
Quaternion and Clifford–Fourier Transforms and Wavelets

Trends in Mathematics, 15–39
c⃝ 2013 Springer Basel

2 The Orthogonal 2D Planes Split of
Quaternions and Steerable Quaternion
Fourier Transformations

Eckhard Hitzer and Stephen J. Sangwine

Abstract. The two-sided quaternionic Fourier transformation (QFT) was in-
troduced in [2] for the analysis of 2D linear time-invariant partial-differential
systems. In further theoretical investigations [4, 5] a special split of quater-
nions was introduced, then called ±split. In the current chapter we analyze
this split further, interpret it geometrically as an orthogonal 2D planes split
(OPS), and generalize it to a freely steerable split of ℍ into two orthogonal
2D analysis planes. The new general form of the OPS split allows us to find
new geometric interpretations for the action of the QFT on the signal. The
second major result of this work is a variety of new steerable forms of the
QFT, their geometric interpretation, and for each form, OPS split theorems,
which allow fast and efficient numerical implementation with standard FFT
software.
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1. Introduction

The two-sided quaternionic Fourier transformation (QFT) was introduced in [2] for
the analysis of 2D linear time-invariant partial-differential systems. Subsequently
it has been applied in many fields, including colour image processing [8]. This led
to further theoretical investigations [4, 5], where a special split of quaternions was
introduced, then called the ±split. An interesting physical consequence was that
this split resulted in a left and right travelling multivector wave packet analysis,
when generalizing the QFT to a full spacetime Fourier transform (SFT). In the
current chapter we investigate this split further, interpret it geometrically and
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generalize it to a freely steerable1 split of ℍ into two orthogonal 2D analysis planes.
For reasons to become obvious we prefer to call it from now on the orthogonal 2D
planes split (OPS).

The general form of the OPS split allows us to find new geometric interpre-
tations for the action of the QFT on the signal. The second major result of this
work is a variety of new forms of the QFT, their detailed geometric interpretation,
and for each form, an OPS split theorem, which allows fast and efficient numerical
implementation with standard FFT software. A preliminary formal investigation
of these new OPS-QFTs can be found in [6].

The chapter is organized as follows. We first introduce in Section 2 several
properties of quaternions together with a brief review of the ±-split of [4, 5].
In Section 3 we generalize this split to a freely steerable orthogonal 2D planes
split (OPS) of quaternions ℍ. In Section 4 we use the general OPS of Section 3 to
generalize the two-sided QFT to a new two-sided QFT with freely steerable analysis
planes, complete with a detailed local geometric transformation interpretation. The
geometric interpretation of the OPS in Section 3 further allows the construction of
a new type of steerable QFT with a direct phase angle interpretation. In Section 5
we finally investigate new steerable QFTs involving quaternion conjugation. Their
local geometric interpretation crucially relies on the notion of 4D rotary reflections.

2. Orthogonal Planes Split of Quaternions with
Two Orthonormal Pure Unit Quaternions

Gauss, Rodrigues and Hamilton’s four-dimensional (4D) quaternion algebra ℍ is
defined over ℝ with three imaginary units:

𝒊𝒋 = −𝒋𝒊 = 𝒌, 𝒋𝒌 = −𝒌𝒋 = 𝒊, 𝒌𝒊 = −𝒊𝒌 = 𝒋,

𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1. (2.1)

Every quaternion can be written explicitly as

𝑞 = 𝑞𝑟 + 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌 ∈ ℍ, 𝑞𝑟, 𝑞𝑖, 𝑞𝑗, 𝑞𝑘 ∈ ℝ, (2.2)

and has a quaternion conjugate (equivalent2 to Clifford conjugation in 𝐶ℓ+3,0 and

𝐶ℓ0,2)

𝑞 = 𝑞𝑟 − 𝑞𝑖𝒊− 𝑞𝑗𝒋 − 𝑞𝑘𝒌, 𝑝𝑞 = 𝑞 𝑝, (2.3)

which leaves the scalar part 𝑞𝑟 unchanged. This leads to the norm of 𝑞 ∈ ℍ

∣𝑞∣ =
√

𝑞𝑞 =
√

𝑞2𝑟 + 𝑞2𝑖 + 𝑞2𝑗 + 𝑞2𝑘, ∣𝑝𝑞∣ = ∣𝑝∣ ∣𝑞∣ . (2.4)

The part V(𝑞) = 𝑞 − 𝑞𝑟 = 1
2 (𝑞 − 𝑞) = 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌 is called a pure quaternion,

and it squares to the negative number −(𝑞2𝑖 +𝑞2𝑗 +𝑞2𝑘). Every unit quaternion (i.e.,

1Compare Section 3.4, in particular Theorem 3.5.
2This may be important in generalisations of the QFT, such as to a space-time Fourier transform
in [4], or a general two-sided Clifford–Fourier transform in [7].
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∣𝑞∣ = 1) can be written as:

𝑞 = 𝑞𝑟 + 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌 = 𝑞𝑟 +
√

𝑞2𝑖 + 𝑞2𝑗 + 𝑞2𝑘 𝝁(𝑞)

= cos𝛼+ 𝝁(𝑞) sin𝛼 = 𝑒𝛼𝝁(𝑞),
(2.5)

where

cos𝛼 = 𝑞𝑟, sin𝛼 =
√

𝑞2𝑖 + 𝑞2𝑗 + 𝑞2𝑘,

𝝁(𝑞) =
V(𝑞)

∣𝑞∣ =
𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌√

𝑞2𝑖 + 𝑞2𝑗 + 𝑞2𝑘

, and 𝝁(𝑞)
2
= −1. (2.6)

The inverse of a non-zero quaternion is

𝑞−1 =
𝑞

∣𝑞∣2 =
𝑞

𝑞𝑞
. (2.7)

The scalar part of a quaternion is defined as

S(𝑞) = 𝑞𝑟 =
1

2
(𝑞 + 𝑞), (2.8)

with symmetries

S(𝑝𝑞) = S(𝑞𝑝) = 𝑝𝑟𝑞𝑟 − 𝑝𝑖𝑞𝑖 − 𝑝𝑗𝑞𝑗 − 𝑝𝑘𝑞𝑘, S(𝑞) = S(𝑞) , ∀𝑝, 𝑞 ∈ ℍ, (2.9)

and linearity

S(𝛼𝑝+ 𝛽𝑞) = 𝛼 S(𝑝) + 𝛽 S(𝑞) = 𝛼𝑝𝑟 + 𝛽𝑞𝑟 , ∀𝑝, 𝑞 ∈ ℍ, 𝛼, 𝛽 ∈ ℝ. (2.10)

The scalar part and the quaternion conjugate allow the definition of the ℝ4 inner
product3 of two quaternions 𝑝, 𝑞 as

S(𝑝𝑞) = 𝑝𝑟𝑞𝑟 + 𝑝𝑖𝑞𝑖 + 𝑝𝑗𝑞𝑗 + 𝑝𝑘𝑞𝑘 ∈ ℝ. (2.11)

Definition 2.1 (Orthogonality of quaternions). Two quaternions 𝑝, 𝑞 ∈ ℍ are or-
thogonal 𝑝 ⊥ 𝑞, if and only if the inner product S(𝑝𝑞) = 0.

The orthogonal4 2D planes split (OPS) of quaternions with respect to the
orthonormal pure unit quaternions 𝒊, 𝒋 [4, 5] is defined by

𝑞 = 𝑞+ + 𝑞−, 𝑞± =
1

2
(𝑞 ± 𝒊𝑞𝒋). (2.12)

Explicitly in real components 𝑞𝑟, 𝑞𝑖, 𝑞𝑗 , 𝑞𝑘 ∈ ℝ using (2.1) we get

𝑞± = {𝑞𝑟 ± 𝑞𝑘 + 𝒊(𝑞𝑖 ∓ 𝑞𝑗)}1± 𝒌

2
=

1± 𝒌

2
{𝑞𝑟 ± 𝑞𝑘 + 𝒋(𝑞𝑗 ∓ 𝑞𝑖)}. (2.13)

This leads to the following new Pythagorean modulus identity [5]

Lemma 2.2 (Modulus identity). For 𝑞 ∈ ℍ

∣𝑞∣2 = ∣𝑞−∣2 + ∣𝑞+∣2 . (2.14)

3Note that we do not use the notation 𝑝 ⋅ 𝑞, which is unconventional for full quaternions.
4Compare Lemma 2.3.
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Lemma 2.3 (Orthogonality of OPS split parts). Given any two quaternions 𝑝, 𝑞 ∈ ℍ

and applying the OPS of (2.12) the resulting parts are orthogonal

S(𝑝+𝑞−) = 0, S(𝑝−𝑞+) = 0, (2.15)

i.e., 𝑝+ ⊥ 𝑞− and 𝑝− ⊥ 𝑞+.

In Lemma 2.3 (proved in [5]) the second identity follows from the first by
S(𝑥) = S(𝑥) , ∀𝑥 ∈ ℍ, and 𝑝−𝑞+ = 𝑞+𝑝−.

It is evident, that instead of 𝒊, 𝒋, any pair of orthonormal pure quaternions
can be used to produce an analogous split. This is a first indication, that the OPS of
(2.12) is in fact steerable. We observe, that 𝒊𝑞𝒋 = 𝑞+−𝑞−, i.e., under the map 𝒊( )𝒋
the 𝑞+ part is invariant, the 𝑞− part changes sign. Both parts are according to (2.13)
two-dimensional, and by Lemma 2.3 they span two completely orthogonal planes.
The 𝑞+-plane is spanned by the orthogonal quaternions {𝒊 − 𝒋, 1 + 𝒊𝒋 = 1 + 𝒌},
whereas the 𝑞−-plane is, e.g., spanned by {𝒊+ 𝒋, 1− 𝒊𝒋 = 1− 𝒌}, i.e., we have the
two 2D subspace bases

𝑞+-basis: {𝒊− 𝒋, 1 + 𝒊𝒋 = 1 + 𝒌}, 𝑞−-basis: {𝒊+ 𝒋, 1− 𝒊𝒋 = 1− 𝒌}. (2.16)

Note that all basis vectors of (2.16)

{𝒊− 𝒋, 1 + 𝒊𝒋, 𝒊+ 𝒋, 1− 𝒊𝒋} (2.17)

together form an orthogonal basis of ℍ interpreted as ℝ4.
The map 𝒊( )𝒋 rotates the 𝑞−-plane by 180∘ around the 2D 𝑞+ axis plane. Note

that in agreement with its geometric interpretation, the map 𝒊( )𝒋 is an involution,
because applying it twice leads to identity

𝒊(𝒊𝑞𝒋)𝒋 = 𝒊2𝑞𝒋2 = (−1)2𝑞 = 𝑞. (2.18)

3. General Orthogonal 2D Planes Split

We will study generalizations of the OPS split by replacing 𝒊, 𝒋 by arbitrary unit
quaternions 𝑓, 𝑔. Even with this generalization, the map 𝑓( )𝑔 continues to be an
involution, because 𝑓2𝑞𝑔2 = (−1)2𝑞 = 𝑞. For clarity we study the cases 𝑓 ∕= ±𝑔,
and 𝑓 = 𝑔 separately, though they have a lot in common, and do not always need
to be distinguished in specific applications.

3.1. Orthogonal 2D Planes Split Using Two Linearly Independent
Pure Unit Quaternions

Our result is now, that all these properties hold, even if in the above considerations
the pair 𝒊, 𝒋 is replaced by an arbitrary pair of linearly independent nonorthogonal
pure quaternions 𝑓, 𝑔, 𝑓2 = 𝑔2 = −1, 𝑓 ∕= ±𝑔. The OPS is then re-defined with
respect to the linearly independent pure unit quaternions 𝑓, 𝑔 as

𝑞± =
1

2
(𝑞 ± 𝑓𝑞𝑔). (3.1)
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Equation (2.12) is a special case with 𝑓 = 𝒊, 𝑔 = 𝒋. We observe from (3.1), that
𝑓𝑞𝑔 = 𝑞+ − 𝑞−, i.e., under the map 𝑓( )𝑔 the 𝑞+ part is invariant, but the 𝑞− part
changes sign

𝑓𝑞±𝑔 =
1

2
(𝑓𝑞𝑔 ± 𝑓2𝑞𝑔2) =

1

2
(𝑓𝑞𝑔 ± 𝑞) = ±1

2
(𝑞 ± 𝑓𝑞𝑔) = ±𝑞±. (3.2)

We now show that even for (3.1) both parts are two-dimensional, and span two
completely orthogonal planes. The 𝑞+-plane is spanned

5 by the orthogonal pair of
quaternions {𝑓 − 𝑔, 1 + 𝑓𝑔}:

S
(
(𝑓 − 𝑔)(1 + 𝑓𝑔)

)
= S((𝑓 − 𝑔)(1 + (−𝑔)(−𝑓)))

= S
(
𝑓 + 𝑓𝑔𝑓 − 𝑔 − 𝑔2𝑓

) (2.9)
= S

(
𝑓 + 𝑓2𝑔 − 𝑔 + 𝑓

)
= 2S(𝑓 − 𝑔) = 0, (3.3)

whereas the 𝑞−-plane is, e.g., spanned by {𝑓 + 𝑔, 1 − 𝑓𝑔}. The quaternions 𝑓 +
𝑔, 1− 𝑓𝑔 can be proved to be mutually orthogonal by simply replacing 𝑔 → −𝑔 in
(3.3). Note that we have

𝑓(𝑓 − 𝑔)𝑔 = 𝑓2𝑔 − 𝑓𝑔2 = −𝑔 + 𝑓 = 𝑓 − 𝑔,

𝑓(1 + 𝑓𝑔)𝑔 = 𝑓𝑔 + 𝑓2𝑔2 = 𝑓𝑔 + 1 = 1 + 𝑓𝑔,
(3.4)

as well as
𝑓(𝑓 + 𝑔)𝑔 = 𝑓2𝑔 + 𝑓𝑔2 = −𝑔 − 𝑓 = −(𝑓 + 𝑔),

𝑓(1− 𝑓𝑔)𝑔 = 𝑓𝑔 − 𝑓2𝑔2 = 𝑓𝑔 − 1 = −(1− 𝑓𝑔).
(3.5)

We now want to generalize Lemma 2.3.

Lemma 3.1 (Orthogonality of two OPS planes). Given any two quaternions 𝑞, 𝑝 ∈
ℍ and applying the OPS (3.1) with respect to two linearly independent pure unit
quaternions 𝑓, 𝑔 we get zero for the scalar part of the mixed products

S(𝑝+𝑞−) = 0, S(𝑝−𝑞+) = 0. (3.6)

We prove the first identity, the second follows from S(𝑥) = S(𝑥).

S(𝑝+𝑞−) =
1

4
S((𝑝+ 𝑓𝑝𝑔)(𝑞 − 𝑔𝑞𝑓)) =

1

4
S(𝑝𝑞 − 𝑓𝑝𝑔𝑔𝑞𝑓 + 𝑓𝑝𝑔𝑞 − 𝑝𝑔𝑞𝑓)

(2.10), (2.9)
=

1

4
S(𝑝𝑞 − 𝑝𝑞 + 𝑝𝑔𝑞𝑓 − 𝑝𝑔𝑞𝑓) = 0. (3.7)

Thus the set

{𝑓 − 𝑔, 1 + 𝑓𝑔, 𝑓 + 𝑔, 1− 𝑓𝑔} (3.8)

forms a 4D orthogonal basis of ℍ interpreted by (2.11) as ℝ4, where we have for
the orthogonal 2D planes the subspace bases:

𝑞+-basis: {𝑓 − 𝑔, 1 + 𝑓𝑔}, 𝑞−-basis: {𝑓 + 𝑔, 1− 𝑓𝑔}. (3.9)

5For 𝑓 = 𝒊, 𝑔 = 𝒋 this is in agreement with (2.13) and (2.16)!
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We can therefore use the following representation for every 𝑞 ∈ ℍ by means of four
real coefficients 𝑞1, 𝑞2, 𝑞3, 𝑞4 ∈ ℝ

𝑞 = 𝑞1(1 + 𝑓𝑔) + 𝑞2(𝑓 − 𝑔) + 𝑞3(1 − 𝑓𝑔) + 𝑞4(𝑓 + 𝑔), (3.10)

where

𝑞1 = S
(
𝑞(1 + 𝑓𝑔)−1

)
, 𝑞2 = S

(
𝑞(𝑓 − 𝑔)−1

)
,

𝑞3 = S
(
𝑞(1 − 𝑓𝑔)−1

)
, 𝑞4 = S

(
𝑞(𝑓 + 𝑔)−1

)
.

(3.11)

As an example we have for 𝑓 = 𝒊, 𝑔 = 𝒋 according to (2.13) the coefficients for the
decomposition with respect to the orthogonal basis (3.8)

𝑞1 =
1

2
(𝑞𝑟 + 𝑞𝑘), 𝑞2 =

1

2
(𝑞𝑖 − 𝑞𝑗), 𝑞3 =

1

2
(𝑞𝑟 − 𝑞𝑘), 𝑞4 =

1

2
(𝑞𝑖 + 𝑞𝑗). (3.12)

Moreover, using

𝑓 − 𝑔 = 𝑓(1 + 𝑓𝑔) = (1 + 𝑓𝑔)(−𝑔), 𝑓 + 𝑔 = 𝑓(1− 𝑓𝑔) = (1− 𝑓𝑔)𝑔, (3.13)

we have the following left and right factoring properties

𝑞+ = 𝑞1(1 + 𝑓𝑔) + 𝑞2(𝑓 − 𝑔) = (𝑞1 + 𝑞2𝑓)(1 + 𝑓𝑔)
(3.14)

= (1 + 𝑓𝑔)(𝑞1 − 𝑞2𝑔),

𝑞− = 𝑞3(1− 𝑓𝑔) + 𝑞4(𝑓 + 𝑔) = (𝑞3 + 𝑞4𝑓)(1− 𝑓𝑔)
(3.15)

= (1− 𝑓𝑔)(𝑞3 + 𝑞4𝑔).

Equations (3.4) and (3.5) further show that the map 𝑓( )𝑔 rotates the 𝑞−-
plane by 180∘ around the 𝑞+ axis plane. We found that our interpretation of the
map 𝑓( )𝑔 is in perfect agreement with Coxeter’s notion of half-turn in [1]. This
opens the way for new types of QFTs, where the pair of square roots of −1 involved
does not necessarily need to be orthogonal.

Before suggesting a generalization of the QFT, we will establish a new set of
very useful algebraic identities. Based on (3.14) and (3.15) we get for 𝛼, 𝛽 ∈ ℝ

𝑒𝛼𝑓𝑞𝑒𝛽𝑔 = 𝑒𝛼𝑓𝑞+𝑒𝛽𝑔 + 𝑒𝛼𝑓𝑞−𝑒𝛽𝑔,

𝑒𝛼𝑓𝑞+𝑒𝛽𝑔 = (𝑞1 + 𝑞2𝑓)𝑒
𝛼𝑓 (1 + 𝑓𝑔)𝑒𝛽𝑔 = 𝑒𝛼𝑓 (1 + 𝑓𝑔)𝑒𝛽𝑔(𝑞1 − 𝑞2𝑔), (3.16)

𝑒𝛼𝑓𝑞−𝑒𝛽𝑔 = (𝑞3 + 𝑞4𝑓)𝑒
𝛼𝑓 (1− 𝑓𝑔)𝑒𝛽𝑔 = 𝑒𝛼𝑓 (1− 𝑓𝑔)𝑒𝛽𝑔(𝑞3 + 𝑞4𝑔).

Using (3.14) again we obtain

𝑒𝛼𝑓 (1 + 𝑓𝑔) = (cos𝛼+ 𝑓 sin𝛼)(1 + 𝑓𝑔)

(3.14)
= (1 + 𝑓𝑔)(cos𝛼− 𝑔 sin𝛼) = (1 + 𝑓𝑔)𝑒−𝛼𝑔,

(3.17)

where we set 𝑞1 = cos𝛼, 𝑞2 = sin𝛼 for applying (3.14). Replacing in (3.17)−𝛼→ 𝛽
we get

𝑒−𝛽𝑓(1 + 𝑓𝑔) = (1 + 𝑓𝑔)𝑒𝛽𝑔, (3.18)
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Furthermore, replacing in (3.17) 𝑔 → −𝑔 and subsequently 𝛼→ 𝛽 we get

𝑒𝛼𝑓 (1− 𝑓𝑔) = (1 − 𝑓𝑔)𝑒𝛼𝑔,

𝑒𝛽𝑓(1− 𝑓𝑔) = (1 − 𝑓𝑔)𝑒𝛽𝑔.
(3.19)

Applying (3.14), (3.16), (3.17) and (3.18) we can rewrite

𝑒𝛼𝑓𝑞+𝑒𝛽𝑔
(3.16)
= (𝑞1 + 𝑞2𝑓)𝑒

𝛼𝑓 (1 + 𝑓𝑔)𝑒𝛽𝑔
(3.17)
= (𝑞1 + 𝑞2𝑓)(1 + 𝑓𝑔)𝑒(𝛽−𝛼)𝑔

(3.14)
= 𝑞+𝑒(𝛽−𝛼)𝑔, (3.20)

or equivalently as

𝑒𝛼𝑓𝑞+𝑒𝛽𝑔
(3.16)
= 𝑒𝛼𝑓 (1 + 𝑓𝑔)𝑒𝛽𝑔(𝑞1 − 𝑞2𝑔)

(3.18)
= 𝑒(𝛼−𝛽)𝑓(1 + 𝑓𝑔)(𝑞1 − 𝑞2𝑔)

(3.14)
= 𝑒(𝛼−𝛽)𝑓𝑞+. (3.21)

In the same way by changing 𝑔 → −𝑔, 𝛽 → −𝛽 in (3.20) and (3.21) we can rewrite

𝑒𝛼𝑓𝑞−𝑒𝛽𝑔 = 𝑒(𝛼+𝛽)𝑓𝑞− = 𝑞−𝑒(𝛼+𝛽)𝑔. (3.22)

The result is therefore

𝑒𝛼𝑓𝑞±𝑒𝛽𝑔 = 𝑞±𝑒(𝛽∓𝛼)𝑔 = 𝑒(𝛼∓𝛽)𝑓𝑞±. (3.23)

3.2. Orthogonal 2D Planes Split Using One Pure Unit Quaternion

We now treat the case for 𝑔 = 𝑓, 𝑓2 = −1. We then have the map 𝑓( )𝑓 , and the
OPS split with respect to 𝑓 ∈ ℍ, 𝑓2 = −1,

𝑞± =
1

2
(𝑞 ± 𝑓𝑞𝑓). (3.24)

The pure quaternion 𝒊 can be rotated by 𝑅 = 𝒊(𝒊+ 𝑓), see (3.27), into the quater-
nion unit 𝑓 and back. Therefore studying the map 𝒊( )𝒊 is, up to the constant
rotation between 𝒊 and 𝑓 , the same as studying 𝑓( )𝑓 . This gives

𝒊𝑞𝒊 = 𝒊(𝑞𝑟 + 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌)𝒊 = −𝑞𝑟 − 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌. (3.25)

The OPS with respect to 𝑓 = 𝑔 = 𝒊 gives

𝑞± =
1

2
(𝑞 ± 𝒊𝑞𝒊), 𝑞+ = 𝑞𝑗𝒋 + 𝑞𝑘𝒌 = (𝑞𝑗 + 𝑞𝑘𝒊)𝒋, 𝑞− = 𝑞𝑟 + 𝑞𝑖𝒊, (3.26)

where the 𝑞+-plane is two-dimensional and manifestly orthogonal to the 2D 𝑞−-
plane. This form (3.26) of the OPS is therefore identical to the quaternionic sim-
plex/perplex split of [3].

For 𝑔 = 𝑓 the 𝑞−-plane is always spanned by {1, 𝑓}. The rotation operator
𝑅 = 𝒊(𝒊+𝑓), with squared norm ∣𝑅∣2 = ∣𝒊(𝒊+𝑓)∣2 = ∣(𝒊+𝑓)∣2 = −(𝒊+𝑓)2, rotates
𝒊 into 𝑓 according to

𝑅−1𝒊𝑅 =
𝑅

∣𝑅∣2 𝒊𝑅 =
(𝒊+ 𝑓)𝒊𝒊𝒊(𝒊+ 𝑓)

−(𝒊+ 𝑓)2
=

(𝒊+ 𝑓)𝒊(𝒊(−𝑓) + 1)𝑓

(𝒊+ 𝑓)2

=
(𝒊+ 𝑓)(𝑓 + 𝒊)𝑓

(𝒊+ 𝑓)2
= 𝑓.

(3.27)
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The rotation 𝑅 leaves 1 invariant and thus rotates the whole {1, 𝒊} plane into the
𝑞−-plane spanned by {1, 𝑓}. Consequently 𝑅 also rotates the {𝒋,𝒌} plane into the
𝑞+-plane spanned by {𝒋′ = 𝑅−1𝒋𝑅, 𝒌′ = 𝑅−1𝒌𝑅}. We thus constructively obtain
the fully orthonormal 4D basis of ℍ as

{1, 𝑓, 𝒋′,𝒌′} = 𝑅−1{1, 𝒊, 𝒋,𝒌}𝑅, 𝑅 = 𝒊(𝒊+ 𝑓), (3.28)

for any chosen pure unit quaternion 𝑓 . We further have, for the orthogonal 2D
planes created in (3.24) the subspace bases:

𝑞+-basis: {𝒋′,𝒌′}, 𝑞−-basis: {1, 𝑓}. (3.29)

The rotation 𝑅 (an orthogonal transformation!) of (3.27) preserves the fun-
damental quaternionic orthonormality and the anticommutation relations

𝑓𝒋′ = 𝒌′ = −𝒋′𝑓, 𝒌′𝑓 = 𝒋′ = −𝑓𝒌′ 𝒋′𝒌′ = 𝑓 = −𝒌′𝒋′. (3.30)

Hence

𝑓𝑞𝑓 = 𝑓(𝑞+ + 𝑞−)𝑓 = 𝑞+ − 𝑞−, i.e., 𝑓𝑞±𝑓 = ±𝑞±, (3.31)

which represents again a half-turn by 180∘ in the 2D 𝑞−-plane around the 2D
𝑞+-plane (as axis).

Figures 1 and 2 illustrate this decomposition for the case where 𝑓 is the
unit pure quaternion 1√

3
(𝒊 + 𝒋 + 𝒌). This decomposition corresponds (for pure

quaternions) to the classical luminance-chrominance decomposition used in colour
image processing, as illustrated, for example, in [3, Figure 2]. Three hundred
unit quaternions randomly oriented in 4-space were decomposed. Figure 1 shows
the three hundred points in 4-space, projected onto the six orthogonal planes
{𝑒, 𝒊′}, {𝑒, 𝒋′}, {𝑒,𝒌′}, {𝒊′, 𝒋′}, {𝒋′,𝒌′}, {𝒌′, 𝒊′} where 𝑒 = 1 and 𝒊′ = 𝑓 , as given in
(3.28). The six views at the top show the 𝑞+-plane, and the six below show the
𝑞−-plane.

Figure 2 shows the vector parts of the decomposed quaternions. The basis
for the plot is {𝒊′, 𝒋 ′,𝒌′}, where 𝒊′ = 𝑓 as given in (3.28). The green circles show
the components in the {1, 𝑓} plane, which intersects the 3-space of the vector part
only along the line 𝑓 (which is the luminance or grey line of colour image pixels).
The red line on the figure corresponds to 𝑓 . The blue circles show the components
in the {𝒋′,𝒌′} plane, which is entirely within the 3-space. It is orthogonal to 𝑓 and
corresponds to the chrominance plane of colour image processing.

The next question is the influence the current OPS (3.24) has for left and
right exponential factors of the form

𝑒𝛼𝑓𝑞± 𝑒𝛽𝑓 . (3.32)

We learn from (3.30) that

𝑒𝛼𝑓𝑞±𝑒𝛽𝑓 = 𝑒(𝛼∓𝛽)𝑓𝑞± = 𝑞±𝑒(𝛽∓𝛼)𝑓 , (3.33)

which is identical to (3.23), if we insert 𝑔 = 𝑓 in (3.23).
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Figure 1. 4D scatter plot of quaternions decomposed using the or-
thogonal planes split of (3.24) with one unit pure quaternion 𝑓 = 𝒊′ =
1√
3
(𝒊+ 𝒋 + 𝒌) = 𝑔.
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Figure 2. Scatter plot of vector parts of quaternions decomposed using
the orthogonal planes split of (3.24) with one pure unit quaternion 𝑓 =
𝒊′ = 1√

3
(𝒊+ 𝒋 + 𝒌) = 𝑔. The red line corresponds to the direction of 𝑓 .

Next, we consider 𝑔 = −𝑓, 𝑓2 = −1. We then have the map 𝑓( )(−𝑓), and
the OPS split with respect to 𝑓,−𝑓 ∈ ℍ, 𝑓2 = −1,

𝑞± =
1

2
(𝑞 ± 𝑓𝑞(−𝑓)) =

1

2
(𝑞 ∓ 𝑓𝑞𝑓). (3.34)

Again we can study 𝑓 = 𝒊 first, because for general pure unit quaternions 𝑓 the
unit quaternion 𝒊 can be rotated by (3.27) into the quaternion unit 𝑓 and back.
Therefore studying the map 𝒊( )(−𝒊) is up to the constant rotation 𝑅 of (3.27) the
same as studying 𝑓( )(−𝑓). This gives the map

𝒊𝑞(−𝒊) = 𝒊(𝑞𝑟 + 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌)(−𝒊) = 𝑞𝑟 + 𝑞𝑖𝒊− 𝑞𝑗𝒋 − 𝑞𝑘𝒌. (3.35)

The OPS with respect to 𝑓 = 𝒊, 𝑔 = −𝒊 gives

𝑞± =
1

2
(𝑞 ± 𝒊𝑞(−𝒊)), 𝑞− = 𝑞𝑗𝒋 + 𝑞𝑘𝒌 = (𝑞𝑗 + 𝑞𝑘𝒊)𝒋, 𝑞+ = 𝑞𝑟 + 𝑞𝑖𝒊, (3.36)

where, compared to 𝑓 = 𝑔 = 𝒊, the 2D 𝑞+-plane and the 2D 𝑞−-planes appear in-
terchanged. The form (3.36) of the OPS is again identical to the quaternionic sim-
plex/perplex split of [3], but the simplex and perplex parts appear interchanged.

For 𝑔 = −𝑓 the 𝑞+-plane is always spanned by {1, 𝑓}. The rotation 𝑅 of
(3.27) rotates 𝒊 into 𝑓 and leaves 1 invariant and thus rotates the whole {1, 𝒊}
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plane into the 𝑞+-plane spanned by {1, 𝑓}. Consequently, 𝑅 of (3.27) also rotates
the {𝒋,𝒌} plane into the 𝑞−-plane spanned by {𝒋′ = 𝑅−1𝒋𝑅, 𝒌′ = 𝑅−1𝒌𝑅}.

We therefore have for the orthogonal 2D planes created in (3.34) the subspace
bases:

𝑞+-basis: {1, 𝑓}, 𝑞−-basis: {𝒋′,𝒌′}. (3.37)

We again obtain the fully orthonormal 4D basis (3.28) of ℍ, preserving
the fundamental quaternionic orthonormality and the anticommutation relations
(3.30).

Hence for (3.34)

𝑓𝑞(−𝑓) = 𝑓(𝑞+ + 𝑞−)(−𝑓) = 𝑞+ − 𝑞−, i.e., 𝑓𝑞±(−𝑓) = ±𝑞±, (3.38)

which represents again a half-turn by 180∘ in the 2D 𝑞−-plane around the 2D
𝑞+-plane (as axis).

The remaining question is the influence the current OPS (3.34) has for left
and right exponential factors of the form

𝑒𝛼𝑓𝑞±𝑒−𝛽𝑓 . (3.39)

We learn from (3.30) that

𝑒𝛼𝑓𝑞±𝑒−𝛽𝑓 = 𝑒(𝛼∓𝛽)𝑓𝑞± = 𝑞±𝑒−(𝛽∓𝛼)𝑓 , (3.40)

which is identical to (3.23), if we insert 𝑔 = −𝑓 in (3.23).

For (3.23) therefore, we do not any longer need to distinguish the cases 𝑓 ∕=
±𝑔 and 𝑓 = ±𝑔. This motivates us to a general OPS definition for any pair of pure
quaternions 𝑓, 𝑔, and we get a general lemma.

Definition 3.2 (General orthogonal 2D planes split). Let 𝑓, 𝑔 ∈ ℍ be an arbitrary
pair of pure quaternions 𝑓, 𝑔, 𝑓2 = 𝑔2 = −1, including the cases 𝑓 = ±𝑔. The
general OPS is then defined with respect to the two pure unit quaternions 𝑓, 𝑔 as

𝑞± =
1

2
(𝑞 ± 𝑓𝑞𝑔). (3.41)

Remark 3.3. The three generalized OPS (3.1), (3.24), and (3.34) are formally
identical and are now subsumed in (3.41) of Definition 3.2, where the values 𝑔 = ±𝑓
are explicitly included, i.e., any pair of pure unit quaternions 𝑓, 𝑔 ∈ ℍ, 𝑓2 = 𝑔2 =
−1, is admissible.

Lemma 3.4. With respect to the general OPS of Definition 3.2 we have for left and
right exponential factors the identity

𝑒𝛼𝑓𝑞±𝑒𝛽𝑔 = 𝑞±𝑒(𝛽∓𝛼)𝑔 = 𝑒(𝛼∓𝛽)𝑓𝑞±. (3.42)
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3.3. Geometric Interpretation of Left and Right Exponential Factors in 𝒇 , 𝒈

We obtain the following general geometric interpretation. The map 𝑓( )𝑔 always
represents a rotation by angle 𝜋 in the 𝑞−-plane (around the 𝑞+-plane), the map
𝑓 𝑡( )𝑔𝑡, 𝑡 ∈ ℝ, similarly represents a rotation by angle 𝑡𝜋 in the 𝑞−-plane (around
the 𝑞+-plane as axis). Replacing6 𝑔 → −𝑔 in the map 𝑓( )𝑔 we further find that

𝑓𝑞±(−𝑔) = ∓𝑞±. (3.43)

Therefore the map 𝑓( )(−𝑔) = 𝑓( )𝑔−1, because 𝑔−1 = −𝑔, represents a rotation
by angle 𝜋 in the 𝑞+-plane (around the 𝑞−-plane), exchanging the roles of 2D
rotation plane and 2D rotation axis. Similarly, the map 𝑓𝑠( )𝑔−𝑠, 𝑠 ∈ ℝ, represents
a rotation by angle 𝑠𝜋 in the 𝑞+-plane (around the 𝑞−-plane as axis).

The product of these two rotations gives

𝑓 𝑡+𝑠𝑞𝑔𝑡−𝑠 = 𝑒(𝑡+𝑠)𝜋
2 𝑓𝑞𝑒(𝑡−𝑠)

𝜋
2 𝑔 = 𝑒𝛼𝑓𝑞𝑒𝛽𝑔,

𝛼 = (𝑡+ 𝑠)
𝜋

2
, 𝛽 = (𝑡− 𝑠)

𝜋

2
,

(3.44)

where based on (2.5) we used the identities 𝑓 = 𝑒
𝜋
2 𝑓 and 𝑔 = 𝑒

𝜋
2 𝑔.

The geometric interpretation of (3.44) is a rotation by angle 𝛼 + 𝛽 in the
𝑞−-plane (around the 𝑞+-plane), and a second rotation by angle 𝛼− 𝛽 in the 𝑞+-
plane (around the 𝑞−-plane). For 𝛼 = 𝛽 = 𝜋/2 we recover the map 𝑓( )𝑔, and for
𝛼 = −𝛽 = 𝜋/2 we recover the map 𝑓( )𝑔−1.

3.4. Determination of 𝒇, 𝒈 for Given Steerable Pair of Orthogonal 2D Planes

Equations (3.9), (3.29), and (3.37) tell us how the pair of pure unit quaternions
𝑓, 𝑔 ∈ ℍ used in the general OPS of Definition 3.2, leads to an explicit basis for
the resulting two orthogonal 2D planes, the 𝑞+-plane and the 𝑞−-plane. We now
ask the opposite question: how can we determine from a given steerable pair of
orthogonal 2D planes in ℍ the pair of pure unit quaternions 𝑓, 𝑔 ∈ ℍ, which splits
ℍ exactly into this given pair of orthogonal 2D planes?

To answer this question, we first observe that in a 4D space it is sufficient
to know only one 2D plane explicitly, specified, e.g., by a pair of orthogonal unit
quaternions 𝑎, 𝑏 ∈ ℍ, ∣𝑎∣ = ∣𝑏∣ = 1, and without restriction of generality 𝑏2 = −1,
i.e., 𝑏 can be a pure unit quaternion 𝑏 = 𝝁(𝑏). But for 𝑎 = cos𝛼 + 𝝁(𝑎) sin𝛼,
compare (2.6), we must distinguish S(𝑎) = cos𝛼 ∕= 0 and S(𝑎) = cos𝛼 = 0, i.e., of
𝑎 also being a pure quaternion with 𝑎2 = −1. The second orthogonal 2D plane is
then simply the orthogonal complement in ℍ to the 𝑎, 𝑏-plane.

Let us first treat the case S(𝑎) = cos𝛼 ∕= 0. We set

𝑓 := 𝑎𝑏, 𝑔 := 𝑎𝑏. (3.45)

6Alternatively and equivalently we could replace 𝑓 → −𝑓 instead of 𝑔 → −𝑔.
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With this setting we get for the basis of the 𝑞−-plane

𝑓 + 𝑔 = 𝑎𝑏+ 𝑎𝑏 = 2S(𝑎) 𝑏,

1− 𝑓𝑔 = 1− 𝑎𝑏𝑎𝑏 = 1− 𝑎2𝑏2 = 1 + 𝑎2

= 1 + cos2 𝛼− sin2 𝛼+ 2𝝁(𝑎) cos𝛼 sin𝛼

= 2 cos𝛼(cos𝛼+ 𝝁(𝑎) sin𝛼) = 2 S(𝑎) 𝑎.

(3.46)

For the equality 𝑎𝑏𝑎𝑏 = 𝑎2𝑏2 we used the orthogonality of 𝑎, 𝑏, which means that
the vector part of 𝑎 must be orthogonal to the pure unit quaternion 𝑏, i.e., it must
anticommute with 𝑏

𝑎𝑏 = 𝑏𝑎, 𝑏𝑎 = 𝑎𝑏. (3.47)

Comparing (3.9) and (3.46), the plane spanned by the two orthogonal unit quater-
nions 𝑎, 𝑏 ∈ ℍ is indeed the 𝑞−-plane for S(𝑎) = cos𝛼 ∕= 0. The orthogonal 𝑞+-plane
is simply given by its basis vectors (3.9), inserting (3.45). This leads to the pair of
orthogonal unit quaternions 𝑐, 𝑑 for the 𝑞+-plane as

𝑐 =
𝑓 − 𝑔

∣𝑓 − 𝑔∣ =
𝑎𝑏− 𝑎𝑏

∣(𝑎− 𝑎)𝑏∣ =
𝑎− 𝑎

∣𝑎− 𝑎∣𝑏 = 𝝁(𝑎)𝑏, (3.48)

𝑑 =
1 + 𝑓𝑔

∣1 + 𝑓𝑔∣ =
𝑓 − 𝑔

∣𝑓 − 𝑔∣𝑔 = 𝑐𝑔 = 𝝁(𝑎)𝑏𝑔 = 𝝁(𝑎)𝑏𝑎𝑏 = 𝝁(𝑎)𝑎𝑏2 = −𝝁(𝑎)𝑎, (3.49)

where we have used (3.13) for the second, and (3.47) for the sixth equality in
(3.49).

Let us also verify that 𝑓, 𝑔 of (3.45) are both pure unit quaternions using
(3.47)

𝑓2 = 𝑎𝑏𝑎𝑏 = (𝑎𝑎)𝑏𝑏 = −1, 𝑔2 = 𝑎𝑏𝑎𝑏 = (𝑎𝑎)𝑏𝑏 = −1. (3.50)

Note, that if we would set in (3.45) for 𝑔 := −𝑎𝑏, then the 𝑎, 𝑏-plane would
have become the 𝑞+-plane instead of the 𝑞−-plane. We can therefore determine by
the sign in the definition of 𝑔, which of the two OPS planes the 𝑎, 𝑏-plane is to
represent.

For both 𝑎 and 𝑏 being two pure orthogonal quaternions, we can again set

𝑓 := 𝑎𝑏⇒ 𝑓2 = 𝑎𝑏𝑎𝑏 = −𝑎2𝑏2 = −1, 𝑔 := 𝑎𝑏 = −𝑎𝑏 = −𝑓, (3.51)

where due to the orthogonality of the pure unit quaternions 𝑎, 𝑏 we were able to
use 𝑏𝑎 = −𝑎𝑏. In this case 𝑓 = 𝑎𝑏 is thus also shown to be a pure unit quaternion.
Now the 𝑞−-plane of the corresponding OPS (3.34) is spanned by {𝑎, 𝑏}, whereas
the 𝑞+-plane is spanned by {1, 𝑓}. Setting instead 𝑔 := −𝑎𝑏 = 𝑎𝑏 = 𝑓 , the 𝑞−-
plane of the corresponding OPS (3.24) is spanned by {1, 𝑓}, wheras the 𝑞+-plane
is spanned by {𝑎, 𝑏}.

We summarize our results in the following theorem.

Theorem 3.5. (Determination of 𝒇, 𝒈 from given steerable 2D plane) Given any
2D plane in ℍ in terms of two unit quaternions 𝑎, 𝑏, where 𝑏 is without restriction
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of generality pure, i.e., 𝑏2 = −1, we can make the given plane the 𝑞−-plane of the
OPS 𝑞± = 1

2 (𝑞 ± 𝑓𝑞𝑔), by setting

𝑓 := 𝑎𝑏, 𝑔 := 𝑎𝑏. (3.52)

For S(𝑎) ∕= 0 the orthogonal 𝑞+-plane is fully determined by the orthogonal unit
quaternions

𝑐 = 𝝁(𝑎)𝑏, 𝑑 = −𝝁(𝑎)𝑎. (3.53)

where 𝝁(𝑎) is as defined in (2.6). For S(𝑎) = 0 the orthogonal 𝑞+-plane with basis
{1, 𝑓} is instead fully determined by 𝑓 = −𝑔 = 𝑎𝑏.

Setting alternatively

𝑓 := 𝑎𝑏, 𝑔 := −𝑎𝑏. (3.54)

makes the given 𝑎, 𝑏-plane the 𝑞+-plane instead. For S(𝑎) ∕= 0 the orthogonal 𝑞−-
plane is then fully determined by (3.54) and (3.9), with the same orthogonal unit
quaternions 𝑐 = 𝝁(𝑎)𝑏, 𝑑 = −𝝁(𝑎)𝑎 as in (3.53). For S(𝑎) = 0 the orthogonal
𝑞−-plane with basis {1, 𝑓} is then instead fully determined by 𝑓 = 𝑔 = 𝑎𝑏.

An illustration of the decomposition is given in Figures 3 and 4. Again, three
hundred unit pure quaternions randomly oriented in 4-space have been decom-
posed into two sets using the decomposition of Definition 3.2 and two unit pure
quaternions 𝑓 and 𝑔 computed as in Theorem 3.5. 𝑏 was the pure unit quaternion
1√
3
(𝒊 + 𝒋 + 𝒌) and 𝑎 was the full unit quaternion 1√

2
+ 1

2 (𝒊 − 𝒋). 𝑐 and 𝑑 were

computed by (3.53) as 𝑐 = 𝝁(𝑎)𝑏 and 𝑑 = −𝝁(𝑎)𝑎.
Figure 3 shows the three hundred points in 4-space, projected onto the six

orthogonal planes {𝑐, 𝑑}, {𝑐, 𝑏}, {𝑐, 𝑎}, {𝑑, 𝑏}, {𝑏, 𝑎}, {𝑎, 𝑑} where the orthonormal
4-space basis {𝑐, 𝑑, 𝑏, 𝑎} = {(𝑓 − 𝑔)/∣𝑓 − 𝑔∣, (1 + 𝑓𝑔)/∣1 + 𝑓𝑔∣, (𝑓 + 𝑔)/∣𝑓 + 𝑔∣, (1−
𝑓𝑔)/∣1− 𝑓𝑔∣}. The six views at the top show the 𝑞+-plane, and the six below show
the 𝑞−-plane. Figure 4 shows the vector parts of the decomposed quaternions.

4. New QFT Forms: OPS-QFTs with Two Pure
Unit Quaternions 𝒇, 𝒈

4.1. Generalized OPS Leads to New Steerable Type of QFT

We begin with a straightforward generalization of the (double-sided form of the)
QFT [4, 5] in ℍ by replacing 𝒊 with 𝑓 and 𝒋 with 𝑔 defined as

Definition 4.1. (QFT with respect to two pure unit quaternions 𝒇, 𝒈)
Let 𝑓, 𝑔 ∈ ℍ, 𝑓2 = 𝑔2 = −1, be any two pure unit quaternions. The quaternion
Fourier transform with respect to 𝑓, 𝑔 is

ℱ𝑓,𝑔{ℎ}(𝝎) =
∫
ℝ2

𝑒−𝑓𝑥1𝜔1ℎ(𝒙) 𝑒−𝑔𝑥2𝜔2𝑑2𝒙, (4.1)

where ℎ ∈ 𝐿1(ℝ2,ℍ), 𝑑2𝒙 = 𝑑𝑥1𝑑𝑥2 and 𝒙,𝝎 ∈ ℝ2.
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Figure 3. 4D scatter plot of quaternions decomposed using the orthog-
onal planes split of Definition 3.2.
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Figure 4. Scatter plot of vector parts of quaternions decomposed using
the orthogonal planes split of Definition 3.2.

Note, that the pure unit quaternions 𝑓, 𝑔 in Definition 4.1 do not need to be
orthogonal, and that the cases 𝑓 = ±𝑔 are fully included.

Linearity of the integral (4.1) allows us to use the OPS split ℎ = ℎ− + ℎ+

ℱ𝑓,𝑔{ℎ}(𝝎) = ℱ𝑓,𝑔{ℎ−}(𝝎) + ℱ𝑓,𝑔{ℎ+}(𝝎)
= ℱ𝑓,𝑔

− {ℎ}(𝝎) + ℱ𝑓,𝑔
+ {ℎ}(𝝎),

(4.2)

since by their construction the operators of the Fourier transformation ℱ𝑓,𝑔, and
of the OPS with respect to 𝑓, 𝑔 commute. From Lemma 3.4 follows

Theorem 4.2 (QFT of ℎ±). The QFT of the ℎ± OPS split parts, with respect to
two unit quaternions 𝑓, 𝑔, of a quaternion module function ℎ ∈ 𝐿1(ℝ2,ℍ) have the
quasi-complex forms

ℱ𝑓,𝑔
± {ℎ} = ℱ𝑓,𝑔{ℎ±} =

∫
ℝ2

ℎ±𝑒−𝑔(𝑥2𝜔2∓𝑥1𝜔1)𝑑2𝑥

=

∫
ℝ2

𝑒−𝑓(𝑥1𝜔1∓𝑥2𝜔2)ℎ±𝑑2𝑥 .

(4.3)

Remark 4.3. The quasi-complex forms in Theorem 4.2 allow us to establish dis-
cretized and fast versions of the QFT of Definition 4.1 as sums of two complex
discretized and fast Fourier transformations (FFT), respectively.
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Figure 5. Geometric interpretation of integrand of QFT𝑓,𝑔 in Defini-
tion 4.1 in terms of local phase rotations in 𝑞±-planes.

We can now give a geometric interpretation of the integrand of the QFT𝑓,𝑔 in
Definition 4.1 in terms of local phase rotations, compare Section 3.3. The integrand
product

𝑒−𝑓𝑥1𝜔1ℎ(𝒙) 𝑒−𝑔𝑥2𝜔2 (4.4)

represents a local rotation by the phase angle −(𝑥1𝜔1 + 𝑥2𝜔2) in the 𝑞−-plane,
and by the phase angle −(𝑥1𝜔1 − 𝑥2𝜔2) = 𝑥2𝜔2 − 𝑥1𝜔1 in the orthogonal 𝑞+-
plane, compare Figure 5, which depicts two completely orthogonal planes in four
dimensions.

Based on Theorem 3.5 the two phase rotation planes (analysis planes) can
be freely steered by defining the two pure unit quaternions 𝑓, 𝑔 used in Definition
4.1 according to (3.52) or (3.54).

4.2. Two Phase Angle Version of QFT

The above newly gained geometric understanding motivates us to propose a further
new version of the QFT𝑓,𝑔, with a straightforward two phase angle interpretation.

Definition 4.4. (Phase angle QFT with respect to 𝒇, 𝒈)
Let 𝑓, 𝑔 ∈ ℍ, 𝑓2 = 𝑔2 = −1, be any two pure unit quaternions. The phase angle
quaternion Fourier transform with respect to 𝑓, 𝑔 is

ℱ𝑓,𝑔
𝐷 {ℎ}(𝝎) =

∫
ℝ2

𝑒−𝑓
1
2 (𝑥1𝜔1+𝑥2𝜔2)ℎ(𝒙) 𝑒−𝑔

1
2 (𝑥1𝜔1−𝑥2𝜔2)𝑑2𝒙. (4.5)

where again ℎ ∈ 𝐿1(ℝ2,ℍ), 𝑑2𝒙 = 𝑑𝑥1𝑑𝑥2 and 𝒙,𝝎 ∈ ℝ2.

The geometric interpretation of the integrand of (4.5) is a local phase rotation
by angle −(𝑥1𝜔1 + 𝑥2𝜔2)/2 − (𝑥1𝜔1 − 𝑥2𝜔2)/2 = −𝑥1𝜔1 in the 𝑞−-plane, and a
second local phase rotation by angle −(𝑥1𝜔1+𝑥2𝜔2)/2+(𝑥1𝜔1−𝑥2𝜔2)/2 = −𝑥2𝜔2

in the 𝑞+-plane, compare Section 3.3.
If we apply the OPS𝑓,𝑔 split to (4.5) we obtain the following theorem.



32 E. Hitzer and S.J. Sangwine

Theorem 4.5 (Phase angle QFT of 𝒉±). The phase angle QFT of Definition 4.4
applied to the ℎ± OPS split parts, with respect to two pure unit quaternions 𝑓, 𝑔, of
a quaternion module function ℎ ∈ 𝐿1(ℝ2,ℍ) leads to the quasi-complex expressions

ℱ𝑓,𝑔
𝐷+{ℎ} = ℱ𝑓,𝑔

𝐷 {ℎ+} =
∫
ℝ2

ℎ+𝑒+𝑔𝑥2𝜔2𝑑2𝑥 =

∫
ℝ2

𝑒−𝑓𝑥2𝜔2ℎ+𝑑2𝑥 , (4.6)

ℱ𝑓,𝑔
𝐷−{ℎ} = ℱ𝑓,𝑔

𝐷 {ℎ−} =
∫
ℝ2

ℎ−𝑒−𝑔𝑥1𝜔1𝑑2𝑥 =

∫
ℝ2

𝑒−𝑓𝑥1𝜔1ℎ−𝑑2𝑥. (4.7)

Note that based on Theorem 3.5 the two phase rotation planes (analysis
planes) are again freely steerable.

Theorem 4.5 allows us to establish discretized and fast versions of the phase
angle QFT of Definition 4.4 as sums of two complex discretized and fast Fourier
transformations (FFT), respectively.

The maps 𝑓( )𝑔 considered so far did not involve quaternion conjugation 𝑞 →
𝑞. In the following we investigate maps which additionally conjugate the argument,

i.e., of type 𝑓( )𝑔, which are also involutions.

5. Involutions and QFTs Involving Quaternion Conjugation

5.1. Involutions Involving Quaternion Conjugations

The simplest case is quaternion conjugation itself

𝑞 → 𝑞 = 𝑞𝑟 − 𝑞𝑖𝒊− 𝑞𝑗𝒋 − 𝑞𝑘𝒌, (5.1)

which can be interpreted as a reflection at the real line 𝑞𝑟. The real line through the
origin remains pointwise invariant, while every other point in the 3D hyperplane
of pure quaternions is reflected to the opposite side of the real line. The related
involution

𝑞 → −𝑞 = −𝑞𝑟 + 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌, (5.2)

is the reflection at the 3D hyperplane of pure quaternions (which stay invariant),
i.e., only the real line is changed into its negative 𝑞𝑟 → −𝑞𝑟.

Similarly any pure unit quaternion factor like 𝒊 in the map

𝑞 → 𝒊 𝑞𝒊 = −𝑞𝑟 + 𝑞𝑖𝒊− 𝑞𝑗𝒋 − 𝑞𝑘𝒌, (5.3)

leads to a reflection at the (pointwise invariant) line through the origin with di-
rection 𝒊, while the map

𝑞 → −𝒊 𝑞𝒊 = 𝑞𝑟 − 𝑞𝑖𝒊+ 𝑞𝑗𝒋 + 𝑞𝑘𝒌, (5.4)

leads to a reflection at the invariant 3D hyperplane orthogonal to the line through
the origin with direction 𝒊. The map

𝑞 → 𝑓 𝑞𝑓, (5.5)

leads to a reflection at the (pointwise invariant) line with direction 𝑓 through the
origin, while the map

𝑞 → −𝑓 𝑞𝑓, (5.6)
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leads to a reflection at the invariant 3D hyperplane orthogonal to the line with
direction 𝑓 through the origin.

Next we turn to a map of the type

𝑞 → −𝑒𝛼𝑓𝑞𝑒𝛼𝑓 . (5.7)

Its set of pointwise invariants is given by

𝑞 = −𝑒𝛼𝑓𝑞𝑒𝛼𝑓 ⇔ 𝑒−𝛼𝑓𝑞 = −𝑞𝑒𝛼𝑓 ⇔ 𝑒−𝛼𝑓𝑞 + 𝑞𝑒𝛼𝑓 = 0

⇔ S
(
𝑞𝑒𝛼𝑓

)
= 0 ⇔ 𝑞 ⊥ 𝑒𝛼𝑓 .

(5.8)

We further observe that

𝑒𝛼𝑓 → −𝑒𝛼𝑓𝑒−𝛼𝑓𝑒𝛼𝑓 = −𝑒𝛼𝑓 . (5.9)

The map −𝑎( )𝑎, with unit quaternion 𝑎 = 𝑒𝛼𝑓 , therefore represents a reflection
at the invariant 3D hyperplane orthogonal to the line through the origin with
direction 𝑎.

Similarly, the map 𝑎( )𝑎, with unit quaternion 𝑎 = 𝑒𝛼𝑓 , then represents a
reflection at the (pointwise invariant) line with direction 𝑎 through the origin.

The combination of two such reflections (both at 3D hyperplanes, or both at
lines), given by unit quaternions 𝑎, 𝑏, leads to a rotation

−𝑏−𝑎𝑞𝑎𝑏 = 𝑏𝑎𝑞𝑎𝑏 = 𝑏𝑎𝑞𝑎𝑏 = 𝑟𝑞𝑠,

𝑟 = 𝑏𝑎, 𝑠 = 𝑎𝑏, ∣𝑟∣ = ∣𝑏∣ ∣𝑎∣ = 1 = ∣𝑠∣ , (5.10)

in two orthogonal planes, exactly as studied in Section 3.3.

The combination of three reflections at 3D hyperplanes, given by unit quater-
nions 𝑎, 𝑏, 𝑐, leads to

−𝑐[−𝑏−𝑎𝑞𝑎𝑏]𝑐 = 𝑑 𝑞𝑡, 𝑑 = −𝑐𝑏𝑎, 𝑡 = 𝑎𝑏𝑐, ∣𝑑∣ = ∣𝑐∣ ∣𝑏∣ ∣𝑎∣ = ∣𝑡∣ = 1. (5.11)

The product of the reflection map −𝑞 of (5.2) with 𝑑 𝑞𝑡 leads to −𝑑𝑞𝑡, a double

rotation as studied in Section 4. Therefore 𝑑 ( ) 𝑡 represents a rotary reflection
(rotation reflection). The three reflections −𝑎𝑞𝑎, −𝑏𝑞𝑏, −𝑐𝑞𝑐 have the intersection
of the three 3D hyperplanes as a resulting common pointwise invariant line, which
is 𝑑+ 𝑡, because

𝑑 (𝑑+ 𝑡) 𝑡 = 𝑑 𝑡𝑡+ 𝑑 𝑑𝑡 = 𝑑+ 𝑡. (5.12)

In the remaining 3D hyperplane, orthogonal to the pointwise invariant line through
the origin in direction 𝑑+ 𝑡, the axis of the rotary reflection is

𝑑 (𝑑− 𝑡) 𝑡 = −𝑑 𝑡𝑡+ 𝑑 𝑑𝑡 = −𝑑+ 𝑡 = −(𝑑− 𝑡). (5.13)

We now also understand that a sign change of 𝑑 → −𝑑 (compare three reflec-

tions at three 3D hyperplanes −𝑐[−𝑏(−𝑎𝑞𝑎)𝑏]𝑐 with three reflections at three lines

+𝑐[+𝑏(+𝑎𝑞𝑎)𝑏]𝑐) simply exchanges the roles of pointwise invariant line 𝑑 + 𝑡 and
rotary reflection axis 𝑑− 𝑡.
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Next, we seek for an explicit description of the rotation plane of the rotary

reflection 𝑑 ( ) 𝑡. We find that for the unit quaternions 𝑑 = 𝑒𝛼𝑔, 𝑡 = 𝑒𝛽𝑓 the com-
mutator

[𝑑, 𝑡] = 𝑑𝑡− 𝑡𝑑 = 𝑒𝛼𝑔𝑒𝛽𝑓 − 𝑒𝛽𝑓𝑒𝛼𝑔 = (𝑔𝑓 − 𝑓𝑔) sin𝛼 sin𝛽, (5.14)

is a pure quaternion, because

𝑔𝑓 − 𝑓𝑔 = 𝑓𝑔 − 𝑔𝑓 = −(𝑔𝑓 − 𝑓𝑔). (5.15)

Moreover, [𝑑, 𝑡] is orthogonal to 𝑑 and 𝑡, and therefore orthogonal to the plane
spanned by the pointwise invariant line 𝑑+ 𝑡 and the rotary reflection axis 𝑑− 𝑡,
because

S
(
[𝑑, 𝑡]𝑑

)
= S
(
𝑑𝑡𝑑− 𝑡𝑑 𝑑

)
= 0, S

(
[𝑑, 𝑡]𝑡

)
= 0. (5.16)

We obtain a second quaternion in the plane orthogonal to 𝑑 + 𝑡, and 𝑑 − 𝑡, by
applying the rotary reflection to [𝑑, 𝑡]

𝑑 [𝑑, 𝑡] 𝑡 = −𝑑[𝑑, 𝑡]𝑡 = −[𝑑, 𝑡]𝑑𝑡, (5.17)

because 𝑑 is orthogonal to the pure quaternion [𝑑, 𝑡]. We can construct an or-

thogonal basis of the plane of the rotary reflection 𝑑 ( ) 𝑡 by computing the pair of
orthogonal quaternions

𝑣1,2 = [𝑑, 𝑡]∓ 𝑑 [𝑑, 𝑡] 𝑡 = [𝑑, 𝑡]± [𝑑, 𝑡]𝑑𝑡 = [𝑑, 𝑡](1 ± 𝑑𝑡). (5.18)

For finally computing the rotation angle, we need to know the relative length of
the two orthogonal quaternions 𝑣1, 𝑣2 of (5.18). For this it helps to represent the
unit quaternion 𝑑𝑡 as

𝑑𝑡 = 𝑒𝛾𝑢, 𝛾 ∈ ℝ, 𝑢 ∈ ℍ, 𝑢2 = −1. (5.19)

We then obtain for the length ratio

𝑟2 =
∣𝑣1∣2
∣𝑣2∣2 =

∣1 + 𝑑𝑡∣2
∣1− 𝑑𝑡∣2 =

(1 + 𝑑𝑡)(1 + 𝑡𝑑)

(1 − 𝑑𝑡)(1− 𝑡𝑑)
=

1 + 𝑑𝑡𝑡𝑑+ 𝑑𝑡+ 𝑡𝑑

1 + 𝑑𝑡𝑡𝑑− 𝑑𝑡− 𝑡𝑑

=
2 + 2 cos 𝛾

2− 2 cos 𝛾
=

1 + cos 𝛾

1− cos 𝛾
.

(5.20)

By applying the rotary reflection 𝑑 ( ) 𝑡 to 𝑣1 and decomposing the result with
respect to the pair of orthogonal quaternions in the rotary reflection plane (5.18)
we can compute the rotation angle. Applying the rotary reflection to 𝑣1 gives

𝑑 𝑣1 𝑡 = 𝑑 [𝑑, 𝑡]− 𝑑[𝑑, 𝑡]𝑡 𝑡 = 𝑑[𝑑, 𝑡](1 + 𝑑𝑡)𝑡 = 𝑑(1 + 𝑡𝑑)[𝑑, 𝑡]𝑡

= 𝑑(1 + 𝑡𝑑)(−[𝑑, 𝑡])𝑡 = −[𝑑, 𝑡](𝑑𝑡+ 𝑑𝑡𝑑𝑡).
(5.21)

The square of 𝑑𝑡 is

(𝑑𝑡)2 = (cos 𝛾 + 𝑢 sin 𝛾)2 = −1 + 2 cos 𝛾 [cos 𝛾 + 𝑢 sin 𝛾]

= −1 + 2 cos 𝛾 𝑑𝑡.
(5.22)
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We therefore get

𝑑 𝑣1 𝑡 = −[𝑑, 𝑡](𝑑𝑡− 1 + 2 cos𝛾𝑑𝑡) = [𝑑, 𝑡](1− (1 + 2 cos𝛾)𝑑𝑡)

= 𝑎1𝑣1 + 𝑎2𝑟𝑣2,
(5.23)

and need to solve

1− (1 + 2 cos 𝛾)𝑑𝑡 = 𝑎1(1 + 𝑑𝑡) + 𝑎2𝑟(1 − 𝑑𝑡), (5.24)

which leads to

𝑑 𝑣1 𝑡 = − cos𝛾𝑣1 + sin 𝛾𝑟𝑣2 = cos(𝜋 − 𝛾)𝑣1 + sin(𝜋 − 𝛾)𝑟𝑣2. (5.25)

The rotation angle of the rotary reflection 𝑑 ( ) 𝑡 in its rotation plane 𝑣1, 𝑣2 is
therefore

Γ = 𝜋 − 𝛾, 𝛾 = arccosS
(
𝑑𝑡
)
. (5.26)

In terms of 𝑑 = 𝑒𝛼𝑔, 𝑡 = 𝑒𝛽𝑓 we get

𝑑𝑡 = cos𝛼 cos𝛽 − 𝑔 sin𝛼 cos𝛽 + 𝑓 cos𝛼 sin𝛽 − 𝑔𝑓 sin𝛼 sin𝛽. (5.27)

And with the angle 𝜔 between 𝑔 and 𝑓

𝑔𝑓 =
1

2
(𝑔𝑓 + 𝑓𝑔) +

1

2
(𝑔𝑓 − 𝑓𝑔) = S(𝑔𝑓) +

1

2
[𝑔, 𝑓 ]

= − cos𝜔 − sin𝜔
[𝑔, 𝑓 ]

∣[𝑔, 𝑓 ]∣ ,
(5.28)

we finally obtain for 𝛾 the scalar part S
(
𝑑𝑡
)
as

S
(
𝑑𝑡
)
= cos 𝛾 = cos𝛼 cos𝛽 + cos𝜔 sin𝛼 sin𝛽

= cos𝛼 cos𝛽 − S(𝑔𝑓) sin𝛼 sin𝛽.
(5.29)

In the special case of 𝑔 = ±𝑓 , S(𝑔𝑓) = ∓1, i.e., for 𝜔 = 0, 𝜋, we get from
(5.29) that

S
(
𝑑𝑡
)
= cos𝛼 cos𝛽 ± sin𝛼 sin𝛽 = cos𝛼 cos𝛽 + sin(±𝛼) sin𝛽

= cos(±𝛼− 𝛽), (5.30)

and thus using (5.26) the rotation angle would become

Γ = 𝜋 − (±𝛼− 𝛽) = 𝜋 ∓ 𝛼+ 𝛽. (5.31)

Yet (5.26) was derived assuming [𝑑, 𝑡] ∕= 0. But direct inspection shows that (5.31)
is indeed correct: For 𝑔 = ±𝑓 the plane 𝑑 + 𝑡, 𝑑 − 𝑡 is identical to the 1, 𝑓 plane.
The rotation plane is thus a plane of pure quaternions orthogonal to the 1, 𝑓 plane.
The quaternion conjugation in 𝑞 �→ 𝑑 𝑞 𝑡 leads to a rotation by 𝜋 and the left and
right factors lead to further rotations by ∓𝛼 and 𝛽, respectively. Thus (5.31) is
verified as a special case of (5.26) for 𝑔 = ±𝑓 .

By substituting in Lemma 3.4 (𝛼, 𝛽)→ (−𝛽,−𝛼), and by taking the quater-
nion conjugate we obtain the following lemma.
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Lemma 5.1. Let 𝑞± = 1
2 (𝑞 ± 𝑓𝑞𝑔) be the OPS of Definition 3.2. For left and right

exponential factors we have the identity

𝑒𝛼𝑔 𝑞±𝑒𝛽𝑓 = 𝑞±𝑒(𝛽∓𝛼)𝑓 = 𝑒(𝛼∓𝛽)𝑔 𝑞±. (5.32)

5.2. New Steerable QFTs with Quaternion Conjugation and
Two Pure Unit Quaternions 𝒇, 𝒈

We therefore consider now the following new variant of the (double-sided form of
the) QFT [4, 5] in ℍ (replacing both 𝒊 with 𝑔 and 𝒋 with 𝑓 , and using quaternion
conjugation). It is essentially the quaternion conjugate of the new QFT of Def-
inition 4.1, but because of its distinct local transformation geometry it deserves
separate treatment.

Definition 5.2. (QFT with respect to 𝒇, 𝒈, including quaternion conjugation)
Let 𝑓, 𝑔 ∈ ℍ, 𝑓2 = 𝑔2 = −1, be any two pure unit quaternions. The quaternion
Fourier transform with respect to 𝑓, 𝑔, involving quaternion conjugation, is

ℱ𝑔,𝑓
𝑐 {ℎ}(𝝎) = ℱ𝑓,𝑔{ℎ}(−𝝎) =

∫
ℝ2

𝑒−𝑔𝑥1𝜔1ℎ(𝒙) 𝑒−𝑓𝑥2𝜔2𝑑2𝒙, (5.33)

where ℎ ∈ 𝐿1(ℝ2,ℍ), 𝑑2𝒙 = 𝑑𝑥1𝑑𝑥2 and 𝒙,𝝎 ∈ ℝ2.

Linearity of the integral in (5.33) of Definition 5.2 leads to the following
corollary to Theorem 4.2.

Corollary 5.3 (QFT ℱ𝑔,𝑓
𝑐 of ℎ±). The QFT ℱ𝑔,𝑓

𝑐 (5.33) of the ℎ± = 1
2 (ℎ ± 𝑓ℎ𝑔)

OPS split parts, with respect to any two unit quaternions 𝑓, 𝑔, of a quaternion
module function ℎ ∈ 𝐿1(ℝ2,ℍ) have the quasi-complex forms

ℱ𝑔,𝑓
𝑐 {ℎ±}(𝝎) = ℱ𝑓,𝑔{ℎ±}(−𝝎) =

∫
ℝ2

ℎ±𝑒−𝑓(𝑥2𝜔2∓𝑥1𝜔1)𝑑2𝑥

=

∫
ℝ2

𝑒−𝑔(𝑥1𝜔1∓𝑥2𝜔2)ℎ±𝑑2𝑥 .

(5.34)

Note, that the pure unit quaternions 𝑓, 𝑔 in Definition 5.2 and Corollary
5.3 do not need to be orthogonal, and that the cases 𝑓 = ±𝑔 are fully included.
Corollary 5.3 leads to discretized and fast versions of the QFT with quaternion
conjugation of Definition 5.2.

It is important to note that the roles (sides) of 𝑓, 𝑔 appear exchanged in
(5.33) of Definition 5.2 and in Corollary 5.3, although the same OPS of Definition
3.2 is applied to the signal ℎ as in Sections 3 and 4. This role change is due to
the presence of quaternion conjugation in Definition 5.2. Note that it is possible
to first apply (5.33) to ℎ, and subsequently split the integral with the OPS𝑔,𝑓

ℱ𝑐,± = 1
2 (ℱ𝑐± 𝑔ℱ𝑐𝑓), where the particular order of 𝑔 from the left and 𝑓 from the

right is due to the application of conjugation in (5.34) to ℎ± after ℎ is split with
(3.41) into ℎ+ and ℎ−.
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5.3. Local Geometric Interpretation of the QFT with Quaternion Conjugation

Regarding the local geometric interpretation of the QFT with quaternion conju-
gation of Definition 5.2 we need to distinguish the following cases, depending on
[𝑑, 𝑡] and on whether the left and right phase factors

𝑑 = 𝑒−𝑔𝑥1𝜔1 , 𝑡 = 𝑒−𝑓𝑥2𝜔2 , (5.35)

attain scalar values ±1 or not.
Let us first assume that [𝑑, 𝑡] ∕= 0, which by (5.14) is equivalent to 𝑔 ∕= ±𝑓 ,

and sin(𝑥1𝜔1) ∕= 0, and sin(𝑥2𝜔2) ∕= 0. Then we have the generic case of a local
rotary reflection with pointwise invariant line of direction

𝑑+ 𝑡 = 𝑒−𝑔𝑥1𝜔1 + 𝑒−𝑓𝑥2𝜔2 , (5.36)

rotation axis in direction

𝑑− 𝑡 = 𝑒−𝑔𝑥1𝜔1 − 𝑒−𝑓𝑥2𝜔2 , (5.37)

rotation plane with basis (5.18), and by (5.26) and (5.29) the general rotation
angle

Γ = 𝜋 − arccosS
(
𝑑𝑡
)
,

S
(
𝑑𝑡
)
= cos(𝑥1𝜔1) cos(𝑥2𝜔2)− S(𝑔𝑓) sin(𝑥1𝜔1) sin(𝑥2𝜔2). (5.38)

Whenever 𝑔 = ±𝑓 , or when sin(𝑥1𝜔1) = 0 (𝑥1𝜔1 = 0, 𝜋[mod 2𝜋], i.e., 𝑑 =
±1), we get for the pointwise invariant line in direction 𝑑 + 𝑡 the simpler unit

quaternion direction expression 𝑒−
1
2 (±𝑥1𝜔1+𝑥2𝜔2)𝑓 , because we can apply

𝑒𝛼𝑓 + 𝑒𝛽𝑓 = 𝑒
1
2 (𝛼+𝛽)𝑓(𝑒

1
2 (𝛼−𝛽)𝑓 + 𝑒

1
2 (𝛽−𝛼)𝑓 ) = 𝑒

1
2 (𝛼+𝛽)𝑓2 cos

𝛼− 𝛽

2
, (5.39)

and similarly for the rotation axis 𝑑− 𝑡 we obtain the direction expression

𝑒−
1
2 (±𝑥1𝜔1+𝑥2𝜔2+𝜋)𝑓 ,

whereas the rotation angle is by (5.31) simply

Γ = 𝜋 ± 𝑥1𝜔1 − 𝑥2𝜔2. (5.40)

For sin(𝑥2𝜔2) = 0 (𝑥2𝜔2 = 0, 𝜋[mod2𝜋], i.e., 𝑡 = ±1), the pointwise invariant
line in direction 𝑑+ 𝑡 simplifies by (5.39) to 𝑒−

1
2 (𝑥1𝜔1+𝑥2𝜔2)𝑔, and the rotation axis

with direction 𝑑− 𝑡 simplifies to 𝑒−
1
2 (𝑥1𝜔1+𝑥2𝜔2+𝜋)𝑔, whereas the angle of rotation

is by (5.31) simply
Γ = 𝜋 + 𝑥1𝜔1 − 𝑥2𝜔2. (5.41)

5.4. Phase Angle QFT with Respect to 𝒇, 𝒈, Including Quaternion Conjugation

Even when quaternion conjugation is applied to the signal ℎ we can propose a
further new version of the QFT𝑔,𝑓

𝑐 , with a straightforward two phase angle inter-
pretation. The following definition to some degree ignores the resulting local rotary
reflection effect of combining quaternion conjugation and left and right phase fac-
tors of Section 5.3, but depending on the application context, it may nevertheless
be of interest in its own right.
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Definition 5.4 (Phase angle QFTwith respect to 𝒇, 𝒈, including quaternion con-
jugation). Let 𝑓, 𝑔 ∈ ℍ, 𝑓2 = 𝑔2 = −1, be any two pure unit quaternions. The
phase angle quaternion Fourier transform with respect to 𝑓, 𝑔, involving quaternion
conjugation, is

ℱ𝑔,𝑓
𝑐𝐷 {ℎ}(𝝎) = ℱ𝑓,𝑔

𝐷 {ℎ}(−𝜔1, 𝜔2) =

∫
ℝ2

𝑒−𝑔
1
2 (𝑥1𝜔1+𝑥2𝜔2)ℎ(𝒙) 𝑒−𝑓

1
2 (𝑥1𝜔1−𝑥2𝜔2)𝑑2𝒙.

(5.42)
where again ℎ ∈ 𝐿1(ℝ2,ℍ), 𝑑2𝒙 = 𝑑𝑥1𝑑𝑥2 and 𝒙,𝝎 ∈ ℝ2.

Based on Lemma 5.1, one possible geometric interpretation of the integrand
of (5.42)) is a local phase rotation of ℎ+ by angle −(𝑥1𝜔1 − 𝑥2𝜔2)/2 + (𝑥1𝜔1 +

𝑥2𝜔2)/2 = +𝑥2𝜔2 in the 𝑞+ plane, and a second local phase rotation of ℎ− by angle
−(𝑥1𝜔1 − 𝑥2𝜔2)/2− (𝑥1𝜔1 + 𝑥2𝜔2)/2 = −𝑥1𝜔1 in the 𝑞− plane. This is expressed
in the following corollary to Theorem 4.5.

Corollary 5.5 (Phase angle QFT of 𝒉±, involving quaternion conjugation). The
phase angle QFT with quaternion conjugation of Definition 5.4 applied to the ℎ±
OPS split parts, with respect to any two pure unit quaternions 𝑓, 𝑔, of a quaternion
module function ℎ ∈ 𝐿1(ℝ2,ℍ) leads to the quasi-complex expressions

ℱ𝑔,𝑓
𝑐𝐷 {ℎ+}(𝝎) = ℱ𝑔,𝑓

𝐷 {ℎ+}(−𝜔1, 𝜔2) =

∫
ℝ2

ℎ+𝑒+𝑓𝑥2𝜔2𝑑2𝑥 =

∫
ℝ2

𝑒−𝑔𝑥2𝜔2ℎ+𝑑2𝑥 ,

(5.43)

ℱ𝑔,𝑓
𝑐𝐷 {ℎ−}(𝝎) = ℱ𝑔,𝑓

𝐷 {ℎ−}(−𝜔1, 𝜔2) =

∫
ℝ2

ℎ−𝑒−𝑓𝑥1𝜔1𝑑2𝑥 =

∫
ℝ2

𝑒−𝑔𝑥1𝜔1ℎ−𝑑2𝑥 .

(5.44)

Note that based on Theorem 3.5 the two phase rotation planes (analysis
planes) are again freely steerable. Corollary 5.5 leads to discretized and fast ver-
sions of the phase angle QFT with quaternion conjugation of Definition 5.4.

6. Conclusion

The involution maps 𝒊( )𝒋 and 𝑓( )𝑔 have led us to explore a range of similar quater-
nionic maps 𝑞 �→ 𝑎𝑞𝑏 and 𝑞 �→ 𝑎𝑞𝑏, where 𝑎, 𝑏 are taken to be unit quaternions.
Geometric interpretations of these maps as reflections, rotations, and rotary reflec-
tions in 4D can mostly be found in [1]. We have further developed these geometric
interpretations to gain a complete local transformation geometric understanding
of the integrands of the proposed new quaternion Fourier transformations (QFTs)
applied to general quaternionic signals ℎ ∈ 𝐿1(ℝ2,ℍ). This new geometric under-
standing is also valid for the special cases of the hitherto well-known left-sided,
right-sided, and left- and right-sided (two-sided) QFTs of [2, 4, 8, 3] and numerous
other references.

Our newly gained geometric understanding itself motivated us to propose
new types of QFTs with specific geometric properties. The investigation of these
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new types of QFTs with the generalized form of the orthogonal 2D planes split
of Definition 3.2 lead to important QFT split theorems, which allow the use of
discrete and (complex) Fourier transform software for efficient discretized and fast
numerical implementations.

Finally, we are convinced that our geometric interpretation of old and new
QFTs paves the way for new applications, e.g., regarding steerable filter design for
specific tasks in image, colour image and signal processing, etc.
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