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Foreword

In 1920, in volume 27, page 175 of the American Mathematical Monthly the fol-
lowing sonnet, written by Sir William Rowan Hamilton and dedicated to Fourier’s
heritage and personality was published.

Fourier with solemn and profound delight,
Joy born of awe, but kindling momently

To an intense and thrilling ecstasy,

I gaze upon thy glory and grow bright:

As if irradiate with beholden light;

As if the immortal that remains of thee
Attune me to thy spirit’s harmony,
Breathing serene resolve and tranquil might,
Revealed appear thy silent thoughts of youth,
As if to consciousness, and all that view
Prophetic, of the heritage of truth

To thy majestic years of manhood due:
Darkness and error fleeing far away,

And the pure mind enthroned in perfect day.

As Fourier analysts, what can we add to this panegyric to Fourier? We were
tempted to stop there, but decided to add some mathematics in order to amplify
the poetry and thus emphasize the power of the rhyme. “There will be rhymes and
mathematics...” as the famous Russian bard Vladimir Vysotsky sang in one of
his songs. To this end, we chose a set of topics that satisfy two important criteria.
First, we present mathematics that we actually understand. While this seemingly
natural obstacle did not hold back every author in the history of written word, we
decided that it is an important factor for us. Second, we emphasize those topics
where the relationship between analytic and geometric reasoning is on full display,
both in terms of techniques and motivations. The study of properties of decay
of the Fourier transform of suitably regular functions and measures is a major
organizing theme of this text.

Every time a paper or a book has more than one author one can legitimately
ask whether the final product is better as a result. In other words, what is the

xi



xii Foreword

purpose of this particular collaboration, besides providing ample excuses to discuss
chess, literature and (alas) international politics among the authors? On a more
serious note, the decay of the Fourier transform is a deep and extensive field with a
variety of applications and connections to many areas of mathematics. Combining
our efforts and interweaving our expertise allowed us to broaden the book and
make it more appealing to a wider audience of scientists.

Though modern means of communication allow people to feel as if they are
in the same room, much of our work — indeed the most important part of it —
was done when we had opportunities to devote our time together to the actual
writing of the book that followed our individual research and thought. First of
all our home universities should be mentioned for giving us such opportunities.
These were and are University of Missouri, Columbia, and University of Rochester,
New York, both USA, and Bar-Ilan University, Ramat-Gan, Israel. These intensive
periods of writing required extra energy in the form of food, drink and intellectual
and emotional support. Our wonderful spouses played a crucial role in this process
and our gratitude to them is immense.

During our careers we met many people who influenced our mathematics in
variety of direct and subtle ways. Any attempt to list them all would inevitably lead
to omissions. Having said that, here is a list of people who had a significant impact
on our understanding of mathematics related to the subject matter of this book.

It is our pleasure to express our sincere gratitude to Marshall Ash, Eduard
Belinsky, Luca Brandolini, Michael Christ, Leonardo Colzani, Laura De Carli,
Burak Erdogan, Hans Feichtinger, Sandor Fridli, Michael Ganzburg, John Garnett,
Daryl Geller, Allan Greenleaf, Steve Hofmann, Olga Kuznetsova, Michael Lacey,
Ferenc Moéricz, Pertti Mattila, Fedor Nazarov, Yuri Nosenko, Alexander Olevskii,
Konstantin Oskolkov, Anatoly Podkorytov, Fulvio Ricci, Misha Rudnev, Stefan
Samko, Eric Sawyer, Andreas Seeger, Maria Skopina, Christopher Sogge, Elias
Stein, Sergey Tikhonov, Giancarlo Travaglini, Walter Trebels, Sergei Treil, Roald
Trigub, Ulrich Stadtmiiller, Sasha Volberg, Steven Wainger, Vladimir Yudin, and
Georg Zimmermann.

We would like to express our deepest gratitude to the Birkh&user Publishing
House in general and Sylvia Lotrovsky and Thomas Hempfling in particular. The
patience they have exhibited during this process boggles the mind. During several
long stretches of time when the authors themselves doubted whether the book
would ever come into being, the editors’ faith proved absolutely unprecedented.

Alex Iosevich
Elijah Liflyand
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Introduction

This is a rather informal introduction, designed to describe the ideas and points
of view of this book, rather than precise definition and calculations. All issues
described below are treated in a precise matter later in the book. Our purpose
is to show how various concepts arise, why they are important, and how they
fit together. In other words, one should view this introduction as an informal
microcosm of the book which can be read separately or as a launch pad into the
rest of the treatise.

We also wish to make a rather obvious disclaimer before we plunge into this
introduction. The book is not meant to be an exhaustive treatise on the asymptotic
behavior of the Fourier transform. Any such attempt would be both arrogant and
foolish. Instead we present a segment of this rich and beautiful theory mostly
dealing with the properties of the Fourier transform as it arises in the study of local
geometric properties of sub-manifolds of the Euclidean space and the associated
functions. We can only regret that many interesting related topics are not touched
upon for one or another reason; we mention just as an example some relations
between the decay of the Fourier transform and (pointwise) multipliers, see, e.g.,
the monograph by Maz’ya and Shaposhnikova [143, Ch. 4, 4.4.2, Th. 4.4.3].

The Fourier transform is a ubiquitous object in modern analysis, physics
and engineering. Far from being a “trick” or a “tool”, it is rather a fundamental
operation which relates the spacial properties of a function with its frequency
behavior. The notion and applications of the Fourier transform are intimately tied
to the Plancherel theorem, and this is where we begin. Let f € LP(R?), p > 1, be
the equivalence class of functions satisfying

HfHLp(Rd) = (/]Rd f(SC)pdSU) ' < 0.

Define the Fourier transform by the formula
for = [ et
R4

The Fourier transform of an arbitrary L! function may tend to 0 arbitrarily
slowly at infinity. We are interested in quantifying this rate of decay and expressing

© Springer Basel 2014 3
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4 Introduction

it in terms of natural and easily computable properties of f, especially those arising
in connection with geometric problems.

The most basic formula, which represents raison d’étre of the Fourier trans-
form, is the Plancherel’s formula which says that

HfHL2 Rd) — HfHLZ(Rd :
(R9) )

This formula suggests very strongly that regularity properties of f directly
impact the decay rate of f. This, in many ways, is what this book is about.

Let us continue by considering a smooth function ¢, identically equal to 1 in
the unit ball and vanishing outside the ball of radius 2. Let ¢ 2(z) = e_gqb(ﬂe”).
Observe that

H¢e,2 HLZ(Rd)
is independent of e. What interests us is the fact that ¢ o is concentrated in a ball
of radius € and is equal to approximately €% in that ball. On the other hand,

|fe2(6)] = €2 |o(e€)| < €2 Cn (1 + [e€) ™

for any N > 0. This function is “concentrated” in a ball of radius ¢! and is equal
to approximately €2 in that ball. What we have just illustrated is a special case
of a theorem that frequently goes under the heading of a Heisenberg Uncertainty
Principle, which says, informally speaking, that the Fourier transform of a sharp
short signal is long and shallow.

The example in the previous paragraph gives us an excellent means to con-
tinue our investigation of the relationship between properties of the function and
the decay rate of its Fourier transform. Let us redefine ¢, slightly by setting
pe1(x) = e 4p(*). Suppose in addition that [, ¢()de = 1. This function con-
verges to the point mass at the origin in the sense that if g is an integrable function,

[ éca@stards - 500 01)
for almost every z € R%. On the other hand,
[6e1(6)] = (e)] — 1 (02)

as e — 0.

Let us turn our attention to a “thicker” function. Let f be the characteristic
function of the cube Qq = [—1,1]". Then

d .
flo =17,
=1 !

When ¢ is away from the coordinate axis, |f(§)\ < (wl¢]) ™. However, when
&€ =&, all we can say is that f(§) < (w]€])~". This obnoxious behavior does not
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take place “often”. We can formalize this idea by recalling Plancherel which tells
us that

2= [ Vel = [ 1fere,

1 ~ 2 :
d
(m / G 5)

should tend to 0 as R — oo, the question being how fast. Using the divergence
theorem, it is not difficult to check that if og, is the Lebesgue measure on the
boundary of @4, then

1

1 =R 2 d—1

<Rd/ UQd(£)2d£> SR 2,
R<|€|<2R

where here and for the remainder of the book, a < b means that there exists a
positive constant C, independent of the essential parameters, such that a < Cb.

We just saw in (0.2) that for a single point, the Fourier transform does not
decay at all, even on average, whereas for a d — 1-dimensional object, the boundary
of the unit cube, the L? average of the Fourier transform on the scale R decays like
R=":". Let us try to understand the sense in which this is a general phenomenon.
The fact that R? is d-dimensional is captured locally by the fact that the function
|#|~7 is integrable near the origin as long as v < d. Let us use this idea to say,
for the moment, that £ C R? is a-dimensional if there exists a Borel measure p
supported on E such that, for every 8 < a,

/ / & — 5P dpu(z)dp(y) < oo. (0.3)

Using the Fourier transform, we rewrite (0.3) in the form

which suggests that

Cs / AO)1P1E P de < oo.

1 R : B
o) ard) sk,
R® Jr<|e1<2r

so the phenomenon we discovered by looking at the point and the boundary of
the square is, indeed, “dimensional” in nature. Is dimension the only determining
factor in the behavior of the Fourier transform? We can see that the answer is no
in a variety of ways, but perhaps the simplest is the following. Let og,¢ denote
the Lebesgue measure on the line {(s,s) : 0 < s < 1} and let ocurved denote the
Lebesgue measure on the parabola {(s,s?) : 0 < s < 1}. We have

1
R
0

It follows that
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and L
a\,curved(g) — / 6_2”i(351+5252)d8.
0

Taking &1 = & makes it clear that Tga () does not in general tend to 0 at in-

finity, whereas a simple calculation with Gaussians shows that [Gcurveda(§)] S €] :,
What is the difference between the two measures? In the language of elementary
analytic geometry, the parabola {(s, s?) : s € [0, 1]} has everywhere non-vanishing
curvature, whereas the curvature on the line segment {(s,s) : s € [0,1]} is zero
everywhere.

So far we have encountered two types of averages for the Fourier transform:

1 =R 2
Solid average: d/ |f(§)‘2df Slee
R Jrejei<er

for an appropriate v, > 0, and

o~

Pointwise estimate: |f(&)| < €777
for some appropriate 7y, > 0.

We have seen that, roughly speaking, the first estimate only depends on
“dimensional” properties of f, measured by the integrability condition (0.3). On
the other hand, we have seen that the second estimate depends very much on
the local geometry. Another way of saying this is that the solid average reflects
mainly the analytic aspects of Fourier decay, whereas the pointwise estimate is
fundamentally dependent on the underlying geometry. In practice, the dichotomy
is not quite so rigid; in fact the analysis and geometry interact to various extents
in both types of estimates, yet the general picture is effectively described in this
fashion.

We have absolutely no desire to artificially engineer intermediate scenaria,
but there are one or two that very much deserve our attention. Let P be a polygon
with infinitely many sides such that the normals to these sides form a sequence
{n " n=12,...}, 1 < a< oco. Let op denote the Lebesgue measure on P. By
taking £ to be in the direction normal to one of the sides in P, it is not difficult
to see that op does not in general tend to 0 as |{| — oo. It is of course true that

1 ~ 2 :
| <RP 0.4
(Rd / O s) < (0.4

with any 8 < 1, since, after all, P is one-dimensional. We can say more, however.
We shall see that

2m
/O Gp (R cos(6), Rsin(0))|d6 < B2 24 (0.5)
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and

1

( /O " ap(Rcos(a),Rsin(a))2d9> : <R :. (0.6)

One can check directly that (0.6) implies (0.4). On the other hand, the es-
timate (0.5) demonstrates a whole new feature of the Fourier transform. This
estimate shows that the behavior of the Fourier transform is tied not only to local,
but also micro-local properties of the set in question. More precisely, the estimates
depend on the Minkowski dimension of the set of vectors normal to the boundary.

We shall also see that the estimate like (0.6) need not hold for general
one-dimensional measures. The condition under which (0.6) holds, even for one-
dimensional measures, very much remains an open question.

The notion of spherical decay is extremely useful in the study of the distribu-
tion of lattice points inside convex domains. More precisely it allows us to study
questions of the following type. Let Ky denote a convex body rotated by an angle
0 € SO(d). Let Ny(t) = #{Z* NtKy} = t?|Ky| + Ep(t). The problem, motivated
by questions in number theory, spectral theory and other areas of mathematics, is
to find the best rate of growth of |Ey(t)| for almost every 6.

This connection with analytic number theory is neither singular nor acciden-
tal. Throughout this book we will explore connections between Fourier analytic
inequalities and number theoretic concepts and results. This symbiosis often pro-
vides insight into the numerology behind Fourier analytic estimates. For example,
if K is a polygon, its boundary has a finite number of normals, and it is relatively
easy to rotate it in such a way that the boundary of the dilate Ky encounters
very few lattice points in Z?. This results in a small error term Ep described in
the previous paragraph. Using the Poisson Summation Formula, properties of Ejy
are connected, in a direct way, to properties of |Xf,| and its L! averages

21T
/ o ()] 6.
0

Precisely this line of thinking led the authors of [44] to conjecture estimates
related to (0.5). We emphasize that in this case a variant of the classical lattice
point problem was not simply an area of application of the given class of Fourier
analytic estimates. Indeed, elementary number theoretic reasoning provided the
necessary inspiration and geometric intuition that brought these analytic estimates
into being.

Another notion of average decay arises in the study of distance sets. The
basic problem, due to Falconer (and earlier by Erdds in a discrete setting), is
to determine whether Hausdorff dimension greater than ‘21 for a compact set E
guarantees that the set of distances

A(E) = {\/(951 1)’ + o+ (a—ya) iy € E}
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has positive Lebesgue measure. One approach to the problem is to try to obtain
a good upper bound for the multiplicity function

me(t) =pux p{(z,y) EEXE:t—e<|x—y| <t+e},

where p is a Borel measure on E. This, however, is very difficult. Attempts to
control m. in the L? norm, in the appropriate sense, lead to the following integral
discovered by P. Mattila:

/100 (/Sd ﬁ(Rw)|2dW>2Rd1dR, (0.7)

which can be viewed as an average of the Fourier transform intermediate between
the “solid” average (0.4) and a spherical average of the form

([, wrorias) < ne 08)

with an appropriate value of 3, since (0.6) and (0.8) can be combined to yield an
estimate on (0.7). If one wishes to study the distance set problem corresponding
to the distance induced by a symmetric convex body K with a smooth boundary,
then (0.8) takes the form

([ iaroras) rs, 09)

where K* = {z € R?:z-y <1V y € K}, the dual body of K.

Again number theory is lurking in the background. Suppose that (0.9) holds
with the optimal exponent 5 = s, the Hausdorff dimension of the set E where P
is supported. Choose a special case where E is the scaled lattice ;(Zd N 10,4]")
thickened by ¢—2. Let u4(z) be the characteristic function of this scaled thickened
lattice, normalized to achieve total unit mass. While the support of this measure
is a set of positive Lebesgue measure, it is asymptotically, as ¢ — oo, a measure
on a set of Hausdorff dimension g. We shall see in the sequel that the inequality
(0.9) with 8 = ‘217 d > 4, would imply that for any symmetric convex body K with
a smooth boundary,

1 1
keZt - R— _ <|kl. < < CR2,
#{ S R R_|| ||K_R+R}_C’R

In other words, inequality (0.9) would imply that a thin neighborhood of
the dilated boundary of a smooth convex body contains no more lattice points
than does the sphere of the same dimension. Even in the case of the sphere, this
is a deep classical result due to Landau. In the case of general convex bodies
with smooth boundaries this is an important wide open problem. This not only
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provides a connection between the distance set problems and their Fourier analytic
apparatus and number theory, but also clearly suggests the level of depth that
would be required to solve the analytic estimates under consideration.

Up to this point our discussion has centered around size estimates of the
Fourier transform, whether pointwise or average. However, precise asymptotic be-
havior is also extremely important and useful. A beautiful formula attributed to
Herz [94] on this side of the Iron Curtain, and to Gelfand, Graev, and Vilenkin
on the other side, tells us that if xx is the characteristic function of a convex
body K = {z : p(z) < 1}, symmetric about the origin and having everywhere
non-vanishing Gaussian curvature on the boundary, then

Rl = cle~ s (20 (1@ + U 1)) o0 0a0)

Using estimates of this type we shall study the structure of zeroes of the
Fourier transform of characteristic functions of convex sets and tie the theory of
the Fourier transform to geometric problems in partial differential equations such
as the Pompeiu conjecture and Erdds type problems in combinatorial geometry.
For example, we shall see that the formula can be used to show that if K C R? is
as above, and {e*™%} _ . is an orthogonal family in the sense that

/ e2miw (=) gy — 0 for a # d,
K

then the cardinality of A is finite if d = 1(4). If d = 1(4), the set A may be infinite,
but in that case it must be a subset of a line.

The formula (0.10) above is a special case of an asymptotic development
of the Fourier transform of a general function. Why should one be interested in
such an object? Let us describe an important example. Consider truncated Fourier

series of the form N
Sy fz) = ;gz: A <N> Flkye2miok,

where ) is a suitable function, not necessarily with compact support. The study
of convergence properties of Sy f(z) leads one to consider (generalized) Lebesgue

constants .
_ 2mix-k
Ly = /T ) > ( N) e

kezd
For many choices of the function A one can show that

dz.

Ly = / \gg(x)\dx + suitably small error,
|z|<N

and this is where asymptotics of Fourier transforms of general functions comes into
play. In many cases it is important that the transformed function be of bounded
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variation, usually in dimension one but in certain cases generalized in several
dimensions.

Many important classical examples of functions A above are radial. Perhaps
the most celebrated case is the one where

o
@) = (1-[af*)

+
known as the Bochner—Riesz kernel. See, for example, [180] and the references
therein.

Such examples illustrate the need for asymptotic expansions of Fourier trans-
forms of radial function, a subject that we treat in considerable detail in the sequel.

The matter of the last few paragraphs is what we treat as analytic aspects
of the decay of the Fourier transform, while all the preceding matter that leads
to these we mostly treat as geometric aspects. However our intuition, rather than
precise argument, has resulted in the reverse order of presentation; moreover, the
two types of aspects almost always have something in common.

We sincerely hope that this introduction has left you with a vaguely unsatis-
factory feeling of having just scratched the surface, and a desire to attain a tighter
grasp of the subject matter on the level of numerous and often painful details.
This brings us into the main body of this book where the adventure begins in
earnest.



Chapter 1

Basic Properties of the
Fourier Transform

In this chapter we define the Fourier transform and describe its basic properties.
Since this part of the book is quite standard, we go through the material quickly
with an eye on developments in the subsequent chapters.

1.1 L'-theory

Let f € L'(R?). Define the Fourier transform of f by the formula

fie) = [ e api, (1.1

where
x-&=m& + -+ wala

Theorem 1.2. The mapping [ — f is a bounded linear map from L'(R%) to
L>(R?), f is continuous, lim¢| oo f(§) =0, and

1Al ooy < N F1lz2 (ray- (1.3)

The first two properties follow directly from the definition of the Fourier
transform. In order to prove the third claim, known as the Riemann—Lebesgue
lemma, first prove it for the characteristic (indicator) function of a cube by an
explicit calculation, and then apply a limiting argument. The estimate (1.3) follows
by the definition of the Fourier transform.

It is reasonable to ask at this point how fast f(f) goes to 0 as [§] — oo. It
is known that an arbitrary rate of convergence to 0 is possible. Indeed, a classical
result due to Pdlya (see, e.g., [139] or [203]) says that each even, convex and
monotone decreasing to zero function on [0,00) is the Fourier transform of an
integrable function. More sophisticated examples of that kind can be found in [41].

© Springer Basel 2014 11
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12 Chapter 1. Basic Properties of the Fourier Transform

Theorem 1.4. Let t,f(x) = f(x — a). Then

taf(€) = 2 f(g).

Similarly, the Fourier transform of e2™® ¢ f(z) is f(£ — a).

With this simple example behind us, it is reasonable to ask how the Fourier
transform behaves under the influence of general linear transformations.

Theorem 1.5. Let T be a non-singular complez-valued linear map from R? to itself
and define fr(x) = f(T(x)). Then

Fr(&) =TI F(T) 7 (©)),
where T* denotes the adjoint of T and |T| is the determinant.

To prove this result, observe that

Frl©) = [ e @de =101 [ T @) da

Rd

T [ e @y de = F(E )

since Tx -y = x - Ty by definition of the transpose.

In particular, Theorem 1.5 gives that if f(x) is radial (depending only on
|z]), then fis radial too. More precisely, it is represented as a Hankel transform
as follows.

Theorem 1.6. Let t1 fo(t) be integrable on (0, +0oc). Then for its radial extension
f(x) = follz]),

o~ +OO d
fie)=2r [ folleln' =27 mloe" (1.7)

This formula is referred to in [30] as the Cauchy—Poisson formula.
‘We now turn towards the issue of the behavior of the Fourier transform under
the influence of differentiation.

Theorem 1.8. Let f; denote the partial derivative of f with respect to ;. Suppose
that f; € LY(R?). Then

F3(6) = 2mig; F(©).
Similarly, if z;f € LY(RY),
of
29}

Both identities follow easily from the definition using integration by parts.

—2miz; f(€) = .7 (€).
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1.2 Convolution

Another basic operation with respect to the Fourier transform is the convolution
fro@ = [ 5=ty

which is well defined for L!(R?) functions by Fubini’s theorem. Its relationship to
the Fourier transform is given by the following basic calculation.

Theorem 1.9. Let f,g € L*(R?). Then

To see this, write

f*g(é)*/ e | pe =gty dy da

/Rd /Rd e AT EeTETE f (2 — y)g(y) da dy
*/Rd e / e2TEf (v) dv = FE)FE)-

An important tool is Young’s inequality for convolution (see, e.g., [181,
Ch. V, §1]):

Theorem 1.10. If ¢ € L"(R) and ¥ € Li(R), then for i +(11 = 11) +1,1 < p,
q,r < 00,
lex¥llp < llellrlleollq- (1.11)

1.3 L2-theory

While this may appear slightly paradoxical, we begin the section on L?-theory by
defining a set of functions which are rather more regular.

Definition 1.12. We say that ¢ € C°°(R) belongs to S(RY) if

sup |2790%p(z)| < oo

z€RC
for all multi-indices v and «. Here, and throughout the book, 7 = z]" - --z}*, and
0“¢ denotes the partial derivative of order a1 + - - -+ ag, with respect to x1, ..., x4

respectively.

It follows easily from Theorem 1.8 that the Fourier transform maps S(R9)
to itself. Moreover, we have the following fundamental fact.
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Theorem 1.13. The Fourier transform is an isomorphism of S(R?) into itself whose
inverse is given by the formula

fla) = [ emefie)as

To see this, we need the following basic calculations.

Lemma 1.14. Let f,g € L'(R?). Then

~

f@)g(z)de = [ f(x)g(z)dr.
R¢ R¢

The proof of this is immediate by Fubini. We also need to know that, roughly
speaking, the Fourier transform of a Gaussian is a Gaussian.

Lemma 1.15. Let y(z) = e~ Then,

The proof is by completing the square and changing the contour of integra-
tion.

Using Lemma 1.15, it is not difficult to derive the following basic relation,
known as the Fourier inversion formula.

Theorem 1.16. Suppose that f € L', and assume that f is also in L*. Then for
almost every x,

f@) = [ emefie e
R4
Perhaps the most fundamental result in Fourier analysis is Plancherel’s the-
orem.
Theorem 1.17. If u,v € S, then
/ u(x)v(z) dx :/ u(x)v(x) de.
Rd

Rd

Moreover, there is a unique operator F : L*(R%) — L*(RY) such that Ff = f
when f € S(RY). This operator is unitary and Ff = f when f € L' N L2,

1.4 Summability

Observe that Theorem 1.16 holds true under the very restrictive assumption that f
isin L'. If it is not the case, summability is a typical tool to restore a function from
its Fourier transform. Among various types of summability, the one by multipliers
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is the most common. The corresponding linear means are defined as

€ 7 627”21-5 T
[A(5) Foem=<a,

where A is a (multiplier) function. Some of such functions became widely known
and used, see, e.g., [63, Ch. 1, §9]. What is of crucial importance for us is that
summability and approximation properties of the above linear means essentially
depend upon the behavior of the Fourier transform of A; the best source for the
study of this aspect is [203]. One can see from this book that a similar situation
takes place in the case of Fourier series. A counterpart of the above linear means
for the Fourier series of a 1-periodic in each variable function f, defined on the
torus T¢ = (-3, 5]%, looks like
Z Ak’Nf(k)EQTrim‘k7

keZa
where

oy = [ r)eitan
Td

is the kth Fourier coefficient of f and A v is a sequence of multipliers. When f is
continuous or just integrable, summability properties are related to the behavior
of the sequence of Lebesgue constants

E )\k N627Ti1:-k
Td ’

kezd
a detailed overview of this subject is given in [125]. It is shown here (see also [203]
and references therein) that the most interesting case is when

k
)\k:,N:)\(N>7

where it is natural to take A at least continuous to be defined at each point J’f,
Such means are

dx;

LN(fiz)= > A (;;) Flk)e*m k= (1.18)

kezd

The most known among such functions A is (1 — |2|?)® which defines the so-
called Bochner—Riesz means of order «, introduced in [30] (for numerous important
problems where the Bochner-Riesz means are involved, see, e.g., [181] and [61]).
Again, much clarifies itself from the behavior of the Fourier transform of A. In
fact, many of the results of the first part of this book are inspired or obtained
in order to establish certain summability and/or approximation properties of the
linear means of Fourier series.
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1.5 Poisson summation formula

The Poisson summation formula was discovered by Siméon Denis Poisson and is
sometimes called Poisson resummation. A typical form of the Poisson summation
formula for integrable functions is given in [181, Ch. VII, Th. 2.4].

Theorem 1.19. Suppose f € L'(RY).Then the series
> fla+m) (1.20)
mezd
converges in the norm L'(T9). The resulting function in L'(T¢) has the Fourier
expansion
Z f(m)eQﬂ'iac"m.
meZd

This means that {f(m)} is the sequence of the Fourier coefficients of the L' func-
tion defined by the series (1.20), where, for any & € R, we have (1.1).

Under certain restrictions (see, e.g., [181, Ch. VII, Cor. 2.6]) one has

S fatm) = 3 Flm)erm,

mezd mezd
and, in particular,
Y fm)y="Y" f(m).
meZd mezd

Moreover, results are known which show that the Poisson summation char-
acterize, in that or another sense, the Fourier transform (see [58] and [67]).

There are specific versions of the Poisson summation formula for functions
with bounded variation; see, e.g., [215, Ch. II, §13], [202, Lemma 2], or [135].

A good source for various versions of the Poisson summation formula and
their applications is [140, Ch. X, §6].



Part 1

Analytic (and Geometric) Aspects



Chapter 2

Oscillatory Integrals

The method of stationary phase is the term typically applied to study of the
integrals of the form

/ eiRG(m)w(x) dx
Rd

by studying properties of derivatives of the real or complex-valued phase function
G(z) on the support of the cut-off 1(x). There are many reasons, both pure and
applied, to study such integrals, and there is no reasonable way to describe even
a representative sample of the ideas and motivations involved. For us, the motiva-
tion mainly comes from the study of Fourier transforms of measures supported on
surfaces in Euclidean space possessing various degrees of smoothness. The appli-
cations of properties of Fourier transforms of such measures are found in partial
differential equations, harmonic analysis, analytic number theory, integral geome-
try, geometric measure theory, and, in recent years, geometric combinatorics. We
will make an effort in the coming pages to get across to the interested reader the
variety and intricacy of applications of oscillatory integrals in different areas of
mathematics, though, by necessity, we will only be scratching the surface.

2.1 The method of stationary phase

We begin with the analysis of the oscillatory integral of the form

b
I+(R) = / e @) gy,

as R tends to infinity and f is a real-valued function. If f(z) is constant, I(R) does
not decay at all. The point is that in order for I;(R) to behave well, the phase
function f(x) must change rapidly. To see this, note that

@) — cos(Rf(2)) + isin(Rf (x)).

© Springer Basel 2014 19
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In order for I;(R) to be small, positive values of the cosine must cancel the negative
values. For this to happen, at least one of the derivatives of f(z) cannot be too
small. For example, if f(z) = x,

b
/ e dy ’ =
a

With this calculation in mind, we state the classical van der Corput—Landau
lemma.

1.1}3 (ein _ 6iRa) < 2

[ (R)| = < o

Lemma 2.1. Suppose that f is once differentiable on (a,b), f'(x) > 1, and [ is
monotonic. Then

4

(B < -

Proof. To prove the lemma, write
b .
It (R) :/ @) g
b
Lod o ng ))
—_ (3 x d
/a iRf(z) dv (6 .

% % a b
_ eiRF(b) B eilf(a) 7/ RI) d 1 "
iRf'(b) iRf'(a) a dz \iRf'(x)
=A+B.

Since f/(x) > 1 on (a,b),
2
A< .
<

Using the triangle inequality and the fact that f’ is monotonic,

b
iRf(o) 4 1 )
/a R (in’(fv) e
bl g 1
<[] (in%x))’ o
b d 1
- / da (in/(x)) e

- ‘(m]}'(w B z'R;%a))‘ <

|B| =

It follows that 4
IR < 4]+ 1B| < |,

as claimed. O
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The natural question to ask at this point is what happens if oscillation is
measured by higher-order derivatives. This suggests the possibility of an inductive
argument, which is precisely what happens.

Lemma 2.2. Let f be m times continuously differentiable on (a,b). Suppose that
f)(x) > 1. Then
1;(R)| < CR ™,

where Cy, depends only on m and does not depend on f, a or b.

Proof. To prove this lemma, assume that the result holds for m—1. If £~V (z) #
0 on (a, b), we are done, so we may assume that f(™~1(zq) = 0 for some zg € (a, b).
Since f(™(z) > 1, f(m=1Y(z) is monotonic, as we noted above, so there exists at
most one such zy. Consider

x0—9 . zo+0 ] b ‘
If(R) = / e’LRf(w)dx +/ e’LRf(w)dx +/ ezRf(””)d;c
¢ zo—d z0+0

=L +1+Is.
Using the fact that e’#/(*) has modulus one,
12| < 20.
To handle I3 observe that
Frm (@) = £ (o) = (2 — 20) F(c)
for some ¢ € (9, ). It follows that
[ (@) =0

on (xg + 4,b). By induction,

b i b ips £ (@)
/ ezRf(m)dx / 61R5 5 dr
zo+0 zo+90

Replacing f(z) by —f(x) and running the exact same argument shows that

I = < Cp_y(RS) met.

‘I1| < Cm_1(R5)_m1*1 .

We conclude that 1
[I;(R)| < 2Cy—1(R8)™ ™= + 26.

Choosing ¢ such that the two terms agree, we see that
m—1 1
[Is(R)| <4C,™ R m.

This completes the proof with C), given by the recursive relation C; = 4,
m—1

which comes from Lemma 2.1, and C,, = 4Cm£1. O
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A nearly immediate consequence of the van der Corput—Landau lemma is the
following estimate on the Fourier transform of the Lebesgue measure on a smooth
plane curve with everywhere non-vanishing curvature.

Lemma 2.3. Let " be a smooth, compact plane curve with non-vanishing curvature.
Let or denote the Lebesque measure on I'. Then

lor(§)l < Clgl >

Proof. By dividing the curve into finitely many pieces, we may assume that on
each piece, I' is a graph of a function (t). We then use a smooth partition to
express the measure on each piece of the curve as 1 (t)dt, where v is a smooth
compactly supported function. After performing a translation and a rotation, we
may assume that (0) = 4/(0) = 0. In these coordinates, the curvature function
k(t) is given by the equation

It follows that 4" (¢) > ¢ > 0. We must show that
R (@) = | [ ey < cle

First observe that if |¢;| > C|&3] for a sufficiently large constant C, then
o —1
[F5 ()] < cl¢]

Indeed, let
D(t) = 2m(t&1 +7(1)62)-
Then
|2 (t)] = 2m|&1 + 7 (1)&2] > |&
if C is sufficiently large, since v’ is bounded above on a compact interval.

To take advantage of this, we integrate by parts just as we did in the proof
of Lemma 2.1. We get

‘/62wi(t§1+7(t)§2)w(t) dt‘ _ ‘/ 7/1/(15) d 67i¢'(t)) dt‘
| dt(@i) 1= i (i) =

()Y (1) — (1)@ (1)
(@'(1)"

since |®'(t)| > |&1| and ®”(¢) is bounded above on a compact interval.

dt < Oler| ™,
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If |&1] > C|&|, then |&]™" < C'|¢|™". Therefore it remains to consider the
case when |§1] < C|&]. Fortunately, this puts us in the realm of Lemma 2.2.
Indeed,

/672wi(t§1+7(t)§2)w(t) dt — /6727ri§2(t§1§;1+’y(t))77/}(t) dt.

Since the second derivative of t&;&;* + () is bounded from below by ¢ > 0, by
the curvature assumption, Lemma 2.2 implies that

‘/ RO dt‘ < Cle| k.
Since we are in the regime where |£1| < C|&s], the right-hand side above is

bounded by C|§\_;‘ and the proof is complete. O

For a more advanced application of the Stationary Phase Method, see, e.g.,
calculations with Hardy’s L-functions (see [91]) by Miyachi in [145].

Let us give a couple of versions of the Stationary Phase Method theorems in
several dimensions. The first one can be found in [70].

Theorem 2.4. For the integer k > 1 the following asymptotic formula is valid:

Qu(R) = /R e,

— (2m)"2" B3 (RS (o) +0(v0))

x | det S"(v0)| % (p(v0) + O(R™)) (25)
k—1
4 ngdeiRS(UO) Z aijj + O(‘ngdfk)7
j=1
where vy = (09,09, ...,09_,) is a stationary point of S; S” is the Hessian matriz of

the second derivatives of S such that S" (vg) # 0; 6(vg) is a real number depending
on det S”(vg); and a; are some (complex) numbers.

Let us give a somewhat different version, see [177, Ch. 1]. We consider the
d-dimensional oscillatory integrals

I(R) = / a(R,z)eF5@dy, R >0,
Rd

which involve C'*° functions S and a, with S being real-valued and a having com-
pact support. We will be working with phase functions S having non-degenerate
critical points. Recall that xg is said to be a non-degenerate critical point if
VS(zo) =0 but S”(zg) # 0.
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Notice that non-degenerate critical points must be isolated since, by Taylor’s
theorem, near a non-degenerate critical point xg,

1

AS(z) = )

(8" (x = o), (& — w0)) + O(|z — wo[*),
and hence
VS(x) = 8" (x — x0) + O(|z — 0|?).

Finally, we shall say that S is a non-degenerate phase function if all of its critical
points are non-degenerate. We shall work with amplitudes a(R, ) whose a-support
is contained in a fixed compact set, and we shall also require that

() (2) w0

Theorem 2.6. Suppose that a is as above, S(0) = 0, and 0 is a non-degenerate
critical point of S. Then if V.S(z) # 0 on suppa(R,-) \ {0},

< G (14 R,

for all o and ~.

’(62{)1%[(3)’ < Cn(l+ R)_g_m.

Corollary 2.7. We have

1

/ ,r](x)e’LRS(JZ)dx o R_(Qi (zw)ge’bRS(O)n(O” det S//(0)|_2ezi signS” + O(R_g_1)7
Rd

if S has a non-degenerate critical point at 0 and n has small support.

Notice that, in this case, signS” is constant on supp 7, so the first term on
the right-hand side is well defined.

2.2 Erdélyi type results

The estimates we have carried out for F,(¢) in the previous section could not go
through if the function ¢ or certain of its derivatives had singularities at some
point. To this end, we would like to have a possibility to deal with functions of
type

eZﬂiyz(x _ a))\fl(b _ x)/_Lfl.

Scrutiny of the Fourier integrals of such functions is due to A. Erdélyi (see, e.g.,
[66], [57, §11]).

For any reasonable function f its repeated rth integral, r = 1,2, ..., over the
interval [a, ] is expressed as

- _1 " /m(x — )" g(t) dt.
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Here a is arbitrary, it will be convenient for us to integrate in the complex plane
with a = ocoi. Writing _
g(z) = e (z — ),

with y > 0 and 0 < A < 1, we set

O N e T

e
= 1 /70 (x — T)T_l(T — a)’\_leiw dr
B (7’ - 1)' oot ’
with integration along the ray in the complex plane going out from x to infinity
parallel to the imaginary axis, x > a, and the principal value of 7 — a)*~1.
Substituting 7 = = + it, we obtain

™

iyz— "1 00
y 2' / e Vi Nz —a+it) L dt.
“Jo

(o)) =, _

In particular,

iya+kﬂ'i_(r+1)ﬂ fo%e)

K"g)(a) = € ’ ’ e YT tA=2 gt

7 (r—1)!
r—1)! o

(2.8)
_ givatrgi— i Tr+A=1)
(r —1)lyr+r-1
No such precise formula can be given for arbitrary « but a valid estimate is
1 o0 )
(Kol <y, [T e

r—1)/,
2.9

(SU - G)A_l ( )

(r—1)! /o e Yt = y " (@ — a) L

We are now in a position to prove the next asymptotic result (cf. Lemmas
2.1 and 2.2) for the Fourier transform of a function with singularity.

Theorem 2.10. Let p(x) be m times continuously differentiable in [a,b]. Let ¢ and
its first m — 1 derivatives vanish at x = b. Then, if 0 < X < 1,

b m—1

o T(r+A) jpasmnigr _

[ etla - aptetran = 37T e 0 (0 @) 10 2ay)
a r=0 ’

as y — oo.

Proof. In the previous notation,
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Using (2.8) and estimating, by means of (2.9),

b b
| em@Emg)a)dal <y [ @) - 0 de = 0l

we complete the proof. a

Remark 2.12. The counterpart of Theorem 2.10 for

b .
/ o(x)(b — ) e dy

is completely the same, except that the harmonics in the sum on the left-hand
side of (2.11) are ¢¥*~i5 +i% and, of course, in the assumptions and result the
roles of a and b are opposite.

A promising extension of Erdélyi’s result is given in [214]. Let D C R? be a
domain with compact closure whose boundary S = 0D may be represented in the
form S = U;c;S;, where J is a finite set of indices, and S; are C*-smooth hyper-
surfaces in R? in general position. The value k& > 1 will be specified later, but
the result remains true in the C°° and real analytic setting. The general position
assumption implies that the intersections Sy = N;ecsS;, J' C J, if non-void, are
Ck-smooth varieties.

We consider functions C*-smooth inside D whose support is the closure of
D, of the form

F@) = o@) [ o) W™ p;(x),
J
where ¢(x) € C*(RY), ¢ vanishes nowhere on D, and

pi(x) = 0, freD (2.13)

{dist(x, S5), if € D,
As an example D = {z € R?: |z| < 1} shows, p; may not be smooth functions in
the whole of D. Therefore, the product in (2.13) is defined as follows: the factor
p; does not appear in it as long as « is far from S;, so (2.13) must hold locally in
D. Tt is proved in [Gi, Appendix B] that (2.13) indeed defines a C*-function in a
neighborhood of @D not including 9D.

We introduce the following notations:

my =) (uj+1,mo= Y (u+1), My= my, and M_= ) m;
= j=at1 =1 j=at1

The condition p; +1 >0, j € J, is assumed throughout.



2.3. The Fourier transform on a convex set 27

~

We give asymptotics of the f(rf) as r — oo for § € A, where A is a subset
of the unit sphere S?~! in R? whose complement has Lebesgue measure zero. For
0 € A we shall denote by F(0) the set of x € 9D such that the hyperplane

{x’ eR?: zdjﬁj(sc;» —x;) = 0}

j=1

is not transversal to the largest stratum S/ containing x. Using the partition of
unity, we see that the asymptotics is the sum of contributions of z € F(6), so it
suffices to consider only one contribution. In this case we assume without loss of
generality that J' = {1,...,m}.

o~

Theorem 2.14. The contribution of a point x € F(0) to the asymptotics of f(rf)
as T — 00 s

Mo +M_
r—m+—m,—(d—m)/2 Z qj(ln r)]\/br-i-]\/[, —j (eiTQx + 0(1))7

Jj=0
where q; are some numbers.

The coeflicient g of the leading term is given explicitly in [Za2] in accordance
with different conditions that the numbers my, m_, M, M_, n and m may satisfy.

2.3 The Fourier transform on a convex set

Let us consider a problem of the asymptotic behavior of the Fourier transform of
the indicator function of a convex set. First essential results are due to Hlawka
[96] in the 40s and 50s. The motivation of his interest in this problem lies in
Number Theory, namely, in counting lattice points inside dilates of a convex body.
For further progress in estimating the Fourier transform of the indicator, see [94],
[161], [162], [137], [185], [204], [36], [37].

A different source of such interest is connected with the Radon transform
and important problems related to this notion. Recall that the Radon transform
of a function f is defined to be the integral of the restriction of this function to a
hyperplane

R(f:6) = [(.p) = /g  fa)de, (2.15)

where dw is the element of the area on the hyperplane 8 = {éx = p}, which is
oriented so that it is the boundary of the domain £z < p.
In [81] the following result is derived from simple geometric observations.

Theorem 2.16. Let D be a convex symmetric body for which the origin O is the
center of symmetry. Let its boundary 0D be a compact [d;r?’] times differentiable
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hyper-surface in R with nowhere-vanishing principal curvatures. Then
W) = [ erds
D

ot 1 d+1
:2(27T)d2 (p1p2...pd_1)_ér_d; COS (ar— 1_ 7'[') (1—’—0(7‘_%))

cos(ardil7r>‘25>0,

where y = rn, n € S*7L, the unit sphere in R, a is the distance from O to the
two (symmetric) points at which the function nx attains mazimum and minimum
on D, and p1, p2,...,pi—1 are the principal curvatures at each of these points.

provided

To have o(1) in the remainder term instead of the more precise O(r~2), it
suffices to assume the [*$?] smoothness.

In the well-known paper [94] by Herz, essentially the same result is obtained
under the [dJ2r7] smoothness assumption. This paper is motivated by sharp esti-
mates of the remainder term in the asymptotics of the number of lattice points in
dilates of D, but this asymptotics of the Fourier transform is frequently used for
different goals with extra smoothness assumptions.

A more general result has recently been obtained in [157]. Instead of it we
give here its extension from [131] (see also [156]), where more general functions
than the indicator are treated.

(A) We assume throughout this section that D is a convexr domain and the prin-
cipal curvatures of its boundary S = 0D never vanish.

Let D have compact closure with D being a C* smooth hyper-surface, k > 1.
Let f be a function whose support is the closure of D of the form

f(@) = p()p(z)?, (2.17)

where ¢ € C¥(R?) and does not vanish on 9D, and p(z) is a regularized distance
(see, e.g., [179, Ch. VI, Th. 2]) which vanishes outside D, that is, p € C*° outside
0D, p(x) = 0 for © ¢ D, and there exist two positive constants C; and Cs,
C1 < Cs, such that for z & 0D,

Cy dist(z,0D) < p(z) < Cydist(z, dD),
p(x) is C* smooth outside 0D, and for oo = (a1, ..., aq) we have

9%p(x) . l—ay——a
< ! 4.
‘ 9o < Cy[dist(z, 0D)]

All constants do not depend on 0D. The point is that the distance itself cannot
stand for p, since it may be non-smooth for z from 9D (see, e.g., [86]). These
assumptions are close to those preceding Theorem 4.1.
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Let g(z) =0, g € CF, gradg(z) # 0, be a local defining equation of S = dD.
Then (2.17) may be written in the form

_ Ja(@)%po(x), z€D,
f(z) = {07 céD (2.18)

where for z € S one has

d 2\ "2
oolz) = p(2) (Z(%ﬁ)) . 2.19)

i=1
The integral (2.15) in the definition of the Radon transform converges if
a+1>0. (2.20)

Throughout the section condition (2.20) is assumed.

A hyperplane in RY may be considered as a point in RPg, the projective
space, so (5.1) defines R(f;0) on the whole of RPy except for infinite hyper-
planes. However, one may extend it continuously to points 6 of RPP; corresponding
to infinite hyper-planes by setting R(f;60) = 0 for these 6 (recall that the support
of f is compact).

To a smooth hyper-surface S C R? (or, more generally, S C RP;) one may
associate the dual variety Sc RP4 defined as the set of hyper-planes not transver-
sal to S at some point. Recall that the dual of S is the closure of S itself, see,
e.g., [158, 159] and [213], where further references may be found. Recall that the
hyperplane 6 = {x eRe: Oy + Z?Zl Oix; = O} is not transversal to S at a point

zeSngif 9a(2) 9a(2)
gz gz
0r:-+-:0,) = R , 2.21
i) = (T s ) (221)
0o, . ..,05 are homogeneous coordinates in RPy.

By [159, Lemma 1], the Radon transform R(f;6) is C*-smooth in RP4 ~. S.
Condition (A) implies that S is a smooth hyper-surface in RP4 (see [213] for the
discussion of the codimension of the dual variety).

So, let § € RPy belong to §, and let S be defined in a neighborhood of 6 by
an equation y(6) = 0, grady(f) # 0. Let again € S be the point at which the
hyperplane 6 is not transversal to S; since D is assumed strictly convex, it follows
that the point Z is uniquely defined. Note that function y(#) is defined up to a

non-vanishing C*-factor. Assume 6,, # 0.

Theorem 2.22. Let k > max(« + %5*,1). Then there exists an equation y(6) = 0
defining S in a neighborhood U of 8, grady # 0 in U, and a function () € C*(U)
such that
at d;l
R 0) =457 r(6). (223)
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If, in a neighborhood of T € S, one has S = {xq4 = g(x1,...,24-1)}, then one
can take y(0) = (0500 — h(—0:0;",...,—04-10;")) €, where € = —1 if the matriz

with the entries s positive definite and € = 1 otherwise,

8%y
Bo;j[‘)ack

d—1
h(ﬁh ceey Bd—l) = Zﬁﬂfz — g(ﬂ;‘h .. ~755'd—1) = Lg,

8 = ag(wl""’xd‘l), i=1,....d,
3xi

Lg is the Legendre transform of g(x1,...,x4-1), and

') = pla) 07 BT (2.21)

. d N2t 1
(o) e
i=1
Here 3¢ is the Gaussian curvature of S at the point T.

Proof. The argument is similar to that in [159]. Without loss of generality we
may assume that in a neighborhood of the point Z the surface S is given by the
equation 24 = g(x1,...,24-1). Thus 2’ = (21, ...,24—1) may be regarded as local
coordinates on S. The statement about the Legendre transform follows from [159]
and [213].

It suffices to choose a curve v in RPy4 which intersects the hyper-surface S
transversally at the point § and to show that (2.23) holds along this curve. We
may choose this curve to be vy = {0 : 6, =0;, i =1,...,d}, 6y is a parameter on
~. Since the dual of Sis S, the hyperplane tangent to S at the point @ is given by
the equation

d
Z@‘Qi + 6y =0,
i1

in which Z is the point on 0D defined above. Comparing this equation with the
definition of v we see that v and the above hyperplane have just one common point,
so indeed + is transversal to S. Since 4 # 0, we may consider 6y, ...,0;_1 as local
coordinates in RP; near . Moreover, R(f; 9) restricted to v may be regarded as
a function of z = 0,6y — 6y), and we shall write R(f;2) instead of R(f;0)|,.

Consider the function &(x) = x4 — g(21,...,24—1). Note that on the hyper-
plane 6 we have

d-1
9! (Z 0i; + éo) —g(x1,...,2q-1).

i=1
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We can use formula (2.18) with £(z) instead of g(z), then (2.19) yields

o
2

.-
@o(Z) = ¢(7)|0a| (Z 9?) : (2.25)

Note that (Z1,...,Zq—1) is a critical point of £ on . Denote by J the determinant
of the Hessian of this function at this point, i.e.,

3o (P9 ) .
&Tjamk j,k=1,...,d—1

By assumption (A), we have J # 0; moreover, the Hessian is either a negative or a
positive definite quadratic form; in the latter case we may consider —z instead of
z as the argument of R(f;-). So we assume that (—1)9713 > 0, and by the Morse
lemma [144] one may choose coordinates uq,...,uq4—1 on S so that for 6y = 0y we
have £ = — Z?;ll u3. Therefore

d—1
§=—0,"(60 — 00) +Elgog, = 2 — Y _ 1.

=1
We have

2 — ;
= 21;d det < Og(z) )
Ox;0xy, Gk=1,..,d—1

vy

Since the Lebesgue measure dw on @ is given by

164
one can write (cf. (2.15)):
~ - d—1 @
R(f;00,01,...,04) = / (2'2%2) o1(u, z)duy - - - dug_1,
e i=1
> u?<z

i=1

where z = 6,7 1(0y — 6p) on 6, and
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Note that the first and the second quadratic forms, G and @, of S at the point
are given, respectively, by the matrices

09(Z1,...,Ta—
(6ij+ ox;

—E—‘re (917 ~7§d—1) (917-~-79d—1)

)

Here F is the unit (d — 1) x (d — 1)-matrix. The determinants of these matrices
equal, respectively,

and

_1
2

<32(517~-~@d1)>
Ox;0x; ij=1,...,d—1

NES

and

d—1 89(:?: Zg ) 2 2 d 2d
~ 1ye-+3Td—1 ~ ~ = d—
13 <1+§ ( o ) ) =13 (E 9?) [0al?~.
i=1 v i=1

Therefore, we can write

d 4
©1(0,0) = po(7)2"2 5> (Z é?) 104) 2" (2.26)
=1

via the Gaussian curvature s of S at the point Z. Thus R(f;z) = 0 for z < 0, and
for z > 0 after substituting u = z2t we have

R(f;z):za""d;l / w1( tz2 z (12752)

d—1
T <1

i=1
Using the spherical coordinates and applying the formula

27t
d
r(3)
for the area (14 of the unit sphere in the d-dimensional Euclidean space, we have
for z > 0,

Q4 =

R(f;2) = 227" p(2),
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where
d—1

©2(0) = ¢1(0, 0)F22Td21) /0 (1-5)*s"2 ds.

We now use (2.25) and (2.26) and then apply the formula

! p1—1 — s po—1 g = F(Ml)F(MQ)
/0 A = )

The proof of the theorem is complete. O

Remark 2.27. If we do not assume that the principal curvatures of S never vanish,

then Theorem 2.22 remains valid for almost all directions (1, ..., 64). This follows
from the Morse lemma, cf. [159)].

As in [157], using the Fourier slice theorem

oo

Flroy, ... .10y = / ™% R(f:6) db, (2.28)

— 00

d
with > 62 = 1, and the Erdélyi lemma (see Theorem 2.10 and Remark 2.12), we
i=1
obtain the asymptotics of the Fourier transform of functions of the type (2.17).
This generalizes Theorem 2.15 and its generalizations in [161, 162] and [185]. The

result reads as follows.

Theorem 2.29. Let o > 0, k > max (1, dgl + a) , n € R? be a unit vector, and
xt(n) and 7 (n) be the (uniquely defined) points of OD at which the function nx
attains mazximum and minimum on 0D, respectively. Then for r — oo,

-~ _d+1

f(rn) — a9 [627rira;+(n)n5+ + 627rirw7(n)7]5— + 0(1)}

)

where
s 2a4d+1
+ e:|:7m2 +a+ (p(;(;:t)(%:t)ié(Qﬂ')iailr(a—l— 1)7

(1]

»t are the Gaussian curvatures of 0D at the points x*, respectively, and the

remainder is small uniformly in 7.

Observe that the relation (2.28) and the Morse lemma are of crucial impor-
tance in these problems. As for applications of Theorem 2.29, besides [131] see
also [121] and [130].

For dimension one, the Fourier transform may be converted by the Stationary
Phase integral when one substitutes variables in order to simplify the function ¢.

In the multivariate case, even if ¢ is very nice, a phase may appear during
an attempt to remove geometrical peculiarities of the domain of integration.
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2.4 Applications

The results given in this chapter have various applications. We present some of
them, apparently less known.

2.4.1 Hyperbolic means

Let us borrow an example from the estimates of the Lebesgue constants for the so-
called hyperbolic linear means (see [125]). The next result needs certain preamble.
Since the appearance of Babenko’s paper [7] interest has continued in various
questions of Approximation Theory and Fourier Analysis connected with the study
of linear means with harmonics in the “hyperbolic crosses”

d )
ki) \
[(N,~) = {kEZd:h(N7k,’y):H (|J\jf|) <1, v >0, j:l,...,d}.

j=1

We are interested in the hyperbolic means of Bochner—Riesz type of order o > 0,
a hyperbolic analog of the usual (spherical) Bochner—Riesz means,

Ly f@) = Y (1=h(N k)5 J(R)ere.
kET(N,7)

Hyperbolic Bochner—Riesz means (for the two-dimensional Fourier integrals, with
71 = Y2 = 2) first appeared in the paper of El-Kohen [64] in connection with the
study of their LP-norms. His result was not sharp and shortly after was strength-
ened by Carbery [49].

Starting with the integral

.

and passing from sums to integrals, we arrive, after appropriate estimates of the
errors, at the integral

.

as the leading term, while the error is proved to be of an appropriate order. Of
course, all the other combinations of d — 1 variables separated from zero should
be considered as well, but since they are treated similarly we restrict ourselves to
the integral displayed.

(1= (N, k,7y))S ™| da (2.30)

kET(N,y)

(1 — |z - - - |2g| ") *e™™ dx | du

‘ml"Yl...ll«dl’ngl
[EZ \md,1|2;
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Denote the inner integral by ¥ (u); we are interested in the behavior of ¥ (u)
for u large. Further, it suffices to consider

U(u) = (1—a]" - 2z)*)® cos(ux) dr;
x4 <1

1
Tl Td—12 5, £a20

keeping the same notation results in no confusion. Introducing a new variable
Y1 Yd—1

t=x" 2,7 x4, we obtain

1 M _Yd—1
U(u) = / (1 t'“)o‘dt/cxl gy, [0
0

Y1 Yd—1

X COS (ulxl + o ug_1g—1 + tugey " xy |? ) dry---drg_q.

Here and in further estimates we denote by the same letter G' corresponding
domains in Rfifl. The only essential circumstance here is that the variables are
separated from zero and infinity.

Let us change variables once again;
1 .
vj = xju(Jur|" - Jug ) T, j=1,2,...,d—1,

with v =v1 +v2 + -+ + 74. We have

Y1 _Yd—1 _m _Yd-1

bugay e (0 =g g T (] fug)
and
_M _Yd-1
xl’yd...xd_l’yd dxl"'dl'dfl
dvg a -7 _ Yd-1
= tv-1 (|u1|’71 e ‘udry‘i)’y ‘ul ceeUg 711}1 RC N ,Ud—l’\{d dUl e dvd*l-

By this we obtain

1 d
U(u) = Jur - ual 7 (Jua | "-|ud|7d)d/7/ (1= 1) ¢+ dt
0

. M _Yd-1
/ cos ((t”’d|u1|71 - ug)e) ('Ul +ootvgor Fog ey ))
G

-7 Yd—1

Yd T va
vy vy dug - -dug—y.

Tt is convenient to make one more substitution ¢ & — t. By this we represent ¥
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in the form

1
\I](u) = v ‘ul . -ud|71(|u1|’yl . ‘ud|7d)z / (1 o tf-yd)a tdildt
0

Yd
1 -7 _ Yd-1
/ cos <t(u171 "'|Ud"yd)’7 <U1 +- ot vi1 vy Vd ,..Ud_lmi >>
G
M _Yd—1
vy vy, Y dvuy - dugo.

Our next task is to consider the inner integral in the latter representation for
W. It can be rewritten to be of the form

_M _Yd-1
; Vd .. d
/d l<p(v1,...7vd_1)e”M(U1+ Toa-140; Yd-1 )dv1-~-dvd_1,
Ri-
4

where ¢ is an infinitely differentiable function supported on G, and
M = (jur" - fua ")

Writing also v = (v1,...,v4—1) and

71 _Yd-1

S(y):y1+...+vd71+vl_"’d ...Ud_l"’d ,

we have to investigate the behavior of the integral

Qn(tM) = / (v)etM3W) gy,

d—1
Ry

Let us apply Theorem 2.4. We have to find stationary points, if they exist,
and calculate all the parameters in (2.5). We obtain for j =1,2,...,d — 1,

05 _ ) i, .,,Ugwl‘i;lvfl
v, Vd - 7
and solving the system of d — 1 equations gf_ =0,j=12,...,d—1, we get a
J

solution )
v =00 )
Let us prove that just this is the unique stationary point. For this we find the

value of the determinant of the second derivatives at this point and prove that it
is non-zero. We have

M _Yd-1
. —2 Yd Yd -1 —1 -
9?8 ViMkVa V1 vyt v, JFE
. - m _ Yd-1
dv;Ovk Vi Vi g e Va2

vavat+1Vt Va1 Yy

j=k.
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This yields

Y1 _Yd-1

1" o =2(d-1) . Ty vy \d—1
det S (v) =, (v ™ vy )
A A A A

11 (v1+va) Y172 . Y1Yd—1

V1 U1 V1 V2 V1 Vd—1

Y2 y2(v2tva) . Y2Vd-1

% v2 U1 V2 V2 V2 V-1
Yd—171 Yd—172 L. va—1(va—1t+va)

Vg—1 71 Vg—1 V2 Vd—1 Vd—1

_m _va-1\ 41 2(d—1)
= vd Vd —2(d—1), -2 -2
= (Ul ... Ud71 ) ’yd vl ... Ud7171 DR ’yd—l A7

where
Y1+ Vd Y2 Yd—1
g Y2 +Va Yd—1
A= | o
7 Y2 Yd—1 + Vd

Standard inductive argument yields

A=+ +yani2=ni?
Hence
_m _Yd-1
det S”(’U) =Yy ’Yd*l’Yd_d(/Ul REZ /Udfl’Yd )d71U1_2 e Ud_fl’
and

Yd—1

Y1
det S”(vo) =y v (vl )T >0,

therefore vg is a stationary point. We now get
1
S(vo) = (" --9g") " (i + -+ +7a-1)
" Ya—1\ —1 3 it vg1
" (Wd o ) ("t
=yt

Observe that

v Yd—1
0 1

p(vo) = (vy) 7 -+ (vg_q) "4
=ya(y" ")

37
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Obviously,

uj;| <1,
j=1,2,...,d
and it remains to estimate
1<|u;|<mN
j=1,2,....d

For the leading term in (2.5), we have

(‘Ul"h"'|ud‘7d): " A
(Jua[™ -+ Jua ) >

|u1 e ud‘
1<|u;|<mN
j=1.2,....d

1
x /(1_tW)atd?e““%‘“""W‘“jfi@(vo)dt du.
0

The inner integral is estimated as above. For o > dgl, we obtain

d
\U1-~-ud\_1(\m|71 -~-\ud|7d)v

1<|uj|<7N
j=1,2,...d—1

d—1 _a+l
X (™ - Jual™) 2 (fua - Jual ™) 7 du

d TN v (dfl_a)

ZQdH/ uj*lujw 2 du;
d Yj(d—1 d—1
:0( N'YJ(QO‘)>:O(N2_O‘)_

We now see how to handle the other terms in (2.5), including the remainder
one. It remains to mention that for o = dgl, the leading term in (2.5) gives the
product of d integrals estimated by

wgln? N + O(In?' N),

and the other terms give better bounds.

2.4.2 Multiple Fourier integrals
Let
/ f(x)EQﬂ'iu-m dx
D

be the partial Fourier integral defined by a set D. The behavior of partial Fourier
integrals with respect to a specifically organized family of such sets characterize
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approximation properties of f. It is natural to define such a family as a sequence
of dilations of a fixed set D. This has been extensively studied when D is the cube
(cubic case)

D={zecR%: |z <1, j=1,2,...,d},

or the ball (spherical case)

D={zcR?: |z :(ﬂc?—&—x%—i—n-—i—x?i)é <1}.
Their N-dilations are

RD={zcR%: |z;|<N,j=1,2,...,d}
and
RD = {z € R*: |z| < N},

respectively. The other example of a family of sets is the family of rectangles
{reRY: 2| <N;, N;j>0,j=1,2,...,d}

that cannot be expressed as a family of dilations of a fixed set. Numerous results
on these (as well as references) may be found, e.g., in [215, Ch. 17] or [181], where
similar problems are studied for multiple Fourier series as well.

Theorem 2.29 is used to obtain weak type estimates in the weighted LP
spaces.

In a general form, the problems of above type were studied in [130]. Let D be
a convex domain with nowhere vanishing principal curvatures of its boundary 0D.
Let D have compact closure with 9D being a C*-smooth hyper-surface, k > 1.
Set

E=FEM,z)={u:xz—u€ MD}.

Let A be a function defined as f in (2.17), that is, whose support is the closure
of D and that is C*-smooth inside D, of the form

A(@) = p(x)*e(z), (2.31)

where p € C*(R9) and does not vanish on 9D, and p is a regularized distance to
the boundary.

Define the linear means of the Fourier integral

on(fiz) =on(fiziX) = | fla—s)N A(—=Ns)ds. (2.32)
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Indeed, for f smooth enough we have by Fubini’s theorem
ox(fia)= [ fa = 9NIA(-Ns)ds
Rd

= flz— s)Nd/ Av)e*™ N5 dy ds
R¢ R

_ _ v 2mwiv-s

= Rdf(sc s)/Rd)\<N)e dv ds

_ v 2mix-v —2miv-s
—/Rd)\(N)e dv Rdf(s)e ds

= /Rd A (;\}[) f(v)e%”'”dv,

that is, the linear means are defined in a usual (multiplier) way. We see that they
are defined by means of the function A that, in turn, strongly depends on geometric
properties of D. We will write o (f) if the argument is of no importance for us.
The representation (2.32) is a usual way to avoid problems of definition of the
Fourier transform of f.

We are going to restrict ourselves to the critical case a > dgl. Thus (2.32)
becomes a generalization of the Bochner—Riesz means of order greater than the
critical one. Also, we fix arbitrary k which satisfies k > o + dgl.

We present an auxiliary estimate rather than essential results. Just this esti-
mate is quite representative and handy. Set

o (fiz) :;i%\ow(f;x)\-

Observe that for a > dgl, the Fourier transform X is integrable on R?; we

have also k > a + dgl which justifies the above specification.

Set
1

fu(z) = |E(M, z)| e,

|f ()] du,

and

() = sup fu(z).

M>0

Lemma 2.33. The inequality

o.(fiz) < Caaf'(z)
holds.

Proof. For N|s| small enough it suffices to make use of the inequality

<C, (2.34)

/ Aw)etN U du
Rd

/ Mw)eN s du
D
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while for N|s| large enough Theorem 2.29 yields

/ Mu)eNsudu| < C(N]s))—o "1 (2.35)
Rd
We have
on(f;z) = / f(z — s)NIA(=Ns)ds
B(%y,0)
X (2.36)
+ 3 / flz— s)NUA(=Ns)ds
k=M 7 Ar(N)

where

2k+1 2k
AL(N)=F 0)\E 0
=g (% 0) v (30)
and M is such that z — s € E(2NM ,0). For the first integral on the right-hand side
of (2.36), we have, by (2.34),

/ flx—s) dsNdX(—Ns)
E(*y,0)

1 (2.37)
gC’E(QM 0)|/E( |f(x—s)\ds§0f2§1 ().

oM
N v 0)

Furthermore, by (2.35),

/ flx—s)ds NdX(—Ns)
Ag(N)

d+

d—1 1
<N / @ s)llslo "3 ds
Ag(N)

a1 2R\ T 2
<ON'T e / |z — s)|ds
N E(zk;’r170)

(2.38)
< ONdgF(at 1) / f(z — s)| ds
B2 0)
a1y (2N 1
< CNdQ_k(OH_ i ) (2N ) 2k+1 / k41 ‘f(SU—S)‘dS
B (%5",0) | /B(*" 0)

d—1

< C2k( 2 _a)f2k+1 (S(})

It follows from the representation (2.36) and estimates (2.37) and (2.38) that

o.(f,z) < 0{1 + i 2k<dzl—a>}f*(x) < Cyaf*(z), (2.39)

k=M

since the series in (2.39) converges just for o > dgl. The lemma is proved. ]
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2.4.3 Generalized Bochner—Riesz means of critical order
The next result not only refines an old classical result of Stein [178] but also shows
how precise the results obtained by means of the above estimates can be.

Theorem 2.40. Let D be the compact support of a function A with the d-smooth
boundary OD. Assume that D is convex and the principal curvatures of 0D never
vanish. Then there exists a positive constant Cp x depending only on D and A
such that

LN = CpalnN +o(InN) (2.41)

for large N.

The proof relies on two basic facts. The following theorem, which is a part
of Belinsky’s result [19, Thm. 1], gives the first basic fact.

Let A™(X;hq,...,hy) be the mth difference of a function A defined recur-
sively by the formulas

A;(x hi) = Mz + hy) — A(2),
AT (Nshay b)) = AT (AR hane1) = AT (A, 1)),
where hj,z € R, m is an arbitrary integer.

Theorem A. For each compactly supported continuous function \ there holds

d
1LY = / I1 @mj A(z) d:c+0{ z)| dx
NTd j=1 N sin
(2.42)
2
Td Td

The proof of this result may be found also in the Appendix to the paper [131] and
in [203, Ch. 9].

In order to apply Theorem A, we need some information about the behavior
of the Fourier transform. This is Theorem 2.29, and it is our second basic fact.
Moreover, unlike in the previous application, here Theorem 2.29 will be used in
its full completeness and sharpness, that is, asymptotics rather than merely upper
estimate.

Proof. Let us use (2.42) with m specified below, obtain the asymptotics of the first
term in the right-hand side of (2.42), and estimate all the rest from above. Let us
start with the estimates of the remainder terms in (2.42). As for the integrals from
the sum in the first term of the remainder in (2.42), using spherical coordinates
and applying Theorem B, we get

CN

N1 =% gt < oo NN R = 0(1) (2.43)
0
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foreach j =1,...,m—1. Now, consider the last term in (2.42). Our computations
are similar to those used by Belinsky for the usual Bochner-Riesz means [19] and
to those carried out in the general situation in [131]. It suffices to estimate the
bigger quantity

Uy U\ |2 ?
A} ()\; e )’
" S“u?neqr{zk:‘ MU NN

.....

m U1 Um 2

= sup { ’Ak ()\; ey )’ (2.44)

UL yeney Ui, €T . N N N
v m~+2<dist(k,0(NS))<CN

m _ul Um 2 ;
+ _ Z ’A}&()"N’”"N)’} ’
0<dist(k,0(NS))<m+2

We may estimate from above each term in the last sum by the maximal value of
A at the points with integer coordinates. This yields

2d—1
Uy U\ |2 m + 2 2
A ( )‘ <C
: > ‘ "N N/ = . 2 N
0<dist(k,0(NS)) 0<dist(k,0(NS))
<m+2 <m-+2
The number of points with integer coordinates inside NY, where ¥ C R is a
convex domain, is equal to N9vol(Y) + O(N971), see, e.g., [204]. Therefore, the
last sum is not greater than

CN—2%! 3 1< NT12%0 — 0(1). (2.45)
0<dist(k,0(NS))<m+2

Now, consider the first sum on the right-hand side of (2.44). Use m times the
mean value theorem for the directional derivative. The sum being estimated is
transformed to the form

N—2m Z

m+2<dist(k,0(NS))<CN

2
"Ny +o1' + ot om'y)
8u1-~-8um '

Here 0 < 0; < 1,7 = 1,...,m. We can take any m such that d;rl <m <d.
If dgl is an integer the derivative is bounded, so this quantity is not greater

than CN4-2-2%" = O(1). Otherwise, estimating the derivative in the direction
(01,...,0m) by its maximal value, we obtain
oA ( +01 Lt om ')

Ny e

2(451—m)
<Ny [dist (k Tt omk as)} ,

(2.46)
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where 0 < 0, x < m and the sums are over m + 2 < dist(k,0(NS)) < CN. Let
us denote k + o, by k. We have provided m > dglz

i 20451 —m)
N—2m Z {dist ( N,as)}

P <dist( },08)<C

I L s

m+22gSON & <dist( k,08)< 95

<onNTP Y > (;)dium (2.47)

1<q<CN 2 <dist( & ,08)< 7
— CN7n+1 Z qd7172m Z 1
1<¢<CN % <dist( % ,08)< 9%
S CN—d+1Nd—1 Z qd—l
1<q<CN

<C(1+ N2 = 0(1).

d st(
2m S C(l +Nd—1—2m+1)

Collecting (2.43)—(2.47), we see that the remainder in (2.42) is bounded. Now, we
go on to an estimate of the leading term. Let us pass to the spherical coordinates
and apply Theorem 2.29 with a = dgl. Taking into account also that

™ _1-0 &
Nsin ™7 = T\N2)

which yields estimates like for the remainder terms (see (2.46)), we get the follow-
ing in place of the leading term:

N
2 . . —
/ / E+(9)e2mtw+(9)9+E—(9)e2wztw ()6 dt +o(In N).
jo1=1 /., t
Consider the inner integral in an equivalent form:
TN

S ()it (O -2~ ()0 | = (p ‘ dt

| e vz ¥

and estimate it, denoting (27 (6) — 27 (0))0 by d(6). The following relation is very
well known (see, e.g., [215, Vol. 1, Ch. 2]):
/”N sin ¢
1

= 210N +0(1). (2.48)
™
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Let us adopt the method used in [215] to get (2.48) with our conditions. The
estimated integral is
T Nd(6) ' dt [Nd(O)]  .2(k+1)x _ dt
/ e @)t +=-0) “ = 3 / =t @) +=-0)] “ o).
d(6) t = Jokn t

The integral on the right-hand side is equal to

[Nd(8)] ,2(k+D)m

Nd(6) . dt
=+ itNd(0) —_— ‘
> ). ]H (@)e +=(0)] °,
2 [Nd(0)]
Nd(0) | _ ; . 1
- / =+ (9)etNUO) 4 = (9)‘ 3 o
0 = Ut Nd)

d

The last sum is equal to N2 () [ln Nd(0) + O(1)]. Thus, we need to estimate

s

27 2
N0
+0(1)] do /
0

_d+3 d+1 2m - it | ——
_(2m) r( )/lgl_l[lnNd(0)+O(1)]d0/0 =+ (O)e + =7 (6)| dt

U om="4' (d i 1) Nd(6)[In Nd(6)
16]=1

=F()eitNdO) 4 E—(e)‘ dt

2

_d+3 d+1 27 —t it | ——
=InN@27m)” =T ) Wﬂd@ o IE (0)e” +27(0)| dt + O(1).

Denoting f(z*(0)) (= (0))~ 2 by ¢=(6) (it should be recalled that f and the Gaus-

sian curvature s do not vanish anywhere), we arrive at

3 1 2 i . i
2m)~2°r (d; )/ de/ 6T (0)e'2 et + ¢~ (0)e 2" | dt
|6]=1 0

2m (249)
— (o —d43 d+1 — 1ot (9)ett _
— (2m) r( : )/9_16190/( D26+ (0)e + ¢~ (0)] d.

But the expression in the inner integral on the right-hand side of (2.49) never
vanishes, and the right-hand side of (2.49) may be denoted by Cg x. The proof is
complete. O
Remark 2.50. Let us find Cg ) for usual Bochner—Riesz means of critical order, in

d—1
(2.41). Here S is the unit sphere, so 5 = 1 everywhere. Since A(z) = (1—[z[*),* ,
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d—
2

the function f(xz) = (1 4+ |z|) ". On the boundary, that is for |z| = 1, we get
f(z®(9)) = 2"2" . Taking into account the following well-known identity

we get

B d+1\ 27% a1 [?7 ,
Csp = (27) df’F( ) )F”C? 2/ (—1)%e™ + 1] dt
(2) 0

e (1))

The same value was obtained in [22] and, after correcting a small misprint, in [19].



Chapter 3

The Fourier Transform of Convex
and Oscillating Functions

What may be referred to as an initial point for the subject of this chapter is
Trigub’s result of the 1970’s on the asymptotics of the Fourier transform of a
convex function (see, e.g., [198]). Roughly speaking, the Fourier transform of a
convex function can be represented as a handy leading term and an integrable
function. This was a generalization and strengthening of Shilov’s result [172] on
the asymptotics for the Fourier coefficients of a convex function (see also [10, Ch.
IX, §6]). We shall present extensions of Trigub’s result for functions from much
wider classes. But prior to this we will consider a compromise case when the
function itself is convex but multiplied by certain singularities; one endpoint or
two at both of the endpoints is enough for complete understanding of the situation.

3.1 Convex functions with singularities

We do not formulate Trigub’s result just now (Corollary 3.15 or more general
Corollary 3.16 below), since it is a partial case of the following more general
theorem (see [119]). We add singularities at the endpoints of the interval where a
convex function is defined, in this case a sort of asymptotic formula can readily
be obtained by uniting Erdélyi’s and Trigub’s techniques.

Theorem 3.1. Let ¢ be conver on [a,b] and 2d = min{b — a,1}. Then for any
lyl>1,0<A<1,0<p<1, we have

b
/ (z —a)* 1 (b — z)" Lp(x)e?™ ¥ dy
d

— TN (@my) e ( o

: T d : LTCE
> 2T S L () (2my) M (b - |y> e

+0 {/:Jr v | (x)|(z — a) Nz + /bb 9y |’ (x)|(b — x)“dm} . (3.2)

“lyl
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Proof. The result is a generalization of Corollary 3.16; the latter can be obtained
by taking A = = 1. Instead of (3.2), let us prove the following relation, which in
a similar manner extends Corollary 3.15. Recall that in the previous chapter we
introduced notations

g(x) = AT (b — ),
and for r =1,2,...,
T — 1 ’ r—1
wo@ = Ly [ oo

with integration along the ray in the complex plane going out from x to infinity
parallel to the imaginary axis in the negative direction.

Lemma 3.3. Let ¢ be convex on [a, b] with |¢'(a)] < co. Then for|y| > 1,0 < p < 1,
we have

b
/ o(x)(b — )" L™ dy

= D(p)(2my) He (b - jl) e2mivt="3"
(@t (b= ap? (3.4)
—¢(a)(K'g)(a) + O { yhtl + y?

b
+@2/ | (z)|(b — x)* du,
b=

2M+2

where |©1| < (27)72 and |02] < i + (2rd)2(20+1-1)-

Proof. First, we make the following transformation:

b
/ o(x)(b — z) e Wy,

d. [* :
=(b— N ) / (b — )P L™ Wr gy
Yl Ja

T G
=o (b= ) [0

A

+ /Z: , {Lp(x) — ¢ (b — ;)] (b— ) ™ g,

[yl

(3.5)
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Recall that in Section 2 of the previous chapter (see, e.g., also [66], [57, §11]) it
was shown that (cf. Remark 2.12)

_eenmi D(r 4+ —1)

(K" g)(b) = v~ 3" (r— 1)

(2my)' (3.6)
and
(K"g)(x) < (b—a)" 1 (2my) ™", (3.7)

Using (3.7), we obtain
? (b - §|> /ab“’ ey
(o= ) (K00 - () (33)
¢ (1 ) [T =3 my) - i) @)

b
/b d

Tyl

b T
/b (b- x)”fle%iyzdx/b o' (t) dt

d d
|yl |yl

Further,

o) -2 (o )| 0 -t

b b
= / o' (t) dt/ (b— )L™ Wr g
b t

_d
lyl

b
<ut [l oe

[yl

Let us estimate the remaining integral. Integrating by parts twice, we obtain

T

[ - (o- )| D@~ [ " @) e

b

=~ o - (0= 2] 00 - p@ 0 [ o

-
n / Y (K2g)(@)dg ().

Here, ¢’ may be understood as a one-sided derivative of ¢. Since ¢ is convex, ¢’
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is monotone. This and (3.7) yield

p d
< (2my)? / " (b - 2)pdg ()]

/ab Iyl 4o/ ()
7 (‘ 3) ‘

+ (2m) 2dPy T (a).

p_ d
/ " (K2g)(@)dg (2)

< (271’)72d”71|y‘7”71 (3_11)

< (@m)72d Ty

Besides, it follows from (3.7) that

¢ (o) @0 (- )| <

' (a)(E?g)(a)| < |¢'(a)](b — a)"~" (2my) =% (3.13)

Again, in view of the convexity of ¢, we have

(0= m)

(u+ 1)20+tgn=t  rb=sfy
= 4m2deri(2ntl — 1) )

¢’ (b - ;) ‘ A t2nly)) T, (3.12)

and

(2m) 2y~

. " ()] (b — t)"dt (3.14)
Tyl

p+1 el /b '
< t)|(b— t) dt.
< (omd 21 —1 Jy s " ()16 —1)
Y

To get (3.4), it remains to combine (3.5) and (3.8)—(3.14). The lemma is proved.
(]

The counterpart of this lemma with singularity at a is obvious. To complete
the proof of the theorem, it remains, for some ¢ € (a,b), to apply Lemma 3.3 and
its counterpart to the integrals over [c,b] and [a, ¢], respectively. |

Denoting the remainder term in (3.2) by v(y), we should notice the following
features of this function. First, v is monotone decreasing as |y| — oo; this might
be important in applications. Secondly, for A = u = 1, the function + is integrable
and

/loo ()l dy < C/ab | (z)|dz.

We obtain Trigub’s result mentioned above by letting A = p = 1; this leads
to the following asymptotic formulas for the Fourier transform of the convex func-
tion ¢ on [a,b] with no singularities of Erdélyi type. The first corollary is of less
generality, with additional constraints at one of the endpoints.
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Corollary 3.15. If f is convez on [a, b], where —co < a < b < 400, and |f'(b)| < oo,
then for each r € R, |r| > 1,

b .
/ f(t) e—27rirt dt = :' {f(b) e—27ribr _ f <a+ |f|> e—27riar} _"_9,}/(|,’,|)7

where 2d = min{b — a, 1}, |0] < C, and 7 is monotone decreasing so that

> 1
| < v+ 11 o)

The other corollary is of full generality as compared with the previous one,
but actually is an almost immediate consequence of it.

Corollary 3.16. If f is convex on [a,b], where —oco < a < b < 400, then for each
reR, |r| > 1,

d
|

b .
/ f(t) 672772'7*75 dt:; {f(b ‘ ) 6727ribr7f (a+ |i|> 627riar} +97(|T|)a

where 2d = min{b — a, 1}, |0] < C, and 7 is monotone decreasing so that

> 1
/ y(@®)ldt < Vy.
1 d

Here V; denotes the bounded variation of f.

3.2 Asymptotic behavior in a wider sense

Every classical book on asymptotic expansions (see, e.g., [66]) starts with expla-
nations of the key word “asymptotic” in various contexts. We have special reasons
to follow this tradition. Let us discuss how we understand formulas that represent
asymptotic behavior of the Fourier transform. Surely, we have real asymptotics
in the formulas Stationary Phase Method gives, in the sense of classical analysis
when two functions f and g are asymptotically equivalent in the neighborhood of
the point xg if
f(x)

lim =1.
z—z0 g(T

In an equivalent form this reads as
f(z) = g(z) + remainder term(s). (3.17)

This form delivers an additional field of activity: for example, the decay of the
remainder term is frequently of interest and importance. When the left-hand side
of (3.17) is the Fourier transform of some function, we will call such formulas the
asymptotic representation of the Fourier transform in a wider sense. More precisely,
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the remainder terms may be treated with respect to some other property rather
than only better decay at infinity; of course, they are of special interest when the
leading term(s) does not satisfy that property. For instance, belonging to the space
of integrable functions like in (3.2) for A = =1 (see the corollaries next to it) or
to some other space may be such a property. For all its debatableness, we use the
word asymptotics in this not very precise meaning and hope that this will result
in no confusion.

For “good” functions, that is, smooth enough functions, (3.2) is not asymp-
totic in the classical sense, moreover does not make much sense in any other sense,
except maybe some simple upper estimates, but if a function ¢ is “bad” enough,
say of low Holder smoothness or logarithmic, the leading terms on the right-hand
side of (3.2) are not integrable, and (3.2) turns out to be of a real (asymptotic!)
value. Clearly, formulas like (3.2) are elaborated just for “bad” functions; if the
function is too smooth, one may arrive at the integral with a function of lower
smoothness by means of integration by parts. This is just the way to apply (3.2)
to Bessel functions and derive the known asymptotic formulas for them — first in-
tegrate the well-known integral representation for the Bessel function by parts to
make the integral “bad” enough, and then use (3.2) to obtain a purely asymptotic
formula.

3.3 Integrability of trigonometric series

The next problem is whether asymptotic formulas of above type may be obtained
for the Fourier transform of a function from a wider class. A simple observation
that the right-hand side of (3.2) is linear yields its validity for the class of quasi-
convex functions QC, that is, those representable by the difference of two convex
functions.

More subtle results have their source in the theory of integrability of trigono-
metric series. The main question of this theory reads as follows.

Given a trigonometric series

ao
2+

M8

(ay cos 2wkx + by sin 2mwkx), (3.18)

x>
Il

1

find assumptions on the sequences of coefficients {ay}, {br} under which the series
is the Fourier series of an integrable function. We will say in this case that the
trigonometric series is integrable (not quite correct but brief and understandable
term), or that the sequence belongs to L.

Frequently, the series

ag

5 + Z ay, cos 2rkx (3.19)

k=1
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and

> by sin2mka (3.20)
k=1

are investigated separately, since there is a difference in their behavior. Usually,
integrability of (3.20) requires additional assumptions.

To the best of our knowledge, there exists no convenient description of It
in terms of a given sequence alone. Actually, there are some characterizations,
e.g., [66, 164, 165, 166], but they are too complicated to be applied to concrete
problems and they involve properties of functions. Hence, subspaces of L1 are
studied so that they are both as wide as possible and described in terms convenient
for applications.

First of all, in view of the Riemann-Lebesgue lemma L1 itself is a subspace

of ¢y, the space of null sequences.
In 1922, Sidon [173] (see also [10, Vol. I]) gave an example of an even mono-

—~

tone null sequence which is not in L!. This means that also the space of sequences
of bounded variation

bv = {d = {di} : Idllpw = |Adi| < oo}

k=0

is not a subspace of ﬁ Here Ady = di, — dgy1-

Let us give some examples of spaces x which being subspaces of bv are also
subspaces of L. There are many others of course but those proved to be of the
most interest and importance.

1) The so-called Boas—Telyakovskii space (see [188]-[191]). Let

oo (3]
sa=y > Adn—k = Adni , (3.21)

k
n=2'k=1

then
bt = {d = {dy} : [|dllor = [|dl[po + sa < 00}
This was Telyakovskii’s generalization of Boas’ result in the way that in [27] the

sign of absolute value in (3.21) was inside the second sum. In fact, (3.21) first
appeared in [111], where a different though related problem was considered.

2) Fomin’s space [74] (cf. [35]):

0o ontl_1 1
ap = {d = dk}:||d|ap22p’{ > Adk”} <00y,
n=0 k=2n

Where1<p<ooand11)+pl,:1.



54 Chapter 3. Convex and Oscillating Functions

3) The Sidon—Telyakovskii conditions [192]:

Ar 10 (k= o), ZAk<oo and |Adg| < Ay.

Equivalently, these conditions define the sequence {dj} to belong to the space ao.
First of all, we are interested in 1) and its extensions, since the spaces defined
in 2) and 3) are subspaces of bt.
A typical strong result due to Telyakovskii is the following

Theorem 3.22. Let {ay}, {br} be null sequences. Then

1
/2a0
0

9 + Z ay cos 2mkx

k=1

dz = O(||allos + sa),

and uniformly with respect top =1,2,...

/.

p+1

Zbk sin 2rkx| dx = 2w Z | k‘ O(||b]l60 + sb),

k=1

and trigonometric series (3.19) and (3.20) are the Fourier series.

Analyzing the part of Theorem 3.22 about sine series, one sees that the
“endpoints” of the sequence, its beginning and infinity, play a special role. In
the papers by Bausov [13] and Telyakovskii [191] results were given in which an
arbitrary member of a sequence was allowed to play such a special role. The
following result of Telyakovskii is the most general form of this type of results.

Let

)

S:in _ i i Adm%»'nfk ;Adm%»nfk

n=2

k=1

obviously 82 = s4. Denote

e (7]

€k = E (bka \/(amfk - am+k)2 + (bmfk - bm+k)2)

(t ) = { R [ul < 14

|t|arcsin| ! | + Vu? — 2, [t] < |-

and

with
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What is really essential for £ is that (see [191, Lemma 5))

mt] mt|
2

R T (A S R

and (see, e.g., [191, Lemma 4])

71'/2 |A + Bsin2ra + D cos 2nz| de = 26(A, /B2 + D2). (3.23)

2

Theorem 3.24. Let {ar} and {b;} in (3.18) be null sequences. Then there holds

‘/ dr —4 {ZkilgkljJrﬂ' i |bkk}‘

k=2m-+1

+ Z ay, cos 2mkx + by, sin 2wkx

m—2,9n,m Aa Aa,
-k — k
(el +57 -+ 81+ 57+ 3|3 S04 A0
n=2"'k=1

)

One of the strongest known conditions that ensures (along with certain other
natural assumptions) the integrability of trigonometric series, pulled in [6] and [47],
can be described as follows. Let the space of sequences {d,} be endowed with the
norm

-2

Z

qn,m

Z Aby_j — Abn+k

uniformly with respect to m =0,1,2,....

1
oo | o [G+1)2m—1 2) 2
Kdntlarz =D 3> | Do ldal < 0. (3.25)
m=0 | j=1 | n=j2m

It is of amalgam nature; the reader can consult on the theory of various amalgam
spaces in [72], [75], [92].

It is proved in [6] and [47] that if the coefficients {a,} in (3.19) tend to 0 as
n — oo and the sequence {Aa,} is in aj 2, then (3.19) represents an integrable
function on [0, }]. In parallel, if {Ab,} € a1 2, then (3.20) represents an integrable
function on [0, ;] if and only if

s~ 1ol
. 3.26
,; n < o0 ( )

It is worth mentioning that a; o C ¢!, and, correspondingly, {Aa,} € a2 and
{Ab,} € a1,2 mean that both are bv sequences.
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3.4 Analogous function spaces

We will consider function analogs of the spaces of sequences from the previous
section for getting pointwise asymptotic behavior of the Fourier transform of such
functions rather than just integrability as we had for series. If a result is valid for
all types of such spaces, or no matter which of these spaces is used, we will denote
it by X instead of specific notation.

For 1 < ¢ < o0, set

oo 1 q
lgllx == llglla, :/ ( / |g(t)|th> du.
0 U Ju<|t|<2u

These spaces and their sequence analogs (see 2) above) first appeared in the paper
by D. Borwein [35], but became — for sequences — widely known after the paper
by Fomin [74]; see also [82, 83]. Later on, these spaces appeared as a partial case
of so-called Herz spaces (see first of all the initial paper by Herz [95], note also a
relevant paper of Flett [73]).

Further, for ¢ = oo let

o0
lollx = llgla = | esssup [g(e)idu
0

u<|t|<2u

The role of an integrable monotone majorant for problems of almost everywhere
convergence of singular integrals is known from the work of D.K. Faddeev (see,
e.g., [2, Ch. IV, §4]; also [181, Ch. I]); for spectral synthesis problems it was used
by Beurling [26], for more details see [24].

Finally, let

lgllx == llgllrpz

= [1sto1ae+ |

This space was first introduced in [119] as a generalization of 1). Recently, in a
paper by Fridli [77], the inner integral in the last summand on the right of (3.27)
was called the Telyakovskii transform. This makes sense and really deserves a
separate study, first of all in connection with the real Hardy space, as we will
see below. Among various equivalent definitions of the real Hardy space we shall
use the one that defines it as the subspace of integrable functions with integrable
Hilbert transform.

/“/2 glu—1) —glu+1t) d (3.27)
; . u.

Lemma 3.28. The following embeddings hold:

Aoo — Apl — Ap2 — Hpr — L1 (pl > p2 > 1). (329)
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Proof. The first two embeddings are merely the results of applying Holder’s in-
equality. Indeed, with Z :>1,

1

[ee] 1 P1
/ ( / g(t)pldt> du
0 U Ju<|t|<2u

1
P1 1—-P1\ p;

o0 1 p2 p2
< / / lg(t)|P2dt / dt du
0 u u<|t|<2u u<|t|<2u

1

1 _ 1 o0 (1 P1 ) P2 2
— 92p1 P2 u- r1 P2/ P1 lg(t)|P2dt du
0 u<|t|<2u

1

1 o P2
oA / / gOPdt | du,
0 U Ju<|t|<2u

and we are done; the instance ¢ = oo, the left embedding, obviously goes along
the same lines.

To prove the embedding of A, into L!, only a standard expedient that we
will permanently use is needed:

oo oo 1
2ln2/ lg(t)| dt :/ / lg(t)] dt du.
0 0 U Ju<t|<2u

Applying then Hoélder’s inequality to the inner integral on the right yields

/ uil/ lg(t)| dt du
0 u<|t|<2u
1 11
o0 1 q q
g/ / ()] dt / i) du
0o U u<[t|<2u u<|t|<2u

1

1 [ 1 !
=2 / ( / |g(t)|th> du.
0 U Ju<|t|<2u

A bit more delicate are estimates for the second term on the right-hand side of
(3.27). First, because of Lemma 3.40, we can deal with

s [77 20, 7L L

The following estimates are similar to those that have been done in [74] but mainly
reduces to M. Riesz’s theorem. Indeed, the last integral does not exceed

RN INENTO ¥ g() ¥ g0)
/ / {’/ g dt‘+/ I dt’—&—’/ g dt‘}dmdu.

The estimates are the same for the first and the second integrals in braces.

x
2

dt‘ dx du.
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For example,

/““/

It now remains to make use of the following simple relation (see [119]): for any
real numbers o and 5, 0 < a < 83,

% /1 Bu ; % /1 [e's) (11
alfé/ ( / |g(t)|th) du g/ ( / |g(t)|th) du (3.30)
0 U Jau 0 U Jy
1 1 [Pu
< G )
ait— a7t o U Jau
For the last summand in braces, applying again the Holder inequality yields
o q 1 0o a £ a
/ / dt‘dmdu </ {/ G(t)th} {/ dt} du,
u/2 L~ 0 UlJ- u
(3.31)

where G is the Hilbert transform, up to a constant, of the function G which is

equal to g on [}, 32“] and vanishes otherwise. By the M. Riesz theorem,

1—

3u

([Cwra) <o [ coral ~af[* wora}’

2
and the right-hand side of (3.31) is estimated as follows:

<co [ {7 worra {7 ) e [{L ) worad o

and applying (3.30) completes the proof of the lemma. O
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For examples on the difference (proper embedding) between these spaces,
see [126].

Let us introduce a function space A; 2 as an analog of (3.25). We say that a
locally integrable function g defined on R belongs to A; o if

1
2

oo (oo [ G2 2
lgla. = Y ZV Ig(t)ldt] dz < oo. (3.32)

m=—oco | j=1 j2m

This space is of amalgam nature as well, since each of the summands in m is the
norm in the Wiener amalgam space W (L', ¢?) for functions 2™ g(2™t), where (7,
1 <p < o0, is a space of sequences {d;} endowed with the norm

1dsHlew = (f} dj|p)’l’

j=1

and the norm of a function g : Ry — C from the amalgam space W (L, £?) is

taken as
j+1
[ e
J

02
In other words, we can rewrite (3.32) as follows:
lgllacs = D> 12792 ) lwizr e < oo.

Like for trigonometric series, where the results are given in terms of belonging
of the summable sequences {Aay, }, {Ab,} to ai 2, it is similarly expected that new
conditions for the integrability of the cosine and sine Fourier transforms will be
given in terms of belonging of the derivative of the considered function to A .
This is possible only if A; 5 is a subspace of L!. Indeed, this follows from

0o gm+1

lglla. = > - lg(®)]dt = [lgllLr(ry)- (3.33)

m=—0oo

For our aims, this can be reformulated as follows: if f € A; o, then f is of bounded
variation, that is, f’ € L*(R4).

Before proceeding to estimates of the Fourier transforms, let us compare
A; 2 with Hpp. The point is that the classes Hpr and A; 2 are incomparable.
Counterexamples for sequences can be found in [6] and [76]. Without this fact, the
effectiveness of the amalgam type results could be doubtful, both for sequences
and functions.
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3.5 Asymptotics of the Fourier transform

For functions with derivatives in each of these spaces, either X = A4,, 1 < ¢ < o0,
or X = Hpr, or A; o, analogs of the results on the integrability of trigonometric
series can be obtained.

3.5.1 Hardy type spaces

The following result is obtained in [119] (for A it was earlier obtained by Trigub
[201]).

Theorem 3.34. Let f be a locally absolutely continuous function on R\ {0}, and
let lim f(t)=0 and f’' € X. Then for |y| > 0,

1]
fw) = 27iry (f (4|1y) -/ (4|1y)> ) (333)

where [ |7(y)|dy < C|lf'||x.

Since a function from QC and all the more a convex function is that with
derivative in A, this is an extension of previous results, say Corollary 3.16.
Indeed, QC functions on (0, 00) are those satisfying

[ sl @l da.
0

And for a locally absolutely continuous function f vanishing at infinity we have

/ esssup |f/(t |du</ / lf" (z \dxduf/ x| f"(z)| d.
0 u<lt2u 0

In view of (3.29), Theorem 3.34 is of the widest generality for X = BT}
for other X in (3.29) embedded in Hpr the relation (3.35) follows immediately.
Nevertheless, though Hpr is wider than the other spaces X, the conditions of
belonging to smaller spaces are easier to verify.

In fact, all these spaces are subspaces of the space of functions of bounded
variation. As for the definition of bounded variation, we are not going to concen-
trate on various details. On the contrary, following Bochner [31, Ch. 1], we will
mainly restrict ourselves to functions with Lebesgue integrable derivative, since
every such function is equivalent to a function of bounded variation in the sense
that it is representable as a linear combination (generally, with complex coeffi-
cients) of monotone functions. Without loss of generality, it suffices to prove this
for real-valued functions. Indeed, let f have integrable derivative in [a,b]. Then it
is representable as

)= 10)+ [

x

= f(b) + ha(z) — ha().

YL - () P11+ ()
2 dt = L 2 dt (3.36)
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Both functions hi(x) and hgo(z) are monotone decreasing. If b = oo, we just con-
sider lim f(z). Since in that case
T—> 00
lim hy(z) = lim hy(z) =0,
T—> 00 T—> 00
a function of bounded variation vanishing at infinity can be represented as a
difference of two monotone decreasing functions, each of them tending to zero
at infinity. Of course, the usual definition that applies to the uniform boundedness
of the sums of oscillations of a function over all possible systems of non-overlapping
intervals might be helpful.
The space Hpr is of importance not only because of (3.29) but also because of
its proximity to the real Hardy space H := H(R), the space of functions g € L!(R)
for which their Hilbert transform belongs to L'(R) as well. The Hilbert transform
g of an integrable function g is defined in the principal value sense as

g(z) = 1/R g(t)t dt — lim © 98 4.

TJR T — 20T Jjzp)>es0 T — 1t

A different way to define the Hilbert transform is

j(x) = lim 1/R(‘J(t)(mt) di

=0 x—t)2+e2

In many cases these two definitions are equivalent, but sometimes either one is
more convenient for concrete applications. It is obvious that the inner integral
in the second summand on the right-hand side of (3.27) is very close to §g. More
precisely, (3.27) means (cf. Lemma 3.40) not that g itself belongs to H(R), but
that each of its parts on the positive and on the negative half-axis being extended
in the odd way to the second half-axis, respectively, does belong to H(R). By
the way, this does not mean that merely the odd part of g belongs to H(R).
For recent study of these connections, see [77]. We mention that the remainder
term in Theorem 3.34 is not monotone, unlike that in Theorem 3.1 and in the
corresponding corollaries.

For the sake of convenience, we will prove the result in a somewhat different
form.

Let us denote by ¢ the odd extension of f’ from [0, c0) to the whole R.

Theorem 3.37. Let f be a locally absolutely continuous function on [0,00), let
tli}m f(t) =0, and ¢ € H. Then for y >0

F.(y) = /000 f(x) cos2myx dx = v1(y), (3.38)

and
1

e 1
Fi(y) = /o f(x)sin 2mryx dax = 27ryf <4y

) + ), (3.39)

where [ |v;(y)|dy < Cllollm, j=1,2.
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The possibility to prove the theorem in this form is justified by the following
assertion.

Lemma 3.40. Let g be an odd function integrable on R. Then

/Rj(_t)tdtLQ j(_t)tdwv(xy

/RW(sc)\dx sc/ﬂ{mww.

Proof. We may assume, without loss of generality, that > 0 since for z < 0 the
proof is exactly the same. Substituting ¢t — —¢ in the integral

where

we obtain
‘We have

and by Fubini’s theorem

t — dt
/0 ‘/3; g(){xt x+t}
o t
— [ lolam "
0 t—

2t

> 3 1 1
dscg/ |g(t)|dt/ [ - }d;c

2t o0 2t

+1t
: :/ lgt)| In 3, " dt
0 0 3

:ln5/ lg(t)|dt.
0
0 . s
/ g(t) dt:/zg( t)dt:_/Q 9®) 4
,;x—t 0o T+t o T+t

2 1 1 > <1 1
/ g(t){ - ] dt| dx S/ lg(®)] / { - ] dx dt
0 r—t x+t 0 o lT—t x+¢

r—t | o
= [ |9 dtn ~1n3 / l9(t)]dt,
/o t+ 0

x ‘Qt

In the same way

and

&

which completes the proof. (]
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Remark 3.41. For g odd, we have the so-called odd Hilbert transform

1/g(t) dtzl/ | oot dt:Q/ 9O o (342)
T gx—t T Jo xr—t x4+t T Jo a?—1t?

We are now in a position to prove Theorem 3.37.

Proof. Integrating by parts yields

1

Fs(y) = 27Tyf(0) + 2711_y /O\4y f/(SU) dx + Qiy /O4y f/(l')(COS 27Ty$(} . 1) dx

1 oo
+ / f'(x) cos 2mryx dx
21y L

1 1 41y 1 o0
— o7 () O[T @ias) 4,0 [ s coszmyear

4y

Similarly,

F.(y) = O(/O4y |f’(sc)scdsc) - 2711'3/ /1 f/(z) sin 2mryx da.

+f T ay / Pl da - / @) e,

it remains to show that the last integral in both representations, for Fy and F,,
satisfies the assumptions imposed on ;. We will prove this in detail for Fj, since
for F. computations are similar.

Thus we examine, for sufficiently large NV,

Since

N oo
d
/ ‘/ f'(x) cos 2mya dx | Y.
0 5
Writing
/ f/(x) cos 2myx dx, 0<y<N,
41y
Q(y) = 2 Y f(z)cos2myxdr, N <y <2N,
N Yy Yy
AN
0, y > 2N,
we have N
/ ‘/ f(x) cos 2myx dx Yy < / |P(y) dy.
o M Yy 0 Yy
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The continuation of the proof may seem strange, in a sense. To estimate
the Fourier transform of the initial function, we estimate the Fourier transform
of @, roughly speaking the Fourier transform of the Fourier transform. This is
reflected by the next result which is a generalization of a result by Boas in [27].
For functions from H (R) such a result is just an extension of the Hardy—Littlewood
theorem (see, e.g., [215]).

Lemma 3.43. Let ® € L'(0,00). Then

/Ooo [ dy < C/ )| du. (3.44)

Proof. The following short proof is contained in essence in [25].We have

Y

()= o ()
R aR<k<BR k=1
1/2 | > k .
S C/ ) ( >e27r7,kz
a2 e

For sufficiently large R and an appropriate choice of o and 3, the first inequality is
obvious, the second one is the Hardy-Littlewood theorem, and the last one is well
known (see, e.g., [20], where it is given under much more general assumptions).
We observe that an integral sum for the left-hand side of (3.44) occurs on the left
of (3.45). Passing then to the limit as R — oo completes the proof. 0

(3.45)

dz < C/OO ‘i)(u)‘ du.
0

We now return to the proof of the theorem. We are going to estimate the
Fourier transform of ®. Since

2™ — cos 2muy + i sin 2muy,

we restrict ourselves to estimating, say, the sine Fourier transform of ®; the cosine
Fourier transform is estimated in the same way with minor changes. We have

oo N oo
/ O (y) sin 2ruy dy = / sin 2muy / f(z) cos 2myx dx dy
0 0 i

2N y oo
+ / (2 - N) sin 2muy / f'(x) cos 2mryx dx dy.
4N

N

Changing the order of integration, we arrive at the integral

oo N 2N
/ f'(x) {/ sin 2uy cos 2wyx dy + / (2 — ]%7) sin 2muy cos 2nyx dy | dzx.
4:1l\7 27‘-1 N
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Using known trigonometric formulas for both inner integrals and integrating by
parts in the second one, we get

417r /:0 f'(x) { |:C0827T(U+1‘)y  cos2m(u I)y]N

u—+x u—x A
N ( _cos2m(u+a)y  cos2m(u—x)y 2N
u+x u—x N
/QN[ cos2m(u + )y B cos 2m(u x)y] dy} da (3.46)
N u—+x u—x
1 1 ™
_ i d
= (x)[u+x ux] sin - dz

. /oo @) / cos 2m(u + x)y 4 cos 2r(u — )y dy da.
4N J o N u+x u—x

We are now going, in accordance with Lemma 3.43, to estimate different parts
of the right-hand side with respect to integrability in u. Grouping these parts in
a special way, we then integrate them modulo over [Q}V,oo). Indeed, integration
over [0, ,}] is carried out trivially:

/jv |<i><u>dus/02}v K/ON+/N2N> dy/omu'(sc)dx] du
— [ 1w

We mostly deal with the terms corresponding to u — z since those corresponding
to u 4+ x are handled even easier. First, grouping

[e ) 1 2N 1
/1 f(x) N /N - {cos?w(u —x)y — sin 7;:] dy dx
2N

and estimating the expression in the square brackets by

Cfu—z /T
sin ( — 27ry) ,
( 2 2z

we proceed to the part when

2

c 1 n 1
x U 4N,u
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as follows:
oo u+ 4N 2N
/1 /lh1 N/ 27y — )dydxd
4N
2N T z+4N dudu d
sa [l e D) [ wa
2N
2N T T+ 4;]
/ If ()] / (27ry - ) / du dy dz
3 N 2z 1
2N
< C/ x)| dx.
It ) )
v {“_ an 4N}

we check the integrability of the last integral in (3.46) separately. We now just
integrate in the inner integral. Taking 1 in place of |sin27(u — x)y|, we get the
term (u — x)~2 to deal with. We obtain

N/ / ux)2dx’du§N/l @[ e

4N

1 [ Ir @l

< |f@) L [

[ u_x)2d:c‘du§N/&f(fv)I/2}V s
1 o[>, 1

:N/2?\,f(x)|(4N—x2}v>dx

<4 / ()] da.

Similarly,

A

1
)2 du dx

It remains to handle (one half of)

u—4y o0 1 1
(/ +/ )f/(x){ - } sin " da.
1 ut i u—r u+x 2z

4N

Estimating |sin % | < 1, we thus obtain

dr du < Oo|f'(sc)\ . du dx
// x} /1 2 Lx qux]

4N

§1n3/000|f’(sc)das.

1
Uu—2x u—+
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Since analogously

1 o 5101 1
dx du < |f'(z)] — du dx
U—T u+x 3 L u+r uU—x

2N 2

<s [ 7@l de

we have to estimate

3u

u— 4N 2 1 1
(/ +/ )f’(sc) [ — ] sin " dz.
u ut u— u+zx 2x

2

%) 3; 1 oo 2x 1
[ [ @i, deas [ i) du dx
A S utx 0 22/3 U — X

IHS/OOO |f' (z)| dz

e’} 2x
d
sinwu—l‘dxdugC/ \f’(m)|/ du
2z 2 T
<C/ x)| dz,

1 3u
1 U— 4N /
TANRY N et
A7\ Ju wt L) U—T
2 4N

for N large enough. For convenience, we rewrite the last quantity as

SUARTIIT

with small €, or, equivalently,

1 !
/ @y,
A Jy<z<%P, y—x

o—ul>e

Further, since

/ fven,t,

it remains to estimate

By Lemma 3.40, we may consider

1
/ plz)
47 |z—u|>e u—2
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rather than the last integral. From now on we no longer need to remember that ¢
is odd, the only thing we are interested in is the integrability of ¢. Unfortunately,

considering
/ / #(x) dx‘ du
RlJ|z—u|>e U — L

does not allow one to let € tend to zero in a proper way and thus does not lead
us directly to the desired Hilbert transform. To this end, we wish to consider the
Hilbert transform in the discussed above equivalent form. For this, we estimate,
for arbitrary € > 0,

AT T R TR

Let us first handle

du.

= u— x|
dzx d
/O /w—u|§8 ‘w(x)‘(uix)Q + &2 v

(the integral over (—oo,0) is worked out in exactly the same way). We consider
three different cases. The first one is extremely simple:

// @) " e </E/E\ (@)e" ded
X T alu X xT al
0 |u7m\§sg0 (u—x)2—|—52 ~Jo fsw
<2 [ o) da.
R

For the second one,

2 |lu — x| e lu — x|
dr du < dzx d
[ el Sy et [ 10, 2 e

5 x+e
S/ |<p(x)|/ sfldudxg/\go(x)\dx.
0 € R
Finally,

e |lu — x| /°° /1"+6 |lu — x|
dr dx = du d
L /.H<E‘”<x><u—x>2+s2 vir= [ el [ OE L dude
32/ o(2)] dz.
0

‘We now estimate

J

| P
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Since )
1 U—T €

u—x  (u—x)?+e2 - (u—2)[(u—x)2+¢e?]’

dealing again, as above, with u and x both positive, we obtain
2

L o0 s ®
s/owwnsﬁ e e [T letlas

It remains to observe that

[ /O: )y x){(ugz o2 +e2)
<[Twwle [ sdes] [Tl

To complete the proof, we need the following

du

du

Lemma 3.47. Let g be an integrable function. Then

u—x 9(x)
dx = dx.
/Rg(x)(u—x)2+52 * E/]R(u—ﬂc)2—&—52 *
Proof. This result is proved in [181, Ch. VI, Lemma 1.5] for functions from L7,
p > 1, by passing to the Fourier transforms. This idea works here as well but we

give a simple direct proof instead. Rewriting the right-hand side and using Fubini’s
theorem, we have

1 1 [ g() / 1/ 1 1
dtde = t dx dt.
/R(ufx)2+527r/Rx—t v Rg()ﬂ' rRT—t (u—x)?+e? .

Substituting x — u = ze, we obtain

1 1 1 1 1 1 1
/g(t) / dz dt = /g(t) / . dzdt.
R T Jpx—t(u—2x)?+e? e? Jr TJrz—"" 22 +1

Since
/ 1 1 d 1 / 1 z+a d am
z = — z=—
rRzZ—az2?2+1 a?+1 Jglz—a 2241 a2+1’

we have (a = t;“)

" 1 v
/R (u _sox()z)Jr 2 0= /Rg(t) (“Zt)EQ +1 "
1 u—t
=_ /Rg(t) (u—t)2 + 2 dt,

which completes the proof. (]
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To complete the proof of the theorem, it remains to apply the lemma with

g = ¢ and observe that
¢(x) / . / 1 u—x

dz|du < d d

/RS/R(U*@2+52 T au < R|@($)| R1+(“;§)2 . T

— = [ lp(a)ldz

R

The terms estimated above are bounded by [, |¢(x)|dz, along with the last one,
bounded by [, [¢(x)| dz, they can be treated as vs. O

3.5.2 The Fourier transform of a function with shifted singularity

The Fourier transform result inspired by Theorem 3.24 is as follows. Let

9] 5 opl o _
Sff:/ /Zf(Hu DS et D) g,
0 0 Z
We obviously have
oo 5 opr(,, ot
S?:Sf:/ / Flu=a) =) gl g,
0 0 Z

For the space of functions of bounded variation, we denote

IfllBv = /o |f/(z)|dz < oo.

Let also Q(u, z) = min(y, *5*).

Theorem 3.48. Let f,g be locally absolutely continuous functions on (0,00) van-
ishing at infinity
lim f(z) =0, lim g(x)=0.

T—00 Tr—r00

Then for any z > 0, y > 0,
2Tlryg (41y) + 271ry sinzy{f (z - 41;,) —f (z+ 42)}
fe(y) +9s(y) = _2717y coszy{g (z—jy) —g(z+ 4121)]7 Y2 412

1 1 1
27Tyg(4y ’ O§y<4z

+I'(y),



3.5. Asymptotics of the Fourier transform 71

where

A wwwwsc@vmv+mmw+5i+%

+/oo /Q<u,z> F(u— ) 7f’(u+x)d
0

0 X
o0
+/
0

Proof. We first need the following lemma.

x| du
du}.

Lemma 3.49. Let g be a locally absolutely continuous function on (0,00). Then the
following inequality holds:

ZfL45““”IQW+x%m

Proof. We have

r

Q(u,z) (), )
[ -,
O :I;

du§1n3/ tlg'(t)| dt.
0

/5g(u—w)—g(u+x) *du
0 x

du—/
// O, Y dtdu
7t|

71113/0 t|g'(t)] dt.

This completes the proof. O

To go further in proving Theorem 3.48, the following generalization (see [78,
Lemma 2]) of Lemma 2 in [189] is needed.
Consider two auxiliary functions

f(a), 0<z<z,
Br) =4 (2-¥)f(x), j<z<?,

and

0, T > z.

| fe-2) =Bz —2), 0<x<z2
vr(@) =

Evidently, f(z) = 8¢(z) + v7(z — ) on [0, 2].
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Lemma 3.50. Let f be an absolutely continuous function on [0,z]. Then the fol-
lowing inequalities hold:

/O T (187 @) + by (@)]) d < © ( / (@) dr + f<z>) (3.51)

and

u u

o0 / , o0

//Bfu z) =B (uta), du+//7fu o) —vf'uta), | o
T

0 0

xT
0

<</,

Proof. Let us write

0

[ e

0 X

dadut | @) de f(z)).
(3.52)

0, otherwise.

We are not able to apply Lemma 3.49 to F' immediately, because F' may be
not absolutely continuous in the neighborhoods of % and :2,)2 Let us consider a

continuous function F;(z) on [0, 00) which coincides with F on [g, gz] , vanishes
outside [3 — ¢, g)z + ¢] for sufficiently small €, and is linear on [g — &, ;] and

[gz, g)z + 5] . Since F satisfies the conditions of Lemma 3.49, we obtain
/
§ln3/ tEL(t)|dt <In3 Z/ tf(t |dt+‘f ‘f( >’
o p
3% 3
§1n3<2/ I \dt+/f Bt — f )
3

<33 (/Ozf’(t)dt+ f(z)>. (3.53)

/5 Fs(u—x)st(u+x)dx du
O x

tdt — £(2)

Further, one can easily calculate that

J

<o (PG| (Go)]) =e ([ 1rna+isen).
0

/3 (FfFE)(ufx)f(Fst)(u+x)dx "
0

T

(3.54)
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Thus, we derive from (3.53) and (3.54) that

r

Let us write B'(z) = §'(z) + F(x), i.e.,

/; Flu—2z)— F(u+ ) Iz
0 x

wse([ ol i) 6)

f'(z), 0<z<j,
Bz)=< 2-°*)f(z), <x<?, (3.56)
0, .

We get from (3.55) and (3.56)
J
<),

0

It follows from (3.56) that B'(u — ) = f'(u — x) for u < 7, and

/ Blu—z)=puta)
0

d .
. u (3.57)

5 B _ Y
/ B'(u—2x)—B (u+x)dx
O x

auvrc ([ Ir@lds 1)

o f'(u+2), r <5 —u,
u+x)=
( ) (2 . 3(uz+z)) f’(u+x), > g o

Therefore,

[ = g,
0

| :
/O?’ /u <2(u+x)1> f,(“gjx) dz

Let  <u< gz Then it follows from (3.56) that

(3.58)

du < /OZ |f(z)] dx.

(2_ LS(u;ﬂn))f-/(u_x)7 r<u— §7

B'(u—z)=

fu—x), T>u—73,

_ 3(utx) / 2,

2
0, x> 52—

and



74 Chapter 3. Convex and Oscillating Functions

This yields

j‘jB/(u—x)—B/(u—‘,—x)dx_(2_3u>/2f/(u—x)—f/(u+$)dx du
200 0

z

:/z"‘

3

/“—3 3ffu—2)

0 z

/2 o) dﬂ/mm(?’a_u) 3f'(u+ta)
u—? x 0 z

/; filutz) dm’ du

Sj/;{/o |f’(u—sc)dm+/og|f’(u+sc)dx}duS/OZIf’(sc)dx.

Thus, we have obtained

2z

S R, ot
/3 /QB(u x) B(u+x)dxdu
= |Jo x
U , (3.59)
3 2 — — Z
S/ / filu==2) f(u+x)dsc du+/ |f/(z)| dx.
z 0 T 0
Let u > % . The formula (3.56) gives us that B'(u+ x) = 0 and
0, r<u-— gz
B'(u—x) =
( ) (2—3(u;z))f'(ufx), T>u— 3z
Hence Y
oo Bl _ _ B/
/ /2 (u—x) (u+ ) el du
gz 0 T
oo u _ / _
_ / /2 <2 ~ 3(u x)) fl(u—x) du (3.60)
z x

22 U*ZZ
3 3
3 oy i
< du If'(u—2)|de <2 [ |f'(z) d.
z g ufgz 0

Collecting the estimates (3.58)—(3.60), we have
o S R, ot

/ /2 B'(u— ) B(u+x)d$‘du
0

0

2z
3
S/
0

4z
3
z

X

T
[Fma s,
0 X

du+4/0Z |f'(z)| dx.
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If w > 3, then

/ / f'(u—2) ;f’(u +2)

<[ ar- ol ol s [ 17 @)

x| du

So we have

/O°° /0 B'(u—w)—B'(u+tw),

T
3%
</
0

Taking into account (3.57), we see that the inequality

du

/md;””fmwwﬂ—fw+x>
0

x

dx du+5/ |f/(z)] dx.
0

o |Jo z
232 min(;,z;u) , , Z
§/~ / fwu—w;f<w+@dxdu+c /u«wwx+uun
0 0 0

holds. We now have
2z 2z

[T s @i [ (2= voaes? [ sl

<2 [ If@lds+ |f@)]
0
We have now proved (3.51) and (3.52) for §. The corresponding estimates

for v are similar to those for 5. Lemma 3.50 is proved. O

With this result in hand we are ready to continue proving the theorem. For

Acy,weuse . or 0 <y < , , while for y > we use eorem 3.37. Let
3.38) for 0 L while for y > Th 3.37. L

us go on to gs(y). For 0 <y < . nothing remains but to use (3.39). We have for

T
Y2 g,

/ g(z) sin 2ray dx = / g(z) sin 2way dx + / g(z) sin 2rxy du.
0 0 z

For the last integral, we get
/ g(x) sin 2wy dax = / g(z+ x)sin27(z + z)y dx
z 0

= sin 27rzy/ g(z + x) cos 2y dx + cos 27rzy/ g(z + x) sin 27y dzx,
0 0
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and it suffices to apply Theorem 3.37 to both integrals. All is clear with the first
one, while applying (3.39) to the last integral yields

& 1 1
cos 27rzy/ g9(z + x) sin 27rzy do = g (z + ) cos2mzy + T'(y).
0 27y 4y

Further,

/ g(z) sin 2wy do = / B4(z) sin 2wxy dx + / vq(z — ) sin 2mzy dx.
0 0 0
Now, we apply (3.39) to the first integral on the right-hand side and obtain

z 1 1
/o Bg(x) sin 2mzy de = 27ryﬁg (4y) +T'(y). (3.61)

Similarly, for the second one, we have

/ Vg(z — x) sin 2wy doe = / g (z)sin 27w (z — x)y dx
0 0

= sin 27rzy/ vq(z) cos 2may dz — cos 27rzy/ Vg () sin 2wy dx
0 0

1 1
= _27ry coS 22y Vg (43/) +T'(y).

Since 41y < z, we have

/’yg(z—x)sin%mydx
0

.62
= 1 2 L + L 2 I} L +T'(y) 502
= 271_ycos T2y g | 2 4y oy cos2mzy By | 2 4y y).

Recalling the definition of 3, and combining (3.61) and (3.62) yields that g,(y) is

1 1
oy cos2mzy g <z + 4y>

1 1 1 5 n 1
— cos2mz z
ﬂ'yg 4y 21y Ty 4y

1 1 1
+ cos 22y {g (z—i— )—g(z— )}
Y 4y 4y

and

1

3
Sy <

for 82

3 3
8z§y<4z’

1 1 1 9 1 L 1
— cos2mz z— —-glz
27ryg 4y 21y Y9 4y g 4y

for
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for y > 43Z, plus the remainder term T'(y). Observe that each term for

1< <3 d 3< <3
an
4z =Y g, 8z =9 S 4y

respectively, is easily estimated by ||g||zv or || f||sv. Indeed, for example, we have

/z—41y ()dt‘cij/ /pq

4z

/ / (1) dt m(q) lallv < Cliallsv-
Yy p

We already have ; g ( 4121) as the leading term of the asymptotic formula in Theo-

q

4qz 1 1 4z
[ lolema)l =]
Pz y 4y P

4

g'(t)dt

z

rem 3.48 for all y except
1 3

<y< .
4z_y 8z

1 dy
7)) % = Clllav
Y Y

as above. To complete the proof, it remains to consider the part in the leading
term over

It remains to observe that

3
/8z
1

4z

<y< .

4z — 4 4z
Since in the above argument p and ¢ are arbitrary, it is controlled either by ||g|/ 5y
or by || fllsv. The proof is complete. O

3.5.3 Amalgam type spaces

Let us now prove similar results for the amalgam type space A; 2 in a slightly
different form, see [128]. We study, for v = 0 or 1, the Fourier transforms

x) = /000 f(t) cos2m (sct - Z) dt. (3.63)

It is clear that ]?,y represents the cosine Fourier transform in the case v = 0, while
taking v = 1 gives the sine Fourier transform.

Theorem 3.64. Let f be locally absolutely continuous on (0,00) and vanishing at
infinity, that is, tlim f(t) =0, and ' € A1 2. Then for x >0,
—00

-~ 1 1
F@= f (493) sin "/ +T(a),

where v =0 or 1, and HFHL](R+) S Ay,
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We will see that in order to control the L' norm of the Fourier transform,
no matter cosine or sine, of a function of bounded variation by means of the A; »
norm, the crucial role belongs to the bounds of a special sequence of integrals
over the dyadic intervals [2™, 2" +1]. Given an integrable function g, we define the

sequence of functions
o0

é;(x) = / g(t)e 2™t gt

Obviously, this function is the Fourier transform of the function G,,(¢) which is
g(t) for 27™ < t < oo and zero otherwise.

The above-mentioned integrals are estimated in the next lemma the state-
ment and the proof of which are inspired by Lemma 2 in [6].

Lemma 3.65. Let g be an integrable function on Ry. Then for m =0,£1,£2,...

1
om+1 2

O (2 o [ pG+12™ 2
/m |G";( W e < ZVM |g(t)|dt]

Jj=1

Proof of Lemma 3.65. We start with the following inequality:

gm+l = om+1

/ G (@) dxg/ 155 (@) G ()|, (3.66)
where
Su(x) =" aso.
X

The latter can be considered as the Fourier transform, up to a constant, of
the indicator function of the interval [0, a]. It follows from the formula (see (5) in
[31, Ch. I, §4]; it is mentioned in Remark 12 in the cited literature of [31] that the
formula goes back to Fourier)

T
. y <a;
*° sin ax 7277 '
| . cosyrdr =< 7, y=a;
0, y>a.

By the Bunyakovskii-Schwarz—Cauchy inequality, the right-hand side of
(3.66) does not exceed

2m,+1 ;
c2% (/ |Sg—m (2) G ()] dx)

om

In fact, we no longer need the integral over [2™,2™*1] (we got the factor 22
from it) and have to estimate

2% ([ |s/2\m<oc>é;<oc>|2dsc)é
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Since G, is integrable and Sy-m is square integrable, Sz/f\m (x) éz(x) is the Fourier
transform of their convolution, and both are square integrable; see Theorems 64
and 65 in [193, 3.13]. By Parseval’s identity, we estimate

2% (/R |(Sa—m % G (2)]? dx);. (3.67)

Further,
- © - p(+1)27T™ ) .
Gm(z) =) / gt)e ™ dt = " G j(x),
j=17327™ j=1
where
— (+127™ .
Gm,j(2) :/ g(t)e ™t dt.
j277’7l
Correspondingly,

Gm(x) = Z 9m,j (‘T)a

with gm ;(x) = g(x) when
j27Mm<z<(j+1)27™
and zero otherwise. Representing (3.67) as

1
2 2

2% /ZSQ*WL*ng'(I) dz |
R |52

let us analyze what the support of each summand

(G+127™
Sy kgms@) = [ Syl tg(t)de

j2=m

is. Since we have 0 < x —t < 27™, such a summand is supported within the
interval
j27m<ax<(j+2)227™

Only two neighboring intervals may have an intersection of positive measure.
Therefore, the value in (3.67) is dominated by

o=

1
2

2% Z /R‘SQ*m s gmj(x) dz | +2% Z /R|S2w % G, ()| da
Jj=1 -

j is even j is odd
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The bound for each of the two values is the same and can be obtained by
means of Young’s inequality for convolution (see (1.11)). Taking ¢ = Sp-m and
Y = gm,j, ¢ =1 and p = r = 2, we obtain in each of the two cases

1
2

k

o0
28 { Y 152-ml13 gm.g
j=1

Since
.
1S5-m 3 < / de <2,
0

we get the required bound

1
2

o [ G2 ?
3 / l9(t)] dt
J=1 j2—m

This completes the proof of the lemma. O

Now, the proof of the theorem runs similarly to that of Theorem 3.37.

Proof of Theorem 3.64. Splitting the integral in (3.63) and integrating by parts,
we obtain

-~ 1

1 * . v
o /41 f'(t)sin 27 (mt— 4) dt.

Further,

/0411 f(t) cos2m (mt— Z) dt
= /042 [f(t) —f (42) cos 2w (mt— Z) dt
+/0411 (41x> cos 2 (mt— Z) dt
/41 f(s)ds| cos2m (xtf Z) dt
(41:5) sin ;(1 -+ 271rxf <4lx> sin W;

!
1 1 ™ 1 1 T i
B 27rxf <4x> sin 27 + 27rxf <4x> sin 9 1-7+0 </0 s|f'(s)] ds) .
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// SF(5)] ds dir = /Ooo|f'<s>|ds,

it follows from (3.33) and the remark thereafter that to prove the theorem it

remains to estimate
> ¥
/ f/(t)sin 2w (sct - 4) dt
1
4dx

/-
0 xr
/2n1+1

m=—0oo

Z/

m=—0oo

Since

dx.

We can study

'(t) sin 27 (xt - Z) dt’ dx

instead. Indeed,

2n1+1

> /.

m=—0oo

dx

/ 41; /() sin 2 (xt - Z) dt

27"Jrl 0o
/ ()| dtdx < / |f/(t)] dt.
0

Applying now the proven Lemma 3.65, we complete the proof of the theorem,
since m runs from —oo to co and we can write 2™ instead of 27", (]

3.6 Applications and further progress

Theorem 3.34 and its consequences has numerous applications. First of all it al-
lows us to strengthen known results on the integrability of trigonometric series.
Given the series (3.19) or (3.20) with the null sequence of coefficients in x, set for
x € [k—1k|,

A(x) = ar + (k — x)Aag—_1, ap =0,

B(z) = by, + (k — x)Abg_1.
The following result due to Trigub [201, Theorem 4] (see also [203]) is a “bridge”
between sequences of Fourier coefficients and Fourier transforms (for an extension,

see a recent paper [202]; an earlier version, for functions with compact support, is
due to Belinsky [19]):

sup
0<|y|<}

+o0 oo
/ 90(1,)627riwy dr — Z L)0(]{/,)62717%3/

< Cllellv- (3.68)

This is, in a sense, equiconvergence of the Fourier integral and trigonometric series,
both generated by a function of bounded variation.
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Corollary 3.69. For eachy, 0 <y <},

>y cos2mky = y(y),

k=1
where
| bl < Cllalln + 50)
0
= 1 1
Z by sin 2mky = B +v(y),
21y 4y

k=1

where

/ )l dy < C(lbll + 51)-

This immediately yields Theorem 3.22, merely by integrating the formulas
obtained. Observe that besides direct answers to the above question, estimates of

the integral
-/

over some smaller interval may be helpful.

(120 + Y (ag cos2mwkx + by sin 2wkx) |dx
k=1

We can now obtain not only Theorem 3.24 but a stronger version, in the
spirit of Corollary 3.69.

Theorem 3.70. Let {ai} and {by} be null sequences. Then for any y, 0 < y < ;

and z € [mym +1], m=0,1,2,..., we have

1

+ony sin2mzy | A

—-A (z + 2
(ay cos 2wky + by, sin 27ky) = -

)
cos 22y | B (
)

M8

el
Il
—

1
27y

_B(z+41y ) 3/2412

1 1 1
27TyB (4y)7 O§y< 4z

+7(y),
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where
LA A
Z Ap—k — An+k

é m—2
/ )y <C (llallbv + [1Bllow + 5"+ 55"+ D L

0

n=2 | k=1

) |

In the same manner as above a similar result for the amalgam type space
can be derived, slightly more general than that from [6].

Theorem 3.71. If the coefficients {a,} in (3.19) and {b,} in (3.20) tend to O as
n — oo, and the sequences {Aayn} and {Ab,} are in ay2, then (3.19) represents
an integrable function on [0, %], and

m—2

>

n=2

qnzmj Aby_p — Abpyk
k

k=1

nilbn sinna = iB (27;) + (), (3.72)

where )

[ 10w de < 16y

0

Back to the mentioned results by Bausov [13] and Telyakovskii [191], they
and their generalizations were applied in the work of Ganzburg and one of the
authors to obtain best approximation for infinitely differentiable functions (see,
e.g., [78]).

Not going into details why usual methods are not applicable to infinitely
differentiable functions, we will just outline the idea how the Fourier transform
comes into play.

Taking F' to be a continuous function with integrable cosine Fourier transform
and satisfying some conditions relevant to the considered stuff, one introduces the
operator

Q. (Fy) = 2/ (F.(z) — F.(20 — x)) cos 2mxy da.
0
For each F this is an entire function of type o. Writing

F.(20 — ), 0<zx<o;

J@) = {Fc(x), x> o,

we observe that the identity holds

F(z) — Qo(F,z) = 2f.(x).

Then the obtained results on the Fourier transform and those related allow one
to get sharp estimates for the best approximation by entire functions in integral
metrics.
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Applications to estimates of Lebesgue constants are known. Note also the
results on multipliers in [84, 85] and [123].

Theorem 3.34 (or, equivalently, Theorem 3.37) and its related conclusions
appear to be in a final form, even maybe the strongest possible. However, the
actual situation is quite different. In recent papers [127] and [129], the widest
possible spaces for integrability of the cosine and sine Fourier transforms are given.
In particular, this immediately proves the first part of Theorem 3.37. However, the
situation with the sine Fourier transform is in any case much more delicate. These
seem to open a new page in the study of integrability of the Fourier transform
and, consequently, in integrability of trigonometric series.

3.7 Multivariate case

We now come to the multidimensional case. There exist generalizations of the
mentioned one-dimensional results. However, it is worth mentioning that the above
one-dimensional results can be applied in the multidimensional setting. The point
is that because of the Fourier slice theorem (2.28) the multidimensional Fourier
transform can be represented via the one-dimensional one of the Radon transform.
The problem here is to pose appropriate assumptions on the function and figure
out how the Radon transform inherits its properties. A different way for direct
application of the one-dimensional results concerns radial functions and will be
discussed in detail in the next chapter.

As in dimension one, a good amount of results for the multidimensional
Fourier transform come as generalizations of the results on the integrability of
trigonometric series. An outline of one-dimensional results on the integrability
of trigonometric series is given above. The number of corresponding multidimen-
sional extensions may be compared with the number of the most important one-
dimensional results. It is natural, in a sense, since such extensions are mostly
proved by repeating the corresponding one-dimensional arguments. Nevertheless,
it is not always so simple as it may seem, and sometimes peculiarities of the mul-
tidimensional case are displayed. One can find more details in [125]. Here we give
only some related results and illustrate how they can be used.

Let

d
I(q,p), 0<q<d, 1§p§<>7
q

be the pth subset from all possible different subsets of I consisting of d—q elements;
and let

d—
I(q,p;S,T’), OSSSdf(L ISTS( q)7
S

be the rth one from all possible different subsets of I(q, p) consisting of n —q — s
elements. We denote by 0, ,f the partial derivative of a function f taken with
respect to every variable with index from I(g,p). Given a function ¢ defined on
R4, let 5, denote the odd extension of ¢ in each variable with index in I (g, p; s, 7).
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Theorem 3.73. Let f be defined on Ri; let for each q,p, 1 <q¢<d,1<p< (;l),
the functions Oqpf be locally absolutely continuous with respect to every variable
with index from I\ I(q,p) and

lim  0,,f =0.

x4+ +Tg—00

Then for any y1,...,Ya > 0 and for any set of numbers {a; : a;j =0 or zluj eI}
we have

d d

1 1 1—4a;
T sin 27 (x;y; + a;) dr; = (—1)¢ ( ey ) (E ,
Rt )]_li[l (Y, j)dzy = (=1)°f 4y, Ayy ]_li[l 2y, v(y)
(3.74)

where
1 () a—g (“2°
[ < %3 / [ Ol

q=0p=1s5=0 r=1

o H _dfjx | H cos 2-77aj dy.

JEI(q,p;s,r) Yi T jenI(ap) Yi

provided the right-hand side of the last inequality is finite (xg’p means that y; occur
on the places corresponding to the indices j € I\ 1(q,p)).

Corollary 3.75. Under the assumptions of Theorem 3.73, the asymptotic relation
(3.74) holds provided

/\ |dy<cb§jz/ (/y< OupPorat ) 1 dx,j)é

q=0p=1 jeI qp) J€I(q,p) Yi
2
% H COS jﬂ'a] dy
JEINI(q,p) Yi

is finite for some b > 1.

Corollary 3.76. Under the assumptions of Theorem 3.73, the asymptotic relation
(3.74) holds provided

2 .
/ \dy<CZZ/ esssup |9 pf)sr(z,) [ 0T dy < oo,

Ry y;<wzj, 4 Yj

q=0p=1 +j€JI q’p) JEINI(q,p)
We do not give details of the proofs, just repeat that we provide one-dimensio-
nal techniques in each variable — proofs rather than results. Nothing but some ac-
curacy in notation is needed for this. However, one more issue should be observed.
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The finiteness of the bounds in the above theorem and corollaries also means that
the considered functions are of (certain) bounded variation. There are many no-
tions of bounded variation in the multidimensional case; for references and further
results, see a recent paper [134].

One of the most natural multidimensional variations is Hardy’s variation,
which in fact is used in the above result. The following criterion for f to be
of bounded Hardy variation can be found, for example, in [1, Th.6] (in dimen-
sion two).

Let n = (m1,...,n4) be a d-dimensional vector with the entries either 0 or
1 only. Correspondingly, |n| = m1 + - -+ + 14. The inequality of vectors is meant
coordinate wise. Denote by A, f(x) the partial difference

A, f(2) =( 11 Auj)f(sc).

Jm;=1

Here and in what follows 9"f for n = 0 = (0,0,...,0) or p =1 = (1,1,...,1)
mean the function itself and the partial derivative repeatedly in each variable,

respectively, where
0
377f(;c):< 11 ax)f(x).

Jimj=1

Theorem 3.77. A necessary and sufficient condition that f(x) be of bounded Hardy
variation is that it be expressible as the difference between two bounded functions,
fi(z) and fo(x), satisfying the inequalities (i = 1,2)

Ay, fi(x) >0 (3.78)

for all m # 0.

It is mentioned in the same paper [1] that such functions fi(x) and fo(z),
which definitely express certain monotonicity property have been called “mono-
tonely monotone” in [212]. They belong to the class of “quasimonotone” functions
as defined in [97, p. 347]. The latter name is commonly used today for a completely
different class of functions.

As in dimension one and following Bochner [31], we will mainly restrict our-
selves to functions with Lebesgue integrable derivatives, since every such function
is equivalent to a function of bounded variation in the sense that it is representable
as a linear combination (generally, with complex coefficients) of monotone func-
tions.

In several dimensions we apply a construction similar to that in dimension
one (3.36). We consider a function f to be with each derivative 0"f, n # 0,
existing almost everywhere and Lebesgue integrable with respect to dz, for al-
most every value of the rest of the variables. The d-dimensional analog of the
above-mentioned representation is as follows. Let f(z) be defined on a rectangle
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[a7b} = [ahbl] X oo X [ad7bd}. Then

F) = £b) + (=1 { [ e L b,
77?60 [xnabn] 2
/ ‘anf(una blfn)‘ ; 3’7f(u17, b]_,n) dun
[xnabn]

For example, in dimension two, for a function f(z1,22) on the rectangle
[a1,b1] X [az, bo], we have

by
(1,0 _ A(1,0)
f(z1,22) = f(b1,b2) +/ (080 f(t1, b2)] = 0 f (11, b2)

9 dty
z1
b1
s 0,
9 1
z1
b
/2 90D f (b, t2)| = 9O f (b, )
+ dto
2
x2
ba
/ 0O (b1, t2)] + 00D (b, t2) gt
- 2
2
x2
b b2 (L) PIERY
7//| D f(ta,ta)] = 0V f(ta, t2) dty dis
2
xr1 T2
b b2 (L) PIERY
’ t1,t ’ t1,t
Jr//| f(t, 2)\; f(t, Q)dtldtg.
xr1 T2

In dimension three, for a function f(x1,z2,23) on the rectangle [ay, b1] X [az, ba] X
[as, bs], we have

b1

f(x1, 22, 23) = f(b1, b, b3) +/

1

by
- 0000 (14, ba, bs) | + 00 f (11, ba, bs)
2

00000 £ (t1, b, by )| — D00 f (11, bo, bs)

dt
9 1

dty
Ty

b
+/23(0’1’0)f(b1’t2’b3)3(0’1’0)]”(517152753)

dt
9 2

Z2
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B / 100OL0) f(by, Lo, b3)| + OO0 £(by, e, b3)
+/ 00D £ (by, by, t5)| — OO0 f(by, by, t3)
_/ 000D f(by, ba, t3)] + 00D f(by, ba, 13)
_ /7 |OL0) £ (1), 19, b3)| — D10 f(t,ta, b3)
N /7 OO f(ty, b9, bs)| + L0 f (81, 12, by)
_ /73 |00 £ (2, bo, t3)| — OLOD f(t1, bo, t3)
N /73 |8(170’1)f(t1, ba, t3)| + 8(1’0’1)f(t1, b, t3)
B /73 |5(071a1)f(b1,t2,t3)| _ 5(071’1)f(b1,t2,t3)

b
+/f|a(o’1’1)f(b17t27t3)|+5(°’1’1)f(b1,t27t3)
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bo

dt
9 2

T2
b3

dt
9 3

3
b3

dt
9 3

3
b1

dty dt
9 1 at2

1 T2
by

dty dt
9 1 at2

1 T2
by

dty dt
9 10t3

1 T3
by

dty dt
9 104t3

1 T3
b

dto dt
9 2 at3

T2 T3
by

dto dt
9 2 at3

T2 T3

bl b2 b3
ALY £ty o, t3)| — ALY £ty ot
+/// f(t1,te, 3)\2 f(t1,ta, 3)dt1dt2dt3

xr1 2 T3

bl b2 b3
WL F(y ot (LLY) (4 g, t
,///‘3 Fltnsto ta)l + 0500 f (b tasts)

2

xr1 2 T3

All the integrals with + before them form f;, while those preceded with —

form fo, for which one can easily check the sufficient conditions of Theorem 3.77.

By analogy with the one-dimensional case, applications to trigonometric se-

ries are in order. However, instead of giving explicitly estimates for trigonometric
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series similar to those in dimension one, moreover they are given in [125] along with
a multivariate analog of (3.68), we prefer a different, two-dimensional, illustration
of how such theorems work.
Let f(x1,22) be defined on R%. We will use the notation
of af

= = d =
1 P P Dy’ and  fi2

o f
85(11(9372'

Next, for g defined on Ri let g(x%, z2) mean that g is extended in the odd way in
the first variable from [0, 00) to the whole R. Similarly g(x1,z3) means that g is
extended in the odd way in the second variable from [0, c0) to the whole R, and
g(x7, x3) means that g is extended in the odd way in each variable from [0, c0) to
the whole R.

Let f be locally absolutely continuous in each variable for any value of the
other one, while fi(x1,22) and fa(x1,z2) be locally absolutely continuous in x5
and x; with respect to any value of z; and x, respectively, and let

lim f(xhxg),f1($1,$(}2),f2($(}1,$(}2) =0.
x1+xT2—00
It is quite possible that these conditions are not minimal, that is, some may follow
from the others (see, e.g., [83] where absolute (not local) continuity — in both
variables and in each variable for any value of the other one — is assumed along

with  lim  f(z1,22) = 0 only, the derivatives vanish at infinity automatically
x1+xT2—00

then).
We now formulate a two-dimensional version of Corollary 3.76.

Corollary 3.79. For any y1,y2 > 0 and a; =0 or i, j=12

f(z1, 22) sin 27 (y121 + ay) sin 27 (yax2 + ag) dr1das

=2
~ 1—4a;1—4ay 1 1
- 277:1/1 27Ty2 (4y1 ) 4y2> + ¢(y17 y2)7
where
[ 106 sm)ldndie<C [ essup |fisloas)| dysdys
Rﬁr Rﬁr y1 <21 <291,
Y2 <2 <2y2

cos 2ma
+C/ esssup | fi(z1,y2)] y ? dydys
R 2

2 y1<z1<21

cos 2may
+ C/ esssup |fa(y1,x2)| dy1dys < 0.
RZ y 1

2<z2<2y2

Now, in [21] a result on the integrability of the Fourier transform is given;
the next is its two-dimensional version.
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Theorem 3.80. If the function f satisfies the above absolute continuity assumptions
and for some q € (0,1)

|f(z1,22)] S O+ |z )91 + |22]) 77, (3.81)
|fr(@1, @) < C(1+ [22])729(1 + [aa|) = [T, (3.82)
| fa(w1, m9)| < C(L+ 21 ]) 791+ [aa]) = aa |, (3.83)
and
|frz(1, 22)| < C(1+ |21 ) 7291 + |22]) 2 |z1 20|77, (3.84)

then the Fourier transform f is integrable.

The proof is straightforward but pretty long and not that easy. We will give
a short proof that readily follows from Corollary 3.79.

Proof. There are three typical situations: both variables y; and y» are small, both
are large, and one is small while the other is large.

We first represent the function as a sum of four functions from which one f,.
is even in each variable, two f., and f,. are even in one variable and odd in the
other, and the last f,, is odd in each variable. We have

Afece(x1,22) = f(x1,22) + f(—21,22) + f(21, —22) + f(—21, —22),
Afeo(x1,22) = f(x1,22) — f(21, —22) + f(—21,22) — f(—21, —22),
Afoe(x1,22) = f(x1,22) — f(—21,22) + f(21, —22) — f(—21, —22),

and
Afoo(x1,22) = f(o1,22) — f(—21,22) — f(®1, —22) + f(—21, —22),

Wlth f = fe(i +f€0 +f0€+f00'

We then apply to each of these functions Corollary 3.79 and (3.81)—(3.84).
The procedure goes smoothly and will be illustrated for the leading term of the
asymptotics which exists only for f,,. Integration over yi,y2 > 1 reduces to

// / / | f12(u1, u2) duidug| dyidys,
Y1 Y2 —Y1 Y —Y2

and (3.84) along with obvious estimates gives the convergence. For y1,y2 < 1 we

obtain ~ 1
L sl e

and (3.81) immediately yields the needed bound. Let now y; < 1 and y2 > 1. We

have
/ / |foo Y1, Y2)| dy1dye

:/ / / |f1(u1,y2) — fi(ur, —y2)| duy dy: dys,
1 Y1 Y2 —y1
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and (3.82) leads to evident estimates. In the “mixed” terms where we have esssup
in one variable and y~! in the other, we just estimate the latter by splitting the
integral into two over [0,1] and [1, 00]. The procedure is exactly the same as the
one for the “mixed” integration in the leading term. The same is for f., and foe.

The proof is complete. (]

This proof also shows that Theorem 3.73 as well as its corollaries are sharp
both at the origin and at infinity.

Of course, a more subtle version of Theorem 3.80 can be given, with loga-
rithmic conditions say, and of course the same immediate proof rather than a long
technical straightforward one can be given by means of Corollary 3.79.



Chapter 4

The Fourier Transform
of a Radial Function

Spherical symmetry is a very interesting and important property of a function.
Theorem 1.5 gives that if f(z) is radial (depending only on |z|), then f is radial
too. More precisely, it is represented as a Hankel transform as the Cauchy—Poisson
formula (1.7), by Theorem 1.6. For radial L? functions this formula makes sense
for 1 <p < (2d/(d+1)).

Note that the restriction of the multiplier problem for the ball to radial
functions has a positive solution for |(1/p) — (1/2)| > (1/2d); see [95].

Though, generally speaking, the Fourier transform should be understood in
the distributional sense, we are going to consider a situation where the Fourier
transform of a non-integrable radial function defined in the distributional sense
turns out to be a regular function represented via an integral similar to that in
Theorem 1.6. In this setting the space of functions (of one variable) of bounded
variation is generalized, and the Fourier transform exists as an improper integral
(see, e.g., [30]).

The property of a function to be radial combined with the distributional
approach gives the following result (see [146]).

Theorem 4.1. Let f grow at infinity not faster than a polynomial. Then

A
Fle) = Jim 2 [ fot) (i)' 27y, 2o ar
A—o0 0 2
where convergence is that in topology of S', the weak convergence.

Proof. For the considered functions f, we have f4 — fy in the topology of the
space of distributions, where fa(t) = fo(¢) if ¢ < A and zero otherwise. This
completes the proof, since to each (integrable) function f4 we can apply Theorem
1.6. Observe that in general f(£) is a distribution. O

This will be our starting point in treating the Fourier transform but first we

must define an appropriate class of functions.

© Springer Basel 2014 93
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4.1 Fractional derivatives and classes of functions

We first need to dwell upon a notion of fractional derivative. For 0 < § < 1 and a
locally integrable function g on (0, 00), define the fractional (Weyl type) integral
of order § by

51
Wg(t) = 6)])& Yr—t)°ldr, 0<t<uw,
¢ 0, t>w,

and, following J. Cossar [59], a fractional Weyl derivative of order a by

when 0 < o < 1 and

dp
(@) () = ) (¢
9rM = 970

when o = p+ 4§ with p=1,2,..., and 0 < § < 1. One of the reasons that just this
type of fractional integral (and derivative) is chosen is that the Weyl integral of
a function with compact support has, in turn, compact support, unlike the better
known Riemann-Liouville integral

Ra(fot) /fo —r)* tdr.

All these notions may be found, for example, in [11, Ch. 13] (see also [167]
and [194]).

Denote by AC),. and BV, the classes of functions locally absolutely contin-
uous and locally of bounded variation, respectively. Let a* be the greatest integer
less than «a. If « is fractional o* = [a], where [-] denotes the integer part, while
for a integer a* = a — 1.

Consider the class MV?, |, with & > 0 and b > 0, of C(0, co)-functions
satisfying the following conditions

g.q,...,9%) are AC,e on (0,00); (4.2)
. a+b («) —0-
Jim g(t),  lim ¢470g1 (1) = 0;
and
o, = suplta]+ [ ety @@]| <. @
t>0 0

It is of considerable interest to compare this space with a related one, written
BV} i1, broven to be useful in problems of approximation and multipliers (see,
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e.g., [48] or [194]). It is defined to be the space of C(0, co)-functions satisfying the
following conditions:

glemleh gD are ACke on  (0,00); (4.5)
lim g(t) =0, ') € BVioc(0, 00); (4.6)

and .
ollove,, = [ g 0] <. (4.7)

The main difference, of course, comes from the definitions of the norms (4.4)
and (4.7), with the factor t**® within or beyond the sign of the differential, re-
spectively. This is hardly expected to be meaningful. Nevertheless, the continuous
embedding

BV = MV,
holds, and the example which demonstrates the difference is delivered by a strongly
oscillating function (see below).

For completeness, we compare these spaces with the other space WBVOZ@ 115
as considered, e.g., in [79, 80], of C(0, co) functions satisfying (4.5) and additionally
g € AC14c(0,00), and

lglwsvz, ., = esssup [t°g(8)] + esssup [T (#)] < oo (4.8)

Various conditions for Fourier multipliers were given in terms of these classes (see
references above). The formulas by means of which these spaces are defined have
proved to be convenient to express multipliers in explicit form.

The following assertion establishes relations between all these classes.
Proposition 4.9. In the sense of continuous embedding there holds
BVY = MV? <= WBV. .
None of these embeddings holds in the opposite direction.

Proof. We only discuss the instance b = 0 which is the worst case. Here and in
what follows we omit the superscript b in the case b = 0. Suppose g € BV441;
then, by Lemma 1.1 in [195],

o0

A wwﬁﬂm»scﬁ W*M@QW#+CA 11dg @) (1)] < Cllgllsv.n.

showing the norm estimate for the left inclusion. Trivially, a function h of bounded
variation, vanishing at infinity, satisfies

mu>s£mwmm,

hence [|g[lwpv.. . < lgllarv, -
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The absolute continuity properties follow from the discussion in Section 3 of
[79]; further, by Lemma 3.15 in [194],

| e

with ¢ € BV,41, which, by hypothesis, tends to zero as t — oo a.e., so the
embeddings are proved.
That the inclusions are strict, show the following examples (b = 0). Let first

91(t) = x(t) sin (ln In (1)) ; (4.10)

where x € C*[0,00) is a cut-off function which is 1 for 0 < ¢t < 411 and vanishes
for t > ; Then

%9 (1)| = Ct

sc/ $1dg®(s)),
t

_cos(ln In(}))

gll(t) = tln(l)

for 0 <t < ; and g{(t) = 0 for t > 1, hence tgj(t) is of bounded variation on

[0, 00) but

i o du
Il = [ lgi@lde= [ Jeostinu)
0

In4 u

o0
2/ | cosv| dv = oo,
1

thus g1 & BV since ||g1]|Bvy < C|lg1||Bvs- This argument also works for all oo > 0,
b =0, if one replaces g; by

nat) = [ w0 R v an (1.11)

with @ = p+ 4, 0 <6 < 1; note that g; o, is bounded and that

cos(Inln(}))

e =C" 5,y X

In the case @ = 1, (4.10) is an extension of the earlier suggestion by Belinsky (see
[120]) to consider
91(t)
t) =

ga(t) InIn( 1)
which also delivers an example of the strict embedding; observe that g is contin-
uous at the origin and vanishes there in contrast to (4.10).

Similarly consider g3(t) = t9, with v € R; then g3 € WBV4 o for all @ > 0
and obviously t*7 & MV, for all & > 0 and v € R fixed. O
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There are another two important properties of functions from the MV? 1
classes.

Lemma 4.12. If g € M\/;?Jr17 then it follows for p =1,2,...,a" that

[#79P ()loe < Cllglarye,,  and  lm 2g®(1) =0,

t—o00

Proof. The first assertion is clear on account of the embedding behavior of the
W BV -spaces: WBVobO o < WBVY p for 0 < B < a. From this also the second
assertion is obvious in the case b > 0. So let b = 0 and first suppose « is integer.
Then the argument in [206, p. 193] shows the assertion in the case o = 2. That
this argument also works for all « integer we illustrate at the case @ = 3. Thus we
show: tlim g(t) = 0 and tlim t3g"'(t) = 0 implies tlim 2" (t) = 0 whence follows
—00 —00 —0

tlim tg'(t) = 0 by the case a = 2. Let 0 < § < ; be arbitrary, fixed, t > 0 be large.
— 00

Then by Taylor’s formula (at s = 0)

G(s) = Alg(t) = g(t +25) — 29(t + ) + f(¢)
= ¢"(t)s? + (53/3)) (Sg”’(t +20s) — 2" (t + 95))
with 0 < 6 < 1. Now choose s = +4t and Ty so large that |AZ2,g(¢)| < 6 for all
t > Ts. Furthermore, observe that by hypothesis
|G""(0s)] < 8M (t + 206t)~3 + 2M (t + 06t) =3 < 10Mt—3(1 — 26) 3
and thus

3 _ -3

3! 3!

for t > Ty, i.e., the assertion for o = 3. It is clear that by using higher differences,
the remaining case of « integer can be proved by induction.
If « is fractional and o > 1, then we have, by Lemma 1, that

gEWBV o) = WBVy;, j=1,...,]a],

and the argument for « integer shows tlim gl (t) = 0 for j = 1,...,[a] — 1.
bde el

Thus we only have to look at the case j = [a] < a. By Proposition 4.9, we have
g € WBV o and hence the fractional calculus within the W BV -spaces (see [79],
[80]) may be applied to give with an integration by parts

[a] C/ S—ta [a]—1 g g (a)(s)ds

c(/ (o0 —t)* g ado> 5% (s)
+ C/too (/:O(U — t)eled=15—a do—> d(sag(a)(s))

=1L+ 1.

o0

s=t
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With the substitution o = ¢r, the term I; can be estimated by (s > ¢, a > 1)

oo

RIARS C(// (r —1)o"ld-lp—a dr> 5g(@)(s)
s/t

= C(/ (r— 1)0“7[0“]717"7'JK dr> to‘g(a)(t),
1

s=t

therefore [tl*II;| — 0 as t — oo, since by hypothesis tlim teg(@(t) = 0.
—00

Concerning II; an interchange of integration gives

1= [ o=t [Tty do
t

¢
<t / ld(s*g(s))| [ (r— 1)l gy
t 1
thus also |t II;| — 0 as t — oo, since

o0
|15 @) < .
0
Combining these two situations gives the remaining case

lim tlelg(eD (1) = 0,

t—o0

which completes the proof.

O

The next fact true for functions from BV,?,; (see this and much more details

in [194]) turns out to be true for a wider class as well.

Lemma 4.13. For g € M\/'O'jJr17 witha=p+4§p=12,...,

g6 = ("))
for all t € (0,00).
Proof. Recall that
9D (6) = lim ~ W)

w—oo  dt

Integrating W' =% by parts p times, we obtain

witgn = L3S ST g
w (1 6) & (1—6)-- (k)

(-1 !

T(1—68)(1—8)-(p—9) /t (y—t)" 9" (y) dy.
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Taking — ;t from the both sides, we obtain

d o 1- _ 1 - (w—t)f-1=0 1 (k—1
T Ve "olt) = r(1-96) ; 1-0)-(k—1— 6)(71)k+ ")
TV s g - 5; p—1-0) /tw(y — () dy

From Lemma 4.12 it follows that the sum on the right tends to zero as w — 0. The
limit as w — 0 of the last integral exists since exists — by definition — the limit of
the left-hand side. By this

— (71)17 o p—1— p
SRR BNV L

Differentiating both sides p times, we have

dP (=1)P v 1

@) () = _ P16 ,(p) d

970 1 g o1 ) [ OO P Wy
dp (=1)?

T AT =51 =6) - (p—1—26) /w (y— )PP (y)dy

P KR!
R c(litml— 5) / (=89 () dy.

To justify differentiation in the last integral we observe that the result

0

T8 /:O(y — 1) 0P (y) dy

is uniformly bounded for ¢ fixed and w large enough as well as similar integrals for
lower derivatives. Moreover, it obviously tends to zero as w — 0. We then obtain

dr d 1 w
V() — Tim — / 000 () dy — (0O (¢
ad O == gy ), WD W)y = (7)),
the desired relation. O

4.2 Existence of the Fourier transform
and Bessel type functions

We concentrate on the spaces MV?, | with

d—1 d—1
I<a< 9 and b= 5 — .
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Set -
Fa(t)=t"2" f§(1).

In the limiting case o = dgl, b =0, we write
F(t):=Fa1(t), and MV :=MVY%,,.
2 2

It turns out for just this range of a and b that, although a priori the Fourier
transform should be understood in the distributional sense, it does exist in a
regular sense.

Let, as usual, C[a,b] and CP[a,b] be the classes of continuous functions and
having p continuous derivatives, respectively, on [a, b].

Let us introduce two Bessel-type functions:

Qult) = [ (=9 sy () ds

=T(a)t™ 2 “Ra(s> Ja_4(s);1)

and

1
4a(t) :/ (1— )" L5271 Ju(ts)ds,
0 2

where J,, is the Bessel function of first type and order p. When a = dgl, for
brevity, we will write simply @ and q.

We denote by ¢ an arbitrary function ¢ € S and by ¢¢ its radial part
(spherical average).

The following result is the promised existence (and inversion) theorem.

Theorem 4.14. Let fy be a function from MV£+1 with

d—1
0<a<
“=

and b= dgl — «. Then there holds for the radial extension f(x) = fo(|x|) of fo

2m(—1)*"+1
I(a)
and f(u) is continuous for |u| > 0, tends to zero as |u| — oo, and coincides with

the distributional Fourier transform f of f; for |z| > 0 the following inversion
formula holds

Flu)= ful' 2 /Ooo Fol(t) %2 Qa (2rult) dt, (4.15)

0= B fea (1 A2) ) e (4.16)

A—o0

Both integrals converge uniformly away from the origin.
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We note that Theorem 4.14 can handle radial functions which are not LP-
integrable, p < oo; e.g.,

d—1

fozhfl(e—l—t)7 a= ",

Further, observe that the restriction a < dgl is somehow natural, since f € L],
yields fo € BV, 1 with v < d;3. Representations similar to (4.16) with

a>d (1 _ 1) _ 1
p 2 2
have been used earlier (see, e.g., [195]), where one has the absolute convergence
of the integrals involved. Theorem 4.14 is mainly based on handling improper
Riemann integrals.
Let us compare Theorem 4.14 with another earlier results. Bochner in [35,
§44] considers not only radial functions, but more restrictive conditions are claimed
for the radial part of a function. Analogously, the radiality allows less restrictive
smoothness conditions than those in V.A. Ilyin and Alimov theorems for gen-
eral spectral expansions (see [105]). In Goldman’s paper [87] radial functions are
considered, with “worse” conditions at infinity and the monotonicity of a given
function and its derivatives. The very simple Leray’s formula somehow similar to
(4.15) may be found in [167, Ch. 5, Lemma 25.1'], but sharp assumptions are still
hidden in the fractional integral.
To prove the theorem we need auxiliary results for the introduced Bessel type
functions, which are of interest by themselves.

Lemma 4.17. The following asymptotic relation holds:
6o (1) = T(a) T4 o (1) + Caar ™2 + O(r™7%)
as r — 00, and Cq 4 1S a number.

Proof. We have

2

M 1 1
Gal(r) =) / (1—8)* " (14 8)7s2 1 Ja (rs) ds + / go(s) 5271 Ja(rs)ds,
=070 0

where M is such that
go(s) = (1 —5)* M (1 4 5)M*!

is smooth enough at s = 1. Evaluate first the last integral. We need the following
properties of the Bessel functions (see, e.g., [11, §7.2.8 (50), (51); §7.13.1 (3);
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it [t5 T, ()] = £ Tz () (4.18)

J(t)—\/zcos<t—7w—ﬁ)+\/2 1_4V2t_gsin<t—7w—ﬁ)
N e 2 4 T 8 2 4/ (4.19)

-I-O(t_g) as t— oo;
J, = O(t") for small ¢. (4.20)

Let us integrate by parts, using (4.18) as follows:

1
/ go(s) s271 4 (rs) ds
0

2

= [ ) 52 E gy

1 1

=~ ools) 5271 Ty (rs)

1 /1
+ / g1(8) 5272 Ja_q(rs)ds
™ Jo 2

0

1 1
= / g1(s) 5272 J(szl(rs) ds,
0

r

where g; is also smooth enough. For the case d = 2, unlike that for d > 2, the
factor s2~2 does not appear in the last integral. For higher dimensions, we can
continue this procedure, since the integrated terms may not vanish at s = 0 only
on the last step. After [g] steps we get

1
Grar™d 174 [ gy hrs) ds = oarE + 0(7E)

when d is even, and the integral

1
rat / g[g](s)s_ 2 J (rs)ds = C%dr_g + O(r_g_l)
0
when d is odd. Clearly, 914 denotes a relatively smooth function, like g; above.
To estimate the sum we need the following lemma.

Lemma 4.21. Forr>1, 8 > fé, w > —1 and each positive integer p

1 p
| sy ) s = S0 Ty )+ 0L,

j=1

where a? are some numbers depending only on j and u, and

af =D(p+1), oy = pul(p+2).
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Proof. We have

(L—s)t =271 =)+ [(1—s)" —27H(1 — s*)¥]
24— (1+5)"

= 27H(1 — )M +27H(1 — s)I T .
— S

Continuing this process of chipping off the binomials (1—s?)*T=1 for j = 1,...,p,
we use the formula (see, e.g., [181, Ch. 4, Lemma 4.13]):

Pt

1
Jptpr1(r) = 2+HI=1T (11 + §) /0 Jp(rs) s (1 — $%)P s,

The remainder term is estimated as above by integrating by parts p* +p+1
times. Estimates are better in this case, since here s is in a rather high power. The
lemma, is proved. (Il

To finish the proof of Lemma 4.17, it remains to apply Lemma 4.21, with
8= g, uw=a—14j, and p =1, to the integrals in the sum for g,(r). O

Remark 4.22. Sometimes the rough estimate

1

Ga(r) = O(r=272) (4.23)
will be enough.

The following lemma is due to Trigub (see [199, Lemma 2]). The lemma
concerns the functions

1
iy A1) :/ t*J\(rt) dt
0

where p+ A > —1.
Lemma 4.24. There holds:

1) i(p A r) =1 D (r) + MR i — LA+ 1,7).
2) The function i(u, \,7) is O(r*) for small r, and when r — oo it behaves
either as O(r‘g) or O(r=1=H) for u > é and p < é, respectively.

Proof. To prove 1), we integrate by parts using (4.18). We have

. I
Z('u,)\ﬂ") = 7"/ t A 1d [t)\JrlJ)\Jrl(Tt)]
0
1 41— v
= TJ/\-H(T)"_ , M/ = g (rt) dt.
0
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Further, the first assertion in 2) immediately follows from applying (4.20) to Jy
and the usual estimate of integral. Now, let » > 1. After the linear change of
variables

i(p, A, r) = 1"_1_“/ t* I (t) dt.
0

Decomposing the integral, we see that it is bounded when ¢ € [0, 1], while for
t € [1,7] we use (4.19). If x> }, we obtain after integrating by parts

/;t“JA(t) dt = /;t“ [\/i cos(t _\/ﬁt; et +O(t3)] dt

71')\771'
4

2 =) sin(r — )+ 0(1) +/ O(t*=32)dt
™ 1
O(r”fé),

and
i, A, r) = O(r_l_“r“_é) = O(r_g).

Ifp< é, then the same computations show that the integral
T
/ I\ (t)dt
1
is bounded with respect to r and
i(p, A,r) = O(r 1),

The lemma is proved. (]

4.3 Proof of the existence theorem

We are now in a position to prove the above existence Theorem 4.14.

Proof. Let us start with proving (4.15). By Theorem 4.1, for each ¢ € S,

(foo)= [ f)p(x)de
R4

A—oo Jpd

A
lim o(x) [27rsc1_g/ fo(t)thgfl(27T|x|t)dt dx.
0

We rewrite this equality as

oo

~ d A d
(f,p) =27 lim wo(r) r2dr/ fo(t) t2 Jg_l(rt) dt.
0

A—oo Jg
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To prove (4.15) we will make use of integration by parts as many times as the
right-hand side of (4.15) to be obtained, and then the passage to the limit under
the integral sign should be justified. Because of Lemma 4.13 we postpone the
fractional differentiation till the last step. Thus, for [«] # 0 integrating by parts
[a] times (in t) yields

/ wo(r /fo tZJd _,(2mrt) dt dr
0

oo 1)l 1
:/ @o(r) T { / fo t[aH?dt/( 5)['1]7153(](2171(271'7"155) ds
0 0

[a]—1 A
—1)»
+ Z ( p') fép)( )thr +1/0 (1 _8)p8§Jg_1(27rrts) ds }dr. (4.25)
=0 . 0

The integrated terms vanish at t = 0 by Lemma 4.12 and (4.20).

For t = A, we from now on keep in mind that the limit as A — oo should be
found. Here it suffices, in view of (4.3) and Lemma 4.12, to establish the uniform
boundedness in ¢ of the integrals

o) 1
By(t) /o wo(r) rgdrthrl/O (1—s)psgjg_1(rts)ds.

For these calculations, we omit 27 in the Bessel function without loss of generality.
We integrate by parts in the outer integral m = [¢ —1/2] times, using (4.18) so that
the order of the Bessel function decreases. Integrated terms vanish since ¢ € S.
Defining by % here and below the radial part of a function from S, we have

e8] 1
By(t) :/0 P(r) rg_mtg_m""ldr/o (1- s)psg_mjgfmfl(rts) ds.

)=t 1—s)Pcos rts ds.
[Tewrar [

For p = 0, we have the Fourier integral formula (see [35, §9]):

For d odd,

Jim Bo(t) = L(0).

For p > 1,

e} 1
’t/l P(r) dr/o (1 —s)Pcos rts ds

- -1
g/l [Y(r)|r~dr < oo
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and

t/lw(r)d /1(15) cos rts ds

=1 (1 —s)Pcos rts ds
froe fa-r

+t/0 [(r) — (0)] dr/o (1 —s)Pcos rts ds.

The first integral on the right-hand side is equal to

1
’(/J(O)/O (1 —s)Ps sints ds,

and its finiteness is well known. For the second integral, the estimate

[ ) = w0 <o

follows, as above. Now, for d even,
0o 1
= / W(r) rt*dr / (1= s)Psdy(rts)ds
0 0

_ /0 e [rt /O 1 sPsa(rts) ds| dr.

and integration by parts in accordance with (4.18) yields the boundedness of B,(t)
immediately.

Therefore, the integrated terms in (4.25) vanish as A — oco. For « integer,
the element of integration coincides with that indicated in (4.15).

When « is fractional, apply to the first term in the curly brackets on the
right-hand side of (4.25) the following formula of fractional integration by parts
(see [11, p. 182], or [167, (2.20)])

/ J1(t) Ry(f2 5t)dt = / Wifi(t) f2(t) dt
Inour case y=1—a+[a], f1(t) = f(g[a])(t)7 and

fa() = [T Qa(rD).
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Indeed,

R ) (5172 Qg (rs); 1)
C([ol) Fagoy (R (5341 79); )s1)
=T([a])R (S2Jd 1(rs);t)
(

=D et g, .
I(e)
Therefore f3 is the Riemann—Liouville derivative of order 1 —a+[a] of the function
]+‘§Q[a] (rt), and the Riemann-Liouville integral of order 1 — a 4 [ of fo is
exactly t1912 Qo (rt).
Applying the usual integration by parts to the right-hand side of the formula
of the fractional integration by parts gives the following equality true for all o :

1 A o) gy o]t

A
_ /A d[ta+‘5Q (rd) . /f D) (5)(s — )l gs dt
INa) Jy dt “ 1—a+
t

1 A § )
N s ap ] €70 )ds}t EQatrt) |y

[a] — A o (r o0 o pectlal=1 0] () g
+F(a)F(1fOz+[a})/0 172 Qal t>/A (s—1) fo™(s) ds dt

1

A
— ot r .
I'a) /0 F,(t) t*T2Qq(rt) dt

Here we obtain the last two values on the right by applying Lemma 4.13. It must
be shown again that the first two values on the right-hand side vanish as A — oco.
For ¢ large enough,

A A

/(5 _ pyotlal el (g) gs| < ¢4+o—lel /(S7t)fa+[a]|5[a]f<[a1>(5)|ds’
t t

tete

and because of (4.3) and Lemma 4.12 the right-hand side vanishes at ¢ = A. We
now consider

A
i+, (rt) / py-otlal plleD) (5) g
t

as t — 0. Using the inequality
Qa(rt) < (Cre~Yygz—!
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that immediately follows from (4.20), we obtain as above

A
t2teQ, (rt) /(5 — )~ el () ds
1

< C(A — tylmotlolyt=tralol gyp [gle] £l (g)|
[1,4]

and the right-hand side tends to zero as ¢ — 0 + . To estimate

1
tateQ, (rt) /(s — )"t plead) () ds,
t

we wish to show that

1

Jim 2500 [ (s e gD s) as —o,
t

From the definition of F, it follows that

d 1—d

u /(sft)[o‘]*o‘fé[a])(s)ds:O(t 2").
t

Since

d

o [ =0 P ds = @ fa)) [ =g D s)as

is bounded, we have

1
d ol—a o 1—d
o [0 ds =o' )
t
and thus
1
/(5 —tyleleplleD gy ds = 0(°2").
t

This estimate is that desired.

Further, we integrate by parts [*;'] times in r. By this, we use (4.18) with
“—” on the left-hand side. Using once more (4.18) with “+” on the left-hand side,
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we obtain

9] A 9]
/O soo(r)rg/O {/ (st)_aHa]_lfé[a])(s)ds}tg+O‘Qa(rt)dtdr

A

[e'e] A s
:/ 1/J(T)r(21*[d;rl]+1/ {/ (sft)7a+[°‘]71fé[a])(5) ds}tg[dgl]+a
0 0 A
1

X/ (17u)a—lug*[dgl](]g+1i[d;1](Ttu)dudtd’r'.
0

In view of (4.3) and Lemma 4.12, we have

sup |5 fé[a])(s)\ —0 as A— 0.

SE[A,00)

A [eS)
/ elel=t dt/ (s —t)~otlel=1 g
0 A

1 1
= | / teled=1q —py=etlel gt < €.
0

a—|a

Besides that,

For d odd and each «, since

2
Ji(rtu) = \/ sin rtu,
2 mriu

we derive that

1
/ (1 - u)a—lug_[d;rl](]ngli[d;d](’l"tu) dr
0

times (1"75)3*[(#51]+1 is bounded. For d even, Lemma 4.17, with d = 2, yields such
an estimate only for a > é It remains to consider

/OOO ) /OA {/Aoo(s — 077 (s) dS} te /01(1 — )Yy (rtu) du dt dr

for 0 < a < % Again, applying Lemma 4.17 with d = 2, we reduce the problem
to the finiteness of

/00 U(r) (7'1€)§*’JK sinrt dr
1

when rt > 1, since all the remainder terms are estimated as above by applying
(4.18). Integrating by parts and taking into account that all the integrated terms
are bounded, we see that it remains to estimate

/OO P'(r) T(Tt)_é_a cosrtdr + (1 - a) /OO P(r) (rt)_i‘_a cosrtdr.
1 2 1
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Since both integrals are finite, we finally get

_ 1) +1 o0 A
(f,0) = QW(F(lci) Jim | wo(r)r? /0 Fo ()t 2Qq(rt) dt dr.

It remains to justify the passage to the limit under the integral sign. Due to the
Lebesgue dominated convergence theorem, it is possible if the element of integra-
tion is dominated by an integrable function independent of A. To prove this, we
consider two integrals: over r € [0,1] and over r € [1,00), respectively. In view of
(4.3) and (4.4), one can treat Fy, as a function which is monotone decreasing and
vanishing at infinity. Let r € [1, 00). Consider two integrals in ¢ over|[0, 1] and [1, A],
respectively. The first one is bounded, and the bound is simply |po(r) 72| times
absolute constant. Applying the second mean value theorem of integral calculus
to the integral over [1, A] and using (4.18) and Lemma 4.17, we obtain (§ < A)

A
wo(r) 2 /1 Fo(t) t“T2Qu(rt) dt’

d 5 1
eolr) T F(D) [ 1+ Qulr) dt]

Fa(1) go(r) r%‘-l{ta“/? 4a(rt)

(%)

and the last value is integrable over [1, 00). Finally,

13 £
d—1 1
+( - a) / 972 gq(rt) dt}‘
1 2 1
d—3

€1 1
Fo(1) po(r) r 2 _O‘/ ; cos(rt + p) dt +Cr ‘ Fo (1) wo(r) ‘7
1

1 A
lim wo(r) r S dr / F,(t) ot Qo (rt)dt

A—o0 J

0
1 A
= Jim [ {leo(r) = o0 + o0} at [ Falt) 17 Qulrt) .

A—o0

Since ! [po(r) — ¢o(0)] is integrable, the part corresponding to this function may
be estimated completely like that in the case r € [1,00). Further,

1 A A
lim / r / Fo(t) tT2Qq(rt) dt dr = lim [ Fa(t) 1273 gu(t) dt.
0 0

A—o0 —o0 Jo
Since F, is bounded and monotone, integration by parts and estimates like in
Lemma 4.17 yield the convergence of this integral in improper sense.

In fact, we have proved the uniform convergence of the integral (4.15) when
|z| > 7o > 0.

Let us now show that f(z) — 0 as r = |z| — oo0. Using the second mean
value theorem, we obtain for some A” < A’,

o~

A/ "
Y / Fat) 1% Qu(rt)dt = Fo(A) 12 [1°F2 qu(rt)] ", .
A
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In view of Lemma 4.17, we have for every A > 1 as A’ — oo,

rl—%/ Fa(t)tots Qa(rt)dt‘ < C| Fa(A) | r "2 e
A

The right-hand side tends to zero as r — co. Further,

A
rl=i / Folt) t°F2 Qu(rt) dt
0
d A 1
=F,(t) r~ 2 o (rt) ‘0 72/ t*T 2 g, (rt) dF,(t)
0
d—1 e [ a1 _d
+ g —afrE Fo(t) t*72 qo(rt) dt = O(r™2)
0
by Lemma 4.17 and (4.4), which completes the proof.

Let us show the continuity of f(z) for |z| > 0. Let [ro, 1] be an interval of
uniform convergence of the integral in (4.15), and |x| € [rg, 71]. Then the functions

S Emie Ny
frlx) = 2772 [ Fa(®)t*7> Qal|x[t) dt
I'(a) 0
are continuous for each k = 1,2,..., and converge uniformly to f(x) as k — oo.

Hence, f(z) is continuous for these z as well.

Let us now prove the inverse formula. Applying the Cauchy—-Poisson formula
(see Theorem 1.6 above), we have

1 |u2)d21°‘ o
1— u) e dy,
(2n)2 /MA ( 42 flu)

d—1

-1 a*+1 u A 2 2 T«

= ( an) P15 /0 (1 - 22> Sjg_l(Qﬂ"l"S) ds
x / Fo(t) t°T2 Qu(2mst) dt (4.26)
( a *4+1

= / Fo(t) toF2 dt

A
></O (1 j;) sda_y (27rs) Qu(2mst) ds.

Here, changing the order of integration must be justified. Omitting 27 when needed
in the consequent calculations results in no loss of generality. Let 0 < § < A. The
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uniform convergence of the integral in ¢ for s > § yields

A 2 5, T 0o
S at1
/5 (1— A2> ng_l(rs) ds/ Fo(t) t%T2 Qu(st) dt
0

00 A 2 2 T
:/ Fo(t) tots dt/ <1 - Z2> sJa_y (rs) Qal(st) ds
0 0

,/OOF () ta+%dt/§ (1 52> S Tu L (rs) Qulst) ds.  (4.27)
0 “ 0 A2 ‘21—1 “ ’ '

It suffices to show that the last integral tends to zero as 6 — 0. Take € > 0 and
let M be large enough to provide |F,(M)| < €, by (4.3). The second mean value
theorem yields, after integrating by parts,

00 4 2 2 T
/ F,(t) ot / <1 — Z2> ng_l(rs) Qo (st) dsdt
M 0

’ d—1
M ) 5 52 5 —«
= Fa(M)/ tota /0 <1 — A2> ng_l(rs) Qo(st) dsdt
M/

— F (M) ltwé /O ’ (1 j;)a Ja_y(rs) galst) ds] (4.28)

M
d—1 M 1 g 82 dgl_a
—F,(M)a-— / 72 / 1- Ja_1(rs) qu(st) dsdt.

We first estimate the integrated terms in (4.28). The uniform boundedness, in ¢
and 6, of the value in brackets should be shown. Since

d—1

. 52 2 T 1
Ca,d/<1A2> s 2 J;_l(rs)ds
0

does not depend on M and M’, these values taken twice with opposite signs cancel
one another. In view of (4.20), the rest, for s € [0, !], does not exceed the quantity

1
—1

t
Cctot: / \J(szl(rs)|ds <crile=h
0

)

while for t6 > 1 and s € [}, 4], in view of Lemma 4.17 and (4.20), it is

5 2\ 3l-a §
1 —a S _ d—5_
[(a)t2 /1 s (1 - A2> Ji_y (rs)Jg+a(st) ds+ O (t 1ﬁ 5 2 ds) .

t t
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The remainder term does not exceed
ofte= " 4 5) e e,

which is bounded. Applying (4.20) to Ja_, and (4.19) to Ja, o in the leading

term, we obtain for a < dgl,

4 2 2 T
S a4 238 d—1_ a_d-1
ﬁ<1A2> st ds <C(6 2 T4t 2 ) <C.
d—1

5 » we first integrate by parts as follows:

For o =

5
ti‘/l s=2 Jg_l(rs)Jd_é(st)ds

t

)

s
1 1-d 1 _d-1
=—t72s 2 Ja_y(rs) Jgy 1 (st) 1 +rt 2/1 sT 2 Ja_y (rs) Jypy (st)ds,
t

t

and then continue the proof as that for the remainder term.

Let us now estimate the last integral in (4.28). This makes sense only for
a < dgl. Using again Lemma 4.17, we arrive to estimating

M 5 §2\ 20 e
/M 15_2d7f/1 (1 - A2> s~ Ja_y (rs) Ji i (ts) ds,

since the rest is treated analogously. Let us change the order of integration. With-
out loss of generality, one can take § < 1&1- The following should be estimated:

5 $2\ 2 e M
/1/ (1 - A2) s~ Ja_y (rs)dsﬁ t‘?Jnga(st)dt

M
d—1 T

]‘1/1 52 2 T _ s
Jr/(; (1A2> s Jg_l(rs)ds/Mt 2Jay g (st) dt.

We apply (4.19) to Jg +o- For the remainder term, after applying (4.20) to Jgfp

we obtain
5 M’ y L
_ 1 M _ s ]
/ sd25_a/ dtds+/ sd25_0‘/ dtds,
17/ 1 t2 5 M t2

M

which is obviously bounded. For the leading term, the integral in ¢ is of the form

/ cos(st + w) dt

t
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After integrating by parts the estimates coincide with those for the remainder
term. Hence, the value (4.28) is small. Choosing ¢ so small that

M ) s 2 d;l_a
/0 Fo(t) toF2 /0 (1— A2) ng_l(rs) Qa(st) dsdt| <,

we derive that the last integral in (4.27) tends to zero as 6 — 0. Returning to
(4.26), we have

A 2 2 T
s
/ <1 A2> SJg_I(Qﬂ"I"S)Qa(Qﬂ'St) ds
0
A
:/ sJa_1(r8)Qq(st)ds
0 2
4 d—1 A ass
7/ SJd_l(Qﬂ"I"S)Qa(Qﬂ'St)2< 9 a)/ u(l —u?) 2" ~*duds.
0 2 0

Let us proceed to the second integral. We have

/O T Fa) o+ [ / ’ sJa_1(rs)Qa(st) /O o u(l—u?) " ~du ds] dt

1 o A
= / u(l —u? 2 / F,(t ta+2 / sJa_1(r8)Qu(st)dsdtdu
0 0 Au 2

1 A
:/ u(1l — u?) % Q{Fa t°‘+2 Jd _1(rs) qa(st)ds

0

/ tots / Ja _1(rs) qa(st) ds dF,(t)
Au

+( ) —1 —a) /OOOF (1) o /Aqu 1(rs)qa(st)dsdt}du.

The integrated terms vanish at ¢ = 0 and ¢ = co. Indeed, it is obvious for ¢ = 0,
while for ¢ = oo follows from Lemma 4.17 and (4.3). We have to show that the
right-hand side tends to zero as A — oco. Observe first that the estimate

|ga(st)] < C(st) ™72

as well as (4.19) and (4.20) for Ja_y yield

A
SC/ s™174ds
Au

with some ¢ € (0,1). This combined with (4.4) gives proper estimates for the
second summand in the curly brackets. When ¢ € [0,1] the calculations for the

A
tots / Ja_1(rs) quo(st) ds
Au
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third one are similar. Using then Lemma 4.17 when ¢ € [1,00), we estimate the
remainder term as above. The leading term, by the second mean value theorem,
is equal to

0o A
/ Fa(t) t—%/ 5741 (rs)Ju o (st) dsdt

/ t- 2/ “Ja_y rs)Jd+a(st)dsdt
Au

We apply (4.19) to J 9 ya No new technique is needed for the remainder term.
What should now be estimated is

§ A s
/ tt / sT72 Jgfl(rs) cos(ts + p) ds dt.
1 Au

Integration by parts in ¢ and estimates of the integral in s, like above, prove that
the limit is zero. It remains to consider

o] A
/ Fo(t) toF2 / 8J371(27T7‘8) Qo (2mst) ds dt
0 0

[ 1 A
1 d
=, /Fa(t) o= /1—u 71du/J _1(27rs) Jd(27rut5)ds dt.
™
0 0 0

Let us substitute integration over [0, A] for that over the difference of two sets:
[0,00) and [4, c0), and use the formula

e L (S
0, for b<a,

I'(v—p) /OOO J.(at)J, (bt)tH— vt = {

which is true for v > p > —1 (see [12, p. 148]). We obtain

oo 1 o)
1 -1 d

/Fa(t) o= ts /(1 —u) 1/J _1(27rs) Ja (27uts) dsdu| dt
2m dt

0 0 0

Integrating by parts and using (4.2) and (4.3), we get

a *+1
oA e = g
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For « fractional we have also used the permutability of the fractional integral and
fractional derivative. If we show that

e’} 1 d 1 oo
F,(¢) o=z t3 (1- u)“71u371 Ja_1(rs)Ja(uts) dsdu| dt
0 dt 0 a2 2

tends to zero as A — oo, the inverse formula will be proved. Integration by parts
in the outer integral yields

oo

1 o)
F,(t) tots / (1- u)aflugfl/ Jg_l(TS)Jg (ust) dsdu
0 A

0

o) 1 o)
7/ {to“ré / (1-— u)o"lug’l/ Ja_q(rs)Ja(ust) dsdu] dF,(t)
0 0 a 2
d—1 o
+ ( - a) / Fo(t) t* >
2 0
1 u o)
X / (1- u)aflu‘z*l/ Ja_1(rs)Ja(ust) dsdudt.
0 A 2 2
To estimate the first two summands, it suffices, in view of (4.4), to show that

lim sup
A—oo ¢

1 0o
t“+1/2/ (1-— u)o‘flugfldu/ Ja_q(rs)Ja(ust) ds| = 0.
0 A 2 2

Let us show that the change of the order of integration is legal. By the Lebesgue
dominated convergence theorem, it suffices to find an integrable majorant, inde-
pendent of A and A’, for the function

A/
(1- u)aflugfl/ Ja_1(rs)Ja(uts) ds.
A 2 2

Integrating by parts in the inner integral, we obtain

A Al Al
1 tu
/A Jg_l(rs) Ja (uts) ds = . Ja (rs) Ja (uts) ) + . /A Ja (rs) Ja g (uts) ds.

The integrated terms are bounded, and (1 — u)* w2~ is integrable over [0, 1].

We now apply (4.19) to the Bessel functions in the last integral. The remainder
terms are bounded, and (1 — u)c‘_ludg3 is integrable. For the leading terms, we
have

2 4 2 4
A S

1 /A/ cos(rs + uts — wd — ) d 1 /A/ sin s(r — tu) ds,
A A

/A/ cos(rs — ™ — ™) cos(uts — ™ — 3T)
ds

2 s 8_2 s
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and the boundedness of these integrals is easily obtained by integration by parts
and by the inequality T_:ut < 1. Now, Lemma 4.17 and the rough estimate J,, (t) =

O(tz2) yield

1 o)
lim sup|t*t> / (1- u)o‘flugfldu/ Ja_q(rs) Ja(uts) ds
A—oo ¢ 0 A 2 2
= lim sup tots Oon (rs) qu(ts) ds| < C lim P2 o ds =0
A—o0 A 271 * - A—o0 A 51+Oé

It remains to estimate
e} ) 1 4 e}
/ F,(t) tc‘_2dt/ (1—u)0‘_1u2_1du/ Ja_q(rs) Ja(uts) ds
0 0 A 7 2
:/ F.(t) to"édt/ Ts_1(rs) qa(ts) ds.
0

A
For t € [}, 0o] such estimates are already fulfilled above. Let ¢ € [0, }]. Considering
5 1 0
/Fa(t)tafé /(1 - u)aflugfl / Jg_l(TS)Jg (ust) ds du dt,
0 0 A

we apply (4.19) to the first Bessel function on the right-hand side. Estimates for
the remainder terms are obvious, therefore we have to estimate

7‘

1 00
/ tO‘_ / (1—u) 51 /s_é cos(rs — h)J; (ust) ds du dt
0 A

where h is a number. Integration by parts in the integral

/siécos(rs—h)Jd ust) d /s 5572 cos rs—h)ngg(ust)ds
A A

and simple calculations using (4.18) and (4.19) lead to showing that the integral
ut / Jgfl(ust)s_é sin(rs — h) ds
A

tends to zero as A — oo. We are going to apply (4.19) to the Bessel function.
This is the reason that the factor ut precedes the integral. It ensures that the
other integrals, in ¢ and u, exist. Again, for the remainder terms, we get estimates
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similar to those above by applying (4.19). For the main term, we have the inner
integral of the form

(oo}

\/ut/ cos(ust — 1) sin(rs — h) ds.

S
A

Since ut < 7 for t € [0,7] and u € [0,1], the latter integral is obviously small as

A — oo. The proof is complete. O

4.4 Passage to a one-dimensional Fourier transform

What we have achieved up to now is the possibility to represent the Fourier trans-
form of a radial function from an important space as a regular function, more
precisely, as a convergent improper Hankel type integral, though initially it should
be treated only in the distributional sense. Of course, importance of the spaces in
question needs additional discussion, but this will be postponed to the consider-
ation of applications. What is vague now is that the convenience of those Hankel
type integrals is disputable.

It turns out that we are now in a position to carry out the passage from the
multidimensional Fourier transform to the one-dimensional Fourier transform of a
related function. The result reads as follows.

Theorem 4.29. Let fy € MVOIZ+1 with 0 < o < dgl and b= dgl —a, set
d—1 o
Fa(t) =t"2 £ (1),

Then there holds, for the radial extension f(z) = fo(|z|) of fo, with |x| > 0,

fla) = xd;a{cw /Ooo Fa(t) cos (27r\sc\t - Z(d+ 20 — 1)) dt

o (o) + 0y [ min (et )iz ) |

where C 4 = 2371'5(71)’1*+1 and Ca q is a constant depending only on d and «,
given in (4.34) below.

(4.30)
+Coq

Remark 4.31. Concerning the terms in the brackets on the right-hand side of
(4.15), the first one is the claimed one-dimensional Fourier transform, unlike more
complicated integrals in (1.6) or (4.15). In a concrete situation, an explicit for-
mula may exist — there are numerous detailed tables (see, e.g., [12]). The integral
exists as an improper Riemann integral, since F, € BV[0,00) and vanishes at
infinity; this is a direct generalization of a well-known one-dimensional result (see,

e.g., [31, §2]).
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The second term in the brackets on the right side of (4.30), being given
explicitly, is easy to handle. Its LP-integrability reduces to

N
/ et et <1> ’
1 T

The integral is uniformly bounded, with respect to N, if o > z — dgl. Thus the
second term on the right-hand side of (4.30) is essential, that is, may lead to a
non-LP-integrable term, if o < z — dgl.

1
dr = C’/ ridepgfgﬂ’aﬂ’\Fa(rﬂp dr.
1

N

If we choose, in particular, p =1 and o = d2 L we end up with the integral
! dt (“3h
) |F(t)| t ) F(t) _t 2 0 (t)7 (432)
N

which may diverge under the hypothesis fy € MVas+1 as examples, more or less
similar to those in Proposition 4.9, show. Let, for instance, d = 3. Consider the

function
f(x) =sin <ln In (|;|>>

for |z| € [0,1], and 0 otherwise. We have

1) = tln(‘;)inln (i) cos (lnln (j))

and F(t) = ¢f;(t). This function obviously satisfies conditions (4.2)—(4.4). It is

easy to see that
1 1
F(t
o t 0

1
tg / ngé (rts)ds dt‘ dr
0

Consider

<|z|<
2
= \/ ssmrtsdsdt dr
77
2 ! t
_ \/ )cosrtdt—/ P gt ar.
71' 0 Tt

It suffices now to prove that

N 1 .
1 t
lim / F(t)smr dt’dr = 0.
0

N—oo 1 T t
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Integrating by parts, we have

1 r 1

and one has to prove that the one-dimensional Fourier transform of the function
fo is non-integrable. Indeed, if it were integrable, the following condition would
necessarily be valid (see, e.g., [113, Ch. 2, §10]): the integral

/1 fo(t) gt
,

converges. But it is easy to see that this integral diverges for our function, which
shows the sharpness of the condition (4.32).

The integral in the last term of the right-hand side of (4.30) is in any case
dominated by || fol| mvp, - Concerning the LP-integrability, it turns out that in the
41 it is finite (this is the case considered in [120]; see also

22, 23]) whereas in the case « < ¢ — 971 it may be as bad/good as the second

term. To see this, we apply the generalized Minkowski inequality and obtain

N d—1 e 1 ’ 11)
{/ ’I"d71 =2 7(171/ min(TS, >dFa(S) d'f'}
. 0 rs
o0 N d_p 1 g :7
S/ {/ pd—=1-pd+%f—pa—p min(?“& ) dr} |dF(s)].
; . rs

Splitting the integrals, we consider four cases; first we obtain
1 : s
/ dFa(s){/ e A e A (D i dr}
~ 1
1

<C [ sldF.(s)|(s # 2 T 4 1);
1/N

v oo :
/ |dFw ()] {/ rd717p2+27p°‘7p(rs)p dr}
0 1

1

< C/ON s|dFa(s)] (NZ—‘{?—“ + 1)

1 N d P 11)
/dFa(s){/ rd1p2+2p°‘p(rs)pdr}

N
1

<0 [ Naras)| (NE2 e g i e,
1S

1 1
/ t~LF(t)sinrt dt / fo(t) cosrt dt‘ dr,
0 0

case p=1and a =

then

and
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and, finally,

0o N 11,
/ dFa(s){/ e A e () dr}
1 1

1
1 —1
gc/ dF.(s)|(N? 27" 2 1 1),
1S

N

These give that the third term on the right-hand side of (4.30) may lead to a

: : d_ d-1
non-LP-integrable term if (as opposed to the second term) a < p 2

Remark 4.33. For radial functions with compact support and integrable Fourier
transform, Podkorytov [154] obtained a similar formula.

Let us go on to the proof of Theorem 4.29.

Proof. Denoting

1 2 ™
= at — - -1 )
D, (r) F(a)r 2Qq(7) \/7T cos (r 4(d+2a ),
we then rewrite (4.15) in the form
n _d_1_ > ™
f(z) =Chalz| 22 O‘/ F,(t) cos (27r\sc\t - 4(d+ 200 — 1)) dt
0
#an(-1 a5 e [T R0 enalt dt,
0

and only the last term has to be discussed. Decomposing it into

F, Q;) /Ooo B (27|zft) dt + /OOO {Fa(t) — F, <i>} O (2r|z|t) dt = I) + I,

we have

1 1 o0 ey 1 1
L= E, O, (t)dt = D 4.34
' ol <x>/ (B dt = Coal=1)" (aa) (4.34)

provided fooo ., (t)dt is finite. Let us see that this is the case. The integral is
obviously convergent over [0,1]. Thus it remains to estimate ®,(¢) on [1,00). By
Lemma 4.21 we have

Qult) = [ (=9 15ty (1) ds = D@t Ty 01 (0)

+(a=Dl(a+ 1)t e () +0(t772).
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Using also (4.19), we obtain

B(t) = 2 5rd [1—d(nj2 4o — 17 O T A T2

(= D)D(a+1) [2cos(t—T(n+2a—1)) 1
* N \/7r t +0 <t2>’

and the integral in question is convergent.

Splitting I into two parts, we have

/O'i' [Fa(t) _F, (;)] . (27 |x|t) dt

/"1”' o, (27 |2[t) /‘ 4 /' '/ (27 |2|t) dt dF(s)
(/ - / (272 () 81 4 1] dtdFa(s)|)

o(/O“ s|dFa(s)|> - |;|o</0l |x|s|dFa(s)|>.

Further,

/OO {Fa(t) (|1|>} Do (27|z[t) dt = /Oo o (27| [t) /t dF(s) dt

|z

/ / o (27| |t) dt dF o ( m/ /2w|w|s t) dt dF,(s),

and finally, by the above asymptotic for @,

/ B (1) dt
27|z|s
2
o d+2a—1
=2 32 1—4(d+a—1) / sint =G (d ¥ 20 =) 4,
2 27|z|s t
+(a71 +1\/ / cos(t — (d+20zfl))dt
27|z|s

< 1
dt
+O</271'|z|s t2 ) O<x8>

This completes the proof of the theorem. O
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4.5 Certain applications

First, we are now able to generalize Theorem 3.34 (or, more precisely, Theorem
3.37) to the radial case. Since it is essentially the L!-theorem, we restrict ourselves
to the case a = dgl. For the sake of simplicity, let us again use the notation

F(t) = Fai(t) = ).

Theorem 4.35. Let fo € MVai1; assume additionally F to be locally absolutely
2
continuous and F' € Hgp. Then, for |x| > 0,

~ d—1 1
fz)= |x|_d |:Cl,d sin m( 5 ) +02,d:|F <4x> + \x\l_d’y(|x|), |z| > 0,

where C1,q and Ca q are as in Theorem 4.29, while v is as in Theorem 3.34.

Proof. First of all, the formulas from Theorems 3.34 and 3.37 may be rewritten
in a general form for functions defined on the half-axis (0, c0) as follows:

/0 A(t) cos(2mrt + p) dt = o) sin g\ (4|r|> +4(r).

Now, this and (4.30) proves Theorem 4.35. One has only to recall that in (4.30)
the third term is integrable for @ = %;' (see Remark 4.31). O

Let us apply Theorem 4.35. The following two examples were considered
in [136].

Example 4.36. Let d = 3 and f = g1 be given by (4.10). Observe that F(t) =
tf'(t) € Ag, ¢ > 1, and

M@y < IF N isr < CollF|la,,
thus, by (3.29), the hypotheses of Theorem 4.35 are satisfied. Hence

~ C 1
TO = oo tn(lal costinta(iapy T [of2 77 11> 1w € R

where

/100 [v()| dt < 0.

This is indeed an asymptotic formula since the second term on the right-hand
side is integrable outside the ball with the radius 1 unlike the first term which is
not integrable! This can be extended at once to the other dimensions when using
(4.11) with 6§ = J.
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Example 4.37. Let us consider the linear means (1.18) of the Fourier series of
1-periodic in each variable functions f € L'(T4).

The following theorem is known for the L!-norms of these means (see,
e.g., [125].
Theorem 4.38. Let () = wo(|z|) be a radial function such that oo € MVar1 and
2

continuous at the origin. Then
Sl = [ 8@+ O(IFlLavioe)

d—1

where, like above, F(t) =t 2
Let d =3 and

d—1
0y 2 (t).

po(t) = (1 — g2(t))x (1),
where x and gy are described in (4.11). Note that we have ¢o(0) = 1 which is

necessary for approximation. Applying Theorem 4.38 and then Theorem 4.35, we
obtain

| cos(InIn(*!"1))]
Mmmm@:c/ dz + O(1)

1<[z|<N |z|dIn (2|:|) Inln (2‘:‘)

N .
:C/ | cos(lnlnr)| dr+0(1) =Clnlnln N + O(1).
1

rinrinlnr

Replacing Inln (1) by a “longer” In-chain in the denominator of the function
g2 one can get a worse behavior in N of || L% 1 (pa).

Let us now obtain a generalization, to the multiple case, of the Zygmund—
Bochkarev criterion for the absolute convergence of Fourier series of a function of
bounded variation (see [28], [29, Ch. 2, Th. 3.1]). We use the standard notation w
for the modulus of continuity.

Corollary 4.39. Let a radial function be boundedly supported, satisfy conditions
(4.2) and (4.4), and F(0) = 0. Then the condition

0 \/w F;l
3 (k ) < o0 (4.40)
k=1

is sufficient and, on the whole class, necessary for fE LY (RY).

Proof. Since |F(t)] < w(F; ) fort € (k}rl, .1, the condition

00 1
k=1
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provides that (4.32) holds. Applying Theorem 4.29, we reduce the problem to
the one-dimensional one. True, the absolute convergence of the Fourier series was
investigated by Bochkarev, but it is closely connected with the integrability of the
Fourier transform due to the following theorem of Trigub (see [196, 197]):

Theorem 4.41. Let f(t) be a boundedly supported function of one variable, and
fi(t) = tf(t). Then f € L*(RY) if and only if the functions f and fi after periodic

extension have absolutely convergent Fourier series.

To use the negative part, Bochkarev’s result, it remains to note that
1
w | F; f < Cmax{w(F,t) ;t}

for t € (kil’ H7 and the corollary is proved. (]

We are not aware of any other multidimensional generalization of the nega-
tive, essential part.

Let us give two more examples.

Example 4.42. Consider the function f(z) = (1— |x|a)’/j_ and establish the integra-
bility of its Fourier transform for a > 0 and 5 > dgl by means of Corollary 4.39.
This is important in problems of summability of Fourier series and multipliers.
Conditions (4.2) and (4.3) are evidently satisfied. The same may be said about
conditions (4.4) and (4.40) for d odd. For d even to verify (4.4), it suffices to show
that for L
i) = 0(a— 122",
with € > 0, v > 0, the function téw(é)(t) is of bounded variation. We have

: d ! : ) ! 1 d )
G(t) = —1)72 §7(1—5%)27¢ ds= —1)"2 Y(1—s5%)27e Lds.
P2)(t) dt/t(S) s7(1—s%) S/t(S) d{S( %) }s

S

This means that the boundedness of variation of the function
1
t2 / (s — t)7§ s671(1 - so‘)sféds,
t

with € > 0, ¢ > 0, should be established. Further,

1

S =) = (1= ) 3 (s = 1) 4 (1= s7) 2

m ( 157 )5_ 2 , we have

Denoting C, = 1i 1
S

—1
(1—s%)72 =(1—5%)"2 —Co(l—8)° 2 +Cyo(l —5)° 2

1*30‘)5_5 _ Ca

—(1—3a)6+é(1—51 +Co(1—5)° 2.
— S
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Thus, the boundedness of variation of the function

1
té/ (s—t)"2 (1—s)°"2 ds
t

should be established. But, by a simple change of variables, this function is equal
to the function

1
t2(1 —t)g/ s72(1—s)° 2 ds,
0
and (4.4) is now obvious. Moreover, this makes (4.40) obvious as well, which
completes the proof of the example.
Example 4.43. Further, consider
(1= =a7)

[

fz) =

with a > r and g > dgl. Let us show again that ]? € LY(RY). This is of importance
in approximation of a function by linear means (1.18) generated by our f on place
of ¢ there. On [0,1] the argument from Example 4.42 is applicable. Hence for
t € [0,1] we have

F(t) = Cut* " (1 - )P~ + g(1),

where g is a continuously differentiable function, g(0) = 0. It is clear that (4.32)
is satisfied. Applying, if needed, the formula of fractional derivation, we obtain

_ d—1
3! (t_r)( 2 ) = Cot~". Using now Theorem 4.29 and integrating by parts in the
one-dimensional integral, we arrive to estimating the following value:

N e
/ / F'(t) cos (st - Wd) dt‘ ds.
1 0 2 S

On [0, 1] we have F'(t) € Lipe in the L' metrics, for some £ > 0. But the integral
fN s717¢ds converges. For t € [1, o], integration by parts yields

1
N %) d
cos(st —
[t
1 1 t1+r s
N 00 o 7d
1 . d\ o 1 r sin(st — ') ds
:/1 St sin (st—7r2) ’1 +(s+s>/1 i24r dt 5
N
1
SC/ 5 ds,
1 S

and Example 4.43 is proved.

ds

The examples considered show that Theorem 4.29 covers a wide range of
functions important in applications and is friendly enough.
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Geometric (and Analytic) Aspects



Chapter 5

L?-average Decay of the Fourier
Transform of a Characteristic
Function of a Convex Set

Let B be a bounded open set in R? As we note in the introduction, it is a
consequence of the classical method of stationary phase that if 0B is sufficiently
smooth and has everywhere non-vanishing Gaussian curvature, then

d+1

Rs(Rw)| S BT, (5.1)

with constants independent of w. The estimate (5.1) is optimal in a very strong
sense. One can check that a better rate of decay at infinity is not possible. One
can also check that if the Gaussian curvature vanishes at even a single point, then
(5.1) does not hold.

In fact, the pointwise estimate may be much worse. For example, if B is

convex, one has

XB(Rw)] S R,
and the case of a cube [0, l]d shows that one cannot, in general, do any better.
See, for example, [180], for a nice description of these classical results.

It is perhaps even more surprising that non-vanishing curvature alone is not
enough to guarantee that the estimate (5.1) holds if 9B is not sufficiently smooth.
See, for example, [110].

In spite of the fact that the estimate (5.1) does not hold in general, a basic
question is whether this estimate holds on average for a large class of domains,
for example, bounded open sets with a rectifiable boundary. More precisely, one
should like to know for which domains one has the following estimate:

( / |>?B(Rw)24w> <R ", (5.2)
gd—1
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The next three chapters will be dedicated to this question and its variants.
For example, in some cases, it is equally useful to know whether

( /S - |8(Rw)2dw) <R (5.3)

where o is the Lebesgue measure on the boundary of B. Under a variety of assump-
tions, for example, if OB is Lipschitz, (5.2) and (5.3) are linked via the divergence
theorem. We use this fact in the proof of our main result below.

An example due to Sjolin ([174]) shows that (5.3) is not purely dimensional.
He showed that if o is an arbitrary (d — 1)-dimensional compactly supported
measure, then the best exponent one can expect on the right-hand side of (5.3)
is dgg . This means that in order to prove an estimate like (5.2) we must use the
fact that OB is in some sense a hyper-surface.

Several results of this type have been proved over the years. In [155], Podkory-
tov proved (5.2) for convex domains in two dimensions using a beautiful geometric
argument that relied on the fact that in two dimensions, the Fourier transform
of a characteristic function of a convex set in a given direction is bounded by a
measure of a certain geometric cap. See, for example, [46] or [41] for more details.
Unfortunately, in higher dimensions one cannot bound the Fourier transform of
a characteristic function of a convex set by such a geometric quantity. See, for
example, [8]. For the case of average decay on manifolds of co-dimension greater
than one, see, e.g., [53], [141], and [109].

The analytic case has been known for a long time. See, for example, [160].
In [204], Varchenko proved (5.1) under the assumption that 0B is sufficiently
smooth. Smoothness allows one to use the method of stationary phase in a very
direct and strong way. In the general case, one must come to grips with the un-
derlying geometry of the problem. In the main result of this chapter, we drop the
smoothness assumption and prove that (5.2) holds for all bounded open convex
sets B in R?. In addition, we prove the same estimate under an assumption that
the boundary is Cs.

The main geometric feature of our approach is a quantitative exploitation of
the following simple idea: if w € S9! is normal to OB at z, and vy is sufficiently
close to x, then z — y cannot be parallel to w. This allows us to deal with the so-
called “stationary” points of the oscillatory integral resulting from (5.3). Unlike
the smooth case, where “non-stationary” points are very easy to handle using
integration by parts, in the general case one is forced to exploit the smoothness of
the sphere along with an appropriate integration by parts argument that exploits
either convexity or the C' 2 assumption on the boundary.

The estimates (5.2) and (5.3) have numerous applications in various prob-
lems of harmonic analysis, analytic number theory and geometric measure theory.
Moreover, (5.2) and (5.3) imply immediate generalizations of a number of results
in analysis and analytic number theory to higher dimensions. See, for example,
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[38], [40], [41], [55], [53], [102], [109], [115], [142], [148], [160], [163], [174], [175],
and [204]. We give two simple examples to illustrate the point.

The proof is based on (5.1). Using (5.2) instead, one can prove the following
version:

1
2
(/ |#{thﬂZd}tdB|2dp> < ottt (5.4)
Sd—l

where pB denotes the rotation of B by p € S9! viewed as an element of SO(d).
See, for example, [107] and [44]for a detailed discussion of applications of average
decay of the Fourier transform to lattice point problems. Also note that Theorem
5.7 below shows that convexity may be replaced by a C' 3 assumption. The extent
to which the C' assumption is sharp is still an open question.

5.1 LZ-average decay

Our main results are the following two theorems.

Theorem 5.5. Let B be a bounded convex domain in R*. Then
/ X8 (Rw)*dw $ R, (5.6)
Sd—l

Theorem 5.7. Let B be an bounded open set in R satisfying the following assump-
tion. The boundary of B can be decomposed into finitely many neighborhoods such
that given any pair of points P,Q in the neighborhood,

3
(P =Q)-n(@)ISIP-QJ, (5-8)
where n(Q) denotes the unit normal to 0B at Q. Then (5.1) holds.

The first result completely settles the question of average decay for convex
sets with convex boundaries and immediately raises the question of whether one
can reasonably go beyond convexity. The second result is certainly a significant
step in that direction as the condition essentially amounts to the C3 assumption
on the boundary of the set. However, we do not see any reason why the result
should not hold for compact sets with Lipschitz boundaries. In other words, there
is much room between the conditions under which we can prove our results and
the counter-examples due to Sj6lin mentioned above.

5.2 Proof of Theorem 5.5 and Theorem 5.7

We shall give simultaneous proofs of Theorem 1.1 and Theorem 1.2. The argument
is based on the fact that both convex surfaces and C'2 surfaces satisfy the following
geometric condition:
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The boundary of B can be decomposed into finitely many neighborhoods
Bj such that on each neighborhood the surface is given as a graph of a Lipschitz
function with the Lipschitz constant < 1.

The geometric meaning of this condition is that for  and y belonging to
the same neighborhood Bj, the secant vector x — y lies strictly within 7 of our
local coordinate system’s horizon. We shall henceforth refer to this as the “secant
property”.

This geometric condition is clearly satisfied by C* (and hence C 3) surfaces,
by taking the neighborhoods to be sufficiently small. For convex domains, we make
the following construction. We cover S?~1 by a smooth partition of unity »;, such
that > ;1; = 1 and such that support of each 7; is contained in the intersection
of the sphere and a cone of aperture strictly smaller than 7. Then if n(z) denotes
the Gauss map taking = € 0B to the unit normal at z, then 3, 7;(n(z)) induces
the desired decomposition on the boundary of B. We note that in the convex case
the number of such neighborhoods depends only on dimension.

By the divergence theorem,

XB(Rw) = 727712'R /aB e~ B (4 on(x)) do(x), (5.9)

where n(z) denotes the unit normal to B at x, and do denotes the surface measure
on the boundary. This reduces the problem to the boundary of B.

5.2.1 Decomposition of the boundary

Let ¢; denote a smooth partition of unity on 0B subordinate to the decomposition
N
0B = U;_, B;.

Moreover, ¢;s are chosen such that on the support of each ¢;, the aforementioned
secant property still holds. It follows that the corresponding Lipschitz constant
K is less than 1. This is the basic building block of our proof.

Let v; be a smooth cutoff function identically equal to 1 on the spherical cap
of solid angle > 7 and which is supported in a slightly bigger spherical cap which
lies at a strict positive distance from all the vectors Ii:ZI’ x,y € supp(¢;) C OB.
Notice that our hypothesis makes such a decomposition possible and that all the
vectors normal to 0B on the support of ¢; lie strictly inside the support of ;.

5.2.2 Singular directions

This part of the proof is identical in the convex and the C 3 cases. In fact, it
depends only on the secant property. Let

Fj(Rw) :/ e dp (),
OB
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where
dpj = (w - n(x)) ¢; (x)do ().
In view of (5.9) and the triangle inequality, it suffices to show that

/ |Fj(Rw)Pdw < R™D),
Sd—l

Now,

/ |Fj(Rw)|* dw

Sd—l

Ldﬂ%MW%MW+/dumeuqmwmuz+m

We shall refer to the support of ¢; as “singular” directions, and the other
vectors on the sphere as “non-singular” directions. The origin of this notation is
the fact that in the smooth case, the singular, or stationary directions are the ones
that are normal to the relevant piece of the hyper-surface in question.

We have
[:/ / / e @I Ry (W) dp () dp; (y).-
oB JoB Jsi—1

Using the definition of v;, we integrate by parts N times and obtain

15/ / min{1, (Rlz — y|) ™" Ydu;(x)dp; (y) < R,
oB JoOB

since dyi; is d — 1-dimensional and compactly supported.

5.2.3 Non-singular directions

We shall take the following perspective on the spherical coordinates. Let w =
w(71,...,T4—2,0), where (11,...,74—2) denotes the “azimuthal” angles, and 6 de-
notes the remaining angle, i.e., 0 = tan’l(i‘j ). Note that for each fixed 0, (1, ...,
Td—2) give a coordinate system on the “great circle” tilted at the angle 6 from the
horizontal.

For each fixed 6, we set up a coordinate system such that

II:/2 /‘/eiRw/'qu(u)du
-3

where w = w(r,0), w = (W, wq),

2J(T7 0)(1 — ¢j(w))drdb, (5.10)

Do) = 6, Ap(w)\/ 1+ [V Ap(u) 2,

and J is the (smooth) Jacobian corresponding to the spherical coordinates.
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Here we are viewing this portion of the boundary of B as the graph, of the
function Ay, above the hyperplane determined by the (d — 2)-dimensional “great
circle” obtained by fixing 6.

By a further partition of unity, a rotation, and the triangle inequality, we
may assume that we are in an arbitrarily small neighborhood of w = (1,0, ...,0).

The key object in the remaining part of the proof is the difference operator
Anf(s) = f(s+h) = f(s).
We observe that the transpose of this operator
A = Ay,
We also note that

A

1 (eiRwlul) — (eiwl _ 1)eiRw1u1.
R

Then by discrete integration by parts, the square root of the portion of (5.10)
in the neighborhood of (1,0,...,0) equals

(]
(5.11)

where W; is an appropriate cut-off function supported in the neighborhood of
(1,0,...,0), and v’ = (ua,...,ud—1)-
Applying the Minkowski integral inequality, we see that (5.11) is bounded by

/(/—gg/‘/eiRwu'u/A};ée(',u’)(ul)du’

where w” = (wa,...,w4—1). For a fixed 0, the integration in 7 is over the (d — 2)-
dimensional “great circle”. We may parameterize the sphere so that this “great
circle” is given by wy = wy(w”).

1
2 2

J(1,0)T, (w)d7d9> )

1 o
w1 1//6112“ -UA—}%(PO(HU/)(’UJ)d’LMdu/
6 J—

1
2 2

J(1,0)¥; (w)d7d0> duy, (5.12)

Expanding (5.12) and rewriting, we get

/(/2 //eiRw//.(u/,v/)Ai}?(pe(.’u/)(ul)Ai}?(pe(.?U/)(ul)du/d,ul

2
J’(w",@)\llj(w)dw”d0> duy,

(5.13)

where J'(w”, ) is smooth in w”.
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Integrating by parts in w” we see that (5.13) is bounded by

[ ] frintasmnd =51t

1
2

A;@9(-,v’)(u1)|du’dv’q(9)d9> duy (5.14)

53—%2/(/2 /|M’A§¢9(.7u’)(u1)|2du’q(9)d9> duy,

where M’ is the Hardy—Littlewood maximal function in the v’ variable, and ¢ is a
smooth cut-off function. The last inequality uses the standard fact that convolu-
tion with a radial, integrable and decreasing kernel is dominated by the maximal
function. See, for example, [179, Chapter 3|. Since our integrand is compactly
supported in the u; variable, we may apply Bunyakovskii-Cauchy—Schwarz to see
that the right-hand side of (5.14) is bounded by

R ( / /] IA_11%<I>9(~7U')(U1)2du'du1Q(9)d9> 57

since the Hardy-Littlewood maximal function is bounded on L2.
The conclusion of the theorem now follows from the estimate

1AL ol gy < CR 2. (5.15)

L2(du

Clearly (5.15) holds if 9B € O3, for in that case ®y € C'2 with compact
support. In the convex case we interpolate between the estimates

HA}%@Q”LW(du) <C, (5.16)
and
1A L ®gll L1 (au) < CR™, (5.17)

where (5.16) holds because convex surfaces are Lipschitz (hence ®¢ is bounded),
and (5.17) holds by the mean-value theorem, Fubini’s theorem, and Gauss-Bon-
net’s theorem (for cross-sections) in the uy variable. ]



Chapter 6

L'-average Decay of the Fourier
Transform of a Characteristic
Function of a Convex Set

In the previous chapter we obtained optimal L?-average decay under the assump-
tion that the set B is bounded and has a convex boundary. We now turn our
attention to obtaining more detailed understanding of this problem in the two-
dimensional setting.

6.1 Preliminary discussion

Roughly speaking, we now understand that on L2, “all cats are grey in the dark”
in the sense that there is no difference between, say, a cube and the ball as far as
the average decay rate of the Fourier transform of the characteristic function goes.
We know from the classical stationary phase that the pointwise decay (L decay
depends on smoothness and curvature properties of the boundary. This raises a
compelling question of whether interesting ideas arise in the analysis of LP-average
decay where 1 < p < 2. To a significant extent this is the subject of this chapter.

Part of the motivation for the topics in this chapter come from the fact that
many classical problems in analysis, geometry, and number theory are stated in
terms of basic properties of such sets. For example, we may consider the difference
between the number of lattice points inside the dilated set pB and its area, i.e.,

the discrepancy
D,(B) = card (pB N Z*) — p*|B]

where |-| denotes the area. Among the many natural questions we can ask about
this problem (see the section on lattice points below) is, how does the geometry
of B affect the growth rate of the discrepancy function? As we shall see, there are
results that do not distinguish among various convex sets. However, we shall also
see that the behavior of the above discrepancy functions corresponding to different
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convex sets may vary dramatically, and that this behavior may be described in
terms of natural and readily computable geometric quantities.

The above question on lattice points has a consequence in the study of ir-
regularities of distribution. Suppose P = {zj};yzl is a distribution of N points in

the unit square U = [0, 1] treated as the torus T2. Let B be a convex body in U
with diameter smaller than 1. Assume € < 1, t € T2. Then certain sharp upper
estimates for the discrepancy

N
D(P,e,t) = ijl Xep—t(2;) — N&?|B]

can be obtained from related estimates for lattice points (by a suitable trick we
shall reduce to the case when N is a square, which in turns is an easy corollary).

At the heart of the lattice point and the irregularities of distribution prob-
lems is the Fourier transform of the characteristic function of B. Our approach is
to study the effect of the geometric properties of B on the decay rate of the Fourier
transform of the characteristic function of B and its variants. We shall then use this
analysis to obtain precise information about the discrepancy functions described
above.

How should we distinguish among the various convex planar sets? The lat-
tice point problem suggests one natural approach. It was observed by Gauss that
D,(B) < p, since the boundary of B is one-dimensional. Consider the case when B
is a unit square with sides parallel to the axis. When p is an integer, the boundary
of pB contains =~ p integer lattice points, thus showing that this estimate cannot
be improved. However, if B is a disc, the boundary of pB “curves away” from the
integer lattice. In fact, it is known (see [116]) that the estimate for D,(B) in this
case is much better. These two examples suggest that the curvature of the bound-
ary may be the key distinguishing factor among convex sets. The boundary of the
square has no curvature, which leads to a poor discrepancy estimate, where the
boundary of the disc has everywhere non-vanishing curvature, and the estimate
for the discrepancy function is considerably better.

The notion of curvature alluded to in the previous paragraph is the standard
geometric, or Gaussian, curvature, defined as the determinant of the differential
of the Gauss map which maps each point on the boundary of a convex set to the
unit normal at that point. It turns out that the geometric curvature alone does not
capture the relevant properties of convex planar sets fully. To see this, let us return
to the case of the unit square. While it is true that the discrepancy function is
terrible if the sides of the square are parallel to the axes, the discrepancy function
becomes practically non-existent, even better than the discrepancy function for
the disc, if the square is rotated by a sufficiently irrational angle (see [62]). In
fact, it is precisely the “flatness” of the squares that keeps its boundary from
hitting hardly any lattice points when it is rotated. This suggests that for “most”
rotations, convex sets with “flat” boundaries behave better as far as discrepancy
functions are concerned.
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In this chapter we consider the rotated and translated copies
o' (pB) —t,

where o € SO(2), t € T?, of the dilated body pB (here p is a large positive
number) and we study the L! mean

/TZ /50(2) [Do(o™ (B) = )] do

of the discrepancy
D,(o7Y(B) —t) = card ((po ' (B) —t) N Z*) — p* |B|.

The reason for choosing the L! mean among other L? means will be clear soon. Let
us also say that in many cases, averaging makes a discrepancy problem easier. For
example, the Gauss circle problem is a basic and unsolved problem, while one can
obtain (see, e.g., [114] or [41]) a sharp result averaging in L? over translations of the
discs and using only Parseval’s identity and some properties of Bessel functions.

Let us go back to the geometry of B. The above observations can be exploited
in a number of ways. If “flatness” is good, then B, i.e., the family of rotated copies
of B, is better if B is close to being a polygon. This means that B is good if it can
be approximated by a polygon with relatively few sides (the construction we are
going to describe has been studied in [155] and [171], see also [210]). We choose
an arbitrary point on the boundary of B and draw a chord to another point on
the boundary of B in such a way that the maximum distance from the chord to
the boundary of B is p~!. Roughly speaking, if the number of sides of the above
inscribed polygon is < p®, we say that the dimension of B is at least « (we shall
explain later why for most of the chapter we prefer not to consider the infimum
of the a’s). Note that B is a polygon if and only if we can choose « = 0, and if B
is a circle then, a = % works.

We can also take the following “dual” point of view. If B is close to a polygon,
then its boundary dB has relatively few normals. A more precise way of saying
this is that the area of the J-neighborhood of the image of 0B under the Gauss
map is < 6174 If B is a disc, we can only take d = 1. On the other hand, we can
choose d = 0 if and only if B is a polygon. As another example, let B be a polygon
with infinitely many sides the normals of which have apertures in the sequence
n~# B> 0, it is easy to see that in this case we can take d = (1 + 3)~!.

Introducing the infima ao* and d* (note that d* is the upper Minkowski
dimension of the image of the Gauss map) we have

d*
<
—d*+1

a*

and we can also prove that this bound is best possible. On the other hand we can
show that a* can be as close to 0 as we want, even when d* is away from 0.
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We conclude this introductory part by noting that a notion of a dimension
of a convex set may be applicable and natural in a number of interesting problems
in analysis and combinatorics. For example, the Falconer distance conjecture says
that if the Hausdorff dimension of a planar set is greater than 1, then the set of
Euclidean distances among the points of this set has positive Lebesgue measure.
However, if the Euclidean distance is replaced by the “taxi-cab” (I!) metric, the
conjecture is clearly false, and in fact the set is required to have Hausdorff dimen-
sion 2 before the same conclusion on the distance set possible. It is reasonable
to ask whether distances induced by convex sets with “intermediate dimension”
provide examples of intermediate behavior in the Falconer Distance Problem.

6.2 A variety of arguments

We are going to discuss various aspects of the problem this chapter deals with.

6.2.1 LP-average decay of the Fourier transform

The study of the decay of the Fourier transform

O = [ e
B

as |¢| — oo is a classical subject. We have already discussed certain aspects of this
problem in Section 2.3 of Chapter 2. When 0B has strictly positive curvature, then

3
IXB(&)] S €| 2. However, when OB contains points where the Gaussian curvature

vanishes, the above inequality is no longer true. For example, when B is a polygon
and © = (cosf.sinf), then Y5(pO) decays as p~! in some directions and as p~2 in
most directions. In such cases it is useful to study the LP spherical average decay
of XB, given by

||>?B(P‘)||Lp(21) (6.1)

where X7 is the unit circle and 1 < p < oo. Here a basic result is Podkorytov’s
theorem

~ _3
IXB(P)lL2(s) S P72, (6.2)

(see [155]) where no regularity assumption on the boundary 0B is required.

Throughout this chapter X <Y will mean, as above, that X < ¢Y, with ¢
depending here only on the body B under consideration. Moreover we shall always
assume p > 2.

The study of (6.1) turns out to have applications to several problems, such as
the distribution of lattice points in large convex domains ([160], [187], [40], [41]),
irregularities of distribution ([141], [40]), summations of multiple Fourier expan-
sions ([42], [38], [39]), and estimates for generalized Radon transforms ([163]).
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The paper [41] contains the following rather complete study of (6.1) under
the additional assumption that OB is piecewise smooth. When p = 2, (6.2) says
that the rate of decay of (6.1) is independent of the shape of B. When 2 < p < oo,
any order of decay between the one of the disc and the one of the polygon is
possible. On the other hand, when 1 < p < 2, a convex body with piecewise
smooth boundary behaves either like a disc or like a polygon. In particular, when
P is a polygon we have the sharp bound

||>?P(P')HL1(21) < p % logp, (6.3)

and when B has piecewise smooth boundary, but it is not a polygon, we have the
sharp bound

~ _3
||XB(P‘)||L1(21) Scp 2. (6.4)

Actually, (6.4) is sharp whenever 0B contains at least one point where the Gaus-
sian curvature exists and is different from zero.

The above dichotomy pointed out in [41] is no longer valid for arbitrary
convex bodies. The existence of “chaotic” decays has been pointed out in [41, p.
553] using an abstract argument on convex sets. Unfortunately, that argument is
not constructive, nor does it provide non-trivial explicit bounds for the average
decay.

The main analytic tool of this chapter is the LP-average decay for arbitrary
convex planar bodies when 1 < p < 2. In essence, we shall consider the L-
average decay and the L2?-average decay. The results for intermediate exponents
can be essentially obtained by interpolation. Roughly speaking, the L2?-average
decay is a “all cats are grey in the dark” phenomenon, where the decay does not
distinguish among the different convex bodies. On the other hand, the L!-average
decay determines, in a sense, how close a convex set is to a polygon.

6.2.2 Inscribed polygons

We introduce the following notation. For any © = (cos#,sinf) and any small

0 >0 let
Ky =max z -0,
rzeEB (65)
r(B,5,0)={y€B:y-0=Kyg—4}.

We say that the chord r(B,d,0) is of height § and we use it to define the
following inscribed polygon (see also [155] or [171]).

Definition 6.6. Let B be a convex planar body. Choose any chord of height ¢ and
name it ch;. Move counterclockwise constructing a finite sequence of consecutive
chords of height ¢ until you reach ch;. Then, if necessary, replace the last chord
by one consecutive to chy (hence of height not greater than §). In this way we get
a polygon inscribed in B and we denote it by Pf. Of course Pf depends on the
choice of chy and we should write P (chi), however, none of our results depends
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on ch; and, by a small abuse, we shall always speak about “the” inscribed polygon
PP. We denote by M£ be the number of sides of PB.

It has been proved in [171] that M2 < 2. Our first result is the following.

Theorem 6.7. Let B be a convex planar body and assume Mf,l < p® (where 0 <

o < ), the cases o = 0 and o = } being covered by (6.3) and (6.2) respectively).
Then

IXB(P)l L5y S p*~*log p. (6.8)

Moreover, for any 0 < o < L, there exists a convex planar body B such that

2
Mﬁl < p% and, for any e >0,

limsup p~@t2+e IXB (Pl L1 s,y > 0
p—r+0o0

All the proofs will be given in the last section of this chapter.

Before going on, we want to discuss the above theorem. The first step in the
proof is to show that

27 2
/ R5(00)] do s/
0 0

(see Definition 6.6). We are therefore reduced to estimating the average decay
for a polygon with < p® sides. The second step simply consists in recalling that
the implicit constant in (6.3) depends on the number of sides of the polygon
P, and that after reading the proofs in [40] or [41] one can rewrite (6.3) in the
following way,

Rps , (00)] do.

27
| IReto0)] db < eNp210g (6.9)
0

where N is the number of sides of the polygon P, and the constant c is absolute
(there is no loss of generality assuming that the length of the boundary 9P is
< 1). Putting p* in place of N we then get (6.8).

At this point one should expect to have gotten a poor result using the trivial
estimate (6.9). The counterexample in the theorem shows that it is not so.

6.2.3 The image of the Gauss map

At every point of OB there is a left and a right tangent, therefore a left (—) and
a right (+) outward normal. Let 7% : 9B — ¥; be the map sending each point in
0B to the left/right normal. Also let

AP =77 (0B)UTT(8B). (6.10)
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We identify %7 with the interval [0,27). For every 6 € [0,27) we denote with
d(0, AB) the distance between 6 and AZ. For a given small §, let

Af ={z €0,2m) : d(z,AP) < 6} (6.11)

be the d-neighborhood of AE.
Theorem 6.12. Let 0 < d < 1. Assume

AF| <6t (6.13)

then }
X80 L1,y S P+ 2 (6.14)

Moreover there exists a convex body B satisfying |A§| < 69 and such that

. _d ~
lim sup p a1 t2te HXB(P')”U(&) >0
p—+—+o00

for any € > 0.
The proof will be given in the last section.

Remark 6.15. Again, the cases d = 0 and d = 1 are covered by (6.3) and (6.2)
respectively.

Remark 6.16. We point out that the infimum of the numbers d such that
’A?’ < 6'7% is just the upper Minkowski dimension of AZ. That is the num-

ber
. A7
d* = limsup | log: .
6—0 ° 0

It is therefore possible to restate Theorem 6.12 in a form like “Assume d > d*, then
(6.14) holds”. However we prefer to keep the original statement in Theorem 6.12 for
the following two reasons. First, the left-hand side in (6.13) is the quantity which
actually arises in the proof. Second, we do not want to confuse naturally different
objects, such as the polygons with finitely many sides and certain polygons with
infinitely many sides (e.g., with an exponentially decreasing sequence of slopes)
which share d* = 0 with the polygons with finitely many sides. For similar reasons
we did not introduce the infimum «* of the a’s in Theorem 6.7. On the contrary,
we shall introduce o and d* in the following section in order to get a more neat
comparison.

6.2.4 Comparing the previous arguments

For any B we denote by d* the Minkowski dimension of A? (see the above remark).
We also denote by a* the infimum of the o’ such that M ;3,1 < cqp®. We have the
following theorem.
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Theorem 6.17. Let B be a convex planar body. Then

*

< .
T dr+1

a*

Moreover there exists B for which the equality sign holds
The proof will be given in the last section.

Remark 6.18. Theorem 6.17 exhibits an upper bound for a* in terms of d*. A
lower bound in terms of d* does not exist in general, since we can construct a
family of convex bodies with the same d* > 0 but o* arbitrarily close to 0.

The proof will be given in the last section.
The situation is different if we add geometric assumptions on B.

Theorem 6.19. Suppose B is inscribed in a disc (i.e., B is the convex hull of a

subset of a circle). Then o = ¢, .
The proof will be given in the last section.
The circle in the previous statement can be replaced by a closed convex
smooth curve with everywhere positive Gaussian curvature.

Remark 6.20. By appealing to Theorem 6.7 and Theorem 6.17 we immediately get
the following inequality, which is slightly weaker than the one in Theorem 6.12:

~ d _
IXB(P) | L1 ny) S potr 7272

6.2.5 A lower bound for all convex bodies

The main results in this chapter deal with “intermediate” cases between polygons
and convex bodies having a smooth convex arc in the boundary. These cases turn
out be extreme. Indeed Podkorytov’s theorem is a uniform (with respect to the
choice of B) upper bound, while the following theorem gives a uniform lower bound
for the L'-average decay of the Fourier transform.

Theorem 6.21. Let B be a convex body in R?, then

limsup p?log™' p IXB(P )15,y >0

p——+o00

The proof will be given in the last section.
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6.3 Applications

Before proceeding to the proofs we shall discuss some applications of the formu-
lated results.

6.3.1 Lattice points

Let B be a planar convex body, let ¢ € SO(2), and t € T?. We consider the
discrepancy
D,(B) = card (pBNZ?) — p* | B] (6.22)

where |-| denotes the area. The results in the previous section and some arguments
in [160], [187], [40], and [41] allow us to obtain several upper and lower bounds for
averages of the discrepancy (6.22) over rotations or rotations and translations. As
a first example, it has been proved in [114], [187], and [40] that, for a polygon P,
(6.3) implies

[ Do P))] do S og?s.
50(2)

As another example, one can use (6.2) to show that, for any convex planar body B,

{/ / 1D, (67 (P) — 1) dodt}Q < ph. (6.23)
T2 JSO(2)

(See, e.g., [114] or [41].) Note that (6.23) is false without the integration in ¢, as
the case of a disc and Hardy’s Q-result (see [116]) show.
Again we focus on the case p = 1 and we have the following result, which

follows easily from Theorem 6.7 and some known arguments (see, e.g., [114], [187]
or [40]).

Theorem 6.24. Let B be a planar convex body such that Mf,l SpY withd < a<
;. Then

/ / |D, (07 (B) — t)| dodt < p2at1 log p. (6.25)
T2 JS0(2)

Moreover, for every such « there exists a body B satisfying

lim sup pfo‘“/ / ‘Dp(afl(B) — t)‘ dodt > 0,
p—rtoo T2 JS0(2)
for any € > 0.
The proof will be given in the last section.

Remark 6.26. The cases & = 0 and o = , are known, see, e.g., [40] and [41]
respectively.
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6.3.2 Irregularities of distribution

Suppose P = {zj};.v:l is a distribution of N points in the unit square U = [0, 1}2
treated as the torus T2. Let B be a convex body in U with diameter smaller than 1.
Assume € < 1, 0 € SO(2), t € T2. The study of the discrepancy

D(P,e,0,t) ZXW 1p_¢(2;) — N&*|B|

has a long history (see, e.g., the references in [15] and [141, Ch. 6]). A typical
result is the following theorem, due to Beck [14] and Montgomery [148, Ch. 6] (see
also [40]).

Theorem 6.27. Let B be a convex body in U = [0, 1]2 with diameter smaller than 1.
Then there exists ¢ > 0, such that for every distribution P = {z; };Vzl mU.

1 2
/ / ID(P,e,o,t)|*dtdode y > Ni.
0o Jso(2) Jr2

The above result is sharp since Beck and Chen [16] proved the following
upper bound.

Theorem 6.28. Let B be a convex body in U = [0,1]% with diameter smaller than 1.
Then there exists ¢ > 0 such that for every positive integer N there exists a
distribution P of N points such that

1 2
/ / ID(P,e,o.t)|*dtdode y < Ni. (6.29)
0 Jso() Jr2

The above upper bound can be improved after replacing the L? norm with
the L! norm. Indeed, Beck and Chen [17] proved the following result.

Theorem 6.30. Let P be a convex polygon in U = |0, 1]2 with diameter smaller
than 1. Then there exists ¢ > 0 such that for every positive integer N there exists
a distribution P of N points such that

1
/ / |D(P, e, 0,t)|dt do de < log® N. (6.31)
S0O(2) JT2

The following result follows easily from Theorem 6.24, [40] and [41]. The
case a = 0 provides a different proof of (6.31). In the same way one can get a
different proof of the L? result in (6.29) too. We point out that appealing to lattice
point results does not work for LP norms when p > 2 and the body is a polygon
(see [52]).
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Theorem 6.32. Let B be a convex body in U = [0, 1}2 with diameter smaller than
1 and such that MB, < p® Then for every positive integer N there exists a

p~t ~

distribution P of N points satisfying

log? N when a =0
/ / |D(P,0,t)] dodt < { Ni+2a log N when 0 < a < §
T2 J50(2) 1 1
Na when o =

2
where D(P,o,t) = D(P,1,0,t).

The proof will be given in the last section.

6.4 Proofs

The following known result (see, e.g., [46], [155], [41]) will be used throughout.

Lemma 6.33. Let B be a conver body in R2. Following the notation in (6.5), we
have

Xp(pO)l S P~ [[r(B,p~ " O)| + |r(B,p~ " 0+ 7],
where || denotes the length of the chord.

We define B
d(0, AP) = min (d(0, AP),d(0 + =, AP))
and we deduce the following lemma.
Lemma 6.34. For every 6 ¢ AP we have
RO S -
p2d(6, AB)

Proof. Let 0 ¢ AP (say § = —7). Assume that B passes through the origin and
B lies in the upper half-plane. It follows that in a neighborhood of the origin 0B
is the graph of a non-negative convex function, say y = (), satisfying ¢(0) = 0
and ¢'(0—) < 0 < ¢'(0+), where ¢’ (0—) and ¢’(0+) denote the left and the right
derivative at the origin respectively. Let

E={(z,y) eR?*:y>¢'(0-)z and y>¢'(0+)z}.

By convexity B C E and therefore

-1 1 1 2
BTN o) T ple0o) = pmin(04), 1 0-)'

To complete the proof it is enough to observe that
min (' (0+), [¢'(0-)]) ~ d(0, A”)

and to apply the previous lemma. (Il
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The following lemmas will be needed in the proof of Theorem 6.7.

Lemma 6.35. Let R > 1,0 < 8 < 7. Assume R < }. Denote by C = C(B3,R)
the convex hull of the set

{Rexp (i) : —8 <0 < B} U{P},

where the point P has distance 1 from the points Re™® and satisfies |P| < R.
Then there exist positive constants ¢1 and co such that if Rpﬁ2 > ¢1 then we have

o~ 1 _3
IXc(pO)| = c2R2p™ 2
B
for every 0] < .

Proof. Integrating by parts, we reduce to estimating
p ! / n(x) - © exp (2mipO - x) dz. (6.36)
ocC

The boundary 0C' consists of two segments and an arc. In order to control
the latter we reduce to the oscillatory integral

‘/ exp zp )dt

for pRA? large enough. The two segments have length 1 and their contribution in
(6.36) is O(p~2). 0

Lemma 6.37. Let R > 1 and 0 < 8 < 7. Assume Rf3 < ;
B = B(B,R,N) be the convezx hull of the set

{Rexp<zwji;“6> ,kN,...,N}u{P}

where, as before, the point P has distance 1 from the points ReT and satisfies
|P| < R. Then there exist absolute constants ci, ca, and c3 such that whenever
p>2 and

‘RB/ exp szﬁQ )du >CR2 —

For any N > 1 let

C1 [65) N2
< Rp <
g2 == g log? N

we have, for any ,g <9< g,

(6.38)

R5(p0)| = caRep™ .
Proof. Let C = C(8, R) be as in Lemma 6.35. By (6.38) and Lemma 6.35 we have
Rc(pO)] > cR2p~ 2

When—g§9§§.



6.4. Proofs 149

Figure 6.1.

We now study the Fourier transform Yo\ p. We claim that

_1log N

v B (6.39)

|Xe\B(pO)] < cBp
uniformly in . Indeed C\B is the union of 2N “lunes” #1,...,¢3n (each lune is
a convex set bounded by a segment in B and by a portion of the arc in C, see
Figure 6.1) and, for any 6,

o~

?C\B(P@) = f(p),
where f = fy is defined by

2N 2N
f&)=|C\BN{¢eR*: ¢ 0=5s} = |6n{cR*:{-O=s} =) fiuls)
k=1

k=1

Note that, for any given s, the above sum contains at most two terms. It is enough
to consider one of them, i.e., we assume 0 < 6§ < w. Moreover we reduce to
studying the case 0 < 0 < 167 the other cases being similar. In order to bound
f(p) we estimate the total variation Vy of the function f(s), which is the length
of the vertical segment in the k" lune. Now observe that

Vi, <cBN'ET'R

whenever k > 1 (see Figure 6.1).

Summing on k (there are N terms when § = 0 and N + 1 terms when
0<o< f,) we get (6.39).



150 Chapter 6. L'-average Decay

Finally, for suitable choices of ¢; and ¢o in (6.38) we get
X&(pO)| = [Xc(pO)| = [Xn\c(pO)]
> c3R2p” 2 — C45P_110]gVNR > csp” 2 R2,
as required. O

Proof of Theorem 6.7. We start with the upper bounds in (6.8). Let Pﬁl be as in

Definition 6.6. Let ]SPB,1 be the smallest polygon having sides parallel to that of
PpB and containing B. It is not difficult to see that for p sufficiently large

[r(B,p",0)| <

r(Pycp™,0)|
where again the implicit constant depends only on B. By Lemma 6.33 we have
XB(pO)| S p~ " |r(B,p~ 1 0) <o

Hence, by the proof of (6.9) in [40] or [41],

27
p /

thereby proving (6.8).

We now show that (6.8) is essentially sharp. Let B = B(8, R, N) be as in
Lemma 6.37 and consider the sets B, = B(8y, Rn, Np), h=1,2,3, ..., where, for
any small € > 0,

R, = 2(1—204)/%7 6h — 2h(20¢—1—8)7 N, = 2ha.

r(lgpfl,cpfl,ﬂ)’ .

r(Py-1,cp™ ", 9)’ d < M. p~?log (p) < cp~***log (p)

We denote by v, the union of the N} sides and by ( the
arc where they are inscribed. Observe that

“+o0
> Bk <) (6.40)

h:’no

for a suitable ng.

We recall that each Bj has the shape in Figure 6.2,
i.e., it is a convex polygon consisting of two sides of length
Figure 6.2. 1 and of N}, sides coming from a regular polygon of large
radius Ry. Let Ej be the rotated and translated copy of
every Bj, so that, moving counterclockwise, E,, = B,, and two consecutive E}’s
have disjoint interior and share a side (of length 1), while the union of the arcs

(n’s is a convex piecewise smooth curve. We write

h—1 ')
B=|JE|uBE.u| |J B | =EnUEL,UE}. (6.41)

Jj=mno j=h+1
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By the condition (6.40) B is a convex set. Let now pj, = 2". Let pj, = Z?:no Bj.
Being (6.38) satisfied, Lemma 6.35 implies

1 _3
XD, (PhO)| > cR} p, * = c2~MetD)

for 1 )
ph+3ﬂh <9<ph+3ﬂh. (6.42)

We then estimate the contribution of the convex sets Fj, and E# using Lemma
6.34. Indeed, since 6 satisfies (6.42) we obtain, for any h,
‘)?Eh(ph@)‘ + ‘)?Ejf(Ph@)‘ < By o’

We then have

27 N pr+36n N 12 —3/2 )
/ IXB(pn©)|do Z/ IXB(pn®©)|d0 = |c1BuR) " p, ™" — c2py,
0 p

n+ 3 Bn

Cl2h(a7672) o 02272h‘ Z C3p’:2+a—5.

>

To complete the proof we estimate Mﬁl. Given p > 2, let H satisfy 2/ < p <
2H+1 Here we split

H +oo
B=|JE|u|l U E|=B.UB. (6.43)
Jj=no j=H+1
Observe that the first term is a polygon with Zf:no N; < 2H sides. Now consider
that for any convex polygon @) and any § the number Mgg cannot exceed the
number of sides of ). Therefore the contribution of B, to Mf,l is < 2H> = po,

As for By we note that the length of U;’;’% 416G 1s comparable to the length of

Cy, while the chords of height p~! are longer, since Ujﬁl 416 comes from flatter
arcs. Therefore there are fewer chords than for (. We have therefore proved that
M ﬁl < p@. |

Proof of Theorem 6.12. Let Q, = AB | . In order to estimate
p d

+1

27
16)= [ IRe(p0)] s
0
we write

16)= [ Re(o)lds+ [ IRa(pe)|ds =5+ 1o
Q, 0,27\,
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To estimate I; we use the Bunyakovskii-Cauchy—Schwarz inequality, the fact that
|AP| < 64, and (6.2):

1
27 2
il { [ Rete)an) < piihpE = et
0

In order to estimate I we use Lemma 6.34:

(d+1)"'log p c (d+1)"'log p
I, S Z / - g < p=2 Z ok |A2B,k|
k=0 AQB—k\AQB—k—l p2d(9, AB) k=0
(d+1)"'log p (d+1)"'logp
< p72 Z okg—k(1-d) < p72 Z okd _ Cp_2+dil.
k=0 k=0

In order to give a counterexample we use the body B constructed in the proof
of Theorem 6.7. Again we consider the sets By, = B(Bh, Rn, Np), h = 1,2,...,
where now
Ry =2M%, g =2M(ame), N, =t

while p, = 2". Arguing as in the proof of the previous theorem we get, for every h,

9 d 2m R
pn E/ IXB(pn©)|df > c.
0

To complete the proof it is enough to show that ‘A?‘ < 617 We identify AB
with a subset of [O ”] and we observe that

)2
AP DD BLY B

j<H-1  j<H

consists of Ny points at distance ﬁ,‘z . Given § > 0, we choose H so that

Bu Br-1 B\ 1—d
) h < ~ .
Ny = < Ny o ence [y < Np

We now split B = B, U By as in (6.43). The contribution of B, to ’A?’ is
8> Nj~0Ng~Bu <6,
J<H
while the contribution of B; to |A5B | is bounded by
> B SBuS,
J>H

which completes the proof. (]
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The following proof follows an argument in [171].

Proof of Theorem 6.17. Let ch; be a side of Pﬁl having endpoints z; and y;.
Assume that moving counterclockwise along the boundary of B the point x; comes
before y;. Denote with ¢; the direction of the right normal in x; and with v; the
direction of the left normal in y;. First observe that

lehyl lo; =il 2 p7h, (6.44)
which follows by convexity when |¢; — ;| > 7 and by a trigonometric computa-

tion when |p; — 9| < 7. Let a > o*. Summing up and applying Hélder inequality
we get

p_O‘Mﬁl S Zj ‘Chj‘a ‘90]‘ - '(/}j|a < {Z] ‘Chj‘}a {Z] ‘90]‘ B w]‘ e }1704
< |oB|* (Zj les — il lf“)l_a

where the sum is on the M fi 1 sides of the polygon P,-1. It remains to show that

> les — il 1o is bounded by a constant independent of P,1. Let

A= {j : 2_k7r < |L,0j —¢j‘ < Ql_kﬂ'}.

Now observe that if j € Z then the interval (¢;,1;) € A, . Now choose d such
that d* <d < | ©_ . Then

27k card(Zy,) < |A§,kﬂ| < g k(1=d)

so that card(Zy) < 284 and therefore

ZWJ wila<ZZ“Pj ¢J|1a<z2kd2_l"
J

k=0j€Z)

—22 —a <—|—oo

The sharpness of the inequality a* < d* 1 follows from the common coun-
terexample in the proof of Theorem 6.7 and Theorem 6.12. |

Proof of Remark 6.18. Let v > 1 and # > 0. For n > 1 let 2, = n~? and
yn = n~P7. Let B denote the convex hull of the infinite points (,, 1, ). We claim
that the polygon P,-1 associated to B satisfies

1
Mﬁl 5 pB
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(hence a* < L). Indeed, choose
B

1
chlzBﬁ{(m,y)€R2:y:p}

as the first side of P,-1. The number of sides of B located on the right of chy

is &~ pvlﬁ and the claim follows since for any polygon D with finitely many sides
and any p we have MPD,1 < # (sides of D). On the other hand one checks that B
satisfies

‘Af‘ < S 8-+

and the exponent is best possible, i.e.,

. 1
d S By -1 41

If we now choose v =1+ /13 we get d* = é and o arbitrarily small (since g
can be large). O

Proof of Theorem 6.19. We show that o™ = dz* whenever B is inscribed in a disc,
namely when B is the convex hull of a subset of a circle.

Let Pﬁl be as in Definition 6.6 and assume a > «*, hence Mf,l < p®. Let

r1,Ta,... be the vertices of Pﬁl. See Figure 6.3.

Figure 6.3.

Let By, B, ... be discs of radius p_i‘ centered at the above vertices. Since
B is the convex hull of a subset of a given circle C, there exists a constant ¢ such
that, for any j, we are in at least one of the following two cases:
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either
i) ¢Bj UcBj41 contains the arc in 0B connecting z; and x;41,
or
ii) the part of 9B connecting x; and x;41 and not contained in ¢B; U cBj41 is
a segment.

Indeed, assume that i) and ii) fail. Then the arc in B connecting z; and x;44
must touch the unit circle C' outside of the discs ¢B; or ¢B;11, at a point having

distance = p~! from the side of Pf,l connecting x; and x;41. Now observe that

this latter can be extended to a chord of C at distance ~ p~! from dC. Then, for
a suitable ¢, the disc ¢B; and c¢Bj41 cannot be distinct.
The above implies that, for a > a*,

a4

cp
Ceont [oBN U cB;
j=1

AB

_1
p 2

and therefore

a4

cp
<SS pimpri=(pmE) T
j=1

‘ABJ
14 2

hence, in this case, d* < 2a*.
We now prove that a* < d;. Let a < a*. Then there exists a sequence
pr — +00 such that Mf,l > p%. We claim that there exists ~ p@ points in AP
k

1

that are ~ p, * separated. Postponing for a moment the proof of the claim, we
conclude that

B a—1 o —1\1-2a
I Y e S

P

which implies that the Minkowski dimension d* of A cannot be smaller than 2«
and therefore d* > 2a*.

Proof of the claim. Let chj, ¢; and 1; be as in the proof of Theorem 6.17 and
define

1
Sa={iles —wsl > i}
1
SbZ{ji\%—%| Spkz}-
It is enough to prove that whenever j € S, we have
1
“Pj *¢j| zCPk 2.

Since B is inscribed in a (unit) circle, a simple geometric argument shows that if

1
lpj — il < py. %5
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then the chord ch; (which is a chord of B of height p,?l) can be continued to a

chord of the circle of height ~ p,?l and therefore of length ~ p, ?. It follows that
1

lch;| < py ? and (6.44) yields

_1
o5 =5l 2 cop
for any j =1,...,cp%. (]

The following lemma will be needed in the proof of Theorem 6.21. The proof
depends on an easy modification of an argument in [211].

Lemma 6.45. Let B be a convezr planar body containing a large disc of radius
r. Let g be a smooth non-negative function supported in the set {t + v}tGB,|v\§1
such that g(t) =1 when t € B and dist(t,0B) > 1. Then there exists a constant c,
independent of r, such that

151l 1 g2y > ¢ logr .

Proof. We first need the following known inequality (see, e.g., [176] or [56]). Let
h € LY(R) satisfy h € L'(R), h(u) = 0 for u < 0. Then

+o0o +oo R
/ |h(z)| dx > c/l i|h(u)|du (6.46)

— 00

A quick proof of (6.46) follows. Because of [54, p. 584] we can assume ﬁ(u) >
0. We then consider the odd real function s defined by s(z) = —i (1 — ) for
x > 0, the Fourier transform of which is

N 2mu — sin 27wy
s(u) = 2m2y?

Then
/;OO |h(z)| dx > ’/_4:0 h(zx)s(x)dx

+oo 7
> c/ h(u)du
1

- U

= ’ / +ooﬁ(u)g(u)du

— 00

Observe that, through a translation, (6.46) implies the following fact. Suppose
h(u) = 1 for uw in an interval of length 7, say [q,q + r]. Moreover h(u) = 0 for
u < qg—1, then
+oo
/ |h(z)| dz > clogr. (6.47)
To prove the lemma we may suppose that B lies in the half-plane {(x,y) : z > 1}
as in Figure 6.4.
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Figure 6.4.

Then, by (6.46) and (6.47),

[ [aeniaan=[ [|/ { [ e 2“’7ydy}e 2mice
R JR R JR R R
“+oo 1 )
ZQ// /@@kamW@%hw
RJ1 Z |Jr

"1 . "1
> c/ / /g(m7y)62m"ydy’ dndx > c/ log x dx
1 T JRr|JR 1 X

= clog®r

d€dn

since, because of the convexity of B, we can assume that g(z,y) takes value 1
inside a whole triangle such as the one in the previous picture. ([

Proof Theorem 6.21. Arguing by contradiction we assume the existence of a posi-
tive continuous function €(p) — 0 (as p — +00), such that

27
/ 5 (00)]d6 < e(p)p~2log p (6.48)
0

for p > 2. Let ¢ be a non-negative radial cut-off function supported in the unit
disc, then the convolution

9= XpB *¥

satisfies the assumptions in the previous lemma (pB contains a disc of radius = p).
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Therefore, by (6.48)

108% 0 < el 350y = o [ 1Rp(pe)P(a)] da

“+o00 27
<o [ IR < ¢p? K / L (pu®)| dod
<ot [ Roten) )<t [0 [ Rele)) s

too s o T g(s)logs
:c/o 1+p*15/0 XB(s@)desgc(1+/2 5(1+p15)d8)
P e(s)l o0 g(s)1
c (1 +/ £(s) 8% s+ p/ £(s) 2ogsds> = A(p).
2 S p S

To end the proof we observe that

Alp)/ logZp — 0
as p — +oo, by I'Hospital’s rule. a

Remark 6.49. Using an induction argument as in [211], the above theorem can be
extended to several variables so that, for any convex body in R™,

n
lim sup i 1 / IXB(po)|do > 0.
p——+00 log P IS,
Remark 6.50. To prove our theorem we have used an idea introduced in [211] to
get lower bounds for Lebesgue constants. Therefore our result shows a relation
between the study of Lebesgue constants and the L! spherical averages of Fourier
transforms of characteristic functions. However we see no general theorem relating
one to the other. See [152] for a related discussion with a number theoretic flavor.

Remark 6.51. The estimates of |r(B,d,0)| (see (6.5)) is a geometrical problem
which does not involve necessarily the Fourier transform. The previous theorem
and the inequality in Lemma 6.33 imply that, for any convex planar body we have

1 2m
lim sup / |r(B,6,0)|do > 0.
6—0+ 610g 5

The problem considered in the previous remark could be related to the study
of floating bodies (see, e.g., [170]), where, in place of fixing d, one fixes the area
(= 0|r(B,6,0)|) of the small part of B cut away by the chord r(B,4,6) in the
direction ©.

Proof of Theorem 6.24. Arguing as in [114] or [40] and applying Theorem 6.7 and
(6.2) we have

/ / ) —t) \ dodt
T2 50(2)

2 % 2mim-t
=p // XB(pom)e dodt
e Jsow | 2

m##0
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§p2/ / X (pom)e*™ ™t dodt
T2 J5so(2) Z

1—2«
0#|m|<p1+2a

—|—p2/ / X (pom)e*™ ™t dodt
T2 Jso(2) Z

1—2a
[ml>pit2a

< / Rz (pom)| do
2720 SO(2)

0#|m|<p1+2a

vord [ e (prm)[? do
50(2) Z

1—2a
|m|>p 1+2a

P Y pm T loglom| + 020 Y

1—2« 1—2«
0#|m|<p1t2a |m|>p 1520

1—2a

pl+2a ) +oo 3
< p‘*/ t*~ log(pt)dt + p= {/ma t2}
1 plt2a

2a
5 p 14+2a

(S
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The lower bound follows from Theorem 6.7 and the orthogonality argument

in [40, p. 269).

Proof of Theorem 6.32. We prove only the case 0 < a <

O

. Write N as a sum

of four squares: N = j2 + k% 4+ ¢2 + m? and let a1, as,a3,a4 € [0,1) be pairwise

linearly independent on Z, so that, e.g.,

a1+p.7éa2+q
J k

for any choice of the integers p, q, j,k (j,k # 0). That is

(a1 4+357'Z) N(az+k~'Z) =0

Ajz{(alﬂ,?)} T2
J J p,qEZ

and let us define A2, Ay2, A,,2 accordingly. Define

when j # k. Let

P = Aj2 UAgz UAp UA,:>.

(6.52)
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By (6.52) P has cardinality N. Since

card (PN B) — N |B|
= card (Aj2 N B) — j%|B| + -+ + card (A,,2 N B) — m?|B],

it is enough to prove that, say,
/ / |card (Aj2 N (0(B) +1t)) — j*|B|| dodt < N1+2« log N.
T2 J50(2)

We can therefore prove the theorem assuming N to be a square, say N =72, r € N

and
P q

P=Ay= {<a+r7r)}p,quZOU.

Now observe that, writing w = (a,0) and applying Theorem 6.24, we have
/ / \D(P,6,1)|dt do
T2 J50(2)
= / |card (A,2 N (o(B) + t)) — r* |B|| dt do
s0(2) JT2
= / |card (A,2 N (o(B) +t +w)) — r* | B|| dt do
s0(2) JT2

/50(2) /T card ({(’;,z)};;om(o(mﬂ)) —2|B|

= /SO(Q) . ’card (Z? N (ro(B) +ru)) —r? |B|’ dudo

du do

:/ / |card (Z* N (ro(B) + u)) — r* |B| dudo
s0(2) J12
< r133a log

1 o
= 2N1+2a log N,

where we have used the fact that for a function f € L! (Tz) and for any integer
k # 0,

flhuydu= [ f(u)du,
T2 T2

which completes the proof. (]

The above argument extends to several variables after replacing the sum of
four squares with Hilbert’s theorem (Waring’s problem).



Chapter 7

Geometry of the Gauss Map and
Lattice Points in Convex Domains

In the previous two chapters, we have gained a significant amount of understanding
about the LP-average decay for the Fourier transform of characteristic functions of
convex sets and considered some applications to problems in lattice point counting
and discrepancy theory. In this chapter we consider more elaborate applications
of average decay in number theory where the discrepancy function needs to be
estimated for almost every rotation instead of averaging over rotations in some
LP-norm. This naturally leads us to the examination of certain maximal functions
and as a result brings in some classical harmonic analysis that arises so often in
the first part of this book.

7.1 Two main results

Let Q be a convex planar domain, and let N(R) = card{ RQNZ?}. It was observed
by Gauss that N(R) = |Q|R? + D(R), where |D(R)| < R, since the discrepancy
D(R) cannot be larger than the number of lattice points that live a distance at
most \}2 from the boundary of Q. As above, here, and throughout the chapter,
A < B means that there exists a uniform C, such that A < CB. Similarly, A ~ B
means that A < B and B < A. For a general domain this estimate cannot be
improved, as can be seen by taking 2 to be a square with sides parallel to the axis.
However, the purpose of our further consideration is to show that the remainder
term is better for almost every rotation of the domain.

If the boundary of €2 has everywhere non-vanishing Gaussian curvature, bet-
ter estimates for the remainder term are possible. It is a classical result of Hlawka
and Herz that, in that case, |[D(R)| < R3. An example due to Jarnik shows that
without further assumptions, this result is best possible. See, for example, [117]
and [112]. If the boundary is assumed to have a certain degree of smoothness, fur-
ther improvements have been obtained, culminating (at the moment) in a result
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due to Huxley, see [102], which says that if the boundary of Q is five times differen-
tiable and has curvature bounded below by a fixed constant, then |D(R)| < R7.
This is also the current best result for the circle problem, for which the well-known
conjecture is that [D(R)| < R2*¢ and indeed it was observed by Hardy that one
cannot do better than R2 times an appropriate power of the logarithm.

We have noted that in general the trivial estimate, |D(R)| < R cannot be im-
proved without curvature assumption on the boundary of the domain. For example,
it was proved by Randol in [160], that if Q is given by the equation z}* + x5 < 1,
m > 2, then |[D(R)| < R"n' ,and mnzl cannot be replaced by any smaller number.
On the other hand, Colin de Verdiere showed in [52] that if the boundary of ©
has finite order of contact with its tangent lines, then, for almost every rotation
of Q, the corresponding error term |D(R, )| < R3. This result was extended to
a certain class of domains, where the order of contact is infinite, in [106]. This
raises the obvious question of whether this result holds for an arbitrary convex
planar domain. Up to a logarithmic transgression, we answer this question in the
affirmative. This is the substance of the next result.

Theorem 7.1. Let © be a convex domain, and let 6 > é Define

M(6) = sup log™*(R)R3 |D(R, ),

where D(R, ) is the discrepancy corresponding to the domain ) dilated by R
and rotated by the angle . Then M(0) < oo for almost every 6. More precisely
M € Weak — L*(SY), i.e.

{6 € S*: M(0) >t} St72.

Theorem 7.1 is begging to be generalized for the following reason. A result
due to Skriganov, see [175], says that if Q is a polygon, |D(R,8)| < log'™“(R),
for any € > 0, for almost every 6. There is much room between this result and
R3 log;JrE(R) that we obtain above, and it makes one ask which geometric prop-
erties are in play here. We address this issue in the following way. At every point
of a convex set there is the left and the right tangent. Therefore, at every point we
have the left(—) and the right(+) normal. Let N'* : 9Q — S! denote the Gauss
maps, which take each point on the boundary of Q to the right/left unit normal
at that point. Our second main result is the following.

Theorem 7.2. Let Q be a convex domain. Let N+ be the Gauss maps defined above,
and let

N(92) = NT(0Q) UN™(89).

Suppose there exists 0 < d < 1 such that for any sufficiently small €,

{6 € S* : dist(0, N (09Q)) < e}| < 7% (7.3)
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Define

Ma(0) = sup log ™ (R)R™ 24+ | D(R, )|.
R>2

Then Mg € L*(SY) ifd >0 and § > 1, or, ifd =0 and § > 3. In particular,
My(0) < oo for almost every 6.

The estimate (7.3) implies that the upper Minkowski dimension of A (99) is
at most d. Conversely, if the upper Minkowski dimension of A (9Q) is d, then for
any 1 > 0 the estimate holds, up to an arbitrarily small power of ¢,

{0 € S : dist(6, N(9Q)) < e}| < =4, (7.4)

The conclusion of Theorem 7.2 can be improved under additional assump-
tions. For example, see [44], if Q is the convex hull of a subset of a circle, then one

can replace dil in Lemma 7.13 below by ¢ 5 and this changes the exponent , d +1

in Theorem 7.2 to d+2

Theorem 7.2 is stated in terms of the estimate (7.4) for the sake of simplicity,
but it could be restated somewhat more precisely in terms of the properties of the
distribution function |[{# € S* : dist(6, N'(99)) < €}|. When d = 0 the condition
(7.4) defines a polygon with finitely many sides but, as we said, in this case a
better result is known. The case d > 0 includes polygons with infinitely many

sides and also more complicated bodies.

7.2 Examples and preliminary results

Let us begin with some easy examples.

7.2.1 Examples

Example 7.5. Our first example illustrates the case d > 0 of Theorem 7.2. Consider
a polygon with infinitely many sides, where the slopes of the normals to the sides
form a sequence {j*“}] 12,0 It is not hard to see that the upper Minkowski

dimension of N'(9Q) is ;| and also (7.4) holds with d = | .

Example 7.6. We now consider the case of a polygon with infinitely many sides,
such that the slopes of the normals form a lacunary sequence, for example, the
sequence {2~ } —o,1,... In this case, the upper Minkowski dimension of N'(99) is
0, whereas the estlmate (7.4) does not hold with d = 0, though it holds for every
d > 0. So, Theorem 0.2 says that for every positive v,

sup R7Y|D(R, 9)|
R>2
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is finite for almost every 6. However, as we foreshadowed above, we can do better
if we work directly with the quantity

{6 € S* : dist(, N'(9Q)) < €},

instead of the condition (7.4). It is not difficult to see that, in this case,
1
[{6 € S* : dist(0, N'(09)) < €}| =~ elog ( ) . (7.7)
€

The estimate (7.7) along with the proof of Theorem 7.2 yields the conclusion
of Theorem 7.2 with d =0 and ¢ > 4.

We note that Theorem 7.2 does not apply only to polygons, with finitely, or
infinitely many sides. In fact, it is not difficult to construct examples of convex
domains, where A/ (99) has upper Minkowski dimension 0 < d < 1, which are not
polygons. It is just a matter of constructing an appropriate increasing function,
for example a Cantor-Lebesgue type function, which defines the tangent vector
field.

As we have seen the quest for the best exponent in lattice point problems
has a long history and it seems far from definitive results. Also the exponent g in
Theorem 7.1 is probably not sharp and a natural conjecture is é + €. This belief
is supported by the fact that

1
2
(/ D(R,0,7)2d7d9> ~ R2,
St JT2

where T? denotes the two-dimensional torus, and D(R, 6, 7) denotes the discrep-
ancy corresponding to the case where a convex domain 2 is rotated by €, and
translated by 7. See, e.g., [160] or [41, Theorem 6.2].

7.2.2 Estimates for the Fourier transform

The main ingredient in the proof of Theorem 7.1 and Theorem 7.2 is the following
maximal stationary phase estimate for the Fourier transform of the characteristic
function of ), which is interesting in its own right. Under the analyticity assump-
tion, this estimate is implied by a result obtained by Svensson in [185]. However,
lack of any smoothness assumption, besides convexity, involves considerable diffi-
culties.

Theorem 7.8. Let Q) be a convex domain. Then

He € S: sup R?|Ra(RE)| > t}‘ <12,
R>0
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The above inequality means that the function

sup R2[Yo(RO)|
R>0

belongs to Weak — L?(S'). Note that in general it does not belong to L?(S1), as
one can check by assuming €2 to be a square.

In order to prove Theorem 7.2 we shall also use the following decay estimate,
the proof of which is taken from [44].

Theorem 7.9. Let Q2 be a convexr domain. Then

[Ra(RO)| S R (dist(6, M (09)

7.3 Proofs

Each subsection of this section contains a proof of the corresponding theorem.

7.3.1 Proof of Theorem 7.1

The proof of this theorem as long as the proof of Theorem 7.2 is a consequence
of the techniques in [96] and [93] along with the maximal estimate for the Fourier
transform in Theorem 7.8.

Let 1 be a smooth positive radial function of mass 1 supported in the unit
disc centered at the origin. Let

Ye(x) = e_2w(6_1x).

Define

N(R,0,¢) Z Xro-10 * Ve (k),
k£(0.0)

and let
D(R,0,¢) = N(R,0,¢) — R?|Q|.

Lemma 7.10. We have

D(R,0,¢) =R* Y Ro(ROk))(ck).
k#(0,0)
Proof. This is the Poisson summation formula (see Ch. 1). O
Lemma 7.11. We have
D(R —¢€,0,¢) — (2Re — €%)|Q] < D(R, )
< D(R +¢,0,¢) — (2Re + €%)|9Q].
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Proof. We may assume that €2 contains the origin. We have

X(r—e)9-10 * Ve(k) < Xro-10(k) < X(Ryeo—10 * Ye(k),

along with
N(R767076) < N(R79) < N(R+67076)a

and the result follows. O

Lemma 7.12. We have

‘{0 €St sup ng\D(R,G)\ > t}‘ <t

2§ <R<27+1

Proof. We have

3 _j+1 3, ~ 3
sup  |D(R,0,¢)| <e22"> > |ek| 2 |v(ek)| sup  |ROK|*[Ra(ROK)|.
2/ <R<2i+1 k£(0.0) 2/ <R<2i+1

Since the function
sup | ROK|? [Ra(ROK)

2§ <R<2+1

is uniformly in Weak —L?, by Theorem 7.8, the sum is also in this space, with the
norm controlled by

The result now follows from Lemma 7.11 by taking € = 275, ]

We are now ready to complete the proof of Theorem 7.1. Observe that

oo 3
suplog—‘S(Rm§|D<R,e>|s{2j” sup R%D<R,9>2}.
R>2 i=1 21 <R<2i+1

The function

sup R73 |D(R,0)|
2§ <R<2i+1
is uniformly in Weak —L!, and can therefore be summed by the sequence j729,

26 > 1. The conclusion of Theorem 7.1 follows. O
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7.3.2 Proof of Theorem 7.2

Lemma 7.13. Under the assumptions of Theorem 7.2, we have

/ [ sup  R2 %1 [Ra(RO)|| dO < 1,
St |20 <R<2i+1
ifd>0, and if d =0,
/ l sup  RYRa(RO)|| db S )
St |20 <R<L2i+1

Proof. Applying Theorem 7.8, we have

sup R oh [Ro(RE)|| db

/{d(e,/\/(aﬂ))<2 dil} l2j§R§2j+1

52](5_&({{1)/ y l sup R3|5<\Q(R9)|
{d(O,N(02))<2 d+1} |2/ <R<L25+1

< 2G| e ST d(O,N(9Q)) < 27 et )|
<1

do

Moreover, by Theorem 7.9, we have

sup  R?" o [Ro(RY)|| db

/{d(e,maﬂ)»zdil} L@Rszw

<9idhs / (A0, N (6%))) " d
{d(O.N(09Q))>2" d+1}

<277ah Y (2" b)) [ e S : 2P ek
h=0

< d(0,N(0Q)) < 2"F1-ata |

s27eh Y@ty T @)
h=0

1-d

<1

Observe that when d = 0, it suffices to sum the series in the range 0 < h <

This completes the proof of Lemma 7.13.

Lemma 7.14. Under the assumptions of Theorem 7.2, we have

20 <R<29+1

/l sup R 201 |D(R,0)|| do < 1,
Sl

if d> 0.
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If d =0, we have

do < 52

/ [ sup  [D(R.0)|
51 |20 <R<2i+1

Proof. Assume that d > 0. We have

/[ sup |D(R797e)] de
St |2i<R<2i+1

< €2~ it 2de1 Z |€k‘_2+dil |’(Z(€k)| sup \R@k\2_ ah IS (ROK)|
k+#(0,0) S1|2i<R<2i+1

d i d
- J
5 € a+1Q)dat1

do

We also have

/[ sup R 241 |D(R,0)|| o
Sl

2§ <R<29+1

< 272adn (/[ sup  [D(R,0,¢)|
St |20 <R<2i+1

S 272d2dj+1 (67 et 9J it + 2je).

w+?%

Choosing € = 9" 2 yields the required result. The proof in the case d = 0
is similar. u

We are now ready to complete the proof of Theorem 7.2. We have

sup log7§(R)R722di1 |ID(R,0)| < Zj_6 sup R 22dh |D(R, ).

R>2 = 21 <R<23+1

In view of Lemma 7.14, if d > 0, the series converges for 6 > 1 and, if d = 0,
one must take § > 3. This completes the proof of Theorem 7.2. O

7.3.3 Proof of Theorem 7.8

We start out by arguing that we may take 2 with a smooth boundary and every-
where non-vanishing curvature, so long as the constants in our argument do not
depend on curvature and smoothness. Indeed, suppose that

sup R2[Yo(RO)|
R>0
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is not in Weak —L?(S1). This means that given k > 0, there exists N > 0, such
that the weak —L?(S') norm of

sup R |a(R6)|
0<R<N

is at least k. Approximate €2 by a sequence (2, of convex domains such that the
boundary of each §2, is smooth and has everywhere non-vanishing curvature. We
arrange things so that [Q —Q,,| < 711 and the claim follows by taking n sufficiently
large.

We fix a direction 6, and without loss of generality we assume 6 = (1,0).
Then

+oo +oo ) R
Xo(R,0) = / </ st(fvhwz)dwz) e 2™ Ry = h(R),

— 00 — 00

where h(s) denotes the length of the segment obtained by intersecting {2 with the
line 21 = s. This function is concave on a suitable interval [a, b]. Applying [155] or
Lemma 3.7 of [41], we obtain

~ c 1 1
< _
IXa(RE)| < R <h (a+ 2R> +h (b 2R>>
c 1 1
= 0 -0
w(r(a) 7 (-2 0n))
where (6, €) denotes the length of the chord
C0,e)={xeQ:x-0==5y—¢€},

and Sp = sup,cq = - 0. We are therefore reduced to studying the maximal function

1
*(0) = su 0,¢).
e (0) E>%’\/€ﬂ( )

Observe C(6,0) is a single point, which we denote by z(6). Let now 6, be a
fixed direction. With a mild abuse of notation let # = €. We denote by A(#) the
arc-length on 99 between z(6,) and z(6). Let

() — arry MO = A@)
A*(0) = 21;1; oo

We shall need the following estimate.

Lemma 7.15. We have
[ (0))? < 4X*(6).
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Proof. The normal at the point z(#) determines (on the chord C(0,€), or possibly
on its continuation) two segments of length 11 (0, €) and (6, €) and the maximal
function p* () is dominated by the sum pj(6) + 5 (6). Now observe that the com-
putation of sup,- \}6 1;(6, €) involves only values of € for which p;(6, €) increases.
Hence, we may assume that the boundary of Q is locally a graph of a function
f(x), with £(0) = f/(07)=0,0 <z <a and

$2

(15 (0)]° < L.

By the mean value theorem,

2 < 2z
sup < sup
0<z<a f(x) 0<z<a f’(

sup f’?z) /OZ \/1 + (f/(t))%dt

0<z<a

<
z) ~
o U ,
= sup L4 (f(t)) dt
0<u<f(a) ¥ Jo \/

—~

A 0) — X0
=2 sup ¥ +0) = A6) = 2)\"(0).
0<w<f'(a) ¥
This completes the proof of Lemma 3.1. O

Theorem 7.8 now follows from the classical Hardy—Littlewood maximal the-
orem, which we state in the following form.

Lemma 7.16. Let A\ be and increasing bounded function on the interval [a,b]. Then
for every t > 0,

0 X (0) > 1y < ¥ N Aa) (7.17)

7.3.4 Proof of Theorem 7.9

By Lemma 3.8 in [41], we have

Xa(RO)| < (|Aa(R™,0)| +[Aa(R™1,0+ 7)),

where
AR ={2cQ: Sy —e<x-0<Sp}
and
Sp=supz-0,
e

as in the proof of Theorem 7.8.

Without loss of generality we may assume that § = —7. We may also assume
that the boundary of 2 passes through the origin and 2 lies in the upper half-
plane. In a neighborhood of the origin the boundary of €2 is described by a convex
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function, say y = ¢(z), satisfying ¢(x) > 0, and ¢(0) = 0. Let ¢'(07) and ¢'(0T)
denote the left and the right derivatives at the origin. Since we assume that 6 ¢
N(092), we must have ¢/(07) < 0 < ¢'(07). Let

C={(z,y) €R*:y > ¢'(07 )z and y > ¢'(0)x}.
By convexity, 2 C C. It follows that

Lo
R2¢/(0+) T R2|¢/(07))|
2
S R2min{@(0), |¢/(0-)[}

[Ao(R™,0)|

IN

Since

min{¢'(0%), |¢'(07)|} ~ dist (6, '(09)),
the proof follows. |



Chapter 8

Average Decay Estimates for
Fourier Transforms of
Measures Supported on Curves

The previous three chapters dealt with average decay for subsets of R¢, which
quickly reduces to the problem of average decay of Fourier transforms of measures
supported on surfaces of co-dimension one. In this chapter we address the issue of
Fourier transform of average decay of measures supported on curves in R¢ with
some tantalizing connection with the classical restriction theory.

8.1 Statement of results

Let I be a smooth (C°°) immersed curve in R? with parametrization ¢ — ~(t)
defined on a compact interval I and let x € C*> be supported in the interior of I.
Let 1 = py,, be defined by

(o f) = /'f<v<t>>x<t>dt (8.1)

and define by

=)

€ = [ es(-ie. a0t

its Fourier transform. For a large parameter R we are interested in the behavior
of fi( Rw) as a function on the unit sphere, in particular in the L9 norms

Gu(R) = Gy (i) = ([ IR P)’ (52)

where dw is the rotation invariant measure on S¢~! induced by Lebesgue measure
in R?. The rate of decay depends on the number of linearly independent derivatives

© Springer Basel 2014 173
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of the parametrization of I'. Indeed if one assumes that for every ¢ the derivatives
Y'(t), ¥"(t),...,7D(t) are linearly independent, then from the standard van der
Corput’s lemma (see [180, p. 334]) one gets

Goo(R) = max |fi(Rw)| = O(R™4).

If one merely assumes that at most d — 1 derivatives are linearly independent
then one cannot in general expect a decay of G (R); one simply considers curves
which lie in a hyperplane. However Marshall [141] showed that one gets an optimal
estimate for the L2-average decay, namely

Ga(R) = O(R™2) (8.3)
as R — oo, for every compactly supported C! curve 7.
We are interested in estimates for the Li-average decay, for 2 < ¢ < co. If
is a straight line such extensions fail, and additional conditions are necessary. Our
first result addresses the case of non-vanishing curvature.

Theorem 8.4. Suppose that for all t € I the vectors v'(t) and v (t) are linearly
independent. Then for R > 2,

(i) Gy(R) 5

{Ré(logR)%_; if 2<q¢g<4 (8.5)

R (logR) if 4<q<o0.

(ii) Suppose that there is N € N so that for every w € S~ the function s
(w,~"(s)) changes sign at most N times on I. Then

G R)SR™> if 2<q<4 (8.6)
and
Gy R)SR & if 4<q<oo. (8.7)

Here and elsewhere the notation a < b means a < Cb for a suitable non-
negative constant C.
The L* estimate
G4(R) = O(R :[log R]%)

is sharp even for nondegenerate curves, cf. Theorem 8.12 below. The estimate (8.6)
is sharp and it is open whether for ¢ # 4 there exists an example for which the
logarithmic term in (8.5) is necessary.

The estimate (8.7) is sharp in the case where the curve lies in a two-dimen-
sional subspace. Under stronger nondegeneracy assumptions this estimate can be
improved. In particular one is interested in the case of nondegenerate curves in R,
meaning that for all ¢ the vectors 'y(j)(t), j =1,...,d, are linearly independent.
In the case d = 2 we have of course the optimal bound

Gu(R) = O(RY)
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for all ¢ < oo, by the well-known stationary phase bound (for results for gen-
eral curves in R? and hypersurfaces in higher dimensions see [45] and references
contained therein). The situation is more complicated for nondegenerate curves
in higher dimensions, and Marshall [141] proved (essentially) optimal results for
nondegenerate curves in R? if d = 3 and d = 4.

We show that one gets close to optimal results for nondegenerate curves in all
dimensions. Our method is different from the explicit computations in Marshall’s
paper and relies on a variable coefficient analogue of the Fourier restriction theorem
due to Fefferman and Stein in two dimensions, see [71], and due to Drury [62] for
curves in higher dimensions. The variable coefficient analogues are due to Carleson
and Sjolin [51] (see also Hérmander [100]) in two dimensions and to Bak and Lee
[9] in higher dimensions.

To formulate our result let, for 1 < ¢ < oo,

o (q) = o (q)
{ mingg_s 4} . + ktkkqﬂ, for K =d, (8.8)

. 2 .
mm{k:z,...,K}{,i + F o2, {j} for 2 < K < d.

Theorem 8.9. Suppose that for all t € I the vectors 7' (t), ...,y ) (t) are linearly
independent. Then for R > 2,

G4(R) < CoR™7, o <okl(q). (8.10)
For integers k > 1 set
k4 k+2
qrx = 9

sothat 1 = 2, g2 = 4, g3 = 7, g4 = 11. Observe that the set of points (¢!, 0¢(q)),
q > 2, is the broken line joining the points

(1 1) (1 2) (1 k:) (1 d—l) (0 1)
o' a) \e' e ) T \e ) \di-1 qa—1 )\ 7 d)7

while for K < d, the set of points (¢!, 0% (q)) is the concave broken line joining

the points
1 1 1 2 1 k 1 K
9 9 9 90ty 9 P 9 7(070)
91 q1 q2 Qg2 qr  dk dK 4K

Furthermore observe that 0% (q) > 3 if 3 < K <d, and q > 4. The picture
(see Figure 8.1) shows the graph {é,afg(q)} as a function of ;, for K = 10.

(8.11)

We emphasize that the graph of U?( is slightly different for d > K, as then
the left line segment connects (¢, K qx') to (0,0).

Theorem 8.9 is sharp up only to endpoints, at least for nondegenerate curves
(for which 7/ (t), . ..,7®(t) are linearly independent), and also for some other cases
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0.6 i

0.5 °
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0 0.05 0.1 015 02 025 03 035 04 045 05

Figure 8.1: The graph {;70%8(61)}

where K < d, 7/(t),...,v¥)(t) are independent and v lies in a K-dimensional
affine subspace. We note that for the case K = d = 4 Marshall [141] obtained the
sharp bound

Gy(R) S R4

when 4 < ¢ < 7 and ¢ > 7; moreover
Gy(R) S R771% loga (R)

when ¢ = 4 or ¢ = 7 (the logarithmic term for the L* bound seems to have been
overlooked in [141]).

We now state lower bounds for the average decay. The cutoff function x is
as in (8.1) (and G4(R) depends on x).

Theorem 8.12. Suppose that 2 < K < d and, for some ty € I, the vectors
Y (to), ...,y (to) are linearly independent. Then for suitable x € C§° there are
c>0, Ry > 1 so that the following lower bounds hold for R > Ry.

(i) If2< K <d-—1 then
Gy(R) > cR™7x D 2 < g < qg; (8.13)
moreover

Gy(R) > ¢cR™7x@ log (R), qg€{qp:k=2,...,K—1}. (8.14)
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(ii) If K = d then
Gy(R) > cR™74D 2 < ¢ < oo, (8.15)
Gy(R) > cR™74(@) log s (R), q€{qp:k=2,...,d—1}. (8.16)

(i) If2 < K <d—1 and, in addition, v5+Y = 0 then

Gy(R) > cR™7%@D 2 < ¢ < oo, (8.17)
G4(R) > cR™*Wloga(R), qef{q:k=2,...,K}. (8.18)

Remark. A careful examination of the proof yields some uniformity in the lower
bound. Assume that vU)(tg) = ej, (the jth unit vector), j = 1,...,K, and
[Vllcx+sry < Ci. Then there is h = h(C1) > 0 so that for every smooth x
supported in (—h, h) with Ry(t) > ¢; > 01in (=", ) there exists an Ry depend-
ing only on ¢1, C1, ||X|lcc and ||x”|lcc so that the above lower bounds hold for

R > Ry. We shall not pursue this point in detail.

Remark 8.19. Arkhipov, Chubarikov and Karatsuba [3], [4] proved sharp estimates
for the LI(R?) norms of the Fourier transform of smooth densities on certain
polynomial curves. The work of these authors shows that for, say

d
y(t) =) ther, teo,1],
k=1

the Fourier transform do belongs to LI(R%) if and only if

P+d+2

> gq =
q > qd 9

This result seems to have been overlooked until recently; it rules out an L% end-
point bound for the Fourier restriction problem associated to curves, cf. a discus-
sion in [147] and a remark in [9]). More can be said in two dimensions where the
endpoint restricted weak type (é) inequality for the Fourier restriction operator is
known to fail by a Kakeya set argument, see [18]. We note that the lower bound
in Chapter 2 of [4] is closely related to (8.15) and the method in [4] actually can
be used to yield (8.15) for the curve (¢,...,t%) in the range ¢ > q4_1; vice versa
one notices o4(qq) = q‘i and integrates the lower bound for Rd_ng(R) in R to

obtain lower bounds for HC/Z(;'”Lq(Rd).

A variant of an argument in [4] can be shown to close the ¢ gap between
upper and lower bounds in some cases. We formulate one such result.

Theorem 8.20. Suppose that v is smooth and is either of finite type, or polynomial.
Assume that v'(t), ...,y (t) are linearly independent, for everyt € I. Then
the following holds:
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(i) If K = d then

Gy (R) < C,R D ¢>2 qé¢{qg:k=2,...,d—1}, (8.21)
and

Gy(R) S R %Wloge(R), qef{q:k=2,...,d—1}. (8.22)
(i) If2< K <d—1 then

Gy(R) < C,RxD  ¢>2 qé{qu:k=2,...,K}. (8.23)
and
Gy(R) SR %@Wloga(R), qe{g:k=2,... K} (8.24)

It is understood that the implicit constants in (8.21) and (8.23) depend on ¢
as ¢ — qi. Note that in the finite type case (8.23) and (8.24) can be improved for
q > qk since we have some nontrivial decay for G (R). However, for the sharpness
in the most degenerate case compare Theorem 8.12, part (iii).

The result of Theorem 8.20, for polynomial curves, could be used to obtain
the upper bounds of Theorem 8.9, which involves a loss of R®, by a polynomial
approximation argument. Note however, that such an argument requires upper
bounds for derivatives of v up to order C 4+ 7!, as ¢ — 0. An examination of
the proof of Theorem 8.9 shows that one can get away with upper bounds for the
derivatives up to order N where N depends on the dimension but not on €.

8.2 Upper bounds, I

We shall now prove part (ii) of Theorem 8.4, (i.e., (8.6), (8.7)) under the less
restrictive smoothness condition v € C?(I); we recall the assumptions that +/(t)
and +"(t) are linearly independent and that we also require that the functions
s — {w,7"(s)) have at most a bounded number of sign changes on I. Note that this
hypothesis is certainly satisfied if 7y is a polynomial, or a trigonometric polynomial,
or smooth and of finite type.

We need a result on oscillatory integrals which is a consequence of the stan-
dard van der Corput Lemma, it is also related to a more sophisticated statement
on oscillatory integrals with polynomial phases in [153].

Let n be a C* function with support in (—1,1) so that n(s) = 1in (-}, 5);
we also assume that 1’ has only finitely many sign changes. Let 01 (s) = n(s)—n(2s)
(so that j < |s| <1 on suppmn) and let

m(s) =m(2""'s)

so that 27!=1 < |s| < 27+ on the support of ;.
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Lemma 8.25. Let I be a compact interval and let x € C1(I). Let ¢ € C*(I) and
suppose that ¢" changes signs at most N times in I.
Then, for 1 <28 <)\,

m(¢'(s)e??E) x(s)ds| < CN2ATL.
I

Proof. We may decompose I into subintervals J;, 1 < i < K, K < 2N + 2, so
that both ¢’ and ¢” do not change sign in each J;. Each interval J; can be further
decomposed into a bounded number of intervals J; 5, so that 1’ (¢') is of constant
sign in J; . It suffices to estimate the integral Z; j, over J; ;. By the standard van

der Corput Lemma, the bound Z; ,, = 0(2;) follows if we can show that

/ 0
Jik

0s
which immediately follows from

(m(¢'(s))x(s))|ds < C

/ |2'¢" (s)m (24 (s))|ds < C. (8.26)
Jik
But by our assumption on the signs of ¢/, ¢”, and 1 the left-hand side is equal to

’/de’ 12l (s ds‘/“ (o ))ds

Proof of (8.6) and (8.7). We may assume that I" is parametrized by arclength and
that the support of x is small (of diameter < 1). Determine the integer M (R) by
2M < R < 2M+1 With 1, as above define for | < M,

Iri(w) = / e Ny () ((w, 7 (5)))ds

O

and for | = M define gp ps similarly by replacing the cutoff n;({w,~'(s))) with
n(2M(w,~/(s))). We can decompose

/ez @A (it = 3 gai(w)

I<M

and observe that gr; =01if [ < —C.
It follows from Lemma 8.25 that

21
sup |gra(W)| S p- (8.27)
wesd-1
We also claim that

2R if 2! < R2,
(/|9R’l( )’ N{z 14 1og(22R-1))%  if 2! > R3. (8.28)
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Given (8.27) and (8.28) we deduce that

1971l La(ga-1y <
ol g1 itol < gy, (8:29)
2= (1 4 log(22R1))a R™'Ta  if 2! > R3.

If ¢ # 4 the asserted bound O(R™ 3) bound follows by summing in I.

We now turn to the proof of (8.28). Note that (8.28) follows immediately
from (8.27) if 2! < R2. Now let 2! > R2. For the L? estimate in this range we
shall just use the non-vanishing curvature assumption on I'. We need to estimate
the L? norm of gr,; over a small coordinate patch V on the sphere where we use

a regular parametrization y — w(y), y € [~1,1]9" L ie.,

] / u(y)gR,l(w(y))gR,l(w(y))dy‘ <2211 1l0g@RY), (830)

where u € C§°, so that w(y) € V if y € supp(u). The left-hand side of (8.30) can

be written as
7 = //2/ w0176y (51 ) (52)
n(24w(y), ¥ (s1)))n(2" (w(y), ¥ (s2)))dyds: dsy

and we note that on the support of the amplitude we get that +/(s;) is almost
perpendicular to w, i.e., we may assume by the assumption of small supports that
there is a direction w = (w1, ..., wq—1) so that

d—1
S ) A )] 2

if s € supp(x) and y € supp(u). By a rotation in parameter space we may assume
that 5 )
’33/1 (w(y),v’(s))’ > 5 if s € supp(x), v € supp(u). (8.31)
Now let, for fixed unit vectors vy, vo and § > 0,
Us(vi,v2) ={w € gd-1. [{w,v1)] < 6, |{w,va)| < &}

and observe that the spherical measure of this region is at most O(d); moreover
this bound can be improved if |v; — va| is > §. Namely if a(v1,v2) is the acute
angle between vy and vy then

meaS(Z/{5(v1,v2))§min{6, o } (8.32)

sin a (v, v2)
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The condition (8.31) implies that

’<3(le(y)ﬁ(sl) - 7(82)>’ > ¢|sy — 5o

and given the regularity of the amplitude we can gain by a multiple integration

2"+ indeed we gain a factor of

by parts in y; provided that |s; — sa| > %

O(R_l‘sl — 82|_121)

with each integration by parts. We obtain, for any NV,

ns [ [ meas (04 () (5.33)
s1€supp(x) L/ [s2—s1|<c
X IIliIl{l7 (R‘Sl — 52‘271)71\[} dSQ dSl.

By the assumption that |y”(s)| is bounded below and 4" and 4" are orthog-
onal we get as a consequence of (8.32)

meas (Us-1(7'(51),7'(s2)) < min{27",27|s; — 5|7}

Now we use this bound and integrate out the s; integral in (8.33) and see that the
main contribution comes from the region where

21

270 < sy — 80| < R
which yields the factor log(R272!) in (8.30). O
An application. We consider a C2? curve v : [~a,a] — R¢ with non-vanishing

curvature and assume that, as in (8.6), the function s — (w,~"”(s)) has a bounded
number of sign changes.

Let 1 be the measure induced by the Lebesgue measure on I', multiplied by
a smooth cutoff function. For every o € SO (d) define u, by py (E) = (o F) and
for every test function f in R?,

Tf (2,0) = f + o (3).
We are interested in the
LP(RY) — L*(50(d), L*(R?))

mapping properties, in particular for ¢ = p’ = pf 1- This question had been inves-
tigated in [163] for curves in the plane, with essentially sharp results in this case,
see also [43]. The standard example, namely testing 7" on characteristic functions
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of balls of small radius, yields the necessary condition 1+ dgl > Z‘ Setting ¢ = p’
we see that the
LP(R?) — L*(SO(d), L” (R%))

fails for p < 71 (independent of s).

The approach in [163] together with the inequality (8.6) yields

peesoqy, v iy < Cpll fllp, =241, s <22 (8.34)

1T

Proof of (8.34). We imbed T in an analytic family of operators. After rotation
and reparametrization (modifying the cut-off function) we may assume that

d—1
Y(t) = pi(t)e; + tea,
j=1
with ¢;(0) = 0. Let z € C such that Re z > 0 and define a distribution i, by

+oo
(iz,x) = (F(z))l/O x (t) 7~ Lat.

Then define pZ by
d

Pz (&) = e (€) Hi:«a&em

and T% by T? f(z,0) = uZ* f. Following [163] one observes that 1" is a bounded
function, namely we have

d—1
|<M1+i>\7g>| < /R/Rd 1 g | xaeq + Z(y] + ¢j(za)e; | |dyr - - - dya—1dzq S gl
_ =
so that
TlHIA Ll(Rd) — L®(S0(d) x Rd). (8.35)
We also have
1,
T 2a-21 L2(RY) - LY(SO(d), LA(RY), 2<q<A4. (8.36)

The implicit constants in both inequalities are at most exponential in A. Thus we
obtain the assertion (8.34) by analytic interpolation of operators.

To see (8.36), we observe that

£2r) = Offr| ")
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and apply Plancherel’s theorem and then Minkowski’s integral inequality to bound
for a > 0,

HTfaJri)\f”iq(LQ)

- (/So(d) ( » |f(§)ﬁo|2j_1:[j \i—/a+\m(<0£7ej>)|2d§)gda)3

= f(g)f(/so(d)

and by (8.6) and the assumption ¢ < 4 the last expression is dominated by a
constant times
.

< 7|2 2a(d—1)~1 ¢
s [ IFore ¢

d—1 2
(@) TT 1ot e5)|1dor) " de,
j=1

Fef e ([ imtofan) s

For a = (2d — 2)71, this yields the bound (8.36). O
Remark. We do not know whether the index s = %!~2 in (8.34) is sharp. The
following example only shows that we need s < 10 for d = 3. Let v (t) = (t, 12, 0)
and let xp, be a box centered at the origin with sides parallel to the axes and
having side lengths 1,1 and §. A computation shows that |T'xp,(x,0)| > ¢ for o
in a set of measure €2 and z in a set of measure ¢, for some small € > 0. It follows
that p! <2571 4+¢'. Forp = g and thus p’ = g this yields s < 10.

8.3 Upper bounds, II

We are now concerned with the proof of Theorem 8.9 and the proof of part (i) of
Theorem 8.4. For the latter we use a version of the Carleson—-Sjolin theorem ([51],
[100]), and for Theorem 8.9 we use a recent generalization due to Bak and Lee [9]
These we now recall.

Consider, for large positive R,

Trf(z) = /Remd’(z’t)a(sc, t) f(t)dt

with real-valued phase function ¢ € C°(R™ x R), and compactly supported am-
plitude a € C§°(R™ x R). Assume the non-vanishing torsion condition

0 2 an
det (at (Vad)s i (Vad)s s g, (qub)) #0 (8.37)
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on the support of a. Then if

1 1
L n(n+1)
D 2q

=1

and g > "2+2”+2, there is a constant Cy independent of f and of R > 2 such that

I TrRf|| Larny < C,R ¢ Iflle(r)- (8.38)

When n = 2 it is well known that a slight modification of Hérmander’s proof
([100]) of the Carleson—Sjolin theorem gives the endpoint result

_1 1
HTRfHL4(Rn) S Rz logt RHfHL4(R) ) (8.39)

see also [150], where a somewhat harder vector-valued analogue is proved.
In order to establish estimates (8.5) we need to show that, under the assump-
tion of linear independence of ~/(t) and v (¢) (for each t € I),

G4(R) < R 2[log R]4. (8.40)

To establish (8.10) under the assumption that the first K derivatives are linearly
independent for every t € I, we need to show that for any 2 < k < K,

GyR) SR 7, q>q, (8.41)

where ¢, is as in (8.11). All other estimates in (8.5), (8.10) follow by the usual
convexity property of the LP norm, i.e.,

1 1-9 9
Fl, <|IFIL2 P15, for = +
Il < IE g 1115, »= 1 T
Proof of (8.41) and (8.40). Let
Fr(w) :/e“””(t))a(w)x(t)dt. (8.42)
R

By compactness, we can suppose that y is supported in (—¢,¢), with ¢ as small
as we need. Divide the sphere S%~! into two subsets A and B: here in A, the
unit normal to the sphere is essentially orthogonal to the span of the vectors
7' (0),...,7*)(0), and in B, the unit normal to the sphere is close to the span of
(0), .../ (0).

Now consider a coordinate patch V of diameter € on A and parametrize it by
y +— w(y) with y € R¥~1 y near Yy. From the defining property of A, it follows that
the vectors V, (w(-),79)(¢)), j = 1,..., k are linearly independent when evaluated
at y near Yy, provided that [t| < e. Therefore we can choose the parameterization

y= (50'79”) = (T1, s Thy Ykt 1> Yd—1)
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in such a way that also the vectors
Vo lw(), YD @), j=1,...k,

are linearly independent.
If we consider y” as a parameter and we define

¢¥ (2, t) = (w(@',y"), (1)),
then the phase functions ¢¥" satisfy condition (8.37) uniformly in y”. We also
have upper bounds for the higher derivatives in w and -« which are uniform in 3"
as well (here y” is taken from a relevant compact set). Thus one can apply the
Bak-Lee result (8.38) in k dimensions to obtain, for fixed ",

/‘/ iR W) g (] )X(t)dt‘qdy’)q <SRG, > q. (8.43)

An integration in y” yields
[FrllLaqv)y S R™ i

for ¢ > . Similarly if £ = 2 and ¢ = 4 we can apply (8.39) in two variables

to obtain

k2 k42
2

|FgllLav) S B2 logt R.

This settles the main estimate for the L?(A) norm. As for contribution of the
L%(B) norm we recall that the unit normal to the sphere is close to the span of
7(0),...,7*)(0), and thus

k

> Hw ()] > 0.

j=1
Therefore we can apply van der Corput’s lemma and obtain the L estimate
| Frll =) SR *. (8.44)
For k = 2, this completes the proof of the theorem. For 2 < k < K, we argue by
induction. We assume that the asserted estimate holds for k — 1, (k > 3); that is
IFrlly SR 0 for  q>qoq=F (8.45)
where the implicit constants depend on ¢q. If ¥, = 1— q’;;l then we use the relation
qx — qx—1 = k to verify that
(1—1910(]6—1) g k
+ = .
qk—1 ko ar
Thus by a convexity argument we see that a combination of (8.44) and (8.45)
yields that
2
1Frllpam SR o, for > K42 =g,
Together with the corresponding bound for || Fr||£«(4) proved above, this concludes
the proof. O
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8.4 Upper bounds, III

We give the proof of Theorem 8.20 under the finite type assumption. By compact-
ness, there is an integer L > d and a constant ¢ > 0 so that for every s € I and
every § € S9! we have

L

ECTIES

We shall argue by induction on k. By Theorem 8.9 the conclusion holds for
k = 2. Assume k > 2, and that the desired inequalities are already proved for
2<q<qr-1-

Let Fgr be as in (8.42) and assume that the cut-off function x is supported
n (—e,e). As in the proof of Theorem 8.9 we split the sphere into subsets A and
B where in A, the unit normal to the sphere is almost perpendicular to the span
of the vectors v'(t),...,v®(t), for all |t| < ¢ and in B, the projections of the unit
normals to the sphere to the span of 7/(t), ...,y (t) have length > ¢ > 0.

We shall estimate the L9(A N §2) norm of Fr on a small patch 2 on the
sphere, and by further localization we may assume by the finite type assumption
that there is an n < L so that

(7™ (s),0)] > ¢>0,|s| <e,0 €. (8.46)

We distinguish between the case n > k and n < k. First we assume n > k
(the main case). Then there is the pointwise bound

Fr(6) < min {1, Hr(6))""} (8.47)

where )

Hp(f) = min max R i[9 (s),0)].

sel 1<j<n

This is immediate from van der Corput’s Lemma; indeed the finite type assump-
tion allows the decomposition of the interval [—¢,¢] into a bounded number of
subintervals so that on each subinterval all derivatives of

s (Y9(s),0), 1<j<n-—1,

are monotone and of the same sign. We now have to estimate the L(AN§) norm
of the right-hand side of (8.47).
For an [ > 0 consider the set

QU(R) = {0 cQ: Hgp(9) €2}, 21}, (8.48)
By (8.46) we have |Hg(0)| > R+ . Thus only the values with

2! > R (8.49)
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are relevant (and likewise the set of 8 € Q for which Hg(f) < 1 is empty if R is
large).

By the definition of Hr we can find a point s, = s.(f) and an integer j.,
1 < j5* <n, so that

1
J*

Hp(6) = [R{y")(s.),6)

and ' )
|R(yY)(s.),0)|7 < Hr(0)

for all 8 € © and all j < n. This implies
(79D (s,),0)] <2FVIRTL if 6 e (R), j<n. (8.50)

We shall now apply a nice idea of [3]: We divide our interval (—¢, €) into O(2})
intervals I,,; of length ~ 2~ with right endpoints ¢,, so that ¢, —t,_1 ~ 2! The
point s, lies in one of these intervals, say in I,,. We estimate |(yU)(t,,), 0)\; in
terms of Hg (). By a Taylor expansion we get

n—j—1

(Y9 (t,.),0) = Z (49 (1,.),60) (ty, —s4)" ~ (b, — 8"

2 . )1 (8.51)

where ¢ is between s, and t,,_. By (8.50) the terms in the sum are all O(2¥ R™1).
The remainder term is O(2~/"~7)) which is also O(2Y R~1), by the condition
(8.49).

Now define

Qi ={0e€Q:|(v9(t,),0) <C2"R™' j=1,...,n}

and if C is sufficiently large then the set 2;(R) is contained in the union of the
sets 2,,;; the constant C' can be chosen independently of [ and R.

In view of the linear independence of the vectors v (t,), 7 =1,...,k and
the condition # € A, the measure of the set €, ; is

k
0 (H@sm*)) — 0" R,

s=1
for every 1 < v < 2!, and thus the measure of the set €;(R) is

(k2 4+k+2
2 )Rfk

0(2 ).

On ;(R) we have
|Fr(9)| < Hr(9)™' <270
Therefore
1(k2+k+2) _k
2

/QA|FR(9)|qd9§ > 27l R7F, (8.52)
n

1
cRn <2!<cR
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which yields the endpoint bound

(/Q AFR(a)%da) " < R (log R) % .
N

Of course we also get (by using the same argument with just k£ — 1 derivatives)

2_
/|FR(9)|qd9§ S o e (8.53)
Q

1
cRn <2!<cR

which yields the sharp L%-1(A N Q) bound. Now we consider ¢ satisfying ¢z_1 <
q<qu k<dorqgsi<q<ooand K =d. We distinguish the cases (i) 2! < R

and (i) 2! > R#. In the first case we use (8.52) while in the second case we use
(8.53). Then in the case k < d,

(/ FR(Q)qd9>q SR_k( Z 21(—2q+k22+k+2) n Z 21(2q+,€22k+2)R>q
& 1

1
2l<Rk 20>RE

which is bounded by
1 k2—k—2
CR * 2kq
if gg—1 < q < qx- If K =k = d then only values with 2l > Ré are relevant and
only the second sum in the last displayed line occurs. Thus if K = d we obtain
the estimate
_1_d?—d-2
CR 4 2dq
for ¢ > qq-1.
Now if n < k one gets even better bounds; we use the induction hypothesis.
First note that for n = 1, 2 integration by parts, or van der Corput’s lemma, yields
a better bound; therefore assume n > 3. We have the bounds

_1 _n 1
|Frllze@) SR and  [|[FRrllLa@) S R o (log R)an;

the first one by van der Corput’s Lemma and the second one by the induction
hypothesis. By convexity this yields

L 1 n 1— dn
| Frllra < R7%™ log Rax where alk,n) =+ o
dk n

and one checks that

k k—n)(k+1-
alk,n) = + (k=n)(k+1-n)
qk 2nqy,
if n < k, so that one gets a better estimate. The case qx—1 < ¢ < qx, n < k, is
handled in the same way. This yields the desired bounds for the L?(A) norm of Fpg.
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For the L9(B) bound we may use van der Corput’s estimate with < k deriva-
tives to get an L* bound O(R~ " ); we interpolate this with the appropriate LP
bound for g;_o < p < qx—1 which holds by the induction hypothesis; the argument
is similar to that in the proof of Theorem 8.9. This finishes the argument under
the finite type assumption.

Modification for polynomial curves. If the coordinate functions «y; are polynomials
of degree < L we need to take n = L in the definition of Hr(#). We use, for the
case | > 0, the analogue of the Taylor expansion (8.51) up to order L with zero
remainder term (again n = L). As above we obtain for [ > 0 the bound

/ |Fr(0)|7d0 < 27'9R™% min {2
U (R)

1(k2+k+2) 1(k2 —k+2)
510 R}

Summing in { > 0 works as before. However we also have a contribution from the
set
Qo(R) = {9 e0: HR(Q) < 1}.

By the polynomial assumption a Taylor expansion (now about the point s,, with-
out remainder) is used to show that (R) is contained in the subset of A where

(v (s.),0)| <CR™Y, j=1,....k

This set has measure O(R~F). Thus the desired bound for [ = 0 follows as well. ~ [J

8.5 Asymptotics for oscillatory integrals revisited

We examine the behavior of some known asymptotics for oscillatory integrals under
small perturbations. This will be used in the subsequent section to prove the lower
bounds of Theorem 8.12.

For k = 2,3, ..., there is the following formula for A > 0:
/ e ds = apA" *, (8.54)

where

27 (D) gin(*2D™Y & odd,

2T (1) exp(ig.), k even.

(8.54) is proved by standard contour integration arguments and implies
asymptotic expansions for integrals

/ 6i)‘skx(s)ds

with x € C§° (see, e.g., §VIIL.1.3 in [180], or §7.7 in [101]).



190 Chapter 8. Fourier Transforms of Measures Supported on Curves

We need small perturbations of such results. In what follows we set

e ()
lgllem 1y o%%ﬁi?;‘g (z)].

Lemma 8.56. Let 0 < h < 1, I = [~h,h], I* = [-2h,2h] and let g € C*(I*).

Suppose that

1
h< 8.57
10(1 + [lgllc2(1+)) (8:57)

and let n € C* be supported in I and satisfy the bounds
[nlloc + [I7ll1 < Ao, and [|n'[lec < Ay (8.58)
Let k > 2 and define
k—2 '
Iy(n,z) = /n(s) exp (M (Z zjst + 5%+ g(s)sk“))ds. (8.59)
j=1

Let ay, be as in (8.55). Suppose |z;| < 6)\j;k, j=1,....k— 2. Then there is an
absolute constant C so that, for A > 2,

11x(n, ) — n(0)ogA™ * | < C[AgSA™+ + A A~ % (1 + Br log A)];
here B =1, and B = 0 for k > 2.
Proof. We set u(s) := s(1 + sg(s))*; then
W (s) = (14 sg(s) k(1 + sg(s) + k~1s)

and by our assumption on g we quickly verify that

(190> i sul(s) < (E) }C

for —h < s < h. Thus u defines a valid change of variable, with «(0) = 0 and
u’(0) = 1. Denoting the inverse by s(u) we get

In(n,z) = /nl(u) exp (z)\(k;jxjs(uy +uk>>du

with 71 (u) = n(s(u))s’(u). Clearly n; is supported in (—2h, 2h). We observe that
Iilloe + llmlls S Ao, and  [nillec S (Aoh™" + As). (8.60)
Indeed implicit differentiation and use of the assumption (8.57) reveals that
5" ()] £ 1+ llglle) S AT

Taking into account the support properties of 71 we obtain (8.60).
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In order to estimate certain error terms we shall introduce dyadic decompo-
sitions. Let xo € Cg°(R) so that

1 if s < 3,
Xo(s) = . ) (8.61)
, if[s] >
and m > 1, define
Xm(8) = x0(27™s) — xo(27 ™), m > 1. (8.62)

We now split

In(n,z) = (0 J,\+ZEAm+ZFAm

m2>0 m>0

where J) is defined in (8.54) and

Exm = / (1 () = 11(0)) xm (A * )" s,

Fan(z) = / m (u) exp(l)\(Za?] )) —1 | XA w) e du,

In view of (8.54) the main term in our asymptotics is contributed by 71 (0)J
since 71 (0) = 7(0).

Now we estimate the terms E p,. It is immediate that from an estimate using
the support of the amplitude that

_2
[Exol < CllnfillecA™%.

For m > 1 we integrate by parts once to get

1 Nk
Exm= k)\/ — 1 (0))u!~ kxm(Aku)]e“\“ du
and straightforward estimation gives
7 lloo2™ RN, i 2m < Ak
‘ Am| < 1—k)y—1 . 1
I lloo2™ ATk, i 2™ > Ak,
Thus ,
Y [Bxml < OlmllocA™* (1 + Bi log A).
We now show that
D 1 Pam(@)] < Climlloo + 17 [[1]6A (8.63)

m>0

and notice that only terms with 2mA~k < C occur in the sum.
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Crz(u) = [ exp (M(Z zs( )) 1

For the term E) o(x) we simply use the straightforward bound on the support of

Set

Xo()\llc -) which is (in view of |s(u)| = |ul)

k—2

Cxa(u)| < CAY oy A ¥ |

j=1
and since |z;| < JA™ " we get after integrating in w,
1
[Fx 0l S lmllocdA™ %

For m > 0 we integrate by parts once and write

Fyp = ik~ AL / d(i [ul_kxm()\}eu)m(u)@ym(u))]eimkdu. (8.64)

On the support of x,(A*-),
Gnrli)] S A Zf” Tl g a2t

i [u! Fxm (0] | S o

and also
k—2 o
(Gl SAD 0N @M k)T S g2m DA
Jj=1

k—1

e (A S 27D

and thus we obtain the bound

T
[t ) ()] S Ol -+ 15225
Hence,
D 1 Faml S0ATE,
m>0
which completes the proof of (8.63). O

For the logarithmic lower bounds of G4(R) we shall need some asymptotics
for modifications of Airy functions. Recall that for ¢ € R the Airy function is
defined by the oscillatory integral

Ai(r) = 2171_ /OO exp (z (”%3 +7x)) dx

— 00
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and that for ¢t — oo we have
Ai(—t) =74 heos (262 - 1) (140t 1)). (8.65)

This statement can be derived using the method of stationary phase (combining
expansions about the two critical points :i:té) or complex analysis arguments, cf.
[66] or [182, p. 330], see also an argument in [90].

Let g € C?([—1,1]), and let € > 0 be small, ¢ < (1 + ||g||c2)~!. Let n € C§°
with support in (—¢,¢), so that n(s) =1 for [s| < 5.

Lemma 8.66. Define

3

J(A09) = /eiA( 3 —195> ei’\g(s)s4n(s)ds. (8.67)

Then, for 0 < ¥ < 522 and A > 71,

JA ) = A3 Ai(=A309) + By (A, 0)
L \ 8.68
—r by i eos (2008 - 1) + B0 0) (868)

where, fori=1,2,
B\ 9)| < C. [)\‘119‘1 —&-min{)\ﬁg,ﬁé”. (8.69)

Proof. We split

4 3

JA0) = Ji(\0) o= 2/6”(53 ‘195> Ci(s)ds

i=1 i=1

where

o(s) = n(s) (X7 = 1)n(C 07 2),
Cals) = n(s) (e —1)(

where C' > ¢71. By a scaling we see that

—
\
3
—~
9
-
N
[
»
S~—"
S~—"

Ji(\9) = A7 5 Ai(—A59)
and we prove upper bounds for the error terms J;, i = 2,3, 4. Let

$3
O(s) = —vs+ 3

then ®’(s) = —9 + s2 and in the support of (3 we have |®'(s)| > ce. Thus by an
integration by parts Jo(\,9) = O(A™!). Note that (3 is bounded and that also
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1C3(5)| < AJ9|2. We integrate over the support of (3 which is of length O(v/b) and
obtain J5(\,9) = O(min{¥2,\9?}). To estimate J4(\,9) we argue by van der
Corput’s Lemma, for the phases ® and its perturbation W(s) := ®(s) + s*g(s).

Thus we split
TiN0) =) Tam (A Y)
m +
where we have set
Jam+ (A 9) = /ei)‘q'(s)pm’i(s) ds — /ei)‘q)(s)pm,i(s) ds;

here
Pt (8) = X(0,00)1(8) (1 = 0(CT1728))xn (CT 19 2 5),

Xm is as in (8.62) and 2792 < e (in view of the condition on 7). Let py, _ is
analogously defined, with support on (—o0, 0).
We argue as in the proof of Lemma 8.56. Note that now |®'(s)| ~ 229,

0

95 (9(s)s*) = 0(237"193)

and since 2M92 < &, we also have |U/(s)| &~ 22™9. Moreover, observe that ®” (s) =
25 + O(s?) so that van der Corput’s Lemma can be applied to the two integrals
defining Jy m + (A, 9). We obtain Jy .+ (A, 9) = O(A"19~1272m).

Finally, by (8.65) and (8.68), the difference of Ey and E is O(A~19~1). This
concludes the proof. O

8.6 Lower bounds

For w € R? (usually restricted to the unit sphere), define
Fr(w) = / () ROW ) g (8.70)

The following result establishes inequality (8.13) of Theorem 8.12.

Proposition 8.71. Suppose that for some to € I the vectors 7' (to),...,v*) (to) are
linearly independent. Then x € C3° in (8.1) can be chosen so that, for sufficiently

large R,
1 k*—k—2
| FrllLa(sa-1) > CR k& 2ka . (8.72)

Proof. We may assume to = 0. By a scaling and rotation we may assume that
7®)(0) = ej. We shall then show the lower bound |Fg(w)| > ¢oR™* for a neigh-
2

borhood of e which is of measure ~ R~" 2t . Now let Aj, be an invertible linear
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transformation which maps ey, to itself, and for j = 1,...,k — 1 maps vV (0) to
ej, 7 =1,...,k. Then the map

(A7)

w —
[(Ap) el

defines a diffeomorphism from a spherical neighborhood of e, to a spherical neigh-
borhood of ex. Thus we may assume for what follows that v : [~1, 1] — R? satisfies

Y0)=e;,  G=1,... .k (8.73)

We may also assume that the cutoff function y is supported in a small open interval
(—¢,¢) so that x(0) = 1.

As we have (e, v*=1D(0)) = 0 and (e, *(0)) = 1 we can use the implicit
function theorem to find a neighborhood W), of ej and an interval Z, = (—eg, €x)
containing 0 so that for all w € Wj, the equation (w,y*~1(t)) = 0 has a unique
solution t(w) € Ty,. This solution is also homogeneous of degree 0, i.e., ty(sw) =
tr(w) for s near 1), and we have t;(e;) = 0.

Lemma 8.74. There is eg > 0, Ry > 1, and ¢ > 0 so that for all positive € < gg
and all R > Ry the following holds. Let

Ure(R) = {we Sl w —ep| < e and
(w, /D (@) <R, forj=1,...,k—2.}

2
Then the spherical measure of Uy s(R) is at least el 1R="2 "

Proof. In a neighborhood of e; we parametrize the sphere by

w(y) = (ylv' sy Yk—1, \/1 - |y\273/k7~ . ~7yd—1)~

We introduce new coordinates zi, ..., z4—1 setting

4= 5s(a) = {<w<yw><fk<w<y>>>>, =1 k-2, (8.75)

yy, j=k—1,...,d—1.

Then it is easy to see that 3 defines a diffeomorphism between small neighborhoods
of the origin in R?~!; indeed the derivative at the origin is the identity map.

The spherical measure of Uy .(R) is comparable to the measure of the set of
z € RI71 satisfying |z;| < ERJ;]C, forj=1,...,k—2,and |zj| <efork—1<j <

. .  k2—k—2
d — 1, and this set has measure ~ ¢?"'R™" 2» . |

We now verify that for sufficiently small € and sufficiently large R,

|Fr(w)| > coR™F, w € Up(R), (8.76)
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with some positive constant cp; by Lemma 8.74, this of course implies the bound
(8.72). To see (8.76) we set

a;(w) = (w, Y (tr(w))), (8.77)
s =1t — tx(w) and expand

k—2 ; sk
(w,v(t)) — (w, y(tr(w Za] +ak( )k! + Ep(w, s)s* T, (8.78)

with .
o)k ~
Exw, ) = / A=) () A 6D T () + 05)) dor
o=0

If € is sufficiently small then we can apply Lemma 8.56 with w € Uy -(R), and the
choice A = [ (w, v®) (#4(w))), and the lower bound (8.76) follows. O

We now formulate bounds for g > k2+2k+2 for the case that v*+1) = 0 for
some k < d; this of course implies that the curve lies in a k-dimensional affine
subspace.

Proposition 8.79. Suppose that v is a polynomial curve with v**Y =0 and sup-

pose that for some to € I the vectors v'(tg), ...,y (to) are linearly independent.
Then x in (8.1) can be chosen so that for sufficiently large R,

R™aflogRls,  g=F*+2,
IFRl La(sa-1) > C{ : 2 (8.80)
R q> +2 +2

9y

Proof. We first note that the assumption 4**1) = 0 implies that the curve is
polynomial and for any fixed ¢ it stays in the affine subspace through ~(¢o) which
is generated by ~(7) (to), 7 = 1,...,k. We shall prove a lower bound for i in a
neighborhood of a vector e € 4! where e is orthogonal to the vectors v (t).
After a rotation we may assume that

V() = (n(®), -, %(8),0,...,0).
For w € 891 we split accordingly w = (w’,w”) with small w’ € R* namely
Wln2t
where 1 < R27! < R. As before, we solve the first degree equation
(YED(t),w) =0

(observe that this is actually independent of w”) with t = £ (w’); now ¢ is homo-
geneous of degree 0 as a function on R*. Then

=i T N) F ()

k—2 v .
— [ @)+ s)exp <Z<w O EN G+ <w<k><fk<w’>>>;> ds.

Jj=1
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If k > 3, let Vi, (R) be the subset of the unit sphere in R¥ which consists of those
6 € S*~1 which satisfy the conditions
~ k—v
(3 @0).0)] < e(R2™) % v=1,. k2.
Observe that the spherical measure of Vi ;(R) (as a subset of S¥~1) is

K2 —k—2

(R27)™ =,
by Lemma 8.74. Now, if &k = 2, define
Usa(R) = {w = (") € ST+ Jw — eg] < 6,271 < /] < 27141},
If3<k<dlet
Upi(R) :={we 81w —epya] <6,
27 < <27 @ e Vi(R)}
We need a lower bound for the spherical measure (on S?1) of U ;(R) and using

polar coordinates in R* we see that it is at least

k*—k—2
Cé.d—12—lk(R2—l)* 2k

If ¢ is small we obtain a lower bound ¢(R271)~ & on this set; this follows from

Lemma 8.56 with A ~ R2~*. Thus

K2 —k—2

/ |Fr(w)|%do(w) > co(R27") k27" (R27!) " =
Uk,l(R)

4 K2_k—2 l(q7k2+k+2)
=c. R 7 2 2\F 2k .

As the sets Uy (R) are disjoint in [ we may now sum in [ for CR™! < 27! < ¢ for
a large C' and a small c. Then we obtain that

S [ |Faw)dow)
1 YUk (R)
2 g
is bounded below by cR™ ="l 2, if g < k2+2k+2; this yields the bound that was
already proved in Proposition 8.71. If ¢ > k2+2k+2 then we get the lower bound
cR™% and for the exponent q = k2+2k+2 we obtain the lower bound cR~*log R.

This yields (8.80). O

Proposition 8.81. Suppose that 3 < k < d and that for some ty € I the vectors
Y (to), ..., v® (to) are linearly independent. Then x € C§° in (8.1) can be chosen
so that for sufficiently large R,

k—1
| Frlpa(ga-1y > CR™ '« logRl+, if g = qp_1 = * 2. (8.82)
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Proof. We start with the same reductions as in the proof of Proposition 8.71,
namely we may assume to = 0 and v0)(0) = ej for j = 1,...,k; we shall then
derive lower bounds for F(w) for w near e. As before denote by #1,(w) the solution
t of (y*=1(t),w) = 0, for w near e;,. We may use the expansion (8.78). Define the
polynomial approximation

A2 s7 sk
Py(s,w) = Px (s) = Zaj(w)j! + ag(w) Ll

Note that ar(w) is near 1 if w is near ex. In what follows we shall only consider
those w with
ak—2(w) < 0.

In our analysis we need to distinguish between the cases k = 3 and k > 3.

The case k = 3. We let for small ¢
Urj={wEe S |w —es] <6, —2itlIR=: < a1 (w) < —2jR_§}.
We wish to use the asymptotics of Lemma 8.66, with the parameters

9=i) =

and A = I;ag (w) (= R) to derive a lower bound on a portion of Ur ; whenever
A7i S O(w) SATn; e,

571 <20 < A (8.83)
where § is small (but independent of large ).

The range (8.83) is chosen so that the error terms in (8.69) (with A ~ R) are
< R™2974 if § is small; indeed the term A~19~! is controlled by C8iA~ 29~ i in
view of the first inequality in (8.83) and the term A9? is bounded by C§ s A\=29~4
because of the second restriction. Since the main term in (8.68) can be written as

(2> 2 Rféag(w)*iﬁ(w)*i cos (;)Rag(w)ﬁ(w)g — Z) ,

™

it dominates the error terms in the range (8.83), provided that we stay away from
the zeroes of the cosine term. To achieve the necessary further localization we let,
for positive integers n,

Unjn = {w €Ur; : ’;,R%(W)ﬁ(w)g -1 —-mn| < Z}
Let j be in the range (8.83). We use

b? —a?| ~ (\/aJr\/b) |b — al
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for 0 < b,a < 1. Since ¥(w) can be used as one of the coordinates on the unit
sphere we see that the spherical measure of Ug j, is 2 §2R=3272 for the about
2% values of n for which n ~ 2% | and on those disjoint sets UR,jn the value of
Fr(w)is > cR™327%,

This implies that, for j as in (8.83),

meas ({w €Up,; : |Frw)| > csR™327% }) > 2 RE,

and thus
/ Fr(w)|*do(w) = B2
Z/{R,j

Since the sets Ur ; are disjoint we may sum in j over the range (8.83) and obtain
the lower bound . .
[Frlls Z B2 (log R)*,

with an implicit constant depending on §.

The case k > 3. We try to follow in spirit the proof of the case for k£ = 3. Notice
that

_ 1
Pék 2)(s) = ak—2(w) + 2ak(w)s2
has then two real roots, one of them being
2a1-2(w) )
—zQ—2\W
s1(w) = ,
=)

the other one s3 = —s;. The idea is now to use, for suitable w, an asymptotic
expansion for the part where s is close to s;, and, unlike in the case k = 3, we
shall now be able to neglect the contribution of the terms where s is near s3. To
achieve this we define, for j =1,...,k — 3,

T(w) = P9 (51 () = a;(w A () (~2ar-2(w))*
=P @) e+ 3 (P2 sy
or v=k—j

We further restrict consideration to w chosen in sets
Vi, (0) = {we s41: IR
< ap_a(w) < =2 RE |ey — w| < 6, (8.85)
(@ (w)] < lar_s(w)|2¥2R™ "+ 1 <v <k -3}

We shall see that if we choose w from one of the sets Vy ;(d) with small ¢, and j
not too large, then the main contribution of the oscillatory integral comes from
the part where |s — s1(w)| < }s1(w). We shall reduce to an application of Lemma
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8.56 to derive a lower bound for that part. For the remaining parts we shall derive
smaller upper bounds using van der Corput’s Lemma.
For notational convenience we abbreviate

b= 7@]672(0))7 Eiy = au(w)7 1 = Sl(w)’ zk = fk(w)'
We now split
e—i(w,"/({k(w)))FR(w) = IR(UJ) + ER(UJ)7 (886)

where
() =[xt o (207 ) exp (RIS + 54 s, )]) ds.

Here xo is as in (8.61) and thus the integrand is supported where |s —s1| <51 .

Notice that Pékfl)(sl) = sjap(w) and P,Ek)(s) = ap(w). Let

k—3
s (8= (s —s1)*1)
Qk—1(8)—;a,, o takst h—1)
then
s—sl)k.

Pr(s) — Pi(s1) = Qr—1(s) + ;!ak(

Thus we can write

Ip(w) :/n(s)eiR@H(SHkﬂw(s—sﬂ’“)ds

with
n(s) = x(tx + 8)x0(10s7 (s — 51)) exp(iRs* 1 &1 (s, w)).
Note that by (8.61) the function 7 is supported where 20s;'|s — s1| < 1, d.e.,
in [s;1 —h,s1 + h] with h = s 1. Clearly 7]l = O(1), and since s; ~ /b it is
straightforward to check that
17 lloo + 572 [l [l1 S (1 +b72 + Rb%), (8.87)
thus also .
o + lI7'lls S 1if b < R™ w1, (8.88)
Moreover, if g(s) = ;. then we can write
k
s—s
RQk-1(s) + ak( 1)

k!
_ Raksl (Z% B (s—sl)k 1+(S—S1)kg(8—81)>
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where [z, | S b2 |@,|. The conditions
@, <db="2R™ ¥ imply that  |z,| S S(Rb2)T A
We of course have

lgllc2(enny <s7' on I*=[-si,s1];

10 10
thus
h=sy <1071+ gllcs)
Changing variables § = s — s; puts us in the position to apply Lemma 8.56
for perturbations of the phase 3 — A§~1, with

X := Rlax|s1 = R\/2ayb ~ Rb?,

and we have the bounds 4g < C (if b < R~ i1 and A < (1+ Rbg) for the
parameters in Lemma 8.56. We thus obtain (cf. (8.55))

[T (w) — a1 x(s1(w)) (Ry/2axb) "+ |

1 1 1 1 (889)
< §(Rb2)™*1 + b2 (Rb2) " #71 log(Rb?),

provided that b < R~ R < 1. We wish to use this lower bound on the sets Vy, ;(9).
In order to efficiently apply (8.89) we shall choose j so that

R TR <2f < TR (8.90)
with 7, 7o satisfying

k>T1>7'2> kil’
so that the main term in (8.89) dominates the error terms.

We now need to bound from below the measure of the set Vg ;(6). We use
the coordinates (8.75) on the sphere in a neighborhood of ej. In view of the linear
independence of 7", . .., y*~1) we can use the functions a;(3(y)), j € {1,...,k—2},
cf. (8.77), as a set of partial coordinates.

We may also change coordinates

(a1,...,ap—3,a5-2) = (Q1,...,aK—3,ax—2),

with ap_2 = —b; here we use the shear structure of the (nonsmooth) change of
variable (8.84). Thus, as in Lemma 8.74, we obtain a lower bound for the spherical
measure of Vy ;(4), namely

k—3
[Vis(6)] = eo' 22 R T (27500 R4
v=1
— 06d722jR7 1% (QjR7 1% ) (k1(3’13£k1;2) R(k;(ak)(j;z) —(k—3)

k2 — k42 K2—k—2
= 697297 ak—1) BT 2k



202 Chapter 8. Fourier Transforms of Measures Supported on Curves

after a little arithmetic. Thus

Jag—1 1 _ k-1

Vi,j ()] > 6% 22262 Rr— "2 (8.91)

Now if § is chosen small and then fixed, and R is chosen large, then (8.89)
implies the lower bound

()| > cs(RVPR=%)" 02y

C (5.92)
=c52 A RTE w € Vg ;(0),
provided that R~™+7% < 2/ < R=™%%. We shall verify that for j > 0,
|Br(w)| SR H(27+2 +272%0), we V(). (8.93)

and from (8.92) and (8.93) it follows that
|[Fr(w)] = cs2” 2 2Rk, w € Vi (0)

if R-tk < 20 < RTetk, By (8.91) this implies for the same range a lower
bound which is independent of j,

c—1  kZ2—k—2

/ |Fr(w)|®1dw > csR™ + —" 2t " = ¢gR=(D),
Vi, (8)

We sum in j, R-™+% <29 < R=™%1; this yields, for large R,

1

k-1 k-1 1
/u ) | Fr(w)|®™—dw > dsR -1 (log R) %1
iV,

which is the desired bound.
It remains to prove the upper bounds (8.93) for the error term Fgr. It is
given by

Eg(w) = BP0 /X(;k +5) (1 - X0 (208 B 81)) otRO(3) Ig
S1

where
B(s) = Pi(s) — Pr(0) + s*1&,41(s).

We use a simple application of van der Corput’s Lemma. Write ¢ as

89) = Quoa(9) + (s —s1)F + 180y (),
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and observe

B 2(s) = (s = s1)(s + 1) + OLs°),
o2
0 s (7 47) ot

The integrand of the integral defining Er is supported where [s — 51| > g, and
|s — s1] < ¢ for small c¢. We see that

|92 (s)] = cob

if in addition |s + s1] > {§.

If |s + 51| < 73, this lower bound breaks down; however, we have then

6*(5)] > cb? — [ap_3(w)|-

Now on Vj, ;(0) we have the restriction
k()] < 8b=t-n R~ x*1 < 6b3

where the last inequality is equivalent to the imposed condition b > R« (which
holds when j > 2). Thus if ¢ is small we have

|63 ()] = b

if [s+s1[<s1.

We now split the integral into three parts (using appropriate adapted cutoff
functions), namely where (i) |s+s1| < s1,o0r (ii) s+s1 > 1, o0r (iil) s+s1 < —s1.
For parts (ii) and (iii) we can use van der Corput’s Lemma with k — 2 derivatives
and see that the corresponding integrals are bounded by C'(Rb)~ -y Similarly for
part (i), if ¥ > 4 we can use van der Corput’s Lemma with (k — 3) derivatives to
see that the corresponding integral is bounded by C(Rb%)_ki?». The case k = 4
requires a slightly different argument (as we do not necessarily have adequate
monotonicity properties on ¢’), however in the region (i) we now have

¢"(s) = 0(b), |¢/(s)| 2 b

and integrating by parts once gives the required bound O (Rzg ) also in this case.
2

Since b ~ R~+27, the upper bound (8.93) follows. O



Epilogue

Now that the book has ended, the time has come to take stock of what we have
done. The chapters above already contain much information about possible di-
rections for further research on the level of details. The introduction places the
techniques and ideas of this book into context of modern research trends and ex-
plains some of the connections between them. To wind things down, we describe
using broad strokes some of the fundamental gaps in the current state of knowledge
as it pertains to the material of this book.

The first part of the book examines the decay rate of Fourier transforms of
functions based on their analytic properties. The method of stationary phase and
related techniques are reviewed and then more delicate assumptions are consid-
ered, which leads to the study of functions of bounded variation. Perhaps the most
interesting examples are provided by the connections between these problems and
the various properties of the Hilbert transform and the real Hardy spaces. Similar
results are also presented in the higher-dimensional case with the radial case pro-
viding a natural transition point. It is the higher-dimensional setup where our state
of knowledge is particularly incomplete and this should serve as a good starting
point for a variety of future investigations.

The second half of this book is built heavily around the concept of average
decay of the Fourier transform. While the relationship between curvature and the
decay of the Fourier transform is fairly well understood, the role of smoothness
remains quite elusive. In the case of convex surfaces with non-vanishing Gaussian
curvature, how much smoothness do we need to obtain optimal pointwise bounds
for the Fourier transform of the surface carried measure. The L?-average decay
theorem in Chapter 5 holds under the assumption that the boundary is either
convex or C'2. Does the result hold if the boundary is merely Lipschitz? Perhaps
even rectifiable boundary is enough? We know that the result fails if we assume
that the boundary is merely d — 1-dimensional, but where is the threshold of
roughness? Understanding these issues to a sufficient degree of depth would shed
light on many interesting problems described and alluded to in this book, including
the celebrated Falconer distance conjecture.

On this note, we thank the reader for his/her patience and temporarily leave
the world of exposition for the one of discovery. We hope to be back soon.
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