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Preface

The articles contained in this volume had their genesis in presentations given at
the International Workshop on Control and Optimization of PDEs, held at the Bil-
dungshaus Mariatrost from October 10 to 14, 2011. These contributions, made by
internationally well-known researchers in applied mathematics, cover a wide vari-
ety of topics in PDE-constrained optimization and control such as multiscale and
stochastic problems, model reduction and domain decomposition, control of wave
equations, delay systems, and nonsmooth problems. The applications considered
range from control of quantum systems over diffusion in porous media to calibra-
tion of option pricing models.

Control and optimization of PDE:s is an active field, with research increasingly
going beyond standard settings and approaches. Let us mention just a few examples.
Model reduction, which has been very successful for linear elliptic and parabolic
problems, is now extended to hyperbolic and to nonlinear problems. Similarly, tech-
niques from control of dynamical systems and nonlinear optimization are being ap-
plied to optimal control problems for PDEs. Another area of increasing activity is
concerned with optimal control problems in Banach or even metric spaces (such
as the space L? for 0 < p < 1) rather than the standard Hilbert spaces, leading to
the development of novel approaches and opening new applications such as sparsity
constraints.

The workshop was successful in bringing together researchers working at the
forefront of their respective fields, from theoretical analysis to numerical realization
and applications, which frequently do not have strong interactions. Consequently,
this book addresses researchers in all areas of control and optimization of systems
governed by differential equations.

The editors express their gratitude to the contributors of this volume as well as
to Birkhduser/Springer Basel for publishing it. Financial support of the European
Science Foundation within the framework “Optimization with PDE constraints”, the
Austrian Science Fund (FWF) under grant F32 (SFB “Mathematical Optimization
and Applications in Biomedical Sciences”), Karl-Franzens-University of Graz and
the government of Styria is gratefully acknowledged.

Graz, Austria C. Clason
Graz, Austria K. Kunisch
\'
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An Adaptive POD Approximation Method
for the Control of Advection-Diffusion
Equations

Alessandro Alla and Maurizio Falcone

Abstract We present an algorithm for the approximation of a finite horizon optimal
control problem for advection-diffusion equations. The method is based on the cou-
pling between an adaptive POD representation of the solution and a Dynamic Pro-
gramming approximation scheme for the corresponding evolutive Hamilton—Jacobi
equation. We discuss several features regarding the adaptivity of the method, the
role of error estimate indicators to choose a time subdivision of the problem and the
computation of the basis functions. Some test problems are presented to illustrate
the method.

Keywords Optimal Control - Proper orthogonal decomposition - Hamilton—Jacobi
equations - Advection-diffusion equations

Mathematics Subject Classification (2010) Primary 49J20 - 49120 -
Secondary 49M25

1 Introduction

The approximation of optimal control problems for evolutionary partial differential
equations of parabolic and hyperbolic type is a very challenging topic with a strong
impact on industrial applications. Although there is a large number of papers dealing
with several aspects of control problems from controllability to optimal control, the
literature dealing with the numerical approximation of such huge problems is rather
limited. It is worth to note that when dealing with optimal control problems for
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2 A. Alla and M. Falcone

parabolic equations we can exploit the regularity of the solutions, regularity which
is lacking for many hyperbolic equations. We also recall that the main tools is still
given by the Pontryagin maximum principle (see e.g. [14]). This is mainly due to the
fact that the discretization of partial differential equations already involves a large
number of variables so that the resulting finite dimensional optimization problem
easily reaches the limits of what one can really compute. The forward-backward
system which describes Pontryagin’s optimality condition is certainly below that
limit. However just solving that system one is using necessary conditions for op-
timality so, in principle, there is no guarantee that these are optimal controls. By
this approach for general nonlinear control problems we can obtain just open-loop
control. One notable exception is the linear quadratic regulator problem for which
we have a closed-loop solution given by the Riccati equation. This explains why the
most popular example for the control of evolutive partial differential equations is
the control of the heat equation subject to a quadratic cost functional.

In recent years, new tools have been developed to deal with optimal control
problems in infinite dimension. In particular, new techniques emerged to reduce
the number of dimensions in the description of the dynamical system or, more in
general, of the solution of the problem that one is trying to optimize. These meth-
ods are generally called reduced-order methods and include for example the POD
(Proper Orthogonal Decomposition) method and reduced basis approximation (see
[12]). The general idea for all this method is that, when the solution are sufficiently
regular, one can represent them via Galerkin expansion so that the number of vari-
ables involved in this discretization will be strongly reduced. In some particular
case, as for the heat equation, even 5 basis functions will suffice to have a rather
accurate POD representation of the solution. Having this in mind, it is reasonable
to start thinking to a different approach based on Dynamic Programming (DP) and
Hamilton—Jacobi-Bellman equations (HJB). In this new approach we will first de-
velop a reduced basis representation of the solution along a reference trajectory and
then use this basis to set-up a control problem in the new space of coordinates. The
corresponding Hamilton—Jacobi equation will just need 3-5 variables to represent
the state of the system. Moreover, by this method one can obtain optimal control in
feedback form looking at the gradient of the value function.

However, the solution of HIB equation is not an easy task from the numerical
point of view: the analytical solution of the HIB equation is non regular (typically,
just Lipschitz continuous). Optimal control problems for ODEs were solved by Dy-
namic Programming, both analytically and numerically (see [1] for a general pre-
sentation of this theory). From the numerical point of view, this approach has been
developed for many classical control problems obtaining convergence results and a-
priori error estimates ([4, 6] and the book [5]). Although this approach suffers from
the curse-of-dimensionality, some algorithms in high-dimension are now available
([3] and [2]), and the coupling with POD representation techniques will allow to
attack by this technique optimal control problems in infinite dimension.

To set this paper into perspective we must say that a first tentative step in this
direction has been made by Kunisch and co-authors in a series of papers [7, 8] for
diffusion dominated equations. In particular, in the paper by Kunisch, Volkwein and
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Xie [10, 11] one can see a feedback control approach based on coupling between
POD basis approximation and HIB equations for the viscous Burgers’ equation.
Our contribution here is twofold. The first novelty is that we deal with advection-
diffusion equations. The solutions to these equations exhibit low regularity proper-
ties with respect to non degenerate diffusion equations so that a rather large number
of POD basis functions will be required to obtain a good approximation if we want
to compute the POD basis just once. Naturally, this increases the number of vari-
ables in the HIJB approach and constitutes a real bottle-neck. In order to apply the
Dynamic Programming approach to this problem we have developed an adaptive
technique which allows to recompute the POD basis on different sub-intervals in
order to have always accurate results without an increase of the number of basis
functions. The second contribution of this paper is the way the sub-intervals are de-
termined. In fact, we do not use a simple uniform subdivision but rather decide to
recompute the POD basis when an error indicator (detailed in Sect. 4) is beyond a
given threshold. As we will show in the sequel, this procedure seems to be rather
efficient and accurate to deal with these large scale problems.

2 The POD Approximation Method for Evolutive PDEs

We briefly describe some important features of the POD approximation, more de-
tails as well as precise results can be found in the notes by Volkwein [15]. Let us
consider a matrix Y € R™*", with rank d < min{m, n}. We will call y ; the jth col-
umn of the matrix Y. We are looking for an orthonormal basis {1//,-}?': | € R™ with
£ < n such that the minimum of the following functional is reached:

¢ 2

Yi— > Ay v

i=1

n

T,y =)

j=1

2.1)

The solution of this minimization problem is given in the following theorem

Theorem 1 Let Y = [y1,...,yn] € R™*" be a given matrix with rank d <
min{m, n}. Further, let Y = W XVT be the Singular Value Decomposition (SVD)
of Y, where W = [Yr1, ..., ¥p] € RV =vy,...,v,] € R"*" are orthogonal
matrices and the matrix X € R™*" is diagonal, ¥ = diag{o, ..., 0, }. Then, for
any £ € {1,...,d} the solution to (2.1) is given by the left singular vectors {I/Ii}le,
i.e, by the first £ columns of ¥.

We will call the vectors {; }f: | POD basis of rank £.

This idea is really useful, in fact we get a solution solving an equation whose
dimension is decreased with respect to the initial one. Whenever it’s possible to
compute a POD basis of rank ¢, we get a problem with much smaller dimension of
the starting one due to the fact £ is properly chosen very small.
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Let us consider the following ODESs system

{ﬂn=Aww+f@J@n,semﬂm 22

¥(0) = yo,

where yg € R™, A e R™*™ and f : [0, T] x R™ — R™ is continuous and locally
Lipschitz to ensure uniqueness.

The system (2.2) can also be interpreted as a semidiscrete problem, where the
matrix A represents the discretization in space of an elliptic operator, for instance
the Laplacian. To compute the POD basis functions, first of all we have to construct
atime grid 0 <#; <-.- <1, =T and we suppose to know the solution of (2.2) at
giventime ¢j, j = 1,..., N. We call snapshots the solution at those fixed times. For
the moment we will not deal with the problem of selecting the snapshots sequence
which is a difficult problem in itself; we refer the interested readers to [9]. As soon
as we get the snapshots sequence, by Theorem 1, we will be able to compute our
POD basis, namely, {wj}f.zl.

Let us suppose we can write the solution in reduced form as

14

l
Y =)y =) (), v, Vselo,T.

j=1 j=1

Substituting this formula into (2.2) we obtain the reduced dynamics

¢ [
> yf(s)lﬂj =2 Yf(s)Al/fj + f(s,¥%(s)), s€(0,TI,
Jj=1 j=1
¢ (2.3)
2ﬁ@%=m
Jj=

We note that our new problem (2.3) is a problem for the £ < m coefficient func-
tions yf (s), j =1,...,£. Thus, the problem is low dimensional and with compact
notation we get:

Yi(s) = Alyt(s) + F (s, y4(9)),
y40) = y§,
where

AL e R™Y with (AZ)U = (AYi, ¥;),
l
Y1

ye=1|: |:10,71> R

F=(F,....,F)T:[0,T] x Rt > R,
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4
— _ 4
Fi(s,y) = <f<s, Zij,), wi> fors €[0,T], y=(y1,...y0) €eR".
j=1

Finally, we obtain the representation of yg in R

(0, ¥1)
yg = : e R’
(0, ¥e)

In order to apply the POD method to our optimal control problem, the number ¢
of POD basis functions is crucial. In particular we would like to keep £ as low as
possible still capturing the behavior of the original dynamics. The problem is to
define an indicator of the accuracy of our POD approximation. A good choice for
this indicator is the following ratio

Zf: 10i
Z?:l Oi

where the o; are the singular value obtained by the SVD.

As much £(£) is close to one as much our approximation will be improved. This
is strictly related to the truncation error due to the projection of y; onto the space
generated by the orthonormal basis {t/f}le, in fact:

EW) = , (2.4)

n 14 2 d
T o)=Y |y =Y i = Y o
j=1 i=1 i=+1

3 An Optimal Control Problem

We will present this approach for the finite horizon control problem. Consider the
controlled system

{y'(S)=f(y(S),u(S),S), seT], G.1)

y()=x e R",

we will denote by y : [¢, T] — R” its solution, by u the control u : [¢t, T] — R™,
[ :R"xR™ — R", s € (¢t, T] and by

U={u:[0,T]— U}

the set of admissible controls where U C R™ is a compact set. Whenever we want to
emphasize the dependence of the solution from the control u we will write y(¢; u).
Assume that there exists a unique solution trajectory for (3.1) provided the controls



6 A. Alla and M. Falcone

are measurable (a precise statement can be found in [1]). For the finite horizon
optimal control problem the cost functional will be given by

T
min /o0 = [ LOGw.ue).s)e M ds+g(@)  G2)
ue t

where L : R" x R™ — R is the running cost and A > 0 is the discount factor.

The goal is to find a state-feedback control law u(t) = @ (y(¢), t), in terms of the
state equation y(t), where @ is the feedback map. To derive optimality conditions
we use the well-known dynamic programming principle due to Bellman (see [1]).
We first define the value function

v(x,t) = inf Jy ;(u). (3.3)
ueld
Proposition 3.1 (DPP) Forall x e R" and 0 < t <t, we have
T
v(x,t) = ml&l{/ L(y(s), u(s), s)e_“ ds+v(y, t — r)}. (3.4)
IAS t
Due to (3.4) we can derive the Hamilton—Jacobi-Bellman equations (HIB):

0
—=- (v = min{L(y,u.0) + Vo0 - £ a0}, (3.5)

This is nonlinear partial differential equation of the first order which is hard to solve
analytically although a general theory of weak solutions is available [1]. Rather
we can solve it numerically by means of a finite differences or semi-Lagrangian
schemes (see the book [5] for a comprehensive analysis of approximation schemes
for Hamilton—Jacobi equations). For a semi-Lagrangian discretization one starts by
a discrete version of (HIB) by discretizing the underlined control problem and then
project the semi-discrete scheme on a grid obtaining the fully discrete scheme

{ vl'.”] = milr]l[At L(x;,nAt,u) + I[v”](x,- + At F(x;, t,, u))],
ue
v = g(x)

with x; =iAx, t, =nAt, v :==v(x;,t,) and I[-] is an interpolation operator which
is necessary to compute the value of v" at the point x; + At F(x;, t,, u) (in general,
this point will not be a node of the grid). The interested reader will find in [6] a
detailed presentation of the scheme and a priori error estimates for its numerical
approximation.

Note that, we also need to compute the minimum in order to get the value v}’ +
Since v" is not a smooth function, we compute the minimum by means of a min-
imization method which does not use derivatives (this can be done by the Brent
algorithm as in [3]).

As we already noted, the HJB allows to compute the optimal feedback via the
value function, but there are two major difficulties: the solution of an HIB equation
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are in general non-smooth and the approximation in high dimension is not feasible.
The request to solve an HIB in high dimension comes up naturally whenever we
want to control evolutive PDEs. Just to give an idea, if we build a grid in [0, 1] X
[0, 1] with a discrete step Ax = 0.01 we have 10* nodes: to solve an HJB in that
dimension is simply impossible. Fortunately, the POD method allows us to obtain
reduced models even for complex dynamics. Let us focus on the following abstract
problem:

d
0@, 0)y +a(y).0) =(Bu).9))yy YeeV,
y®) =y € H,

(3.6)

where B : U — V'’ is a linear and continuous operator. We assume that a space of
admissible controls U,y is given in such a way that for each u € U4 and yo € H
there exists a unique solution y of (3.6). V and H are two Hilbert spaces, with
(-, -)g we denote the scalar product in H; a : V x V — R: is symmetric coercive
and bilinear. Then, we introduce the cost functional of the finite horizon problem

T
Ty, W) := f L(y(s),u(s), s)e* ds + g(y(T)),
t

where L : V x U x [0, T] — R. The optimal control problem is

35, s

3.7

subjectto  y € Wi, (0, T; V) xU solves (3.6)
with Wipe (0, T) = (oo W(0, T), where W (0, T) is the standard Sobolev space

W(O,T)=1{p e L*(0,T;V),¢, € L*(0,T; V') }.

The model reduction approach for an optimal control problem (3.7) is based on
the Galerkin approximation of dynamic with some information on the controlled
dynamic (snapshots). To compute a POD solution for (3.7) we make the following
ansatz

4
Yo )= wi(s)vi (x), (3.8)
i=1

where {w}f=1 is the POD basis computed as in the previous section.
We introduce mass and stiffness matrices:

M = (m;j) e R™C withmij = (¥}, ¥i)m,
S =(sij) € R withmij =a(¥, ¥i),
and the control map b : U — R is defined by:

u— bu)= (b)) e R  with b(u); = (Bu, %)
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The coefficients of the initial condition y*(0) € R are determined by w;(0) =
(wo)i = (yo, ¥)x, 1 <i <¥, and the solution of the reduced dynamic problem is
denoted by w(s) € R¢. Then, the Galerkin approximation is given by

P
min Jwé’t(u) 3.9)

with u € Uyq and w solving

{wf(s) = F(we(s), u(s),s), s >0,

3.10
wt(0) = wg. ( )

The cost functional is defined as
¢ r ¢ ¢
Jwgyt(u) = /0 L(w (s), u(s), s)e_)“Y dt + g(w (T)),

with w® and y* linked to (3.8) and the nonlinear map F : R® x U — R’ is given by
F(wl, u, s) =M} (—Swe(s) + b(u(s))).
The value function v, defined for the initial state wo € RE, is

4 b4 : 4
vi(wg,t) = inf J u)
( 0 ) uEZ/[ad wg’t(

and w' solves (3.9) with the control « and initial condition wy.

We give an idea how we have computed the intervals for reduced HIB. HIBs are
defined in R”, but we have restricted our numerical domain 7}, which is a bounded
subset of R”. This is justified since y+ At F(y,u) € 1}, foreach y € T, and u € Uy,.
We can chose 1, = [a1, b1] X [az, by] x --- X [a¢, bg] witha; > ap > --- > ay. How
should we compute these intervals [a;, b;]?

Ideally the intervals should be chosen so that the dynamics contains all the com-
ponents of the controlled trajectory. Moreover, they should be encapsulated because
we expect that their importance should decrease monotonically with their index and
that our interval lengths decrease quickly.

Let us suppose to discretize the space control U = {uy,...,upy} where U is
symmetric, to be more precise if # € U = —u € U. Hence, if

14
OEDRNORATES Zw, )i,

i=1

as a consequence, the coefficients w; (s) € [a;, b;]. We consider the trajectories so-
lution y(s, u ;) such that the control is constant u(s) = u; foreacht;, j=1,..., M.
Then, we have

14

Yols,up) =Y (vls,u)), vivi.

i=1
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We write y¢(s, u j) to stress the dependence on the constant control u ;. Each tra-

jectory yz(s, u ;) has some coefficients wl.(j)(t) fori=1,...,¢,j=1,..., M. The
)

coefficients wf'/ )(s) will belong to intervals of the type [w; ,Wt(:" )] where we chose

fori=1,...,¢,a;, b; such that:

a; = min{ygl), A EEM)},

Mgy,

b; = maX{W ;

Then, we have a method to compute the intervals and we turn our attention to the
numerical solution of an optimal control problem for the evolutive equation, as we
will see in the following section.

4 Adapting POD Approximation

We now present an adaptive method to compute a POD basis. Since our final goal is
to obtain the optimal feedback law by means of HIB equations, we will have a big
constraint on the number of variables in the state space for numerical solution of an
HIB.

We will see that, for a parabolic equation, one can try to solve the problem with
only three/four POD basis functions; they are enough to describe the solution in a
rather accurate way. In fact the singular values decay pretty soon and it’s easier to
work with a really low-rank dimensional problem.

On the contrary, hyperbolic equations do not have this nice property for their
singular values and they will require a rather large set of POD basis functions to
get accurate results. Note that we can not follow the approach suggested in [13]
because we can not add more basis functions when it turns to be necessary due to
the constraint already mentioned. Then, it is quite natural to split the problem into
subproblems having different POD basis functions. The crucial point is to decide
the splitting in order to have the same number of basis functions in each subdomain
with a guaranteed accuracy in the approximation.

Let us first give an illustrative example for the parabolic case, considering a 1D
advection-diffusion equation:

Vs(x,8) — €yxx (x,8) + cye(x,5) =0,

4.1
y(x,0) = yo(x),
with x € [a,b], s €[0,T], &, c e R.

We use a finite difference approximation for this equation based on an explicit
Euler method in time combined with the standard centered approximation of the sec-
ond order term and with an up-wind correction for the advection term. The snapshots
will be taken from the sequence generated by the finite difference method. The final
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Fig. 1 Equation (4.1): (a) Solved with finite difference; (b) POD-Galerkin approximation with
3 POD basis; (¢) Solved via POD-Galerkin approximation with 5 POD basis; (d) Adapting 3 POD
basis functions

time is T = 5, moreover a = —1, b = 4. The initial condition is yg(x) = 5x — 5x2,
when 0 < x <1, 0 otherwise.

For ¢ = 0.05 and ¢ = 1 with only 3 POD basis functions, the approximation fails
(see Fig. 1). Note that in this case the advection is dominating the diffusion, a low
number of POD basis functions will not suffice to get an accurate approximation
(Fig. 1b). However, the adaptive method which only uses 3 POD basis functions
will give accurate results (Fig. 1d).

The idea which is behind the adaptive method is the following: we do not con-
sider all the snapshots together in the whole interval [0, T'] but we group them.
Instead of taking into account the whole interval [0, T'], we prefer to split it in sub-
intervals

K
[0, 71 = (I Tx. Tuy1],
k=0
where K is a-priori unknown, 7o =0, Tx = T and T = ¢; for some i. In this way,
choosing properly the length of the kth interval [T}, Tx+1], we consider only the
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snapshots falling in that sub-interval, typically there will be at least three snapshots
in every sub-interval. Then we have enough information in every sub-interval and
we can apply the standard routines (explained in Sect. 2) to get a “local” POD ba-
sis.

Now let us explain how to divide our time interval [0, 7]. We will choose a
parameter to check the accuracy of the POD approximation and define a threshold.
Above that threshold we loose in accuracy and we need to compute a new POD
basis. A good parameter to check the accuracy is £(£) (see (2.4)), as it was suggested
by several authors. The method to define the splitting of [0, 7] and the size of every
sub-interval works as follows. We start computing the SVD of the matrix Y that
gives us information about our dynamics in the whole time interval. We check the
accuracy at every f;, i = 1,... N, and if at #; the indicator is above the tolerance
we set 71 = t; and we divide the interval in two parts, [0, 7T7) and (77, T]. Now we
just consider the snapshots related the solution up to the time 77. Then we iterate
this idea until the indicator is below the threshold. When the first interval is found,
we restart the procedure in the interval [77, T'] and we stop when we reach the final
time 7'. Note that the extrema of every interval coincide by construction with one of
our discrete times #; = i At so that the global solution is easily obtained linking all
the sub-problems which always have a snapshot as initial condition. A low value for
the threshold will also guarantee that we will not have big jumps passing from one
sub-interval to the next.

This idea can be applied also when we have a controlled dynamic (see (5.1)).
First of all we have to decide how to collect the snapshots, since the control u(¢)
is completely unknown. One can make a guess and use the dynamics and the func-
tional corresponding to that guess, by these information we can compute the POD
basis. Once the POD basis is obtained we will get the optimal feedback law after
having solved a reduced HIB equation as we already explained. Let us summarize
the method in the following step-by-step presentation.

Algorithm
Start: Initialization
Step 1: collect the snapshots in [0, T]
Step 2: divide [0, T] according to £(¥)
For i=0 to N-1
Do
Step 3: apply SVD to get the POD basis in each
sub-interval [f, ti+1]
Step 4: discretize the space of controls
StepS: project the dynamics onto the (reduced) POD space
Step 6: select the intervals for the POD reduced
variables
Step 7: solve the corresponding HJB in the reduced space
for the interval [f,ti+1]
Step 8: go back to the original coordinate space
End
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5 Numerical Experiments

In this section we present some numerical tests for the controlled heat equation and

for the advection-diffusion equation with a quadratic cost functional. Consider the

following advection-diffusion equation:

{ys(x,S)—Syxx(x,S)+ny(x,S)=u(S), 5.1)
y(x,0) = yo(x), '

with x € [a, b], s € [0, T], ¢ € Ry and ¢ € R. Note that changing the parameters ¢
and ¢ we can obtain the heat equation (¢ = 0) and the advection equation (¢ = 0).
The functional to be minimized is

T
T (1)) =/0 |y, s) = 5, 9| + R|uts) | ds, (5.2)

i.e., we want to stay close to a reference trajectory y while minimizing the norm
of u. Note that we dropped the discount factor setting A = 0. Typically in our test
problems ¥ is obtained by applying a particular control & to the dynamics. The
numerical simulations reported in this paper have been made on a server SUPER-
MICRO 8045C-3RB with 2 cpu Intel Xeon Quad-Core 2.4 Ghz and 32 GB RAM
under SLURM (https://computing.llnl.gov/linux/slurm/).

Test 1: Heat Equation with Smooth Initial Data We compute the snapshots
with a centered/forward Euler scheme with space step Ax = 0.02, and time step
At =0.012, e =1/60, c =0, R =0.01 and T = 5. The initial condition is
yo(x) = 5x — 5x2, and y(x,s) = 0. In Fig. 2 we compare four different approx-
imations concerning the heat equation: (a) is the solution for #(r) = 0, (b) is its
approximation via POD (non adaptive), (c) is the direct LQR solution computed
by MATLAB without POD and, finally, the approximate optimal solution obtained
coupling POD and HJB. The approximate value function is computed for Ar = 0.1
Ax = 0.1 whereas the optimal trajectory as been obtained with At = 0.01. Test 1,
and even Test 2, have been solved in about half an hour of CPU time.

Note that in this example the approximate solution is rather accurate because the
regularity of the solution is high due to the diffusion term. Since in the limit the
solution tends to the average value the choice of the snapshots will not affect too
much the solution, i.e. even with a rough choice of the snapshots will give us a good
approximation. The difference between Figs. 2c and 2d is due to the fact that the
control space is continuous for Fig. 2c and discrete for Fig. 2d.

Test 2: Heat Equation with No-smooth Initial Data In this section we change
the initial condition with a function which is only Lipschitz continuous: yo(x) =
1 — |x]|. According to Test 1, we consider the same parameters (see Fig. 3). Riccati’s
equation has been solved by a MATLAB LQR routine. Thus, we have used the
solution given by this routine as the correct solution in order to compare the errors
in L' and L? norm between the reduced Riccati’s equation and our approach based
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Fig. 2 Test 1: (a) Heat equation without control; (b) Heat equation without control, 3 POD ba-
sis approximation; (¢) Controlled solution with LQR-MATLAB; (d) Approximate solution POD
(3 basis functions) + HIB

on the reduced HJB equation. Since we do not have any information, the snapshots
are computed for z = 0. This is only a guess, but in the parabolic case fits well due
to the diffusion term.

As in Test 1, the choice of the snapshots does not effect strongly the approxi-
mation due to the asymptotic behavior of the solution. The presence of a Lipschitz
continuous initial condition has almost no influence on the global error (see Table 1).

Test 3: Advection-Diffusion Equation The advection-diffusion equation needs
a different method. We can not use the same y we had in the parabolic case, mainly
because in Riccati’s equation the control is free and is not bounded, on the contrary
when we solve an HIB we have to discretize the space of controls. We modified the
problem in order to deal with bang-bang controls. We get ¥ in (5.2) just plugging
in the control # = 0. We have considered the control space corresponding only to
three values in [—1, 1], then U = {—1, 0, 1}. We first have tried to get a controlled
solution, without any adaptive method and, as expected, we obtained a bad approx-
imation (see Fig. 4).
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Fig. 3 Test 2: (a) Exact solution for & = 0; (b) Exact solution for i = 0 POD (3 basis functions);
(c) Approximate optimal solution for LQR-MATLAB; (d) Approximate solution POD (3 basis
functions) + HJB

Table 1 Test2: L' and L2

1 2
errors at time 7' for the L L
optimal approximate solution
P PP yLOR _ POD+LOR 0.0221 0.0172
yLQR _ POD+HJB 0.0204 0.0171

From Fig. 4 it’s clear that POD with four basis functions is not able to catch the
behavior of the dynamics, so we have applied our adaptive method.

We have consider: 7 =3, Ax =0.1, At =0.008, a = —1, b=4, R =0.01.
According to our algorithm, the time interval [0, 3] was divided into [0, 0.744] U
[0.744,1.496] U [1.496, 3]. As we can see our last interval is bigger than the oth-
ers, this is due to the diffusion term (see Fig. 5). The L2-error is 0.0761, and the
computation of the optimal solution via HJB has required about six hours of CPU
time. In Fig. 4 we compare the exact solution with the numerical solution based on a
POD representation. Note that, in this case, the choice of only 4 basis functions for
the whole interval [0, T'] gives a very poor result due to the presence of the advec-
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Fig. 4 Test 3: Solution y on the left, approximate solution on the right with POD (4 basis func-
tions)
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Fig. 5 Test 3: Solution for ii = 0 (left), approximate optimal solution (right)

tion term. Looking at Fig. 5 one can see the improvement of our adaptive technique
which takes always 4 basis functions in each sub-interval.

In order to check the quality of our approximation we have computed the numer-
ical residual, defined as:

RO = [ ys(x,8) = eyea (x,8) +cya(x,5) —u(s)|.

The residual for the solution of the control problem computed without our adap-
tive technique is 1.1, whereas the residual for the adaptive method is 2 - 1072, As
expected from the pictures, there is a big difference between these two value.

Test 4: Advection-Diffusion Equation In this test we take a different y, namely
the solution of (5.1) corresponding to the control

-1 0<r<l1,
ut)=140 1<t<2,
1 2<t<3.

We want to emphasize we can obtain nice results when the space of controls has
few element. The parameters were the same used in Test 3. The L2-error is 0.09,
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Fig. 6 Test 4: Solution for & (left), approximate optimal solution (right)

and the time was the same we had in Test 3. In Fig. 6 we can see our approximation.
In Fig. 6 one can see that the adaptive technique can also deal with discontinuous
controls. In this test, the residual for the solution of the control problem without our
adaptive technique is 2, whereas the residual for the adaptive method is 3 - 1072,
Again, the residual shows the higher accuracy of the adaptive routine.

6 Conclusions

As we have discussed, a reasonable coupling between POD and HJB equation can
produce feedback controls for infinite dimensional problem. For advection domi-
nated equations that simple idea has to be implemented in a clever way to be suc-
cessful. It particular, the application of an adaptive technique is crucial to obtain
accurate approximations with a low number of POD basis functions. This is still
an essential requirement when dealing with the Dynamic Programming approach,
which suffers from the curse-of-dimensionality although recent developments in the
methods used for HIB equations will allow to increase this bound in the next future
(for example by applying patchy techniques).

Another important point is the discretization of the control space. In our exam-
ples, the number of optimal control is rather limited and this will be enough for
problems which have a bang-bang structure for optimal controls. In general, we will
need also an approximation of the control space via reduced basis methods. This
point as well as a more detailed analysis of the procedure outlined in this paper will
be addressed in our future work.
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Differential Equations
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Abstract We present theoretical foundations for traditional sensitivity and general-
ized sensitivity functions for a general class of nonlinear delay differential equa-
tions. Included are theoretical results for sensitivity with respect to the delays.
A brief summary of previous results along with several illustrative computational
examples are also given.
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1 Introduction

Delay differential equations (DDEs) have been used for a number of years to model
biological, physical, and sociological processes, as well as other naturally occur-
ring oscillatory systems. Minorsky [56] in 1942 was among the first to introduce
the idea of hystero-differential equations, using these type of equations to explain
self-excited oscillations arising in dynamic stabilization systems. He proposed [56—
58] that some natural phenomena such as self-oscillations may be effected by the
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previous history of a motion or action as described by a retarded dynamical system.
A retarded dynamical system is a system that describes an action that has delayed
time dependence. The simplest of these physical systems are usually classified into
systems with retarded damping given by

X))+ Kx(t — 1)+ bx(t) =g(1), (1.1)
or those with retarded restoring force described by
X))+ Kx(t) +bx(t —v)=g(1), (1.2)

where g is some external force. Specifically, Minorsky used models such as (1.1)
and (1.2) to study stabilization systems in ships. It is has been well understood for
many years [30] that the infinite degree of the corresponding characteristic equation
for a DDE such as (1.1) or (1.2) allows for an infinite number of eigenvalues for
even a scalar DDE. This can promote dramatically different (from an ordinary dif-
ferential equation) solution behavior such as self-excited oscillations in the solution
[58]. This property of the DDE along with the widespread presence of delays in
many physical and biological systems makes DDEs very important in modeling and
control in these systems. Minorsky also provided insight as to the use of a nonlinear
DDE to model a system with self-excited oscillations, as a linear DDE is unable to
capture all of the properties of the self-excitation. Thus Minorsky lays a foundation
for modeling oscillatory phenomena in general systems.

Another early contributor, Hutchinson [47], in 1948 revealed the importance of
delay systems in biology and ecology. He developed a delay differential equation
model, known as the delay logistic equation, to describe the dynamics of circular
causal systems. A circular causal system is any causal system (one with current
solution values depending only on current or past inputs) where changes to one
part of the system effects another part of the system at a different rate so that the
system does not go extinct. Parasite-host interaction is an example of an ecological
circular causal system; if a parasite can complete its life cycle without killing the
host or drastically altering the growth of the host population, the host population will
continue to exist [47, 52]. The delay in this model can represent various naturally
occurring phenomena such as the gestation period in a growing population, the life
cycle of a parasite, cell cycle delays, etc. Hutchinson’s equation (to be used in the
numerical illustrations below), its variations and other delay systems have also been
used to model physiological control systems as well as numerous other biological
processes [1, 3, 15, 16, 24, 26, 33-36, 3841, 43, 44, 46, 50, 52-55, 61, 62]. This
wide spread use of delay equations in applications has continued since the early
contributions of Minorsky and Hutchinson.

In the 1970’s and 80’s much work was done on foundations of delay systems, in
contributions both theoretical and qualitative [30, 37, 38, 45] as well as computa-
tional (see [4-6, 8, 10-12, 14, 18, 32, 49, 51] and the references therein) in nature. In
some of these early efforts, parameter estimation and control system questions led to
the investigation of traditional sensitivity functions (ISFs) for delay systems. These
TSFs and a more general concept of generalized sensitivity functions (GSFs) are
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the focus of our investigations in this paper. In one early paper [19], Banks, Burns
and Cliff observed difficulty when estimating the delay and they suggested that this
could be due to the fact that solutions of DDEs may not always be differentiable
with respect to the delays; this makes estimation methods such as least squares and
maximum likelihood challenging if derivative-based optimization routines are used.
These authors also suggested the need for a formal theory regarding the existence
of sensitivity functions with respect to the delay. Gibson and Clark [42] and Brewer
[31] were among the first to treat theoretical questions of sensitivity for linear DDEs.
In both contributions, these authors reformulated the delay system (as was done in
the early semigroup approximation efforts of Banks, Burns and Kappel [10-12]) as
an abstract system

z2(t) = A(@)z(t) + Bu(t), >0,
z(0)=z0= (., ¢),

(1.3)

where (1, p) € Z=R" x Ly(—r,0; R"), g € Q and the infinitesimal generator .A(q)
is defined such that

A@)(¢(0), ¢) = (L(9)9, $).
Then givent > 0, S(t; q) : Z — Z is defined such that

S(t; @), ) = (x(t: 9), x:(q))

where S(;q) is a strongly continuous semigroup [59] and x;(§) = x(t + £),
—r < & < 0. By defining strongly continuous solution semigroups, a well-posed
problem can be formulated. While both contributions present conditions under
which solutions are Frechet differentiable with respect to the parameter ¢, in Gib-
son and Clark’s efforts [42] the differentiability results were obtained where the
operator A(g) is required to be represented as a linear combination of an op-
erator A independent of the parameter and a dependent bounded linear opera-
tor A1(q), i.e.,, A(g) = A + Aj(g) with A; bounded. Brewer [31] expands the
results in [42] by considering classes of problems in which the full parameter
dependent operator, A(g), is unbounded. In Brewer’s theory this operator gen-
erates a strongly continuous semigroup, and using semigroup representation re-
sults he is able to prove the existence of Frechet derivatives with respect to the
parameters for the initial value problem (1.3). As a result of the existence of
the Frechet derivatives, he is able to carefully and rigorously define sensitivity
equations with respect to the parameters including the delay for the abstract sys-
tem.

In a more recent report [2], Baker and Rihan formally derive sensitivity equations
for delay differential equation models, as well as the equations for the sensitivity of
parameter estimates with respect to observations (these latter sensitivities are what
we shall discuss below as Generalized Sensitivity Functions (GSFs)). They consider
a general nonlinear system of parameter dependent delay differential equations with
parameter p € R” given by
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x(, p)= f(t,x(t),x(t —-1), p), t>0,
x(t,p)=vy( p), 1=0,

(1.4)

and investigate methods for sensitivity functions with respect to the parameters p
and delay 7.

Baker and Rihan offer an outline on how to numerically compute both TSFs and
GSFs for retarded delay differential equations (as well as for neutral delay differen-
tial equations which are not discussed here in any generality). While their focus is
on computational methods, they also list issues that arise when carrying out param-
eter estimation in DDEs. As we have already noted earlier, these include difficulty
in establishing existence of the derivatives of the solution with respect to the pa-
rameters and the delays, as well as difficulty in establishing well-posedness for the
derived sensitivity equations. Some of these issues are dealt with in a rigorous man-
ner below.

Banks and Bortz [9] were among the first to consider sensitivity with respect to
distributional delays. They used sensitivity analysis to show how changes in dis-
tributed parameters will effect the solutions of their nonlinear delay differential
equation model for HIV progression at the cellular level where intracellular pro-
cessing delays are distributed across cell populations. The models are validated with
what is called aggregate data [8].

When deriving the sensitivity equations Banks and Bortz obtain a system of
DDE:s, which are assumed to be well-posed. In their discussion of well-posedness
for these sensitivity equations they assume the delay distributions are differentiable
and parameterizable by a mean and standard deviation. In [9] they use theoretical
steps (i.e., successive approximations, fixed point theory, Lipschitz continuity, etc.)
employed in [7] to prove existence and uniqueness of the resulting sensitivities and
sensitivity equations. Motivated by the efforts in [9], Banks and Nguyen [17] de-
velop a rigorous theoretical framework for sensitivity functions for general nonlin-
ear dynamical systems in a Banach space X where the parameters p are themselves
members of another Banach space M. In this setting they consider the sensitivity of
solutions x with respect to parameters w in the following type of abstract nonlinear
ordinary differential equations

()= f(t.x(0),n), =10,
(1.5)
x(t9) = xo,

where f: Ry x X x M — X and M and X are complex Banach spaces. They es-
tablish well-posedness for (1.5), and existence of Frechet derivatives of the solution
x(t) with respect to the parameters . As a result, there is a unique solution to the
corresponding sensitivity equation

y() = fu(t, x(t, 10, x0, ), ) y(0) + fu(t, X (2. 10, X0, ), 1), 1 =10
y(to) =0,

(1.6)
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where y(t) = Bgﬁ. In [17] Banks and Nguyen provide rigorous theoretical sensi-
tivity results for the DDE example for HIV dynamics with measure dependent or
distributional parameters given in [9]; however they only present results for the sen-
sitivity with respect to absolutely continuous probability distributions for the delay.
In subsequent efforts [22] a rigorous theoretical foundation is developed for sensi-
tivity theory using directional derivatives where the parameter space M is taken
as the convex metric space of probability measures (including discrete, continuous
or convex combinations thereof) taken with the Prohorov metric topology [8]. Be-
low we give new results for sensitivity with respect to discrete delays. The proofs,
given in [28], while quite tedious, continue with an adaption of the well known ideas
for existence and uniqueness of the Frechet derivative with respect to the delay in
nonlinear DDE as employed in [9, 17, 22]. Very recent efforts, especially in areas
of biology, demonstrate the continuing interest and importance of sensitivity equa-
tions in the sciences. For example Burns, Cliff, and Doughty [33] explain the use of
continuous sensitivity equations for DDE models arising in a model for Chlamydia
Trachomatis, while Kappel [50] discusses generalized sensitivities in dynamics of
threshold-driven infections.

After summarizing recent theoretical results on differentiability with respect to
parameters, initial conditions and discrete delays, we discuss both traditional and
generalized sensitivity functions with respect to the same quantities. Finally, to il-
lustrate computationally the use of these sensitivity functions, we turn to two clas-
sical examples: the Hutchinson delayed growth model and the harmonic oscillator
with delays.

2 Solutions and Their Approximation

We first summarize some fundamental well-posedness and approximation results
that have been recently developed elsewhere [8, 60]. We consider nonlinear nonau-
tonomous dynamical systems involving delays of the general form

X)) =G(t,x(@0), x, x(t —11), ..., x(t —Tw),0) + G2(t), 0=<t<T,
x(@E)=¢¢), -r=<&=<0,

where G =G, 0, V¥, y1,-.-, Ym,0) : [0, T] x X x R" x R? — R”". Here X =
R" x Ly(—r,0;R"),0 <11 <--- <1, =7, x; denotes the usual function x;(§) =
x(t+§&),—-r<é&<0,and ¢ € H'(—r,0). Here G»(¢) is an n-vector input, such as,
for example, a control input or in the case of inverse problems a stimulating input to
excite the dynamics.

The theoretical results in this manuscript will be illustrated computationally, and
therefore, the solutions will need to be approximated. In order to approximate so-
lutions, one may first convert the dynamical system to an abstract evolution equa-
tion and then approximate in a space spanned by piecewise linear (or even higher
order) splines (i.e., in a Galerkin approach, which is equivalent to a linear finite

(2.1)
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element approximation in partial differential equations). One is then able to numeri-
cally calculate the generalized Fourier coefficients of approximate solutions relative
to the splines, and with these coefficients, recover an approximation to the solutions
of (2.1).

We turn to the mathematical aspects of these nonlinear functional differential
equations (FDE) systems and present an outline of the necessary mathematical and
numerical foundations. First we describe the conversion of the nonlinear FDE sys-
tem to an abstract evolution equation (AEE) as well as provide existence and unique-
ness results for a solution to the FDE. One can use the ideas of the linear semigroup
framework, in which approximation of linear delay systems has been developed, as
a basis for a wide class of nonlinear delay system approximations. Details in this
direction can be found in the early work [5, 6, 49] which is a direct extension of
the results in [10—-12] to nonlinear delay systems. We then provide a fundamental
approximation framework including convergence results.

We shall make use of the following hypotheses throughout our presentation.

(H1) The function G satisfies a global Lipschitz condition:

’G(t’nvl/jay]"”’ym’g)_G(I’ﬁ’l/;vwla""wﬂhe)‘
m
sK(|n—ﬁ|+|w—w|+Z|yi—wi|)
i=1

for some fixed constant K and all (n, ¥, y1,..., ym), (7, gﬁ, Wi, ..., Wy) In
X x R™ uniformly in ¢ and 6.
(H2) The function G : [0, T] x X x R" x R? — R" is differentiable.

Remark 1 1f we define the function g : [0, T] x R” x C(—r, 0; R") x R? C [0, T] x
X x R? — R" given by

8, x,0)=gt,n, ¥, ) =G(t, 0,9, ¥(=11), ..., ¥ (=), 0), (2.2)

we observe that even though G satisfies (H1), g will not satisfy a continuity hypoth-
esis on its domain in the X norm.
Letting z(¢) = (x(¢), x;) € X, where the Hilbert space X has the inner product
0
(m.0), €. ))y = (0, O + / (&), v(©)pds, (2.3)

—r

we define for each (¢, 6) the nonlinear operator A(¢, 6) : D(A(t,0)) C X — X by

D(A,0)) ={(¥(©0).¥) | ¥ € H' (—r,0)},
A, 0)(¥(0), ¥) = (g(1, ¥ (0), ¥, 6), DY)
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where here D = ¢’. Note that D(A(¢, 6)) does not actually depend on (¢, ) even
though the operator does. Then the FDE (2.1) can be formulated as

z2(t) =AMz (1) + Ga2(1),
2(0) = zo,

2.4)

where zo = (xg, ¢) is the initial condition and A(#) = A(¢, 0). For notational con-
venience we suppress the dependence on 6 in the remainder of this section.

Theorem 2 Assume that (H1) holds and let z(t; ¢, G2) = (x(t; ¢, G2), x: (¢, G2)),
where x is the solution of (2.1) corresponding to ¢ € H', Gy € L. Then for ¢ =
(@(0), @), z(t; ¢, G2) is the unique solution on [0, T] of

t
() =¢ +/0 [A(0)z(0) + (G2(0). 0)]do. (2.5)

Furthermore, Gy — z(t; ¢, G2) is weakly sequentially continuous from Ly (with
weak topology) to X (with strong topology).

These results can be established in one of several ways including fixed point
theorem arguments or Picard iteration arguments. Either of these approaches can be
used to establish existence, uniqueness and continuous dependence of the solution of
(2.5). For existence, uniqueness and continuous dependence of the solution of (2.1),
we note that our condition (HI) is a global version of the hypothesis of Kappel
and Schappacher in [51], so that in the autonomous case their results also yield
immediately the desired result for (2.1).

The uniqueness of solutions to (2.5) follows in the usual manner once we estab-
lish that A satisfies a dissipative inequality. Indeed, we define a weighting function
w on [—r, 0) by

wé)=j foréel—tu_jy1,—Tm—j), j=12,...,m.

Then we consider solutions on the space X, which is topologically equivalent to X,
with the weighted inner product

0
Km@i@%th&MWh/@@LW@%M@Ma (2.6)
—r
One can show without difficulty that (H1) implies the dissipative inequality (see [29,
p. 71]) for the nonlinear operator .A(¢)

(Ax — A@)y, x —y), Sox —y,x =y (2.7)

for all x, y € D(A(t)) and all ¢.

The system of functional differential or delay equations described can now be
simulated using an algorithm first developed by Banks and Kappel for linear sys-
tems [12] and extended in [5, 6]. Solutions are approximated in a space spanned
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by piecewise linear splines. Thus one can numerically calculate the generalized
Fourier coefficients of the approximate solution in the spline basis representation
and recover an approximation to the solution of (2.1).

Define XV to be an approximating subspace [12, 13] of X. In particular, we
choose XN = X {V to be the piecewise linear spline subspaces of X discussed in
detail in [12]. We briefly outline the results for the piecewise linear subspaces X {V
(see Sect. 4 of [12]) given by

X {V = {(¢ ), q)) | ¢ is a continuous first-order spline function
with knots at 1 = —jr/N, j=0,1,...,N}.

A careful study of the arguments behind our presentation reveals that the approxi-
mation results given here hold for more general spline approximations. For example,
if one were to treat cubic spline approximations (X §V of [12]), one would use the
appropriate approximation analogues of Theorem 2.5 of [63] and Theorem 21 of
[64] (e.g., see Theorem 4.5 of [63]). Hereafter when we write X N the reader should
understand that we mean X {V of [12].

Let PV be the orthogonal projection in (-, -),, of X = X, onto X"V. We define
the approximating operator A (1) = PN A() PV and consider the approximating
equations in X" given by

t
Nwy=pPN¢ +/ [AY (@)x" (o) + PN (G2(0), 0)]do. (2.8)
0

These are equivalent to
Noy=A"0N 0 + PV (G21),0), M) =PN¢, (2.9)

the finite dimensional system in X N,
Define o (¢) so that xV (r) = BN N (¢) for any xV € XV. Here

BN = (BY(0), BY) where BN = (e}, eV, ..., eN).

The basis elements e;v ’s are piecewise linear splines defined by the Kronecker sym-
bol §;;, so

ey (t)=28; fori,j=0,1,....N.

Then solving for z" () in the finite dimensional system (2.9) is equivalent to solving
for o™V (r) in the vector system

aV (1) =ANa" (1) + PN Gy(1),
(2.10)
o (0) =y,

where ,éN a(])v = PNzp and AV is the matrix representation for AY. We note that

having obtained oV (1), the product BNaN (1) converges uniformly in ¢ to the solu-
tion z(t) = (x(t), x;) of (2.4) if we can argue the convergence z" (t) — z(t). To do
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this for linear systems, one can use the Trotter-Kato theorem, involving linear semi-
groups. For nonlinear autonomous systems, one can invoke the use of nonlinear
semigroups [49, 51].

From (2.7) and the definition of A" in terms of the self-adjoint projections P",
we have at once that under (H1) the sequence {A"} satisfies on X a uniform dissi-
pative inequality

(AY)x — ANy, x —y), Solx—y.x =y (2.11)

forall x, y € D(A(t)) and all t. We note that @ does not depend on N. Uniqueness of
solutions of (2.8) then follows immediately from this inequality. Upon recognition
that (2.9) is equivalent to a nonlinear ordinary differential equation in Euclidean
space with the right-hand side satisfying a global Lipschitz condition, one can easily
argue existence of solutions for (2.9) and hence for (2.8) on any finite interval [0, T'].
The next theorem, which ensures that solutions of (2.9) converge to those of (2.5),
along with its proof is contained in [26].

Theorem 3 Assume (H1), (H2). Let ¢ = (¢(0), ¢), ¢ € H! and G, € L,(0,T)
be given, with zVN and z the corresponding solutions on [0, T] of (2.9) and (2.5),
respectively. Then N> z2(0) = (x(1; ¢, G2), x: (¢, G2)), as N — oo, uniformly
inton|0,T].

Remark 4 One can actually obtain slightly stronger results than those given in The-
orem 3. One can consider solutions of (2.5) and (2.9) corresponding to initial data
z0 = (x0, ) = ¢ with xg € R", ¢ € L, (i.e., { € X) and argue that the results of
Theorem 3 hold also in this case.

The convergence given in Theorem 3 yields state approximation techniques for
nonlinear FDE systems based on the spline methods developed in [12]. These results
can be applied directly to control and identification problems, which are discussed
in [5, 6].

3 Continuous Dependence and Differentiability

To establish continuous dependence in parameters and differentiability with respect
to model parameters, initial conditions, and discrete time delays (not previously
done elsewhere for general nonlinear systems to the authors’ knowledge), we focus
on a restricted case with nonlinear autonomous systems with one discrete delay of
the form

dx(t)
dt

=G(x(0),x(t —1),0), 1>0, 3.1)

wp={ 9O TSE<0 (32)
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where x(t) € R", xo € R"?, and 6 € R”. While we consider here the case of finite
dimensional model parameters the results also hold in a more general case when
parameters are distributed, and hence infinite dimensional, as presented in [21, 22].
Once established, these results allow us to study the traditional and generalized sen-
sitivity functions, where sensitivity is considered with respect to these three quan-
tities. We begin by considering continuous dependence of solutions x(#) on model
parameters 6. We note that we focus on these quantities as they are often unknown
in practice and may need to be estimated from observed or experimental data. The
use of sensitivity functions can aid in that endeavor.

Lemma 5 Let G : R" x R" x R? — R" and for 0 = 6y, let x(t, x9, ¢, T,00) be a
solution of (3.1)-(3.2) for t € [0, T]. Assume that

eliI% G(x,x,0)=G(x, X, 0), (3.3)
—00

uniformly in x and x. For (x1, X1, 0), (x2,X2,0) € R" x R" x R? assume that
|G (x1,%1,60) — G(x2,%2,0)| < Cilx1 — x2| + C2|x) — 22 (3.4)

where C;j > 0 is a constant for j =1, 2. Then the initial value problem (3.1)~(3.2)
has a unique solution x(t, xo, ¢, T, 0) that satisfies

elin; x(t, x0,¢,t,0) =x(t,x0,¢0,7,6p), t€][0,T].
—6o

Next, we turn to differentiability of the general system (3.1)—(3.2) with respect
to model parameters in the following theorem. The proof is excluded but can be
found in [28, 60]. Also, the proof of Theorem 8 can easily be followed to give that
of Theorem 6. Without further discussion, we then state Theorem 7, in which we
establish differentiability of the model system with respect to the initial conditions,
which is also proven in [28].

Theorem 6 Suppose that G(x, X, 60) has continuous Frechét derivatives Gg, G,

G; such that |G| < My, |Gz| < My, and |Gg| < M;. Then the Frechet derivative

yi(t) = % € R"*P exists and is the unique solution for

Y1) =Gy(x(0),x(t —1),0)y1(t) + Gz (x (1), x(t — 7),0)y1(t — T)
+ Gy (x(0), x(t — 7),0), (3.5)
yi(#)=0, —-t<t<0
Theorem 7 Suppose the function G(x, X, 0) of (3.1) has continuous Frecheét deriva-
tives Gy (x,x,0), Gz(x, X, 0), with respect to x and x, with |G| < My, |G;z| < M;.
Then the Frechét derivative y>(t) = aaTox(t’ 20, 0) exists with y>(t) € L(Z,R") (re-
call zo = (xg, ), Z =R" x L*(—7,0; R")), and satisfies the equation
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Y2(O[h] = G (x(1), x(t — T),0) y2(t) [1]
+ Gz (x(),x(t —7),0)y2(t — D[R], >0, (3.6)
nE =7, -t=<§&<0,

where T € L(Z,R") is the identity.

Finally we state results for derivatives with respect to the discrete delays with
proofs being given in [28].

Theorem 8 Suppose that G(x, x,0) has continuous Frechet derivatives Gy, G;
such that |Gy| < My, and |Gz| < My and suppose that the solution x of (3.1)—
(3.2) satisfies x € HV°(—1, T; R"), for 0 < t < r for fixed r > 0. Then the Frechét
derivative y3(t) = % € R" exists and is the unique solution for

¥3(t) = Gy (x (), x(t — 1), 0)y3(2)
+ Gz (x(@),x(t —7),0)[y3(t —7) —%(t — )], (3.7)
»(E) =0, —-Tt<£<0. (3.8)

Moreover, % is continuous in 6 and, if x € c! (=1, T;R") it is also continuous

inTt.

4 Sensitivity Functions

Given the above results, especially differentiability in the quantities 6, zo = (xg, ¢)
and 7, we are now able to use the powerful sensitivity analytic techniques in delay
systems. For further simplification in the remainder of our discussions we restrict
our considerations to constant function initial conditions so in zg = (xg, ¢) we as-
sume ¢ (§) = xo, —r < & < 0. Traditionally, sensitivity analysis is the quantification
of the effect changes in parameters have on model solutions. Traditional sensitivity
functions (TSFs), which are given by,

0x
ylf(f)zw k=1,...,p,
0x
Wiy=— I=1,...n, @.1)
axo
(t)_ax
y3 _87:’

are local in nature as they are defined by locally evaluated partial derivatives, i.e.,
g—g(t, 0, Xo, 7), which gives information over specified time intervals, and at values
of parameters, initial conditions and delays. Even with this limitation, these func-
tions have been used to improve sampling in an experimental setting; specifically
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they can be used to guide the time at which measurements should be taken to best
inform the estimation of unknown parameters [20, 25]. That is, sampling might be
advisable in time intervals where, for example, ylf (1) is large, as it indicates that the
model solution x(¢) is sensitive to changes in the parameter 6. Similarly, insensitiv-
ity to a certain parameter (or unknown quantity), indicated by small or zero values
of the TSF, imply that observations can not be profitably taken in that region if the
goal is estimation of the parameter.

TSFs may be approximated by forward differences, but are typically found by
solving the system of sensitivity equations

d ax(t) G dx 0+ 3G ax ‘-t BG([) 42
— =—— —— -1+ — .
dt 90 dx 90 9% 00 30

for the corresponding system

dx(@) _ G(x(1).x(t —1),8), >0,

(4.3)

where the % and % operators have been interchanged, due to the continuity as-
sumptions made on G and x. We note that sensitivity analysis is most efficiently
carried out in two steps. Once a solution x(¢) corresponding to (6, Xo, T) of the
above (original delay) equation (4.3) is obtained, one uses this solution to evaluate
the coefficients in system (4.2). This decoupling of the original equation and the
sensitivity equation has implications when considering the sensitivity with respect
to the time delay t in one of the examples discussed below, which if solved in a
coupled manner would result in a so-called neutral delay system.

Generalized sensitivity functions, first introduced by Thomseth and Cobelli [65],
and further studied in a series of papers by Banks, et al., [20, 25, 27], provide a
measure of how informative measurements of the output or observation variables
(f(t,q) defined below, which are not necessarily simply the state variables), are
for the identification of unknown quantities. Notably, the functions G and h (the
observation operator introduced below) must be differentiable to construct the TSFs,
and must also be sufficiently smooth to construct generalized sensitivity functions
(GSFs). Before defining the GSFs we briefly outline an inverse problem framework,
not only to put our discussion in context, but also to define quantities in the definition
of the GSFs.

Given a model solution x (¢), the sensitivity of the solution to an estimated quan-
tity gx (where g = (0, x9, 7)) is

9
Sk(t,q)=£(t,q)eRm,

where f(t,q) = h(t, x(t), x(t — ), ) are the model quantities corresponding to the
observed data. Here £ is a general observation operator commonly found in inverse
problems that detail the type of data being collected (see e.g., [25]). Observations
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are typically available at discrete times, which we denote by 1, ..., #,,. The model
representation of the data is then

f(tj,q)zh(tj,x(tj),x(tj—I),G), j=1,...,l’ld.

In general, the data are not exactly f(¢;, ), due to uncertainty in the measurement
process, and also due to small fluctuations not explicitly included in the model.
Therefore we represent the observation process Y at time ¢; by the statistical model

Yi=f(tj.q")+ &, j=1,...,na, (4.4)

where f(tj,q) =h(tj,x(t;),x(tj —71),6),q =(0,x0,7),forg € 2=RP x R" x
R!. Here ¢° = (8°, xg, )7 represents the ‘true values’ of the parameters that gen-
erates the observations {Y j}?": |- The existence of q° is commonly assumed [23],
implying that (3.1) describes the biological, sociological, or physical process essen-
tially precisely.

The observation errors £; are random variables, each with unknown but assumed
independent and identical probability distributions of mean zero, and constant vari-
ance o2. Each data set {y j}?": | 1s one realization of the random variable {Yj};f"’: I
and the corresponding errors are also a realization of the &;. Estimating unknown
quantities via the minimization between the model and data assuming the statistical
model (4.4) gives rise to the commonly used ordinary least squares (OLS) estimator

nd
gors = arg min Z|Yj —f(ljJI)}z, 4.5)
qe2 =

where the objective functional is minimized over an admissible parameter space
2. Another common formulation is a weighted least squares procedure, in which
the error is assumed to be proportional to the model quantity f(¢;; ¢), i.e., relative
error. For a more complete discussion of the underlying assumptions and related
formulations, see [23].

The variance o2 of the observation error is used in the computation of standard
errors, confidence intervals, etc. and also in the generalized sensitivity functions. For
a given set of data, { y./}?”’:1 and parameter estimates g, the (bias-adjusted) variance
is estimated as

1 o 2
A2 L oA
e j§_1\y1 f.9) (4.6)

for n, = p +n + 1 estimated parameters, where n, = dim(2).
The generalized sensitivity functions [25, 27, 65] are defined by

t
gs(t)=/[F(T)_I%qu(s,qo)}'qu(s,qo)dp(s)’ tel0.T1, (4.7
0 o=(s)
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for variance o>(¢) that may possibly be time-dependent, true parameters ¢°, some
general measure P that embodies the observations, and the Fisher information ma-
trix (FIM) F which is defined by

r
F(T):/O Gz—quf(r,qo)vqf(t,qO)TdP(z). (4.8)

We note that the definition of the measure P affects the FIM, and it can be chosen
in such a way as to optimize the information from data concerning the estimated
parameters. The GSFs are cumulative functions, such that at time ¢;, only the con-
tributions of measurements up to and including those at time ¢; are relevant. By the
definition in (4.7), it is readily seen that the GSFs are one at the final time gs(7) = 1.
As discussed in [25, 65], regions which contain the sharpest change (either increase
or decrease) of the GSFs are regions of high information content. Decreases in the
GSF corresponding to a given parameter indicate correlation between that parame-
ter and at least one other estimated parameter. In this case, it can be seen [25] that
computing the GSF for one of the correlated parameters and holding the other(s)
fixed, will result in a monotonically increasing GSF. Therefore, regions over which
the GSF decreases indicate that the data in that region indeed contains information
concerning that parameter, but it is correlated with at least one other parameter, and
simultaneous identifiability of all parameters may be difficult.

As observations are typically available at discrete time points and our discussions
are in the context of parameter estimation from observed or measured data, we have
included here also the definitions for the GSFs and FIM for a discrete measure
P= Z;"’: 1 Ay; . In the discrete case, the generalized sensitivity functions are

J
1 _
gs(tj) =) e [F~' %V, £ (1. 4")] - Yy £ (1. 4°). @.9)
i=1 J
for observation times f; where j =1,...,ng. In the above definition, the discrete
FIM is given by
ng
1 0 onT

Fzzaz(,j)vqf(fj,q )V £(1i.4%)", (4.10)

=1

which measures the information content of the data corresponding to the parameters.
In both (4.7) and (4.9), the (biased) estimate for the variance of the observation error
is used up to and including the time ¢; of the observation, given by

1< )
02(f1)=;2|yi — fa . (4.11)
i=1

If the variance is assumed constant (o 2(7) = %), one would simply calculate the
estimate as in (4.6), and use that in (4.7) or (4.9).
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5 Illustrative Computations

To complete our presentation, we illustrate the uses of sensitivity analysis in two
prominent examples of delay equations. The first example we consider is a delay
version of one of the most commonly studied models, the logistic equation. This
delayed logistic equation, commonly known as Hutchinson’s equation mentioned
above, is not only discussed in most introductory modeling courses, but is still used
in research endeavors to represent growth within an environment in which satura-
tion is possible, but the death rate is proportional to previous population levels. The
standard logistic example (without delay) has been effectively used to illustrate with
simulated data the ideas of traditional and sensitivity functions and how these tech-
niques may improve data sampling for the purpose of parameter estimation [20, 25].
Therefore, it is natural to turn to the delayed logistic equation now that we are able
to study sensitivity functions in systems involving a discrete delay. Here we will
also numerically generate simulated data with a known delay, and demonstrate that
the estimation can be improved using insights gained from the sensitivity function
solutions.

The second example we use is also an ubiquitous model, the delayed harmonic
oscillator of Minorsky discussed in the Introduction. As noted there, this example
arises in many physical applications where oscillatory phenomena are important.

5.1 Hutchinson Equation Example

In his seminal paper [47] and book [48], Hutchinson arrived at a version of the
logistic equation that incorporated a delay in the carrying or death rate term,

dxt) _ rx(t)(l _ M) (5.1)

dt K

The model was suggested as a possible explanation of the growth dynamics seen
in Daphnia. This population seemed to grow exponentially at low population sizes,
but it would oscillate at higher population levels. Hutchinson hypothesized that this
growth was like that of the logistic model, only that the population seemed to be
able to exceed its carrying capacity and perhaps it was this value that the population
level was oscillating around.

The traditional sensitivity functions with respect to the model parameters r, K,
initial condition x¢, and delay t are given by

idx(t) =r[1 X — r):| dx(1)  rx(1) dx(t —1) —l—x(t)[l B x(tI; r)i|’

ar dt K ar K ar
d dx(t) i x(t—1)]ox(t) rx()ox({t—1) 0 x(t—1)
3K dr _r[ T K ]aK “ Tk ok T [ K2 ]
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)

0 dx() |:1_x(t—r):|8x(t) _rx(@) 9x(t — 1)
oxo dr K | oaxo K ax
d dx(1) [ x(t—r)}ax(t) rx(t)[ax(t—t) . ]
2D - - -1
Jat dt K ot K at

By changing the order of differentiation, and letting s1(¢) = a).;g), s2(t) = agl((t),

ax(t) 9x(1)

53(1) = S557» and s4() = ==, we have the system
8sa1t(t) =r|t- X(tT_T) s1(t) — rx(t)n(t — 1) +x(t)[1 - X(IT_T)} (5.2)
8s;t(t) - _1 _ x(tI; r)_sz(t) _ I’x(t)sz(t —7)+ rx(z)[%} (5.3)
Bs;t(t) =r[1— x(tI; 7) 53(6) — rx;)sm _o, 5
asg,(t) =r _1 _ x(tI; T)_S4(t) _ %(t)[m(t —1) =it —1)]. (5.5)

As noted earlier, we consider only the case of constant initial data, and thus
we do not discuss here the Frechet derivative y, (1) = %x(r, z0,0) where z¢ =

(x0,9), Z =R" x L2(‘L', 0; R™) ; the results of Theorem 7 still ensure the existence
and uniqueness of the solution dg)fé ) to (5.4), for this simpler case. The existence of
unique solutions to (5.2) and (5.3) are guaranteed by Theorem 6, and a unique solu-
tion for (5.5) by Theorem 8. Note that (5.5) is not a neutral equation if one assumes
the solution x(¢) (and also x(# — 7)) is already computed when sensitivity analysis
is done; i.e., we decouple the original equation and first solve the delay equation be-
fore computing sensitivities. Therefore, when computing sensitivities the x(¢) and
x(t — 1) are not unknown quantities but rather an input in the traditional sensitivity
functions above.

The solutions for the Hutchinson equation with no delay (i.e., the standard logis-
tic equation), and the corresponding traditional and generalized sensitivity functions
are displayed in Fig. 1. In comparing panels Fig. 1(b) to Fig. 1(a), the traditional
sensitivity functions with respect to the growth rate r and the initial condition xg
suggest that the beginning growth portion of the solution is quite sensitive to both
parameters. In the bottom panel Fig. 1(c), the solutions of the generalized sensitiv-
ity function suggest that the same region is informative for both parameters, but that
they are correlated since one of the curves decreases as the other increases. Thus,
estimating both the initial condition xo and the growth rate r simultaneously from
data corresponding to this interval is likely problematic. As one would expect the
solution appears to be sensitive to the carrying capacity essentially once it is ap-
proached. It is easier to see this in panel Fig. 1(c) than in Fig. 1(b), as the magnitude
of the sensitivity to the other parameters (r and xp) is significantly greater. The def-
inition of the generalized sensitivity functions is such that their magnitude is not as
varied even with respect to different quantities.
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Fig. 1 The numerical 20
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With a moderate delay, T = 1, there appears only one time interval over which
the solution x(¢) exceeds its carrying capacity, as seen in Fig. 2(a). The solution
then decreases to below its carrying capacity but the effect is not sufficient for the
oscillations to continue, and the solution approaches its carrying capacity x(t) — K
around ¢ = 14. It is around the time of the solution first exceeding and then decreas-
ing to less than the carrying capacity (approximately, the interval 7 € [8, 14]), which
can be interpreted as the effect of the delay, that the sensitivity function solutions
can be interpreted to mean that the model solution x(¢) is sensitive to this delay t.
The solutions of the traditional and generalized sensitivity functions with respect to
xo and r together suggest that the beginning time interval of the solution is most
sensitive to these quantities but that they are strongly correlated.
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Fig. 2 The numerical 20
approximation for the
solutions (a) to the 150

Hutchinson equation with
delay t =1, and
corresponding traditional (b)
and generalized (c) sensitivity
functions with respect to 5¢
growth rate r, carrying
capacity K, constant initial ‘ ‘ ‘ ) ) ) )
state xp, and delay t, each 0 5 10 15 20 25 30 35 40
evaluated at

(F, K, Xo,7)=(0.7,17.5,0.1, 1).
The generalized sensitivity
functions were computed

with constant variance

62=0.1

(A) solution z(t)

25 30 35 40

(c) generalized sensitivity functions gs(t)

With a larger delay, T = 7. A 2.244, the results given in Fig. 3 reveal that many
more oscillations in the solution x(#) occur, although they do dampen slightly.
The traditional and generalized sensitivity functions for the unknown quantities
q = (r, K, xo, 7) then indicate which parts of the oscillatory solution are most sensi-
tive to the respective parameter g;. Regions of decreasing GSF indicate correlation
among parameters, as with the growth rate r and initial condition x¢ in Figs. 1
and 2.

To illustrate the information gained from the solutions of the TSF and GSF with
respect to the delay with a moderate delay T = 1, we generated simulated data with
10 % error and used this to estimate the delay t, while holding the other parameters
fixed. As seen in [25], any parameter correlation issues would be irrelevant and
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estimates should be improved if data is concentrated in any regions of enhanced
information content (regions of greatest change in GSF or TSF).

umf}]

The results from estimating the delay t from {y — 1> 10 data points spread

uniformly over the time interval [0, 14], versus {y?SF }10 , when 8 out of 10 data
points are concentrated in the interval [8, 14] are contalned in Table 1. Improvement
using data with enhanced information content with respect to the delay is evident
in that the estimated value for 7 is closer to its true value of T = 1 when the initial
guess for T is either above (7 = 1.2) or below (7 = 0.8) the true value. Additionally
the corresponding standard errors are lower for delays estimated from { yGSF } — as

compared with {yumf}l_l, indicating that delays estimated from data concentrated

in the region of 1nformat10n content are more reliable. Model solutions correspond-
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Table 1 Estimation of

delay 7 Initial 7 z SE(%)
e, 0.8 0.7862 0.14
i 0.8 1.0247 0.086
e, 1.2 0.8525 0.13
{esF };.g . 12 1.0247 0.086

ing to the estimated 7’s overlayed with the data are shown in Fig. 4(a) for simulated
uniform data and with data concentrated in [8, 14] in Fig. 4(b).

5.2 Harmonic Oscillator

We turn finally to illustrating the use of the TSF and GSF for the Minorsky harmonic
oscillators with delays as given in the Introduction. We recall that the equation with
delayed damping has the form

d*x (1) dx(t — 1)
K
dt? + dt

+bx(t) =g(1), (5.6)
while the system with delayed restoring force is given by

d? d
digt) + K+ bx(t = 7) = g(0). 5.7)

We use traditional and generalized sensitivity functions with (5.6) and (5.7) and
illustrate their application in determining regions of sensitivity for model parameters
K, b and time delay t. As before, we take the derivative of (5.6) with respect to
each parameter g;, where ¢ = (K, b, 7)T to obtain the TSF corresponding to that
parameter g; . First, letting x = x{(¢) and x,(¢) = x(¢), and rewriting (5.6) as a first
order system we have

d
x;t(t) =x2(1),
(5.8)
dx; (1)
r =g(t) —bx1(t) — Kxa(t — 7).

The traditional sensitivity functions are then solutions of

d
S;t(t) = s54(1),
ds) (1) — 55(1)

dt
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Fig. 4 The solutions to the delay logistic equation with estimated delay 7 from data as shown in
each graph: (a) T with data corresponding to #,,, (b) T with data corresponding to tGsr

d
S;t(” = 56(0),
dt

dss;(t) = —bs3(t) = Kse(t = 1) + Kia(t — ),

for s1(1) = 200 55(1) = 2D 53(1) =

se(1) = 220

In Fig. 5, the solution for the harmonic oscillator with delayed damping is shown
for parameter values K = 0.5, b =2, g(¢) = 10, and delay t = 1, along with the
solutions of the traditional and generalized sensitivity functions with respect to
g = (K,b, 7). The solutions of the TSFs imply that the solution is sensitive to
all three parameters, growing in magnitude with the amplitude of the oscillations.
The sensitivity trajectories indicate the part of the oscillation that is most sensitive
to each parameter, indicating which parts are likely due to each force in the har-
monic oscillator, and the delay in the damping force. Since the regions of sensitivity
overlap, one would be motivated to look at the generalized sensitivity functions to
determine whether there are correlation between these three parameters. The solu-
tions to the generalized sensitivity functions clarify this point, and indicate that the
parameter b and delay t are correlated and the parameter K is uncorrelated with the
other two over its regions of sensitivity. Therefore, if one were to estimate parame-
ters with this model, one should not expect to estimate both b and t simultaneously,
but estimating either » or T does not affect one’s ability to estimate the parameter
K. The solution is not sensitive to any of the parameters until the oscillations grow,
indicating that data taken in the beginning time intervals should not be expected to

ad 9 9
T sa(n) = BEE ss() = S0, and
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Fig. 5 Depicted above are 30
(a) the solution to the
harmonic oscillator with
delayed damping
K=05b=2,t=1,and
g(t) = 10, (b) the traditional
sensitivity functions and

(c) the generalized sensitivity
functions with respect to K,
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(c) generalized sensitivity functions gs(t)

contain much information about any of the parameters. It is not immediately obvi-
ous that two parameters K and t appearing in the same term would be uncorrelated
and therefore, both potentially are identifiable from data.

The sensitivity functions for the harmonic oscillator with delayed restoring force,
(5.7), are arrived at in the same manner as when the delay appears in the damping
term and are therefore omitted. The solution x(#) and the corresponding traditional
and generalized sensitivity solutions with respect to g = (K, b, )7 are graphed in
Fig. 6. The solution appears to be monotonic, and the traditional sensitivity function
solutions indicate that the solution is disproportionately sensitive to the damping co-
efficient K as compared with b and t. However, the generalized sensitivity functions
provide additional insight in that the solution appears to be sensitive to K early on
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Fig. 6 Shown above are 20
(a) the solution to the

harmonic oscillator with

delayed restoring force with
K=5b=05,7=1,and

g(t) = 10, (b) the traditional 10 ]
sensitivity functions and

(c) the generalized sensitivity
functions with respect to K,
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4 ; T T .

(C) generalized sensitivity functions gs(t)

and while there are regions of increased information content relative to the delay ,
that the parameter K is correlated with t, and one should not expect to identify both
simultaneously with data sampled from those intermediate and later regions.

6 Concluding Remarks

After giving a brief survey of previous contributions on theoretical and computa-
tional aspects of traditional sensitivity functions for delay differential equation sys-
tems, we presented a summary of new theoretical results (proofs for which are given
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in [28]) for differentiation of solutions with respect to parameters, initial data and
delays in general nonlinear delay differential equations. These results provide a the-
oretical foundation for the rigorous formulation of both traditional and generalized
sensitivities for delay systems. We illustrate the ideas in the context of Hutchinson’s
delayed logistic equation and the classical Minorsky harmonic oscillators with de-
layed damping or delayed restoring forces.
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Regularity and Unique Existence of Solution
to Linear Diffusion Equation with Multiple
Time-Fractional Derivatives
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Abstract We consider an initial/boundary value problem for linear diffusion equa-
tion with multiple fractional time derivatives and prove the regularity of the solution.
The regularity argument implies the unique existence of the solution.

Keywords Fractional diffusion equation - Mild solution - Regularity

Mathematics Subject Classification (2010) 26A33 - 35R10 - 45K05

1 Introduction

Let £2 be a bounded domain in R? with sufficiently smooth boundary 52 and let
0 < a2 < a1 < 1. We consider the following initial/boundary value problem for a
diffusion equation with two fractional time derivatives:

T u(x, 1)+ q)a2u(x, 1) = (—Au)(x,1), x€R,1e(0,T), (1.1)
u(x,1)=0, xe€df, 1e(,7T) (1.2)

and
u(x,0)=a(x), xef. (1.3)
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Here, for 0 < o < 1, we denote by 97 the Caputo fractional derivative with re-
spectto z:

3%g(t) = ! tt —ad d
té’()—m[)( -1) Eg(f) T

where T is the Gamma function and ¢ € W>*°(£2). The space W>>(£2) is the
usual Sobolev space (Adams [1]). Moreover the operator —.A is a symmetric uni-
formly elliptic operator, that is,

d

d
d a
(—AM)(X)ZE 5(5 aij(x)gu(x)>+b(x)u(x), x € $2,
L =1

i=1 j J

where a;j =aj;, 1 <i,j <d,ajj € Cl(£2),b e C(2), b(x) <0 for x € 2, and we
assume that there exists a constant Cy > 0 such that

d d
Co) & <) Aij(0EE, xeQ,&eR

i=1 i,j=1

In the special case g =0, (1.1) is a diffusion equation with a single fractional time
derivative. For such equations there exists a large and rapidly growing number of
publications which we do not intend to list completely: Bazhlekova [3, 4], Eidelman
and Kochubei [6], Luchko [12, 13], Priiss [21], Sakamoto and Yamamoto [22]. Also
see Agarwal [2], Fujita [7], Gejji and Jafari [8], Mainardi [15—17], Nigmatullin [18],
Schneider and Wyss [23].

In this article, we consider the case of multiple fractional time derivatives. Such
equations can be considered as more feasible model equations than equations with a
single fractional time derivative in modeling diffusion in porous media. In the case
where the functions in (1.1) are not dependent on x, we refer to several works and
refer for example to Diethelm and Luchko [5], Podlubny [20], Chap. 3, for instance.
In particular, in [5], some physical interpretations are given. As for diffusion equa-
tions with multiple fractional time derivatives, see Jiang, Liu, Turner and Burrage
[10] and Luchko [14] which argue a general number of time fractional derivatives.
The article[10] discusses the spatially one dimensional case with constant coeffi-
cients where also the spatial fractional derivative is considered, and establishes the
formula of the solution, and [14] assumes that the coefficients of the time derivatives
are constant to prove unique existence of the solution by the Fourier method as well
as the maximum principle and related properties.

Unlike [10] and [14], we treat a general case of x-dependent coefficient of frac-
tional time derivatives. In our case, we cannot apply the Fourier method or obtain
an analytic solution. We apply the perturbation method and the theory of evolution
equations to prove regularity as well as unique existence of solution to (1.1)—(1.3).
Such results should be the starting point for further research concerning the theory
of nonlinear fractional diffusion equations, numerical analysis, control theory and
inverse problems. In forthcoming papers, we will discuss those subjects.
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This paper is composed of four sections including the current section. In Sect. 2,
we present the main result for the case of two fractional time derivatives and in
Sect. 3 we prove it. Section 4 is devoted to the case of general multiple fractional
time derivatives.

2 Main Results

Let L2(£2) be the usual Lz—space with the scalar product (-, -), and HY(D), Hy'(£2)

denote the usual Sobolev spaces (e.g., Adams [1]). We set ||a ||Lz(9) = (a, a)%.
We define the operator A in L%(£2) by

(Au)(x) = (Au)(x), x €82, D(A) = H*(2) N H (£2).

Then the fractional power AY is defined for y € R (see for instance [19]), and
D(AY) C HY (2), D(A?) = Hj () for example. We note that [[ullpear) =
|AYull;2(s) is a stronger norm than [|u| 2oy for y > 0.

Since —A is a symmetric uniformly elliptic operator, the spectrum of A is en-
tirely composed of eigenvalues and counting according to the multiplicities, we
canset: 0 <Ay <Ay <---.By ¢, € H*(£2) N HO1 (£2), we denote the orthonor-
mal eigenfunction corresponding to A,,: Ag, = A,¢,. Then the sequence {¢, },eN is
an orthonormal basis in L2(§2). Moreover, we see that

D(AY) = {w e LX) Y M | )| < oo}

n=1

and that D(AY) is a Hilbert space with the norm

Bl—

I llpary = {Zlﬁy|(¢y¢n)|2} .

n=1

Henceforth we associate with u(x, t), provided that it is well-defined, a map
u():0,T) — L2(2) by u(t)(x) =u(x,t),0 <t <T,x € §2. Then we can write
(1.1)—=(1.3) as

af"u(t)—i—qaflzu(t):—Au(t), t>0in LZ(Q), 2.1

u(0)=a e L*(£2).

Remark 1 The interpretation of the initial condition should be made in a suit-
able function space. In our case, as Theorem 1 asserts, we have lim;_ ¢ [lu(¢) —

a”LZ(Q) =0.
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Moreover we define the Mittag—Leffler function E, g by

oo

Eyp(2) = z€C,

Z F(ak +8)’

where « > 0 and § € R are arbitrary constants. Using the power series, we can
directly verify that E, g(z) is an entire function.
Now we define the operators S(7) : L2(2) —> L%(£2),t > 0, by

SWa =Y (@ ¢u)Eay 1 (~1nt™)bn in LA($2) 22

n=1

for a € L*(£2). Then we can prove that S(¢) : L%(£2) —> L%*(2) is a bounded
linear operator for ¢ > 0 (e.g., Sakamoto and Yamamoto [22]). Moreover, termwise
differentiation is possible and gives

S'(Ha=— Z’\" @, o)™ T Eqy oy (—Ant®)dy  in L*(£2) (2.3)
n=0

and
o0
S"()a == hnla, )t Eqyar1 (2t )py  inL7(2) (24
n=0

for a € L2(£2).
For F € LZ(SZ x (0,T))and a € Lz(.Q), there exists a unique solution in a suit-
able class (e.g., Sakamoto and Yamamoto [22]) to the problem

o 'u(t)y=—Au(t)+F, O0<t<T, (2.5)
u(0) =a. (2.6)

This solution is given by
t
u(t) = / A8t —)F(v)dt + S(t)a, t>0. (2.7)
0
In view of (2.7), we mainly discuss the equation
t
u(t) =S@t)a — / AT (1 — 1)gdu(t)dr, 0<t<T, (2.8)
0

in order to establish unique existence of solutions to (2.1). Henceforth C denotes
generic positive constants which are independent of a in (1.2), but may depend on
T, a1, ao and the coefficients of the operator A and q.

We can state our first main result.
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Theorem 1 We assume that u € C((0, T1; L*(£2)) satisfies (2.8) and
o] +oay > 1.

Then
| v ) = €17 lall 2y, O<t =T

forany y € (0,1).

We may be able to remove the condition «; + a2 > 1. On the other hand,
Priiss established regularity in case y = 1 for general oy, € (0, 1) under a
strong condition on a € D(A) (see [21], in particular the perturbation theorem on

p. 60).
On the basis of Theorem 1, a standard argument (e.g., Henry [9]) yields

Theorem 2 For any y € (0, 1) there exists a mild solution to (2.8) in the space
C((0,T]; D(AY)) N C([0, T]; L*(£2)).

3 Proof of Theorem 1

First we have

AV (Ha = -] ZA}{ @, ) Eay.ar (—Ant™ ) in L*(£2) (3.1

n=1

fora € Lz(.Q) and y > 0. Moreover, since

C
| Eayor (=] < [ 0

(e.g., Theorem 1.6 on p. 35 in Podlubny [20]), we can prove
[AY=1s' ()| < crr =t >0 (3.2)
and
[A7's"®)| < ct 72, t>0. (3.3)

Now we proceed to the proof of Theorem 1. We set

t
v(t) :=/ A7V (1 —)qdPu(n)dny, 0<t<T.
0
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By (2.8), we have
Au(®)=AYS()a—v(@), O0<r<T.

Therefore, using

[ 2 () = ClATu@) ] 12,

(see the beginning of Sect. 2), it is sufficient to estimate ||AVS(t)a||Lz(_Q) +
o)l 12(s2)- First we will estimate [[v(#)||;2(s)- Substituting the definition of 0 u
and changing the order of integration, we have

t 1 n
— y=1¢les 0y~ o\« /
v(l)—/OA S'(t n)F(l—a2)</0 (n—1) un(f)df)dn
'
:ﬁfo H(t,t)qu'(t)dr, O0<t<T. (3.4)
Here we have set

t
H(, 1) =/ ATV (1 — ) (n — ©) " %dy.

Decomposing the integrand and introducing the change of variables n — 7 — n we
obtain

H(t, 1) = /t A/t =) (n — )" 2dn
= /t AV =) — )72 =t — 1) 2]dy
+ f ATV — it — 1)
- /OH AVt = —D)[n* = (t — 1)~ *®]dn

t
+/ AV (r = p)dn(t — 7)™
T

t—t
= / AV (t == D)™ — (1 — 1) %]dn
0

+ATISO) — )2 - AYTIS — )t —T) T
=0t 1)+ L(t, 1). 3.5)
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On the other hand, we have

-1
et == [ A == o — =0 )
0

-1
- 052/ AVt —n— 1)t — )2 ldy
0

— lim AY7'S' -t -2 - —0)7].

n—t—t
By the estimate (3.2) we obtain
|AT1S' @~ = (7 = (1 = ) 7*) ”LZ(Q)

<C(t— v -y DB
ne(t — 1)*
According to the mean value theorem, we can choose 6 € (n, t — 7) such that
[t =) =] = |26t =t = )| @™ 't — T — ).
Hence we obtain
”Ay_ls/(t —T=m(n7" =t~ T)_az)”Lz(.Q)
<Coon 't—1) 2@ —71—U N —0 asn—oi—r1

by a1 — a1y > 0. This implies
t—T
o1 (t,T) =~ / AV (1 —n— ) (7% = (t — 1) %)dn
0

1—T
—Otz/ At —n—)t =)™ Yy, 0<t<T. (3.6)
0

On the other hand, we have
9. h(t, 1) = - AV ISt — 1)t — )2 + AVTIS(0)on(r — 1) !
+ A — )t — 1)

-7
:az/ AV*]S/(I_n_r)(t_r)fotzfldn
0
+ AV (= o)t — ).
Adding this and (3.6) we obtain
1—T
O H(t,7) =~ / AT (1t == T) (0™ — (1 = 1)™*)dn

0

+ AT (=)t — 7). (3.7)
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Using (3.7) in (3.4), integrating by parts and using H (¢, t) = 0 we obtain
t
(rd —a))v@) = / H(t, t)qu'(v)dt
0
= —H(t,0)qa

t -1
+ / U AVt —n— ) (7% — (t — 1) ")dn
0 0

— A=)t — t)_“z]qu(T)dr

= 13(1) + 14(1).

We set
I'o)I"
B(a, B) = M, o, B >0.
[+ B)
First, by (3.2) and g € W>*°(£2) we have
t
1130 300y = |~ H Ol 2 gy = | = [ 47715 = - 2anga
0 L2(2)
t
= C”a”L2(Q)/ (t — )~y
0
= Cllall 2y B(1 — a2, 01 — ayy)t*1 41772, (3.8)

since | —ap >0and o] — a1y > 0.
On the other hand, by g € W>°°(£2) and u|3o =0, we have

”A(q”(t))”LZ(g) = CHq”(f)” H2(2) = C””(f)” H2(2) = C”A”(T)”LZ(Q)
and ||qu(f)||L2(_Q) S CHM(T)”LZ(_Q)’ that iS,

” Ao(q”(f)) H 2@ = c “ Au(r) ” L2(2)"

Hence the interpolation theorem (see for instance Lions and Magenes [11], Theo-
rem 5.1 on p. 27) we obtain

| A7 (qu(©)) HLZ(Q) =ClA%u(r) ”LZ(Q)'
Therefore by (3.2) and (3.3), the second term of /4(¢) can be estimated as follows:
tr opt—t
|10 29 = € fo [ /O (t =1 — D 2(7% = (1 — 1)) dy

+(t — r)‘“_l_“z} A7 (qu()] 2 (o)dT
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t -1 _ (t — T — n)az
C —n -
< /0 [/0 t—n—-1) Sy —— n

=0 AT 3 gy

t -1
< C/O [/O (t —n— o)t =gy,

+ (- r)al_l_az} |AYu(@)|| 12 o)dT

t
= C/ (B(l —aw, a1 +ar— Dt —1)7!
0
+(t =) 2) | AV u(r) ||L2(_Q)dr.

For the last equality, we used o1 + o > 1. Therefore we have

o=y —o2

[P0 = a)v®)] 12 = Cllal2s g BA — a2, a1 — )

t
+cf (=)l ||Ayu(r)||L2(mdr.
0

Thus the estimate of [|v(7)[| 2y is completed.
Next we estimate ||AY S(t)a ||L2(Q). By Theorem 1.6 (p. 35) in [20], we obtain

2

”AVS(’)“”;(Q) =

> (@ b)) Eay 1 (—2nt® ) n
n=1

L2(2)

[e'9) 2
_ (Ant*1)Y
<C (a, ¢ )2t 20!1)/(7
n; ! L+ Ayt
< Cr 2 all7a g
and hence

[A7u@®) | 12y = Cllall o) (171 + 11717 =)
t
+ C/ (t — 7)1 —1- ||Ayu(r) ”Lz(g)df
0

< Cllall 2yt + C/OZ(t — O A U@ o o dTs
0<t<T.
Therefore by an inequality of Gronwall type (see [9], Exercise 3 (p. 190)), we obtain
|A7u@®] o) < Cllall 2@y, 0<t<T.

Thus the proof is completed.
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4 Generalization

The results in Sect. 3 shall now be extended to the solution of linear diffusion equa-
tion with multiple fractional time derivatives:

4
o u(t)+ Y q;0, ut) =—Au(t), t>0
j=2

and
u(0)=a e L*(2),

where 0 <oy <--- <ax <aj <landg; € W2’°°(.Q),2§j <.
As before the lower-order derivatives are regarded as source terms and we con-
sider

l‘ e
ut) = S(t)a —/ A8 (=) g0 u(tydr, 0<t<T. 4.1)
0 =

Similarly to Theorem 1, we can prove

Theorem 3 We assume that u € C((0, T1; L2(2)) satisfies (4.1) and
O<ap<---<aj, o+oa>1.
Then
|4 v ) = €17 lall 2y, O<t<T

for any y € (0,1). Moreover there exists a mild solution to (4.1) in the space
C((0,T1; D(AY)) N C([0, T]; L2(£2)) with y € (0, 1).
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Nonsmooth Optimization Method and Sparsity

Kazufumi Ito

Abstract Nonsmooth variational problems are analyzed using the Lagrange multi-
plier theory. In particular, the sparsity optimization method has a multitude of impor-
tant applications, i.e., in imaging analysis and friction contact and inverse problems,
and can be cast as nonsmooth variational problems. The optimality condition is de-
rived and it is of the form of the complementarity systems. An effective numerical
optimization method using the semismooth Newton method is then developed and
analyzed. The method takes the form of primal-dual active set methods and is much
more efficient than numerical optimization algorithms based on first order methods.
The ¢° sparsity optimization for the linear least square problem is considered. The
necessary optimality condition is derived and a numerical algorithm based on the
Lagrange multiplier rule to determine a solution is developed and analyzed.

Keywords Nonsmooth optimization - Sparsity optimization - Mixed integer
programming - Primal-dual active set method

1 Introduction

The class of variational problems we investigate can be written as
min  F(y) 4+ ¢(Ay) overyeC, (1.1)

where X, H are real Hilbert spaces, C is a closed convex subset of X, and A €
L(X, H). We identify H with its dual space. Furthermore, F : X — R is a con-
tinuously differentiable, convex function, and ¢ : H — (—00, 00] is a proper, lower
semi-continuous, convex but not necessarily differentiable function. This problem
class encompasses a wide variety of optimization problems. An important class
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of concrete problems that can be formulated as (1.1) is discussed in Sect. 2. The
Lagrange multiplier approach and the optimality system for analyzing (1.1) is de-
scribed in Sect. 3. A semismooth Newton method applied to the optimality system
is developed and analyzed for the bilateral inequality constraint and L!-type opti-
mization in Sect. 4.

There is an increasing literature of applications of sparsity optimization, e.g., [2,
4, 5, 22] and the references therein, and we refer to [2, 21, 22] for the mathematical
analysis of sparsity optimization. For A € £(¢2, ¢2), b € £? and B > 0 we consider
the minimization of

1
5lAx - b|* + BNy (x), (1.2)
where for x € ¢2
No(x) =Y Ixi[°
k

is the counting measure of a number sequence x € 2 e, 09=0and s°=1if
s > 0. The sparsity method provides an efficient way to extract essential compo-
nents of solutions and is used for data compression and order reduction methods in
a wide class of applications, including signal and image analysis, inverse scatter-
ing, deconvolution and tomography problems, and wavelet and generalized Fourier
analysis. The case when the £! norm is replaced by No(x) in (1.2) is the most stan-
dard and well-analyzed, and it can be analyzed by the convex formulation (1.1). But,
since Ny is not convex, our analysis and method for (1.1) cannot be applied directly.

For a data mining problems, i.e., problem of determining the most reliable mea-
surements (k € K, where K is a set of indexes) from data b € £, for the reconstruc-
tion of u by (Au — b)rcx = 0, we formulate the minimization of the form

No(Au—b)+%|u|§. (1.3)

In Sect. 5 we derive the complementarity system for the optimality condition and
the Lagrange formulation and develop the primal-dual active set method.

2 Applications and Concrete Examples

In this section we discuss examples of nonsmooth optimization problems and po-
tential applications.

2.1 Variational Inequalities

Consider the variational problem [6, 10] of the form

mi‘r/l %a(u, u) — f(u) + ¢(Au), (2.1)
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where a is a continuous, coercive bilinear form on X x X, f € X* is a bounded
linear functional on X, and

(V) = Ly<y (inequality constraint), (2.2)

o(u) :/ g(x)|v]dx (weighted L' norm). (2.3)
r

where v < i is pointwise, i.e., v(x) < ¥ (x) a.e. x € I". It will be shown that the
necessary optimality of (2.1) is of the form of variational inequalities.

Let £2 be a bounded open set in R? with boundary 852 and A be the trace opera-
tor of H'(£2) onto I C 3£2. The elastic contact problem is formulated as (2.1), i.e.,
u € X = H'(£2)¢ represents the deformation vector and the bilinear form is defined
by

a(u,qﬁ):/ o:e(p)dx,
2

where € is the strain tensor is defined by

_ 1 [0gi 09,
6(¢)_ 2(3)6]' + 8x,~>’

and o is the stress tensor. We assume Hooke’s law for the strain stress-strain rela-
tionship;

o =2ue+ Atrel. 2.4)

The functional f € X* is defined by f () = f I fuds at an applied body force f
at a part I of the boundary and let H = L?(I'.) where I'. is the contact boundary
with the solid.

The Signorini problem is of the first kind, i.e., (2.1) subject to n - u < 1. The
Coulomb friction problem is of the second kind in which g = F is a Tresca friction
coefficient and A is the trace operator of H;(2) to the contact surface I [8, 15].
The Bingham fluid and solid model [6] for the plastic deformation can be formulated
as (2.1) of the second kind with Au being the strain tensor of the deformation u.

2.2 Inverse Problems and Image Analysis

Inverse problems can be cast as minimizing
o
(|K () =b]) + 51Dy + po(Ay),

where y € L?(£2) represents the image or the distribution, K : X — Y is a (non-
linear) convolution operator, and b € Y is a measurement. The functional ¢ is the
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fit-to-data criterion [9]. For example, consider the inverse medium problem for the
Helmbholtz equation

Au + nkPu = 0, xe Rd,

where k is a given wave number, u = 1% + 1™ and n is the refraction index of the
medium. Or equivalently, the total field u satisfies

u(x) =u"(x) +/ G(x, 0)(n* — 1)K u(w)dw, (2.5)
2

where 2 is a domain that contains inhomogeneities {n? > 1} and G(x, y) is the
fundamental solution of the homogeneous Helmholtz equation. We assume the plane
wave incident, u™¢ = ¢/kd) with directions d. The problem is to determine the
index n? based on measurements u*““ at a near field I = {|x| = 51}, where A is
the wave-length. Thus, in this case y = n” — 1 is the unknown, K (y) = u*“* where
u solves (2.5) and b € Y = L2(I') is the measurements. For the L regularization
term, D is a differential operator, and for the L criterion,

w(v)=/ vl dx.
2

A is the natural injection for the sparsity imaging, while A = V for the BV-
regularization, and A = A for the nonlinear filter. It is very essential to select proper
regularization functionals to obtain the enhanced and robust reconstruction that cap-
tures the specific features and properties.

In the case of the registration of the images Iy and /1 defined on the domain 2,
find vector field u that minimizes

/Q @ (|Io(x +u(x)) — L (x)]) dx + ne(Au) (2.6)

where @ : R — R™ is a continuous and convex function (for example, Huber func-
tion for the robust statistics), Au is the strain tensor of u, and the selection regu-
larization functional ¢ plays a significant role and assumes a priori knowledge of
the transformation, e.g. the divergence free constraint and elastic deformation en-

ergy [1].

2.3 Control and Design Problems

In the case of the optimal control problem [10]

T
minf e(x(®) + h(u@))dt
0
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subject the dynamical constraint:

%x(r) = f(x(®),u@®)in X§, wuecC,

where the state function x(¢) € Xg, a Hilbert space, and control function u(z) € C C
X. For example, the parabolic control problem is given by

<%x(t), ¢> —l—a(x(t), q)) + (u(t), B*¢)U, for all ¢ € Xy,

where a(-,-) is a bounded bilinear form on Xo x X and B € L(X, X)) is the
input operator. If we eliminate x(¢) € C(0,T; Xo) as a function of u(t) € X =
L%(0,T; U) by x = @ (u) it reduces to (1.1) with

T T
F(u) =/ (@) (t)dr, and @(Au) =/ h(u(n)dt.
0

0

Similarly, in the case of the structural optimization for the elliptic equation;
min ¢>(u(a)) +np(Aa) overaeC 2.7

where u = u(a) € HOl (£2) satisfies —V - (aVu) = f for example, and ¢ is the ma-
terial performance and ¢(Aa) is the complexity measure of design a. For the topo-
logical optimization C is the binary constraint and ¢(a) = BV (a).

In general we consider the constrained minimization of the form;

min  F(x)+ H(u) subjectto E(x,u)=0, (x,u)eC.

Here, E(x,u) =0 in Xa‘ for x € X and u € C is the equality constraint and we use
the Lagrange formulation;

L(x,u,p)=Fx)+ H@u)+ (p, E(x, u))XoxX(’;'

Assuming E and F are Cland E, (x,u): X xC— X(’)k is surjective, we have the
necessary optimality;

E¢(x,u)"p+ F'(x) =0,
u= argmin{H(v) + (p, E(x, v))}.
veC
The second equation is the optimality condition and the functional H is nonsmooth

in general. Based on this optimality condition and our nonsmooth methods, we de-
velop iterative algorithms [10].
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2.4 Binary and Mixed Integer Program

Consider the binary and mixed integer programming
min F(x) subjectto E(x,u)=0, and ueC={0,1,...,N}. (2.8)
One can formulate (2.8) as
min  F(x)+ (Qu,u)+cW(u) subjectto E(x,u)=0
where ¢ 3> 1 and 8 > 0 and Q is a generator of Markov process for # € C and

W (u) =rnin(|u|, lu—11,...,|u— N|).

2.5 Stochastic Control Problem

Consider the stochastic control problem;

min O [ fo e (F X+ |ut|)dr}

subject to
dX, = (b(X;) + Gu,)dt + o dB, (2.9)

over u; € {F;-adapted integrable control, |u;| < y, a.e.} and T > 0 is the exit time
of the Ito diffusion X; from a domain £2. Let L is the generator of X,

L= %ai,/ () xix; + bi (X) ;-
Let V be the solution to the Hamilton—Jacobi—Bellman equation:
LV —cV+ f+ymin(0,1—|G'VV|)=0, u=0 atxedsf.
Then, one has a feedback solution (Markov control);

G'VV
0 =a(y) = | VoV X EUGTVVIZT
0, otherwise.

3 Nonsmooth Optimization and Lagrange Multiplier

In this section we present the Lagrange multiplier theory for the nonsmooth opti-
mization (1.1). We describe the Lagrange multiplier theory to deal with the non-
smoothness of ¢. To briefly explain our approach let #, A € H and ¢ > 0, and define
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the family of generalized Yosida—Moreau approximations ¢.(u, ) by

. c
Pc(u, 2) = lnf{(ﬂ(u—v)+()»,v)f1+—|v|%1}. (3.1
veH 2
Then, the augmented Lagrangian formulation [10, 11, 13] of (1.1) is given by

IJEE Le(y,2) = f(x)+ @c(Ay, 1). (3.2)

Here ¢.(u, 1) is continuously Fréchet differentiable with respect to u € H and if
v € C denotes the solution to (3.2), then it satisfies

{ (f'(ve) + A%he, ¥ = Ye)yu x =0, forally €C,
he = @L(Aye, he).

Under appropriate condjtions [10, 11, 13] the pair (y;, Ac) € C x H has a (strong-
weak) cluster point (y, ) as ¢ — oo such that y € C is the minimizer of (1.1) and
that A € H is a Lagrange multiplier in the sense that

(F'G)+A" K,y = F)4u x =0, forallyeC, (3.3)
with the complementarity condition
L =¢.(Ay, 1), foreachc > 0. (3.4)

System (3.3)—(3.4) is defined for the primal-dual variable (¥, A). The advantage here
is that the frequently employed differential inclusion A € d@(AY) is replaced by
the equivalent nonlinear equation (3.4). In many applications, the convex conjugate
functional ¢* of ¢ is given by

¢*(v) = Ix»(v),

where K™ is a closed convex set in H and [y is the indicator function of a set S. It
is shown in [10, 11, 13] that (3.4) is equivalent to

A =Projgs (A + cAy), (3.5)

which is the basis of our approach.

3.1 Inequality Constraint Optimization

Let X be a Hilbert space and consider

min J(y) subjectto yeC 3.6)
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where J : X — R is C! and C is a closed convex set in X. If y* € C minimizes J
over C, then we have the necessary optimality

(J'(»*),y—y*)=0 forallyeC. 3.7

In this case we let f = J and A be the natural injection and ¢ = I¢. If H = L*(£2)
and C is the bilateral constraint {y € X : ¢ < Ay < ¢}, the complementarity (3.5)
implies that for ¢ > 0
J/(y*) + A*M =0,
(3.8)
n= max(O, w4c(Ay — W)) + min(O, w+c(Ay — (;5)) a.e.

If either ¢ = —o0 or ¥ = 00, it is unilateral constrained and defines the generalized
obstacle problem. The cost functional J(y) can represent the performance index
for the optimal control and design problem, the fidelity of data-to-fit for the inverse
problem, and deformation and restoring energy for the variational problem.

3.2 L'-Type Optimization
Let H=L?*(£2) and p(v) = Jo Ivldx, i.e., consider

min () + /Q | Ayl dx. (3.9)

In this case
K*={r:[A2<1lae]
and the complementarity (3.5) implies that
f1(0*)+ A% =0,

- A+cAy
~ max(l, A+ cAy|)

4 Semismooth Newton Method

In this section we present the semismooth Newton method for the necessary opti-
mality condition. Consider the nonlinear equation F(y) = 0 in a Banach space X.
The generalized Newton update is given by

yk-‘rl — yk _ Vk_lF(yk)’ (41)
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where Vj is a generalized derivative of F at yX. In the finite dimensional space or for
a locally Lipschitz continuous function F' let Dr denote the set of points at which
F is differentiable. For x € X = R" we define dg F (x) as

aBF(x)=[J:J= lim VF(xi)}, (4.2)

Xi—>Xx,x;€DF

where DrF is dense by Rademacher’s theorem which states that every locally Lip-
schitz continuous function in the finite dimensional space is differentiable almost
everywhere. Thus, we take Vi € dp F (yk ).

In infinite dimensional spaces notions of generalized derivatives for functions
which are not C! cannot rely on Rademacher’s theorem. Here, instead, we shall
mainly utilize a concept of generalized derivative that is sufficient to guarantee su-
perlinear convergence of Newton’s method [10]. This notion of differentiability is
called Newton derivative and is defined below. We refer to [3, 7, 10, 20] for further
discussion of the notions and topics. Let X, Z be real Banach spaces and let D C X
be an open set.

Definition 4.1 (1) F: D C X — Z is called Newton differentiable at x, if there
exists an open neighborhood N(x) C D and mappings G: N(x) — L(X, Z) such
that

. F(x+h)—Fx)—Gx+h)h|z

m =0.

li
h|—0 |k x

The family {G(y) : y € N(x)} is called an N-derivative of F at x.
(2) F is called semismooth at y, if it is Newton differentiable at y and

lim+ G(y +th)h exists uniformly in |2]| = 1.
t—0

Semismoothness was originally introduced in [17] for scalar-valued functions.
Convex functions and real-valued C! functions are examples for such semismooth
functions [18, 19] in the finite dimensional space.

For example, if F(y)(s) = ¥ (y(s)), point-wise, then G(y)(s) € ¥p(y(s)) is an
N-derivative in L?(§2) — L7(£2) under appropriate conditions [10]. We use often
¥ (s) = |s| and max(0, s) for our model examples.

Suppose F(y*) =0, Then, y* = y* 4 (y* — y¥) and

Y=y = V(R O) = FOS) = Vel =) = [V e (v = 7)),

Thus, the semismooth Newton method is g-superlinear convergent provided that the
Jacobian sequence Vj is uniformly invertible as y — y*. That is, if one can select a
sequence of quasi-Jacobian Vj that is consistent, i.e., |V — G(y*)| as yk — y* and
invertible, (4.1) is still g-superlinear convergent.
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4.1 Primal-Dual Active Set Method

Since
dpmax(0,s) =1{0,1}, 0dpmin(0,s)={—1,0}, ats=0,

the semismooth Newton method for the bilateral constraint (3.8) is of the form of
the primal-dual active set method [10, 12]:

Primal-Dual Active Set Method

1. Initialize y° € X and A° € H. Set k = 0.
2. Set the active set A = A1 U A~ and the inactive set Z by

A+={xe.{2:uk+c(Ayk—w)>0},
A_={xe!2:uk+c(Ayk—¢)<0},
T=0\ A

3. Solve for (yk*1, Ak+1)

J”(yk)(ka —yk)+J/(yk)+A*uk+1 =0,
AT @ =y, xedt, AT =),
xeA™, Mx)=0 xeZ.

4. Stop, or set k = K + 1 and return to the second seep.

In general J” is a closed operator on L?(£2) and the algorithm is formal one unless
J” is bounded operator in H = L?(£2). It involves solving a linear system of the
form

A A A\ [y f
A+ 0 0 par | =1 ¢
a0 0 J\ux) \o

In order to gain the stability the following one-parameter family of the regularization
can be used [10, 14];

% =oz(max(0, u+c(Ay — 1//)) +min(0, u+c(Ay — q’)))), oa— 1T,

4.2 L-Type Optimization

Next, we discuss the case of ¢(v) = |, o lvl2dx (L'-type optimization). The com-
plementarity is reduced to the form

Amax(l + €, |A+cv|) =A+cv
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for € > 0. It is often convenient (but not essential) to use very small € > 0 to avoid
the singularity for the implementation of algorithm. Let

2 .
3 +35, ifls|<e,

Pe(s) = . (4.3)
Is], if s| > €.
Then, it corresponds to the regularized one of (3.9):
min  Je(y) = F(y) + ¢e(Ay).
The semismooth Newton method is given by
F'(yT)+ A*2* =0,
vT
At =— if|A+v|<1+e,
€
2 t 4.4)
A4 colAt+ (A e (k+ —|—cv+)
A+ cv|
=1+ vt + A+ cvlr if A 4+cv|>1+e.

There is no guarantee that (4.4) is solvable for A™ and is stable. In order to obtain
the compact and unconditionally stable formula we use the damped and regularized
algorithm with g < 1;

ar="2 if A4 cvl < 14e,
€

A At+cv !
A )‘.+_ )‘.+ +
At ﬂ(max(1,|x|><|x+cv|) >( e’

=2t 4 cvt 4+ B+ cv]

if A +cv|>1+4e€.

4.5)
Here, the purpose of the regularization I)\I% is to automatically constrain the dual
variable A into the unit ball. The damping factor § is automatically selected to
achieve the stability. Let

A
max (L, |A])

A A
a=—" p=2EY
A Al %+ cv

d =)+ cv], n=d-1,
Then, (4.5) is equivalent to
AT =l +BF) (I - BF)(cv™) + Bda),

where by Sherman—Morrison formula

(nl +pF)! =1<1— LF)
n n+pBa-b
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Then,

Bd

—1 _
1+ P pda = a.

Since F2 = (a-b)F,

( I+,8F)_1(I—,3F)—£(I—LF)
7 Ty n+Ba-b )

In order to achieve the stability, we let

—1
Lzl’ ie., ’Bzdi
n+pBa-b

Consequently, we obtain a compact Newton step

A= L(I — F)(cv™) +

. (4.6)

AL

which results in.

Primal-Dual Active Set Method (L' -Optimization)
1. Initialize: A° = 0 and solve F'(y°) =0 for y°. Set k =0.
2. Set inactive set 7y and active set Ay by
T = {|)Lk ~|—cAyk| > 1 +6}, and A; = {|)Lk ~|—cAyk| <1 +6}.

3. Solve for (Y1, Akt e X x H:

F/(yk+])+A*)\k+1 _o,

1 Ak
k+1 k k+1
A = 1(1 F)(cAy )+|Ak|A1

AykJrl =Xl in7g.

in Ay and

4. Convergent or set k =k + 1 and Return to Step 2.

This algorithm is unconditionally stable and is rapidly convergent for our test exam-
ples.

Remark 4.2

(1) Note that

TP — (@ v -vh)

+ o
(:77) d—1

+a-vT, 4.7)
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(@)

3

which implies stability of the algorithm. In fact, since

F/(yk+1) _ F/(yk) + A*(Ak+l _)\k)’

)\'k+1 —)\.k — (I _ Fk)(CAyk+1) + <ﬁ _ 1>)\'k’
we have

(F/(yk'H) _ F/(yk), yk+1 _ yk) +c((l _ Fk)Ayk+1, Ayk+1)
R kg ket
+ (I/\"I 1)(x , Ay,

Supposing

F(y)— Fx)— (F'(3),y —x) > 0ly — x|},

we have
k . . 2 1 i j
PO+ R0l = (g 1) 04 £ 700,
j=1

where v/ = Ay/. Note that (A, v**1) > 0 implies that (A**!, v**+1) > 0 and
thus is inactive at step k + 1, pointwise. This fact is a key step for proving a
global convergence of the algorithm.

Ifa-b— 17, then B — 1. Suppose (A, v) is a fixed point of (4.6), then

1 c A+cv 1
1-— 1-— v ) JA= V.
M A1 d—1]|A+cv] d—1

Thus, the angle between A and A + cv is zero and

. 1 ¢ [v] v
PIAL A +clul—1I\ Al AAal)

which implies |A| = 1. It follows that

A4cv
A4+cv= .
max(|A 4+ cv|, 1 +¢€)

That is, if the algorithm converges, a - b — 1 and [A| — 1 and it is consistent.
Consider the substitution iterate:

F'(yT)+ a2t =0,

1 (4.8)

+ T, v=Ay.

=—7v
max(e, [v])
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Note that

v
ol

o2 —Jv]? + vt —v)?
dx
2|v]

_ |U+|_|v|_(|v+|—|v|)2+|v+—v|2
20| '

Thus,
Je (v+) < Je(v),

where the equality holds only if v™. This fact can be used to prove the iterative
method (4.8) is globally convergent [10, 13]. It also suggests to use the hybrid
method; for 0 < u < 1

+ 1<

I (I T S
= maxe o)’ T4 ’“(d—]u v+

max(|A|, 1))’

in order to gain the global convergence property without loosing the fast con-
vergence of the Newton method.

5 £ Sparsity Optimization
Let A e E(EZ), b € £2. In this section we consider £° minimization of the form
1 2
§|Ax—b|2+,3No(x) (5.1
where
No(x) = number of nonzero elements of x = Z [ Xk |0.

Here, |s|° =1, s £ 0 and |0|° = 0 for s € R. It can be shown that Ny is a complete
metric.

Theorem 5.1 Problem (5.1) has a solution x € £° and the necessary optimality
condition is given by
%=0 if [(Ai, )] < V2BIAIl,

i (5.2)
(Ai, Ax —b)=0 if|(Ai, f)| > V2BIAl.

For the second case of (5.2), |(A;i, fi)| > /2B|A;| is equivalent to |x;| > |A—‘/?.
Proof Let x" be a minimizing sequence of (5.1). Let N(s) =0 if s =0, and oth-

erwise N(s) = 1. Since ¢’ = £, there exists a subsequence of {N(x")} converg-
ing ot weakly star to N (x) and x" converges to X in £2. Thus, lim,_, oo No(x") =
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(N(x™), 1) > (N(x), 1) = No(x). Thus, we have
1
—|AX — b|> + BNo(xX) < inf J(x),
2 xely

and x is a minimizer.
Suppose x € £° is a minimizer. Then, X; € R minimizes

1
Gx) = 1Aixi = fil> + Blxil’, (5.3)
where
0 k=i,
Ai=Ae; and fi=b— A%, F=1_ '
Xk k;ﬁl.
If x; = z > 0 is a minimizer of (5.3), then
2 (Ai, f)?
|Ail"z — (A, fi) =0, G(Z)Z_W+ﬂ+G(O)' 5.4
1

If G(z) < G(0), i.e., [(A;, fi)l > ~/2B]A;| then X; = z is a unique minimizer

and |x;| > ‘A—@. If |(A;, fi)l < +/2B|A;| then x; = 0 is the minimizer of (5.3). If

[(Ai, fi)| =+/2B]A;], there are two minimizers 0, z. O

It follows from the proof of Theorem 5.1 that a minimizer to (5.1) is not neces-
sarily unique. (5.2) is equivalently written as

A*(Ax —b)+1=0, ix;z=0 forallk,

A =0, ifkeI:{k:Ikk+Akxk|2>2ﬂAk}, (5.5)

x;=0, ifjedA={j:Ir;+Ax;|> <284}

For the nonlinear case (1.2) we define
Gi(x)=F(x) — F(x;), wherexy =xi,k#1iandx; =0.
In the case of (5.1) we have G; (x) = 3 (|A;x; — fil> — | fil®).
Corollary 5.2 Let X € £° is a minimizer of (1.2). The necessary optimality is given
by
F'X)+A1=0, Xx;=0 foralli,

where

%=0 ifGi(¥)>B and 1 =0 ifG;() <§p.
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5.1 £7(0 < p < 1)-Sparsity and Globally Convergent Iterative
Scheme

In this section we derive a global convergent method based on the regularized for-
mulation. Consider £7, 0 < p < 1 minimization of the form

1
E|Ax—b|§+ﬂNp(x) (5.6)

where

Np(x) =" Iyl”.

Here, N,(x) is a complete metric and weakly sequentially lower continuous for
p > 0/[12], and N (x) — No(x) as p — 0T. Any subsequence of minimizers Xp to
(5.6) converges to a minimizer of (5.1) as p — 0T. In order to overcome the singu-

larity near s = 0 for (|s|?) = MPTS,F, for € > O consider the regularized problem:

Je(x) = %|Ax —bI* + W (Ix?), (5.7)

where fort > 0

L5+ =5er 1<é,

lpe(t)z p
2 r> el

~

For € > 0, consider the iterative algorithm for the solution to (5.7):

Bp

A*Akarl X
max(e2—P, |xk|2—P)

k1 — A%p. (5.8)

k

Multiplying this by x*! — x*, we obtain

%((Axkﬂ,xkﬂ) _ (Axk,xk) + (A(ka _ xk),xkﬂ —xk))

Bp 1 2 2 2
n = |xk|2—p)§(’xk+]| P R ) (A%, R ),

Then,

1 P 2 2 2 2 2
o P (YRS e

Since r — ¥, (¢) is concave, we have

2 2 1 p 2 2
() )~ e P ) 20,
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and thus
1 Bp 1 2
) A )0 ) 4 B e
< Je(x5). (5.9)

We have the following convergence result:

Theorem 5.3 Fore > 0 let {x;} is generated by (5.8). Then, J x5y is monotonically
non increasing, and xy converges to the minimizer of J defined by (5.7).

Proof 1Tt follows from (5.9) that |xk|oo < 00 and
o
5 4441 - <o
k=0

and thus there exists a subsequence of {x*} and x* € £7 such that

lim x; = lim x**! = x*.
k—o00 k—o00
It follows from (5.8) that
A*Ax* + £p x* = A%,
max(e2=P, |x*|2~P)
i.e., x* minimizes J.. O

From Theorem 5.3 the proposed iterative method (5.8) can be used as a global-
ization step for the semismooth Newton method which will be discussed in the next
section.

5.2 Augmented Lagrangian Formulation and Primal-Dual Active
Set Method

In this section we develop the augmented Lagrangian formulation and the primal-
dual active set strategy for the sparsity optimization (5.1). Let P be a nonnega-
tive self-adjoint operator P and Ay = |Ak|% + « Pyj. Consider the augmented La-
grangian functional

1 o
L(x,v,0) = S| Ax = b3+ Z(Px,x) + B 3 ol
k

Ay
+Z<7IXk — wiel” A+ Ok, Xk — vk))-
k
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If A is nearly singular, we use o > 0 and the regularization functional (x, Px) to
regularize the problem. Given (x, A), L is minimized at

M+ A Xk . 2

SR g A+ A >2ArB,
= D(x. ) = A A . KXkl kB

0 otherwise.

Given (v, A), L is minimized at x that satisfies
A*(Ax —b) +aPx+A(x —v)+A1=0,

where A is diagonal operator with entries Ay. Thus, the augmented Lagrangian
method [10] uses the update:

A* (Ax’”rl - b) +aPx"t 4+ A()C”Jrl — v") + A" =0,
V= (x" 1 0), (5.10)
)Ln—ﬁ—l =\ +A(xn+1 _ Un+1).

If it converges, i.e. x"*, v" — x and A" — A, then

A*(Ax = b)+aPx+1=0,
2B

Mm=0 if xe)? > ==,

k if x| >Ak

=0, if |Ae]? <2BAg.

That is, (x, A) satisfies the necessary optimality condition (5.2).

Motivated by the augmented Lagrangian formulation we obtain a primal-dual
active set method as follows.
Primal-Dual Active Set Method (Sparsity Optimization)
1. Initialize: 2° = 0 and x? is determined by A*(Ax° — b) + «Px? =0. Set n = 0.
2. Solve for (x™*1, Ant1y;

A*(Ax" = f) +aPx"t 420 =0, (5.11)

where

M =0, ifke {k: |2 + Aex]” > 28A4), .
e . 2 ’
x;_“r] =0, ifje{j: ’A;’ —I—ij;?‘ <2BA;}.
3. Convergent or set k =k + 1 and Return to Step 2.
Note that
M=0 ifke{k: |+ Axxel® > 2B Ak},

x;j=0 ifjef{j:Ir+Ajx;><284;},
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provides a complementarity condition for (5.2). Thus, if the active set method con-
verges, then the converged (x, 1) satisfies the necessary optimality (5.5). It is ob-
served that the active set method converges globally for all examples we tested.

Remark 5.4

(1) Since (x"+1, Anthy =0,

and thus |Ax" 1112 + a(Px™ 1!, x" 1) is bounded.
(2) For all test examples the primal-dual method converges globally. The following
estimate is a key to establish a global convergence for the method. Note that

0= (A*(Axn+1 —b) + Pyl +An+l’xn+1 _xn)

(|Ax" — biz +ot(xn, Px”))

_ %(|Axn+l —b|2 +a(xn+1’ Pxn+1)) _ %

+ %(|A(xn+l _ xn)|2 +a(xn+1 —x", P(xn+1 _ xn))) _ (kn+1’xrl)’

/2
=0 and |x|< A—ﬁ = xt'=o0.
k

(3) The global convergence of the Primal-Dual algorithm is analyzed in [12] for
the case when Q = A*A + o P is an M-matrix and f = A*b > 0, and under the
following uniqueness assumption.

where

Let (x, A) be a solution to (5.5) and define
_1
A={|[VA 2 (Ax+1)| < A7 28},
I= {|«/X_%(Ax +2)|> A2/28).

Theorem 5.5 (Uniqueness) We assume the strict complementarity; there exists
6 > 0 such that

_1 _1
m}nNZ 2(Ax + )] —mjx|\/Z 2(Ax +0)| =8B,
and Q is diagonally dominant; there exists 0 < p < 1 such that
_1 _1
VA (@—-MVA | <p.

If 6 > 12_—pp, then (5.5) has a unique solution.
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Proof Assume there exist two pairs (x, A) and (%, 2 satisfying the necessary opti-
mality (5.5). Then we have

Ox =) +A—r=0
and
Ax+A— (AR 4+ =(A— Q)(x — 3).

Thus, if we let § = {x; = x; = 0}¢,
_1 _1 N
VA 2 (Ax +0)| = |VA 2 (AZ +3)| < plx — Rs.
Since if x; = 0, then [(A™21),| < v/2B and if £; =0, then |(A™21) ;| < /2B,

2
VG- )s = V28

and
_1 _1 A
|\/Z 2(Ax +)‘)|{A=0} - ’«/Z 2(AX + A)‘{;C:O} < ,0|x/Z(x —x)|S.
It thus follows that lz_—pp < §, and we have a contradiction. O
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Abstract In this paper, we present a method that enables to solve in parallel the
Euler-Lagrange system associated with the optimal control of a parabolic equation.
Our approach is based on an iterative update of a sequence of intermediate tar-
gets that gives rise to independent sub-problems that can be solved in parallel. This
method can be coupled with the parareal in time algorithm. Numerical experiments
show the efficiency of our method.
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1 Introduction

In the last decade, parallelism across the time [3], based on the decomposition of the
time domain into time sub-domains has been exploited to accelerate the simulation
of systems governed by time dependent partial differential equations [4]. Among
others, the parareal in time algorithm [1, 5] or multi-shooting schemes [2] have
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shown excellent results. In the framework of optimal control, this approach has been
used to control parabolic systems [7, 8].

In this paper, we introduce a new approach to tackle such problems. The strategy
we follow is based on the concept of target trajectory that has been introduced in
the case of hyperbolic systems in [6]. Because of the non-reversibility of parabolic
equations, a new definition of this trajectory is considered. It enables us to define
at both end points of each time sub-domains relevant initial conditions and inter-
mediate targets, so that the initial problem is split up into independent optimization
sub-problems.

The paper is organized as follows: the optimal control problem is introduced in
Sect. 2 and the parallelization setting is described in Sect. 3. The properties of the
cost functionals involved in the control problem are studied in Sect. 4. The general
structure of our algorithm is given in Sect. 5 and its convergence is proven in Sect. 6.
In Sect. 7, we propose a fully parallelized version of our algorithm. Some numerical
tests showing the efficiency of our approach are presented in Sect. 8.

In the sequel, we consider the optimal control problem associated with the heat
equation on a compact set §2 and a time interval [0, 7], with T > 0. We denote by
|l - |2 the space norm associated with L2(£2), and by || - I, the L2-norm corre-
sponding to a sub-domain §2. C £2. Also, we use the notations || - ||, (resp. || - [lv,)
and (-, -), (resp. (-, -)y,) to represent the norm and the scalar product of the Hilbert
space L2(0, T; £2.) (resp. L>(I'; £2.)), with I’ a sub-interval of [0, T']). Given a
function y defined on the time interval [0, T'], we denote by y|;- the restriction of y
toI'.

2 Optimal Control Problem

Given o > 0, let us consider the optimal control problem defined by:

min J(v), 2.1
veL2([0,T1;L2(82.))

with

J(U) = l”y(T) - ytarget”é + g ' ”v(t) ||2.cht’
2 2 Jo

where Yireet 1S a given state in L%(£2). Given v > 0, the state y evolves from yp on
[0, T] according to
o0y —vAy = Bu.

In this equation, A denotes the Laplace operator, v is the control term, applied on
£2. and B is the natural injection from 2. into 2. We assume Dirichlet conditions
for y on the boundary of §2. The corresponding optimality system reads as

—vAy = T 2
{S,y vAy=Bv on[0,T]x £2, 2.2)

y(0) = yo,
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p+vAp=0 on[0,T] x £2,
p(T) =y(T) — Ytarget
av+ B*p=0, 2.4)

(2.3)

where B* is the adjoint operator of 5.

Note that for any & > 0, the functional J is continuous, a-convex in L2(0, T'; £2.)
and consequently the system (2.1) has a unique solution v*. We denote by y*, p*
the associated state and adjoint state through (2.2)—(2.3).

3 Time Parallelization Setting

In this section, we describe the relevant setting for a time parallelized resolution of
the optimality system. Consider N > 2 and a subdivision of [0, T] of the form:

N—-1
[0, 71= | &
n=0

with I, = [t,,th+1], 00 =0 <1t <--- <ity—1 <ty =T. For the sake of simplic-
ity, we assume here that the subdivision is uniform, i.e. forn =0,..., N — 1 we
assume that t,,41 —t, = T/N; we denote AT =T /N. Given a control v and its cor-
responding state y and adjoint state p by (2.2)—(2.3), we define the target trajectory
by:

x=y—p onl0,T]x £2. (3.1

The trajectory x is not governed by any known partial differential equation, but
reaches x (T) = yrarget at time T' from the second equation in system (2.3), hence its
denomination.

Forn=0,..., N — 1, let us consider the sub-problems

min Ja(vn), (3.2)
Un ELZ(In;LZ (£2¢))

with
1
hww=§hﬂmm—xmﬂw§+%ﬁHwawgm,
where the function yj, is defined by

0;yn —vAy, =Bv, onl, x $2,

3.3
Yu(ty) = y(ty). G-

Recall that this optimal control problem is parameterized by v through the local
target x (f,+1), and also through y and p. Given n, 0 <n < N — 1, we note that this
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sub-problem has the same structure as the original one, and is also strictly convex
in L(ty,, th11; $2.). We denote by v} its solution.The optimality system associated
with this optimization problem is given by (3.3) and the equations

0 pn +VvAp, =0 onl, x £2,

Pn(tn+1) = y(nt1) — X tut1),

av, +B*p, =0. (3.5)

(3.4)

4 Some Properties of J and J,

The introduction of the target trajectory in the last section is motivated by the fol-
lowing result.

Lemma 1 Denote by x* the target trajectory defined by (3.1) with y = y* and
p = p* and by y;, p;, v, the solutions of (3.3)—(3.5) with y = y* and x = x*. One
has: vy = v .

Proof Thanks to the uniqueness of the solution to the sub-problem, it is enough to
show that vl 7, satisfies the optimality system (3.3)—(3.5).
Let us first note that y| T, 0bv10usly satisfies (3.3) with v, = v . It directly fol-
lows from the definition of x* (see (3.1)), that:
p*([n—H) = y*(tn-H) - X*(tn+l)»
so that pl*[n satisfies (3.4). Finally, (3.5) is a consequence of (2.4). The result fol-

lows. O

Let HJ denote the Hessian operator associated with J; there exists a strong
connection between the Hessian operators HJ and H J, of J and J,, as indicated
in the next lemma.

Lemma 2 The Hessian operator H J,, coincides with the restriction of HJ to con-
trols whose time supports are included in [ty—1, T].

Proof First note that J is quadratic so that HJ is a constant operator. Given an
increase §v € Lz([O, T1; Lz(.Qc)), we have:

T
(HI(Gv),80), = |sy(D)]3 +a fo 5o, dr.
where 8y is the solution of

0,0y —vASy =Bsv on[0,T] x £2,
3y (0) =
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Given 1 <n < N, consider now an increase dv,, € L2(I,,; L2(.Qc)). One finds in the
same way that:

tn-H
(H 30 (6v0). 80), = [83n(tasn) |3+ f 60,02 d,

n

where 8y, is the solution of

4.1

08y, — VASy, =Bdv, on[t,;,t,41] x £,
Syn(tn) =0.

Suppose now that v = 0 on [0, ty_1], it is a simple matter to check that §y = 0 over
[0, ty—1]. The restriction of §y on the interval [¢y_1, T'] thus satisfies §y(ty—1) =0
and is consequently (up to a time translation) the solution of (4.1). O

We end this section with an estimate on these Hessian operators.

Lemma 3 Given 8v € L*([0, T1; L*(2.)), one has:
T 2 r 2
a/o |sv) |, dr < (HJ(Bv), 8v), 5,3/0 |sv@) |, dr. (42)

where B = a + C//2, with C the Poincaré’s constant associated with L*(£2).

The proof of this result is straightforward. We note that, because of Lemma 2,
the Hessian operator H J,, also satisfies (4.2).

5 Algorithm

We are now in a position to propose a time parallelized procedure to solve (2.2)—
(2.4). In what follows, we describe the principal steps of a parallel algorithm named
“SITPOC” (Serial Intermediate Targets for Parallel Optimal Control).

Algorithm 4 (s1TPOC) Consider an initial control v? and suppose that, at step k
one knows v¥. The computation of v¥*! is achieved as follows:

I. Compute y*, p* and the associated target trajectory x* according to (2.2), (2.3)
and (3.1) respectively.

II. Solve approximately the N sub-problems (3.2) in parallel. For n =0, ...,
N — 1, denote by ﬁf‘l“ the corresponding solutions and by #**! the concatena-
tion of (55*+1),—0.. N1

III. Define v**! by v¥*1 = (1 — 6%)vk + 6K5F+1 where 6% is defined in order to
minimize J ((1 — 6%)vF 4 g% pk+1).
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Note that we do not explain in detail here the optimization step (Step II) and
rather present a general structure of our algorithm. Because of the strictly convex
setting, some steps of, e.g., a gradient method or a small number of conjugate gra-
dient method step can be used.

6 Convergence

The convergence of Algorithm 4 can be guaranteed under some assumptions. In
what follows, we denote by VJ the gradient of J.

Theorem 6.1 Suppose that the sequence (V*)en defined in Algorithm 4 satisfies,
forall k > 0:

J(v%) # 7 (v™), (6.1)
[v7 @, =l =, 62)

and
J(0F) = 7 (5 = ok =2 (6.3)

for a given n >0, k > 0. Then (V¥)en converges at least geometrically with a rate
(1— %) € [0, 1) to the solution of (2.2)~(2.4).

Note that in the case (6.1) is not satisfied, there exists ko € N such that vk = p™
and the optimum is reached in a finite number of steps.

Proof Define the shifted functional
T)=J @) —J(v*),

and note that because of the definition of v*, one has

f(v):%(HJ(v—v*),v—v*) §§Hv—v*||i. (6.4)

v
Since J is quadratic, for any v € L?(£2.)
VJ()=HJ(v—1"),

and consequently

2
v’

<VJ(v), v— v*)v :(HJ(v — v*), v — v*)v za”v — U*H
so that

1
o], < L[], ©5)
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Combining (6.4) and (6.5), one gets

Yoe L2(2,), )< (6.6)
with y = 5\/@ Since J(vF) — Tkt = J (k) — J (k1) > 0, we have:
1
T(vk+) J (V%) = 7 (!

VI =71 2J(v,()u) ()
> ok — k2 6.7)

Kk ko k+1)2
2 gvaann vk 9

K ko k412

= gyt e 1Y 69
> c|jof =" (6.10)

where ¢ = 2 . Indeed (6.7) follows from (6.3), (6.8) from (6.6) and (6.9) from

(6.2). 1t follows from the monotonic convergence of v/ J (v¥) that the sequence vk is
Cauchy, thus converges.

Let us now study the convergence rate. Define r = 3" ||v
ming (6.10) between k and +o00, we obtain:

,/f(vk) > crk,

Using again (6.6) and (6.2), one finds that:

1 v),. Sum-

ny(rk —rk'H) > crk. (6.11)

Note that this inequality implies that 1 — L > 0. Define C := y we have 0 <
C < 1. Because of (6.11):

(1—O)7* = — o)~k
and the result follows. O
We now give an example where hypothesis (6.2)—(6.3) are satisfied.

Corollary 6.2 Assume that Step 11 of Algorithm 4 is achieved using one step of
a local gradient method and that at step k, the algorithm is initialized with v

v| I, then (6.2)—(6.3) are satisfied hence the algorithm converges to the solutlon of
2. 2) (2.4).
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Proof Because of the assumptions, the optimization step (Step II) reads:
~k+1 _ k k k
Vp =7y _pnv‘]”(vn)'

Since the functionals J,, are quadratic, one has:

L [NACHI

o= H 1 (VI 05, VI W),

A first consequence of these equalities is that:
kY ~k+1_ ok k kY12
(VJ" (Un)’ vn+ - Un)v,, = "Pn ”V‘In (vn) ”v,, =0,
moreover Lemmas 2 and 3 imply:
1 ¢ 1
— =< —. 6.12
g=fn=y (6.12)

One can also obtain similar estimates over 8%, In this view, note first that since
the only iteration which is considered uses as directions of descent VJ,,(vﬁ) =
VJ(vk)“n. Then:

k (VJ@h), o5+ — k),
- (HJ(f)k+1 _ vk), ph+1l vk)v
| N-T ,
— _ _” ~k+1 _ k” (6 13)
= = v v . .
<HJ(Uk+1 _ vk), pk+1 vk)v nX:(:) :Orkz n n iy,

Using (6.12), one deduces —g <@k < —%. Since 0% <0 then:

This preliminary results will now be used to prove (6.2). We have:

[V =], =[O =,

N-1

- 2

= | D0 o™ =k,
n=0

N-1

= 16| | 22 @8IV,

\ n=0

k+1

Thus we can lower and upper bound the contribution ||v — vk, as follows:

el RO R Pt B L [ P (A
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The variations in the functional between two iterations of our algorithm reads as:

J(vk) _ J(ka) — <Vj(vk), vk _ Uk+1>v _ %(Hj(vk _ ka), vk . vk+1>

v
— —9k<VJ(vk), l~)k+1 _ vk)v
(one uses (6.13))

v

1 (I, T —0),)?
T2 (HJ @K — k), G — Ry

Qk

v‘,(vk)’ i}k+] _ vk)v

Zp,’WJ >
v

I
|
|

I
5
S
2/\

Il
S

|
—_

Pn(VI (v5), VI (wn)),

n=0
ARSI ‘
= N Z 1(V‘I ( )’VJ"(Un)>v,,
n=0
|9k| N-1
== or ||V111(U§)||in
n=0
> EE ||VJ(U )Hv (one uses (6.14))
1 a (a?)\? 2
=z 57(?) [t = ot
la? 2
=z gﬂ—”ka =t
5
Hence, we get (6.3) with k = %%. Il

7 Parareal Acceleration

The method we have introduced with Algorithm 4 requires in Step I two sequential
resolutions of the evolution equation (2.2) on the whole interval [0, T'], which does
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not fit with the parallel setting. In this section, we make use of the parareal in time
algorithm to parallelize the corresponding computations.

7.1 Setting

Let us first recall the main features of the parareal in time algorithm. We consider
the example of (2.2). In order to solve also this evolution equation in parallel we
use the parareal in time scheme [4], we first introduce two solvers a coarse solver,
denoted as G, and a fine solver denoted as F. The fine solver is the solver that
has been used in the previous sections. The coarse can be the same one but it is
based on a larger discretization time step that we choose here equal to AT'. We then
introduce intermediate initial conditions denoted as )‘ﬁ at every times (#;)n=0,... N—1
that are updated iteratively (index k). Suppose that these values (Aﬁ) are known at
step k. Denote by G, (A,;) and F;,(),) coarse and fine solutions of (3.3) at time
with A, as initial value at time #,. The update is done according to the following
iteration:
)\]:li% - gn ()»l:,Jrl) + ]:n ()\ﬁ) - gn (Aﬁ)

The idea we follow consists in merging this procedure with Algorithm 4, i.e., doing
some parareal iterations at each iteration of our algorithm.

7.2 Algorithm

We now give details on the resulting procedure. Since the evolution equations de-
pend on the control, we replace the notations G, (1,) and F,,(1,) by G,, (A, v,) and
Fn(An, vy) respectively. As we need backward solvers to compute p, see (2.3), we
also introduce Q,, (Un+1) and ]-"n (n+1) to denote coarse and fine solutions of (3.4)
at time #, with p,1 as initial value for the backward problem (given at time #,41).
Note that these backward solvers F,, (resp: G,,) do not depend on the control.
We describe in the following the principal steps of an enhanced version of
the SITPOC algorithm. We name it “PITPOC” as Parareal Intermediate Targets for
Parallel optimal Control.

Algorithm 5 (PITPOC) Denote by vk = U|k1 Consider a control (vg)nzo,wN_l,

initial values (Ag)nzo .~ through forward scheme 20 nil = =G,09 vo), final values

n’
(/Lg)nzl ,,,,, ~ through backward scheme un = gn (MnH).

Suppose that, at step k one knows vk, (Aﬁ)n:o ,,,,, N and (uﬁ)nzl,_”N. The com-
putation of v 1, (A1), o and (uk+1),—1._ w is achieved as follows:

I. Build the target trajectory ( X,’f)nzl ~ according to a definition similar to (3.1):

,,,,,

k k k
n=An — M

ne
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II. Solve approximately the N sub-problems (3.2) in parallel. Forn =0, ..., N —1,
denote by vk+1 the corresponding solutions.

III. Define vk+1 as the concatenation of the sequence (f)ﬁ“)n:o’_“,;\z_l.
IV. Compute (A&™),—o,... N> (uk™)u=1...n by:

)\ﬁi} _gn()\kﬂ ~k+1)+f ( k ~k+1) gn( )
i = Gn (1) + Faltngr) = G i 0)-
V. Define v**! and (A5*1), o v
o = (1 05k 4 0k kT
AT = (1 - %)k - okak T,

where 6% is defined in order to minimize
1 - T
S10=698 +0 T sl 5 [ 0=t 04854 0 ar

VI. Set k =k + 1 and return to 1.

8 Numerical Results

In this section, we test the efficiency of our method and illustrate its robustness.
More results can be found in [10].

8.1 Setting

We consider a 2D example, where §2 = [0, 1] x [0, 1] and 2, = [%, %] X [%, %]. The
parameters related to our control problem are 7 = 6.4, @ = 1072 and v = 1072,
The time interval is discretized using a uniform step 8¢ = 1072, and an Implicit-
Euler solver is used to approximate the solution of (2.2)—(2.3). For the space
discretization, we use PP finite elements. Our implementation makes use of the
freeware FreeFem [9] and the parallelization is achieved thanks to the Message
Passing Interface (MPI) library. The independent optimization procedures required
in Step II are simply carried out using one iterate of an optimal step gradient
method.

8.2 Influence of the Number of Sub-intervals

In this section, Step II of Algorithm 4 and Algorithm 5 are achieved by using one
step of an optimal step gradient method. We first test our algorithm by varying
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Fig. 2 Decaying cost functional values according to the multiplication operations count with re-
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the number of sub-intervals. The evolution of the cost functional values are plotted
with respect to the number of iteration (Fig. 1), the number of matrix multiplication
(Fig. 2) and the number of wall-clock time of computation (Fig. 3). We first note that
Algorithm 4 actually acts as a preconditioner, since it improves the convergence rate
of the optimization process. The introduction of the intermediates targets allows to
accelerate the decrease of the functional values, as shown in Fig. 2(A). Note that
this property holds mostly for small numbers of sub-intervals, and disappears when
dealing with large subdivisions. This feature is lost when considering Algorithm 5,
whose convergence does not significantly depend on the number of sub-intervals
that is considered, see Fig. 2(B).

On the contrary, Algorithm 5 achieves a good acceleration when considering the
number of multiplications involved in the computations. The corresponding results
are shown in Fig. 2, where the parallel operations have been counted only once. We
see that Algorithm 5 is close to the full efficiency, since the number of multiplica-
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Fig. 4 sITPOC algorithm with 4 subdivisions (A) and 16 subdivision (B): variation of the number
of (lower/local) inner-iterations £max

tions required to obtain a given value for the cost functional is roughly proportional
to %

We finally consider the wall-clock time required to carry out our algorithms.
As the main part of the operations involved in the computation consists in matrix
multiplications, the results we present in Fig. 3 are close to the ones of Fig. 2.

8.3 Influence of the Number of Steps in the Optimization Method
in Algorithm 4

We now vary the number £max of steps of the gradient method used in Step II of the
Algorithm 4. The results are presented in Fig. 4. Subdivisions of N =4 and N = 16
intervals are considered. In both cases, we see that an increase in the number of
gradient steps improves the preconditioning feature of that algorithm. However, we
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also observe that this strategy saturates for large numbers of gradient steps which
probably reveals that the sub-problems considered in Step II are practically solved
after 5 sub-iterations.
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sidered, and a uniqueness and existence result of viscosity solution is analyzed.
While the notion of viscosity solution is by now well known, the question of unique-
ness of solution, when the Hamiltonian is discontinuous, remains an important issue.
A uniqueness result has been derived for a class of problems, where the behavior
of the solution, in the region of discontinuity of the Hamiltonian, is assumed to be
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Consider a collection of Hamilton—Jacobi—Bellman (HJB) equations

{ —ou(t,x)+ H;(x, Du(t,x))=0, forte(0,T), x € £2;, (D)

u(T,x) =¢(x), for x € £2;,

with the different Hamiltonians H; satisfying standard assumptions, and where ¢ :
R? — R is a Lipschitz continuous function. We address the question to know what
condition should be considered on the interfaces (i.e., the intersections of the sets
£2;) in order to get the existence and uniqueness of solution, and also what should
be the precise notion of solution.

In order to identify a global solution satisfying (1.1) on each subdomain £2;, one
can define a global HIB equation with the Hamiltonian H defined on the whole R¢
with H(x, p) = H;(x, p) whenever x € £2;. However, H can not be expected to be
continuous and the definition of H on the interfaces between the subdomains £2; is
not clear.

The viscosity notion has been introduced by Crandall-Lions to give a precise
meaning to the HJ equations with continuous Hamiltonians. This notion has been
extended to the discontinuous case by Ishii (see [14]), and later to the case where
the Hamiltonian is measurable with respect to the space variable (see [7]). The main
difficulty remains the uniqueness of viscosity solution when the Hamiltonian is not
continuous.

In [16], a stationary HJ equations with discontinuous Lagrangian have been stud-
ied where the Hamiltonian is the type of H(x, p) + g(x) with continuous H and
discontinuous g. A uniqueness result is proved under rather restrictive assumptions
on g. In [7], the viscosity notion has been extended for the HJ equations with space-
measurable Hamiltonians, and a uniqueness result has been established under a
transversality assumption. Roughly speaking, this transversality condition amounts
saying that the behavior of the solution on the interfaces is not relevant and can be
ignored. In the present work, we will consider some more general situations where
the transversality condition may not be satisfied. Our aim is to derive some junc-
tion conditions that have to be considered on the interfaces in order to guarantee the
existence and uniqueness of the viscosity solution of (1.1).

Let us mention that the first work dealing with the case where the whole space
is separated into two subdomains by one interface has been studied in [4]. In the
context, general results on the viscosity sense and uniqueness of solution are ana-
lyzed. Even though the problem in [4] considers the problem of a steady equation,
the paper shares the same difficulty as the ones we are presenting here. In the present
work, our approach is completely different from the one used in [4] and seems to be
easy to generalize for two or multi-domains problems. Other papers related to the
topic of HIB equations with discontinuous Hamiltonians are [1, 13], where some
HIJB equations are studied on networks (union of a finite number of half-lines with
a single common point), motivated by some traffic flow problems. An inspiring re-
sult is the strong comparison principle of [13] leading to the uniqueness result by
considering a HJ equation on the junction point.

In the present work, we will investigate the junction conditions on the interfaces.
For this, by using the Filippov regularization of the multifunctions F;, we shall in-
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troduce a particular optimal control problem on R¢. The main feature of this control
problem is that its value function is solution to the system of (1.1). By investigating
the transmission conditions satisfied by the value function on the interfaces between
the subdomains £2;, we obtain the equations which are defined on the interfaces.
Then the system (1.1) is completed by these equations on the interfaces and the ex-
istence and uniqueness of solution is guaranteed. No transversality requirement is
needed in this paper. The main idea developed here follows the concept of Essen-
tial Hamiltonian introduced in [5], and provides a new viscosity notion that is quite
different from the notion of Ishii [14]. This new definition gives a precise meaning
to the transmission conditions between £2; and provides the uniqueness of viscosity
solution.

The paper is organized as follows. In Sect. 2, the setting of the problem is de-
scribed and the main results are presented. Section 3 is devoted to the link with
optimal control problem and the study of the properties of the value function, and
the proofs for the main results are given in Sect. 4.

2 Main Results

2.1 Setting of the Problem

Consider the following structure on R4: given m € N, let {§21, ..., £2,,} be a finite
collection of C2 open d-manifolds embedded in R4. For each i = 1,...,m, the
closure of £2; is denoted as £2;. Assume that this collection of manifolds satisfies
the following:

(i) RI=UL,2; and 2,N2;=0 wheni#j, i, je{l,...,m});

H1 =~
(HI) (i) Each £2; is proximally smooth and wedged.

The concepts of proximally smooth and wedged are introduced in [9]. For any set
2 C R4, we recall that £2 is proximally smooth means that the signed distance
function to £2 is differentiable on a tube neighborhood of £2. £2 is said to be wedged
means that the interior of the tangent cone of £2 at each point of £2 is nonempty.
The precise definitions and properties are presented in Appendix B.

Let ¢ : RY — R be a given function satisfying:

(H2) ¢ is a bounded Lipschitz continuous function.
Let T > 0 be a given final time, for i = 1, ..., m, consider the following system

of Hamilton—Jacobi (HJ) equations:

—ou(t,x)+ H;(x, Du(t,x)) =0, forte (0,T), x € £2;,

(2.1)
u(T,x)=¢@(x), for x € £2;.

The system above implies that on each d-manifold £2;, a classical HJ equation is
considered. However, there is no information on the boundaries of the d-manifolds
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Fig. 1 A multi-domain in 1d

c® ~
tal

Q Q,

which are the junctions between §2;. We then address the question to know what
condition should be considered on the boundaries in order to get the existence and
uniqueness of solution to all the equations.

In the sequel, we call the singular subdomains contained in the boundaries of
the d-manifolds the interfaces. Let £ € N be the number of the interfaces and we

denote I'j, j =1, ..., £ the interfaces which are also open embedded manifolds with
dimensions strictly smaller than d. Assume that the interfaces satisfy the following:

O RI=UL 200U T, TiNLe=0, j#k, jk=1,....¢
(i) IfFjﬂﬁi#VJ, then]"jgﬁi, fori=1,...,m, j=1,...,¢,

(i) If IxNT;#9, then [k CT';, forjke{l,..., t};

(iv) Each " j is proximally smooth and relatively wedged.

(H3)

For any open embedded manifold I" with dimension p <d, T is said to be relatively
wedged if the relative interior (in R?) of the tangent cone of I" at each point of I
is nonempty, see Appendix B for the precise definition.

Example 1 A simple example is shown in Fig. 1 withd =1, m =2 and £ = 1. Here
R=8£,UTIU&$, with

Q2 ={x:x<0}, $2={x:x>0}, I ={0).

Note that £21, §£2, are two one dimensional manifolds, and the only interface is the
zero dimensional manifold I7.
Other possible examples in R? are depicted in Fig. 2.

__ We are interested particularly in the HJ equations with the Hamiltonians H; :
£2; x RY > R,i=1,...,m of the following Bellman form: for (x, g) € £2; x RY,

Hi(x,q)= sup {—p-q},
PEF;(x)

I
Q, ! Q,
1“2 r4 X
Of's
Qy I, Q

Fig. 2 Other possible examples in R>
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where Fj : 2; ~ R4 are multifunctions defined on 2, and satisfy the following
assumptions:

(i) Vxe$;, F;(x)isanonempty, convex, and compact set;
(i)  F; is Lipschitz continuous on £2; with respect to the

(H4) Hausdorff metric;
(iii) 3w >O0sothat max{|p|:pe Fi(x)} < u(l + ||x])Vx € 2;;
(iv) 38> 0sothat Vx e $2;, B0, 1) C F;(x).

The hypothesis (H4)(i)—(iii) are classical for the study of HIB equations, whereas
(H4)(iv) is a strong controllability assumption. Although this controllability as-
sumption is restrictive, we use it here in order to ensure the continuity of solutions
for the system (2.1). The continuity property plays an important role in our analysis,
but it can be obtained under weaker assumption than (H4)(iv), see [15].

Remark 2.1 For the simplicity, we define the multifunction F; on £2;. In fact, if F;
is only defined on £2; and satisfies (H4), it can be extended to the whole £2; by its
local Lipschitz continuity.

2.2 Essential Hamiltonian

The main goal of this work is to identify the junction conditions that ensure the
uniqueness of the solution for the HJ system (2.1). In [7], the uniqueness of the
solution of space-measurable HJ equations has been studied under some special
conditions, called “transversality” conditions. Roughly speaking, this transversal-
ity condition would mean, in the case of problem (2.1), that the interfaces can be
ignored and the behavior of the solution on the interfaces is not relevant. Here we
consider the case when no transversality condition is assumed and we analyze the
behavior of the solution on the interfaces.

First of all, in order to define a multifunction on the whole R?, an immediate idea
is to consider the approach of Filippov regularization [11] of (F;);=1.....m. For this
consider the multifunction G : R? ~» R¥ given by:

.....

VxeRY, G(x):=co{Fi(x):iefl,....,m}x e}

G is the smallest upper semi-continuous (usc) envelope of (F;);=1,.. . such that
G(x) = F;j(x) for x € £2;. Consider the Hamiltonian associated to G:

Hg(x,q)= sup {—p-q}.
peG(x)

If Hg (-, q) is Lipschitz continuous, then one could define the HIB equations on the
interfaces with the Hamiltonian Hg and the uniqueness result would follow from

the classical theory. However, G is not necessarily Lipschitz continuous and the
characterization by means of HIJB equations is not valid, see [10].
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The next step is to define the multifunctions on the interfaces I';. We first recall
the notion of tangent cone. For any C 2 smooth C € R? with 1 < p <d, the tangent
cone 7¢(x) at x € C is defined as

To(x) = {v € R? : liminf

t—0t

d, t
Mzo},

wherg dc(+) is the distance functionto C. For j =1, ..., £, we define the multifunc-
tion G : I'j ~ R? on the interface I'; by

Vxerlj, Gj(x)=Gx) NTrx).

Note that 77 (x) agrees with the tangent space of I'; at x, and the dimension of

Tr; (x) is strictly smaller than d. On G j we have the following regularity result for
which the proof is postponed to Appendix A.

Lemma 2.2 Under the assumptions (H1), (H2) and (H4), éj(.) (L~ RY is lo-
cally Lipschitz continuous on I';.

Through this paper, and for the sake of simplicity of the notations, for k =
1,...,m+ £ we set

2, fork=1,...,m;

My =
Iy, fork=m+1,.... m+4,

and we define a new multifunction F"¢ : R" ~» R" by

FIev(x) = Ijk(x) forx e My, k=1,...,m;
Gi_m, forxeMp, k=m+1,...,m+L.

In all the sequel, we will also need the “essential multifunction” F£ which will be
used in the junction conditions:

Definition 2.3 (The essential multifunction) The essential multifunction F E. R4 s
R? is defined by

FE(x):= U {F,(E(x):xemk}, Vx € R?,
ke{l,....m+t}

where F, kE s M~ R? is defined by

FE(x)=F"(x)n Tag, (%), forx € M.
FE is called essential velocity multifunction in [5]. According to the definition,

FE (x) is the union of the corresponding inward and tangent directions to each sub-
domain near x. We note that

FE|M[:F,-, fori=1,...,m, and FE(x)gG(x), for x € RY.
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Example 2 Suppose the following dynamic data for the domain in Example 1:
1 1
Fi(x)= —5,1 , VYxef2;, and F(x)= —1,5 . VYx e 2.

On this simple example, one can easily see that G and FF are different on the
interface {0}:

GO =[-1,1,  FEQ=|- 1
- ’ ’ - 25 2 .
Now, define the “essential” Hamiltonian HZ : R¢ x R? — R by:

HE(x,q)= sup {-p-q}, Y(x.q) eR? xR’
pEFE(x)

‘We point out that on each d-manifold £2;, for each g € R4
HE(x, q) = Hi(x,q), wheneverx € £2;.

In general, HE is not Lipschitz continuous with respect to the first variable. Some
properties of HZ will be discussed in Sect. 3.

2.3 Main Results

We now state the main existence and uniqueness result.

Theorem 2.4 Assume that (H1)-(H4) hold. The following system:
—ou(t,x)+ H; (x, Du(t,x)) =0, forte(0,T), xe82;,i=1,...,m; (2.2a)
—oru(t,x) + HE(x, Du(t,x)) =0, forte(0,T),xelj, j=1,...,¢ (2.2b)
u(T,x)=g¢(x), forxeR?, (2.2¢)
has a unique viscosity solution in the sense of Definition 2.6.

Note that the system (2.2a)—(2.2c) can be rewritten as

—du(t,x)+ HE(x, Du(t,x)) =0, forte(0,T), x e RY,
u(T,x) =), forx e RY,

which is an HJB equation on the whole space with a discontinuous Hamiltonian
HE.

Before giving the definition of viscosity solution, we need the following notion
of extended differentials.
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Definition 2.5 (Extended differential) Let ¢ : (0, T) x R? — R be a continuous
function, and let M C R? be an open C? embedded manifold in R?. Suppose that
¢ € CL((0, T) x M). Then we define the differential of ¢ on any (t, x) € (0, T) x M
by

Vo (t, x) = lim (qbt(t, Xn), Do (2, x,,)).

Xp—>X,Xp €M

Note that V¢ is continuous on (0, 7) x ./\_/l the differential defined above is
nothing but the extension of V¢ to the whole M.

Definition 2.6 (Viscosity solution) Let u : (0, T] x RY - R be _a bounded local
Lipschitz continuous function. For any x € RY, let I(x) := {i, x € M;} be the index
set.

(i) We say that u is a supersolution of (2.2a)—(2.2b) if for any (to, x9) € (0, T) x
RY, ¢ e cl(, 1) x Rd) such that u — ¢ attains a local minimum on (ty, xo),
we have

— g1 (t0, x0) + H (x0, Déh (20, x0)) > 0.

(i1) We say that u is a subsolution of (2.2a)—(2.2b) if for any (to, xo) € (0, T) x R,
any continuous ¢ : (0, T) x R — R with ?@l0,1yxM, being C! for any k €
I(x) such that u — ¢ attains a local maximum at (tg, xg) on (0, T) x My, we
have

—qr+ sup {—=p-qx} =0, with(q1,qx) = Vg ¢ (10, x0).
PEF (x0)

(iii) We say that u is a viscosity solution of (2.2a)—(2.2¢c) if u is both a supersolution
and a subsolution, and u satisfies the final condition

u(T,x)=¢(x), Vxe RY.

2.4 Comments

The problem (2.1) is formally linked to some hybrid control problems where the
dynamics depend on the state region. Theorem 2.4 indicates a new characterization
of the value function of hybrid control problems without transition cost. More details
are presented in Sect. 3.

Another application related to the addressed problem in this paper is the traf-
fic flow problems where the structure of multi-domains is composed by one-
dimensional half-lines and a junction point. On each half-line an HJ equation is
imposed to describe the density of the traffic and it is interesting to understand what
happens at the junction point. See [13] for more details.

A similar topic with one interface (hyperplane) separating two subdomains has
been studied in [4]. The work [4] deals with an infinite horizon problem which
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leads to the stationary HJB equations with running cost. In this context, a complete
analysis of the uniqueness of solutions for (2.1) is provided in [4].

In the present work, we consider a more general situation where the intersection
of the domains are interfaces with different dimensions from d — 1 to zero. In order
to focus only on the difficulty arising from this general structure, we consider a time-
dependent equations without running cost. The presence of running costs arises to
further difficulties that will be addressed in [15].

Optimal control problems on stratified domains have been studied by Bressan—
Hong [6] and Barnard—Wolenski [5]. The stratified domains are the multi-domains
provided with dynamic data on each subdomain under some structural conditions.
The work [5] focuses on the flow invariance on stratified structure. The junction
condition established in our work is inspired by the notion of essential dynamics
introduced in [5].

3 Link with Optimal Control Problems

Recall that for the classical optimal control problems of the Mayer’s type, the value
function can be characterized as the unique viscosity solution of the equations of
the type (2.1) with Lipschitz continuous Hamiltonians. In our settings of problem,
the multifunctions F; are defined separately on £2;. A first idea would be to con-
sider the “regularization” of F;. However, the regularized multifunction G is only
usc in general, and this is not enough to guarantee the existence and uniqueness
of solution for (2.1). So in our framework, in order to link the Hamilton—Jacobi
equation with a Mayer’s optimal control problem, we need to well define the global
trajectories driven by the dynamics (F;);=1,...». Consider the following differential
inclusion

.....

v(s) € G(y(s)), forse(t,T), 3.1
() ==x.

Since G is usc, (3.1) admits an absolutely continuous solution defined on [z, T'].
For any (¢, x) € [0, T] x RY, we denote the set of absolutely continuous trajectories
by

Sie,m1(x) == {y,,x, Vr.x satisfies (3.1)}.

Now consider the following Mayer’s problem

o(t, ) :=min{g(y(T)), () € Spr.71(0)}. (32)

Since G is usc and convex, the set S|, 71(x) of absolutely continuous arcs is com-
pact in C (¢, T; R?) (see Theorem 1, [2] pp. 60). And then the problem (3.2) has an
optimal solution for any ¢ € [0, T], x € R,

As in the classical case, v satisfies a Dynamical programming principle (DPP).
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Proposition 3.1 Assume that (H1)—(H3) hold. Then for any (t, x) € [0, T] x R? the
following holds.

(i) The super-optimality. 3y, , € S;; 71(x) such that

v(t, x) > v(t +h, Y (t +h)), forh e[0, T —t].
(ii) The sub-optimality. Vy; . € S|;,71(x) such that

v(t,x) < v(t +h, oy x(t +h)), forhel0, T —t].

An important fact resulting from the assumptions (H2) and (H4)(iv) is the local
Lipschitz continuity of the value function v.

Proposition 3.2 Assume that (H1)-(H4) hold. Then the value function v is locally
Lipschitz continuous on [0, T] x RY.

Proof For any t € [0, T'], we first prove that v(z, -) is locally Lipschitz continuous
on RY. Let x, z € R?, without loss of generality, suppose that

v(t, x) > v(t, 2).
There exists y, , € S|y, 71(z) such that
v(t,2) = ¢ (¥r.:(T)-

We set

:||X—Z|| () =x 48 7—x

h ,
) llz — x|l

(s —1t) forselt,t+h].

Note that £(¢) = x, £(¢ + h) = z. By the controllability assumption (H4)(iv), we can
define the following trajectory

£(s), fors e [t,t + hl,

Vr,x(8) = YI,Z(S —h), forset+h,T].

By denoting L, > 0 the Lipschitz constant of ¢, we have

(t,x) = v(t,2) < (5.2 (T)) — (3, (T))
<Ly |%x(T) =75, (D

<Ly|¥ (T —h) =7, (D)

LylGll

= LylGllh = llx =zl

where we deduce the local Lipschitz continuity of v(¢, -).



Hamilton—Jacobi—-Bellman Equations on Multi-domains 103

Then for x € RY, we prove the Lipschitz continuity of v(-, x) on [0, T]. For any
t,s € [0, T], without loss of generality suppose that t < s. By the super-optimality,
there exists y” € S|, 71(x) such that

v(t,x) = v(s, y0p(s)).
Then
o, x) —v(s, x)| =|v(s, y7(5)) — v(s,.0)| < LolIGll (s — 1),

where L, is the local Lipschitz constant of v(s, -). And the proof is complete. [

Remark 3.3 Assumption (H4)(iv) plays an important role in our proof for the Lips-
chitz continuity of the value function. However, it is worth mentioning that the Lip-
schitz continuity can also be satisfied in some cases where (H4)(iv) is not satisfied.
In Example 1, if one take F; = F> Lipschitz continuous dynamics, then the value
function will be Lipschitz continuous without assuming any controllability prop-
erty. For multi-domains problems, some weaker assumptions of controllability are
analyzed in [15].

The following result analyzes the structure of the dynamics and makes clear the
behavior of the trajectories.

Proposition 3.4 Suppose y(-) : [t, T1— R< is an absolutely continuous arc. Then
the following are equivalent.

(1) y() satisfies (3.1);
(ii) Foreachk=1,...,m+ ¢, y(-) satisfies y(t) = x and

y(s) € F,?ew(y(s)), a.e. whenever y(s) € Mg,
(iii) y(-) satisfies

¥(s) e FE(y(s)) forse(t,T),
y() =x.

Proof 1t is clear that (ii) implies (i) since F;"*"(x) € G(x) whenever x € M. So
assume that (i) holds, and let us show that (ii) holds as well.

The proof is essentially the same as in Proposition 2.1 of [5]. For any k =
L,....m+ ¢, let Jp:={s €[t,T]: y(s) € My}. Without loss of generality, sup-
pose that the Lebesgue measure mes(Ji) # 0. We set

fk = {s € Jy : y(s) exists in G(y(s)) and s is a Lebesgue point of Jk}.
It is clear that Ji has full measure in Ji. For any s € Ji, then being a Lebesgue

point implies that there exists a sequence {s,} such that s, — s as n — oo with
s # s, € Ji for all n. Since y(s,) € My, we have
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Y(su) — ¥(s)
Sp— 8

€ Tam, ().

y(s) = lim
n—>oo
Then by the definition of F;'*", we have

¥(s) € G(y()) NTag, (v(5)) = F{ ((s)), Vs € Ji,

which proves (ii).
It is clear that (ii) = (iii) = (i) since F}"*"(-) C FE(:) € G(-), which ends the
proof. g

Proposition 3.4 will be very useful in the characterization of the super-optimality
and the sub-optimality by HJ equations involving the essential Hamiltonian H .

3.1 The Supersolution Property

The following proposition shows the characterization of the super-optimality by the
supersolutions of HJ equations. This is a classical result since G is usc.

Proposition 3.5 Suppose u : [0, T] x RY — R is continuous. Then u satisfies the
super-optimality if and only if for any (19, x9) € (0,T) x R?, ¢ € C1((0, T) x R?)
such that u — ¢ attains a local minimum on (ty, xo), we have

—1 (10, x0) + Hc (x0, D¢ (to, x0)) > 0. (3.3)

Proof This is a straightforward consequence of Theorem 3.2 and Lemma 4.3 in [12]
(see also [3]). O

Due to the structure of the dynamics G illustrated in Proposition 3.4, it is possible
to replace G by F¥ to get a more precise HIB inequality since the set of trajectories
driven by G or FE is the same. But the difficulty here is that in general F£ is not
usc.

At first, we have the following result concerning the dynamics of the optimal
trajectories.

Lemma 3.6 Let y(-) € S;,11(x) be an absolutely continuous arc along which the
value function v satisfies the super-optimality. For any p € RY such that there exists
t, — 01 with % — p, by denoting co FE(x) the convex hull of FE(x) we have

p Eco FE(x).

The proof of Lemma 3.6 is presented in Appendix A. In the next theorem, we
will use the statement of Lemma 3.6 to show that the functions satisfying the super-
optimality condition is also a solution to a more precise HIB equation with H than
the HIB equation (3.3) with the Hamiltonian Hg even if F is not usc.
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Theorem 3.7 Suppose u : [0, T] x R? — R is continuous and u(T, x) = ¢(x) for
all x € R?. u satisfies the super-optimality if and only if u is a supersolution of
(2.2a)—(2.2¢), i.e. for any (9, x0) € (0,T) x RY, ¢ € C1((0, T) x R?) such that
u — ¢ attains a local minimum on (ty, xo), we have

—¢i(t0,x0) + sup {—p-D¢(ty, x0)} = 0.
peFE(xp)

Proof (=) Let yy, x, be the optimal trajectory along which u satisfies the super-
optimality. Then for any (¢, x9) € (0, T') X R?, ¢ € C1((0, T) x RY) such that u — ¢
attains a local minimum on (¢, xp), by the same argument in Proposition 3.5, we
obtain

1 _

—\@(to, x0) — @t » Y1o,x0 (10 =0,

h(¢>( )y —¢(to+h (to+h))) =0
ie.,

1

h
E /() [_¢f (to +Sv yto,xo(t() + S)) - D¢(t0 + S, )—}l‘o,xo (fO +S)) : yto,xo (IO + S)]dS 2 0

Up to a subsequence, let h, — 07 so that x,, := Yy, x, (fo + hy) satisfies % —p
for some p € R?. We then get

= (t0, x0) — p - D¢ (to, x0) = 0.
Lemma 3.6 leads to
p €co FE(xp). 3.4

Then we deduce that

—¢i(to,x0) + sup {—p-D¢(ty, x0)} = 0.

peco FE(xq)

By the separation theorem

—¢:(to. x0) + sup {—p- De(t0, x0)} = 0.
PEFE(xo)

(«=) For any (t9, xo) € (0, T) x R4, ¢ € CL((0, T) x RY) such that u — ¢ attains a
local minimum on (¢, xg), since u is a supersolution, we have

—¢i(t0,x0) + sup {—p-D¢(to, x0)} = 0.
peFE(xp)

Note that FE (xo) € G(xo), then we deduce that

—¢:(to. x0) + sup {—p- De(t0, x0)} = 0.
PEG(x0)

Then we deduce the desired result by Proposition 3.5. g
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3.2 The Subsolution Property

As mentioned before, if G is Lipschitz continuous, one can characterize the sub-
optimality by the opposite HIB inequalities:

—u(to, x0) + Hg (x0, Du(o, x0)) <0

in the viscosity sense. However, G is only usc on the interfaces. And the character-
ization using Hg fails because there are dynamics in G which are not “essential”,
which means for some p € G(x), there does not exist any trajectory coming from
x using the dynamic p. For instance in Example 2, at the point 0, G(0) = [—1, 1].
Consider the dynamic p =1 € G(0), if there exists a trajectory y starting from O
using the dynamic 1, y goes immediately into 2, and y is not admissible since 1 is
not contained in the dynamics F.

In the sequel, we consider the essential dynamic multifunction FZ to replace G
by eliminating the useless nonessential dynamics. Note that F£ in general is not
Lipschitz either. The significant role of F£ is shown in the following result.

Lemma 3.8 For any p € FE(x), there exists T > t and a solution y(-) of (3.1)
which is C' on [t, T] with y(t) = p.

Proof This is a partial result of in [5, Proposition 5.1]. For the convenience of reader,
a sketch of the proof is given in Appendix B. g

More precisely, Lemma 3.8 can be rewritten as:

Lemma 39 Letke{l,....m+4{},x € ﬂk. Then for any p € FkE(x), there exist
T >t and a trajectory of (3.1) y(-) which is C' on [t, ] with y()=pand y(s) €
My fors € [t, T].

The following two results give the characterization of sub-optimality by HJB
inequalities.

Proposition 3.10 Ler u : [0, T] x RY — R be locally Lipschitz continuous and
u(T, x) = (x) for all x € R¢. Suppose that u satisfies the sub-optimality, then u is
a subsolution of (2.2a)—(2.2¢) in the sense of Definition 2.6.

Proof Given (ty, xo) € [0, T] x RY, for any k € l(xg), p € FkE (xp), by Lemma 3.9,
there exists & > 0 and a solution y() of (3.1) C! on [1, t0 + h] with y(tg) =
p, ¥(to) = xo and y(s) € My, Vs € [tg, to + h]. By the sub-optimality of u

u(ty, x0) <ufto+h, y(to + h)).

For any ¢ € C%((0, T) x RY) N C'((0, T) x My) such that u — ¢ attains a local
maximum at (¢y, xg) on (0, T') x My, we have

u(to +h, y(to+h)) — ¢(to + h, y(to + h)) < ulto, x0) — ¢ (10, x0).
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Then we deduce that

1
n (¢ (10, x0) — ¢(t0, y(to + h))) <O.
By taking 7 — 0 we have

—qi = p-qx <0, where p € F¥ (x0), (qr,4x) € Vg, (10, x0),

—q:+ sup {—p-q:} =<0 O
PEFkE(XO)

We present a precise example to illustrate that HZ is the proper Hamiltonian for
the subsolution characterization of the value function.

Example 3 Consider again the same 1d structure as in Example 1 and Example 2,
i.e. R= £, U2, U with

Ql =(_O0,0), 92:(01 +OO)7 FI :{0}3

and the dynamics
1 1
Fi(x)= —5,1 , Vxef, and F(x)= —1,5 , Vxef2.

At the point 0, the convexified dynamics G(0) = [—1, 1] and the essential dynam-
ics FE(0) = [—%, %]. Let T > 0 be a given final time and the final cost function
¢2(x) = x. Then from any initial data (¢, x) € [0, T] x R, the optimal strategy is to
go on the left as far as possible. Thus the value function is given by
x—5(T—1) x=0,
v2(t, ) ;= min{ga (e, (1))} = 1 —3(T =1 —x) 0<x<T,
x—(T—-1) x>T —t.

At the point (t,x) = (0,0), 3v2(0,0) = 3, Dv2(0,07) = 1, Dv(0,0%) = 1,
DT v;(0,0) = [}, 1]. Then we have

—0,12(0,0)+ max {—p-DTv2(0,00}=0=<0,
peFE(0)

while

1
—3;v2(0,0 —p-DTu(0,0)} == > 0.
12 ( )+p1;13§»{ p-DTv2(0,0)} 5>

We see that the subsolution property fails if we replace F£ by G which is larger.
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Proposition 3.7 indicates that any function satisfying the sub-optimality is a sub-
solution of (2.2a)—(2.2c). The inverse result needs more elaborated arguments. The
difficulty arises mainly from handling the trajectories oscillating near the interfaces,
i.e. the trajectories cross the interfaces infinitely in finite time which exhibit a type
of “Zeno” effect. The proofs of Theorem 3.12 and of Proposition 3.11 contain de-
tails on how to construct the “nice” approximate trajectories to deal with Zeno-type
trajectories.

At first, we give the following result containing the key fact of Zeno-type trajec-
tories.

Proposition 3.11 Let u be a Lipschitz continuous subsolution of (2.2a)—(2.2c). Sup-
pose My is a subdomain and M is a union of subdomains with My C M. As-
sume M has the following property: for every trajectory y(-) of (3.1) defined on
[a, b] C [t, t + h] with y(-) € M, we have

u(a, y(a)) < u(b, y(b)). 3.5)

Then for any trajectory y(-) of (3.1) defined on [a, b] C [t, t + h] lying totally within
My UM, we have

u(a, y(@) <u(b, y()).

Proof Here we adapt an idea introduced in [5] in a context of stratified control
problems. Let y(-) be a trajectory of (3.1) with y(-) € Mj U M satisfying (3.5).
Without loss of generality, suppose that y(a) € My and y(b) € My. By (H3), we
have My "M =@. Let J :={s € [a, b] : y(s) ¢ My}, which is an open set and so
can be written as

J=J @, bn)

n=1

where the intervals are pairwise disjoint. For a fixed p, we set

p
Jp = U(ans bu),

n=1

which after re-indexing can be assumed to satisfy
by:=a<ai<bi<ay<by<---<ap<bp,=<apy:=>b.
Choose p sufficiently large so that

r
meas(.]\.]p) < m,
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where ||G || is an upper bound of the norm of any velocity that may appear, and r > 0
is given by

ri= sei[gof’b] Hy(s) — w”

we M\ My
Forn=1,...,p, y(s) € M for s € (ay, b,). Let ¢ > 0 small enough such that
lan + &, by — €] C (an, by), then by (3.5)
u(an + ¢, y(an +8)) < u(b,, —&,y(b, — 8)).

Taking ¢ — 0 and by the continuity of «# and y(-), we deduce that

M(ana Y(an)) = u(bnv Y(bn))~

Next we need to deal with y(-) restricted to [b,, a,+1]. Forn =0, ..., p, by Propo-
sition 3.4 y(s) € F'"(y(s)) for almost all s € [b,,ay4+1]\J. Forn =0, ..., p, set
&, = meas([b,, ay,4+1] N J), and note that 25:0 &n = meas(J\Jp). We calculate
how far y(-) is from a trajectory lying in M with dynamics F;'*" by

An+1
£, ;:/b dist(y(s), F{"(y(s)))ds < 2||Gl&n.

By the Filippov approximation theorem (see [8, Theorem 3.1.6] and also [9, Propo-
sition 3.2]), there exists a trajectory z, (-) of F;"*" defined on the interval [by, aj+1]
that lies in My, with z,,(b,) = y(b,) and satisfies

lzn(@ns1) — y(@ansn)| < e-@1=P0g, < 2||Glet@nr17bn)g,. (3.6)

Since u is subsolution of (2.2a)—~(2.2c), then for any x € My, note that F}"*"(x) C
Tam, (x) and Ty, (x) = ka (x) by Definition 2.6

—0p(t,x)+ sup {—p-De(t,x)} <0 3.7
PEF (x)

with ¢ € €20, T) x R N CH((0, T) x My) and u — ¢ attains a local maximum
at (¢, x) on (0, T) x M. Since z,(-) lies in My, on [b,, a,+1] driven by the Lips-
chitz dynamics F;'*", then (3.7) implies that the sub-optimality of u is satisfied on
Zn by apia1> 1-€-

M(bns Zn (bn)) = M(an+17 Zn (al’H-l))'
Then by (3.6) we have
u(bna Y(bn)) = “(bna Zn (bn)) = u(an—Ha <n (an-H))
<u(@ng1. Y(ans1)) + 2Ly ||G [l @1 =P,
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We set e” := meas(J\Jp), and we deduce that

u(a, y(@) <u(ar, y(@)) + 2Ly || Glle"@~0g,

<u(az, y(@2)) + 2L, ||Glle™ @77 (e) + &2)

<u(aps1, y(@ps1)) + 2Ly ||Glle"@rs1 =000 gP

u(b, y(b)) + 2L, |G|l O~V er.

By taking p — +00, we have ¢” — 0 and the desired result is obtained. U

Theorem 3.12 Suppose u is a locally Lipschitz continuous subsolution of (2.2a)—
(2.2¢). Then u satisfies the sub-optimality, i.e. for any trajectory y(-) € Si;,11(x),
one has

w(t,x) <u(t+h,yt+h), Yhel0,T —1].

Proof Let M be a union of subdomains (manifolds or interfaces). Let d M €
{0, ..., d} be the minimal dimension of the subdomains in M. We claim that for
any h € [0, T — ¢] and any trajectory y(-) of (3.1) lying totally within M, we have

u(a, y(a)) < u(b, y(b)), for any [a, b] C [¢,t + h]. (3.8)

The proof of (3.8) is based on an induction argument with regard to the minimal
dimension d a4:

(HR) ford € {1,...,d}, suppose that for any M with d g > d and for any trajec-
tory y(-) that lies within M, (3.8) holds.

Step (1): Let us first check the case when d = d. In this case, &M =d, then
M is a union of d-manifolds which are disjoint by (H1). For any trajectory y(-)
of (3.1) lying within M, since y(-) is continuous, y(-) lies entirely in one of the
d-manifolds, denoted by £2;. The subsolution property of u implies that

—0uu(t,x)+ sup {—p-Du(t,x)} <0
PEFi(x)

holds in the viscosity sense. Since the dynamics on £2; is F; which is Lipschitz
continuous, then by the classical theory u satisfies the sub-optimality along y(-) and
(3.8) holds true.

Step (2): Now assume that (HR) is true for de {1,...,d}, and let us prove that
(HR) is true for d — 1. In this case, the minimal dimension of subdomains in M
is dyg = d—1,de{l,...,d}. As an induction hypothesis, assume that for any
trajectory that lies within a union of subdomains each with dimension greater than
d, then (3.8) holds. Three cases can occur.
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e If M contains only one subdomain, i.e. M = M) with dimension d  for some
k e{l,...,m + £}, then for any trajectory y(-) lying within My, the subsolu-
tion property of u implies that u satisfies the sub-optimality along y(-) since the
dynamics F'*" is Lipschitz continuous on M.

e If M contains more than one subdomain and M is connected, let M1, ..., M),
be all the subdomains contained in M with dimension daq. Then M =
M\(Uk 1M} is a union of subdomains with dimension greater than d. We

note that M) C M for each k =1, ..., p. Then by the induction hypothesis
and Proposmon 3.11, (3.8) holds true for any trajectory lying entirely within
Mu M. Then by applying Proposition 3.11 for Mu M/ and M), (3.8)
holds true for any trajectory lying entirely within MU MU /\/l/ . We continue
this process and finally we have (3.8) holds true for any trajectory lying entirely
within M = M JUP_ M}).

e If M is not connected, for any trajectory y(-) lying within M, since y(-) is con-
tinuous, then y(-) lies within one connected component of M. Then by the same
argument as above, (3.8) holds true for y(-). And the induction step is complete.

Finally, to complete the proof of the theorem, we remark that for any trajectory y(-)
of (3.1), by considering M = R4 with dy =0, takinga =t¢t,b=1t+ hin (3.8) we
have

w(t, x) <u(t+h,y@ +h)),

which ends the proof. d

4 Proof of Theorem 2.4

Since v satisfies the super-optimality and sub-optimality, by Theorem 3.7 and The-
orem 3.10 v is a viscosity solution of (2.2a)—(2.2c¢).
The uniqueness result is obtained by the following result of comparison principle.

Proposition 4.1 Suppose that u : [0, T] x RY — R is Lipschitz continuous and

u(T,x) =@(x) forany x € R,

(1) If u satisfies the super-optimality, then v(t,x) <u(t,x) forall (t,x) € [0, T] x
R4,

(1) If u satisfies the sub-optimality, then v(t,x) > u(t, x) for all (t,x) € [0, T] x
R4,

Proof (i) For any (¢, x) € [0, T] x R?, by the super-optimality of u, there exists a
trajectory y, , such that

ut,x) > u(T, 5, (7)) = (3, ().
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By the sub-optimality of v, we have

U(tv x) S U(T7 YI,)C(T)) = ¢(y17x(T))
Then we deduce that
v(t,x) <u(t, x).

(i) The proof is completed by the same argument by considering the super-
optimality of v and the sub-optimality of u. O

5 Conclusion

In this paper, we have studied the system (1.1) in a general framework of the multi-
domains with several interfaces. The existence and uniqueness result of the solution
is studied under some junction conditions on the interfaces. The latter are derived by
considering a control problem for which the value function satisfies the system (1.1)
on each sub-domain £2;. The analysis of this value function indicates the informa-
tion that should be considered on the interfaces in order to guarantee a continuous
solution of the system.

Acknowledgements The authors are grateful to Peter Wolenski and Antonio Siconolfi for many
helpful discussions.

Appendix A

Proof of Lemma 2.2 Note that although G is only usc on R¢, G is Lipschitz contin-
uous on I since G is the convexification of a finite group of Lipschitz continuous
multifunctions on I';. For any x € I';, there exists « > 0 and a diffeomorphism
g € CH1(RY) such that

B(x,a)NTj={x:g(x)=0} and Vg(y)#0, VyeB(x,a).

We can take g as the signed distance function to I'; for instance. Then there exists
B > 0 such that

Ve =8, VyeBx,a)nT;.

Forany w € G(x) N 'Trj (x), by the Lipschitz continuity of G there exists v € G(y)
such that

lw—vll < Lgllx =yl

where L¢ is the Lipschitz constant of G(-). Since w € Trj (x), we have

w-Vg(x)=0.
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Then
[v- Ve[ =[@-w) Ve | < LalVgllx =yl
Thus,
[v- Ve[ = v Ve | +[v- (Ve - V)|
< (LalIVgl +IGILY)lIx = yl,
where L;, is the Lipschitz constant of Vg(-). We consider the following three cases:

If v- Vg(y) =0, then v € T, (y) and we deduce that
we Gy)NTr;(y)+ Lgllx — ylIB(O, 1).
Ifv-Vg(y):=—y <0,let p:=8Vg(y)/IIVg()I, then by (H4)(iv),

peG(y) and p-Vg(y):=p=>88>0.

We set

q == p v+ NL

B+y Bty

theng - Vg(y) =0,ie.q € ij (y). And since G(y) is convex, we have g € G(y).
Then we obtain

’

lw—ql <llw—v|l+llv—gql
14

<Lgllx =yl + = lv—pll
B+y

LglIVgll +IIGIIL
Lg + 5B

<

/
gZMW)H—yW
where we deduce that

w e G(y)NTr;(y)+ Lix =yl BO, 1), (A.D)

with L:= L +2[GII(Lc Vgl + IGIILy)/8B.

If v- Vg(y) > 0, then by the same argument taking p = —5Vg(»)/lIVgM)ll,
(A.1) holds true as well.

Finally, (A.1) implies the local Lipschitz continuity of G(-) N 7}]. (-) on I'j with
the local constant L. O

Proof of Lemma 3.6 Fork=1,...,m+ £, we set

J={rel0,6,]:y(t) e M},

n

Wy = meas(],?),
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K(x) :={k:u} >0,¥n e N}.

For each k € K(x), we have x € M. Up to a subsequence, there exists 0 < A < 1
and p; € RY so that

n

" 1 [ .
t—k—>xk, > o me=1, —,,/ny(S)dS—H?k
n keK(x) M JJ¢

as n — +oc0. By Proposition 3.4 and the Lipschitz continuity of F;'*", we have

1
pr = lim —nf y(s)ds
n

n—oo I,Lk

: 1 new 1
C lim | — | F(ds+ — | Li|y(s) — x| B, 1)ds
n—oo l"Lk ‘II:I H’k lel

1
C lim |:F,?"W(x) + Li|| F|| |:—n/ sdsi|B(0, 1)] = Fy"(x).
n— o0 'uk Jkn

We then have

In
AR .
= Z nllm | ny(s)ds
keK(x) k JIE
= Y hape Y, M@ <Sco | FW).
keK(x) keK(x) keK(x)

Now set M := Ugek(x)Mk, and since y(t,) € M for all large n, we have p €
Txi(x). Then we obtain

pE (co U F,?ew(x)> N Trg(x).
keK(x)
The fact that F;'*"(z) € T, (z) whenever z € M implies

FLO () 0 Tigg () = FE" () N Tigg, ()

whenever x € M. Hence

p Eco U <F,§’ew(x)ﬂka(x)) =co FE(x). O
keK(x)
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Appendix B

We review the background in nonsmooth analysis required in our analysis. A closed
set C € R is called proximally smooth of radius 8 > 0 provided the distance func-
tion d¢ (x) := inf.c¢ ||c — x| is differentiable on the open neighborhood C+3B(0, 1)
of C. For any ¢ € C, we denote the Clarke normal cone by N¢(c). Recall the tangent
cone Tc(c) at ¢ € C is defined as

Te(e) = {v : liminf

t—0~

d, t
c(c;r v) :0}’

and in the case of C proximally smooth, equals the Clarke tangent cone as the neg-
ative polar of N¢(c):

veTele) <= (5,v) <0 VeeNe(o).

If M is an embedded C? manifold, C := M, and ¢ € M, then T¢(c) agrees
with the usual tangent space Tpaq(c) to M at ¢ from differential geometry (see
[9, Proposition 1.9]). If in addition M is proximally smooth, then for each x €
M, the tangent cone Tﬂ(x) is closed and convex, and thus has a relative inte-
rior denoted by r-int Tyz(x). Its relative boundary is defined as r-bdry Tyz(x) :=
g o\ r-int Typ(x).

Another key assumption on the multi-domains is each domain being relatively
wedged. A set C € RY is wedged (see [9, p.166]) if at every x € bdry C, intTa # V.
If C = M is the closure of an embedded manifold M, then C relatively wedged
means the dimension of r-int ka (x) is equal to dy.

The following result is [5, Lemma 3.1] and is the key geometrical ingredient that
permits the construction of boundary trajectories of (DI).

Lemma B.1 If x € M;\ M and v € r-bdry Tm(x), then there exists an index j

Sfor which M; C Vj, x e Mj, and v € TW(X)‘ Of course in this case, one has
dj < dk.

Proof See [5, Lemma 3.1]. Il
We finally give a sketch of the proof for Lemma 3.8.

Proof A key fact is that for any p € G(x) N r-int Tﬂk (x), there exist T > 0 and a
C! trajectory y(-) : [t, T] = My U {x} so that
y(@t)=x and y()=p. (B.1)

Let k be such that x € My and p € G(x) N ka ). If p € r-int ka (x), then the
result follows by the key fact (B.1). If p ¢ r-int Tﬂk (x), then p € r-bdry ’ka (x)

and hence by Lemma B.1, there exists another subdomain M ; C Mk with x e M j
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and p € ’ij x).If p € r-int Tﬂj (x), then the result follows from (B.1), otherwise

the argument just given can be repeated with k replaced by j. The process must
eventually terminate since the dimension is decreasing at each step. g
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Gradient Computation for Model Calibration
with Pointwise Observations

Ekkehard W. Sachs and Matthias Schu

Abstract Mathematical models for option pricing often result in partial differential
equations of parabolic type. The calibration of these models leads to an optimization
problem with PDE constraints and usually pointwise observations in the objective
function. Thus, the adjoint equation of this problem involves Dirac delta functions
and needs a special treatment from a numerical point of view. We show by means
of numerical results that also the order of discretizing and optimizing plays an im-
portant role.
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1 Introduction

The pricing of financial derivatives, e.g., European call options, plays an important
role in many finance applications. Thus, there is a vast literature on the theory and
numerics of option pricing, see, e.g., the following references for an introduction,
[8, 17] and [31].

The most famous option pricing model is the Black—Scholes model introduced
in [6] and [22]. Here, the price can be calculated via the solution of a partial differ-
ential equation.

A more advanced model considered in this article is based on so-called jump-
diffusion processes and leads to partial integro-differential equations (PIDE). Since
in general no closed-form solution is available, they have to be solved numerically,
leading to dense systems of equations that need a special treatment, see [2, 3, 27]
and [25].
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An important aspect regarding option pricing models is the proper choice of the
model parameters. From a mathematical point of view, this task leads to a con-
strained calibration problem, where model prices are compared with given mar-
ket prices in a least-square setting subject to the PIDE. In practice, market prices
are only available for certain options on a particular underlying. In the objec-
tive function of the calibration problem, these pointwise observations lead to the
use of Dirac delta functions in the gradient formulation using the adjoint calcu-
lus.

Establishing optimality conditions for the optimization problem, we have to
make a decision, whether to optimize or discretize first. This has been the topic
of papers for several decades starting in the early days of numerical analysis for
optimal control problems.

In contrary to the opinion of part of the research community, this article docu-
ments that there are cases when optimizing first leads to significantly better results in
terms of gradient approximations and a more exact calculation of the adjoint equa-
tion. The reason for this observation lies in the fact that formulating the optimality
conditions or calculating the gradient of the corresponding unconstrained problem
involves the adjoint equation. The pointwise observations in the calibration problem
show up in the adjoint equation in terms of Dirac delta functions. This could lead
problematic behavior of the numerical scheme and needs a special numerical treat-
ment. In contrast, optimizing first and choosing an appropriate numerical scheme
afterward gives consistently better results.

In Sect. 2 of this paper, we give a short introduction into the PIDE which occurs
in the pricing of options where jump-diffusion processes are the theoretical back-
ground model. In the second part of this section, we formulate the weak solution
of the PIDE for a localized version. We take a special look at the initial condition
which is not smooth and where the numerical results can be improved by the use of
Rannacher smoothing techniques. This observation will become important at a later
stage of the paper.

Section 3 contains the formulation of a calibration problem using a Dupire-like
forward PIDE. The following Sect. 4 contains the definition of an adjoint PIDE
and outlines the first-optimize-then-discretize approach. In Sect. 5 we consider the
first-discretize-then-optimize calculus. Both approaches are considered for the com-
putation of gradients, since this is an essential ingredient of any optimization algo-
rithm.

The final section contains numerical results and shows that the adjoint equation
contains very nonsmooth initial data. Without a smoothing technique like Rannacher
smoothing as illustrated in Sect. 2, the numerical results are useless. This shows the
importance of this technique in the framework of point observations.

The Rannacher smoothing technique has been considered for option pricing in
connection with adaptive schemes in [14]. A weak solution concept using pointwise
observations in parabolic differential equations has recently also been addressed
in [15].
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2 Option Pricing Models

The most famous option pricing model is the Black—Scholes model introduced in [6]
and [22]. Here, the price can be calculated via the solution of a partial differential
equation.

Since practitioners are aware of several shortcomings of this model (cf. [3, 9, 28]
and [11]), more advanced approaches have been introduced that can be grouped into
three main ideas (cf. [3]).

[12] and [11] proposed the so-called ‘local volatility models’. Here, the constant
volatility of the Black—Scholes model is replaced by a deterministic function of the
stock price S and the time ¢, o (¢, S).

Although there is no closed-form solution available as in the Black—Scholes case,
the model can be handled in a standard way from a numerical point of view. Since
o(t,S) is a function, we can fit the model precisely to many quoted call prices.
Beside these advantages, there are also some drawbacks. Especially, the fitting to
typical skews of the implied volatility for short-term calls requires an unrealistic
heavily twisting of the local volatility surface.

The second Black—Scholes generalization to mention is the ‘stochastic volatil-
ity model’. There are different concrete approaches by, e.g., [18, 30] and the most
famous by Heston (cf. [16]). The latter models the dynamics of the stock price by
a Brownian motion like the Black—Scholes model, but in addition, the volatility as
the driving force of the call price is modeled by a stochastic process, namely an
Ornstein—Uhlenbeck process. There are parameter combinations, where the implied
volatilities of the corresponding Heston prices show the typical skew or smile, that is
observed in market data. But often the correlation between stock price and volatility
has to be chosen unrealistically high to get the desired result. On the other hand, an
important advantage of the Heston model is the existence of a closed-form solution.

The third approach requires the introduction of a new stochastic process, since
the uncertainty is no longer modeled solely by a continuous Brownian motion. [23]
suggested to add random jumps as an additional source of uncertainty in order to
model also rare large market movements. This more general stochastic process com-
pared to the Brownian motion is called Lévy process.

The option pricing models based on general exponential Lévy processes can be
divided into two categories. One is called ‘jump-diffusion models’. Here, as pro-
posed by [23], jumps are added to the Brownian motion to model large movements
of the asset. The second type are so-called ‘infinite activity models’, where the
Brownian motion is omitted and more or less replaced by an infinite number of small
jumps. [4, 7] can be named as references for models of the last-mentioned type. In
this paper, we focus on jump-diffusion models driven by the following stochastic
differential equation

Ny
dS,=MS,_dt+GS,_dW,—i—S,_d(Z(eY-f — 1)), 2.1)
j=1

where o > 0. The first two parts on the right-hand side are equal to the Black—
Scholes model, a drift term and a Brownian motion. However, a third term is added,
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Fig. 1 Composition of a typical path of a jump diffusion process X; = ut +o W; + Z;.V’:] Y; used
to model the log-price

where jumps enter the process by a compounded Poisson process. Figure 1 shows
how a typical path of such a process is composed of these three terms.

Jump-diffusion models differ by the distribution of the jump sizes Y;. There are
two popular examples.

Example 2.1
1. Merton [23]: ¥; are normally distributed with the well-known density function

{ (y—lw)z}
expy —————5 (-

207

M) =

1
\/27‘[0]

2. Kou [20]: ¥; has an asymmetric double exponential distribution with density
2ty A
XM =prfe™ M Lz0 + (1= p)r=e* ML)

The main advantage of these new models for the stock price dynamics is that a
skew in the implied volatility, especially for short-term options, can be produced
quite easily by setting the mean jump size to a negative value. This eliminates one
of the main weaknesses of the approaches mentioned before. On the other hand, the
models by Merton and Kou as well as the stochastic volatility models contain only
a few parameters that can be calibrated to market prices. Thus, given many market
prices, the calibration problem could be significantly underdetermined and errors
between market and model prices might be too large. Furthermore, jump-diffusion
models are known to be difficult to handle from a numerical point of view, although
at least for the Merton model (see Example 2.1), there exists a semi-analytical solu-
tion in terms of a series of Black—Scholes prices (cf. [23]).

Remark 2.2 Given the Merton jump-diffusion model (see (2.1) and Example 2.1)
with volatility o > 0, jump intensity A, mean jump size wy and volatility of the
jump size o 7. Then for a given maturity 7, strike price K, interest rate r and current
stock price Sp, the price of a European call option is given by

o0 —AT n
AT
Z ( ¢ O 0850, 50 7.5),
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where 2 = A(1 + py), F =r — Ay +nln(l +p))/T, 6* = 6% + no?/T and
CcBS (0, So; 7, o) is the Black—Scholes price with interest rate » and volatility o.

Since all three generalizations of the Black—Scholes model described above still
have some weaknesses, there is a vast literature on combinations of the different
approaches. [5] combined stochastic volatility with jump-diffusion. [19] and [21]
proposed a stochastic local volatility model, where [21] also includes jumps, i.e. a
combination of all three approaches. A jump-diffusion model with local volatility
was suggested by [3]. Since it is suitable to produce typical volatility skews with
the jump part and to fit prices closely with the local volatility function, we will use
this model in the following. Hence, the development of the stock price in time is
modeled by the following stochastic differential equation:

N,
dS;=uS,_dt+o(t, S )Si_ dW; + Sl_d(Z(eY" - 1)). (2.2)
j=1

In the following section we take a closer look at the fair price of a European call
option based on this stochastic model.

2.1 Partial Integro-Differential Equations

Due to the fact, that especially in case of local volatility functions, there is no analyt-
ical solution available, there is a need for a numerical solution of the problem. There
are two main approaches which could be followed: The Monte Carlo simulation of
the stochastic differential equation or the transformation of the SDE into a partial
differential equation that can be solved numerically. We follow the latter approach.

We consider a Dupire-like version of the PIDE, i.e. the strike price and maturity
of an option are treated as variables in the PIDE model. This is the suitable formu-
lation for a model calibration. For today’s price of a European call option on a given
underlying asset the following holds (cf. [3] or [1]):

Theorem 2.3 Given a jump-diffusion model as in (2.2), then today’s price of a
European call option C(T, K) with fixed current underlying price So, maturity T
and strike price K can be calculated via the partial integro-differential equation

Cr(T,K) — %O’Z(T, K)K*Cgx(T, K) +r(T)KCkg (T, K)

~+00
- x/ (" (C(T. Ke™) — C(T. K)) + K(¢" — 1)Ck (T, K)) f(») dy =0
- 2.3)
(T K) € [0, Tynar) x (0, 00)

with initial condition C (0, K) = max{Sy — K, 0}, K € (0, 00).
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2.2 Numerical Solution of the PIDE

We now briefly discuss the numerical solution of the PIDE introduced above. For
the discretization in space, we choose a finite element approach; a finite difference
approach leads to similar results. We set

+00
c=ch=[ @ -1rmay
—00

and apply a variable transformation to the ‘log-moneyness’ x = In(K/Sp), be-
fore we formulate the variational formulation of problem (2.3). Note that the
variable transformation above leads to a problem defined now on the domain
[0, Thnax] x (—oo, +00). To solve this numerically, the problem has to be local-
ized to a domain [0, T4, ] X [x, X] by introducing appropriate boundary conditions.
We set H := L*(x, %), V := H} (x,%), W([a,b], V) :=={u:u € L*((a,b), V), u' €
L%((a,b), V*)} with a < b € R (cf. [10]), and formulate a weak solution of the
PIDE as follows.

Definition 2.4 A localized variational formulation of the PIDE (2.3) consists of
finding y € W([O, Tynax], V) such that for all T € (0, T;,4x]

d
ﬁ(y(T, D w())y +a(T; y(T, ), w)) =L(T; w()) YweV (2.4)

holds with initial condition
(30,9, w0, = (O w(), YweV. 2.5)

The time-dependent bilinear form a(7T'; -,-) : V x V — R is given by

x 2 X
a(T; v, w) :=/ %Soe)v’(x)w’(x)dx

X 2 X 2 X
+/ (r(T)—l— g (T’ZSOe ) -+ w>v’(x)u)(x)dx

+/ A+ OHvx)wx)dx — A/ / v(ix — y)wx)e? f(y)dydx,
X x JR
(2.6)

L(T; -):V — R is a time-dependent linear functional containing the boundary
conditions y?(T', x), and $(x) := max{l — ¢*, 0} — y?(0, x) is an adjusted initial
condition with zero boundary.

For a more detailed discussion on the boundary conditions yb (T, x), the localiza-
tion and the variational formulation above, we refer to [25]. In the numerical results
below, we will use linear splines to approximate the Hilbert space V in a Galerkin
approach.
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Before we proceed with the time discretization, we notice that (2.4) and (2.5) can
be rewritten in operator form in the sense of L2(V*). This has some advantages in
terms of a more simple notation.

Remark 2.5 There exist unique operators A(t) € L(V,V*), I[(t) € V* for all ¢t €
(0, T)ux] and y € H such that (2.4) and (2.5) can be rewritten as

yO) +A0y(@) =1@) Vi€ (0, Tal, 2.7
y(0) =3, (2.8)

in the sense of L2(V*).

In the following we address the time discretization. It is well-known that implicit
methods lead to dense linear systems of equations in the case of partial integro-
differential equations. However, the special structure of the double integral term
in (2.6) can be used to achieve nearly linear complexity in space even for implicit
methods by using a preconditioned GMRES algorithm (cf. [25] for details).

It is well-known that the problem above is stiff, so an unstable forward Eu-
ler method would be severely restricted by the CFL condition. Among the stable
schemes Crank—Nicolson would be the method of choice regarding the error of the
time discretization since the central difference quotient is of order O(At?). But al-
though it is A-stable, non-smooth initial conditions often lead to oscillations. [24]
proposed to use two half-time steps of the strongly A-stable backward Euler scheme
to smoothen the initial condition and then to proceed with Crank—Nicolson to pre-
serve second order convergence. In [13], four backward Euler full- or four quarter-
timesteps are named as an alternative to the original approach. This Rannacher ap-
proach will be of special interest in the subsequent sections, when we solve the
adjoint equation.

We present some numerical results for Merton’s jump diffusion model to illus-
trate the behavior of the Rannacher time-stepping. The model constants are set as
follows:

£=_57 YZS’ Tmaxzzy, I"E3%,
0=30%, x*=100%, w;=0%, o5=50%, Ax=0.005, AT =0.01.

First notice the non-smooth initial condition illustrated in Fig. 2a with a typical
numerical solution of problem (2.4), (2.5). Figure 2b shows the error between the
closed-form solution (cf. Remark 2.2) and an ordinary Crank—Nicolson time dis-
cretization. As expected, there are oscillations due to the non-smooth initial condi-
tion. If we replace the first Crank—Nicolson step by four Rannacher quartersteps,
i.e. applying the Rannacher smoothing, the result illustrated in Fig. 2c is a far better
approximation, especially at x = 0, a region, which is important for practical ap-
plications. Tables 1 and 2 support the observations of Fig. 2. They show the error
between a numerical solution with Crank—Nicolson and Rannacher time-stepping,
respectively, and the closed-form solution for Merton’s model. The L°°(£2)- and
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Fig. 2 A typical FE solution and the error between FE solution and closed-form solution for the
Merton model (Ax = 0.005, AT =0.01)

Table 1 L?(£2)- resp. L°°(£2)-error (for T = 1 and T = 2) between finite element solution with
Crank—Nicolson and closed-form solution for different time step sizes AT and fixed Ax

Discretization L ($2)-error L2(2)-error

Ax AT T=1 Ratio T=2 Ratio T =1 Ratio T=2 Ratio

0.00125 0.08 2.20e-3 1.51e-3 1.73e-4 1.06e-4
0.04 1.0le-3 2.2 6.5le-4 23 6.26e-5 2.8 3.73e-5 2.8
0.02 4.13e-4 24 2.50e-4 2.6 22le-5 2.8 1.31e-5 2.8
0.01 1.4le-4 29 8.45e-5 3.0 7.63e-6 2.9 4.24e-6 3.1

L2(§2)-error is evaluated at the time instances 7 = 1 and 7 = 2 on the domain
£2 =[-3, 3]. The columns captioned by ‘ratio’ show the factor of decrease in the
error when the number of discretization steps in time is doubled. Note that the spa-
tial discretization is chosen very fine to guarantee that the error is mainly driven by
the time discretization error.

It is observable that the Crank—Nicolson method does not show a quadratic con-
vergence, what would be indicated by a ratio of 4. However, this ratio is visible for
the Rannacher smoothing in Table 2. After having sketched the numerical solution



Gradient Computation for Model Calibration with Pointwise Observations 125

Table 2 L2(2)- resp. L>°(§2)-error (for T =1 and T = 2) between finite element solution with
Rannacher smoothing and closed-form solution for different time step sizes AT and fixed Ax

Discretization L ($2)-error L2(2)-error

Ax AT T=1 Ratio T=2 Ratio T =1 Ratio T=2 Ratio

0.00125 0.08 2.39e-5 1.11e-5 2.48e-5 1.37e-5
0.04 6.4le-6 3.7 2.77e-6 4.0 6.4le-6 3.9 342e-6 4.0
0.02 1.63e-6 3.9 6.79-7 4.1 1.61e-6 4.0 8.58¢e-7 4.0
0.01 4.24e-7 3.8 1.59¢-7 4.3 4.14e-7 39 2.21e-7 39

of the option pricing problem and some of the numerical challenges, we turn to the
calibration of the model parameters.

3 The Calibration Problem

A proper choice of the parameters of the option pricing model is quite important
and shows the efficiency of the selected model. To guarantee that the parameters in-
clude the latest market information, the parameters are chosen in such way that the
according model prices C(7;, K;) for options on different strikes K; and maturities
T;,i =1,..., M, fit the current market prices Cl.M . This model calibration is per-
formed for frequently traded options as European or American call and put options.
These parameters can then be used to calculate prices for new or more complex
options. The typical calibration problem is formulated in a least-square sense.

Definition 3.1 The calibration problem consists of finding parameters o (-, -), A and
f(+), that solve the following minimization problem

M
. 1 2
(min J(C.0.0. f)i=3 ,~§_1(C(Ti’ ki —c}) 3.1

s.t. Cr— %Uz(T, K)K2Ckx + (r(T) = 20)KCx +A(1+¢)C

+o0
_ A/ C(T, [(e—}‘)eyf(y) dy=0, (T,K)E€]l0, ) x (0,00),

—00

with initial condition C (0, K) = max{So — K,0}, K € (0, c0),

where CI.M are market prices for European call options with strike K; and maturity
Ti,i=1,....,M.

A proper regularization term might be added to the objective function. Since we
are mainly interested in the gradient error, a regularization is not our main concern.
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However, for the sake of completeness, we will introduce a simple Tikhonov regu-
larization term below.

Thus, the calibration problem is a PIDE constrained optimization problem. Note
that for one function evaluation of J, the PIDE constraint has to be solved only
once. This is due to the use of the Dupire-like forward equation.

Before we look at the numerical solution of the calibration problem, we rewrite
it in a more abstract way, in which the PIDE is replaced by its weak formulation
according to Remark 2.5. This has some advantages especially in terms of a more
simple notation.

For this purpose we denote by V and H two real, separable Hilbert spaces with
V< H = H* — V* and by U, a closed, convex subspace of a Hilbert space,
the space of control variables. A(u;t) € L(V,V*) is the elliptic operator, which
is Fréchet-differentiable with respect to the control variable u € U with a Fréchet
derivative A"(u;1)(:) :U — L(V,V*), t € [0, T]. The right-hand side of the equa-
tion is then denoted by I(u;-) € L?(V*) for all u € U with a Fréchet derivative
U(wu; 0)(): U — V*, tel0,T].

Market data d; € H are available at certain maturities 7, i = 1, ..., D, where H
is a Hilbert space with H* = H. For instance, H = R3, if we have data available for
five strike prices at maturity 7;. We assume #; < 7; for i < j and define 7p = 0 and
ip=T.C € L(H,H) denotes the observation operator.

Given this setting we can now rephrase the optimal control problem in (3.1) in
an abstract form.

Definition 3.2 For given market data d; at#; (i =1, ..., D) and o > 0, find solu-
tions y € W ([0, T'], V) and u € U, which solve the optimization problem

D
. . 1 A 2 o
min J(y,u):= min — Cvy(t) —d; 4+ Zlu 3.2
yeW,ueld (v.1) yeW,ueld 2 ; ” y@) ! ”7—[ 2 flull (3.2)

st. yO)+Aw; t)y(t) —Il(u;t) =0, te€(0,T],
y(0)=7.

Remark 3.3 In (3.1) the objective function involves pointwise observations. As-
suming H = R!, i.e. that market data is given for only one strike price £ at maturity
f;, then the observation operator C would include a Dirac delta function, which is
known to be not L?-integrable. To avoid the involvement of distribution theory, we
address the numerical approximation of C already at this stage and interpret C as
an L2-approximation Sﬁx of the Dirac delta function. [29] proposed and analyzed a
concrete representation that is equivalent to 6; on a discretized finite element space
V" in the sense that (S)EA’“, v) 2 =83 (v), v € V*. We have in this special case

Cv:(éfx,v) vel?,

L2

C¥z= 8$xz, zeR.
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Note that—although it is not indicated in the following—C depends on Ax in this
case.

The bilinear form which defines A(u;t) is coercive and continuous, thus, it
is clear that for every u € U, the parabolic constraint admits a unique solution
y(u;-) € W([0, T], V). Note that this also holds true for the option pricing prob-
lem in Definition 2.4 under some specific assumptions, e.g., o (T, x) > opin > 0
(see [26] for details). Hence, the problem specified in Definition 3.2 can be writ-
ten as an unconstrained optimization problem, in literature also known as ‘reduced
problem’.

Remark 3.4 The problem specified in Definition 3.2 can be written as unconstrained
optimization problem:

Ig}f(u) = %13 J(y(u), u). (3.3)

If we want to derive optimality conditions of (3.2) or a gradient representation
of the unconstrained problem (3.3), we have to decide whether we discretize or
optimize first. It turns out that this decision is of importance in our application from
a numerical point of view. We will briefly discuss the two approaches.

4 First Optimize

In order to derive a gradient representation, V f (), for the unconstrained problem,
which is needed in an optimization algorithm, we first define the Lagrange function
for problem (3.2).

Given Lagrange multipliers pi, i=1,..., D, wedefine

ﬁ(y,u,pl,...,pD) =J(y,u)

D i
+Zf (P’(t),y'(t)+A(u;t)y(t)—l(uzt))v,v*dt,
i=1vti-1

.1

and are now able to derive heuristically the corresponding optimality conditions. We
obtain the state equation

y(@) + A 0)y(@) —l(u;1) =0, 1€(0,T]

R (4.2)
y(0) =y,

where the initial condition y(0) = y is given explicitly since we did not introduce
an additional Lagrange multiplier in (4.1); for i = D, the adjoint equation can be
specified as
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pP6) = A*u:)pP(1)=0, telip-1.T), 4.3)

pP(I) =—-C*(Cy(T) —dp) 4.4)
andfori=1,...,D—1

P — A*u;)p (1) =0, telfii i), 4.5)

Pl (E) = —C*(Cy(H) — di) + p'* (@). (4.6)

Note that in (4.6) pi+] (#;) is known since we start solving the adjoint equations
backwards at t = T, i.e. we first solve (4.3) backwards with end condition (4.4). It
can be shown easily that p' € W([f;_1,%;],V),i=1,...,D,if C € L(H, H).

The partial derivative of the Lagrange function with respect to the control u# along
a direction u leads to:

D gl )
E:[ (p' (1), A"(u: 1)u y(t) —1'(u: 1)du)y, . dt + a(u, Su) > 0. 4.7
i=1"1li-1 ’

To show formally that (4.7) is the gradient of the unconstrained optimization prob-
lem, we introduce the sensitivity z(¢) = %ﬁ[)é u. The following result is true:

Lemma 4.1 Given u € U, the corresponding solution y(u;-) € W([0,T], V) and
a direction du. Further let 7 be the unique solution of

() + AQu; 0)z(t) + A (u; 0)8u y(u; 1) — ' (u; 1)8u =0,
2(0) =0.

(4.8)

Then z € W([0, T]1, V) is the Fréchet derivative of y(u; -) with respect to u along
direction Su.

Theorem 4.2 The derivative of f(u) (defined in (3.3)) along a feasible direction Su
is given by

D 7 )
f(u)du = Z[ (pl @), A" (u; )éu y(t) —U'(u; t)éu >V,V*dt + a(u,du), (4.9)
i=1 Vil

where y solves (4.2) and the p' solve (4.3), (4.4) resp. (4.5), (4.6).

Proof Differentiating f (1) with respect to u in direction du leads to

D

fl)su= Z(C*(Cy(u; ii) = di), 2(i7)) y + o (u, Su).

i=1
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For the first summand we get by using (4.4), (4.6) and z(0) =

D
Z (C*(Cyu: i) — dy). z(@))
=(~pPip). 2@))y + Y_ (=P @) + P (@) 2@))y + (P (0). 2(0)),
i=1

D
== ((P'@). 20y — (P G- 2Gi-)) ). (4.10)
i=1

Because p' € W([f;_1,],V) (i =1,..., D) integration by parts can be applied
to every summand in (4.10). If further (4.3), (4.5) and (4.8) are used, we get for
i=1,...,D:

(P'). (@), — (P i) 2oy

t . .
= / (2, B @)y + (P @), ),y )dt
ti—1

i , ‘
= / (2, A* ;)" (O)y o +{p' (), 20)),, . )dr
ti—1
i
=ﬁ (P @), A@w; Dz(0) +2(0),, ydt
ti—1

1 .
= —ﬁ (p' (@), A"(u; 1)Su y(us 1) —1I'(u; 1)8u),, . dt,
i1 ’
which shows the proposition. O

In order to solve the optimization problem numerically, the next step is the dis-
cretization. In the first-optimize approach the discretization schemes can be adapted
separately for the state and adjoint equations. Section 2.2 showed the difficulties
arising in the numerical solution of the state equation due to a non-smooth ini-
tial condition. However, this problem gets even more pronounced regarding the
adjoint equations. Here, the pointwise observations in the objective function rep-
resented by the approximative operator C lead to high-frequency end conditions.
Fortunately, the Rannacher smoothing procedure can also be applied for every ad-
joint p’, i =1,..., D smoothing the non-smooth end conditions

Let At = T /n; be the step size of a time discretization and t;, =i - At (i =
0, ..., n;) the corresponding grid Points. We denote by Yy ~ y(#) and P,f ~ pi(tk)
for k=1, ..., m (of course the p' resp. P’ only exist on [fi_1,%]). For simplicity
we set {f; }D —0C {tl} L and define for every interval [fi—1, ;] the index set T; := {k :
ty € [fi—1, %]} and the indices i,; = min(7;) and i, = max(7;).
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Definition 4.3 For given weights a)}'{ (i=1...,D, k €7;) we define the gradient
approximation f,(u)8u by

D
fro)du = At Z Z wh(PL A s 0)8u Yi — 1 (u, )du),, . + olu, Su).

i=1keT;
4.11)

Remark 4.4 Note that the weights a)}; determine the numerical integration rule,

e.g., the ‘composite trapezoidal rule’, where wfmm = a)fmm = 0.5 and a)}( =1 for
all other k.

5 First Discretize

‘We now want to discretize first and use the 6-scheme for the time discretization. For

this, we define a time discretization grid fo, ..., #, witht; = j - At, j =0,...,m.
For simplicity, we assume that the time instances, where market data is available, f;
(i=1,..., D), are a subset of the grid, i.e. there exist subindices such that fi = 1, -

Definition 5.1 For given market data d; at#; (i =1,...,D) and o > 0, find y €
(V)™ and u € U, which solve the optimization problem

D
. ~ . 1 2 (04 2
min  J(y,u):= min = Cyr. —dill;, +=|u 5.1
e 700 = i 7 2O =il el (5.

1
s.t. A—t()’k+1 — k) + OAW; i 1) Yer1 + (1 — 0) Au; 1) yi
— 0l i) — (1 — O 1) =0, k=0,...,m—1, (5.2)
yo=7J.

A reduced cost function frp(u) = J (y(u), u) can be defined as in the previous
section. Together with the corresponding adjoint equation,

1
E(Pk — Pkt1) FOA (u, ) pr + (1 — O)A™ (u, tr) pr+1

D
+ ) CHCyy —di) i, =0, k=m—1,....1, (5.3)

i=1

Pm + AtOA* (u, Im) Pm = _Atc*(c)’m —dp),

which again can be derived via the Lagrangian approach, a gradient representation
for the discrete reduced problem can be verified via a discrete sensitivity equation.
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Theorem 5.2 The derivative of f(u) (defined in (3.3)) along a feasible direction §u
is given by

m—1
Frp@)su ="y "(pr1, 0 A (; tir)Suyisr + (1 — 0) A (u; t)Suyy (5.4)
k=0

— 01" (u; tr1)8u — (1 — O (us tr)du),, \.dt +afu,du),  (5.5)

v, v*

where y solves (5.2) and the p solves (5.3).

6 Comparison and Numerical Results

In this section we discuss the numerical calculation of the gradient of the objective
function. Here, the focus is on numerical issues in the time discretization arising in
the solution of the adjoint equation.

The numerical results presented below are all based on the Merton model (cf.
Example 2.1) and the following setting:

Y 1:—5,f=5, Tmax=2y,r53 %,QZO.
e Market data given at:

(T;, Ki) € {{1, 2} x {40 %, 80 %, 100 %, 120 %, 200 %)} }. (6.1)

e Four parameters for Merton’s model: u = (o, A, uj,0y) € R*.

The market data call prices are produced with iz = (30 %, 50 %, 0 %, 50 %) and we
choose as a sample parameter u = (30 %, 60 %, —80 %, 40 %) to calculate gradients
and adjoints. In the abstract setting above, we set H = L?(x,X), V = HOl (x,Xx) and
U =TR*, whereas, to be precise, the control space is restricted by box constraints.

We already noticed that the pointwise observations in the objective function of
the calibration problem (3.1) lead to high-frequency end conditions in the backward
adjoint equations.

If we first optimize, we are free in the choice of appropriate discretization
methods for the state and adjoint equations, separately. As has been shown in
Sect. 2.2, a Crank—Nicolson method loses some of its stability properties in the case
of non-smooth initial conditions. With regard to the adjoint equation, the problem
is far more severe due to appearance of Dirac delta functions spread out over the
whole time domain. If a standard Crank—Nicolson method is applied to the adjoint
equation (4.3), (4.4) and (4.5), (4.6), this leads to the result illustrated in Fig. 3a
(Ax = 0.0025, AT = 0.02). According to the notation of Sect. 4, the adjoint is
formally divided into two parts, p!, p?, with end conditions at T =1 and T =2,
where market data are available. The peaks occurring in these end conditions are
not smoothened out, but oscillate strongly over the whole time domain. However,
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if Rannacher smoothing is applied to the adjoint at each end condition, the corre-
sponding Fig. 3b shows functions p', p? that are smooth in time.'

We now turn to the first discretize approach, where we use a Rannacher time
stepping scheme for the state equation as proposed in Sect. 5 only in order to
smoothen out the slightly nonsmooth initial condition. Figure 4 shows the numerical
solution. Note here that the discretization scheme in the state equation automatically
yields a Crank—Nicolson method for the adjoint except for the last time step before
T =0, where four implicit Euler quartersteps are applied.

Two points are remarkable here. First we note that the peaks at 7 =1 and T =2
are not as pronounced as in the first-optimize approach. This is due to the fact that
the end condition,

Pm + AtOA* (u, ty) pm = —AtC*(Cyyy, — dp), (6.2)

contains a kind of built-in smoothing through the elliptic operator weighted with
step size At. Hence, the greater the step size, i.e. the more unstable the Crank—
Nicolson scheme for non-smooth end conditions, the more pronounced is the

Note the different scaling of Figs. 3a and 3b, causing a cut of the peaks at T =1 and T =2 in
Fig. 3b.
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Table 3 L2(£2)-error at T = 0 of the adjoint solution for the three approaches of Figs. 3 and 4
and different time step sizes AT and fixed Ax (Reference solution calculated with FO (Rann.) and
AT =3.125e-4, Ax = 0.0025)

Discretization L*(2)-errorat T =0

Ax AT FO (Rann.) Ratio FO (C.-N.) Ratio FD (Rann.) Ratio

0.0025 0.04 4.69e-5 1.61e+0 2.55e-3
0.02 1.19e-5 39 1.05e+0 1.5 1.29¢-3 2.0
0.01 2.99e-6 4.0 39le-1 2.7 6.47e-4 2.0
0.005 7.47e-7 4.0 1.22e-1 32 3.24e-4 2.0
0.0025 1.85e-7 4.0 1.21e-1 1.0 1.62e-4 2.0

smoothing. However,—and this is the second point—there are still oscillations ob-
servable through the whole time domain, which are due to the missing Rannacher
smoothing steps after each peak for the adjoint equation.

This is also shown in Table 3, where we compare the numerical solution of the
adjoint equation at the last time instance 7 = 0 with a reference solution calculated
with first-optimize including Rannacher smoothing on a very fine time grid (AT =
3.125e-4, Ax = 0.0025). This is done for the three methods shown in Figs. 3 and 4
and for different step sizes AT (Ax fixed).

The term ‘ratio’ again shows the factor of decrease in the L2(£2)-error when the
number of discretization steps in time is doubled (£2 = [—3, 3]). In the last column
of the table the ratio implies only a linear convergence with respect to the step
size AT . However, the first-optimize approach using Crank—Nicolson shows nearly
no improvement of the error for a refined time grid. As expected, the Rannacher
smoothing steps in the first optimize approach preserve the quadratic convergence,
where the order of magnitude of the error compared to the first discretize approach
is significant.

In addition, the error results of Table 3 are visualized in Fig. 5. We omit the
result for first-optimize with Crank—Nicolson since this is not competitive. Again we
calculate the reference solution for the adjoint on a fine grid (AT = 3.125e-4, Ax =
0.0025). Figure 5a then shows the error of the adjoint on a coarse time grid (AT =
0.02, Ax =0.0025), where we first discretized the state equation with Rannacher
time stepping for the initial data only and the adjoint equation is then solved by the
resulting Crank—Nicolson scheme with four implicit Euler quartersteps in the last
time step. The oscillations that are visible in Fig. 4 are now observable more clearly.
However, Fig. 5b shows a remarkably smaller error, when we first optimize and then
use the Rannacher smoothing for the adjoint.

We further want to point out the effect of the four implicit quartersteps, when
we discretize first. Figure 6 shows the error at time 7 = 0.02, i.e. the last time step
before the implicit steps are applied. Where the first discretize approach (continuous
line) shows strong oscillations, the first optimize approach (dotted line) is quite
smooth. But the oscillations are then smoothed out in the last time step, observable
in Fig. 6b.
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Fig. 6 Difference between reference adjoint and the adjoints on coarser grids for first discretize
and first optimize (dotted line), resp., at time 7 = 0 and at time 7 = 0.02

This observation also motivates a different approach that can be found in [14].
They proposed to change the discretization scheme for the state equation in such
way that the resulting scheme for the adjoint equation in the first discretize approach
automatically leads to a stabilized version.

Finally, we are interested in the gradient of our problem. Given the parameter
vector u € R* for the Merton model, a reference gradient, V frer» 1s calculated on a
fine grid via the first optimize approach with Rannacher smoothing.”> Table 4 shows
the relative errors between this reference gradient and the gradient for the three
approaches on several coarser time grids. It is observable that, especially for very
coarse time steps AT, the first-optimize approach with Rannacher smoothing is by
far the best one. However, first-discretize also leads to acceptable results, especially
for finer grids. However, it could happen that the oscillations that are observable in
the adjoint equation may sum up to zero for certain examples.

2Note that the relative difference between reference gradient (AT = 3.125e-4, Ax = 0.0025)
based on first optimize-Rannacher and first discretize-Rannacher is 7.47e-009.
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Table 4 Relative gradient errors for the three approaches of Figs. 3 and 4 and different time step
sizes AT and fixed Ax with control u € R*

Discretization IV fref =V faiscll/ IV frefl

Ax AT FO (Rann.)  Ratio FO (C.-N.)  Ratio FD (Rann.)  Ratio

0.0025 0.04 3.50e-5 6.53e-1 6.72e-4
0.02 8.48¢e-6 4.1 1.96e-1 33 1.83e-3 0.4
0.01 2.12e-6 4.0 2.78e-1 0.7 3.23e-4 5.7
0.005 5.27e-7 4.0 2.95e-1 0.9 1.22e-5 26.5
0.0025 1.38e-7 3.8 2.94e-1 1.0 5.43e-7 22.5

7 Conclusion and Outlook

In this paper we take a closer look at the gradient computation for a calibration
problem in mathematical finance which occurs in finding the optimal parameters of
a local volatility model using jump diffusion processes. Basically, two approaches
are analyzed: First optimize vs. first discretize. It turns out, that the flexibility of the
first optimize approach gives numerically much more stable results since the adjoint
equation can be solved by a particular discretization scheme. Numerical results for
an example confirm this observation.
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Numerical Analysis of POD A-posteriori Error
Estimation for Optimal Control

Alina Studinger and Stefan Volkwein

Abstract In this paper a linear-quadratic optimal control problem governed by a
parabolic equation is considered. To solve this problem numerically a reduced-order
approach based on proper orthogonal decomposition (POD) is applied. The error be-
tween the POD suboptimal control and the optimal control of the original problem is
controlled by an a-posteriori error analysis. In this paper the authors focus on testing
the a-posteriori estimate’s validity by means of numerical examples. An intensive
study of the consequences of certain choices that can be made within the POD basis
determination process is carried out and the findings are discussed.

Keywords Optimal control - Model reduction - Proper orthogonal decomposition -
A-posteriori error estimates - Primal-dual active set strategy
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Secondary 65K05

1 Introduction

Optimal control problems for partial differential equation are often hard to tackle
numerically because their discretization leads to large scale optimization problems.
Therefore, different techniques of model reduction were developed to approximate
these problems by smaller ones that are tractable with less effort. Among them,
proper orthogonal decomposition (POD) [20] and balanced truncation [3] seem to
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be most widely used in the context of optimal control. Recently, optimal control
problems are also treated by the reduced basis method; we refer, e.g., to [5, 6, 17].

POD is based on projecting the dynamical system onto subspaces of basis ele-
ments that express characteristics of the expected solution. This is in contrast to,
e.g., finite element techniques, where the elements are not correlated to the physical
properties of the system they approximate.

In our present work, POD is applied to linear-quadratic optimal control problems.
Linear-quadratic problems are interesting in several respects; in particular, since
they occur in each level of sequential quadratic programming (SQP) methods; see,
e.g., [19] from a general viewpoint and [12, 20] in the context of multilevel reduced-
order approximations. We continue the research on POD a-posteriori error analysis;
see [12, 13, 20, 23, 25]. Based on a perturbation argument it is derived how far the
suboptimal control, computed on the basis of the POD model, is from the (unknown)
exact one. Increasing the number of POD ansatz functions leads to more accurate
POD suboptimal controls. This idea turns out to be numerically very efficient. It is
also successfully applied for other reduced-order approximations; see [22, 26].

Here, we focus on testing the a-posteriori estimate’s validity by means of numer-
ical examples. We intensively study the consequences of certain choices that can
be made within the POD basis determination process. Let us summarize the key
findings here:

e The estimation is very satisfactory and valuable in terms of accuracy, reliability
and efficiency.

e Both the primal-dual active set strategy for solving the control constrained opti-
mal control problem and the a-posteriori error estimation for tracking the error
work very well for control box constraints. In case of active constraints, we dis-
cover numerical convergence of the active sets which is perfect in case of an
“optimal” POD basis (computed from the optimal FE solution) and satisfactory
for arbitrary bases.

e In order to obtain good POD suboptimal controls it is not sufficient to solely
increase the number of used POD basis functions. Increasing the basis rank needs
to be combined with basis update strategies, as for example discussed in [1, 2, 15,
25].

e Enriching the snapshot ensemble by snapshots from the adjoint state is essential
to obtain good approximations for the control.

This paper is organized as follows: In Sect. 2 we introduce the abstract linear-
quadratic optimal control problem and review first-order necessary optimality con-
ditions. The POD method, its application to the optimal control problem and the
a-posteriori error estimate are explained in Sect. 3. In Sect. 4 numerical examples
are presented and discussed.

2 The Optimal Control Problem

In this section, we introduce a class of linear-quadratic parabolic optimal control
problems and recall the associated first-order optimality conditions.



Numerical Analysis of POD A-posteriori Error Estimation for Optimal Control 139

2.1 Problem Formulation

Let V and H be real, separable Hilbert spaces and suppose that V' is dense in H with
compact embedding. By (-, -) y we denote the inner product in H. The inner product
in V is given by a symmetric bounded, coercive, bilinear forma : V x V — R:

(. ¥)v =alp,¥) forallg,y eV 2.1

with associated norm || - ||y = +/a(-, -). By identifying H with its dual H’ it follows
that V < H = H' < V', each embedding being continuous and dense. Recall that
for T > 0 the space W(0, T)

W(O,T)={p e L*0,T;V):¢ € L*0,T; V')}

is a Hilbert space endowed with the common inner product [4]. When the time ¢ is
fixed, the expression ¢(¢) stands for the function ¢(¢, -) considered as a function in
£2 only. Let D be an open and bounded subset in R™ with m € N. By Uag we denote
the closed, convex and bounded subset

Uag = {u € L2(D) | ua(s) < u(s) < up(s) for almost all (f.a.a.) s € @},

where u,, up € LZ(D) satisfy u, < up almost everywhere (a.e.) in D. For yg € V,

fe L2(0, T; H) and u € Uyq we consider the linear evolution problem

d
3 V0.0l +a(y®).9) =((f +Bu)(1).¢), faa.tel0,T], VpeV,
(2.2)

(y0). ), = 0.0 VoeV,

where B : LZ(D) — L2(0, T; H) is a continuous, linear operator.

Example 2.1 Let us present an example for (2.2) which will be studied in our nu-
merical experiments. Suppose that 2 C R?, is an open and bounded domain with
Lipschitz-continuous boundary I" = 9§2. For T > 0 we set Q = (0,7) x £2 and
Y =(0,T)xI'.Let H=L%(£2), V= H'(£2) and D = X. Then, for given control
u € L*>(X) and initial condition yo € V we consider

cpyr(t,x) — Ay(t,x) = f(t,x) fa.a. (t,x) € Q, (2.3a)
z—y(t, x)+qy(t,x)=u(t,x) faa (t,x)eX, (2.3b)

n
v(0,x) =yo(x) faa xef. (2.3¢)

In (2.3a) we suppose ¢, > 0, g > 0 and f e L0, T; H). Setting f = f/cp, intro-
ducing the bounded bilinear forma : V x V — R by

1
a(w,lﬁ)=—/ Vﬁﬂ(x)'VW(x)dvai/ px)Y(x)dx fore, eV
2 CpJr

Cp
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and the linear, bounded operator B : L?*(X)— L%(0,T; H) by
1
((Bu)(1), 9),, = —/ u(t,x)p(x)dx forpeV,te(0,7T)ae.
CpJr

then the weak formulation of (2.3a)—(2.3c) can be expressed in the form (2.2).

It is known [4] that for every f € L*(0,T; H), u € L*(D) and yg € V there is a
unique weak solution y € W(0, T) N C([0, T']; V) satisfying (2.2).

Remark 2.2 Let 39 € W(0, T) be the unique solution to

d A A
3 o). ¢}y +a(o).9) = (7). ¢); faa1€l0.T]. VpeV,
(300, ¢}y = o, 0)u Vo eV.

Moreover, we introduce the linear and bounded operator S : L*(D) — W(0,T) as
follows: y = Su € W(0, T) is the unique solution to

d
5 (3. 0)y +a(3(). ¢) =(Bu)().¢), faare[0,T], VpeV,

Then, y = J + Su is the weak solution to (2.2).

Next we introduce the cost functional J : W(0, T) x L*(D) — R by
TG0 = 2T = valy + Ll 2.4
y,u _2 y Yd || g ) uLZ(D)’ .
where y; € H holds. Furthermore, y > 0 is a regularization parameter.

Remark 2.3 We continue Example 2.1. Then, (2.4) yields the cost functional

1 2 y [T 2
Jyuw)y== | |y(T)—ya| dx+ % |u(t, x)|" dxdt
2Je 2Jo Jr
for (y,u) € W(0,T) x L>(X).
The optimal control problem is given by
minJ(y,u) subjectto(s.t.) (y,u)e€ W(0,T) x Uaq solves (2.2). @>P)

Applying standard arguments [16] one can prove that there exists a unique optimal
solution x = (¥, u) to (P). Throughout this paper, a bar indicates optimality.
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2.2 First-Order Optimality Conditions

First-order necessary optimality conditions for our parabolic optimal control prob-
lem are well known. We briefly recall them here. Suppose that x = (y, u) is the opti-
mal solution to (P). Then there exists a unique Lagrange-multiplier p € W (0, T) sat-
isfying together with X the first-order necessary optimality conditions, which consist
of the state equations (2.2), the adjoint equations

d
- a(ﬁ(:),cp)ﬁ, +a(p(t),¢) =0 faa.tel0,T], VoeV,

B . (2.5)
(P(D). @)y ={ya—3(T).¢),  VeeV
and of the variational inequality
(yﬁ—B*ﬁ,u—ﬁ)Lz(D) >0 Vu € Uyg. (2.6)

Here, the linear and bounded operator B* : L2(0, T; H) — L*(D)’ ~ L?*(D) stands
for the dual operator of B satisfying

(Bu, @) 120,1:1) = (0. B*0) 2 ) = (B0 1) 25
for all (u, ¢) € L>(D) x L*(0, T; H).

Remark 2.4 We continue the discussion of Example 2.1 and Remark 2.3. The ad-
joint equations (2.5) are given by

—cppr(t,x) — Ap(t,x) =0 faa. (r,x) € Q,
ap _
a—(f,x)+qp(l‘,x)=0 fa.a. (t,x) e X,
n

p(T,x)=ys(x)—y(T,x) faa xecf.

Moreover, the variational inequality (2.6) has the form

T
/ /(yﬁ(z,x) — p(t,x))(u(t,x) —i(t,x))dxdt =0 forall u € Uag
0 r

and B*p is given by (B*p)(t) = (1 p)(¢) f.a.a. t € [0, T], where v : V — L*(I")
denotes the common trace operator.

3 The POD Galerkin Discretization

Problem (P) is an infinite-dimensional problem. Therefore, we have to discretize
(P) for its numerical solution. For the discretization of the spatial variable we apply
a POD Galerkin approximation, which is discussed now. Let X denote either the
space H or the space V.
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3.1 The POD Method

Let an arbitrary u € L?(D) be chosen such that the corresponding state variable
y =739+ Sue W(0,T) belongs to C([0, T]; V) — C([0, T]; X). Then,

V=span{y(t)|1€[0,T]} SV C X. (3.1)

If yo # 0 holds, then span{yp} C V and d = dimV € [1, oo], but V may have infinite
dimension. We define a bounded linear operator ) : LZ(O, T)— X by

T
y<p=/ () y(r)dt  forg € L*(0, T).
0

Its Hilbert space adjoint J* : X — L2(0, T) satisfying
Yo, 2)x = 0. V) 207y fOr(p,2) € L20,T) x X

is given by (V*z)(¢) = (z, y(¢))x for z € X and f.a.a. ¢ € [0, T']. The bounded linear
operator R = YY*: X — V C X has the form

T
Rz =/ <z, y(t))x y()dt forzeX. (3.2)
0

Moreover, let K =Y*Y: L2(O, T)— L2(0, T) be defined by

T
(Kw)(t)=/0 (y(@),y0))y p(x)dr  for g € L*(0,T).

It is known [11, Sect. 3] that the operator R is self-adjoint, compact and non-
negative. Thus, that there exists a complete orthonormal basis {1//,-}?:1 for V =
range (R) C V and a sequence {)L,-}j.lzl of real numbers such that

Ry =Ariy; fori=1,...,d and A >l >--->X13>0. (3.3)

Remark 3.1

(1) The linear, bounded, compact and self-adjoint operator & has the same eigenval-
ues {)\,-}flzl as the operator R. For all A; > 0 the corresponding eigenfunctions
of IC are given by

L o) = —
V0= "7=

(2) Notice that V C V implies y; € V for 1 <i <.

v () = (Vi.y®), faare[0,T]and1<i<e¢.
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For ¢ < d the eigenvalues and eigenfunctions of R solve

T
min /
0

In particular,

14

NOEDINORAM

i=1

[

3.2 The Discrete POD Method

2

dr st (Wj,wi)X=8ij»l§ist€' (3.4)
X

14

NOEDNGRAN

i=1

Z}\

i=(+1

In real computations, we do not have the whole trajectory y(¢) for all ¢ € [0, T']. For
that purpose let 0 <t <t <--- <t, <T be a given time grid and let y;? ~ y(t))
denote approximations in a finite-dimensional space X" C X for y at time instance
ti,j=1,...,n. Weset V! = span{y{’,...,yfl’} with d" = dimV" < n. Then, for
given £ <n we consider the problem

2
m‘"Z% Zyj vy i sty ¥j) =8, 1<ij<t (3.5)
iz X
instead of (3.4). In (3.5), the o;’s stand for the trapezoidal weights
fh—t tip] —ti— ty —th—
Oll=221’ aj=% f0r2§]§n—l, Oln=nTnl.

The solution to (3.5) is given by the solution to the eigenvalue problem

n
Ry = o (Y yf) v =2yl i=1L
j=1
where R” : X — V" C V is a linear, bounded, compact, self-adjoint and non-

negative operator. Thus, there are an orthonormal set {y'}_, of eigenfunctions
and corresponding non-negative eigenvalues {17}?_, satisfying

Ryl =yl MZA = =M > M =+ =4, =0. (3.6)

We refer to [14] for the relationship between (3.3) and (3.6).

Remark 3.2 Let X" be given by the subset span{¢, ..., ¢} C X, where the ¢;’s
are assumed to be linearly independent in X. Then we have

m
y;’(x) :ZYij(pi(x) eX" forxefandj=1,...,n
i=1
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with real coefficients Y;;. In this case the POD basis functions are given by

m
Yl =) Wpi(x)eX" forxeQandj=1.....¢

i=1

with real coefficients ¥;;. Then we have to determine the coefficient matrix
V= (%)) € R™*¢_ For that purpose we define ¥ = (Y;;) e R™*" and W =
(@}, @i)x)) € R™™ Moreover, we define the diagonal matrix D = diag(ay, ...,
o) € R and set ¥ = W1/2y D1/2 e R"*" Then ¥ = [uy, ..., u] can be com-
puted as follows (see, e.g., [24, Sect. 1.3])

(1) Solve the m x m eigenvalue problem
YY T =nuy, 1<i<e, withwu;=38;, 1<i,j<t,

for the largest eigenvalues A1 > Ay > --- > Ay > 0 and compute u; = w2y,
Since YYT = W!/2y DYT w'/2 holds, this variant is often numerically expen-
sive, especially for m > n.

(2) Solve the n x n eigenvalue problem

YTVo, =nv;, 1<i<e, witholv;=8;, 1<i,j<¢, (3.7

for the largest eigenvalues Ay > Ay > --- > Ay > 0 and set u; = YDl/zn,‘/\/)\_,‘.
To solve (3.7) we apply the MATLAB routine eigs and call this variant ‘eigs’
in Sect. 4. Note that Y7Y = D'/2YT WY D'/2 holds and D is a diagonal matrix.
Since we do not have to compute W1/2 this variant is very attractive for n <m.
We will apply this approach in our numerical experiments.

(3) Compute the singular value decomposition (SVD) of Y, ie., determine or-
thonormal vectors {;}¢ ; in R™ and {ui}le in R" associated with the largest

i=

singular values o1 > 07 > - -+ > gy > 0 satisfying

?Uiza,-u,-, YTuiza,-t),-, 1<i<?¢

(see, e.g., [18]). It follows that A; = crl.z and u; = W—1/2y;. Since this variant is
based on the SVD, we call this variant ‘SVD’ in Sect. 4. Although the compu-
tation of W1/2 is costly, the SVD is known to be more stable. This is due to the
fact that the products of ¥ and Y7 squares the condition number of the problem
compared to the SVD.

3.3 POD Galerkin Approximation for (P)

Let y = Jo + Su be the state associated with some control u € U, and let V be
given as in (3.1). We fix £ with £ < d and compute the first £ POD basis functions
Y1, ..., ¥¢ € V by solving either Ry; = Ay or Kv; = Av; fori =1,...,¢ (see
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Remark 3.1). Then we define

vt = span{yr1, ..., Y} C V.

Endowed with the topology in V it follows that V¢ is a Hilbert space. The POD
Galerkin scheme for the state equation (2.2) leads to the following linear problem:
determine a function ye(t) € V¢ such that

d
3 DO v)y a0, 9) =((f + B ), ¥),
faa.re[0,T], V¢ € V¥, (3.8)
(), ¥), = o vy VeV

For every f € L?(0,T; H), u € L>*(D), yo € V and for every £ € N problem (3.8)
admits a unique solution y’Z e H'(0,T; V;see 10, Proposition 3.4]. From Vvt
V it follows that y¢ € W (0, T') holds.

The POD Galerkin approximation for (P) is given by problem

min J(yg, u) s.t. (yz, u) € HI(O, T; VZ) X Ugq solves (3.8). PY

Problem (P%) admits a unique optimal solution x¢ = (3¢, i) that is interpreted as a
suboptimal solution to (P). First-order necessary optimality conditions for (P) are
given by the state equation (3.8) with u = it%, the adjoint equation

d
—5 (PO, V) +a(p ). 9) =0 faarel0,T], Yy e V",
(3.9)
(pX(T). )y = ya =3 (D). ), VY eV
and the variational inequality
(yﬁz - B*ﬁg, u— ﬁ£>L2(D) >0 forallu € Uy.

To solve (P*) we apply a primal-dual active set strategy, which converges locally
superlinearly [7]. Its mesh-independence is proved in [8, 9].

3.4 A-posteriori Error Estimate for the POD Approximation

In this subsection we present the a-posteriori error estimate for the control variable.
The result is taken from [23, Theorem 4.11].

Theorem 3.3 Suppose that (y, ) is the solution to (P). For an arbitrary £ < d let
(3¢, it%) be the optimal solution to (PY). Let § = $o + Sit® and p = p(i®) be the
solution to the associated adjoint equation
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d, . -
—E(p(t),qa)HJra(p(t),w):O, tel0,T], VoeV,
(3.10)

(P(T).0)y ={ya =5(T). V), YoeV.
Define the residual function ¢ € L*(D) by

[(yi* —B*p)(s)l- on AL ={s €D |ut(s) =us(s)},
i) = [yt =By on AL ={s € D | (s) = up(s)}, (3.11)
—(yi* —=Bp)s) ond =D\ (AL UAY),

with [r]— = —min(0, r) and [r]+ = max(0, r). Then

o 1
”” — it HLZ('D) = ; ||€E||L2(D)'

Remark 3.4

(1) Notice that y and p must be taken as the solutions to the (full) state and adjoint
equation, respectively, not of their POD-approximations.
2) In [23] sufficient conditions are presented that limy_, o ||| r2(py = 0. Thus,

I Elle(@) can be expected smaller than any ¢ > 0 provided that ¢ is taken
sufficiently large. Motivated by this result, we set up Algorithm 1.

(3) Notice that the presented error estimate holds for time-variant, linear-quadratic
optimal control problems. For recent extension to nonlinear problems we re-
fer to [13] and to [12, 20], where the presented error estimate is utilized in a
multilevel SQP algorithm.

(4) To improve the approximation quality of the POD basis, we can combine the
a-posteriori analysis with basis update strategies; see [25].

Algorithm 1 (POD reduced-order method with a-posteriori estimator)
1: Choose u € Ugg, an initial number ¢ for POD ansatz functions, a maximal num-
ber £™#* > ¢ of POD ansatz functions, ¢ > 0; compute y = 3o + Su.
2: Determine a POD basis of rank £™#* utilizing the state y = y9 + Su.
3: repeat
4:  Build the reduced-order problem (P¢) of rank £ < ¢™aX,

5. Compute the suboptimal control it.

6:  Determine ¥ = jo + Sit?, p (see (3.10)) as well as ¢¢ (see (3.11)).
7. if (|28 2(py < & or £ =™ then

8: Return ¢, suboptimal control it and STOP.

9: else
10: Set{=4¢+1.
11:  endif

12: until £ > ¢max
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Decay of normalized eigenvalues

* eigs
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Decay of normalized squared singular values
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Fig. 1 Run 4.1: Decay of A; for ‘eigs’ (left plot) and 6,.2 for ‘SVD’ (right plot) with X = H

4 Numerical Experiments

This chapter is devoted to numerical test examples. First, we turn to the numerical
solution of a given parabolic PDE. We pursue the two different Galerkin approaches,
namely the finite element (FE) Galerkin method and the POD Galerkin technique,
and compare the results in order to see some different implementation choices that
can be taken, to get a sense of how good these approximate solutions are and to
point out some advantages and drawbacks of the considered methods. From solving
one linear parabolic equation we move on to applying the POD-Galerkin ansatz
to (P). Hereby, we especially focus on testing the accuracy and efficiency of the
POD a-posteriori estimator reviewed in Sect. 3.4. For the implementation we use
the MATLAB software package (R2010a). In all examples we choose the spatial
domain £2 = (0, 1) x (0, 1) C R?. The time interval of consideration will always be
[0, T] =[O0, 1]. The time integration is carried out by the implicit Euler method with
an equidistant time grid 0 =1y <t <--- <t, =T, where t; =i At and At = 1/n.

Run 4.1 (Heat equation) In (2.3a)—(2.3c) we choose the data yg=0,c, =1, =0
and f(t, x) = cos(2wxy) cos(2mx2) (1 + 8721), (1, x) € Q and x = (x1, x2). Then,
the exact solution is y, (¢, x) = t cos(2mx) cos(2mx,) for (¢,x) € Q. For the FE
method we choose piecewise quadratic elements resulting in m = 665 spatial de-
grees of freedom. The time increment was chosen to be At = 0.01 and we have
n = 101. Notice that the discretization error with respect to the spatial and the time
variable is of the same size O(At). To compute the POD basis we compare the
variants ‘eigs’ and ‘SVD’; see Remark 3.2. Choosing X = H in Sect. 3.1 the rapid
decays of the normalized eigenvalues

1= Moo A
T Yot h  trace(YTY)

and normalized squared singular values 6l.2 = A; are presented in Fig. 1. We observe
that in the beginning the eigenvalues are equal in deed, whereas the eigenvalues
computed with the SVD keep decreasing when the eigenvalues for ‘eigs’ stagnate
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Table 1 Run 4.1: Absolute & relative errors and Ay for different £ and for ‘eigs’ and ‘SVD’ using
X=H
l Variant ‘eigs’ Variant ‘SVD’

€205 (0) Efa(0) A Eaps (0) €fai(©) e

1.3.10797 2.1-107% 8.5-107%0 1.3-107%7 2.1-10706 8.5-10-%0
14.10708 5.8-107%7 2.5-10712 1410798 5.8-107%7 2.5-10712

5 43.10710 1.1-10798 1.1-10°15 43.10710 1.1-10798 2.0-10716
10 3.2-10°13 54.10712 4.6-10716 1.6-10°13 2.7-10712 14.10722
11 6.0-10°13 7.8-10712 4.4.10716 2.2-10714 3.4-10°13 3.1-10724
14 7.7-10712 3.1-10711 4.4.10716 5.2-10716 2.5-10715 3.5-107%
15 9.9.10~12 4.0-10~H1 4.6-10716 5.5-10716 2.5-10715 3.2.107%

at the order of machine precision. The difference between the ‘eigs’ and the ‘SVD’
variant shows already for small ¢ in this example due to the extremely rapid decay
of eigenvalues, see Table 1, where

n n h t) — yé t:
poi 2T,

stands for absolute and relative error between the FE and POD solution. In fact, the
solution space of the PDE is one-dimensional, since the exact solution at time ¢ is
given by a multiple of cos(2mx1) cos(2m x2) by the factor 7. This behavior is already
captured by one mode/basis function. Due to the inaccuracy of the numerical method
for determining the snapshots, the snapshot matrix Y representing the solution space
has a rank greater than one. Thus the first POD basis function v is not an exact
multiple of cos(2m x1) cos(2mw x2), and the dynamics of the PDE can not be described
comprehensively with only one POD basis function. Hence, increasing the rank of
the POD basis leads the approximation quality to rise.

The fact that the eigenvalues for ‘eigs’ increase starting from £ = 14 instead of
continuing to decrease like for ‘SVD’ illustrate that the SVD is more stable than
the eigenvalue solver. Since the matrix Y7V is symmetric, positive semi-definite,
it should only have real non-negative eigenvalues. Due to rounding errors, eigen-
values that are nearly of the size of the machine precision (eps = 2.2204 - 10~16)
can be mistakenly determined as negative or complex by eigs.m. For SVD the
eigenvalues keep on decreasing since they are computed as squares of the obtained
singular values. This leads also to a monotone decrease of the quantities Est )
and 8% (¢) for the SVD, whereas ‘eigs’ yields a stagnation of the error for £ > 14.
In case of ‘eigs’ we observe that the stagnation of the quantities Ezbs(ﬁ) and Eryel(ﬁ)
happens before the corresponding eigenvalues stagnate. This is due to the loss of the
W -orthonormality of the POD basis vectors. Analytically, we have

lI/A’ThZWlI/.,];( -1y L 0,
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Table 2 Run 4.1: Spectral

T
norm W7 W 1.0 — Il ¢ 191 W10 — Lella
for different ¢ and for ‘eigs’ Variant ‘eigs’ Variant ‘SVD’
& ‘SVD’ using X = H
8.12-10710 2.66-10~1
3.51-107% 3.98-10~1
9.95.1070! 3.94.10715
10 9.99.107 9! 1.05-10714

where I, denotes the £ by £ identity matrix and ¥. 1., contains the first £ columns of
Y. We estimate the spectral norm ||l1/,’T1: (W 1. — Iell2 by utilizing the MATLAB
routine normest; compare Table 2. We observe that the ‘SVD’ approach fulfills
the W-orthogonality far better than the ‘eigs’ variant. From Tables 1 and 2, we
can deduce that especially for higher POD basis rank the SVD is more stable and
accurate. However, we should mention that the ‘SVD’ variant is more costly than
the ‘eigs’ variant, especially if the number of spatial degrees of freedom m is much
bigger that the number n of time steps.

Run 4.2 (Unconstrained optimal control) In the context of Example 2.1, Re-
mark 2.3 and Remark 2.4 we choose y = 1072, ¢p =10, ¢ =0.01 and f = 0.
The initial condition is yp(x) =3 — 4(xp — 0.5)2 and the desired state is yz(x) =
2 4+ 212x1 — x2| for x = (x1, x2) € £2. Choosing u, = —00 = —uj we have Uyq =
L%(X). We make use of the MATLAB PDE toolbox for the spatial discretization
with piecewise linear, continuous finite elements ( P;-Elements) with maximal edge
length hpmax = 0.06 and thus Npg = 498 degrees of freedom. For the implicit Euler
method we choose the step size At = 0.004. The FE optimal control i is presented
at all times in Fig. 2. The different tested ROM runs vary in the way the POD basis
is determined:

(1) To generate the snapshots for the POD method we have to solve (2.3a)-(2.3c)
for a reference control u = uss. We consider two different reference controls:
(1a) uly(t, x) = exp(t)(3 [2x] — x2| + § (sin(rxz) — 1)) for (t,x) € ¥, x =

(x1, x2) (see Fig. 3);
(1b) u(t,x) =" (t, x) for (t,x) € ¥ (see Fig. 2).
The reference control u}ef is plotted in Fig. 3. Notice that urlef shares some be-
havior of the optimal solution urzef. In the thesis [21] also the reference control
u?ef =0 is chosen, which leads—compared to urlef to slightly worse numerical
results.

(2) The snapshot ensemble to be represented well by the POD basis can now be
taken from the solution yres of the state equation with u = u’r'ef, i =1, 2, which
is called Variant 1. If we want/need to enrich the approximation space, we also
solve the adjoint equation with y = yret and then consider a snapshot ensemble
consisting of snapshots from both the state and the adjoint equation. This ap-
proach is called Variant 2. Let us note that another possibility would be to use
two different bases which is not considered in this paper.
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Course of the optimal control u* at the 4 different boundary parts

x2:0 x2=1

-2

0.5 0.5

X,—axis 0 o time axis x,—axis 0 o time axis

0.5

X,—axis time axis X,—axis time axis

Fig. 2 Run 4.2: FE optimal control a'(t,x) forx = (x1,0)e I’ (upper left plot), x = (x1,1) e I
(upper right plot), x = (0, x2) € I (lower left plot), x = (1,x2) € I" (lower right plot)

(3) For the POD basis computation we choose }
(3a) ‘eigs’ includes solving YTYo=1rvwithY = WI/ZY_Dl/z;
(3b) ‘SVD’ involves the singular value decomposition of Y.

Moreover, the POD basis can be computed for the choices X = H or X = V. First,
we choose urlef for the snapshot generation and use ‘eigs’ to determine the POD
basis based on a snapshot ensemble from both the state and the adjoint equation
(Variant 2). In order to get a first idea of how many POD basis functions we should
use in the POD-Galerkin ansatz for the state and the adjoint state variable to compute
snapshots for the state and the associated adjoint equation using the reference con-
trol u}ef. All snapshots are utilized to compute one POD basis. Then, we look at the
decay of the eigenvalues; see Fig. 4. Naturally, in the case of the V-norm the eigen-
values decay slower than with the discrete H-norm. The decay plot shows where
the eigenvalues stagnate. Usually, from that number of POD basis functions on, we
can not further or significantly improve the approximation errors any more. Theo-

retically, increasing the POD basis rank leads to a decrease in approximation error
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Course of the control U
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Fig. 3 Run 4.2: u!

used for snapshot generation and thus POD basis determination
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ref for x = (x1,0) € I' (upper left plot), x = (x1,1) € I' (upper right plot),

x = (0,x2) € I (lower left plot), x = (1, xp) € I" (lower right plot)

Decay of normalized eigenvalues

Errors depending on the used POD basis rank | (X=H)
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Fig. 4 Run 4.2: Decay of A; for X = H and X = V (left plot) and decay of the a-posteriori error

estimator, the absolute as well as the relative errors using u . and ‘eigs’

values. Nevertheless, we have to pay attention if we use the not so stable method
‘eigs’ for POD basis computation. The instability can be detected in the right-hand
side plot of Fig. 4 for £ > 60. Note that due to the slower decay of eigenvalues with
the H'-norm implementations those errors are still decreasing for up to £ = 70 POD
basis functions. The instability sets in later.
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Table 3 Run 4.2: A-posteriori estimator, absolute and relative errors in the control variable for
X = H and X =V and for different £ using u:ef an ‘eigs’

¢ X=H X=V
% IR0 ELL(0) IzéN/y Els(0) en (o)

1 1.2-10%! 3.8-107° 7.8-107! 1.2-10*! 3.8-107° 7.8-107!

5 1.5-107° 6.1-1071 1.1-107! 2.4-107° 9.8-107! 1.8-107!
10 45.107! 2.5-1071 45.1072 4.4.107! 2.5-107! 4.6-1072
20 5.3-107! 2.2-1071 4.1-1072 5.5-107! 2.1-107! 3.9-1072
30 1.7-107! 1.1-107! 1.8-1072 1.7-107! 1.1-107! 1.8-1072
50 1.2-107! 7.4-1072 1.2-1072 1.2-107! 7.5-1072 1.2-1072
60 9.9.1072 6.6-1072 1.1-1072 5.8-1072 42.1072 6.8-1073
70 9.4.1071 9.3.107! 2.6-107! 5.2.1072 3.9.1072 6.2-1073

Let us define the quantities
n
Eabs (D) = Z“i |a" ;) — b_‘z(’j)HLZ(r)’
=0

n ~h L
u ”u (tj)_u (tj)”LZ([')
JINL2(r

j=0

The errors which occurred between the (sub-)optimal controls within the first two
ROM runs compared to the FE based approaches are listed in Table 3. The obtained
results for the POD suboptimal controls are not satisfying. The problem is that in-
creasing the number of utilized POD basis functions does not yield better results, it
even leads to meaningless results due to the instability of the ‘eigs’ method. Even
if we consider the ‘SVD’ approach, the error values do not continue to decrease
significantly. They somehow stagnate which is of course better than with the ‘eigs’
method, but still does not yield a satisfying approximation quality. This is due to
the fact that the POD basis is chosen poorly. The generated snapshots for basis de-
termination do not reflect the dynamics of the optimally controlled trajectory, since
the reference control is not chosen well enough. Next, we select a better—somehow
“optimal”’—admissible reference control ue for snapshot generation, namely the
FE optimal control. The POD basis is now determined with ufef =u", X=V
and snapshots from both the state and the adjoint equation. Using ‘SVD’ Table 4
presents the deviation of the POD suboptimal controls/states from the FE optimal
solutions depending on the number £ of used POD basis functions. From Table 4 we
can conclude that the POD basis should not be chosen arbitrarily if we want to obtain
a very good approximation quality. The POD based solver with somehow “optimal”
reference control urzef (Table 4) yields considerably better results than with more or
less arbitrary reference control urlef (Table 3). Table 4 emphasizes the good quality
of the POD a-posteriori error estimator. We can also observe that the a posteriori es-
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Table 4 Run 4.2: A-posteriori estimator, absolute and relative errors in the control and state vari-
able for X = V and for different £ using ufef

¢ i/ € (0) € (0) Eabs(0) € ()

1 1.1-10%01 3.4-10% 6.9-10701 1.7-107% 5.8-10702

5 2.4.107% 1.1-10-% 2.2-10701 5.2-10792 1.8-10792
15 2.5-10792 2.5-10702 5.4-10793 3.6-10704 1.2-107%
20 2.8-10793 2.8-10703 6.0-107%4 5.1-107% 1.8-107%
40 2.1-107% 2.1-107% 45.107% 1.9-10798 6.4-10"%
60 8.0-10710 8.0-10~10 1.8-10710 5.4.10712 1.9-10~12
70 7.0-10712 7.0-10712 1.5-10712 5.0-1071 1.7-10714
90 3.8-10°13 1.9.10713 3.7-10714 29.107M 9.8-10713

Table 5 Run 4.2: A-posteriori estimator, absolute error in the control variable and normalized
eigenvalues for X =V, for the variants ‘SVD’ as well as ‘eigs’ and for different £ using u?ef

£ ‘SVD’ ‘eigs’

lzil/y Elps () T Iz*1/y Elps(0) T

40 2.1-107% 2.1-107% 1.1-10714 2.1-1079 2.1-10706 1.1-10°14
60 8.0-10~10 8.0-10~10 5.1-10722 2.5-10798 2.5-10798 1.7-10716
70 7.0-10712 7.0-10712 8.1-10726 2.0-107% 2.0-107% 8.6-1017
90 3.8-10°13 1.9-10°13 3.1-10730 2.7-107% 2.5-107% 1.1-10716

timator constitutes a reliable upper bound if the ‘eigs’ approach was taken for basis
determination, see Table 5. As long as there is still enough new information content,
meaning that the eigenvalues are still “big” enough so that rounding errors do not
jeopardize the decreasing order of eigenvalues and the nearly W -orthogonality, than
the ‘eigs’ and ‘SVD’ approaches yield the same eigenvalues and the same subopti-
mal solutions. This is the case up to £ scarcely above 40. From then on, the POD
basis determination using ‘eigs’ is not stable any more and does not yield approxi-
mation errors as good as the ‘SVD’ approach, see Table 5. Table 6 gives a summary
of the CPU times. Notice that £ = 20 POD basis functions are sufficient for an ap-
proximation of the exact optimal control by the POD suboptimal control, since the
POD solutions cannot be significantly better than the (piecewise linear) FE solu-
tion since it is based on FE snapshots and FE matrices. The FE discretization error
cannot be overcome by the POD solutions. In case of £ =20 and ‘eigs’, the over-
all CPU time needed to compute the POD suboptimal control is 5.15 seconds and
thus about 240 times smaller than the CPU time needed to compute the “truth”/FE
optimal control.

Finally, we compare the approximation quality of the POD basis if only snapshots
from the state (Variant 1) or if snapshots from the state and the adjoint equation
(Variant 2) are utilized. Even with “optimal” reference control 2, = it snapshots

ref —
based solely on the state equation are not sufficient for getting good results with
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Table 6 Run 4.2: CPU times
CPU time in s

in seconds

FE solver 1240.87

ROM solver
snapshot generation (state & adjoint) 1.62
POD basis computation with. ..
...eigs (£ =90) 1.75
...SVD (£ =90) 6.57
PDASS incl. assembly of all matrices with. ..
...0=20 1.78
.. £=90 29.41
a-posteriori error estimation 2.81

the POD ansatz; see Table 7. From Table 7 we conclude that the inclusion of ad-
joint information into the snapshot ensemble according to Variant 2 is essential to
obtain good approximations for the controls. This is due to the fact that the opti-
mality condition directly relates the control onto the adjoint state variable. Hence, it
is important to also capture the dynamics of the adjoint equation in order to have a
good snapshot ensemble and thus a good POD basis. This coincides with theoretical
results, see [10]. The eigenvalues decay slower for X = V than for X = H, since
there is more information from the snapshot ensemble that gets incorporated into
the POD basis. That is why the error values decay slower for small £. Neverthe-
less, for higher £ this higher information content leads to more “stability” and thus
monotonously decreasing error values instead of severe oscillations. Summarizing,
the choice of X = V and the snapshot ensemble from both the state and the adjoint
equation leads to the best performance of the POD-Galerkin ansatz for solving the
optimal control problem.

Table 7 Run 4.2: Absolute errors in the control variable for different choices of the snapshot
ensemble, for X, for ‘eigs’ and for different £

¢ " — il 2 s
Variant 1, X =V Variant 2, X =V Variant 1, X = H Variant 2, X = H

3.4-107° 3.4-107° 3.4.107° 3.4-107°

5 1.1-107° 1.1-107° 1.0-107° 9.8.107!
10 8.8-107! 1.7-107! 8.5-107! 5.9.1072
20 6.5-107" 2.8.1073 6.5-107! 1.7-1073
30 6.0-107! 1.2-107* 6.0-107! 9.9.1073
50 5.1-107! 1.1-1077 5.1-107! 2.4-1077
60 5.0-107! 2.5-1078 1.7-10%2 1.8-10°8

70 5.0-107! 2.0-107° 5.3.107! 2.0-1077
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Course of the FE optimal control u*

0.5

time axis

0.5

time axis

X1—EXIS

0.5 0.5

time axis xz—axis

0.5

time axis

xz—axls

Fig. 5 Run 4.3: FE optimal control a'(t,x) forx = (x1,0) eI’ (upper left plot), x = (x1,1) e I”
(upper right plot), x = (0, x2) € I' (lower left plot), x = (1, x2) € I' (lower right plot)

Run 4.3 (Constrained optimal control) We take the same configuration as in
Run 4.2, but now we choose the control constraints u, = —0.5 and u; = 2. Like
in Run 4.2 we make use of the MATLAB PDE toolbox for the spatial discretiza-
tion with piecewise linear, continuous finite elements with 498 degrees of freedom.
For temporal discretization, we use the equidistant time increment At = 0.004.
The FE solver needs 5 iterations of the primal-dual active set strategy and requires
3435.82 seconds. The optimal control, i is displayed in Fig. 5. We now test if
the implemented ROM solver works properly when there are active box constraints
given for the control u. For this, we discuss the results from two different ROM
runs. They only vary in the choice of the reference control, first we take the refer-
ence control urlef(t, X) = exp(t)(% [2x1 — x| + Smgﬂ — %) and second we take the
FE optimal control &” for snapshot generation. In both cases we use X = V, the
snapshot ensemble from both state and adjoint equation and the ‘eigs’ method for
POD basis computation.

Note that urlef ¢ Uag holds. Nevertheless, we will see that we still get good re-
sults, for higher ¢ the errors are even smaller than in the unrestricted case with this
reference control. In Table 8 we present the POD a-posteriori error estimate, the
absolute and the relative error in the control variable for different number ¢ of POD
basis functions. Taking more POD basis function, into the POD-Galerkin ansatz of
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Table 8 Run 4.3: A-posteriori estimator, absolute and relative errors for the control and state
variable for X =V, different number ¢ of POD basis functions and for the reference control urlef

¢ Igt1/y €ans (O Era(®) E20s(©) & (0

1 1.2- 101! 221070 7.6-107! 1.9-107! 6.7-1072

5 1.3.107° 9.1-1071 3.0-1071 9.6-1072 3.3.1072
10 6.2-1071 3.7-1071 1.3-107! 6.7-1072 2.3.1072
20 5.9.107! 3.2-1071 1.1-107! 3.8-1072 1.3.1072
30 1.2-107! 7.7-1072 2.6-1072 2.1-1072 7.1-1073
50 1.9.1072 1.7-1072 5.5.1073 1.5-1072 52.1073
60 1.4.1072 1.2-1072 3.8-1073 1.3-1072 43.1073
70 1.2-1072 1.1-1072 3.5.1073 1.2-1072 43-1073
90 1.1-1072 9.7-1073 3.2.1073 1.2-1072 42.1073

Table 9 Run 4.3: Number of differences in restricted node values of the POD suboptimal controls
i#! in comparison to the FE optimal control i’ using urlef and X =V

14 5 10 15 20 30 40 50 60 70 80 90 100

diffua 998 818 548 596 106 27 24 19 18 18 17 15
diffub 700 457 412 415 112 31 33 25 23 23 24 24

the state and adjoint state variable makes the errors for the control variable descend.
This behavior also becomes evident for the absolute deviation of the POD subopti-
mal state y* from the FE optimal state ¥ as well as for the relative error values.

The FE optimal control is restricted by u, at a total amount of 3110 boundary
nodes over all times and prescribed by u; at a total amount of 8410 boundary nodes
over all times. In Table 9 we can see how many (diffua) boundary node values are
determined by u, in either the POD suboptimal control or in the FE optimal control,
but not in both. The differently restricted boundary node values by u, are counted
and stated in diffub. This table shows that the POD suboptimal control iz* and the FE
optimal control i” get restricted/fixed equally at an increasing number of boundary
nodes with increasing number £ of POD basis functions used to compute i‘. Note
that e.g. for £ = 100 there are only 15 differences in lower restricted node values
meaning that more than 99 % of the 3110 FE restricted values (by u,) are replicated
by the ROM optimal control solver. The same ratio holds true for the values which
are fixed by up.

Now we utilize snapshots generated by the reference control uef = it?. The very
good approximation quality can be seen from Table 10. Again, we check if the
values of the POD suboptimal control are restricted at the same boundary nodes as
the FE optimal control and how this changes depending on the number ¢ of used
POD basis functions, see Table 11. The active sets within the reduced order method
coincide with those within the FE approach for £ > 50. Compared to the results



Numerical Analysis of POD A-posteriori Error Estimation for Optimal Control 157

Table 10 Run 4.3: A-posteriori estimator, absolute and relative errors for the control and state
variable for X =V, different number £ of POD basis functions and for the reference control ufef

¢ lgth/y Elips (O a0 Eans (O €1l (O)
1 1.2-101! 2.1-1010 7.20-1071 1.4-107! 4.9.1072
5 6.5-107! 5.6-1071 1.88-1071 2.3.1072 7.9.1073
15 2.7-1072 2.7-1072 9.0-1073 7.12-10~* 2.5.107%
20 7.5-1073 7.3.1073 2.4.1073 1.97-1074 6.9-107
40 3.9-1074 3.9.1074 1.3-107* 8.09-10~° 2.8.1076
60 8.3.1073 8.3-107 2.8-107 1.61-107° 5.6-1077
70 3.0-1073 3.0-1073 1.0-107 6.02-1077 2.1-1077
90 3.7-107° 3.7-107° 1.3-107° 1.21-1077 42-1078
130 3.9.10°8 3.9.10°8 1.3-10°8 4.49.107° 1.6-107°

Table 11 Run 4.3: Number of differences in restricted node values of the POD suboptimal controls

it! in comparison to the FE optimal control i’ using urzef and X =V
I 5 10 15 20 30 40 50 60 70 80 90 100 110 120 130

diffua 1021 311 74 28 5 2 O
diffub 324 147 37 &8 0 0 0 O O O 0 o0 0 0 0

associated with u}ef in Table 9, the more prudent choice of the reference control and
the POD basis leads to more/earlier harmony of restricted values.
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Cubature on C! Space

Gabriel Turinici

Abstract We explore in this paper cubature formulas over the space of functions
having a first continuous derivative, i.e., C I We show that known cubature formulas
are not optimal in this case and explain what is the origin of the loss of optimality
and how to construct optimal ones; to illustrate we give cubature formulas up to
(including) order 9.

Keywords Cubature formulas - Stochastic analysis - Chen signature - Chen series -
Cubature on infinite dimensional space - Cubature Wiener - Cubature finance

Mathematics Subject Classification (2010) Primary 60H35 - 65D32 - 91G60 -
Secondary 65C30 - 65C05

1 Introduction

We consider the following controlled ordinary differential equation (ODE)
dx(t) = f(x(®),u®)dt,  x(0)=xo, (1.1

where f is supposed as smooth as required with respect to all variables and u(¢) a
C! control that acts on x(¢) with «(0) = u’(0) = 0. Let T be some final time (which
will be set to 1 in all that follows) and denote by Cé([O, T1; R) the space of u. In
order to explicitly mark the dependence of x on u we will also write x,(¢) for the
solution of (1.1).

We place ourselves in a situation where many u(¢) can be chosen and the average
(or any aggregate quantity such as higher order moments, etc.) of some functional of
x(T) over all such u(#) is to be computed. Typical frameworks where this is relevant
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is in inverse problems where one can chose several controls u#, measure the output
on the system depending on x(7') and want to identify some parts of the function f
by doing this (see [4, 9, 10] for examples).

We need to make precise what average means. Since our primary space for u(z)
is Cé ([0, TT; R) a possible way to formalize this average is to consider a one dimen-
sional Brownian motion W; (we write sometimes, as is usual, the time as index in-
stead of W (¢) but this means the same thing) and write the following 3-dimensional
stochastic differential equation (SDE):

dx(t) = f(x(@),u(®))dt,  x(0) = xo, (1.2)
du(t) =w®)dt,  u(0)=0, (1.3)
dw(t)=1dW, =10dW,,  w(0)=Wy=0, (1.4)

where the last equality means of course w(¢) = W;. The third equality is there only
in order to give a formal 3D SDE; the term od W; signals a Stratonovich formulation
(which is the one well adapted to cubature framework because of the Wong—Zakai
theorem [15]).

We can now make precise the quantity of interest which is

EF (x(T)), (1.5)

where F is some (smooth enough) real function.

The justification of this formal writing is the following: the Brownian motion se-
lects paths on the (Wiener) space of continuous functions null at the origin on [0, T']
denoted Cg([O, T1; R). Any C(])([O, T1; R) is the definite primitive of a function in
the Wiener space. Thus as realizations of W span the Wiener space, u(t) will span
the required space.

Following works on infinite dimensional cubature formulas on Wiener space
by [7, 8, 11] (see also [12, 14] for an application of cubature to finance and [3]
to SPDE; many other works appeared in the literature on these subjects) we want to
approximate the mean in (1.5) by a finite sum

EF(x(T)) > > " M F (x4, (T)), (1.6)

k=1

where each uy corresponds to a given realization wy of the Brownian motion W and
the corresponding uy () is given as above by

t
uk(t)=/ wi(s)ds. (1.7)
0

Such an approximation is called a cubature formula. The question is what weights
Ax and paths wy are best for some given n and how good are the approximation
properties of such a cubature formula.
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A first thought is to use cubature formulas that work on the Wiener space
C8 ([0, T1; R) (cf. cited references for the details). As it will be seen in the following
this is not necessarily the most efficient choice because of the specific structure of
the problem. The purpose of this work is to find optimal cubature formulas for the
space C(l) ([0, T]; R) up to (including) fourth order.

The plan of the paper is the following: further motivating remarks are the ob-
ject of Sect. 2 while a quick introduction to cubature formulas on Wiener space is
presented in Sect. 3. Preliminary computations are given in Sect. 4 while the actual
cubature formulas are given in Sect. 5.

2 Further Remarks and Motivation

X
Denote Y = ( u ) and note that our equation can be written as

Sx@), u()) 0
dy = w dt+[0)odw,. 2.1)
0 1

We note that a different circumstance where the term EF (x(T)) appears is in
the forward Kolmogorov (or Fokker—Planck) PDE associated to the time evolu-
tion of the density of the SDE (2.1). If we denote by p(t, x,u, w) the 3D den-
sity it satisfies the following degenerate 3-dimensional, time-dependent PDE [6,
13]:

0 0 0
a—,o(t,x, u, w)+ 8—(f(x, u)p(t,x,u, w)) + a—(wp(t,x, u, w))
t X

u

2

—%(%p(t,x,u,w):o, 2.2)
0, x,u, w) =8y—y,- (2.3)
Then since
IEF(x(T)) = A@ F(x)p(T,x,u,w)dxdudw, 2.4)
+

the method presented here also applies to the evaluation of the right hand side of
the equation above. An equivalent formulation, that does not require to work with
a Dirac mass, involves a degenerate backward (in time) PDE and can be invoked
through the Feynman—Kac formula [6, 13]:

EF (x(T)) = F(0, x0, 0, 0), 2.5)

where
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) a a
8_~7:(t7x1u7w)+f(xsu)a_f(ts-xvusw)+wa_‘7:(ts-xvusw)
t X

u

2
S = 2.
+285}]:(t,x,u,w) 0, (2.6)
F(T,x,u,w) = F(x). 2.7

Thus the method presented here can be used to solve degenerate PDEs of
type (2.6).

3 Background on Cubature Formulas

We follow [7, 11] and introduce below the principle of computing cubature formulas
on the Wiener space. Suppose we want to compute Eg(Z(T)) with g a regular
function where Z(t) = (Zo(t), ..., Zq(t))T € R4t solves the SDE

d+1
dZ =" "t(Z1)odBu(®), 3.1)
£=0
where B(t), ..., B4(t) are components of a d-dimensional Brownian motion, ¢; are

(generic) smooth functions and we denote By(¢f) =t and set {o(-) = 1 (which en-
sures Zo(t) =1).

If apath w(t) = (wp(t), ..., wq(t)) € Rt with wo(r) =1 is given and has some
regularity one can define &,(¢) as the solution of the following ODE

d+1

g, (1) =Y to(Ea(®))dwe(1). (3.2)

=0
Use now stochastic Taylor formulas [6, 13] to write
Eg(Z(T)) =8(Z(0) + > aj(g. %o. ... C)E(P)) + R, (3.3)
j

where R is a remainder of order higher than a predefined order N; the term
a;j(g,%o,...,¢q) is a real (known) functional depending on g, &o, ..., ¢s; and P;
are stochastic polynomials, i.e. integrals of the type

T S 5 Sm—1
f / / / odBq, (1)---0dBa, (1) (3.4)
0 0 0 0

with o), € {0, 1, ..., d} for each p. The order of a stochastic polynomial is defined
adding 1 for each integral involving «; > 0 and 2 for each a; = 0.
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If the function g is smooth enough and the remainder R does not contain terms
of order <N a cubature formula of order N

Eg(X(T)) = > M&,w(T) 3.5)
k=1

is obtained by requiring that cubature paths w* and weights A satisfy for each
polynomial P; asin (3.4):

n T S1 52 Sm—1
Z“(/ f / f dwgm(z)...dwi;l(z)>
ay o Jo Jo 0
T ST 52 Sm—1
:E(/ / f f odBo,m(t)-nodBal(t)). (3.6)
0 0 0 0

Remark 3.1 We use here the same naming conventions for the order of the cubature
scheme as in [11] which is somehow different from the standard numerical analysis
practice. As such, a cubature of order “N” will have error of order O(TN+D/2y,

4 Stochastic Taylor Expansion for Averages of Deterministic
Functionals over the Class C(}([O, T]; R)

We will use the following convention: for any function G(-) we denote by 0;G

the partial derivative of function G with respect to its kth argument. We write the
stochastic Taylor formula [13] and iterate:

T
IEF(x(T)) = EF(x(O)) + IE/O d1 F(x(sl))f(x(sl), u(sl))dsl

T

= F(x(O)) —I—E/O 81F(x(s1))f(x(s1), u(sl))dsl. 4.1

We obtain by iterating:
T
EF(x(T)) = F(x(0)) 4 01 F (x(0)) £ (x(0), u(0)) E(/O ds1>

T prsi
+ E/O /(; A F (x(52)) (1 f (x(s2), u(s2)) f (x(52), u(s2))
+ 82 f (x(52), u(52)) W (s52))

+(01)2 F (x(s2)) £ (x(s2). u(s2))dsads 42)

The first conclusion that can be drawn from this initial computation is that no first
order terms appear and the only second order term in 7 is E( fOT dsy); thus a second
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order cubature formula (in the sense of the Remark 3.1) has only to satisfy the

requirement:
n T T
Z’\kf ds =]E</ ds1> =T, (4.3)
prt 0 0

Z’\k =1. (4.4)

The important remark here is that many terms are missing among which (we only
write terms up to order 3 because the others are more cumbersome to write):

T T psi
o) ([ ) o
0 0 0
T psi T psi
]E(/ / dszodWﬂ), E(/ / odWszdsl), 4.6)
0 0 0 0
T S1 52
]E(/ / / odWS3odWszodW31>, “4.7)
0 0 0

as well as terms of order 4 involving Stratonovich integrals.

It follows that classical cubature formulas derived for fully general equations on
Wiener space lose optimality here. The purpose of this work is to explain what are
the constraints that optimal cubature formulas satisfy and give examples of optimal
weights and paths up to (including) order 9.

Continuing in the same way the enumeration of orders as they appear iterating the
integral form of the stochastic Taylor formula we obtain that the following integrals
appear:

i.e.

1. Order 2: term [E( fOT dsy). The constraint is, as seen above,

S h=1. 48)
k=1

2. (Unique) term of order 4: E( fOT (f "dsodsy). There is no new requirement
brought by this term.

3. (Unique) term of order 5: E( fOT OS OS * odWy,dsydsi). The requirement is

n T S1 K2
Z Ak ( f / / dwy (sg)ddem)
=1 o Jo Jo
T S1 k%)
= E( / / / o dWs3dSst1> =0. (4.9)
0 0 0

We recall that the integral fos % dwy (s3) is a Riemann-Stieltjes integral.
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4. (Unique) term of order 6: [E( fOT OS ! OS % ds3dsydsy). There is no new requirement
brought by this term.
5. Only two terms of order 7:

T S1 52 53
E( / / / / odWs4dS3dszds1) =0, (4.10)
0 0 0 0
T psi 52 53
E(/ / / / dS4odWS3ds2ds1> =0. 4.11)
0 0 0 0

6. Order 8 and higher: all the terms beginning by the terms of order 7 and higher.

5 Cubature Formulas

5.1 Cubature Formulas of Order 6

As seen above cubature formulas up to order 4 (included) are somehow trivial. We
thus start our list of cubature formulas from order 5. Note that a formula of order 5 is
automatically of order 6 too since terms of order 6 do not bring any new requirement
(other that the one implied already by the term at order 2).

There are two equations: (4.8) and (4.9). We will use two paths and thus two
weights. A natural choice is to use some path w; and wy = —w; and A1 = Ay =
1/2. Then the constraints are both satisfied. We obtain for instance a formula of
order 6:

rM=l=1/2, w1 (1) =t, wy(t) = —t. (5.1)

Note that this is the same as the third order (dimension one) formula from [11].

5.2 Cubature Formulas of Order 7

There are two new constraints of order 7. But there constraints are again satisfied
if one uses n =2 A1 = Ay = 1/2 and wy = —w;. Thus e.g. formula (5.1) is also of
order 7.

5.3 Cubature Formulas of Order 8: A First Approach

Two new terms appear that bring new constraints:

T psi 52 s3 S4 T4
E(/ / / / / od Wy, odWs4dS3dS2ds1> =—, (5.2)
o Jo Jo Jo Jo ) 438
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T S1 52 s3 S4
E(f / / f / OdeSdS4 o dWﬁdSZdS]) =0. (5.3)
0 0 0 0 0 3

We do not enter here into the specifics of the calculation above (see [1]). In terms of
the cubature paths and weights the two new constraints read:

n T ps1 ps2 ps3 sS4 T4
Zxk ( / / f / / dwk(S5)da)k(S4)dS3dszdsl) -, (5.4)
P o Jo Jo Jo Jo 48

“ T prs1ops §3 S
Zkk</ / /2/ %/ 4dwk(SS)dS4dwk(S3)dS2dsl) —0. (5.5)
k=1 o Jo Jo Jo Jo

Note that the choice n =2, A1 = A2 = 1/2 and wy = —w; = —t does not satisfy
these constraints. A first idea is to add two more functions and look for a n =4
cubature formula of order 8. In order to build on conclusions from previous lower
order we further choose to set

A2 = A1, A3 =A4, 0 = —w1, W3 = —w4. (5.6)
Denoting
T S1 52 853 54
ap = / / / / / dwy (s5)dwy (s4)ds3dsrdsy
0 0 0 0 0
T N 2 53
:/ / / / wi (s4)dwy (s4)ds3dsyds
0 0 0 0
T S1 52 02
:/ f / wk(ss)d.hdszdsl (5.7
o Jo Jo 2
and

T S1 52 53 S4
po= [ [ [T dorssasiaorsasias
0 0 0 0 0
T prs 52 [S3
:/ / / f wi (s4)dsadwy (s3)dsyrd s (5.8
0 0 0 0

we obtain that the following requirements are to be satisfied (for 7 = 1):

1 1
A — — A = —, 5.9
1061+(2 1)063 9% (5.9
1
AP+ 7 M B3 =0. (5.10)
Let us introduce the parameter & € R and choose w; = 0t = —wy; we compute

. 2 . .
and obtain o] = % = Bi. It suffices now to choose a family of functions where to
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Fig. 1 The four functions uy 0.8 T
for a order 9 quadrature 06 ﬂi -
formula ' Uy —w—
0.4
0.2
0
-0.2
-0.4
-0.6
-0.8
0 0.2 0.4 0.6 0.8 1

look for w3 and its opposite w4. Instead of piecewise linear functions as in [11] we
propose here oscillatory functions w3 () = sin(%) = —wy. The unknowns are now
0 and A1. Note that w3 is such that fol w3(t)dt =0.

For this choice of w3 we obtain (for 7 = 1)

8r? -3 872 —21
=—, = 5.11
AT Ps 9672 G-AD
Replacing and solving for 6 and A one obtains:
52x% —21)
1 = ————— ~0.39712223492734, (5.12)
6272 —15)
872 —21
0 = ———— ~1.378974145172718. (5.13)
472 -9

Note that the natural constraints 62 > 0 and A; € [0, 1 /2] are satisfied. This is not
necessarily the case for other (arbitrary chosen) pairs of functions.

We obtain thus the following integration formula for CO1 functions (see also
Fig. 1):

52r? —=21) 1 872 —21
)\, = = 0, )\, =}\, =——)\,, 0=7, 514
2= = o 1s) 3=M=5 = R (5.14)
t? 1 —cos(2mt)
M](f)zgzz—uz(t), M3(I)ZT=—M4(Z‘). (5.15)

5.4 Minimalistic Cubature Formulas of Order 8 and 9

Another approach to construct a formula of order 8 is to start with n =2 paths and
weights but adapt them to satisfy the constraints. We note that any choice:

n=2, AM=r=1/2, wy) = —wj (5.16)
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Fig. 2 The functions uy for a 1 Uy ——
9th order quadrature 0.8 Up —o—

formula (5.20)—(5.21) 0.6

0.4
0.2

-0.2
-0.4
-0.6
-0.8

(now wq is not necessarily t) will automatically satisfy all constraints of odd orders,
i.e. involving an odd number of integrations with respect to the paths. The reason is
that all such terms have to be zero and are obviously so because are the sum of two
contributions, one coming from w; and another, that will have same modulus but
opposite sign, from wr = —w;. In particular, if we find a cubature formula of order
8 with two paths that satisfy (5.16) it will also be of order 9.

Thus all that remains to do is to find a function w; which satisfies (5.4) and (5.5)
(for k = 1). A parametric search as a fractional order polynomial reveals that a
suitable solution is:

VE((V11 4 6)x —3)
5 .

A solution can be also found as a piecewise linear function. The function has two
linear parts with slope a; from 0 to 1/2 and a; from 1/2 to 1:

w1 (x) = (5.17)

(ap —ay)|2t — 1| + Qay + 2a1)t —apy + ay

w1 (1) = 2 , (5.18)
V161 + 17 . VAIV23 + 17(V161 — 15) (5.19)
ag=——7=3 > 2= 5 . .
23 22

We have thus proved.

Theorem 5.1 The following choice is a formula of order 9 for T =1 (see also
Fig.2):

VH(/1T +6)t —3)

Al=A2=1/2, wi(t) = 3

w) = —wi, (5.20)
or, in terms of the control u:

M=r=1/2, ul(t)ztz((‘/ﬁ:@’_s), ur(t) = —uy(t).  (5.21)
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Same holds for:

— 2t —1 2 2a1)t —
wl(t)z(az ap)l |+ (2az + 2ay) az+al’ (5.22)

4

V161 +17 VVTV23 4+ 17(/161 — 15)
a=-YY22T 0 g = . NG £)

22 22
rM=r=1/2, wy) = —wi, (5.24)
or, in terms of the control u:
((2ay — 2a1)t — az + a)) |2t — 1| + (4az + 4ay)r?
ui(t) =
16
4a; — 4ar)t —

n (4ay —4ax)t +ar — a; (5.25)

16 ’
A=A =1/2, ur(t) = —ui ().

Remark 5.2 This methodology to find a cubature formula can be extended to the
situation of a multi-dimensional state x(¢) and even multi-dimensional control u (t)
but the cubature formulas will be different.

Remark 5.3 The point of the paper is that taking into account the special structure
of the equation can help to obtain faster cubature formulas. Up to this point f is not
depending explicitly on time; if one needs to work with a non-autonomous version
of f, the standard treatment is to introduce time as additional variable, but its SDE
is very particular (dt = 1dt), this may be combined with the above technique (or
not. . .) to propose adapted cubature formulas.

We recall that cubature formulas for arbitrary 7 are simply obtained by rescaling

wr(t) to ~/Tay(t/T) and ug(t) to VT3wi(t/ T).

6 Numerical Results

6.1 Linear Setting

To test our implementation against trivial errors we considered first
fx,u)=ax+u, aoaek, x(0) =0, F(x)=x. 6.1)

One can show analytically that EF (x(T)) = 0. The cubature will approximate 0

with F(x"l(T));F(X”Z(T)). But, by linearity F(x,,(T)) = —F(x,,(T)) so the ap-
proximation is in fact (analytically) exact. The numerical implementation for
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Fig. 3 The error of the 9th \ \ T —

Cubature formula of order 7 (from literature)-e-
order cubature formulas Cubature of order 9 (smooth)-
(5.20)—(5.21) and Cubature of order 9 (piecewise linear)—«
(5.22)—(5.25) for test case
(6.2) is plotted in log;o—log;
axis. The X axis is log;(T)
and the Y axis is log, of the
error. The resulting plots are
lines with slope 5. The 7th
order formula (5.1) is also
plotted, it exhibits a slope of
about 4

log10(error)

20 | | | | |
-3 2.5 -2 1.5 -1 -0.5 0
log10(T)

a =0 and o =1 (results not given here) showed indeed that this is the case i.e.
F oy (T)+F (xuy (T))
2

was of the order of the round-off error which in our setting is
about 10713,

6.2 Nonlinear Setting

A nonlinear setting was tested next:
f(x,u)=x+u2, x(0) =0, F(x)=x. (6.2)

The advantage of this example is that using stochastic expansion we know that

EF(x (1)) =%+ —+=—+". (6.3)

We tested the cubature formulas of order 9 for different final times in the range
[1073, 10°]. The range was chosen so that the error is not below the round-off. The
results in Fig. 3 confirm the theoretical results i.e. the error behaves as O(T?) for
both order 9 formulas. We also tested the formula (5.1) from the literature that uses
also only n = 2 functions and found O (T*). As expected, the formulas (5.20)—(5.21)
and (5.22)—(5.25) converge faster.

6.3 Nonlinear Setting Out of the Scope of the Theoretical Result

Finally, we tested a nonlinear setting taken from [S] which is not of the form (1.1).
It involves a 2-dimensional SDE x = (Y, A):

dY,:aY,dt—i-bY,odW,, (64)
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Fig. 4 The error of the 9th T T \ — \

Cubature formula of order 7 (from literature) -o-
order cubature formulas Cubature of order 9 (smooth) P
(5.20) and (5.22) and the 2F Cubature of order 9 (piecewise linear) -+ B
order 7 formula (5.1) for test
case (6.4)—(6.6) is plotted in
log;o—log( axis. The X axis
is logo(T') and the Y axis is
log of the error. The
resulting plot is very close to
a line of slope 4 for all
cubature formulas, the lines
coincide graphically (but
numerical values are
different)

log10{error)

-14 | ! | 1 1
-3 -2.5 -2 -1.5 -1 -0.5 0
log10(T)
dA; =Y dt, a=0.1, b=02, (6.5)
F(x)=A3. (6.6)

Here too, we know the explicit solution of this 2-dimensional SDE

Y, = 4 ThWe, (6.7)

t
A = / B TWs g (6.8)
0

The moment E(A(T)?) is not trivial to compute and we will not give here its (cum-
bersome) formula (see instead [16, 17] and also [2] for an elegant way to express it).
We tested the same (three) cubature formulas for different final times in the range
[1073, 10°]. The results in Fig. 4 show that for all cubature formulas the error be-
haves as O (T*) which says that, from a numerical perspective, all cubatures are of
order 7 for test case (6.4)—(6.6). This hints that formulas (5.20) and (5.22) behave at
least as well as (5.1) for situations not covered by the theoretical results; recall that
all cubatures have the same number of paths n = 2.
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A Globalized Newton Method for the Optimal
Control of Fermionic Systems

Gregory von Winckel

Abstract A computational framework for determining optimal control fields for in-
ducing energy state transitions in systems of several fermions in an infinite potential
quantum well is presented. The full multiparticle system is numerically approxi-
mated using linear combinations of Slater determinants constructed from nodal trial
functions, which leads to diagonalized matrix approximations of variable coefficient
terms. First and second order optimality conditions are given for the control and a
robust line search is described for computing a local minimizer.

Keywords Optimal control theory - Schrodinger equation - Quantum mechanics -
Newton method - Identical particles
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1 Introduction

In recent years there has been growing interest in controlled quantum phenomena
by means of external fields. The aim of quantum control is to effect change on a
system whose dynamics are governed by the time-dependent Schrodinger equation
such that the system reaches a particular configuration. Some applications for quan-
tum control include quantum bits and logic devices, controlled chemical processes,
and investigation of fundamental phenomena. Following the initial work of Peirce,
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Daleh, and Rabitz [12], the Lagrangian based optimal control strategy has become
prevalent for determining the control field which drives a quantum system closest
to a target state at a specified time. Optimal controls are typically computed us-
ing either monotonically convergent schemes [10], gradient based schemes such as
nonlinear conjugate gradients, BFGS [15], or inexact Newton methods [17].

In practice, multiparticle systems are usually approximated using a many-body
approximation such as the Hubbard model, the Born—Oppenheimer approximation,
or the Multiconfigurational Time-Dependent Hartree(—Fock) (MCTDH(F)) methods
[6, 11], which tends to give a good approximation for large numbers of particles,
but may be inaccurate when there are only a few particles. In this current work, we
present an efficient discretization and optimal control technique for inducing state
transitions in a one-dimensional system of noninteracting or interacting fermions.
The basic approach for discretizing the multiple fermion system has been described
in detail in [4] and the Krylov—-Newton method for a single particle system has
been presented in [16]. The current work, however, contains the first application of
Newton’s method to the multiparticle optimal control problem.

In most quantum control literature where the time-dependent Schrédinger equa-
tion (TDSE) is used as an equality constraint, one of the most common approaches
is to replace the partial differential equation with a finite dimensional system of or-
dinary differential equations so there is a two or three level system [1, 2, 5, 13]. This
method usually assumes the structure of the Hamiltonian in the eigenfunction basis
and further assumes that higher level states play no role in the dynamics. It does,
however, capture the basic bilinear structure of the full problem and is attractive
since the small systems that result can be solved numerically very quickly.

Alternately, the TDSE may be discretized, for example, with the finite difference
method [7], which also gives a finite dimensional, albeit considerably larger, sys-
tem of equations. This approach is numerically more expensive, but makes direct
use of the physical potential and allows for coupling into higher energy states. It
may be the case, however, that the discretization may be superfluous in the sense
that the method resolves states which do not have a significant occupation probabil-
ity.

The approach in the current work it to combine both of these ideas. We discretize
the multiparticle Hamiltonian directly and compute its eigenvectors which are used
as a modal basis for the state. This would be the simplest version of the proper
orthogonal decomposition (POD) applied to a symmetric quadratic problem, how-
ever, we do not use the term POD in this work as this approach of diagonalizing the
Hamiltonian is completely standard practice in quantum mechanics. What is distinct
here is that the diagonalization follows a spectral discretization of the full interac-
tion problem and that the basis of eigenvectors is permuted for efficiency of solving
the control problem. That is to say, the eigenvectors are ranked in importance to
the problem by a heuristic method described below and the state is projected onto
the first few selected vectors. The optimal control problem is then solved on this
reduced basis. The state space is then augmented by adding the next few most im-
portant vectors and the optimization routine is restarted using the computed optimal
control from the previous step. This process is repeated until augmenting the state
space has no perceptible effect on the cost functional.
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The organization of the paper is as follows: in Sect. 2, basic properties of
fermionic systems in one dimension are presented. In Sect. 3, we give the space
and time discretizations for the multiparticle system. In Sect. 4, the control prob-
lem is formulated and the state reduction method is described. Section 5 presents
some computed optimal controls for the quantum well containing two, three, and
four fermions, and Sect. 6 contains the conclusion and discussion of future work.

2 Multiparticle Systems in One Dimension

To understand the time-dependent Schrodinger equation for multiple interacting
fermions, it is advantageous first to consider the two particle case before its gen-
eralization to n particles. The TDSE for two fermions is

Py (ep, x0, 1) = {—(02, +02,) + V(xr, x2, )} (x1, x2, ). 2.1)

The wavefunction ¥ (x1, x2, t) contains information about both particles and in par-
ticular, moreover, following the Born rule, its modulus squared is understood to be
a probability density function. The stationary states for the particle system are the
solutions to the eigenvalue problem:

{=(33, +02) + V(x1.x2) }¢j (x1, X2, 1) = A (x1, x2), (22)

where the eigenvalue A ; is the energy. Since these form a complete basis, the time
dependent solution can be expanded as a linear combination of the eigenfunctions
using time dependent coefficients:

e ¢]

Y, x0, 1) = Y er(Or(x1, X2). 2.3)

k=1

Since the particles are indistinguishable, it is required that this probability function
be invariant under exchange of the particles, i.e.,

b ) = xD)” = G x) =g, x)e?.  (24)

This means that ¢!? is the eigenvalue of a permutation operator P where P¢ (x{,x)=
¢ (x2,x1) = eierj)(xl ,X2). Since P2 =], it follows that for two identical particles
that ¢ (x1, x2) = ¢ (x2, x1). The Pauli exclusion principle for fermions stipulates
that the wavefunction is antisymmetric. In the time independent case, if there is no
interaction between the particles, then V (x1, x2) = Vi(x1) + Va(x2) and the system
is said to be decomposable. The problem is separated into two uncoupled univariate
problems by writing the Ansatz

d1(x1)  Pa(x1)

@ (x1, x2) = P1(x1)P2(x2) — P1(x2)P1(x2) = S0t dalxa)

. @25)
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Fig. 1 Two noninteracting fermions: state |1,2) and |1, 3)

where the determinant on the right hand side is called a Slater determinant. The
eigenproblem can be separated into two uncoupled one-dimensional problems

{02, + Vi) @y, (x1) = 2,8, (x),

(2.6)
{=02, + Va9, (x2) = 4 jy 0, (x2).

More generally for n non-interacting particles, the stationary states are still Slater
determinants of size n:

d1(x1)  d2(x1) - Pulx1)
_¢1(X2) $2(x2) - Pu(x2)

O(x1, .., x) = .

¢1(‘xn) ¢2(.xn) ¢n('xn)

2.7)

Consider the example of two noninteracting fermions in an infinite potential
square quantum well with x € [0, 1]. The single particle eigenfunctions and eigen-
values are

¢ (x) =sin(wjx), A= (jm)?. (2.8)

The first two eigenfunctions for the two particle problem are

[1,2) = ¢1(x1, x2) =sin(mwxy) sin(2wxp) — sin(2w x1) sin(wxy), 50
[1,3) = ¢a(x1, x2) =sin(mwxy) sin(3wxy) — sin(3wxy) sin(wxy), @9

and the corresponding eigenvalues are A; = 572 and A, = 1072, The first and sec-
ond states are shown in Fig. 1.

If we add a third noninteracting fermion to the same well, then the first state
|1,2,3) is the eigenfunction
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Fig. 2 Three noninteracting fermions: state |1, 2, 3) and |1, 2, 4)

¢1(x1,x2,x3) = sin(nx1)[sin(2nx2) sin(37x3) — sin(3mxp) sin(ang)]
+ sin(2x1)[sin(37x2) sin(7x3) — sin(7rxz) sin(3wx3) |

+ sin(3mxy)[sin(x2) sin(27 x3) — sin(27x2) sin(rrx3) ], (2.10)

and the first eigenvalue is A = 147. The first two states for this system are depicted
in Fig. 2 where the red surfaces indicate the level sets where the eigenfunction is
equal to half of its maximum value and the blue surfaces correspond to half the
minimum value.

In stationary problems with nonzero interaction potential or time-dependent
problems, it is no longer the case that the wave function is decomposable in this
way and is not a single Slater determinant of one-dimensional functions. In the
more general case, however, it is reasonable to write the wavefunction as a linear
combination of Slater determinants.

The full multiparticle TDSE that we discretize and use as an equality constraint
has the form

i (x,1) = {—A + Z(v%x,-,r) + va<xj,xk)) }WX, n. @l

j=1 k>j

where —1 < x; <1 and the external potential experienced by the jth particle,
V€ (xj,t) = u(t)x; corresponds to a spatially-uniform electric field with time de-
pendent amplitude. The interaction is modeled by a smoothed Coulomb potential

Vig.x) = —1 =~ el (2.12)

|xj_xk| /(xj_xk)2_|_32

with é as a smoothing factor.
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3 Numerical Discretization

The wavefunction is discretized in each spatial dimension using the Legendre—
Gauss numerical integration (G-NI) discretization, which is algebraically equiva-
lent to the pseudospectral method, but leads to symmetric matrices. Consequently,
all variable coefficient matrices will be diagonal, which is especially important for
the interaction potential matrices which would otherwise be full in general.

For a single dimension, the approximation has the form

p p+1
~ X — Xk
Y@ RY,0) =Y k), o =]] : (3.1)
k=1 k=0 7 Tk
k#j
where j =0, ..., p + 1. To enforce homogeneous Dirichlet conditions, we simply

exclude £o(x) and £,11(x). The Legendre-Gauss—Lobatto nodes are implicitly de-
fined by

{x0, -, xpr1} = {x| P}, (x) =0} U {1}, (3.2)

where Py (x) is the kth Legendre polynomial. From the nodes and Legendre poly-
nomials, we also obtain the corresponding Lobatto weights

1 2
(P DP+2) [Py ()

(3.3)

Starting with a one-dimensional eigenvalue problem such as in (2.6), expanding the
wavefunction in the Lagrange trial basis, multiplying by a Lagrange test function
and integrating by parts gives us the weak form of the eigenvalue problem

+ (€. vely) wk—AZw,,em, (3.4)

k=1

_Mt

where the component matrices here are the stiffness or Laplacian matrix with el-
ements, K = (Z’j, £,), the confining potential matrix V?k = (£;, VL), and the

mass matrix M jk = (£, £r). The inner products are then computed approximately
using Legendre—Gauss—Lobatto quadrature:

P P
M =Y Ciebpw, K=Y €G)¢xw;. (3.5)
i=1 i=1

This choice of discretization diagonalizes the mass matrix so that it contains the
quadrature weights along the diagonal M j; = w;J . Since the quadrature weights
are all positive, a trivial Cholesky factorization can be employed:

M=R'R, Rji=/w;sj. (3.6)
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Transforming the eigenbasis by R gives us the algebraically equivalent simple
eigenvalue problem in contrast to what was a generalized eigenvalue problem

[K+V]g=2p, K=R KR! V=R TVR" 3.7)

Although some integration accuracy is sacrificed to yield diagonal matrix approx-
imations to the variable coefficients, it has been shown that this method is alge-
braically equivalent to the standard pseudospectral method on the Legendre—Gauss—
Lobatto nodes [3], however, in this setting all of the matrices are symmetric.

Following the idea of the Slater determinant formula for the decomposable prob-
lem, the multiparticle wave function is discretized using linear combinations of
Slater determinants of the one-dimensional Lagrange interpolants.

The n particle trial function ¢ is a Slater determinant of L?-normalized Lagrange
polynomials and to compute the Galerkin matrices, inner products must be com-
puted involving trial and test functions, the latter being chosen from the same space
for symmetry. Supposing we have two Slater determinants A(x) and B(x) such that

aj(x1) -+ ap(x1) bi(x1) -+ bp(x1)
Alx) = s B(x) = s (3.8)
ar(xp) - ap(xy) bi(xp) - bu(xy)

then the Lowden rule for Slater inner products [9] states that

(a1, br) -+ A{a1,bn)
(Ax), B))=]| c . (3.9)
<an’b1) (anvbn)

The total discretized Laplacian or stiffness matrix is K = K' + K2 +- .-+ K" where
K }.’k = (0x, 9}, 0x, k). We can write each of these components as

(Sjl,kl T 8]'1,/%71 Kjlykv Sjlykvﬁ»l Tt 8j1~kn
K= : : : e (3.10)
Sjuki = Ok Kk kst Sk

Ordinarily, discretizing an n-dimensional problem with p degrees of freedom
per dimension would result in p" grid points, however, exploiting the antisymmetry
relations of the basis functions reduces the degrees of freedom to N, = (f; ) All vari-
able coefficient matrices are diagonal, and the multiparticle Laplacian has a sparsity
pattern that matches the adjacency matrix of the Johnson graph with the addition of
a full diagonal band. The sparsity pattern for the Laplacian when p = 15, n =2 and
p =15, n =5 are displayed in Fig. 3. An efficient method of computing the Lapla-
cian, and variable coefficient matrices, which utilizes the combinatorial structure of
the sparsity pattern arising from this discretization to achieve optimal run-time has
been recently published [4].
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After applying the spatial discretization, we obtain a semi-discrete equation of
the form

iy, = {Ho+u®)Ve}y, ¢ eCMr. (3.11)

Typically N, is quite large and it is unnecessary to solve the state equation using
all degrees of freedom. Since we are mostly interested in transitions between low
lying energy levels, the high level states will usually have extremely low occupancy
probability and can be neglected. Instead, we use a reduced order approximation
of the state by means of the eigenvalue decomposition. Compute first Ny < N
eigenpairs (A, @) of stationary Hamiltonian so that

Hy® = A, & ecRV»Ns A RNV, (3.12)

Projecting the state onto the subspace spanned by the computed eigenvectors gives
the reduced state equation

iyi={A+u®X}y, yeCY X=0TV0, (3.13)

which can be more compactly written as y, = iA(t)y, where A(r) = A + u()X.
The Crank—Nicolson method

16t 16t
(1 - T[Ak +Ak—1]>yk = <1 + T[Ak +Ak—1])yk—1 (3.14)

is one of the more commonly used schemes to numerically integrate the TDSE. It is
important to notice, however, that it is only symplectic when the potential is constant
over a each time step. This is easily rectified by using the modified Crank—Nicolson
method [14], where the control at the endpoints is replaced by the time averaged
control over the time step. This approximation retains second order accuracy while
making the scheme symplectic. Symplecticity is quite important in quantum control
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problems as the cost functional can be changed arbitrarily due to numerical loss or
gain in the state equation solver otherwise.

4 Control Problem Formulation

Now that the state equation has been discretized in both state and time, the optimal
control problem is finite dimensional. The goal is to find the control vector # which
is defined on the grid so as to maximize the projection of the state onto the target at
the final time. This is formulated as

min J(y, 3, u) = 1 —ynTPynJrguTWu, @.1
u

where y is the complex conjugate of y, P is the orthogonal projector onto the target,
0 < y « 1 is aregularization parameter, and W is the symmetric positive matrix

258t 2 e
T+5—§ lf]—k,

Wi=18_c ifjmkl, (42)
0 otherwise,

such that u"Wu is a second order approximation of an H'! type of inner prod-
uct such as (u, u) + €(it, it), where € is a small positive parameter. Penalizing the
derivative of the control enforces the condition that the control go continuously to
zero att =0 and t = T'. In the numerical experiments, the value € = 1073 was used.

The fully discretized Schrodinger equation (3.14) provides an equality constraint
for every time step, namely that e (yx, yx—1, Uk, ug—1) =0fork=1,...,m. A La-
grange multiplier is needed for each time step to enforce each equality constraint as
well as its complex conjugate. The Lagrangian is

m
L(y, 3,1, 0, 0 = J (0, 3, 10) + ) M ex + 1 e 4.3)
k=1
Taking variations with respect to each of the arguments and setting them to zero

gives the first-order optimality conditions. For compact representation, let By =
— % [Ax + Akx—1]. Then we can write the optimality system as

Biye =Biyk—1, Yo given,
Bidk =B Akg1, AN =Py,

- St 4.4)
VJ@w)=Wu — = Im[§] =0,

Ee = Xk + ye—1) + )»11—+1X()’k+1 + Yk)-

We can formulate a reduced cost functional by using the fact that the state variable
is an implicit function of the control J (1) = J (y(u), y(u), u) The control equation
in (4.4) expresses the condition that the reduced gradient VJ (1) = 0.
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4.1 Newton’s Method

The Lagrangian is not an analytic function of the state and adjoint variables since it
also depends on their complex conjugates. Consequently, to compute the Hessian,
we use the Wirtinger calculus [8]. In the Wirtinger calculus representation the Hes-
sian is obtained by computing the Jacobian of the complex conjugate of the gradient,
so that the Hessian is a complex-valued Hermitian matrix. In particular, L,y really
means 9, (dpL)* which is equal to (Lp,)*. Taking second variations gives rise to the
KKT system

Lyy 0 Ly, 0 Ly\ [(dy 0
0 Ly Lyu Ly 0 |8y 0
Liy Lus Luw L Ly ||ou|=-|L.]. (4.5)
0 Ly Lwu 0 0 ||ox 0
L;, 0 Ly 0 0 S 0

From the KKT system, we can formally write relationship between the differential
change and state and adjoint variables due to a differential change in the control:

8y =~L; Lyudu,
1 (4.6)
S = _L;A [Ly,0u + L358y].

From this we can write §y and dA as the solutions of forced difference equations
similar to those for y and A.

i6t
BiSyr =BjSyk—1 + 7(5% + Sup—1)X(Vk + yk—1),
5 4.7
i8¢
Bidi =By 8A—1+ 7(5% + Su 1) Xk + Aig1),

where the mth time step for A will also contain an additional term Pdy,, on the
right hand side.
The action of the reduced Hessian on a test vector du is

[V2J (u)]6u = Lyudu + 2Re[Lyy8y + Ly SA]. (4.8)

The Newton search direction can now be computed by iteratively solving the equa-
tion

[V2Tw)]su = —VJ (). (4.9)

Since the cost functional is nonconvex, typically even the reduced Hessian is in-
definite and the standard conjugate gradient method will not converge. Instead, we
use the symmetric LQ (SYMMLQ) method. The computed §u which approximately
satisfies (4.9) may not be a descent direction. To handle this possibility, define our
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Data: Given a descent direction p and the function f () = Ju+a p) and
fl@)=p"VJ@u+ap)
Compute omax based on (4.12)
if oax > 2 then
Evaluate f(1) and f'(1);
if o = 1 satisfies (4.13) then
‘ a* <« 1;
else
Construct cubic model on [0, 1] and compute its minimum o, ;
Evaluate f(a;,;) and f/ (o)
if @ = o, satisfies SWC then
| at < ap;
else
if [0, oy, ] brackets a minimum then
‘ oy < U
else if [0, 1] brackets a minimum then
| a < 1;
else
‘ Oy < Omax;
end
a* < bisect(0, a,) (Algorithm 2).

end
end

else
| o* < bisect(0, otmax)
end

Algorithm 1: Line search algorithm

descent direction as

Su  ifsu'VJ(u) <0,
p= - (4.10)
—8u ifdu'VJu) >0.
Of course, should the Newton direction be an ascent direction, it could be discarded
in favor of the usual steepest descent direction, however, the scaling of directions
produced by solving the Hessian equation tends to be much better. That is to say that
the step lengths for sufficient decrease usually remain order 1 instead of order 10*.
Consequently, in our experience, using the sign-flipped Newton direction tends to
expedite the line search.

Since the cost functional is nonconvex, a line search strategy (Algorithm 1) is
needed to globalize the Newton method. Here we make the observation that the
cost functional contains two terms: the physical tracking term 1 — ﬂ; Py,, which
is uniformly bounded between O and 1 and the regularization term which is a pure
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Data: o; and o, which bracket a minimum point. L = o — o.
f(@)=J(@u+ap)and f'(&)=p"VJ(u+ap)
while L > tol do
Compute the midpoint «, = %(oq + a,) and evaluate f(a;;) and f' ()
if o, satisfies (4.13) then
‘ oaF < oy
end
if f/(a;) < 0 and either f'(a,;) > 0or f(a;) > f(og) then
oy < O
elseif f'(oy) > 0 and f'(a,) <0 or f(a,) < f(a;) then
oy < Qs
else
‘ o] <= Oy,
end
L < (o —ayp)

end

Algorithm 2: Bisection minimizer

quadratic, consequently once a descent direction p is computed, the reduced cost
functional J(u + ap) is an asymptotically quadratic function. This means that
the cost functional along the search direction can be bounded from below by the
quadratic polynomial

dop = %MTWM — j(u) <0,

Jw+ap) > da® +dia+dy, di=yu Wp, 4.11)
%
dy = EpTWp.

Since dy < 0, the quadratic equation dra? + dya + do = 0 has real roots and we can
establish an upper bound on the largest feasible step length « that can still possibly

reduce the cost:
Jd? —4dody — di

2dy

The local minimizer is now guaranteed to satisfy o™ € [0, omax]-
The strong Wolfe conditions that the step length o must satisfy to give a sufficient
decrease in the cost and magnitude of the directional derivative are

4.12)

Omax =

Jw+ap) <Jw) +clap'Viw), 0<c <1,
~ _ 4.13)
PV +ap)| <ea|pTVIW)

, c1<cy<l.

In the numerical experiments, the values ¢| = 10~* and ¢y = 0.5 were used.
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4.2 State Model Reduction

Although as a general rule of thumb, the occupancy probability of the lowest energy
states are going to be greatest, we can estimate how strong the control potential
couples any two states by writing down the state equation in the interaction picture.
Given stationary states ¢1, @2, ... and corresponding eigenvalues A1, A2, ..., we can
introduce a time dependent change of basis

y(t) = exp(—iAt)z(t). (4.14)

Using this as an Ansatz in our state equation gives the new equation for the trans-
formed state z(¢) as

z(t) = —iu(t) exp(i At) X exp(—i At)z(2), 4.15)

where we can think of the time-dependent similarity transformed matrix X as being
an interaction matrix

X (1) = exp(i At)X exp(—i A1), (4.16)

and the specific elements of this matrix are )N(jk exp(iwjit) where wjr = A; — Ag.
In integral form, the transformed solution at a time ¢ is

t
z(t) = z(0) — if u(t)X(1t)z(z) dr. 4.17)
0

Of course, u(t) and z(¢) are not known in advance; however, X(t) is known and
integration acts as a lowpass filter. In particular, integrating the interaction matrix
gives the elements

expiwjrt) — 1

t~ ~
X (1) 2/0 Xji(r)dt =X (1) (4.18)

lwjk

The magnitude of the X jk gives a rough sense of how strongly the interaction cou-
ples state |j) to state |k). Namely, the larger this element is, the more readily we
can expect a particle that starts in state | j) to transfer into |k) at some point in time.
It stands to reason then, that when considering which basis functions play the most
significant role in the dynamics of wavefunction, we should consider not just the
difference in eigenvalues, but also the interaction strength.

Once the eigenfunctions are known, the basic idea of the reduced model method
is sort the eigenfunctions in decreasing importance to the dynamics, start with only
the first few, and then compute the optimal control given that state basis. Once the
optimal control is known, the state basis is then enlarged by adding the next few
most important states and repeating this process until enlarging the state space no
longer has a perceptible effect on the cost functional.

Consider as an example, the problem of two-particle with the control term u(¢)x,
after discretizing and computing the eigenfunctions, we obtain a matrix X as in
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Fig. 4 Left: Sparsity pattern for X for two particles in a quantum well. Right: The connectivity
graph for the first seven states

(3.13). The sparsity pattern for this matrix is shown in the left side of Fig. 4. In
general, this matrix will be full and this sparsity pattern is a consequence of spe-
cial parity properties of this problem, however, it is easier to draw the connectivity
graph when some states are not directly connected to others. The connectivity graphs
shows that, while it is possible to go from any state to any other state, state 1 is not
directly connected to state 3, so a particle must go through an intermediate state,
such as 2, 5, or 7 first.

The states most strongly directly coupled to the ith state are indicated by the
largest elements of the vector

ri = lei + Xe;l, (4.19)

where ¢; is the ith canonical vector. By extension, the states most strongly coupled
to state i in two steps will be the largest elements of the vector

r=|e + Xe,- + ﬁzei . 4.20)

Assuming that any number of intermediate states are allowed, we have the ranking
vector

=1 -%""¢

, 421

Foo =

o
> %
j=0

where we are guaranteed that (1 — X)_l exists since X is skew Hermitian. Recall
that the interaction matrix in (4.18) contained an arbitrary phase shift term of e/®i*’.
Although intuitively, this term should be neglected, we did consider the ranking the
state importance both with and without this term and found that the reduced model
method converges more rapidly when it is neglected.
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Fig. 5 Left: State transition |1,2) — |1, 3) for two interacting particles. Right: The computed
optimal control for 5, 10, 15, 20, 25, 30 eigenvectors using the ranking which includes the complex
exponential term

5 Numerical Results

In the test cases, a weak interaction potential (2.12) with unit charge ¢ = 1 and
smoothing factor § = 0.1 was used. For both the two and four particle case, 400
uniform time steps were used and the final time was taken to be T =1 for the two
particle case and T = 2 for the four particle case. For two interacting particles, the
order of the eigenstates as ranked by the interaction criteria, excluding the complex
exponential term, from strongest to weakest coupling is

{1,2,7,5,3,14,11, 8,4, 10,9, 16, 12,20, 15, 13,6, 17, 18, 19}

when Ng = 20 in (3.12). To compute the control, start with the first five eigenvec-
tors (Ny = 5) with indices {1,2,7,5,4} and compute a minimizer by conducting
line searches in the Newton search directions. When a local minimizer is obtained,
the state space is augmented to include the first ten modes (N = 10) with indices
{1,2,7,5,3,14,11, 8,4, 10}. The computed control is no longer a minimizer for
the state constraint as there are now allowed transitions into higher states, which in-
creases the objective function. Using the previously computed optimal control from
the five dimensional state space as an initial guess, we again compute a sequence of
line searches in the Newton directions until we have a new minimizer. This process
of augmenting the state space and minimizing until augmenting the space does not
noticeably increase the objective function.

When the complex phase factor in (4.18) is included in determining the ranking,
we see that the optimal control in Fig. 5(b) changes significantly as the number of
modes Ny increases. When this phase term is excluded, as is the case in Fig. 6(b),
the optimal control as a function of Nj stabilizes rapidly. In fact, after Ny = 25 there
is no significant effect on the cost by further augmenting the space and moreover,
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Fig. 6 Left: State transition |1, 2) — |1, 3) for two interacting particles. Right: The computed op-
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Fig. 7 Left: State transition |1,2) — |1,4) for two interacting particles. Right: The computed
optimal control for Ny = 30 modes

the optimal control for Ny = 30 is not visually distinct from the optimal control
for Ny = 25. This shows that this ordering strategy is more effective at determining
which eigenstates play the most important role in the dynamics. The occupancy of
the states shown in Figs. 5(a) and 6(a), is practically identical. It is important to note
that the results become effectively discretization independent after twenty or thirty
modes are used, which is a significant savings over the full space degrees of freedom
N, =(4) =105.

Thirty modes is not sufficient to resolve the transition from the first state |1, 2)
to the third state |1,4) as see in Figs. 7(a) and 7(b) due to the significantly higher
energy in the control needed to make the transition, as evidenced by the higher fre-
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Fig.8 Left: State transition |1, 2, 3,4) — |1, 2, 3, 5) for four interacting particles. Right: The com-
puted optimal control for Ny = 50 modes

quency terms in the optimal control. Instead fifty modes were needed to adequately
resolve the dynamics. More of the states in Fig. 7(a) have a significant occupation
probability than was the case with Fig. 6(a).

The problem becomes more challenging as additional particles are added, since
the energy spacing of the eigenstates increases considerably. In the four particle
system, twenty Lagrange basis functions per particle were needed for the eigen-
states to be resolved. This means that before reduction the state has dimension
Np = (zf) = 4845. However, to compute optimal controls for the transitions be-
tween the first state |1, 2, 3, 4) and the second |1, 2, 3, 5) taking the first fifty modes
was sufficient. This transition is shown in Fig. 8. Exciting the system to the third
state |1, 2, 3, 6) proved quite difficult as at the final time there was only a 97 %
probability of finding the particles in the desired state (Fig. 9). We also see that the
H' norm of the control is becoming quite large and to resolve this problem finer
grids will be needed.

In Fig. 10, the reduction of the cost functional and of the L norm of the gradient
is shown for the problem of two interacting fermions making the transition from
the state |1, 2) to the state |1, 3). The globalized Newton method is started with a
state space of dimension Ny =5, and after 100 iterations, the state space is repeat-
edly augmented by more sorted eigenfunctions until further augmentation does not
appreciably change the cost functional.

After numerous tests with differing interaction terms, more particles, initial and
final states, state space dimension, and time scale, there does not appear to be any
completely typical pattern with respect to how often the unit step length of the New-
ton method yields sufficient decrease and when a line search is needed. It can be said
that generally, parameters which make the minimization problem harder are those
which increase the energy separation between initial and final states, and this tends
to require more line searches.
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Fig.9 Left: State transition |1, 2, 3,4) — |1, 2, 3, 6) for four interacting particles. Right: The com-
puted optimal control for Ny = 50 modes
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Fig. 10 Left: Cost functional value reduction for the state transition |1, 2) — |1, 3) for two inter-
acting particles. Right: Reduction of L?-norm of the gradient

6 Conclusion

We have presented an efficient discretization method and optimization method for
controlling energy state transitions for multiple fermions. It was observed that the
computational effort of the problem can be reduced by projecting the state onto a
suitable reduced basis, which is then augmented as needed to adequately resolve the
dynamics. Since optimal control and corresponding state are smooth functions, in
future work, higher order symplectic methods will be used to discretize in time so
that the number of degrees of freedom in the optimization problem of computing
the optimal control can be reduced.
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A Priori Error Estimates for Optimal Control
Problems with Constraints on the Gradient
of the State on Nonsmooth Polygonal Domains

Winnifried Wollner

Abstract In this article we are concerned with the finite element discretization
of optimal control problems subject to a second order elliptic PDE and additional
pointwise constraints on the gradient of the state.

We will derive error estimates for the convergence of the cost functional under
mesh refinement. Subsequently error estimates for the control and state variable are
obtained.

As an intermediate tool we will also analyze a Moreau-Yosida regularized ver-
sion of the optimal control problem. In particular we will derive convergence rates
for the cost functional and the primal variables. To this end we will employ new
techniques in estimating the L°°-norm of the feasibility error which could also be
used to improve existing estimates in the state constrained case.

Keywords A priori error estimates - Pointwise gradient state constraints -
Optimization with PDEs - Finite elements - Nonconvex polygonal domain
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1 Introduction

We are concerned with an analysis of the discretization error for optimal control
problems of second order elliptic equations subject to constraints on the gradient
of the state. Such problems have some natural application for instance in cooling
processes or structural optimization when high stresses have to be avoided.

Despite these interesting applications first order state constraints have hardly
been recognized in mathematics. In the works [3, 4] the case of optimal con-
trol of semilinear elliptic equations with pointwise first order state constraints was
studied under the assumption that the domain £2 C R”" possesses a C'*! bound-
ary. In particular, they studied the adjoint equation and derived first order neces-
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sary optimality conditions. It is immediately clear that their results carry over to
the case of a bounded polygonal domain, as long as the linearized state equation
(with homogeneous Dirichlet boundary values) defines an isomorphism between
W21(£2) N H}(£22) and L' (£2) for some ¢ > n. However, even for n = 2 this re-
quires a convex domain which is usually too restrictive for applications. In a recent
publication [20] it was shown that even on nonconvex domains such problems may
remain well posed.

In [11] a Moreau-Yosida based framework for PDE-constrained optimization
with constraints on the derivative of the state is developed and used to develop a
semismooth Newton algorithm. Unfortunately their work does not directly carry
over to our problem class, because the presence of corner singularities is contradict-
ing the assumptions made in there article. In [17] an investigation of barrier methods
for this problem class is conducted.

When concerned with the discretization of the infinite dimensional problem using
finite elements, recent results where obtained in [5, 8, 14]. However in all cases the
domain was either smooth or polygonally bounded with sufficiently small interior
angles. Concerning adaptive discretization methods we refer to [19] and the recent
contribution [10].

The rest of this article is structured as follows. In Sect. 2, we will discuss
the problem class under consideration. Then we will consider its discretization in
Sect. 2.1. In Sect. 3, we will derive an priori error estimate for a certain semi dis-
cretization of the problem. The estimates are essentially the same as those obtained
in [5, 8, 14]. Unfortunately for this semi discretization the control has to be chosen
orthogonal to certain dual singular functions. Since this is in general not feasible we
require further analysis. For this purpose we consider a Moreau-Yosida regulariza-
tion of the state constraint in Sect. 4. Here, we will derive convergence of both the
cost functional and the primal variables depending on the penalization parameter.
Parts of the analysis will be similar to the work of [9] but with further complica-
tions due to the missing regularity of the control-to-state mapping. We will however
employ a new L°-estimate for the feasibility violation which could also be used
to improve the convergence results obtained in [9, 18] for state constrained prob-
lems. For the case without corner singularities one can find similar results obtained
simultaneously in [12]. With these preparations we can finally derive the main con-
vergence result, in Sect. 5, for a computationally feasible discretization.

2 Problem Formulation

In what follows, let £2 C R? be a bounded polygonal domain. We are concerned
with optimization problems governed by a linear elliptic PDE. For simplicity we
consider

—Au=gq in 2, (2.1a)
u=0 onds2. (2.1b)
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It is then clear, that this operator defines an isomorphism —A: V = HO1 (£2) —>
H1(2).

Now we let » > 2 be a given number and define Q = L"(§2). We are then partic-
ularly interested in an optimal control problem of the form

Minimize J (¢, u) := 1||u —u? ||2 + l||q||’ (2.2a)
OxV T2 Lty o '
such that (u, ¢) satisfies (2.1a)—(2.1b), (2.2b)

and such that |Vu| < 1in £2. (2.2¢)

If £2 would be a smooth domain, or a convex polygon, well posedness of (2.2a)—
(2.2c) would follow, e.g., from [4]. However, for a general polygon £2 the results do
not carry over easily. This is due to the conflicting nature of the constraint |[Vu| < 1
and the existence of corner singularities due to the reentrant corners of the do-
main. This means that for given ¢ € Q the solution u of (2.1a)—(2.1b) is neither
in C1(£2) nor in W1 (£2). Thus the constraint |[Vu| < 1 can not be posed easily
in this topology. Nonetheless, problem (2.2a)—(2.2c) is well posed, see [20]. The
reason for this is that the subspace of controls g that do not give the desired regu-
larity is finite dimensional in our case. In particular (2.2a)—(2.2c) admits a unique
solution (g,u) € Q x V. Moreover there exists a number ¢ > 2 depending on the
angles in the corners of the domain, such that # € W2/ (£2) N V. Denote the image
of W21(£2)NV under —A by I then, again following [20], we have that [ is closed
in L'(£2). With this preparations we have, in addition, thatg € I N Q.

Since we will utilize knowledge on the value ¢ we will briefly recall how one can
calculate ¢ following [20, Lemma 2.2]. In order to determine the value 7 one utilizes
the well known fact, see [7, Theorem 4.4.3.7], that the solution u to (2.1a)—(2.1b)
admits a singular expansion

2w¢
<=%
J Py

u—=2y " " Cejscjlpe,0) € W' ().
ceC Jj=1
Ll

Here, C denotes the set of corners of the domain, (p., 6;) are polar coordinates with
respect to the corner ¢, C, ; are constants depending on the given right hand side g,
and the singular functions s, ; are given by

(uz ]7'[
Se,j(Pe, 0c) = ne(pe)pe sin| =—6,
We

with suitable cutoff functions 7.

Then in order to assert that u € W2/ (£2) one needs to get C, j = 0. This is where
the constraint [Vu| < 1 comes into play. From knowledge that u € W12°(£2) one
can infer that C¢ ; = 0 whenever J < 1. Now, one can choose ¢ > 2 such that the
second sum in the expansion only 1nvolves indices j such that this is satisfied.
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For the exposition of this article it is convenient to assume that £2 has only one
reentrant corner v with interior angle @ > m. Then from the requirement, % <1

whenever j < % one can easily calculate

o w -1 .
t<—<——l> ifwe (m,2m),
T\

(2.3)
t<4 if w =2m.
Further restrictions on ¢ are possible due to convex corners of £2.

This means that we are able to restate problem (2.2a)—(2.2c) equivalently as fol-
lows

Minimize J (¢, u) := l||u —u? ||2 + 1||q||’ (2.4a)
oNIxV T2 L2t e '
such that (u, ¢) satisfies (2.1a)—(2.1b), (2.4b)

and such that |Vu| < 1in £2. (2.4¢)

2.1 Discretization

In a next step we consider the discretization of these problems. To this end we start
by discretizing the state equation (2.1a)—(2.1b).

Let (Tn)ne(o,17 be a given family of triangulations, consisting of triangles or
quadrilaterals which are affine-equivalent to their respective reference elements,
such that diam(7) < h for all T € Ty, h € (0, 1]. We assume throughout that the
family is quasi-uniform in the sense of [2, Definition 4.4.13], that is, there exists
o > 0 such that, for each T € T, and & € (0, 1] there exists a ball By C T such that
diam(Br) > ph.

We define the discrete state space V;, C V as the space of continuous piecewise
linear (or bi-linear) functions with respect to the mesh 7y,.

We remark that the restrictions we imposed on the family (77)x¢(0,17 ensure that
the usual interpolation error results, best approximation results, and inverse esti-
mates hold [2, Sects. 4 and 5].

Finally, we define ITj, : L'(§2) — Vj, to be the natural extension of the L2-pro-
jection operator, that is, for g € LY(£2), we define ITyu € Vj, via

(IThg.¢) = (q.¢) Ve e 0" (2.5)

It is shown in [6] that [T}, is stable as an operator from L?(§2) to L?(S2), for any
p €[1, o], that is, there exist constants c,, independent of /, such that

IM1Tn fllLe <cpllfllLr YfeLP($2). (2.6)

Now we can discretize the state equation. For fixed g € Q we search for a solu-
tion uy, € Vj, of the following
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(Vup,Vop) =(q,0n) Yon € Vi. 2.7

This is already sufficient to obtain a finite dimensional optimization problem. This
is due to the fact, that it is sufficient to consider equivalence classes of functions
q, p € Q given by the identification I1,g = IT; p as controls. Then for the mini-
mization of the cost functional in (2.2a)—(2.2¢) it is sufficient to take the unique
element out of these classes with minimal L”-Norm. Moreover, due to the first or-
der optimality conditions these elements can be expressed in an explicit way, see,
e.g., [13] where this idea was explored first.
In particular, the discretized version of (2.2a)—(2.2c) becomes

Minimize J (g, up) := lHuh —ul|?, + lllthl’ (2.8a)
oxVj, ’ T2 L2ty o '
such that (uy, gp) satisfies (2.7), (2.8b)

and such that |Vuy| < 1a.e.in £2. (2.8¢)

In addition, we can also discretize (2.4a)—(2.4c) and get

1 2 1
Minimize J (gp, up) := = |up, — u? ~lignll%, 2.9
err%llrinvzhe (qn, un) 2||uh u HL2+ r||f1h||Q (2.92)
such that (uy, gp) satisfies (2.7), (2.9b)
and such that |Vuy| < 1 a.e.in £2. (2.9¢)

Unlike the continuous case the optimal control problems (2.8a)—(2.8c) and (2.9a)—
(2.9¢) are not equivalent. We will start with an analysis of (2.9a)—(2.9c). This analy-
sis will follow the lines of the arguments used in [14] where some of the arguments
have to be refined due to the presence of corner singularities. However, (2.9a)—
(2.9¢) is not useful in practical computations. This is because the restriction to the
controls to lie in / can not be imposed. Hence we will continue our exposition with
the analysis of (2.8a)—(2.8c) based upon the results obtained during the analysis
of (2.92)—(2.9¢).

Remark 2.1 We remark, that the space [ is characterized by a so called dual singular
function s_; which is known. However the characterization involves the unknown
solution u of (2.1a)—(2.1b). In particular, a function g € I if and only if with the
corresponding solution u to (2.1a)—(2.1b) it holds

(q,5-1) + (u, As_1) =0.

This representation is still of some use in order to calculate the singular coefficients
and thereby accelerating convergence of the finite element method for the primal
problem, see, e.g., [1]. In order to keep the presentation simple we will not follow
such ideas to improve convergence of the discrete problems.
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3 Analysis of the Semi Discretization

In this section we will analyze the error between (2.9a)—(2.9¢) and (2.2a)—(2.2c)
or (2.4a)—(2.4c) respectively.

To this end, we denote the unique solution to (2.2a)—(2.2¢) or (2.4a)—(2.4c) by
(g, u). The unique solutions to (2.9a)—(2.9¢) will be denoted by @ﬁ, ﬁhl).

Then similar to the proof of [14, Theorem 1] we obtain

Theorem 3.1 Let (7,u) € QN1 x W>I(2) NV be the solution to (2.2a)—(2.2c)
with r > t > 2. Further, let (q;-, u;-) € Q N1 x Vy, be the solutions to (2.92)~(2.9¢).
Then, for any ¢ > 0, there exists a constant C > 0 independent of h € (0, 1] such
that

V@@ — J (@i 7;)| = ChP
where B=1—-2/t —e¢.
Proof We begin our proof by considering the Ritz projection uj, € V), of u defined
by
(Vup, Vo) =(q, ¢n)  Yon € Vi.
Then, because # € W2 (£2) ¢ W1 we have by [15, Theorem 2]

IVE = Vuplloo < chP i@l cra-ae < chP (gl 0. (3.1

Apart from this argument the rest of the proof is the same as in the case of a smooth
domain. In particular, with ¢ > c||g|| o, we get that

(1 —nP)|Vun| < (1 — énP)|vi| + (1 — ehP)chP|gllo <1 ae.in £2.
From this we get that

Gns iin) = (1 —¢nP) (@, un) (3.2)

defines an element (g, ip) € Q N1 x Vj, which is feasible for (2.9a)—(2.9c). Now,
using the definition of ¢; and standard L2 -estimates for 7 — up, i.e., itis

% — unll < ch®/|g|l < chP |||,
it is clear, that
17 —anllo + i — dinll2 < chP gl o
Hence, we get
|J(@. 1) — T (Gn. iin)| < chP|7lg

from local Lipschitz continuity of J near (g, u). Furthermore we have

J(gi. @) < J(Gn. i)
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because (g, itp,) is feasible for (2.9a)—(2.9¢c). This yields
J(@y ) = J (@) < J@Gn, itn) — J (@, 0) < ch’.

In particular, the sequence ||§fl‘ s <rd @fl‘, ﬁfl‘) < J(q,u) + ch? is bounded.
In order to show the reverse inequality, i.e.,

—ch? < J (g, wit) — J (@, )

we use the same line of arguments. We define for each given solution (gi-, @) €
O NI x Vyto(2.92)~(2.9¢) a continuous function u € V using

(Vu, Vo) = (th, @) VeeV.

Due to the fact that Efl‘ € QN1 we have u € W>'(£2) and hence we get from [15,
Theorem 2] that

| Vit = Vul < chP lullcriane < ch g5 ],

as in (3.1). Now one can continue analog by shifting to obtain a pair (g, i#) which is
feasible for (2.2a)—(2.2¢) such that

T (@i wy) — T (@, )] < chP.

Note that the constant ¢ is independent of & because ﬁf; is bounded independent
of h.
This yields the desired lower bound, i.e.,

—ch? < J(qj wy) =G, @) < J (@ w;) = I @, @) < J(Gn, in) — J (@, @) < ch?
and concludes the proof. U

The convergence of the cost functional implies convergence of the primal vari-
ables due to strong convexity of J.

Corollary 3.1 Let (g, u) e QNI x WZL(2) NV be the solution to (2.2a)—(2.2¢)
withr >t > 2. Further, let (E,f, ﬁﬁ) € QN1 x Vy, be the solutions to (2.9a)—(2.9¢).
Then, for any € > 0, there exists a constant C > 0 independent of h € (0, 1] such
that

— 1 —  —12 1-2/t—
17 =@l + 7 - |” < cn' =2,
Proof The proof is identical to the one for [14, Corollary 1]. To this end let i,

and g, be given as in the proof of Theorem 3.1. Then by application of Clarkson’s
inequality to ﬁf; —u? and @iy, — u? and Efl‘ and g; we get

T TR PR S 1
S ="+~ 7 —an, < 51(4#,u#)+51(%“11)—1(56>
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with e = (ﬁf;, ﬁfl‘) —(qn, up). Now since %e and (g, up,) are feasible for the discrete
problem we get from Theorem 3.1
ey o2 Ly e 10 L
k=l Lt -l < i)~ (a7
1 1
<51@ D = 5 J (@ @) + ch? < ch.

This shows the assertion using triangle inequality and ||[u — #x|l + |l — gnllo <
chb. O

4 Regularization

Before we come to the analysis of the error between (2.2a)—(2.2c) and (2.8a)—(2.8c¢),
we will need some additional analysis. In particular, we are interested in the follow-
ing regularized problems for given y > 0

2
’

Minimize J, (g, 1) := J (g, 1) + L | (1Vul — 1)
oxv 2 4.1)
such that (u, q) satisfies (2.1a)—(2.1b).

Similar problems have been analyzed in [11]. Unfortunately their analysis was done
under the assumption, that the state equation (2.1a)—(2.1b) defines an isomorphism
between W2 (£2) NV and L'(§2) which is not the case in our setting. Further we
will require bounds on the rate of convergence of the primal variables similar to
those obtained in [9] with the improvements made in [12]. Again the arguments are
complicated by the fact, that the state equation does not yield sufficient regularity.

We note, that despite these complications one can show convergence of the se-
quence of minimizers of the problem (4.1) to those of (2.2a)—(2.2c). However, since
the convergence is driven by the decay of the L°-violation of the feasibility and
thus, see [12] by the regularity of the solutions (q,,,uy) to (4.1) the convergence
speed may be dominated by the existence of the corner singularities. As we know
that they do not appear in the solution we will apply an additional filter to remove
at least parts of the influence of the reentrant corner.

To do so we need to separate the influence of the corner singularities. Hence we
define the set I+ as

It={peQ =L"(2)I(q,p)=0v¥geQnl)

where ' = —L5. The set I L is a finite dimensional linear space generated by

so called dual singular functions. By the choice of ¢ made in (2.3) it holds
dimL? (£2)/1 =1 and thus dim I+ = 1.
Then we can define the finite dimensional linear space Oy C Q as follows

Os={qeQ|3Ipelt:(g.p)#0} U0}
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This gives the following decomposition of Q as direct sum

0=0NnI1 Q.
Let {g} be a basis of 1. Then we choose {g*} C Qy as dual basis to {g*}, i.e.,

(¢*.qh) =1.
In particular, we can write any element g € Q as

9=q" +aq’

where ¢" e ONI and o =0y = (q, g+) € R are uniquely determined. In particular
g € QNI if and only if o = 0. Corresponding to this relation we can also rewrite
any solution u to (2.1a)—(2.1b) with right hand side ¢ as

u=u"+au’

where u” and u? are given as solutions to (2.1a)—(2.1b) with right hand sides ¢” and
g° respectively. Then u” € W>!(£2) NV and u* behaves as 7/ in the vicinity of
the reentrant corner. Note that #* is independent of g.

Then we can state our regularized problem as follows

2
Minimize Jy (q.u) :=J(q. ) + %” (1Vul = 1) + %|(q, ah)|’, 42
such that (u, ¢) satisfies (2.1a)—(2.1b).

We note, that by standard arguments, there exists unique solutions (ﬁy, uy) €
0 x V to (4.2). Further, let (c_jy, iy) € O x V be the solution to (2.2a)—(2.2¢). Due
to the fact, that

J(ay» ﬁy) < Jy(qy» ﬁy) < Jy(q’ E) = J(E, ﬁ)
we immediately obtain boundedness of ||g,, || ¢. Further, this gives the relation
_ 412 - _ 2 _
l(va, |- )" <cy™'.  layP=|(@,.47)| =Cy 2 @3)
Our analysis starts with an analysis of the feasibility error.

Lemma 4.1 Let (c_jy, uy) € Q XV be the solution to (4.2). Further, denote q, =
g, +oyq* € QNI & Qs and uy, =u’, + ayu’ the corresponding splitting of the
state variable.

Then there exists a constant c independent of y > 1 such that

(9| = 1) = eyt

where B is the same as in Theorem 3.1.
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Proof To obtain the convergence of u; in the maximum norm, we define

+
feo = (|vuy [ = 1)".
We remark, that by embedding theorems, we know that f € C 0.5 (£2). Then define

gy =max f(x).
xesf2

An easy computation shows that (for y > 1)
[(vey | = D)7 <e(l (91 = )7 + ey ) <er ™.
We assume w.l.0.g. that ¢, > 0. Then by Holder continuity of f we get that

cy L= IfI1?

z/ | £ (0] dx
(fzey/2}

2
€
> L dx

4 Sz, 2

> C8)2///3

NS

> C8}2/+2/ﬁ_

Hence by definition

[V ] =17 =
< ey P8

which shows the assertion. O

The rate of convergence of ||(|Vu;,| — )" || is the same which could be ob-
tained following the analysis of [9, Lemma 3.1]. Unfortunately this rate also limits
our ability to derive convergence estimates for the primal variables. Hence we will
spend some effort on improving these results, the techniques employed here have
been developed simultaneously in [12]. We will derive them here nonetheless be-
cause we will have to face some additional difficulties due to the presence of the
corner singularities.

Before doing so, we recall that for a solution (g,u) € Q x V to (2.2a)-(2.2¢)
there exist 7 € L' (2) and 71 € C*(£2) such that the following necessary optimality
conditions hold
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Vu, Vo) =(q, ¢) YoeV,
(—Ap.2) =([@—u', )
+ (I Vi - Vo)cixe Yo e WH(2)NV,
(I7%q.8q) = —(39.2) Vége QNI,
(w, @)crxc <0 Yo e C(2),¢ <0,
(. 1Vl = 1)ee o =0,

see [20, Theorem 3.3]. Further, by standard arguments for a solution @y, uy) €
Q0 x V to (4.2) there existz, € V and i, € L?(£2) such that the following holds

4.4)

(Vity, Vo) = @, ¢) Vo eV,
(V. VZ,) = (i, —ul, @) + (. Vir, - Vo) VeeV,
o _ 4.5
(I7,1"7%q,.8q) = —(8q.%,) — v*ay, (89.97) vige g, 4
_ % _ +
my, = ——(|Vuy| -1
Y |VM),|( Y )

compare [11].

Lemma 4.2 Let (q,,uy,) € Q x V be the solution to (4.2).
Then there exists a constant c independent of y such that it holds

y[(1Vuy | = 1)), <.

Proof We obtain from (4.5) by testing the third equation with ¢ = ¢,, and then
using the state and adjoint equation that

”qV HrQ + V2|°‘V|2 = _(qy’Zy)
= (=Vity, Vzy)
=— (i, —u'.w) =y ((IVE, | = )71V, ). (46)

Now we obtain that ||g,, [l o, ll#y ||, and yzlozy |> are bounded independent of y be-
cause

0 S J(quﬁy) S J}/(qyaﬁ)/) S J(qa ﬁ)
Note that |Vu, | > 1if (|Vu, | — 1)* 0. Hence we get from (4.6) that

y [V, | = )], <y ((IVay | = 1)7. Vi)
=—lg, Iy — (@, —u.y) — ¥l |
<c. U
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With these preparations we can derive an improved L* estimate.

Lemma 4.3 Let (qy, iy) € Q XV be the solution to (4.2). Further, denote q, =
q" +ayq’ € QNI ® Q4 and uy = u’, + ayu’ the corresponding splitting of the
state variable. Then there exists a constant c independent of y > 1 such that

[([Vu [ = 1) [ < ey~ #E+2,
where B is the same as in Theorem 3.1.

Proof The proof is analog to the one for Lemma 4.1.
To obtain the convergence of u; in the maximum norm, we define

+
f@) = (vl |-1)".
We remark, that by embedding theorems, we know that f € C%#(£2). Then define

&y =max f(x).
xXe

An easy computation shows that
[([Va | = )" < (ViR | = 1) 7|+ ety || V'
and hence by Lemma 4.2
[(Vuy =07y = [(1Vupl = )7+l | Ve[, s er ™
We assume w.l.o.g. that &, > 0. Then by Hélder continuity of f we get that
|f@) = f)| <clx —yIIP

and hence if for some x* € £2 it holds f(x*) = &y = max g f(x) then we have
that f(y) >¢,/2if c[lx — y|f < &y /2. This gives

cy ' =Iflh

> / £ ()| dx
{f=ey/2}

Ey
> = dx
2 Jifze, )

&
> & o2B
2 14

> ce) PP 4.7
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Hence by definition
[ ] = 1) =2
< cyB/B+2)

which shows the assertion. O

Remark 4.1 We remark, that usually tlE estimate in (4.7) is too pessimistic. For
instance, if z has support on a curve in 2 it is reasonable to assume that in fact

/ dx > ce)]/ﬂ
{f=ey/2}

yielding the improved rate

[(Va | = 1) = er .

Moreover, if 7z has a volume contribution, then the set on which the maximum is
attained may even be independent of the Holder continuity, i.e.,

/ dx >c
{f=e,/2}

then yielding the rate

[ ] = 1) [ = er ™"

For more details we refer to the forthcoming publication [12].

We remark that based upon these preparations one can derive estimates for the
primal variables following the ideas of [9, Theorem 2.1] with some modifications
due to the presence of corner singularities.

Lemma 4.4 Let (§,,,uy) € Q x V be the solution to (4.2) and (q,u) € Q x V be
the solution to (2.2a)~(2.2¢). Further, denote q,, = q" + ay,q* € QN1 & Qs and
Uy = u;, + ay,u’ the corresponding splitting of the state variable.

Then, the following estimate holds:

17, =@l + e, = + S (v 12 = 1) [
<((|vuy [ = 1) e o+ ey 1| (@ = )| + | (171727, 9°) )
= C([(1viey | = 1) | oo + ey 1)-

Proof First we remark, that for any r there exist a constant ¢ > 0 such that

clf —gllp <(fI>f =18/ 2e. f —g)
holds for any f, g € L"(£2) = Q.
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This gives in combination with the necessary optimality conditions (4.4)
and (4.5)

clg, —qllp < (l7,/"*7, — 191" 3.9, — q)

=—G. 0, - D+ q,—q) — (19 °7.4°) — v’y (7, - 7. ")
=< _(Zy’ qy —5) + (?’ Q; - q) —Qy (|6_1|r_25’ qv) + yza}/ (6_17 qJ_)

Now noting that (7,¢") = 0 we conclude with the necessary optimality condi-
tions (4.4) and (4.5) that

cllg, =l = =Gy a@y —D + (@ a4y —a) — oy (1777, ")
=y, Aty — AW) — (T, Aul, — A7) — (1717777, ¢°)
—(@, —u, 7@, — ) — y(Va,/|Vi, |(1Vi,| - 1)F, Vi, — Vi)
+ (@ —u = u) + (. Va(Vul, — Vi) — o, (171”27, 4%)
=~y —ul® — ay (@ —u’,u’) -, (171" *7. 4")
—y (i, Vi, |(IViy | = 1), Vi, — Va) + (., Vi(Vul, — Vi)).
To proceed we need to rewrite the last two summands on the right hand side. To do
so, we note that both y (|Vu,, | — 1)* and p are positive, and hence it is sufficient to

estimate the arguments. This yields

—Vit, (Vit, — Vi) /|Vity| = (—=|Viy|* + Vi, Vi) /| Vi, |

(IVal* — Vi, %) /|Vidy |

( \Vit, |> + = (|Vuy| + V| ))/|Vﬁy|
1
2
1

< (1 =1V, *)/|Viy|

'—‘N

5(1/|vuy| —|Viiy ).

Now, noting that |Vu,, |~! < 1 on the set {IVu, | — 1 > 0} we conclude that on this
set

o I 1 _
—Vu, (Vu, —Vu)/|Vu,| < z(l — |Vuyl).
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Similarly one gets
Vi(Vul, — Vi) < %(}w;f —-1)".

Hence the first of the inequalities follows.
The second of the inequalities follows immediately by noting, that u, g, u®, and
q*® are independent of y and that

[Vl [* = 1= (|9 | + 1) ([Vae | = 1) (|9 | - 1), R

We note that Lemma 4.4 combined with Lemma 4.3 immediately gives a bound
on the convergence of the primal variables. Additionally one could use the estimate
of Lemma 4.1 in a bootstrapping argument to obtain better convergence orders than
those derived there. However the results obtained when following this argument are
not better than what we obtained in Lemma 4.3. We obtain the following conver-
gence result.

Corollary 4.1 Let (Ey, uy) € Q X V be the solution to (4.2) and (q,u) € Q x V
be the solution to (2.2a)—(2.2¢).
Then the following estimate holds

_ _ _ _ =B
17, —qly + iy —ull* < cy 7.

4.1 Convergence Rates for the Cost Functional

Unfortunately, for our later analysis we will require rates of convergence for the cost
functionals. Clearly, we get from local Lipschitz continuity of J in combination with
Corollary 4.1 that

—B
|J (G, 1y) — J @ w)| < cy .

However, as we want to use the difference of the cost functionals to bound the error
in the primal variables this is not sufficient. Therefore we will spend some additional
effort on the derivation of convergence rates of the cost functional.

Theorem 4.1 Let (q,,,uy) € Q x V be the solution to (4.2) and (g, u) € Q x V be
the solution to (2.2a)~(2.2¢). Further, denote q,, = q" + a,q* € ONI1® Qy and
Uy = u; + ay,u’ the corresponding splitting of the state variable.

Assume that

[V, | = 1) g s er™
then

0<J(q.u)—J(q,. 1) <cy™".
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Proof Assume that (1 — cy~%) > 0. Define gy =U0—-cy _Q)q)’/. Now, denote the
corresponding solution to (2.1a)—~(2.1b) by ii,,. Then it holds by assumption that

Viiy| = (1—cy ) |Vul | < (1—cy ™) (1 +cy™) <1

In particular (gy,i,) is feasible for (2.2a)—(2.2c) and hence by local Lipschitz-
continuity of J it follows

J@.0) < J Gy ity) <T@, 10,) + ey’ O
Finally, we remark that a uniform convexity property holds for the function J, .
Lemma 4.5 The functional J,, is uniformly convex in the sense that
1 , 1 , 1 1 1
EHHI —uz|” + ;IlCh —qllp + Jy <§(w1 + wz)) < Ejy(wl) + Efy(wz)
holds for all wi = (q1,u1) € O X V and wy = (q2,u2) € Q X V.
Proof We note that the stated uniform convexity holds for the cost functional J by

application of Clarkson’s inequality to u; — u? and us — u? as well as ¢; and ¢5.
Hence it remains to show that

1 +
H (§|Vu1 + Vuy| — 1)

This is clear, as the integral is monotone, the map x +— max(0,x)%: R — R is
monotone increasing and x — |x| — 1: R> — R is convex. Similarly we have

(I(g1.a) > + (a2 aH)). 0

2 1
< S [0vurl =177+ S| (19wl = 1)

1 1
g1+ 2,41 < 5

4

Then combination of Theorem 4.1 and Lemma 4.5 yield the same rates of con-
vergence that we obtained in Corollary 4.1.

Corollary 4.2 Let (q,,uy) € Q x V be the solution to (4.2) and (q,u) € Q X V

be the solution to (2.2a)—(2.2¢).
Then the following estimate holds

_ — _ _ =B
17, —qly + iy —ull> < cy 7.
Proof By Lemma 4.5 we obtain
| R | |
Sy =+ 17, =l < —dy (3@, + 3.7, +1) ) + 54, @, Ty)

|
+ EJ)/(‘LM)
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<1J(ﬁﬁ)—11(5 uy)
=5\ 7 vy ty
<1J(§ﬁ)—ll(§ uy).
27 27 Y
This shows the assertion using of Theorem 4.1 and Lemma 4.3. 0

Remark 4.2 We comment shortly on the influence of Remark 4.1. Given the com-
ment there the speed of convergence in both Theorem 4.1 as well as in Corollary 4.2
will enhance to

=B
‘I(av ﬁ) - ‘I(ayv ﬁ)/) S Cy B
in the presence of a line measure in 1t and

J@.0)—J(q,.iy) <cy”

in the presence of a volume measure in zt.

5 Analysis of the Full Discretization

In this section we will analyze the error between (2.8a)—(2.8¢c) and (2.2a)—(2.2¢)
or (2.4a)—(2.4c) respectively.

To this end, we denote the unique solution to (2.2a)—(2.2c) or (2.4a)—(2.4c) by
(g, u). The unique solutions to (2.8a)—(2.8c) will be denoted by (g,,, u).

In contrast to the previous section we can no longer consider the solution u € V
of

(Vu, Vo) =(qn,¢) VYpeV

in order to show that the lower bound
—chP < J(q),. ) — J(q. 1)

holds true. This is because the solution u defined above is no longer an element of
w2t (£2). However, from Theorem 3.1 we immediately get

J(@pwn) — J (@, 0) < J(gir, ujr) — J (g, w) < ch?

because Q D QO N I. In particular, the solutions g, are uniformly bounded.

Before we come to the analysis of the convergence speed, we will start with some
preliminary results. First, we will show convergence g, — ¢ and u, — u. With
these preparations we will compute the distance between g, and /. Then finally, we
can obtain the desired convergence rates.

Theorem 5.1 Let (g, up) be the unique solution to (2.8a)—(2.8c) and denote q;, =
qy + ang® with a, = (@), q ). Then g, — q in Q and U, — u in H} (£2) where
(g, w) are the unique solution to (2.2a)—(2.2¢). In particular, it holds oy, — 0.



210 W. Wollner
Proof As already remarked, we have from Theorem 3.1 and Q C Q N I that
J@pun) < J (G, @) < J (G, @) + chP.

This shows that ||, |l is bounded. Hence there exists a weakly convergent sub-
sequence, denoted again by g, with limit go. Due to the compact embedding
L22)cHY(2)a subsequence g, converges strongly in H~1(£2) and hence i
converges strongly in HO1 (£2) to a limit ug. Now, for any ¢ € Hé (£2) there exists a
sequence ¢y, € Vj, with ¢, — ¢ because | J n=0 Vnr is dense in HO1 (£2). Thus we have

(Vuo, Vo) <= (Vun, Von) = (@qp. on) = (90, ¢)-

To proceed, we note that the sequence |V, | converges strongly in L? and hence,
again selecting a subsequence, pointwise almost everywhere. Now ||V, |l <1
which shows || Vugl|leo < 1.

In particular, (qo, ug) are feasible for (2.2a)—(2.2c). From weak lower semiconti-
nuity of J we deduce

J(qo, uo) <liminf J (g, up) < J(q, u).
h—0

This shows go = ¢ and up = u. Moreover, since the limit is unique the whole se-
quence converges.
Finally, because g;, — ¢ € Q N I we obtain

ap = (qh’ qJ') g (a, ql) = 0 D

In a next step we try to obtain a convergence rate for the singular coefficient «y,.
To do so, we consider the following problems where ¢, is given as in Theorem 5.1.
We search u”, u* € V and uj, uj € V, which solve

(Vu', Vo) =(g4,¢) VoeV, G.1)
(Vuh, Von) = (ah.on)  Yon € Vi, (5.2)
(Vu', Vo) =(q°.¢) VpeV, (5.3)
(Vity. Wh) (a*. o) Yon € Vi. (5.4)

Lemma 5.1 Let (q,,, up) be the unique solution to (2.8a)—(2.8c) and denote q; =
qy, +anq; . Then there exists a constant C independent of h such that

ol | Vi | oo = €.

Proof We begin by noting, that u” € W>!(£2) by definition of q},- In particular, due
to [15, Theorem 2]

|Vu" = Vup |, < chfapl, < ch?lgyllo < ch®.

lo=
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Hence [|Vu} |lo < C independent of i € (0, 1].
This yields
lonViey || o = | Vitn = Vi |, <1+ C

and thus the assertion. O

In a next step, we need to show that || Vuj ||oo blows up with a certain rate. This
appears to be clear, unfortunately the author could not find a citable source. This is
why we need the following lemma.

Lemma 5.2 Let w > m be the angle of the nonconvex corner of §2. Further, let
uj € Vy, be given by (5.4). Then for any & > O there exists a constant ¢ such that for
h > 0 sufficiently small it holds

Vi | 2 en oo,

Proof Denote the nonconvex corner by v. Let p > 1 be given. Then it is well known,
that the solution u* € V of (5.3) satisfies

T
max  u*(x) > cihre
dist(v,x)=h!/P

for some given constant ¢y > 0 and # sufficiently small.
By [16, Theorem 4.1] we now that for any &’ > 0 there exists some ¢ > 0 such
that

o = | < 2k
Then for given p > 1 it holds

p—1

“ix
coh 7o <c1/2

provided that 4 is sufficiently small.
In particular it holds for any x € §2

uy (x) > u'(x) — czh%_‘g/.
Hence we have for i sufficiently small that

I T
max  uj(x) >cihre —cyho ¢
dist(v,x)=h1/P
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On the other hand ”71 (v) =0. Thus we have

MaXgise(p, x)=p/p U3, (X) — up (V)
hl/p

rnax|Vufl(x)| >
2
cl, =1
> —hpoh P
2
= D

Now, for given ¢ > 0 such that —1 + % + & < 0 there exists some p > 1 such that

b4 1 T
—1+—+e=—(—1+—>.
w p w

This proofs the assertion. g

Corollary 5.1 For any € > O there exists a constant ¢ such that for h > 0 sufficiently
small the singular coefficients oy, satisfy

|0!h| S Chl—zr/w—s

Proof The assertion follows immediately from Lemma 5.2 and Lemma 5.1. O

Lemma 5.3 Let (g, un) be the unique solution to (2.8a)—(2.8c). Define ulh eV as
the solution to

(Vu", Vo) =@;.9) VpeV.
Then it holds
[(jva"| = 1) | < eh>/e.
Proof By definition and the fact, that |Vuj| <1, we have for almost all x € §2

(IVa" ()] = 1)* = max(0,

V" (x)| - 1)

< max(0,

Vu" (x) = Viiy| + |Vigg| — 1)
< max(0, | Vu" (x) — Vi)

=|Vu (x) — V).
Hence we get by standard finite error estimates

(Ve @] = 1) P < |Vu = V| < ch. 0
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Theorem 5.2 Let (g, up) be the unique solution to (2.8a)—(2.8¢c) and (q, u) be the
unique solution to (2.2a)—(2.2¢). Then for h sufficiently small, there exists a constant
¢ > 0 such that

7@, ) — I @, an)| < ch?

where

2B

’32=4+3,3

1—-—m/w—¢)
forany ¢ > 0.

Proof In view of Theorem 3.1 we already know that
J (@, ) < J (@, 0) + chP.

Hence it remains to derive a lower bound on J (g, up). To this end, we define
u € V by

(Vu", Vo) =@,.¢) VoeV.
Now, by standard L>-error estimates we have
Ju— | < e
and because 27 /w > 1 > B we get
J(qp. u") < J (@ @)+ chP, 55
| @ns ") = T @po )| < ch?. '

From this we immediately see, that if
J @) < J (g u")

we would be done.
Hence, we will now assume that

J(@nu") < J (@, ).

Then we proceed by considering a regularized version of (2.2a)—(2.2¢) namely (4.2).
Now we have that

_ _ =B
|J}/(anu)/) - J(qau)‘ SCVﬂ“

following the result of Theorem 4.1 and Lemma 4.3.
Further, with respect to Lemma 5.3 and Corollary 5.1 we have that

|7 (2 “h) ~Jy (T “h)| <cyh®/® 4 cyrpt-m/e=e)
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and thus
J(q,u) — cy% < Jy(@,.1y)
< Iy (@ u") < T (@ u") + cyB¥TIO 4 cy2p? T/ 070)
< J@.70) + cyh¥/® 4 cy?p20-7/0=) | cpb,

Now, in order to obtain the best possible rate of convergence, we choose y = h™*
where x > 0 solves

: B T .
maxm1n<xm,2;—x,2(1—n/a)—8)—2x>_f . 5.6)

x>0

To do so, we note that 271 /w > 2 — 27 /w — ¢ since w < 27. Hence the minimizer is
obtained when the two terms x % =and 2(1 — £ — &) — 2x are equilibrated. This

happens at
_ T 4428
x=(1———¢
w 4438

with the value

fr=tt = 2P njw—ey=pr<p.
248 4+38

Thus we obtain
J(q,w) — ch? < J(q,, u") < J(q,w) + ch?
which shows the assertion. O

Convergence of the primal variables follows analog to Corollary 4.2 using the
uniform convexity of J,, to get that

17, — qullp + iy —wnl* < ch.
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