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Abstract. In this paper we give a survey of elliptic theory for operators as-
sociated with diffeomorphisms of smooth manifolds. Such operators appear
naturally in analysis, geometry and mathematical physics. We survey classical
results as well as results obtained recently. The paper consists of an introduc-
tion and three sections. In the introduction we give a general overview of
the area of research. For the reader’s convenience here we tried to keep spe-
cial terminology to a minimum. In the remaining sections we give detailed
formulations of the most important results mentioned in the introduction.
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Introduction

The aim of this paper is to give a survey of index theory for elliptic operators
associated with diffeomorphisms of smooth manifolds. Recall that the construction
of index theory includes the following main stages:

1) (finiteness theorem) Here one gives conditions, called ellipticity conditions,
under which the operators under consideration are Fredholm in relevant func-
tion spaces;

2) (index theorem) Here one presents and proves an index formula, that is,
an expression for the index of an elliptic operator in terms of topological
invariants of the symbol of the operator and the manifold, on which the
operator is defined.

The first index theorem on high-dimensional manifolds was the celebrated
Atiyah–Singer theorem [11] on the index of elliptic pseudodifferential operators
(𝜓DO) on a closed smooth manifold. This theorem appeared as an answer to a
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question posed by Gelfand [26]. Note that the statement and the proof of the index
formula relied on most up to date methods of analysis and topology and stimulated
interactions between them.

After that index theorems were obtained for many other classes of operators.
In this paper we consider the class of operators associated with diffeomorphisms
of closed smooth manifolds. One of advantages of this theory is that, besides the
mentioned interaction of analysis and topology, here an important role is played
by the theory of dynamical systems.

1. Elliptic operators for a discrete group of diffeomorphisms (analytical aspects).
The theory of elliptic operators associated with diffeomorphisms and the corre-
sponding theory of boundary value problems with nonlocal boundary conditions
go back to the paper by T. Carleman [17], where he considered the problem of
finding a holomorphic function in a bounded domain Ω, which satisfies a nonlocal
boundary condition, which relates the values of the function at a point 𝑥 ∈ ∂Ω
of the boundary and at the point 𝑔(𝑥) ∈ ∂Ω, where 𝑔 : ∂Ω → ∂Ω is a smooth
mapping of period two: 𝑔2 = 𝐼𝑑. A reduction of this boundary value problem to
the boundary does not give usual integral equation as it was the case with the
local boundary condition. Rather, it gives an integro-functional equation, which
we call equation associated with diffeomorphism 𝑔. This paper motivated the study
of a more general class of operators on closed smooth manifolds. Let us give the
general definition of such operators.

On a closed smooth manifold 𝑀 we consider operators of the form

𝐷 =
∑
𝑔∈𝐺

𝐷𝑔𝑇𝑔 : 𝐶
∞(𝑀)→ 𝐶∞(𝑀), (0.1)

where:

∙ 𝐺 is a discrete group of diffeomorphisms of 𝑀 ;
∙ (𝑇𝑔𝑢)(𝑥) = 𝑢(𝑔

−1(𝑥)) is the shift operator corresponding to the diffeomor-
phism 𝑔;

∙ {𝐷𝑔} is a collection of pseudodifferential operators of order ≤ 𝑚;
∙ 𝐶∞(𝑀) is the space of smooth functions on 𝑀 . Of course, one can also
consider operators acting in sections of vector bundles.

Operators (0.1) will be called 𝐺-pseudodifferential operators (𝐺-𝜓DO) or simply
𝐺-operators.1 Such operators were intensively studied (see the fundamental works
of Antonevich [4, 5], and also the papers [2, 7] and the references cited there). In
particular, an extremely important notion of symbol of a 𝐺-operator was intro-
duced there. More precisely, two definitions of the symbol of a 𝐺-operator were
given. First, the symbol was defined as a function on the cotangent bundle 𝑇 ∗𝑀
of the manifold taking values in operators acting on the space 𝑙2(𝐺) of square
integrable functions on the group. Second, the symbol was defined as an element
of the crossed product [69] of the algebra of continuous functions on the cosphere

1In the literature such operators are also called functional-differential, nonlocal, noncommutative
operators and operators with shifts.
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bundle 𝑆∗𝑀 of the manifold and the group 𝐺. Further, we introduce the ellipticity
condition in this situation, which is the requirement of invertibility of the symbol of
the operator. It was proved that the two ellipticity conditions (they correspond to
the two definitions of the symbol) are equivalent under quite general assumptions.
Ellipticity implies Fredholm property of the operator in Sobolev spaces 𝐻𝑠.

Let us note here one essential difference between the theory of elliptic 𝐺-
𝜓DO and a similar theory of 𝜓DO. Namely, examples show (see [6, 1, 45]) that
the ellipticity (and the Fredholm property of operator (0.1) in the Sobolev spaces
𝐻𝑠) essentially depends on the smoothness exponent 𝑠. Thus, there arise natural
questions on the description of the possible values of 𝑠, for which a given𝐺-operator
is elliptic and the question about the dependence of the index on 𝑠. The answers to
these questions are well known in the situation of an isometric action of the group,
that is, if the diffeomorphisms preserve a Riemannian metric on the manifold. In
this case the symbol and the index do not depend on 𝑠. First steps in the study
of these questions for nonisometric actions were done in the papers [58, 52], where
it was shown for the simplest nonisometric diffeomorphism of dilation of spheres
that the set of 𝑠, for which a 𝐺-operator is elliptic, is always an interval and the
index (inside this interval) does not depend on 𝑠.

2. Index of elliptic operators for a discrete group of diffeomorphisms. Let us now
turn attention to the problem of computing the index of elliptic 𝐺-operators. The
first formula for the index of 𝐺-operators was obtained in the paper [3] for a
finite group 𝐺 of diffeomorphisms.2 In this case the index of a 𝐺-operator was
expressed in terms of Lefschetz numbers of an auxiliary elliptic 𝜓DO on 𝑀 . Since
the Lefschetz numbers are expressed by a formula [12] similar to the Atiyah–Singer
index formula the index problem for a finite group is thus solved.

The index problem for infinite groups turned out to be much more difficult
and required application of new methods related with noncommutative geometry of
Connes [20, 22]. The first advance was done in the celebrated work of Connes [19].
There an index formula was obtained for operators of the form

𝐷 =
∑
𝛼𝛽

𝑎𝛼𝛽𝑥
𝛼(𝑑/𝑑𝑥)𝛽 (0.2)

acting on the real line, where the coefficients 𝑎𝛼𝛽 are Laurent polynomials in the
operators

(𝑈𝑓)(𝑥) = 𝑒𝑖𝑥𝑓(𝑥), (𝑉 𝑓)(𝑥) = 𝑓(𝑥− 𝜃),
and 𝜃 is some fixed number. The index theorem of Connes for such differential-
difference operators is naturally formulated in terms of noncommutative geometry.
Operators (0.2), which are also called operators on the noncommutative torus3,
were used in a mathematical formulation of the quantum Hall effect [22]. It became

2These results were rediscovered in [39].
3This name is motivated by the fact that the algebra generated by 𝑈 and 𝑉 is a noncommutative
deformation of the algebra of functions on the torus 𝕋2.
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clear after the cited papers of Connes that noncommutative geometry is not only
useful, but also natural in the index problem for 𝐺-operators, and since then
noncommutative geometry is used in all the papers on the index of 𝐺-operators, we
are aware of. For instance, methods of noncommutative geometry were applied to
solve the index problem for deformations of algebras of functions on toric manifolds
in [34, 23, 24] and other papers.

Further progress in the solution of the index problem for 𝐺-operators was
made in the monograph [38]. Namely, an index formula for operators (0.1) was
obtained in the situation, when the action is isometric. Let us note here that this
index formula for isometric actions contains all the above-mentioned formulas as
special cases.

In the situation of a general (that is, nonisometric) action there were no
index formulas until recently. There were only partial results. Namely, the index
problem for ℤ-operators (that is, operators for the group of integers) was reduced
to a similar problem for an elliptic 𝜓DO (see [4, 51, 56]). The first index formula
in the nonisometric case was obtained in the paper [58] for operators associated
with dilation diffeomorphism of spheres. The index formula for elliptic operators
associated with the group ℤ was obtained in [49]. Finally, an index formula for an
arbitrary torsion free group acting on the circle was stated in [44].

Let us mention several interesting examples of elliptic 𝐺-operators. Suppose
that 𝐺 preserves some geometric structure on the manifold (for instance, Rie-
mannian metric, complex structure, spin structure,. . . ). Then we can consider an
elliptic operator associated with that structure and twist this operator using a
𝐺-projection (that is an operator of the form (0.1), which is a projection: 𝑃 2 = 𝑃 )
or an invertible 𝐺-operator. This construction produces an elliptic 𝐺-operator. For
instance, if 𝐺 acts isometrically, then one can take classical geometric operators
(Euler, signature, Dolbeault, Dirac operators). The indices of the corresponding
twisted 𝐺-operators were computed in [54]. If 𝐺 acts by conformal diffeomorphisms
of a Riemannian surface, then one can take the ∂ operator. Indices of the corre-
sponding twisted operators were computed in [43, 42]. In the papers [25, 37] there
are index formulas for the twisted Dirac operator for group actions preserving the
conformal structure on the manifold.

3. Operators associated with compact Lie groups. Let now 𝐺 be a compact Lie
group acting on 𝑀 . Consider the class of operators of the form

𝐷 =

∫
𝐺

𝐷𝑔𝑇𝑔𝑑𝑔 : 𝐶
∞(𝑀) −→ 𝐶∞(𝑀) (0.3)

(cf. (0.1)), where 𝑑𝑔 is the Haar measure. Such operators relate values of functions
on submanifolds of𝑀 of positive dimension. They were considered in [55, 66, 50]. In
these papers a 𝐺-operator of the form (0.3) was represented as a pseudodifferential
operator acting in sections of infinite-dimensional bundles [35], whose fiber is the
space of functions on 𝐺. This method goes back to the papers of Babbage [13] and
for a finite group gives a finite system of equations [4]. Moreover, the obtained
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operator, which we denote by 𝒟, is 𝐺-invariant, and its restriction 𝒟𝐺 to the
subspace of 𝐺-invariant functions is isomorphic to the original operator 𝐷. Now

if �̂� = 1 + 𝒟 is transversally elliptic4 with respect to the action of 𝐺, then this

implies the Fredholm property, that is, the index of the operator �̂� = 1 + 𝐷
is finite. The index formula and the corresponding topological invariants of the
symbol of elliptic 𝐺-operators were computed in the papers cited above.

4. Other classes of 𝑮-operators. Operators associated with diffeomorphisms are
not exhausted by operators of the form (0.1). In this section we consider other
classes of operators appearing in the literature. Boundary value problems similar
to Carleman’s problem, with the boundary condition relating the values of the
unknown function at different points on the boundary were considered (see the
monograph by Antonevich, Belousov and Lebedev [1] and the references cited
there). Finiteness theorems were proved and index theorems were obtained for the
case of finite group actions (see also [48]). On the other hand, nonlocal boundary
value problems, in which the boundary condition relates the values of a function
on the boundary of the domain and on submanifolds, which lie inside the domain,
were considered in [15, 62, 63, 64]. We also mention that 𝐺-operators on manifolds
with singularities were considered in [1]. The symbol was defined and a finiteness
theorem was proved.

An important extension of the notion of (Fredholm) index was obtained in
[36]. Namely, given a 𝐶∗-algebra 𝐴 (the algebra of scalars) one considers operators
𝐹 acting on the spaces, which are 𝐴-modules. The index of a Fredholm operator
in this setting, also called Mishchenko–Fomenko index

ind𝐴 𝐹 ∈ 𝐾0(𝐴) (0.4)
is an element of the 𝐾-group of 𝐴. Also, in the cited paper a definition of pseu-
dodifferential operators over 𝐶∗-algebras was given and an index theorem was
proved. Note, however, that it is sometimes useful in applications to have not only
the index (0.4) but some numerical invariants. Such invariants can be constructed
using the approach of noncommutative geometry by pairing the index (0.4) with
cyclic cocycles over 𝐴. In the papers [38, 53, 57] 𝐺-operators over 𝐶∗-algebras were
defined for isometric actions and the finiteness theorem and the index formula were
obtained.

5. Methods used in the theory of 𝑮-operators. Let us know write a few words
about the methods used in obtaining these index formulas. The first approach,
which appears naturally, is to try to adapt the known methods of obtaining index
formulas for 𝜓DOs in our more general setting of 𝐺-operators. This approach was
successfully applied, for instance, in the book [38]. Note, however, that using this
approach we obtain the proof of the index formula, which is quite nontrivial and
relies on serious mathematical results, notions and constructions from noncommu-
tative geometry and algebraic topology.

4This notion was introduced by Atiyah and Singer [8, 61] and actively studied since then (see
especially [31, 32, 33] and the references cited there).
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The second approach uses the idea of uniformization [55, 49] (see also [59,
47, 46]) to reduce the index problem for a 𝐺-operator to a similar problem for
a pseudodifferential operator on a manifold of a higher dimension. The index of
the latter operator can be found using the celebrated Atiyah–Singer formula. The
attractiveness of this approach is based on the fact that this approach is quite
elementary and does not require application of complicated mathematical appara-
tus, which was mentioned above. This method of pseudodifferential uniformization
enabled to give simple and elegant index formulas.

Let us now describe the contents of the remaining sections of the paper.
In Section 1 we recall the definitions of symbol and the finiteness theorem for
𝐺-operators associated with actions of discrete groups. Section 2 is devoted to
index formulas for actions of discrete groups. We start with the index formula for
isometric actions and then give an index formula for nonisometric actions. Finally,
Section 3 is devoted to 𝐺-operators associated with compact Lie group actions.
We show how pseudodifferential uniformization can be used to obtain a finiteness
theorem for such operators.

1. Elliptic operators associated with actions of discrete groups

1.1. Main definitions

Let 𝑀 be a closed smooth manifold and 𝐺 a discrete group acting on 𝑀 by
diffeomorphisms. We consider the class of operators of the form

𝐷 =
∑
𝑔∈𝐺

𝐷𝑔𝑇𝑔 : 𝐶
∞(𝑀) −→ 𝐶∞(𝑀), (1.1)

where {𝐷𝑔}𝑔∈𝐺 is a collection of pseudodifferential operators of order ≤ 𝑚 acting
on 𝑀 . We suppose that only finitely many 𝐷𝑔’s are nonzero. Finally, {𝑇𝑔} stands
for the representation of 𝐺 by the shift operators

(𝑇𝑔𝑢)(𝑥) = 𝑢(𝑔
−1(𝑥)).

Here and below an element 𝑔 ∈ 𝐺 takes a point 𝑥 ∈ 𝑀 to the point denoted by
𝑔(𝑥) ∈𝑀 .

Main problems:

1. Give ellipticity conditions, under which the operator

𝐷 : 𝐻𝑠(𝑀) −→ 𝐻𝑠−𝑚(𝑀), 𝑚 = ord 𝐷, (1.2)

is Fredholm in the Sobolev spaces.
2. Compute the index of operator (1.2).

The first of these problems is treated in this section, while the second problem is
treated in the subsequent section.

Below operators of the form (1.1) are called 𝐺-pseudodifferential operators or
𝐺-operators for short.
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1.2. Symbols of operators

Definition of symbol. The action of 𝐺 on𝑀 induces a representation of this group
by automorphisms of the algebra 𝐶(𝑆∗𝑀) of continuous functions on the cosphere
bundle 𝑆∗𝑀 = 𝑇 ∗0𝑀/ℝ+. Namely, an element 𝑔 ∈ 𝐺 acts as a shift operator along
the trajectory of the mapping ∂𝑔 : 𝑆∗𝑀 → 𝑆∗𝑀 , which is the extension of 𝑔 to the
cotangent bundle and is defined as ∂𝑔 = (𝑡(𝑑𝑔))−1, where 𝑑𝑔 : 𝑇𝑀 → 𝑇𝑀 is the
differential. Consider the 𝐶∗-crossed product 𝐶(𝑆∗𝑀)⋊𝐺 (e.g., see [16, 41, 68, 69])
of the algebra 𝐶(𝑆∗𝑀) by the action of 𝐺. Recall that 𝐶(𝑆∗𝑀)⋊𝐺 is the algebra,
obtained as a completion of the algebra of compactly-supported functions on 𝐺
with values in 𝐶(𝑆∗𝑀) and the product of two elements is defined as:

𝑎𝑏(𝑔) =
∑
𝑘𝑙=𝑔

𝑎(𝑘)𝑘−1
∗
(𝑏(𝑙)), 𝑘, 𝑙 ∈ 𝐺.

The completion is taken with respect to a certain norm.5 Here for 𝑘 ∈ 𝐺 by
𝑘−1∗ : 𝐶(𝑆∗𝑀) → 𝐶(𝑆∗𝑀) we denote the above-mentioned automorphism of
𝐶(𝑆∗𝑀).

To define the symbol for 𝐺-operators, it is useful to replace the shift operator
𝑇𝑔 : 𝐻

𝑠(𝑀) −→ 𝐻𝑠(𝑀) by a unitary operator. We fix a smooth positive density
𝜇 and a Riemannian metric on 𝑀 and treat 𝐻𝑠(𝑀) as a Hilbert space with the
norm

∥𝑢∥2𝐻𝑠 =

∫
𝑀

∣(1 + Δ)𝑠/2𝑢∣2𝜇,
where Δ is the nonnegative Laplacian. A direct computation shows that the op-
erator

𝑇𝑔,𝑠 = (1 +Δ)−𝑠/2𝜇−1/2𝑇𝑔𝜇+1/2(1 + Δ)𝑠/2 : 𝐻𝑠(𝑀) −→ 𝐻𝑠(𝑀)

is unitary. Here

𝜇1/2 : 𝐿2(𝑀)→ 𝐿2(𝑀,Λ1/2)

is the isomorphism of 𝐿2 spaces of scalar functions and half-densities on𝑀 defined
by multiplication by the square root of 𝜇. Note that the operator 𝑇𝑔,𝑠 can be
decomposed as 𝑇𝑔,𝑠 = 𝐴𝑔,𝑠𝑇𝑔, where 𝐴𝑔,𝑠 is an invertible elliptic 𝜓DO of order
zero.

This implies that the class of operators (1.1) does not change if in (1.1) we
replace 𝑇𝑔 by 𝑇𝑔,𝑠. Now we can give the definition of the symbol.

Definition 1. The symbol of operator

𝐷 =
∑
𝑔∈𝐺

𝐷𝑔𝑇𝑔,𝑠 : 𝐻
𝑠(𝑀) −→ 𝐻𝑠−𝑚(𝑀), (1.3)

where {𝐷𝑔} are pseudodifferential operators of order ≤ 𝑚 on 𝑀 , is an element

𝜎𝑠(𝐷) ∈ 𝐶(𝑆∗𝑀)⋊𝐺, (1.4)

defined by the equality 𝜎𝑠(𝐷)(𝑔) = 𝜎(𝐷𝑔) for all 𝑔 ∈ 𝐺.
5Below we consider the so-called maximal crossed product.
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The symbol (1.4) is not completely convenient for applications, since it de-
pends on the choice of Δ and 𝜇. Here we give another definition of the symbol
which is free from this drawback.

Trajectory symbol. So, let us try to define the symbol of the operator (1.2) using
the method of frozen coefficients. Note that the operator is essentially nonlocal.
More precisely, the corresponding equation 𝐷𝑢 = 𝑓 relates values of the unknown
function 𝑢 on the orbit 𝐺𝑥0 ⊂ 𝑀 , rather than at a single point 𝑥0 ∈ 𝑀 . For
this reason, unlike the classical situation, we need to freeze the coefficients of the
operator on the entire orbit of 𝑥0. Freezing the coefficients of the operator (1.2) on
the orbit of 𝑥0 and applying Fourier transform 𝑥 → 𝜉, we can define the symbol
as a function on the cotangent bundle 𝑇 ∗0𝑀 = 𝑇 ∗𝑀 ∖ 0 with zero section deleted.
This function ranges in operators acting on the space of functions on the orbit. A
direct computation gives the following expression for the symbol (see [4, 52]):

𝜎(𝐷)(𝑥0, 𝜉) =
∑
ℎ∈𝐺

𝜎(𝐷ℎ)(𝑔
−1(𝑥0), ∂𝑔−1(𝜉))𝒯ℎ : 𝑙2(𝐺,𝜇𝑥0,𝜉,𝑠) −→ 𝑙2(𝐺,𝜇𝑥0,𝜉,𝑠−𝑚).

(1.5)
Here we identify the orbit 𝐺𝑥0 with the group 𝐺 using the mapping 𝑔(𝑥0) → 𝑔−1

and use the following notation:

∙ (𝒯ℎ𝑤)(𝑔) = 𝑤(𝑔ℎ) is the right shift operator on the group;
∙ the expression 𝜎(𝐷ℎ)(𝑔

−1(𝑥0), ∂𝑔−1(𝜉)) acts as an operator of multiplication
of functions on the group;

∙ the space 𝑙2(𝐺,𝜇𝑥,𝜉,𝑠) consists of functions {𝑤(𝑔)}, 𝑔 ∈ 𝐺, which are square
summable with respect to the density 𝜇𝑥,𝜉,𝑠, which in local coordinates is
defined by the expression [52]

𝜇𝑥,𝜉,𝑠(𝑔) =

∣∣∣∣det ∂𝑔−1∂𝑥

∣∣∣∣ ⋅
∣∣∣∣∣𝑡
(
∂𝑔−1

∂𝑥

)−1
(𝜉)

∣∣∣∣∣
2𝑠

(1.6)

More precisely, here we suppose that the manifold is covered by a finite
number of charts and the diffeomorphism 𝑔−1 is written (in some pair of
charts) as 𝑥 → 𝑔−1(𝑥). The density is unique (up to equivalence of densities).

Definition 2. The operator (1.5) is the trajectory symbol of operator (1.2) at
(𝑥0, 𝜉) ∈ 𝑇 ∗0𝑀 .

Note that in general, the dependence of the trajectory symbol on 𝑥, 𝜉 is quite
complicated. For instance, the symbol may be discontinuous. This is related with
the fact that the structure of the orbits can be quite complicated.

Let us describe the relation between the symbols defined in Definitions 2 and
1. Given (𝑥, 𝜉) ∈ 𝑆∗𝑀 , we define the representation (restriction to trajectory)

𝜋𝑥,𝜉 : 𝐶(𝑆
∗𝑀)⋊𝐺 −→ ℬ𝑙2(𝐺)
𝑓 −→ ∑

ℎ 𝑓(𝑔
−1(𝑥), ∂𝑔−1(𝜉), ℎ)𝒯ℎ
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of the crossed product in the algebra of bounded operators acting on the standard
space 𝑙2(𝐺) (cf. (1.5)). One can show that the diagram

𝑙2(𝐺,𝜇𝑥,𝜉,𝑠)
𝜎(𝐷)(𝑥,𝜉) ��

≃
��

𝑙2(𝐺,𝜇𝑥,𝜉,𝑠−𝑚)

≃
��

𝑙2(𝐺)
𝜋𝑥,𝜉(𝜎𝑠(𝐷))

�� 𝑙2(𝐺),

(1.7)

commutes, where the vertical mappings are isomorphisms defined by multiplication
by the square root of the densities. In other words, this commutative diagram
shows that the restriction of the symbol 𝜎𝑠(𝐷) to a trajectory gives the trajectory
symbol 𝜎(𝐷).

1.3. Ellipticity and finiteness theorem

The two definitions of the symbol give two notions of ellipticity.

Definition 3. Operator (1.2) is elliptic, if its trajectory symbol (1.5) is invertible
on 𝑇 ∗0𝑀 .

Definition 4. Operator (1.2) is called elliptic, if its symbol (1.4) is invertible as an
element of the algebra 𝐶(𝑆∗𝑀)⋊𝐺.

It turns out that these definitions of ellipticity are equivalent, at least for a
quite large class of groups. More precisely, the commutative diagram (1.7) shows
that ellipticity in the sense of Definition 4 implies ellipticity in the sense of Defini-
tion 3; the inverse assertion is more complicated and was proved in [2] for actions
of amenable groups (recall that a discrete group 𝐺 is amenable, if there is a 𝐺-
invariant mean on 𝑙∞(𝐺); for more details see, e.g., [40]). We suppose that below
all groups are amenable and we identify these two notions of ellipticity.

The following finiteness theorem is proved by standard techniques (see [2, 1]).

Theorem 1. If operator (1.2) is elliptic then it is Fredholm.

Remark 1. It is shown in the cited monographs [2, 1] that under quite general
assumptions (namely, the action of 𝐺 on 𝑀 is assumed to be topologically free,
that is, for any finite set {𝑔1, . . . , 𝑔𝑛} ⊂ 𝐺 ∖ {𝑒} the union 𝑀𝑔1 ∪ ⋅ ⋅ ⋅ ∪𝑀𝑔𝑛 of the
fixed point sets has an empty interior), the ellipticity condition is necessary for
the Fredholm property. If the action is not topologically free, then one could give
a finer ellipticity condition. We do not consider these conditions here and refer the
reader to the monograph [2].

1.4. Examples

Let us illustrate the notion of ellipticity for 𝐺-operators on several explicit exam-
ples.
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1. Operators for the irrational rotations of the circle. Consider the group ℤ of
rotations of the circle 𝕊1 by multiples of a fixed angle 𝜃 not commensurable to 𝜋:

𝑔(𝑥) = 𝑥+ 𝑔𝜃, 𝑥 ∈ 𝕊1, 𝑔 ∈ ℤ, 𝜃 /∈ 𝜋ℚ.
A direct computation shows that in this case the densities 𝜇𝑥,𝜉,𝑠 (see (1.6)) are
equivalent to the standard density 𝜇(𝑔) = 1 on the lattice ℤ. Hence, in this case
the symbol of the operator 𝐷 =

∑
𝑔∈ℤ𝐷𝑔𝑇𝑔 is equal to

𝜎(𝐷)(𝑥, 𝜉) =
∑
ℎ

𝜎(𝐷ℎ)(𝑥 − 𝑔𝜃, 𝜉)𝒯 ℎ : 𝑙2(ℤ)→ 𝑙2(ℤ), where 𝒯 𝑢(𝑔) = 𝑢(𝑔 − 1).

Let us make two remarks. First, in this example, as in the classical theory of
𝜓DOs, the symbol does not depend on 𝑠 and therefore an operator is elliptic or
not elliptic for all 𝑠 simultaneously. The same property holds in the general case
if the action is isometric. Second, in this case to check the ellipticity condition, it
suffices to check that the symbol is invertible only for one pair of points (𝑥0,±1).
Indeed, since 𝑆∗𝕊1 = 𝕊1 ∪ 𝕊1, the crossed product 𝐶(𝑆∗𝕊1)⋊ℤ is a direct sum of
two simple algebras6 of irrational rotations 𝐶(𝕊1)⋊ ℤ. Hence, the mapping

𝜋𝑥0,1 ⊕ 𝜋𝑥0,−1 : 𝐶(𝑆
∗𝕊1)⋊ ℤ −→ ℬ𝑙2(ℤ) ⊕ ℬ𝑙2(ℤ)

is a monomorphism. Therefore, the symbol 𝜎(𝐷) is invertible if and only the
trajectory symbols at the points (𝑥0,±1) are invertible.
2. Operators for dilations of the sphere [58]. On the sphere 𝕊𝑚 we fix the North
and the South poles. The complements of the poles are identified with ℝ𝑚 with
the coordinates 𝑥 and 𝑥′, correspondingly. Let us choose the following transition
function 𝑥′(𝑥) = 𝑥∣𝑥∣−2. Consider the action of ℤ on 𝕊𝑚, which in the 𝑥-coordinates
is generated by the dilations

𝑔(𝑥) = 𝛼𝑔𝑥, 𝑔 ∈ ℤ, 𝑥 ∈ ℝ𝑚,

where 𝛼 (0 < 𝛼 < 1) is fixed. This expression defines a smooth action on the
sphere. Let us compute the densities 𝜇𝑥,𝜉,𝑠.

Proposition 1. Depending on whether 𝑥 is a pole of the sphere or not, the density
𝜇𝑥,𝜉,𝑠 in (1.6) is equal to:

𝜇𝑥,𝜉,𝑠(𝑔) =

⎧⎨⎩
𝛼∣𝑔∣(𝑚−2𝑠), if 𝑥 ∕= 0, 𝑥 ∕=∞,
𝛼𝑔(𝑚−2𝑠), if 𝑥 = 0,
𝛼−𝑔(𝑚−2𝑠), if 𝑥 =∞.

Proof. Indeed, given 𝑔 ≤ 0 the points 𝑔−1(𝑥) remain in a bounded domain of
the chart 𝕊𝑚 ∖ ∞. Thus, we can apply the formula (1.6), in which we use the 𝑥-
coordinate in the domain and the range of the diffeomorphism 𝑔. We get ∂𝑔−1/∂𝑥 =
𝛼−𝑔𝐼. Hence

𝜇𝑥,𝜉,𝑠(𝑔) =

∣∣∣∣∣𝑡
(
∂𝑔−1

∂𝑥

)−1
(𝜉)

∣∣∣∣∣
2𝑠

= 𝛼−𝑔𝑚 ⋅ ∣𝜉/𝛼−𝑔∣2𝑠 = 𝛼−𝑔(𝑚−2𝑠)∣𝜉∣2𝑠.

6That is, algebras without nontrivial ideals.
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This gives the desired expression for the measure if 𝑔 ≤ 0. Now if 𝑔 → +∞, then
the points 𝑔−1(𝑥) = 𝛼−𝑔𝑥 tend to infinity and we can apply formula (1.6), where
we use the pair of coordinates 𝑥 and 𝑥′. A computation similar to the previous
one gives the desired expression for the measure at the poles of the sphere: 𝑥 = 0
and 𝑥 =∞. □

Consider the operator

𝐷 =
∑
𝑘

𝐷𝑘𝑇
𝑘 : 𝐻𝑠(𝕊𝑚) −→ 𝐻𝑠(𝕊𝑚), 𝑇 𝑢(𝑥) = 𝑢(𝛼−1𝑥). (1.8)

According to the obtained expressions for the densities, this operator has the
symbol 𝜎(𝐷)(𝑥, 𝜉) at each point (𝑥, 𝜉) ∈ 𝑇 ∗0 𝕊𝑚. For example, consider the point
𝑥 = 0. It follows from Proposition 1 that we obtain an expression for the symbol
at this point

𝜎(𝐷)(0, 𝜉) =
∑
𝑘

𝜎(𝐷𝑘)(0, 𝜉)𝒯 𝑘 : 𝑙2(ℤ, 𝜇𝑠) −→ 𝑙2(ℤ, 𝜇𝑠), 𝜇𝑠(𝑛) = 𝛼
−𝑛(𝑚−2𝑠).

Fourier transform {𝑢(𝑔)} →∑
𝑔 𝑢(𝑔)𝑤

−𝑔 takes the latter operator to the operator
of multiplication

𝜎𝑆(𝐷)(𝜉, 𝑤) =
∑
𝑘

𝜎(𝐷𝑘) (0, 𝜉)𝑤
𝑘 : 𝐿2(𝕊1) −→ 𝐿2(𝕊1), 𝜉 ∈ 𝕊𝑚−1, ∣𝑤∣ = 𝛼−𝑚/2+𝑠

by a smooth function on the circle 𝕊1 of radius 𝛼−𝑚/2+𝑠. This shows that in this
example the ellipticity condition explicitly depends on the smoothness exponent
𝑠. It was proved in [58] that the set of values of 𝑠 for which the operator (1.8) is
elliptic is an open interval (possibly (semi)infinite or empty).

2. Index formulas for actions of discrete groups

In the previous section we defined the symbol of a 𝐺-operator as an element of the
corresponding crossed product. If an operator 𝐷 elliptic (its symbol is invertible)
then 𝐷 has Fredholm property and its index ind𝐷 is defined. To solve the index
problem means to express the index in terms of the symbol of the operator and
the topological characteristics of the 𝐺-manifold.

2.1. Isometric actions

The index problem for 𝐺-operators was solved in 2008 for isometric actions in
[38]. Here we discuss the index formula from the cited monograph. This formula
is proved under the following assumption.

Assumption 1.

1. 𝐺 is a discrete group of polynomial growth (see [28]), i.e., the number of
elements of the group, whose length is ≤ 𝑁 in the word metric on the group,
grows at most as a polynomial in 𝑁 as 𝑁 →∞.

2. 𝑀 is a Riemannian manifold and the action of 𝐺 on 𝑀 is isometric.
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Smooth crossed product. Let 𝐷 be an elliptic operator. Then its symbol is invert-
ible and defines an element

[𝜎(𝐷)] ∈ 𝐾1(𝐶(𝑆∗𝑀)⋊𝐺)

of the odd 𝐾-group of the crossed product 𝐶(𝑆∗𝑀) ⋊ 𝐺 (e.g., see [16]). Note a
significant difference between the elliptic theory of 𝐺-operators and the classical
Atiyah–Singer theory: the algebra of symbols is not commutative and therefore we
use 𝐾-theory of algebras instead of topological𝐾-theory. Further, to give an index
formula, we will use tools from noncommutative differential geometry. Note that
noncommutative differential geometry does not apply in general to 𝐶∗-algebras.
The point here is that in a 𝐶∗-algebra there is a notion of continuity, but there is
no differentiability. Fortunately, in the situation at hand, one can prove that we
only deal with differentiable elements. Let us formulate this statement precisely.

Proposition 2 (see [60]). If the symbol 𝜎(𝐷) is invertible, then the inverse 𝜎(𝐷)−1

lies in the subalgebra

𝐶∞(𝑆∗𝑀)⋊𝐺 ⊂ 𝐶(𝑆∗𝑀)⋊𝐺, (2.1)

of 𝐶∞(𝑆∗𝑀)-valued functions on 𝐺, which (together with all their derivatives)
tend to zero as ∣𝑔∣ → ∞ faster than an arbitrary power of ∣𝑔∣.

The subalgebra (2.1) is called the smooth crossed product.

So, we have

[𝜎(𝐷)] ∈ 𝐾1(𝐶∞(𝑆∗𝑀)⋊𝐺). (2.2)

To write an index formula for 𝐷, we first define a topological invariant of the
symbol. This invariant is called the Chern character of the element (2.2). Then we
define a topological invariant of the manifold.

Equivariant Chern character. Following [38], let us define the Chern character as
the homomorphism of groups

ch : 𝐾1(𝐶
∞(𝑋)⋊𝐺) −→

⊕
⟨𝑔⟩⊂𝐺

𝐻odd(𝑋𝑔), (2.3)

where we put for brevity 𝑋 = 𝑆∗𝑀 , the sum runs over conjugacy classes of 𝐺,
and 𝑋𝑔 denotes the fixed-point set of 𝑔. Since 𝑔 is an isometry by assumption, the
fixed-point set is a smooth submanifold (e.g., see [18]).

We define the Chern character using the abstract approach of noncommuta-
tive geometry. To this end, it suffices to define a pair (Ω, 𝜏), where:

1. Ω = Ω0 ⊕ Ω1 ⊕ Ω2 ⊕ ⋅ ⋅ ⋅ is a differential graded algebra, which contains the
crossed product 𝐶∞(𝑋)⋊𝐺 as a subalgebra of Ω0;
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2. 𝜏 : Ω −→ ⊕
⟨𝑔⟩⊂𝐺 Λ(𝑋𝑔) is a homomorphism of differential complexes such

that

𝜏(𝜔2𝜔1) = (−1)deg𝜔1 deg𝜔2𝜏(𝜔1𝜔2), for all 𝜔1, 𝜔2 ∈ Ω. (2.4)

The algebra Ω is called the algebra of noncommutative differential forms, and the
functional 𝜏 is called the differential graded trace.

If such a pair is given, then the Chern character associated with the pair
(Ω, 𝜏) is defined as

ch(𝑎) = tr 𝜏

⎡⎣∑
𝑛≥0

𝑛!

(2𝜋𝑖)𝑛+1(2𝑛+ 1)!
(𝑎−1𝑑𝑎)2𝑛+1

⎤⎦ , [𝑎] ∈ 𝐾1(𝐶∞(𝑋)⋊𝐺),

(2.5)
where tr is the trace of a matrix. A standard computation shows that the form
in (2.5) is closed and its class in de Rham cohomology is determined by [𝑎] and
defines the homomorphism (2.3). It remains to define the pair (Ω, 𝜏):

1. We set Ω = Λ(𝑋)⋊𝐺, where the differential on the smooth crossed product
of the algebra Λ(𝑋) of differential forms on 𝑋 and the group 𝐺 is equal to

(𝑑𝜔)(𝑔) = 𝑑(𝜔(𝑔)), 𝜔 ∈ Λ(𝑋)⋊𝐺.

2. To define a differential graded trace 𝜏 = {𝜏𝑔}, we fix some 𝑔 ∈ 𝐺 and

introduce necessary notation. Let 𝐺 be the closure of 𝐺 in the compact Lie group
of isometries of 𝑋 . This closure is a compact Lie group. Let 𝐶𝑔 ⊂ 𝐺 be the

centralizer7 of 𝑔. The centralizer is a closed Lie subgroup in 𝐺. Denote the elements
of the centralizer by ℎ, and the induced smooth Haar measure on the centralizer
by 𝑑ℎ.

Let ⟨𝑔⟩ ⊂ 𝐺 be the conjugacy class of 𝑔, i.e., the set of elements equal to
𝑧𝑔𝑧−1 for some 𝑧 ∈ 𝐺. Further, for each 𝑔′ ∈ ⟨𝑔⟩ we fix some element 𝑧 = 𝑧(𝑔, 𝑔′),
which conjugates 𝑔 and 𝑔′ = 𝑧𝑔𝑧−1. Any such element defines a diffeomorphism
𝑧 : 𝑋𝑔 → 𝑋𝑔′ .

Let us define the trace as

𝜏𝑔(𝜔) =
∑
𝑔′∈⟨𝑔⟩

∫
𝐶𝑔

ℎ∗
(
𝑧∗𝜔(𝑔′)

)∣∣∣
𝑋𝑔
𝑑ℎ, where 𝜔 ∈ Λ(𝑋)⋊𝐺. (2.6)

One can show that this expression does not depend on the choice of elements 𝑧
and is indeed a differential graded trace.

Remark 2. For a finite group the Chern character (2.5) coincides with the one
constructed in [65], [14].

7Recall that the centralizer of 𝑔 is the subgroup of elements commuting with 𝑔.
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Equivariant Todd class. Given 𝑔 ∈ 𝐺, the normal bundle of the fixed-point sub-
manifold 𝑀𝑔 ⊂ 𝑀 is denoted by 𝑁𝑔. The differential 𝑑𝑔 defines an orthogonal
endomorphism of 𝑁𝑔 and the corresponding bundle of exterior forms

Ω(𝑁𝑔
ℂ
) = Ω𝑒𝑣(𝑁𝑔

ℂ
)⊕ Ωodd(𝑁𝑔

ℂ
).

Here 𝐸ℂ stands for the complexification of a real vector bundle 𝐸. Consider the
expression (see [12])

chΩ𝑒𝑣(𝑁𝑔
ℂ
)(𝑔)− chΩodd(𝑁𝑔

ℂ
)(𝑔) ∈ 𝐻ev(𝑀𝑔). (2.7)

The zero-degree component of this expression is nonzero [10]. Hence the class (2.7)
is invertible and the following expression is well defined

Td𝑔(𝑇
∗
ℂ𝑀) =

Td(𝑇 ∗
ℂ
𝑀𝑔)

chΩev(𝑁𝑔
ℂ
)(𝑔)− chΩodd(𝑁𝑔

ℂ
)(𝑔)

∈ 𝐻∗(𝑀𝑔), (2.8)

where Td on the right-hand side in the equality is the Todd class of a complex
vector bundle, and the expression is well defined, since the forms have even degrees.

Index theorem.

Theorem 2 (see [38]). Let 𝐷 be an elliptic 𝐺-operator on a closed manifold 𝑀 .
Then

ind𝐷 =
∑
⟨𝑔⟩⊂𝐺

⟨ch𝑔[𝜎(𝐷)] Td𝑔(𝑇 ∗ℂ𝑀), [𝑆∗𝑀𝑔]⟩ , (2.9)

where ⟨𝑔⟩ runs over the set of conjugacy classes of 𝐺; [𝑆∗𝑀𝑔] ∈ 𝐻odd(𝑆∗𝑀𝑔) is
the fundamental class of 𝑆∗𝑀𝑔; the Todd class is lifted from 𝑀𝑔 to 𝑆∗𝑀𝑔 using the
natural projection; the brackets ⟨, ⟩ denote the pairing of cohomology and homology.
The series in (2.9) is absolutely convergent.

In some situations the sum in (2.9) can be reduced to one summand equal to
the contribution of the unit element.

Corollary 1 (see [38, 54]). Suppose that either the action of 𝐺 on 𝑀 is free or 𝐺
is torsion free. Then one has

ind𝐷 = ⟨ch𝑒[𝜎(𝐷)] Td(𝑇 ∗ℂ𝑀), [𝑆∗𝑀 ]⟩. (2.10)

Let us note that the index formula (2.9) contains many other index formulas
as special cases (see [38, 54] for details). Here we give two situations, in which the
index formula can be applied.

Example 1. Index of twisted Toeplitz operators. Let𝑀 be an odd-dimensional ori-
ented manifold. We suppose that 𝑀 is endowed with a 𝐺-invariant spin-structure
(i.e., the action of 𝐺 on 𝑀 lifts to an action on the spin bundle 𝑆(𝑀)). Let 𝒟 be
the Dirac operator [12]

𝒟 : 𝑆(𝑀) −→ 𝑆(𝑀),

acting on spinors. This operator is elliptic and self-adjoint.
Denote by Π+ : 𝑆(𝑀) −→ 𝑆(𝑀) the positive spectral projection of this

operator.
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We define the Toeplitz operator

Π+𝑈 : Π+(𝑆(𝑀))⊗ ℂ𝑛 −→ Π+(𝑆(𝑀))⊗ ℂ𝑛, (2.11)

where 𝑈 is an invertible 𝑛 by 𝑛 matrix with elements in 𝐶∞(𝑀) ⋊ 𝐺. Then the
operator (2.11) is Fredholm (its almost-inverse is equal to Π+𝑈

−1). Let us suppose
for simplicity that either 𝐺 is torsion free, or the action is free. In this case, the
formula (2.10) gives the following expression for the index.

Theorem 3. The index of operator (2.11) is equal to

ind(Π+𝑈) =

∫
𝑀

𝐴(𝑇𝑀) ch𝑒(𝑈), (2.12)

where 𝐴(𝑇𝑀) is the 𝐴-class of the tangent bundle, which in the Borel–Hirzebruch
formalism is defined by the function

𝑥/2

sh 𝑥/2
.

Examples 2. Operators on noncommutative torus. Let us fix 0 < 𝜃 ≤ 1. A. Connes
in [22] considered differential operators of the form

𝐷 =
∑

𝛼+𝛽≤𝑚
𝑎𝛼𝛽𝑥

𝛼

(
−𝑖 𝑑
𝑑𝑥

)𝛽
: 𝑆(ℝ) −→ 𝑆(ℝ), (2.13)

in the Schwartz space 𝑆(ℝ) on the real line. Here the coefficients 𝑎𝛼𝛽 are Laurent
polynomials in operators 𝑈, 𝑉

(𝑈𝑓)(𝑥) = 𝑓(𝑥+ 1), (𝑉 𝑓)(𝑥) = 𝑒−2𝜋𝑖𝑥/𝜃𝑓(𝑥) (2.14)

of shift by one and product by exponential.
Let us show that the operators of the form (2.13) reduce to 𝐺-operators on

a closed manifold. To this end, we consider the real line as the total space of the
standard covering

ℝ −→ 𝕊1,
whose base is the circle of length 𝜃. Then the Schwartz space becomes isomorphic
to the space of smooth sections of a (nontrivial) bundle on the base 𝕊1, whose
fiber is the Schwartz space 𝑆(ℤ) of rapidly decaying sequences (that is, functions
on the fiber). Then we apply Fourier transform

ℱ : 𝑆(ℤ) −→ 𝐶∞(𝕊1)

in each fiber and obtain a space, which is the space of smooth sections of a complex
line bundle over the torus 𝕋2. These transformations define the isomorphism

𝑆(ℝ) ≃ 𝐶∞(𝕋2, 𝛾) (2.15)

of the Schwartz space on the real line and the space

𝐶∞(𝕋2, 𝛾) = {𝑔 ∈ 𝐶∞(ℝ× 𝕊1) ∣ 𝑔(𝜑+ 𝜃, 𝜓) = 𝑔(𝜑, 𝜓)𝑒−2𝜋𝑖𝜓}
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of smooth sections of a complex line bundle 𝛾 on the torus. Here on 𝕋2 we consider
the coordinates 0 ≤ 𝜑 ≤ 𝜃, 0 ≤ 𝜓 ≤ 1. This isomorphism is defined by the formula

𝑓(𝑥) −→
∑
𝑛∈ℤ
𝑓(𝜑+ 𝜃𝑛)𝑒2𝜋𝑖𝑛𝜓 .

(This formula was found earlier by S. Novikov.) Using the isomorphism (2.15), it
is easy to obtain the correspondences between the operators:

operators on the line operators on the torus

−𝑖 𝑑𝑑𝑥 −𝑖 ∂∂𝜑
𝑥 −𝑖 𝜃2𝜋 ∂

∂𝜓 + 𝜓

𝑒−2𝜋𝑖𝑥/𝜃 𝑒−2𝜋𝑖𝜑/𝜃

𝑓(𝑥)→ 𝑓(𝑥+ 1) 𝑔(𝜑, 𝜓) → 𝑔(𝜑+ 1, 𝜓)

This table implies that on the torus we obtain 𝐺-operators, which can be studied
using the finiteness theorem and the index formula formulated above. We refer the
reader to [38] for details.

2.2. General actions

In this subsection we survey index formulas for elliptic operators associated with
general actions of discrete groups (see recent papers [49] and [44]). Let 𝐷 be an
elliptic operator of the form (1.1). We will assume for simplicity that the inverse
symbol 𝜎(𝐷)−1 lies in the algebraic crossed product

𝐶∞(𝑆∗𝑀)⋊𝑎𝑙𝑔 𝐺 ⊂ 𝐶(𝑆∗𝑀)⋊𝐺,

which consists of compactly supported functions on the group. Such a symbol
defines an element

[𝜎(𝐷)] ∈ 𝐾1(𝐶∞(𝑆∗𝑀)⋊𝑎𝑙𝑔 𝐺) (2.16)

in 𝐾-theory. We would like to define the topological index as a numerical invariant
associated with [𝜎(𝐷)]. There is a standard procedure in noncommutative geome-
try of constructing such invariants. Namely, one takes the pairing of (2.16) with an
element in cyclic cohomology of the same algebra. Let us recall this construction.

Cyclic cohomology. Pairing with 𝑲-theory. Let 𝐴 be an algebra with unit. Re-
call (see [22]) that the cyclic cohomology 𝐻𝐶∗(𝐴) of 𝐴 is the cohomology of the
bicomplex

𝐴∗ ⋅ ⋅ ⋅
↑ 𝐵

𝐴∗ 𝑏→ 𝐴∗2 ⋅ ⋅ ⋅
↑ 𝐵 ↑ 𝐵

𝐴∗ 𝑏→ 𝐴∗2 𝑏→ 𝐴∗3 ⋅ ⋅ ⋅
...

...
...

(2.17)
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where 𝑏, 𝐵 are some differentials and for simplicity we denote the space of multi-
linear functionals on 𝐴𝑘 by 𝐴∗𝑘. In particular, an element 𝜑 ∈ 𝐻𝐶𝑛(𝐴) of cyclic
cohomology is represented by a finite collection of multi-linear functionals

{𝜑𝑗(𝑎0, . . . , 𝑎𝑗)}, 𝑗 = 𝑛, 𝑛− 2, 𝑛− 4, . . . ,

such that 𝐵𝜑𝑗 + 𝑏𝜑𝑗−2 = 0.
To make the paper self-contained, we recall the formulas for the differentials in the

bicomplex:

(𝑏𝜑)(𝑎0, 𝑎1, . . . , 𝑎𝑗+1) =

𝑗∑
𝑛=0

𝜑(𝑎0, 𝑎1, . . . , 𝑎𝑛𝑎𝑛+1, . . . , 𝑎𝑗+1)

+ (−1)𝑗+1𝜑(𝑎𝑗+1𝑎0, 𝑎1, . . . , 𝑎𝑗).

(2.18)

and 𝐵 = 𝑁𝑠(𝐼𝑑− 𝜆), where 𝜆 = (−1)𝑛(cyclic left shift),

𝑠 : 𝐴∗(𝑛+1) −→ 𝐴∗𝑛, (𝑠𝜑)(𝑎0, . . . , 𝑎𝑛−1) = 𝜑(1, 𝑎0, . . . , 𝑎𝑛−1),

and 𝑁 : 𝐴∗𝑛 −→ 𝐴∗𝑛, 𝑁 = 𝐼𝑑 + 𝜆 + 𝜆2 + ⋅ ⋅ ⋅+ 𝜆𝑛−1 is the symmetrization mapping.

The desired numerical invariants are defined using the pairing

⟨, ⟩ : 𝐾1(𝐴) ×𝐻𝐶odd(𝐴) −→ ℂ (2.19)

of 𝐾-theory and cyclic cohomology. The value of this pairing on the classes [𝑎] and
[𝜑] is equal to

⟨𝑎, 𝜑⟩ = 1√
2𝜋𝑖

∑
𝑘≥0

(−1)𝑘𝑘!𝜑2𝑘+1(𝑎−1, 𝑎, . . . , 𝑎−1, 𝑎).

Now to define the topological index of the element (2.16), it remains to choose
a cocycle over the algebra. It turns out that the desired cocycle can be defined as
a special equivariant characteristic class in cyclic cohomology.

Equivariant characteristic classes. Suppose that a discrete group 𝐺 acts smoothly
on a closed smooth manifold 𝑋 . We shall also assume that 𝑋 is oriented and
the action is orientation-preserving. Let 𝐸 ∈ Vect𝐺(𝑋) be a finite-dimensional
complex 𝐺-bundle on 𝑋 . Connes defined (e.g., see [22]) equivariant characteristic
classes of 𝐸 with values in cyclic cohomology 𝐻𝐶∗(𝐶∞(𝑋)⋊𝑎𝑙𝑔 𝐺) of the crossed
product. However, the formulas for these classes were quite complicated and we
do not give them here. A simple explicit formula was obtained in [27] for the most
important characteristic class, namely, for the equivariant Chern character

ch𝐺(𝐸) ∈ 𝐻𝐶∗(𝐶∞(𝑋)⋊𝑎𝑙𝑔 𝐺). (2.20)

More precisely, it was shown in the cited paper that the class ch𝐺(𝐸) is represented

by the collection of functionals {ch𝑘𝐺(𝐸)} defined as

ch𝑘𝐺(𝐸; 𝑎0, 𝑎1, . . . , 𝑎𝑘)

=
(−1)(𝑛−𝑘)/2
((𝑛+ 𝑘)/2)!

∑
𝑖0+𝑖1+⋅⋅⋅+𝑖𝑘=(𝑛−𝑘)/2

∫
𝑋

tr𝐸
[(
𝑎0𝜃

𝑖0∇(𝑎1)𝜃𝑖1∇(𝑎2) . . .∇(𝑎𝑘)𝜃𝑖𝑘
)
𝑒

]
(2.21)
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(cf. Jaffe–Lesniewski–Osterwalder formula [29]). Here

dim𝑋 = 𝑛, 𝑘 = 𝑛, 𝑛− 2, 𝑛− 4, . . . ,

∇𝐸 is a connection in 𝐸 and 𝜃 = ∇2𝐸 is its curvature form, for a noncommutative
form 𝜔 by 𝜔𝑒 we denote the coefficient of 𝑇𝑒 = 1, while the operator

∇ : 𝐶∞(𝑋)⋊alg 𝐺→ Λ1(𝑋,End𝐸)⋊alg 𝐺

is defined as

∇
(∑

𝑔

𝑎𝑔𝑇𝑔

)
=

∑
𝑔

[
𝑑𝑎𝑔 − 𝑎𝑔(∇𝐸 − (𝑔−1)∗∇𝐸)

]
𝑇𝑔.

It is proved in the cited paper that the collection of functionals {ch𝑘𝐺(𝐸)} defines
a cocycle over 𝐶∞(𝑋) ⋊alg 𝐺, and the class of this cocycle in cyclic cohomology
does not depend on the choice of ∇𝐸 and coincides with the equivariant Chern
character defined by Connes [22].

Explicit formulas for other characteristic classes can be obtained using stan-
dard topological techniques (operations in 𝐾-theory, see [9]). For the index theo-
rem, we need the equivariant Todd class.

Proposition 3 ([49]). The equivariant Todd class

Td𝐺(𝐸) ∈ 𝐻𝐶∗(𝐶∞(𝑋)⋊alg 𝐺) (2.22)

of a complex 𝐺-bundle 𝐸 on a smooth manifold 𝑋 is equal to

Td𝐺(𝐸) = ch𝐺(Φ(𝐸)),

here Φ is the multiplicative operation in 𝐾-theory, which corresponds to the func-
tion 𝜑(𝑡) = 𝑡−1(1 + 𝑡) ln(1 + 𝑡).

Note that Φ can be expressed explicitly in terms of Grothendieck operations.
For instance, if dim𝑋 ≤ 5 then (see [49])

Φ(𝐸) = 1 +
𝐸 − 𝑛
2

+
−2(𝐸2 − 2𝑛𝐸 + 𝑛2) + 7(𝐸 + Λ2𝐸 − 𝑛𝐸 + 𝑛(𝑛− 1)/2)

12

=
3𝑛2 − 19𝑛+ 24

24
+

(−3𝑛+ 13)

12
𝐸 − 1

6
𝐸 ⊗ 𝐸 +

7

12
Λ2𝐸 (2.23)

where 𝑛 = dim𝐸.

Index theorem.

Theorem 4 ([49]). Let 𝐷 be an elliptic operator associated with the action of group
ℤ. Then we have the index formula

ind𝐷 = (2𝜋𝑖)−𝑛⟨[𝜎(𝐷)],Tdℤ(𝜋
∗𝑇 ∗ℂ𝑀)⟩, dim𝑀 = 𝑛, (2.24)

where 𝜋 : 𝑆∗𝑀 −→ 𝑀 is the natural projection and the brackets ⟨, ⟩ denote the
pairing of 𝐾-theory and cyclic cohomology (see (2.19)).

Remark 3. An index formula for operators on the circle associated with an action
of an arbitrary torsion free group is announced in [44]. The index formula in this
case has the same form as (2.24).
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Examples. 1. Suppose that the (usual) Todd class Td(𝑇 ∗
ℂ
𝑀) is trivial and the

diffeomorphisms of the ℤ-action are isotopic to the identity. Then one can show
that the equivariant Todd class is equal to the transverse fundamental cycle (see
[21]) of 𝑆∗𝑀 and the index formula (2.24) is written as:

ind𝐷 =
(𝑛− 1)!

(2𝜋𝑖)𝑛(2𝑛− 1)!

∫
𝑆∗𝑀

(𝜎−1𝑑𝜎)2𝑛−1𝑒 , 𝜎 = 𝜎(𝐷). (2.25)

2. Suppose that the group acts isometrically. Then formula (2.24) reduces
to (2.10) This is obvious if we choose an invariant metric and connection on the
cotangent bundle.

3. Elliptic operators for compact Lie groups

3.1. Main definitions

Let a compact Lie group 𝐺 act smoothly on a closed smooth manifold 𝑀 . An
element 𝑔 ∈ 𝐺 takes a point 𝑥 ∈ 𝑀 to the point denoted by 𝑔(𝑥). We fix a
𝐺-invariant metric on 𝑀 and the Haar measure on 𝐺.

Consider the representation 𝑔 → 𝑇𝑔 of 𝐺 in the space 𝐿2(𝑀) by shift opera-
tors

𝑇𝑔𝑢(𝑥) = 𝑢(𝑔
−1(𝑥)).

Definition 5. A 𝐺-pseudodifferential operator (𝐺-𝜓DO) is an operator

𝐷 : 𝐿2(𝑀) −→ 𝐿2(𝑀)

of the form

𝐷 = 1 +

∫
𝐺

𝐷𝑔𝑇𝑔𝑑𝑔, (3.1)

where 𝐷𝑔, 𝑔 ∈ 𝐺 is a smooth family of pseudodifferential operators of order zero
on 𝑀 .

Consider the equation

𝑢+

∫
𝐺

𝐷𝑔𝑇𝑔𝑢𝑑𝑔 = 𝑓, 𝑢, 𝑓 ∈ 𝐿2(𝑀). (3.2)

Note that if 𝐺 is discrete, then we obtain the class of equations (1.1).

Example 1. Integro-differential equations on the torus. On the torus 𝕋2 = 𝕊1×𝕊1
with coordinates 𝑥1, 𝑥2, consider the integro-differential equation

Δ𝑢(𝑥1, 𝑥2) + 𝛼
∂2

∂𝑥21

∫
𝕊1

𝑢(𝑥1, 𝑦)𝑑𝑦 = 𝑓(𝑥1, 𝑥2),

where Δ stands for the nonnegative Laplace operator, and 𝛼 is a constant. Let us
write this equation as

Δ𝑢+ 𝛼
∂2

∂𝑥21

∫
𝕊1

𝑇𝑔𝑑𝑔𝑢 = 𝑓, (3.3)
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where 𝑇𝑔 denotes the shift operator 𝑇𝑔𝑢(𝑥1, 𝑥2) = 𝑢(𝑥1, 𝑥2 − 𝑔), induced by the
action of the circle 𝐺 = 𝕊1 by shifts in 𝑥2. Note that if we multiply the equa-
tion (3.3) on the left by the almost inverse operator Δ−1, we obtain an equation
of the type (3.2).

Example 2. Integro-differential equations on the plane. Consider the integro-dif-
ferential equation

Δ𝑢(𝑥, 𝑦)

+

(
𝛼
∂2

∂𝑥2
+ 𝛽

∂2

∂𝑥∂𝑦
+ 𝛾

∂2

∂𝑦2

)∫
𝕊1

𝑢(𝑥 cos𝜑−𝑦 sin𝜑, 𝑥 sin𝜑+𝑦 cos𝜑)𝑑𝜑 = 𝑓(𝑥, 𝑦)

on the plane ℝ2𝑥,𝑦, where Δ is the Laplace operator, and 𝛼, 𝛽, 𝛾 are constants. This
equation can be written as

Δ𝑢+

(
𝛼
∂2

∂𝑥2
+ 𝛽

∂2

∂𝑥∂𝑦
+ 𝛾

∂2

∂𝑦2

)∫
𝕊1

𝑇𝜑𝑑𝜑𝑢 = 𝑓, (3.4)

where the shift operator 𝑇𝜑 is induced by the action of the circle 𝐺 = 𝕊1 by
rotations

(𝑥, 𝑦) −→ (𝑥 cos𝜑+ 𝑦 sin𝜑,−𝑥 sin𝜑+ 𝑦 cos𝜑)
around the origin. If we multiply the equation (3.4) on the left by the almost
inverse operator Δ−1, we obtain an equation similar to (3.2).

3.2. Pseudodifferential uniformization

Here we formulate an approach, called pseudodifferential uniformization, which
enables one to reduce a 𝐺-pseudodifferential operator

𝐷 = 1 +

∫
𝐺

𝐷𝑔𝑇𝑔𝑑𝑔 : 𝐿
2(𝑀) −→ 𝐿2(𝑀). (3.5)

to a pseudodifferential operator and then apply the methods of the theory of
pseudodifferential operators.

1. Reduction to a 𝝍DO. This reduction is constructed as follows.

∙ The operator𝐷 is represented as an operator on the quotient𝑀/𝐺 (the space
of orbits).

∙ If the action of 𝐺 on𝑀 has no fixed points, then 𝑀/𝐺 is a smooth manifold;
moreover, 𝐷 can be treated as a 𝜓DO on 𝑀/𝐺 with operator-valued symbol
in the sense of Luke [35] (explanation: this follows from the fact that the
operator 𝑇𝑔 acts only along the fibers of the infinite-dimensional bundle over
𝑀/𝐺, but not along the base).

∙ If the fixed point set is nonempty, then 𝑀/𝐺 has singularities; to construct
a 𝜓DO in this case, we do the following.

∙ We lift 𝐷 from 𝑀 to the product 𝑀 ×𝐺 endowed with the diagonal action
of 𝐺:

(𝑥, ℎ) −→ (𝑔(𝑥), 𝑔ℎ). (3.6)
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Figure 1. The orbits of the diagonal and vertical actions on the prod-
uct 𝑀 ×𝐺.

∙ The action (3.6) is fixed point free. Hence, the obtained 𝐺-pseudodifferential

operator on 𝑀 × 𝐺, which we denote by �̃�, can be represented (see above)
as a 𝜓DO on the smooth orbit space (𝑀 ×𝐺)/𝐺 ≃𝑀 .

These steps give the commutative diagram

𝐿2(𝑀)
𝐷 ��

𝜋∗

��

𝐿2(𝑀)

𝜋∗

��
𝐿2(𝑀 ×𝐺)

�̃� ��

≃
��

𝐿2(𝑀 ×𝐺)

≃
��

𝐿2(𝑀,𝐿2(𝐺))
𝒟 �� 𝐿2(𝑀,𝐿2(𝐺)),

(3.7)

where 𝜋∗ is the induced mapping for the projection 𝜋 : 𝑀 ×𝐺→𝑀 , while 𝒟 is a
pseudodifferential operator on 𝑀 .

Remark 4. The fact that 𝒟 is a 𝜓DO is clear for geometric reasons. Indeed, �̃� has
shifts along the orbits of the diagonal action of 𝐺 (see Figure 1, left). Clearly, these
orbits can be transformed into vertical orbits (see Figure 1, right) by a change of
variables on 𝑀 ×𝐺. The shift operator along the vertical orbits is a 𝜓DO on 𝑀 .

2. Restriction of 𝝍DO to the subspace of invariant sections. The mapping 𝜋∗ in
(3.7) is a monomorphism. Its range is the space of 𝐺-invariant sections. Hence,
(3.7) gives a commutative diagram of the form

𝐿2(𝑀)
𝐷 ��

≃
��

𝐿2(𝑀)

≃
��

𝐿2(𝑀,𝐿2(𝐺))𝐺
𝒟𝐺

�� 𝐿2(𝑀,𝐿2(𝐺))𝐺,

where 𝒟𝐺 stands for the restriction of 𝒟 to the subspace of invariant sections,
which we denote by 𝐿2(𝑀,𝐿2(𝐺))𝐺.

3. Transverse ellipticity. It remains to give conditions, which imply that the re-
striction

𝐿2(𝑀,𝐿2(𝐺))𝐺
𝒟𝐺

−→ 𝐿2(𝑀,𝐿2(𝐺))𝐺
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x
Gx

Figure 2. Transversal to the orbit.

of 𝒟 to the subspace of 𝐺-invariant sections is Fredholm. Let us note that invariant
sections are constant along the orbits of the group action. Hence, it suffices to
impose the condition, which guarantees the Fredholm property, only along the
transverse directions to the orbit (see Figure 2).

Definition 6 ([8, 61]). A pseudodifferential operator 𝒟 is transversally elliptic, if
its symbol 𝜎(𝒟)(𝑥, 𝜉) is invertible for all (𝑥, 𝜉) ∈ 𝑇 ∗𝐺𝑀 ∖ 0, where

𝑇 ∗𝐺𝑀 = {(𝑥, 𝜉) ∈ 𝑇 ∗𝑀 ∣ covector 𝜉 is orthogonal to the orbit 𝐺𝑥}.
stands for the transverse cotangent bundle.

Theorem 5 ([55, 66]). A transversally elliptic operator 𝒟 restricts to a Fredholm
operator on the subspace of 𝐺-invariant sections

𝒟𝐺 : 𝐿2(𝑀,𝐿2(𝐺))𝐺 −→ 𝐿2(𝑀,𝐿2(𝐺))𝐺.

Let us summarize the above discussion.

1. To a 𝐺-pseudodifferential operator 𝐷 we assigned a pseudodifferential oper-
ator 𝒟 such that there is an isomorphism

𝐷 ≃ 𝒟𝐺, (3.8)

where 𝒟𝐺 is the restriction of 𝒟 to the subspace of invariant sections.
2. If 𝒟 is transversally elliptic, then its restriction 𝒟𝐺 is Fredholm. Hence, by

virtue of the isomorphism (3.8) the original operator 𝐷 is also Fredholm.

Since we have isomorphism (3.8), we obtain:

ind𝐷 = ind𝒟𝐺.
Using this equation and the theory of transversally elliptic pseudodifferential oper-
ators [8, 30, 67]), an index theorem for the 𝐺-operator 𝐷 was obtained in [55, 50].
We only mention here that the main ingredients of the index formula are: 1) the
definition of the symbol of 𝐷 as an element of the crossed product of the algebra of
functions on the transverse cotangent bundle by the group 𝐺; 2) a Chern character
mapping on the 𝐾-theory of this algebra ranging in the basic cohomology of fixed
point sets of the group action.
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