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7 Square Roots of −1 in Real
Clifford Algebras

Eckhard Hitzer, Jacques Helmstetter and Rafal̷ Abl̷amowicz

Abstract. It is well known that Clifford (geometric) algebra offers a geomet-
ric interpretation for square roots of −1 in the form of blades that square
to minus 1. This extends to a geometric interpretation of quaternions as the
side face bivectors of a unit cube. Systematic research has been done [33] on
the biquaternion roots of −1, abandoning the restriction to blades. Biquater-
nions are isomorphic to the Clifford (geometric) algebra 𝐶ℓ3,0 of ℝ3. Further
research on general algebras 𝐶ℓ𝑝,𝑞 has explicitly derived the geometric roots
of −1 for 𝑝+ 𝑞 ≤ 4 [20]. The current research abandons this dimension limit
and uses the Clifford algebra to matrix algebra isomorphisms in order to al-
gebraically characterize the continuous manifolds of square roots of −1 found
in the different types of Clifford algebras, depending on the type of associ-
ated ring (ℝ, ℍ, ℝ2, ℍ2, or ℂ). At the end of the chapter explicit computer
generated tables of representative square roots of −1 are given for all Clifford
algebras with 𝑛 = 5, 7, and 𝑠 = 3 (mod 4) with the associated ring ℂ. This
includes, e.g., 𝐶ℓ0,5 important in Clifford analysis, and 𝐶ℓ4,1 which in appli-
cations is at the foundation of conformal geometric algebra. All these roots
of −1 are immediately useful in the construction of new types of geometric
Clifford–Fourier transformations.
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1. Introduction

The young London Goldsmith professor of applied mathematics W.K. Clifford
created his geometric algebras1 in 1878 inspired by the works of Hamilton on

1In his original publication [11] Clifford first used the term geometric algebras. Subsequently in
mathematics the new term Clifford algebras [28] has become the proper mathematical term. For
emphasizing the geometric nature of the algebra, some researchers continue [9, 16, 17] to use the
original term geometric algebra(s).
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quaternions and by Grassmann’s exterior algebra. Grassmann invented the anti-
symmetric outer product of vectors, that regards the oriented parallelogram area
spanned by two vectors as a new type of number, commonly called bivector. The
bivector represents its own plane, because outer products with vectors in the plane
vanish. In three dimensions the outer product of three linearly independent vectors
defines a so-called trivector with the magnitude of the volume of the parallelepiped
spanned by the vectors. Its orientation (sign) depends on the handedness of the
three vectors.

In the Clifford algebra [16] of ℝ3 the three bivector side faces of a unit cube
{𝑒1𝑒2, 𝑒2𝑒3, 𝑒3𝑒1} oriented along the three coordinate directions {𝑒1, 𝑒2, 𝑒3} cor-
respond to the three quaternion units 𝒊, 𝒋, and 𝒌. Like quaternions, these three
bivectors square to minus one and generate the rotations in their respective planes.

Beyond that Clifford algebra allows to extend complex numbers to higher
dimensions [7, 17] and systematically generalize our knowledge of complex num-
bers, holomorphic functions and quaternions into the realm of Clifford analysis.
It has found rich applications in symbolic computation, physics, robotics, com-
puter graphics, etc. [8, 9, 12, 14, 27]. Since bivectors and trivectors in the Clifford
algebras of Euclidean vector spaces square to minus one, we can use them to
create new geometric kernels for Fourier transformations. This leads to a large
variety of new Fourier transformations, which all deserve to be studied in their
own right [5, 6, 9, 13, 18, 19, 22,23,26, 29–32].

In our current research we will treat square roots of −1 in Clifford algebras
𝐶ℓ𝑝,𝑞 of both Euclidean (positive definite metric) and non-Euclidean (indefinite
metric) non-degenerate vector spaces, ℝ𝑛 = ℝ𝑛,0 and ℝ𝑝,𝑞, respectively. We know
from Einstein’s special theory of relativity that non-Euclidean vector spaces are of
fundamental importance in nature [15]. They are further, e.g., used in computer
vision and robotics [12] and for general algebraic solutions to contact problems [27].
Therefore this chapter is about characterizing square roots of −1 in all Clifford
algebras 𝐶ℓ𝑝,𝑞, extending previous limited research on 𝐶ℓ3,0 in [33] and 𝐶ℓ𝑝,𝑞, 𝑛 =
𝑝 + 𝑞 ≤ 4 in [20]. The manifolds of square roots of −1 in 𝐶ℓ𝑝,𝑞, 𝑛 = 𝑝 + 𝑞 = 2,
compare Table 1 of [20], are visualized in Figure 1.

First, we introduce necessary background knowledge of Clifford algebras and
matrix ring isomorphisms and explain in more detail how we will characterize and
classify the square roots of −1 in Clifford algebras in Section 2. Next, we treat
section by section (in Sections 3 to 7) the square roots of −1 in Clifford algebras
which are isomorphic to matrix algebras with associated rings ℝ, ℍ, ℝ2, ℍ2, and
ℂ, respectively. The term associated means that the isomorphic matrices will only
have matrix elements from the associated ring. The square roots of −1 in Section 7
with associated ring ℂ are of particular interest, because of the existence of classes
of exceptional square roots of −1, which all include a nontrivial term in the central
element of the respective algebra different from the identity. Section 7 therefore
includes a detailed discussion of all classes of square roots of −1 in the algebras
𝐶ℓ4,1, the isomorphic 𝐶ℓ0,5, and in 𝐶ℓ7,0. Finally, we add Appendix A with tables
of square roots of −1 for all Clifford algebras with 𝑛 = 5, 7, and 𝑠 = 3 (mod 4).
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Figure 1. Manifolds of square roots 𝑓 of −1 in 𝐶ℓ2,0 (left), 𝐶ℓ1,1 (cen-
ter), and 𝐶ℓ0,2 ∼= ℍ (right). The square roots are 𝑓 = 𝛼+ 𝑏1𝑒1 + 𝑏2𝑒2 +
𝛽𝑒12, with 𝛼, 𝑏1, 𝑏2, 𝛽 ∈ ℝ, 𝛼 = 0, and 𝛽2 = 𝑏21𝑒

2
2 + 𝑏22𝑒

2
1 + 𝑒21𝑒

2
2.

The square roots of −1 in Section 7 and in Appendix A were all computed with
the Maple package CLIFFORD [2], as explained in Appendix B.

2. Background and Problem Formulation

Let 𝐶ℓ𝑝,𝑞 be the algebra (associative with unit 1) generated overℝ by 𝑝+𝑞 elements
𝑒𝑘 (with 𝑘 = 1, 2, . . . , 𝑝 + 𝑞) with the relations 𝑒2𝑘 = 1 if 𝑘 ≤ 𝑝, 𝑒2𝑘 = −1 if 𝑘 > 𝑝
and 𝑒ℎ𝑒𝑘 + 𝑒𝑘𝑒ℎ = 0 whenever ℎ ∕= 𝑘, see [28]. We set the vector space dimension
𝑛 = 𝑝+ 𝑞 and the signature 𝑠 = 𝑝− 𝑞. This algebra has dimension 2𝑛, and its even
subalgebra 𝐶ℓ0(𝑝, 𝑞) has dimension 2𝑛−1 (if 𝑛 > 0). We are concerned with square
roots of −1 contained in 𝐶ℓ𝑝,𝑞 or 𝐶ℓ0(𝑝, 𝑞). If the dimension of 𝐶ℓ𝑝,𝑞 or, 𝐶ℓ0(𝑝, 𝑞)
is ≤ 2, it is isomorphic to ℝ ∼= 𝐶ℓ0,0, ℝ

2 ∼= 𝐶ℓ1,0, or ℂ ∼= 𝐶ℓ0,1, and it is clear that
there is no square root of −1 in ℝ and ℝ2 = ℝ×ℝ, and that there are two squares
roots 𝑖 and −𝑖 in ℂ. Therefore we only consider algebras of dimension ≥ 4. Square
roots of −1 have been computed explicitly in [33] for 𝐶ℓ3,0, and in [20] for algebras
of dimensions 2𝑛 ≤ 16.

An algebra 𝐶ℓ𝑝,𝑞 or 𝐶ℓ0(𝑝, 𝑞) of dimension ≥ 4 is isomorphic to one of the
five matrix algebras:ℳ(2𝑑,ℝ),ℳ(𝑑,ℍ),ℳ(2𝑑,ℝ2),ℳ(𝑑,ℍ2) orℳ(2𝑑,ℂ). The
integer 𝑑 depends on 𝑛. According to the parity of 𝑛, it is either 2(𝑛−2)/2 or 2(𝑛−3)/2

for 𝐶ℓ𝑝,𝑞, and, either 2
(𝑛−4)/2 or 2(𝑛−3)/2 for 𝐶ℓ0(𝑝, 𝑞). The associated ring (either

ℝ, ℍ, ℝ2, ℍ2, or ℂ) depends on 𝑠 in this way2:

2Compare Chapter 16 on matrix representations and periodicity of 8, as well as Table 1 on p.
217 of [28].
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𝑠 mod 8 0 1 2 3 4 5 6 7

associated ring for 𝐶ℓ𝑝,𝑞 ℝ ℝ2 ℝ ℂ ℍ ℍ2 ℍ ℂ

associated ring for 𝐶ℓ0(𝑝, 𝑞) ℝ2 ℝ ℂ ℍ ℍ2 ℍ ℂ ℝ

Therefore we shall answer the following question: what can we say about the square
roots of −1 in an algebra 𝒜 that is isomorphic toℳ(2𝑑,ℝ),ℳ(𝑑,ℍ),ℳ(2𝑑,ℝ2),
ℳ(𝑑,ℍ2), or, ℳ(2𝑑,ℂ)? They constitute an algebraic submanifold in 𝒜; how
many connected components3 (for the usual topology) does it contain? Which are
their dimensions? This submanifold is invariant by the action of the group Inn(𝒜)
of inner automorphisms4 of 𝒜, i.e., for every 𝑟 ∈ 𝒜, 𝑟2 = −1⇒ 𝑓(𝑟)2 = −1 ∀𝑓 ∈
Inn(𝒜). The orbits of Inn(𝒜) are called conjugacy classes5; how many conjugacy
classes are there in this submanifold? If the associated ring is ℝ2 or ℍ2 or ℂ, the
group Aut(𝒜) of all automorphisms of 𝒜 is larger than Inn(𝒜), and the action of
Aut(𝒜) in this submanifold shall also be described.

We recall some properties of 𝒜 that do not depend on the associated ring.
The group Inn(𝒜) contains as many connected components as the group G(𝒜) of
invertible elements in 𝒜. We recall that this assertion is true for ℳ(2𝑑,ℝ) but
not for ℳ(2𝑑 + 1,ℝ) which is not one of the relevant matrix algebras. If 𝑓 is an
element of 𝒜, let Cent(𝑓) be the centralizer of 𝑓 , that is, the subalgebra of all
𝑔 ∈ 𝒜 such that 𝑓𝑔 = 𝑔𝑓 . The conjugacy class of 𝑓 contains as many connected
components6 as G(𝒜) if (and only if) Cent(𝑓)

∩
G(𝒜) is contained in the neutral7

connected component of G(𝒜), and the dimension of its conjugacy class is

dim(𝒜)− dim(Cent(𝑓)). (2.1)

Note that for invertible 𝑔 ∈ Cent(𝑓) we have 𝑔−1𝑓𝑔 = 𝑓 .
Besides, let Z(𝒜) be the center of 𝒜, and let [𝒜,𝒜] be the subspace spanned

by all [𝑓, 𝑔] = 𝑓𝑔 − 𝑔𝑓 . In all cases 𝒜 is the direct sum of Z(𝒜) and [𝒜,𝒜]. For

3Two points are in the same connected component of a manifold, if they can be joined by a
continuous path inside the manifold under consideration. (This applies to all topological spaces
satisfying the property that each neighborhood of any point contains a neighborhood in which
every pair of points can always be joined by a continuous path.)
4An inner automorphism 𝑓 of 𝒜 is defined as 𝑓 : 𝒜 → 𝒜, 𝑓(𝑥) = 𝑎−1𝑥𝑎, ∀𝑥 ∈ 𝒜, with given
fixed 𝑎 ∈ 𝒜. The composition of two inner automorphisms 𝑔(𝑓(𝑥)) = 𝑏−1𝑎−1𝑥𝑎𝑏 = (𝑎𝑏)−1𝑥(𝑎𝑏)
is again an inner automorphism. With this operation the inner automorphisms form the group
Inn(𝒜), compare [35].
5The conjugacy class (similarity class) of a given 𝑟 ∈ 𝒜, 𝑟2 = −1 is {𝑓(𝑟) : 𝑓 ∈ Inn(𝒜)}, compare
[34]. Conjugation is transitive, because the composition of inner automorphisms is again an inner
automorphism.
6According to the general theory of groups acting on sets, the conjugacy class (as a topological
space) of a square root 𝑓 of −1 is isomorphic to the quotient of G(𝒜) and Cent(𝑓) (the subgroup
of stability of 𝑓). Quotient means here the set of left handed classes modulo the subgroup. If
the subgroup is contained in the neutral connected component of G(𝒜), then the number of

connected components is the same in the quotient as in G(𝒜). See also [10].
7Neutral means to be connected to the identity element of 𝒜.
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example,8 Z(ℳ(2𝑑,ℝ)) = {𝑎1 ∣ 𝑎 ∈ ℝ} and Z(ℳ(2𝑑,ℂ)) = {𝑐1 ∣ 𝑐 ∈ ℂ}. If the
associated ring is ℝ or ℍ (that is for even 𝑛), then Z(𝒜) is canonically isomorphic
to ℝ, and from the projection 𝒜 → Z(𝒜) we derive a linear form Scal : 𝒜 → ℝ.
When the associated ring9 is ℝ2 or ℍ2 or ℂ, then Z(𝒜) is spanned by 1 (the unit
matrix10) and some element 𝜔 such that 𝜔2 = ±1. Thus, we get two linear forms
Scal and Spec such that Scal(𝑓)1+Spec(𝑓)𝜔 is the projection of 𝑓 in Z(𝒜) for every
𝑓 ∈ 𝒜. Instead of 𝜔 we may use −𝜔 and replace Spec with −Spec. The following
assertion holds for every 𝑓 ∈ 𝒜: The trace of each multiplication11 𝑔 �→ 𝑓𝑔 or
𝑔 �→ 𝑔𝑓 is equal to the product

tr(𝑓) = dim(𝒜) Scal(𝑓). (2.2)

The word “trace” (when nothing more is specified) means a matrix trace in ℝ,
which is the sum of its diagonal elements. For example, the matrix 𝑀 ∈ ℳ(2𝑑,ℝ)

with elements 𝑚𝑘𝑙 ∈ ℝ, 1 ≤ 𝑘, 𝑙 ≤ 2𝑑 has the trace tr(𝑀) =
∑2𝑑

𝑘=1 𝑚𝑘𝑘 [24].

We shall prove that in all cases Scal(𝑓) = 0 for every square root of −1 in
𝒜. Then, we may distinguish ordinary square roots of −1, and exceptional ones.
In all cases the ordinary square roots of −1 constitute a unique12 conjugacy class
of dimension dim(𝒜)/2 which has as many connected components as G(𝒜), and
they satisfy the equality Spec(𝑓) = 0 if the associated ring is ℝ2 or ℍ2 or ℂ. The
exceptional square roots of −1 only exist13 if 𝒜 ∼= ℳ(2𝑑,ℂ). In ℳ(2𝑑,ℂ) there
are 2𝑑 conjugacy classes of exceptional square roots of −1, each one characterized
by an equality Spec(𝑓) = 𝑘/𝑑 with ±𝑘 ∈ {1, 2, . . . , 𝑑} [see Section 7], and their
dimensions are< dim(𝒜)/2 [see equation (7.5)]. For instance, 𝜔 (mentioned above)
and −𝜔 are central square roots of −1 inℳ(2𝑑,ℂ) which constitute two conjugacy
classes of dimension 0. Obviously, Spec(𝜔) = 1.

For symbolic computer algebra systems (CAS), like MAPLE, there exist Clif-
ford algebra packages, e.g., CLIFFORD [2], which can compute idempotents [3]
and square roots of −1. This will be of especial interest for the exceptional square
roots of −1 in ℳ(2𝑑,ℂ).

Regarding a square root 𝑟 of −1, a Clifford algebra is the direct sum of the
subspaces Cent(𝑟) (all elements that commute with 𝑟) and the skew-centralizer

8A matrix algebra based proof is, e.g., given in [4].
9This is the case for 𝑛 (and 𝑠) odd. Then the pseudoscalar 𝜔 ∈ 𝐶ℓ𝑝,𝑞 is also in Z(𝐶ℓ𝑝,𝑞).
10The number 1 denotes the unit of the Clifford algebra 𝒜, whereas the bold face 1 denotes the
unit of the isomorphic matrix algebra ℳ.
11These multiplications are bilinear over the center of 𝒜.
12Let 𝒜 be an algebra ℳ(𝑚,𝕂) where 𝕂 is a division ring. Thus two elements 𝑓 and 𝑔 of 𝒜
induce 𝕂-linear endomorphisms 𝑓 ′ and 𝑔′ on 𝕂𝑚; if 𝕂 is not commutative, 𝕂 operates on 𝕂𝑚

on the right side. The matrices 𝑓 and 𝑔 are conjugate (or similar) if and only if there are two
𝕂-bases 𝐵1 and 𝐵2 of 𝕂𝑚 such that 𝑓 ′ operates on 𝐵1 in the same way as 𝑔′ operates on 𝐵2.
This theorem allows us to recognize that in all cases but the last one (with exceptional square
roots of −1), two square roots of −1 are always conjugate.
13The pseudoscalars of Clifford algebras whose isomorphic matrix algebra has ring ℝ2 or ℍ2

square to 𝜔2 = +1.
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SCent(𝑟) (all elements that anticommute with 𝑟). Every Clifford algebra multivec-
tor has a unique split by this Lemma.

Lemma 2.1. Every multivector 𝐴 ∈ 𝐶ℓ𝑝,𝑞 has, with respect to a square root 𝑟 ∈
𝐶ℓ𝑝,𝑞 of −1, i.e., 𝑟−1 = −𝑟, the unique decomposition

𝐴± =
1

2
(𝐴± 𝑟−1𝐴𝑟), 𝐴 = 𝐴+ +𝐴−, 𝐴+𝑟 = 𝑟𝐴+, 𝐴−𝑟 = −𝑟𝐴−. (2.3)

Proof. For 𝐴 ∈ 𝐶ℓ𝑝,𝑞 and a square root 𝑟 ∈ 𝐶ℓ𝑝,𝑞 of −1, we compute

𝐴±𝑟 =
1

2
(𝐴± 𝑟−1𝐴𝑟)𝑟 =

1

2
(𝐴𝑟 ± 𝑟−1𝐴(−1)) 𝑟−1=−𝑟

=
1

2
(𝑟𝑟−1𝐴𝑟 ± 𝑟𝐴)

= ±𝑟
1

2
(𝐴± 𝑟−1𝐴𝑟). □

For example, in Clifford algebras 𝐶ℓ𝑛,0 [23] of dimensions 𝑛 = 2 mod 4,
Cent(𝑟) is the even subalgebra 𝐶ℓ0(𝑛, 0) for the unit pseudoscalar 𝑟, and the
subspace 𝐶ℓ1(𝑛, 0) spanned by all 𝑘-vectors of odd degree 𝑘, is SCent(𝑟). The
most interesting case is ℳ(2𝑑,ℂ), where a whole range of conjugacy classes be-
comes available. These results will therefore be particularly relevant for construct-
ing Clifford–Fourier transformations using the square roots of −1.

3. Square Roots of −1 in 퓜(2𝒅,ℝ)

Here 𝒜 = ℳ(2𝑑,ℝ), whence dim(𝒜) = (2𝑑)2 = 4𝑑2. The group G(𝒜) has two
connected components determined by the inequalities det(𝑔) > 0 and det(𝑔) < 0.

For the case 𝑑 = 1 we have, e.g., the algebra 𝐶ℓ2,0 isomorphic to ℳ(2,ℝ).
The basis {1, 𝑒1, 𝑒2, 𝑒12} of 𝐶ℓ2,0 is mapped to{(

1 0
0 1

)
,

(
0 1
1 0

)
,

(
1 0
0 −1

)
,

(
0 −1
1 0

)}
.

The general element 𝛼+ 𝑏1𝑒1 + 𝑏2𝑒2 + 𝛽𝑒12 ∈ 𝐶ℓ2,0 is thus mapped to(
𝛼+ 𝑏2 −𝛽 + 𝑏1
𝛽 + 𝑏1 𝛼− 𝑏2

)
(3.1)

in ℳ(2,ℝ). Every element 𝑓 of 𝒜 =ℳ(2𝑑,ℝ) is treated as an ℝ-linear endomor-
phism of 𝑉 = ℝ2𝑑. Thus, its scalar component and its trace (2.2) are related as
follows: tr(𝑓) = 2𝑑Scal(𝑓). If 𝑓 is a square root of −1, it turns 𝑉 into a vector
space over ℂ (if the complex number 𝑖 operates like 𝑓 on 𝑉 ). If (𝑒1, 𝑒2, . . . , 𝑒𝑑) is
a ℂ-basis of 𝑉 , then (𝑒1, 𝑓(𝑒1), 𝑒2, 𝑓(𝑒2), . . . , 𝑒𝑑, 𝑓(𝑒𝑑)) is an ℝ-basis of 𝑉 , and the
2𝑑× 2𝑑 matrix of 𝑓 in this basis is

diag

((
0 −1
1 0

)
, . . . ,

(
0 −1
1 0

)
︸ ︷︷ ︸

𝑑

)
(3.2)

Consequently all square roots of −1 in 𝒜 are conjugate. The centralizer of a
square root 𝑓 of −1 is the algebra of all ℂ-linear endomorphisms 𝑔 of 𝑉 (since
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𝑖 operates like 𝑓 on 𝑉 ). Therefore, the ℂ-dimension of Cent(𝑓) is 𝑑2 and its
ℝ-dimension is 2𝑑2. Finally, the dimension (2.1) of the conjugacy class of 𝑓 is
dim(𝒜) − dim(Cent(𝑓)) = 4𝑑2 − 2𝑑2 = 2𝑑2 = dim(𝒜)/2. The two connected com-
ponents of G(𝒜) are determined by the sign of the determinant. Because of the
next lemma, the ℝ-determinant of every element of Cent(𝑓) is ≥ 0. Therefore, the
intersection Cent(𝑓)

∩
G(𝒜) is contained in the neutral connected component of

G(𝒜) and, consequently, the conjugacy class of 𝑓 has two connected components
like G(𝒜). Because of the next lemma, the ℝ-trace of 𝑓 vanishes (indeed its ℂ-trace
is 𝑑𝑖, because 𝑓 is the multiplication by the scalar 𝑖: 𝑓(𝑣) = 𝑖𝑣 for all 𝑣) whence
Scal(𝑓) = 0. This equality is corroborated by the matrix written above.

We conclude that the square roots of −1 constitute one conjugacy class with
two connected components of dimension dim(𝒜)/2 contained in the hyperplane
defined by the equation

Scal(𝑓) = 0. (3.3)

Before stating the lemma that here is so helpful, we show what happens in
the easiest case 𝑑 = 1. The square roots of −1 in ℳ(2,ℝ) are the real matrices(

𝑎 𝑐
𝑏 −𝑎

)
with

(
𝑎 𝑐
𝑏 −𝑎

)(
𝑎 𝑐
𝑏 −𝑎

)
= (𝑎2 + 𝑏𝑐)1 = −1; (3.4)

hence 𝑎2 + 𝑏𝑐 = −1, a relation between 𝑎, 𝑏, 𝑐 which is equivalent to (𝑏 − 𝑐)2 =
(𝑏 + 𝑐)2 + 4𝑎2 + 4 ⇒ (𝑏 − 𝑐)2 ≥ 4 ⇒ 𝑏 − 𝑐 ≥ 2 (one component) or 𝑐 − 𝑏 ≥ 2
(second component). Thus, we recognize the two connected components of square
roots of −1: The inequality 𝑏 ≥ 𝑐+ 2 holds in one connected component, and the
inequality 𝑐 ≥ 𝑏+ 2 in the other one, compare Figure 2.

Figure 2. Two components of square roots of −1 in ℳ(2,ℝ).

In terms of 𝐶ℓ2,0 coefficients (3.1) with 𝑏− 𝑐 = 𝛽 + 𝑏1 − (−𝛽 + 𝑏1) = 2𝛽, we
get the two component conditions simply as

𝛽 ≥ 1 (one component), 𝛽 ≤ −1 (second component). (3.5)

Rotations (det(𝑔) = 1) leave the pseudoscalar 𝛽𝑒12 invariant (and thus preserve the
two connected components of square roots of −1), but reflections (det(𝑔′) = −1)
change its sign 𝛽𝑒12 → −𝛽𝑒12 (thus interchanging the two components).
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Because of the previous argument involving a complex structure on the real
space 𝑉 , we conversely consider the complex space ℂ𝑑 with its structure of vector
space over ℝ. If (𝑒1, 𝑒2, . . . , 𝑒𝑑) is a ℂ-basis of ℂ𝑑, then (𝑒1, 𝑖𝑒1, 𝑒2, 𝑖𝑒2, . . . , 𝑒𝑑, 𝑖𝑒𝑑)
is an ℝ-basis. Let 𝑔 be a ℂ-linear endomorphism of ℂ𝑑 (i.e., a complex 𝑑 × 𝑑
matrix), let trℂ(𝑔) and detℂ(𝑔) be the trace and determinant of 𝑔 in ℂ, and trℝ(𝑔)
and detℝ(𝑔) its trace and determinant for the real structure of ℂ𝑑.

Example. For 𝑑 = 1 an endomorphism of ℂ1 is given by a complex number 𝑔 =
𝑎+ 𝑖𝑏, 𝑎, 𝑏 ∈ ℝ. Its matrix representation is according to (3.2)(

𝑎 −𝑏
𝑏 𝑎

)
with

(
𝑎 −𝑏
𝑏 𝑎

)2

= (𝑎2 − 𝑏2)

(
1 0
0 1

)
+ 2𝑎𝑏

(
0 −1
1 0

)
. (3.6)

Then we have trℂ(𝑔) = 𝑎 + 𝑖𝑏, trℝ

(
𝑎 −𝑏
𝑏 𝑎

)
= 2𝑎 = 2ℜ(trℂ(𝑔)) and detℂ(𝑔) =

𝑎+ 𝑖𝑏, detℝ

(
𝑎 −𝑏
𝑏 𝑎

)
= 𝑎2 + 𝑏2 = ∣ detℂ(𝑔)∣2 ≥ 0.

Lemma 3.1. For every ℂ-linear endomorphism 𝑔 we can write trℝ(𝑔) = 2ℜ(trℂ(𝑔))
and detℝ(𝑔) = ∣ detℂ(𝑔)∣2 ≥ 0.

Proof. There is a ℂ-basis in which the ℂ-matrix of 𝑔 is triangular [then detℂ(𝑔)
is the product of the entries of 𝑔 on the main diagonal]. We get the ℝ-matrix
of 𝑔 in the derived ℝ-basis by replacing every entry 𝑎 + 𝑏𝑖 of the ℂ-matrix with

the elementary matrix

(
𝑎 −𝑏
𝑏 𝑎

)
. The conclusion soon follows. The fact that the

determinant of a block triangular matrix is the product of the determinants of the
blocks on the main diagonal is used. □

4. Square Roots of −1 in 퓜(2𝒅,ℝ2)

Here 𝒜 = ℳ(2𝑑,ℝ2) = ℳ(2𝑑,ℝ) × ℳ(2𝑑,ℝ), whence dim(𝒜) = 8𝑑2. The
group G(𝒜) has four14 connected components. Every element (𝑓, 𝑓 ′) ∈ 𝒜 (with
𝑓, 𝑓 ′ ∈ ℳ(2𝑑,ℝ)) has a determinant in ℝ2 which is obviously (det(𝑓), det(𝑓 ′)),
and the four connected components of G(𝒜) are determined by the signs of the
two components of detℝ2(𝑓, 𝑓 ′).

The lowest-dimensional example (𝑑 = 1) is 𝐶ℓ2,1 isomorphic to ℳ(2,ℝ2).
Here the pseudoscalar 𝜔 = 𝑒123 has square 𝜔2 = +1. The center of the algebra is
{1, 𝜔} and includes the idempotents 𝜖± = (1±𝜔)/2, 𝜖2± = 𝜖±, 𝜖+𝜖− = 𝜖−𝜖+ = 0.
The basis of the algebra can thus be written as {𝜖+, 𝑒1𝜖+, 𝑒2𝜖+, 𝑒12𝜖+, 𝜖−, 𝑒1𝜖−,
𝑒2𝜖−, 𝑒12𝜖−}, where the first (and the last) four elements form a basis of the

14In general, the number of connected components of G(𝒜) is two if 𝒜 = ℳ(𝑚,ℝ), and one if
𝒜 = ℳ(𝑚,ℂ) or 𝒜 = ℳ(𝑚,ℍ), because in all cases every matrix can be joined by a continuous
path to a diagonal matrix with entries 1 or −1. When an algebra 𝒜 is a direct product of two

algebras ℬ and 𝒞, then G(𝒜) is the direct product of G(ℬ) and G(𝒞), and the number of connected
components of G(𝒜) is the product of the numbers of connected components of G(ℬ) and G(𝒞).
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subalgebra 𝐶ℓ2,0 isomorphic toℳ(2,ℝ). In terms of matrices we have the identity
matrix (1,1) representing the scalar part, the idempotent matrices (1, 0), (0,1),
and the 𝜔 matrix (1,−1), with 1 the unit matrix of ℳ(2,ℝ).

The square roots of (−1,−1) in 𝒜 are pairs of two square roots of −1 in
ℳ(2𝑑,ℝ). Consequently they constitute a unique conjugacy class with four con-
nected components of dimension 4𝑑2 = dim(𝒜)/2. This number can be obtained in
two ways. First, since every element (𝑓, 𝑓 ′) ∈ 𝒜 (with 𝑓, 𝑓 ′ ∈ℳ(2𝑑,ℝ)) has twice
the dimension of the components 𝑓 ∈ℳ(2𝑑,ℝ) of Section 3, we get the component
dimension 2⋅2𝑑2 = 4𝑑2. Second, the centralizer Cent(𝑓, 𝑓 ′) has twice the dimension
of Cent(𝑓) ofℳ(2𝑑,ℝ), therefore dim(𝒜)−Cent(𝑓, 𝑓 ′) = 8𝑑2 − 4𝑑2 = 4𝑑2. In the
above example for 𝑑 = 1 the four components are characterized according to (3.5)
by the values of the coefficients of 𝛽𝑒12𝜖+ and 𝛽′𝑒12𝜖− as

𝑐1 : 𝛽 ≥ 1, 𝛽′ ≥ 1,

𝑐2 : 𝛽 ≥ 1, 𝛽′ ≤ −1,
𝑐3 : 𝛽 ≤ −1, 𝛽′ ≥ 1,

𝑐4 : 𝛽 ≤ −1, 𝛽′ ≤ −1. (4.1)

For every (𝑓, 𝑓 ′) ∈ 𝒜 we can with (2.2) write tr(𝑓) + tr(𝑓 ′) = 2𝑑Scal(𝑓, 𝑓 ′) and

tr(𝑓)− tr(𝑓 ′) = 2𝑑Spec(𝑓, 𝑓 ′) if 𝜔 = (1,−1); (4.2)

whence Scal(𝑓, 𝑓 ′) = Spec(𝑓, 𝑓 ′) = 0 if (𝑓, 𝑓 ′) is a square root of (−1,−1), compare
(3.3).

The group Aut(𝒜) is larger than Inn(𝒜), because it contains the swap auto-
morphism (𝑓, 𝑓 ′) �→ (𝑓 ′, 𝑓) which maps the central element 𝜔 to −𝜔, and inter-
changes the two idempotents 𝜖+ and 𝜖−. The group Aut(𝒜) has eight connected
components which permute the four connected components of the submanifold of
square roots of (−1,−1). The permutations induced by Inn(𝒜) are the permu-
tations of the Klein group. For example for 𝑑 = 1 of (4.1) we get the following
Inn(ℳ(2,ℝ2)) permutations

det(𝑔) > 0, det(𝑔′) > 0 : identity,

det(𝑔) > 0, det(𝑔′) < 0 : (𝑐1, 𝑐2), (𝑐3, 𝑐4),

det(𝑔) < 0, det(𝑔′) > 0 : (𝑐1, 𝑐3), (𝑐2, 𝑐4),

det(𝑔) < 0, det(𝑔′) < 0 : (𝑐1, 𝑐4), (𝑐2, 𝑐3). (4.3)

Beside the identity permutation, Inn(𝒜) gives the three permutations that permute
two elements and also the other two ones.

The automorphisms outside Inn(𝒜) are
(𝑓, 𝑓 ′) �→ (𝑔𝑓 ′𝑔−1, 𝑔′𝑓𝑔′−1) for some (𝑔, 𝑔′) ∈ G(𝒜). (4.4)

If det(𝑔) and det(𝑔′) have opposite signs, it is easy to realize that this automor-
phism induces a circular permutation on the four connected components of square
roots of (−1,−1): If det(𝑔) and det(𝑔′) have the same sign, this automorphism
leaves globally invariant two connected components, and permutes the other two
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ones. For example, for 𝑑 = 1 the automorphisms (4.4) outside Inn(𝒜) permute the
components (4.1) of square roots of (−1,−1) in ℳ(2,ℝ2) as follows

det(𝑔) > 0, det(𝑔′) > 0 : (𝑐1), (𝑐2, 𝑐3), (𝑐4),

det(𝑔) > 0, det(𝑔′) < 0 : 𝑐1 → 𝑐2 → 𝑐4 → 𝑐3 → 𝑐1,

det(𝑔) < 0, det(𝑔′) > 0 : 𝑐1 → 𝑐3 → 𝑐4 → 𝑐2 → 𝑐1,

det(𝑔) < 0, det(𝑔′) < 0 : (𝑐1, 𝑐4), (𝑐2), (𝑐3). (4.5)

Consequently, the quotient of the group Aut(𝒜) by its neutral connected compo-
nent is isomorphic to the group of isometries of a square in a Euclidean plane.

5. Square Roots of −1 in 퓜(𝒅,ℍ)

Let us first consider the easiest case 𝑑 = 1, when 𝒜 = ℍ, e.g., of 𝐶ℓ0,2. The square
roots of −1 in ℍ are the quaternions 𝑎𝑖 + 𝑏𝑗 + 𝑐𝑖𝑗 with 𝑎2 + 𝑏2 + 𝑐2 = 1. They
constitute a compact and connected manifold of dimension 2. Every square root
𝑓 of −1 is conjugate with 𝑖, i.e., there exists 𝑣 ∈ ℍ : 𝑣−1𝑓𝑣 = 𝑖 ⇔ 𝑓𝑣 = 𝑣𝑖. If we
set 𝑣 = −𝑓𝑖+ 1 = 𝑎+ 𝑏𝑖𝑗 − 𝑐𝑗 + 1 we have

𝑓𝑣 = −𝑓2𝑖+ 𝑓 = 𝑓 + 𝑖 = (𝑓(−𝑖) + 1)𝑖 = 𝑣𝑖.

𝑣 is invertible, except when 𝑓 = −𝑖. But 𝑖 is conjugate with −𝑖 because 𝑖𝑗 = 𝑗(−𝑖),
hence, by transitivity 𝑓 is also conjugate with −𝑖.

Here 𝒜 = ℳ(𝑑,ℍ), whence dim(𝐴) = 4𝑑2. The ring ℍ is the algebra over
ℝ generated by two elements 𝑖 and 𝑗 such that 𝑖2 = 𝑗2 = −1 and 𝑗𝑖 = −𝑖𝑗. We
identify ℂ with the subalgebra generated by15 𝑖 alone.

The group G(𝒜) has only one connected component. We shall soon prove that
every square root of −1 in 𝒜 is conjugate with 𝑖1. Therefore, the submanifold of
square roots of −1 is a conjugacy class, and it is connected. The centralizer of
𝑖1 in 𝒜 is the subalgebra of all matrices with entries in ℂ. The ℂ-dimension of
Cent(𝑖1) is 𝑑2, its ℝ-dimension is 2𝑑2, and, consequently, the dimension (2.1) of
the submanifold of square roots of −1 is 4𝑑2 − 2𝑑2 = 2𝑑2 = dim(𝒜)/2.

Here 𝑉 = ℍ𝑑 is treated as a (unitary) module over ℍ on the right side:
The product of a line vector 𝑡𝑣 = (𝑥1, 𝑥2, . . . , 𝑥𝑑) ∈ 𝑉 by 𝑦 ∈ ℍ is 𝑡𝑣 𝑦 =
(𝑥1𝑦, 𝑥2𝑦, . . . , 𝑥𝑑𝑦). Thus, every 𝑓 ∈ 𝒜 determines an ℍ-linear endomorphism of
𝑉 : The matrix 𝑓 multiplies the column vector 𝑣 = 𝑡(𝑥1, 𝑥2, . . . , 𝑥𝑑) on the left
side 𝑣 �→ 𝑓𝑣. Since ℂ is a subring of ℍ, 𝑉 is also a vector space of dimension 2𝑑
over ℂ. The scalar 𝑖 always operates on the right side (like every scalar in ℍ). If
(𝑒1, 𝑒2, . . . , 𝑒𝑑) is an ℍ-basis of 𝑉 , then (𝑒1, 𝑒1𝑗, 𝑒2, 𝑒2𝑗, . . . , 𝑒𝑑, 𝑒𝑑𝑗) is a ℂ-basis of
𝑉 . Let 𝑓 be a square root of −1, then the eigenvalues of 𝑓 in ℂ are +𝑖 or −𝑖.
If we treat 𝑉 as a 2𝑑 vector space over ℂ, it is the direct (ℂ-linear) sum of the
eigenspaces

𝑉 + = {𝑣 ∈ 𝑉 ∣ 𝑓(𝑣) = 𝑣𝑖} and 𝑉 − = {𝑣 ∈ 𝑉 ∣ 𝑓(𝑣) = −𝑣𝑖}, (5.1)

15This choice is usual and convenient.
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representing 𝑓 as a 2𝑑× 2𝑑 ℂ-matrix w.r.t. the ℂ-basis of 𝑉 , with ℂ-scalar eigen-
values (multiplied from the right): 𝜆± = ±𝑖.

Since 𝑖𝑗 = −𝑗𝑖, the multiplication 𝑣 �→ 𝑣𝑗 permutes 𝑉 + and 𝑉 −, as 𝑓(𝑣) =
±𝑣𝑖 is mapped to 𝑓(𝑣)𝑗 = ±𝑣𝑖𝑗 = ∓(𝑣𝑗)𝑖. Therefore, if (𝑒1, 𝑒2, . . . , 𝑒𝑟) is a ℂ-basis
of 𝑉 +, then (𝑒1𝑗, 𝑒2𝑗, . . . , 𝑒𝑟𝑗) is a ℂ-basis of 𝑉 −, consequently (𝑒1, 𝑒1𝑗, 𝑒2, 𝑒2𝑗,
. . ., 𝑒𝑟, 𝑒𝑟𝑗) is a ℂ-basis of 𝑉 , and (𝑒1, 𝑒2, . . . , 𝑒𝑟=𝑑) is an ℍ-basis of 𝑉 . Since 𝑓 by
𝑓(𝑒𝑘) = 𝑒𝑘𝑖 for 𝑘 = 1, 2, . . . , 𝑑 operates on the ℍ-basis (𝑒1, 𝑒2, . . . , 𝑒𝑑) in the same
way as 𝑖1 on the natural ℍ-basis of 𝑉 , we conclude that 𝑓 and 𝑖1 are conjugate.

Besides, Scal(𝑖1) = 0 because 2𝑖1 = [𝑗1, 𝑖𝑗1] ∈ [𝒜,𝒜], thus 𝑖1 /∈ Z(𝒜).
Whence,16

Scal(𝑓) = 0 for every square root of − 1. (5.2)

These results are easily verified in the above example of 𝑑 = 1 when 𝒜 = ℍ.

6. Square Roots of −1 in 퓜(𝒅,ℍ2)

Here, 𝒜 = ℳ(𝑑,ℍ2) = ℳ(𝑑,ℍ) ×ℳ(𝑑,ℍ), whence dim(𝐴) = 8𝑑2. The group
G(𝒜) has only one connected component (see Footnote 14).

The square roots of (−1,−1) in 𝒜 are pairs of two square roots of −1 in
ℳ(𝑑,ℍ). Consequently, they constitute a unique conjugacy class which is con-
nected and its dimension is 2× 2𝑑2 = 4𝑑2 = dim(𝒜)/2.

For every (𝑓, 𝑓 ′) ∈ 𝒜 we can write Scal(𝑓) + Scal(𝑓 ′) = 2 Scal(𝑓, 𝑓 ′) and,
similarly to (4.2),

Scal(𝑓)− Scal(𝑓 ′) = 2 Spec(𝑓, 𝑓 ′) if 𝜔 = (1,−1); (6.1)

whence Scal(𝑓, 𝑓 ′) = Spec(𝑓, 𝑓 ′) = 0 if (𝑓, 𝑓 ′) is a square root of (−1,−1), compare
with (5.2).

The group Aut(𝒜) has two17 connected components; the neutral component
is Inn(𝒜), and the other component contains the swap automorphism (𝑓, 𝑓 ′) �→
(𝑓 ′, 𝑓).

The simplest example is 𝑑 = 1, 𝒜 = ℍ2, where we have the identity pair
(1, 1) representing the scalar part, the idempotents (1, 0), (0, 1), and 𝜔 as the pair
(1,−1).

𝒜 = ℍ2 is isomorphic to 𝐶ℓ0,3. The pseudoscalar 𝜔 = 𝑒123 has the square
𝜔2 = +1. The center of the algebra is {1, 𝜔}, and includes the idempotents 𝜖± =
1
2 (1±𝜔), 𝜖2± = 𝜖±, 𝜖+𝜖− = 𝜖−𝜖+ = 0. The basis of the algebra can thus be written
as {𝜖+, 𝑒1𝜖+, 𝑒2𝜖+, 𝑒12𝜖+, 𝜖−, 𝑒1𝜖−, 𝑒2𝜖−, 𝑒12𝜖−} where the first (and the last) four
elements form a basis of the subalgebra 𝐶ℓ0,2 isomorphic to ℍ.

16Compare the definition of Scal(𝑓) in Section 2, remembering that in the current section the

associated ring is ℍ.
17Compare Footnote 14.
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7. Square Roots of −1 in 퓜(2𝒅,ℂ)

The lowest-dimensional example for 𝑑 = 1 is the Pauli matrix algebra𝒜 =ℳ(2,ℂ)
isomorphic to the geometric algebra 𝐶ℓ3,0 of the 3D Euclidean space and 𝐶ℓ1,2.
The 𝐶ℓ3,0 vectors 𝑒1, 𝑒2, 𝑒3 correspond one-to-one to the Pauli matrices

𝜎1 =

(
0 1
1 0

)
, 𝜎2 =

(
0 −𝑖
𝑖 0

)
, 𝜎3 =

(
1 0
0 −1

)
, (7.1)

with 𝜎1𝜎2 = 𝑖𝜎3 =

(
𝑖 0
0 −𝑖

)
. The element 𝜔 = 𝜎1𝜎2𝜎3 = 𝑖1 represents the

central pseudoscalar 𝑒123 of 𝐶ℓ3,0 with square 𝜔2 = −1. The Pauli algebra has the
following idempotents

𝜖1 = 𝜎2
1 = 1, 𝜖0 = (1/2)(1+ 𝜎3), 𝜖−1 = 0 . (7.2)

The idempotents correspond via

𝑓 = 𝑖(2𝜖− 1), (7.3)

to the square roots of −1:
𝑓1 = 𝑖1 =

(
𝑖 0
0 𝑖

)
, 𝑓0 = 𝑖𝜎3 =

(
𝑖 0
0 −𝑖

)
, 𝑓−1 = −𝑖1 =

(−𝑖 0
0 −𝑖

)
, (7.4)

where by complex conjugation 𝑓−1 = 𝑓1. Let the idempotent 𝜖′0 = 1
2 (1−𝜎3) corre-

spond to the matrix 𝑓 ′0 = −𝑖𝜎3. We observe that 𝑓0 is conjugate to 𝑓 ′0 = 𝜎−1
1 𝑓0𝜎1 =

𝜎1𝜎2 = 𝑓0 using 𝜎−1
1 = 𝜎1 but 𝑓1 is not conjugate to 𝑓−1. Therefore, only 𝑓1, 𝑓0, 𝑓−1

lead to three distinct conjugacy classes of square roots of −1 inℳ(2,ℂ). Compare
Appendix B for the corresponding computations with CLIFFORD for Maple.

In general, if 𝒜 = ℳ(2𝑑,ℂ), then dim(𝒜) = 8𝑑2. The group G(𝒜) has one
connected component. The square roots of −1 in 𝒜 are in bijection with the
idempotents 𝜖 [3] according to (7.3). According18 to (7.3) and its inverse 𝜖 =
1
2 (1 − 𝑖𝑓) the square root of −1 with Spec(𝑓−) = 𝑘/𝑑 = −1, i.e., 𝑘 = −𝑑 (see
below), always corresponds to the trival idempotent 𝜖− = 0, and the square root
of −1 with Spec(𝑓+) = 𝑘/𝑑 = +1, 𝑘 = +𝑑, corresponds to the identity idempotent
𝜖+ = 1.

If 𝑓 is a square root of−1, then 𝑉 = ℂ2𝑑 is the direct sum of the eigenspaces19

associated with the eigenvalues 𝑖 and −𝑖. There is an integer 𝑘 such that the
dimensions of the eigenspaces are respectively 𝑑 + 𝑘 and 𝑑 − 𝑘. Moreover, −𝑑 ≤
𝑘 ≤ 𝑑. Two square roots of −1 are conjugate if and only if they give the same

18On the other hand it is clear that complex conjugation always leads to 𝑓− = 𝑓+, where
the overbar means complex conjugation in ℳ(2𝑑,ℂ) and Clifford conjugation in the isomorphic
Clifford algebra 𝐶ℓ𝑝,𝑞. So either the trivial idempotent 𝜖− = 0 is included in the bijection (7.3) of
idempotents and square roots of −1, or alternatively the square root of −1 with Spec(𝑓−) = −1
is obtained from 𝑓− = 𝑓+.
19The following theorem is sufficient for a matrix 𝑓 in ℳ(𝑚,𝕂), if 𝕂 is a (commutative) field.
The matrix 𝑓 is diagonalizable if and only if 𝑃 (𝑓) = 0 for some polynomial 𝑃 that has only simple
roots, all of them in the field 𝕂. (This implies that 𝑃 is a multiple of the minimal polynomial,
but we do not need to know whether 𝑃 is or is not the minimal polynomial.)
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integer 𝑘. Then, all elements of Cent(𝑓) consist of diagonal block matrices with 2
square blocks of (𝑑+𝑘)×(𝑑+𝑘) matrices and (𝑑−𝑘)×(𝑑−𝑘) matrices. Therefore,
the ℂ-dimension of Cent(𝑓) is (𝑑+ 𝑘)2 + (𝑑− 𝑘)2. Hence the ℝ-dimension (2.1) of
the conjugacy class of 𝑓 :

8𝑑2 − 2(𝑑+ 𝑘)2 − 2(𝑑− 𝑘)2 = 4(𝑑2 − 𝑘2). (7.5)

Also, from the equality tr(𝑓) = (𝑑+𝑘)𝑖−(𝑑−𝑘)𝑖 = 2𝑘𝑖 we deduce that Scal(𝑓) = 0
and that Spec(𝑓) = (2𝑘𝑖)/(2𝑑𝑖) = 𝑘/𝑑 if 𝜔 = 𝑖1 (whence tr(𝜔) = 2𝑑𝑖).

As announced on page 127, we consider that a square root of −1 is ordinary
if the associated integer 𝑘 vanishes, and that it is exceptional if 𝑘 ∕= 0. Thus the
following assertion is true in all cases: the ordinary square roots of −1 in 𝒜 con-
stitute one conjugacy class of dimension dim(𝒜)/2 which has as many connected
components as G(𝒜), and the equality Spec(𝑓) = 0 holds for every ordinary square
root of −1 when the linear form Spec exists. All conjugacy classes of exceptional
square roots of −1 have a dimension < dim(𝒜)/2.

All square roots of −1 in ℳ(2𝑑,ℂ) constitute (2𝑑 + 1) conjugacy classes20

which are also the connected components of the submanifold of square roots of −1
because of the equality Spec(𝑓) = 𝑘/𝑑, which is conjugacy class specific.

When 𝒜 = ℳ(2𝑑,ℂ), the group Aut(𝒜) is larger than Inn(𝒜) since it con-
tains the complex conjugation (that maps every entry of a matrix to the conjugate
complex number). It is clear that the class of ordinary square roots of −1 is invari-
ant by complex conjugation. But the class associated with an integer 𝑘 other than
0 is mapped by complex conjugation to the class associated with −𝑘. In particular
the complex conjugation maps the class {𝜔} (associated with 𝑘 = 𝑑) to the class
{−𝜔} associated with 𝑘 = −𝑑.

All these observations can easily verified for the above example of 𝑑 = 1 of
the Pauli matrix algebra 𝒜 = ℳ(2,ℂ). For 𝑑 = 2 we have the isomorphism of
𝒜 = ℳ(4,ℂ) with 𝐶ℓ0,5, 𝐶ℓ2,3 and 𝐶ℓ4,1. While 𝐶ℓ0,5 is important in Clifford
analysis, 𝐶ℓ4,1 is both the geometric algebra of the Lorentz space ℝ4,1 and the
conformal geometric algebra of 3D Euclidean geometry. Its set of square roots of
−1 is therefore of particular practical interest.

Example. Let 𝐶ℓ4,1 ∼= 𝒜 where 𝒜 = ℳ(4,ℂ) for 𝑑 = 2. The 𝐶ℓ4,1 1-vectors can
be represented21 by the following matrices:

𝑒1 =

⎛⎜⎜⎝
1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 1

⎞⎟⎟⎠ , 𝑒2 =

⎛⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ , 𝑒3 =

⎛⎜⎜⎝
0 −𝑖 0 0
𝑖 0 0 0
0 0 0 −𝑖
0 0 𝑖 0

⎞⎟⎟⎠ ,

20Two conjugate (similar) matrices have the same eigenvalues and the same trace. This suffices
to recognize that 2𝑑+ 1 conjugacy classes are obtained.
21For the computations of this example in the Maple package CLIFFORD we have used the
identification 𝑖 = 𝑒23. Yet the results obtained for the square roots of −1 are independent of this
setting (we can alternatively use, e.g., 𝑖 = 𝑒12345 , or the imaginary unit 𝑖 ∈ ℂ), as can easily
be checked for 𝑓1 of (7.7), 𝑓0 of (7.8) and 𝑓−1 of (7.9) by only assuming the standard Clifford
product rules for 𝑒1 to 𝑒5.
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𝑒4 =

⎛⎜⎜⎝
0 0 1 0
0 0 0 −1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , 𝑒5 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ . (7.6)

We find five conjugacy classes of roots 𝑓𝑘 of −1 in 𝐶ℓ4,1 for 𝑘 ∈ {0,±1,±2}: four
exceptional and one ordinary. Since 𝑓𝑘 is a root of 𝑝(𝑡) = 𝑡2 +1 which factors over
ℂ into (𝑡 − 𝑖)(𝑡 + 𝑖), the minimal polynomial 𝑚𝑘(𝑡) of 𝑓𝑘 is one of the following:
𝑡 − 𝑖, 𝑡+ 𝑖, or (𝑡 − 𝑖)(𝑡 + 𝑖). Respectively, there are three classes of characteristic
polynomial Δ𝑘(𝑡) of the matrix ℱ𝑘 in ℳ(4,ℂ) which corresponds to 𝑓𝑘, namely,
(𝑡−𝑖)4, (𝑡+𝑖)4, and (𝑡−𝑖)𝑛1(𝑡+𝑖)𝑛2 , where 𝑛1+𝑛2 = 2𝑑 = 4 and 𝑛1 = 𝑑+𝑘 = 2+𝑘,
𝑛2 = 𝑑 − 𝑘 = 2 − 𝑘. As predicted by the above discussion, the ordinary root
corresponds to 𝑘 = 0 whereas the exceptional roots correspond to 𝑘 ∕= 0.

1. For 𝑘 = 2, we have Δ2(𝑡) = (𝑡− 𝑖)4, 𝑚2(𝑡) = 𝑡− 𝑖, and so ℱ2 = diag(𝑖, 𝑖, 𝑖, 𝑖)
which in the above representation (7.6) corresponds to the non-trivial central
element 𝑓2 = 𝜔 = 𝑒12345. Clearly, Spec(𝑓2) = 1 = 𝑘

𝑑 ; Scal(𝑓2) = 0; the
ℂ-dimension of the centralizer Cent(𝑓2) is 16; and the ℝ-dimension of the
conjugacy class of 𝑓2 is zero as it contains only 𝑓2 since 𝑓2 ∈ Z(𝒜). Thus, the
ℝ-dimension of the class is again zero in agreement with (7.5).

2. For 𝑘 = −2, we have Δ−2(𝑡) = (𝑡 + 𝑖)4, 𝑚−2(𝑡) = 𝑡 + 𝑖, and ℱ−2 =
diag(−𝑖,−𝑖,−𝑖,−𝑖) which corresponds to the central element 𝑓−2 = −𝜔 =
−𝑒12345. Again, Spec(𝑓−2) = −1 = 𝑘

𝑑 ; Scal(𝑓−2) = 0; the ℂ-dimension of
the centralizer Cent(𝑓−2) is 16 and the conjugacy class of 𝑓−2 contains only
𝑓−2 since 𝑓−2 ∈ Z(𝒜). Thus, the ℝ-dimension of the class is again zero in
agreement with (7.5).

3. For 𝑘 ∕= ±2, we consider three subcases when 𝑘 = 1, 𝑘 = 0, and 𝑘 = −1.
When 𝑘 = 1, then Δ1(𝑡) = (𝑡− 𝑖)3(𝑡+ 𝑖) and 𝑚1(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Then the
root ℱ1 = diag(𝑖, 𝑖, 𝑖,−𝑖) corresponds to

𝑓1 =
1

2
(𝑒23 + 𝑒123 − 𝑒2345 + 𝑒12345). (7.7)

Note that Spec(𝑓1) =
1
2 = 𝑘

𝑑 so 𝑓1 is an exceptional root of −1.
When 𝑘 = 0, then Δ0(𝑡) = (𝑡− 𝑖)2(𝑡+ 𝑖)2 and 𝑚0(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Thus the
root of −1 in this case is ℱ0 = diag(𝑖, 𝑖,−𝑖,−𝑖) which corresponds to just

𝑓0 = 𝑒123. (7.8)

Note that Spec(𝑓0) = 0 thus 𝑓0 = 𝑒123 is an ordinary root of −1.
When 𝑘 = −1, then Δ−1(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖)3 and 𝑚−1(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Then,
the root of −1 in this case is ℱ−1 = diag(𝑖,−𝑖,−𝑖,−𝑖) which corresponds to

𝑓−1 =
1

2
(𝑒23 + 𝑒123 + 𝑒2345 − 𝑒12345). (7.9)

Since Scal(𝑓−1) = − 1
2 = 𝑘

𝑑 , we gather that 𝑓−1 is an exceptional root.
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As expected, we can also see that the roots 𝜔 and −𝜔 are related via
the grade involution whereas 𝑓1 = −𝑓−1 where ˜ denotes the reversion in
𝐶ℓ4,1.

Example. Let 𝐶ℓ0,5 ∼= 𝒜 where 𝒜 = ℳ(4,ℂ) for 𝑑 = 2. The 𝐶ℓ0,5 1-vectors can
be represented22 by the following matrices:

𝑒1 =

⎛⎜⎜⎝
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

⎞⎟⎟⎠ , 𝑒2 =

⎛⎜⎜⎝
0 −𝑖 0 0
−𝑖 0 0 0
0 0 0 −𝑖
0 0 −𝑖 0

⎞⎟⎟⎠ , 𝑒3 =

⎛⎜⎜⎝
−𝑖 0 0 0
0 𝑖 0 0
0 0 𝑖 0
0 0 0 −𝑖

⎞⎟⎟⎠ ,

𝑒4 =

⎛⎜⎜⎝
0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

⎞⎟⎟⎠ , 𝑒5 =

⎛⎜⎜⎝
0 0 −𝑖 0
0 0 0 𝑖
−𝑖 0 0 0
0 𝑖 0 0

⎞⎟⎟⎠ , (7.10)

Like for 𝐶ℓ4,1, we have five conjugacy classes of the roots 𝑓𝑘 of −1 in 𝐶ℓ0,5 for
𝑘 ∈ {0,±1,±2}: four exceptional and one ordinary. Using the same notation as in
Example 7, we find the following representatives of the conjugacy classes.

1. For 𝑘 = 2, we have Δ2(𝑡) = (𝑡 − 𝑖)4, 𝑚2(𝑡) = 𝑡 − 𝑖, and ℱ2 = diag(𝑖, 𝑖, 𝑖, 𝑖)
which in the above representation (7.10) corresponds to the non-trivial cen-
tral element 𝑓2 = 𝜔 = 𝑒12345. Then, Spec(𝑓2) = 1 = 𝑘

𝑑 ; Scal(𝑓2) = 0; the
ℂ-dimension of the centralizer Cent(𝑓2) is 16; and the ℝ-dimension of the
conjugacy class of 𝑓2 is zero as it contains only 𝑓2 since 𝑓2 ∈ Z(𝒜). Thus, the
ℝ-dimension of the class is again zero in agreement with (7.5).

2. For 𝑘 = −2, we have Δ−2(𝑡) = (𝑡 + 𝑖)4, 𝑚−2(𝑡) = 𝑡 + 𝑖, and ℱ−2 =
diag(−𝑖,−𝑖,−𝑖,−𝑖) which corresponds to the central element 𝑓−2= − 𝜔 =
−𝑒12345. Again, Spec(𝑓−2) = −1 = 𝑘

𝑑 ; Scal(𝑓−2) = 0; the ℂ-dimension of
the centralizer Cent(𝑓−2) is 16 and the conjugacy class of 𝑓−2 contains only
𝑓−2 since 𝑓−2 ∈ Z(𝒜). Thus, the ℝ-dimension of the class is again zero in
agreement with (7.5).

3. For 𝑘 ∕= ±2, we consider three subcases when 𝑘 = 1, 𝑘 = 0, and 𝑘 = −1.
When 𝑘 = 1, then Δ1(𝑡) = (𝑡− 𝑖)3(𝑡+ 𝑖) and 𝑚1(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Then the
root ℱ1 = diag(𝑖, 𝑖, 𝑖,−𝑖) corresponds to

𝑓1 =
1

2
(𝑒3 + 𝑒12 + 𝑒45 + 𝑒12345). (7.11)

Since Spec(𝑓1) =
1
2 = 𝑘

𝑑 , 𝑓1 is an exceptional root of −1.

22For the computations of this example in the Maple package CLIFFORD we have used the
identification 𝑖 = 𝑒3. Yet the results obtained for the square roots of −1 are independent of this
setting (we can alternatively use, e.g., 𝑖 = 𝑒12345, or the imaginary unit 𝑖 ∈ ℂ), as can easily be

checked for 𝑓1 of (7.11), 𝑓0 of (7.12) and 𝑓−1 of (7.13) by only assuming the standard Clifford
product rules for 𝑒1 to 𝑒5.
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When 𝑘 = 0, then Δ0(𝑡) = (𝑡 − 𝑖)2(𝑡 + 𝑖)2 and 𝑚0(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖). Thus
the root of −1 is this case is ℱ0 = diag(𝑖, 𝑖,−𝑖,−𝑖) which corresponds to just

𝑓0 = 𝑒45. (7.12)

Note that Spec(𝑓0) = 0 thus 𝑓0 = 𝑒45 is an ordinary root of −1.
When 𝑘 = −1, then Δ−1(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖)3 and 𝑚−1(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Then,
the root of −1 in this case is ℱ−1 = diag(𝑖,−𝑖,−𝑖,−𝑖) which corresponds to

𝑓−1 =
1

2
(−𝑒3 + 𝑒12 + 𝑒45 − 𝑒12345). (7.13)

Since Scal(𝑓−1) = − 1
2 = 𝑘

𝑑 , we gather that 𝑓−1 is an exceptional root.
Again we can see that the roots 𝑓2 and 𝑓−2 are related via the grade

involution whereas 𝑓1 = −𝑓−1 where ˜ denotes the reversion in 𝐶ℓ0,5.

Example. Let 𝐶ℓ7,0 ∼= 𝒜 where 𝒜 = ℳ(8,ℂ) for 𝑑 = 4. We have nine conjugacy
classes of roots 𝑓𝑘 of −1 for 𝑘 ∈ {0,±1,±2 ± 3 ± 4}. Since 𝑓𝑘 is a root of a
polynomial 𝑝(𝑡) = 𝑡2 + 1 which factors over ℂ into (𝑡 − 𝑖)(𝑡 + 𝑖), its minimal
polynomial 𝑚(𝑡) will be one of the following: 𝑡− 𝑖, 𝑡+ 𝑖, or (𝑡− 𝑖)(𝑡+ 𝑖) = 𝑡2 + 1.

Respectively, each conjugacy class is characterized by a characteristic poly-
nomial Δ𝑘(𝑡) of the matrix 𝑀𝑘 ∈ ℳ(8,ℂ) which represents 𝑓𝑘. Namely, we have

Δ𝑘(𝑡) = (𝑡− 𝑖)𝑛1(𝑡+ 𝑖)𝑛2 ,

where 𝑛1 + 𝑛2 = 2𝑑 = 8 and 𝑛1 = 𝑑 + 𝑘 = 4 + 𝑘 and 𝑛2 = 𝑑 − 𝑘 = 4 − 𝑘. The
ordinary root of −1 corresponds to 𝑘 = 0 whereas the exceptional roots correspond
to 𝑘 ∕= 0.

1. When 𝑘 = 4, we have Δ4(𝑡) = (𝑡− 𝑖)8, 𝑚4(𝑡) = 𝑡− 𝑖, and ℱ4 = diag(

8︷ ︸︸ ︷
𝑖, . . . , 𝑖)

which in the representation used by CLIFFORD [2] corresponds to the non-
trivial central element 𝑓4 = 𝜔 = 𝑒1234567. Clearly, Spec(𝑓4) = 1 = 𝑘

𝑑 ;
Scal(𝑓4) = 0; the ℂ-dimension of the centralizer Cent(𝑓4) is 64; and the
ℝ-dimension of the conjugacy class of 𝑓4 is zero since 𝑓4 ∈ Z(𝒜). Thus, the
ℝ-dimension of the class is again zero in agreement with (7.5).

2. When 𝑘 = −4, we have Δ−4(𝑡) = (𝑡 + 𝑖)8, 𝑚−4(𝑡) = 𝑡 + 𝑖, and ℱ−4 =

diag(

8︷ ︸︸ ︷
−𝑖, . . . ,−𝑖) which corresponds to 𝑓−4 = −𝜔 = −𝑒1234567. Again,

Spec(𝑓−4) = −1 =
𝑘

𝑑
; Scal(𝑓−4) = 0;

the ℂ-dimension of the centralizer Cent(𝑓) is 64 and the conjugacy class of
𝑓−4 contains only 𝑓−4 since 𝑓−4 ∈ Z(𝒜). Thus, the ℝ-dimension of the class
is again zero in agreement with (7.5).

3. When 𝑘 ∕= ±4, we consider seven subcases when 𝑘 = ±3, 𝑘 = ±2, 𝑘 = ±1,
and 𝑘 = 0.
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When 𝑘 = 3, then Δ3(𝑡) = (𝑡− 𝑖)7(𝑡+ 𝑖) and 𝑚3(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Then the

root ℱ3 = diag(

7︷ ︸︸ ︷
𝑖, . . . , 𝑖,−𝑖) corresponds to

𝑓3 =
1

4
(𝑒23 − 𝑒45 + 𝑒67 − 𝑒123 + 𝑒145 − 𝑒167 + 𝑒234567 + 3𝑒1234567). (7.14)

Since Spec(𝑓3) =
3
4 = 𝑘

𝑑 , 𝑓3 is an exceptional root of −1.
When 𝑘 = 2, then Δ2(𝑡) = (𝑡 − 𝑖)6(𝑡 + 𝑖)2 and 𝑚2(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖). Then

the root ℱ2 = diag(

6︷ ︸︸ ︷
𝑖, . . . , 𝑖,−𝑖,−𝑖) corresponds to

𝑓2 =
1

2
(𝑒67 − 𝑒45 − 𝑒123 + 𝑒1234567). (7.15)

Since Spec(𝑓2) =
1
2 = 𝑘

𝑑 , 𝑓2 is also an exceptional root.

When 𝑘 = 1, then Δ1(𝑡) = (𝑡 − 𝑖)5(𝑡 + 𝑖)3 and 𝑚1(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖). Then

the root ℱ1 = diag(

5︷ ︸︸ ︷
𝑖, . . . , 𝑖,−𝑖,−𝑖,−𝑖) corresponds to

𝑓1 =
1

4
(𝑒23 − 𝑒45 + 3𝑒67 − 𝑒123 + 𝑒145 + 𝑒167 − 𝑒234567 + 𝑒1234567). (7.16)

Since Spec(𝑓1) =
1
4 = 𝑘

𝑑 , 𝑓1 is another exceptional root.

When 𝑘 = 0, then Δ0(𝑡) = (𝑡 − 𝑖)4(𝑡 + 𝑖)4 and 𝑚0(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖). Then
the root ℱ0 = diag(𝑖, 𝑖, 𝑖, 𝑖,−𝑖,−𝑖,−𝑖,−𝑖) corresponds to

𝑓0 =
1

2
(𝑒23 − 𝑒45 + 𝑒67 − 𝑒234567). (7.17)

Since Spec(𝑓0) = 0 = 𝑘
𝑑 , we see that 𝑓0 is an ordinary root of −1.

When 𝑘 = −1, then Δ−1(𝑡) = (𝑡 − 𝑖)3(𝑡 + 𝑖)5 and 𝑚−1(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖).

Then the root ℱ−1 = diag(𝑖, 𝑖, 𝑖,

5︷ ︸︸ ︷
−𝑖, . . . ,−𝑖) corresponds to

𝑓−1 =
1

4
(𝑒23 − 𝑒45 + 3𝑒67 + 𝑒123 − 𝑒145 − 𝑒167 − 𝑒234567 − 𝑒1234567). (7.18)

Thus, Spec(𝑓−1) = − 1
4 = 𝑘

𝑑 and so 𝑓−1 is another exceptional root.

When 𝑘 = −2, then Δ−2(𝑡) = (𝑡 − 𝑖)2(𝑡 + 𝑖)6 and 𝑚−2(𝑡) = (𝑡 − 𝑖)(𝑡 + 𝑖).

Then the root ℱ−2 = diag(𝑖, 𝑖,

6︷ ︸︸ ︷
−𝑖, . . . ,−𝑖) corresponds to

𝑓−2 =
1

2
(𝑒67 − 𝑒45 + 𝑒123 − 𝑒1234567). (7.19)

Since Spec(𝑓−2) = − 1
2 = 𝑘

𝑑 , we see that 𝑓−2 is also an exceptional root.

When 𝑘 = −3, then Δ−3(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖)7 and 𝑚−3(𝑡) = (𝑡− 𝑖)(𝑡+ 𝑖). Then

the root ℱ−3 = diag(𝑖,

7︷ ︸︸ ︷
−𝑖, . . . ,−𝑖) corresponds to

𝑓−3 =
1

4
(𝑒23 − 𝑒45 + 𝑒67 + 𝑒123 − 𝑒145 + 𝑒167 + 𝑒234567 − 3𝑒1234567). (7.20)
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Again, Spec(𝑓−3) = − 3
4 = 𝑘

𝑑 and so 𝑓−3 is another exceptional root of −1.
As expected, we can also see that the roots 𝜔 and −𝜔 are related via

the reversion whereas 𝑓3 = −𝑓−3, 𝑓2 = −𝑓−2, 𝑓1 = −𝑓−1 where ¯ denotes
the conjugation in 𝐶ℓ7,0.

8. Conclusions

We proved that in all cases Scal(𝑓) = 0 for every square root of −1 in 𝒜 isomorphic
to 𝐶ℓ𝑝,𝑞. We distinguished ordinary square roots of −1, and exceptional ones.

In all cases the ordinary square roots 𝑓 of −1 constitute a unique conjugacy
class of dimension dim(𝒜)/2 which has as many connected components as the
group G(𝒜) of invertible elements in 𝒜. Furthermore, we have Spec(𝑓) = 0 (zero
pseudoscalar part) if the associated ring is ℝ2, ℍ2, or ℂ. The exceptional square
roots of −1 only exist if 𝒜 ∼=ℳ(2𝑑,ℂ) (see Section 7).

For 𝒜 =ℳ(2𝑑,ℝ) of Section 3, the centralizer and the conjugacy class of a
square root 𝑓 of −1 both have ℝ-dimension 2𝑑2 with two connected components,
pictured in Figure 2 for 𝑑 = 1.

For 𝒜 =ℳ(2𝑑,ℝ2) =ℳ(2𝑑,ℝ)×ℳ(2𝑑,ℝ) of Section 4, the square roots of
(−1,−1) are pairs of two square roots of −1 inℳ(2𝑑,ℝ). They constitute a unique
conjugacy class with four connected components, each of dimension 4𝑑2. Regarding
the four connected components, the group Inn(𝒜) induces the permutations of the
Klein group whereas the quotient group Aut(𝒜)/Inn(𝒜) is isomorphic to the group
of isometries of a Euclidean square in 2D.

For 𝒜 =ℳ(𝑑,ℍ) of Section 5, the submanifold of the square roots 𝑓 of −1
is a single connected conjugacy class of ℝ-dimension 2𝑑2 equal to the ℝ-dimension
of the centralizer of every 𝑓 . The easiest example is ℍ itself for 𝑑 = 1.

For 𝒜 =ℳ(𝑑,ℍ2) =ℳ(2𝑑,ℍ)×ℳ(2𝑑,ℍ) of Section 6, the square roots of
(−1,−1) are pairs of two square roots (𝑓, 𝑓 ′) of −1 in ℳ(2𝑑,ℍ) and constitute a
unique connected conjugacy class of ℝ-dimension 4𝑑2. The group Aut(𝒜) has two
connected components: the neutral component Inn(𝒜) connected to the identity
and the second component containing the swap automorphism (𝑓, 𝑓 ′) �→ (𝑓 ′, 𝑓).
The simplest case for 𝑑 = 1 is ℍ2 isomorphic to 𝐶ℓ0,3.

For 𝒜 = ℳ(2𝑑,ℂ) of Section 7, the square roots of −1 are in bijection to
the idempotents. First, the ordinary square roots of −1 (with 𝑘 = 0) constitute
a conjugacy class of ℝ-dimension 4𝑑2 of a single connected component which is
invariant under Aut(𝒜). Second, there are 2𝑑 conjugacy classes of exceptional
square roots of −1, each composed of a single connected component, characterized
by equality Spec(𝑓) = 𝑘/𝑑 (the pseudoscalar coefficient) with ±𝑘 ∈ {1, 2, . . . , 𝑑},
and their ℝ-dimensions are 4(𝑑2 − 𝑘2). The group Aut(𝒜) includes conjugation
of the pseudoscalar 𝜔 �→ −𝜔 which maps the conjugacy class associated with 𝑘
to the class associated with −𝑘. The simplest case for 𝑑 = 1 is the Pauli matrix
algebra isomorphic to the geometric algebra 𝐶ℓ3,0 of 3D Euclidean space ℝ3, and
to complex biquaternions [33].
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Section 7 includes explicit examples for 𝑑 = 2: 𝐶ℓ4,1 and 𝐶ℓ0,5, and for 𝑑 = 4:
𝐶ℓ7,0. Appendix A summarizes the square roots of −1 in all 𝐶ℓ𝑝,𝑞 ∼= ℳ(2𝑑,ℂ)
for 𝑑 = 1, 2, 4. Appendix B contains details on how square roots of −1 can be
computed using the package CLIFFORD for Maple.

Among the many possible applications of this research, the possibility of new
integral transformations in Clifford analysis is very promising. This field thus ob-
tains essential algebraic information, which can, e.g., be used to create steerable
transformations, which may be steerable within a connected component of a sub-
manifold of square roots of −1.

Appendix A. Summary of Roots of −1 in 𝑪ℓ𝒑,𝒒 ∼=퓜(2𝒅,ℂ)
for 𝒅 = 1, 2, 4

In this appendix we summarize roots of −1 for Clifford algebras 𝐶ℓ𝑝,𝑞 ∼=ℳ(2𝑑,ℂ)
for 𝑑 = 1, 2, 4. These roots have been computed with CLIFFORD [2]. Maple [25]
worksheets written to derive these roots are posted at [21].

Table 1. Square roots of −1 in 𝐶ℓ3,0 ∼=ℳ(2,ℂ), 𝑑 = 1

𝑘 𝑓𝑘 Δ𝑘(𝑡)

1 𝜔 = 𝑒123 (𝑡− 𝑖)2

0 𝑒23 (𝑡− 𝑖)(𝑡+ 𝑖)

−1 −𝜔 = −𝑒123 (𝑡+ 𝑖)2

Table 2. Square roots of −1 in 𝐶ℓ4,1 ∼=ℳ(4,ℂ), 𝑑 = 2

𝑘 𝑓𝑘 Δ𝑘(𝑡)

2 𝜔 = 𝑒12345 (𝑡− 𝑖)4

1 1
2 (𝑒23 + 𝑒123 − 𝑒2345 + 𝑒12345) (𝑡− 𝑖)3(𝑡+ 𝑖)

0 𝑒123 (𝑡− 𝑖)2(𝑡+ 𝑖)2

−1 1
2 (𝑒23 + 𝑒123 + 𝑒2345 − 𝑒12345) (𝑡− 𝑖)(𝑡+ 𝑖)3

−2 −𝜔 = −𝑒12345 (𝑡+ 𝑖)4
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Table 3. Square roots of −1 in 𝐶ℓ0,5 ∼=ℳ(4,ℂ), 𝑑 = 2

𝑘 𝑓𝑘 Δ𝑘(𝑡)

2 𝜔 = 𝑒12345 (𝑡− 𝑖)4

1 1
2 (𝑒3 + 𝑒12 + 𝑒45 + 𝑒12345) (𝑡− 𝑖)3(𝑡+ 𝑖)

0 𝑒45 (𝑡− 𝑖)2(𝑡+ 𝑖)2

−1 1
2 (−𝑒3 + 𝑒12 + 𝑒45 − 𝑒12345) (𝑡− 𝑖)(𝑡+ 𝑖)3

−2 −𝜔 = −𝑒12345 (𝑡+ 𝑖)4

Table 4. Square roots of −1 in 𝐶ℓ2,3 ∼=ℳ(4,ℂ), 𝑑 = 2

𝑘 𝑓𝑘 Δ𝑘(𝑡)

2 𝜔 = 𝑒12345 (𝑡− 𝑖)4

1 1
2 (𝑒3 + 𝑒134 + 𝑒235 + 𝜔) (𝑡− 𝑖)3(𝑡+ 𝑖)

0 𝑒134 (𝑡− 𝑖)2(𝑡+ 𝑖)2

−1 1
2 (−𝑒3 + 𝑒134 + 𝑒235 − 𝜔) (𝑡− 𝑖)(𝑡+ 𝑖)3

−2 −𝜔 = −𝑒12345 (𝑡+ 𝑖)4

Table 5. Square roots of −1 in 𝐶ℓ7,0 ∼=ℳ(8,ℂ), 𝑑 = 4

𝑘 𝑓𝑘 Δ𝑘(𝑡)

4 𝜔 = 𝑒1234567 (𝑡− 𝑖)8

3 1
4 (𝑒23 − 𝑒45 + 𝑒67 − 𝑒123 + 𝑒145

− 𝑒167 + 𝑒234567 +3𝜔)
(𝑡− 𝑖)7(𝑡+ 𝑖)

2 1
2 (𝑒67 − 𝑒45 − 𝑒123 + 𝜔) (𝑡− 𝑖)6(𝑡+ 𝑖)2

1 1
4 (𝑒23 − 𝑒45 + 3𝑒67 − 𝑒123 + 𝑒145

+ 𝑒167 − 𝑒234567 + 𝜔)
(𝑡− 𝑖)5(𝑡+ 𝑖)3

0 1
2 (𝑒23 − 𝑒45 + 𝑒67 − 𝑒234567) (𝑡− 𝑖)4(𝑡+ 𝑖)4

−1 1
4 (𝑒23 − 𝑒45 + 3𝑒67 + 𝑒123 − 𝑒145

− 𝑒167 − 𝑒234567 − 𝜔)
(𝑡− 𝑖)3(𝑡+ 𝑖)5

−2 1
2 (𝑒67 − 𝑒45 + 𝑒123 − 𝜔) (𝑡− 𝑖)2(𝑡+ 𝑖)6

−3 1
4 (𝑒23 − 𝑒45 + 𝑒67 + 𝑒123 − 𝑒145

+ 𝑒167 + 𝑒234567− 3𝜔)
(𝑡− 𝑖)(𝑡+ 𝑖)7

−4 −𝜔 = −𝑒1234567 (𝑡+ 𝑖)8
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Table 6. Square roots of −1 in 𝐶ℓ1,6 ∼=ℳ(8,ℂ), 𝑑 = 4

𝑘 𝑓𝑘 Δ𝑘(𝑡)

4 𝜔 = 𝑒1234567 (𝑡− 𝑖)8

3 1
4 (𝑒4 − 𝑒23 − 𝑒56 + 𝑒1237 + 𝑒147

+ 𝑒1567− 𝑒23456 +3𝜔)
(𝑡− 𝑖)7(𝑡+ 𝑖)

2 1
2 (−𝑒23 − 𝑒56 + 𝑒147 + 𝜔) (𝑡− 𝑖)6(𝑡+ 𝑖)2

1 1
4 (−𝑒4 − 𝑒23 − 3𝑒56 − 𝑒1237 + 𝑒147

+ 𝑒1567 − 𝑒23456 + 𝜔)
(𝑡− 𝑖)5(𝑡+ 𝑖)3

0 1
2 (𝑒4 + 𝑒23 + 𝑒56 + 𝑒23456) (𝑡− 𝑖)4(𝑡+ 𝑖)4

−1 1
4 (−𝑒4 − 𝑒23 − 3𝑒56 + 𝑒1237 − 𝑒147

− 𝑒1567 − 𝑒23456 − 𝜔)
(𝑡− 𝑖)3(𝑡+ 𝑖)5

−2 1
2 (−𝑒23 − 𝑒56 − 𝑒147 − 𝜔) (𝑡− 𝑖)2(𝑡+ 𝑖)6

−3 1
4 (𝑒4 − 𝑒23 − 𝑒56 − 𝑒1237 − 𝑒147

− 𝑒1567− 𝑒23456− 3𝜔)
(𝑡− 𝑖)(𝑡+ 𝑖)7

−4 −𝜔 = −𝑒1234567 (𝑡+ 𝑖)8

Table 7. Square roots of −1 in 𝐶ℓ3,4 ∼=ℳ(8,ℂ), 𝑑 = 4

𝑘 𝑓𝑘 Δ𝑘(𝑡)

4 𝜔 = 𝑒1234567 (𝑡− 𝑖)8

3 1
4 (𝑒4 + 𝑒145 + 𝑒246 + 𝑒347 − 𝑒12456

−𝑒13457−𝑒23467+3𝜔)
(𝑡− 𝑖)7(𝑡+ 𝑖)

2 1
2 (𝑒145 − 𝑒12456 − 𝑒13457 + 𝜔) (𝑡− 𝑖)6(𝑡+ 𝑖)2

1 1
4 (−𝑒4 + 𝑒145 + 𝑒246 − 𝑒347 − 3𝑒12456

− 𝑒13457− 𝑒23467 +𝜔)
(𝑡− 𝑖)5(𝑡+ 𝑖)3

0 1
2 (𝑒4 + 𝑒12456 + 𝑒13457 + 𝑒23467) (𝑡− 𝑖)4(𝑡+ 𝑖)4

−1 1
4 (−𝑒4 − 𝑒145 − 𝑒246 + 𝑒347 − 3𝑒12456

− 𝑒13457− 𝑒23467−𝜔)
(𝑡− 𝑖)3(𝑡+ 𝑖)5

−2 1
2 (−𝑒145 − 𝑒12456 − 𝑒13457 − 𝜔) (𝑡− 𝑖)2(𝑡+ 𝑖)6

−3 1
4 (𝑒4 − 𝑒145 − 𝑒246 − 𝑒347 − 𝑒12456

−𝑒13457−𝑒23467−3𝜔)
(𝑡− 𝑖)(𝑡+ 𝑖)7

−4 −𝜔 = −𝑒1234567 (𝑡+ 𝑖)8
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Table 8. Square roots of −1 in 𝐶ℓ5,2 ∼=ℳ(8,ℂ), 𝑑 = 4

𝑘 𝑓𝑘 Δ𝑘(𝑡)

4 𝜔 = 𝑒1234567 (𝑡− 𝑖)8

3 1
4 (−𝑒23 + 𝑒123 + 𝑒2346 + 𝑒2357 − 𝑒12346

−𝑒12357+𝑒234567+3𝜔)
(𝑡− 𝑖)7(𝑡+ 𝑖)

2 1
2 (𝑒123 − 𝑒12346 − 𝑒12357 + 𝜔) (𝑡− 𝑖)6(𝑡+ 𝑖)2

1 1
4 (−𝑒23 + 𝑒123 − 𝑒2346 + 𝑒2357 − 3𝑒12346

−𝑒12357−𝑒234567+𝜔)
(𝑡− 𝑖)5(𝑡+ 𝑖)3

0 1
2 (𝑒23 + 𝑒12346 + 𝑒12357 + 𝑒234567) (𝑡− 𝑖)4(𝑡+ 𝑖)4

−1 1
4 (−𝑒23 − 𝑒123 + 𝑒2346 − 𝑒2357 − 3𝑒12346

−𝑒12357−𝑒234567−𝜔)
(𝑡− 𝑖)3(𝑡+ 𝑖)5

−2 1
2 (−𝑒123 − 𝑒12346 − 𝑒12357 − 𝜔) (𝑡− 𝑖)2(𝑡+ 𝑖)6

−3 1
4 (−𝑒23 − 𝑒123 − 𝑒2346 − 𝑒2357 − 𝑒12346

−𝑒12357+𝑒234567−3𝜔)
(𝑡− 𝑖)(𝑡+ 𝑖)7

−4 −𝜔 = −𝑒1234567 (𝑡+ 𝑖)8

Appendix B. A Sample Maple Worksheet

In this appendix we show a computation of roots of −1 in 𝐶ℓ3,0 in CLIFFORD.
Although these computations certainly can be performed by hand, as shown in
Section 7, they illustrate how CLIFFORD can be used instead especially when
extending these computations to higher dimensions.23 To see the actual Maple
worksheets where these computations have been performed, see [21].
> restart:with(Clifford):with(linalg):with(asvd):
> p,q:=3,0; ##<<-- selecting signature
> B:=diag(1$p,-1$q): ##<<-- defining diagonal bilinear form
> eval(makealiases(p+q)): ##<<-- defining aliases
> clibas:=cbasis(p+q); ##assigning basis for Cl(3,0)

𝑝, 𝑞 := 3, 0

clibas := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

> data:=clidata(); ##<<-- displaying information about Cl(3,0)

data := [complex , 2, simple,
Id

2
+
e1

2
, [Id , e2 , e3 , e23 ], [Id , e23 ], [Id , e2 ]]

> MM:=matKrepr(); ##<<-- displaying default matrices to generators

Cliplus has been loaded. Definitions for type/climon and
type/clipolynom now include &C and &C[K]. Type ?cliprod for
help.

23In showing Maple display we have edited Maple output to save space. Package asvd is a

supplementary package written by the third author and built into CLIFFORD. The primary
purpose of asvd is to compute Singular Value Decomposition in Clifford algebras [1].
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MM := [e1 =

⎡
⎣ 1 0

0 −1

⎤
⎦ , e2 =

⎡
⎣ 0 1

1 0

⎤
⎦ , e3 =

⎡
⎣ 0 −e23
e23 0

⎤
⎦]

Pauli algebra representation displayed in (7.1):
> sigma[1]:=evalm(rhs(MM[1]));
> sigma[2]:=evalm(rhs(MM[2]));
> sigma[3]:=evalm(rhs(MM[3]));

𝜎1, 𝜎2, 𝜎3 :=

⎡
⎣ 0 1

1 0

⎤
⎦ ,

⎡
⎣ 0 −e23
e23 0

⎤
⎦ ,

⎡
⎣ 1 0

0 −1

⎤
⎦

We show how we represent the imaginary unit 𝑖 in the field ℂ and the diagonal
matrix diag(𝑖, 𝑖) :
> ii:=e23; ##<<-- complex imaginary unit
> II:=diag(ii,ii); ##<<-- diagonal matrix diag(i,i)

ii := e23

II :=

⎡
⎣ e23 0

0 e23

⎤
⎦

We compute matrices 𝑚1,𝑚2, . . . ,𝑚8 representing each basis element in 𝐶ℓ3,0
isomorphic with ℂ(2). Note that in our representation element 𝑒23 in 𝐶ℓ3,0 is used
to represent the imaginary unit 𝑖.
> for i from 1 to nops(clibas) do

lprint(‘The basis element‘,clibas[i],‘is represented by the following
matrix:‘);
M[i]:=subs(Id=1,matKrepr(clibas[i])) od;

‘The basis element‘, Id, ‘is represented by the following matrix:‘

𝑀1 :=

⎡
⎣ 1 0

0 1

⎤
⎦

‘The basis element‘, e1, ‘is represented by the following matrix:‘

𝑀2 :=

⎡
⎣ 1 0

0 −1

⎤
⎦

‘The basis element‘, e2, ‘is represented by the following matrix:‘

𝑀3 :=

⎡
⎣ 0 1

1 0

⎤
⎦

‘The basis element‘, e3, ‘is represented by the following matrix:‘

𝑀4 :=

⎡
⎣ 0 −e23
e23 0

⎤
⎦
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‘The basis element‘, e12, ‘is represented by the following matrix:‘

𝑀5 :=

⎡
⎣ 0 1

−1 0

⎤
⎦

‘The basis element‘, e13, ‘is represented by the following matrix:‘

𝑀6 :=

⎡
⎣ 0 −e23

−e23 0

⎤
⎦

‘The basis element‘, e23, ‘is represented by the following matrix:‘

𝑀7 :=

⎡
⎣ e23 0

0 −e23

⎤
⎦

‘The basis element‘, e123, ‘is represented by the following matrix:‘

𝑀8 :=

⎡
⎣ e23 0

0 e23

⎤
⎦

We will use the procedure phi from the asvd package which gives an isomor-
phism from ℂ(2) to 𝐶ℓ3,0. This way we can find the image in 𝐶ℓ3,0 of any complex
2 × 2 complex matrix 𝐴. Knowing the image of each matrix 𝑚1,𝑚2, . . . ,𝑚8 in
terms of the Clifford polynomials in 𝐶ℓ3,0, we can easily find the image of 𝐴 in
our default spinor representation of 𝐶ℓ3,0 which is built into CLIFFORD.

Procedure Centralizer computes a centralizer of 𝑓 with respect to the Clif-
ford basis 𝐿:
> Centralizer:=proc(f,L) local c,LL,m,vars,i,eq,sol;

m:=add(c[i]*L[i],i=1..nops(L));
vars:=[seq(c[i],i=1..nops(L))];
eq:=clicollect(cmul(f,m)-cmul(m,f));
if eq=0 then return L end if:
sol:=op(clisolve(eq,vars));
m:=subs(sol,m);
m:=collect(m,vars);
return sort([coeffs(m,vars)],bygrade);
end proc:

Procedures Scal and Spec compute the scalar and the pseudoscalar parts of 𝑓 .
> Scal:=proc(f) local p: return scalarpart(f); end proc:
> Spec:=proc(f) local N; global p,q;

N:=p+q:
return coeff(vectorpart(f,N),op(cbasis(N,N)));
end proc:

The matrix idempotents in ℂ(2) displayed in (7.2) are as follows:
> d:=1:Eps[1]:=sigma[1] &cm sigma[1];
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> Eps[0]:=evalm(1/2*(1+sigma[3]));
> Eps[-1]:=diag(0,0);

Eps1, Eps0, Eps−1 :=

⎡
⎣ 1 0

0 1

⎤
⎦ ,

⎡
⎣ 1 0

0 0

⎤
⎦ ,

⎡
⎣ 0 0

0 0

⎤
⎦

This function ff computes matrix square root of −1 corresponding to the matrix
idempotent 𝑒𝑝𝑠:
> ff:=eps->evalm(II &cm (2*eps-1));

ff := eps → evalm(II &cm (2 eps − 1))

We compute matrix square roots of −1 which correspond to the idempotents
𝐸𝑝𝑠1, 𝐸𝑝𝑠0, 𝐸𝑝𝑠−1, and their characteristic and minimal polynomials. Note that
in Maple the default imaginary unit is denoted by 𝐼.
> F[1]:=ff(Eps[1]); ##<<-- this square root of -1 corresponds to Eps[1]

Delta[1]:=charpoly(subs(e23=I,evalm(F[1])),t);
Mu[1]:=minpoly(subs(e23=I,evalm(F[1])),t);

𝐹1 :=

⎡
⎣ e23 0

0 e23

⎤
⎦ , Δ1 := (𝑡− 𝐼)2, 𝑀1 := 𝑡− 𝐼

> F[0]:=ff(Eps[0]); ##<<-- this square root of -1 corresponds to Eps[0]
Delta[0]:=charpoly(subs(e23=I,evalm(F[0])),t);
Mu[0]:=minpoly(subs(e23=I,evalm(F[0])),t);

𝐹0 :=

⎡
⎣ e23 0

0 −e23

⎤
⎦ , Δ0 := (𝑡− 𝐼) (𝑡+ 𝐼), 𝑀0 := 1 + 𝑡2

> F[-1]:=ff(Eps[-1]); ##<<-- this square root of -1 corresponds to Eps[-1]
Delta[-1]:=charpoly(subs(e23=I,evalm(F[-1])),t);
Mu[-1]:=minpoly(subs(e23=I,evalm(F[-1])),t);

𝐹−1 :=

⎡
⎣ −e23 0

0 −e23

⎤
⎦ , Δ−1 := (𝑡+ 𝐼)2, 𝑀−1 := 𝑡+ 𝐼

Now, we can find square roots of −1 in 𝐶ℓ3,0 which correspond to the matrix
square roots 𝐹−1, 𝐹0, 𝐹1 via the isomorphism 𝜙 : 𝐶ℓ3,0 → ℂ(2) realized with the
procedure phi.

First, we let reprI denote element in 𝐶ℓ3,0 which represents the diagonal
(2𝑑) × (2𝑑) with 𝐼 = 𝑖 on the diagonal where 𝑖2 = −1. This element will replace
the imaginary unit 𝐼 in the minimal polynomials.
> reprI:=phi(diag(I$(2*d)),M);

reprI := e123
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Now, we compute the corresponding square roots 𝑓1, 𝑓0, 𝑓−1 in 𝐶ℓ3,0.
> f[1]:=phi(F[1],M); ##<<-- element in Cl(3,0) corresponding to F[1]

cmul(f[1],f[1]); ##<<-- checking that this element is a root of -1
Mu[1]; ##<<-- recalling minpoly of matrix F[1]
subs(e23=I,evalm(subs(t=evalm(F[1]),Mu[1]))); ##<<-- F[1] in Mu[1]
mu[1]:=subs(I=reprI,Mu[1]); ##<<-- defining minpoly of f[1]
cmul(f[1]-reprI,Id); ##<<-- verifying that f[1] satisfies mu[1]

𝑓1 := e123

−Id , 𝑡− 𝐼,

⎡
⎣ 0 0

0 0

⎤
⎦

𝜇1 := 𝑡− e123 , 0

> f[0]:=phi(F[0],M); ##<<-- element in Cl(3,0) corresponding to F[0]
cmul(f[0],f[0]); ##<<-- checking that this element is a root of -1
Mu[0]; ##<<-- recalling minpoly of matrix F[0]
subs(e23=I,evalm(subs(t=evalm(F[0]),Mu[0]))); ##<<-- F[0] in Mu[0]
mu[0]:=subs(I=reprI,Mu[0]); ##<<-- defining minpoly of f[0]
cmul(f[0]-reprI,f[0]+reprI); ##<<-- f[0] satisfies mu[0]

𝑓0 := e23

−Id , 1 + 𝑡2,

⎡
⎣ 0 0

0 0

⎤
⎦

𝜇0 := 1 + 𝑡2, 0

> f[-1]:=phi(F[-1],M); ##<<-- element in Cl(3,0) corresponding to F[-1]
cmul(f[-1],f[-1]); ##<<-- checking that this element is a root of -1
Mu[-1]; ##<<-- recalling minpoly of matrix F[-1]
subs(e23=I,evalm(subs(t=evalm(F[-1]),Mu[-1]))); ##<<-- F[-1] in Mu[-1]
mu[-1]:=subs(I=reprI,Mu[-1]); ##<<-- defining minpoly of f[-1]
cmul(f[-1]+reprI,Id); ##<<-- f[-1] satisfies mu[-1]

𝑓−1 := −e123

−Id , 𝑡+ 𝐼,

⎡
⎣ 0 0

0 0

⎤
⎦

𝜇−1 := 𝑡+ e123 , 0

Functions RdimCentralizer and RdimConjugClass of 𝑑 and 𝑘 compute the
real dimension of the centralizer Cent(𝑓) and the conjugacy class of 𝑓 (see (7.4)).
> RdimCentralizer:=(d,k)->2*((d+k)ˆ2+(d-k)ˆ2); ##<<-- from the theory
> RdimConjugClass:=(d,k)->4*(dˆ2-kˆ2); ##<<-- from the theory

RdimCentralizer := (𝑑, 𝑘) → 2 (𝑑+ 𝑘)2 + 2 (𝑑− 𝑘)2

RdimConjugClass := (𝑑, 𝑘) → 4 𝑑2 − 4 𝑘2
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Now, we compute the centralizers of the roots and use notation 𝑑, 𝑘, 𝑛1, 𝑛2 dis-
played in Examples.
Case 𝑘 = 1 :
> d:=1:k:=1:n1:=d+k;n2:=d-k;

A1:=diag(I$n1,-I$n2); ##<<-- this is the first matrix root of -1

n1 := 2, n2 := 0, A1 :=

⎡
⎣ 𝐼 0

0 𝐼

⎤
⎦

> f[1]:=phi(A1,M); cmul(f[1],f[1]); Scal(f[1]), Spec(f[1]);

𝑓1 := e123 , −Id , 0, 1

> LL1:=Centralizer(f[1],clibas); ##<<-- centralizer of f[1]
dimCentralizer:=nops(LL1); ##<<-- real dimension of centralizer of f[1]
RdimCentralizer(d,k); ##<<-- dimension of centralizer of f[1] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<-- checking
equality

LL1 := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]
dimCentralizer := 8, 8, true

Case 𝑘 = 0 :
> d:=1:k:=0:n1:=d+k;n2:=d-k;

A0:=diag(I$n1,-I$n2); ##<<-- this is the second matrix root of -1

n1 := 1, n2 := 1, A0 :=

⎡
⎣ 𝐼 0

0 −𝐼

⎤
⎦

> f[0]:=phi(A0,M); cmul(f[0],f[0]); Scal(f[0]), Spec(f[0]);

𝑓0 := e23 , −Id , 0, 0

> LL0:=Centralizer(f[0],clibas); ##<<-- centralizer of f[0]
dimCentralizer:=nops(LL0); ##<<-- real dimension of centralizer of f[0]
RdimCentralizer(d,k); ##<<-- dimension of centralizer of f[0] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<-- checking equality

LL0 := [Id , e1 , e23 , e123 ]
dimCentralizer := 4, 4, true

Case 𝑘 = −1 :
> d:=1:k:=-1:n1:=d+k;n2:=d-k;

Am1:=diag(I$n1,-I$n2); ##<<-- this is the third matrix root of -1

n1 := 0, n2 := 2, Am1 :=

⎡
⎣ −𝐼 0

0 −𝐼

⎤
⎦

> f[-1]:=phi(Am1,M); cmul(f[-1],f[-1]); Scal(f[-1]), Spec(f[-1]);

𝑓−1 := −e123 , −Id , 0, −1
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> LLm1:=Centralizer(f[-1],clibas); ##<<-- centralizer of f[-1]
dimCentralizer:=nops(LLm1); ##<<-- real dimension of centralizer of f[-1]
RdimCentralizer(d,k); ##<<--dimension of centralizer of f[-1] from theory
evalb(dimCentralizer=RdimCentralizer(d,k)); ##<<-- checking equality

LLm1 := [Id , e1 , e2 , e3 , e12 , e13 , e23 , e123 ]

dimCentralizer := 8, 8, true

We summarize roots of −1 in 𝐶ℓ3,0:
> ’F[1]’=evalm(F[1]); ##<<-- square root of -1 in C(2)

Mu[1]; ##<<-- minpoly of matrix F[1]
’f[1]’=f[1]; ##<<-- square root of -1 in Cl(3,0)
mu[1]; ##<<-- minpoly of element f[1]

𝐹1 =

⎡
⎣ e23 0

0 e23

⎤
⎦ , 𝑡− 𝐼

𝑓1 = e123 , 𝑡− e123

> ’F[0]’=evalm(F[0]); ##<<-- square root of -1 in C(2)
Mu[0]; ##<<-- minpoly of matrix F[0]
’f[0]’=f[0]; ##<<-- square root of -1 in Cl(3,0)
mu[0]; ##<<-- minpoly of element f[0]

𝐹0 =

⎡
⎣ e23 0

0 −e23

⎤
⎦ , 1 + 𝑡2

𝑓0 = e23 , 1 + 𝑡2

> ’F[-1]’=evalm(F[-1]); ##<<-- square root of -1 in C(2)
Mu[-1]; ##<<-- minpoly of matrix F[-1]
’f[-1]’=f[-1]; ##<<-- square root of -1 in Cl(3,0)
mu[-1]; ##<<-- minpoly of element f[-1]

𝐹−1 =

⎡
⎣ −e23 0

0 −e23

⎤
⎦ , 𝑡+ 𝐼

𝑓−1 = −e123 , 𝑡+ e123

Finaly, we verify that roots 𝑓1 and 𝑓−1 are related via the reversion:
> reversion(f[1])=f[-1]; evalb(%);

−e123 = −e123 , true

References

[1] R. Abl̷amowicz. Computations with Clifford and Grassmann algebras. Advances in
Applied Clifford Algebras, 19(3–4):499–545, 2009.



7. Square Roots of −1 in Real Clifford Algebras 151

[2] R. Abl̷amowicz and B. Fauser. CLIFFORD with bigebra – a Maple package for
computations with Clifford and Grassmann algebras. Available at http://math.

tntech.edu/rafal/, c⃝1996–2012.

[3] R. Abl̷amowicz, B. Fauser, K. Podlaski, and J. Rembieliński. Idempotents of Clifford
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