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Abstract We consider an initial/boundary value problem for linear diffusion equa-
tion with multiple fractional time derivatives and prove the regularity of the solution.
The regularity argument implies the unique existence of the solution.
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1 Introduction

Let Ω be a bounded domain in R
d with sufficiently smooth boundary ∂Ω and let

0 < α2 < α1 < 1. We consider the following initial/boundary value problem for a
diffusion equation with two fractional time derivatives:

∂
α1
t u(x, t) + q(x)∂

α2
t u(x, t) = (−Au)(x, t), x ∈ Ω, t ∈ (0, T ), (1.1)

u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ) (1.2)

and

u(x,0) = a(x), x ∈ Ω. (1.3)
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Here, for 0 < α < 1, we denote by ∂α
t the Caputo fractional derivative with re-

spect to t :

∂α
t g(t) = 1

�(1 − α)

∫ t

0
(t − τ)−α d

dτ
g(τ)dτ

where � is the Gamma function and q ∈ W 2,∞(Ω). The space W 2,∞(Ω) is the
usual Sobolev space (Adams [1]). Moreover the operator −A is a symmetric uni-
formly elliptic operator, that is,

(−Au)(x) =
d∑

i=1

∂

∂xi

(
d∑

j=1

aij (x)
∂

∂xj

u(x)

)
+ b(x)u(x), x ∈ Ω,

where aij = aji , 1 ≤ i, j ≤ d , aij ∈ C1(Ω), b ∈ C(Ω), b(x) ≤ 0 for x ∈ Ω , and we
assume that there exists a constant C0 > 0 such that

C0

d∑
i=1

ξ2
i ≤

d∑
i,j=1

Aij (x)ξiξj , x ∈ Ω, ξ ∈ R
d .

In the special case q ≡ 0, (1.1) is a diffusion equation with a single fractional time
derivative. For such equations there exists a large and rapidly growing number of
publications which we do not intend to list completely: Bazhlekova [3, 4], Eidelman
and Kochubei [6], Luchko [12, 13], Prüss [21], Sakamoto and Yamamoto [22]. Also
see Agarwal [2], Fujita [7], Gejji and Jafari [8], Mainardi [15–17], Nigmatullin [18],
Schneider and Wyss [23].

In this article, we consider the case of multiple fractional time derivatives. Such
equations can be considered as more feasible model equations than equations with a
single fractional time derivative in modeling diffusion in porous media. In the case
where the functions in (1.1) are not dependent on x, we refer to several works and
refer for example to Diethelm and Luchko [5], Podlubny [20], Chap. 3, for instance.
In particular, in [5], some physical interpretations are given. As for diffusion equa-
tions with multiple fractional time derivatives, see Jiang, Liu, Turner and Burrage
[10] and Luchko [14] which argue a general number of time fractional derivatives.
The article[10] discusses the spatially one dimensional case with constant coeffi-
cients where also the spatial fractional derivative is considered, and establishes the
formula of the solution, and [14] assumes that the coefficients of the time derivatives
are constant to prove unique existence of the solution by the Fourier method as well
as the maximum principle and related properties.

Unlike [10] and [14], we treat a general case of x-dependent coefficient of frac-
tional time derivatives. In our case, we cannot apply the Fourier method or obtain
an analytic solution. We apply the perturbation method and the theory of evolution
equations to prove regularity as well as unique existence of solution to (1.1)–(1.3).
Such results should be the starting point for further research concerning the theory
of nonlinear fractional diffusion equations, numerical analysis, control theory and
inverse problems. In forthcoming papers, we will discuss those subjects.
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This paper is composed of four sections including the current section. In Sect. 2,
we present the main result for the case of two fractional time derivatives and in
Sect. 3 we prove it. Section 4 is devoted to the case of general multiple fractional
time derivatives.

2 Main Results

Let L2(Ω) be the usual L2-space with the scalar product (·, ·), and H�(Ω), Hm
0 (Ω)

denote the usual Sobolev spaces (e.g., Adams [1]). We set ‖a‖L2(Ω) = (a, a)
1
2 .

We define the operator A in L2(Ω) by

(Au)(x) = (Au)(x), x ∈ Ω, D(A) = H 2(Ω) ∩ H 1
0 (Ω).

Then the fractional power Aγ is defined for γ ∈ R (see for instance [19]), and

D(Aγ ) ⊂ H 2γ (Ω), D(A
1
2 ) = H 1

0 (Ω) for example. We note that ‖u‖D(Aγ ) :=
‖Aγ u‖L2(Ω) is a stronger norm than ‖u‖L2(Ω) for γ > 0.

Since −A is a symmetric uniformly elliptic operator, the spectrum of A is en-
tirely composed of eigenvalues and counting according to the multiplicities, we
can set: 0 < λ1 ≤ λ2 ≤ · · · . By φn ∈ H 2(Ω) ∩ H 1

0 (Ω), we denote the orthonor-
mal eigenfunction corresponding to λn: Aφn = λnφn. Then the sequence {φn}n∈N is
an orthonormal basis in L2(Ω). Moreover, we see that

D
(
Aγ

) =
{

ψ ∈ L2(Ω);
∞∑

n=1

λ
2γ
n

∣∣(ψ,φn)
∣∣2

< ∞
}

and that D(Aγ ) is a Hilbert space with the norm

‖ψ‖D(Aγ ) =
{ ∞∑

n=1

λ
2γ
n

∣∣(ψ,φn)
∣∣2

} 1
2

.

Henceforth we associate with u(x, t), provided that it is well-defined, a map
u(·) : (0, T ) −→ L2(Ω) by u(t)(x) = u(x, t), 0 < t < T , x ∈ Ω . Then we can write
(1.1)–(1.3) as

∂
α1
t u(t) + q∂

α2
t u(t) = −Au(t), t > 0 in L2(Ω), (2.1)

u(0) = a ∈ L2(Ω).

Remark 1 The interpretation of the initial condition should be made in a suit-
able function space. In our case, as Theorem 1 asserts, we have limt→0 ‖u(t) −
a‖L2(Ω) = 0.
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Moreover we define the Mittag–Leffler function Eα,β by

Eα,β(z) :=
∞∑

k=0

zk

�(αk + β)
, z ∈ C,

where α > 0 and β ∈ R are arbitrary constants. Using the power series, we can
directly verify that Eα,β(z) is an entire function.

Now we define the operators S(t) : L2(Ω) → L2(Ω), t ≥ 0, by

S(t)a :=
∞∑

n=1

(a,φn)Eα1,1
(−λnt

α1
)
φn in L2(Ω) (2.2)

for a ∈ L2(Ω). Then we can prove that S(t) : L2(Ω) −→ L2(Ω) is a bounded
linear operator for t ≥ 0 (e.g., Sakamoto and Yamamoto [22]). Moreover, termwise
differentiation is possible and gives

S′(t)a = −
∞∑

n=0

λn(a,φn)t
α1−1Eα1,α1

(−λnt
α1

)
φn in L2(Ω) (2.3)

and

S′′(t)a = −
∞∑

n=0

λn(a,φn)t
α1−2Eα1,α1−1

(−λnt
α1

)
φn in L2(Ω) (2.4)

for a ∈ L2(Ω).
For F ∈ L2(Ω × (0, T )) and a ∈ L2(Ω), there exists a unique solution in a suit-

able class (e.g., Sakamoto and Yamamoto [22]) to the problem

∂
α1
t u(t) = −Au(t) + F, 0 < t < T, (2.5)

u(0) = a. (2.6)

This solution is given by

u(t) =
∫ t

0
A−1S′(t − τ)F (τ)dτ + S(t)a, t > 0. (2.7)

In view of (2.7), we mainly discuss the equation

u(t) = S(t)a −
∫ t

0
A−1S′(t − τ)q∂

α2
t u(τ )dτ, 0 < t < T, (2.8)

in order to establish unique existence of solutions to (2.1). Henceforth C denotes
generic positive constants which are independent of a in (1.2), but may depend on
T , α1, α2 and the coefficients of the operator A and q .

We can state our first main result.
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Theorem 1 We assume that u ∈ C((0, T ];L2(Ω)) satisfies (2.8) and

α1 + α2 > 1.

Then ∥∥u(t)
∥∥

H 2γ (Ω)
≤ Ct−α1γ ‖a‖L2(Ω), 0 < t ≤ T

for any γ ∈ (0,1).

We may be able to remove the condition α1 + α2 > 1. On the other hand,
Prüss established regularity in case γ = 1 for general α1, α2 ∈ (0,1) under a
strong condition on a ∈ D(A) (see [21], in particular the perturbation theorem on
p. 60).

On the basis of Theorem 1, a standard argument (e.g., Henry [9]) yields

Theorem 2 For any γ ∈ (0,1) there exists a mild solution to (2.8) in the space
C((0, T ];D(Aγ )) ∩ C([0, T ];L2(Ω)).

3 Proof of Theorem 1

First we have

Aγ−1S′(t)a = −tα1−1
∞∑

n=1

λ
γ
n (a,φn)Eα1,α1

(−λnt
α1

)
φn in L2(Ω) (3.1)

for a ∈ L2(Ω) and γ ≥ 0. Moreover, since

∣∣Eα1,α1(−η)
∣∣ ≤ C

1 + η
, η > 0

(e.g., Theorem 1.6 on p. 35 in Podlubny [20]), we can prove

∥∥Aγ−1S′(t)
∥∥ ≤ Ctα1−1−α1γ , t > 0 (3.2)

and

∥∥A−1S′′(t)
∥∥ ≤ Ctα1−2, t > 0. (3.3)

Now we proceed to the proof of Theorem 1. We set

v(t) :=
∫ t

0
Aγ−1S′(t − η)q∂

α2
t u(η)dη, 0 < t < T .
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By (2.8), we have

Aγ u(t) = Aγ S(t)a − v(t), 0 < t < T .

Therefore, using

∥∥u(t)
∥∥

H 2γ (Ω)
≤ C

∥∥Aγ u(t)
∥∥

L2(Ω)

(see the beginning of Sect. 2), it is sufficient to estimate ‖Aγ S(t)a‖L2(Ω) +
‖v(t)‖L2(Ω). First we will estimate ‖v(t)‖L2(Ω). Substituting the definition of ∂

α2
t u

and changing the order of integration, we have

v(t) =
∫ t

0
Aγ−1S′(t − η)

1

�(1 − α2)

(∫ η

0
(η − τ)−α2qu′(τ )dτ

)
dη

= 1

�(1 − α2)

∫ t

0
H(t, τ )qu′(τ )dτ, 0 < t < T . (3.4)

Here we have set

H(t, τ ) =
∫ t

τ

Aγ−1S′(t − η)(η − τ)−α2dη.

Decomposing the integrand and introducing the change of variables η − τ → η we
obtain

H(t, τ ) =
∫ t

τ

Aγ−1S′(t − η)(η − τ)−α2dη

=
∫ t

τ

Aγ−1S′(t − η)
[
(η − τ)−α2 − (t − τ)−α2

]
dη

+
∫ t

τ

Aγ−1S′(t − η)dη(t − τ)−α2

=
∫ t−τ

0
Aγ−1S′(t − η − τ)

[
η−α2 − (t − τ)−α2

]
dη

+
∫ t

τ

Aγ−1S′(t − η)dη(t − τ)−α2

=
∫ t−τ

0
Aγ−1S′(t − η − τ)

[
η−α2 − (t − τ)−α2

]
dη

+ Aγ−1S(0)(t − τ)−α2 − Aγ−1S(t − τ)(t − τ)−α2

:= I1(t, τ ) + I2(t, τ ). (3.5)
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On the other hand, we have

∂τ I1(t, τ ) = −
∫ t−τ

0
Aγ−1S′′(t − η − τ)

(
η−α2 − (t − τ)−α2

)
dη

− α2

∫ t−τ

0
Aγ−1S′(t − η − τ)(t − τ)−α2−1dη

− lim
η→t−τ

Aγ−1S′(t − τ − η)
[
η−α2 − (t − τ)−α2

]
.

By the estimate (3.2) we obtain
∥∥Aγ−1S′(t − τ − η)

(
η−α2 − (t − τ)−α2

)∥∥
L2(Ω)

≤ C(t − τ − η)α1−1−α1γ
|(t − τ)α2 − ηα2 |

ηα2(t − τ)α2
.

According to the mean value theorem, we can choose θ ∈ (η, t − τ) such that
∣∣(t − τ)α2 − ηα2

∣∣ = ∣∣α2θ
α2−1(t − τ − η)

∣∣ ≤ α2η
α2−1(t − τ − η).

Hence we obtain
∥∥Aγ−1S′(t − τ − η)

(
η−α2 − (t − τ)−α2

)∥∥
L2(Ω)

≤ Cα2η
−1(t − τ)−α2(t − τ − η)α1−α1γ −→ 0 as η → t − τ

by α1 − α1γ > 0. This implies

∂τ I1(t, τ ) = −
∫ t−τ

0
Aγ−1S′′(t − η − τ)

(
η−α2 − (t − τ)−α2

)
dη

− α2

∫ t−τ

0
Aγ−1S′(t − η − τ)(t − τ)−α2−1dη, 0 < t < T . (3.6)

On the other hand, we have

∂τ I2(t, τ ) = −α2A
γ−1S(t − τ)(t − τ)−α2−1 + Aγ−1S(0)α2(t − τ)−α2−1

+ Aγ−1S′(t − τ)(t − τ)−α2

= α2

∫ t−τ

0
Aγ−1S′(t − η − τ)(t − τ)−α2−1dη

+ Aγ−1S′(t − τ)(t − τ)−α2 .

Adding this and (3.6) we obtain

∂τH(t, τ ) = −
∫ t−τ

0
Aγ−1S′′(t − η − τ)

(
η−α2 − (t − τ)−α2

)
dη

+ Aγ−1S′(t − τ)(t − τ)−α2 . (3.7)
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Using (3.7) in (3.4), integrating by parts and using H(t, t) = 0 we obtain

(
�(1 − α2)

)
v(t) =

∫ t

0
H(t, τ )qu′(τ )dτ

= −H(t,0)qa

+
∫ t

0

[∫ t−τ

0
Aγ−1S′′(t − η − τ)

(
η−α2 − (t − τ)−α2

)
dη

− Aγ−1S′(t − τ)(t − τ)−α2

]
qu(τ)dτ

:= I3(t) + I4(t).

We set

B(α,β) = �(α)�(β)

�(α + β)
, α,β > 0.

First, by (3.2) and q ∈ W 2,∞(Ω) we have

∥∥I3(t)
∥∥

L2(Ω)
= ∥∥−H(t,0)qa

∥∥
L2(Ω)

=
∥∥∥∥−

∫ t

0
Aγ−1S′(t − η)η−α2dηqa

∥∥∥∥
L2(Ω)

≤ C‖a‖L2(Ω)

∫ t

0
(t − η)α1−α1γ−1η−α2dη

= C‖a‖L2(Ω)B(1 − α2, α1 − α1γ )tα1−α1γ−α2 , (3.8)

since 1 − α2 > 0 and α1 − α1γ > 0.
On the other hand, by q ∈ W 2,∞(Ω) and u|∂Ω = 0, we have
∥∥A

(
qu(τ)

)∥∥
L2(Ω)

≤ C
∥∥qu(τ)

∥∥
H 2(Ω)

≤ C
∥∥u(τ)

∥∥
H 2(Ω)

≤ C
∥∥Au(τ)

∥∥
L2(Ω)

and ‖qu(τ)‖L2(Ω) ≤ C‖u(τ)‖L2(Ω), that is,

∥∥A0(qu(τ)
)∥∥

L2(Ω)
≤ C

∥∥A0u(τ)
∥∥

L2(Ω)
.

Hence the interpolation theorem (see for instance Lions and Magenes [11], Theo-
rem 5.1 on p. 27) we obtain

∥∥Aγ
(
qu(τ)

)∥∥
L2(Ω)

≤ C
∥∥Aγ u(τ)

∥∥
L2(Ω)

.

Therefore by (3.2) and (3.3), the second term of I4(t) can be estimated as follows:

∥∥I4(t)
∥∥

L2(Ω)
≤ C

∫ t

0

[∫ t−τ

0
(t − η − τ)α1−2(η−α2 − (t − τ)−α2

)
dη

+ (t − τ)α1−1−α2

]∥∥Aγ
(
qu(τ)

)∥∥
L2(Ω)

dτ
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≤ C

∫ t

0

[∫ t−τ

0
(t − η − τ)α1−2 (t − τ − η)α2

ηα2(t − τ)α2
dη

+ (t − τ)α1−1−α2

]∥∥Aγ u(τ)
∥∥

L2(Ω)
dτ

≤ C

∫ t

0

[∫ t−τ

0
(t − η − τ)α1+α2−2η−α2dη

+ (t − τ)α1−1−α2

]∥∥Aγ u(τ)
∥∥

L2(Ω)
dτ

= C

∫ t

0

(
B(1 − α2, α1 + α2 − 1)(t − τ)α1−1

+ (t − τ)α1−1−α2
)∥∥Aγ u(τ)

∥∥
L2(Ω)

dτ.

For the last equality, we used α1 + α2 > 1. Therefore we have
∥∥�(1 − α2)v(t)

∥∥
L2(Ω)

≤ C‖a‖2
L2(Ω)

B(1 − α2, α1 − α1γ )tα1−α1γ−α2

+ C

∫ t

0
(t − τ)α1−1−α2

∥∥Aγ u(τ)
∥∥

L2(Ω)
dτ.

Thus the estimate of ‖v(t)‖L2(Ω) is completed.
Next we estimate ‖Aγ S(t)a‖L2(Ω). By Theorem 1.6 (p. 35) in [20], we obtain

∥∥Aγ S(t)a
∥∥2

L2(Ω)
=

∥∥∥∥∥
∞∑

n=1

(a,φn)λ
γ
nEα1,1

(−λnt
α1

)
φn

∥∥∥∥∥
2

L2(Ω)

≤ C

∞∑
n=1

(a,φn)
2t−2α1γ

(
(λnt

α1)γ

1 + λntα1

)2

≤ Ct−2α1γ ‖a‖2
L2(Ω)

,

and hence
∥∥Aγ u(t)

∥∥
L2(Ω)

≤ C‖a‖L2(Ω)

(
t−α1γ + tα1−α1γ−α2

)

+ C

∫ t

0
(t − τ)α1−1−α2

∥∥Aγ u(τ)
∥∥

L2(Ω)
dτ

≤ C‖a‖L2(Ω)t
−α1γ + C

∫ t

0
(t − τ)α1−1−α2

∥∥Aγ u(τ)
∥∥

L2(Ω)
dτ,

0 < t < T .

Therefore by an inequality of Gronwall type (see [9], Exercise 3 (p. 190)), we obtain
∥∥Aγ u(t)

∥∥
L2(Ω)

≤ C‖a‖L2(Ω)t
−α1γ , 0 < t ≤ T .

Thus the proof is completed.
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4 Generalization

The results in Sect. 3 shall now be extended to the solution of linear diffusion equa-
tion with multiple fractional time derivatives:

∂
α1
t u(t) +

�∑
j=2

qj ∂
αj

t u(t) = −Au(t), t > 0

and

u(0) = a ∈ L2(Ω),

where 0 < α� < · · · < α2 < α1 < 1 and qj ∈ W 2,∞(Ω), 2 ≤ j ≤ �.
As before the lower-order derivatives are regarded as source terms and we con-

sider

u(t) = S(t)a −
∫ t

0
A−1S′(t − τ)

�∑
j=2

qj ∂
αj

t u(τ )dτ, 0 < t < T . (4.1)

Similarly to Theorem 1, we can prove

Theorem 3 We assume that u ∈ C((0, T ];L2(Ω)) satisfies (4.1) and

0 < α� < · · · < α1, α1 + α� > 1.

Then ∥∥u(t)
∥∥

H 2γ (Ω)
≤ Ct−α1γ ‖a‖L2(Ω), 0 < t ≤ T

for any γ ∈ (0,1). Moreover there exists a mild solution to (4.1) in the space
C((0, T ];D(Aγ )) ∩ C([0, T ];L2(Ω)) with γ ∈ (0,1).
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