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‘Did you ask a good question today?’ – Janet Teig

Abstract. Quaternion Fourier transforms (QFT’s) provide expressive power
and elegance in the analysis of higher-dimensional linear invariant systems.
But, this power comes at a cost – an overwhelming number of choices in the
QFT definition, each with consequences. This chapter explores the evolution
of QFT definitions as a framework from which to solve specific problems in
vector-image and vector-signal processing.
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1. Introduction

In recent years there has been an increasing recognition on the part of engineers
and investigators in image and signal processing of holistic vector approaches to
spectral analysis. Generally speaking, this type of spectral analysis treats the vec-
tor components of a system not in an iterated, channel-wise fashion but instead
in a holistic, gestalt fashion. The Quaternion Fourier transform (QFT) is one such
analysis tool.

One of the earliest documented attempts (1987) at describing this type of
spectral analysis was in the area of two-dimensional nuclear magnet resonance.
Ernst, et al. [6, pp. 307–308] briefly discusses using a hypercomplex Fourier trans-
form as a method to independently adjust phase angles with respect to two fre-
quency variables in two-dimensional spectroscopy. After introducing the concept
they immediately fall back to an iterated approach leaving the idea unexplored.
For similar reasons, Ell [2] in 1992 independently explored the use of QFTs as a
tool in the analysis of linear time-invariant systems of partial differential equations
(PDEs). Ell specifically ‘designed’ a quaternion Fourier transform whose spectral
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operators allowed him to disambiguate partial derivatives with respect to two dif-
ferent independent variables. Ell’s original QFT was given by

𝐻 [𝒋𝜔,𝒌𝜈] =

∫
ℝ2

𝑒−𝒋𝜔𝑡ℎ (𝑡, 𝜏) 𝑒−𝒌𝜈𝜏𝑑𝑡𝑑𝜏 , (1.1)

where 𝐻 [𝒋𝜔,𝒌𝜈] ∈ ℍ (the set of quaternions), 𝒋 and 𝒌 are Hamilton’s hypercom-
plex operators, and ℎ (𝑡, 𝜏) : ℝ× ℝ→ ℝ (the set of reals). The partial-differential
equivalent spectral operators for this transform are given by

∂

∂𝑡
ℎ (𝑡, 𝜏)⇔ 𝒋𝜔𝐻 [𝒋𝜔,𝒌𝜈] ,

∂

∂𝜏
ℎ (𝑡, 𝜏)⇔ 𝐻 [𝒋𝜔,𝒌𝜈]𝒌𝜈. (1.2)

These two differentials have clearly different spectral signatures in contrast to the
two-dimensional iterated complex Fourier transform where

∂

∂𝑡
ℎ (𝑡, 𝜏 )⇔ 𝒋𝜔𝐻 [𝒋𝜔, 𝒋𝜈] ,

∂

∂𝜏
ℎ (𝑡, 𝜏 )⇔ 𝒋𝜈𝐻 [𝒋𝜔, 𝒋𝜈] , (1.3)

especially when 𝜔 = 𝜈, at which point the complex spectral domain responses are
indistinguishable. This was the first step towards stability analysis in designing
controllers for systems described by PDEs.

The slow adoption of QFTs at the present time by the engineering community
is due in part to their lack of practical understanding of its properties. This slow
adoption is further exacerbated by the variety of transform definitions available.
But, in the middle of difficulty lies opportunity. Instead of attempting to find the
single best QFT (which cannot meet every design engineer’s needs) we provide
instead the means to allow the designer to select the definition most appropriate
to his specific problem. That means, allow him to re-tool for the analysis problem
at hand.

For example, when QFTs were later applied to colour-image processing [4],
where each colour pixel in an image is treated as a 3-vector with basis {𝒊, 𝒋,𝒌} ∈ ℍ,
it became apparent that there was no preferential association of colour-space axes
with either the basis or the QFT’s exponential-kernel axis. This lead to the next
generalization of the QFT defined as

ℱ+ [𝜔, 𝜈] =

∫
ℝ2

𝑒−𝝁(𝜔𝑡+𝜈𝜏)𝑓 (𝑡, 𝜏 ) 𝑑𝑡𝑑𝜏 , (1.4)

where the transform kernel axis 𝝁 is any pure unit quaternion, i.e.,

𝝁 ∈ {𝒊𝑥+ 𝒋𝑦 + 𝒌𝑧 ∈ ℍ ∣ 𝑥2 + 𝑦2 + 𝑧2 = 1
}

so that 𝝁2 = −1. Still later it was realized [9] that since there is no preferred
direction of indexing the image’s pixels then the sign on the transform kernel is
also arbitrary, so that a forward QFT could also be defined as

ℱ− [𝜔, 𝜈] =

∫
ℝ2

𝑒+𝝁(𝜔𝑡+𝜈𝜏)𝑓 (𝑡, 𝜏 ) 𝑑𝑡𝑑𝜏 , (1.5)

and the two definitions could be intermixed without concern of creating a non-
causal set of image processing filters. This led to several simplifications of a spectral
form of the vector correlation operation on two images [8].
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Bearing in mind such diverse application of various QFTs, the focus of this
work is to detail as broad a set of QFT definitions as possible, and where known,
some of the issues associated with applying them to problems in signal and im-
age processing. It also includes a review of approaches taken to define the inter-
relations between the various QFT definitions.

2. Preliminaries

To provide a basis for discussion this section gives nomenclature, basic facts on
quaternions, and some useful subsets and algebraic equations.

2.1. Just the Facts

The quaternion algebra over the reals ℝ, denoted by

ℍ = {𝑞 = 𝑟0 + 𝒊𝑟1 + 𝒋𝑟2 + 𝒌𝑟3 ∣ 𝑟0, 𝑟1, 𝑟2, 𝑟3 ∈ ℝ} , (2.1)

is an associative non-commutative four-dimensional algebra, which obeys Hamil-
ton’s multiplication rules

𝒊𝒋 = 𝒌 = −𝒋𝒌, 𝒋𝒌 = 𝒊 = −𝒌𝒋, 𝒌𝒊 = 𝒋 = −𝒊𝒌, (2.2)

𝒊2 = 𝒋2 = 𝒌2 = 𝒊𝒋𝒌 = −1. (2.3)

The quaternion conjugate is defined by

𝑞 = 𝑟0 − 𝒊𝑟1 − 𝒋𝑟2 − 𝒌𝑟3 , (2.4)

which is an anti-involution, i.e., 𝑞 = 𝑞, 𝑝+ 𝑞 = 𝑝 + 𝑞, and 𝑞𝑝 = 𝑝 𝑞. The norm of
a quaternion is defined as

∣𝑞∣ = √𝑞𝑞 =
√

𝑟20 + 𝑟21 + 𝑟22 + 𝑟23 . (2.5)

Using the conjugate and norm of 𝑞, one can define the inverse of 𝑞 ∈ ℍ ∖ {0} as

𝑞−1 = 𝑞
/
∣𝑞∣2. (2.6)

Two classical operators on quaternions are the vector- and scalar-part, 𝑉 [.] and
𝑆[.], respectively; these are defined as

𝑉 [𝑞] = 𝒊𝑟1 + 𝒋𝑟2 + 𝒌𝑟3, 𝑆 [𝑞] = 𝑟0. (2.7)

2.2. Useful Subsets

Various subsets of the quaternions are of interest and used repeatedly throughout
this work. The 3-vector subset of ℍ is the set of pure quaternions defined as

𝑉 [ℍ] = {𝑞 = 𝒊𝑟1 + 𝒋𝑟2 + 𝒌𝑟3 ∈ ℍ } . (2.8)

The set of pure, unit length quaternions is denoted 𝕊3
ℍ
, i.e.,

𝕊3
ℍ =

{
𝝁 = 𝒊𝑟1 + 𝒋𝑟2 + 𝒌𝑟3 ∈ ℍ ∣ 𝑟21 + 𝑟22 + 𝑟23 = 1

}
. (2.9)
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Each element of 𝕊3
ℍ
creates a distinct copy of the complex numbers because 𝝁2 =

−1, that is, each creates an injective ring homomorphism from ℂ to ℍ. So, for
each 𝝁 ∈ 𝕊3

ℍ
, we associate a complex sub-field of ℍ denoted

ℂ𝝁 =
{
𝛼+ 𝛽𝝁; ∣ 𝛼, 𝛽 ∈ ℝ,𝝁 ∈ 𝕊3

ℍ

}
. (2.10)

2.3. Useful Algebraic Equations

In various quaternion equations the non-commutativity of the multiplication causes
difficulty, however, there are algebraic forms which assist in making simplifications.
The following three defined forms appear to be the most useful.

Definition 2.1 (Even-Odd Form). Every 𝑓 : ℝ2 → ℍ can be split into even and
odd parts along the 𝑥- and 𝑦-axis as

𝑓 (𝑥, 𝑦) = 𝑓ee (𝑥, 𝑦) + 𝑓eo (𝑥, 𝑦) + 𝑓oe (𝑥, 𝑦) + 𝑓oo (𝑥, 𝑦) (2.11)

where 𝑓eo denotes the part of 𝑓 that is even with respect to 𝑥 and odd with respect
to 𝑦, etc., given as

𝑓ee (𝑥, 𝑦) =
1
4 (𝑓 (𝑥, 𝑦) + 𝑓 (−𝑥, 𝑦) + 𝑓 (𝑥,−𝑦) + 𝑓 (−𝑥,−𝑦)) ,

𝑓eo (𝑥, 𝑦) =
1
4 (𝑓 (𝑥, 𝑦) + 𝑓 (−𝑥, 𝑦)− 𝑓 (𝑥,−𝑦)− 𝑓 (−𝑥,−𝑦)) ,

𝑓oe (𝑥, 𝑦) =
1
4 (𝑓 (𝑥, 𝑦)− 𝑓 (−𝑥, 𝑦) + 𝑓 (𝑥,−𝑦)− 𝑓 (−𝑥,−𝑦)) ,

𝑓oo (𝑥, 𝑦) =
1
4 (𝑓 (𝑥, 𝑦)− 𝑓 (−𝑥, 𝑦)− 𝑓 (𝑥,−𝑦) + 𝑓 (−𝑥,−𝑦)) .

(2.12)

Definition 2.2 (Symplectic Form [3]). Every 𝑞 = 𝑟0 + 𝒊𝑟1 + 𝒋𝑟2 + 𝒌𝑟3 ∈ ℍ can be
rewritten in terms of a new basis of operators {𝝁1,𝝁2,𝝁3} as

𝑞 = 𝑟′0 + 𝝁1𝑟
′
1 + 𝝁2𝑟

′
2 + 𝝁3𝑟

′
3 = (𝑟′0 + 𝝁1𝑟

′
1) + (𝑟′2 + 𝝁1𝑟

′
3)𝝁2 , (2.13)

where 𝝁1𝝁2 = 𝝁3, 𝝁1,2,3 ∈ 𝕊3
ℍ
, hence they form an orthogonal triad.

Remark 2.3. The mapping {𝑟1, 𝑟2, 𝑟3} → {𝑟′1, 𝑟′2, 𝑟′3} is a change in basis from
{𝒊, 𝒋,𝒌} to {𝝁1,𝝁2,𝝁3} via

𝑟′0 = 𝑟0, 𝑟′𝑛 = − 1
2 (𝑉 [𝑞]𝝁𝑛 + 𝝁𝑛𝑉 [𝑞]) , 𝑛 = {1, 2, 3} . (2.14)

Remark 2.4. The symplectic form essentially decomposes a quaternion with re-
spect to a specific complex sub-field. That is

𝑞 = (𝑟′0 + 𝝁1𝑟
′
1) + (𝑟′2 + 𝝁1𝑟

′
3)𝝁2 = 𝑐1 + 𝑐2𝝁2 , (2.15)

where 𝑐1,2 ∈ ℂ𝝁1
. The author coined the terms simplex and perplex parts of 𝑞, for

𝑐1 and 𝑐2, respectively.

Remark 2.5. The symplectic form works for any permutation of the basis
{𝝁1,𝝁2,𝝁3} so that the simplex and complex parts can be taken from any complex
sub-field ℂ𝝁𝑛

Further, the swap rule applies to the last term, i.e., 𝑐2𝝁2 = 𝝁2𝑐2,
where the over bar denotes both quaternion and complex sub-field conjugation.
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Definition 2.6 (Split Form [7]). Every 𝑞 ∈ ℍ can be split as

𝑞 = 𝑞+ + 𝑞−, 𝑞± = 1
2 (𝑞 ± 𝝁1𝑞𝝁2) , (2.16)

where 𝝁1𝝁2 = 𝝁3, and 𝝁1,2,3 ∈ 𝕊3
ℍ
.

Remark 2.7. The split form allows for the explicit ordering of factors with respect
to the operators. So, for example, 𝑞 = 𝑟0 + 𝝁1𝑟1 + 𝝁2𝑟2 + 𝝁3𝑟3 becomes

𝑞± = {(𝑟0 ± 𝑟3) + 𝝁1 (𝑟1 ± 𝑟2)} 1± 𝝁3

2

=
1± 𝝁3

2
{(𝑟0 ± 𝑟3)− 𝝁2 (𝑟1 ± 𝑟2)} . (2.17)

Euler’s formula holds for quaternions, so any unit length quaternion can be
written as cos 𝑎+𝝁 sin 𝑎 = 𝑒𝝁𝑎, for 𝑎 ∈ ℝ and 𝝁 ∈ 𝕊3

ℍ
. Here 𝝁 is referred to as the

(Eigen-) axis and 𝑎 as the (Eigen-) phase angle. Although in general 𝑒𝑞 𝑒𝑝 ∕= 𝑒𝑞+𝑝

for 𝑝, 𝑞 ∈ ℍ, their exponential product is a linear combination of exponentials of
the sum and difference of their phase angles. This can be written in two ways as
shown in the following two propositions.

Proposition 2.8 (Exponential Split). Let 𝝁1,2 ∈ 𝕊3
ℍ
and 𝑎, 𝑏 ∈ ℝ, then

𝑒𝝁1𝑎𝑒𝝁2𝑏 = 𝑒𝝁1(𝑎−𝑏) 1 + 𝝁3

2
+ 𝑒𝝁1(𝑎+𝑏) 1− 𝝁3

2
(2.18)

and

𝑒𝝁1𝑎𝑒𝝁2𝑏 =
1 + 𝝁3

2
𝑒𝝁2(𝑏−𝑎) +

1− 𝝁3

2
𝑒𝝁2(𝑏+𝑎) , (2.19)

where 𝝁1𝝁2 = 𝝁3 and 𝝁3 ∈ 𝕊3
ℍ
.

Proof. Application of split form to the exponential product. □

Proposition 2.9 (Exponential Modulation). Let 𝝁1,2 ∈ 𝕊3
ℍ
and 𝑎, 𝑏 ∈ ℝ, then

𝑒𝝁1𝑎𝑒𝝁2𝑏 = 1
2

(
𝑒𝝁1(𝑎+𝑏) + 𝑒𝝁1(𝑎−𝑏)

)
− 1

2𝝁1

(
𝑒𝝁1(𝑎+𝑏) − 𝑒𝝁1(𝑎−𝑏)

)
𝝁2 (2.20)

and

𝑒𝝁1𝑎𝑒𝝁2𝑏 = 1
2

(
𝑒𝝁2(𝑏+𝑎) + 𝑒𝝁2(𝑏−𝑎)

)
− 1

2𝝁1

(
𝑒𝝁2(𝑏+𝑎) − 𝑒𝝁2(𝑏−𝑎)

)
𝝁2 . (2.21)

Proof. Direct application of Euler’s formula and trigonometric identities. □

Remark 2.10. The sandwich terms (i.e., 𝝁1(.)𝝁2) in the exponential equations
introduce 4-space rotations into the interpretation of the product [1]. For if 𝑝 =
𝝁1𝑞𝝁2, then 𝑝 is a rotated version of 𝑞 about the (𝝁1,𝝁2)-plane by 𝜋

2 .
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3. Quaternion Fourier Transforms

The purpose of this section is to enumerate a list of possible definitions for a quater-
nion Fourier transform. This is followed by a discussion regarding various operator
properties used in the engineering fields that require simple Fourier transform pairs
between the non-transformed operation and the equivalent Fourier domain oper-
ation, i.e., the so-called operator pairs as seen in most engineering textbooks on
Fourier analysis. Finally, a discussion on how the inter-relationship between QFT
definitions are explored, not so as to reduce them to a single canonical form, but
to provide the investigator a tool to cross between definitions when necessary so
as to gain insight into operator properties.

3.1. Transform Definitions

Although there has been much use of the QFT forms currently in circulation, there
are however more available. Not all ‘degrees-of-freedom’ have been exploited. The
non-commutativity of the quaternion multiplication gave rise to the left- and right-
handed QFT kernels. The infinite number of square-roots of −1 (the cardinality of
𝕊ℍ) gave rise to the two-sided, or sandwiched kernel. One concept left unexplored
is the implication of the exponential product of two quaternions, i.e., 𝑒𝑝𝑒𝑞 ∕= 𝑒𝑝+𝑞.
When this is also taken into account, the list expands to eight distinct QFTs as
enumerated in Table 1.

Table 1. QFT kernel definitions for 𝑓 : ℝ2 → ℍ.

Left Right Sandwich

Single-axis 𝑒−𝝁1(𝜔𝑥+𝝂𝑦) 𝑓(.) 𝑓(.) 𝑒−𝝁1(𝜔𝑥+𝝂𝑦) 𝑒−𝝁1𝜔𝑥 𝑓(.) 𝑒−𝝁1𝝂𝑦

Dual-axis 𝑒−(𝝁1𝜔𝑥+𝝁2𝝂𝑦) 𝑓(.) 𝑓(.) 𝑒−(𝝁1𝜔𝑥+𝝁2𝝂𝑦) –

Factored 𝑒−𝝁1𝜔𝑥𝑒−𝝁2𝝂𝑦 𝑓(.) 𝑓(.) 𝑒−𝝁1𝜔𝑥𝑒−𝝁2𝝂𝑦 𝑒−𝝁1𝜔𝑥 𝑓(.) 𝑒−𝝁2𝝂𝑦

Depending on the value space of 𝑓(𝑥, 𝑦), the available number of distinct
QFT forms changes. Table 1 shows the options when 𝑓 : ℝ2 → ℍ. However, if
𝑓 : ℝ2 → ℝ, then all chirality options (left, right, and sandwiched) collapse to the
same form, leaving three distinct choices: single-axis and factored and un-factored
dual-axis forms.

If neither 𝑥 nor 𝑦 are time-like, so that causality of the solution is not a
factor, then the number of given QFTs doubles. Variations created by conjugat-
ing the quaternion-exponential kernel of both the forward and inverse transform
are usually a matter of convention – the signs must be opposites. For non-causal
systems, however, the sign on the kernel can be taken both ways; each defining
its own forward transform from the spatial to spatial-frequency domain. To dis-
tinguish the two versions of the forward transform, one is called forward the other
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reverse. Of course, the inverse transform is still obtained by conjugating the cor-
responding forward (or reverse) kernel. Hence, one may define the single-axis, left-
and right-sided, forward and reverse transforms as follows1.

Definition 3.1 (Single-axis, Left-sided QFT). The single-axis, left-sided, forward
(ℱ+𝐿) and reverse (ℱ−𝐿) QFTs are defined as

ℱ±𝐿 [𝑓 (𝑥, 𝑦)] =

∫∫
ℝ2

𝑒∓𝝁1(𝜔𝑥+𝜈𝑦)𝑓 (𝑥, 𝑦) 𝑑𝑥𝑑𝑦 =𝐹±𝐿 [𝜔, 𝜈] . (3.1)

Definition 3.2 (Single-axis, Right-sided QFT). The single-axis, right-sided, forward
(ℱ+𝑅) and reverse (ℱ−𝑅) QFTs are defined as

ℱ±𝑅 [𝑓 (𝑥, 𝑦)] =

∫∫
ℝ2

𝑓 (𝑥, 𝑦) 𝑒∓𝝁1(𝜔𝑥+𝜈𝑦)𝑑𝑥𝑑𝑦 =𝐹±𝑅 [𝜔, 𝜈] . (3.2)

All of the entries in Table 1 exploit the fact that unit length complex numbers
act as rotation operators within the complex plane. There is, however, another
rotation operator – the 3-space rotation operator for which quaternions are famous.
Table 2 lists additional definitions under the provision that 𝑓 takes on values
restricted to 𝑉 [ℍ]. Note the factor of 1

2 in the kernel exponent, this is included so
that the frequency scales between the various definitions align.

Table 2. QFT kernel definitions exclusively for 𝑓 : ℝ2 → 𝑉 [ℍ].

3-Space Rotator

Single-axis 𝑒−𝝁1𝜔𝑥/2 𝑓(.) 𝑒+𝝁1𝜈𝑦/2

Dual-axis 𝑒−(𝝁1𝜔𝑥+𝝁2𝜈𝑦)/2 𝑓(.) 𝑒+(𝝁1𝜔𝑥+𝝁2𝜈𝑦)/2

Dual-axis, factored 𝑒−𝝁1𝜔𝑥/2𝑒−𝝁2𝜈𝑦/2 𝑓(.) 𝑒+𝝁2𝜈𝑦/2𝑒+𝝁1𝜔𝑥/2

Taking all these permutations in mind, one arrives at 22 unique QFT defini-
tions.

3.2. Functional Relationships

There are several properties used in complex Fourier transform (CFT) analysis that
one hopes will carry over to the QFT in some fashion. These are listed in Table
3 from which we will discuss the challenges which arise in QFT analysis. In what
follows let 𝑓 (𝑥, 𝑦)⇔ 𝐹 [𝜔, 𝜈] denote transform pairs, i.e., ℱ [𝑓 (𝑥, 𝑦)] = 𝐹 [𝜔, 𝜈] is
the forward (or reverse) transform and ℱ−1 [𝐹 (𝜔, 𝜈)] = 𝑓 (𝑥, 𝑦) is its inversion.

Inversion. Every transform should be invertible. Although this seems obvious,
there are instances where a given transform is not. For example, if the re-
striction of 𝑓 : ℝ2 → 𝑉 [ℍ] were not imposed on the inputs of Table 2, then

1Note, that in (3.1) and (3.2) the arguments 𝑥 and 𝑦 of 𝑓 in ℱ±𝐿,𝑅 [𝑓 (𝑥, 𝑦)] are shown for clarity,

but are actually dummy arguments, which are integrated out. A more mathematical notation
would be ℱ±𝐿,𝑅{𝑓}(𝜔, 𝜈) = 𝐹±𝐿,𝑅(𝜔, 𝜈).
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Table 3. Fourier transform ℱ properties. [𝛼, 𝛽, 𝛾, 𝛿 ∈ ℝ]

Property Definition

Inversion ℱ−1 [ℱ [𝑓 (𝑥, 𝑦)]] = 𝑓 (𝑥, 𝑦)

Linearity 𝛼𝑓(𝑥, 𝑦) + 𝛽𝑔(𝑥, 𝑦)

Complex Degenerate (𝝁1 = 𝒊 and 𝑓 : ℝ2 → ℂ𝒊) → (QFT∼=CFT)

Convolution 𝑓 ∘ 𝑔(𝑥, 𝑦) = (?)

Correlation 𝑓 ★ 𝑔(𝑥, 𝑦) = (?)

Modulation 𝑒𝝁1𝜔0𝑥𝑓(.), 𝑒𝝁2𝜔0𝑥𝑓(.), 𝑓(.)𝑒𝝁1𝜈0𝑦, 𝑓(.)𝑒𝝁2𝜈0𝑦, etc.

Scaling 𝑓(𝑥/𝛼, 𝑦/𝛽)

Translation 𝑓(𝑥− 𝑥0, 𝑦 − 𝑦0)

Rotation 𝑓(𝑥 cos𝛼− 𝑦 sin𝛼, 𝑥 sin𝛼+ 𝑦 cos𝛼)

Axis-reversal 𝑓(−𝑥, 𝑦), 𝑓(𝑥,−𝑦), 𝑓(−𝑥,−𝑦)

Re-coordinate 𝑓(𝛼𝑥+ 𝛽𝑦, 𝛾𝑥+ 𝛿𝑦)

Conjugation 𝑓(𝑥, 𝑦)

Differentials ∂
∂𝑥 ,

∂
∂𝑦 ,

∂2

∂𝑥∂𝑦 , etc.

every transform of that table would cease to be invertible. This is because any
real-valued function, or the scalar part of full quaternion valued functions,
commute with the kernel factors which then vanish from under the integral.

Linearity. 𝛼𝑓(𝑥, 𝑦)+𝛽𝑔(𝑥, 𝑦)⇔ 𝛼𝐹 [𝜔, 𝜈]+𝛽𝐺[𝜔, 𝜈] where 𝛼, 𝛽 ∈ ℝ. A quick check
verifies that this property holds for all proposed QFT definitions.

Complex Degenerate. For the single-axis transforms, if 𝝁1 = 𝒊 and 𝑓 : ℝ2 → ℂ𝒊,
then the QFT should ideally degenerate to the twice iterated complex Fourier
transform. This degenerate property cannot apply to the dual axis, factored
forms of Tables 1 and 2 since if 𝝁1 = 𝝁2 = 𝒊, these forms reduce to their
single-axis versions.

Convolution (Faltung) theorem. Rarely does the standard, complex transform type
pair 𝑓 ∘ 𝑔 (𝑥, 𝑦) ⇔ 𝐹 [𝜔, 𝜈]𝐺 [𝜔, 𝜈] exist in such a simple form for the QFT.
Even the very definition of convolution needs an update since 𝑓 ∘ 𝑔 ∕= 𝑔 ∘ 𝑓
when 𝑓 and 𝑔 are ℍ-valued. The definition is altered again based on which of
the two functions is translated, i.e., is the integrand 𝑓(𝑥 − 𝑥′, 𝑦 − 𝑦′)𝑔(𝑥, 𝑦)
or 𝑓(𝑥, 𝑦)𝑔(𝑥−𝑥′, 𝑦− 𝑦′). This gives rise to at least four distinct convolution
definitions. This will also alter the spectral operator pair.

Further, if 𝑓 is an input function, then 𝑔 is typically related to the
impulse response of a system. But, if 𝑔 : ℝ2 → 𝑉 [ℍ], is a single impulse
response sufficient to describe such a system? Or does it take at least two
orthogonally oriented impulses, say 𝝁1𝛿(𝑥, 𝑦) and 𝝁2𝛿(𝑥, 𝑦), where 𝝁1 ⊥ 𝝁2

and 𝛿(𝑥, 𝑦) is the Dirac delta function?
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Correlation. Consider the correlation definition of two ℝ-valued functions 𝑓 and
𝑔 (let 𝑓, 𝑔 : ℝ→ ℝ for simplicity of discussion)

𝑓 ★ 𝑔 (𝑡) =

∫
ℝ

𝑓 (𝜏) 𝑔 (𝜏 − 𝑡) 𝑑𝜏 =

∫
ℝ

𝑓 (𝜏 + 𝑡) 𝑔 (𝜏) 𝑑𝜏, (3.3)

where substituting 𝜏 − 𝑡 = 𝜏 ′ yields the second form. For the correlation of
real-valued functions this is entirely sufficient.

However, for ℂ-valued functions a conjugation operation is required to
ensure the relation of the autocorrelation functions (𝑓 ★ 𝑓) to the power
spectrum as required by the Wiener-Khintchine theorem. This effectively
ensures that the power spectrum of a complex auto-correlation is ℝ-valued.
The complex extension to the cross-correlation function can then be given as

𝑓 ★ 𝑔 (𝑡) =

∫
ℝ

𝑓 (𝜏) 𝑔 (𝜏 − 𝑡) 𝑑𝜏 , (3.4)

or alternatively as

𝑓 ★ 𝑔 (𝑡) =

∫
ℝ

𝑓 (𝜏) 𝑔 (𝜏 + 𝑡) 𝑑𝜏 . (3.5)

In general, the literature does not give significance to the direction of the
shifted signal (𝜏 ± 𝑡). However, in the case of vector correlation matching
problems, such as colour image registration, direction is fundamental.

Taking this into consideration, for ℍ-valued functions the equivalent
correlation could be either

𝑓 ★ 𝑔 (𝑥, 𝑦) =

∫
ℝ2

𝑓 (𝑥′, 𝑦′) 𝑔 (𝑥′ − 𝑥, 𝑦′ − 𝑦)𝑑𝑥′𝑑𝑦′, (3.6)

or

𝑓 ★ 𝑔 (𝑥, 𝑦) =

∫
ℝ2

𝑓 (𝑥′ + 𝑥, 𝑦′ + 𝑦) 𝑔 (𝑥′, 𝑦′)𝑑𝑥′𝑑𝑦′, (3.7)

depending on which shift direction is required. For more details see [9, 4].
Note that the correlation result is not necessarily ℝ-valued.

Modulation. There are multiple types of frequency modulation that need to be
addressed. The modulating exponential can be applied from the left or right,
can be driven as a function of either input parameter (i.e., 𝑥 or 𝑦), and
be pointing along one of the kernel axes (i.e., 𝝁1 or 𝝁2). Some options are
detailed in the Karnaugh map of Table 4.

In summary, when addressing the QFT operator properties one often needs
to regress back to the basic operator definitions and their underlying assumptions,
then verify they are still valid for generalization to quaternion forms. Either the
operator definition itself needs to be modified (as in the case of correlation) or
the number of permutations on the definition increases (as in convolution and
modulation).
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Table 4. Frequency Modulations

Left Right

𝑥
𝑒𝝁2𝜔0𝑥𝑓(.) 𝑓(.)𝑒𝝁2𝜔0𝑥 𝝁2

𝑒𝝁1𝜔0𝑥𝑓(.) 𝑓(.)𝑒𝝁1𝜔0𝑥

𝝁1

𝑦
𝑒𝝁1𝝂0𝑦𝑓(.) 𝑓(.)𝑒𝝁1𝝂0𝑦

𝑒𝝁2𝝂0𝑦𝑓(.) 𝑓(.)𝑒𝝁2𝝂0𝑦 𝝁2

3.3. Relationships between Transforms

At the heart of all methods for determining inter-relationships between various
QFTs is a decomposing process, of either the input function 𝑓(.) or the exponential-
kernel, so that their parts can be commuted into an alternate QFT form. Ell and
Sangwine [5] used the symplectic form to link the single-axis, left and right, forward
and reverse forms of the QFT via simplex and perplex complex sub-fields. Yeh
[10] reworked these relationships and made further connections to the dual-axis,
factored form QFT, but instead used even-odd decomposition of the input function.
This approach essentially split each QFT into cosine and sine QFTs. Hitzer’s [7]
approach was to use the split form to factor the input function and kernel into
factors with respect to the hypercomplex operators, so as to manipulate the result
to an alternate QFT.

The inter-relationships between the various transform definitions not only
give insight into the subsequent Fourier analysis, they are also used to simplify
operator pairs. For example, the inter-relationships between the single-axis forms
as given in Definitions 3.2 and 3.1 were used with the symplectic form (Def. 2.2)
by Ell and Sangwine [5] to arrive at operator pairs for the convolution operator.
Let the single-sided convolutions be defined as follows.

Definition 3.3 (Convolution [5]). The left- and right-sided convolution are defined,
respectively, as

ℎ𝐿 ∘ 𝑓 (𝑥, 𝑦) =

∫∫
ℝ2

ℎ𝐿 (𝑥′, 𝑦′) 𝑓 (𝑥− 𝑥′, 𝑦 − 𝑦′) 𝑑𝑥′𝑑𝑦′,

𝑓 ∘ ℎ𝑅 (𝑥, 𝑦) =

∫∫
ℝ2

𝑓 (𝑥− 𝑥′, 𝑦 − 𝑦′)ℎ𝑅 (𝑥′, 𝑦′) 𝑑𝑥′𝑑𝑦′.
(3.8)

Now, let the QFT of the input function 𝑓 be symplectically decomposed with
respect to 𝝁1 as

ℱ±𝐿 [𝑓 (𝑥, 𝑦)] = 𝐹±𝐿1 [𝜔, 𝜈] + 𝐹±𝐿2 [𝜔, 𝜈]𝝁2

and

ℱ±(𝐿,𝑅) [ℎ𝑅 (𝑥, 𝑦)] = 𝐻
±(𝐿,𝑅)
𝑅 [𝜔, 𝜈] ,
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then the right-convolution operator can be written as

ℱ±𝐿 [𝑓 ∘ ℎ𝑅] (𝜔, 𝜈) = 𝐹±𝐿1 [𝜔, 𝜈]𝐻±𝐿
𝑅 [𝜔, 𝜈] + 𝐹±𝐿2 [𝜔, 𝜈]𝝁2𝐻

∓𝐿
𝑅 [𝜔, 𝜈] .

Note the use of both forward and reverse QFT transforms. Such a compact oper-
ator formula would not be possible without the intermixing of QFT definitions.

4. Conclusions

The three currently defined quaternion Fourier transforms have been shown to
be incomplete. By careful consideration of the underlying reasons for those three
forms, this list has been extended to no less than twenty-two unique definitions.
Future work may show that some of these definitions hold little of practical value
or, without loss of generality, they may be reduced to but a few. The shift from
iterated, channel-wise vector analysis to gestalt vector-image and vector-signal
analysis shows promise. This promise raises several challenges:

1. Are there other, more suitable quaternion Fourier transform definitions?
2. Can these transforms be reduced to a salient few?
3. Are there additional decomposition methods, like the even-odd, split, and

symplectic discussed herein, which can be used?
4. All the decomposition methods used to simplify the operator formulas are

at odds with the very gestalt, holistic approach espoused, can this be done
otherwise?

These questions will be the focus of future efforts.
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