 𝑅 and 𝛿 < ∣𝑎∣ < 1, then

𝛼(𝜓, 𝜑, 𝑎) = ∣𝜓(𝑎)∣
⎛⎝ lim

𝑟→1

1

2𝜋

∫ 2𝜋

0

∣∣∣∣∣ 𝜑(𝑎) − 𝜑(𝐿𝑎(𝑟𝑒
𝑖𝜃))

1− 𝜑(𝑎)𝜑(𝐿𝑎(𝑟𝑒𝑖𝜃))

∣∣∣∣∣
2

𝑑𝜃

⎞⎠1/2

≤ ∣𝜓(𝑎)∣
(
lim
𝑟→1

1

2𝜋

∫ 2𝜋

0

∣∣𝜑(𝑎)− 𝜑(𝐿𝑎(𝑟𝑒
𝑖𝜃))

∣∣2
(1 − ∣𝜑(𝑎)∣)2 𝑑𝜃

)1/2

≤ 1

1−𝑅
∣𝜓(𝑎)∣∥𝜑 ∘ 𝐿𝑎 − 𝜑(𝑎)∥𝐻2 <

1

1−𝑅
𝜀.

Thus 𝛼(𝜓, 𝜑, 𝑎)→ 0 as ∣𝑎∣ → 1, as desired. □

Theorem 4.1. Suppose 1 ≤ 𝑝 < ∞, 𝜓 is analytic on 𝔻, and 𝜑 is an analytic
self-map of 𝔻. If 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is bounded, then 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is
compact if and only if

lim
∣𝑎∣→1

𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0 and lim
∣𝑎∣→1

𝛼(𝜓, 𝜑, 𝑎) = 0. (35)

Proof. Suppose 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is compact. Then 𝜓 = 𝑊𝜓,𝜑1 ∈ VMOA,
𝜓𝜑 = 𝑊𝜓,𝜑𝑖𝑑 ∈ VMOA, and 𝑊𝜓,𝜑 : 𝐵𝑝 → BMOA is compact, so for 1 < 𝑝 < ∞,
by Theorem 3.3 and Lemma 4.1, it follows that lim∣𝑎∣→1 𝛾(𝜓, 𝜑, 𝑝, 𝑎) = 0. Since
𝛾(𝜓, 𝜑, 1, 𝑎) = ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥𝐻2 and 𝜓 ∈ VMOA, this limit is 0 also for 𝑝 = 1.

Next observe that since 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is bounded, by part (b) of
Theorem 2.3,

lim
∣𝑎∣→1

∣𝜓(𝑎)∣∥𝜑 ∘ 𝐿𝑎 − 𝜑(𝑎)∥𝐻2 = 0.

By Theorem 3.2 (in the case 𝑝 = 1), Theorem 3.3 (for 1 < 𝑝 <∞), and Lemma 4.2,
it follows that lim∣𝑎∣→1 𝛼(𝜓, 𝜑, 𝑎) = 0.

Conversely, suppose (35) holds. To prove that 𝑊𝜓,𝜑 is compact, we shall
adapt the proof of Theorem 4.3 in [12] to our setting. Let {𝑟𝑛} be a sequence in
(0, 1) such that 𝑟𝑛 → 1 as 𝑛→∞ and, for 𝑛 ∈ ℕ, define the operator 𝐾𝑛 on 𝐵𝑝 by

𝐾𝑛𝑓(𝑧) = 𝑓(𝑟𝑛𝑧), for 𝑧 ∈ 𝔻.

Fix 𝑛 ∈ ℕ. We now prove that 𝐾𝑛 : 𝐵𝑝 → 𝐵𝑝 is compact. By Lemma 2.11 of
[19], it suffices to show that if {𝑓𝑘} is a bounded sequence in 𝐵𝑝 converging to
0 uniformly on compact subsets of 𝔻, then ∥𝐾𝑛𝑓𝑘∥𝐵𝑝 → 0 as 𝑘 → ∞. Since
the sequence {𝑓 ′𝑘} converges uniformly on the disk centered at 0 of radius 𝑟𝑛, it
follows that 𝑏𝑝(𝐾𝑛𝑓𝑘) → 0 as 𝑘 → ∞. On the other hand 𝐾𝑛𝑓𝑘(0) = 𝑓𝑘(0) → 0
as 𝑘 →∞. Therefore, ∥𝐾𝑛𝑓𝑘∥𝐵𝑝 → 0 as 𝑘 →∞, proving the compactness of 𝐾𝑛.
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Since 𝑊𝜓,𝜑 : 𝐵𝑝 → VMOA is bounded, the operator 𝑊𝜓,𝜑𝐾𝑛 : 𝐵𝑝 → VMOA is
also compact.

By Theorem 5.3.3 of [23] for 𝑛 = 2 and 1 ≤ 𝑝 <∞, if 𝑓 ∈ 𝐵𝑝, then

∥𝑓∥𝐵𝑝 ≈ ∣𝑓(0)∣+ ∣𝑓 ′(0)∣+
(∫

𝔻

∣𝑓 ′′(𝑧)∣𝑝(1− ∣𝑧∣2)2𝑝−2 𝑑𝐴(𝑧)
)1/𝑝

,

which, applied to the function 𝐾𝑛𝑓 (with 𝑓 ∈ 𝐵𝑝), yields

∥𝐾𝑛𝑓∥𝐵𝑝 ≈ ∣𝑓(0)∣+ 𝑟𝑛∣𝑓 ′(0)∣+
(∫

𝔻

𝑟2𝑝𝑛 ∣𝑓 ′′(𝑟𝑛𝑧)∣𝑝(1− ∣𝑧∣2)2𝑝−2 𝑑𝐴(𝑧)
)1/𝑝

≤ ∣𝑓(0)∣+ ∣𝑓 ′(0)∣+ 𝑟2−2/𝑝𝑛

(∫
𝔻

∣𝑓 ′′(𝑟𝑛𝑧)∣𝑝(1− ∣𝑟𝑛𝑧∣2)2𝑝−2 𝑑𝐴(𝑟𝑛𝑧)
)1/𝑝

≤ 𝐶 ∥𝑓∥𝐵𝑝 . (36)

For 𝑓 ∈ 𝐵𝑝, define 𝑆𝑛𝑓 = 𝑓 −𝐾𝑛𝑓 . Then, by (36), 𝑆𝑛 is bounded on 𝐵𝑝 and
∥𝑆𝑛𝑓∥𝐵𝑝 ≤ ∥𝑓∥𝐵𝑝+∥𝐾𝑛𝑓∥𝐵𝑝 ≤ 𝐶 ∥𝑓∥𝐵𝑝 . Hence, as an operator on 𝐵𝑝, ∥𝑆𝑛∥ ≤ 𝐶.

Regarding 𝑊𝜓,𝜑 as an operator from 𝐵𝑝 to VMOA, we may now estimate its
essential norm by

∥𝑊𝜓,𝜑∥𝑒 ≤ ∥𝑊𝜓,𝜑 −𝑊𝜓,𝜑𝐾𝑛∥ = sup
∥𝑓∥𝐵𝑝≤1

∥𝑊𝜓,𝜑𝑆𝑛𝑓∥BMOA.

Fix 𝑟 ∈ [ 12 , 1). Applying Lemma 4.6 of [12], for each 𝑛 ∈ ℕ, we have

∥𝑊𝜓,𝜑𝑆𝑛𝑓∥BMOA ≤ 𝐶((1 − 𝑟)−5/2 max
∣𝑧∣≤𝑟

∣(𝑊𝜓,𝜑𝑆𝑛𝑓)(𝑧)∣
+ sup

∣𝑎∣≥𝑟

∥(𝑊𝜓,𝜑𝑆𝑛𝑓) ∘ 𝐿𝑎 − 𝜓(𝑎)(𝑆𝑛𝑓)(𝜑(𝑎)))∥𝐻2 ).

Thus, taking the supremum over all 𝑓 ∈ 𝐵𝑝 such that ∥𝑓∥𝐵𝑝 ≤ 1, we obtain
∥𝑊𝜓,𝜑∥𝑒 ≤ 𝐶((1− 𝑟)−5/2 sup

∥𝑓∥𝐵𝑝≤1
max
∣𝑧∣≤𝑟

∣(𝑊𝜓,𝜑𝑆𝑛𝑓)(𝑧)∣

+ sup
∥𝑓∥𝐵𝑝≤1

sup
∣𝑎∣≥𝑟

∥(𝑊𝜓,𝜑𝑆𝑛𝑓) ∘ 𝐿𝑎 − 𝜓(𝑎)(𝑆𝑛𝑓)(𝜑(𝑎)))∥𝐻2 ).

As shown in [12], sup
∥𝑓∥𝐵𝑝≤1

max
∣𝑧∣≤𝑟

∣(𝑊𝜓,𝜑𝑆𝑛𝑓)(𝑧)∣ → 0 as 𝑛→∞.

Since ∥𝑆𝑛∥𝐵𝑝→𝐵𝑝 ≤ 𝐶, we obtain

∥𝑊𝜓,𝜑∥𝑒 ≤ 𝐶 sup
𝑔∈𝐵𝑝,∥𝑔∥𝐵𝑝≤𝐶

sup
∣𝑎∣≥𝑟

∥(𝑊𝜓,𝜑𝑔) ∘ 𝐿𝑎 − 𝜓(𝑎)𝑔(𝜑(𝑎))∥𝐻2 . (37)

Using (10), (11), and (12), for ∥𝑔∥𝐵𝑝 ≤ 𝐶, we obtain

∥(𝑊𝜓,𝜑𝑔)∘𝐿𝑎−𝜓(𝑎)𝑔(𝜑(𝑎))∥𝐻2 ≤ 𝐶(𝛾(𝜓, 𝜑, 𝑝, 𝑎)+∥𝜓∘𝐿𝑎−𝜓(𝑎)∥1/2𝐻2 +𝛼(𝜓, 𝜑, 𝑎)).

From (37), taking the supremum over all 𝑔 ∈ 𝐵𝑝 with ∥𝑔∥𝐵𝑝 ≤ 𝐶, we conclude
that

∥𝑊𝜓,𝜑∥𝑒 ≤ 𝐶 sup
∣𝑎∣≥𝑟

(𝛾(𝜓, 𝜑, 𝑝, 𝑎) + ∥𝜓 ∘ 𝐿𝑎 − 𝜓(𝑎)∥1/2𝐻2 + 𝛼(𝜓, 𝜑, 𝑎)).
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Since 𝜓 ∈ VMOA, letting 𝑟 → 1, we deduce that ∥𝑊𝜓,𝜑∥𝑒 = 0. Hence 𝑊𝜓,𝜑 :
𝐵𝑝 → VMOA is compact. □
Remark 4.1. If 1 < 𝑝 < 𝑞 <∞ then 𝐵𝑝 is continuously embedded in 𝐵𝑞, therefore
if 𝐶𝜑 : 𝐵𝑞 → BMOA is compact, then 𝐶𝜑 : 𝐵𝑝 → BMOA is also compact.

From Theorem 4.1, Corollary 2.2, Remark 4.5 of [12], Theorem 2.4 of [6],
Remark 4.1, and using the fact that 𝐵1 is continuously embedded in 𝐻∞, we
obtain the following result.

Corollary 4.1. For an analytic self-map 𝜑 of 𝔻 and for 1 ≤ 𝑝 < ∞, the following
statements are equivalent:

(a) 𝐶𝜑 : 𝐵𝑝 → VMOA is compact.
(b) 𝐶𝜑 : VMOA→ VMOA is compact.
(c) 𝐶𝜑 : 𝐻

∞ → VMOA is compact.
(d) 𝜑 ∈ VMOA and lim

∣𝑎∣→1
∥𝐿𝜑(𝑎) ∘ 𝜑 ∘ 𝐿𝑎∥𝐻2 = 0.

(e) 𝜑 ∈ VMOA and lim
𝑛→∞ ∥𝜑

𝑛∥BMOA = 0.
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Some Remarks on Essentially
Normal Submodules

Ronald G. Douglas and Kai Wang

Abstract. Given a ∗-homomorphism 𝜎 : 𝐶(𝑀)→ L (ℋ) on a Hilbert space ℋ
for a compact metric space 𝑀 , a projection 𝑃 onto a subspace 𝒫 in ℋ is said
to be essentially normal relative to 𝜎 if [𝜎(𝜑), 𝑃 ] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀), where 𝒦
is the ideal of compact operators on ℋ. In this note we consider two notions
of span for essentially normal projections 𝑃 and 𝑄, and investigate when they
are also essentially normal. First, we show the representation theorem for two
projections, and relate these results to Arveson’s conjecture for the closure
of homogenous polynomial ideals on the Drury–Arveson space. Finally, we
consider the relation between the relative position of two essentially normal
projections and the 𝐾 homology elements defined for them.

Mathematics Subject Classification (2010). Primary 47A13; Secondary 46E22,
46H25, 47A53.

Keywords. Arveson conjecture, essentially normal submodules.

1. Introduction

Spurred by a question of Arveson [1, 2, 3, 4], several researchers have been consider-
ing when certain submodules of various Hilbert modules of holomorphic functions
on the unit ball in ℂ𝑛 are essentially normal. In particular, Guo and the sec-
ond author showed in [17] that the closure of a principal homogenous polynomial
ideal in the Drury–Arveson space in 𝔹𝑛 is essentially normal. More recently, the
authors have shown in [13] that the closure of all principal polynomial ideals in
the Bergman module on the unit ball are essentially normal. Other results have
been obtained by Arveson [5], Douglas [10, 11], the first author and Sarkar [12],
Eschmeier [14], Kennedy [19], and Shalit [20].

The second author was supported by NSFC 11271075, the Department of Mathematics at Texas
A&M University and Laboratory of Mathematics for Nonlinear Science at Fudan University.
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The Arveson conjecture concerns the closure of an arbitrary homogeneous
polynomial ideal which, in general, is not singly generated. For the case of 𝑛 = 1,
one knows that a pure hyponormal operator submodule is essentially normal if it
is finitely generated. The basis on which this result depends is the Berger–Shaw
Theorem [8].

For ideals that are not principal, or singly generated, the results in the several
variable case are few. Guo in [15] firstly proved Arveson’s conjecture in case of the
dimension 𝑛 = 2. Guo and the second author established in [16, 17] essential
normality when 𝑛 = 3 or the dimension of the zero variety of the homogeneous
ideal is one or less, the opposite extreme, more or less, of the case of principal
ideals. There is also a result of Shalit [20] which holds for ideals having a “very
nice” basis relative to the norm. More recently, Kennedy [19] extended that result
in another direction, considering when the linear span of the closures of polynomial
ideals is closed. He gives some examples, but it would appear that not all non-
principal ideals are covered by this result. One should note that these results when
the linear span of two essentially normal submodules is closed is implicit in the
work of Arveson [5, Theorem 4.4].

In this note, we explore a more general version of the question of when the
linear span of two essentially normal submodules is also essentially normal. We
show that this result contains one aspect of the results of Shalit and Kennedy.

Our work does not depend on the special nature of the submodules; that is,
we do not assume any connection with any underlying algebraic structure, only
the fact that the linear span is closed.

There is more than one sense of the span of two submodules relevant in this
context: the first is the obvious one defined to be the closure of the linear span
of two submodules 𝒫 and 𝒬, while the second one considers the span modulo the
ideal of compact operators. If 𝑃 and 𝑄 denote the orthogonal projections onto
𝒫 and 𝒬, respectively, then we will show that this notion makes sense if 0 is an
isolated point in the essential spectrum of 𝑃 +𝑄.

We consider the first notion in Section 2, and the results obtained are based
on the structure theorem for two projections. The latter notion of the essential
span is taken up in Section 3. We apply these results to the context of Arveson’s
conjecture and raise some questions. In particular, we assume that there is a ∗-
homomorphism 𝜎 of 𝐶(𝑀) for some compact metric space 𝑀 and the projections
essentially commute with the range of 𝜎. Finally, in Section 4 we observe that
an essentially normal projection determines an element of the odd 𝐾-homology
group for some compact subset of 𝑀 and consider the relation of the K-homology
elements defined by two essentially normal submodules and their sum.

2. Refinement of the two projection representation

Our results in this section are based on refinements of the structure theorem for
two projections [6, 18].
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Let 𝑃 and 𝑄 be two projections on the Hilbert space ℋ. Then there exist
operators 𝑆1 : 𝒫 → 𝒫 , 𝑆2 : 𝒫⊥ → 𝒫⊥ and 𝑋 : 𝒫⊥ → 𝒫 , where 𝒫 = ran𝑃 with
0𝒫 ≤ 𝑆1 ≤ 𝐼𝒫 , 0𝒫⊥ ≤ 𝑆2 ≤ 𝐼𝒫⊥ and ∥𝑋∥ ≤ 1, such that

𝑃 =

(
𝐼𝒫 0
0 0𝒫⊥

)
and 𝑄 =

(
𝑆1 𝑋
𝑋∗ 𝑆2

)
.

Moreover, if we set 𝒫 = 𝒫1⊕𝒫2⊕𝒫3 and 𝒫⊥ = 𝒬1⊕𝒬2⊕𝒬3, where 𝒫1 = {𝑥 ∈ 𝒫 :
𝑆1𝑥 = 0},𝒫2 = {𝑥 ∈ 𝒫 : 𝑆1𝑥 = 𝑥}, 𝒫3 = 𝒫⊖(𝒫1⊕𝒫2),𝒬2 = {𝑥 ∈ 𝒫⊥ : 𝑆2𝑥 = 𝑥},
𝒬3 = {𝑥 ∈ 𝒫⊥ : 𝑆2𝑥 = 0}, and 𝒬1 = 𝒫⊥ ⊖ (𝒬2 ⊕𝒬3), then we have

𝑆1 =

⎛⎝ 0𝒫1 0 0
0 𝐼𝒫2 0
0 0 𝑆′1

⎞⎠ ∈ L (𝒫1 ⊕ 𝒫2 ⊕ 𝒫3) with 𝑆′1 ∈ L (𝒫3),

𝑆2 =

⎛⎝ 𝑆′2 0 0
0 𝐼𝒬2 0
0 0 0𝒬3

⎞⎠ ∈ L (𝒬1 ⊕𝒬2 ⊕𝒬3) with 𝑆′2 ∈ L (𝒬1), and

𝑋 =

⎛⎝ 0 0 0
0 0 0
𝑋 ′ 0 0

⎞⎠ ∈ L (𝒬1 ⊕𝒬2 ⊕𝒬3,𝒫1 ⊕ 𝒫2 ⊕ 𝒫3) with 𝑋 ′ ∈ L (𝒬1,𝒫3).

These results are all straightforward.
Further, using matrix computations and the fact that 𝑄2 = 𝑄 = 𝑄∗, one

shows that there exists an isometry 𝑉 from 𝒬1 onto 𝒫3 such that 𝑉 ∗𝑆′1𝑉 =
𝐼𝒬1 − 𝑆′2. We refer the reader to [18] for a detailed argument. Therefore, we have
derived the standard model for two projections.

Theorem 2.1. Two projections 𝑃 and 𝑄 on a Hilbert space ℋ are determined by
(1) a decomposition ℋ = ℋ0 ⊕ℋ1 ⊕ℋ′ ⊕ℋ′ ⊕ℋ2 ⊕ℋ3, and
(2) a positive contraction 𝑆 ∈ ℒ(ℋ′) with {0, 1} not in its point spectrum.
In this case, one has

𝑃 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝐼ℋ′ 0 0 0
0 0 0 0ℋ′ 0 0
0 0 0 0 0ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠
and

𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝
0ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝑆 𝑋 0 0
0 0 𝑋 𝐼ℋ′ − 𝑆 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where 𝑋 =
√

𝑆(𝐼ℋ′ − 𝑆) ∈ ℒ(ℋ′).
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Proof. Again, the representation results follow from standard matrix computa-
tions. □

The following question happens frequently in many concrete problems in
operator theory.

Question 2.2. When is 𝒫 +𝒬 closed in ℋ, where 𝒫 = ran𝑃 and 𝒬 = ran𝑄?

Note we have:

𝒫 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥0
𝑥1
𝑥′

0
0
0

⎞⎟⎟⎟⎟⎟⎟⎠ : 𝑥0 ∈ ℋ0, 𝑥1 ∈ ℋ1, 𝑥
′ ∈ ℋ′

⎫⎬⎭
and

𝒬 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
0
𝑥1

𝑆𝑥′ +𝑋𝑦′

𝑋𝑥′ + (𝐼ℋ′ − 𝑆)𝑦′

𝑥2
0

⎞⎟⎟⎟⎟⎟⎟⎠ : 𝑥1 ∈ ℋ1, 𝑥
′, 𝑦′ ∈ ℋ′, 𝑥2 ∈ ℋ2

⎫⎬⎭
.

Therefore,

𝒫 +𝒬 =

⎧⎨⎩

⎛⎜⎜⎜⎜⎜⎜⎝
𝑥0
𝑥1
𝑥′

𝑧
𝑥2
0

⎞⎟⎟⎟⎟⎟⎟⎠
: 𝑥0 ∈ ℋ0, 𝑥1 ∈ ℋ1, 𝑥

′ ∈ ℋ′,
𝑧 ∈ ran𝑋 + ran(𝐼ℋ′ − 𝑆), 𝑥2 ∈ ℋ2

⎫⎬⎭
.

This implies that 𝒫 + 𝒬 is closed if and only if ran𝑋 + ran(𝐼ℋ′ − 𝑆) is closed.

Since 𝑋 =
√

𝑆(𝐼ℋ′ − 𝑆), we have that ran𝑋 ⊆ ran(𝐼ℋ′ − 𝑆)
1
2 . Moreover, by the

spectral theorem for the positive contraction 𝑆, one sees that
√
𝑆 +

√
𝐼ℋ′ − 𝑆 is

invertible onℋ′. This implies that ran𝑋+ran(𝐼ℋ′−𝑆) ⊇ ran(𝐼ℋ′−𝑆)
1
2 . Therefore,

ran𝑋 +ran(𝐼ℋ′ −𝑆) is closed if and only if ran(𝐼ℋ′ −𝑆)
1
2 is closed. Since 1 is not

in the point spectrum of 𝑆, it follows from the spectral theorem that ran(𝐼ℋ′−𝑆)
1
2

is closed if and only if 1 is not in the spectrum of 𝑆. Hence we have the following
result.

Theorem 2.3. For two projections 𝑃 and 𝑄 on the Hilbert space ℋ with 𝒫 = ran𝑃
and 𝒬 = ran𝑄, the linear span 𝒫 + 𝒬 is closed if and only if 1 /∈ 𝜎(𝑆), or
equivalently, 𝜎(𝑃𝑄𝑃 ) ∩ (𝜀, 1) = 𝜙 for some 0 < 𝜀 < 1, where 𝑆 is the same as in
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Theorem 2.1. Moreover, in the case that ℛ = 𝒫 + 𝒬 is closed, the projection 𝑅
onto ℛ has the form

𝑅 =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝐼ℋ′ 0 0 0
0 0 0 𝐼ℋ′ 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠
Proof. Only the last statement remains to be proved and that follows from the fact
that 1 /∈ 𝜎(𝑆) if and only if 0 /∈ 𝜎(𝐼ℋ′ −𝑆), which implies ran(𝐼ℋ′ −𝑆) = ℋ′. □

A nearly immediate consequence of the representation theorem is the follow-
ing characterization of the 𝐶∗-algebra 𝒜(𝑃,𝑄, 𝐼) generated by projections 𝑃 , 𝑄
and the identity operator on the Hilbert space ℋ. This is usually attributed to
Dixmier [9].

Theorem 2.4. Let 𝑃 and 𝑄 be the projections onto the subspaces 𝒫 and 𝒬 of the
Hilbert space ℋ, respectively. If 𝒫∩𝒬 = 𝒫⊥∩𝒬 = 𝒫∩𝒬⊥ = 𝒫⊥∩𝒬⊥ = {0}, then
𝒜(𝑃,𝑄, 𝐼) is ∗-algebraically isomorphic to a ∗-subalgebra 𝒞 of 𝑀2(𝐶(𝑀)), where
𝑀 = 𝜎(𝑃𝑄𝑃 ), 𝑀2(𝐶(𝑀)) denotes the algebra of two by two matrices with entries
in 𝐶(𝑀) and

𝒞 =
{(

𝜙11 𝜙12
𝜙21 𝜙22

)
∈𝑀2(𝐶(𝑀)) : 𝜙12(𝑖) = 𝜙21(𝑖) = 0, if 𝑖 = 0, 1 and 𝑖 ∈𝑀

}
.

Proof. Applying the spectral theorem to the operators 𝐼𝒫 and 𝑆, one obtains the
correspondence from which the result follows:

𝑃 =

(
𝐼𝒫 0
0 0

)
∼

(
1 0
0 0

)
∈𝑀2(𝐶(𝑀))

and

𝑄 =

(
𝑆

√
𝑆(1− 𝑆)√

𝑆(1− 𝑆) 1− 𝑆

)
∼

(
𝜒

√
𝜒(1− 𝜒)√

𝜒(1 − 𝜒) 1− 𝜒

)
∈𝑀2(𝐶(𝑀)),

where 1 and 𝜒 denote the functions on 𝑀 defined by 1(𝑥) = 1 and 𝜒(𝑥) = 𝑥 for
𝑥 ∈ 𝑀 . The fact that the functions 𝜙12 and 𝜙21 in the definition of 𝒞 vanish at
0, 1 ∈𝑀 follows from the fact that the function

√
𝜒(1− 𝜒) does. □

We now use the characterization of the 𝐶∗-algebra generated by two projec-
tions to get our first result on the essential normality of the projection onto the
linear span when it is closed.

Theorem 2.5. For two projections 𝑃 and 𝑄 on the Hilbert space ℋ, if ℛ = ran𝑃 +
ran𝑄 is closed, then the 𝐶∗-algebra 𝒜(𝑃,𝑄, 𝐼ℋ) generated by 𝑃,𝑄 and the identity
operator 𝐼ℋ contains the projection 𝑅 onto the subspace ℛ.
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Proof. Using a direct matrix computation, one sees that the operator 𝑃 + (𝐼 −
𝑃 )𝑄(𝐼 − 𝑃 ), which is in the 𝐶∗-algebra 𝒜(𝑃,𝑄, 𝐼), has the form

𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 ) =

⎛⎜⎜⎜⎜⎜⎜⎝
𝐼ℋ0 0 0 0 0 0
0 𝐼ℋ1 0 0 0 0
0 0 𝐼ℋ′ 0 0 0
0 0 0 𝐼ℋ′ − 𝑆 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠ .

This implies that 𝜎(𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )) ⊆ {0} ∪ [𝜀, 1] for some 0 < 𝜀 < 1.
Since [𝜀, 1]∩𝜎(𝑃 +(𝐼−𝑃 )𝑄(𝐼−𝑃 )) is an open and closed subset of the spectrum
𝜎(𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )), it follows from the spectral theorem that the spectral
projection 1[𝜀,1](𝑃 + (𝐼 −𝑃 )𝑄(𝐼 −𝑃 )) is in 𝒜(𝑃,𝑄, 𝐼), which leads to the desired
result since 1[𝜀,1](𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )) = 𝑅. □

We now relate the representation result to a question in the context of Arve-
son’s conjecture. We will provide a more precise statement in Section 4.

Theorem 2.6. Suppose 𝜎 : 𝐶(𝑀)→ ℒ(ℋ) is a ∗-homomorphism for some compact
metric space 𝑀 , and 𝑃,𝑄 are projections on the Hilbert space ℋ such that the
commutators [𝜎(𝜑), 𝑃 ] ∈ 𝒦 and [𝜎(𝜑), 𝑄] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀), where 𝒦 denotes
the ideal of compact operators on ℋ. If ℛ = ran𝑃 + ran𝑄 is closed and 𝑅 is the
projection onto ℛ, then [𝜎(𝜑), 𝑅] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀).

Proof. Using an elementary 𝐶∗-algebra argument, one shows that [𝜎(𝜑), 𝑇 ] ∈ 𝒦 for
any operator 𝑇 ∈ 𝒜(𝑃,𝑄, 𝐼). Combining this fact with Theorem 2.5, one obtains
the desired result. □

Corollary 2.7. With the same hypotheses, the projection �̃� onto 𝒫 ∩𝒬 essentially
commutes with the range of 𝜎.

Proof. This is an immediate consequence of Theorem 1 in [11] and the exact
sequence

0→ �̃�
𝑖→ 𝒫 ⊕𝒬 𝑗→ ℛ→ 0,

where 𝑖(𝑟) = (𝑟,−𝑟), and 𝑗(𝑝, 𝑞) = 𝑝+ 𝑞 for 𝑟 ∈ �̃�, 𝑝 ∈ 𝒫 , 𝑞 ∈ 𝒬. □

Remark 2.8. In both the theorem and corollary, 𝐶(𝑀) can be replaced by any
𝐶*-subalgebra of L (ℋ).
Remark 2.9. These results are related to a theorem of Arveson [5, Theorem 4.4]
and the more recent work of Kennedy [19] in which essential normality is replaced
by 𝑝-essential normality, where the commutators are assumed to be in the Schat-
ten 𝑝-class for 1 ≤ 𝑝 <∞. If one examines the proof of Theorem 2.5 more closely,
the preceding arguments can be refined to obtain analogous results for 𝑝-essential
normality. Basically, this is true because the functional calculus which yields the
spectral projection 1[𝜀,1](𝑃 + (𝐼 − 𝑃 )𝑄(𝐼 − 𝑃 )) can be approximated on a neigh-
borhood of the spectrum with analytic functions.



Some Remarks on Essentially Normal Submodules 165

We can extend these results somewhat using the following reduction which
is essentially algebraic.

Theorem 2.10. Suppose 𝒫 and 𝒬 are subspaces of the Hilbert space ℋ and ℛ♯ is
a subspace of 𝒫 ∩ 𝒬. Then 𝒫 +𝒬 is closed if and only if 𝒫/ℛ♯ +𝒬/ℛ♯ is closed
in ℋ/ℛ♯.

Proof. It follows from the fact that 𝒫/ℛ♯ + 𝒬/ℛ♯ = (𝒫 + 𝒬)/ℛ♯ and the fact
that for any linear manifold ℒ containing ℛ♯, ℒ/ℛ♯ is closed if and only if ℒ is
closed. □

Corollary 2.11. With the same hypotheses, the closeness of 𝒫/ℛ♯+𝒬/ℛ♯ is equiv-
alent to the closeness of 𝒫/(𝒫 ∩ 𝒬) +𝒬/(𝒫 ∩ 𝒬).
Proof. Both of these statements are equivalent to 𝒫 +𝒬 being closed in ℋ. □

3. Essential span of subspaces

The following question and corresponding result are important for considering the
notion of essential span in this section.

Question 3.1. When do two projections 𝑃 and 𝑄 on a Hilbert space ℋ almost
commute; that is, when is [𝑃,𝑄] ∈ 𝒦(ℋ)?

Using the representation theorem for 𝑃 and 𝑄 above, we see that [𝑃,𝑄] ∈ 𝒦
if and only if 𝑋 ∈ 𝒦 and so we have the following result.

Theorem 3.2. For projections 𝑃 and 𝑄 onto subspaces 𝒫 and 𝒬, respectively, on a
Hilbert space ℋ, [𝑃,𝑄] ∈ 𝒦 if and only if 𝜎𝑒(𝑆) ⊂ {0, 1}. Moreover, 𝑃𝑄 ∈ 𝒦 if and
only if 𝑆 ∈ 𝒦 and dim𝒫 ∩𝒬 <∞ in the representation appearing in Theorem 2.1.

Proof. The proof follows from a matrix calculation in the above representation
theorem which shows that [𝑃,𝑄] ∈ 𝒦 if and only if 𝑋 =

√
𝑆(𝐼ℋ′ − 𝑆) is compact.

For 𝑃𝑄 ∈ 𝒦, it is necessary and sufficient for 𝑆 and 𝐼ℋ1 to be compact. □

If 𝑃 and 𝑄 are projections on the Hilbert space ℋ, then another notion of the
span of the ranges of 𝑃 and 𝑄 is relevant when considering questions of essential
normality, which involves the images of 𝑃 and 𝑄 in the Calkin algebra. If 0 is an
isolated point in the essential spectrum, 𝜎𝑒(𝑃 +𝑄), of 𝑃 +𝑄, or 0 /∈ 𝜎𝑒(𝑃 +𝑄),
then the image in the Calkin algebra of the spectral projection, 𝑃

⋁
𝑒 𝑄, for [𝜀,∞],

where (0, 𝜀) ∩ 𝜎𝑒(𝑃 +𝑄) = 𝜙, can be thought of as the “essential span” of ran𝑃
and ran𝑄. (Note that the image of this spectral projection in the Calkin algebra
does not depend on 𝜀 whenever (0, 𝜀)∩ 𝜎𝑒(𝑃 +𝑄) = 𝜙.) One result related to this
notion is the following.

Theorem 3.3. If [𝑃,𝑄] ∈ 𝒦, then 0 is isolated in 𝜎𝑒(𝑃 +𝑄). Moreover, if 𝑃 and 𝑄
almost commute with a 𝐶∗-algebra 𝔄, then so does any projection on ℋ with the
image 𝑃

⋁
𝑒 𝑄 in the Calkin algebra.
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Proof. Considering the standard model for two projection in Section 2, one sees
that [𝑃,𝑄] ∈ 𝒦 implies that 𝑋 is compact and 𝜎𝑒(𝑃 +𝑄) ⊆ {0, 1, 2}. This implies
that [𝜀, 2] is an open and closed subset of 𝜎(𝑃 +𝑄) for some 0 < 𝜀 < 1 and hence
1[𝜀,2](𝑃+𝑄) is in 𝒜(𝑃,𝑄, 𝐼), where 𝒜(𝑃,𝑄, 𝐼) is the 𝐶∗-algebra generated by 𝑃,𝑄
and the identity operator 𝐼. Therefore, its image in the Calkin algebra, 𝑃

⋁
𝑒 𝑄,

commutes with the image of 𝔄, which completes the proof. □

One thing one needs to be clear on is that the image of 𝑃
⋁

𝑄 in the Calkin
algebra and 𝑃

⋁
𝑒 𝑄 are not necessarily the same. Consider, for example, the sub-

spaces 𝒫 = span{𝑒𝑛⊕0 : 𝑛 ∈ ℕ} in ℓ2⊕ℓ2 and 𝒬 = span{𝑒𝑛⊕ 1
𝑛𝑒𝑛 : 𝑛 ∈ ℕ}. These

subspaces have the images of 𝜋(𝑃
⋁

𝑄) and 𝑃
⋁

𝑒 𝑄 in the Calkin algebra which
are the images of the projections onto ℓ2⊕ ℓ2 and ℓ2⊕ (0), respectively. Note that
in this case 𝒫 +𝒬 is not closed, which is the key as the following result shows.

Theorem 3.4. Let 𝑃,𝑄 be the projections onto the subspaces 𝒫 and 𝒬 of a Hilbert
space ℋ, respectively. Then 𝒫 +𝒬 is closed if and only if 𝜋(𝑃 ⋁

𝑄) = 𝑃
⋁

𝑒 𝑄.

Proof. We first suppose that 𝒫 +𝒬 is closed. Using the notation in Theorem 2.1,
we have that

𝑃 +𝑄 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝐼ℋ0 0 0 0 0 0
0 2𝐼ℋ1 0 0 0 0

0 0 𝐼ℋ′ + 𝑆
√

𝑆(𝐼ℋ′ − 𝑆) 0 0

0 0
√

𝑆(𝐼ℋ′ − 𝑆) 𝐼ℋ′ − 𝑆 0 0
0 0 0 0 𝐼ℋ2 0
0 0 0 0 0 0ℋ3

⎞⎟⎟⎟⎟⎟⎟⎠ .

By Theorem 2.3 we know that 1 /∈ 𝜎(𝑆) when 𝒫 + 𝒬 is closed. Applying the
spectral theorem to the operator 𝑆, one obtains that 0 is isolated in 𝜎(𝑃 + 𝑄).
This implies that the notion 𝑃

⋁
𝑒 𝑄 makes sense and, in fact, it is the image in

the Calkin algebra of the projection onto ran(𝑃 + 𝑄). Moreover, by the above
representation of 𝑃 +𝑄, one sees that

ran(𝑃 +𝑄) = ℋ0 ⊕ℋ1 ⊕ℋ′ ⊕ℋ′ ⊕ℋ2 = 𝒫 +𝒬.

It follows that 𝑃
⋁

𝑒 𝑄 is the image of the projection onto 𝒫 +𝒬.
On the other hand, in case that 𝜋(𝑃

⋁
𝑄) = 𝑃

⋁
𝑒 𝑄, there exists 0 < 𝜀 < 1

such that (0, 𝜀)∩𝜎𝑒(𝑃 +𝑄) = 𝜙 and 𝑃
⋁

𝑄−1[𝜀,∞](𝑃 +𝑄) is a finite-dimensional
projection. Applying the spectral theorem for 𝑆 to the matrix representation of 𝑃+
𝑄, one sees that the spectral projection of 𝑆 for (1−𝜀, 1) is also a finite-dimensional
projection. Combing this fact with that 1 is not in the point spectrum of 𝑆, we
have that 1 /∈ 𝜎(𝑆), which leads to the desired result using Theorem 2.3. □

While it seems inconceivable that [𝑝] + [𝑞] is always closed for polynomials 𝑝
and 𝑞 in ℂ[𝑧1, . . . , 𝑧𝑛]; here [⋅] denotes the closure in the Hardy, Bergman or Drury–
Arveson modules on the unit ball, it seems quite possible that the projections
onto [𝑝] and [𝑞] always almost commute. One thing making the answering of such
a question difficult is the fact that [𝑝] ∩ [𝑞] is always large containing [𝑝𝑞]. One
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possible way to circumvent this problem might be to consider the quotient modules
[𝑝]⊥ and [𝑞]⊥. We’ll have something more to say about them in the next section.

Another possibility to handle the fact that [𝑝] ∩ [𝑞] is large might be to use
Theorem 2.10 to reduce the matter to [𝑝]/([𝑝]∩ [𝑞]) and [𝑞]/([𝑝]∩ [𝑞]). In this case,
[𝑝]/([𝑝]∩ [𝑞]) and [𝑞]/([𝑝]∩ [𝑞]) are semi-invariant modules. We will obtain a result
using this approach in the following section.

4. Locality of essentially normal projections

Let 𝑀 be a compact metric space and 𝜎 : 𝐶(𝑀)→ L (ℋ) be a ∗-homomorphism
for a Hilbert space ℋ. We say that a projection 𝑃 on ℋ is essentially normal
relative to 𝜎 if [𝜎(𝜑), 𝑃 ] ∈ 𝒦 for any 𝜑 ∈ 𝐶(𝑀). This implies that the map
𝜎𝑃 : 𝜑 → 𝜋(𝑃𝜎(𝜑)𝑃 ) ∈ Q(ℋ) into the Calkin algebra Q(ℋ) = L (ℋ)/𝒦(ℋ) is a
∗-homomorphism. Hence, there exists a compact subset 𝑀𝑃 of 𝑀 such that the
following diagram commutes:

𝐶(𝑀)
𝜎−→ L (ℋ)

↓ ↓
𝐶(𝑀𝑃 )

�̂�𝑃−→ Q(𝑃ℋ)
.

Here the vertical arrow on the left is defined by restriction; that is, 𝜑 → 𝜑∣𝑀𝑃 ,
and the one on the right is the compression to ran𝑃 followed by the map onto
the Calkin algebra. Therefore, using [7], one knows that (𝜎, 𝑃 ) defines an element
[𝜎, 𝑃 ] ∈ 𝐾1(𝑀𝑃 ). An interesting question concerns the relation of elements [𝜎, 𝑃 ]
and [𝜎,𝑄] for two essentially normal projections 𝑃 and 𝑄 relative to 𝜎.

Now this relationship can’t be too simple. In particular, consider the repre-
sentation 𝜏 of 𝐶(𝑐𝑙𝑜𝑠𝔹𝑛) in 𝐿2(𝔹𝑛) and the projection 𝑃 onto the Bergman space
𝐿2𝑎(𝔹

𝑛). For 𝑝 ∈ ℂ[𝑧1, . . . , 𝑧𝑛], one knows [13] that the projection 𝑄𝑝 of 𝐿
2(𝔹𝑛)

onto the closure [𝑝] of the ideal (𝑝) in ℂ[𝑧1, . . . , 𝑧𝑛] generated by 𝑝 is essentially nor-
mal; that is, [𝜏(𝜑), 𝑄𝑝] ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑐𝑙𝑜𝑠𝔹𝑛). Further, we have that 𝑅𝑝 = 𝑃 −𝑄𝑝

is also essentially normal and 𝑀[𝜏,𝑅𝑝] ⊆ 𝑍(𝑝)∩∂𝔹𝑛, where 𝑍(𝑝) is the zero variety
of the polynomial 𝑝. It follows that the image of [𝜏, 𝑅𝑝] ∈ 𝐾1(∂𝔹𝑛) is zero since
𝑍(𝑝)∩ ∂𝔹𝑛 is a proper subset of ∂𝔹𝑛. Therefore, one has [𝜏, 𝑃 ] = [𝜏,𝑄𝑝] for every
polynomial 𝑝 ∈ ℂ[𝑧1, . . . , 𝑧𝑛]. Hence, there is a great variety of essentially normal
projections defining the same element in 𝐾1(∂𝔹𝑛).

However, we do have a result for what happens at the opposite extreme.

Theorem 4.1. Suppose that 𝑃 and 𝑄 are essentially normal projections on the
Hilbert space ℋ for the ∗-homomorphism 𝜎 : 𝐶(𝑀) → L (ℋ) for some compact
space 𝑀 . If 𝑀𝑃 ∩𝑀𝑄 = 𝜙, then 𝑃𝑄 ∈ 𝒦.

Proof. By the assumption that 𝑃 and 𝑄 are essentially normal relative to 𝜎, one
sees that the operator 𝑃𝑄 almost intertwines the two representations 𝜎∣𝐶(𝑀𝑃 ) and
𝜎∣𝐶(𝑀𝑄); that is, one has that 𝑃𝜎(𝜑)𝑃 (𝑃𝑄) − (𝑃𝑄)𝑄𝜎(𝜑)𝑄 ∈ 𝒦 for 𝜑 ∈ 𝐶(𝑀).
Thus, in the Calkin algebra, if 𝜑 ∈ 𝐶(𝑀) satisfies 𝜑∣𝑀𝑃 ≡ 1 and 𝜑∣𝑀𝑄 ≡ 0,
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we obtain that 𝜋(𝑃𝜎(𝜙)𝑃 )𝜋(𝑃𝑄) = 𝜋(𝑃𝑄)𝜋(𝑄𝜎(𝜙)𝑄). But, 𝜋(𝑄𝜎(𝜑)𝑄) = 0 and
𝜋(𝑃𝜎(𝜑)𝑃 ) = 𝜋(𝑃 ), this means that 𝜋(𝑃𝑄) = 0, which implies 𝑃𝑄 ∈ 𝒦 and
completes the proof. □

We can use this theorem to obtain a partial result concerning the relation of
the projections onto [𝑝] and [𝑞] for 𝑝, 𝑞 ∈ ℂ[𝑧1, . . . , 𝑧𝑛].

Corollary 4.2. For two polynomials 𝑝, 𝑞 ∈ ℂ[𝑧1, . . . , 𝑧𝑛], let 𝑃 and 𝑄 be the projec-
tions onto the submodules 𝒫 = [𝑝],𝒬 = [𝑞] on 𝐿2𝑎(𝔹

𝑛), respectively. If 𝑝, 𝑞 satisfy
𝑍(𝑝) ∩ 𝑍(𝑞) ∩ ∂𝔹𝑛 = 𝜙, then we have that [𝑃,𝑄] ∈ 𝒦.
Proof. Note that 𝐼 − 𝑃, 𝐼 −𝑄 are the projections onto the quotient modules 𝒫⊥
and 𝒬⊥, respectively. Using the notation in the above, by [13] we know that
𝑀𝐼−𝑃 ⊆ 𝑍(𝑝)∩ ∂𝔹𝑛 and 𝑀𝐼−𝑄 ⊆ 𝑍(𝑞)∩ ∂𝔹𝑛. It follows from the hypothesis that
𝑀𝐼−𝑃 ∩𝑀𝐼−𝑄 = 𝜙. By Theorem 4.1 we have that (𝐼−𝑃 )(𝐼−𝑄) and (𝐼−𝑄)(𝐼−𝑃 )
are compact. Therefore, one sees that [𝑃,𝑄] ∈ 𝒦, which completes the proof. □

We can extend this result using Theorem 2.10 as follows.

Corollary 4.3. For polynomials 𝑝, 𝑞, 𝑟 ∈ ℂ[𝑧1, . . . , 𝑧𝑛] with 𝑍(𝑝) ∩ 𝑍(𝑞) ∩ ∂𝔹𝑛 = 𝜙,
let 𝒫 = [𝑝𝑟] and 𝒬 = [𝑞𝑟] be the submodules in 𝐿2𝑎(𝔹

𝑛). Then one has [𝑃,𝑄] ∈ 𝒦,
where 𝑃,𝑄 are the projections onto 𝒫 and 𝒬, respectively.
Proof. One can generalize the argument in [13] to show that

𝑀[𝑝𝑟]⊥/[𝑟]⊥ ⊆ 𝑍(𝑝) ∩ ∂𝔹𝑛 𝑎𝑛𝑑𝑀[𝑞𝑟]⊥/[𝑟]⊥ ⊆ 𝑍(𝑞) ∩ ∂𝔹𝑛.

By Theorem 4.1, this implies that (𝑅 − 𝑃 )(𝑅 − 𝑄) and (𝑅 − 𝑄)(𝑅 − 𝑃 ) are
compact, where 𝑅 is the projection onto the submodule [𝑟]. This means that
[𝑃,𝑄] = [𝑅− 𝑃,𝑅 −𝑄] ∈ 𝒦, which completes the proof. □

Another example of the application of the notion of the locality of essentially
normal projection is the following result which is more or less the opposite situation
of the previous theorem.

Theorem 4.4. Assume that 𝜎 : 𝐶(𝑀)→ Q(ℋ) is a ∗-homomorphism on the Hilbert
space ℋ for a compact metric space 𝑀 , and 𝑃 and 𝑄 are two essentially normal
projections such that 𝒫 ∩ 𝒬⊥ = 𝒫⊥ ∩ 𝒬 = {0}, where 𝒫 = ran𝑃 and 𝒬 = ran𝑄.
If 𝒫 +𝒬⊥ is closed, then 𝑀𝑃 =𝑀𝑄 and [�̂�𝑃 ] = [�̂�𝑄] ∈ 𝐾1(𝑀𝑃 ).

Proof. In the representation theorem for 𝑃,𝑄, the spaces ℋ0 and ℋ2 are {0} by
assumption and we can write 𝒫 = ℋ1 ⊕ 𝒫 ′ and 𝒬 = ℋ1 ⊕ 𝒬′ corresponding to
𝑃 ′ = 𝑃 − 𝐼ℋ1 and 𝑄′ = 𝑄 − 𝐼ℋ1 . As in the proof of Theorem 4.1, the image
𝜋(𝑃 ′𝑄′) of 𝑃 ′𝑄′ in the Calkin algebra intertwines the operators 𝜋(𝑃 ′𝜎(𝜑)𝑃 ′) and
𝜋(𝑄′𝜎(𝜑)𝑄′). Using Theorem 2.3 and the assumption 𝒫+𝒬⊥ is closed, we have 0 /∈
𝜎(𝑆) = 𝜎(𝑃 ′𝑄′𝑃 ′). Combining this with the fact ker𝑃 ′𝑄′ = 𝒫 ′⊥ ∩ 𝒬′ = {0}, one
sees that 𝑃 ′𝑄′ : 𝒬′ → 𝒫 ′ is invertible. Therefore, using the polar decomposition
in the Calkin algebra, one sees that 𝑀𝑃 = 𝑀𝑄 and that the 𝐾1 elements are
equal. □



Some Remarks on Essentially Normal Submodules 169

There would seem to be a limit to what can be concluded about the 𝐾1 ele-
ment. If 𝑘 ∈ 𝐾1(𝑀𝑃 ) for some essentially normal projection 𝑃 on the Hilbert space
ℋ with a ∗-homomorphism 𝜎 : 𝐶(𝑀) → L (ℋ), then there exists an essentially
normal projection 𝑄 ≤ 𝑃 such that [𝜎,𝑄] = 𝑘 ∈ 𝐾1(𝑀𝑃 ).
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Which Weighted Composition Operators
are Complex Symmetric?

Stephan Ramon Garcia and Christopher Hammond

Abstract. Recent work by several authors has revealed the existence of many
unexpected classes of normal weighted composition operators. On the other
hand, it is known that every normal operator is a complex symmetric operator.
We therefore undertake the study of complex symmetric weighted composition
operators, identifying several new classes of such operators.
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1. Introduction

In 2010, C. Cowen and E. Ko obtained an explicit characterization and spectral
description of all Hermitian weighted composition operators on the classical Hardy
space 𝐻2 [5]. This work was later extended to certain weighted Hardy spaces by
C. Cowen, G. Gunatillake, and E. Ko [4]. Along similar lines, P. Bourdon and
S. Narayan have recently studied normal weighted composition operators on𝐻2 [1].
Taken together, these articles have established the existence of several unexpected
families of normal weighted composition operators.

It turns out that normal operators are the simplest examples of complex sym-
metric operators. We say that a bounded operator 𝑇 on a complex Hilbert space
ℋ is complex symmetric if there exists a conjugation (i.e., a conjugate-linear, iso-
metric involution) 𝐽 such that 𝑇 = 𝐽𝑇 ∗𝐽 . The general study of such operators was
undertaken by the first author, M. Putinar, and W. Wogen, in various combina-
tions, in [7–10]. A number of other authors have also made significant contributions
[3, 11–14, 18–21].

First author partially supported by National Science Foundation Grant DMS-1001614.
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We consider here the problem of describing all complex symmetric weighted
composition operators. Among other results, we produce a class of complex sym-
metric weighted composition operators which includes the Hermitian examples
obtained in [4, 5] as special cases. We also raise a number of open questions which
we hope will spur further research.

2. Observations and results

In what follows, we let 𝐻2(𝛽) denote the weighted Hardy space which corresponds
to the weight sequence {𝛽(𝑛)}∞𝑛=0 [6, Sect. 2.1]. For each 𝑤 in the open unit disk

𝔻 and every integer 𝑛 ≥ 0, we let 𝐾
(𝑛)
𝑤 denote the unique function in 𝐻2(𝛽)

which satisfies ⟨𝑓,𝐾(𝑛)
𝑤 ⟩ = 𝑓 (𝑛)(𝑤) for every 𝑓 in 𝐻2(𝛽). For convenience, we

often choose to write 𝐾𝑤 in place of 𝐾
(0)
𝑤 . If 𝜑 : 𝔻 → 𝔻 is analytic, then the

composition operator 𝐶𝜑 : 𝐻
2(𝛽)→ 𝐻2(𝛽) is defined by setting

𝐶𝜑(𝑓) = 𝑓 ∘ 𝜑.
Given another analytic function 𝜓 : 𝔻 → ℂ, we define the weighted composition
operator 𝑊𝜑,𝜓 by setting

𝑊𝜑,𝜓(𝑓) = 𝜓 ⋅ (𝑓 ∘ 𝜑).
Assuming that 𝑊𝜑,𝜓 is bounded, one has the useful formulae

𝑊 ∗
𝜑,𝜓(𝐾𝑤) = 𝜓(𝑤)𝐾𝜑(𝑤), (1)

𝑊 ∗
𝜑,𝜓

(
𝐾(1)

𝑤

)
= 𝜓(𝑤)𝜑′(𝑤)𝐾(1)

𝜑(𝑤) + 𝜓′(𝑤)𝐾𝜑(𝑤). (2)

2.1. Composition operators

One initially expects few unweighted composition operators to be complex sym-
metric. In fact, the only obvious candidates which come to mind are the normal
composition operators. These are precisely the operators 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽)
where 𝜑(𝑧) = 𝑎𝑧 and ∣𝑎∣ ≤ 1 [6, Thm. 8.2]. One might initially suspect that
these are the only complex symmetric composition operators. This näıve conjec-
ture proves to be false, however, as there exist at least two other basic families of
complex symmetric composition operators.

Proposition 2.1. If 𝜑 is either (i) constant, or (ii) an involutive disk automorphism,
then 𝐶𝜑 : 𝐻

2(𝛽)→ 𝐻2(𝛽) is a complex symmetric operator.

The preceding follows immediately from the fact that an operator which is
algebraic of degree two is complex symmetric [10, Thm. 2]. In what follows, we work
only with nonconstant symbols 𝜑. It turns out that (ii) prompts an elementary
question whose answer has so far eluded us.

Question 1. Let 𝜑 be an involutive disk automorphism. Find an explicit conjuga-
tion 𝐽 : 𝐻2(𝛽)→ 𝐻2(𝛽) such that 𝐶𝜑 = 𝐽𝐶∗𝜑𝐽 .
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Naturally, one is also interested in determining whether there are any addi-
tional classes of complex symmetric composition operators.

Question 2. Characterize all complex symmetric composition operators 𝐶𝜑 on the
classical Hardy space 𝐻2 or, more generally, on weighted Hardy spaces 𝐻2(𝛽).

In the negative direction, we have the following results.

Proposition 2.2. If 𝐶𝜑 : 𝐻2(𝛽) → 𝐻2(𝛽) is a hyponormal composition operator
which is complex symmetric, then 𝜑(𝑧) = 𝑎𝑧 where ∣𝑎∣ ≤ 1.
Proof. Suppose 𝐶𝜑 is hyponormal; that is, ∥𝐶𝜑𝑓∥ ≥ ∥𝐶∗𝜑𝑓∥ for all 𝑓 in 𝐻2(𝛽). If
𝐶𝜑 is 𝐽-symmetric, then it follows that

∥𝐶∗𝜑𝑓∥ = ∥𝐽𝐶𝜑𝐽𝑓∥ = ∥𝐶𝜑𝐽𝑓∥ ≥ ∥𝐶∗𝜑𝐽𝑓∥ = ∥𝐽𝐶𝜑𝑓∥ = ∥𝐶𝜑𝑓∥.
Thus ∥𝐶𝜑𝑓∥ = ∥𝐶∗𝜑𝑓∥ for all 𝑓 in 𝐻2 whence 𝐶𝜑 is normal. By [6, Thm. 8.2] we
conclude that 𝜑(𝑧) = 𝑎𝑧 where ∣𝑎∣ ≤ 1. □
Proposition 2.3. Suppose that 𝐶𝜑 : 𝐻

2(𝛽) → 𝐻2(𝛽) is 𝐽-symmetric. If 𝐽(1) is a
constant multiple of a kernel function 𝐾𝑤, then 𝜑(𝑤) = 𝑤. The converse holds
whenever 𝜑 is not an automorphism.

Proof. If 𝐽(1) = 𝛾𝐾𝑤 for some constant 𝛾 ∕= 0 and 𝐶𝜑 is 𝐽-symmetric, then

𝛾𝐾𝑤 = 𝐽(1) = 𝐽𝐶𝜑(1) = 𝐶∗𝜑𝐽(1) = 𝐶∗𝜑(𝛾𝐾𝑤) = 𝛾𝐾𝜑(𝑤),

from which we conclude that 𝜑(𝑤) = 𝑤. On the other hand, suppose that 𝜑(𝑤) =
𝑤. Since 𝐶∗𝜑(𝐾𝑤) = 𝐾𝜑(𝑤) = 𝐾𝑤, we see that

𝐶𝜑𝐽(𝐾𝑤) = 𝐽𝐶∗𝜑(𝐾𝑤) = 𝐽(𝐾𝑤).

As long as 𝜑 is not an automorphism, the only eigenvectors for 𝐶𝜑 corresponding
to the eigenvalue 1 are the constant functions [17, p. 90]. Therefore 𝐽(𝐾𝑤) must be
a constant function, which means that 𝐽(1) must be a scalar multiple of 𝐾𝑤. □

In light of the preceding, we see that if 𝐽 is a conjugation on 𝐻2(𝛽) such that
𝐽(1) is not a constant multiple of a kernel function, then there does not exist a 𝐽-
symmetric composition operator 𝐶𝜑 on 𝐻2(𝛽) whose symbol fixes a point in 𝔻. If
𝐽(1) is a constant multiple of 1, then we can say even more about 𝜑. The following
is inspired by an unpublished result of P. Bourdon and D. Szajda [6, Ex. 8.1.2].

Proposition 2.4. Suppose that 𝐽 : 𝐻2(𝛽) → 𝐻2(𝛽) is a conjugation, 𝐽(1) is a
constant multiple of 1, and 𝐽(𝑧) is a constant multiple of 𝑧𝑚 for some 𝑚 ≥ 1. If
𝐶𝜑 is 𝐽-symmetric, then 𝜑(𝑧) = 𝑎𝑧 for some ∣𝑎∣ ≤ 1.
Proof. Since 1 = 𝛽(0)𝐾0, it follows from Proposition 2.3 that 𝜑(0) = 0, whence

𝐶∗𝜑
(
𝐾
(1)
0

)
= 𝜑′(0)𝐾(1)

𝜑(0) = 𝜑′(0)𝐾(1)
0

by (2). Thus 𝑧 = 𝛽(1)𝐾
(1)
0 is an eigenvector for 𝐶∗𝜑 corresponding to the eigenvalue

𝜑′(0). Since 𝐶𝜑 is 𝐽-symmetric, 𝑧𝑚 must be an eigenvector for 𝐶𝜑 corresponding
to the eigenvalue 𝜑′(0). Observe that 𝐶𝜑(𝑧

𝑚) = 𝜑𝑚, which means that 𝜑(𝑧)𝑚 =
𝜑′(0)𝑧𝑚. Consequently 𝜑(𝑧) = 𝑎𝑧, where ∣𝑎∣ ≤ 1. □
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2.2. Weighted composition operators

Although our list of complex symmetric composition operators is somewhat sparse,
there are a variety of weighted composition operators which are known to be
complex symmetric. Indeed, the study of Hermitian, normal, and unitary weighted
composition operators has been the focus of intense research [1, 4, 5]. The following
is a generalization of [1, Lem. 2, Prop. 3], where the same conclusion is obtained
under the assumption that 𝑊𝜑,𝜓 is normal.

Proposition 2.5. If 𝑊𝜑,𝜓 : 𝐻
2(𝛽) → 𝐻2(𝛽) is complex symmetric, then either 𝜓

is identically zero or 𝜓 is nonvanishing on 𝔻. Moreover, if 𝜑 is not a constant
function and 𝜓 is not identically zero, then 𝜑 is univalent.

Proof. Suppose that 𝑊𝜑,𝜓 is complex symmetric and that 𝜓 does not vanish iden-
tically. Since ker𝑊𝜑,𝜓 = {0}, we conclude that ker𝑊 ∗

𝜑,𝜓 = {0} by [7, Prop. 1].
If 𝜓(𝑤) = 0 for some 𝑤 in 𝔻, then 𝑊 ∗

𝜑,𝜓(𝐾𝑤) = 0 by (1). Since this contradicts
the fact that ker𝑊 ∗

𝜑,𝜓 is trivial, we conclude that 𝜓 is nonvanishing on 𝔻. Now
suppose that there are points 𝑤1 and 𝑤2 in 𝔻 such that 𝜑(𝑤1) = 𝜑(𝑤2). It follows
that

𝑊 ∗
𝜑,𝜓

(
𝜓(𝑤2)𝐾𝑤1 − 𝜓(𝑤1)𝐾𝑤2

)
= 𝜓(𝑤2)𝜓(𝑤1)𝐾𝜑(𝑤1) − 𝜓(𝑤1)𝜓(𝑤2)𝐾𝜑(𝑤2) = 0.

Since any distinct pair of reproducing kernel functions is linearly independent, we
conclude that 𝑤1 = 𝑤2. In other words, 𝜑 is univalent. □

The following result provides a severe restriction on the spectrum of a com-
plex symmetric weighted composition operator whose symbol has a fixed point in 𝔻.

Proposition 2.6. Suppose that 𝑊𝜑,𝜓 : 𝐻2(𝛽) → 𝐻2(𝛽) is a complex symmetric
operator. If 𝜑(𝑤0) = 𝑤0 for some 𝑤0 in 𝔻, then 𝜓(𝑤0)𝜑

′(𝑤0)𝑛 is an eigenvalue of
𝑊𝜑,𝜓 for every integer 𝑛 ≥ 0.
Proof. Since 𝑊𝜑,𝜓 is complex symmetric, by [7, Prop. 1] it suffices to prove that

𝜓(𝑤0)𝜑′(𝑤0)𝑛 (3)

is an eigenvalue for 𝑊 ∗
𝜑,𝜓. Let us first assume that 𝜑′(𝑤0) is not a root of unity.

We claim that for each 𝑛 ≥ 0, the function 𝐾
(𝑛)
𝑤0 can be written in the form

𝑣𝑛 + 𝛼𝑛−1𝑣𝑛−1 + 𝛼𝑛−2𝑣𝑛−2 + ⋅ ⋅ ⋅+ 𝛼0𝑣0,

where 𝑣𝑗 is an eigenvector for𝑊𝜑,𝜓 corresponding to the eigenvalue 𝜓(𝑤0)𝜑′(𝑤0)𝑗 .
We prove this assertion by induction. Note that

𝑊 ∗
𝜑,𝜓(𝐾𝑤0) = 𝜓(𝑤0)𝐾𝜑(𝑤0) = 𝜓(𝑤0)𝐾𝑤0 ,

so the claim holds when 𝑛 = 0. Suppose then that the claim holds for all 𝑛 ≤ 𝑘

and consider the kernel function 𝐾
(𝑘+1)
𝑤0 . Now recall that 𝑊 ∗

𝜑,𝜓

(
𝐾
(𝑘+1)
𝑤0

)
equals

𝜓(𝑤0)𝜑′(𝑤0)𝑘+1𝐾
(𝑘+1)
𝜑(𝑤0)

plus a linear combination of kernel functions 𝐾
(𝑗)
𝑤0 with
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𝑗 ≤ 𝑘. Our induction hypothesis implies that each of these kernel functions is a
linear combination of eigenvectors 𝑣𝑗 . Therefore we may write

𝑊 ∗
𝜑,𝜓

(
𝐾(𝑘+1)

𝑤0

)
= 𝜓(𝑤0)𝜑′(𝑤0)𝑘+1𝐾(𝑘+1)

𝑤0
+ 𝛽𝑘𝑣𝑘 + 𝛽𝑘−1𝑣𝑘−1 + ⋅ ⋅ ⋅+ 𝛽0𝑣0

for some constants 𝛽0, 𝛽1, . . . , 𝛽𝑘. Observe that the function

𝑣𝑘+1 = 𝐾(𝑘+1)
𝑤0

+

𝑘∑
𝑗=0

𝛽𝑗

𝜓(𝑤0)
(
𝜑′(𝑤0)𝑘+1 − 𝜑′(𝑤0)𝑗

) 𝑣𝑗

is an eigenvector for 𝑊 ∗
𝜑,𝜓 corresponding to the eigenvalue 𝜓(𝑤0)𝜑′(𝑤0)𝑘+1. Con-

sequently our claim holds for all 𝑛. In other words, every term (3) is an eigenvalue
for 𝑊 ∗

𝜑,𝜓. If 𝜑
′(𝑤0) is an 𝑚th root of unity, then a similar argument shows that

𝐾(𝑛)
𝑤0

= 𝑣𝑛 + 𝛼𝑛−1𝑣𝑛−1 + 𝛼𝑛−2𝑣𝑛−2 + ⋅ ⋅ ⋅+ 𝛼0𝑣0

whenever 0 ≤ 𝑛 ≤ 𝑚−1. Hence (3) is an eigenvalue for 𝑊 ∗
𝜑,𝜓 when 𝑛 ≤ 𝑚−1 and

hence for all 𝑛. In either case, every number (3) is an eigenvalue for 𝑊 ∗
𝜑,𝜓, which

means that 𝜓(𝑤0)𝜑
′(𝑤0)𝑛 is an eigenvalue for 𝑊𝜑,𝜓. □

Example 1. Fix 𝑎 ∈ 𝔻∖{0} and let

𝜑 =
𝑎− 𝑧

1− 𝑎𝑧
.

Since 𝜑 is an involutive automorphism, the composition operator 𝐶𝜑 : 𝐻
2(𝛽) →

𝐻2(𝛽) is complex symmetric by Proposition 2.1. Moreover, observe that the spec-
trum 𝜎(𝐶𝜑) of 𝐶𝜑 is precisely {−1, 1}. On the other hand, Proposition 2.6 implies
that 𝜑′(𝑤0)𝑛 belongs to 𝜎(𝐶𝜑) whenever 𝑤0 is a fixed point of 𝑤0. However, the
only fixed point of 𝜑 which lies inside of 𝔻 is

𝑤0 =
1−√

1− ∣𝑎∣2
𝑎

,

which happens to satisfy 𝜑′(𝑤0) = −1, in accordance with Proposition 2.6.
2.3. Koenigs eigenfunctions

For any nonconstant non-automorphism 𝜑 : 𝔻→ 𝔻 which has a fixed point 𝑤0 in
𝔻 and for which 𝜑′(𝑤0) ∕= 0, there is an analytic 𝜅 : 𝔻 → ℂ such that 𝜅 ∘ 𝜑 =
𝜑′(𝑤0)𝜅. This function, called the Koenigs eigenfunction for 𝜑, is unique up to
scalar multiplication [6, p. 62, p. 93]. Furthermore, 𝜅𝑛 (or any constant multiple
thereof) is the only analytic function for which 𝜅𝑛 ∘ 𝜑 = 𝜑′(𝑤0)𝑛𝜅𝑛. Proposition
2.6, together with the details of its proof, yields the following result pertaining to
unweighted composition operators.

Proposition 2.7. Let 𝜑 : 𝔻 → 𝔻 be an analytic selfmap which is not an auto-
morphism and suppose that 𝜑(𝑤0) = 𝑤0 and 𝜑′(𝑤0) ∕= 0 for some 𝑤0 in 𝔻. If
𝐶𝜑 : 𝐻

2(𝛽) → 𝐻2(𝛽) is complex symmetric, then every power 𝜅𝑛 of the Koenigs
eigenfunction for 𝜑 belongs to 𝐻2(𝛽).
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It is not difficult to construct a univalent map 𝜑 : 𝔻→ 𝔻 in such a way that
one can readily determine whether its Koenigs eigenfunction belongs to 𝐻2(𝛽)
[17, pp. 93-94]. Let 𝜅 : 𝔻→ ℂ be a univalent function that vanishes at some point
𝑤0 and consider the region 𝜅(𝔻). Suppose that 𝜆𝜅(𝔻) ⊆ 𝜅(𝔻) for some complex
𝜆 with ∣𝜆∣ < 1. Define the map 𝜑 by 𝜑(𝑧) = 𝜅−1(𝜆𝜅(𝑧)). Then, by construction,
𝜑 is a univalent self-map of 𝔻 that fixes 𝑤0 and whose Koenigs eigenfunction is
𝜅. Hence, by starting with a 𝜅 that belongs to 𝐻2(𝛽), we construct a 𝜑 whose
Koenigs function belongs to 𝐻2(𝛽). Similarly, if we take 𝜅 such that 𝜅𝑛 does not
belong to 𝐻2(𝛽) for some 𝑛, we obtain a map whose corresponding composition
operator is not complex symmetric by Proposition 2.7. For example, consider any
such 𝜆 and take 𝜅(𝑧) = 2𝑧/(1 − 𝑧), which does not belong to the Hardy space
𝐻2. From this we obtain the map 𝜑(𝑧) = (𝜆𝑧)/(1 + (𝜆 − 1)𝑧), which induces a
composition operator 𝐶𝜑 : 𝐻

2 → 𝐻2 which is not complex symmetric.
Much work has been done to determine the conditions under which a Koenigs

eigenfunction 𝜅 belongs to the Hardy space 𝐻2. In this context, Proposition 2.7
is equivalent to saying that 𝜅 belongs to 𝐻𝑝 for every 0 < 𝑝 < ∞. The following
proposition follows directly from [16, Thm. 2.2].

Proposition 2.8. Suppose that 𝜑 : 𝔻→ 𝔻 is not an automorphism and that 𝜑 has a
fixed point 𝑤0 in 𝔻 such that 𝜑′(𝑤0) ∕= 0. If 𝐶𝜑 : 𝐻

2 → 𝐻2 is complex symmetric,
then the essential spectral radius of 𝐶𝜑 is 0. In other words, 𝐶𝜑 must be a Riesz
composition operator.

A good deal of work has been done to study Riesz composition operators on
𝐻2. Bourdon and Shapiro’s paper [2] serves as an excellent starting point.

Suppose that 𝜑 is not an automorphism, 𝜑(𝑤0) = 𝑤0, 𝜑
′(𝑤0) ∕= 0, and that

𝐶𝜑 is 𝐽-symmetric. As we have already observed, 𝐽(1) must be a constant multiple
of 𝐾𝑤0 . Let 𝜅 denote the Koenigs eigenfunction for 𝜑, normalized so that ∥𝜅∥ = 1.
We also know that 𝐽(𝜅) equals a constant multiple of 𝐾

(1)
𝑤0 . In particular, taking

into account the norms of these functions, we can write

𝐽(1) =
𝛾 𝛽(0)𝐾𝑤0

∥𝐾𝑤0∥
, 𝐽(𝜅) =

𝛿 𝐾
(1)
𝑤0∥∥𝐾(1)
𝑤0

∥∥ ,
where ∣𝛾∣ = ∣𝛿∣ = 1. Since ⟨𝜅, 1⟩ = ⟨𝐽(1), 𝐽(𝜅)⟩, we see that

∣𝜅(0)∣ =
∣∣𝐾(1)

𝑤0 (𝑤0)
∣∣

∥𝐾𝑤0∥
∥∥𝐾(1)

𝑤0

∥∥ .
If 𝑤0 = 0, then this tells us nothing. If 𝑤0 ∕= 0, however, it places a major restric-
tion upon the function 𝜅. In essence, most functions in 𝐻2(𝛽) cannot be Koenigs
eigenfunctions for complex symmetric composition operators.

2.4. An instructive example

We conclude this note by producing a class of complex symmetric weighted com-
position operators which includes the Hermitian examples obtained in [4, 5] as
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special cases. For each 𝜅 ≥ 1, let 𝐻2(𝛽𝜅) denote the weighted Hardy space whose
reproducing kernel is 𝐾𝑤(𝑧) = (1 − 𝑤𝑧)−𝜅. We now explicitly characterize all
weighted composition operators on 𝐻2(𝛽𝜅) which are 𝐽-symmetric with respect
to the conjugation

[𝐽𝑓 ](𝑧) = 𝑓(𝑧) (4)

on 𝐻2(𝛽𝜅). For the sake of convenience, we sometimes write 𝑓 := 𝐽𝑓 .

Proposition 2.9. A weighted composition operator 𝑊𝜑,𝜓 : 𝐻2(𝛽𝜅) → 𝐻2(𝛽𝜅) is
𝐽-symmetric with respect to the conjugation (4) if and only if

𝜓(𝑧) =
𝑏

(1 − 𝑎0𝑧)𝜅
, 𝜑(𝑧) = 𝑎0 +

𝑎1𝑧

1− 𝑎0𝑧
, (5)

where 𝑎0 and 𝑎1 are constants such that 𝜑 maps 𝔻 into 𝔻. Moreover, such an
operator is normal if and only if either,

(i) 𝑏 = 0,

(ii) 𝑏 ∕= 0 and Im 𝑎0𝑎1 = (1− ∣𝑎0∣2) Im 𝑎0.

Moreover, 𝑊𝜑,𝜓 is Hermitian if and only if 𝑎0, 𝑎1, and 𝑏 each belong to ℝ.

Proof. To streamline our notation, we let 𝑊 := 𝑊𝜑,𝜓. A simple computation
now confirms that if 𝜓 and 𝜑 are given by (5), then 𝑊𝐽𝐾𝑤 = 𝐽𝑊 ∗𝐾𝑤 for all
𝑤 in 𝔻, implying that 𝑊 = 𝐽𝑊 ∗𝐽 . On the other hand, if 𝑊 = 𝐽𝑊 ∗𝐽 , then
𝑊𝐽𝐾𝑤 = 𝐽𝑊 ∗𝐾𝑤 for all 𝑤 in 𝔻. Since 𝐽𝐾𝑤 = 𝐾𝑤, this implies that

𝜓(𝑧)𝐾𝑤(𝜑(𝑧)) = 𝜓(𝑤)𝐾
𝜑(𝑤)

(𝑧) (6)

holds for all 𝑧, 𝑤 in 𝔻. Setting 𝑤 = 0 in the preceding we find that

𝜓(𝑧) =
𝜓(0)

(1− 𝜑(0)𝑧)𝜅
.

Thus 𝜓 is of the form (5) with 𝑏 = 𝜓(0) and 𝑎0 = 𝜑(0). From (6) it follows that

1− 𝜑(𝑤)𝑧

1− 𝑎0𝑧
=
1− 𝜑(𝑧)𝑤

1− 𝑎0𝑤
.

Writing 𝜑(𝑧) = 𝑎0 + 𝑧𝜉(𝑧) where 𝜉 is analytic on 𝔻, we see that

(1− 𝑎0𝑧)𝜉(𝑧) = (1 − 𝑎0𝑤)𝜉(𝑤)

for all 𝑧, 𝑤 in 𝔻. Thus the function (1 − 𝑎0𝑧)𝜉(𝑧) is constant. Letting 𝜉(0) = 𝑎1,
we conclude that 𝜑 has the form (5).

Suppose that 𝜓 and 𝜑 are given by (5) and note that𝑊 is normal if and only
if 𝐽𝑊𝑊 ∗𝐾𝑤 = 𝑊𝑊 ∗𝐽𝐾𝑤 for all 𝑤 in 𝔻. The preceding condition is equivalent
to asserting that

𝜓(𝑤)𝜓(𝑧)

1− 𝜑(𝑤)𝜑(𝑧)
=

𝜓(𝑤)𝜓(𝑧)

1− 𝜑(𝑤)𝜑(𝑧)

holds for all 𝑧, 𝑤 in 𝔻. Taking the reciprocal of the preceding and simplifying,
we see that equality holds for all 𝑧, 𝑤 if and only if either 𝑏 = 0 or 𝑏 ∕= 0 and
Im 𝑎0𝑎1 = (1− ∣𝑎0∣2) Im 𝑎0.
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We also note that 𝑊 =𝑊 ∗ if and only if 𝑊𝐽𝐾𝑤 = 𝐽𝑊𝐾𝑤, which yields

𝜓(𝑧)𝐾𝑤(𝜑(𝑧)) = 𝜓(𝑧)𝐾𝑤(𝜑(𝑧)).

Setting 𝑤 = 0 in the preceding yields 𝜓(𝑧) = 𝜓(𝑧) so that 𝑎0 and 𝑏 are real. This
implies that 𝜑(𝑧) = 𝜑(𝑧) whence 𝑎1 is also real. Conversely, it is easy to see that
if 𝑎0, 𝑎1, and 𝑏 are real, then 𝑊 is Hermitian. □

It follows from the preceding that if 𝑎0, 𝑎1, 𝑏 are chosen so that 𝜑 maps
𝔻 into 𝔻 and so that (i) and (ii) both fail to hold, then the operator 𝑊𝜑,𝜓 :
𝐻2(𝛽𝜅) → 𝐻2(𝛽𝜅) will be complex symmetric and non-normal. Moreover, the
operators produced by Proposition 2.9 include the Hermitian examples considered
in [4, 5].

Question 3. The detailed spectral structure of Hermitian weighted composition
operators 𝑊𝜑,𝜓 : 𝐻2(𝛽𝜅) → 𝐻2(𝛽𝜅) with 𝜓 and 𝜑 given by (5) is studied in
[4, 5]. What is the corresponding spectral theory for the non-normal weighted
composition operators arising from Proposition 2.9?

Note added in proof. Recent work by S. Waleed Noor [15] appears to have answered
Question 1 in the context of the weighted Hardy spaces on the unit ball 𝔹𝑛.
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Abstract. We obtain an analogue of Coburn’s description of the Toeplitz al-
gebra in the setting of truncated Toeplitz operators. As a byproduct, we pro-
vide several examples of complex symmetric operators which are not unitarily
equivalent to truncated Toeplitz operators having continuous symbols.
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1. Introduction

In the following, we let ℋ denote a separable complex Hilbert space and ℬ(ℋ)
denote the set of all bounded linear operators on ℋ. For each X ⊆ ℬ(ℋ), let
𝐶∗(X ) denote the unital 𝐶∗-algebra generated by X . Since we are frequently
interested in the case where X = {𝐴} is a singleton, we often write 𝐶∗(𝐴) in
place of 𝐶∗({𝐴}) in order to simplify our notation.

Recall that the commutator ideal C (𝐶∗(X )) of 𝐶∗(X ) is the smallest norm
closed two-sided ideal which contains the commutators [𝐴,𝐵] := 𝐴𝐵−𝐵𝐴, where
𝐴 and 𝐵 range over all elements of 𝐶∗(X ). Since the quotient algebra

𝐶∗(X )/C (𝐶∗(X ))

is an abelian 𝐶∗-algebra, it is isometrically ∗-isomorphic to 𝐶(𝑌 ), the set of all
continuous functions on some compact Hausdorff space 𝑌 [12, Thm. 1.2.1]. If we

The first named author was partially supported by National Science Foundation Grant DMS-
1001614.
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agree to denote isometric a ∗-isomorphism by ∼=, then we may write
𝐶∗(X )

C (𝐶∗(X ))
∼= 𝐶(𝑌 ). (1)

This yields the short exact sequence

0 −→ C (𝐶∗(X ))
𝜄−→ 𝐶∗(X )

𝜋−→ 𝐶(𝑌 ) −→ 0, (2)

where 𝜄 : C (𝐶∗(X )) → 𝐶∗(X ) is the inclusion map and 𝜋 : 𝐶∗(X ) → 𝐶(𝑌 ) is
the composition of the quotient map with the map which implements (1).

The Toeplitz algebra 𝐶∗(𝑇𝑧), where 𝑇𝑧 denotes the unilateral shift on the
classical Hardy space 𝐻2, has been extensively studied since the seminal work
of Coburn in the late 1960s [10, 11]. Indeed, the Toeplitz algebra is now one of
the standard examples discussed in many well-known texts (e.g., [3, Sect. 4.3],
[13, Ch. V.1], [14, Ch. 7]). In this setting, we have C (𝐶∗(𝑇𝑧)) = K , the ideal of
compact operators on 𝐻2, and 𝑌 = 𝕋 (the unit circle), so that the short exact
sequence (2) takes the form

0 −→ K
𝜄−→ 𝐶∗(𝑇𝑧)

𝜋−→ 𝐶(𝕋) −→ 0. (3)

In other words, 𝐶∗(𝑇𝑧) is an extension of K by 𝐶(𝕋). In fact, one can prove that

𝐶∗(𝑇𝑧) = {𝑇𝜑 +𝐾 : 𝜑 ∈ 𝐶(𝕋),𝐾 ∈ K }
and that each element of 𝐶∗(𝑇𝑧) enjoys a unique decomposition of the form 𝑇𝜑+𝐾
[3, Thm. 4.3.2]. Indeed, it is well known that the only compact Toeplitz operator
is the zero operator [3, Cor. 1, p. 109]. We also note that the surjective map
𝜋 : 𝐶∗(𝑇𝑧)→ 𝐶(𝕋) in (3) is given by 𝜋(𝑇𝜑 +𝐾) = 𝜑.

The preceding results have spawned numerous generalizations and variants
over the years. For instance, one can consider 𝐶∗-algebras generated by matrix-
valued Toeplitz operators or by Toeplitz operators which act upon other Hilbert
function spaces (e.g., the Bergman space [4, 25]). As another example, ifX denotes
the space of functions on 𝕋 which are both piecewise and left continuous, then a
fascinating result of Gohberg and Krupnik asserts that C (𝐶∗(X )) = K and
provides the short exact sequence

0 −→ K
𝜄−→ 𝐶∗(X )

𝜋−→ 𝐶(𝑌 ) −→ 0,

where 𝑌 is the cylinder 𝕋 × [0, 1], endowed with a certain nonstandard topology
[21].

Along different lines, we seek here to replace Toeplitz operators with truncated
Toeplitz operators, a class of operators whose study has been largely motivated by
a seminal 2007 paper of Sarason [26]. Let us briefly recall the basic definitions
which are required for this endeavor. We refer the reader to Sarason’s paper or to
the recent survey article [18] for a more thorough introduction.

For each nonconstant inner function 𝑢, we consider the model space

𝒦𝑢 := 𝐻2 ⊖ 𝑢𝐻2,
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which is simply the orthogonal complement of the standard Beurling-type subspace
𝑢𝐻2 of 𝐻2. Letting 𝑃𝑢 denote the orthogonal projection from 𝐿2 := 𝐿2(𝕋) onto
𝒦𝑢, for each 𝜑 in 𝐿∞(𝕋) we define the truncated Toeplitz operator 𝐴𝑢

𝜑 : 𝒦𝑢 → 𝒦𝑢

by setting

𝐴𝑢
𝜑𝑓 = 𝑃𝑢(𝜑𝑓)

for 𝑓 in 𝒦𝑢. The function 𝜑 in the preceding is referred to as the symbol of the
operator 𝐴𝑢

𝜑.
1 In particular, let us observe that 𝐴𝑢

𝜑 is simply the compression of the

standard Toeplitz operator 𝑇𝜑 : 𝐻
2 → 𝐻2 to the subspace 𝒦𝑢. Unlike traditional

Toeplitz operators, however, the symbol of a truncated Toeplitz is not unique. In
fact, 𝐴𝑢

𝜑 = 0 if and only if 𝜑 belongs to 𝑢𝐻2 + 𝑢𝐻2 [26, Thm. 3.1].

In our work, the compressed shift 𝐴𝑢
𝑧 plays a distinguished role analogous to

that of the unilateral shift 𝑇𝑧 in Coburn’s theory. In light of this, let us recall that
the spectrum 𝜎(𝐴𝑢

𝑧 ) of 𝐴
𝑢
𝑧 coincides with the so-called spectrum

𝜎(𝑢) :=

{
𝜆 ∈ 𝔻− : lim inf

𝑧→𝜆
∣𝑢(𝑧)∣ = 0

}
(4)

of the inner function 𝑢 [26, Lem. 2.5]. In particular, if 𝑢 = 𝑏Λ𝑠𝜇, where 𝑏Λ is a
Blaschke product with zero sequence Λ = {𝜆𝑛} and 𝑠𝜇 is a singular inner function
with corresponding singular measure 𝜇, then

𝜎(𝑢) = Λ− ∪ supp𝜇.
With this terminology and notation in hand, we are ready to state our main

result, which provides an analogue of Coburn’s description of the Toeplitz algebra
in the truncated Toeplitz setting.

Theorem 1. If 𝑢 is an inner function, then

(i) C (𝐶∗(𝐴𝑢
𝑧 )) = K , the algebra of compact operators on 𝒦𝑢,

(ii) 𝐶∗(𝐴𝑢
𝑧 )/K is isometrically ∗-isomorphic to 𝐶(𝜎(𝑢) ∩ 𝕋),

(iii) For 𝜑 in 𝐶(𝕋), 𝐴𝑢
𝜑 is compact if and only if 𝜑(𝜎(𝑢) ∩ 𝕋) = {0},

(iv) 𝐶∗(𝐴𝑢
𝑧 ) = {𝐴𝑢

𝜑 +𝐾 : 𝜑 ∈ 𝐶(𝕋),𝐾 ∈ K },
(v) For 𝜑 in 𝐶(𝕋), 𝜎𝑒(𝐴

𝑢
𝜑) = 𝜑(𝜎𝑒(𝐴

𝑢
𝑧 )),

(vi) For 𝜑 in 𝐶(𝕋), ∥𝐴𝑢
𝜑∥𝑒 = sup{∣𝜑(𝜁)∣ : 𝜁 ∈ 𝜎(𝑢) ∩ 𝕋},

(vii) Every operator in 𝐶∗(𝐴𝑢
𝑧 ) is of the form normal plus compact.

Moreover,

0 −→ K
𝜄−→ 𝐶∗(𝐴𝑢

𝑧 )
𝜋−→ 𝐶(𝜎(𝑢) ∩ 𝕋) −→ 0

is a short exact sequence and thus 𝐶∗(𝐴𝑢
𝑧 ) is an extension of the compact operators

by 𝐶(𝜎(𝑢) ∩ 𝕋). In particular, the map 𝜋 : 𝐶∗(𝐴𝑢
𝑧 )→ 𝐶(𝜎(𝑢) ∩ 𝕋) is given by

𝜋(𝐴𝑢
𝜑 +𝐾) = 𝜑∣𝜎(𝑢)∩𝕋.

1It is possible to consider truncated Toeplitz operators with symbols in 𝐿2(𝕋), although we have
little need to do so here.
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The proof of Theorem 1 is somewhat involved and requires a number of
preliminary lemmas. It is therefore deferred until Section 3. However, let us remark
now that the same result holds when the hypothesis that 𝑓 belongs to 𝐶(𝕋) is
replaced by the weaker assumption that 𝑓 is in X𝑢, the class of 𝐿∞ functions
which are continuous at each point of 𝜎(𝑢)∩𝕋. In fact, given 𝑓 in X𝑢, there exists
a 𝑔 in 𝐶(𝕋) so that

𝐴𝑢
𝑓 ≡ 𝐴𝑢

𝑔 (mod K ).

Thus one can replace 𝐴𝑢
𝑓 with 𝐴𝑢

𝑔 when working modulo the compact operators

and adapt the proof of Theorem 1 so that 𝐶(𝕋) is replaced by X𝑢.
Using completely different language and terminology, some aspects of Theo-

rem 1 can be proven by triangularizing the compressed shift 𝐴𝑢
𝑧 according to the

scheme discussed at length in [24, Lec. V]. For instance, items (vi) and (iii) of the
preceding theorem are [1, Cor. 5.1] and [1, Thm. 5.4], respectively (we should also
mention related work of Kriete [22, 23]). From an operator algebraic perspective,
however, we believe that a different approach is desirable. Our approach is similar
in spirit to the original work of Coburn and forms a possible blueprint for vari-
ations and extensions (see Section 4). Moreover, our approach does not require
the detailed consideration of several special cases (i.e., Blaschke products, singular
inner functions with purely atomic spectra, etc.) as does the approach pioneered
in [1, 2]. In particular, we are able to avoid the somewhat involved computations
and integral transforms encountered in the preceding references.

2. Continuous symbols and the TTO-CSO problem

Recall that a bounded operator 𝑇 on a Hilbert space ℋ is called complex sym-
metric if there exists a conjugate-linear, isometric involution 𝐽 on ℋ such that
𝑇 = 𝐽𝑇 ∗𝐽 . It was first recognized in [16, Prop. 3] that every truncated Toeplitz
operator is complex symmetric (see also [15] where this is discussed in great detail).
This hidden symmetry turns out to be a crucial ingredient in Sarason’s general
treatment of truncated Toeplitz operators [26].

A significant amount of evidence is mounting that truncated Toeplitz opera-
tors may play a significant role in some sort of model theory for complex symmetric
operators. Indeed, a surprising and diverse array of complex symmetric operators
can be concretely realized in terms of truncated Toeplitz operators (or direct sums
of such operators). The recent articles [7, 8, 19, 27] all deal with various aspects
of this problem and a survey of this work can be found in [18, Sect. 9].

It turns out that viewing truncated Toeplitz operators in the 𝐶∗-algebraic
setting can shed some light on the question of whether every complex symmetric
operator can be written in terms of truncated Toeplitz operators (the TTO-CSO
Problem). Corollaries 2 and 3 below provide examples of complex symmetric op-
erators which are not unitarily equivalent to truncated Toeplitz operators having
continuous symbols. To our knowledge, this is the first negative evidence relevant
to the TTO-CSO Problem which has been obtained.
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Corollary 2. If 𝐴 is a noncompact operator on a Hilbert space ℋ, then the operator
𝑇 : ℋ⊕ℋ → ℋ⊕ℋ defined by

𝑇 =

(
0 𝐴
0 0

)
is a complex symmetric operator which is not unitarily equivalent to a truncated
Toeplitz operator with continuous symbol.

Proof. Since 𝑇 is nilpotent of degree two, it is complex symmetric by [20, Thm. 2].
However, 𝑇 is not of the form normal plus compact since [𝑇, 𝑇 ∗] is noncompact.
Thus 𝑇 cannot belong to 𝐶∗(𝐴𝑢

𝑧 ) for any 𝑢 by (vii) of Theorem 1. □

Corollary 3. If 𝑆 denotes the unilateral shift, then 𝑇 =
⊕∞

𝑖=1(𝑆 ⊕ 𝑆∗) is a com-
plex symmetric operator which is not unitarily equivalent to a truncated Toeplitz
operator with continuous symbol.

Proof. First note that the operator 𝑆 ⊕ 𝑆∗ is complex symmetric by [17, Ex. 5]
whence 𝑇 itself is complex symmetric. Since [𝑆, 𝑆∗] has rank one, it follows that
[𝑇, 𝑇 ∗] is noncompact. Therefore 𝑇 is not of the form normal plus compact whence
𝑇 cannot belong to 𝐶∗(𝐴𝑢

𝑧 ) for any 𝑢 by (vii) of Theorem 1. □

Unfortunately, the preceding corollary sheds no light on the following appar-
ently simple problem.

Problem 1. Is 𝑆 ⊕ 𝑆∗ unitarily equivalent to a truncated Toeplitz operator? If so,
can the symbol be chosen to be continuous?

3. Proof of Theorem 1

To prove Theorem 1, we first require a few preliminary lemmas. The first lemma
is well known and we refer the reader to [24, p. 65] or [6, p. 84] for its proof.

Lemma 1. Each function in 𝒦𝑢 can be analytically continued across 𝕋∖𝜎(𝑢).
The following description of the spectrum and essential spectrum of the com-

pressed shift can be found in [26, Lem. 2.5], although portions of it date back to
the work of Livšic and Moeller [24, Lec. III.1]. The essential spectrum of 𝐴𝑢

𝑧 was
computed in [1, Cor. 5.1].

Lemma 2. 𝜎(𝐴𝑢
𝑧 ) = 𝜎(𝑢) and 𝜎𝑒(𝐴

𝑢
𝑧 ) = 𝜎(𝑢) ∩ 𝕋.

Although the following must certainly be well known among specialists, we
do not recall having seen its proof before in print. We therefore provide a short
proof of this important fact.

Lemma 3. 𝐴𝑢
𝑧 is irreducible.
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Proof. Let ℳ be a nonzero reducing subspace of 𝒦𝑢 for the operator 𝐴𝑢
𝑧 . In

light of the fact that ℳ is invariant under the operator 𝐼 − 𝐴𝑢
𝑧 (𝐴

𝑢
𝑧 )
∗ = 𝑘0 ⊗ 𝑘0

[26, Lem. 2.4], it follows that the nonzero vector 𝑘0 belongs to eitherℳ orℳ⊥.
Since 𝑘0 is a cyclic vector for 𝐴𝑢

𝑧 [26, Lem. 2.3], we conclude that ℳ = 𝒦𝑢 or
ℳ = {0}. □

Lemma 4. If 𝜑 ∈ 𝐶(𝕋), then 𝐴𝑢
𝜑 is compact if and only if 𝜑∣𝜎(𝑢)∩𝕋 ≡ 0.

Proof. (⇐) Suppose that 𝜑∣𝜎(𝑢)∩𝕋 ≡ 0. Let 𝜀 > 0 and pick 𝜓 in 𝐶(𝕋) such that 𝜓
vanishes on an open set containing 𝜎(𝑢)∩𝕋 and ∥𝜑−𝜓∥∞ < 𝜀. Since ∥𝐴𝑢

𝜑−𝐴𝑢
𝜓∥ ≤

∥𝜑− 𝜓∥∞ < 𝜀, it suffices to show that 𝐴𝑢
𝜓 is compact. To this end, we prove that

if 𝑓𝑛 is a sequence in 𝒦𝑢 which tends weakly to zero, then 𝐴𝑢
𝜓𝑓𝑛 → 0 in norm.

Let 𝐾 denote the closure of 𝜓−1(ℂ∖{0}) and note that 𝐾 ⊂ 𝕋 ∖𝜎(𝑢). By
Lemma 1, we know that each 𝑓𝑛 has an analytic continuation across 𝐾 from
which it follows that 𝑓𝑛(𝜁) = ⟨𝑓𝑛, 𝑘𝜁⟩ → 0, where

𝑘𝜁(𝑧) =
1− 𝑢(𝜁)𝑢(𝑧)

1− 𝜁𝑧

denotes the reproducing kernel corresponding to a point 𝜁 in 𝐾 [26, p. 495]. Since
𝑢 is analytic on a neighborhood of the compact set 𝐾 we obtain

∣𝑓𝑛(𝜁)∣ = ∣⟨𝑓𝑛, 𝑘𝜁⟩∣ ≤ ∥𝑓𝑛∥∣𝑢′(𝜁)∣ 12 ≤ sup
𝑛
∥𝑓𝑛∥ sup

𝜁∈𝐾
∣𝑢′(𝜁)∣ 12 = 𝐶 <∞

for each 𝜁 in 𝐾. By the dominated convergence theorem, it follows that

∥𝐴𝑢
𝜓𝑓𝑛∥2 = ∥𝑃𝑢(𝜓𝑓𝑛)∥ ≤ ∥𝜓𝑓𝑛∥2 =

∫
𝐾

∣𝜓∣2∣𝑓𝑛∣2 → 0

whence 𝐴𝑢
𝜓𝑓𝑛 tends to zero in norm, as desired.

(⇒) Suppose that 𝜑 belongs to 𝐶(𝕋), 𝜉 belongs to 𝜎(𝑢) ∩ 𝕋, and 𝐴𝑢
𝜑 is compact.

Let

𝐹𝜆(𝑧) :=
1− ∣𝜆∣2
1− ∣𝑢(𝜆)∣2

∣∣∣∣∣1− 𝑢(𝜆)𝑢(𝑧)

1− 𝜆𝑧

∣∣∣∣∣
2

,

which is the absolute value of the normalized reproducing kernel for 𝒦𝑢. Observe
that 𝐹𝜆(𝑧) ≥ 0 and

1

2𝜋

∫ 𝜋

−𝜋

𝐹𝜆(𝑒
𝑖𝑡) 𝑑𝑡 = 1

by definition.

By (4) there is sequence 𝜆𝑛 in 𝔻 such that ∣𝑢(𝜆𝑛)∣ → 0. Suppose that 𝜉 = 𝑒𝑖𝛼

and note that if ∣𝑡− 𝛼∣ ≥ 𝛿, then

𝐹𝜆𝑛(𝑒
𝑖𝑡) ≤ 𝐶𝛿

1− ∣𝜆𝑛∣2
1− ∣𝑢(𝜆𝑛)∣2 → 0. (5)
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This is enough to make the following approximate identity argument go through.
Indeed,∣∣∣∣𝜑(𝜉) − 1

2𝜋

∫ 𝜋

−𝜋

𝜑(𝑒𝑖𝑡)𝐹𝜆𝑛(𝑒
𝑖𝑡) 𝑑𝑡

∣∣∣∣ ≤ 1

2𝜋

∫
∣𝑡−𝛼∣≤𝛿

∣𝜑(𝜉) − 𝜑(𝑒𝑖𝑡)∣𝐹𝜆𝑛(𝑒
𝑖𝑡) 𝑑𝑡

+
1

2𝜋

∫
∣𝑡−𝛼∣≥𝛿

∣𝜑(𝜉) − 𝜑(𝑒𝑖𝑡)∣𝐹𝜆𝑛(𝑒
𝑖𝑡) 𝑑𝑡.

This first integral can be made small by the continuity of 𝜑. Once 𝛿 > 0 is fixed,
the second term goes to zero by (5). □

Remark 1. We would like to thank the referee for suggesting this elegant nor-
malized kernel function proof of the (⇒) direction of this lemma. Our original
argument was somewhat longer.

Lemma 5. For each 𝜑, 𝜓 ∈ 𝐶(𝕋), the semicommutator 𝐴𝑢
𝜑𝐴

𝑢
𝜓 − 𝐴𝑢

𝜑𝜓 is compact.

In particular, the commutator [𝐴𝑢
𝜑, 𝐴

𝑢
𝜓] is compact.

Proof. Let 𝑝(𝑧) =
∑

𝑖 𝑝𝑖𝑧
𝑖 and 𝑞(𝑧) =

∑
𝑗 𝑞𝑗𝑧

𝑗 be trigonometric polynomials on 𝕋
and note that

𝐴𝑢
𝑝𝐴

𝑢
𝑞 −𝐴𝑢

𝑝𝑞 =
∑
𝑖,𝑗

𝑝𝑖𝑞𝑗(𝐴
𝑢
𝑧𝑖𝐴𝑢

𝑧𝑗 −𝐴𝑢
𝑧𝑖+𝑗 ).

We claim that the preceding operator is compact. Since all sums involved are finite,
it suffices to prove that 𝐴𝑢

𝑧𝑖𝐴𝑢
𝑧𝑗 −𝐴𝑢

𝑧𝑖+𝑗 is compact for each pair (𝑖, 𝑗) of integers.

If 𝑖 and 𝑗 are of the same sign, then 𝐴𝑢
𝑧𝑖𝐴𝑢

𝑧𝑗−𝐴𝑢
𝑧𝑖+𝑗 = 0 is trivially compact. If

𝑖 and 𝑗 are of different signs, then upon relabeling and taking adjoints, if necessary,
it suffices to show that if 𝑛 ≥ 𝑚 ≥ 0, then the operator𝐴𝑢

𝑧𝑛𝐴𝑢
𝑧𝑚−𝐴𝑢

𝑧𝑛−𝑚 is compact
(the case 𝑛 ≤ 𝑚 ≤ 0 being similar). In light of the fact that

𝐴𝑢
𝑧𝑛𝐴𝑢

𝑧𝑚 −𝐴𝑢
𝑧𝑛−𝑚 = 𝐴𝑢

𝑧𝑛−𝑚(𝐴𝑢
𝑧𝑚𝐴𝑢

𝑧𝑚 − 𝐼),

we need only show that 𝐴𝑢
𝑧𝑚𝐴𝑢

𝑧𝑚 − 𝐼 is compact for each 𝑚 ≥ 1. However, since
𝐴𝑢

𝑧𝐴
𝑢
𝑧 − 𝐼 has rank one [26, Lem. 2.4], this follows immediately from the identity

𝐴𝑢
𝑧𝑚𝐴𝑢

𝑧𝑚 − 𝐼 =

𝑚−1∑
ℓ=0

𝐴𝑢
𝑧ℓ(𝐴

𝑢
𝑧𝐴

𝑢
𝑧 − 𝐼)𝐴𝑢

𝑧ℓ .

Having shown that 𝐴𝑢
𝑝𝐴

𝑢
𝑞 − 𝐴𝑢

𝑝𝑞 is compact for every pair of trigonometric
polynomials 𝑝 and 𝑞, the desired result follows since we may uniformly approximate
any given 𝜑, 𝜓 in 𝐶(𝕋) by their respective Cesàro means. □

Remark 2. For Toeplitz operators, it is known that the semicommutator 𝑇𝜑𝑇𝜓 −
𝑇𝜑𝜓 is compact under the assumption that one of the symbols is continuous, while
the other belongs to 𝐿∞ [3, Prop. 4.3.1], [13, Cor. V.1.4]. Though not needed for
the proof of our main theorem, the same is true for truncated Toeplitz operators.
This was kindly pointed out to us by Trieu Le. Here is his proof: For 𝑓 in 𝐿∞,
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define the Hankel operator 𝐻𝑢
𝑓 : 𝒦𝑢 → 𝐿2 by 𝐻𝑢

𝑓 := (𝐼 − 𝑃𝑢)𝑀𝑓 and note that

(𝐻𝑢
𝑓 )
∗ = 𝑃𝑢𝑀𝑓 (𝐼 − 𝑃𝑢). For 𝜑, 𝜓 in 𝐿∞ a computation shows that

𝐴𝑢
𝜑𝜓 −𝐴𝑢

𝜑𝐴
𝑢
𝜓 = (𝐻

𝑢
𝜑)
∗𝐻𝑢

𝜓. (6)

If 𝑓 belongs to 𝐿∞, then setting 𝜑 = 𝑓 and 𝜑 = 𝑓 , we have

(𝐻𝑢
𝑓 )
∗𝐻𝑢

𝑓 = 𝐴𝑢
𝑓𝑓
−𝐴𝑢

𝑓
𝐴𝑢

𝑓 .

For continuous 𝑓 it follows from the previous Lemma that (𝐻𝑢
𝑓 )
∗𝐻𝑢

𝑓 and hence

𝐻𝑢
𝑓 is compact whenever 𝑓 is continuous. From (6) we see that if one of 𝜑 or 𝜓 is

continuous then 𝐴𝑢
𝜑𝜓 −𝐴𝑢

𝜑𝐴
𝑢
𝜓 is compact.

Proof of Theorem 1. Before proceeding further, let us remark that statement (iii)
has already been proven (see Lemma 4). We first claim that

𝐶∗(𝐴𝑢
𝑧 ) = 𝐶∗({𝐴𝑢

𝜑 : 𝜑 ∈ 𝐶(𝕋)}), (7)

noting that the containment ⊆ in the preceding holds trivially. Since (𝐴𝑢
𝑧 )
∗ = 𝐴𝑢

𝑧 ,
it follows that 𝐴𝑢

𝑝 belongs to 𝐶∗(𝐴𝑢
𝑧 ) for any trigonometric polynomial 𝑝. We may

then uniformly approximate any given 𝜑 in 𝐶(𝕋) by its Cesàro means to see that
𝐴𝑢

𝜑 belongs to 𝐶∗(𝐴𝑢
𝑧 ). This establishes the containment ⊇ in (7).

We next prove statement (i) of Theorem 1, which states that the commutator
ideal C (𝐶∗(𝐴𝑢

𝑧 )) of 𝐶
∗(𝐴𝑢

𝑧 ) is precisely K , the set of all compact operators on
the model space 𝒦𝑢:

C (𝐶∗(𝐴𝑢
𝑧 )) = K . (8)

The containment C (𝐶∗(𝐴𝑢
𝑧 )) ⊆ K follows easily from (7) and Lemma 5. On the

other hand, Lemma 3 tells us that 𝐴𝑢
𝑧 is irreducible, whence the algebra 𝐶∗(𝐴𝑢

𝑧 )
itself is irreducible. Since [𝐴𝑢

𝑧 , 𝐴
𝑢
𝑧 ] ∕= 0 is compact, it follows that 𝐶∗(𝐴𝑢

𝑧 ) ∩K ∕=
{0}. By [12, Cor. 3.16.8], we conclude thatK ⊆ C (𝐶∗(𝐴𝑢

𝑧 )), which establishes (8).
We now claim that

𝐶∗(𝐴𝑢
𝑧 ) = {𝐴𝑢

𝜑 +𝐾 : 𝜑 ∈ 𝐶(𝕋),𝐾 ∈ K }, (9)

which is statement (iv) of Theorem 1. The containment ⊆ in the preceding holds
because the right-hand side of (9) is a 𝐶∗-algebra which contains 𝐴𝑢

𝑧 (mimic the
first portion of the proof of [3, Thm. 4.3.2] to see this). On the other hand, the
containment ⊇ in (9) follows because 𝐶∗(𝐴𝑢

𝑧 ) contains K by (8) and contains
every operator of the form 𝐴𝑢

𝜑 with 𝜑 in 𝐶(𝕋) by (7).
The map 𝛾 : 𝐶(𝕋)→ 𝐶∗(𝐴𝑢

𝑧 )/K defined by

𝛾(𝜑) = 𝐴𝑢
𝜑 +K

is a homomorphism by Lemma 5 and hence 𝛾(𝐶(𝕋)) is a dense subalgebra of
𝐶∗(𝐴𝑢

𝑧 )/K by (7). In light of Lemma 4, we see that

ker 𝛾 = {𝜑 ∈ 𝐶(𝕋) : 𝜑∣𝜎(𝑢)∩𝕋 ≡ 0}, (10)

whence the map

𝛾 : 𝐶(𝕋)/ ker 𝛾 → 𝐶∗(𝐴𝑢
𝑧 )/K (11)
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defined by

𝛾(𝜑+ ker 𝛾) = 𝐴𝑢
𝜑 +K

is an injective ∗-homomorphism. By [13, Thm. I.5.5], it follows that 𝛾 is an iso-
metric ∗-isomorphism. Since

𝐶(𝕋)/ ker 𝛾 ∼= 𝐶(𝜎(𝑢) ∩ 𝕋) (12)

by (10), it follows that

𝜎𝑒(𝐴
𝑢
𝜑) = 𝜎𝐶(𝜎(𝑢)∩𝕋)(𝜑) = 𝜑(𝜎(𝑢) ∩ 𝕋) = 𝜑(𝜎𝑒(𝐴

𝑢
𝑧 )),

where 𝜎𝐶(𝜎(𝑢)∩𝕋)(𝜑) denotes the spectrum of 𝜑 as an element of the Banach algebra
𝐶(𝜎(𝑢) ∩ 𝕋). This yields statement (v). We also note that putting (11) and (12)
together shows that 𝐶∗(𝐴𝑢

𝑧 )/K is isometrically ∗-isomorphic to 𝐶(𝜎(𝑢)∩𝕋), which
is statement (ii).

We now need only justify statement (vii). To this end, recall that a seminal
result of Clark [9] asserts that for each 𝛼 in 𝕋, the operator

𝑈𝛼 := 𝐴𝑢
𝑧 +

𝛼

1− 𝑢(0)𝛼
𝑘0 ⊗ 𝐶𝑘0 (13)

on 𝒦𝑢 is a cyclic unitary operator and, moreover, that every unitary, rank-one
perturbation of 𝐴𝑢

𝑧 is of the form (13). A complete exposition of this important
result can be found in the text [5]. Since

𝑈𝛼 ≡ 𝐴𝑢
𝑧 (mod K ),

it follows that

𝜑(𝑈𝛼) ≡ 𝐴𝑢
𝜑 (mod K ) (14)

for every 𝜑 in 𝐶(𝕋). This is because the norm on ℬ(𝒦𝑢) dominates the quotient
norm on ℬ(𝒦𝑢)/K and since any 𝜑 in 𝐶(𝕋) can be uniformly approximated by
trigonometric polynomials. Since K ⊆ 𝐶∗(𝐴𝑢

𝑧 ), it follows that

𝐶∗(𝑈𝛼) +K = 𝐶∗(𝐴𝑢
𝑧 ),

which yields the desired result. □

4. Piecewise continuous symbols

Having obtained a truncated Toeplitz analogue of Coburn’s work, it is of interest
to see if one can also obtain a truncated Toeplitz version of Gohberg and Krup-
nik’s results concerning Toeplitz operators with piecewise continuous symbols [21].
Although we have not yet been able to complete this work, we have obtained a
few partial results which are worth mentioning.

Let 𝑃𝐶 := 𝑃𝐶(𝕋) denote the ∗-algebra of piecewise continuous functions on
𝕋. To get started, we make the simplifying assumption that 𝑢 is inner and that

𝜎(𝑢) ∩ 𝕋 = {1}.
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For instance, 𝑢 could be a singular inner function with a single atom at 1 or a
Blaschke product whose zeros accumulate only at 1. Let

A 𝑢
𝑃𝐶 = {𝐴𝑢

𝜑 : 𝜑 ∈ 𝑃𝐶}
denote the set of all truncated Toeplitz operators on 𝒦𝑢 having symbols in 𝑃𝐶.
The following lemma identifies the commutator ideal of 𝐶∗(A 𝑢

𝑃𝐶).

Lemma 6. C (𝐶∗(A 𝑢
𝑃𝐶)) = K .

Proof. Let

𝜒(𝑒𝑖𝜃) := 1− 𝜃

2𝜋
, 0 ≤ 𝜃 < 2𝜋, (15)

and notice that 𝜒 belongs to 𝑃𝐶 and satisfies

𝜒+(1) := lim
𝜃→0

𝜒(𝑒𝑖𝜃) = 1, 𝜒−(1) := lim
𝜃→2𝜋

𝜒(𝑒𝑖𝜃) = 0.

If 𝜑 is any function in 𝑃𝐶, then it follows that

𝜑− 𝜑+(1)𝜒− 𝜑−(1)(1− 𝜒)

is continuous at 1 and assumes the value zero there. By the remarks following
Theorem 1 in the introduction, we see that

𝐴𝑢
𝜑 ≡ 𝛼𝐴𝑢

𝜒 + 𝛽𝐼 (mod K ), (16)

where 𝛼 = 𝜑+(1)− 𝜑−(1) and 𝛽 = 𝜑−(1). In light of (16) it follows that

[𝐴𝜑, 𝐴𝜓] ≡ 0 (mod K )

for any 𝜑, 𝜓 in 𝑃𝐶 whence C (𝐶∗(A 𝑢
𝑃𝐶)) ⊆ K . Since 𝐴𝑢

𝑧 belongs to A 𝑢
𝑃𝐶 , we

conclude that C (𝐶∗(A 𝑢
𝑃𝐶)) contains the nonzero commutator [𝐴

𝑢
𝑧 , 𝐴

𝑢
𝑧 ] whence

𝐶∗(A 𝑢
𝑃𝐶) is irreducible by Lemma 3. Moreover, By [12, Cor. 3.16.8] we conclude

that K ⊆ C (𝐶∗(A 𝑢
𝑃𝐶)) which concludes the proof. □

Lemma 7. 𝐶∗(A 𝑢
𝑃𝐶) = 𝐶∗(𝐴𝑢

𝜒) +K .

Proof. The containment ⊇ is clear from (16) since 𝐶∗(A 𝑢
𝑃𝐶)) contains K . Con-

versely, the containment ⊆ follows immediately from (16). □
From the discussion above and [13, Cor. I.5.6] we know that

𝐶∗(A 𝑢
𝑃𝐶)

C (𝐶∗(A 𝑢
𝑃𝐶))

=
𝐶∗(𝐴𝑢

𝜒) +K

K
∼= 𝐶∗(𝐴𝑢

𝜒)

𝐶∗(𝐴𝑢
𝜒) ∩K

.

is a commutative 𝐶∗-algebra. Unfortunately, we are unable to identify the alge-
bra 𝐶∗(𝐴𝑢

𝜒) in a more concrete manner. This highlights the important fact that
truncated Toeplitz operators such as 𝐴𝑢

𝜒, whose symbols are neither analytic nor
coanalytic, are difficult to deal with.

Problem 2. Suppose that 𝜎(𝑢) = {1}. Give a concrete description of 𝐶∗(𝐴𝑢
𝜒) where

𝜒 denotes the piecewise continuous function (15).

Problem 3. Provide an analogue of the Gohberg–Krupnik result for A 𝑢
𝑃𝐶 . In other

words, give a description of 𝐶∗(A 𝑢
𝑃𝐶) analogous to that of Theorem 1.
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Abstract. In the paper some classes of vector differential operators of infinite
order are studied and their use for constructing the entire solutions of implicit
linear differential equations in a Banach space is considered. In addition, the
integral representations of the Cauchy type for vector differential operators
of infinite order are obtained.
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1. Introduction

Let 𝐸 be a complex Banach space and 𝜑(𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑧

𝑛 be a formal power series,

for which the coefficients are bounded linear operators on 𝐸. In the paper the
applicability of the differential operator of infinite order

𝜑

(
𝑑

𝑑𝑧

)
𝑔 =

∞∑
𝑛=0

𝐶𝑛𝑔
(𝑛) (𝑧)

to two spaces of entire 𝐸-valued functions is considered, namely in the space of all
entire vector-functions and in the space of all entire vector-functions of zero expo-
nential type (see Theorems 2.1 and 2.5). Moreover, we obtained the Cauchy type
integral representation for this operator (see Corollary 4.3 and Theorem 4.4). We
apply these results for studying the well-posedness of some implicit inhomogeneous
linear differential equations in a Banach space in the above-mentioned spaces of
entire functions (Corollaries 2.2, 2.4, 4.5). Note that the cases for which there does
not exist any nontrivial scalar analogue, occur herein (see Corollary 2.2). Also
note that some differential equations in which the corresponding operator is not
densely defined are considered (see Corollary 2.4 and Examples 3.1, 3.6). In the
scalar case differential operators of infinite order were studied in different points
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of view in works of Valiron, Polya, Muggli, Sikkema, Korobeinik, Leont’ev, Dick-
son and many other mathematicians (see, for example [1], [2]). For implicit linear
differential equations in a Banach space we refer to [3]–[5] and to references that
were therein. The entire and holomorphic solutions of explicit and implicit linear
differential equations in a complex Banach space are considered in [6]–[9] and other
works. In [10] holomorphic solutions of linear differential equations in a Banach
space over a non-Archimedean field are examined. The equation on the semi-axis
with an operator which has a nondense domain was studied by P. Sobolevsky, Ju.
Silchenko, Da Prato, and E. Sinestrati ([16]–[18]).

2. On applicability of the vector differential operator
of infinite order

For a complex Banach space 𝐸 we denote by ℋ (ℂ, 𝐸) the space of all entire 𝐸-
valued functions. We endow ℋ (ℂ, 𝐸) with the topology of uniform convergence
on compact sets.

Theorem 2.1. Let 𝜑(𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑧

𝑛 be an entire operator-valued function. Then

𝜑
(

𝑑
𝑑𝑧

)
is a continuous operator on ℋ (ℂ, 𝐸) if and only if 𝜑 is of exponential type.

Proof. Let 𝜑 be of exponential type. Then there are such 𝛾1 > 0 and 𝑀 > 0,
that ∥𝐶𝑛∥ ≤ 𝛾1

𝑀𝑛

𝑛! for all 𝑛 = 0, 1, 2, . . . (see [11], Appendix B). Let now 𝑔 (𝑧) =
∞∑

𝑚=0

𝛼𝑚𝑧𝑚, 𝑅 > 0, 0 < 𝜀 < 1
𝑀+𝑅 and ∣𝑧∣ ≤ 𝑅. Then ∥𝛼𝑚∥ ≤ 𝛾2 ⋅ 𝜀𝑚 for some

𝛾2 > 0 and for all 𝑚. Hence,
∥∥𝑔(𝑛) (𝑧)∥∥ ≤ 𝛾2𝜀

𝑛
∞∑

𝑚=0

(𝑚+𝑛)!
𝑚! (𝜀 ∣𝑧∣)𝑚 ≤ 𝛾2𝑛!𝜀

𝑛

(1−𝜀𝑅)𝑛+1

and
∥∥𝐶𝑛𝑔

(𝑛) (𝑧)
∥∥ ≤ 𝛾1𝛾2

1−𝜀𝑅

(
𝑀𝜀
1−𝜀𝑅

)𝑛

, that is the series
∞∑

𝑛=0
𝐶𝑛𝑔

(𝑛) (𝑧) converges uni-

formly in the disk ∣𝑧∣ ≤ 𝑅. As ℋ (ℂ, 𝐸) is a Fréchet space, then the continuity
𝜑
(

𝑑
𝑑𝑧

)
follows from the Banach–Steinhaus theorem. Let us prove the reverse state-

ment. Let 𝑔0 (𝑧) =
∞∑

𝑛=0
𝛽𝑛𝑧

𝑛, 𝛽𝑛 ∈ ℂ be an arbitrary entire function, 𝜉 ∈ 𝐸 and

𝑔(𝑧) = 𝑔0(𝑧)𝜉. Since the series
∞∑

𝑛=0
𝐶𝑛𝑔

(𝑛) (0) converges, then ∥𝑛!𝐶𝑛𝜉∥ ⋅ ∣𝛽𝑛∣ ≤ 𝑀

for some 𝑀 > 0 and 𝑛 = 0, 1, 2 . . . . Hence lim
𝑛→∞

(
𝑛
√

𝑛! ∥𝐶𝑛𝜉∥ 𝑛
√∣𝛽𝑛∣

)
≤ 1. As

the function 𝑔0 (𝑧) is an arbitrary one, then lim
𝑛→∞

(
𝑛
√

𝑛! ∥𝐶𝑛𝜉∥ 𝑛
√∣𝛽𝑛∣

)
= 0 and

the sequence 𝑛
√

𝑛! ∥𝐶𝑛𝜉∥ is bounded. Using reasoning in a proof of the Banach–
Steinhaus theorem we obtain boundedness of the sequence 𝑛

√
𝑛! ∥𝐶𝑛∥. Thus 𝜑 (𝑧)

is an entire function of exponential type. □

The following corollary is of interest in the vector case only.
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Corollary 2.2. Let 𝑇 : 𝐸 → 𝐸 be a bounded quasinilpotent operator, and let
𝑔(𝑧) be an arbitrary 𝐸-valued entire function. Assume that the Fredholm resol-

vent (1− 𝑧𝑇 )−1 is of exponential type. Then the differential equation

𝑇𝑤′ + 𝑔(𝑧) = 𝑤, (2.1)

has a unique entire solution 𝑤 (𝑧) =
∞∑

𝑛=0
𝑇 𝑛𝑔(𝑛) (𝑧) and this solution continuously

depends on 𝑔 in the topology of the space ℋ (ℂ, 𝐸).

Proof. In the considering case 𝜑(𝑧) =
∞∑

𝑛=0
𝑇 𝑛𝑧𝑛 and 𝜑( 𝑑

𝑑𝑧 )𝑔 =
∞∑

𝑛=0
𝑇 𝑛𝑔(𝑛). It

is easy to check that 𝑤(𝑧) is this solution of Equation (2.1). Let us prove the

uniqueness of this solution. Let 𝑤0(𝑧) =
∞∑

𝑛=0
𝑎𝑛𝑧

𝑛 be an entire solution of the

homogeneous equation 𝑇𝑤′ = 𝑤. Then it is not difficult to verify that 𝑎0 =
𝑛!𝑇 𝑛𝑎𝑛 (see [8], Lemma 1). Therefore

𝑛
√∥𝑎0∥ ≤ 𝑛

√∥𝑎𝑛∥ ⋅ 𝑛
√

𝑛! ∥𝑇 𝑛∥ → 0 since the

sequence 𝑛
√

𝑛!∥𝑇 𝑛∥ is bounded. Hence 𝑎0 = 0. As the function 𝑤0
(𝑘) (𝑧) satisfies

the homogeneous equation as well, we have that 𝑎𝑘 = 0, 𝑘 ∈ ℕ, that is 𝑤0 = 0. □
Remark 2.3. The existence and uniqueness of an entire solution of Equation (2.1)
were proved in ([8], Theorem 2.6) using a different technique.

Corollary 2.4. Let 𝐴 : 𝐷(𝐴)→ 𝐸 be a closed invertible operator on 𝐸, 𝑇 = 𝐴−1,
and let 𝑓(𝑧) be an arbitrary 𝐸-valued entire function. Assume that the Fredholm

resolvent (1− 𝑧𝑇 )−1 is an entire function of exponential type. Then the differential
equation

𝑤′ = 𝐴𝑤 + 𝑓(𝑧), (2.2)

has the unique entire solution 𝑤 (𝑧) = −
∞∑

𝑛=0
𝐴−(𝑛+1)𝑓 (𝑛) (𝑧) and this solution

continuously depends on 𝑓 in the topology of the space ℋ (ℂ, 𝐸).

Proof. Let 𝑔(𝑧) = −𝐴−1𝑓(𝑧). Then 𝑔(𝑧) is an entire function and Equation (2.2)
is equivalent to (2.1). □

Now consider the space ℋ0 (ℂ, 𝐸) of entire 𝐸-valued functions of zero expo-
nential type. That is, if 𝑓 ∈ ℋ0 (ℂ, 𝐸), then it satisfies the following condition:

∀𝜀 > 0 ∃𝛽𝜀 > 0 ∀𝑧 ∈ ℂ : ∥𝑓 (𝑧)∥ ≤ 𝛽𝜀𝑒
𝜀∣𝑧∣.

On ℋ0 (ℂ, 𝐸) we will consider a natural topology of projective limit of Banach
spaces ℋ𝜎 (ℂ, 𝐸), 𝜎 > 0, where

ℋ𝜎 (ℂ, 𝐸) =

{
𝑔 ∈ ℋ (ℂ, 𝐸) : sup

𝑧∈ℂ
∥𝑔 (𝑧)∥ 𝑒−𝜎∣𝑧∣ < +∞

}
.

Theorem 2.5. Let 𝜑 (𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑧

𝑛 be a holomorphic operator-valued function,

𝑔 ∈ ℋ0 (ℂ, 𝐸) and 𝑤 (𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑔

(𝑛) (𝑧). Then the last series converges uniformly
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in every disk, 𝑤(𝑧) is of zero exponential type and 𝜑
(

𝑑
𝑑𝑧

)
is a continuous operator

on ℋ0 (ℂ, 𝐸). Here the zero exponential type of 𝑔(𝑧) is a necessary condition: if

𝑔(𝑧) is an 𝐸-valued entire function and the series
∞∑

𝑛=0
𝐶𝑛𝑔

(𝑛) (0) converges for all

power series 𝜑 (𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑧

𝑛 with positive radius of convergence, then 𝑔(𝑧) is of

zero exponential type.

Proof. Let 𝑅 be a radius of convergence for the series 𝜑 (𝑧). If 1
𝑀 < 𝑅, then

∥𝐶𝑛∥ ≤ 𝛾 ⋅𝑀𝑛 for some 𝛾 > 0 and for all 𝑛 = 0, 1, 2 . . . . Let 0 < 𝜀 < 1
𝑀 . As 𝑔(𝑧)

is a function of zero exponential type, then it is easy to verify that there is a such
𝛽 > 0, for which

∥∥𝑔(𝑛) (𝑧)∥∥ ≤ 𝛽𝜀𝑛𝑒𝜀∣𝑧∣, 𝑧 ∈ ℂ, 𝑛 = 0, 1, 2 . . . . Show that the series
∞∑

𝑛=0
𝐶𝑛𝑔

(𝑛) (𝑧) converges uniformly in any disk and its sum is of zero exponential

type. If 𝑟 > 0 and ∣𝑧∣ ≤ 𝑟, then
∥∥𝐶𝑛𝑔

(𝑛) (𝑧)
∥∥ ≤ ∥𝐶𝑛∥⋅

∥∥𝑔(𝑛) (𝑧)∥∥ ≤ 𝛽 ⋅𝛾 𝑀𝑛𝜀𝑛𝑒𝜀𝑟 =

= 𝛽𝛾 (𝜀𝑀)𝑛𝑒𝜀𝑟 and
∞∑

𝑛=0
(𝜀 ∥𝐶𝑛∥)𝑛 < +∞. Hence, the series

∞∑
𝑛=0

𝐶𝑛𝑔
(𝑛) (𝑧) con-

verges uniformly in the disk ∣𝑧∣ ≤ 𝑟. Moreover

∥𝑔 (𝑧)∥ ≤
∞∑

𝑛=0

∥∥∥𝐶𝑛𝑔
(𝑛) (𝑧)

∥∥∥ ≤ 𝛽𝛾𝑒𝜀∣𝑧∣
∞∑

𝑛=0

(𝜀𝑀)
𝑛
=

𝛽𝛾

1− 𝜀𝑀
⋅ 𝑒𝜀∣𝑧∣.

Let now 𝜎 > 0. Using the Cauchy integral formula and the Stirling formula one
can show that

∥∥𝑔(𝑛)∥∥
𝜎
≤ 2

√
𝜋𝑛𝜎𝑛 ∥𝑔∥𝜎. Thus the operator of differentiation 𝐷

is bounded on ℋ𝜎 (ℂ, 𝐸) and ∥𝐷𝑛∥ ≤ 2
√
𝜋𝑛𝜎𝑛. Therefore the series

∞∑
𝑛=0

𝐶𝑛𝑔
(𝑛)

converges in ℋ𝜎 (ℂ, 𝐸) for all 𝜎 < 𝑅. Hence this series converges in the space
ℋ0 (ℂ, 𝐸). We obtain that 𝜑( 𝑑

𝑑𝑧 ) is continuous since ℋ0 (ℂ, 𝐸) is a Fréchet space.
The necessity that 𝑔(𝑧) is an entire function of zero exponential type follows from

the consideration of the class of the series 𝜑𝑟 (𝑧) =
∞∑

𝑛=0

𝑧𝑛

𝑟𝑛 𝐼, 𝑟 > 0, where 𝐼 is the

identity operator. □

Corollary 2.6. Let 𝐸1 and 𝐸2 be Banach spaces, 𝑄 : 𝐸1 → 𝐸2 be an arbitrary
bounded linear operator, and let 𝐴 : 𝐷(𝐴) → 𝐸2 be a closed invertible linear
operator with 𝐷(𝐴) ⊂ 𝐸1. Consider the following implicit differential equation

𝑄𝑤′ = 𝐴𝑤 + 𝑓(𝑧), (2.3)

where 𝑓 is an 𝐸2-valued entire function. If 𝑓 is of zero exponential type then
Equation (2.3) has the unique entire solution of zero exponential type

𝑤 (𝑧) = −
∞∑

𝑛=0

(
𝐴−1𝑄

)𝑛
𝐴−1𝑓 (𝑛) (𝑧)

and this solution continuously depends on 𝑓 in the topology of the space ℋ0 (ℂ, 𝐸2).
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Proof. Let 𝑇 = 𝐴−1𝑄 and 𝑔(𝑧) = −𝐴−1𝑓 (𝑧). Then 𝑔 is of zero exponential type
and Equation (2.3) is equivalent to Equation (2.1). Now the proof is similar to the
proof of Corollary 2.2. □

3. Examples

Let us give some examples.

Example 3.1. Let 𝐸 = 𝐶 [0, 1], 𝐴 = 𝑑
𝑑𝑥 and 𝐷 (𝐴) =

{
𝑢 ∈ 𝐶1 [0, 1] : 𝑢 (0) = 0

}
.

Then 𝐷(𝐴) is not dense in 𝐸, the operator 𝐴 is invertible,
(
𝐴−1ℎ

)
(𝑥) =

𝑥∫
0

ℎ (𝑦) 𝑑𝑦

and
(
𝐴−(𝑛+1)ℎ

)
(𝑥) = 1

𝑛!

𝑥∫
0

(𝑥− 𝑦)
𝑛
ℎ (𝑦)𝑑𝑦. Hence, if 𝑇 = 𝐴−1, then 𝑇 is a

bounded quasinilpotent operator and its Fredholm resolvent is of exponential type.
By transition to real axes Equation (2.2) has the form{

∂𝑤
∂𝑡 =

∂𝑤
∂𝑥 + 𝑓 (𝑡, 𝑥) , 𝑡 ∈ ℝ, 𝑥 ∈ (0, 1)

𝑤 (𝑡, 0) = 0
(3.1)

If in the second variable 𝑓 can be extended to an entire function, then in this
class of functions Problem (3.1) has the unique solution

𝑤 (𝑡, 𝑥) = −
∞∑

𝑛=0

1

𝑛!

𝑥∫
0

(𝑥− 𝑦)
𝑛 ∂𝑛𝑓

∂𝑡𝑛
(𝑡, 𝑦) 𝑑𝑦 = −

𝑥∫
0

𝑓 (𝑡+ 𝑥− 𝑦, 𝑦) 𝑑𝑦.

It is important to note that Problem (3.1) has only a zero solution for the
homogeneous equation even in the class of continuously differentiable functions.
Specifically, 𝐴 is not a Hille–Yosida operator (see [12], Section 3.5)

Example 3.2. Now let us show that when 𝑇 is quasinilpotent, but its Fredholm
resolvent is not of exponential type, then Equation (2.1) can have no smooth
solution onto [0, 𝑡0], 𝑡0 > 0 at all.

Let 𝐸 be a Hilbert space with an orthonormalized basis {𝑒𝑛}∞𝑛=0, 𝑇 be the

weighted shift operator such that 𝑇𝑒𝑛 =
1√
𝑛+1

𝑒𝑛+1, and 𝑔 (𝑧) = 𝑒𝑧
2

𝑒0. It is easy

to check that ∥𝑇 𝑛∥ = 1√
𝑛!
. Therefore 𝑇 is quasinilpotent but 𝑛

√
𝑛!∥𝑇 𝑛∥ → +∞.

Hence the Fredholm resolvent (1− 𝑧𝑇 )−1 is not of exponential type. If 𝑤 (𝑡) =
∞∑

𝑛=0
𝑤𝑛 (𝑡) 𝑒𝑛 is a solution of Equation (2.1) on the real axes then{

𝑒𝑡
2

= 𝑤0 (𝑡)

1√
𝑛+1

𝑤′𝑛 (𝑡) = 𝑤𝑛+1 (𝑡) , 𝑛 ≥ 0.

Hence 𝑤𝑛 (𝑡) =
1√
𝑛!

(
𝑒𝑡

2
)(𝑛)

and 𝑤2𝑛 (0) =

√
(2𝑛)!

𝑛! . Therefore
∞∑

𝑛=0
∣𝑤𝑛 (0)∣2 = +∞,

i.e., Equation (2.1) has no smooth solutions on [0, 𝑡0], 𝑡0 > 0.
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Let us consider some examples of differential operators of infinite order in the
space of entire functions of zero exponential type. In our opinion the interesting
examples even appear in the finite-dimensional case.

Example 3.3. Let 𝐸 = ℂ, and 𝑎 ∈ ℂ, 𝑎 ∕= 0. Consider the differential equation 𝑤′ =
𝑎𝑤+𝑓(𝑧). If 𝑓(𝑧) is an entire function of zero exponential type, then this equation

has a unique entire solution of zero exponential type 𝑤 (𝑧) = −
∞∑

𝑛=0

1
𝑎𝑛+1 𝑓

(𝑛) (𝑧)

and this solution continuously depends on 𝑓 in the topology of the spaceℋ0 (ℂ,ℂ).

Example 3.4. Consider the following equation of forced oscillations 𝑥+𝜔2𝑥 = 𝑓(𝑡),
where 𝜔 > 0 and 𝑓(𝑡) is the trace on the real axes of an entire function of zero

exponential type. This equation has a unique solution 𝑥 (𝑡) =
∞∑
𝑘=0

(−1)𝑘
𝜔2𝑘+2 𝑓

(2𝑘) (𝑡),

which can be extended to an entire function of zero exponential type.

Example 3.5. Let 𝐸 be a Hilbert space, 𝐴 be a closed normal operator on 𝐸 with
discrete spectrum and 0 /∈ 𝜎 (𝐴). Let {𝑒𝑘} be an orthonormalized eigenbasis for
𝐴, 𝐴 𝑒𝑘 = 𝜆𝑘 𝑒𝑘, where 𝜆𝑘 →∞. If 𝑓 : ℂ→ 𝐸, 𝑓 (𝑧) =

∑
𝑘

𝑓𝑘 (𝑧) 𝑒𝑘 is an entire

function of zero exponential type, then Equation (2.2) has the following unique

entire solution of zero exponential type 𝑤 (𝑧) = −
∞∑

𝑛=0

(∑
𝑘

𝜆
−(𝑛+1)
𝑘 𝑓

(𝑛)
𝑘 (𝑧) 𝑒𝑘

)
.

Example 3.6. Let 𝐸 = 𝐶 [0, 1], 𝐴 = 𝑑2

𝑑𝑥2 , and

𝐷 (𝐴) =
{
𝑢 ∈ 𝐶2 [0, 1] : 𝑢 (0) = 𝑢 (1) = 0

}
.

Then the operator 𝐴 is invertible and
(
𝐴−1ℎ

)
(𝑥) =

1∫
0

𝐺 (𝑥, 𝑦) ℎ (𝑦)𝑑𝑦, where 𝐺

is the Green function of the corresponding boundary problem. Moreover,

(
𝐴−(𝑛+1)ℎ

)
(𝑥) =

1∫
0

𝐺𝑛+1 (𝑥, 𝑦) ℎ (𝑦) 𝑑𝑦,

where 𝐺1 (𝑥, 𝑦) = 𝐺 (𝑥, 𝑦) and 𝐺𝑛+1 (𝑥, 𝑦) =
1∫
0

𝐺𝑛 (𝑥, 𝑠) 𝐺 (𝑠, 𝑦) 𝑑𝑠. Now on

real axes Equation (2.2) has the form of the heat equation with zero boundary
conditions: {

∂𝑤
∂𝑡 =

∂2𝑤
∂𝑥2 + 𝑓 (𝑡, 𝑥) , 𝑡 ∈ ℝ, 𝑥 ∈ (0, 1)

𝑤 (𝑡, 0) = 𝑤 (𝑡, 1) = 0
(3.2)

If 𝑓 (𝑡, 𝑥) =
∞∑

𝑛=0
𝑐𝑛 (𝑥) 𝑡𝑛, where 𝑐𝑛 ∈ 𝐶 [0, 1] and lim

𝑛→∞
𝑛
√

𝑛! ∥𝑐𝑛∥ = 0, then the

problem (2.2) has the solution 𝑤 (𝑡, 𝑥) = −
∞∑

𝑛=0

1∫
0

𝐺𝑛+1 (𝑥, 𝑦)
∂𝑛𝑓
∂ 𝑡𝑛 (𝑡, 𝑦) 𝑑𝑦.
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4. Integral representations of Cauchy type for
a vector differential operator of infinite order

Let 𝜑(𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑧

𝑛 be a formal power series with operator coefficients and 𝑔(𝑧)

be an entire vector function. Using the following Cauchy integral formula for the
𝑛th derivative

𝑔(𝑛)(𝑧) =
𝑛!

2𝜋𝑖

∮
∣𝜁∣=∣𝑧∣+𝑟

𝑔(𝜁)

(𝜁 − 𝑧)𝑛+1
𝑑𝜁, 𝑟 > 0,

we make such a formal transformation of the formal differential operator 𝜑( 𝑑
𝑑𝑧 ):

(𝜑

(
𝑑

𝑑𝑧

)
𝑔)(𝑧) =

∞∑
𝑛=0

𝐶𝑛𝑔
(𝑛) (𝑧) =

1

2𝜋𝑖

∞∑
𝑛=0

𝑛!𝐶𝑛

∮
∣𝜁∣=∣𝑧∣+𝑟

𝑔(𝜁)

(𝜁 − 𝑧)𝑛+1
𝑑𝜁

=
1

2𝜋𝑖

∮
∣𝜁∣=∣𝑧∣+𝑟

( ∞∑
𝑛=0

𝑛!𝐶𝑛

(𝜁 − 𝑧)𝑛+1

)
𝑔(𝜁)𝑑𝜁.

Let us give the meaning of this formal transformation in the considered two
cases in the Section 2. Namely, 𝜑(𝑧) is an entire function of exponential type (see,
Theorem 2.1) and 𝜑(𝑧) has positive radius of convergence (see Theorem 2.5).

Proposition 4.1. Let the conditions of Theorem 2.1 be fulfilled and let Φ(𝜁) =
∞∑

𝑛=0

𝑛!𝐶𝑛

𝜁𝑛+1 be the Borel transform of 𝜑(𝑧). Then

(𝜑

(
𝑑

𝑑𝑧

)
𝑔)(𝑧) =

1

2𝜋𝑖

∮
∣𝜁∣=∣𝑧∣+𝑟

Φ(𝜁 − 𝑧)𝑔(𝜁)𝑑𝜁, (4.1)

where 𝑟 is greater than the exponential type of 𝜑(𝑧).

Proof. Let the exponential type of 𝜑(𝑧) is equal to 𝜎. Then Φ(𝜁) is holomorphic
out of the circle ∣𝜁∣ = 𝜎. If 𝑟 > 𝜎 and ∣𝜁∣ = ∣𝑧∣+𝑟, then ∣𝜁−𝑧∣ ≥ ∣∣𝜁∣− ∣𝑧∣∣ = 𝑟 > 𝜎.
Therefore for any 𝑧 ∈ ℂ the function Φ(𝜁 − 𝑧)𝑔(𝜁) is holomorphic out of the circle
∣𝜁∣ = ∣𝑧∣+ 𝜎. Having changed the variables 𝑠 = 𝜁 − 𝑧 on the right-hand side of the
equality (4.1) we have

1

2𝜋𝑖

∮
∣𝜁∣=∣𝑧∣+𝑟

Φ(𝜁 − 𝑧)𝑔(𝜁)𝑑𝜁 =
1

2𝜋𝑖

∮
∣𝑠+𝑧∣=∣𝑧∣+𝑟

Φ(𝑠)𝑔(𝑠+ 𝑧)𝑑𝑠

=
1

2𝜋𝑖

∮
∣𝑠∣=𝑟

Φ(𝑠)𝑔(𝑠+ 𝑧)𝑑𝑠.

The last obtained integral is the classical convolution integral representation for
the differential operator of infinite order (in the scalar case see, for example, [13],
Ch. 5, §7, formula (77)). □
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Remark 4.2. The closed path in the integral representation (4.1) depends on 𝑧. A
simpler form for the representation of the Cauchy type can be obtained by using
the the following notion of a formal integral in the space of formal Laurent series
(see, [14], [15]).

Let 𝑉 be an arbitrary complex vector space and 𝑉
[[

𝜁, 1𝜁

]]
be the space of

all formal Laurent series with coefficient of 𝑉 . For 𝑓 (𝜁) =
∞∑

𝑛=−∞
𝑏𝑛𝜁

𝑛 ∈ 𝑉
[[

𝜁, 1𝜁

]]
we set ∮

𝑓 (𝜁)𝑑𝜁 = 2𝜋 𝑖 𝑏−1. (4.2)

Now from Proposition 4.1 we obtain

Corollary 4.3. Let 𝜑,Φ, 𝑔 be the same as in Proposition 4.1. Then for any given
𝑧 ∈ ℂ the following inclusion

Φ(𝜁 − 𝑧)𝑔(𝜁) ∈ 𝐸

[[
𝜁,
1

𝜁

]]
is fulfilled and

𝑤(𝑧) =
1

2𝜋𝑖

∮
Φ(𝜁 − 𝑧)𝑔(𝜁)𝑑𝜁,

where the integral is considered in the sense of (4.2).

If the power series 𝜑(𝑧) =
∞∑

𝑛=0
𝐶𝑛𝑧

𝑛 is not an entire function of exponential

type, then its formal Laplace–Borel transform Φ(𝜁) =
∞∑

𝑛=0

𝑛!𝐶𝑛

𝜁𝑛+1 diverges for all 𝜁.

In this case we will consider Φ(𝜁 − 𝑧) as the following power series in power 1
𝜁 :

Φ(𝜁 − 𝑧) =

∞∑
𝑛=0

𝑛!𝐶𝑛

(𝜁 − 𝑧)𝑛+1
def
=

∞∑
𝑛=0

1

𝜁𝑛+1
𝑛!𝐶𝑛

(1− 𝑧
𝜁 )

𝑛+1
=

∞∑
𝑛=0

( ∞∑
𝑘=0

𝑧𝑘

𝜁𝑘

)𝑛+1
𝑛!𝐶𝑛

𝜁𝑛+1
.

We have that Φ(𝜁 − 𝑧) ∈ 𝐵(𝐸)[[𝑧]][[𝜁, 1𝜁 ]], i.e., Φ(𝜁 − 𝑧) is a formal Laurent

series in 𝜁 with formal power series over 𝐵(𝐸) as coefficients, where 𝐵(𝐸) is the
space of all bounded linear operator on 𝐸.

Theorem 4.4. Let the conditions of Theorem 2.5 be fulfilled. Then the product

Φ (𝜁 − 𝑧) 𝑔 (𝜁) is well defined as an element of the space 𝐸 [[𝑧]]
[[

𝜁, 1𝜁

]]
and

𝑤 (𝑧) =
1

2𝜋𝑖

∮
Φ (𝜁 − 𝑧) 𝑔 (𝜁)𝑑𝜁. (4.3)
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Proof. First we need to show that Φ(𝜁−𝑧)𝑔(𝜁) exists as an element of 𝐸[[𝑧]][[𝜁, 1𝜁 ]].

We have

Φ(𝜁 − 𝑧) =

∞∑
𝑛=0

𝑛!
𝐶𝑛

𝜁𝑛+1

(
1 +

𝑧

𝜁
+

𝑧2

𝜁2
+ ⋅ ⋅ ⋅

)𝑛+1

=

∞∑
𝑛=0

𝑛!𝐶𝑛

∞∑
𝑗=𝑛

𝐶𝑛
𝑗

𝑧𝑗−𝑛

𝜁𝑗+1
=

∞∑
𝑗=0

(
𝑗∑

𝑛=0

𝑛!𝐶𝑛
𝑗 𝐶𝑛𝑧

−𝑛

)
𝑧𝑗

𝜁𝑗+1

=

∞∑
𝑗=0

(
𝑗∑

𝑛=0

𝑗!

(𝑗 − 𝑛)!𝑧𝑛
𝐶𝑛

)
𝑧𝑗

𝜁𝑗+1
.

If 𝑔(𝜁) =
∞∑

𝑘=0

𝛼𝑘𝜁
𝑘, then the product Φ(𝜁 − 𝑧)𝑔(𝜁) can be formally rewritten as

follows:

Φ(𝜁 − 𝑧)𝑔(𝜁) =

⎛⎝ ∞∑
𝑗=0

(
𝑗∑

𝑛=0

𝑗!

(𝑗 − 𝑛)!𝑧𝑛
𝐶𝑛

)
𝑧𝑗

𝜁𝑗+1

⎞⎠ ⋅( ∞∑
𝑘=0

𝛼𝑘𝜁
𝑘

)

=

∞∑
𝑛=0

( ∞∑
𝑘=0

𝛼𝑘

𝑛+𝑘∑
𝑚=0

(𝑛+ 𝑘)!𝑧𝑛+𝑘−𝑚

(𝑛+ 𝑘 −𝑚)!
𝐶𝑚

)
1

𝜁𝑛+1

+

∞∑
𝑛=0

( ∞∑
𝑘=0

𝛼𝑘+𝑛+1

𝑘∑
𝑚=0

𝑘!𝑧𝑘−𝑚

(𝑘 −𝑚)!
𝐶𝑚

)
𝜁𝑛.

One can use estimations for the function 𝑔(𝑧) to show that the coefficients at each
term 𝜁𝑛, 𝑛 ∈ ℤ are convergent series. We check this only for the coefficient at the
term 1

𝜁 , which we are mostly interested in. Write out separately this coefficient:

∞∑
𝑘=0

𝛼𝑘

(
𝑘∑

𝑚=0

𝑘!𝐶𝑚

(𝑘 −𝑚)!

)
𝑧𝑘−𝑚 =

∞∑
𝑚=0

𝐶𝑚

∞∑
𝑘=𝑚

𝛼𝑘
𝑘!

(𝑘 −𝑚)!
𝑧𝑘−𝑚

=

∞∑
𝑚=0

𝐶𝑚𝑔(𝑚)(𝑧) = 𝑤(𝑧),

and
∞∑
𝑘=0

𝛼𝑘(

𝑘∑
𝑚=0

𝑘!𝐶𝑚

(𝑘 −𝑚)!
)𝑧𝑘−𝑚 =

∞∑
𝑘=0

( ∞∑
𝑚=0

𝛼𝑘+𝑚
(𝑘 +𝑚)!

𝑘!
𝐶𝑚

)
𝑧𝑘.

To validate this formal transformations above it is sufficient to show
∞∑
𝑘=0

∞∑
𝑚=0

∣∣𝐶𝑚∣∣∣𝛼𝑘+𝑚∣ (𝑘 +𝑚)!

𝑘!
∣𝑧∣𝑘 < +∞,

for all 𝑧 ∈ ℂ. Let𝑅 be a radius of convergence of the series 𝜑(𝑧) and 0 < 𝜎 < 𝑟 < 𝑅.

Then ∣∣𝐶𝑚∣∣ ≤ 𝑀1

𝑟𝑚 and ∣𝛼𝑘+𝑚∣ ≤ 𝑀2𝜎
𝑘+𝑚

(𝑘+𝑚)! for certain 𝑀1,𝑀2 > 0 and all 𝑚, 𝑘.
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Therefore,
∞∑
𝑘=0

∞∑
𝑚=0

∣∣𝐶𝑚∣∣∣𝛼𝑘+𝑚∣(𝑘 +𝑚)!

𝑘!
∣𝑧∣𝑘 ≤

∞∑
𝑘=0

∞∑
𝑚=0

𝑀1𝑀2

𝑟𝑚
⋅ 𝜎

𝑘+𝑚

𝑘!
∣𝑧∣𝑘

≤𝑀1𝑀2

∞∑
𝑚=0

(
𝜎

𝑟
)𝑚

∞∑
𝑘=0

𝜎𝑘

𝑘!
∣𝑧∣𝑘 = 𝑀1𝑀2

1− 𝜎
𝑟

𝑒𝜎∣𝑧∣, 𝑧 ∈ ℂ. (4.4)

Thus,
∞∑

𝑘=0

( ∞∑
𝑚=0

𝛼𝑘+𝑚
(𝑘+𝑚)!

𝑘! 𝐶𝑚

)
𝑧𝑘 is an entire function, and we obtain

1

2𝜋𝑖

∮
Φ(𝜁 − 𝑧)𝑔(𝜁)𝑑𝜁 = 𝑤(𝑧).

Finally, point out that the evaluation (4.4) reveals again that 𝑤(𝑧) is an entire
function of zero exponential type. The theorem is proved. □

From Corollary 2.6 and Theorem 4.4 we obtain the following integral repre-
sentation of Cauchy type for the solution of Equation (2.3).

Corollary 4.5. Let all conditions of Corollary 2.6 be fulfilled and let

Ψ(𝜁) =

∞∑
𝑛=0

𝑛!(𝐴−1𝑄)𝑛𝐴−1

𝜁𝑛+1

be the formal Laplace–Borel transform of the resolvent 𝑅 (𝑧) = (𝑧𝑄−𝐴)
−1
of the

pencil 𝐿 (𝑧) = 𝑧𝑄 − 𝐴. The unique solution of zero exponential type of Equation
(2.3) can be represented in the following integral form

𝑤 (𝑧) =
1

2𝜋𝑖

∮
Ψ(𝜁 − 𝑧) 𝑓 (𝜁)𝑑𝜁,

where the integral is considered in the sense of (4.2).
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Wiener–Hopf Type Operators and
Their Generalized Determinants

James F. Glazebrook

Abstract. We recall some results on generalized determinants which support
a theory of operator 𝜏 -functions in the context of their predeterminants which
are operators valued in a Banach–Lie group that are derived from the tran-
sition maps of certain Banach bundles. Related to this study is a class of
Banach–Lie algebras known as L*-algebras from which several results are ob-
tained in relationship to tau functions. We survey the applicability of this
theory to that of Schlesinger systems associated with (operator) equations
of Fuschsian type and discuss how meromorphic connections may play a role
here.
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1. Introduction

This contribution is in part based on my talk at IWOTA 2011 in Seville (Spain).
At first glances it has the look of a survey bringing together some known results
under one roof, but then it unfolds to a more general perspective, and eventually
suggests some new directions via applications.

After delving into the background to generalized determinants and operator-
valued meromorphic functions, it seemed fitting for these Proceedings to acknowl-
edge the important work in this area that was accomplished by Professor Gohberg
along with several of his coworkers towards the development of some foundational
concepts which enter into part of the survey here (as realized in [28, 29, 30, 31],
for instance). We expect that the fruits of his profound mathematical insight will
continue to influence many research projects in the years to come.
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The scene is set by recalling some earlier work regarding the existence of
determinants in the Banach algebra category, along with a class of operators be-
longing to a Banach–Lie group for which the concept of determinant can be de-
fined. This is developed in the context of transition maps of a bundle theory over
a class of infinite-dimensional manifolds, as was the case in [23]. The resulting
operators, in a certain sense, can be viewed as generalized Wiener–Hopf operators,
and these turn out to be a shade more general than the meaning that can be found
in the current literature (see, e.g., [16, 35]). It is mainly this class of operators that
encapsulates several of the ‘predeterminants’ that are probed into.

One principal theme deals with a particular class of generalized determinant
operators giving rise to an assortment of 𝜏-functions, the background to which is
discussed in §4.1. This subject is motivated from several sources such as [36, 37, 59,
63] in the Grassmannian setting which includes flows on invariant subspaces [35],
and the close relationship with the Painlevé equations (see Appendix B). Familiar
examples arise from Toeplitz and Fredholm determinants in the case where the
algebra is ℒ(𝐻) (𝐻 a Hilbert space), in which case, studying the various classes
of integral operators and their corresponding determinants seems to be relevant
here. In this respect it is worth mentioning several ideas that were previously
introduced in [22, 23, 24, 25] connecting to the theory of integrable systems (for
instance, involving Lax Pairs and the KP-Hierarchy) with operator theory. Further,
we will recall, from, e.g., [5], the class of Banach–Lie algebras known as (simple) L*-
algebras, which along with Kac–Moody algebras can be interwoven into this study.
Some new observations in this direction are obtained in the form of Propositions
6.1, 6.2, and 6.3.

There is already a significant amount of work that links the 𝜏 -function the-
ory to Schlesinger systems in the framework of the Riemann–Hilbert problem and
isomonodromic deformations (see [3, 9, 11, 36, 37] and references therein). The
present approach, as taken in an infinite-dimensional vector bundle (with con-
nection) setting, suggests something more general since we introduce and apply
certain operator-valued mechanisms. Of interest are (closed) 1-forms of the type
𝑑 ln 𝜏 . Partial motivation for doing this is suggested by the work of Katsnelson and
Volok [39] who considered this problem from the point of view of matrix-operator
differential equations of Fuchsian type along with their associated Schlesinger sys-
tems. The instrumentation of generalized determinants and meromorphic operator-
valued functions is one such example, and here some attention is paid to the idea
of an operator meromorphic connection besides suggesting several examples where
this can be realized (§7.2).

2. Background to the geometry

2.1. A principal bundle and its transition map

We will start by outlining a general construction from which a large class of in-
teresting and well-studied operators can be obtained directly from the transition
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functions of an infinite-dimensional bundle theory. A class of these operators will
in fact produce the ‘predeterminants’ for several types of operator-valued functions
of a determinant type that we keep in mind.

Let 𝐴 be a (complex, associative) unital Banach algebra with group of units
𝐺(𝐴) and space of idempotents 𝑃 (𝐴) (in some cases 𝐴 may be semisimple, and
this is assumed if needs be). For a given 𝑝 ∈ 𝑃 (𝐴), we denote by Λ = Sim(𝑝,𝐴)
the similarity orbit of 𝑝 under the inner automorphic action of 𝐺(𝐴). There exists
a natural map [23, §5]

𝜋Λ : Λ −→ Gr(𝑝,𝐴), (2.1)

where Gr(𝑝,𝐴) is an associated Grassmannian of closed subspaces𝑊 = Im(𝑝) (see
[21, §6]). In the following we shall be considering certain Banach–Lie subgroups
(subalgebras) of 𝐺(𝐴) (respectively, of 𝔤(𝐴)).

Remark 2.1. For the standard theory of Banach algebras and associated classes
of linear operators we refer to [18, 29]. For the general theory of Banach–Lie
groups (algebras) and the infinite-dimensional manifolds modeled on these (such
as Gr(𝑝,𝐴) above) reference [5](cf. [20]) provides a comprehensive account from the
operator algebra perspective including many references to the related work of other
authors, while much of the development of the relationships between the Banach
manifolds Gr(𝑝,𝐴) and Λ appeared in [21, 23]. As far as parts of this preliminary
section is concerned there is a significant amount of related work that has been
progressively developed in [5, 6, 7] pertaining to the theory of holomorphic vector
bundles over infinite-dimensional flag manifolds.

The detailed framework outlined in [23, §5 and §6] produces a principal
𝐺(𝑝𝐴𝑝)-bundle with connection

(𝑄′, 𝜔𝑄′) −→ Λ, (2.2)

and an associated vector bundle (with Koszul connection) (𝛾′Λ,∇′Λ) −→ Λ, whose
structure group is 𝐺(𝑝𝐴𝑝). This associated vector bundle is constructed via the
usual means (cf. [43, Chap. 37]). There is the transition map

𝑡Λ : 𝑄
′ ×Λ 𝑄′ −→ 𝐺(𝑝𝐴𝑝), (2.3)

which for a pair of sections 𝛼, 𝛽, is given by 𝛼𝑡Λ(𝛼, 𝛽) = 𝛽. For now we take
𝐴 = ℒ(𝐸) where 𝐸 is a (complex) Banach space, and then observe that the
operator T(𝛼,𝛽) = 𝑡Λ(𝛼, 𝛽) ∈ 𝐺(𝑝𝐴𝑝) belongs to some class (to be made more
precise later).

Remark 2.2. It will be instructive to point out that 𝜔𝑄′ in (2.2) is constructed via
the properties of a Lie(𝐺(𝑝𝐴𝑝))-valued connection map 𝒱 : 𝑇𝑄′ −→ 𝑇𝑄′ (see [23,
§5.2]) to be used within the meromorphic context later in §7.2.
2.2. Reduction of the structure group

Suppose 𝐵 ⊆ 𝐴 is a Banach subalgebra and 𝐺 ⊆ 𝐺(𝑝𝐵𝑝) ⊆ 𝐺(𝑝𝐴𝑝) is a Banach–
Lie subgroup. Then in the standard way, granting the existence of a cross section
Λ −→ 𝑄′/𝐺, we obtain from (2.2), a (reduced) principal 𝐺-bundle 𝑄 −→ Λ. The
means of doing this is formally the same as seen in, e.g., [41, Propositions 5.5, 5.6]
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and [43, p. 381]. We also assume, that under appropriate conditions (cf. [43, p.
381] and [41, Theorem 7.1]), that the connection 𝜔𝑄′ has been reduced accordingly.
This can be achieved by commencing from a Banach–Lie group homomorphism
𝜓 : 𝐺 −→ 𝐺(𝑝𝐴𝑝), and a principal bundle homomorphism

Ψ : (𝑄,𝐺,Λ) −→ (𝑄′, 𝐺(𝑝𝐴𝑝),Λ), (2.4)

such that Ψ : 𝑄 −→ 𝑄′ is smooth, and Ψ(𝑢 ⋅ 𝑔) = Ψ(𝑢) ⋅ 𝜓(𝑔) (see [43, p. 381]).
Hence we obtain a commutative diagram

𝑄
Ψ−−−−→ 𝑄′⏐⏐= ⏐⏐=

Λ
˜Ψ−−−−→ Λ

(2.5)

A pull-back connection 𝜔𝑄 on 𝑄 is then obtained as 𝜔𝑄 = Ψ
∗𝜔𝑄′ , and so leads to a

principal 𝐺-bundle with connection (𝑄,𝜔𝑄) −→ Λ, along with its related objects.
In particular, these likewise include a 𝐺-valued transition map

𝑡Λ : 𝑄 ×Λ 𝑄 −→ 𝐺, (2.6)

and an associated vector bundle (with Koszul connection) (𝛾,∇𝛾) −→ Λ, whose
structure group is 𝐺.

3. On generalized determinants in the Banach algebra setting

3.1. Two approaches for generalized determinants

Proceeding with 𝐴 = ℒ(𝐸), let us recall the notion of the socle of 𝐴, denoted
soc(𝐴). This consists of the sum of all minimal left ideals (or right ideals) if they
exist, or else it is zero. For the situation in question we follow [2, §2] and take
soc(𝐴) to be generated by the minimal projections of 𝐴, that is, elements 𝑝 ∈ 𝑃 (𝐴)
such that 𝑝𝐴𝑝 = ℂ𝑝 (meaning that the restriction of elements of 𝐴 to Im(𝑝) is
the identity on Im(𝑝)). Also, given ℒ(𝐸) contains finite rank operators, we have
soc(𝐴) ∕= 0. For 𝑎 ∈ 𝐴, the spectral rank of 𝑎, is given by sup𝑥∈𝐴#(spec(𝑥𝑎)−{0}).

The maximal finite rank elements are those elements of 𝐴 such that we have
rank 𝑎 = #(spec(𝑎) − {0}), and these elements admit spectral representations
of the form 𝑎 = 𝜆1𝑝1 + ⋅ ⋅ ⋅ + 𝜆𝑛𝑝𝑛 (for some 𝑛, and where the 𝑝𝑖 are minimal
projections).

For arbitrary 𝑎 ∈ soc(𝐴), we have rank 𝑎 =
∑

𝑚(𝜆𝑖, 𝑎) (sum over non-zero
elements) where the multiplicity 𝑚(𝜆𝑖, 𝑎) is the rank of the Riesz projection for
𝜆𝑖 (see, e.g., [18]). Taking 𝜆 (below) as a sum over spec(𝐴), we have the trace and
determinant well-defined for 𝑎 ∈ soc(𝐴), as given by [2, §2]:

Tr 𝑎 =
∑

𝜆
𝜆 𝑚(𝜆, 𝑎),

Det(1 + 𝑎) = Π𝜆(1 + 𝜆)𝑚(𝜆,𝑎).
(3.1)

We refer to [2] (cf. [55]) for further consequences of these constructions.
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Another approach for the case 𝐴 = ℒ(𝐸) [28] involves taking the subalgebra
ℱ(𝐸) ⊂ ℒ(𝐸) of operators of finite rank and then define Det(1 + 𝐹 ) on certain
normed subalgebras of 𝐸. This starts by considering certain (Banach) subalgebras
𝐵 ⊂ ℒ(𝐸) which are embedded continuously in ℒ(𝐸), meaning that there is a
norm ∥ ⋅ ∥𝐵 on 𝐵 such that:

i) ∥𝐹∥ℒ(𝐸) ≤ 𝐶∥𝐹∥𝐵, for all 𝐹 ∈ 𝐵, where 𝐶 = const., and also assume that,
ii) ∥𝑆𝐹∥𝐵 ≤ ∥𝑆∥𝐵∥𝐹∥𝐵, for all 𝑆, 𝐹 ∈ 𝐵.

If i) and ii) hold then 𝐵 is called an embedded subalgebra of ℒ(𝐸). If also we
have ℱ𝐵 = ℱ(𝐸)∩𝐵 dense in 𝐵 with respect to ∥ ⋅ ∥𝐵, then 𝐵 is said to have the
approximation property. This property assists the continuous extension of trace and
determinant from ℱ𝐵 to 𝐵. If then 𝐵 ⊂ ℒ(𝐸) is an embedded subalgebra with
the approximation property, then Det(1 + 𝐹 ) : ℱ𝐵 −→ ℂ admits a continuous
extension in the 𝐵-norm from ℱ𝐵 to 𝐵 (see [28, Theorem 2.1] which includes
related results), and for 𝐹 ∈ ℱ(𝐸) with ∣𝑧∣ sufficiently small [28, Theorem 3.3]:

Det(1 + 𝑧𝐹 ) = exp

( ∞∑
𝑛=1

(−1)𝑛+1
𝑛

Tr(𝐹𝑛)𝑧𝑛
)
. (3.2)

If 𝐸 = 𝐻 is a Hilbert space and 𝐹 is a trace class operator, then there is the usual
Fredholm determinant given by

Det(1 + 𝐹 ) =

∞∑
𝑛=0

Tr Λ𝑛(𝐹 ), (3.3)

(see, e.g., [28, 64, 67]).

3.2. Admissible elements

From [24, §6] we have the principal 𝐺(𝑝𝐴𝑝)-bundle (the Stiefel bundle) denoted
𝑉 (𝑝,𝐴) −→ Gr(𝑝,𝐴) for which an element 𝑣 ∈ 𝑉 (𝑝,𝐴) is manifestly a framing
for the Banach algebra 𝐴, or simply a basis for its underlying (Banach) vector
space. Let us then say that 𝑣 ∈ 𝑉 (𝑝,𝐴) is admissible when Det(𝑣) is defined in the
context of a suitable generalized determinant. A particular instance concerns that
of ‘admissible bases’ relative to polarized Hilbert spaces (modules) that can be
used to produce an important class of determinant line bundles [57, §7.7] and [63,
§3] (cf. [22, 23] and see §5.1 below). Accordingly, when we speak of ‘determinants’
we will take for granted the existence of the corresponding admissible elements as
they were defined in this general criteria.

3.3. Determinants of generalized Wiener–Hopf operators

Again taking 𝐴 = ℒ(𝐸) and 𝐵 ⊂ 𝐴 a Banach subalgebra, let 𝐸1 ⊂ 𝐸 be a closed
subspace, and let 𝑝 : 𝐸 −→ 𝐸1 be the projection onto 𝐸1. For some 𝐿 ∈ 𝐵, one
could in principle define a generalized Wiener–Hopf operator T simply in terms of
the relationship T𝑝(𝐿) = 𝑝𝐿𝑝 (see Example 3.1 below). Thus for an appropriate
choice of sections, the operator T(𝛼,𝛽) = 𝑡Λ(𝛼, 𝛽) ∈ 𝐺 seen above, would then
be such an example. Accordingly, if T ∈ soc(𝐴), or if T ∈ 𝐵 where 𝐵 has the
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approximation property, then Tr(T) and Det(1 ± T) are well defined as we have
seen in §3.1.

Along with applications, much of the work that had been available concerns
taking 𝐴 = ℒ(𝐻), and so let us recall some particular examples.
Example 3.1. Let us take 𝐵 ⊂ ℒ(𝐻) to be a maximal abelian von Neumann algebra
of operators and 𝐻1 ⊂ 𝐻 a proper closed subspace of 𝐻 such that any non-zero
vector in 𝐻1 or 𝐻⊥

1 is separating for 𝐵. In [19, §2] an operator 𝐿 ∈ 𝐵 is decreed
to be a generalized Laurent operator, in which case the triple (𝐻,𝐵,𝐻1) is called
a Riesz system for which T𝑝 = 𝑝𝐿𝑝 is a generalized Toeplitz operator (cf. [16, 51]).
This generalizes the well-known case where 𝐻 = 𝐿2(𝑆1,ℂ) and 𝐻1 = 𝐻2(𝑆1,ℂ)
is the Hardy space consisting of those Fourier coefficients that vanish on ℤ−. Here
𝑝 : 𝐿2(𝑆1,ℂ) −→ 𝐻2(𝑆1,ℂ) is the Riesz projection and T𝑝 = 𝑝𝑚(𝑓)𝑝 is then the
classical Toeplitz operator, where 𝑚(𝑓) ∈ 𝐵 is multiplication by an essentially
bounded function. The term generalized Laurent operator is fitted to such a Riesz
system. For the more usual notion of this class of operators see, e.g., [29, §3.1,§16.1].
A further study of the theory of Toeplitz operators relative to bounded domains
in ℂ𝑛 is treated in [69, Chap. 4].

4. Generalized determinants and the 𝝉 -function

4.1. Background to the 𝝉 -function

For the benefit of readers we provide a short background to the nature of the
𝜏 -function besides motivating its introduction into the operator theory context.
Originally the function seemed to have played a significant role in the theory of
the Painlevé transcendents and Hamiltonian systems (see, e.g., [1, Chap. 7] and
[14, 54]), whereas in classical Sturm–Liouville theory, the logarithmic derivative of
the 𝜏 -function differentiates to a ‘potential’. Let us exemplify this latter case now,
and postpone a short discussion of the Painlevé equations to Appendix B.

Example 4.1. For the Sturm–Liouville (SL) theory, the classical setting considers
the Hilbert space 𝐻 = 𝐿2([𝑎, 𝑏], 𝑟(𝑥)𝑑𝑥) endowed with the usual inner product

⟨𝑓, 𝑔⟩ = ∫ 𝑏

𝑎 𝑓(𝑥)𝑔(𝑥)𝑟(𝑥) 𝑑𝑥. As seen in, e.g., [29, §6.5], for the appropriate dif-
ferentiable (real-valued) functions 𝑝, 𝑞 and 𝑟(∕= 0), we have the SL-operator 𝐿 as
given by

𝐿𝑦(𝑥) =
1

𝑟(𝑥)

(
− 𝑑

𝑑𝑥
[𝑝(𝑥)𝑦′(𝑥)] + 𝑞(𝑥)𝑦(𝑥)

)
. (4.1)

The SL-equation 𝐿𝑦 = 𝜆𝑦, along with boundary conditions, is a well-mined eigen-
value problem. Typically, 𝐿 is a self-adjoint (unbounded) operator with ordered
real eigenvalues 𝜆1 < 𝜆2 < ⋅ ⋅ ⋅ , with associated orthonormal eigenfunctions 𝑦1,
𝑦2, . . . Just as any good student knows, there are many classes of second-order
(linear) ODEs that can be expressed in SL-form and numerous applications of the
SL-equation to mathematical physics. It is here that we discover ‘potentials’ 𝑞(𝑥)
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as given by

𝑞(𝑥) = −
(

𝑑

𝑑𝑥

)2 [
ln 𝜏

]
= − 𝑑

𝑑𝑥

[
𝜏 ′

𝜏

]
. (4.2)

Of interest is the type of functions such as 𝜏 and how they may arise. For instance,
on commencing from the SL-equation, the work in [49] leads to aspects of such
a 𝜏 -function relative to differential rings and ‘vessels’ in a fashion applicable to
systems theory.

The main thrust of the 𝜏 -function theory has arisen in the theory of integrable
systems, particulary in the theory of nonlinear waves (such as in the KP-hierarchy),
the inverse scattering transform method, statistical physics and in a number of
related areas enjoying deep mathematical connections, as seen in [1, 3, 17, 36, 37,
59, 60, 63, 66]. For instance, there are certain 𝜏 -functions for which the expression
𝜔 = ∂𝑥 ln 𝜏 (where ∂𝑥 denotes a spatial derivative) provides a ‘Kähler potential’
in the theory of self-dual Einstein gravity [56]. The point being that it is mainly
through this work that the 𝜏 -function is realizable as a (generalized) determinant,
though often in a seemingly formal sense.

Example 4.2. The formal way of defining a 𝜏 -function commences with symmetric
functions in 𝑛-variables indexed by partitions (cf. characters of irreducible rep-
resentations of GL(𝑛,ℝ)). Consider a partition 𝜈 = 𝜈1 + 𝜈2 + ⋅ ⋅ ⋅ + 𝜈𝑛, with 𝜈𝑘
non-negative integers, 𝜈1 ≥ 𝜈2 ≥ ⋅ ⋅ ⋅ ≥ 𝜈𝑛. Alternating polynomials are given by

𝐴(𝜈1,...,𝜈𝑛)(𝑥1, . . . , 𝑥𝑛) = det
[
𝑥
𝜈𝑗

𝑖

]
=

∑
𝜎∈𝑆𝑛

𝜖(𝜎) 𝑥𝜈1

𝜎(1) ⋅ ⋅ ⋅𝑥𝜈𝑛

𝜎(𝑛),
(4.3)

leading to the following expression for the Schur function

s𝜈(𝑥) :=
𝐴(𝜈1+𝑛−1,𝜈2+𝑛−2,...,𝜈𝑛)(𝑥1, 𝑥2, . . . , 𝑥𝑛)

Δvm
, (4.4)

where Δvm =
∏
1≤𝑗<𝑘≤𝑛 (𝑥𝑗 − 𝑥𝑘) is a Vandermonde determinant.

For a large class of wave functions the formal 𝜏 -function is given by a linear
combination of Schur functions relative to a partition

𝜏(t) =
∑
𝜈

𝑐𝜈 s𝜈(t), (4.5)

where the constants 𝑐𝜈 depend on ‘embedding coordinates’ [63, §8].
Many significant developments, somewhat in the context of Example 4.2,

blossomed forth in the 1980’s (see for instance [36, 37, 59, 60]). The essential ideas
were later studied in a more unified geometric-analytic context in the ground-
breaking paper of Segal and Wilson [63]. In this latter setting the 𝜏 -functions,
such as those to be defined in (5.5) below (see also Example 4.3), are associated to
points 𝑊 in a Grassmannian of the type Gr(𝑝,𝐴) (here 𝐴 denotes the ‘restricted’
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Banach *-algebra to be outlined in 5.2) and are denoted 𝜏𝑊 -functions. These 𝜏𝑊 -
functions are shown in [63, §8] to be closely related to the formal 𝜏 -function of
Example 4.2 and the basic construction of these will be seen in §5.3.

We have in mind a short survey showing how the 𝜏 -function arises from a
generalized (e.g., Fredholm or Toeplitz) determinant along with several algebraic,
and analytic ramifications (see, e.g., [9, 11]). Also significant is the construction of
the associated predeterminant operators in §5.1. A further aspect of the 𝜏 -function
is its role in the theory of Schlesinger systems as associated with differential equa-
tions of Fuchsian type [39, 40, 42, 46], where the operator-theoretic setting is briefly
discussed in §7. The classical theta functions are in fact closely tied to 𝜏 -functions
via exponential multiplication [63, Theorem 9.11] (see also [58]). Hence the ac-
claimed Fay trisecant identity [26], which is ubiquitous in the theory of integrable
systems, is expressible in terms of 𝜏 -functions as seen in, e.g., [58, §10](cf. [50, §2]
in the setting of the KP-hierarchy). Perhaps more in line with this present work
is a matrix-operator account of this subject as treated in [4, §4] which touches on
‘moduli’ questions, as does [8, §5] which also establishes such a trisecant identity
in terms of nonabelian theta functions.

Example 4.3. This involves briefly introducing loop groups ‘LU’ [57, Chap. 6]. Take
𝐻 = 𝐿2(𝑆1,ℂ) and a polarization𝐻 = 𝐻+⊕𝐻− (with 𝐻+∩𝐻− = {0}). Following
[48, §2.3], for 𝑔 ∈ Γ+ ⊂ LU(1), we have a Toeplitz operator T𝑔 : 𝐻− −→ 𝐻+ given
by 𝑣 1→ (𝑔𝑣)−. Note that T𝑔1𝑔2 ∕= T𝑔2𝑔1 , in general, but T𝑔+𝑔𝑔− = T𝑔−𝑔𝑔+ when
𝑔± ∈ GL(𝐻±). Taking 𝐾+ = 𝑓−1𝐻+, for some 𝑓 ∈ GL(𝐻), leads to another
polarization (𝐾+,𝐾−), and a Toeplitz operator given by T′𝑔 = T−1𝑓 T𝑓𝑔. Taking

𝑘 ∈ GL+(𝐻) and ℎ ∈ GL−(𝐻), then there exists a Toeplitz-𝜏-function given by
𝜏(ℎ−1𝐻+, 𝐻+, 𝑘𝐻−, 𝐻−) = Det(T−1ℎ Tℎ𝑘T

−1
𝑘 ). (4.6)

Example 4.4. References [11, 12](cf. [67]) also reveal a large class of Fredholm
determinants, within the representation theory of the infinite-dimensional unitary
group, actually to be 𝜏 -functions of various integrable systems associated to a
particular Painlevé type [1]. Typical of this approach is to commence with T taken
to be an integral operator, and on restricting its kernel 𝐾T(𝑥, 𝑦) to an interval
𝒥 =

∪𝑚
𝑗=1(𝑎2𝑗−1, 𝑎2𝑗) ⊂ ℝ, to take the Fredholm determinant Det(1 − 𝜆T∣𝒥 ), for

a suitable 𝜆 ∈ ℂ [11, 67]. In all cases, the kernel 𝐾T(𝑥, 𝑦) is explicit, though in [11,
§2] the authors implement a continuous, so-called 2𝐹1-kernel based on the Gauss
hypergeometric function. This 2𝐹1-kernel, 𝐾T(𝑥, 𝑦)∣𝒥 is seen to be of trace class
and, in particular, Det(1−𝜆T∣𝒥 ) is a 𝜏 -function for the Schlesinger equation (see,
e.g., [11, §11] and [36, §5]; also see the assortment of examples in §7).
Example 4.5. In [9] a moment functional 𝔐 : ℂ[𝑧, 𝑧−1] −→ ℂ, is considered along
with a corresponding Lax operator 𝑄ℐ(𝔐) depending on an index set ℐ (here
𝑄𝑖𝑗 =𝔐(𝑟𝑖𝑥𝑝𝑗)). The shifted Toeplitz determinant yields a 𝜏 -function such that

𝑑 ln 𝜏 =

𝑛∑
𝜌=1

1

𝜌
Tr𝑛(𝑄ℐ) 𝑑𝑡𝜌. (4.7)
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The Hankel determinant of a semiclassical moment functional on the space of
polynomials can be identified with the isomonodromic 𝜏 -functions of [36] and this
together with the above Toeplitz determinant (of equivalent order) with respect
to 𝔐 above can be related by sequences of Schlesinger transformations (cf. §7).

5. The predeterminant 퓣 -function and its 𝝉 -function

5.1. The predeterminant 퓣 -function

We return to the general setting of §2.1, with 𝐴 a unital Banach algebra and
then specialize. Firstly, we recall from §3.2 the principal 𝐺(𝑝𝐴𝑝)-Stiefel bundle
𝑉 (𝑝,𝐴) −→ Gr(𝑝,𝐴), endowed with a canonical section denoted 𝑆𝑝, and proceed
to extract part of a construction in [23, §8] to which we refer for complete details.
Recalling the map 𝜋Λ in (2.1), and for 𝑝 ∈ 𝑃 (𝐴), we set

𝑊𝑝 = 𝜋−1Λ (𝑝+ 𝑝𝐴𝑝), (5.1)

(where 𝑝 = 1− 𝑝), and then consider the subset

𝑊 0
𝑝 = {𝑟 ∈𝑊𝑝 : 𝜙𝑝(𝑟) := 𝑟𝑝+ 𝑟𝑝 ∈ 𝐺(𝐴)}. (5.2)

Also recalling Λ = Sim(𝑝,𝐴), the development of [23, §8.1] entailed defining two
sections 𝛼, 𝛽 of the principal 𝐺(𝑝𝐴𝑝)-bundle 𝑄′ −→ Λ having the following prop-
erties:

i) With respect to 𝜋Λ in (2.1), 𝛼𝑝 = 𝜋∗Λ(𝑆𝑝) is defined over 𝜋Λ(𝑊𝑝) ⊂ Gr(𝑝,𝐴).
ii) For 𝛽𝑝 with 𝑔 = 𝜙𝑝(𝑟) and 𝑟 ∈ 𝑊 0

𝑝 , we have 𝑔 ∈ 𝐺(𝐴). The assignment
𝑟𝑝 : 𝑝 −→ 𝑟, yields a proper partial isomorphism which projects along Ker(𝑟).
Then we set 𝛽𝑝(𝑟) = (𝑟, 𝑟𝑝).

Next, on recalling the transition map 𝑡Λ in (2.3), we set

𝒯 (𝑟) = 𝑡Λ(𝛼𝑝(𝑟), 𝛽𝑝(𝑟)) ∈ 𝐺(𝑝𝐴𝑝). (5.3)

In [23, §8] we called the left operator of (5.3) a 𝒯 -function which can be viewed as
a type of generalized Wiener–Hopf operator T as described above. Note that this
essentially algebraic construction would work equally well for any of the reduced
subgroups𝐺 in §2.1, and hence for the principal bundles 𝑄 −→ Λ described in §2.2.
5.2. The restricted Banach algebra 𝑨

To see how this was used in [23], we first of all take a (separable) Hilbert module
𝐻퓐 over a unital C*-algebra퓐, and a polarization𝐻퓐 = H+⊕H− (with H+∩H− =
{0}). Let 𝐽 be an 퓐-module map satisfying 𝐽2 = 1. The ‘restricted’ Banach
algebra 𝐴 = ℒ𝐽 (𝐻퓐) is a Banach *-algebra under the Hilbert–Schmidt modified
norm ∥𝑇 ∥𝐽 = ∥𝑇 ∥+∥[𝐽, 𝑇 ]∥2 (here we have used the generalization of the Schatten
𝑝-classes to Hilbert modules following [65] and cf. [28]).

If 𝔓 denotes the space of polarizations on 𝐻퓐, then by [23, Theorem 4.1],
there exists an analytic diffeomorphism 𝜑 : 𝔓 −→ Λ. Instrumental in [23, §8] and
[70, §3] was to take the above sections 𝛼𝑝(𝑟) and 𝛽𝑝(𝑟), when viewed as sections
of the (universal) vector bundle 𝛾Λ −→ Λ in §2.2, to be covariantly constant with
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respect to the connection ∇Λ. The 𝒯 -function (operator) is more general than
the Zelikin 𝔗-function which for the case 퓐 ∼= ℂ utilizes a cross-ratio coordinate
system on 𝔓 [70, §3]. Also, Det 𝒯 is definable in terms of ‘admissible elements
(bases)’ for a sufficiently large class of Banach algebras in the setting of §3.
5.3. The 𝝉𝑾 -function

Suppose we take a pair of polarizations (H+,H−), (K+,K−) ∈ 𝔓 to be such that H+
is the graph of a linear map 𝑆 : K+ −→ K−, and H− is the graph of a linear map
𝑇 : K− −→ K+. Then on 𝐻퓐 consider the identity map H+ ⊕ H− −→ K+ ⊕ K−,
as represented by the block form [

𝑎 𝑏
𝑐 𝑑

]
(5.4)

where 𝑎 : H+ −→ K+, 𝑑 : H− −→ K− are zero-index Fredholm operators, and
𝑏 : H− −→ K+, 𝑐 : H+ −→ K−, belong to 𝒦(𝐻퓐) (the compact operators),
such that 𝑆 = 𝑐𝑎−1 and 𝑇 = 𝑏𝑑−1. When 𝑏, 𝑐 are taken to be Hilbert–Schmidt
operators, then 𝑆𝑇 is of trace-class, and the operator (1 − 𝑆𝑇 ) can be expressed
as a 𝔗-function as above. We denote this by 𝔗(H+,H−,K+,K−) (it is essentially a
transition map in the 𝒯 -function setting).

Following [63, §2] and [57, §7.1] (cf. [24, A2]) points 𝑊 ∈ Gr(𝑝,𝐴) represent
closed subspaces 𝑊 of 𝐻퓐 such that i) the orthogonal projection 𝑝+ : 𝑊 −→ H+
is in Fred(𝐻퓐), and ii) the orthogonal projection 𝑝− :𝑊 −→ H− is in ℒ2(H+,H−)
(Hilbert–Schmidt operators). Relative to such points 𝑊 ∈ Gr(𝑝,𝐴), the corre-
sponding 𝜏𝑊 -function is constructed in [63, §3] and is seen to be of the form

𝜏𝑊 (H+,H−,K+,K−) = Det 𝔗(H+,H−,K+,K−)

= Det(1− 𝑐𝑎−1𝑏𝑑−1) ∈ ℂ⊗ 1퓐,
(5.5)

(cf. [23, 48, 70]). This particular 𝜏 -function frequently appears in the Lax equation
method in nonlinear wave theory (for instance, solitons) and the general setting
for the latter within the KP-hierarchy (see, e.g., [1, 3, 17, 63, 60]).

Remark 5.1. In several examples above and in those in the sequel, the main
class of operators surveyed will often turn out to be integral operators. One
way of seeing this proceeds as follows. Suppose (Ω, 𝜇) is some 𝜎-finite measure
space. Let 𝐻 = 𝐿2(Ω, 𝜇) (be separable), 𝐴 = ℒ(𝐻) and let ℒ2(𝐻) denote the
Hilbert–Schmidt operators on 𝐻 . Then projections 𝑝 ∈ 𝑃 (𝐴) ∩ ℒ2(𝐻) may be
realizable as integral operators, and likewise for elements 𝑞 ∈ 𝑈(𝑝,𝐴) in the uni-
tary orbit of 𝑝 (see, e.g., [32, §15] and related results therein). For instance, let
Ω ⊂⊂ ℂ𝑛 be a bounded domain. A familiar example is the Bergman projection
𝑝𝐵 : 𝐿2(Ω) −→ Hol(Ω) ∩ 𝐿2(Ω), orthogonally projecting 𝐿2(Ω) onto its holomor-
phic subspace. In terms of its associated kernel function 𝐾Ω(𝑧, 𝑤), it is given by
𝑝𝐵𝑓(𝑧) =

∫
Ω
𝐾Ω(𝑧, 𝑤)𝑓(𝑤) 𝑑𝑤. This projection 𝑝𝐵 may be viewed as a general-

ized Calderón–Zygmund operator with respect to certain local pseudometrics [45].
Other familiar and partially related examples are presented in [69, Chap. 4].
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6. Simple L*-algebras and Kac–Moody algebras

6.1. Simple L*-algebras

Henceforth, unless otherwise stated, we now restrict in this section to 𝐴 = ℒ(𝐻),
where 𝐻 is a separable Hilbert space, and proceed to consider a class of involutive
Banach–Lie algebras called L*-algebras (see [5, Chap. 7] and [34, Chap. II, III]
following the earlier work of [61, 62]).

An L*-algebra is a Lie algebra 𝔤 (over ℝ or ℂ) whose underlying vector space
is a Hilbert space, together with a map 𝑥 1→ 𝑥∗ that satisfies ⟨[𝑥, 𝑦], 𝑧⟩ = ⟨𝑦, [𝑥∗, 𝑧]⟩,
for all 𝑥, 𝑦, 𝑧 ∈ 𝔤. In particular, the Hilbert–Schmidt operators ℒ2(𝐻) form a
complex simple L*-algebra (see [5, Theorem 7.18] and [34, II.5]) in which the ∗-map
specifies an adjoint representation, while noting that by Remark 5.1 above, this
latter observation subsequently provides a potential supply of integral operators
on 𝐻 . We denote this L*-algebra by 𝔤A, which is a simple Lie algebra of type A in
the Cartan classification. In fact, all simple Lie algebras of type A are isomorphic,
up to some multiple of the inner product, to an L*-subalgebra of 𝔤A.

There are also the simple L*-algebras of Cartan type B,C and D (see [5,
34, 52, 61, 62] for a comprehensive treatment of this infinite-dimensional structure
theory). Because of the frequent instrumentation of the Hilbert–Schmidt operators,
we will restrict matters here to 𝔤A, and note that 𝔤A as a simple L*-algebra can be
approximated by taking the limit of a strictly increasing sequence {𝔤𝑛} of simple
finite-dimensional Lie algebras of Cartan type A [61, §3.2]. Specifically, we shall
take 𝐺 ⊆ 𝐺(𝑝𝐵𝑝) ⊆ 𝐺(𝑝𝐴𝑝) to be a Banach–Lie group whose Banach–Lie algebra
(over ℂ) is the simple L*-algebra 𝔤 = 𝔤A.

A Cartan subalgebra 𝔥 of 𝔤 is defined as a maximal self-adjoint abelian (closed)
subalgebra. With respect to 𝔥, a Cartan decomposition of 𝔤 can be formed (see
below). Let Δ denote the set of non-zero roots of 𝔤 relative to 𝔥. In the form of a
lemma we collect together several basic results about the structural theory of the
L*-algebra 𝔤 to be used later.

Lemma 6.1. Let 𝔤 = 𝔤A be the (complex) simple L*-algebra as above. Then we
have the properties:

(1) There exist simple closed 𝔤-ideals 𝔤𝑘, indexed by some set 𝒥 , leading to a
Hilbert space direct sum

𝔤 =
⊕
𝑘∈𝒥

𝔤𝑘. (6.1)

(2) Given a Cartan subalgebra 𝔥 ⊂ 𝔤, there exists a Cartan (Hilbert space) de-
composition

𝔤 = 𝔥⊕
⊕
𝜈∈Δ

𝑉𝜈 , (6.2)

where the root spaces 𝑉𝜈 are one-dimensional.
(3) We have 𝔤 = cl(

∪
𝔤𝑛), where each 𝔤𝑛 is a finite-dimensional simple Lie

algebra (of Cartan classification A) appearing in a strictly increasing sequence
⋅ ⋅ ⋅ ⊂ 𝔤𝑛 ⊂ 𝔤𝑛+1 ⊂ ⋅ ⋅ ⋅
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Proof. Part (1) is stated in [61, §1.2, Theorem 1]. The existence of the Cartan
decomposition in Part (2) follows from [61, §2.2, Theorem 2] (cf. [62]) and the
one-dimensionality of the root spaces 𝑉𝜈 follows from [61, §2.3]. As for Part (3),
this follows from [61, §3.2, (iv)]. □

Remark 6.1. The corresponding results for the other types in the Cartan clas-
sification are essentially the same. A treatment of these results and the Cartan
decomposition also appear in [34, Proposition 11, II.22] (cf. [5, Chap. 7] for cer-
tain extensions of the theory) and more generally in [13, Theorem 1] for semisimple
Banach–Lie algebras of compact operators.

Having introduced this class of L*-algebras, we recall the setting of the prin-
cipal 𝐺-bundles 𝑄 −→ Λ in §2.2, where 𝐺 is the corresponding Lie group of the
L*-algebra 𝔤 and the operator 𝒯 arises via the transition map 𝑡Λ in (2.6). This leads
to some further observations concerning generalized determinants and 𝜏 -functions
in particular. The first follows by a straightforward restriction argument.

Proposition 6.1. For each operator 𝒯 ∈ 𝐺 of the (predetermiant) type in (5.3) there
exists a family of generalized determinants defined relative to the closed ideals of 𝔤.

Proof. For each 𝒯 ∈ 𝐺 in (5.3) we can assign a corresponding Hilbert–Schmidt
operator T ∈ 𝔤. Recall from Lemma 6.1(1) we have a Hilbert space direct sum

𝔤 = 𝔤1 ⊕ 𝔤2 ⊕ ⋅ ⋅ ⋅ ⊕ 𝔤𝑘 ⊕ ⋅ ⋅ ⋅ (6.3)

in terms of closed 𝔤-ideals. We then consider restrictions T∣𝔤𝑘, which for each 𝑘,
define a family of generalized determinants by taking the Fredholm determinant
Det(1− 𝜆T∣𝔤𝑘) (for some suitable 𝜆). □

It is clear that the means behind Proposition 6.1 would apply by restricting
to a Hilbert space summand in any decomposition of 𝔤. The next observation is
in the context of Example 4.4 and follows from the development of ideas in [11].

Proposition 6.2. Let 𝐺 ⊆ 𝑈(𝑝𝐴𝑝) be a simple Banach–Lie subgroup with associated
(simple) L*-algebra which is a real form of 𝔤 = 𝔤A as above. Then for each 𝒯 ∈ 𝐺
in (5.3) we obtain a family of 𝜏-functions via a smooth integrable kernel K defined
on a subset 𝔍 ⊂ ℝ.

Proof. Without loss of generality we assume that 𝐺 ⊆ 𝑈(𝑝𝐴𝑝) is isomorphic to a
unitary (Banach–Lie) subgroup of the infinite-dimensional unitary group 𝑈(∞).
The idea is that starting from the operator 𝒯 ∈ 𝐺 ⊆ 𝑈(∞), we arrive at a
integrable kernel defined with respect to 𝔍. Firstly, the results of [12, §1-§3] show
that 𝐺 can be decomposed into irreducible parts via probability measures on the
space of all irreducible representations. Specifically, if 𝜒 : 𝐺 −→ ℂ denotes a
character of 𝐺, then there exists a spectral measure 𝜇𝜒 on parameter set Ω so that

𝜒 =

∫
Ω

𝜒𝑤𝜇𝜒 𝑑𝑤, (6.4)
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as established in [11, Theorem 1.1]. Following from this, the construction of the
kernel K is given in [11, §5]. Taking a projection 𝑝(𝜇𝜒) onto 𝔍 = (𝑠,∞) to give a
restriction, (see Example 4.4) the Fredholm determinant 𝒟(𝑠) = Det(1−𝜆K∣(𝑠,∞))
leads to a family of 𝜏 -functions (see [11, §7]). □

Remark 6.2. In [11, 12] the distribution 𝒟(𝑠) and the corresponding 𝜏 -function
above lead to classes of differential equations of the various Painlevé type (see
Appendix B. In [12, §10] the 𝜏 -functions arising there are interpreted as correlation
functions that are manifestly determinants of certain kernels. As we pointed out
in §4.1, there is a considerable amount of background material to this topic in
the framework of integrable systems and statistical physics, and so for now we are
obliged to refer the reader to works such as [1, 11, 12, 15, 36, 37, 67] in order to
get a more complete picture.

6.2. A link with affine Kac–Moody algebras

In Appendix §A.1 we recall how the Cartan matrix of any semisimple Lie algebra
induces an associated (affine) Kac–Moody algebra [38, Chap. 7]. This concept we
will adopt in view of the simple L*-algebras discussed previously. Firstly, a lemma
that uses the construction and which will be put to use in §6.3 below.
Lemma 6.2. Consider the (complex) simple L*-algebra 𝔤 = 𝔤A. Then there is an
associated (strictly) increasing sequence of affine Kac–Moody algebras {�̂�𝜅𝑛} where
𝜅𝑛 is an invariant inner product on each simple finite-dimensional Lie algebra 𝔤𝑛
as in Lemma 6.1(3) above.

Proof. Recall from Lemma 6.1(3) we have 𝔤 = cl(
∪
𝔤𝑛) with each 𝔤𝑛 a simple

finite-dimensional Lie algebra. Let ℂ((𝑡)) = ℂ[𝑡, 𝑡−1] denote the algebra of Laurent
polynomials in 𝑡, and let 𝜅𝑛 denote an invariant inner product on 𝔤𝑛. Following
[38, §7.1] (see also [27, §1]), the affine Kac–Moody (Lie) algebra �̂�𝜅𝑛 is the one-
dimensional central extension of 𝔤𝑛 ⊗ ℂ((𝑡)) with

[𝜙1 ⊗ 𝑓(𝑡), 𝜙2 ⊗ 𝑔(𝑡)] = [𝜙1, 𝜙2]⊗ 𝑓(𝑡)𝑔(𝑡)− (𝜅𝑛(𝜙1, 𝜙2)Res 𝑓𝑑𝑔)𝐾𝑛, (6.5)

where 𝜙1, 𝜙2 ∈ 𝔤𝑛, 𝑓, 𝑔 ∈ ℂ((𝑡)), and 𝐾𝑛 denotes the central element. The fact
that the sequence {�̂�𝜅𝑛} is increasing, is clear, since because 𝔤𝑛 ⊂ 𝔤𝑛+1, we have
a naturally induced sequence 𝔤𝑛 ⊗ ℂ((𝑡)) ⊂ 𝔤𝑛+1 ⊗ ℂ((𝑡)). □

6.3. A representation of the Weyl group and 𝝉 -functions

Here we use the root lattice (for roots 𝜈) and refer to [53, 68](see Appendix §A.2).
Following [53, 68], we give a short outline of a representation-theoretic definition of
the 𝜏 -function. Firstly, for each generalized Cartan matrix 𝐶 = [𝑐𝑖𝑗 ] of affine type,
there exists a representation of the Weyl group 𝒲 =𝒲(𝐶) on a field ℂ(𝜈; 𝜃; 𝜏) of
rational functions with respect to infinitely many variables 𝜈𝑖, 𝜃𝑖, 𝜏𝑖 (𝑖 ∈ ℐ),

𝜚 :𝒲 −→ ℂ(𝜈; 𝜃; 𝜏). (6.6)
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This representation is characterized by the action of the generators 𝑠𝑖 (see §A.2),
such that whenever defined,

𝑠𝑖(𝜈𝑗) = 𝜈𝑗 − 𝜈𝑖𝑐𝑖𝑗 (reflections), 𝑠𝑖(𝜃𝑗) = 𝜃𝑗 +
𝜈𝑖
𝜃𝑖

𝑢𝑖𝑗 ,

𝑠𝑖(𝜏𝑗) = 𝜏𝑗(𝜃𝑗 Π𝑘∈ℐ 𝜏
−𝑐𝑘𝑗

𝑘 )𝛿𝑖𝑗 ,
(6.7)

where the 𝑢𝑖𝑗(𝑖, 𝑗 ∈ ℐ) satisfy certain conditions as seen in [53, §2] and [68, §1].
The 𝜏𝑗 are realizable as 𝜏 -functions for the variables 𝜃𝑗 , and in this representation
the 𝜏𝑗 are seen to correspond to the fundamental weights Ξ𝑗 , while the 𝜃-variables
correspond to the simple roots 𝜈𝑖 [53, §2]. The motivation for regarding the 𝜏𝑗 as
𝜏 -functions is commented upon in Remark 6.3 below.

Proposition 6.3. Consider the (complex) simple L*-algebra 𝔤 = 𝔤A. Then there
exists a representation 𝔤 −→ ℂ(𝜈; 𝜃; 𝜏) relative to which a family of Fredholm
determinants of an (integral) operator T ∈ 𝔤 is assigned to a family of 𝜏-functions
of the above type.

Proof. Firstly, we recall from Lemma 6.1(3) the sequence of finite-dimensional
simple Lie algebras 𝔤𝑗 . Commencing from a Hilbert–Schmidt (integral) operator
T ∈ 𝔤, we proceed to the Fredholm determinant Det(1 − 𝜆T∣𝔤𝑗). The latter as a
generalized determinant is assigned to each 𝜏𝑗 , and hence to the corresponding
weight Ξ𝑗 .

For each 𝔤𝑗 , we have by Lemma 6.2 an associated increasing sequence of
affine Kac–Moody algebras {�̂�𝜅𝑗}. The affine Weyl group 𝒲(𝐶𝑛) acts upon the
root system of each �̂�𝜅𝑗 (for each 𝑗) as well as on the rational function field ℂ(𝜈; 𝜃; 𝜏)
[53, §2]. Now since ℂ(𝜈; 𝜃; 𝜏) depends on the sum ∑

𝑗 Ξ𝑗 of fundamental weights,
we thus arrive at a representation

𝔤 −→ ℂ(𝜈; 𝜃; 𝜏),

Det(1− 𝜆T∣𝔤𝑗) 1→ (Ξ𝑗 ↔ 𝜏𝑗),
(6.8)

which yields the desired result. □

On referring to Appendix §A.2, we introduce the dual ℤ-module of the coroot
lattice 𝑅∨ denoted in (A.4) by 𝑅★ = Homℤ(𝑅

∨,ℤ). As shown in [53, §2], any family
{𝜙𝑤(𝜆)} (𝑤 ∈ 𝒲 , 𝜆 ∈ 𝑅★) can be identified with a mapping

𝜙 :𝒲 −→ Homℤ(𝑅
★,ℂ(𝜈; 𝜃)∗),

𝑤 1→ 𝜙𝑤,
(6.9)

where ℂ(𝜈; 𝜃)∗ denotes the multiplicative group of ℂ(𝜈; 𝜃) regarded as a ℤ-module,
and for which

𝜙𝑤1𝑤2(𝜆) = 𝑤1(𝜙𝑤2(𝜆))𝜙𝑤1 (𝑤2 ⋅ 𝜆), ∀𝑤1, 𝑤2,∈ 𝒲 , and 𝜆 ∈ 𝑅★. (6.10)

The map 𝜙 in (6.9) now viewed as a (linear) map 𝜙 : ℂ[𝒲 ] −→ 𝑀 on the group
algebra, where𝑀 = Homℤ(𝑅

★,ℂ(𝜈; 𝜃)∗), is shown in [53, §2] to define a Hochschild
1-cocycle of ℂ[𝒲 ] with respect to the natural𝒲-bimodule structure of𝑀 (we refer
to [44, §1-§4] for the basic theory of Hochschild complexes). Since it can be shown
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that 𝑤(𝜏𝜆) = 𝜙𝑤(𝜆)𝜏
𝑤⋅𝜆 (𝑤 ∈ 𝒲 , 𝜆 ∈ 𝑅★), then the cocycle induced by 𝜙 in (6.10)

becomes the coboundary of the 0-cochain

𝜏 ∈ Homℤ(𝑅
★,ℂ(𝜈; 𝜃; 𝜏)∗),

𝜆 1→ 𝜏𝜆,
(6.11)

on extending the 𝒲-module ℂ(𝜈; 𝜃) to ℂ(𝜈; 𝜃; 𝜏). It is in this way that the 𝜏 -
functions are seen to trivialize the Hochschild 1-cocycle as defined by these vari-
ables.

Remark 6.3. As outlined in [53, 68], triples (𝜈𝑗 , 𝜃𝑗 , 𝜏𝑗) can be seen to lead to a fam-

ily of discrete dynamical systems classified by certain types denotedA
(1)
ℓ , . . . ,D

(1)
ℓ ,

for various ℓ, whose corresponding affine Weyl groups are realized as Bäcklund
transformations of the Painlevé equations of class 𝑃II, . . . , 𝑃VI (see Appendix B).
Here the pairs (𝜈𝑗 , 𝜃𝑗) play the role of discrete time dependent variables and the
𝜏𝑗 are 𝜏 -functions associated to the corresponding Painlevé types.

7. Applications: Schlesinger systems, isomonodromic
transformations and meromorphic connections

7.1. Holomorphic maps to Λ = Sim(𝒑,𝑨)

We return now to the case where 𝐴 = ℒ(𝐻퓐) in §5.2, and commence by considering
holomorphic maps 𝑓 : 𝑋 −→ Gr(𝑝,𝐴), where 𝑋 in this section denotes a compact
Riemann surface of genus 𝑔𝑋 .

Proposition 7.1. Given a (non-constant) holomorphic map 𝑓 : 𝑋 −→ Gr(𝑝,𝐴),

then 𝑓 can be extended to a holomorphic map 𝑓 : 𝑋 −→ Λ.

Proof. For each 𝑥 ∈ 𝑋 , let us set 𝑓(𝑥) = (K+)𝑥, and then let (K−)𝑥 be a closed
complemented subspace for (K+)𝑥 in 𝐻퓐, so that (K+)𝑥 ∩ (K−)𝑥 = {0}. Thus we
have produced a polarizing pair ((K+)𝑥, (K−)𝑥) that depends on 𝑥 ∈ 𝑋 , and hence
𝑓 extends to the space 𝔓 of polarizations in §5.2. Following from [23, Theorem

4.1 (3)], we next make use of the analytic diffeomorphism 𝜑 : 𝔓
∼=−→ Λ, and then

finally, the desired holomorphic map 𝑓 : 𝑋 −→ Λ is taken to be the composition

𝑓 = 𝜑 ∘ 𝑓 . □

The Krichever correspondence which is based on certain holomorphic data
as described in [63, §6] provides a prototypical example, namely, a holomorphic
embedding 𝑓 : 𝑋 −→ Gr(𝑝,𝐴) (as applied in [24, 25]). The point of extending
such a map to Λ is that the subsequent calculations as carried out in [23] tend
to be relatively straightforward, and the relevant analytic objects defined over Λ
can be pulled-back via 𝑓 . For instance, recall the setting of §2.1 and consider the
possible pull-back vector bundles with connection under 𝑓 : 𝑋 −→ Λ:

(i) (𝑓∗𝛾,∗∇𝛾) −→ 𝑋
(ii) (𝑓∗Det𝛾 , 𝑓∗∇Det𝛾 ) −→ 𝑋
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(iii) More generally, consider (𝑉,∇𝑉 ) −→ 𝑋 , with structure group 𝐺 ⊆ 𝐺(𝑝𝐴𝑝)
and corresponding connection form 𝜔𝑉 as pulled back under 𝑓 from a vector
bundle with connection (V,∇V) −→ Λ, with corresponding connection form
denoted 𝜔V (typically associated to a principal 𝐺-bundle 𝑄 −→ Λ as in (2.5)
with connection 1-form 𝜔𝑄).

Next we take an integral operator T that corresponds to the 𝐺 ⊆ 𝐺(𝑝𝐴𝑝)-
valued 𝒯 -function for 𝑄 as described in §5.1 for which, via a holomorphic embed-
ding 𝑓 : 𝑋 −→ Λ, the Fredholm determinant

Det(1− 𝜆T∣ℑ), (7.1)

is suitably supported on a countable number of points, or on a union of curve
segments ℑ in the (complex) 𝜁-plane supporting T in 𝑋 . In the context of Example
4.4, the determinant (7.1) provides the 𝜏 -function of an isomonodromic family of
meromorphic covariant derivative operators 𝐷𝜁 .

Example 7.1. Specifically from [33] (for 𝑔𝑋 = 1), the 𝜏 -functions in question are
of the form 𝜏 = 𝜏(𝑎1, . . . , 𝑎𝑟; 𝑏1, . . . , 𝑏𝑛), where the 𝑎1, . . . , 𝑎𝑟 are ‘asymptotic ele-
ments’ and the 𝑏1, . . . , 𝑏𝑛 are ‘pole locations’ collectively parametrizing 𝜏 for the
given pair (𝑟, 𝑛). Moreover, as shown in [33, Theorem 2.6], 𝜏 is effectively the
Segal–Wilson 𝜏𝑊 -function in [63, §3]. In this case there is the 1-form

𝜔 = 𝑑 ln 𝜏 =

𝑟∑
𝑖=1

𝐾𝑖 𝑑𝑎𝑖 +

𝑛∑
𝑗=1

𝐻𝑗 𝑑𝑏𝑗 , (7.2)

where the pairs (𝐻𝑖,𝐾𝑗) are Poisson-commuting Hamiltonians. In [25, §4.2] it was
shown that a class of 𝜏 -functions, denoted 𝜏Λ, are essentially the same as the 𝜏𝑊 ,
and are linked via pullback. Each of the 𝜏Λ serves as a logarithmic potential for
the curvature of the connection ∇Det𝛾 seen above, and so (7.2) can likewise be
interpreted for 𝜔 = 𝑑 ln 𝜏Λ.

The further significance of relations of the type (7.2) has been pointed out in
[46], where 𝜔 on the one hand represents the poles of solutions to the Schlesinger
equation, and on the other hand, it is the Hamiltonian of this equation with respect
to a natural Poisson structure. The task undertaken in [46] was to give a detailed
explanation of the equivalence of these two approaches.

7.2. Operator meromorphic connection

Next we consider how a meromorphic connection denoted 𝜔V can be constructed
on a complex vector bundleV −→ Λ, by commencing from ameromorphic operator
(𝔤-valued) function. Operator-valued meromorphic functions as providing suitable
potentials, denoted say 𝐵(𝜁) with respect to a local coordinate 𝜁 on some domain
in 𝑋 , have been studied to a significant extent in, e.g., [30, 31, 47]. Typically 𝐵(𝜁)
is of the form

𝐵(𝜁) =

∞∑
𝑗=−𝑛

(𝜁 − 𝜁0)
𝑗𝐵𝑗 , (7.3)

satisfying some mild technical condition (such as ‘normality’ [30, §3]).
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Recall from Remark 2.2 the connection map 𝒱 : 𝑇𝑄 −→ 𝑇𝑄 used in con-
structing the connection 1-form 𝜔𝑄. To say that 𝒱 is meromorphic means that
𝒱 is pointwise an analytic map with a countable number of poles. The resulting
connection 𝜔𝑄 is then said to be a meromorphic connection if, in its local rep-
resentation, it contains the data of the Laurent coefficients as exhibited in (7.3).
This property passes over to the induced connection 1-form 𝜔V on the associated
complex vector bundle V −→ Λ (see below).

Granted a supply of holomorphic maps from 𝑋 to Gr(𝑝,𝐴), and thus to Λ
by Proposition 7.1, we give an application in the following. To do this, let us
first recall that 𝛾 −→ Λ is the vector bundle associated to a principal 𝐺-bundle
𝑄 −→ Λ as in §2.1 (where 𝐺 ⊆ 𝐺(𝑝𝐴𝑝)). Let 𝒱 : 𝑇𝑄 −→ 𝑇𝑄 be a meromorphic
connection map on the principal bundle 𝑄 −→ Λ. In the usual way, this induces a
connection map, denoted the same, 𝒱 : 𝑇𝛾 −→ 𝑇𝛾 on the associated vector bundle
(the formal details for doing this can be seen in, e.g., [43, p. 381]), and hence we
obtain a meromorphic connection on the holomorphic vector bundle 𝛾 −→ ∇𝛾 .

When ‘Det’ is well defined under the criteria we had discussed earlier, then
we obtain an induced connection map 𝒱𝐷𝑒𝑡 : 𝑇Det𝛾 −→ 𝑇Det𝛾 yielding a local
(operator) connection meromorphic 1-form �̂�. Thus as an immediate consequence
of the usual pull-back construction, if 𝑓 : 𝑋 −→ Λ is a non-constant holomorphic
map, and �̂� is a meromorphic connection 1-form on Det𝛾 , then on 𝑋 we obtain a
holomorphic vector bundle (𝑓∗Det𝛾 , 𝑓∗�̂�) −→ 𝑋 with a meromorphic connection.

Remark 7.1. Following, e.g., [66], one may look at ‘free energy pre-potentials’ in
the context of matrix models and topological conformal field theories where the
relevant object to consider is ln 𝜏 . Indeed, as we have pointed out in §4.1, it has been
known that ln 𝜏 is a ‘prepotential’ (for a local connection 1-form, say) as apparent
in [10, 36, 37, 42, 46, 56, 66]. Thus somewhat in the spirit of how one applies
monodromy preserving transformations [33, 36, 66], we are led from the matrix
case to operator-valued meromorphic functions comprised of Laurent coefficients
(such as 𝐵(𝜁) above) and hence towards a class of distinguished meromorphic
(connection) 1-forms

𝜔 = 𝑑 ln 𝜏 =
∞∑

𝑛=−∞
Tr 𝐵𝑛(𝜁 − 𝜁0)

𝑛 𝑑𝑡𝑛. (7.4)

7.3. Examples

Given that a meromorphic 1-form in the operator setting of Λ can be pulled back
via a holomorphic map from 𝑋 to Gr(𝑝,𝐴), or to Λ using Proposition 7.1, let
us see some motivation for doing this in the operator context as provided by the
following examples of Schlesinger systems relative to 𝑋 (cf. [39] for matrix operator
coefficients). One should keep in mind the role of the 𝜏 -function, and the setting of
the determinant line bundles with meromorphic connection (𝑓∗Det𝛾 , 𝑓∗�̂�) −→ 𝑋 ,
as we have described above.
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Example 7.2. Inspired by the setting of the Riemann–Hilbert problem, let us con-
sider an equation of the form

𝑑Ψ

𝑑𝜁
(𝜁) = 𝐵(𝜁)Ψ(𝜁), (7.5)

where Ψ(𝜁) is a meromorphic 𝐺-valued function, and 𝐵(𝜁) in (7.3) has poles
{𝑏1, 𝑏2, . . . , 𝑏𝑛} that are viewed as variables, and {𝑏1, 𝑏2, . . . , 𝑏𝑛,∞} branch points
for 𝐵(𝜁) when viewed as points of 𝑋 . Granted Ψ can be continued along a closed
path 𝛾, away from the branch points within this embedding, we consider a trans-
formation of the type

Ψ(𝜁) −→ Ψ(𝜁)𝑍𝛾 , (7.6)

where 𝑍𝛾 ∈ 𝐺 ⊆ 𝐺(𝑝𝐴𝑝) is a (constant) invertible operator depending only on the
homotopy class [𝛾] of 𝛾. In this way 𝑍𝛾 induces a monodromy representation of
the fundamental group

𝜋1(𝑋/{𝑏1, 𝑏2, . . . , 𝑏𝑛}) −→ 𝐺, where [𝛾] 1→ 𝑍𝛾 . (7.7)

We recall that a Schlesinger transformation can be regarded as a discrete mon-
odromy preserving transformation of a meromorphic connection matrix that shifts
by elements of ℤ, the eigenvalues of its residues [11, 42]. A modification of this
theory to matrix operator coefficients of differential equations of Fuchsian type is
studied in [39], and as was mentioned in the Introduction, motivates a broader
scope of applications using operator-valued functions.

Example 7.3. For 𝑔𝑋 = 0 and 𝐺 ∼= SL(2,ℂ), the corresponding Schlesinger system
satisfies [42, §II]

∂𝐵𝑖

∂𝜁𝑗
=
[𝐵𝑖, 𝐵𝑗 ]

𝜁𝑖 − 𝜁𝑗
, for 𝑖 ∕= 𝑗,

∂𝐵𝑖

∂𝜁𝑖
= −

∑
𝑗 ∕=𝑖

[𝐵𝑖, 𝐵𝑗 ]

𝜁𝑖 − 𝜁𝑗
,

(7.8)

where the 𝐵𝑗 = 𝐵𝑗(𝑏1, 𝑏2, . . . , 𝑏𝑛) are taken to be certain meromorphic functions
(cf. [36, 37, 39, 46]). Here the role of the meromorphic connection is prominent in
[46]. One starts with a holomorphically trivial vector bundle (V0,∇V0) −→ ℂ𝑃 1,
with meromorphic connection having logarithmic poles at points (𝑏01, . . . , 𝑏

0
𝑛,∞).

This can be deformed isomonodromically to a holomorphic vector bundle with
meromorphic connection (V,∇V) −→ ℂ𝑃 1 × 𝒟, where 𝒟 is certain deformation
space, and for which the restriction (V,∇V)∣(𝑧, 𝑏01, . . . , 𝑏0𝑛,∞) ∼= (V0,∇V0). The
integrability of this isomonodromic extension leads to the Schlesinger equation:

𝑑𝐵𝑖 = −
∑
𝑖∕=𝑗

[𝐵𝑖, 𝐵𝑗 ] 𝑑(𝑏𝑖 − 𝑏𝑗)

(𝑏𝑖 − 𝑏𝑗)
. (7.9)

A class of meromorphic connections also appears in [10] which considers a similar
deformation problem.
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Example 7.4. There is a class of wave functions Ψ = Ψ(𝜁), defined relative to a
spectral parameter 𝜁, whose monodromy data is independent of the deformation
parameter if and only if Ψ satisfies the deformation equation (cf. (7.5))

∂𝜁Ψ = 𝑑𝐵(𝜁)Ψ, (7.10)

where 𝑑𝐵(𝜁) =
∑

𝑖 𝐵𝑖𝑑𝜁𝑖 is a 1-form with rational coefficients 𝐵𝑖 = 𝐵𝑖(𝜁). Now to
any solution of (7.10) there is an associated 1-form

𝜔 = −
∑
𝑘

Res𝜁=𝜁𝑘Tr[𝑔
(𝑘)−1∂𝜁𝑔

(𝑘)𝑑𝜉(𝑘)]𝑑𝜁, (7.11)

for certain analytic functions 𝑔 = 𝑔(𝜁) and diagonal matrices 𝜉 [3, §8.4], where the
deformation equation (7.10) implies that 𝑑𝜔 = 0. In fact, we have 𝜔 = 𝑑 ln 𝜏 , and
hence for each solution of (7.10) a 𝜏 -function can be associated and one that is
transformable under an elementary Schlesinger transformation [3, §8.6].
Example 7.5. Following, e.g., [11, §6] and [36, 42], for the case 𝑔𝑋 = 1, we have
an 𝔰𝔩(2,ℂ)-valued 1-form 𝜔 given by

𝜔 =

𝑘∑
𝑗=1

∑
1≤ℓ≤𝑛
ℓ ∕=𝑗

Tr(𝐵𝑗𝐵𝑘)

𝑏𝑗 − 𝑏ℓ
𝑑𝑏ℓ. (7.12)

In this case 𝜏 = 𝜏(𝑏1, 𝑏2, . . . , 𝑏𝑘) is a 𝜏 -function for the system such as appears
in (7.8) if 𝑑 ln 𝜏 = 𝜔 (see [11, 36]), so 𝜏 is defined at least locally. With regards
to the Painlevé property, any solution {𝐵𝑗}𝑛𝑗=1 of the Schlesinger equations are
analytic functions in (𝑏1, 𝑏2, . . . , 𝑏𝑛) that have at most poles in addition to the
fixed singularities 𝑏𝑗 = 𝑏ℓ, for some 𝑗 ∕= ℓ [11] (see also [40]).

Appendix A. Briefly Kac–Moody–Lie algebras

A.1. The basic definitions

The ℓ × ℓ Cartan matrix 𝐶 = [𝑐𝑖𝑗 ] (𝑖, 𝑗 ∈ ℐ) of any semisimple Lie algebra 𝔤ℂ
satisfies the conditions

(1) 𝑐𝑖𝑗 ∈ ℤ, for all 𝑖, 𝑗;
(2) 𝑐𝑖𝑖 = 2, for all 𝑖;
(3) 𝑐𝑖𝑗 ≤ 0 if 𝑖 ∕= 𝑗;
(4) 𝑐𝑖𝑗 = 0 whenever 𝑐𝑗𝑖 = 0;
(5) The matrix 𝐶 is positive definite in the sense that all of the principal minors

of 𝐶 are positive.

Conversely, if we have an ℓ× ℓ matrix 𝐶 satisfying (1)–(4), the Cartan structural
relations of 𝔤ℂ define an abstract complex Lie algebra 𝔤

′ called the Kac–Moody–Lie
algebra defined by 𝐶. If in addition 𝐶 satisfies (5), then 𝔤′ will be finite-dimensional
and also semisimple. But if (5) does not hold, then 𝔤′ will be infinite-dimensional.
There is a way of modifying this latter case so that much of the finite-dimensional
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theory can apply directly. We refer to [38, Chap. 1] and [57, §5.3] for details and
retain the notation 𝔤′ once this modification has been done.

Let 𝔏 = ℂ((𝑡))(= ℂ[𝑡, 𝑡−1]) denote the algebra of Laurent polynomials in 𝑡.
Following [38, §7.1], we have the loop algebra 𝔏(𝔤′) = 𝔏⊗ℂ𝔤

′. The central extension
�̃�𝔤′ of 𝔏𝔤′ satisfies (1)–(4), and (5)′: det 𝐶 = 0, and all the proper principal
minors of 𝐶 are positive. Conversely, the Kac–Moody–Lie algebras corresponding
to Cartan matrices following (1)–(4) and (5)′ are called affine Kac–Moody–Lie
algebras (see in particular [38, Theorem 7.4]).

Remark A.1. We could assume that 𝐶 is locally finite, meaning that for each 𝑗 ∈ ℤ,
we have 𝑐𝑖𝑗 = 0, except for a finite number of the 𝑖’s.

A.2. The Weyl–Coxeter group

With respect to a collection of roots {𝜈𝑗}, the root lattice 𝑅 = 𝑅(𝐶) and the
co-root lattice 𝑅∨ = 𝑅∨(𝐶) are defined by

𝑅 =
⊕
𝑗∈ℐ

ℤ𝜈𝑗 , and 𝑅∨ =
⊕
𝑗∈ℐ

ℤ𝜈∨𝑗 , (A.1)

respectively, together with the pairing ⟨, ⟩ : 𝑅∨×𝑅 −→ ℤ. Then let𝒲 =𝒲(𝐶) be
the Weyl–Coxeter group as defined by generators 𝑠𝑖(𝑖 ∈ ℐ) satisfying the relations

𝑠2𝑖 = 1, (𝑠𝑖𝑠𝑗)
𝑚𝑖𝑗 = 1, (𝑖, 𝑗 ∈ ℐ, 𝑖 ∕= 𝑗), (A.2)

where 𝑚𝑖𝑗 = 2, 3, 4, 6 or ∞, according to whether 𝑐𝑖𝑗𝑐𝑗𝑖 = 0, 1, 2, 3 or ≥ 4, re-
spectively. As is well known in the theory of Coxeter groups, the generators 𝑠𝑖 act
naturally on the root lattice 𝑅 by reflections

𝑠𝑖(𝜈𝑗) = 𝜈𝑗 − 𝜈𝑖 < 𝜈∨𝑖 , 𝜈𝑗 > = 𝜈𝑗 − 𝜈𝑖𝑐𝑖𝑗 , (A.3)

(see, e.g., [38, Chap. 6], and in particular [53, §2] in relationship to §6.3). Let
𝑅★ = Homℤ(𝑅

∨,ℤ), (A.4)

denote the dual ℤ-module of the coroot lattice𝑅∨. Taking the dual basis {Λ𝑗}𝑗∈ℐ of
{𝜈∨𝑗 } so that 𝑅★ = ⊕𝑗∈ℐ ℤΛ𝑗 , there exists a natural𝒲-homomorphism 𝑅 −→ 𝑅★,

such that 𝜈𝑗 −→
∑

𝑖∈ℐ Λ𝑖𝑐𝑖𝑗 [53, §2].

Appendix B. The Painlevé equations

This subject has a rich and illustrious history as finely surveyed in the monograph
[15](see also [14]) to which we refer the reader who wishes pursue further details
as well as the interesting historical background.

Painlevé studied second-order nonlinear ODEs of the form

𝑦′′ = 𝐹 (𝑦, 𝑦′, 𝑧), 𝑦 = 𝑦(𝑧), (B.1)

where 𝐹 (𝑦′, 𝑦, 𝑧) is rational in 𝑦 and 𝑦′, and analytic in 𝑧. The problem (originally
posed by E. Picard) was to identify all equations of the form (B.1) for which
the solutions have “no movable critical points”, i.e., the locations of any branch
points or essential singularities do not depend on the constants of integration of
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(B.1). Painlevé studied an assortment of 50 ‘canonical equations’, up to Möbius
transformations, whose solutions have no movable critical points and then reduced
the study to six particular types (PI–PVI, the solutions to which are often called
the Painlevé transcendents) [15] and [14, §1]:
PI 𝑦′′ = 6𝑦2 + 𝑧
PII 𝑦′′ = 2𝑦3 + 𝑧𝑦 + 𝛼

PIII 𝑦′′ = (𝑦′)2

𝑦 − 𝑦′

𝑧 +
𝛼𝑦2+𝛽

𝑧 + 𝛾𝑦3 + 𝛿
𝑦

PIV 𝑦′′ = (𝑦′)2

2𝑦 + 3
2𝑦

3 + 4𝑧𝑦2 + 2(𝑧2 − 𝛼)𝑦 + 𝛽
𝑦

PV 𝑦′′ =
(
1
2𝑦 +

1
𝑦−1

)
(𝑦′)2 − 𝑦′

𝑧 +
(𝑦−1)2

𝑧2

(
𝛼𝑦 + 𝛽

𝑦

)
+ 𝛾𝑦

𝑧 + 𝛿𝑦(𝑦+1)
𝑦−1

PVI 𝑦′′ = 1
2

(
1
𝑦 +

1
𝑦−1 +

1
𝑦−𝑧

)
(𝑦′)2 − (

1
𝑧 +

1
𝑧−1 +

1
𝑦−𝑧

)
𝑦′

+ 𝑦(𝑦−1)(𝑦−𝑧)
𝑧2(𝑧−1)2

{
𝛼+ 𝛽𝑧

𝑦2 +
𝛾(𝑧−1)
(𝑦−1)2 +

𝛿𝑧(𝑧−1)
(𝑦−𝑧)2

}
where the 𝛼, . . . , 𝛿 are constants. The solutions are aptly named ‘transcendents’
because they cannot be expressed in terms of traditional special functions.

Example B.1. Following [54], we exemplify properties of PI. Let 𝑦 = 𝑦(𝑧) be a
solution of

𝑦′′ = 6𝑦2 + 𝑧. (B.2)

The function 𝑦 is meromorphic on ℂ, and there is a function 𝜏 = 𝜏(𝑧) holomorphic
on ℂ such that

𝑦(𝑧) = −( 𝑑

𝑑𝑧

)2
ln 𝜏 =

(𝜏 ′)2 − 𝜏𝜏 ′′

𝜏2
. (B.3)

Setting 𝜂 = 𝜏 ′
𝜏 , then 𝜂 is a solution of a third-order ODE in 𝜏 :

𝜂′′ − 4(𝜂′)3 − 2𝑧 − 2𝜂 = 0. (B.4)

Consider the polynomial in 𝑦 and 𝜇:

𝐻I(𝑧; 𝑦, 𝜇) =
1

2
𝜇2 − 2𝑦3 − 𝑧𝑦. (B.5)

Equation (B.2) is equivalent to a Hamiltonian system:{
𝑦′ = ∂𝐻

∂𝜇

𝜇′ = −∂𝐻
∂𝑦

(B.6)

In fact, each type of Painlevé equation can be written as a system such as (B.6)
[54]. If (𝑦(𝑧), 𝜇(𝑧)) is a solution to (B.6), then

𝜏(𝑧) = exp[

∫
𝐻(𝑧) 𝑑𝑧], (B.7)

where 𝐻(𝑧) = 𝐻I(𝑧; 𝑦(𝑧), 𝜇(𝑧)).

Example B.2. A modified version of the Korteweg–de Vries equation is

𝑢𝑡 − 6𝑢2𝑢𝑥 + 𝑢𝑥𝑥𝑥 = 0. (B.8)
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As pointed out in [14], (B.8) can be re-scaled by setting 𝑢(𝑥, 𝑡) = (3𝑡)−
1
3 𝑦(𝑧) where

𝑧 = 𝑥(3𝑡)−
1
3 , and this is solvable via an inverse scattering transform, where 𝑦(𝑧)

satisfies the equation PII: 𝑦
′′ = 2𝑦3 + 𝑧𝑦 + 𝛼.

In applications of the Painlevé equations to integrable systems it is usually
the case that for each type PI-PVI there is a companion 𝜏 -function playing a
significant role, as Example B.1 reveals. Likewise, this special relationship shows
up in other areas such as plasma physics, quantum optics, general relativity and
quantum gravity (cf. §4.1).
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Abstract. Tauberian operators have been useful in the study of many differ-
ent topics of functional analysis. Here we describe some properties and the
main applications of tauberian operators, and we point out several concrete
problems that remain open.
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1. Introduction

The concept of tauberian operator was introduced by Kalton and Wilansky [19]
as a tool in the investigation of some questions in summability theory from an
abstract point of view. We refer to [13, Chapter 1] for an historical account of the
work that culminated with this concept.

Tauberian operators have been useful in the study of real interpolation theory
of Banach spaces and operators [6], factorization of operators [18, 10], equivalence
between the Krĕın–Milman property and the Radon–Nikodým property [24], weak
Calkin algebras of operators [5], embedding of dual separable Banach spaces in
spaces with boundedly complete bases [8], refinements of James’ characterization
of reflexive Banach spaces [21], preservation of isomorphic properties of Banach
spaces [20], convergence of bounded martingales [14], construction of hereditarily
indecomposable Banach spaces [4], extension to operators of the principle of local
reflexivity [7], etc.
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In this paper we survey the main properties and applications of tauberian
operators, and we describe some lines of research and some open problems. Since
there is an up to date exposition of the theory of tauberian operators [13], we
refer for details to this reference, including proper credits of the results, and we
emphasize on questions that may deserve further study.

Throughout the paper, we denote by ℒ(𝑋,𝑌 ) the bounded operators between
Banach spaces𝑋 and 𝑌 , 𝑇 ∗ ∈ ℒ(𝑌 ∗, 𝑋∗) is the conjugate operator of 𝑇 ∈ ℒ(𝑋,𝑌 ),
𝑇 ∗∗ is the second conjugate, and in the case 𝑋 = 𝑌 we write ℒ(𝑋) instead of
𝑇 ∈ ℒ(𝑋,𝑋).

2. The residuum operator

In the study of tauberian operators it is convenient to consider the dual concept
of cotauberian operators.

Definition 2.1. An operator 𝑇 ∈ ℒ(𝑋,𝑌 ) is called tauberian when it satisfies
(𝑇 ∗∗)−1(𝑌 ) = 𝑋 . The operator 𝑇 is called cotauberian when 𝑇 ∗ is tauberian.

We denote by 𝒯 (𝑋,𝑌 ) and 𝒯 𝑑(𝑋,𝑌 ) the subsets of tauberian operators and
cotauberian operators in ℒ(𝑋,𝑌 ).

A useful tool is the residuum operator 𝑇 𝑐𝑜 associated to each 𝑇 ∈ ℒ(𝑋,𝑌 ),
which is the operator 𝑇 𝑐𝑜 ∈ ℒ(𝑋∗∗/𝑋, 𝑌 ∗∗/𝑌

)
defined by

𝑇 𝑐𝑜(𝑥∗∗ +𝑋) := 𝑇 ∗∗𝑥∗∗ + 𝑌.

It is easy to check that 𝑇 is tauberian if and only if 𝑇 𝑐𝑜 is injective, and by
means of duality arguments we can prove that 𝑇 is cotauberian if and only if 𝑇 𝑐𝑜

has dense range [13, Section 3.1].

Proposition 2.2 ([3]). Given 𝑇 ∈ ℒ(𝑋,𝑌 ), 𝑇 ∗ cotauberian implies 𝑇 tauberian but
the converse implication is not valid.

Proof. Note that (𝑇 ∗∗)𝑐𝑜 can be identified with (𝑇 𝑐𝑜)∗∗ [13, Proposition 3.1.11].
The implication is a direct consequence of this fact.

To show the failure of the converse implication, we consider 𝑆 ∈ ℒ(ℓ1) given
by 𝑆(𝑥𝑘) := (𝑥𝑘/𝑘), and find an operator 𝑇 ∈ ℒ(𝑍) such that 𝑇 𝑐𝑜 can be identified
with 𝑆. See [13, Theorem 3.1.18]. □
Question 1. Find conditions on 𝑋 and 𝑌 under which 𝑇 tauberian implies 𝑇 ∗

cotauberian.

The operators 𝑇 for which 𝑇 𝑐𝑜 is injective and has closed range were stud-
ied by Rosenthal [23], who called them strongly tauberian operators. Note that 𝑇
strongly tauberian implies 𝑇 ∗ cotauberian. In some cases each tauberian operator
𝑇 ∈ ℒ(𝑋,𝑌 ) is strongly tauberian. For example, when 𝑋 is 𝐿1(𝜇) and, more gen-
erally, when 𝑋 is 𝐿-embedded in 𝑋∗∗ [13, Theorem 6.2.18] and when the reflexive
subspaces of 𝑋 are superreflexive (see [13, Proposition 6.5.3 and Theorem 6.5.16]).
However, these conditions are far from necessary.
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Proposition 2.3. In general, neither of the sets 𝒯 (𝑋,𝑌 ) and 𝒯 𝑑(𝑋,𝑌 ) is open in
ℒ(𝑋,𝑌 ).

Proof. Given a non-reflexive Banach space 𝑋 , neither 𝒯 (ℓ2(𝑋)) nor 𝒯 𝑑
(
ℓ2(𝑋)

)
is

open in ℒ(ℓ2(𝑋)). See [13, Example 2.1.17]. □

Question 2. Find conditions on 𝑋 and 𝑌 implying that 𝒯 (𝑋,𝑌 ) or 𝒯 𝑑(𝑋,𝑌 ) is
an open subset of ℒ(𝑋,𝑌 ).

When every 𝑇 ∈ 𝒯 (𝑋,𝑌 ) is strongly tauberian, 𝒯 (𝑋,𝑌 ) is an open subset of
ℒ(𝑋,𝑌 ). Similarly, when 𝑇 ∈ 𝒯 𝑑(𝑋,𝑌 ) implies 𝑇 ∗ strongly tauberian, 𝒯 𝑑(𝑋,𝑌 )
is an open subset of ℒ(𝑋,𝑌 ).

Remark 2.4. In the case 𝑋 = 𝑌 it is interesting that 𝒯 (𝑋) or 𝒯 𝑑(𝑋) be open
because it allows to introduce notions of “essential spectra” and apply techniques
of spectral theory in the study of tauberian operators, like it is done in [25].

There are many Banach spaces 𝑋 that are isomorphic to 𝑍∗∗/𝑍 for some
space 𝑍. This is proved in [8, Proposition 1] for 𝑋 weakly compactly generated
(see the definition in [2, page 308]). Note that reflexive spaces and separable spaces
are weakly compactly generated.

Question 3. Given two concrete Banach spaces 𝑋 and 𝑌 , characterize the operators
𝑆 ∈ ℒ(𝑋∗∗/𝑋, 𝑌 ∗∗/𝑌 ) for which there exists 𝑇 ∈ ℒ(𝑋,𝑌 ) such that 𝑇 𝑐𝑜 = 𝑆.

The previous question was studied in [16] where some partial results were
obtained. For example, in [16] we can find a Banach space 𝑍 with 𝑍∗∗/𝑍 isomorphic
to ℓ2 such that {𝑇 𝑐𝑜 : 𝑇 ∈ ℒ(𝑍)} coincides with the set of 𝑆 ∈ ℒ(ℓ2) which are
regular with respect to the natural Banach lattice structure of ℓ2.

Examples of tauberian and cotauberian operators

The main source of examples of tauberian and cotauberian operators is the fol-
lowing result which is a refinement of the main result in [8].

Theorem 2.5 ([10]). For every 𝑇 ∈ ℒ(𝑋,𝑌 ) there exist Banach spaces 𝐸 and 𝐹 ,
and operators 𝑗 ∈ ℒ(𝐹, 𝑌 ), 𝑈 ∈ ℒ(𝐸,𝐹 ) and 𝑘 ∈ ℒ(𝑋,𝐸) such that 𝑗 is tauberian,
𝑈 is a bijective isomorphism, 𝑘 is cotauberian, and 𝑇 = 𝑗𝑈𝑘.

𝑋 𝑌

𝐸 𝐹

�𝑇

�
𝑘

�
𝑈

�
𝑗

For the proof see [10] or [13, Section 3.2].

Remark 2.6. In the factorization of Theorem 2.5, if 𝑇 = 𝑗𝑈𝑘 is the factorization of
𝑇 , then 𝑇 ∗ = 𝑘∗𝑈∗𝑗∗ and 𝑇 𝑐𝑜 = 𝑗𝑐𝑜𝑈 𝑐𝑜𝑘𝑐𝑜 can be identified with the factorizations
of 𝑇 ∗ and 𝑇 𝑐𝑜 [13, Theorem 3.2.8].
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3. Perturbative and algebraic characterizations

Recall that an operator 𝐾 ∈ ℒ(𝑋,𝑌 ) is weakly compact when it takes bounded
subsets of 𝑋 to relatively weakly compact subsets of 𝑌 .

It follows from [2, Theorem 17.2] that 𝐾 is weakly compact if and only if
𝐾𝑐𝑜 = 0. As a consequence, 𝒯 (𝑋,𝑌 ) and 𝒯 𝑑(𝑋,𝑌 ) are stable under additive
perturbation by weakly compact operators.

Theorem 3.1 ([15]). Let 𝑇 ∈ ℒ(𝑋,𝑌 ).

(a) 𝑇 is tauberian if and only if for every compact operator 𝐾 ∈ ℒ(𝑋,𝑌 ), the
kernel 𝑁(𝑇 +𝐾) is reflexive;

(b) 𝑇 is cotauberian if and only if for every compact operator 𝐾 ∈ ℒ(𝑋,𝑌 ), the

cokernel 𝑌/𝑅(𝑇 +𝐾) is reflexive.

Recall that 𝑇 ∈ ℒ(𝑋,𝑌 ) is said to be upper semi-Fredholm if its kernel 𝑁(𝑇 )
is finite dimensional and its range 𝑅(𝑇 ) is closed. The operator 𝑇 is said to be
lower semi-Fredholm if its range is finite codimensional in 𝑌 , hence closed.

Remark 3.2. Theorem 3.1 was inspired by classical characterizations for the up-
per and the lower semi-Fredholm operators, in which finite-dimensional spaces
replace reflexive spaces. It shows that 𝒯 (𝑋,𝑌 ) and 𝒯 𝑑(𝑋,𝑌 ) allow to develop a
generalized Fredholm theory associated to the reflexive Banach spaces.

Part (b) also shows that the cotauberian operators can be defined without
reference to conjugate operators.

The following characterization was obtained in [15].

Theorem 3.3. Let 𝑇 ∈ ℒ(𝑋,𝑌 ).

(a) 𝑇 tauberian if and only if for every Banach space 𝑍 and every 𝑆 ∈ ℒ(𝑍,𝑋),
𝑇𝑆 weakly compact implies 𝑆 weakly compact;

(b) 𝑇 cotauberian if and only if for every Banach space 𝑍 and every 𝑆 ∈ ℒ(𝑌, 𝑍),
𝑆𝑇 weakly compact implies 𝑆 weakly compact.

Remark 3.4. Theorem 3.3 has a version that characterizes the upper and the lower
semi-Fredholm operators, in which compact operators replace weakly compact
operators. Moreover, this result inspired the introduction of operator semigroups
associated to an operator ideal in [1]. See Definition 3.5 below.

Recall that an operator ideal (in the sense of Pietsch [22]) is a subclass 𝒜 of
the class ℒ of all operators between Banach spaces such that, given Banach spaces
𝑉 , 𝑋 , 𝑌 and 𝑍, the component 𝒜(𝑋,𝑌 ) is a subspace of ℒ(𝑋,𝑌 ) that contains
the finite rank operators, and satisfies

𝑆 ∈ ℒ(𝑌, 𝑍),𝐾 ∈ 𝒜(𝑋,𝑌 ), 𝑇 ∈ ℒ(𝑉,𝑋) =⇒ 𝑆𝐾𝑇 ∈ 𝒜(𝑉, 𝑍).
Examples of operator ideals are the compact operators 𝒦 and the weakly

compact operators𝒲 . For many other examples and an account of the properties
of operator ideals, we refer to [22].

Next for every operator ideal 𝒜 we define two classes of operators 𝒜+ and
𝒜− in terms of their components 𝒜+(𝑋,𝑌 ) and 𝒜−(𝑋,𝑌 ).
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Definition 3.5 ([1]). Let 𝒜 be an operator ideal and 𝑇 ∈ ℒ(𝑋,𝑌 ).

(a) 𝑇 ∈ 𝒜+ if for every Banach space 𝑍 and every 𝑆 ∈ ℒ(𝑍,𝑋),
𝑇𝑆 ∈ 𝒜 implies 𝑆 ∈ 𝒜;

(b) 𝑇 ∈ 𝒜− if for every Banach space 𝑍 and every 𝑆 ∈ ℒ(𝑌, 𝑍),
𝑆𝑇 ∈ 𝒜 implies 𝑆 ∈ 𝒜.

Note that 𝒜+(𝑋,𝑌 ) and 𝒜−(𝑋,𝑌 ) can be empty when 𝑋 ∕= 𝑌 . However the
identity 𝐼𝑋 belongs to both 𝒜+(𝑋) and 𝒜−(𝑋).
Remark 3.6. For every operator ideal 𝒜, the classes 𝒜+ and 𝒜− are stable under
product: given 𝑆 ∈ ℒ(𝑌, 𝑍) and 𝑇 ∈ ℒ(𝑋,𝑌 ),

𝑆, 𝑇 ∈ 𝒜+ ⇒ 𝑆𝑇 ∈ 𝒜+ and 𝑆, 𝑇 ∈ 𝒜− ⇒ 𝑆𝑇 ∈ 𝒜−.
For this reason 𝒜+ and 𝒜− are called operator semigroups associated to 𝒜.

It follows from Theorem 3.3 and Remark 3.4 that𝒲+ and𝒲− are the classes
of tauberian and cotauberian operators, and 𝒦+ and 𝒦− are the classes of upper
semi-Fredholm and lower semi-Fredholm operators. The class 𝒜+ has been studied
for the operator ideals of Rosenthal operators ℛ, completely continuous operators
𝒞, weakly completely continuous operators 𝒲𝒞, and unconditionally converging
operators 𝒰 . And denoting 𝒜𝑑 := {𝑇 : 𝑇 ∗ ∈ 𝒜}, the dual operator ideal of 𝒜, the
class 𝒜− has been studied for 𝒜 one of the operator ideals ℛ𝑑, 𝒞𝑑, 𝒲𝒞𝑑, and 𝒰𝑑.
Note that by the Schauder and Gantmacher theorems, 𝒦𝑑 = 𝒦 and 𝒲𝑑 =𝒲 . We
refer to [13, Sections 3.5 and 6.1] for details.

Recall that 𝑇 ∈ ℒ(𝑋,𝑌 ) is a Banach-Saks operator if every bounded sequence
(𝑥𝑛) in 𝑋 has a subsequence (𝑥𝑛𝑘

) for which
(
𝑚−1∑𝑚

𝑘=1 𝑇𝑥𝑛𝑘

)
is convergent. A

Banach space 𝑋 has the Banach-Saks property if the identity 𝐼𝑋 is Banach-Saks.
This is an intermediate property between reflexivity and super-reflexivity.

Question 4. Study the semigroups 𝒜+ and 𝒜− for other operator ideals 𝒜. In
particular, we point out the operator ideal of the Banach-Saks operators considered
in [18]. It could provide new results on the Banach-Saks property, whose study
presents notable technical difficulties.

The semigroups 𝒜+ and 𝒜− are specially useful when they admit perturba-
tive characterizations similar to Theorem 3.1. In order to be precise, we consider
the space ideal associated to 𝒜, which is the class of Banach spaces defined by
𝑆𝑝(𝒜) := {𝑋 : 𝐼𝑋 ∈ 𝒜}.
Question 5. Find examples of semigroups 𝒜+ and 𝒜− satisfying a perturbative
characterization, in the sense that for 𝑇 ∈ ℒ(𝑋,𝑌 ),

∙ 𝑇 ∈ 𝒜+ if and only if for every compact operator 𝐾 ∈ ℒ(𝑋,𝑌 ), the kernel
𝑁(𝑇 +𝐾) belongs to 𝑆𝑝(𝒜);

∙ 𝑇 ∈ 𝒜− if and only if for every compact operator 𝐾 ∈ ℒ(𝑋,𝑌 ), the cokernel

𝑌/𝑅(𝑇 +𝐾) belongs to 𝑆𝑝(𝒜).
The semigroups 𝐶𝑜+, 𝑊𝐶𝑜+, ℛ+, 𝒞+, 𝒲𝒞+ and 𝒰+, and the semigroups

𝐶𝑜−, 𝑊𝐶𝑜−, ℛ𝑑−, 𝒞𝑑−, 𝒲𝒞𝑑− and 𝒰𝑑− satisfy perturbative characterizations [13,
Section 3.5]. See [11] and [14] for further examples.
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4. Tauberian operators acting on Banach lattices

There are not many results on tauberian operators acting on Banach lattices in
which the lattice structure is applied, like in the following one.

Theorem 4.1 ([12]). An operator 𝑇 ∈ ℒ(𝐿1(0, 1), 𝑌 ) is tauberian if and only if
inf{lim inf

𝑛→∞ ∥𝑇𝑓𝑛∥ : (𝑓𝑛) ⊂ 𝐿1(0, 1) normalized and disjoint} > 0.

It is easy to derive from this characterization that 𝒯 (𝐿1(0, 1), 𝑌 ) is open in
ℒ(𝐿1(0, 1), 𝑌 ). Another consequence shows that tauberian operators on 𝐿1(0, 1)
are not far from into isomorphisms:

Corollary 4.2 ([12]). For every tauberian operator 𝑇 ∈ ℒ(𝐿1(0, 1), 𝑌 ) there exists a
finite partition of (0, 1) consisting of intervals {𝐼1, . . . , 𝐼𝑛} such that the restriction
𝑇 ∣𝐿1(𝐼𝑘) is an into isomorphism for each 𝑘 = 1, . . . , 𝑛.

Here 𝐿1(𝐼𝑘) is the set of functions in 𝐿1(0, 1) with support essentially con-
tained in the interval 𝐼𝑘.

The space 𝐿1(0, 1) contains many infinite-dimensional reflexive subspaces 𝑅,
and for these subspaces the quotient map 𝑄 : 𝐿1(0, 1) → 𝐿1(0, 1)/𝑅 is tauberian
[13, Theorem 2.1.5]. However, the following question remains open.

Question 6. Suppose that 𝑇 ∈ ℒ(𝐿1(0, 1)) is tauberian. Is 𝑇 upper semi-Fredholm?
In [26] we can find a positive answer to this problem for some special opera-

tors. In order to state the result, recall that for every 𝑇 ∈ ℒ(𝐿1(0, 1)) we can find
a family {𝜇𝑠 : 𝑠 ∈ (0, 1)} of Borel measures in (0, 1) so that 𝑇𝑓(𝑠) =

∫ 1
0
𝑓(𝑡)𝑑𝜇𝑠(𝑡)

a.e. for every 𝑓 ∈ 𝐿1(0, 1).
Using the fact that every Borel measure 𝜇 admits a decomposition with

respect to the Lebesgue measure 𝜇 = 𝜇𝑎𝑡 + 𝜇𝑎𝑐 + 𝜇𝑠𝑐 in atomic part, absolutely
continuous part and singular continuous part, for every operator 𝑇 ∈ ℒ(𝐿1(0, 1))
we obtain a decomposition 𝑇 = 𝑇 𝑎𝑡 + 𝑇 𝑎𝑐 + 𝑇 𝑠𝑐. We refer to [13, Section 4.3] for
more details.

Theorem 4.3 ([26]). Every tauberian operator 𝑇 ∈ ℒ(𝐿1(0, 1)) with 𝑇 𝑠𝑐 = 0 is
upper semi-Fredholm.

Question 6 is likely to be difficult. So it could be interesting to begin with
the case of multiplier operators. Observe that the set of multipliers depends on the
isometric representation of 𝐿1(0, 1) that we consider. For simplicity, we consider
the space 𝐿1(𝕋) of integrable functions in the unit circle 𝕋 endowed with the
Lebesgue measure 𝑚, and we denote by 𝑀(𝕋) the space of Borel measures on 𝕋.

The convolution product 𝜇 ∗ 𝜈 of two measures 𝜇, 𝜈 ∈ 𝑀(𝕋) is defined as
follows. Given a Borel subset 𝐸 of 𝕋, we consider the set

𝐸(2) :=
{(

𝑒𝑖𝑠, 𝑒𝑖𝑡
) ∈ 𝕋× 𝕋 : 𝑒𝑖(𝑠+𝑡) ∈ 𝐸

}
,

and denoting by 𝜇× 𝜈 the product of measures we define

(𝜇 ∗ 𝜈)(𝐸) := (𝜇× 𝜈)(𝐸(2)).
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Definition 4.4. Let 𝜇 ∈ 𝑀(𝕋). The convolution operator associated to 𝜇 is the
operator 𝑇𝜇 ∈ ℒ

(
𝐿1(𝕋)

)
is defined by 𝑇𝜇𝑓 := 𝜇 ∗ 𝑓 .

Recall that 𝐿1(𝕋) can be identified with the subspace of 𝑀(𝕋) consisting of
the measures that are absolutely continuous with respect to the Lebesgue measure,
and 𝑀(𝕋) can be identified in a natural way with a closed subspace of 𝐿1(𝕋)∗∗.
Indeed, 𝐿1(𝕋)∗ = 𝐿∞(𝕋) and for every 𝜇 ∈𝑀(𝕋) the expression

⟨𝑔, 𝜇⟩ :=
∫
𝕋

𝑔(𝑒𝑖𝑡)𝑑𝜇, 𝑔 ∈ 𝐿∞(𝕋).

defines an element 𝐿∞(𝕋)∗.
The convolution operator 𝑇𝜇 admits an extension 𝑇𝜇 ∈ ℒ

(
𝑀(𝕋)

)
which is

also defined by 𝑇𝜇𝜈 := 𝜇∗𝜈. Moreover, with the natural identifications, the second
conjugate 𝑇𝜇

∗∗ is an extension of 𝑇𝜇.
The proof of the following result is not difficult, and it is left to the interested

reader.

Proposition 4.5. Given 𝜇 ∈𝑀(𝕋), consider the following assertions:

(a) 𝑇𝜇 is upper semi-Fredholm;
(b) 𝑇𝜇 is tauberian;
(c) 𝜈 ∈𝑀(𝕋) and 𝜇 ∗ 𝜈 ∈ 𝐿1(𝕋) imply 𝜈 ∈ 𝐿1(𝕋).

Then (a) =⇒ (b) =⇒ (c).

We can now state a special case of Question 6.

Question 7. Are the converse implications in Proposition 4.5 true?

We refer to [14] for examples of convolution operators in other representations
of 𝐿1(0, 1).

Tauberian positive operators

Given Banach lattices 𝐸 and 𝐹 , and positive operators 𝑆, 𝑇 in ℒ(𝐸,𝐹 ), a classi-
cal problem, known as the domination problem for compact operators, is to find
conditions on 𝐸 and 𝐹 so that

0 ≤ 𝑆 ≤ 𝑇 and 𝑇 compact =⇒ 𝑆 compact.

A sufficient condition is that both 𝐸∗ and 𝐹 have order continuous norm [2,
Theorem 16.20]. Moreover, in the case 𝐸 = 𝐹 , 𝑇 compact implies 𝑆3 compact
with no conditions on 𝐸 [2, Theorem 16.13].

Similar results have been obtained for other operator ideals like the weakly
compact operators, the completely continuous operators, and the strictly singular
operators. We refer to the introduction of [9] for more information.

Next we consider the domination problem for tauberian and cotauberian
operators. Observe that the implications are reversed.

Question 8. Find conditions on Banach lattices 𝐸 and 𝐹 so that 0 ≤ 𝑆 ≤ 𝑇 in
ℒ(𝐸,𝐹 ) and 𝑆 tauberian (cotauberian)imply 𝑇 tauberian (cotauberian).
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Remark 4.6. In the case 𝐸 = 𝐹 , observe that there is a difference with the prob-
lem for operator ideals because, given 𝑇 ∈ ℒ(𝑋) and 𝑛 a positive integer, 𝑇 𝑛 is
tauberian (cotauberian) if and only if 𝑇 is tauberian (cotauberian).

It is also interesting to consider the domination problem for semigroups as-
sociated to other operator ideals 𝒜 besides 𝒲 .
Question 9. Given an operator ideal 𝒜, investigate the problems in Question 8 and
Remark 4.6 for the semigroups 𝒜+ and 𝒜−.

In the previous question, note that we need the condition 𝒜 injective in order
to have 𝑇 𝑛 ∈ 𝒜+ if and only if 𝑇 ∈ 𝒜+, and we need 𝒜 surjective in order to have
𝑇 𝑛 ∈ 𝒜− if and only if 𝑇 ∈ 𝒜−.

5. Applications

Here we only consider a few of the applications of tauberian operators mentioned
in the introduction of the paper. For a more complete account and a detailed
description, we refer to [13].

5.1. Factorization of operators

The factorization result obtained in [8] was improved in [18] and [10], and applied to
prove that some operator ideals 𝒜 satisfy the factorization property; i.e., that every
𝑇 ∈ 𝒜(𝑋,𝑌 ) can be factorized through a Banach space 𝐸 such that 𝐼𝐸 ∈ 𝒜. The
weakly compact, the weakly precompact, and the Banach-Saks operators satisfy
the factorization property. We refer to [13, Section 5.3] for additional examples.
Next result shows that Theorem 2.5 provides a method to find operator ideals
satisfying the factorization property.

Proposition 5.1. Let 𝒜 be an operator ideal. Suppose that for every operator 𝑇 ,
the operators 𝑗 and 𝑘 obtained in Theorem 2.5 satisfy 𝑗 ∈ 𝒜+ and 𝑘 ∈ 𝒜−. Then
𝒜 satisfies the factorization property.

The proof is a consequence of the definitions of 𝒜+ and 𝒜−. Let 𝑇 ∈ ℒ(𝑋,𝑌 )
be an operator in 𝒜, and let 𝑇 = 𝑗𝑈𝑘 be the factorization obtained in Theorem
2.5. Since 𝑗 ∈ 𝒜+, 𝑘 ∈ 𝒜− and 𝑈 is a bijective isomorphism,

𝑗𝑈𝑘 ∈ 𝒜 ⇒ 𝑈𝑘 ∈ 𝒜 ⇒ 𝑈 ∈ 𝒜 ⇒ 𝐼𝐸 ∈ 𝒜.

So 𝒜 satisfies the factorization property.

Question 10. Find operator ideals 𝒜 such that for every operator 𝑇 , the operators
𝑗 and 𝑘 obtained in Theorem 2.5 satisfy 𝑗 ∈ 𝒜+ and 𝑘 ∈ 𝒜−.

Every operator ideal 𝒜 has associated the dual operator ideal 𝒜𝑑 and the
residuum operator ideal 𝒜𝑐𝑜 that are defined by

𝒜𝑑 := {𝑇 ∈ ℒ : 𝑇 ∗ ∈ 𝒜} and 𝒜𝑐𝑜 := {𝑇 ∈ ℒ : 𝑇 𝑐𝑜 ∈ 𝒜}.
The following result is a consequence of Remark 2.6.
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Proposition 5.2. Let 𝒜 be an operator ideal such that for every operator 𝑇 , the
operators 𝑗 and 𝑘 obtained in Theorem 2.5 satisfy 𝑗 ∈ 𝒜+ and 𝑘 ∈ 𝒜−. Then the
same is true for 𝒜𝑑 and 𝒜𝑐𝑜.

5.2. James’ characterization of reflexive Banach spaces

A classical result of James establishes that a Banach space𝑋 is reflexive if and only
if each 𝑓 ∈ 𝑋∗ attains its norm in the closed unit ball 𝐵𝑋 ; i.e., 𝑓

(
𝐵𝑋

)
is closed for

every 𝑓 ∈ 𝑋∗. An improvement was obtained by Neidinger and Rosenthal in [21]
as an application on their investigations on the behavior of tauberian operators.

Theorem 5.3 ([21]). Let 𝑇 ∈ ℒ(𝑋,𝑌 ) be a non-zero operator. The following asser-
tions are equivalent:

(a) 𝑇 is tauberian;
(b) 𝑇 (𝐴) is closed for all closed bounded convex subsets 𝐴;
(c) 𝑇 (𝐵𝑌 ) is closed for all closed subspaces 𝑌 .

From this characterization of tauberian operators, the following improvement
of James’ theorem was obtained.

Theorem 5.4 ([21]). Let 𝑋 be a non-reflexive Banach space. Then for every non-
zero 𝑓 ∈ 𝑋∗ there exists a closed subspace 𝑌 of 𝑋 such that the restriction 𝑓 ∣𝑌
does not attain its norm on 𝐵𝑌 . Moreover, the subspace 𝑌 may be chosen of
codimension one in 𝑋.

We refer to [13, Section 2.3] for an alternative exposition of the results of
Neidinger and Rosenthal.

5.3. Equivalence between the KMP and the RNP

The equivalence between the Radon–Nikodym property (RNP) and the Krĕın–
Milman property (KMP) for Banach spaces is a problem that it is still open, but
has produced an intense investigation on the structure of the extreme points of
convex sets that has been useful in other topics, like optimization theory. We refer
to [13, Section 5.1] for an account of the relevant concepts.

The characterization of tauberian operators in terms of their action on closed
bounded convex subsets given in Theorem 5.3 was applied by Schachermayer to
obtain a necessary condition for the equivalence of the RNP and the KMP.

Theorem 5.5 ([24]). Let 𝑋 be a Banach space for which there exists an injective
tauberian operator 𝑇 ∈ ℒ(𝑋 ×𝑋,𝑋). Then 𝑋 has the RNP if and only if it has
the KMP.

This result was formulated in [24] in a weaker version. For the previous formu-
lation we refer to [13, Theorem 5.1.12]. A key in its proof is the fact that a Banach
space 𝑋 has the RNP if and only if the space ℓ2(𝑋) of norm square summable
sequences in 𝑋 has the KMP.

Question 11. Find conditions on a Banach space 𝑋 guaranteeing the existence of
an injective tauberian operator 𝑇 ∈ ℒ(𝑋 ×𝑋,𝑋).
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5.4. Preservation of isomorphic properties of Banach spaces

One of the key points in the main result of [8] is that tauberian operators preserve
the non-weak compactness of bounded sets; i.e., given 𝑇 ∈ 𝒯 (𝑋,𝑌 ) and a bounded
subset 𝐴 of 𝑋 , if 𝑇 (𝐴) is relatively weakly compact then 𝐴 is relatively weakly
compact. In [20], the preservation of isomorphic properties of Banach spaces by
tauberian operators and other related classes of operators was thoroughly inves-
tigated. From the preservation of isomorphic properties of bounded sets, we can
derive the preservation of properties of the whole space. Next we give a sample of
results of this kind.

Theorem 5.6 ([20]). Let 𝒫 be one of the following properties of a Banach space:
Krĕın–Milman property, Radon–Nikodým property, quasi-reflexivity, somewhat re-
flexivity, weak sequential completeness, containing no copies of ℓ1, containing no
copies of 𝑐0, separability, or separability of the dual space.

Suppose that 𝑌 satisfies 𝒫 and there exists an injective tauberian operator
𝑇 ∈ ℒ(𝑋,𝑌 ). Then 𝑋 satisfies 𝒫.

We observe that the preservation of properties by cotauberian operators have
not received attention.

Question 12. Determine isomorphic properties 𝒫 such that if 𝑋 satisfies 𝒫 and
there exists a dense range cotauberian operator 𝑇 ∈ ℒ(𝑋,𝑌 ), then 𝑌 satisfies 𝒫.

Similarly, given an operator ideal 𝒜, the definition of the semigroups 𝒜+ and
𝒜− can be described as the preservation of an isomorphic property.
Question 13. For an operator ideal 𝒜, determine the isomorphic properties pre-
served by the semigroups 𝒜+ and 𝒜−.

The answers to the last question would be useful in the search for examples
of operator ideals with the factorization property.

5.5. Construction of hereditarily indecomposable Banach spaces

A Banach space 𝑋 is said to be indecomposable if it cannot be decomposed as
the direct sum of two infinite-dimensional closed subspaces; equivalently, if each
complemented subspace of 𝑋 is finite dimensional or finite codimensional. The
space 𝑋 is said to be hereditarily indecomposable (H.I. for short) if every closed
subspace of𝑋 is indecomposable. The existence of infinite-dimensional H.I. Banach
spaces was proved by Gowers and Maurey in [17]. These spaces have been useful
to give answers to a good number of classical problems in Banach space theory.

In [4], Argyros and Felouzis introduced a factorization whose construction
have some similarities with the one given in [8]. In particular, the construction
gives a tauberian operator between the intermediate space and the final space, like
in Theorem 2.5. However, for compact operators the intermediate space obtained
in [4] is H.I. [4, Theorem 8.5], while the one obtained in [8] is hereditarily ℓ2 (each
infinite-dimensional closed subspace contains a subspace isomorphic to ℓ2) [13,
Corollary 3.2.12].
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Question 14. Develop a systematic study of the factorization in [4] parallel to the
one that have been done for the factorization in [8].

The construction in [4] is technically complicated, and it can be described
as a conditional version of the construction in [8]. It is very flexible and it may
provide a great variety of examples of Banach spaces and operators.
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[11] M. González, A. Mart́ınez-Abejón Supertauberian operators and perturbations Arch.
Math. 64 1995 423–433
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Products of Toeplitz and Hankel Operators
on the Hardy Space of the Unit Sphere
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Abstract. The aim of this note is to discuss boundedness and compactness
of Hankel products and mixed Toeplitz–Hankel products on the Hardy space
of the unit sphere in several complex variables. The main adopted tool is
an auxiliary pioneering operator involved in an earlier investigation of dual
Toeplitz operators on the orthogonal complement of the Hardy space on the
unit sphere.
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1. Introduction

Dual Toeplitz operators on the orthogonal complement of the Bergman space have
been introduced and well investigated by Stroethoff and Zheng [11]. The higher-
dimensional case of dual Toeplitz operators in both Hardy and Bergman space
settings has been studied in [2, 5]; see also the relevant references therein. On
the other hand, Toeplitz and Hankel operators in the latter setting have been
extensively studied; in this respect we refer to [3, 4, 7, 8, 9, 12, 13].

For our purpose, let 𝔹𝑛, 𝑛 > 1, be the unit ball of ℂ𝑛 and 𝕊𝑛 be its boundary
(the unit sphere). Denote by 𝐿2(𝕊𝑛) the Lebesgue space of square integrable func-
tions and by ℋ2(𝕊𝑛) its Hardy subspace, (for more details see [1, 3, 10, 15]). While
on the circle the orthogonal complement of the Hardy space can be characterized
by (𝐻2)⊥ = 𝑧𝐻2, the matter is much more involved in higher dimensions because

𝐿2(𝕊𝑛)⊖
{
ℋ2(𝕊𝑛) +ℋ2(𝕊𝑛)

}
is large enough to cause capital differences from the one-dimensional case.

This project was supported by King Saud University, Deanship of Scientific Research, College of
Science Research Center.
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Therefore, in contrast to the case of the circle, (where dual Toeplitz operators
are anti-unitarily equivalent to Toeplitz operators in view of the above symmetry
between (𝐻2)⊥ and 𝐻2, [11] or [5]), dual Toeplitz operators on the orthogonal
complement of the Hardy space on the unit sphere cannot be analogously reduced
to Toeplitz operators. Accordingly, they may constitute a worth studying new
class of Haplitz-type operators. In [5], such dual Toeplitz operators have been
introduced and studied from various points of view.

An interesting auxiliary operator, namely S𝑤, has been introduced and used
in studying products of these dual Toeplitz operators. In particular, commuting
dual Toeplitz operators have then been characterized through certain necessary
and sufficient conditions on the symbols. Besides, a Brown–Halmos type theorem
has been proved; it tells us when exactly the product of two dual Toeplitz operators
is again a dual Toeplitz operator. Several consequences of the two latter issues,
such as the characterization of zero divisors, have been also inferred. For the sake of
completeness, we summarize a few of these results here and refer to [5] for details.

Sarason’s problem related to the boundedness of Toeplitz products has been
extensively investigated by many authors, we refer to [6, 14] for details. The higher-
dimensional case of Toeplitz products and Hankel products has been considered
by many authors [2, 7, 8, 9, 12, 13]; see also the relevant references therein.

In the present paper, a more prominent role of the operator S𝑤 is empha-
sized. More precisely, making use of this transformation, we discuss necessary
conditions ensuring boundedness and compactness of products of Hankel operators
𝐻𝑓𝐻

∗
𝑔 , (equivalently the “dual” semicommutators 𝒮𝑓𝑔−𝒮𝑓𝒮𝑔), and mixed Hankel–

Toeplitz products 𝑇𝑓𝐻
∗
𝑔 and 𝐻𝑔𝑇𝑓 ; as well as the commutators 𝒮𝑓𝒮𝑔−𝒮𝑔𝒮𝑓 . These

represent the main results of this communication.

2. Preliminaries

For 𝑓 ∈ 𝐿∞(𝕊𝑛), define the dual Toeplitz operator 𝒮𝑓 as the operator on
(ℋ2(𝕊𝑛)

)⊥
defined to be a multiplication followed by a projection as follows:

𝒮𝑓 :
(ℋ2(𝕊𝑛)

)⊥ −→ (ℋ2(𝕊𝑛)
)⊥

𝑢 −→ 𝒮𝑓 (𝑢) := 𝒬(𝑓𝑢).
Here, 𝒬 is the orthogonal projection from 𝐿2(𝒮𝑛) onto

(ℋ2(𝕊𝑛)
)⊥

defined by

𝒬 : 𝐿2(𝕊𝑛) −→ (ℋ2(𝕊𝑛)
)⊥

𝑔 −→ 𝒬(𝑔) := (𝐼 − 𝒫)(𝑔),
with 𝒫 being the customary (Hardy) orthogonal projection from 𝐿2(𝕊𝑛) onto
the Hardy space ℋ2(𝕊𝑛). Since the projection 𝒬 has norm 1, then for any ℎ ∈(ℋ2(𝕊𝑛)

)⊥
, we have

∣∣𝒮𝑓 (ℎ)∣∣2 = ∣∣𝒬(𝑓ℎ)∣∣2 ≤ ∣∣𝑓ℎ∣∣2 ≤ ∣∣𝑓 ∣∣∞∣∣ℎ∣∣2.
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Immediate algebraic properties of dual Toeplitz operators can be easily observed;
for instance for 𝑓, 𝑔 ∈ 𝐿∞(𝕊𝑛), 𝛼, 𝛽 ∈ ℂ, we have

𝒮∗𝑓 = 𝒮𝑓 and 𝒮𝛼𝑓+𝛽𝑔 = 𝛼𝒮𝑓 + 𝛽𝒮𝑔.
Dual Toeplitz operators appear naturally if one observes that under the orthogonal
decomposition:

𝐿2(𝒮𝑛) = ℋ2(𝕊𝑛)⊕
(ℋ2(𝕊𝑛)

)⊥
,

the multiplication operatorℳ𝑓 , 𝑓 ∈ 𝐿∞(𝕊𝑛), can be represented as follows:

ℳ𝑓 =

(
𝑇𝑓 𝐻∗

𝑓

𝐻𝑓 𝒮𝑓

)
,

where the Toeplitz and Hankel operators are defined respectively by

𝑇𝑓 : ℋ2(𝕊𝑛) −→ ℋ2(𝕊𝑛)

𝑔 −→ 𝑇𝑓 (𝑔) := 𝒫(𝑓𝑔),
and

𝐻𝑓 : ℋ2(𝕊𝑛) −→ (ℋ2(𝕊𝑛)
)⊥

𝑔 −→ 𝐻𝑓 (𝑔) := 𝒬(𝑓𝑔).
This representation gives rise to dual Toeplitz operators on

(ℋ2(𝕊𝑛)
)⊥
. At once,

we observe the following algebraic relationships connecting them with Haplitz
operators, namely: for 𝑓, 𝑔 ∈ 𝐿∞(𝕊𝑛), the product identityℳ𝑓ℳ𝑔 =ℳ𝑓𝑔 implies
that (

𝑇𝑓 𝐻∗
𝑓

𝐻𝑓 𝒮𝑓

)(
𝑇𝑔 𝐻∗

𝑔

𝐻𝑔 𝒮𝑔
)
=

(
𝑇𝑓𝑔 𝐻∗

𝑓𝑔

𝐻𝑓𝑔 𝒮𝑓𝑔

)
.

Hence, we infer that
𝑇𝑓𝑔 = 𝑇𝑓𝑇𝑔 +𝐻∗

𝑓
𝐻𝑔.

𝒮𝑓𝑔 = 𝐻𝑓𝐻
∗
𝑔 + 𝒮𝑓𝒮𝑔.

𝐻𝑓𝑔 = 𝐻𝑓𝑇𝑔 + 𝒮𝑓𝐻𝑔.

(2.1)

It follows that the commutator [ 𝒮𝑓 , 𝒮𝑔] = 𝒮𝑓𝒮𝑔 − 𝒮𝑔𝒮𝑓 is given by
[ 𝒮𝑓 , 𝒮𝑔] = 𝐻𝑔𝐻

∗
𝑓
−𝐻𝑓𝐻

∗
𝑔 . (2.2)

In particular, such identities reduce to the following ones, since the Hankel operator
is trivial if the symbol is analytic:

Lemma 2.1. Let 𝑓 ∈ ℋ∞(𝕊𝑛), then we have

i) 𝐻𝑔𝑇𝑓 = 𝒮𝑓𝐻𝑔.
ii) 𝑇𝑓𝐻

∗
𝑔 = 𝐻∗

𝑔𝒮𝑓 .
iii) 𝒮𝑓𝑔 = 𝒮𝑓𝒮𝑔.
iv) 𝒮𝑔𝑓 = 𝒮𝑔𝒮𝑓 .

A key property which usually proves very useful in establishing more funda-
mental properties of Toeplitz type operators is the so-called the spectral inclusion
theorem. It turns out [5] that our dual Toeplitz operators do satisfy such property.
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Let us denote by R(𝑓) the essential range of the essentially bounded function
𝑓 , and by 𝜎(𝑇 ) the spectrum of an operator 𝑇 . Then, we have

Proposition 2.2. [5]

1. If 𝑓 is in 𝐿∞(𝕊𝑛), then R(𝑓) = 𝜎(𝑀𝑓 ) ⊆ 𝜎(𝒮𝑓 ).
2. Let 𝑓 be in 𝐿∞(𝕊𝑛). Then, we have ∣∣𝒮𝑓 ∣∣ = ∣∣𝑓 ∣∣∞.
3. If 𝑓 is in 𝐿∞(𝕊𝑛), then 𝒮𝑓 = 0 if and only if 𝑓 = 0.

3. The auxiliary operator S𝒘

Let 𝑧, 𝑤 be in 𝔹𝑛, and recall that the Hardy space ℋ2(𝔹𝑛) is a reproducing kernel
Hilbert space with kernel function given by

𝐾𝑤(𝑧) =
1

(1− ⟨𝑧, 𝑤⟩)𝑛 ,

while the normalized reproducing kernel is denoted by 𝑘𝑤.
For 𝑓 and 𝑔 in 𝐿2(𝕊𝑛), consider the rank one operator defined by (𝑓 ⊗ 𝑔)ℎ =

⟨ℎ, 𝑔⟩ 𝑓, ∀𝑓 ∈ 𝐿2(𝕊𝑛); and note that ∥𝑓 ⊗ 𝑔∥ = ∥𝑓∥ ∥𝑔∥.
The unitary operator 𝕌𝑤 is defined by

𝕌𝑤𝑓 = (𝑓 ∘ 𝜑𝑤)𝑘𝑤 . (3.1)

Observe that 𝕌𝑤1 = 𝑘𝑤. Also, for a Toeplitz operator, we have

𝕌𝑤𝑇𝑓𝕌𝑤 = 𝑇𝑓∘𝜑𝑤 . (3.2)

Further, we know that

⟨𝑧, 𝑤⟩𝑗 =
∑
∣𝑚∣=𝑗

𝑗!

𝑚!
𝑧𝑚 𝑤𝑚.

Thus, by the binomial rule, we obtain

𝐾−1
𝑤 (𝑧) = (1− ⟨𝑧, 𝑤⟩)𝑛 =

𝑛∑
𝑗=0

𝑛!

𝑗!(𝑛− 𝑗)!
(−1)𝑗 ⟨𝑧, 𝑤⟩𝑗

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

(−1)𝑗𝑛!
𝑗!(𝑛− 𝑗)!

𝑗!

𝑚!
𝑧𝑚𝑤𝑚

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝑧𝑚𝑤𝑚, with 𝜆𝑗,𝑚 =
(−1)𝑗𝑛!
(𝑛− 𝑗)!𝑚!

. (3.3)

On the other hand, the customary ball automorphism 𝜑𝑤 ∈ 𝔸𝑢𝑡(𝔹𝑛) is de-
fined by

𝜑𝑤(𝑧) =
𝑤 − 𝑃𝑤(𝑧)−

√
1− ∣𝑤∣2𝑄𝑤(𝑧)

1− ⟨𝑧, 𝑤⟩ , 𝑧, 𝑤 ∈ 𝔹𝑛, (3.4)

where 𝑃𝑤 denotes the orthogonal projection onto the subspace generated by 𝑤

defined by 𝑃0 = 0 and 𝑃𝑤(𝑧) =
⟨𝑧,𝑤⟩
⟨𝑤,𝑤⟩ , 𝑤 ∕= 0, and 𝑄𝑤 denotes the orthogonal pro-

jection onto its orthogonal complement given by 𝑄𝑤(𝑧) = 𝑧−𝑃𝑤(𝑧). In particular,
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it satisfies the universal identity:

1− ∣𝜑𝑤(𝑧)∣2 =
(
1− ∣𝑤∣2) (1− ∣𝑧∣2)
∣1− ⟨𝑧, 𝑤⟩ ∣2 , 𝑧, 𝑤 ∈ 𝔹𝑛. (3.5)

Finally, for operators T and S, we can easily verify that:

T(𝑓 ⊗ 𝑔)S∗ = T𝑓 ⊗ S𝑔. (3.6)

Matching all that together, we obtain the following key assertion:

Proposition 3.1. On the Hardy space of the unit sphere ℋ2(𝕊𝑛), we have

𝑘𝑤 ⊗ 𝑘𝑤 =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚 , ∀𝑤 ∈ 𝐵𝑛, (3.7)

with 𝜆𝑗,𝑚 as in (3.3) above.

Proof. Consider a Hardy function 𝑓 ∈ ℋ2(𝔹𝑛). The invariant volume mean value
property tells us that

𝑓(𝜓(0)) =

∫
𝔹𝑛

(𝑓 ∘ 𝜓)(𝑤)𝑑𝜈(𝑤), ∀𝑓 ∈ 𝐿∞(𝔹𝑛), ∀𝜓 ∈ 𝔸𝑢𝑡(𝔹𝑛).

In particular, for the identity map which is in 𝔸𝑢𝑡(𝔹𝑛), we get

𝑓(0) =

∫
𝔹𝑛

𝑓(𝑤)𝑑𝐴(𝑤), ∀𝑓 ∈ ℋ∞(𝔹𝑛).

Inserting 𝐾𝑤(𝑧)𝐾
−1
𝑤 (𝑧) and noticing that (1⊗ 1)𝑓 = 𝑓(0), we obtain

(1⊗ 1)𝑓 =
∫
𝔹𝑛

𝐾−1
𝑤 (𝑧)𝐾𝑤(𝑧)𝑓(𝑤)𝑑𝐴(𝑤), ∀𝑓 ∈ ℋ∞(𝔹𝑛). (3.8)

Owing to Formula (3.3), we infer that

(1⊗ 1)𝑓 =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑧𝑚
∫
𝔹𝑛

𝑤𝑚𝑓(𝑤)𝐾𝑧(𝑤)𝑑𝐴(𝑤)

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑧𝑚 (𝑇𝑤𝑚𝑓) (𝑧), ∀𝑓 ∈ ℋ∞(𝔹𝑛).

Therefore, we obtain the following operator identity

(1⊗ 1) =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝑧𝑚𝑇𝑤𝑚 .

Introducing the unitary operator 𝕌𝑤, we get

𝕌𝑤(1 ⊗ 1)𝕌𝑤 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 (𝕌𝑤𝑇𝑧𝑚𝕌𝑤) (𝕌𝑤𝑇𝑤𝑚𝕌𝑤) .
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Notice also that by Formulas (3.1) and (3.6), we have

𝕌𝑤(1 ⊗ 1)𝕌𝑤 = (𝕌𝑤1)⊗ (𝕌𝑤1) = 𝑘𝑤 ⊗ 𝑘𝑤.

Using the latter two equations along with Identity (3.2), we infer that on ℋ2(𝔹𝑛)
we have

𝑘𝑤 ⊗ 𝑘𝑤 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚 , ∀𝑤 ∈ 𝐵𝑛,

which is valid on the sphere as well. □

Proposition 3.1 suggests the introduction of the following transformation of

operators: for a bounded linear operator 𝑇 on
(ℋ2(𝕊𝑛)

)⊥
and 𝑤 ∈ 𝔹𝑛, define the

linear operator S𝑤(𝑇 ) by

S𝑤(𝑇 ) =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 . (3.9)

This pioneering operator S𝑤 has an amazing story. It has been discovered
first by K. Stroethoff and D. Zheng [11] in the Bergman space setting, where it
looks like a two-term perturbation of the identity. In the setting of the Hardy
space on the circle, it was adopted by H. Guediri and took the form of a one-term
perturbation of the identity. In Lu & Chang [8], in H. Guediri [5] and in the present
paper it takes the form of a multi-term perturbation of the identity as in the latter
formula (3.9). This phenomenon seems to be very connected to the degree of the
denominator, (equivalently to the dimension of the manifold), in the reproducing
kernel expression of the underlying space.

The operator S𝑤 reveals on a characterization of Hardy space dual Toeplitz
operators:

Proposition 3.2. If 𝒮𝑓 is a dual Toeplitz operator on
(ℋ2(𝕊𝑛)

)⊥
, then

S𝑤(𝒮𝑓 ) = 0, for all 𝑤 ∈ 𝔹𝑛.

Proof. Fix a 𝑤 ∈ 𝔹𝑛 and consider a dual Toeplitz operator 𝒮𝑓 on
(ℋ2(𝕊𝑛)

)⊥
, with

symbol 𝑓 ∈ 𝐿∞(𝕊𝑛). By (3.9), we have

S𝑤(𝒮𝑓 ) =
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝒮𝜑𝑚
𝑤
𝒮𝑓𝒮𝜑𝑤

𝑚 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚 𝒮∣𝜑𝑚
𝑤 ∣2𝑓 = 𝒮Ψ,

with Ψ = 𝑓
∑𝑛

𝑗=0

∑
∣𝑚∣=𝑗 𝜆𝑗,𝑚∣𝜑𝑚

𝑤 ∣2.
Now, applying Formula (3.3) to 𝜑𝑤(𝑧) with 𝑧 ∈ 𝕊𝑛, and invoking Identity

(3.5), we see that
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚∣𝜑𝑚
𝑤 (𝑧)∣2 = (1− ⟨𝜑𝑤(𝑧), 𝜑𝑤(𝑧)⟩)𝑛 = 0.

Therefore, we see that S𝑤(𝒮𝑓 ) = 0. □
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Remark 3.3. Theorem 3.2 can be restated as follows: if 𝑇 is a dual Toeplitz oper-

ator, then 𝑇 ∈
∩
𝑤∈𝔻

kerS𝑤.

It seems to be interesting to see whether the following complete characterization is
valid: given 𝑤 ∈ 𝔻 (fixed), 𝑇 is a dual Toeplitz operator if and only if S𝑤(𝑇 ) = 0?

The following novel assertion plays a central role in the sequel:

Theorem 3.4. Let 𝑇 be a compact operator on
(ℋ2(𝕊𝑛)

)⊥
, then ∥S𝑤(𝑇 )∥ −→ 0

as ∣𝑤∣ → 1−.

Proof. First, we claim that the operator S𝑤 admits the following representation:

S𝑤(𝑇 ) =

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤

(
𝑇 −

𝑛∑
𝑖=1

𝒮𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

)
𝒮𝜑𝑤

𝑚 , (3.10)

where 𝜑𝑤,𝑖 denotes the ith component of 𝜑𝑤 and 𝜆
(𝑛−1)
𝑗,𝑚 =

(−1)𝑗(𝑛− 1)!
(𝑛− 1− 𝑗)!𝑚!

.

Indeed, setting 𝛼𝑖 = ( 0, 0, . . . , 1︸ ︷︷ ︸
𝑖th component

, 0, . . . , 0) for 1 ≤ 𝑖 ≤ 𝑛, we have

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤

(
𝑇 −

𝑛∑
𝑖=1

𝒮𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

)
𝒮𝜑𝑤

𝑚

=

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚 −
𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚

𝑛∑
𝑖=1

𝒮
𝜑

𝑚+𝛼𝑖
𝑤

𝑇𝒮𝜑𝑤
𝑚+𝛼𝑖

=

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚 −
𝑛∑

𝑘=1

∑
∣𝑝∣=𝑘

∣𝑝∣𝜆(𝑛−1)𝑘−1,𝑝𝒮𝜑𝑝
𝑤
𝑇𝒮𝜑𝑤

𝑝

= 𝑇 +

𝑛−1∑
𝑗=1

∑
∣𝑚∣=𝑗

(
𝜆
(𝑛−1)
𝑗,𝑚 − ∣𝑚∣𝜆(𝑛−1)𝑗−1,𝑚

)
𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚 −
∑
∣𝑚∣=𝑛

𝑛𝜆
(𝑛−1)
𝑛−1,𝑚𝒮𝜑𝑚

𝑤
𝑇𝒮𝜑𝑤

𝑚

= 𝑇 +

𝑛−1∑
𝑗=1

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 +
∑
∣𝑚∣=𝑛

𝜆𝑛,𝑚𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚

=

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝒮𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 = S𝑤(𝑇 ).

Next, using identity (3.10), we only need to verify that∥∥∥∥∥𝑇 −
𝑛∑

𝑖=1

𝒮𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

∥∥∥∥∥ −→ 0 as ∣𝑤∣ −→ 1−. (3.11)

Owing to the density of finite rank operators in the set of compact operators,

we only need to verify the latter for rank one operators. For let 𝑓, 𝑔 ∈ (ℋ2(𝕊𝑛)
)⊥
;
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then one has∥∥∥∥∥𝑓 ⊗ 𝑔 −
𝑛∑

𝑖=1

𝒮𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥∥∥ =
∥∥∥∥∥

𝑛∑
𝑖=1

{
(𝜁𝑖𝑓)⊗ (𝜁𝑖𝑔)−

(𝒮𝜑𝑤,𝑖𝑓
)⊗ (𝒮𝜑𝑤,𝑖𝑔

)}∥∥∥∥∥
≤

𝑛∑
𝑖=1

{∥∥(𝜁𝑖𝑓 − 𝒮𝜑𝑤,𝑖𝑓
)⊗ (𝜁𝑖𝑔)∥∥+ ∥∥(𝒮𝜑𝑤,𝑖𝑓

)⊗ (
𝜁𝑖𝑔 − 𝒮𝜑𝑤,𝑖𝑔

)∥∥} . (3.12)

Now, for 𝑧 ∈ 𝕊𝑛 and 𝑤 ∈ 𝔹𝑛, observe that 𝑤 − 𝜑𝑤(𝑧) −→ 0 𝑎.𝑒. as ∣𝑤∣ → 1−;
and thus componentwise, for 𝑖 = 1, 2, 3, . . . , 𝑛, we have 𝑤𝑖 − 𝜑𝑤,𝑖(𝑧) −→ 0 𝑎.𝑒. as
∣𝑤∣ → 1−. Making appeal to the dominated convergence theorem, we infer that
for 𝑓 ∈ (ℋ2(𝕊𝑛)

)⊥
one has

∥𝑤𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥22 =
∫
𝕊𝑛

∣𝑤𝑖𝑓(𝑧)− 𝜑𝑤,𝑖(𝑧)𝑓(𝑧)∣2 𝑑𝜎(𝑧) −→ 0 as ∣𝑤∣ −→ 1−.

Hence, for 𝑖 = 1, 2, 3, . . . , 𝑛, we see that ∥𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→
𝜁 ∈ 𝕊𝑛. Because of the identity (𝐼 − 𝒫)(𝜁𝑖𝑓(𝑧)) = 𝜁𝑖𝑓(𝑧), we see that∥∥𝜁𝑖𝑓 − 𝒮𝜑𝑤,𝑖𝑓

∥∥
2
= ∥(𝐼 − 𝒫) (𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓)∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛.

The latter together with Inequality (3.12) yield:∥∥∥∥∥𝑓 ⊗ 𝑔 −
𝑛∑

𝑖=1

𝒮𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥∥∥ −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛. □

4. Products of dual Toeplitz operators

Lemma 2.1 suggests that 𝒮𝑓 and 𝒮𝑔 commute if 𝑓 and 𝑔 are both analytic or
conjugate analytic. If a non-trivial linear combination of the symbols 𝑓 and 𝑔 is
constant, they do commute as well. In this section, we are interested to see whether
these are the only cases where commutativity holds. The same question in related
settings has been considered for instance in [2, 11]. An answer to this question [5]
is reported again in the following:

Theorem 4.1. Suppose that 𝜑, 𝜓 are bounded functions on the unit sphere 𝕊𝑛.

Then, the corresponding dual Toeplitz operators commute on
(ℋ2(𝕊𝑛)

)⊥
, (i.e.,

𝒮𝜑𝒮𝜓 = 𝒮𝜓𝒮𝜑), if and only if 𝜑 and 𝜓 satisfy one of the following conditions:

1. They are both analytic on 𝕊𝑛.
2. They are both co-analytic on 𝕊𝑛.
3. One of them is constant on 𝕊𝑛.
4. A non-trivial linear combination of them is constant on 𝕊𝑛.

Proof. The if part is trivial due to Lemma 2.1. Regarding the only if part, observe
that by Proposition 3.1 and parts (i) and (ii) of Lemma 2.1 one has

𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚

(𝒮𝜑𝑚
𝑤
𝐻𝑓

) (
𝐻∗

𝑔𝒮𝜑𝑤
𝑚

)
= S𝑤(𝐻𝑓𝐻

∗
𝑔 ). (4.1)
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Similarly, we have

𝐻𝑔(𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑓
= S𝑤(𝐻𝑔𝐻

∗
𝑓
). (4.2)

Combining the two latter identities and owing again to Identity (3.6) as well as to
Equation (2.2), we see that

(𝐻𝑔𝑘𝑤)⊗ (𝐻𝑓𝑘𝑤)− (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤) = S𝑤([𝒮𝑓 ,𝒮𝑔]).
By assumption, we get

(𝐻𝑔𝑘𝑤)⊗ (𝐻𝑓𝑘𝑤) = (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤) , ∀𝑤 ∈ 𝔹𝑛.

In particular, for 𝑤 = 0 one has 𝑘0 = 1; whence 𝐻𝑔1 ⊗𝐻𝑓1 = 𝐻𝑓1⊗𝐻𝑔1, which
can be rewritten as〈

ℎ,𝐻𝑓1
〉
𝐻𝑔1 = ⟨ℎ,𝐻𝑔1⟩𝐻𝑓1, ∀ℎ ∈

(ℋ2(𝔹𝑛)
)⊥

.

At this stage, we distinguish several cases:

1) If 𝐻𝑔1 = 0, then 𝑔 is analytic. Also we must have either 𝐻𝑓1 = 0 or 𝐻𝑔1 = 0,
which means that either 𝑓 is analytic, (which corresponds to condition (1)),
or 𝑔 is co-analytic, (in this case 𝑔 must be constant, which corresponds to
condition (3)).

2) If 𝐻𝑔1 = 0, then 𝑔 is co-analytic. Also we see that either 𝐻𝑔1 = 0 or 𝐻𝑓1 = 0.

This means that either 𝑔 is analytic, (which implies that 𝑔 is constant and
corresponds to condition (3)), or 𝑓 is co-analytic, (which agrees with condition
(2)).

3) If both 𝐻𝑔1 ∕= 0 and 𝐻𝑔1 ∕= 0, then there exists a complex number 𝜆 ∕= 0 such
that 𝐻𝑓1 = 𝜆𝐻𝑔1 and 𝐻𝑓1 = 𝜆𝐻𝑔1. That is to say 𝒬(𝑓 −𝜆𝑔) = 𝒬(𝑓 −𝜆𝑔) =

0; whence 𝑓 − 𝜆𝑔 and 𝑓 − 𝜆𝑔 are both analytic. Thus 𝑓 − 𝜆𝑔 is constant,
which corresponds to condition (4). □

Products of bounded dual Toeplitz operators can be bounded operators in
numerous cases. But the crucial question is when does the product of two dual
Toeplitz operators produce a dual Toeplitz operator? The answer of this question
[5] is given in the following Brown-Halmos type theorem:

Theorem 4.2. Let 𝑓 and 𝑔 be in 𝐿∞(𝕊𝑛). Then, the dual Toeplitz product 𝒮𝑓𝒮𝑔 is
again a dual Toeplitz operator if and only if one of the following conditions holds:

1. 𝑓 is analytic.
2. 𝑔 is co-analytic.

In either cases 𝒮𝑓𝒮𝑔 = 𝒮𝑓𝑔.
Proof. From the elementary properties of dual Toeplitz operators, namely Lemma
2.1, the “if part” is obvious, whereas the “only if part” is less trivial. For, suppose
that 𝒮𝑓𝒮𝑔 = 𝒮ℎ for some ℎ ∈ 𝐿∞(𝕊𝑛). From Identity (2.1), we have

0 = 𝒮ℎ − 𝒮𝑓𝒮𝑔 = 𝒮ℎ−𝑓𝑔 +𝐻𝑓𝐻
∗
𝑔 .
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Introducing the operator S𝑤, we see from Relation (4.1) that

S𝑤(𝒮𝑓𝑔−ℎ) = S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)
= 𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻

∗
𝑔 . (4.3)

Since 𝑆𝑓𝑔−ℎ is a dual Toeplitz operator, Proposition 3.2 reduces Equation (4.3) to

(𝐻𝑓 (𝑘𝑤))⊗ (𝐻𝑔(𝑘𝑤)) = 0.

In particular, if 𝑤 = 0 one gets 𝑘0 = 1; whence we obtain

(𝐻𝑓1)⊗ (𝐻∗
𝑔 1) = 0.

Since ∥𝐻𝑓1⊗𝐻𝑔1∥ = ∥𝐻𝑓1∥ ∥𝐻𝑔1∥, we see that at least one of the two factors
vanishes. Therefore, we have two possibilities

∙ If 𝐻𝑓1 = 0, we see that 𝑓 is analytic, (which corresponds to condition (1)).
∙ If 𝐻𝑔1 = 0, then 𝑔 is analytic, whence 𝑔 is co-analytic, (which corresponds
to (2)).

The additional conclusion of the theorem, then, follows from Lemma 2.1. □

The so-called zero product problem is then a simple corollary of the latter:

Corollary 4.3. 𝒮𝑓𝒮𝑔 = 0 if and only if either 𝑓 = 0 or 𝑔 = 0; i.e., among the class
of dual Toeplitz operators on

(ℋ2(𝔹𝑛)
)⊥
there are no zero divisors.

5. Haplitz products

Based on the above concepts, (namely the operator S𝑤 defined by (3.9), Proposi-
tion 3.1 and Theorem 3.4), we now discuss certain characterizations of boundedness
and compactness of Hankel products 𝐻𝑓𝐻

∗
𝑔 as well as of mixed Haplitz products

𝑇𝑓𝐻
∗
𝑔 and 𝐻𝑔𝑇𝑓 on the sphere. Notice that Toeplitz products on the circle have

been studied by Zheng [14], whereas Hankel and mixed Haplitz products have been
discussed by Hamada [6]. In case of several complex variables, analog investigations
have been done by Zheng [13], Nie [9], Xia [12], Le [7] and Lu & Shang [8].

The following theorem gives a necessary condition for the boundedness of a
Hankel product 𝐻𝑓𝐻

∗
𝑔 :

Theorem 5.1. Let 𝑓 and 𝑔 be in 𝐿2(𝕊𝑛). If the Hankel product 𝐻𝑓𝐻
∗
𝑔 is bounded,

then

sup
𝑤∈𝔹𝑛

∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 <∞. (5.1)

Proof. According to Zheng [13], we have

∥𝐻𝑓𝑘𝑤∥2 ∥𝐻𝑔𝑘𝑤∥2 = ∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 . (5.2)

On the other hand, by the above norm formula of rank one operators and
Equation (3.6), we have

∥𝐻𝑓𝑘𝑤∥2 ∥𝐻𝑔𝑘𝑤∥2 = ∥(𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤)∥ =
∥∥𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻

∗
𝑔

∥∥ . (5.3)

So, it suffices that the R.H.S. of the latter is bounded.
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Since 𝜑𝑤 ∈ ℋ∞(𝕊𝑛), we see by Lemma 2.1 that 𝐻𝑓𝑇𝜑𝑤 = 𝒮𝜑𝑤𝐻𝑓 and
𝑇𝜑𝑤

𝐻∗
𝑔 = 𝐻∗

𝑔𝒮𝜑𝑤
. Thus, inserting 𝐻𝑓 and 𝐻∗

𝑔 into Formula (3.7), we see that

𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝐻𝑓𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚𝐻∗
𝑔

=
𝑛∑

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝒮𝜑𝑚
𝑤

(
𝐻𝑓𝐻

∗
𝑔

)𝒮𝜑𝑤
𝑚 = S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)
. (5.4)

By Proposition 2.2, we have
∥∥𝒮𝜑𝑚

𝑤

∥∥ = ∥𝒮𝜑𝑤
𝑚∥ = ∥𝜑𝑚

𝑤 ∥∞ ≤ 1. Thus, we infer that∥∥𝐻𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔

∥∥ ≤ 𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

∣𝜆𝑗,𝑚∣
∥∥𝒮𝜑𝑚

𝑤

∥∥ ∥∥𝐻𝑓𝐻
∗
𝑔

∥∥ ∥𝒮𝜑𝑤
𝑚∥

≤ ∥∥𝐻𝑓𝐻
∗
𝑔

∥∥ 𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

∣𝜆𝑗,𝑚∣ <∞; (5.5)

whence, the theorem is proved. □

The following result gives a necessary condition for the compactness of a
Hankel product 𝐻𝑓𝐻

∗
𝑔 . Notice that the compactness matter in the “dual case”

of 𝐻∗
𝑓𝐻𝑔 has been considered by J. Xia [12]. In that paper, J. Xia proves that

Condition (5.6) fails to be necessary for the compactness of 𝐻∗
𝑓𝐻𝑔. Later on, T.

Le [7] provided a certain progress in this direction.

Theorem 5.2. Let 𝑓 and 𝑔 be in 𝐿2(𝕊𝑛). If the Hankel product 𝐻𝑓𝐻
∗
𝑔 is compact,

then
lim

𝑤→𝕊𝑛

∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 = 0. (5.6)

Proof. By Equations (5.2), (5.3) and (5.4), we see that

∥𝑓 ∘ 𝜑𝑤 − 𝒫(𝑓 ∘ 𝜑𝑤)∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 =
∥∥S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)∥∥ . (5.7)

Consequently, if 𝐻𝑓𝐻
∗
𝑔 is compact, we see by Theorem 3.4 that

lim
𝑤→𝕊𝑛

∥∥S𝑤

(
𝐻𝑓𝐻

∗
𝑔

)∥∥ = 0,
and the claimed assertion follows. □

Similar characterizations of bounded and compact mixed Haplitz products
𝑇𝑓𝐻

∗
𝑔 and 𝐻𝑔𝑇𝑓 are given as follows:

Theorem 5.3. Let 𝑓 be in ℋ2(𝕊𝑛) and 𝑔 be in 𝐿2(𝕊𝑛). If one of the mixed Haplitz
products 𝑇𝑓𝐻

∗
𝑔 or 𝐻𝑔𝑇𝑓 is bounded, then

sup
𝑤∈𝔹𝑛

∥𝑓 ∘ 𝜑𝑤∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 <∞.

Proof. Relying on the fact that 𝜑𝑤 ∈ ℋ∞(𝕊𝑛) and owing to the analyticity of 𝑓 ,
we see by Lemma 2.1 that 𝑇𝑓𝑇𝜑𝑤 = 𝑇𝜑𝑤𝑇𝑓 and 𝑇𝜑𝑤𝐻∗

𝑔 = 𝐻∗
𝑔𝒮𝜑𝑤 . Thus, as in the



254 H. Guediri

proof of Theorem 5.1, inserting 𝑇𝑓 and 𝐻∗
𝑔 into Formula (3.7), we see that

𝑇𝑓(𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝑓𝑇𝜑𝑚
𝑤
𝑇𝜑𝑤

𝑚𝐻∗
𝑔 =

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤

(
𝑇𝑓𝐻

∗
𝑔

)𝒮𝜑𝑤
𝑚 .

(5.8)

Estimating the norms of Toeplitz and dual Toeplitz operators with automorphic
symbols, we get

∥∥𝑇𝜑𝑚
𝑤

∥∥ ≤ 1 and ∥𝒮𝜑𝑤
𝑚∥ ≤ 1. Thus, if 𝑇𝑓𝐻

∗
𝑔 is bounded, we infer

that ∥∥𝑇𝑓 (𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔

∥∥ ≤ ∥∥𝑇𝑓𝐻
∗
𝑔

∥∥∑𝑛

𝑗=0

∑
∣𝑚∣=𝑗

∣𝜆𝑗,𝑚∣ <∞. (5.9)

Whence, as in Equations (5.2) and (5.3), we obtain the claimed estimate. Similar
argument can be used to handel the remaining case. □

Compact mixed Haplitz products can also be characterized similarly:

Theorem 5.4. Let 𝑓 ∈ ℋ∞(𝕊𝑛) and 𝑔 ∈ 𝐿2(𝕊𝑛). If one of the mixed Haplitz
products 𝑇𝑓𝐻

∗
𝑔 or 𝐻𝑔𝑇𝑓 is compact, then

lim
𝑤→𝕊𝑛

∥𝑓 ∘ 𝜑𝑤∥2 ∥𝑔 ∘ 𝜑𝑤 − 𝒫(𝑔 ∘ 𝜑𝑤)∥2 = 0.

Proof. As in the proof of Theorem 3.4, for any operator 𝑇 :
(ℋ2(𝕊𝑛)

)⊥ −→
ℋ2(𝕊𝑛), we have

𝑛∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 =

𝑛−1∑
𝑗=0

∑
∣𝑚∣=𝑗

𝜆
(𝑛−1)
𝑗,𝑚 𝑇𝜑𝑚

𝑤

(
𝑇 −

𝑛∑
𝑖=1

𝑇𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

)
𝒮𝜑𝑤

𝑚 .

(5.10)
We claim that if such a 𝑇 is compact, then

lim
∣𝑤∣−→1−

∑𝑛

𝑗=0

∑
∣𝑚∣=𝑗

𝜆𝑗,𝑚𝑇𝜑𝑚
𝑤
𝑇𝒮𝜑𝑤

𝑚 = 0. (5.11)

By Identity (5.10), we only need to verify that∥∥∥𝑇 −∑𝑛

𝑖=1
𝑇𝜑𝑤,𝑖𝑇𝒮𝜑𝑤,𝑖

∥∥∥ −→ 0 as ∣𝑤∣ −→ 1−. (5.12)

Using the density of finite rank operators in the set of compact operators, we

only need to verify the latter for rank one operators acting from
(ℋ2(𝕊𝑛)

)⊥
into

ℋ2(𝕊𝑛). For let 𝑓 ∈ ℋ2(𝕊𝑛) and 𝑔 ∈ (ℋ2(𝕊𝑛)
)⊥
. Then, one has∥∥∥𝑓 ⊗ 𝑔 −

∑𝑛

𝑖=1
𝑇𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥ (5.13)

≤
∑𝑛

𝑖=1

{∥∥(𝜁𝑖𝑓 − 𝑇𝜑𝑤,𝑖𝑓
)⊗ (𝜁𝑖𝑔)∥∥+ ∥∥(𝑇𝜑𝑤,𝑖𝑓

)⊗ (
𝜁𝑖𝑔 − 𝒮𝜑𝑤,𝑖𝑔

)∥∥} .

Now, for 𝑧 ∈ 𝕊𝑛 and 𝑤 ∈ 𝔹𝑛, observe that 𝑤−𝜑𝑤(𝑧) −→ 0 𝑎.𝑒. as ∣𝑤∣ → 1−;
and thus componentwise, for 𝑖 = 1, 2, 3, . . . , 𝑛, we have 𝑤𝑖 − 𝜑𝑤,𝑖(𝑧) −→ 0 𝑎.𝑒. as
∣𝑤∣ → 1−. Making use of the dominated convergence theorem, we infer that for
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𝑓 ∈ ℋ2(𝕊𝑛) and 𝑔 ∈ (ℋ2(𝕊𝑛)
)⊥

one has

∥𝑤𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥22 =
∫
𝕊𝑛

∣𝑤𝑖𝑓(𝑧)− 𝜑𝑤,𝑖(𝑧)𝑓(𝑧)∣2 𝑑𝜎(𝑧) −→ 0 as ∣𝑤∣ −→ 1−,

and

∥𝑤𝑖𝑔 − 𝜑𝑤,𝑖𝑔∥22 =
∫
𝕊𝑛

∣𝑤𝑖𝑔(𝑧)− 𝜑𝑤,𝑖(𝑧)𝑔(𝑧)∣2 𝑑𝜎(𝑧) −→ 0 as ∣𝑤∣ −→ 1−.

Hence, for 𝑖 = 1, 2, 3, . . . , 𝑛, we see that

∥𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓∥2 −→ 0 and ∥𝜁𝑖𝑔 − 𝜑𝑤,𝑖𝑔∥2 −→ 0

as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛. Because of the identities 𝒫(𝜁𝑖𝑓(𝑧)) = 𝜁𝑖𝑓(𝑧) and (𝐼 −
𝒫)(𝜁𝑖𝑔(𝑧)) = 𝜁𝑖𝑔(𝑧), we see that∥∥𝜁𝑖𝑓 − 𝑇𝜑𝑤,𝑖𝑓

∥∥
2
= ∥𝒫 (𝜁𝑖𝑓 − 𝜑𝑤,𝑖𝑓)∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛,

and ∥∥𝜁𝑖𝑔 − 𝒮𝜑𝑤,𝑖𝑔
∥∥
2
= ∥(𝐼 − 𝒫) (𝜁𝑖𝑔 − 𝜑𝑤,𝑖𝑔)∥2 −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛.

Combining the latter two limits together with Inequality (5.13), we infer that∥∥∥∥∥𝑓 ⊗ 𝑔 −
𝑛∑

𝑖=1

𝑇𝜑𝑤,𝑖(𝑓 ⊗ 𝑔)𝒮𝜑𝑤,𝑖

∥∥∥∥∥ −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛;

which proves (5.11).

Next, suppose for instance that 𝑇𝑓𝐻
∗
𝑔 is compact, (the other case related to

𝐻𝑔𝑇𝑓 , can be handled similarly), then by (5.8) and (5.11), we see that∥∥𝑇𝑓(𝑘𝑤 ⊗ 𝑘𝑤)𝐻
∗
𝑔

∥∥ −→ 0 as 𝔹𝑛 ∋ 𝑤 −→ 𝜁 ∈ 𝕊𝑛.

Thus, as in Equations (5.2) and (5.3), we obtain the claimed condition. □

Owing to the alternative representation (2.2) of the commutator of two dual
Toeplitz operators, we can characterize its compactness:

Theorem 5.5. Let 𝑓 and 𝑔 be bounded measurable on 𝕊𝑛. If the commutator
[ 𝒮𝑓 , 𝒮𝑔] is compact, then∥∥(𝐻𝑔𝑘𝑤)⊗

(
𝐻𝑓𝑘𝑤

)− (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤)
∥∥ −→ 0 as ∣𝑤∣ → 1−.
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Proof. Making use of Formulas (2.2) and (5.4), we obtain:

S𝑤 ([ 𝒮𝑓 , 𝒮𝑔]) = (𝐻𝑔𝑘𝑤)⊗
(
𝐻𝑓𝑘𝑤

)− (𝐻𝑓𝑘𝑤)⊗ (𝐻𝑔𝑘𝑤) .

So, if the commutator is compact, then the result follows from Theorem 3.4. □
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tional Center For Theoretical Physics, Trieste, Italy) and the College of Science’s
Research Center of King Saud University for their invaluable support.
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Three-dimensional Direct and Inverse
Scattering for the Schrödinger Equation
with a General Nonlinearity

Markus Harju and Valery Serov

Abstract. We discuss the direct and inverse scattering theory for the nonlinear
Schrödinger equation

−Δ𝑢(𝑥) + ℎ(𝑥, ∣𝑢(𝑥)∣)𝑢(𝑥) = 𝑘2𝑢(𝑥), 𝑥 ∈ ℝ3,

where ℎ is a very general and possibly singular combination of potentials. We
prove first that the direct scattering problem has a unique bounded solution.
We establish also the asymptotic behaviour of scattering solutions. A unique-
ness result and a representation formula is proved for the inverse scattering
problem with general scattering data. The method of Born approximation
is applied for the recovery of jumps in the unknown function from general
scattering data and fixed angle data.

Mathematics Subject Classification (2010). Primary 35P25; Secondary 35R30.

Keywords. Schrödinger operator, inverse problem, nonlinearity, Born approx-
imation.

1. Introduction

We consider the nonlinear Schrödinger equation

−Δ𝑢(𝑥) + ℎ(𝑥, ∣𝑢(𝑥)∣)𝑢(𝑥) = 𝑘2𝑢(𝑥), 𝑥 ∈ ℝ3, (1.1)

where Δ =
∑3

𝑗=1 ∂
2/∂𝑥2𝑗 is the Laplacian and ℎ is a function that satisfies certain

assumptions that will be mentioned later. The free space equation (ℎ ≡ 0) is
solved, e.g., by the incident plane wave 𝑢0(𝑥, 𝑘, 𝜃) = ei𝑘(𝑥,𝜃) with direction 𝜃 ∈
𝕊2 := {𝑥 ∈ ℝ3 : ∣𝑥∣ = 1} and wavenumber 𝑘 > 0. The difference

𝑢sc := 𝑢− 𝑢0 (1.2)

is called the (outgoing) scattered wave after it is required to satisfy the Sommerfeld
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radiation condition

lim
𝑟→∞ 𝑟

(
∂𝑢sc
∂𝑟

− i𝑘𝑢sc
)
= 0, 𝑟 = ∣𝑥∣ (1.3)

uniformly in all directions. The direct scattering theory studies the effects of 𝑢0
to the model (1.1). The inverse scattering theory treats the coefficients of (1.1) as
unknowns and attempts to recover them from the knowledge of 𝑢sc far away from
the origin. See [1] for an overview of direct and inverse scattering.

The standard setting for scattering investigations has been the linear case
(ℎ(𝑥, ∣𝑢∣) = 𝑞(𝑥)) which is usually called the classical quantum mechanical scat-
tering. It has been studied by several authors in various dimensions and under
many different types of scattering data, some of them being limited in the sense
that the inverse problem is formally well determined. See, e.g., [3, 6, 7, 8, 9, 10, 11]
and the references therein to gain an understanding of the current status of the
linear problem.

More recently, some nonlinear equations have received similar attention. In
one space dimension studies exist on cubic nonlinearity [17], power nonlinearity
[18], saturation model [18] and a very general nonlinearity [15]. Such particular
cases with locally bounded coefficients can be met, e.g., in nonlinear optics. These
problems have been investigated also in two dimensions [13, 14, 19, 20, 21]. In
three dimensions we are only aware of [2, 16]. The present work extends [2] to more
general nonlinearities ℎ that may appear in (1.1). Our main goal is to show that
the high frequency approach works perfectly also for general nonlinear equations.

This work is organized as follows. In Section 2 we study the direct scattering
problem by proving that it has a unique bounded solution, whose scattered wave
obeys an asymptotic representation giving us data for the inverse problem. Section
3 is devoted to two inverse problems. Firstly, under the general scattering data
we prove Saito’s formula which implies a uniqueness result and a representation
formula for the unknown function ℎ0(𝑥) = ℎ(𝑥, 1). Secondly, the method of Born
approximation is considered for the general scattering data as well as fixed incident
angle data. Under both data we establish the recovery of certain jumps of ℎ0.

2. Direct scattering problem

The scattering solutions (1.1)–(1.3) are the unique solutions of the Lippmann–
Schwinger equation

𝑢(𝑥, 𝑘, 𝜃) = ei𝑘(𝑥,𝜃) −
∫
ℝ3

𝐺+
𝑘 (∣𝑥 − 𝑦∣)ℎ(𝑦, ∣𝑢(𝑦)∣)𝑢(𝑦)d𝑦, (2.1)

where 𝐺+
𝑘 is the outgoing fundamental solution of the corresponding Helmholtz

equation and is defined as

𝐺+
𝑘 (∣𝑥∣) =

ei∣𝑘∣∣𝑥∣

4𝜋∣𝑥∣ .

So the function 𝐺+
𝑘 is the kernel of the integral operator 𝐺

+
𝑘 := (−Δ− 𝑘2− i0)−1.
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Let us assume the following facts about the nonlinearity ℎ:

(A1) for any 𝑣 ∈ 𝐿∞(ℝ3) such that ∥𝑣∥𝐿∞(ℝ3) ≤ 𝜌 we have ∣ℎ(𝑥, ∣𝑣∣)∣ ≤ 𝑐𝜌𝛼(𝑥),

where 𝛼 is such that

𝑐𝛼 := sup
𝑥∈ℝ3

1

4𝜋

∫
ℝ3

1

∣𝑥− 𝑦∣𝛼(𝑦)d𝑦 <∞

(A2) for any 𝑣1, 𝑣2 ∈ 𝐿∞(ℝ3) we have ∣ℎ(𝑥, ∣𝑣1∣) − ℎ(𝑥, ∣𝑣2∣)∣ ≤ 𝛽(𝑥)
∣∣∣𝑣1∣ − ∣𝑣2∣∣∣,

where 𝛽 is such that 𝑐𝛽 <∞.
It is easy to check that 𝑐𝛼 < ∞ if, for example, 𝛼 ∈ 𝐿𝑝(ℝ3) ∩ 𝐿1(ℝ3) for some
3/2 < 𝑝 ≤ ∞. Alternatively, one may use the more narrow space 𝐿𝑝

2𝛿(ℝ
3) ⊂ 𝐿1(ℝ3)

for 2𝛿 > 3 − 3/𝑝 and same 𝑝 to formulate the assumption in terms of decay at
infinity.

Existence of forward solutions requires us to pose an additional size constraint
for 𝛼, 𝛽 in the sense of next theorem.

Theorem 2.1. Let ℎ be as above. If 𝑐𝛼 < 1/𝑐𝜌 and 𝑐𝛽 < (1 − 𝑐𝜌𝑐𝛼)
2 then the

Lippmann–Schwinger equation (2.1) has a unique solution 𝑢 ∈ 𝐿∞(ℝ3).

Proof. We consider the ball 𝐵𝜌(0) := {𝑢 ∈ 𝐿∞(ℝ3) : ∥𝑢∥𝐿∞(ℝ3) ≤ 𝜌} and the
operator

(𝑇𝑢)(𝑥) := 𝑢0 −
∫
ℝ3

𝐺+
𝑘 (∣𝑥− 𝑦∣)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)d𝑦.

As we are looking for solutions of 𝑇𝑢 = 𝑢 our aim is to apply Banach’s fixed point
theorem [22] for 𝑇 . We assume that

1

1− 𝑐𝜌𝑐𝛼
≤ 𝜌 <

1− 𝑐𝜌𝑐𝛼
𝑐𝛽

and show that 𝑇 : 𝐵𝜌(0)→ 𝐵𝜌(0) and also that 𝑇 is a contraction. Let 𝑢 ∈ 𝐵𝜌(0).
Then

∥𝑇𝑢∥𝐿∞(ℝ3) = sup
𝑥∈ℝ3

∣𝑢0 −
∫
ℝ3

𝐺+
𝑘 (∣𝑥− 𝑦∣)ℎ(𝑦, ∣𝑢∣)𝑢d𝑦∣

≤ 1 + ∥𝑢∥𝐿∞(ℝ3) sup
𝑥∈ℝ3

∫
ℝ3

∣𝐺+
𝑘 (∣𝑥− 𝑦∣)∣∣ℎ(𝑦, ∣𝑢∣)∣d𝑦

≤ 1 + 𝜌𝑐𝜌 sup
𝑥∈ℝ3

1

4𝜋

∫
ℝ3

1

∣𝑥− 𝑦∣𝛼(𝑦)d𝑦 = 1 + 𝜌𝑐𝜌𝑐𝛼 ≤ 𝜌.

It remains to show that 𝑇 is a contraction. Let 𝑢1, 𝑢2 ∈ 𝐵𝜌(0). Then

∥𝑇𝑢1 − 𝑇𝑢2∥𝐿∞(ℝ3) =

∥∥∥∥∫
ℝ3

𝐺+
𝑘 (∣𝑥− 𝑦∣) (ℎ(𝑦, ∣𝑢1∣)𝑢1 − ℎ(𝑦, ∣𝑢2∣)𝑢2) d𝑦

∥∥∥∥
𝐿∞(ℝ3)

= sup
𝑥∈ℝ3

∣∣∣ ∫
ℝ3

𝐺+
𝑘 (∣𝑥− 𝑦∣)

× (
(ℎ(𝑦, ∣𝑢1∣)− ℎ(𝑦, ∣𝑢2∣))𝑢1 + ℎ(𝑦, ∣𝑢2∣)(𝑢1 − 𝑢2)

)
d𝑦
∣∣∣
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≤ sup
𝑥∈ℝ3

∫
ℝ3

∣𝐺+
𝑘 (∣𝑥− 𝑦∣)∣∣ℎ(𝑦, ∣𝑢1∣)− ℎ(𝑦, ∣𝑢2∣)∣∣𝑢1∣d𝑦

+ sup
𝑥∈ℝ3

∫
ℝ3

∣𝐺+
𝑘 (∣𝑥− 𝑦∣)∣∣ℎ(𝑦, ∣𝑢2∣)∣∣𝑢1 − 𝑢2∣d𝑦

≤ 𝜌 ∥𝑢1 − 𝑢2∥𝐿∞(ℝ3) 𝑐𝛽 + ∥𝑢1 − 𝑢2∥𝐿∞(ℝ3) 𝑐𝜌𝑐𝛼

= (𝜌𝑐𝛽 + 𝑐𝜌𝑐𝛼) ∥𝑢1 − 𝑢2∥𝐿∞(ℝ3) < ∥𝑢1 − 𝑢2∥𝐿∞(ℝ3) .

Thus we may conclude that 𝑇 is a contraction from 𝐵𝜌(0) into itself. Therefore it
has a unique fixed point in 𝐿∞(ℝ3). □

Remark 2.2. In two dimensions existence and uniqueness holds for large 𝑘 without
size constraints, see [20]. In three dimensions that approach is not available since
𝐺+

𝑘 loses its dependance on 𝑘 after taking the modulus. For the same reason, we

are not able to include higher dimensions in this work since in general 𝐺+
𝑘 retains

dependance on 𝑘 after modulus.

Theorem 2.3. Let ℎ be as in Theorem 2.1. Assume that 𝛼, 𝛽 belong to 𝐿𝑝
2𝛿(ℝ

3)
with 2𝛿 > 3 − 3/𝑝 and 3/2 < 𝑝 ≤ ∞. Then for fixed 𝑘 > 0 the solution 𝑢(𝑥, 𝑘, 𝜃)
admits the representation

𝑢(𝑥, 𝑘, 𝜃) = ei𝑘(𝑥,𝜃) − ei𝑘∣𝑥∣

4𝜋∣𝑥∣𝐴(𝑘, 𝜃
′, 𝜃) + 𝑜

(
1

∣𝑥∣
)

, ∣𝑥∣ → +∞ (2.2)

uniformly with respect to 𝜃 ∈ 𝕊2. The function 𝐴(𝑘, 𝜃′, 𝜃) is called the scattering
amplitude and is defined as

𝐴(𝑘, 𝜃′, 𝜃) :=
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦, (2.3)

where 𝜃′ := 𝑥/∣𝑥∣ ∈ 𝕊2 is the direction of observation (measurement).

Proof. The large ∣𝑥∣ behaviour of ∣𝑥 − 𝑦∣−1ei𝑘∣𝑥−𝑦∣ can be studied by dividing it
into two cases: ∣𝑦∣ ≤ ∣𝑥∣𝑎 and ∣𝑦∣ > ∣𝑥∣𝑎, where 𝑎 ≥ 0 is a parameter that we can
adjust to our liking. In the first case we have

∣𝑥− 𝑦∣ = ∣𝑥∣ − (𝜃′, 𝑦) +𝒪 (∣𝑥∣2𝑎−1) , ∣𝑦∣ ≤ ∣𝑥∣𝑎

for 𝑎 < 1. In a similar fashion,

∣𝑥− 𝑦∣−1 = ∣𝑥∣−1 (1 +𝒪 (∣𝑥∣𝑎−1)) , ∣𝑦∣ ≤ ∣𝑥∣𝑎

for 𝑎 < 1. Here we have used the fact that (1 + 𝑤)𝑠 = 1 + 𝑠𝑤 +𝒪(𝑤2) as 𝑤 → 0
by the Maclaurin series of (1 + 𝑤)𝑠, 𝑠 ∈ ℝ. With 𝑎 < 1/2 it follows that

∣𝑥− 𝑦∣−1ei𝑘∣𝑥−𝑦∣ = ∣𝑥∣−1ei𝑘∣𝑥∣e−i𝑘(𝜃′,𝑦) +𝒪(∣𝑥∣2𝑎−2), ∣𝑦∣ ≤ ∣𝑥∣𝑎
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as ∣𝑥∣ → ∞. Now we split
𝑢sc(𝑥, 𝑘, 𝜃) = −

∫
∣𝑦∣≤∣𝑥∣𝑎

𝐺+
𝑘 (∣𝑥− 𝑦∣)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦

−
∫
∣𝑦∣>∣𝑥∣𝑎

𝐺+
𝑘 (∣𝑥− 𝑦∣)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦 =: 𝐼1 + 𝐼2.

Consider 𝐼1 first. By the above discussion we may conclude that, for 0 < 𝑎 < 1/2,
we have

𝐼1 = − ei𝑘∣𝑥∣

4𝜋∣𝑥∣
∫
∣𝑦∣≤∣𝑥∣𝑎

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦 +𝒪(∣𝑥∣2𝑎−2)

= − ei𝑘∣𝑥∣

4𝜋∣𝑥∣
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦 +𝒪(∣𝑥∣2𝑎−2)

+
ei𝑘∣𝑥∣

4𝜋∣𝑥∣
∫
∣𝑦∣>∣𝑥∣𝑎

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦, ∣𝑥∣ → ∞,

where the last term is 𝑜(∣𝑥∣−1) since 𝑢 is bounded and 𝛼 ∈ 𝐿1(ℝ3). The same is
true about 𝒪(∣𝑥∣2𝑎−2) for 𝑎 < 1/2. It means that 𝐼1 is of the form

𝐼1 = − e
i𝑘∣𝑥∣

4𝜋∣𝑥∣
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦, 𝑘, 𝜃)d𝑦 + 𝑜(∣𝑥∣−1), ∣𝑥∣ → ∞.

Turning now to 𝐼2 we have by Hölder’s inequality

∣𝐼2∣ ≤ 𝐶

∫
∣𝑦∣>∣𝑥∣𝑎

1

∣𝑥− 𝑦∣ ∣ℎ(𝑦, ∣𝑢∣)∣d𝑦

≤ 𝐶

(∫
∣𝑦∣>∣𝑥∣𝑎

(1 + ∣𝑦∣)−2𝛿𝑝′d𝑦
∣𝑥− 𝑦∣𝑝′

)1/𝑝′

∥𝛼∥𝐿𝑝
2𝛿(ℝ

3) .

Let us prove that the first term on the right-hand side is 𝑜(∣𝑥∣−1), or equivalently,
that ∫

∣𝑦∣>∣𝑥∣𝑎
(1 + ∣𝑦∣)−2𝛿𝑝′d𝑦

∣𝑥− 𝑦∣𝑝′

is 𝑜(∣𝑥∣−𝑝′ ). The region ∣𝑦∣ > ∣𝑥∣𝑎 is divided into two subregions: ∣𝑥∣𝑎 < ∣𝑦∣ < ∣𝑥∣/2
and ∣𝑦∣ > ∣𝑥∣/2. If ∣𝑥∣𝑎 < ∣𝑦∣ < ∣𝑥∣/2 then ∣𝑥− 𝑦∣ ≥ ∣𝑥∣ − ∣𝑦∣ > ∣𝑥∣/2 and thus∫

∣𝑥∣𝑎<∣𝑦∣<∣𝑥∣/2

(1 + ∣𝑦∣)−2𝛿𝑝′d𝑦
∣𝑥− 𝑦∣𝑝′ ≤ 𝐶∣𝑥∣−𝑝′

∫
∣𝑥∣𝑎<∣𝑦∣<∣𝑥∣/2

d𝑦

∣𝑦∣2𝛿𝑝′ .

In the region ∣𝑦∣ > ∣𝑥∣/2 we have, after denoting 𝑧 := 𝑦/∣𝑥∣, that∫
∣𝑦∣>∣𝑥∣/2

(1 + ∣𝑦∣)−2𝛿𝑝′d𝑦
∣𝑥− 𝑦∣𝑝′ ≤ 𝐶

∫
∣𝑦∣>∣𝑥∣/2

∣𝑦∣−2𝛿𝑝′d𝑦
∣𝑥− 𝑦∣𝑝′ = 𝐶

∫
∣𝑧∣>1/2

∣𝑥𝑧∣−2𝛿𝑝′ ∣𝑥∣3d𝑧
∣𝜃′ − 𝑧∣𝑝′ ∣𝑥∣𝑝′

= 𝐶∣𝑥∣3−2𝛿𝑝′−𝑝′
∫
∣𝑧∣>1/2

∣𝑧∣−2𝛿𝑝′d𝑧
∣𝜃′ − 𝑧∣𝑝′ .
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The last integral converges for 2𝛿 > 2− 3/𝑝 since∫
2>∣𝑧∣>1/2

∣𝑧∣−2𝛿𝑝′d𝑧
∣𝜃′ − 𝑧∣𝑝′ ≤ 𝐶

∫
2>∣𝑧∣>1/2

d𝑧

∣𝜃′ − 𝑧∣𝑝′ <∞

and ∫
∣𝑧∣>2

∣𝑧∣−2𝛿𝑝′d𝑧
∣𝜃′ − 𝑧∣𝑝′ ≤ 𝐶

∫
∣𝑧∣>2

d𝑧

∣𝑧∣𝑝′+2𝛿𝑝′ <∞.

Here we have used the basic estimate ∣𝜃′ − 𝑧∣ ≥ ∣𝑧∣ − 1 > ∣𝑧∣/2 for ∣𝑧∣ > 2. These
considerations allow us to conclude that for 2𝛿 > 2− 3/𝑝 we have∫

∣𝑦∣>∣𝑥∣𝑎
(1 + ∣𝑦∣)−2𝛿𝑝′d𝑦

∣𝑥− 𝑦∣𝑝′ ≤ 𝐶∣𝑥∣−𝑝′
∫
∣𝑥∣𝑎<∣𝑦∣

d𝑦

∣𝑦∣2𝛿𝑝′ + 𝐶∣𝑥∣3−2𝛿𝑝′−𝑝′ .

But this is 𝑜(∣𝑥∣−𝑝′ ) for 2𝛿 > 3/𝑝′ = 3− 3/𝑝. This finishes the proof. □

Remark 2.4. Sometimes (2.3) is taken as a definition of the scattering amplitude
without a rigorous proof of its presence in (2.2). We also prefer to avoid assuming
that the potentials have compact support or have some strong, pointwise decay at
infinity.

We will finish off this section with some simple results that are employed in
Section 3.

Lemma 2.5. Under the same assumptions as in Theorem 2.3 we have

∥𝑢sc∥𝐿∞ → 0, 𝑘 →∞.

Proof. Write

𝑢sc(𝑥, 𝑘, 𝜃) = 𝐶

∫
ℝ3

ei𝑘∣𝑥−𝑦∣ℎ(𝑦, ∣𝑢(𝑦)∣)𝑢(𝑦)
∣𝑥− 𝑦∣ d𝑦,

and apply Riemann–Lebesgue lemma. □
The following result from [5] allows us to control 𝑢sc in weighted Lebesgue

spaces in terms of 𝑘. This will be fruitful in the sequel.

Proposition 2.6. Let 3/2 < 𝑝 ≤ ∞. Then for all ∣𝑘∣ ≥ 1 the limit
(−Δ− 𝑘2 − i0)−1 := lim

𝜀→+0
(−Δ− 𝑘2 − i𝜀)−1

exists in the uniform operator topology from 𝐿
2𝑝

𝑝+1

𝛿 (ℝ3) to 𝐿
2𝑝

𝑝−1

−𝛿 (ℝ
3) with the norm

estimate ∥∥(−Δ− 𝑘2 − i0)−1𝑓∥∥
𝐿

2𝑝
𝑝−1
−𝛿 (ℝ3)

≤ 𝐶

∣𝑘∣𝛾 ∥𝑓∥𝐿 2𝑝
𝑝+1
𝛿 (ℝ3)

,

where 𝛾 = 2− 3/𝑝 and 𝛿 = 0 if 3/2 < 𝑝 ≤ 2 and 𝛾 = 1− 1/𝑝 and 𝛿 > 1/2− 1/𝑝 if
2 < 𝑝 ≤ ∞.

By Hölder’s inequality 𝐿𝑝
2𝛿(ℝ

3) ∩ 𝐿1(ℝ3) ⊂ 𝐿
2𝑝

𝑝+1

𝛿 (ℝ3) for 1 ≤ 𝑝 ≤ ∞ and
𝛿 ∈ ℝ. It means that we may apply Proposition 2.6 in the frame of Theorem 2.3.
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Corollary 2.7. Let 𝛼, 𝛽 be as in Theorem 2.3. Then

∥𝑢sc∥
𝐿

2𝑝
𝑝−1
−𝛿 (ℝ3)

≤ 𝐶

∣𝑘∣𝛾 ,

where 𝛾 is as in Proposition 2.6.

Proof. The claim follows from

∥𝑢sc∥
𝐿

2𝑝
𝑝−1
−𝛿

(ℝ3)
=
∥∥(−Δ− 𝑘2 − i0)−1(ℎ𝑢)∥∥

𝐿
2𝑝

𝑝−1
−𝛿

(ℝ3)

≤ 𝑐𝜌 ∥𝑢∥𝐿∞(ℝ3)

𝐶

∣𝑘∣𝛾 ∥𝛼∥𝐿 2𝑝
𝑝+1
𝛿 (ℝ3)

. □

Corollary 2.8. Let 𝛼, 𝛽 be as in Theorem 2.3. If 𝑓 ∈ 𝐿𝑝
2𝛿(ℝ

3) then∥∥∥∣𝑓 ∣1/2𝑢sc∥∥∥
𝐿2(ℝ3)

≤ 𝐶

∣𝑘∣𝛾 ,

where 𝛾 is as in Proposition 2.6.

Proof. Hölder’s inequality and Corollary 2.7. □

3. Inverse scattering problems

The inverse problems that are considered in this section is to recover features of
the unknown function

ℎ0(𝑥) := ℎ(𝑥, 1)

from the scattering amplitude 𝐴(𝑘, 𝜃′, 𝜃). We consider both the general scattering
data

𝐷 := {𝐴(𝑘, 𝜃′, 𝜃) : 𝑘 > 0, 𝜃, 𝜃′ ∈ 𝕊2}
and the fixed angle scattering data

𝐷A := {𝐴(𝑘, 𝜃′, 𝜃) : 𝑘 > 0, 𝜃 = 𝜃0 fixed , 𝜃
′ ∈ 𝕊2}.

In this section we assume that the nonlinearity ℎ possesses the Taylor expansion

ℎ(𝑥, 1 + 𝑠) = ℎ(𝑥, 1) + ℎ′𝑠(𝑥, 1)𝑠+ ℎ′′𝑠 (𝑥, 𝑠
∗)𝑠2/2,

where 1 < 𝑠∗ < 1 + 𝑠 and

∣ℎ′𝑠(𝑥, 1)∣ ≤ 𝜂1(𝑥), ∣ℎ′′𝑠 (𝑥, 𝑠∗)∣ ≤ 𝜂2(𝑥)

uniformly in 𝑠 ∈ (0, 𝑠0) with some 𝑠0 > 0 and with 𝜂1, 𝜂2 ∈ 𝐿𝑝
2𝛿(ℝ

), where 𝑝, 𝛿 are
as in Theorem 2.3. Then, using

∣𝑢∣ = (𝑢𝑢)1/2 = (1 + 𝑢0𝑢sc + 𝑢sc𝑢0 + ∣𝑢sc∣2)1/2 = 1+ 1

2
𝑢0𝑢sc +

1

2
𝑢sc𝑢0 +𝒪(∣𝑢sc∣2)

we may write

ℎ(𝑥, ∣𝑢∣) = ℎ0 + ℎ′𝑠(𝑥, 1)
(
1

2
𝑢0𝑢sc +

1

2
𝑢sc𝑢0 +𝒪(∣𝑢sc∣2)

)
+ ℎ′′𝑠 (𝑥, 𝑠

∗)𝒪(∣𝑢sc∣2).
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So we obtain

ℎ(𝑥, ∣𝑢∣)𝑢 = ℎ0(𝑥)𝑢0 + 𝑔1(𝑥)𝑢sc + 𝑔2(𝑥)𝑢
2
0𝑢sc + 𝜂(𝑥)𝒪(∣𝑢sc∣2), (3.1)

where 𝑔2(𝑥) = ℎ′𝑠(𝑥, 1)/2, 𝑔1(𝑥) = ℎ0(𝑥) + 𝑔2(𝑥) and 𝜂 ∈ 𝐿𝑝
2𝛿(ℝ

3) with 𝑝, 𝛿 as in
Theorem 2.3.

3.1. A uniqueness result and a representation formula

For the over-determined data 𝐷 we obtain uniqueness of the inverse scattering
problem as a consequence of the following result.

Theorem 3.1 (Saito’s formula). Under the same assumptions as in Theorem 2.3
the limit

lim
𝑘→∞

𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝐴(𝑘, 𝜃′, 𝜃)d𝜃d𝜃′ = 8𝜋2
∫
ℝ3

ℎ0(𝑦)

∣𝑥− 𝑦∣2 d𝑦, 𝑥 ∈ ℝ3 (3.2)

holds in the sense of distributions for 2 < 𝑝 <∞ and uniformly for 𝑝 =∞.

Proof. Split the integral of interest as

𝐼 := 𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝐴(𝑘, 𝜃′, 𝜃)d𝜃d𝜃′

= 𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)d𝑦d𝜃d𝜃′

= 𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)
∫
ℝ3

e−i𝑘(𝜃
′−𝜃,𝑦)ℎ0(𝑦)d𝑦d𝜃d𝜃

′

+ 𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)[ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)− ℎ0𝑢0]d𝑦d𝜃d𝜃

′ := 𝐼1 + 𝐼2.

We have [2]

𝐼1 = 𝑘2
∫
ℝ3

ℎ0(𝑦)d𝑦

∫
𝕊2×𝕊2

ei𝑘(𝜃−𝜃′,𝑦−𝑥)d𝜃d𝜃′ = 8𝜋3𝑘2
∫
ℝ3

ℎ0(𝑦)d𝑦
𝐽21/2(𝑘∣𝑥− 𝑦∣)

𝑘∣𝑥− 𝑦∣ ,

where 𝐽1/2 is the Bessel function of the first kind and order 1/2. The presence of
𝐽1/2 suggests us to divide this integral into two parts according to small and large
argument of 𝐽1/2. The part 𝐼

′
1 over 𝑘∣𝑥− 𝑦∣ < 1 can be estimated as

∣𝐼 ′1∣ ≤ 𝐶𝑘2
∫
𝑘∣𝑥−𝑦∣<1

∣ℎ0(𝑦)∣d𝑦

≤ 𝐶𝑘2

(∫
𝑘∣𝑥−𝑦∣<1

∣ℎ0(𝑦)∣𝑝d𝑦
)1/𝑝(∫

𝑘∣𝑥−𝑦∣<1
1d𝑦

)1/𝑝′

= 𝐶𝑘2−3/𝑝
′ → 0
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for 3 < 𝑝 ≤ ∞ by the Hölder inequality. The part over 𝑘∣𝑥− 𝑦∣ > 1 becomes

𝐼 ′′1 = 8𝜋
3𝑘

∫
∣𝑥−𝑦∣>𝑘−1

ℎ0(𝑦)

∣𝑥− 𝑦∣

×
[√

2

𝜋𝑘∣𝑥− 𝑦∣ cos
(
𝑘∣𝑥− 𝑦∣ − 𝜋

2

)
+𝒪

(
1

(𝑘∣𝑥 − 𝑦∣)3/2
)]2

d𝑦

= 8𝜋3𝑘

∫
∣𝑥−𝑦∣>𝑘−1

ℎ0(𝑦)d𝑦

∣𝑥− 𝑦∣
[
2 cos2(𝑘∣𝑥− 𝑦∣ − 𝜋

2 )

𝜋𝑘∣𝑥− 𝑦∣ +𝒪
(

1

(𝑘∣𝑥− 𝑦∣)2
)]

= 8𝜋2
∫
∣𝑥−𝑦∣>𝑘−1

ℎ0(𝑦)d𝑦

∣𝑥− 𝑦∣2

+ 8𝜋2
∫
∣𝑥−𝑦∣>𝑘−1

ℎ0(𝑦)

∣𝑥− 𝑦∣2 cos (2𝑘∣𝑥− 𝑦∣ − 𝜋) d𝑦

+
1

𝑘

∫
∣𝑥−𝑦∣>𝑘−1

∣ℎ0(𝑦)∣𝒪(1)
∣𝑥− 𝑦∣3 d𝑦 =: 𝐼

(1)
1 + 𝐼

(2)
1 + 𝐼

(3)
1 .

The part 𝐼
(1)
1 tends to right-hand side of (3.2) as 𝑘 →∞ for 3 < 𝑝 ≤ ∞ because∫

ℝ3

ℎ0(𝑦)d𝑦

∣𝑥− 𝑦∣2 ≤ 𝐶

∫
ℝ3

𝛼(𝑦)d𝑦

∣𝑥− 𝑦∣2 <∞

in that case. For the same reason the part 𝐼
(2)
1 tends to zero by Riemann–Lebesgue

lemma as 𝑘 →∞ for 3 < 𝑝 ≤ ∞. The part 𝐼(3)1 satisfies the estimate

∣𝐼(3)1 ∣ ≤ 𝐶

𝑘

∫
∣𝑥−𝑦∣>𝑘−1

𝛼(𝑦)

∣𝑥− 𝑦∣3 d𝑦 ≤
𝐶

𝑘1−𝜀

∫
∣𝑥−𝑦∣>𝑘−1

𝛼(𝑦)

∣𝑥− 𝑦∣3−𝜀
d𝑦, 𝜀 > 0.

By Hölder’s inequality the latter integral converges if we choose 3/𝑝 < 𝜀 < 3.

Hence 𝐼
(3)
1 → 0 as 𝑘 →∞ upon choosing 3/𝑝 < 𝜀 < 1. Thus

lim
𝑘→∞

𝐼1 = 8𝜋
2

∫
ℝ3

ℎ0(𝑦)

∣𝑥− 𝑦∣2 d𝑦

for 3 < 𝑝 ≤ ∞ uniformly in 𝑥.
It remains to consider

𝐼2 = 𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)[ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)− ℎ0𝑢0]d𝑦d𝜃d𝜃

′

= 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣ [ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)− ℎ0𝑢0]d𝑦d𝜃.

Making use of (3.1) leads to

𝐼2 = 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣
× [𝑔1(𝑦)𝑢sc(𝑦) + 𝑔2(𝑦)𝑢0(𝑦)

2𝑢sc(𝑦) + 𝜂(𝑦)𝒪(∣𝑢sc∣2)]d𝑦d𝜃 := 𝐼 ′2 + 𝐼 ′′2 + 𝐼 ′′′2 .
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Here the first term is

𝐼 ′2 = 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥 − 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)𝑢sc(𝑦)d𝑦d𝜃

= − 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

×
∫
ℝ3

𝐺+
𝑘 (∣𝑦 − 𝑧∣)ℎ(𝑧, ∣𝑢(𝑧)∣)𝑢(𝑧)d𝑧d𝑦d𝜃.

Another application of (3.1) yields

𝐼 ′2 = −𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

∫
ℝ3

𝐺+
𝑘 (∣𝑦 − 𝑧∣)ℎ0(𝑧)𝑢0(𝑧)d𝑧d𝑦d𝜃

− 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥 − 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

∫
ℝ3

𝐺+
𝑘 (∣𝑦 − 𝑧∣)𝑔1(𝑧)𝑢sc(𝑧)d𝑧d𝑦d𝜃

− 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥 − 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

∫
ℝ3

𝐺+
𝑘 (∣𝑦 − 𝑧∣)𝑔2(𝑧)𝑢20(𝑧)𝑢sc(𝑧)d𝑧d𝑦d𝜃

− 𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥 − 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

∫
ℝ3

𝐺+
𝑘 (∣𝑦 − 𝑧∣)𝜂(𝑧)𝒪(∣𝑢sc(𝑧)∣2)d𝑧d𝑦d𝜃

=: 𝐼
(1)
2 + 𝐼

(2)
2 + 𝐼

(3)
2 + 𝐼

(4)
2 .

Now

𝐼
(1)
2 = −𝐶𝑘2

∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥−𝑧)𝐽1/2(𝑘∣𝑥− 𝑦∣)√
𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

∫
ℝ3

𝐺+
𝑘 (∣𝑦 − 𝑧∣)ℎ0(𝑧)d𝑧d𝑦d𝜃

= −𝐶𝑘2
∫
ℝ3

𝐽1/2(𝑘∣𝑥− 𝑦∣)√
𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)

∫
ℝ3

𝐽1/2(𝑘∣𝑥− 𝑧∣)√
𝑘∣𝑥− 𝑧∣ 𝐺+

𝑘 (∣𝑦 − 𝑧∣)ℎ0(𝑧)d𝑧d𝑦

= −𝐶𝑘2
∫
ℝ3

𝐽1/2(𝑘∣𝑥− 𝑦∣)√
𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)𝐺

+
𝑘

[
ℎ0

𝐽1/2(𝑘∣𝑥− ⋅∣)√
𝑘∣𝑥− ⋅∣

]
(𝑦)d𝑦.

Writing 𝑓1/2 = ∣𝑓 ∣1/2 sgn 𝑓 and 𝑓 = 𝑓1/2∣𝑓 ∣1/2 we may conclude that

𝐼
(1)
2 = − 𝐶𝑘2

∫
ℝ3

𝐽1/2(𝑘∣𝑥− 𝑦∣)√
𝑘∣𝑥− 𝑦∣ 𝑔1,1/2(𝑦)∣𝑔1(𝑦)∣1/2

×𝐺+
𝑘

[
ℎ0,1/2∣ℎ0∣1/2

𝐽1/2(𝑘∣𝑥− ⋅∣)√
𝑘∣𝑥− ⋅∣

]
(𝑦)d𝑦

= − 𝐶𝑘2
∫
ℝ3

𝐽1/2(𝑘∣𝑥− 𝑦∣)√
𝑘∣𝑥− 𝑦∣ 𝑔1,1/2(𝑦)�̂�

[
∣ℎ0∣1/2

𝐽1/2(𝑘∣𝑥 − ⋅∣)√
𝑘∣𝑥− ⋅∣

]
(𝑦)d𝑦,

where �̂� is the integral operator with the kernel

𝐾(𝑥, 𝑦) = ∣𝑔1(𝑥)∣1/2𝐺+
𝑘 (∣𝑥 − 𝑦∣)ℎ0,1/2(𝑦).
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It follows easily from Proposition 2.6 that �̂� : 𝐿2(ℝ3) → 𝐿2(ℝ3) has the same

norm estimate 𝐶𝑘−𝛾 as 𝐺+
𝑘 . Hence, by Hölder’s inequality,

∣𝐼(1)2 ∣ ≤ 𝐶𝑘2
∫
ℝ3

∣𝐽1/2(𝑘∣𝑥− 𝑦∣)∣√
𝑘∣𝑥− 𝑦∣ ∣𝑔1∣1/2(𝑦)

∣∣∣∣∣�̂�
[
∣ℎ0∣1/2

𝐽1/2(𝑘∣𝑥 − ⋅∣)√
𝑘∣𝑥− ⋅∣

]
(𝑦)

∣∣∣∣∣ d𝑦
≤ 𝐶𝑘2−𝛾

(∫
ℝ3

𝐽21/2(𝑘∣𝑥− 𝑦∣)
𝑘∣𝑥− 𝑦∣ ∣𝑔1(𝑦)∣d𝑦

) 1
2
(∫

ℝ3

∣ℎ0(𝑧)∣
𝐽21/2(𝑘∣𝑥− 𝑧∣)

𝑘∣𝑥− 𝑧∣ d𝑧

) 1
2

.

Each of the latter integrals can be estimated as∫
ℝ3

𝐽21/2(𝑘∣𝑥− 𝑦∣)
𝑘∣𝑥− 𝑦∣ ∣𝑔1(𝑦)∣d𝑦 = 𝐶

∫
ℝ3

sin2(𝑘∣𝑥− 𝑦∣)
(𝑘∣𝑥− 𝑦∣)2 ∣𝑔1(𝑦)∣d𝑦

≤ 𝐶

∫
ℝ3

∣𝑔1(𝑦)∣d𝑦
(𝑘∣𝑥− 𝑦∣)2 =

𝐶

𝑘2

for 3 < 𝑝 ≤ ∞ as we have seen above. So

∣𝐼(1)2 ∣ ≤ 𝐶𝑘−𝛾 → 0, 𝑘 →∞.

In a somewhat similar fashion,

𝐼
(2)
2 = −𝐶𝑘2

∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1(𝑦)𝐺
+
𝑘 [𝑔1𝑢sc](𝑦)d𝑦d𝜃

= −𝐶𝑘2
∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1,1/2(𝑦)𝑇 [∣𝑔1∣1/2𝑢sc](𝑦)d𝑦d𝜃,

where 𝑇 is the integral operator with the kernel

𝑇 (𝑥, 𝑦) = ∣𝑔1(𝑥)∣1/2𝐺+
𝑘 (∣𝑥− 𝑦∣)𝑔1,1/2(𝑦)

and with the same mapping property as �̂�. Hence

∣𝐼(2)2 ∣ ≤ 𝐶𝑘2
∫
𝕊2

∫
ℝ3

∣𝐽1/2(𝑘∣𝑥− 𝑦∣)∣√
𝑘∣𝑥− 𝑦∣ ∣𝑔1∣1/2(𝑦)

∣∣∣𝑇 [∣𝑔1∣1/2𝑢sc](𝑦)∣∣∣ d𝑦d𝜃
≤ 𝐶𝑘2−𝛾

∫
𝕊2

(∫
ℝ3

𝐽21/2(𝑘∣𝑥− 𝑦∣)
𝑘∣𝑥− 𝑦∣ ∣𝑔1(𝑦)∣d𝑦

)1/2(∫
ℝ3

∣𝑔1∣∣𝑢sc(𝑦)∣2d𝑦
)1/2

d𝜃

≤ 𝐶𝑘1−2𝛾 → 0, 𝑘 →∞
for 3 < 𝑝 ≤ ∞. The term 𝐼

(3)
2 can be estimated in similar manner for 3 < 𝑝 ≤ ∞.

For the term 𝐼
(4)
2 the first step is

𝐼
(4)
2 = −𝐶𝑘2

∫
𝕊2

∫
ℝ3

e−i𝑘(𝜃,𝑥)
𝐽1/2(𝑘∣𝑥− 𝑦∣)√

𝑘∣𝑥− 𝑦∣ 𝑔1,1/2(𝑦)𝑈 [∣𝜂∣1/2𝒪(∣𝑢sc(⋅)∣2)](𝑦)d𝑦d𝜃,

where 𝑈 is the integral operator with the kernel

𝑈(𝑥, 𝑦) = ∣𝑔1(𝑥)∣1/2𝐺+
𝑘 (∣𝑥− 𝑦∣)𝜂1/2(𝑦)
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and with the same mapping property as �̂� and 𝑇 . By Hölder’s inequality and
Corollary 2.8,

∣𝐼(4)2 ∣ ≤ 𝐶𝑘2−𝛾

∫
𝕊2

(∫
ℝ3

𝐽21/2(𝑘∣𝑥− 𝑦∣)
𝑘∣𝑥− 𝑦∣ ∣𝑔1(𝑦)∣d𝑦

)1
2 (∫

ℝ3

∣𝜂(𝑦)∣𝒪(∣𝑢sc(𝑦)∣4)d𝑦
)1

2

d𝜃

≤ 𝐶𝑘2−2𝛾
(∫

ℝ3

𝐽21/2(𝑘∣𝑥− 𝑦∣)
𝑘∣𝑥− 𝑦∣ ∣𝑔1(𝑦)∣d𝑦

) 1
2

.

As above ∣𝐼(4)2 ∣ → 0 as 𝑘 →∞ for 3 < 𝑝 ≤ ∞.
The analysis of 𝐼 ′′2 is analogous to 𝐼 ′2. For the term 𝐼 ′′′2 we obtain

∣𝐼 ′′′2 ∣ ≤ 𝐶𝑘2 ∥𝑢sc∥𝐿∞
∫
𝕊2

∫
ℝ3

∣𝐽1/2(𝑘∣𝑥− 𝑦∣)∣√
𝑘∣𝑥− 𝑦∣ ∣𝜂(𝑦)∣𝒪(∣𝑢sc∣)d𝑦d𝜃

≤ 𝐶𝑘2 ∥𝑢sc∥𝐿∞
∫
𝕊2

(∫
ℝ3

𝐽21/2(𝑘∣𝑥− 𝑦∣)
𝑘∣𝑥− 𝑦∣ ∣𝜂(𝑦)∣d𝑦

)1/2

×
(∫

ℝ3

∣𝜂(𝑦)∣𝒪(∣𝑢sc∣2)d𝑦
)1/2

d𝜃

𝑓 ≤ 𝐶𝑘1−𝛾 ∥𝑢sc∥𝐿∞ → 0, 𝑘 →∞
by Lemma 2.5 for 𝑝 = ∞. It is this term that forces us to restrict to the case
𝑝 =∞ in the proof of uniform limit.

In the case 2 < 𝑝 < ∞ one may use similar techniques as above to prove
convergence in the sense of distributions. See [2] for details. □

Saito’s formula (3.2) implies immediately the following uniqueness result and
the representation formula for the unknown function ℎ0.

Corollary 3.2 (Uniqueness). Consider the scattering problems for two sets of po-

tentials ℎ and ℎ̃. Under the same assumptions as in Theorem 2.3, if the scattering
amplitudes coincide for some sequence 𝑘𝑗 →∞ and for all 𝜃, 𝜃′ ∈ 𝕊2 then

ℎ0(𝑥) = ℎ̃0(𝑥)

holds in the sense of distributions for 2 < 𝑝 ≤ ∞.
Proof. The claim follows in standard manner from (3.2), see [12, Thm. 5.4]. □

Corollary 3.3 (Representation formula). Under the same assumptions as in The-
orem 2.3, the representation

ℎ0(𝑥) = lim
𝑘→∞

𝑘3

16𝜋4

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝐴(𝑘, 𝜃′, 𝜃)∣𝜃 − 𝜃′∣d𝜃d𝜃′

holds in the sense of distributions for 2 < 𝑝 ≤ ∞.
Proof. See [4, Corollary 3.1]. □
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3.2. Born approximation

Recall that

𝐴(𝑘, 𝜃′, 𝜃) =
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)d𝑦.

Substituting 𝑢0 for 𝑢 we arrive at the function

𝐴0(𝑘, 𝜃
′, 𝜃) :=

∫
ℝ3

e−i𝑘(𝜃
′−𝜃,𝑦)ℎ0(𝑦)d𝑦 = 𝐹 (ℎ0)(𝑘(𝜃 − 𝜃′)),

where 𝐹 is the Fourier transform

𝐹 (𝑓)(𝜉) =

∫
ℝ3

ei(𝜉,𝑦)𝑓(𝑦)d𝑦.

We know from previous considerations that, for 𝑘 large,

𝐴(𝑘, 𝜃′, 𝜃) ≈ 𝐹 (ℎ0)(𝑘(𝜃 − 𝜃′)).

This relation can be inverted by applying the inverse Fourier transform

𝐹−1(𝑓)(𝑥) =
1

(2𝜋)3

∫
ℝ3

e−i(𝜉,𝑥)𝑓(𝜉)d𝜉

in some suitable coordinates. To this end we fix 𝜃 = 𝜃0 and switch to polar coor-
dinates via 𝜉 = 𝑘(𝜃 − 𝜃′). Then we can get 𝑘 and 𝜃′ back by

𝑘𝜃(𝜉) :=
∣𝜉∣

2(𝜃, 𝜉)
, 𝜃′𝜃(𝜉) := 𝜃 − 2(𝜃, 𝜉)𝜉, 𝜉 = 𝜉/∣𝜉∣.

Since the Jacobian of this transformation is 𝐽 = 𝐽(𝑘, 𝜃, 𝜃′) = 𝑘2∣𝜃−𝜃′∣2/2 it follows
that

𝐹−1(𝑓)(𝑥) =
1

2(2𝜋)3

∫ ∞

0

𝑘2
∫
𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑓(𝑘(𝜃 − 𝜃′))∣𝜃 − 𝜃′∣2d𝜃′d𝑘.

These considerations give rise to the following definition.

Definition 3.4. The inverse Born approximation 𝑞B(𝑥) and the inverse fixed angle
Born approximation 𝑞0B(𝑥) of the function ℎ0(𝑥) are defined by

𝑞B(𝑥) :=
1

64𝜋4

∫ ∞

0

𝑘2
∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝐴(𝑘, 𝜃′, 𝜃)∣𝜃 − 𝜃′∣2d𝜃d𝜃′d𝑘
and

𝑞0B(𝑥) :=
1

16𝜋3

∫ ∞

0

𝑘2
∫
𝕊2

e−i𝑘(𝜃0−𝜃′,𝑥)𝐴(𝑘, 𝜃′, 𝜃0)∣𝜃0 − 𝜃′∣2d𝜃′d𝑘,

respectively.
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Now we substitute (3.1) into 𝑞B and get, with 𝐶−1B = 64𝜋4,

𝑞B(𝑥) = 𝐶B

∫ ∞

0

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ(𝑦, ∣𝑢∣)𝑢(𝑦)d𝑦

= 𝐶B

∫ ∞

0

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)ℎ0(𝑦)𝑢0(𝑦)d𝑦

+ 𝐶B

∫ ∞

1

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′

×
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)(𝑔1(𝑦)𝑢sc(𝑦) + 𝑔2(𝑦)𝑢

2
0(𝑦)𝑢sc)d𝑦

+ 𝐶B

∫ 1

0

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′

×
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)(𝑔1(𝑦)𝑢sc(𝑦) + 𝑔2(𝑦)𝑢

2
0(𝑦)𝑢sc + 𝜂(𝑦)𝒪(∣𝑢sc∣2))d𝑦

+ 𝐶B

∫ ∞

1

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦

=: 𝑞0(𝑥) + 𝑞1(𝑥) + 𝑞∞(𝑥) + 𝑞𝑟(𝑥).

Here the first term is actually the unknown function since

𝑞0(𝑥) =
1

64𝜋4

∫ ∞

0

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′
∫
ℝ3

e−i𝑘(𝜃
′−𝜃,𝑦)ℎ0(𝑦)d𝑦

=
1

64𝜋4

∫
ℝ3

ℎ0(𝑦)

∫ ∞

0

∫
𝕊2×𝕊2

e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′e−i𝑘(𝜃′−𝜃,𝑦)d𝑦

=
1

32𝜋4

∫
ℝ3

ℎ0(𝑦)

∫
ℝ3×𝕊2

e−i(𝜉,𝑥)d𝜉d𝜃ei(𝜉,𝑦)d𝑦

=
1

8𝜋3

∫
ℝ3

ℎ0(𝑦)

∫
ℝ3

e−i(𝜉,𝑥)d𝜉ei(𝜉,𝑦)d𝑦 = 𝐹−1(𝐹ℎ0)(𝑥) = ℎ0(𝑥).

It means that our problem is reduced to the study of right-hand side of

𝑞B(𝑥)− ℎ0(𝑥) = 𝑞1(𝑥) + 𝑞∞(𝑥) + 𝑞𝑟(𝑥).

Proceeding similarly for 𝑞0B allows us to conclude that

𝑞0B(𝑥)− ℎ0(𝑥) = 𝑞01(𝑥) + 𝑞0∞(𝑥) + 𝑞0𝑟 (𝑥),

where 𝑞01(𝑥), 𝑞
0∞(𝑥) and 𝑞0𝑟(𝑥) are similar to 𝑞1(𝑥), 𝑞∞(𝑥) and 𝑞𝑟(𝑥) but without

integration over 𝜃.

Noting that 𝑞∞, 𝑞0∞ ∈ 𝐶∞(ℝ3) as inverse Fourier transforms of compactly
supported tempered distributions we study 𝑞1, 𝑞𝑟, 𝑞

0
1 and 𝑞0𝑟 .

The proof of the following fact makes use of the integral operator

𝐴0(𝑘)𝑓(𝜃
′) =

∫
ℝ3

e−i𝑘(𝜃
′,𝑦)𝑓(𝑦)d𝑦
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which has a norm estimate

∥𝐴0(𝑘)𝑓∥2𝐿2(𝕊2) ≤
𝐶

∣𝑘∣1+𝛾
∥𝑓∥2

𝐿
2𝑝

𝑝+1
𝛿 (ℝ3)

,

where 𝛾 is as in Proposition 2.6.

Lemma 3.5. Under the same assumptions as in Theorem 2.3 the terms 𝑞1, 𝑞𝑟, 𝑞
0
1

and 𝑞0𝑟 belong to the Sobolev space 𝐻𝑡(ℝ3) for 𝑡 < 1/2− 3/(2𝑝) if 3 < 𝑝 ≤ ∞.
Proof. We start by writing 𝑞𝑟 as an inverse Fourier transform. Indeed,

𝑞𝑟(𝑥) = 𝐶

∫ ∞

0

∫
𝕊2×𝕊2

(1− 𝜒(𝑘))e−i𝑘(𝜃−𝜃′,𝑥)𝑘2∣𝜃 − 𝜃′∣2d𝑘d𝜃d𝜃′

×
∫
ℝ3

e−i𝑘(𝜃
′,𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦

= 𝐶

∫
𝕊2

∫
ℝ3

(1− 𝜒(𝑘𝜃(𝜉)))e
−i(𝜉,𝑥)d𝜉d𝜃

∫
ℝ3

e−i𝑘𝜃(𝜉)(𝜃
′
𝜃(𝜉),𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦

= 𝐶𝐹−1
∫
𝕊2

(1 − 𝜒(𝑘𝜃(𝜉)))d𝜃

∫
ℝ3

e−i𝑘𝜃(𝜉)(𝜃
′
𝜃(𝜉),𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦,

where 𝜒(𝑘) is the characteristic function of the interval [0, 1]. Then

∥𝑞𝑟∥2𝐻𝑡(ℝ3) =
∥∥∥(1 + ∣ ⋅ ∣2)𝑡/2𝐹𝑞𝑟

∥∥∥2
𝐿2(ℝ3)

=

∫
ℝ3

(1 + ∣𝜉∣2)𝑡∣𝐹𝑞𝑟(𝜉)∣2d𝜉

= 𝐶

∫
ℝ3

(1 + ∣𝜉∣2)𝑡d𝜉

×
∣∣∣∣∫

𝕊2

(1 − 𝜒(𝑘𝜃(𝜉)))d𝜃

∫
ℝ3

e−i𝑘𝜃(𝜉)(𝜃
′
𝜃(𝜉),𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦

∣∣∣∣2
≤ 𝐶

∫
ℝ3

(1 + ∣𝜉∣2)𝑡d𝜉
∫
𝕊2

(1 − 𝜒(𝑘𝜃(𝜉)))
2d𝜃

×
∣∣∣∣∫

ℝ3

e−i𝑘𝜃(𝜉)(𝜃
′
𝜃(𝜉),𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦

∣∣∣∣2
by Hölder’s inequality. Going back to angular variables 𝑘, 𝜃′ yields, for 𝑡 ≥ 0,

∥𝑞𝑟∥2𝐻𝑡(ℝ3) ≤ 𝐶

∫ ∞

1

∫
𝕊2

𝑘2(1 + ∣𝑘∣2)𝑡d𝑘d𝜃′
∫
𝕊2

d𝜃

∣∣∣∣∫
ℝ3

e−i𝑘(𝜃
′,𝑦)𝜂(𝑦)𝒪(∣𝑢sc∣2)d𝑦

∣∣∣∣2
≤ 𝐶

∫ ∞

1

∫
𝕊2

𝑘2(1 + ∣𝑘∣2)𝑡d𝑘d𝜃′
∫
𝕊2

d𝜃
∣∣𝐴0(𝑘)𝜂(𝑦)𝒪(∣𝑢sc∣2)

∣∣2
≤ 𝐶

∫ ∞

1

∫
𝕊2

𝑘1−𝛾(1 + ∣𝑘∣2)𝑡d𝑘d𝜃 ∥∥𝜂(⋅)𝒪(∣𝑢sc∣2)∥∥2
𝐿

2𝑝
𝑝+1
𝛿 (ℝ3)

≤ 𝐶

∫ ∞

1

∫
𝕊2

𝑘1−𝛾(1 + ∣𝑘∣2)𝑡d𝑘d𝜃 ∥𝜂∥2𝐿𝑝
2𝛿(ℝ

3)

∥∥∣𝑢sc∣2∥∥2
𝐿

2𝑝
𝑝−1
−𝛿 (ℝ3)

≤ 𝐶

∫ ∞

1

𝑘2𝑡+1−3𝛾d𝑘 <∞
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where 𝛾 is as in Proposition 2.6. The last integral converges if and only if

3𝛾 − 1− 2𝑡 > 1

or 𝑡 < 3𝛾/2− 1 = 1/2− 3/(2𝑝) for 3 < 𝑝 ≤ ∞. The analogous proofs for 𝑞1, 𝑞01 and
𝑞0𝑟 are left to the reader. □

Now our main result concerning the method of Born approximation follows
immediately from Lemma 3.5.

Theorem 3.6. Under the same assumptions as in Theorem 2.3,

𝑞0B − ℎ0, 𝑞B − ℎ0 ∈ 𝐻𝑡
loc(ℝ

3),

where 𝑡 is as in Lemma 3.5.

For finite 𝑝 we cannot recover any singularities of ℎ0 from 𝑞B. In the case
𝑝 =∞ we can, however, obtain the following application of 𝑞B. If 𝑠0 < 1/2 is fixed
and ℎ0 ∈ 𝐻𝑠(ℝ3) ∩ 𝐿∞2𝛿(ℝ

3), 𝑠 ≤ 𝑠0 and ℎ0 /∈ 𝐻𝑠+𝜀(ℝ3) for any 𝜀 > 0 then we can
recover jumps of ℎ0, if any, from 𝑞B. Similarly for 𝑞0B.
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[5] L. Päivärinta and V. Serov, New mapping properties for the resolvent of the Lapla-
cian and recovery of singularities of a multi-dimensional scattering potential. Inverse
Problems 17 (2001), 1321–1326.
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The Cauchy Singular Integral Operator
on Weighted Variable Lebesgue Spaces

Alexei Yu. Karlovich and Ilya M. Spitkovsky

Abstract. Let 𝑝 : ℝ → (1,∞) be a globally log-Hölder continuous variable
exponent and 𝑤 : ℝ → [0,∞] be a weight. We prove that the Cauchy singu-
lar integral operator 𝑆 is bounded on the weighted variable Lebesgue space
𝐿𝑝(⋅)(ℝ, 𝑤) = {𝑓 : 𝑓𝑤 ∈ 𝐿𝑝(⋅)(ℝ)} if and only if the weight 𝑤 satisfies

sup
−∞<𝑎<𝑏<∞

1

𝑏− 𝑎∥𝑤𝜒(𝑎,𝑏)∥𝑝(⋅)∥𝑤−1𝜒(𝑎,𝑏)∥𝑝′(⋅) <∞ (1/𝑝(𝑥) + 1/𝑝′(𝑥) = 1).

Mathematics Subject Classification (2010). Primary 42A50; Secondary 42B25,
46E30.

Keywords. Weighted variable Lebesgue space, log-Hölder continuous variable
exponent, Cauchy singular integral operator, Hardy–Littlewood maximal op-
erator.

1. Introduction

Let 𝑝 : ℝ→ [1,∞] be a measurable a.e. finite function. By 𝐿𝑝(⋅)(ℝ) we denote the
set of all complex-valued functions 𝑓 on ℝ such that

𝐼𝑝(⋅)(𝑓/𝜆) :=
∫
ℝ

∣𝑓(𝑥)/𝜆∣𝑝(𝑥)𝑑𝑥 <∞
for some 𝜆 > 0. This set becomes a Banach space when equipped with the norm

∥𝑓∥𝑝(⋅) := inf
{
𝜆 > 0 : 𝐼𝑝(⋅)(𝑓/𝜆) ≤ 1

}
.

It is easy to see that if 𝑝 is constant, then 𝐿𝑝(⋅)(ℝ) is nothing but the standard
Lebesgue space 𝐿𝑝(ℝ). The space 𝐿𝑝(⋅)(ℝ) is referred to as a variable Lebesgue
space.

A measurable function 𝑤 : ℝ → [0,∞] is referred to as a weight whenever
0 < 𝑤(𝑥) < ∞ a.e. on ℝ. Given a variable exponent 𝑝 : ℝ → [1,∞] and a weight

The first author is partially supported by FCT project PEstOE/MAT/UI4032/2011 (Portugal).
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𝑤 : ℝ→ [0,∞], we define the weighted variable exponent space 𝐿𝑝(⋅)(ℝ, 𝑤) as the
space of all measurable complex-valued functions 𝑓 such that 𝑓𝑤 ∈ 𝐿𝑝(⋅)(ℝ). The
norm on this space is naturally defined by

∥𝑓∥𝑝(⋅),𝑤 := ∥𝑓𝑤∥𝑝(⋅).
Given 𝑓 ∈ 𝐿1loc(ℝ), the Hardy–Littlewood maximal operator is defined by

𝑀𝑓(𝑥) := sup
𝑄∋𝑥

1

∣𝑄∣
∫
𝑄

∣𝑓(𝑦)∣𝑑𝑦

where the supremum is taken over all intervals 𝑄 ⊂ ℝ containing 𝑥. The Cauchy
singular integral operator 𝑆 is defined for 𝑓 ∈ 𝐿1loc(ℝ) by

(𝑆𝑓)(𝑥) :=
1

𝜋𝑖

∫
ℝ

𝑓(𝜏)

𝜏 − 𝑥
𝑑𝜏 (𝑥 ∈ ℝ),

where the integral is understood in the principal value sense.
Following [4, Section 2] or [6, Section 4.1], one says that 𝛼 : ℝ→ ℝ is locally

log-Hölder continuous if there exists 𝑐1 > 0 such that

∣𝛼(𝑥) − 𝛼(𝑦)∣ ≤ 𝑐1
log(𝑒 + 1/∣𝑥− 𝑦∣)

for all 𝑥, 𝑦 ∈ ℝ. Further, 𝛼 is said to satisfy the log-Hölder decay condition if there
exist 𝛼∞ ∈ ℝ and a constant 𝑐2 > 0 such that

∣𝛼(𝑥) − 𝛼∞∣ ≤ 𝑐2
log(𝑒 + ∣𝑥∣)

for all 𝑥 ∈ ℝ. One says that 𝛼 is globally log-Hölder continuous on ℝ if it is locally
log-Hölder continuous and satisfies the log-Hölder decay condition. Put

𝑝− := ess inf
𝑥∈ℝ

𝑝(𝑥), ess sup
𝑥∈ℝ

𝑝(𝑥) =: 𝑝+.

As usual, we use the convention 1/∞ := 0 and denote by 𝒫 log(ℝ) the set of all
variable exponents such that 1/𝑝 is globally log-Hölder continuous. If 𝑝 ∈ 𝒫 log(ℝ),
then the limit

1

𝑝(∞) := lim
∣𝑥∣→∞

1

𝑝(𝑥)

exists. If 𝑝+ <∞, then 𝑝 ∈ 𝒫 log(ℝ) if and only if 𝑝 is globally log-Hölder contin-
uous.

By [6, Theorem 4.3.8], if 𝑝 ∈ 𝒫 log(ℝ) with 𝑝− > 1, then the Hardy–Littlewood
maximal operator 𝑀 is bounded on 𝐿𝑝(⋅)(ℝ). Notice, however, that the condition
𝑝 ∈ 𝒫 log(ℝ) is not necessary, there are even discontinuous exponents 𝑝 such that𝑀
is bounded on 𝐿𝑝(⋅)(ℝ). Corresponding examples were first constructed by Lerner
and they are contained in [6, Section 5.1].

In this paper we will mainly suppose that

1 < 𝑝−, 𝑝+ <∞. (1.1)
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Under these conditions, the space 𝐿𝑝(⋅)(ℝ) is separable and reflexive, and its Ba-
nach space dual [𝐿𝑝(⋅)(ℝ)]∗ is isomorphic to 𝐿𝑝′(⋅)(ℝ), where

1/𝑝(𝑥) + 1/𝑝′(𝑥) = 1 (𝑥 ∈ ℝ)

(see [6, Chap. 3]). If, in addition, 𝑤𝜒𝐸 ∈ 𝐿𝑝(⋅)(ℝ) and 𝜒𝐸/𝑤 ∈ 𝐿𝑝′(⋅)(ℝ) for any
measurable set 𝐸 ⊂ ℝ of finite measure, then 𝐿𝑝(⋅)(ℝ, 𝑤) is a Banach function
space and [𝐿𝑝(⋅)(ℝ, 𝑤)]∗ = 𝐿𝑝(⋅)(ℝ, 𝑤−1). Here and in what follows, 𝜒𝐸 denotes
the characteristic function of the set 𝐸.

Probably, one of the simplest weights is the following power weight

𝑤(𝑥) := ∣𝑥− 𝑖∣𝜆∞
𝑚∏

𝑗=1

∣𝑥− 𝑥𝑗 ∣𝜆𝑗 , (1.2)

where −∞ < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑚 < +∞ and 𝜆1, . . . , 𝜆𝑚, 𝜆∞ ∈ ℝ. Kokilashvili,
Paatashvili, and Samko studied the boundedness of the operators 𝑀 and 𝑆 on
𝐿𝑝(⋅)(ℝ, 𝑤) with power weights (1.2). From [12, Theorem A] and [15, Theorem B]
one can extract the following result.

Theorem 1.1. Let 𝑝 ∈ 𝒫 log(ℝ) satisfy (1.1) and 𝑤 be a power weight (1.2).

(a) (Kokilashvili, Samko). Suppose, in addition, that 𝑝 is constant outside an
interval containing 𝑥1, . . . , 𝑥𝑚. Then the Hardy–Littlewood maximal operator
𝑀 is bounded on 𝐿𝑝(⋅)(ℝ, 𝑤) if and only if

0 <
1

𝑝(𝑥𝑗)
+ 𝜆𝑗 < 1 for 𝑗 ∈ {1, . . . ,𝑚}, 0 <

1

𝑝(∞) + 𝜆∞ +

𝑚∑
𝑗=1

𝜆𝑗 < 1. (1.3)

(b) (Kokilashvili, Paatashvili, Samko). The Cauchy singular integral operator 𝑆
is bounded on 𝐿𝑝(⋅)(ℝ, 𝑤) if and only if (1.3) is fulfilled.

Further, the sufficiency portion of this result was extended in [13, 14] to
radial oscillating weights of the form

∏𝑚
𝑗=1 𝜔𝑗(∣𝑥−𝑥𝑗 ∣), where 𝜔𝑗(𝑡) are continuous

functions for 𝑡 > 0 that may oscillate near zero and whose Matuszewska–Orlicz
indices can be different. Notice that the Matuszewska–Orlicz indices of 𝜔𝑗(𝑡) = 𝑡𝜆𝑗

are both equal to 𝜆𝑗 .
Very recently, Cruz-Uribe, Diening, and Hästö [6, Theorem 1.3] generalized

part (a) of Theorem 1.1 to the case of general weights. To formulate their result, we
will introduce the following generalization of the classical Muckenhoupt condition
(written in the symmetric form). We say that a weight 𝑤 : ℝ→ [0,∞] belongs to
the class 𝒜𝑝(⋅)(ℝ) if

sup
−∞<𝑎<𝑏<∞

1

𝑏− 𝑎
∥𝑤𝜒(𝑎,𝑏)∥𝑝(⋅)∥𝑤−1𝜒(𝑎,𝑏)∥𝑝′(⋅) <∞.

This condition goes back to Berezhnoi [3] (in the more general setting of Banach
function spaces), it was studied by the first author [9] (in the case of Banach
function spaces defined on Carleson curves) and Kopaliani [16].
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Theorem 1.2 (Cruz-Uribe, Diening, Hästö). Let 𝑝 ∈ 𝒫 log(ℝ) satisfy (1.1) and
𝑤 : ℝ→ [0,∞] be a weight. The Hardy–Littlewood maximal operator 𝑀 is bounded
on the weighted variable Lebesgue space 𝐿𝑝(⋅)(ℝ, 𝑤) if and only if 𝑤 ∈ 𝒜𝑝(⋅)(ℝ).

Another proof of Theorem 1.2 was given by Cruz-Uribe, Fiorenza and Neuge-
bauer [5, Theorem 1.5].

The aim of this paper is to generalize part (b) of Theorem 1.1 to the case of
general weights. We will prove the following.

Theorem 1.3 (Main result). Let 𝑝 ∈ 𝒫 log(ℝ) satisfy (1.1) and 𝑤 : ℝ → [0,∞]
be a weight. The Cauchy singular integral operator 𝑆 is bounded on the weighted
variable Lebesgue space 𝐿𝑝(⋅)(ℝ, 𝑤) if and only if 𝑤 ∈ 𝒜𝑝(⋅)(ℝ).

From this theorem, by using standard techniques, we derive also the following.

Theorem 1.4. Let 𝑝 ∈ 𝒫 log(ℝ) satisfy (1.1) and 𝑤 ∈ 𝒜𝑝(⋅)(ℝ). Then 𝑆2 = 𝐼 on the

space 𝐿𝑝(⋅)(ℝ, 𝑤) and 𝑆∗ = 𝑆 on the space 𝐿𝑝′(⋅)(ℝ, 𝑤−1).

The paper is organized as follows. In Section 2 we collect necessary facts on
Banach function spaces 𝑋(ℝ) in the sense of Luxemburg and discuss weighted
Banach functions spaces 𝑋(ℝ, 𝑤) = {𝑓 : 𝑓𝑤 ∈ 𝑋(ℝ)}. A special attention is paid
to conditions implying that 𝑋(ℝ, 𝑤) is a Banach function space itself, to separa-
bility and reflexivity of 𝑋(ℝ, 𝑤), and to density of smooth compactly supported
functions in 𝑋(ℝ, 𝑤) and in its dual space 𝑋 ′(ℝ, 𝑤−1). In Section 3.2 we prepare
the proof of a sufficient condition for the boundedness of the operator 𝑆 and for-
mulate two key estimates by Lerner [17] and Álvarez and Pérez [1]. On the basis of
these results, in Section 3.3 we prove that if 𝑋(ℝ) is a separable Banach function
space and the Hardy–Littlewood maximal function is bounded on the weighted Ba-
nach function spaces 𝑋(ℝ, 𝑤) and 𝑋 ′(ℝ, 𝑤−1), then 𝑆 is bounded on 𝑋(ℝ, 𝑤) and
𝑆2 = 𝐼. Moreover, if 𝑋(ℝ) is reflexive, then 𝑆∗ coincides with 𝑆 on 𝑋 ′(ℝ, 𝑤−1). In
Section 3.4 we prove that if 𝑆 is bounded on the weighted Banach function spaces
𝑋(ℝ, 𝑤), then

sup
−∞<𝑎<𝑏<∞

1

𝑏− 𝑎
∥𝑤𝜒(𝑎,𝑏)∥𝑋(ℝ)∥𝑤−1𝜒(𝑎,𝑏)∥𝑋′(ℝ) <∞

where 𝑋 ′(ℝ) is the associate space for 𝑋(ℝ). Finally, in Section 3.5 we explain
that Theorems 1.3 and 1.4 follow from results of Sections 3.3–3.4 and Theorem 1.2
because 𝐿𝑝(⋅)(ℝ) is a Banach function space, which is separable and reflexive when-
ever 𝑝 satisfies (1.1).

2. Weighted Banach function spaces

2.1. Banach function spaces

The set of all Lebesgue measurable complex-valued functions on ℝ is denoted
by ℳ. Let ℳ+ be the subset of functions in ℳ whose values lie in [0,∞]. The
characteristic function of a measurable set 𝐸 ⊂ ℝ is denoted by 𝜒𝐸 and the
Lebesgue measure of 𝐸 is denoted by ∣𝐸∣.
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Definition 2.1 ([2, Chap. 1, Definition 1.1]). A mapping 𝜌 :ℳ+ → [0,∞] is called a
Banach function norm if, for all functions 𝑓, 𝑔, 𝑓𝑛 (𝑛 ∈ ℕ) inℳ+, for all constants
𝑎 ≥ 0, and for all measurable subsets 𝐸 of ℝ, the following properties hold:

(A1) 𝜌(𝑓) = 0⇔ 𝑓 = 0 a.e., 𝜌(𝑎𝑓) = 𝑎𝜌(𝑓), 𝜌(𝑓 + 𝑔) ≤ 𝜌(𝑓) + 𝜌(𝑔),

(A2) 0 ≤ 𝑔 ≤ 𝑓 a.e. ⇒ 𝜌(𝑔) ≤ 𝜌(𝑓) (the lattice property),

(A3) 0 ≤ 𝑓𝑛 ↑ 𝑓 a.e. ⇒ 𝜌(𝑓𝑛) ↑ 𝜌(𝑓) (the Fatou property),

(A4) ∣𝐸∣ <∞⇒ 𝜌(𝜒𝐸) <∞,

(A5) ∣𝐸∣ <∞⇒
∫
𝐸

𝑓(𝑥) 𝑑𝑥 ≤ 𝐶𝐸𝜌(𝑓)

with 𝐶𝐸 ∈ (0,∞) which may depend on 𝐸 and 𝜌 but is independent of 𝑓 .

When functions differing only on a set of measure zero are identified, the set
𝑋(ℝ) of all functions 𝑓 ∈ ℳ for which 𝜌(∣𝑓 ∣) < ∞ is called a Banach function
space. For each 𝑓 ∈ 𝑋(ℝ), the norm of 𝑓 is defined by

∥𝑓∥𝑋(ℝ) := 𝜌(∣𝑓 ∣).
The set 𝑋(ℝ) under the natural linear space operations and under this norm
becomes a Banach space (see [2, Chap. 1, Theorems 1.4 and 1.6]).

If 𝜌 is a Banach function norm, its associate norm 𝜌′ is defined onℳ+ by

𝜌′(𝑔) := sup
{∫

ℝ

𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 : 𝑓 ∈ℳ+, 𝜌(𝑓) ≤ 1
}

, 𝑔 ∈ ℳ+.

It is a Banach function norm itself [2, Chap. 1, Theorem 2.2]. The Banach function
space 𝑋 ′(ℝ) determined by the Banach function norm 𝜌′ is called the associate
space (Köthe dual) of 𝑋(ℝ). The associate space 𝑋 ′(ℝ) is a subspace of the dual
space [𝑋(ℝ)]∗. The construction of the associate space implies the following Hölder
inequality for Banach function spaces.

Lemma 2.2 ([2, Chap. 1, Theorem 2.4]). Let 𝑋(ℝ) be a Banach function space and
𝑋 ′(ℝ) be its associate space. If 𝑓 ∈ 𝑋(ℝ) and 𝑔 ∈ 𝑋 ′(ℝ), then 𝑓𝑔 is integrable
and

∥𝑓𝑔∥𝐿1(ℝ) ≤ ∥𝑓∥𝑋(ℝ)∥𝑔∥𝑋′(ℝ).
The next result provides a useful converse to the integrability assertion of

Lemma 2.2.

Lemma 2.3 ([2, Chap. 1, Lemma 2.6]). Let 𝑋(ℝ) be a Banach function space.
In order that a measurable function 𝑔 belong to the associate space 𝑋 ′(ℝ), it is
necessary and sufficient that 𝑓𝑔 be integrable for every 𝑓 in 𝑋(ℝ).

2.2. Weighted Banach function spaces

Let 𝑋(ℝ) be a Banach function space generated by a Banach function norm 𝜌.
We say that 𝑓 ∈ 𝑋loc(ℝ) if 𝑓𝜒𝐸 ∈ 𝑋(ℝ) for any measurable set 𝐸 ⊂ ℝ of finite
measure. A measurable function 𝑤 : ℝ → [0,∞] is referred to as a weight if
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0 < 𝑤(𝑥) < ∞ a.e. on ℝ. Define the mapping 𝜌𝑤 : ℳ+ → [0,∞] and the set
𝑋(ℝ, 𝑤) by

𝜌𝑤(𝑓) := 𝜌(𝑓𝑤) (𝑓 ∈ ℳ+), 𝑋(ℝ, 𝑤) :=
{
𝑓 ∈ℳ+ : 𝑓𝑤 ∈ 𝑋(ℝ)

}
.

Lemma 2.4. Let 𝑋(ℝ) be a Banach function space generated by a Banach function
norm 𝜌, let 𝑋 ′(ℝ) be its associate space, and let 𝑤 : ℝ→ [0,∞] be a weight.
(a) The mapping 𝜌𝑤 satisfies Axioms (A1)–(A3) in Definition 2.1 and 𝑋(ℝ, 𝑤)
is a linear normed space with respect to the norm

∥𝑓∥𝑋(ℝ,𝑤) := 𝜌𝑤(∣𝑓 ∣) = 𝜌(∣𝑓𝑤∣) = ∥𝑓𝑤∥𝑋(ℝ).

(b) If 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′
loc(ℝ), then 𝜌𝑤 is a Banach function norm and

𝑋(ℝ, 𝑤) is a Banach function space generated by 𝜌𝑤.
(c) If 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ), then 𝑋 ′(ℝ, 𝑤−1) is the associate space
for the Banach function space 𝑋(ℝ, 𝑤).

Proof. The proof is analogous to that one of [9, Lemma 2.5].

Part (a) follows from Axioms (A1)–(A3) for the Banach function norm 𝜌 and
the fact that 0 < 𝑤(𝑥) <∞ almost everywhere on ℝ.

(b) If 𝑤 ∈ 𝑋loc(ℝ), then 𝑤𝜒𝐸 ∈ 𝑋(ℝ) for every measurable set 𝐸 ⊂ ℝ of
finite measure. Therefore 𝜌𝑤(𝜒𝐸) = 𝜌(𝑤𝜒𝐸) <∞. Then 𝜌𝑤 satisfies Axiom (A4).

Since 1/𝑤 ∈ 𝑋 ′
loc(ℝ), we have 𝐶𝐸 := 𝜌′(𝜒𝐸/𝑤) < ∞ for every measurable

set 𝐸 ⊂ ℝ of finite measure. On the other hand, by Axiom (A2), for 𝑓 ∈ ℳ+ we
have 𝜌(𝑓𝑤𝜒𝐸) ≤ 𝜌(𝑓𝑤) = 𝜌𝑤(𝑓). By Hölder’s inequality for 𝜌 (Lemma 2.2), we
obtain∫

𝐸

𝑓(𝑥) 𝑑𝑥 =

∫
ℝ

𝑓(𝑥)𝑤(𝑥)𝜒𝐸 (𝑥) ⋅ 𝜒𝐸(𝑥)

𝑤(𝑥)
𝑑𝑥 ≤ 𝜌(𝑓𝑤𝜒𝐸)𝜌

′(𝜒𝐸/𝑤) ≤ 𝐶𝐸𝜌𝑤(𝑓).

Thus 𝜌𝑤 satisfies Axiom (A5), that is, 𝑋(ℝ, 𝑤) is a Banach function space. Part
(b) is proved.

(c) For 𝑔 ∈ℳ+, we have

(𝜌𝑤)
′(𝑔) = sup

{∫
ℝ

𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 : 𝑓 ∈ ℳ+, 𝜌𝑤(𝑓) ≤ 1
}

= sup

{∫
ℝ

(
𝑓(𝑥)𝑤(𝑥)

) ( 𝑔(𝑥)

𝑤(𝑥)

)
𝑑𝑥 : 𝑓 ∈ ℳ+, 𝜌(𝑓𝑤) ≤ 1

}
= sup

{∫
ℝ

ℎ(𝑥)

(
𝑔(𝑥)

𝑤(𝑥)

)
𝑑𝑥 : ℎ ∈ℳ+, 𝜌(ℎ) ≤ 1

}
= 𝜌′(𝑔/𝑤).

Hence (𝑋(ℝ, 𝑤))′ = 𝑋 ′(ℝ, 𝑤−1). □

From Lemma 2.4 and the Lorentz–Luxemburg theorem (see, e.g., [2, Chap. 1,
Theorem 2.7]) we obtain the following.
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Lemma 2.5. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ→ [0,∞] be a weight
such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ). Then

∥𝑓∥𝑋(ℝ,𝑤) = sup

{∫
ℝ

∣𝑓(𝑥)𝑔(𝑥)∣ 𝑑𝑥 : 𝑔 ∈ 𝑋 ′(ℝ, 𝑤−1), ∥𝑔∥𝑋′(ℝ,𝑤−1) ≤ 1
}

(2.1)

for all 𝑓 ∈ 𝑋(ℝ, 𝑤) and

∥𝑔∥𝑋′(ℝ,𝑤−1) = sup

{∫
ℝ

∣𝑓(𝑥)𝑔(𝑥)∣ 𝑑𝑥 : 𝑓 ∈ 𝑋(ℝ, 𝑤), ∥𝑓∥𝑋(ℝ,𝑤) ≤ 1
}

(2.2)

for all 𝑔 ∈ 𝑋 ′(ℝ, 𝑤−1).

2.3. Reflexivity of weighted Banach function spaces

A function 𝑓 in a Banach function space𝑋(ℝ) is said to have absolutely continuous
norm in 𝑋(ℝ) if ∥𝑓𝜒𝐸𝑛∥𝑋(ℝ) → 0 for every sequence {𝐸𝑛}∞𝑛=1 of measurable sets
on ℝ satisfying 𝜒𝐸𝑛 → 0 a.e. on ℝ as 𝑛→∞. If all functions 𝑓 ∈ 𝑋(ℝ) have this
property, then the space 𝑋(ℝ) itself is said to have absolutely continuous norm
(see [2, Chap. 1, Section 3]).

Lemma 2.6 ([2, Chap. 1, Lemma 3.4]). Let 𝑋(ℝ) be a Banach function space. If
𝑓 ∈ 𝑋(ℝ) has absolutely continuous norm, then to each 𝜀 > 0 there corresponds
𝛿 > 0 such that ∣𝐸∣ < 𝛿 implies ∥𝑓𝜒𝐸∥𝑋(ℝ) < 𝜀.

Lemma 2.7. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ→ [0,∞] be a weight
such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ). If 𝑋(ℝ) has absolutely continuous
norm, then 𝑋(ℝ, 𝑤) has absolutely continuous norm too.

Proof. The proof is a literal repetition of that one of [9, Proposition 2.6]. By
Lemma 2.4(b), 𝑋(ℝ, 𝑤) is a Banach function space. If 𝑓 ∈ 𝑋(ℝ, 𝑤), then 𝑓𝑤 ∈
𝑋(ℝ) has absolutely continuous norm in 𝑋(ℝ). Therefore,

∥𝑓𝜒𝐸𝑛∥𝑋(ℝ,𝑤) = ∥𝑓𝑤𝜒𝐸𝑛∥𝑋(ℝ) → 0

for every sequence {𝐸𝑛}∞𝑛=1 of measurable sets on ℝ satisfying 𝜒𝐸𝑛 → 0 a.e. on ℝ
as 𝑛→∞. Thus, 𝑓 ∈ 𝑋(ℝ, 𝑤) has absolutely continuous norm in 𝑋(ℝ, 𝑤). □

From Lemma 2.4 and [2, Chap. 1, Corollaries 4.3, 4.4] we obtain the following.

Lemma 2.8. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ→ [0,∞] be a weight
such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ).

(a) The Banach space dual [𝑋(ℝ, 𝑤)]∗ of the weighted Banach function space
𝑋(ℝ, 𝑤) is isometrically isomorphic to the associate space 𝑋 ′(ℝ, 𝑤−1) if and
only if 𝑋(ℝ, 𝑤) has absolutely continuous norm. If this is the case, then the
general form of a linear functional on 𝑋(ℝ, 𝑤) is given by

𝐺(𝑓) :=

∫
ℝ

𝑓(𝑥)𝑔(𝑥) 𝑑𝑥 for 𝑔 ∈ 𝑋 ′(ℝ, 𝑤−1)

and ∥𝐺∥[𝑋(ℝ,𝑤)]∗ = ∥𝑔∥𝑋′(ℝ,𝑤−1).
(b) The weighted Banach function space 𝑋(ℝ, 𝑤) is reflexive if and only if both

𝑋(ℝ, 𝑤) and 𝑋 ′(ℝ, 𝑤−1) have absolutely continuous norm.
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Corollary 2.9. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ→ [0,∞] be a weight
such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ). If 𝑋(ℝ) is reflexive, then 𝑋(ℝ, 𝑤) is
reflexive.

Proof. The proof is a literal repetition of that one of [9, Corollary 2.8]. If 𝑋(ℝ) is
reflexive, then, by [2, Chap. 1, Corollary 4.4], both𝑋(ℝ) and𝑋 ′(ℝ) have absolutely
continuous norm. In that case, due to Lemma 2.7, both 𝑋(ℝ, 𝑤) and 𝑋 ′(ℝ, 𝑤−1)
have absolutely continuous norm. By Lemma 2.8(b), 𝑋(ℝ, 𝑤) is reflexive. □

2.4. Density of smooth compactly supported functions

For a subset 𝑌 of 𝐿∞(ℝ), let 𝑌0 denote the set of all compactly supported functions
in 𝑌 .

Lemma 2.10. Let 𝑋(ℝ) be a Banach function space.

(a) 𝐿∞0 (ℝ) ⊂ 𝑋(ℝ).
(b) If 𝑋(ℝ) has absolutely continuous norm, then 𝐿∞0 (ℝ), 𝐶0(ℝ), and 𝐶∞0 (ℝ)

are dense in 𝑋(ℝ).

Proof. Part (a) follows from the definition of a Banach function space.
(b) From [2, Chap. 1, Proposition 3.10 and Theorem 3.11] it follows that

𝐿∞0 (ℝ) is dense in 𝑋(ℝ).
Let us show that each function 𝑢 ∈ 𝐿∞0 (ℝ) can be approximated by a function

from 𝐶0(ℝ) in the norm of 𝑋(ℝ). We have supp𝑢 ⊂ 𝑄 and ∣𝑢(𝑥)∣ ≤ 𝑎 for almost
all 𝑥 ∈ ℝ, where 𝑄 is some finite closed segment and 𝑎 > 0. By Axiom (A4),
𝜒𝑄 ∈ 𝑋(ℝ) and 𝜒𝑄 has absolutely continuous norm by the hypothesis. From
Lemma 2.6 it follows that for every 𝜀 > 0 there is a 𝛿 > 0 such that ∣𝐸∣ < 𝛿
implies that ∥𝜒𝑄𝜒𝐸∥𝑋(ℝ) < 𝜀. By Luzin’s theorem, for such a 𝛿 > 0 there is a
continuous function 𝑣 supported in 𝑄 such that ∣𝑣(𝑥)∣ ≤ 𝑎 and the measure of the

set �̃� := {𝑥 ∈ 𝑄 : 𝑢(𝑥) ∕= 𝑣(𝑥)} is less than 𝛿. Then

∣𝑢(𝑥)− 𝑣(𝑥)∣ ≤ 2𝑎𝜒
˜𝑄(𝑥) (𝑥 ∈ ℝ).

Therefore, by Axiom (A2),

∥𝑢− 𝑣∥𝑋(ℝ) ≤ 2𝑎∥𝜒𝑄𝜒
˜𝑄∥𝑋(ℝ) < 2𝑎𝜀.

Hence, each function 𝑢 ∈ 𝐿∞0 (ℝ) can be approximated by a function from 𝐶0(ℝ)
in the norm of 𝑋(ℝ). Thus, 𝐶0(ℝ) is dense in 𝑋(ℝ).

Now let us prove that each function 𝑣 ∈ 𝐶0(ℝ) can be approximated by a
function from 𝐶∞0 (ℝ) in the norm of 𝑋(ℝ). Let 𝑎 ∈ 𝐶∞0 (ℝ) and

∫
ℝ
𝑎(𝑥)𝑑𝑥 = 1.

Consider

𝑣𝑡(𝑥) =
1

𝑡

∫
ℝ

𝑎
(𝑦

𝑡

)
𝑣(𝑥 − 𝑦) 𝑑𝑦 (𝑡 > 0).

It is easy to see that 𝑣𝑡 ∈ 𝐶∞0 (ℝ). Fix an interval 𝑄 containing the supports of 𝑣
and 𝑣𝑡. Then for every 𝜀 > 0 there is a 𝑡 > 0 such that ∣𝑣𝑡(𝑥) − 𝑣(𝑥)∣ < 𝜀 for all
𝑥 ∈ 𝑄. Hence,

∥𝑣𝑡 − 𝑣∥𝑋(ℝ) = ∥(𝑣𝑡 − 𝑣)𝜒𝑄∥𝑋(ℝ) < 𝜀∥𝜒𝑄∥𝑋(ℝ),
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that is, 𝑣 ∈ 𝐶0(ℝ) can be approximated by a function from 𝐶∞0 (ℝ) in the norm of
𝑋(ℝ). Thus, 𝐶∞0 (ℝ) is dense in 𝑋(ℝ). □

From [2, Chap. 1, Corollary 5.6] one can extract the following.

Lemma 2.11. A Banach function space 𝑋(ℝ) is separable if and only if it has
absolutely continuous norm.

Gathering the results mentioned above, we arrive at the next result.

Lemma 2.12. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ→ [0,∞] be a weight
such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ).

(a) If 𝑋(ℝ) is separable, then 𝐿∞0 (ℝ), 𝐶0(ℝ), and 𝐶∞0 (ℝ) are dense in the
weighted Banach function space 𝑋(ℝ, 𝑤).

(b) If 𝑋(ℝ) is reflexive, then 𝐿∞0 (ℝ), 𝐶0(ℝ), and 𝐶∞0 (ℝ) are dense in the
weighted Banach function spaces 𝑋(ℝ, 𝑤) and 𝑋 ′(ℝ, 𝑤−1).

Proof. (a) If 𝑋(ℝ) is separable, then by Lemma 2.11, 𝑋(ℝ) has absolutely con-
tinuous norm. Therefore 𝑋(ℝ, 𝑤) has absolutely continuous norm too, in view of
Lemma 2.7. Hence, from Lemma 2.10(b) we derive that 𝐿∞0 (ℝ), 𝐶0(ℝ), and 𝐶∞0 (ℝ)
are dense in 𝑋(ℝ, 𝑤). Part (a) is proved.

(b) If 𝑋(ℝ) is reflexive, then by [2, Chap. 1, Corollary 4.4], both 𝑋(ℝ) and
𝑋 ′(ℝ) have absolutely continuous norm. Hence both 𝑋(ℝ, 𝑤) and𝑋 ′(ℝ, 𝑤−1) have
absolutely continuous norm in view of Lemma 2.7. Thus, from Lemma 2.10(b) we
get that 𝐿∞0 (ℝ), 𝐶0(ℝ), and 𝐶∞0 (ℝ) are dense in 𝑋(ℝ, 𝑤) and in 𝑋 ′(ℝ, 𝑤−1). □

3. Boundedness of the Cauchy singular integral operator on
weighted Banach function spaces

3.1. Well-known properties of the Cauchy singular integral operator

The following results are proved in many standard texts on Harmonic Analysis,
see, e.g., [2, Chap. 3, Theorem 4.9(b)] or [7, pp. 51–52].

Theorem 3.1 (M. Riesz). The Cauchy singular integral operator 𝑆 is bounded on
𝐿𝑝(ℝ) for every 𝑝 ∈ (1,∞).

Theorem 3.2. If 𝑓, 𝑔 ∈ 𝐿2(ℝ), then

(𝑆2𝑓)(𝑥) = 𝑓(𝑥) (𝑥 ∈ ℝ), (3.1)∫
ℝ

(𝑆𝑓)(𝑥)𝑔(𝑥) 𝑑𝑥 =

∫
ℝ

𝑓(𝑥)(𝑆𝑔)(𝑥) 𝑑𝑥. (3.2)
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3.2. Pointwise estimates for sharp maximal functions

For 𝛿 > 0 and 𝑓 ∈ 𝐿𝛿
loc(ℝ), set

𝑓#𝛿 (𝑥) := sup
𝑄∋𝑥

inf
𝑐∈ℝ

(
1

∣𝑄∣
∫
𝑄

∣𝑓(𝑦)− 𝑐∣𝛿𝑑𝑦
)1/𝛿

.

The non-increasing rearrangement (see, e.g., [2, Chap. 2, Section 1]) of a measur-
able function 𝑓 on ℝ is defined by

𝑓∗(𝑡) := inf
{
𝜆 > 0 : ∣{𝑥 ∈ ℝ : ∣𝑓(𝑥)∣ > 𝜆}∣ ≤ 𝑡

}
(0 < 𝑡 <∞).

For a fixed 𝜆 ∈ (0, 1) and a given measurable function 𝑓 on ℝ, consider the local
sharp maximal function 𝑀#

𝜆 𝑓 defined by

𝑀#
𝜆 𝑓(𝑥) := sup

𝑄∋𝑥
inf
𝑐∈ℝ

(
(𝑓 − 𝑐)𝜒𝑄

)∗
(𝜆∣𝑄∣) .

In all above definitions the suprema are taken over all intervals𝑄 ⊂ ℝ containing 𝑥.
The following result was proved by Lerner [17, Theorem 1] for the case of ℝ𝑛.

Theorem 3.3 (Lerner). For a function 𝑔 ∈ 𝐿1loc(ℝ) and a measurable function 𝜑
satisfying

∣{𝑥 ∈ ℝ : ∣𝜑(𝑥)∣ > 𝛼}∣ <∞ for all 𝛼 > 0, (3.3)

one has ∫
ℝ

∣𝜑(𝑥)𝑔(𝑥)∣ 𝑑𝑥 ≤ 𝐶𝐿

∫
ℝ

𝑀#
𝜆 𝜑(𝑥)𝑀𝑔(𝑥) 𝑑𝑥,

where 𝐶𝐿 > 0 and 𝜆 ∈ (0, 1) are some absolute constants.

The sharp maximal functions can be related as follows.

Lemma 3.4 ([10, Proposition 2.3]). If 𝛿 > 0, 𝜆 ∈ (0, 1), and 𝑓 ∈ 𝐿𝛿
loc(ℝ), then

𝑀#
𝜆 𝑓(𝑥) ≤ (1/𝜆)1/𝛿𝑓#𝛿 (𝑥) (𝑥 ∈ ℝ).

The following estimate was proved in [1, Theorem 2.1] for the case of Calde-
rón–Zygmund singular integral operators with standard kernels in the sense of
Coifman and Meyer on ℝ𝑛. It is well known that the Cauchy kernel is an archetyp-
ical example of a standard kernel (see, e.g., [7, p. 99]).

Theorem 3.5 (Álvarez–Pérez). If 0 < 𝛿 < 1, then for every 𝑓 ∈ 𝐶∞0 (ℝ),

(𝑆𝑓)#𝛿 (𝑥) ≤ 𝐶𝛿𝑀𝑓(𝑥) (𝑥 ∈ ℝ)

where 𝐶𝛿 > 0 is some constant depending only on 𝛿.
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3.3. Sufficient condition

The set of all bounded sublinear operators on a Banach function space 𝑌 (ℝ) will
be denoted by ℬ̃(𝑌 (ℝ)) and its subset of all bounded linear operators will be
denoted by ℬ(𝑌 (ℝ)).
Theorem 3.6. Let 𝑋(ℝ) be a separable Banach function space and 𝑤 : ℝ→ [0,∞]
be a weight such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ). Suppose the Hardy–
Littlewood maximal operator 𝑀 is bounded on 𝑋(ℝ, 𝑤) and on 𝑋 ′(ℝ, 𝑤−1). As-
sume that 0 < 𝛿 < 1 and 𝑇 is an operator such that

(a) 𝑇 is bounded on some 𝐿𝑝(ℝ) with 𝑝 ∈ (1,∞);
(b) for each 𝑓 ∈ 𝐶∞0 (ℝ),

(𝑇𝑓)#𝛿 (𝑥) ≤ 𝐶𝛿𝑀𝑓(𝑥) (𝑥 ∈ ℝ)

where 𝐶𝛿 is a positive constant depending only on 𝛿.

Then 𝑇 ∈ ℬ(𝑋(ℝ, 𝑤)) and

∥𝑇 ∥ℬ(𝑋(ℝ,𝑤)) ≤ (1/𝜆)𝛿𝐶𝐿∥𝑀∥
˜ℬ(𝑋(ℝ,𝑤))∥𝑀∥

˜ℬ(𝑋′(ℝ,𝑤−1))𝐶𝛿, (3.4)

where 𝜆 ∈ (0, 1) and 𝐶𝐿 > 0 are the constants from Theorem 3.3.

Proof. The idea of the proof is borrowed from [10, Theorem 2.7]. By Lemma 2.4,
𝑋(ℝ, 𝑤) is a Banach function space whose associate space is 𝑋 ′(ℝ, 𝑤−1). Let
𝑓 ∈ 𝐶∞0 (ℝ) and 𝑔 ∈ 𝑋 ′(ℝ, 𝑤−1) ⊂ 𝐿1loc(ℝ). From the boundedness of 𝑇 on 𝐿𝑝(ℝ)
and the Chebyshev inequality it follows that

∣{𝑥 ∈ ℝ : ∣(𝑇𝑓)(𝑥)∣ > 𝛼}∣ ≤ 1

𝛼𝑝

∫
ℝ

∣(𝑇𝑓)∣𝑝 𝑑𝑥 ≤
(∥𝑇 ∥ℬ(𝐿𝑝(ℝ))

𝛼
∥𝑓∥𝐿𝑝(ℝ)

)𝑝

for all 𝛼 > 0. Hence 𝑇𝑓 satisfies (3.3). From Theorem 3.3 we get that there exist
constants 𝜆 ∈ (0, 1) and 𝐶𝐿 > 0 independent of 𝑓 and 𝑔 such that∫

ℝ

∣(𝑇𝑓)(𝑥)𝑔(𝑥)∣ 𝑑𝑥 ≤ 𝐶𝐿

∫
ℝ

𝑀#
𝜆 (𝑇𝑓)(𝑥)𝑀𝑔(𝑥) 𝑑𝑥. (3.5)

Since 𝑇 is bounded on some standard Lebesgue space 𝐿𝑝(ℝ) for 1 < 𝑝 < ∞ and
𝐿𝑠(𝐽) ⊂ 𝐿𝑟(𝐽) whenever 0 < 𝑟 < 𝑠 < ∞ and 𝐽 is a finite interval, we see that
𝑇𝑓 ∈ 𝐿𝛿

loc(ℝ) for each 𝛿 ∈ (0, 𝑝]. From Lemma 3.4 and hypothesis (b) it follows
that

𝑀#
𝜆 (𝑇𝑓)(𝑥) ≤ (1/𝜆)1/𝛿(𝑇𝑓)#𝛿 (𝑥) ≤ (1/𝜆)1/𝛿𝐶𝛿𝑀𝑓(𝑥) (𝑥 ∈ ℝ) (3.6)

for some 𝛿 ∈ (0, 1). Combining (3.5) and (3.6) with Hölder’s inequality (see
Lemma 2.2), we obtain∫

ℝ

∣(𝑇𝑓)(𝑥)𝑔(𝑥)∣ 𝑑𝑥 ≤ 𝐶1

∫
ℝ

𝑀𝑓(𝑥)𝑀𝑔(𝑥) 𝑑𝑥

≤ 𝐶1∥𝑀𝑓∥𝑋(ℝ,𝑤)∥𝑀𝑔∥𝑋′(ℝ,𝑤−1), (3.7)
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where 𝐶1 := (1/𝜆)
1/𝛿𝐶𝛿𝐶𝐿 > 0 is independent of 𝑓 ∈ 𝐶∞0 (ℝ) and 𝑔 ∈ 𝑋 ′(ℝ, 𝑤−1).

Taking into account that𝑀 is bounded on 𝑋(ℝ, 𝑤) and on 𝑋 ′(ℝ, 𝑤−1), from (3.7)
we get ∫

ℝ

∣(𝑇𝑓)(𝑥)𝑔(𝑥)∣ 𝑑𝑥 ≤ 𝐶2∥𝑓∥𝑋(ℝ,𝑤)∥𝑔∥𝑋′(ℝ,𝑤−1),

where 𝐶2 := 𝐶1∥𝑀∥
˜ℬ(𝑋(ℝ,𝑤))∥𝑀∥

˜ℬ(𝑋′(ℝ,𝑤−1)). From this inequality and (2.1) we

obtain

∥𝑇𝑓∥𝑋(ℝ,𝑤) = sup

{∫
ℝ

∣(𝑇𝑓)(𝑥)𝑔(𝑥)∣ 𝑑𝑥 : 𝑔 ∈ 𝑋 ′(ℝ, 𝑤−1), ∥𝑔∥𝑋′(ℝ,𝑤−1) ≤ 1
}

≤ 𝐶2∥𝑓∥𝑋(ℝ,𝑤)

for all 𝑓 ∈ 𝐶∞0 (ℝ). Taking into account that 𝐶
∞
0 (ℝ) is dense in 𝑋(ℝ, 𝑤) in view of

Lemma 2.12(a), from the latter inequality it follows that 𝑇 is bounded on 𝑋(ℝ, 𝑤)
and (3.4) holds. □

Remark 3.7. The proof of this result without changes extends to the case of ℝ𝑛.

Theorem 3.8. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ → [0,∞] be a
weight such that 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′

loc(ℝ). Suppose the Hardy–Littlewood
maximal operator 𝑀 is bounded on 𝑋(ℝ, 𝑤) and on 𝑋 ′(ℝ, 𝑤−1).
(a) If the space 𝑋(ℝ) is separable, then the Cauchy singular integral operator 𝑆
is bounded on the space 𝑋(ℝ, 𝑤) and 𝑆2 = 𝐼.

(b) If the space 𝑋(ℝ) is reflexive, then the Cauchy singular integral operator 𝑆 is
bounded on the spaces 𝑋(ℝ, 𝑤) and 𝑋 ′(ℝ, 𝑤−1) and its adjoint 𝑆∗ coincides
with 𝑆 on the space 𝑋 ′(ℝ, 𝑤−1).

Proof. From Theorems 3.1 and 3.5 it follows that all hypotheses of Theorem 3.6
are fulfilled. Hence, the operator 𝑆 is bounded on 𝑋(ℝ, 𝑤).

Let now 𝜑 ∈ 𝑋(ℝ, 𝑤). Then there exists a sequence 𝑓𝑛 ∈ 𝐿∞0 (ℝ) such that
𝑓𝑛 → 𝜑 in 𝑋(ℝ, 𝑤) as 𝑛 → ∞. From (3.1) we get 𝑆2𝑓𝑛 = 𝑓𝑛 because 𝐿∞0 (ℝ) ⊂
𝐿2(ℝ). Hence

∥𝑆2𝜑− 𝜑∥𝑋(ℝ,𝑤) ≤ ∥𝑆2𝜑− 𝑓𝑛∥𝑋(ℝ,𝑤) + ∥𝑓𝑛 − 𝜑∥𝑋(ℝ,𝑤)

= ∥𝑆2(𝜑− 𝑓𝑛)∥𝑋(ℝ,𝑤) + ∥𝜑− 𝑓𝑛∥𝑋(ℝ,𝑤)

≤ (∥𝑆2∥ℬ(𝑋(ℝ,𝑤)) + 1)∥𝜑− 𝑓𝑛∥𝑋(ℝ,𝑤) → 0

as 𝑛→∞. Thus 𝑆2𝜑 = 𝜑. Part (a) is proved.

(b) From (3.2) it follows that∫
ℝ

(𝑆𝑓)(𝑥)𝑔(𝑥) 𝑑𝑥 =

∫
ℝ

𝑓(𝑥)(𝑆𝑔)(𝑥) 𝑑𝑥.

for all 𝑓, 𝑔 ∈ 𝐿∞0 (ℝ). From this equality and Lemmas 2.8 and 2.12(b) it follows
that 𝑆 is a self-adjoint and densely defined operator on 𝑋(ℝ, 𝑤) and 𝑋 ′(ℝ, 𝑤−1).
By the standard argument (see [11, Chap. III, Section 5.5]), one can show that
𝑆 = 𝑆∗ ∈ ℬ(𝑋 ′(ℝ, 𝑤−1)) because 𝑆 ∈ ℬ(𝑋(ℝ, 𝑤)) by part (a). □
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3.4. Necessary condition

Let 𝑋(ℝ) be a Banach function space and 𝑋 ′(ℝ) be its associate space. We say
that a weight 𝑤 : ℝ→ [0,∞] belongs to the class 𝐴𝑋(ℝ) if

sup
−∞<𝑎<𝑏<∞

1

𝑏− 𝑎
∥𝑤𝜒(𝑎,𝑏)∥𝑋(ℝ)∥𝑤−1𝜒(𝑎,𝑏)∥𝑋′(ℝ) <∞.

Theorem 3.9. Let 𝑋(ℝ) be a Banach function space and 𝑤 : ℝ→ [0,∞] be a weight.
If the operator 𝑆 is bounded on the space 𝑋(ℝ, 𝑤), then

(a) 𝑤 ∈ 𝑋loc(ℝ) and 1/𝑤 ∈ 𝑋 ′
loc(ℝ);

(b) 𝑋(ℝ, 𝑤) is a Banach function space;
(c) 𝑤 ∈ 𝐴𝑋(ℝ).

Proof. (a) The idea of the proof is borrowed from [8, Lemma 3.3]. Let 𝐸 ⊂ ℝ be a
measurable set of finite measure. Then there exist 𝑎, 𝑏 ∈ ℝ such that 𝐸 ⊂ (𝑎, 𝑏) =:
𝐽 . It is clear that

𝑤(𝑥)𝜒𝐸(𝑥) ≤ 𝑤(𝑥)𝜒𝐽 (𝑥), 𝜒𝐸(𝑥)/𝑤(𝑥) ≤ 𝜒𝐽(𝑥)/𝑤(𝑥)

for almost all 𝑥 ∈ ℝ. Then by Axiom (A2),

∥𝑤𝜒𝐸∥𝑋(ℝ) ≤ ∥𝑤𝜒𝐽∥𝑋(ℝ), ∥𝜒𝐸/𝑤∥𝑋′(ℝ) ≤ ∥𝜒𝐽/𝑤∥𝑋′(ℝ).
Thus, it is sufficient to prove that 𝑤𝜒𝐽 ∈ 𝑋(ℝ) and 𝜒𝐽/𝑤 ∈ 𝑋 ′(ℝ).

Obviously, the operator (𝑉 𝑓)(𝑥) = 𝜒𝐽(𝑥)𝑥𝑓(𝑥) is bounded on 𝑋(ℝ, 𝑤) and(
(𝑆𝑉 − 𝑉 𝑆)𝑓

)
(𝑥) =

1

𝜋𝑖

∫
𝐽

𝑓(𝑦) 𝑑𝑦

for almost all 𝑥 ∈ ℝ. Since the operator 𝑆𝑉 − 𝑉 𝑆 is bounded on 𝑋(ℝ, 𝑤), there
exists a constant 𝐶1 > 0 such that∥∥∥∥ 1𝜋𝑖

∫
𝐽

𝑓(𝑦)𝑑𝑦

∥∥∥∥
𝑋(ℝ,𝑤)

≤ 𝐶1∥𝑓∥𝑋(ℝ,𝑤) for all 𝑓 ∈ 𝑋(ℝ, 𝑤). (3.8)

On the other hand,∥∥∥∥ 1𝜋𝑖
∫
𝐽

𝑓(𝑦)𝑑𝑦

∥∥∥∥
𝑋(ℝ,𝑤)

=
1

𝜋

∣∣∣∣∫
𝐽

𝑓(𝑦)𝑑𝑦

∣∣∣∣ ∥𝑤𝜒𝐽∥𝑋(ℝ). (3.9)

Since 𝑤(𝑥) > 0 a.e. on ℝ, we have ∥𝑤𝜒𝐽∥𝑋(ℝ) > 0. Hence, from (3.8)–(3.9) it
follows that ∣∣∣∣∫

𝐽

𝑓(𝑦)𝑑𝑦

∣∣∣∣ ≤ 𝐶1𝜋

∥𝑤𝜒𝐽∥𝑋(ℝ)
∥𝑓∥𝑋(ℝ,𝑤).

Therefore, ∣∣∣∣∫
ℝ

𝑓(𝑦)𝑤(𝑦) ⋅ 𝜒𝐽(𝑦)

𝑤(𝑦)
𝑑𝑦

∣∣∣∣ ≤ 𝐶1𝜋

∥𝑤𝜒𝐽∥𝑋(ℝ)
∥𝑓𝑤∥𝑋(ℝ)

for all measurable functions 𝑓 such that 𝑓𝑤 ∈ 𝑋(ℝ). By Lemma 2.3, we have
𝜒𝐽/𝑤 ∈ 𝑋 ′(ℝ).
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Let us show that there exists a function 𝑔0 ∈ 𝑋(ℝ) such that

𝐶2 :=
1

𝜋

∣∣∣∣∫
𝐽

𝑔0(𝑦)

𝑤(𝑦)
𝑑𝑦

∣∣∣∣ > 0. (3.10)

Assume the contrary. Then, taking into account Lemma 2.10(a), we obtain∫
𝐽

𝑔(𝑦)

𝑤(𝑦)
𝑑𝑦 = 0 (3.11)

for all 𝑔 continuous on 𝐽 . By Axiom (A5), (1/𝑤)∣𝐽 ∈ 𝐿1(𝐽). Without loss of
generality, assume that ∣𝐽 ∣ = 2𝜋. Let 𝜂 : [0, 2𝜋] → 𝐽 be a homeomorphism such
that ∣𝜂′(𝑥)∣ = 1 for almost all 𝑥 ∈ [0, 2𝜋]. From (3.11) we get∫ 2𝜋

0

𝜑(𝑥)

𝑤(𝜂(𝑥))
𝑑𝑥 = 0 for all 𝜑 ∈ 𝐶[0, 2𝜋]. (3.12)

Taking 𝜑(𝑥) = 𝑒𝑖𝑛𝑥 with 𝑛 ∈ ℤ, we see from (3.12) that all Fourier coefficients
of 1/(𝑤 ∘ 𝜂) vanish. This implies that 1/𝑤(𝜂(𝑥)) = 0 for almost all 𝑥 ∈ [0, 2𝜋].
Consequently, 𝑤(𝑦) =∞ almost everywhere on 𝐽 . This contradicts the assumption
that 𝑤 is a weight. Thus, 𝐶2 > 0.

Clearly, 𝑓0 = 𝑔0/𝑤 ∈ 𝑋(Γ, 𝑤). Then from (3.8)–(3.10) it follows that

∥𝑤𝜒𝐽∥𝑋(ℝ) ≤ 𝐶1𝜋

𝐶2
∥𝑓0∥𝑋(ℝ,𝑤),

that is, 𝑤𝜒𝐽 ∈ 𝑋(ℝ). Part (a) is proved.

Part (b) follows from part (a) and Lemma 2.4(b).

(c) The idea of the proof is borrowed from [8, Theorem 3.2]. By part(b),
𝑋(ℝ, 𝑤) is a Banach function space.

Let 𝑄 be an arbitrary interval and 𝑄1, 𝑄2 be its two halves. Take a function
𝑓 ≥ 0 supported in 𝑄1. Then for 𝜏 ∈ 𝑄1 and 𝑥 ∈ 𝑄2 we have ∣𝜏 − 𝑥∣ ≤ ∣𝑄∣.
Therefore,

∣(𝑆𝑓)(𝑥)∣ = 1

𝜋

∣∣∣∣∫
𝑄1

𝑓(𝜏)

𝜏 − 𝑥
𝑑𝜏

∣∣∣∣ = 1

𝜋

∫
𝑄1

𝑓(𝜏)

∣𝜏 − 𝑥∣𝑑𝜏

≥ 1

𝜋∣𝑄∣
∫
𝑄1

𝑓(𝜏) 𝑑𝜏 =
1

2𝜋∣𝑄1∣
∫
𝑄1

𝑓(𝜏) 𝑑𝜏.

Thus,

∣(𝑆𝑓)(𝑥)∣𝜒𝑄2 (𝑥) ≥
1

2𝜋∣𝑄1∣
(∫

𝑄1

𝑓(𝜏) 𝑑𝜏

)
𝜒𝑄2(𝑥) (𝑥 ∈ ℝ).

Then, by Axioms (A1) and (A2),

∥𝑆𝑓∥𝑋(ℝ,𝑤) ≥ ∥(𝑆𝑓)𝜒𝑄2∥𝑋(ℝ,𝑤) ≥ 1

2𝜋∣𝑄1∣
(∫

𝑄1

𝑓(𝜏) 𝑑𝜏

)
∥𝜒𝑄2∥𝑋(ℝ,𝑤). (3.13)

On the other hand, since 𝑆 is bounded on 𝑋(ℝ, 𝑤), we get

∥𝑆𝑓∥𝑋(ℝ,𝑤) ≤ ∥𝑆∥ℬ(𝑋(ℝ,𝑤))∥𝑓∥𝑋(ℝ,𝑤) = ∥𝑆∥ℬ(𝑋(ℝ,𝑤))∥𝑓𝜒𝑄1∥𝑋(ℝ,𝑤). (3.14)
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Combining (3.13) and (3.14), we arrive at

1

∣𝑄1∣
(∫

𝑄1

𝑓(𝜏) 𝑑𝜏

)
∥𝑤𝜒𝑄2∥𝑋(ℝ) ≤ 2𝜋∥𝑆∥ℬ(𝑋(ℝ,𝑤))∥𝑓𝜒𝑄1∥𝑋(ℝ,𝑤). (3.15)

Taking 𝑓 = 𝜒𝑄1 , from (3.15) we get

∥𝑤𝜒𝑄2∥𝑋(ℝ) ≤ 2𝜋∥𝑆∥ℬ(𝑋(ℝ,𝑤))∥𝑤𝜒𝑄1∥𝑋(ℝ).

Analogously one can obtain

∥𝑤𝜒𝑄1∥𝑋(ℝ) ≤ 2𝜋∥𝑆∥ℬ(𝑋(ℝ,𝑤))∥𝑤𝜒𝑄2∥𝑋(ℝ). (3.16)

From (3.15) and (3.16) it follows that

1

∣𝑄1∣
(∫

𝑄1

𝑓(𝜏) 𝑑𝜏

)
∥𝑤𝜒𝑄1∥𝑋(ℝ) ≤ 𝐶∥𝑓𝜒𝑄1∥𝑋(ℝ,𝑤), (3.17)

where 𝐶 :=
(
2𝜋∥𝑆∥ℬ(𝑋(ℝ,𝑤))

)2
. Let

𝑌 :=
{
𝑔 ∈ 𝑋(ℝ, 𝑤) : ∥𝑔∥𝑋(ℝ,𝑤) ≤ 1

}
.

If 𝑔 ∈ 𝑌 , then ∣𝑔∣𝜒𝑄1 ≥ 0 is supported in 𝑄1. Then from (3.17) we obtain

∥𝑤𝜒𝑄1∥𝑋(ℝ)

∫
ℝ

∣𝑔(𝜏)∣𝜒𝑄1(𝜏) 𝑑𝜏 ≤ 𝐶∣𝑄1∣ (3.18)

for all 𝑔 ∈ 𝑌 . From (2.2) we get

∥𝑤−1𝜒𝑄1∥𝑋′(ℝ) = ∥𝜒𝑄1∥𝑋′(ℝ,𝑤−1) = sup
𝑔∈𝑌

∫
ℝ

∣𝑔(𝜏)∣𝜒𝑄1(𝜏) 𝑑𝜏. (3.19)

From (3.18) and (3.19) it follows that

∥𝑤𝜒𝑄1∥𝑋(ℝ)∥𝑤−1𝜒𝑄1∥𝑋′(ℝ) ≤ 𝐶∣𝑄1∣.
Since 𝑄1 ⊂ ℝ is an arbitrary interval, we conclude that 𝑤 ∈ 𝐴𝑋(ℝ). □

3.5. The case of weighted variable Lebesgue spaces

We start this subsection with the following well-known fact.

Theorem 3.10 ([6, Theorems 3.2.13 and 3.4.7]). Let 𝑝 : ℝ→ [1,∞] be a measurable
a.e. finite function satisfying (1.1). Then 𝐿𝑝(⋅)(ℝ) is a separable and reflexive
Banach function space whose associate space is isomorphic to 𝐿𝑝′(⋅)(ℝ).

Now we are in a position to give a proof of Theorem 1.3.

Proof of Theorem 1.3. Necessity. Theorem 3.10 immediately implies that if 𝑝 sat-
isfies (1.1), then 𝐿𝑝(⋅)(ℝ) is a Banach function space and

𝒜𝑝(⋅)(ℝ) = 𝐴𝐿𝑝(⋅)(ℝ).

From Theorem 3.9 it follows that if 𝑆 is bounded on the space 𝐿𝑝(⋅)(ℝ, 𝑤), then
𝑤 ∈ 𝒜𝑝(⋅)(ℝ). The necessity portion is proved.

Sufficiency. From Theorem 3.10 we know that 𝐿𝑝(⋅)(ℝ) is a separable and re-
flexive Banach function space. If 𝑤 ∈ 𝒜𝑝(⋅)(ℝ), then 𝑤 ∈ 𝐿

𝑝(⋅)
loc (ℝ), 1/𝑤 ∈ 𝐿

𝑝′(⋅)
loc (ℝ),
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and 1/𝑤 ∈ 𝒜𝑝′(⋅)(ℝ). Further, it is easy to see that 𝑝 is globally log-Hölder con-
tinuous if and only if so is 𝑝′. Hence, by Theorem 1.2, the Hardy–Littlewood
maximal operator is bounded on 𝐿𝑝(⋅)(ℝ, 𝑤) and on 𝐿𝑝′(⋅)(ℝ, 𝑤−1). Applying The-
orem 3.8(a), we see that the operator 𝑆 is bounded on 𝐿𝑝(⋅)(ℝ, 𝑤). This finishes
the proof of Theorem 1.3. □

Theorem 1.4 follows immediately from Theorems 1.2, 3.8, and 3.10.

References
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Extension of Certain Distributions on Weighted
Hölder Space and the Riemann Boundary Value
Problem for Non-rectifiable Curves

Boris A. Kats

Abstract. Let Γ be a non-rectifiable curve on the complex plane ℂ. We extend
distributional derivative ∂𝐹 of a function 𝐹 , which is holomorphic in domain
ℂ ∖ Γ, up to continuous functional on the weighted Hölder space and apply
this extension for solution of the Riemann boundary value problem on the
curve Γ.
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Introduction

In the papers [1], [2], [3] the author considered the following construction.

Let function 𝐹 (𝑧) be holomorphic in domain ℂ∖Γ where Γ is a non-rectifiable
curve on the complex plane ℂ. If 𝐹 (𝑧) is locally integrable in the complex plane,
we identify it with distribution

𝐹 : 𝐶∞0 (ℂ) ∋ 𝜙 1→
∫∫

𝐷

𝐹 (𝜁)𝜙(𝜁)𝑑𝜁𝑑𝜁 ,

where, as usually, 𝐶∞0 (𝐷) stands for the space of all infinitely smooth functions
with compact support in 𝐷. Its distributional derivative ∂𝐹 can be considered as
operation of weighted integration over Γ. Then we extend this distribution on the
Hölder spaces. This extension generates certain new distributions of integration
type. Finally, the Cauchy transform of these distributions is a generalization of
the Cauchy type integral for non-rectifiable curves, and it allows us to solve the

This work was partially supported by Russian Fund for Basic Researches (grants 12-01-00636-a
and 12-01-97015-r-povolzhie-a).
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Riemann boundary value problem with boundary data from the Hölder spaces on
non-rectifiable curves.

In the present paper we extend ∂𝐹 to the weighted Hölder space and ap-
ply this extension for solution of the Riemann boundary value problem on non-
rectifiable curves in the case of coefficients with singularities.

In Sections 1 and 2 we describe the desired extension and boundary properties
of its Cauchy transform. Section 3 contains application of these results for solution
of the Riemann boundary value problem.

1. Extension of 𝝏𝑭

Let 𝐴 be a compact set on the complex plane. The Hölder space 𝐻𝜈(𝐴) consists
of all defined on 𝐴 functions 𝑓 with finite Hölder coefficient

ℎ𝜈(𝑓,𝐴) := sup{ ∣𝑓(𝑡
′)− 𝑓(𝑡′′)∣
∣𝑡′ − 𝑡′′∣𝜈 : 𝑡′, 𝑡′′ ∈ 𝐴, 𝑡′ ∕= 𝑡′′},

where 𝜈 ∈ (0, 1]. It is the Banach space with norm ∥𝑓∥𝐻𝜈(𝐴) := ∥𝑓∥𝐶(𝐴)+ℎ𝜈(𝑓,𝐴),
where ∥𝑓∥𝐶(𝐴) = sup{∣𝑓(𝜁)∣ : 𝜁 ∈ 𝐴}. Let us denote 𝐻∗

𝜈 (𝐴) :=
∪

𝜇>𝜈 𝐻𝜇(𝐴). If we

fix a sequence of exponents {𝜈𝑗} such that 1 > 𝜈1 > 𝜈2 > ⋅ ⋅ ⋅ > 𝜈𝑗 > 𝜈𝑗+1 > ⋅ ⋅ ⋅
and lim𝑗→∞ 𝜈𝑗 = 𝜈, then the semi-norms {ℎ𝜈𝑗 (⋅, 𝐴)}, 𝑗 = 1, 2, . . . and ∥𝑓∥𝐶(𝐴)
turn 𝐻∗

𝜈 (𝐴) into countably normed space. If a function 𝑤(𝑡) (weight) is defined on
𝐴, then we put

𝐻𝜈(𝐴,𝑤) := {𝑓 : 𝑤𝑓 ∈ 𝐻𝜈(𝐴)}, 𝐻∗
𝜈 (𝐴,𝑤) := {𝑓 : 𝑤𝑓 ∈ 𝐻∗

𝜈 (𝐴)}.
We equip these spaces by intrinsic norms.

We consider a non-rectifiable Jordan curve Γ ⊂ ℂ of null plane measure, and
a holomorphic in ℂ∖Γ and integrable in a neighborhood of Γ function 𝐹 such that
𝐹 (∞) = 0. Let 𝑄 ⊂ ℂ be sufficiently large dyadic square such that Γ ⊂ 𝑄.

In the present section we estimate the distribution〈
∂𝐹, 𝜙

〉
= − 〈

𝐹, ∂𝜙
〉

in the norm of space 𝐻𝜈(𝑄,𝑤), where

𝑤(𝑡) :=

𝑚∏
𝑗=1

∣𝑡− 𝑡𝑗 ∣𝑝𝑗 , 0 < 𝑝𝑗 < 1, 𝑗 = 1, . . .𝑚. (1)

We consider the Whitney decomposition (see, for instance, [4]) of the set ℂ ∖Γ. It
consists of non-overlapping dyadic squares such that dist{𝑄𝑗,Γ} ≍ diam𝑄𝑗 . Let
𝑄1, 𝑄2, . . . be squares of this family lying inside 𝑄. For 𝜙 ∈ 𝐶∞0 (𝑄) we have〈
∂𝐹, 𝜙

〉
= −

∫∫
𝐹 (𝜁)

∂𝜙

∂𝜁
𝑑𝜁𝑑𝜁 = −

∞∑
𝑗=1

∫∫
𝑄𝑗

𝐹 (𝜁)
∂𝜙

∂𝜁
𝑑𝜁𝑑𝜁 =

∞∑
𝑗=1

∫
∂𝑄𝑗

𝐹 (𝜁)𝜙(𝜁)𝑑𝜁.

Let Γ∗ :=
(∪∞

𝑗=1 ∂𝑄𝑗

)
∪ ∂𝑄, and 𝜓 := ℰ0(𝑤𝜙∣Γ∗ ), where ℰ0 is the Whitney exten-

sion operator (see, for instance, [4], Ch. VI, s. 2.2). Below we need the following
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property of this operator: if 𝐴 is compact set on the complex plane, 𝑓 ∈ 𝐻𝜈(𝐴),
and ℰ0 is the Whitney extension operator from the set 𝐴, then the extension ℰ0𝑓
is differentiable in ℂ ∖𝐴 and

∣∇ℰ0𝑓(𝑧)∣ ≤ 𝐶 dist𝜈−1(𝑧, 𝐴), (2)

where 𝐶 is a constant. The function 𝜙0 := 𝑤−1𝜓 is continuation of restriction 𝜙∣Γ∗
on the whole complex plane, and we obtain

〈
∂𝐹, 𝜙

〉
= −

∞∑
𝑗=1

∫∫
𝑄𝑗

𝐹 (𝜁)𝜓(𝜁)
∂𝑤−1

∂𝜁
𝑑𝜁𝑑𝜁 −

∞∑
𝑗=1

∫∫
𝑄𝑗

𝐹 (𝜁)𝑤−1(𝜁)
∂𝜓

∂𝜁
𝑑𝜁𝑑𝜁. (3)

Obviously,∣∣∣∣∣∣
∞∑
𝑗=1

∫∫
𝑄𝑗

𝐹 (𝜁)𝜓(𝜁)
∂𝑤−1

∂𝜁
𝑑𝜁𝑑𝜁

∣∣∣∣∣∣ ≤ ∥𝑤𝜙∥𝐶(𝑄)
∫∫

𝑄

∣∣∣∣𝐹 (𝜁)∂𝑤−1∂𝜁
𝑑𝜁𝑑𝜁

∣∣∣∣ ,
and the last integral converges.

Now we assume that 𝐹 is integrable near Γ with arbitrarily large degree, and
introduce characteristics

𝑑 := lim sup
𝜀→0

log𝑁(𝜀)

− log 𝜀 ,

where 𝑁(𝜀) is the least number of disks of radius 𝜀 necessary for covering of Γ.
This characteristics is known as upper metric dimension of the set Γ (see [5]) or
its box dimension (see [6]). If 𝑑 < 2, then Γ has null plane measure.

Obviously, 𝑤𝜙 ∈ 𝐻𝜈(𝑄) for any 𝜈. Then, as shown in [1], [2] (see also [7]) the

estimate (2) implies that ∂𝜓

∂𝜁
∈ 𝐿𝑝

𝑙𝑜𝑐(ℂ) for any

𝑝 <
2− 𝑑

1− 𝜈
,

and for 𝑝 ∈ [1, 2−𝑑
1−𝜈 ] we have∫∫

𝑄

∣∣∣∣∂𝜓∂𝜁
∣∣∣∣𝑝 ∣𝑑𝜁𝑑𝜁∣ ≤ 𝐶ℎ𝑝

𝜈(𝑤𝜙,𝑄),

where constant 𝐶 depends only on Γ and 𝜈. Consequently,∣∣∣∣∣∣
∞∑
𝑗=1

∫∫
𝑄𝑗

𝐹 (𝜁)𝑤−1(𝜁)
∂𝜓

∂𝜁
𝑑𝜁𝑑𝜁

∣∣∣∣∣∣ ≤ 𝐶1/𝑝ℎ𝜈(𝑤𝜙,𝑄)

(∫∫
𝑄

∣𝐹 (𝜁)𝑤−1(𝜁)∣𝑞 ∣𝑑𝜁𝑑𝜁 ∣
)1/𝑞

,

where 1
𝑝 +

1
𝑞 = 1. The last integral converges for

𝑝𝑗 <
2(1 + 𝜈 − 𝑑)

2− 𝑑
, 𝑗 = 1, 2, . . . ,𝑚. (4)
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As a result, we obtain from (3)

Theorem 1.1. Let Γ have upper metric dimension 𝑑 < 2, 𝐹 (𝑧) be holomorphic in
ℂ ∖ Γ and integrable with any power near Γ, 𝜈 > 𝑑 − 1 and the weight (1) satisfy
restriction (4). Then any function 𝜙 ∈ 𝐶∞0 (𝑄) satisfies the bound

∣⟨∂𝐹, 𝜙⟩∣ ≤ 𝐶∥𝜙∥𝐻𝜈(𝑄,𝑤).

Thus, under assumptions of the theorem distribution ∂𝐹 is extendable up
to continuous functional on the space 𝐻∗

𝑑−1(𝑄,𝑤). We keep notation ∂𝐹 for this

functional and define for any 𝑓 ∈ 𝐻∗
𝑑−1(𝑄,𝑤) distribution 𝑓∂𝐹 :

⟨𝑓∂𝐹, 𝜙⟩ := ⟨∂𝐹, 𝑓𝜙⟩.

2. The Cauchy transform of products 𝒇𝝏𝑭

The Cauchy transform of distribution 𝜑 with compact support 𝑆 is defined by
equality

Cau𝜑 :=
1

2𝜋𝑖

〈
𝜑,

1

𝜁 − 𝑧

〉
,

where 𝑧 ∕∈ 𝑆, and 𝜑 is applied to the Cauchy kernel 1
2𝜋𝑖(𝜁−𝑧) as to function of

variable 𝜁. The function
Φ(𝑧) := Cau 𝑓∂𝐹 (𝑧) (5)

is holomorphic in ℂ ∖ Γ.
Theorem 2.1. Let the following assumptions be valid:

∙ Γ is directed curve of upper metric dimension 𝑑 < 2;
∙ the function 𝐹 is holomorphic in ℂ∖Γ, integrable with arbitrarily large power
in a neighborhood of Γ, and has boundary values from the left 𝐹+(𝑡) and from
the right 𝐹−(𝑡) at any point 𝑡 ∈ Γ ∖𝐸, where the set 𝐸 consists of the points
𝑡1, 𝑡2, . . . , 𝑡𝑚 and end points of Γ if this curve is not closed;

∙ 𝑓 ∈ 𝐻𝜈(𝑄,𝑤), where 𝑤 is the weight (1) and 𝜈 > 𝑑
2 .

Then the function (5) has continuous boundary values Φ+(𝑡) and Φ−(𝑡) from
the left and from the right correspondingly at any point 𝑡 ∈ Γ ∖ 𝐸,

Φ+(𝑡)− Φ−(𝑡) = (𝐹+(𝑡)− 𝐹−(𝑡))𝑓(𝑡), 𝑡 ∈ Γ ∖ 𝐸, (6)

and near the points 𝑡𝑗 , 𝑗 = 1, 2, . . . ,𝑚 it satisfies the bounds

∣Φ(𝑧)∣ ≤ 𝐶∣𝑧 − 𝑡𝑗 ∣−𝑟𝑗 , 𝑗 = 1, 2, . . . ,𝑚, (7)

where exponents 𝑟𝑗 are any numbers satisfying inequalities

𝑟𝑗 > 𝑝𝑗 +
1− 𝜈

2− 𝑑
, 𝑗 = 1, 2, . . . ,𝑚. (8)

The proof of relation (6) is analogous to the proof of Theorem 2.1 in [3] (note
that for 𝜈 > 𝑑

2 the right side of (4) is lesser than 1), and the bound (7) follows
from well-known integral inequalities.



Extension of Certain Distributions 297

3. The Riemann boundary value problem on non-rectifiable curves

Let Γ be closed non-rectifiable Jordan curve directed counter-clockwise. We con-
sider the Riemann boundary value problem, i.e., the problem on evaluation of
holomorphic in ℂ ∖ Γ function Φ(𝑧) satisfying equality

Φ+(𝑡) = 𝐺(𝑡)Φ−(𝑡) + 𝑔(𝑡), 𝑡 ∈ Γ ∖ {𝑡1, 𝑡2, . . . , 𝑡𝑚}, (9)

and bounds

∣Φ(𝑧)∣ ≤ 𝐶∣𝑧 − 𝑡𝑗 ∣−𝛾 , 𝛾 = 𝛾(Φ) < 1, 𝑗 = 1, 2, . . . ,𝑚. (10)

If Γ is piecewise smooth, then solution of this problem in terms of the Cauchy
type integral is well known (see [8, 9]). In the present paper we show that the
Cauchy transforms can be used here instead of the Cauchy type integrals if the
curve is not rectifiable.

First we consider the case 𝐺 ≡ 1, 𝑔 ∈ 𝐻𝜈(Γ, 𝑤), i.e., the so-called jump
problem

Φ+(𝑡)− Φ−(𝑡) = 𝑔(𝑡), 𝑡 ∈ Γ ∖ {𝑡1, 𝑡2, . . . , 𝑡𝑚}. (11)

Let function 𝜒(𝑧) be equal to unit inside of Γ and to zero outside of it. Then
𝜒+(𝑡) − 𝜒−(𝑡) = 1 for 𝑡 ∈ Γ, and by virtue of Theorem 2.1 the Cauchy trans-

form Cau
(
𝑤−1ℰ0(𝑤𝑔)

)
∂𝜒 satisfies the boundary value condition (11). Here ℰ0(𝑤𝑔)

stands for the Whitney extension of 𝑤𝑔 from Γ into the whole complex plane. It
remains to satisfy the condition (10). If 𝜈 > 𝑑

2 , then
1−𝜈
2−𝑑 < 1

2 , and the left side of

(8) is lesser than unit for

𝑝𝑗 < 1/2, 𝑗 = 1, 2, . . . ,𝑚. (12)

Thus, under assumptions of Theorem 2.1 (with 𝑔 instead of 𝑓) and additional
condition (12) the jump problem (11) has a solution satisfying condition (10).

If Γ is non-rectifiable Jordan arc beginning at point 𝑎1 and ending at point
𝑎2, then we replace 𝜒(𝑧) by function

𝑘Γ(𝑧) =
1

2𝜋𝑖
log

𝑧 − 𝑎2
𝑧 − 𝑎1

,

where the branch of logarithm is determined by means of the cut along Γ and
condition 𝑘Γ(∞) = 0, and obtain analogous result.

Now let us return to the Riemann boundary value problem (9) on closed curve
Γ in the class of functions satisfying condition (10). We assume that 𝐺 ∈ 𝐻𝜈(Γ),
𝑔 ∈ 𝐻𝜈(Γ, 𝑤) and 𝐺(𝑡) ∕= 0 for 𝑡 ∈ Γ. Then 𝐺(𝑡) is representable in the form
𝐺(𝑡) = (𝑧 − 𝑧0)

𝜅 exp 𝑓(𝑡), 𝑓 ∈ 𝐻𝜈(Γ), where 𝑧0 is a fixed point inside Γ and 𝜅 is a
integer number (see [8], [9]). We put Θ(𝑧) = Cau (ℰ0𝑓)∂𝜒 and introduce function
𝑋(𝑧) equaling to expΘ(𝑧) inside of Γ and (𝑧 − 𝑧0)

−𝜅 expΘ(𝑧) outside of it. The
customary factorization technique reduces the Riemann boundary value problem
to the jump problem

Φ+(𝑡)

𝑋+(𝑡)
− Φ−(𝑡)

𝑋−(𝑡)
=

𝑔(𝑡)

𝑋+(𝑡)
, 𝑡 ∈ Γ ∖ {𝑡1, 𝑡2, . . . , 𝑡𝑚}. (13)



298 B.A. Kats

Its solution is given by the Cauchy transform

Φ0(𝑧) = Cau
(
𝑤−1ℰ0(𝑤𝑔)

)
∂(𝜒/𝑋)(𝑧).

As a result, we obtain

Theorem 3.1. Let the following assumptions be valid:
∙ Γ is directed closed Jordan curve of upper metric dimension 𝑑 < 2;
∙ 𝐺 ∈ 𝐻𝜈(Γ) and 𝐺(𝑡) ∕= 0 for 𝑡 ∈ Γ, where 𝜈 > 𝑑/2;
∙ 𝑔 ∈ 𝐻𝜈(𝑄,𝑤), where 𝑤 is the weight (1) satisfying condition (12).

Then:
∙ if 𝜅 ≥ 0, then the problem (9) has in the class (10) family of solutions Φ(𝑧) =

𝑋(𝑧)(Φ0(𝑧)+𝑃𝜅(𝑧)), where 𝑃𝜅(𝑧) is arbitrary polynomial of degree no larger
than 𝜅;

∙ if 𝜅 ≤ 0, then the function Φ(𝑧) = 𝑋(𝑧)Φ0(𝑧) is solution of the problem (9)
in the class (10) under conditions〈(

𝑤−1ℰ0(𝑤𝑔)
)
∂
𝜒

𝑋
, 𝑡𝑘−1

〉
= 0, 𝑘 = 1, 2, . . . ,−𝜅− 1.

The uniqueness of these solutions can be described in terms of the Hausdorff
dimension of Γ (see, for instance, [7]).
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An Analogue of the Spectral Mapping Theorem
for Condition Spectrum

G. Krishna Kumar and S.H. Kulkarni

Abstract. For 0 < 𝜖 < 1, the 𝜖-condition spectrum of an element 𝑎 in a
complex unital Banach algebra 𝐴 is defined as,

𝜎𝜖(𝑎) =

{
𝜆 ∈ ℂ : 𝜆− 𝑎 is not invertible or ∥𝜆− 𝑎∥∥(𝜆− 𝑎)−1∥ ≥ 1

𝜖

}
.

This is a generalization of the idea of spectrum introduced in [5]. This is
expected to be useful in dealing with operator equations. In this paper we
prove a mapping theorem for condition spectrum, extending an earlier result
in [5]. Let 𝑓 be an analytic function in an open set Ω containing 𝜎𝜖(𝑎). We

study the relations between the sets 𝜎𝜖(𝑓(𝑎)) and 𝑓(𝜎𝜖(𝑎)). In general these
two sets are different. We define functions 𝜙(𝜖), 𝜓(𝜖) (that take small values

for small values of 𝜖) and prove that 𝑓(𝜎𝜖(𝑎)) ⊆ 𝜎𝜙(𝜖)(𝑓(𝑎)) and 𝜎𝜖(𝑓(𝑎)) ⊆
𝑓(𝜎𝜓(𝜖)(𝑎)). The classical Spectral Mapping Theorem is shown as a special
case of this result. We give estimates for these functions in some special cases
and finally illustrate the results by numerical computations.

Mathematics Subject Classification (2010). Primary 47A60, 15A60, 46H05.

Keywords. Spectrum, analytic function, condition spectrum, Spectral Map-
ping Theorem.

1. Introduction

The Spectral Mapping Theorem is a fundamental result in functional analysis of
great importance. Let 𝐴 be a complex algebra with unit 1. We shall identify 𝜆.1
with 𝜆. We recall that the spectrum of an element 𝑎 ∈ 𝐴 is defined as

𝜎(𝑎) =
{
𝜆 ∈ ℂ : 𝜆− 𝑎 /∈ 𝐴−1

}
,

where 𝐴−1 is the set of all invertible elements of 𝐴 [9]. The Spectral Mapping
Theorem says that if 𝑓 is an analytic function on an open set containing 𝜎(𝑎),
then

𝑓(𝜎(𝑎)) = 𝜎(𝑓(𝑎)).
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There are several generalizations of the concept of the spectrum in literature
such as Ransford spectrum [8], pseudospectrum [11], 𝑛-pseudospectrum [2, 3],
condition spectrum [5] etc. It is natural to ask whether there are any results
similar to the Spectral Mapping Theorem for these sets. It is known that similar
results hold if 𝑓 is an affine function, that is, 𝑓(𝑧) = 𝛼 + 𝛽𝑧 for some 𝛼, 𝛽 ∈ ℂ.
(see Theorem 2.7 [5], Theorem 2.2 [6]). However it is not true, if 𝑓 is an arbitrary
analytic function (see Example 1). In [6], the author gives an analogue of the
Spectral Mapping Theorem for pseudospectrum in the matrix algebra. The author
carries forward this work in his recent paper [7]. The aim of this paper is to obtain
an analogue of the Spectral Mapping Theorem for condition spectra of elements
in a Banach algebra. We begin with the definition of condition spectrum.

Definition 1.1. (𝜖-condition spectrum) Let 𝐴 be a complex unital Banach algebra
with unit 1 and 0 < 𝜖 < 1. The 𝜖-condition spectrum of an element 𝑎 ∈ 𝐴, denoted
by 𝜎𝜖(𝑎), is defined as,

𝜎𝜖(𝑎) =

{
𝜆 ∈ ℂ : ∥𝜆− 𝑎∥∥(𝜆− 𝑎)−1∥ ≥ 1

𝜖

}
with the convention that ∥𝜆− 𝑎∥∥(𝜆− 𝑎)−1∥ =∞, if 𝜆− 𝑎 is not invertible. Note
that because of this convention 𝜎(𝑎) ⊆ 𝜎𝜖(𝑎).

Suppose 𝑋 is a Banach space and 𝑇 : 𝑋 → 𝑋 is a bounded linear map. Then
𝜆 /∈ 𝜎𝜖(𝑇 ) means that the operator equation 𝑇𝑥−𝜆𝑥 = 𝑦 has a stable solution for
every 𝑦 ∈ 𝑋 . This fact makes the 𝜖-condition spectrum a potentially useful tool in
the numerical solutions of operator equations. See [5] for examples and elementary
properties of the condition spectrum.

Let 𝑓 be an analytic function on some open set Ω containing 𝜎𝜖(𝑎). Since

𝜎(𝑎) ⊆ 𝜎𝜖(𝑎) ⊆ Ω, 𝑓(𝑎) can be defined by functional calculus as,

𝑓(𝑎) =
1

2𝜋𝑖

∫
Γ

𝑓(𝑧)(𝑧 − 𝑎)−1𝑑𝑧,

where Γ is any contour that surrounds 𝜎(𝑎) in Ω [9]. If 𝑓 is a polynomial, then

𝑓(𝑎) = 𝑓(𝑎)([9], Theorem 10.25). In view of this, some authors use the notation

𝑓(𝑎) in place of 𝑓(𝑎). We use the notation 𝑓 as in [9]. Our aim is to study the

relations between the sets 𝑓(𝜎𝜖(𝑎)) and 𝜎𝜖(𝑓(𝑎)). Note that, in general we can not

expect 𝑓(𝜎𝜖(𝑎)) = 𝜎𝜖(𝑓(𝑎)) (see Example 1 below). In other words, the verbatim
analogue of the Spectral Mapping Theorem is not true. Hence we define functions
𝜙, 𝜓 such that lim

𝜖→0
𝜙(𝜖) = 0 = lim

𝜖→0
𝜓(𝜖) and prove that 𝑓(𝜎𝜖(𝑎)) ⊆ 𝜎𝜙(𝜖)(𝑓(𝑎)) and

𝜎𝜖(𝑓(𝑎)) ⊆ 𝑓(𝜎𝜓(𝜖)(𝑎)). These functions 𝜙 and 𝜓 depend on 𝑓 and 𝑎. If for some 𝑓 ,

𝜙(𝜖) = 𝜖 = 𝜓(𝜖), then we would get 𝑓(𝜎𝜖(𝑎)) = 𝜎𝜖(𝑓(𝑎)) for that 𝑓 . This happens
when 𝑓 is an affine function.

The following is an outline of the paper. In Section 2, the general theorem
in the form of two set inclusions is stated and proved (Theorem 2.1). It is shown
that the set inclusions reduce to an equality if the mapping is an affine function
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(Remark 2.4). It is also shown that the usual Spectral Mapping Theorem as well
as the pseudospectral mapping theorem of Lui [6] are special cases of our result
(Remark 2.7). In Section 3, a weak version of the theorem is proved in a Banach
algebra with some additional property (Theorem 3.4). In Section 4, we present
some numerical experiments which illustrate the theory developed in the earlier
sections.

2. Main theorem

First we give an example to show that 𝑓(𝜎𝜖(𝑎)) ∕= 𝜎𝜖(𝑓(𝑎)) in general. Next we
give an analogue of the Spectral Mapping Theorem for condition spectrum for
complex analytic functions. The theorem is an easy consequence of the definition
of the functions defined in the statement of the theorem.

Example 1. Let 𝐴 = ℂ2×2, the algebra of all 2 × 2 matrices with the operator
norm ∥ ⋅ ∥2. Let

𝑃 =

[ −1 0
0 1

]
and 𝑓(𝑧) = 𝑧2, then

𝑓(𝑃 ) = 𝑃 2 =

[
1 0
0 1

]
= 𝐼

Hence 𝜎𝜖(𝑓(𝑃 )) = {1}. On the other hand 𝜎𝜖(𝑃 ) contains complex numbers dif-
ferent from -1 and 1 (see Corollary 3.4, [5]). Hence 𝑓(𝜎𝜖(𝑃 )) contains complex
numbers different from 1.

Theorem 2.1. Let 𝐴 be a complex Banach algebra with unit 1. For 𝑎 ∈ 𝐴, 0 < 𝜖 < 1
sufficiently small, Ω a bounded open subset of ℂ containing 𝜎𝜖(𝑎) and 𝑓 an analytic
function on Ω, define

𝜙(𝜖) = sup
𝜆∈𝜎𝜖(𝑎)

{
1

∥𝑓(𝜆)− 𝑓(𝑎)∥∥[𝑓(𝜆)− 𝑓(𝑎)]−1∥

}
.

If 𝑓(𝑎) is not a scalar multiple of unit, then 𝜙(𝜖) is well defined, 0 ≤ 𝜙(𝜖) ≤ 1,
lim
𝜖→0

𝜙(𝜖) = 0 and for 𝜖 satisfying 𝜙(𝜖) < 1, we have

𝑓(𝜎𝜖(𝑎)) ⊆ 𝜎𝜙(𝜖)(𝑓(𝑎)).

Further suppose 𝑓 is injective on Ω and there exists 𝜖0 with 0 < 𝜖0 < 1 such that
𝜎𝜖0(𝑓(𝑎)) ⊆ 𝑓(Ω). For 0 < 𝜖 ≤ 𝜖0 define

𝜓(𝜖) = sup
𝜇∈𝑓−1(𝜎𝜖(𝑓(𝑎)))

{
1

∥𝜇− 𝑎∥∥(𝜇− 𝑎)−1∥
}

.

Then 𝜓(𝜖) is well defined, 0 ≤ 𝜓(𝜖) ≤ 1, lim
𝜖→0

𝜓(𝜖) = 0 and for 𝜖 satisfying 𝜓(𝜖) < 1,

we have

𝜎𝜖(𝑓(𝑎)) ⊆ 𝑓(𝜎𝜓(𝜖)(𝑎)).
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Proof. First, we show that for each 𝑎 ∈ 𝐴, 𝜙(𝜖) is well defined. Define 𝑔 :ℂ→ℝ by,

𝑔(𝜆) =
1

∥𝑓(𝜆)− 𝑓(𝑎)∥∥[𝑓(𝜆)− 𝑓(𝑎)]−1∥ .

We claim that 𝑔 is continuous. Clearly 𝑔 is continuous on ℂ∖ 𝜎(𝑎). Let 𝜆 ∈ 𝜎(𝑎).
Then by the Spectral Mapping Theorem,

𝑓(𝜆) ∈ 𝑓(𝜎(𝑎)) = 𝜎(𝑓(𝑎)).

Thus by our convention 𝑔(𝜆) = 0. To complete the proof of the claim, we need to
show the following. If 𝜆𝑛 ∈ ℂ ∖ 𝜎(𝑎), 𝜆𝑛 → 𝜆 ∈ 𝜎(𝑎), then 𝑔(𝜆𝑛) → 0. Let {𝜆𝑛}
be such a sequence. Then 𝑓(𝜆𝑛)− 𝑓(𝑎)→ 𝑓(𝜆)− 𝑓(𝑎). Hence {𝑓(𝜆𝑛)− 𝑓(𝑎)} is a
bounded sequence. On the other hand, since 𝑓(𝜆) ∈ 𝜎(𝑓(𝑎)), ∥(𝑓(𝜆𝑛)−𝑓(𝑎))−1∥ →
∞ (Lemma 10.17 of [9]). Hence 𝑔(𝜆𝑛) → 0. This proves the claim. Next for 0 <
𝜖 < 1, 𝜎𝜖(𝑎) is a compact set [5] and 𝜙(𝜖) = sup{𝑔(𝜆) : 𝜆 ∈ 𝜎𝜖(𝑎)}. Hence 𝜙(𝜖) is
well defined, that is, finite.

Next we prove lim
𝜖→0

𝜙(𝜖) = 0. Let 𝜖𝑛 > 0 be a sequence converging to 0. By

compactness of 𝜎𝜖𝑛(𝑎) there exist 𝜆𝑛 ∈ 𝜎𝜖𝑛(𝑎) such that 𝑔(𝜆𝑛) = 𝜙(𝜖𝑛). Now 𝜆𝑛 is
a bounded sequence and hence has a convergent subsequence {𝜆𝑛𝑘

} converging to
𝜆. Hence {𝜆𝑛𝑘

− 𝑎} is a bounded sequence. On the other hand, ∥𝜆𝑛𝑘
− 𝑎∥∥(𝜆𝑛𝑘

−
𝑎)−1∥ ≥ 1

𝜖𝑛𝑘

for all 𝑛𝑘. Thus ∥(𝜆𝑛𝑘
−𝑎)−1∥ → ∞ as 𝑛𝑘 →∞. This imply that 𝜆−𝑎

is not invertible. Thus 𝜆 ∈ 𝜎(𝑎) and 𝑓(𝜆) ∈ 𝜎(𝑓(𝑎)). Now {𝑓(𝜆𝑛𝑘
)−𝑓(𝑎)} converges

to 𝑓(𝜆)− 𝑓(𝑎). Hence {𝑓(𝜆𝑛𝑘
)− 𝑓(𝑎)} is bounded and ∥(𝑓(𝜆𝑛𝑘

)− 𝑓(𝑎))−1∥ → ∞.
This gives 𝜙(𝜖𝑛𝑘

) = 𝑔(𝜆𝑛𝑘
)→ 0. Since 𝜙(𝜖𝑛) is monotonically increasing 𝜙(𝜖𝑛)→ 0.

Now let 𝜖 be sufficiently small so that 0 ≤ 𝜙(𝜖) < 1 and let 𝜆 ∈ 𝜎𝜖(𝑎). Then
𝑔(𝜆) ≤ 𝜙(𝜖). Hence

∥𝑓(𝜆)− 𝑓(𝑎)∥∥[𝑓(𝜆)− 𝑓(𝑎)]−1∥ = 1

𝑔(𝜆)
≥ 1

𝜙(𝜖)
.

This means that 𝑓(𝜆) ∈ 𝜎𝜙(𝜖)(𝑓(𝑎)). Thus

𝑓(𝜎𝜖(𝑎)) ⊆ 𝜎𝜙(𝜖)(𝑓(𝑎)).

Next we assume that 𝑓 is injective on Ω and there exists 𝜖0 with 0 < 𝜖0 < 1
such that 𝜎𝜖0(𝑓(𝑎)) ⊆ 𝑓(Ω) and we show that for each 𝑎 ∈ 𝐴 and 0 < 𝜖 ≤ 𝜖0, 𝜓(𝜖)
is well defined. Define ℎ : ℂ→ ℝ by,

ℎ(𝜇) =
1

∥𝜇− 𝑎∥∥(𝜇− 𝑎)−1∥
We claim that ℎ is continuous. Clearly ℎ is continuous on ℂ ∖ 𝜎(𝑎). Let

𝜇 ∈ 𝜎(𝑎), by our convention ℎ(𝜇) = 0. To complete the proof of the claim we need
to show the following. If 𝜇𝑛 ∈ ℂ ∖ 𝜎(𝑎), 𝜇𝑛 → 𝜇 ∈ 𝜎(𝑎), then ℎ(𝜇𝑛) → 0. Let
{𝜇𝑛} be such a sequence. Then 𝜇𝑛 − 𝑎 → 𝜇 − 𝑎. Hence {𝜇𝑛 − 𝑎} is a bounded
sequence. On the other hand, since 𝜇 ∈ 𝜎(𝑎), ∥(𝜇𝑛− 𝑎)−1∥ → ∞ (Lemma 10.17 of
[9]). Hence ℎ(𝜇𝑛)→ 0. This proves the claim. Since ℎ(𝜇) ≤ 1 for all 𝜇 ∈ ℂ, 𝜓(𝜖) is
well defined and 0 ≤ 𝜓(𝜖) ≤ 1.
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Next we prove lim
𝜖→0

𝜓(𝜖) = 0. Let 𝜖𝑛 > 0 be a sequence converging to 0. Since

𝜓(𝜖𝑛) = sup
𝜇∈𝑓−1(𝜎𝜖𝑛 (𝑓(𝑎)))

ℎ(𝜇),

and 𝑓−1(𝜎𝜖𝑛(𝑓(𝑎))) is closed and bounded, hence compact, there exists 𝜇𝑛 ∈
𝑓−1(𝜎𝜖𝑛(𝑓(𝑎))) such that 𝜓(𝜖𝑛) = ℎ(𝜇𝑛). Since each 𝜇𝑛 ∈ Ω, which is bounded,
it has a convergent subsequence {𝜇𝑛𝑘

} converging to 𝜇. On the other hand, since

𝑓(𝜇𝑛𝑘
) ∈ 𝜎𝜖𝑛𝑘

(𝑓(𝑎)), we have

∥𝑓(𝜇𝑛𝑘
)− 𝑓(𝑎)∥∥[𝑓(𝜇𝑛𝑘

)− 𝑓(𝑎)]−1∥ ≥ 1

𝜖𝑛𝑘

for all 𝑛𝑘. Thus ∥[𝑓(𝜇𝑛𝑘
) − 𝑓(𝑎)]−1∥ → ∞ as 𝑛𝑘 → ∞. This implies that 𝑓(𝜇) −

𝑓(𝑎) is not invertible. Thus 𝑓(𝜇) ∈ 𝜎(𝑓(𝑎)). Since 𝑓 is injective 𝜇 ∈ 𝜎(𝑎) and
ℎ(𝜇) = 0. Since ℎ is continuous 𝜓(𝜖𝑛𝑘

) = ℎ(𝜇𝑛𝑘
) → ℎ(𝜇) = 0. Finally since 𝜓 is

monotonically increasing 𝜓(𝜖𝑛)→ 0.

Now let 𝜖 be sufficiently small so that 0 ≤ 𝜓(𝜖) < 1. Let 𝜆 ∈ 𝜎𝜖(𝑓(𝑎)) ⊆
𝜎𝜖0(𝑓(𝑎)) ⊆ 𝑓(Ω). Consider 𝜇 ∈ Ω such that 𝜆 = 𝑓(𝜇). Then 𝜇 ∈ 𝑓−1(𝜎𝜖(𝑓(𝑎))),
hence ℎ(𝜇) ≤ 𝜓(𝜖), that is,

∥𝜇− 𝑎∥∥(𝜇− 𝑎)−1∥ ≥ 1

𝜓(𝜖)
.

Thus 𝜇 ∈ 𝜎𝜓(𝜖)(𝑎). Hence 𝜆 = 𝑓(𝜇) ∈ 𝑓(𝜎𝜓(𝜖)(𝑎)). This proves

𝜎𝜖(𝑓(𝑎)) ⊆ 𝑓(𝜎𝜓(𝜖)(𝑎)). □

Remark 2.2. Combining the two inclusions, we get

𝑓(𝜎𝜖(𝑎)) ⊆ 𝜎𝜙(𝜖)(𝑓(𝑎)) ⊆ 𝑓(𝜎𝜓(𝜙(𝜖))(𝑎)).

and

𝜎𝜖(𝑓(𝑎)) ⊆ 𝑓(𝜎𝜓(𝜖)(𝑎)) ⊆ 𝜎𝜙(𝜓(𝜖))(𝑓(𝑎)).

Remark 2.3. Since for every 𝑎 ∈ 𝐴, lim
𝜖→0

𝜙(𝜖) = 0 = lim
𝜖→0

𝜓(𝜖), 𝜎(𝑎) =
∩

0<𝜖<1

𝜎𝜖(𝑎)

and 𝜙, 𝜓 are monotonically increasing functions, the usual Spectral Mapping The-
orem can be deduced from Theorem 2.1. However, it may be noted that the proof
of Theorem 2.1 uses the Spectral Mapping Theorem.

Remark 2.4. Let 𝑎 ∈ 𝐴 and 𝑓(𝑧) = 𝛼+ 𝛽𝑧 where 𝛼, 𝛽 are complex numbers with
𝛽 ∕= 0. Then

𝜙(𝜖) = sup
𝜆∈𝜎𝜖(𝑎)

1

∥𝛽𝜆− 𝛽𝑎∥∥(𝛽𝜆− 𝛽𝑎)−1∥

= sup
𝜆∈𝜎𝜖(𝑎)

1

∥𝜆− 𝑎∥∥(𝜆− 𝑎)−1∥
= 𝜖
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In a similar way we have 𝜓(𝜖) = 𝜖. Thus 𝜎𝜖(𝛼 + 𝛽𝑎) = 𝛼 + 𝛽𝜎𝜖(𝑎) (see (7)

of Theorem 2.7 in [5]), that is 𝜎𝜖(𝑓(𝑎)) = 𝑓(𝜎𝜖(𝑎)). This leads to the following
question.

Question 2.5. Let 𝑓 be a non-constant analytic function defined on a nonempty
open set Ω in the complex plane. Suppose

𝑓(𝜎𝜖(𝑎)) = 𝜎𝜙(𝜖)(𝑓(𝑎))

for all 𝑎 ∈ 𝐴 with 𝜎(𝑎) ⊂ Ω. Then does it follow that 𝜙(𝜖) = 𝜖 and 𝑓(𝑧) = 𝛼+ 𝛽𝑧
for some 𝛼, 𝛽 ∈ ℂ?

Remark 2.6. The hypothesis that 𝑓(𝑎) is not a scalar multiple of unity cannot be

dropped from Theorem 2.1. Let 𝑓 and 𝑃 be as in Example 1. Since 𝑓(𝑃 ) = 𝐼,

we have 𝜎𝜙(𝜖)(𝑓(𝑃 )) = {1}, On the other hand we have noted in Example 1 that
𝜎𝜖(𝑃 ) contains complex numbers different from −1 and 1. Hence 𝑓(𝜎𝜖(𝑃 )) contains
complex numbers different from 1. Thus

𝑓(𝜎𝜖(𝑃 )) ⊈ 𝜎𝜙(𝜖)(𝑓(𝑃 )).

Remark 2.7. Let Λ𝜖(𝑎) :=
{
𝜆 ∈ ℂ : ∥(𝜆− 𝑎)−1∥ ≥ 1/𝜖} denote the pseudospec-

trum of 𝑎. (See [11] for examples and applications of pseudospectrum.) It was
shown in [4] that if 𝑎 is not a scalar multiple of 1, then there exist positive num-
bers 𝛼, 𝛽 depending on 𝑎, such that 𝜎𝜖(𝑎) ⊆ Λ𝛼𝜖(𝑎) and Λ𝜖(𝑎) ⊆ 𝜎𝛽𝜖(𝑎). (See [4]
for exact values of 𝛼, 𝛽.) Now from Theorem 2.1

𝑓(Λ𝜖(𝑎)) ⊆ 𝑓(𝜎𝛽𝜖(𝑎)) ⊆ 𝜎𝜙(𝛽𝜖)(𝑓(𝑎)) ⊆ Λ𝛼𝜙(𝛽𝜖)(𝑓(𝑎)).

Λ𝜖(𝑓(𝑎)) ⊆ 𝜎𝛽𝜖(𝑓(𝑎)) ⊆ 𝑓(𝜎𝜓(𝛽𝜖)(𝑎)) ⊆ 𝑓(Λ𝛼𝜓(𝛽𝜖)(𝑎)).

This is a more general form of the pseudospectral mapping theorem given in [6].

3. Weak versions

The functions 𝜙 and 𝜓 defined in the last section are continuous and monotoni-
cally increasing but it appears to be difficult to find the values of these functions
explicitly in a Banach algebra. In this section, we replace these functions 𝜙, 𝜓 with
the functions 𝛾𝜖, 𝛿𝜖 respectively that are relatively easier to estimate. The results
using these functions are weaker in the following sense

1. We need to assume some additional property for Banach algebras.
2. We need to take a bigger neighborhood Ω.

The next lemma describes this additional property.

Lemma 3.1. Let 𝐴 be a complex unital Banach algebra with the following property:

∀ 𝑎 ∈ 𝐴−1, ∃ 𝑏 ∈ 𝐴∖𝐴−1 such that ∥𝑎− 𝑏∥ = 1

∥𝑎−1∥ (3.1)
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Then for every 𝑎 ∈ 𝐴 such that 𝑎 is not a scalar multiple of unity and 𝜆 ∈ 𝜎𝜖(𝑎),
there exists an element 𝑏 ∈ 𝐴 such that

𝜆 ∈ 𝜎(𝑎+ 𝑏) with ∥𝑏∥ ≤ 𝜖∥𝜆− 𝑎∥.
Proof. We refer to [5] for a proof of this result. □

The article [5] contains examples of Banach algebras satisfying Property 3.1. In
particular the uniform algebras and matrix algebras satisfy this property (see
Examples 2.18, 2.20 in [5]).

Lemma 3.2. Let 𝐴 be a complex Banach algebra with unit 1. Let 0 < 𝜖 < 1 and
𝑎 ∈ 𝐴 be such that 𝑎 is not a scalar multiple of unit. Let 𝑚 = inf{∥𝑧.1−𝑎∥ : 𝑧 ∈ ℂ}.
Then ∪

∥𝑏∥≤𝑚𝜖

𝜎(𝑎 + 𝑏) ⊆ 𝜎𝜖(𝑎).

Further if 𝐴 has Property 3.1 stated in Lemma 3.1 then

𝜎𝜖(𝑎) ⊆
∪

∥𝑏∥≤ 2𝜖
1−𝜖 ∥𝑎∥

𝜎(𝑎+ 𝑏).

Thus for such algebras∪
∥𝑏∥≤𝑚𝜖

𝜎(𝑎+ 𝑏) ⊆ 𝜎𝜖(𝑎) ⊆
∪

∥𝑏∥≤ 2𝜖
1−𝜖 ∥𝑎∥

𝜎(𝑎+ 𝑏).

Proof. Let 𝜆 ∈ 𝜎(𝑎+ 𝑏) with 𝑏 ∈ 𝐴 and ∥𝑏∥ ≤ 𝜖𝑚. Since

𝑚 = inf{∥𝑧.1− 𝑎∥ : 𝑧 ∈ ℂ} ≤ ∥𝜆− 𝑎∥,
we have ∥𝑏∥ ≤ 𝜖∥𝜆− 𝑎∥. Hence by Theorem 2.16 of [5], we obtain

𝜎(𝑎+ 𝑏) ⊆ 𝜎𝜖(𝑎).

Next suppose 𝐴 has Property 3.1 mentioned in Lemma 3.1. Let 𝜆 ∈ 𝜎𝜖(𝑎). Then

by Theorem 2.9 of [5], ∣𝜆∣ ≤ 1 + 𝜖

1− 𝜖
∥𝑎∥.

Also by Lemma 3.1, 𝜆 ∈ 𝜎(𝑎+ 𝑏) for some 𝑏 ∈ 𝐴 with ∥𝑏∥ ≤ 𝜖∥𝜆− 𝑎∥. Now
∥𝑏∥ ≤ 𝜖∥𝜆− 𝑎∥ ≤ 𝜖(∣𝜆∣+ ∥𝑎∥) ≤ 2𝜖

1− 𝜖
∥𝑎∥.

This proves the second relation. □

Theorem 3.3. Let 𝐴 be a complex Banach algebra with unit 1 satisfying Property
3.1 stated in Lemma 3.1. Let 𝑎 ∈ 𝐴 and Ω be an open set containing 𝜎(𝑎). Then
there exist 0 < 𝜖 < 1 such that 𝜎𝜖(𝑎) ⊆ Ω.
Proof. Recall that the map 𝑎 1−→ 𝜎(𝑎) is upper semicontinuous [1]. Hence there
exist 𝛿 > 0 such that 𝜎(𝑎+ 𝑏) ⊆ Ω for all 𝑏 ∈ 𝐴 with ∥𝑏∥ ≤ 𝛿 (see Theorem 10.20

of [9]). Now take 𝜖 =
𝛿

𝛿 + 2∥𝑎∥ . Lemma 3.2 gives 𝜎𝜖(𝑎) ⊆ Ω. □
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The following theorem is the weak version of Theorem 2.1

Theorem 3.4. Let 𝐴 be a complex Banach algebra with unit 1 satisfying Property
3.1 mentioned in Lemma 3.1. Let 𝑎 ∈ 𝐴, 0 < 𝜖 < 1 sufficiently small, Ω be an open

subset of ℂ containing
∪

∥𝑏∥≤ 2𝜖
1−𝜖 ∥𝑎∥

𝜎(𝑎+ 𝑏). Let 𝑓 be an injective analytic function

defined on Ω. Assume that 𝑎, 𝑓(𝑎) are not scalar multiples of unity. Define

𝛾𝜖 := sup
{
∥𝑓(𝑎+ 𝑝)− 𝑓(𝑎)∥ : ∥𝑝∥ ≤ 2𝜖

1− 𝜖
∥𝑎∥

}
.

𝑚 := inf {∥𝑧.1− 𝑎∥ : 𝑧 ∈ ℂ} > 0.

𝛿𝜖 := sup
{
∥𝑞∥ : ∥𝑓(𝑎+ 𝑞)− 𝑓(𝑎)∥ ≤ 2𝜖

1− 𝜖
∥𝑓(𝑎)∥

}
.

𝑚′ := inf
{∥𝑧.1− 𝑓(𝑎)∥ : 𝑧 ∈ ℂ

}
> 0.

Then lim
𝜖→0

𝛾𝜖 = 0 = lim
𝜖→0

𝛿𝜖.

1. Let 𝜖 > 0 be such that 𝛾𝜖

𝑚′ < 1. Then 𝑓(𝜎𝜖(𝑎)) ⊆ 𝜎 𝛾𝜖
𝑚′
(𝑓(𝑎)).

2. Let 𝜖 > 0 be such that 𝛿𝜖
𝑚 < 1. Then 𝜎𝜖(𝑓(𝑎)) ⊆ 𝑓(𝜎 𝛿𝜖

𝑚
(𝑎)).

Proof. Since the map 𝑥 1−→ 𝑓(𝑥) is continuous, we obtain lim
𝜖→0

𝛾𝜖 = 0. Let 𝑔 :

𝑓(Ω) → Ω be the inverse of 𝑓 . Using the continuity of the map 𝑦 1−→ 𝑔(𝑦), we
obtain lim

𝜖→0
𝛾𝜖 = 0. Next let 𝜖 > 0 be such that 𝛾𝜖

𝑚′ < 1 and let 𝜆 ∈ 𝜎𝜖(𝑎). By

Lemma 3.2 there exist 𝑏 ∈ 𝐴 with ∥𝑏∥ ≤ 2𝜖

1− 𝜖
∥𝑎∥ such that 𝜆 ∈ 𝜎(𝑎 + 𝑏). Then

by the Spectral Mapping Theorem, 𝑓(𝜆) ∈ 𝜎(𝑓(𝑎 + 𝑏)). Let 𝑐 = 𝑓(𝑎 + 𝑏) − 𝑓(𝑎),
then ∥𝑐∥ ≤ 𝛾𝜖 and by the above lemma,

𝑓(𝜆) ∈ 𝜎(𝑓(𝑎) + 𝑐) ⊆ 𝜎 𝛾𝜖
𝑚′
(𝑓(𝑎)).

This proves 1.

Let 𝜆 ∈ 𝜎𝜖(𝑓(𝑎)). Then by Lemma 3.2, 𝜆 ∈ 𝜎(𝑓(𝑎) + 𝑑) for some 𝑑 ∈ 𝐴 with

∥𝑑∥ ≤ 2𝜖

1− 𝜖
∥𝑓(𝑎)∥. By the inverse mapping theorem, [9], there exist 𝑝 ∈ 𝐴 and

𝜖1 > 0 such that ∥𝑝∥ ≤ 𝜖1 and 𝑓(𝑎+ 𝑝) = 𝑓(𝑎)+ 𝑑. Thus by the Spectral Mapping
Theorem there exist 𝜇 ∈ 𝜎(𝑎+ 𝑝) such that,

𝑓(𝜇) = 𝜆 ∈ 𝜎(𝑓(𝑎+ 𝑝)) = 𝜎(𝑓(𝑎) + 𝑑).

Claim: 𝜇 ∈ 𝜎 𝛿𝜖
𝑚
(𝑎).

∥𝑑∥ = ∥𝑓(𝑎+ 𝑝)− 𝑓(𝑎)∥ ≤ 2𝜖

1− 𝜖
∥𝑓(𝑎)∥.

Hence

∥𝑝∥ ≤ 𝛿𝜖 := sup
{
∥𝑞∥ : ∥𝑓(𝑎+ 𝑞)− 𝑓(𝑎)∥ ≤ 2𝜖

1− 𝜖
∥𝑓(𝑎)∥

}
.
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Now by Lemma 3.2, 𝜇∈𝜎 𝛿𝜖
𝑚
(𝑎). This proves the claim. Hence 𝜆=𝑓(𝜇)∈𝑓(𝜎 𝛿𝜖

𝑚
(𝑎)).

This proves 2. □

Remark 3.5. If 𝑓 has a bounded Fréchet derivative in a neighborhood Ω containing
𝜎𝜖(𝑎), then 𝛾𝜖 can be estimated as follows. Let 𝐴 be a complex unital Banach

algebra, 𝑎 ∈ 𝐴 and 0 < 𝜖 < 1. Let (𝐷𝑓)𝑥 denote the Fréchet derivative of 𝑓 at
𝑥 ∈ 𝐴. Let

𝐿𝜖 := sup

{
∥(𝐷𝑓)𝑥∥ : 𝑥 ∈ 𝐴, ∥𝑥− 𝑎∥ ≤ 2𝜖

1− 𝜖
∥𝑎∥

}
.

Then, for 𝑏 ∈ 𝐴 with ∥𝑏∥ ≤ 2𝜖

1− 𝜖
∥𝑎∥, we have by the Mean Value Theorem [10],

∥𝑓(𝑎+ 𝑏)− 𝑓(𝑎)∥ ≤ 𝐿𝜖∥𝑏∥ ≤ 2𝜖

1− 𝜖
𝐿𝜖∥𝑎∥.

Thus

𝛾𝜖 ≤ 2𝜖

1− 𝜖
𝐿𝜖∥𝑎∥.

Remark 3.6. Let 𝐴 be a complex unital Banach algebra, 𝑎 ∈ 𝐴 and 0 < 𝜖 < 1.
Let 𝑓 be an injective analytic function defined on an open set Ω containing 𝜎𝜖(𝑎).
Let 𝑔 : 𝑓(Ω) → Ω be the inverse of 𝑓 . If 𝑔 has a bounded Fréchet derivative in a

neighborhood of 𝜎𝜖(𝑓(𝑎)), then 𝛿𝜖 can be estimated as follows. Let

𝐿′𝜖 := sup
{
∥(𝐷𝑔)𝑥∥ : 𝑥 ∈ 𝐴, ∥𝑥− 𝑓(𝑎)∥ ≤ 2𝜖

1− 𝜖
∥𝑓(𝑎)∥

}
.

Then, for 𝑑′ ∈ 𝐴 with ∥𝑑′ − 𝑓(𝑎)∥ ≤ 2𝜖

1− 𝜖
∥𝑎∥, we have by the Mean Value Theo-

rem [10],

∥𝑔(𝑑′)− 𝑔(𝑓(𝑎))∥ ≤ 𝐿′𝜖∥𝑑′ − 𝑓(𝑎)∥ ≤ 2𝜖

1− 𝜖
𝐿′𝜖∥𝑓(𝑎)∥.

Thus

𝛿𝜖 ≤ 2𝜖

1− 𝜖
𝐿′𝜖∥𝑓(𝑎)∥.

In the following examples we give estimates for 𝛾𝜖, 𝛿𝜖 for the functions 𝑓(𝑧) =
𝑧2, 𝑓(𝑧) = 𝑧3 and 𝑓(𝑧) = 𝑒𝑧.

Example 2. Let 𝐴 = (𝐶[1, 2], ∥ ⋅ ∥∞), 0 < 𝜖 < 1 sufficiently small and 𝑎 ∈ 𝐴 is
defined by 𝑎(𝑥) = 𝑥 for all 𝑥 ∈ [1, 2]. Then ∥𝑎∥∞ = 2, 𝜎(𝑎) = [1, 2].

𝑚 := inf{∥𝑧 − 𝑎∥∞ : 𝑧 ∈ ℂ}.
= inf{sup{∣𝑧 − 𝑥∣ : 𝑥 ∈ [1, 2]} : 𝑧 ∈ ℂ}.
= inf{max{∣𝑧 − 1∣, ∣𝑧 − 2∣} : 𝑧 ∈ ℂ}.
=
1

2
.
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𝑚′ := inf{∥𝑧 − 𝑎2∥∞ : 𝑧 ∈ ℂ}.
= inf{sup{∣𝑧 − 𝑥2∣ : 𝑥 ∈ [1, 2]} : 𝑧 ∈ ℂ}.
= inf{max{∣𝑧 − 1∣, ∣𝑧 − 4∣} : 𝑧 ∈ ℂ}.
=
3

2
.

𝛾𝜖 := sup

{
∥(𝑎+ 𝑝)2 − 𝑎2∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

= sup

{
∥2𝑎𝑝+ 𝑝2∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

≤
{
4∥𝑝∥∞ + ∥𝑝∥2∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
≤ 16𝜖

(1− 𝜖)2
.

Hence 𝜎𝜖(𝑎)
2 ⊆ 𝜎𝜖1(𝑎

2), (by Theorem 3.4). Where 𝜖1 =
32𝜖

3(1−𝜖)2

𝛿𝜖 := sup

{
∥𝑞∥∞ : ∥(𝑎+ 𝑞)2 − 𝑎2∥∞ ≤ 8𝜖

1− 𝜖

}
.

= sup

{
∥𝑞∥∞ : ∥2𝑞𝑎+ 𝑞2∥∞ ≤ 8𝜖

1− 𝜖

}
.

= sup

{
∥𝑞∥∞ : ∥2𝑞 + 𝑞2∥∞ ≤ 8𝜖

1− 𝜖

}
.

≤ sup

{
∥𝑞∥∞ : 2∥𝑞∥∞ − ∥𝑞∥2∞ ≤ 8𝜖

1− 𝜖

}
.

≤ 1−√1− 9𝜖.
This gives 𝜎𝜖(𝑎

2) ⊆ 𝜎𝜖1(𝑎)
2, where 𝜖1 = 2(1−

√
1− 9𝜖).

Next for 𝑓(𝑧) = 𝑧3.

𝑚′ := inf{∥𝑧 − 𝑎3∥∞ : 𝑧 ∈ ℂ}.
= inf{sup{∣𝑧 − 𝑥3∣ : 𝑥 ∈ [1, 2]} : 𝑧 ∈ ℂ}.
= inf{max{∣𝑧 − 1∣, ∣𝑧 − 8∣} : 𝑧 ∈ ℂ}.
=
7

2
.

𝛾𝜖 := sup

{
∥(𝑎+ 𝑝)3 − 𝑎3∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

= sup

{
∥3𝑎2𝑝+ 3𝑎𝑝2 + 𝑝3∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

≤
{
3∥𝑎∥2∞∥𝑝∥∞ + 3∥𝑎∥∥𝑝∥2∞ + ∥𝑝∥3∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

≤ 16𝜖(3− 3𝜖− 2𝜖2)
(1− 𝜖)3

.
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Hence 𝜎𝜖(𝑎)
3 ⊆ 𝜎𝜖1(𝑎

3) (by Theorem 3.4). Where 𝜖1 =
32𝜖(3−3𝜖−2𝜖2)

7(1−𝜖)3

𝛿𝜖 := sup

{
∥𝑞∥∞ : ∥(𝑎+ 𝑞)3 − 𝑎3∥∞ ≤ 8𝜖

1− 𝜖

}
.

= sup

{
∥𝑞∥∞ : ∥3𝑞𝑎2 + 3𝑞2𝑎+ 𝑞3∥∞ ≤ 8𝜖

1− 𝜖

}
.

= sup

{
∥𝑞∥∞ : ∥3𝑞 + 3𝑞2 + 𝑞3∥∞ ≤ 8𝜖

1− 𝜖

}
.

≤ sup

{
∥𝑞∥∞ : 3∥𝑞∥∞ − 3∥𝑞∥2∞ − ∥𝑞∥3∞ ≤ 8𝜖

1− 𝜖

}
.

≤ 8𝜖.
This gives 𝜎𝜖(𝑎

3) ⊆ 𝜎16𝜖(𝑎)
3.

For 𝑓(𝑧) = 𝑒𝑧

𝑚′ := inf{∥𝑧 − exp(𝑎)∥∞ : 𝑧 ∈ ℂ}.
= inf{sup{∣𝑧 − exp(𝑥)∣ : 𝑥 ∈ [1, 2]} : 𝑧 ∈ ℂ}.
= inf{max{∣𝑧 − 𝑒∣, ∣𝑧 − 𝑒2∣} : 𝑧 ∈ ℂ}.

=
𝑒(𝑒− 1)

2
.

𝛾𝜖 := sup

{
∥exp(𝑎+ 𝑝)− exp(𝑎)∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

= sup

{
∥exp(𝑎)(exp(𝑝)− 1)∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

≤
{
𝑒∥𝑎∥∞∥exp(𝑝)− 1∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

≤
{
𝑒2∥

∞∑
𝑘=1

𝑝𝑘

𝑘!
∥∞ : ∥𝑝∥∞ ≤ 4𝜖

1− 𝜖

}
.

≤ 𝑒2(𝑒
4𝜖

1−𝜖 − 1).

Hence exp(𝜎𝜖(𝑎)) ⊆ 𝜎𝜖1(exp(𝑎)) (by Theorem 3.4). Where 𝜖1 =
2𝑒(𝑒4𝜖/1−𝜖 − 1)

𝑒 − 1 .

𝛿𝜖 := sup

{
∥𝑞∥∞ : ∥exp(𝑎+ 𝑞)− exp(𝑎)∥∞ ≤ 2𝑒2𝜖

1− 𝜖

}
.

Let exp(𝑎) = 𝑐, exp(𝑎+ 𝑞) = 𝑑 = 𝑐+ 𝑏. Then

𝛿𝜖 = sup

{
∥ log(𝑐+ 𝑏)− log(𝑐)∥∞ : ∥𝑏∥∞ ≤ 2𝑒2𝜖

1− 𝜖

}
.

= sup

{
∥ log(1 + 𝑐−1𝑏)∥∞ : ∥𝑏∥∞ ≤ 2𝑒2𝜖

1− 𝜖

}
.
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≤ sup

{
log(1 + ∥𝑐−1∥∥𝑏∥∞) : ∥𝑏∥∞ ≤ 2𝑒2𝜖

1− 𝜖

}
.

≤ log

(
1 + ∥𝑐−1∥ 2𝑒

2𝜖

1− 𝜖

)
≤ log

(
1 +

2𝑒3𝜖

1− 𝜖

)
.

This gives 𝜎𝜖(exp(𝑎)) ⊆ exp(𝜎𝜖1(𝑎)). Where 𝜖1 = 2 log

(
1 +

2𝑒3𝜖

1− 𝜖

)
.

Example 3. Let 𝐴 = 𝐵𝐿(𝑙∞, ∥ ⋅ ∥), 0 < 𝜖 < 1 sufficiently small and 𝑇 ∈ 𝐴 is
defined by 𝑇 (𝑥)(𝑖) = 𝑥(𝑖 + 1) for all 𝑥 ∈ 𝑙∞, the left shift operator.

Consider 𝑓(𝑧) = 𝑧3. From Example 2.14 of [5] we have,

𝜎𝜖(𝑇 ) =

{
𝜆 ∈ ℂ : ∣𝜆∣ ≤ 1 + 𝜖

1− 𝜖

}
.

From Theorem 2.1 we have,

𝜙(𝜖) = sup
𝜆∈𝜎𝜖(𝑇 )

𝑔(𝜆), where 𝑔(𝜆) =
1

∥𝜆3 − 𝑇 3∥∥(𝜆3 − 𝑇 3)−1∥ .

Also it is well known that 𝜎(𝑇 ) = {𝜆 : ∣𝜆∣ ≤ 1} [9]. Hence 𝑔(𝜆) = 0 for ∣𝜆∣ ≤ 1.

Next let 1 < ∣𝜆∣ ≤ 1 + 𝜖

1− 𝜖
. Then

∥𝜆3 − 𝑇 3∥ = 1 + ∣𝜆∣3, ∥(𝜆3 − 𝑇 3)−1∥ = 1

∣𝜆∣3 − 1 .
Hence,

𝑔(𝜆) =
1

∥𝜆3 − 𝑇 3∥∥(𝜆3 − 𝑇 3)−1∥ =
∣𝜆∣3 − 1
∣𝜆∣3 + 1

≤ (1+𝜖
1−𝜖)

3 − 1
2

=
6𝜖+ 2𝜖3

2(1− 𝜖)3
=

𝜖(3 + 𝜖2)

(1− 𝜖)3

Thus 𝜙(𝜖) ≤ 𝜖(3 + 𝜖2)

(1− 𝜖)3
. Note that,

𝜎𝜖(𝑇 )
3 =

{
𝜆 ∈ ℂ : ∣𝜆∣ ≤ (1 + 𝜖)3

(1 − 𝜖)3

}
⊆ 𝜎𝜙(𝜖)(𝑇

3)

⊆
{
𝜆 ∈ ℂ : ∣𝜆∣ ≤ 1 + 𝜙(𝜖)

1− 𝜙(𝜖)

}
⊆
{
𝜆 ∈ ℂ : ∣𝜆∣ ≤ (1 − 𝜖)3 + 𝜖(3 + 𝜖2)

(1 − 𝜖)3 − 𝜖(3 + 𝜖2)

}
Next 𝜎𝜖(𝑇

3) = {𝜆 ∈ ℂ : ∣𝜆∣ ≤ 1+𝜖
1−𝜖}. From Theorem 2.1, we have 𝜓(𝜖) = sup{ℎ(𝜇) :

𝜇3 ∈ 𝜎𝜖(𝑇
3)}, where ℎ(𝜇) =

1

∥𝜇− 𝑇 ∥∥(𝜇− 𝑇 )−1∥ . Since 𝜎(𝑇 3)={𝜆∈ℂ : ∣𝜆∣≤1},
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hence ℎ(𝜇) = 0 for ∣𝜇∣ ≤ 1. Consider 1 < ∣𝜇3∣ ≤ 1 + 𝜖

1− 𝜖
.

ℎ(𝜇) =
1

∥𝜇− 𝑇 ∥∥(𝜇− 𝑇 )−1∥ ≤
∣𝜇∣ − 1
𝜇+ 1

≤ (1+𝜖
1−𝜖)

1/3 − 1
2

=
1

2

[(
1 +

2𝜖

1− 𝜖

)1/3
− 1

]
≤ 𝜖

3(1− 𝜖)
.

Thus 𝜓(𝜖) ≤ 𝜖

3(1− 𝜖)
. Hence,

𝜎𝜖(𝑇
3) =

{
𝜆 ∈ ℂ : ∣𝜆∣ ≤ 1 + 𝜖

1− 𝜖

}
⊆ 𝜎𝜓(𝜖)(𝑇 )

3

⊆
{
𝜆 ∈ ℂ : ∣𝜆∣ ≤

(
1 + 𝜓(𝜖)

1− 𝜓(𝜖)

)3}

≤
{
𝜆 ∈ ℂ : ∣𝜆∣ ≤

(
3− 2𝜖
3− 4𝜖

)3}
.

4. Numerical results

In this section, we report the results of some numerical experiments done using
matlab.
Let 𝐴 = (𝐶[1, 2], ∥⋅∥∞), 𝜖 = 0.1 and 𝑎 ∈ 𝐴 be defined by 𝑎(𝑥) = 𝑥 for all 𝑥 ∈ [1, 2]
as in Example 2. If 𝑓(𝑧) = 𝑧2. Then 𝑓(𝑎) = 𝑎2 defined by 𝑎2(𝑥) = 𝑎(𝑥)𝑎(𝑥) = 𝑥2.
The 𝜖-condition spectrum of 𝑎 can be calculated as follows, Let 𝑧 = 𝛼+ 𝛽𝑖. Then
there are four cases.

∙ 𝛼 < 1. In this case ∥𝑧 − 𝑎∥∞ =
√
(𝛼 − 2)2 + 𝛽2

and ∥(𝑧 − 𝑎)−1∥∞ = 1/
√
(𝛼− 1)2 + 𝛽2

∙ 1 ≤ 𝛼 < 1.5. In this case ∥𝑧 − 𝑎∥∞ =
√
(𝛼− 2)2 + 𝛽2

and ∥(𝑧 − 𝑎)−1∥∞ = 1/∣𝛽∣
∙ 1.5 ≤ 𝛼 < 2. In this case ∥𝑧 − 𝑎∥∞ =

√
(𝛼− 1)2 + 𝛽2

and ∥(𝑧 − 𝑎)−1∥∞ = 1/∣𝛽∣
∙ 𝛼 ≥ 2. In this case ∥𝑧 − 𝑎∥∞ =

√
(𝛼 − 1)2 + 𝛽2

and ∥(𝑧 − 𝑎)−1∥∞ = 1/
√
(𝛼− 2)2 + 𝛽2

Thus 𝜖-condition spectrum can be calculated explicitly using the definition. In
a similar way 𝜖-condition spectrum of 𝑓(𝑎) also can be calculated. To calculate
approximate value of 𝜙(𝜖) we choose a certain number of uniformly distributed
points in 𝜎𝜖(𝑎), compute ∥𝑧2 − 𝑎2∥∞∥(𝑧2 − 𝑎2)−1∥∞ at each of these points and
take the maximum of these values as an approximation of 𝜙(𝜖). Similarly 𝜓(𝜖) is
computed. For 𝜖 = 0.1, these computed values turn out to be 𝜙(𝜖) = 0.1332 and
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Figure 1

𝜓(𝜖) = 0.155. From Theorem 2.1 we have the following inclusions

𝜎0.1(𝑎)
2 ⊆ 𝜎0.1332(𝑎

2).

𝜎0.1(𝑎
2) ⊆ 𝜎0.155(𝑎)

2.

The following figures are obtained using matlab. Figure 1.1 shows 𝜎0.1(𝑎)
2, Figure

1.2 shows 𝜎0.1332(𝑎
2), Figure 1.3 shows 𝜎0.1(𝑎

2), and Figure 1.4 shows 𝜎0.155(𝑎)
2.

The condition spectrum of an 𝑛×𝑛 matrix 𝑇 can be computed as follows. It
is proved in [5] (Theorem 2.9) that,

∣𝜆∣ ≤ 1 + 𝜖

1− 𝜖
∥𝑇 ∥ for all 𝜆 ∈ 𝜎𝜖(𝑇 ).

We can consider certain number of uniformly distributed points in the disc{
𝑧 ∈ ℂ : ∣𝑧∣ ≤ 1 + 𝜖

1− 𝜖
∥𝑇 ∥

}
,

evaluate ∥𝑧 − 𝑇 ∥∥(𝑧− 𝑇 )−1∥ at each of these points and include and save those 𝑧
for which

∥𝑧 − 𝑇 ∥∥(𝑧 − 𝑇 )−1∥ ≥ 1

𝜖
.
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This gives 𝜎𝜖(𝑇 ). We plot the points to the complex plane using matlab and obtain
the figure for 𝜎𝜖(𝑇 ). For each such chosen points 𝑧 in 𝜎𝜖(𝑇 ), we compute

1

∥𝑓(𝑧)− 𝑓(𝑇 )∥∥(𝑓(𝑧)− 𝑓(𝑇 ))−1∥
and take the maximum value as an approximation of 𝜙(𝜖) defined in Theorem
2.1. Similarly we calculate 𝜓(𝜖). As in the case of pseudospectrum [11], condition
spectrum of a matrix also can be computed using different algorithms. Since our
aim is only to illustrate our results, we have used a very basic algorithm. We do
not make any claim about the efficiency of this algorithm.

We have considered (ℂ10×10, ∥ ⋅∥2) and the following 10×10 Toeplitz matrix.

𝑇 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 0 0 . . . 0
0 1 1 0 . . . 0
. . . . . . . .
. . . . . . . .
0 . . . . 0 1 1
0 . . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
10×10

(1) Let 𝑓(𝑧) = 𝑧2 and 𝜖 = 0.1. Then 𝑓(𝑇 ) = 𝑇 2 is also a Toeplitz matrix

𝑇 2 =

⎡⎢⎢⎢⎢⎢⎢⎣
1 2 1 0 . . . 0
0 1 2 1 . . . 0
. . . . . . . .
. . . . . . . .
0 . . . . 0 1 2
0 . . . . . . . 0 1

⎤⎥⎥⎥⎥⎥⎥⎦
10×10

Using the algorithm explained above we obtain 𝜙(𝜖) = 0.1662 and 𝜓(𝜖) = 0.1602.
From Theorem 2.1 we have the following inclusions

𝜎0.1(𝑇 )
2 ⊆ 𝜎0.1662(𝑇

2).

𝜎0.1(𝑇
2) ⊆ 𝜎0.1602(𝑇 )

2.

The figures obtained using matlab computations are given in Figure 2. Figure
2.1 shows 𝜎0.1(𝑇 )

2, Figure 2.2 shows 𝜎0.1662(𝑇
2), Figure 2.3 shows 𝜎0.1(𝑇

2), and
Figure 2.4 shows 𝜎0.1602(𝑇 )

2.

(2) Let 𝑓(𝑧) = 𝑒𝑧 and 𝜖 = 0.01. Then 𝑓(𝑇 ) = exp(𝑇 ) is also a Toeplitz matrix.

exp(𝑇 ) =

⎡⎢⎢⎢⎢⎢⎢⎣
𝑒 𝑒 1.3591 0.4530 . . . 0.000
0 𝑒 𝑒 1.3591 . . . 0.001
. . . . . . . .
. . . . . . . .
0 . . . . 0 𝑒 𝑒
0 . . . . . . . 0 𝑒

⎤⎥⎥⎥⎥⎥⎥⎦
10×10
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Using the same algorithm we obtain 𝜙(𝜖) = 0.0195 and 𝜓(𝜖) = 0.0258. Thus by
Theorem 2.1, we have the following two inclusions

𝑒𝜎0.01(𝑇 ) ⊆ 𝜎0.0195(exp(𝑇 )).

𝜎0.01(exp(𝑇 )) ⊆ 𝑒𝜎0.0258(𝑇 ).

The figures obtained using matlab computations are given in Figure 3. Figure 3.1
shows 𝑒𝜎0.01(𝑇 ), Figure 3.2 shows 𝜎0.0195(exp(𝑇 )), Figure 3.3 shows 𝜎0.01(exp(𝑇 )),
and Figure 3.4 shows 𝑒𝜎0.0258(𝑇 ).

(3) In the next example we consider a random matrix 𝐽 of order 3× 3.

𝐽 =

⎡⎣ 0.5 1 −1
1.5 −0.5 0.25
0.75 1.5 1.25

⎤⎦
3×3

Let 𝑓(𝑧) = 𝑧3 and 𝜖 = 0.01, we have 𝑓(𝐽) = 𝐽3 is given by

𝐽3 =

⎡⎣ 0.125 −3.5 −0.25
2.6719 3.1562 1.703
−2.3906 −0.0938 2.8906

⎤⎦
3×3
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As above we obtain 𝜙(𝜖) = 0.0381 and 𝜓(𝜖) = 0.1945 Thus by Theorem 2.1, we
have the following two inclusions

𝜎0.01(𝐽)
3 ⊆ 𝜎0.0381(𝐽

3), 𝜎0.01(𝐽
3) ⊆ 𝜎0.1411(𝐽)

3.

The figures obtained using matlab computations are given in Figure 4. Figure
4.1 shows 𝜎0.01(𝐽)

3, Figure 4.2 shows 𝜎0.0381(𝐽
3), Figure 4.3 shows 𝜎0.01(𝐽

3), and
Figure 4.4 shows 𝜎0.1411(𝐽)

3.
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Commutative Algebras of Toeplitz Operators
on the Super Upper Half-plane:
Quasi-hyperbolic and Quasi-parabolic Cases
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Abstract. In this paper we study Toeplitz operators acting on the super
Bergman space on the upper half-plane. We consider the super subgroups
of isometries ℝ × 𝑆1 and ℝ+ × 𝑆1 and we prove that the 𝐶∗-algebras gener-
ated by Toeplitz operators whose symbols are invariant under the action of
these groups are commutative.
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Keywords. Toeplitz operators, commutative 𝐶∗-algebras, Bergman spaces, su-
permanifolds and graded manifolds.

1. Introduction

Commutative 𝐶∗-algebras generated by Toeplitz operators acting on the (weighted)
Bergman space on the unit disk have been recently an important object of study.

In [19, 20] Vasilevski discovered a family of commutative 𝐶∗-algebras of
Toeplitz operators on the unit disk. These algebras can be classified as follows:
Each pencil of hyperbolic geodesics determines a set of symbols consisting of func-
tions which are constant on the corresponding cycles, the orthogonal trajectories to
geodesics forming the pencil. The 𝐶∗-algebra generated by all Toeplitz operators
with such kind of symbols turns out to be commutative.

In [7] Grudski, Quiroga and Vasilevski proved that the 𝐶∗-algebra generated
by Toeplitz operators is commutative on each weighted Bergman space if and only
if there is a pencil of hyperbolic geodesics such that the symbols of the Toeplitz
operators are constant on the cycles of this pencil. In fact, the cycles are the orbits
of a one-parameter subgroup of isometries for the hyperbolic geometry on the
unit disk. This provides us with the following result: the 𝐶∗-algebra generated by
Toeplitz operators is commutative on each weighted Bergman space on the unit disk
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if and only if there is a maximal commutative subgroup of Möbius transformations
such that the symbols of the Toeplitz operators are invariant under the action of
this subgroup.

In [2, 3] Borthwick, Klimek, Lesniewski, and Rinaldi introduced a general
theory of non-perturbative quantization of a class of hermitian symmetric super-
manifolds. The quantization idea in these two papers is based on the notion of
super Toeplitz operator defined on a suitable ℤ2-graded Hilbert space of super-
holomorphic functions. The quantized super-manifold arises as the 𝐶∗-algebra gen-
erated by these operators.

Super Lie groups act on super-manifolds as linear transformations, in the
sense we will define later on the paper. In order to extend results in [7] we find
commutative super groups of isometries of the super unit disk and consider as
symbols class all functions which are invariant under the action of this group.
Once we get this group of isometries we analyze the behavior of the 𝐶∗-algebra
generated by all super Toeplitz operators whose symbols are invariant under the
action of this group.

One step forward in this direction was made in [11]. There we proved that
the algebras of Toeplitz operators whose symbols are invariant under the action
of the super-unit circle or under the action of the torus are commutative. In order
to do so, we found an orthonormal basis for the weighted super Bergman space of
the unit disk in which each Toeplitz operator with radial symbol is represented as
a diagonal matrix.

Using a unitary operator, given in terms of a Möbius transformation, we
transform the Bergman space on the unit disk onto the Bergman space on the
upper half-plane. Thus, finding a unitary transformation from the super Bergman
space on the unit disk onto the super Bergman space on the upper half-plane
would allow us to continue the classification of the commutative algebras of super
Toeplitz operators. This step was made in [17]. There, the matrix representation of
a super Toeplitz operator, in terms of regular Toeplitz or Toeplitz-like operators,
is given. Using this representation it was proved that the 𝐶∗-algebra generated
by Toeplitz operators, whose symbols are invariant under the action of the super
real numbers (we define this action in this paper) is commutative by showing that
these operators are unitary equivalent to multiplication operators.

This paper is a continuation of the study made in [17]. Here we find two more
maximal abelian super groups, ℝ×𝑆1 and ℝ+×𝑆1, such that the Toeplitz algebra
generated by Toeplitz operators whose symbols are invariant under the action of
each one of these groups is commutative.

In summary, if we consider classical Toeplitz operators, there are only three
different (up to a conjugation) classes of symbols that generate commutative
Toeplitz algebras on the unit disk. These Toeplitz classes are: functions which
are invariant under elliptic Möbius transformations, functions which are invariant
under hyperbolic Möbius transformations and, functions which are invariant un-
der parabolic transformations. In terms of maximal abelian groups these classes
correspond to invariant classes under the action of the unit circle, the real numbers
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and the positive real numbers respectively. The situation behaves quite different
for super Toeplitz operators, acting on the super Bergman space on the super
unit disk or on the Bergman space on the super upper half-plane. Until now we
have found five different cases of commutative algebras of super Toeplitz opera-
tors, which correspond to the action of the super-circle, the 2-torus, the super-real
numbers, the product of the real numbers and the unit circle, the product of the
positive real numbers and the unit circle. The natural question arising now is the
following: are there more classes of conjugation of commutative algebras gener-
ated by super Toeplitz operators? The first step in order to give an answer to this
question would be finding the classification of commutative Lie supersubgroups of
𝑆𝑈(1, 1∣1).

This paper is organized as follows: in Section 2 we give a review of some
results obtained by the authors on Toeplitz operators on the super Bergman space
on the unit disk. In sections 3 and 4 we analyze the relation between the super
Bergman space on the unit disk and the super Bergman space on the upper half-
plane. In Section 5 we include the main results from [17]. In Section 6 we show
that the groups ℝ× 𝑆1 and ℝ+ × 𝑆1 are groups of isometries of the super upper
plane, and find the form of the functions defined in this set which are invariant
under the action of these groups. In this section we also prove that the Toeplitz
algebra whose symbols are invariant under the action of ℝ × 𝑆1 or ℝ+ × 𝑆1 is
commutative and that these operators are unitarily equivalent to multiplication
operators. Moreover, we give conditions for a Toeplitz operator with this kind of
symbol in order to be compact or bounded.

2. Super Toeplitz operators on the unit super disk

In [10] super Toeplitz operators on the unit disk were studied. We include here
the main results. Let 𝒪(𝔻) denote the algebra of all holomorphic functions 𝜓(𝑧)
in the open unit disk 𝔻

𝔻 := {𝑧 ∈ ℂ : ∣𝑧∣ < 1}.
Let Λ1 denote the complex Grassmann algebra with generator 𝜁, satisfying the
relation 𝜁2 = 0. Thus

Λ1 = ℂ⟨1, 𝜁⟩.
The tensor product algebra

𝒪(𝔻1∣1) := 𝒪(𝔻)⊗ Λ1 = 𝒪(𝔻)⟨1, 𝜁⟩
consists of all “super-holomorphic” functions

Ψ = 𝜓0 + 𝜁𝜓1

with 𝜓0, 𝜓1 ∈ 𝒪(𝔻). We sometimes write
Ψ(𝑧, 𝜁) = 𝜓0(𝑧) + 𝜁𝜓1(𝑧)

for all 𝑧 ∈ 𝔻.
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For 𝜈 > 1, the weighted Bergman space

𝐻2
𝜈 (𝔻) := 𝒪(𝔻) ∩ 𝐿2(𝔻, 𝑑𝜇𝜈)

consists of all holomorphic functions on 𝔻 which are square-integrable with respect
to the probability measure

𝑑𝜇𝜈(𝑧) =
𝜈 − 1
𝜋

(1− ∣𝑧∣2)𝜈−2𝑑𝑧, (2.1)

where 𝑑𝑧 denotes the Lebesgue measure on ℂ. It is well known that 𝐻2
𝜈 (𝔻) has

the reproducing kernel

𝐾𝜈(𝑧, 𝑤) = (1 − 𝑧𝑤)−𝜈 ,

where 𝑧, 𝑤 ∈ 𝔻.
Let Λℂ

1 denote the complex Grassmann algebra with 2 generators 𝜁, 𝜁 satis-
fying the conditions

𝜁2 = 𝜁
2
= 0, 𝜁𝜁 = −𝜁𝜁.

Thus

Λℂ

1 = ℂ⟨1, 𝜁, 𝜁, 𝜁 𝜁⟩ = Λ1⟨1, 𝜁⟩.
By 𝒞(𝔻) we denote the algebra of continuous functions on 𝔻. The tensor product

𝒞(𝔻1∣1) := 𝒞(𝔻)⊗ Λℂ

1 = 𝒞(𝔻)⟨1, 𝜁, 𝜁, 𝜁𝜁⟩
consists of all “continuous super-functions”

𝐹 = 𝑓00 + 𝜁 𝑓10 + 𝜁 𝑓01 + 𝜁𝜁 𝑓11 , (2.2)

where 𝑓00, 𝑓10, 𝑓01, 𝑓11 ∈ 𝒞(𝔻). The involution on 𝒞(𝔻1∣1) is given by
𝐹 = 𝑓00 + 𝜁 𝑓10 + 𝜁 𝑓01 + 𝜁𝜁 𝑓11,

where 𝑓(𝑧) := 𝑓(𝑧) (pointwise conjugation).

The “fermionic integration” is determined by the rules∫
ℂ0∣1

𝑑𝜁 ⋅ 𝜁 =
∫

ℂ0∣1

𝑑𝜁 ⋅ 𝜁 =
∫

ℂ0∣1

𝑑𝜁 ⋅ 1 = 0 ,
∫

ℂ0∣1

𝑑𝜁 ⋅ 𝜁𝜁 = 1.

Definition 2.1. For any parameter 𝜈 > 1 the (weighted) super-Bergman space

𝐻2
𝜈 (𝔻

1∣1) ⊂ 𝒪(𝔻1∣1)
consists of all super-holomorphic functions Ψ(𝑧, 𝜁) which satisfy the square-integra-
bility condition

(Ψ∣Ψ)𝜈 := 1

𝜋

∫
𝔻1∣1

𝑑𝑧 𝑑𝜁 (1− 𝑧𝑧 − 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) < +∞.
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Proposition 2.2. For Ψ = 𝜓0 + 𝜁 𝜓1 ∈ 𝒪(𝔻1∣1) we have
1

𝜋

∫
𝔻1∣1

𝑑𝑧 𝑑𝜁 (1 − 𝑧𝑧 − 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) = (𝜓0∣𝜓0)𝜈 + 1

𝜈
(𝜓1∣𝜓1)𝜈+1 ,

i.e., there is an orthogonal decomposition

𝐻2
𝜈 (𝔻

1∣1) = 𝐻2
𝜈 (𝔻)⊕ [𝐻2

𝜈+1(𝔻)⊗ Λ1(ℂ1)]
onto a sum of weighted Bergman spaces, where Λ1(ℂ1) is the one-dimensional
vector space with basis vector 𝜁.

For Ψ = 𝜓0 + 𝜁 𝜓1 ∈ 𝐻2
𝜈 (𝔻

1∣1) we have the reproducing kernel property

Ψ(𝑧, 𝜁) =
1

𝜋

∫
𝔻1∣1

𝑑𝑤 𝑑𝜔 (1− 𝑤𝑤 − 𝜔𝜔)𝜈−1(1− 𝑧𝑤 − 𝜁𝜔)−𝜈Ψ(𝑤, 𝜔),

i.e., 𝐻2
𝜈 (𝔻

1∣1) has the reproducing kernel

𝐾𝜈(𝑧, 𝜁, 𝑤, 𝜔) = (1− 𝑧𝑤 − 𝜁𝜔)−𝜈 .

For 𝐹 ∈ 𝒞(𝔻1∣1), the super-Toeplitz operator 𝑇
(𝜈)
𝐹 on 𝐻2

𝜈 (𝔻
1∣1) is defined as

𝑇
(𝜈)
𝐹 Ψ = 𝑃 (𝜈)(𝐹Ψ),

where 𝑃 (𝜈) denotes the orthogonal projection onto 𝐻2
𝜈 (𝔻

1∣1).

Theorem 2.3. With respect to the decomposition Ψ = 𝜓0+ 𝜁 𝜓1, the super-Toeplitz

operator 𝑇
(𝜈)
𝐹 on 𝐻2

𝜈 (𝔻
1∣1) is given by the block matrix

𝑇
(𝜈)
𝐹 =

(
𝑇 𝜈
𝜈

(
𝑓00 +

1−𝑤𝑤
𝜈−1 𝑓11

)
𝑇 𝜈+1
𝜈

(
1−𝑤𝑤
𝜈−1 𝑓10

)
𝑇 𝜈
𝜈+1 (𝑓01) 𝑇 𝜈+1

𝜈+1 (𝑓00)

)
. (2.3)

Here 𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓), for 0 ≤ 𝑖, 𝑗 ≤ 1, denotes the Toeplitz type operator from 𝐻2

𝜈+𝑗(𝔻)
to 𝐻2

𝜈+𝑖(𝔻) defined by

𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓)𝜓 := 𝑃𝜈+𝑖(𝑓𝜓)

for 𝜓∈𝐻2
𝜈+𝑗(𝔻) and 𝑃𝜈+𝑖 is the orthogonal projection from 𝐿2𝜈+𝑖(𝔻) onto 𝐻2

𝜈+𝑖(𝔻).

2.1. Commutative algebras of super Toeplitz operators on the unit super disk

In [11] we studied commutative algebras of super Toeplitz operators on the unit
super disk. We found two different groups of isometries such that Toeplitz operators
whose symbols are invariant under the action of these groups (one algebra for each
group) generate commutative algebras. We recall here the main results from [11].

The Berezinian is defined by the following formula

Ber

(
𝐴 𝐵
𝐶 𝐷

)
= det(𝐴−𝐵𝐷−1𝐶) det𝐷−1,

where 𝐴,𝐷 are even, 𝐷 is invertible and 𝐵,𝐶 are odd. The super Lie Group
𝑆𝑈(1, 1∣1) is the supermanifold 𝑆𝑈(1, 1) and its structure sheaf is generated by
the 3 × 3 matrices (𝑠𝑖𝑗) and (𝑠𝑖𝑗), where the element 𝑠𝑖𝑗 (resp. 𝑠𝑖𝑗) is even if
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1 ≤ 𝑖, 𝑗 ≤ 2 or 𝑖 = 𝑗 = 3 and odd otherwise. In addition we must have 𝑠∗𝐽𝑠 = 𝐽 ,
where

𝐽 =

⎛⎝ 1 0 0
0 −1 0
0 0 −1

⎞⎠
and that Ber 𝑠 = 1.

The super Lie Group 𝑆𝑈(1, 1∣1) acts on the unit super disk as follows. Given

a matrix

⎛⎝ 𝑎 𝑏 𝛼
𝑐 𝑑 𝛽
𝛾 𝛿 𝑒

⎞⎠ ∈ 𝑆𝑈(1, 1∣1) the corresponding transformation is given

by the formulas

𝑧 1→ 𝑎𝑧 + 𝑏+ 𝛼𝜁

𝑐𝑧 + 𝑑+ 𝛽𝜁
,

𝜁 1→ 𝛾𝑧 + 𝛿 + 𝑒𝜁

𝑐𝑧 + 𝑑+ 𝛽𝜁
.

(2.4)

Consider the form

𝑔 =
∂2𝑙𝑜𝑔(1− 𝑧𝑧 − 𝜁𝜁)

∂𝑧∂𝑧
𝑑𝑧𝑑𝑧 +

∂2𝑙𝑜𝑔(1 + 𝑧𝑧 − 𝜁𝜁)

∂𝑧∂𝜁
𝑑𝑧𝑑𝜁

+
∂2𝑙𝑜𝑔(1 + 𝑧𝑧 − 𝜁𝜁)

∂𝜁∂𝑧
𝑑𝜁𝑑𝑧 +

∂2𝑙𝑜𝑔(1 + 𝑧𝑧 − 𝜁𝜁)

∂𝜁∂𝜁
𝑑𝜁𝑑𝜁,

where

∂2𝑙𝑜𝑔(1− 𝑧𝑧 − 𝜁𝜁)

∂𝑧∂𝑧
=

1

(1− 𝑧𝑧)2
+
(1 + 𝑧𝑧)𝜁𝜁

(1− 𝑧𝑧)3
,

∂2𝑙𝑜𝑔(1 + 𝑧𝑧 − 𝜁𝜁)

∂𝑧∂𝜁
=

𝑧𝜁

(1− 𝑧𝑧)2
,

∂2𝑙𝑜𝑔(1 + 𝑧𝑧 − 𝜁𝜁)

∂𝜁∂𝑧
=

𝑧𝜁

(1− 𝑧𝑧)2
,

∂2𝑙𝑜𝑔(1 + 𝑧𝑧 − 𝜁𝜁)

∂𝜁∂𝜁
=

1

(1− 𝑧𝑧)
.

In [2] it was proved that 𝑔 is an invariant form under the action of the super
Lie group 𝑆𝑈(1, 1∣1). This form produces a metric (Bergman super metric), for
the unit super disk, which is invariant under the action of 𝑆𝑈(1, 1∣1).

The unit super circle is defined as the super manifold

𝑆1∣1 = {(𝑎 = 𝑎1 + 𝑖𝑎2, 𝜏 = 𝜂1 + 𝑖𝜂2)∣ 𝑎21 + 𝑎22 = 1, 𝜂1𝑎1 + 𝜂2𝑎2 = 0},
where 𝜂1, 𝜂2 are real Grassmann variables. This definition is equivalent to the
definition of the unit super circle as the set of matrices

𝐴 =

(
𝑎 𝜏
𝜏 𝑎

)
,
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such that 𝐴∗𝐴 = 𝐼, and Ber𝐴 = 1. The supermanifold 𝑆1∣1 is a subgroup of
𝑆𝑈(1, 1∣1) and the corresponding action of 𝑆1∣1 on the unit super disk is given by
the formulas

𝑧 1→ 𝑤 = 𝑎𝑧 − 𝜏𝜁, (2.5)

𝜁 1→ 𝜂 = 𝜏𝑧 + 𝑎𝜁. (2.6)

A smooth function 𝑓 , defined in the unit super disk, is invariant under the
action of 𝑆1∣1 if and only if 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓0(𝑟) + 𝑓1(𝑟)𝑧𝜁 + 𝑓1(𝑟)𝑧𝜁 − 𝑓 ′0(𝑟)
2𝑟

𝜁𝜁,

where 𝑟 = ∣𝑧∣ and 𝑓0 and 𝑓1 are radial functions. We define a radial super function
as an invariant function under the action of 𝑆1∣1.

Theorem 2.4. Let 𝑓 be a radial super function. Then the Toeplitz operator 𝑇𝑓 is
diagonal.

Proof. The detailed proof is given in [11]. Here we sketch only the main ideas
of the proof. If 𝑓 is a radial super function, the space generated by 𝑧0, i.e., all
constant functions, and the space generated by {𝑧𝑛, 𝑧𝑛−1𝜁}, 𝑛 ≥ 0, are invariant
subspaces for the operator 𝑇𝑓 . For 𝑛 ≥ 1 the restriction of 𝑇𝑓 to the bidimensional
space generated by {𝑧𝑛, 𝑧𝑛−1𝜁} can be written in matrix form as follows

2Γ(𝑛+ 𝜈)

(𝑛− 1)!Γ(𝜈)

( ∫ 1
0 (1− 𝑟2)𝜈−1𝑟2𝑛−1𝑓0(𝑟)𝑑𝑟

∫ 1
0 (1 − 𝑟2)𝜈−1𝑟2𝑛+1𝑓1(𝑟)𝑑𝑟/𝑛∫ 1

0 (1− 𝑟2)𝜈−1𝑟2𝑛+1𝑓1(𝑟)𝑑𝑟
∫ 1
0 (1− 𝑟2)𝜈−1𝑟2𝑛−1𝑓0(𝑟)𝑑𝑟

)
.

This 2× 2 matrix has the following eigenvalues
2Γ(𝑛+ 𝜈)

(𝑛− 1)!Γ(𝜈)
(∫ 1

0

(1− 𝑟2)𝜈−1𝑟2𝑛−1𝑓0(𝑟)𝑑𝑟) ±
∫ 1

0

(1− 𝑟2)𝜈−1𝑟2𝑛+1𝑓1(𝑟)𝑑𝑟/
√
𝑛

)
.

The corresponding eigenvectors are

𝜔𝑛1 =
𝑧𝑛√
𝑛
+ 𝑧𝑛−1𝜁,

𝜔𝑛2 = −
𝑧𝑛√
𝑛
+ 𝑧𝑛−1𝜁,

whose norms are

∥𝜔𝑛1∥ = ∥𝜔𝑛2∥ =
√
(𝑛− 1)!Γ(𝜈)
Γ(𝑛+ 𝜈)

+
𝑛!Γ(𝜈)

(𝑛+ 𝜈)Γ(𝑛+ 𝜈)
.

Let {1, 𝜔𝑛1, 𝜔𝑛2 ∣𝑛 ≥ 0} be the orthonormal basis obtained by normalizing all
of the eigenvectors. Then the super Toeplitz operator with radial symbol 𝑓 is the
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diagonal operator of the form

𝑇𝑓(𝑤𝑛𝑖) =
2Γ(𝑛+ 𝜈)

(𝑛− 1)!Γ(𝜈)
(∫ 1

0

(1− 𝑟2)𝜈−1𝑟2𝑛−1𝑓0(𝑟)𝑑𝑟

+ (−1)𝑖+1
∫ 1

0

(1 − 𝑟2)𝜈−1𝑟2𝑛+1𝑓1(𝑟)𝑑𝑟/
√
𝑛

)
𝑤𝑛𝑖 ,

(2.7)

for 𝑖 = 1, 2, 𝑛 = 1, . . . □

An immediate consequence of the last theorem is the fact that the 𝐶∗-algebra
generated by all Toeplitz operators with radial symbols is commutative. Further-
more, since the second factor in formula (2.7) has the term 1/

√
𝑛, for a bounded

function 𝑓1, the super Toeplitz operator 𝑇𝑓 is bounded if and only if(
2Γ(𝑛+ 𝜈)

(𝑛− 1)!Γ(𝜈)
∫ 1

0

(1 − 𝑟2)𝜈−1𝑟2𝑛−1𝑓0(𝑟)𝑑𝑟
)

is a bounded sequence and 𝑇𝑓 is compact if and only if the sequence(
2Γ(𝑛+ 𝜈)

(𝑛− 1)!Γ(𝜈)
∫ 1

0

(1− 𝑟2)𝜈−1𝑟2𝑛−1𝑓0(𝑟)𝑑𝑟
)

,

tends to zero when 𝑛→∞.
In the definition of a radial function given above we excluded all complex-

valued radial functions. In order to see the classical case of Toeplitz operators with
radial symbols as elements of a commutative algebra of super Toeplitz operators we
introduce the following group of elements of 𝑆𝑈(1∣1∣1). For two complex numbers
𝑧 = 𝑒𝑖𝑡, 𝑤 = 𝑒𝑖𝑠 in the unit circle, consider the element of 𝑆𝑈(1, 1∣1) given by the
following matrix

𝑇𝑠,𝑡 =

⎛⎝ 𝑒𝑖𝑠 0 0
0 𝑒𝑖𝑡 0
0 0 𝑒𝑖(𝑡+𝑠)

⎞⎠ .

It is easy to prove that 𝑇 2 = {𝑇𝑠,𝑡∣𝑠, 𝑡 ∈ [0, 2𝜋)} is a subgroup of 𝑆𝑈(1, 1∣1).
Let 𝑓 be a bounded function defined in the unit super disk. If 𝑓 is invariant

under the action of 𝑇 2 then 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓0(𝑟) + 𝑓1(𝑟)𝜁𝜁, (2.8)

where 𝑓0 and 𝑓1 are radial functions.
By Theorem 2.3 the super Toeplitz operator with symbol 𝑓(𝑧, 𝜁) = 𝑓0(𝑟) +

𝑓1(𝑟)𝜁𝜁 has the form (
𝑇 𝜈
𝜈

(
𝑓0 +

1−𝑤𝑤
𝜈−1 𝑓1

)
0

0 𝑇 𝜈+1
𝜈+1 (𝑓0)

)
. (2.9)

This implies that the Toeplitz algebra generated by all super Toeplitz operators
whose symbols are invariant under the action of 𝑇 2 is commutative. Here we used
the fact that a Toeplitz operator with radial symbol, acting on the Bergman space,
is diagonal.
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3. The super upper half-plane and its Bergman space

Denote by Λ(ℂ) the exterior algebra over ℂ = ℝ2. The super upper half-plane ℍ1∣1

is the supermanifold (ℍ,𝒪), where ℍ = {𝑧 ∈ ℂ : Im 𝑧 > 0} and 𝒪 is the sheaf of
superalgebras on ℍ whose space of global sections is 𝐶∞(ℍ1∣1) = 𝐶∞(ℍ)⊗ Λ(ℂ).
Denote by 𝜂 and 𝜂 the standard generators of Λ(ℂ). An element 𝑓 ∈ 𝐶∞(ℍ1∣1)
has the form

𝑓(𝑧, 𝜁, 𝜁) = 𝑓00(𝑧) + 𝑓01(𝑧)𝜂 + 𝑓10(𝑧)𝜂 + 𝑓11(𝑧)𝜂𝜂,

where 𝑓𝑖𝑗 ∈ 𝐶∞(ℍ).
The Lie super-group 𝑆𝐿(2∣2)(ℝ) is defined as follows. Its base manifold is

𝑆𝐿2(ℝ) and its structure sheaf is generated by 𝛾𝑖𝑗 and 𝛾𝑖𝑗 for 1 ≤ 𝑖, 𝑗 ≤ 3, with
the following parity assignments:

∣𝛾𝑖𝑗 ∣ = ∣𝛾𝑖𝑗 ∣ =
{
0 if 1 ≤ 𝑖, 𝑗 ≤ 2 and 𝑖 = 𝑗 = 3,
1 otherwise.

(3.1)

This means that if ∣𝛾𝑖𝑗 ∣ = 0 then 𝛾𝑖𝑗 is an even super-number, and 𝛾𝑖𝑗 is odd
otherwise.

Let 𝛾 = (𝛾𝑖𝑗) denote the super-matrix with entries 𝛾𝑖𝑗 and, let 𝛾∗ be its
hermitian adjoint, where 𝛾∗𝑖𝑗 = 𝛾𝑗𝑖.

For 𝛾 ∈ 𝑆𝐿(2∣2)(ℝ) we assume that

𝛾∗𝐼𝛾 = 𝐼, (3.2)

where

𝐼 =

⎛⎝ 0 −𝑖 0
𝑖 0 0
0 0 −1

⎞⎠ , (3.3)

and that

Ber𝛾 = 1, (3.4)

where Ber denotes the Berezinian.
The above conditions are the relations that define the structure sheaf of

𝑆𝐿(2∣2)(ℝ). We define an action of 𝑆𝐿(2∣2)(ℝ) on ℍ1∣1 as follows:

𝑧 1→ 𝑧′ :=
𝛾11𝑧 + 𝛾12 + 𝛾13𝜃

𝛾21𝑧 + 𝛾22 + 𝛾23𝜃
, (3.5)

𝜃 1→ 𝜃′ :=
𝛾31𝑧 + 𝛾32 + 𝛾33𝜃

𝛾21𝑧 + 𝛾22 + 𝛾23𝜃
. (3.6)

The expression (𝛾21𝑧 + 𝛾22 + 𝛾23𝜃)
−1 is defined in terms of the Taylor series for

super-functions (see [1]) by

(𝛾21𝑧 + 𝛾22 + 𝛾23𝜃)
−1 =

1

𝛾21𝑧 + 𝛾22
− 𝛾23
(𝛾21𝑧 + 𝛾22)2

𝜃.

With a slight abuse of notation, we write equations (3.5), (3.6) jointly by 𝑍 ′ =
(𝑧′, 𝜃′) = 𝛾(𝑍).
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If 𝛾 is a morphism between super domains, we define

𝛾′(𝑍) = Ber

(
∂𝑧′
∂𝑧

∂𝜃′
∂𝑧

∂𝑧′
∂𝜃

∂𝜃′
∂𝜃

)
= Ber

∂𝑍 ′

∂𝑍
, (3.7)

for more details see [1].

Definition 3.1. For 𝜈 > 1, the weighted Bergman space

𝐻2
𝜈 (ℍ) := 𝒪(ℍ) ∩ 𝐿2(ℍ, 𝑑𝜔𝜈)

consists of all holomorphic functions on ℍ which are square-integrable with respect
to the probability measure

𝑑𝜔𝜈(𝑧) =
𝜈 − 1
𝜋

(𝑧 − 𝑧)𝜈−2𝑑𝑧. (3.8)

Here 𝑑𝑧 denotes Lebesgue measure on ℂ.

It is well known that 𝐻2
𝜈 (ℍ) has the reproducing kernel

𝐾𝜈(𝑧, 𝑤) = (𝑧 − �̄�)−𝜈 ,

where 𝑧, 𝑤 ∈ ℍ.
Let 𝒞(ℍ) denote the algebra of continuous functions on ℍ. The tensor product

𝒞(ℍ1∣1
) := 𝒞(ℍ)⊗ Λ(ℂ)

consists of all “continuous super-functions” of the form

𝐹 = 𝑓00 + 𝜁 𝑓10 + 𝜁 𝑓01 + 𝜁𝜁 𝑓11 , (3.9)

where 𝑓00, 𝑓10, 𝑓01, 𝑓11 ∈ 𝒞(ℍ).
Definition 3.2. For any parameter 𝜈 > 1 the (weighted) super-Bergman space

𝐻2
𝜈 (ℍ

1∣1) ⊂ 𝒪(ℍ1∣1)

consists of all super-holomorphic functions Ψ(𝑧, 𝜁) which satisfy the square-integra-
bility condition

(Ψ∣Ψ)𝜈 := 1

𝜋

∫
ℍ1∣1

𝑑𝑧 𝑑𝜁 (2 Im(𝑧)− 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) < +∞.

Proposition 3.3. For Ψ = 𝜓0 + 𝜁 𝜓1 ∈ 𝒪(ℍ1∣1) we have

1

𝜋

∫
ℍ1∣1

𝑑𝑧 𝑑𝜁 (2 Im(𝑧)− 𝜁𝜁)𝜈−1Ψ(𝑧, 𝜁)Ψ(𝑧, 𝜁) = (𝜓0∣𝜓0)𝜈 + 1

𝜈
(𝜓1∣𝜓1)𝜈+1 ,

i.e., there is an orthogonal decomposition

𝐻2
𝜈 (ℍ

1∣1) = 𝐻2
𝜈 (ℍ)⊕ [𝐻2

𝜈+1(ℍ)⊗ Λ1(ℂ1)]
onto a sum of weighted Bergman spaces, where Λ1(ℂ1) is the one-dimensional
vector space with basis vector 𝜁.
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Proposition 3.4. For Ψ = 𝜓0 + 𝜂 𝜓1 ∈ 𝐻2
𝜈 (ℍ

1∣1) we have the reproducing kernel
property

Ψ(𝑤, 𝜂) =
1

𝜋

∫
ℍ1∣1

𝑑𝑥 𝑑𝜉 (2 Im(𝑥)− 𝜉𝜉)𝜈−1
(
𝑤 − 𝑥

𝑖
− 𝜂𝜉

)−𝜈

Ψ(𝑥, 𝜉),

i.e., 𝐻2
𝜈 (ℍ

1∣1) has the reproducing kernel

𝐾𝜈(𝑤, 𝜂, 𝑥, 𝜉) = (
𝑤 − �̄�

𝑖
− 𝜂𝜉)−𝜈 .

4. Relation between the Bergman space on the super unit disk
and the Bergman space on the super upper half-plane

In order to study Toeplitz operators on the Bergman space on the unit disk we
can pass to the upper half-plane by using a Möbius transformation and then con-
structing a unitary operator that transforms the Bergman space on the unit disk
onto the Bergman space on the upper half-plane. In this section we include some
results from [17] that show how to transform the Bergman space on the unit super
disk onto the Bergman space on the upper half-plane.

Consider the super matrix

𝜓 =

⎛⎜⎝
1√
2

𝑖√
2

0
𝑖√
2

1√
2

0

0 0 1

⎞⎟⎠ ,

with Ber(𝜓) = 1. This matrix induces a linear transformation from the unit super
disk 𝔻1∣1 to the super upper half-plane ℍ1∣1 defined by 𝜓(𝑧, 𝜁) = (𝑤, 𝜂), where

𝑤 =
𝑧 + 𝑖

𝑖𝑧 + 1
and 𝜂 =

𝜁
√
2

𝑖𝑧 + 1
, (4.1)

with the inverse 𝜓−1(𝑤, 𝜂) = (𝑧, 𝜃) given by

𝑧 =
𝑤 − 𝑖

−𝑖𝑤 + 1
and 𝜁 =

𝜂
√
2

−𝑖𝑤 + 1
. (4.2)

The super group 𝑆𝐿(2∣2)(ℝ) is isomorphic to 𝑆𝑈(1, 1∣1) (for details see [17]).
The isomorphism is given by

𝛾 1→ 𝜓𝛾𝜓−1. (4.3)

Lemma 4.1. Let 𝑍1 = (𝑧1, 𝜁1), 𝑍2 = (𝑧2, 𝜁2), 𝜓(𝑍1) = (𝑤1, 𝜂1) =𝑊1 and 𝜓(𝑍2) =
(𝑤2, 𝜂2) =𝑊2 where 𝜓 is given by (4.1) then,

𝑤1 − 𝑤2
𝑖

− 𝜂1𝜂2 = (1 + 𝑧1𝑧2 − 𝜁1𝜁2)𝜓
′(𝑍1)𝜓′(𝑍2), (4.4)

(1 + 𝑧1𝑧2 − 𝜁1𝜁2) =

(
𝑤1 − 𝑤2

𝑖
− 𝜂1𝜂2

)
(𝜓−1)′(𝑊1)(𝜓−1)′(𝑊2). (4.5)
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In [2] it was proved that the invariant measure under the action of 𝑆𝑈(1, 1∣1)
has the form

1

𝜋
(1 − 𝑧𝑧 − 𝜃𝜃)−1𝑑𝑧𝑑𝑧𝑑𝜃𝑑𝜃. (4.6)

By Lemma 4.1 and Equation (4.3), we have that the invariant measure of the unit
super disk corresponds to the measure of the super upper half-plane as follows

1

𝜋
(1− 𝑧𝑧 − 𝜃𝜃)−1𝑑𝑧𝑑𝑧𝑑𝜃𝑑𝜃 =

1

𝜋
(2 Im𝑤 − 𝜂𝜂)−1𝑑𝑤𝑑𝑤𝑑𝜂𝑑𝜂, (4.7)

where 𝜓(𝑧, 𝜃) = (𝑤, 𝜂). Moreover, the measure of the upper half-plane is invariant
under the action of the group 𝑆𝐿(2∣2)(ℝ).

For 𝐹 ∈ 𝒞(ℍ1∣1
), the super Toeplitz operator 𝑇

(𝜈)
𝐹 on 𝐻2

𝜈 (ℍ
1∣1) is defined as

𝑇
(𝜈)
𝐹 Ψ = 𝑃 (𝜈)(𝐹Ψ), (4.8)

where 𝑃 (𝜈) denotes the orthogonal projection onto 𝐻2
𝜈 (ℍ

1∣1).

Theorem 4.2. With respect to the decomposition Ψ = 𝜓0+ 𝜂 𝜓1, the super-Toeplitz

operator 𝑇
(𝜈)
𝐹 on 𝐻2

𝜈 (ℍ
1∣1) is given by the block matrix

𝑇
(𝜈)
𝐹 =

(
𝑇 𝜈
𝜈

(
𝑓00 +

2 Im(𝑤)
𝜈−1 𝑓11

)
𝑇 𝜈+1
𝜈

(
2 Im(𝑤)
𝜈−1 𝑓10

)
𝑇 𝜈
𝜈+1 (𝑓01) 𝑇 𝜈+1

𝜈+1 (𝑓00)

)
. (4.9)

Here for 0 ≤ 𝑖, 𝑗 ≤ 1, 𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓) denotes the Toeplitz type operator from 𝐻2

𝜈+𝑗(ℍ)
to 𝐻2

𝜈+𝑖(ℍ) defined by

𝑇 𝜈+𝑗
𝜈+𝑖 (𝑓)𝜓 := 𝑃𝜈+𝑖(𝑓𝜓),

for 𝜓∈𝐻2
𝜈+𝑗(ℍ) and 𝑃𝜈+𝑖 is the orthogonal projection from 𝐿2𝜈+𝑖(ℍ) onto 𝐻2

𝜈+𝑖(ℍ).

5. Toeplitz operators on the super upper half-plane:
Super parabolic case

The super group ℝ1∣1 can be seen as the subgroup of 𝑆𝐿(2∣2)(ℝ) consisting of all
matrices

𝑀(ℎ, 𝜏) =

⎛⎝ 1 ℎ 𝜏
0 1 0
0 −𝑖𝜏 1

⎞⎠ ,

where 𝜏∗ = 𝜏 and ℎ ∈ ℝ.
The action of ℝ1∣1 on ℍ1∣1 is given by 𝑀(ℎ, 𝜏)(𝑧, 𝜁) = (𝑤, 𝜂) where

𝑤 = 𝑧 + ℎ+ 𝜏𝜁 and 𝜂 = −𝑖𝜏 + 𝜁.

Let 𝑓 be a smooth function on the super upper half-plane. If 𝑓 is invariant
under the action of ℝ1∣1, then 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓0(𝑦) + 𝑓1(𝑦)𝜁 + 𝑓1(𝑦)𝜁 +
𝑓 ′0(𝑦)
2

𝜁𝜁. (5.1)
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In [4] it was proved that 𝜓 ∈ 𝐻2
𝜈 (ℍ) has a representation in the form of the

Fourier integral

𝜓(𝑧) =
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙(𝑡)𝑒𝑖𝑡𝑧𝑑𝑡, (5.2)

where 𝜙 ∈ 𝐿2(ℝ+).
Assume that 𝐹 is a bounded super function which is invariant under the

action of ℝ1∣1 of the form (5.1), then we have that the Toeplitz operator with
symbol 𝐹 evaluated on each element Ψ in 𝐻2

𝜈 (ℍ
1∣1),

Ψ(𝑤, 𝜂) =

∫
ℝ+

(
𝑡

𝜈−1
2√
Γ(𝜈)

)
𝜙0(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡+

∫
ℝ+

(
𝑡

𝜈
2 𝜂√

Γ(𝜈 + 1)

)
𝜙1(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡,

where 𝜙0 and 𝜙1 are elements of 𝐿2(ℝ+), has the following form

𝑇 𝜈
𝐹 (Ψ)(𝑤, 𝜂) =

1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2

(
𝜙0(𝑡)𝛾[𝑓0,𝜈](𝑡) +

𝜙1(𝑡)𝛾[𝑓1,𝜈](𝑡)

𝑡
1
2 𝜈

1
2

)
𝑒𝑖𝑡𝑤𝑑𝑡 (5.3)

+
𝜂√

Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2

(
𝜈

1
2𝜙0(𝑡)𝛾[𝑓1,𝜈](𝑡)

𝑡
1
2

+ 𝜙1(𝑡)𝛾[𝑓0,𝜈)](𝑡)

)
𝑒𝑖𝑡𝑤𝑑𝑡

where

𝛾[𝑓,𝜈](𝑡) =
𝑡𝜈

Γ(𝜈)

∫
ℝ+

𝑓(
𝑦

2
)𝑒−𝑡𝑦𝑦𝜈−1𝑑𝑦, with 𝑡 > 0.

It is clear that if 𝑓 is bounded then 𝛾[𝑓,𝜈](𝑡) is also bounded over ℝ+. There-
fore, 𝛾[𝑓𝑖,𝜈]𝜙𝑗 ∈ 𝐿2(ℝ+) for 𝑖, 𝑗 = 0, 1.

On the other hand, if we consider the elements of 𝐻2
𝜈 (ℍ

1∣1) of the form

Ψ+(𝑤, 𝜂) =

∫
ℝ+

(
𝑡

𝜈−1
2√
Γ(𝜈)

+ 𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈 + 1)

)
𝜙(𝑡)𝑒𝑖𝑡𝑤𝑑𝑡,

Ψ−(𝑤, 𝜂) =

∫
ℝ+

(
𝑡

𝜈−1
2√
Γ(𝜈)

− 𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈 + 1)

)
𝜙(𝑡)𝑒𝑖𝑡𝑤𝑑𝑡,

where 𝜙 ∈ 𝐿2(ℝ), it is clear that {Ψ+,Ψ−} generate 𝐻2
𝜈 (ℍ

1∣1) and the Toeplitz
operator with symbol 𝐹 over Ψ+ and Ψ− is a multiplication operator

𝑇 𝜈
𝐹 (Ψ+)(𝑤, 𝜂) =

∫
ℝ+

(
𝑡

𝜈−1
2√
Γ(𝜈)

+ 𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈 + 1)

)
[𝛾[𝑓0,𝜈](𝑡) + 𝛾[𝑓1,𝜈](𝑡)]𝜙(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡,

𝑇 𝜈
𝐹 (Ψ−)(𝑤, 𝜂) =

∫
ℝ+

(
𝑡

𝜈−1
2√
Γ(𝜈)

− 𝜈
1
2

𝑡
𝜈
2 𝜂√

Γ(𝜈 + 1)

)
[𝛾[𝑓0,𝜈](𝑡)− 𝛾[𝑓1,𝜈](𝑡)]𝜙(𝑡)𝑒

𝑖𝑡𝑤𝑑𝑡,

where 𝑡 > 0.

Theorem 5.1. The Toeplitz algebra generated by all super Toeplitz operators whose
symbols are invariant under the action of ℝ1∣1 is commutative.
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6. Toeplitz operators on the super upper half-plane:
Quasi-hyperbolic and Quasi-parabolic cases

6.1. The super groups ℝ × 𝑺1 and ℝ+ × 𝑺1

The super group ℝ× 𝑆1 can be seen as the group of matrices

𝐴(ℎ, 𝑡) =

⎛⎝ 𝑒𝑖𝑡 𝑒𝑖𝑡ℎ 0
0 𝑒𝑖𝑡 0
0 0 𝑒2𝑖𝑡

⎞⎠ ,

where 𝑡, ℎ ∈ ℝ.
Since 𝐴(ℎ, 𝑡) ∈ ℝ × 𝑆1, 𝐴(ℎ, 𝑡)∗𝐼𝐴(ℎ, 𝑡) = 𝐼, where 𝐼 is given in (3.3). In

consequence we have that 𝐴(ℎ, 𝑡) ∈ 𝑆𝐿(2∣2)(ℝ).

Theorem 6.1. Let 𝑓 be a smooth function on the super Lobachevsky plane (super
upper half-plane). If 𝑓 is invariant under the action of ℝ×𝑆1, then 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝑦) + 𝑓11(𝑦)𝜁𝜁,

where 𝑦 = Im(𝑧).

Proof. A smooth function 𝑓 on the super upper half-plane has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝑧) + 𝑓10(𝑧)𝜁 + 𝑓01(𝑧)𝜁 + 𝑓11(𝑧)𝜁𝜁,

where 𝑓𝑖𝑗 are smooth functions.

The function 𝑓(𝑧, 𝜁) is invariant under the action of ℝ× 𝑆1 if and only if

𝑓(𝑧, 𝜁) = 𝑓(𝑧 + ℎ, 𝑒𝑖𝑡𝜁).

In particular 𝑓(𝑧, 𝜁) must be invariant under the action of elements in ℝ×𝑆1

of the form 𝐴(ℎ, 0), i.e., it must satisfy the following equation

𝑓00(𝑧) + 𝑓10(𝑧)𝜁 + 𝑓01(𝑧)𝜁 + 𝑓11(𝑧)𝜁𝜁

= 𝑓00(𝑧 + ℎ) + 𝑓10(𝑧 + ℎ)𝜁 + 𝑓01(𝑧 + ℎ)𝜁 + 𝑓11(𝑧 + ℎ)𝜁𝜁.

Last equation implies that every function 𝑓𝑖𝑗 depends only on 𝑦 = Im(𝑧).
Thus 𝑓(𝑧, 𝜁) has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝑦) + 𝑓10(𝑦)𝜁 + 𝑓01(𝑦)𝜁 + 𝑓11(𝑦)𝜁𝜁. (6.1)

Additionally 𝑓(𝑧, 𝜁) must be invariant under the action of all elements in
ℝ× 𝑆1 of the form 𝐴(0, 𝑡), i.e.,

𝑓(𝑧, 𝜁) = 𝑓(𝑧, 𝑒𝑖𝑡𝜁).

Using last equation and equation (6.1) we get

𝑓00(𝑦)+𝑓10(𝑦)𝜁+𝑓01(𝑦)𝜁+𝑓11(𝑦)𝜁𝜁 = 𝑓00(𝑦)+𝑓10(𝑦)𝜁𝑒
𝑖𝑡+𝑓01(𝑦)𝜁𝑒

−𝑖𝑡+𝑓11(𝑦)𝜁𝜁.

Then 𝑓10 = 𝑓01 = 0. □
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The super group ℝ+ × 𝑆1 can be seen as the group of matrices

𝐵(𝑎, 𝑡) =

⎛⎝ 𝑎𝑒𝑖𝑡 0 0
0 𝑎−1𝑒𝑖𝑡 0
0 0 𝑒2𝑖𝑡

⎞⎠ ,

where 𝑡 ∈ ℝ and 𝑎 ∈ ℝ+.
Since 𝐵(𝑎, 𝑡) ∈ ℝ+ × 𝑆1 then 𝐵(𝑎, 𝑡)∗𝐼𝐵(𝑎, 𝑡) = 𝐼, where 𝐼 is given in (3.3).

Therefore 𝐵(𝑎, 𝑡) ∈ 𝑆𝐿(2∣2)(ℝ).

Theorem 6.2. Let 𝑓 be a smooth function on the super upper half-plane. If 𝑓 is
invariant under the action of ℝ+ × 𝑆1, then 𝑓 has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝜗) +
𝑓11(𝜗)𝜁𝜁

𝑟
,

where 𝜗 = arg(𝑧) and 𝑟 = ∣𝑧∣.

Proof. A smooth function 𝑓 on the super upper half-plane has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝑧) + 𝑓10(𝑧)𝜁 + 𝑓01(𝑧)𝜁 + 𝑓11(𝑧)𝜁𝜁,

where 𝑓𝑖𝑗 are smooth functions.

A function 𝑓(𝑧, 𝜁) is invariant under the action of ℝ× 𝑆1 on the super plane
if and only if

𝑓(𝑧, 𝜁) = 𝑓(𝑎2𝑧, 𝑎𝑒𝑖𝑡𝜁).

The function 𝑓(𝑧, 𝜁) must be invariant under the action of the elements of
ℝ× 𝑆1 of the form 𝐵(𝑎, 0). Then 𝑓 satisfies the following equation

𝑓00(𝑧) + 𝑓10(𝑧)𝜁 + 𝑓01(𝑧)𝜁 + 𝑓11(𝑧)𝜁𝜁

= 𝑓00(𝑎
2𝑧) + 𝑓10(𝑎

2𝑧)𝑎𝜁 + 𝑓01(𝑎
2𝑧)𝑎𝜁 + 𝑓11(𝑎

2𝑧)𝑎2𝜁𝜁.

By the last equation 𝑓(𝑧, 𝜁) has the form

𝑓(𝑧, 𝜁) = 𝑓00(𝜗) +
𝑓10(𝜗)

𝑟1/2
𝜁 +

𝑓01(𝜗)

𝑟1/2
𝜁 +

𝑓11(𝜗)

𝑟
𝜁𝜁,

where 𝜗 is the argument of 𝑧.

The function 𝑓(𝑧, 𝜁) must be also invariant under the action of the elements
in ℝ× 𝑆1 of the form 𝐵(1, 𝑡). Then

𝑓(𝑧, 𝜁) = 𝑓(𝑧, 𝑒𝑖𝑡𝜁) = 𝑓00(𝜗) +
𝑓10(𝜗)

𝑟1/2
𝑒𝑖𝑡𝜁 +

𝑓01(𝜗)

𝑟1/2
𝑒−𝑖𝑡𝜁 +

𝑓11(𝜗)

𝑟
𝜁𝜁.

Thus 𝑓10 = 𝑓01 = 0. □
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6.2. Toeplitz operators whose symbols are invariant under the action of ℝ × 𝑺1

Consider a Toeplitz operator with ℝ × 𝑆1-invariant symbol 𝐹 (𝑧, 𝜁) = 𝑓00(𝑦) +
𝑓11(𝑦)𝜁𝜁, where 𝑦 = Im(𝑧). Thus this operator has the form

𝑇
(𝜈)
𝐹 (Ψ)(𝑤, 𝜂) =

𝜈 − 1
𝜋

∫
ℍ

(
𝑓00(𝑦) +

2𝑦𝑓11(𝑦)

𝜈 − 1
)

𝜓0(𝑧)(2 Im(𝑧))
𝜈−2

(
𝑤 − 𝑧

𝑖

)−𝜈

𝑑𝑧

+

⎛⎝ 𝜈

𝜋

∫
ℍ

𝑓00(𝑦)𝜓1(𝑧)(2 Im(𝑧))
𝜈−1

(
𝑤 − 𝑧

𝑖

)−(𝜈+1)
𝑑𝑧

⎞⎠ 𝜂

= 𝑇 𝜈
𝜈

(
𝑓00(𝑦) +

2𝑦𝑓11(𝑦)

𝜈 − 1
)
[𝜓0](𝑤) + 𝑇 𝜈+1

𝜈+1 (𝑓00(𝑦))[𝜓1](𝑤)𝜂, (6.2)

where Ψ = 𝜓0 + 𝜓1𝜁 ∈ 𝐻2
𝜈 (ℍ

1∣1).

Theorem 6.3. Let 𝐹 be a ℝ × 𝑆1-invariant function, then the Toeplitz operator

𝑇
(𝜈)
𝐹 is a multiplication operator.

Proof. Let Ψ = 𝜓0 + 𝜓1𝜁 ∈ 𝐻2
𝜈 (ℍ

1∣1), since 𝜓0 ∈ 𝐻2
𝜈 (ℍ) and 𝜓1 ∈ 𝐻2

𝜈+1(ℍ) and
using (5.2) they can be written in the form

𝜓0(𝑧) =
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝜙0(𝑡)𝑒

𝑖𝑡𝑧𝑑𝑡, (6.3)

𝜓1(𝑧)𝜁 =
1√

Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝜙1(𝑡)𝑒

𝑖𝑡𝑧𝑑𝑡𝜁, (6.4)

where 𝜙0, 𝜙1 ∈ 𝐿2(ℝ+).

In [4] it was proved that the operators 𝑇 𝜈
𝜈

(
𝑓00(𝑦) +

2𝑦𝑓11(𝑦)
𝜈−1

)
and 𝑇 𝜈+1

𝜈+1 (𝑓00(𝑦))

are multiplication operators. In fact,

𝑇 𝜈
𝜈

(
𝑓00(𝑦) +

2𝑦𝑓11(𝑦)

𝜈 − 1
)
[𝜓0](𝑧)

=
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝛾

[𝑓00(𝑦)+
2𝑦𝑓11(𝑦)

𝜈−1 ,𝜈−1](𝑡)𝜙0(𝑡)𝑒
𝑖𝑡𝑧𝑑𝑡,

𝑇 𝜈+1
𝜈+1 (𝑓00(𝑦))[𝜓1](𝑧) =

1√
Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝛾[𝑓00,𝜈](𝑡)𝜙1(𝑡)𝑒

𝑖𝑡𝑧𝑑𝑡,

where

𝛾[𝑓,𝜈](𝑡) =
𝑡𝜈

Γ(𝜈)

∫
ℝ+

𝑓(
𝑦

2
)𝑒−𝑡𝑦𝑦𝜈−1𝑑𝑦, with 𝑡 > 0. (6.5)

□

Theorem 6.4. The algebra generated by Toeplitz operators with invariant symbols
under the action of ℝ× 𝑆1 is commutative.

Proof. Let 𝐹 (𝑧, 𝜁) = 𝑓00(𝑦)+ 𝑓11(𝑦)𝜁𝜁 and 𝐺(𝑧, 𝜁) = 𝑔00(𝑦)+ 𝑔11(𝑦)𝜁𝜁 be ℝ×𝑆1-

invariant functions, if we evaluate 𝑇
(𝜈)
𝐺 ∘ 𝑇

(𝜈)
𝐹 on the elements of the form (6.3)
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and (6.4) then we have

𝑇
(𝜈)
𝐺 (𝑇

(𝜈)
𝐹 )(𝜓0(𝑤))(𝑧, 𝜁)

=
1√
Γ(𝜈)

∫
ℝ+

𝑡
𝜈−1
2 𝛾

[𝑓00(𝑦)+
2𝑦𝑓11(𝑦)

𝜈−1 ,𝜈−1]𝛾[𝑔00(𝑦)+ 2𝑦𝑔11(𝑦)
𝜈−1 ,𝜈−1]𝜙0(𝑡)𝑒

𝑖𝑡𝑧𝑑𝑡,

𝑇
(𝜈)
𝐺 (𝑇

(𝜈)
𝐹 )(𝜓1(𝑤)𝜂)(𝑧, 𝜁) =

1√
Γ(𝜈 + 1)

∫
ℝ+

𝑡
𝜈
2 𝛾[𝑓00,𝜈]𝛾[𝑔00,𝜈]𝜙1(𝑡)𝑒

𝑖𝑡𝑧𝑑𝑡𝜁.

Therefore, the 𝐶∗-algebra generated by all Toeplitz operators with ℝ × 𝑆1-
invariant symbols is commutative. □

Corollary 6.5. Let 𝐹 be a ℝ × 𝑆1-invariant function, then the spectrum of the

Toeplitz operator 𝑇
(𝜈)
𝑎 is given by

𝑠𝑝𝑇
(𝜈)
𝐹 =

{
𝛾[𝑓00,𝜈−1](𝑡) +

1

𝑡
𝛾[𝑓11,𝜈](𝑡) and 𝛾[𝑓00,𝜈](𝑡) : 𝑡 ∈ ℝ+

}
,

where 𝛾[𝑓,𝜈](𝑡) is given by (6.5).

6.3. Toeplitz operator with invariant symbols under the action of ℝ+ × 𝑺1

Consider a Toeplitz operator with ℝ+ × 𝑆1-invariant symbol 𝐹 (𝑧, 𝜁) = 𝑓00(𝜗) +

𝑟−1𝑓11(𝜗)𝜁𝜁, then the operator 𝑇
(𝜈)
𝐹 has the form

𝑇
(𝜈)
𝐹 (Ψ)(𝑤, 𝜂) =

𝜈 − 1
𝜋

∫
ℍ

(
𝑓00(𝜗) +

2𝑦𝑓11(𝜗)

𝑟(𝜈 − 1)
)

𝜓0(𝑧)(2 Im(𝑧))
𝜈−2

(
𝑤 − 𝑧

𝑖

)−𝜈

𝑑𝑧

+

⎛⎝ 𝜈

𝜋

∫
ℍ

𝑓00(𝜗)𝜓1(𝑧)(2 Im(𝑧))
𝜈−1

(
𝑤 − 𝑧

𝑖

)−(𝜈+1)
𝑑𝑧

⎞⎠ 𝜂

= 𝑇 𝜈
𝜈

(
𝑓00(𝜗) +

2 sin(𝜗)𝑓11(𝜗)

𝜈 − 1
)
[𝜓0](𝑤) + 𝑇 𝜈+1

𝜈+1 (𝑓00(𝜗))[𝜓1](𝑤)𝜂,

where Ψ = 𝜓0+𝜓1𝜁 ∈ 𝐻2
𝜈 (ℍ

1∣1) and 𝑇 𝜈
𝜈

(
𝑓00(𝜗) +

2 sin(𝜗)𝑓11(𝜗)
𝜈−1

)
, 𝑇 𝜈+1

𝜈+1 (𝑓00(𝜗)) are

the Toeplitz operators over 𝐻2
𝜈 (ℍ) and 𝐻2

𝜈+1(ℍ), respectively.

Theorem 6.6. Let 𝐹 be a ℝ+ × 𝑆1-invariant function, then the Toeplitz operator

𝑇
(𝜈)
𝐹 is a multiplication operator.

Proof. In [5] it was proved that if 𝜓 ∈ 𝐻2
𝜈 (ℍ) then it has the form

𝜓(𝑧) =
1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈/2)
∣Γ(𝜈2 + 𝑖𝑡)∣√

𝜋Γ(𝜈)
𝑒𝜋𝑡/2𝜙(𝑡)𝑑𝑡,

where 𝜙 ∈ 𝐿2(ℝ).
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Let Ψ = 𝜓0 + 𝜓1𝜁 ∈ 𝐻2
𝜈 (ℍ

1∣1), since 𝜓0 ∈ 𝐻2
𝜈 (ℍ) and 𝜓1 ∈ 𝐻2

𝜈+1(ℍ) they
have the representation

𝜓0(𝑧) =
1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈/2)
∣Γ(𝜈2 + 𝑖𝑡)∣√

𝜋Γ(𝜈)
𝑒𝜋𝑡/2𝜙0(𝑡)𝑑𝑡, (6.6)

𝜓1(𝑧)𝜁 =
1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈+1)/2
∣Γ(𝜈+12 + 𝑖𝑡)∣√

𝜋Γ(𝜈 + 1)
𝑒𝜋𝑡/2𝜙1(𝑡)𝑑𝑡𝜁. (6.7)

In [5] it was proved that the operators 𝑇 𝜈
𝜈

(
𝑓00(𝑦) +

2𝑦𝑓11(𝑦)
𝜈−1

)
and 𝑇 𝜈+1

𝜈+1 (𝑓00(𝑦))

are multiplication operators. In fact,

𝑇 𝜈
𝜈

(
𝑓00(𝜗) +

2 sin(𝜗)𝑓11(𝜗)

𝜈 − 1
)
[𝜓0](𝑧)

=
1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈/2)
∣Γ(𝜈2 + 𝑖𝑡)∣√

𝜋Γ(𝜈)
𝑒𝜋𝑡/2𝛽

[𝑓00(𝜗)+
2 sin(𝜗)𝑓11(𝜗)

𝜈−1 ,𝜈−1](𝑡)𝜙0(𝑡)𝑑𝑡,

𝑇 𝜈+1
𝜈+1 (𝑓00(𝜗))[𝜓1](𝑧) =

1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈+1)/2
∣Γ(𝜈+12 + 𝑖𝑡)∣√

𝜋Γ(𝜈 + 1)
𝑒𝜋𝑡/2𝛽[𝑓00(𝜗),𝜈](𝑡)𝜙1(𝑡)𝑑𝑡,

where

𝛽[𝑓(𝜗),𝜈](𝑡) = 2
𝜈−1𝜈

(
∣Γ(𝜈+12 + 𝑖𝑡)∣√

𝜋Γ(𝜈 + 1)

)2

𝑒𝜋𝑡
∫ 𝜋

0

𝑓(𝜗)𝑒−2𝑡𝜗 sin𝜈−1(𝜗)𝑑𝜗 and 𝑡 ∈ ℝ.
(6.8)

□
Theorem 6.7. The algebra generated by Toeplitz operators with invariant symbols
under the action of ℝ+ × 𝑆1 is commutative.

Proof. If 𝐹 (𝑧, 𝜁) = 𝑓00(𝜗) + 𝑟−1𝑓11(𝜗)𝜁𝜁 and 𝐺(𝑧, 𝜁) = 𝑔00(𝜗) + 𝑟−1𝑔11(𝜗)𝜁𝜁 are
ℝ× 𝑆1-invariant functions then we have

𝑇
(𝜈)
𝐺 (𝑇

(𝜈)
𝐹 )(𝜓0(𝑤))(𝑧, 𝜁) =

1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈/2)
∣Γ(𝜈2 + 𝑖𝑡)∣√

𝜋Γ(𝜈)
𝑒𝜋𝑡/2

× 𝛽
[𝑓00(𝜗)+

2 sin(𝜗)𝑓11(𝜗)
𝜈−1 ,𝜈−1](𝑡)

× 𝛽
[𝑔00(𝜗)+

2 sin(𝜗)𝑔11(𝜗)
𝜈−1 ,𝜈−1](𝑡)𝜙0(𝑡)𝑑𝑡,

𝑇
(𝜈)
𝐺 (𝑇

(𝜈)
𝐹 )(𝜓1(𝑤)𝜂)(𝑧, 𝜁) =

1√
2

∫
ℝ

𝑧𝑖𝑡−(𝜈+1)/2
∣Γ(𝜈+12 + 𝑖𝑡)∣√

𝜋Γ(𝜈 + 1)
𝑒𝜋𝑡/2𝛽[𝑓00(𝜗),𝜈](𝑡)

× 𝛽[𝑔00(𝜗),𝜈](𝑡)𝜙1(𝑡)𝑑𝑡 𝜁. □

Corollary 6.8. Let 𝐹 (𝑧, 𝜁) = 𝑓00(𝜗)+𝑟−1𝑓11(𝜗)𝜁𝜁 be a ℝ+×𝑆1-invariant function,

then the spectrum of the Toeplitz operator 𝑇
(𝜈)
𝐹 is given by

𝑠𝑝𝑇
(𝜈)
𝐹 =

{
𝛽[𝑓00,𝜈−1](𝑡) +

∣∣∣∣ Γ(𝜈2 + 𝑖𝑡)

Γ(𝜈+12 + 𝑖𝑡)

∣∣∣∣2 𝛽[𝑓11,𝜈](𝑡) and 𝛽[𝑓00,𝜈](𝑡) : 𝑡 ∈ ℝ

}
,

where 𝛽[𝑓,𝜈](𝑡) is given by (6.8).
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Until now we have found five commutative algebras of super Toeplitz oper-
ators whose symbols are invariant under the action of super-subgroups of isome-
tries. At the same time in the case of classic Toeplitz operators there are only
three different cases. The following question remains open: Are there more cases
of commutative algebras of super Toeplitz operators? This question is closely re-
lated to the classification of all maximal super subgroups of isometries for the unit
super disk or the super upper half-plane.
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México, MEXICO
e-mail: mloaiza@math.cinvestav.mx

A. Sánchez-Nungaray
Facultad de Matemáticas
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Computing the Hilbert Transform
in Wavelet Bases on Adaptive Grids

Frank Martin and Elias Wegert

Abstract. We propose an algorithm for the efficient numerical computation of
the periodic Hilbert transform. The function to be transformed is represented
in a basis of spline wavelets in Sobolev spaces. The underlying grids have a
hierarchical structure which is locally refined during computation according
to the behavior of the involved functions. Under appropriate assumptions, we
prove that the algorithm can deliver a result with prescribed accuracy. Several
test examples illustrate how the method works in practice.
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1. Introduction

The Hilbert transform is one of the fundamental operators in (complex) analysis
and plays an important role in various applications, in particular in signal pro-
cessing (see [14], [16]) and optics (see [16]).

Numerical methods for computing the Hilbert operator are based on different
principles. A straightforward approach evaluates the singular integral defining the
operator by quadrature formulas. This leads to discrete versions of the Hilbert
transform, like the so-called Wittich operator (see [11], [13], [15]).

More efficient methods are based on the fact that the Hilbert transform is
a diagonal operator in Fourier space, which allows for applying fast Fourier tech-
niques. As long as the function to be transformed is given (or can be evaluated)
on an appropriate uniform grid this is certainly the fastest and most reliable com-
putational method.

On the other hand, there are applications where one is mainly interested
in the behavior of the functions on a small subset of the domain, which makes
uniform grids inefficient. Similarly, when the functions are mostly ‘tame’ except

Both authors are supported by the Deutsche Forschungsgemeinschaft, grant We 1704/8-2.
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in a small region with ‘wild’ behavior, high precision approximation would require
unreasonably large uniform grids.

These observations motivate the search for appropriate methods which allow
one to compute the Hilbert transform of functions on non-uniform grids. There is
quite a number of different approaches which have been proposed in the literature
to solve related problems, like multipole methods (Dutt and Rokhlin [9], [10]),
Fourier methods involving non-equispaced fast Fourier transform NFFT (Kunis
and Potts [17]), panel clustering (Börm and Hackbusch [2]), and wavelet methods
(Dahmen, Prößdorf and Schneider [6], [7], Rathsfeld [22]).

Our preference to wavelet methods has a simple reason: wavelets also allow
for detecting the regions where the behavior of the solution requires refinement
of the underlying grid. This feature is of special importance in applications of
the Hilbert transform to conformal mapping ([25], [26]) and iterative methods for
solving nonlinear Riemann–Hilbert problems ([23], [24]). In the iterative process
the solution may develop specific ‘singularities’ with a priori unknown location,
so that the grid has to be adapted appropriately. The purpose of this paper is to
describe an algorithm which automatically refines the grid during the computation
of the Hilbert transform.

This paper is a continuation of [20], where we studied the Hilbert transform
for biorthogonal spline wavelets on a uniform mesh, following Dahmen, Prößdorf
and Schneider [6], [7]. It is organised as follows: In Section 2 we introduce no-
tation and summarise relevant facts from [20]. In the next section we describe
the structure of the hierarchical grids which will be constructed in the adaptation
process. Section 4 is devoted to the computation of the Hilbert transform in the
corresponding wavelet spaces. In Section 5 we propose algorithms which simultane-
ously compute the Hilbert transform and adapt the grid according to the behavior
of the functions involved. In the last section we present the results of some test
calculations.

2. Preliminaries

We denote by 𝐿2 (ℝ) and 𝐿2 (𝕋) the Lebesgue spaces of square integrable functions
on the real line ℝ and the unit circle 𝕋 := {𝑧 ∈ ℂ : ∣𝑧∣ = 1}, respectively. These
spaces are equipped with the usual norms and scalar products. The Sobolev spaces
of order 𝑠 with 𝑠 ∈ ℕ are denoted by𝑊 𝑠

2 (ℝ) and𝑊 𝑠
2 (𝕋), their norms are given by

∥𝑢∥𝑊 𝑠
2 (ℝ)

= ∥𝑢∥𝐿2(ℝ)
+ ∥𝐷𝑠

𝑥𝑢∥𝐿2(ℝ)

∥𝑢∥𝑊 𝑠
2 (𝕋)

= ∥𝑢∥𝐿2(𝕋)
+ ∥𝐷𝑠

𝑡𝑢∥𝐿2(𝕋)
,

respectively, with the differential operators

𝐷𝑥𝑢 (𝑥) :=
d

d𝑥
𝑢 (𝑥) , 𝐷𝑡𝑢

(
ei𝜏

)
:= −i d

d𝜏
𝑢
(
ei𝜏

)
.

Setting 𝑢 (𝜏) = 𝑢
(
e2𝜋i𝜏

)
we identify functions on 𝕋 with 1-periodic functions on

ℝ. The corresponding periodic Sobolev spaces are denoted by 𝑊 𝑠
2

(− 1
2 ,

1
2

)
.
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The Hilbert transform of a function 𝑢 ∈ 𝐿2 (𝕋) is given by

𝐻𝑢
(
ei𝜏

)
:=

1

2𝜋

𝜋∫
−𝜋

cot
𝜎 − 𝜏

2
𝑢
(
ei𝜎

)
d𝜎,

where the integral is interpreted in the Cauchy principal value sense. The Hilbert
transform 𝐻 is a bounded linear operator in 𝑊 𝑠

2 (𝕋) for every 𝑠 ∈ ℕ.
The algorithm which we propose for computing the Hilbert transform is based

on an approach which has been analysed in a more general context by Dahmen,
Prößdorf and Schneider in [6] and [7]. The starting point is a representation of
the function to be transformed in a biorthogonal wavelet basis, generated by the
scaling function 𝜑1 and the wavelet 𝜓1,

𝑢 (𝑥) =

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
1
𝑗0,𝑘 (𝑥) +

∞∑
𝑗=𝑗0

2𝑗−1∑
𝑘=0

𝑏𝑗,𝑘𝜓
1
𝑗,𝑘 (𝑥) . (2.1)

Here the scaled translates 𝜑1𝑗,𝑘 and 𝜓1𝑗,𝑘 of 𝜑
1 and 𝜓1 are defined by

𝜑1𝑗,𝑘 (𝑥) := 2
𝑗
2 𝜑1

(
2𝑗𝑥− 𝑘

)
, 𝜓1𝑗,𝑘 (𝑥) := 2

𝑗
2𝜓1

(
2𝑗𝑥− 𝑘

)
,

respectively. The coefficients 𝑎𝑗0,𝑘 and 𝑏𝑗,𝑘 are given by 𝑎𝑗0,𝑘 = ⟨𝑢, 𝜑1𝑗0,𝑘⟩ and
𝑏𝑗,𝑘 = ⟨𝑢, 𝜓1𝑗,𝑘⟩, respectively, where 𝜑1 and 𝜓1 are the dual functions to 𝜑1 and

𝜓1, and ⟨., .⟩ denotes the scalar product in 𝐿2. Applying the Hilbert transform to
this representation and expanding the result in the same or another biorthogonal
wavelet basis generated by 𝜑2 and 𝜓2, we get

𝐻𝑢 (𝑥) =
2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
2
𝑗0,𝑘 (𝑥) +

∞∑
𝑗=𝑗0

2𝑗−1∑
𝑘=0

𝑏𝑗,𝑘𝜓
2
𝑗,𝑘 (𝑥)

with 𝑎𝑗0,𝑘 = ⟨𝐻𝑢,𝜑2𝑗0,𝑘⟩ and 𝑏𝑗,𝑘 = ⟨𝐻𝑢,𝜓2𝑗,𝑘⟩. In order to compute the coefficients
𝑎𝑗0,𝑘 and 𝑏𝑗,𝑘 of 𝐻𝑢 from given coefficients 𝑎𝑗0,𝑘 and 𝑏𝑗,𝑘 of 𝑢, one has to evaluate
the scalar products

⟨𝐻𝜑1𝑗0,𝑘, 𝜑
2
𝑗0,𝑙⟩, ⟨𝐻𝜓1𝑗,𝑘, 𝜑

2
𝑗0,𝑙⟩, ⟨𝐻𝜑1𝑗0,𝑘, 𝜓

2
𝜈,𝑙⟩, ⟨𝐻𝜓1𝑗,𝑘, 𝜓

2
𝜈,𝑙⟩. (2.2)

Since the wavelets have compact support and a number of vanishing moments,
most of the scalar products (2.2) are small. Replacing those entries by zero which
have absolute values below some threshold, we get a sparse matrix representation
approximating 𝐻 in the wavelet basis, which allows for efficient computation of
the Hilbert transform.

With hindsight to the applications we have in mind, we somewhat modify
the above scheme. So we work in Sobolev spaces 𝑊 𝑠

2 with 𝑠 ≥ 1 rather than in
𝐿2. Functions in these spaces are continuous, and we project them to the cor-
responding (finite-dimensional) wavelet spaces by spline interpolation, instead of
using projection with respect to the 𝐿2 scalar product. Because we are mainly
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interested in pointwise evaluation of the transformed function at the grid points,
we choose Dirac functionals in the range space of 𝐻 .

In this setting, algorithms for the computation of the Hilbert transform of
spline wavelets are described and investigated in [19] and [20]. We have chosen
biorthogonal B-Spline wavelets to represent the function 𝑢 in the form (2.1) (see
[4] and [8], for example). The scaling function is a centered B-Spline 𝑁𝑚 of or-
der 𝑚 with odd 𝑚 (typically with 𝑚 = 1 or 𝑚 = 3). These splines are defined
recursively by

𝑁0 (𝑥) :=

{
1, if − 1

2 ≤ 𝑥 < 1
2

0, elsewhere
, 𝑁𝑚 (𝑥) :=

1
2∫

− 1
2

𝑁𝑚−1 (𝑥− 𝑡) d𝑡.

We denote the scaling function and the corresponding wavelet by 𝜑𝑚 and 𝜓𝑚,
respectively, and set

𝜑𝑚
𝑗,𝑘 (𝑥) := 2

𝑗
2𝜑𝑚

(
2𝑗𝑥− 𝑘

)
, 𝜓𝑚

𝑗,𝑘 (𝑥) := 2
𝑗
2𝜓𝑚

(
2𝑗𝑥− 𝑘

)
,

for 𝑗, 𝑘 ∈ ℤ. In order to periodise these functions we define

𝜑𝑚
𝑗,𝑘 (𝑥) :=

∞∑
𝑛=−∞

𝜑𝑚
𝑗,𝑘 (𝑥+ 𝑛) , 𝜓𝑚

𝑗,𝑘 (𝑥) :=

∞∑
𝑛=−∞

𝜓𝑚
𝑗,𝑘 (𝑥+ 𝑛) .

Note that these sums are finite because 𝜑𝑚
𝑗,𝑘 and 𝜓𝑚

𝑗,𝑘 have compact support. We
point out that the set{

𝜑𝑚
𝑗0,𝑘 : 𝑘 = 0, . . . , 2𝑗0 − 1} ∪ {

𝜓𝑚
𝑗,𝑘 : 𝑘 = 0, 1, . . . , 2𝑗 − 1; 𝑗 = 𝑗0, 𝑗0 + 1, . . .

}
is a Riesz basis of 𝑊 𝑠

2 (𝕋), which is reflected by the norm estimates

∥𝑢∥2𝑊 𝑠
2
≤ 𝐶𝑠

⎛⎝2𝑗0−1∑
𝑘=0

∣𝑎𝑗0,𝑘∣2 +
∞∑

𝑗=𝑗0

22𝑗𝑠
2𝑗−1∑
𝑘=0

∣𝑏𝑗,𝑘∣2
⎞⎠ ,

∥𝑢∥2𝑊 𝑠
2
≥ 𝑐𝑠

⎛⎝2𝑗0−1∑
𝑘=0

∣𝑎𝑗0,𝑘∣2 +
∞∑

𝑗=𝑗0

22𝑗𝑠
2𝑗−1∑
𝑘=0

∣𝑏𝑗,𝑘∣2
⎞⎠ ,

(2.3)

with Riesz constants 𝐶𝑠 and 𝑐𝑠 ([3], [5], [18]).
When we are now going to consider non-uniform and adaptive grids, we first

of all need an algorithm to calculate the wavelet coefficients. The efficiency of the
computations can be improved when these grids have a special structure which is
described in the next section.

3. Grid structure

All grids considered in this paper are subsets of an underlying fine grid ℱ𝐽 (with
𝐽 ∈ ℕ), which is a uniform subdivision of the interval

[− 1
2 ,

1
2

)
with mesh size
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ℎ := 2−𝐽 . In the following we only admit a subset of grids with special hierarchical
structure.

Definition 3.1. The grid 𝒢 ⊆ ℱ𝐽 is said to be admissible if the following two
conditions are satisfied:

∙ there exists 𝑗0 ≤ 𝐽 such that the coarse grid

𝒢𝑗0 :=
{
𝑙2−𝑗0 : 𝑙 = −2𝑗0−1, . . . , 2𝑗0−1 − 1}

belongs to 𝒢, i.e., 𝒢𝑗0 ⊆ 𝒢,
∙ if 𝑥 = 𝑎 2−𝑗 ∈ 𝒢 and 𝑎 is odd, then the points 𝑥+ := (𝑎 − 1) 2−𝑗 and

𝑥− := (𝑎+ 1) 2−𝑗 are in 𝒢.
The second condition in Definition 3.1 implies that every point in 𝒢 is the midpoint
of two points which also belong to 𝒢.

We say that a grid point 𝑥 ∈ ℱ𝐽 belongs to the level 𝑗 if 𝑥 can be written as
𝑥 = 𝑎2−𝑗 with some integer 𝑎. Note that all points of level 𝑗 < 𝐽 also belong to
level 𝑗 + 1. The canonical representation of a grid point is 𝑥 = 𝑎2−𝑗 with 𝑎 odd.
We denote by 𝒢𝑗 the set of all points in 𝒢 which belong to the level 𝑗 but not
to the level 𝑗 − 1. So 𝒢𝑗 consists of all points in 𝒢 with canonical representation
𝑥 = 𝑎2−𝑗, and 𝒢 is a disjoint union

𝒢 = 𝒢𝑗0 ∪ 𝒢𝑗0+1 ∪ ⋅ ⋅ ⋅ ∪ 𝒢𝐽−1 ∪ 𝒢𝐽 .
Figure 3.1 shows one admissible grid 𝒢. The sets 𝒢𝑗 are distinguished by the lengths
of the tick marks.

Figure 3.1. Example of an admissible mesh

4. Hilbert transform

Let 𝑢 be a function in the periodic Sobolev space 𝑊 𝑠
2

(− 1
2 ,

1
2

)
. Assuming that

the values of this function are known on an admissible grid 𝒢, we would like to
compute its Hilbert transform on the same or on another grid 𝒢.

If the values of 𝑢 were given on the fine grid ℱ𝐽 , we could interpolate them by
a linear combination of the scaling functions 𝜑𝐽,𝑘, perform a wavelet transforma-
tion to get the wavelet coefficients, and apply the matrix representation ℋ of the
Hilbert transform 𝐻 in the wavelet basis. This approach has complexity 𝒪 (

𝐽2𝐽
)
,

which can be reduced to 𝒪 (
2𝐽
)
by using the algorithm from [1] for interpolating

the function on the fine grid ℱ𝐽 .
The following algorithm avoids computations on the fine grid, starting the

interpolation procedure on the coarse grid and working ‘top-down’ so that at the
finer levels only relevant grid points are involved.
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Input: 𝑗0 . . . coarse level
𝐽 . . . fine level
𝑚 . . . order of the B-Spline
𝒢 . . . admissible grid
𝑢 . . . values of function on 𝒢

Step 0: Set 𝑗 = 𝑗0.
Step 1: Set 𝑢 to zero on

{
𝑙2𝑗 : 𝑙 = −2𝑗−1, . . . , 2𝑗−1 − 1} ∖𝒢𝑗 and interpolate

the function 𝑢 on 𝒢𝑗 with the scaling functions 𝜑𝑗,𝑘, 𝑘 = 0, . . . , 2
𝑗−1.

Denote the interpolating function by 𝐿𝑗𝑢.
Step 2: Apply a wavelet decomposition to 𝐿𝑗𝑢.
Step 3: Set 𝑢 := 𝑢− 𝐿𝑗𝑢.
Step 4: Increase 𝑗 by one and go to Step 1 as long as 𝑗 ≤ 𝐽 .
Step 5: Add up the functions 𝐿𝑗𝑢 for 𝑗 = 𝑗0, . . . , 𝐽 .
Output: wavelet coefficient 𝑎𝑗0,𝑘 (𝑘 = 0, . . . , 2

𝑗0−1) and 𝑏𝑗,𝑘 (𝑗 = 𝑗0, . . . , 𝐽−1,
𝑘 = 0, . . . , 2𝑗 − 1).

Algorithm 1: Computation of the wavelet coefficient on an admissible grid

As was shown in [19], this algorithm has complexity 𝒪 (𝐽𝑁) with 𝑁 = ∣𝒢∣.
Once the wavelet decomposition of 𝑢 is determined, we can apply the (trun-

cated) matrix representation ℋ of the Hilbert transform 𝐻 in the corresponding

bases to obtain the approximate values �̃�𝑢 of 𝐻𝑢 on the grid 𝒢.

Input: 𝒢 . . . admissible grid where the function 𝑢 is given

𝒢 . . . admissible grid where the Hilbert transform is to be computed
𝑢 . . . values of function on 𝒢

Step 1: Compute the wavelet coefficient of 𝑢 on 𝒢 by Algorithm 1.
Step 2: Apply the matrix representation ℋ to the wavelet coefficients.

Output: values of �̃�𝑢 on the grid 𝒢

Algorithm 2: Computation of the Hilbert transform on an admissible grid

The application ofℋ can be done with complexity 𝒪(𝐽𝑁)
, where 𝑁 is the number

of grid points of 𝒢, so that the complete algorithm has complexity 𝒪(𝐽(𝑁 +𝑁
))
.

5. Adaptive grid generation

So far we supposed that the grids 𝒢 and 𝒢 are given. In this section we describe
an algorithm for adaptive construction of admissible grids on which the function
and its Hilbert transform can be represented with some prescribed accuracy.
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Basically the absolute values of the wavelet coefficients tell us where the
function is less regular, so that a finer grid is needed in those regions. In the first
approach we construct an admissible grid starting at the fine level. We compute
the wavelet coefficients of the function to be transformed and decide which grid
points can be omitted without increasing the error too much.

5.1. From fine to coarse

We consider a function 𝑢 ∈ 𝑊 𝑠
2

(− 1
2 ,

1
2

)
with wavelet representation

𝑢 (𝑥) =

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
𝑚
𝑗0,𝑘 (𝑥) +

∞∑
𝑗=𝑗0

2𝑗−1∑
𝑘=0

𝑏𝑗,𝑘𝜓
𝑚
𝑗,𝑘 (𝑥) .

In order to construct an appropriate grid on which 𝑢 will be represented, we assign
to each wavelet 𝜓𝑚

𝑗,𝑘 a set of grid points. Since we are dealing with 1-periodic

functions, while the grid points lie in the interval
[− 1

2 ,
1
2

)
, we write 𝑦 := 𝑥 mod 1

for the point 𝑦 ∈ [− 1
2 ,

1
2

)
with 𝑥− 𝑦 ∈ ℤ. Since the support of 𝜓𝑚 is contained in

[−𝑚,𝑚+ 1], we now associate the set

𝐼𝑗,𝑘 :=

{
−𝑚

2𝑗
+

𝑘

2𝑗
+

𝑙

2𝑗+1
mod 1 : 𝑙 = 0, . . . , 4𝑚+ 2

}
with the wavelet 𝜓𝑚

𝑗,𝑘. According to the size of the wavelet coefficients of 𝑢 we
build an index set

𝐼 ⊆ {
(𝑗, 𝑘) : 𝑘 = 0, . . . , 2𝑗 − 1; 𝑗 = 𝑗0, . . . , 𝐽 − 1

}
and form the grid

𝒢 = 𝒢𝑗0 ∪
( ∪
(𝑗,𝑘)∈𝐼

𝐼𝑗,𝑘

)
. (5.1)

The decision which elements (𝑗, 𝑘) are included in 𝐼 will depend on a threshold for
the associated wavelet coefficients. The next theorem describes how this threshold
can be chosen in order to guarantee that the truncation error is sufficiently small.

Theorem 5.1. Let 𝑚 ∈ 2ℕ0 + 1 and 𝑢 ∈𝑊 𝑠
2

(− 1
2 ,

1
2

)
with

𝑢 (𝑥) =
2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
𝑚
𝑗0,𝑘 (𝑥) +

𝐽−1∑
𝑗=𝑗0

2𝑗−1∑
𝑘=0

𝑏𝑗,𝑘𝜓
𝑚
𝑗,𝑘 (𝑥) .

For 𝜀 > 0 we define

�̃�𝑗,𝑘 :=

⎧⎨⎩𝑏𝑗,𝑘, ∣𝑏𝑗,𝑘∣ ≥ 𝛿𝑠 (𝑗) :=
𝜀√

𝐶𝑠2(2𝑠+1)
𝑗
2

√
𝐽 − 𝑗0

0, elsewhere
(5.2)
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𝜏

𝑢2

𝜋 2𝜋

−1

0

1

Figure 5.1. graph of 𝑢2 and distribution of grid points

with the Riesz constant 𝐶𝑠 from (2.3) and

𝑢 (𝑥) :=

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
𝑚
𝑗0,𝑘 (𝑥) +

𝐽−1∑
𝑗=𝑗0

2𝑗−1∑
𝑘=0

�̃�𝑗,𝑘𝜓
𝑚
𝑗,𝑘 (𝑥) .

Then we have for 0 ≤ 𝑠 < 𝑚+ 1
2

∥𝑢− 𝑢∥𝑊 𝑠
2
≤ 𝜀.

Proof. Using the Riesz inequality (2.3) we can estimate

∥𝑢− 𝑢∥2𝑊 𝑠
2
≤ 𝐶𝑠

𝐽−1∑
𝑗=𝑗0

22𝑗𝑠
2𝑗−1∑
𝑘=0

∣∣∣𝑏𝑗,𝑘 − �̃�𝑗,𝑘

∣∣∣2 ≤ 𝐶𝑠

𝐽−1∑
𝑗=𝑗0

22𝑗𝑠
2𝑗−1∑
𝑘=0

𝛿𝑠 (𝑗)
2

= 𝐶𝑠

𝐽−1∑
𝑗=𝑗0

22𝑗𝑠2𝑗𝛿𝑠 (𝑗)
2 = 𝐶𝑠

𝐽−1∑
𝑗=𝑗0

22𝑗𝑠2𝑗
𝜀2

𝐶𝑠2(2𝑠+1)𝑗 (𝐽 − 𝑗0)
= 𝜀2. □

In order to build the index set 𝐼 we consider the wavelet coefficient 𝑏𝑗,𝑘 of
a function 𝑢 ∈ 𝑊 𝑠

2

(− 1
2 ,

1
2

)
. The index (𝑗, 𝑘) is added to the set 𝐼 if the absolute

value ∣𝑏𝑗,𝑘∣ is greater than the threshold 𝛿𝑠 (𝑗) in (5.2),

𝐼 := {(𝑗, 𝑘) : ∣𝑏𝑗,𝑘∣ > 𝛿𝑠 (𝑗)} . (5.3)

If necessary, we enlarge the set 𝐼 in order to get an admissible mesh.

Figure 5.1 visualises the grid generated for the function

𝑢2 (𝑡) = Re

(
i log

(
1− 𝑝𝑡

1 + 𝑝𝑡

))
, 𝑡 ∈ 𝕋,
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with 𝑝 = 0.97, 𝑚 = 3, 𝑗0 = 8, 𝐽 = 12 and 𝛿0 (𝑗) = 10
−7. Beneath the graph of the

function the distribution of the grid points is depicted. Darker colors correspond
to a higher density of grid points.

5.2. From coarse to fine

The approach described above has a serious drawback: the starting point is the
wavelet representation of the function 𝑢 on the fine mesh ℱ𝐽 . So we first have
to compute all coefficients in order to decide afterwards which can be omitted.
Instead of using this ‘bottom-up’ strategy, it would be more efficient to work ‘top-
down’, beginning on the coarse level and adding the required points level by level.
This is achieved by the following algorithm, which simultaneously refines the grid
and computes approximations to the Hilbert transform.

Input: 𝑗0 . . . coarse level
𝐽 . . . fine level
𝑚 . . . order of the B-Splines
𝜀 . . . accuracy
𝑢 . . . function in 𝑊 𝑠

2

(− 1
2 ,

1
2

)
Step 0: Set 𝒢 := 𝒢𝑗0 .

Step 1: Add the point 𝑥 ∈ ℱ𝐽 to the grid 𝒢 if 𝑥− ∈ 𝒢 and 𝑥+ ∈ 𝒢.

Step 2: Evaluate the function 𝑢 on 𝒢 and compute the Hilbert transform 𝐻𝑢
by Algorithm 2.

Step 3: Update the grid 𝒢 according to (5.1) and (5.3) with respect to the
wavelet coefficients of 𝑢 and 𝐻𝑢.

Step 4: Go to Step 1, but break after 𝐽 − 𝑗0 + 1 steps.

Output: admissible grid 𝒢 and approximate Hilbert transform �̃�𝑢 on 𝒢

Algorithm 3: Adaptive computation of the Hilbert transform

Of course one cannot expect that this algorithm works well for all functions.
If, for example, the function 𝑢 vanishes on the coarse and the next level, the
algorithm cannot detect whether 𝑢 vanishes everywhere or just lives on the finer
levels.

On the other hand, there are classes of functions which are more or less
uniformly distributed over all levels. What is meant by this vague formulation is
made precise in the following definition. Here the parameter 𝑀 depends on the
wavelets considered and has to be chosen such that the support of 𝜓𝑗,0 has a non-
empty intersection with the supports of 𝜓𝑗−1,𝑙 for 𝑙 = −𝑀, . . . ,𝑀 . For 𝑚 = 1 and
𝑚 = 3 we have 𝑀 = 3 and 𝑀 = 6, respectively.
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Definition 5.2. A function 𝑢 ∈𝑊 𝑠
2

(− 1
2 ,

1
2

)
is called 𝑞-balanced if its wavelet coef-

ficients 𝑏𝑗,𝑘 fulfill the following condition for 𝑗 = 𝑗0 + 1, . . . , 𝑘 = 0, . . . , 2𝑗 − 1,

∣𝑏𝑗,𝑘∣2 ≤ 𝑞

2

1

2𝑀 + 1

𝑙=⌊ 𝑘
2 ⌋+𝑀∑

𝑙=⌊ 𝑘
2 ⌋−𝑀

∣𝑏𝑗−1,𝑙∣2 . (5.4)

The condition (5.4) expresses the fact that large wavelet coefficients on level 𝑗
already manifest themselves in reasonably large wavelet coefficients on the coarser
level 𝑗 − 1. So one could hope that all relevant coefficients will be maintained by
the algorithm.

Unfortunately this is not true. By adding a new level to the grid all previously
calculated wavelet coefficient are changed, and it is hard to see how the estimated
coefficients are related to the original coefficients. In fact one can construct non-
zero functions which vanish on the coarse and the next finer level and satisfy the
condition from Definition 5.2.

For this reason we modify the algorithm and introduce another type of bal-
anced functions. Analysing Algorithm 3 in the piecewise linear case 𝑚 = 1, we
recognize that the wavelet coefficients do indeed change, but the coefficients of
the hat-functions, which result from interpolation at the different levels in Step 1
of Algorithm 1, do not change. To explore this further, we introduce the set of
hat-functions visualised in Figure 5.2,{
𝜑1𝑗0,𝑘 : 𝑘 = 0, . . . , 2𝑗0 − 1}∪{𝜑1𝑗,2𝑘+1 : 𝑗 = 𝑗0 + 1, . . . ; 𝑘 = 0, . . . , 2

𝑗−1 − 1} (5.5)

and investigate the representation of a function 𝑢 by

𝑢 (𝑥) =

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
1
𝑗0,𝑘 (𝑥) +

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

𝑎𝑗,𝑘𝜑
1
𝑗,2𝑘+1 (𝑥) . (5.6)

When the infinite sum on the right-hand side is replaced by the finite sum over 𝑗
from 𝑗0+1 to 𝐽 , then (5.6) represents the piecewise linear spline which interpolates
𝑢 on the fine grid.

The modified algorithm which we shall propose afterwards is based on the
following result.

Theorem 5.3. The functions (5.5) form a Riesz basis for 𝑊 1
2

(− 1
2 ,

1
2

)
, i.e., if a

function 𝑢 ∈ 𝑊 1
2

(− 1
2 ,

1
2

)
has the representation (5.6), then

∥𝑢∥2𝑊 1
2
≤ 𝐶

⎛⎝2𝑗0−1∑
𝑘=0

∣𝑎𝑗0,𝑘∣2 +
∞∑

𝑗=𝑗0+1

22𝑗
2𝑗−1−1∑
𝑘=0

∣𝑎𝑗,𝑘∣2
⎞⎠ ,

∥𝑢∥2𝑊 1
2
≥ 𝑐

⎛⎝2𝑗0−1∑
𝑘=0

∣𝑎𝑗0,𝑘∣2 +
∞∑

𝑗=𝑗0+1

22𝑗
2𝑗−1−1∑
𝑘=0

∣𝑎𝑗,𝑘∣2
⎞⎠ .
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0 2−𝑗0

𝜑1𝑗0,0 𝜑1𝑗0,1 𝜑1𝑗0,2 𝜑1𝑗0,3

𝑗0

0 2−𝑗0

𝜑1𝑗0+1,1 𝜑1𝑗0+1,3 𝜑1𝑗0+1,5 𝜑1𝑗0+1,7

𝑗0 + 1

0 2−𝑗0

𝑗0 + 2

Figure 5.2. The set of functions (5.5)

Proof. We analyse the eigenvalues of the Gram matrix of the normalised system
𝜑1𝑗,𝑘 in the Sobolev space 𝑊 1

2 . In the first step we omit the functions 𝜑
1
𝑗0,𝑘

on the
coarse level and consider the finite system{

𝜑1𝑗,2𝑘+1 : 𝑗 = 𝑗0 + 1, . . . , 𝐽 ; 𝑘 = 0, . . . , 2𝑗−1 − 1} . (5.7)

We arrange these functions in the following way

𝜑1𝑗0+1,1, 𝜑1𝑗0+2,1, 𝜑1𝑗0+2,3, 𝜑1𝑗0+3,1, . . . 𝜑1𝐽,2𝐽−𝑗0−1,

𝜑1𝑗0+1,3, 𝜑1𝑗0+2,5, 𝜑1𝑗0+2,7, 𝜑1𝑗0+3,9, . . . 𝜑1𝐽,2𝐽−𝑗0+1−1,

. . . . . . . . . . . . . . . . . .

𝜑1𝑗0+1,2𝑗0+1−1, 𝜑
1
𝑗0+2,2𝑗0+2−3, 𝜑

1
𝑗0+2,2𝑗0+2−1, 𝜑

1
𝑗0+3,2𝑗0+3−7, . . . 𝜑1𝐽,2𝐽−1.

Every row of this table starts with a function 𝜑1𝑗0+1,2𝑘+1 from level 𝑗0+1. Then we

select all functions 𝜑1𝑗,𝑘 with 𝑗 ≥ 𝑗0+2 whose support is contained in the support

of 𝜑1𝑗0+1,2𝑘+1 and arrange them lexicographically. It is clear that every element of

(5.7) appears exactly once.

In the next step we normalise the functions 𝜑1𝑗,𝑘 with respect to the𝑊
1
2 -norm.

A straightforward calculation yields that

Δ2
𝑗 :=

∥∥𝜑1𝑗,𝑘∥∥2𝑊 1
2

= 2

(
1

3
+ 22𝑗

)
, 𝑗 = 𝑗0 + 1, . . . , 𝐽, 𝑘 = 0, . . . , 2𝑗−1 − 1.

Since the supports of two functions in different rows of the table have no common
interior points, the Gram matrix 𝐺 of the normalized system 𝜑1𝑗,𝑘/Δ𝑗 has the block
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structure

𝐺 =

⎛⎜⎜⎜⎝
𝐺1 0 ⋅ ⋅ ⋅ 0
0 𝐺2 ⋅ ⋅ ⋅ 0
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 𝐺2𝑗0

⎞⎟⎟⎟⎠ ,

where 𝐺𝑘 is the Gram matrix of the normalized system in the 𝑘th row of the table.
Since the functions in the 𝑘th row differ from the functions in the first row just
by a translation, we further have 𝐺1 = 𝐺2 = ⋅ ⋅ ⋅ = 𝐺2𝑗0 , so that we only need to
consider the eigenvalues of 𝐺1.

Preparing the application of Gershgorin’s theorem, we estimate the sum of
the absolute values of the non-diagonal entries of the rows of 𝐺1. It is not hard to
see that the largest sum is attained in the first row.

In order to compute the scalar products of the functions 𝜑1𝑗,𝑘/Δ𝑗 in the first
row, which are the entries of the matrix 𝐺1, we remark that the derivatives of these
functions form an orthogonal system in 𝐿2, so that outside the main diagonal of
𝐺1 only the 𝐿2-part of the scalar product is relevant. By a simple calculation we
get, for 𝑗 = 𝑗0 + 2, . . . , 𝐽 and 𝑘 = 0, . . . , 2𝑗−𝑗0−2 − 1,

⟨𝜑1𝑗0+1,1, 𝜑1𝑗,2𝑘+1⟩ =
√
2
3(𝑗0−𝑗+1)

(2𝑘 + 1) ,

⟨𝜑1𝑗0+1,1, 𝜑1𝑗,2𝑗−𝑗0−1−2𝑘−1⟩ =
√
2
3(𝑗0−𝑗+1)

(2𝑘 + 1) .
(5.8)

Taking into account normalisation and using that Δ𝑗 >
√
2 2𝑗, we estimate the

sum of (the absolute values of) the non-diagonal entries

𝐽∑
𝑗=𝑗0+2

2𝑗−𝑗0−1−1∑
𝑘=0

〈
1

Δ𝑗0+1
𝜑1𝑗0+1,1,

1

Δ𝑗
𝜑1𝑗,2𝑘+1

〉

=

𝐽∑
𝑗=𝑗0+2

2

2𝑗−𝑗0−2−1∑
𝑘=0

√
2
3(𝑗0−𝑗+1)

Δ𝑗0+1Δ𝑗
(2𝑘 + 1)

=
𝐽∑

𝑗=𝑗0+2

2

Δ𝑗0+1Δ𝑗

√
2
3(𝑗0−𝑗+1)

22(𝑗−𝑗0−2)

<

𝐽∑
𝑗=𝑗0+2

√
2
𝑗−𝑗0−3

√
2
2𝑗+1√

2
2𝑗0+3

<

∞∑
𝑗=𝑗0+2

√
2
−𝑗−3𝑗0−7

=
(√
2 + 1

)
2−2𝑗0−4 < 1.

Hence all eigenvalues of the Gram matrix 𝐺 are located in the interval

(𝐴,𝐵) :=
(
1− (√

2 + 1
)
2−2𝑗0−4, 1 +

(√
2 + 1

)
2−2𝑗0−4

)
.
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Note that 𝐴 and 𝐵 do not depend on the choice of 𝐽 . Taking the limit 𝐽 → ∞,
we obtain that any function 𝑢 in the closure 𝑊𝑗0 of the subspace of 𝑊

1
2 which is

spanned by the system{
𝜑1𝑗,2𝑘+1 : 𝑗 = 𝑗0 + 1, 𝑗0 + 2, . . . ; 𝑘 = 0, . . . , 2𝑗−1 − 1}

satisfies a Riesz estimate: if 𝑢 is represented by

𝑢 =

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

𝑎𝑗,𝑘𝜑
1
𝑗,2𝑘+1 =

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

(
Δ𝑗𝑎𝑗,𝑘

) 𝜑1𝑗,2𝑘+1
Δ𝑗

then we have

𝐴
∞∑

𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

Δ2
𝑗 ∣𝑎𝑗,𝑘∣2 ≤ ∥𝑢∥2𝑊 1

2
≤ 𝐵

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

Δ2
𝑗 ∣𝑎𝑗,𝑘∣2 .

On account of 2 ⋅ 22𝑗 < Δ2
𝑗 < 3 ⋅ 22𝑗 we obtain that

2𝐴

∞∑
𝑗=𝑗0+1

22𝑗
2𝑗−1−1∑
𝑘=0

∣𝑎𝑗,𝑘∣2 ≤ ∥𝑢∥2𝑊 1
2
≤ 3𝐵

∞∑
𝑗=𝑗0+1

22𝑗
2𝑗−1−1∑
𝑘=0

∣𝑎𝑗,𝑘∣2 . (5.9)

In order also to include the coarse part we study the angle between the spaces𝑊𝑗0

and 𝑉𝑗0 := span
{
𝜑1𝑗0,𝑘 : 𝑘 = 0, . . . , 2𝑗0 − 1

}
. So let 𝑓 in 𝑉𝑗0 and 𝑔 in 𝑊𝑗0 with

𝑓 (𝑥) =

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
1
𝑗0,𝑘 (𝑥) , 𝑔 (𝑥) =

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

𝑎𝑗,𝑘𝜑
1
𝑗,𝑘 (𝑥) .

Because the derivatives of 𝜑1𝑗0,𝑘 and 𝜑1𝑗,𝑘 with 𝑗 > 𝑗0 form an orthogonal system

in 𝐿2, we have ⟨𝐷𝑥𝑓,𝐷𝑥𝑔⟩ = 0, so that

⟨𝑓, 𝑔⟩+ ⟨𝐷𝑥𝑓,𝐷𝑥𝑔⟩ =
2𝑗0−1∑
𝑘=0

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝜅=0

𝑎𝑗0,𝑘𝑎𝑗,𝜅⟨𝜑1𝑗0,𝑘, 𝜑1𝑗,2𝜅+1⟩.

Applying the Cauchy–Schwarz inequality we arrive at

∣⟨𝑓, 𝑔⟩+ ⟨𝐷𝑥𝑓,𝐷𝑥𝑔⟩∣2 ≤
⎛⎝2𝑗0−1∑

𝑘=0

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝜅=0

2−2𝑗
∣∣⟨𝜑1𝑗0,𝑘, 𝜑1𝑗,2𝜅+1⟩∣∣2

⎞⎠ ⋅
⋅
⎛⎝2𝑗0−1∑

𝑘=0

∣𝑎𝑗0,𝑘∣2
⎞⎠⎛⎝ ∞∑

𝑗=𝑗0+1

2𝑗−1−1∑
𝜅=0

22𝑗 ∣𝑎𝑗,𝜅∣2
⎞⎠ .
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Using (2.3), (5.8), (5.9), and 𝐴 = 1− 2−2𝑗0−4(√2 + 1) > 3/4, we get

∣⟨𝑓, 𝑔⟩+ ⟨𝐷𝑥𝑓,𝐷𝑥𝑔⟩∣2 ≤ 3 ⋅ 2𝑗0
𝐴

∥𝑓∥2𝐿2
∥𝑔∥2𝑊 1

2

∞∑
𝑗=𝑗0+1

2𝑗−𝑗0−1−1∑
𝑘=0

2−2𝑗
23𝑗0

23𝑗
(2𝑘 + 1)2

≤ 21−𝑗0

15𝐴
∥𝑓∥2𝑊 1

2
∥𝑔∥2𝑊 1

2
≤ 1

5
∥𝑓∥2𝑊 1

2
∥𝑔∥2𝑊 1

2
.

Consequently the angle 𝛼 between 𝑉𝑗0 and𝑊𝑗0 is bounded from below by a positive
constant. The statement now follows from (5.9) and

(1− cos𝛼)
(
∥𝑓∥2𝑊 1

2
+ ∥𝑔∥2𝑊 1

2

)
≤ ∥𝑓 + 𝑔∥2𝑊 1

2
≤ 2

(
∥𝑓∥2𝑊 1

2
+ ∥𝑔∥2𝑊 1

2

)
□

To investigate the algorithm with piecewise linear splines, we now modify Defini-
tion 5.2 as follows.

Definition 5.4. Let𝑚 = 1 and𝑀 = 3. A function 𝑢 ∈ 𝑊 1
2

(− 1
2 ,

1
2

)
is called linearly

balanced, if the coefficients 𝑎𝑗,𝑘 in the representation

𝑢 (𝑥) =

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
1
𝑗0,𝑘 (𝑥) +

∞∑
𝑗=𝑗0+1

2𝑗−1−1∑
𝑘=0

𝑎𝑗,𝑘𝜑
1
𝑗,2𝑘+1 (𝑥) .

satisfy the condition

∣𝑎𝑗,𝑘∣2 ≤ 1

8

1

2𝑀 + 1

𝑙=⌊ 𝑘
2 ⌋+𝑀∑

𝑙=⌊ 𝑘
2 ⌋−𝑀

∣𝑎𝑗−1,𝑙∣2 , (5.10)

for all 𝑗 ≥ 𝑗0 + 2 and 𝑘 = 0, . . . , 2𝑗−1 − 1.
Remark 5.5. The factor 1/8 in (5.10) is chosen such that ∣𝑎𝑗−1,𝑙∣ ≤ 𝛿1 (𝑗 − 2)
for 𝑙 = ⌊𝑘/2⌋ −𝑀, . . . , ⌊𝑘/2⌋ +𝑀 implies ∣𝑎𝑗,𝑘∣ ≤ 𝛿1 (𝑗 − 1), where 𝛿1 (𝑗) is the
threshold from (5.2) for 𝑠 = 1.

Now we change Algorithm 3 and adapt the grid not according to the wavelet
coefficients 𝑏𝑗,𝑘 but with respect to the coefficients 𝑎𝑗,𝑘 in the representation (5.6).
The index set 𝐼 in (5.1) is now constructed according to the criterion

𝐼 := {(𝑗, 𝑘) : ∣𝑎𝑗+1,𝑘∣ ≥ 𝛿1 (𝑗)}.
The modified algorithm for 𝑚 = 1 indeed works in the following sense: For

any linearly balanced function the algorithm produces an admissible mesh and an
approximation of the Hilbert transform with prescribed accuracy. A more precise
statement is given in the next theorem.

Theorem 5.6. There exists a constant 𝐷 (given below) such that the following holds:
If 𝑢 ∈𝑊 𝑠

2

(− 1
2 ,

1
2

)
with 𝑠 > 1 is linearly balanced, and

∥𝑢− 𝐿𝐽𝑢∥𝑊 1
2
< 𝜀1 := 𝜀/𝐷
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the modified Algorithm 3 with piecewise linear splines and threshold 𝜀1 provides an

admissible mesh 𝒢, a function 𝑢 and an approximate Hilbert transform �̃�𝑢 such
that ∥∥𝑢− 𝑢

∥∥
𝑊 1

2
< 𝜀, ∥𝐻𝑢− �̃�𝑢∥𝑊 1

2
< 2𝜀.

Note that the assumption
∥∥𝑢 − 𝐿𝐽𝑢

∥∥ < 𝜀/𝐷 can always be achieved by
choosing 𝐽 large enough, see for instance [12] or [21, page 44].

We only sketch the proof and refer to [19] for the details. The result of the
modified Algorithm 3 is the function 𝑢 with the representation

𝑢 (𝑥) =

2𝑗0−1∑
𝑘=0

𝑎𝑗0,𝑘𝜑
1
𝑗0,𝑘 (𝑥) +

𝐽∑
𝑗=𝑗0+1

∑
𝑘 ∕∈ℐ0

𝑗

�̂�𝑗,𝑘𝜑
1
𝑗,2𝑘+1 (𝑥)

where we define ℐ0𝑗 :=
{
𝑘 ∈ ℕ0 : 0 ≤ 𝑘 < 2𝑗−1 and �̂�𝑗,𝑘 = 0

}
. For 𝑘 ∕∈ ℐ0𝑗 we have

𝑎𝑗,𝑘 = �̂�𝑗,𝑘, so that the error between 𝑢 and 𝑢 can be estimated with Theorem 5.3 by

∥𝑢− 𝑢∥2𝑊 1
2
≤ 𝐶

⎛⎝ 𝐽∑
𝑗=𝑗0+1

22𝑗
∑
𝑘∈ℐ0

𝑗

∣𝑎𝑗,𝑘∣2 +
∞∑

𝑗=𝐽+1

22𝑗
2𝑗−1−1∑
𝑘=0

∣𝑎𝑗,𝑘∣2
⎞⎠ .

The last sum is the interpolation error on the fine mesh ℱ𝐽 and is less than 𝜀1 by
assumption.

In order to estimate the first sum we investigate the absolute value of the
coefficients 𝑎𝑗,𝑘 and verify that these are less than the corresponding threshold
𝛿1 (𝑗 − 1). Arguing by induction, we assume that this is true for all 𝑎𝑗,𝑘 with
𝑘 ∈ ℐ0𝑗 at some level 𝑗 (which is certainly satisfied for 𝑗 = 𝑗0) and consider the

coefficients 𝑎𝑗+1,𝑘 with 𝑘 ∈ ℐ0𝑗+1.
There are two possible reasons why 𝑘 belongs to ℐ0𝑗+1: In the first case the

coefficient 𝑎𝑗+1,𝑘 was calculated but replaced by zero because it was less than the
threshold – then there is nothing to prove. In the second case, the coefficient 𝑎𝑗+1,𝑘

has not been computed because the corresponding grid point did not belong to
the actual mesh. This can only happen when at the previous level 𝑗 all related
pairs (𝑗, 𝑙) with ⌊𝑘/2⌋ −𝑀 ≤ 𝑙 ≤ ⌊𝑘/2⌋ +𝑀 belong to the index set ℐ0𝑗 . Then,
by assumption, all coefficients 𝑎𝑗,𝑙 satisfy ∣𝑎𝑗,𝑙∣ < 𝛿1(𝑗 − 1). Since 𝑢 is linearly
balanced, the condition (5.10) implies that ∣𝑎𝑗+1,𝑘∣ < 𝛿1(𝑗) (see the remark to
Definition 5.2).

Consequently we get for the first sum

𝐽∑
𝑗=𝑗0+1

22𝑗
∑
𝑘∈ℐ0

𝑗

∣𝑎𝑗,𝑘∣2 ≤
𝐽∑

𝑗=𝑗0+1

22𝑗
∑
𝑘∈ℐ0

𝑗

𝛿1 (𝑗 − 1)2

≤
𝐽∑

𝑗=𝑗0+1

22𝑗
2𝑗−1−1∑
𝑘=0

𝜀2

𝐶123(𝑗−1) (𝐽 − 𝑗0)
≤ 4𝜀2

𝐶1
,
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where 𝐶1 is the Riesz constant from (2.3). With 𝐷 :=
√

𝐶 (1 + 4/𝐶1) we arrive at

∥𝑢− 𝑢∥𝑊 1
2
≤
√

𝐶 (1 + 4/𝐶1) 𝜀1 < 𝜀.

The construction of �̃� can be made in such a way that
∥∥𝐻𝑢− �̃�𝑢

∥∥
𝑊 1

2

is less than

𝜀. Taking into account that 𝐻 is bounded in 𝑊 1
2

(− 1
2 ,

1
2

)
with norm 1 we get for

the Hilbert transform∥∥𝐻𝑢− �̃�𝑢
∥∥
𝑊 1

2
≤ ∥∥𝐻∥∥∥∥𝑢− 𝑢

∥∥
𝑊 1

2
+
∥∥𝐻𝑢− �̃�𝑢

∥∥
𝑊 1

2
≤ 2𝜀.

6. Numerical examples

The Hilbert transform connects real and imaginary part of the boundary values
of a holomorphic function 𝑓 = 𝑢+ i𝑣 in the unit disk,

𝑢 = 𝐻𝑣 + 𝑢(0), 𝑣 = −𝐻𝑢+ 𝑣(0),

which provides many examples for testing the algorithm. We have chosen five
functions 𝑓1, . . . , 𝑓5 defined for 𝑡 ∈ 𝕋 by

𝑓0 (𝑡) =
1− 𝑝𝑡

1 + 𝑝𝑡
, 𝑓1 (𝑡) =

𝑡+ 𝑝

1 + 𝑝𝑡
− 𝑝, 𝑓2 (𝑡) = i log 𝑓0 (𝑡)

𝑓3 (𝑡) = exp (−𝑓0 (𝑡))− 1/e, 𝑓4 (𝑡) = exp (i log 𝑓0 (𝑡))− 1, 𝑓5 (𝑡) =
√
1 + 𝑝𝑡− 1.

All functions can be holomorphically extended into the unit disk with vanishing
real part at the origin, such that 𝑢 = 𝐻𝑣. The real parameter 𝑝 with 0 ≤ 𝑝 < 1
controls the behavior of the functions. As 𝑝 → 1 specific singularities arise which
are typical for solutions of certain Riemann–Hilbert problems. For 𝑝 = 0.99 real
(solid) and imaginary (dashed) part of these functions are shown in the left part
of Figures 6.3–6.7.

𝑚 = 1
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log10 err
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9 10 11 12 13 14 15

−10
−9
−8
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−6
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−11
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𝑓2

𝑓3

𝑓4

𝑓5

Figure 6.1. Logarithm of the error
∥∥�̃�𝑣 −𝐻𝑣

∥∥
𝐿2(𝕋)

for Algorithm 3



Computing the Hilbert Transform in Wavelet Bases 353

𝑚 = 1

𝐽

log10 err

9 10 11 12 13 14 15

−8
−7
−6
−5
−4
−3

−9

𝑚 = 3

𝐽

log10 err

9 10 11 12 13 14 15

−9
−8
−7
−6

−10
−11

−5 𝑓1

𝑓2

𝑓3

𝑓4

𝑓5

Figure 6.2. Logarithm of the error
∥∥�̃�𝑣 −𝐻𝑣

∥∥
𝐿2(𝕋)

using the full grid

The error
∥∥�̃�𝑣 − 𝐻𝑣

∥∥
𝐿2(𝕋)

of the approximate Hilbert transform �̃�𝑣 com-

puted with Algorithm 3 is shown in Figure 6.1 for 𝑝 = 0.95, 𝑗0 = 8 and various 𝐽 .
The error decreases almost linearly in a logarithmic scale. The slopes of the error
curve indicate decay of order ℎ−2 for 𝑚 = 1 and of order ℎ−4 for 𝑚 = 3, respec-
tively, where ℎ is the step size of the fine mesh. This corresponds to the behavior
of the interpolation error for splines on a uniform mesh. In the rightmost part
there is no further improvement, since then the truncation error takes over (the
threshold was chosen so that 𝜀 ≈ 10−6 (linear case) and 𝜀 ≈ 10−10 (cubic case)). It
is remarkable that there is practically no difference between these results and the
experiments in [20], where we computed the Hilbert transform on the complete
fine mesh ℱ𝐽 (for convenience reproduced in Figure 6.2). So Algorithm 3 indeed
produces an admissible mesh which reflects the behavior of the test functions very
well.

The percentage of ‘active’ grid points in relation to the fine mesh ℱ15 is listed
in Table 6.1. The adapted grids displayed in Figures 6.3–6.7 show clearly that the

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5
𝑚 = 1 7.15% 16.93% 34.05% 44.88% 11.57%
𝑚 = 3 6.74% 14.25% 18.6% 16.88% 5.29%

Table 6.1. Active part of the grid points of the adapted meshes

points are mainly concentrated in those regions which contain the ‘almost singular’
parts of the functions.
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𝑓1

−0.5 0 0.5
−2
−1
0

1

2

Figure 6.3. Real and imaginary part of 𝑓1 and associated admissible
meshes of Algorithm 3 (left 𝑚 = 1 and right 𝑚 = 3)

𝑓2

−0.5 0 0.5
−4
−2
0

2

4

Figure 6.4. Real and imaginary part of 𝑓2 and associated admissible
meshes of Algorithm 3 (left 𝑚 = 1 and right 𝑚 = 3)

𝑓3

−0.5 0 0.5

−1
0

1

Figure 6.5. Real and imaginary part of 𝑓3 and associated admissible
meshes of Algorithm 3 (left 𝑚 = 1 and right 𝑚 = 3)
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[6] W. Dahmen, S. Prössdorf, and R. Schneider. Wavelet approximation methods for
pseudodifferential equations. II: Matrix compression and fast solution. Adv. Comput.
Math., 1(3-4):259–335, 1993

[7] W. Dahmen, S. Prössdorf, and R. Schneider. Wavelet approximation methods for
pseudodifferential equations. I: Stability and convergence. Math. Z., 215(4):583–620,
1994

[8] I. Daubechies. Ten lectures on wavelets. SIAM, Society for Industrial and Applied
Mathematics, Philadelphia, PA, 1992

[9] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. SIAM
J. Sci. Comput., 14(6):1368–1393, 1993

[10] A. Dutt and V. Rokhlin. Fast Fourier transforms for nonequispaced data. II. Appl.
Comput. Harmon. Anal., 2(1):85–100, 1995

[11] D. Gaier. Konstruktive Methoden der konformen Abbildung. Berlin – Göttingen –
Heidelberg: Springer-Verlag, 1964

[12] M. Golomb. Approximation by periodic spline interpolants on uniform meshes. J. Ap-
proximation Theory, 1:26–65, 1968



356 F. Martin and E. Wegert

[13] M.H. Gutknecht. Fast algorithms for the conjugate periodic function. Computing,
22:79–91, 1979

[14] S.L. Hahn. Hilbert transforms in signal processing. The Artech House Signal Pro-
cessing Library. Boston, MA: Artech House, 1996

[15] P. Henrici. Applied and computational complex analysis. Volume III: Discrete Fourier
analysis, Cauchy integrals, construction of conformal maps, univalent functions.
Reprint. Wiley Classics Library. New York, NY: Wiley, 1993

[16] F.W. King. Hilbert transforms. Volume 1. Encyclopedia of Mathematics and its
Applications 124. Cambridge: Cambridge University Press, 2009

[17] S. Kunis and D. Potts. Time and memory requirements of the nonequispaced FFT.
Sampl. Theory Signal Image Process., 7(1):77–100, 2008

[18] A.K. Louis, P. Maaß and A. Rieder. Wavelets. Theorie und Anwendungen. Teubner
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Abstract. In the earlier papers [16, 19], the 𝐵𝜎-function spaces were intro-
duced for the purpose of unifying central Morrey spaces, 𝜆-central mean os-
cillation spaces and usual Morrey–Campanato spaces.
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1. Introduction

In 1989, Y. Chen and K. Lau [4] and J. Garćıa-Cuerva [10] introduced the central
mean oscillation space CMO𝑝(ℝ𝑛) with its predual, which contains 𝐵𝑝(ℝ𝑛) and the
bounded mean oscillation space BMO(ℝ𝑛). Here the space 𝐵𝑝(ℝ𝑛) was introduced
by A. Beurling [3], together with its predual 𝐴𝑝(ℝ𝑛), so-called the Beurling algebra.
For the homogeneous versions of CMO𝑝(ℝ𝑛), S.Z. Lu and D.C. Yang [17, 18] used
the notation of the central bounded mean oscillation space CBMO𝑝(ℝ𝑛).

In recent years, J. Alvarez, M. Guzmán-Partida and J. Lakey [2] pointed
out that 𝐵𝑝(ℝ𝑛) and BMO(ℝ𝑛) are roughly the bad part and the good part of
CMO𝑝(ℝ𝑛), respectively. Moreover, as an extension of 𝐵𝑝(ℝ𝑛) and CMO𝑝(ℝ𝑛),
they introduced the non-homogeneous central Morrey space 𝐵𝑝,𝜆(ℝ𝑛) (cf. J. Gar-
ćıa-Cuerva and M.J.L. Herrero [11]) and the 𝜆-central mean oscillation space

The author was partially supported by Grant for 2011 Overseas Researcher of Nihon University,
Japan.
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CMO𝑝,𝜆 (ℝ𝑛), respectively. For the homogeneous versions of these spaces, we

use the following notation: the central Morrey space �̇�𝑝,𝜆(ℝ𝑛) and the 𝜆-central

bounded mean oscillation space CBMO𝑝,𝜆(ℝ𝑛), respectively.

In [16, 19], in order to unify the spaces 𝐵𝑝,𝜆(ℝ𝑛), �̇�𝑝,𝜆(ℝ𝑛), CMO𝑝,𝜆(ℝ𝑛),

CBMO𝑝,𝜆(ℝ𝑛), 𝐿𝑝,𝜆(ℝ𝑛) and ℒ𝑝,𝜆(ℝ𝑛), we introduced new function spaces named
𝐵𝜎-Morrey–Campanato spaces.

On the other hand, several authors have studied the behavior of various
operators such as the Calderón–Zygmund operators, the fractional integral op-
erators, the commutators, and so on, on above spaces. Furthermore, in [16, 19],
we established the boundedness of various integral operators on our 𝐵𝜎-Morrey–
Campanato spaces.

Among several operators, in particular, we take up the commutators. The
commutator [𝑏, 𝑇 ] generated by 𝑏 ∈ 𝐿1loc(ℝ

𝑛) and the Calderón–Zygmund operator
𝑇 is defined by

[𝑏, 𝑇 ](𝑓)(𝑥) = 𝑏(𝑥)𝑇𝑓(𝑥)− 𝑇 (𝑏𝑓)(𝑥), 𝑥 ∈ ℝ𝑛,

for 𝑓 ∈ 𝐿∞comp(ℝ
𝑛). In 1976, R.R. Coifman, R. Rochberg and G. Weiss [6] estab-

lished that if 𝑏 ∈ BMO(ℝ𝑛), then [𝑏, 𝑇 ] is bounded on 𝐿𝑝(ℝ𝑛) (𝑝 ∈ (1,∞)) (see
Theorem 4.2 below). In the above, 𝐿∞comp(ℝ

𝑛) denotes the set of all 𝐿∞ func-
tions with compact support. Later, in 1998, L. Grafakos, X. Li and D. Yang [12]
proved the CBMO estimates for [𝑏, 𝑇 ] on the Herz spaces. Further, J. Alvarez,
M. Guzmán-Partida and J. Lakey [2] and Y. Komori [14] obtained the 𝜆-CMO
estimates for [𝑏, 𝑇 ] on 𝐵𝑝,𝜆(ℝ𝑛) (cf. Z. Fu, Y. Lin and S. Lu [9]).

Motivated by these results, we will consider the 𝐵𝜎-Campanato estimates for
the commutators of Calderón–Zygmund operators on 𝐵𝜎-Morrey spaces.

2. 𝑩𝝈-Morrey–Campanato spaces

For details of the function spaces in this section, we refer to [16, 19].
Let 𝑄𝑟 ⊂ ℝ𝑛 denote either the open cube having center 0 and sidelength 2𝑟,

or the open ball having center 0 and radius 𝑟, i.e.,

𝑄𝑟 =

{
𝑦 = (𝑦1, 𝑦2, . . . , 𝑦𝑛) ∈ ℝ𝑛 : max

1≤𝑖≤𝑛
∣𝑦𝑖∣ < 𝑟

}
or 𝑄𝑟 = {𝑦 ∈ ℝ𝑛 : ∣𝑦∣ < 𝑟}.

And let for 𝑥 ∈ ℝ𝑛,

𝑄(𝑥, 𝑟) = 𝑥+𝑄𝑟 = {𝑥+ 𝑦 : 𝑦 ∈ 𝑄𝑟}.
For a measurable set 𝐺 ⊂ ℝ𝑛, we denote the Lebesgue measure of 𝐺 by ∣𝐺∣ and
the characteristic function of 𝐺 by 𝜒𝐺. Further, for a function 𝑓 ∈ 𝐿1loc(ℝ

𝑛) and a
measurable set 𝐺 ⊂ ℝ𝑛 with ∣𝐺∣ > 0, let

𝑓𝐺 = −
∫
𝐺

𝑓(𝑦) 𝑑𝑦 =
1

∣𝐺∣
∫
𝐺

𝑓(𝑦) 𝑑𝑦.

First, we state the definitions of Morrey and Campanato spaces.
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Definition 2.1. Let 𝑈 = ℝ𝑛 or 𝑈 = 𝑄𝑟 with 𝑟 > 0. For 𝑝 ∈ [1,∞) and 𝜆 ∈ ℝ,
𝐿𝑝,𝜆(𝑈) and ℒ𝑝,𝜆(𝑈) are defined to be the sets of all functions 𝑓 on 𝑈 such that
the following functionals are finite, respectively:

∥𝑓∥𝐿𝑝,𝜆(𝑈) = sup
𝑄(𝜉,𝑠)⊂𝑈

1

𝑠𝜆

(
−
∫
𝑄(𝜉,𝑠)

∣𝑓(𝑦)∣𝑝 𝑑𝑦
)1/𝑝

and

∥𝑓∥ℒ𝑝,𝜆(𝑈) = sup
𝑄(𝜉,𝑠)⊂𝑈

1

𝑠𝜆

(
−
∫
𝑄(𝜉,𝑠)

∣𝑓(𝑦)− 𝑓𝑄(𝜉,𝑠)∣𝑝 𝑑𝑦
)1/𝑝

.

Remark 2.2. In this paper, when 𝑈 = ℝ𝑛, we abbreviate ∥𝑓∥𝐸(𝑈) to ∥𝑓∥𝐸 for
the symbol of the norm, while we don’t abbreviate 𝐸(ℝ𝑛) for the symbol of the
function space.

Note that we regard 𝐿𝑝,𝜆(𝑈) and ℒ𝑝,𝜆(𝑈) as spaces of functions modulo null-
functions. Then 𝐿𝑝,𝜆(𝑈) is a Banach space. Let 𝒞 be the space of all constant
functions and ⋅/𝒞 mean the quotient space by 𝒞. Then ℒ𝑝,𝜆(ℝ𝑛)/𝒞 is a Banach
space equipped with the norm ∥𝑓∥ℒ𝑝,𝜆

. For the unit ball 𝑄1, ∥𝑓∥ℒ𝑝,𝜆
+ ∣𝑓𝑄1 ∣ is a

norm and thereby ℒ𝑝,𝜆(𝑈) is a Banach space.
By the definition, if 𝜆 = −𝑛/𝑝, then 𝐿𝑝,𝜆(𝑈) = 𝐿𝑝(𝑈). If 𝑝 = 1 and 𝜆 = 0,

then ℒ1,0(𝑈) is the usual BMO(𝑈).
Definition 2.3. Let 𝜎 ∈ [0,∞), 𝑝 ∈ [1,∞) and 𝜆 ∈ ℝ. For

𝐸 = 𝐿𝑝, 𝐿𝑝,𝜆 or ℒ𝑝,𝜆,

let 𝐵𝜎(𝐸)(ℝ𝑛) and �̇�𝜎(𝐸)(ℝ𝑛) be the sets of all functions 𝑓 on ℝ𝑛 such that
∥𝑓∥𝐵𝜎(𝐸) <∞ and ∥𝑓∥�̇�𝜎(𝐸)

<∞, respectively, where

∥𝑓∥𝐵𝜎(𝐸) = sup
𝑟≥1

1

𝑟𝜎
∥𝑓∥𝐸(𝑄𝑟) and ∥𝑓∥�̇�𝜎(𝐸)

= sup
𝑟>0

1

𝑟𝜎
∥𝑓∥𝐸(𝑄𝑟).

Then 𝐵𝜎(𝐿
𝑝)(ℝ𝑛) and 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛) are Banach spaces, and 𝐵𝜎(ℒ𝑝,𝜆)(ℝ𝑛)/𝒞

is a Banach space equipped with the norm ∥𝑓∥𝐵𝜎(ℒ𝑝,𝜆). Moreover, for the unit ball
𝑄1, ∥𝑓∥𝐵𝜎(ℒ𝑝,𝜆) + ∣𝑓𝑄1 ∣ is a norm and thereby 𝐵𝜎(ℒ𝑝,𝜆)(ℝ𝑛) is a Banach space.

Example. In the paper by J. Garćıa-Cuerva and M.J.L. Herrero [11] and in the
paper by J. Alvarez, M. Guzmán-Partida and J. Lakey [2] the authors introduced
for 𝑝 ∈ [1,∞) and 𝜆 ∈ ℝ, the non-homogeneous central Morrey space 𝐵𝑝,𝜆(ℝ𝑛), the

central Morrey space �̇�𝑝,𝜆(ℝ𝑛), the 𝜆-central mean oscillation space CMO𝑝,𝜆(ℝ𝑛)

and the 𝜆-central bounded mean oscillation space CBMO𝑝,𝜆(ℝ𝑛) with the following
norms, respectively:

∥𝑓∥𝐵𝑝,𝜆 = sup
𝑟≥1

1

𝑟𝜆

(
−
∫
𝑄𝑟

∣𝑓(𝑦)∣𝑝 𝑑𝑦
)1/𝑝

,
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∥𝑓∥�̇�𝑝,𝜆 = sup
𝑟>0

1

𝑟𝜆

(
−
∫
𝑄𝑟

∣𝑓(𝑦)∣𝑝 𝑑𝑦
)1/𝑝

,

∥𝑓∥CMO𝑝,𝜆 = sup
𝑟≥1

1

𝑟𝜆

(
−
∫
𝑄𝑟

∣𝑓(𝑦)− 𝑓𝐵𝑟 ∣𝑝 𝑑𝑦
)1/𝑝

and

∥𝑓∥CBMO𝑝,𝜆 = sup
𝑟>0

1

𝑟𝜆

(
−
∫
𝑄𝑟

∣𝑓(𝑦)− 𝑓𝐵𝑟 ∣𝑝 𝑑𝑦
)1/𝑝

.

Then these spaces are realized as 𝐵𝜎(𝐸)(ℝ𝑛) and �̇�𝜎(𝐸)(ℝ𝑛) with 𝐸 = 𝐿𝑝 (or
𝐸 = 𝐿𝑝/𝒞) and 𝜎 = 𝑛/𝑝+ 𝜆.

Remark 2.4. The spaces 𝐵𝑝,𝜆(ℝ𝑛), �̇�𝑝,𝜆(ℝ𝑛), CMO𝑝,𝜆(ℝ𝑛) and CBMO𝑝,𝜆(ℝ𝑛)

were introduced as an extension of 𝐵𝑝(ℝ𝑛), �̇�𝑝(ℝ𝑛), CMO𝑝(ℝ𝑛) and CBMO𝑝(ℝ𝑛),
respectively: When 𝜆 = 𝑛(1/𝑞 − 1),

𝐵𝑝,𝜆(ℝ𝑛) = 𝐵𝑝
𝑞 (ℝ

𝑛) and CMO𝑝,𝜆(ℝ𝑛) = CMO𝑝
𝑞(ℝ

𝑛).

Moreover, when 𝑞 = 1, i.e., 𝜆 = 0,

𝐵𝑝,𝜆(ℝ𝑛) = 𝐵𝑝(ℝ𝑛) and CMO𝑝,𝜆(ℝ𝑛) = CMO𝑝(ℝ𝑛).

Also, for �̇�𝑝,𝜆(ℝ𝑛) and CBMO𝑝,𝜆(ℝ𝑛), analogous properties hold. For these spaces,
we refer to Y. Chen and K. Lau [4], J. Garćıa-Cuerva [10], J. Garćıa-Cuerva and
M.J.L. Herrero [11] and S.Z. Lu and D.C. Yang [17, 18] (cf. [16, Examples 1 and 2]).

Remark 2.5. We note that 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛) unifies 𝐿𝑝,𝜆(ℝ𝑛) and 𝐵𝑝,𝜆(ℝ𝑛) and that

𝐵𝜎(ℒ𝑝,𝜆)(ℝ𝑛) unifies ℒ𝑝,𝜆(ℝ𝑛) and CMO𝑝,𝜆(ℝ𝑛). Actually, we have the following
relations:

𝐵0(𝐿𝑝,𝜆)(ℝ
𝑛) = 𝐿𝑝,𝜆(ℝ

𝑛), 𝐵0(ℒ𝑝,𝜆)(ℝ
𝑛) = ℒ𝑝,𝜆(ℝ

𝑛), (2.1)

𝐵𝜆+𝑛/𝑝(𝐿𝑝,−𝑛/𝑝)(ℝ
𝑛) = 𝐵𝑝,𝜆(ℝ𝑛), 𝐵𝜆+𝑛/𝑝(ℒ𝑝,−𝑛/𝑝)(ℝ

𝑛) = CMO𝑝,𝜆(ℝ𝑛). (2.2)

In the above relations, the first three follow immediately from their definitions, and
the last one follows from Theorem 2.6 below. We also have the same properties for
the function spaces �̇�𝜎(𝐿𝑝,𝜆)(ℝ𝑛) and �̇�𝜎(ℒ𝑝,𝜆)(ℝ𝑛).

Theorem 2.6. If 𝑝 ∈ [1,∞) and 𝜆 ∈ [−𝑛/𝑝, 0), then, for each 𝑟 > 0, ℒ𝑝,𝜆(𝑄𝑟)/𝒞 ∼=
𝐿𝑝,𝜆(𝑄𝑟). More precisely, the map 𝑓 1→ 𝑓 − 𝑓𝑄𝑟 is bijective and bicontinuous from
ℒ𝑝,𝜆(𝑄𝑟)/𝒞 to 𝐿𝑝,𝜆(𝑄𝑟), i.e., there exists a constant 𝐶 > 0, dependent only on 𝑛
and 𝜆, such that

𝐶−1∥𝑓∥ℒ𝑝,𝜆(𝑄𝑟) ≤ ∥𝑓 − 𝑓𝑄𝑟∥𝐿𝑝,𝜆(𝑄𝑟) ≤ 𝐶∥𝑓∥ℒ𝑝,𝜆(𝑄𝑟).

The same conclusion holds on ℝ𝑛 by using lim𝑟→∞ 𝑓𝑄𝑟 instead of 𝑓𝑄𝑟 .

For the proof of this theorem, see [20, 22].
At the end of this section, we recall the following relations among classical

function spaces (see [16, Proposition 1]).
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Proposition 2.7. Let 𝑝 ∈ [1,∞).
(i) (Supercritical case) If 𝜆 ∈ (−∞,−𝑛/𝑝), then{

𝐵𝑝,𝜆(ℝ𝑛) = �̇�𝑝,𝜆(ℝ𝑛) = 𝐿𝑝,𝜆(ℝ𝑛) = {0},
CMO𝑝,𝜆(ℝ𝑛) = CBMO𝑝,𝜆(ℝ𝑛) = ℒ𝑝,𝜆(ℝ𝑛) = 𝒞.

(ii) (Critical case) If 𝜆 = −𝑛/𝑝, then{
𝐵𝑝,𝜆(ℝ𝑛) = �̇�𝑝,𝜆(ℝ𝑛) = 𝐿𝑝,𝜆(ℝ𝑛) = 𝐿𝑝(ℝ𝑛),

CMO𝑝,𝜆(ℝ𝑛)/𝒞 = CBMO𝑝,𝜆(ℝ𝑛)/𝒞 = ℒ𝑝,𝜆(ℝ𝑛)/𝒞 ∼= 𝐿𝑝(ℝ𝑛).

(iii) (Subcritical case) If 𝜆 ∈ (−𝑛/𝑝, 0), then⎧⎨⎩
CMO𝑝,𝜆(ℝ𝑛)/𝒞 ∼= 𝐵𝑝,𝜆(ℝ𝑛),

CBMO𝑝,𝜆(ℝ𝑛)/𝒞 ∼= �̇�𝑝,𝜆(ℝ𝑛),

ℒ𝑝,𝜆(ℝ𝑛)/𝒞 ∼= 𝐿𝑝,𝜆(ℝ𝑛).

(iv) (Critical case) If 𝜆 = 0, then{
𝐿𝑝,𝜆(ℝ𝑛) = 𝐿∞(ℝ𝑛),

ℒ𝑝,𝜆(ℝ𝑛) = BMO(ℝ𝑛).

(v) (Subcritical case) If 𝜆 ∈ (0, 1], then{
𝐿𝑝,𝜆(ℝ𝑛) = {0},
ℒ𝑝,𝜆(ℝ𝑛) = Lip𝜆(ℝ

𝑛).

(vi) (Supercritical case) If 𝜆 ∈ (1,∞), then{
𝐿𝑝,𝜆(ℝ𝑛) = {0},
ℒ𝑝,𝜆(ℝ𝑛) = 𝒞.

In the above, for a couple of Banach spaces (𝐴,𝐵), 𝐴 ∼= 𝐵 means that there exists
a bijective and bicontinuous map from 𝐴 to 𝐵, while 𝐴 = 𝐵 means that 𝐴 and 𝐵
are identical as the set and that their norms are equivalent.

Here, note that Lip𝜆(ℝ
𝑛) (𝜆 ∈ (0, 1]) stands for the Lipschitz space of order

𝜆 on ℝ𝑛 with the norm

∥𝑓∥Lip𝜆
= sup

𝑥,𝑦∈ℝ𝑛, 𝑥 ∕=𝑦

∣𝑓(𝑥)− 𝑓(𝑦)∣
∣𝑥− 𝑦∣𝜆 .

which is regarded as the space of functions defined everywhere on ℝ𝑛. For the
relation between Campanato and Lipschitz spaces, see [16, 19].

Remark 2.8. By this proposition, we need to restrict the range of the parameter 𝜆
to [−𝑛/𝑝, 0] for 𝐿𝑝,𝜆(ℝ𝑛) and to [−𝑛/𝑝, 1] for ℒ𝑝,𝜆(ℝ𝑛) so that the space contains
non-constant functions.
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3. Main results

We first recall the definitions of Calderón–Zygmund operator and commutator.

Definition 3.1. Let 𝐾 ∈ 𝐿1loc(ℝ
𝑛 × ℝ𝑛 ∖ {(𝑥, 𝑥) : 𝑥 ∈ ℝ𝑛}) be a standard kernel,

i.e., it satisfies the following conditions:

(i) (Size condition)

∣𝐾(𝑥, 𝑦)∣ ≤ 𝐶

∣𝑥− 𝑦∣𝑛 (3.1)

for 𝑥 ∕= 𝑦;

(ii) (Regularity condition)
There exists 𝛿 > 0 such that

∣𝐾(𝑥, 𝑦)−𝐾(𝑧, 𝑦)∣+ ∣𝐾(𝑦, 𝑥)−𝐾(𝑦, 𝑧)∣ ≤ 𝐶
∣𝑥− 𝑧∣𝛿
∣𝑥− 𝑦∣𝑛+𝛿

for ∣𝑥− 𝑦∣ ≥ 2 ∣𝑥− 𝑧∣.
And let 𝑇 be a linear operator from 𝒮(ℝ𝑛) to 𝒮 ′(ℝ𝑛). Then we say that 𝑇 is a
Calderón–Zygmund operator (associated with a standard kernel 𝐾), if

∥𝑇𝑓∥𝐿2 ≤ 𝐶 ∥𝑓∥𝐿2, 𝑓 ∈ 𝒮(ℝ𝑛),

and there is a standard kernel 𝐾 such that

𝑇𝑓(𝑥) =

∫
ℝ𝑛

𝐾(𝑥, 𝑦)𝑓(𝑦)𝑑𝑦

for all 𝑓 ∈ 𝐶∞comp(ℝ
𝑛) and for all 𝑥 /∈ supp 𝑓 , where 𝐶∞comp(ℝ

𝑛) is the set of all
infinitely differentiable functions on ℝ𝑛 with compact support.

Here, it is well known that the Calderón–Zygmund operator 𝑇 is bounded on
𝐿𝑝(ℝ𝑛), where 𝑝 ∈ (1,∞), and is weak (1, 1).
Definition 3.2. Let 𝑏 ∈ 𝐿1loc(ℝ

𝑛) and 𝑇 be a Calderón–Zygmund operator 𝑇 . Then
the commutator [𝑏, 𝑇 ] generated by 𝑏 and 𝑇 is defined by

[𝑏, 𝑇 ]𝑓(𝑥) = 𝑏(𝑥)𝑇𝑓(𝑥)− 𝑇 (𝑏𝑓)(𝑥), 𝑥 ∈ ℝ𝑛,

for 𝑓 ∈ 𝐿∞comp(ℝ𝑛).

For the boundedness of commutator [𝑏, 𝑇 ] on 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛), we can show the
following:

Theorem 3.3. Let 𝑇 be a Calderón–Zygmund operator and 𝜎, 𝜏, 𝜌 ∈ [0,∞), 𝑝, 𝑞 ∈
(1,∞), 𝑡 ∈ [1,∞), 𝜆 ∈ [−𝑛/𝑝, 0), 𝜇 ∈ [−𝑛/𝑞, 0), 𝜈 ∈ [−𝑛/𝑡, 1]. Assume that

𝜏 = 𝜎 + 𝜌, 𝜇 = 𝜆+ 𝜈, 𝜎 + 𝜆 < 0, 𝜎 + 𝜌+ 𝜆+ 𝜈 < 0

and

𝑞 ≤
{
(𝜆/𝜇)𝑝 if 𝜈 ∈ [0, 1],
𝑝𝑡/(𝑝+ 𝑡) if 𝜈 ∈ [−𝑛/𝑡, 0).
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If 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ𝑛), then the commutator [𝑏, 𝑇 ] is bounded from 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛) to
𝐵𝜏 (𝐿𝑞,𝜇)(ℝ𝑛), i.e., there exists a constant 𝐶 > 0 such that

∥[𝑏, 𝑇 ]𝑓∥𝐵𝜏(𝐿𝑞,𝜇) ≤ 𝐶∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆),

where 𝐶 is independent of 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ𝑛) and 𝑓 ∈ 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛).

The same conclusion holds for �̇�𝜎(𝐿𝑝,𝜆)(ℝ𝑛), if 𝑏 ∈ �̇�𝜌(ℒ𝑡,𝜈)(ℝ𝑛).

In the above theorem, if 𝜎 = 𝜌 = 0, then the following corollary is obtained
by (2.1).

Corollary 3.4. Let 𝑇 be a Calderón–Zygmund operator and 𝑝, 𝑞 ∈ (1,∞), 𝑡 ∈
[1,∞), 𝜆 ∈ [−𝑛/𝑝, 0), 𝜇 ∈ [−𝑛/𝑞, 0), 𝜈 ∈ [−𝑛/𝑡, 1]. Assume that 𝜇 = 𝜆+ 𝜈 and

𝑞 ≤
{
(𝜆/𝜇)𝑝 if 𝜈 ∈ [0, 1],
𝑝𝑡/(𝑝+ 𝑡) if 𝜈 ∈ [−𝑛/𝑡, 0).

If 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ𝑛), then the commutator [𝑏, 𝑇 ] is bounded from 𝐿𝑝,𝜆(ℝ𝑛) to
𝐿𝑞,𝜇(ℝ𝑛), i.e., there exists a constant 𝐶 > 0 such that

∥[𝑏, 𝑇 ]𝑓∥𝐿𝑞,𝜇 ≤ 𝐶∥𝑏∥ℒ𝑡,𝜈∥𝑓∥𝐿𝑝,𝜆
,

where 𝐶 is independent of 𝑏 ∈ ℒ𝑡,𝜈(ℝ𝑛) and 𝑓 ∈ 𝐿𝑝,𝜆(ℝ𝑛).

Remark 3.5. In Corollary 3.4, if 𝜈 = 0, then 𝑞 ≤ 𝑝 and 𝑏 ∈ BMO(ℝ𝑛), so that this
corollary contains the result of G. Di Fazio and M.A. Ragusa [7], i.e., Theorem 4.3
below. Hence, furthermore, if 𝜆 = −𝑛/𝑝, then this corollary also contains the result
of R.R. Coifman, R. Rochberg and G. Weiss [6], i.e., Theorem 4.2 below.

Also, if 𝜈 = −𝑛/𝑡, 𝜌 = 𝜈 + 𝑛/𝑡 and 𝜆 = −𝑛/𝑝, 𝜎 = 𝜆+ 𝑛/𝑝 in Theorem 3.3,
then by (2.2), we obtain the following corollary, which is due to Y. Komori [14]
(cf. J. Alvarez, M. Guzmán-Partida and J. Lakey [2]).

Corollary 3.6. Let 𝑇 be a Calderón–Zygmund operator and 𝑝, 𝑞, 𝑡 ∈ (1,∞), 𝜆 ∈
[−𝑛/𝑝, 0), 𝜇 ∈ [−𝑛/𝑞, 0), 𝜈 ∈ [−𝑛/𝑡,∞). Assume that 𝜇 = 𝜆 + 𝜈 and 1/𝑞 =
1/𝑝+1/𝑡. If 𝑏 ∈ CMO𝑡,𝜈(ℝ𝑛), then the commutator [𝑏, 𝑇 ] is bounded from 𝐵𝑝,𝜆(ℝ𝑛)
to 𝐵𝑞,𝜇(ℝ𝑛), i.e., there exists a constant 𝐶 > 0 such that

∥[𝑏, 𝑇 ]𝑓∥𝐵𝑞,𝜇 ≤ 𝐶∥𝑏∥CMO𝑡,𝜈∥𝑓∥𝐵𝑝,𝜆 ,

where 𝐶 is independent of 𝑏 ∈ CMO𝑡,𝜈(ℝ𝑛) and 𝑓 ∈ 𝐵𝑝,𝜆(ℝ𝑛).

The same conclusion holds for �̇�𝑝,𝜆(ℝ𝑛), if 𝑏 ∈ CBMO𝑡,𝜈(ℝ𝑛).

4. Preliminary results and lemmas

In what follows, we use the symbol 𝐴 ≲ 𝐵 to denote that there exists a constant
𝐶 > 0 such that 𝐴 ≤ 𝐶𝐵. If 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴, we then write 𝐴 ∼ 𝐵.

First, we list the results on boundedness of the Calderón–Zygmund operator
𝑇 on Morrey spaces and the commutator [𝑏, 𝑇 ] generated by 𝑏 ∈ BMO(ℝ𝑛) and 𝑇
on Lebesgue spaces or Morrey spaces.
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Theorem 4.1 ([5, 21, 23]). If 𝑝 ∈ (1,∞) and 𝜆 ∈ [−𝑛/𝑝, 0), then the Calderón–
Zygmund operator 𝑇 is bounded on 𝐿𝑝,𝜆(ℝ𝑛), i.e., there exists a constant 𝐶 > 0
such that

∥𝑇𝑓∥𝐿𝑝,𝜆
≤ 𝐶∥𝑓∥𝐿𝑝,𝜆

, 𝑓 ∈ 𝐿𝑝,𝜆(ℝ
𝑛).

Theorem 4.2 ([6]). If 𝑝 ∈ (1,∞), 𝑇 is a Calderón–Zygmund operator and 𝑏 ∈
BMO(ℝ𝑛), then the commutator [𝑏, 𝑇 ] is bounded on 𝐿𝑝(ℝ𝑛).

Theorem 4.3 ([7]). If 𝑝 ∈ (1,∞), 𝜆 ∈ (−𝑛/𝑝, 0), 𝑇 is a Calderón–Zygmund oper-
ator and 𝑏 ∈ BMO(ℝ𝑛), then the commutator [𝑏, 𝑇 ] is bounded on 𝐿𝑝,𝜆(ℝ𝑛), i.e.,
there exists a constant 𝐶 > 0 such that

∥[𝑏, 𝑇 ]𝑓∥𝐿𝑝,𝜆
≤ 𝐶∥𝑏∥BMO∥𝑓∥𝐿𝑝,𝜆

, 𝑓 ∈ 𝐿𝑝,𝜆(ℝ
𝑛).

Next, we invoke several lemmas for 𝐵𝜎-Morrey–Campanato spaces.

Lemma 4.4 ([19, Lemma 3.5]). Let 𝑝 ∈ [1,∞) and 𝑟 > 0. If 𝜆 ∈ [−𝑛/𝑝, 0), then

∥𝑓𝜒𝑄𝑟∥𝐿𝑝,𝜆
≤ ∥𝑓∥𝐿𝑝,𝜆(𝑄3𝑟)

for all 𝑓 ∈ 𝐿𝑝
loc(ℝ

𝑛) with ∥𝑓∥𝐿𝑝,𝜆(𝑄3𝑟) <∞.
Lemma 4.5 ([19, Lemma 4.1]). Let 𝑝 ∈ [1,∞), 𝛽, 𝜆 ∈ ℝ and 𝜎 ∈ [0,∞). If 𝛽+ 𝜎+
𝜆 < 0, then there exists a constant 𝐶 > 0 such that∫

ℝ𝑛∖𝑄𝑟

∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦 ≤ 𝐶𝑟𝛽+𝜎+𝜆∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆) for all 𝑓 ∈ 𝐵𝜎(𝐿𝑝,𝜆)(ℝ
𝑛) and 𝑟 ≥ 1,

and∫
ℝ𝑛∖𝑄𝑟

∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦 ≤ 𝐶𝑟𝛽+𝜎+𝜆∥𝑓∥�̇�𝜎(𝐿𝑝,𝜆)
for all 𝑓 ∈ �̇�𝜎(𝐿𝑝,𝜆)(ℝ

𝑛) and 𝑟 > 0.

Lemma 4.6. Let 𝑡 ∈ [1,∞), 𝜈 ∈ ℝ, 𝜌 ∈ [0,∞) and 𝑗 ∈ ℕ ∩ [2,∞). If 𝜌 + 𝜈 ≥ 0,
then there exists a constant 𝐶 > 0 such that(

−
∫
𝑄2𝑗𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣𝑡 𝑑𝑦
)1/𝑡

≤ 𝐶𝑗(2𝑗𝑟)𝜌+𝜈∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)

for all 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ
𝑛) and 𝑟 ≥ 1,

and (
−
∫
𝑄2𝑗𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣𝑡 𝑑𝑦
)1/𝑡

≤ 𝐶𝑗(2𝑗𝑟)𝜌+𝜈∥𝑏∥�̇�𝜌(ℒ𝑡,𝜈)

for all 𝑏 ∈ �̇�𝜌(ℒ𝑡,𝜈)(ℝ
𝑛) and 𝑟 > 0.

Note that the proof shows that when 𝜌+ 𝜈 > 0, we do not need the factor 𝑗.
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Proof. We prove only the case 𝑓 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ𝑛) and 𝑟 ≥ 1. Since 𝜌 + 𝜈 ≥ 0, it
follows that(
−
∫
𝑄

2𝑗𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣𝑡 𝑑𝑦
)1/𝑡

≤
(
−
∫
𝑄

2𝑗𝑟

∣𝑏(𝑦)− 𝑏𝑄2𝑗𝑟
∣𝑡 𝑑𝑦

)1/𝑡

+

𝑗∑
𝑘=1

∣𝑏𝑄
2𝑘𝑟
− 𝑏𝑄

2𝑘−1𝑟
∣

≲
(
2𝑗𝑟

)𝜈 ∥𝑏∥ℒ𝑡,𝜈(𝑄2𝑗𝑟)
+

𝑗∑
𝑘=1

(
2𝑘𝑟

)𝜈 ∥𝑏∥ℒ𝑡,𝜈(𝑄2𝑘𝑟
)

≲ 𝑗
(
2𝑗𝑟

)𝜌+𝜈 ∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈).

The proof for 𝑏 ∈ �̇�𝜌(ℒ𝑡,𝜈)(ℝ𝑛) and 𝑟 > 0 is the same as above. □

Lemma 4.7. Let 𝑝, 𝑡 ∈ [1,∞), 𝜆, 𝜈 ∈ ℝ and 𝜎, 𝜌 ∈ [0,∞). If 1/𝑝+1/𝑡 ≤ 1, 𝜌+𝜈 ≥ 0
and 𝛽 + 𝜎 + 𝜌+ 𝜆+ 𝜈 < 0, then there exists a constant 𝐶 > 0 such that∫

ℝ𝑛∖𝑄𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦 ≤ 𝐶𝑟𝛽+𝜎+𝜌+𝜆+𝜈∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆)

for all 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ
𝑛), 𝑓 ∈ 𝐵𝜎(𝐿𝑝,𝜆)(ℝ

𝑛) and 𝑟 ≥ 1,
and∫

ℝ𝑛∖𝑄𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦 ≤ 𝐶𝑟𝛽+𝜎+𝜌+𝜆+𝜈∥𝑏∥�̇�𝜌(ℒ𝑡,𝜈)
∥𝑓∥�̇�𝜎(𝐿𝑝,𝜆)

for all 𝑏 ∈ �̇�𝜌(ℒ𝑡,𝜈)(ℝ
𝑛), 𝑓 ∈ �̇�𝜎(𝐿𝑝,𝜆)(ℝ

𝑛) and 𝑟 > 0.

Proof. We prove only the case 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ𝑛), 𝑓 ∈ 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛) and 𝑟 ≥ 1,

since the proof for 𝑏 ∈ �̇�𝜌(ℒ𝑡,𝜈)(ℝ𝑛), 𝑓 ∈ �̇�𝜎(𝐿𝑝,𝜆)(ℝ𝑛) and 𝑟 > 0 is similar.
It is again significant to prove the assertion when 1/𝑝 + 1/𝑡 = 1, which we

assume. By decomposing ℝ𝑛 ∖𝑄𝑟 dyadically, we obtain∫
ℝ𝑛∖𝑄𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦 ≲
∞∑
𝑗=1

1

(2𝑗𝑟)𝑛−𝛽

∫
𝑄2𝑗𝑟∖𝑄2𝑗−1𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣ 𝑑𝑦

≲ 𝑟𝛽
∞∑
𝑗=1

2𝑗𝛽 −
∫
𝑄2𝑗𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣ 𝑑𝑦.

Then, it follows from Hölder’s inequality and Lemma 4.6 that∫
ℝ𝑛∖𝑄𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦

≤ 𝑟𝛽
∞∑
𝑗=1

2𝑗𝛽

(
−
∫
𝑄2𝑗𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣𝑡 𝑑𝑦
)1/𝑡 (

−
∫
𝑄2𝑗𝑟

∣𝑓(𝑦)∣𝑝 𝑑𝑦
)1/𝑝

≲ 𝑟𝛽+𝜎+𝜌+𝜆+𝜈∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆)

∞∑
𝑗=1

𝑗2𝑗(𝛽+𝜎+𝜌+𝜆+𝜈).
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Since 𝛽 + 𝜎 + 𝜌+ 𝜆+ 𝜈 < 0, the series in the most right-hand side converges to a
finite value, we conclude∫

ℝ𝑛∖𝑄𝑟

∣𝑏(𝑦)− 𝑏𝑄𝑟 ∣∣𝑓(𝑦)∣
∣𝑦∣𝑛−𝛽

𝑑𝑦 ≲ 𝑟𝛽+𝜎+𝜌+𝜆+𝜈∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Thus, the proof is complete. □

5. Proof of Theorem 3.3

Let 𝑏 ∈ 𝐵𝜌(ℒ𝑡,𝜈)(ℝ𝑛), 𝑓 ∈ 𝐵𝜎(𝐿𝑝,𝜆)(ℝ𝑛) and 𝑟 ≥ 1. Then, we prove that for any
ball 𝑄𝑟,

∥[𝑏, 𝑇 ](𝑓)∥𝐿𝑞,𝜇(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Here 𝜏 = 𝜎 + 𝜌.
To prove this, we use the decomposition of 𝑓

𝑓 = 𝑓𝜒𝑄2𝑟 + 𝑓(1− 𝜒𝑄2𝑟 ) = 𝑓0 + 𝑓∞, say,

and then for a Calderón–Zygmund operator 𝑇 with kernel 𝐾, we have

𝑇𝑓 = 𝑇𝑓0 + 𝑇𝑓∞.

Now, for 𝑥 ∈ 𝑄𝑟, it follows that

[𝑏, 𝑇 ](𝑓)(𝑥) =[𝑏, 𝑇 ](𝑓0)(𝑥) + (𝑏(𝑥)− 𝑏𝑄2𝑟 )𝑇𝑓∞(𝑥) − 𝑇 ((𝑏− 𝑏𝑄2𝑟)𝑓
∞)(𝑥)

=𝐼0(𝑥) + 𝐼∞1 (𝑥) + 𝐼∞2 (𝑥), say.

(i) First, when 𝜈 ∈ [0, 1] and 𝑞 ≤ (𝜆/𝜇)𝑝, to estimate 𝐼0, let

ℎ(𝑥) =

{
1, (∣𝑥∣ ≤ 1)
0, (∣𝑥∣ ≥ 2) such that ∥ℎ∥Lip1(ℝ𝑛) ≤ 1,

and
ℎ𝑟(𝑥) = ℎ(𝑥/𝑟),

and then
∥𝐼0∥𝐿𝑞,𝜇(𝑄𝑟) ≤ ∥[𝑏ℎ4𝑟, 𝑇 ](𝑓0)∥𝐿𝑞,𝜇 .

If 𝜈 = 0, then it follows from Theorem 4.3 that

∥[𝑏ℎ4𝑟, 𝑇 ](𝑓0)∥𝐿𝑞,𝜇 ≲ ∥𝑏ℎ4𝑟∥BMO∥𝑓0∥𝐿𝑞,𝜇

≤ ∥𝑏ℎ4𝑟∥ℒ𝑡,𝜈∥𝑓0∥𝐿𝑝,𝜆
.

If 𝜈 > 0, then it follows from the boundedness of 𝐼𝜈 from 𝐿𝑝,𝜆(ℝ𝑛) to 𝐿𝑞,𝜇(ℝ𝑛)
(see [1]) that

∥[𝑏ℎ4𝑟, 𝑇 ](𝑓0)∥𝐿𝑞,𝜇 ≲ ∥𝑏ℎ4𝑟∥Lip𝜈
∥𝐼𝜈(∣𝑓0∣)∥𝐿𝑞,𝜇

≲ ∥𝑏ℎ4𝑟∥ℒ𝑡,𝜈∥𝑓0∥𝐿𝑝,𝜆
,

where 𝐼𝜈 is the fractional integral operator defined by

𝐼𝜈𝑓(𝑥) =

∫
ℝ𝑛

𝑓(𝑦)

∣𝑥− 𝑦∣𝑛−𝜈
𝑑𝑦.
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Therefore, we obtain

∥𝐼0∥𝐿𝑞,𝜇(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Next, when 𝜈 ∈ [−𝑛/𝑡, 0) and 𝑞 ≤ 𝑝𝑡/(𝑝+ 𝑡), to estimate 𝐼0, we decompose
𝐼0(𝑥) further into the following pieces:

𝐼0(𝑥) = (𝑏(𝑥) − 𝑏𝑄2𝑟 )𝑇𝑓0(𝑥)− 𝑇 ((𝑏− 𝑏𝑄2𝑟 )𝑓
0)(𝑥)

= 𝐼01 (𝑥) + 𝐼02 (𝑥), say.

To estimate 𝐼01 , by applying the Hölder inequality for the indices 𝑝, 𝑞, 𝑡 satis-
fying 1/𝑞 ≥ 1/𝑝+ 1/𝑡, we deduce
∥𝐼01∥𝐿𝑞,𝜇(𝑄𝑟)

≤ sup
𝑄(𝜉,𝑠)⊂𝑄𝑟

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣𝑏(𝑦)− 𝑏𝑄2𝑟 ∣𝑡 𝑑𝑦
)1/𝑡(

−
∫
𝑄(𝜉,𝑠)

∣𝑇𝑓0(𝑦)∣𝑝 𝑑𝑦
)1/𝑝

.

From the assumption 𝜇 = 𝜆+ 𝜈 and the definitions of the norms, we have

∥𝐼01∥𝐿𝑞,𝜇(𝑄𝑟) ≲ ∥𝑏∥ℒ𝑡,𝜈(𝑄𝑟)∥𝑇𝑓0∥𝐿𝑝,𝜆(𝑄𝑟)

≲ 𝑟𝜌∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑇𝑓0∥𝐿𝑝,𝜆(𝑄𝑟).

Now, by the boundedness of 𝑇 on 𝐿𝑝,𝜆(ℝ𝑛) (Theorem 4.1) and Lemma 4.4,
we have

∥𝑇𝑓0∥𝐿𝑝,𝜆(𝑄𝑟) ≲ ∥𝑓0∥𝐿𝑝,𝜆
≤ ∥𝑓∥𝐿𝑝,𝜆(𝑄6𝑟) ≲ 𝑟𝜎∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Hence, we obtain

∥𝐼01∥𝐿𝑞,𝜈(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Next, by using the boundedness of 𝑇 on 𝐿𝑞,𝜇(ℝ𝑛),

∥𝐼02∥𝐿𝑞,𝜈(𝑄𝑟) ≤ ∥𝑇 ((𝑏− 𝑏𝑄2𝑟 )𝑓
0)∥𝐿𝑞,𝜇 ≲ ∥(𝑏− 𝑏𝑄2𝑟)𝑓

0∥𝐿𝑞,𝜇

= sup
𝜉∈ℝ𝑛

𝑠>0

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣(𝑏(𝑦)− 𝑏𝑄2𝑟 )𝑓
0(𝑦)∣𝑞 𝑑𝑦

)1/𝑞

.

Here we may assume that 𝑄(𝜉, 𝑠) ∩𝑄2𝑟 ∕= ∅ since 𝑓0 is supported on 𝑄2𝑟 and we
are now considering the integral over 𝑄(𝜉, 𝑠). Now, if 𝑠 < 𝑟/2, then 𝑄(𝜉, 𝑠) ⊂ 𝑄3𝑟.
Consequently, from the Hölder inequality, Theorem 2.6 and Lemma 4.4, it follows
that

sup
𝜉∈ℝ𝑛

0<𝑠<𝑟/2

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣(𝑏(𝑦)− 𝑏𝑄2𝑟 )𝑓
0(𝑦)∣𝑞 𝑑𝑦

)1/𝑞

≤ sup
𝑄(𝜉,𝑠)⊂𝑄3𝑟

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣(𝑏(𝑦)− 𝑏𝑄2𝑟 )𝑓
0(𝑦)∣𝑞 𝑑𝑦

)1/𝑞

≲ ∥𝑏∥ℒ𝑡,𝜈(𝑄3𝑟)∥𝑓0∥𝐿𝑝,𝜆

≤ 𝑟𝜌∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐿𝑝,𝜆(𝐵6𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).
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Assume 𝑠 ≥ 𝑟/2 instead. Then we have by Hölder’s inequality for the indices 𝑝, 𝑞, 𝑡
satisfying 1/𝑞 ≥ 1/𝑝+ 1/𝑡 and by virtue of Lemma 4.4 again,

sup
𝜉∈ℝ𝑛

𝑠≥𝑟/2

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣(𝑏(𝑦)− 𝑏𝑄2𝑟 )𝑓
0(𝑦)∣𝑞 𝑑𝑦

)1/𝑞

≤ sup
𝜉∈ℝ𝑛

𝑠≥𝑟/2

1

𝑠𝜇+𝑛/𝑡

(∫
𝑄(𝜉,𝑠)∩𝑄2𝑟

∣(𝑏(𝑦)− 𝑏𝑄2𝑟)∣𝑡 𝑑𝑦
)1/𝑡 (

−
∫
𝑄(𝜉,𝑠)

∣𝑓0(𝑦)∣𝑝 𝑑𝑦

)1/𝑝

.

Consequently, from the definition of the norm ∥ ⋅ ∥𝐿𝑝,𝜆
, it follows that

sup
𝜉∈ℝ𝑛

𝑠≥𝑟/2

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣(𝑏(𝑦)− 𝑏𝑄2𝑟)𝑓
0(𝑦)∣𝑞 𝑑𝑦

)1/𝑞

≤ sup
𝜉∈ℝ𝑛

𝑠≥𝑟/2

(2𝑟)𝜈

𝑠𝜈
1

(2𝑟)𝜈

( ∣𝑄2𝑟∣
∣𝑄(𝜉, 𝑠)∣ −

∫
𝑄2𝑟

∣𝑏(𝑦)− 𝑏𝑄2𝑟 ∣𝑡 𝑑𝑦
)1/𝑡

∥𝑓0∥𝐿𝑝,𝜆

≲ ∥𝑏∥ℒ𝑡,𝜈(𝑄2𝑟)∥𝑓∥𝐿𝑝,𝜆(𝑄6𝑟)

≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Hence, we have

∥𝐼02∥𝐿𝑞,𝜈(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Therefore, we obtain

∥𝐼0∥𝐿𝑞,𝜈(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

(ii) To estimate 𝐼∞1 , by using the same estimate as that of 𝐼
0
1 , it follows that

∥𝐼∞1 ∥𝐿𝑞,𝜇(𝑄𝑟) ≤ sup
𝑄(𝜉,𝑠)⊂𝑄𝑟

1

𝑠𝜇

(
−
∫
𝑄(𝜉,𝑠)

∣𝑏(𝑦)− 𝑏𝑄2𝑟 ∣𝑡 𝑑𝑦
)1/𝑡(

−
∫
𝑄(𝜉,𝑠)

∣𝑇𝑓∞(𝑦)∣𝑝 𝑑𝑦

)1/𝑝
≲ 𝑟𝜌∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑇𝑓∞∥𝐿𝑝,𝜆(𝑄𝑟).

Also, by Lemma 4.5, we have

∥𝑇𝑓∞∥𝐿𝑝,𝜆(𝑄𝑟) ≤ 𝑟−𝜆∥𝑇𝑓∞∥𝐿∞(𝑄𝑟) ≲ 𝑟−𝜆

∫
ℝ𝑛∖𝑄2𝑟

∣𝑓(𝑦)∣
∣𝑦∣𝑛 𝑑𝑦 ≲ 𝑟𝜎∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆),

since 𝜎 + 𝜆 < 0.
Therefore, we obtain

∥𝐼∞1 ∥𝐿𝑞,𝜈(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

(iii) To estimate 𝐼∞2 , by (3.1) and Lemma 4.7, we get

∣𝑇 ((𝑏− 𝑏𝑄2𝑟)𝑓
∞)(𝑥)∣ ≲

∫
ℝ𝑛∖𝑄2𝑟

∣𝑏(𝑦)− 𝑏𝑄2𝑟 ∣∣𝑓(𝑦)∣
∣𝑦∣𝑛 𝑑𝑦

≲ 𝑟𝜎+𝜌+𝜆+𝜈∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).
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Therefore, we obtain

∥𝐼∞2 ∥𝐿𝑞,𝜇(𝑄𝑟) ≲ sup
𝑄(𝜉,𝑠)⊂𝑄𝑟

1

𝑠𝜆+𝜈
𝑟𝜎+𝜌+𝜆+𝜈∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆)

≤ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆),

since 𝜆+ 𝜈 < 0.
Thus, combining the above estimates of 𝐼0, 𝐼∞1 and 𝐼∞2 , we have

∥[𝑏, 𝑇 ](𝑓)∥𝐿𝑞,𝜇(𝑄𝑟) ≲ 𝑟𝜏∥𝑏∥𝐵𝜌(ℒ𝑡,𝜈)∥𝑓∥𝐵𝜎(𝐿𝑝,𝜆).

Similarly, applying the same argument as above, the proof of the boundedness
of [𝑏, 𝑇 ] from �̇�𝜎(𝐿𝑝,𝜆)(ℝ𝑛) to �̇�𝜏 (𝐿𝑞,𝜇)(ℝ𝑛), if 𝑏 ∈ �̇�𝜌(ℒ𝑡,𝜈)(ℝ𝑛), is obtained.
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Composition Operators on Large Fractional
Cauchy Transform Spaces

Yusuf Abu Muhanna and El-Bachir Yallaoui

Abstract. For 𝛼 > 0 and 𝑧 in the unit disk D the spaces of fractional Cauchy
transforms 𝐹𝛼 are known as the family of all functions 𝑓(𝑧) such that 𝑓(𝑧) =∫
T

[𝐾(𝑥𝑧)]𝛼𝑑𝜇(𝑥) where 𝐾(𝑧) = (1− 𝑧)−1 is the Cauchy kernel, T is the unit

circle and 𝜇 ∈ 𝔐 the set of complex Borel measure on T. The Banach space
𝐹𝛼 may be written as 𝐹𝛼 = (𝐹𝛼)𝑎 ⊕ (𝐹𝛼)𝑠, where (𝐹𝛼)𝑎 is isomorphic to
a closed subspace of 𝔐𝑎 the subset of absolutely continuous measures of 𝔐,
and (𝐹𝛼)𝑠 is isomorphic to𝔐𝑠 the subspace of𝔐 of singular measures. In this
article we show that for 𝛼 ≥ 1, the composition operator 𝐶𝜑 is compact on
𝐹𝛼 if and only if 𝐶𝜑 [𝐾

𝛼 (𝑥𝑧)] ⊂ (𝐹𝛼)𝑎 and in doing so, extend a result due
to [1] who showed that 𝐶𝜑 is compact on 𝐹1 if and only if 𝐶𝜑 (𝐹1) ⊂ (𝐹1)𝑎.

Mathematics Subject Classification (2010). Primary: 30E20; Secondary: 30D99.

Keywords. Cauchy transforms, composition operators, absolutely continuous
measures.

1. Introduction

Let D = {𝑧 ∈ C : ∣𝑧∣ < 1} be the open unit disc in the complex plane C, and
T = ∂D the boundary of D. We let 𝐻 (D) denote the class of holomorphic func-
tions on D. 𝐻 (D) is a locally convex linear topological space with respect to the
topology given by uniform convergence on compact subsets of D. We denote by
𝔐 be the set of all complex-valued Borel measures on T.

For 𝑧 ∈ D, consider the classical Cauchy kernel 𝐾 (𝑧) = 1/ (1− 𝑧). For 𝛼 > 0
we define the space of Fractional Cauchy Transforms 𝐹𝛼 as the space of analytic

This research has been supported by a grant from Sultan Qaboos University IG/SCI/DOMS/

11/12.
We would like to thank the referee for his valuable comments.
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functions 𝑓 ∈ 𝐻 (D) defined in (1.1) for which there exists a measure 𝜇 ∈𝔐 such
that

𝑓(𝑧) =

∫
T

𝐾𝛼(𝑥𝑧)𝑑𝜇(𝑥) (1.1)

The norm on 𝐹𝛼 defined by

∥𝑓∥𝐹𝛼 = inf
𝜇∈𝔐

{
∥𝜇∥ : 𝑓 (𝑧) =

∫
T

𝐾𝛼 (𝑥𝑧) 𝑑𝜇(𝑥)

}
(1.2)

makes 𝐹𝛼 into a Banach space. When 𝛼 = 1, 𝐹1 is known as the classical Cauchy
space. The spaces 𝐹𝛼 have been studied extensively (see [3] for an extensive list
of references).

Let𝔐𝑎 := {𝜇𝑎 ∈𝔐 : 𝜇𝑎 ≪ 𝑚} where𝑚 is the normalized Lebesgue measure
on the unit circle, and 𝔐𝑠 := {𝜇𝑠 ∈𝔐 : 𝜇𝑠 ⊥ 𝑚}. According to the Lebesgue
decomposition theorem 𝔐 = 𝔐𝑎 ⊕𝔐𝑠 thus any 𝜇 ∈ 𝔐 can be written as 𝜇 =
𝜇𝑎 + 𝜇𝑠 where 𝜇𝑎 ∈𝔐𝑎, 𝜇𝑠 ∈𝔐𝑠 and ∥𝜇∥ = ∥𝜇𝑎∥+ ∥𝜇𝑠∥. The space 𝐹𝛼 may be

identified with𝔐/𝐻1
0 the quotient of the Banach space𝔐 of Borel measures by𝐻1

0

the subspace of 𝐿1 consisting of functions with mean value zero whose conjugate
belongs the Hardy space 𝐻1. According to the Radon–Nikodým theorem since
𝜇𝑎 is absolutely continuous with respect to the Lebesgue measure there exists
a non-negative 𝐿1-valued function of the independent variable 𝑥, 𝑥 → 𝑔𝑥 which
is continuous with respect to the 𝐿1 norm such that we can decompose 𝜇 as

𝑑𝜇(𝑥) = 𝑑𝜇(𝑒𝑖𝑡) = 𝑔(𝑒𝑖𝑡)𝑑𝑡+ 𝑑𝜇𝑠(𝑒
𝑖𝑡) where 𝑔(𝑒𝑖𝑡) ∈ 𝐻1

0 ⊂ 𝐿1 (see [4]).
Consequently the Banach space 𝐹𝛼 may be written as 𝐹𝛼 = (𝐹𝛼)𝑎 ⊕ (𝐹𝛼)𝑠,

where (𝐹𝛼)𝑎 is isomorphic to 𝐿1/𝐻1
0 a closed subspace of𝔐 of absolutely continu-

ous measures, and (𝐹𝛼)𝑠 is isomorphic to𝔐𝑠 the closed subspace of𝔐 of singular
measures. If 𝑓 ∈ (𝐹𝛼)𝑎, then the singular part is null and the measure 𝜇 for which
the integral holds reduces to 𝑑𝜇(𝑡) = 𝑑𝜇(𝑒𝑖𝑡) = 𝑔(𝑒𝑖𝑡)𝑑𝑡 where 𝑔(𝑒𝑖𝑡) ∈ 𝐿1 and 𝑑𝑡
is the Lebesgue measure on T. In which case the functions in (𝐹𝛼)𝑎 may be then

written as, 𝑓(𝑧) =
∫ 𝜋

−𝜋 𝐾𝛼
(
𝑒−𝑖𝑡𝑧

)
𝑔(𝑒𝑖𝑡)𝑑𝑡 where if 𝑔(𝑒𝑖𝑡) is non-negative then

∥𝑓∥𝐹𝛼
=
∥∥𝑔(𝑒𝑖𝑡)∥∥

𝐿1 .

If 𝜑 is an analytic self map of the unit discD, we say that 𝜑 induces a bounded
composition operator 𝐶𝜑 on the Banach space 𝑋 if there exists a positive constant
𝐴 such that for all 𝑓 ∈ 𝑋 , ∥𝐶𝜑(𝑓)∥𝑋 = ∥(𝑓 ∘ 𝜑)∥𝑋 ≤ 𝐴 ∥𝑓∥𝑋 . A bounded operator
𝐶𝜑 will be a compact operator if the image of every bounded set of 𝑋 is relatively
compact (i.e., has compact closure) in𝑋 . Equivalently 𝐶𝜑 is a compact operator on
𝑋 if and only if for every bounded sequence {𝑓𝑛} of 𝑋 , {𝐶𝜑(𝑓𝑛)} has a convergent
subsequence in 𝑋 .

The fractional Cauchy spaces 𝐹𝛼 have been studied by several authors (see
[3] for a complete list of references). It is known from [3] among other things that:

∙ If 𝛼 > 0 and 𝜑 is a conformal automorphism of D then 𝐶𝜑 (𝑓) ∈ 𝐹𝛼 for every
𝑓 ∈ 𝐹𝛼.

∙ If 𝛼 > 0 then 𝐶𝜑 is bounded on 𝐹𝛼 if and only if 𝐶𝜑 [𝐾
𝛼 (𝑥𝑧)] ∈ 𝐹𝛼 for every

𝑥 ∈ T.
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∙ If 𝛽 > 𝛼 > 0 and if 𝐶𝜑 is bounded on 𝐹𝛼 then 𝐶𝜑 is also bounded on 𝐹𝛽 .
∙ If 𝛼 ≥ 1 and 𝜑 ∈ 𝐻 (D) then 𝐶𝜑 (𝑓) ∈ 𝐹𝛼 for every 𝑓 ∈ 𝐹𝛼.
∙ If 0 < 𝑝 ≤ 1 then 𝐻𝑝 ⊂ 𝐹1/𝑝
∙ If 0 < 𝛼 < 𝛽 then 𝐹𝛼 ⊂ (𝐹𝛽)𝑎 (see [2]).∙ 𝐶𝜑 is compact on 𝐹1 if and only if 𝐶𝜑 (𝐹1) ⊂ (𝐹1)𝑎 (see [1]).
In this article we show that for all 𝛼 ≥ 1 the composition operator 𝐶𝜑 is

compact on 𝐹𝛼 if and only if 𝐶𝜑 [𝐾
𝛼 (𝑥𝑧)] ∈ (𝐹𝛼)𝑎 for every 𝑥 ∈ T and in doing

so generalize the previous result by [1]. Since 𝐹𝛼 are Möbius invariant there is no
loss of generality in assuming that 𝜑(0) = 0 whenever we consider the composition
operator 𝐶𝜑 acting on 𝐹𝛼 and we will do so through out the article.

2. Compactness of the Composition Operator when 𝜶 ≥ 1

Let 𝜑 be an analytic self map of the unit disc with 𝜑 (0) = 0. As was mentioned in
the previous section 𝐶𝜑 is bounded on 𝐹𝛼 for 𝛼 ≥ 1. In this section we will show
that compactness of the composition operator 𝐶𝜑 on 𝐹𝛼 is strongly tied with the
absolute continuity of the measure that supports it. First observe that 𝐻∞ ⊂ 𝐹1𝑎
and thus 𝐻∞ ∩ 𝐹𝛼 ⊂ 𝐹1𝑎 ∩ 𝐹𝛼 ⊆ (𝐹𝛼)𝑎 for all 𝛼 ≥ 1. Now we give our first main
result.

Theorem 2.1. If 𝐶𝜑 is compact on 𝐹𝛼 for 𝛼 ≥ 1 then 𝐶𝜑 [𝐾
𝛼(𝑥𝑧)] ∈ (𝐹𝛼)𝑎 for

every 𝑥 ∈ T and

𝐶𝜑 [𝐾
𝛼(𝑥𝑧)] =

∫ 𝜋

−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)
𝐾𝛼(𝑒−𝑖𝑡𝑧)𝑑𝑡 (2.1)

where 𝑔𝑥 is a non-negative 𝐿1 continuous function of 𝑥 and ∥𝑔𝑥∥𝐿1 ≤ ∥𝐶𝜑∥ <∞.
Proof. Assume that 𝐶𝜑 is compact and let {𝑓𝑗}∞𝑗=1 be a sequence of functions such
that

𝑓𝑗(𝑧) = 𝐾𝛼(𝜌𝑗𝑥𝑧) =
1

(1− 𝜌𝑗𝑥𝑧)𝛼

where 0 < 𝜌𝑗 < 1 and lim𝑗→∞ 𝜌𝑗 = 1. Then it is known from [3] that 𝑓𝑗(𝑧) ∈ 𝐹𝛼

for every 𝑗,and all 𝑥 = 𝑒𝑖𝑡 ∈ T and ∥𝑓𝑗(𝑧)∥𝐹𝛼
= 1. Furthermore there exists a

probability measure 𝜇𝑗 ∈𝔐, such that ∥𝜇𝑗∥ = 1, 𝑑𝜇𝑗 > 0 and can be written as

𝑓𝑗(𝑧) = 𝐾𝛼(𝜌𝑗𝑥𝑧) =
1

(1− 𝜌𝑗𝑥𝑧)𝛼
=

∫
T

1

(1− 𝑥𝑧)𝛼
𝑑𝜇𝑗(𝑥).

Since 𝐶𝜑 is compact on 𝐹𝛼 then 𝐶𝜑 (𝑓𝑗) ∈ 𝐹𝛼 and ∥𝐶𝜑(𝑓𝑗)∥ ≤ ∥𝐶𝜑∥ ∥𝑓𝑗∥𝐹𝛼
=

∥𝐶𝜑∥ for all 𝑗. Furthermore 𝐶𝜑 (𝑓𝑗) ∈ 𝐻∞, and thus 𝐶𝜑 (𝑓𝑗) ∈ 𝐻∞ ∩ 𝐹𝛼 ⊂
(𝐹𝛼)𝑎 for every 𝑗. Henceforth there exists a non-negative 𝐿1 function 𝑔𝑗𝑥 such that

𝑑𝜇𝑗(𝑥) = 𝑔𝑗𝑥
(
𝑒𝑖𝑡
)
𝑑𝑡,

∥∥𝑔𝑗𝑥∥∥𝐿1 ≤ ∥𝐶𝜑∥ and

𝐶𝜑 (𝑓𝑗) (𝑧) = (𝑓𝑗 ∘ 𝜑)(𝑧) = 𝐾𝛼 [𝑥𝜌𝑗𝜑 (𝑧)] =

∫ 𝜋

−𝜋

𝑔𝑗𝑥
(
𝑒𝑖𝑡
)
𝐾𝛼

(
𝑒−𝑖𝑡𝜌𝑗𝑧

)
𝑑𝑡.
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Now since (𝐹𝛼)𝑎 is closed and 𝐶𝜑 is compact, the sequence {𝐶𝜑 (𝑓𝑗)}∞𝑗=1 has a
convergent subsequence {𝐶𝜑 (𝑓𝑗𝑘)}𝑗𝑘 that converges to 𝐶𝜑 (𝑓) (𝑧) = 𝐾𝛼 [𝑥𝜑 (𝑧)] ∈
(𝐹𝛼)𝑎 . Therefore, there exits an 𝐿1 non-negative continuous function of the vari-
able 𝑥 = 𝑒𝑖𝑡, 𝑔𝑥 with ∥𝑔𝑥∥𝐿1 ≤ ∥𝐶𝜑∥ and such that

lim
𝑘→∞

(𝑓𝑗𝑘 ∘ 𝜑) (𝑧) = lim
𝑘→∞

(𝐾𝛼 ∘ 𝜑) (𝑥𝜌𝑗𝑘𝑧) = lim
𝑘→∞

∫ 𝜋

−𝜋

𝑔𝑗𝑘𝑥
(
𝑒𝑖𝑡
)
𝐾𝛼

(
𝑒−𝑖𝑡𝜌𝑗𝑘𝑧

)
𝑑𝑡

=

∫ 𝜋

−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)
𝐾𝛼

(
𝑒−𝑖𝑡𝑧

)
𝑑𝑡 = (𝐾𝛼 ∘ 𝜑) (𝑥𝑧) = 𝐶𝜑 [𝐾

𝛼(𝑥𝑧)] ∈ (𝐹𝛼)𝑎

For the continuity of 𝑔𝑥 in 𝐿1 with respect to 𝑥 where ∣𝑥∣ = 1, we take a sequence
{𝑥𝑘} , such that ∣𝑥𝑘∣ = 1 and 𝑥𝑘 → 𝑥. Now since 𝐶𝜑 is compact then

lim
𝑘→∞

(𝐾𝛼 ∘ 𝜑) (𝑥𝑘𝑧) = (𝐾𝛼 ∘ 𝜑) (𝑥𝑧)

which concludes the proof. □

The following lemmas are needed to prove the converse of Theorem 1.

Lemma 2.2. Suppose 𝑔𝑥
(
𝑒𝑖𝑡
)
is a non-negative 𝐿1continuous function of 𝑥 and

let {𝜇𝑛} be a sequence of non-negative Borel measures that are weak* conver-
gent to 𝜇. Define 𝑤𝑛(𝑡) =

∫
T 𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇𝑛 (𝑥) and 𝑤(𝑡) =

∫
T 𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇 (𝑥) , then

∥𝑤𝑛 − 𝑤∥𝐿1 −→ 0.

The proof of the lemma is easy and left to the reader.

Lemma 2.3. Let 𝑔𝑥
(
𝑒𝑖𝑡
)
be a non-negative 𝐿1 continuous function of 𝑥 such that

∥𝑔𝑥∥𝐿1 ≤ 𝑎 <∞ and 𝑔𝑥(𝑒
𝑖𝑡) defines a bounded operator on 𝐻1

0 .

If 𝑓(𝑧) =

∫
1

(1 − 𝑥𝑧)𝛼
𝑑𝜇(𝑥), let 𝐿 be the operator given by

𝐿 [𝑓(𝑧)] =

∫
T

𝜋∫
−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)

(1 − 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝑡𝑑𝜇(𝑥)

then 𝐿 is compact operator on 𝐹𝛼, 𝛼 ≥ 1.
Proof. First note that the condition that 𝑔𝑥(𝑒

𝑖𝑡) defines a bounded operator on

𝐻1
0 implies that the 𝐿 operator is a well-defined function on F𝛼. Let {𝑓𝑛(𝑧)}

be a bounded sequence in 𝐹𝛼 and let {𝜇𝑛} be the corresponding norm bounded
sequence of measures in 𝔐. Since every norm bounded sequence of measures
in 𝔐 has a weak star convergent subsequence, let {𝜇𝑛} be such subsequence
that is convergent to 𝜇 ∈ 𝔐. We want to show that {𝐿(𝑓𝑛)} has a convergent
subsequence in 𝐹𝛼. First, let us assume that 𝑑𝜇𝑛 (𝑥) ≫ 0 for all 𝑛, and let
𝑤𝑛(𝑡) =

∫
𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇𝑛 (𝑥) and 𝑤(𝑡) =

∫
𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇 (𝑥) , then we know from the

previous lemma that 𝑤𝑛(𝑡), 𝑤(𝑡) ∈ 𝐿1 for all 𝑛, and 𝑤𝑛(𝑡) → 𝑤(𝑡) in 𝐿1. Now
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since 𝑔𝑥
(
𝑒𝑖𝑡
)
is a non-negative continuous function in 𝑥 and {𝜇𝑛} is weak star

convergent to 𝜇, then

𝐿(𝑓𝑛(𝑧)) =

∫
T

∫ 𝜋

−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)
𝑑(𝑡)

(1− 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝜇𝑛 (𝑥) =

∫ 𝜋

−𝜋

𝑤𝑛(𝑡)

(1− 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝑡.

𝐿(𝑓(𝑧)) =

∫
T

∫ 𝜋

−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)
𝑑(𝑡)

(1− 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝜇 (𝑥) =

∫ 𝜋

−𝜋

𝑤(𝑡)

(1− 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝑡.

Furthermore because 𝑤𝑛(𝑡) is non-negative then

∥𝐿(𝑓𝑛)∥𝐹𝛼
= ∥𝑤𝑛∥𝐿1 , ∥𝐿(𝑓)∥𝐹𝛼

= ∥𝑤∥𝐿1

Now since∥𝑤𝑛 − 𝑤∥𝐿1 → 0 then ∥𝐿(𝑓𝑛)− 𝐿(𝑓)∥𝐹𝛼
→ 0 which shows that {𝐿(𝑓𝑛)}

has convergent subsequence in 𝐹𝛼 and thus 𝐿 is a compact operator for the case
where 𝜇 is a positive measure.

In the case where 𝜇 is a complex measure we write

𝑑𝜇𝑛 (𝑥) = (𝑑𝜇
1
𝑛 (𝑥)− 𝑑𝜇2𝑛 (𝑥)) + 𝑖(𝑑𝜇3𝑛 (𝑥)− 𝑑𝜇4𝑛 (𝑥)),

where each 𝑑𝜇𝑗
𝑛 (𝑥) > 0 and define 𝑤𝑗

𝑛(𝑡) =
∫
𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇𝑗

𝑛 (𝑥) then

𝑤𝑛(𝑡) =

∫
𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇𝑛 (𝑥) =

(
𝑤1

𝑛(𝑡)− 𝑤2
𝑛(𝑡)

)
+ 𝑖

(
𝑤3

𝑛(𝑡)− 𝑤4
𝑛(𝑡)

)
.

Using an argument similar to the one above we get that 𝑤𝑗
𝑛(𝑡), 𝑤

𝑗(𝑡) ∈ 𝐿1, and∥∥𝑤𝑗
𝑛 − 𝑤𝑗

∥∥
𝐿1 −→ 0. Consequently, ∥𝑤𝑛 − 𝑤∥𝐿1 −→ 0, where

𝑤(𝑡) =
(
𝑤1(𝑡)− 𝑤2(𝑡)

)
+ 𝑖

(
𝑤3(𝑡)− 𝑤4(𝑡)

)
=

∫
𝑔𝑥

(
𝑒𝑖𝑡
)
𝑑𝜇 (𝑥) .

Hence, ∥𝐿(𝑓𝑛)− 𝐿(𝑓)∥𝐹𝛼
≤ ∥𝑤𝑛 − 𝑤∥𝐿1 −→ 0. Finally, we conclude that the

operator is compact. □
The following is the converse of Theorem 2.1.

Theorem 2.4. For an analytic self-map 𝜑 of the unit disc D, if

𝐶𝜑 [𝐾
𝛼 (𝑥𝑧)] =

1

(1− 𝑥𝜑(𝑧))𝛼
=

∫ 𝜋

−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)

(1− 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝑡

where 𝑔𝑥 ∈ 𝐿1, non-negative, ∥𝑔𝑥∥𝐿1 ≤ 𝑎 < ∞ for all 𝑥 ∈ T and 𝑔𝑥 is an 𝐿1

continuous function of 𝑥, then 𝐶𝜑 is compact on 𝐹𝛼.

Proof. We want to show that 𝐶𝜑 is compact on 𝐹𝛼. Let 𝑓(𝑧) ∈ 𝐹𝛼 then there
exists a measure 𝜇 in 𝔐 such that for every 𝑧 in D

𝑓(𝑧) =

∫
T

1

(1− 𝑥𝑧)𝛼
𝑑𝜇(𝑥).

Using the assumption of the theorem we get that

𝐶𝜑 [𝑓 (𝑧)] = (𝑓 ∘ 𝜑)(𝑧) =
∫
T

1

(1− 𝑥𝜑(𝑧))𝛼
𝑑𝜇 (𝑥) =

∫
T

∫ 𝜋

−𝜋

𝑔𝑥
(
𝑒𝑖𝑡
)

(1− 𝑒−𝑖𝑡𝑧)𝛼
𝑑𝑡𝑑𝜇 (𝑥)

which by the previous lemma was shown to be compact on 𝐹𝛼. □
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Now we give some examples:

Corollary 2.5. Let 𝜑 ∈ 𝐻(D), with ∥𝜑∥∞ < 1. Then 𝐶𝜑 is compact on 𝐹𝛼 for all
𝛼 ≥ 1.
Proof. 𝐶𝜑(𝐾

𝛼(𝑥𝑧)) = 1/(1 − 𝑥𝜑(𝑧))𝛼 ∈ 𝐻∞ ∩ 𝐹𝛼 ⊂ (𝐹𝛼)𝑎 and is subordinate to
1/(1− 𝑧)𝛼, hence

𝐶𝜑(𝐾
𝛼
𝑥 )(𝑧) =

∫ 𝜋

−𝜋

𝐾𝛼(𝑥𝑧)𝑔𝑥
(
𝑒𝑖𝑡
)
𝑑𝑡

with 𝑔𝑥
(
𝑒𝑖𝑡
) ≥ 0 and since 1 = 𝐶𝜑(𝐾

𝛼
𝑥 )(0) =

∫ 𝜋

−𝜋 𝑔𝑥
(
𝑒𝑖𝑡
)
𝑑𝑡 we get that∥∥𝑔𝑥 (𝑒𝑖𝑡)∥∥1 = 1. Hence 𝐶𝜑 (𝐹𝛼) ⊂ (𝐹𝛼)𝑎 □

Corollary 2.6. If 𝛼 ≥ 1, 𝐶𝜑 is compact on 𝐹𝛼 and lim𝑟→1

∣∣𝜑(𝑟𝑒𝑖𝜃)∣∣ = 1 then∣∣1/𝜑′(𝑒𝑖𝜃)∣∣ = 0.
Proof. If 𝐶𝜑 is compact then

𝐶𝜑 [𝐾
𝛼(𝑥𝑧)] =

∫ 𝜋

−𝜋

𝐾𝛼(𝑥𝑧)𝑔𝑥
(
𝑒𝑖𝑡
)
𝑑𝑡

Now if we let 𝑧 = 𝑒𝑖𝜃 and 𝜑(𝑒𝑖𝜃) = 𝑥 then

lim
𝑟→1

(𝑒𝑖𝜃 − 𝑟𝑒𝑖𝜃)𝛼

(1 − 𝑥𝜑(𝑟𝑒𝑖𝜃))𝛼
= 0. □

Corollary 2.7. For all 𝛼 ≥ 1 if 𝐶𝜑 is compact on 𝐹𝛼 then 𝐶𝜑 is a contraction.
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Hankel Operators on Fock Spaces

A. Perälä, A. Schuster and J.A. Virtanen

Abstract. We study Hankel operators on the weighted Fock spaces 𝐹 𝑝
𝛾 . The

boundedness and compactness of these operators are characterized in terms of
𝐵𝑀𝑂 and 𝑉𝑀𝑂, respectively. Along the way, we also study Berezin trans-
form and harmonic conjugates on the plane. Our results are analogous to
Zhu’s characterization of bounded and compact Hankel operators on Bergman
spaces of the unit disk.

Mathematics Subject Classification (2010). Primary 47B35; Secondary 30H20,
30H35.

Keywords. Hankel operators, Fock spaces, boundedness, compactness.

1. Introduction

Hankel operators have been studied for several decades in the setting of various
analytic function spaces. Starting with Hankel matrices, which can be viewed as
Hankel operators on Hardy spaces (see [9]), the field has expanded to Hankel
operators on Bergman spaces, Dirichlet type spaces, Bergman and Hardy spaces
of the unit ball in ℂ𝑛, of symmetric domains, and Fock spaces. In addition to
being a beautiful and rapidly developing part of analysis, Hankel operators have
a vast number of applications, which in the case of Hardy spaces are well known
and recognized (see, e.g., [9]), while Hankel operators on Bergman and Fock spaces
have found applications mainly in quantum mechanics.

We are interested in the basic properties of Hankel operators on Fock spaces,
and in particular characterize their boundedness and compactness in terms of the
(mean) oscillation of the generating symbols. In the Bergman space setting one is
led to the space of bounded mean oscillation 𝐵𝑀𝑂𝑝

∂ and the space of vanishing
mean oscillation 𝑉 𝑀𝑂𝑝

∂ with respect to the Bergman metric. Due to K. Zhu [12],
a characterization of bounded and compact Hankel operators has been known

The first author acknowledges support by the Academy of Finland project no. 75166001. The

third author was supported by a Marie Curie International Outgoing Fellowship within the 7th
European Community Framework Programme.
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for two decades. It is natural to ask whether an analogous result carries over to
Fock spaces. Indeed, the question was recently settled in [2] for the Hilbert–Fock
space 𝐹 2.

For a symbol 𝑓 (satisfying suitable conditions), we define the Hankel operator
𝐻𝑓 by

𝐻𝑓 = (𝐼 − 𝑃 )𝑀𝑓 ,

where 𝑃 is a projection defined below in (1) and 𝑀𝑓 is the operator of multipli-
cation associated with 𝑓 . In this paper we study Hankel operators on standard
Fock spaces 𝐹 𝑝

𝛾 with 1 ≤ 𝑝 <∞ and 𝛾 > 0. We will introduce spaces 𝐵𝑀𝑂𝑝 and
𝑉 𝑀𝑂𝑝 (in the Euclidean metric) and obtain useful characterizations for these
spaces. We prove decomposition theorems similar to those in [11, 12]; in particu-
lar, we show that these spaces can be characterized in terms of certain Gaussian
integrals, where 𝛾 > 0 can be arbitrary.

Note that the John–Nirenberg theorem implies that the classical 𝐵𝑀𝑂 and
𝑉 𝑀𝑂 spaces are independent of the parameter 𝑝. However, as in the case of the
Bergman metric, the spaces 𝐵𝑀𝑂𝑝 and 𝑉 𝑀𝑂𝑝 presented here depend on 𝑝.

2. The weighted Fock spaces

We will use the definitions from [7]. Let 𝛾 > 0 and 1 ≤ 𝑝 <∞. The weighted Fock
space 𝐹 𝑝

𝛾 consists of entire functions 𝑓 such that

∥𝑓∥𝑝𝑝,𝛾 =
∫
ℂ

∣𝑓(𝑧)∣𝑝𝑒−(𝛾𝑝/2)∣𝑧∣2𝑑𝐴(𝑧) <∞.

Here 𝑑𝐴(𝑧) = 𝑑𝑥𝑑𝑦 is the standard Lebesgue area measure. Similarly, the space
𝐹∞𝛾 consists of those entire 𝑓 , for which

∥𝑓∥∞,𝛾 = sup
𝑧∈ℂ

∣𝑓(𝑧)∣𝑒−(𝛾/2)∣𝑧∣2

is finite. The respective Lebesgue 𝐿𝑝
𝛾 spaces and their norms are defined in an

obvious way.
It is known that 𝐹 2

𝛾 is a Hilbert space with inner product

⟨𝑓, 𝑔⟩ =
∫
ℂ

𝑓(𝑧)𝑔(𝑧)𝑒−𝛾∣𝑧∣2𝑑𝐴(𝑧).

Remark. The point-evaluation functionals 𝑓 1→ 𝑓(𝑧) are bounded 𝐹 𝑝
𝛾 → ℂ are

bounded and hence 𝐹 2
𝛾 is known to possess reproducing kernels 𝐾𝑧 := 𝐾𝛾

𝑧 ; 𝑓(𝑧) =
⟨𝑓,𝐾𝑧⟩.

One immediate corollary is that norm convergence implies locally uniform
convergence. In other words, if 𝑓𝑛 and 𝑓 are in 𝐹 𝑝

𝛾 and ∥𝑓𝑛−𝑓∥𝑝,𝛾 → 0 as 𝑛→∞,
then 𝑓𝑛(𝑧) → 𝑓(𝑧) uniformly on each compact subset of ℂ. Another corollary is
that the space 𝐹 𝑝

𝛾 is complete; if {𝑓𝑛} is a Cauchy sequence in norm, then 𝑓𝑛 → 𝑓
in norm for some 𝑓 ∈ 𝐹 𝑝

𝛾 .
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The reproducing kernels 𝐾𝑧 can be explicitly computed; 𝐾𝑧(𝑤) = 𝑒𝛾𝑧𝑤. The
Bergman projection 𝑃 := 𝑃𝛾 is given by

𝑃𝑓(𝑧) =

∫
ℂ

𝑓(𝑤)𝑒𝛾𝑧�̄�𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤). (1)

It is known that 𝑃 : 𝐿𝑝
𝛾 → 𝐹 𝑝

𝛾 is bounded for every 𝛾 > 0 and 𝑝 ∈ [1,∞].
Proofs can be found in [5]. We will just write 𝐾𝑧 and 𝑃 , instead of 𝐾𝛾

𝑧 and 𝑃𝛾 ;
the parameter 𝛾 will be clear from context.

A measurable function 𝑓 is said to belong to 𝜏𝑝 = 𝜏𝑝
𝛾 if and only if 𝑓𝐾𝑧 ∈ 𝐿𝑝

𝛾

for every 𝑧 ∈ ℂ. This requirement is natural, since linear combinations of the kernel
functions form a dense subset of 𝐹 𝑝

𝛾 . Henceforth, we will usually assume 𝑓 ∈ 𝜏𝑝.

3. BMO and related spaces

For 0 < 𝑟 < ∞, let 𝐷(𝑧, 𝑟) be the Euclidean disk of radius 𝑟 and center 𝑧. For
𝑓 ∈ 𝐿1𝑙𝑜𝑐, 0 < 𝑟 <∞, 𝑧 ∈ ℂ, let

𝑓𝑟(𝑧) =
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

𝑓(𝑤)𝑑𝐴(𝑤).

Fix 0 < 𝑟 <∞ and 𝑝 ≥ 1. Define 𝐵𝑀𝑂𝑝
𝑟 to be the set of 𝐿

𝑝
𝑙𝑜𝑐 integrable functions

𝑓 such that

∥𝑓∥𝐵𝑀𝑂𝑝
𝑟
= sup

𝑧∈ℂ

{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤) − 𝑓𝑟(𝑧)∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

<∞.

Let 𝐵𝑂𝑟 be the set of continuous functions in ℂ such that

∥𝑓∥𝐵𝑂𝑟 = sup
𝑧∈ℂ

𝜔𝑟(𝑓)(𝑧) <∞,

where

𝜔𝑟(𝑓)(𝑧) = sup
𝑤∈𝐷(𝑧,𝑟)

∣𝑓(𝑧)− 𝑓(𝑤)∣.

Lemma 3.1. Let 𝑓 ∈ 𝐿𝑝
𝑙𝑜𝑐. Then 𝑓 ∈ 𝐵𝑀𝑂𝑝

𝑟 if and only if there is a constant
𝐶 > 0 such that for every 𝑧 ∈ ℂ there is a constant 𝜆𝑧 such that

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)− 𝜆𝑧 ∣𝑝𝑑𝐴(𝑤) ≤ 𝐶.
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Proof. For the proof of the forward direction, let 𝜆𝑧 = 𝑓𝑟(𝑧). For the other direc-
tion, note that{

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)− 𝑓𝑟(𝑧)∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

≤
{

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤) − 𝜆𝑧∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

+

{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝜆𝑧 − 𝑓𝑟(𝑧)∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

=

{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤) − 𝜆𝑧∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

+ ∣𝜆𝑧 − 𝑓𝑟(𝑧)∣.

But

∣𝜆𝑧−𝑓𝑟(𝑧)∣=
∣∣∣∣∣ 1𝜋𝑟2

∫
𝐷(𝑧,𝑟)

(𝑓(𝑤)−𝜆𝑧)𝑑𝐴(𝑤)

∣∣∣∣∣≤
{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝜆𝑧−𝑓(𝑤)∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

Therefore{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)−𝑓𝑟(𝑧)∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

≤2
{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝜆𝑧−𝑓(𝑤)∣𝑝𝑑𝐴(𝑤)
} 1

𝑝

. □

Lemma 3.2. Let 𝑠 > 𝑟 > 0. Then 𝐵𝑀𝑂𝑝
𝑠 ⊂ 𝐵𝑀𝑂𝑝

𝑟 .

Proof. Suppose 𝑓 ∈ 𝐵𝑀𝑂𝑝
𝑠 so that for every 𝑧 ∈ ℂ we have 𝜆𝑧 ∈ ℂ such that

sup
𝑧∈ℂ

1

𝜋𝑠2

∫
𝐷(𝑧,𝑠)

∣𝑓(𝑤)− 𝜆𝑧 ∣𝑝𝑑𝐴(𝑤) = 𝐶 <∞.

Now

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)− 𝜆𝑧 ∣𝑝𝑑𝐴(𝑤) ≤ 𝑠2

𝑟2
1

𝜋𝑠2

∫
𝐷(𝑧,𝑠)

∣𝑓(𝑤) − 𝜆𝑧∣𝑝𝑑𝐴(𝑤) ≤ 𝐶
𝑠2

𝑟2

for every 𝑧 ∈ ℂ. □
Lemma 3.3. 𝐵𝑂𝑟 is independent of 𝑟.

Proof. Let 𝑟 < 𝑠. Then ∥𝑓∥𝐵𝑂𝑟 ≤ ∥𝑓∥𝐵𝑂𝑠 .
Choose 𝑁 ∈ ℕ such that for any 𝑤 ∈ 𝐷(0, 𝑠), there exists a path {0 =

𝑧1, 𝑧2, . . . , 𝑧𝑁 = 𝑤} in 𝐷(0, 𝑠) such that ∣𝑧𝑖−1 − 𝑧𝑖∣ < 𝑟. Let now 𝑧 ∈ ℂ. Then for
any 𝑤 ∈ 𝐷(𝑧, 𝑠), we have a path {𝑧 = 𝜁1, 𝜁2, . . . , 𝜁𝑁 = 𝑤}, where 𝜁𝑖 = 𝑧𝑖 + 𝑧, and
∣𝜁𝑖−1 − 𝜁𝑖∣ < 𝑟. Therefore

∣𝑓(𝑧)− 𝑓(𝑤)∣ ≤
𝑁∑
𝑖=1

∣𝑓(𝜁𝑖−1)− 𝑓(𝜁𝑖)∣ ≤ 𝑁 sup{𝑤𝑟(𝑓)(𝜁𝑖) : 𝑖} ≤ 𝑁∥𝑓∥𝐵𝑂𝑟 .

We now take the supremum over all 𝑤 ∈ 𝐷(𝑧, 𝑟) and then over all 𝑧 ∈ ℂ to obtain
the desired result. □

By the above lemma, we shall now refer to 𝐵𝑂 = 𝐵𝑂1.
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Lemma 3.4. Let 𝑓 be a continuous function on ℂ. Then 𝑓 ∈ 𝐵𝑂 if and only if
there is a constant 𝐶 > 0 such that

∣𝑓(𝑧)− 𝑓(𝑤)∣ ≤ 𝐶(∣𝑧 − 𝑤∣+ 1)
for all 𝑧, 𝑤 ∈ ℂ.

Proof. The backward direction is obviously true. For the forward direction, let
𝑤, 𝑧 ∈ ℂ. If 𝑓 ∈ 𝐵𝑂, then

𝐶 ≥ sup
𝛼∈ℂ

𝜔1(𝑓)(𝛼) = sup
𝛼∈ℂ

sup
𝛽∈𝐷(𝛼,1)

∣𝑓(𝛼)− 𝑓(𝛽)∣.

In other words, if ∣𝑧 − 𝑤∣ ≤ 1, then ∣𝑓(𝑧)− 𝑓(𝑤)∣ ≤ 𝐶 ≤ 𝐶(∣𝑧 − 𝑤∣+ 1). Suppose
now that ∣𝑧 − 𝑤∣ > 1. Let 𝑁 = [∣𝑧 − 𝑤∣] + 1, where [𝑥] is the greatest integer less
than or equal to 𝑥. Let 𝑧0 = 𝑧, 𝑧1 be the point a distance of ∣𝑧 − 𝑤∣/𝑁 along the
line from 𝑧 to 𝑤. Let 𝑧2 be the point a distance of ∣𝑧 − 𝑤∣/𝑁 along the line from
𝑧1 to 𝑤, and so on, until 𝑧𝑁 = 𝑤. Then

∣𝑓(𝑧)− 𝑓(𝑤)∣ ≤
∑𝑁

𝑖=1
∣𝑓(𝑧𝑖−1)− 𝑓(𝑧𝑖)∣ ≤ 𝑁∥𝑓∥𝐵𝑂 ≤ ∥𝑓∥𝐵𝑂(∣𝑧 − 𝑤∣+ 1). □

Let 𝐵𝐴𝑝
𝑟 denote the space of all functions 𝑓 on ℂ such that

∥𝑓∥𝐵𝐴𝑝
𝑟
= sup

𝑧∈ℂ

{
∣̂𝑓 ∣𝑝𝑟(𝑧)

}1/𝑝
<∞.

In other words, 𝑓 ∈ 𝐵𝐴𝑝
𝑟 if

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤)

is bounded independently of 𝑧 ∈ ℂ. The notion of𝐵𝐴𝑝
𝑟 is closely related to Carleson

measures on Fock spaces, see [7], or [10] for more generality.

Lemma 3.5. Let 𝑟 > 0. Then 𝑓 ∈ 𝐵𝐴𝑝
𝑟 if and only if 𝑀𝑓 : 𝐹

𝑝
𝛾 → 𝐿𝑝

𝛾 is bounded for
some (and thus all) 𝛾 > 0.

Proof. Let 𝑑𝜇(𝑤) = ∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤). Then{
∣̂𝑓 ∣𝑝𝑟(𝑧)

}
=

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤).

Then

𝜇(𝐷(𝑧, 𝑟)) =

∫
𝐷(𝑧,𝑟)

𝑑𝜇(𝑤) =

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤).
Of course this implies that 𝜇 is a Carleson measure if and only if 𝑓 ∈ 𝐵𝐴𝑝

𝑟 . But
this means∫

ℂ

∣𝑔(𝑤)∣𝑝𝑒−(𝛾𝑝/2)∣𝑤∣2∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤) =
∫
ℂ

∣𝑔(𝑤)∣𝑝𝑒−(𝛾𝑝/2)∣𝑤∣2𝑑𝜇(𝑤)

≤ 𝐶

∫
ℂ

∣𝑔(𝑤)∣𝑝𝑒−(𝛾𝑝/2)∣𝑤∣2𝑑𝐴(𝑤)
for all 𝑔 ∈ 𝐹 𝑝

𝛾 . In other words, 𝑀𝑓 : 𝐹
𝑝
𝛾 → 𝐿𝑝

𝛾 is bounded. □
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Lemma 3.6. If 𝑓 ∈ 𝐵𝑀𝑂𝑝
2𝑟, then 𝑓𝑟 ∈ 𝐵𝑂𝑟.

Proof. Let 𝑓 ∈ 𝐵𝑀𝑂𝑝
2𝑟, and suppose ∣𝑤 − 𝑧∣ ≤ 𝑟. Then

∣𝑓𝑟(𝑧)− 𝑓𝑟(𝑤)∣ ≤ ∣𝑓𝑟(𝑧)− 𝑓2𝑟(𝑧)∣+ ∣𝑓2𝑟(𝑧)− 𝑓𝑟(𝑤)∣

=

∣∣∣∣∣ 1𝜋𝑟2
∫
𝐷(𝑧,𝑟)

𝑓(𝑢)𝑑𝐴(𝑢)− 1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

𝑓2𝑟(𝑧)𝑑𝐴(𝑢)

∣∣∣∣∣
+

∣∣∣∣∣ 1𝜋𝑟2
∫
𝐷(𝑤,𝑟)

𝑓(𝑢)𝑑𝐴(𝑢)− 1

𝜋𝑟2

∫
𝐷(𝑤,𝑟)

𝑓2𝑟(𝑧)𝑑𝐴(𝑢)

∣∣∣∣∣
≤ 1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑢)− 𝑓2𝑟(𝑧)∣𝑑𝐴(𝑢)

+
1

𝜋𝑟2

∫
𝐷(𝑤,𝑟)

∣𝑓(𝑢)− 𝑓2𝑟(𝑧)∣𝑑𝐴(𝑢)

≤ 4 1

4𝜋𝑟2

∫
𝐷(𝑧,2𝑟)

∣𝑓(𝑢)− 𝑓2𝑟(𝑧)∣𝑑𝐴(𝑢)

+ 4
1

4𝜋𝑟2

∫
𝐷(𝑧,2𝑟)

∣𝑓(𝑢)− 𝑓2𝑟(𝑧)∣𝑑𝐴(𝑢)

≤ 4
{

1

𝜋4𝑟2

∫
𝐷(𝑧,2𝑟)

∣𝑓(𝑢)− 𝑓2𝑟(𝑧)∣𝑝𝑑𝐴(𝑢)
} 1

𝑝

+ 4

{
1

𝜋4𝑟2

∫
𝐷(𝑧,2𝑟)

∣𝑓(𝑢)− 𝑓2𝑟(𝑧)∣𝑝𝑑𝐴(𝑢)
} 1

𝑝

≤ 8∥𝑓∥𝐵𝑀𝑂𝑝
2𝑟
.

The fourth line follows from the fact that𝐷(𝑧, 𝑟) ⊂ 𝐷(𝑧, 2𝑟) and 𝐷(𝑤, 𝑟) ⊂ 𝐷(𝑧, 𝑟)
and the fifth follows from Hölder’s inequality. □

Let 𝑘𝑧 = 𝐾𝑧/∥𝐾𝑧∥2,𝛾, so that 𝑘𝑧(𝑤) = 𝑒𝛾𝑧𝑤−(𝛾/2)∣𝑧∣
2

denote the normalized
reproducing kernel of 𝐹 2

𝛾 . An easy calculation reveals that 𝑘𝑧 = 𝑘𝛾
𝑧 is a unit vector

on 𝐹 𝑝
𝛾 for every 𝑝 ∈ [1,∞).
The Berezin transform (or the heat-transform) of a function 𝑓 is given by

𝐵𝛾𝑓(𝑧) =

∫
ℂ

𝑓(𝑤)∣𝑘𝛾
𝑧 (𝑤)∣2𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤).

We will omit the 𝛾, when it is clear form the context. In this case we just
write 𝐵𝑓 .

Lemma 3.7. Let 𝑓 ∈ 𝜏𝑝. Then the following are equivalent.

(1) 𝑓 ∈ 𝐵𝐴𝑝
𝑟 ;

(2) sup𝑧∈ℂ
∫
ℂ
∣𝑓(𝑧 − 𝑤)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶 for some 𝛾 > 0;

(3) sup𝑧∈ℂ
∫
ℂ
∣𝑓(𝑧 − 𝑤)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶 for all 𝛾 > 0.
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Proof. By the definition of 𝐵𝐴𝑝
𝑟 , 𝑓 ∈ 𝐵𝐴𝑝

𝑟 if and only if
∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤) ≤ 𝐶

if and only if ∣𝑓 ∣𝑝𝑑𝐴 is a Carleson measure for 𝐹 2
𝛾 for some (and thus for every)

𝛾 > 0 if and only if the Berezin transform 𝐵𝛾 ∣𝑓 ∣𝑝 is bounded. But

𝐵𝛾 ∣𝑓 ∣𝑝(𝑧) =
∫
ℂ

∣𝑘𝑧(𝑤)∣2𝑒−𝛾∣𝑤∣2∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤)

=

∫
ℂ

𝑒−𝛾∣𝑧∣2+2𝛾ℜ𝑧𝑤−𝛾∣𝑤∣2∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤)

=

∫
ℂ

𝑒−𝛾∣𝑧−𝑤∣2∣𝑓(𝑤)∣𝑝𝑑𝐴(𝑤) =
∫
ℂ

𝑒−𝛾∣𝑤∣2∣𝑓(𝑧 − 𝑤)∣𝑝𝑑𝐴(𝑤). □

Note that by Lemmas 3.3 and 3.5, both 𝐵𝑂𝑟 and 𝐵𝐴𝑝
𝑟 are independent of 𝑟.

In fact, if we combine Lemmas 3.5 and 3.7, we obtain the following lemma.

Lemma 3.8. Let 𝑓 ∈ 𝜏𝑝. The following conditions are equivalent:

(1) 𝑓 ∈ 𝐵𝐴𝑝
𝑟 ;

(2) sup𝑧∈ℂ
∫
ℂ
∣𝑓(𝑧 − 𝑤)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) <∞ for some (and thus all) 𝛾 > 0;

(3) 𝑀𝑓 : 𝐹
𝑝
𝛾 → 𝐿𝑝

𝛾 is bounded for some (and thus all) 𝛾 > 0.

Lemma 3.9. If 𝑓 ∈ 𝐵𝑀𝑂𝑝
2𝑟, then 𝑓 − 𝑓𝑟 ∈ 𝐵𝐴𝑝.

Proof. By assumption and Lemma 3.2, 𝑓 ∈ 𝐵𝑀𝑂𝑝
𝑟 . Let 𝑔 = 𝑓 − 𝑓𝑟. Then

{
∣̂𝑔∣𝑝𝑟(𝑧)

} 1
𝑝

=

{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑢)− 𝑓𝑟(𝑢)∣𝑝𝑑𝐴(𝑢)
} 1

𝑝

≤
{

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑢)− 𝑓𝑟(𝑧)∣𝑝𝑑𝐴(𝑢)
}1

𝑝

+

{
1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓𝑟(𝑧)− 𝑓𝑟(𝑢)∣𝑝𝑑𝐴(𝑢)
}1

𝑝

≤ ∥𝑓∥𝐵𝑀𝑂𝑝
𝑟
+ 𝜔𝑟(𝑓𝑟)(𝑧). □

Lemma 3.10. Let 𝑟 > 0. Then

𝐵𝑀𝑂𝑝
𝑟 ⊂ 𝐵𝑂𝑟 +𝐵𝐴𝑝

𝑟 .

Proof. Let 𝑟 = 2𝑠 and 𝑓 ∈ 𝐵𝑀𝑂𝑝
𝑟 = 𝐵𝑀𝑂𝑝

2𝑠. Then Lemmas 3.6 and 3.9 imply

that 𝑓𝑠 ∈ 𝐵𝑂𝑠 and 𝑓 − 𝑓𝑠 ∈ 𝐵𝐴𝑝
𝑠 . Therefore, 𝑓 = 𝑓𝑠 + 𝑓 − 𝑓𝑠 ∈ 𝐵𝑂𝑠 + 𝐵𝐴𝑝

𝑠 =
𝐵𝑂𝑟 +𝐵𝐴𝑝

𝑟 . □

Lemma 3.11. If 𝑓 ∈ 𝐵𝑀𝑂𝑝
𝑟 , then∫

ℂ

∣𝑓(𝑧 − 𝑤) −𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶

for all 𝑧 ∈ ℂ and 𝛾 > 0.
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Proof. By Lemma 3.10, it is enough to show the inequality holds for 𝑓 ∈ 𝐵𝐴𝑝 and
𝑓 ∈ 𝐵𝑂. Suppose first that 𝑓 ∈ 𝐵𝐴𝑝. By Hölder,

∣𝐵𝛾𝑓(𝑧)∣ ≤ 𝐶

{∫
ℂ

∣𝑓(𝑧 − 𝑤)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)
} 1

𝑝

.

Therefore {∫
ℂ

∣𝑓(𝑧 − 𝑤) −𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)
} 1

𝑝

≤
{∫

ℂ

∣𝑓(𝑧 − 𝑤)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)
} 1

𝑝

+ ∣𝐵𝛾𝑓(𝑧)∣

≤ (1 + 𝐶′)
{∫

ℂ

∣𝑓(𝑧 − 𝑤)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)
} 1

𝑝

≤ 𝐶,

where the last inequality follows from Lemma 3.7.
Suppose next that 𝑓 ∈ 𝐵𝑂. Then∫

ℂ

∣𝑓(𝑧 − 𝑤) −𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)

=

∫
ℂ

∣𝑓(𝑧 − 𝑤) −
∫
ℂ

𝑓(𝑧 − 𝑢)𝑒−𝛾∣𝑢∣2𝑑𝐴(𝑢)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)

≤ 𝐶

∫
ℂ

∫
ℂ

∣𝑓(𝑧 − 𝑤) − 𝑓(𝑧 − 𝑢)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)𝑒−𝛾∣𝑢∣2𝑑𝐴(𝑢).

Since 𝑓 ∈ 𝐵𝑂, Lemma 3.4 tells us that ∣𝑓(𝑧 − 𝑤)− 𝑓(𝑧 − 𝑢)∣𝑝 ≤ 𝐶(∣𝑤 − 𝑢∣+ 1)𝑝.
Therefore, the last quantity in the last displayed equation is bounded above by

𝐶2

∫
ℂ

∫
ℂ

(∣𝑢− 𝑤∣+ 1)𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤)𝑒−𝛾∣𝑢∣2𝑑𝐴(𝑢),

which is a constant. □
Lemma 3.12. Suppose there exists 𝛾 > 0 such that∫

ℂ

∣𝑓(𝑧 − 𝑤) −𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶

for all 𝑧 ∈ ℂ. Then 𝑓 ∈ 𝐵𝑀𝑂𝑝
𝑟 .

Proof. Let 𝑧 ∈ ℂ and fix 𝛾 > 0. Note that 𝑒−𝛾∣𝑧−𝑤∣2 ≥ 𝑐 > 0 for 𝑤 ∈ 𝐷(𝑧, 𝑟).
Therefore

𝑐

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤) −𝐵𝛾𝑓(𝑧)∣𝑝𝑑𝐴(𝑤) ≤
∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)−𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑧−𝑤∣2𝑑𝐴(𝑤)

≤
∫
ℂ

∣𝑓(𝑤)−𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑧−𝑤∣2𝑑𝐴(𝑤)

=

∫
ℂ

∣𝑓(𝑧 − 𝑤) −𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶.

The result then follows from an application of Lemma 3.1. □
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We now have proven that 𝐵𝑀𝑂𝑝
𝑟 is independent of 𝑟; in what follows, we

will write 𝐵𝑀𝑂𝑝 = 𝐵𝑀𝑂𝑝
1 .

Theorem 1. Let 𝑝 ≥ 1. Then the following are equivalent:
(1) 𝑓 ∈ 𝐵𝑀𝑂𝑝;
(2) 𝑓 ∈ 𝐵𝑂 +𝐵𝐴𝑝;

(3) sup
𝑧∈ℂ

∫
ℂ

∣𝑓(𝑧 − 𝑤)−𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) <∞, for some 𝛾 > 0;

(3′) sup
𝑧∈ℂ

∫
ℂ

∣𝑓(𝑧 − 𝑤)−𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) <∞, for all 𝛾 > 0;

(4) There is a constant 𝐶 and 𝛾 > 0 such that for every 𝑧 ∈ ℂ, there is a constant
𝜆𝑧 such that ∫

ℂ

∣𝑓(𝑧 − 𝑤) − 𝜆𝑧∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶;

(4′) For every 𝛾 > 0 there is a constant 𝐶 such that for every 𝑧 ∈ ℂ, there is a
constant 𝜆𝑧 such that∫

ℂ

∣𝑓(𝑧 − 𝑤)− 𝜆𝑧 ∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶.

Proof. (1) ⇒ (2) follows from Lemma 3.10. (2) ⇒ (3′) follows from the proof of
Lemma 3.11. Obviously (3′) ⇒ (3) and (4′) ⇒ (4). The proofs of (3) ⇔ (4) and
(3′)⇔ (4′) are similar to the proof of Lemma 3.1. (3)⇒ (1) follows from Lemma
3.12. □

Lemma 3.13. If 𝑓 ∈ 𝐵𝑀𝑂𝑝, then 𝐵𝛾𝑓 ∈ 𝐵𝑂, and 𝑓 − 𝐵𝛾𝑓 ∈ 𝐵𝐴𝑝 for every
𝛾 > 0.

Proof. Fix 𝛾 > 0. We have

∣𝐵𝛾𝑓(𝑧)− 𝑓𝑟(𝑧)∣ = ∣𝐵𝛾𝑓(𝑧)− 1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

𝑓(𝑤)𝑑𝐴(𝑤)∣

=

∣∣∣∣∣ 1𝜋𝑟2
∫
𝐷(𝑧,𝑟)

𝐵𝛾𝑓(𝑧)𝑑𝐴(𝑤)− 1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

𝑓(𝑤)𝑑𝐴(𝑤)

∣∣∣∣∣
≤ 1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)−𝐵𝛾𝑓(𝑧)∣𝑑𝐴(𝑤)

≤ 𝐶

∫
ℂ

∣𝑓(𝑧 − 𝑤)−𝐵𝛾𝑓(𝑧)∣𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤).

Here the last inequality follows from the proof of Lemma 3.12. Since 𝑓 ∈ 𝐵𝑀𝑂𝑝,

the last integral is finite. Thus 𝐵𝑓−𝑓𝑟 is a bounded continuous function and so lies

in 𝐵𝑂∩𝐵𝐴𝑝. By Lemma 3.6, 𝑓𝑟 ∈ 𝐵𝑂, so 𝐵𝛾𝑓 = 𝐵𝛾𝑓−𝑓𝑟+𝑓𝑟 ∈ 𝐵𝑂+𝐵𝑂 = 𝐵𝑂.

By Lemma 3.9, 𝑓−𝑓𝑟 ∈ 𝐵𝐴𝑝, so 𝑓−𝐵𝛾𝑓 = 𝑓−𝑓𝑟+𝑓𝑟−𝐵𝛾𝑓 ∈ 𝐵𝐴𝑝+𝐵𝐴𝑝 = 𝐵𝐴𝑝.
□
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4. Bounded Hankel operators

We begin with a short discussion of harmonic conjugates. If 𝑓 = 𝑢 + 𝑖𝑣 is entire,
then both 𝑢 and 𝑣 are harmonic. Conversely, given a harmonic 𝑢 : ℂ → ℝ, there
exists a unique harmonic 𝑣 : ℂ→ ℝ such that 𝑓 = 𝑢+ 𝑖𝑣 is entire and 𝑣(0) = 0.

Lemma 4.1. Let 𝑢 : ℂ→ ℝ be harmonic. If 𝑢 ∈ 𝐿𝑝
𝛾 for 𝑝 ∈ (1,∞) and 𝛾 > 0, then

𝑣 ∈ 𝐿𝑝
𝛾 .

Proof. Looking at the proof of Theorem 4.1 of [6], one obtains for 𝑟 < 1 a 𝐶 > 0
such that ∫ 2𝜋

0

∣𝑣(𝑟𝑒𝑖𝜃)∣𝑝𝑑𝜃 ≤ 𝐶

∫ 2𝜋

0

∣𝑢(𝑟𝑒𝑖𝜃)∣𝑝𝑑𝜃.
But if 𝑟 > 1, consider the dilations 𝑢𝑅(𝑧) = 𝑢(𝑅𝑧) and 𝑣𝑅(𝑧) = 𝑣(𝑅𝑧) for large
enough 𝑅. Of course, both 𝑢 and 𝑢𝑅 always belong to the Hardy space ℎ𝑝 of the
unit circle. Now,∫ 2𝜋

0

∣𝑣(𝑟𝑒𝑖𝜃)∣𝑝𝑑𝜃 =
∫ 2𝜋

0

∣𝑣𝑅(𝑠𝑒𝑖𝜃)∣𝑝𝑑𝜃 ≤ 𝐶

∫ 2𝜋

0

∣𝑢𝑅(𝑠𝑒
𝑖𝜃)∣𝑝𝑑𝜃 = 𝐶

∫ 2𝜋

0

∣𝑢(𝑟𝑒𝑖𝜃)∣𝑝𝑑𝜃,

where 𝑅 is chosen so that 𝑠 := 𝑟/𝑅 < 1. Now, inevitably∫ 2𝜋

0

∣𝑣(𝑟𝑒𝑖𝜃)∣𝑝𝑟𝑒−(𝑝/2)𝑟2

𝑑𝜃 ≤ 𝐶

∫ 2𝜋

0

∣𝑢(𝑟𝑒𝑖𝜃)∣𝑝𝑟𝑒−(𝑝/2)𝑟2

𝑑𝜃.

The rest follows from evaluating the norms in polar coordinates. □

Corollary 4.2. Let 𝑝 ∈ (1,∞) and 𝛾 > 0. Suppose 𝑓 = 𝑢+ 𝑖𝑣 is entire and that 𝑢 ∈
𝐿𝑝

𝛾. Then 𝑓 ∈ 𝐹 𝑝
𝛾 . Moreover, there exists 𝐶 > 0 such that ∥𝑓 − 𝑓(0)∥𝑝,𝛾 ≤ ∥𝑢∥𝑝,𝛾.

In what follows, if the possible values of 𝑝 are not indicated, we assume that
𝑝 ∈ (1,∞).

Recall that the Bergman projection 𝑃 is given by

𝑃𝑔(𝑧) =

∫
ℂ

𝑔(𝑤)𝑒𝛾𝑧�̄�𝑒−∣𝑤∣
2

𝑑𝐴(𝑤).

If 𝑓 ∈ 𝜏𝑝, then the Hankel operator with symbol 𝑓 is given for 𝑔 ∈ 𝐹 𝑝
𝛾 by

𝐻𝑓𝑔(𝑧) = (𝐼 − 𝑃 )(𝑓𝑔)(𝑧).

Note that we can also write

𝐻𝑓𝑔(𝑧) =

∫
ℂ

(𝑓(𝑧)− 𝑓(𝑤))𝑔(𝑤)𝑒𝛾𝑧𝑤𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤).

Lemma 4.3. If 𝑓 ∈ 𝐵𝐴𝑝, then 𝐻𝑓 is bounded on 𝐹 𝑝
𝛾 .

Proof. By Lemma 3.8, 𝑀𝑓 is bounded 𝐹 𝑝
𝛾 → 𝐿𝑝

𝛾 . Since 𝑃 is bounded, we obtain
the desired result. □

Lemma 4.4. If 𝑓 ∈ 𝐵𝑂, then 𝐻𝑓 is bounded on 𝐹 𝑝
𝛾 for every 𝑝 ∈ [1,∞].
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Proof. By Lemma 3.4

∣𝐻𝑓 (𝑔)(𝑧)∣ ≤ 𝐶

∫
ℂ

(∣𝑧 − 𝑤∣ + 1)∣𝑒𝛾𝑧�̄�𝑔(𝑤)∣𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤).

There are 𝐶 > 0 and 𝜖 > 0 such that

∣𝑒𝛾𝑧�̄�∣ ≤ 𝐶𝑒(𝛾/2)∣𝑧∣
2+(𝛾/2)∣𝑤∣2−𝜖∣𝑧−𝑤∣.

Therefore, we arrive at

∣𝐻𝑓 (𝑔)(𝑧)∣𝑝𝑒−(𝑝𝛾/2)∣𝑧∣2

≤ 𝐶𝑒−((𝑝−1)𝛾/2)∣𝑧∣
2

∣∣∣∣∫
ℂ

(∣𝑧 − 𝑤∣+ 1)∣𝑔(𝑤)∣𝑒−(𝛾/2)∣𝑤∣2𝑒−𝜖∣𝑧−𝑤∣𝑑𝐴(𝑤)
∣∣∣∣𝑝

≤ 𝐶𝑒−((𝑝−1)𝛾/2)∣𝑧∣
2

{∫
ℂ

∣𝑔(𝑤)∣𝑝𝑒−(𝛾𝑝/2)∣𝑤∣2𝑑𝐴(𝑤)
}

×
{∫

ℂ

∣𝑧 − 𝑤∣𝑞𝑒−𝑞𝜖∣𝑧−𝑤∣𝑑𝐴(𝑤)
}𝑝/𝑞

≤ 𝐶𝑒−((𝑝−1)𝛾/2)∣𝑧∣
2∥𝑔∥𝑝𝑝,𝛾.

If 1 < 𝑝 < ∞ and 1/𝑝 + 1/𝑞 = 1, we get the desired result by integrating
with respect to 𝑧.

If 𝑝 = 1, we use the above reasoning together with Fubini and proceed as
follows. ∫

ℂ

∣𝐻𝑓 (𝑔)(𝑧)∣𝑝𝑒−(𝛾/2)∣𝑧∣2𝑑𝐴(𝑧)

≤ 𝐶

∫
ℂ

∣𝑔(𝑤)∣𝑒−(𝛾/2)∣𝑤∣2𝑑𝐴(𝑤)
∫
ℂ

(∣𝑧 − 𝑤∣+ 1)𝑒−𝜖∣𝑧−𝑤∣𝑑𝐴(𝑧)

≤ 𝐶∥𝑔∥1,𝛾.
By similar arguments, one can also show that

∣𝐻𝑓 (𝑔)(𝑧)∣𝑒−(𝛾/2)∣𝑧∣2 ≤
∫
ℂ

(∣𝑧 − 𝑤∣+ 1)𝑒−𝜖∣𝑧−𝑤∣𝑑𝐴(𝑧)∥𝑔∥∞,𝛾 ≤ 𝐶∥𝑔∥∞,𝛾.

The result is now proven for all 𝑝 ∈ [1,∞]. □

Theorem 2. Let 𝑓 ∈ 𝜏𝑝. Then 𝑓 ∈ 𝐵𝑀𝑂𝑝 if and only if the operators 𝐻𝑓 and 𝐻𝑓

are both bounded 𝐹 𝑝
𝛾 → 𝐿𝑝

𝛾.

Proof. If 𝑓 ∈ 𝐵𝑀𝑂𝑝, then so is 𝑓 and it follows from the previous two lemmas
that 𝐻𝑓 and 𝐻𝑓 are bounded.

Suppose now that 𝐻𝑓 and 𝐻𝑓 are both bounded. Without loss of generality,

we may then assume that 𝑓 is real valued. Recall that 𝑘𝑧(𝑤) = 𝑒𝛾𝑧𝑤−(𝛾/2)∣𝑧∣
2

are
unit vectors in 𝐹 𝑝

𝛾 and so we have 𝐶 > 0 such that

∥𝑓𝑘𝑧 − 𝑃 (𝑓𝑘𝑧)∥𝑝,𝛾 = ∥𝐻𝑓 (𝑘𝑧)∥𝑝,𝛾 ≤ 𝐶.
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Note that 𝑘𝑧(𝑧 − 𝑤) = 1/𝑘𝑧(𝑤) and

𝑒−𝛾(𝑝/2)∣𝑧−𝑤∣2 = 𝑒−𝛾(𝑝/2)∣𝑧∣2−𝛾(𝑝/2)∣𝑤∣2+𝛾(𝑝/2)𝑧�̄�+𝛾(𝑝/2)𝑧𝑤.

Thus, by a change of variables 𝑤 1→ 𝑧 − 𝑤, one obtains

𝐶𝑝 ≥ ∥𝑓𝑘𝑧 − 𝑃 (𝑓𝑘𝑧)∥𝑝𝑝,𝛾
=

∫
ℂ

∣𝑓(𝑧 − 𝑤) − 𝑒−(𝛾/2)∣𝑧∣
2

𝑃 (𝑓𝑘𝑧)(𝑧 − 𝑤)∣𝑝𝑒−(𝑝𝛾/2)∣𝑤∣2𝑑𝐴(𝑤)

Setting 𝑔𝑧(𝑤) = 𝑒−(𝛾/2)∣𝑧∣
2

𝑃 (𝑓𝑘𝑧)(𝑧 − 𝑤), one obtains

sup
𝑧∈ℂ

∫
ℂ

∣𝑓(𝑧 − 𝑤) − 𝑔𝑧(𝑤)∣𝑝𝑒−(𝑝𝛾/2)∣𝑤∣2𝑑𝐴(𝑤) ≤ 𝐶𝑝.

Since 𝑓 is real-valued, then the imaginary part of 𝑔𝑧 must belong 𝐿𝑝
𝛾 and so

∥𝑔𝑧 − 𝑔𝑧(0)∥𝑝,𝛾 ≤𝑀

for every 𝑧 ∈ ℂ and some 𝑀 > 0. Applying triangle inequality and the main
theorem of the previous section with 𝜆𝑧 = 𝑔𝑧(0), one sees that 𝑓 ∈ 𝐵𝑀𝑂𝑝. □

5. VMO and compact Hankel operators

In this section we study VMO and compactness of Hankel operators. The results
and their proofs are completely analogous to the results of the previous two sec-
tions. A great deal of details is therefore omitted and left for the reader to verify.

Define 𝑉 𝑀𝑂𝑝
𝑟 to be the set of 𝐿

𝑝
𝑙𝑜𝑐 integrable functions 𝑓 such that

lim
𝑧→∞

1

𝜋𝑟2

∫
𝐷(𝑧,𝑟)

∣𝑓(𝑤)− 𝑓𝑟(𝑧)∣𝑝𝑑𝐴(𝑤) = 0.

Let 𝑉 𝑂𝑟 ⊂ 𝐵𝑂𝑟 be the set of continuous functions in ℂ such that

lim
𝑧→∞𝜔𝑟(𝑓) = 0.

Let 𝑉 𝐴𝑝
𝑟 be the set of functions 𝑓 on ℂ such that lim𝑧→∞ 𝑓𝑟(𝑧) = 0. The space

𝑉 𝐴𝑝
𝑟 is related to the space of vanishing Carleson measures on Fock spaces, see

[7], [10].
Similarly to Section 3, it can be shown that 𝑉 𝑂𝑟 and 𝑉 𝐴𝑝

𝑟 are independent
of 𝑟 and we will write 𝑉 𝑂 and 𝑉 𝐴𝑝, respectively. The following results are also
analogous to the 𝐵𝑀𝑂-setting.

Lemma 5.1. Let 𝑓 ∈ 𝑉 𝑀𝑂𝑝. Then

(1) 𝐵𝛾𝑓 ∈ 𝐵𝑂 for every 𝛾 > 0;

(2) 𝑓𝑟 ∈ 𝐵𝑂 for every 𝑟 > 0;
(3) 𝑓 −𝐵𝛾𝑓 ∈ 𝐵𝐴𝑝 for every 𝛾 > 0;

(4) 𝑓 − 𝑓𝑟 ∈ 𝐵𝐴𝑝 for every 𝑟 > 0.



Hankel Operators on Fock Spaces 389

Theorem 3. Let 𝑝 ≥ 1. Then the following are equivalent:
(1) 𝑓 ∈ 𝑉 𝑀𝑂𝑝;
(2) 𝑓 ∈ 𝑉 𝑂 + 𝑉 𝐴𝑝;

(3) lim
𝑧→∞

∫
ℂ

∣𝑓(𝑧 − 𝑤)−𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) = 0, for some 𝛾 > 0;

(3′) lim
𝑧→∞

∫
ℂ

∣𝑓(𝑧 − 𝑤)−𝐵𝛾𝑓(𝑧)∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) = 0, for all 𝛾 > 0;

(4) There is a 𝛾 > 0 such that for every 𝑧 ∈ ℂ, there is a constant 𝜆𝑧 such that

lim
𝑧→∞

∫
ℂ

∣𝑓(𝑧 − 𝑤) − 𝜆𝑧∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) = 0;

(4′) For every 𝛾 > 0 and every 𝑧 ∈ ℂ, there is a constant 𝜆𝑧 such that

lim
𝑧→∞

∫
ℂ

∣𝑓(𝑧 − 𝑤) − 𝜆𝑧∣𝑝𝑒−𝛾∣𝑤∣2𝑑𝐴(𝑤) = 0.

Theorem 4. Let 𝑓 ∈ 𝜏𝑝. Then the operators 𝐻𝑓 and 𝐻𝑓 are compact if and only
if 𝑓 ∈ 𝑉 𝑀𝑂𝑝.

Proof. Suppose first that 𝑓 ∈ 𝑉 𝐴𝑝. But then ∣𝑓 ∣𝑝𝑑𝐴 is vanishing Carleson, so the
multiplication operators𝑀𝑓 and𝑀𝑓 are compact 𝐹

𝑝
𝛾 → 𝐿𝑝

𝛾 . From the boundedness
of the projection 𝑃 , it follows that 𝐻𝑓 and 𝐻𝑓 are both compact.

If 𝑓 ∈ 𝑉 𝑂, we refer to Lemma 5.1 of [2]. It follows that both 𝐻𝑓 and 𝐻𝑓 can
be approximated in norm by Hankel operators with symbols having a compact
support. Therefore, both operators are compact. In conclusion, we have shown
that if 𝑓 ∈ 𝑉 𝑀𝑂𝑝, then 𝐻𝑓 and 𝐻𝑓 are compact.

As for the other direction. Note that 𝑘𝑧 → 0 weakly, as 𝑧 →∞. But now
∥𝐻𝑓𝑘𝑧∥𝑝,𝛾 → 0 and ∥𝐻𝑓𝑘𝑧∥𝑝,𝛾 → 0,

as 𝑧 →∞. By reasoning similar to that in Theorem 2, it follows that∫
ℂ

∣𝑓(𝑧 − 𝑤)− 𝑔𝑧(0)∣𝑝𝑒−(𝛾𝑝/2)∣𝑤∣2𝑑𝐴(𝑤)→ 0,

as 𝑧 →∞, so 𝑓 ∈ 𝑉 𝑀𝑂𝑝. □
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Evolutionary Problems Involving
Sturm–Liouville Operators

Rainer Picard and Bruce A. Watson

Abstract. The purpose of this paper is to further exemplify an approach to
evolutionary problems originally developed in [3], [4] for a special case and
extended to more general evolutionary problems, see [7], compare the survey
article [5]. The ideas there are utilized for (1 + 1)-dimensional evolutionary
problems, which in a particular case results in a hyperbolic partial differen-
tial equation with a Sturm–Liouville type spatial operator constrained by an
impedance type boundary condition.

Mathematics Subject Classification (2010). Primary 34B24, 35F10, Secondary
35A22, 47G20, 34L40, 35K90, 35L90.

Keywords. Evolution equations, Sturm–Liouville operator, partial differential
equations, causality, impedance type boundary condition, memory, delay.

0. Introduction

A canonical form of many linear evolutionary equations of mathematical physics
is given by a dynamic system of equations

∂0𝑉 +𝐴𝑈 = 𝐹

completed by a so-called material law

𝑉 =ℳ𝑈.

Here we have used the term evolutionary equations, since the term evolution equa-
tions is usually reserved for a special case of the class of evolutionary equations
considered here. The symbol ∂0 denotes differentiation with respect to the time
variable, 𝐴 is a usually unbounded operator containing spatial derivatives andℳ
is a continuous linear operator. Here we inspect more closely the very specific sit-
uation where the space dimension is 1, i.e., 𝐴 is an ordinary differential operator
in the space variable for fixed time. Although this is a rather particular case it

B.A. Watson is funded in part by NRF grant IFR2011032400120.
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has the advantage that an impedance type boundary condition, which we wish to
consider, can be considered in a more “tangible” way without incurring regularity
assumptions on coefficients and data. In the higher-dimensional case for the acous-
tic equations, which can also be discussed with no further regularity requirements,
the constraints on the impedance type boundary condition are much less explicit,
compare [7], [5]. Moreover, we hope to gain access to a class of problems, which
are closely linked to Sturm–Liouville operators, yielding a generalization of such
operators. That we are discussing the direct time-dependent problem rather than
an associated spectral problem will actually be advantageous, since it provides a
simpler discussion of well-posedness.

More specifically we want to consider

𝐴 =

⎛⎝ 0 0 ∂
0 0 0
∂ 0 0

⎞⎠
as a differential operator on the unit interval ]− 1/2, 1/2[ with an impedance type
boundary condition of the form

∂0𝛼 (±1/2∓ 0) 𝑠 ( ⋅ ,±1/2∓ 0)− 𝑣 ( ⋅ ,±1/2∓ 0) = 0

holding on the real time-line ℝ as a constraint characterizing

⎛⎝ 𝑠
𝑤
𝑣

⎞⎠ in the do-

main 𝐷 (𝐴) . Here ∂ denotes the spatial derivative and 𝛼 is a coefficient operator
specified more precisely later. We shall focus here on the time-translation invari-
ant, i.e., autonomous, case. This means that time-translation and consequently
time-differentiation commutes with 𝛼,ℳ and 𝐴.

Our discussion is embedded into an abstract setting, which we will develop
in Section 1 first. In Section 2 we will then discuss our problem of interest as an
application of the abstract solution theory.

1. The abstract solution framework

1.1. Sobolev chains associated with the time-derivative

A particular instance of the construction of Sobolev chains is the one based on the
time-derivative ∂0. We recall, e.g., from [4, 5], that differentiation considered in the
complex Hilbert space 𝐻𝜈,0(ℝ) := {𝑓 ∈ 𝐿2loc(ℝ)∣(𝑥 1→ exp(−𝜈𝑥)𝑓(𝑥)) ∈ 𝐿2(ℝ)},
𝜈 ∈ ℝ ∖ {0}, with inner product

(𝑓, 𝑔) 1→ ⟨𝑓, 𝑔⟩𝜈,0 :=
∫
ℝ

𝑓(𝑥)∗𝑔(𝑥) exp(−2𝜈𝑥) 𝑑𝑥

can indeed be established as a normal operator, which we denote by ∂0,𝜈 , with

ℜ𝔢∂0,𝜈 = 𝜈.
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For ℑ𝔪 ∂0,𝜈 we have as a spectral representation the Fourier–Laplace transform
ℒ𝜈 : 𝐻𝜈,0(ℝ)→ 𝐿2 (ℝ) given by the unitary extension of

𝐶∞ (ℝ) ⊆ 𝐻𝜈,0(ℝ)→ 𝐿2(ℝ)

𝜙 1→
(
𝑥 1→ 1√

2𝜋

∫
ℝ

exp (−i𝑥𝑦) exp (−𝜈𝑦)𝜙(𝑦) 𝑑𝑦

)
.

In other words, we have the unitary equivalence

ℑ𝔪 ∂0,𝜈 = ℒ−1𝜈 𝑚 ℒ𝜈 ,

where 𝑚 denotes the selfadjoint multiplication-by-argument operator in 𝐿2 (ℝ).
Since 0 is in the resolvent set of ∂0,𝜈 we have that ∂

−1
0,𝜈 is an element of the Banach

space 𝐿 (𝐻𝜈,0(ℝ), 𝐻𝜈,0(ℝ)) of continuous (left-total) linear mappings in 𝐻𝜈,0(ℝ).
Denoting generally the operator norm of the Banach space 𝐿 (𝑋,𝑌 ) by ∥ ⋅ ∥𝐿(𝑋,𝑌 ),
we get ∥∥∂−10,𝜈∥∥𝐿(𝐻𝜈,0(ℝ),𝐻𝜈,0(ℝ))

=
1

∣𝜈∣ .

Not too surprisingly, we find for 𝜈 > 0(
∂−10,𝜈𝜑

)
(𝑥) =

∫ 𝑥

−∞
𝜑 (𝑡) 𝑑𝑡

and for 𝜈 < 0 (
∂−10,𝜈𝜑

)
(𝑥) = −

∫ ∞

𝑥

𝜑 (𝑡) 𝑑𝑡

for all 𝜑 ∈ 𝐻𝜈,0 (ℝ) and 𝑥 ∈ ℝ. Since we are interested in the forward causal
situation, we assume 𝜈 > 0 throughout. Moreover, in the following we shall mostly
write ∂0 for ∂0,𝜈 if the choice of 𝜈 is clear from the context.

Thus, we obtain a chain (𝐻𝜈,𝑘 (ℝ))𝑘∈ℤ of Hilbert spaces, where 𝐻𝜈,𝑘 (ℝ) is
the completion of the inner product space 𝐷

(
∂𝑘
0

)
with norm ∣ ⋅ ∣𝜈,𝑘 given by

𝜙 1→ ∣∣∂𝑘
0𝜙

∣∣
𝜈,0

.

Similarly, for i𝑚 + 𝜈 as a normal operator in 𝐿2 (ℝ) we construct the chain of
polynomially weighted 𝐿2 (ℝ)-spaces(

𝐿2𝑘 (ℝ)
)
𝑘∈ℤ

with

𝐿2𝑘 (ℝ) :=
{
𝑓 ∈ 𝐿2loc (ℝ) ∣ (i𝑚+ 𝜈)

𝑘
𝑓 ∈ 𝐿2 (ℝ)

}
for 𝑘 ∈ ℤ.

Since the unitarily equivalent operators ∂0,𝜈 and i𝑚 + 𝜈 (via the Fourier–
Laplace transform) can canonically be lifted to the 𝑋-valued case, 𝑋 an arbitrary
complex Hilbert space, we are led to corresponding chains (𝐻𝜈,𝑘 (ℝ, 𝑋))𝑘∈ℤ and
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(
𝐿2𝑘 (ℝ, 𝑋)

)
𝑘∈ℤ of 𝑋-valued generalized functions. The Fourier–Laplace transform

can also be lifted to the 𝑋-valued case yielding

𝐻𝜈,𝑘 (ℝ, 𝑋) → 𝐿2𝑘 (ℝ, 𝑋)

𝑓 1→ ℒ𝜈𝑓

as a unitary mapping for 𝑘 ∈ ℕ and by continuous extension, keeping the notation
ℒ𝜈 for the extension, also for 𝑘 ∈ ℤ. Since ℒ𝜈 has been constructed from a spec-
tral representation of ℑ𝔪 ∂0,𝜈 , we can utilize the corresponding operator function
calculus for functions of ℑ𝔪 ∂0,𝜈 . Noting that ∂0 = i ℑ𝔪 ∂0,𝜈 + 𝜈 is a function of
ℑ𝔪 ∂0,𝜈 we can define operator-valued functions of ∂0.

Definition 1.1. Let 𝑟 > 1
2𝜈 > 0 and 𝑀 : 𝐵ℂ(𝑟, 𝑟) → 𝐿(𝐻,𝐻) be bounded and

analytic, 𝐻 a Hilbert space, where 𝐵ℂ(𝑎, 𝑏) denotes the open ball in ℂ of radius 𝑏
centred at 𝑎. Then define

𝑀
(
∂−10

)
:= ℒ∗𝜈 𝑀

(
1

i𝑚+ 𝜈

)
ℒ𝜈 ,

where

𝑀

(
1

i𝑚+ 𝜈

)
𝜙(𝑡) :=𝑀

(
1

i𝑡+ 𝜈

)
𝜙(𝑡) (𝑡 ∈ ℝ)

for 𝜙 ∈ 𝐶∞ (ℝ, 𝐻).

Remark 1.2. The definition of 𝑀(∂−10 ) is largely independent of the choice of 𝜈
in the sense that the operators for two different parameters 𝜈1, 𝜈2 coincide on the
intersection of the respective domains.

Simple examples are polynomials in ∂−10 with operator coefficients. A more
exotic example of an analytic and bounded function of ∂−10 is the delay operator,
which itself is a special case of the time translation:

Example. Let 𝑟 > 0, 𝜈 > 1
2𝑟 , ℎ ∈ ℝ and 𝑢 ∈ 𝐻𝜈,0(ℝ, 𝑋). We define

𝜏ℎ𝑢 := 𝑢( ⋅ + ℎ).

The operator 𝜏ℎ ∈ 𝐿(𝐻𝜈,0(ℝ, 𝑋), 𝐻𝜈,0(ℝ, 𝑋)) is called a time-translation operator.
If ℎ < 0 the operator 𝜏ℎ is also called a delay operator. In the latter case the
function

𝐵ℂ(𝑟, 𝑟) ∋ 𝑧 1→𝑀(𝑧) := exp(𝑧−1ℎ)
is analytic and uniformly bounded for every 𝑟 ∈ ℝ>0 (considered as an 𝐿 (𝑋,𝑋)-
valued function). An easy computation shows for 𝑢 ∈ 𝐻𝜈,0 (ℝ, 𝑋) that

𝑢( ⋅ + ℎ) = ℒ∗𝜈 exp((i𝑚+ 𝜈)ℎ)ℒ𝜈𝑢 =𝑀(∂−10 )𝑢 = exp(
(
∂−10

)−1
ℎ) 𝑢.

Thus

𝜏ℎ = exp
((

∂−10
)−1

ℎ
)
= exp (ℎ∂0) .

Another class of interesting bounded analytic functions of ∂−10 are mappings
produced by a temporal convolution with a suitable operator-valued integral ker-
nel.
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1.2. Abstract solution theory

We shall discuss equations of the form(
∂0𝑀

(
∂−10

)
+𝐴

)
𝑈 = 𝒥 . (1.1)

Here we shall assume that 𝐴 and 𝐴∗ are commuting with ∂0 and non-negative in
the Hilbert space 𝐻𝜈,0 (ℝ, 𝐻), 𝐻 a given Hilbert space, in the sense that

ℜ𝔢 ⟨𝑈 ∣𝐴𝑈⟩𝜈,0 ≥ 0, ℜ𝔢 ⟨𝑉 ∣𝐴∗𝑉 ⟩𝜈,0 ≥ 0
for all 𝑈 ∈ 𝐷 (𝐴), 𝑉 ∈ 𝐷 (𝐴∗) , and 𝑀 is a material law in the sense of [3, 6].
More specifically we assume that 𝑀 is of the form

𝑀 (𝑧) =𝑀0 + 𝑧𝑀1 + 𝑧2𝑀2(𝑧)

where 𝑀2(𝑧) is an analytic and bounded 𝐿 (𝐻,𝐻)-valued function in the ball
𝐵ℂ (𝑟, 𝑟) for some 𝑟 ∈ ℝ>0 and 𝑀0 is a continuous, selfadjoint and non-negative
operator in 𝐻 . The operator 𝑀1 ∈ 𝐿 (𝐻,𝐻) is such that

𝜈𝑀0 +ℜ𝔢𝑀1 ≥ 𝑐0 > 0 (1.2)

for all sufficiently large 𝜈 ∈ ℝ>0. The operator 𝑀
(
∂−10

)
is then to be understood

in the sense of the operator-valued function calculus associated with the selfadjoint
operator ℑ𝔪 (∂0) =

1
2i (∂0 − ∂∗0 ).

The appropriate setting turns out to be the Sobolev chain

(𝐻𝜈,𝑘 (ℝ, 𝐻))𝜈,𝑘∈ℤ .

From [3, 6] we paraphrase the following solution result.

Theorem 1.3. For 𝒥 ∈ 𝐻𝜈,𝑘 (ℝ, 𝐻) the problem (1.1) has a unique solution 𝑈 ∈
𝐻𝜈,𝑘 (ℝ, 𝐻). Moreover,

𝐹 1→ (
∂0𝑀

(
∂−10

)
+𝐴

)−1
𝐹

is a linear mapping in 𝐿 (𝐻𝜈,𝑘 (ℝ, 𝐻) , 𝐻𝜈,𝑘 (ℝ, 𝐻)) , 𝑘 ∈ ℤ. These mappings are
causal in the sense that if 𝐹 ∈ 𝐻𝜈,𝑘 (ℝ, 𝐻) vanishes on the time interval ]−∞, 𝑎],

then so does
(
∂0𝑀

(
∂−10

)
+𝐴

)−1
𝐹 , 𝑎 ∈ ℝ, 𝑘 ∈ ℤ.

Remark 1.4. If 𝑈 ∈ 𝐻𝜈,𝑘 (ℝ, 𝐻) and 𝒥 ∈ 𝐻𝜈,𝑘 (ℝ, 𝐻) equation (1.1) actually
makes sense in 𝐻𝜈,𝑘−1 (ℝ, 𝐻) . Initially the solution theory is for the closure of(
∂0𝑀

(
∂−10

)
+𝐴

)
as a closed operator in 𝐻𝜈,𝑘−1 (ℝ, 𝐻) , but

∂0𝑀
(
∂−10

)
𝑈 +𝐴𝑈 =

(
∂0𝑀

(
∂−10

)
+𝐴

)
𝑈

in 𝐻𝜈,𝑘−1 (ℝ, 𝐻) (although the right-hand side is in 𝐻𝜈,𝑘 (ℝ, 𝐻)). Indeed, for 𝜙 ∈
𝐻𝜈,𝑘 (ℝ, 𝐻) ∩𝐷(𝐴∗) we have〈

𝜙∣(∂0𝑀 (
∂−10

)
+𝐴

)
𝑈
〉
𝜈,𝑘−1,0

=
〈(

∂∗0𝑀
(
∂−10

)∗
+𝐴∗

)
𝜙∣𝑈

〉
𝜈,𝑘−1,0

=
〈
𝜙∣𝑀 (

∂−10
)
∂0𝑈

〉
𝜈,𝑘−1,0 + ⟨𝐴∗𝜙∣𝑈⟩𝜈,𝑘−1,0
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and we read off that 𝑈 ∈ 𝐷 (𝐴) if 𝐴 is considered in 𝐻𝜈,𝑘−1 (ℝ, 𝐻) (rather than
𝐻𝜈,𝑘 (ℝ, 𝐻)) giving

𝐴𝑈 =
(
∂0𝑀

(
∂−10

)
+𝐴

)
𝑈 −𝑀

(
∂−10

)
∂0𝑈,

=
(
∂0𝑀

(
∂−10

)
+𝐴

)
𝑈 − ∂0𝑀

(
∂−10

)
𝑈.

The rigorous argument is somewhat more involved, see [5, 4]. This observation,
however, motivates dropping the closure bar throughout.

2. An application: An evolutionary problem involving
a Sturm–Liouville type operator with an impedance
type boundary condition

A Sturm–Liouville boundary value problem with impedance type boundary condi-
tions will be posed as a (1 + 1)-dimensional example, i.e., having one time and one
space parameter. This exemplifies the theory outlined above. Note that a 3 × 3-
system representation has been chosen, rather than an alternative 2 × 2-system
formulation, since conservativity is more apparent in this setting, see Remark 2.4.

Consider

𝐴 =

⎛⎝ 0 0 ∂
0 0 0
∂ 0 0

⎞⎠
with an impedance type boundary condition implemented in the domain of 𝐴
given by

𝐷(𝐴)=

⎧⎨⎩
(𝑠
𝑤
𝑣

)
∈𝐻𝜈,0

(
ℝ,𝐻 (∂,𝐼)⊕𝐿2(𝐼)⊕𝐻 (∂,𝐼))∣∣∣𝑎(∂−1

0

)
𝑠−∂−1

0 𝑣∈𝐻𝜈,0

(
ℝ,𝐻

(
∂̊,𝐼

))⎫⎬⎭,
where ∂̊ denotes the closure of ∂ restricted to smooth function with compact

support in 𝐼 =] − 1/2, 1/2[ and 𝐻
(
∂̊, 𝐼

)
denotes its domain, which is a Hilbert

space with respect to the graph norm of the derivative operator ∂. The space

𝐻 (∂, 𝐼) is the domain of the adjoint, which we denote again by ∂, of ∂̊ also
equipped with the corresponding graph norm. Here we focus on the finite interval,
𝐼, case, however, the same reasoning would apply for the half infinite interval case,
say 𝐼 = ℝ>0. Indeed this case would, in a sense, be simpler since only one boundary
point would need to be considered.

We now give the assumptions which we shall require of 𝑎(𝑥, 𝑧) in the specifi-
cation of 𝐷(𝐴).

Assumption I. For some 𝑟 > 0, the map 𝑎 : 𝐼×𝐵ℂ(0, 2𝑟)→ ℂ with (𝑥, 𝑧) 1→ 𝑎(𝑥, 𝑧)
is bounded on 𝐼×𝐵ℂ(0, 2𝑟), analytic in 𝑧 for each 𝑥 ∈ 𝐼 and uniformly continuous
in 𝑥 for 𝑧 ∈ 𝐵ℂ(0, 2𝑟).



Evolutionary Problems Involving Sturm–Liouville Operators 397

Remark 2.1. Under Assumption I, (𝑧 1→ 𝑎 (𝑥, 𝑧))𝑥∈𝐼 is also a bounded family of
analytic functions in 𝐵ℂ (𝑟, 𝑟) and for 𝜈 > 1

2𝑟 we have a continuous linear and
causal mapping:

𝑎
(
∂−10

)
: 𝐻𝜈,0

(
ℝ, 𝐿2 (𝐼)

) → 𝐻𝜈,0

(
ℝ, 𝐿2 (𝐼)

)
𝜑 1→ (

𝑡 1→ (
𝑥 1→ 𝑎

(
𝑥, ∂−10

)
𝜑 (𝑡, 𝑥)

))
.

Assumption II. The 𝑥-distributional derivative 𝑎′(𝑥, 𝑧) of 𝑎(𝑥, 𝑧) is a bounded
function defined on (𝐼∖𝑁)× 𝐵ℂ(0, 2𝑟) where 𝑁 is of Lebesgue measure zero, and
for each 𝑥 ∈ 𝐼∖𝑁 , 𝑎′(𝑥, 𝑧) is analytic on 𝐵ℂ(0, 2𝑟).

Remark 2.2. Again we have that

𝑎′
(
∂−10

)
: 𝐻𝜈,0

(
ℝ, 𝐿2 (𝐼)

)→ 𝐻𝜈,0

(
ℝ, 𝐿2 (𝐼)

)
is a bounded linear and causal mapping and the product rule

∂
(
𝑎
(
∂−10

)
𝑠
)
= 𝑎′

(
∂−10

)
𝑠+ 𝑎

(
∂−10

)
∂𝑠

holds for 𝑠 ∈ 𝐷 (∂).

Assumption III. The map 𝑎 is real in the sense that

𝑎 (𝑥, 𝑧)∗ = 𝑎 (𝑥, 𝑧∗)

for 𝑥 ∈ 𝐼 and 𝑧 ∈ 𝐵ℂ (0, 2𝑟).

Assumption IV. At each 𝑥 ∈ 𝐼 denote the three term Taylor expansion of 𝑎(𝑥, 𝑧)
with respect to 𝑧 by

𝑎(𝑥, 𝑧) = 𝑎0(𝑥) + 𝑎1(𝑥)𝑧 + 𝑎2(𝑥)𝑧
2 + 𝑎3(𝑥, 𝑧)𝑧

3

where 𝑎3(𝑥, 𝑧), 𝑧 ∈ 𝐵ℂ(0, 2𝑟), is bounded for each 𝑥 ∈ 𝐼. We assume

±𝑎0 (±1/2) ≥ 0, (2.1)

and that

±𝜈𝑎0 (±1/2)± 𝑎1 (±1/2) ≥ 𝑐0 > 0 (2.2)

for 𝜈 ∈ ℝ>0 sufficiently large.

Remark 2.3. If 𝑎
(
∂−10

)
= 𝑎0 + 𝑎1∂

−1
0 it is sufficient to require

±𝜈𝑎0 (±1/2)± 𝑎1 (±1/2) ≥ 0
for all sufficiently large 𝜈 ∈ ℝ>0.

Such an operator 𝐴 combined with a suitable material law yields an evolu-
tionary problem of the form(

∂0𝑀
(
∂−10

)
+𝐴

)
𝑈 = 𝒥 . (2.3)

Here we consider material law operators of the form

𝑀
(
∂−10

)
=

⎛⎝ 𝜅0 0 0
0 𝜅1 −𝜇∗0∂

−1
0

0 𝜇0∂
−1
0 𝜀+ 𝜂 ∂−10 + 𝜇1∂

−2
0

⎞⎠ ,
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where 𝜀 : 𝐿2 (𝐼) → 𝐿2 (𝐼), 𝜅0 : 𝐿
2 (𝐼) → 𝐿2 (𝐼), 𝜅1 : 𝐿

2 (𝐼) → 𝐿2 (𝐼) are suitable
continuous, selfadjoint, non-negative mappings and 𝜇0 : 𝐿2 (𝐼) → 𝐿2 (𝐼), 𝜇1 :
𝐿2 (𝐼)→ 𝐿2 (𝐼), 𝜂 : 𝐿2 (𝐼)→ 𝐿2 (𝐼) are continuous and linear.

Assumption V: We assume that the coefficient operators are such that (1.2) is
satisfied, i.e.,

𝜈𝜀+ℜ𝔢 𝜂 ≥ 𝑐0 > 0

for some 𝑐0 ∈ ℝ and all sufficiently large 𝜈 ∈ ℝ>0.

Remark 2.4. This implies a polynomial type material law operator of the form

𝑀
(
∂−10

)
=

⎛⎝ 𝜅0 0 0
0 𝜅1 0
0 0 𝜀

⎞⎠+ ∂−10

⎛⎝ 0 0 0
0 0 −𝜇∗0
0 𝜇0 𝜂

⎞⎠+ ∂−20

⎛⎝ 0 0 0
0 0 0
0 0 𝜇1

⎞⎠ .

We see that for 𝜅0, 𝜅1, 𝜀 strictly positive continuous linear operators, 𝜇1 = 0 and
𝜂 = 0 and 𝐴 skew-selfadjoint, e.g., if 𝑎

(
∂−10

)
= 0, we have a conservative system

since then 𝑀 (2)
(
∂−10

)
= 0 and

𝑀1 =

⎛⎝ 0 0 0
0 0 −𝜇∗0
0 𝜇0 𝜂

⎞⎠
is skew-selfadjoint making 𝐴 + 𝑀1 and so also

√
𝑀−1
0 (𝐴+𝑀1)

√
𝑀−1
0 skew-

selfadjoint. Consequently,
√

𝑀−1
0 (𝐴+𝑀1)

√
𝑀−1
0 generates a unitary 1-para-

meter group and “energy” conservation holds in the sense that for the solution
𝑈 of a pure initial value problem we have for 𝑡 ∈ ℝ>0∣∣∣√𝑀0𝑈 (𝑡)

∣∣∣
𝐻
=
∣∣∣√𝑀0𝑈 (0+)

∣∣∣
𝐻

or if one prefers to underscore the “energy” metaphor

𝐸 (𝑡) :=
1

2

∣∣∣√𝑀0𝑈 (𝑡)
∣∣∣2
𝐻
=
1

2

∣∣∣√𝑀0𝑈 (0+)
∣∣∣2
𝐻
= 𝐸 (0+) .

Such material laws are suggested by models of linear acoustics, see, e.g., [2],
or by the so-called Maxwell–Cattaneo–Vernotte law [1, 3] describing heat prop-
agation. In the one-dimensional case, focused on here, this special material law
operator can be reduced to a wave or heat equation type partial differential op-
erator with a Sturm–Liouville type operator as spatial part. Indeed, assuming
additionally that 𝜅0 and 𝜅1 are strictly positive, two elementary row operations
applied to ⎛⎝ 𝜅0∂0 0 ∂

0 𝜅1∂0 −𝜇∗0
∂ 𝜇0 𝜀∂0 + 𝜂 + 𝜇1∂

−1
0

⎞⎠
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yield formally⎛⎝ 𝜅0∂0 0 ∂
0 𝜅1∂0 −𝜇∗0
0 0 ∂−10

(
𝜀∂20 + 𝜂∂0 +

(
𝜇0𝜅

−1
1 𝜇0 + 𝜇1

)− ∂𝜅−10 ∂
)
⎞⎠ .

Remark 2.5. A more common point of view for this operation would be to think

of new unknowns being introduced. Indeed, if the system unknowns are
(

𝑐𝑠
𝑤
𝑣

)
then

letting

𝑦 := ∂−10 𝑣

we would get from a line by line inspection of the system⎛⎝ 𝜅0∂0 0 ∂
0 𝜅1∂0 −𝜇∗0
∂ 𝜇0 𝜀∂0 + 𝜂 + 𝜇1∂

−1
0

⎞⎠⎛⎝ 𝑠
𝑤
𝑣

⎞⎠ =

⎛⎝ 0
0
𝑓

⎞⎠
that

𝑠 = −𝜅−10 ∂𝑦

𝑤 = 𝜅−11 𝜇∗0𝑦

and so that

𝜀∂20𝑦 + 𝜂∂0𝑦 + 𝜇1𝑦 + 𝜇0𝜅
−1
1 𝜇∗0𝑦 − ∂𝜅−10 ∂𝑦 = 𝑓.

Clearly, applying the temporal Fourier–Laplace transform to the second-order
expression

(
𝜀∂20 + 𝜂∂0 +

(
𝜇0𝜅

−1
1 𝜇∗0 + 𝜇1

)− ∂𝜅−10 ∂
)
we obtain point-wise, writing√

𝜆 instead of (i𝑚+ 𝜈),(
𝜀𝜆+ 𝜂

√
𝜆+

(
𝜇0𝜅

−1
1 𝜇0 + 𝜇1

)− ∂𝜅−10 ∂
)
,

which for vanishing “damping” 𝜂 is indeed a Sturm–Liouville operator

𝑟𝜆 + 𝑞 − ∂𝑝∂

with

𝑟 := 𝜀,

𝑞 := 𝜇0𝜅
−1
1 𝜇0 + 𝜇1 ,

𝑝 := 𝜅−10 .

For our purposes we may allow for general material laws in the problem (2.3).

Remark 2.6. If 𝜀 = 0 and 𝜂 has a strictly positive definite symmetric part, i.e.,
the selfadjoint ℜ𝔢 𝜂 is strictly positive, we arrive at the parabolic type operator

𝜂∂0 + 𝑞 − ∂𝑝∂

and writing 𝜆 instead of (i𝑚+ 𝜈) we get again a Sturm–Liouville type operator

𝜂𝜆 + 𝑞 − ∂𝑝∂,

where now 𝜂 plays the role of 𝑟.
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Theorem 2.7. Under assumptions I to V (above), for every 𝒥 ∈ 𝐻𝜈,𝑘 (ℝ, 𝐻)
the problem (2.3) has a unique solution 𝑈 ∈ 𝐻𝜈,𝑘 (ℝ, 𝐻) . The solution opera-

tor
(
∂0𝑀

(
∂−10

)
+𝐴

)−1
: 𝐻𝜈,𝑘 (ℝ, 𝐻)→ 𝐻𝜈,𝑘 (ℝ, 𝐻) is continuous and causal for

every 𝑘 ∈ ℤ and any sufficiently large 𝜈 ∈ ℝ>0.

Proof. Denoting the inner product and norm of 𝐻𝜈,0

(
ℝ, 𝐿2 (𝐼)⊕ 𝐿2 (𝐼)⊕ 𝐿2 (𝐼)

)
by ⟨ ⋅ ∣ ⋅ ⟩𝜈,0,0 and ∣ ⋅ ∣𝜈,0,0 , respectively, we calculate

ℜ𝔢

〈
𝜒

]−∞,0]
(𝑚0)

⎛⎝ 𝑠
𝑤
𝑣

⎞⎠∣∣∣∣∣∣𝐴
⎛⎝ 𝑠

𝑤
𝑣

⎞⎠〉
𝜈,0,0

= ℜ𝔢
(〈

𝜒
]−∞,0]

(𝑚0) 𝑠∣∂𝑣
〉
𝜈,0,0

+
〈
∂𝑠∣𝜒

]−∞,0]
(𝑚0) 𝑣

〉
𝜈,0,0

)
= ℜ𝔢

〈
𝜒

]−∞,0]
(𝑚0) 𝑠∣∂̊

(
𝑣 − ∂0𝑎

(
∂−10

)
𝑠
)〉

𝜈,0,0

+ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0) 𝑠∣∂∂0𝑎

(
∂−10

)
𝑠
〉
𝜈,0,0

+ℜ𝔢
〈
∂𝑠∣𝜒

]−∞,0]
(𝑚0) 𝑣

〉
𝜈,0,0

= −ℜ𝔢
〈
∂𝑠∣𝜒

]−∞,0]
(𝑚0)

(
𝑣 − ∂0𝑎

(
∂−10

)
𝑠
)〉

𝜈,0,0

+ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0) 𝑠∣∂∂0𝑎

(
∂−10

)
𝑠
〉
𝜈,0,0

+ℜ𝔢
〈
∂𝑠∣𝜒

]−∞,0]
(𝑚0) 𝑣

〉
𝜈,0,0

= ℜ𝔢
〈
∂𝜒

]−∞,0]
(𝑚0) 𝑠∣∂0𝑎

(
∂−10

)
𝑠
〉
𝜈,0,0

+ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0) 𝑠∣∂∂0𝑎

(
∂−10

)
𝑠
〉
𝜈,0,0

= ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0) 𝑠 ( ⋅ ,+1/2) ∣∂0𝑎

(
+1/2, ∂−10

)
𝑠 ( ⋅ ,+1/2)〉

𝜈,0

−ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0) 𝑠 ( ⋅ ,−1/2) ∣∂0𝑎

(−1/2, ∂−10 )
𝑠 ( ⋅ ,−1/2)〉

𝜈,0
. (2.4)

As noted earlier

𝑎
(
∂−10

)
= 𝑎0 + 𝑎1∂

−1
0 + 𝑎2∂

−2
0 + ∂−30 𝑎(3)

(
∂−10

)
,

where 𝑎(3)
(
∂−10

)
is bounded. From this we obtain that

ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝜑∣ ± ∂0𝑎0 (±1/2)𝜑

〉
𝜈,0

= ±
∫ 0

−∞
𝜑 (𝑡)

∗
(∂0𝑎0 (±1/2)𝜑) (𝑡) exp (−2𝜈𝑡) 𝑑𝑡

= ±𝜈

∫ 0

−∞
𝑎0 (±1/2) ∣𝜑 (𝑡)∣2 exp (−2𝜈𝑡) 𝑑𝑡± 1

2
𝑎0 (±1/2) ∣𝜑 (0)∣2

which is non-negative by (2.1). Similarly

ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝜑∣ ± 𝑎1 (±1/2)𝜑

〉
𝜈,0

= ±
∫ 0

−∞
𝜑 (𝑡)

∗
𝑎1 (±1/2)𝜑 (𝑡) exp (−2𝜈𝑡) 𝑑𝑡.
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Now from (2.2) we obtain

ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝜑∣ ± ∂0𝑎

(±1/2, ∂−10 )
𝜑
〉
𝜈,0

≥ (±𝜈𝑎0 (±1/2)± 𝑎1 (±1/2))
∣∣𝜒

]−∞,0]
(𝑚0)𝜑

∣∣2
𝜈,0

+ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝜑∣ ± ∂−10 𝑎(2)

(±1/2, ∂−10 )
𝜑
〉
𝜈,0

.

Due to causality we have∣∣∣∣ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝜑∣ ± ∂−10 𝑎(2)

(±1/2, ∂−10 )
𝜑
〉
𝜈,0

∣∣∣∣
=

∣∣∣∣ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝜑∣ ± 𝑎(2)

(±1/2, ∂−10 )
𝜒

]−∞,0]
(𝑚0) ∂

−1
0 𝜑

〉
𝜈,0

∣∣∣∣
≤ 𝐶1

∣∣𝜒
]−∞,0]

(𝑚0)𝜑
∣∣
𝜈,0

∣∣𝜒
]−∞,0]

(𝑚0) ∂
−1
0 𝜑

∣∣
𝜈,0

≤ 𝐶1
∣∣𝜒

]−∞,0]
(𝑚0)𝜑

∣∣
𝜈,0

∣∣𝜒
]−∞,0]

(𝑚0) ∂
−1
0 𝜒

]−∞,0]
(𝑚0)𝜑

∣∣
𝜈,0

≤ 𝐶1
∣∣𝜒

]−∞,0]
(𝑚0)𝜑

∣∣
𝜈,0

∣∣∂−10 𝜒
]−∞,0]

(𝑚0)𝜑
∣∣
𝜈,0

≤ 𝐶1𝜈
−1 ∣∣𝜒

]−∞,0]
(𝑚0)𝜑

∣∣2
𝜈,0

.

Under Assumptions I–III we therefore have found that

ℜ𝔢
〈
𝜒

]−∞,0]
(𝑚0)𝑈 ∣𝐴𝑈

〉
𝜈,0,0

≥ 0 (2.5)

for all 𝑈 ∈ 𝐷 (𝐴) if 𝜈 ∈ ℝ>0 is sufficiently large. Note that by the time-translation
invariance this is the same as saying

ℜ𝔢
〈
𝜒

]−∞,𝜏]
(𝑚0)𝑈 ∣𝐴𝑈

〉
𝜈,0,0

≥ 0 (2.6)

for all 𝑈 ∈ 𝐷 (𝐴) and all 𝜏 ∈ ℝ. Letting 𝜏 →∞ we obtain from this

ℜ𝔢 ⟨𝑈 ∣𝐴𝑈⟩𝜈,0,0 ≥ 0 (2.7)

for all 𝑈 ∈ 𝐷 (𝐴).
We need to find the adjoint of 𝐴. It must satisfy

−
⎛⎝ 0 0 ∂̊
0 0 0

∂̊ 0 0

⎞⎠ ⊆ 𝐴∗ ⊆ −
⎛⎝ 0 0 ∂
0 0 0
∂ 0 0

⎞⎠
in the sense of extensions. We now show that 𝐷 (𝐴∗) is given by⎧⎨⎩
⎛⎝ 𝑠𝑤
𝑣

⎞⎠∈𝐻𝜈,0

(
ℝ,𝐻 (∂,𝐼)⊕𝐿2(𝐼)⊕𝐻 (∂,𝐼)) ∣∣∣𝑎((∂−1

0

)∗)
𝑠+

(
∂−1
0

)∗
𝑣∈𝐻𝜈,0(ℝ,𝐻

(
∂̊,𝐼

)⎫⎬⎭.
Indeed, for ⎛⎝ 𝑠

𝑤
𝑣

⎞⎠ ∈ 𝐷 (𝐴)



402 R. Picard and B.A. Watson

we have (
1 0

−𝑎
(
∂−10

)
∂−10

)(
𝑠
𝑣

)
∈ 𝐻𝜈,0

(
ℝ, 𝐻 (∂, 𝐼)⊕𝐻

(
∂̊, 𝐼

))
.

Direct computation gives(
0 ∂̊
∂ 0

)(
1 0

−𝑎
(
∂−10

)
∂−10

)
=

(
0 ∂
∂ 0

)(
1 0
0 ∂−10

)
+

(
0 ∂
0 0

)(
0 0

−𝑎
(
∂−10

)
0

)
=

(
∂−10 0
0 1

)(
0 ∂
∂ 0

)
−
(

𝑎′
(
∂−10

)
0

0 0

)
+

−
(

𝑎
(
∂−10

)
∂ 0

0 0

)
=

(
∂−10 −𝑎

(
∂−10

)
0 1

)(
0 ∂
∂ 0

)
−
(

𝑎′
(
∂−10

)
0

0 0

)
.

Thus, we have(
0 ∂
∂ 0

)
∂−10

(
𝑠
𝑣

)
=

(
1 𝑎

(
∂−10

)
0 ∂−10

)(
0 ∂̊
∂ 0

)(
1 0

−𝑎
(
∂−10

)
∂−10

)(
𝑠
𝑣

)
+

+

(
1 𝑎

(
∂−10

)
0 ∂−10

)(
𝑎′
(
∂−10

)
0

0 0

)(
𝑠
𝑣

)
=

(
1 𝑎

(
∂−10

)
0 ∂−10

)(
0 ∂̊
∂ 0

)(
1 0

−𝑎
(
∂−10

)
∂−10

)(
𝑠
𝑣

)
+

+

(
𝑎′
(
∂−10

)
0

0 0

)(
𝑠
𝑣

)
.

Letting

(
1 0

−𝑎
(
∂−10

)
∂−10

)(
𝑠
𝑣

)
= 𝑊 we have for

⎛⎝ 𝑣0
𝑣1
𝑣2

⎞⎠ ∈ 𝐷 (𝐴∗) and for

every 𝑊 ∈ 𝐻𝜈,0

(
ℝ, 𝐻 (∂, 𝐼)⊕𝐻

(
∂̊, 𝐼

))
,

0 =

〈(
0 ∂
∂ 0

)(
∂−10 0

𝑎
(
∂−10

)
1

)
𝑊 ∣

(
𝑣0
𝑣2

)〉
𝜈,0,0

+

〈(
∂−10 0

𝑎
(
∂−10

)
1

)
𝑊 ∣

(
0 ∂
∂ 0

)(
𝑣0
𝑣2

)〉
𝜈,0,0

=

〈(
1 𝑎

(
∂−10

)
0 ∂−10

)(
0 ∂̊
∂ 0

)
𝑊 ∣

(
𝑣0
𝑣2

)〉
𝜈,0,0

+

〈(
𝑎′
(
∂−10

)
0

0 0

)
𝑊 ∣

(
𝑣0
𝑣2

)〉
𝜈,0,0

+

〈(
∂−10 0

𝑎
(
∂−10

)
1

)
𝑊 ∣

(
0 ∂
∂ 0

)(
𝑣0
𝑣2

)〉
𝜈,0,0
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=

〈(
0 ∂̊
∂ 0

)
𝑊 ∣

(
1 0

𝑎
((

∂−10
)∗) (

∂−10
)∗ )(

𝑣0
𝑣2

)〉
𝜈,0,0

+

〈
𝑊 ∣

(
𝑎′
((

∂−10
)∗)

0

0 0

)(
𝑣0
𝑣2

)〉
𝜈,0,0

+

〈
𝑊 ∣

( (
∂−10

)∗
𝑎
((

∂−10
)∗)

0 1

)(
0 ∂
∂ 0

)(
𝑣0
𝑣2

)〉
𝜈,0,0

.

This implies that(
1 0

𝑎
((

∂−10
)∗) (

∂−10
)∗ )(

𝑣0
𝑣2

)
∈ 𝐻𝜈,0

(
ℝ, 𝐻 (∂, 𝐼)⊕𝐻

(
∂̊, 𝐼

))
,

which is the above characterization of 𝐷 (𝐴∗). Moreover,(
0 ∂̊
∂ 0

)(
1 0

𝑎
((

∂−10
)∗) (

∂−10
)∗ )(

𝑣0
𝑣2

)

=

(
𝑎′
((

∂−10
)∗)

0

0 0

)(
𝑣0
𝑣2

)
+

( (
∂−10

)∗
𝑎
((

∂−10
)∗)

0 1

)(
0 ∂
∂ 0

)(
𝑣0
𝑣2

)
.

As a consequence of the similarity between 𝐴 and 𝐴∗ we find by analogous
reasoning that we have not only (2.7) but also, indeed more straight-forwardly,

ℜ𝔢 ⟨𝑉 ∣𝐴∗𝑉 ⟩𝜈,0,0 ≥ 0 (2.8)

for all 𝑉 ∈ 𝐷 (𝐴∗). The calculation is similar to (2.4) but without the cut-off with
𝜒

]−∞,0
(𝑚0). Thus we have indeed that

∂0𝑀
(
∂−10

)
+𝐴

is continuously invertible with causal inverse
(
∂0𝑀

(
∂−10

)
+𝐴

)−1
: 𝐻𝜈,𝑘 (ℝ, 𝐻)→

𝐻𝜈,𝑘 (ℝ, 𝐻) for every 𝑘 ∈ ℤ and any sufficiently large 𝜈 ∈ ℝ>0. □
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Crystal Frameworks, Matrix-valued Functions
and Rigidity Operators

S.C. Power

Abstract. An introduction and survey is given of some recent work on the
infinitesimal dynamics of crystal frameworks, that is, of translationally pe-
riodic discrete bond-node structures in ℝ𝑑, for 𝑑 = 2, 3, . . . . We discuss the
rigidity matrix, a fundamental object from finite bar-joint framework theory,
rigidity operators, matrix-function representations and low energy phonons.
These phonons in material crystals, such as quartz and zeolites, are known
as rigid unit modes, or RUMs, and are associated with the relative motions
of rigid units, such as SiO4 tetrahedra in the tetrahedral polyhedral bond-
node model for quartz. We also introduce semi-infinite crystal frameworks,
bi-crystal frameworks and associated multi-variable Toeplitz operators.

Mathematics Subject Classification (2010). Primary 52C75; Secondary 46T20.

Keywords. Crystal framework, rigidity operator, matrix function, rigid unit
mode.

1. Introduction

A survey is given of some recent work on the infinitesimal dynamics of crystal
frameworks, by which we mean translationally periodic discrete bar-joint frame-
works in ℝ𝑑. This includes a discussion of rigidity operators, matrix symbol func-
tion representations and the connections with models for low energy phonon modes
in various material crystals. These modes are also known as rigid unit modes,
or RUMs, reflecting their origin in the relative motion of rigid units in the crys-
talline structure. I also introduce briefly the contexts of semi-infinite crystal frame-
works and bicrystal frameworks and indicate how their rigidity operators involve
multivariable Toeplitz operators whose symbol functions are matrices over multi-
variable trigonometric polynomials on the 𝑑-torus.

The topic of infinite bar-joint frameworks, whether periodic or not, can be
pursued as a purely mathematical endeavour and many aspects of deformability
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and rigidity remain to be understood. The main perspectives below and related
issues are developed in Owen and Power [21], [22], [24] and Power [25], [26].

Translationally periodic bond/node bar-joint frameworks or networks are
ubiquitous in mathematics (periodic tilings for example), solid state physics (crys-
tal lattices, graphene), solid state chemistry (zeolites) and material science (mi-
croporous metal organic frameworks). So there is no lack of interesting examples.
I shall illustrate a number of concepts with three examples derived from tilings
seen in Seville at the Alcazaar and the Cathedral.

2. Models for material crystals and low energy phonons

We begin by outlining one particular motivation from material science. A crystal
framework 𝒞 in ℝ3 can serve as a mathematical model for the essential geometry
of the disposition of atoms and bonds in a material crystal ℳ. In the model of
interest to us the vertices correspond to certain atoms while the edges correspond
in some way to strong bonds. Also the identification of strongly bonded “units” in
ℳ imply a polyhedral net structure and it is this that gives the relevant abstract
framework 𝒞. A fundamental example of this kind is quartz, SiO2, in which each
silicon atom lies at the centre of a strongly bonded SiO4 unit, which in turn may
be modeled as a tetrahedron with an oxygen atom at each vertex. In this way
the material crystal quartz provides a mathematical crystal framework of pairwise
connected tetrahedra with a particular connectedness and geometry.

Material scientists are interested in the manifestation and explanation of
various forms of low energy motion and oscillation in materials. Of particular in-
terest are the rigid unit modes in aluminosilicate crystals and zeolites, where quite
complicated tetrahedral net models are relevant. These low energy (long wave-
length) phonon modes are observed in neutron scattering experiments and have
been shown to correlate closely with the modes observed in computational simula-
tions. There is now a considerable body of literature tabulating the (reduced) wave
vectors of RUMs of various crystals as subsets of the unit cube (Brillouin zone)
and it has become evident that the primary determinant is the geometric structure
of the abstract frameworks 𝒞. See, for example, Dove et al. [8], Hammond et al.
[12], [13], Giddy et al. [10] and Swainson and Dove [31]. Particularly intriguing is
the simulation study in Dove et al. [8] which gives a range of pictures of the RUM
spectrum and multiplicities for various idealized crystal types.

In the experiments and in the simulations the background mathematical
model is classical lattice dynamics and rigid unit modes are observed where the
phonon dispersion curves indicate vanishing energy. However, one can also identify
such limiting cases through a direct linear approach as we outline below and from
this it follows that these sets (at least in simulations) may be viewed as real alge-
braic varieties. See Theorem 5.4 below, [24], [25] and Wegner [33]. It is convenient
to define the RUM dimension to be the dimension of this algebraic variety. (See
Section 5.) In 3D it takes the values 0, 1, 2, 3.
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3. An illustrative example

The following simple example will serve well to illustrate the notation scheme for
general crystal frameworks in 𝑑 dimensions that we adopt. The example is also of
interest in its own right, as we see later.

Figure 1 indicates a translationally periodic bar-joint framework 𝒞 = (𝐺, 𝑝)
determined by a sequence 𝑝 = (𝑝𝑘) in ℝ2. The framework edges [𝑝𝑖, 𝑝𝑗 ], associated
with the edges of the underlying graph𝐺, are viewed as inextensible bars connected
at the framework vertices 𝑝𝑘 but otherwise unconstrained.

Figure 1. An infinite bar-joint framework.

Let the scaling be such that

𝑝1 = 𝑝1,0 = (0, 0), 𝑝2 = 𝑝2,0 = (0, 4), 𝑝3 = 𝑝3,0 = (1, 3)

are three framework vertices of a triangular subframework. Write their translates
as

𝑝𝜅,𝑘 = 𝑇𝑘𝑝𝜅,0, for 𝜅 ∈ {1, 2, 3}, 𝑘 ∈ ℤ,

where 𝑇𝑘 is the isometry 𝑇𝑘 : (𝑥, 𝑦) → (𝑥 + 4𝑘, 𝑦) od ℝ2. The translation group
𝒯 = {𝑇𝑘 : 𝑘 ∈ ℤ} is also used to define a natural periodic labelling of the framework
edges:

𝑒1 = 𝑒1,0 = [𝑝1, 𝑝2], 𝑒2 = 𝑒2,0 = [𝑝2, 𝑝3], 𝑒3 = 𝑒3,0 = [𝑝1, 𝑝3, ],

𝑒4 = 𝑒4,0 = [𝑝1,0, 𝑝1,1], 𝑒5 = 𝑒5,0 = [𝑝3,0, 𝑝2,1]

and

𝑒𝑗,𝑘 = 𝑇𝑘𝑒𝑗 , for 𝑗 ∈ {1, 2, 3, 4, 5}, 𝑘 ∈ ℤ.

Thus, the pair of finite sets

𝐹𝑣 = {𝑝1, 𝑝2, 𝑝3}, 𝐹𝑒 = {𝑒1, . . . , 𝑒5}
have disjoint translates under 𝒯 and the set of all such translates determines 𝒞.

In an exactly similar way a translationally periodic bar-joint framework 𝒞
in ℝ𝑑 is determined by a triple (𝐹𝑣, 𝐹𝑒, 𝒯 ) where we refer to the finite set pair
ℳ = (𝐹𝑣 , 𝐹𝑒) as a motif for 𝒞. Of particular interest for applications are the cases
𝑑 = 2, 3 in which 𝒯 = {𝑇𝑘 : 𝑘 ∈ ℤ𝑑} and 𝒯 has full rank. For 𝑑 = 3 “full rank”
means that the so-called period vectors

𝑎1 = 𝑇(1,0,0)(0), 𝑎2 = 𝑇(0,1,0)(0), 𝑎3 = 𝑇(0,0,1)(0)
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are linearly independent, in which case the framework vertices, if they are dis-
tinct, form a discrete set in ℝ3. We call such discrete bar-joint frameworks crystal
frameworks.

We now introduce a key dynamical ingredient, namely the notion of an in-
finitesimal flex. This definition is the same as that for finite bar-joint frameworks
being a specification of velocity vectors at the nodes which, to first order, do not
change edge lengths.

Definition 3.1. Let 𝒞 be crystal framework, with framework vertices 𝑝𝜅,𝑘 as above.
An infinitesimal flex of 𝒞 is a set of vectors 𝑢𝜅,𝑘 (velocity vectors) such that for
each edge 𝑒 = [𝑝𝜅,𝑘, 𝑝𝜏,𝑙]

⟨𝑝𝜅,𝑘 − 𝑝𝜏,𝑙, 𝑢𝜅,𝑘 − 𝑢𝜏,𝑙⟩ = 0.
The linear equations required for an infinitesimal flex 𝑢 = (𝑢𝜅,𝑘) translate

to a single equation 𝑅(𝒞)𝑢 = 0 where 𝑅(𝒞) is the so-called rigidity matrix for
the framework and where 𝑢 is a vector in the direct product vector space ℋ𝑣 =∏

𝜅,𝑘 ℝ
𝑑, regarded as a composite vector of instantaneous velocities. The rigidity

matrix is sparse with rows labelled by edges and columns labelled by the Euclidean
coordinate labels (𝜅, 𝑘, 𝜎) of the framework vertices, with 𝜎 ∈ {1, . . . , 𝑑}; the row
for framework edge 𝑒 = [𝑝𝑖, 𝑝𝑗 ] has the entry (𝑝𝜅,𝑘−𝑝𝜏,𝑙)𝜎 for column (𝜅, 𝑘, 𝜎), and
has the negative of this entry for column (𝜏, 𝑙, 𝜎). Thus for 𝑑 = 3 row 𝑒 appears as

[0 . . . 0 𝑣𝑒 0 . . . 0 − 𝑣𝑒 0 . . . 0]

where the vector 𝑣𝑒 = 𝑝𝜅,𝑘 − 𝑝𝜏,𝑙 (resp −𝑣𝑒) is distributed in the columns for
(𝜅, 𝑘, 𝜎) (resp. (𝜏, 𝑙, 𝜎)) with 𝜎 ∈ {𝑥, 𝑦, 𝑧}.

From various viewpoints, such as phase-periodic velocity vectors on the one
hand, or square-summable velocity vectors on the other hand, with the intro-
duction of complex scalars and functional representations of vector spaces, the
rigidity matrix 𝑅(𝒞) leads to a matrix-valued function Φ(𝑧) with ∣𝐹𝑒∣ rows and
𝑑∣𝐹𝑒∣ columns. The entries are scalar-valued functions on the 𝑑-torus of points
𝑧 = (𝑧1, . . . , 𝑧𝑑) in ℂ𝑑 with ∣𝑧𝑖∣ = 1.

We define this matrix function below in Definition 5.3 and one can check that
the strip framework of Figure 1 has associated matrix function

Φ(𝑧) =

⎡⎢⎢⎢⎢⎣
0 −4 0 4 0 0
0 0 −1 1 1 −1
−1 −3 0 0 1 3

−4(1− 𝑧) 0 0 0 0 0
0 0 3𝑧 𝑧 −3 −1

⎤⎥⎥⎥⎥⎦ .

3.1. Examples from Seville

The next three frameworks are based on some simple two-dimensional tessellations
that are suggested by tilings found in Seville cathedral (Figures 2 and 3) and in
the Alcazaar in Seville (Figure 4). All three are in Maxwell counting equilibrium
in the sense that the average number of edge constraints per vertex is 2, match-
ing the degrees of freedom of each vertex, while each finite subframework is not
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“overconstrained”, in the sense that the number of edges does not exceed twice
the number of vertices.

A motif for the framework 𝒞sev1 is shown in Figure 2 together with the period
vectors (dotted). The motif edges consist of a square of edges together with two
vertical edges whose (equal) lengths fix the geometry up to a global scaling. (The
“rigid units” of this framework are the single vertex subframeworks.)

Note that there is an evident (edge-length preserving) continuous flex, or
deformation, 𝑝(𝑡) = (𝑝𝜅,𝑘(𝑡)) of 𝒞sev1 which is associated with an expansion in the
𝑥 direction and a matching contraction in the 𝑦 direction. We remark that in the
case of the geometry with all edge lengths equal this deformation passes through
the framework composed of congruent rhombs which is reciprocal (in the lattice
sense [6]) to the well-known kagome framework, indicated in Section 5.1. From
the first instant of the deformation, so to speak, one obtains an infinitesimal flex
𝑢 = 𝑝′(0) which (unlike infinitesimal translation flexes) is unbounded. Less evident
are various nontrivial bounded infinitesimal flexes, but we see below that there are
plenty of these and that the RUM dimension is 1.

Figure 2. The crystal framework 𝒞sev1 .

The framework 𝒞sev2 in Figure 3 has triangular rigid units and an infinites-
imal flex is indicated which is finitely nonzero, with four nonzero velocity vector
components. Such a flex is also called a local or internal infinitesimal flex. It is a
general principle, as we note further below, that such a local phenomenon makes
the framework maximally flexible from a RUM point of view.

The planar graph, or “topology” of this framework is rather interesting, being
a network of 4-rings of triangles connected “square-wise”, so that the “holes” are 8-
cycles and 4-cycles. One can make similar constructions with equilateral triangles
with this topology although now the local infinitesimal flex is lost. We remark that
periodic networks of pairwise corner-joined congruent equilateral triangles provide
the 2D variants of the tetrahedral nets associated with zeolites. (That the hole
cycles of 2D zeolites can be arbitrarily large follows from the substitution move
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Figure 3. 𝒞sev2 , with a local infinitesimal flex.

Figure 4. Part of 𝒞sev3 , a homeomorph of 𝒞ℤ2 .

which replaces each rigid unit triangle by a 3-ring of smaller triangles with edge
length halved.)

The framework 𝒞sev3 is derived from a tiling in the Alcazaar in Seville. A
moment’s thought reveals it to have the same topology (underlying graph) as that
for the basic square grid framework 𝒞ℤ2 . The infinitesimal flexibility is less evident
than is the case for 𝒞ℤ2 but from the RUM viewpoint they turn out to be equally
flexible with RUM dimension 1.

4. Bar-joint frameworks – a very brief overview

4.1. Watt, Peaucellier, Cauchy, Euler, Kempe, Maxwell, Laman

Informally, a “linkage” is a bar-joint framework with one degree of essential flexi-
bility. In 1784 James Watt designed a bar-joint linkage which transformed circular
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motion into approximate linear motion. This was rather important for steam engine
transmission. The mechanism was approximate and was superseded by Peaucel-
lier’s exact linear motion linkage eighty years later. In 1876 Kempe [18] solved the
general inverse problem by showing that any finite algebraic curve can be simu-
lated by a linkage. The rigidity of geometric frameworks was also of interest to
Euler and to Cauchy who in particular were concerned with the rigidity of poly-
hedra with hinged faces; a beautiful classical result is the infinitesimal rigidity of
all convex triangle-faced polyhedra.

James Clerk Maxwell initiated combinatorial aspects with the observation
that a graph 𝐺 = (𝑉,𝐸) with a minimally rigid generic framework realisation in
the plane must satisfy the simple counting rule 2∣𝑉 ∣ − ∣𝐸∣ = 3 together with the
inequalities 2∣𝑉 ′∣−∣𝐸′∣ ≥ 3 for all subgraphs. The number 3 represents the number
of independent global infinitesimal motions for the plane. In 1970 Laman [19]
obtained the fundamental result that Maxwell’s conditions are sufficient for generic
rigidity and this result also anticipated the advent of matroid theory in rigidity
theory. While corresponding counting rules are necessary in three dimensions they
fail to be sufficient and no necessary and sufficient combinatorial conditions for
generic rigidity are known! For further information see [1], [2], [11].

4.2. Some recent work

Laman’s theorem concerns generic frameworks with a particular graph. One can
expect that special frameworks with global symmetries may have more flexibility
and this is a topic of current interest. See for example, Connelley et al. [5], Owen
and Power [22] and Shulze [28], [29]. Understanding constraint systems of geomet-
ric objects with symmetry present is also of significance for algorithms for CAD
software [22].

Laman’s theorem is also concerned with finite frameworks. A natural gener-
alisation, also of significance for applications, are periodic frameworks in the sense
of the crystal frameworks above. See also Whiteley [32], Borcea and Streinu [4],
Malestein and Theran [20], and Ross, Schulze and Whiteley [27].

The theory of general infinite bar-joint frameworks, from the point of view of
rigidity, is a novel topic and perhaps a rather curious one. We point out in Owen
and Power [23], [21] that it is possible to generalise Kempe’s theorem to the effect
that any continuous curve (i.e., continuous image of [0, 1] in ℝ2) may be simulated
by an infinite linkage. (In [23] this is achieved with three vertices of infinite degree
but in fact infinite degree vertices are not necessary.)

In material science the microporous flexing materials known as zeolites are
on the one hand important for industrial applications, as filters, and on the other
hand present diverse tetrahedral rigid unit frameworks. The degree of continuous
flexibility of such idealised zeolites is investigated in Kapko et al. [17].



412 S.C. Power

5. The RUM spectrum and RUM dimension of 퓒
Let 𝒞 = (𝐹𝑣, 𝐹𝑒, 𝒯 ) be a crystal framework in ℝ𝑑 and let 𝒦𝑣 be the vector space∏

𝜅,𝑘 ℂ
𝑑∣𝐹𝑣∣ consisting of infinitesimal velocity vectors. Let 𝕋𝑑 be the 𝑑-torus of

points 𝜔 = (𝜔1, . . . , 𝜔𝑑) and for 𝑘 ∈ ℤ𝑑 write 𝜔𝑘 for the unimodular complex

number 𝜔𝑘1
1 . . . 𝜔𝑘𝑑

𝑑 .

Definition 5.1 ([24], [25]).

(a) A velocity vector 𝑢 in 𝒦𝑣 is periodic-modulo-phase for the (multi-)phase
factor 𝜔 ∈ 𝕋𝑑 if there exists a vector 𝑢 = (𝑢𝜅) in ℂ∣𝐹𝑣∣ such that

�̃�𝜅,𝑘 = 𝜔𝑘𝑢𝜅, 𝜅 ∈ 𝐹𝑣, 𝑘 ∈ ℤ𝑑.

Also 𝒦𝜔
𝑣 denotes the associated vector subspace of such vectors.

(b) A periodic-modulo-phase infinitesimal flex (or, for brevity, a wave flex) is a
vector 𝑢 in 𝒦𝜔

𝑣 which is an infinitesimal flex for 𝒞.
(c) The rigid unit mode spectrum, or RUM spectrum, of 𝒞 (with specified trans-

lation group 𝒯 ) is the set Ω(𝒞) of phases 𝜔 for which there exists a nonzero
wave flex.

To each multiphase 𝜔 there exists a unique wave vector k = (k1, . . . ,k𝑑) in
[0, 1)𝑑 such that 𝜔𝑗 = 𝑒2𝜋𝑖 kj , 1 ≤ 𝑗 ≤ 𝑑. Ignoring bond constraints for the moment,
recall that the framework points of 𝒞 undergo harmonic motion with wave vector
k when the vertex positions at time 𝑡 satisfy equations of the form

𝑝𝜅,𝑘(𝑡) = 𝑝𝜅,𝑘 + exp(2𝜋𝑖 k ⋅ 𝑘) exp(𝑖𝛼𝑡)𝑣𝜅,
where 𝛼/2𝜋 is the frequency of the oscillation and where k ⋅ 𝑘 is the inner product
k1 ⋅ 𝑘1 + ⋅ ⋅ ⋅ + k𝑑 ⋅ 𝑘𝑑. Such pure motions appear as basic solutions in lattice dy-
namics, under harmonic approximation, with general solutions obtained by linear
superposition. (See Dove [7] for example.)

The following theorem from [25] provides an explanation for the connection
between low energy oscillation modes alluded to in Section 2 and infinitesimal
wave flexes.

Theorem 5.2. Let 𝒞 be a crystal framework, with specified periodicity, and let k be
a wave vector with point 𝜔 ∈ 𝕋𝑑. Then the following assertions are equivalent.

(i) (𝜔𝑘𝑢𝜅)𝜅,𝑘 is a nonzero periodic-modulo-phase infinitesimal (complex) flex
for 𝒞.

(ii) For the vertex wave motion

𝑝𝜅,𝑘(𝑡) = 𝑝𝜅,𝑘 + 𝑢𝜅 exp(2𝜋𝑖 k ⋅ 𝑘) exp(𝑖𝛼𝑡),
and a given time interval, 𝑡 ∈ [0, 𝑇 ], the bond length changes

∣𝑝𝜅,𝑘(𝑡)− 𝑝𝜏,𝑙(𝑡)∣ − ∣𝑝𝜅,𝑘(0)− 𝑝𝜏,𝑙(0)∣,
for the edges 𝑒 tend to zero uniformly, in both 𝑡 and 𝑒, as the wavelength
2𝜋/𝛼 tends to infinity.
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Next we define the matrix function Φ𝒞(𝑧) of a crystal framework 𝒞 with
given period vectors. For the multi-index 𝑘 = (𝑘1, . . . , 𝑘𝑑) write 𝑧𝑘 for the usual
monomial function on 𝕋𝑑.

Definition 5.3. Let 𝒞 be a crystal framework in ℝ𝑑, with motif sets

𝐹𝑣 = {𝑝𝜅,0 : 1 ≤ 𝜅 ≤ ∣𝐹𝑣∣}, 𝐹𝑒 = {𝑒𝑖 : 1 ≤ 𝑖 ≤ ∣𝐹𝑒∣},
and for each edge 𝑒 = [𝑝𝜅,𝑘, 𝑝𝜏,𝑙] in 𝐹𝑒 let 𝑣𝑒 be the edge vector 𝑝𝜅,𝑘 − 𝑝𝜏,𝑙. The
matrix-valued function Φ𝒞(𝑧) has rows labelled by the edges 𝑒 ∈ 𝐹𝑒 and has 𝑑∣𝐹𝑣∣
columns labelled by 𝜅 and the coordinate index 𝜎 ∈ {1, . . . , 𝑑}. If 𝜅 ∕= 𝜏 for edge
𝑒 in 𝐹𝑒 then

(Φ𝒞(𝑧))𝑒,(𝜅,𝜎) = (𝑣𝑒)𝜎𝑧𝑘,

(Φ𝒞(𝑧))𝑒,(𝜏,𝜎) = −(𝑣𝑒)𝜎𝑧𝑙,
while for each reflexive edge [𝑝𝜅,𝑘, 𝑝𝜏,𝑙]

(Φ𝒞(𝑧))𝑒,(𝜅,𝜎) = (𝑣𝑒)𝜎(𝑧𝑘 − 𝑧𝑙),

with the remaining entries in each row equal to zero.

The next theorem gives one connection between Φ𝒞(𝑧) and the infinitesimal
flex properties of 𝒞. Here we view the rigidity matrix 𝑅(𝒞) as a linear transfor-
mation from the product vector space 𝒦𝑣 =

∏
𝜅,𝑘 ℂ

𝑑 to the edge vector space

𝒦𝑒 =
∏
edgesℂ =

∏
𝑒,𝑘 ℂ.

Theorem 5.4. The restriction of the rigidity matrix 𝑅(𝒞) to the finite-dimensional
vector space 𝒦𝜔

𝑣 has representing matrix Φ𝒞(𝜔) with respect to natural vector space
bases.

Proof. Let �̃� be a velocity vector in 𝒦𝜔
𝑣 determined by 𝑢 ∈ ℂ𝑑∣𝐹𝑣∣ as above. Let 𝑒

in 𝐹𝑒 be an edge of the form [𝑝𝜅,𝑘, 𝑝𝜏,𝑙]. Let ⟨⋅, ⋅⟩ denote the bilinear form on ℂ𝑑.
The (𝑒, 𝑘′)𝑡ℎ entry of 𝑅(𝒞)�̃� can be written as

(𝑅(𝒞)�̃�)𝑒,𝑘′ = ⟨𝑣𝑒, �̃�𝜅,𝑘′+𝑘⟩ − ⟨𝑣𝑒, 𝑢𝜏,𝑘′+𝑙⟩ = ⟨𝑣𝑒, 𝜔𝑘′+𝑘𝑢𝜅⟩ − ⟨𝑣𝑒, 𝜔𝑘′+𝑙𝑢𝜏 ⟩
= 𝜔𝑘′(⟨𝜔𝑘𝑣𝑒, 𝑢𝜅⟩+ ⟨−𝜔𝑙𝑣𝑒, 𝑢𝜏 ⟩).

This agrees with 𝜔𝑘′(Φ𝒞(𝜔)𝑢)𝑒, both in the case 𝜅 ∕= 𝜏 and in the reflexive case
𝜅 = 𝜏 , as required. □

It now follows that the RUM spectrum of 𝒞 is identifiable as the algebraic
variety in 𝕋𝑑 given by

Ω(𝒞) = {𝑧 : rankΦ𝒞(𝑧) < ∣𝐹𝑒∣}.
This set does depend on the choice of translation group. One could define the prim-
itive RUM spectrum to correspond to the translation group for a primitive unit cell,
and this is then well defined, up to coordinate permutations. If one doubles the pe-
riod vectors, and hence the unit cell, then (see [25]) the new spectrum is obtained as
the range of the old spectrum under the doubling map (𝑤1, 𝑤2, 𝑤3)→ (𝑤2

1 , 𝑤
2
2 , 𝑤

2
3).
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While we have given the multiphase form of the RUM spectrum the conven-
tion in material science is to indicate such a spectrum (in three dimensions) as
the set of (reduced) wave vectors k in the unit cube [0, 1)3. For calculations of
RUM spectrum by different methods see Dove et al. [8] (simulation calculations),
Wegner [33] (computer algebra calculations), Owen and Power [24] and Power [25]
(direct calculations).

The algebraic variety perspective of RUMs appears to be new and opens
the way for new methods and terminology for understanding the curious curved
surfaces in [8]. For example, it is natural to define the RUM dimension of 𝒞 to
be the topological dimension of Ω(𝒞) as a real algebraic variety. By the comments
above on unit cell doubling it follows that this quantity is independent of the
translation group. (See [25] for details.)

Tetrahedral net frameworks in 3 dimensions, with pairwise vertex connection,
satisfy Maxwell counting equilibrium and in the periodic case, with no penetrat-
ing tetrahedra, these are sometimes referred to as hypothetical zeolites [9]. (In
material crystalline zeolites the rigidly bonded SiO4 units make up such a bond-
node framework.) Even in this case all possibilities occur for the RUM dimension,
namely 0, 1, 2, 3, and this depends, roughly speaking, on the degree of symmetry
of the framework. In particular as we note below the framework for the cubic form
of sodalite indicated below has full RUM spectrum, corresponding to dimension
3. (This so-called order 𝑁 property of sodalite was first observed experimentally.
See [12].)

For crystal frameworks in Maxwell counting equilibrium the matrix function
is square and the RUM spectrum is revealed, in theory at least, as the intersection
of the zero set of the multi-variable polynomial detΦ𝒞(𝑧) with the 𝑑-torus 𝕋𝑑. In
fact, after fixing a monomial order on the 𝑑 indeterminates 𝑧1, . . . , 𝑧𝑑 one may
formally define the crystal polynomial 𝑝𝒞(𝑧), associated with 𝒞. (See also [25].)
This is given as the product 𝛼𝑧𝛾 det(Φ𝒞(𝑧)) where the monomial exponent 𝛾 and
the scalar 𝛼 are chosen so that

(i) 𝑝𝒞(𝑧) is a linear combination of non-negative power monomials,

𝑝𝒞(𝑧) =
∑
𝛼∈ℤ𝑑

+

𝑎𝛼𝑧
𝛼,

(ii) 𝑝𝒞(𝑧) has minimum total degree, and

(iii) 𝑝𝒞(𝑧) has leading monomial with coefficient 1.

The RUM spectrum certainly has symmetry reflecting the crystallographic
group symmetries of the crystal framework. Even so the point group may be trivial
and the following abstract inverse problem (a Kempe theorem for RUMS?) may
well have an affirmative answer.

Problem. Let 𝑞(𝑧, 𝑤) be a polynomial with real coefficients with 𝑞(1, 1) = 0. Is
there a crystal framework with crystal polynomial 𝑝(𝑧, 𝑤) whose zero set on the
2-torus is the same as that for 𝑞(𝑧, 𝑤)?
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5.1. Examples

The tiling-derived framework of Figure 3 has vanishing crystal polynomial. Indeed,
this can be predicted from the existence of a local infinitesimal flex. Such a flex
allows the construction of infinitesimal phase-periodic flexes for all phases and so
the zero set of the polynomial includes the entire 2-torus.

The tiling-derived framework of Figure 2 is also in Maxwell counting equilib-
rium, its symbol function is 6 × 6 and one can show by direct calculation that if
we write the indeterminates in this case as 𝑧, 𝑤, then the crystal polynomial is

(𝑧 − 1)(𝑤 − 1)(𝑧 − 𝑤)

The kagome framework is the framework 𝒞kag formed by pairwise corner con-
nected equilateral triangles in regular hexagonal arrangement. Its symbol function
is a 6× 6 matrix and the crystal polynomial is also

(𝑧 − 1)(𝑤 − 1)(𝑧 − 𝑤).

There is a natural 3𝐷 variant of the kagome lattice known as the kagome
net. The corresponding crystal framework 𝒞knet has period vectors formed by three
edges of a parallelapiped at pairwise angles of 𝜋/3, and each parallelapiped contains
two tetrahedral rigid units such that the three planar slices of 𝒞knet for each pair
of period vectors, is a copy of 𝒞kag. The crystal polynomial takes the form

𝑝(𝑧, 𝑤, 𝑢) = (𝑧 − 1)(𝑤 − 1)(𝑢− 1)(𝑧 − 𝑤)(𝑤 − 𝑢)(𝑧 − 𝑢).

The factorisations in these examples makes evident the nature of the RUM
spectrum as a union of lines and a union of surfaces, respectively. In fact the
individual factors can be predicted in terms of the identification of infinitesimal
flexes that are supported within a linear band (for the 2𝐷 case) or a linear tube
(in the 3𝐷 case). See [25]. For considerably more complicated polynomials with
nonlinear “exotic” spectrum see Wegner [33] and Power [25].

Figure 4 shows a 4-ring of tetrahedra, three copies of which, placed on three
adjacent sides of an imaginary cube, provide the edges and vertices for a motif
(𝐹𝑣, 𝐹𝑒) for the framework 𝒞SOD for the cubic form of sodalite. (From a mathe-
matical perspective, this structure is arguably the most elegant of the naturally
occurring zeolite framework types [3].)

A full set of eight 4-rings forms a so-called sodalite cage. With the 24 outer
vertices of this cage fixed there is nevertheless an infinitesimal flex of the struc-
ture and so a local infinitesimal flex of 𝒞SOD exists. This is in analogy with the
framework 𝒞sev2 . It follows that the determinant of the symbol function (a 72× 72
sparse function matrix) vanishes identically and that the sodalite framework 𝒞SOD
has RUM dimension 3.

6. Flexes with decay and Toeplitz operators

Let 𝒞 be a crystal framework with an implicit choice of translational periodicity.
Write 𝒦2𝑣 and 𝒦2𝑒 for the Hilbert spaces of square-summable sequences in 𝒦𝑣 and
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Figure 5. A 4-ring building unit from 𝒞SOD.

𝒦𝑒. Then 𝑅(𝒞) determines a bounded Hilbert space operator from 𝒦2𝑣 to 𝒦2𝑒 . The
natural Hilbert space basis for 𝒦2𝑣, associated with the given periodicity, may be
denoted {𝜉𝜅,𝜎,𝑘}, where 𝜎 ranges from 1 to 𝑑. Similarly, the basis for 𝒦2𝑒 is {𝜂𝑒,𝑘},
with 𝑒 ∈ 𝐹𝑒, 𝑘 ∈ ℤ𝑑.

Regarding such square-summable sequences as the Fourier series of square
integrable vector-valued functions one obtains unitary operators

𝑈𝑣 : 𝒦2𝑣 → 𝐿2(𝕋𝑑)⊗ ℂ𝑑∣𝐹𝑣∣

and 𝑈𝑒 : 𝒦2𝑒 → 𝐿2(𝕋𝑑)⊗ ℂ∣𝐹𝑒∣. In the next theorem, from [24], the unitary equiv-
alence referred to is two-sided and the equivalence in question is the operator
identity 𝑈∗𝑒𝑅(𝒞)𝑈𝑣 = 𝑀Φ𝒞 . That 𝑈∗𝑒𝑅(𝒞)𝑈𝑣 has the form of a multiplication op-
erator 𝑀Ψ follows from standard operator theory, since this operator intertwines
the canonical shift operators. Borrowing operator terminology we refer to Φ𝐶 as
the symbol function of 𝒞.
Theorem 6.1. The infinite rigidity matrix 𝑅(𝒞) of the crystal framework 𝒞 in ℝ𝑑

determines a Hilbert space operator which is unitarily equivalent to the multiplica-
tion operator

𝑀Φ𝒞 : 𝐿
2(𝕋𝑑)⊗ ℂ𝑑∣𝐹𝑣∣ → 𝐿2(𝕋𝑑)⊗ ℂ∣𝐹𝑒∣,

where Φ𝐶 is the matrix function for 𝒞.
The following corollary follows from elementary operator theory.

Corollary 6.2. A crystal framework has a square-summable infinitesimal flex if and
only if its symbol function has reduced column rank on a set of positive measure.

It is natural to ask whether crystal frameworks possess infinitesimal flexes
which decay to zero at infinity. Note that if an infinite linear subframework has
an infinitesimal flex with such decay then the flex velocities must be orthogonal to
the direction of this subframework. (For otherwise there must be identical nozero
velocity components in that direction on all the subframework points.) For this
reason it follows that the kagome framework and similar “linear” frameworks have
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no asymptotically vanishing flexes and in particular, no square-summable flexes.
In fact one can exploit the matrix function formalism to obtain the following much
more general fact.

Theorem 6.3. [24] The following are equivalent for a crystal framework 𝒞 with
Maxwell counting equilibrium.

(i) 𝒞 has a nonzero local infinitesimal flex.
(ii) 𝒞 has a nonzero summable infinitesimal flex.
(iii) 𝒞 has a nonzero square-summable infinitesimal flex.
6.1. Semi-infinite and bi-crystal frameworks

We may define a semi-infinite crystal framework 𝒟 as a subframework of a crystal
framework 𝒞 with an exposed face. More formally 𝒟 is supported by the framework
vertices that lie in a half-space which is invariant under a subsemigroup of an
underlying translation group for 𝒞. In the case of planar frameworks this may be
specified in the form of a triple (𝐹𝑣, 𝐹𝑒, 𝒯+) where (𝐹𝑣, 𝐹𝑒) is an appropriate motif
and 𝒯+ is a subsemigroup of 𝒯 isomorphic to one of ℤ+ × ℤ, ℤ− × ℤ, ℤ × ℤ+,
ℤ× ℤ−. It is not hard to verify that the rigidity operators of semi-infinite crystal
frameworks can be identified with various Toeplitz operators derived from 𝑀Φ𝒞
by compression to Hardy space Hilbert spaces, such as 𝐻2(𝕋)⊗𝐿2(𝕋) in the case
of ℤ+ × ℤ.

We remark that semi-infinite frameworks have rigidity matrices that feature
as block submatrices of the rigidity matrices of bi-crystal frameworks. By this
we mean (for example) a framework obtained in three dimensions by identifying
two semi-infinite frameworks at their common surface of vertices, when this is
possible. It seems that Toeplitz operators could provide a useful formalism for
their analysis.1

For semi-infinite crystal frameworks the equivalence of the previous theorem
no longer holds and we illustrate this with a simple variant of the strip framework
in Figure 1 whose matricial symbol function Φ(𝑧) is as given in Section 2. Con-
sider the submatrix function Φ0(𝑧) obtained on removing the first two columns,
corresponding to the “supporting” framework vertices, and removing the row corre-
sponding to the “base” edges. The degeneracies of this matrix function correspond
to the phases of periodic-modulo-phase infinitesimal flexes which do not deflect the
“supporting” vertices. We have

Φ0(𝑧) =

⎡⎢⎢⎣
0 4 0 0
−1 1 1 −1
0 0 1 3
3𝑧 𝑧 −3 −1

⎤⎥⎥⎦ .

The determinant, 16(2−3𝑧), does not vanish on 𝕋 and so the “base-rooted” frame-
work is infinitesimally rigid from the point of view of phase-periodic infinitesimal

1Added October 2011. It appears, from [30] for example, that there is extensive interest in
material bicrystals.
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flexes. Since the determinant certainly does not vanish on a set of positive mea-
sure on 𝕋, there are no square-summable infinitesimal flexes which fix the baseline
vertices of the framework. On the other hand there is an unbounded infinitesimal
flex, corresponding to a two-way infinite geometric series for 𝑧 = 2/3 and this
unbounded flex reflects the concatenated lever structure of the framework.

This analysis also applies to the strip framework in Figure 6. One can readily
check that up to scalar multiplication there is a unique proper (unbounded) in-
finitesimal flex. (Note incidentally, that this flex does not extend to a continuous
flex. Put another way, each finite strip subframework here is continuously flexible
but the complete two-way infinite framework is not. This kind of phenomenon is
referred to as vanishing flexibility in [24] and can occur in more subtle ways.)

Figure 6. An unbounded infinitesimal flex.

There are two natural semi-infinite frameworks 𝒞+, 𝒞− associated with the
strip framework of Figure 6, namely the right strip and the left strip. Each has
a infinite triangulated rigid base framework which supports linked triangles. The
former has a square-summable flex while the latter does not. This fact is evident
by elementary direct analysis and in fact can be viewed as a reflection of the
contrasting nature of analytic and coanalytic Toeplitz operators. We expect such
operator theory to play a useful role in the analysis of more complex examples with
larger unit cells, and in the analysis of surface phonons and surface phenomena in
semi-infinite structures.
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Refined Size Estimates for Furstenberg Sets
via Hausdorff Measures:
A Survey of Some Recent Results

Ezequiel Rela

Abstract. In this survey we collect and discuss some recent results on the
so-called “Furstenberg set problem”, which in its classical form concerns the
estimates of the Hausdorff dimension (dim𝐻) of the sets in the 𝐹𝛼-class: for a
given 𝛼 ∈ (0, 1], a set 𝐸 ⊆ ℝ2 is in the 𝐹𝛼-class if for each 𝑒 ∈ 𝕊 there exists
a unit line segment ℓ𝑒 in the direction of 𝑒 such that dim𝐻(ℓ ∩ 𝐸) ≥ 𝛼. For
𝛼 = 1, this problem is essentially equivalent to the “Kakeya needle problem”.
Define 𝛾(𝛼) = inf {dim𝐻(𝐸) : 𝐸 ∈ 𝐹𝛼}. The best-known results on 𝛾(𝛼) are
the following inequalities:

max {1/2 + 𝛼; 2𝛼} ≤ 𝛾(𝛼) ≤ (1 + 3𝛼)/2.
In this work we approach this problem from a more general point of view,
in terms of a generalized Hausdorff measure ℋℎ associated with the dimen-
sion function ℎ. We define the class 𝐹ℎ of Furstenberg sets associated to a
given dimension function ℎ. The natural requirement for a set 𝐸 to belong
to 𝐹ℎ, is that ℋℎ(ℓ𝑒 ∩ 𝐸) > 0 for each direction. We generalize the known
results in terms of “logarithmic gaps” and obtain analogues to the estimates
given above. Moreover, these analogues allow us to extend our results to the
endpoint 𝛼 = 0. For the upper bounds we exhibit an explicit construction
of 𝐹ℎ-sets which are small enough. To that end we adapt and prove some
results on Diophantine Approximation about the dimension of a set of “well-
approximable numbers”.

We also obtain results about the dimension of Furstenberg sets in the
class 𝐹𝛼𝛽, defined analogously to the class 𝐹𝛼 but only for a fractal set 𝐿 ⊂ 𝕊 of
directions such that dim𝐻(𝐿) ≥ 𝛽. We prove analogous inequalities reflecting
the interplay between 𝛼 and 𝛽. This problem is also studied in the general
scenario of Hausdorff measures.
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Keywords. Furstenberg sets, Hausdorff dimension, dimension function, Kakeya
sets, Jarńık’s theorems.
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1. Introduction

In many situations in geometric measure theory, one wants to determine the size
of a given set or a given class of sets identified by some geometric properties.
Throughout this survey, size will mean Hausdorff dimension, denoted by dim𝐻 .
The main purpose of the present expository work is to exhibit some recent results
on the study of dimension estimates for Furstenberg sets, most of them contained in
[MR10], [MR12] and [MR13]. Some related topics and the history of this problem
are also presented. As far as we know, there is no other work in the literature
collecting the known results about this problem. We begin with the definition of
the Furstenberg classes.

Definition 1.1. For 𝛼 in (0, 1], a subset 𝐸 of ℝ2 is called a Furstenberg set or a
𝐹𝛼-set if for each direction 𝑒 in the unit circle there is a line segment ℓ𝑒 in the
direction of 𝑒 such that the Hausdorff dimension of the set 𝐸 ∩ ℓ𝑒 is equal to or
greater than 𝛼.

We will also say that such set 𝐸 belongs to the class 𝐹𝛼. It is known that
for any 𝐹𝛼-set 𝐸 ⊆ ℝ2 the Hausdorff dimension must satisfy the inequality
dim𝐻(𝐸) ≥ max{2𝛼, 𝛼+ 1

2}. On the other hand, there are examples of 𝐹𝛼-sets 𝐸

with dim𝐻(𝐸) ≤ 1
2 +

3
2𝛼. If we denote the example by

𝛾(𝛼) = inf{dim𝐻(𝐸) : 𝐸 ∈ 𝐹𝛼},
then the Furstenberg problem is to determine 𝛾(𝛼). The best-known bounds on
𝛾(𝛼) so far are

max

{
2𝛼;

1

2
+ 𝛼

}
≤ 𝛾(𝛼) ≤ 1

2
+
3

2
𝛼, 𝛼 ∈ (0, 1]. (1.1)

1.1. History and related problems

The Furstenberg problem appears for the first time in the work of Harry Fursten-
berg in [Fur70], regarding the problem of estimating the size of the intersection of
fractal sets. Main references on this matter are [Wol99b], [Wol99a] and [Wol02].
See also [KT01] for a discretized version of this problem. In this last article, the
authors study some connections between the Furstenberg problem and two other
very famous problems: the Falconer distance problem and the Erdös ring problem.

Originally, in [Fur70] Furstenberg dealt with the problem of transversality of
sets. Briefly, two closed subsets 𝐴,𝐵 ⊂ ℝ are called transverse if

dim𝐻(𝐴 ∩𝐵) ≤ max{dim𝐻 𝐴+ dim𝐻 𝐵 − 1, 0}.
In addition, they will be called strongly transverse if every translate 𝐴 + 𝑡 of 𝐴
is transverse to 𝐵. More generally, the problem of the transversality between the
dilations 𝑢𝐴 of 𝐴 and 𝐵 was considered. In this case the relevant quantity is
dim𝐻(𝑢𝐴 + 𝑡 ∩ 𝐵). This is where the connection pops in, since the dimension of
this intersection can be seen as the dimension of the set (𝐴 × 𝐵) ∩ ℓ𝑢𝑡, where
the line ℓ𝑢𝑡 in ℝ2 is defined by the equation 𝑦 = 𝑢𝑥+ 𝑡. In addition, Furstenberg
proves, with some invariance hypothesis on 𝐴 and 𝐵, the following: if the product
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𝐴 × 𝐵 intersects one (and it suffices with only one) line in some direction on a
set of dimension at least 𝛼, then for almost all directions the set 𝐴×𝐵 intersects
a line in that direction, also in a set of dimension at least 𝛼. Therefore, in that
case the product is an 𝐹𝛼-set. Hence, any non-trivial lower bound on the class 𝐹𝛼

implies a lower bound for the dimension of the product 𝐴 × 𝐵 in this particular
case.

We now make the connection between the Furstenberg problem and the Fal-
coner and Erdös problems more precise. We begin with the formulation of the
Falconer distance problem. For a compact set 𝐾 ⊆ ℝ2, define the distance set
dist(𝐾) by

dist(𝐾) := {∣𝑥− 𝑦∣ : 𝑥, 𝑦 ∈ 𝐾}.
The conjecture here is that dim𝐻(dist(𝐾)) = 1 whenever dim𝐻(𝐾) ≥ 1. In the
direction of proving this conjecture, it was shown by Bourgain in [Bou94] that the
conclusion holds for any 𝐾 of dim𝐻(𝐾) ≥ 13

9 , improved later by Wolff in [Wol99a]

to dim𝐻(𝐾) ≥ 4
3 . On the other hand, Mattila shows in [Mat87] that if we assume

that dim𝐻(𝐾) ≥ 1, then dim𝐻(dist(𝐾)) ≥ 1
2 . One may ask if there is an absolute

constant 𝑐 > 0 such that dim𝐻(dist(𝐾)) ≥ 1
2 + 𝑐0 whenever 𝐾 is compact and

satisfies dim𝐻(𝐾) ≥ 1. The Erdös ring problem, roughly speaking, asks about the
existence of a Borel subring 𝑅 of ℝ such that 0 < dim𝐻(𝑅) < 1.

The connection has been established only for some discretized version of the
above three problems (see [KT01]). Consider the special case of Furstenberg sets
belonging to the 𝐹 1

2
class. Note that for this family the two lower bounds for the

Hausdorff dimension of Furstenberg sets coincide to become 𝛾(12 ) ≥ 1. Essentially,
the existence of the constant 𝑐0 in the Falconer distance problem mentioned above
is equivalent to the existence of another constant 𝑐1 such that any 𝐹 1

2
-set 𝐸 must

have dim𝐻(𝐸) ≥ 1 + 𝑐1. In addition, any of these two conditions would imply the
non-existence of a Borel subring of 𝑅 of Hausdorff dimension exactly 1

2 .
In addition, Wolff states without proof in [Wol99a] that there is a relation

between the Furstenberg problem and the rate of decay of circular means of Fourier
transforms of measures. Later, in [Wol02], appears the proof of the following fact.
Let 𝜇 be a measure and define the 𝑠-dimensional energy 𝐼𝑠(𝜇) as

𝐼𝑠(𝜇) :=

∫
𝑑𝜇(𝑥)𝑑𝜇(𝑦)

∣𝑥− 𝑦∣𝑠 .

Define also 𝜎1(𝑠) to be the supremum of all the numbers 𝜎 such that there exists
a constant 𝐶 with ∫ 𝜋

−𝜋

∣∣�̂�(𝑅𝑒𝑖𝜃)𝑑𝜃
∣∣ ≤ 𝐶𝑅−𝜎

√
𝐼𝑠(𝜇),

for all positive measures with finite 𝑠-energy supported in the unit disc and all
𝑅 ≥ 1. Then the following relation holds:

1− 𝛼− 𝛾(𝛼)− 4𝜎1(𝛾(𝛼)) ≥ 1.
For the particular case of 𝛼 = 1, when we require the set to contain a whole

line segment in each direction, we actually are in the presence of the much more



424 E. Rela

famous Kakeya problem. A Kakeya set (or Besicovitch set) is a compact set 𝐸 ⊆ ℝ𝑛

that contains a unit line segment in every possible direction. The question here
is about the minimal size for the class of Kakeya sets. Besicovitch [Bes19] proved
that for all 𝑛 ≥ 2, there exist Besicovitch sets of Lebesgue measure zero in ℝ𝑛.

Originally, Kakeya [FK17] asks what is the possible minimal area that permits
us to continuously rotate a unit line segment in the plane; in [Bes28] Besicovitch
actually shows that the continuous movement can be achieved using an arbitrarily
small area by the method known as shifting triangles or Perron’s trees.

The next question, which is relevant for our work, is the unsolved “Kakeya
conjecture” which asserts that these sets, although they can be small with respect
to the Lebesgue measure, must have full Hausdorff dimension. The conjecture was
proven by Davies [Dav71] in ℝ2: all Kakeya sets in ℝ2 have dimension 2. In higher
dimensions the Kakeya problem is still open, and one of the best-known bounds
appears in [Wol99b] and states that any Kakeya set 𝐸 ⊆ ℝ𝑛 must satisfy the
bound dim𝐻(𝐸) ≥ 𝑛+2

2 .
These kinds of geometric-combinatorial problems have deep implications in

many different areas of general mathematics. Some of the connections to other
subjects include Bochner–Riesz multipliers, restrictions estimates for the Fourier
transform and also partial differential equations. For example, it has been shown
that a positive answer to the Restriction Conjecture for the sphere 𝕊𝑛−1 would
imply that any Kakeya set in ℝ𝑛 must have full dimension, and therefore solve the
Kakeya conjecture (see for example [Wol99b]).

1.2. Our approach

In this work we study the Furstenberg problem using generalized Hausdorff mea-
sures. This approach is motivated by the well-known fact that knowing the value
of the dimension of a given set does not yet tell us anything about the correspond-
ing measure at this critical dimension. In fact, if ℋ𝑠 is the Hausdorff 𝑠 measure
of an 𝑠-dimensional set 𝐸, ℋ𝑠(𝐸) can be 0, ∞ or finite. The case of a set 𝐸 with
0 < ℋ𝑠(𝐸) < +∞ is of special interest. We refer to it as an 𝑠-set, considering
it as truly 𝑠-dimensional. For, if a set 𝐸 with dim𝐻(𝐸) = 𝑠 has non 𝜎-finite ℋ𝑠-
measure, it is still too big to be correctly measured by ℋ𝑠. Analogously, the case
of null measure reflects that the set is too thin to be measured by ℋ𝑠. To solve
(partially) this problem, the appropriate tools are the “generalized Hausdorff Mea-
sures” introduced by Felix Hausdorff in his seminal paper [Hau18] in 1918. For any
dimension function, i.e., a function belonging to the set

ℍ := {ℎ : [0,∞)→ [0 :∞), non-decreasing, continuous, ℎ(0) = 0},
he defines

ℋℎ
𝛿 (𝐸) = inf

{∑
𝑖

ℎ(diam(𝐸𝑖)) : 𝐸 ⊂
∞∪
𝑖

𝐸𝑖, diam(𝐸𝑖) < 𝛿

}
and

ℋℎ(𝐸) = sup
𝛿>0

ℋℎ
𝛿 (𝐸).
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Note that if ℎ𝛼(𝑥) := 𝑥𝛼, we actually recover the previous measure since ℋℎ𝛼 =
ℋ𝛼. We now have a finer criterion to classify sets by a notion of size. If one only
looks at the power functions, there is a natural total order given by the exponents.
In ℍ we also have a natural notion of order, but we can only obtain a partial order.

Definition 1.2. Let 𝑔, ℎ be two dimension functions. We will say that 𝑔 is dimen-
sionally smaller than ℎ and write 𝑔 ≺ ℎ if and only if

lim
𝑥→0+

ℎ(𝑥)

𝑔(𝑥)
= 0.

We note that the speed of convergence to zero can be seen as a notion of
distance between 𝑔 and ℎ. The important subclass of those ℎ ∈ ℍ that satisfy a
doubling condition will be denoted by ℍ𝑑:

ℍ𝑑 := {ℎ ∈ ℍ : ℎ(2𝑥) ≤ 𝐶ℎ(𝑥) for some 𝐶 > 0} .
We will be interested in the special subclass of dimension functions that allow us
to classify zero-dimensional sets.

Definition 1.3. A function ℎ ∈ ℍ will be called a “zero-dimensional dimension
function” if ℎ ≺ 𝑥𝛼 for any 𝛼 > 0. We denote by ℍ0 the subclass of those functions.
As a model to keep in mind, consider the family ℎ𝜃(𝑥) =

1
log𝜃( 1

𝑥 )
.

Now, given an 𝛼-dimensional set 𝐸 that is not an 𝛼-set, one could expect to
find in the class ℍ an appropriate function ℎ to detect the precise “size” of it. By
that we mean that 0 < ℋℎ(𝐸) <∞, and in this case 𝐸 is referred to as an ℎ-set.
In order to illustrate the main difficulties, we start with a simple observation. The
Hausdorff dimension of a set 𝐸 ⊆ ℝ𝑛 is the unique real number 𝑠 characterized by
the following properties:

∙ ℋ𝑟(𝐸) = +∞ for all 𝑟 < 𝑠.
∙ ℋ𝑡(𝐸) = 0 for all 𝑠 < 𝑡.

Therefore, to prove that some set has dimension 𝑠, it suffices to prove the preceding
two properties, and this is independent of the possible values of ℋ𝑠(𝐸). It is always
true, no matter if ℋ𝑠(𝐸) is zero, finite and positive, or infinite.

The above observation could lead to the conjecture that in the wider scenario
of dimension functions the same kind of reasoning can be made. In fact, Eggleston
claims in [Egg52] that for any 𝐴 ⊆ ℝ𝑛, one of the following three possibilities
holds.

1. For all ℎ ∈ ℍ, ℋℎ(𝐴) = 0.
2. There is a function ℎ0 ∈ ℍ, such that if ℎ ≻ ℎ0 then ℋℎ(𝐴) = 0, whilst if

ℎ ≺ ℎ0, then ℋℎ(𝐴) = +∞.
3. For all ℎ ∈ ℍ, ℋℎ(𝐴) = +∞.

Note that the most interesting situation is the one on item 2, since it is saying
that the correct notion of size for the set 𝐴 is represented by the function ℎ0.
Clearly, this is the case when we are dealing with an ℎ-set. However, this claim is
false, in the sense that there are situations where none of the above three cases
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applies. The problems arise from two results due to Besicovitch (see [Bes56a] and
[Bes56b], also [Rog70] and references therein). The first says that if a set 𝐸 has
null ℋℎ-measure for some ℎ ∈ ℍ, then there exists a function 𝑔 ≺ ℎ such that
ℋ𝑔(𝐸) = 0. Symmetrically, the second says that if a compact set 𝐸 has non-
𝜎-finite ℋℎ measure, then there exists a function 𝑔 ≻ ℎ such that 𝐸 has also
non-𝜎-finite ℋ𝑔 measure. These results imply that if a compact set 𝐸 satisfies the
existence of a function ℎ0 such that ℋℎ(𝐸) > 0 for any ℎ ≺ ℎ0 and ℋℎ(𝐸) = 0
for any ℎ ≻ ℎ0, then it must be the case that 0 < ℋℎ0(𝐸) and 𝐸 has 𝜎-finite
ℋℎ-measure.

Consider now the set 𝕃 of Liouville numbers. It is known that this set is
dimensionless, which means that it is not an ℎ-set for any ℎ ∈ ℍ. In that direction,
further improvements are due to Elekes and Keleti [EK06]. There the authors prove
much more than that there is no exact Hausdorff-dimension function for the set 𝕃
of Liouville numbers: they prove that for any translation invariant Borel measure
𝕃 is either of measure zero or has non-sigma-finite measure. In addition, it is shown
in [OR06] that there are two proper nonempty subsets 𝕃0,𝕃∞ ⊆ ℍ of dimension
functions such that ℋℎ(𝕃) = 0 for all ℎ ∈ 𝕃0 and ℋℎ(𝕃) = ∞ for all ℎ ∈ 𝕃∞. It
follows that the Liouville numbers 𝕃 must satisfy condition 2 in the classification
of Eggleston. But suppose that ℎ0 is the claimed dimension function in that case.
The discussion in the above paragraph implies that the set 𝕃 is an ℎ0-set, which
is a contradiction.

Since in the present work we are interested in estimates for the size of general
Furstenberg sets, we have to consider dimension functions that are a true step
down or step up from the critical one. The natural generalization of the class of
Furstenberg sets to the wider scenario of dimension functions is the following.

Definition 1.4. Let 𝔥 be a dimension function. A set 𝐸 ⊆ ℝ2 is a Furstenberg set
of type 𝔥, or an 𝐹𝔥-set, if for each direction 𝑒 ∈ 𝕊 there is a line segment ℓ𝑒 in the
direction of 𝑒 such that ℋ𝔥(ℓ𝑒 ∩ 𝐸) > 0.

Note that this hypothesis is stronger than the one used to define the original
Furstenberg 𝐹𝛼-sets. However, the hypothesis dim𝐻(𝐸 ∩ ℓ𝑒) ≥ 𝛼 is equivalent to
ℋ𝛽(𝐸 ∩ ℓ𝑒) > 0 for any 𝛽 smaller than 𝛼. If we use the wider class of dimension
functions introduced above, the natural way to define 𝐹𝔥-sets would be to replace
the parameters 𝛽 < 𝛼 with two dimension functions satisfying the relation ℎ ≺ 𝔥.
But requiring 𝐸∩ ℓ𝑒 to have positive ℋℎ measure for any ℎ ≺ 𝔥 implies that it has
also positive ℋ𝔥 measure. It will be useful to introduce also the following subclass
of 𝐹𝛼:

Definition 1.5. A set 𝐸 ⊆ ℝ2 is an 𝐹+
𝛼 -set if for each 𝑒 ∈ 𝕊 there is a line segment

ℓ𝑒 such that ℋ𝛼(ℓ𝑒 ∩ 𝐸) > 0.

From the preceding discussion, it follows that there is an unavoidable need
to study a notion of “gap” between dimension functions. We will show that if 𝐸
is a set in the class 𝐹𝔥, and ℎ is a dimension function that is much smaller than
𝔥2 or

√⋅ 𝔥, then ℋℎ(𝐸) = ∞ (Theorem 3.6 and Theorem 3.12 respectively). We
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further exhibit a very small Furstenberg set 𝐹 in 𝐹𝔥, for some particular choices

of 𝔥 and show that for this set, if
√⋅ 𝔥3/2 is much smaller than ℎ, then ℋℎ(𝐹 ) = 0

(Theorem 5.6). This generalizes the result of the classical setting given in (1.1).
The 𝔥→ 𝔥2 bound strongly depends on the known estimates for the Kakeya

maximal operator: for an integrable function 𝑓 on ℝ𝑛, the Kakeya maximal oper-
ator at scale 𝛿 applied to 𝑓 , 𝒦𝛿(𝑓) : 𝕊𝑛−1 → ℝ, is

𝒦𝛿(𝑓)(𝑒) = sup
𝑥∈ℝ𝑛

1

∣𝑇 𝛿
𝑒 (𝑥)∣

∫
𝑇 𝛿

𝑒 (𝑥)

∣𝑓(𝑥)∣ 𝑑𝑥 𝑒 ∈ 𝕊𝑛−1,

where 𝑇 𝛿
𝑒 (𝑥) is a 1× 𝛿-tube (by this we mean a tube of length 1 and cross section

of radius 𝛿) centred at 𝑥 in the direction of 𝑒 ∈ 𝕊𝑛−1 ⊂ ℝ𝑛. It is well known that
in ℝ2 the Kakeya maximal function satisfies the bound (see [Wol99b])∥∥𝒦𝛿(𝑓)

∥∥2
2
≤ 𝐶 log(

1

𝛿
)∥𝑓∥22. (1.2)

Our proof of Theorem 3.6 relies on an optimal use of these estimates for the
Kakeya maximal function, exploiting the logarithmic factor in the above bound,
which is necessary (see [Kei99]), because of the existence of Kakeya sets of zero
measure. The other lower bound, which is the relevant bound near the zero-
dimensional case, depends on some combinatorial arguments that we extended
to this general setting. In addition, our techniques allow us to extend the bounds
in (1.1) to “zero-dimensional” classes. At the endpoint 𝛼 = 0 we can show that
for 𝔥 ∈ ℍ0 defined by 𝔥(𝑥) = 1

log( 1
𝑥 )
, any 𝐹𝔥-set 𝐸 must satisfy dim𝐻(𝐸) ≥ 1

2 .

For the upper bounds the aim is to explicitly exhibit constructions of reason-
ably small Furstenberg sets. To achieve these optimal constructions, we needed a
suited version of Jarńık’s theorems on Diophantine Approximation. We exhibit an
𝐹𝔥-set whose dimension function can not be much larger (in terms of logarithmic

gaps) than
√⋅ 𝔥3/2 for the classical case of 𝔥(𝑥) = 𝑥𝛼. We also show in Section 5

a particular set 𝐸 ∈ 𝐹𝔥 for 𝔥(𝑥) =
1

log( 1
𝑥 )
satisfying dim𝐻(𝐸) ≤ 1

2 .

We also consider another related problem, both in the classical and general-
ized setting. We analyze the role of the dimension of the set of directions in the
Furstenberg problem. We consider the class of 𝐹𝛼𝛽 sets, defined in the same way
as the 𝐹𝛼 class but with the directions taken in a subset 𝐿 of the unit circle such
that dim𝐻(𝐿) ≥ 𝛽. We are able to prove that if 𝐸 is any 𝐹𝛼𝛽 -set, then

dim𝐻(𝐸) ≥ max
{
2𝛼+ 𝛽 − 1; 𝛽

2
+ 𝛼

}
, 𝛼, 𝛽 > 0. (1.3)

For the proof of one of the lower bounds we needed estimates for the Kakeya
maximal function but for more general measures. The other lower bound uses the
𝛿-entropy of the set 𝐿 of directions, which is the maximal possible cardinality of a
𝛿-separated subset. Our results are proved in the context of the general Hausdorff
measures and we obtain (1.3) as a corollary. The only previously known bounds
in this setting are for the particular case of 𝛼 = 1, 𝛽 ∈ (0, 1] (see [Mit02]). The
author there obtains that if 𝐸 is an 𝐴-Kakeya set (that is, a planar set with a unit
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line segment in any direction 𝑒 ∈ 𝐴 for a set 𝐴 ⊆ 𝕊), the dim𝐻(𝐸) ≥ 1+dim𝐻(𝐴)
(this is only one of the lower bounds).

This paper is organized as follows: In Section 2 we provide some extra exam-
ples and remarks about Hasudorff measures and dimension functions. In Section 3
we study the problem of finding lower bounds for the size of generalized Fursten-
berg sets. In Section 4 we study the same problem for a more general class of
Furstenberg sets associated to a fractal set of directions. Finally, in Section 5 we
study the upper bounds.

As usual, we will use the notation 𝐴 ≲ 𝐵 to indicate that there is a constant
𝐶 > 0 such that 𝐴 ≤ 𝐶𝐵, where the constant is independent of 𝐴 and 𝐵. By
𝐴 ∼ 𝐵 we mean that both 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴 hold.

2. Preliminaries on Hausdorff measures and dimension functions

In this section we introduce some preliminaries on dimension functions and Haus-
dorff measures. Moreover, we discuss some additional features of the problem of
finding appropriate notions of size for fractal sets. Extra examples are also in-
cluded.

2.1. Dimension Partition

For a given set 𝐸 ⊆ ℝ𝑛, we introduce the notion of dimension partition (see
[CHM10]).

Definition 2.1. By the Dimension Partition of a set 𝐸 we mean a partition of ℍ
into (three) sets: 𝒫(𝐸) = 𝐸0 ∪𝐸1 ∪ 𝐸∞ with

∙ 𝐸0 = {ℎ ∈ ℍ : ℋℎ(𝐸) = 0},
∙ 𝐸1 = {ℎ ∈ ℍ : 0 < ℋℎ(𝐸) <∞},
∙ 𝐸∞ = {ℎ ∈ ℍ : ℋℎ(𝐸) has non-𝜎-finite ℋℎ-measure}.
It is very well known that 𝐸1 could be empty, reflecting the dimensionless

nature of 𝐸. A classical example of this phenomenon is the set 𝕃 of Liouville
numbers. On the other hand, 𝐸1 is never empty for an ℎ-set, but it is not easy
to determine this partition in the general case. We also remark that it is possible
to find non-comparable dimension functions 𝑔, ℎ and a set 𝐸 with the property of
being a 𝑔-set and an ℎ-set simultaneously. Consider the following example:

Example 2.2. There exists a set 𝐸 and two dimension functions 𝑔, ℎ ∈ ℍ which
are not comparable and such that 𝐸 is a 𝑔-set and also an ℎ-set.

Proof. We will use the results of [CMMS04]. The set 𝐸 will be the Cantor set 𝐶𝑎

associated to a non-negative decreasing sequence 𝑎 = {𝑎𝑖} such that
∑

𝑎𝑖 = 1. We
start by removing an interval of length 𝑎1. Then we remove an interval of length
𝑎2 from the left and of length 𝑎3 at the right. Following this scheme, we end up
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with a perfect set of zero measure. If we define 𝑏𝑛 =
1
𝑛

∑
𝑖≥𝑛 𝑎𝑖, then the main

result of the cited work is that

lim
𝑛→∞

𝑛ℎ(𝑏𝑛) ∼ ℋℎ(𝐶𝑎), (2.1)

for all ℎ ∈ ℍ. The authors prove that it is possible to construct a spline-type
dimension function ℎ = ℎ𝑎 that makes 𝐶𝑎 an ℎ-set. Further, the function ℎ satisfies
that ℎ(𝑏𝑛) =

1
𝑛 . Now we want to define 𝑔. Consider the sequence 𝑥𝑛 = 𝑏𝑛! and

take 𝑔 satisfying the following properties:

1. 𝑔(𝑥) ≥ ℎ(𝑥) for all 𝑥 > 0.
2. 𝑔(𝑥𝑛) = ℎ(𝑥𝑛) for all 𝑛 ∈ ℕ.
3. 𝑔 is a polygonal spline (same as ℎ), but it is constant in each interval
[𝑏𝑛!−1, 𝑏(𝑛−1)!] and drops abruptly on [𝑏𝑛!, 𝑏𝑛!−1] (we are building up 𝑔 from
the right approaching the origin). More precisely, for each 𝑛 ∈ ℕ,

𝑔(𝑥) =

{ 1
(𝑛−1)! if 𝑥 ∈ [𝑏𝑛!−1, 𝑏(𝑛−1)!]
1
𝑛! if 𝑥 = 𝑏𝑛!

and it is linear on [𝑏𝑛!, 𝑏𝑛!−1].

Conditions 1 and 2 imply that lim𝑥→0
ℎ(𝑥)
𝑔(𝑥) = 1 <∞. Note that we also have that

lim𝑥→0
ℎ(𝑥)
𝑔(𝑥) = 0, since

ℎ(𝑏𝑛!−1)
𝑔(𝑏𝑛!−1)

=
(𝑛− 1)!
𝑛!− 1 ∼ 1

𝑛
→ 0.

It follows that ℎ and 𝑔 are not comparable. To see that 𝐶𝑎 is also a 𝑔-set, we use
again the characterization (2.1). Since

lim
𝑛→∞

𝑛𝑔(𝑏𝑛) ≤ lim
𝑛→∞

𝑛!𝑔(𝑏𝑛!) = lim
𝑛→∞

𝑛!ℎ(𝑏𝑛!) <∞,

we obtain thatℋ𝑔(𝐶𝑎) <∞. In addition, 𝑔(𝑥) ≥ ℎ(𝑥) for all 𝑥, hence 𝑔(𝑏𝑛) ≥ ℎ(𝑏𝑛)
for all 𝑛 ∈ ℕ and it follows that

lim
𝑛→∞

𝑛𝑔(𝑏𝑛) ≥ lim
𝑛→∞

𝑛ℎ(𝑏𝑛) > 0

and therefore ℋ𝑔(𝐶𝑎) > 0. □

We refer the reader to [GMS07] for a detailed study of the problem of equiv-
alence between dimension functions and Cantor sets associated to sequences. The
authors also study Packing measures and premeasures of those sets. For the con-
struction of ℎ-sets associated to certain sequences see the work of Cabrelli et al.
[CMMS04].

It follows from Example 2.2 that even for ℎ-sets the dimension partition, and
in particular 𝐸1, is not completely determined. Note that the results of Rogers
cited above imply that, for compact sets, 𝐸0 and 𝐸∞ can be thought of as open
components of the partition, and 𝐸1 as the “border” of these open components. An
interesting problem is then to determine some criteria to classify the functions in
ℍ into those classes. To detect where this “border” is, we will introduce the notion
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of chains in ℍ. This notion allows us to refine the notion of Hausdorff dimension
by using an ordered family of dimension functions. More precisely, we have the
following definition.

Definition 2.3. A family 𝒞 ⊂ ℍ of dimension functions will be called a chain if it
is of the form

𝒞 = {ℎ𝑡 ∈ ℍ : 𝑡 ∈ ℝ, ℎ𝑠 ≺ ℎ𝑡 ⇐⇒ 𝑠 < 𝑡} .
That is, a totally ordered one-parameter family of dimension functions.

Suppose that ℎ ∈ ℍ belongs to some chain 𝒞 and satisfies that, for any 𝑔 ∈ 𝒞,
ℋ𝑔(𝐸) > 0 if 𝑔 ≺ ℎ and ℋ𝑔(𝐸) = 0 if 𝑔 ≻ ℎ. Then, even if ℎ /∈ 𝐸1, in this chain, ℎ
does measure the size of 𝐸. It can be thought of as being “near the frontier” of both
𝐸0 and 𝐸∞. For example, if a set 𝐸 has Hausdorff dimension 𝛼 but ℋ𝛼(𝐸) = 0
or ℋ𝛼(𝐸) = ∞, take ℎ(𝑥) = 𝑥𝛼 and 𝒞𝐻 = {𝑥𝑡 : 𝑡 ≥ 0}. In this chain, 𝑥𝛼 is the
function that best measures the size of 𝐸.

We look for finer estimates, considering chains of dimension functions that
yield “the same Hausdorff dimension”. Further, for zero-dimensional sets, this
approach allows us to classify them by some notion of dimensionality.

2.2. The exact dimension function for a class of sets

In the previous section we dealt with the problem of detecting an appropriate di-
mension function for a given set or, more generally, the problem of determining the
dimension partition of that set. Now we introduce another related problem, which
concerns the analogous problem but for a whole class of sets defined, in general,
by geometric properties. We mention one example: As we mentioned before, all
Kakeya sets in ℝ2 have full dimension, but even in that case, there are several
distinct types of two-dimensional sets (for instance, with positive or null Lebesgue
measure). Hence, one would like to associate a dimension function to the whole
class. A dimension function ℎ ∈ ℍ will be called the exact Hausdorff dimension
function of the class of sets 𝒜 if

∙ For every set 𝐸 in the class 𝒜, ℋℎ(𝐸) > 0.
∙ There are sets 𝐸 ∈ 𝒜 with ℋℎ(𝐸) <∞.
In the direction of finding the exact dimension of the class of Kakeya sets in

ℝ2, Keich has proven in [Kei99] that the exact dimension function ℎ must decrease
to zero at the origin faster than 𝑥2 log( 1𝑥 ) log log(

1
𝑥 )
2+𝜀 for any given 𝜀 > 0, but

slower than 𝑥2 log( 1𝑥). This notion of speed of convergence tells us precisely that
ℎ is between those two dimension functions (see Definition 1.2). More precisely,
the author explicitly constructs a small Kakeya set, which is small enough to have
finite 𝑔 measure for 𝑔(𝑥) = 𝑥2 log( 1𝑥 ). Therefore, for ℎ to be an exact dimension
function for the class of Kakeya sets, it cannot be dimensionally greater than 𝑔.
But this last condition is not sufficient to ensure that any Kakeya set has positive
ℎ-measure. The partial result from [Kei99] is that for any 𝜀 > 0 and any Kakeya
set 𝐸, we have that ℋℎ𝜀(𝐸) > 0, where ℎ𝜀 = 𝑥2 log( 1𝑥) log log(

1
𝑥 )
2+𝜀.



Furstenberg Sets and Hausdorff Measures 431

3. Lower bounds for Furstenberg sets

In this section we deal with the problem of finding sharp lower bounds for the
generalized dimension of Furstenberg type sets. Let us begin with some remarks
about this problem and the techniques involved.

3.1. Techniques

We start with a uniformization procedure. Given an 𝐹𝔥-set 𝐸 for some 𝔥 ∈ ℍ, it
is always possible to find two constants 𝑚𝐸 , 𝛿𝐸 > 0 and a set Ω𝐸 ⊆ 𝕊 of positive
𝜎-measure such that

ℋ𝔥
𝛿 (ℓ𝑒 ∩ 𝐸) > 𝑚𝐸 > 0 ∀𝛿 < 𝛿𝐸 , ∀𝑒 ∈ Ω𝐸 .

For each 𝑒 ∈ 𝕊, there is a positive constant 𝑚𝑒 such that ℋ𝔥(ℓ𝑒 ∩ 𝐸) > 𝑚𝑒. Now
consider the following pigeonholing argument. Let Λ𝑛 = {𝑒 ∈ 𝕊 : 1

𝑛+1 ≤ 𝑚𝑒 < 1
𝑛}.

At least one of the sets must have positive measure, since 𝕊 = ∪𝑛Λ𝑛. Let Λ𝑛0 be
such set and take 0 < 2𝑚𝐸 < 1

𝑛0+1
. Hence ℋ𝔥(ℓ𝑒 ∩𝐸) > 2𝑚𝐸 > 0 for all 𝑒 ∈ Λ𝑛0 .

Finally, again by pigeonholing, we can find Ω𝐸 ⊆ Λ𝑛0 of positive measure and
𝛿𝐸 > 0 such that

ℋ𝔥
𝛿 (ℓ𝑒 ∩ 𝐸) > 𝑚𝐸 > 0 ∀𝑒 ∈ Ω𝐸 ∀𝛿 < 𝛿𝐸 . (3.1)

To simplify notation throughout the remainder of the chapter, since inequal-
ity (3.1) holds for any Furstenberg set and we will only use the fact that 𝑚𝐸 , 𝛿𝐸
and 𝜎(Ω𝐸) are positive, it will be enough to consider the following definition of
𝐹𝔥-sets:

Definition 3.1. Let 𝔥 be a dimension function. A set 𝐸 ⊆ ℝ2 is a Furstenberg set
of type 𝔥, or an 𝐹𝔥-set, if for each 𝑒 ∈ 𝕊 there is a line segment ℓ𝑒 in the direction
of 𝑒 such that ℋ𝔥

𝛿 (ℓ𝑒 ∩ 𝐸) > 1 for all 𝛿 < 𝛿𝐸 for some 𝛿𝐸 > 0.

The following technique is a standard procedure in this area. The lower
bounds for the Hausdorff dimension of a given set 𝐸, both in the classical and
general setting, are achieved by bounding uniformly from below the size of the
coverings of 𝐸. More precisely, the ℎ-size of a covering ℬ = {𝐵𝑗} is

∑
𝑗 ℎ(𝑟𝑗). Our

aim will be then to prove essentially that
∑

𝑗 ℎ(𝑟𝑗) ≳ 1, provided that ℎ is a small
enough dimension function. We introduce the following notation:

Definition 3.2. Let 𝔟 = {𝑏𝑘}𝑘∈ℕ be a decreasing sequence with lim 𝑏𝑘 = 0. For any
family of balls ℬ = {𝐵𝑗} with 𝐵𝑗 = 𝐵(𝑥𝑗 ; 𝑟𝑗), 𝑟𝑗 ≤ 1, and for any set 𝐸, we define

𝐽𝔟
𝑘 := {𝑗 ∈ ℕ : 𝑏𝑘 < 𝑟𝑗 ≤ 𝑏𝑘−1}, (3.2)

and
𝐸𝑘 := 𝐸 ∩

∪
𝑗∈𝐽𝔟

𝑘

𝐵𝑗 .

In the particular case of the dyadic scale 𝔟 = {2−𝑘}, we will omit the superscript
and denote

𝐽𝑘 := {𝑗 ∈ ℕ : 2−𝑘 < 𝑟𝑗 ≤ 2−𝑘+1}.
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The idea will be to use the dyadic partition of the covering to obtain that∑
𝑗≥0 ℎ(𝑟𝑗) ≳

∑
𝑘≥0 ℎ(2

−𝑘)#𝐽𝑘. The lower bounds we need will be obtained if
we can prove lower bounds on the quantity 𝐽𝑘 in terms of the function ℎ but
independent of the covering. The next lemma introduces a technique we borrow
from [Wol99b] to decompose the set of all directions.

Lemma 3.3. Let 𝐸 be an 𝐹𝔥-set for some 𝔥 ∈ ℍ and 𝔞 = {𝑎𝑘}𝑘∈ℕ ∈ ℓ1 a non-
negative sequence. Let ℬ = {𝐵𝑗} be a 𝛿-covering of 𝐸 with 𝛿 < 𝛿𝐸 and let 𝐸𝑘 and
𝐽𝑘 be as above. Define

Ω𝑘 :=

{
𝑒 ∈ 𝕊 : ℋ𝔥

𝛿 (ℓ𝑒 ∩ 𝐸𝑘) ≥ 𝑎𝑘

2∥𝔞∥1

}
.

Then 𝕊 = ∪𝑘Ω𝑘.

Proof. It follows directly from the summability of 𝔞. □

We will need in the next section the main result of [Mit02], which is the
following proposition.

Proposition 3.4. Let 𝜇 be a Borel probability measure on 𝕊 such that 𝜇(𝐵(𝑥, 𝑟)) ≲
𝜑(𝑟) for some non-negative function 𝜑 for all 𝑟 ≪ 1. Define the Kakeya maximal
operator 𝒦𝛿 as usual:

𝒦𝛿(𝑓)(𝑒) = sup
𝑥∈ℝ𝑛

1

∣𝑇 𝛿
𝑒 (𝑥)∣

∫
𝑇 𝛿

𝑒 (𝑥)

∣𝑓(𝑥)∣ 𝑑𝑥, 𝑒 ∈ 𝕊𝑛−1.

Then we have the estimate

∥𝒦𝛿∥2𝐿2(ℝ2)→𝐿2(𝕊,𝑑𝜇) ≲ 𝐶(𝛿) =

∫ 1

𝛿

𝜑(𝑢)

𝑢2
𝑑𝑢. (3.3)

Remark 3.5. It should be noted that if we choose 𝜑(𝑥) = 𝑥𝑠, then we obtain as a
corollary that

∥𝒦𝛿∥2𝐿2(ℝ2)→𝐿2(𝕊,𝑑𝜇) ≲ 𝛿𝑠−1.

In the special case of 𝑠 = 1, the bound has the known logarithmic growth:

∥𝒦𝛿∥2𝐿2(ℝ2)→𝐿2(𝕊,𝑑𝜇) ∼ log(
1

𝛿
).

3.2. The 𝖍 → 𝖍2 bound

In this section we generalize the first inequality of (1.1), that is, dim𝐻(𝐸) ≥ 2𝛼 for
any 𝐹𝛼-set. For this, given a dimension function ℎ ≺ 𝔥2, we impose some sufficient

growth conditions on the gap 𝔥2

ℎ to ensure that ℋℎ(𝐸) > 0. We have the following
theorem:

Theorem 3.6. Let 𝔥 ∈ ℍ𝑑 be a dimension function and let 𝐸 be an 𝐹𝔥-set. Let

ℎ ∈ ℍ such that ℎ ≺ 𝔥2. If
∑
𝑘≥0

√
𝑘 𝔥2

ℎ (2
−𝑘) <∞, then ℋℎ(𝐸) > 0.
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Proof. By Definition 3.1, since 𝐸 ∈ 𝐹𝔥, we haveℋ𝔥
𝛿 (ℓ𝑒∩𝐸) > 1 for all 𝑒 ∈ 𝕊 and for

any 𝛿 < 𝛿𝐸 . Let {𝐵𝑗}𝑗∈ℕ be a covering of 𝐸 by balls with 𝐵𝑗 = 𝐵(𝑥𝑗 ; 𝑟𝑗). We need
to bound

∑
𝑗 ℎ(2𝑟𝑗) from below. Since ℎ is non-decreasing, it suffices to obtain

the bound
∑

𝑗 ℎ(𝑟𝑗) ≳ 1 for any ℎ ∈ ℍ satisfying the hypothesis of the theorem.

Clearly we can restrict ourselves to 𝛿-coverings with 𝛿 < 𝛿𝐸
5 . Define 𝔞 = {𝑎𝑘} with

𝑎𝑘 =
√

𝑘 𝔥2

ℎ (2
−𝑘). By hypothesis, 𝔞 ∈ ℓ1. Also define, as in the previous section,

for each 𝑘 ∈ ℕ, 𝐽𝑘 = {𝑗 ∈ ℕ : 2−𝑘 < 𝑟𝑗 ≤ 2−𝑘+1} and 𝐸𝑘 = 𝐸 ∩ ∪𝑗∈𝐽𝑘
𝐵𝑗 . Since

𝔞 ∈ ℓ1, we can apply Lemma 3.3 to obtain the decomposition 𝕊 =
∪

𝑘 Ω𝑘 associated
to this choice of 𝔞.

We will apply the maximal function inequality to a weighted union of indi-

cator functions. For each 𝑘, let 𝐹𝑘 =
∪

𝑗∈𝐽𝑘

𝐵𝑗 and define the function

𝑓 := 𝔥(2−𝑘)2𝑘𝜒𝐹𝑘
.

We will use the 𝐿2 norm estimates for the maximal function. The 𝐿2 norm
of 𝑓 can be easily estimated as follows:

∥𝑓∥22 = 𝔥2(2−𝑘)22𝑘
∫
∪𝐽𝑘

𝐵𝑗

𝑑𝑥 ≲ 𝔥2(2−𝑘)22𝑘
∑
𝑗∈𝐽𝑘

𝑟2𝑗 ≲ 𝔥2(2−𝑘)#𝐽𝑘,

since 𝑟𝑗 ≤ 2−𝑘+1 for 𝑗 ∈ 𝐽𝑘. Hence,

∥𝑓∥22 ≲ #𝐽𝑘𝔥
2(2−𝑘). (3.4)

Now fix 𝑘 and consider the Kakeya maximal function 𝒦𝛿(𝑓) of level 𝛿 = 2−𝑘+1

associated to the function 𝑓 defined for this value of 𝑘.

In Ω𝑘 we have the following pointwise lower estimate for the maximal func-

tion. Let ℓ𝑒 be the line segment such that ℋ𝔥
𝛿 (ℓ𝑒 ∩ 𝐸) > 1, and let 𝑇𝑒 be the

rectangle of width 2−𝑘+2 around this segment. Define, for each 𝑒 ∈ Ω𝑘,

𝐽𝑘(𝑒) := {𝑗 ∈ 𝐽𝑘 : ℓ𝑒 ∩ 𝐸 ∩𝐵𝑗 ∕= ∅}.

With the aid of the Vitali covering lemma, we can select a subset of disjoint

balls 𝐽𝑘(𝑒) ⊆ 𝐽𝑘(𝑒) such that∪
𝑗∈𝐽𝑘(𝑒)

𝐵𝑗 ⊆
∪

𝑗∈ ˜𝐽𝑘(𝑒)

𝐵(𝑥𝑗 ; 5𝑟𝑗).

Note that every ball 𝐵𝑗 , 𝑗 ∈ 𝐽𝑘(𝑒), intersects ℓ𝑒 and therefore at least half of
𝐵𝑗 is contained in the rectangle 𝑇𝑒, yielding ∣𝑇𝑒∩𝐵𝑗 ∣ ≥ 1

2𝜋𝑟
2
𝑗 . Hence, by definition
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of the maximal function, using that 𝑟𝑗 ≥ 2−𝑘+1 for 𝑗 ∈ 𝐽𝑘(𝑒),

∣𝒦2−𝑘+1(𝑓)(𝑒)∣ ≥ 1

∣𝑇𝑒∣
∫
𝑇𝑒

𝑓 𝑑𝑥 =
𝔥(2−𝑘)2𝑘

∣𝑇𝑒∣
∣∣𝑇𝑒 ∩ ∪𝐽𝑘(𝑒)𝐵𝑗

∣∣
≳ 𝔥(2−𝑘)22𝑘

∣∣∣𝑇𝑒 ∩ ∪ ˜𝐽𝑘(𝑒)
𝐵𝑗

∣∣∣
≳ 𝔥(2−𝑘)22𝑘

∑
𝑗∈ ˜𝐽𝑘(𝑒)

𝑟2𝑗

≳ 𝔥(2−𝑘)#𝐽𝑘(𝑒)

≳
∑
˜𝐽𝑘(𝑒)

𝔥(𝑟𝑗).

Now, since

ℓ𝑒 ∩ 𝐸𝑘 ⊆
∪

𝑗∈𝐽𝑘(𝑒)

𝐵𝑗 ⊆
∪

𝑗∈ ˜𝐽𝑘(𝑒)

𝐵(𝑥𝑗 ; 5𝑟𝑗)

and for 𝑒 ∈ Ω𝑘 we have ℋ𝔥
𝛿 (ℓ𝑒 ∩ 𝐸𝑘) ≳ 𝑎𝑘, we obtain

∣𝒦2−𝑘+1(𝑓)(𝑒)∣ ≳
∑
˜𝐽𝑘(𝑒)

𝔥(𝑟𝑗) ≳
∑

𝑗∈ ˜𝐽𝑘(𝑒)

𝔥(5𝑟𝑗) ≳ 𝑎𝑘.

Therefore we have the estimate

∥𝒦2−𝑘+1(𝑓)∥22 ≳
∫
Ω𝑘

∣𝑓∗2−𝑘+1(𝑒)∣2 𝑑𝜎 ≳ 𝑎2𝑘 𝜎(Ω𝑘) = 𝜎(Ω𝑘)𝑘
𝔥2

ℎ
(2−𝑘). (3.5)

Combining (3.4), (3.5) and using the maximal inequality (1.2), we obtain

𝜎(Ω𝑘)𝑘
𝔥2

ℎ
(2−𝑘) ≲ ∥𝑓∗2−𝑘+1∥22 ≲ log(2𝑘)∥𝑓∥22 ≲ 𝑘#𝐽𝑘𝔥

2(2−𝑘).

Now let ℎ be a dimension function satisfying the hypothesis of Theorem 3.6. We
have ∑

𝑗≥0
ℎ(𝑟𝑗) ≥

∑
𝑘≥0

ℎ(2−𝑘)#𝐽𝑘 ≳
∑
𝑘≥0

𝜎(Ω𝑘) ≥ 𝜎(𝕊) > 0. □

Applying this theorem to the class 𝐹+
𝛼 , we obtain a sharper lower bound on

the generalized Hausdorff dimension:

Corollary 3.7. Let 𝐸 an 𝐹+
𝛼 -set. If ℎ is any dimension function satisfying the

relation ℎ(𝑥) ≥ 𝐶𝑥2𝛼 log1+𝜃( 1𝑥 ) for 𝜃 > 2 then ℋℎ(𝐸) > 0.

Remark 3.8. At the endpoint 𝛼 = 1, this estimate is worse than the one due
to Keich. He obtained, using strongly the full dimension of a ball in ℝ2, that
if 𝐸 is an 𝐹+

1 -set and ℎ is a dimension function satisfying the bound ℎ(𝑥) ≥
𝐶𝑥2 log( 1𝑥 )

(
log log( 1𝑥)

)𝜃
for 𝜃 > 2, then ℋℎ(𝐸) > 0.
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Remark 3.9. Note that the proof above relies essentially on the 𝐿1 and 𝐿2 size of
the ball in ℝ2, not on the dimension function 𝔥. Moreover, we only use the “gap”

between ℎ and 𝔥2 (measured by the function 𝔥2

ℎ ). This last observation leads to

conjecture that this proof can not be used to prove that an 𝐹𝔥-set has positive 𝔥
2

measure, since in the case of 𝔥(𝑥) = 𝑥, as we remarked in the introduction, this
would contradict the existence of Kakeya sets of zero measure in ℝ2.

Also note that the absence of conditions on the function 𝔥 allows us to con-
sider the “zero-dimension” Furstenberg problem. However, this bound does not
provide any substantial improvement, since the zero-dimensionality property of
the function 𝔥 is shared by the function 𝔥2. This is because the proof above, in the
case of the 𝐹𝛼-sets, gives the worse bound (dim𝐻(𝐸) ≥ 2𝛼) when the parameter
𝛼 is in (0, 12 ).

3.3. The 𝖍 → 𝖍
√⋅ bound, positive dimension

Now we will turn our attention to those functions ℎ that satisfy the bound ℎ(𝑥) ≲
𝑥𝛼 for 𝛼 ≤ 1

2 . For these functions we are able to improve on the previously obtained
bounds. We need to impose some growth conditions on the dimension function 𝔥.
These conditions can be thought of as imposing a lower bound on the dimension-
ality of 𝔥 to keep it away from the zero-dimensional case.

The next lemma is from [MR10] and says that we can split the 𝔥-dimensional
mass of a set 𝐸 contained in an interval 𝐼 into two sets that are positively separated.

Lemma 3.10. Let 𝔥 ∈ ℍ, 𝛿 > 0, 𝐼 an interval and 𝐸 ⊆ 𝐼. Let 𝜂 > 0 be such that

𝔥−1(𝜂8 ) < 𝛿 and ℋ𝔥
𝛿 (𝐸) ≥ 𝜂 > 0. Then there exist two subintervals 𝐼−, 𝐼+ that are

𝔥−1(𝜂8 )-separated and with ℋ𝔥
𝛿 (𝐼

± ∩ 𝐸) ≳ 𝜂.

The key geometric ingredient is contained in the following lemma. The idea
is from [Wol99b], but the general version needed here is from [MR10]. This lemma
will provide an estimate for the number of lines with a certain separation property
that intersect two balls of a given size.

Lemma 3.11. Let 𝔟 = {𝑏𝑘}𝑘∈ℕ be a decreasing sequence with lim 𝑏𝑘 = 0. Given

a family of balls ℬ = {𝐵(𝑥𝑗 ; 𝑟𝑗)}, we define 𝐽𝔟
𝑘 as in (3.2) and let {𝑒𝑖}𝑀𝑘

𝑖=1 be a
𝑏𝑘-separated set of directions. Assume that for each 𝑖 there are two line segments
𝐼+𝑒𝑖
and 𝐼−𝑒𝑖

lying on a line in the direction 𝑒𝑖 that are 𝑠𝑘-separated for some given

𝑠𝑘 Define Π𝑘 = 𝐽𝔟
𝑘 × 𝐽𝔟

𝑘 × {1, . . . ,𝑀𝑘} and ℒ𝔟
𝑘 by

ℒ𝔟
𝑘 :=

{
(𝑗+, 𝑗−, 𝑖) ∈ Π𝑘 : 𝐼

−
𝑒𝑖
∩𝐵𝑗− ∕= ∅ 𝐼+𝑒𝑖

∩𝐵𝑗+ ∕= ∅
}
.

If 15𝑠𝑘 > 𝑏𝑘−1 for all 𝑘, then

#ℒ𝔟
𝑘 ≲ 𝑏𝑘−1

𝑏𝑘

1

𝑠𝑘

(
#𝐽𝔟

𝑘

)2
.

Proof. Consider a fixed pair 𝑗−, 𝑗+ and its associated 𝐵𝑗− and 𝐵𝑗+ We will use
as distance between two balls the distance between the centres, and for simplicity
we write 𝑑(𝑗−, 𝑗+) = 𝑑(𝐵𝑗− , 𝐵𝑗+). If 𝑑(𝑗−, 𝑗+) <

3
5𝑠𝑘 then there is no 𝑖 such that

(𝑗−, 𝑗+, 𝑖) belongs to ℒ𝔟
𝑘.
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Now, for 𝑑(𝑗−, 𝑗+) ≥ 3
5𝑠𝑘, we will look at the special configuration given by

Figure 1 when we have 𝑟𝑗− = 𝑟𝑗+ = 𝑏𝑘−1 and the balls are tangent to the ends
of 𝐼− and 𝐼+. This will give a bound for any possible configuration, since in any
other situation the cone of allowable directions is narrower.

𝐼− 𝐼+

𝑏𝑘−1
𝐵𝑗−

𝐵𝑗−

𝑠𝑘

Figure 1. Cone of allowable directions I

Let us focus on one half of the cone (Figure 2). Let 𝜃 be the width of the
cone. In this case, we have to look at 𝜃

𝑏𝑘
directions that are 𝑏𝑘-separated. Further,

we note that 𝜃 = 2𝜃𝑘

𝑠𝑘
, where 𝜃𝑘 is the bold arc at distance 𝑠𝑘/2 from the center of

the cone. Let us see that 𝜃𝑘 ∼ 𝑏𝑘−1.

1𝑠𝑘

2

𝑏𝑘−1
𝜃𝑘

𝜃

Figure 2. Cone of allowable directions II

If we use the notation of Figure 3, we have to prove that 𝜃𝑘 ≲ 𝑏𝑘−1 for
𝑎 ∈ (0,+∞). We have 𝜃𝑘 = 𝜃(𝑎+ 2𝑏𝑘−1). Also 𝜃 < tan−1( 𝑏𝑘−1

𝑎 ), so

𝜃𝑘 < tan−1(
𝑏𝑘−1
𝑎
)(𝑎+ 2𝑏𝑘−1) ∼ 𝑏𝑘−1.

We conclude that 𝜃𝑘 ∼ 𝑏𝑘−1, and therefore the number 𝐷 of lines in 𝑏𝑘-
separated directions with non-empty intersection with 𝐵𝑗− and 𝐵𝑗+ has to satisfy

𝐷 ≤ 𝜃
𝑏𝑘
= 2𝜃𝑘

𝑠𝑘𝑏𝑘
∼ 𝑏𝑘−1

𝑏𝑘
1
𝑠𝑘
. The lemma follows by summing on all pairs (𝑗−, 𝑗+). □

Now we can present the main result of this section.
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𝑎

𝑏𝑘−1

𝜃𝑘

𝜃

Figure 3. The arc 𝜃𝑘 is comparable to 𝑏𝑘−1

Theorem 3.12. Let 𝔥 ∈ ℍ𝑑 be a dimension function such that 𝔥(𝑥) ≲ 𝑥𝛼 for some

0 < 𝛼 < 1 and 𝐸 be an 𝐹𝔥-set. Let ℎ ∈ ℍ with ℎ ≺ 𝔥. If
∑
𝑘≥0

𝔥
ℎ(2

−𝑘)
2𝛼

2𝛼+1 < ∞,

then ℋℎ
√⋅(𝐸) > 0.

Proof. We begin in the same way as in the previous section. Again by Definition

3.1, since 𝐸 ∈ 𝐹𝔥, we have ℋ𝔥
𝛿 (ℓ𝑒 ∩ 𝐸) > 1 for all 𝑒 ∈ 𝕊 for any 𝛿 < 𝛿𝐸 .

Consider the sequence 𝔞 =
{

𝔥
ℎ (2

−𝑘)
2𝛼

2𝛼+1

}
𝑘
. Let 𝑘0 be such that

𝔥−1
(

𝑎𝑘

16∥𝔞∥1

)
< 𝛿𝐸 for any 𝑘 ≥ 𝑘0. (3.6)

Now take any 𝛿-covering ℬ = {𝐵𝑗} of 𝐸 by balls with 𝛿 < min{𝛿𝐸 , 2−𝑘0}. Using
Lemma 3.3 we obtain 𝕊 =

∪
𝑘 Ω𝑘 with

Ω𝑘 =

{
𝑒 ∈ Ω : ℋ𝔥

𝛿 (ℓ𝑒 ∩ 𝐸𝑘) ≥ 𝑎𝑘

2∥𝔞∥1

}
. (3.7)

Again we have 𝐸𝑘 = 𝐸∩∪𝑗∈𝐽𝑘
𝐵𝑗 , but by our choice of 𝛿, the sets 𝐸𝑘 are empty for

𝑘 < 𝑘0. Therefore the same holds trivially for Ω𝑘 and we have that 𝕊 =
∪

𝑘≥𝑘0
Ω𝑘.

Since for each 𝑒 ∈ Ω𝑘 we have the inequality in (3.7), we can apply Lemma 3.10
with 𝜂 = 𝑎𝑘

2∥𝔞∥1 to ℓ𝑒∩𝐸𝑘. Therefore we obtain two intervals 𝐼
−
𝑒 and 𝐼+𝑒 , contained

in ℓ𝑒 with
ℋ𝔥

𝛿 (𝐼
±
𝑒 ∩ 𝐸𝑘) ≳ 𝑎𝑘

that are 𝔥−1(𝑟𝑎𝑘)-separated for 𝑟 =
1

16∥𝔞∥1 . Let {𝑒𝑘𝑗 }
𝑀𝑘

𝑗=1 be a 2
−𝑘-separated subset

of Ω𝑘. Therefore 𝑀𝑘 ≳ 2𝑘𝜎(Ω𝑘). Define Π𝑘 := 𝐽𝑘 × 𝐽𝑘 × {1, ..,𝑀𝑘} and
𝒯𝑘 :=

{
(𝑗−, 𝑗+, 𝑖) ∈ Π𝑘 : 𝐼

−
𝑒𝑖
∩ 𝐸𝑘 ∩𝐵𝑗− ∕= ∅ 𝐼+𝑒𝑖

∩ 𝐸𝑘 ∩𝐵𝑗+ ∕= ∅
}
.

We will count the elements of 𝒯𝑘 in two different ways. First, fix 𝑗− and 𝑗+ and
count for how many values of 𝑖 the triplet (𝑗−, 𝑗+, 𝑖) belongs to 𝒯𝑘. For this, we
will apply Lemma 3.11 for the choice 𝔟 = {2−𝑘}. The estimate we obtain is the
number of 2−𝑘-separated directions 𝑒𝑖, that intersect simultaneously the balls 𝐵𝑗−
and 𝐵𝑗+ , given that these balls are separated. We obtain

#𝒯𝑘 ≲ 1

𝔥−1(𝑟𝑎𝑘)
(#𝐽𝑘)

2
.
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Second, fix 𝑖. In this case, we have by hypothesis that ℋ𝔥
𝛿 (𝐼

+
𝑒𝑖
∩ 𝐸𝑘) ≳ 𝑎𝑘, so∑

𝑗+
𝔥(𝑟𝑗+) ≳ 𝑎𝑘. Therefore,

𝑎𝑘 ≲
∑

(𝑗−,𝑗+,𝑖)∈𝒯𝑘

𝔥(𝑟𝑗+ ) ≤ 𝐾𝔥(2−𝑘),

where 𝐾 is the number of elements of the sum. Therefore 𝐾 ≳ 𝑎𝑘

𝔥(2−𝑘)
. The same

holds for 𝑗−, so

#𝒯𝑘 ≳ 𝑀𝑘

(
𝑎𝑘

𝔥(2−𝑘)

)2
.

Combining the two bounds,

#𝐽𝑘 ≳ 𝑀
1/2
𝑘

𝑎𝑘

𝔥(2−𝑘)
𝔥−1(𝑟𝑎𝑘)

1/2 ≳ 2
𝑘
2 𝜎(Ω𝑘)

1/2 𝑎𝑘

𝔥(2−𝑘)
𝔥−1(𝑟𝑎𝑘)

1/2.

Consider now a dimension function ℎ ≺ 𝔥 as in the hypothesis of the theorem.
Then again∑

𝑗

ℎ(𝑟𝑗)𝑟
1/2
𝑗 ≥

∑
𝑘

𝔥(2−𝑘)2−
𝑘
2#𝐽𝑘

𝔥
ℎ(2

−𝑘)
≳

∑
𝑘≥𝑘0

𝜎(Ω𝑘)
1/2 𝑎𝑘𝔥

−1(𝑟𝑎𝑘)
1/2

𝔥
ℎ(2

−𝑘)
. (3.8)

To bound this last expression, we use first that there exists 𝛼 ∈ (0, 1) with 𝔥(𝑥) ≲
𝑥𝛼 and therefore 𝔥−1(𝑥) ≳ 𝑥

1
𝛼 . We then recall the definition of the sequence 𝔞,

𝑎𝑘 =
𝔥
ℎ (2

−𝑘)
2𝛼

2𝛼+1 to obtain

∑
𝑗

ℎ(𝑟𝑗)𝑟
1/2
𝑗 ≳

∑
𝑘≥𝑘0

𝜎(Ω𝑘)
1/2 𝑎

2𝛼+1
2𝛼

𝑘
𝔥
ℎ (2

−𝑘)
=

∑
𝑘≥𝑘0

𝜎(Ω𝑘)
1/2 ≳ 1. □

The next corollary follows from Theorem 3.12 in the same way as Corollary
3.7 follows from Theorem 3.6.

Corollary 3.13. Let 𝐸 be an 𝐹+
𝛼 -set. If ℎ is a dimension function satisfying the

relation ℎ(𝑥) ≥ 𝐶𝑥𝛼
√
𝑥 log𝜃( 1𝑥) for 𝜃 > 2𝛼+1

2𝛼 then ℋℎ(𝐸) > 0.

3.4. The 𝖍 → 𝖍
√⋅ bound, dimension zero

In this section we look at a class of very small Furstenberg sets. We will study,
roughly speaking, the extremal case of 𝐹0-sets and ask ourselves if inequality (1.1)
can be extended to this class. Our approach to the problem, using dimension
functions, allows us to tackle the problem about the dimensionality of these sets
in some cases. We study the case of 𝐹𝔥-sets associated to one particular choice

of 𝔥. We will look at the function 𝔥(𝑥) =
1

log( 1𝑥)
as a model of “zero-dimensional”

function. Our next theorem will show that in this case inequality (1.1) can indeed
be extended. The trick here will be to replace the dyadic scale on the radii in 𝐽𝑘

with a faster decreasing sequence 𝔟 = {𝑏𝑘}𝑘∈ℕ.
The main difference will be in the estimate of the quantity of lines in 𝑏𝑘-

separated directions that intersect two balls of level 𝐽𝑘 with a fixed distance 𝑠𝑘
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between them. This estimate is given by Lemma 3.11. Note that the problem
in the above bound is the rapid decay of 𝔥−1, which is solved by the positivity
assumption. In this case, since we are dealing with a zero-dimensional function 𝔥,
the inverse involved decays dramatically to zero. Therefore the strategy cannot be
the same as before, where we choose optimally the sequence 𝔞. In this case, we will
obtain a result by choosing an appropriate sequence of scales.

Theorem 3.14. Let 𝔥(𝑥) = 1
log( 1

𝑥 )
and let 𝐸 be an 𝐹𝔥-set. Then dim𝐻(𝐸) ≥ 1

2 .

Proof. Take a non-negative sequence 𝔟 which will be determined later. We will
apply the splitting Lemma 3.10 as in the previous section. For this, take 𝑘0 as in
(3.6) associated to the sequence 𝔞 = {𝑘−2}𝑘∈ℕ. Now, for a given generic 𝛿-covering
of 𝐸 with 𝛿 < min{𝛿𝐸, 2−𝑘0}, we use Lemma 3.3 to obtain a decomposition 𝕊 =∪

𝑘≥𝑘0
Ω𝑘 with

Ω𝑘 =
{
𝑒 ∈ 𝕊 : ℋ𝔥

𝛿 (ℓ𝑒 ∩𝐸𝑘) ≥ 𝑐𝑘−2
}
,

where 𝐸𝑘 = 𝐸 ∩∪𝐽𝔟
𝑘
𝐵𝑗 , 𝐽

𝔟
𝑘 is the partition of the radii associated to 𝔟 and 𝑐 > 0

is a suitable constant. The same calculations as in Theorem 3.12 yield

#𝐽𝔟
𝑘 ≳

(
𝜎(Ω𝑘)

𝑏𝑘−1

)1/2
𝔥−1(𝑐𝑘−2)1/2

𝑘2𝔥(𝑏𝑘−1)
≥
(
𝜎(Ω𝑘)

𝑏𝑘−1

)1/2
𝑒−𝑐𝑘2

𝑘2
.

Now we estimate a sum like (3.8). For 𝛽 < 1
2 we have∑

𝑗≥0
𝑟𝛽𝑗 ≥

∑
𝑘≥0

𝜎(Ω𝑘)
1/2 𝑏𝛽𝑘

𝑏
1
2

𝑘−1

𝑒−𝑐𝑘2

𝑘2
≳

√√√⎷∑
𝑘≥0

𝜎(Ω𝑘)
𝑏2𝛽𝑘
𝑏𝑘−1

1

𝑒𝑐𝑘2𝑘4
.

In the last inequality we use that the terms are all non-negative. The goal now

is to take some rapidly decreasing sequence such that the factor
𝑏2𝛽𝑘
𝑏𝑘−1

beats the

factor 𝑘−4𝑒−𝑐𝑘2

. Let us take 0 < 𝜀 < 1−2𝛽
2𝛽 and consider the hyperdyadic scale

𝑏𝑘 = 2
−(1+𝜀)𝑘 . With this choice, we have

𝑏2𝛽𝑘
𝑏𝑘−1

= 2(1+𝜀)𝑘−1−(1+𝜀)𝑘2𝛽 = 2(1+𝜀)𝑘( 1
1+𝜀−2𝛽).

We obtain that ⎛⎝∑
𝑗≥0

𝑟𝛽𝑗

⎞⎠2

≥
∑
𝑘≥0

𝜎(Ω𝑘)
2(1+𝜀)𝑘( 1

1+𝜀−2𝛽)

𝑒𝑐𝑘2𝑘4
.

Finally, since by the positivity of 1
1+𝜀−2𝛽 the double exponential in the numerator

grows faster than the denominator, we obtain that⎛⎝∑
𝑗≥0

𝑟𝛽𝑗

⎞⎠2

≳
∑
𝑘≥0

𝜎(Ω𝑘) ≳ 1. □

Corollary 3.15. Let 𝜃 > 0. If 𝐸 is an 𝐹𝔥-set with 𝔥(𝑥) =
1

log𝜃( 1
𝑥 )
then dim𝐻(𝐸) ≥ 1

2 .
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This shows that there is a whole class of 𝐹0-sets that must be at least
1
2 -

dimensional.
We want to remark that, shortly after [MR10] was published, we were notified

indirectly by Tamás Keleti and András Máthé that Theorem 3.14 can actually be
improved. The same result holds for the choice of 𝔥(𝑥) = 1

log log( 1
𝑥 )
if we use a

slightly faster hyperdyadic scale, namely 𝑏𝑘 = 2(1+𝜀)𝑘
3

. The improved theorem is
the following.

Theorem 3.16. Let 𝔥(𝑥) = 1
log log( 1

𝑥 )
and let 𝐸 be an 𝐹𝔥-set. Then dim𝐻(𝐸) ≥ 1

2 .

But this is as far as we can go. They have found, for any ℎ ≺ 𝔥, an explicit
construction of a set 𝐸 ∈ 𝐹ℎ such that dim𝐻(𝐸) = 0.

4. Fractal sets of directions

In this section we will apply our techniques to a more general problem. Consider
now the class of Furstenberg sets but defined by a fractal set of directions. Precisely,
we have the following definition.

Definition 4.1. For 𝛼, 𝛽 in (0, 1], a subset 𝐸 of ℝ2 will be called an 𝐹𝛼𝛽-set if there
is a subset 𝐿 of the unit circle such that dim𝐻(𝐿) ≥ 𝛽 and, for each direction 𝑒 in
𝐿, there is a line segment ℓ𝑒 in the direction of 𝑒 such that the Hausdorff dimension
of the set 𝐸 ∩ ℓ𝑒 is equal to or greater than 𝛼.

This generalizes the classical definition of Furstenberg sets, when the whole
circle is considered as a set of directions. The purpose here is to study how the
parameter 𝛽 affects the bounds above. From our results we will derive the following
proposition.

Proposition 4.2. For any set 𝐸 ∈ 𝐹𝛼𝛽, we have that

dim𝐻(𝐸) ≥ max
{
2𝛼+ 𝛽 − 1; 𝛽

2
+ 𝛼

}
, 𝛼, 𝛽 > 0. (4.1)

It is not hard to prove Proposition 4.2 directly, but we will study this prob-
lem in a wider scenario and derive it as a corollary. Moreover, by using general
Hausdorff measures, we will extend inequalities (4.1) to the zero-dimensional case.

Definition 4.3. Let 𝔥 and 𝔤 be two dimension functions. A set 𝐸 ⊆ ℝ2 is a Fursten-
berg set of type 𝔥𝔤, or an 𝐹𝔥𝔤-set, if there is a subset 𝐿 of the unit circle such that
ℋ𝔤(𝐿) > 0 and, for each direction 𝑒 in 𝐿, there is a line segment ℓ𝑒 in the direction
of 𝑒 such that ℋ𝔥(ℓ𝑒 ∩ 𝐸) > 0.

Note that this is the natural generalization of the 𝐹+
𝛼𝛽 class:

Definition 4.4. For each pair 𝛼, 𝛽 ∈ (0, 1], a set 𝐸 ⊆ ℝ2 will be called an 𝐹+
𝛼𝛽 -set if

there is a subset 𝐿 of the unit circle such that ℋ𝛽(𝐿) > 0 and, for each direction
𝑒 in 𝐿, there is a line segment ℓ𝑒 in the direction of 𝑒 such that ℋ𝛼(ℓ𝑒 ∩ 𝐸) > 0.
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Following the intuition suggested by Proposition 4.2, one could conjecture
that if 𝐸 belongs to the class 𝐹𝔥𝔤 then an appropriate dimension function for 𝐸

should be dimensionally greater than 𝔥2𝔤
id and 𝔥

√
𝔤. This will be the case, indeed,

and we will provide some estimates on the gap between those conjectured dimen-
sion functions and a generic test function ℎ ∈ ℍ to ensure that ℋℎ(𝐸) > 0, and
also illustrate with some examples. We will consider the two results separately.
Namely, for a given pair of dimension functions 𝔥, 𝔤 ∈ ℍ, in Section 4.1 we obtain
sufficient conditions on a test dimension function ℎ ∈ ℍ, ℎ ≺ 𝔥2𝔤

id to ensure that

ℋℎ(𝐸) > 0 for any set 𝐸 ∈ 𝐹𝔥𝔤. In Section 4.2 we consider the analogous problem
for ℎ ≺ 𝔥

√
𝔤. It turns out that one relevant feature of the set of directions is related

to the notion of 𝛿-entropy:

Definition 4.5. Let 𝐸 ⊂ ℝ𝑛 and 𝛿 ∈ ℝ>0. The 𝛿-entropy of 𝐸 is the maximal
possible cardinality of a 𝛿-separated subset of 𝐸. We will denote this quantity
with 𝒩𝛿(𝐸).

The main idea is to relate the 𝛿-entropy to some notion of size of the set.
Clearly, the entropy is essentially the box dimension or the packing dimension of
a set (see [Mat95] or [Fal03] for the definitions) since both concepts are defined in
terms of separated 𝛿 balls with centres in the set. However, for our proof we will
need to relate the entropy of a set to some quantity that has the property of being
(in some sense) stable under countable unions. One choice is therefore the notion
of Hausdorff content, which enjoys the needed properties: it is an outer measure,
it is finite, and it reflects the entropy of a set in the following manner. Recall that
the 𝔤-dimensional Hausdorff content of a set 𝐸 is defined as

ℋ𝔤
∞(𝐸) = inf

{∑
𝑖

𝔤(diam(𝑈𝑖) : 𝐸 ⊂
∪
𝑖

𝑈𝑖

}
.

Note that the 𝔤-dimensional Hausdorff content ℋ𝔤
∞ is clearly not the same

as the Hausdorff measure ℋ𝔤. In fact, they are the measures obtained by applying
Method I and Method II (see [Mat95]) respectively to the premeasure that assigns
to a set 𝐴 the value 𝔤(diam(𝐴)). For future reference, we state the following esti-
mate for the 𝛿-entropy of a set with positive 𝔤-dimensional Hausdorff content as a
lemma.

Lemma 4.6. Let 𝔤 ∈ ℍ and let 𝐴 be any set. Let 𝒩𝛿(𝐴) be the 𝛿-entropy of 𝐴.

Then 𝒩𝛿(𝐴) ≥ ℋ𝔤
∞(𝐴)
𝔤(𝛿) .

Of course, this result is meaningful when ℋ𝔤
∞(𝐴) > 0. We will use it in the

case in which ℋ𝔤(𝐴) > 0, which is equivalent to ℋ𝔤
∞(𝐴) > 0. Note that the lemma

above only requires the finiteness and the subadditivity of the Hausdorff content.
The relevant feature that will be needed in our proof is the 𝜎-subadditivity, which
is a property that the Box dimension does not share. Following the notation of
Definition 3.2 we have the following analogue of Lemma 3.3:



442 E. Rela

Lemma 4.7. Let 𝐸 be an 𝐹𝔥𝔤-set for some 𝔥, 𝔤 ∈ ℍ with the directions in 𝐿 ⊂ 𝕊
and let 𝔞 = {𝑎𝑘}𝑘∈ℕ ∈ ℓ1 be a non-negative sequence. Let ℬ = {𝐵𝑗} be a 𝛿-covering
of 𝐸 with 𝛿 < 𝛿𝐸 and let 𝐸𝑘 and 𝐽𝑘 be as above. Define

𝐿𝑘 :=

{
𝑒 ∈ 𝕊 : ℋ𝔥

𝛿 (ℓ𝑒 ∩ 𝐸𝑘) ≥ 𝑎𝑘

2∥𝔞∥1

}
.

Then 𝐿 = ∪𝑘𝐿𝑘.

4.1. The Kakeya type bound

Now we will prove a generalized version of the bound dim𝐻(𝐸) ≥ 2𝛼 + 𝛽 − 1 for
𝐸 ∈ 𝐹𝛼𝛽 . We have the following theorem.

Theorem 4.8 (𝔥𝔤 → 𝔥2𝔤
id ). Let 𝔤 ∈ ℍ and 𝔥 ∈ ℍ𝑑 be two dimension functions and

let 𝐸 be an 𝐹𝔥𝔤-set. Let ℎ ∈ ℍ such that ℎ ≺ 𝔥2𝔤
id . For 𝛿 > 0, let 𝐶(𝛿) be as in

(3.3). If
∑
𝑘≥0

√
𝔥2(2−𝑘)𝐶(2−𝑘+1)

ℎ(2−𝑘)
<∞, then ℋℎ(𝐸) > 0.

Proof. Let 𝐸 ∈ 𝐹𝔥𝔤 and let {𝐵𝑗}𝑗∈ℕ be a covering of 𝐸 by balls with 𝐵𝑗 =

𝐵(𝑥𝑗 ; 𝑟𝑗). Define 𝔞 = {𝑎𝑘} by 𝑎2𝑘 = 𝔥2(2−𝑘)𝐶(2−𝑘+1)
ℎ(2−𝑘)

. Therefore, by hypothesis

𝔞 ∈ ℓ1. Also define, as in the previous section, for each 𝑘 ∈ ℕ, 𝐽𝑘 = {𝑗 ∈ ℕ :
2−𝑘 < 𝑟𝑗 ≤ 2−𝑘+1} and 𝐸𝑘 = 𝐸 ∩ ∪𝑗∈𝐽𝑘

𝐵𝑗. Since 𝔞 ∈ ℓ1, we can apply Lemma
3.3 to obtain the decomposition of the set of directions as 𝐿 =

∪
𝑘 𝐿𝑘 associated

to this choice of 𝔞. We proceed as in the 𝐹𝛼-class and apply the maximal function
inequality to a weighted union of indicator functions:

𝑓 := 𝔥(2−𝑘)2𝑘𝜒𝐹𝑘
.

As before,

∥𝑓∥22 ≲ #𝐽𝑘𝔥
2(2−𝑘). (4.2)

The same arguments used in the proof of Theorem 3.6 in Section 3 allows us to
obtain a lower bound for the maximal function. Essentially, the maximal function is
pointwise bounded from below by the average of 𝑓 over the tube centred on the line
segment ℓ𝑒 for any 𝑒 ∈ 𝐿𝑘. Therefore, we have the following bound for the (𝐿

2, 𝜇)
norm. Here, 𝜇 is a measure supported on 𝐿 that obeys the law 𝜇(𝐵(𝑥, 𝑟) ≤ 𝔤(𝑟)
for any ball 𝐵(𝑥, 𝑟) given by Frostman’s lemma.

∥𝒦2−𝑘+1(𝑓)∥2𝐿2(𝑑𝜇) ≳ 𝑎2𝑘𝜇(𝐿𝑘) =
𝜇(𝐿𝑘)𝔥

2(2−𝑘)𝐶(2−𝑘)

ℎ(2−𝑘)
. (4.3)

Combining (4.3) with the maximal inequality (3.3), we obtain

𝜇(𝐿𝑘)𝔥
2(2−𝑘)𝐶(2−𝑘)

ℎ(2−𝑘)
≲ ∥𝒦2−𝑘+1(𝑓)∥22 ≲ 𝐶(2−𝑘+1)∥𝑓∥22 ≤ 𝐶(2−𝑘)∥𝑓∥22.

We also have the bound (4.2), which implies that 𝜇(𝐿𝑘)
ℎ(2−𝑘)

≲ #𝐽𝑘, which easily yields

the desired result. □
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Corollary 4.9. Let 𝐸 an 𝐹+
𝛼𝛽-set. If ℎ is any dimension function satisfying ℎ(𝑥) ≥

𝐶𝑥2𝛼+𝛽−1 log𝜃( 1𝑥) for 𝜃 > 2, then ℋℎ(𝐸) > 0.

Remark 4.10. Note that the bound dim(𝐸) ≥ 2𝛼 + 𝛽 − 1 for 𝐸 ∈ 𝐹𝛼𝛽 follows
directly from this last corollary.

4.2. The combinatorial bound

In this section we deal with the bound 𝔥𝔤 → 𝔥
√
𝔤, which is the significant bound

near the endpoint 𝛼 = 𝛽 = 0 and generalizes the bound dim𝐻(𝐸) ≥ 𝛽
2 + 𝛼 for

𝐸 ∈ 𝐹𝛼𝛽 . Note that the second bound in (4.1) is meaningless for small values of 𝛼
and 𝛽. We will again consider separately the cases of 𝔥 being zero-dimensional or
positive-dimensional. In the next theorem, the additional condition on 𝔥 reflects the
positivity of the dimension function. We will use again the two relevant lemmas
from Section 3. Lemma 3.10 is the “splitting lemma” and Lemma 3.11 is the
combinatorial ingredient in the proof of both Theorem 4.11 and Theorem 4.14.
We have the following theorem. Recall that ℎ𝛼(𝑥) = 𝑥𝛼.

Theorem 4.11 (𝔥𝔤→ 𝔥
√
𝔤, 𝔥 ≻ ℎ𝛼). Let 𝔤 ∈ ℍ, 𝔥 ∈ ℍ𝑑 be two dimension functions

such that 𝔥(𝑥) ≲ 𝑥𝛼 for some 0 < 𝛼 < 1 and let 𝐸 be an 𝐹𝔥𝔤-set. Let ℎ ∈ ℍ with

ℎ ≺ 𝔥
√
𝔤. If

∑
𝑘≥0

(
𝔥(2−𝑘)

√
𝔤(2−𝑘)

ℎ(2−𝑘)

) 2𝛼
2𝛼+1

<∞, then ℋℎ(𝐸) > 0.

Proof. Let 𝐸 ∈ 𝐹𝔥𝔤 and let {𝐵𝑗}𝑗∈ℕ be a covering of 𝐸 by balls with 𝐵𝑗 =

𝐵(𝑥𝑗 ; 𝑟𝑗). Consider the sequence 𝔞 defined as 𝔞 =

{(
𝔥
√
𝔤

ℎ (2−𝑘)
) 2𝛼

2𝛼+1

}
𝑘≥1

. Also

define, as in the previous section, for each 𝑘 ∈ ℕ, 𝐽𝑘 = {𝑗 ∈ ℕ : 2−𝑘 < 𝑟𝑗 ≤ 2−𝑘+1}
and 𝐸𝑘 = 𝐸 ∩ ∪𝑗∈𝐽𝑘

𝐵𝑗 . Since by hypothesis 𝔞 ∈ ℓ1, we can apply Lemma 3.3 to
obtain the decomposition of the set of directions as 𝐿 =

∪
𝑘 𝐿𝑘 associated to this

choice of 𝔞, where 𝐿𝑘 is defined as

𝐿𝑘 :=

{
𝑒 ∈ 𝕊 : ℋ𝔥

𝛿 (ℓ𝑒 ∩ 𝐸𝑘) ≥ 𝑎𝑘

2∥𝔞∥1

}
.

Now, let {𝑒𝑘𝑗 }𝑁𝑘
𝑗=1 be a 2

−𝑘-separated subset of 𝐿𝑘. Taking into account the
estimate for the entropy given in Lemma 4.6. We obtain then that

𝑁𝑘 ≳ ℋ𝔤∞(𝐿𝑘)

𝔤(2−𝑘)
. (4.4)

We can proceed as in the previous section to obtain that

#𝐽𝑘 ≳ 𝑎𝑘𝔥
−1(𝑟𝑎𝑘)

1/2 𝑁
1/2
𝑘

𝔥(2−𝑘)
.

Therefore, for any ℎ ∈ ℍ as in the hypothesis of the theorem, we have the estimate∑
𝑗≥0

ℎ(𝑟𝑗) ≳
∑
𝑘≥0

ℎ(2−𝑘)#𝐽𝑘 ≳
∑
𝑘≥0

𝑎𝑘𝔥
−1(𝑟𝑎𝑘)

1/2𝑁
1/2
𝑘

√
𝔤(2−𝑘)

(
𝔥
√
𝔤

ℎ )(2−𝑘)
.
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Recall now that from (4.4) we have
√
𝔤(2−𝑘)𝑁

1
2

𝑘 ≳ ℋ𝔤
∞(𝐿𝑘)

1
2 . We obtain

∑
𝑗≥0

ℎ(𝑟𝑗) ≳
∑
𝑘≥0

ℋ𝔤
∞(𝐿𝑘)

1/2𝑎
2𝛼+1
2𝛼

𝑘

(
𝔥
√
𝔤

ℎ )(2−𝑘)
=
∑
𝑘≥0

ℋ𝔤
∞(𝐿𝑘)

1/2 ≳ 1.

We use again that 𝔥(𝑥) ≲ 𝑥𝛼 implies that 𝔥−1(𝑥) ≳ 𝑥
1
𝛼 . In the last inequality, we

used the 𝜎-subadditivity of ℋ𝔤
∞. □

Corollary 4.12. Let 𝐸 be an 𝐹+
𝛼𝛽-set for 𝛼, 𝛽 > 0. If ℎ is a dimension function

satisfying ℎ(𝑥) ≥ 𝐶𝑥
𝛽
2+𝛼 log𝜃( 1𝑥 ) for 𝜃 > 2𝛼+1

2𝛼 , then ℋℎ(𝐸) > 0.

Remark 4.13. Note that again the bound dim(𝐸) ≥ 𝛼 + 𝛽
2 for 𝐸 ∈ 𝐹𝛼𝛽 follows

directly from this last corollary.

In the next theorem we consider the case of a family of very small Furstenberg
sets. More precisely, we deal with a family that corresponds to the case 𝛼 = 0,
𝛽 ∈ (0, 1] in the classical setting.
Theorem 4.14 (𝖍𝖌 → 𝖍

√
𝖌, 𝖍 zero-dimensional, 𝖌 positive). Let 𝛽 > 0 and define

𝔤(𝑥) = 𝑥𝛽 , 𝔥(𝑥) = 1
log log( 1

𝑥 )
. If 𝐸 is an 𝐹𝔥𝔤-set, then dim(𝐸) ≥ 𝛽

2 .

The proof follows from the same ideas as in Theorem 3.14 in Section 3, with
the natural modifications. We have the following immediate corollary.

Corollary 4.15. Let 𝜃 > 0. If 𝐸 is an 𝐹𝔥𝔤-set with 𝔥(𝑥) =
1

log log𝜃( 1
𝑥 )
and 𝔤(𝑥) = 𝑥𝛽,

then dim(𝐸) ≥ 𝛽
2 .

The next question would be: What should be the expected dimension function
for an 𝐹𝔥𝔤-set if 𝔥(𝑥) = 𝔤(𝑥) = 1

log( 1
𝑥 )
? The preceding results lead us to the

following conjecture:

Conjecture 4.16. Let 𝔥(𝑥) = 𝔤(𝑥) = 1
log( 1

𝑥 )
and let 𝐸 be an 𝐹𝔥𝔤-set. Then

1

log
3
2 ( 1

𝑥 )

should be an appropriate dimension function for 𝐸, in the sense that a logarithmic
gap can be estimated.

We do not know, however, how to prove this.

4.3. A remark on the notion of size for the set of directions

We have emphasized that the relevant ingredient for the combinatorial proof in
Section 4.2 is the notion of 𝛿-entropy of a set. In addition, we have discussed
the possibility of considering the box dimension as an adequate notion of size to
detect this quantity. In this section we present an example that shows that in
fact the notion of Packing measure is also inappropriate. We want to remark here
that none of them will give any further (useful) information to this problem and
therefore there is no chance to obtain similar results in terms of those notions of
dimensions. To make it clear, consider the classical problem of proving the bound



Furstenberg Sets and Hausdorff Measures 445

dim𝐻(𝐸) ≥ 𝛼 + 𝛽
2 for any 𝐸 ∈ 𝐹𝛼𝛽 where 𝛽 is the Box or Packing dimension of

the set 𝐿 of directions.
We illustrate this remark with the extreme case of 𝛽 = 1. It is absolutely

trivial that nothing meaningful can be said if we only know that the Box dimension
(dim𝐵) of 𝐿 is 1, since any countable dense subset 𝐿 of 𝕊 satisfies dim𝐵(𝐿) = 1
but in that case, since 𝐿 is countable, we can only obtain that dim𝐻(𝐸) ≥ 𝛼.

For the Packing dimension (dim𝑃 ), it is also easy to see that if we only know
that dim𝑃 (𝐿) = 1 we do not have any further information about the Hausdorff
dimension of the set 𝐸. To see why, consider the following example. Let 𝐶𝛼 be
a regular Cantor set such that dim𝐻(𝐶𝛼) = dim𝐵(𝐶𝛼) = 𝛼. Let 𝐿 be a set of
directions with dim𝐻(𝐿) = 0 and dim𝑃 (𝐿) = 1. Now, we build the Furstenberg
set 𝐸 in polar coordinates as

𝐸 := {(𝑟, 𝜃) : 𝑟 ∈ 𝐶𝛼, 𝜃 ∈ 𝐿}.
This can be seen as a “Cantor target”, but with a fractal set of directions instead of
the whole circle. By the Hausdorff dimension estimates, we know that dim𝐻(𝐸) ≥
𝛼. We show that in this case we also have that dim𝐻(𝐸) ≤ 𝛼, which implies
that in the general case this is the best that one could expect, even with the
additional information about the Packing dimension of 𝐿. For the upper bound,
consider the function 𝑓 : ℝ2 → ℝ2 defined by 𝑓(𝑥, 𝑦) = (𝑥 cos 𝑦, 𝑥 sin 𝑦). Clearly
𝐸 = 𝑓(𝐶𝛼×𝐿). Therefore, by the known product formulae that can be found, for
example, in [Fal03], we have that

dim𝐻(𝐸) = dim𝐻(𝑓(𝐶𝛼 × 𝐿)) ≤ dim𝐻(𝐶𝛼 × 𝐿) = dim𝐵(𝐶𝛼) + dim𝐻(𝐿) = 𝛼.

5. Upper bounds

In this section we look at a refinement of the upper bound for the dimension of
Furstenberg sets. Since we are looking for upper bounds on a class of Furstenberg
sets, the aim will be to explicitly construct a very small set belonging to the given
class.

We first consider the classical case of power functions, 𝑥𝛼, for 𝛼 > 0. Recall
that for this case, the known upper bound implies that, for any positive 𝛼, there

is a set 𝐸 ∈ 𝐹𝛼 such that ℋ 1+3𝛼
2 +𝜀(𝐸) = 0 for any 𝜀 > 0. By looking closer at

Wolff’s arguments, it can be seen that in fact it is true that ℋ𝑔(𝐸) = 0 for any
dimension function 𝑔 of the form

𝑔(𝑥) = 𝑥
1+3𝛼

2 log−𝜃

(
1

𝑥

)
, 𝜃 >

3(1 + 3𝛼)

2
+ 1. (5.1)

Further, that argument can be modified (Theorem 5.3) to sharpen on the loga-
rithmic gap, and therefore improving (5.1) by proving the same result for any 𝑔 of
the form

𝑔(𝑥) = 𝑥
1+3𝛼

2 log−𝜃

(
1

𝑥

)
, 𝜃 >

1 + 3𝛼

2
. (5.2)
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However, this modification will not be sufficient for our main objective, which
is to reach the zero-dimensional case. More precisely, we will focus at the endpoint
𝛼 = 0, and give a complete answer about the exact dimension of a class of Fursten-
berg sets. We will prove in Theorem 5.6 that, for any given 𝛾 > 0, there exists a
set 𝐸𝛾 ⊆ ℝ2 such that

𝐸𝛾 ∈ 𝐹𝔥𝛾 for 𝔥𝛾(𝑥) =
1

log𝛾( 1𝑥 )
and dim𝐻(𝐸𝛾) ≤ 1

2
. (5.3)

This result, together with the results from [MR10] mentioned above, shows that
1
2 is sharp for the class 𝐹𝔥𝛾 . In fact, for this family both inequalities in (1.1) are

in fact the equality Φ(𝐹𝔥𝛾 ) =
1
2 .

In order to be able to obtain (5.3), it is not enough to simply “refine” the
construction of Wolff. He achieves the desired set by choosing a specific set as the
fiber in each direction. This set is known to have the correct dimension. To be
able to reach the zero-dimensional case, we need to handle the delicate issue of
choosing an analogue zero-dimensional set on each fiber. The main difficulty lies
in being able to handle simultaneously Wolff’s construction and the proof of the
fact that the fiber satisfies the stronger condition of having positive measure for
the correct dimension function.

We will also focus at the endpoint 𝛼 = 0, and give a complete answer about
the size of a class of Furstenberg sets by proving that (Theorem 5.6), for any given
𝛾 > 0, there exists a set 𝐸𝛾 ⊆ ℝ2 such that 𝐸𝛾 ∈ 𝐹𝔥𝛾 for 𝔥𝛾(𝑥) =

1
log𝛾( 1

𝑥 )
and

dim𝐻(𝐸𝛾) ≤ 1
2 .

5.1. Upper bounds for classical Furstenberg-type sets

We begin with a preliminary lemma about a very well-distributed (mod 1) se-
quence.

Lemma 5.1. For 𝑛 ∈ ℕ and any real number 𝑥 ∈ [0, 1], there is a pair 0 ≤ 𝑗, 𝑘 ≤
𝑛− 1 such that ∣∣∣∣𝑥− (√

2
𝑘

𝑛
− 𝑗

𝑛

)∣∣∣∣ ≤ log(𝑛)

𝑛2
.

This lemma is a consequence of Theorem 3.4 of [KN74], p125, in which an
estimate is given about the discrepancy of the fractional part of the sequence
{𝑛𝛼}𝑛∈ℕ where 𝛼 is a irrational of a certain type. We also need to introduce
the notion of 𝐺-sets, a common ingredient in the construction of Kakeya and
Furstenberg sets.

Definition 5.2. A 𝐺-set is a compact set 𝐸 ⊆ ℝ2 which is contained in the strip
{(𝑥, 𝑦) ∈ ℝ2 : 0 ≤ 𝑥 ≤ 1} such that for any 𝑚 ∈ [0, 1] there is a line segment
contained in 𝐸 connecting 𝑥 = 0 with 𝑥 = 1 of slope 𝑚.

Given a line segment ℓ(𝑥) = 𝑚𝑥+ 𝑏, we define the 𝛿-tube associated to ℓ as

𝑆𝛿
ℓ := {(𝑥, 𝑦) ∈ ℝ2 : 0 ≤ 𝑥 ≤ 1; ∣𝑦 − (𝑚𝑥+ 𝑏)∣ ≤ 𝛿}.
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Theorem 5.3. For 𝛼 ∈ (0, 1] and 𝜃 > 0, define ℎ𝜃(𝑥) = 𝑥
1+3𝛼

2 log−𝜃( 1𝑥 ). Then, if

𝜃 > 1+3𝛼
2 , there exists a set 𝐸 ∈ 𝐹𝛼 with ℋℎ𝜃 (𝐸) = 0.

Proof. Fix 𝑛 ∈ ℕ and let 𝑛𝑗 be a sequence such that 𝑛𝑗+1 > 𝑛𝑗
𝑗 . We consider 𝑇 to

be the set defined as follows:

𝑇 =

{
𝑥 ∈

[
1

4
,
3

4

]
: ∀𝑗 ∃ 𝑝, 𝑞 ; 𝑞 ≤ 𝑛𝛼

𝑗 ;

∣∣∣∣𝑥− 𝑝

𝑞

∣∣∣∣ < 1

𝑛2𝑗

}
.

It can be seen that dim𝐻(𝑇 ) = 𝛼. This is a version of Jarńık’s theorem on Diophan-
tine Approximation (see [Wol99b], p. 10 and [Fal86], p. 134, Theorem 8.16(b)). If
𝜑(𝑡) = 1−𝑡

𝑡
√
2
and 𝐷 = 𝜑−1

(
[ 14 ,

3
4 ]
)
, we have that 𝜑 : 𝐷 → [ 14 ,

3
4 ] is bi-Lipschitz.

Therefore the set

𝑇 ′ =
{
𝑡 ∈ ℝ :

1− 𝑡

𝑡
√
2
∈ 𝑇

}
= 𝜑−1(𝑇 )

also has Hausdorff dimension 𝛼. The main idea of our proof is to construct a set
for which we have, essentially, a copy of 𝑇 ′ in each direction and simultaneously
keep some optimal covering property. Define, for each 𝑛 ∈ ℕ,

Γ𝑛 :=

{
𝑝

𝑞
∈
[
1

4
,
3

4

]
, 𝑞 ≤ 𝑛𝛼

}
and 𝑄𝑛 =

{
𝑡 :
1− 𝑡√
2𝑡

=
𝑝

𝑞
∈ Γ𝑛

}
= 𝜑−1(Γ𝑛).

To count the elements of Γ𝑛 (and 𝑄𝑛), we take into account that

⌊𝑛𝛼⌋∑
𝑗=1

𝑗 ≤ 1

2
⌊𝑛𝛼⌋(⌊𝑛𝛼⌋+ 1) ≲ ⌊𝑛𝛼⌋2 ≤ 𝑛2𝛼.

Therefore, #(𝑄𝑛) ≲ 𝑛2𝛼. For 0 ≤ 𝑗, 𝑘 ≤ 𝑛− 1, define the line segments

ℓ𝑗𝑘(𝑥) := (1− 𝑥)
𝑗

𝑛
+ 𝑥

√
2
𝑘

𝑛
for 𝑥 ∈ [0, 1],

and their 𝛿𝑛-tubes 𝑆
𝛿𝑛
ℓ𝑗𝑘
with 𝛿𝑛 =

log(𝑛)
𝑛2 . We will use during the proof the notation

𝑆𝑛
𝑗𝑘 instead of 𝑆

𝛿𝑛
ℓ𝑗𝑘
. Also define

𝐺𝑛 :=
∪
𝑗𝑘

𝑆𝑛
𝑗𝑘. (5.4)

Note that, by Lemma 5.1, all the 𝐺𝑛 are 𝐺-sets. For each 𝑡 ∈ 𝑄𝑛, we look at the
points ℓ𝑗𝑘(𝑡), and define the set 𝑆(𝑡) := {ℓ𝑗𝑘(𝑡)}𝑛𝑗,𝑘=1. Clearly, #(𝑆(𝑡)) ≤ 𝑛2. But
if we note that, if 𝑡 ∈ 𝑄𝑛, then

0 ≤ ℓ𝑗𝑘(𝑡)

𝑡
√
2
=
1− 𝑡

𝑡
√
2

𝑗

𝑛
+

𝑘

𝑛
=

𝑝

𝑞

𝑗

𝑛
+

𝑘

𝑛
=

𝑝𝑗 + 𝑘𝑞

𝑛𝑞
< 2,

we can bound #(𝑆(𝑡)) by the number of non-negative rationals smaller than 2
of denominator 𝑞𝑛. Since 𝑞 ≤ 𝑛𝛼, we have #(𝑆(𝑡)) ≤ 𝑛1+𝛼. Considering all the
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elements of 𝑄𝑛, we obtain #
(∪

𝑡∈𝑄𝑛
𝑆(𝑡)

)
≲ 𝑛1+3𝛼. Let us define

Λ𝑛 :=

{
(𝑥, 𝑦) ∈ 𝐺𝑛 : ∣𝑥− 𝑡∣ ≤

√
2

𝑛2
for some 𝑡 ∈ 𝑄𝑛

}
. (5.5)

Claim 5.4. For each 𝑛, take 𝛿𝑛 =
log(𝑛)
𝑛2 . Then Λ𝑛 can be covered by 𝐿𝑛 balls of

radio 𝛿𝑛 with 𝐿𝑛 ≲ 𝑛1+3𝛼.

To see this, it suffices to set a parallelogram on each point of 𝑆(𝑡) for each 𝑡

in 𝑄𝑛. The lengths of the sides of the parallelogram are of order 𝑛−2 and log(𝑛)
𝑛2 ,

so their diameter is bounded by a constant times log(𝑛)
𝑛2 , which proves the claim.

We can now begin with the recursive construction that leads to the desired
set. Let 𝐹0 be a 𝐺-set written as

𝐹0 =
∪𝑀0

𝑖=1
𝑆𝛿0

ℓ0𝑖
,

(the union of 𝑀0 𝛿0-thickened line segments ℓ0𝑖 = 𝑚0
𝑖 + 𝑏0𝑖 with appropriate orien-

tation). Each 𝐹𝑗 to be constructed will be a 𝐺-set of the form

𝐹𝑗 :=
∪𝑀𝑗

𝑖=1
𝑆𝛿𝑗

ℓ𝑗𝑖
, with ℓ𝑗𝑖 = 𝑚𝑗

𝑖 + 𝑏𝑗𝑖 .

Having constructed 𝐹𝑗 , consider the 𝑀𝑗 affine mappings

𝐴𝑗
𝑖 : [0, 1]× [−1, 1]→ 𝑆𝛿𝑗

ℓ𝑗𝑖
1 ≤ 𝑖 ≤𝑀𝑗 ,

defined by

𝐴𝑗
𝑖

(
𝑥
𝑦

)
=

(
1 0

𝑚𝑗
𝑖 𝛿𝑗

)(
𝑥
𝑦

)
+

(
0

𝑏𝑗𝑖

)
.

Here is the key step: by the definition of 𝑇 , we can choose the sequence 𝑛𝑗 to grow
as fast as we need (this will not be the case in the next section). For example, we
can choose 𝑛𝑗+1 large enough to satisfy

log log(𝑛𝑗+1) > 𝑀𝑗 (5.6)

and apply 𝐴𝑗
𝑖 to the sets 𝐺𝑛𝑗+1 defined in (5.4) to obtain

𝐹𝑗+1 =
∪𝑀𝑗

𝑖=1
𝐴𝑗

𝑖 (𝐺𝑛𝑗+1 ).

Since 𝐺𝑛𝑗+1 is a union of thickened line segments, we have that

𝐹𝑗+1 =
∪𝑀𝑗+1

𝑖=1
𝑆𝛿𝑗+1

ℓ𝑗+1
𝑖

,

for an appropriate choice of 𝑀𝑗+1, 𝛿𝑗+1 and 𝑀𝑗+1 line segments ℓ𝑗+1𝑖 . From the

definition of the mappings 𝐴𝑗
𝑖 and since the set 𝐺𝑛𝑗+1 is a 𝐺-set, we conclude that

𝐹𝑗+1 is also a 𝐺-set. Define

𝐸𝑗 := {(𝑥, 𝑦) ∈ 𝐹𝑗 : 𝑥 ∈ 𝑇 ′}.
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To cover 𝐸𝑗 , we note that if (𝑥, 𝑦) ∈ 𝐸𝑗 , then 𝑥 ∈ 𝑇 ′, and therefore there exists a
rational 𝑝

𝑞 ∈ Γ𝑛𝑗 with

1

𝑛2𝑗
>

∣∣∣∣1− 𝑥

𝑥
√
2
− 𝑝

𝑞

∣∣∣∣ = ∣𝜑(𝑥) − 𝜑(𝑟)∣ ≥ ∣𝑥− 𝑟∣√
2

, for some 𝑟 ∈ 𝑄𝑛𝑗 .

Therefore (𝑥, 𝑦) ∈ ∪𝑀𝑗−1

𝑖=1 𝐴𝑗−1
𝑖 (Λ𝑛𝑗 ), so we conclude that 𝐸𝑗 can be covered

by 𝑀𝑗−1𝑛1+3𝛼𝑗 balls of diameter at most
log(𝑛𝑗)

𝑛2
𝑗
. Since we chose 𝑛𝑗 such that

log log(𝑛𝑗) > 𝑀𝑗−1, we obtain that 𝐸𝑗 admits a covering by log log(𝑛𝑗)𝑛
1+3𝛼
𝑗 balls

of the same diameter. Therefore, if we set 𝐹 =
∩

𝑗 𝐹𝑗 and 𝐸 := {(𝑥, 𝑦) ∈ 𝐹 : 𝑥 ∈
𝑇 ′} we obtain that

ℋℎ𝜃

𝛿𝑗
(𝐸) ≲ 𝑛1+3𝛼𝑗 log log(𝑛𝑗)ℎ𝜃

(
log(𝑛𝑗)

𝑛2𝑗

)

≲ 𝑛1+3𝛼𝑗 log log(𝑛𝑗)

(
log(𝑛𝑗)

𝑛2𝑗

) 1+3𝛼
2

log−𝜃

(
𝑛2𝑗

log(𝑛𝑗)

)
≲ log log(𝑛𝑗) log(𝑛𝑗)

1+3𝛼
2 −𝜃 ≲ log

1+3𝛼
2 +𝜀−𝜃(𝑛𝑗)

for large enough 𝑗. Therefore, for any 𝜃 > 1+3𝛼
2 , the last expression goes to zero. In

addition, 𝐹 is a 𝐺-set, so it must contain a line segment in each direction𝑚 ∈ [0, 1].
If ℓ is such a line segment, then

dim𝐻(ℓ ∩ 𝐸) = dim𝐻(𝑇
′) ≥ 𝛼.

The final set of the proposition is obtained by taking eight copies of 𝐸, rotated to
achieve all the directions in 𝕊. □
5.2. Upper bounds for very small Furstenberg-type sets

In this section we will focus on the class 𝐹𝛼 at the endpoint 𝛼 = 0. Note that all
preceding results involved only the case for which 𝛼 > 0. Introducing the general-
ized Hausdorff measures, we are able to handle an important class of Furstenberg
type sets in 𝐹0.

The idea is to follow the proof of Theorem 5.3. But in order to do that, we
need to replace the set 𝑇 by a generalized version of it. A näıve approach would be
to replace the 𝛼 power in the definition of 𝑇 by a slower increasing function, like
a logarithm. But in this case it is not clear that the set 𝑇 fulfills the condition of
having positive measure for the corresponding dimension function (recall that we
want to construct a set in 𝐹𝔥𝛾 ). More precisely, we will need the following lemma.

Lemma 5.5. Let 𝑟 > 1 and consider the sequence 𝔫 = {𝑛𝑗} defined by 𝑛𝑗 = 𝑒
1
2𝑛

4
𝑟

𝑗

𝑗−1 ,
the function 𝔣(𝑥) = log(𝑥2)

𝑟
2 and the set

𝑇 =

{
𝑥 ∈

[
1

4
,
3

4

]
∖ℚ : ∀𝑗 ∃ 𝑝, 𝑞 ; 𝑞 ≤ 𝔣(𝑛𝑗); ∣𝑥− 𝑝

𝑞
∣ < 1

𝑛2𝑗

}
.

Then we have that ℋ𝔥(𝑇 ) > 0 for 𝔥(𝑥) = 1
log( 1

𝑥 )
.
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This is the essential lemma for our construction. It is trivial that 𝑇 is a set
of Hausdorff dimension zero, but in order to use this set in each fiber of an 𝐹𝔥-set,
we have to prove that 𝑇 has positive ℋ𝔥-mass. This is the really difficult part. The
proof is a more technical version of a classical result that can be found in [Fal03].
For the proof of our lemma, we refer to [MR12]. Both classical and generalized
results are examples of Diophantine Approximation. We emphasize the following
fact: in this case, the construction of this new set 𝑇 , does not allow us, as in (5.6),
to freely choose the sequence 𝑛𝑗. On one hand we need the sequence to be quickly
increasing to prove that the desired set is small enough, but not arbitrarily fast,
since on the other hand, we need to impose some control to be able to prove that
the fiber has the appropriate positive measure.

With this lemma, we are able to prove the main result of this section. We
have the next theorem.

Theorem 5.6. Let 𝔥 = 1
log( 1

𝑥 )
. There exists a set 𝐸 ∈ 𝐹𝔥 such that dim𝐻(𝐸) ≤ 1

2 .

Proof. We will use essentially a copy of 𝑇 in each direction in the construction
of the desired set to fulfill the conditions required to be an 𝐹𝔥-set. Let 𝑇 be the
set defined in Lemma 5.5. Define 𝑇 ′ = 𝜑−1(𝑇 ), where 𝜑 is the same bi-Lipschitz
function from the proof of Theorem 5.3. Then 𝑇 ′ has positive ℋ𝔥-measure.

Let us define the corresponding sets of Theorem 5.3 for this generalized case.
For 𝔣(𝑥) = 𝔣(𝑥) = log(𝑥2)

𝑟
2 , define

Γ𝑛 :=

{
𝑝

𝑞
∈
[
1

4
,
3

4

]
, 𝑞 ≤ 𝔣(𝑛)

}
, 𝑄𝑛 =

{
𝑡 :
1− 𝑡√
2𝑡

=
𝑝

𝑞
∈ Γ𝑛

}
= 𝜑−1(Γ𝑛).

Now the estimate is #(𝑄𝑛) ≲ 𝔣2(𝑛) = log𝑟(𝑛2) ∼ log𝑟(𝑛). For each 𝑡 ∈ 𝑄𝑛,
define 𝑆(𝑡) := {ℓ𝑗𝑘(𝑡)}𝑛𝑗,𝑘=1. If 𝑡 ∈ 𝑄𝑛, following the previous ideas, we obtain that

#(𝑆(𝑡)) ≲ 𝑛 log
𝑟
2 (𝑛), and therefore

#

( ∪
𝑡∈𝑄𝑛

𝑆(𝑡)

)
≲ 𝑛 log(𝑛)

3𝑟
2 .

Now we estimate the size of a covering of the set Λ𝑛 in (5.5). For each 𝑛, take

𝛿𝑛 =
log(𝑛)
𝑛2 . As before, the set Λ𝑛 can be covered with 𝐿𝑛 balls of radio 𝛿𝑛 with

𝐿𝑛 ≲ 𝑛 log(𝑛)
3𝑟
2 .

Once again, define 𝐹𝑗 , 𝐹 , 𝐸𝑗 and 𝐸 as before. Now the sets 𝐹𝑗 can be covered

by less than𝑀𝑗−1𝑛𝑗 log(𝑛𝑗)
3𝑟
2 balls of diameter at most

log(𝑛𝑗)

𝑛2
𝑗
. Now we can verify

that, since each 𝐺𝑛 consist of 𝑛2 tubes, we have that 𝑀𝑗 = 𝑀0𝑛
2
1 ⋅ ⋅ ⋅𝑛2𝑗 . We

can also verify that the sequence {𝑛𝑗} satisfies the relation log𝑛𝑗+1 ≥ 𝑀𝑗 =
𝑀0𝑛

2
1 ⋅ ⋅ ⋅𝑛2𝑗 , and therefore we have the bound

dim𝐻(𝐸) ≤ dim𝐵(𝐸) ≤ lim
𝑗

log
(
log(𝑛𝑗)𝑛𝑗 log(𝑛𝑗)

3𝑟
2

)
log

(
𝑛2𝑗 log

−1(𝑛𝑗)
) =

1

2
,
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where dim𝐵 stands for the lower box dimension. Finally, for any 𝑚 ∈ [0, 1] we
have a line segment ℓ with slope 𝑚 contained in 𝐹 . It follows that ℋ𝔥(ℓ ∩ 𝐸) =
ℋ𝔥(𝑇 ′) > 0. □

We remark that the argument in this particular result is essentially the same
needed to obtain the family of Furstenberg sets 𝐸𝛾 ∈ 𝐹𝔥𝛾 for 𝔥𝛾(𝑥) =

1
log𝛾( 1

𝑥 )
,

𝛾 ∈ ℝ+, such that dim𝐻(𝐸𝛾) ≤ 1
2 announced in the introduction.

5.3. The case 𝜶 = 0, 𝑲 points

Let us begin with the definition of the class 𝐹𝐾 .

Definition 5.7. For 𝐾 ∈ ℕ, 𝐾 ≥ 2, a set will be an 𝐹𝐾-set or a Furstenberg set of
type 𝐾 if for any direction 𝑒 ∈ 𝕊, there are at least 𝐾 points contained in 𝐸 lined
up in the direction of 𝑒.

Already in [MR10] we proved that there is an 𝐹 2-set with zero Hausdorff
dimension (see also [Fal03], Example 7.8). We will generalize this example to obtain
even smaller 𝐹 2 sets. Namely, for any ℎ ∈ ℍ0, there exists 𝐺 in 𝐹 2 such that
ℋℎ(𝐺) = 0. It is clear that the set 𝐺 will depend on the choice of ℎ.

Example 5.8. Given a function ℎ ∈ ℍ, we will construct two small sets 𝐸,𝐹 ⊆
[0, 1] with ℋℎ(𝐸) = ℋℎ(𝐹 ) = 0 and such that [0, 1] ⊆ 𝐸 + 𝐹 . Consider now
𝐺 = 𝐸 × {1} ∪ −𝐹 × {0}. Clearly, we have that ℋℎ(𝐺) = 0, and contains two
points in every direction 𝜃 ∈ [0; 𝜋4 ]. For, if 𝜃 ∈ [0; 𝜋4 ], let 𝑐 = tan(𝜃), so 𝑐 ∈ [0, 1].
By the choice of 𝐸 and 𝐹 , we can find 𝑥 ∈ 𝐸 and 𝑦 ∈ 𝐹 with 𝑐 = 𝑥 + 𝑦. The
points (−𝑦, 0) and (𝑥, 1) belong to 𝐺 and determine a segment in the direction 𝜃.

1

𝐸 × {1}
𝑒

−𝑓−𝐹 × {0}

Figure 4. An 𝐹 2-set of zero ℋℎ-measure

For 𝑥 ∈ [0, 1], we consider its binary representation 𝑥 =
∑

𝑗≥1 𝑟𝑗2
−𝑗 , 𝑟𝑗 ∈

{0, 1}. We define 𝐸 := {𝑥 ∈ [0, 1] : 𝑟𝑗 = 0 if 𝑚𝑘 + 1 ≤ 𝑗 ≤ 𝑚𝑘+1; 𝑘 even} and 𝐹 :=
{𝑥 ∈ [0, 1] : 𝑟𝑗 = 0 if 𝑚𝑘 + 1 ≤ 𝑗 ≤ 𝑚𝑘+1; 𝑘 odd }. Here {𝑚𝑘;𝑚0 = 0}𝑘 is an in-
creasing sequence such that 𝑚𝑘 → +∞. Now we estimate the size of the set 𝐸.
Given 𝑘 ∈ ℕ, 𝑘 even, define ℓ𝑘 = 𝑚𝑘−𝑚𝑘−1+⋅ ⋅ ⋅+𝑚2−𝑚1. It is clear that 𝐸 can be
covered by 2𝑙𝑘 intervals of length 2−𝑚𝑘+1. Therefore, if the sequence 𝑚𝑘 increases
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fast enough, then dim𝐻(𝐸) ≤ dim𝐵(𝐸) ≤ lim𝑘
log(2ℓ𝑘 )

log(2𝑚𝑘+1 ) ≲ lim𝑘
2ℓ𝑘

2𝑚𝑘+1 = 0. Since

the same argument shows that dim𝐻(𝐹 ) = 0, this estimate proves that the set
𝐺 has Hausdorff dimension equal to zero. Now, for the finer estimate on the ℋℎ-
measure of the set, we must impose a more restrictive condition on the sequence
{𝑚𝑘}. Recall that the covering property implies that, for a given ℎ ∈ ℍ, we have
ℋℎ(𝐸) ≤ 2𝑙𝑘ℎ(2−𝑚𝑘+1). Therefore we need to choose a sequence {𝑚𝑗}, depending
on ℎ, such that the above quantity goes to zero with 𝑘. Since ℓ𝑘 ≤ 𝑚𝑘, we can de-
fine recursively the sequence {𝑚𝑘} to satisfy the relation 2𝑚𝑘ℎ(2−𝑚𝑘+1) = 1

𝑘 . This

last condition is equivalent to 𝑚𝑘+1 = log
(

1
ℎ−1( 1

𝑘2𝑚𝑘
)

)
. As a concrete example,

take ℎ(𝑥) = 1
log( 1

𝑥 )
. In this case we obtain that the sequence {𝑚𝑘} can be defined

as 𝑚𝑘+1 = 𝑘2𝑚𝑘 .

5.4. Remark about the packing dimension for small Furstenberg sets

It is worth noting here that if we were to measure the size of Furstenberg sets with
the packing dimension, the situation would be absolutely different. More precisely,
for 𝐾 ≥ 2, any 𝐹𝐾-set 𝐸 ⊂ ℝ2 must have dim𝑃 (𝐸) ≥ 1

2 . For, if 𝐸 is an 𝐹 2

set, then the map 𝜑 defined by 𝜑(𝑎, 𝑏) = 𝑎−𝑏
∥𝑎−𝑏∥ is Lipschitz when restricted to

𝐺𝜀 := 𝐸 × 𝐸 ∖ {(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : ∥(𝑥, 𝑦) − (𝑎, 𝑎)∥ < 𝜀; 𝑎 ∈ 𝐸}. Roughly, we
are considering the map that recovers the set of directions but restricted “off the
diagonal”. It is clear that we can assume without loss of generality that all the
pairs are the endpoints of unit line segments. Therefore, since 𝐸 is an 𝐹𝐾-set,
𝜑(𝐺𝜀) = 𝕊 if 𝜀 is small enough. We obtain the inequality

1 = dim𝐻(𝕊) ≤ dim𝐻(𝐺𝜀) ≤ dim𝐻(𝐸 × 𝐸).

The key point is the product formulae for Hausdorff and Packing dimensions. We
obtain that

1 ≤ dim𝐻(𝐸 × 𝐸) ≤ dim𝐻(𝐸) + dim𝑃 (𝐸) ≤ 2 dim𝑃 (𝐸)

and then dim𝑃 (𝐸) ≥ 1
2 . It also follows that if we achieve small Hausdorff dimen-

sion then the Packing dimension is forced to increase. In particular, the 𝐹 2-set
constructed in [MR10] has Hausdorff dimension 0 and therefore it has Packing
dimension 1.

The following construction can be understood as optimal in the sense of
obtaining the smallest possible dimensions, both Hausdorff and Packing. There is
an 𝐹 2 set 𝐸 such that dim𝐻(𝐸) =

1
2 = dim𝑃 (𝐸):

Example 5.9. The construction is essentially the same as in Example 5.8, but we
use two different sets to obtain all directions. Let 𝐴 be the set of all the numbers
whose expansion in base 4 use only the digits 0 and 1. On the other hand, let 𝐵 be
the set of those numbers which only use the digits 0 and 2. Both sets have Packing
and Hausdorff dimension equal to 1

2 and [0, 1] ⊆ 𝐴+𝐵. The construction follows
then the same pattern as in the previous example.
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1. Introduction, notations and background

The maximal regularity properties of boundary value problems (BVPs) for linear
differential-operator equations (DOEs) have been studied by many researchers
(see, e.g., [1− 5] and the references therein).

Let 𝛾 = 𝛾 (𝑥), 𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a positive measurable function on a
domain Ω ⊂ 𝑅𝑛. Let 𝐿𝑝,𝛾 (Ω;𝐸) denote the space of strongly measurable 𝐸-valued
functions that are defined on Ω with the norm

∥𝑓∥𝐿𝑝,𝛾
= ∥𝑓∥𝐿𝑝,𝛾(Ω;𝐸)

=

(∫
∥𝑓 (𝑥)∥𝑝𝐸 𝛾 (𝑥) 𝑑𝑥

) 1
𝑝

, 1 ≤ 𝑝 <∞.

For 𝛾 (𝑥) ≡ 1, 𝐿𝑝,𝛾 (Ω;𝐸) will be denoted by 𝐿𝑝 = 𝐿𝑝 (Ω;𝐸). Let C be the
set of the complex numbers and

𝑆𝜑 = {𝜆; 𝜆 ∈ C, ∣arg𝜆∣ ≤ 𝜑} ∪ {0} , 0 ≤ 𝜑 < 𝜋.

A linear operator 𝐴 is said to be 𝜑-positive in a Banach space 𝐸 with bound

𝑀 > 0 if 𝐷 (𝐴) is dense on 𝐸 and
∥∥∥(𝐴+ 𝜆𝐼)

−1
∥∥∥
𝐵(𝐸)

≤ 𝑀 (1 + ∣𝜆∣)−1 for any
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𝜆 ∈ 𝑆𝜑, 0 ≤ 𝜑 < 𝜋, where 𝐼 is the identity operator in 𝐸 and 𝐵 (𝐸) is the space
of bounded linear operators in 𝐸.

The 𝜑-positive operator 𝐴 is said to be 𝑅-positive in a Banach space 𝐸 if the

set 𝐿𝐴 =
{
𝜉 (𝐴+ 𝜉𝐼)−1 : 𝜉 ∈ 𝑆𝜑

}
, 0 ≤ 𝜑 < 𝜋 is 𝑅-bounded (see, e.g., [2]). Let

𝐸 (𝐴) denote the space 𝐷 (𝐴) with norm

∥𝑢∥𝐸(𝐴) = (∥𝑢∥𝑝 + ∥𝐴𝑢∥𝑝) 1
𝑝 , 1 ≤ 𝑝 <∞.

Let 𝐸0 and 𝐸 be two Banach spaces and 𝐸0 continuously and densely embed-

ded into 𝐸. Let 𝛾 = 𝛾 (𝑥) be a weight function on (𝑎, 𝑏) and 𝑢[𝑖] =
(
𝛾 (𝑥) 𝑑

𝑑𝑥

)𝑖
𝑢 (𝑥) .

We define the following 𝐸-valued function spaces

𝑊 [𝑚]
𝑝,𝛾 (𝑎, 𝑏;𝐸0, 𝐸) =

{
𝑢 ∈ 𝐿𝑝 (𝑎, 𝑏;𝐸0) , 𝑢[2] ∈ 𝐿𝑝 (𝑎, 𝑏;𝐸) ,

∥𝑢∥
𝑊

[𝑚]
𝑝,𝛾 (𝑎,𝑏;𝐸0,𝐸)

= ∥𝑢∥𝐿𝑝(𝑎,𝑏;𝐸0)
+
∥∥𝑢[2]∥∥

𝐿𝑝(𝑎,𝑏;𝐸)

}
,

𝑊𝑚
𝑝,𝛾 (𝑎, 𝑏;𝐸0, 𝐸) =

{
𝑢 ∈ 𝐿𝑝,𝛾 (𝑎, 𝑏;𝐸0) , 𝑢(2) ∈ 𝐿𝑝,𝛾 (𝑎, 𝑏;𝐸) ,

∥𝑢∥𝑊𝑚
𝑝,𝛾 (𝑎,𝑏;𝐸0,𝐸)

= ∥𝑢∥𝐿𝑝,𝛾(𝑎,𝑏;𝐸0)
+
∥∥𝑢(2)∥∥

𝐿𝑝,𝛾(𝑎,𝑏;𝐸)

}
.

2. Linear degenerate DOEs

Consider the BVP for the singular degenerate differential-operator equation

−𝑥2𝛼
∂2𝑢

∂𝑥2
− 𝑥2𝛽

∂2𝑢

∂𝑦2
+𝐴𝑢+ 𝜆𝑢 = 𝑓 (𝑥, 𝑦) , (2.1)

𝐿1𝑢 =

1∑
𝑖=0

𝛿1𝑖𝑢
[𝑖]
𝑥 (𝑎, 𝑦) = 0,

𝐿2𝑢 =

1∑
𝑖=0

𝛿2𝑖𝑢
[𝑖]
𝑦 (𝑥, 𝑏) = 0

on the domain 𝐺 = (0, 𝑎)× (0, 𝑏) , where

𝑢 = 𝑢 (𝑥, 𝑦) , 𝑢[𝑖]𝑥 =

[
𝑥𝛼 ∂

∂𝑥

]𝑖
𝑢, 𝑢[𝑖]𝑦 =

[
𝑦𝛽 ∂

∂𝑦

]𝑖
𝑢;

𝛿𝑘𝑖 are complex numbers, 𝜆 is a complex parameter, 𝐴 is a linear operator in a Ba-

nach space 𝐸. Let 𝑊
[2]
𝑝,𝛼,𝛽 (𝐺;𝐸 (𝐴) , 𝐸) be an 𝐸-valued function space defined by

𝑊
[2]
𝑝,𝛼,𝛽 (𝐺;𝐸 (𝐴) , 𝐸) =

{
𝑢 ∈ 𝐿𝑝 (𝐺;𝐸 (𝐴)) , 𝑢[2]𝑥 ∈ 𝐿𝑝 (𝐺;𝐸) , 𝑢[2]𝑦 ∈ 𝐿𝑝 (𝐺;𝐸) ,

∥𝑢∥
𝑊

[2]
𝑝,𝛼,𝛽(𝐺;𝐸(𝐴),𝐸)

= ∥𝑢∥𝐿𝑝(𝐺;𝐸(𝐴))
+
∥∥𝑢[2]𝑥

∥∥
𝐿𝑝(𝐺;𝐸)

+
∥∥𝑢[2]𝑦

∥∥
𝐿𝑝(𝐺;𝐸)

<∞
}
.



Singular Degenerate Problems 457

Let 𝛿𝑘1 ∕= 0. The main result is the following:

Theorem (1). Let 𝐸 be an 𝑈𝑀𝐷 space (see[2]), 𝐴 be an 𝑅-positive operator

in 𝐸 and 1 + 1
𝑝 < 𝛼, 𝛽 < (𝑝−1)

2 . Then, problem (1) has a unique solution 𝑢 ∈
𝑊

[2]
𝑝,𝛼,𝛽 (𝐺;𝐸 (𝐴) , 𝐸) for all 𝑓 ∈ 𝐿𝑝 (𝐺;𝐸) and ∣arg𝜆∣ ≤ 𝜑 with sufficiently large

∣𝜆∣ . Moreover, the following coercive uniform estimate holds
2∑

𝑖=0

∣𝜆∣1− 𝑖
2

[∥∥∥∥𝑥𝑖𝛼 ∂𝑖𝑢

∂𝑥𝑖

∥∥∥∥
𝐿𝑝(𝐺;𝐸)

+

∥∥∥∥𝑦𝑖𝛽 ∂𝑖𝑢

∂𝑦𝑖

∥∥∥∥
𝐿𝑝(𝐺;𝐸)

]
+∥𝐴𝑢∥𝐿𝑝(𝐺;𝐸)

≤𝑀 ∥𝑓∥𝐿𝑝(𝐺;𝐸)
.

(2.2)

For proving the main theorem, consider at first the BVP for the singular
degenerate ordinary DOE

(𝐿+ 𝜆)𝑢 = −𝑢[2] (𝑥) + (𝐴+ 𝜆)𝑢 (𝑥) = 𝑓, 𝐿1𝑢 =

1∑
𝑖=0

𝛿𝑖𝑢
[𝑖] (𝑎) = 0, (2.3)

where 𝑢[𝑖] =
[
𝑥𝛼 𝑑

𝑑𝑥

]𝑖
𝑢 (𝑥), 𝛿𝑖 are complex numbers and 𝐴 is a linear operator in

𝐸, 𝛿1 ∕= 0.
In a similar way as [4, Theorem 5.1] we obtain

Theorem (A1). Suppose 𝐸 is an 𝑈𝑀𝐷 space, 𝐴 is an 𝑅 positive operator in

𝐸, 1 + 1
𝑝 < 𝛼 < (𝑝−1)

2 , 𝑝 ∈ (1,∞) . Then, problem (3) has a unique solution

𝑢 ∈ 𝑊
[2]
𝑝,𝛼 (0, 𝑎;𝐸 (𝐴) , 𝐸) for all 𝑓 ∈ 𝐿𝑝 (𝐺;𝐸) and ∣arg𝜆∣ ≤ 𝜑 with sufficiently

large ∣𝜆∣ . Moreover, the following uniform coercive estimate holds
2∑

𝑖=0

∣𝜆∣1− 𝑖
2
∥∥𝑢[𝑖]∥∥

𝐿𝑝(0,𝑎;𝐸)
+ ∥𝐴𝑢∥𝐿𝑝(0,𝑎;𝐸)

≤ 𝐶 ∥𝑓∥𝐿𝑝(0,𝑎;𝐸)
. (2.4)

Let 𝐵 denote the operator generated by problem (3), i.e.,

𝐷 (𝐵) =
{
𝑢 ∈𝑊 [2]

𝑝,𝛼 (0, 𝑎;𝐸 (𝐴) , 𝐸) 𝐿1𝑢 = 0
}
, 𝐵𝑢 = −𝑢[2] +𝐴𝑢.

Theorem A1 implies that the operator 𝐵 is positive so, by the Yosida theorem

(see, e.g., [3, § 5, Theorem 5.6] −𝐵
1
2 is a generator of an analytic semigroup in

𝐿𝑝 (0, 𝑎;𝐸). By reasoning as in [3, Theorem 3.1] we obtain:

Theorem (A2). Let all conditions of Theorem A1 be satisfied. Then, the operator
𝐵 is 𝑅-positive in 𝐿𝑝 (0, 𝑎;𝐸) .

Consider now the following degenerate DOE with the boundary conditions (3):

−𝑥2𝛼𝑢(2) (𝑥) + (𝐴+ 𝜆) 𝑢 (𝑥) = 𝑓, 𝐿1𝑢 = 0. (2.5)
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Theorem (A3). Assume all conditions of Theorem A1 are satisfied. Then, problem

(5) has a unique solution 𝑢 ∈ 𝑊
[2]
𝑝,𝛼 (0, 𝑎;𝐸 (𝐴) , 𝐸) for all 𝑓 ∈ 𝐿𝑝 (0, 𝑎;𝐸) and

∣arg𝜆∣ ≤ 𝜑 with sufficiently large ∣𝜆∣ . Moreover, the following coercive estimate
holds

2∑
𝑖=0

∣𝜆∣1− 𝑖
2
∥∥𝑥𝑖𝛼𝑢(𝑖)

∥∥
𝐿𝑝(0,𝑎;𝐸)

+ ∥𝐴𝑢∥𝐿𝑝(0,𝑎;𝐸)
≤ 𝐶 ∥𝑓∥𝐿𝑝(0,𝑎;𝐸)

. (2.6)

Proof. Since 𝛼 > 1, by [4, Theorem 2.3] for every 𝜀 > 0 there exists a constant
𝐶 (𝜀) such that∥∥𝛼𝑥𝛼−1𝑢[1]

∥∥
𝐿𝑝(0,𝑎;𝐸)

≤ 𝜀 ∥𝑢∥
𝑊

[2]
𝑝,𝛼(0,𝑎;𝐸(𝐴),𝐸)

+ 𝐶 (𝜀) ∥𝑢∥𝐿𝑝(0,𝑎;𝐸)
. (2.7)

Then in view of (7) and Theorem A1 we get∥∥𝛼𝑥𝛼−1𝑢[1]
∥∥
𝐿𝑝(0,𝑎;𝐸)

≤ 𝜀 ∥(𝐵 + 𝜆)𝑢∥𝐿𝑝(0,𝑎;𝐸)
+ 𝐶 (𝜀) ∥𝑢∥𝐿𝑝(0,𝑎;𝐸)

.

Moreover, due to positivity of operator 𝐵 we have

∥𝑢∥𝐿𝑝(0,𝑎;𝐸)
≤ 𝑀

∣𝜆∣ ∥(𝐵 + 𝜆) 𝑢∥𝐿𝑝(0,𝑎;𝐸)
.

Then, for a sufficiently large ∣𝜆∣ by choosing 𝐶(𝜀)𝑀
∣𝜆∣ < 𝜀 we obtain from the above

two estimates ∥∥𝛼𝑥𝛼−1𝑢[1]
∥∥
𝐿𝑝(0,𝑎;𝐸)

≤ 2𝜀 ∥(𝐵 + 𝜆)𝑢∥𝐿𝑝(0,𝑎;𝐸)
. (2.8)

Since −𝑥2𝛼𝑢(2) = −𝑢[2] + 𝛼𝑥𝛼−1𝑢[1], the assertion is obtained from Theorem A1
and the estimate (8) . □

Let 𝑄 denote the operator generated by problem (5), i.e.,

𝐷 (𝑄) =
{
𝑢 ∈𝑊 [2]

𝑝,𝛼 ((0, 𝑎;𝐸 (𝐴) , 𝐸)) , 𝐿1𝑢 = 0
}
, 𝑄𝑢 = −𝑥2𝛼𝑢(2) +𝐴𝑢.

Theorem (A4). Assume all conditions of Theorem A1 are satisfied. Then, the
operator 𝑄+ 𝜇 is 𝑅-positive in 𝐿𝑝 (0, 𝑎;𝐸) for a sufficiently large 𝜇 > 0.

Proof. Indeed, since (𝑄+ 𝜇)𝑢 = (𝐵 + 𝜇) 𝑢 + 𝛼𝑥𝛼−1𝑢[1] from the Theorem A2,
estimate (8) and by perturbation properties of 𝑅-positive operators (e.g., see
[2, Proposition 4,3] we obtain that the operator 𝑄 + 𝜇 is 𝑅-positive for the suffi-
ciently large 𝜇. □

Proof of Theorem 1. Since 𝐿𝑝 (0, 𝑏;𝐿𝑝 (0, 𝑎;𝐸)) = 𝐿𝑝 (𝐺;𝐸) the problem (1) can
be expressed as:

−𝑥2𝛽
𝑑2𝑢

𝑑𝑦2
+ (𝐵 + 𝜆)𝑢 (𝑦) = 𝑓 (𝑥) , 𝐿2𝑢 = 0. (2.9)

By virtue of [1, Theorem 4.5.2] , 𝐹 = 𝐿𝑝 (0, 𝑏;𝐸) ∈ 𝑈𝑀𝐷 provided 𝐸 ∈
𝑈𝑀𝐷, 𝑝 ∈ (1,∞). By Theorem A2, the operator 𝐵 is 𝑅-positive in 𝐹. Then by
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virtue of Theorem A3, for 𝑓 ∈ 𝐿𝑝 (0, 𝑎;𝐹 ) = 𝐿𝑝 (𝐺;𝐸) problem (9) has a unique

solution 𝑢 ∈ 𝑊
[2]
𝑝,𝛼,𝛽 = 𝑊 2

𝑝,𝛽 (0, 𝑎;𝐷 (𝑆) , 𝐹 ) and the operator 𝑄 generated by

problem (8) has a bounded inverse from 𝐿𝑝 (𝐺;𝐸) to 𝑊
[2]
𝑝,𝛼,𝛽 . So, we obtain the

assertion. □

3. Nonlinear degenerate DOE

Consider now the following regular degenerate nonlinear problem

−𝐷[2]
𝑥 𝑢−𝐷[2]

𝑦 𝑢+Φ
(
𝑥, 𝑦, 𝑢, 𝑢[1]𝑥 , 𝑢[1]𝑦

)
𝑢 = 𝐹

(
𝑥, 𝑦, 𝑢, 𝑢[1]𝑥 , 𝑢[1]𝑦

)
, (3.1)

𝐿1𝑘𝑢 =

𝑚1𝑘∑
𝑖=0

𝛼1𝑘𝑖𝑢
[𝑖]
𝑥 (0, 𝑦) + 𝛽1𝑘𝑖𝑢

[𝑖]
𝑥 (𝑎, 𝑦) = 0,

𝐿2𝑘𝑢 =

𝑚2𝑘∑
𝑖=0

𝛼2𝑘𝑖𝑢
[𝑖]
𝑦 (𝑥, 0) + 𝛽2𝑘𝑖𝑢

[𝑖]
𝑦 (𝑥, 𝑏) = 0

on the domain 𝐺 = (0, 𝑎)× (0, 𝑏) , 𝑎 ∈ (0, 𝑎0) , 𝑏 ∈ (0, 𝑏0) , where 𝑚𝑗𝑘 ∈ {0, 1} and
𝑘, 𝑗 = 1, 2. Let

𝑌 =𝑊
[2]
𝑝,𝛼,𝛽 (𝐺;𝐸 (𝐴) , 𝐸) , 𝑋1 = 𝐿𝑝 (0, 𝑎;𝐸) ,

𝑌1 =𝑊 [2]
𝑝,𝛼 (0, 𝑎;𝐸 (𝐴) , 𝐸) , 𝑋2 = 𝐿𝑝 (0, 𝑏;𝐸) ,

𝑌2 =𝑊
[2]
𝑝,𝛽 (0, 𝑏;𝐸 (𝐴) , 𝐸) , 𝐸𝑘 = (𝑌3−𝑘, 𝑋3−𝑘)𝜃𝑘,𝑝

,

𝐸0 = 𝐸2
1 × 𝐸2, 𝜃1 =

1

2
+

1

2𝑝 (1− 𝛼)
, 𝜃2 =

1

2
+

1

2𝑝 (1− 𝛽)
,

0 < 𝛼, 𝛽 < 1− 1

𝑝
, 𝛼𝑘𝑗 = 𝛼𝑘𝑗𝑚𝑘

, 𝛽𝑘𝑗 = 𝛽𝑘𝑗𝑚𝑘
, 𝑘, 𝑗 = 1, 2,

where (𝑌𝑖, 𝑋𝑖)𝜃,𝑝, 𝜃 ∈ (0, 1) and 𝑝 ∈ [1,∞] denote the real interpolation spaces
[6, §1.3.2] .
Remark 3.1. By using J. Lions-I. Petree trace theorem (see, e.g., [6, § 1.8.]) we
obtain that there are constants 𝑀𝑘 such that

sup
𝑥∈[0,𝑎]

∥𝑤∥𝐸1
≤𝑀1 ∥𝑤∥𝑊 [2]

𝑝,𝛼,𝛽
(𝐺;𝐸(𝐴),𝐸)

,

sup
𝑥∈[0,𝑎]

∥∥∥𝑤[1]
𝑥

∥∥∥
𝐸1

≤𝑀3 ∥𝑤∥𝑊 [2]
𝑝,𝛼,𝛽(𝐺;𝐸(𝐴),𝐸)

,

sup
𝑦∈[0,𝑏]

∥∥∥𝑤[1]
𝑦

∥∥∥
𝐸2

≤𝑀2 ∥𝑤∥𝑊 [2]
𝑝,𝛼,𝛽(𝐺;𝐸(𝐴),𝐸)

.

Condition 1. Assume the following satisfied:

(1) 𝐸 is an 𝑈𝑀𝐷 space, for 𝑉 = {𝜐0, 𝜐1, 𝜐2} , 𝜐0 ∈ 𝐸1, 𝜐𝑘 ∈ 𝐸𝑘, Φ (𝑥, 𝑦, 𝑉 ) =
𝐴 (𝑥, 𝑦) = 𝐴 is a 𝑅-positive operator in 𝐸 uniformly with respect to 𝑉 and
𝑥, 𝑦 ∈ 𝐺0, where 𝐷 (𝐴 (𝑥, 𝑦)) does not depend on 𝑉 and 𝑥, 𝑦;
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(2) Φ : 𝐺0 × 𝐸0 → 𝐵 (𝐸 (𝐴) , 𝐸) is continuous and

(−1)𝑚𝑘1 𝛼𝑘1𝛽𝑘2 − (−1)𝑚𝑘2 𝛼𝑘2𝛽𝑘1 ∕= 0, 𝑘 = 1, 2;

(3) the function 𝐹
(
𝑥, 𝑦, 𝑢 (𝑥, 𝑦) , 𝑢

[1]
𝑥 (𝑥, 𝑦) , 𝑢

[1]
𝑦 (𝑥, 𝑦)

)
is a measurable function

for 𝑢 ∈ 𝑌 ; 𝐹 (𝑥, 𝑦, .) is continuous with respect to 𝑥, 𝑦 ∈ 𝐺0 and 𝐹 (𝑥, 𝑦, 0) ∈
𝐿𝑝 (𝐺;𝐸) . Moreover, for each 𝑟 > 0 there exists 𝜇 (𝑟) such that∥∥𝐹 (𝑥, 𝑈)− 𝐹

(
𝑥, �̄�

)∥∥
𝐸
≤ 𝜇 (𝑟)

∥∥𝑈 − �̄�
∥∥
𝐸0

for a.a. 𝑥, 𝑦 ∈ 𝐺0, 𝑈 = {𝑢0, 𝑢1, 𝑢2}, �̄� = {�̄�0, �̄�1, 𝑢2}, 𝜐0, 𝜐0 ∈ 𝐸1, 𝑢𝑘, �̄�𝑘 ∈
𝐸𝑘, 𝑘 = 1, 2 and ∥𝑈∥𝐸0

≤ 𝑟,
∥∥�̄�∥∥

𝐸0
≤ 𝑟, 0 < 𝛼, 𝛽 < 1− 1

𝑝 , 1 < 𝑝 <∞;
(4) moreover, for each 𝑟 > 0 there is a positive constant 𝐿 (𝑟) such that∥∥[Φ (𝑥, 𝑦, 𝑈)− Φ (

𝑥, 𝑦, �̄�
)]

𝜐
∥∥
𝐸
≤ 𝐿 (𝑟)

∥∥𝑈 − �̄�
∥∥
𝐸0
∥𝐴𝜐∥𝐸

for 𝑥, 𝑦 ∈ 𝐺0, ∥𝑈∥𝐸0
,
∥∥�̄�∥∥

𝐸0
≤ 𝑟 and 𝜐 ∈ 𝐷 (𝐴 (𝑥, 𝑦)) .

We prove here the existence and uniqueness of the nonlinear problem (11).

Theorem (2). Let Condition 1 hold. Then there is 𝑎 ∈ (0 𝑎0] , 𝑏 ∈ (0 𝑏0] such that

problem (11) has a unique solution that belongs to 𝑊
[2]
𝑝,𝛼,𝛽 ((𝐺;𝐸 (𝐴) , 𝐸) .

Proof. By virtue of [4, Theorem 3] the regular degenerate linear problem −𝐷
[2]
𝑥 𝑢−

𝐷
[2]
𝑦 𝑢 + 𝐴𝑢 = 𝑓, 𝐿𝑘𝑗𝑢 = 0 is maximal regular in 𝐿𝑝, where 𝐿𝑘𝑗𝑢 are the same

boundary conditions as in (11) . We solve the problem (11) locally by means of
maximal regularity of this linear problem via the contraction mapping theorem.
Consider a ball 𝐵𝑟 = {𝜐 ∈ 𝑌, ∥𝜐∥𝑌 ≤ 𝑟} . Define a map 𝑈 on 𝐵𝑟 by 𝑈𝜐 = 𝑤,
where 𝑤 is a solution of the linearized problem. By using the coercivity of the
above linear problem and the Remark 1 we show that 𝑈 (𝐵𝑟) ⊂ 𝐵𝑟 and 𝑈 is a
contraction operator in 𝑌. This fact implies the assertion. □

Remark 3.2. There are a lot of positive operators in concrete Banach spaces.
Therefore, putting concrete Banach spaces instead of 𝐸 and concrete differential,
pseudo differential operators, or finite, infinite matrices, etc. instead of operator
𝐴 on equations (1) and (11) we can obtain the maximal regularity properties of
different class of linear and nonlinear differential equations or system of equations
by virtue of Theorem 1 and Theorem 2.
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Harmonic Spheres Conjecture

Armen Sergeev

Abstract. We discuss the harmonic spheres conjecture, relating the space of
harmonic maps of the Riemann sphere into the loop space of a compact Lie
group 𝐺 with the moduli space of Yang–Mills 𝐺-fields on four-dimensional
Euclidean space.
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Atiyah theorem, Donaldson theorem, Hilbert–Schmidt Grassmannian.

Introduction

Harmonic spheres conjecture relates two kinds of mathematical objects, emerg-
ing in theoretical physics – harmonic spheres, arising in sigma-model theory, and
Yang–Mills fields, studied in gauge field theory. This conjecture is motivated by the
Atiayh theorem [1], establishing a one-to-one correspondence between the moduli
space of 𝐺-instantons on four-dimensional Euclidean space ℝ4 and the space of
holomorphic spheres in the loop space Ω𝐺 of a compact Lie group 𝐺, given by
holomorphic maps of the Riemann sphere into Ω𝐺. Harmonic spheres conjecture
asserts that it should exist a one-to-one correspondence between the moduli space
of Yang–Mills 𝐺-fields on ℝ4 and the space of based holomorphic spheres in the
loop space Ω𝐺. We formulate this conjecture in Section 7 and give an idea of its
proof.

Brief content of the paper. In the first Sections 1 and 2 we introduce the
objects related by the conjecture, namely, harmonic spheres and Yang–Mills fields.
The main motivation behind the conjecture comes from the twistor theory and
the next Sections 3 and 4 are devoted to twistor interpretations of the introduced

This paper is an exposition of the talk presented at IWOTA-2011, based on the author’s paper,
published in “Theor. Math. Physics” 164(2010), 1140–1150.
While preparing this paper the author was partly supported by the RFBR grants 10-01-00178,

11-01-12033-ofi-m-2011, the program of supporting the Leading Scientific Schools (grant NSh-
7675.2010.1), and Scientific Program of Russian Academy of Sciences “Nonlinear dynamics”.
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objects. In particular, twistor interpretation of harmonic spheres allows to obtain
a description of harmonic spheres in complex Grassmann manifolds, presented in
Section 5. In Section 6 we formulate Atiyah theorem and give an idea of its proof.
This theorem, combined with a theorem of Donaldson, yields an interpretation
of 𝐺-instantons on ℝ4 in terms of holomorphic spheres in Ω𝐺. Harmonic spheres
conjecture, formulated in Section 7, may be considered as a “realification” of this
result. The idea of its proof, proposed in Section 9, is the following. Instead of
proving the original conjecture one may try to prove its twistor analogue obtained
by “pulling up” the objects, considered in the conjecture, to the associated twistor
spaces. Then we are back to holomorphic situation and can use for the proof of
twistor conjecture the methods, developed by Atiyah and Donaldson.

1. Harmonic spheres

We consider smooth maps 𝜑 : 𝑆2 → 𝑁 from the 2-sphere into oriented Riemannian
manifolds 𝑁 . The 2-sphere 𝑆2 is identified with the Riemann sphere ℙ1 provided
with the standard complex structure.

Definition 1.1. A smooth map 𝜑 : ℙ1 → 𝑁 is called harmonic if it is extremal with
respect to the energy functional given by the Dirichlet integral

𝐸(𝜑) =
1

2

∫
ℂ

∣𝑑𝜑∣2𝑁
∣𝑑𝑧 ∧ 𝑑𝑧∣
(1 + ∣𝑧∣2)2

where the modulus of differential 𝑑𝜑 is computed with respect to the Riemannian
metric of 𝑁 .

If the manifold 𝑁 is Kähler, i.e., has a complex structure, compatible with
the Riemannian metric, then holomorphic and anti-holomorphic maps 𝜑 : ℙ1 → 𝑁
realize local minima of the energy 𝐸(𝜑). In the case of 𝑁 = ℙ1 such maps exhaust
all harmonic maps 𝜑 : ℙ1 → ℙ1. More precisely, all harmonic maps 𝜑 : ℙ1 →
ℙ1 are given by rational holomorphic or anti-holomorphic maps 𝜑. However, for
dimℂ𝑁 > 1 there exist usually also non-minimal harmonic maps.

2. Instantons and Yang–Mills fields

Let 𝐺 be a compact Lie group and 𝐴 is a 𝐺-connection (gauge potential) on ℝ4

given by a 1-form of type

𝐴 =
4∑

𝜇=1

𝐴𝜇(𝑥)𝑑𝑥𝜇

with smooth coefficients 𝐴𝜇(𝑥), taking values in the Lie algebra 𝔤 of 𝐺. Denote by
𝐹𝐴 the curvature of 𝐴 (gauge field) given by the 2-form

𝐹𝐴 =

4∑
𝜇,𝜈=1

𝐹𝜇𝜈(𝑥)𝑑𝑥𝜇 ∧ 𝑑𝑥𝜈
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with coefficients, computed by the formula

𝐹𝜇𝜈 = ∂𝜇𝐴𝜈 − ∂𝜈𝐴𝜇 + [𝐴𝜇, 𝐴𝜈 ]

where ∂𝜇 := ∂/∂𝑥𝜇, 𝜇 = 1, 2, 3, 4, and [⋅, ⋅] denotes the commutator in Lie algebra 𝔤.
Define the Yang–Mills action functional by the formula

𝑆(𝐴) =
1

2

∫
ℝ4

tr(𝐹𝐴 ∧ ∗𝐹𝐴)

where ∗ is the Hodge operator on ℝ4, and the trace tr is computed with the help
of a fixed invariant inner product on the Lie algebra 𝔤. The functional 𝑆(𝐴) is
invariant under gauge transformations given by

𝐴 1−→ 𝐴𝑔 := 𝑔−1𝑑𝑔 + 𝑔−1𝐴𝑔

where 𝑔 : ℝ4 → 𝐺 is a smooth map, and 𝐺 acts on its Lie algebra 𝔤 by adjoint
representation. It follows from the invariance of 𝑆(𝐴) under gauge transformations
that the functional 𝑆(𝐴) depends in fact only on the class of the connection 𝐴
modulo gauge transformations.

Definition 2.1. Gauge fields with finite action 𝑆(𝐴) < ∞, which are extremal
for the functional 𝑆(𝐴), are called the Yang–Mills fields. Local minima of this
functional are called instantons or anti-instantons depending on the sign of their
topological charge given by the formula

𝑘(𝐴) =
1

8𝜋2

∫
ℝ4

tr(𝐹𝐴 ∧ 𝐹𝐴).

Comparing harmonic maps with Yang-Mills fields we notice a formal analogy
between:

{(anti)holomorphic maps} ←→ {(anti)instantons }
and

{harmonic maps} ←→ {Yang–Mills fields} .

We shall see in Sections 6 and 7 that this formal analogy has, in fact, a deep
meaning.

3. Twistor interpretation of instantons

There is a well-known twistor bundle over the 4-sphere 𝑆4

𝜋 : ℙ3
ℙ
1−→ 𝑆4 (3.1)

where ℙ3 is the three-dimensional complex projective space. This bundle may be
considered as a complex analogue of the Hopf bundle

𝑆7
𝑆3

−→ 𝑆4.
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To define (3.1) one should identify 𝑆4 with the quaternion projective line ℍℙ1

which consists of pairs [𝑧1 + 𝑧2𝑗, 𝑧
′
1 + 𝑧′2𝑗] of quaternions (not equal to zero simul-

taneously), defined up to multiplication from the right by a nonzero quaternion.
Then the twistor bundle

𝜋 : ℙ3
ℙ
1−→ ℍℙ1

will be given by a tautological formula

[𝑧1, 𝑧2, 𝑧3, 𝑧4] 1−→ [𝑧1 + 𝑧2𝑗, 𝑧3 + 𝑧4𝑗]

where the 4-tuple [𝑧1, 𝑧2, 𝑧3, 𝑧4] of complex numbers is defined up to multiplication
by a nonzero complex number while the pair [𝑧1 + 𝑧2𝑗, 𝑧3 + 𝑧4𝑗] of quaternions is
defined up to multiplication by a nonzero quaternion.

The restriction of the twistor bundle (3.1) to the Euclidean space ℝ4 = 𝑆4∖∞
is the twistor bundle

𝜋 : ℙ3 ∖ ℙ1∞ −→ ℝ4 (3.2)

over ℝ4 where the eliminated projective line ℙ1∞ is identified with the fibre of (3.1)
at infinity.

According to Atiyah–Hitchin–Singer [2], the fibre of (3.2) at a point 𝑥 ∈ ℝ4

can be identified with the space of complex structures on the tangent space 𝑇𝑥ℝ4 ∼=
ℝ4, compatible with metric and orientation. Respectively, smooth sections of (3.2)
are interpreted as almost complex structures on ℝ4.

In terms of the twistor bundle 𝜋 : ℙ3 ∖ ℙ1 → ℝ4 the moduli space of 𝐺-
instantons, i.e., the quotient of the space of all 𝐺-instantons on ℝ4 modulo gauge
transformations, admits the following interpretation given by Atiyah–Ward theo-
rem:{

moduli space of 𝐺-
instantons on ℝ4

}
←→

⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ3, holomorphi-
cally trivial on 𝜋-fibers

⎫⎬⎭ .

Here, the term “based” means that the transformations, defining the equivalence
of holomorphic 𝐺ℂ-bundles over ℙ3, should be identical on ℙ1∞.

This result has the following two-dimensional reduction to the space ℙ1× ℙ1

given by Donaldson theorem:{
moduli space of 𝐺-
instantons on ℝ4

}
←→

⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ1×ℙ1, holomor-
phically trivial on the union ℙ1∞ ∪ ℙ1∞

⎫⎬⎭ .

4. Twistor interpretation of harmonic spheres

Using an interpretation of twistor bundle ℙ3 → 𝑆4, given in Sec.3, we can define
a twistor bundle over any even-dimensional oriented Riemannian manifold 𝑁 . By
definition, it is the bundle of complex structures on the manifold 𝑁 , compatible
with metric and orientation. In other words, 𝜋 : 𝑍 → 𝑁 is the bundle, associated
with the bundle of oriented orthonormal frames on 𝑁 , with fibre at 𝑥 ∈ 𝑁 given
by the space of complex structures 𝐽𝑥 on the tangent space 𝑇𝑥𝑁 , compatible with
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metric and orientation. This space can be identified with the homogeneous space
SO(2𝑛)/U(𝑛) where 2𝑛 is the dimension of 𝑁 . Due to [2], the twistor space 𝑍 can
be always provided with a natural almost complex structure, denoted by 𝒥 1. This
almost complex structure is integrable if the manifold 𝑁 is conformally flat.

However, for the description of harmonic spheres in 𝑁 we have to use another
almost complex structure defined in the following way. The Levi-Civita connection
on 𝑁 generates a connection on the twistor bundle 𝜋 : 𝑍 → 𝑁 . By definition, the
new almost complex structure on 𝑍, denoted by 𝒥 2, is equal to 𝒥 1 in the direc-
tions, horizontal with respect to the introduced connection, and to −𝒥 1 in vertical
directions. This structure was introduced in [5] and is always non integrable. Har-
monic spheres in 𝑁 have the following interpretation in its terms.

Theorem 4.1 (Eells–Salamon [5]). Projections 𝜑 = 𝜋 ∘ 𝜓 of the maps 𝜓 : ℙ1 →
𝑍, which are holomorphic with respect to the almost complex structure 𝒥 2, are
harmonic.

This theorem allows us to construct harmonic spheres in 𝑁 from almost
holomorphic spheres in the twistor space 𝑍. So the original “real” problem of con-
struction of harmonic spheres in the Riemannian manifold 𝑁 is partially reduced
to a “complex” problem of construction of holomorphic spheres in the almost com-
plex manifold 𝑍. It seems from the first glance that the latter problem is in no
sense easier than the original one, especially taking into account that the almost
complex structure 𝒥 2 is never integrable. And it is well known that such a com-
plex structure, for example, may have no non-constant holomorphic functions even
locally. However, we are dealing not with holomorphic functions 𝑓 : 𝑍 → ℂ but
rather with dual objects given by maps 𝜓 : ℂ → 𝑍, holomorphic with respect to
the almost complex structure 𝒥 2. Such maps are solutions of the ∂̄𝐽 -equation on
ℂ where 𝐽 := 𝜓∗(𝒥 2) is an almost complex structure on ℂ, induced by the map
𝜓 (which is integrable as any almost complex structure on a Riemann surface). In
this way, the construction of holomorphic spheres in the space (𝑍,𝒥 2) is reduced
to the solution of a nonlinear Cauchy–Riemann equation on ℂ with respect to the
complex structure 𝐽 . In particular, such an equation has many local solutions.

5. Harmonic spheres in complex Grassmann manifolds

Let us take for the target manifold 𝑁 the complex Grassmann manifold 𝐺𝑟(ℂ𝑑)
of 𝑟-planes in ℂ𝑑 and apply the twistor approach to the description of harmonic
spheres in 𝐺𝑟(ℂ𝑑). In this case it is natural to choose for the twistor bundle over
𝐺𝑟(ℂ𝑑) the bundle of complex structures on 𝐺𝑟(ℂ𝑑) which are invariant under the
action of the unitary group U(𝑑). Such bundles coincide with the flag bundles over
𝐺𝑟(ℂ𝑑) which will be defined next.

Definition 5.1. The flag manifold 𝐹 r(ℂ𝑑) in ℂ𝑑 of type r = (𝑟1, . . . , 𝑟𝑛) with
𝑑 = 𝑟1 + ⋅ ⋅ ⋅+ 𝑟𝑛 consists of the flags 𝒲 = (𝑊1, . . . ,𝑊𝑛), i.e., nested sequences of
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complex subspaces

𝑊1 ⊂ ⋅ ⋅ ⋅ ⊂𝑊𝑛 = ℂ𝑑

such that the dimension of the subspace 𝑉1 := 𝑊1 is equal to 𝑟1 and dimensions
of the subspaces 𝑉𝑖 :=𝑊𝑖 ⊖𝑊𝑖−1 are equal to 𝑟𝑖 for 1 < 𝑖 ≤ 𝑛.

The flag manifold 𝐹 r(ℂ𝑑) admits a homogeneous representation of the fol-
lowing type

𝐹 r(ℂ
𝑑) = U(𝑑)/U(𝑟1)× ⋅ ⋅ ⋅ ×U(𝑟𝑛).

It is a compact complex manifold which has an U(𝑑)-invariant complex structure,
denoted again by 𝒥 1.

In order to construct the twistor flag bundle over 𝐺𝑟(ℂ𝑑) we fix an ordered
subset 𝜎 ⊂ {1, . . . , 𝑛} such that ∑𝑖∈𝜎 𝑟𝑖 = 𝑟 and define the flag bundle

𝜋𝜎 : 𝐹 r(ℂ
𝑑) −→ 𝐺𝑟(ℂ

𝑑)

by

𝜋𝜎 :𝒲 = (𝑊1, . . . ,𝑊𝑛) 1−→𝑊 :=
⊕
𝑖∈𝜎

𝑉𝑖.

As in Sec. 4, we can provide the flag bundle 𝜋𝜎 with an almost complex structure
𝒥 2

𝜎 so that the following analogue of Theorem 4.1 will hold.

Theorem 5.2 (Burstall–Salamon [3]). The flag bundle

𝜋𝜎 : 𝐹 r(ℂ
𝑑) −→ 𝐺𝑟(ℂ

𝑑),

provided with the almost complex structure 𝒥 2
𝜎 , is a twistor bundle, i.e., the projec-

tion 𝜑 = 𝜋𝜎 ∘𝜓 of any almost holomorphic sphere 𝜓 : ℙ1 → 𝐹 r(ℂ𝑑) is a harmonic
sphere 𝜑 : ℙ1 → 𝐺𝑟(ℂ𝑑). Moreover, the converse assertion is also true: any har-
monic sphere 𝜑 : ℙ1 → 𝐺𝑟(ℂ𝑑) may be obtained in this way from some flag bundle
𝜋𝜎 : 𝐹 r(ℂ𝑑)→ 𝐺𝑟(ℂ𝑑).

So in this case the problem of construction of harmonic spheres in 𝐺𝑟(ℂ𝑑) is
completely reduced to the problem of construction of almost holomorphic spheres
in flag bundles. Using this reduction, it was shown in [3] that any harmonic sphere
in 𝐺𝑟(ℂ𝑑) may be constructed by a Bäcklund-type procedure combining holomor-
phic and anti-holomorphic spheres.

6. Atiyah theorem

Now we take for the target manifold 𝑁 an infinite-dimensional Kähler manifold
given by the loop space of a compact Lie group.

Definition 6.1. The loop space of a compact Lie group 𝐺 is the quotient

Ω𝐺 := 𝐿𝐺/𝐺

of the group 𝐿𝐺 = 𝐶∞(𝑆1, 𝐺) of smooth loops in 𝐺 by the subgroup 𝐺 of constant
maps 𝑆1 → 𝑔0 ∈ 𝐺.
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The space Ω𝐺 is a Kähler–Fréchet manifold which can be provided with an
𝐿𝐺-invariant complex structure induced from the representation of Ω𝐺 as the
quotient of the complex loop group 𝐿𝐺ℂ:

Ω𝐺 = 𝐿𝐺ℂ/𝐿+𝐺
ℂ

where 𝐺ℂ is the complexification of the group 𝐺 and the subgroup 𝐿+𝐺
ℂ consists

of the loops 𝛾 ∈ 𝐿𝐺ℂ which can be smoothly extended to holomorphic maps of
the unit disc Δ into 𝐺ℂ.

Switching to Atiyah theorem, recall the formulation of the Donaldson theo-
rem:{

moduli space of 𝐺-
instantons on ℝ4

}
←→

⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ1×ℙ1, holomor-
phically trivial on the union ℙ1∞ ∪ ℙ1∞

⎫⎬⎭ .

Atiyah theorem asserts that the right-hand side of this correspondence may
be identified with the space of holomorphic spheres in Ω𝐺. In more detail, there
is a one-to-one correspondence between:⎧⎨⎩(based) equivalence classes of holomor-phic 𝐺ℂ-bundles over ℙ1×ℙ1, holomor-
phically trivial on the union ℙ1∞ ∪ ℙ1∞

⎫⎬⎭←→
{
based holomorphic spheres
𝑓 : ℙ1 → Ω𝐺, sending ∞
into the origin of Ω𝐺

}
.

The proof of Atiyah theorem is based on the following construction. Consider
the restriction of a holomorphic 𝐺ℂ-bundle over ℙ1 × ℙ1 to a projective line ℙ1𝑧
which is parallel to 𝑃 1

∞ and goes through the point ℙ1×{𝑧}. The restricted bundle
is determined by a transition function

𝑓𝑧 : 𝑆
1 −→ 𝐺ℂ

in the covering ℙ1𝑧 = Δ+ ∪Δ− of the sphere ℙ1𝑧 by lower and upper hemispheres
which is holomorphic in a neighborhood of the equator 𝑆1 = Δ+ ∩ Δ−. Hence,
𝑓𝑧 ∈ 𝐿𝐺ℂ and we obtain a map

𝑓 : ℙ1 ∋ 𝑧 1−→ 𝑓𝑧 ∈ 𝐿𝐺ℂ 1−→ 𝑓(𝑧) ∈ Ω𝐺 = 𝐿𝐺ℂ/𝐿+𝐺
ℂ.

This map is holomorphic and based if and only if the original 𝐺ℂ-bundle over
ℙ1 × ℙ1 is holomorphic and trivial on the union ℙ1∞ ∪ ℙ1∞.

7. Harmonic spheres conjecture

The Donaldson and Atiyah theorems imply that there is a one-to-one correspon-
dence between:{

moduli space of 𝐺-
instantons on ℝ4

}
←→

{
based holomorphic
spheres 𝑓 : ℙ1 → Ω𝐺

}
.

In other words, we have a one-to-one correspondence between local minima of two
functionals, introduced before, namely the Yang–Mills action, defined on gauge 𝐺-
fields on ℝ4, and energy, defined on smooth spheres in the loop space Ω𝐺. Recall
that local minima of Yang–Mills action are given by instantons and anti-instantons
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on ℝ4 while local minima of energy are given by holomorphic and anti-holomorphic
spheres in Ω𝐺. Replacing local minima by critical points of these functionals, we
arrive at the harmonic spheres conjecture asserting that it should exist a one-to-one
correspondence between:{

moduli space of Yang–
Mills 𝐺-fields on ℝ4

}
←→

{
based harmonic
spheres 𝑓 : ℙ1 → Ω𝐺

}
.

We can also interpret this replacement of local minima of our functionals by
their critical points as a “realification” procedure. Indeed, if we replace smooth
spheres in the right-hand side of the diagram by smooth functions 𝑓 : ℂ → ℂ
then the above procedure will reduce to the replacement of holomorphic and anti-
holomorphic functions by arbitrary harmonic functions (which can be represented
as sums of holomorphic and anti-holomorphic functions). In the case of smooth
spheres in Ω𝐺 this switching from holomorphic and anti-holomorphic spheres to
harmonic ones becomes non-trivial because of the non-linear character of Euler–
Lagrange equations for the energy.

Unfortunately, a direct generalization of Atiyah–Donaldson proof to the har-
monic case is not possible since the proof of Donaldson theorem, using the monad
method, is purely holomorphic and does not extend directly to the harmonic case.
However, one can try to reduce the proof of harmonic spheres conjecture to the
holomorphic case by “pulling-up” the both sides of the correspondence in this con-
jecture to the associated twistor spaces, thus reducing the proof to the holomorphic
case. The problem is that, while having a good description of the twistor space of
harmonic spheres in Ω𝐺 (presented in the next Section), we do not know such a
description of the moduli space of Yang–Mills fields on ℝ4. Apart from the proof
of the harmonic spheres conjecture, it would be also very interesting to obtain the
twistor description of this moduli space.

8. Twistor bundle over the loop space

For the construction of the twistor bundle over the loop space Ω𝐺 we first embed
Ω𝐺 into an infinite-dimensional Grassmannian and then construct the twistor
bundle over this Grassmannian by analogy with the finite-dimensional case.

We take for this infinite-dimensional Grassmannian the Hilbert–Schmidt
Grassmannian of a complex Hilbert space 𝐻 , provided with a polarization, i.e.,
a decomposition

𝐻 = 𝐻+ ⊕𝐻−
into the direct orthogonal sum of closed infinite-dimensional subspaces. In the case
when𝐻 is identified with the Hilbert space 𝐿20(𝑆

1,ℂ) of square integrable functions
on the circle with zero average we take a polarization given by the subspaces

𝐻± =

{
𝛾 ∈ 𝐻 : 𝛾 =

∑
±𝑘>0

𝛾𝑘𝑒
𝑖𝑘𝜃

}
.
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Definition 8.1. The Hilbert–Schmidt Grassmannian GrHS(𝐻) consists of closed
subspaces 𝑊 ⊂ 𝐻 such that the orthogonal projection 𝜋+ :𝑊 → 𝐻+ is Fredholm
and the orthogonal projection 𝜋− :𝑊 → 𝐻− is Hilbert–Schmidt.

For a given subspace 𝑊 ∈ GrHS(𝐻) the Fredholm index of projection 𝜋+ :
𝑊 → 𝐻+ is called the virtual dimension of the subspace 𝑊 .

The Hilbert–Schmidt Grassmannian GrHS(𝐻) admits a homogeneous repre-
sentation of the form

GrHS(𝐻) =
UHS(𝐻)

U(𝐻+)×U(𝐻−)
where the unitary Hilbert–Schmidt group UHS(𝐻) is

UHS(𝐻) = {𝐴 ∈ U(𝐻) : 𝜋− ∘𝐴 ∘ 𝜋+ is Hilbert–Schmidt}.
It implies that GrHS(𝐻) is a Hilbert–Kähler manifold, consisting of a count-

able number of connected components of a fixed virtual dimension:

GrHS(𝐻) =
∪
𝑑

𝐺𝑑(𝐻)

where

𝐺𝑑(𝐻) = {𝑊 ∈ GrHS(𝐻) : virt.dim𝑊 = 𝑑}.
The virtual flag manifold 𝐹 𝑑

r(𝐻) is defined by analogy with the finite-dimen-
sional case.

Definition 8.2. The virtual flag manifold 𝐹 𝑑
r(𝐻) in 𝐻 of type r = (𝑟1, . . . , 𝑟𝑛) with

𝑑 = 𝑟1 + ⋅ ⋅ ⋅ + 𝑟𝑛 consists of flags 𝒲 = (𝑊1, . . . ,𝑊𝑛), i.e., nested sequences of
complex subspaces

𝑊1 ⊂ ⋅ ⋅ ⋅ ⊂𝑊𝑛 ⊂ 𝐻

such that the virtual dimension of the subspace 𝑉1 := 𝑊1 is equal to 𝑟1, and
dimensions of subspaces 𝑉𝑖 :=𝑊𝑖 ⊖𝑊𝑖−1 are equal to 𝑟𝑖 for 1 < 𝑖 ≤ 𝑛.

For the construction of the twistor flag bundle over the Grassmann manifold
𝐺𝑟(𝐻) we fix again an ordered subset 𝜎 ⊂ {1, . . . , 𝑛} so that ∑𝑖∈𝜎 𝑟𝑖 = 𝑟 and
define the virtual flag bundle

𝜋𝜎 : 𝐹
𝑑
r(𝐻) −→ 𝐺𝑟(𝐻)

by

𝜋𝜎 :𝒲 = (𝑊1, . . . ,𝑊𝑛) 1−→𝑊 :=
⊕
𝑖∈𝜎

𝑉𝑖.

As in the finite-dimensional case, we can provide the virtual flag bundle 𝜋𝜎 with
an almost complex structure 𝒥 2

𝜎 so that the following analogue of Theorem 5.2
will hold.

Theorem 8.3. The virtual flag bundle

𝜋𝜎 : (𝐹
𝑑
r(𝐻),𝒥 2

𝜎 ) −→ 𝐺𝑟(𝐻),
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provided with the almost complex structure 𝒥 2
𝜎 , is a twistor bundle, i.e., the pro-

jection 𝜑 = 𝜋𝜎 ∘ 𝜓 of any almost holomorphic sphere 𝜓 : ℙ1 → 𝐹 𝑑
r(𝐻) to 𝐺𝑟(𝐻)

is a harmonic sphere 𝜑 : ℙ1 → 𝐺𝑟(𝐻) in 𝐺𝑟(𝐻).

We believe that the second part of Theorem 5.2, namely, the conversion of
the above theorem is also true in this situation.

We construct now an isometric embedding of the loop space Ω𝐺 into the
Hilbert–Schmidt Grassmannian. Suppose that the compact Lie group 𝐺 is realized
as a subgroup of the unitary group U(𝑁) and construct an embedding of Ω𝐺 into
the Grassmannian GrHS(𝐻) where we take for the Hilbert space 𝐻 the space of
vector functions 𝐿20(𝑆

1,ℂ𝑁 ).
Let us construct first an embedding of the loop group 𝐿𝐺 into the unitary

Hilbert–Schmidt group UHS(𝐻). For that we associate with a loop 𝛾, belonging
to the space 𝐿𝐺 = 𝐶∞(𝑆1, 𝐺) ⊂ 𝐶∞(𝑆1,U(𝑁)), a multiplication operator 𝑀𝛾 in
the Hilbert space 𝐻 = 𝐿20(𝑆

1,ℂ𝑁 ), acting by the formula:

ℎ ∈ 𝐻 = 𝐿20(𝑆
1,ℂ𝑁 ) 1−→𝑀𝛾ℎ(𝑧) := 𝛾(𝑧)ℎ(𝑧), 𝑧 ∈ 𝑆1.

In other words, 𝑀𝛾ℎ is a vector function from 𝐻 = 𝐿20(𝑆
1,ℂ𝑁 ), obtained by

the pointwise application of the matrix function 𝛾 ∈ 𝐶∞(𝑆1,U(𝑁)) to the vector
function ℎ ∈ 𝐻 = 𝐿20(𝑆

1,ℂ𝑁 ). It is easy to check (cf. [6], Sec. 6.3) that the operator
𝑀𝛾 belongs to the unitary group UHS(𝐻) if 𝛾 ∈ 𝐶∞(𝑆1,U(𝑁)).

The embedding 𝐿𝐺 ↪→ UHS(𝐻) generates an isometric embedding

Ω𝐺 −→ GrHS(𝐻).

9. The idea of the proof of harmonic spheres conjecture

Using the isometric embedding Ω𝐺 ↪→ GrHS(𝐻) from the last section, we can
consider an arbitrary harmonic map 𝜑 : ℙ1 → Ω𝐺 as taking its values in the
Grassmannian GrHS(𝐻), hence, in one of the connected components 𝐺𝑟(𝐻) of the
manifold GrHS(𝐻). To describe harmonic maps 𝜑 : ℙ1 → 𝐺𝑟(𝐻), one can use the
twistor method, as in the finite-dimensional case.

For that we should obtain first a harmonic analogue of the Atiyah theorem.
It should assert that there is a one-to-one correspondence between:⎧⎨⎩(based) equivalence classes of harmonic𝐺ℂ-bundles over ℙ1 × ℙ1, trivial on the

union ℙ1∞ ∪ ℙ1∞

⎫⎬⎭←→
{
based harmonic spheres
𝜑 : ℙ1 → Ω𝐺, sending
∞ to the origin

}
.

We proceed as in the holomorphic case. Suppose that a harmonic sphere
𝜑 : ℙ1 → Ω𝐺 ⊂ GrHS(𝐻) is the projection of a harmonic sphere 𝜑 : ℙ1 → 𝐿𝐺ℂ.
Then 𝜑(𝑧) ∈ 𝐿𝐺ℂ may be considered as the transition function for some harmonic
bundle over ℙ1𝑧. This bundle should be the restriction of a harmonic bundle over
ℙ1 × ℙ1, associated with the composite map

𝜑 : ℙ1 ∋ 𝑧 1−→ 𝜑(𝑧) ∈ 𝐿𝐺ℂ 1−→ 𝜑(𝑧) ∈ Ω𝐺 = 𝐿𝐺ℂ/𝐿+𝐺
ℂ.
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In terms of Grassmannian GrHS(𝐻) the image 𝜑(𝑧) ∈ Ω𝐺 ⊂ GrHS(𝐻) is identified
with the subspace

𝑊𝑧 :=𝑀𝜑(𝑧)𝐻+

where 𝑀 is the multiplication operator, introduced at the end of previous section.
The twistor interpretation of this construction has the following form. A

harmonic sphere in Ω𝐺 may be considered as a harmonic sphere in a submanifold
𝐺𝑟(𝐻) ⊂ GrHS(𝐻), consisting of subspaces𝑊 ⊂ 𝐻 of some fixed virtual dimension
𝑟. In terms of the twistor flag bundle the harmonic sphere 𝜑 : ℙ1 → 𝐺𝑟(𝐻) is the
projection of some 𝒥 2

𝜎 -holomorphic sphere 𝜓 : ℙ1 → 𝐹 𝑑
r(𝐻).

The image 𝜓(𝑧) = (𝜓1(𝑧), . . . , 𝜓𝑛(𝑧)) of a point 𝑧 ∈ ℙ1 under the map 𝜓 :
ℙ1 → 𝐹 𝑑

r(𝐻) coincides with a virtual flag 𝒲𝑧 = (𝑊 1
𝑧 , . . . ,𝑊

𝑛
𝑧 ). If every map

𝜓𝑖 : ℙ1 → 𝐺𝑟𝑖(𝐻) is the projection of a map 𝜓𝑖 : ℙ1 → 𝐿𝐺ℂ so that

𝑊 𝑖
𝑧 =𝑀𝜓𝑖

𝐻+

then each of these maps can be considered as the transition function for some
bundle over ℙ1𝑧. It follows from the description of the almost complex structure 𝒥 2

𝜎

on the twistor bundle 𝜋𝜎 that the maps 𝜓𝑖 determine either holomorphic, or anti-
holomorphic bundles over ℙ1×ℙ1. By Donaldson theorem such bundles correspond
either to instantons, or anti-instantons on ℝ4. This may be considered as a twistor
construction of the moduli space of Yang–Mills fields on ℝ4, associating with such
a field a finite collection of instantons and anti-instantons on ℝ4.
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1. Introduction

Multipliers are operators which are defined based on two sequences with elements
from a Hilbert space and one scalar sequence. Given sequences Φ = (𝜙𝑛)

∞
𝑛=1 and

Ψ = (𝜓𝑛)
∞
𝑛=1 with elements from a Hilbert space ℋ, and given complex scalar

sequence 𝑚 = (𝑚𝑛)
∞
𝑛=1 (called the weight or the symbol), the operator 𝑀𝑚,Φ,Ψ

defined by

𝑀𝑚,Φ,Ψ𝑓 =
∞∑

𝑛=1

𝑚𝑛⟨𝑓, 𝜓𝑛⟩𝜙𝑛, 𝑓 ∈ ℋ,

is called a multiplier. Multipliers for Bessel sequences were introduced in [1]. Fur-
ther, multipliers for general sequences were considered in [13, 14, 15, 16].

The interest to the consideration of multipliers has come from practical rea-
sons. In signal processing many methods employ linear time-variant filters, i.e.,
convolution operators, which can be described as Fourier multipliers [9]. Gabor
multipliers [8] are a particular option to represent time-varying filters. They have
many applications, for example in acoustical signal processing [3, 7]. Thus, it is
interesting to investigate the possibilities for the inversion of multipliers. This is
also interesting from a theoretical point of view as an operator theory question.

This work was supported by the WWTF project MULAC (’Frame Multipliers: Theory and
Application in Acoustics’; MA07-025) and the Austrian Science Fund (FWF) START-project

FLAME (’Frames and Linear Operators for Acoustical Modeling and Parameter Estimation’; Y
551-N13).
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The multiplier 𝑀𝑚,Φ,Ψ : ℋ → ℋ is called invertible if it has a bounded
inverse defined on ℋ. Some results concerning invertibility of multipliers appeared
in [1, 2, 12, 13, 14, 15, 16]. In this paper our attention concerns the case when one
of the sequences Φ and Ψ is a Riesz basis. It is known [1] that if Φ and Ψ are Riesz
bases and 𝑚 is semi-normalized, then 𝑀𝑚,Φ,Ψ is invertible and its inverse can be

written as 𝑀1/𝑚,˜Ψ,˜Φ, where Ψ̃ and Φ̃ are the unique biorthogonal sequences to

Ψ and Φ, respectively, and 1/𝑚 is the sequence (1/𝑚𝑛). Further, invertibility of
𝑀𝑚,Φ,Ψ when at least one of the sequences Φ and Ψ is a Riesz basis is considered
in [13] with the sketch of a proof:

Theorem 1.1. Let Φ be a Riesz basis for ℋ. Then the following holds.
(i) If Ψ is a Riesz basis for ℋ, then 𝑀𝑚,Φ,Ψ (resp. 𝑀𝑚,Ψ,Φ) is invertible if and
only if 𝑚 is semi-normalized.

(ii) If 𝑚 is semi-normalized, then𝑀𝑚,Φ,Ψ (resp. 𝑀𝑚,Ψ,Φ) is invertible if and only
if Ψ is a Riesz basis for ℋ.

(iii) If 𝑚 is not semi-normalized, then 𝑀𝑚,Φ,Ψ (resp. 𝑀𝑚,Ψ,Φ) can be invertible
only in the following cases:
(ℛ1): Ψ is Bessel in ℋ, which is not a frame for ℋ and not norm-bounded

from below, 𝑚 is norm-bounded from below and 𝑚 /∈ ℓ∞;
(ℛ2): Ψ is non-Bessel in ℋ which is norm-bounded from below and not norm-

bounded, 𝑚 ∈ ℓ∞, and 𝑚 is not norm-bounded from below.
(ℛ3): Ψ is non-Bessel in ℋ which is neither norm-bounded from above nor

norm-bounded from below, 𝑚 is not norm-bounded from below, and
𝑚 /∈ ℓ∞.

In the cases of invertibility, 𝑀−1
𝑚,Φ,Ψ = 𝑀(1),˜𝑚Ψ,˜Φ and 𝑀−1

𝑚,Ψ,Φ = 𝑀(1),˜Φ,˜𝑚Ψ. For

the cases (i) and (ii) this is equivalent to 𝑀−1
𝑚,Φ,Ψ = 𝑀1/𝑚,˜Ψ,˜Φ and 𝑀−1

𝑚,Ψ,Φ =

𝑀1/𝑚,˜Φ,˜Ψ.

In this paper we give more detail statements, distinguishing cases when the
multiplier is well defined and non-invertible, and when the multiplier is not well
defined, with a complete proof.

2. Notation and preliminaries

Throughout the paper, (ℋ, ⟨⋅, ⋅⟩) denotes a Hilbert space, (𝑒𝑛)∞𝑛=1 denotes an or-
thonormal basis of ℋ, Φ = (𝜙𝑛)

∞
𝑛=1 and Ψ = (𝜓𝑛)

∞
𝑛=1 are sequences with elements

from ℋ, 𝑚 denotes a complex scalar sequence (𝑚𝑛)
∞
𝑛=1 and 𝑚 denotes the se-

quence of the complex conjugates of 𝑚𝑛; 𝑚Φ denotes the sequence (𝑚𝑛𝜙𝑛)
∞
𝑛=1. If

the index set of a sequence is omitted, the set ℕ should be understood.

The sequence Ψ (resp. 𝑚) is called

∙ norm-bounded from above, if there exists a positive constant 𝑏 such that
∥𝜓𝑛∥ ≤ 𝑏 (resp. ∣𝑚𝑛∣ ≤ 𝑏), ∀𝑛;
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∙ norm-bounded from below, if there exists a positive constant 𝑎 such that
0 < 𝑎 ≤ ∥𝜓𝑛∥ (resp. 0 < 𝑎 ≤ ∣𝑚𝑛∣), ∀𝑛;

∙ norm-semi-normalized (resp. semi-normalized) if Ψ (resp. 𝑚) is both norm-
bounded from below and norm-bounded from above.

We abbreviate norm-bounded from above with 𝑁𝐵𝐴 and norm-bounded
from below with 𝑁𝐵𝐵.

Recall the definition of the basic type of sequences which we are going to use
in the paper.

Definition 2.1. The sequence Ψ is called

∙ complete in ℋ if span{Ψ} = ℋ;
∙ a Bessel sequence in ℋ (in short, Bessel in ℋ) if there exists a positive
constant 𝐵 so that

∑∞
𝑘=1 ∣⟨𝑓, 𝜓𝑘⟩∣2 ≤ 𝐵∥𝑓∥2 for every 𝑓 ∈ ℋ;

∙ a frame for ℋ if it is a Bessel sequence in ℋ and there exists a positive
constant 𝐴 so that

∑∞
𝑛=1 ∣⟨𝑓, 𝜓𝑛⟩∣2 ≥ 𝐴∥𝑓∥2 for all 𝑓 ∈ ℋ;

∙ a Riesz sequence if there exist positive constants 𝐴,𝐵 so that

𝐴

∞∑
𝑛=1

∣𝑐𝑛∣2 ≤
∥∥∥∥ ∞∑
𝑛=1

𝑐𝑛𝜓𝑛

∥∥∥∥2 ≤ 𝐵

∞∑
𝑛=1

∣𝑐𝑛∣2

for all finite scalar sequences (𝑐𝑘) (and hence, for all (𝑐𝑘)
∞
𝑘=1 ∈ ℓ2);

∙ a Riesz basis for ℋ if it is a Riesz sequence which is complete in ℋ;
∙ an overcomplete frame for ℋ if it is a frame for ℋ and not a Riesz basis for ℋ.
For a given Bessel sequence Ψ, we will use the analysis operator 𝑈Ψ defined by

𝑈Ψℎ = (⟨ℎ, 𝜓𝑛⟩)∞𝑛=1, ℎ ∈ ℋ,

and the synthesis operator 𝑇Ψ defined by

𝑇Ψℎ =

∞∑
𝑛=1

𝑐𝑛𝜓𝑛, (𝑐𝑛)
∞
𝑛=1 ∈ ℓ2.

Definition 2.2. For any Φ,Ψ,𝑚, the multiplier 𝑀𝑚,Φ,Ψ : ℋ → ℋ is called

∙ well-defined if the series∑∞
𝑛=1𝑚𝑛⟨𝑓, 𝜓𝑛⟩𝜙𝑛 converges for every 𝑓 ∈ ℋ;

∙ injective if it is well defined and 𝑀𝑚,Φ,Ψ𝑓 = 0 implies 𝑓 = 0;
∙ surjective if it is well defined and its range coincides with ℋ;
∙ invertible if it is well defined and it has a bounded inverse defined on ℋ.
Note that if a multiplier 𝑀𝑚,Φ,Ψ is well defined, then by Banach–Steinhaus

Theorem, 𝑀𝑚,Φ,Ψ is bounded.

We need the following result concerning Riesz bases.

Proposition 2.3. The sequence 𝑚Φ can be a Riesz basis for ℋ only in the following
cases:

∙ Φ is a Riesz basis for ℋ and 𝑚 is semi-normalized;
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∙ Φ is non-𝑁𝐵𝐵 Bessel in ℋ which is not a frame for ℋ and 𝑚 is 𝑁𝐵𝐵 but
not in ℓ∞;

∙ Φ is non-𝑁𝐵𝐴 non-Bessel in ℋ and 𝑚 is non-𝑁𝐵𝐵 with 𝑚𝑛 ∕= 0, ∀𝑛.
Proof. When 𝑚 is a real-valued sequence, the statement is proved in [12]. Similar
techniques can be used to prove the statement for complex-valued sequences 𝑚.

□

3. Properties of Riesz multipliers

Throughout this section we assume that Φ is a Riesz basis for ℋ and 𝑀 denotes
any one of the multipliers 𝑀𝑚,Φ,Ψ and 𝑀𝑚,Ψ,Φ. First we point on necessary and
sufficient conditions for 𝑀 to be well defined, injective, surjective, invertible.

Proposition 3.1. The following equivalences hold.

(a) 𝑀 is well defined if and only if 𝑚Ψ is a Bessel sequence in ℋ.
(b1) 𝑀𝑚,Φ,Ψ is injective if and only if 𝑚Ψ is a complete Bessel sequence in ℋ.
(b2) 𝑀𝑚,Ψ,Φ is injective if and only if 𝑇𝑚Ψ is injective.
(c1) 𝑀𝑚,Φ,Ψ is surjective if and only if 𝑚Ψ is a Riesz sequence.
(c2) 𝑀𝑚,Ψ,Φ is surjective if and only if 𝑚Ψ is frame for ℋ.
(d) 𝑀 is invertible if and only if 𝑚Ψ is a Riesz basis for ℋ.
Proof. First recall that when Φ is a Riesz basis for ℋ, the analysis operator 𝑈Φ is
a bounded bijection from ℋ onto ℓ2 and the synthesis operator 𝑇Φ is a bounded
bijection from ℓ2 onto ℋ.

(a) This statement can be found in [14, Prop. 3.4].

(b1) For the well-definedness, use (a). Now assume that 𝑚Ψ is a Bessel se-
quence in ℋ. The multiplier 𝑀𝑚,Φ,Ψ = 𝑇Φ𝑈𝑚Ψ is injective if and only if 𝑈𝑚Ψ

is injective if and only if 𝑈𝑚Ψ is injective. Further, the analysis operator 𝑈𝑚Ψ is
injective if and only if 𝑚Ψ is complete in ℋ [4, Prop. 4.1].

(b2) For the well-definedness, use (a). Now assume that 𝑚Ψ is a Bessel se-
quence in ℋ. The multiplier 𝑀𝑚,Ψ,Φ = 𝑇𝑚Ψ𝑈Φ is injective if and only if 𝑇𝑚Ψ is
injective.

(c1) For the well-definedness, use (a). Now assume that 𝑚Ψ is a Bessel se-
quence in ℋ and hence, it satisfies the upper condition for a Riesz sequence. The
multiplier 𝑀𝑚,Φ,Ψ = 𝑇Φ𝑈𝑚Ψ is surjective if and only if 𝑈𝑚Ψ is surjective. By [17,
Ch.4 Sec.2], 𝑈𝑚Ψ is surjective if and only if 𝑚Ψ satisfies the lower condition for a
Riesz sequence. This completes the proof.

(c2) For the well-definedness, use (a). Now assume that 𝑚Ψ is a Bessel se-
quence in ℋ. The multiplier 𝑀𝑚,Ψ,Φ = 𝑇𝑚Ψ𝑈Φ is surjective if and only if 𝑇𝑚Ψ is
surjective. Further, 𝑇𝑚Ψ is surjective if and only if 𝑚Ψ is a frame for ℋ [6, Theor.
5.5.1].

(d) follows from (b1), (c1) and (b2), (c2). □
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Here we extend Theorem 1.1 considering not only the invertibility possibil-
ities, but also the cases of well-definedness without invertibility and the cases of
not well-definedness.

Proposition 3.2. Let 𝑚 be semi-normalized. Then the following statements hold.

(a) If Ψ is non-Bessel in ℋ, then 𝑀 is not well defined.
(b) If Ψ is a Bessel sequence in ℋ which is not a Riesz basis for ℋ, then 𝑀 is

well defined but not invertible.
(c) [1, Prop. 7.7] If Ψ is a Riesz basis for ℋ, then 𝑀 is invertible.

Proof. (a) and (b) follow from Proposition 3.1 using the assumption that 𝑚 is
semi-normalized. □

Proposition 3.3. Let 𝑚 be non-𝑁𝐵𝐵 and 𝑚 ∈ ℓ∞. Then the following statements
hold.

(a) If Ψ is 𝑁𝐵𝐴 non-Bessel in ℋ, then 𝑀 can either be well defined or not, but
can never be invertible on ℋ.

(b) If Ψ is non-𝑁𝐵𝐴, non-𝑁𝐵𝐵, and non-Bessel in ℋ, then 𝑀 can either be
well defined or not, but can never be invertible on ℋ.

(c) If Ψ is non-𝑁𝐵𝐴, 𝑁𝐵𝐵, and non-Bessel in ℋ, then for 𝑀 all the three
feasible combinations of invertibility and well-definedness are possible: it can
be invertible, it can be well defined and not invertible, and it can be not well
defined.

(d) If Ψ is Bessel in ℋ, then 𝑀 is well defined, but not invertible.

Proof. (a) Assume that 𝑀 is well defined and thus 𝑚Ψ is Bessel in ℋ. By Propo-
sition 3.1,𝑀 is invertible if and only if 𝑚Ψ is a Riesz basis for ℋ. By Proposition
2.3, the sequence 𝑚Ψ can not be a Riesz basis for ℋ under the assumptions of (a).

As an example of a well-defined multiplier, consider the sequences Φ =
(𝑒𝑛), Ψ = (𝑒1, 𝑒2, 𝑒1, 𝑒3, 𝑒1, 𝑒4, . . .), and 𝑚 = (12 , 1,

1
22 , 1,

1
23 , 1, . . .). Since 𝑚Ψ is

Bessel in ℋ, 𝑀 is well defined. Now consider the sequences Φ = (𝑒𝑛), Ψ =
(𝑒1, 𝑒2, 𝑒1, 𝑒3, 𝑒1, 𝑒4, . . .), and 𝑚 = (1, 12 , 1,

1
3 , 1,

1
4 , . . .). In this case 𝑀 is not well

defined, because 𝑚Ψ is not Bessel in ℋ.
(b) Assume that 𝑀 is invertible. By Proposition 3.1, 𝑚Ψ is a Riesz basis

for ℋ. Hence, there exists 𝑎 > 0 so that ∥𝑚𝑛𝜓𝑛∥ ≥ 𝑎, ∀𝑛 ∈ ℕ. Since 𝑚 ∈ ℓ∞, it
follows that Ψ is 𝑁𝐵𝐵, which contradicts to the assumptions.

As an example of a well-defined multiplier, consider the sequences Φ = (𝑒𝑛),
Ψ = (𝑒1, 2𝑒2,

1
3𝑒3, 4𝑒4,

1
5𝑒5, 6𝑒6, . . .), and 𝑚 = (1, 12 , 1,

1
4 , 1,

1
6 , . . .). Since 𝑚Ψ is

Bessel in ℋ, both 𝑀𝑚,Φ,Ψ and 𝑀𝑚,Ψ,Φ are well defined. Now consider the same Φ
and Ψ, and the sequence 𝜈 = (1, 1, 13 , 1,

1
5 , 1, . . .). Both 𝑀𝜈,Φ,Ψ and 𝑀𝜈,Ψ,Φ are not

well defined, because 𝜈Ψ is not Bessel in ℋ.
(c) As an example of invertible multipliers, consider 𝑀(1/𝑛),(𝑒𝑛),(𝑛𝑒𝑛) =

𝑀(1/𝑛),(𝑛𝑒𝑛),(𝑒𝑛) = 𝐼ℋ. As an example of multipliers which are well defined and not
invertible, consider 𝑀(1/𝑛2),(𝑒𝑛),(𝑛𝑒𝑛) = 𝑀(1/𝑛2),(𝑛𝑒𝑛),(𝑒𝑛). For multipliers, which
are not well defined, see for example 𝑀( 1

𝑛 ),(𝑒𝑛),(𝑛2𝑒𝑛) and 𝑀( 1
𝑛 ),(𝑛

2𝑒𝑛),(𝑒𝑛).
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(d) By Proposition 3.1, 𝑀 is well defined. The non-invertibility of 𝑀 can be
shown in an analogue way as in (a). □
Proposition 3.4. Let 𝑚 be 𝑁𝐵𝐵 and 𝑚 /∈ ℓ∞. Then the following statements hold.
(a) If Ψ is non-Bessel in ℋ or 𝑁𝐵𝐵, then 𝑀 is not well defined.
(b) Let Ψ be non-𝑁𝐵𝐵 Bessel in ℋ, which is not a frame for ℋ. Then for 𝑀

all the three feasible combinations of invertibility and well-definedness are
possible.

(c) Let Ψ be a non-𝑁𝐵𝐵 frame for ℋ. Then 𝑀 can either be well defined or
not, but can never be invertible on ℋ.

Proof. (a) By Proposition 3.1, well-definedness of 𝑀 requires 𝑚Ψ to be Bessel in
ℋ, which requires Ψ to be Bessel in ℋ (because of the 𝑁𝐵𝐵-assumption on 𝑚).

If Ψ is 𝑁𝐵𝐵, the conclusion follows from [14, Prop. 3.4].
(b) As an example of invertible multipliers, consider 𝑀(𝑛),(𝑒𝑛),(

1
𝑛 𝑒𝑛) =

𝑀(𝑛),( 1
𝑛 𝑒𝑛),(𝑒𝑛) = 𝐼ℋ. As an example of multipliers which are well defined and

not invertible, take 𝑀(𝑛),(𝑒𝑛),(
1

𝑛2 𝑒𝑛) =𝑀(𝑛),( 1
𝑛2 𝑒𝑛),(𝑒𝑛).

The multipliers 𝑀(𝑛2),(𝑒𝑛),(
1
𝑛 𝑒𝑛) and 𝑀(𝑛2),( 1

𝑛 𝑒𝑛),(𝑒𝑛) are not well defined.

(c) If 𝑀 is well defined, the non-invertibility of 𝑀 can be shown in an ana-
logue way as in Proposition 3.3(a).

Consider Φ = (𝑒𝑛) and the sequence Ψ = (12𝑒1, 𝑒2,
1
22 𝑒1, 𝑒3,

1
23 𝑒1, 𝑒4, . . .),

which is non-𝑁𝐵𝐵 frame for ℋ. For 𝑚 = (
√
2, 1,

√
22, 1,

√
23, 1, . . .), the sequence

𝑚Ψ is Bessel in ℋ, which implies that both 𝑀𝑚,Φ,Ψ and 𝑀𝑚,Ψ,Φ are well defined
on ℋ. For 𝜈 = (2, 1, 22, 1, 23, 1, . . .), the sequence 𝜈Ψ is not Bessel in ℋ, which
implies that both 𝑀𝜈,Φ,Ψ and 𝑀𝜈,Ψ,Φ are not well defined. □
Proposition 3.5. Let 𝑚 be non-𝑁𝐵𝐵 and 𝑚 /∈ ℓ∞. Then the following statements
hold.

(a) If Ψ is 𝑁𝐵𝐵, then 𝑀 is not well defined.
(b) If Ψ is non-𝑁𝐵𝐵, non-𝑁𝐵𝐴, and non-Bessel in ℋ, then for 𝑀 all the three

feasible combinations of invertibility and well-definedness are possible.
(c) If Ψ is non-𝑁𝐵𝐵 and 𝑁𝐵𝐴, then 𝑀 can either be well defined or not, but
can never be invertible on ℋ.

Proof. (a) As in Proposition 3.4, if Ψ is 𝑁𝐵𝐵 and𝑀 is well defined, then 𝑚 must
be in ℓ∞.

(b) Consider Φ = (𝑒𝑛) and the sequence Ψ = (𝑒1,
1
22 𝑒2, 3𝑒3,

1
42 𝑒4, 5𝑒5, . . .). For

𝑚 = (1, 22, 13 , 4
2, 15 , . . .), we have the invertible multipliers 𝑀𝑚,Φ,Ψ = 𝑀𝑚,Ψ,Φ =

𝐼ℋ. For 𝜈 = (1, 2, 1
32 , 4,

1
52 , . . .), both multipliers 𝑀𝜈,Φ,Ψ and 𝑀𝜈,Ψ,Φ coincide with

𝑀( 1
𝑛 ),(𝑒𝑛),(𝑒𝑛) which is well defined and not invertible. For 𝜇 = (1, 2

3, 13 , 4
3, 15 , . . .),

the sequence 𝜇Ψ is not Bessel in ℋ, which implies that both 𝑀𝜇,Φ,Ψ and 𝑀𝜇,Ψ,Φ

are not well defined.
(c) If 𝑀 is well defined, the non-invertibility of 𝑀 can be shown in a similar

way as in Proposition 3.3(a), using the non-𝑁𝐵𝐵 property of 𝑚 and the 𝑁𝐵𝐴-
property of Ψ.
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Examples for the case “Ψ-𝑁𝐵𝐴 non-𝑁𝐵𝐵 Bessel”. Let Φ = (𝑒𝑛) and Ψ =
(𝑒1,

1
2𝑒2,

1
3𝑒3, . . .). For 𝑚 = (1, 22, 13 , 4

2, 15 , . . .), the sequence 𝑚Ψ is not Bessel
in ℋ, which implies that both 𝑀𝑚,Φ,Ψ and 𝑀𝑚,Ψ,Φ are not well defined. For
𝜈 = (1, 2, 13 , 4,

1
5 , . . .), the sequence 𝜈Ψ is Bessel in ℋ, which implies that both

𝑀𝜈,Φ,Ψ and 𝑀𝜈,Ψ,Φ are well defined.
Examples for the case “Ψ-𝑁𝐵𝐴 non-𝑁𝐵𝐵 non-Bessel”. Let Φ = (𝑒𝑛) and

Ψ = (𝑒1,
1
2𝑒2, 𝑒1,

1
3𝑒3, 𝑒1,

1
4𝑒4 . . .). For 𝑚 = (12 , 2,

1
22 , 3,

1
23 , 4, . . .), the sequence 𝑚Ψ

is Bessel in ℋ and thus, both 𝑀𝑚,Φ,Ψ and 𝑀𝑚,Ψ,Φ are well defined. For 𝜈 =
(12 , 2

2, 1
22 , 3

2, 1
23 , 4

2, . . .), the sequence 𝜈Ψ is not Bessel in ℋ and thus, both𝑀𝜈,Φ,Ψ

and 𝑀𝜈,Ψ,Φ are not well defined. □
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Operator Approximation for Processing
of Large Random Data Sets
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Abstract. Suppose 𝐾𝑌 and 𝐾𝑋 are large sets of observed and reference sig-
nals, respectively, each containing 𝑁 signals. Is it possible to construct a filter
ℱ : 𝐾𝑌 → 𝐾𝑋 that requires a priori information only on few signals, 𝑝≪ 𝑁 ,
from 𝐾𝑋 but performs better than the known filters based on a priori informa-
tion on every reference signal from 𝐾𝑋 ? It is shown that the positive answer
is achievable under quite unrestrictive assumptions. The device behind the
proposed method is based on a special extension of the piecewise linear inter-
polation technique to the case of random signal sets. The proposed technique
provides a single filter to process any signal from the arbitrarily large signal
set. The filter is determined in terms of pseudo-inverse matrices so that it
always exists.

Mathematics Subject Classification (2010). Primary 94A12; Secondary 65D05.

Keywords. Piecewise interpolation, filtering.

1. Introduction

In the paper, a new method of operator approximation is developed. The consid-
ered technique is motivated by a desire to overcome difficulties associated with a
processing of large random data sets. This issue is considered in detail in Section
1.1 that follows.

An idealistic filter transforming signal sets 𝐾
𝑋
and 𝐾

𝑌
is interpreted as an

operator ℱ : 𝐾
𝑌
→ 𝐾

𝑋
. A purpose of the proposed methodology is to justify its

approximating operator ℱ (𝑝−1) : 𝐾
𝑌
→ 𝐾

𝑋
with 𝑝 specified below. The device

behind the structure of filter (operator) ℱ (𝑝−1) is quite simple and is based on
a special extension of the piecewise linear interpolation approach to the case of
random signal sets. At the same time, such a device is not straightforward and
requires the careful substantiation presented in Sections 2.3, 3.4, 4.2 and 4.4 below.
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1.1. Motivations

The problem under consideration is motivated by the following particular obser-
vations.

1.1.1. Filtering of large sets of signals; less initial information for
better filtering. Suppose we need to transform a set of signals 𝐾

𝑌
to another

set of signals 𝐾
𝑋
. The signals are represented by finite random vectors1. A major

difficulty and inconvenience common to many known filtering methodologies (see,
for example, [1]–[9], [11], [13], [22, 23, 25]) is that they require a priori information
on each reference signal to be estimated2. In particular, the filters in [22, 23, 25]
are based on the use of either the reference signal x ∈ 𝐾

𝑋
itself, as in [22, 23], or its

estimate, as in [25]. The Wiener filtering approach (see, for example, [1]–[13], [23],
[25]) assumes that a covariance matrix formed from a reference signal, x ∈ 𝐾𝑋 ,
and an observed signal, y ∈ 𝐾

𝑌
, is known or can be estimated. The latter can be

done, for instance, from samples of x and y. In particular, this means that the
reference signal x can be measured.

In the case of processing large signal sets, such restrictions become much
more inconvenient.

The major motivating question for this work is as follows. Let ℱ : 𝐾
𝑌
→ 𝐾

𝑋

denote a filter that estimates a large set of reference signals, 𝐾
𝑋
, from a large set

of observed signals, 𝐾𝑌 . Each set contains 𝑁 signals. Is it possible to construct a
filter ℱ that requires a priori information only on few signals, 𝑝 ≪ 𝑁 , from 𝐾

𝑋

but performs better than the known filters based on a prior information on every

reference signal from 𝐾
𝑋
? We denote such a filter by ℱ(𝑝−1).

It is shown in Sections 2.3 and 4.4 that the positive answer is achievable

under quite unrestrictive assumptions. The required features of filter ℱ (𝑝−1) are
satisfied by its special structure described in Sections 2.3, 3.1 and 3.4. The related
conditions are also considered in those sections.

1.1.2. Filtering based on idea of piecewise function interpolation. The
specific structure of the proposed filter follows from the extension of piecewise
function interpolation [14]. This is because the technique of piecewise function
interpolation [14] has significant advantages over the methods of linear and poly-
nomial approximation used in known filtering techniques (such as, for example,
those in [5, 9]).

The structure of the proposed filter is presented in Sections 2.3, 3.1 and 4.2
below.

1.1.3. Exploiting pseudo-inverse matrices in the filter model. Most of
the known filtering techniques, for example, those ones in [1]–[3], [6]–[8], [11],
[23, 25], are based on exploiting inverse matrices in their mathematical models.

1We say a random vector x is finite if its realization has a finite number of components.
2To the best of our knowledge, the exception is the methodology in [10, 12] where the filtering

techniques exploit information on reference signals in the form of the vector obtained from
averaging over reference signal sets.
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In the cases of grossly corrupted signals or erroneous measurements those inverse
matrices may not exist and, thus, those filters cannot be applied. The examples in
Section 5 illustrate this case.

The filter proposed here avoids this drawback since its model is based on ex-
ploiting pseudo-inverse matrices. As a result, the proposed filter always exist. That
is, it processes any kind of noisy signals. An extension of the filtering techniques
to the case of implementation of the pseudo-inverse matrices is done on the basis
of theory presented in [5].

1.1.4. Computational work. Let 𝑚 and 𝑛 be the number of components of
x ∈ 𝐾

𝑋
and of y ∈ 𝐾

𝑌
, respectively, where 𝐾

𝑋
and 𝐾

𝑌
each contains 𝑁 signals.

The known filtering techniques (e.g., see [1]–[8], [11], [23, 25]), applied to x and
y, require the computation of a product of an 𝑚× 𝑛 matrix and an 𝑛× 𝑛 matrix,
as well as the computation of an 𝑛× 𝑛 inverse or pseudo-inverse matrix for each
pair of signals x ∈ 𝐾𝑋 and y ∈ 𝐾𝑌 . This requires 𝑂(2𝑚𝑛2) and 𝑂(26𝑛3) flops,
respectively [26]. Thus, for the processing of all signals in 𝐾

𝑋
and 𝐾

𝑌
, the filters

in [1]–[8], [11], [23, 25] require 𝑂(2𝑚𝑛2𝑁) +𝑂(26𝑛3𝑁) operations.
Alternatively, 𝐾𝑋 and 𝐾𝑌 can be represented by vectors, 𝝌 and 𝜸, each with

𝑚𝑁 and 𝑛𝑁 components, respectively. In such a case, the techniques in [1]–[8],
[11], [23, 25] can be applied to 𝝌 and 𝜸 as opposed to each signals in 𝐾

𝑋
and 𝐾

𝑌
.

The computational requirement is then 𝑂(2𝑚𝑛2𝑁2) and 𝑂(26𝑛3𝑁3) operations,
respectively [26].

In both cases, but especially when 𝑁 is large, the computational work asso-
ciated with the approaches [1]–[8], [11], [23, 25] becomes unreasonable hard.

For the filter ℱ (𝑝−1) to be introduced below, the associated computational
work is substantially less. This is because ℱ (𝑝−1) requires the computation of only
𝑝 pseudo-inverse matrices associated with 𝑝 selected signals in𝐾

𝑋
, where 𝑝 is much

less than the number of signals in 𝐾
𝑋
. Therefore, for processing of the signal sets,

𝐾
𝑋
and 𝐾

𝑌
, ℱ (𝑝−1) requires only 𝑂(2𝑚𝑛2𝑝)+𝑂(26𝑛3𝑝) flops where 𝑝≪ 𝑁 . This

comparison is illustrated in Section 5.

1.2. Relevant works

Some particular filtering techniques relevant to the method proposed below are as
follows.

1.2.1. Generic optimal linear (GOL) filter [5]. The generic optimal linear
(GOL) filter in [5] is a generalization of the Wiener filter to the case when covari-
ance matrix is not invertible and observable signal is arbitrarily noisy (i.e., when,
in particular, noise is not necessarily additive and Gaussian). The GOL filter has
been developed for processing an individual stochastic signal. Some ideas from [5]
are used in the proof of Theorem 4.1 below.

1.2.2. Simplicial canonical piecewise linear filter [23]. A complex Wiener
adaptive filter was developed in [23] from the two-dimensional complex-valued
simplicial canonical piecewise linear filter [24]. The filter in [23] was developed for
the processing of an individual stochastic signal and can be exploited when the
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reference signal is known and a ‘covariance-like’ matrix is invertible. The latter
precludes an application to the signal types considered, for example, in Section 5:
the matrices used in [23] are not invertible for the signals as those in Section 5.
Similarly, the filters studied in [8, 11] were developed for the processing of a single
signal when the covariance matrices are invertible.

For the filter proposed here, these restrictions are removed.

1.2.3. Adaptive piecewise linear filter [22]. A piecewise linear filter in [22]
was proposed for a fixed image denoising (given by a matrix), corrupted by an
additive Gaussian noise. That is, the method involved a non stochastic reference
signal and required its knowledge. No theoretical justification for the filter was
given in [22].

1.2.4. Averaging polynomial filter [10, 12]. The averaging polynomial filter
proposed in [10, 12] was developed for the purpose of processing infinite signal
sets. The filter was based on an argument involving the‘averaging’ over sets of
signals under consideration. This device allows one to determine a single filter for
the processing of infinite signal sets. At the same time, it leads to an increase in
the associated error when signals differ considerably from each other. This effect
is illustrated in Section 5 below.

1.2.5. Other relevant filters. The technique developed in [13] is an extension
of the GOL filter to the constraint problem with respect to the filter rank. It
concerns data compression.

The methods in [6, 7, 15, 16] have been developed for deterministic signals.
Motivated by the results achieved in [15, 16], adaptive filters were elaborated in
[17]. A theoretical basis for the device proposed in [15, 16] is provided in [18].

We note that the idea of piecewise linear filtering has been used in the lit-
erature in several very different conceptual frameworks, despite exploiting some
very similar terms (as in [15]–[24]). At the same time, a common feature of those
techniques is that they were developed for the processing of a single signal, not
of large signal sets as in this paper. In particular, piecewise linear filters in [19]
have been obtained by arranging linear filters and thresholds in a tree structure.
Piecewise linear filters discussed in [20] were developed using so-called threshold
decomposition, which is a segmentation operator exploited to split a signal into a
set of multilevel components. Filter design methods for piecewise linear systems
proposed in [21] were based on a piecewise Lyapunov function.

1.3. Difficulties associated with the known filtering techniques

Basic difficulties associated with applying the known filtering techniques to the
case under consideration (i.e., to processing of large signal sets, 𝐾𝑋 and 𝐾𝑌 ) are
that:

(i) they require an information on each reference signal (in the form of a sample,
for example),

(ii) matrices used in the known filters can be not invertible (as in the simulations
considered below in Section 5) and then the filter does not exist, and
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(iii) the associated computation work may require a very long time. For example,
in some simulations, MATLAB was out of memory for computing the GOL
filter [5] when each of sets 𝐾

𝑋
and 𝐾

𝑌
was represented by a long vector (this

option has been discussed in Section 1.1.4 above).

1.4. Differences from the known filtering techniques

The differences from the known filtering techniques discussed above are as follows.

(i) We consider a single filter that processes arbitrarily large input-output sets
of stochastic signal-vectors. The known filters [1]–[9], [11], [13], [15]–[25] have
been developed for the processing of an individual signal-vector only. In the
case of their application to arbitrarily large signal sets, they imply difficulties
described in Sections 1.1 and 1.3 above.

(ii) As a result, our piecewise linear filter model (Section 3), the statement of
the problem (Section 3.3 below) and consequently, the device of its solution
(Section 4 below) are different from those considered in [15]–[24]. In this
regard, see also Section 1.2.5.

(iii) The above naturally leads to a new structure of the filter presented in Sections
3.4 and 4.2 below.

1.5. Contribution

In general, for the processing of large data sets, the proposed filter allows us to
achieve better results in comparison with the known techniques in [1]–[25]. In
particular, it allows us to

(i) achieve a desired accuracy in signal estimation3,
(ii) exploit a priori information only on few reference signals, 𝑝, from the set 𝐾

𝑋

that contains 𝑁 ≫ 𝑝 signals or even infinite number of signals,
(iii) find a single filter to process any signal from the arbitrarily large signal set,
(vi) determine the filter in terms of pseudo-inverse matrices so that the filter

always exists, and
(v) decrease the computational load compared to the related known techniques.

2. Some preliminaries

2.1. Notation

The signal sets we consider are, in fact, special representations of time series.
Let (Ω,Σ, 𝜇) be a probability space4, and 𝐾

𝑋
and 𝐾

𝑌
be arbitrarily large

sets of signals such that

𝐾
𝑋
= {x(𝑡, ⋅) ∈ 𝐿2(Ω,ℝ𝑚) ∣ 𝑡 ∈ 𝑇 } and 𝐾

𝑌
= {y(𝑡, ⋅) ∈ 𝐿2(Ω,ℝ𝑛) ∣ 𝑡 ∈ 𝑇 }

3This means that any desired accuracy is achieved theoretically, as is shown in Section 4.4 below.
In practice, of course, the accuracy is increased to a prescribed reasonable level.
4As usual, Ω = {𝜔} is the set of outcomes, Σ a 𝜎-field of measurable subsets in Ω and 𝜇 : Σ → [0, 1]
an associated probability measure on Σ. In particular, 𝜇(Ω) = 1.
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where 𝑇 := [𝑎, 𝑏] ⊆ ℝ. We interpret x(𝑡, ⋅) as a reference signal and y(𝑡, ⋅) as an
observable signal, an input to the filter ℱ studied below5. The variable 𝑡 ∈ 𝑇 ⊆ ℝ
represents time.6 Then, for example, the random signal x(𝑡, ⋅) can be interpreted
as an arbitrary stationary time series.

Let {𝑡𝑘}𝑝1 ⊂ 𝑇 be a sequence of fixed time-points such that

𝑎 = 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 = 𝑏. (2.1)

Because of the partition (2.1), the sets 𝐾𝑌 and 𝐾𝑋 are divided in ‘smaller’ subsets
𝐾𝑋,1, . . . ,𝐾𝑋,𝑝−1 and𝐾𝑌,1, . . . ,𝐾𝑌,𝑝−1, respectively, so that, for each 𝑗 = 1, . . . , 𝑝,

𝐾𝑋,𝑗 = {x(𝑡, ⋅) ∣ 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1} and 𝐾𝑌,𝑗 = {y(𝑡, ⋅) ∣ 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1}. (2.2)

Therefore, 𝐾𝑌 and 𝐾𝑋 can now be represented as

𝐾
𝑋
=

𝑝−1∪
𝑗=1

𝐾𝑋,𝑗 and 𝐾
𝑌
=

𝑝−1∪
𝑗=1

𝐾𝑌,𝑗. (2.3)

2.2. Brief description of the problem

Given two arbitrarily large sets of random signals, 𝐾
𝑌
and 𝐾

𝑋
, find a single filter

ℱ : 𝐾
𝑌
→ 𝐾

𝑋
that estimates the signal x ∈ 𝐾

𝑋
with a controlled, associated

error. Note that in our formulation the set 𝐾
𝑌
can be finite or infinite.

2.3. Brief description of the method

The solution of the above problem is based on the representation of the proposed
filter in the form of a sum with 𝑝 − 1 terms ℱ1, . . . ,ℱ𝑝−1 where each term, ℱ 𝑗 ,
is interpreted as a particular sub-filter (see (3.1) and (3.2) below). Such a filter is

denoted by ℱ (𝑝−1) : 𝐾
𝑌
→ 𝐾

𝑋
.

The sub-filter ℱ 𝑗 transforms signals that belong to ‘piece’ 𝐾𝑌,𝑗 of set 𝐾𝑌 to
signals in ‘piece’ 𝐾𝑋,𝑗 of 𝐾𝑋 , i.e., ℱ 𝑗 : 𝐾𝑌,𝑗 → 𝐾𝑋,𝑗 . Each sub-filter ℱ 𝑗 depends
on two parameters, 𝛼𝑗 and ℬ𝑗 .

The prime idea is to determine ℱ 𝑗 (i.e., 𝛼𝑗 and ℬ𝑗) separately, for each 𝑗 =
1, . . . , 𝑝−1. The required 𝛼𝑗 and ℬ𝑗 follow from the solutions of the equation (3.8)
and an associated minimization problem (3.8) (see Sections 3.4 and 4.2 below).
This procedure adjusts ℱ 𝑗 so that the error associated with the estimation of
x(𝑡, ⋅) ∈ 𝐾𝑋,𝑗 is minimal.

A motivation for such a structure of the filter ℱ (𝑝−1) is as follows. The method
of determining 𝛼𝑗 and ℬ𝑗 provides an estimate ℱ 𝑗 [y(𝑡, ⋅)] that interpolates x(𝑡, ⋅) ∈
𝐾𝑋,𝑗 at 𝑡 = 𝑡𝑗 and 𝑡 = 𝑡𝑗+1. In other words, the filter is flexible to variations in the
sets of observed and reference signals 𝐾𝑌 and 𝐾𝑋 , respectively. Due to this way
of determining ℱ 𝑗 , it is natural to expect that the processing of a ‘smaller’ signal

5In an intuitive way y can be regarded as a noise-corrupted version of x. For example, y can be
interpreted as y = x + n where n is white noise. In this paper, we do not restrict ourselves to
this simplest version of y and assume that the dependence of y on x and n is arbitrary.
6More generally, 𝑇 can be considered as a set of parameter vectors 𝛼 = (𝛼(1), . . . , 𝛼(𝑞))𝑇 ∈ 𝐶𝑞 ⊆
ℝ𝑞, where 𝐶𝑞 is a 𝑞-dimensional cube, i.e., y = y(𝛼, ⋅) and x = x(𝛼, ⋅). One coordinate, say 𝛼(1)

of 𝛼, could be interpreted as time.
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set, 𝐾𝑌,𝑗, may lead to a smaller associated error than that for the processing of
the whole set 𝐾𝑌 by a filter which is not specifically adjusted to each particular
piece 𝐾𝑌,𝑗.

As a result, ℱ (𝑝−1)[y(𝑡, ⋅)] represents a special piecewise interpolation proce-
dure and, thus, should be attributed with the associated advantages such as, for
example, the high accuracy of estimation.

In Section 4.4, this observation is confirmed. In Sections 4.5 and 5, it is also
shown that the proposed technique allows us to avoid the difficulties discussed in
Section 1.3 above.

3. Description of the problem

3.1. Piecewise linear filter model

Let ℱ (𝑝−1) : 𝐾
𝑌
→ 𝐾

𝑋
be a filter such that, for each 𝑡 ∈ 𝑇 ,

ℱ (𝑝−1)[y(𝑡, ⋅)] =
𝑝−1∑
𝑗=1

𝛿𝑗ℱ 𝑗 [y(𝑡, ⋅)], (3.1)

where

ℱ 𝑗 [y(𝑡, ⋅)] = 𝛼𝑗 + ℬ𝑗 [y(𝑡, ⋅)] and 𝛿𝑗 =

{
1, if 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1,
0, otherwise.

(3.2)

Here, ℱ 𝑗 is a sub-filter defined for 𝑡𝑗 ≤ 𝑡 ≤ 𝑡𝑗+1. In (3.2), 𝛼𝑗 = [𝛼
(1)
𝑗 , . . . , 𝛼

(𝑚)
𝑗 ]𝑇 ∈

ℝ𝑚 and ℬ𝑗 : 𝐿2(Ω,ℝ𝑛) → 𝐿2(Ω,ℝ𝑚) is a linear operator given by a matrix

𝐵𝑗 ∈ ℝ𝑚×𝑛, so that
[ℬ𝑗(y)](𝑡, 𝜔) = 𝐵𝑗 [y(𝑡, 𝜔)].

Thus, ℱ 𝑗 is defined by a matrix 𝐹𝑗 ∈ ℝ𝑚×𝑛 such that

𝐹𝑗 [y(𝑡, 𝜔)] = 𝛼𝑗 +𝐵𝑗 [y(𝑡, 𝜔)]. (3.3)

Filter ℱ (𝑝−1) defined by (3.1)–(3.3) is called the piecewise filter7.

3.2. Assumptions

In the known approaches related to filtering of stochastic signals (e.g., see [1]–[13],
[23], [25]), it is assumed that covariance matrices formed from the reference signal
and observed signal are known or can be estimated.

The assumption used here is similar. The covariance matrices that are as-
sumed to be known or can be estimated, are formed from selected signal pairs
{x(𝑡𝑗 , ⋅),y(𝑡𝑗 , ⋅)} with 𝑗 = 1, . . . , 𝑝 and 𝑝 to be a small number8, 𝑝≪ 𝑁 , where 𝑁
is the number of signals in 𝐾𝑋 or 𝐾𝑌 .

7Hereinafter, we will use a non-curly symbol to denote an operator and associated matrix (e.g.,
the operator ℱ𝑗 : 𝐿2(Ω,ℝ𝑛) → 𝐿2(Ω,ℝ𝑚) and the associated matrix 𝐹𝑗 ∈ ℝ𝑚×𝑛 are denoted

by 𝐹𝑗).
8It is worthwhile to note that it is not assumed that the covariance matrices are known for each
signal pair from 𝐾𝑋 ×𝐾𝑌 , {x(𝑡, ⋅),y(𝑡, ⋅)} with 𝑡 ∈ [𝑎, 𝑏].
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3.3. The problem

In (3.1)–(3.3), parameters of the filter ℱ (𝑝−1), i.e., vector 𝛼𝑗 and matrix 𝐵𝑗, for
𝑗 = 1, . . . , 𝑝 − 1, are unknown. Therefore, under the assumptions described in
Section 3.2, the problem is to determine 𝛼𝑗 and 𝐵𝑗 , for 𝑗 = 1, . . . , 𝑝 − 1. The
related problem is to estimate an error associated with the filter ℱ (𝑝−1).

Solutions to the both problems are given in Sections 4.2 and 4.4, respectively.
In particular, in the following Section 3.4, interpolation conditions (3.5) and (3.8)
are introduced that lead to a determination of 𝛼𝑗 and 𝐵𝑗 .

3.4. Interpolation conditions

Let us denote

∥x(𝑡𝑗 , ⋅)∥2Ω =
∫

Ω

∥x(𝑡𝑗 , 𝜔)∥22𝑑𝜇(𝜔) (3.4)

where ∥x(𝑡𝑗 , 𝜔)∥2 is the Euclidean norm of x(𝑡𝑗 , 𝜔) ∈ ℝ𝑚.
For 𝑡 = 𝑡1, let x̂(𝑡1, ⋅) be an estimate of x(𝑡1, ⋅) determined by known methods

[1]–[13], [23], [25]. This is the initial condition of the proposed technique.
For 𝑗 = 1, . . . , 𝑝−1, each sub-filter 𝐹𝑗 in (3.2)–(3.3) is defined so that 𝛼𝑗 and

ℬ𝑗 satisfy the conditions as follows.
Sub-filter ℱ1: For 𝑗 = 1, 𝛼1 and ℬ1 solve

x̂(𝑡1, ⋅) = 𝛼1 + ℬ1[y(𝑡1, ⋅)] and min
ℬ1

∥[x(𝑡2, ⋅)− 𝛼1]− ℬ1[y(𝑡2, ⋅)]∥2Ω , (3.5)

respectively. Then an estimate of x(𝑡, ⋅), x̂(𝑡, ⋅), for 𝑡 ∈ [𝑡1, 𝑡2], is determined as

x̂(𝑡, ⋅) = ℱ1[y(𝑡, ⋅)] = 𝛼1 + ℬ1[y(𝑡, ⋅)] = x̂(𝑡1, ⋅) + ℬ1[y(𝑡, ⋅)− y(𝑡1, ⋅)] (3.6)

where 𝛼1 and ℬ1 satisfy (3.5). In particular, 𝛼1 = x̂(𝑡1, ⋅)− ℬ1[y(𝑡1, ⋅)] and
x̂(𝑡2, ⋅) = ℱ1[y(𝑡2, ⋅)].

Extending this procedure up to 𝑗 = 𝑘−1, where 𝑘 = 3, . . . , 𝑝, we set the following.
Let x̂(𝑡𝑘−1, ⋅) be an estimate of x(𝑡𝑘−1, ⋅) defined by the preceding steps as

x̂(𝑡𝑘−1, ⋅) = ℱ𝑘−2[y(𝑡𝑘−1, ⋅)]. (3.7)

Then sub-filter ℱ𝑘−1 is defined as follows.
Sub-filter ℱ𝑘−1: For 𝑗 = 𝑘 − 1, 𝛼𝑘−1 and ℬ𝑘−1 solve

x̂(𝑡𝑘−1, ⋅) = 𝛼𝑘−1 + ℬ𝑘−1[y(𝑡𝑘−1, ⋅)] (3.8)

and min
ℬ𝑘−1

∥[x(𝑡𝑘, ⋅)− 𝛼𝑘−1]− ℬ𝑘−1[y(𝑡𝑘, ⋅)]∥2Ω , (3.9)

respectively. Then an estimate of x(𝑡, ⋅), x̂(𝑡, ⋅), for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘], is determined as

x̂(𝑡, ⋅) = ℱ𝑘−1[y(𝑡, ⋅)] = 𝛼𝑘−1 + ℬ𝑘−1[y(𝑡, ⋅)]
= x̂(𝑡𝑘−1, ⋅) + ℬ1[y(𝑡, ⋅)− y(𝑡𝑘−1, ⋅)]. (3.10)

The conditions (3.5) and (3.8)–(3.9) are motivated by the device of piecewise
function interpolation and associated advantages [14].
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Filter ℱ (𝑝−1) of the form (3.1)–(3.2) with 𝛼𝑗 and ℬ𝑗 satisfying (3.5) and
(3.8) is called the piecewise linear interpolation filter. The pair of signals {x(𝑡𝑘, ⋅),
y(𝑡𝑘, ⋅)} associated with time 𝑡𝑘 defined by (2.1) is called the interpolation pair.

4. Main results

4.1. General device

In accordance with the scheme presented in Sections 3.1 and 3.4 above, an estimate
of the reference signal x(𝑡, ⋅), for any 𝑡 ∈ 𝑇 = [𝑎, 𝑏], by the piecewise linear

interpolation filter ℱ(𝑝−1), is given by

x̂(𝑡, ⋅) = ℱ (𝑝−1)[y(𝑡, ⋅)] =
𝑝−1∑
𝑗=1

𝛿𝑗ℱ 𝑗 [y(𝑡, ⋅)], (4.1)

where, for each 𝑗 = 1, . . . , 𝑝− 1, the sub-filter ℱ 𝑗 is given by (3.2), and is defined
from the interpolation conditions (3.5) and (3.8).

Below, we show how to determine ℱ 𝑗 to satisfy the conditions (3.5) and (3.8).

4.2. Determination of piecewise linear interpolation filter

Let us denote

z(𝑡𝑗 , 𝑡𝑗+1, ⋅) = x(𝑡𝑗+1, ⋅)− x̂(𝑡𝑗 , ⋅) and w(𝑡𝑗 , 𝑡𝑗+1, ⋅) = y(𝑡𝑗+1, ⋅)−y(𝑡𝑗 , ⋅). (4.2)
We need to represent z(𝑡𝑗 , 𝑡𝑗+1, ⋅) and w(𝑡𝑗 , 𝑡𝑗+1, ⋅) in terms of their components
as follows:

z(𝑡𝑗 , 𝑡𝑗+1, ⋅) = [z(1)(𝑡𝑗 , 𝑡𝑗+1, ⋅), . . . , z(𝑚)(𝑡𝑗 , 𝑡𝑗+1, ⋅)]𝑇
and w(𝑡𝑗 , 𝑡𝑗+1, ⋅) = [w(1)(𝑡𝑗 , 𝑡𝑗+1, ⋅), . . . ,w(𝑛)(𝑡𝑗 , 𝑡𝑗+1, ⋅)]𝑇 ,

where z(𝑗)(𝑡𝑗 , 𝑡𝑗+1, ⋅) ∈ 𝐿2(Ω,ℝ) and w(𝑖)(𝑡𝑗 , 𝑡𝑗+1, ⋅) ∈ 𝐿2(Ω,ℝ) are random vari-
ables, for all 𝑗 = 1, . . . ,𝑚.

Then we can introduce the covariance matrix

𝐸𝑧𝑗𝑤𝑗 =
{〈

z(𝑖)(𝑡𝑗 , 𝑡𝑗+1, ⋅),w(𝑘)(𝑡𝑗 , 𝑡𝑗+1, ⋅)
〉}𝑚,𝑛

𝑖,𝑘=1
, (4.3)

where
〈
z(𝑖)(𝑡𝑗 , 𝑡𝑗+1, ⋅),w(𝑘)(𝑡𝑗 , 𝑡𝑗+1, ⋅)

〉
=
∫
Ω z(𝑖)(𝑡𝑗 , 𝑡𝑗+1, 𝜔)w

(𝑘)(𝑡𝑗 , 𝑡𝑗+1, 𝜔) 𝑑𝜇(𝜔).

Below, 𝑀 † is the Moore–Penrose generalized inverse of a matrix 𝑀 .
Now, we are in a position to establish the main results.

Theorem 4.1. Let 𝐾
𝑋
= {x(𝑡, ⋅) ∈ 𝐿2(Ω,ℝ𝑚) ∣ 𝑡 ∈ 𝑇 = [𝑎, 𝑏]} and 𝐾

𝑌
= {y(𝑡, ⋅) ∈

𝐿2(Ω,ℝ𝑛) ∣ 𝑡 ∈ 𝑇 = [𝑎, 𝑏]} be sets of reference signals and observed signals, re-
spectively. Let 𝑡𝑗 ∈ [𝑎, 𝑏], for 𝑗 = 1, . . . , 𝑝, be such that

𝑎 = 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 = 𝑏.

For 𝑡 = 𝑡1, let x̂(𝑡1, ⋅) be a known estimate of x(𝑡1, ⋅)9. Then, for any 𝑡 ∈ [𝑎, 𝑏],

the proposed piecewise linear interpolation filter ℱ (𝑝−1) : 𝐿2(Ω,ℝ𝑛) → 𝐿2(Ω,ℝ𝑚)

9As it has been mentioned in Section 3.4, x̂(𝑡1, ⋅) can be determined by the known methods.
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transforming any signal y(𝑡, ⋅) ∈ 𝐿2(Ω,ℝ𝑚) to an estimate of x(𝑡, ⋅), x̂(𝑡, ⋅), is
given by

x̂(𝑡, ⋅) = ℱ (𝑝−1)[y(𝑡, ⋅)] =
𝑝−1∑
𝑗=1

𝛿𝑗ℱ 𝑗 [y(𝑡, ⋅)] (4.4)

where

ℱ 𝑗 [y(𝑡, ⋅)] = x̂(𝑡𝑗 , ⋅) + ℬ𝑗[y(𝑡, ⋅)− y(𝑡𝑗 , ⋅)], (4.5)

x̂(𝑡𝑗 , ⋅) = ℱ 𝑗−1[y(𝑡𝑗 , ⋅)] (for 𝑗 = 2, . . . , 𝑝− 1), (4.6)

𝐵𝑗 = 𝐸𝑧𝑗𝑤𝑗𝐸
†
𝑤𝑗𝑤𝑗

+𝑀𝐵𝑗 [𝐼𝑛 − 𝐸𝑤𝑗𝑤𝑗𝐸
†
𝑤𝑗𝑤𝑗

], (4.7)

and where 𝐼𝑛 is the 𝑛× 𝑛 identity matrix and 𝑀𝐵𝑗 is an 𝑚× 𝑛 arbitrary matrix.

Proof. It follows from (3.5) and (3.8) that 𝛼𝑗 , for 𝑗 = 1, . . . , 𝑝− 1, is given by

𝛼𝑗 = x̂(𝑡𝑗 , 𝜔)−𝐵𝑗 [y(𝑡𝑗 , 𝜔)]. (4.8)

Further, for 𝛼𝑗 given by (4.8),

∥[x(𝑡𝑗+1, ⋅)− 𝛼𝑗 ]− ℬ𝑗[y(𝑡𝑗+1, ⋅)]∥2Ω
= ∥z(𝑡𝑗 , 𝑡𝑗+1, ⋅)− ℬ𝑗[w(𝑡𝑗 , 𝑡𝑗+1, ⋅))]∥2Ω (4.9)

= tr{𝐸𝑧𝑗𝑧𝑗 − 𝐸𝑧𝑗𝑤𝑗𝐵
𝑇
𝑗 −𝐵𝑗𝐸𝑤𝑗𝑧𝑗 +𝐵𝑗𝐸𝑤𝑗𝑤𝑗𝐵

𝑇
𝑗 }

= ∥𝐸1/2
𝑧𝑗𝑧𝑗

∥2 − ∥𝐸𝑧𝑗𝑤𝑗 (𝐸
1/2
𝑤𝑗𝑤𝑗

)†∥2 + ∥(𝐵𝑗 − 𝐸𝑧𝑗𝑤𝑗𝐸
†
𝑤𝑗𝑤𝑗

)𝐸1/2
𝑤𝑗𝑤𝑗

∥2

= ∥𝐸1/2
𝑧𝑗𝑧𝑗

∥2 − ∥𝐸𝑧𝑗𝑤𝑗 (𝐸
1/2
𝑤𝑗𝑤𝑗

)†∥2 + ∥𝐸𝑧𝑗𝑤𝑗 (𝐸
1/2
𝑤𝑗𝑤𝑗

)† −𝐵𝑗𝐸
1/2
𝑤𝑗𝑤𝑗

∥2, (4.10)

where ∥ ⋅ ∥ is the Frobenius norm. The latter is true because

𝐸†𝑤𝑗𝑤𝑗
𝐸1/2

𝑤𝑗𝑤𝑗
= (𝐸1/2

𝑤𝑗𝑤𝑗
)† and 𝐸𝑧𝑗𝑤𝑗𝐸

†
𝑤𝑗𝑤𝑗

𝐸𝑤𝑗𝑤𝑗 = 𝐸𝑧𝑗𝑤𝑗 (4.11)

by Lemma 24 in [5]. Thus, the second expression in (3.8) is reduced to the problem

min
𝐵𝑗

∥𝐸𝑧𝑗𝑤𝑗 (𝐸
1/2
𝑤𝑗𝑤𝑗

)† −𝐵𝑗𝐸
1/2
𝑤𝑗𝑤𝑗

∥2. (4.12)

It is known (see, for example, [5], p. 304) that the solution of problem (4.12) is
given by (4.7). The equation (4.5) follows from (3.3) and (4.8).

Theorem 4.1 is proven. □

It is worthwhile to observe that, due to an arbitrary matrix𝑀𝐵𝑗 in (4.7), the

filter ℱ(𝑝−1) is not unique. In particular,𝑀𝐵𝑗 can be chosen as the zero matrix 𝕆
similarly to the generic optimal linear [5] (which is also not unique by the same
reason).
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4.3. Numerical realization of filter 퓕(𝒑−1) and associated algorithm

4.3.1. Numerical realization. In practice, the set 𝑇 = [𝑎, 𝑏] (see Section 2.1)
is represented by a finite set {𝜏𝑘}𝑁𝑘=1, i.e., [𝑎, 𝑏] = [𝜏1, 𝜏2, . . . , 𝜏𝑁 ] where 𝑎 ≤ 𝜏1 <
𝜏2 < ⋅ ⋅ ⋅ < 𝜏𝑁 ≤ 𝑏.

For 𝑘 = 1, . . . , 𝑁 , the estimate of x(𝜏𝑘, ⋅), x̂(𝜏𝑘, ⋅), and observed signal y(𝜏𝑘, ⋅)
are represented by 𝑚× 𝑞 and 𝑛× 𝑞 matrices

�̂�(𝑘) = [x̂(𝜏𝑘, 𝜔1), . . . , x̂(𝜏𝑘, 𝜔𝑞)] and 𝑌 (𝑘) = [y(𝜏𝑘, 𝜔1), . . . ,y(𝜏𝑘, 𝜔𝑞)]. (4.13)

The sequence of fixed time-points {𝑡𝑘}𝑝1 ⊂ [𝑎, 𝑏] introduced in (2.1) is such that

𝜏1 = 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 = 𝜏𝑁 , (4.14)

where 𝑡1 = 𝜏𝑛0 , 𝑡2 = 𝜏𝑛0+𝑛1 , . . . , 𝑡𝑝 = 𝜏𝑛0+𝑛1...+𝑛𝑝−1 , and where 𝑛0 = 1 and
𝑛1, . . . , 𝑛𝑝−1 are positive integers such that 𝑁 = 𝑛0 + 𝑛1 + ⋅ ⋅ ⋅+ 𝑛𝑝−1.

For 𝑗 = 1, . . . , 𝑝, signal y(𝑡𝑗, ⋅) associated with 𝑡𝑗 in (4.14) is represented by

𝑌𝑗 = [y(𝑡𝑗 , 𝜔1), . . . ,y(𝑡𝑗 , 𝜔𝑁 )].

4.3.2. Algorithm. As it has been mentioned in Section 3.4, it is supposed that,

for 𝑡 = 𝑡1, an estimate of 𝑋1, �̂�1, is known and can be determined by the known
methods. This is the initial condition of the proposed technique.

On the basis of the results obtained in Sections 3.4 and 4.2, the performance
algorithm of the proposed filter consists of the following steps. For 𝑗 = 1 . . . , 𝑝, we
write 𝑁𝑗 = 𝑛0 + 𝑛1 + ⋅ ⋅ ⋅+ 𝑛𝑗−1.

Initial parameters: 𝑌 (1), . . . , 𝑌 (𝑁), {𝑡𝑗}𝑝𝑗=1 (see (4.14)), {𝐸𝑧𝑗𝑤𝑗}𝑝𝑗=1, {𝐸𝑤𝑗𝑤𝑗}𝑝𝑗=1
(see (4.2) and (4.3)), �̂�1, 𝑛0 = 1 and 𝑀𝐵𝑗 = 𝕆, for 𝑗 = 1, . . . , 𝑝− 1.

(Possible ways to get estimates of 𝐸𝑧𝑗𝑤𝑗 and 𝐸𝑤𝑗𝑤𝑗 are discussed below in
Section 4.5.)

Final parameters: �̂�(2), �̂�(3), . . ., �̂�(𝑁).

Algorithm:

∙ for 𝑗 = 1 to 𝑝 do

begin

𝐵𝑗 = 𝐸𝑧𝑗𝑤𝑗𝐸
†
𝑤𝑗𝑤𝑗

;

∙ for 𝑘 = 𝑁𝑗−1 + 1 to 𝑁𝑗 do

begin

�̂�(𝑘) = �̂�𝑗 +𝐵𝑗(𝑌
(𝑘) − 𝑌𝑗);

end

end
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4.4. Error analysis

It is natural to expect that the error associated with the piecewise interpolating

filter ℱ (𝑝−1) decreases when max
𝑗=1,...,𝑝−1

Δ𝑡𝑗 decreases. Below, in Theorem 4.3, we

justify that this observation is true. To this end, first, in the following Theorem
4.2, we establish an estimate of the error associated with the filter 𝐹 .

Let us introduce the norm by

∥x(𝑡, ⋅)∥2𝑇,Ω =
1

𝑏− 𝑎

∫
𝑇

∥x(𝑡, ⋅)∥2Ω𝑑𝑡. (4.15)

We also denote ∥x(𝑡, 𝜔)∥2𝑇,Ω = ∥x(𝑡, ⋅)∥2𝑇,Ω.

Let us suppose that x(⋅, 𝜔) and y(⋅, 𝜔) are Lipschitz continuous signals, i.e.,
that there exist real non-negative constants 𝜆𝑗 and 𝛾𝑗 , with 𝑗 = 1, . . . , 𝑝, such
that, for 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1],

∥x(𝑡, 𝜔)− x(𝑡𝑗 , 𝜔)∥2𝑇, Ω ≤ 𝜆𝑗Δ𝑡𝑗 and ∥y(𝑡, 𝜔)− y(𝑡𝑗+1, 𝜔)∥2𝑇, Ω ≤ 𝛾𝑗Δ𝑡𝑗 (4.16)

where Δ𝑡𝑗 = ∣𝑡𝑗+1 − 𝑡𝑗 ∣.
Theorem 4.2. Under the conditions (4.16) the error associated with the piecewise
interpolation filter, ∥x(𝑡, 𝜔)− 𝐹 (𝑝−1)[y(𝑡, 𝜔)]∥2𝑇, Ω, is estimated as follows:

∥x(𝑡, 𝜔)− 𝐹 (𝑝−1)[y(𝑡, 𝜔)]∥2𝑇, Ω

≤ max
𝑗=1,...,𝑝−1

[
(𝜆𝑗 + 𝛾𝑗∥𝐵𝑗∥2)Δ𝑡𝑗 + ∥𝐸1/2

𝑧𝑗𝑧𝑗
∥2 − ∥𝐸𝑧𝑗𝑤𝑗 (𝐸

1/2
𝑤𝑗𝑤𝑗

)†∥2
]
. (4.17)

Proof. For 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1] and 𝐹𝑗 defined by (4.5)–(4.7),

x(𝑡, 𝜔)− 𝐹 [y(𝑡, 𝜔)]

= x(𝑡, 𝜔)− 𝐹𝑗 [y(𝑡, 𝜔)] (4.18)

= x(𝑡, 𝜔)− x̂(𝑡𝑗 , 𝜔) +𝐵𝑗y(𝑡𝑗 , 𝜔)−𝐵𝑗y(𝑡, 𝜔)

= [x(𝑡, 𝜔)− x(𝑡𝑗+1, 𝜔)]

+ z(𝑡𝑗 , 𝑡𝑗+1, 𝜔)− 𝐵𝑗w(𝑡𝑗 , 𝑡𝑗+1, 𝜔) +𝐵𝑗 [y(𝑡𝑗+1, 𝜔)− y(𝑡, 𝜔)]. (4.19)

Then (4.18) and (4.19) imply

∥x(𝑡, 𝜔)− 𝐹 [y(𝑡, 𝜔)]∥2𝑇,Ω ≤ ∥x(𝑡, 𝜔)− x(𝑡𝑗+1, 𝜔)∥2𝑇,Ω

+ ∥z(𝑡𝑗 , 𝑡𝑗+1, 𝜔)−𝐵𝑗w(𝑡𝑗 , 𝑡𝑗+1, 𝜔)∥2Ω (4.20)

+ ∥𝐵𝑗[y(𝑡𝑗+1, 𝜔)− y(𝑡, 𝜔)]∥2𝑇,Ω.

It follows from (4.9) and (4.10) that for 𝐵𝑗 given by (4.7),

∥z(𝑡𝑗 , 𝑡𝑗+1, 𝜔)−𝐵𝑗w(𝑡𝑗 , 𝑡𝑗+1, 𝜔)∥2Ω = ∥𝐸1/2
𝑧𝑗𝑧𝑗

∥2 − ∥𝐸𝑧𝑗𝑤𝑗 (𝐸
1/2
𝑤𝑗𝑤𝑗

)†∥2. (4.21)

Then (4.4)–(4.7), (4.16) and (4.18)–(4.21) imply that for all 𝑡 ∈ [𝑎, 𝑏] and
𝜔 ∈ Ω, (4.17) is true. □
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Further, to show that the error of the reference signal estimate tends to the
zero, we need to assume that, for 𝑡 ∈ [𝑡1, 𝑡2], the known estimate x̂(𝑡1, 𝜔) differs
from x(𝑡, 𝜔) for the value of the order Δ𝑡1, i.e., that, for some constant 𝑐1 ≥ 0,

∥x(𝑡, 𝜔)− x̂(𝑡1, 𝜔)∥2Ω ≤ 𝑐1Δ𝑡1, for 𝑡 ∈ [𝑡1, 𝑡2]. (4.22)

Theorem 4.3. Let the conditions (4.16) and (4.22) be true. Then the error as-
sociated with the piecewise interpolating filter 𝐹 , ∥x(𝑡, 𝜔) − 𝐹 (𝑝−1)[y(𝑡, 𝜔)]∥2𝑇, Ω,
decreases in the following sense:

∥x(𝑡, 𝜔)−𝐹 (𝑝−1)[y(𝑡, 𝜔)]∥2𝑇, Ω → 0 as max
𝑗=1,...,𝑝−1

Δ𝑡𝑗 → 0 and 𝑝→∞. (4.23)

Proof. The relation (4.15) implies that

∥x(𝑡, 𝜔)− 𝐹 [y(𝑡, 𝜔)]∥2𝑇,Ω =
1

𝑏− 𝑎

𝑝−1∑
𝑗=1

∫ 𝑡𝑗+1

𝑡𝑗

∥x(𝑡, 𝜔)− 𝐹𝑗 [y(𝑡, 𝜔)]∥2Ω𝑑𝑡, (4.24)

where

∥x(𝑡, 𝜔)− 𝐹𝑗 [y(𝑡, 𝜔)]∥2Ω
= ∥x(𝑡, 𝜔)− x̂(𝑡𝑗 , 𝜔) +𝐵𝑗 [y(𝑡𝑗 , 𝜔)−𝐵𝑗y(𝑡, 𝜔)]∥2Ω
≤ ∥x(𝑡, 𝜔)− x(𝑡𝑗 , 𝜔)∥2Ω + ∥x(𝑡𝑗 , 𝜔)− x̂(𝑡𝑗 , 𝜔)∥2Ω + ∥𝐵𝑗 [y(𝑡𝑗 , 𝜔)−𝐵𝑗y(𝑡, 𝜔)]∥2Ω.

Then∫ 𝑡𝑗+1

𝑡𝑗

∥x(𝑡, 𝜔)− 𝐹𝑗 [y(𝑡, 𝜔)]∥2Ω𝑑𝑡 (4.25)

≤
∫ 𝑡𝑗+1

𝑡𝑗

∥x(𝑡, 𝜔)− x(𝑡𝑗 , 𝜔)∥2Ω𝑑𝑡+
∫ 𝑡𝑗+1

𝑡𝑗

∥x(𝑡𝑗 , 𝜔)− x̂(𝑡𝑗 , 𝜔)∥2Ω𝑑𝑡

+ ∥𝐵𝑗∥
∫ 𝑡𝑗+1

𝑡𝑗

∥y(𝑡𝑗 , 𝜔)− y(𝑡, 𝜔)∥2Ω𝑑𝑡

≤ 𝜆𝑗(Δ𝑡𝑗)
2 + ∥x(𝑡𝑗 , 𝜔)− x̂(𝑡𝑗 , 𝜔)∥2ΩΔ𝑡𝑗 + ∥𝐵𝑗∥𝛾𝑗(Δ𝑡𝑗)2 (4.26)

Let us consider an estimate of ∥x(𝑡𝑗 , 𝜔)− x̂(𝑡𝑗 , 𝜔)∥2Ω, for 𝑗 = 1, . . . , 𝑝− 1. To
this end, let us denote Δ𝑡 = max

𝑗=1,...,𝑝−1
Δ𝑡𝑗 .

For 𝑗 = 1, i.e., for 𝑡 ∈ [𝑡1, 𝑡2],

∥x(𝑡, 𝜔)− 𝐹1y(𝑡, 𝜔)∥2Ω
≤ ∥x(𝑡, 𝜔)− x(𝑡1, 𝜔)∥2Ω + ∥x(𝑡1, 𝜔)− x̂(𝑡1, 𝜔)∥2Ω + ∥𝐵1∥∥y(𝑡1, 𝜔)− y(𝑡, 𝜔)∥2Ω
≤ 𝜆1Δ𝑡1 + 𝑐1Δ𝑡1 + ∥𝐵1∥𝛾1Δ𝑡1
≤ 𝛽1Δ𝑡,

where 𝛽1 = 𝜆1 + 𝑐1 + ∥𝐵1∥𝛾1. In particular, the latter implies
∥x(𝑡2, 𝜔)− x̂(𝑡2, 𝜔)∥2Ω = ∥x(𝑡2, 𝜔)− 𝐹1y(𝑡2, 𝜔)∥2Ω ≤ 𝛽1Δ𝑡
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For 𝑗 = 2, i.e., for 𝑡 ∈ [𝑡2, 𝑡3],

∥x(𝑡, 𝜔)− 𝐹2y(𝑡, 𝜔)∥2Ω
≤ ∥x(𝑡, 𝜔)− x(𝑡2, 𝜔)∥2Ω + ∥x(𝑡2, 𝜔)− x̂(𝑡2, 𝜔)∥2Ω + ∥𝐵2∥∥y(𝑡2, 𝜔)− y(𝑡, 𝜔)∥2Ω
≤ 𝜆2Δ𝑡2 + 𝛽1Δ𝑡+ ∥𝐵2∥𝛾2Δ𝑡2
≤ 𝛽2Δ𝑡,

where 𝛽2 = 𝜆2 + 𝛽1 + ∥𝐵2∥𝛾2. In particular, then it follows that
∥x(𝑡3, 𝜔)− x̂(𝑡3, 𝜔)∥2Ω = ∥x(𝑡3, 𝜔)− 𝐹2y(𝑡3, 𝜔)∥2Ω ≤ 𝛽2Δ𝑡.

On the basis of the above, let us assume that, for 𝑗 = 𝑘 − 1 with 𝑘 = 2, . . . , 𝑝− 1,
i.e., for 𝑡 ∈ [𝑡𝑘−1, 𝑡𝑘],

∥x(𝑡𝑘, 𝜔)− x̂(𝑡𝑘, 𝜔)∥2Ω = ∥x(𝑡𝑘, 𝜔)− 𝐹𝑘−1y(𝑡𝑘, 𝜔)∥2Ω ≤ 𝛽𝑘−1Δ𝑡

where 𝛽𝑘−1 is defined by analogy with 𝛽2.
Then, for 𝑗 = 𝑘 with 𝑘 = 2, . . . , 𝑝− 1, i.e., for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1],

∥x(𝑡, 𝜔)− 𝐹𝑘y(𝑡, 𝜔)∥2Ω
≤ ∥x(𝑡, 𝜔)− x(𝑡𝑘, 𝜔)∥2Ω + ∥x(𝑡𝑘, 𝜔)− x̂(𝑡𝑘, 𝜔)∥2Ω + ∥𝐵𝑘∥∥y(𝑡𝑘, 𝜔)− y(𝑡, 𝜔)∥2Ω
≤ 𝜆𝑘Δ𝑡𝑘 + 𝛽𝑘−1Δ𝑡+ ∥𝐵𝑘∥𝛾2Δ𝑡𝑘
≤ 𝛽𝑘Δ𝑡,

where 𝛽𝑘 = 𝜆𝑘 + 𝛽𝑘−1 + ∥𝐵𝑘∥𝛾𝑘. Thus, the following is true:
∥x(𝑡𝑘+1, 𝜔)− x̂(𝑡𝑘+1, 𝜔)∥2Ω = ∥x(𝑡𝑘+1, 𝜔)− 𝐹𝑘y(𝑡𝑘+1, 𝜔)∥2Ω ≤ 𝛽𝑘Δ𝑡. (4.27)

Therefore, (4.25), (4.26) and (4.27) imply∫ 𝑡𝑗+1

𝑡𝑗

∥x(𝑡, 𝜔)− 𝐹𝑗 [y(𝑡, 𝜔)]∥2Ω𝑑𝑡

≤ 𝜆𝑗(Δ𝑡𝑗)
2 + 𝛽𝑗−1(Δ𝑡𝑗)2 + ∥𝐵𝑗∥𝛾𝑗(Δ𝑡𝑗)2 (4.28)

≤ 𝜂𝑗(Δ𝑡)
2

where 𝜂𝑗 = 𝜆𝑗 + 𝛽𝑗−1 + ∥𝐵𝑗∥, and then it follows from (4.24)–(4.26) and (4.28)
that for all 𝑡 ∈ [𝑎, 𝑏],

∥x(𝑡, 𝜔)− 𝐹 [y(𝑡, 𝜔)]∥2𝑇,Ω ≤
1

𝑏− 𝑎

𝑝−1∑
𝑗=1

𝜂𝑗(Δ𝑡)
2 =

1

𝑏− 𝑎
Δ𝑡

𝑝−1∑
𝑗=1

𝜂𝑗Δ𝑡. (4.29)

Let us now choose 𝑐 ∈ ℝ and 𝑑 ∈ ℝ so that Δ𝑡 =
𝑑− 𝑐

𝑝
and partition interval

[𝑐, 𝑑] ⊂ ℝ by points 𝜏1, . . . , 𝜏𝑝 so that 𝑐 = 𝜏1 and 𝜏𝑗 = 𝜏1 + 𝑗Δ𝑡 with 𝑗 = 1, . . . , 𝑝.
There exists an integrable (bounded) function 𝜑 : [𝑐, 𝑑] → ℝ such that, for
𝜉𝑗 ∈ (𝜏𝑗 , 𝜏𝑗+1), 𝜑(𝜉𝑗) = 𝜂𝑗 . Then

lim
Δ𝑡→∞

𝑝−1∑
𝑗=1

𝜂𝑗Δ𝑡 = lim
Δ𝑡→∞

𝑝−1∑
𝑗=1

𝜑(𝜉𝑗)Δ𝑡 =

∫ 𝑑

𝑐

𝜑(𝜏)𝑑𝜏 < +∞. (4.30)
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Thus,

1

𝑏− 𝑎
Δ𝑡

𝑝−1∑
𝑗=1

𝜂𝑗Δ𝑡→ 0 as Δ𝑡→ 0. (4.31)

As a result, (4.29)–(4.31) imply (4.23). □

Remark 4.4. We would like to emphasize that the statement of Theorem 4.3 is
fulfilled only under assumptions (4.16) and (4.22). At the same time, the assump-
tions (4.16) and (4.22) are not restrictive from a practical point of view. The
condition (4.16) is true for Lipschitz continuous signals x and y, i.e., for very wide
class of signals. The condition (4.22) is achieved by a choosing an appropriate
known method (e.g., see [1]–[13], [23], [25]) to find the estimate x̂(𝑡1, 𝜔) used in

the proposed filter ℱ (𝑝−1) (see (3.5) and Theorem 4.1).

4.5. Some remarks related to the assumptions of the method

As it has been mentioned in Section 3.2, for 𝑗 = 1, . . . , 𝑝, matrices 𝐸𝑧𝑗𝑤𝑗 and 𝐸𝑤𝑗𝑤𝑗

in (4.7) are assumed to be known or can be estimated. Here, 𝑝 is a chosen number
of selected interpolation signal pairs (see Section 3.4). We note that normally 𝑝 is
much smaller than the number of input-output signals x(𝑡, ⋅) and y(𝑡, ⋅). Therefore,
to estimate any signal x(𝑡, ⋅) from an arbitrarily large set𝐾

𝑋
, only a small number,

𝑝, of matrices 𝐸𝑧𝑗𝑤𝑗 and 𝐸𝑤𝑗𝑤𝑗 should be estimated (or be known). This issue has
also been discussed in Sections 1.1.1 and 1.1.4.

By the proposed method, x(𝑡, ⋅) is estimated for 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]. While 𝐸𝑤𝑗𝑤𝑗

in (4.7) can be directly estimated from observed signals y(𝑡𝑗+1, ⋅) and y(𝑡𝑗 , ⋅), an
estimate of matrix 𝐸𝑧𝑗𝑤𝑗 depends on the reference signal x(𝑡𝑗+1, ⋅) (see (4.2) and
(4.3)) which is unknown (because the estimate is considered for 𝑡 ∈ [𝑡𝑗 , 𝑡𝑗+1]).

Some possible approaches to an estimation of matrix 𝐸𝑧𝑗𝑤𝑗 could be as fol-
lows.

1. In the general case, when x(𝑡, ⋅) and y(𝑡, ⋅) are arbitrary signals as discussed
in Section 2.1 above, matrix 𝐸𝑧𝑗𝑤𝑗 can be estimated as proposed, for example,
in [27], from samples of 𝑧𝑗 and 𝑤𝑗 .

2. In the case of incomplete observations, the method proposed in [28, 29] can
be used.

3. Let 𝐸𝑧𝑗𝑤𝑗 be a matrix obtained from matrix 𝐸𝑧𝑗𝑤𝑗 where the term x(𝑡𝑗+1, ⋅)
is replaced by x̂(𝑡, ⋅) with 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗 ]. Since x̂(𝑡, ⋅) with 𝑡 ∈ [𝑡𝑗−1, 𝑡𝑗 ] is
known, matrix 𝐸𝑧𝑗𝑤𝑗 can be considered as an estimate of 𝐸𝑧𝑗𝑤𝑗 .

4. In the important case of an additive noise, 𝐸𝑧𝑗𝑤𝑗 can be represented in the
explicit form. Indeed, if

y(𝑡, ⋅) = x(𝑡, ⋅) + 𝜉(𝑡, ⋅)
where 𝜉(𝑡, ⋅) ∈ 𝐿2(Ω,ℝ𝑚) is a random noise, then z(𝑡𝑗 , 𝑡𝑗+1, ⋅) = y(𝑡𝑗+1, ⋅)−
𝜉(𝑡𝑗+1, ⋅)− x̂(𝑡𝑗 , ⋅) and matrix 𝐸𝑧𝑗𝑤𝑗 can be represented as follows:

𝐸𝑧𝑗𝑤𝑗 = 𝐸(𝑦𝑗+1−𝜉𝑗+1)(𝑦𝑗+1−𝑦𝑗) − 𝐸𝑥𝑗(𝑦𝑗+1−𝑦𝑗) (4.32)
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We note that the RHS of (4.32) depends only on observed signals y(𝑡𝑗 , ⋅),
y(𝑡𝑗+1, ⋅), estimated signal x̂(𝑡𝑗 , ⋅), and noise 𝜉(𝑡𝑗+1, ⋅), not on the reference
signal x(𝑡𝑗+1, ⋅). In particular, in (4.32), the term 𝐸𝜉𝑗+1(𝑦𝑗+1−𝑦𝑗) can be esti-
mated as

±(𝐸[𝜉2𝑗+1])1/2 × (𝐸[(𝑦𝑗+1 − 𝑦𝑗)
2])1/2

where 𝐸[𝜉2𝑗+1] =

∫
Ω

[𝜉(𝑡𝑗+1, 𝜔)]
2 𝑑𝜇(𝜔). It is motivated by the Holder’s in-

equality for integrals. The second term in (4.32), 𝐸𝑥𝑗(𝑦𝑗+1−𝑦𝑗), can be esti-
mated from the samples of x̂(𝑡𝑗+1, ⋅) and y(𝑡𝑗+1, ⋅)− y(𝑡𝑗 , ⋅).
We also note that the first term in the RHS of (4.32), 𝐸(𝑦𝑗+1−𝜉𝑗+1)(𝑦𝑗+1−𝑦𝑗), is
similar to the related covariance matrix in the Wiener filtering approach [5].

5. Other known ways to estimate 𝐸𝜉𝑗+1(𝑦𝑗+1−𝑦𝑗) can be found in [5], Section 5.3.

In general, an estimation of covariance matrices is a special research topic
which is not a subject of this paper. The relevant references can be found, for
example, in [5, 29].

5. Simulations

5.1. General consideration

In these simulations, in accordance with Section 4.3.1, signal sets 𝐾
𝑋
and 𝐾

𝑌
(see

Section 2.1) are given by

𝐾𝑋 = {x(𝜏1, ⋅),x(𝜏2, ⋅), . . . ,x(𝜏𝑁 , ⋅)} and 𝐾𝑌 = {y(𝜏1, ⋅),y(𝜏2, ⋅, . . . ,y(𝜏𝑁 , ⋅)},
where, for 𝑘 = 1, . . . , 𝑁 , x(𝜏𝑘, ⋅) ∈ 𝐿2(Ω,ℝ𝑚) and y(𝜏𝑘, ⋅) ∈ 𝐿2(Ω,ℝ𝑛). In many
practical problems (arising, for example, in a DNA analysis the number 𝑁 is quite
large, for instance, 𝑁 = 𝒪(104).

We set 𝑁 = 141 and 𝑚 = 𝑛 = 116. Thus, in these simulations, the interval
𝑇 = [𝑎, 𝑏] (see Sections 2.1 and 4.3.1) is modelled as 141 points 𝜏𝑘 with 𝑘 =
1, . . . , 141 so that [𝑎, 𝑏] = [𝜏1, 𝜏2, . . . , 𝜏141].

The sequence of fixed time-points {𝑡𝑘}𝑝1 ⊂ 𝑇 in (2.1) is now such that

𝜏1 = 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑝 = 𝜏141. (5.1)

Below, in Examples 1–12, four particular choices of the specific interpolation
signals pairs {x(𝑡𝑘, ⋅), y(𝑡𝑘, ⋅)}𝑝1 (introduced in Section 3.4) are considered, for
𝑝 = 5, 8, 15 and 28.

Signals x(𝜏𝑘, ⋅) and y(𝜏𝑘, ⋅) have been simulated as digital images represented
by 116× 256 matrices

𝑋(𝑘) = [x(𝜏𝑘, 𝜔1), . . . ,x(𝜏𝑘, 𝜔256)] and 𝑌 (𝑘) = [y(𝜏𝑘, 𝜔1), . . . ,y(𝜏𝑘, 𝜔256)],
(5.2)

respectively, for 𝑘 = 1, . . . , 141, so that 𝑋(𝑘) represents an image that should be
estimated from an observed image 𝑌 (𝑘). A column of matrices 𝑋(𝑘) and 𝑌 (𝑘),
x(𝜏𝑘, 𝜔𝑖) ∈ ℝ116 and y(𝜏𝑘, 𝜔𝑖) ∈ ℝ116, for 𝑖 = 1, . . . , 256, represents a realization
of signals x(𝜏𝑘, ⋅) and y(𝜏𝑘, ⋅), respectively.
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Note that 𝑋(1), . . . , 𝑋(141) are not used in the piecewise linear filter 𝐹 (𝑝−1)

below since they are not supposed to be known. They are represented here for
illustration purposes only. In particular,𝑋(1), . . . , 𝑋(141) are used to compare their
estimates by different filters.

Observed noisy signals 𝑌 (1), . . . , 𝑌 (141) have been simulated in the form pre-
sented by (5.13) in the Examples 1–5 in Sections 5.2 and 5.3. We note that the
considered observed signals are grossly corrupted.

To estimate the signals 𝑋(1), . . . , 𝑋(141) from the observed signals 𝑌 (1),
. . . , 𝑌 (141), the proposed piecewise linear filter 𝐹 (𝑝−1), the generic optimal linear
(GOL) filters [5] and the averaging polynomial filter [12] have been used.

The filters proposed in [12, 13, 22, 23] have not been applied here by the
reasons discussed in Section 1. In particular, the filter in [23] cannot be applied
to signals represented by 𝑌 (1), . . . , 𝑌 (141) in the form (5.13) below because the
associated inverse matrices used in [23] do not exist.

For signals under consideration (given by matrices 𝑋(𝑘) and 𝑌 (𝑘) with 𝑘 =
1, . . . , 141), the filter 𝐹 (𝑝−1), the generic optimal linear (GOL) filters [5] and the
averaging polynomial filter [10, 12] are represented as follows.

(i) Piecewise linear filter 𝐹 (𝑝−1). For 𝑗 = 1, . . . , 𝑝, {𝑋𝑗, 𝑌𝑗} designates an interpo-
lation pair defined similarly to that in Section 3.4. Each 𝑋𝑗 and 𝑌𝑗 is associated
with 𝑡𝑗 in (5.1) so that

𝑋𝑗 = [x(𝑡𝑗 , 𝜔1), . . . ,x(𝑡𝑗 , 𝜔256)] and 𝑌𝑗 = [y(𝑡𝑗 , 𝜔1), . . . ,y(𝑡𝑗 , 𝜔256)].

The estimate �̂�(𝑘) of 𝑋(𝑘) by the filter 𝐹 (𝑝−1) is given by

�̂�(𝑘) = 𝐹 (𝑝−1)[𝑌 (𝑘)], (5.3)

where, by (4.4)–(4.7) in Section 4.2,

𝐹 (𝑝−1)[𝑌 (𝑘)] =

𝑝−1∑
𝑗=1

𝛿𝑗𝐹
(𝑝−1)
𝑗 [𝑌 (𝑘)], 𝛿𝑗 =

{
1, if 𝑗 ≤ 𝑘 ≤ 𝑗 + 1,
0, otherwise,

(5.4)

𝐹
(𝑝−1)
𝑗 [𝑌 (𝑘)] = �̂�𝑗 + 𝐵𝑗[𝑌

(𝑘) − 𝑌𝑗 ], (5.5)

�̂�𝑗 = 𝐹𝑗−1[𝑌𝑗 ], �̂�1 is given, (5.6)

𝐵𝑗 = 𝐸𝑍𝑗𝑊 𝑗
(𝐸𝑊 𝑗𝑊 𝑗

)†, (5.7)

and where 𝐸
𝑍𝑗𝑊 𝑗

and 𝐸
𝑊 𝑗𝑊 𝑗

are estimates of matrices 𝐸𝑧𝑗𝑤𝑗 and 𝐸𝑤𝑗𝑤𝑗 in (4.7),
respectively. In particular, 𝐸𝑊𝑗𝑊𝑗 can be represented in the form

𝐸𝑊 𝑗𝑊 𝑗
=𝑊𝑗𝑊

𝑇
𝑗 , where 𝑊𝑗 = 𝑌𝑗+1 − 𝑌𝑗 . (5.8)

Further, matrix 𝐸
𝑍𝑗𝑊 𝑗

depends on 𝑍𝑗 = 𝑋𝑗+1− �̂�𝑗 where 𝑋𝑗+1 is unknown.
Therefore a determination of 𝐸

𝑍𝑗𝑊 𝑗
is reduced, in fact, to finding an estimate of

𝑋𝑗+1. Since it is customary to find 𝐸𝑍𝑗𝑊 𝑗
in terms of signal samples [5], 𝐸𝑍𝑗𝑊 𝑗

has been presented as

𝐸𝑍𝑗𝑊 𝑗
= 𝑍𝑗𝑊

𝑇
𝑗 , where 𝑍𝑗 = �̃�𝑗+1 − �̂�𝑗 (5.9)
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and �̃�𝑗+1 has been constructed from a sample of 𝑋𝑗+1 as follows. The sample of
𝑋𝑗+1 is a 116× 178 matrix presented by odd columns of 𝑋𝑗+1. Then an estimate

of 𝑋𝑗+1 is chosen as a 116× 256 matrix �̃�𝑗+1 where each odd column is a related
odd column of 𝑋𝑗+1, and each even column is an average of two adjacent columns.

The last column in �̃�𝑗+1 is the same as its preceding column.
This way of estimating 𝐸

𝑍𝑗𝑊 𝑗
was chosen for illustration purposes only. Other

related methods have been considered in Section 4.5.
The errors associated with the filter 𝐹 (𝑝−1) are given by

𝜀
(𝑝−1)
𝑘,𝐹 =

∥∥∥𝑋(𝑘) − 𝐹 (𝑝−1)[𝑌 (𝑘)]
∥∥∥2
𝐹
, for 𝑘 = 1, . . . , 141. (5.10)

(ii) Generic optimal linear (GOL) filters [5]. To each signal 𝑌 (𝑘), an individual
GOL filter 𝑊𝑘 has also been applied, so that 𝑊𝑘 estimates 𝑋

(𝑘) from 𝑌 (𝑘) in the
form

𝑊𝑘𝑌
(𝑘) = 𝐸𝑋(𝑘)𝑌 (𝑘)𝐸

†
𝑌 (𝑘)𝑌 (𝑘)𝑌

(𝑘),

for each 𝑘 = 1, . . . , 141. Thus, the GOL filter 𝑊𝑘 requires an estimate of 141
matrices 𝐸𝑋(𝑘)𝑌 (𝑘) , for each 𝑘 = 1, . . . , 141.

Similarly to matrix 𝐸𝑍𝑗𝑊𝑗 in the filter 𝐹 (𝑝−1) above, the matrix 𝐸𝑋(𝑘)𝑌 (𝑘)

has been estimated from samples of each 𝑋(𝑘), �̃�(𝑘), for each 𝑘 = 1, . . . , 141.
One of the advantages of the proposed filter 𝐹 (𝑝−1) is that 𝐹 (𝑝−1) requires a

smaller number, 𝑝, of samples of 𝑋𝑗, �̃�𝑗 , to be known (where 𝑗 = 1, . . . , 𝑝).
The errors associated with filters 𝑊𝑘 are given by

𝜖𝑘,𝑤 = ∥𝑋(𝑘) −𝑊𝑘𝑌
(𝑘)∥2𝐹 . (5.11)

(iii) Averaging polynomial filters [10, 12]. By the methodology in [10], the
averaging polynomial filter𝑊 is based on the use of the estimates of the covariance
matrices, 𝐸𝑋𝑌 and 𝐸𝑌 𝑌 , in the form

𝐸𝑋𝑌 =
1

141

141∑
𝑘=1

�̃�(𝑘)(𝑌 (𝑘))𝑇 and 𝐸𝑌 𝑌 =
1

141

141∑
𝑘=1

𝑌 (𝑘)(𝑌 (𝑘))𝑇 .

Then, for each, 𝑘 = 1, . . . , 141, the estimate of 𝑋(𝑘) is given by

𝑊𝑌 (𝑘) = 𝐸𝑋𝑌 𝐸†𝑌 𝑌 𝑌 (𝑘).

The errors associated with the filter 𝑊 are given by

𝜀𝑘𝑊 = ∥𝑋(𝑘) −𝑊𝑌 (𝑘)∥2𝐹 , for 𝑘 = 1, . . . , 141. (5.12)

5.2. Simulations with signals modelled from images ‘plant’:
application of piecewise interpolation filter and GOL filters

Here, results of simulations for reference signals represented by matrices 𝑋(1),
. . . , 𝑋(141) (see (5.2) above) formed from images ‘plant’10 are considered. Typical
selected images 𝑋(𝑘) are shown in Figure 1.

10The database is available in http://sipi.usc.edu/services/database.html.

http://sipi.usc.edu/services/database.html
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(a) Signal 𝑋(1).
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(b) Signal 𝑋(55).
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(c) Signal 𝑋(95).
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(d) Signal 𝑋(141) .

Figure 1. Examples of selected signals to be estimated from observed data.
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Observed noisy images 𝑌 (1), . . . , 𝑌 (141) have been simulated in the form

𝑌 (𝑘) = 𝑋(𝑘) ∙ randn(𝑘) ∙ rand(𝑘), (5.13)

for each 𝑘 = 1, . . . , 141. Here, ∙ means the Hadamard product, and randn(𝑘) and
rand(𝑘) are 116 × 256 matrices with random entries. The entries of randn(𝑘) are
normally distributed with mean zero, variance one and standard deviation one.
The entries of rand(𝑘) are uniformly distributed in the interval (0, 1). A typical
example of such images is given in Figure 2 (a).

To demonstrate the effectiveness of the proposed filter 𝐹 (𝑝−1), sub-filters
𝐹
(𝑝−1)
𝑗 and associated interpolation signal pairs {𝑋𝑗, 𝑌𝑗}𝑝𝑗=1 have been chosen in
four different ways as follows.

Example 1. First, for 𝑝 = 5, the interpolation signal pairs are

{𝑋1, 𝑌1} = {𝑋(1), 𝑌 (1)}, {𝑋2, 𝑌2} = {𝑋(35), 𝑌 (35)}, {𝑋3, 𝑌3} = {𝑋(70), 𝑌 (70)},
{𝑋4, 𝑌4} = {𝑋(105), 𝑌 (105)}, {𝑋5, 𝑌5} = {𝑋(141), 𝑌 (141)}. (5.14)

The error values {𝜀(4)𝑘,𝐹 }1411 associated with filter 𝐹 (4) are evaluated by (5.10). The

graph of {𝜀(4)𝑘,𝐹 }1411 is presented in Figure 3 (a).

Example 2. For 𝑝 = 8, the interpolation signal pairs are

{𝑋1, 𝑌1} = {𝑋(1), 𝑌 (1)}, {𝑋𝑗, 𝑌𝑗} = {𝑋(20(𝑗−1)), 𝑌 (20(𝑗−1))}, for 𝑗 = 2, . . . , 7;

and {𝑋8, 𝑌8} = {𝑋(141), 𝑌 (141)}. (5.15)

The error magnitudes {𝜀(7)𝑘,𝐹 }1411 associated with the piecewise interpolation filter

𝐹 (7) constructed by (5.4)–(5.9) with the interpolation signal pairs given by (5.15)
are diagrammatically shown in Figure 3 (b).

It follows from Figure 3 (b) that the errors associated with filter 𝐹 (7) is less
than those of filter 𝐹 (4). This is a confirmation of Theorem 4.3.

Example 3. Further, for𝑝 = 15, the interpolation pairs are

{𝑋1, 𝑌1} = {𝑋(1), 𝑌 (1)}, {𝑋𝑗, 𝑌𝑗} = {𝑋(10(𝑗−1)), 𝑌 (10(𝑗−1))} for 𝑗 = 2, . . . , 14;

and {𝑋15, 𝑌15} = {𝑋(141), 𝑌 (141)}. (5.16)

In Figure 3 (c), the errors {𝜀(15)𝑘,𝐹 }1411 associated with the piecewise interpolation

filter 𝐹 (15) are presented. The Figure 3 (c) demonstrates a further confirmation of
Theorem 4.3: the errors associated with the piecewise interpolation filter dimin-
ishes as 𝑝 increases.

Example 4. Finally, the number of interpolation signal pairs {𝑋𝑗, 𝑌𝑗}𝑝𝑗=1 is 𝑝 = 29
so that

{𝑋1, 𝑌1} = {𝑋(1), 𝑌 (1)}, {𝑋𝑗 , 𝑌𝑗} = {𝑋(5(𝑗−1)), 𝑌 (5(𝑗−1))} for 𝑗 = 2, . . . , 28;

and {𝑋29, 𝑌29} = {𝑋(141), 𝑌 (141)}. (5.17)
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(a) Observed signal 𝑌 (95).
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(b) Estimate of 𝑋(95) by piecewise filter 𝐹 (28).
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(c) Estimate of 𝑋(95) by generic optimal linear (GOL) filters.
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(d) Estimate of 𝑋(95) by averaging polynomial filter.

Figure 2. Examples of the observed signal and the estimates obtained
by different filters.
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In this case, when 𝑝 is grater than in the previous Examples 1–3, the errors

{𝜀(29)𝑘,𝐹 }1411 associated with the piecewise interpolation filter 𝐹 (29) are smaller than

those associated with filters 𝐹 (4), 𝐹 (8) and 𝐹 (15) – see Figure 3 (d).

The diagrams of errors associated with the GOL filters [5] are also presented
in Figure 3. It follows from Figure 3 that proposed filters 𝐹 (4), 𝐹 (8), 𝐹 (15) and
𝐹 (29) provide the better accuracy then that of the GOL filters.

At the same time, the filter 𝐹 (𝑝−1) is easer to implement since it requires less
initial information compared to GOL filters, as it has been discussed in Sections
1.1.1 and 1.1.4.

5.3. Results of simulations for averaging polynomial filter [10, 12]

To further illustrate the effectiveness of the proposed piecewise interpolation filter,
in this Section, results of simulations for the averaging polynomial filter [10, 12]
are presented.

Example 9. The filter [10, 12] applied to signals considered in Section 5.2 gives the
associated errors {𝜖𝑘𝑊 }141𝑘=1 (see (5.12)) represented in Figure 4. For a comparison,

the errors associated with the piecewise interpolation filter 𝐹 (28) and the GOL
filters [5] are also given in Figure 4.

A typical example of the estimated signal by the averaging polynomial filter
[10, 12] is presented in Figure 2 (d).

Together with Figures 2 and 3, Figure 4 illustrates the advantage of the
piecewise interpolation filter.

6. Conclusions

The theory for a new approach to the operator approximation is provided. The
approach is motivated, in particular, by the problem of filtering of arbitrarily large
sets of stochastic signals 𝐾𝑌 and 𝐾𝑋 . An idealistic filter transforming signal sets
𝐾

𝑋
and 𝐾

𝑌
is interpreted as an operator ℱ : 𝐾

𝑌
→ 𝐾

𝑋
. Its approximating

operator (filter) is given by ℱ(𝑝−1) : 𝐾
𝑌
→ 𝐾

𝑋
.

Distinctive features of the approach are as follows.

(i) The proposed filter ℱ (𝑝−1) : 𝐾𝑌 → 𝐾𝑋 is presented in the form of a sum
with 𝑝 − 1 terms where each term, ℱ 𝑗 : 𝐾𝑌,𝑗 → 𝐾𝑋,𝑗 , is interpreted as a
particular sub-filter. Here, 𝐾𝑌,𝑗 and 𝐾𝑋,𝑗 are ‘small’ pieces of 𝐾𝑌 and 𝐾𝑋 ,
respectively.

(ii) The prime idea is to exploit a priori information only on few reference signals,
𝑝, from the set𝐾

𝑋
that contains 𝑁 ≫ 𝑝 signals (or even an infinite number of

signals) and determine ℱ 𝑗 separately, for each pieces 𝐾𝑌,𝑗 and 𝐾𝑋,𝑗 , so that

the associated error is minimal. In other words, the filter ℱ (𝑝−1) is flexible to
changes in the sets of observed and reference signals𝐾𝑌 and𝐾𝑋 , respectively.

(iii) Due to the specific way of determining ℱ 𝑗 , the filter ℱ (𝑝−1) provides a smaller
associated error than that for the processing of the whole set 𝐾𝑌 by a filter
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Figure 3. Illustration of the errors associated with the piecewise in-
terpolation filters 𝐹 (𝑝−1) and the generic optimal linear (GOL) filters
[5] applied to signals described in Examples 1–3.



506 A. Torokhti

0 20 40 60 80 100 120 140 160 180
0

0.5

1

1.5

2

2.5

3
x 108

Piecewise filter,  p=29 

GOL filters 

(d)

Figure 3. (Cont.) Illustration of the errors associated with the piece-
wise interpolation filters 𝐹 (𝑝−1) and the generic optimal linear (GOL)
filters [5] applied to signals described in Example 4.
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Figure 4. Illustration of errors associated with the averaging polyno-
mial filters [10, 12] in Example 5.

which is not specifically adjusted to each particular piece 𝐾𝑌,𝑗. Moreover,
the error associated with our filter decreases when the number of its terms,
ℱ1, . . . ,ℱ𝑝−1, increases.

(iv) While the proposed filter ℱ (𝑝−1) processes arbitrarily large (and even infinite)
signal sets, the filter is nevertheless fixed for all signals in the sets.

(v) The filter ℱ (𝑝−1) is determined in terms of pseudo-inverse matrices so that
the filter always exists.

(vi) The computational load associated with the filter ℱ (𝑝−1) is less than that
associated with other known filters applied to the processing of large signal
sets.
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Liouville eigenvalue problem with a generalized derivative of Cantor type
function as a weight. The property of spectral periodicity of eigenvalues for
some class of boundary conditions is established.
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1. Introduction

We consider spectral properties of the eigenvalue boundary problem

−𝑦′′ − 𝜆𝜌𝑦 = 0, (1)

𝑦′(0)− 𝛾0𝑦(0) = 𝑦′(1) + 𝛾1𝑦(1) = 0, (2)

with self-similar Cantor type measure 𝜌. The eigenvalue asymptotics for problem
(1) with Dirichlet boundary conditions and classic Cantor measure is studied in
[1]. The eigenvalue counting function 𝑁(𝜆) := #{𝜆𝑛 : 0 < 𝜆𝑛 ⩽ 𝜆} is estimated
as 𝜆→ +∞: 𝑁(𝜆) ≍ 𝜆log6 2.

In [2] the same question for arbitrary singular self-similar measure and Dirich-
let boundary conditions is considered. It is proved that the counting function 𝑁(𝜆)
of eigenvalues of problem (1) with a probability self-similar measure has the asymp-
totics, as 𝜆→ +∞,

𝑁(𝜆) = 𝜆𝐷 ⋅ (𝑠(ln𝜆) + 𝑜(1)
)
, (3)

where the number 𝐷 ∈ (0, 1/2) can be determined by the self-similar parameters
of the measure 𝜌 and 𝑠 is some continuous strictly positive periodic function which
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depends on measure 𝜌. In a non-arithmetic case of self-similarity of measure 𝜌,
function 𝑠 is known to be a constant. The proof of (3) is based on renewal theory [3].
An analogous technique is applied for studying eigenvalue problems for differential
operators on self-similar domains and domains with fractal boundaries ([4], [5], [6]).

The results of [2] were later developed in two directions. First, the class of
weights were generalized: in papers [7] and [8] the indefinite weights 𝜌 ∈ 𝑊−1

2 [0, 1]
were considered. In this case weight 𝜌 is a derivative in a distribution sense of
a self-similar function 𝑃 ∈ 𝐿2[0, 1]. If 𝑃 has positive spectral order 𝐷 (in case
𝑃 ∈ 𝐿2[0, 1] the exponent 𝐷 can take on any value from the interval (0, 1)) the
counting functions 𝑁± of positive and negative eigenvalues of problem (1) have
the asymptotics

𝑁±(𝜆) = ∣𝜆∣𝐷 ⋅
(
𝑠±(ln ∣𝜆∣) + 𝑜(1)

)
as ∣𝜆∣ → ∞,

where 𝑠± are some continuous strictly positive periodical functions which depend
on weight 𝜌. If 𝑃 has a non-arithmetic type of self-similarity the functions 𝑠± are
known to be constants (possibly different).

In the second direction we refer to the paper [9], where the boundary spectral
problems for differential operators of arbitrary order are studied. In this case weight
function is a singular probability measure.

We consider problem (1) under Neumann and third type boundary condi-
tions and show that the boundary conditions have no affect on the main terms
of asymptotics (3). However Neumann and third type boundary conditions imply
additional properties on eigenvalue behaviour and the main purpose of our paper
is to establish the spectral periodicity of eigenvalues for problem (1), (2) with Can-
tor type self-similar weight 𝜌. This property of eigenvalues was obtained in [10] for
more narrow class of weights and boundary conditions.

For the proof we apply methods based not on a renewal theory as in [2], [7]
and [8], but on the oscillating theory of Sturm–Liouville problems with singular
coefficients developed in recent papers [12] and [13]. A similar technique was ap-
plied in [14] to obtain some properties of eigenfunction zeroes for a class of fractal
Sturm–Liouville operators.

The formal boundary problem (1), (2) is understood as an eigenvalue problem
of the linear pencil 𝑇𝜌 : ℂ→ ℬ(𝑊 1

2 [0, 1],𝑊
−1
2 [0, 1]) with quadratic form

(∀𝜆∈ℂ)(∀𝑦∈𝑊 1
2 [0,1]) ⟨𝑇𝜌(𝜆)𝑦,𝑦⟩=

1∫
0

∣𝑦′∣2𝑑𝑥−𝜆⟨𝜌,∣𝑦∣2⟩+𝛾0 ∣𝑦(0)∣2+𝛾1 ∣𝑦(1)∣2.

The paper is organized as follows. Section 2 contains the necessary informa-
tion on Cantor type self-similar functions. In Section 3 we establish the spectral
periodicity for some boundary problems with Cantor type weights. Finally, in Sec-
tion 4 we illustrate the effect of spectral periodicity by computational data for
classic Cantor measure as a weight function under certain boundary conditions.
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2. Cantor type self-similar functions

Let us consider ϰ ∈ ℕ, ϰ > 1 and an arbitrary number 𝑎 ∈ (0, 1/ϰ). We define
𝑏 := (1 − ϰ𝑎)/(ϰ − 1) and the set of points 𝛼2𝑘 := 𝑘(𝑎+ 𝑏), 𝛼2𝑘+1 := 𝛼2𝑘 + 𝑎 on
interval [0, 1], where 𝑘 ∈ {0, . . . ,ϰ − 1}.
Definition 2.1. Function 𝑓 ∈ 𝐶[0, 1] with the properties 𝑓(0) = 0 and 𝑓(1) = 1 is
a self-similar function of Cantor type with parameters ϰ and 𝑎 if it satisfies the
self-similarity equation

𝑓(𝑥) =

ϰ−1∑
𝑘=0

(
1

ϰ
𝑓

(
𝑥− 𝛼2𝑘

𝑎

)
+

𝑘

ϰ

)
𝜒[𝛼2𝑘,𝛼2𝑘+1] +

ϰ−1∑
𝑘=1

𝑘

ϰ
𝜒[𝛼2𝑘−1,𝛼2𝑘]. (4)

The classic Cantor ladder is self-similar with parameters ϰ = 2, 𝑎 = 1/3.
It is known ([7], [15]) that any acceptable set of parameters ϰ and 𝑎 defines

the unique self-similar function with an arithmetic type of self-similarity. Moreover
from [15] it follows that this function is continuous (the right side of (4) defines
the compression in 𝐶[0, 1]). The spectral order of a Cantor type function is defined
by the equality

𝐷 =
lnϰ

lnϰ − ln 𝑎 .

The definition of the parameters ϰ and 𝑎 implies that 𝐷 ∈ (
0, 12

)
.

It is easy to see that for any self-similar Cantor type function 𝑓 , 1− 𝑓(1− ⋅)
is Cantor type self-similar too with the same parameters ϰ and 𝑎. This implies the
truth of the following statement.

Lemma 2.1. Let 𝑓 ∈ 𝐶[0, 1] be a self-similar Cantor type function. Then for any
𝑥 ∈ [0, 1] the identity

𝑓(𝑥) = 1− 𝑓(1− 𝑥)

is valid.

The quadratic form of problem (1) with Dirichlet boundary conditions and

weight 𝜌 ∈
∘
𝑊−1

2 [0, 1] is totally determined by the generalized primitive 𝑃 of the
weight. In the case of Neumann boundary conditions, the definition of the weight-
distribution by the formula

(∀𝑦 ∈𝑊 1
2 [0, 1]) ⟨𝜌, 𝑦⟩ = −

1∫
0

𝑃𝑦′ 𝑑𝑥 + 𝑃𝑦 ∣10

needs the additional “boundary values” 𝑃 (0) and 𝑃 (1).

If the generalized primitive 𝑃 is continuous we can choose the usual values of
the function 𝑃 at the endpoints. So in this case the quadratic form of the operators
𝑇𝜌(𝜆) corresponding to the problem (1), (2), where 𝜌 = 𝑃 ′ (the derivative is
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understood in a distribution sense) looks like

⟨𝑇𝜌(𝜆)𝑦, 𝑦⟩ =
1∫
0

{∣𝑦′∣2 + 𝜆𝑃 (∣𝑦∣2)′} 𝑑𝑥+ 𝛾0 ∣𝑦(0)∣2 + (𝛾1 − 𝜆) ∣𝑦(1)∣2 (5)

and the boundary conditions (2) are understood in a direct sense.

Theorem 2.1. For any 𝜆 ∈ ℝ and function 𝑦 ∈ ker𝑇𝜌(𝜆) we have 𝑦 ∈ 𝐶1[0, 1] and

(𝑦′ + 𝜆𝑃𝑦)′ = 𝜆𝑃𝑦′. (6)

For any 𝜆 ∈ ℝ and function 𝑦 ∈ 𝐶1[0, 1], satisfying equation (6) and boundary
conditions (2), it follows that 𝑦 ∈ ker𝑇𝜌(𝜆).

Proof. From (5) and the equality ⟨𝑇𝜌(𝜆)𝑦, 𝑧⟩ = 0 for any function 𝑧 ∈
∘
𝑊 1

2[0, 1]
it follows that function 𝑦′ + 𝜆𝑃𝑦 ∈ 𝐿2[0, 1] coincides a.e. with some absolutely
continuous primitive of the function 𝜆𝑃𝑦′ ∈ 𝐿2[0, 1]. The condition 𝑃 ∈ 𝐶[0, 1]
implies that function 𝑦′ ∈ 𝐿2[0, 1] is continuous a.e., which is why we have 𝑦 ∈
𝐶1[0, 1] and 𝑦′+𝜆𝑃𝑦 ∈ 𝐶1[0, 1]. Then the equality (5) for arbitrary linear function
𝑧 implies the boundary conditions (2).

The correctness of the second part of the theorem can be checked by direct
calculation. □

For further study we need the following result; the details can be found in
[13, Statement 11].

Statement 2.1. Let {𝜆𝑛}∞𝑛=0 the sequence of eigenvalues of problem (1), (2) enu-
merated in increasing order. Then for any 𝑛 ∈ ℕ the eigenvalue 𝜆𝑛 is simple and
the corresponding eigenfunction 𝑦𝑛 has exactly 𝑛 different zeroes in open interval
(0, 1) and 𝑦𝑛(0) ∕= 0, 𝑦𝑛(1) ∕= 0.

From (5) it follows that the variation of the coefficients 𝛾0 and 𝛾1 in the
boundary conditions (2) leads to the perturbation of each operator 𝑇𝜌(𝜆) by some
operator with rank equal to 2. Let 𝑁𝛾0,𝛾1 and 𝑁𝛾′0,𝛾

′
1
be counting functions of

eigenvalues of (1) with different boundary conditions corresponding to the different
parameters 𝛾0, 𝛾1 and 𝛾′0, 𝛾′1 correspondingly. From general variational theory of
self-adjoint operators (see [16]) it follows that for any 𝜆 > 0 the inequality

∣𝑁𝛾0,𝛾1(𝜆)−𝑁𝛾′0,𝛾
′
1
(𝜆)∣ ⩽ 2

is true.
There is an analogous relationship between counting functions of third type

boundary conditions and Dirichlet conditions. The quadratic form for a spectral
problem with Dirichlet conditions can be derived by contraction of the quadratic
form for the same spectral problem with third type boundary conditions on the
space of co-dimension equal to 2. That is why the asymptotic formula (3) doesn’t
depend on self-adjoint boundary conditions.
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3. Spectral periodicity

Theorem 3.1. Let {𝜆𝑛}∞𝑛=0 be the sequence of increasing eigenvalues of the problem
(1) with boundary conditions

𝑦′(0) = 𝑦′(1) = 0. (7)

Then for any 𝑛 ∈ ℕ the equation

𝜆ϰ𝑛 = (ϰ/𝑎)𝜆𝑛 (8)

is valid.

Proof. Let us fix the eigenfunction 𝑦𝑛 corresponding to the eigenvalue 𝜆𝑛. Accord-
ing to Statement 2.1 𝑦𝑛 doesn’t vanish at endpoints of the interval [0, 1] and has
exactly 𝑛 different zeroes in the open interval (0, 1). Now we construct the new
function 𝑧 ∈ 𝐶[0, 1] with the following conditions:

1. For any 𝑘 ∈ {1, . . . ,ϰ−1} function 𝑧 is constant on the interval (𝛼2𝑘−1, 𝛼2𝑘).
2. For any 𝑘 ∈ {0, . . . ,ϰ − 1} function 𝑧𝑘 of the form

𝑧𝑘(𝑥) := 𝑧(𝛼2𝑘 + 𝑎𝑥)

coincides with 𝑦𝑛 up to the multiplicative constant.

By Theorem 2.1 the boundary conditions (7) guarantee that 𝑧 ∈ 𝐶1[0, 1]
and 𝑧′(0) = 𝑧′(1) = 0 The self-similarity of 𝑃 provides that 𝑧′ + (ϰ/𝑎)𝜆𝑛𝑃𝑧 is
absolutely continuous and

(𝑧′ + (ϰ/𝑎)𝜆𝑛𝑃𝑧)′ = (ϰ/𝑎)𝜆𝑛𝑃𝑧′.

By Theorem 2.1 function 𝑧 is an eigenfunction of the problem (1), (7) with eigen-
value (ϰ/𝑎)𝜆𝑛. Moreover function 𝑧 has exactly ϰ𝑛 zeroes in the interval (0, 1) – 𝑛
zeroes in each interval (𝛼2𝑘, 𝛼2𝑘+𝑎), 𝑘 ∈ {0, . . . ,ϰ− 1}. Application of Statement
2.1 completes the proof. □

In other words the construction of the new eigenfunction 𝑧 now follows. We
shift the shrunken copies of origin eigenfunction 𝑦𝑛 to the intervals (𝛼2𝑘, 𝛼2𝑘+1),
𝑘 = 0, 1, . . .ϰ − 1 and “glue” these copies on interval (𝛼2𝑘−1, 𝛼2𝑘) by constant
linear functions.

Theorem 3.2. Let {𝜆𝑛}∞𝑛=0 be the increasing sequence of the eigenvalues of the
spectral problem (1) and boundary conditions

𝑏𝑦′(0)− 2𝑦(0) = 𝑏𝑦′(1) + 2𝑦(1) = 0,

and {𝜇𝑛}∞𝑛=0 be the increasing sequence of the eigenvalues of the same spectral
problem (1) and boundary conditions

𝑏𝑦′(0)− 2𝑎𝑦(0) = 𝑏𝑦′(1) + 2𝑎𝑦(1) = 0.

Then for any 𝑛 ∈ ℕ the equation

𝜆ϰ(𝑛+1)−1 = (ϰ/𝑎)𝜇𝑛

is valid.
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𝑛 𝜆𝑛 6𝜆𝑛 𝜆2𝑛

1 7, 0974 ± 10−4 42, 584 ± 10−3 42, 584 ± 10−3
2 42, 584 ± 10−3 255, 51 ± 10−2 255, 51 ± 10−2
3 61, 344 ± 10−3 368, 06 ± 10−2 368, 06 ± 10−2
4 255, 51 ± 10−2 1533, 0 ± 10−1 1533, 0 ± 10−1
5 272, 98 ± 10−2 1637, 9 ± 10−1 1637, 9 ± 10−1
6 368, 06 ± 10−2 2208, 4 ± 10−1 2208, 4 ± 10−1
7 383, 55 ± 10−2 2301, 3 ± 10−1 2301, 3 ± 10−1
8 1533, 0 ± 10−1 9198, 2 ± 10−1 9198, 2 ± 10−1
9 1548, 0 ± 10−1 9288, 3 ± 10−1 9288, 3 ± 10−1

Table 1. Estimations of eigenvalues for Neumann boundary condi-
tions, ϰ = 2, 𝑎 = 1/3.

The proof is the same as for Theorem 3.1. The main difference is in construc-
tion of new eigenfunction 𝑧 – we “glue” copies of the origin eigenfunction 𝑦 by
inclined linear functions with zeroes in the centers of the intervals (𝛼2𝑘−1, 𝛼2𝑘).

Theorem 3.3. Let {𝜆𝑛}∞𝑛=0 be the increasing sequence of the eigenvalues of the
spectral boundary problem (1), (7), and let {𝜇𝑛}∞𝑛=0 be the increasing sequence of
eigenvalues of the spectral problem (1) with boundary conditions

𝑦′(0) = 𝑏𝑦′(1) + 2𝑎𝑦(1) = 0. (9)

If ϰ is even then for any 𝑛 ∈ ℕ the equation

𝜆ϰ(𝑛+1/2) = (ϰ/𝑎)𝜇𝑛

is valid.

The proof is the same as for Theorem 3.1. We take into account that for
any eigenfunction 𝑦𝑛 of the boundary problem (1), (9) function 𝑦𝑛(1 − ⋅) is an
eigenfunction too.The latter satisfies the equation (1) and boundary conditions

𝑏𝑦′(0)− 2𝑎𝑦(0) = 𝑦′(1) = 0.

The new eigenfunction 𝑧 of the problem (1), (7) is composed from alternating,
shrunken copies of 𝑦𝑛 and 𝑦𝑛(1 − ⋅) which we “glue” by linear functions with
zeroes in the centers of the intervals (𝛼2𝑘−1, 𝛼2𝑘) and by constants on the intervals
(𝛼2𝑘+1, 𝛼2𝑘+2).

4. Examples

All tables in this section illustrate the relationships between eigenvalues of problem
(1) where 𝜌 is generalized derivative of a Cantor ladder and different boundary
conditions.
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𝑛 𝜇𝑛 6𝜇𝑛 𝜆2𝑛+1

0 3, 2983 ± 10−4 19, 790 ± 10−3 19, 790 ± 10−3
1 12, 558 ± 10−3 75, 349 ± 10−3 75, 349 ± 10−3
2 48, 946 ± 10−3 293, 67 ± 10−2 293, 67 ± 10−2
3 65, 832 ± 10−3 394, 99 ± 10−2 394, 99 ± 10−2
4 261, 64 ± 10−2 1569, 8 ± 10−1 1569, 8 ± 10−1

Table 2. Estimations of eigenvalues of problem (1) with boundary con-
ditions 𝑦′(0)− 2𝑦(0) = 0, 𝑦′(1) + 2𝑦(1) = 0, ϰ = 2, 𝑎 = 1/3.

𝑛 𝜇𝑛 6𝜇𝑛 𝜆2𝑛+1

0 1, 1829 ± 10−4 7, 0974 ± 10−4 7, 0974 ± 10−4
1 10, 224 ± 10−3 61, 344 ± 10−3 61, 344 ± 10−3
2 45, 497 ± 10−3 272, 98 ± 10−2 272, 98 ± 10−2
3 63, 925 ± 10−3 383, 55 ± 10−2 383, 55 ± 10−2
4 258, 01 ± 10−2 1548, 0 ± 10−1 1548, 0 ± 10−1

Table 3. Estimations of eigenvalues of problem (1) with boundary con-
ditions 𝑦′(0) = 0, 𝑦′(1) + 2𝑦(1) = 0, ϰ = 2, 𝑎 = 1/3.

Table 1 presents first nine positive eigenvalues of problem (1) with Neumann
boundary conditions. It illustrates Theorem 3.1.

Table 2 presents the numerical computation for the eigenvalues of two prob-
lems: 𝜇𝑛 are the eigenvalues of the problem (1) under boundary conditions 𝑦′(0)−
2𝑦(0) = 𝑦′(1)+2𝑦(1) = 0; 𝜆𝑛 are the eigenvalues of (1) under boundary conditions
𝑦′(0)− 6𝑦(0) = 𝑦′(1) + 6𝑦(1) = 0. The data illustrates Theorem 3.2.

Table 3 presents a numerical computation for the eigenvalues of another two
problems: 𝜇𝑛 are the eigenvalues of problem (1) under boundary conditions 𝑦

′(0) =
𝑦′(1)+2𝑦(1) = 0; 𝜆𝑛 are the eigenvalues of (1) and Neumann boundary conditions.
The data illustrates Theorem 3.3.

Numerical computation is based on methods described in [17].

References

[1] T. Uno, I. Hong. Some consideration of asymptotic distribution of eigenvalues for

the equation
𝑑2𝑢

𝑑𝑥2
+ 𝜆𝜌𝑢 = 0. Japan Math. J., 1959, V. 29, 152–164.

[2] M. Solomyak, E. Verbitsky. On a spectral problem related to self-similar measures.
Bull. London Math. Soc., 1995, V. 27, N. 3, 242–248.

[3] W. Feller Introduction to Probability Theory. V. 2, Wiley, 1967.



516 A.A. Vladimirov and I.A. Sheipak

[4] T. Fujita. A fractional dimension, self-similarity and a generalized diffusion operator.
Taniguchi Symp. PMMP. Katata, 1985, 83–90.

[5] J. Kigami, M.L. Lapidus. Weyl’s problem for the spectral distributions of Laplacians
on p.c.f. self-similar fractals. Comm. Math. Phys., 1993, V. 158, 93–125.

[6] M. Levitin, D. Vassiliev. Spectral asymptotics, renewal theorem, and the Berry con-
jecture for a class of fractals. Proc. Lond. Math. Soc., 1996, V. 72, 188–214.

[7] A.A. Vladimirov and I.A. Sheipak. Self-similar functions in 𝐿2[0, 1] and the Sturm–
Liouville problem with a singular indefinite weight. Sbornik: Mathematics, 2006, 197,
N. 11, 1569–1586, DOI: 10.1070/SM2006v197n11ABEH003813.

[8] A.A. Vladimirov and I.A. Sheipak. Indefinite Sturm–Liouville Problem for Some
Classes of Self-similar Singular Weights. Proceedings of the Steklov Institute of
Mathematics, 2006, Vol. 255, 1–10, DOI: 10.1134/S0081543806040079.

[9] A.I. Nazarov. Logarithmic small ball asymptotics for some Gaussain processes in 𝐿2-
norm in respect with sel-similar measure. Prob. and statistics, Zap. Nauch. Semin.
Piter. Otdel. Mat. Inst. Steklov (POMI), 311 (2004), 190–213 (in Russian).

[10] U. Freiberg Refinement of the spectral asymptotics of generalized Krein Feller oper-
ators. Forum Math., 23 (2009) 427–445.

[11] A.A. Vladimirov and I.A. Sheipak. Asymptotics of the eigenvalues of the Sturm–
Liouville problem with discrete self-similar weight. Mathematical Notes, 2010, V. 88,
N. 5-6, 637–646, DOI: 10.1134/S0001434610110039.

[12] J. Ben Amara and A.A. Shkalikov. Oscillation Theorems for Sturm–Liouville Prob-
lems with Distribution Potentials. Moscow Univ. Math. Bulletin, 2009, V. 64, N. 3,
132–137.

[13] A.A. Vladimirov. On the oscillation theory of the Sturm–Liouville problem with sin-
gular coefficients. Computational Mathematics and Mathematical Physics, 2009, V.
49, N. 9, 1535–1546, DOI: 10.1134/S0965542509090085.

[14] E.J. Bird, S.-M. Ngai, A. Teplyaev. Fractal laplacians on the unit interval. Ann. Sci.
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1. Introduction

We study integro-differential equations with unbounded operator coefficients in
a Hilbert space. Most of these equations is an abstract hyperbolic equations dis-
turbed by terms containing abstract Volterra integral operators. These equations
are abstract forms of the Gurtin–Pipkin integro-differential equations (see [21],
[20], [39] for more details), which describes the process of heat propagation in
media with memory, process of wave propagation in the visco-elastic media (see
[22]–[25]) and also arising in the problems of porous media (Darcy law) (see [26],
[30], [31], [39])

We formulate the results about correct solvability of the initial-valued
problems for these equations in the weighted Sobolev spaces on the positive semi-
axis. The proofs of these results are given in previous articles of the authors (see
[34]–[37]).

This work was completed with the support of Russian Foundation for Basic Research (grant
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We analyse spectral problems for operator-valued functions which are the
symbols of these equations. Moreover we study the spectra of the abstract integro-
differential equation of Gurtin–Pipkin type. The proofs of these results are also
given in previous works of the authors (see [34]–[36]).

For this reason, it is natural and convenient to consider integro-differential
equations with unbounded operator coefficients (abstract integro-differential equa-
tions), which can be realized as integro-differential partial differential equations
with respect to spatial variables when necessary. For the self-adjoin positive op-
erator 𝐴 considered in what follows we can take, in particular, the operator
𝐴2𝑦 = −𝑦′′, where 𝑥 ∈ (0, 𝜋), 𝑦(0) = 𝑦(𝜋) = 0, or the operator𝐴2𝑦 = −Δ𝑦 satisfy-
ing the Dirichlet conditions on a bounded domain with sufficiently smooth bound-
ary. At present, there is an extensive literature on abstract integro-differential
equations (see, e.g., [1]–[18], [21]–[25], [34]–[37] and the references therein).

The main purpose of our paper is to study the asymptotic behavior of the
solutions of evolutionary equations on the base of spectral analysis of its symbols.
In accordance with this purpose we obtain the expansion of the strong solutions
of the equations mentioned above in exponential series corresponding to spectra
of operator-functions which are the symbols of these equations.

We think that these representations of the solutions as the series of exponen-
tials are new and were not obtained earlier for this class of integro-differential equa-
tions. The main part of known results deals with the problem of correct solvability
and estimates of the solutions. Let us note that papers (see also the bibliography
cited there)are devoted to the researching of the integro-differential equations with
the main part is an abstract parabolic equation (see [1]–[12]).

The equations with the main part is an abstract hyperbolic equation were
studied not so intensively in comparison with the parabolic case. The following
papers are closest to this context (see [13]–[18], [21]–[26], [34]–[37]):

Let’s emphasize also that important difference of our results from results
known earlier (for example) consists in the following fact: we consider the integral
operators with kernels that may have the singularities. In earlier known results
the restrictions imposed on kernels were stronger. The restrictions imposed on
kernels of integral operators for integro-differential equations of parabolic type is
essentially weaker (see [1]–[12], [16] for example).

2. Statement of the problem

We study integro-differential equations of the form

𝑑2𝑢(𝑡)

𝑑𝑡2
+𝐾(0)𝐴2𝑢(𝑡) +

∫ 𝑡

0

𝐾 ′(𝑡− 𝑠)𝐴2𝑢(𝑠)𝑑𝑠 = 𝑓(𝑡), 𝑡 ∈ ℝ+, (2.1)

with unbounded operator coefficients in a separable Hilbert space H with the initial
conditions

𝑢(+0) = 𝜑0, 𝑢(1)(+0) = 𝜑1, (2.2)
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It is assumed that A is a self-adjoint positive operator in H with compact inverse
and the scalar function K(t) admits the representation

𝐾(𝑡) =
∞∑
𝑗=1

𝑐𝑗
𝛾𝑗

𝑒−𝛾𝑗𝑡, (2.3)

where

𝑐𝑗 > 0, 𝛾𝑗+1 > 𝛾𝑗 > 0, 𝑗 ∈ ℕ, 𝛾𝑗 → +∞ (𝑗 → +∞)
and

𝐾(0) =

∞∑
𝑗=1

𝑐𝑗
𝛾𝑗

<∞. (2.4)

It follows from condition (2.4) that 𝐾 ′(𝑡) ∈ 𝐿1(ℝ+). If we supplement con-
dition (2.4) with the condition

∞∑
𝑗=1

𝑐𝑗 < +∞, (2.5)

then the kernel 𝐾 ′(𝑡) will belong to the space 𝑊 1
1 (ℝ+).

Such equations are an abstract form of integro-differential equations describ-
ing heat propagation in media with memory (equations of Gurtin–Pipkin type;
see [20] and [21], [27]), and sound propagation in viscoelastic media (see [22]–[25])
as well as integro-differential equations arising in homogenization problems for
perforated media (the Darcy law; see [26], [28]).

We obtain representations of solutions of problem (2.1), (2.2) in the form of
series in exponentials corresponding to points of spectrum of the operator function
that is the symbol of (2.1).

3. Definitions and notations

We make the domain Dom(𝐴𝛽) of the operator 𝐴𝛽 , 𝛽 > 0 a Hilbert space 𝐻𝛽 , by
equipping Dom(𝐴𝛽) with the norm ∥ ⋅ ∥𝛽 = ∥𝐴𝛽 ⋅ ∥.

Let 𝑊𝑛
2,𝛾 (ℝ+, 𝐴

𝑛) be the Sobolev space of vector functions defined on the
half-line ℝ+ = (0,∞) ranging in 𝐻 and having the finite norm

∥𝑢∥𝑊𝑛
2,𝛾(ℝ+,𝐴𝑛) ≡

(∫ ∞

0

𝑒−2𝛾𝑡
(∥∥∥𝑢(𝑛)(𝑡)∥∥∥2

𝐻
+ ∥𝐴𝑛𝑢(𝑡)∥2𝐻

)
𝑑𝑡

)1/2
, 𝛾 ≥ 0.

More details on the spaces𝑊𝑛
2,𝛾 (ℝ+, 𝐴𝑛) can be found in the monograph [19]. For

𝑛 = 0 we set 𝑊 0
2,𝛾

(
ℝ+, 𝐴0

) ≡ 𝐿2,𝛾 (ℝ+, 𝐻).

Definition 3.1. A vector function 𝑢 is called a strong solution of problem (2.1),
(2.2) if it belongs to the space 𝑊 2

2,𝛾(ℝ+, 𝐴
2) for some 𝛾 ⩾ 0, satisfies (2.1) a.e. on

ℝ+, and satisfies the initial conditions (2.2).

Let us formulate the results about correct solvability of the problem (2.1), (2.2).
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Theorem 3.1. Let us suppose that 𝐴𝑓(𝑡) ∈ 𝐿2,𝛾2 (ℝ+, 𝐻) or 𝑓 ′(𝑡) ∈ 𝐿2,𝛾2 (ℝ+, 𝐻),
𝑓(0) = 0 for some 𝛾2 ⩾ 0 and the condition (2.4) is satisfied. Then

1) if the condition (2.5) is satisfied and 𝜑0 ∈ 𝐻2, 𝜑1 ∈ 𝐻1, then the problem
(2.1), (2.2) has the unique solution in the space 𝑊 2

2,𝛾

(
ℝ+, 𝐴2

)
for arbitrary

𝛾 > 𝛾2. Moreover the following estimate

∥𝑢∥𝑊 2
2,𝛾 (ℝ+,𝐴2) ≤ 𝑑

(
∥𝐴𝑓(𝑡)∥𝐿2,𝛾(ℝ+,𝐻) +

∥∥𝐴2𝜑0
∥∥
𝐻
+ ∥𝐴𝜑1∥𝐻

)
; (3.1)

is valid with constant 𝑑 independent of 𝑓 , 𝜑0, 𝜑1.
2) if the condition (2.5) is not satisfied and 𝜑0 ∈ 𝐻3, 𝜑1 ∈ 𝐻2, then the problem
(2.1), (2.2) has the unique solution in the space 𝑊 2

2,𝛾

(
ℝ+, 𝐴2

)
for arbitrary

𝛾 > 𝛾2. Moreover the following estimate

∥𝑢∥𝑊 2
2,𝛾(ℝ+,𝐴2) ≤ 𝑑

(
∥𝐴𝑓(𝑡)∥𝐿2,𝛾(ℝ+,𝐻) +

∥∥𝐴3𝜑0
∥∥
𝐻
+
∥∥𝐴2𝜑1

∥∥
𝐻

)
. (3.2)

is valid with constant 𝑑 independent of 𝑓 , 𝜑0, 𝜑1.
If 𝑓 ′(𝑡) ∈ 𝐿2,𝛾2 (ℝ+, 𝐻), 𝑓(0) = 0 for some 𝛾2 ≥ 0, then the estimates
(3.1), (3.2) are valid, if the term ∥𝐴𝑓(𝑡)∥𝐿2,𝛾(ℝ+,𝐻) substitute to the term

∥𝑓 ′(𝑡)∥𝐿2,𝛾(ℝ+,𝐻).

The proof of Theorem 3.1 is given in the articles [34], [36], [37]. In these cited
articles we present the comparison the Theorem 3.1 with the results of L. Pan-
dolfi [21].

Consider the operator function 𝐿(𝜆) that is the symbol (an analog of the
characteristic quasipolynomial) (2.1):

𝐿(𝜆) := 𝜆2𝐼 + 𝜆�̂�(𝜆)𝐴2, �̂�(𝜆) =
∞∑
𝑘=1

𝑐𝑘
𝛾𝑘(𝜆 + 𝛾𝑘)

. (3.3)

Here �̂�(𝜆) is the Laplace transform of 𝐾(𝑡), 𝐼 and I is the identity operator in 𝐻 .
Let {𝑒𝑗}∞𝑗=1 be the orthonormal basis consisting of the eigenvectors of 𝐴

corresponding to the eigenvalues 𝑎𝑗 : 𝐴𝑒𝑗 = 𝑎𝑗𝑒𝑗 , 𝑗 ∈ ℕ. The eigenvalues of 𝐴
satisfy the strict inequalities 0 < 𝑎1 < 𝑎2 < ⋅ ⋅ ⋅ < 𝑎𝑛 ⋅ ⋅ ⋅ ; 𝑎𝑛 → +∞, 𝑛→ +∞.

Consider the restriction 𝑙𝑛(𝜆) := (𝐿(𝜆)𝑒𝑛, 𝑒𝑛) = 𝜆2+𝑎2𝑛𝜆�̂�(𝜆) of the operator
function 𝐿(𝜆) to the one-dimensional space spanned by the vector 𝑒𝑛. Thus, we
obtain a countable set of meromorphic functions 𝑙𝑛(𝜆), 𝑛 ∈ ℕ.

The representations of solutions of problem (2.1), (2.2) in the form of expo-
nential series obtained in the paper depend on the structure and properties of the
spectrum of the operator function 𝐿(𝜆).

We assume that the following condition is satisfied:

sup
𝑘
{𝛾𝑘(𝛾𝑘+1 − 𝛾𝑘)} = +∞. (3.4)

Note that condition (3.4) was introduced and used in [32].
Now we formulate the results that describe the structure of the spectra of

operator-function 𝐿(𝜆).
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For real eigenvalues 𝜆𝑘,𝑛 we have the following chain of inequalities:

Theorem 3.2. Let us suppose the conditions (2.4) and (3.4) are satisfied. Then the
spectrum of the operator-valued function 𝐿(𝜆) is the closure of the zeroes set of the
functions {𝑙𝑛(𝜆)}∞𝑛=1 that is

𝜎(𝐿) := {𝜆𝑘,𝑛∣𝑘 ∈ ℕ, 𝑛 ∈ ℕ} ∪ {
𝜆±𝑛 ∣𝑛 ∈ ℕ

}
, (3.5)

Moreover the real zeroes satisfy the inequalities

⋅ ⋅ ⋅ − 𝛾𝑘+1 < 𝑥𝑘+1 < 𝜆𝑘+1,𝑛 < −𝛾𝑘 < ⋅ ⋅ ⋅ < −𝛾1 < 𝜆1,𝑛, 𝑘 ∈ ℕ, (3.6)

where 𝑥𝑘 are the real zeroes of the function 𝜆�̂�(𝜆), and 𝜆1,𝑛 = 𝑥1 = 0, 𝜆𝑘,𝑛 =
𝑥𝑘 +𝑂

(
1/𝑎2𝑛

)
.

Theorem 3.3. Let us suppose the conditions (2.4), (3.4) and (2.5) are satisfied.

Then the conjugate complex zeroes 𝜆±𝑛 , 𝜆+𝑛 = 𝜆−𝑛 of the meromorphic function
𝑙𝑛(𝜆) asymptotically represented in the form

𝜆±𝑛 = ±𝑖

(√
𝐾(0) ⋅ 𝑎𝑛 +𝑂

(
1

𝑎𝑛

))
− 1

2𝐾(0)

∞∑
𝑘=1

𝑐𝑘 +𝑂

(
1

𝑎2𝑛

)
, 𝑎𝑛 → +∞.

(3.7)

Theorem 3.4. Let us suppose the conditions (2.4) and (3.4) are satisfied, but the
condition (2.5) is not satisfied. Then the pair of the conjugate complex zeroes 𝜆±𝑛 ,
𝜆+𝑛 = 𝜆−𝑛 of the meromorphic function 𝑙𝑛(𝜆) asymptotically represented in the form

𝜆±𝑛 = ±𝑖Θ ⋅ 𝑎𝑛 +Φ(𝑎𝑛, {𝑐𝑘}∞𝑘=1, {𝛾𝑘}∞𝑘=1), 𝑘 ∈ ℕ (3.8)

where Θ = Θ({𝑐𝑘}∞𝑘=1, {𝛾𝑘}∞𝑘=1) is a positive constant, depending on the se-
quences {𝑐𝑘}∞𝑘=1, {𝛾𝑘}∞𝑘=1, ReΦ = 𝑂(𝑎𝑛), ImΦ = 𝑜(𝑎𝑛) while 𝑎𝑛 → +∞ and
lim

𝑎𝑛→∞
ReΦ(𝑎𝑛, {𝑐𝑘}∞𝑘=1, {𝛾𝑘}∞𝑘=1) = −∞.

The proofs of Theorems 3.2–3.4 are given in [34]–[36].

It is relevant to indicate that the structure of spectra of Gurtin–Pipkin equa-
tion was also studied in the following papers [32], [33], [40].

In what follows we use the expression 𝐷 ≲ 𝐸 if the following inequality
𝐷 ≤ 𝑐𝐸, is satisfied with some positive constant 𝑐. In turn the expression 𝐷 ≈ 𝐸
means the following inequalities 𝐷 ≲ 𝐸 ≲ 𝐷. We use the symbols := =: for
introducing new values.

4. Statement of results

Theorem 4.1. Suppose that 𝑓(𝑡) = 0 for 𝑡 ∈ ℝ+, the vector function 𝑢(𝑡) ∈
𝑊 2
2,𝛾

(
ℝ+, 𝐴2

)
, 𝛾 > 0 is a strong solution of problem (2.1), (2.2) and conditions
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(2.4) and (3.4) are satisfied. Then, for each 𝑡 ∈ ℝ+ the solution 𝑢(𝑡) of problem
(2.1), (2.2) can be represented as the following sum of series:

𝑢(𝑡) =
1√
2𝜋

∞∑
𝑛=1

(𝜑1𝑛 + 𝜆+𝑛𝜑0𝑛) 𝑒
𝜆+

𝑛 𝑡𝑒𝑛

𝑙′𝑛(𝜆
+
𝑛 )

+
1√
2𝜋

∞∑
𝑛=1

(𝜑1𝑛 + 𝜆−𝑛𝜑0𝑛) 𝑒
𝜆−𝑛 𝑡𝑒𝑛

𝑙′𝑛(𝜆
−
𝑛 )

+
1√
2𝜋

∞∑
𝑛=1

( ∞∑
𝑘=1

(𝜑1𝑛 + 𝜆𝑘,𝑛𝜑0𝑛) 𝑒
𝜆𝑘,𝑛𝑡

𝑙′𝑛(𝜆𝑘,𝑛)

)
𝑒𝑛, (4.1)

convergent in the norm of 𝐻, where the 𝜆𝑘,𝑛 are the real zeros of the meromorphic
function 𝑙𝑛(𝜆), which satisfy the inequalities

⋅ ⋅ ⋅ − 𝛾𝑘+1 < 𝑥𝑘+1 < 𝜆𝑘+1,𝑛 < −𝛾𝑘 < ⋅ ⋅ ⋅ < −𝛾1 < 𝜆1,𝑛, 𝑘 ∈ ℕ, (4.2)

and the 𝑥𝑘 are the real zeros of the function 𝜆�̂�(𝜆); moreover,

𝜆1,𝑛 = 𝑥1 = 0, 𝜆𝑘,𝑛 = 𝑥𝑘 +𝑂
(
1/𝑎2𝑛

)
as 𝑎𝑛 → +∞,

and 𝜆±𝑛 is a pair of complex conjugate zeros, 𝜆+𝑛 = 𝜆−𝑛 , asymptotically representable
in the following form:

1. If condition (2.5) holds, then

𝜆±𝑛 = ±𝑖

(√
𝐾(0) ⋅ 𝑎𝑛 +𝑂

(
1

𝑎𝑛

))
− 1

2𝐾(0)

∞∑
𝑘=1

𝑐𝑘 +𝑂

(
1

𝑎2𝑛

)
, 𝑎𝑛 → +∞.

(4.3)

2. If condition (2.5) does not hold, then

𝜆±𝑛 = ±𝑖Θ({𝑐𝑘}, {𝛾𝑘})𝑎𝑛 +Φ(𝑎𝑛, 𝑐𝑘, 𝛾𝑘), 𝑘 ∈ ℕ (4.4)

where Θ({𝑐𝑘}, {𝛾𝑘)} is a positive constant depending on the sequences
{𝑐𝑘}∞𝑘=1, {𝛾𝑘}∞𝑘=1,
ReΦ(𝑎𝑛, 𝑐𝑘, 𝛾𝑘) = 𝑂(𝑎𝑛), ImΦ(𝑎𝑛, 𝑐𝑘, 𝛾𝑘) = 𝑜(𝑎𝑛) as 𝑎𝑛 → +∞,

and moreover,
lim

𝑎𝑛→∞
ReΦ(𝑎𝑛, 𝑐𝑘, 𝛾𝑘) = −∞.

Note that case 2 covers the sequences {𝑐𝑘}∞𝑘=1 and {𝛾𝑘}∞𝑘=1 that have the
asymptotic representations

𝑐𝑘 = A /𝑘𝛼+𝑂(1/𝑘𝛼+1), 𝛾𝑘 = B𝑘𝛽+𝑂(𝑘𝛽−1), 𝑘 → +∞, 0 ≤ 𝛼 < 1, 𝛼+𝛽 > 1.

Asymptotic formulas for the complex eigenvalues 𝜆±𝑛 for these sequences are given
in [36].

Theorem 4.2. If 𝜑0 ∈ 𝐻2 and 𝜑1 ∈ 𝐻1, then the series obtained from (4.1) by 𝑝-
fold termwise differentiation with respect to 𝑡 for 𝑝 = 0, 1, 2 converges in the space
𝐻2−𝑝 uniformly with respect to 𝑡 on any interval [𝑡0, 𝑇 ], where 0 < 𝑡0 < 𝑇 < +∞.
Moreover, for all 𝑡 ∈ [𝑡0, 𝑇 ] one has the estimates∥∥∥∑∞

𝑛=1
𝑢(𝑝)𝑛 (𝑡)𝑒𝑛

∥∥∥2
𝐻2−𝑝

⩽ 𝑑(∥𝐴𝜑1∥2 + ∥𝐴2𝜑0∥2), 𝑝 = 0, 1, 2,
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with constant 𝑑 independent of the vector functions 𝜑1 and 𝜑0.
Further, if there are finitely many summands in (2.3) (i.e., 𝑐𝑗 = 0 for 𝑗 > 𝑁 ,

𝑁 ∈ ℕ), then one can set 𝑡0 = 0.

Theorem 4.3. Suppose that 𝑓(𝑡) ∈ 𝐶 ([0, 𝑇 ], 𝐻) for arbitrary 𝑇 > 0 and suppose
that the vector-function 𝑢(𝑡) ∈𝑊 2

2,𝛾

(
ℝ+, 𝐴2

)
for some 𝛾 > 0, is a strong solution

of problem (2.1), (2.2), conditions (2.4), (3.4) are satisfied, and 𝜑0 = 𝜑1 = 0.
Then, for each 𝑡 ∈ ℝ+, the solution 𝑢(𝑡) of problem (2.1), (2.2) can be represented
as the following sum of series:

𝑢(𝑡) =
1√
2𝜋

∞∑
𝑛=1

𝜔𝑛(𝑡, 𝜆
+
𝑛 )𝑒𝑛+

1√
2𝜋

∞∑
𝑛=1

𝜔𝑛(𝑡, 𝜆
−
𝑛 )𝑒𝑛+

1√
2𝜋

∞∑
𝑛=1

( ∞∑
𝑘=1

𝜔𝑛(𝑡, 𝜆𝑘𝑛)

)
𝑒𝑛,

(4.5)
converging in the norm of 𝐻, where

𝜔𝑛(𝑡, 𝜆) =

𝑡∫
0

𝑓𝑛(𝜏)𝑒
𝜆(𝑡−𝜏)𝑑𝜏

𝑙′𝑛(𝜆)
.

Theorem 4.4. Let the assumptions of Theorem 4.3 be satisfied together with the

condition
∞∑
𝑗=1

𝛾
−3/2
𝑗 < ∞. Then the series obtained from (4.5) by 𝑝-fold term-by-

term differentiation with respect to 𝑡 for 𝑝 = 0, 1, 2 is convergent in the space 𝐻2−𝑝

uniformly with respect to 𝑡 on any interval [𝑡0, 𝑇 ], where 𝑡0 < 𝑇 < +∞ (𝑡0 = 0
for 𝑝 = 0, 1 and 𝑡0 > 0 for 𝑝 = 2); moreover the following estimates hold for all
𝑡 ∈ [𝑡0, 𝑇 ]: ∥∥∥∥∥

∞∑
𝑛=1

𝑢𝑛(𝑡)𝑒𝑛

∥∥∥∥∥
2

𝐻2

⩽ 𝑑
∥∥𝐴2𝑓(𝑡)

∥∥
𝐿2,𝛾(𝑅+,𝐻)

, (4.6)

∥∥∥∥∥
∞∑

𝑛=1

𝑢(𝑝)𝑛 (𝑡)𝑒𝑛

∥∥∥∥∥
2

𝐻2−𝑝

(4.7)

⩽ 𝑑

(∥∥∥𝐴2−𝑝𝑓 (𝑝)(𝑡)
∥∥∥2
𝐿2,𝛾(𝑅+,𝐻)

+
∥∥𝐴2−𝑝𝑓(0)

∥∥2
𝐻
+ (𝑝− 1) ∥𝑓 ′(0)∥2𝐻

)
, 𝑝 = 1, 2.

The series (4.1) and (4.5) are obtained by applying the inverse Laplace trans-
form to the solution of problem (2.1), (2.2) with the use of integration over rect-
angular contours separating the points 𝛾𝑗 . (The construction of these contours is
described in [36].) Here the estimates of the operator function 𝐿−1(𝜆) on these
contours play an important role. Besides, the proof of Theorems 4.1–4.4 heavily
uses the representations (4.2), (4.3) and (4.4) obtained in [36].

In conclusion, note that the solvability of problem (2.1), (2.2) in the Sobolev
spaces described above was studied in [36], but the representation of solutions by
series in elementary functions was not considered. Further, the solvability of the
equation of Gurtin–Pipkin type was studied in [16] in the same spaces and in [21]
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in different function spaces. In special cases, the localization of the spectrum of
the operator function 𝐿(𝜆) was studied in the papers [32] and [33]. The papers
[35], [18], and [34] contain results on the well-posed solvability and the spectral
analysis of equations of the form (2.1).

5. Proofs

Proof of Theorem 4.1. We introduce the following contours

𝑅𝑁 :=
𝛾𝑁 + 𝛾𝑁+1

2
, 𝛾𝑁 →∞

Γ =
{
Γ𝛾 ∪ Γ𝑅𝑁 ∪ Γ+ ∪ Γ−

}
,

𝐶𝑅𝑁 :=
{
Γ𝑅𝑁 ∪ Γ+ ∪ Γ−

}
, 𝑁 ∈ ℕ,

Γ𝛾 = {𝑧 = 𝑥+ 𝑖𝑦 ∈ ℂ∣𝑥 = 𝛾, ∣𝑦∣ ⩽ 𝑅𝑁} ,
Γ𝑅𝑁 = {𝑧 = 𝑥+ 𝑖𝑦 ∈ ℂ∣𝑥 = −𝑅𝑁 , ∣𝑦∣ ⩽ 𝑅𝑁} ,
Γ± = {𝑧 = 𝑥+ 𝑖𝑦 ∈ ℂ∣ −𝑅𝑁 ⩽ 𝑥 ⩽ 𝛾, 𝑦 = ±𝑅𝑁} .

According to the conditions of Theorem 4.1, the problem (2.1), (2.2) has the
unique solution 𝑢(𝑡) ∈𝑊 2

2,𝛾

(
ℝ+, 𝐴2

)
, 𝛾 > 0.

The Laplace transform of the strong solution of the equation (2.1) with initial
conditions (2.2) has the form

�̂�(𝜆) = 𝐿−1(𝜆)(𝜑1 + 𝜆𝜑0). (5.1)

where operator-function 𝐿(𝜆) is the symbol of the equation (2.1). Hence we have

𝑢𝑛(𝜆) =
(𝜑1𝑛 + 𝜆𝜑0𝑛)

𝑙𝑛(𝜆)
.

Using the Paley–Wiener theorem and the Cauchy theorem about residues for suf-
ficiently large 𝑁 = 𝑁(𝑚) (𝑅𝑁 > 𝑎𝑚

√
𝑆) we have

𝑢(𝑡) =

∞∑
𝑛=1

𝑢𝑛(𝑡)𝑒𝑛 =

∞∑
𝑛=1

(
1√
2𝜋

lim
𝑅𝑁→∞

∫ 𝑅𝑁

−𝑅𝑁

𝑢𝑛(𝛾 + 𝑖𝑦)𝑒(𝛾+𝑖𝑦)𝑡𝑑𝑦

)
𝑒𝑛

=

∞∑
𝑛=1

(
1√
2𝜋

lim
𝑅𝑁→∞

∫ 𝑅𝑁

−𝑅𝑁

(𝜑1𝑛 + (𝛾 + 𝑖𝑦)𝜑0𝑛)

𝑙𝑛(𝛾 + 𝑖𝑦)
𝑒(𝛾+𝑖𝑦)𝑡𝑑𝑦

)
𝑒𝑛

=
1√
2𝜋

lim
𝑅𝑁→∞

lim
𝑚→∞

∫ 𝑅𝑁

−𝑅𝑁

(
𝑚∑

𝑛=1

(𝜑1𝑛 + (𝛾 + 𝑖𝑦)𝜑0𝑛)

𝑙𝑛(𝛾 + 𝑖𝑦)
𝑒(𝛾+𝑖𝑦)𝑡𝑒𝑛

)
𝑑𝑦

=
1√
2𝜋

lim
𝑚→∞

∫ 𝑅𝑁

−𝑅𝑁

(
𝑚∑

𝑛=1

(𝜑1𝑛 + (𝛾 + 𝑖𝑦)𝜑0𝑛)

𝑙𝑛(𝛾 + 𝑖𝑦)
𝑒(𝛾+𝑖𝑦)𝑡𝑒𝑛

)
𝑑𝑦



Spectral Analysis of Abstract Integro-differential Equations 525

=
1√
2𝜋

lim
𝑚→∞

(
𝑚∑

𝑛=1

(𝜑1𝑛 + 𝜆+𝑛𝜑0𝑛) 𝑒
𝜆+

𝑛 𝑡𝑒𝑛

𝑙′𝑛(𝜆
+
𝑛 )

+
𝑚∑

𝑛=1

(𝜑1𝑛 + 𝜆−𝑛 𝜑0𝑛) 𝑒
𝜆−𝑛 𝑡𝑒𝑛

𝑙′𝑛(𝜆
−
𝑛 )

+
𝑚∑

𝑛=1

⎛⎝𝑁(𝑚)∑
𝑘=1

(𝜑1𝑛 + 𝜆𝑘,𝑛𝜑0𝑛) 𝑒
𝜆𝑘,𝑛𝑡

𝑙′𝑛(𝜆𝑘,𝑛)

⎞⎠𝑒𝑛

+

𝑚∑
𝑛=1

(∫
𝐶𝑅𝑁

(𝜑1𝑛 + 𝑧𝜑0𝑛)𝑒
𝑧𝑡

𝑙𝑛(𝑧)
𝑑𝑧

)
𝑒𝑛

)
.

So for arbitrary 𝑡 ∈ ℝ+ we obtain

𝑢(𝑡) = lim
𝑚→∞ (𝑃𝑁𝑚(𝑡) + Φ𝑁𝑚(𝑡)) ,

where

𝑃𝑁𝑚(𝑡) :=

𝑚∑
𝑛=1

(𝜑1𝑛 + 𝜆+𝑛𝜑0𝑛) 𝑒
𝜆+

𝑛 𝑡𝑒𝑛

𝑙′𝑛(𝜆
+
𝑛 )

+

𝑚∑
𝑛=1

(𝜑1𝑛 + 𝜆−𝑛 𝜑0𝑛) 𝑒
𝜆−𝑛 𝑡𝑒𝑛

𝑙′𝑛(𝜆
−
𝑛 )

+

𝑚∑
𝑛=1

⎛⎝𝑁(𝑚)∑
𝑘=1

(𝜑1𝑛 + 𝜆𝑘,𝑛𝜑0𝑛) 𝑒
𝜆𝑘,𝑛𝑡

𝑙′𝑛(𝜆𝑘,𝑛)

⎞⎠𝑒𝑛, (5.2)

𝑚, 𝑁(𝑚) ∈ ℕ, 𝑝 = 0, 1, 2, 𝜆𝑘,𝑛 are real zeroes of meromorphic function 𝑙𝑛(𝜆)
satisfying the inequalities (4.2), 𝜆±𝑛 are complex zeroes of function 𝑙𝑛(𝜆), function

Φ𝑁𝑚(𝑡) :=

𝑚∑
𝑘=1

⎛⎜⎝ ∫
𝐶𝑅𝑁

(𝜑1𝑛 + 𝑧𝜑0𝑛)

𝑙𝑛(𝑧)
𝑒𝑧𝑡𝑑𝑧

⎞⎟⎠𝑒𝑛.

Our main purpose is to prove that lim
𝑚→∞ ∥Φ𝑁𝑚(𝑡)∥𝐻 = 0. In order to do this we

use the following three propositions. The proofs of these propositions have pure
technical character and we omit them.

Proposition 5.1. If ∣ arg 𝑧1 − arg 𝑧2∣ < 𝜋 − 𝛿, where 𝛿 > 0. Then ∣𝑧1 + 𝑧2∣2 ≈
∣𝑧1∣2 + ∣𝑧2∣2, 𝑧1, 𝑧2 ∈ ℂ.

Statement 5.1. Suppose that condition (3.4) is satisfied. Then the following esti-
mates

1) ∣𝑧𝑝 ⋅ 𝑙−1𝑛 (𝑧)∣ ≲ 1/𝑅2−𝑝
𝑁 for 𝑧 ∈ 𝐶𝑅𝑁 , 𝑝 = 0, 1.

2) ∣𝑎𝑛 ⋅ 𝑙−1𝑛 (𝑧)∣ ≲ 1/𝑅𝑁 for 𝑧 ∈ 𝐶𝑅𝑁

are valid.
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Proposition 5.2. For some 𝜇 > 0 for arbitrary 𝑡 > 0 and 𝑝 = 0, 1 for 𝑧 ∈ 𝐶𝑅𝑁 the
following estimates

1

𝑅2−𝑝
𝑁

−𝜇 ln𝑅𝑁±𝑖𝑅𝑁∫
−𝑅𝑁±𝑖𝑅𝑁

𝑒𝑡Re 𝑧𝑑∣𝑧∣ ⩽ 1

𝑅2−𝑝
𝑁

(𝑅𝑁 − 𝜇 ln𝑅𝑁 ) 𝑒
−𝑡𝜇 ln𝑅𝑁 ≲ 1

𝑅1−𝑝
𝑁

𝑒−𝑡𝜇 ln𝑅𝑁 ,

1

𝑅2−𝑝
𝑁

𝛾±𝑖𝑅𝑁∫
−𝜇 ln𝑅𝑁±𝑖𝑅𝑁

𝑒𝑡Re 𝑧𝑑∣𝑧∣ ⩽ 1

𝑅2−𝑝
𝑁

(𝛾 + 𝜇 ln𝑅𝑁 ) 𝑒
𝑡𝛾 ,

1

𝑅2−𝑝
𝑁

−𝑅𝑁+𝑖𝑅𝑁∫
−𝑅𝑁−𝑖𝑅𝑁

𝑒𝑡Re 𝑧𝑑∣𝑧∣ = 1

𝑅2−𝑝
𝑁

𝑅𝑁∫
−𝑅𝑁

𝑒𝑡Re(−𝑅𝑁+𝑖𝑦)𝑑𝑦 =
2

𝑅1−𝑝
𝑁

𝑒−𝑡𝑅𝑁

are valid.

On the base of Proposition 5.2 for 𝑡 > 0 we have following inequalities∣∣∣∣∣∣∣
∫

𝐶𝑅𝑁

(𝜑1𝑛 + 𝑧𝜑0𝑛)𝑒
𝑧𝑡

𝑙𝑛(𝑧)
𝑑𝑧

∣∣∣∣∣∣∣
⩽ ∣𝜑1𝑛∣+𝑅𝑁 ∣𝜑0𝑛∣

𝑅2
𝑁

⎛⎝ −𝑅𝑁−𝑖𝑅𝑁∫
𝛾−𝑖𝑅𝑁

+

−𝑅𝑁+𝑖𝑅𝑁∫
−𝑅𝑁−𝑖𝑅𝑁

+

𝛾+𝑖𝑅𝑁∫
−𝑅𝑁+𝑖𝑅𝑁

⎞⎠ 𝑒𝑡Re 𝑧𝑑∣𝑧∣

⩽ (∣𝜑1𝑛∣+𝑅𝑁 ∣𝜑0𝑛∣)
(
1

𝑅𝑁
𝑒−𝑡𝜇 ln𝑅𝑁 +

1

𝑅2
𝑁

(𝛾 + 𝜇 ln𝑅𝑁 ) 𝑒
𝑡𝛾 +

2

𝑅𝑁
𝑒−𝑡𝑅𝑁

)
≲ ln𝑅𝑁

𝑅2
𝑁

(∣𝜑1𝑛∣+𝑅𝑁 ∣𝜑0𝑛∣) 𝑒𝑡𝛾 .

Hence we have for 𝑡 > 0

∥Φ𝑁𝑚(𝑡)∥2𝐻 =

∥∥∥∥∥∥∥
𝑚∑

𝑘=1

⎛⎜⎝ ∫
𝐶𝑅𝑁

𝜑1𝑛 + 𝑧𝜑0𝑛
𝑙𝑛(𝑧)

𝑒𝑧𝑡𝑑𝑧

⎞⎟⎠ 𝑒𝑛

∥∥∥∥∥∥∥
2

𝐻

=

𝑚∑
𝑘=1

∣∣∣∣∣∣∣
∫

𝐶𝑅𝑁

(𝜑1𝑛 + 𝑧𝜑0𝑛)

𝑙𝑛(𝑧)
𝑒𝑧𝑡𝑑𝑧

∣∣∣∣∣∣∣
2

≲
𝑚∑

𝑘=1

(∣𝜑1𝑛∣2 +𝑅2
𝑁 ∣𝜑0𝑛∣2

)
ln2𝑅𝑁

𝑅4
𝑁

𝑒2𝑡𝛾

= 𝑒2𝛾𝑡
(∥𝜑1∥2𝐻

𝑅4
𝑁

+
∥𝜑0∥2𝐻
𝑅2

𝑁

)
ln2𝑅𝑁 → 0, 𝑁 → +∞,
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So we finish the proof of Theorem 4.1 so as for arbitrary 𝑡 ∈ ℝ+ we have

lim
𝑚→∞ ∥Φ𝑁𝑚(𝑡)∥𝐻 = lim

𝑚→∞ ∥𝑢(𝑡)− 𝑃𝑁𝑚(𝑡)∥𝐻 = 0. □

Proof of Theorem 4.2. Let us differentiate the series (4.1) 𝑝 times for 𝑝 = 1, 2
with respect to 𝑡 and let us show that series obtained thus converges in the space
𝐻2−𝑝 uniformly with respect to 𝑡 on any interval [𝑡0, 𝑇 ], where 0 < 𝑡0 < 𝑇 < +∞.
Keeping in the mind asymptotical representation (4.2), (4.3) (4.4) and Proposition
5.1 we obtain the following estimates:

∞∑
𝑛=1

∣∣∣∣∣(𝜑1𝑛 + 𝜆±𝑛𝜑0𝑛)(𝜆
±
𝑛 )

𝑝𝑎2−𝑝
𝑛

𝑙
(1)
𝑛 (𝜆±𝑛 )

𝑒𝜆
±
𝑛 𝑡

∣∣∣∣∣
2

=
∞∑

𝑛=1

∣∣∣∣∣∣∣∣∣∣
(𝜑1𝑛 + 𝜆±𝑛𝜑0𝑛)(𝜆

±
𝑛 )

𝑝𝑎2−𝑝
𝑛

2𝜆±𝑛 + 𝑎2𝑛

∞∑
𝑗=1

𝑐𝑗

(𝛾𝑗 + 𝜆±𝑛 )2

𝑒𝜆
±
𝑛 𝑡

∣∣∣∣∣∣∣∣∣∣

2

≲
∞∑

𝑛=1

(∣𝜑1𝑛∣2 + ∣𝜆±𝑛 ∣2∣𝜑0𝑛∣2) ∣𝜆±𝑛 ∣2𝑝𝑎4−2𝑝𝑛

4∣𝜆±𝑛 ∣2 + 𝑎4𝑛

∣∣∣∣∣∣
∞∑
𝑗=1

𝑐𝑗

(𝛾𝑗 + 𝜆±𝑛 )2

∣∣∣∣∣∣
2 𝑒Re𝜆

±
𝑛 𝑡

≲
∞∑

𝑛=1

(∣𝜑1𝑛∣2 + ∣𝜆±𝑛 ∣2∣𝜑0𝑛∣2) 𝑎4−2𝑝𝑛

∣𝜆±𝑛 ∣2−2𝑝 ≲
∞∑

𝑛=1

(∣𝜑1𝑛∣2 + 𝑎2𝑛∣𝜑0𝑛∣2
)
𝑎4−2𝑝𝑛

𝑎2−2𝑝𝑛

=

∞∑
𝑛=1

(∣𝑎𝑛𝜑1𝑛∣2 + ∣𝑎2𝑛𝜑0𝑛∣2) = ∥𝐴𝜑1∥2 + ∥𝐴2𝜑0∥2

∞∑
𝑛=1

∣∣∣∣∣
∞∑
𝑘=1

(𝜑1𝑛 + 𝜆𝑘𝑛𝜑0𝑛)(𝜆𝑘𝑛)
𝑝𝑎2−𝑝

𝑛

𝑙′𝑛(𝜆𝑘𝑛)
𝑒𝜆𝑘𝑛𝑡

∣∣∣∣∣
2

⩽
∞∑

𝑛=1

⎛⎜⎜⎜⎜⎝
∞∑

𝑘=1

∣∣∣∣∣∣∣∣∣∣
(𝜑1𝑛 + 𝜆𝑘𝑛𝜑0𝑛)(𝜆𝑘𝑛)

𝑝𝑎2−𝑝
𝑛

2𝜆𝑘𝑛 + 𝑎2𝑛

∞∑
𝑗=1

𝑐𝑗
(𝛾𝑗 + 𝜆𝑘𝑛)2

𝑒𝜆𝑘𝑛𝑡

∣∣∣∣∣∣∣∣∣∣

⎞⎟⎟⎟⎟⎠
2

≲
∞∑

𝑛=1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∞∑

𝑘=1

(∣𝜑1𝑛∣+ ∣𝑥𝑘∣∣𝜑0𝑛∣)∣𝑥𝑘∣𝑝𝑎2−𝑝
𝑛⎛⎜⎝2∣𝑥𝑘∣2 + 𝑎4𝑛

∣∣∣∣∣∣
∞∑
𝑗=1

𝑐𝑗
(𝛾𝑗 + 𝑥𝑘)2

∣∣∣∣∣∣
2
⎞⎟⎠
1/2

𝑒𝑥𝑘𝑡

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2
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≲
∞∑

𝑛=1

( ∞∑
𝑘=1

(∣𝜑1𝑛∣+ ∣𝑥𝑘∣∣𝜑0𝑛∣)𝑎2−𝑝
𝑛 ∣𝑥𝑘∣𝑝

𝑎𝑛∣𝑥𝑘∣1/2 𝑒𝑥𝑘𝑡

)2

≲
∞∑

𝑛=1

∣𝑎1−𝑝
𝑛 𝜑1𝑛∣2

( ∞∑
𝑘=1

∣𝑥𝑘∣𝑝−1/2𝑒𝑥𝑘𝑡

)2

+

∞∑
𝑛=1

∣𝑎1−𝑝
𝑛 𝜑0𝑛∣2

( ∞∑
𝑘=1

∣𝑥𝑘∣𝑝+1/2𝑒𝑥𝑘𝑡

)2

≲ ∥𝐴1−𝑝𝜑1∥2 + ∥𝐴1−𝑝𝜑0∥2,
where 𝑥𝑘 are real zeroes of the function 𝜆�̂�(𝜆), and 𝜆𝑘,𝑛 have the asymptotics
𝜆1,𝑛 = 𝑥1 = 0, 𝜆𝑘,𝑛 = 𝑥𝑘 + 𝑂

(
1/𝑎2𝑛

)
. Using the d’Alambert and Weierstrass

theorems we obtain that
∑∞

𝑘=1 ∣𝑥𝑘∣𝑝+1/2𝑒𝑥𝑘𝑡 converges absolutely and uniformly
on the semiaxis 𝑡 ∈ [𝑡0,+∞), 𝑡0 > 0. □

Proof of Theorem 4.3. We consider the problem (2.1), (2.2) with conditions 𝜑0 =
𝜑1 = 0. According to Theorem 4.3 the problem (2.1), (2.2) has the unique solution
𝑢(𝑡) ∈ 𝑊 2

2,𝛾

(
ℝ+, 𝐴2

)
, 𝛾 > 0, which can be represented in the form

𝑢(𝑡) =

𝑡∫
0

𝑣(𝑡, 𝜏)𝑑𝜏 ,

where vector-function 𝑣(𝑡, 𝜏) is the solution of the following problem

𝑑2𝑣(𝑡, 𝜏)

𝑑𝑡2
+𝐾(0)𝐴2𝑣(𝑡, 𝜏) +

∫ 𝑡

𝜏

𝐾(1)(𝑡− 𝑠)𝐴2𝑣(𝑠, 𝜏)𝑑𝑠 = 0, 𝑡 > 𝜏, (5.3)

𝑣(𝜏, 𝜏) = 0, 𝑣
(1)
𝑡 (𝜏, 𝜏) = 𝑓(𝜏), (5.4)

and 𝑣(𝑡, 𝜏) = 0 for 𝑡 < 𝜏 .

Let us verify it. We have

𝐴2𝑢(𝑡) =

𝑡∫
0

𝐴2𝑣(𝑡, 𝜏)𝑑𝜏 .

Using differentiating of the solution 𝑢(𝑡) by variable 𝑡 and taking into account the
conditions (5.4) we obtain

𝑢𝑡(𝑡) = 𝑣(𝑡, 𝑡) +

𝑡∫
0

𝑣𝑡(𝑡, 𝜏)𝑑𝜏 =

𝑡∫
0

𝑣𝑡(𝑡, 𝜏)𝑑𝜏 ,

𝑢𝑡𝑡(𝑡) = 𝑣𝑡(𝑡, 𝑡) +

𝑡∫
0

𝑣𝑡𝑡(𝑡, 𝜏)𝑑𝜏 = 𝑓(𝑡) +

𝑡∫
0

𝑣𝑡𝑡(𝑡, 𝜏)𝑑𝜏 .
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Moreover we have

𝑡∫
0

𝐾(1)(𝑡− 𝑠)𝐴2

⎛⎝ 𝑠∫
0

𝑣(𝑠, 𝜏)𝑑𝜏

⎞⎠𝑑𝑠 =

𝑡∫
0

⎛⎝ 𝑡∫
𝜏

𝐾(1)(𝑡− 𝑠)𝐴2𝑣(𝑠, 𝜏)𝑑𝑠

⎞⎠𝑑𝜏.

The Laplace transform of the strong solution of the problem (5.3), (5.4) has
the form

𝑣(𝜆, 𝜏) = 𝐿−1𝑓(𝜏)𝑒−𝜆𝜏 ,

where operator-function 𝐿(𝜆) is the symbol of the equation (5.3) that has the
representation (3.3). Hence we have

𝑣𝑛(𝜆, 𝜏) =
𝑓𝑛(𝜏)𝑒

−𝜆𝜏

𝑙𝑛(𝜆)
.

Providing the arguments analogously to the proof of the theorem 4.1 for all
𝑡 > 𝜏 > 0 we obtain the following representation for the solution 𝑣(𝑡, 𝜏) of the
problem (5.3), (5.4)

𝑣(𝑡, 𝜏) = lim
𝑚→∞ (𝑃𝑁𝑚(𝑡, 𝜏) + Φ𝑁𝑚(𝑡, 𝜏)) ,

where

𝑃𝑁𝑚(𝑡, 𝜏) :=

𝑚∑
𝑛=1

𝑓𝑛(𝜏)𝑒
𝜆+

𝑛 (𝑡−𝜏)𝑒𝑛

𝑙
(1)
𝑛 (𝜆+𝑛 )

+

𝑚∑
𝑛=1

𝑓𝑛(𝜏)𝑒
𝜆−𝑛 (𝑡−𝜏)𝑒𝑛

𝑙
(1)
𝑛 (𝜆−𝑛 )

+
𝑚∑

𝑛=1

⎛⎝𝑁(𝑚)∑
𝑘=1

𝑓𝑛(𝜏)𝑒
𝜆𝑘,𝑛(𝑡−𝜏)

𝑙
(1)
𝑛 (𝜆𝑘,𝑛)

⎞⎠𝑒𝑛, (5.5)

𝑚, 𝑁(𝑚) ∈ ℕ, 𝑝 = 0, 1, 2, 𝜆𝑘,𝑛 are the real zeroes of the meromorphic function
𝑙𝑛(𝜆) satisfying the inequalities (4.2), 𝜆

±
𝑛 are the complex zeroes of function 𝑙𝑛(𝜆)

Φ𝑁𝑚(𝑡, 𝜏) :=

𝑚∑
𝑘=1

⎛⎜⎝ ∫
𝐶𝑅𝑁

𝑓𝑛(𝜏)𝑒
𝑧(𝑡−𝜏)

𝑙𝑛(𝑧)
𝑑𝑧

⎞⎟⎠𝑒𝑛,

Let us prove that lim
𝑚→∞ ∥Φ𝑁𝑚(𝑡, 𝜏)∥𝐻 = 0 for arbitrary 𝑇 > 0 and 0 ⩽ 𝜏 ⩽

𝑡 ⩽ 𝑇 . For 0 ⩽ 𝜏 ⩽ 𝑡 we have∣∣∣∣∣∣∣
∫

𝐶𝑅𝑁

𝑓𝑛(𝜏)𝑒
𝑧(𝑡−𝜏)

𝑙𝑛(𝑧)
𝑑𝑧

∣∣∣∣∣∣∣ ⩽
∣𝑓𝑛(𝜏)∣
𝑅2

𝑁

⎛⎝ −𝑅𝑁−𝑖𝑅𝑁∫
𝛾−𝑖𝑅𝑁

+

−𝑅𝑁+𝑖𝑅𝑁∫
−𝑅𝑁−𝑖𝑅𝑁

+

𝛾+𝑖𝑅𝑁∫
−𝑅𝑁+𝑖𝑅𝑁

⎞⎠ 𝑒(𝑡−𝜏)Re 𝑧𝑑∣𝑧∣

⩽ ∣𝑓𝑛(𝜏)∣
(
1

𝑅𝑁
𝑒−(𝑡−𝜏)𝜇 ln𝑅𝑁 +

1

𝑅2
𝑁

(𝛾 + 𝜇 ln𝑅𝑁 ) 𝑒
(𝑡−𝜏)𝛾 +

2

𝑅𝑁
𝑒−(𝑡−𝜏)𝑅𝑁

)
≲ ln𝑅𝑁

𝑅2
𝑁

∣𝑓𝑛(𝜏)∣𝑒(𝑡−𝜏)𝛾 .
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Owing to the conditions of Theorem 4.3 vector-function 𝑓(𝑡) ∈ 𝐶 ([0, 𝑇 ], 𝐻) for
arbitrary 𝑇 > 0. Hence for arbitrary 0 ⩽ 𝜏 ⩽ 𝑡 ⩽ 𝑇 we have

∥Φ𝑁𝑚(𝑡, 𝜏)∥2𝐻 =

∥∥∥∥∥∥∥
𝑚∑

𝑘=1

⎛⎜⎝ ∫
𝐶𝑅𝑁

𝑓𝑛(𝜏)𝑒
𝑧(𝑡−𝜏)

𝑙𝑛(𝑧)
𝑑𝑧

⎞⎟⎠ 𝑒𝑛

∥∥∥∥∥∥∥
2

𝐻

=

𝑚∑
𝑘=1

∣∣∣∣∣∣∣
∫

𝐶𝑅𝑁

𝑓𝑛(𝜏)𝑒
𝑧(𝑡−𝜏)

𝑙𝑛(𝑧)
𝑑𝑧

∣∣∣∣∣∣∣
2

≲
(
ln𝑅𝑁

𝑅2
𝑁

)2 𝑚∑
𝑘=1

∣𝑓𝑛(𝜏)∣2𝑒2(𝑡−𝜏)𝛾 ⩽
(
ln𝑅𝑁

𝑅2
𝑁

)2
∥𝑓(𝜏)∥2𝐻𝑒2(𝑡−𝜏)𝛾 → 0, 𝑁 → +∞.

So for arbitrary 0 ⩽ 𝜏 ⩽ 𝑡 ⩽ 𝑇 we obtain

lim
𝑚→∞ ∥Φ𝑁𝑚(𝑡, 𝜏)∥𝐻 = lim

𝑚→∞ ∥𝑣(𝑡, 𝜏)− 𝑃𝑁𝑚(𝑡, 𝜏)∥𝐻 = 0,

and

𝑣(𝑡, 𝜏) =
1√
2𝜋

∞∑
𝑛=1

𝑓𝑛(𝜏)𝑒
𝜆+

𝑛 (𝑡−𝜏)𝑒𝑛

𝑙
(1)
𝑛 (𝜆+𝑛 )

+
1√
2𝜋

∞∑
𝑛=1

𝑓𝑛(𝜏)𝑒
𝜆−𝑛 (𝑡−𝜏)𝑒𝑛

𝑙
(1)
𝑛 (𝜆−𝑛 )

+
1√
2𝜋

∞∑
𝑛=1

( ∞∑
𝑘=1

𝑓𝑛(𝜏)𝑒
𝜆𝑘,𝑛(𝑡−𝜏)

𝑙
(1)
𝑛 (𝜆𝑘,𝑛)

)
𝑒𝑛. (5.6)

Moreover for 0 ⩽ 𝜏 ⩽ 𝑡 ⩽ 𝑇 we have

sup
𝜏∈[0,𝑡]

∥Φ𝑁𝑚(𝑡, 𝜏)∥𝐻 ≲ ln𝑅𝑁

𝑅2
𝑁

sup
𝜏∈[0,𝑡]

∥𝑓(𝜏)∥𝐻 𝑒𝑇𝛾 → 0, 𝑁 → +∞,

and then

lim
𝑚→∞ sup

𝜏∈[0,𝑡]
∥Φ𝑁𝑚(𝑡, 𝜏)∥𝐻 = lim

𝑚→∞ sup
𝜏∈[0,𝑡]

∥𝑣(𝑡, 𝜏)− 𝑃𝑁𝑚(𝑡, 𝜏)∥𝐻 = 0.

Thus the series (5.6) converges uniformly on 𝜏 ∈ [0, 𝑡] in the space 𝐻 .
Integrating the series (5.6) by 𝜏 ∈ (0, 𝑡) we obtain the following representation

for the solution 𝑢(𝑡) of the problem (2.1), (2.2) with zero initial conditions

𝑢(𝑡) =
1√
2𝜋

∞∑
𝑛=1

(∫ 𝑡

0 𝑓𝑛(𝜏)𝑒
𝜆+

𝑛 (𝑡−𝜏)𝑑𝜏
)
𝑒𝑛

𝑙
(1)
𝑛 (𝜆+𝑛 )

+
1√
2𝜋

∞∑
𝑛=1

(∫ 𝑡

0 𝑓𝑛(𝜏)𝑒
𝜆−𝑛 (𝑡−𝜏)𝑑𝜏

)
𝑒𝑛

𝑙
(1)
𝑛 (𝜆−𝑛 )

(5.7)

+
1√
2𝜋

∞∑
𝑛=1

( ∞∑
𝑘=1

∫ 𝑡

0
𝑓𝑛(𝜏)𝑒

𝜆𝑘,𝑛(𝑡−𝜏)𝑑𝜏

𝑙
(1)
𝑛 (𝜆𝑘,𝑛)

)
𝑒𝑛. □

Proof of Theorem 4.4. Let us differentiate 𝑝-fold term-by-term the series (5.7) with
respect to 𝑡 for 𝑝 = 1, 2. Then we have

∞∑
𝑛=1

𝑢(𝑝)𝑛 (𝑡)𝑒𝑛 =
1√
2𝜋

∞∑
𝑛=1

𝜔(𝑝)𝑛 (𝑡, 𝜆+𝑛 )𝑒𝑛 +
1√
2𝜋

∞∑
𝑛=1

𝜔(𝑝)𝑛 (𝑡, 𝜆−𝑛 )𝑒𝑛

+
1√
2𝜋

∞∑
𝑛=1

( ∞∑
𝑘=1

𝜔(𝑝)𝑛 (𝑡, 𝜆𝑘𝑛)

)
𝑒𝑛, (5.8)
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where

𝜔(𝑝)𝑛 (𝑡, 𝜆) =

(
(𝑝− 1)𝑓 (1)𝑛 (0) + 𝜆(𝑝−1)𝑓𝑛(0)

)
𝑒𝜆𝑡 +

𝑡∫
0

𝑓
(𝑝)
𝑛 (𝜏)𝑒𝜆(𝑡−𝜏)𝑑𝜏

𝑙
(1)
𝑛 (𝜆)

.

Let us show that thus obtained series converges in the space𝐻2−𝑝 (𝑝 = 0, 1, 2)
uniformly with respect to 𝑡 on any interval [𝑡0, 𝑇 ], where 𝑡0 < 𝑇 < +∞ (𝑡0 = 0
for 𝑝 = 0, 1 and 𝑡0 > 0 for 𝑝 = 2). Taking in mind the asymptotic representations
(4.2), (4.3) and (4.4) we obtain the following estimates:

∞∑
𝑛=1

∣∣∣∣∣∣∣
𝑎2−𝑝
𝑛

∫ 𝑡

0
𝑓
(𝑝)
𝑛 (𝜏)𝑒𝜆

±
𝑛 (𝑡−𝜏)𝑑𝜏

2𝜆±𝑛 + 𝑎2𝑛
∑∞

𝑗=1

𝑐𝑗

(𝜆±𝑛 + 𝛾𝑗)2

∣∣∣∣∣∣∣
2

⩽
∞∑

𝑛=1

𝑎4−2𝑝𝑛

(∫ 𝑡

0 ∣𝑓
(𝑝)
𝑛 (𝜏)∣𝑒Re 𝜆±𝑛 (𝑡−𝜏)𝑑𝜏

)2
∣∣∣∣2𝜆±𝑛 + 𝑎2𝑛

∑∞
𝑗=1

𝑐𝑗

(𝜆±𝑛 + 𝛾𝑗)2

∣∣∣∣2

≲
∞∑

𝑛=1

𝑎4−2𝑝𝑛

(∫ 𝑡

0 ∣𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏
)(∫ 𝑡

0 𝑒2Re𝜆
±
𝑛 (𝑡−𝜏)𝑑𝜏

)
4∣𝜆±𝑛 ∣2 + 𝑎4𝑛

∣∣∣∣∑∞
𝑗=1

𝑐𝑗

(𝜆±𝑛 + 𝛾𝑗)2

∣∣∣∣2

≲
∞∑

𝑛=1

𝑎4−2𝑝𝑛

(∫ 𝑡

0
∣𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏

) 1

2Re𝜆±𝑛

(
1− 𝑒2Re𝜆

±
𝑛 𝑡
)

∣𝜆±𝑛 ∣2

≲
∞∑

𝑛=1

𝑎4−2𝑝𝑛

(∫ 𝑡

0 ∣𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏
)

𝑎2𝑛
=

∞∑
𝑛=1

(∫ 𝑡

0

∣𝑎1−𝑝
𝑛 𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏

)

=

∫ 𝑡

0

∞∑
𝑛=1

∣𝑎1−𝑝
𝑛 𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏 =

∫ 𝑡

0

∥∥∥𝐴1−𝑝𝑓 (𝑝)(𝜏)
∥∥∥2
𝐻

𝑑𝜏

⩽
∥∥𝐴1−𝑝𝑓 (𝑝)(𝑡)

∥∥2
𝐿2,𝛾(ℝ+,𝐻)

<∞, 𝑝 = 0, 1, 2,

∞∑
𝑛=1

∣∣∣∣∣∣∣
∞∑
𝑘=1

𝑎2−𝑝
𝑛

∫ 𝑡

0 𝑓
(𝑝)
𝑛 (𝜏)𝑒𝜆𝑘𝑛(𝑡−𝜏)𝑑𝜏

2𝜆𝑘𝑛 + 𝑎2𝑛
∑∞

𝑗=1

𝑐𝑗
(𝜆𝑘𝑛 + 𝛾𝑗)2

∣∣∣∣∣∣∣
2

⩽
∞∑

𝑛=1

⎛⎜⎜⎝ ∞∑
𝑘=1

𝑎2−𝑝
𝑛

∫ 𝑡

0 ∣𝑓 (𝑝)𝑛 (𝜏)∣𝑒𝜆𝑘𝑛(𝑡−𝜏)𝑑𝜏∣∣∣∣2𝜆𝑘𝑛 + 𝑎2𝑛
∑∞

𝑗=1

𝑐𝑗
(𝜆𝑘𝑛 + 𝛾𝑗)2

∣∣∣∣
⎞⎟⎟⎠
2
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≈
∞∑

𝑛=1

⎛⎜⎜⎜⎜⎜⎝
∞∑
𝑘=1

𝑎2−𝑝
𝑛

∫ 𝑡

0
∣𝑓 (𝑝)𝑛 (𝜏)∣𝑒𝜆𝑘𝑛(𝑡−𝜏)𝑑𝜏(

4∣𝜆𝑘𝑛∣2 + 𝑎4𝑛

∣∣∣∣∑∞
𝑗=1

𝑐𝑗
(𝜆𝑘𝑛 + 𝛾𝑗)2

∣∣∣∣2
)1/2

⎞⎟⎟⎟⎟⎟⎠
2

≈
∞∑

𝑛=1

⎛⎜⎜⎜⎜⎜⎝
∞∑
𝑘=1

𝑎2−𝑝
𝑛

∫ 𝑡

0 ∣𝑓 (𝑝)𝑛 (𝜏)∣𝑒𝑥𝑘(𝑡−𝜏)𝑑𝜏(
4∣𝑥𝑘∣2 + 𝑎4𝑛

∣∣∣∣∑∞
𝑗=1

𝑐𝑗
(𝑥𝑘 + 𝛾𝑗)2

∣∣∣∣2
)1/2

⎞⎟⎟⎟⎟⎟⎠
2

⩽
∞∑

𝑛=1

⎛⎜⎝ ∞∑
𝑘=1

𝑎2−𝑝
𝑛

(∫ 𝑡

0
∣𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏

)1/2 (∫ 𝑡

0
𝑒2𝑥𝑘(𝑡−𝜏)𝑑𝜏

)1/2
∣𝑥𝑘∣

⎞⎟⎠
2

=

∞∑
𝑛=1

(∫ 𝑡

0

∣𝑎2−𝑝
𝑛 𝑓 (𝑝)𝑛 (𝜏)∣2𝑑𝜏

)( ∞∑
𝑘=1
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<∞, 𝑝 = 0, 1, 2.

Thus we have the estimate (4.6). Then for 𝑝 = 1, 2 we have the following
chain of inequalities

∞∑
𝑛=1

∣∣∣∣∣∣∣
𝑎2−𝑝
𝑛

(
𝑓𝑛(0)(𝜆

±
𝑛 )

𝑝−1 + (𝑝− 1)𝑓 (1)𝑛 (0)
)
𝑒𝜆
±
𝑛 𝑡

2𝜆±𝑛 + 𝑎2𝑛
∑∞

𝑗=1

𝑐𝑗

(𝜆±𝑛 + 𝛾𝑗)2

∣∣∣∣∣∣∣
2

⩽
∞∑

𝑛=1

𝑎4−2𝑝𝑛

(
∣𝑓𝑛(0)∣2(𝜆±𝑛 )2(𝑝−1) + (𝑝− 1)2∣𝑓 (1)𝑛 (0)∣2

)
𝑒2Re𝜆

±
𝑛 𝑡

4∣𝜆±𝑛 ∣2 + 𝑎4𝑛

∣∣∣∣∑∞
𝑗=1

𝑐𝑗

(𝜆±𝑛 + 𝛾𝑗)2

∣∣∣∣2

≲
∞∑

𝑛=1

𝑎4−2𝑝𝑛

(
∣𝑓𝑛(0)∣2𝑎2(𝑝−1)𝑛 + (𝑝− 1)2∣𝑓 (1)𝑛 (0)∣2

)
𝑎2𝑛

=
∞∑

𝑛=1

∣𝑓𝑛(0)∣2+ (𝑝− 1)2𝑎2(1−𝑝)
𝑛 ∣𝑓 (1)𝑛 (0)∣2 ⩽ ∥𝑓(0)∥2𝐻+ (𝑝− 1)2

∥∥∥𝐴1−𝑝𝑓 (1)(0)
∥∥∥2
𝐻
.



Spectral Analysis of Abstract Integro-differential Equations 533

∞∑
𝑛=1

∣∣∣∣∣∣∣
∞∑

𝑘=1

𝑎2−𝑝
𝑛

(
𝑓𝑛(0)𝜆

𝑝−1
𝑘𝑛 + (𝑝− 1)𝑓 (1)𝑛 (0)

)
𝑒𝜆𝑘𝑛𝑡

2𝜆𝑘𝑛 + 𝑎2𝑛
∑∞

𝑗=1

𝑐𝑗
(𝜆𝑘𝑛 + 𝛾𝑗)2

∣∣∣∣∣∣∣
2

⩽
∞∑

𝑛=1

⎛⎜⎜⎝ ∞∑
𝑘=1

𝑎2−𝑝
𝑛

(
∣𝑓𝑛(0)∣∣𝜆𝑘𝑛∣𝑝−1 + (𝑝− 1)∣𝑓 (1)𝑛 (0)∣

)
𝑒𝜆𝑘𝑛𝑡∣∣∣∣2𝜆𝑘𝑛 + 𝑎2𝑛

∑∞
𝑗=1

𝑐𝑗
(𝜆𝑘𝑛 + 𝛾𝑗)2

∣∣∣∣
⎞⎟⎟⎠
2

≲
∞∑

𝑛=1

⎛⎜⎜⎜⎜⎜⎝
∞∑

𝑘=1

𝑎2−𝑝
𝑛

(
∣𝑓𝑛(0)∣∣𝑥𝑘∣𝑝−1 + (𝑝− 1)∣𝑓 (1)𝑛 (0)∣

)
𝑒𝑥𝑘𝑡(

4∣𝑥𝑘∣2 + 𝑎4𝑛

∣∣∣∣∑∞
𝑗=1

𝑐𝑗
(𝑥𝑘 + 𝛾𝑗)2

∣∣∣∣2
)1/2

⎞⎟⎟⎟⎟⎟⎠
2

≲
∞∑

𝑛=1

⎛⎝ ∞∑
𝑘=1

𝑎2−𝑝
𝑛

(
∣𝑓𝑛(0)∣∣𝑥𝑘∣𝑝−1 + (𝑝− 1)∣𝑓 (1)𝑛 (0)∣

)
𝑒𝑥𝑘𝑡

∣𝑥𝑘∣

⎞⎠2

≲
∞∑

𝑛=1

∣𝑎2−𝑝
𝑛 𝑓𝑛(0)∣2

( ∞∑
𝑘=1

∣𝑥𝑘∣𝑝−2𝑒𝑥𝑘𝑡

)2

+ (𝑝− 1)2
∞∑

𝑛=1

∣𝑓 (1)𝑛 (0)∣2
( ∞∑

𝑘=1

∣𝑥𝑘∣−1𝑒𝑥𝑘𝑡

)2

⩽
∥∥𝐴2−𝑝𝑓(0)

∥∥2
𝐻

( ∞∑
𝑘=1

∣𝑥𝑘∣𝑝−2𝑒𝑥𝑘𝑡

)2

+ (𝑝− 1)2
∥∥∥𝑓 (1)(0)∥∥∥2

𝐻

( ∞∑
𝑘=1

∣𝑥𝑘∣−1𝑒𝑥𝑘𝑡

)2

.

Using the d’Alambert and Weierstrass theorems we obtain that series∑∞
𝑘=1 ∣𝑥𝑘∣𝑝−2𝑒𝑥𝑘𝑡 converges absolutely and uniformly on the semiaxis 𝑡 ∈ [𝑡0,+∞),

where 𝑡0 = 0 for 𝑝 = 1 and 𝑡0 > 0, 𝑝 = 2 so as
∑∞

𝑗=1 𝛾
−3/2
𝑗 < ∞ in accordance

with conditions of Theorem 4.4. Hence we have the estimate (4.7). □
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