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9 Clifford–Fourier Transform and
Spinor Representation of Images

Thomas Batard and Michel Berthier

Abstract. We propose in this chapter to introduce a spinor representation for
images based on the work of T. Friedrich. This spinor representation gener-
alizes the usual Weierstrass representation of minimal surfaces (i.e., surfaces
with constant mean curvature equal to zero) to arbitrary surfaces (immersed
in ℝ3). We investigate applications to image processing focusing on segmen-
tation and Clifford–Fourier analysis. All these applications involve sections of
the spinor bundle of image graphs, that is spinor fields, satisfying the so-called
Dirac equation.
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1. Introduction

The idea of this chapter is to perform grey-level image processing using the geo-
metric information given by the Gauss map variations of image graphs. While it
is well known that one can parameterize the Gauss map of a minimal surface by
a meromorphic function (see below), it is a much more recent result (see [5]) that
such a parametrization can be extended to arbitrary surfaces of ℝ3 when dealing
with spin geometry.

Let us first recall that a minimal surface Σ immersed in ℝ3, that is a surface
with constant mean curvature equal to zero, can be described with one holomor-
phic function 𝜑 and one meromorphic function 𝜓 such that the product 𝜑𝜓2 is
holomorphic. This is the so-called Weierstrass representation of Σ (see [6] or [8]
for details). The function 𝜓 is nothing else but the composition of the Gauss map
of Σ with the stereographic projection from the unit sphere to the complex plane.

This work was partially supported by ONR Grant N00014-09-1-0493.



178 T. Batard and M. Berthier

The main result of T. Friedrich in [5] states that there is a one-to-one cor-
respondance between spinor fields 𝜑∗ of constant length on a Riemannian surface
(Σ, 𝑔) and satisfying

𝐷𝜑∗ = 𝐻𝜑∗ (1.1)

where 𝐷 is a Dirac operator in one hand, and isometric immersions of Σ in ℝ3

with mean curvature equal to𝐻 , on the other hand. The Weierstrass representation
appears to be the particular case corresponding to 𝐻 ≡ 0.

Let us describe now the method introduced in the following. Let

𝜒 : Ω ⊂ ℝ2 −→ ℝ3

(𝑥, 𝑦) �−→ (𝑥, 𝑦, 𝐼(𝑥, 𝑦))
(1.2)

be the immersion in the three-dimensional Euclidean space of a grey-level image
𝐼 defined on a domain Ω of ℝ2. The first step (see § 2) consists in computing the
spinor field 𝜑∗ that describes the image surface Σ. We follow here the paper of T.
Friedrich [5]: 𝜑∗ is obtained from the restriction to the surface Σ of a parallel spinor
𝜙 on ℝ3. The computation of 𝜑∗ requires us to deal with irreducible representations
of the complex Clifford algebra 𝐶ℓ3,0 ⊗ ℂ and with the generalized Weierstrass
representation of Σ based on period forms. In practice, 𝜑∗ is given by a field of
elements of ℂ2.

As said before, the spinor field 𝜑∗ characterizes the geometry of the surface
Σ immersed in ℝ3 by the parametrization (1.2). In the same way that the normal
of a minimal surface is parameterized by the meromorphic function 𝜓, the normal
of the surface Σ is parameterized by the spinor field 𝜑∗. The latter explains how
the tangent plane to Σ varies in the ambient space.

There are many reasons to believe that such a generalized Weierstrass para-
metrization may reveal itself to be an efficient tool in the context of image pro-
cessing:

1. The field 𝜑∗ of elements of ℂ2 (see (2.26)) encodes the Riemannian structure
of the surface Σ in a very tractable way (although the definition of 𝜑∗ may
appear quite complicated).

2. The geometrical methods based on the study of the so-called structure tensor
involve only the eigenvalues of the structure tensor, that means in some sense
the values of the first fundamental form of the surface. The spinor field 𝜑∗

contains both intrinsic and extrinsic information. Studying the variations of
𝜑∗ allows us to get not only information about the variations (derivative) of
the first fundamental form, but also about the geometric embedding of the
surface Σ and in particular about the mean curvature.

3. We are dealing here with first-order instead of zero-order geometric variations
of Σ. As shown later, this appears to be more relevant by taking into account
both edges and textures.

4. As will be detailed in the sequel, the spinor field 𝜑∗ can be decomposed as a
series of basic spinor fields using a suitable Clifford–Fourier transform. This
series corresponds to a harmonic decomposition of the surface Σ adapted to
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the Riemannian geometry. This is in fact the main novelty of this chapter
since the usual techniques of Fourier analysis do not involve geometric data.

5. One can envisage the possibility of performing diffusion in this context. The
usual Laplace Beltrami operator can be replaced by the squared Atiyah Singer
Dirac operator [7] (the Atiyah Singer Dirac operator acting as an elliptic
operator of order one on spinor fields).

To illustrate some of these ideas, we investigate rapidly in § 3 applications to
segmentation and more precisely to edge and texture detection. As stated before,
the basic idea is to replace the usual order-one structure tensor by an order-two
structure tensor called the spinor tensor obtained from the derivative of the spinor
field 𝜑∗. This spinor tensor measures the variations of the unit normal of the
image surface. Experiments show that this approach is particularly well adapted
to texture detection.

We define in § 4 the Clifford–Fourier transform of a spinor field. For this,
we follow the approach of [3] that relies on a spin generalization of the usual
notion of group character. We are led to compute the group morphisms from
ℤ/𝑀ℤ×ℤ/𝑁ℤ to Spin(3). Since this last group acts on the sections of the spinor
bundle, a Clifford–Fourier transform can be defined by averaging this action. One
of the key ideas here is to split the spinor bundle of the surface according to the
Clifford multiplication by the bivector coding the tangent plane to the surface.
This has two advantages: the first one is to involve the geometry in the process,
the second one is to reduce the computation of the Clifford–Fourier transform to
two usual complex Fourier transforms. It is important to notice that although the
Fourier transform we propose is, as usual, a global transformation on the image, the
way it is computed takes into account local geometric data. We finally introduce
the harmonic decomposition mentioned above and show some results of filtering
on standard images.

The reader will find in Appendix A the mathematical definitions and results
used throughout the text.

2. Spinor Representation of Images

This section is devoted to the explicit computation of the spinor field 𝜑∗ of a given
surface immersed in Euclidean space. It is obtained as the restriction of a constant
spinor field of ℝ3 the components of which are determined using period forms.

2.1. Spinors and Graphs

Let 𝐼 : Ω −→ ℝ be a differentiable function defined on a domain Ω of ℝ2. We
consider the surface Σ immersed in ℝ3 by the parametrization:

𝜒(𝑥, 𝑦) = (𝑥, 𝑦, 𝐼(𝑥, 𝑦)). (2.1)

Also, let 𝑔 be the metric on Σ induced by the Euclidean metric of ℝ3. The cou-
ple (Σ, 𝑔) is a Riemannian surface of global chart (Ω, 𝜒). We denote by 𝑀 the
Riemannian manifold (ℝ3, ∥ ∥2) and by (𝑧1, 𝑧2, 𝜈) an orthonormal frame field of
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𝑀 with (𝑧1, 𝑧2) an orthonormal frame field on Σ, and by 𝜈 the global unit field
normal to Σ. One can choose (𝑧1, 𝑧2, 𝜈) with the following matrix representation⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝐼𝑥√
(𝐼2

𝑥 + 𝐼2
𝑦 )(𝐼

2
𝑥 + 𝐼2

𝑦 + 1)

−𝐼𝑦√
𝐼2
𝑥 + 𝐼2

𝑦

−𝐼𝑥√
𝐼2
𝑥 + 𝐼2

𝑦 + 1

𝐼𝑦√
(𝐼2

𝑥 + 𝐼2
𝑦 )(𝐼

2
𝑥 + 𝐼2

𝑦 + 1)

𝐼𝑥√
𝐼2
𝑥 + 𝐼2

𝑦

−𝐼𝑦√
𝐼2
𝑥 + 𝐼2

𝑦 + 1

𝐼2
𝑥 + 𝐼2

𝑦√
(𝐼2

𝑥 + 𝐼2
𝑦 )(𝐼

2
𝑥 + 𝐼2

𝑦 + 1)
0

1√
𝐼2
𝑥 + 𝐼2

𝑦 + 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (2.2)

Note that 𝑧1 and 𝑧2 are not defined when 𝐼𝑥 = 𝐼𝑦 = 0. This has no consequence
in the sequel since we deal only with the normal 𝜈.

Following [5] the surface Σ can be represented by a spinor field 𝜑∗ with
constant length satisfying the Dirac equation:

𝐷𝜑∗ = 𝐻𝜑∗ (2.3)

where 𝐻 denotes the mean curvature of Σ. We recall here the basic idea (see
Appendix A for notations and definitions). Let 𝜙 be a parallel spinor field of 𝑀 ,
i.e., satisfying

∇𝑀
𝑋 𝜙 = 0 (2.4)

for all vector fields 𝑋 on 𝑀 . Let also 𝜑 be the restriction 𝜙∣Σ of 𝜙 to Σ. The spinor
field 𝜑 decomposes into

𝜑 = 𝜑+ + 𝜑− (2.5)

with

𝜑+ =
1

2
(𝜑+ 𝑖𝜈 ⋅ 𝜑) 𝜑− =

1

2
(𝜑− 𝑖𝜈 ⋅ 𝜑) (2.6)

and satisfies

𝐷𝜑 = −𝐻 ⋅ 𝜈 ⋅ 𝜑. (2.7)

This last equation reads

𝐷(𝜑+ + 𝜑−) = −𝐻 ⋅ 𝜈 ⋅ (𝜑+ + 𝜑−) (2.8)

and implies

𝐷𝜑+ = −𝑖𝐻𝜑− 𝐷𝜑− = 𝑖𝐻𝜑+. (2.9)

If we set 𝜑∗ = 𝜑+ − 𝑖𝜑− then 𝐷𝜑∗ = 𝐻𝜑∗ and 𝜑∗ is of constant length.
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Proposition 2.1. The spinor fields 𝜑+, 𝜑− and 𝜑∗ are given by

𝜑+ =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1− 𝐼𝑦√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑢+

⎛⎝ 𝐼𝑥 − 𝑖√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑣

⎛⎝1 +
𝐼𝑦√

1 + 𝐼2
𝑥 + 𝐼2

𝑦

⎞⎠ 𝑣 +

⎛⎝ 𝐼𝑥 + 𝑖√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.10)

𝜑− =
1

2

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1 +
𝐼𝑦√

1 + 𝐼2
𝑥 + 𝐼2

𝑦

⎞⎠ 𝑢−
⎛⎝ 𝐼𝑥 − 𝑖√

1 + 𝐼2
𝑥 + 𝐼2

𝑦

⎞⎠ 𝑣

⎛⎝1− 𝐼𝑦√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑣 −
⎛⎝ 𝐼𝑥 + 𝑖√

1 + 𝐼2
𝑥 + 𝐼2

𝑦

⎞⎠ 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.11)

and

𝜑∗ =
1

2
(1− 𝑖)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1− 𝑖𝐼𝑦√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑢+

⎛⎝ 1 + 𝑖𝐼𝑥√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑣

⎛⎝1 +
𝑖𝐼𝑦√

1 + 𝐼2
𝑥 + 𝐼2

𝑦

⎞⎠ 𝑣 +

⎛⎝ 𝑖𝐼𝑥 − 1√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠ 𝑢

⎞⎟⎟⎟⎟⎟⎟⎟⎠
(2.12)

where 𝑢 and 𝑣 are (constant) complex numbers.

Proof. Since 𝜙 is a parallel spinor field on 𝑀 , 𝜙 = (𝑢, 𝑣) where 𝑢 and 𝑣 are two
(constant) complex numbers. Let 𝜌2 be the irreducible complex representation of
ℂ𝑙(3) described in Appendix A.1. Recall that

𝜈 =
1

Δ
(−𝐼𝑥𝑒1 − 𝐼𝑦𝑒2 + 𝑒3) (2.13)

where Δ =
√

𝐼2
𝑥 + 𝐼2

𝑦 + 1, so that

𝜌2(𝜈) = −𝐼𝑥
Δ

(
0 𝑖
𝑖 0

)
− 𝐼𝑦

Δ

( −𝑖 0
0 𝑖

)
+

1

Δ

(
0 −1
1 0

)
. (2.14)

By definition:

𝜈 ⋅ 𝜑 = 𝜌2(𝜈)

(
𝑢
𝑣

)
. (2.15)

Simple computations lead now to the result. □

The next step consists in computing the components (𝑢, 𝑣) of the constant field 𝜙.
This is done by considering a quaternionic structure on the spinor bundle 𝑆(Σ) of
the surface Σ and period forms.
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2.2. Quaternionic Structure and Period Forms

Let 𝐼 be the complex structure on 𝑆(Σ) given by the multiplication by 𝑖. A quater-
nionic structure on 𝑆(Σ) is a linear map 𝐽 that satisfies 𝐽2 = −𝐼𝑑 and 𝐼𝐽 = −𝐽𝐼.
In the sequel 𝐽 is given by

𝐽

(
𝜑1

𝜑2

)
=

( −𝜑2

𝜑1

)
. (2.16)

If we write 𝜑1 = 𝛼1 + 𝑖𝛽1 and 𝜑2 = 𝛼2 + 𝑖𝛽2, the corresponding quaternion is
given by

𝜑1 + 𝜑2𝑗 = (𝛼1 + 𝑖𝛽1) + (𝛼2 + 𝑖𝛽2)𝑗 = 𝛼1 + 𝑖𝛽1 + 𝛼2𝑗 + 𝛽2𝑘 (2.17)

and

𝑗(𝜑1 + 𝜑2𝑗) = −𝜑2 + 𝜑1𝑗, (2.18)

i.e., 𝐽 is the left multiplication by 𝑗. Since

𝑆+(Σ) =

{(
𝜑1

𝜑2

)
, 𝜑1 =

𝐼𝑥 − 𝑖

𝐼𝑦 +Δ
𝜑2

}
(2.19)

and

𝑆+(Σ) =

{(
𝜑1

𝜑2

)
, 𝜑1 =

𝐼𝑥 − 𝑖

𝐼𝑦 −Δ
𝜑2

}
(2.20)

then 𝐽𝑆+(Σ) ⊂ 𝑆−(Σ) and 𝐽𝑆−(Σ) ⊂ 𝑆+(Σ). We also denote by 𝐽 the quater-
nionic structure (obtained in the same way) on 𝑆(𝑀).

Let us consider 𝜙 = (𝑢, 𝑣) a constant spinor field on 𝑀 and 𝜑∗ its restriction
on Σ. Let also 𝑓 : ℝ3 −→ ℝ and 𝑔 : ℝ3 −→ ℂ be the functions defined by

𝑓(𝑚) = −ℑ(𝑚 ⋅ 𝜙, 𝜙) (2.21)

and

𝑔(𝑚) = 𝑖(𝑚 ⋅ 𝜙, 𝐽(𝜙)) (2.22)

where ( , ) denotes the Hermitian product. Using the representation 𝜌2, one can
check that

𝑚 ⋅ 𝜙 =

(
−𝑖𝑚2𝑢+ (𝑖𝑚1 −𝑚3)𝑣

(𝑖𝑚1 +𝑚3)𝑢+ 𝑖𝑚2𝑣

)
(2.23)

for 𝑚 = (𝑚1,𝑚2,𝑚3). The equations 𝑓(𝑚) = 𝑚1 and 𝑔(𝑚) = 𝑚2 + 𝑖𝑚3 are
equivalent to:

∣𝑢∣2 = ∣𝑣∣2 , 𝑢𝑣 = −1

2
(2.24)

and

𝑢𝑣 = −1

2
, 𝑢2 + 𝑣2 = 1, 𝑢2 = 𝑣2. (2.25)

This implies 𝑢 = ±1/√2 and 𝑣 = −𝑢.
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Definition 2.2. The spinor representation of the image given by the parametrization
(2.1) is defined by

𝜑∗ =
1

2
√
2
(1− 𝑖)

⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎛⎝1− 1 + 𝑖( 𝐼𝑥 + 𝐼𝑦)√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠
−
⎛⎝1 +

1 + 𝑖(−𝐼𝑥 + 𝐼𝑦)√
1 + 𝐼2

𝑥 + 𝐼2
𝑦

⎞⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (2.26)

This means that 𝑢 = 1/
√
2 and 𝑣 = −1/√2 in the expression (2.12).

The two 1-forms

𝜂𝑓 (𝑋) = 2ℜ(𝑋 ⋅ (𝜑∗)+, (𝜑∗)−) = −ℑ(𝑋 ⋅ 𝜑, 𝜑) (2.27)

𝜂𝑔(𝑋) = 𝑖(𝑋 ⋅ (𝜑∗)+, 𝐽((𝜑∗)+)) + 𝑖(𝑋 ⋅ (𝜑∗)−, 𝐽((𝜑∗)−))
= 𝑖(𝑋 ⋅ 𝜑, 𝐽(𝜑)) (2.28)

are exact and verify 𝑑(𝑓∣Σ) = 𝜂𝑓 , 𝑑(𝑔∣Σ) = 𝜂𝑔. The generalized Weierstrass para-
metrization is actually given by the isometric immersion:∫

(𝜂𝑓 , 𝜂𝑔) : Σ −→𝑀. (2.29)

2.3. Dirac Equation and Mean Curvature

We only mention here some results that can be used when dealing with diffusion.
We do not go into further details since we will not treat this problem in the present
chapter. Let (Σ, 𝑔) be an oriented two-dimensional Riemannian manifold and 𝜑 a
spinor field without zeros solution of the Dirac equation 𝐷𝜑 = 𝜆𝜑. Then 𝜑 defines
an isometric immersion

(Σ̃, ∣𝜑∣4𝑔) −→ ℝ3 (2.30)

with mean curvature 𝐻 = 𝜆/∣𝜑∣2 (see [5]).

3. Spinors and Segmentation

The aim of this section is to introduce the spinor tensor corresponding to the
variations of the unit normal and to show its capability to detect both edges and
textures.

3.1. The Spinor Tensor

We propose here to deal with a second-order version of the classical approach
of edge detection based on the so-called structure tensor (see [10]). Instead of
measuring edges from eigenvalues of the Riemannian metric, we focus here on the
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eigenvalues of the tensor obtained from the derivative of the spinor field 𝜑∗. More
precisely let

𝜑 =

(
𝜑1

𝜑2

)
(3.1)

be a section of the spinor bundle 𝑆(Σ) given in an orthonormal frame, i.e., ∣𝜑∣2 =

∣𝜑1∣2 + ∣𝜑2∣2 and let 𝑋 = (𝑋1, 𝑋2) be a section of the tangent bundle 𝑇 (Σ). We
consider the connection ∇ on 𝑆(Σ) given by the connection 1-form 𝜔 = 0. Thus

∇𝑋𝜑 =

⎛⎜⎜⎝ 𝑋1
∂𝜑1

∂𝑥
+𝑋2

∂𝜑1

∂𝑦

𝑋1
∂𝜑2

∂𝑥
+𝑋2

∂𝜑2

∂𝑦

⎞⎟⎟⎠ (3.2)

and

∣∇𝑋𝜑∣2 = 𝑋2
1

∣∣∣∣∂𝜑1

∂𝑥

∣∣∣∣2 + 2𝑋1𝑋2ℜ
(
∂𝜑1

∂𝑥

∂𝜑1

∂𝑦

)
+𝑋2

2

∣∣∣∣∂𝜑1

∂𝑦

∣∣∣∣2
+𝑋2

1

∣∣∣∣∂𝜑2

∂𝑥

∣∣∣∣2 + 2𝑋1𝑋2ℜ
(
∂𝜑2

∂𝑥

∂𝜑2

∂𝑦

)
+𝑋2

2

∣∣∣∣∂𝜑2

∂𝑦

∣∣∣∣2 . (3.3)

If we denote

𝐺𝜑 =

⎛⎜⎜⎜⎝
∣∣∣∣∂𝜑1

∂𝑥

∣∣∣∣2+ ∣∣∣∣∂𝜑2

∂𝑥

∣∣∣∣2 ℜ
(
∂𝜑1

∂𝑥

∂𝜑1

∂𝑦
+

∂𝜑2

∂𝑥

∂𝜑2

∂𝑦

)
ℜ
(
∂𝜑1

∂𝑥

∂𝜑1

∂𝑦
+

∂𝜑2

∂𝑥

∂𝜑2

∂𝑦

) ∣∣∣∣∂𝜑1

∂𝑦

∣∣∣∣2+ ∣∣∣∣∂𝜑2

∂𝑦

∣∣∣∣2
⎞⎟⎟⎟⎠ (3.4)

then

(𝑋1 𝑋2)𝐺𝜑(𝑋1 𝑋2)
𝑇 = ∣∇𝑋𝜑∣2 . (3.5)

𝐺𝜑 is a field of real symmetric matrices.
As in the case of the usual structure tensor (i.e., Di Zenzo tensor, see [10])

the optima of ∣∇𝑋𝜑∣2 under the constraint ∥𝑋∥ = 1 (for the Euclidean norm) are
given by the field of eigenvalues of 𝐺𝜑. Applying the above formula to the spinor
𝜑∗ of Definition 2.2 leads to

𝐺𝜑∗ =
1

2(1 + 𝐼2
𝑥 + 𝐼2

𝑦 )
2

(
𝐺11

𝜑∗ 𝐺12
𝜑∗

𝐺21
𝜑∗ 𝐺22

𝜑∗

)
(3.6)

with

𝐺11
𝜑∗ = 𝐼2

𝑥𝑥 + 𝐼2
𝑥𝑦 + 𝐼2

𝑥𝑥𝐼
2
𝑦 + 𝐼2

𝑥𝑦𝐼
2
𝑥 − 2𝐼𝑥𝑥𝐼𝑥𝑦𝐼𝑥𝐼𝑦

𝐺22
𝜑∗ = 𝐼2

𝑦𝑦 + 𝐼2
𝑥𝑦 + 𝐼2

𝑦𝑦𝐼
2
𝑥 + 𝐼2

𝑥𝑦𝐼
2
𝑦 − 2𝐼𝑦𝑦𝐼𝑥𝑦𝐼𝑥𝐼𝑦

𝐺12
𝜑∗ = 𝐼𝑥𝑥𝐼𝑥𝑦 + 𝐼𝑥𝑦𝐼𝑦𝑦 + 𝐼𝑥𝑥𝐼𝑥𝑦𝐼

2
𝑦 + 𝐼𝑥𝑦𝐼𝑦𝑦𝐼

2
𝑥 − 𝐼2

𝑥𝑦𝐼𝑥𝐼𝑦 − 𝐼𝑥𝑥𝐼𝑦𝑦𝐼𝑥𝐼𝑦

𝐺21
𝜑∗ = 𝐺12

𝜑∗ .

(3.7)
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Definition 3.1. The tensor 𝐺𝜑∗ is called the spinor tensor of the surface Σ.

Note that as already mentioned this last tensor corresponds to the tensor involved
in the measure of the variations of the unit normal 𝜈 introduced in § 2.1. Indeed,
we have

(𝑋1 𝑋2)𝐺𝜑∗(𝑋1 𝑋2)
𝑇 = ∥𝑑𝑋𝜈∥2. (3.8)

3.2. Experiments

We compare in Figure 1 the edge and texture detection methods based on the
usual structure tensor (Figure 1(b) and 1(d)) and on the spinor tensor (Figure 1(e)
and 1(f)).

The structure tensor only takes into account the first-order derivatives of the
function 𝐼. The subsequent segmentation method detects the strongest grey-level
variations of the image. As a consequence, this method provides thick edges, as
can be observed.

The spinor tensor takes into account the second-order derivatives of the func-
tion 𝐼 too. By definition, it measures the strongest variations of the unit normal
to the surface parametrized by the graph of 𝐼. We observe that this new approach
provides thinner edges than the first one. It appears also to be more relevant to
detect textures.

4. Spinors and Clifford–Fourier Transform

We first define a Clifford–Fourier transform using spin characters that is group
morphisms from ℝ2 to Spin(3). Then, we introduce a harmonic decomposition of
spinor fields and show some results of filtering applied to images.

4.1. Clifford–Fourier Transform with Spin Characters

Let us recall the idea of the construction of the Clifford–Fourier transform for
colour image processing introduced in [3]. From the mathematical viewpoint, a
Fourier transform is defined through group actions and more precisely through
irreducible and unitary representations of the involved group. This is closely related
to the well-known shift theorem stating that:

ℱ𝑓𝛼(𝑢) = 𝑒𝑖𝛼𝑢ℱ𝑓(𝑢) (4.1)

where 𝑓𝛼(𝑢) = 𝑓(𝛼+ 𝑢). The group morphism

𝛼 �−→ 𝑒𝑖𝛼𝑢 (4.2)

is a so-called character of the additive group (ℝ,+), that is an irreducible unitary
representation of dimension 1.

The definition proposed in [3] relies on a Clifford generalization of this notion
by introducing spin characters. It can be shown that the group morphisms from
ℤ/𝑀ℤ× ℤ/𝑁ℤ to Spin(3) are given by

𝜌𝑢,𝑣,𝐵 : (𝑚,𝑛) �−→ 𝑒2𝜋(𝑢𝑚/𝑀+𝑣𝑛/𝑁)𝐵 (4.3)
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where

𝑒2𝜋(
𝑢𝑚
𝑀 + 𝑣𝑛

𝑁 )𝐵 = cos 2𝜋
(
𝑢𝑚
𝑀 + 𝑣𝑛

𝑁

)
+ sin 2𝜋

(
𝑢𝑚
𝑀 + 𝑣𝑛

𝑁

)
𝐵 (4.4)

(𝑢, 𝑣) ∈ ℤ/𝑀ℤ× ℤ/𝑁ℤ, and

𝐵 = 𝛾1𝑒1𝑒2 + 𝛾2𝑒1𝑒3 + 𝛾3𝑒2𝑒3 (4.5)

is a unit bivector, i.e., 𝛾2
1 + 𝛾2

2 + 𝛾2
3 = 1. The map 𝜌𝑢,𝑣,𝐵 is called a spin character

of the group ℤ/𝑀ℤ × ℤ/𝑁ℤ. Recalling that Spin(3) acts on the sections of the
spinor bundle, we are led to propose the following definition.

Definition 4.1. The Clifford–Fourier transform of a spinor 𝜑 of 𝑆(Σ) is given by

ℱ(𝜑)(𝑢, 𝑣) =
∑

𝑛∈ℤ/𝑁ℤ

𝑚∈ℤ/𝑀ℤ

𝜌𝑢,𝑣,𝑧1∧𝑧2 (𝑚,𝑛)(−𝑚,−𝑛) ⋅ 𝜑(𝑚,𝑛) (4.6)

where (𝑧1, 𝑧2) is an orthonormal frame of 𝑇 (Σ).

Since the spinor bundle of Σ splits into

𝑆(Σ) = 𝑆+
𝑧1∧𝑧2(Σ)⊕ 𝑆−𝑧1∧𝑧2(Σ) (4.7)

we have

𝜌𝑢,𝑣,𝑧1∧𝑧2(𝑚,𝑛)(−𝑚,−𝑛) ⋅ 𝜑(𝑚,𝑛) = 𝑒2𝜋𝑖
(
𝑢𝑚
𝑀 + 𝑣𝑛

𝑁

)
𝜑+(𝑚,𝑛) 𝑣−𝑖(𝑚,𝑛)

+ 𝑒−2𝜋𝑖
(
𝑢𝑚
𝑀 + 𝑣𝑛

𝑁

)
𝜑−(𝑚,𝑛) 𝑣𝑖(𝑚,𝑛) (4.8)

where 𝑣−𝑖, respectively 𝑣𝑖, is the unit eigenspinor field of eigenvalue−𝑖, respectively
𝑖, relatively to the operator 𝑧1 ∧ 𝑧2 ⋅ (here ⋅ denotes the Clifford multiplication).
Consequently

ℱ(𝜑)(𝑢, 𝑣) =
(
𝜑+

−1
(𝑢, 𝑣), 𝜑−(𝑢, 𝑣)

)
(4.9)

in the frame (𝑣−𝑖, 𝑣𝑖), where ˆ and ˆ −1 denote the Fourier transform on

𝐿2(ℤ/𝑀ℤ× ℤ/𝑁ℤ,ℂ),

also called discrete Fourier transform, and its inverse.

4.2. Spinor Field Decomposition

The inverse Clifford–Fourier transform of 𝜑 is

ℱ−1(𝜑)(𝑢, 𝑣) =
∑

𝑛∈ℤ/𝑁ℤ

𝑚∈ℤ/𝑀ℤ

𝜌𝑢,𝑣,𝑧1∧𝑧2(𝑚,𝑛)(𝑚,𝑛) ⋅ 𝜑(𝑚,𝑛) (4.10)

This means that every spinor field 𝜑 may be written as a superposition of basic
spinor fields, i.e.,

𝜑 =
∑

𝜑𝑚,𝑛 (4.11)

where

𝜑𝑚,𝑛 : (𝑢, 𝑣) �−→ 𝜌𝑢,𝑣,𝑧1∧𝑧2(𝑚,𝑛)(𝑚,𝑛) ⋅ ℱ(𝜑)(𝑚,𝑛) (4.12)
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Following the splitting 𝑆(Σ) = 𝑆+
𝑧1∧𝑧2(Σ)⊕ 𝑆−𝑧1∧𝑧2(Σ), we have

𝜑𝑚,𝑛 =
(
𝜑+
𝑚,𝑛, 𝜑

−
𝑚,𝑛

)
in the frame (𝑣−𝑖, 𝑣𝑖), with

𝜑+
𝑚,𝑛 : (𝑢, 𝑣) �−→ 𝑒−2𝜋𝑖(𝑢𝑚/𝑀+𝑣𝑛/𝑁)𝜑+

−1
(𝑚,𝑛)

and

𝜑−𝑚,𝑛 : (𝑢, 𝑣) �−→ 𝑒2𝜋𝑖(𝑢𝑚/𝑀+𝑣𝑛/𝑁)𝜑−(𝑚,𝑛)

Moreover,

∣𝜑𝑚,𝑛∣2 = ∣𝜑+
𝑚,𝑛∣2 + ∣𝜑−𝑚,𝑛∣2

since 𝑆+
𝑧1∧𝑧2(Σ) and 𝑆−𝑧1∧𝑧2(Σ) are orthogonal.

4.3. Experiments

Let us now give an example of applications of the Clifford–Fourier transform on
spinor fields to image processing. In order to perform filtering with the decompo-
sition (4.11), we proceed as follows. Let 𝐼 be a grey-level image, and 𝜑∗ be the
corresponding spinor representation given in Definition 2.2. We apply a Gaussian
mask 𝑇𝜎 of variance 𝜎 in the spectrum ℱ𝜑∗ of 𝜑∗. Then, we consider the norm of
its inverse Fourier transform, i.e., ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ and the function ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ 𝐼.

Figures 2 and 3 show results of this process for different values of 𝜎 (left
column ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ and right column ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ 𝐼). It is clear that for 𝜎 suffi-
ciently high, we have ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ 𝐼 ≃ 𝐼 and ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ ≃ 1 since ∣𝜑∗∣ = 1. This
explains why the two left lower images are almost white and the two right lower
images are almost the same as the originals.

We can see in the left columns of Figures 2 and 3 that the filtering acts
through 𝜑∗ as a smoothing of the geometry of the image. More precisely, when 𝜎
is small, the modulus ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ is small at points corresponding to nearly all
the geometric variations of the image. When 𝜎 increases the modulus is affected
only at points corresponding to the strongest geometric variations, i.e., to both
edges and textures (and also where the noise is high).

The right columns of Figures 2 and 3 show that the filtering acts through
∣ℱ−1𝑇𝜎ℱ𝜑∗∣ 𝐼 as a diffusion that leaves the geometric data untouched (the higher
the value of 𝜎, the more important is the diffusion). This appears clearly in Figure 4
(compare the plumes of the hat) or in Figure 5 (compare the hair).

These experiments show that our approach is relevant to deal with harmonic
analysis together with Riemannian geometry.

Conclusion

Spin geometry is a powerful mathematical tool to deal with many theoretical
and applied geometric problems. In this chapter we have shown how to take ad-
vantage of the generalized Weierstrass representation to perform grey-level image
processing, in particular edge and texture detection. Our main contribution is the
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Figure 2. Left: ∣ℱ−1(𝑇𝜎 ℱ𝜑∗)∣ for 𝜎 = 100, 1000, 10000, 100000 (from
top to bottom). Right: ∣ℱ−1(𝑇𝜎 ℱ𝜑∗)∣𝐼

definition of a Clifford–Fourier transform for spinor fields that relies on a general-
ization of the usual notion of character (the spin character). One important fact
is that this new transform takes into account the Riemannian geometry of the
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Figure 3. Left: ∣ℱ−1(𝑇𝜎 ℱ𝜑∗)∣ for 𝜎 = 100, 1000, 10000, 100000 (from
top to bottom). Right: ∣ℱ−1(𝑇𝜎 ℱ𝜑∗)∣𝐼

image surface by involving the spinor field that parameterizes the normal and the
bivector field coding the tangent plane. We have also introduced what appears to
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Figure 4. Left: original. Right: ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ 𝐼 with 𝜎 = 100

Figure 5. Left: original. Right: ∣ℱ−1𝑇𝜎ℱ𝜑∗∣ 𝐼 with 𝜎 = 100

be a harmonic decomposition of the parametrization and investigated applications
to filtering.

Note that there are only two cases where the Grassmannian 𝐺𝑛,2 of 2-planes
in ℝ𝑛 admits a rational parametrization. In fact, one can show that 𝐺3,2 ≃ ℂ𝑃 1

and 𝐺4,2 ≃ ℂ𝑃 1 ×ℂ𝑃 1 (see [9]). The case treated here corresponds to 𝐺3,2. As a
consequence the generalization to colour images is not straightforward. Neverthe-
less, a quite different approach is possible to tackle this problem and will be the
subject of a forthcoming paper.

Let us also mention that one may envisage performing diffusion on grey-level
images through the heat equation given by the Dirac operator. The latter is well
known be a square root of the Laplacian. Preliminary results are discussed in [2]
that show that this diffusion better preserves edges and textures than the usual
Riemannian approaches.
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Appendix A. Mathematical Background

We recall here some definitions and results concerning spin geometry. The reader
may refer to [7] for details and conventions. We focus on the particular case of an
oriented surface immersed in ℝ3.

A.1. Complex Representations of 𝑪ℓ3,0 ⊗ ℂ

Let (𝑒1, 𝑒2, 𝑒3) be an orthonormal basis of ℝ3. The Clifford algebra 𝐶ℓ3,0 is the
quotient of the tensor algebra of the vectorial space ℝ3 by the ideal generated
by the elements 𝑢⊗ 𝑢+𝑄(𝑢) where 𝑄 is the Euclidean quadratic form. It can be
shown that 𝐶ℓ3,0 is isomorphic to the product ℍ×ℍ of two copies of the quaternion
algebra. The complex Clifford algebra 𝐶ℓ3,0⊗ℂ is isomorphic to ℂ(2)⊕ℂ(2) where
ℂ(2) denotes the algebra of 2×2-matrices with complex entries. This decomposition
is given by

𝐶ℓ3,0 ⊗ ℂ ≃ (𝐶ℓ3,0 ⊗ ℂ)+ ⊕ (𝐶ℓ3,0 ⊗ ℂ)− (A.1)

where
(𝐶ℓ3,0 ⊗ ℂ)± = (1± 𝜔3)𝐶ℓ3,0 ⊗ ℂ (A.2)

and 𝜔3 is the pseudoscalar 𝒆1𝒆2𝒆3. More precisely, the subalgebra (𝐶ℓ3,0 ⊗ℂ)+ is
generated by the elements

𝛼1 =
1 + 𝒆1𝒆2𝒆3

2
, 𝛼2 =

𝒆2𝒆3 − 𝒆1

2
, 𝛼3 =

𝒆2 + 𝒆1𝒆3

2
, 𝛼4 =

𝒆3 − 𝒆1𝒆2

2
(A.3)

and an isomorphism with ℂ(2) is given by sending these elements to the matrices

𝐴1 =

(
1 0
0 1

)
, 𝐴2 =

(
0 𝑖
𝑖 0

)
, 𝐴3 =

(
𝑖 0
0 −𝑖

)
, 𝐴4 =

(
0 1

−1 0

)
. (A.4)

In the same way, (𝐶ℓ3,0 ⊗ ℂ)− is generated by

𝛽1 =
1− 𝒆1𝒆2𝒆3

2
, 𝛽2 =

𝒆2𝒆3 + 𝒆1

2
, 𝛽3 =

𝒆1𝒆3 − 𝒆2

2
, 𝛽4 =

−𝒆3 − 𝒆1𝒆2

2
(A.5)

and an isomorphism is given by sending these elements to the above matrices 𝐴1,
𝐴2, 𝐴3 and 𝐴4.

Let us denote by 𝜌 the natural representation of ℂ(2) on ℂ2. The two equiv-
alent classes 𝜌1 and 𝜌2 of irreducible complex representations of 𝐶ℓ3,0 ⊗ ℂ are
given by

𝜌1(𝜑1 + 𝜑2) = 𝜌(𝜑1) 𝜌2(𝜑1 + 𝜑2) = 𝜌(𝜑2). (A.6)

They are characterized by

𝜌1(𝜔3) = 𝐼𝑑 and 𝜌2(𝜔3) = −𝐼𝑑 (A.7)

For the sake of completeness, let us list these representations explicitly:

𝜌1(1) = 𝜌(𝛼1) = 𝐴1, 𝜌1(𝒆1) = 𝜌(−𝛼2) = −𝐴2

𝜌1(𝒆2) = 𝜌(𝛼3) = 𝐴3, 𝜌1(𝒆3) = 𝜌(𝛼4) = 𝐴4

𝜌1(𝒆1𝒆2) = 𝜌(−𝛼4) = −𝐴4, 𝜌1(𝒆1𝒆3) = 𝜌(𝛼3) = 𝐴3

𝜌1(𝒆2𝒆3) = 𝜌(𝛼2) = 𝐴2, 𝜌1(𝜔3) = 𝜌(𝛼1) = 𝐴1

(A.8)
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and

𝜌2(1) = 𝜌(𝛽1) = 𝐴1, 𝜌2(𝒆1) = 𝜌(𝛽2) = 𝐴2

𝜌2(𝒆2) = 𝜌(−𝛽3) = −𝐴3, 𝜌2(𝒆3) = 𝜌(−𝛽4) = −𝐴4

𝜌2(𝒆1𝒆2) = 𝜌(−𝛽4) = −𝐴4, 𝜌2(𝒆1𝒆3) = 𝜌(𝛽3) = 𝐴3

𝜌2(𝒆2𝒆3) = 𝜌(𝛽2) = 𝐴2, 𝜌2(𝜔3) = 𝜌(−𝛽1) = −𝐴1.

(A.9)

The complex spin representation of Spin(3) is the homomorphism

Δ3 : Spin(3) −→ ℂ(2) (A.10)

given by restricting an irreducible complex representation of 𝐶ℓ3,0⊗ℂ to the spinor
group Spin(3) ⊂ (𝐶ℓ3,0 ⊗ ℂ)0 (see for example [4] for the definition of the Spin
group). Note that Δ3 is independant of the chosen representation.

A.2. Spin Structures and Spinor Bundles

Let us denote by 𝑀 the Riemannian manifold ℝ3 and 𝑃𝑆𝑂(𝑀) the principal
𝑆𝑂(3)-bundle of oriented orthonormal frames of 𝑀 . A spin structure on 𝑀 is a
principal Spin(3)-bundle 𝑃Spin(𝑀) together with a 2-sheeted covering

𝑃Spin(𝑀) −→ 𝑃𝑆𝑂(𝑀) (A.11)

that is compatible with 𝑆𝑂(3) and Spin(3) actions. The Spinor bundle 𝑆(𝑀)
is the bundle associated to the spin structure 𝑃Spin(𝑀) and the complex spin
representation Δ3. More precisely, it is the quotient of the product 𝑃Spin(𝑀)×ℂ2

by the action

Spin(3)× 𝑃Spin(𝑀)× ℂ2 −→ 𝑃Spin(𝑀)× ℂ2 (A.12)

that sends (𝜏, 𝑝, 𝑧) to (𝑝𝜏−1,Δ3(𝜏)𝑧). We will write

𝑆(𝑀) = 𝑃Spin(𝑀)×Δ3 ℂ
2. (A.13)

It appears that the fiber bundle 𝑆(𝑀) is a bundle of complex left modules over
the Clifford bundle 𝐶𝑙(𝑀) = 𝑃Spin(𝑀)×𝐴𝑑 ℂ𝑙(3) of 𝑀 . In the sequel

(𝑢, 𝜙) �−→ 𝑢 ⋅ 𝜙 (A.14)

denotes the corresponding multiplication for 𝑢 ∈ 𝑇 (𝑀) and 𝜙 a section of 𝑆(𝑀).
We consider now an oriented surface Σ embedded in 𝑀 . Let us denote by

(𝑧1, 𝑧2) an orthonormal frame of 𝑇 (Σ) and 𝜈 the global unit field normal to Σ.
Using the map

(𝑧1, 𝑧2) �−→ (𝑧1, 𝑧2, 𝜈) (A.15)

it is possible to pull back the bundle 𝑃Spin(𝑀)∣Σ to obtain a spin structure 𝑃Spin(Σ)

on Σ. Since 𝐶ℓ2,0 ⊗ ℂ is isomorphic to (𝐶ℓ3,0 ⊗ ℂ)0 under the map 𝛼 defined by

𝛼(𝜂0 + 𝜂1) = 𝜂0 + 𝜂1𝜈 (A.16)

the algebra 𝐶ℓ2,0 ⊗ℂ acts on ℂ2 via 𝜌2. This representation leads to the complex
spinor representation Δ2 of Spin(2). It can be shown that the induced bundle

𝑆(Σ) = 𝑃Spin(Σ)×Δ3∘𝛼 ℂ2 (A.17)
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coincides with the spinor bundle of the induced spin structure on Σ. Once again
𝑆(Σ) is a bundle of complex left modules over the Clifford bundle 𝐶𝑙(Σ) of Σ: the
Clifford multiplication is given by the map

(𝑣, 𝜑) �−→ 𝑣 ⋅ 𝜈 ⋅ 𝜑 (A.18)

for 𝑣 ∈ 𝑇 (Σ) and 𝜑 a section of 𝑇 (Σ).
The Spinor bundle 𝑆(Σ) decomposes into

𝑆(Σ) = 𝑆+(Σ)⊕ 𝑆−(Σ) (A.19)

where

𝑆±(Σ) = {𝜑 ∈ 𝑆(Σ), 𝑖 ⋅ 𝑧1 ⋅ 𝑧2 ⋅ 𝜑 = ±𝜑} (A.20)

(compare [5]). Since 𝜌2(𝑧1𝑧2𝜈) is minus the identity, this is equivalent to

𝑆±(Σ) = {𝜑 ∈ 𝑆(Σ), 𝑖𝜈 ⋅ 𝜑 = ±𝜑}. (A.21)

A.3. Spinor Connections and Dirac Operators

Let ∇𝑀 and ∇Σ be the Levi–Civita connections on the tangent bundles 𝑇 (𝑀)
and 𝑇 (Σ) respectively. The classical Gauss formula asserts that

∇𝑀
𝑋 𝑌 = ∇Σ

𝑋𝑌 − ⟨∇𝑀
𝑋 𝜈, 𝑌 ⟩𝜈 (A.22)

where 𝑋 and 𝑌 are vector fields on Σ. A similar formula exists when dealing with
spinor fields. Let us first recall that one may construct on 𝑆(𝑀) and 𝑆(Σ) some
spinor Levi–Civita connections compatible with the Clifford multiplication, that
is connections which we continue to denote by ∇𝑀 and ∇Σ verifying

∇𝑀
𝑋 (𝑌 ⋅ 𝜑) = (∇𝑀

𝑋 𝑌 ) ⋅ 𝜑+ 𝑌 ⋅ ∇𝑀
𝑋 𝜑 (A.23)

when 𝑋 and 𝑌 are vector fields on 𝑀 and 𝜑 is a section of 𝑆(𝑀) and a similar
formula for ∇Σ. The analog of the Gauss formula reads

∇𝑀
𝑋 𝜑 = ∇Σ

𝑋𝜑− 1

2
(∇𝑀

𝑋 𝜈) ⋅ 𝜈 ⋅ 𝜑 (A.24)

for 𝜑 a section of 𝑆(Σ) and 𝑋 a vector field on Σ (see [1] for a proof). If (𝑧1, 𝑧2) is
an orthonormal frame of 𝑇 (Σ), following [5], the Dirac operator on 𝑆(Σ) is defined
by

𝐷 = 𝑧1 ⋅ ∇Σ
𝑧1 + 𝑧2 ⋅ ∇Σ

𝑧2 (A.25)

and it can be verified that 𝐷𝑆±(Σ) ⊂ 𝑆∓(Σ).
Let now 𝜙 and 𝜑 be respectively a section of 𝑆(𝑀) and the section of 𝑆(Σ)

given by the restriction 𝜙∣Σ. We obtain from the Gauss spinor formula

𝑧1 ⋅ ∇𝑀
𝑧1𝜙+ 𝑧2 ⋅ ∇𝑀

𝑧2𝜙 = 𝐷𝜑− 1

2
(𝑧1 ⋅ (∇𝑀

𝑧1 𝜈) ⋅ 𝜈 ⋅ 𝜑+ 𝑧2 ⋅ (∇𝑀
𝑧2 𝜈) ⋅ 𝜈 ⋅ 𝜑). (A.26)

Since

𝑧1 ⋅ (∇𝑀
𝑧1 𝜈) + 𝑧2 ⋅ (∇𝑀

𝑧2 𝜈) = −2𝐻 (A.27)

where 𝐻 is the mean curvature of Σ, it follows that

𝐷𝜑 = 𝑧1 ⋅ ∇𝑀
𝑧1𝜙+ 𝑧2 ⋅ ∇𝑀

𝑧2𝜙−𝐻 ⋅ 𝜈 ⋅ 𝜑. (A.28)
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