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1. Introduction

In this paper 𝐺 is a stable rational 𝑚× 𝑝 matrix function. Here stable means that
𝐺 is proper, that is, the limit of 𝐺(𝑠) as 𝑠→ ∞ exists, and 𝐺 has all its poles in
the open left half-plane {𝑠 ∈ ℂ ∣ ℜ(𝑠) < 0}. In other words, 𝐺 is a rational matrix-
valued 𝐻∞ function, where the latter means that 𝐺 is analytic and bounded on
the open right half-plane. In this paper 𝑝 will be larger than 𝑚, and thus 𝐺 will
be a “fat” non-square matrix function. We shall be interested in stable rational
𝑝×𝑚 matrix-valued solutions 𝑋 of the Bezout type equation

𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚, ℜ𝑠 ≥ 0. (1.1)

The symbol 𝐼𝑚 on the right-hand side denotes the 𝑚×𝑚 identity matrix.
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Throughout we shall assume that 𝐺 admits a state space realization of the
form

𝐺(𝑠) = 𝐶(𝑠𝐼𝑛 −𝐴)−1𝐵 +𝐷. (1.2)

Here 𝐴 is an 𝑛×𝑛 matrix which is assumed to be stable, that is, all the eigenvalues
of 𝐴 are contained in the open left half-plane. Moreover, 𝐵, 𝐶 and 𝐷 are matrices
of appropriate sizes. Our aim is to give necessary and sufficient conditions for the
solvability of (1.1), and to give a full description of all stable rational matrix-valued
solutions, in terms of the matrices appearing in the realization (1.2). The results
we present are the continuous analogs of the main theorems in [6] and [8].

To state the main results we need some additional notation. By 𝑃 we denote
the controllability Gramian associated with the realization (1.2), that is, 𝑃 is the
(unique) solution of the Lyapunov equation

𝐴𝑃 + 𝑃𝐴∗ +𝐵𝐵∗ = 0. (1.3)

Consider the algebraic Riccati equation

𝐴∗𝑄+𝑄𝐴+ (𝐶 − Γ∗𝑄)∗(𝐷𝐷∗)−1(𝐶 − Γ∗𝑄) = 0, (1.4)

where Γ is defined by

Γ = 𝐵𝐷∗ + 𝑃𝐶∗. (1.5)

Here it is assumed that 𝐷 is right invertible, which is a natural condition. Indeed,
if (1.1) has a stable rational matrix solution 𝑋 , then using (1.2) and the fact that
𝑋 is proper, we see that 𝐷𝑋(∞) = lim𝑠→∞𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚. Hence 𝑋(∞) is a
right inverse of 𝐷, and thus 𝐷 is right invertible. A solution 𝑄 of (1.4) is called
the stabilizing solution of the algebraic Riccati equation (1.4) if 𝑄 is Hermitian
and the 𝑛× 𝑛 matrix 𝐴0 given by

𝐴0 = 𝐴− Γ(𝐷𝐷∗)−1(𝐶 − Γ∗𝑄) (1.6)

is stable. If it exists, a stabilizing solution is unique (cf. formula (2.11)). The
following is the first main result of this paper.

Theorem 1.1. There is a stable rational 𝑝 × 𝑚 matrix function 𝑋 satisfying the
equation 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚 if and only if the following three conditions hold

1. The matrix 𝐷 is right invertible,
2. there exists a stabilizing solution 𝑄 of the Riccati equation (1.4), and
3. the matrix 𝐼𝑛 − 𝑃𝑄 is invertible.

In that case a particular solution of (1.1) is given by

Ξ(𝑠) =
(
𝐼𝑝 − 𝐶1(𝑠𝐼𝑛 −𝐴0)

−1(𝐼𝑛 − 𝑃𝑄)−1𝐵
)
𝐷∗(𝐷𝐷∗)−1, (1.7)

where 𝐴0 is the stable 𝑛× 𝑛 matrix given by (1.6) and

𝐶1 = 𝐷
∗(𝐷𝐷∗)−1(𝐶 − Γ∗𝑄) +𝐵∗𝑄. (1.8)
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The matrix 𝐷∗(𝐷𝐷∗)−1 appearing in (1.7) is Moore–Penrose right inverse
of 𝐷. In what follows we shall often denote 𝐷∗(𝐷𝐷∗)−1 by 𝐷+. Note that
dimKer𝐷 = 𝑝−𝑚.

The rational 𝑝× 𝑝 matrix function appearing in the right-hand side of (1.7)
between the brackets will be denoted by 𝑌 , that is,

𝑌 (𝑠) = 𝐼𝑝 − 𝐶1(𝑠𝐼𝑛 −𝐴0)
−1(𝐼𝑛 − 𝑃𝑄)−1𝐵. (1.9)

Note that the value of 𝑌 at infinity is invertible. Hence 𝑌 (𝑠)−1 is a well-defined
rational matrix function. We shall see that 𝑌 (𝑠)−1 is again stable. Thus both 𝑌 (𝑠)
and 𝑌 (𝑠)−1 are stable rational matrix functions. In other words the entries of both
𝑌 (𝑠) and 𝑌 (𝑠)−1 are 𝐻∞ functions. In this case we say that 𝑌 is invertible outer.

Among other things the following theorem describes the set of all stable
rational solutions to 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚.

Theorem 1.2. There exists a stable rational 𝑝 × 𝑚 matrix function 𝑋 satisfying
𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚 if and only if 𝐷 is right invertible and there exists a stable ra-
tional 𝑝× 𝑝 matrix function 𝑌 which is invertible outer and satisfies the equation
𝐺(𝑠)𝑌 (𝑠) = 𝐷. In this case one such 𝑌 is given by (1.9) and the inverse of this
𝑌 is given by

𝑌 (𝑠)−1 = 𝐼𝑝 + 𝐶1(𝐼𝑛 − 𝑃𝑄)−1(𝑠𝐼𝑛 −𝐴)−1𝐵. (1.10)

Moreover, using this function 𝑌 the following holds.

(i) Let 𝐸 be any isometry mapping ℂ𝑝−𝑚 into ℂ𝑝 such that Im𝐸 = Ker𝐷. Then
the function

Θ(𝑠) = 𝑌 (𝑠)𝐸 =
(
𝐼𝑝 − 𝐶1(𝑠𝐼𝑛 −𝐴0)

−1(𝐼𝑛 − 𝑃𝑄)−1𝐵
)
𝐸 (1.11)

is a stable rational 𝑝× (𝑝−𝑚) matrix function satisfying 𝐺(𝑠)Θ(𝑠) = 0, and
Θ is inner, that is, Θ(−𝑠)∗Θ(𝑠) = 𝐼𝑝−𝑚.

(ii) If ℎ is any ℂ𝑝-valued 𝐻2 function satisfying 𝐺(𝑠)ℎ(𝑠) = 0, then there exists
a unique ℂ(𝑝−𝑚)-valued 𝐻2 function 𝜔 such that ℎ(𝑠) = Θ(𝑠)𝜔(𝑠). In fact,
𝜔(𝑠) = Θ(−𝑠)∗ℎ(𝑠).

(iii) The set of all stable rational 𝑝×𝑚 matrix functions 𝑋 satisfying 𝐺(𝑠)𝑋(𝑠) =
𝐼𝑚 is given by

𝑋(𝑠) =
(
𝐼𝑝 − 𝐶1(𝑠𝐼𝑛 −𝐴0)

−1(𝐼𝑛 − 𝑃𝑄)−1𝐵
)
×

×
(
𝐷∗(𝐷𝐷∗)−1 + 𝐸𝑍(𝑠)

)
, (1.12)

where 𝑍 is an arbitrary stable rational (𝑝 −𝑚) ×𝑚 matrix function. More-
over, if 𝑋 satisfies 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚, then 𝑍 in (1.12) is given by 𝑍(𝑠) =
𝐸∗𝑌 (𝑠)−1𝑋(𝑠).

(iv) The rational 𝑝× 𝑝 matrix function

𝐺𝑒𝑥𝑡(𝑠) =

[
𝐺(𝑠)

𝐸∗𝑌 (𝑠)−1

]
, ℜ𝑠 ≥ 0, (1.13)
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is invertible outer and its inverse is given by

𝐺𝑒𝑥𝑡(𝑠)
−1 =

[
Ξ(𝑠) Θ(𝑠)

]
, ℜ𝑠 ≥ 0. (1.14)

Note that item (ii) tells us that the null space Ker𝑀𝐺 of the multiplication
operator 𝑀𝐺 defined by 𝐺, mapping 𝐻2

𝑝 into 𝐻
2
𝑚, is given by Ker𝑀𝐺 = Θ𝐻2

𝑝−𝑚.
Thus Θ plays the role of the inner function in the Beurling–Lax theorem specified
for Ker𝑀𝐺. Furthermore, (1.12) in item (iii) can be rewritten in the following
equivalent form 𝑋(𝑠) = Ξ(𝑠) + Θ(𝑠)𝑍(𝑠). Using this form of (1.12) we expect our
state space formulas also to be useful in deriving rational 𝐻∞ solutions of (1.1)
that satisfy an additional 𝐻∞ norm constraint, by reducing the norm constraint
problem to a generalized Sarason problem (cf. Section I.7 in [7]). Finally, item (iv)
is inspired by Tolokonnikov’s lemma (see [18] and [16, Appendix 3]).

The formulas in Theorems 1.1 and 1.2 can be easily converted into a Matlab
program to compute Ξ in (1.7), the function 𝑌 in (1.9), and Θ in (1.11).

We see Theorems 1.1 and 1.2 as the closed right half-plane analogues of
Theorem 1.1 in [6] and Theorem 1.1 in [8], which deal with equation (1.1) in the
setting of rational matrix functions analytic in the closed unit disc. Obviously,
a way to obtain the set of all stable rational matrix solutions to equation (1.1)
is to use the Cayley transform to derive the right half-plane solutions from their
analogues in the disc case as given in [8]. However, note that in the present half-
plane case there is an additional difficulty: The constant functions are not in 𝐿2,
whereas in the disc case they are in 𝐿2. Furthermore, the particular solution Ξ in
Theorem 1.1 is not the analogue of the least squares solution in [6]. On the other
hand, as we shall show in Section 4, the function Ξ has an interpretation in terms
of solutions to a somewhat different minimization problem (see Theorem 4.1).

We take this occasion to mention that Theorem 1.1 in [6] and Theorem 1.1 in [8]
have predecessors in the papers [14] and [13]. In particular, see Lemma 4.1 and
Theorem 4.2 in [13]. We are grateful to Dr. Sander Wahls for mentioning to us
these and several related other references. It is interesting to see the role the Bezout
equation plays in solving the engineering problems considered in [14] and [13]. The
proofs in [6] and [8] are quite different from those in [14] and [13]; also different
Riccati equations are used and different state space formulas are obtained.

There is an extensive literature on the Bezout equation and the related corona
equation, see, e.g., the classical papers [4], [9], [18], the books [16], [15], [1], the
more recent papers [19], [20], [21], [22], and the references therein. Also, finding
rational matrix solutions in state space form for Bezout equations is a classical
topic in mathematical system theory; see, e.g., the book [23], and the papers
[11], [10]. However, as far as we know the formulas we present here are new and
cannot easily be obtained using the methods presented in the classical sources. The
interpretation of the special solution (1.7) as a limit of solutions of minimization
problems also seems to be new. Moreover, the approach we follow in the present
paper and the earlier papers [6, 8] can be extended to a Wiener space setting. In
fact, in a Wiener space setting the function 𝑌 given by (1.9) appears in a very
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natural way; see also the comment at the end of Section 2. We plan to return to
this in a future paper, also for the discrete case.

The paper consists of four sections, including this introduction. In the second
section we present the preliminaries from operator theory used in the proofs, and
we explain the role of the Riccati equation (1.4), and prove the necessity of con-
ditions 1, 2, 3 in Theorem 1.1. The third section contains the proofs of Theorem
1.1 and 1.2. In the final section we consider an optimization problem, which helps
in identifying Ξ in as a solution with a special minimality property.

2. Operator theory and Riccati equation

In this section we prove the necessity of conditions 1, 2, 3 in Theorem 1.1. Our proof
requires some preliminaries from operator theory and uses the Riccati equation
(1.4).

Let Ω be any proper rational 𝑘 × 𝑟 matrix function with no pole on the
imaginary axis 𝑖ℝ. With Ω we associate the Wiener–Hopf operator 𝑇Ω and the
Hankel operator 𝐻Ω, both mapping 𝐿

2
𝑟(ℝ

+) into 𝐿2𝑘(ℝ
+). These operators are the

integral operators defined by

(𝑇Ω𝑓)(𝑡) = Ω(∞)𝑓(𝑡) +
∫ 𝑡

0

𝜔(𝑡− 𝜏)𝑓(𝜏)𝑑𝜏, 𝑡 ≥ 0, 𝑓 ∈ 𝐿2𝑟(ℝ+), (2.1)

(𝐻Ω𝑓)(𝑡) =

∫ ∞

0

𝜔(𝑡+ 𝜏)𝑓(𝜏)𝑑𝜏, 𝑡 ≥ 0 𝑓 ∈ 𝐿2𝑟(ℝ+). (2.2)

Here 𝜔 is the Lebesque integrable (continuous) matrix function on the imaginary
axis determined by Ω via the Fourier transform:

Ω(𝑠) = Ω(∞) +
∫ ∞

−∞
𝑒−𝑠𝜏𝜔(𝜏) 𝑑𝜏, 𝑠 ∈ 𝑖ℝ.

In the sequel we shall freely use the basic theory of Wiener–Hopf and Hankel
operators which can be found in Chapters XII and XIII of [12]. Note that in [12]
the Fourier transform is taken with respect to the real line instead of the imaginary
axis as is done here.

Now let 𝐺 be the stable rational 𝑝×𝑚 function given by (1.2). Then

𝐺(𝑠) = 𝐷 +

∫ ∞

0

𝑒−𝑠𝜏𝐶𝑒𝜏𝐴𝐵 𝑑𝜏, 𝑠 ∈ 𝑖ℝ.

Hence the Wiener–Hopf operator 𝑇𝐺 and the Hankel operator 𝐻𝐺 are given by

(𝑇𝐺𝑓)(𝑡) = 𝐷𝑓(𝑡) +

∫ 𝑡

0

𝐶𝑒(𝑡−𝜏)𝐴𝐵𝑓(𝜏)𝑑𝜏, 𝑡 ≥ 0, (2.3)

(𝐻𝐺𝑓)(𝑡) =

∫ ∞

0

𝐶𝑒(𝑡+𝜏)𝐴𝐵𝑓(𝜏)𝑑𝜏, 𝑡 ≥ 0. (2.4)

With 𝐺 we also associate the rational 𝑚×𝑚 matrix function 𝑅 given by 𝑅(𝑠) =
𝐺(𝑠)𝐺(−𝑠)∗. Note that 𝑅 is a proper rational 𝑚×𝑚 matrix function with no pole
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on the imaginary axis. By 𝑇𝑅 we denote the corresponding Wiener–Hopf operator
acting on 𝐿2𝑚(ℝ

+). It is well known (see, e.g., formula (24) in Section XII.2 of [12])
that

𝑇𝑅 = 𝑇𝐺𝑇
∗
𝐺 +𝐻𝐺𝐻

∗
𝐺. (2.5)

Next assume that the equation 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚 has a stable rational matrix
solution 𝑋 . The fact that 𝑋 is stable implies that 𝑋 is proper and has no poles
on the imaginary axis, and thus 𝑇𝑋 is well defined. Furthermore, 𝑇𝐺𝑇𝑋 = 𝑇𝐺𝑋 ;
see [12, Proposition XIII.1.2]. Since 𝐺𝑋 is identically equal to the 𝑚×𝑚 identity
matrix 𝑇𝐺𝑋 is the identity operator on 𝐿2𝑚(ℝ

+), and hence 𝑇𝑋 is a right inverse
of 𝑇𝐺. The fact 𝑇𝐺 that is right invertible, implies that 𝑇𝐺𝑇

∗
𝐺 is invertible and

hence strictly positive. The identity (2.5) then shows that 𝑇𝑅 is strictly positive
too, and hence is invertible.

In the following proposition we use the algebraic Riccati equation (1.4) to
obtain necessary and sufficient conditions for 𝑇𝑅 to be invertible in terms of the
matrices 𝐴, 𝐵, and 𝐶 appearing in the realization (1.2). As in Section 1, we denote
by 𝑃 the controllability Gramian associated with the realization (1.2), that is, 𝑃 is
the solution of the Lyapunov equation (1.3). Finally, Γ is the 𝑛×𝑚 matrix defined
by (1.5).

Proposition 2.1. Let 𝑅(𝑠) = 𝐺(𝑠)𝐺(−𝑠)∗. Then the operator 𝑇𝑅 is invertible if
and only if the algebraic Riccati equation

𝐴∗𝑄+𝑄𝐴+ (𝐶 − Γ∗𝑄)∗ (𝐷𝐷∗)−1 (𝐶 − Γ∗𝑄) = 0 (2.6)

has a stabilizing solution 𝑄, that is, 𝑄 is a Hermitian solution of (2.6) and the
operator 𝐴0, defined by

𝐴0 = 𝐴− Γ𝐶0, where 𝐶0 = (𝐷𝐷∗)−1 (𝐶 − Γ∗𝑄) , (2.7)

is stable.

Proof. The proposition is an immediate consequence of Theorem 14.8 in [3]. To
see this, we first show that

𝑅(𝑠) = 𝐷𝐷∗ + 𝐶(𝑠𝐼𝑛 −𝐴)−1Γ− Γ∗(𝑠𝐼𝑛 +𝐴∗)−1𝐶∗. (2.8)

This partial fraction expansion for 𝑅 follows from the Lyapunov equation (1.3),
and its immediate consequence

−(𝑠𝐼𝑛 −𝐴)−1𝐵𝐵∗(𝑠𝐼𝑛 +𝐴∗)−1 = (𝑠𝐼𝑛 −𝐴)−1𝑃 − 𝑃 (𝑠𝐼𝑛 +𝐴∗)−1.
By employing 𝐺(𝑠) = 𝐷 + 𝐶(𝑠𝐼𝑛 −𝐴)−1𝐵 the identity (2.8) then follows from

𝑅(𝑠) = 𝐺(𝑠)𝐺(−𝑠)∗ = (𝐷 + 𝐶(𝑠𝐼𝑛 −𝐴)−1𝐵)(𝐷∗ −𝐵∗(𝑠𝐼𝑛 +𝐴∗)𝐶∗)
= 𝐷𝐷∗ + 𝐶(𝑠𝐼𝑛 −𝐴)−1𝐵𝐷∗ −𝐷𝐵∗(𝑠𝐼𝑛 +𝐴∗)𝐶∗
+ 𝐶(𝑠𝐼𝑛 −𝐴)−1𝑃𝐶∗ − 𝐶𝑃 (𝑠𝐼𝑛 + 𝐴∗)−1𝐶∗.

Using Γ = 𝐵𝐷∗ + 𝑃𝐶∗, this yields (2.8). Given (2.8) we can apply Theorem 14.8
in [3], replacing 𝐽 by 𝐷𝐷∗ and 𝐵 by Γ, and rewriting the corresponding algebraic
Riccati equation in the form (2.6). □
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From the partial fraction expansion (2.8) it follows that the action of the
Wiener–Hopf operator 𝑇𝑅 on 𝐿2𝑚(ℝ

+) is given by

(𝑇𝑅𝑓)(𝑡) = 𝐷𝐷
∗𝑓(𝑡) +

∫ 𝑡

0

𝐶𝑒(𝑡−𝜏)𝐴Γ𝑓(𝜏) 𝑑𝜏

+

∫ ∞

𝑡

Γ∗𝑒−(𝑡−𝜏)𝐴∗
𝐶∗𝑓(𝜏) 𝑑𝜏. 𝑡 ≥ 0.

(2.9)

By𝑊obs and𝑊0, obs we denote the observability operators mapping the state space
ℂ𝑛 into 𝐿2𝑚(ℝ

+) defined by

(𝑊obs𝑥)(𝑡) = 𝐶𝑒
𝑡𝐴𝑥 and (𝑊0, obs𝑥)(𝑡) = 𝐶0𝑒

𝑡𝐴0𝑥, where 𝑥 ∈ ℂ𝑛. (2.10)

Proposition 2.2. Assume that 𝑇𝑅 is invertible, or equivalently, there exists a sta-
bilizing solution 𝑄 to the algebraic Riccati equation (2.6). Then this stabilizing
solution is uniquely determined by

𝑄 =𝑊 ∗
obs𝑇

−1
𝑅 𝑊obs. (2.11)

Proof. To establish this, let us first show that 𝑄 satisfies the following Lyapunov
equation

𝐴∗𝑄+𝑄𝐴0 + 𝐶
∗𝐶0 = 0. (2.12)

Recall that 𝐴0 = 𝐴− Γ𝐶0. Then (2.12) follows from the Riccati equation

0 = 𝐴∗𝑄+𝑄𝐴+ (𝐶 − Γ∗𝑄)∗ (𝐷𝐷∗)−1 (𝐶 − Γ∗𝑄)
= 𝐴∗𝑄+𝑄 (𝐴0 + Γ𝐶0) + (𝐶 − Γ∗𝑄)∗ 𝐶0

= 𝐴∗𝑄+𝑄𝐴0 + 𝐶
∗𝐶0.

Thus (2.12) holds. Because 𝐴 and 𝐴0 are both stable, the stabilizing solution 𝑄
can also be written as

𝑄 =

∫ ∞

0

𝑒𝑡𝐴
∗
𝐶∗𝐶0𝑒

𝑡𝐴0𝑑𝑡 =𝑊 ∗
obs𝑊0, obs. (2.13)

Next we prove that

𝑇−1𝑅 𝑊obs =𝑊0, obs. (2.14)

This essentially follows from [2], Corollary 6.3. For completeness we provide a
proof. It suffices to compute 𝑇𝑅𝑊0, obs. To do this, we use (2.9). Fix 𝑥 ∈ ℂ𝑛. From
the second identity in (2.10) and the first identiy in (2.7) it follows that∫ 𝑡

0

𝐶𝑒(𝑡−𝜏)𝐴Γ(𝑊0, obs𝑥)(𝜏) 𝑑𝜏 =

∫ 𝑡

0

𝐶𝑒(𝑡−𝜏)𝐴Γ𝐶0𝑒
𝜏𝐴0𝑥 𝑑𝜏

=

∫ 𝑡

0

𝐶𝑒(𝑡−𝜏)𝐴(𝐴−𝐴0)𝑒
𝜏𝐴0𝑥 𝑑𝜏 = 𝐶𝑒𝑡𝐴

( ∫ 𝑡

0

𝐶𝑒−𝜏𝐴(𝐴−𝐴0)𝑒
𝜏𝐴0 𝑑𝜏

)
𝑥

= −𝐶𝑒𝑡𝐴
( ∫ 𝑡

0

𝑑

𝑑𝜏
(𝑒−𝜏𝐴𝑒𝜏𝐴0) 𝑑𝜏

)
𝑥 = −𝐶𝑒𝑡𝐴0𝑥+ 𝐶𝑒𝑡𝐴𝑥.
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Furthermore, using the Lyapunov identity (2.12) we obtain∫ ∞

𝑡

Γ∗𝑒−(𝑡−𝜏)𝐴∗
𝐶∗(𝑊0, obs𝑥)(𝜏) 𝑑𝜏 =

∫ ∞

𝑡

Γ∗𝑒−(𝑡−𝜏)𝐴∗
𝐶∗𝐶0𝑒

𝜏𝐴0𝑥 𝑑𝜏

= −
∫ ∞

𝑡

Γ∗𝑒−(𝑡−𝜏)𝐴∗
(𝐴∗𝑄+𝑄𝐴0)𝑒

𝜏𝐴0𝑥 𝑑𝜏

= −Γ∗𝑒−𝑡𝐴∗( ∫ ∞

𝑡

𝑒𝜏𝐴
∗
(𝐴∗𝑄 +𝑄𝐴0)𝑒

𝜏𝐴0 𝑑𝜏
)
𝑥

= −Γ∗𝑒−𝑡𝐴∗( ∫ ∞

𝑡

𝑑

𝑑𝜏
(𝑒𝜏𝐴

∗
𝑄𝑒𝜏𝐴0) 𝑑𝜏

)
𝑥 = −Γ∗𝑒−𝑡𝐴∗(− 𝑒𝑡𝐴∗

𝑄𝑒𝑡𝐴0

)
𝑥

= Γ∗𝑄𝑒𝑡𝐴0𝑥.

Using (2.9) and the second identity in (2.7) we conclude that

(𝑇𝑅𝑊0, obs)(𝑡) = 𝐷𝐷
∗𝐶0𝑒

𝑡𝐴0 + (−𝐶𝑒𝑡𝐴0 + 𝐶𝑒𝑡𝐴) + Γ∗𝑄𝑒𝑡𝐴0

= (𝐷𝐷∗𝐶0 + Γ∗𝑄)𝑒𝑡𝐴0 − 𝐶𝑒𝑡𝐴0 + 𝐶𝑒𝑡𝐴 = 𝐶𝑒𝑡𝐴.

This proves 𝑇𝑅𝑊0, obs =𝑊obs, and hence (2.14) holds. Together (2.13) and (2.14)

show that𝑊 ∗
obs𝑇

−1
𝑅 𝑊obs =𝑊

∗
obs𝑊0, obs = 𝑄. In particular, the stabilizing solution

is uniquely determined by (2.11). □

Lemma 2.3. Assume 𝑇𝑅 is invertible. Then 𝐼−𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is positive. Furthermore,
the following are equivalent:

(i) 𝑇𝐺 is right invertible,
(ii) 𝐼 −𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is strictly positive,

(iii) 𝐼 −𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is invertible.

Proof. Rewriting (2.5) as 𝑇𝐺𝑇
∗
𝐺 = 𝑇𝑅−𝐻𝐺𝐻

∗
𝐺, and multiplying the latter identity

from the left and from the right by 𝑇
−1/2
𝑅 shows that

𝑇
−1/2
𝑅 𝑇𝐺𝑇

∗
𝐺𝑇

−1/2
𝑅 = 𝐼 − 𝑇−1/2𝑅 𝐻𝐺𝐻

∗
𝐺𝑇

−1/2
𝑅 . (2.15)

Hence 𝐼 − 𝑇−1/2𝑅 𝐻𝐺𝐻
∗
𝐺𝑇

−1/2
𝑅 is positive which shows that 𝐻∗𝐺𝑇

−1/2
𝑅 is a contrac-

tion. But then 𝐻∗𝐺𝑇
−1
𝑅 𝐻𝐺 =

(
𝐻∗𝐺𝑇

−1/2
𝑅

)(
𝐻∗𝐺𝑇

−1/2
𝑅

)∗
is also a contraction, and

thus the operator 𝐼 −𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is positive.

Since 𝐼 − 𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is positive, the equivalence of items (ii) and (iii) is

trivial. Assume (ii) holds. Then 𝑇
−1/2
𝑅 𝐻𝐺 is a strict contraction, and hence the

same holds true for 𝑇
−1/2
𝑅 𝐻𝐺𝐻

∗
𝐺𝑇

−1/2
𝑅 . But then 𝐼−𝑇−1/2𝑅 𝐻𝐺𝐻

∗
𝐺𝑇

−1/2
𝑅 is strictly

positive, and (2.15) shows that 𝑇𝐺 is right invertible. The converse implication is
proved in a similar way. □

Corollary 2.4. Assume that 𝑇𝑅 is invertible, or equivalently, there exists a stabi-
lizing solution 𝑄 to the algebraic Riccati equation (2.6). Then the spectral radius
of 𝑄𝑃 is at most one.
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Furthermore, the following are equivalent:

(i) 𝑇𝐺 is right invertible,
(ii) 𝑟spec(𝑄𝑃 ) < 1,
(iii) 𝐼𝑛 −𝑄𝑃 is invertible.

Proof. Let 𝑊con be the controllability operator mapping 𝐿𝑝
2(ℝ

+) into ℂ𝑛 de-
fined by

𝑊conℎ =

∫ ∞

0

𝑒𝑡𝐴𝐵ℎ(𝑡)𝑑𝑡, ℎ ∈ 𝐿2𝑝(ℝ+).

Then 𝑃 =𝑊con𝑊
∗
con and 𝐻𝐺 =𝑊obs𝑊con. Using these two identities and (2.11),

we obtain for the spectral radius of 𝐻∗𝐺𝑇
−1
𝑅 𝐻𝐺 that

𝑟spec(𝐻
∗
𝐺𝑇

−1
𝑅 𝐻𝐺) = 𝑟spec(𝑊

∗
con𝑊

∗
obs𝑇

−1
𝑅 𝑊obs𝑊con)

= 𝑟spec(𝑊
∗
con𝑄𝑊con)

= 𝑟spec(𝑄𝑊con𝑊
∗
con) = 𝑟spec(𝑄𝑃 ).

(2.16)

By Lemma 2.3 the operator 𝐼−𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is positive. Hence the spectral radius of

𝐻∗𝐺𝑇
−1
𝑅 𝐻𝐺 is at most one, and the preceding calculation shows that 𝑟spec(𝑄𝑃 ) ≤ 1

Since 𝑟spec(𝑄𝑃 ) ≤ 1, the equivalence of items (ii) and (iii) is trivial. Assume

𝑟spec(𝑄𝑃 ) < 1. Then (2.16) shows that 𝐼−𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is invertible, and Lemma 2.3
tells us that 𝑇𝐺 is right invertible. To prove the converse implication, assume that
𝑇𝐺 is right invertible. Then, by Lemma 2.3, the operator 𝐼−𝐻∗𝐺𝑇−1𝑅 𝐻𝐺 is strictly

positive. Hence 𝑟spec(𝐼−𝐻∗𝐺𝑇−1𝑅 𝐻𝐺)<1, and (2.16) shows that 𝑟spec(𝑄𝑃 )<1. □

Necessity of the conditions 1, 2, 3 in Theorem 1.1. Assume that the equation
𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚 has a stable rational matrix solution 𝑋 . As was shown in the
paragraph preceding Theorem 1.1, this implies that 𝐷 is right invertible. Thus
condition 1 is necessary. Furthermore, in the paragraph directly after (2.5) it was
shown that 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚 has a stable rational matrix solution also implies that
𝑇𝐺 is right invertible and 𝑇𝑅 is invertible. Given the latter we can apply Proposition
2.1 to show that condition 2 is necessary. Finally, using Corollary 2.4, we see that
𝑇𝐺 is right invertible and 𝑇𝑅 is invertible imply that 𝐼𝑛 − 𝑃𝑄 is invertible, which
shows that condition 3 is necessary. □

Comment. The identities appearing in this section can also be used to give an
alternative formula for the function 𝑌 in (1.9), namely

𝑌 (𝑠) = 𝐼𝑝 −
∫ ∞

0

𝑒−𝑠𝑡𝑦(𝑡)𝑑𝑡, ℜ𝑠 ≥ 0, where 𝑦 = 𝑇 ∗𝐺(𝑇𝐺𝑇
∗
𝐺)
−1𝑔. (2.17)

This formula also makes sense in a Wiener space setting. From formula (2.17) for
𝑌 it follows that 𝑇𝐺𝑦 = 𝑔, which immediately implies that 𝐺(𝑠)𝑌 (𝑠) = 𝐷. The
latter identity will be derived in the next section (see the second paragraph of the
proof of Theorem 1.1) using state space computations. We plan to prove (2.17) in
a future paper.
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3. Proof of the two main theorems

It will be convenient first to prove the two identities given in the following lemma.

Lemma 3.1. Assume conditions 1, 2, 3 in Theorem 1.1 are satisfied. Then

𝐵𝐶1 = 𝐴(𝐼𝑛 − 𝑃𝑄)− (𝐼𝑛 − 𝑃𝑄)𝐴0, (3.1)

𝐷𝐶1 = 𝐶(𝐼𝑛 − 𝑃𝑄). (3.2)

Proof. Recall that 𝐶1 and 𝐶0 are respectively defined in (1.8) and (2.7). This
implies that

𝐶1 = 𝐷
∗𝐶0 +𝐵

∗𝑄. (3.3)

To prove the first identity, we use the Lyapunov equation (2.12) with Γ defined in
(1.5) to compute

𝐵𝐶1 = 𝐵𝐷
∗𝐶0 +𝐵𝐵

∗𝑄 = (Γ− 𝑃𝐶∗)𝐶0 − (𝐴𝑃 + 𝑃𝐴∗)𝑄

= Γ𝐶0 + 𝑃𝐴
∗𝑄+ 𝑃𝑄𝐴0 −𝐴𝑃𝑄− 𝑃𝐴∗𝑄

= Γ𝐶0 + 𝑃𝑄𝐴0 −𝐴𝑃𝑄 = 𝐴−𝐴0 + 𝑃𝑄𝐴0 −𝐴𝑃𝑄
= 𝐴(𝐼𝑛 − 𝑃𝑄)− (𝐼𝑛 − 𝑃𝑄)𝐴0.

The second identity follows from

𝐷𝐶1 = 𝐶 − Γ∗𝑄+𝐷𝐵∗𝑄 = 𝐶 −𝐷𝐵∗𝑄− 𝐶𝑃𝑄 +𝐷𝐵∗𝑄

= 𝐶(𝐼𝑛 − 𝑃𝑄).
Thus both identities are proved. □
Proof of Theorem 1.1. In the previous section we have seen that the conditions 1,
2, 3 in Theorem 1.1 are necessary. Therefore in what follows we assume these three
conditions are fullfilled. The latter allows us to introduce the 𝑝×𝑝 rational matrix
function

𝑌 (𝑠) = 𝐼𝑝 − 𝐶1(𝑠𝐼𝑛 −𝐴0)
−1(𝐼𝑛 − 𝑃𝑄)−1𝐵. (3.4)

Note that 𝑌 is stable, because the matrix 𝐴0 which is given by (1.6) is stable. The
latter follows from the fact that condition 2 is satisfied. We claim that

𝑌 (𝑠)−1 = 𝐼𝑝 + 𝐶1(𝐼𝑛 − 𝑃𝑄)−1(𝑠𝐼𝑛 −𝐴)−1𝐵. (3.5)

Since 𝐴 is stable, we see that 𝑌 is invertible outer. To prove (3.5), we use (3.1).
Indeed, using (3.1), we obtain

𝐴0 + (𝐼𝑛 − 𝑃𝑄)−1𝐵𝐶1 = 𝐴0 + (𝐼𝑛 − 𝑃𝑄)−1𝐴(𝐼𝑛 − 𝑃𝑄)−𝐴0

= (𝐼𝑛 − 𝑃𝑄)−1𝐴(𝐼𝑛 − 𝑃𝑄). (3.6)

Recall that the inverse of 𝐼𝑝 − 𝛾(𝑠𝐼𝑛 − 𝛼)−1𝛽 is the state space realization given
by 𝐼𝑝 + 𝛾

(
𝑠𝐼𝑛 − (𝛼 + 𝛽𝛾)

)−1
𝛽. Using this for the state space realization for 𝑌 in

(3.4) with (3.6), we obtain

𝑌 (𝑠)−1 = 𝐼𝑝 + 𝐶1(𝑠𝐼𝑛 − (𝐼𝑛 − 𝑃𝑄)−1𝐴(𝐼𝑛 − 𝑃𝑄))−1(𝐼𝑛 − 𝑃𝑄)−1𝐵
= 𝐼𝑝 + 𝐶1(𝐼𝑛 − 𝑃𝑄)−1(𝑠𝐼𝑛 −𝐴)−1𝐵.
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Hence the inverse of 𝑌 (𝑠) is given by (3.5). In particular, 𝑌 is an invertible outer
function.

Next we show that 𝐺(𝑠)𝑌 (𝑠) = 𝐷. To do this we use (3.2) together with the
state space formula for 𝑌 (𝑠)−1 in (3.5), to obtain

𝐷𝑌 (𝑠)−1 = 𝐷 +𝐷𝐶1(𝐼𝑛 − 𝑃𝑄)−1(𝑠𝐼𝑛 −𝐴)−1𝐵
= 𝐷 + 𝐶(𝑠𝐼𝑛 −𝐴)−1𝐵 = 𝐺(𝑠).

In other words, 𝐺(𝑠) = 𝐷𝑌 (𝑠)−1. By multiplying the latter identity from the left
by 𝑌 (𝑠) we obtain 𝐺(𝑠)𝑌 (𝑠) = 𝐷.

Finally, by comparing (1.7) and (3.4), we see that Ξ(𝑠) = 𝑌 (𝑠)𝐷∗(𝐷𝐷∗)−1.
It follows that

𝐺(𝑠)Ξ(𝑠) = 𝐺(𝑠)𝑌 (𝑠)𝐷∗(𝐷𝐷∗)−1 = 𝐷𝐷∗(𝐷𝐷∗)−1 = 𝐼𝑚.

This completes the proof of Theorem 1.1. □

Proof of Theorem 1.2. Given the above proof of Theorem 1.1 it remains to prove
items (i)–(iv) in Theorem 1.2. We do this in four steps.

Step 1. First we show that Θ is inner. To do this, recall that

Θ(𝑠) = 𝐸 + 𝐶1(𝑠𝐼𝑛 −𝐴0)
−1𝐵𝑖, where 𝐵𝑖 = −(𝐼𝑛 − 𝑃𝑄)−1𝐵𝐸. (3.7)

We shall make use of the following Lyapunov equation

𝐴∗0(𝑄−𝑄𝑃𝑄) + (𝑄 −𝑄𝑃𝑄)𝐴0 + 𝐶
∗
1𝐶1 = 0. (3.8)

To see this, notice, that (3.1), (3.2) and (3.3) with (2.7) and (2.12) yield

𝐶∗1𝐶1 = (𝐶∗0𝐷 +𝑄𝐵)𝐶1

= 𝐶∗0𝐶(𝐼𝑛 −𝑄𝑃 ) +𝑄𝐴(𝐼𝑛 − 𝑃𝑄)−𝑄(𝐼𝑛 − 𝑃𝑄)𝐴0

= −(𝑄𝐴+𝐴∗0𝑄)(𝐼𝑛 −𝑄𝑃 ) +𝑄𝐴(𝐼𝑛 − 𝑃𝑄)−𝑄(𝐼𝑛 − 𝑃𝑄)𝐴0

= −𝐴∗0(𝑄 −𝑄𝑃𝑄)− (𝑄 −𝑄𝑃𝑄)𝐴0.

Therefore (3.8) holds. The Lyapunov equation in (3.8) also yields

−(𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1𝐶1(𝑠𝐼𝑛 −𝐴0)
−1

= (𝑄−𝑄𝑃𝑄)(𝑠𝐼𝑛 −𝐴0)
−1 − (𝑠𝐼𝑛 +𝐴∗0)−1(𝑄 −𝑄𝑃𝑄).

(3.9)

To see this, simply multiply the previous equation by 𝑠𝐼𝑛 + 𝐴
∗
0 on the left and

𝑠𝐼𝑛 −𝐴0 on the right.
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To show that Θ is an inner function, notice that (3.9) gives

Θ(−𝑠)∗Θ(𝑠) = (𝐸∗ −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1 ) (𝐸 + 𝐶1(𝑠𝐼𝑛 −𝐴0)
−1𝐵𝑖

)
= 𝐼𝑝−𝑚 + 𝐸∗𝐶1(𝑠𝐼𝑛 −𝐴0)

−1𝐵𝑖 −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1𝐸
−𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1𝐶1(𝑠𝐼𝑛 −𝐴0)

−1𝐵𝑖

= 𝐼𝑝−𝑚 + 𝐸∗𝐶1(𝑠𝐼𝑛 −𝐴0)
−1𝐵𝑖 −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1𝐸

+𝐵∗𝑖 (𝑄−𝑄𝑃𝑄)(𝑠𝐼𝑛 −𝐴0)
−1𝐵𝑖

−𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1(𝑄−𝑄𝑃𝑄)𝐵𝑖

= 𝐼𝑝−𝑚 + (𝐵∗𝑖 (𝑄−𝑄𝑃𝑄) + 𝐸∗𝐶1) (𝑠𝐼𝑛 −𝐴0)
−1𝐵𝑖

−𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1 (𝐶∗1𝐸 + (𝑄−𝑄𝑃𝑄)𝐵𝑖) = 𝐼𝑝−𝑚.

The last equality follows from the fact that

𝐵∗𝑖 (𝑄 −𝑄𝑃𝑄) + 𝐸∗𝐶1 = 0. (3.10)

To verify this, observe that

𝐵∗𝑖 (𝑄−𝑄𝑃𝑄) = −𝐸∗𝐵∗(𝐼𝑛 −𝑄𝑃 )−1(𝑄−𝑄𝑃𝑄) = −𝐸∗𝐵∗𝑄
𝐸∗𝐶1 = 𝐸

∗(𝐵∗𝑄+𝐷∗𝐶0) = 𝐸
∗𝐵∗𝑄.

Hence 𝐵∗𝑖 (𝑄−𝑄𝑃𝑄) + 𝐸∗𝐶1 = 0. Therefore Θ(𝑠) is an inner function.

Step 2. It will be convenient first to prove item (iv). Take 𝑠 in the right half-plane,
i.e., ℜ𝑠 ≥ 0. Using the definition of 𝑌 in (1.9), and the identities (1.7) and (1.11),
we see that Ξ(𝑠) = 𝑌 (𝑠)𝐷+ and Θ(𝑠) = 𝑌 (𝑠)𝐸, and hence[

Ξ(𝑠) Θ(𝑠)
]
= 𝑌 (𝑠)

[
𝐷+ 𝐸

]
.

Next observe that the 𝑝× 𝑝 matrix [𝐷+ 𝐸
]
is invertible, and[

𝐷+ 𝐸
] [𝐷
𝐸∗

]
= 𝐼𝑝.

Thus
[
Ξ(𝑠) Θ(𝑠)

]
is invertible, and[

Ξ(𝑠) Θ(𝑠)
]−1

=

[
𝐷
𝐸∗

]
𝑌 (𝑠)−1 =

[
𝐺(𝑠)

𝐸∗𝑌 (𝑠)−1

]
.

This proves (1.14). Since the function
[
Ξ Θ

]
is a stable rational 𝑝 × 𝑝 matrix

function, we see that the function defined by (1.13) is invertible outer.

Step 3. In this part we prove item (iii). Let 𝑋 be given by (1.12). In other
words 𝑋(𝑠) = 𝑌 (𝑠)(𝐷∗(𝐷𝐷∗)−1+𝐸𝑍(𝑠)), where 𝑍 is an arbitrary stable rational
matrix function of size (𝑝 − 𝑚) × 𝑚. Since 𝐺(𝑠)𝑌 (𝑠) = 𝐷, we see 𝐺(𝑠)𝑋(𝑠) =
𝐷𝐷∗(𝐷𝐷∗)−1 + 𝐷𝐸𝑍(𝑠). But 𝐷𝐷∗(𝐷𝐷∗)−1 = 𝐼𝑚 and 𝐷𝐸 = 0. We conclude
that 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚, as desired.

Next we deal with the reverse implication. Let 𝑋 be any stable rational
𝑝 ×𝑚 matrix function satsfying the equation 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚. Put 𝐻 = 𝑋 − Ξ.
Then 𝐻 is a rational matrix-valued function, and 𝐺(𝑠)𝐻(𝑠) = 0. Notice that
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𝐸∗𝑌 (𝑠)−1Ξ(𝑠) = 0. Using item (iv) we obtain

𝐻(𝑠) =
[
Ξ(𝑠) Θ(𝑠)

] [ 𝐺(𝑠)
𝐸∗𝑌 (𝑠)−1

]
𝐻(𝑠)

=
[
Ξ(𝑠) Θ(𝑠)

] [ 0
𝐸∗𝑌 (𝑠)−1𝐻(𝑠)

]
= Θ(𝑠)𝐸∗𝑌 (𝑠)−1𝐻(𝑠) = Θ(𝑠)𝐸∗𝑌 (𝑠)−1𝑋(𝑠).

(3.11)

Thus 𝐻(𝑠) = Θ(𝑠)𝑍(𝑠), where 𝑍(𝑠) = 𝐸∗𝑌 (𝑠)−1𝑋(𝑠). Since 𝑌 is invertible outer,
the inverse 𝑌 (⋅)−1 is a rational 𝑝× 𝑝 matrix function. Thus 𝑍 is a rational matrix
function of size (𝑝−𝑚)×𝑚, and 𝑋 has the desired representation (1.12).

Step 4. We prove item (ii). Let ℎ be any ℂ𝑝-valued 𝐻2 function such that
𝐺(𝑠)ℎ(𝑠) = 0 for ℜ𝑠 > 0. Repeating the first three identities in (3.11) with ℎ
in place of 𝐻 , we see that ℎ(𝑠) = Θ(𝑠)𝜔(𝑠), where 𝜔(𝑠) = 𝐸∗𝑌 (𝑠)−1ℎ(𝑠). Since
𝑌 is invertible outer, the entries of 𝑌 (⋅)−1 are 𝐻∞ functions. Hence the entries
of 𝜔 are 𝐻2 functions. Furthermore, using the fact that Θ is inner, we see that
𝜔(𝑠) = Θ(−𝑠)∗ℎ(𝑠) for ℜ𝑠 > 0. □

To complete this section, let us establish the following useful (see the next
section) identity

Θ(−𝑠)∗Ξ(𝑠) = −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗0 . (3.12)

For convenience, let us set 𝐵1 = −(𝐼𝑛 − 𝑃𝑄)−1𝐵𝐷+. Then (3.12) follows from
(3.3), (3.9) and (3.10), that is,

Θ(−𝑠)∗Ξ(𝑠) = (𝐸∗ −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1)(𝐷+ + 𝐶1(𝑠𝐼𝑛 −𝐴0)
−1𝐵1

)
= 𝐸∗𝐶1(𝑠𝐼𝑛 −𝐴0)

−1𝐵1 −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1𝐷+

−𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗1𝐶1(𝑠𝐼𝑛 −𝐴0)
−1𝐵1

=
(
(𝐸∗𝐶1 +𝐵

∗
𝑖 (𝑄 −𝑄𝑃𝑄)

)
(𝑠𝐼𝑛 −𝐴0)

−1𝐵1

−𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1
(
𝐶∗1𝐷

+ + (𝑄 −𝑄𝑃𝑄)𝐵1

)
= −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1

(
𝐶∗1𝐷

+ + (𝑄 −𝑄𝑃𝑄)𝐵1

)
= −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1 (𝐶∗1 −𝑄𝐵)𝐷∗(𝐷𝐷∗)−1
= −𝐵∗𝑖 (𝑠𝐼𝑛 +𝐴∗0)−1𝐶∗0 .

This establishes (3.12).

4. The minimization problem

Throughout this section 𝐺 is a stable rational 𝑚 × 𝑝 matrix function, and we
assume that 𝐺 is given by the stable state space representation (1.2). We also
assume that 𝑇𝐺 is right invertible.

For each 𝛾 > 0 let 𝑤𝛾 be the scalar weight function given by 𝑤𝛾(𝑠) = (𝑠+𝛾)−1.
Note that for each 𝑋 ∈ 𝐻∞𝑝×𝑚 the function 𝑤𝛾𝑋 belongs to 𝐻2

𝑝×𝑚. With 𝐺 and
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the weight function 𝑤𝛾 we associate the following minimization problem:

inf
{∥𝑤𝛾𝑋∥2 ∣ 𝐺(𝑠)𝑋(𝑠) = 𝐼𝑚 (ℜ𝑠 > 0) and 𝑋 ∈ 𝐻∞𝑝×𝑚

}
. (4.1)

The problem is to check whether or not the infimum is a minimum, and if so, to
find a minimizing function. We shall show in this section that such a minimizing
𝑋 exists and is unique. It what follows this minimizing function will be denoted
by Ξ𝛾 . The next theorem shows that Ξ𝛾 is a stable rational matrix function and
provides an explicit formula for Ξ𝛾 .

Theorem 4.1. For each 𝛾 > 0 there is a unique solution to the optimization problem
(4.1), and this solution is given by

Ξ𝛾(𝑠) = Ξ(𝑠)−Θ(𝑠)𝐵∗𝑖 (𝛾𝐼 −𝐴∗0)−1𝐶∗0 , ℜ𝑠 > 0. (4.2)

Here Ξ and Θ are the rational matrix functions given by (1.7) and (1.11), respec-
tively, the matrix 𝐴0 is defined by (1.6) and 𝐶0 by (2.7). In particular, we have
Ξ(𝑠) = lim𝛾→∞ Ξ𝛾(𝑠).

Proof. Fix 𝛾 > 0. Since for each 𝑋 ∈ 𝐻∞𝑝×𝑚 the function 𝑤𝛾𝑋 belongs to 𝐻2
𝑝×𝑚,

we have

∥𝑤𝛾Ξ𝛾∥2 = inf
{∥𝑤𝛾𝑋∥2 ∣ 𝑤𝛾𝐺𝑋 = 𝑤𝛾𝐼𝑚 and 𝑋 ∈ 𝐻∞𝑝×𝑚

}
(4.3)

≥ inf
{∥𝑍∥2 ∣ 𝐺𝑍 = 𝑤𝛾𝐼𝑚 and 𝑍 ∈ 𝐻2

𝑝×𝑚

}
= ∥𝑍𝛾∥2. (4.4)

The last optimization problem is a least squares optimization problem. So the op-
timal solution 𝑍𝛾 for the problem (4.4) is unique. We first derive a formula for 𝑍𝛾 .

From item (ii) in Theorem 1.2 we know that Ker𝑇𝐺 = Im𝑇Θ. By taking the
Fourier transform, we see that 𝑍𝛾 is the unique matrix function in 𝐻

2
𝑝×𝑚 such that

𝐺𝑍𝛾 = 𝑤𝛾𝐼𝑚 and 𝑍𝛾 is orthogonal to Θ𝐻
2
(𝑝−𝑚)×𝑚. Using 𝐺Ξ = 𝐼𝑚, we obtain

that all 𝐻2 solutions to 𝐺𝑍 = 𝑤𝛾𝐼𝑚 are given by

𝑍 = 𝑤𝛾Ξ +Θ𝐻2
(𝑝−𝑚)×𝑚.

So we are looking for a 𝐻2 function 𝑍𝛾 such that

𝑍𝛾 = 𝑤𝛾Ξ +Θ𝐹 and 𝑍𝛾 ⊥ Θ𝐻2
(𝑝−𝑚)×𝑚,

where 𝐹 is a matrix function in𝐻2
(𝑝−𝑚)×𝑚. By exploiting that Θ is inner, we obtain

𝑤𝛾Θ
∗Ξ+ 𝐹 ⊥ 𝐻2

(𝑝−𝑚)×𝑚.

But then (3.12) tells us that the latter is equivalent to

−𝑤𝛾𝐵
∗
𝑖 (𝑠𝐼𝑛 +𝐴

∗
0)
−1𝐶∗0 + 𝐹 ⊥ 𝐻2

(𝑝−𝑚)×𝑚. (4.5)

However,−𝑤𝛾(𝑠)𝐵
∗
𝑖 (𝑠𝐼𝑛+𝐴

∗
0)
−1𝐶∗0 admits a partial fraction expansion of the form

−𝑤𝛾(𝑠)𝐵
∗
𝑖 (𝑠𝐼𝑛 +𝐴

∗
0)
−1𝐶∗0 = (𝑠+ 𝛾)−1𝐵∗𝑖 (𝛾𝐼𝑛 −𝐴∗0)−1𝐶∗0 +Ω∗(𝑠),

where Ω is in 𝐻2
(𝑝−𝑚)×𝑚. Using this in the orthogonality relation (4.5), we see that

𝐹 (𝑠) = −𝑤𝛾(𝑠)𝐵
∗
𝑖 (𝛾𝐼𝑛 −𝐴∗0)−1𝐶∗0 . In other words,

𝑍𝛾(𝑠) = 𝑤𝛾(𝑠)Ξ(𝑠) − 𝑤𝛾(𝑠)Θ(𝑠)𝐵
∗
𝑖 (𝛾𝐼𝑛 −𝐴∗0)−1𝐶∗0 . (4.6)
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Next put Ξ𝛾(𝑠) = (𝑠+ 𝛾)𝑍𝛾(𝑠). Then (4.6) implies that Ξ𝛾 is given by (4.2).
Hence Ξ𝛾 is a stable rational matrix function. In particular, Ξ𝛾 belongs to 𝐻

∞
𝑝×𝑚.

Furthermore, it follows that the inequality on the left-hand side of (4.4) is an equal-
ity. We conclude that Ξ𝛾 given by (4.2) is the unique solution to the minimization
problem (4.1). □
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