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Preface

1. Valid Reasoning and Formalization

Deductive logic, all of us would agree, is the study of valid reasoning. Valid reasoning
is the process of extracting certain information from given information. Logical systems
are invented to make this process almost mechanical so that we may adopt them to save
time and effort as well as to carry out valid reasoning in an accurate way. Realizing that
mechanical processes go hand in hand with formalization, we should not be surprised to
encounter much formalism in the literature on logic. At the same time, one could be in-
trigued by the following observation: The formalism studied in the logic literature is quite
homogeneous—limited to almost only symbolic formal systems. Why does symbolization
almost exclusively dominate the enterprise of formalism in logic? This is our opening
question. We do not even pretend to answer the question decisively, but only aspire to
reveal some important aspects about valid reasoning in terms of different forms of repre-
sentation and to highlight some of the main motivations behind the project of the current
volume.

One might be puzzled by the opening question itself, if one assumes that formalization
is identical with symbolization. According to this outlook, symbolic systems are the only
kind of medium to formalize our valid reasoning processes, and hence, there is no mystery
about the homogeneity of logical systems. Let us examine this view by breaking it into
two steps: To explore (i) the relation between valid reasoning and symbols/diagrams and
(ii) the relation between formalization and symbols/diagrams. After outlining theoretical
issues involved in each step, we will illustrate our positions about (i) and (ii) in the second
and the third sections, respectively.

First, is valid reasoning (which is the primary mission of logic) itself tied up with
a certain type of medium, that is, symbolic representation? Hence, is it the case that
information-extraction is carried out only through symbol-manipulation? If so, it would
not be surprising that formalization, which aims to mechanize valid reasoning process,
should be limited to symbolic systems only. However, if valid reasoning itself does not
dictate a certain form of medium, there would be no prima facie reason to equate formal-
ization and symbolization. For now, we would simply like to point to examples in our
daily life reasoning process: Maps, pictures, charts, and diagrams, as well as sentences
and symbols are all used to carry out reasoning. Of course, pictures may be misleading.
But, so may sentences. In the next section, we present extensive and historical examples

v



vi Preface

to illustrate visual reasoning, that is, how valid reasoning is carried out by the use of
diagrams. Thus, we would like to conclude that symbols are one of the main methods
adopted in carrying out valid reasoning, but are far from being the only method. Then,
why have symbols been the almost exclusive medium of formal systems?

What is the essence of formal systems? Not being a case-by-case approach, formaliza-
tion aims to mechanize processes so that errors may be eliminated and at the same time
effectiveness may be achieved. Indeed, accuracy and efficiency are the goals of a formal
system. A system that does not assure accuracy would be useless. On the other hand, if
we cared only about accuracy, that is we could take as much time as we want and we
could rely on processes as elaborate as we want, then there would be no point of having a
system, either. We explore further how these two desiderata are obtained so that we may
get to the essence of formalization. Then, our opening question about the dominance of
symbolic formal systems might find some answer.

Let us start with the accuracy desideratum. An error, we say, takes place in the case
of deductive reasoning when we (wrongly) infer a false piece of information from given
true information. In order to secure accuracy, we want to have a mechanism to prevent a
move from true to false information. An obvious obstacle to this enterprise is that there is
an infinite number of cases to get to falsity from truth. How do we come up with a way
to predict and prevent these non-denumerably infinite cases? This is a dilemma almost
every system has to face, and at the same time it is precisely the reason why we desire to
have a system, instead of case-by-case approaches. Another perplexing element is how to
deal with semantic values, that is, truth and falsity, in a system. To sum up: How can we
manage an infinite number of semantic relation cases at a mechanical level?

A clever solution to this challenge is to stipulate a finite number of permissible syntac-
tic manipulations. Only those permissible inferences are allowed in a system, and since
permissible steps are finite, a system can block an error by checking each move against a
finite set of rules. It should be noted that these are syntactic transformations, not seman-
tic ones. How do we know that a finite number of syntactic manipulations guarantee the
accuracy that a formal system strives for? First, we would like to determine how a finite
number of rules conquer an infinite number of valid/non-valid reasoning cases. Second,
we need to theorize two-way traffic between syntax and semantics. Valid reasoning is un-
derstood in terms of semantic concepts, that is, true or false. At the same time, permissible
inference is defined in terms of permissible syntactic alteration.

These questions demand a meta-level of justification: The soundness and complete-
ness proofs of a system (semi-)resolve the tension between infinity and finiteness and at
the same time uphold a legitimate exchange between syntax and semantics. If a system
is sound, any inference obtained by its rules is valid, and if a system is complete, any
valid inference is obtainable in terms of syntactic inference. In spite of a conceptual dis-
crepancy, as far as the extension goes, syntactic and semantic inferences coincide. Here
is a triumph of formal systems: A finite number of mechanical syntactic manipulations
conquered the infinite cases of semantic territory.

Let us stop here to relate the above discussions about accuracy to our question—the
relation between formalization and symbols. In order to achieve the accuracy desideratum
all we need is to prove that each permissible syntactic inference is a semantically valid
step. There is no constraint on a medium of a formal system, as long as we can establish
syntax and semantics in a non-ambiguous way. Are symbols the only kind of medium
for which we can set up syntax? Many might think so, since we are very much used
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to thinking about syntax only in terms of sentences. On the other hand, since we have
been using many different forms of representation, e.g. sentences, pictures, and sounds,
to carry out reasoning, obviously semantics is not limited to particular kinds of media.
However, some might argue that while ordinary piecemeal reasoning can be carried out in
multi-representational forms, only symbolic systems allow systematic formal semantics.

We claim syntax and semantics are not bound to a certain form of representation at
all. Pictures, just like sentences, can have their own syntax, and as long as they represent
something, semantics can be defined as well. Syntax should tell us what are the vocabu-
lary, the well-formed units, and the transformation rules. It is often the case that we judge
whether a given representation is symbolic or diagrammatic depending on what its vo-
cabulary is. In the case of Euler representation, we see circles as its vocabulary, and we
therefore call it diagrammatic. Likewise, almost every logical system in logic textbooks
adopts symbols, e.g., A, B, x, y, z, ∀, ∃, as vocabulary, and such systems are therefore
considered symbolic systems. Well-formedness of a unit is defined so that certain kinds
of arrangement, either spatial or linear, are acceptable in a system. Transformation rules
can be stipulated as to which manipulations between two well-formed units are allowed
in a system. Semantics, again, does not have to be tied to one form or another to carry
out the job. Hence, there is nothing intrinsic about symbols or diagrams in terms of the
feasibility of setting up syntax and semantics. Now, our opening question—the exclusive-
ness of symbolic formalization—has become even more mysterious. The third section
revisits this mystery and at the same time presents a relatively recent movement for visual
formalization. But first, more historical visual reasoning considerations are in order.

2. Valid Reasoning and Diagrams

A look at historical literature shows that diagrams seem to have always been used by lo-
gicians. However, uses vary. Of course, visual devices have long and often been used in
educational contexts as heuristic and mnemonic tools. For instance, logic students have
for centuries been familiar with squares of opposition and logic trees. These and similar
structures offer in a glance a survey of the relations between propositions (Fig. 1) or illus-
trate the working of a logic process such as dichotomy division (Fig. 2). As such, they do
usually accompany logical arguments developed in words or with the appeal to symbolic
notation. However, the widespread use of such devices should not make us forget that
other schemes have also been designed to carry out logical reasoning independently. Such
diagrams, known to John Venn as analytical diagrams, were particularly appreciated in
the 18th and 19th centuries, a period which could fairly be considered as the golden age
of logic diagrams. Interestingly, this period also witnessed a growing interest in symbolic
notation.

Both diagrammatic and symbolic methods were widely used during that period to solve
logical problems. Broadly speaking, a syllogistic problem was understood as checking the
validity of an inference where premises and conclusions were given. In the mid-nineteenth
century, symbolic logicians working under the influence of mathematical practices, tended
rather to offer a set of premises and look for what conclusion(s) is/are to be drawn. In both
situations, logicians invented tools and methods to solve those problems with the appeal of
symbolic, diagrammatic or even sometimes mechanical devices. Leonhard Euler used di-
agrams alone, while George Boole made use of symbols merely. Charles S. Peirce devised
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Fig. 1 Square of opposition

Fig. 2 Logic tree

both symbolic and diagrammatic methods. For the same purpose, Lewis Carroll designed
a board and colored counters that were sold with his books. Some other logicians like
William Stanley Jevons and Allan Marquand invented logic machines too. One appeals to
either method depending on the problem being faced and what sounds convenient. Some-
times, the combination of several methods is also highly appreciated when dealing with
complex problems. Finally, an appeal to more than one method, say both diagrammatic
and symbolic, has proven useful in ascertaining individual results, each method being
carried out independently in order to compare those results with each other.

This account should not be understood as the story of a happy and continuous develop-
ment. Not only were different methods also in rivalry, but within diagrammatic reasoning
itself various schemes were in competition. Of course, diagrams needed to be accurate in
order to enter the contest. However, other criteria were in order as to the efficiency of the
diagrams, the type of information they could represent, their naturalness and the visual
aid they would provide. If we consider the method of representation, one can broadly dis-
tinguish two main types of diagrams. The first method, usually attributed to Euler though
it was known prior to him, aims at representing given information in strictness. For in-
stance, if we were asked to represent the proposition “All x are y”, we need only to draw
a circle x within a circle y (Fig. 3). This way, we do represent what is actually known:
class x is included in class y. However, it might be observed that our diagram represents
x as being strictly included in y, while our proposition holds also for the case where x

and y are identical. In order to represent this potential information, we would do well to
appeal to another method of representation attributed to Venn. The idea is to first represent
all possible relations between terms, then to mark the cells to indicate their state. In the
above proposition, two terms were involved (x and y), which means that there are four



Preface ix

Fig. 3 Euler diagram

Fig. 4 Venn diagram

possible combinations: xy, x not-y, not-x y, not-x not-y, as shown in Fig. 2. These can
be represented with two intersecting circles that divide the space in the desired manner.
Then, the representation of proposition “All x are y” is obtained simply by shading the
compartment x not-y to indicate its emptiness (Fig. 4).

Both diagrams do represent the same proposition “All x are y”. Figure 3 looks more
intuitive, but Fig. 4 is more accurate as it leaves room for the possibility of having classes
x and y be identical. So far we have only represented information with these diagrams.
Solving logic problems requires manipulating information in order to extract a conclusion
from a set of premises. We will not give a detailed account here as such examples will
be found in the chapters of this volume. However, we will explain the general idea for
working such problems. First, we have to represent diagrammatically the propositions
given as premises. Then, we remove the figures (here circles) that correspond to the terms
that we do not want to have in the conclusion. In the case of a syllogism, that would be
the middle term. Consequently, we get a diagram that represents new information as to
the relation between the saved terms. Now, all we have to do is to express that relation in
concrete form in order to tell what the conclusion of the argument is.

In the above example, we appealed to circles in order to represent classes. It must
be noted that other shapes could have been used as well. Actually, linear diagrams have
also been used by logicians and it can be easily shown that their method of representation
might also be recognized as being Euler or Venn types. The same can be said about tabular
diagrams that were praised in the late decades of the 19th century, thanks to their repre-
sentation of a closed universe and to their advantageous use when the number of terms
increases. Of course, when it comes to solving logic problems involving a high number
of terms, say above six terms, diagrams become complex and lose substantially the visual
aid one would expect from such devices. However, this is a practical inconvenience that
should not dispute the theoretical feasibility of solving such problems diagrammatically.
It must also be said here that the problem arises similarly with symbolic methods.

The variety and rivalry of diagrammatic methods that were used throughout the 19th
century should not be considered as a symptom of their ambiguity. Actually, the very same
situation can be observed with symbolic notations, many being aimed by their inventors
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to supersede rival symbolisms. Early notations used by Boole, and his followers Venn and
Jevons, were equational. Later, several inclusional systems were developed by Peirce,
Hugh MacColl and Ernst Schröder. Other logicians such as Carroll and Oscar H. Mitchell
rather favored notations with subscripts. It is interesting to note that even for symbolic
notation, visual properties certainly played a crucial role in their conception, acceptation
or rejection. For instance, Peirce and Schröder’s symbols for inclusion (“ ” and “ ”
respectively) look like a combination of mathematical symbols “=” and “<”. As such,
they suggest that a class is strictly included or is identical to another class the same way a
number is strictly inferior or is equal to another number. In addition, those symbols were
asymmetrical the same way modern notations for implication are. As such, they were
more convenient to represent inclusion than MacColl’s symbol (“:”) which was symmet-
rical. Christine Ladd-Franklin adopted Peirce’s symbol for inclusion, but unlike him, she
preferred to invent new symbols that would be symmetrical for intersection (“∨”) and
exclusion (“∨”).

So far we have argued that both diagrammatic and symbolic methods were known to
logicians and were widely used, together or separately, to solve logic problems. We also
pointed out similarities in their conception, development, use and status in the 19th cen-
tury. Consequently, one legitimately wonders why modern logic turned out to be almost
exclusively symbolic in the 20th century. In the next section, we will briefly provide some
explanations connected to the logical path explored by Gottlob Frege, and subsequently
investigated by Giuseppe Peano and Bertrand Russell. However we would like to end the
present section by recalling that Frege himself appealed to a system of graphs in a way
that does not differ that much from Peirce’s use of existential graphs. These two graph sys-
tems show that diagrammatic representations can be used effectively for advanced logic
systems, beyond the class logics that we discussed throughout this section.

3. Logical Systems and Diagrams

At the end of the first section, we concluded that a formal system itself does not require
any specific kind of representation as long as we can set up its syntax and semantics. In
principle, symbols and diagrams have the same status, it seems. Do we, then, actually have
visual formal systems in a strict sense? The answer is “yes.” Peirce, who was a founder of
modern logic, invented both symbolic and graphic logical systems. John Sowa’s semantic
network is a prime example of how Peirce’s Existential Graphs could be adopted as a for-
mal knowledge representation system. Late in the 20th century, Barwise and Etchemendy
initiated the project of diagrammatic formalization, and much work has been produced
under their leadership. Shin presented a modified version of Venn diagrams as a formal
system equipped with its own syntax and semantics. Just as with symbolic systems, the
soundness and completeness of a diagrammatic system were proved. Subsequently more
diagrams have been formalized and utilized in computer science. Hence, our theoretical
discussions of formalization in the first section have materialized.

This is, however, far from being a satisfactory response to our opening question—Why
does symbolization almost exclusively dominate the enterprise of formalism in logic? On
the contrary, one could be more puzzled. We have shown a persistent practice of visual
reasoning throughout history in the second section, have argued for a theoretical ground
for non-symbolic formal systems in the first section, and have presented diagrammatic
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logical systems in the above. Then, how could we explain the dominance of symbolic
systems over visual systems throughout the 20th century, since modern formal logic was
born? Many have pointed out that there has been a prejudice against diagrams. However,
the existence of a bias does not explain the dominance of symbolic systems but reiterates
it. It would be almost like answering “It is just because I like them” to the question “Why
do you like apples?”

One classic complaint against diagrams is that they are misleading. We can easily find
examples of misleading diagrams in geometric proofs. For example, in the case of prov-
ing a property of a triangle in general the user happens to draw an isosceles triangle and
mistakenly uses in the proof the property that the triangle has equal sides. Hence, many
adopt diagrams only as a heuristic tool, but not as part of a formal proof. This line of
thought, however, misses entirely the main spirit of formalization. As seen in the first
section, a formal system is needed precisely to prevent ambiguity and misleading of our
reasoning steps, by stipulating permissible inference rules. In a sound formal diagram-
matic system there would be no room for misusing diagrams and, hence, diagrams would
not be able to mislead us. Then, why have we seen much more symbolic formalization
than diagrammatic formalization? Is there any obstacle to formalizing diagrams? We have
paved the way to clearing up any theoretical obstacles to formalization of any medium:
Formal syntax and semantics do not have to belong to symbols only. Then, is it a practical
choice of symbolic formalization over diagrammatic formalization? Acknowledging that
this is an extremely important inquiry, we would like to encourage researchers to work on
specific diagrammatic systems so that we may find more fine-grained differences among
various kinds of representation systems. Fortunately, much work has been under way, and
the papers in the current volume are excellent illustrations of the work in this direction.
We applaud each author’s valuable and creative project presented here in the volume.

Witnessing the surge of interest in visual formalization, one cannot help raising the
following question: What is the source of the new movement for visual formalization? We
suspect that this question is the flip side of our opening puzzle about the long-standing
preferred practice of symbolic systems. The dominance of symbols and the new revival
of diagrams are directly related to the two main goals of a formal system mentioned in
the first section—accuracy and efficiency. In the world of mathematics and logic, the turn
of the 20th century brought many surprises, some of which were alarming and quite dev-
astating. Discovering inconsistencies, contradictions and limits of mathematical systems,
scholars made accuracy the top priority of formalization and did everything possible to
avoid any error. In this context, diagrams with their reputation of leading inference astray
could not attract any serious attention, and diagrams were not considered to be something
we could formalize. That is, hyper attention to accuracy along with a slightly misunder-
stood concept of formalization produced a wrong equation between formalization and
symbolization.

If we can explain why accuracy became almost the only desideratum of our formal
disciplines when facing Russell’s paradox, the inconsistency of set theory, different ge-
ometries, incompleteness theorems, etc., we can also explain why the other goal of a
formal system, that is, efficiency, has recently attracted new attention in our efforts at
formalization, in terms of what has been recently pursued in formal systems. Not surpris-
ingly, the age of the computer can easily tell us why efficiency has been highlighted in the
research on formalization. Given more than one logically equivalent system, it is natural
for us to compare their efficiencies and to choose the most efficient system. Unlike with
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accuracy, it is not easy to define what efficiency is and how it might vary depending on
context. We would like to leave this exciting task for further work and discussions.

4. Overview of the Volume

This volume contains 10 essays on visual reasoning with diagrams. These original essays
come from three main sources. First, some essays were presented at the “Logic diagrams”
workshop that took place in Lisbon (Portugal), during the third Universal Logic Congress,
from 22 to 25 April 2010. Second, it happened that the event coincided with the famous
Eyjafjallajökull eruptions in Iceland, which substantially disturbed transportation systems
in Western Europe. This prevented other contributors from attending the workshop. Hap-
pily, some of those contributions are now included in this volume. Finally, further essays
have been collected thanks to a call for papers that was spread in summer 2010. Papers
from these three categories have been reviewed, selected and revised between 2011 and
2012, before being offered here to the reader.

The opening essay by Catherine Legg discusses the complex question of defining what
a logic diagram is. This is a classical problem that all diagram users and scholars have
faced, whether in the domain of logic or not. It might look intuitive in most cases to agree
on whether a given “inscription” on a page is a diagram or not. However, consensus is not
always reached. And even when agreement is obtained, it is not necessarily clear what
makes us consider such a representation to be diagrammatic or not. One thing is for sure:
the sign itself doesn’t suffice to tell what its nature is. If you consider for instance the
sign “=” on a page, it could legitimately be seen as a diagram with two parallel segments.
However, if you add two letters on both sides to get: x = x, then the sign “=” is likely to
be understood as a symbol for equality. In this essay, Legg develops an expressivist view
of logic diagrams and draws on Peirce’s concept on iconicity. Diagrams, as signs, are thus
inspected in their relationship to the objects that they represent, and in the use we make
of them, not just as “pictures on the page”.

The second and third essays in this volume introduce new diagrammatic systems for
syllogistic calculus. Traditionally, solving syllogisms has been a necessary (but not suf-
ficient) test for new schemes that were offered for consideration. Indeed, syllogisms are
often seen as the simplest pieces of formal reasoning. As such, it is expected from any
diagrammatic system to be able to solve such problems, before making further claims.
New diagrammatic systems regularly appear in logical literature. Two such systems are
presented here and are of special interest. The first system, known as Sophie diagrams, is
developed by Richard Bosley who argues that a demonstrative syllogism depends upon its
figure. As such, his diagrams represent syllogistic figures rather than specific syllogisms
proper. Consequently, handling diagrammatically the second and third figures of syllo-
gisms prevents their conversion into the first figure, as is usually done. The second system,
devised by Ruggero Pagnan, seems to combine symbolic and diagrammatic elements, and
is said by its author to incorporate both “a graphical appearance and an algebraic nature”.
Pagnan uses here linear diagrams to support a systematic treatment of syllogistic calculus
and extends them to handle n-term syllogisms and to syllogisms with completed terms.

The fourth and fifth essays explore similar paths as they discuss the use of logic
diagrams for problems that goes beyond traditional syllogistic. In the fourth essay,
Amirouche Moktefi discusses a diagrammatic solution to a 4-term problem provided by
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Lewis Carroll. This example illustrates the difficulties that are raised from working prob-
lems more complex than syllogisms, and also throws some light on what was considered
to be a logic problem for early symbolic logicians. Finally, the fifth essay by Ferdinando
Cavaliere introduces a new diagrammatic scheme of his invention, known as the numer-
ical segment. As it might be guessed from its name, the purpose is to take into account
quantitative considerations as one finds in non-classical logics.

The next essays, sixth and seventh, provide two instances of a formal diagrammatic
system, in the style that has been pursued for about two decades. Indeed, diagram studies
witnessed a revival in recent years, as has been explained in the previous section. Sev-
eral diagrammatic systems have been elaborated, with syntax, semantic and manipulation
rules formally defined, and have been proved to be sound and complete. The sixth essay
by Jørgen Fischer Nilsson provides an example of a diagrammatic system which carefully
pays attention to computing needs, notably for computer assisted reasoning. Nilsson de-
velops a diagrammatic visualization and reasoning language, considering various logical
relationships between classes. For this purpose, he uses diagrams that are transformations
of Euler diagrams, augmented with higraphs. The diagrammatic system presented in the
next essay, the seventh, also makes use of extended diagrams, known as spider diagrams.
This essay, co-authored by Gem Stapleton, John Howse, Simon Thompson, John Taylor
and Peter Chapman, provides an illustration of the type of work carried out within the
Visual Modelling Group (University of Brighton, UK). In this essay, the previously pub-
lished spider diagrams are augmented with constants to mark individuals. The new system
is then proved to be sound, complete and decidable.

The last three essays in this volume might be connected to what has been recently
known as the philosophy of mathematical practice. This new trend aims at paying more
attention to the real practices of mathematicians and logicians, rather than standing with
the classical problems as to the foundations of mathematics and logic alone. In the eighth
essay, Valeria Giardino argues that ambiguity is an inherent feature of diagrams. This
ambiguity should not be tamed because it makes diagrammatic reasoning productive by
opening the way to interpretation and imagination. As such, it is the manipulation prac-
tices shared by the community that fix the meaning of the diagrams on each occasion.

The next two essays continue to consider the role of diagrams in mathematics from
the viewpoint of practices, providing concrete examples from different mathematical dis-
ciplines. In the ninth paper, Zach Weber relies on category theory to look for a mathe-
matical answer to the philosophical question that he is investigating. There, he uses the
idea of natural transformation to describe what is to be considered as a good mathemat-
ical representation, be it a formula or a figure. Finally, in the last paper of this volume,
Mitsuko Wate-Mizuno discusses the development of the diagrams used in graph theory.
She examines Dénes König’s representations in Theorie der endlichen und unendlichen
Graphen (1936) and compares them with his predecessors to provide an account of how
those diagrams evolved and took shape.

We hope that the essays in this volume will convince the reader of the richness and
energy of current research in diagram studies. Contributions to this volume are made by
scholars from various disciplines: philosophy, mathematics, logic, history, etc. As such,
they demonstrate the need and interest in fostering interdisciplinary work. This could be
carried out only by further exchanges and collaborations between scholars from different
disciplines and countries, as is now the case in several international meetings such as the
Diagrams and the Universal Logic congresses. We offer this volume as one further step
in that direction.



xiv Preface

Acknowledgements We would like here to express our thanks to all those who helped
us during the preparation of this volume, notably the authors who contributed to this vol-
ume and the referees who accepted to review the papers. We would like to thank particu-
larly Jean-Yves Béziau for his support both for the organization of the “Logic diagram”
workshop in 2010 and for the publication of this volume in the series of Studies in Univer-
sal Logic which he is editing. Finally, we would like to thank the Birkhäuser team, notably
Barbara Hellriegel and Sonja Gasser, for their help and patience during the preparation of
this volume.

Amirouche Moktefi
Sun-Joo Shin

Strasbourg, France
New Haven, CT, USA



Contents

What is a Logical Diagram? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Catherine Legg

The Geometry of Diagrams and the Logic of Syllogisms . . . . . . . . . . . . . 19
Richard Bosley

A Diagrammatic Calculus of Syllogisms . . . . . . . . . . . . . . . . . . . . . . 33
Ruggero Pagnan

Beyond Syllogisms: Carroll’s (Marked) Quadriliteral Diagram . . . . . . . . . 55
Amirouche Moktefi

A Diagrammatic Bridge Between Standard and Non-standard Logics:
The Numerical Segment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Ferdinando Cavaliere

Diagrammatic Reasoning with Classes and Relationships . . . . . . . . . . . . 83
Jørgen Fischer Nilsson

On the Completeness of Spider Diagrams Augmented with Constants . . . . . 101
Gem Stapleton, John Howse, Simon Thompson, John Taylor, and
Peter Chapman

A Practice-Based Approach to Diagrams . . . . . . . . . . . . . . . . . . . . . 135
Valeria Giardino

Figures, Formulae, and Functors . . . . . . . . . . . . . . . . . . . . . . . . . . 153
Zach Weber

Representation of Graphs in Diagrams of Graph Theory . . . . . . . . . . . . 171
Mitsuko Wate-Mizuno

xv



What is a Logical Diagram?

Catherine Legg

Abstract Robert Brandom’s expressivism argues that not all semantic content may be
made fully explicit. This view connects in interesting ways with recent movements in
philosophy of mathematics and logic (e.g. Brown, Shin, Giaquinto) to take diagrams
seriously—as more than a mere ‘heuristic aid’ to proof, but either proofs themselves,
or irreducible components of such. However what exactly is a diagram in logic? Does
this constitute a cleanly definable semiotic kind? The paper will argue that such a kind
does exist in Charles Peirce’s conception of iconic signs, but that fully understood, logi-
cal diagrams involve a structured array of normative reasoning practices, as well as just a
‘picture on a page’.

Keywords Logic · Mathematics · Diagram · Proof · Icon · Existential graphs ·
Expressivism · Pragmatism · Peirce · Brandom · Ayer

Mathematics Subject Classification Primary 00A66; Secondary 03A05

1 Introduction: 19th Century “Picture Shock”

20th century mainstream analytic philosophy was almost entirely neglectful of diagrams
in its theorizing about semantic content, and proof. It is worth understanding the historical
background to this arguably contingent state of philosophical affairs.

The trend began in mathematics. In the 19th century this field was revolutionized by
an arithmetization movement, and some of the key developments foregrounded ways in
which our “visual expectations in mathematics”1 might deliver the wrong answer about
mathematical fact. A famous example is the claim that a function which is everywhere
continuous must be differentiable, which is in fact false. Attempting to evaluate this using
visual imagination, one may imagine that if a function is continuous then it contains no
‘gaps’ or ‘breaks’, and then one seems to ‘see’ that at some sufficiently fine-grained level
it must present a smooth surface, which would have a gradient, and thus a derivative.
However, to the surprise of many, Weierstrass and Bolzano proved that certain functions
are infinitely finely jagged, yet still gap-free in a way that fits the formal definition of
continuity.2 Another example is whether a 1-dimensional line might fill a 2-dimensional

1This phrase is taken from Marcus Giaquinto [17, p. 3].
2This example is nicely discussed in [17, pp. 3–4], and [22, pp. 3–4].
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region. Any attempt to mentally picture something resembling an infinitely thin thread
unspooling into a finite area and thereby ‘filling it in’ seems to show that the claim is
false, but Peano proved it true.3 Such examples prompted some of the most influential
mathematicians of the 19th century to draw strong morals about the potential for error in
diagrammatic reasoning. As Marcus Giaquinto writes:

Such cases seemed to show not merely that we are prone to make mistakes when thinking
visually. . .but also that visual understanding actually conflicts with the truths of analysis [17,
pp. 4–5].

Hilbert famously wrote, “a theorem is only proved when the proof is completely indepen-
dent of the diagram” [17, p. 8], drawing on an almost identical remark by Moritz Pasch
in his influential Lectures in Modern Geometry (1882). So, remarkably, even the field of
geometry, it came to be seen, needed to be purged of diagrams.4 The end result was a
“prevailing conception of mathematical proof” which John Mumma describes as “purely
sentential”, as follows:

A proof. . .is a sequence of sentences. Each sentence is either an assumption of the proof, or is
derived via sound inference rules from sentences preceding it. The sentence appearing at the end
of the sequence is what has been proven [22, p. 1].

This suspicion of ‘visual expectations’ then flowed into Frege’s work on the foun-
dations of mathematics. Cognizant of the errors which his fellow mathematicians had
learned to skirt, Frege attempted to entirely remove ‘intuition’ from the logic with which
he set to put mathematics on an entirely new and more rigorous foundation. Famously, he
remarked of his own concept-script:

So that nothing intuitive could intrude here unnoticed, everything had to depend on the chain of
inference being free of gaps [16, p. 48].

Frege argued against the empiricism of John Stuart Mill that numbers were not properties
abstracted from the physical world, but definable purely analytically.

Frege in turn was an enormous influence on logical positivism (Carnap studied under
him, for instance), which in turn set the scene for mainstream analytic philosophy’s aims
and methodologies in many ways that are still being worked out today. The movement’s
early strict focus on clarifying meaning owed much to Frege’s vision of an ideal language
all of whose inferential steps are explicitly stated, and use a set of rules specified in ad-
vance.5 Thus A.J. Ayer laid down a strict definition of “literal significance” as confined to
claims which have “factual content” by virtue of offering “empirical hypotheses” [1, p. 2].
Thus, to illustrate by way of a simple example, “The cat is on the mat” is literally signif-
icant because there is a cat-being-on-the-mat type of experience which might be had—or
not—in the relevant situations.

3Discussed in [17, pp. 4–5].
4“A body of work emerged in the late 19th century which grounded elementary geometry in abstract
axiomatic theories. . .This development is now universally regarded as a methodological breakthrough.
Geometric relations which previously were logically free-floating, because they were understood via dia-
grams, were given a firm footing with precisely defined primitives and axioms” [22, p. 6]. Non-Euclidean
geometries are another key example, and I am grateful to an anonymous referee for pointing this out.
5Although transposed into a rigidly empiricist setting which truth be told sits oddly with Frege’s
thinking—and arguably has caused significant problems in the philosophy of mathematics.
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Claims which lack “literal significance” fall into two camps. Either they can be “lit-
erally false” but somehow “the creation of a work of Art” which is gestured towards
as valuable, though Ayer is somewhat vague about how. Or, worse, claims might be
“pseudo-propositions”—disguised nonsense. Any claim lacking literal significance is not
the purview of philosophy [1, p. 2]. It is hard to see how a diagram could offer an empirical
hypothesis, and thus have literal significance in Ayer’s sense. And he briskly dismisses the
idea that a philosopher might be “endowed with a faculty of intellectual intuition which
enabled him to know facts that could not be known through sense-experience” [1, p. 1].
Likewise, the early Carnap [10] claimed that statements were meaningful if syntactically
well-formed and their non-logical terms reducible to observational terms in the natural
sciences.

It is well-known that crisp criteria for what constitutes a genuine empirical hypothe-
sis were much more difficult to find than Ayer imagined they would be. Carnap dropped
back from demanding verifiability to requiring “partial testability” [11], and confirma-
tion became a more and more holistic affair, until finally Quine acknowledged that what
meets the tribunal of experience is in an important sense the whole of science. By way of
consolation for thus sounding verificationism’s death-knell, Quine offered a new criterion
of what might be called ‘factuality’: if we could imagine our science collated and regu-
larized into a single theory expressed in first-order logic, its bound variables would have
values. In a pseudo-science such as witchcraft they would not [33]. Now we can say that
“The cat is on the mat” is factual because in the logical formula ∃x (Cx & Oxm) suitably
interpreted, the variable x binds to George.6

Philosophers’ banishment of diagrams from semantics and theories of inference ar-
guably reached a high-water mark in the 1970s with the publication of Quine’s colleague
Nelson Goodman’s Languages of Art. Here Goodman made an influential argument that
resemblance plays no interesting or important role in signification. Rather, he claimed that
denotation, “is the core of representation and is independent of resemblance” [18, p. 5].
His reasoning was that while the resemblance relation is symmetric (if X resembles Y then
Y resembles X), the representation relation is not.7

However, a profound challenge to this more than century-long neglect of diagrams is
‘in the air’. It seeks to reconceive diagrams as more than a mere ‘heuristic aid’ to proof in
mathematics and logic. Rather diagrams may be understood as capable of serving either
as proofs themselves, or irreducible components of such. Thus James R. Brown writes:

. . .the prevailing attitude is that pictures are really no more than heuristic devices. . .I want to
oppose this view and to make a case for pictures having a legitimate role to play as evidence and
justification—a role well beyond the heuristic. In short, pictures can prove theorems [9, p. 96].

John Mumma writes:

In the past 15 years, a sizable literature consciously opposed to [the attitude that pictures do not
prove anything in mathematics] has emerged. The work ranges from technical presentations of for-
mal diagrammatic systems of proof. . .to philosophical arguments for the mathematical legitimacy
of pictures. . . [22, p. 8].

6(A cat.)
7Randall Dipert has argued against this that it no more follows that resemblance is ‘entirely independent
of’ representation because the former relation is symmetric and the latter is not, than that the brother
relation is ‘entirely independent of’ the uncle relation as the former is symmetric and the latter is not
[15].
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Meanwhile Marcus Giaquinto writes:

. . .a time-honoured view, still prevalent, is that the utility of visual thinking in mathematics is only
psychological, not epistemological. . .The chief aim of this work is to put that view to the test [17,
p. 1].

Other authors have returned to ancient Greek mathematical texts to argue that one cannot
understand them fully without taking their diagrams more seriously [13].8

Meanwhile, in logic, Sun-Joo Shin argues that although, “[f]or more than a century,
symbolic representation systems have been the exclusive subject for formal logic” [36,
p. 1], this should be widened to also consider “heterogeneous systems”, which “employ
both symbolic and diagrammatic elements” [36, p. 1]. “Heterogeneous systems” is an
influential term which derives from Jon Barwise [2]. Shin argues that symbolic and het-
erogeneous reasoning systems have different strengths and weaknesses, and we should
do a thorough study to get the best out of both, bearing in mind that different disciplines
which might draw on such systems (such as logic, artificial intelligence and philosophy
of mind) might have different needs.

This paper seeks to join these authors while at the same time to put this goal in a
broader context, namely a movement which is also aimed at unbuilding the simple picture
of “literal significance” that has been so influential in the 20th century—expressivism.

2 Expressivism: Saying, Doing and Picturing

Expressivism has a metaethical incarnation, as a view that, “. . .claims some interesting
disanalogy between. . .evaluations and descriptions of the world” [12, p. 1]. By contrast,
Robert Brandom has put forward a semantic expressivism whose main point is that not
all semantic content may be made fully explicit. This view contrasts with a widespread
view often thought to be intuitively obvious, and arguably a downstream specter of Ayer’s
notion of literal significance. I will call it a metaphysical realist semantics. The juxtapo-
sition here is deliberately somewhat controversial, given that many metaphysical realists
take great pains to make a clear separation between metaphysical and semantic questions,
and to claim that their view lies firmly on the metaphysical side. An argument will be put
forward later in the paper that this self-assessment is problematic.

A metaphysical realist semantics holds that the purpose of language is to state “facts”
which, if the propositions stating them are true, form part of language-independent reality.
Thus, to return to our earlier example, “The cat is on the mat” (suitably disambiguated
as to cats and mats) is thought to present a ‘content’ which it is sufficient to know the
meaning of the statement’s words to fully understand. Brandom calls the view represen-
tationalism. By contrast, he argues that the primary purpose of language is to transform
what we do into something that we can say:

By expressivism I mean the idea that discursive practice makes us special in enabling us to make
explicit, in the form of something we can say or think, what otherwise remains implicit in what we
do [30, p. 7].

8See also, from a more philological perspective, the work of Reviel Netz, e.g. [23].
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Crucially, this renders the explicit statement semantically parasitic on the implicit prac-
tice, in that one cannot fully understand the statement without antecedently understanding
the practice which it “expresses”. Thus Brandom writes:

. . .we need not yield to the temptation. . .to think of what is expressed and the expression of it as
individually intelligible independently of consideration of the relations between them. . .And the
explicit may not be specifiable apart from consideration of what is made explicit [8, pp. 8–9].

Consider for example, the invention of musical notation. This freed musicians from
having to learn music by directly copying a live musician’s actions. Instead a musical
score substitutes dots on a page for string-pluckings, key tappings, and all other actions
which might produce a note. In this way a musical score can say what musicians do (with
added bonuses such as that the score can be indefinitely copied, survive longer than any
living musician, and be readily compared and contrasted with other scores). However,
it is not possible to fully understand a musical score without having some antecedent
understanding of the practices of music which it is expressing. For instance, if aliens were
to stumble upon the score for Beethoven’s 5th symphony, it is highly unlikely they could
perform it without some observation of human musical performance.

This commitment to a parasitism of the explicit statement on the implicit practice ren-
ders expressivism a form of pragmatism. It claims that certain practices are not fully ex-
plicated in language, but presupposed by it [7]. Pragmatism is frequently seen as a form
of antirealism, merely internal realism,9 non-cognitivism,10 non-factualism,11 or as some
would put it “quasi-realism”.12 But the conclusion of this paper will consider other views
on this.

Such an expressivism may make sense for musical notation, but might it be gener-
alized? For Brandom wishes it to be a global view, concerning all language. In par-
ticular, might expressivism be applied to talk about logic? Surely the matters of truth-
preservingness and validity are a paradigm of practice-independent fact? Not so, accord-
ing to Brandom. He claims that logic also should be seen as a way of saying what we
are doing when we actually make inferences, in ways that can guide our reasoning in
systematic and useful ways. In fact he self-consciously highlights the practice of philoso-
phy itself as a particularly sophisticated pulling of unselfconscious implicit practices into
explicit statements that might be critically appraised [8, pp. 56–57].

Brandom’s expressivism may be linked in interesting ways with Wittgenstein’s Picture
Theory of Meaning.13 In the Tractatus Wittgenstein drew a famous distinction between
what is said (namely atomic facts, and truth-functional combinations of them) and what is
shown (the laws of logic, the limits of the world and, interestingly in the expressivist con-
text, ethics). In the spirit of Brandom we might describe the former as “explicit” and the
latter as “implicit”. However, having drawn this distinction between saying and showing,
Wittgenstein made the further claim that what is shown cannot be said.14 Early Wittgen-
stein and Brandom stand out amongst mainstream semantics in their bold claim that not

9[5, 32].
10Price suggests Rorty approaches a global non-cognitivism in [29].
11This term derives from [6].
12The term was coined by Simon Blackburn, see in particular [4]. Its links with pragmatism are explored
in [28], though [21] argues that the two views share important similarities and differences.
13I have argued this previously elsewhere: [19, 20].
14Thus for instance Tractatus 6.42 states, “. . .there can be no ethical propositions. . .” [37].
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Fig. 1 A paradigmatic
diagram

everything true can be made explicit, or stated. However they are also different in two
ways. Firstly, where Wittgenstein suggested that “the said” and “the shown” consist in
two irrevocably sundered ‘camps’ of content, Brandom allows any implicit practice to
be made explicit—an example would be noticing a pattern in one’s reasoning and nam-
ing it Modus Ponens. He merely notes that this can only happen against a background of
further implicit practices (in the example just cited—argument categorization). Secondly,
although a ‘semantic parasitism’ exists in both views, it is apparently traveling in opposite
directions. For where we saw that for Brandom the explicit is parasitic on the implicit, for
the early Wittgenstein it appears that what is shown is parasitic on what is said.

I will now develop an expressivist view of logical diagrams.

3 Defining the Diagrammatic

What exactly is a diagram in logic? Can we give a definition which would cover all cases
which we would want to call logical diagrams, and not cover any cases which we would
not? Let us begin by trying to define a diagram more generally. Figure 1 would appear to
be a paradigm case—so what is ‘diagrammatic’ about it?

First of all, it seems capable of conveying some kind of meaning, as it is so structured.
However whatever meaning it has certainly seems different to that which would be con-
veyed by a piece of prose. But how exactly? I will now work through a series of possible
definitions of ‘diagram’ which attempt to capture this. Although some of these definitions
might appear naïve, or held by few—the order in which they are arranged is intended to
embody a useful learning process in the reader.

We might begin by attempting the following definition:

(i) “X is a diagram iff there are no words on the page”.

However Fig. 2 fails this criterion. And yet it is arguably a diagram. One might protest that
the ‘part on the left’ of Fig. 2 is the truly diagrammatic part, while the ‘part on the right’ is
just a label. But one would not wish to say that the part on the right is not part of Fig. 2. It
is pointing directly towards it and we have conventions for interpreting such arrows. Thus
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Fig. 2 A challenge to
definition (i)

having a ‘truly diagrammatic part’ seems to be sufficient for being a diagram, at least in
this case. So perhaps we can capture this in a new definition:

(ii) “X is a diagram iff there are pictures on the page”.

But what is a picture? Can we give a definition which would cover all cases which we
would want to call pictures, and not cover any cases which we would not? Perhaps we
could say that a picture, unlike a piece of prose, is made of joined-up lines? This produces
another possible definition:

(iii) “X is a diagram iff there are joined-up lines on the page”.

However Fig. 3 has no joined up lines, only letters. Yet it too is arguably a diagram.
Although it is composed solely of words, they are arranged in a structure, and this seems
to render it diagrammatic. So maybe we could capture this with a definition something
like:

(iii) X is a diagram iff there is some ‘non-word component’ on the page.

This however seems awfully vague, and even so it is probably not a sufficient criterion.
(Punctuation? Page numbers?)

One might wonder at this point if we are attempting to define something too basic and
fundamental to be put into words. Or perhaps we are attempting to define something too
heterogeneous—maybe the concept of a diagram is not a cleanly demarcatable semiotic
kind? However this would be to give up too easily. I will now offer a definition which
draws on Charles Peirce’s concept of an iconic sign. Our key problem so far has in fact
been trying to craft our definition merely by inspecting the sign itself. Peirce believed the
key criterion is the sign’s relationship to its object.

4 Peirce’s Icon: The Sign Which Resembles

Peirce’s ‘philosophy of language’ falls within a much wider theory of signs, or semiotics
[25, 26]. Including pictures and diagrams is part of the point of this broader disciplinary

Fig. 3 A challenge to definition (iii)
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purview. Peirce defined a sign very broadly as any irreducibly triadic relation between a
representation, an object, and an interpretation. As well as attributing triadic structure to
the sign itself, he taxonomized signs using a series of three-way distinctions. The icon
is part of a triad comprising icon, index and symbol, corresponding to the three different
ways in which Peirce believed a sign could be associated with an object.

Symbols symbolize what they do via some arbitrary habit or convention which must
be learned. Thus we must learn that the word “banana”, in English, means bananas. All
words are symbolic to some degree, as they belong to shared public language. How-
ever as Perry [27], and others showed, language also includes signs which pick out an
object not by arbitrary habit or convention but via some direct ‘indicating’ or ‘point-
ing’ relationship (e.g. “here”, “now”). Peirce called these signs indices. Finally icons are
signs which resemble what they signify [24, 2.304]. This category is distinct from sym-
bols, as resemblances need not be established by convention but can be perceived anew
(e.g. “That cloud looks like a frog”). Examples include maps, paintings and but also,
crucially, mathematical diagrams which function by mimicking the structures they sig-
nify.

This definition of the icon immediately raises skeptical concerns in the minds of many.
“Resemblance is cheap”, it is thought. Anything can be argued to resemble any other
thing in some respect. For instance, a photograph of Richard Nixon might be thought to
resemble other objects qua male (e.g. Brad Pitt), qua brunette (e.g. Elizabeth Taylor), qua
oval-headed (e.g. an egg), or in many other more recondite ways (e.g. “Something in his
eyes reminds me of Mt Everest. . .”). To top it off, the Löwenheim-Skolem theorem is
often vaguely invoked at this point, following Putnam [31], to suggest that all the points
on one object can be mapped onto all the points on any other object to produce an ‘iso-
morphism’, so in some suitably impressive mathematico-logical way, a triangle could be
‘like’ a square, a cow could be ‘like’ a flock of birds and at that point the whole business
of likeness dissolves into arbitrariness.

How is a serious theory of language, not to mention reasoning, to lean on such an
apparently subjective pillar? There seems to be an unarticulated yet profound intuition in
contemporary analytic philosophy that this is why semantics should be grounded squarely
on reference, as to make room for the contingencies of the mind’s ability to creatively
notice likenesses would introduce theoretical chaos.

The worry is very understandable, and properly addressing it would require excavating
and settling a number of very deep issues. I will mention three. (i) One will need to
argue for a realism about structures which is arguably underappreciated since the Quinean
equation of ontological commitment with the bound variable noted above.15 For Peirce
claims that the parts of an icon bear the same relationship to one another as do the parts
of the object the icon represents [24, 3.363]. This definition seems to be a good way of
explicating structure, and it is worth highlighting that icons are the structural signs par
excellence, in terms of their means of signification. For although indices may be words
and to that degree possess internal complexity (in the individual letters), their signifying
function is to serve as a pure pointer. The word ‘here’ indicates a location in space—it
does not ‘say’ anything else. And although the convention by means of which the symbol
symbolizes what it does may have structure, that structure is not internal to the sign itself.
For instance the word ‘dollar’ represents what it does in NZ society by a complex set of

15Pace the recent structuralist movement in philosophy of science.
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conventions involving different colored notes, numbers on a screen in Internet banking,
and so on, but none of these ‘convention-parts’ are related in the same way as are the parts
of the word ‘dollar’ itself (once again: its individual letters). However in a map of the
North Island of New Zealand we discover that Hamilton is West of Napier by observing
the relevant spatial relations in the map itself.

(ii) The second issue concerns properly understanding the role of the icon, which is not
to generate ontological commitments in the simple denoting way that many in the Quinean
tradition envisage. Denotation is the role of the index—but it can only perform this func-
tion when appropriately supported by the other two sign-types. In fact Peirce believed
that icons, indices and symbols play three different functional roles whose co-presence
and coordination is vital for language to function as it does. It is worth explaining these
roles. Firstly, the symbol’s conventional nature means that it signifies general properties,
because conventions are “general rules” [24, 3.360] which can be applied any number of
times in situations which display the appropriate (general) features. Secondly, due to their
pure pointing function, indices designate particular existence—Peirce writes, “[a]n in-
dexical word. . .has force to draw the attention of the listener to some hecceity common to
the experience of speaker and listener” [24, 3.460]. Finally, icons designate neither gen-
eral facts nor particular existences. Rather they signify hypotheses, possible situations
[24, 3.362]. Relatedly, it is important to note that these three sign-types are not mutually
exclusive in that a single sign can serve as icon, index and symbol in different respects all
at the same time.16

(iii) As for the re-introduction of the mind’s creative idiosyncrasies to semantics and
the theory of inference—the issue here is to embrace it, unnerving as it may be—this is
long overdue. There is a long tradition of debate in philosophy over whether the think-
ing mind is essentially active or passive, with rationalists generally preferring the former
camp, empiricists the latter. It is a major difference in the thought of Kant and Hume. (Al-
though it must be conceded that Hume did highlight the imagination, seemingly an active
faculty, to a degree unmatched by other British empiricists, nevertheless he explicated this
faculty within a naturalistic perspective with strong determinist implications, and when
he discussed the problem of free will arguably offered a compatibilist “cop-out”.) At any
rate, achieving this re-introduction will require mounting some deep challenges concern-
ing what a semantics or theory of inference is for. The fields have arguably strayed from
giving an account of the phenomena in question, too far towards a felt need to provide an
algorithm to predict them.17

Lacking time to properly pursue these three large inquiries, I will mount a preliminary
phenomenological argument for the worth of the icon in the robustly mind-independent
field of logic by demonstrating Peirce’s iconic logic in use (arguably not a terrible strategy
for a pragmatist to use).

16An example is a shadow-clock, which is iconic insofar as it represents the 24 hour structure of our day,
indexical insofar as it relies on the sun physically casting a shadow to tell the time, and symbolic insofar
as the numerals on the clock-face have meanings which must be learned.
17This might have something to do with the fact that key researchers in semantics and logic in the 1960s
and 70s also worked in artificial intelligence.
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Fig. 4 Connectives in
Peirce’s Alpha Graphs

5 Peirce’s Existential Graphs

Later in his career Peirce developed a diagrammatic logic which he called the Existential
Graphs (henceforth: EG), claiming that “all necessary reasoning without exception is di-
agrammatic”. His next remark about how these diagrams are to be used is interesting—he
writes, “. . .we construct an icon of our hypothetical state of things and proceed to observe
it” [24, 5.162]. I will demonstrate this system in its simplest, Alpha Graph form, which
is provably equivalent to modern propositional logic [34]. But first, here is a traditional
(natural deduction) proof for purposes of comparison:

Proof I, “Symbolic Logic”: � (P∨ ∼P)

This proof seems to be purely sentential in Mumma’s terms. Observe the length re-
quired to establish the simplest of tautologies!

By contrast, the EG uses no connectives between sentence letters. Rather it represents
conjunction by placing two sentence letters on the same “sheet of assertion”, and nega-
tion by drawing a line or ‘cut’ around the proposition (‘graph’) in question (see Fig. 4).
A benefit that has been claimed for logical diagrams is so-called free rides [3]. One can
immediately ‘see’ certain logical equivalences.18 Thus, Fig. 5 may be observed to ele-
gantly represent: ∼(A & ∼C), (A∨ ∼C) and (A⊃ C) simultaneously. This is an immedi-
ate perception. How about a proof? First we need some rules.

The following 5 Alpha Graph rules each consist merely in a permission to write or
erase a graph on the sheet of assertion.

18Shin also calls this the “multiple carving principle” [35, p. 77].
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Fig. 5 Perceivable logical
equivalence

Proof Rules for Alpha Graphs Diagrams are from Zeman [38, 39].

1. Insertion in odd: In an oddly enclosed area, any formula may be written.

2. Erasure in even: In an evenly enclosed area, any formula may be erased.

3. Iteration: Any formula may be written again:

(a) in the same area:

(b) by ‘crossing cuts’ in an inward direction:

4. Deiteration: Any formula derivable through iteration may be removed:

(a) in the same area:

(b) ‘crossing cuts’:
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5. Biclosure: A double negation may always be added or removed.

I will now perform two proofs, beginning with the simple tautology proven above:

Proof II, EG: � (P∨ ∼P) First, rule 5 allows the adding of a double negation (frequently
a first step in these proofs):

Rule 1 allows any graph whatsoever to be added in an oddly enclosed area. Not surpris-
ingly, we choose P:

Rule (3b) (Iteration “Crossing Cuts”) allows P to be re-scribed into the evenly enclosed
space within:
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Our tautology is now most easily proven.

Proof III, EG: (P⊃ Q), (Q⊃ R) � (P⊃ R) (Hypothetical Syllogism) We begin by scribing
the premises on the sheet of assertion:

Next we iterate the right-hand portion of the diagram inside the left-hand portion, using
Iteration Crossing Cuts (3b):

We now deiterate the innermost Q, by (4b):

We now deiterate the other Q on the left-hand side, using Erasure in Even (2):

We may now remove the double negation (“biclosure”) around R on the left-hand side (5):
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And the final result is achieved by using (2) to erase the right-hand side (functionally
equivalent to conjunction elimination):

Now think about how this procedure might work if we attempted to prove the invalid:
(P⊃ Q), (Q⊃ R) � (R⊃ P). The proof is not possible as we would need to produce the
following:

However our proof puts P in the outermost (odd) enclosure, and there is no way consistent
with the rules that it can be removed. Graphs in odd enclosures may be iterated inwards,
but never removed. Yet it would need to be removed in order to realize the conclusion as
pictured above.

6 Logical Diagrammatic Forcing

We may now see that a “logical diagram” includes its rules of use, not just pictures on
the page. It is no accident that the EG rules were presented before the diagram was con-
structed to furnish the proof. These rules are of course explicit representations of implicit
reasoning practices,19 to use Brandom’s terminology [7]. We do not understand the rules
without understanding the actions (literally adding and removing graphs from the dia-
gram) which they represent. Once we understand the rules and most importantly—use

19This is not to say that ordinary reasoners would necessarily recognize them as such. This is theoretical
not applied logic (what Peirce called logica docens, opposing it to logica utens, a distinction that medieval
logicians drew).
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them, we directly experience the impossibility of rendering a contradictory proposition or
invalid argument on an EG.20 We are forced to recognize how some part of what we are
trying to realize ‘has to give’. We thereby ‘see’ (in some arguably metaphorical, but pow-
erful sense, which means something like ‘structurally perceive’) logical necessity. This is
the “faculty of intellectual intuition” so facilely dismissed by Ayer. It is crucial to note
that this intuition occurs not by having epistemic contact with any further ‘necessary ob-
ject’ (whatever that might be), but merely by fully grasping the relationships amongst the
diagram’s different parts, already present on the page.

At the same time it is important to note that not all aspects of Peirce’s logical diagrams
are forced by their structure, and thus iconic. Some aspects are symbolic—for instance one
must learn the convention that letters correspond to propositions, and not to, say, predicate
letters applied to an object represented by the larger circle. Some aspects of the graphs are
also indexical. For instance the sentence letters serve to indicate particular propositions
(which are indicated in somewhat vestigial form, as propositional logic is characterized by
abstracting away from atomic propositional content, yet remain as crucial place-holders).
This is how Peirce’s semiotics works—all three kinds of sign need to be present and to
work together to create significance.

We have just seen that so-called ‘iconic logic’ is not purely iconic. At the same time, so-
called ‘symbolic logic’ is not purely symbolic. Natural deduction, used in Proof I above,
also has rules, forces certain results and forbids others, and is iconic to that degree. We
therefore do not have symbolic logic and iconic logic, strictly speaking. We have logical
systems whose iconicity is more or less perspicuous. If we bear in mind our initial defini-
tion of the icon, that its parts are related in the same way that the objects represented by
those parts are themselves related, perspicuity consists in as many of the relationships on
the diagram as possible representing logical, as opposed to arbitrary relationships. Peirce
believed his system was more perspicuous than the ‘algebraic’ logic he had worked in
prior to developing the EG,21 and that it would be useful, not for proving results the other
couldn’t, but for studying logical form more clearly and minutely.

7 Conclusion

This paper has presented an expressivist view of logical diagrams. Thus Brown is vindi-
cated in his claim that, “pictures hav[e] a legitimate role to play as evidence and justi-
fication”. In fact we now see that all formal logic is essentially diagrammatic, although
we have seen that the diagrams may be more or less perspicuous. We can also see that
Mumma’s definition of the ‘purely sentential proof’ he wishes to argue against (“[a]
proof. . .is a sequence of sentences. Each sentence is either an assumption of the proof,
or is derived via sound inference rules from sentences preceding it”) wears incoherence
on its sleeve. For once one adds ‘sound inference rules’ to the mix, one has more than just

20Although this is counterintuitive to some, the fact that the experience is only possible once one has
grasped the proper interpretation of the EG rules does not undermine its directness once those rules have
been grasped.
21It is worth noting that this logic articulated the first version of the Russell-Peano notation for quantifiers
which is standard today. Thanks are due to an anonymous referee for suggesting this.
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a sequence of sentences. Sound inference rules convey logical form and the actions which
respect and mirror it.

One might ask: But what about the visual-expectation-derived mistakes which 19th
century mathematicians learned to avoid? If we embrace diagrammatic reasoning, how do
we know we won’t be led into error in this field? This is a good question. The short answer
is: Get better diagrams (‘better’ here meaning more perspicuous). The long answer, which
would involve formulating a principled account of which structural features of any given
diagram represent necessary truths, and which do not, will take much further work to
determine.

Through diagrams such as Peirce’s EG, logical necessity is presented to the human
mind in such a way that it can be understood and learned. And what more could we ask
in order to say that a system of signs represents something, or has genuine content? But
at the same time the diagrams do not state logical necessity in anything like Ayer’s sense
of literal significance. The graphs do not put forward an empirical hypothesis.22 They
provide the means for us to exercise our rational intuition. Moreover, if we turn once
again to Quine’s criterion for ontological commitment, the basis for the metaphysical
realist semantics pervasive today, we can see the graphs do not fit this model either. They
do not gain their content by denoting further objects in the way that “The cat is on the
mat” denotes a cat, and a mat. Rather, as icons, everything needed for logical insight is
already internal to them as signs—one merely has to attend to their structure.

We might pause in closing and ask: What are the implications of this expressivism
for realism about logic? For instance, does it show that the discourse of logic does not
‘talk about real mind-independent things’? My answer is: No, but that our notion of ‘real
mind-independent things’ requires some surgery.

It was noted that a great deal of recent metaphysics is semantics-driven,23 although
metaphysical realists sometimes rightly express some discomfort about this, as it would
seem their very realism should lead them to try to keep semantics and metaphysics sepa-
rate. I would say, actually it is fine to derive one’s metaphysics from one’s semantics—just
please, please get a less simplistic semantics! We may understand Quine’s criterion of on-
tological commitment in Peircean semiotic terms as an attempt to place the full burden
of representing reality onto indexical signs. This leads philosophers with realist sympa-
thies to feel they need to ask a raft of questions of the form: “Does term X [e.g. ethical
or aesthetic predicates, number-terms. . .] denote a real object?” If we recall that index-
ical signs pick out sign-independent particulars, it often seems hard to answer “yes” to
this question for key terms in manifestly important human discourses (such as ethical or
aesthetic predicates, number terms. . .). On the other hand, those who are unsatisfied with
metaphysical realism’s problematization of such areas, and those who wish to recognize a
manifest social input to human language-games, often oppose metaphysical realism with
some form of conventionalism which argues that term X does not denote a real object

22One might object that this is incorrect, since a diagram such as a map may be understood to posit
the shape of a real-world country. However considered purely qua diagram, a map does not yet have that
semiotic function. To interpret it as saying something about a country is: (i) to peg it to a real-world object
(thereby rendering it also an index), (ii) to claim something general about that object’s shape (rendering
it also a symbol). These are further signs.
23Thus for instance, Chrisman sums up much recent metaethics by writing, “The realism debate has been
pursued (mostly) by investigating the appropriate semantic account of ethical statements” [14, p. 334].
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but has some other socially sanctioned and taught function. We may understand such a
conventionalism in Peircean terms as trying to understand all signification as performed
with symbolic signs.

Metaphysical realism and conventionalism are widely assumed to be polar opposites.
So many dialectics in so many papers in so many areas of philosophy revolve around this,
so that an argument against metaphysical realism is more often than not assumed without
question to be an argument for conventionalism, and an argument against conventional-
ism to be an argument for metaphysical realism. But this is a false dichotomy. A third
kind of signification exists which does not consist in brute denotation or arbitrary con-
vention, but which presents structure directly to the mind’s eye. It is barely glimpsed in
formal semantics today. And yet it is this kind of sign that represents logical form—hardly
a trivial part of our conceptual scheme. If we could only recognize that the symbol, the
index and the icon all have a unique and irreducible semantic role to play, and that real-
ity correspondingly is comprised of real habits, real particulars and real intrinsic struc-
tures, we would take an unanticipated leap towards understanding that most contested
concept.
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The Geometry of Diagrams and the Logic
of Syllogisms

Richard Bosley

Abstract Aristotle accounts for three figures on which syllogisms are formed. On the first
figure it is possible to prove the completeness of all of the possible syllogisms. But on the
second and on the third figures completion is not possible; therefore, premises based on
the second or on the third figure are converted in such a way as to count as premises on
the first figure. Aristotle’s procedure leads to difficulties discussed and corrected in the
course of this paper.

Keywords Short and long lines · Figure · Intervals · Terms · Syllogisms · Proof ·
Reduction

Mathematics Subject Classification Primary 03A10; Secondary 03B10

The aim of this paper is to argue the dependence of a demonstrative syllogism upon its
figure. What a syllogism is can be briefly explained: a syllogism is formed from three lin-
guistic parts: a major premise which affirms or denies a sentence composed of a subject
and a predicate and a mark of affirmation or negation along lines suggested by the com-
mentator John Philoponus; see his commentary on Aristotle’s Prior Analytics [3, 66.27–
67.14].

Aristotle’s text differs from Alexander’s and Philoponus’s commentary in this way:
having laid out the structure of a figure and its intervals Aristotle remarks on a basis
which either is or is not adequate for the formation of a syllogism. But the commentators
turn immediately to writing out a sketch of a combination of premises which either is or
is not adequate for a conclusion. The commentators accordingly leave out the work which
should be done by means of diagrams. Guenter Patzig [2], on the other hand, expresses
high respect for the commentary of John Philoponus. W.D. Ross [4], in his commentary
on the Prior Analytics, promotes the idea of diagrams drawn by Aristotle but not pre-
served.

Since it is argued that a demonstrative syllogism depends upon its figure, let us turn
first to the shape of the figure by defining the three kinds of diagrams which guide the
forming of the syllogisms as depending upon the figures presented by the diagrams. I call
them Sophie diagrams, distinguishing them from Venn diagrams; the distinction between
the two kinds will be made clear.
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1 Affirmation, Negation, and the Resolution of Negation

I shall first try to make clear how a diagram is to be drawn. It is formed by marking points
and by drawing lines. For example, a diagram of the first figure is drawn as follows:
first, mark a point and let the point indicate a term; Aristotle assigns to such a term—for
example—the letter A. We can then draw a line from the point A to the point B. The line
indicates an interval terminated by two terms or limits. Every syllogism showing either
plain belonging or belonging with necessity has two intervals indicated by the premises
of the syllogism or, if the syllogism proves contingency, there are three intervals.

I have so far assumed that the premises which depend upon terms and intervals are
affirmative. But affirmation itself is not registered on the diagram. For a diagram is formed
from points and lines; premises of a projected syllogism, of course, are said to be either
affirmative or negative. Now since affirmation and negation are acts of intelligence but are
not either points or lines marked or drawn on a diagram which itself exists not as a spatial
but rather as a temporal particular.

It is of course possible to resolve the negation embedded in a premise: denial is re-
solved not on a diagram but rather within the mind of the reasoner—resolved in favor
either of correcting for deficiency or in favor of correcting for excess. Correction for defi-
ciency is shown by drawing another line on the diagram (we will shortly have an example
of this); correction of excess, on the other hand, is shown by adding another point opposite
to the point A already registered (assuming that the major premise is negative). The force
of correcting for excess is this: there are alternatives and so a choice is made, thinking
“Let D belong to the whole of the limit B.” But the choice is not joining terms but rather
drawing a line from a point to a point. The faculty of reason will, for example, draw a line
from the point D to the point B. This drawing helps complete a diagram.

The diagram above is drawn on the first figure which shows the concluding interval
A-C composed of letters which stand for terms or limits one of which belongs to the
upper end of an interval running to a middle limit; the interval is indicated on the diagram
by a straight line running from an upper point, i.e. ‘A’, to a lower point, i.e. ‘C’; the
second interval runs from the middle point, i.e. ‘B’ to the extreme bottom point, i.e. ‘C’.
The concluding interval A-C is marked with an asterisk indicating that its long interval
completes this instance of the first figure. The drawing of the long line is not meant to
suggest that the long interval does not follow the two short intervals A-B and B-C.

In the course of the ancient tradition of teaching the syllogistic the commentator
Alexander of Aphrodisias [1] tends to conflate an interval and a premise, even though
Aristotle himself makes it clear that they are distinct and separate. Had Aristotle’s di-
agrams survived, doubtless the tendency to merge a syllogism and its figure would not
have developed.

Aristotle’s text differs from Alexander’s and Philoponus’s commentary in this way:
having laid out the structure of a figure and its intervals Aristotle remarks on a basis
which either is or is not adequate for the formation of a syllogism. But the commentators
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turn immediately to writing out a sketch of a combination of premises which either is or
is not adequate for a conclusion. The commentators accordingly leave out the work which
should be done by means of diagrams.

Aristotle does not himself make a distinction between the conclusion of a syllogism
and the long interval drawn from the letter ‘A’ to the letter ‘C’. This interval is necessary
for completing a second figure.

It is characteristic of every complete figure that there is a middle term whereby the
long interval from the top to the bottom of the diagram can be shown. Showing the long
interval on the first figure is the objective of a proof on the first figure. It is of course
Aristotle’s view that the other two figures do not admit of a proof of their long intervals.
For the long intervals are laid down by edict regarding the second two figures—i.e. on the
second figure “Let the term A belong to the whole of the extreme limit C and let the term
A belong to the whole of the middle term B.” (Discussion of the second two figures will
add a crucial qualification to the initial description of the second two figures.)

It was Aristotle’s view (as comes clear in early sections of the Posterior Analytics [4])
that it is not possible to prove an immediate interval, i.e. “The upper limit A belongs to
the whole of the middle limit B.” In fleeing the difficulty of proving the existence of a
short interval he confronts another: How is it possible to reshape a diagram in such a way
that a long interval uniting two terms becomes a short interval joining two terms?

There is an important respect in which a syllogism differs from a diagram: a diagram
is drawn and is not an immediate object of affirmation or negation. It is not a part of a
diagram to have a part indicating negation. Negation, after all, is an act and not an object:
affirming and denying, on the other hand, are contrary actions and not contrasting objects.
For this reason no mark on a diagram indicates either affirming or denying; accordingly,
an interval drawn between two points is neither an affirmation nor a negation. Therefore,
in drawing a complete diagram it is necessary to resolve the negation embedded in the
premises intended for forming parts of a syllogism.

Suppose we have the two premises on the first figure: “the limit A belongs to the
whole of the limit B” and “the limit B does not belong to any part of the limit C.” Since
a negative premise does not correspond to an interval running between two limits, it is
useful to resolve the negation. The principle of the resolution of negation anticipates one
of two possible ways in which negation can be resolved: in a first way we correct for the
wrong term by drawing a contrary term on the diagram. Suppose we draw a line from the
upper letter ‘A’ to the middle letter ‘B’; in resolving the negation of the second premise
“the limit B belongs to none of the extreme bottom limit C” we should draw the following
diagram on the first figure:
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It is apparent that the diagram does not show a continuous long line from A to C.
The diagram is therefore not suitable for showing a long interval necessary for a figure
and sufficient for the formation of a syllogism. The point is not being made that we turn
to showing by counterexamples that there is no conclusion; the point is rather that it is
possible to correct the diagram for deficiency by adding an interval between A and E; for
it is entirely possible that two species fall under the same genus A. The diagram can now
be expanded, yielding:

There is accordingly a long interval A-E-C whereby the middle term E mediates the
long interval. The syllogism formed upon the figure need not write a premise which de-
scribes the A-B interval.

The middle figure is particularly interesting in that it exemplifies the binary theory
of the syllogistic regarding its longitudinal structure; the figure is of course also triadic
with respect to a middle term whereby a long interval is mediated. A consideration of the
middle figure also provides an opportunity to discuss a difficulty which Aristotle must
face in his own dealing with the second figure—a difficulty to which I shall shortly turn.

At the center of my study of diagrams and in what ways they provide plans for the for-
mation of syllogisms is its theory of the resolution of negation, briefly discussed above.
This theory makes it possible to give a coherent account of diagrams, on the one hand,
and, on the other, to show how Aristotle’s need of a reduction to the first figure can be
eliminated; in place of such a reduction is a procedure for proving three classes of syl-
logisms: one class depends upon the first, another on the second, and the third class is
established on the third figure. The demonstration of the equality of the three figures in
relevant ways also provides a rationale for holding that there are only three distinct and
separate figures.

The incoherence in Aristotle’s execution of his syllogistic program is due to several
demands which cannot be coherently satisfied together. To make the conflict clear let
us begin with the view of proof which the philosopher evidently endorses: all proof is
executed by means of the posit of a middle term. Let us accordingly imagine three terms
so arranged that the upper extreme term A belongs to the whole of the middle term B and
that the middle term belongs to the whole of the lower extreme term C. If the interval
between the limits A and B and the interval between the limits B and C are immediate,
Aristotle supposes that the existence of such immediate intervals (each limited by a pair
of terms) cannot be proved. The long interval between A and C can be proved by means
of a middle term which unites the two intervals A-B and B-C. For this reason Aristotle
holds that syllogisms proved on the first figure are complete; but the premises based upon
the second and the third figures cannot be the source of a complete syllogism a pair of
premises of which has been formed upon the basis of either the second or upon the basis
of the third figure. Like wood, prepared for becoming the parts of a chair formed by one
mill, but which must be taken to a different mill for becoming a real and complete chair,
the premises which originate upon the second or upon the third figure must be transformed
into sentences which reflect the first figure thereby becoming the premises of a syllogism
which itself depends immediately upon the first figure.
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But what do you suppose happens to the sentence underway from the second back
to the first figure? When it was first formed on the second figure, let us say, it had a job,
namely to describe either a short or a long interval between two terms: perhaps it described
a short interval from the limit A running to the limit B; perhaps, on the other hand, it
described a long interval from A to C. And yet it is just this responsibility—of bearing
a specified use sufficient for representation—that is dropped. For by means of its being
converted it falsifies its own prior statement of the interval which was to be represented.
The shame of the loss and the deception of Aristotle’s pretensions are ameliorated by
supposing that there never was a figure or a diagram presenting terms, their intervals, and
their modalities—never was a figure, I was about to write, the representation of which
was entrusted into the hands of the departing premise or sentence.

The job of a figure or a diagram is to present the terms and their intervals as they
are—as we would expect from a floor-plan or from a map of a neighborhood. (A premise,
on the other hand, is not a drawing of terms and intervals.) The stability of a diagram is
particularly important for its presentation of the modalities of necessity and contingency;
for if A is necessary for B, it does not follow that B is necessary for A. If C depends upon
B, it does not follow that B depends upon C.

Consider the following two diagrams, defining the second figure ([4], I.5; 26b34–38),
and reduction to the first figure ([4], I.5; 26b36–39):

Suppose that a diagram of the second figure shows both a long line connecting the let-
ters ‘M’ and ‘X’, as the diagram just above shows, and also shows a short line connecting
‘M’ and ‘N’. But the information provided by the diagram is destroyed by converting the
long line ‘M-X’ into a short line ‘M-X’ shown above on the second diagram. In trying
to show that there is a short, concluding line from ‘M’ to ‘X’, conversion turns the ini-
tial long line ‘M-X’, into a short line ‘M-X’; this move destroys the long line which was
meant to represent a long interval between M and X. So Aristotle’s solution to the prob-
lem of forming syllogisms on the second and the third figures is in effect to undercut the
point of the second and of the third figures and to undercut the uses of sentences which
originally have uses whereby a grid of terms and relations can be indicated. We should
accordingly expect that Aristotle’s mishandling of the second and the third figures would
have the effect of making the syllogistic a largely linguistic matter which would be in-
terpreted pretty much as Alexander and John Philoponus did interpret it. Further, such an
interpretation blurs a picture and a diagram of the general structure of the syllogistic: first
comes the formation of demonstrative syllogisms ([4], I.4ff) upon the basis of a figure
diagrammed to show a grid of terms and relations and then, having completed the project
of the forming of syllogisms, Aristotle turns ([4], I.32ff) to the dissolution of a syllogism
back down to its proper figure.

But let us return to my story of the black-market which has flourished in the obscurity
of what happens when sentences formed as premises on either the second or the third
figure are transported to the first figure now pregnant with a syllogism, illegitimate on the
first figure but no longer at home on the second or the third figures.
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Here is an example of the second figure and its diagram:

The two lines D-B and A-E-C indicate two intervals one long and one short. (This
instance of the binary theory is the result of the resolution of the negation embedded in
what Alexander would call a major, universal, and privative premise.) It is obvious that the
short and concluding interval does not run between the terms B and C; for in that case the
bottom extreme would fall under contrary genera—which is impossible. Therefore, there
is a short and concluding interval between the terms E and C forming the concluding
interval necessary for completing both the figure and the syllogism formed upon the basis
of it.

The long line A-C represents the long interval A-C which in truth is mediated by the
term E. The long interval being mediated by means of the middle limit E is not necessarily
shown on the diagram drawn just above; nor is the fact mentioned in the syllogism formed
on the basis of the second figure. If we were to draw the long interval first from A to E and
then from E to C, we would have a different version of the proof of mediation (namely
in the style of the second figure and not in that of the first figure). The question arises
what difference there is between the proof which depends upon a proper figure and the
proof which depends upon contraposition and return to the first figure for the basis of the
syllogism. A syllogism on the second figure can be formed as follows:

1. All B are D (or, restoring negation): “No B is A”
2. All C are A
3. So, no C are B

It is evident upon the basis of the diagram that if some C were B, some part of B would
fall under a contrary upper term, which is impossible. It is therefore not necessary either
to convert or to contraposit the names of the terms in order to form the conclusion.

But let us consider Aristotle’s text further—a text which makes it clear in what way
the philosopher plays unfairly with the formation of the third figure and therefore with
the syllogism to be formed upon its basis. We again require two diagrams: the first is the
initial sketch of the third figure; the second shows the result of conversion in order to
forge a copy of the first figure. According to Aristotle’s suggestions for drawing the two
figures, here again is one possibility:

Defining the third figure ([4], I.6; 28a10–22) Reduction to the first figure ([4], I.6; 28a10–17)

In defining the third figure Aristotle identifies the possibilities whereby the same limit
S is the common term to which both the upper term and the middle term belong, as
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indicated on the third figure. Aristotle remarks at the beginning of I.6 that he calls middle
that of which both the limits predicated are predicated. The extreme and major limit P
is further from the middle limit S; the limit closer to P is minor. The middle limit is
outside the extreme limits and is last by position. Therefore, a complete syllogism does
not come to be nor a complete syllogism which depends upon this figure. But a syllogism
will be possible both when the terms in relation to the middle limit are whole and not
whole.

In order to correct for the deficiency of the position of the limit S we convert the minor
interval and thereby make our return to the first figure holding now that P belongs to
the whole of S and that S belongs to some R, as the second diagram just above shows.
Accordingly, it is proved on the first figure that the limit P belongs to part of the lower
limit R.

When a figure has been identified and an interval drawn on a diagram according to
which the limit B does not belong to any part of the lower limit C, an argument can be
made similar to that argument laid out above concerning the second figure. The denial
refers to the middle limit B, to be sure, but does not indicate that middle term by means of
which a long interval can be identified by means of which the long interval is mediated.
We are therefore ignorant of how the force of the upper term is delivered to the lower
term.

The two mistakes attributed to Aristotle’s handling of the second figure have coun-
terparts in his handling of the third figure: rather than converting the upper interval he
now converts the lower interval R-S forming the short interval S-R. The two unlawful
conversions somewhat differ: the first disturbs the interval from the top down; the second
disturbs the interval from the middle down.

What is disturbing in particular is the distinct roles of the two forms of modality: the
upper term may be necessary for the middle term but the upper term does not determine
the middle; the middle is rather determined by the bottom term. So Aristotle’s solution
to the problem of forming syllogisms on the second and the third figures is in effect
to undercut the point of the second and of the third figures and to undercut the uses
of sentences which originally have uses whereby a grid of terms and relations can be
indicated.

A solution of the difficulty is possible in two steps: the first is an adequate diagram
whereby the binary theory which represents two separate terms at the top of the diagram
is given adequate representation; the binary theory also requires a noting of two middle
terms; the lower level requires only one indication of a term usually taken by the com-
mentators to be a class of particulars (something which Aristotle himself suggests in the
Prior Analytics [4, I.27]).

Let us turn now to the logic of syllogisms which employ the modalities of necessity
and contingency. The syllogisms which posit necessity have aroused less puzzlement than
those which posit contingency. But even so, a certain disagreement broke out presumably
during Aristotle’s life concerning the logic of necessary syllogisms and, in particular, the
conclusion which follows from premises one of which indicates pure belonging and the
other necessity.

Diagrams can help eliminate irrelevant confusion. Consider the following example.
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As the diagram stands, we can interpret the figure which it presents in the following
way: the upper limit A is necessary for the whole of the limit B; the limit B, in turn,
simply belongs to the whole of the extreme limit C. The part of the diagram drawn as
‘n-’ indicates not the necessity of the term A for the whole of the extreme lower term C; it
rather indicates the modality of the concluding and long interval A-C, namely as necessary
for the completion of the figure. By contrast the mark ‘n’ attached to the short line A-B
(which presents the short upper interval A-B) indicates the modality of the upper term A
for the whole of the middle term B. It follows that the diagram does not present the upper
term as being necessary for the extreme term C. But commentators who assume that the
middle term B is contained within the upper term A and that the lower term C is contained
within the middle term B, are bound to confuse the two uses of the modalities.

A point made about the diagramming of the second figure can be made again: the long
line indicates the long interval A-C but without showing the course of the long interval and
thereby making clear what the mediating term is (nor would this information be shown
by a syllogism which depends upon the figure); we are also not told how the middle term
is able to receive an interval from a necessary upper term and mediate the long interval
in such a way that the interval B-C is of plain belonging. Nevertheless, the interval is
necessary for the coherence of the figure and for the syllogism formed upon the figure.

A syllogism formed on the third figure can be written as follows:

1. All C are B.
2. All C are A.
3. So, all B are A.

It is again evident upon the basis of the diagram that if some B are not A, then some part
of C would be both A and not A. It is equally obvious that the long interval is mediated
by the middle limit B. This feature of the figure is not made evident by a syllogism based
upon it.

In Sect. I.14 of the Prior Analytics [4] Aristotle continues his study of modal syllo-
gisms and their figures by taking up contingency. Just as some terms are necessary for
others, so some terms are contingent for others. Unlike the posit of necessity the posit
of contingency requires a correlated posit of two terms from which two intervals connect
with a single term for which there is contingency. For example, both sitting and walking
are contingent for humans and waking and sleeping are contingent for animals. A diagram
which presents such terms and the modality of contingency requires two upper terms and
a single lower term upon which the two intervals converge. It is not possible to draw a
diagram of this sort of modality without a coordinated pair of intervals converging upon
a lower term.

It was a mistake of Aristotle’s to try to expand the syllogistic into both the modal-
ity of necessity and the modality of contingency while maintaining a single column of
terms. It was in fact a strange mistake for the philosopher to make since he was aware
of and worked within a binary theory in several respects. Aristotle follows a modal path
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which is particularly rocky when some intervals are necessary, some contingent and oth-
ers mixed both with the modalities and also with plain belonging. Aristotle has succeeded
in puzzling his commentators; he leaves some modern commentators both perplexed and
dismayed. Application of a binary theory is the least of what help lies at hand along with
the resolution of negation. It is then possible to sketch diagrams which make consistent
sense of the philosopher’s project.

Let’s begin with contingency defined in such a way as to accommodate the follow-
ing diagrams. The text in question begins with Sect. I.14 of the first part of the Prior
Analytics [4]. Aristotle writes:

So when the limit A is contingent for the whole of the limit B and the limit B for the whole of the
limit C, there will be a complete syllogism [showing] that the limit A is contingent for belonging
to the whole of the limit C. This is plain from the definition; for we spoke in this way of the fact
that being contingent for belonging to the whole is so. [4, I.14; 32b38–33a1]

The following diagram presents the figure described above:

Four premises need to be written in order to form a syllogism which depends upon
the whole of the figure represented by the diagram above. The first premise represents
the short contingent interval A-B; the counterpart premise represents the second short
contingent interval D-B; the lower premise represents the short contingent interval B-C,
and the second lower premise represents the short contingent interval E-C. There are two
concluding long intervals both necessary for the completion both of the figure and also for
the completion of the syllogism formed upon the basis of the figure. The course of the first
long interval is evident, namely mediated by the middle term B. But how is the second
long interval mediated? The binary theory applied to this instance of a figure suggests
mediation by the middle term E.

Before turning to counterexamples employed by Aristotle to prove that there are no
further syllogisms in addition to those already proved there is a question as to whether a
distinction between the ontic and the modal should be part of the logic of syllogisms. If we
begin with actuality—as Aristotle seems to do in laying down paradigms of figures—we
may assume that Aristotle does not suppose that a posit of actuality implies the presence
of necessity; on the other hand, he does suppose that a posit of necessity implies a posit
of actuality; he makes an analogous assumption regarding contingency and actuality. And
yet it is clear that a posit of actuality does not cohere with a posit of contingency. It
is possible to hold that both graying and keeping the color of one’s hair are contingent
for belonging to Fred. The simultaneous actuality of both contingencies is not possible.
Therefore, it is possible for there to be the contingency of A for B and also possible for
there to be the contingency of D for B.

A parallel question arises regarding necessity, namely whether it is possible to hold
that the limit A is necessary for B even though it is not implied that A actually belongs
to B. Plausible examples support the suggestion. My neighbor’s new house depends upon
a foundation necessary for it even though a house has not yet been built.

There remain two matters to be discussed in bringing this paper to a conclusion. The
first is about counterexamples and the second and last is about reduction to the impossible.
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Regarding the first John Philoponus complains that Aristotle sometimes doesn’t do a good
job of laying out terms and their relations in showing that a syllogism is not possible. The
question appropriate to this paper is whether Aristotle would have used a diagram in
giving his argument or would rather have formed premises which are to make it clear that
no syllogism can be formed by means of such premises. The first examples appear in I.4
of [4] after Aristotle has shown how terms and intervals in the first figure make syllogisms
possible; at I.4; 26a2ff he lays out terms and intervals to show when there is not a figure
sufficient for the formation of a syllogism. He writes:

But if the first interval follows upon the middle term but if the middle limit belongs to none of the
extreme limit, there will not be a syllogism of the extreme terms; for nothing necessary results by
virtue of these limits and intervals; for it is possible for the first limit to belong both to the whole
and to none; but when nothing necessary arises by means of these, there will not be a syllogism.
[4, 26a2–8]

It is evident that at the same time as Aristotle lays out his argument, he is not forming
a syllogism; he must rather be sketching a diagram in order to show why there cannot
be a syllogism. To make his point obvious he then likely mentions terms on a diagram
sketched out with indications of limits and intervals. How then does such a diagram look
when exemplary terms are indicated on the diagram? It is likely that he would draw two
intervals; the first would be drawn from A to B; perhaps we can guess how the second
would look upon the basis of his example.

He writes, “terms of belonging to the whole: animal-human-horse; of belonging to
none: animal-human-stone.” Since Aristotle stands by the principle that syllogisms are
formed upon the basis of a figure consisting of three terms and two intervals, he has
inadequate means for producing a diagram whereby it is clear that no figure is formed
which is sufficient for a syllogism.

Although it is clear to Philoponus (see his commentary [3, 76.1–76.24]) that Aristotle
is dealing with terms and not with premises, the commentator does not diagnose Aristo-
tle’s failure to lay out a figure by means of a diagram clear enough to persuade us that
there is a diagram either deficient or excessive for diagramming a figure—a figure which
would itself be adequate for the formation of a syllogism.

The last topic to be taken up in this paper is Aristotle’s account of reduction to the
impossible. Book II of the Prior Analytics takes up topics which seem to imply that there
is no perfecting correspondence between a syllogism and its underlying structure of terms
and their relations. Aristotle’s account of a syllogism with false premises and a true con-
clusion implies the absence of perfecting correspondence; such a syllogism is therefore
not a demonstrative syllogism but should rather be called hypothetical.

There are several questions and difficulties which arise in taking up an examination
of Aristotle’s account of reduction to the impossible. The first question (1) is just what
a syllogism by the impossible is; a second question (2) is what the role of reduction to
the impossible is in completing the syllogistic project; a third question (3) is how it is
possible to present the impossible within the general project of the syllogistic. The fourth
question (4), finally, is whether there are two ways of resolving the impossibility shown
on a reduction diagram.

Aristotle opens his discussion of a syllogism by or through the impossible in the fol-
lowing way:

So then what converting is and how [it is effected], depending upon each figure, and what syllogism
comes to be, is clear. [4, II.11; 61a17–18]
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(Comment. A pair of premises depends upon, for example, the second figure; the applica-
tion of conversion is required in order to transform a pair of premises on the second figure
into the premises of a complete syllogism formed on the first figure. In earlier parts of this
paper it has been shown how there can be syllogisms some of which fully depend upon
the second and others upon the third figure. It is still unclear how we’re to understand
reduction to the impossible if the procedure implies that there are syllogisms which fully
depend upon the second and the third figures. Aristotle writes:)

So what then converting is and how on each figure and what syllogism comes to be, is clear. [4,
II. 61a17–25]

(Comment. Aristotle’s summary remark leaves the question unanswered just when and
how a syllogism is formed on either the second or the third figure. When we left the first
book, we had no reason provided as to how complete syllogisms have been formed on
the second and the third figures. But concerning a syllogism by the impossible Aristotle
writes:)

Now the syllogism by the impossible is demonstrated when the contradictory of its conclusion
has been set out and another premise is taken in addition; [such syllogisms come to be depending,
respectively, upon] all the figures: for [the procedure] is like conversion, although it differs to the
extent that [the conclusion] of the syllogism, which has come to be and of both of the premises
which have been assumed, is reduced to the impossible not by virtue of the fact that the contrary
has been agreed to before, but rather because it is apparent that it is true. And the terms are disposed
in a similar way in both [figures]. For example, if the limit A belongs to the whole of the limit B,
and the limit C is middle and if the limit A is set down either belonging not to the whole or to none
of the limit B but to the whole of the limit C. [4, II.11; 61a17–25]

The first question stated above is answered in this way: a syllogism by the impossible is
a syllogism which is demonstrated with the help of a second syllogism, a premise of which
is the contrary or the contradictory of the conclusion of the first syllogism; a premise of
the first syllogism is copied into the framework of the second syllogism. A conclusion
emerges which is in apparent conflict with one of the premises of the original syllogism.
Some debater in the discussion, who holds that premise dear, may find the conclusion
of a reduction syllogism intolerable and therefore endorses the conclusion of the original
syllogism.

Aristotle contrasts two procedures for generating a second syllogism: just as conver-
sion of a premise (part of a pair of premises on either the second or the third figure) results
in a syllogism constructed upon the first figure, so reduction to the impossible results in
a second syllogism which is based on the first figure (as Aristotle remarks in I.7) one
premise of which is inconsistent with the conclusion of the second syllogism.

But the two procedures differ in this way: conversion begins with a syllogism already
agreed upon; reduction to the impossible is different. For the conclusion of the first syl-
logism is not agreed upon; the second syllogism is constructed beginning with the denial
of the conclusion of the first syllogism. For, in constructing the second syllogism, one
assumes that the conclusion of the first syllogism has not been proved (or is not evident
to those who are arguing with one another). Further, an additional premise for the second
syllogism is copied from a premise in the first syllogism. The conclusion of the second
syllogism conflicts with a premise helping to compose the first syllogism—a premise held
to be true by those arguing, as just suggested.

In Sect. 12 Aristotle remarks that all the projections in the first figure are proved by
means of the impossible; the whole affirmative projection based on the first figure is not
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proved by the impossible [4, II.12; 62a20–22]. If we draw a proper diagram, it is possible
to suggest a reason why Aristotle thinks that reduction to the impossible is not possible
regarding the first figure. Consider the following pair of diagrams:

A diagram of a first figure wanting proof A diagram of a reduction to the impossible

It is evident from the diagrams above that the reduction diagram posits the denial of
the long concluding interval charted on the first diagram: that denial is read from the long
interval from D to part of the limit C. This first step is not problematical for Aristotle.
We then copy the interval indicated by the minor premise into the reduction diagram.
The interval and their terms yield a conclusion according to which the limit D belongs
to some part of the middle term B. It is commonly supposed that if there is denial of the
major interval A-B, and if we assume that negation is embedded not in the interval but
in the premise “A-B”, it follows that the statement of the denial yields: “So D belongs to
some B”. But this cannot be since no highest term belongs to part of the middle term when
it belongs at all. On the other hand, if we were denying a major premise on account of
universal quantification, we would take the resulting major premise to be “So D belongs
to some B”. But the middle term is neither quantified nor universalized. Therefore, the
diagrams should be paired as follows:

A diagram of a first figure wanting proof A diagram of the third figure

The second diagram is not part of the process of reduction to the impossible—a process
in the service of proving the validity of the diagram on the left and therefore proving
the validity of a syllogism formed upon the basis of the figure. Aristotle’s mistake is
perhaps evident: if we’re to show the necessity of the long interval A-C for completing
both the figure and also the syllogism formed upon the basis of the figure, we must posit
the contrary of the long concluding interval A-C. When we do so, we form the following
pairs of diagrams:

A diagram of a first figure wanting proof A diagram showing the impossible

The point is not to continue syllogistic formation as if to complete a demonstration
of impossibility. A syllogism itself is not defined for that task; the task rather falls to the
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drawing of diagrams which, at the same time, are not intended to present the impossible
buried in its figure. What we need is what the second diagram just above gives us, stripped
bare of any presumption to reveal the actual situation within a syllogistic figure. No part
of the bottom term can fall under both of the two upper indications of the upper terms.

The final question before us is whether there are two ways of resolving the impossibil-
ity. With the resolution of the negative prefix ‘im’ I answer in the affirmative and in the
following way. When impossibility becomes apparent upon the basis of a diagram, the
faculty of intellect can return to itself with an apparent need to resolve the impossibility
either for deficiency or for excess. Resolution of the impossible opens upon two paths:
correcting for deficiency takes one path and posits possibility; correcting for excess takes
the other and posits the necessity of the syllogism. The necessity is hypothetical neces-
sity with its subject as the figure under discussion. But what is proved with hypothetical
necessity is not the relative necessity of a final interval relative to the other intervals de-
scribed by the diagram; nor is the relative necessity of the conclusion proved relative to
its premises.

It is tempting to think that a choice between two courses of resolution depends upon
the structure of the two sorts of diagrams: the first plotting a long interval as conclusion
and the second two plotting short intervals as conclusions. If a reduction diagram shows
impossibility regarding a sketch of a syllogism, resolution of the impossible opens upon
two paths, as suggested just above: correcting for deficiency takes place on one path and
writes ‘possibility’ below that projected syllogism; correcting for excess takes the other
and posits the necessity of the syllogism. The modality is necessity, and its subject is
the syllogism in question. If a reduction diagram rather shows possibility regarding a
sketch of a syllogism, the diagram in question is itself possible but not sufficient for the
construction of a syllogism.

At the beginning of the paper I argued that the formation of a demonstrative syllogism
should not depend upon the conversion or the contraposition of premises of a syllogism
to be. The paper has shown how syllogisms can be completed without invoking either
conversion or contraposition. Reinforcement is provided by means of diagrams. I hope it
has come clear how Sophie diagrams and Venn diagrams differ: by virtue of overlapping
a Venn diagram denies the role of intervals which keep the representation of terms apart.
A Sophie diagram, on the other hand, give space for all the parts.
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A Diagrammatic Calculus of Syllogisms
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Abstract A diagrammatic calculus of syllogisms is introduced and discussed, so that a
syllogism is valid if and only if its conclusion follows from its premises by calculation.
The calculus at issue allows the easy retrieving of the traditional rules of the syllogism
and of the laws of the square of opposition. Moreover, it extends to n-term syllogisms and
to syllogisms with complemented terms. In this respect, a comparison with De Morgan’s
spicular notation is treated.
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1 Introduction

In this paper we aim at the extended description of a diagrammatic formalism supporting
a calculus for the syllogistic reasoning. More precisely, we introduce suitable diagram-
matic linear representations of the fundamental Aristotelian categorical propositions and
show that they are closed under the syllogistic canon of inference which is the deletion
of the middle term, so peculiarly implemented to let the formalism simultaneously incor-
porate a graphical appearance and an algebraic nature. We prove that a syllogism is valid
if and only if its conclusion follows from its premises by calculation. A feature of the
calculus at issue is that it is naively algorithmic, meaning that no specific knowledge or
particular ability is needed in order to understand it and to use it. It also supports a crite-
rion for the rejection of the invalid syllogisms on the base of which the easy retrieving of
the traditional rules of the syllogism is possible. Moreover, it allows to retrieve the laws
of the square of opposition too. All these facts are shown in Sect. 3. In Sects. 4 and 5 we
show that the calculus extends to n-term syllogisms and to syllogisms with complemented
terms, respectively. In Sect. 4 the well known result that the number of valid n-term syllo-
gisms is 3n2 −n is reobtained, see [9]. In Sect. 5 a comparison with De Morgan’s spicular
notation, see [2], is treated.

We point out that other linear diagrammatic formalisms for the syllogistic reasoning
exist, notably [12] and [3] but see [7].
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2 Preliminaries on Syllogistic

We here recall some well known facts on syllogistic in its traditional form. In doing this
we will introduce some of the terminology and notations that will turn out to be useful in
the sequel of the paper. For further details on the subject, the reader may consult [8], for
example.

Since Aristotle, syllogistic is based on the following categorical propositions:

AXY : All X is Y (universal affirmative)

EXY : No X is Y (universal negative)

IXY : Some X is Y (particular affirmative)

OXY : Some X is not Y (particular negative)

in which, the letters X and Y denote meaningful expressions of the natural language,
that is terms, and will be referred to as term-variables. Specifically, the term-variable
X is the subject whereas the term-variable Y is the predicate of the considered propo-
sition. A syllogism is an argument form that involves three categorical propositions that
are distinguished by referring to them as first premise, second premise and conclusion.
More precisely, a syllogism involves exactly three term-variables S, P and M as follows:
M occurs in both the premises and does not occur in the conclusion whereas P occurs in
the first premise and S occurs in the second premise. The term-variables S and P occur as
the subject and predicate of the conclusion, respectively, and are also referred to as minor
term and major term of the syllogism, whereas M is also referred to as middle term.

Remark 2.1 What we are referring to as syllogisms are traditional syllogisms in the ter-
minology of [8], where a detailed discussion of the difference between this notion and
that of Aristotelian syllogism can be found. Such a difference will not affect the present
treatment. We only mention that according to [8], an Aristotelian syllogism is a propo-
sition of the type “If A and B, then C”, whereas a traditional syllogism is an argument
form with two premises and one conclusion like “A, B therefore C”, which in its entirety
does not form a compound proposition. Thus, whereas an Aristotelian syllogism can ei-
ther be true or false, a traditional syllogism can either be valid or not. However, there is
to say that considering a syllogism as a proposition is contested by some authors, see [1]
for example, and that in general the notion of syllogism still deserves to be debated. The
interested reader is invited to consult [11].

The mood of a syllogism is the sequence of the kinds of categorical propositions by
which it is formed. The figure of a syllogism is the position of the term-variables S, P and
M in it. There are four possible figures as shown in Table 1 and a syllogism is completely
determined by its mood and by its figure together.

Remark 2.2 Undoubtedly the first three figures in Table 1 were introduced by Aristotle.
Concerning the controversy about who introduced the fourth one, we mention that ac-
cording to [8] Aristotle was completely aware of the existence of it and of all the valid
syllogistic moods for it, see Tables 2 and 3 below.
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Table 1 Figures of the
syllogisms Fig. 1 Fig. 2 Fig. 3 Fig. 4

first premise MP PM MP PM

second premise SM SM MS MS

conclusion SP SP SP SP

We write syllogisms so that their mood and figure can be promptly retrieved, by also
letting the symbol |� separate the premises from the conclusion, as in

AMP ,ASM |� ASP

for example, where it is possible to recognize from left to right the first premise, the
second premise and the conclusion, the mood which is AAA, and the figure which is the
first one. Tables 2 and 3 list the syllogisms which are known to be valid since Aristotle.
They are 24 in total, divided into 15 plus 9, the latter being those syllogisms that are
also said to be strengthened, that is valid under existential import, which is the explicit
assumption of existence of some S, M or P , as indicated.

3 The Calculus

In this section we introduce a diagrammatic calculus on the base of which, the valid
syllogisms listed in Tables 2 and 3 will turn out to be exactly those whose conclusion
follows by calculation.

To each categorical proposition we associate the diagrammatic representations

X
AXY

Y X
EXY• Y

X
IXY• Y X • OXY • Y

to be correspondingly read. We will henceforth collectively refer to them as syllogistic
diagrams. We think of each syllogistic diagram as to an abstract copula, that is

[. . . ] a formal mode of joining two terms which carries no meaning, and obeys no law except such
as is barely necessary to make the forms of inference follow.

quoting from [2].
Two or more syllogistic diagrams can be concatenated and reduced, if possible, by

formally composing two or more consecutive and accordingly oriented arrow symbols

Table 2 The valid syllogisms

Fig. 1 Fig. 2 Fig. 3 Fig. 4

AMP ,ASM |� ASP EPM,ASM |� ESP IMP ,AMS |� ISP APM,EMS |� ESP

EMP ,ASM |� ESP APM,ESM |� ESP AMP , IMS |� ISP IPM,AMS |� ISP

AMP , ISM |� ISP EPM, ISM |� OSP OMP ,AMS |� OSP EPM, IMS |� OSP

EMP , ISM |� OSP APM,OSM |� OSP EMP , IMS |� OSP
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Table 3 The valid strengthened syllogisms

Fig. 1 Fig. 2 Fig. 3 Fig. 4 Assumption

AMP ,ASM |� ISP APM,ESM |� OSP APM,EMS |� OSP some S exists

EMP ,ASM |� OSP EPM,ASM |� OSP some S exists

AMP ,AMS |� ISP EPM,AMS |� OSP some M exists

EMP ,AMS |� OSP some M exists

APM,AMS |� ISP some P exists

separated by a single term-variable, thus deleting it. Such a reduction will be henceforth
referred to as syllogistic inference. By means of syllogistic inferences, the syllogistic di-
agrams can be used to verify the validity of the syllogisms. This is obtained by using
three syllogistic diagrams, as the first premise, the second premise, and the conclusion
of the syllogism, involving three distinguished term-variables, denoted S, M and P , in
such a way that M occurs in both the syllogistic diagrams in the premises and does not
in the conclusion, whereas S and P occur in the conclusion as well as in the premises.
Following the tradition, P will occur in the first premise whereas S in the second. We will
show that a syllogism is valid if and only if there exists a syllogistic inference from the
concatenation of the syllogistic diagrams in the premises to the syllogistic diagram which
is the conclusion. Syllogistic inferences will be represented by planar diagrams filled in
with the symbol |� upside down, so to explicitly underline the fact that the notion of syl-
logistic inference is a directed one. Thus, for example, the syllogistic inference associated
with the valid syllogism APM,ESM |� ESP is

S |�

ESM• M P
APM

S
ESP

• P

(1)

whereas, the syllogism OPM,EMS |� ISP is not valid since its conclusion cannot be ob-
tained by syllogistic inference, as shown by diagram

S 	|�

EMS• M
OPM• • P

S
ISP

• P

(2)

in which no formal composition can be computed to delete the middle term M .

Remark 3.1 Verifying the validity of the syllogisms by means of syllogistic inferences
is a naively algorithmic procedure as we mentioned in Sect. 1. This is different from the
informal employment of Venn’s diagrams for the same purpose, because of the necessary
ability which is required to the user in order to read off the diagram for the conclusion
from the diagrams for the premises. The crucial step consists in understanding if the for-
mer is “contained” in the latter or not. Formal reasoning with Venn’s diagrams is treated
in [5] and [10].

The syllogistic diagram which is the conclusion of a syllogistic inference contains as
many bullet symbols as the syllogistic diagrams for the premises. This fact turns out to
be useful in showing that a syllogism is not valid. So, without drawing diagram (2), the
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syllogism in consideration can be immediately said to be not valid since a single bullet
symbol occurs in the conclusion, whereas three of them occur in the premises. However,
this criterion does not always apply. It suffices to consider the syllogistic inference

S |�

ESM• M
IMP• P

S
OPS

• • P

in which as many bullet symbols occur in the premises as in the conclusion and does not
correspond to any valid syllogism, coherently with (3) in Remark 3.5 below, since in the
diagram for the conclusion the rôles of S and P has been illicitly exchanged. Anyway, by
the application of suitable rules of reduction, already known to Aristotle, specifically by
exchanging the order of the premises and by simple conversion on them, see the end of
Sect. 4, to let now P become the minor term and S the major term, the previous syllogistic
inference can be transformed into the one for the valid first-figure syllogism EMS, IPM |�
OPS .

The invalid syllogisms can be rejected with the linear diagrams in [3] as well, but for
the fact that one has to go through all of them, as explained there.

The following lemma lists the concatenations of pairs of syllogistic diagrams yielding
a syllogistic diagram through a syllogistic inference.

Lemma 3.2 A syllogistic inference applied to a concatenation of two syllogistic diagrams
yields a syllogistic diagram in exactly the following cases:

(i) S → M → P

(ii) S → • ← M ← P

(iii) S → M → • ← P

(iv) S ← M ← • → P

(v) S ← • → M → P

(vi) S ← • → M → • ← P

(vii) S ← M ← • → • ← P

(viii) S ← • → • ← M ← P

Proof Clearly, syllogistic inference applies to each of the diagrams listed in the state-
ment and, making M disappear, yields a syllogistic diagram involving only S and P , as a
conclusion. Conversely, by also keeping in mind Remark 3.1, we proceed by cases:

(a) the only way to obtain S → P as a conclusion of a syllogistic inference is by (i), since
no bullet symbol is allowed to occur in the conclusion.

(b) the only way to obtain S → • ← P as a conclusion of a syllogistic inference is by
either (ii) or (iii), since exactly one bullet symbol must occur in the conclusion with
two arrow symbols converging to it.

(c) similarly, the only way to obtain S ← • → P as a conclusion of a syllogistic inference
is by either (iv) or (v), since exactly one bullet symbol must occur in the conclusion
with two arrow symbols diverging from it.

(d) the only way to obtain S ← • → • ← P as a conclusion of a syllogistic inference
is by either (vi), (vii) or (viii), since exactly two bullet symbols must occur in the
conclusion, together with three alternating arrow symbols. �
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Notation 3.3 Henceforth, the concatenation of syllogistic diagrams will be denoted by
� and the syllogistic inferences also written in line, so that for example the syllogistic
inference represented by diagram (1) will be also written

(APM)�(ESM) |� (ESP )

The next theorem shows that the syllogisms in Table 2 are exactly those that are valid
by the method of syllogistic inference.

Theorem 3.4 A syllogism is valid if and only if there is a (necessarily unique) syllogistic
inference from its premises to its conclusion.

Proof On one hand it suffices to explicitly construct a syllogistic inference for each of the
syllogisms in Table 2, as follows:

Figure 1:

(AMP )�(ASM) |� (ASP )

(EMP )�(ASM) |� (ESP )

(AMP )�(ISM) |� (ISP )

(EMP )�(ISM) |� (OSP )

Figure 2:

(EPM)�(ASM) |� (ESP )

(APM)�(ESM) |� (ESP )

(EPM)�(ISM) |� (OSP )

(APM)�(OSM) |� (OSP )

Figure 3:

(IMP )�(AMS) |� (ISP )

(AMP )�(IMS) |� (ISP )

(OMP )�(AMS) |� (OSP )

(EMP )�(IMS) |� (OSP )

Figure 4:

(APM)�(EMS) |� (ESP )

(IPM)�(AMS) |� (ISP )

(EPM)�(IMS) |� (OSP )

On the other hand, it suffices to construct syllogistic inferences to a given possible con-
clusion.

– By Lemma 3.2 (i), the only way to obtain ASP as a conclusion is represented by the
diagram

S |�M P

S P
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which exactly corresponds to the syllogistic inference

(AMP )�(ASM) |� (ASP )

validating the mood AAA in the first figure.
– By Lemma 3.2 (ii) and (iii), the only ways to obtain ESP as a conclusion, are repre-

sented by the two diagrams

S |�• M P

S • P

S |�M • P

S • P

The leftmost can be read as either the syllogistic inference

(APM)�(ESM) |� (ESP )

or

(APM)�(EMS) |� (ESP )

which validate the mood AEE in the second and fourth figures, respectively. The right-
most can be read as either the syllogistic inference

(EMP )�(ASM) |� (ESP )

or

(EPM)�(ASM) |� (ESP )

which validate the mood EAE in the first and second figures, respectively.
– By Lemma 3.2 (iv) and (v), the only ways to obtain ISP as a conclusion is represented

by the two diagrams

S |�M • P

S • P

S |�• M P

S • P

The leftmost can be read as either the syllogistic inference

(IMP )�(AMS) |� (ISP )

or

(IPM)�(AMS) |� (ISP )

which validate the mood IAI in the third and fourth figures, respectively. The rightmost
can be read as either the syllogistic inference

(AMP )�(ISM) |� (ISP )

or

(AMP )�(IMS) |� (ISP )

that validate the mood AII in the first and third figures, respectively.
– By Lemma 3.2 (vi), (vii) and (viii), the only ways to obtain OSP as a conclusion is

represented by the three diagrams

S |�• M • P

S • • P
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S |�M • • P

S • • P

S |�• • M P

S • • P

The first can be read as any of the syllogistic inferences

(EMP )�(ISM) |� (OSP )

(EPM)�(ISM) |� (OSP )

(EMP )�(IMS) |� (OSP )

(EPM)�(IMS) |� (OSP )

that validate the mood EIO in all the figures. The second can be read as the syllogistic
inference

(OMP )�(AMS) |� (OSP )

that validates the mood OAO in the third figure. The third can be read as the syllogistic
inference

(APM)�(OSM) |� (OSP )

validating the mood AOO in the second figure. �

Remark 3.5 After Theorem 3.4, it is an easy exercise to read off the well-known rules of
syllogism from the list in Lemma 3.2.

(1) From two negative premises nothing can be inferred.
(2) From two particular premises nothing can be inferred.
(3) If the first premise of a syllogism is particular, whereas its second premise is negative,

then nothing can be inferred.
(4) If one premise is particular, then the conclusion is particular.
(5) The conclusion of a syllogism is negative if and only if so is one of its premises.

For every term-variable X, particularly interesting instances of syllogistic diagrams are
the following:

X
AXX

X X
EXX• X

X
IXX• X X

OXX• • X

which must be correspondingly read as

AXX: All X is X

EXX: No X is X

IXX: Some X is X

OXX: Some X is not X

The diagrams AXX and IXX represent the laws of identity. Diagram IXX in particular rep-
resents existential import, whereas diagram EXX affirms the emptiness of X. We look at



A Diagrammatic Calculus of Syllogisms 41

diagram OXX as expressing contradiction, for reasons that will be more clearly illustrated
by Proposition 3.8.

Theorem 3.4 extends to comprise the syllogisms in Table 3, by taking into account
existential imports of the forms ISS , IMM , IPP . The first step toward that direction is
Lemma 3.6 below.

Lemma 3.6 A syllogistic inference applied to a concatenation of two syllogistic diagrams
and one existential import yields a syllogistic diagram in exactly the following cases:

(i) S ← • → S → M → P

(ii) S ← M ← • → M → P

(iii) S ← M ← P ← • → P

(iv) S ← • → S → M → • ← P

(v) S ← • → S → • ← M ← P

(vi) S ← M ← • → M → • ← P

Proof On one hand, it is clear that syllogistic inference applies to the diagrams listed in
the statement and, making M disappear, yields a syllogistic diagram involving only S and
P as a conclusion. On the other hand, by also keeping in mind Remark 3.1, we proceed
by cases:

(a) There is no way to obtain S → P as the conclusion of a syllogistic inference under
any existential import of the form ISS , IMM or IPP , because of the presence of one
indelible bullet symbol in any of these.

(b) There is no way to obtain S → • ← P as the conclusion of a syllogistic inference
under any existential import of the form ISS , IMM or IPP , because of the presence of
one indelible bullet symbol in any of these, together with two morphisms diverging
from it.

(c) The only ways to obtain S ← • → P as the conclusion of a syllogistic inference, un-
der any existential import of the form ISS , IMM or IPP , is by either (i), (ii) or (iii), since
exactly one bullet symbol must occur in the conclusion together with two morphisms
diverging from it.

(d) There is no way to obtain S ← • → • ← P as the conclusion of a syllogistic infer-
ence under the existential import IPP , since such an assumption necessarily yields a
conclusion like S · · · • → P which by no means can be S ← • → • ← P . The only
ways to obtain S ← • → • ← P as the conclusion of a syllogistic inference, under
any existential import of the forms ISS or IMM , is by either (iv), (v) or (vi), since ex-
actly two bullet symbols must occur in the conclusion, together with three alternating
morphisms. �

Theorem 3.7 A syllogism with existential import is valid if and only if there is a syllogistic
inference from its premises to its conclusion.

Proof On one hand it suffices to construct explicitly a suitable syllogistic inference for
each of the syllogisms in Table 3, as follows:

Figure 1:

(AMP )�(ASM)�(ISS) |� (ISP )

(EMP )�(ASM)�(ISS) |� (OSP )
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Figure 2:

(APM)�(ESM)�(ISS) |� (OSP )

(EPM)�(ASM)�(ISS) |� (OSP )

Figure 3:

(AMP )�(IMM)�(AMS) |� (ISP )

(EMP )�(IMM)�(AMS) |� (OSP )

Figure 4:

(APM)�(EMS)�(ISS) |� (OSP )

(EPM)�(IMM)�(AMS) |� (OSP )

(IPP )�(APM)�(AMS) |� (ISP )

On the other hand it suffices to construct a syllogistic inference to a given possible con-
clusion, by taking into account existential imports.

Because of points (a) and (b) in the proof of Lemma 3.6, there is no way to obtain the
syllogistic diagrams ASP and ESP as the conclusion of a syllogistic inference under any
existential import.

– By Lemma 3.6 (i), (ii), (iii), the only ways to obtain the conclusion ISP under the
existential import ISS , IMM or IPP are represented by the three diagrams

S |�• S M P

S • P

S |�M • M P

S • P

S |�M P • P

S • P

which from top to bottom can be read as the syllogistic inferences

(AMP )�(ASM)�(ISS) |� (ISP )

(AMP )�(IMM)�(AMS) |� (ISP )

(IPP )�(APM)�(AMS) |� (ISP )

respectively, validating the mood AAI in the first, third and fourth figure.
– By Lemma 3.6 (iv), (v), (vi), the only ways to obtain the conclusion OSP is under the

existential import ISS or IMM , as represented by the three diagrams

S |�• S M • P

S • • P

S |�• S • M P

S • • P
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S |�M • M • P

S • • P

the first of which can be read as either the syllogistic inference

(EMP )�(ASM)�(ISS) |� (OSP )

or

(EPM)�(ASM)�(ISS) |� (OSP )

that validate the mood EAO in the first and second figures, respectively. The second
diagram can be read as either the syllogistic inference

(APM)�(ESM)�(ISS) |� (OSP )

or

(APM)�(EMS)�(ISS) |� (OSP )

that validate the mood AEO in the second and fourth figures, respectively. The third
diagram can be read as either the syllogistic inference

(EMP )�(IMM)�(AMS) |� (OSP )

or

(EPM)�(IMM)�(AMS) |� (OSP )

that validate the mood EAO in the third and fourth figures, respectively. �

We end the section by briefly discussing the existing connections between the so far
described calculus of syllogisms and the laws of the square of opposition

AX,Y

contradictionsubalternation

contrariety
EX,Y

subalternation

IX,Y subcontrariety
OX,Y

in which

– AXY and OXY , as well as EXY and IXY , are contradictory because they cannot both be
true, nor both false. In each pair, one proposition is true if and only if the other is false.

– Under existential import on X, AXY and IXY as well as EXY and OXY , are subaltern
because IXY is true if AXY is true, and OXY is true if EXY is true, but not the converse,
in both cases.

– Under existential import on X, AXY and EXY are contraries because they cannot both
be true, but can both be false. Each of them implies the negation of the other, but not
the converse.
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– Under existential import on X, IXY and OXY are subcontraries because they cannot
both be false, but can both be true. The negation of each of them implies the other, but
not the converse.

Proposition 3.8 The laws of the square of opposition can be obtained by syllogistic in-
ference.

Proof The contradictory relations are calculated by the syllogistic inferences

(AXY )�(OXY ) |� (OXX)

(EXY )�(IXY ) |� (OXX)

and this is the reason why we look at OXX as expressing contradiction, as previously
hinted at. The remaining laws are calculated by the syllogistic inferences

(AXY )�(IXX) |� (IXY )

(EXY )�(IXX) |� (OXY )

Indeed, they immediately provide the subalternation laws. They provide evidence for the
laws of contrariety because IXY is the negation of EXY and OXY is the negation of AXY .
They provide evidence for the laws of subcontrariety since AXY is the negation of OXY

and EXY is the negation of IXY . Moreover, both the syllogistic inferences cannot be re-
versed since one bullet symbol occurs in IXY and no bullet symbols occur in AXY , two
bullet symbols occur in OXY and one bullet symbol occurs in EXY , see Remark 3.1. �

4 Extending the Calculus: n-Term Syllogisms

Whereas syllogisms, either with existential import or not, involve exactly 3 term-
variables, n-term syllogisms involve exactly n term-variables A1, . . . ,An, n ≥ 1, linked
by n categorical propositions any two contiguous of which have exactly one term in com-
mon. The total number of valid n-term syllogisms is 3n2 − n, see [9], where such a for-
mula was obtained by rejecting the not valid moods on the bases of the traditional rules of
syllogism. The same formula has been reobtained in [12] and [4]. The aim of the present
section is that of generalizing Theorems 3.4 and 3.7 to the case of n-term syllogisms and
that of recalculating the previously cited formula through the employment of syllogistic
inferences.

Lemma 4.1 For every positive natural number n, a syllogistic inference yields a syllogis-
tic diagram as a conclusion in exactly the following cases:

(i) A1 → A2 → ·· · → Ai → Ai+1 → ·· · → An−1 → An.
(ii) A1 → A2 → ·· · → Ai → • ← Ai+1 ← ·· · ← An−1 ← An, with 1 ≤ i ≤ n − 1.

(iii) A1 ← A2 ← ·· · ← Ai ← • → Ai+1 → ·· · → An−1 → An, with 1 ≤ i ≤ n − 1.
(iv) A1 ← A2 ← ·· · ← Ai ← • → Ai → ·· · → An−1 → An, with 1 ≤ i ≤ n.
(v) A1 ← A2 ← ·· · ← Ai ← • → • ← Ai+1 ← ·· · ← An−1 ← An, with 1 ≤ i ≤

n − 1.
(vi) A1 ← ·· · ← Ai ← • → Ai+1 → ·· · → Aj−1 → • ← Aj ← ·· · ← An, with 1 ≤

i < j ≤ n.
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(vii) A1 ← ·· · ← Ai ← • → Ai → ·· · → Aj−1 → • ← Aj ← ·· · ← An, with 1 ≤ i <

j ≤ n.

Proof It is clear that a syllogistic inference applies to each of the diagrams listed in the
statement yielding a syllogistic diagram involving the terms A1 and An only. Conversely,
we proceed by cases:

(a) the only way to obtain A1 → An as a conclusion of a syllogistic inference is by (i),
since no bullet symbol is allowed to occur in the conclusion.

(b) the only way to obtain A1 → • ← An as a conclusion of a syllogistic inference is by
(ii), since exactly one bullet symbol must occur in the conclusion with two morphisms
converging to it.

(c) the only way to obtain A1 ← • → An as a conclusion of a syllogistic inference is by
(iii) or (iv), since exactly one bullet symbol must occur in the conclusion with two
morphisms diverging from it.

(d) the only way to obtain A1 ← • → • ← An as a conclusion of a syllogistic inference
is by (v), (vi) or (vii), since exactly two bullet symbols must occur in the conclusion,
with three alternating morphisms. �

Lemma 4.2 For every positive natural number n, let ϕ(n) and ψ(n) be the number of
diagrams like those in points (vi) and (vii) of Lemma 4.1, respectively. The following facts
hold

(i) ϕ(n) = (n−1)(n−2)
2 .

(ii) ψ(n) = n(n−1)
2 .

Proof (i) For every positive natural number n, ϕ(n+ 1) = ϕ(n)+ (n− 1). Because, pass-
ing from n to n + 1 is a matter of inserting one more arrow symbol → or ←, on the left,
on the right or in the middle of the diagrams constructed at n, so to extend them with
one more term-variable. There are exactly n − 1 possibilities of doing this. Finally, by
induction on the number of term-variables, the thesis is easily achieved.

(ii) The argument is completely similar to the previous but for the fact that for every
positive natural number n, ψ(n + 1) = ψ(n) + n. �

Theorem 4.3 For every positive natural number n, an n-term syllogism is valid if and
only if there is a syllogistic inference from its premises to its conclusion. Moreover, the
number of valid n-term syllogisms is 3n2 − n.

Proof Lemmas 4.1 and 4.2, permit to conclude that the n-term syllogisms in Table 4 are
all valid. Moreover they are 3n2 −n. Conversely, we use Lemmas 4.1 and 4.2, to construct
a syllogistic inference to a given possible conclusion:

– By Lemma 4.1 (i), the diagram

A1 |�A2 · · · Ai Ai+1 · · · An−1 An

A1 An

represents the only way to produce evidence for the syllogistic inference

(AAn−1An)� · · · �(AA1A2) |� (AA1An)
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Table 4 The valid n-term syllogisms

Syllogism Quantity

AAn−1An , . . . ,AA1A2 |� AA1An 1

AAnAn−1 , . . . ,EAiAi+1 , . . . ,AA1A2 |� EA1An n − 1

AAnAn−1 , . . . ,EAi+1Ai
, . . . ,AA1A2 |� EA1An n − 1

AAn−1An , . . . , IAiAi+1 , . . . ,AA2A1 |� IA1An n − 1

AAn−1An , . . . , IAi+1Ai
, . . . ,AA2A1 |� IA1An n − 1

AAn−1An , . . . , IAiAi
, . . . ,AA2A1 |� IA1An n

AAnAn−1 , . . . ,OAiAi+1 , . . . ,AA2A1 |� OA1An n − 1

AAnAn−1 , . . . ,EAj−1Aj
, . . . , IAiAi+1 , . . . ,AA2A1 |� OA1An

(n−1)(n−2)
2

AAnAn−1 , . . . ,EAj−1Aj
, . . . , IAi+1Ai

, . . . ,AA2A1 |� OA1An

(n−1)(n−2)
2

AAnAn−1 , . . . ,EAj Aj−1 , . . . , IAiAi+1 , . . . ,AA2A1 |� OA1An

(n−1)(n−2)
2

AAnAn−1 , . . . ,EAj Aj−1 , . . . , IAi+1Ai
, . . . ,AA2A1 |� OA1An

(n−1)(n−2)
2

AAnAn−1 , . . . ,EAj−1Aj
, . . . , IAiAi

, . . . ,AA2A1 |� OA1An

n(n−1)
2

AAnAn−1 , . . . ,EAj Aj−1 , . . . , IAiAi
, . . . ,AA2A1 |� OA1An

n(n−1)
2

validating the n-term syllogism

AAn−1An, . . . ,AA1A2 |� AA1An

– By Lemma 4.1 (ii), the n − 1 diagrams

A1 |�A2 · · ·Ai • Ai+1 · · · An−1 An

A1 • An

represent the only way to produce evidence for the syllogistic inference

(AAnAn−1)� · · · �(EAiAi+1)� · · · �(AA1A2) |� (EA1An)

as well as for the syllogistic inference

(AAnAn−1)� · · · �(EAi+1Ai
)� · · · �(AA1A2) |� (EA1An)

validating the n − 1 syllogisms

AAnAn−1 , . . . ,EAiAi+1 , . . . ,AA1A2 |� EA1An

and the n − 1 syllogisms

AAnAn−1 , . . . ,EAi+1Ai
, . . . ,AA1A2 |� EA1An

respectively. Thus, in total there are 2(n − 1) valid n-term syllogisms with conclusion
EA1An .

– By Lemma 4.1 (iii), the n − 1 diagrams

A1 |�A2 · · ·Ai • Ai+1 · · · An−1 An

A1 • An

represent the only way to produce evidence for the n − 1 syllogistic inferences

(AAn−1An)� · · · �(IAiAi+1)� · · · �(AA2A1) |� (IA1An)



A Diagrammatic Calculus of Syllogisms 47

as well as for the n − 1 syllogistic inferences

(AAn−1An)� · · · �(IAi+1Ai
)� · · · �(AA2A1) |� (IA1An)

that validate the n − 1 n-term syllogisms

AAn−1An, . . . , IAiAi+1, . . . ,AA2A1 |� IA1An

and the n − 1 n-term syllogisms

AAn−1An, . . . , IAi+1Ai
, . . . ,AA2A1 |� IA1An

respectively.
By Lemma 4.1 (iv), the n diagrams

A1 |�A2 · · ·Ai • Ai · · · An−1 An

A1 • An

represent the only way to produce evidence for the n syllogistic inferences

(AAn−1An)� · · · �(IAiAi
)� · · · �(AA2A1) |� (IA1An)

that validate the n n-term syllogisms

AAn−1An, . . . , IAiAi
, . . . ,AA2A1 |� IA1An

so that in total there are 2(n − 1) + n valid n-term syllogisms with conclusion IA1An .
– By Lemma 4.1 (v), the n − 1 diagrams

A1 |�A2 · · ·Ai • • Ai+1 · · · An−1 An

A1 • • An

represent the only way to produce evidence for the n − 1 syllogistic inferences

(AAnAn−1)� · · · �(OAiAi+1)� · · · �(AA2A1) |� (OA1An)

that validate the n − 1 n-term syllogisms

AAnAn−1 , . . . ,OAiAi+1, . . . ,AA2A1 |� OA1An.

By Lemma 4.1 (vi) and Lemma 4.2 (i), the (n−1)(n−2)
2 diagrams

A1 |�· · ·Ai • Ai+1 · · · · · ·Aj−1 • Aj · · · An

A1 • • An

represent the only way to produce evidence for the 4 · (n−1)(n−2)
2 syllogistic inferences

(AAnAn−1)� · · · �(EAj−1Aj
)� · · · �(IAiAi+1)� · · · �(AA2A1) |� (OA1An)

(AAnAn−1)� · · · �(EAj−1Aj
)� · · · (IAi+1Ai

)� · · · �(AA2A1) |� (OA1An)

(AAnAn−1)� · · · �(EAj Aj−1)� · · · �(IAiAi+1)� · · · �(AA2A1) |� (OA1An)

(AAnAn−1)� · · · �(EAj Aj−1)� · · · �(IAi+1Ai
)� · · · �(AA2A1) |� (OA1An)

that validate the 4 · (n−1)(n−2)
2 n-term syllogisms
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AAnAn−1 , . . . ,EAj−1Aj
, . . . , IAiAi+1 , . . . ,AA2A1 |� OA1An

AAnAn−1 , . . . ,EAj−1Aj
, . . . , IAi+1Ai

, . . . ,AA2A1 |� OA1An

AAnAn−1 , . . . ,EAj Aj−1, . . . , IAiAi+1 , . . . ,AA2A1 |� OA1An

AAnAn−1 , . . . ,EAj Aj−1, . . . , IAi+1Ai
, . . . ,AA2A1 |� OA1An

respectively.
By Lemma 4.1 (vii) and Lemma 4.2 (ii), the n(n−1)

2 diagrams

A1 |�· · ·Ai • Ai · · · · · ·Aj−1 • Aj · · · An

A1 • • An

represent the only way to produce evidence for the 2 · n(n−1)
2 syllogistic inferences

(AAnAn−1)� · · · �(EAj−1Aj
)� · · · �(IAiAi

)� · · · �(AA2A1) |� (OA1An)

(AAnAn−1)� · · · �(EAj Aj−1)� · · · �(IAiAi
)� · · · �(AA2A1) |� (OA1An)

that validate the 2 · n(n−1)
2 n-term syllogisms

AAnAn−1 , . . . ,EAj−1Aj
, . . . , IAiAi

, . . . ,AA2A1 |� OA1An

AAnAn−1 , . . . ,EAj Aj−1 , . . . , IAiAi
, . . . ,AA2A1 |� OA1An

respectively. Thus in total there are n − 1 + 4 · (n−1)(n−2)
2 + 2 · n(n−1)

2 valid n-term
syllogisms with conclusion OA1An .

In total, the valid n-term syllogisms are in number of

1 + 2(n − 1) + 2(n − 1) + n + (n − 1) + 4 · (n − 1)(n − 2)

2

+ 2 · n(n − 1)

2
= 3n2 − n �

The existing syllogistic inference providing evidence for the validity of an n-term syl-
logism is not uniquely determined, in general. In order to see this consider the valid 5-
term syllogism AA5A4,EA3A4 , IA3A2 ,AA2A1 |� OA1A5 for example. It can be obtained as
the composite of subsequent syllogistic inferences in two different ways, as shown by the
diagrams

A1 |�A2
AA2A1 IA3A2• A3

EA3A4• A4 A5
AA5A4

A1 |�IA1A3
• A3

EA3A4

• A4 A5
AA5A4

A1 |�OA1A4
• • A4 A5

AA5A4

A1 OA1A5
• • A5

A1 A2 |�

AA2A1 IA3A2• A3
EA3A4• A4 A5

AA5A4

A1 A2 |�

AA2A1

OA2A4
• • A4 A5

AA5A4

A1 |�A2AA2A1
• • A5OA2A5

A1 OA1A5
• • A5
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Table 5 Figures of the
2-term syllogisms Fig. 1 Fig. 2

premise A1A2 A1A2

conclusion A1A2 A2A1

which is also the reason why, differently from Theorem 3.4, in Theorem 3.7 the unique-
ness condition on the existence of a syllogistic inference for the validity of a syllogism
with existential import has been dropped.

We end with the explicit description of the valid n-term syllogisms for n = 1 and
n = 2, respectively. In the first case, there is only one figure, that is A1A1 and only two
valid moods for it, that is A and I so that, as observed in [8] and [9], the only valid 1-term
syllogisms are AA1A1 |� AA1A1 and IA1A1 |� IA1A1 , that is the laws of identity we hinted at
in the previous section. In the second case there are two figures, as shown in Table 5, and
ten valid 2-term syllogisms, six in the first figure and four in the second, as follows:

Figure 1: AA1A2 |� AA1A2 , EA1A2 |� EA1A2 , IA1A2 |� IA1A2 , OA1A2 |� OA1A2 , plus the
laws of subalternation AA1A2, IA1A1 |� IA1A2 , EA1A2, IA1A1 |� OA1A2 .

Figure 2: EA2A1 |� EA1A2 , IA2A1 |� IA1A2 which are the laws of simple conversion, and
IA2A2 ,AA2A1 |� IA1A2 , EA2A1, IA1A1 |� OA1A2 which are the laws of conversion per
accidents.

5 Syllogisms with Complemented Terms

The investigation of the possibility of an algebraic calculus of syllogisms was in partic-
ular carried out by Augustus De Morgan in the nineteenth century. In [2], he introduced
the so called spicular notation to manage the syllogistic reasoning in purely symbolic
terms. Such a notation rises from a detailed analysis of the meaning of the categorical
propositions. De Morgan argued that a symbolic formalism for their representation should
simultaneously convey information about them being universal or particular, affirmative
or negative, saving the possibility of pointing out these characteristics separately, or in his
words:

A fundamental symbol should not be of compound meaning: that is, should not expressly signify
more than one thing.

Thus, De Morgan lets a term-variable X be enclosed by a parenthesis, as in X) or (X,
to express universal quantification, that is “all Xs”, whereas he lets a term-variable be-
ing excluded by a parenthesis, as in )X or X(, to mean particular quantification, namely
“some Xs”. Furthermore, he lets an even number of dots, or none at all, between paren-
theses, express affirmation or agreement of terms, whereas he lets an odd number of dots
express negation or disagreement of terms. The following are the fundamental categorical
propositions as they appear in the spicular notation:

AXY : X )) Y EXY : X ) · ( Y

IXY : X () Y OXY : X ( · ( Y

which accordingly should now be read
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AXY : All Xs are some Y s

EXY : All Xs are not all Y s

IXY : Some Xs are some Y s

OXY : Some Xs are not all Y s

The possibility of doing formal inferences through the employment of the spicular nota-
tion is based on the erasure rule, that is the deletion of the middle term together with the
pair of symbols around it. For example, the verification of the validity of the syllogism
APM,OSM |� OSP appears as S( · (M((P |� S( · (P , whereas the verification of the
validity of the syllogism AMP , ISM |� ISP appears as S()M))P |� S()P .

With the spicular notation there is another rule involved, that is the transformation
rule, strictly related to the introduction of complements of terms. The complement of a
term X is the term that means non-X, which De Morgan was used to denote x. Of course
X is the complement of x and the transformation rule for the spicular notation allows to
substitute a term with its complement, by rewriting it with the corresponding lower/upper
case letter, simultaneously changing the curvature of its parenthesis and adding or re-
moving a negation dot. For example, with the possibility of mentioning complements of
terms, the alternative reading of X))Y could be “All Xs are not all non-Y s”, which can
be symbolically obtained by applying the transformation rule just described, so to retrieve
X) · (y.

The possibility of making a distinction between a term being universally or particularly
quantified, as well as between affirmative and negative modes of predication is supported
by the diagrammatic formalism we discussed in the previous sections, together with the
possibility of handling complements of terms. Indeed, we can look at the symbols •, →
and ← as to fundamental ones. In a diagram built as a combination of such fundamental
symbols, a term-variable X is universally quantified if it enters in it as X → or ← X,
whereas it is particularly quantified if it enters in it as X ← or → X. The complement
of X is represented as X → • or • ← X, both of which may be abbreviated as x. In
our opinion, the giving of an explicit encoding of complements of terms through the
fundamental symbols •, → and ←, is an advantage of the diagrammatic formalism with
respect to the spicular notation. The term X is affirmed if it enters in a diagram as • → X

or X ← •.
By the employment of complements, De Morgan was able to introduce four more

categorical propositions and also to let the particular and universal affirmative modes of
predication be the fundamental ones. Table 6 is essentially the one contained in [2]. It lists
the forms of predication now available, with the corresponding spicular and diagrammatic
representations. We are assuming that a pair of accordingly oriented arrows separated by
a bullet never compose, that is → • → for example does not reduces to →. The double
negation of a term X is represented by a diagram like

• ← X → •
and whenever it will be the case, in performing a syllogistic inference we will refer to
double negation substitution as to the operation of substituting that diagram with the sole
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Table 6 De Morgan’s forms of predication

Spic. notation Diagr. notation Natural language

AXY X))Y X → Y All X is Y

Axy x))y or X((Y X → • → • ← Y All Y is X

AXy X))y or X( · (Y X → • ← Y No X is Y

AxY x))Y or X( · )Y X → • → Y Everything is X or Y

IXY X()Y X ← • → Y Some X is Y

Ixy x()y or X)(Y X → • ← • → • ← Y Some things are neither X nor Y

IXy X()y or X( · (Y X ← • → • ← Y Some X is not Y

IxY x()Y or X) · )Y X → • ← • → Y Some Y is not X

Table 7 The valid De
Morgan’s syllogisms 1 2 3 4 5 6 7 8

S ∗ ∗ ∗ ∗
s ∗ ∗ ∗ ∗
M ∗ ∗ ∗ ∗
m ∗ ∗ ∗ ∗
P ∗ ∗ ∗ ∗
p ∗ ∗ ∗ ∗

symbol X. For example, the syllogistic inference for the validity of the strengthened syl-
logism Amp,AmS |� ISp is

S
AmS• M • • P

Amp

S M
AMS EMP • P

S |�M
AMS IMM• M

EMP• P

S
ISp

• • P

in which the first and second steps consist of a double negation substitution and of the
insertion of the existential import IMM , respectively, whereas the third one is the honest
syllogistic inference.

From Table 6, De Morgan recovered thirty-two valid syllogisms with complements.
Eight universal syllogisms whose scheme of inference is )) ))= )). Sixteen syllogisms
with one particular premise, precisely eight whose scheme of inference is (( () = ()
and further eight whose scheme of inference is () ))= (). Finally, eight strengthened
syllogisms whose scheme of inference is (( ))= (). We listed them as indicated in Ta-
ble 7 which we took from [6], with personal notation, and where each column corresponds
to a syllogism in one of the previously described schemes of inference.

Theorem 5.1 Each syllogism with complements in Table 7 is validated by a syllogistic
inference and vice versa.
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Proof On one hand, we proceed by fixing one of the four schemes of inference previously
described and going through the columns of Table 7, indicated by the numbers in the
items below, showing that a syllogistic inference providing evidence for the validity of the
corresponding syllogism with complements exists. The syllogistic inferences containing
a double negation substitution are exactly those for a syllogism in which the middle term
is complemented in the first as well as in the second premise. Existential import for the
strengthened syllogisms is explicitly indicated.

(i) For the scheme )) ))= ))
(i.1) AMP ,ASM |� ASP yields (AMP )�(ASM) |� (ASP )

(i.2) AMp,ASM |� ASp yields (AMp)�(ASM) |� (ASp)

(i.3) AmP ,ASm |� ASP yields (AmP )�(ASm) |� (ASP )

(i.4) Amp,ASm |� ASp yields (Amp)�(ASm) |� (ASp)

(i.5) AMP ,AsM |� AsP yields (AMP )�(AsM) |� (AsP )

(i.6) AMp,AsM |� Asp yields (AMp)�(AsM) |� (Asp)

(i.7) AmP ,Asm |� AsP yields (AmP )�(Asm) |� (AsP )

(i.8) Amp,Asm |� Asp yields (Amp)�(Asm) |� (Asp)

(ii) For the scheme (( ()= ()
(ii.1) IMP ,AMS |� ISP yields (IMP )�(AMS) |� (ISP )

(ii.2) IMp,AMS |� ISp yields (IMp)�(AMS) |� (ISp)

(ii.3) ImP ,AmS |� ISP yields (ImP )�(AmS) |� (ISP )

(ii.4) Imp,AmS |� ISp yields (Imp)�(AmS) |� (ISp)

(ii.5) IMP ,AMs |� IsP yields (IMP )�(AMs) |� (IsP )

(ii.6) IMp,AMs |� Isp yields (IMp)�(AMs) |� (Isp)

(ii.7) ImP ,Ams |� IsP yields (ImP )�(Ams) |� (IsP )

(ii.8) Imp,Ams |� Isp yields (Imp)�(Ams) |� (Isp)

(iii) For the scheme () ))= ()
(iii.1) AMP , ISM |� ISP yields (AMP )�(ISM) |� (ISP )

(iii.2) AMp, ISM |� ISp yields (AMp)�(ISM) |� (ISp)

(iii.3) AmP , ISm |� ISP yields (AmP )�(ISm) |� (ISP )

(iii.4) Amp, ISm |� ISp yields (Amp)�(ISm) |� (ISp)

(iii.5) AMP , IsM |� IsP yields (AMP )�(IsM) |� (IsP )

(iii.6) AMp, IsM |� Isp yields (AMp)�(IsM) |� (Isp)

(iii.7) AmP , Ism |� IsP yields (AmP )�(Ism) |� (IsP )

(iii.8) Amp, Ism |� Isp yields (Amp)�(Ism) |� (Isp)

(iv) For the scheme (( ))= ()
(iv.1) AMP ,AMS |� ISP yields (AMP )�(IMM)�(AMS) |� (ISP )

(iv.2) AMp,AMS |� ISp yields (AMp)�(IMM)�(AMS) |� (ISp)

(iv.3) AmP ,AmS |� ISP yields (AmP )�(AmS) |� (AMP )�(IMM)�(AMS) |� (ISP )

(iv.4) Amp,AmS |� ISp yields (Amp)�(AmS) |� (AMP )�(IMM)�(AMS) |� (ISp)

(iv.5) AMP ,AMs |� IsP yields (AMP )�(IMM)�(AMs) |� (IsP )

(iv.6) AMp,AMs |� Isp yields (AMp)�(IMM)�(AMs) |� (Isp)

(iv.7) AmP ,Ams |� IsP yields (AmP )�(Ams) |� (AMP )�(IMM)�(AMs) |� (IsP )

(iv.8) Amp,Ams |� Isp yields (Amp)�(Ams) |� (AMp)�(IMM)�(AMs) |� (Isp)

Conversely, we let the reader convince herself that it suffices to proceed as already done
in Theorems 3.4 and 3.7, that is by constructing suitable syllogistic inferences to a fixed
possible conclusion by taking into account both double negation substitutions and exis-
tential imports in the premises. It does not suffices to exclusively do this for Asp , AsP , Isp
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and IsP , since for example ASP can be now obtained as a possible conclusion through the
syllogistic inference (AMP )�(ASM) |� (ASP ) as well as through the syllogistic inference
(AmP )�(ASm) |� (ASP ), in which a double negation substitution occurs. �
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Beyond Syllogisms: Carroll’s (Marked)
Quadriliteral Diagram

Amirouche Moktefi

Abstract The logician Lewis Carroll (1832–1898) invented a diagrammatic scheme for
syllogisms and described how it could be used for logic problems involving more than 3
terms. Curiously, he never provided in print any diagrammatic solution for such a complex
problem. The aim of this paper is to make sense of a manuscript where Carroll attempts
to solve a sorite using his quadriliteral diagram. In this problem, three propositions are
offered as premises. The purpose is to look for what information can be gathered as to
the relation between two given terms involved in the argument. This case study provides
some insights about the use of diagrams to solve elimination problems that were highly
considered by early symbolist logicians.

Keywords Syllogism · Sorite · Logic diagram · Logic problem · Visual reasoning ·
Elimination · Premise · Conclusion · Lewis Carroll · Symbolic logic · Carroll diagram ·
Venn diagram

Mathematics Subject Classification 00A66 · 01A55 · 97E30

1 Introduction

It is well known that the logician Lewis Carroll invented in the 1880s an original diagram-
matic scheme to solve syllogistic problems [6]. It is also known that he later described a
series of logic diagrams that could be used to solve logic problems involving more than
3 terms [12, pp. 176–179]. Carroll published plenty of such complex problems known as
sorites. Curiously however, he never printed any diagrammatic solution of them. A sim-
ple explanation would be that he might have intended to do so in the second part of his
Symbolic Logic which he never completed. Unfortunately the surviving fragments col-
lected and published by William W. Bartley III in 1977 do not contain any diagrammatic
solution to logic problems for more than 3 terms, while they contain plenty of examples
solved symbolically or using the method of trees [4].

However, a recent collection of Carroll’s logic pamphlets edited by Francine Abeles,
reproduced a manuscript where a complex logic problem involving four terms is solved
by Carroll with the help of his diagrammatic method [3, p. 59]. That manuscript is repro-
duced as Fig. 1. It is part of 4 sheets of logic notes that are preserved in the Houghton
Collection (Pierpont Morgan Library, New York), one of which contains a text dated on
13 September 1892 [10]. This manuscript shows a logic problem at its top-right side,
a 4-term logic diagram at its top-left side, and several small diagrams and formulae at its
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Fig. 1 Quadriliteral diagram by Charles L. Dodgson. Reprinted with kind permission from © The Pier-
pont Morgan Library, New York. AAH 545, 2013

bottom. Carroll handles here the problem in an unusual way, even for those familiar with
his method of diagrams. The aim of this paper is to make sense of this manuscript and
to explain how Carroll solved this 4-term problem with his diagrams. As such, this case
study might provide some lights on the use of diagrams to solve sorites.

2 Carroll’s Visual Logic

2.1 Biliteral and Triliteral Diagrams

Carroll’s diagrams, invented in 1884 and first published in 1886, are Venn-type diagrams
where the universe is represented with a square. However, it is not clear whether Carroll
worked his diagrams independently or as a modification of John Venn’s. Still, Carroll’s
scheme looks like a “mature” method summing up several improvements that have been
introduced by his predecessors and contemporaries [2, 14]. For 2 terms x and y, Carroll
divides the square into 4 compartments, and obtains the so-called biliteral diagram, as
shown in Fig. 2 (where x′ stands for not-x and y′ for not-y). For 3 terms x, y and m,
Carroll adds a smaller square in order to get 8 compartments and obtain the triliteral
diagram, as shown in Fig. 3 (where m′ stands for not-m).

In order to represent propositions, one has to add marks. A compartment is marked
with a ‘0’ if it is empty and is marked with a ‘I’ if it is occupied. For instance, in order
to represent the proposition “All x are y”, one has to put a ‘0’ on the x not-y com-
partment and a ‘I’ on the xy compartment, in accordance with Carroll’s interpretation
of A-propositions, as shown in Fig. 4. Finally, suppose that one wants to represent the
proposition “Some x are m” on a triliteral diagram. This means that either xym or xy′m
is occupied (“or” is understood here inclusively). To represent this uncertainty, Carroll
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Fig. 2

Fig. 3

Fig. 4

Fig. 5

puts the symbol ‘I’ (for occupation) on the boundary between those two compartments,
as shown in Fig. 5 [12, p. 26].

In order to find the conclusion of a syllogism, Carroll first represents the data expressed
by the two premises on a triliteral diagram. Let the premises be: “No m is y” and “Some
x are m”. Their representation is shown in Fig. 6. Contrary to Venn who extracts the con-
clusion directly from his 3-term diagram, Carroll transfers the data shown by the triliteral
diagram into a biliteral diagram, involving only the 2 terms that should appear in the
conclusion (here x and y) and consequently eliminating the middle term (here m).
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Fig. 6

Fig. 7

This transfer is made thanks to two rules that Carroll applies on the 4 quarters of the
triliteral and biliteral diagrams [12, p. 53]:

– Rule A: If the quarter of the triliteral diagram contains a ‘I’ in either Cell, then it is
certainly occupied, and one may mark the corresponding quarter of the biliteral diagram
with a ‘I’ to indicate that it is occupied.

– Rule B: If the quarter of the triliteral diagram contains two ‘0’s, one in each cell, then it
is certainly empty, and one may mark the corresponding quarter of the biliteral diagram
with a ‘0’ to indicate that it is empty.

The application of these rules here gives Fig. 7, which holds the conclusion: “Some x

are not-y”, that one draws from the given pair of premises. The importance of Carroll’s
method of transfer, unknown to Venn, should not be underestimated. It alone shows how
to extract the conclusion from the premises of a syllogism [16, pp. 641–644].

2.2 The Elimination Problem

In the example above, we departed from traditional syllogistic problems where both
premises and their conclusion are given and one is asked to check the validity of the
trio. In our example, we were rather given a pair of premises and were then asked what
conclusion(s) is/are to be drawn. This new approach reflects how Carroll and most sym-
bolist logicians of his time handled the problem of syllogisms. This move has already
been made by George Boole who worked on a general method for finding the conclu-
sion that is to be drawn from any number of propositions given as premises containing
any number of terms [5, p. 8]. For this purpose, one has to eliminate undesired terms
in order to get the relation between the terms one wants to keep in the conclusion. This
problem, known as the elimination problem, occupied the mind of nineteenth-century
logicians who developed symbolic, visual and sometimes mechanical devices to solve
it. Carroll was no exception, and his work should be understood within this historical
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Fig. 8

context. Naturally, when one is offered a logic problem involving 3 terms, with two 2-
term propositions given as premises, the elimination problem one faces is simply a tra-
ditional syllogism. In that case, the premises express the relation of the major and minor
terms with the middle term, so that the only missing information is the relation between
the major and minor terms. This means that one has to necessarily eliminate the middle
term.

Now suppose that we were given two 3-term propositions such as “Some xy are m” and
“No xm is not-y” and were not told what term was to be eliminated. The representation
of those premises on the triliteral diagram is shown in Fig. 8. If we were asked what
conclusion (in the form of a 2-term proposition) is to be drawn, it all depends on what
terms we are interested in.

There are three possible cases, depending on whether we eliminate m, y or x:

– Eliminating m requires transferring information to the standard biliteral diagram we
are used to, as shown in Fig. 9 which gives the conclusion “Some x are y”.

– Eliminating y means that we have to transfer information to a new 2-term diagram,
which is obtained by removing, from the triliteral diagram, the vertical line that divides
the universe into subdivisions y and not-y. We thus obtain Fig. 10 which tells that
“Some x are m”.

– Finally, we proceed similarly to eliminate x, by the transfer of information to Fig. 11
which gives the conclusion: “Some y are m”.

Reading conclusions on these new diagrams might require some practice. A solution
to make it easy is to transfer information again from these new figures into a standard
biliteral diagram, as we will see later. The point is that, contrary to the example in the
previous section, we have eliminated here one term in each case in order to check what the
relation between the two remaining terms is. Of course, it would also have been possible
to look for relations between compound terms. For instance, one might also conclude
from Fig. 8 that “All xm are y”. However, for the purpose of this paper, we will limit
ourselves to one-to-one relations.

In his published works, Carroll used merely diagrams of the form shown in Fig. 9.
The reason is that when one applies Carroll’s diagrammatic technique to traditional syl-
logisms, one already knows what term is the middle term. A Carrollian manuscript in
Princeton University Library shows however two diagrams similar to Fig. 10 and Fig. 11,
on the reverse of a circular dated on 1890, though the date of the diagrams themselves
is unknown [9]. The fact that Carroll numbered those two diagrams as cases (2) and (3)
shows that he used them the same way we did in the example above. There, the missing
case (1) must have been Carroll’s standard biliteral diagram.
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Fig. 9

Fig. 10

Fig. 11

2.3 The Quadriliteral Diagram

As far, we discussed solving diagrammatically problems involving 3 terms. However,
nothing prevents from handling more complex problems. Contrary to old syllogistic where
such diagrams were hardly desired, the new Boolean logic made logicians care about
designing diagrammatic schemes for more than 3 terms. One particular difficulty was to
keep the curves continuous and still make the diagrams provide the visual aid that one
would expect from such devices [15]. Venn, whose three-circle diagram fits perfectly for
syllogisms, abandoned circles in favor of ellipses in order to represent 4 terms, as shown
in Fig. 12. In this diagram, all classes are continuous and easy to locate [18, p. 116]. For
instance, the star indicates the compartment not-x y z w. For more than 4 terms, Venn
unhappily made use of a non-continuous class, thus privileging regularity at that stage.
Allan Marquand introduced new rectilinear diagrams where he made no attempt to keep
his figures continuous at all [13]. Even for just 4 terms, his diagram represents classes C,
not-C, D, not-D with disconnected regions as shown in Fig. 13, where a stand for not-A,
b for not-B, etc. Carroll, though he used tabular diagrams like Marquand, shared Venn’s
concern about the continuity of the figures up to 4 terms, and similarly failed to provide a
satisfactory diagram for 5 terms [12, p. 177].

For 4 terms, Carroll simply changed the small square that was inside the triliteral dia-
gram into a rectangle, then added another rectangle that intersects with the first one in the
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Fig. 12 Taken from Venn’s
book of 1894 [18]

Fig. 13 Taken from
Marquand (1881, [13])

Fig. 14

desired manner, so that to obtain the quadriliteral diagram shown in Fig. 14. Here is how
Carroll describes it in his Symbolic Logic:

For four letters (which I call a, b, c, d) I use this diagram; assigning the North Half to a (and
of course the rest of the diagram to a′), the West half to b, the Horizontal Oblong to c, and the
Upright Oblong to d . We have now got 16 Cells. [12, p. 177]

Solving diagrammatically a logic problem involving more than 3 terms requires the same
rules as for syllogisms: one represents first the information contained in the premises on
the appropriate diagram (depending on the number of terms), then one has to transfer the
information into a smaller diagram showing the specific relation (or relations) between
the term (or terms) that might interest him, simply by eliminating the undesired terms.
For instance, let us work on the following set of propositions offered as premises [12,
p. 113]:

No c is d ,
No not-d is a,
No not-c is b.
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Fig. 15

Fig. 16

Representing these premises on a quadriliteral diagram gives Fig. 15. Terms c and d

appear twice (once affirmed and once denied), while a and b appear just once. So, one
expects the former (c and d) to be eliminated, and the latter (a and b) to appear in the
conclusion. Transferring information into a biliteral diagram, whose terms are a and b,
gives Fig. 16 which provides the conclusion “No a is b”. This is the same conclusion that
Carroll arrived at symbolically [12, p. 158].

Now suppose we did not have any specific expectations as to what terms should appear
in the conclusion, and were thus led to discuss all possible relations between any two
terms. For instance, in the above example, we might want to investigate what the premises
tell about the relation between terms a and c, or between b and d , none of which is stated
in either premise considered alone. Of course, the data might say nothing at all as to
the relation between those terms, but that itself would be new information that was not
known until one has discussed all possible relations between terms one-to-one. For this
purpose, we should proceed the same way we did with 3-term problems in Sect. 2.2.
That’s very precisely what Carroll’s manuscript (Fig. 1) is about, as we shall see in the
next sections.

3 Making Sense of the (Marked) Quadriliteral Diagram

3.1 Reading the Data

As far, we exposed Carroll’s diagrammatic scheme and discussed how he made (and might
have made) use of it to solve syllogisms and sorites. Let’s now return to our manuscript
and examine what information can be gathered there. The top-left side of the manuscript
shows a marked quadriliteral diagram that does already represent the premises of the logic
problem. The dictionary and the symbolic formulae on the top-right side of the manuscript
make it possible to tell what the premises of the logic problem were, even if no concrete
propositions are given. Finally, the bottom of the manuscript contains six columns of
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formulae. Four columns are headed by 2-term diagrams, among which some have already
been discussed in Sect. 2.2. Let us in the following reconstruct the original problem that
Carroll was working on, check the correctness of the diagrammatic representation he
provided, and finally extract the conclusions that should be drawn from those premises.

The main diagram is a quadriliteral one, which means that we have a 4-term problem.
These terms are listed as a, b, c and d on the top-right side of the manuscript. We are also
told that a refers to “ducks”, b to “waltzers”, c to “officer”, and d to “my poultry”. Under
the dictionary, three 2-term propositions appear in subscript forms:

1. ab0
2. c1b

′
0

3. d1a
′
0

These propositions, given as premises, can easily be interpreted by any reader familiar
with Carroll’s logical notation. The introduction of symbolism in logic from the eigh-
teenth century forwards made several notations compete [17]. Early notations were mostly
equational as can be seen in the writings of Boole and his immediate followers William
S. Jevons and Venn. Others such as Charles S. Peirce, Ernst Schröder and Hugh MacColl
appealed rather to inclusional or implicational notations. Carroll explored a different path
as he introduced subscripts to indicate the state of a class: “0” for emptiness and “1” for
existence [1, 14].

For instance, the proposition “No x is y” tells that the class xy is empty. So, one
simply represents it as: “xy0”. Similarly, the proposition “Some x are y” is represented
as “xy1”. Propositions as “All x are y” are more complex because Carroll considered
them to assert both the existence of x and the emptiness of xy′ (where y′ stand for
not-y). Consequently, he represented them as “x1y

′
0”, with subscripts taking effect back

to the beginning of the formula [12, p. 72]. Thanks to these conventions, one can easily
transform the trio of premises given in the manuscript into the following abstract forms:

1. No a is b

2. All c are b

3. All d are a

Again, if we replace letters a, b, c and d as indicated in the dictionary, we obtain the
original problem as it must have been in concrete form:

1. No duck is a waltzer
2. All officers are waltzers
3. All my poultry are ducks

3.2 Representing Premises

Surprisingly, the representation of the premises we got on a quadriliteral diagram, as we
described it in Sect. 2.3, would not lead to a figure similar to the one drawn by Carroll in
his manuscript. The explanation is quite simple: in Sect. 2.3, we quoted the only passage
where Carroll described his quadriliteral diagram. That was in the first part of his Symbolic
Logic, first published in 1896, with a fourth edition in 1897. There, he explained that the
horizontal rectangle in the square was for class c while the vertical stands for d . In the
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Fig. 17

manuscript however, probably dated in 1892, the horizontal rectangle is for class d while
the vertical stands for c. This is made clear by the small diagrams on top of columns 2
and 3, corresponding to combinations ac and ad respectively. We do not know whether
Carroll departed here exceptionally from his regular use or whether he switched rectangles
c and d in his quadriliteral diagram between 1892 and 1896.

The point is that once we put class c vertically and d horizontally, the same way Carroll
did in the manuscript, the representation of the three premises gives the same marked
diagram provided by Carroll, as we will see hereafter. Carroll divided his square as shown
in Fig. 17:

Class a covers compartments 1, 2, 3, 4, 5, 6, 7 and 8.
Class a′ covers compartments 9, 10, 11, 12, 13, 14, 15 and 16.
Class b covers compartments 1, 2, 5, 6, 9, 10, 13 and 14.
Class b′ covers compartments 3, 4, 7, 8, 11, 12, 15 and 16.
Class c covers compartments 2, 3, 6, 7, 10, 11, 14 and 15.
Class c′ covers compartments 1, 4, 5, 8, 9, 12, 13 and 16.
Class d covers compartments 5, 6, 7, 8, 9, 10, 11 and 12.
Class d ′ covers compartments 1, 2, 3, 4, 13, 14, 15 and 16.

The representation of the three premises on this quadriliteral diagram requires the same
rules used for the biliteral and triliteral diagrams. The mark ‘I’ indicates the occupation
of a compartment while ‘0’ indicates its emptiness. A mark might be put on a border
between two compartments when it is not clear which one it belongs to. It follows that:

I. The first premise “No a is b” tells that compartments 1, 2, 5, and 6 are empty.
II. The second premise “All c are b” tells that:

– Compartments 3, 7, 11, and 15 are empty.
– At least one among compartments 2, 6, 10, and 14 is occupied. But we know that

2 and 6 are empty (see entry I above). So, we infer that either compartment 10 or
14 (or both) is (are) occupied.

III. The third premise “All d are a” tells that:

– Compartments 9, 10, 11, and 12 are empty. But we know that either compartment
10 or 14 is occupied (see entry II above). So, we infer that compartment 14 is
occupied.

– At least one of compartments 5, 6, 7 and 8 is occupied. But we know that com-
partments 5, 6 and 7 are empty (see entries I and II above). So, we infer that
compartment 8 is occupied.
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Fig. 18

Introducing the appropriate marks on the diagram in accordance with what has been stated
above gives the complete quadriliteral diagram (Fig. 18), which is exactly the same that
Carroll produced in his manuscript.

3.3 Drawing Conclusions

Finding the conclusion that is to be drawn from the premises depends on what terms one
wants to have in the conclusion. Carroll attempts to discuss all possible cases: ab, ac,
ad, bc, bd and cd, as long as one is concerned with 2-term propositions. These are the
6 columns that one can see in the bottom of the manuscript. In order to get the conclu-
sions, Carroll proceeds the same way he did with syllogisms. For each case, he transfers
information to a new 2-term diagram where are kept only the 2 terms that appear in the
conclusion. Those 2-term diagrams are obtained simply by removing the other classes
from the quadriliteral diagram, as is shown in Fig. 19. Note that Carroll did not represent
in his manuscript the 2-term diagrams in the fourth and fifth columns, corresponding to
cases bc and bd respectively.

Transferring information from the quadriliteral diagram into each of these 2-term di-
agrams is made according to the same rules that we previously described in the working
of syllogisms. The idea is that a compartment is empty only if all its subdivisions are
known to be empty, and is occupied if at least one of its subdivisions is known to be
occupied. Once, the information is transferred into the appropriate 2-term diagram, one
has just to “read” it there. This last step, as simple as it might look, could still prove
to be quite difficult to the beginner who is not acquainted with those diagrams yet. Not
only the various 2-term diagrams do have different shapes, but also one single diagram
can hold more than just one conclusion. A solution that could be pursued, though we
have no evidence that Carroll ever used it, is to transfer again information from each

Fig. 19
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2-term diagram into the standard (better-looking) biliteral diagram as we described it in
Sect. 2.1.

In the following, we will discuss the six cases in the same order as Carroll did. For each
case, we will first indicate what terms are kept in the conclusion (i.e. the retinends) and
which ones have been eliminated (i.e. the eliminands). We will represent the conclusion
on the appropriate 2-term diagram (on the left side), then we will transfer information
into a standard biliteral diagram (on the right side). Finally, we will reproduce Carroll’s
conclusions in subscript and abstract forms, as he listed them in his manuscript, and will
complete them when needed.

1st Case Retinends: a, b; Eliminands: c, d .

Carroll’s conclusions: ab′
1 (i.e. “Some a are not-b”) and a′b1 (i.e. “Some not-a are b”).

Carroll overlooks the third conclusion: ab0 (i.e. “No a is b”), which in combination
with the previous ones give final conclusions: a1b0 (i.e. “All a are not-b”) and b1a0 (i.e.
“All b are not-a”).

2nd Case Retinends: a, c; Eliminands: b, d .

Carroll’s conclusions: ac′
1 (i.e. “Some a are not-c”), ac0 (i.e. “No a is c”), and a′c1

(i.e. “Some not-a are c”).
Carroll overlooks the final (combined) conclusions: a1c0 (i.e. “All a are not-c”) and

c1a0 (i.e. “All c are not-a”).

3rd Case Retinends: a, d ; Eliminands: b, c.
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Carroll’s conclusions: ad1 (i.e. “Some a are d”) and a′d ′
1 (i.e. “Some not-a are

not-d”).
Carroll overlooks the third conclusion: a′d0 (i.e. “No not-a is d”), which in combina-

tion with the previous ones gives final conclusions: a′
1d0 (i.e. “All not-a are not-d”) and

d1a
′
0 (i.e. “All d are a”).

4th Case Retinends: b, c; Eliminands: a, d .

Carroll does not list any conclusion. As such, he overlooks the two (combined) con-
clusions: c1b

′
0 (i.e. “All c are b”) and b′

1c0 (i.e. “All not-b are not-c”).

5th Case Retinends: b, d ; Eliminands: a, c.

Carroll does not list any conclusion. As such, he overlooks the two (combined) con-
clusions: b1d0 (i.e. “All b are not-d”) and d1b0 (i.e. “All d are not-b”).

6th Case Retinends: c, d ; Eliminands: a, b.

Carroll’s conclusions: cd0 (i.e. “No c is d”), cd ′
1 (i.e. “Some c are not-d”), and c′d1

(i.e. “Some not-c are d”).
Carroll noted that the combination of the first two conclusions gives c1d0 (i.e. “All

c are not-d”). However, he overlooks the fact that the combination of the first and third
conclusions also gives d1c0 (i.e. “All d are not-c”).
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3.4 Symbolic Variations

Now that we gave a complete solution to the logic problem under consideration, we ob-
serve that Carroll didn’t go so far, and that many of his conclusions were incomplete. In
addition, a look at the manuscript shows that Carroll stroke out the problem in the top-
right side and added the phrase “not to be used” in the center. All these indications suggest
that Carroll never completed solving his logic problem and must have abandoned it at this
stage.

The phrase “not to be used” is enigmatic still. A first thought would be that Carroll
designed that logic problem at this occasion, and that being unhappy with it, he decided
not to use it anymore. However, we know that he did use it both before and after working
on it in this manuscript. Indeed that problem does already appear in Carroll’s Fifth Paper
on Logic ([7], [3, p. 208]), a collection of problems that he privately printed in May 1887,
probably for use in his logical teaching. The first problem in that paper was:

1. No ducks waltz
2. All officers waltz
3. All my poultry are ducks

This is exactly the problem we discussed lengthily above. Of course, the date of our
manuscript is uncertain, and might well be dated prior to 1892 as we assumed. However,
we know from Carroll’s private diaries that it was on 24 November 1888 that he invented
his quadriliteral diagram, at least in the shape it has in the manuscript [19, p. 434]. So, the
logic problem under study, already known in 1887, must have been designed by Carroll
prior to its use in this manuscript, whatever its date is. This issue is important because
it suggests that Carroll first asked his students to solve this problem without his dia-
grammatic method. As such, they would have appealed to one of the symbolic methods
that Carroll designed for sorites. No solutions were provided in the Fifth Paper on Logic
however.

Interestingly, Carroll also included this logic problem, with some variations that we
will mention afterwards, few years later in the first part of his Symbolic Logic [12, p. 112].
There, he also provided a solution using the symbolic method of underscoring [12, p. 158].
We do not intend to discuss that method here. It suffices for our purpose to explain that
the main idea is to eliminate terms that appear with unlike signs in the premises given in
subscript form. For instance, in our manuscript, term b is affirmed in the first premise and
denied in the second. Similarly, term a is affirmed in the first premise and denied in the
third. The elimination of a and b means that one has only to discuss the sixth case above
where c and d appear in the conclusion. As it has been shown in the previous section, in
that case, there are two combined conclusions:

(1) “All c are not-d” (“All officers are not my poultry”);
(2) “All d are not-c” (All my poultry are not officers”).

Surprisingly, a look at Carroll’s symbolic solution in Symbolic Logic shows that he didn’t
reach these conclusions. Indeed, the solution there reads: “My poultry are not officers”
which is merely our conclusion (2). Amusingly, Carroll gets here the conclusion which
he didn’t list in the manuscript and omits the one which he did list alone in the manuscript.

The reason why our conclusion (1) disappears from Carroll’s solution is that he slightly
changed the expression of the second premise “All officers waltz” (as it appears in the
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Fifth Paper on Logic and in the manuscript) into “No officers ever decline to waltz”.
This change might look trivial, but actually it is not. Indeed, though both propositions are
universal, the second alone is negative. As such, in accordance with Carroll’s theory of
existential import, this new premise does not assert the existence of “officers” (i.e. term c)
anymore. Thus, none of the premises does assert the existence of c, while conclusion (1)
does. It follows that conclusion (1) is invalid. Dropping existential import from conclusion
(1) would turn it into:

(3) “No c is d” (“No officer is my poultry”).

However, listing conclusion (3) is superfluous because its information is already contained
in conclusion (2).

Actually, there is a second minor modification that Carroll made in the expression of
the problem as it appears in Symbolic Logic. Indeed, he switched letters b and d in his
dictionary, making b stand for “my poultry” and d for “willing to waltz”. This change
doesn’t seem to involve any consequence in the symbolic solution of the problem. Of
course, Carroll arrived at a conclusion containing letters b and c, rather than c and d as
we did. But that’s purely anecdotic because once one applies the dictionary, we get similar
concrete terms.

It is noteworthy however that this switch between letters b and d has a practical con-
sequence when it comes to diagrammatic solving. Indeed, the selection of the 2-term
diagram to use depends on what terms we are going to keep in the conclusion. Hence,
looking for the relation between b and c, rather than c and d , prevents from using the
diagram in the sixth column, which happened to be the only one that doesn’t have contin-
uous classes. Indeed, contrary to the other 2-term diagrams that divide the universe into
four subdivisions each, the sixth diagram has 6 subdivisions. The reason is that compart-
ments c not-d and d not-c are formed by two discontinuous areas each, which makes that
diagram more difficult to use.

4 Conclusion

In this paper, we attempted to make sense of a manuscript where Carroll worked a logic
problem with his quadriliteral diagram. Another possible, though unlikely, reading of the
manuscript would suggest that Carroll didn’t really solve that problem diagrammatically.
Indeed, he didn’t represent the two 2-term diagrams that should have been drawn on top
of columns 4 and 5. This objection does not hold because Carroll did not provide any
conclusions for those cases, neither diagrammatic nor symbolic. So, it is likely that he
did abandon the problem there. A stronger objection to our reading is that Carroll did
not transfer any information at all from the quadriliteral diagram to the 2-term diagrams
in columns 1, 2, 3 and 6. Then, conclusions are represented diagrammatically nowhere,
while they are explicitly expressed symbolically in each column. Hence, it is possible that
Carroll did use those diagrams only as heuristic tools at some stage before proceeding
symbolically, rather than carrying out a diagrammatic reasoning proper. Actually, Car-
roll’s logic notebook in the Parrish Collection (Princeton University Library), which he
apparently used around 1890, contains indeed some marked quadriliteral diagrams that
seem to accompany merely solutions that were rather symbolic in their own [8]. How-
ever, contrary to that notebook, our manuscript does not show any symbolic method. So,
how did Carroll proceed in practice to get those conclusions?
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An obvious possibility is that he used other (missing) sheets to make calculations.
However that holds for both diagrammatic and symbolic methods, and there is no way
here to privilege one method over the other. Another possibility is that Carroll repre-
sented the premises on the quadriliteral diagram, listed the six cases, draw for each case
the corresponding 2-term diagram to visualize what areas should be considered, and then
extracted the conclusions mentally. This might look uncomfortable for the reader who is
not acquainted with those diagrams. However, Carroll was used to working logic prob-
lems with his diagrams, and additionally, he was also trained to solving complex problems
mentally as he published a full set of such problems to be thought out during “sleepless
nights” [11]. If Carroll did work this problem in the way we just described, nothing pre-
vents us from regarding it as diagrammatic reasoning still, even if those diagrams were
just mental images not ink on paper. These speculations on the true diagrammatic status
of the solution in our manuscript should not make us forget that Carroll certainly knew
how to proceed, and very likely did proceed, the way we did in our discussion. This is
evidenced by the two diagrams on a 1890 circular that we alluded to in Sect. 2.2.

Now, a look at Carroll’s solution of our problem in his Symbolic Logic shows that it
needs only one line to be solved symbolically, while the diagrammatic solution in the
manuscript requires much more time, space and work. We already explained in our dis-
cussion of this manuscript that Carroll must have abandoned his work at some stage and
never finished his diagrammatic solution. Also, we observed that Carroll provided later
a symbolic solution to this problem in his Symbolic Logic, while he never published any
diagrammatic solution to any problem involving more than 3-terms. An easy shortcut
might lead one to think that this would illustrate the superiority of symbolic methods over
diagrammatic ones. That would be misleading because Carroll never abandoned diagram-
matic methods for complex problems. In the appendix of the first part of Symbolic Logic,
he described several diagrams for problems involving up to 10 terms [12, p. 179]. As we
previously explained, Carroll never managed to finish and publish the second part, so we
do not know whether he would have made use of them there or not. It is true that when
the number of terms increases, diagrams become more complex and difficult to grasp.
Hence, it is understandable that logicians, Carroll included, might prefer other methods
for problems involving more than, let us say, 6 or 7 terms. However, our manuscript is not
about this issue because the problem it discusses has just 4 terms, which is still workable
diagrammatically.

We made the preliminary remarks above in order to dispel some misconceptions that
might divert us in this conclusion from what we think is the main issue here. Besides the
use of a diagrammatic method to solve the problem in the manuscript, the interesting point
is precisely Carroll’s idea of what a logic problem is. Indeed, Carroll looks there for all
possible conclusions as to the relation between any 2 terms involved in the argument. As
far as we know, Carroll never reworked this way in his Symbolic Logic, not even with his
symbolic methods. In the subscript solution we described briefly in Sect. 3.4, Carroll dis-
cussed only one case (the sixth), while he did explore six cases in the manuscript. Hence,
it does not make sense to compare the two methods, because Carroll was pursuing there
two different paths. If we were to discuss one case merely, after determining what terms
should be in the conclusion as has been done in the example in Sect. 2.3, the diagrammatic
method would be perfectly appropriate, easy, efficient and reliable.
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A Diagrammatic Bridge Between Standard and
Non-standard Logics: The Numerical Segment

Ferdinando Cavaliere

Abstract The system of ‘Distinctive’ Predicate Calculus (DPC) used here is part of a
more general enterprise to bring logic closer to natural language and natural intuitions.
This system works on the central concept of “middle” or “intermediate” and finds a syn-
thesis in the diagram of the ‘Numerical Segment’ (NS). We intend to show how this
diagrammatic tool and its logic can be theoretically used as an interesting link up with
non-standard logics (fuzzy, polyvalent, paraconsistent) and applied to new form of dia-
grammatic reasoning.

Keywords Quantifiers · Natural languages · Distinctive logic · Logical diagram ·
Numerical syllogisms · Non-standard logic

Mathematics Subject Classification (2010) 03B20 · 03B52 · 03B65 · 03B60 · 03B52 ·
05C99

1 Distinctive Segment from Classical Logic to Numerical Systems

The system of ‘Distinctive’ Predicate Calculus (DPC) used here is part of a more general
enterprise to bring logic closer to natural language and natural intuitions. This system
works on the central concept of “middle” or “intermediate” predicate. Categorical pred-
icates are interpretable as points or subsegments of a ‘Distinctive Segment’ (DS). In the
‘Numerical Distinctive Segment’ (NS) every point represents a precise numerical predi-
cation: a diagrammatic representation of a distinctive numerical calculus is set out.

1.1 The Concept of ‘Middle’

In classical logic the contraries are always two in number: they come in pairs, either of
terms (predicates) or universal predications. By definition it is impossible for contraries
to subsist together, but ‘intermediate’ or ‘middle’ between two contraries are possible.
Thus, gray can be predicated as an intermediate between black and white. There may be
more than one intermediate, such as pallid, between black and white. Such intermediates
always represent a partial privation of the extreme properties, in that the two correspond-
ing contraries represent the maximal (perfect or complete) difference. Thus, by using a
metaphor, the extremes of a line segment are the two points maximally distant from each
other.
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DOI 10.1007/978-3-0348-0600-8_5, © Springer Basel 2013

73

http://dx.doi.org/10.1007/978-3-0348-0600-8_5


74 F. Cavaliere

Fig. 1 The distinctive segment

For some pairs of contraries there is no intermediate: they are nongradable predicates.
Examples are even and odd (for numbers), and also, true and false. Every predication is
either true or false, and from the truth of the one the falsity of its negation is derived, and
vice-versa. This defines a bivalent logic. In classical logic, the affirmative and negative
existential categoricals are defined without any reference to intermediates. Intermediates
are excluded between contradictories, but as investigated by R. Blanché [5, pp. 36–39],
on the one hand, Aristotle depicts the existential categorical Some b is a (traditionally
symbolized by Iba) as being ‘partial’ (‘a part but not all’), excluding all; on the other
hand, when developing his predicate logic and his syllogistic, the very same existential
form is interpreted as ‘at least one and possibly all’.1 The term that has become accepted
in the tradition (since Apuleius) for Some b is a or Some b is not-a (the latter traditionally
symbolized by Oba) is ‘particulars’.

By Blanché’s interpretation, we can presume that the two universals, being contraries,
represent the extremes of the opposition between All b is a (in symbols: Aba) and No b

is a (in symbols: Eba), which can thus admit intermediates. If Every man is white and No
man is white are contraries, what sort of intermediate situation can we imagine?

1.2 The Distinctive Segment (DS)

As we can deduce from Blanché [4, 5], it is the conjunction (here symbolized by “*”)
of the two particulars that forms the intermediate between the two contrary universals.
The ‘partial’, hinged on the quantifier ‘only some’ (or ‘exclusive existential’ symbolized
by Y), is the natural intermediate between the contrary universals. Yet Aristotelian syl-
logistic, and with it the standard classic syllogistic of the Western world, would take a
different course. In fact, the predicate ‘partial’ will not be taken into consideration until
the eighteenth century, with Ploucquet or von Holland.2

In Fig. 1, next to the formulas one finds the seven corresponding Venn-diagrams for
all possible relations between (contextually defined) pairs of sets that make the associated

1Blanché tells the story of a “mortal combat” between the partial and the particular in the evolution of
Aristotle’s thinking [5, p. 39, note 27]. A forerunner of Blanché was Sesmat [21].
2See Lenzen [16]. J.H. Lambert writes: “. . .we have these three cases: 1. Every b is a, 2. Only some b is a,
3. No b is a. Of the three propositions only one can be true at any given time” [15, pp. 76–77] (translation
in English by the author). The falsity of one does not allow one to conclude to the truth of either other.
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formula true.3 Yba represents precisely the cases that are intermediate between Aba and
Eba. One could say that Y is ‘spread’ over the segment running from A to E, with the
exclusion of the two extremes.

We call this “simplified square of opposition” as “Distinctive Segment” of opposition
or DS. In this simple diagram the purple represent a middle color between the blue and red
of the extreme points, by analogy with corresponding predicates.4 The predication Only
some b is a, is affirmative only in the grammatical sense, but we distinguish in the subject-
class b a subset of elements that a may be predicated of, besides a subset of elements that
a cannot be predicated of, so that a′ (= not a) is predicable of them. For this reason we
call the segment “distinctive”.5 Thus a geometrical metaphor is transformed in a logical
structure.

1.3 The Numerical Distinctive Segment (NS)

After the first attempts by Lambert, the numerical syllogisms were developed in an alge-
braic context, from De Morgan, Peirce and Keynes [9, pp. 38, 42, 135], to the epigones
of the last century such as Hacker and Parry [10], Carnes and Peterson [6] or Murphree
[18, 19] (see Pfeiffer [20]).

One restrictive feature of the system based on a tripartite DS is the fact that it cap-
tures all intermediate situations into one single undifferentiated predication, namely the
partial (or particular). The major advantage of DS is that it permits the refining of nu-
merical quantification. The DS model is subdivided into as many intervals as are needed,
depending upon the number of elements in question. Not only the vertices, but also ev-
ery point on the Numerical Distinctive Segment or Numerical Segment (NS) represents a
precise numerical predication, and conversely. This is the reason why our diagrammatic
scheme does not make use of circles or other figures that do not have 2 extremes and a
uni-dimensional (rectilinear) order for all their points.

3All sets in question are distinct from the universe of objects u and from the null set [3, pp. 53–55]. In
the cases 5 and 7, u coincides with the union of the two sets b and a, the difference being that, in case 7,
b is the complement of a in u. In the other five cases, u is represented by the rectangular frame. One notes
that such a mutually exclusive distribution over the proposition types is not possible in the classic square
of opposition. The 7 types of propositions can already be found in De Morgan [8, pp. 65–67] that called
them complex propositions and symbolized by D − D, −D′ − P − C′ − C, −C (respectively for our
cases from 1 to 7). In the same work, De Morgan makes use of segments (or letters arranged in rows) to
illustrate propositions [8, pp. 61, 79, 81–82, etc.]. After De Morgan, Keynes and other logicians identified
the 7 cases. None of them (De Morgan included) used the “partial” quantificator.
4The same goes for the next Figs. 2 and 3, while in Figs. 4, 5 and 6, the colors have the function of
underscoring.
5On this basis we have constructed the Distinctive Triangular and Hexagonal Calculi [7, pp. 242–246].
The known laws of immediate inference have now been extended with the equivalence of the two Y-
obverses: Yba = Yba′ (where a′ stands for the complement of a in u). The Russian logician N.A. Vasil’ev
developed a truly tripartite logic like the one just sketched. In 1910, he called it the Logic of Notions.
Besides the proposition types that he called ‘general’ (that is, our ‘universal’), he posited the ‘accidental’
type, and the ‘judgments’ could be not only affirmative or (internally) negative, but also indifferent.
See Seuren [22] and Suchon [23] about triangular schemata, Blanché [4] and Beziau [2] for hexagonal
schemata developments.
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Fig. 2 NS of a singular
predicate

Fig. 3 NS for a subject with
2 elements

In NS the predication is specified according to the cardinality of the subject term refer-
ent: “Four out of nine dogs escaped” or “9d4e”. In traditional syllogistic, predications like
Socrates is a politician or Socrates is not a politician (or Socrates is a non-politician) are
called, respectively, affirmative and negative singulars. In modern logic they are known
as (Singular) Definite Descriptions. When numerical quantifiers are used, the first case
becomes “1s1p”: “precisely one s is p”, while the second becomes “1s0p”: “precisely
none [zero] of s is p” or “exactly one s is non-p”. To represent the two predications
using a model analogous to NS we must resort to two distinct adjacent points, without
intermediates (Fig. 2).

The minimal number of elements of the subject that can give rise to a “partial” is 2, as
is shown in Fig. 3. From this figure we gather that the affirmative universal all coincides
with the maximal numerical quantifier (“two out of two b are a”); the negative universal
none with the null numerical quantifier (“of 2 b 0 is a”), while the distinctive particular
only some becomes “of two b one is a”.

With a subject of 4 elements (Fig. 4)6 the distinctive particular only some becomes the
disjunction of all intermediate numerical quantifiers: “of 4 b [3 v 2 v 1] are a”.

The traditional quantifiers and those known in the literature as “intermediate” [9], or
“quasi-numerical”, are translated into numerical ones by means of adjunctive symbols.
Thus, > stands for more, < for less, ≥ for (more or equal) or at least, ≤ for (less or equal)
or at most. Such symbols are abbreviations of disjunctions of numerical quantifiers, as
shown in Fig. 5, where the subject class has cardinality 6.

Below the extremes of NS are placed in a scalar way, and the expressions of inter-
vals/quantifiers preceded by the expression “at least” or “at most”, which are considered
primitive by those who have so far looked at numerical syllogisms. By contrast, we con-
sider more intuitive the expressions preceded by “exactly”, the other being considered as
derived. The same holds for the intermediate quantifiers.

Every expression of the left or right laterals implies those below it. Figure 5 shows
how the possible oppositive square has at the left or right laterals the projections of the
progressive intervals traceable to NS. We can associate with these laterals not only the nu-
mericals of the authors just mentioned, but also the scalar or gradual linguistic expressions
studied by L. Horn [13, pp. 236–238]. The obversion of a numerical predication comes

6The acronym “alo” is taken from a talk of J.-Y. Béziau (at the Congress “Logic Now and Then”, Brussels,
November 5–7, 2008).
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Fig. 4 NS with 4 elements

Fig. 5 NS with expressions of natural language

about when symmetrical quantifiers are interchanged with regard to the central point of
NS.7

Just as the preceding Distinctive systems, the obversion of a numerical predication is
obtained by swopping the quantifiers that are symmetrical with respect to the vertical axis.
For example, “Of 6 b, exactly 2 are a = Of 6 b, exactly 4 are non-a”. Here it becomes
clear that the intermediates are a mixture of contraries, inversely proportional to each
other.

7The square does not exhaust the possible combinations. For example, it does not contain those with dis-
continuous quantifiers/intervals, or those that lack extremes, such as have various intermediate quantifiers
between them.
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Fig. 6 Double NS

1.4 The Double Segment and Mediate Inferences

With the help of the numerical quantifiers we can quantify intervals, not just of the subject
but also of the predicate; thereby realizing the dream of a syllogistic sought in vain by
W. Hamilton [11], C.E. Stanhope (see Harley [12]) and other proponents of this idea. For
example, a formula like “(6 S) ≥ 3 ≤ 5 (P ≥ 7)” can be read as “Among the S’s, which
are exactly 6 in number, from 3 to 5 are P ’s, which are at least 7 in number”.

If we want a complete diagrammatic representation of the entire universe, we must
add a second NS to the first for the complement of the subject (or of the two terms). That
way we can represent composite categoricals [7, p. 253]. For example: “4b 3a4 b′6 =
(4b3a & 6b′4a)” (see Fig. 6).

This diagram is inspired by similar (without numerical attributes) schemata of Leibniz,
Lambert, De Morgan, Stanhope, Macfarlane and other logicians. The density of infor-
mation in this diagram, as regard all the relations among the classes involved (including
the u), and its geometrical shape, makes it suitable for the numerical mediate inference [9,
pp. 38, 42]. We only need to draw a second double segment, parallel to the first, in which
a new variable appears. The third double segment, for the conclusion, rises by confronta-
tion between the two above. This method would be simpler than the equivalent operations
based on the rules for complex numerical predicates, but it is still at an experimental stage
[7, pp. 252–253].

2 Numerical Segment and Non-standard Logics

The diagrammatic tool of NS can be applied to new form of diagrammatic reasoning, with
n-level of numerical segments, which transcend the theoretical antinomy between logics
of Non-contradiction and Non-standard Logics.

2.1 Fuzzy Segment (FS) and ‘Interbivalence’ of Natural Language

The underlying structure of the Distinctive Logic reveals an isomorphism with regard to
a natural logic that we call “interbivalent” and in which we define, besides the values true
and false, also the values partially true and partially false. The NS becomes “fuzzy” (in the
sense of Zadeh [24] or Kosko [14]) when discrete segments are replaced with continuous
ones—that is, with segments that are infinitely subdivisible.

We could let the points of NS represent the elements of the subject class, while ordering
them from the point with the highest value on the fuzzy scale to the predicate assigned
(membership function) to the one with the lowest value. The gradability or scalarity thus
turns from discrete into continuous or variegated, to generate a “Fuzzy” Segment (FS)
(see Fig. 7).
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Fig. 7 The fuzzy segment

Fig. 8 NSs for predicates
between meaning and
nonsense (3rd value)

2.2 NS and Trivalence

NS can be positioned in n-dimensional space. Fuzzy systems that are generally named
polyvalent, should be renamed Interbivalent, in that the value of a proposition is true or
false or a calibrated mixture of these two. In our classification, an authentic trivalence
requires a third value that is heterogeneous to the true and the false, such as “devoid
of sense”, as in All bears are yyygggrrraaaa, which is not well-formed. Here too it is
possible to specify situations that are intermediate between any two values in the system.
As an example we might quote a sentence like All bears are aaangrryy (that’s almost
well-formed) or other sentences of that nature (Fig. 8, where numerical values are not
explicit, but graspable by analogical way).

2.3 NS and Paraconsistent Logics

The Aristotelian formula: “the same property cannot at the same time belong and not
belong to the same entity from the same point of view” [1, pp. 142–143]8 is, of course,
well-known. So we ask ourselves: and what if we change the point of view? Or the level
of analysis? In the latter case we can use two or more DS in parallel, one for every level
or sub-level. For example (where useful = not-dangerous and vice versa):

(All) knives are useful (sub-level 1A): if used properly;
(All) knives are dangerous (sub-level 1B): if used inexpertly;
(All) knives are useful and dangerous (level 2): without taking their use into account
(synthetic).

Here we have paraconsistent or dialectical predications [17, pp. 163–175]. We can handle
paraconsistent situations using the following technique. Construct a table of the parallel
truths, showing for each point of view the interval that satisfies it on the pertinent NS.

This yields, as shown on the left hand side, all possible NS for the case at hand.9

Now decide which kind of logic you wish to adopt at second-level (the right hand side of

8Translation in English by the author.
9N/M is an intermediate numerical quantifier.



80 F. Cavaliere

Fig. 9 Diagrammatic reasoning with the points of view a, b], c

Fig. 9). If you consider only the minimal result from among the results given, the final NS
will be the first one. If only the maximal, it will be the second one. If you choose a result
in between (mean), it will be the third one. Finally, you can decide to take one specific
point of view as the only relevant one, eliminating any other point of view (the lower NS).

3 Conclusion

The NS is a simple diagram, a graphical transposition of some concepts of the Distinctive
Logic elaborated by the author. It’s a structure that can represent many kinds of natural
predicates: categorical, singular, numerical, fuzzy and paraconsistent ones. Its iconicity
simplifies the analysis of many composed proposition and open the way to further visual
methods for standard or non standard reasoning.
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Diagrammatic Reasoning with Classes
and Relationships

Jørgen Fischer Nilsson

Abstract We present and discuss a diagrammatic visualization and reasoning language
coming about by augmenting Euler diagrams with higraphs. The diagrams serve (hier-
archical as well as trans-hierarchical) classification and specification of various logical
relationships between classes. The diagrams rely on a well-defined underlying class-
relationship logic, called CRL, being a fragment of predicate logic. The inference rules
at the level of diagrams take form of simple diagrammatic ipso facto rules. The diagrams
are intended for computerization by offering navigation and zooming facilities as known
from road maps. As such they may facilitate ontological engineering, which often involves
larger amounts of data. The underlying inference process is expressible in function-free
definite clauses, DATALOG. We also discuss the relationship to similar diagram and logic
proposals.

Keywords Logic diagrams · Diagrammatic reasoning · Relationships between classes ·
Logical visualization principles and tools
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1 Introduction

Diagrammatic visualization and reasoning is becoming increasingly important due to the
rise of applications which require large scale ontologies and specifications. Diagrammatic
visualization is also spurred by availability of computer screen dynamics.

We consider diagrammatic visualization and reasoning for a class relationship logic,
CRL, achieved visually by extending Euler diagrams with higraphs [18], a tradition sur-
veyed in [19]. The diagrams afford intuitive appealing inference principles inherent in the
visual formalism. The diagrams are intended for facilitating computer assisted reasoning
in particular also for large scale ontological engineering.

The main pragmatic motivation and desiderata are as follows:

• Formal ontology engineering and domain modelling call for appropriately adapted frag-
ments of predicate logic.

• Specifications may preferably be rendered as diagrams as an alternative to sentences.
The accompanying deductive reasoning capabilities should be reflected in the diagrams
in an intuitive manner.

• The opportunities possessed by the computer screen for flexible and dynamic visual-
ization should be exploited for management of large specifications.

A. Moktefi, S.-J. Shin (eds.), Visual Reasoning with Diagrams, Studies in Universal Logic,
DOI 10.1007/978-3-0348-0600-8_6, © Springer Basel 2013
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• The dynamic visualization capabilities are to be integrated with the visual inference
abilities for querying and browsing purposes.

The backbone of formal ontologies is made up of class inclusion relationships (class
subsumption). Often ontologies are augmented with ascription of properties to the spec-
ified classes. Formal ontologies traditionally are depicted as Hasse diagrams, that is di-
rected acyclic graphs representing the inclusion relationships between classes. It is tempt-
ing to replace the Hasse diagrams with Euler diagrams. However, to this end Euler dia-
grams should preferably be extended with facilities for expressing arbitrary relationships
between classes, in addition to inclusion relationships. This is a key issue in the present
paper. In order to ensure rigor, we apply predicate logic as basis in our specification. How-
ever, the intention is that the diagram proposal can be applied without knowledge of the
predicate logical underpinning.

The paper is organized as follows: Section 2 presents the key ideas of the class re-
lationship logic dialect CRL. Section 3 introduces to CRL diagram reasoning, whereas
Sect. 4 explains the informal language understanding of diagrams. Section 5 explains di-
agrams more formally, followed by formal elucidation of the logical inference principles
in Sect. 6.

Section 7 discusses some key structures in diagrams, and Sect. 8 introduces the no-
tion of analytical relationships. Finally is CRL compared with similar logic proposals in
Sect. 9, followed by a concluding section.

2 Class Relationship Logic at a Glance

Class relationship logic, CRL [9], is concerned with classes c, d, . . . from a finite collec-
tion of classes C and binary relationships between classes r, . . . from a finite collection R.
Classes are dealt with intensionally, but may be understood extensionally as named sets
of individuals standing inter alia in class inclusion relationships.

The prime CRL logical relationship form is the so-called ∀∃-form, explicated in pred-
icate logic as

∀x
(
c(x) → ∃y

(
r(x, y) ∧ d(y)

))

This logical sentence form is of fundamental interest in domain modelling and in par-
ticular formal ontologies for two reasons:

• It encompasses as distinguished, important case the extensional class inclusion rela-
tionship isa

∀x
(
c(x) → d(x)

)

coming about by letting r be identity “=” in the ∀∃-form.
• It admits attribution of class properties to classes in that the form attributes the class d

via attribution with r to the class c. This attributed property is inherited to subclasses
of c by logical entailment.
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Fig. 1 Class-class
relationship

Fig. 2 Class-class
relationship with subclass

Fig. 3 Class-class
relationship with class
overlap

2.1 Forms of CRL-Diagrams for the ∀∃-Relationship

The various CRL relationship sentences have accompanying diagram forms. Let us first
consider the form ∀∃, for which we apply the diagram in Fig. 1.

The arrow tells the direction of the relation and does not imply functionality. The di-
agram is to visualize that all elements in c are r-related to some element(s) in d . This
convention for rendition is intended to reflect the logical inferences admitted with the
CRL sentences as to be accounted for in Sect. 6.

Figure 2 shows a sample (incomplete) CRL diagram, telling that dog owners are pet
owners, that all pet owners own a pet, and that cat and dogs are disjoint classes of pets—in
turn being disjoint with the class of pet owners.

Figure 3 elaborates on this example. It introduces a class “cat-dog-owner” in the over-
lap between cat owner and dog owner, which intuitively is to inherit the relationships
of its super classes by visual and logical inference rules. There is also a so called ∀∀
relationship, cf. Fig. 5, between dogs and cats, expressing that all dogs chase all cats.

3 Diagrammatic Ipso Facto Reasoning

We argue that those logical consequences of CRL specifications which themselves take
form of CRL sentences are implicitly present in the CRL diagram by simple diagram-
matic considerations. In this sense CRL diagrams offer ipso facto reasoning, cf. also the
elaborate discussion of iconic logics in [24].
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Fig. 4 Diagrammatic
inference principle

3.1 Inference Principle for ∀∃ Relationships

The partial order properties of the class inclusion relationship are reflected directly in the
topological properties of diagrammatic inclusion.

The Eulerian topological inclusion principle for class inclusion is extended with rules
concerning relationships. The diagrammatic inference principles for relationships is illus-
trated for a ∀∃ relationship with r for classes c and d in Fig. 4. The figure tells that the
shown r-relationship holds also for subclasses of the left class c, as well as for super-
classes of the right class d .

The vertices of relationship arcs are situated either at the border of a box or in the
interior of a box. The former case is called ∀-end point, because the pertinent relationship
applies to the entire inner of the box. The latter case is called an ∃-end point because it
applies to some part of the interior of the box.

The ∀∃ sentence form ∀x(c(x) → ∃y(r(x, y) ∧ d(y))) may be abstracted as the com-
binator term

∀∃(c, r, d)

where ∀∃ is then conceived of as the name of a ternary combinator. We refer to this form
of logical sentence as the Peirce form since it is the predicate logical counterpart of the
Peirce product in Boolean modules, cf. [4].

3.2 Inventory of Logical Relationship Forms

At present we consider 4 different CRL relationship forms

∀∀) ∀x
(
c(x) → ∀y

(
d(y) → r(x, y)

))

∀∃) ∀x
(
c(x) → ∃y

(
d(y) ∧ r(x, y)

))

∃∀) ∃x
(
c(x) ∧ ∀y

(
d(y) → r(x, y)

))

∃∃) ∃x
(
c(x) ∧ ∃y

(
d(y) ∧ r(x, y)

))

These sentence forms may be abstracted as the 4 combinator forms

Q1Q2(c, r, d)

where Qi ∈ {∀,∃}. The ∀∃ sentence form ∀x(c(x) → ∃y(r(x, y) ∧ d(y))) may thus be
abstracted as the combinator term ∀∃(c, r, d).

These forms are reminiscent of De Morgan’s schemas of categorial propositions, cf.
[23]. For the special case ∀x(c(x) → d(x)) we use the combinator form isa(c, d).
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Fig. 5 Diagrams for the
4 atomic relationships
Q1Q2(c, r, d)

3.3 Diagram Forms for the Four Basic CRL Relationships

Figure 5 shows the diagrams for the 4 available atomic relationships Q1Q2(c, r, d).
For a relationship arc r from c to d , in short Q1Q2(c, r, d), c is called the start box

and d the end box. The edges initiating at a box c are called the outlets. Analogously, the
arcs ending in a box c are called inlets.

An ∃-point has one inlet and no outlets for Q1∃(c, r, d) or one outlet and no inlets for
∃Q2(c, r, d) as confirmed in the diagrams of Fig. 5.

An arc named r is unique for two given (not necessarily distinct) classes c and d

and given logical type and direction; but arcs labelled with r may connect other pairs of
classes.

3.4 Reasoning with Relationships

The classes in C are assumed non-empty. Thus there is no notion of empty class in the
present form of CRL. Insistence on non-emptiness of classes, as in Aristotelian logic, that
is, adoption of existential import, cf. e.g. [28], simplifies the inference system.

Furthermore, the assumption of non-empty classes makes it possible to specify in-
tersection (overlap) of two classes c and d simply by positing presence of a class (thus
non-empty) being included in c and d . Complementarily, disjointness (exclusion) of two
classes c and d is expressed by absence of any common inclusion class together with
appeal to the closed world assumption.

In our logical set up the closed world assumption may be exploited computationally at
the metalogical level by non-monotonic appeal to failure to prove. Altogether, in this way
the inclusion form of the ∀∃-relationship, that is

∀x
(
c(x) → d(x)

)

enables expressing of the three ontologically fundamental class-class relationships, viz.
class inclusion, overlap, and exclusion as known from Euler diagrams.

The reasoning principles at the diagrammatic level are coined into the following rules
for class-class relationships:

• Inheritance: A ∀-end point extends as ∀ end point to inner boxes. This applies recur-
sively for nested boxes.
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• Generalization: An ∃-end point of a boxes act also as ∃ end point for all including
boxes.

• Weakening of ∀ to ∃: A ∀-end point can be extended inwards to become an internal,
that is ∃, end point.

In Sect. 6 we state the inference rules explicitly in their underlying logical form.
The combinator forms ∀∃(c, r, d) etc. are used directly in the supporting metalogic,

where ∀∃ is re-conceived as a plain first order predicate taking three arguments with c, r

and d being reified as individuals in the first order predicate logic applied as metalogic for
CRL. Still, however, they function as classes and relationships at the CRL logical level.
Accordingly, as elaborated in Sect. 6, the computerized reasoning with CRL relationships
takes place at the metalogical level.

4 Natural Language Reading of Diagrams

The introduced logical sentence forms are fundamental in ontological domain modelling,
as evidenced by their coverage of sentences of the principal linguistic form:

(all | some) common-noun verb (all | some) common-noun

In particular, the versatile ∀∃ relationship is read as “All common-noun verb some
common-noun”, as in the sample sentences (with implicit determiners)

dog-owners own dog (for all dog-owners own some dog)

cat isa pet

dog isa pet

where the latter ones are understood as class inclusion derivatives from ∀∃. It follows
implicitly that cats and dogs are disjoint by absence of a common subclass. By contrast,
there would presumably be a joint subclass for cat-owner and dog-owner, cf. Fig. 3.

The actual extension sets of classes are considered to be of no ontological concern.
However, distinguished individuals may be lifted to become additional singleton classes.

In a bio-medical ontology one might have sample ∀∃ relationships

beta-cell produces insulin

pancreas has-part beta-cell

beta-cell isa cell

In spite of their apparent quantificational complexity in predicate logic, the four con-
sidered CRL relationship forms possess simple natural stylized language forms as stated
in Fig. 6. Determiners that may be omitted without ambiguity arising appear in brackets.

These stylized forms supplement the CRL diagrams for users who are unfamiliar with
the underlying predicate logical explication.
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Fig. 6 The four language
forms

Fig. 7 Relationship between
sets

5 Class-Relationship Diagrams

This section presents CRL diagrams as a formal system. A CRL diagram comprises a fi-
nite number of boxes, B (contours), depicting classes, and a finite number of arcs (directed
edges connecting boxes), A, depicting class-class relationships.

Figure 7 shows the rationale for the CRL diagram in Fig. 1 by a set-oriented, topolog-
ical rendition with inverse image formation. Figure 7 is not itself a CRL diagram.

It should be observed that presence of additional CRL sentences may r-relate elements
in c also to elements outside d . Thus, the present sentence would act as a constraint in
this respect only via appeal to the closed world assumption, unlike the case for constraint
diagrams [14], see further Sect. 9.

5.1 Boxes

Boxes are uniquely labelled with their class name. The name may be omitted in the ren-
dition if irrelevant in the considered diagram.

Fundamentally, topological inclusion of box c in box d in a diagram expresses the sub-
class (class inclusion) relationship corresponding to the proposition ∀x(c(x) → ∃y(x =
y ∧ d(y))), that is ∀x(c(x) → d(x)). Thus boxes resemble contours in Euler diagrams.
Accordingly, any pair of boxes possesses the topological properties of being disjoint, or
partially overlapping, or one included in the other one.

However, a topological/geometrical overlap between two boxes unlike the contours of
Euler diagrams is not a box (class) itself in CRL. Therefore such an overlap is assumed
to embrace one or more boxes for classes belonging to the class overlap. Dually, the
union of the boxes does not itself form a box. This is in accord with the ontological tenet
that cross categories are acceptable, unlike would-be universals formed by disjunction or
complementation, cf. [2], as discussed also in [7]. As such the diagram use differs from
common use of Euler-Venn diagrams; for the latter see e.g. [19].
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Fig. 8 Class inclusion

Fig. 9 Nested subclasses

Fig. 10 Partial class overlap

5.2 The Case of Class Inclusion

The case of class inclusion (corresponding to r being identity in ∀∃(c, r, d), written
isa(c, d)) obtains as in Euler diagrams, cf. Fig. 8.

As stated, by default convention classes are disjoint unless they have a common named
subclass, all classes being non-empty.

5.3 CRL-Diagrams for Hierarchies and Trans-hierarchies

Boxes are by convention depicted in “menu style” (with sub-menus) as it appears in Fig. 9.
The underlying inclusion relation, isa, is a partial order. However it is not a lattice since

the union and intersection (corresponding to lattice supremum and infimum) are not CRL
classes in general. For intersecting classes there must be at least one common, named
subclass in any overlap, cf. Fig. 10, since by convention, as mentioned, disjointness is
assumed unless there is a joint subclass.

5.4 Relationship Arcs

Relationship arcs are directed edges (arcs) stretching from boxes to boxes or ∃-points.
They are (not necessarily uniquely) labelled with the pertinent relation, so that a relation
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Fig. 11 Zooming

r may label any number of arcs. An arc labelled r from a box or ∃-point to a box or ∃-point
represents a class-class relationship of one of the 4 basic forms. There may be any number
of arcs between a pair of boxes. The logical type of a relationship is determined by the
drawing conventions in Fig. 5. These conventions serve to facilitate diagram reasoning.

An ∃-point takes the name of its embracing box. It only serves in relationships with
∃-quantifiers. As such it represents some (one or more) unspecified member(s) of its class.
The quantifier type of a relationship arc follows the conventions in Fig. 5, where an exis-
tential quantifier is indicated by an ∃-end point within a box.

5.5 CRL-Diagram Plasticity and Dynamics

CRL diagrams may be made more useful for large scale ontologies with many classes by
provision of diagram visualization dynamics. This is achieved by metaphorically consid-
ering CRL diagrams as logical counterparts of road maps—stretching outside the screen.
Accordingly, the focal point can be moved left and right and up and down in order to
visualize relevant diagram parts, supplemented with zooming in and out.

The zooming facility implies that all boxes in a diagram are made simultaneously ex-
pandable/collapsible for browsing purposes, cf. Fig. 11. A box may be opened/blown-up
to reveal inner boxes with concomitant arcs. Conversely, a box may be shrunk to just its
name—or nothing. Relation arcs disappear according to appropriate conventions when
boxes become diminished (cf. the road map principle). The dynamics must comply with
the diagrammatic inference principles, which in turn reflect the admissible logical infer-
ences.

6 Formal Logical Reasoning with CRL Diagrams

Diagrams have logical counterparts taking form of a finite collection of predicate logical
ground factual sentences referred to as the metalogical forms isa( , ) and Q1Q2( , , ). In
this section we describe how reasoning with the 4 basic class relationship sentences com-
prising 2 quantifiers can be conducted in predicate logic using these metalogical forms.
This metalogical approach is inspired by our proposal for combinatory logic program-
ming in [16] pursued in [7, 10]. This section serve to specify logically the diagrammatic
reasoning rules introduced in Sect. 3.

All classes are assumed non-empty: ∃xc(x) for all c ∈ C. This non-emptiness assump-
tion serves to streamline the reasoning rules, and to make provision for class overlap by
introduction of a common subclass. It has no other bearing within CRL since classes are
conceived of intensionally in their relationships to other classes, so that their extension is
irrelevant in the ontological perspective.
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6.1 Formalizing the Diagrammatic Ipso Facto Reasoning

As explained informally in Sect. 3, Fig. 4 tells that the shown r-relationship holds also for
subclasses of the left class c, as well as for superclasses of the right class d . This conforms
with a metalogic level inference rule

isa(c′, c) ∀∃(c, r, d) isa(d, d ′)
∀∃(c′, r, d ′)

reflecting an object level rule

∀x(c′(x) → c(x)) ∀x(c(x) → ∃y(d(y) ∧ r(x, y))) ∀x(d(x) → d ′(x))

∀x(c′(x) → ∃y(d ′(y) ∧ r(x, y)))

The diagram supports this inference in that an arc fixed at the contour of a box by
convention can be extended to contours of all inner boxes. Moreover, it can be extended
to a new ∃-point of inner boxes according to an inference rule of weakening

∀∃(c, r, d)

∃∃(c, r, d)

A relationship arc to or from an ∃-point by the very nature of the diagram function also
as ∃-point for embracing boxes.

The diagrammatic rules for the remainder relationships follow the same principles as
for ∀∃ relationships:

– ∀-end points (inlets and outlets) extend to the inner boxes (∃-points).
– ∃-end points (inlets and outlets) appear as such also to all embracing boxes.

6.2 Diagrammatic Reasoning at the Meta-logic Level

The inference rules needed for CRL are themselves formalized in predicate logic. Accord-
ingly, there are two levels of logic: The CRL level and a metalogic level of inference rules.
The inference rules are here expressed in the definite clause syntactic subset of function
free predicate logic known as DATALOG, see e.g. [15]. Accordingly, DATALOG are definite
clauses devoid of compound terms

p0(t01, . . . , t0n0) ← p1(t11, . . . , t1n1) ∧ · · · ∧ pm(tm1, . . . , tmnm)

where the predicate argument terms tij are either constants or variables. All variables are
implicitly ∀-quantified with prefixed quantifiers.

In a few cases resort may be taken to DATALOG extended with non-monotonic negation
as failure to prove, DATALOG�, cf. [15], e.g. for confirming absence of a common subclass
of two classes.

6.3 Inference Rules Stated at the Meta-logic Level

In the meta-logic a relationship ∀∃(c, r, d) is conceived of as an atomic formula with a
predicate symbol ∀∃. Similarly for the other relationships. The inference rules pertaining



Diagrammatic Reasoning with Classes and Relationships 93

to CRL in the metalogic are re-shaped as definite clauses. Upper case indicates universally
quantified variables.

For the inclusion relation between classes further we stipulate reflexivity and transitiv-
ity

isa(X,X)

isa(X,Z) ← isa(X,Y ) ∧ isa(Y,Z)

Both way inclusion for a pair of classes is ruled out in diagrams for topological reasons.
Accordingly, the isa relation forms a partial order, it being reflexive, anti-symmetric, and
transitive.

The following inheritance, generalization, and weakening rules from Sect. 3 express
the principle that classes can be specialized to subclasses for ∀, and generalized to superior
classes for ∃.

Relationship inheritance

∀∃(
C′,R,D

) ← ∀∃(C,R,D) ∧ isa
(
C′,C

)

∃∀(
C,R,D′) ← ∃∀(C,R,D) ∧ isa

(
D′,D

)

∀∀(
C′,R,D

) ← ∀∀(C,R,D) ∧ isa
(
C′,C

)

∀∀(
C,R,D′) ← ∀∀(C,R,D) ∧ isa

(
D′,D

)

Relationship generalization:

∀∃(
C,R,D′) ← ∀∃(C,R,D) ∧ isa

(
D,D′)

∃∃(
C′,R,D

) ← ∃∃(C,R,D) ∧ isa
(
C,C′)

∃∃(
C,R,D′) ← ∃∃(C,R,D) ∧ isa

(
D,D′)

∃∀(
C′,R,D

) ← ∃∀(C,R,D) ∧ isa
(
C,C′)

The devised weakening rules further express that ∀ can be weakened to ∃, the classes
being non-empty.

Weakening of quantifier:

∀∃(X,R,Y ) ← ∀∀(X,R,Y )

∃∀(X,R,Y ) ← ∀∀(X,R,Y )

∃∃(X,R,Y ) ← ∀∃(X,R,Y )

∃∃(X,R,Y ) ← ∃∀(X,R,Y )

We notice in passing that the above inference patterns reflect the notion of monotonic-
ity in natural logic discussed in [28].

For cases of explicitly introduced inverse relations, introduced, say, by inv(r, r ′), we
posit:

∀∀(
D,R′,C

) ← ∀∀(C,R,D) ∧ inv
(
R,R′)

∃∃(
D,R′,C

) ← ∃∃(C,R,D) ∧ inv
(
R,R′)

∀∃(
D,R′,C

) ← ∃∀(C,R,D) ∧ inv
(
R,R′)

These rules for inverses are not naturally reflected in CRL diagram rules, but calls for
ad hoc diagram conventions for adding extra arcs for introduced inverses.
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Fig. 12 Example from
bio-ontology

Class overlap:

overlap(Y,Z) ← isa(X,Y ) ∧ isa(X,Z)

Conversely, disjointness of classes in CRL diagrams is expressed by absence of any
common subclass. Logically this is achieved by appealing to the closed world principle

disjoint(Y,Z) ← � overlap(Y,Z)

where � represents negation as failure to prove. The formulation within DATALOG� offers
the advantage that computation with the inference rules can be emulated as querying of a
relational database where the CRL metalogic representations as ground atomic facts are
stored, cf. [9].

The DATALOG fragment of predicate logic falls within the Bernays-Schönfinkel sub-
class and is thus effectively propositional and hence decidable. The propositional form
is achievable by systematically instantiating the variables in the definite clauses with the
available finite set of constants in C ∪ R, and then re-conceive of the resulting ground
atomic formulae as propositional symbols.

6.4 Example: Inheritance of Ascribed Properties

The tiny example (Fig. 12) from a bio-ontology is represented in the underlying logic as

isa(pancreas, endogland)

isa(insulin,hormone)

∀∃(endogland, secretes,hormone)

∀∃(pancreas, secretes, insulin)

As sample deducibles there are

∀∃(pancreas, secretes,hormone)

obtained from the above inference rules either by property inheritance or property gener-
alization, and

∃∃(endogland, secretes, insulin)

obtained by weakening of a universal quantifier.
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Fig. 13 Diagram for sample active voice

Fig. 14 Diagram for sample passive voice

Fig. 15 A tight relationship

7 Inverse Relations and Reciprocal Relationships

This section discusses some common CRL diagram patterns.
A binary relation r over individuals is logically bound to come with an inverse rela-

tion r−1. By contrast inverse class relationships, called reciprocals, may or may not be
present.

As an example compare the active voice form sentence with the corresponding passive
voice sentence form in the pair of diagrams shown in Figs. 13 and 14. It is easy to verify
by model checking that these sentences are not equivalent logically. Also, Skolemization
yields different logical sentences.

7.1 Reciprocals and Tight Relationships

As mentioned, inverse class relationships (reciprocals) are usually absent. The case of
co-presence of ∀∃(c, r, d) and ∀∃(d, r−1, c) for r yields the diagram in Fig. 15. Such a
configuration we dub a tight relationship.

As an example one may posit Fig. 16. But not the reciprocal Fig. 17.
The reciprocal configuration obtains, however, with Fig. 18.
Reciprocals play a special role for partonomic relationships where a pair of relation-

ships, say, partfor and haspart arising from a binary relation part and its inverse, may
form a tight partonomic relationship, cf. [26].

8 Analytic Versus Empirical Relationships

For a given class c in a CRL ontology diagram the outlet relationships ∀∃(c, r, d) (whether
given explicitly or being deducible) for the various r and d constitute the attributed prop-
erties of c, cf. [7, 8]. A class c property ascription ∀∃(c, r, d) is said to constitute a spe-
cialization of ∀∃(c, r, d ′) when isa(d, d ′).
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Fig. 16 Sample diagram for active voice

Fig. 17 The reciprocal of Fig. 16 does not hold

Fig. 18 Tight relationship by
added subclass

Consider a class c′ possessing all of the attributed properties of a class c albeit pos-
sibly in specialized form. This does not logically entail per se that c′ is a subclass of c,
isa(c′, c). However, if the entire bundle of attributed properties of a class c in the form
of outlet relationships is taken as (if as well as only if) definition, then c′ is bound to
be a subclass of c in what may be termed intensional inclusion. What is at stake here is
the distinction between analytic (definitional) and synthetic (i.e. empirical, observational)
propositions, a distinction coming about here by way of an added if-definition with the
bundle of attributed properties as premise.

Logically this principle of analyticity, if wished, might be achieved with an inference
rule of analyticity stated with a class c as pivot and c′ as candidate subclass.

As an example, let “pet owner” be taken to be an analytical concept defined as humans
owning a pet animal, and similarly for “dog owner”. Given that dogs are pets, then “dog
owner” would have to be a subclass of “pet owner” as in the diagram in Fig. 2.

Unlike the other inference rules, such an analyticity rule is not (at least not prima facie)
expressible as a definite clause rule. Moreover, this rule contributes to the isa class sub-
sumption relationships, thereby introducing a cyclic inference rule dependency between
isa and the other relationships potentially initiating an inferential regression. We therefore
suggest that an analyticity rule is only put at disposal as an option to be imposed on CRL
diagrams for relationships that are tagged as contributing to the intensional definition of a
class.

9 Similar Logics and Diagram Proposals

Numerous proposals have been put forward for diagrammatic representations of knowl-
edge and reasoning. A number of these are discussed and compared in [27]. In the history
of logic already Peirce’s existential graphs, see [24] for a comprehensive, contemporary
exposition, introduce means of quantification as in predicate logic.
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9.1 Proposals Applying Euler Diagrams

Many diagram proposals use as basis Euler diagrams, see e.g. [19, 20], which provides di-
agrammatic means of representing set inclusion, intersection, and exclusion topologically
in an intuitive manner. Euler diagrams correspond logically to finite Boolean algebras:
Given two sets as regions, their derivatives in the form of set union, intersection, and
relative complement are also granted existence (albeit possibly as empty sets), at least
in principle. This set-theoretic view (extending to a model-theoretic view in logic) is re-
ferred to as “Booleanism” in [25]. The Boolean view tends to introduce a multitude of sets
which are irrelevant from an ontological point of view. The set-theoretic Boolean view is
therefore commonly rejected in the context of formal ontologies in favour of a lattice ori-
ented view, or, even sparser, a partial ordering with the inclusion relation. The favoured
diagrams are then the Hasse diagrams known from lattice theory. The discarding of union
and complement formation is bound up with the vexed question of negative properties in
ontologies, see further [2], and [21] for a contemporary discussion.

In [13] the so called conceptual spaces are spanned by quality dimensions yielding
a form of n-dimensional Venn diagrams. It is argued that natural kinds correspond to
contiguous or even convex regions in such spaces. An algebraic logic for performing
symbolic reasoning with such spaces is proposed in [6].

9.2 Euler Diagrams Extended with Relations

Let us now focus on some diagram proposals related to the CRL diagrams discussed here.
Logics similar to CRL with supporting diagram forms have been studied by Hammer

in [17] and by Barwise and Hammer in [3]. However, [17] studies ∀x(c(x) → ∀y(d(y) →
r(x, y))) (corresponding to our ∀∀) rather than the ontologically prevailing ∀∃-form, and
[3] considers ∃x(c(x) ∧ ∀y(d(y) → r(x, y))) (corresponding to our ∃∀).

Hammer proposes diagrammatic reasoning rules for the considered ∀∀ relationships.
Hammer accepts configurations where a region (curve) is included in the set union, only,
of two regions. This is not possible in CRL diagrams, since they convey inclusion, only,
for given classes. As such CRL diagrams correspond to a partial ordering of given classes
like Hasse diagrams.

In CRL Euler diagrams may be viewed as used merely for presenting certain predicate
logical sentences in a convenient manner rather than representing sets topologically. Thus
a logical sentence ∀x(c(x) → d(x)) is depicted in CRL by inclusion of box named c in d .
However, overlap of boxes a and b does not represent a sentence ∃x(a(x) ∧ b(x)), since
the set elements are not recognized as such in CRL. This conforms with an intensional
conception of the classes, where classes are characterized by the properties possessed
jointly by the member individuals, rather than by enumeration of the individuals. There-
fore, overlap of classes is explained in a diagram by presence of a common subclass, that
is as presence of a box included in both boxes, together with the omnipresent assumption
that classes are non-empty. Absence of any common subclass (witness common included
box) is taken to mean that the two classes are disjoint, appealing to the principle of closed
world assumption (CWA). The absence of explicit or entailed sentences expressing de-
nials means that CRL has no means of expressing or generating inconsistency, unlike
constraint diagrams.
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9.3 Spider and Constraint Diagrams

Spider diagrams, [5], are Venn diagrams extended with diagrammatic facilities for intro-
ducing named or anonymous individuals. The diagrams enable expression of presence of
a certain named individual in the various regions by means of so-called spiders. For in-
stance it is possible to express presence of a certain constant within one or more of the
sets described by the Venn diagram.

Constraint diagrams, [11, 14, 22], extend Spider diagrams by introducing (many-many)
relations between the sets in a spider diagram. The relations are rendered as arrows with
end points at the contours.

Constraint diagrams as presented in [14, 22] also appeal to Euler diagrams extended
with relationship arcs. In constraint diagrams as presented in [14, 22] a relation f from a
contour A to a contour B , written as A.f = B , is understood as follows

∀x
(
A(x) → ∃y

(
f (x, y) ∧ B(y)

))

∀x
(
A(x) → ¬∃y

(
f (x, y) ∧ ¬B(y)

))

The former sentence corresponds to a CRL ∀∃ relationship from A to B . The latter
sentence stipulates that no individual x in set A is f -related to something outside the
set B . As such it expresses a constraint, which might be violated in a constraint diagram,
with ensuing logical inconsistency. This is in contrast to CRL, where only the former
sentence is expressed, with no means of achieving inconsistency.

Moreover, A.f = B requires that

∀y
(
B(y) → ∃x

(
f (x, y) ∧ A(x)

))

corresponding to a reverse CRL arc.
Constraint diagrams bear resemblance to CRL diagrams when used for ontology spec-

ification. However, CRL diagrams differ in the available repertoire of logical class re-
lationship forms as well as in the diagrammatic inference principles available in CRL.
Fundamentally, constraint diagrams serve to express constraints by way of the logical
inconsistency potential, whereas CRL logic and diagrams express only positive (ontolog-
ical) knowledge, precluding thereby per se the risk or possibility of inconsistency.

9.4 Relation to Description Logic

The ∀∃-form ∀∃(c, r, d) has the counterpart sentence c � ∃r.d in description logic (DL),
cf. e.g. [4, 15] for logico-algebraic and predicate logical accounts of DL.

More generally DL offers a fragment of FOL comprising classical negation sup-
ported by consistency (satisfiability) check facilities. DL comprise operators for form-
ing new classes corresponding to the boolean operators in FOL. One may notice that the
CRL relationship ∀∀(c, r, d) is different from the DL sentence c � ∀r.d , the latter being
∀x(c(x) → ∀y(r(x, y) → d(y))).

DL is biased towards a set-theoretic, extensional understanding of classes supported by
the usual set operations on classes as sets. By contrast CRL supports a graph conception
of class relationships in the vein of semantic networks. As such CRL is biased towards
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an intensional understanding of classes as objects possessing and inheriting properties
via class-class relationships. Furthermore the CRL metalogic level supports classes and
relationships as first class citizens which can be quantified over as it appears in the devised
inference rules.

10 CRL Limitations and Extensions

In its present form CRL does not offer facilities for forming new classes by algebraic
composition from the given ones. Nor does CRL offer facilities for composing relations
to form chains between classes. However, a chain of relations might be provided visually
in the diagram as highlighting of (shortest) connecting relational paths between classes.
This may pertain to relationally homogeneous paths, say with transitive relations such as
“causes” and “affects”. This is achieved in principle with the following rule (specialized
to homogeneous length 2 paths with relation R)

∀∃(C,R,R,D2) ← ∀∃(C,R,C1) ∧ ∀∃(C1,R,D2)

and more generally for homogeneous paths of length n:

∀∃(C,R, . . . ,R︸ ︷︷ ︸
n

,Dn) ← ∀∃(C,R,C1) ∧ · · · ∧ ∀∃(Cn−1,R,Dn)

being straightforwardly generalizable to heterogeneous relational paths. It should be no-
ticed that the path inference would draw implicitly on the relational inference rules in-
volving the class inclusion relationship. Such a computing of shortest paths between given
classes c and d calls for application of standard search algorithms.

11 Concluding Summary

We have devised a proposal for diagrammatic visualization and reasoning for a fragment
of predicate logic comprising various forms of logical relationships between classes. This
sub-language is aimed at ontological domain modelling where taxonomies are enriched
with ad hoc relationships between classes such as partonomic and causal relationships.
The proposal is further distinguished by its dynamic appealing to the road map metaphor
combined with intuitive visual reasoning principles, including the mentioned logical path
finding. A prototype system with dynamic use of screen zooming has been developed in
order to assess whether CRL offers a feasible compromise between on one hand logic
diagram expressivity and on the other hand decidability and computational tractability.

Acknowledgements Many thanks to Sun-Joo Shin and Bartlomiej Szymczak, and to the anonymous
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References

1. Allwein, G., Barwise, J.: Logical Reasoning with Diagrams. Oxford University Press, London (1996)



100 J. Fischer Nilsson

2. Armstrong, D.: A Theory of Universals. Cambridge University Press, Cambridge (1978)
3. Barwise, J., Hammer, E.: Diagrams and the concept of a logical system. In: [1]
4. Brink, C., et al.: Peirce algebras. Form. Asp. Comput. 6(3), 339–358 (1994)
5. Dau, F., Fish, A.: Conceptual spider diagrams. In: Proceedings of the 16th International Conference

on Conceptual Structures. Lecture Notes in Computer Science, vol. 5113, pp. 104–118. Springer,
Berlin (2008)

6. Fischer Nilsson, J.: A conceptual space logic. In: Kawaguchi, E., et al. (eds.) Information Mod-
elling and Knowledge Bases XI. 9th European-Japanese Conferences on Information Modelling and
Knowledge Bases, Iwate, Japan, May 24–28, 1999, pp. 26–40. IOS Press, Amsterdam (2000)

7. Fischer Nilsson, J.: Ontological constitutions for classes and properties. In: Int. Conference on Con-
ceptual Structures. Lecture Notes in Computer Science, vol. 4068, pp. 37–53. Springer, Berlin (2006)

8. Fischer Nilsson, J.: On reducing relationships to property ascriptions. In: Kiyoki, Y., et al. (eds.) In-
formation Modelling and Knowledge Bases XX. Frontiers in Artificial Intelligence and Applications,
vol. 190, pp. 245–252. IOS Press, Amsterdam (2008)

9. Fischer Nilsson, J.: Querying class-relationship logic in a metalogic framework. In: Flexible Query
Answering Systems FQAS 2011. Lecture Notes in Computer Science, vol. 7022 (2011)

10. Fischer Nilsson, J., Palomäki, J.: Towards computing with intensions and extensions of concepts. In:
Charrel, P.-J., et al. (eds.) Information Modelling and Knowledge Bases IX, pp. 100–114. IOS Press,
Amsterdam (1998)

11. Fish, A., Flower, J., Howse, J.: The semantics of augmented constraint diagrams. J. Vis. Lang. Com-
put. 16(6), 541–573 (2005)

12. Gabbay, D.M., Woods, J. (eds.): Handbook of the History of Logic, vol. 3, The Rise of Modern
Logic: From Leibniz to Frege. Elsevier, Amsterdam (2004)

13. Gärdenfors, P.: Conceptual Spaces: On the Geometry of Thought. MIT Press, Cambridge (2000)
14. Gil, J., Howse, J., Kent, S.: Towards a formalization of constraint diagrams. In: Proceedings of the

IEEE 2001 Symposia on Human Centric Computing Languages and Environments (HCC’01) (2001)
15. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: combining logic pro-

grams with description logic. In: Proceedings of the Twelfth International World Wide Web Confer-
ence, WWW2003, Budapest, Hungary, 2003, pp. 48–57. ACM, New York (2003)

16. Hamfelt, A., Fischer Nilsson, J.: Towards a logic programming methodology based on higher-order
predicates. New Gener. Comput. 15(4), 421–448 (1997)

17. Hammer, E.M.: Logic and Visual Information. CSLI, Stanford (1995)
18. Harel, D.: On visual formalisms. Commun. ACM 31(5), 514–530 (1988)
19. Howse, J.: Diagrammatic reasoning systems. In: Proceedings of the 16th International Conference

on Conceptual Structures: Knowledge Visualization and Reasoning. Lecture Notes in Artificial In-
telligence, vol. 5113, pp. 1–20 (2008)

20. Howse, J., et al.: Euler diagram-based notations. University of Brighton and University of Kent, UK
21. Merrill, G.H.: Ontological realism: methodology or misdirection? Appl. Ontol. 5(2), 79–108 (2010)
22. Oliver, I., Howse, J., Stapleton, G., Nuutila, E., Törmä, S.: A proposed diagrammatic logic for on-

tology specification and visualization. In: 8th International Semantic Web Conference (Posters and
Demos) (2009)

23. Sánchez Valencia, V.: The algebra of logic. In: [12]
24. Shin, S.-J.: The Iconic Logic of Peirce’s Graphs. MIT Press, Cambridge (2002)
25. Smith, B.: Against fantalogy. In: Reicher, M.E., Marek, J.C. (eds.) Experience and Analysis, pp.

153–170 (2005)
26. Smith, B., Rosse, C.: The Role of Foundational Relations in the Alignment of Biomedical Ontologies,

MEDINFO 2004, pp. 444–448. IOS Press, Amsterdam (2004)
27. Sowa, J.: Knowledge Representation: Logical, Philosophical and Computational Foundations.

Brooks Cole, Pacific Grove (2000)
28. van Benthem, J.: Essays in Logical Semantics. Reidel, Dordrecht (1986)

J. Fischer Nilsson (B)
DTU Informatics, Technical University of Denmark, Building 322, 2800 Lyngby, Denmark
e-mail: jfn@imm.dtu.dk

mailto:jfn@imm.dtu.dk


On the Completeness of Spider Diagrams
Augmented with Constants

Gem Stapleton, John Howse, Simon Thompson, John Taylor, and Peter Chapman

Abstract Diagrammatic reasoning can be described formally by a number of diagram-
matic logics; spider diagrams are one of these, and are used for expressing logical state-
ments about set membership and containment. Here, existing work on spider diagrams is
extended to include constant spiders that represent specific individuals. We give a formal
syntax and semantics for the extended diagram language before introducing a collection
of reasoning rules encapsulating logical equivalence and logical consequence. We prove
that the resulting logic is sound, complete and decidable.

Keywords Spider diagrams · Constants · Soundness · Completeness · Monadic
first-order logic · Diagrammatic reasoning

Mathematics Subject Classification (2010) Primary 68R02; Secondary 03B02

1 Introduction

Diagrams have been used for centuries in the visualization of mathematical concepts and
to aid the exploration and formalization of ideas. This is not the place to survey that
history; however, we give a brief overview of the background to the development of spider
diagrams now.

One of the most successful visual notations is the Venn diagram for sets and their re-
lationships; indeed, it is taught in the elementary school curriculum in many countries.
While Venn diagrams contain all possible intersection regions between the sets, Euler
diagrams [4] allow set intersection, disjointness and containment to be represented visu-
ally. The Euler diagram d1 in Fig. 1 asserts that A and B are disjoint and C is a subset
of A. The relative placement of the curves gives, for free, that C is disjoint from B . This
‘free ride’ is one of the areas where diagrams are thought to be superior to symbolic lan-
guages [20]. This example also illustrates the concept of ‘well-matchedness’ [8] since the
visual representation of assertions mirrors those at the semantic level: for example, the
containment of one curve by another mirrors the interpretation that the enclosed curve, C,
represents a subset of the set represented by the enclosing curve, A. Moreover, this has
the added benefit that the subset relation is mirrored by the transitive property of syntactic
containment.

Various extensions to Euler diagrams have been proposed, such as including syntax
to represent named individuals [27], or assert the existence of arbitrary finite numbers of
elements [12]. The Euler diagram d2 in Fig. 1 is augmented with shading, which asserts
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Fig. 1 Extended Euler diagrams

Fig. 2 Non-hierarchical file
systems

the emptiness of the set A − C and the Euler/Venn diagram d3 tells us, in addition, that
fred is in the set C and bob is not in the set A.

Spider diagrams [12] are also based on Euler diagrams. The spider diagram d4 in Fig. 1
asserts the existence of two elements in the set C and at least one element outside of the
set A; this is accomplished through the use of existential spiders. A spider is a tree which
denotes a single element that can occupy one of the positions given by the nodes of the
tree. The shading in d4 is used to place an upper bound on the cardinality of A, limiting it
to two: in a set represented by a shaded region, all elements must be denoted by spiders.
Using a model-theoretic argument, it has been shown that spider diagrams are equivalent
to Monadic First-Order Logic with equality [23].

Constant spiders [21, 25], corresponding to given spiders in [11], were introduced to
provide users of spider diagrams with an explicit way to write constraints involving named
individuals. There are a number of examples of spider diagrams being used in practice,
such as assisting with the task of identifying component failures in safety critical hard-
ware designs [2]. Equivalent notations have been used for representing non-hierarchical
computer file systems [3], in a visual semantic web editing environment [16, 28] and
for viewing clusters which contain concepts from multiple ontologies [9]. Each of these
applications uses constants to represent specific objects, thus motivating the utility of
augmenting spider diagrams with constants. To take a particular example, the VennFS
system [3], is used to represent visually non-hierarchical files systems. The example in
Fig. 2 provides information about the folder location of certain files stored on a computer:
the labeled dots are files—or constant spiders—and the curves represent folders.

In [25], it was established that constants in spider diagrams could be simulated by a
shaded contour containing a single (non-constant) spider. This translation gave a diagram
that was expressively equivalent to the original, in the sense that it had the same model
set as the spider diagram with a constant. As with many notations—both symbolic and
diagrammatic—it is worthwhile adding a notation even though it might be dismissed as
mere ‘syntactic sugar’. The additional notation makes clear the intention of the user, and
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allows that intention to be preserved in reasoning, for instance. In a visual notation it
makes it much easier to preserve the ‘free ride’ and ‘well matchedness’ properties; in the
particular case of constants there is a direct naming of a constant, rather than an indirect
naming through the name of the representing contour, for instance. Further discussion and
motivation can be found in [21, 25].

Earlier work formalized the syntax and semantics of spider diagrams and specified a
logic for the diagrams which was proved to be sound, complete and decidable; in this
paper we do the same for spider diagrams with constants. Specifically, in Sect. 2, we
give the syntax of spider diagrams extended to include constant spiders and, in Sect. 3,
present formal semantics. In Sect. 4, we provide a collection of reasoning rules for spider
diagrams with constants and, in Sect. 5, we present sketches of soundness, completeness
and decidability results.

2 Syntax

In diagrammatic systems, we can distinguish two levels of syntax: concrete (or token)
syntax and abstract (or type) syntax [10]. Concrete syntax captures the physical repre-
sentation of a diagram. Abstract syntax is independent of the semantically unimportant
spatial relations between syntactic elements in a concrete diagram. We do not include the
concrete syntax in this discussion since we work at the abstract level here.

The closed curves in a spider diagram are called contours and each contour is identified
by a label chosen from a countably infinite set, CL. A zone1 is defined to be a pair (in,out)
of disjoint finite subsets of CL. The set in contains the labels of the contours that include
the zone (in,out) whereas out is the set of labels of the contours that do not include
(in,out). So, in a unitary diagram, in and out form a partition of the contour label set. In
diagram d1 in Fig. 3 the zone that is inside contour A but outside B and C has abstract
representation ({A}, {B,C}). A region is a set of zones. We define Z and R = PZ to
be the sets of all zones and regions respectively. As noted earlier, in a Venn diagram, d ,
every possible zone—that is every element of PL for the set L of contour labels in d—is
represented in d . This is not the case for spider diagram, and a zone is said to be missing
if it is not a member of the possible zone set for the diagram.

A spider without a label is called an existential spider. A spider with a label is called
a constant spider. A spider touches a zone if that zone is in its habitat, and a spider is
said to inhabit the region in which it is placed, which is termed its habitat. To describe
the existential spiders in a particular diagram, it is sufficient to say how many existential
spiders there are in each region. We will use a bag of regions, called existential spider
descriptors, with the number of occurrences of each region in the bag giving the number
of existential spiders in the region. For example, the region

{({A,C}, {B}), (∅, {A,B,C}), ({B}, {A,C}), ({B,C}, {A})}

in diagram d2 in Fig. 3 contains two existential spiders. We must also specify which
constant spider labels appear and, for each spider label, the habitat of the spider with that

1Since all constructs discussed here are abstract, we will use the terminology ‘zone’ rather than ‘abstract
zone’ throughout.



104 G. Stapleton et al.

Fig. 3 Examples of unitary spider diagrams

label. At the abstract level, a unitary diagram will contain a finite set of constant spider
labels together with a habitat function, mapping each constant spider label to a region
in the diagram. The habitat of the constant spider labeled s in diagram d2 in Fig. 3 is
{({A}, {B,C}), ({C}, {A,B})}.

We will assume that all of the constant spider labels come from a finite set CS . An
alternative choice would be to have a countably infinite set of constant spider labels. With
this alternative choice, the work below on reasoning rules, soundness and completeness
remains identical. However, the approach taken in [23] to prove that augmenting the spi-
der diagram language with constants does not increase expressiveness would need to be
modified.

Given two distinct constant spiders, each with a habitat sharing some zone z, a tie,
represented by an ‘equals’ sign, can be placed between them in z. The web of a pair
of constant spiders is the set of zones that contain a tie between those two spiders. The
diagram d3 in Fig. 3 contains two constant spiders, labeled s and t , connected by two ties.
The web of s and t is the region made up of the zone inside contour A but outside B and
C and the zone inside C but outside A and B .

General spider diagrams are a logical combination of diagrams; a single diagram is
called unitary. The formal definition of an abstract unitary spider diagram with constants
extends that given in [12] for unitary spider diagrams without constants. We assume that
the sets CS , CL, Z and R are all pairwise disjoint.

Definition 2.1 An abstract unitary spider diagram with constants, d (with contour
labels in CL and constant spider labels in CS), is a 7-tuple

〈
L,Z,Z∗,ESD,CS, θ,ω

〉

whose components are defined as follows.

1. L = L(d) ⊂ CL is a finite set of contour labels.
2. Z = Z(d) ⊆ {(in,L − in) : in ⊆ L} is a set of zones such that

(i) for each label l ∈ L there is a zone (in,L − in) ∈ Z(d) such that l ∈ in and
(ii) the zone (∅,L) is in Z(d).
We define R(d) = PZ − {∅} to be the set of regions in d . We further define MZ(d) =
{(in,L − in) : in ⊆ L} − Z(d) to be the missing zones of d .

3. Z∗ = Z∗(d) ⊆ Z is a set of shaded zones and we define R∗(d) = PZ∗(d) to be the set
of shaded regions in d . A region, r ∈ R(d) − R∗(d), is completely non-shaded if and
only if r ∩ Z∗(d) = ∅.

4. ESD = ESD(d) ⊂ Z
+ ×R(d) is a finite set of existential spider descriptors such that

∀(n1, r1), (n2, r2) ∈ ESD (r1 = r2 ⇒ n1 = n2).
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If (n, r) ∈ ESD we say there are n existential spiders with habitat r .
5. CS = CS(d) ⊆ CS is a finite set of constant spider labels.
6. θ = θd : CS → R(d), is a function which maps each constant spider label to a region

in d . If θd(si) = r we say si has habitat r in d .
7. ω = ω : CS(d) × CS(d) → PZ is a function which returns the web of each pair of

constant spiders where z ∈ ω(si, sj ) means that there is a tie between si and sj in the
zone z. Further, ω must ensure that the following hold for all si , sj , sk in CS(d):
(a) given two constant spiders there can only be ties in zones common to their habitat:

ω(si, sj ) ⊆ θd(si) ∩ θd(sj ),
(b) each constant spider is joined by ties to itself (this simplifies the formalization of

the semantics below): ω(si, si) = θd(si),
(c) if there is a tie between constant spiders si and sj in zone z, then there is a tie

between sj and si in z: ω(si, sj ) = ω(sj , si), and
(d) given any zone z, if si and sj are joined by a tie in z and so are sj and sk , then si

and sk are joined by a tie in z: z ∈ ω(si, sj ) ∩ ω(sj , sk) ⇒ z ∈ ω(si, sk).

Some remarks about the above definition are in order, before we illustrate it with an
example.

• Every contour in a concrete diagram contains at least one zone as captured by condi-
tion 2 (i).

• In any concrete diagram, the zone inside the boundary rectangle but outside all the
contours is present and this is captured by condition 2 (ii).

• Being joined by a tie is interpreted transitively. In fact, ties give rise to an equivalence
relation on the spiders in each zone, as specified by conditions 7 (b), (c) and (d).

• Therefore, in a zone z, taking the constant spiders in z as a set of vertices and the ties in
that zone as a set of edges, we would have a graph whose components formed complete
graphs with loops at each vertex. However, in our concrete syntax we will only draw a
spanning forest in each zone so as to avoid unnecessary clutter in diagrams.

• We note that ties could also be used to connect existential spiders. Indeed, they could
also be used to connect an existential spiders to constant spiders.2

Example The diagram d1 in Fig. 4 has the following abstract description.

1. Contour label set L(d1) = {A,B}.
2. Zone set

Z(d1) = {(∅, {A,B}), ({A}, {B}), ({B}, {A}), ({A,B},∅)}
.

3. Shaded zone set Z∗(d1) = {({B}, {A})}.
4. The set of existential spider descriptors

ESD(d1) = {(
1,

{({B}, {A})}), (1,
{({A}, {B}), ({B}, {A})})}.

5. Constant spider label set CS(d1) = {s, t}.

2However, for any diagram that incorporated such ties it is possible to define a semantically equivalent
diagram that does not contain such ties. This is not the case for ties between constant spiders. It is straight-
forward to extend the work in this paper to the case where these additional types of tie are permitted.
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Fig. 4 Two spider diagrams with constants

6. The function θd1 : {s, t} → R(d1) where θd1(s) = {({A}, {B})} and θd1(t) =
{({A,B},∅)}.

7. The function ωd1 : CS(d1) × CS(d1) → PZ(d1) where ωd1(s, s) = θd1(s), ωd1(t, t) =
θd1(t) and ωd1(s, t) = ωd1(t, s) = ∅.

Now we introduce some terminology and notation on top of the concepts formalized
in the definition. An existential spider descriptor (n, r) is intended to mean that there
are precisely n existential spiders placed in the zones in the region r , and we can think of
these being numbered from 1 to n. A typical such spider will be spider i, which we denote
by ei(r), to avoid confusion with the notation (i, r) used for existential spider descriptors.
The set of existential spiders in a unitary diagram d is given by

ES(d) = {
ei(r) : ∃(n, r) ∈ ESD(d) ∧ 1 ≤ i ≤ n

}
.

We also define S(d) = ES(d) ∪ CS(d) to be the set of spiders in d . We assume that the
sets ES(d) and CS ∪ CL∪Z ∪R are disjoint. We also define a function

η : ES(d) → R(d)

which returns the habitat of each existential spider, so that η(ei(r)) = r .
Spiders represent the existence of elements and regions represent sets—thus we need

to know how many elements are represented in each region. Note here that, in a unitary
diagram, a constant spider and an existential spider represent the existence of distinct
elements. For example, in Fig. 4, the diagram d2 asserts that the set represented by the
zone ({A}, {B}) contains at least three elements, including the individual represented by s.
The set of existential spiders contained by region r in d is denoted by ES(r, d). More
formally,

ES(r, d) = {
e ∈ ES(d) : η(e) ⊆ r

}
.

Similarly, the set of constant spiders contained by region r in d is

CS(r, d) = {
s ∈ CS(d) : θd(s) ⊆ r

}

and we also define

S(r, d) = ES(r, d) ∪ CS(r, d).

So, any spider in d whose habitat is a subset of r is in the set S(r, d). The set of existential
spiders touching r in d is denoted by ET (r, d). More formally,

ET (r, d) = {
s ∈ ES(d) : η(s) ∩ r 	= ∅}

.
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Moreover, in a shaded region there is an upper bound on the cardinality of the represented
set. For example, d1 in Fig. 4 tells us that there are at most two elements in B −A, because
exactly two spiders touch B −A. The set of constant spiders touching a region, CT (r, d),
and the set of spiders touching a region, T (r, d), are defined similarly. In d1, Fig. 4,

∣∣S
({({B}, {A})}, d1

)∣∣ = 1

and
∣∣T

({({B}, {A})}, d1
)∣∣ = 2.

In d2,
∣∣S

({({A}, {B})}, d2
)∣∣ = ∣∣T

({({A}, {B})}, d2
)∣∣ = 3.

Unitary diagrams form the building blocks of compound diagrams, formed by using log-
ical connectives.

Definition 2.2 An abstract spider diagram with constants is defined as follows.

1. Any unitary diagram with constants is a spider diagram with constants.
2. If D1 and D2 are spider diagrams with constants then (D1 ∨ D2) and (D1 ∧ D2) are

spider diagrams with constants.

Our convention will be to denote unitary diagrams by d and arbitrary diagrams by D.
Some compound diagrams are not satisfiable (defined later). For convenience later, we
introduce the symbol ⊥, defined to be a unitary diagram that is not satisfiable.

3 Semantics

We now sketch, informally, the semantics of unitary spider diagrams. Regions represent
sets. Missing zones represent the empty set. For example, in diagram d1 in Fig. 3, the
zones ({A,C}, {B}) and ({A}, {B,C}) are missing and so represent the empty set; from
this we can deduce that sets represented by A and B are disjoint.

Now, for simplicity, suppose a unitary diagram d does not contain any ties. If region
r is inhabited by n spiders in d then d expresses that the set represented by r contains at
least n elements. If r is shaded and touched by m spiders in d then d expresses that the set
represented by r contains at most m elements. Thus, if d has a shaded, untouched region,
r , then d expresses that r represents the empty set. For example, in diagram d1 in Fig. 3,
the shaded region {({A}, {B,C}), ({A,C}, {B})} is untouched by any spider and therefore
represents the empty set. In diagram d2 in Fig. 3, the same region is shaded and touched
by two spiders and so the set it represents contains at most two elements.

Each constant spider asserts that the individual it represents is in the set represented
by its habitat. Moreover, the individuals represented by constant spiders are distinct from
those represented by existential spiders. Therefore, if a region contains an existential spi-
der and a constant spider, s, we can deduce that there are at least two elements in that
region, including that represented by s. Within a unitary diagram, no two constant spiders
represent the same individual unless they are joined by a tie. Constant spiders joined by
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ties represent the same individual if and only if there exists a zone, z, in their web and they
both represent individuals in the set represented by z. So, the presence of a tie between
two constant spiders has the effect of potentially reducing the upper and lower cardinality
constraints placed on the set represented by the union of their habitats. In diagram d3 in
Fig. 3, the constant spiders s and t represent different individuals unless both the individ-
uals they represent are in the set represented by the zone ({A}, {B,C}) or both are in the
set represented by ({C}, {A,B}), in which case they must represent the same individual.

To formalize the semantics of spider diagrams with constants we shall map constant
spider labels, contour labels, zones and regions to subsets of some universal set. We wish
constant spider labels to act like constants in first-order predicate logic, so they will map
to single element subsets of the universal set, unless the universal set is the empty set.
We could, equivalently, choose to map constant spiders to elements of the universal set.
However, the semantics predicate (defined below) is more elegant when we map constant
spiders to sets, as are the details of some of the proofs below. Our formalization of the
semantics extends that given for spider diagrams without constants in [12].

Definition 3.1 An interpretation of constant spider labels, contour labels, zones and
regions, or simply an interpretation, is a pair (U,Ψ ) where U is a set and Ψ : CL ∪
Z ∪ R ∪ CS → PU is a function mapping constant spider labels, contour labels, zones
and regions to subsets of U such that the images of the zones and regions are completely
determined by the images of the contour labels as follows:

1. for each zone (a, b), Ψ (a, b) = ⋂
l∈a Ψ (l) ∩ ⋂

l∈b Ψ (l) where Ψ (l) = U − Ψ (l) and
we define

⋂
l∈∅ Ψ (l) = U = ⋂

l∈∅ Ψ (l) and
2. for each region r , Ψ (r) = ⋃

z∈r Ψ (z) and we define Ψ (∅) = ⋃
z∈∅ Ψ (z) = ∅

and either the universal set is the empty set or the constant spiders map to singleton subsets
of U . More formally

U = ∅ ∨ ∀si ∈ CS
∣∣Ψ (si)

∣∣ = 1.

We will write Ψ :R∪CS → PU when strictly speaking we mean Ψ : CL∪Z∪R∪CS →
PU .

We introduce a semantics predicate which identifies whether a diagram expresses a
true statement, with respect to an interpretation.

Definition 3.2 Let D be a spider diagram with constants and let m = (U,Ψ ) be an in-
terpretation. We define the semantics predicate of D, denoted PD(m). If D =⊥ then
PD(m) is ⊥. If D (	=⊥) is a unitary diagram then PD(m) is the conjunction of the fol-
lowing conditions.

1. Plane Tiling Condition. The union of the sets represented by the zones in D is the
universal set:

⋃
z∈Z(D) Ψ (z) = U .

2. There exists an extension of Ψ : R ∪ CS → PU to Ψ : R ∪ CS ∪ ES(D) → PU such
that the following conditions are satisfied.
(a) Spiders Condition. Each spider represents the existence of an element (strictly,

a single element set) in the set represented by its habitat and existential spiders do
not represent the same elements as any constant spiders:

∀s ∈ ES(D)
(∣∣Ψ (s)

∣∣ = 1 ∧ Ψ (s) ⊆ Ψ
(
η(s)

))
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and

∀s ∈ CS(D)
(∣∣Ψ (s)

∣∣ = 1 ∧ Ψ (s) ⊆ Ψ
(
θD(s)

))

and

∀e ∈ ES(D) ∀si ∈ CS(D) Ψ (e) 	= Ψ (si).

(b) Existential Spiders Condition. No two existential spiders represent the existence
of the same element:

∀e1, e2 ∈ ES(D)
(
Ψ (e1) = Ψ (e2) ⇒ e1 = e2

)
.

That is, the function Ψ is injective when the domain is restricted to ES(d).
(c) Constant Spiders Condition. Two constant spiders represent the same individual

if and only if they both represent an individual in the set denoted by some zone in
their web:

∀si , sj ∈ CS(D)
(
Ψ (si) = Ψ (sj )

⇔ ∃z ∈ ωD(si, sj ) Ψ (si) ∪ Ψ (sj ) ⊆ Ψ (z)
)
.

(d) Shading Condition. Each shaded zone, z, represents a subset of the set of ele-
ments represented by the spiders touching z:

∀z ∈ Z∗(D) Ψ (z) ⊆
⋃

s∈T ({z},D)

Ψ (s).

If Ψ : R∪ES(D) → PU ensures PD(m) is true then Ψ is a valid extension to existential
spiders for D. If D = D1 ∨ D2 then PD(m) = PD1(m) ∨ PD2(m). If D = D1 ∧ D2 then
PD(m) = PD1(m) ∧ PD2(m). We say m satisfies D, or m is a model for D, denoted
m |= D, if and only if PD(m) is true. If all the models for D1 are models for D2, then D1

semantically entails D2, denoted D1 � D2. If D1 � D2 and D2 � D1, then D1 and D2

are semantically equivalent, denoted D1 ≡� D2.

As an example, the interpretation m = ({1,2,3,4},Ψ ) partially defined by Ψ (s1) =
{1}, Ψ (s2) = {2}, Ψ (L1) = {1,2} and Ψ (L2) = {2,3,4} is a model for d1 in Fig. 4 but not
for d2.

Theorem 3.3 Let d (	=⊥) be a unitary spider diagram with constants. Then d is satisfi-
able.

The proof strategy is to construct an interpretation that we call a standard model for d ,
following a similar approach to that for spider diagrams without constants in [12]. Essen-
tially, this contains only the elements that are forced to exist by the presence of spiders
in the diagram: for each spider in the diagram we choose one the zones in its habitat and
place an element there; in extending this construction to constants we just have to make
sure that these elements are identified when ties require that to be so. It is straightforward
to show that any standard model for d satisfies d . This standard model is also used in the
proof of completeness. More formally, a standard model is defined as follows:
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Definition 3.4 Let d be a unitary spider diagram with constants. Let f : S(d) → Z(d) be
a function such that for each spider s, f (s) is in the habitat of s. For each constant spider,
si , we define

[si] = {
sj ∈ CS(d) : f (sj ) = f (si) ∧ f (si) ⊆ ωd(si, sj )

}

(these sets [si] give rise to an equivalence relation and, hence, form a partition of CS(d)).
Define

U = ES(d) ∪ {[si] : si ∈ CS(d)
}
.

For each contour label, L, in d define

Ψ (L) = {
e ∈ ES(d) : f (e) = (in,out) ∧ L ∈ in

}

∪ {[si] : si ∈ CS(d) ∧ f (si) = (in,out) ∧ L ∈ in
}

and each constant spider, sk , in d , maps to the set

Ψ (sk) = {[sk]
}
.

Then (U,Ψ ) is a standard model for d .

4 Reasoning Rules

We will now develop a set of sound and complete reasoning rules for spider diagrams with
constants. All of the reasoning rules given for spider diagrams without constants in [12]
can be extended—sometimes in a non-trivial way—to spider diagrams with constants; we
omit most of the formal definitions of the extended rules.

4.1 Unitary to Unitary Reasoning Rules

In this section we introduce a collection of reasoning rules that apply to, and result in,
a unitary diagram.

Rule 1 (Introduction of a shaded zone) Let d1 be a unitary diagram that has a missing
zone. If d2 is the same as d1 except that d2 contains a new, shaded and ‘untouched’ zone
then d1 is logically equivalent to d2.

In Fig. 5, Rule 1 (introduction of a shaded zone) is applied to d1 to give d2. Applying
the introduction of a shaded zone rule results in a semantically equivalent diagram. The
next two rules are not information preserving.

Rule 2 (Erasure of shading) Let d1 be a unitary diagram with a shaded region r . Let d2 be
identical to d1 except that r is completely non-shaded in d2. Then d1 logically entails d2.
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Fig. 5 An application of Rule 1 (introduction of a shaded zone)

Fig. 6 Applications of Rule 2 (erasure of shading) and Rule 3 (erasure of a spider)

In Fig. 6, Rule 2 (erasure of shading) is applied to d1 to give d2.

Rule 3 (Erasure of a spider) Let d1 be a unitary diagram containing a spider s with a
completely non-shaded habitat. Let d2 the same as d1 except that d2 does not contain s or
any ties that were connected to s. Then d1 logically entails d2.

In Fig. 6, Rule 3 (erasure of a spider) is applied to d2 to give d3.

4.2 Unitary to Compound Reasoning Rules

We now specify five further rules, each of which is reversible, that allow a unitary diagram
to be replaced by a compound diagram. The first of these rules allows us to introduce a
contour. In the logic for spider diagrams without constants, the introduction of a contour
rule applies to, and results in, a unitary diagram [12].

Before we formulate the introduction of a contour rule, we look at an example. In
Fig. 7, we examine how to introduce the contour with label C to d1, which contains
constant spiders. When we do so, each zone must split into two new zones, thus ensuring
that information is preserved. The habitats of the existential spiders are similarly altered.
More care must be taken with the constant spiders, however, due to the presence of ties.
Consider, for example, the constant spiders s and t . The individual represented by both
s and t must be either in C − (A ∪ B) or in U − (A ∪ B ∪ C). The constant spider u

represents an individual that is either in A − (B ∪ C) or (A ∩ C) − B . This gives rise to
four possibilities, shown in d2, d3, d4 and d5. We call these four diagrams the C-extensions
of d1. The diagram d1 is semantically equivalent to d2 ∨d3 ∨d4 ∨d5. We could replace d1
with the disjunction of just two unitary diagrams, each with u having a two zone habitat:
({A}, {B,C}) and ({A,C}, {B}). However, it is not the case that the single unitary diagram
d6 in Fig. 8 is semantically equivalent to d1. The constant spiders s and t must represent
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Fig. 7 A diagram with its C-extensions

Fig. 8 Introducing a contour:
an incorrect application

the same individual in d1 but this is not the case in d6, since the semantics of ties are zone
based.

To define this rule formally, we first define the component parts of the resulting dis-
junction. We call these component parts Li -extensions, where Li is the contour label
introduced.

Definition 4.1 Let d1 be a unitary diagram such that each constant spider in d1 has a
single zone habitat. Let Li be a contour label that is not in d1, that is Li ∈ CL − L(d1).
Let d2 be a unitary diagram such that each constant spider in d2 has a single zone habitat.
If the following conditions hold then d2 is an Li -extension of d1.

1. The contour labels of d2 are those of d1, together with Li : L(d2) = L(d1) ∪ {Li}.
2. The constant spider labels match: CS(d1) = CS(d2).
3. There exists a surjection, h : Z(d2) → Z(d1) defined by h(a, b) = (a −{Li}, b−{Li})

such that
(a) each zone in d1 is mapped to by two distinct zones in d2,
(b) each zone is shaded in d2 if and only if it maps to a shaded zone,
(c) the existential spiders match and their habitats are preserved under h: there exists

a bijection, σ : ES(d1) → ES(d2) that satisfies

∀e ∈ ES(d1) η
(
σ(e)

) = {
z ∈ Z(d2) : h(z) ∈ η(e)

}
,

and
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Fig. 9 An application of Rule 5, splitting spiders

(d) the habitat of each constant spider, c, in d2 satisfies h(θd2(c)) = θd1(c).
4. Spider webs are preserved. Since the constant spiders have a single zone habitat we

may formalize this as follows:

∀c1, c2 ∈ CS(d2)
(
ωd1(c1, c2) 	= ∅ ⇔ ωd2(c1, c2) 	= ∅)

.

We define EXT (Li, d1) to be the set of all Li -extensions of d1.

Rule 4 (Introduction of a contour label) Let d1 (	= ⊥) be a unitary diagram such that
each constant spider has a single zone habitat. Let Li ∈ CL− L(d1). Then d1 is logically
equivalent to the diagram

∨

d2∈EXT (Li ,d1)

d2.

Rule 5 (Splitting spiders) Let d be a unitary diagram with a spider s touching every zone
of two disjoint regions r1 and r2. Let d1 and d2 be unitary diagrams that are identical
to d except that neither contains s, but instead each contains an extra spider, s1 and s2
respectively, whose habitats are regions r1 in d1 and r2 in d2. If s is a constant spider,
then

1. s1 and s2 have the same label as s and
2. any ties joined to s in d are joined to the appropriate instance of s in d1 and d2.

Then d is logically equivalent to the diagram d1 ∨ d2.

Figure 9 illustrates an application of the splitting spiders rule. The spider s in d splits
into two spiders, one in d1, the other in d2. Intuitively, the individual represented by s is
either in the set U − (A ∪ B) or the set A ∪ B .

Rule 6 (Excluded middle) Let d be a unitary diagram with a completely non-shaded
region r . Let d1 and d2 be unitary diagrams that are the same as d except that d1 contains
an extra existential spider whose habitat is r and in d2 the region r is shaded. Then d is
logically equivalent to the diagram d1 ∨ d2.

For example, the diagram d in Fig. 10 can be replaced by d1 ∨ d2 by applying the
excluded middle rule.

Before we introduce the next rule, we look at an example, and then make a definition
that is key to formulating the rule itself. Given a unitary diagram, d , that has only non-
empty models (in which case d contains at least one spider), we can deduce that the
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Fig. 10 An application of Rule 6, excluded middle

Fig. 11 A unitary diagram with its t -extensions

individual represented by a constant spider label, t , belongs to one of the sets denoted by
the zones in d . Moreover, this individual must either be the same as, or different from, the
elements already represented in d .

As an example, consider d in Fig. 11 which has only non-empty models. Thus, in
any model for d the constant spider (label) t maps to some individual (technically, single
element set). Then t is in A−B , B −A or U − (A∪B). If t is in A−B then it must equal
s, since the region inside A is entirely shaded, shown in d1. If t is in the set B − A then it
may be either equal to or different from the element represented by the existential spider
in B in the diagram d ; these cases are represented by d2 and d3 respectively. Finally, if t

is not in A − B or B − A then, since A ∩ B = ∅, t must be in U − (A ∪ B), represented
by d4. The diagrams d1, d2, d3 and d4 are called t-extensions of d . A diagram in which
all spiders have a single zone habitat is called an α-diagram.

Definition 4.2 Let d1 be a unitary α-diagram such that S(d1) 	= ∅ and there exists si ∈
CS −CS(d1). Let d2 be a unitary α-diagram. If the following conditions are satisfied then
d2 is an si -extension of d1.

1. The zones match: Z(d1) = Z(d2).
2. The shaded zones match: Z∗(d1) = Z∗(d2).
3. The constant spiders match except that si is in d2: CS(d1) ∪ {si} = CS(d2).
4. The habitats of the existing constant spiders are preserved: θd1 = θd2 |CS(d1).
5. The existing webs are preserved: ωd1 = ωd2 |CS(d1)×CS(d1).



On the Completeness of Spider Diagrams Augmented with Constants 115

Fig. 12 Combining diagrams

6. If si has a shaded habitat, z, in d2 then either the number of existential spiders inhab-
iting z is one less than the number in d1 or si is joined to another (constant) spider by
a tie: if θd2(si) ⊆ Z∗(d2) then
(a) ∀sj ∈ CS(d1) ωd2(si , sj ) = ∅ ∧ ∃e ∈ ES(θd2(si), d1) ES(d2) = ES(d1) − {e} or
(b) ∃sj ∈ CS(d1) ωd2(si , sj ) 	= ∅ ∧ ES(d1) = ES(d2).

7. If si has a non-shaded habitat in d2 then either the number of existential spiders in-
habiting z is the same as, or one less than the number in d1 or si is joined to an-
other (constant) spider by a tie and the number of existential spiders is the same: if
θd2(si) ∩ Z∗(d2) = ∅ then
(a) ∀sj ∈ CS(d1) ωd2(si , sj ) = ∅ ∧ (ES(d1) = ES(d2) ∨ ∃e ∈ ES(θd2(si), d1)

ES(d2) = ES(d1) − {e}) or
(b) ∃sj ∈ CS(d1) ωd2(si , sj ) 	= ∅ ∧ ES(d1) = ES(d3).

We define EXT (si , d1) to be the set of all si -extensions of d1.

Rule 7 (Introduction of a constant spider) Let d1 be a unitary α-diagram such that
S(d1) 	= ∅ and there exists si ∈ CS − CS(d1). Then d1 is logically equivalent to the dia-
gram

∨

d2∈EXT (si ,d1)

d2.

Introducing the constant spider t to d in Fig. 11, results in d1 ∨ d2 ∨ d3 ∨ d4.
The final rule in this section, called combining, replaces two unitary α-diagrams, with

the same zone sets and constant spider label sets, taken in conjunction by a single unitary
diagram, illustrated in Fig. 12. We combine d1 ∧ d2 to give d∗. Any shading in either d1
or d2 occurs in d∗. Moreover, the number of spiders in any zone in d∗ is the same as the
maximum number that occur in that zone in d1 or d2. The diagram d1 ∧d2 is semantically
equivalent to d∗.

We now give a further example in a build-up to the definition of the combining rule.
In Fig. 13, d1 and d2 contain contradictory information. We observe the following.

1. The zone z1 = ({A}, {B,C}) is shaded in d1 and contains more spiders in d2. More-
over, z1 represents the empty set in any model for d1. In any model for d2, z1 does not
represent the empty set.

2. The constant spider u has different habitats in the two diagrams. In any model for d1,
u represents an individual that is not in the set A∪C. In any model for d2, u represents
an individual in the set C.
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Fig. 13 An unsatisfiable diagram

3. The constant spiders s and t are joined by a tie in d1 but not in d2. In any model for d1,
s and t represent the same individual, but in any model for d2 they represent distinct
individuals.

From any one of these three observations we can deduce that d1 ∧ d2 is unsatisfiable.

Definition 4.3 Let d0 and d1 be unitary α-diagrams. Then d0 and d1 are comparable if
one of the following three conditions holds.

1. Z(d0) = Z(d1) and CS(d0) = CS(d1).
2. Z(d0) = Z(d1).
3. for one of the dis where i ∈ {0,1}, Z∗(di) = Z(di) and S(di) = ∅.
4. d0 =⊥ or d1 =⊥.

Recall that S({z}, d) = {s ∈ S(d) : η(s) = {z}}.

Definition 4.4 Let d0 and d1 be comparable unitary α-diagrams. Then d0 and d1 are in
contradiction if one of the following four conditions holds.

(i) Either d0 =⊥ or d1 =⊥.
(ii) There is a zone that is shaded in one diagram and contains more spiders in the other.

More formally, there exists z ∈ Z(di) for some i = 0,1 such that z ∈ Z∗(dj ) and
|S({z}, di)| > |S({z}, dj )| where j = 1 − i.

(iii) There is a constant spider with different habitats in d0 and d1. More formally,
θd0 	= θd1 .

(iv) There are two constant spiders that are joined by a tie in one diagram but not the
other. More formally, ωd0 	= ωd1 .

It may be helpful to note that if d0 and d1 are comparable and not in contradiction then
ω(d0) = ω(d1).

Lemma 4.5 Let d0 and d1 be comparable unitary α-diagrams. Then d0 and d1 are in
contradiction if and only if d0 ∧ d1 is unsatisfiable.

Definition 4.6 Let d0 and d1 be comparable unitary α-diagrams. Then their combination,
denoted d∗ = d0 ∗ d1, is a unitary α-diagram defined as follows.

1. If d0 and d1 are in contradiction then d0 ∗ d1 =⊥.
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2. Otherwise d∗ = d0 ∗ d1 is a unitary α-diagram such that the following hold.
(a) The set of zones in the combined diagram is the same as the set of zones in the

original diagrams: Z(d∗) = Z(d0).
(b) The shaded zones in d∗ = d0 ∗ d1 are those that are shaded in at least one of the

original diagrams: Z∗(d∗) = Z∗(d0) ∪ Z∗(d1).
(c) The number of existential spiders in any zone in the combined diagram is the max-

imum number of existential spiders inhabiting that zone in the original diagrams:

∀z ∈ Z
(
d∗) ES

({z}, d∗) = ES
({z}, d0

) ∪ ES
({z}, d1

)
.

Equivalently, ES(d∗) = ES(d0) ∪ ES(d1).
(d) The constant spiders in the combined diagram are the same as those in the original

diagrams: CS(d∗) = CS(d0).
(e) The habitats of the constant spiders in the combined diagram are the same as those

in the original diagrams: θd∗ = θd0 .
(f) The webs of the constant spiders in the combined diagram are the same as those in

the original diagrams: ω(d∗) = ω(d0).

Rule 8 (Combining) Let d0 and d1 be comparable unitary α-diagrams. Then d0 ∧ d1 is
logically equivalent to d0 ∗ d1.

4.3 Logic Reasoning Rules

We now introduce a collection of rules, all of which have (obvious) analogies in symbolic
logic. The next rule is analogous to P � P ∨ Q, for any propositions P,Q.

Rule 9 (Connecting a diagram) Let D1 and D2 be spider diagrams. Then D1 logically
entails D1 ∨ D2.

Rule 10 (Inconsistency) The diagram ⊥ logically entails any diagram.

Rule 11 (∨-Idempotency) Any spider diagram D is logically equivalent to D ∨ D.

Rule 12 (∧-Idempotency) Any spider diagram D is logically equivalent to D ∧ D.

Rule 13 (∨-Commutativity) Let D1 and D2 be spider diagrams. Then D1 ∨D2 is logically
equivalent to D2 ∨ D1.

Rule 14 (∧-Commutativity) Let D1 and D2 be spider diagrams. Then D1 ∧D2 is logically
equivalent to D2 ∧ D1.

Rule 15 (∨-Associativity) Let D1, D2 and D3 be spider diagrams. Then D1 ∨ (D2 ∨D3)

is logically equivalent to (D1 ∨ D2) ∨ D3.

Rule 16 (∧-Associativity) Let D1, D2 and D3 be spider diagrams. Then D1 ∧ (D2 ∧D3)

is logically equivalent to (D1 ∧ D2) ∧ D3.
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Rule 17 (∨-Distributivity) Let D1, D2 and D3 be spider diagrams. Then D1 ∨ (D2 ∧D3)

is logically equivalent to (D1 ∨ D2) ∧ (D1 ∨ D3).

Rule 18 (∧-Distributivity) Let D1, D2 and D3 be spider diagrams. Then D1 ∧ (D2 ∨D3)

is logically equivalent to (D1 ∧ D2) ∨ (D1 ∧ D3).

Rule 19 (∨-Simplification) Let D1, D2 and D3 be spider diagrams. If diagram D2 can
be transformed into diagram D3 by one of reasoning rules then D1 ∨ D2 logically entails
D1 ∨ D3.

Rule 20 (∧-Simplification) Let D1, D2 and D3 be spider diagrams. If diagram D2 can be
transformed into diagram D3 by one of the reasoning rules then D1 ∧D2 logically entails
D1 ∧ D3.

4.4 Obtainability

To conclude this section on reasoning rules we define obtainability.

Definition 4.7 Let D1 and D2 be two spider diagrams with constants. Diagram D2 is
obtainable from D1, denoted D1 � D2, if and only if there is a sequence of diagrams
〈D1,D2, . . . ,Dm〉 such that D1 = D1, Dm = D2 and Dk+1 can be obtained from Dk

(where 1 ≤ k < m) by applying a reasoning rule. If D1 � D2 and D2 � D2, we write
D1 ≡� D2.

5 Soundness

In this section we show the soundness of the logic of spider diagrams with constants
introduced in Sect. 4.

To prove that the system is sound, the strategy is to start by showing that each of the
reasoning rules is sound. We show that the introduction of a constant spider rule is sound
as an illustration but omit the remaining proofs. The soundness theorem then follows by
a simple induction argument.

Lemma 5.1 Rule 7 (introduction of a constant spider) is sound. Let d1 be unitary α-
diagram such that S(d1) 	= ∅ and there exists si ∈ CS − CS(d1). Then

d1 ≡�
∨

d2∈EXT (si ,d1)

d2.

Proof Let m = (U,Ψ ) be an interpretation. Assume that m |= d1. We will show that m |=
d2, for some d2 ∈ EXT (si , d1). Let Ψ1 : R∪ CS ∪ ES(d1) → PU be a valid extension to
existential spiders for d1. Using d1 and Ψ1, we define a diagram, d2, as follows.

1. The zones match: Z(d1) = Z(d2).
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2. The shaded zones match: Z∗(d1) = Z∗(d2).
3. The constant spiders in d1 are in d2 and, additionally, d2 contains si : CS(d1) ∪ {si} =

CS(d2).
4. The habitats of the constant spiders match and the habitat of si in d2 is determined

by Ψ1:

θd1 = θd2 |CS(d1)

and

θd2(si) = {z}
where z is the unique zone in Z(d1) such that Ψ (si) ⊆ Ψ (z). Such a zone exists be-
cause the plane tiling condition holds for d1.

5. The existing webs in d1 are preserved in d2: ωd1 = ωd2 |CS(d1)×CS(d1).
6. We now consider three cases in order to define the existential spiders (and their habi-

tats) and the remaining webs of d2.
(a) There is an existential spider, s, in d1 such that Ψ1(s) = Ψ (si). In this case, we

choose en({η(s)}), where (n, η(s)) ∈ ESD(d1), and we define ES(d2) = ES(d1)−
{en(η(s))}. For the remaining webs, we define, for all sj ∈ CS(d1), ωd2(si , sj ) =
∅. We note, by the spiders condition for d1, θd2(si) = η(s).

(b) There is a constant spider, c, in d1 such that Ψ (c) = Ψ (si). In this case, ES(d1) =
ES(d2), and, for the remaining webs, we start by defining ωd2(si , c) = θd1(c);
since d1 is an α-diagram, θd1(c) is a single zone. It follows that si is also joined
by a tie to all the constant spiders that are joined to c in d1 and, by (5) above and
the transitivity of ties, not joined by a tie to any other constant spiders. We note,
by the spiders condition for d1, θd2(si) = θd1(c).

(c) No spider, s, in S(d1) satisfies Ψ1(s) = Ψ (si). In this case, we have ES(d1) =
ES(d2) and for all c ∈ CS(d1), ωd2(si , c) = ∅.

It is straightforward to verify that d2 is an si -extension of d1.
We now show that m |= d2. Clearly, the plane tiling condition holds for d2, since

Z(d1) = Z(d2). If case 6(a) holds then we suppose, without loss of generality, that
s = en(η(s)). If either case 6(b) or 6(c) holds then no supposition is necessary. We define
an extension of Ψ to the existential spiders in d2 by Ψ2 = Ψ1|R∪CS∪ES(d2). The function
Ψ2 is a valid extension of Ψ to existential spiders for d2. Hence m |= d2, and it follows
that

d1 �
∨

d2∈EXT (si ,d1)

d2.

For the converse, it can be shown that each d2 ∈ EXT (si , d1) satisfies d2 � d1. Assum-
ing that m |= d2, the proof strategy is to take a valid extension of Ψ to existential spiders
for d2 and use this to construct a valid extension of Ψ to existential spiders for d1. Thus,

∨

d2∈EXT (si ,d1)

d2 � d1.

Hence
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d1 ≡�
∨

d2∈EXT (si ,d1)

d2,

that is, Rule 7 (introduction of a constant spider) is sound. �

Theorem 5.2 (Soundness) Let D1 and D2 be spider diagrams. If D1 � D2 then D1 �D2.

Proof The proof is by induction on the length, n, of a sequence establishing D1 � D2,
since each individual step can be shown to be sound along the lines of the proof of
Lemma 5.1 above. �

6 Completeness and Decidability

In this section we show the completeness and decidability of the logic of spider diagrams
with constants introduced in Sect. 4. We begin with an informal overview, before giving
details of the various stages of the proof.

6.1 Overview

The completeness proof strategy for spider diagrams without constants given in [12] ex-
tends to the more general case here. The extended strategy, outlined in Fig. 14, is as
follows. Suppose that D1 � D2. The aim is to transform D1 and D2 into disjunctions
of unitary α-diagrams using reversible rules (i.e. those which are logical equivalences)
where, roughly speaking, each unitary part has some specified contour label set and con-
stant spider label set.

Firstly, we split the constant spiders in D1 and D2 until, in each unitary part, all the
constant spiders have a single zone habitat, giving DS

1 and DS
2 respectively. This al-

lows us to add contours to the unitary parts in both DS
1 and DS

2 using the reversible
Rule 4 (introduction of a contour label), until each (non-false) unitary part has the same
contour label set, L. This gives DL

1 and DL
2 respectively. For the next step, zones are

introduced to each unitary part until all (non-false) unitary parts have the same zone
set, Z. This is done using the reversible Rule 1 (introduction of a shaded zone) and
yields DZ

1 and DZ
2 respectively. Now we obtain α-diagrams using the reversible Rule 5

(splitting spiders), yielding Dα
1 and Dα

2 respectively. The formalization of the diagrams
DL

i , DZ
i and Dα

i readily generalize those given in [12] for spider diagrams without con-
stants.

We wish to introduce constant spiders to each side until each unitary part has the same
constant spider label set. However, we can only introduce constant spiders when our di-
agrams contain at least one spider (ensuring non-empty models). Thus the next step we
take is to apply the excluded middle rule to both sides until all the (non-false) unitary
parts are either entirely shaded or contain at least one spider. The reversible Rule 7 (in-
troduction of a constant spider) is then applied, introducing constant spiders to all unitary
parts that contain a spider, until all such unitary parts have some specified constant spider
label set, C. This gives DC

1 and DC
2 respectively.
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Fig. 14 The completeness
proof strategy

We now apply Rule 8 (combining) to remove all the conjuncts, giving two disjunc-
tions of unitary α-diagrams, D∗

1 and D∗
2 . We call D∗

1 (D∗
2 ) the disjunctified diagram

associated with D1 (D2) given D2 (D1). All of the unitary parts of D∗
1 and D∗

2 are
either

1. ⊥,
2. have zone set Z and are entirely shaded and contain no spiders, or
3. have zone set Z and constant spider label set C.

Note that D1 ≡� D∗
1 and D2 ≡� D∗

2 , since all the rules applied so far are reversible. The
diagram D∗

i is a normal form that reflects the semantics of Di clearly. We now apply
the excluded middle rule to D∗

1 until there are sufficiently many existential spiders and
there is enough shading to ensure that each unitary part on the left hand side syntactically
entails a unitary part of D∗

2 .
The details of the proof are given in the following sections. The major differences be-

tween the completeness proof strategy here and that for spider diagrams without constants
are the addition of the first step (splitting the constant spiders), with knock on changes to
details of the other steps, and the insertion of an extra stage between splitting existential
spiders and combining diagrams. In addition, we note that the details of the proofs are
more complex.
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Fig. 15 Completeness for
unitary α-diagrams

Fig. 16 Completeness for
unitary α-diagrams

6.2 Completeness for Unitary α-Diagrams

We show that if d1 � d2, where d1 and d2 are unitary α-diagrams with some fixed zone
set and constant spider label set, then we can erase existential spiders and shading from
d1 to give d2.

Example The diagrams d1 and d2 in Fig. 15 satisfy the following.

(a) Every shaded zone in d2 is shaded in d1 and contains the same number of existential
spiders in both diagrams.

(b) Every zone in d2 contains the same number or fewer existential spiders than in d1.
(c) The constant spiders habitats match, as do their webs.

Under these conditions, the diagram d2 can be obtained from d1 by applying Rule 2
(erasure of shading), and Rule 3 (erasure of an existential spider) can then be used to
give d3. The properties (a), (b) and (c) above relate to properties 3(a), 3(b) and 3(c) in
Theorem 6.1.

Example The diagram d2 in Fig. 16 cannot be obtained from d1 for three reasons.

(a) The zone ({A}, {B,C}) is shaded in d2 but not shaded in d1. There is a model for d1
that will cause the shading condition for d2 to fail whenever the spiders condition for
d2 holds.

(b) The zone ({C}, {A,B}) contains a two existential spiders in d2 but only a single ex-
istential spider in d1. Again we can deduce that there is a model for d1 that does
not satisfy d2. For example, at least one model, m = (U,Ψ ) for d1 ensures that
|Ψ ({C}, {A,B})| = 1. In the interpretation m, it cannot be that case that both the
spiders condition and the existential spiders condition hold for d2.
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(c) The constant spiders t and u have the same habitat in both diagrams, but different
webs. In any model for d1, t and u represent the same individual, but in any model
for d2 they represent distinct individuals.

From any one of the above observations we can deduce that d1 	� d2.

The following theorem gives syntactic conditions on unitary α-diagrams equivalent to
semantic and syntactic entailment. The theorem forms the heart of the proof of complete-
ness and is modified from the corresponding result in [12] to take account of the fact the
our spider diagrams now include constant spiders.

Theorem 6.1 Let d1 (	=⊥) and d2 (	=⊥) be two unitary α-diagrams. If Z(d1) = Z(d2)

and CS(d1) = CS(d2) then the following three statements are equivalent:

1. d1 � d2.
2. d1 � d2.
3. (a) every zone that is shaded in d2 is shaded in d1 and contains the same number of

existential spiders in both diagrams:

Z∗(d2) ⊆ Z∗(d1) ∧ ∀z ∈ Z∗(d2) ES
({z}, d2

) = ES
({z}, d1

)
,

(b) every zone in d2 contains at most the same number of existential spiders as in d1:

∀z ∈ Z(d2) ES
({z}, d2

) ⊆ ES
({z}, d1

)
,

and
(c) the constant spiders have the same habitats and the same webs in both diagrams:

θd1 = θd2 and ωd1 = ωd2 .

Proof By soundness, d1 � d2 ⇒ d1 � d2.
We now show that 2 (i.e., d1 � d2) implies 3. Suppose that d1 � d2 and let m = (U,Ψ )

be a standard model for d1. We define, for each existential spider, e1, in d1, Ψ1(e) = {e}
and the mapping Ψ1 yields a valid extension to existential spiders for d1. Since d1 � d2,
m is a model for d2. Let Ψ2 : R∪ CS ∪ ES(d2) → PU be a valid extension to existential
spiders for d2. We will show that Ψ2 induces an injective, habitat preserving map σ :
ES(d2) → ES(d1). Now, Ψ2 ensures that the spiders condition holds for d2. Therefore,
for each existential spider, e2, in d2, there exists an existential spider, e1, in d1 such that
Ψ2(e2) = {e1} (each constant spider, si , in d2 maps to [si]). Define σ by

σ(e2) ∈ Ψ2(e2).

By the spiders condition for d1,

{
σ(e2)

} = Ψ1
(
σ(e2)

) ⊆ Ψ
(
η
(
σ(e2)

))

and, by the spiders condition for d2,

{
σ(e2)

} = Ψ2(e2) ⊆ Ψ
(
η(e2)

)
.
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We deduce that, since distinct zones in d1 represent disjoint sets,

η
(
σ(e2)

) = η(e2).

Therefore σ is habitat preserving. We now show that σ is injective. Suppose that σ(e2) =
σ(e3) for some e3 ∈ ES(d2). Then Ψ2(e2) = Ψ2(e3), which implies, by the existential
spiders condition for d2, e2 = e3. Hence σ is injective. We deduce that 3(b) holds. It can
also be shown that, for all z ∈ Z∗(d2),

ES
({z}, d2

) = ES
({z}, d1

)
.

Moreover, it is obvious that d1 � d2 implies Z∗(d2) ⊆ Z∗(d1). Thus 3(a) holds.
We now consider 3(c). The spiders condition for d1 states, in part,

∀si ∈ CS(d1) Ψ (si) ⊆ Ψ
(
θd1(si)

)
.

Since CS(d1) = CS(d2), we deduce that

∀si ∈ CS(d2) Ψ (si) ⊆ Ψ
(
θd1(si)

)
. (1)

The spiders condition for d2 states, in part,

∀si ∈ CS(d2) Ψ (si) ⊆ Ψ
(
θd2(si)

)
. (2)

Since distinct zones in d1 represent disjoint sets, it follows from (1) and (2) that

∀si ∈ CS(d2) θd1(si) = θd2(si).

Hence θd1 = θd2 . Suppose that constant spiders si and sj are joined by a tie in d1. That is,

ωd1(si , sj ) = θd1(si).

Then Ψ (si) = Ψ (sj ), by the constant spiders condition for d1. By the constant spiders
condition for d2,

∃z ∈ ωd2(si , sj ) Ψ (si) = Ψ (sj ).

Therefore, si and sj are joined by a tie in d2. That is,

ωd2(si , sj ) = θd2(si) = θd1(si).

Alternatively, suppose that spiders si and sj are not joined by a tie in d1. That is,

ωd1(si , sj ) = ∅.

Then Ψ (si) 	= Ψ (sj ) so it cannot be that si and sj are joined by a tie in d2. That is,

ωd2(si , sj ) = ∅.

Hence ωd1 = ωd2 . Thus 3(c) holds.
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Fig. 17 An α-diagram and
an extended diagram

Finally to show that 3 implies 1, it can be shown that shading and existential spiders
can be deleted from d1, using Rules 2 and 3 respectively, to give d2. Hence all three
statements are equivalent. �

6.3 Extended Diagrams

Example In Fig. 17, the diagram D is a semantic consequence of d but no unitary com-
ponent of D is semantically entailed by d ; that is d 	� d1, d 	� d2 and d 	� d3. The dia-
gram ext(d,D) can be obtained from d (and vice versa) by applying Rules 6 (excluded
middle) and 19 (∨-simplification). The spiders and shading introduced to d to obtain
ext(d,D) are determined by D. For example, consider the outside zone (∅, {A}). In
d3, this zone is shaded and contains two existential spiders and no other unitary com-
ponent of D contains more than two existential spiders in this zone. In ext(d,D), this
zone contains either one, two or three existential spiders in any unitary component.
The process of constructing ext(d,D) will be described in Definitions 6.2 and 6.3 be-
low.

Note that we have

d ′
1 � d1, d ′

2 � d2, d ′
3 � d1, d ′

4 � d1, d ′
5 � d2, and d ′

6 � d2
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so, for each unitary component d ′
i of ext(d,D), there exists a unitary component dj of D

such that d ′
i � dj . In fact,

d ′
1 ∨ d ′

3 ∨ d ′
4 � d1 and d ′

2 ∨ d ′
5 ∨ d ′

6 � d2.

Therefore

ext(d,D) = d ′
1 ∨ d ′

3 ∨ d ′
4 ∨ d ′

2 ∨ d ′
5 ∨ d ′

6 � d1 ∨ d2.

By Rule 9 (connecting a diagram) d1 ∨ d2 � D and by transitivity ext(d,D) � D. There-
fore d � D, since d ≡� ext(d,D).

In general, the diagram ext(d,D) will be constructed by taking copies of d and adding
shading and existential spiders, as specified below. The unitary components of ext(d,D)

are called extended unitary components associated with d , which we now define. Firstly,
we define comp(D) to be the set of all the unitary parts of D.

Definition 6.2 Let d (	=⊥) be a unitary α-diagram and D be an α-diagram. Then, given
D, a unitary α-diagram ed is an extended unitary component associated with d , de-
noted d �D

e
ed , if and only if the following seven conditions are satisfied.

1. The diagrams d and ed have the same zones: Z(d) = Z(ed).
2. All shading in d occurs in ed : Z∗(d) ⊆ Z∗(ed).
3. All existential spiders in d occur in ed : ES(d) ⊆ ES(ed).
4. If zone z is shaded in d then the existential spiders match in d and ed : ∀z ∈ Z∗(d)

ES({z}, d) = ES({z}, ed).
5. If zone z is not shaded in d but is shaded in some unitary component of D and the

number, m say, of existential spiders that z contains in d is at most the number that z

contains in any unitary component of D in which z is shaded then
(a) if z is shaded in ed then z contains at most m spiders in ed ; and
(b) if z is not shaded in ed then z contains m + 1 spiders in ed .
More formally:

∀z ∈ Z(d) − Z∗(d)
((

z ∈
⋃

di∈comp(D)

Z∗(di) ∧ ES
({z}, d) ⊆

⋃

di∈comp(D)
z∈Z∗(di )

ES
({z}, di

))

⇒
((

z ∈ Z∗(ed
) ∧ ES

({z}, ed
) ⊆

⋃

di∈comp(D)
z∈Z∗(di )

ES
({z}, di

))

∨
(

z ∈ Z
(
ed

) − Z∗(ed
) ∧ ∣∣ES

({z}, ed
)∣∣ =

∣∣∣∣
⋃

di∈comp(D)
z∈Z∗(di )

ES
({z}, di

)
∣∣∣∣ + 1

)))

.

6. If a non-shaded zone z in d is not shaded in any unitary component of D or z contains
more spiders in d than any shaded occurrence of z in D then z is not shaded in ed and
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z contains the same number of spiders in ed as in d . More formally:

∀z ∈ Z(d) − Z∗(d)
(

z /∈
⋃

di∈comp(D)

Z∗(di) ∨ ES
({z}, d) ⊃

⋃

di∈comp(D)
z∈Z∗(di )

ES
({z}, di

))

⇒ (
z ∈ Z

(
ed

) − Z∗(ed
) ∧ ES

({z}, ed
) = S

({z}, d))
.

7. The constant spiders and their webs match: CS(d1) = CS(d2), θd1 = θd2 and
ωd1 = ωd2 .

If d =⊥ then the extended unitary component associated with d is ⊥.

Definition 6.3 Let d be a unitary α-diagram and let D be a disjunction of unitary α-
diagrams such that d is comparable to each di ∈ comp(D). Given D, let Dd

e be the set of
all extended unitary components associated with d

Dd
e = {

d ′ ∈ D0 : d �D
e d ′}.

Then the diagram

ext(d,D) =
∨

d ′∈Dd
e

d ′

is the extended diagram associated with d in the context of D.

Example In Fig. 17, each d ′
i (i = 1, . . . ,6) is an extended unitary component associated

with d , given D. Indeed, all such extended components ed are present, so ext(d,D) is the
extended diagram associated with d in the context of D.

Theorem 6.4 Let d be a unitary α-diagram and let D be a disjunction of unitary α-
diagrams such that d is comparable to each di ∈ comp(D). Then d is syntactically equiv-
alent to ext(d,D), the extended diagram associated with d in the context of D:

d ≡� ext(d,D).

Sketch of proof Follows by repeated application of Rules 6 (excluded middle) and 19
(∨-simplification) to d in the case where d 	=⊥. When d =⊥ the result follows immedi-
ately. �

6.4 The Completeness Theorem

The next result is the final prerequisite to our proof of completeness.

Theorem 6.5 Let d (	=⊥) be a unitary α-diagram such that S(d) 	= ∅. Let D be a dis-
junction of unitary α-diagrams such that d is comparable to each di ∈ comp(D). Given D,
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let ed ∈ Dd
e . If ed � D then there exists a unitary component of D, say di , such that

ed � di :
ed � D ⇒ ∃di ∈ comp(D) ed � di.

Proof The proof is by contradiction. Assume ed � D but there is no di ∈ comp(D) for
which ed � di . We will show that a standard model, m = (U,Ψ ), for ed does not satisfy
D, giving the contradiction we seek. The interpretation m does not satisfy D if and only
if m does not satisfy any unitary part, di , of D. There are three types of di to consider.

1. di =⊥. Clearly m does not satisfy ⊥.
2. Z(d) = Z(di) and Z∗(di) = Z(di) and S(di) = ∅. Since d contains at least one spider,

so too does ed . Therefore U 	= ∅. But di has only one model: the empty model (that is,
U = ∅). Therefore m does not satisfy di .

3. Z(d) = Z(di) and CS(di) = CS(d) and S(di) 	= ∅. Firstly, suppose that m satisfies di

and we will reach a contradiction, thus completing the proof that m does not satisfy
any unitary part of D. Since m satisfies di , it must be that m |= ed ∧ di , so ed and di

are not in contradiction. We immediately deduce, by Lemma 4.5, that the following
conditions do not hold.

(a1) There is a zone that is shaded in one diagram and contains more spiders in the
other diagram. More formally, either

∃z ∈ Z∗(ed
) ∣∣S

({z}, di

)∣∣ >
∣∣S

({z}, ed
)∣∣

or

∃z ∈ Z∗(di)
∣∣S

({z}, ed
)∣∣ >

∣∣S
({z}, di

)∣∣.

(b1) There are two constant spiders that are joined by a tie in one diagram but not the
other. More formally, ωdi

	= ωed .

Since (b1) does not hold, we deduce that

ωdi
= ωed . (3)

Since (a1) does not hold, we deduce that

∀z ∈ Z∗(di)
∣∣S

({z}, ed
)∣∣ ≤ ∣∣S

({z}, di

)∣∣.

Since m |= di , and the fact that di is an α-diagram, for all z ∈ Z∗(di),
∣∣Ψ (z)

∣∣ = ∣∣ES
({z}, di

)∣∣ + ∣∣ConS(z, di)
∣∣. (4)

Moreover, if z is not shaded in ed , then, by the construction of ext(d,D), z contains
more existential spiders in ed than in di :

∣∣ES
({z}, ed

)∣∣ >
∣∣ES

({z}, di

)∣∣.

So,
∣∣Ψ (z)

∣∣ ≥ ∣∣ES
({z}, ed

)∣∣ + ∣∣ConS
(
z, ed

)∣∣

= ∣∣ES
({z}, ed

)∣∣ + ∣∣ConS(z, di)
∣∣ since ωd1 = ωed
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>
∣∣ES

({z}, di

)∣∣ + ∣∣ConS(z, di)
∣∣.

This contradicts (4). Therefore, it must be that z is shaded in ed . Furthermore, it can
be shown that |ES({z}, ed)| = |ES({z}, di)|. Hence

∀z ∈ Z∗(di) z ∈ Z∗(ed
) ∧ ES

({z}, di

) = ES
({z}, ed

)
. (5)

Since ed 	� di , by Theorem 6.1 one of the following three conditions holds.

(a2) ∃z ∈ Z∗(di) z /∈ Z∗(ed) ∨ ES({z}, di) 	= ES({z}, ed).
(b2) ∃z ∈ Z(di) ES({z}, ed) ⊂ ES({z}, di).
(c2) ∃si , sj ∈ CS(d1) ωd1(si , sj ) 	= ωd2(si , sj ).

We now consider each of these three possibilities (a2), (b2) and (c2) in turn. Firstly,
(a2) contradicts (5) above, so does not hold. Secondly, (c2) contradicts (3) above, so
does not hold. Finally we consider (b2). In the model m for ed we have,

∣∣Ψ (z)
∣∣ = ∣∣ES

({z}, ed
)∣∣ + ∣∣ConS

(
z, ed

)∣∣.

Now, because m is a model for di we have
∣∣Ψ (z)

∣∣ ≥ ∣∣ES
({z}, di

)∣∣ + ∣∣ConS(z, di)
∣∣

from which we deduce that
∣∣ES

({z}, ed
)∣∣ + ∣∣ConS

(
z, ed

)∣∣ ≥ ∣∣ES
({z}, di

)∣∣ + ∣∣ConS(z, di)
∣∣.

Therefore, since ωdi
= ωed ,

∣∣ES
({z}, ed

)∣∣ ≥ ∣∣ES
({z}, di

)∣∣.

Thus

∀z ∈ Z(di) ES
({z}, di

) ⊆ ES
({z}, ed

)
,

which contradicts (b2). Thus in any of the three cases, m does not satisfy di .

It follows that the interpretation, m, does not satisfy any unitary part of D. Therefore m

does not satisfy D giving a contradiction. Hence if ed � D then there exists a unitary
component of D, say di , such that ed � di :

ed �D ⇒ ∃di ∈ comp(D) ed � di . �

Theorem 6.6 (Completeness) Let D1 and D2 be spider diagrams with constants. Then
D1 �D2 implies D1 � D2.

Proof Suppose that D1 � D2. Let D∗
1 be the disjunctified diagram associated with D1

given D2. Let D∗
2 be the disjunctified diagram associated with D2 given D1. To recap, the

diagrams D∗
1 and D∗

2 both have the following properties:

1. they are disjunctions of unitary α-diagrams, and
2. there exists a set of zones Z and a set of constant spider labels C such that each unitary

part, di satisfies
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(a) di =⊥,
(b) Z(di) = Z and Z∗(di) = Z(di) and S(di) = ∅, or
(c) Z(di) = Z and C(di) = C and S(di) 	= ∅.

For each unitary part, d1 of D∗
1 obtain the diagram ext(d1,D

∗
2). Since D1 ≡� D∗

1 ,
D2 ≡� D∗

2 and D1 � D2 it follows that d1 �D2. Therefore, ext(d1,D
∗
2) � D∗

2 . Thus, each
unitary part, ed1 of ext(d1,D

∗
2) satisfies ed1 � D∗

2 . By Theorem 6.5, ed1 � d2, for some
d2 ∈ comp(D∗

2). We now consider three possibilities for d1.

1. d1 =⊥. In this case, d1 = ed and it is trivial that d1 � d2.
2. Z(d1) = Z and Z∗(d1) = Z(d1) and S(d1) = ∅. In this case, d1 = ed . Since ed � D∗

2 ,
it must be the case that some unitary part, d2 say, of D∗

2 has an empty model. In which
case, d2 does not contain any spiders and so, by the construction of D∗

2 , is entirely
shaded. Thus d2 = ed and it is trivial that ed � d2.

3. Z(d1) = Z and C(d1) = C and S(d1) 	= ∅. In this case, ed � d2 by Theorem 6.1.

In each case, we have shown that ed � d2 and we deduce that ed � D∗
2 , by Rule 9 (connect-

ing a diagram). It follows that ext(d1,D
∗
2) � D∗

2 . By transitivity, d1 � D2. Using Rule 19
(∨-simplification), D∗

1 � D∗
2 . Thus D∗

1 � D2. By transitivity, D1 � D2. Hence the system
is complete. �

6.5 Decidability

The proof of completeness provides an algorithmic method for constructing a proof that
D1 � D2 whenever D1 � D2. It is simple to adapt this algorithm to determine, for any D1
and D2, whether D1 � D2.

Theorem 6.7 (Decidability) There exists an algorithm that determines whether, for any
spider diagrams D1 and D2, D1 � D2.

7 Implementation

We have seen that equality between spider diagrams including constants is decidable, and
so it is possible to build computer-based tools that will be able to check decidability, but
also which can construct equality proofs when they exist, whether automatically or with
user guidance. In this short section we discuss the state of the art in implementing tools
for this and other purposes.

The development of tools to support diagrammatic reasoning is well underway, and
recent advances provide a basis for automated support for spider diagrams with constants.
Such tools require varied functionality and the research challenges can be viewed as more
broad than for symbolic logics. There are at least two major differences: first, it is more
difficult to parse a 2D diagram than a 1D symbolic sentence; more significantly, when
automatically generating proofs, the diagrams must be laid out in order for the user to
read the proof. In respect of the second difference, possibly the hardest aspect of spider
diagram layout is in the initial generation of the underlying Euler diagram. There have
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been many recent efforts in this regard, including [1, 5, 15, 19, 26]. Spiders can be auto-
matically added later, as demonstrated in [17].

In terms of automated reasoning, this has been investigated for unitary Euler dia-
grams [24] and, to some extent, for spider diagrams, for example [7]. The approaches
used rely on a heuristic search, guided by a function that provides a lower bound on
proof length. Roughly speaking, the better this lower bound, the more efficiently the
theorem prover finds proofs. It has been possible to produce better proof search tech-
niques for reasoning with unitary spider diagrams [7] than for compound diagrams [6].
As was demonstrated in [25], the translation of a unitary spider diagram with constants
results in (except in trivial cases), a compound diagram. So, it is highly likely to be ben-
eficial, from an automated reasoning perspective, to develop theorem provers for spider
diagrams with constants using the rules presented in this paper rather than use trans-
lations and subsequently employ theorem provers for spider diagrams. An Euler dia-
gram theorem prover, called EDITH, is freely available for download from http://www.
cmis.brighton.ac.uk/research/vmg/autoreas.htm. We note that the main goals of auto-
mated reasoning in diagrammatic systems need not include outperforming symbolic the-
orem provers in terms of speed; of paramount importance is the production of proofs that
are accessible to the reader and it may be that this readability constraint has a big impact
on the time taken to find a proof.

8 Conclusion

We have provided formal syntax and semantics for the language of spider diagrams with
constants and presented a set of reasoning rules for this language. We have shown that the
resulting system is sound, complete and decidable. Although the inclusion of constant spi-
ders does not increase expressive power, we believe that if one wishes to make statements
about specific individuals then it is natural to do so using constants explicitly. Thus aug-
menting with constants, although it brings no expressiveness benefits, is likely to increase
the usability of the notation. With the reasoning rules developed in this paper, users can
reason with the language when constants are included. Such reasoning systems provide
an essential basis for permitting diagrams to be used for mathematical formalization and
reasoning.

In the future, we plan to investigate the use of constants in notations that extend spider
diagrams. These include constraint diagrams [14] and their generalizations [22]. Recent
research has begun to develop a variation of constraint diagrams that is suitable for spec-
ifying and reasoning about ontologies [13, 18].
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A Practice-Based Approach to Diagrams

Valeria Giardino

Abstract In this article, I propose an operational framework for diagrams. According
to this framework, diagrams do not work like sentences, because we do not apply a set
of explicit and linguistic rules in order to use them. Rather, we become able to manipu-
late diagrams in meaningful ways once we are familiar with some specific practice, and
therefore we engage ourselves in a form of reasoning that is stable because it is shared.
This reasoning constitutes at the same time discovery and justification for this discovery.
I will make three claims, based on the consideration of diagrams in the practice of logic
and mathematics. First, I will claim that diagrams are tools, following some of Peirce’s
suggestions. Secondly, I will give reasons to drop a sharp distinction between vision and
language and consider by contrast how the two are integrated in a specific manipulation
practice, by means of a kind of manipulative imagination. Thirdly, I will defend the idea
that an inherent feature of diagrams, given by their nature as images, is their ambiguity:
when diagrams are ‘tamed’ by the reference to some system of explicit rules that fix their
meaning and make their message univocal, they end up in being less powerful.

Keywords Diagrammatic reasoning · Practice-based philosophy of mathematics ·
Peirce’s diagrams · Manipulative imagination · Productive ambiguity

Mathematics Subject Classification (2010) Primary 00A66; Secondary 03A05 ·
97C30

1 Introduction: Diagrammatic Reasoning in Logic and Mathematics

The claim that diagrammatic reasoning has a role in the work of a logician or a mathemati-
cian, both in education and research, is not controversial. Even a scholar who defends a
conception of logic or mathematics as mere games of symbols would not deny that objects
such as circles or figures are helpful as heuristic tools in directing reasoning. A common
saying is that in problem solving, if we draw the ‘right’ diagram, then we are half of the
way to finding its solution. Diagrams seem to guide thought: their heuristic power is ev-
ident, both in the classroom—where concepts and theorems are often taught by making
reference to objects such as sketches on the blackboard—and in research—when logicians
and mathematicians interact and communicate by holding a pen in their hands, drawing,
changing and deleting columns of formulas or shapes.
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Fig. 1 A figure displaying
the Intermediate Zero
Theorem

Consider for example the case of the intermediate zero theorem.1 According to this
theorem, if a function f is continuous on the interval [a, b] and f changes sign from
negative to positive (or vice versa), then there is a c between a and b such that f (c) = 0.
The figure displaying such a function is shown in Fig. 1.

By looking at the figure, we are inclined to believe that the theorem holds, because
we can clearly ‘see’ it. The line of the argument would be the following: the horizontal
axis divides the space on the right side of the vertical axis into two regions; in the region
above the horizontal axis, the sign of the function is positive, while in the region below
the horizontal axis, the sign of the function is negative. The function f would then be
described as performing the action of moving from f (a) to f (b): if the function changes
sign from negative to positive (or vice versa), then it has to go from below the horizontal
axis to above it (or vice versa). The figure is straightforward: we have the impression that
our reasoning corresponds to what we ‘see’.

Nevertheless, a certain conception of logic and mathematics, by subscribing to the old
distinction between a context of justification and a context of discovery, has relegated
our natural disposition to use figures to display the content of our statements to the psy-
chological context of discovery. This conception has discarded figures and diagrams as
not being rigorous. I will call this view the suspicious view, both because it denies that
diagrammatic reasoning plays a role in the context of justification, and because I want
to put this approach into question. I mention here that I deliberately use the term ‘suspi-
cious’ ambiguously; as I will show later in the article, ambiguity will become important
in connection to diagrams.

According to the suspicious view, diagrams, despite their being good heuristic tools in
discovery and explanation, are not sufficient when it comes to proof. The view does not
directly deny the cognitive and computational advantages in using diagrams, but rather
puts forward an image of logic and mathematics that is strongly dominated by proof.
Proofs, in turn, are conceived as particular syntactic objects, namely derivations and thus
verbal/symbolic entities. If formal proofs are at the core of mathematics, then diagrams
cannot be part of them, unless they are ‘tamed’ by the definition of some syntactical rules
that control their use. In such a framework, justification is defined by proof and rigor,
and they alone lead to truth: mathematical knowledge happens only when we are truly

1The theorem is mentioned, among others, in [4].
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justified in our belief, namely, when we have a formal proof, and not when we are merely
justified in believing that a statement is true, as in the case of Fig. 1 for the intermediate
zero theorem. As Fallis explains,

even though there are many ways in which a mathematician might be justified in believing that a
mathematical statement is true, there is only one way in which a mathematician feels that she is
truly justified. Specifically, the mathematician has to know a proof of the mathematical statement
([10], p. 46).

Polya, who famously devoted most of his work to the investigation of problem solving
processes, claims that what is lost in rigor is made up in understanding [22]. Insight,
understanding, and explanation, which are part and parcel of the work of the logician or
of the mathematician, are not all necessarily included in a rigorous proof.

If mathematics is dominated in such a way by formal ‘non-visual’ proofs that preserve
truth, all so called ‘visual’ proofs are discarded as non-rigorous. Diagrams are not reli-
able: they can mislead us and do not provide evidence. According to the standard and
logocentric definition, proofs are

syntactic objects consisting only of sentences arranged in a finite and inspectable way, and there-
fore diagrams can only be heuristic tools to prompt certain trains of inference ([2], p. 3).2

Against this assumption, Barwise and Etchemendy tried to expand formal logic by
freeing it from having one mode of representation only, i.e. language, and by pushing it
closer to reasoning, which is in their view a heterogeneous enterprise. As Shin sums up,

all of us engage in and make use of valid reasoning, and in the process of reasoning human be-
ings obtain information through many different kinds of media, including diagrams, maps, smells,
sounds, as well as written or spoken statements ([26], p. 92).

However, Barwise and Etchemendy, as well as Shin later on, did not renounce the
idea that proofs are at the core of logic and mathematics and that proofs are derivations.
Therefore, their strategy was to force and ‘tame’ diagrammatic reasoning by defining syn-
tactic rules to carry out diagrammatic manipulations: in their view, only ‘tamed’ diagrams,
namely diagrams which we have control over, can become ‘rigorous’ elements of formal
proofs.

By contrast, let us suppose that an alternative picture of logic and mathematics is pos-
sible. This picture does not have at its core formal proofs, but rather the practices that are
shared by a community of scholars who in their ordinary work consider informal proofs,
such as proofs based on induction or visual tools, as sufficient for being justified in be-
lieving that some statement holds. As Brown suggests, we should assume

a somewhat more humble attitude toward our understanding of verbal/symbolic reasoning. First-
order logic may be well understood, but what passes for acceptable proof in mathematics includes
much more than that ([4], p. 164).

Moreover, as discussed by Mancosu, there are connections in mathematics that count
as necessary and truth preserving, and others that are not held as such but nevertheless
can count as reasons [17]. Rigor might preserve truth, but insight, understanding, and
explanation hint at reasons. Furthermore, there are proofs that explain—which might be
referred to as causal proofs—and proofs that convince but do not explain—which can

2Barwise and Etchemendy quote this passage from an article by Tennant (see [28]). They believe it ex-
presses the ‘dogma’ of logocentricity that they want to challenge.
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be referred to as non-causal proofs [3]. If we look at the practice of mathematics, we
realize that verification is proof, but verification might not provide reasons: mathemati-
cians are not satisfied with proving conjectures, since what they want is reasons for these
conjectures [23].

Views such as the suspicious view, focusing on rigorous formal proofs, move away
from the consideration of actual mathematical practice, both in contemporary mathemat-
ics as well as in the history of mathematics. According to Corfield, they apply what he
calls the ‘foundational filter’; because of this filter the only interesting questions in phi-
losophy of mathematics are about the possible reduction of mathematics to some foun-
dational system [7]. Corfield believes that the foundational filter is an “unhappy idea”,
because not only does it fail to detect the pulse of contemporary mathematics but it also
“screens off the past to us as not-yet-achieved” ([7], p. 8). Mathematics is a human activity
and, consequently, it is situated in time. The questions about mathematical practice “are
to be addressed by an understanding of mathematical knowledge as historically situated
rather than timeless” ([7], p. 15). The suggestion is to get free of the appeal to a timeless
logic or mathematics that has inspired the assumptions behind the suspicious view. An
interdisciplinary investigation may be helpful

in the process demonstrating that philosophers, historians and sociologists working on pre-1900
mathematics are contributing to our understanding of mathematical thought, rather than acting as
chroniclers of proto-rigorous mathematics ([7], p. 8).

The suspicious view discards as ‘psychological’, and therefore philosophically uninter-
esting, not only diagrammatic reasoning but also many other activities of the community
of working logicians and mathematicians.

In this article, I will not give any normative criteria for the definition of what a proof
should be. More modestly, I will simply claim that the search for the reasons why dia-
grams are apparently so effective in explanation and discovery is a philosophical issue.
I will propose an operational framework, within which I will show that diagrams do not
work like sentences: in fact, we do not necessarily apply a set of explicit and linguistic
rules in order to use them. Rather, once we are familiar with some specific practice, we
manipulate diagrams in meaningful ways, engaging ourselves in a form of reasoning that
is stable because it is shared by the community and thus constitutes at the same time dis-
covery and justification for that discovery. If this kind of operational framework works
for diagrams, then a further issue will be to ask whether the same operational framework
can be applied to other kinds of activities, and thus be generalized to a practice-based
approach to logic and mathematics in general. This is a matter for further research.

In the following sections, I will make three claims based on the consideration of dia-
grams in the practice of logic and mathematics. First, I will claim that diagrams are tools
and I will define what I intend by ‘diagram’ and by ‘tool’, following some of Peirce’s
suggestions. Secondly, I will give reasons to drop the opposition between vision and lan-
guage, and consider by contrast how the two are integrated in a specific manipulation
practice by means of a kind of manipulative imagination. Thirdly, I will defend the idea
that an inherent feature of diagrams, given by their nature as images, is their ambiguity.
Moreover, ambiguity promotes a wider variety of interpretation and understanding: when
diagrams are ‘tamed’ by way of referencing to some system of explicit rules that fix their
meaning and make their message univocal, they end up in being less powerful.
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2 Diagrams in the Practice

2.1 Diagrams Are Not Pictures of Abstract Objects

I propose an account of reasoning in and from diagrams based on the conception of dia-
grams as tools used within a specific practice. First, I will claim that if diagrams are con-
sidered as tools, then old problems that lie behind the suspicious view lose their strength.
Secondly, I will clarify what I intend by ‘diagram’ and by ‘tool’.

Traditionally, two problems have been put forward to conclude that figures are not suf-
ficient for providing justification of mathematical statements. I will define these problems
(i) the generality problem and (ii) the appropriateness problem. The problems state that:

(i) it is not possible to get to a general conclusion by looking at some particular diagram,
for the reason that that particular diagram has specific properties and specific features
that do not directly depend upon the statement that is to be proven: to check for the
truth of the statement, a single diagram should be capable of representing all the
possible specific ways in which the situation described by the statement can be true,
which is impossible;

(ii) diagrams are most of the time inappropriate for proving the statement in question
because they are never precise enough: these imprecisions can occur in our reasoning
and thus bring us to false conclusions and misinterpretations.

For example, in the case of the intermediate zero theorem, (i) we cannot be sure that
the function f would in any case behave as depicted in Fig. 1 and (ii) we cannot be sure
that we have properly drawn the figure.

Nevertheless, the assumption behind the claim that diagrams are never sufficiently
general and never sufficiently appropriate is that diagrams are depictions—though partial
and imprecise—of abstract objects. I want to contend this claim and propose that diagrams
are not pictures of abstract objects but tools for reasoning about abstract relationships.
Before doing that, I will present Brown’s view of diagrams as tools and explain why it is
different from the view I propose.

Brown’s strategy for refuting problems (i) and (ii) is to subscribe to a Platonist view
of abstract objects. According to him, figures are not and cannot be representations in
the sense of being pictures. His argument is that if they were such representations, then
there would be a kind of structural similarity captured by the concept of isomorphism
between them and the abstract objects they depict. Nonetheless, despite the fact that in a
wide variety of cases a good diagram is isomorphic to the situation it represents, this is
not always the case.

Take for example the following number theory result on the sum of natural numbers
up to n:

1 + 2 + 3 + · · · = n2

2
+ n

2
Now consider one of the possible figures that can be used to represent this result

(Fig. 2).
The area of the figure in Fig. 2 is composed by 1 square plus 2 squares plus 3 squares

plus . . . n squares. Thanks to the arrangement of the squares, the area is also equal to
n × n squares divided by 2 (the area of the white isosceles triangle with base and height
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Fig. 2 A figure displaying
the sum of n natural numbers

equal to n) plus half n (the area of the black triangles). Therefore, the figure shows that
the equation holds: the same diagram that represents the right side of the equation also
represents its left side.

However, Brown claims, the figure in Fig. 2 is strictly speaking just a ‘picture’, an
illustration of the n = 6 case, and as a consequence

we can claim that there is an isomorphism to some number structure with that cardinality. It is cer-
tainly not, however, isomorphic to all the numbers. True, it is homomorphic to the whole number
structure. But note that a homomorphism to a larger structure is (at least in the case at hand) an
isomorphism to a part ([4], p. 173).

Therefore, the diagram in Fig. 2 tells us something about the part of the structure it is
isomorphic to, but nothing about the rest of the same structure. Brown’s proposal then is
to deny that figures such as the one in Fig. 2 are pictures at all, and assume that, in his
words, “some ‘pictures’ are not really pictures, but rather they are windows in Plato’s
heaven”: figures are tools in the same sense in which telescopes are tools for the unaided
eye. For this reason, the problems (i) and (ii) do not apply, since diagrams are not depicting
any possible situation and to some extent they are always inappropriate. In a nutshell, in
Brown’s view, it is possible to be a realist about abstract objects without being a realist
about pictures [5].

Brown’s solution is thus based on realism about abstract objects. My objection to his
view is that it explains what is already mysterious—our common way of referring to
figures in our reasoning—by means of even more mysterious entities: abstract objects in
a Platonic heaven. Moreover, as Folina claims,

telescopes are not themselves justificatory: it is not the telescope which is cited as the primary
justification for an astronomical claim. Similarly for windows. . . . Rather, it is merely a tool which
enables us to ‘see’ the evidence, or the abstract ‘picture’ ([11], p. 426).

According to Folina, Brown endorses Platonism in order to claim that figures can le-
gitimately prove the truth of mathematical statements, but this is a non-starter. In fact,
we can well accept the assumption that diagrams cannot be a part of formal proofs; the
point is rather to claim that formal proofs are only a proper subset of a variety of justifica-
tions in mathematics. As in the criticism of Barwise and Etchemendy’s program, the real
challenge is not to make diagrams legitimate components of formal proofs, but rather to
give an account of how they belong to other kinds of justifications in the variety. In this
respect, Brown’s view is not helpful.

I will side with Brown and agree with him that diagrams are not pictures of abstract
objects but instruments, and therefore problems (i) and (ii) do not apply. Nevertheless,
I will not claim that they are telescopes pointing at a Platonic heaven, because we are not
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sure of the existence of such a heaven. In the next section, I will discuss what I intend by
saying that diagrams are tools.

2.2 Diagrams as Tools

For the purpose of this article, I use the label ‘diagram’ as a very general term to refer to
two-dimensional displays.3 I move within a Peircean perspective, and consider diagrams
as instruments for thought along the following lines.

First, in order to be effective, diagrams must always be interpreted within a certain
context of use. Secondly, the reference to them contributes to the very definition of this
context and gives structure to the problem to solve. Thirdly, diagrams belong to the genus
of ‘representation’ as “that character of a thing by virtue of which, for the predication of a
certain mental effect, it may stand in place of another thing” ([13], vol. 1, par. 564; written
in 1893). Nevertheless, this should not be taken literally, for diagrams do not ‘directly’
depict some abstract object whose existence is presupposed; rather, they embody a selec-
tion of relevant relations. Finally, diagrams are given with an intention, as all tools are,
cognitive and epistemic tools being among them: they are conceived so as to achieve some
particular aim, and the intention behind their creation must be acknowledged in order to
appropriately interpret and use them.

Therefore, some of the physical features of a diagram refer to abstract elements that are
not directly present in the diagram. By manipulating these physical features, the user—
the ‘interpreter’—learns or genuinely discovers something new about the relations the
diagram embodies. As Peirce rightly pointed out, this dynamic aspect of diagrams trig-
gers “a state of activity” in the interpreter that leads to experimentation.4 Diagrammatic
reasoning would then bring logic and mathematics closer to the natural sciences: logi-
cians and mathematicians experiment with the very same representations that constitute
their instruments. Peirce goes even further by saying “all necessary reasoning without ex-
ception is diagrammatic” ([13], vol. 5, par. 162; written in 1903). Once more, I will not
take any stance in the debate on what counts as necessary reasoning. My more modest
suggestion is that in order to claim that diagrams are stable enough to provide justifica-
tion, we have to consider the practice shared by the community of actors who experiment
on them. Diagrams are representations used with the intention of embodying relations;
moreover, they promote inference because they can be interpreted and manipulated in
various ways according to the shared practice.

An important advantage of this operational approach is that it discards the opposition
between visual reasoning and linguistic knowledge. In fact, the dichotomy of vision vs.
language, which has led to the antithesis between visuocentric and logocentric views, is
pernicious.

3I am not denying here the possibility that there are three-dimensional diagrams. I only want to exclude
this possibility for the moment, because I am inclined to think that it implies additional considerations.
4“It is not, however, the statical Diagram-icon that directly shows this; but the Diagram-icon having
being constructed with an Intention [. . .]. Now, let us see how the Diagram entrains its consequence. The
Diagram sufficiently partakes of the percussivity of a Percept to determine, as its Dynamic, or Middle,
Interpretant, a state [of] activity in the Interpreter, mingled with curiosity. As usual, this mixture leads to
Experimentation.” In [21].
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In the next sections, I will first discuss the risks of siding with or against vision or
language without considering their continuous interaction; secondly, I will discuss two
features of diagrammatic reasoning that emerge in this operational framework: the role
of action and manipulative imagination, and the importance of ambiguity and multi-
dimensionality of meaning.

3 Beyond Visuocentric and Logocentric Views

3.1 Not Only a Question of Visual Properties

Let us consider a first risk in endorsing the dichotomy of vision vs. language. Suppose
that we want to refute logocentrism and defend a view diametrically opposed to it, a kind
of ‘visuocentrism’ or ‘optocentrism’. According to this approach, it suffices to look at
a figure to get to its content and to the message it conveys; the meaning of a diagram,
compared to the meaning of a sentence, would be easier to grasp because it is ‘directly
seen’ and therefore extracted ‘for free’.

Nevertheless, this view is ill posed, because it is not only visual perception that is at
stake in diagrammatic reasoning. In fact, the diagram user—its interpreter—is not inter-
ested in many of the visual properties of the diagram; she only attends to a selection of
them. For this reason, talking of visual thinking is misleading; the user rather considers
possible spatial configurations and new constructions in the diagram.

Let me discuss one attempt to enhance the visual features of a diagram with the aim
of making its meaning easier to grasp. Consider Byrne’s edition of Euclid’s Elements
published in 1847 [6]. This edition covers Euclid’s first 6 books and presents them in
form of colored pictures, using as little text as possible, most of the times in the form
of labels: Byrne’s attempt was to make the Elements ‘more visual’ by adding colors to
them. Nevertheless, this attempt is unsuccessful, if the aim is to make the Elements eas-
ier to understand. In fact, colors are introduced as a new code that must be learned in
its symbolic use. As a consequence, the figures, instead of becoming more straightfor-
ward, end up becoming more complex: the student must learn how to interpret colors,
and therefore she has to become familiar with a completely new language, the color
code language, thus increasing the cognitive load of the task instead of reducing it (see
Fig. 3). Furthermore, she is deprived of the instructions given in the text to construct the
diagrams, and is therefore driven away from learning the practice of Euclidean geome-
try.

To make Euclid diagrams easier to understand, attention should be focused on con-
structions and manipulations rather than on possibly new visual features. This example
shows that diagrams are not simply ‘seen’ but must be ‘read’, i.e., interpreted. Their ap-
propriate interpretation leads to the definition of their constructions and manipulations.
Therefore, the assumption of a sharp distinction between vision and language along with
the claim that vision matters does not give a good description of what happens in dia-
grammatic reasoning.



A Practice-Based Approach to Diagrams 143

Fig. 3 A picture taken from
Byrne’s edition of Euclid’s
Elements

3.2 Not Only a Question of Expressivity

In the previous section, I claimed that diagrams are advantageous not simply because they
are more ‘visual’ than sentences. In the same way, if the opposition between vision vs.
language is assumed, not even a focus on the possible verbal/symbolic translations of
the message conveyed by the diagram will yield a good description of what happens in
diagrammatic reasoning.

Consider a case study from logic, which shows the contrast between the urge for rigor
and the cognitive benefit of the diagrammatic representation.5 In the 18th century, the
mathematician Euler introduced his circles (D1) for the study of syllogisms. As Shin
and Lemon explain, the representation in Euler’s diagrams is governed by the convention
according to which every object x in the domain is assigned a unique location in the
plane, say l(x), such that l(x) is in the region R if and only if x is a member of the
set the region represents [27]. Note that, despite its apparent naturalness, this move is
already conventional since the choice of circles is arbitrary. Other logicians introduced
systems that used points for objects and lines for sets [8, 15]. On the other hand, this
convention exploits better than others the perceptual configuration that Lakoff and Nuñez
have defined as the Containment-schema: circles and in general closed figures are more
effective than lines in being interpreted as ‘containing’ the members of a set in the spatial
region they identify [14].

Despite their straightforwardness, Euler circles have expressive limitations and retain
some crucial ambiguities, for example when representing existential statements, or the
empty set, or congruency among sets. In order to solve some of these ambiguities or
limits, in 1881 Venn introduced his own system of diagrams (D2) based on ‘primary dia-
grams’. Primary diagrams do not carry any particular information in themselves; in order
to be meaningful, they need to be complemented by labels and shadings. Despite their
greater generality, Venn diagrams present new expressive limitations, and for this reason
Pierce, in the 20th century, modified them by introducing three new symbols (0, x, –),
thus providing a new system (D3) by which existential statements, disjunctive informa-
tion, probabilities, and relations could be represented (see Fig. 4).

5For a detailed discussion of this case-study, see [27].
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Fig. 4 Three examples of circles for syllogism: Euler (D1), Venn (D2) and Peirce (D3)

In going from D1 to D3, the new systems become thus more and more expressive. In
the 90s, Shin continued on this path and proposed a formal system that improved Peirce’s
diagrams by making them even more expressively powerful [25].

Nevertheless, as Shin and Lemon discuss, Peirce’s (as well as Shin’s) introduction of
new conventions increased the expressive power of the single diagrams at the expense
of the visual clarity that Euler’s original system enjoys. The new conventions are more
arbitrary and the new representations more confusing. This is true, despite the fact that
Peirce’s choice of the symbol ‘0’ for the empty set is not wholly arbitrary. According to
the authors, when Peirce’s revision was completed, most of Euler’s original ideas about
visualization were lost, except for the choice of a geometrical object, the circle, still used
to represent (possibly empty) sets. I would slightly modify their claim and say that what
was retained in D3 was the mere appearance of the circles of the original diagrammatic
system, but not their function of exploiting the Containment-schema. As Euler himself
claimed, “we may employ, then, spaces formed at pleasure to represent every general
notion, and mark the subject of a statement by a space containing A, and the attribute by
another which contains B .”6 These are the ‘spaces’ that mattered for him and his system,
and not the particular figure they were of. Circles could have been changed into squares,
for example, without changing their function of ‘containment’ and, therefore, without
changing the expressive power of the system. By the introduction of primary diagrams,
this function of ‘containment’ loses its centrality, and new elements such as shadows and
labels are introduced in order for the system to be meaningful. The strategy of augmenting
the expressivity of diagrams by fixing their meaning through the introduction of these
arbitrary conventions provides an interesting ‘diagrammatic’ extension of sentential logic,
but at the same time deprives spatial tools of their effectiveness and straightforwardness,
and leaves behind our perceptual and imaginative capacities.

Consider now the fascinating collection of ‘visual proofs’ that Nelsen gives in his two
books, entitled Proofs Without Words (I, II) [18, 19]. On closer inspection, these proofs are

6Letter 103, Of Syllogism, and their different Forms, when the first Proposition is Universal. See [9].
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not simply ‘without words’, since the use of a diagram is not only a matter of vision. As in
the case of the intermediate zero theorem, we have to know the mathematical statement in
question in order to find it ‘in’ or ‘represented by’ the diagram in Fig. 1. Without knowing
the statement, reasoning with a diagram would be equivalent to a riddle such as ‘From
this figure, find the statement in it’ or ‘Which statement is represented by the figure?’.
We always need some linguistic explanation or justification for our use of some specific
diagram.

More generally, in practice, it is very difficult to distinguish purely graphical systems
from purely sentential ones [24]. In most cases, diagrams and text are so strongly intercon-
nected that they cannot be considered in isolation one from the other; furthermore, thanks
to this dialectic, appropriate interpretations and operational procedures are defined.

Let me point out to two examples in which the dialog between images and text have
been challenged by the invention of printing. First, consider Diderot and D’Alambert’s
Encyclopédie, published in France between 1751 and 1772. The images and text in it
were conceived as interconnected and continuously referring one another; nevertheless,
because of the limitations of the printing techniques available at the time, it was impos-
sible to show on the same page the labeled images and the corresponding text. In many
cases, the text was very far from the images it referred to. For this reason, the reader had
to move from the images to the text without having both together; this was very awkward
and contributed to the sharp distinction between images and text, which does not reflect
the way the two were conceived at the beginning as being strongly interconnected.

Something similar happened for the first printed editions of Euclid’s Elements, where it
was even more crucial to show images and text on the same page [1]. In Euclid’s Elements,
we never find a simple two-step process from the verbal to the visual moment that is
a mere illustration of the former. By contrast, the text and its accompanying figure are
engaged each time in a fruitful and rational intercourse: the text gives the instructions to
outline the figure that stands by its side, and to draw the conclusion from it. The verbal
instructions do not assume the complete figure at the start, but rather walks the readers
through its construction, and therefore the readers continuously go back and forth between
verbal and visual. In following these instructions, they actively imagine drawing lines.

Instead of accepting the unuseful opposition between visual perception and linguistic
knowledge, I propose to focus on this kind of ‘manipulative’ imagination at play when
reasoning with diagrams. This is further discussed in the next two sections.

4 An Operational Framework for Diagrams

4.1 Looking at How We ‘Act’ upon the Diagrams

Diagrams are always considered from within a specific practice and context. Imagine
the diagram of a circle. It has been used in logic, for example, by Euler, in Euclidean
geometry, and in Cartesian geometry. Was it ‘the same’ circle in all these cases? Did it play
the same role? Of course it did not. In fact, there is nothing like a specific set of rules that
could be fixed once for all for all circles or for some specific kind of diagram in general.
My proposal is that in diagrammatic reasoning what counts is not the appearance of a
diagram and a list of explicit rules that can be applied to it, but rather a set of procedures:
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when one learns to use a certain diagrammatic system for performing some inferences,
she learns a manipulation practice. The diagram becomes the mathematician’s worksite,
where operations, plans, and experiments are made in order to find solutions and reasons
for these solutions. While syntactic rules are piecemeal, procedures are holistic.

From this perspective, when drawing a diagram, the user never reproduces it mechani-
cally. To go back to the intermediate zero theorem, in order to draw the diagram in Fig. 1
not only does she need to ‘see’ it, but also to appropriately interpret it, understand what it
means in that context, and finally learn its construction. This operational aspect of work-
ing with diagrams has been neglected because of the suspicious view, thus encouraging
a straightening of the opposition between vision and linguistic processes; this opposition
has left out the consideration of the continuous interaction between the two formats in
reasoning.

In the framework I propose, it is the operational aspect of working with diagrams,
namely what is done with them, that must be taken into account and not their visual fea-
tures nor the sentential information they can possibly carry. Diagram-users share some-
thing like the experience of seeing in a diagram what they have to, focusing their vision on
a selection of relevant features, which will bring them, as rational agents, to understand
and reproduce the relevant features of diagrams in a non mechanical way and without
‘damages’. The antidote to the suspicious view consists thus neither in assuming a visuo-
centric view nor in fixing a set of syntactic rules, but in considering how diagrams are
manipulated, in continuous interaction with language and within a specific practice, in
order to infer some new conclusion.

My view moves from a purely syntactic approach to a semantic and, indeed, prag-
matic approach to problem solving. As Grosholz claims in regard to the epistemology of
mathematics, there are reasons for pursuing this approach and even considering the use of
language in terms of its representational role in an historical context [12]. Diagrams and
figures are inherently ambiguous: the operations on them are what fixes their meaning.

For example, consider someone who is inside the practice of Euclidean geometry.
Without learning in advance any explicit rule, she perfectly knows that once she has
constructed the figure, she is allowed to rotate or translate it, but she cannot for exam-
ple stretch it differently from what can happen in other practices. This practice-based
framework for diagrammatic reasoning presupposes the centrality of a form of manipu-
lative imagination we refer to in our manipulation practices in logic and mathematics.
This imagination is particularly effective because we are already familiar with it, since it
derives from our perceptual experience and reproduces procedures that are to some extent
similar to the manipulation of concrete objects. Yet, not all possible manipulations are
allowed by the practice: among all the possible moves, only some of them are accepted.

Diagrams are cognitively advantageous because their use activates this manipulative
form of imagination, as in the case of the Containment-schema for Euler circles, which is
of course also informed by the context. The manipulations that are actively imagined on
the diagram are controlled by interpretation and by the shared practice: diagrams do not
offer a single message, but can be interpreted differently and, based on the interpretation,
different actions can be performed on them in order to discover new relations. For this rea-
son, one aspect of diagrams that becomes important is their inherent ambiguity: they can
be ‘read’—or interpreted—in different ways, and the practice of their manipulation and
the procedures applied to them fix their meaning. Ambiguity is thus not a disadvantage in
principle, but one of the strengths of diagrammatic reasoning: their multi-dimensionality
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Fig. 5 Examples of pictures
from Neurath’s Isotype (taken
from [20])

of meaning and non-unique interpretations can promote inference. In the next section,
I will focus on this issue.

4.2 Diagrams Are (Hopefully) Ambiguous

I will first present an example to show that diagrams are ambiguous as are all images.
Secondly, I will discuss how this ambiguity can be of help in mathematics by promoting
inference.

Diagrams neither directly speak to the eyes nor convey a single message since, analo-
gously to other images, they are inherently ambiguous. I want to mention here a particu-
larly straightforward case that shows the ambiguous nature of images.

In the 1930s, the Austrian philosopher Neurath introduced Isotype (International Sys-
tem of Typographic Picture Education) to the aim of offering a tool that, in his view,
could have solved the problems in communication caused by different levels of education
among people, thus allowing free discussions of common problems and the dissemination
of simple but important facts [20]. Isotype was meant to be a new way of conveying infor-
mation that is at the same time easy to teach and learn, and is comprehensive and exact. It
included a special dictionary and a special visual grammar, which, according to Neurath,
created a new visual world analogous to the word world. As Neurath explains,

the first step in Isotype is the development of easily understood and easily remembered symbols.
The next step is to combine these symbolic elements.

In his view, icons such as the ones depicted in Fig. 5 are very easily recognized, no
matter what the level of education is, and at the same time they express very complex
situations.

Nevertheless, there are several problems in trying to provide a purely iconic system.
First, a purely iconic system cannot easily convey changes of situations or convey that
which contradicts some previous iconic representation. Let us suppose for example that
at some point someone in our community decides that taking one’s child for medical
check-ups is not necessary for a child’s health (in opposition to what the icons in Fig. 5
prescribe) and she shows this in Isotype by drawing the figure in Fig. 6.
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Fig. 6 An example of a new
(and ineffective) picture in
Isotype, reworked from Fig. 5

Fig. 7 The construction of
an equilateral triangle starting
from a given finite straight
line

This time, the icons are evidently not as effective as in the previous case (i.e. as in
Fig. 5). In fact, it is impossible to display by them the absence of the doctor or of anyone or
anything else at all. This point expresses the difficulty in general of representing negation
without using a specific symbol for it. Note that this impossibility is not too far from what
we have seen in Euler circles’ incapacity of representing empty sets.

Neurath’s Isotype is based on the bad presupposition that there is in fact a distinction
between a visual grammar on the one hand and a linguistic grammar on the other. By
contrast, icons are not directly visual: each of them needs to be interpreted, to some extent
by convention. To understand Isotype, the reader needs some background knowledge and,
in the end, education. The same criticism can be formulated for any form of ‘pictionary’
that claims to be an universal dictionary.7 Here we have a case similar to the ‘colored’
Euclidean geometry considered earlier: making it ‘more visual’ does not mean making it
more straightforward. On the contrary, arbitrary conventions are introduced.

The above example shows that diagrams, analogously to other images, are inherently
ambiguous since they do not convey one singular message that can be translated into
language, but need interpretation in order to be understood. Nevertheless, in most cases,
this is not a disadvantage but a strength.

Take the example of Euclid again, in Macbeth’s reconstruction. Consider Book I,
Proposition 1:

On a given finite straight line to construct an equilateral triangle.

As Macbeth explains, the problem posed by this proposition is a construction problem.
To get to the solution, it is necessary to reason in the diagram depicted in Fig. 7 [16].

7Still today, there are attempts to take this path, such as the pictionary ‘Point it: Traveler’s Language Kit’,
by Dieter Graf.
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We start from the given finite line. Then, thanks to the construction of the two circles,
we obtain a new figure. In order to get to the solution of the problem, the interpreter
has to reason at different stages. At one stage, she must regard the lines in the diagram
as the radii of the two circles: from this configuration, she concludes that all three lines
are equal in length. At a second stage, she must regard the same lines as the sides of
a triangle: from this new configuration, she concludes that the constructed figure is the
desired equilateral triangle. Therefore, the diagram is in some way ambiguous, because it
can be regarded as attending to different configurations. The interesting aspect is that all
these possible configurations are compatible, and their compatibility is given by the fact
that all configurations belong to the very same diagram.

As Macbeth explains, “one and the same lines are now regarded as parts of a circle and
later as parts of a triangle” ([16], italics mine). In this case, there are three discernible
levels of articulation: (i) primitive parts (points, lines, angles, and areas); (ii) geometri-
cal figures (circles, triangles, and squares); and finally, (iii) the whole diagram. To find
the solution of the problem stated by Euclid, one has to consider all these three levels
together, precisely by exploiting the multidimensionality of meaning of the diagram. The
generality of the diagram is given by the fact that it is constructed following the instruc-
tions in the text and is manipulated by imagination; the diagram is reliable because its
use is considered inside a specific practice, Euclidean geometry, and its interpretation is
intertwined with the rest of the shared system of knowledge and procedures that pertain
to Euclidean geometry and serves as a guarantee for the correctness of the reasoning. The
diagram is thus not a picture, but an instrument that promotes inference thanks to its pos-
sible manipulations. Moreover, the diagram does not need to be properly drawn, as long
as the user is aware of the prescriptions contained in the instructions for its construction
and is aware of its intended meaning.

We have seen in Fig. 2 something similar to the case described by Macbeth. In order
to use the diagram for the sum of natural numbers up to n, we have to regard it now as
a collection of squares going from 1 to n, corresponding to numbers from 1 to n, and
later as a collage of triangles, the isosceles triangle with n as short sides, and the n half
squares. The two configurations belonging to the whole diagram brought us to our con-
clusion. Moreover, consider Fig. 1 and the case of the intermediate zero theorem. In our
linguistic description, we normally say that the function goes from below the horizontal
axis to above it; we do that because we metaphorically reproduce its construction in our
imagination.

My hypothesis is that, inside a specific practice, the space of the diagram perceived
combines with the actions actually performed or imagined on it, in continuous interac-
tion with linguistic knowledge. All these elements together contribute to mathematical
meaning-making: manipulative imagination is at work to provide evidence in favor of
some particular train of thought.

5 Conclusions

In this article, I tried to give arguments in favor of an operational framework for diagram-
matic reasoning based on the practice of logic and mathematics. First, I presented what
I defined as the suspicious view, according to which diagrams are not reliable enough to
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count as evidence for a conclusion. I claimed that this view is heavily based on a concep-
tion of proofs as syntactic objects and derivations, and I defended the idea that justifica-
tion in practice is much more than proof only. Moreover, taking a Peircean perspective,
I claimed that diagrams are a very special kind of representation, which is dynamic and
needs an interpreter. According to the framework I propose, in order to give an account
of diagrammatic reasoning it is necessary to focus on the practice shared by the commu-
nity and on the actions performed on the diagram while considering two main aspects:
(i) manipulative imagination; (ii) the role of ambiguity in triggering this imagination.

The dichotomy between visual thinking on the one hand and linguistic processes on
the other has obscured the fact that what counts in diagrammatic reasoning is the manipu-
lation practice, based on holistic procedures and not on the definition of explicit linguistic
rules. According to this practice-based framework, it is the practice that fixes the meaning
of the diagrams on each occasion, otherwise they are as ambiguous as other images are,
and it is a kind of manipulative imagination that operates on them. Each practice is de-
fined by procedures of manipulations and interconnected facts. All these elements taken
together define in turn the system of knowledge shared by the community; this system
encompasses diagrams, statements, particular notations and actions prescribed or allowed
on them.
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Figures, Formulae, and Functors

Zach Weber

Abstract This article suggests a novel way to advance a current debate in the philoso-
phy of mathematics. The debate concerns the role of diagrams and visual reasoning in
proofs—which I take to concern the criteria of legitimate representation of mathematical
thought. Drawing on the so-called ‘maverick’ approach to philosophy of mathematics,
I turn to mathematical practice itself to adjudicate in this debate, and in particular to
category theory, because there (a) diagrams obviously play a major role, and (b) cate-
gory theory itself addresses questions of representation and information preservation over
mappings. We obtain a mathematical answer to a philosophical question: a good mathe-
matical representation can be characterized as a category theoretic natural transformation.
Assuming that this is not some reductio against the maverick approach to these issues, this
in turn moots some of the disagreement in the philosophical debate and provides better
questions with which to go on.

Keywords Picture proofs · Mathematical practice · Representation · Category theory

Mathematics Subject Classification 00A30 · 00A66 · 18A15

1 Towards a Mathematics of Real Philosophy?

A current debate in the philosophy of mathematics is over the role of visual reasoning
[6, 14]. Another is over the importance of engaging with actual mathematics as it is prac-
ticed [8, 23]; this has sparked a so-called ‘maverick’ approach to philosophy of mathe-
matics (see Sect. 2.4). The two issues are already related, by dint of emphasis on the em-
pirical, but in bringing them together I mean to achieve something specific: to go inside
of mathematical practice, looking at a number of real examples, in search of a subject-
matter-appropriate answer to a philosophical question. In this way we can both test the
viability of the maverick approach, and obtain further insight into the role of figures and
diagrams in mathematical practice.

The philosophical question, on the criteria for legitimate representation, is external—
something about or ‘over’ mathematics. The methodological reply is internal, an answer
from or inside mathematics. A very plausible bridge between these two viewpoints is cat-
egory theory, because it is mathematics (a) in which visual reasoning becomes, at least
prima facie, indispensable, and (b) in part designed to address philosophical questions,
but in a mathematician’s, not a philosopher’s, way. Category theory, that is, seems per-
fectly suited to bring these two problems together and deliver whatever sort of solution is
appropriate.
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In debating the status of pictures and visual reasoning—can a picture be a proof?—the
notion of representation is crucial. There are two senses of representation to consider. One
can talk about representing one mathematical object or structure with another, for exam-
ple, giving a concrete representation of an abstract group, or using a formal power series
to represent a function on a particular domain. One can also talk about using physical
artifacts, like diagrams or expressions, to represent mathematical objects and assertions.
Although these are prima facie two very different senses of the word ‘representation’,
we will see how the two blur together, to the point of becoming indistinct. For example,
which sort of representation is an equation, like f (x) = x2, of a geometric object, like a
sharp curve? I am open to, and even welcome, the possibility of a mathematical answer
(representation of the first type) to philosophical questions (about representations of the
second type).

Similarly, and even more basically, while there is an apparent difference between fig-
ures and formulae (pictorial versus syntactic imaging), that distinction too becomes com-
plicated; examples are given in Sect. 3 and throughout. This paper sets up the problem of
understanding representations of the second sort, diagrams and formulas, and then moves
to consider representations of the first sort, representations internal to mathematics. I urge
that within category theory, the first sort of representation, at least insofar as it is germane
to mathematics, can be completely and satisfactorily subsumed by the second—insofar
as we accept the maverick methodology and are looking for an answer that is authenti-
cally mathematical. The category-theoretic schematic at which we arrive in Sect. 6 is a
mathematical explanation of diagrammatic representation in mathematics.1

2 Pictures, Proofs, and Mavericks

Across a great deal of mathematics and its philosophy, figures and formulae are conceived
of as oppositional. In modern2 Germany, Weierstrass led a distinct migration away from
geometric visualization, toward the syntactic, with an enthusiasm for the arithmetization
of nearly everything. Today, by contrast, there is a movement amongst a loose-knit group
of ‘mavericks’ to return our attention to the pictures. This section provides a very surface
level summary of this literature. Positions are presented with varying degrees of urgency,
which we now sketch in turn.

1An initial worry about this whole approach may be put as follows (and thanks to a referee for doing so).
If an answer is mathematical then that means that the question turns out to be mathematical as well—for
wouldn’t it be very surprising if questions in metaphysics or epistemology had mathematical answers?
It is the burden of this paper and similarly motivated projects to show how mathematical philosophy
can be fruitful, noting for now that the idea has been around at least since Descartes and Leibniz. As a
research program, the mathematical approach would be interesting and informative even if it is ultimately
unsuccessful.
2This is to use ‘modern’ in the technical sense of Jeremy Grey: “Modernism is defined as an autonomous
body of ideas, having little or no outward reference, placing considerable emphasis on formal aspects
of the work and maintaining a complicated—indeed, anxious—rather than a naive relationship with the
day-to-day world, which is the de facto view of a coherent group of people, such as a professional or
discipline based group that has a high sense of the seriousness and value of what it is trying to achieve”
[17, p. 1].



Figures, Formulae, and Functors 155

2.1 Pictures Prohibited

We begin with old and familiar claims. Pictures should always be eliminated from valid
reasoning. A pair of quotes can stand for all:

A theorem is only proved when the proof is completely independent of the diagram. (Hilbert 1894)
If for the grasp of a proof the corresponding figure is indispensable then the proof does not satisfy
the requirements that we imposed on it. . . . In any complete proof the figure is dispensable. (Pasch
1882)

The second claim is actually stronger, since it concerns our grasp of a proof. The justi-
fication is simply the old observation (to which we will return) that diagrams can hide
assumptions (e.g. the Jordan curve property), elide proof steps, and even suggest out-
right falsities (e.g. that all functions are continuous). Familiar examples of the failure of
spatial intuition are Cantor dust, or Peano’s space filling curve—but also non-Hausdorff
spaces containing points p,q such that every open neighborhood of p intersects some
open neighborhood of q , but p 	= q . Because they lead us astray, pictures must always be
eliminable from clear and valid reasoning.

2.2 Pictures in Proofs

Can a picture be part of valid reasoning? Driven by quite traditional proof-theoretic back-
grounds, a positive answer is espoused by Barwise and Etchemendy, and separately by
Shin. While a single image may not be enough to count as a proof, some steps in a proof
may include unapologetically diagrammatic elements.

We claim that visual forms of representation can be important, not just as heuristic and pedagogical
tools, but as legitimate elements in mathematical proofs. . . . Not all valid reasoning is (or can be
cast) in the form of a sequence of sentences from some language [4, p. 3].

To make their point, Barwise and Etchemendy have developed formal reasoning systems
using diagrams. Shin has developed a sophisticated account of diagrammatic reasoning
[26]. Most recently, Avigad et al. have formalized Euclidean diagrammatic reasoning [1].

The strongest claim is that pictures can be proofs. The main proponent here is James
Brown:

. . .the prevailing attitude is that pictures are really no more than heuristic devices; they are psy-
chologically important—but they prove nothing. I want to oppose this view and make a case for
pictures having a legitimate role to play as evidence and justification—a role well beyond the
heuristic. In short, pictures can prove theorems [6, p. 26].

Brown’s unusually bold claim is made in support for his Platonism, to solve Benacaraff’s
problem about our epistemic access to abstract objects. Brown asserts that pictures are an
instrument, like a telescope, for knowing about mathematical truth. “Some pictures are
not really representations, but are rather windows into Plato’s heaven” [6, p. 44].

2.3 Pictures in Practice

A moderate thought between these two fairly polar ‘right’ and ‘left’ wing views (again,
which I’ve only presented in cartoon form): Visualization is essential in some aspects
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of mathematical practice. The views from the right and the left concern proofs almost
exclusively; the centrist view notices that proving is only a part of what mathematicians
do. This balanced view, associated with Paolo Mancosu and Marcus Giaquinto, arises
from the study of “the interaction between perception, visual imaging, concepts and belief
formation” [24, p. 23]. This stance does not entail that visualizations count as proofs in the
traditional sense. The focus here—especially for Giaquinto—tends into the psychological,
on how we learn (“discovery”) and come to form beliefs. Mancosu takes the main point
to be

Exclusive attention to the goal of justification is unacceptable. There are many other important
epistemic goals, such as discovery, explanation, understanding, genesis of concepts, etc., that phi-
losophy of mathematics should account for [24, p. 26].

This position does not necessarily dispute the critique of diagrammatic reasoning as dan-
gerous. Rather, it provides a new justification for the critique, and so a new way forward:

The reasons for why such tools are problematic is not necessarily on account of some intrinsic
feature of the visual medium. It is rather that one must always check that the visual medium does
not introduce constraints of its own on the representation of the target area [24, p. 26].

I think that Giaquinto is correct here, and that the important and difficult task is to make
precise the idea of ‘checking’ the adequacy of visual media.

As I have already indicated, the key term to be investigated is representation (see
Sect. 4.3). It seems like a very plausible thought that good mathematics represents its sub-
ject matter in a way that sheds more light, but without distortions. (Bad representations,
by turns, substitute obscurum per obscurius.) We translate and abstract, without losing
essential information. In examples to come, we will revisit the theme that good mathe-
matics, and so good mathematical representation, captures enough, but not too much. We
will find rigorous terms to characterize this.

2.4 Philosophers of ‘Real’ Mathematics

Recently, a strain of philosophy of mathematics has emerged and taken on the label of
‘maverick’. Mancosu characterizes the maverick movement by three main tenets: Anti-
foundationalism, anti-logicism, and attention to actual current mathematical practice [23,
p. 5]. Under this banner we have [8, 11, 15, 18], and perhaps [3].

In many ways the mavericks are the intellectual descendant of philosophers like
Lakatos, and also Pólya. The name seems to originate with Aspray and Kitcher in 1988,
who use the epithet for those asking questions like:

How does mathematical knowledge grow? What is mathematical progress? What makes some
mathematical ideas (or theories) better than others? What is mathematical explanation? [8, at p. 18]

The maverick movement is as much about methodology as subject matter. But one point of
detail is clear: it views the standard questions in philosophy of mathematics—Platonism
versus formalism versus intuitionism versus structuralism, and the Benacerraf problems
(what are numbers? how do we know?)—as old and exhausted research programs. “Math-
ematics has been and remains a superb resource for philosophers,” writes Corfield. “Let’s
not waste it” [8, p. 270].
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Implicit in the maverick approach is, I think, a hypothesis: Some philosophical ques-
tions can have mathematical answers. This is rather stronger than many quite full-blooded
claims; more often the idea from Corfield et al. is that mathematics itself should gener-
ate the questions to which philosophers address themselves. So the idea is to do some-
thing approaching an anthropological study of the mathematics, where all the questions
are guided by the given behaviors. But the questions Aspray and Kitcher attribute to the
mavericks, and to which Corfield ascribes, are inherently philosophical questions. They
concern epistemology and metaphysics (realism and anti-realism). It is not a stretch to
follow up the maverick shift by posing philosophical questions directly to mathematical
datum. We ask of mathematical practice: What are the roles of figures and formulae, their
relations and representations? The validity of such a method is the working hypothesis of
this paper.

Having given an overview of some philosophical debates, we turn to the putative dis-
tinction between visual and non-visual aspects of mathematical practice, by way of some
examples.

3 Figures and Formulae

Here is a circle with radius r ,

and here is a circle with radius r :

x2 + y2 = r2

These are two ways of seeing a mathematical object, geometric and algebraic. To state an
apparent platitude, appreciating the object in different ways may lead to different ideas.
For instance, looking at the first circle, and perhaps playing around with a compass, may
lead to Steiner’s porism: Given two non-concentric circles, one inside the other, suppose
circles are drawn successively touching them and one another. If the last circle in the chain
touches the first, then the last will always touch the first, regardless of the position of the
first circle in the chain.
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Notice the ‘if.’ Not every pair of circles so inscribed allows for the generation of a Steiner
chain. But the ones that do, always do [9, p. 87].

This seems like a straightforwardly geometric observation. Some thoughts about cir-
cles, on the other hand, have a less concrete character. Thinking more about r , some time
and imagination might lead to the thought that a straight line is the circumference of a
circle with infinite radius. This is a fundamentally abstract thought, although it still draws
on a visualization thought-experiment. (Imagine the radius getting longer.3)

Other properties emerge only at the level of complete divorce from the actual picture
as embedded in space. From the picture alone, it hardly even seems worth pointing out
that the circle divides the space in which it sits in two parts, i.e. that a closed curve divides
a space into an interior and an exterior. This, the Jordan curve theorem, turns out not only
to be a deep topological property, but one that is very hard to prove. Its statement only
arises at the point where a closed curve is not a visual object in the space X at all any
more, but rather an algebraic mapping f : [0,1] −→ X.

Geometric insights lead to powerful algebraic expressions; algebra, in turn, leads to
developments that beg for geometric interpretation.4 Here are circles and triangles; here
are quadratics and trigonometric functions. Here are solutions to equations of the form
x = √−1; here is an interpretation of these numbers as rotations in the complex plane
[28, p. 188]. The two modes of mathematical reasoning are mutually reinforcing, if not
mutually dependent [17].

The two modes of practice do not simply harmonize; there is tension. Perhaps the dis-
comfort is best expressed directly out of a mathematics text—Hartshorne’s lovely Geom-
etry book [19]. Let A, B , P , Q be distinct points in the Cartesian plane. Their cross-ratio
is an element of the field defined as

(AB,PQ) = AP

AQ
· BQ

BP

Hartshorne then says:

I can just hear someone asking, “What is the geometrical significance of the cross-ratio?” Although
I first encountered the cross-ratio as a senior in high school, and have dealt with them many times
since then, I must say frankly that I cannot visualize a cross-ratio geometrically. If you like, it is

3Gauss’ definition of intrinsic curvature repeats this result, since the curvature κ(t) = 1
r

of the osculating
circle is identically 0 when r goes to infinity [21, p. 3].
4Stillwell (not historically unproblematically) observes that “the Greeks used curves to study algebra
rather than the other way around” [28, p. 64].
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magic. Here is an algebraic quantity whose significance is impossible to understand, and yet turns
out to do something very useful. It works. You might say it was a triumph of algebra to invent this
quantity that turns out to be so valuable and could not be imagined geometrically. Or if you are a
geometer at heart, you might say that it is an invention of the devil, and hate it all your life [19,
p. 341].

The channels of communication, then, between algebra and geometry are not always com-
pletely clear. But the cooperation of geometry and algebra is fruitful more often than it is
fraught. Problems that defy solution, indeed, concepts that defy expression, mechanically
take care of themselves when couched in the language of formulae and rules. The algebra
then presents new problems that can only be approached geometrically. For example, here
is a difficult notion to come to grips with:

Physical reality has more than three dimensions.

And here is an easy notion to come to come to grips with.

R
n = {〈x0, . . . , xn〉 : x0, . . . , xn ∈R

}

Grasping the geometric meaning of Rn appears hopeless. Grasping the syntax of n-tuples
is easy. But then, it is only through the geometric language of topology and differentiable
manifolds, tensor calculus (Sect. 4), and sketch after sketch of contorted annuli, that such
spaces can be reasoned about and new directions suggested.5 The inspiration and insight
of geometry passes to the exactitude and algorithmic inevitability of algebra, and back
again.6

More expansively, there are crucial visual elements to even pure formula manipulation.
The apparently syntactic cancellation law

x + y = x + z

⇒ y = z

has a striking visual aspect [14, p. 242]. It also has an explanation: the existence of inverse
and unit elements. Supposing x + y = x + z, then

− x + (x + y) = −x + (x + z)

⇒ (−x + x) + y = (−x + x) + z

⇒ 0 + y = 0 + z

⇒ y = z

This does not have the feel of learning, say, to conjugate verbs in natural language, or of
declining nouns to fit moods. It does not appear to be a linguistic artifact. This is not a
series of rules for expressing mathematics; this is mathematics.

5For methods of drawing topological objects, see [12]. For an abstract physics text that makes extensive
use of diagrams, see [13].
6As long as Algebra and Geometry were separated, their progress was slow and their use limited; but once
these sciences were united, they lent each other mutual support and advanced rapidly together towards
perfection. (Lagrange 1795)
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There are two observations to make in passing. First, the visual and syntactic ten-
dencies drive mathematics towards one of its most general ends: unification. This means
finding ever deeper connections between apparently disparate fields, fields opened by fig-
ures and formulae respectively, and showing how tools developed for use in one area can
be put to very fecund work in another. Category theory is well-known to be directed to-
ward unificationist ends [22]. Second, the means of reaching this unification is through
representation. Understanding representations, I think, is the key to understanding the
interaction between figures and formulae—because a representation can potentially hold
between anything: between different types of formulae, between types of pictures, and
between figures and formulae.

As a paradigm case of how representations play here, we cite the leitmotif of the mag-
nificent Rings of Continuous Functions [16]. Let X be a topological space, and consider
the set of all continuous functions from X into the reals R. This set, C(X), forms a ring
under some obvious operations on the functions; so C(X) has a clear algebraic structure.
We then learn that, given two spaces X, Y , if X is homomorphic to Y , then their corre-
sponding rings C(X), C(Y ) are isomorphic. The structure of the underlying space com-
pletely determines the ring structure. That is striking enough. The bulk of Rings, though,
addresses the question of what conditions on the algebraic structures will determine the
topology of the spaces [16, p. 12]. Given that C(X) is algebraically equivalent to C(Y ),
what else do we need to know to conclude that X and Y are topologically equivalent? The
answer constitutes a volume of fertile mathematics spanning topology, algebra, and set
theory. By finding suitable representations of the space X in the ring C(X), light is cast.

The question for us is what makes a representation more or less faithful, more or
less useful. In part the answer to this question will depend on the particularities of any
given case, on the sort of mathematics one is doing. There is still something to be gained,
though, from asking the question at very high level of generality. We are looking for an
abstract schema that expresses how a representation holds between structures. This is the
relationship to examine now, through applied examples.

4 Examples

To get a basic sense of how the visual features in formal reasoning, let us consider a few
formula-driven ideas. The first example is from abstract algebra; the second is the tensor
calculus. Each reveals how syntax itself can, in a way, become a mathematical object. The
third example, Galois theory, shows how representation internal to mathematics works.

4.1 Free Modules

A module is a generalization of a vector space. Let X be a subset of a module F . Say that
F is free on X iff there is a mapping h : X −→ F such that, for any f : X −→ M from
X to a module M there is a unique homomorphism g : F −→ M such that f = g ◦ h.
Putting this notation into two dimensions makes a figure; and while the formal definition
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requires some time to absorb, the picture shows exactly and immediately what it means
for F to be free [7, p. 38]: F is free on X when the diagram commutes:7

X F

M

h

f
g

It turns out that any such X has a free module. This is extremely important, and is called
the universal mapping property (UMP); we will return to it we discuss category theory in
Sect. 5.

But now notice what the diagram does not tell us—which we would need to know to
prove that for any set X there is an R-module free on X. The definition as a quantified
sentence of mathematical English says this: A module F is free on X iff

∃h
(
h : X −→ F and ∀f

(
if f : X −→ M then ∃g : F −→ M such that:

g is a homomorphism, and f = g ◦ h,

and ∀g′(if g′ is a homomorphism and f = g′ ◦ h, then g = g′)))

The form of the sentence shows that the universal mapping property holds, or not, depend-
ing on the existence of an h with the required property. The diagram can carry neither the
existential aspect, nor can it express the uniqueness of g. It does not capture logical re-
lations of conditionality, nor that these are the salient properties. In the diagram, it looks
like it is all already there.

In his recent textbook, Awodey explains that, indeed, it is the existence and uniqueness
aspects that make the definition useful [2, p. 17]. His terminology will illuminate the
entire discussion to come. To insure that there is “no junk” in the module, we want every
member of the free module to be expressible as a product of elements of X, for some
operation defined in terms of F . The uniqueness condition means that there is no junk.
Further, there should be “no noise,” meaning that any relations holding between elements
are required to do so by the axioms. The existence part of the definition controls for noise.
No trivial relations can be proved to hold between elements. These are the most important
facts about free modules, which will recur often in the pages ahead. And a formula is
required to know them.

4.2 Tensor Calculus

The tensor calculus is a notational system, devised by Ricci and his student Levi-Civita
at the turn of the 20th century, to express ideas from mechanics and differential geome-
try. Tensor calculus streamlines the manipulation of a great deal of information, through
syntactic rules and abbreviations. It was first called ‘absolute differential geometry’, to
emphasize the calculus’ freedom from coordinate systems. Einstein couched his theory

7A diagram like this one commutes when g ◦ h = f , i.e. g(h(x)) = f (x).
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of relativity in the Ricci formalism.8 As I illustrate, though, the system is not merely no-
tation, but is itself a new piece of mathematics. The point of this section is that, among
other things, formalism can be figurative. In the case of tensor calculus, the structure of
its syntax is the syntax of the structure it describes.

A main theme in tensor calculus is to use indices judiciously. The calculus “guides
the user through explicit computations—virtually a machine-readable calculus. . . The
calculus thinks for the user” [20, pp. 31, 42]. This is achieved through a confluence of
a background coordinate system with a foreground formalism.9 Another is to compress
information—both because there is so much information, and also because while coordi-
nates may not be easy to display in dimensions higher than 2, their syntactic counterpart,
indexed variables viz. gμν...ρ , is eminently flexible.

Here is a bite-sized example. The Einstein summation convention is that, when indices
use the same variable, a summation is implied over that index, which means that gν

μν is to
be understood to say

∑n
ν=0 gν

μν . Now define the Kronecker delta,

δν
μ =

{
1 if μ = ν

0 if μ 	= ν

Let us consider an N -dimensional space. Using Einstein’s summation convention, we
obtain

δμ
μ = N

In other words, the dimension of a space can be recovered from the notation, but otherwise
can remain an inessential part of the background.

The visual arrangement of syntactic marks on the page serves, in a structurally sig-
nificant way, to express and characterize geometric information. The pages of Dirac’s
General Relativity [10] are themselves laid out in a spare and arid way, filled with empty
white space, that itself contributes to the communication of ideas. Dirac shows that the
curvature of space can be expressed with a concision and perspicacity that outstrips mere
notational representation. The Ricci tensor is defined,10 and Einstein’s law of gravitation
can be expressed in a heartbeat: In empty space,

Rμν = 0

8Einstein wrote to Levi-Civita, “I admire the elegance of your method of computation; it must be nice
to ride through these fields upon the horse of true mathematics while the like of us have to make our
way laboriously on foot.” Quoted in Goodstein, J.R.: The Italian mathematicians of relativity. Centaurus
26(3), 241–261 (2007).
9Dirac: “With a network of curvilinear coordinates the gμν , given as functions of the coordinates, fix
all the elements of distance; so they fix the metric. They determine both the coordinate system and the
curvature of space” [10, p. 9].
10If the speed of light is taken to be unity, the metric on Minkowski space is

(
dx0)2 − (

dx1)2 − (
dx2)2 − (

dx3)2

Through some notational conventions for moving indices up and down, this reduces to dxμdxμ, with
Einstein’s summation convention understood. A coordinate system with coefficients gμν is introduced.
The invariant distance between a point xμ and a nearby point xμ + dxμ is

gμνdxμdxν
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All this pure syntax is not just bookkeeping. It is a method for capturing structure,
in compressed and manipulable forms. A tensor is a geometric object, or even a physical
object—a generalization of a ‘directed quantity,’ a vector. Yet a vector is just an inhabitant
of a vector space; and a vector space in turn is any structure satisfying a list of algebraic
axioms. (See Sect. 4.3.) The structure of the syntax, in other words, dictates any further
syntax of the structure; cf. the cancellation law for groups (Sect. 3).

4.3 Galois Theory

Having considered how formalism can itself be figurative, we more overtly emphasize the
pressing issue of representation. The example of Galois theory shows how mathematics
unifies by connecting disparate branches, and how faithful representations between math-
ematical objects—in this case, algorithmic constructions and algebraic structures—make
this unity possible.11

Galois found a way to answer questions about polynomials by checking for properties
of groups. This is a particularly clear instance of a venerable mathematical strategy: given
a problem about some intractable object X, find an object �X� that is tractable, and show
that �·� is a faithful means of representing X for all relevant purposes. In Galois’ theory,
he associated with each polynomial the set of its symmetries. These form a group. Galois
showed that, if a polynomial is soluble, its Galois group will have a certain property; this
is a device, then, for showing that certain polynomials are insoluble.

Galois’ achievement is to find more and more sophisticated algebraic objects through
which we can study target phenomena. Consider the question: Can a cube be duplicated
using only a straightedge and compass? Let F be a field, and K,L be subfields of F.
A field extension is a map i : K −→ L that is structure preserving:

ι(x + y) = ι(x) + ι(y)

Now, if L : K is a field extension, then, just because K and L are subfields and K ⊆ L,
the operations

u + v : L × L −→ L

λu : K × L −→ L

define on L the structure of a vector space over K . This is an instance of the universal
mapping property from Sect. 4.1.

again with summations understood. If we define a Christoffel symbol

Γμνσ := 1/2(gμν,σ + gμσ,ν − gνσ,μ)

then we can define the Riemann-Christoffel curvature tensor

Rβ
νρσ := Γ β

νσ,ρ − Γ β
νρ,σ + Γ α

νσ Γ β
αρ − Γ α

νρΓ β
ασ

Lowering suffixes, the tensor Rμνρσ has 256 components. One can prove that space is flat if and only if
Rμνρσ vanishes. The Ricci tensor is defined: R

μ
νρμ = Rνρ .

11For a rigorous but accessible presentation, see [27].
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Define the degree of a field extension L : K to be the number of its basis vectors of the
vector space on L over K .12 Just knowing about the degree of a field extension provides
enough to answer solvability questions. Any point 〈x, y〉 in 2-space that is compass-and-
straightedge constructible from a subfield K will have associated degrees that are powers
of 2. But the duplication of a cube, or trisection of an angle, by compass and straightedge
would generate a point (a, b) in the rational plane with degree 3. Unfortunately, 3 is not a
power of 2.

The fundamental theorem of Galois theory establishes a one-to-one correspondence
between a field extension and the automorphisms on it—the Galois group. Algebra cap-
tures the right kind of information about geometric constructions and equations, namely
size (number of basis vectors) and shape (group structure). Ruler-and-compass construc-
tions are algorithms for deriving one set of points from another; we learn about them
through measurements of vector spaces. The representations are appropriate in an exact
way. There are no pictures involved (although ruler-and-compass work is paradigmatic
geometry) but we have a clear instance of high-fidelity transmission of information. This
was the start of abstract algebra; let us now see if we can generalize on the processes
we’ve seen here and with the universal mapping properties, by turning to abstract algebra.

4.4 The Argument So Far

Formalism can itself be figurative. From commutative diagrams to the visual aspect of
syntax in the tensor calculus, we see how notation itself captures, compresses, and ex-
presses mathematical information. A very simple example is the ascending chain condi-
tion on Noetherian rings [7, Chap. 3], that for some n of a chain,

C0 ⊆ C1 ⊆ · · · ⊆ Cn = Cn+1

It is easy to see the condition in the symbolism, even if the reason is as simple as the
similarity of the sign ⊆ to a paper-clip chain. These examples, and Galois’ theory, show
how representation within mathematics—a geometric construction represented as a point
in a field extension, for instance—are not importantly different from representations of
mathematics by figures or diagrams. So the working distinctions of this paper—proofs
versus pictures, and formulae versus figures—is becoming blurred. And this is as we
expected; but we need now some accounting of how the vague boundary is mediated.
We want a theory of how the ‘same’ mathematical information can be presented in such
different ways, and to such different effects.

As a starting point, the relationship seemed to be expressed precisely by the existence
and uniqueness of certain mappings, as seen in the UMP for free modules, and again when
we defined the structure of a vector space over a field extension. The free module F on
X must factor into members of X alone: this corresponds to the condition that, for any M

such that X maps to M , the unique structure preserving map

g : F −→ M

12A vector space may have many different bases, but there are always the same number of basis vectors
in each; a vector space is uniquely determined by its dimension, up to isomorphism.
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exists. All relations between members of the module are determined by the algebraic
structure: this corresponds to the condition that the map

h : X −→ F

exists. We turn, then, to a generalization of what we’ve already seen about free modules
and commutative diagrams—to some ‘abstract nonsense’ that may yet make sense of all
this.

5 Category Theory

Category theory concerns objects X,Y, . . . , and arrows between objects. The arrows form
sets,

hom(XY) = {f : f is an arrow from X to Y }
Often there is an isomorphism φ between sets hom(XY), hom(UV ), about which it is
customary to abuse notation and write

φ : hom(XY) ∼= hom(UV )

The set hom(X,Y ) is a small picture of the mathematical life of the objects in a category,
at an extremely general level. This is the level at which we can now do two things.

First, we have a mathematical discipline where figures and formulae become intermin-
gled to the point of being almost indistinguishable. So we can validate our hypothesis that
the simple yes/no distinction for pictures is unhelpful. Second, the discipline is itself a
study of what mathematical information is preserved when figures and formulae become
indistinguishable; and so we will try to appropriate some category theoretic notions to
answer our original question, of what makes a good representation.

In Sect. 4.1 above we considered free modules and noted that F being free on X would
be expressed by category theorists as a universal mapping property. Now we sketch one
of the deeper instances of a UMP.

An adjoint functor is a category theoretic notion of tremendous scope. In logic, the
existential quantifier is an adjoint. In topology, the image of a continuous function is an
adjoint. There is no prima facie reason to see any connection between these two, but from
a categorical point of view, they turn out to be essentially the same thing [2, Chap. 9].
In Galois theory, it is impressive that groups and solutions to equations are related, but
it is not exactly baffling. Both are algebraic to begin with. In the case of adjoint func-
tors, we are at the heights of structural abstraction. Our outline of adjunctions follows [5,
Chap. XV].

Let F,G be functors between categories C,D. A natural transformation η : F −→ G

is a function which assigns each X ∈ C an arrow ηX : F(X) −→ G(X) of D in such a
way that every arrow f : X −→ Y of C yields a commutative diagram

F(X) F(Y )

G(X) G(Y )

F(f )

ηX

G(f )

ηY

This elegant figure is the key to the whole story.
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Let us have two categories C,D and two functors F,G, such that

C

D

FG

preserves map structure. Again stretching the use of notation, the relationship can be
written

F : C ←→D : G
For X ∈ C and Y ∈ D, we compare all the arrows hom(F (X),Y ) in D with all the arrows
in C from X to G(Y), the set hom(X,G(Y )). The adjunction of the functor F to the
functor G is a natural bijection

φ : homD
(
F(X),Y

) ∼= homC
(
X,G(Y )

)

In this case we say that F,G are adjoints.13

Returning this terminology to Sect. 4.1, if we write the underlying set of the module M

as U(M) and the free module F as F = V (X), the condition for an adjunction then is that
every element of hom(X,U(M)) corresponds to exactly one element of hom(V (X),M),
and every monoid homomorphism restricts to a function on X. That is, for every set X

and monoid M there is an isomorphism φ of sets

φ : hom
(
V (X),M

) ∼= hom
(
X,U(M)

)

So we see that the free module is adjoint to the underlying set. This result is appealed to
in the next section.

By generalizing the basic faithfulness conditions of existence and uniqueness—‘no
junk, no noise’; enough, but not too much—to the austerity of adjoints, we have now for-
malized a notion ubiquitous in mathematics.14 But more interestingly, I think, we have
formalized a practice ubiquitous over mathematics. Perhaps this is the most distinctive
feature of category theory, and what makes it striking from a philosophical point of view.
Not only do images and inscriptions become rather indistinguishable in commutative dia-
grams; this very indistinguishably is exactly what the diagrams, and so category theory, is
about. By comparison, on Klein’s famous Erlangen view of geometry, a geometry is char-
acterized by which properties are preserved under transformations. The Erlangen view of

13There is a related category theoretic notion of representation. A representation is a natural homomor-
phism (in the technical sense of natural, above) between S and a set theoretic object. One can prove that
a functor G : D −→ C has a left adjoint iff each hom(X,G−) is representable, for every X ∈ C.
14An adjunction between two categories can also be an equivalence relation. An equivalence on functors
F : C −→ D, G : D −→ C is such that

hom(Z,X) ∼= hom
(
F(Z),F (X)

)

This is “isomorphism up to isomorphism” [2, p. 148]. Writing Z = G(Y), it follows by using some natural
isomorphisms that hom(G(Y ),X) ∼= hom(F (G(Y )),F (X)) ∼= hom(Y,F (X)). Therefore any equivalence
is an adjunction [2, p. 181].
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category theory for this paper, then, would be to identify which properties of arrows are
preserved under the transformation from formula to diagram and vice versa. The theory
is about the kind of structure of maps that is respected in diagrammatic displays of infor-
mation. And the most pleasing part is this: In the case of adjoints, the structure preserved
is information about what kind of structure is preserved.

It remains to explicitly apply these concepts to the philosophical debates discussed at
the outset.

6 A Mathematical Answer to a Philosophical Question

Giaquinto’s program, the ‘centrist’ view about visual reasoning discussed in Sect. 2.3,
is to find criteria for representation. From the conclusion of his recent book, Giaquinto
recommends:

The symbolic-diagrammatic distinction (or the algebraic-geometric distinction) is too coarse to
advance our understanding of visual thinking in mathematics, let alone mathematics in general:
we need taxa of a finer grain. Although there is a contrast to be drawn between symbolic thinking
and diagrammatic thinking, these are vague opposites. . . no more apt than thinking that every
human is wise or foolish [14, p. 253].

Through the various examples we considered, we begin to have some criteria for the finer
grained taxonomy Giaquinto suggests. Having seen how representations work from within
mathematics, we get an answer that is reasonably simple, but therefore that much harder to
draw out: Representations, pictorial or otherwise, should be faithful, clean and effective.
Notions appropriated from category theory will offer us an appropriate schematic form of
this basic observation.

6.1 The Figures-and-Formulae Functor

The interplay of figures and formulae occurs in situations where figures X and Y stand in
some kind of visual relationship if their representations as formulae stand in an analogous
syntactic relationship. Schematically, given a suitable representation, �·�, and relation f ,
we could say that X and Y are congruent modulo �·�, and draw this picture:

X Y

�X� �Y �

f

�·�

�f �

�·�

This is a two-place, relational schema. For the study of single objects, X and its rep-
resentation �X�, the point of entry would be to ask which maps from X to �X� are
illuminating—that is, about hom(X, �X�). The embedding �·� is a functor, a generalized
homomorphism with the following properties:

�
(f : X −→ Y)

� = �f � : �X� −→ �Y �
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�f ◦ g� = �f � ◦ �g�, ∀g : Y −→ X

�1X � = 1�X�

where 1X is the unit element for X. A good representation is a kind of functor.15

The diagram captures a recurring theme in the examples considered, the specification
of existence and uniqueness conditions. These conditions correspond with the criteria
that an interesting mathematical theory must have enough structure, but not too much.
Tensor calculus compresses information to the point that a (well trained) user can handle it
easily, all the while with background facts like dimension recoverable from the notation if
needed. Free modules, which we saw in application in Galois theory, and then powerfully
generalized as adjunctions, capture these basic conditions of mathematical adequacy and
practice.

Of course, at the current level of abstraction, we have no indication of what criteria
the mappings must meet to takes figures to formulae or vice versa in any interesting way.
The proposed functor is more like a label for what is wanted. All the real work will
be done by the specifics of which modules, functions etc. exist and are unique; all the
real work would have to be done rather piecemeal, looking at each case, and explaining
what is meant by the word ‘interesting’. Although our examples above my give some
ostensive indication of what counts as interesting, I do not pretend that sketches with
arrows solve all the philosophical problems at hand. And it must be emphasized that
there remain straightforward problems with pictures, in particular, the giving of existence
and uniqueness conditions (as noted in Sect. 4.1). The figures we have considered go no
distance in allaying any worries there. The philosophical payoff in pursuing the analogy,
between something philosophers are concerned with and some work that mathematicians
do, remains to be seen, perhaps through some examples of how the schematic can be
applied in a philosophically illuminating way. So adjunctions and the like are not alone a
panacea.

For present, though, it is progress to say that the language of adjunctions and natural
transformations give us a schematic for describing successful instances of representations,
and does so in a way drawn from mathematical practice itself.

6.2 Concluding Remarks

Figures and formulae, when used well, represent each other. For this relationship to hold,
they cannot simply be the same; it is pointless to consider the representation of X by X it-
self. So the two are at a certain distance; but they can be so without conflict. The language
and images of category theory have provided us with a way to express this abstract rela-
tionship. Seen rightly, the mathematics is providing us with a means to understand itself.
This is not a new idea; Hilbert proposed metamathematics as a branch of mathematics,

15The figures-and-formulae functor is not the most general schema for the sort of representations we
mean to capture, since it requires the existence of a unit element 1X for any X. It seems clear that there
can be interesting instances of X with no such element. So this schema can be taken as a partial result,
that holds over domains with a sufficient amount of structure. Similarly, not every mathematical object is
a group or a ring, but still group and ring theory are quite ubiquitous, and have a lot to tell us.
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and that program has given us both more reliable and deeper insights into the nature of
proof and truth than the two millennia did previously.

Now, though, a century after Hilbert, we want to know about other features, too, be-
yond proof and truth. How are problems expressed? How are they solved? Pursing such
questions, some old philosophical debates are mooted; we find instead an answer internal
to mathematics. Describing some of the earliest diagrammatic mathematics, Netz writes:

The [mathematical] diagram is not a representation of something else; it is the thing itself. It is not
the representation of a building; it is like a building, acted upon and constructed [25, p. 60].

We have hit upon a representation of representations, which is both a hermeneutic limita-
tion and a very welcome insight: Further rigorous accounts of structure are always only
more structure. And so the interplay of figures and formulae goes on.16
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Representation of Graphs in Diagrams
of Graph Theory

Mitsuko Wate-Mizuno

Abstract The treatise of Dénes Kőnig Theorie der endlichen und unendlichen Graphen
(1936) includes many diagrams. The style of the diagrams is typical of present-day texts
of graph theory. In this treatise, many mathematical recreation problems are treated. Some
of the problems were already treated by precedent mathematicians. In some of these early
works, the diagrams were given, but the styles were not the same as that of Kőnig. More-
over, the way to use the diagrams in the early works is different from that of Kőnig.

Examining the diagrams, we will find that a certain type of diagrams became gradually
influential. This historical aspect may be related to the formation of concepts of graph, but
it will not be discussed here.

We will argue that Tarry’s talk “Géométrie de situation: nombre de manières distinctes
de parcourir en une seule course toutes les allées d’un labyrinthe rentrant, en ne passant
qu’une seule fois par chacune des allées” (1886) played an important role in the way to
use the diagrams.

Keywords Kőnig · Tarry · Recreations · Graph

Mathematics Subject Classification (2010) 00A08 · 01A55 · 01A60 · 01A70 · 97A20

1 Introduction

Dénes Kőnig (1884–1944), a Hungarian mathematician, is recognized as the “father of
graph theory” with his treatise Theorie der endlichen und unendlichen Graphen written
in 1936 [29]. In this treatise, some problems are selected from mathematical recreations,
and they play an important part. This fact corresponds to the fact that Kőnig, when he
was still a student, published two books on mathematical recreations. In fact, Kőnig’s
treatise of 1936 and one of his books on mathematical recreations are closely related to
each other.1

I will analyze how, in the context of mathematical recreations, some features of the
diagrams of graph theory took shape. Moreover, I will establish that Kőnig inherited the
features of the diagrams from some publications on mathematical recreations.

In the treatise of 1936, many diagrams are used for representing graphs. They are
mostly of a single kind of diagram, consisting of curved or straight lines which represent

1I examined this relationship in my thesis [51], Chap. 6.
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edges, and small circles which represent vertices. This representation of graphs in dia-
grams of graph theory continues to be used in the texts of graph theory today.

I focus on the question of how this representation of graphs in diagrams of graph theory
took shape.

To address this issue, it appears that one needs to examine some problems from math-
ematical recreations which in the treatise of 1936, Kőnig treated on the basis of the way
mathematicians before him had dealt with them. Four problems appear to have played a
key part in this process: a problem of Königsberg bridges, a problem of describing poly-
gons, a problem of configuring dominoes and a problem of circulating in mazes. This
selection of problems will allow us to deploy a historical approach to diagrams, and to
identify how some of the key features of the diagrams of graph theory took shape in
different contexts.

In the earlier writings, different types of diagrams were used for different topics.
Among these types of diagrams, a certain type became gradually influential.

This historical aspect may be related to the formation of concepts of graph. In Kőnig’s
treatise of 1936, the same concepts of graph are attached to the notion of graph in the
different problems. In other terms, the concepts of graph allowed viewing problems that,
when they appeared, looked unrelated, as depending on the same concepts attached to a
single notion of graph, and thereby as related. In fact, in examining the changing solution
given to these problems along the 19th century and early 20th century, one can identify
a process of progressive integration of the problems throughout the various publications
of mathematical recreations in which they were treated. In these publications, mathemati-
cians introduced concepts that allowed to unify problems progressively, and that entered
in the shaping of the concepts attached to the same notion, that is, the notion of graph in
Kőnig’s treatise of 1936. In the present article, however, we will not discuss further the
relation between the concepts and the diagrams.

2 Kőnig’s Way to Use the Diagrams

2.1 Why Did Kőnig Use the Diagrams in 1936?

The treatise Theorie der endlichen und unendlichen Graphen in 1936 [29] makes explicit
the reason why Dénes Kőnig used diagrams in it. Since this gives us information as to
how Kőnig viewed the diagrams he was using, let us first examine what the author said
about them.

Kőnig treated various recreational problems and discussed them as graph theory in this
treatise.

In the preface, he explained that graph theory can be understood from two standpoints:
one standpoint views the topic as the first part of general topology, while the other under-
stands it as a branch of combinatorics and abstract set theory.

If this treatise had embraced the first standpoint, that of general topology, we could
expect that diagrams would be used for representing topological concepts.

However, Kőnig actually took the latter standpoint, that of combinatorics and abstract
set theory. He explained the reason for this decision as follows:
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Kőnig: Theorie der endlichen und unendlichen Graphen in 1936 [29], Preface. (My translation from
German.)
In this book, we take this second standpoint, mainly because we attribute to the elements of
graphs—points and edges—no geometrical content at all: the points (vertices) are arbitrary dis-
tinguishable elements, and an edge is nothing else but a unification of its two endpoints. This
abstract point of view—which Sylvester (1873) emphasized already2—will be strictly kept in our
representation, with the exception of some examples and applications.

In spite of Kőnig’s decision to take the standpoint of combinatorics and abstract set
theory, he used in his treatise a geometrical way to represent elements of a graph (points
and edges). Moreover, he introduced diagrams that were not presupposing any geometri-
cal point of view or any geometrical axioms.

We raise therefore naturally a very simple question: why did Kőnig, in this treatise, use
a geometrical way of representing parts in a graph and diagrams, although no geometrical
content is attributed to the elements of graphs?

Kőnig himself answered half of the question. He made clear that he used a geomet-
rical way of representing elements of a graph because it gave him a very comfortable
terminology.

The question thus remains: how were the diagrams to be read if they were not geomet-
rical?

I suppose that Kőnig used diagrams for representing the geometrical notation used in
this treatise, even though neither any “geometrical point of view” nor any “geometrical
axiom” was presupposed.

To inquire further into this supposition, I will examine in Sect. 2.2 some of the dia-
grams shown in this treatise.

The book Graph Theory, 1736–1936 (Norman L. Biggs, E. Keith Lloyd and Robin J.
Wilson, 1976 [16]) contains most of the source material with which we shall deal later
on. However, they interpret the early-day problems using the diagrams of modern graph
theory. Therefore, they bypass the question of the emergence of these diagrams. This is
the question with which I shall reconsider this source material and other documents.

2.2 Diagrams in Kőnig’s Treatise of 1936

Let us consider here how Kőnig used diagrams in Theorie der endlichen und unendlichen
Graphen in 1936. The point will be to compare these diagrams with those he himself
published before 1936, and those in the publications by other mathematicians. As I wrote

2Kőnig made here a reference to the article by Sylvester entitled “On recent discoveries in mechanical
conversion of motion” in 1873 [47]. This article treated a mode of producing motion in a straight line by
a system of pure link-work without the aid of grooves or wheel-work, or any other means of constraint
than that due to fixed centers, and joints for attaching or connecting rigid bars. Maybe here Kőnig had the
following part of Sylvester’s article in mind: “The theory of ramification is one of pure colligation, for
it takes no account of magnitude or position; geometrical lines are used, but have no more real bearing
on the matter than those employed in genealogical tables have in explaining the laws of procreation.
[New paragraph] The sphere within which any theory of colligation works is not spatial but logical—
such theory is concerned exclusively with the necessary laws of antecedence and consequence, or in one
word of connection in the abstract, or in other words is a development of the doctrine of the compound
parenthesis.” (The Collected Mathematical Papers of James Joseph Sylvester, vol. 3, pp. 23–24.)
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in Sect. 1, I will select only the diagrams used in the problems of bridges, polygons,
dominoes and mazes, since these problems were also treated in many publications before
his treatise of 1936, and we therefore have enough material to compare with Kőnig’s
treatise in 1936.

These problems are found in the books on mathematical recreations written by some
mathematicians. In these books, certain mathematical problems were collected under the
concept of “recreation”, “pleasure”, “delectation”, “leisure”, “amusement”, “game” or
“curiosity”.3

Kőnig also published two books on mathematical recreations in 1902 and 1905 [27,
28].4 The book of 1905 includes the problem of bridges which we will discuss in Sect. 2.3.
This provides us with the publications to which he had access in his youth and allows us
to analyze the evolution of his approach to some problems between 1905 and 1936.

The works of Édouard Lucas (1842–1891) on mathematical recreations were the topic
of research by some historians. According to Anne-Marie Décaillot, Lucas was attracted
by “geometry of situation”, and, from the problems which had been considered as “geom-
etry of situation”, he drew recreations, but without any analysis ([19], p. 5). The “geometry
of situation” was not yet well structured at that time (Pont: La topologie algébrique des
origines à Poincaré [39], Epple: “Topology, matter, and space I: topological notions in
19th-century natural philosophy” [21]).5

Through the examination of diagrams used in the above mentioned four problems, we
will clarify how a part of the “geometry of situation” was structured, and which diagrams
were involved in this process.

3Some of the collections in this genre were cited by Kőnig in his books on mathematical recreations
in 1902 and 1905 [27, 28], and some of them were cited even in his treatise of 1936 [29]: Problèmes
plaisans et délectables qui se font par les nombres by Claude-Gaspar Bachet de Méziriac [5–8] in the early
17th century; Récreations mathématiques et physiques by Jacques Ozanam [36, 37] in the 17th century;
Récreations mathématiques (4 volumes) and L’Arithmétique amusante by Édouard Lucas [31–35] and
Mathématiques et mathématiciens: pensées et curiosités by Alphonse Rebière [40, 41] in the 19th century;
Mathematical Recreations and problems of past and present times (Mathematical Recreations and essays
for the 4th edn. and later) by Walter William Rouse Ball [9–15] (and many later editions), Mathematische
Mußestunden by Hermann Schubert [43–45] and Récréations arithmétiques and Curiosités géométriques
by Émile Fourrey [24, 25] around 1900; Mathematische Unterhaltungen und Spiele and Mathematische
Spiele by Wilhelm Ahrens [1–4] in the early 20th century. Also in the period close to the publication of
Kőnig’s treatise of 1936, a book in this genre was published in Belgium: La mathématique des jeux ou
récréations mathématiques by Maurice Kraitchik [30], which might suggest interest of mathematicians
at that time in mathematical recreations.

Anne-Marie Décaillot made historical researches on Lucas’ works [18–20].
David Singmaster made a precise examination of all the editions of Ball’s book [46].
Albrecht Heeffer [26] worked on a movement toward creation of this genre in the 17th century.
In the UK and the USA in the 19th and the 20th century, amateur mathematicians or scientific

writers—Samuel Loyd, Henry Ernst Dudeney, Martin Gardner and so on—also published in this domain.
Some problems in their collections were taken from the collections listed above. This fact is interesting
from the point of view of the popularization of mathematics, but, for the purpose of this article, we don’t
need to examine precisely these works.
4I translated these Hungarian books into English in my thesis [51].
5As Décaillot says, “among the mathematical games and recreations of Euler, the traces of strings on the
chessboard of Vandermonde in the 18th century, the ‘higher mathematics’ of Riemann and the Analysis
situs of Poincaré, the geometry of situation has a fluctuating content which is structured only slowly
during the 19th century” ([19], p. 129, my translation from French).
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Fig. 1 Taken from Sect. 2.2
of Kőnig’s book of 1936 [29]

2.3 Appearance of Graph-Like Diagram for the Problem of Seven
Bridges of Königsberg

In the chapter entitled “Eulersche und Hamiltonsche Linien (Eulerian and Hamiltonian
lines)” of the book of 1936, Kőnig treated the problems of the so-called Eulerian circuits
and the Hamiltonian circuits. An Eulerian circuit is a closed path which goes through each
edge of a graph once and only once; a Hamiltonian circuit is a closed path which goes
through each vertex of a graph once and only once.

Kőnig gave some theorems concerning Eulerian circuits in the first section of this
chapter. One of the theorems is as follows:

“One can go through all the edges of a graph in a closed path if and only if the graph is a connected
Euler graph” (Theorem 2, my translation from German).

The terms appearing in this theorem—edge, graph, closed path, connect etc.—were de-
fined in Chap. 1 using the concepts of set theory. It was proved by contradiction. In the
proof, no diagram was used.

In this context, in the second section entitled “Das Brücken- und Dominoproblem (The
problem of bridges and the problem of dominoes)”, Kőnig mentioned the problem of
seven bridges of Königsberg as an example of an application of the theorems.

This problem was first mathematically considered and published by Leonhard Euler
(1707–1783). The problem is as follows: in Königsberg, there was a river flowing from
east to west; across the river, there were seven bridges as shown in a of Fig. 1; is there a
route to cross every bridge once and only once, or, more generally, is there such a route
for any other forms of rivers and bridges?

Kőnig introduced this problem using a simplified map as a of Fig. 1, and then he gave a
diagram as b of Fig. 1, which consists of small circles representing vertices corresponding
to land areas, and straight or curved lines representing edges corresponding to bridges.
In this way, the diagram shown in b of Fig. 1 represents geometrical elements which
correspond to a graph. I will call such a diagram a “graph-like diagram”.

In the diagram in Fig. 1.b, Kőnig displayed only the elements necessary for solving the
problem. From this diagram, we see that each vertex is connected to an odd number of
edges. Kőnig concluded, using the theorem of graph theory mentioned above, that there
is not such a way to cross every bridge just once.

This diagram is thus useful for solving the problem using geometrical concepts repre-
senting a graph.
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Fig. 2 Taken from Euler’s article in 1736 [22]

Fig. 3 Taken from Euler’s article in 1736 [22]

Originally, how did Euler deal with the problem in his article “Solutio problematis ad
geometriam situs pertinentis (solution of a problem relating to the geometry of situation)”
in 1736 [22]?

The article of Euler consists of twenty-one sections as follows, each of which has no
title.

§ 1: Aim of this article. This article gives a specimen of Geometriam Situs.
§ 2: Introduction of the problem. Seven bridges connect four land areas as shown in

Fig. 2.
Is there a route to cross every bridge once and only once? More generally, is there such
a route for any other forms of rivers and bridges?

§ 3: Choice of the way to solve the problem. One can solve the problem by checking
over every possible course, but Euler chooses a simpler method, with which one will
find if such a route exists or not.

§§ 4–5: Symbolization of the objects of the problem. Euler gives symbols A,B,C,D

to the land areas and a, b, . . . , g to the bridges. Each route is described by a sequence
of symbols of land areas in the order of passage. For example, ABD is a route depart
from A via B to D, no matter which bridges are crossed. To describe a route to cross
seven bridges, eight symbols are necessary.

§§ 6–9: Solution of the problem of seven bridges of Königsberg. Because there are
two bridges between A and B , the sequence of symbols of the route demanded should
include two sets of adjacent A and B . The same consideration is applied to the other
bridges. Euler tries to find a law to judge if such a sequence of eight symbols exists or
not. Suppose that a traveler crosses the bridge a of Fig. 3. In the sequence of the route,
A appears once no matter if the traveler departs from A or arrives at A. Similarly, if A
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has three bridges and the traveler crosses them, A appears twice in the sequence of the
route. Generally, if A has any odd number of 2n + 1 of bridges, A appears n + 1 times
in the sequence of the route. In the case of Königsberg, A has five bridges, and each
of B,C,D has three bridges. Therefore A appears three times, and each of B,C,D

appears two times in the sequence of route. But such a sequence cannot be realized
with only eight symbols. This means that there is no route to cross every bridge of
Königsberg once and only once.

§§ 10–13: Generalization of the problem. Euler generalizes the problem to all the
forms of bridges and land areas. Euler says that, if the sum of numbers of symbols
to appear in the sequence is larger than “(the number of bridges) + 1”, it is impossible
to find such a route to cross every bridge once and only once. Euler says also that it
is possible if the sum of numbers of symbols to appear in the sequence is equal to
“(the number of bridges) + 1”, but it is not proved.
In the case where A has an even number of bridges, we should consider if the trav-
eler starts from A or not. If the traveler does not start from A which has 2n bridges,
A appears n times in the sequence of symbols of the route. If the traveler starts from
A which has 2n bridges, A appears n+1 times in the sequence of symbols of the route.
Put off considering the starting point, then a symbol of a land area appears n+ 1 times
if the land area has any odd number 2n + 1 of bridges, and n times if the land area has
any even number 2n of bridges in the sequence of symbols of the route. If the sum of
the symbols to appear in the sequence is equal to “the number of bridges + 1”, there
is a route to cross every bridge once and only once, where the starting point cannot
be any land area which has any even number of bridges. If the sum of the symbols to
appear in the sequence is equal to “the number of bridges”, there is a route to cross
every bridge once and only once, where the starting point should be a land area which
has any even number of bridges, so as to increase by 1 the number of symbols to appear
in the sequence. But Euler gives no proof for the case where such a route exists.

§ 14: Invention of an algorithm depending on §§ 10–13. Euler gives an algorithm that
he says can be used to know if one can cross every bridge once and only once in any
form of rivers and bridges. But actually, it is rather an algorithm to know if such a route
is impossible or not, because Euler gives no proof of the fact that where such a route
exists.

1. Label the land area with symbols A,B,C, . . . .
2. Write down “the number of bridges + 1”.
3. Make a table with a column which consists of A,B,C, . . . , and with the next col-

umn which consists of the number of bridges connected to each land area.
4. Asterisk the symbols of land areas which have any even number of bridges.
5. Make another column which consists of:

• n if the land area has any even number 2n of bridges,
• n + 1 if the land area has any odd number 2n + 1 of bridges.

6. Sum up the numbers of the last column. If the sum is equal to the number written
in the step 2, or if the sum is less by 1 than it, a route to cross every bridge once and
only once is possible, where in the former case, the starting point should be one of
the land areas without asterisk; in the latter case, the starting point should be one of
the land areas with asterisk.

Euler makes such a table for the problem of Königsberg, and concludes that such a
route is impossible.



178 M. Wate-Mizuno

Fig. 4 Taken from Euler’s article in 1736 [22]

§ 15: Example different from seven bridges of Königsberg. Euler gives an example
where a route to cross every bridge once and only once exists (Fig. 4), applies the
above-mentioned algorithm to it, and gives such a route. But we should still note that
he gives no proof for the case where such a route exists.

§§ 16–17: Proof of the handshaking lemma. To obtain a simpler way to judge if a route
to cross every bridge once and only once exists or not, Euler proves that the number of
land areas which have any odd number of bridges is an even number. This is called the
handshaking lemma in our times.
Proof: Count bridges which each land area has. The sum of these numbers is just twice
as many as the number of all the bridges, because every bridge connects just two land
areas, and it is counted double. Therefore the sum of the numbers of bridges which
each land area has is an even number. If the number of land areas which have any odd
number of bridges is an odd number, the sum of the numbers of bridges which each
land area has cannot be an even number. So the number of land areas which have any
odd number of bridges is an even number.

§§ 18–19: Simplification of the algorithm of § 14. Because the sum of the numbers of
bridges which each land area has is twice as many as the number of all the bridges,

(The sum of the numbers of bridges which each land area has) + 2

2

is just the number written in the step 2 of § 14. If every land area has an even number
of bridges, the sum in the step 6 of § 14 is less by 1 than the number written in the
step 2, with which Euler means that a route to cross every bridge once and only once
is possible. Because every land area has any even number of bridges, any of them can
be the starting point.
If only 2 land areas have any odd number of bridges and the other areas have any even
number of bridges, the sum in the step 6 of § 14 is just as same as the number written
in the step 2, with which Euler means that a route to cross every bridge once and only
once is possible. In this case, one of the land areas which have any even number of
bridges should be the starting point.
But we should still note that he gives no proof for it.
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Fig. 5 Taken from Chap. 6
of Ball’s 2nd edn. in 1892 [9]

If the land areas which have an odd number of bridges are 4, 6, 8 or more, the sum in
the step 6 of § 14 is larger by 1, 2, 3 or more than the number written in the step 2.
Then there is no route to cross every bridge once and only once.

§ 20: Summary of §§ 18–19. If more than two land areas have any odd number of
bridges, it is impossible to cross every bridge once and only once.
If just two land areas have any odd number of bridges, and if the traveler choose one
of such land areas as the starting point, it is possible to cross every bridge once and
only once.
If every land area has any even number of bridges, no matter which land area is chosen
as the starting point, it is possible to cross every bridge once and only once.
But we should still note that Euler gives no proof for the two latter propositions.

§ 21: Method to simplify the way to find the route. Remove pairs of bridges which
connect two common land areas, and it will be easier to find a route to cross every
bridge once and only once. After finding the route, put back the removed bridges as
they were, and it will be easy to modify the route so as to include them.

These are all the sections Euler gave.
Euler introduced a map illustrating the situation. On the map, Euler displayed symbols

for his proof. Euler’s proof needed only the symbols of the land areas and the number of
bridges connected to each land area. For him, the names of bridges were not necessary.
Yet we see that Euler kept this information on the map (Fig. 2). Moreover, the proof
does not make any reference to a diagram. In fact, more precisely, Euler did not give any
graph-like diagram for this problem.

The information that was not necessary for the solution to the problem was to be re-
moved from the diagrams included in the texts of subsequent mathematicians who ad-
dressed the problem. Indeed, the problem will be taken up in several publications devoted
to mathematical recreations.

Let us consider them since this analysis will put in a situation to determine who first in-
troduced a graph-like diagram in this context and how it influenced Kőnig for this feature
of the diagrams.

In 1851, Émile Coupy translated this article of Euler into French [17]; in 1882, Édouard
Lucas translated it again into French in the chapter about the problem of bridges in vol. 1
of his series on mathematical recreations [31]. However, neither Coupy nor Lucas made
any significant modification to Euler’s figures.6

In 1892, Walter William Rouse Ball (1850–1925) dealt with the problem within a
more general context, since he mentioned it in the chapter about “unicursal problems” in

6I examined the difference of the translations of Coupy and Lucas in Chap. 3 of my thesis [51].
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Fig. 6 Taken from Sect. 17.1 of Ahrens’ book of 1901 [1]

his book devoted to mathematical recreations [9]. In this new context, Ball gave a new
kind of diagram (Fig. 5) for the problem. In this diagram, Ball represented the bridges
with lines—some lines curved and others straight—indicated with lowercase letters, and
the land areas with points indicated with uppercase letters. Ball mentioned the corre-
spondence of the notation introduced for bridges to Euler’s map, but he did not use it in
his consideration of the problem, and indeed it is not necessary for solving the problem.
However, it is remarkable that lines in this diagram represent geometrical elements which
correspond to a graph. As a diagram given to the problem of seven bridges of Königsberg,
this is perhaps the first graph-like diagram.

In 1901, Wilhelm Ahrens (1872–1927) also, in his book on mathematical recre-
ations [1], treated the problem of bridges. However, for him, the problem appeared in
the chapter about “Brücken und Labyrinthe (bridges and labyrinths)”, that is, within a
classification of problems made on the basis of their topic. Still, he gave here diagrams
quite similar to Ball’s graph-like diagram (Fig. 6).

The diagram a of Fig. 6 has no mark for lines representing the bridges, but only asso-
ciates letters to points representing the land areas. Thus we find here only the information
necessary for solving the problem. We see that the diagram is drawn for the problem,
and not as a representation of a general mathematical object. The diagram b of Fig. 6
represents the case with eight bridges, where one can pass over all the bridges once and
only once. The diagram b has digits attached to lines, but their meaning is different from
the lowercase letters shown in Ball’s diagram: Ahrens let these numbers represent the
order of passing over the bridges, therefore these numbers are necessary information for
representing a solution to the problem.

In 1905, Kőnig himself also, in one of the books that in his youth he devoted to mathe-
matical recreations in 1905—long before the publication of his treatise of 1936—treated
the problem of bridges in the chapter about “A Königsbergi hidak (the bridges of Königs-
berg)” [28]. In relation to this problem, the book of 1905 quotes Euler [22], Lucas [31],
Ball [11], Schubert [45], Ahrens [1]. However, as for the diagram given to this problem,
he took it from Ahrens’ book (Fig. 7). Fig. 7 is almost the same as Ahrens’ graph-like
diagram.7 I suppose that Kőnig’s diagram for the problem of bridges in 1905 was taken
from Ahrens’ diagram in 1901.

7A part of the line between A and B of Kőnig’s diagram is not connected, but it is only an error of
printing. It should be continuous for consistency of the text.
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Fig. 7 Taken from Chap. 4
of Kőnig’s book of 1905 [28]

It is interesting that this diagram of Kőnig in 1905 was still different from his diagram
in his treatise in 1936 where, instead of the points indicated with uppercase letters, small
circles were used, which represented the vertices of a graph. We will see that the repre-
sentation of the vertices of a graph with small circles and the full notation of the elements
of a graph in 1936 betray an influence different from the problem of bridges.

2.4 Polygons, Dominoes and the Introduction of the Flexible Strings

In the same section entitled “Das Brücken- und Dominoproblem (The problem of bridges
and the problem of dominoes)” in Kőnig’s treatise of 1936, he treated two other problems
coming from mathematical recreations—one bearing on polygons and another one on
dominoes. He dealt with them as other examples for his theorem on Eulerian circuits.
Examining the history of the treatment of these problems and of their relation to each
other will show how another feature of the diagrams for graphs took shape within this
context.

The problem on polygons is formulated as follows: a polygon being given, can we go
along every edge and every diagonal just once with only one stroke?

As for the problem on dominoes, it is formulated as follows: one set of dominoes
consists of twenty-eight pieces; on each piece, a pair of integers from 0 to 6 is shown; we
put aside here the double numbered pieces with (0,0), (1,1) etc. because they play no
part in the question considered; the question is to arrange all the remaining twenty one
pieces so that adjacent numbers are equal to each other.

Kőnig related the three types of problems to each other, which can be done when
one reformulates them in terms of problems related to graphs. Previously, they were not
precisely discussed together in the same context. As we will see soon, Kőnig was not
the first one to have perceived their link, but he was the first mathematician to treat them
explicitly as related problems, and he did this on the basis of diagrams of graph theory.
Moreover, in the context in which the problems were understood as being connected with
each other, another feature of the diagram took shape: the nature of the lines representing
edges to be “flexible strings”. Let us explain what we mean by these statements.

For the case of a heptagon, Kőnig represented the problem of polygons by a diagram
shown in Fig. 8. We can trace every edge and every diagonal of this diagram just once
with only one stroke.

Here, the diagram was used for solving the problem.
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Fig. 8 Taken from Sect. 2.2
of Kőnig’s book of 1936 [29]

Fig. 9 Domino pieces which
I arranged so as to correspond
to Kőnig’s diagram shown in
Fig. 8

Moreover, it was also by using the same diagram of a heptagon that Kőnig solved the
problem of dominoes, thereby displaying the link between the two. He let each vertex
of a heptagon correspond to a number on a domino piece, and each edge of it to one
domino piece. By means of this representation, the solution to the problem of dominoes
corresponded exactly to the solution to the problem of a heptagon. Kőnig did not give any
specific diagram for dominoes, but we understand easily the relation of the solutions to
these two different problems in Fig. 9.

What is important is that the problem of polygons and the problem of dominoes were
not treated as being the same in any of the previous mathematical texts in which they both
appeared.

In 1809, Louis Poinsot (1777–1859) treated the problem of polygons in his lecture
about “les polygones et les polyèdres (the polygons and the polyhedrons)”. This lecture
was published as a memoir in 1810 [38]. The problem we consider was described in
Sect. 18 of this memoir.
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Poinsot described the problem as follows:

Poinsot (1809/1810) [38], Sect. 18, pp. 28–29, my translation from French.
[. . .] The problem is, between points placed in the space as you like, to lead a same flexible string
[fil flexible] which unites the points two by two in all the possible ways, so that the two ends of the
string come to be rejoined at the end, and that the total length8 should be equal to the sum of all
the mutual distances.

Poinsot explained why the solution is possible only for an odd number of points. He
did so, using the concept of a “flexible string”: when the points are even in number, one
can still lead a string which connects the points two by two in all the possible ways, but
this string should pass twice from any of the points to any other, before the two ends be
rejoined and, the string being closed, the total length will be equal to twice all the mutual
distances of the proposed points.

Poinsot treated this problem with points in a space, which means the points and the
flexible string do not necessarily form a polygon. However, in the succeeding sections
in his memoir, he discussed this problem in the case that the points are projected onto
a plane. By projection of the points onto a plane, we consider this problem as that of
polygons. In fact, in Sect. 23, Poinsot related this problem in the case of four points to a
quadrilateral with two diagonals; and finally in Sects. 24 and 25, he applied this problem
to arbitrary polygons.

In his publication, Poinsot used no diagram to discuss this problem. It is nevertheless
remarkable that he used the concept of a “flexible string” to describe the path and to solve
the problem.

In fact, the idea of flexible strings can be traced back to an article by Alexandre-
Théophile Vandermonde (1735–1796), which Poinsot mentioned at the beginning of the
memoir. He wrote:

Poinsot (1809/1810) [38], pp. 16–17, my translation from French.
[. . .] Vandermonde gave, in the Memoirs of the Academy of science for 1771, a simpler solution,9

which was deduced from a particular notation which he invented for this sort of problem, and
which he applied also to the representation of a textile or net formed with the successive knots of
several strings. [. . .]

We suppose therefore that Poinsot got the concept of flexible strings from Vandermonde’s
article “Remarques sur des problèmes de situation (remarks on the problems of situation)”
in 1771 [50].

However, Vandermonde did not treat polygons in his article of 1771. Therefore Poinsot
took his idea of flexible strings, and used it in a completely different context. Moreover,
as we saw in the memoir of Poinsot in 1810 (see p. 183), Poinsot did not only use what
Vandermonde used, but he added measures of length, that is, “geometry of situation” was
lost in Poinsot’s memoir.

On the other hand, Vandermonde’s concern was the notation to be used by the workers
who make a braid, a net, or knots. These workers do not conceive these spatial situations

8Despite the fact that Poinsot speaks of a flexible string, he uses the length. This means that one looses
the “geometry of situation”.
9Poinsot mentioned Vandermonde [50] in the context of the problem of the knight’s move on a chess-
board, as one of the problems concerning the “geometry of situation”. He meant that Vandermonde’s
solution was simpler than Euler’s [23].
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in terms of size, but in terms related to the situation of strings with respect to each other.
What the workers see is the order in which the strings are interlaced.

Vandermonde attempted to create a system of notation more to conform to the process
of the worker’s mind. This notation was the basis on which he would work out a solution
for the problem. For this purpose, he needed a notation which would represent only the
idea formed from his work, which could be sufficient for again making a similar thing at
any time.

The object of Vandermonde’s article of 1771 was only to give a hint of the possibility
of this kind of notation, and its usage in questions related to textiles composed of strings.

For this purpose, Vandermonde described each point on a string with its spatial po-
sition. To represent the spatial position, one splits a 3-dimensional space into paral-
lelepipeds. Each parallelepiped is indicated with a triple of numbers—Vandermonde
called it “trois nombres assemblés, ainsi cb

a (three numbers gathered, so that cb
a)”—each

term of which corresponds to a position of the parallelepiped on each axis of the space.
By putting the triples in the order of the parallelepipeds where a string passed through,
one gets a sequence of triples, which denotes a form of the string.

From such a sequence of triples, One can reproduce the textile or knots by making a
string go through the parallelepipeds indicated by the triples in order.

Vandermonde applied this notation to a 2-dimensional space for solving the problem
of the knight’s move on a chessboard:

Vandermonde (1771) [50], p. 568, my translation from French.
Let the knight go all over the squares of a chessboard without visiting twice the same square, as
a result determine a certain trace of the knight on the chessboard; or else, supposing a pin fixed
at the center of each square, determine the course of a string passed one time around each pin,
according to a law from which we will search the expression.

Vandermonde let the trace of a knight correspond to a string, each square to a pin.
To trace a knight on a chessboard, the above mentioned notation is applied. Because

the trace is on a plane, the sequence corresponding to the trace is a sequence of pairs of
numbers, each number of which consists of any of the numbers 1, 2, 3, 4, 5, 6, 7 and 8.

A knight’s move on a chessboard is denoted as b
a

b±1
a±2 or b

a

b±2
a±1 .

To simplify the solution, we use the symmetry of the knight’s trace: if we create a
sequence of a knight’s move, and interchange the numbers of the pairs: 8 to 1, 7 to 2,
6 to 3, 5 to 4 and vice versa. Then we will get a new sequence denoting a trace of knight
symmetry to the original one.

Therefore, to obtain a knight’s trace visiting all the squares on a chessboard once and
only once, we first need to create only a trace within the squares denoted with a sequence
of pairs with numbers 1, 2, 3 and 4, and then we get another sequence by exchanging the
numbers of one axis, still another sequence by exchanging the numbers of the other axis,
and the other sequence by exchanging the numbers of both axis.

We thus obtain four sequences denoting four separate traces which, as a whole, visiting
all the squares on a chessboard once and only once.

These four sequences can be connected, without breaking the knight’s move, by joining
two sequences, or by inserting one sequence between two pairs of another sequence.

We should pay attention to the fact that, for solving the problem, Vandermonde did not
use the concepts of “strings” and “pins”, but sequences of numbers which denote strings.

In spite of not using the formulation in terms of a string and of pins for solving the prob-
lem, Vandermonde gave a diagram corresponding to these concepts to represent his result
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Fig. 10 Taken from
Vandermonde’s article in
1771 [50].

regarding “la forme de la trace du cavalier sur l’échiquier, déterminée par cette suite (the
form of the trace of the knight on the chessboard, determined by this sequence)”. Com-
pare Fig. 10. We see in this diagram that Vandermonde used small circles representing
pins fixed on a chessboard. These features of his diagram evoke the form of diagram used
in Kőnig’s treatise in 1936, as well as in the texts on graph theory of the present day.

I suppose that Poinsot, inspired by Vandermonde’s article of 1771, had in mind not
only the concept of “flexible string” but also the concept of “pins”. In fact, Poinsot lead a
flexible string between the “points placed in the space as you like”, just like Vandermonde
let a string go through each “pin fixed at the center of each square” on a chessboard. The
way to use the points of Poinsot is the same as the way to use the pins of Vandermonde. In
other words, Poinsot’s “points” played the role of “pins” in Vandermonde’s geometrical
representation.

In terms used in Kőnig’s treatise of 1936, Poinsot applied these concepts to a problem
related to Eulerian circuits, whereas Vandermonde applied them to a problem related to
Hamiltonian circuits. In fact, in 1936, Kőnig considered both problems as examples of
more general problems: the problem of polygons was treated as a problem of Eulerian
circuits, while the problem of a knight’s moves was treated as a problem of Hamiltonian
circuits.

However, Poinsot, conscious or not, related these two problems with the concepts of a
flexible string and pins.

2.5 Polygons and Dominoes Again: A Single Diagram and a Single
Way of Using It for Two Distinct Problems

Later on, Kőnig went further: he not only described the recreational problems on the basis
of the common concepts of graph theory, but he also formulated the general problems
bearing on the general object of graphs for which they were particular cases.

Poinsot’s lecture of 1809 mentioned no relation between the problem of polygons and
the problem of dominoes. In 1849 [49], Orly Terquem (1782–1862) published the com-
mentary on Poinsot’s works on polygons. In this commentary, he alluded the relation be-
tween the problem of polygons and the problem of dominoes by mentioning the question
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Fig. 11 Taken from Chap. 2 of Lucas’ vol. 1 in 1882 [31]

of dominoes just after the description of Poinsot’s problem of polygons that we examined
in Sect. 2.4. At the end of the commentary, Terquem described as follows:

Terquem (1849) [49], p. 74, my translation from French.
[. . .] The determination of the number of possible solutions for an odd number of points is a
problem of which the solution is desired. I proposed it to some distinguished geometers, but I got
nothing. The domino game presents a question of this type: in how many ways can one place all the
dominoes on only one line obeying the law of the game? One can put aside the double-numbered
pieces.

Clearly, Terquem gave neither any precise description of the relation, nor any diagram
representing this idea. However, this seems to be the first mention of a relation between
the problem of polygons and the problem of dominoes.

Similarly, regarding the relation between the problem of polygons and the problem
of dominoes, already in 1883 Lucas was aware of the relation between the problem of a
heptagon and the problem of dominoes, because he mentioned it in his note to the chapter
about “Le jeu de dominos (the domino games)” put at the end of vol. 2 of his series
of mathematical recreations [32]. But he did not give any precise description about this
relation at that time.

Finally in 1894, in the chapter about “La Géométrie des réseaux et le problème des
dominos (the geometry of nets and the problem of dominoes)” in vol. 4 of his series of
mathematical recreations [34], Lucas declared that the idea of relating a heptagon to the
problem of dominoes mentioned in vol. 2 was given by Laisant.10

If we now go back to the history of the relationship between the problem of bridges
and that of polygons, we note that in 1882 Lucas treated the problem of polygons with
the diagrams shown in Fig. 11. Further, he included the problem in vol. 1 of his series on
mathematical recreations, in the chapter devoted to the problem of bridges [31].

In this case, it is not by making use of common terms to formulate different prob-
lems that Lucas indicated something common between them. Lucas did so by classifying
them in the same chapter of his book. This fact indicates that Lucas recognized that both
problems could be treated in the same way.

Moreover, Lucas described in this chapter relationships between a wider set of prob-
lems, since he stressed the relations between four different topics of mathematical
recreations—bridges, mazes, polygons and dominoes.

10Charles-Ange Laisant (1841–1920) was a mathematician, and was a director of some reviews of math-
ematics.
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Fig. 12 Taken from Sect. 3.1 of Kőnig’s book of 1936 [29]

However, Lucas did not discuss these four topics explicitly on the same basis, while
Kőnig did on the basis of diagrams of graph theory.

The links that Lucas could establish between these topics depended on ideas that Tarry
had presented at a conference in 1886 [48], which we will discuss more completely in
Sect. 3.

Let us first consider the history of the treatment of the fourth type of problem that
Lucas linked to the first three considered above.

2.6 Mazes of Which the Junctions Became Important

Kőnig’s treatise from 1936 also included a chapter entitled “Das Labyrinthenproblem
(The problem of mazes)”. In it, he treated the following problem: how can I arrive at a
certain place—a branching point or a loop—in walking in a maze without a map? He gave
three different diagrams for the same example: in the diagram a in Fig. 12, the lines are
the walls of a maze, and a traveler of the maze goes through the space between the lines;
in the diagram b in Fig. 12, the lines and the small circles are paths and junctions of a
maze, which is represented by means of the edges and vertices of a graph; the diagram
c in Fig. 12 is a transformation of the diagram b. With diagram c, Kőnig showed that
the absolute position of vertices and edges are ignored in graph theory, and that only the
relation between the vertices and the edges is important for solving the problem.

A solution to this problem had been first published in 1882 by Lucas in the chapter
about “Labyrinthes (mazes)” in vol. 1 of his series on mathematical recreations [31].
Lucas says about it that this solution had been given by Trémaux, a telegrapher and a
former student of the polytechnic school. Lucas included a proof of the correctness of the
solution. However, in Kőnig’s treatise of 1936, he noted that “Dieser Lucassche Beweis
ist nicht vollständig (this Lucas’ proof is not complete)”.

Let us concentrate on the diagrams used by Lucas. In the proof to the solution, Lucas
used diagrams representing a part of a maze. One of Lucas’ diagrams is shown in Fig. 13.
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Fig. 13 Taken from Chap. 3
of Lucas’ vol. 1 in 1882 [31].

In Lucas’ diagrams, the lines represent “chemins (paths)”, and points where lines intersect
represent “carrefours (junctions)”.

We see in this diagram other characteristics: the arrows indicate the directions of the
walk; the marks crossing the lines indicate the paths through which one already walked.
In other words, we have here a graph-like diagram with further marks.

Lucas used lines representing paths of a maze in 1882, just like Kőnig did in his treatise
of 1936, using for this problem lines which represented edges of a graph. Kőnig thus used
a general type of diagram to represent the maze problem whereas Lucas drew a diagram
specific to the problem considered. However, both diagrams look alike. Moreover, Lucas
did not use small circles in his diagrams for the problem of mazes. This is connected
to the fact that Lucas did not consider the vertices of the graph as relevant elements for
the solution. On the other hand in Kőnig’s diagrams in 1936, small circles represented
vertices, corresponding to junctions of a maze, and this representation was used also for
all the other problems of bridges, polygons and dominoes. We will see in Sect. 3 how
this common form of diagram became used in all the problems of graph theory, and how
this detail bears witness to the historical process by means of which Kőnig adopted these
representations.

To sum up our conclusions so far, we saw in this section that Kőnig, in his treatise
of 1936, discussed different problems of mathematical recreations—bridges, polygons,
dominoes and mazes—using the same general concepts attached to graph with the same
type of diagram; on the other hand, the earlier works did not treat these topics in the same
way.

We will see in the next section that Tarry’s talk played an important role in the trans-
formation of the way to use the diagrams.

3 The Significance of Tarry’s Talk

I examined texts written by Kőnig and other mathematicians before 1936, and found that
Tarry’s talk in a conference in 1886 played important role in relation to my question—that
is, how the representation of graphs in diagrams of graph theory took shape.

I shall now establish that the role played by Tarry’s talk relates to his way of using
diagrams.

Let us first say a few words about the person. Gaston Tarry (1843–1893) was a pub-
lic servant working for the French financial administration in Algiers, and an amateur
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mathematician. He gave a talk in the 15th session of the Association française pour
l’avancement des sciences in Nancy in 1886 [48]. Its title was: “Géométrie de situation:
nombre de manières distinctes de parcourir en une seule course toutes les allées d’un
labyrinthe rentrant, en ne passant qu’une seule fois par chacune des allées (Geometry of
situation: number of distinct ways of walking in only one course along all the alleys of
a recurring maze, in passing through each of the alleys only once).” Here, by “labyrinthe
rentrant (recurring maze)” he meant a maze for which the number of alleys leading to
each junction is always an even number.

This problem is different from our problem of mazes. The subject of this problem is, in
modern terms, the number of all the Eulerian circuits of the maze read as a graph. That is,
Tarry dealt with something related to the problem of bridges using the concepts attached
to mazes, for example “walk”, “alleys”, “junctions” etc.

The proceedings of this session consist of two volumes: Volume 1 presents the abstracts
of talks prepared by the secretariat of the Association, and vol. 2 contains the articles
written by the speakers. The diagrams corresponding to the articles are placed at the end
of vol. 2.

The abstract of Tarry’s talk was written by someone else,11 and it reads as follows:

Editor: secrétariat de l’Association (1887) [48], p. 81 of Part 1, my translation from French.
Mr. TARRY, in Algiers.
On a problem of the geometry of situation. — Mr. Tarry proves two theorems on the figures12

which one can draw with only one continuous stroke, without interruption nor repetition. These
two theorems allow one to find the number of solutions13 in a very large number of cases; he
applies his procedure to the problem of Reiss,14 on the game of dominoes, and obtained again the
results of Doctor Reiss in two pages, while the much longer solution of Reiss occupies 60 pages
in No. 4 of the Annali di Matematica.
Discussion. — The president of the section15 emphasizes the extreme elegance and the great sim-
plicity of this new method.

Although dominoes are mentioned in this abstract, there is no mention of dominoes in
Tarry’s text itself. The details of the problem of dominoes perhaps were given only to the
audience of his talk.

The question we need to tackle then is to understand the means by which the concepts
and diagrams became possible.

11It is unclear who the authors of the abstracts were, but someone in the bureau of the section which
contained Tarry’s talk may have been the author: Président d’honneur: M. le Géneral FROLOW, major
général du génie russe (Russian general major of engineering); Président: M. Ed. LUCAS, Prof. de math.
spéciale au Lycée Saint-Louis (Professor of higher mathematics at the Saint-Louis High school); Vice-
Président: M. Laisant, Député de la Seine, Anc. Él. de l’Éc. Polyt. (Deputy of the Seine, Alumnus of
the Polytechnic School); Secrétaire: M. HEITZ, Él. de l’Éc. centr. des Arts et Manufact. (Student of the
central school of Arts and Manufacture).
12Tarry talked about figures of mazes according to his article in vol. 2 of the proceedings.
13The problem treated by Tarry was therefore different from the problem treated by Poinsot, who de-
scribed the possibility of tracing all the edges and diagonals of a polygon once and only once with one
stroke.
14Michel Reiss (1805–1869) was a mathematician from Frankfurt who worked mainly on the theory of
determinants. He published an article about dominoes “Evaluation du nombre de combinaisons desquelles
les 28 dés d’un jeu du domino sont susceptibles d’après la règle de ce jeu” (1871) of 58 pages [42].
15That is, Édouard Lucas.
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In the text of the proceedings, Tarry proved two theorems and a corollary. He first
proved the “Théorème des impasses (Theorem of the dead-ends)”. An alley both ends of
which lead to an identical junction is called an “impasse (dead-end)”. In the terminology
of graph theory of today, the “impasse (dead-end)” corresponds to a loop on a vertex. The
theorem is as follows:

Theorem of the dead-ends In a recurring maze, if a dead-end is deleted, then the number
of distinct courses of the maze is reduced, and then the number of distinct courses of the
reduced maze multiplied by the number of the alleys leading to the junction situated on
the deleted dead-end is equal to the number of distinct courses of the primitive maze. Each
of the other dead-ends on the junction are also counted as two alleys.

Let N be the number of distinct courses of the reduced maze. Let 2n be the number of
its alleys leading to the junction that was situated on the deleted dead-ends. The theorem
is written with N and 2n: the number of distinct course of the primitive maze is equal to
N × 2n. The proof is as follows: consider any of the N distinct courses of the reduced
maze; in this course, you will pass n times through the junction situated on the deleted
dead-end; to walk in the primitive maze, in any of these n passages, you interrupt the
walk when you arrive at the junction of the dead-end, walk entirely this dead-end, which
is to be done in two different directions, and, after coming back to the junction, complete
your walk in the maze; as a result, each of the N distinct courses of the reduced maze will
supply 2n distinct courses of the primitive maze; the N distinct courses of the reduced
maze will supply therefore N × 2n courses of the primitive maze; evidently, these N ×
2n courses of the primitive maze are all distinct, and there is no other way to walk the
primitive maze in only one course; the theorem is thus proved.

And then Tarry gave the following corollary:

Corollary If 2(n + k) alleys lead to a junction, and 2k of them belong to k dead-
ends, then the number of distinct courses of the given maze is equal to the product of
n(n + 1)(n + 2) . . . (n + k − 1)2k and the number of distinct courses of the reduced maze
gotten after deletion of k dead-ends of the given maze.

In fact, if you add successively each of these k dead-ends to the reduced maze,
then this procedure gives the numbers of distinct courses successively multiplied by 2n,

2(n + 1),2(n + 2), . . .2(n + k − 1).
For calculating the number of distinct courses, using the theorem of the dead-ends, we

eliminate the dead-ends of the given maze, and simplify the calculation to the case of the
maze with no dead-ends.

Tarry then proved the following theorem:

Theorem (to reduce junctions) A recurring maze consisting of k junctions without dead-
ends is given; N is one of the junctions of the recurring maze; let 2n be the number of
alleys leading to N ; the number of distinct courses of the given maze is equal to the sum
of the numbers of distinct courses of 1 × 3 × 5 × 7 . . . (2n− 1) recurring mazes consisting
of not more than k − 1 junctions. These 1 × 3 × 5 × 7 . . . (2n− 1) new mazes are obtained
by the following procedure:
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1. group the 2n alleys leading to the junction N into n pairs of alleys in all the possible
ways;

2. and then, in each of the groups,
(a) replace each pair of alleys with a new alley joining the 2 junctions to which the

endpoints of the pair of alleys leads, or,
(b) in the case that the 2 alleys of the pair lead to an identical junction, replace the

pair of alleys with a dead-end at this junction.

Tarry proved this theorem as follows: group the 2n alleys leading to the junction N into
pairs of alleys in all the possible ways; we will get (2n−1)(2n−3) . . .×5×3×1 different
groups; to each of these groups, we relate all the courses of the given maze; in these
courses, in each passage through the junction N , the alley leading to it and the alley away
from it belong to a pair of the group considered; we see easily that the number of courses
to be found will be equal to the sum of the numbers of distinct courses corresponding to
each group, in the way shown above; consider the courses of one of these groups, and
examine the n pairs of alleys that comprise the group; in each of these n pairs of alleys,
the two alleys, which are considered as ways out of the junction N , lead to two different
junctions A,B or to one identical junction C; in the former case, we replace the 2 alleys
NA, NB with a new alley AB that joins the junctions A and B without changing the
number of courses, because this change means replacing the track ANB or BNA with
the equivalent tracks AB or BA; in the latter case, the two alleys joining the junctions N

and C are replaced with a dead-end passing through the junction C; the theorem is thus
proved.

After proving these theorems, Tarry gave a procedure to calculate the number of dis-
tinct courses of any recurring maze:

1. Apply the “theorem of dead-ends” and “the theorem to reduce junctions” to a given
recurring maze. According to the theorems, the number of junctions of the maze will
be reduced, and we will get an equation between the number of distinct courses of the
reduced maze and that of the maze before it was reduced.

2. Repeat process 1 so that we finally get mazes containing only two junctions without
dead-ends.

3. Count the number of mazes containing only two junctions without dead-ends: two
junctions of such a maze are connected with 2n alleys, therefore the number of distinct
courses is equal to 2(2n − 1)(2n − 2) . . .4 × 3 × 2 × 1 if each direction of the walk is
counted.

4. Substitute for the variable of the last equation the number of distinct courses of the last
maze, that is, the maze containing only two junctions without dead-ends. We will thus
get the value of the variable of the preceding equation.

5. Repeat the substitutions, and we will get finally the number of distinct courses of the
primitive maze.

To give an application of this procedure, Tarry selected a recurring maze where the
alleys form the edges and the diagonals of a heptagon. We recognize here that this appli-
cation gives the number of possible solutions to Poinsot’s problem of polygons.

Tarry used a new kind of diagram as shown in Figs. 14, 15, 16 and 17.
In these diagrams, he made use of several signs such as circles, and equilateral triangles

joined to a circle.
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Fig. 14 Tarry’s diagrams, the left half of the first sheet [48]

Tarry gave explanatory notes to read his diagrams. The sentences between “[” and “]”
bellow are my comments.

Circle Junction of the maze.
[We recognize here that the elements that were to become the vertices of the graph are
explicitly noted.]

Straight line connecting two circles Alley of the maze connecting two junctions.
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Fig. 15 Tarry’s diagrams, the right half of the first sheet [48]

[A straight line represents any kind of alley and is used from the viewpoint that it is
described, as was the case for the polygons above.]

Equilateral triangle having one corner on a circle Dead-end (alley, both ends of which
lead to the same junction corresponding to the circle).

Letter beside each figure The letter indicates each figure, and at the same time in the
equation, represents the number of courses corresponding to this figure. [See the detail
bellow.]



194 M. Wate-Mizuno

Fig. 16 Tarry’s diagrams, the left half of the second sheet [48]

In the first diagrams of Fig. 14, we see the equation X = 15H . X represents the num-
ber of distinct courses of the heptagonal maze, which we want to obtain. H represents
the number of distinct courses of the hexagonal maze, which is a reduced maze of the
heptagonal maze. We obtain the number “15” from the number of alleys leading to one
of the junctions of the heptagonal maze “6”: when we group the six alleys leading to the
junction into pairs of alleys in all the possible ways, we get 5×3×1 different groups, that
is, 15. Applying the theorem to reduce junctions, we get the equation X = 15H . When
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Fig. 17 Tarry’s diagrams, the right half of the second sheet [48]

we delete the junction of the heptagonal maze X, the six alleys are reduced to three alleys,
which form double lines in the figure of the hexagonal maze H .

In the next figures, the hexagonal maze H is reduced to the pentagonal mazes
P1,P2,P3,P4. These four pentagonal mazes are drawn differently because multiple lines
are differently connected depending on the ways of grouping of the six alleys leading to
one of the junctions of the hexagonal maze into three pairs of alleys: for P1, we count
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the groups bringing five double alleys; for P2, we count the groups bringing three double
alleys and one triple alley; for P3, we count the groups bringing four double alleys; for
P4, we count the groups bringing two triple alleys. Moreover, each of P3 and P4 has a
dead-end, we therefore apply to them the corollary with k = 1, n = 2. We thus multiply
the count of groups by (2 + 1 − 1)21 = 4 to obtain the number of distinct courses. Then
we get the equation H = 8P1 + 4P2 + 4 × 2P3 + 4 × P4.

Continuing the procedure similarly, we get the following equations successively:

X = 15H

H = 8P1 + 4P2 + 8P3 + 4P4

P1 = 6Q1 + 4Q2 + 16Q3 + 16Q4

P2 = 8Q1 + 16Q3 + 2Q5 + 16Q6

P3 = 2Q1 + Q2

P4 = 2Q1 + Q5

Q1 = 6T1 + 24T2 + 48T3

Q2 = 8T1 + 24T2 + 64T4

Q3 = 2T1 + 4T2

Q4 = 2T2 + 4T3

Q5 = 48T2 + 24T5

Q6 = 2T2 + 2T5

T1 = 6D1 + 144D2

T2 = 2D1 + 16D2

T3 = 12D2

T4 = 2D2 + 4D3

T5 = D1

D1 = 240

D2 = 12

D3 = 2

From these equations, we get finally the number of distinct courses of the heptagonal
maze X = 129976320.

Tarry did not mention the problem of dominoes in his text of the proceedings, but we
see on the diagram sheets the caption “TARRY—PROBLÈME DES DOMINOS (Tarry—
problem of dominoes)”. This caption supports the description of the abstract that Tarry
applied his theorems to the problem of dominoes. Moreover, we recognize that the dia-
grams given for the calculation of the number of distinct courses of a heptagonal maze
was, in his talk, used for the problem of dominoes. We recognize, therefore, that Tarry
related the problem of polygons with the problem of dominoes.

In Tarry’s diagrams, We find a clear representation of junctions of a maze, which corre-
sponds to vertices of a graph in modern terms, while such a representation was not found
in Lucas’ diagram used to solve the maze problem (Fig. 13), nor in that of polygons
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(Fig. 11). Tarry’s representation suggests the importance of junctions, which correspond
to the vertices of a graph, which is still important in Kőnig’s treatise of 1936.

It is remarkable that Tarry related the problem of bridges to the concepts of mazes,
though in this talk, he did not treat the same problem of mazes as we discussed in Sect. 2.6.
Moreover, he applied his result to the problem of dominoes using diagrams of polygons.

4 Conclusion

We discussed how the representation of graphs by means of the diagrams of graph theory
emerged.

We examined some problems Kőnig treated in his treatise of 1936, and analyzed the
diagrams attached to them in the texts before 1936. Earlier, these diagrams did not always
have the form of the present day, and the forms were not uniform. The features of dia-
grams in early days were different from each other, depending on the problem in which
the diagram was used, while the features of diagrams in the present day are uniform in
different topics.

Tarry’s talk in 1886 [48] played an important role in the way of using the diagrams.
With respect to diagrams, the significance of Tarry’s talk was that he used a uniform

type of diagram in different topics, and that for solving the problem of dominoes in his
talk, he connected this problem to other problems for which similar diagrams had been
introduced and which had been reformulated as problems related to this kind of diagrams.

In fact, we identified another graphical representation and another conception of the
object under study used at the beginning of the 19th century to connect a smaller set of
distinct problems now understood as bearing on graphs: a form of diagram with lines and
small circles which already appeared in an article of Vandermonde in 1771 [50]. How-
ever, its status was different at that time: Vandermonde used the diagram not for stating
and then solving a problem, but for representing his solution to the problem. The remark-
able contribution of Vandermonde (1771) to graph theory is that he used the concepts
of “épingle (pin)” and “fil (string)” for a problem of the knight’s move on a chessboard,
thereby introducing in particular the line independently from its shape and distinguish-
ing only some points to represent a situation. Moreover, he gave a diagram representing
his result using these concepts. In Kőnig’s treatise of 1936, the problem of the knight’s
move on a chessboard was considered, in the context of graph theory, to be a problem of
a Hamiltonian circuit. But Kőnig’s treatise of 1936 is not the first text in which the same
concepts were used as a basis to define problems referring to questions related to circuits,
the circuits being represented by means of the same elements. Poinsot, in his lecture of
1809 [38], applied the concepts of Vandermonde to the problem of polygons. In other
words, Poinsot recognized that the same concepts can be used to formulate two appar-
ently different problems, one on a Hamiltonian circuit and another one, which in Kőnig’s
treatise in 1936 was mentioned as a problem of Eulerian circuits. It is also remarkable
that Poinsot used these concepts for solving the problem, not only representing the so-
lution, though no diagram representing the concepts is found. It was Kőnig who, for the
first time, explicitly related these two problems in the same chapter, and considered them
using the same graph theoretic basis.

Tarry also related the problem of bridges to the concept of mazes. Moreover, he applied
his result to the problem of dominoes using diagrams of polygons.
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However, Tarry did not integrate explicitly all the four problems of bridges, polygons,
dominoes and mazes, while Kőnig did in his treatise of 1936.
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27. Kőnig, D.: Mathematikai mulatságok, vol. 1. Lampel Róbert, Budapest (1902) (Reprinted in 1991)
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