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Preface

At the Eighth Congress of the International Society for Analysis, its Applications
and Computations (ISAAC) held at the Peoples’ Friendship University of Russia
in Moscow on August 22-27, 2011, a new initiative on selecting contributions from
two special sessions, one on Pseudo-Differential Operators and the other on Gen-
eralized Functions and Asymptotics, for one volume was taken to heart by many
participants. This resonates well with the grandeur of ISAAC of considering Analy-
sis, Applications and Computations on an international scale as a unified discipline.
This can be achieved, notwithstanding the diversity of the disciplines, by building
synergies among clusters consisting of several closely related disciplines. To that
end, volumes on pseudo-differential operators and applications in mathematical
sciences have been published since the ISAAC Congress held at York University
in 2003. The present volume entitled “Pseudo-Differential Operators, Generalized
Functions and Asymptotics” is another project with this vision in mind.

This volume contains three categories of papers, originated from the Eighth
ISAAC Congress or solicited by invitations, corresponding to each of the three
areas in the title. The category of papers on pseudo-differential operators contains
such topics as elliptic operators associated to diffeomorphisms of smooth manifolds,
analysis on singular manifolds with edges, heat kernels and Green functions of sub-
Laplacians on the Heisenberg group and Lie groups with more complexities than
but closely related to the Heisenberg group, LP-boundedness of pseudo-differential
operators on the torus, pseudo-differential operators and Gelfand—Shilov spaces,
and pseudo-differential operators in the context of time-frequency analysis.

The second group of papers is on generalized functions. Various classes of
distributions and algebras of generalized functions are used for various linear par-
tial differential equations and some of these have nonregular coefficients. More-
over, nonlinear problems with nonregular initial values or boundary conditions are
treated in this framework. Featured in this volume are also papers on stochastic
and Malliavin-type differential equations in which generalized functions are instru-
mental. This second group of papers are related to the third collection of papers
via the setting of Colombeau-type spaces and algebras in which microlocal analysis
is developed by means of various techniques of asymptotics.

This volume contains interesting topics in pseudo-differential operators, gen-
eralized functions and asymptotics that are essential in modern mathematical sci-
ences and engineering. It is a volume that put different but related areas of analysis
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on an equal footing. It is through working with colleagues with a diversity of re-
lated expertise and through regular meetings and publishing that we can deepen
our understanding of a vast area of mathematics that has been known as analysis.
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Elliptic Theory for Operators Associated with
Diffeomorphisms of Smooth Manifolds

Anton Savin and Boris Sternin

Abstract. In this paper we give a survey of elliptic theory for operators as-
sociated with diffeomorphisms of smooth manifolds. Such operators appear
naturally in analysis, geometry and mathematical physics. We survey classical
results as well as results obtained recently. The paper consists of an introduc-
tion and three sections. In the introduction we give a general overview of
the area of research. For the reader’s convenience here we tried to keep spe-
cial terminology to a minimum. In the remaining sections we give detailed
formulations of the most important results mentioned in the introduction.

Mathematics Subject Classification (2010). Primary 58J20; Secondary 58J28,
58J32, 19K56, 46L80, 58J22.

Keywords. Elliptic operator, index, index formula, cyclic cohomology, diffeo-
morphism, G-operator.

Introduction

The aim of this paper is to give a survey of index theory for elliptic operators
associated with diffeomorphisms of smooth manifolds. Recall that the construction
of index theory includes the following main stages:

1) (finiteness theorem) Here one gives conditions, called ellipticity conditions,
under which the operators under consideration are Fredholm in relevant func-
tion spaces;

2) (index theorem) Here one presents and proves an index formula, that is,
an expression for the index of an elliptic operator in terms of topological
invariants of the symbol of the operator and the manifold, on which the
operator is defined.

The first index theorem on high-dimensional manifolds was the celebrated
Atiyah—Singer theorem [11] on the index of elliptic pseudodifferential operators
(¢DO) on a closed smooth manifold. This theorem appeared as an answer to a
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question posed by Gelfand [26]. Note that the statement and the proof of the index
formula relied on most up to date methods of analysis and topology and stimulated
interactions between them.

After that index theorems were obtained for many other classes of operators.
In this paper we consider the class of operators associated with diffeomorphisms
of closed smooth manifolds. One of advantages of this theory is that, besides the
mentioned interaction of analysis and topology, here an important role is played
by the theory of dynamical systems.

1. Elliptic operators for a discrete group of diffeomorphisms (analytical aspects).
The theory of elliptic operators associated with diffeomorphisms and the corre-
sponding theory of boundary value problems with nonlocal boundary conditions
go back to the paper by T. Carleman [17], where he considered the problem of
finding a holomorphic function in a bounded domain 2, which satisfies a nonlocal
boundary condition, which relates the values of the function at a point x € 992
of the boundary and at the point g(z) € 0N, where g : 902 — 9Q is a smooth
mapping of period two: g2 = Id. A reduction of this boundary value problem to
the boundary does not give usual integral equation as it was the case with the
local boundary condition. Rather, it gives an integro-functional equation, which
we call equation associated with diffeomorphism g. This paper motivated the study
of a more general class of operators on closed smooth manifolds. Let us give the
general definition of such operators.
On a closed smooth manifold M we consider operators of the form

D =Y D,T,: C*(M) — C®(M), (0.1)
e
where:

e ( is a discrete group of diffeomorphisms of M;

e (Tyu)(z) = u(g~'(z)) is the shift operator corresponding to the diffeomor-
phism g;

e {D,} is a collection of pseudodifferential operators of order < m;

e C®°(M) is the space of smooth functions on M. Of course, one can also
consider operators acting in sections of vector bundles.

Operators (0.1) will be called G-pseudodifferential operators (G-DO) or simply
G-operators.! Such operators were intensively studied (see the fundamental works
of Antonevich [4, 5], and also the papers [2, 7] and the references cited there). In
particular, an extremely important notion of symbol of a G-operator was intro-
duced there. More precisely, two definitions of the symbol of a G-operator were
given. First, the symbol was defined as a function on the cotangent bundle T* M
of the manifold taking values in operators acting on the space [2(G) of square
integrable functions on the group. Second, the symbol was defined as an element
of the crossed product [69] of the algebra of continuous functions on the cosphere

n the literature such operators are also called functional-differential, nonlocal, noncommutative
operators and operators with shifts.
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bundle S$* M of the manifold and the group G. Further, we introduce the ellipticity
condition in this situation, which is the requirement of invertibility of the symbol of
the operator. It was proved that the two ellipticity conditions (they correspond to
the two definitions of the symbol) are equivalent under quite general assumptions.
Ellipticity implies Fredholm property of the operator in Sobolev spaces H*.

Let us note here one essential difference between the theory of elliptic G-
¥DO and a similar theory of ¥ DO. Namely, examples show (see [6, 1, 45]) that
the ellipticity (and the Fredholm property of operator (0.1) in the Sobolev spaces
H?) essentially depends on the smoothness exponent s. Thus, there arise natural
questions on the description of the possible values of s, for which a given G-operator
is elliptic and the question about the dependence of the index on s. The answers to
these questions are well known in the situation of an isometric action of the group,
that is, if the diffeomorphisms preserve a Riemannian metric on the manifold. In
this case the symbol and the index do not depend on s. First steps in the study
of these questions for nonisometric actions were done in the papers [58, 52], where
it was shown for the simplest nonisometric diffeomorphism of dilation of spheres
that the set of s, for which a G-operator is elliptic, is always an interval and the
index (inside this interval) does not depend on s.

2. Index of elliptic operators for a discrete group of diffeomorphisms. Let us now
turn attention to the problem of computing the index of elliptic G-operators. The
first formula for the index of G-operators was obtained in the paper [3] for a
finite group G of diffeomorphisms.? In this case the index of a G-operator was
expressed in terms of Lefschetz numbers of an auxiliary elliptic ¥ DO on M. Since
the Lefschetz numbers are expressed by a formula [12] similar to the Atiyah—Singer
index formula the index problem for a finite group is thus solved.

The index problem for infinite groups turned out to be much more difficult
and required application of new methods related with noncommutative geometry of
Connes [20, 22]. The first advance was done in the celebrated work of Connes [19].
There an index formula was obtained for operators of the form

D =Y anpz*(d/dz)" (0.2)
af

acting on the real line, where the coefficients a,g are Laurent polynomials in the
operators

Uf)(z) =e“f(z), (Vf)(z)=flz—-0),
and @ is some fixed number. The index theorem of Connes for such differential-
difference operators is naturally formulated in terms of noncommutative geometry.

Operators (0.2), which are also called operators on the noncommutative torus?,
were used in a mathematical formulation of the quantum Hall effect [22]. It became

2These results were rediscovered in [39].
3This name is motivated by the fact that the algebra generated by U and V is a noncommutative
deformation of the algebra of functions on the torus T2.



4 A. Savin and B. Sternin

clear after the cited papers of Connes that noncommutative geometry is not only
useful, but also natural in the index problem for G-operators, and since then
noncommutative geometry is used in all the papers on the index of G-operators, we
are aware of. For instance, methods of noncommutative geometry were applied to
solve the index problem for deformations of algebras of functions on toric manifolds
in [34, 23, 24] and other papers.

Further progress in the solution of the index problem for G-operators was
made in the monograph [38]. Namely, an index formula for operators (0.1) was
obtained in the situation, when the action is isometric. Let us note here that this
index formula for isometric actions contains all the above-mentioned formulas as
special cases.

In the situation of a general (that is, nonisometric) action there were no
index formulas until recently. There were only partial results. Namely, the index
problem for Z-operators (that is, operators for the group of integers) was reduced
to a similar problem for an elliptic DO (see [4, 51, 56]). The first index formula
in the nonisometric case was obtained in the paper [58] for operators associated
with dilation diffeomorphism of spheres. The index formula for elliptic operators
associated with the group Z was obtained in [49]. Finally, an index formula for an
arbitrary torsion free group acting on the circle was stated in [44].

Let us mention several interesting examples of elliptic G-operators. Suppose
that G preserves some geometric structure on the manifold (for instance, Rie-
mannian metric, complex structure, spin structure,...). Then we can consider an
elliptic operator associated with that structure and twist this operator using a
G-projection (that is an operator of the form (0.1), which is a projection: P? = P)
or an invertible G-operator. This construction produces an elliptic G-operator. For
instance, if G acts isometrically, then one can take classical geometric operators
(Euler, signature, Dolbeault, Dirac operators). The indices of the corresponding
twisted G-operators were computed in [54]. If G acts by conformal diffeomorphisms
of a Riemannian surface, then one can take the 0 operator. Indices of the corre-
sponding twisted operators were computed in [43, 42]. In the papers [25, 37| there
are index formulas for the twisted Dirac operator for group actions preserving the
conformal structure on the manifold.

3. Operators associated with compact Lie groups. Let now G be a compact Lie
group acting on M. Consider the class of operators of the form

D :/ DyT,dg : C®(M) — C(M) (0.3)
G

(cf. (0.1)), where dg is the Haar measure. Such operators relate values of functions
on submanifolds of M of positive dimension. They were considered in [55, 66, 50]. In
these papers a G-operator of the form (0.3) was represented as a pseudodifferential
operator acting in sections of infinite-dimensional bundles [35], whose fiber is the
space of functions on G. This method goes back to the papers of Babbage [13] and
for a finite group gives a finite system of equations [4]. Moreover, the obtained
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operator, which we denote by D, is G-invariant, and its restriction D¢ to the
subspace of G-invariant functions is isomorphic to the original operator D. Now
ifD=1+7Dis transversally elliptic? with respect to the action of G, then this
implies the Fredholm property, that is, the index of the operator D=1+D
is finite. The index formula and the corresponding topological invariants of the
symbol of elliptic G-operators were computed in the papers cited above.

4. Other classes of G-operators. Operators associated with diffeomorphisms are
not exhausted by operators of the form (0.1). In this section we consider other
classes of operators appearing in the literature. Boundary value problems similar
to Carleman’s problem, with the boundary condition relating the values of the
unknown function at different points on the boundary were considered (see the
monograph by Antonevich, Belousov and Lebedev [1] and the references cited
there). Finiteness theorems were proved and index theorems were obtained for the
case of finite group actions (see also [48]). On the other hand, nonlocal boundary
value problems, in which the boundary condition relates the values of a function
on the boundary of the domain and on submanifolds, which lie inside the domain,
were considered in [15, 62, 63, 64]. We also mention that G-operators on manifolds
with singularities were considered in [1]. The symbol was defined and a finiteness
theorem was proved.

An important extension of the notion of (Fredholm) index was obtained in
[36]. Namely, given a C*-algebra A (the algebra of scalars) one considers operators
F acting on the spaces, which are A-modules. The index of a Fredholm operator
in this setting, also called Mishchenko—Fomenko index

indg F' € Ko(A) (0.4)
is an element of the K-group of A. Also, in the cited paper a definition of pseu-
dodifferential operators over C*-algebras was given and an index theorem was
proved. Note, however, that it is sometimes useful in applications to have not only
the index (0.4) but some numerical invariants. Such invariants can be constructed
using the approach of noncommutative geometry by pairing the index (0.4) with
cyclic cocycles over A. In the papers [38, 53, 57] G-operators over C*-algebras were
defined for isometric actions and the finiteness theorem and the index formula were
obtained.

5. Methods used in the theory of G-operators. Let us know write a few words
about the methods used in obtaining these index formulas. The first approach,
which appears naturally, is to try to adapt the known methods of obtaining index
formulas for ¢YDOs in our more general setting of G-operators. This approach was
successfully applied, for instance, in the book [38]. Note, however, that using this
approach we obtain the proof of the index formula, which is quite nontrivial and
relies on serious mathematical results, notions and constructions from noncommu-
tative geometry and algebraic topology.

4This notion was introduced by Atiyah and Singer [8, 61] and actively studied since then (see
especially [31, 32, 33] and the references cited there).
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The second approach uses the idea of uniformization [55, 49] (see also [59,
47, 46]) to reduce the index problem for a G-operator to a similar problem for
a pseudodifferential operator on a manifold of a higher dimension. The index of
the latter operator can be found using the celebrated Atiyah—Singer formula. The
attractiveness of this approach is based on the fact that this approach is quite
elementary and does not require application of complicated mathematical appara-
tus, which was mentioned above. This method of pseudodifferential uniformization
enabled to give simple and elegant index formulas.

Let us now describe the contents of the remaining sections of the paper.
In Section 1 we recall the definitions of symbol and the finiteness theorem for
G-operators associated with actions of discrete groups. Section 2 is devoted to
index formulas for actions of discrete groups. We start with the index formula for
isometric actions and then give an index formula for nonisometric actions. Finally,
Section 3 is devoted to G-operators associated with compact Lie group actions.
We show how pseudodifferential uniformization can be used to obtain a finiteness
theorem for such operators.

1. Elliptic operators associated with actions of discrete groups

1.1. Main definitions
Let M be a closed smooth manifold and G a discrete group acting on M by
diffeomorphisms. We consider the class of operators of the form
D= D,T,: C®(M) — C>(M), (1.1)
geG

where {D,}4ec is a collection of pseudodifferential operators of order < m acting
on M. We suppose that only finitely many D,’s are nonzero. Finally, {T,} stands
for the representation of G by the shift operators

(Tyu)(z) = u(g™" (x)).
Here and below an element g € G takes a point x € M to the point denoted by
g(x) € M.
Main problems:
1. Give ellipticity conditions, under which the operator
D:H(M)— H*"™(M), m=ordD, (1.2)
is Fredholm in the Sobolev spaces.
2. Compute the index of operator (1.2).

The first of these problems is treated in this section, while the second problem is
treated in the subsequent section.

Below operators of the form (1.1) are called G-pseudodifferential operators or
G-operators for short.
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1.2. Symbols of operators

Definition of symbol. The action of G on M induces a representation of this group
by automorphisms of the algebra C(S* M) of continuous functions on the cosphere
bundle S*M = T} M/R,. Namely, an element g € G acts as a shift operator along
the trajectory of the mapping dg : S*M — S*M, which is the extension of g to the
cotangent bundle and is defined as dg = (*(dg))~!, where dg : TM — T'M is the
differential. Consider the C*-crossed product C(S*M)x G (e.g., see [16, 41, 68, 69])
of the algebra C'(S*M) by the action of G. Recall that C'(S*M) x G is the algebra,
obtained as a completion of the algebra of compactly-supported functions on G
with values in C'(S*M) and the product of two elements is defined as:

ab(g) = > a(k)k™"(b(1)), k,1€G.
kl=g

The completion is taken with respect to a certain norm.? Here for & € G by
k=" . C(S*M) — C(S*M) we denote the above-mentioned automorphism of
C(S*M).

To define the symbol for G-operators, it is useful to replace the shift operator
T,: H*(M) — H*(M) by a unitary operator. We fix a smooth positive density
p and a Riemannian metric on M and treat H*(M) as a Hilbert space with the
norm

Jully = [ 10+ 8)

where A is the nonnegative Laplacian. A direct computation shows that the op-
erator

Tys = (14 A) 2727,y t12(1 + A)*/2 . HY (M) — H*(M)
is unitary. Here

pt/? s LA(M) — L2(M, AY?)

is the isomorphism of L? spaces of scalar functions and half-densities on M defined
by multiplication by the square root of p. Note that the operator Ty, can be
decomposed as T, s = Agy Ty, where A, is an invertible elliptic ¥ DO of order
Zero.

This implies that the class of operators (1.1) does not change if in (1.1) we
replace Ty by Ty . Now we can give the definition of the symbol.

Definition 1. The symbol of operator
D= DT, H* (M) — H*™(M), (1.3)
geG
where {D,} are pseudodifferential operators of order < m on M, is an element
os(D) € C(S*™M) x G, (1.4)
defined by the equality o5(D)(g) = o(Dy) for all g € G.

5Below we consider the so-called maximal crossed product.
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The symbol (1.4) is not completely convenient for applications, since it de-

pends on the choice of A and p. Here we give another definition of the symbol
which is free from this drawback.
Trajectory symbol. So, let us try to define the symbol of the operator (1.2) using
the method of frozen coefficients. Note that the operator is essentially nonlocal.
More precisely, the corresponding equation Du = f relates values of the unknown
function w on the orbit Gxo C M, rather than at a single point zg € M. For
this reason, unlike the classical situation, we need to freeze the coefficients of the
operator on the entire orbit of xy. Freezing the coefficients of the operator (1.2) on
the orbit of zy and applying Fourier transform x — £, we can define the symbol
as a function on the cotangent bundle T M = T*M \ 0 with zero section deleted.
This function ranges in operators acting on the space of functions on the orbit. A
direct computation gives the following expression for the symbol (see [4, 52]):

O'(D)(l’o,g) = Z O—(Dh)(gil(xohagil(f))ﬁ : lz(Ga /U’IO,E,S) — ZZ(Gay’fL’O,E,S*m)'
heG
(1.5)
Here we identify the orbit Gay with the group G using the mapping g(zo) — g+
and use the following notation:

e (Thw)(g) = w(gh) is the right shift operator on the group;

e the expression o(Dy) (g (z0), g 1(€)) acts as an operator of multiplication
of functions on the group;

e the space [%(G, fiz.¢,5) consists of functions {w(g)}, g € G, which are square
summable with respect to the density ;¢ s, which in local coordinates is

defined by the expression [52]
t 8971 -1
(%) ©

More precisely, here we suppose that the manifold is covered by a finite
number of charts and the diffeomorphism g~! is written (in some pair of
charts) as x — g~ !(z). The density is unique (up to equivalence of densities).

2s
g1

det
¢ ox

Pa.g,s(9) = (1.6)

Definition 2. The operator (1.5) is the trajectory symbol of operator (1.2) at
(x0,8) € TE M.

Note that in general, the dependence of the trajectory symbol on x, ¢ is quite
complicated. For instance, the symbol may be discontinuous. This is related with
the fact that the structure of the orbits can be quite complicated.

Let us describe the relation between the symbols defined in Definitions 2 and
1. Given (z,&) € S*M, we define the representation (restriction to trajectory)

e : C(S*M)xG — BI?(G)
f — 2 g7 (@),0971(€), M) Th
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of the crossed product in the algebra of bounded operators acting on the standard
space [2(GQ) (cf. (1.5)). One can show that the diagram

oD@ O

ZZ(Ga ,Uz,E,S) (G, ﬂz,E,S*m) (1-7)
V_ V_
() - 2(G),

7,6 (05 (D))

commutes, where the vertical mappings are isomorphisms defined by multiplication
by the square root of the densities. In other words, this commutative diagram
shows that the restriction of the symbol o4(D) to a trajectory gives the trajectory
symbol o (D).

1.3. Ellipticity and finiteness theorem

The two definitions of the symbol give two notions of ellipticity.

Definition 3. Operator (1.2) is elliptic, if its trajectory symbol (1.5) is invertible
on T M.

Definition 4. Operator (1.2) is called elliptic, if its symbol (1.4) is invertible as an
element of the algebra C(S*M) x G.

It turns out that these definitions of ellipticity are equivalent, at least for a
quite large class of groups. More precisely, the commutative diagram (1.7) shows
that ellipticity in the sense of Definition 4 implies ellipticity in the sense of Defini-
tion 3; the inverse assertion is more complicated and was proved in [2] for actions
of amenable groups (recall that a discrete group G is amenable, if there is a G-
invariant mean on [*°(G); for more details see, e.g., [40]). We suppose that below
all groups are amenable and we identify these two notions of ellipticity.

The following finiteness theorem is proved by standard techniques (see [2, 1]).

Theorem 1. If operator (1.2) is elliptic then it is Fredholm.

Remark 1. Tt is shown in the cited monographs [2, 1] that under quite general
assumptions (namely, the action of G on M is assumed to be topologically free,
that is, for any finite set {g1,...,9n} C G\ {e} the union M9 U---U M9 of the
fixed point sets has an empty interior), the ellipticity condition is necessary for
the Fredholm property. If the action is not topologically free, then one could give
a finer ellipticity condition. We do not consider these conditions here and refer the
reader to the monograph [2].

1.4. Examples

Let us illustrate the notion of ellipticity for G-operators on several explicit exam-
ples.
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1. Operators for the irrational rotations of the circle. Consider the group Z of
rotations of the circle S! by multiples of a fixed angle # not commensurable to 7:

glx)=x+g0, z€S', geZ 6¢nrQ.
A direct computation shows that in this case the densities ¢ s (see (1.6)) are

equivalent to the standard density u(g) = 1 on the lattice Z. Hence, in this case

the symbol of the operator D = >_ _; D,T} is equal to

o(D)(w,€) = 3 o(Du)(w — g8, €)T" : 1(Z) — 3(Z), where Tu(g) = ulg — 1).
h

Let us make two remarks. First, in this example, as in the classical theory of
1¥DOs, the symbol does not depend on s and therefore an operator is elliptic or
not elliptic for all s simultaneously. The same property holds in the general case
if the action is isometric. Second, in this case to check the ellipticity condition, it
suffices to check that the symbol is invertible only for one pair of points (zg, £1).
Indeed, since S*S* = S* US!, the crossed product C(S*S') x Z is a direct sum of
two simple algebras® of irrational rotations C(S') x Z. Hence, the mapping

Tool © Tag.—1: C(S*S') x Z — BI*(Z) @ BI*(Z)
is a monomorphism. Therefore, the symbol o(D) is invertible if and only the
trajectory symbols at the points (xo, £1) are invertible.

2. Operators for dilations of the sphere [58]. On the sphere S™ we fix the North
and the South poles. The complements of the poles are identified with R™ with
the coordinates = and z’, correspondingly. Let us choose the following transition
function z’(z) = z|z|~2. Consider the action of Z on S™, which in the z-coordinates
is generated by the dilations

g(z) =z, g€ZxeR™,

where o (0 < @ < 1) is fixed. This expression defines a smooth action on the
sphere. Let us compute the densities jiz ¢ s.
Proposition 1. Depending on whether x is a pole of the sphere or not, the density
Paes in (1.6) is equal to:

algllm=2s) = if 0 £ 0, 2 # o0,

/1’51”5’5(9) = ag(m—Zs)’ fo = 03
a~9(m=25) " if ¥ = o0,

Proof. Indeed, given g < 0 the points g~!(x) remain in a bounded domain of
the chart S™ \ co. Thus, we can apply the formula (1.6), in which we use the z-
coordinate in the domain and the range of the diffeomorphism g. We get 9g—1/dz =

a~91. Hence
t/9g ! -1
(%) ©

6That is, algebras without nontrivial ideals.

2s

fag,s(9) = =a 0" eI = am I,
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This gives the desired expression for the measure if g < 0. Now if g — +00, then
the points g~ !(x) = a9z tend to infinity and we can apply formula (1.6), where
we use the pair of coordinates z and z’. A computation similar to the previous
one gives the desired expression for the measure at the poles of the sphere: z =0
and x = oo. g

Consider the operator

D =) "DyT": H*(S™) — H*(S™), Tu(z)=u(a 'z). (1.8)
k
According to the obtained expressions for the densities, this operator has the
symbol o(D)(z, ) at each point (z,£) € T;S™. For example, consider the point
x = 0. It follows from Proposition 1 that we obtain an expression for the symbol
at this point

o(D)(0,6) = S o(D)(O, T  1(Z, i) — B(Zo ), paln) = a2,
k
Fourier transform {u(g)} — >_, u(g)w™9 takes the latter operator to the operator
of multiplication

os(D)(& w) = ZO’(Dk) (0,6)wk : L2(SY) — LA(SY), € € S™7L, |w| = a™/2+s
k

by a smooth function on the circle S! of radius o~ "/2+*. This shows that in this

example the ellipticity condition explicitly depends on the smoothness exponent

s. It was proved in [58] that the set of values of s for which the operator (1.8) is

elliptic is an open interval (possibly (semi)infinite or empty).

2. Index formulas for actions of discrete groups

In the previous section we defined the symbol of a G-operator as an element of the
corresponding crossed product. If an operator D elliptic (its symbol is invertible)
then D has Fredholm property and its index ind D is defined. To solve the index
problem means to express the index in terms of the symbol of the operator and
the topological characteristics of the G-manifold.

2.1. Isometric actions

The index problem for G-operators was solved in 2008 for isometric actions in
[38]. Here we discuss the index formula from the cited monograph. This formula
is proved under the following assumption.

Assumption 1.

1. G is a discrete group of polynomial growth (see [28]), i.e., the number of
elements of the group, whose length is < N in the word metric on the group,
grows at most as a polynomial in N as N — oo.

2. M is a Riemannian manifold and the action of G on M is isometric.
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Smooth crossed product. Let D be an elliptic operator. Then its symbol is invert-
ible and defines an element

[0(D)] € K,(C(8*M) x G)

of the odd K-group of the crossed product C(S*M) x G (e.g., see [16]). Note a
significant difference between the elliptic theory of G-operators and the classical
Atiyah—Singer theory: the algebra of symbols is not commutative and therefore we
use K-theory of algebras instead of topological K-theory. Further, to give an index
formula, we will use tools from noncommutative differential geometry. Note that
noncommutative differential geometry does not apply in general to C*-algebras.
The point here is that in a C*-algebra there is a notion of continuity, but there is
no differentiability. Fortunately, in the situation at hand, one can prove that we
only deal with differentiable elements. Let us formulate this statement precisely.

Proposition 2 (see [60]). If the symbol o(D) is invertible, then the inverse o(D)™!
lies in the subalgebra

C(S*M) x G C C(S*M) x G, (2.1)

of C*(S*M)-valued functions on G, which (together with all their derivatives)
tend to zero as |g| — oo faster than an arbitrary power of |g|.

The subalgebra (2.1) is called the smooth crossed product.
So, we have

[0(D)] € K1(C*(S*M) x G). (2.2)

To write an index formula for D, we first define a topological invariant of the
symbol. This invariant is called the Chern character of the element (2.2). Then we
define a topological invariant of the manifold.

Equivariant Chern character. Following [38], let us define the Chern character as
the homomorphism of groups

ch: K1(C®(X) x G) — @ H™(XY), (2.3)
(9)CG

where we put for brevity X = S*M, the sum runs over conjugacy classes of G,
and X9 denotes the fixed-point set of g. Since ¢ is an isometry by assumption, the
fixed-point set is a smooth submanifold (e.g., see [18]).

We define the Chern character using the abstract approach of noncommuta-
tive geometry. To this end, it suffices to define a pair (€, 7), where:

1. A=Qo® N2 BN @ --- is a differential graded algebra, which contains the
crossed product C*°(X) x G as a subalgebra of Qo;
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2. 7:Q — @B ,ce AMXY) is a homomorphism of differential complexes such
that

T(wawy) = (—1)de8wrdeswar () 05), for all wy,wq € Q2. (2.4)

The algebra € is called the algebra of noncommutative differential forms, and the
functional 7 is called the differential graded trace.

If such a pair is given, then the Chern character associated with the pair
(Q,7) is defined as

_ n! —1 7 \2n+1 oo
ch(a) = trr 2;0 (i) (20 4 1)1 (a~'da) ., [a] € Ki(C™®(X) x G),

(2.5)
where tr is the trace of a matrix. A standard computation shows that the form
in (2.5) is closed and its class in de Rham cohomology is determined by [a] and

defines the homomorphism (2.3). It remains to define the pair (2, 7):
1. We set 2 = A(X) x G, where the differential on the smooth crossed product

of the algebra A(X) of differential forms on X and the group G is equal to

(dw)(g) = d(w(g)), weAX)xG.

2. To define a differential graded trace 7 = {7,}, we fix some g € G and
introduce necessary notation. Let G be the closure of G in the compact Lie group
of isometries of X. This closure is a compact Lie group. Let C; C G be the
centralizer” of g. The centralizer is a closed Lie subgroup in G. Denote the elements
of the centralizer by h, and the induced smooth Haar measure on the centralizer
by dh.

Let {g) C G be the conjugacy class of g, i.e., the set of elements equal to
2gz~! for some z € G. Further, for each ¢’ € (g) we fix some element z = 2(g, g'),
which conjugates ¢ and ¢’ = zgz~!. Any such element defines a diffeomorphism
z: X9 = X9

Let us define the trace as

To(w) = Z / h* (z*w(g’))’xgdh, where w € A(X) x G. (2.6)
geta) 7

One can show that this expression does not depend on the choice of elements z
and is indeed a differential graded trace.

Remark 2. For a finite group the Chern character (2.5) coincides with the one
constructed in [65], [14].

"Recall that the centralizer of g is the subgroup of elements commuting with g.
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Equivariant Todd class. Given g € G, the normal bundle of the fixed-point sub-
manifold M9 C M is denoted by NY. The differential dg defines an orthogonal
endomorphism of N9 and the corresponding bundle of exterior forms
Q(NE) = Q= (Ng) & Q4 (NE).

Here FE¢ stands for the complexification of a real vector bundle E. Consider the
expression (see [12])

ch QY (NE)(g) — ch Q°Y(NE)(g) € H(MY). (2.7)
The zero-degree component of this expression is nonzero [10]. Hence the class (2.7)
is invertible and the following expression is well defined
B Td(TEM9)
 chQev(NE)(9) — ch Qdd(NE)(g)
where Td on the right-hand side in the equality is the Todd class of a complex
vector bundle, and the expression is well defined, since the forms have even degrees.

Td, (T3 M) € H*(M?), (2.8)

Index theorem.

Theorem 2 (see [38]). Let D be an elliptic G-operator on a closed manifold M.
Then

ind D= 3 {chy[o(D)] Tdy(TEM), [S*M?)) (2.9)

(9)CcaG

where (g) runs over the set of conjugacy classes of G; [S*M9] € Hoqa(S*MY) is
the fundamental class of S* M9 ; the Todd class is lifted from M9 to S* M9 using the
natural projection; the brackets {,) denote the pairing of cohomology and homology.
The series in (2.9) is absolutely convergent.

In some situations the sum in (2.9) can be reduced to one summand equal to
the contribution of the unit element.

Corollary 1 (see [38, 54]). Suppose that either the action of G on M is free or G
1s torsion free. Then one has

ind D = (che[o(D)] TA(TyM), [S*M)). (2.10)

Let us note that the index formula (2.9) contains many other index formulas
as special cases (see [38, 54] for details). Here we give two situations, in which the
index formula can be applied.

Example 1. Index of twisted Toeplitz operators. Let M be an odd-dimensional ori-
ented manifold. We suppose that M is endowed with a G-invariant spin-structure
(i.e., the action of G on M lifts to an action on the spin bundle S(M)). Let D be
the Dirac operator [12]

D:S(M)— S(M),
acting on spinors. This operator is elliptic and self-adjoint.

Denote by II; : S(M) — S(M) the positive spectral projection of this
operator.
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We define the Toeplitz operator

where U is an invertible n by n matrix with elements in C°°(M) x G. Then the
operator (2.11) is Fredholm (its almost-inverse is equal to IL, U~1). Let us suppose
for simplicity that either GG is torsion free, or the action is free. In this case, the
formula (2.10) gives the following expression for the index.

Theorem 3. The index of operator (2.11) is equal to
ind(IlLU) = / A(TM) ch.(U), (2.12)

M
where A(TM) is the A-class of the tangent bundle, which in the Borel-Hirzebruch
formalism is defined by the function

x/2

shx/2

Examples 2. Operators on noncommutative torus. Let us fix 0 < § < 1. A. Connes
in [22] considered differential operators of the form

B
D= Y anpz® (—z’ di) : S(R) — S(R), (2.13)

a+B<m

in the Schwartz space S(R) on the real line. Here the coefficients a5 are Laurent
polynomials in operators U,V

UfH))=fla+1),  (Vf)(x)=e ™ f() (2.14)

of shift by one and product by exponential.

Let us show that the operators of the form (2.13) reduce to G-operators on
a closed manifold. To this end, we consider the real line as the total space of the
standard covering

R — S,

whose base is the circle of length 6. Then the Schwartz space becomes isomorphic
to the space of smooth sections of a (nontrivial) bundle on the base S!, whose
fiber is the Schwartz space S(Z) of rapidly decaying sequences (that is, functions
on the fiber). Then we apply Fourier transform

F:S(Z) — C=(SY)

in each fiber and obtain a space, which is the space of smooth sections of a complex
line bundle over the torus T2. These transformations define the isomorphism

S(R) =~ C*(T?, ) (2.15)
of the Schwartz space on the real line and the space

C™(T2,~) = {g € C®°R x SY) | g(¢ + 6, 0) = g(p, ¥)e %}



16 A. Savin and B. Sternin

of smooth sections of a complex line bundle v on the torus. Here on T? we consider
the coordinates 0 < ¢ <, 0 < ¢ < 1. This isomorphism is defined by the formula

fl@)— Z fo 4+ n)e2™ v,
neZ
(This formula was found earlier by S. Novikov.) Using the isomorphism (2.15), it

is easy to obtain the correspondences between the operators:

operators on the line  operators on the torus

- d - 0
s _Z&p
-0 0
x o oy TV
672772':1:/9 8727r7,'<p/0

fl@) = flx4+1)  gle, ) = gle+1,7)

This table implies that on the torus we obtain G-operators, which can be studied
using the finiteness theorem and the index formula formulated above. We refer the
reader to [38] for details.

2.2. General actions

In this subsection we survey index formulas for elliptic operators associated with
general actions of discrete groups (see recent papers [49] and [44]). Let D be an
elliptic operator of the form (1.1). We will assume for simplicity that the inverse
symbol o(D)~! lies in the algebraic crossed product

C™(S*M) x4y G C C(S*M) x G,

which consists of compactly supported functions on the group. Such a symbol
defines an element

[0(D)] € K1(C™(S5*M) Xag G) (2.16)
in K-theory. We would like to define the topological index as a numerical invariant
associated with [o(D)]. There is a standard procedure in noncommutative geome-
try of constructing such invariants. Namely, one takes the pairing of (2.16) with an
element in cyclic cohomology of the same algebra. Let us recall this construction.

Cyclic cohomology. Pairing with K-theory. Let A be an algebra with unit. Re-
call (see [22]) that the cyclic cohomology HC*(A) of A is the cohomology of the
bicomplex

A*
+B
A b g
1B B (2.17)

A* D A2 2 A%
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where b, B are some differentials and for simplicity we denote the space of multi-
linear functionals on A* by A**. In particular, an element ¢ € HC™(A) of cyclic
cohomology is represented by a finite collection of multi-linear functionals

{pjlag,...,a;)}, j=nn—-2n—-4,...,
such that By; 4+ bpj_2 = 0.

To make the paper self-contained, we recall the formulas for the differentials in the
bicomplex:

J
(bp)(ao, a1, ... a5+41) = gap(ao, A1y ey Anlngly ..y Gj4+1) (2.18)
+ (=1 p(aj+1a0,a1,. . ., aj).
and B = Ns(Id — \), where A = (—1)"(cyclic left shift),
s AHED o qm (sp)(ao,--.,an-1) =@(1,a0,...,an-1),

and N : A" — A*" N =Id+ XA+ A2+ 4+ \"! is the symmetrization mapping.
The desired numerical invariants are defined using the pairing

(,): Ki(A) x HC*(A) — C (2.19)

of K-theory and cyclic cohomology. The value of this pairing on the classes [a] and
[¢] is equal to

1 _ _
<a7(p> - . Z(il)kkhp?]ﬁ*l(a laaa"'aa 1,(1).
V2mi =
Now to define the topological index of the element (2.16), it remains to choose
a cocycle over the algebra. It turns out that the desired cocycle can be defined as
a special equivariant characteristic class in cyclic cohomology.

Equivariant characteristic classes. Suppose that a discrete group G acts smoothly
on a closed smooth manifold X. We shall also assume that X is oriented and
the action is orientation-preserving. Let E € Vectg(X) be a finite-dimensional
complex G-bundle on X. Connes defined (e.g., see [22]) equivariant characteristic
classes of E with values in cyclic cohomology HC*(C*(X) X a4 G) of the crossed
product. However, the formulas for these classes were quite complicated and we
do not give them here. A simple explicit formula was obtained in [27] for the most
important characteristic class, namely, for the equivariant Chern character

chg(E) € HC*(C™(X) Xayg G). (2.20)
More precisely, it was shown in the cited paper that the class chg (E) is represented
by the collection of functionals {chf,(E)} defined as
ch’é(E; ag, a1, .- ., ak)

(—1)n=h2 o a8 (a0 Y (a g
— ((n+k>/2>!io+z‘1+m§=(n_k)/2/xt E[( 00"V (a1)0"*V(az) ... V(ar)0 )e]
(2.21)
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(cf. Jaffe-Lesniewski—Osterwalder formula [29]). Here
dmX =n, k=nn—-2n—4,...,

VE is a connection in E and § = V% is its curvature form, for a noncommutative
form w by w. we denote the coefficient of T, = 1, while the operator

V:C®(X) Xag G — AN (X,End E) x4, G
is defined as

V(Z ang) = Z[dag —ay(VE —(97")*'VE)|T,.
g g

It is proved in the cited paper that the collection of functionals {chf,(E)} defines
a cocycle over C°(X) Xag G, and the class of this cocycle in cyclic cohomology
does not depend on the choice of Vg and coincides with the equivariant Chern
character defined by Connes [22].

Explicit formulas for other characteristic classes can be obtained using stan-
dard topological techniques (operations in K-theory, see [9]). For the index theo-
rem, we need the equivariant Todd class.

Proposition 3 ([49]). The equivariant Todd class
Tdg(E) € HC*(C*™(X) Xag G) (2.22)
of a complex G-bundle E on a smooth manifold X is equal to
Tdg(F) = chg(P(E)),

here @ is the multiplicative operation in K -theory, which corresponds to the func-
tion @(t) =t"1(1 +¢)In(1 + ¢).

Note that ® can be expressed explicitly in terms of Grothendieck operations.
For instance, if dim X < 5 then (see [49])

E—-n n —2(E%? —2nE +n?)+7(E+ A’E —nE +n(n—1)/2)

PE)=1+"", N
32 —19n+24 (=3n+13) . 1 7
= E— E®E+ _A’E 2.23
24 T 67 C" T 1 (223)

where n = dim F.
Index theorem.

Theorem 4 ([49]). Let D be an elliptic operator associated with the action of group
Z. Then we have the index formula

ind D = (2m¢) ™" {[o(D)], Tdz(n* T M)), dim M = n, (2.24)
where w : S*M — M is the natural projection and the brackets (,) denote the
pairing of K-theory and cyclic cohomology (see (2.19)).

Remark 3. An index formula for operators on the circle associated with an action
of an arbitrary torsion free group is announced in [44]. The index formula in this
case has the same form as (2.24).
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Examples. 1. Suppose that the (usual) Todd class Td(T¢M) is trivial and the
diffeomorphisms of the Z-action are isotopic to the identity. Then one can show
that the equivariant Todd class is equal to the transverse fundamental cycle (see
[21]) of S*M and the index formula (2.24) is written as:

(27”()2(_2;)' ) /*M(U_ldo)in_l, o =o(D). (2.25)

2. Suppose that the group acts isometrically. Then formula (2.24) reduces
to (2.10) This is obvious if we choose an invariant metric and connection on the
cotangent bundle.

indD =

3. Elliptic operators for compact Lie groups

3.1. Main definitions

Let a compact Lie group G act smoothly on a closed smooth manifold M. An
element g € G takes a point z € M to the point denoted by g(z). We fix a
G-invariant metric on M and the Haar measure on G.

Consider the representation g — T} of G in the space L?(M) by shift opera-
tors

Tyu(z) = u(g™"(x)).
Definition 5. A G-pseudodifferential operator (G-yDO) is an operator
D : L*(M) — L*(M)
of the form
D=1+ /DQngg, (3.1)
G

where Dy, g € G is a smooth family of pseudodifferential operators of order zero
on M.

Consider the equation
u+/ D,T,udg = f, wu,f € L*(M). (3.2)
G

Note that if G is discrete, then we obtain the class of equations (1.1).
Example 1. Integro-differential equations on the torus. On the torus T? = S! x S*
with coordinates 1, xs, consider the integro-differential equation

32
Au(z1,22) tagy o / u(zy,y)dy = f(x1,22),
l‘l st

where A stands for the nonnegative Laplace operator, and « is a constant. Let us

write this equation as
2

0
Au + aé)x% /Sl T,dgu = f, (3.3)
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where T, denotes the shift operator Tyu(z1,z2) = u(z1,x2 — g), induced by the
action of the circle G = S! by shifts in z5. Note that if we multiply the equa-
tion (3.3) on the left by the almost inverse operator A~1, we obtain an equation
of the type (3.2).

Example 2. Integro-differential equations on the plane. Consider the integro-dif-
ferential equation

Au(z,y)

0? 0? 0?
+ (a8x2 + B@x@y + Wayz) /S1 u(x cos p—ysin g, x sin p+y cos p)dy = f(z,y)
on the plane Ri,y’ where A is the Laplace operator, and «, 3,y are constants. This

equation can be written as

0? 0? 0?
A T,dpu = 4
u+<a8x2+58x8y+78y2)/51 pdipu = f, (34)

where the shift operator T}, is induced by the action of the circle G = S' by
rotations

(z,y) — (xcosp + ysinp, —xsiny + y cos p)
around the origin. If we multiply the equation (3.4) on the left by the almost
inverse operator A™!, we obtain an equation similar to (3.2).

3.2. Pseudodifferential uniformization

Here we formulate an approach, called pseudodifferential uniformization, which
enables one to reduce a G-pseudodifferential operator

D=1 +/ D,T,dg : L*(M) — L*(M). (3.5)
G

to a pseudodifferential operator and then apply the methods of the theory of
pseudodifferential operators.

1. Reduction to a ¥»DO. This reduction is constructed as follows.

e The operator D is represented as an operator on the quotient M /G (the space
of orbits).

e If the action of G on M has no fixed points, then M /G is a smooth manifold;
moreover, D can be treated as a 1»DO on M /G with operator-valued symbol
in the sense of Luke [35] (explanation: this follows from the fact that the
operator Ty acts only along the fibers of the infinite-dimensional bundle over
M/G, but not along the base).

e If the fixed point set is nonempty, then M /G has singularities; to construct
a ¥DO in this case, we do the following.

e We lift D from M to the product M x G endowed with the diagonal action
of G:

(z,h) — (g(x), gh). (3.6)
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7,

FIGURE 1. The orbits of the diagonal and vertical actions on the prod-
uct M x G.

e The action (3.6) is fixed point free. Hence, the obtained G-pseudodifferential
operator on M x G, which we denote by D, can be represented (see above)
as a ¥DO on the smooth orbit space (M x G)/G ~ M.

These steps give the commutative diagram

L2(M) SO 21575 (3.7)
L2(MV>< a P >L2(MV>< Q)

1

~

L?(M,VL%G)) P12, VL?(G»,

where 7* is the induced mapping for the projection 7 : M x G — M, while D is a
pseudodifferential operator on M.

Remark 4. The fact that D is a ¢)DO is clear for geometric reasons. Indeed, D has
shifts along the orbits of the diagonal action of G (see Figure 1, left). Clearly, these
orbits can be transformed into vertical orbits (see Figure 1, right) by a change of
variables on M x G. The shift operator along the vertical orbits is a ¢yDO on M.

2. Restriction of ©)DO to the subspace of invariant sections. The mapping 7* in
(3.7) is a monomorphism. Its range is the space of G-invariant sections. Hence,
(3.7) gives a commutative diagram of the form

D

L2(M) = L2(M)

~ ~

v . v
LM, LX(G)S 7= LM, L3(@))°,
where D stands for the restriction of D to the subspace of invariant sections,
which we denote by L2(M, L?(G))%.
3. Transverse ellipticity. It remains to give conditions, which imply that the re-

striction

L*(M, L*(G))¢ 5 L*(M, L*(G))¢
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FIGURE 2. Transversal to the orbit.

of D to the subspace of G-invariant sections is Fredholm. Let us note that invariant
sections are constant along the orbits of the group action. Hence, it suffices to
impose the condition, which guarantees the Fredholm property, only along the
transverse directions to the orbit (see Figure 2).

Definition 6 ([8, 61]). A pseudodifferential operator D is transversally elliptic, if
its symbol o(D)(z, ) is invertible for all (x,§) € TEM \ 0, where

TEM = {(z,6) € T*M | covector £ is orthogonal to the orbit Gz}.
stands for the transverse cotangent bundle.

Theorem 5 ([55, 66]). A transversally elliptic operator D restricts to a Fredholm
operator on the subspace of G-invariant sections

DE: LA(M,L*(@))¢ — L*(M, L*(@))°.
Let us summarize the above discussion.
1. To a G-pseudodifferential operator D we assigned a pseudodifferential oper-
ator D such that there is an isomorphism
D ~ DY, (3.8)

where D€ is the restriction of D to the subspace of invariant sections.
2. If D is transversally elliptic, then its restriction D¢ is Fredholm. Hence, by
virtue of the isomorphism (3.8) the original operator D is also Fredholm.

Since we have isomorphism (3.8), we obtain:
ind D = ind DY,

Using this equation and the theory of transversally elliptic pseudodifferential oper-
ators [8, 30, 67]), an index theorem for the G-operator D was obtained in [55, 50].
We only mention here that the main ingredients of the index formula are: 1) the
definition of the symbol of D as an element of the crossed product of the algebra of
functions on the transverse cotangent bundle by the group G; 2) a Chern character
mapping on the K-theory of this algebra ranging in the basic cohomology of fixed
point sets of the group action.
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Introduction
The solutions to elliptic problems on a manifold with edge are expected to have
asymptotics of the form

J my

u(r,,y) ~ > Y einla,y)r Piloghr (0.1)

=0 k=0

as 7 — 0, with exponents p; € C, and m; € N (= {0,1,2,...}). Here (r,z,y)
are the variables in an open stretched wedge Ry x X x 2 for a closed smooth
manifold X of dimension n and an open set 2 C RY. If the respective operator is
a differential operator of the form

A=rT37 aja(ry)(-19,) (rD,)" 0.2)
Jtlal<p

for coefficients ajq(r,y) € C (R4 X Q,Diff“f(jH“D(X)) (with Diff”(X) being
the space of differential operators of order v on X) then the asymptotic data

P :={(pj, mj)}o<j<s C CxN, (0.3)
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J = J(P) € NU{oo} are known to be determined by the leading conormal symbol
o
UC(A)(y7z) = Zaj0(07y)2']7 (04)
§=0

regarded as a family of differential operators
o.(A)(y,z): H*(X) — H*"H(X) (0.5)

of order u, smooth in y € 2 and holomorphic in z. In the elliptic case it is known
that the operators (0.5) are parameter-dependent elliptic of order p where the
parameter is Im z with z varying on a so-called weight line

I'g:={2€C:Rez=p} (0.6)

for every real 3.

It is well known that for any fixed y € Q the operators (0.5) are bijective
for all z off some discrete set D(y) C C, where D(y) N {c < Rez < '} is finite
for every ¢ < ¢, cf. Bleher [1]. Those non-bijectivity points are just responsible
for the exponents —p; in (0.1). More precisely, o, ' (A4)(y, z) is an L_"(X)-valued
meromorphic function with poles at the points p; of (finite) multiplicities m; + 1
and finite rank Laurent coefficients in L™°°(X) at the powers (z — p;)~*+1 0 <
k < mj. Here L} (X),v € R, means the space of all classical pseudo-differential
operators on X of order v, and L™°°(X) := [, cg L (X) is the space of smoothing
operators.

If 0.(A) is independent of y we have constant discrete edge asymptotics of so-
lutions, cf. the terminology below. Even in this case it is interesting to observe the
nature of coefficients ¢ in (0.1) depending on the considered Sobolev smoothness
s € R of the solutions. The Sobolev smoothness of the coefficients c;;, in y also
depends on Rep;. Clearly in general the leading conormal symbol o.(A) depends
on y and then also the set D(y). In this case the inverse 0. 1(A) is a y-dependent
family of meromorphic operator functions with poles p;(y) varying in the complex
plane and possible branchings where the multiplicities m;(y) + 1 may have jumps,
including the above-mentioned Laurent coefficients. These effects have been stud-
ied in a number of papers, cf. [12], [13] and [16]. In particular, also the Sobolev
smoothness in y of the coefficients c;i(z,y) is branching. The program is going
on, and in the present article we study some features of the functional analytic
structure of singular functions in the variable branching case which are not yet
analyzed so far.

The characterization of asymptotics of solutions to singular PDE-problems
is a central issue of solvability theory of elliptic equations on a singular config-
uration. One of the classical papers in this connection is [9] of Kondratyev on
boundary value problems on manifolds with conical singularities. Since then there
appeared numerous investigations in this field, also on boundary problems for op-
erators without the transmission property, or mixed and transmission problems,
see, in particular, Eskin’s book [3]. The present investigation is dominated by the
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pseudo-differential approach to generate asymptotics via parametrices and ellip-
tic regularity, see, in particular, the monographs [11], [2], [5], and the references
there. Note that a similar philosophy applies also for corner singularities where
asymptotics appear in iterated form, cf. [15], or, the recent investigations, [4], [17].

This paper is organized as follows.

First in Section 1 we outline some necessary tools on constant discrete edge
asymptotics in the frame of weighted edge spaces and corresponding subspaces. We
then pass to a more detailed investigation of the singular functions and show some
essential simplification compared with other expositions, say, [2] or [14], namely,
that the cut-off functions may be chosen independently of the edge covariable
1, modulo edge-flat remainders. We do that including the so-called continuous
asymptotics.

In Section 2 we consider variable branching edge asymptotics, formulated in
terms of smooth functions with values in analytic functionals that are pointwise
discrete and of finite order. Basics and tools can be found in [11], [8]; the notion
itself has been first established in [12], [13] and further studied in detail in [16].
Here we show a refinement of a result of [14] on the representation of singular
functions with variable continuous asymptotics by analytic functionals without
explicit dependence on the edge variable y. In particular, the preparations from
Section 1 on n-independent cut-off functions allow us to find the claimed new
representation in a unique way. We finally apply this result to the case of variable
branching asymptotics and obtain the surprising effect that the pointwise discrete
behaviour in y may be shifted into a new functional that gives rise to a localization
of Sobolev smoothness of “coefficients of asymptotics”, both in variable branching
as well as in continuous asymptotics.

1. The constant discrete edge asymptotics

1.1. Edge spaces and specific operator-valued symbols

Let us first recall what we understand by abstract edge spaces modelled on a space
with group action.

First if this space is a Hilbert space H such a group action is a family x =
{ka}rer, of isomorphisms ky : H — H with kakx = kxn for all A\, X' € Ry, and
A — k)h represents a function in C (R4, H) for every h € H. As is known we have
an estimate

(1.1)

for all A € Ry, for some constants ¢ > 0, M > 0, depending on « (a proof may be

found in [6]). We also need the case of a Fréchet space E written as a projective

limit h&lEj of Hilbert spaces, with continuous embeddings E/ — E° for all j,
JEN

where E? is endowed with a group action k and k|g; defines a group action in

E? for every j. The constants ¢ and M in (1.1) then may depend on j. Now

_ M
lallccary < o max{\,A"'})
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W3 (RY,H),s € R, is defined to be the completion of S(RY, H) with respect to the
norm

1/2
letllye o,y = { / Il alm I dn} (1.2)

with (n) = (Fy_yu)(n) being the Fourier transform, (n) = (1 + |n|?)}/2. For a
Fréchet space ' = lLrgEj we have W*(RY, E7), j € N, and we set
jEN
WH(R?, E) = lim W*(R?, EY).
jeN
Recall that we obtain an equivalent norm to (1.2) when we replace () by a function
n — [n], strictly positive, smooth, with [n] = || for || > C for some C' > 0.

In the general discussion we often consider the Hilbert space case; the gener-
alization to Fréchet spaces will be obvious. Observe that W*(R?, H) C S'(RY, H).
For an open set @ C R? by W (92, H) we denote the space of all v € D'(Q, H)
such that pu € W*(R?, H) for every ¢ € C5°(£2). Moreover, W, (2, H) denotes
the subspace of all elements of W?*(RY, H) that have compact support in §2. Clearly
the spaces W?*(R?, H) depend on the choice of k. If necessary we write W*(R4, H)
in order to indicate the specific group action k. The case k = id for all A € R is
always admitted. Then we have

W (R?, H)iq = H* (R, H)
which is the standard Sobolev space of H-valued distributions. Observe that
GRV\/S(]R‘I,H),i = W>*RY H), =W>*R?, H)iq, (1.3)

i.e., the dependence on x disappears when s = oo. This is a consequence of (1.1).
From the definition we have an isomorphism

K:=F 'rpF : WR?Y, H)iqg — W (R, H),. (1.4)
for every s € R, in particular,
K: Woo(Rq, H)id — WOO(RQ, H)id-

We employ analogues of the spaces W*(R?, H) for certain Hilbert spaces H based
on the Mellin transform.

The analysis on a singular manifold refers to a large extent to the Mellin
transform

Mu(z) = /000 >~ Lu(r) dr

first for w € C§° (R4 ) and then extended to various distribution spaces, also vector-
valued ones. For u € C§° (R ) we obtain an entire function in the complex z-plane.
Function/distribution spaces on I'g always refer to p = Im z for z € I'g, e.g., the
Schwartz space S(I'g) or L?(I'g) with respect to the Lebesgue measure on R,,.
Recall that the Mellin transform induces a continuous operator M : C§°(Ry) —
A(C) with A(C) being the space of entire functions in z. In particular, for u €
C5°(R4) we can form the weighted Mellin transform M., : C°(Ry) — S(I'yj2—+)
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of weight v € R, defined as M,u := Mulr,,,_ . As is well known, M, extends to
an isomorphism M., : 77 L?(Ry) — LQ(Fl/Q,A/), and then

(g0 = [ g
Pija—y
for dz = (2mi)~1dz. Analogously as standard Sobolev spaces based on L2-norms
and the Fourier transform we can form weighted Mellin—Sobolev spaces H*7 (R x
R™) as the completion of C5°(R4 x R™) with respect to the norm

1/2
; 2
||u||Hs,7(R+XRn){/ /<z,£>25](MW_H/Q,HZFI%U)(Z,@\ dzdg} ,
Pintry/2—y JR?

with F' = F,_,¢ being the Fourier transform in R™. Moreover, if X is a smooth
closed manifold of dimension n we have analogous spaces H*7(X") for

XN =Ry x X

based on the local spaces H*7(Ry x R™) and defined with the help of charts and
a partition of unity on X. Note that (in our notation) the meaning of v depends
on the dimension n. In the case s = oo we have a canonical identification

H(XN) = HO 2 (Ry)D,C%(X) = O (X, T2 (Ry)): (L)

here &, means the projective tensor product between the respective spaces.
In this exposition a cut-off function w on the half-axis is any w € C§°(R)
that is equal to 1 close to 0. It will be essential also to employ the spaces

Ko XN) i={wu+ (1 —w)v:ue H(X"),ve HS (XM} (1.6)
Here HE  .(X") is defined as follows. Choose any diffeomorphism x; : U — V

cone

from a coordinate neighbourhood U on X to an open set V' C S™ (the unit sphere
in RZTY), and let x : Ry x U — T := {# € R*™'\ {0} : 7/|%| € V} be defined
by x(r,z) := rxi(z),r € Ry. Then HE (X") is the set of all v € Hf (R x
X)|r, xx such that for any ¢ € C§°(U) we have ((1 —w)pv) o x~* € HS(R"*1),
for every coordinate neighbourhood U on X. Concerning more details on those
spaces, cf. [14] or [15]. In particular, H*7(X") and K*7(X") are Hilbert spaces in
suitable scalar products, and we have H%0(X") = K00 (X") = r~"/2L2(R; x X)
with L? referring to drdxr and dz associated with a fixed Riemannian metric on
X, n =dim X. Analogously as (1.5) we also have

K(XN) = K0 2(Ry)@,C%(X) = C (X, K7 2(Ry)). (1.7)

Here Ko7~/ 2(R,) is endowed with its natural Fréchet topology. In order to
formulate asymptotics of elements in K57 (X") we first fix so-called weight data
(7,0) for vy € R and © = (9, 0], —oo < ¥ < 0. Define the Fréchet space

K (X)) = hrg oy —O= AR T ()
€
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of elements of flatness © relative to . For purposes below we also introduce
the spaces K®7¢(X") := (r) L7 (XN), KV (X") == (r)~°Kg"(X") for any
s,7,e € R. In order to define subspaces with asymptotics we consider a sequence

P ={(pj;m;j)}j=0,1,..s CCxN (1.8)

for a J = J(P) € NU {co} such that (n +1)/2—~v+ 9 <Rep; < (n+1)/2—~
forall 0 < j < J, J(P) < oo for ¥ > —oo. In the case ¥ = —oo and J = oo we
assume Rep; = —oo as j — oo. Such a P will be called a discrete asymptotic
type associated with (v,©). We set mcP := {p;}j=01,...,5. Observe that for any
p € C,Rep < (n+1)/2—v,and ¢ € C®(X) we have w(r)c(z)rPloghr € K7 (X")
for k € N and any cut-off function w. Given a discrete asymptotic type P for finite
© we form the space

J
Ep = {wlr) DD eur™loghr e € C= (X)) (1.9)

for some fixed cut-off function w. This space is Fréchet in a natural way (in fact,
isomorphic to a corresponding direct sum of finitely many copies of C*°(X)), and
we have £g7(X") N Ep = {0}. Then the direct sum

K31(X") = KGN (X") + Ep (1.10)

is again a Fréchet space. The spaces (1.10) are examples of subspaces of X7 (X")
with discrete asymptotics of type P. The definition can be easily extended to
asymptotic types P = {(pj, m;)};=o0.1,...,s associated with (v, (—o0,0]) and J € NU
{o0}. In this case we form Py, := {(p,m) € P : Rep > (n+1)/2—y—(k+1)},k € N;
then Py, is finite and associated with ('y, (=(k+1), O]) Thus we have the spaces
K3 (X") and we set
STV(XN) = lim K37 (X7).
’CP ( ) tenN ’CPk ( )
Another technical tool that we employ later on are operator-valued symbols based
on twisted symbolic estimates. Let H and H be Hilbert spaces with group actions
k and R, respectively.
By S*(QxR%; H, H) for an open set Q C R” we denote the set of all a(y, ) €
C>(Q xR, L(H, fl)) such that

17y {0y Dy aly, MYl oo, iy < el (1.11)

for all (y,n) € K xRL, K € Q, and o € NP, 8 € N, for constants ¢ = ¢(«, 8, K) >
0. Such a are called (operator-valued) symbols of order u. For instance, if a(y,n) is
homogeneous of order y for large || then it is such a symbol. By S%(Q x R?; H, H)
we denote the subspace of classical symbols, i.e., the set of those a(y,n) € S¥(£2 x
RY: H, H ) with an asymptotic expansion into symbols that are homogeneous of
order p—j,j € N, for large |n|. Let St (2 x (R7\ {0}); H, fI) be the space of those
ag(y,n) € C (QX(R‘]\{O}), L(H, f{)) such that a(, (y, An) = )\“F@\a(ﬂ)(y,n)/ﬁ;l
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for all X € Ry. Every a(y,n) € S5(Q x R%; H, H) has a principal symbol of order
p, i.e., the unique a,(y,n) € S (1) (2 x (R?\ {0}); H, H) such that

aly,n) = x(magy(y,m) € Sh™ (Q x R% H, H)
for any fixed excision function Y.

If a consideration is valid in the classical as well as the general case we write
as subscript (cl). If necessary we also write S(“Cl) (QxR% H, H),  for the respective
spaces of symbols. The spaces of symbols with constant coefficients will be denoted
by S( 1)(]Rq; H, H). The spaces Sflcl)(Q x R%; H, H) are Fréchet in a natural way,
S(Cl)(R :H.H ) are closed subspaces, and we have
Sl (2 x R% H, H) = C=(Q, 5[, (R%; H, H)).

In the case p = 2¢ and Q x  for Q C RY instead of 2 C RP we also write (y,y’)
rather than y. }

For every a(y, y',n) € SH(Q2xQxRY; H, H) the operator Op(a) : C§° (%, H) —
C>(Q, H), defined by

Op,(a) // w=Ma(y,y' n)yu(y’) dy'dn, (1.12)
extends to a continuous map
Op(a) : Wipmp (0 H) — Wi H(Q, H) (1.13)

loc
for any s € R. The continuity (1.13) has been established in [11, page 283] for all
spaces H, H that are of interest here. The case of general H, H with group action
was given in [18]. In the special case of a(n) € S#(R?; H, H) the operator Op(a)
induces a continuous operator

Op(a) : W*(R?, H) — W**(R?, H) (1.14)
for any s € R. Here
1OP(a) | (v (Ra, 1) Wi (R, 7Yy < Sélﬂg)[ ]_HHR[;]IG'(U)K[U]HE(H,IEI)' (1.15)
n q

Remark 1.1. Observe that (1.14) already holds for a(n) € C> (R, L(H, H)) when
the Oth symbolic estimate (1.11) holds, namely,

~—1
||’f[n] a(n)“[n]”c(f[ﬂ) < cn)*
for all n € RY, for some ¢ > 0.
We will employ below a slight modification of such a construction. Let us
start, in particular, with the case H = C with the trivial group action. Symbols in
S éi ) (QxR%;C, H) are also referred to as potential symbols. Consider, for instance,

the case of symbols a(n) with constant coefficients, i.e., without y-dependence.
Such symbols are realized as multiplications of ¢ € C by 7-dependent families f(n)
of elements € H. The symbolic estimates have the form

kg Dn f Dl (e iy = gy Do f )l < Cllt =1L, (1.16)
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In our applications we have the situation that for a Fréchet space E = lg_rglEj for
JEN
Hilbert spaces E7 and the trivial group action id on all £ we encounter E and
tensor products H&, E rather than C and H. In our case E will be nuclear, and
then we have
H&,E =lim Hoy
:EN
with ® g being the Hilbert tensor product. Such things are well known, but details

may be found, e.g., in [10, page 38]. From f(n) € Sfcl) (R?;C, H) we pass to the

operator function f(n) ® idg. This can be interpreted as a symbol

foidp € St (R: B, HO- E) = hm sgn( Ej, HOopFE?).

In fact, instead of (1.16) we have the symbohc estimates

(k) @ idga) Dy (f(1) @ idps) (e, froy ) = 65 Do f D g llides |l 2ims,59)
=[Oy f ()l g7 < Ol V7!
for every j. Similarly as (1.14) we obtain continuous operators
Op,(f ®idgs) : H¥(RY, E7) - W (R, HR g E7). (1.17)
The space on the right refers to the group action k) ® idg, such that
5 1/2
5 _ 2 || —1 o1 5
lullyeces, e ) = { S ot o iapaml dn}
for every j. We have
Wt(Rq, H@WE) = @Wt(Rq, g@)HEj),
JeN
t € R, and it follows altogether
Op,(f ®idg) : H*(RY, E) — W**(R?, H&, E). (1.18)

1.2. Characterization of singular functions
In order to formulate the singular functions of discrete edge asymptotics we endow
the Fréchet spaces K37 (X”) with the group action

(kau)(r,z) == XD 24\, 2), (1.19)

A € Ry. The larger spaces K57 (X") are endowed with this group action as well,
and we may consider k) also over the spaces g7 (X") of functions of flatness ©
relative to «y. This allows us to define the spaces

W (R, K07 (X M) D W*(RE, K37 (XM)) D WH(RL, K (XM)).

The space Ep of singular functions of cone asymptotics, defined for any fixed cut-off
function w, is not invariant under x. Nevertheless, according to (1.10) it is desirable
also to decompose W*(R?, K37 (X")) into a flat part, namely, W*(R?, K57 (X "))
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and a subspace generated by the singular functions. Here we proceed as follows.
We first look at the case x = id and observe that from (1.10) we have a direct sum

WA (R, K5 (X)), = W (BRI, KET(XY)  + W (B, Epa
Clearly W*(RY, Ep)iq is a subspace of W*(R?, K37 (X")). . According to (1.4) we
have an isomorphism
K: W*(RY, KB (X)), = W (R, KB (X)),
Thus, applying (1.4) to the subspace W?*(RY,Ep)iq we obtain a subspace of
W#(R?, K37(X")) . and a direct decomposition
W (R, K37 (X)), = WP (RY, K5T(X)), + KWS(RY, Eplia. (1.20)
By virtue of the definition of the operator K we have
KW (R?, Ep)ia = span{ F, 4, [] "D 2w(r[n])égn (x,m) (rn)) " log" (r[n])
10<k<my,j=01,...,J.¢x(z,n) € H (R, C(X))}
for H* (R4, C>®(X)) := FynH* (RS, C*°(X)). This follows from the fact that
W2(RY, Ep)ia = H*(RY, Ep) = span{w(r)cjk (z, y)r P loghr
0<k<m;,j=0,1,...,J,cju(z,y) € HS(RZ,C"X’(X))}.

The explicit form (1.21) gives us a first impression on the nature of singular terms
of the edge asymptotics for a constant (in y) asymptotic type P and finite ©.
Let us briefly comment the case s = co where the WW*-spaces do not depend
on k, cf. the relation (1.3). In that case we may choose the singular functions in
the form (1.22) for s = oo, i.e., the r-powers, logarithmic terms and the cut-off
function w do not contain 7. In other words we have the direct decomposition

wee (R’I,IC%O’AY(XA))id =W (]R‘?,ICE)O’AY(XA))id + W>R?, Ep)ig
= HOO(R’I,IC%O’W(XA)) + H>(RY,Ep).
On the other hand we have
W (Rq,IC%O’W(XA))N = W>(R?, ICZ)O’W(X/\))H + KW>(R?, Ep)ia, (1.24)

cf. the relation (1.20) for s = oo. By virtue of (1.3) the only formal difference
between (1.23) and (1.24) for s = oo lies in the difference between H>®(R?,Ep)
and KW= (Rq, Ep)id.

(1.21)

(1.22)

(1.23)

Proposition 1.2. Let P = {(p;, m;)}j=o0,1,....7 be a discrete asymptotic type asso-
ciated with the weight data (,0) for finite © = (¥,0]. Then there is a direct
decomposition

W (R, KT (XN)), = WO (R ES (X)), + H(RY, Ep)
where
H> (R, Ep) = span{w(r)cjk(x,y)rfpjlogk( ):0

<k<m
j=0,1,....J,c;x € H°(RS, C*(X))}.

7

(1.25)
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Proof. We write down once again (1.21) for s = oo, namely,

KW (R?, Ep)ia = span{ F, L, 1) "D 2w (r[n]) i (x, m) (r[n])

N 1.26
logk(r[n]),ng§mj,j:O,1,...,J,éjk(x,n)EH‘X’(R%,C"X’(X))}. ( )

First it is clear that [n] P/ gives rise to a modification of the coefficients in
H> (R%, C"O(X))7 since [n]MﬁC’O (Rg, C°°(X)) = H> (R%, COO(X)) for any real
M. Moreover, writing log (r[]) = log r+log [] we can dissolve log" (r[n]) as a sum
of products between powers of log r and log[n]. Also the log [n]-terms are absorbed
by IA{‘”(R%, C*(X)), and hence we get rid of [n] in (1.26), except for the cut-off
function w(r[n]). In order to remove [n] from the cut-off function we apply Taylor’s-
formula. Choose another cut-off function @ > w where ¢ > ¢ or ¢ < ¢ means that
@ is equal to 1 on supp ¢ such that &(r) (w(r[n]) — w(r)) = w(r[n]) —w(r) for all r
and 7. Then

r N+1 1
wtrt) = w) =5 { 0T = 0 el a

N (1.27)

~ N /01(1t)Nw(N+1)(rt)dt}.

If we verify that this function belongs to W (R, £g7 (X ")) for sufficiently large
N we may replace in the formula (1.26) w(r[n]) by w(r), i.e., after the comments
before on how to remove [5] from (r[n]) 7 or log®(r[n]) we see altogether, that
the singular functions of edge asymptotics for s = oo are of the form (1.25).
The fact that a function ¥ € C§°(R4) of sufficiently high flatness at » = 0, i.e.,
r~Ny(r) € C§°(Ry) for large and fixed N, belongs to W™ (R?, KZ7 (X)), follows
from the fact that ¢ (r) may be regarded as an operator-valued symbol

Y € SH(RY;C, HY)

for H7 := jcs7—n/2=9=(+) " (R, ) and some p = u(s) € R, for all j € N.

In fact, it is clear that ¢ € H7 for a fixed sufficiently large N' € N. Moreover,
{kx}xer, defined by (1.19) acts on HY for every j. Thus, by virtue of (1.1) we
have ||“>\||£(HJ) < cmax{A, A‘l}M for constants ¢, M > 0 depending on the space
Hi, in fact, on s. The symbolic estimates (1.16) for ¢ rather than f(5), here
independent of 7, reduce to the estimate to 8 = 0, and we have

||”[77]1¢||L(c,ﬁj) < ||”[77]1||L(ﬁj)||¢||g(c,ﬁj) < c[n]*]1¥ll s

for some g and constants ¢ = ¢(j) > 0. Then, writing E := C®(X) = LEj,
JEN
where we may take E? := H’(X), we obtain v ® idg; € SH(RY; B/, H @y E7).

This gives us the continuity

Op, (¥ ®idgi) : H*(RY, E7) — W H(RI, H @y E7)
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for every § € R, cf. (1.17) which entails
Op, (Y ®idgs) : H®(RY, E7) — W (RY, H @y E7)
and
Op, (¥ @ ide(x)) : H®(RT,0F(X)) — W (R1, K37 "*(R1))&,0%(X)
= W (RY,KE (X)),

Here we employed the relation K37 (X") = K%o’wfn/Z(R_s_)@ﬂC‘”(X). For the
second summand in (1.27) we argue as follows. The function g(r) := fol(l -
yNwWNHD(rt) dt on R, belongs to C*(R,) and is bounded on R, including
all its r-derivatives. The same is true of f(n) = g(r[n]) as a function in r € R;.
The notation f(n) indicates that f is regarded as an operator-valued symbol. The
operator of multiplication by ~g(r‘) induces continuous operators g : H J — HJ for
all j. Thus Op, (f) : W*(R9, H?) — W?*(R9, H7) is continuous for every s € R, cf.
Remark 1.1. Setting h(n) = f(n)&(r)(r[n)) N T1/N! and 9 (r) = o(r)rN+1/N! we
have
From the first step of the proof we know that
Y ®idg; € SHHNTYRYG B H @y HY).

It follows altogether

Op,(h) ®idgs : H (RY, B7) — W3~ WtN+D(RY Fi@ p [7)
for every § € R, and finally

Op,(h) @idg : H* (R, C>®(X)) = W™ (R?, KJ7(X")). O

The case of variable discrete asymptotics will be prepared here by a number
of specific observations. We saw that the space (1.21) is the image of

H*(R)®,C*®(X)
under the action of a pseudo-differential operator
Opy(k)®widcm(x) : HS (R ®,C(X) — KW (R, Ep)iq
for symbols k(n) € SY(R%C, K7 ""/2(R,)), k(n) : ¢ = k(n)c,c € C, where

B() = 00 S el 2 o)) (r[n]) o 1og” (1)) for axbitrary constants
Cik eC, OSjSmj,j:O,l,...,J.

Let us form the compact set K := mcP = {p;};=o0,1,..,; and choose any
counter clockwise oriented (say, smooth) curve C' surrounding K such that the
winding number with respect to any z € K is equal to 1. The function

J my

M. [w) 33 (@) iloghr | (2) = £(2)

=0 k=0
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with M being the weighted Mellin transform for the weight v — n/2 is meromor-
phic with poles at the points p; of multiplicity m; 4+ 1 and Laurent coefficients
(—1)kklejx(x). This comes from the identity

(—1)FK!
(z —p)ktt
for any p € C,k € N, modulo an entire function. For any compact set K C C
by A’(K) we denote the space of analytic functionals carried by K, see [7, Vol.

1] or [8, Section 2.3]. The space A'(K) is a nuclear Fréchet space. Given another
Fréchet space E we set A'(K, E) := A'(K)®.E. Now

A(C) 5 h— (¢rah) /f (1.25)

M, (w(r)rPloghr) (2) =

is an analytic functional with carrier K, more precisely, ¢ € A’ (K ,C®(X )) It is
of finite order in the sense of a linear combination of finite order derivatives of the
Dirac measures at the points p;. Inserting h(z) := r~% we just obtain

m;
(Ct,zrr™ ZZCJ]C x)r pjlogk'r, (1.29)
§=0 k=0
i.e., the singular functions are again reproduced as a linear superposition of r~*
with the density (.
The above-mentioned singular functions (1.21) of constant discrete edge asy-
mptotics of type P may be written in the form

E S {20l (C ), (rln) ™) }

where {(n) € A’ (K, H* (R4, C*>(X))) is applied to (r[n])~*; subscript z indicates
the pairing with respect to z. The form of C (n) is subordinate to P in the sense that
(C(n)z,r7) is a H? (RZ, C>(X))-valued meromorphic function with poles at the
points p; € mc¢P of multiplicity m; + 1. To have a notation, if ' is a Fréchet space
then a ¢ € A'(K, E) is said to be subordinate to P if (¢, *) is meromorphic with

such poles and multiplicities, determined by P. Let A% (K, E) denote the subspace
of all ( € A'(K, E) of that kind.

2. Branching edge asymptotics
2.1. Wedge spaces with branching edge asymptotics

The role of the present section is to deepen and complete material from [16] on
wedge space with variable branching edge asymptotics. To this end we first recall
the notion of variable discrete asymptotic types.

Let U(2) for an open set Q C RY denote the system of all open subsets U C €2
with compact closure U C €.
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Definition 2.1. A variable discrete asymptotic type P over an open set 2 C R? as-
sociated with weight data (v,©),© = (8,0], —oo < ¥ < 0, is a system of sequences
of pairs

Py) = {(p; (W), m;j(¥))}j=o01,....00) (2.1)

for J(y) € N, y € Q, such that 7cP := {p;(¥)}=0.1,...5y) C{(n+1)/2—7+9I <
Rez < (n+1)/2 —~} for all y € Q, and for every b = (¢,U),(n +1)/2 —y+ 9 <
c< (n+1)/2—=7,U € UK, there are sets {U;}o<i<n, {Ki}o<i<n, for some
N = N(b), where U; € U(R2),0 < i < N, form an open covering of U, moreover,

K, eCK,C{c—e;<Rez< (n+1)/2—~} forsome ¢; >0, (2.2)
such that
mcPN{c—e;<Rez<(n+1)/2—~} CK; forall yeU; (2.3)

and

sup Z (1+m;(y)) < oo

yeU; J

where the sum is taken over those 0 < j < J(y) such that p;(y) € K;,i =
0,1,...,N.

We will say that a variable discrete asymptotic type P satisfies the shadow
condition if (p(y), m(y)) € P(y) implies (p(y) — I,m(y)) € P(y) for every Il € N,
such that Rep(y) —1 > (n+1)/2 — v + 9, for all y € Q. Observe that such a
condition is natural when we ask the spaces of functions u with asymptotics (0.1)
to be closed under multiplication by functions ¢ € C°°(R.), and then the Taylor
asymptotics of ¢ at r = 0 contributes to the asymptotics of pu. For any open
Q C Q we define the restriction P|g := {(p(y), m(y)) € P : y € Q}. We also define
restrictions to A C C by setting raP := {(p(y), m(y)) € P : p(y) € A}.

In future if K C Cis a compact set and we are talking about a curve C C C\K
counter clockwise surrounding K we tacitly assume that the winding number is 1
with respect to every z € K. It is well known, that for every K such a C' always
exists in an e-neighbourhood of K for any € > 0.

Parallel to variable discrete asymptotic types P we consider families of an-
alytic functionals that are y-wise discrete and of finite order. Typical families of
that kind are generated by functions f(y,z) € C*°(Q, A(C\ K)) that extend
across K for every y € ) to a meromorphic function in z, with finitely many poles
po(¥),p1(y), ..., ps(y) € K where p;(y) is of multiplicity m,(y) + 1. The corre-
sponding system P(y) of the form (2.1) is a variable discrete asymptotic type in
the sense of Definition 2.1.

More generally, if we have a family of meromorphic functions f(y, z), paramet-
rized by y € Q we will say that f is subordinate to (2.1) if for every y € Q the
system of poles is contained in mc¢P(y) and the multiplicities are < m;(y) + 1.
With such an f(y, z) we can associate a family of analytic functionals as follows.
We fix b = (¢,U) as in Definition 2.1 and choose a pair (U;, K;) and a smooth
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curve C; C {c—¢; < Rez < (n+1)/2 —~} counter clockwise surrounding K, and
then we form 6;(y) € A'(K;) by

(552 ) = /C f(y, 2)h(z) dz

h € A(C). The family f is called smooth in y € Q if §;(y) € C>(U;, A'(K;)) for
alli=0,1,..., N, and if this is also the case for all U € U(Q).

In the following constructions it will be convenient to fix for any given U € U
a system of ¢, € C§°(U;), i = 0,1,..., N, such that Zi\;o% =1forallyeU.
This yields a family

N

Su(y) =D ¢iy)di(y) € C= (U, A'(K)) (24)

=0

for K := Uf\;o K, which has the property that M,_,. (w(r){0u (y)w, ™)) is a
family of meromorphic functions over U equal to f(y, z)|y modulo a function in
C‘”(U,A(c —e<Rez<(n+1)/2- 'y)), e = min{eg,&1,...,EN}.

Let us summarize these observations in the analogous case of E-valued mero-
morphic functions and E-valued analytic functionals as follows.

Given a Fréchet space E and a family of E-valued functions f(y, z) parametri-
zed by y € Q and meromorphic in (n+1)/2—vy+9 < Rez < (n+1)/2—, we say
that f is subordinate to P if every pole of f(y, ) belongs to a pair (p(y), m(y)) € P
where the multiplicity is less or equal m(y) + 1.

Let U € U, K C C, then C> (U, A(C\ K, E)). will denote the subspace of
all f(y,z) € C>(U, A(C\ K, E)) that extend for every y € U to a meromorphic
function across K, again denoted by f(y, z), where poles and multiplicities minus
1 form a P as in Definition 2.1. If we specify P we also denote the space of such
functions by C*°(Q, Ap(C, E)).

If f(y, z) is any family of meromorphic functions parametrized by y € € such
that the pattern of poles together with multiplicities minus 1 is a P as in Definition
2.1 we may define smoothness in y as follows. First we fix any yo € Q and a b =
(¢,U) and sets K;,U;,i =0,1,... N7 as in Definition 2.1. Choose compact smooth
curves C; C {c—¢&; < Rez < (n + ) / 2 - ’y} counter clockwise surrounding K
and define 6;(y) € A'(K;, E) by (6;( =J, f h(z)dz, h € A(C),y € U,.
Then f is called smooth if §; € C> (UZ,A’(KZ, E)) for 1=20,1,...,N.

Remark 2.2. Consider the above-mentioned f(y, z). Setting f;(y, z) := M, ,w(r)
(0;(y)z,r—*) with M being the weighted Mellin transform for any weight 5 such
that I'y/o_5 N K; = 0 we obtain an element in C*(U;, A(C \ K;, E)) subor-
in this case we have fi(y,z) € C>(U;, A(C\ K;, E)).
N Is a system ¢; € C5°(U;) such that Z;'V:o p; =1

Moreover, if {<p,}z 0.1,

over U C Ui:O U;, then fo(y, z) = Zij\io ©vi(y) fi(y, z) satisfies the relation f|y =
fo mod C*(U,A(c—e <Rez < (n+1)/2—7, E)) for € := min{eg, €1, ...,en}.
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Let us now recall from [16] the definition of weighted edge distributions of
variable discrete asymptotic type P, cf. Definition 2.1.

Definition 2.3. Let 2 C R? be open and let P be a variable discrete asymp-
totic type, cf. Definition 2.1 associated with the weight data (v,0), © = (¢, 0]
finite. Then W (Q,K37(X")) for s € R is defined to be the set of all u €
Wi (€, K£57(X ")) such that for every b:= (c,U) for any (n+1)/2—y+9 < ¢ <
(n+1)/2—~ and U € U(Q2) there exists a compact set K, C {(n+1)/2—v+9 <
Rez < (n+1)/2 —~} and a function f,(y, z,n) € C (U, A(C\ Ky, ES)). for

E* = H*(R?,C*(X)) (2.5)
subordinate to P|y and a corresponding Sb(y, n) € C*™ (U7 A'(Ky, ES)).7
<8b(y7n>27h> = o fb(y7zvn)h(z> dz7 h e A((C)7 (26)
b

with Cp counter clockwise surrounding K3, such that

u(r,z,y) = F 2 A 2w ) (0n (g, )=, () 7)) € Wi (U, K572 (X))
(2.7)
for 8:= By +e for any 0 < e < &(b), B0 := (n+1)/2 — v — c. Moreover, we set

Weomp (K57 (X)) := Wi (Q K57 (X)) N Wi, (0, K7(X1)).

comp

For convenience, as a consequence of Definition 2.3, we characterize the space
Wi (Q,K57 (X)) as the set of all u € Wi (€, K57 (X")) such that for every
b = (c,U) the function u|y belongs to the space

Wiee (U, K572 (XM)) + Wi p(U) (2.8)

where W;P(U) = {F{jy(n[n}w(r)@b(y,n)z,r_z>)}, dp(y,n) as in (2.6) for an
f5(y, z,m) subordinate to Py := rg, (P|v).

Definition 2.3 expresses asymptotics of type P in terms of pairs U;, K; as
in Definition 2.1, i.e., localizations in y € © and z € C. Therefore, for simplicity
we focus on an open set U € U(f2) and a compact K in the complex plane,
K C{c—e<Rez < (n+1)/2 -~} for some ¢ > 0, such that 7¢P C K. This
allows us to drop subscript b, i.e., we may write K = Ky, § = &,

8(y,m) € C=(U, A'(K, E*))". (2.9)
It is instructive to compare the notion of y-wise discrete asymptotics with contin-
uous asymptotics where 0(y,n) € C>= (U, A'(K, E®)).

Formally, the singular functions of continuous asymptotics are as before,
namely, of the form

F oy A Y20 (8 (y.m), (rln) =) )

In contrast to the latter explicit y-dependence of the analytic functionals there is
also the case of constant continuous asymptotics carried by the compact set K.
In this case we can proceed in an analogous manner as in the constant discrete
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case, outlined in Subsection 1.2. When we fix the position of K as above, i.e.,
Kc{(n+1)/2—v+9 <Rez < (n+1)/2—~}, then we have

w(r)(C, %) C K=Y (X7)
for every ¢ € A'(K,C>(X)), and
Ex = {wr)(¢,r77) : (e A(K,C™(X))} (2.10)

is a continuous analogue of Ep in (1.9). Again we have g7 (X") (N Ex = {0} for
any s € R, and analogously as (1.10) we set

KE(XN) = K (X") + Ek. (2.11)

The notation C means that with K we associate a corresponding continuous asymp-
totic type. The space £k is nuclear Fréchet in a natural way via an isomorphism

Ex 2 A (K, C™(X)). (2.12)

Thus (2.11) is Fréchet in the topology of the direct sum. The group action {xx } xer.
defined by (1.19) is also defined on K37 (X ") which allows us to define

WH (R, KET(XN)) =W (R, KS(XM)) + KH®(RY, Ek).
From (2.12) it follows that
H*(RY, Ex) = {w(r){C(y)zr%) : ¢ € A(K,H* (R, C™(X)))}. (2.13)
Then
KH*(RY, Ex) = {5 b [w (1) Fyr o ()2, 777 -
((y) e A(K, HS(]RZ,,CC’O(X)))}.

Let us now make some general remarks about managing analytic functionals. If £
is a Fréchet space and A’(K, F) the space of E-valued analytic functionals carried
by the compact set K C C we have

A(K,E) = A(K°,E) (2.15)

(2.14)

where K° means the complement of the unbounded connected component of C\ K,
cf. [8, Section 2.3]. Recall that the classical Cousin theorem also admits decompo-
sitions of the carrier, more precisely, if K7, Ko are compact sets in C, then setting
K; + Ky := (K7 U K3)° we have a non-direct sum of Fréchet spaces

A(K,E) = A(K1, E) + A (K, E), (2.16)

for any Fréchet space E, cf. also [11].

In the discussion so far we assumed that K (\I'(,41)/2— = (). However, in the
edge calculus with continuous asymptotics also requires the case K (\I'(,41)/2—y #
(. Without loss of generality we may assume K = K°. Then (2.11) is not direct
and only {z € K : Rez > (n+1)/2 — v+ 9} contributes to C. Writing K as a sum
K=K +Kyfor K1 ={z€ K:Rez<(n+1)/2—vy4+9}, Ka={z€ K:Rez >
(n+1)/2—~+ 9} we have a decomposition (2.16). Therefore, every ¢ € A (K, E)
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may be written as { = (3 + (o for suitable (; € A'(K;, E),i = 1,2. This leads to a
decomposition of the space (2.14) as

KH*(RY, Ex) = KH*(RY, Ek,) + KH*(RY, Ex,).

Clearly we have KH*(RY, Ex,) C W* (R4, K37 (X")), but also K» gives rise to a
flat contribution, namely, from K¢ := K5 ([ I'(,41)/2—+9- The notions and results
that we are formulating here on continuous asymptotics have a natural modifica-
tion for the case of arbitrary K. If necessary, we have to admit flat contributions.

Proposition 2.4. For a compact set K C {(n+1)/2—v+9¥ <Rez < (n+1)/2—~}
we have

KHS Rq {W n%yﬁ[n [ y’ Hfl<<(y,)z>7ﬂiz>] :
C(y') € A'(K, H* (R}, C*(X))) }
mod W* (R4, £F"7(X")).

Proof. Let us first drop C°°(X"); this can be tensor-multiplied to the result in
the final step, cf. the considerations in connection with (1.17). For ¢ we then have

(e A(K,H*RL)) = A'(K)®-H*(RL,).
We employ the fact that ( can be written as a convergent sum ¢ = Z;‘;o AjGjv; for
Aj € C 3020 IN] < 00,¢ € A(K),v; € H*(RY), tending to 0 in the respective
spaces, as 7 — oo. Then, we form
ki(n) ¢ = w () "V (Gz, (i) e
Li(n) : e = ()]G, (rn) e

c € C and write

dj(n) = 1i(n) = k;(n) = ] "D 20(r) (1 = w () Gz, (rn) 7).
We will show that
4;(n) € SY (R C, K5 (R,)) (2.17)
for every f € R and that d;(n) — 0 in that symbol spaces as j — oo. This will
give us
Op, (d;) : H*(R?) = W* (R, L7 (R4)).
For fixed v € H*(R?) we can interpret Op,(d;)v = Op,(l;)v — Op, (k;)v as

FL ()0 2w (r) (¢ 20 (), (rln) 7))
— L [ 20 (e ) (G2 0(n), (r[n]) )],

i.e., the difference between the respective singular functions for w(r) and w(r[n]),
respectively.
Let us now turn to (2.17) and set for the moment

d(n) = )"V 2w (r) (1= w(rfm)) (¢ (rln) =),
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i.e., we first drop subscript j. In order to show that d(n) € S9(R%C, K>=#(R,))
we check the symbolic estimates

1) 1Dy () c(c o () = 15 1D)d(n)|

0 € N9, cf. the relation (1.16). It suffices to do that for every s € N, and we first
consider the case s = 0 and 8 = 0. Let k%(r) € C5°(Ry) be any function that
is strictly positive and k%(r) = r# for 0 < r < co, K?(r) = 1 for r > ¢, for
some 0 < cg < ¢1. Then K*#(X") = kP(r)K0(X"). In particular, by virtue of
K9O(R,) = L2(R,) we have K%# (R, ) = k%(r)L2(R,) and

Koo sy < el P, (2.18)

1 £llico.s @y = 1k~ fll 2w -

In connection with (2.18) we have to consider

kg d(mlcos e,y = 1k~2(r)wrhn] ™) (1 = w(r) (G r )2y

From the carrier of ¢ we know that w(r[n]~1)((,,r~*) € K>7~"/2(R,) for all (; to-
gether with the factor k=7 (r) (1—w(r)) we get k=7 (r) (1—w(r))w(r[n] ~){¢,r7%) €
L?(Ry). It follows that ||H[:7]1d(’l7)||lco,/3 (&, < c for all n € R7. For the n-derivatives

we obtain (2.18) in general. Let us check, for instance, the case 6 = (1,0,...,0),
ie., Dg = —10y, . In this case we have
Dy d(n) = (0, )+ )0(r) (1 = w(r[n)) (Cas (rn)) =) = rl) D20y, [])

w(r)e (r[n) (Ce (rln)) %) = )" D20 () (1= w(rn))) (G 2]~ Oy ) () ).

This gives us the desired estimate with []~! on the right. The general case may
easily be treated in a similar manner. Now an elementary consideration shows that
the constants ¢ = ¢(¢) in the symbolic estimates (2.18) tend to 0 as ¢ — 0in A'(K).
Moreover, we can easily treat the case K*#(R, ) rather than X%#(R ), s € N. This
implies the asserted estimates for all s € R. In other words, as claimed above,
d;j(n) =1;(n) — k;(n) tends to 0 in SG(R%; C,K>#(R,)) as j — oo.

Now we characterize the difference between the singular terms defined with
w(r) and w(r[n]), respectively. It is equal to

n—>y [”[n v %n<< Yz )] *Fnij(r[ D [Fp Fyr—n (€W )z, m77)]
_Fn_ﬂy ( ) [ K Fy (W) T_Z>]
_Fn_ﬂy (1 w( )“[n ' —>n<z)‘ G20 (Y), 7 Z>
7=0
=S A FL () (1= wrln)) (Ges () ZA Op, (d;
j=0

This sum converges in W*(R?, K>#(Ry.)).
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In fact, for every ¢t > 0 we have

> " X;0p,(d))v; <Y T INHIOP, ()05l e (ra e )
We(Re KA (Ry)) T (2.19)

Z Ajl ||Opy ”L(H&(]RQ) W (R4, Kt 5(R+)))||Ug||He(Rq)
7=0

By virtue of (1.15) we have

10Dy (d))|| £ (a7 (), W= (Ra 105 (R4 ))) = O

as j — oo. Then v; — 0 in H*(R?) as j — oo shows the convergence of the
right-hand side of (2.19) for every ¢ > 0, and hence it follows that

Z)\Opy Jvj € WH(RL, K0P (Ry)).

So far we considered the case without C*°(X). However, as illustrated at the
beginning, a tensor product argument gives us the result in general. O

Let us finally discuss to what extent the singular functions of variable branch-
ing or continuous edge asymptotics depend on the specific choice of the function
7 — [n]. The other “non-classical” ingredient, namely, the cut-off function w has
been considered before. After Proposition 2.4 it is clear that changing w only
causes a flat remainder. If we replace [n] by an [n]; of analogous properties we ob-
tain smoothing remainders with asymptotics. More precisely we have the following
behaviour.

Remark 2.5. For any ¢ € A'(K, HS(RZ,,COO(X))),K C{Rez < (n+1)/2 —~},
the difference

W(r)Fy Sy w (G r™7) = w(r)Fy S g, (G %) (2.20)
belongs to € W (R, 2”7 (X")), cf. the notation (2.11).

In fact, (2.20) has compact support in 7 € R?. We have

)2 (G (=) = B (G ) ) (2.21)
(n+1)/2 _ 1,(n+1)/2
_ [n](n+1)/2 ] [n](n+1[;7/]21
L E (rl—= a2 (YT . =
(Gt ) () (ot .

For the first summand we employ that
e U

(] (/2 ¢ = (K H™> (R, C>(X )))
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since [n 1)1, for large |n|. Moreover, we have

( EZ31>(n+1)/2 === * (=6el (K, ﬁOO(R%7C°°(X))) .

Thus (2.21) is equal to [7]*TD/2((# 4 &), (r[n])~*) and hence (2.20) is equal to
Fo 2, 020+ 6)2, (r[]) %)
which belongs to W (R, K277 (X")).

2.2. The Sobolev regularity of coefficients in branching edge asymptotics

Our next objective is to consider singular functions of continuous edge asymptotics,
described in terms of smooth functions on y € ) with compact support with values
in A’ (K JH* (]Rg, C>®(X ))) We show that those functions may be represented by
functionals without dependence on y. A similar result has been formulated in
[14, Proposition 3.1.35], but here we give an alternative proof, and we obtain
more information. For convenience we start with Schwartz functions in y € RY
which covers the case of functions with compact support in y € Q. In addition we
always write w(r) rather than w(r[n]) which is admitted for similar reasons as in
Proposition 2.4, modulo flat remainders.

Theorem 2.6. Let {(y,n) € S(R?, A’ (K, H*(RS,C=(X)))), K C {(n+1)/2—~+
Y <Rez< (n+1)/2—~} compact, and form
f(ryy) = F A AP0 )y )z (i) 2)) (2.22)

(the dependence on x € X is dropped in the notation). Then there is a unique
X € A(K,H*(R%,C>(X))) such that

flroy) = E S A0 Pwr) ()=, (i) ~5)), (2.23)
and the correspondence é — x defines an operator
B: SR A (K, H(RY, C*(X)))) —» A (K, H*(RZ,C*™(X))). (2.24)

Proof. We employ some background on the pseudo-differential calculus with opera-
tor-valued symbols of the kind Sf‘c ) (QxR%; H, H) with twisted symbolic estimates
(1.11). In our case we set 2 = R? and look at the subspace S(RZ, Sf‘cl)(R%; H, H))
Given an ar,(y, n) in that space we have (by notation) the situation of a left symbol
in the calculus of pseudo-differential operators Opy(aL), cf. the expression (1.12)
where the respective amplitude function is a double symbol. It will be necessary
to generate right symbols ag(y’,n) such that

Op, (ar) = Op,(ar). (2.25)

A modification of the Kumano-go’s global (in R?) pseudo-differential calculus is
that ar, — ag with (2.25) defines continuous operator

S(RY, St (RL; H, H)) — S(RY,, Sfty (R; H, H)).
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Using an expansion for ag with remainder we have, in particular,

ar(y',n) = av(y',n) +re(y’,n) (2.26)
for
-3 /// (DO a)(y + w,m — t€) dudidt. (2.27)
la=1
Here 05 = 05 .. .8,‘7’; and DY = (—i)1*195 for o = (a1,..., aq), |a] = a1+ +aq.
The map ay,(y,n) — rr(y’,n) defines a continuous operator
S(RY, Sty (RY; H, H)) — S(RY,, Sl (RY; H, H)). (2.28)

In our concrete situation similarly as before we first look at the case without
C*(X); then a tensor product consideration gives us the result in general. We
express ((y,n) € S(RY, A' (K, H* (R%))) as an expansion

n) = Z AiCiei(y)oi(n)

for ;€ C,33720 1A < 00,5 € S(RY),v; € H*(R],), tending to zero in the
respective spaces. This allows us to write the function (2.22) in the form

Z NS A 2w(r)e; (9)(Ges (rln) ~7)05(m)} = D A 0p, (k; )u;
j=0

where k;(y,n) € S(RY, SHREL; C, Hl)) is defined by

ki(y,m) = ¢ = [P0 (r)e; (9)(Gees (i) ~F)e,
and H;,l € N, is a scale of Hilbert spaces with s-action such that
K& (Ry) = lim H,,

cf. equation (2.11). In other words we apply the above general relations on symbols
to the case H := C with the trivial group action and H = H; endowed with &,
for every fixed [. Writing for the moment k;(y,n) = k;1(y,n) we obtain a right
symbol k; r(y’,n) which is of the form

kir(y' m)e = T 20(r) 0y ) (Ges (r]) "F)e + iR n)e,

where 7; g is obtained from (2.27) for ar, = k; 1. Let us consider for the moment
the case ¢ = 1, and then write y = y1,7 = n1. The general case is completely
analogous. Later on in the function and symbol spaces we tacitly return again to
RY rather than R!. Then the remainder expression takes the form

s == [ ff s D)+
(€ (Ol ™ /) ) .
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We now apply an element of Kumano-go’s calculus for scalar symbols and observe
that

(.9 m) /// T (Dypi) (Y + @) (B ([ T2 | e daddt

belongs to S(R,,, S~Re=++1/2=1(R, )} for every fixed z. In addition d;(z,y’, n)
is an entire functlon in z. This gives us

rir(y n) = —r= D20 (r) (L, r D24, (2, )
= —r~ (DG () (5. (), (rp)) 2 ED/2)

for &;(y',n) = Cid;(z,9/,n)/[n]"* T *t1D/2 We now employ the fact that the
pseudo-differential action with a right symbol b(y’,n), say, in the scalar case
b(y',n) € S(RZ,, S5¥(R%)) for some v, operating on v € H*(R?) has the form

Op, (b)v = / et { / eiy'"b(y’,n)v(y’)dy’} dn.

In order to analyze the expression we may apply a tensor product expansion

=Y i)y
1=0

with 37 || < 00,9 € S(RY),b; € SY(R?), tending to zero in the considered
spaces when [ — oco. Then

Opy(b)v:/ei {/ “’"Z’Yﬂﬁl Joly )dy}dn

—/ “’"Zwbz Yro(n) dy'dn.

We have ¢yv € H*(R],), v — 0 in H*(R{,), and we obtain altogether a sum

(2.29)

Op, (b)v = Z 70p,, (b)) (Yrv),
1=0

convergent in H*~”(IR?). This consideration may be modified for the present case.
Let us write (2.29) as

rir(y'sn) = =TT () (65 (v ), (rln) 7). (2.30)

)= iy )b (n)
=0

for &;(y',n) € A (K, S(Rq,, S2(RY))), where bji(n) € A’ (K, S§(R%)). We employ
the fact that the pairing S (RY) x HS(]Rg) — ﬁS(Rg) gives rise to a bilinear map

(idar () ® SA(RE)) x H*(RE) — A'(K)&,H*(RY).

We have
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It follows that

oo

rir(ym) = =" w(r) <Z (Y )bju(n), (7"[77])2>

=0

and

Op, (rjr)v;(y) = Fniy{ [ D2 Z% (bji.=(n ])Z>@(77)}-
For
)A(j,rest Z’Ylbjl TJZJI”UJ ) S A/(K, FIS(RQ)) (231)

it follows that

Op, (rj.r)v;(y) = F, 5, {2 () (.- (), (r[n) %)}
Returning to (2.26) from (2.30) we obtain

re(y’,m) = =" w(r) Y N (852, m), (r[n]) TF)

ng

Il
<

J

and
F oy (Fyorir) (4 m) = —F, 2, § )2 () Z/\j@j,z(n% (r[)~*)

By notation we have kr,(y,n) = Z;io Ajkjn(y,n) where kj1(y,n) — 0 in S(RZ,
SO(RY; C, Hl)) and then k; r(y',n) — 0in S(]RZ, SO(RY; C, Hl)) and ;i r(y',n) = 0
in S(RS, S~H(RY;C, Hy)) as j — oc.

This implies that kg (y',n) = Z;io Ak r(y',n). We obtain that X; rest(n) —
0 in A'(K, ]EIS(R‘])) as j — oo, cf. (2.31), hence it follows an element

)A(rest Z )\JXJ rest G A’ (K H® (Rq))

In a similar (simpler) manner we can treat the term ar,(y’,7n), cf. (2.26), which
gives us a Ymain € A’(K, HS(]Rg)), and it follows altogether

F(ry) = E 5 A 20(r) (Rmain (0)=, (r[n]) %)}
Frt (D270 () (Rrest (1) 2, ([0]) %) -

Note that [1] ™! Xrest € A’ (K, fIS‘*‘l(R%)) — A (K, Hs (R%)) Analogous considera-
tions apply for the C'°°(X)-valued case. We thus obtain the claimed representation
(2.23) where

X(1) = Xemain(n) = 1]~ Xrest(n) € A (K, H* (R, C%(X))).
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Let us now prove the uniqueness of x in the formula (2.23). Without loss of gen-
erality we assume K = K¢, cf. the relation (2.15). We have an isomorphism

A'(K,E) = {w(r)(xz,r"7) 1 x € A(K,E)}

where on the right-hand side we talk about functions in C*° (R4, E), and w is
a fixed cut-off function. Clearly we know much more about such functions; they
belong to £=V(R4, E) where v € R is any real such that K C {Rez < 1/2 — ~}.
The notation K°7(R,, E) is an E-valued generalization of the above-mentioned
K>*7(R4). Up to a translation in the complex plane we may assume v = 0. Then
the Mellin transform

My (W(r) <sz r_z>) = m(w)

gives us an element in LQ(F1/27E) which is holomorphic in C\ K¢, and we can
recover x by forming

X:h— /Cm(w)h(w) dw, he A(C)

for any C' counter clockwise surrounding K.

The multiplication of a x € A'(K,E) by g € A(C), defined by {x,h) :=
(x,gh) gives us again an element in A'(K, F). Now looking at the expression
(2.23) it suffices to recover

D(n) = )" TI2R(n) € A (K, H U2 (RS, C(X)))

from

Fyosy(£)(r,m) = w(r) (), (r[n)) %) = w(r)(In] =9 (), r~%)
the Mellin transform of which belongs to A(C\ K, H*~("*1)/2(Rg, C>(X))) where

[77]_“’79(77):hﬁ/CMHw(W(T)Qn]_Zﬁ(n),T‘Z>)h(w) dw.

Thus we find [7]~*d(n) and hence J(n) itself by composing the result with the
entire function [n]*. In other words x in the formula (2.23) is unique. O

Let us now discuss the Sobolev regularity of coefficients in the singular func-
tions of edge asymptotics. In order to illustrate what we mean we first look at
constant discrete asymptotics of type P. According to Proposition 2.4 the singular
functions are finite linear combinations of expressions

w(r)F, S A" 02 () P og” (r[n)) oy, (n, )},

for 0,1, (n, x) € H*(R?,C>(X)),p € mcP, and some k € N, cf. the formulas (1.19),
(1.22) and (1.29). The n-dependence lies in

()2 log! ]y k (0, x) =: pk(n, 2) (2.32)
for some 0 <[ <k, i.e.,
Wy, (y, x) € HeTRer—==(nFU/2(RY 0o (X)), (2.33)
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for any € > 0. The case of constant continuous asymptotics can be interpreted
in terms of Sobolev regularity as well. Here in the representation as in Propo-
sition 2.4 the analytic functional ¢ is independent of 3’. The meaning of the
singular functions is a superposition of such functions with discrete asymptotics
with exponents r—% for z € K, and ( is just the “density” of the superposition.
Then, taking into account what we obtained in the constant discrete case the
Sobolev regularity which is determined by the occurring [n]-powers together with
the H* (R%, C°°(X))—valued character of ¢ is nothing else than

zlg’((s—l—Rez—a— (n+1)/2) (2.34)
for any ¢ > 0.

Let us now draw some conclusions of Theorem 2.6 on a way to approximate
the singular functions of branching edge asymptotics by singular functions of con-
tinuous asymptotics belonging to a decomposition of the considered compact set
K = Ui]\LO K;, where the K; are as in (2.2). The decomposition (2.4) may also be
applied to the E*-valued case, cf. (2.5), i.e., we can write (2.9) in the form

N
Sy.m) = ei(y)di(y.m) (2.35)
=0

for summands 6;(y,n) € S(RQ,A'(KZ-,ES)). (the Schwartz function is taken for
convenience; it does not affect the results). The space S (Rq, A (K, Es)). is closed
in S(R?, A'(K;, E*)). Let B; denote the analogue of the operator B in the Theorem
2.6 now referring to K, i.e., B; : S(RY, A'(K;, E*)) — A'(K;, E®). Then, applying
B; to 6;(y,n) € S(R?, A'(K;, ES)). we obtain an element

N
X(w,m) =Y ei(y)Bixi(y,m) (2.36)
=0

which is now a kind of approximation of the branching pointwise discrete func-
tional 3(y,77) by X(y,7n) which turns the asymptotics to a continuous behaviour
over K; where y varies over U;. Since by Theorem 2.6 the singular functions asso-
ciated with 8(y,n) and {(y,n) remain the same, we obtain the following Sobolev
regularity approximation of the coeflicients in the singular functions of branching
edge asymptotics.

Corollary 2.7. Consider the branching discrete functional 3(y, 1) and the associated
singular functions

E S Al 2w(r) 0y, m), (rln) =)

Then according to (2.35) we may replace S(y, 1) by the finite sum (2.36), and from
(2.34) we obtain the Sobolev regularity in the edge variables y € U;, namely,

zlenjgi(s+Rez—s— (n+1)/2)
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foranye >0,i=0,1,...,N. In other words the Sobolev reqularity may be localized
over U; for the corresponding K;, and, of course, the diameters both of U; and K;
may be chosen as small as we want when we choose N sufficiently large.

In other words, if we apply Theorem 2.6 to a d(y, ) € S(R?, A (K, E*)) * with
variable in y and in general branching patterns of y-wise discrete asymptotics, then
“Intuitively” the Sobolev regularity at a point y € RY has the form (2.33), now
for p = p(y). Clearly the Sobolev smoothness in correct form refers to an open
set in the y-variables. But Corollary 2.7 tells us how to collapse such open sets
to a single point, and then the Sobolev smoothness itself appears variable and
branching under varying y.

Note that also the general continuous asymptotics carried by a compact set
K can be interpreted in terms of decompositions into “small” parts K; when we
write K = Zi\;o K. This allows us to read off the “content” of Sobolev regularity
of singular functions as in Proposition 2.4 from the summands coming from K;,
and then we have similar relations as in Corollary 2.7.
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The Heat Kernel and Green Function of
the Sub-Laplacian on the Heisenberg Group

Xijaoxi Duan

Abstract. We give a construction of the heat kernel and Green function of a
hypoelliptic operator on the one-dimensional Heisenberg group H, the sub-
Laplacian £. The explicit formulas are developed using Fourier—-Wigner trans-
forms, pseudo-differential operators of the Weyl type, i.e., Weyl transforms,
and spectral analysis. These formulas are obtained by first finding the formu-
las for the heat kernels and Green functions of a family of twisted Laplacians
L, for all non-zero real numbers 7. In the case when 7=1, L; is just the usual
twisted Laplacian.

Mathematics Subject Classification (2010). 47F05, 47G30.

Keywords. Heisenberg group, sub-Laplacian, twisted Laplacians, Hermite
functions, Weyl transforms, heat kernels, Green functions.

1. Introduction
In this survey paper, we use the identification
R? > (z,y) & z =z +iy € C.
We consider the set H given by
H=CxR.
Then H becomes a non-commutative Lie group when equipped with the multipli-
cation - given by

(z,t) - (w,s8) = (z+w,t—|—s+ i[z,w]), (z,t), (w, s) € H,

where [z, w] is the symplectic form of z and w defined by

[z, w] = 2Im(zw).

This research has been supported by the Natural Science and Engineering Research Council of
Canada.
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Lemma 1.1. The left Haar measure and right Haar measure on H are equal to the
Lebesgue measure dz dt.

Proof. Let f be a measurable function on H. Then
| [ st oy dzar
—oo JC

o0 o0 o0 1
:/ / / f(U+$,U+y,s+t+2(vxuy)> dz dy dt.

Let ' =u+w,y =v+y,and t’ = s+t + ) (ve — uy). Then the above integral

becomes
o0 o0 o0
/ / / f@' y ) da dy' at'.
— 00 — 00 — 00

This shows that the Lebesgue measure is left-invariant. Similarly, we can show
that it is also right-invariant. O

Since the left and right Haar measures are equal, it follows that H is uni-
modular. Having defined the Heisenberg group, we move on to introduce the heat
kernel on H. Consider the partial differential equation

o (1) = (£0) (1t p)
with initial condition
u(z,t,0) = f(z,1),
where (z,t) € H, p > 0, f is a suitable function on H, and £ is the sub-Laplacian
on H to be defined in Section 2. Its solution can be expressed formally as

w(z,tp) = (€7PEF) (28),  (2,8) €H, p >0,
The heat kernel K, of £ is the kernel of the integral operator e~ P~ which satisfies
eip[:f = f *H Km

where the convolution f *g K, of f and K, on H is given by

ki)t = [ [ f(G0 - (o )Ey(ws) dwods, (o) <

for all suitable functions f on H, provided that the integral exists. On the other
hand, the Green function G of L is the kernel of the integral operator representing
£, and

L7 =f*ug
for all suitable functions f on H.

The formula for the heat kernel can be traced back to the independent works
of Gaveau [5] and Hulanicki [13]. More recent derivation of the heat kernel can be
found in Klingler [15]. The works of Hulanicki and Klingler are based on probability
theory. The explicit expression for the Green function dates back to the work of
Folland [3], in which the formula is given in terms of the distance on the Heisenberg
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group based on the analogy with the Green function for the Euclidean Laplacian,
which is also given by a distance at least when the dimension of the Euclidean
space is greater than 2. A geometric approach for finding the heat kernel and Green
function of the sub-Laplacian on the Heisenberg group can be found in [1]. In [18],
the formulas for the heat kernel and Green function for the twisted Laplacian L
are derived by means of pseudo-differential operators of the Weyl type, i.e., Weyl
transforms and the Fourier—Wigner transforms of Hermite functions, which form
an orthonormal basis for L?(C). These facts can be found in the book [18] by
Wong.

In this paper, the aim is to find the formulas for the heat kernel and Green
function of the sub-Laplacian £ on H. In order to do so, we first introduce a family
of twisted Laplacians L, on R2, for 7 € R such that 7 # 0. Using the more general
formulas for the heat kernels and Green functions for these parametrized twisted
Laplacians, we are able to compute the heat kernel and Green function for the
sub-Laplacian on H.

In Section 2, we first define the sub-Laplacian £ on the Heisenberg group H
and then introduce a family of twisted Laplacians L, for 7 € R\ {0} by taking the
inverse Fourier transform of the sub-Laplacian with respect to ¢. The hypoellip-
ticity of the sub-Laplacian and the ellipticity of the twisted Laplacians are briefly
discussed. In Section 3, we give a result on the relationship between convolutions
on the Heisenberg group and twisted convolutions. This can be used to relate the
heat kernel of the sub-Laplacian to the heat kernels of the twisted Laplacians.
In Section 4, we define the Fourier—Wigner transforms of Hermite functions. In
Section 5, we define the Weyl transforms, give the formula for the product of two
Weyl transforms and prove that the Fourier—Wigner transforms of Hermite func-
tions given in Section 4 form an orthonormal basis for L?(R?). Weyl transforms
are used again in Section 6 to prove that the twisted convolution of two Fourier—
Wigner transforms of Hermite functions is again a Fourier—Wigner transform of
Hermite functions. This fact and the spectral analysis of L, for 7 € R\ {0} are then
used in the same section to construct the heat kernels of the twisted Laplacians
L, and hence the heat kernel of £. The Green functions of the twisted Laplacians
L, and the Green function of the sub-Laplacian £ are given in Section 7.

The formulas for the heat kernel and Green function of the sub-Laplacian
on the Heisenberg group are well known in the mathematical literature. To date
several methods are available and the reconstructions of these formulas have be-
come somewhat of an industry. This is due not only to the beauty and contents of
the formulas, but also the need to construct similar formulas for other hypoelliptic
operators. To wit, the techniques in this paper have the potential of constructing
the heat kernel and Green function of the product of L,L_, for a nonzero real
number 7, which is a fourth-order operator whose eigenvalues have finite multiplic-
ities. And the heat kernels and Green functions of these operators can enable us
to find those for a fourth-order hypoelliptic operator on H, in fact, a fourth-order
sub-Laplacian. This is a project in progress, and is the motivation for this survey
paper.
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The results in this survey paper are valid for the n-dimensional Heisenberg
group and we have chosen to work on the one-dimensional Heisenberg group H
just for the simplicity and transparency of the notation. The inner products and
the norms in L2(R), L?(R?), L?(C) and L?*(R") and so on are all denoted by (, )
and || || respectively and the space in which the inner product and norm is taken
should be clear from the context.

2. The sub-Laplacian on H and twisted Laplacians

A vector field V on H is given by

0
+ c(z,y,t)

B
+ b(x,y,t) o

0

or

where a, b, ¢ are C* functions in z,y, t.
A vector field V is left-invariant if it commutes with left translations, i.e.,

VLw,s) = LwsV;
for all (w, s) € H, where for all C*° functions f on H,
(Lw,s) f)(z:8) = f((w, ) - (2,1),  (2,1) € H.
Now, let v1,72,73 : R — H be curves in H given by
m(r) =(r,0,0), reR,
v2(r) = (0,7,0), reR,
v3(r) = (0,0,7r), reR,

for all r in R, and we define the vector fields X, Y, and T as follows. Let f € C*°(H).
Then the function X f is defined by

(XDt = o Gyt 7))

r=0
= O learytr )

_af 1 of

r=0
(2,9,1),
the function Y f is defined by

(Y F) et = o F((@9,0)-2200)

r=0
= Oy (ayart-)
= gl By tr N .
0 1 0
=Y ayty - L @y,

y 2 Ot
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and the function 7'f is defined by

TNy = 5 500 ()

r=0
0
= f (iL’, y,t+ T)
or r=0
of
= t
g @Y1
for all (z,y,t) € H. To summarize, we have
o 1 0 o 1 0 0
X = Y = — d T=_.
or T 2¥or oy 2"t M ot
It can be checked easily that
[X,Y]=-T,

and all other first-order commutators of X, Y and T are zero. Moreover, it can
be checked easily that X, Y and T are left-invariant vector fields on H. Indeed,
direct calculations give for all (z,t) and (w, s) in H,

(X (Lw,s)/)(z1) = (Xf)(w, ) - (2,1))

1 1
= (61f+ 2y83f> (x—I—u,y—l—v, s—|—t—|—2(yu—xv)>

= (et u g o s+ (gu— o)
= g \TFwyFvs o (yu — v

of

1
+ (v+y)8t

1
5 <x+u,y+v,s+t+2(yum})>.
On the other hand,

(Lw,s) (X)) (2, 1) = (X)((w,5) - (2,1))

_9f r4u,y+uv, s+t+ 1( U — V)
= or ' Y ) 9 Yy
1 af
+ 2(1} +v) Jy
Thus, X (L(w,s)f) = Lw,s) (X f) for all (w, s) € H. Similarly, we have
YL(w,s) = L(w,s)Y and TL(w,s) = L(w,s)T

for all (w, s) in H.

In addition, we can show that X, Y and T are linearly independent. Indeed,
we set (aX + bY + cT)f = 0 for all C* function f on R?, where a, b and c are
real numbers. We need to show that

1
<x+u,y+v,s+t+2(yum})>.

a=b=c=0.
Let f be the function on R? defined by
flx,y,2) ==, (z,y,2)€ R
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Then

0 0 0
aaxf(x,y,t)—l-bayf(x,y,t)+catf(x,y,t) =0=a=0.

Similarly, by setting f(z,y,t) =y and f(z,y,t) = ¢, we get b =0 and ¢ = 0, as
desired.

Now, let h be the Lie algebra of all left-invariant vector fields on H. Then
X, Y and T form a basis for h. In fact, h is the tangent space of H at the origin,
which is a three-dimensional vector space.

Let £ = —(X? +Y?). Then we call £ the sub-Laplacian on the Heisenberg
group H and it can be expressed as

r—_ 82+82 71(x2+2)82+x37 0\ 0
~ o2 Ta2) 4 VDo "\ "oy Yoz ) ot
Now, by replacing (f;)t by —it, where 7 € R such that 7 # 0, we obtain a family of
twisted Laplacians L, with respect to 7 on R2, which can be written as

0? 0? 1 0 0
L, —=— 2 N2 _ _
<8x2+8y2)+4(x + )T z(may y8x>T
In the case when 7 = 1, we get back our ordinary twisted Laplacian L;. In fact, the

twisted Laplacian L, is a perturbation of the Hermite operator by —i N7, where

N is the rotation given by
0 0

oy You

Twisted Laplacians and their variants have been studied extensively in [2, 4,
6,7, 8,9, 14, 16].

The connections between £ and L. can be explained by the following theo-

rem. Before introducing the theorem, we give the definition of f7. Let f € S(H).
Then we define f™ by

N==x

o0

fe=en 2 [ ey sec

—00
which is the inverse Fourier transform of f with respect to ¢, at each z, evaluated
at 7.

Theorem 2.1. Let g € S(H). Then for any 7 € R such that T # 0,
(Lg)" (2) = (Lrg") (2), z€C.

Proof. We only need to look at (‘?f‘t7 )7, and compute

(21)~1/2 / et gﬁ (2,t) dt

for all z in C. Integrating by parts, we get for all z in C,

o0

(2m)~1/2 [ o:o ei”fg (z,t) = (2m)"1/2 < / iTe“Tg(z,t)dt)

— 00

= —irg’ (2). O
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The theorem above justifies our replacement of gt in the sub-Laplacian by
—i7T to get the twisted Laplacian at 7. Now, we give some properties of the oper-
ators £ and L.

Theorem 2.2. Let 7 € R be such that 7 # 0. Then L. is elliptic on R2.
Theorem 2.3. L is nowhere elliptic on R>.

Before we give the proofs of the above two theorems, we give a discussion on
the ellipticity of operators. Let

P(x,D) = Z aq(z)D?,

la|<m
where aq € C*°(R"), D* = D" D3? --- D¢~ with D; = *ia?cjv and the symbol of
P(z, D) is given by ‘

P(z,§) = > aa(x)®, z,6€R"

|a|<m

Definition 2.4. Let P,,(z,£) be the principal symbol of an operator of order m,
ie.,

Pm(x,f) = Z aa(x)ﬁa, .’L‘,f € R".

|a]=m

Let o € R™. Then P(z, D) is elliptic at the point x¢ if
Py(z9,D) =0, e R" = ¢ =0.
If P(z, D) is elliptic at every point in R™, it is said to be elliptic everywhere on R™.
An operator P(xz, D) is hypoelliptic on R™ if
uwe D'(R"), P(x,D)u e C®R") = ue C®R"),

where D'(R™) represents the space of distributions of Laurent Schwartz.
We now give the proofs of the above two theorems.

Proof of Theorem 2.2. Since

2 2\ 1,, o . (0 0
LT<8x2+8y2)4(x )T Z(xayyax)T’

the principal part of L, is — (63;2 + 5);2), whose symbol is |£[? € R?, which
vanishes only at £ = 0, for all =,y € R. Thus, by the previous definition, L.
is elliptic on R? for all 7 such that 7 # 0. O
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Proof of Theorem 2.3. Replacing aamv aay and gt by i&, ic and i\ respectively, the

symbol of L is given by

1\’ 1\’
Py(z,y,t,&,0,\) = — (if — Qyi)\) — <i0 + Qxi)\)
1\ 1\’
= <§— Qy)\> + (a—l— 29@)\> .

1 1
Py(z,y,t,€,0,A) =0 & E:Qy)\ and a:fzx)\.

Observe that

Case 1: x =y = 0. Then
P2(xay7ta€707>‘) =0=¢=0=0.
However, A can take any real value.

Case 2: x or y is different from 0. Then P, vanishes along a line in the £\-plane
or oA-plane. Hence by our definition, £ is not elliptic anywhere in R3. O

To end this section, we apply a simplified version of Hérmander’s theorem to
show the hypoellipticity of the sub-Laplacian on H.

Theorem 2.5 (Hormander). Suppose X, forj=1,2,..., N, are vector fields and

their commutators up to a certain order span its Lie algebra. Then Z;\/:l Xj2 18
hypoelliptic.

We have shown that X, ¥ and [X,Y] span the Lie algebra h of H. Thus, by
Hormander’s theorem [11], £ is hypoelliptic on R®.

3. Convolutions on the Heisenberg group and twisted convolutions

Let f and g be measurable functions on H. Then we define the convolution f xy g
of f and g on H by

(MMW)ﬁ%Nw%w@me%@ﬁﬂ,

provided that the integral exists. For a parameter A € R, the twisted convolution
f*xgof fand g is given by

(MwWﬁ=Lﬂ%WMwwWMm,wc

The theorem below gives the connection between convolutions on H and twisted
convolutions. It can be found in [20].

Theorem 3.1. Let f,g € L*(H). Then
(f*e 9)7 = 2m) 2 [T xr 10 g7
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Proof. We have

o0

(2m)Y2LHS = / e (f xmg)(z,t)dt

—00

/O:O it (/Z[Cf((z,t).(w, s))g(w,s)dwds) dt
/O:Oem (/O:O/Cf<zw,ts i[z,w]) g(w,s)dwds> dt.

Let ¢’ =t — }[z,w]. Then

LHS = (277)_1/2/ et THiT iz ] </ / f(z—w,t' —s)g(w,s) dw ds) dt’.
—00 —oo JC
On the other hand,

RHS = (27r)1/2/ f7(z —w)g™ (w)e' 1% du
C
= (277)1/2(277)_1/2/ (/ flz—w, = s)g(w, s)ds> (r)e s =) du
C —00
= (27r)*1/2/ eitrriilzvl / / f(z—w,t—s)g(w,s)dwdsdt.
—o0 —oo0 JC

Thus, LHS = RHS. O

By Theorems 2.1 and 3.1, we can relate the heat kernel of the sub-Laplacian
to the heat kernels of the twisted Laplacians as given in the following theorem.

Theorem 3.2. Let K, be as given in Section 1. Then for suitable functions f on H,

e Pl fT = (e PEf)T = (f #u K,)T = (2m) 2T, )0 K.

4. Fourier—Wigner transforms of Hermite functions

Let f and g be functions in the Schwartz space S(R) on R. Then

Vel 9)awn) = I 2em) 2 [ ey (g4 8) g (v

—00

for all ¢,p € R.
For 7 € R such that 7 # 0, and for k£ = 0,1,2,..., we define e}, by

er(z) = 7| er(VIrle), w€R,

where ey, is the Hermite function of degree k given by

1

e(w) = (zkk!\/w)l/zefﬁ/sz(x),
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for all z in R, and Hy, is the Hermite polynomial of degree k given by

H _( 1 k_x? d k( —z?

o) = (ke () e

for all z in R.

Theorem 4.1. The set {ej :j, k =0,1,2,...} is an orthonormal basis for L?(R?).

The proof of this theorem will be given in the next section where the Weyl
transforms are introduced.
For j,k=0,1,2,..., we define €} by

e;'—,k = VT(e;'—a 62)

We now establish the connection of {e},C 2 g,k =0,1,2,...} with {e;x : 4,k =
0,1,2,...}, which is studied in [18].

Theorem 4.2. For 7 € R such that 7 # 0, and for j,k=0,1,2,...,

el (g, p) = 71" ek (\/| @ \/|T|P> ¢,p ER.

Proof. By the Fourier—Wigner transform and a change of variables,
e;,k(Q7p) =V (6;7 87@—) (Q7p)
oo
_ 1/2 —-1/2 TeT i p
=i 2em 2 [ e (ye ) e (= )y
~lrl(zn) 2 [~ emre; (Viel (u+ ) ) ex (Virl (v 5)) o
- |T|1/2(27T)71/2/ e\/\ \e (er \/|T|) ex (y _ 1’23\/|T|) dy
= |T|1/26,7k < \/|7.|p>
VR

for all 7 € R with 7 # 0, and ¢,p € R. O
Theorem 4.3. {6;,1@ : 4,k =0,1,2,...} forms an orthonormal basis for L?(R?).

Proof. We first show orthogonality. For all nonnegative integers «, 8, u and v,

(e;,ﬁve;,u):|T|1/2|T|1/2/ea,ﬁ< Jir lmx/lfl) € ( e |7p\/|7|> dq dp.

Let ¢’ = q\/TlT| and p’ = p\/|T|. Then

(ed.5) €nw) = /Cea,a(rJ’,p')eu,u(Q’,p’) dq dp’ = (ea,p, )
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Since {ejx : j,k = 0,1,2,...} is an orthonormal set in L*(R?), so does {e :
Jjok = 0,1,2,...}. Secondly, we show that {e;-’k i j,k = 0,1,2,...} spans the
whole space. Let f € L?(C) be such that (f, eix) =0 forall j,k=0,1,2,.... We
need to show f(g,p) = 0 for almost all ¢,p € R. But

/Cf(qm)\/lTlej,k- (q J 7p\/|7|> dgdp =0

for all j,k=0,1,2,.... By letting ¢’ = q\/TITI’ and p’ = p4/|7], the above integral
becomes
/ f(Cd, Dp)eji(d',p') dq’ dp’ =0
forall j,k=0,1,2,..., \;ghere
c- VIl p_ 1
VIl

The preceding equation on the vanishing of the integral holds only when f(¢q,p) =0
for all most all ¢, p € R. So, {e;’k : j,k =0,1,2,...} is indeed an orthonormal
basis for L?(C). O

5. Wigner transforms and Weyl transforms

Now we have another look at the Fourier—Wigner transform. Let ¢, p € R™, and
let f be a measurable function on R™. We define p(q,p)f on R™ by

oy
(p(a,p)f) (@) = 1" 2" f(x +p), x€R™

Then p(q,p) : L*(R™) — L?(R") is a unitary operator. Let f and g be in S(R™).

Then we define the Fourier—Wigner transform V(f, g) of f and g by

V(f,9)(a.p) = (2m) " *(p(¢,p)f.9), ¢, pER",

where (, ) is the inner product in L?(R").
An equivalent definition of the Fourier—Wigner transform is given in the
following theorem, which can be found in [18].

Theorem 5.1. Let f, g, q and p be the same as above. Then

V(f,9)(q.p) = (2m)"/? /R ey f (y + Z) g (y - g)dy-

Proof. We have

V(f.9)(@.p) = (2m) "> / e 10D f (2 4 plg(a)da

n

~nre [ (o D)o (o D)

where a change of variable x = y — ¥ is used. O
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Let f and g be in S(R™). Then the Wigner transform W(f, g) of f and g is
given by
W(f,9)=V(f9)".
Lemma 5.2. For all f and g in L*(R"),

W(f, g)(x, &) = (2m)" /2 /n e TPy (x + g) g (x — g)dp, z, & € R"™.

Proof. By our definition of the Wigner transform, we have for all  and ¢ in R™,

W(t.g)(w.&)=(my o2 [ [ i ( | e (+h)a(a- g)dy) dadp
— (2m) /2 / ] / ) < /}R ) eiq'(zy)dq) <o f (y+1)g(y—" ) dydp
= (27f)’”/ne’i§"’ (/n(?(xy)f (y+ g)g (xf g)dy> dp
e (e Dule- D

where we have used the fact that
(202 [0 g = 3y - 0) = 3o — ),
and
[ 8= niwdy = 1)
where ¢ is the Dirac delta. O

An important theorem involving Wigner transforms is the Moyal identity.

Theorem 5.3 (Moyal Identity). For all functions fi, f2,g1 and gz in L?(R"),
(W(f1,91), W(f2,92)) = (f1, f2)(91, g2)-

Proof. By Plancherel’s theorem, we have

( flagl f2392)) ( (flagl) ) (f2392) )

[ [ (e D)D) (o4 D) 0 (o D) avap

N / n f1(w)g1(v) f2(u)g2(v) dudv
= (f17f2)(g1,g2)7

where we have used the change of variables u = x4+ % and v =z — ©. O

Definition 5.4. Let 0 € L?(R"™ x R™). Then for all functions f in L?(R™), the Weyl
transform W, f of f with symbol o is given by

Wat.g) = a2 [ [ ol WL dods, g ).
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In fact, by the adjoint formula, we have

Wat.)=Cry " [ [ alanV(f.9) @p)dadp
= (27T)‘”/2/n/Tﬁ(q,p)V(f,g)(q,p) dq dp
= (27T)_”/n / o(q,p)(p(q,p)f, g)dqdp,

and hence
Wor = x| [ otaplansdadp

We also need a simple fact on the Wigner transform.
Theorem 5.5. Let f and g be in L2(R™). Then

Wi(g, f) =W(f,9)

Now, we introduce a theorem that plays a crucial role in the construction
of the heat kernels of the twisted Laplacians in the next section. It is a result of
Grossmann, Loupias and Stein in [10].

Theorem 5.6. Let o and 7 be in L?*(R™ x R™). Then we have
WoWr =W, where @ = (2m) "6 %14 7.
Proof. Let z = (q,p) € C. Then by the previous theorem, we have

ety = o) [ ao) ([ oo 0@ ) ar
Then for all z in R”,

(Wo (W-1))(z) = (27T)_”/ 5 (2)(p(2)Wr f)(x) dz.

n

Since

(p(2)Wr f)(x) = 6”‘”5”"’(2”)_"/ 7(w)(p(w) f)(z + p) dw

C

=0 [ w)pe)pw) ) (o) du
=0 [ w)lele + w)ed ) @) do,

where we have used N
p(2)p(w) = plz +w)e 1],
We have for all z in R™,

o)) = o> [ o) ([ #w)p + wet @ au ) a
—en [ Q@) [ 5(¢- i)l Tlawds,
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where we have introduced a change of variable z = { — w. Since [w, w] = 0, we let

b(0) = (2m) / 6(C —wyt(w)et vl qu, ¢ e,

to obtain & = (27) "6 *1/4 7. O
Now, we give the proof of Theorem 4.1 mentioned in the last section.

Proof of Theorem 4.1. By the Moyal identity for the Fourier—Wigner transform
and the Plancherel theorem, we get for all nonnegative integers ji, jo, k1 and ko,

(ej17k‘1 ) ej2,k2) = (V(ej1 ) €ky )7 V(ejzn ek"z))
= (ej1r€50)(€ry s €r,) =0
unless j1 = jo and k1 = ko; and if j; = jo and ky = ko, we have
(ej17k17ej2;k2) =1

So, the set {ej : j, k =0,1,2,...} is an orthonormal set in L?(R?). Secondly, we
show that if f € L?(R?) is such that (f,ejx) =0, for j, k =0,1,2,..., then f =0
almost everywhere on R%. We let g € L?(R?) be such that § = f. Then, by the
previous step, we have

(Wyeen) = (2m) /2 [ N / " g W (e ex) (2,€) dr d
=@ [ N / @ p)V (s ex)(a.p) dadp

= (2ﬂ)’1/2[ [ f(a,p)ejr(q,p)dgdp =0

for j, k=0,1,2,.... Then
Wee; =0, j=0,1,2,....

Now, let h € L?(R) and ¢ be any positive number. Then we can find a finite linear
combination of the e;’s such that

HZajkejA — hH < €.

IWghll < [ Wy (=3 asen )| +{Wo (X asnes )| < cliwall.
where ||[W, ||, is the norm of W,. Since ¢ is arbitrary, it follows that
Wyh =0, heL*R).
But then for all A in L?(R),

So,

(Wgh)(z) = 2m)~" [ 4(q,p)(p(q,p)h)(x) dq dp

=(2n) ! g(q,p)eiq’”+il’iqph(x +p)dqdp=0, zeR.

o~
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Let p’ = x + p. Then

(Wyh)(z) = (27) 7! / h(p') (/ g(q,p’x)ez‘q“%"q@’—’”dq) dp' =0, z €R.

— 00 — 00

Therefore for almost all z and p’ in R,
oo
(27T)_1/2 / g(%p/ _ :L,)eiqac—&-;iq(p/_x)dq —=0.
—o0
So, by the Fourier inversion formula, we have for almost all x and p’ in R,

1 1
(Fag) (219' + Qx,p' - :v) =0,

where F5 denotes the Fourier transform with respect to the second variable. So,
g = 0 and the proof is complete. O

6. Heat kernels of twisted Laplacians and the sub-Laplacian on H

As our aim is to first compute the heat kernel of the twisted Laplacian L., we
need Theorem 5.6 that enables us to do so.

Theorem 6.1. For all nonnegative integers o, B, i and v,

€as *1/1 €uw = (21)/%05 e v,

S { L, B=p
P00 B#
Proof. Let ¢, 1 € S. Then by the definition of the Weyl transform and the Moyal
identity,

where

(W 1)) = (2) /2 /C (W (. ) (2)dz

— (2n)71/2 /C W ep, ea)(2)W (9, 1) (2)dz

= (2m) 72 (W (e, 0), W (e, €a))
= (2m) "% (0, €8) (¥, €a)
= (2m) 7% (p, e8)(€as ).
Hence for all ¢ in S,
We o = (2m)12(¢, e)ea
and therefore
(2m) 2 (W 0, €8)ea
(27T)_1((p7 eu)(e/u eﬂ)ea
@2m) P Ws, e

w,BEa,v "

Wi— Wemgo

€a,B
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By the Weyl calculus in the Theorem 5.6, we have
WesWe— =W,

€a,B Cuv

where
= (2m)""eas *1/4 Epp-

Since

W= ( ) 1/2 6 ﬂea vy
we have

&= (21) Y28, pean.
So,

6/J/7ﬂea,y = (277)_1/2€a,[3 *_1/4 €pu- 0

The preceding theorem gives us the following more general theorem.

Theorem 6.2. For 7 € R be such that T # 0. Then for all nonnegative integers
Oé’ /83 /LL and V?

eg,ﬂ *r /4 e;,y - (277)1/2|T| 1/265 Mea v
where 03, is the Kronecker delta.

Proof. We have

(€T ot )(2) = [ elpl = w)e, (el T

=i ea,[f(m 2).v/Il(p s)

€u,v T T etilEwl go d
p (\/m(q z),V/|7l(p - 5)) £.

Let ¢’ = \/T @ and p’ = \/|7|¢. Then for all g and p in R,

.
Tk - _ _/ -
(eoz,ﬁ T/4 eﬂ,y)(Q7p) /]Rz €a,p (\/|T|q q, \/ITlp p)

Vil

. d'p— \/‘ ‘pq

X eu,y(q',p,) ( )dq’ dp’

= (€a7ﬁ *1/46 v < 7])\/ITI)
VI
- (27r)1/2|7|1/255,“ea,y ( \/| |,p\/|7|> O

Theorem 6.3. Let 7 € R such that 7 # 0. Then for j,k=0,1,2,...,
Lref = (2k + 1)|7]e] ;-
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In order to prove the theorem, we need a lemma.
Lemma 6.4. Let x = q\/T| | and y = p/|7|. Then

L(Tq,p) - |T|L(x7y).
Proof. We have

o 90 T a 0 ]
aq*ax\/m’ dp Oy '
So,
0? 02 02 0?
2= 527l 2 = 52I7
Jdq Ox dp dy
Therefore

1 0 0
(a.p) — _ 2 2\2 _ _
L; A+4(q +p°)T Z(qap paq)T

— 7l il o) =il (o) <0
= |7|L@&Y), O

Proof of Theorem 6.3. The case when 7 = 1 is proved in [18]. Now, by Theorem
4.2 and Lemma 6.4, we get

-
(Lre]1)(a.p) = Lr|7]"2eji (q Sl 7P\/|T|>

= |T|L|T|1/2€j,k($, Y)
= |7l ejn (e, y)
-
= (2k + V)|7l|7]" 2 (q Sl \/ITI)
= (2k +1)|7l€] 1. (¢, p)
for all ¢ and p in R. O

By Theorem 6.3 and the spectral theorem, for all functions f in L?(C), we
have

oo oo

—pL.p _ _

e’ f—zze lTl(%H)p(f’@;,k)B;,k’ p>0,
k=0 j=0

and for p > 0, we have

oo oo
—pL, ¢ —(2k+1
TPl f = e BRI T(f 6T e i

k=0 =0
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To simplify the problem, we first compute the term Z;io( fi€]1.)el - Since for
k=0,1,2,...

o0
E f7 ]z Jl*r/4€kk

Mg

f >k‘r/4 e;,k

<.
Il
<
o~
Il
<}

.F“ﬁg
hE

o
Il
=3
—~
Il
=

(f, 6;,1)(277)1/2|T|71/25l,k~€;,k

o0
= (2m)'/2|7|71/2 Z(fa € k)€ k

j=0
We have for £k =0,1,2,...,
oo
Do (frefp)ele = @m) ATV R f xg paef
j=0
Therefore
P f = (2m) R S GG v f 0.

k=0

Now, in order to find an explicit formula for the heat kernel of the twisted
Laplacians, we need Mehler’s formula, which can be found in the book [18].

Theorem 6.5 (Mehler’s formula). For all x and y € R and all w € C with |w| < 1,

o
h- h . 1+w 2 2 w
Z k(;]zkl;?(y) wk _ (1 —w ) 1/26 ;1 v @ty )+xylfw2

)

k=0
where the series is uniformly and absolutely convergent on the open disk {w € C :
|lw| < 1}.

Finally, by applying Theorem 4.2 and Mehler’s formula, we are able to get
the formula for our e=#L~ f. Indeed, for all z = (¢,p) € C and p > 0,

(e ?" f)(g,p) = 2m) 2|2y em GREDITIoEL (g, p)
k=0
o
:(277)—1/2|T|1/26—|T|/)Ze—2k‘|7’|pek,k< \/ 7p\/|7-|>
k=0 7]
1 _ 21 1+e—2‘ Tle
_ —1/2|1/2 —|7|p (| 1 P
(2m) |7|*/“e 1 e=2lrlo
_ 1 T( | ~ 1jr||z[coth(rp)
47 sinh(7p

Hence the heat kernel s, for p > 0, of L, is given by

Kl (z,w) = ! ’
"7 4 sinh(7p)

_ _ ;T
. e HEIE w|? coth(Tp)624[z,w]’ z,w € C.
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By Theorem 3.2, the heat kernel of £ which we denote by K, for p > 0
satisfies
T _ —-1/271.17
K7 =(2m)~'?k], T eR\{0}.

where
1 T

_ —17||z—w|?coth(rp)
= e 4 z€C.
47 sinh(7p) ’

ky(2)

By taking the Fourier transform, we have the following theorem that gives
the formula for the heat kernel K,, p > 0, of the sub-Laplacian £ on H.

Theorem 6.6. For p >0, and 7 € R such that 7 # 0,
> T

1 . 1 2
K 1) = —itT — a7zl coth(Tp)d t THL
P(Za ) {72 / € sinh(rp)e 4 T, (Za ) €

— 00

7. The Green functions for the twisted Laplacians and
the sub-Laplacian on H

The Green function G, of L, is the kernel of the integral operator representing
L1, which can be obtained by integrating the heat kernel of the twisted Laplacian
L, from 0 to oo with respect to time p. Then we get

1 T 2 i
_ 7 ||z—w|?coth(Tp) doe™ 7[z,w]
G (z,w) dn (/0 sinh(rp)e 1 > pe 4

1/ [ . 1 » |
_ —i|7llz—w| Cirle
_4”(/0 (w2 —1)1/2¢ " e “dv)e i rlzw]
1 1 .
= 4KO <4|T||Z — w|2) 6—4T[z,w],

where the change of variable v = coth(p7) is used, and Kj is the modified Bessel
function of order 0 given by

oo
Ko(x) :/ e meshogs x> 0.
0

Similarly, the Green function G of the sub-Laplacian £ is the kernel of the
integral operator representing £7'. And it can be computed by integrating the
heat kernel of £ with respect to time p from 0 to co. More explicitly,

L[ pmitr T —1izPcotn(rp)
— T zZ|7co T d d
G(z,w) 8772/0 /,006 sinh(Tp)e ’ Tap

1 e ; e T 1 2
6—zt7' e—4|7'||z| coth(7p) dp dr
871'2 smh(Tp)

/ / (a_i“”z_“"z“2 dvdr
87r
—tT 2 tT — | 2coshd
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For all z in C and ¢ in R,

9] 0 oo
L 1 2 . 1 2 L 1 2
/ e e 271 1z]"cosh § dr / e 7,t're4‘r|z| cosh5d7+/ e e 17T|z|*cosh é dr
—o0 —o0 0

oo

87—(}1|z|2003h6—it) 0 e—T(i|Z|2COSh5+it)

11z[2coshd — it 1|z[2coshé + it

B 51z|%cosh §
~ (|2]*/16)cosh?s + 2
So, for all z in C and ¢ in R,

e 0 0 1 2
/ / 67"”67}1|T||Z|2005h6d7 ds = / 2|Z| COS};(S ds
0 J-oo o (]z]*/16)cosh®d + 2

_ Els /‘X’ cosh § &5
2 Jo (|2|*/16)cosh?s + t2

8 [T cosh §

)2 /0 cosh?d + (162/|z[4)

8 [ 1 p
B |z|2/o P2+ 1+ (16¢2/[2[4) 7
B 4 1

22 /14 (1662 |2]%)

B 47

Vet 4162

Hence
1 1 1

Gz t) = L, 1o =
’ 872 /14 (1612/[2]%) 27 \/|z|* + 16¢2

for all (z,t) in H.
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Metaplectic Equivalence of
the Hierarchical Twisted Laplacian

Shahla Molahajloo, Luigi Rodino and M.W. Wong

Abstract. We use a metaplectic operator to prove that the hierarchical twisted
Laplacian L,, is unitarily equivalent to the tensor product of the one-dimen-
sional Hermite operator and the identity operator on L2(Rm+1), and we
use this unitary equivalence to show that L,, is globally hypoelliptic in the
Schwartz space and in the Gelfand—Shilov spaces.
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1. Introduction
For all z € R and all v = (v1,v2,...,0m) € R™, let

z =z +is(v),

where s(v) = v1 +v2+- - -+ vp,. Then we let 3‘92 and (% be linear partial differential

operators on R™+! defined by
0 0 0 i 1
= —i 1—
0z Oz ZZ vy Ty ( m> s,

and

Then the hierarchical twisted Laplacian L,, is defined on R™*! by

Lo — %(zz +22),

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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where
0 1 _ 0 1

Z: z Z: - .
o, T o7 and 0z 2°

By an easy calculation, we see that L., is the linear partial differential operator
on R™*! given by

m

L, —— Z et Z
" 89@2 811]8111 Ty m?2 m 890 < Ov;

In the case when m = 1, L1 is a linear partial differential operator on R? and has
the form

L, = A+4(:v + 1) Z(Ulax x@vl ,

which is the ordinary twisted Laplacian and we denote it by L. It is a perturbation
of the Hermite operator by a rotation operator.

The twisted Laplacian L comes up as the quantum-mechanical Hamiltonian of
the motion of an electron in the infinite two-dimensional plane under the influence
of a constant magnetic field perpendicular to the plane. The eigenvalues of the
system are known as Landau levels and the corresponding eigenfunctions are the
Wigner transforms of Hermite functions. The twisted Laplacian has been studied
extensively in, e.g., [4, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18].

The twisted Laplacian L can in fact be obtained from the sub-Laplacian on
the one-dimensional Heisenberg group C x R by taking the Fourier transform with
respect to the center, and is hence a linear partial differential operator on RZ2.
Higher-dimensional twisted Laplacians on R?” can be obtained similarly using the
n-dimensional Heisenberg group C™ x R. Therefore the twisted Laplacian is defined
on even-dimensional Euclidean spaces. The hierarchical twisted Laplacian L,, on
R™*! can be seen as a twisted Laplacian on R”, where the dimension n can now
be even or odd with n > 1.

The ordinary twisted Laplacian is well known to be elliptic, but not globally
elliptic in the sense of Shubin defined in Section 25 of [10]. By explicit formulas
of the heat kernel and the Green function of L, it is shown in [18] by Wong that
L is globally hypoelliptic in the Schwartz space S(R?) and in [4] by Dasgupta
and Wong that L is globally hypoelliptic in Gelfand—Shilov spaces. In [7], the
global hypoellipticity of the twisted Laplacian is recaptured using the fact that L
is unitarily equivalent to a tensor product of the ordinary Hermite operator and
the identity operator.

The hierarchical twisted Laplacian L,, can be written in the form

2

2 m
1 1
L, = <D$ — 2ms(v)> + E D, + 5] - (1.1)
=1
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Its symbol is given by
2

1 2 n 1
R () I PSRRI
j=1

for all x,£ € R and v,n € R™. Thus, L., is not globally elliptic, in the sense that
we cannot find positive constants C' and R such that

om(@, v 6m) > C 1+ + 2+ vf+ ) 0

j=1 j=1

whenever
P AHE Y v+ >R
j=1 j=1

In fact, it is not even elliptic.

The aim of this paper is to establish a unitary equivalence between the hi-
erarchical twisted Laplacian L,, and the tensor product of the one-dimensional
Hermite operator with the identity operator on R™. An immediate application of
this unitary equivalence to the global hypoellipticity of the hierarchical twisted
Laplacian is given.

In Section 2, we recall some of the definitions and results of the hierarchical
twisted Laplacian from [9] that we need in this paper. In Section 3, we prove that
the hierarchical twisted Laplacian L,, is unitarily equivalent to the tensor product
of the one-dimensional Hermite operator with the identity on R™. Then in Section
4, we prove the global hypoellipticity of L,, using the global hypoellipticity of the
Hermite operator.

2. Hierarchical Wigner transforms

Let f € S(R™). Then for all v = (v1,v2,...,0y) € R™ and w € R, we define the
function p(w,v)f on R by

(p(w,v)f)(@) = € *Fam M fz o), z€R,
where
r@v=(x+v,r+v2,...,T+ Vn).

Now, we can define the hierarchical Fourier—Wigner transform V (f, g) of two func-
tions f € S(R™) and g € S(R) by

V(f,9)(w,v) = (2m) " (p(w, v)f, 9) 12(w)

for all v = (v1,v2,...,0,) in R™ and w in R.

The following integral representation of hierarchical Fourier—Wigner trans-
forms can be derived from the corresponding integral representation of multilinear
Fourier—-Wigner transforms in [3] using a density argument with tensor products.



80 S. Molahajloo, L. Rodino and M.W. Wong

Proposition 2.1. Let f € S(R™) and let g € S(R). Then

Vitaw) = @0 [ eror (i so)ov)a (v, o) dy

for allw in R and all v = (v1,v2,...,0m) in R™.
The hierarchical Wigner transform W(f,g) of f in S(R™) and ¢ in S(R) is
defined by
W(f.9)=V(f,9)",
where V (f,g)", also denoted by FV(f, g), is the Fourier transform of V(f,g).
For k£ =0,1,2,..., the Hermite function ej of order k is the function on R
defined by

1
e = grpr /2

for all  in R, where Hy, is the Hermite polynomial of degree k given by

for all z in R.
For all nonnegative integers ji,j2,...,Jm and k, we define the function
€y ik o0 R by

€i1rimk = V(ej, @+ ®ej,,ex).

So,

s 1 1
Chintl6et) = (1) [ (0= et (3= g5 )
for all ¢ € R and v = (v, v2,...,0y,) € R™. It is obvious that when m = 1, we get

back the classical Fourier—Wigner transform of Hermite functions.

Proposition 2.2. {e;, .k Jji,---,Jm,k=0,1,2,...} is an orthonormal basis
for L2(R™*1).

For m = 1, the results hitherto described can be found in the book [15] by
Wong.

The following theorem gives the complete spectrum of the hierarchical twisted
Laplacian. For a proof, see [9].

Theorem 2.3. For all nonnegative integers j1,ja, ..., jm and k,

Liejy .. gk = 2k +1)ej, jom k-
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3. A unitary equivalence
We define the linear operator T': L2(R™*1) — L2(R™*!) by
1 1 1

(Tf)(y7 U) =f (y - 2m5(v)7 y+ov— 2m5(v)7 Yt Uy — 2m5(v)>
for all f € L2(R™*1), v = (v1,v2,...,v,) € R™ and y € R. We call T the twisting
operator on L?(R™*!). The following proposition is Proposition 3.2 in [9].
Proposition 3.1. 7 : L2(R™+1) — L2(R™H1) is a unitary operator and

1 1
02 = (g 50+ s = s =)
for all f € L>(R™Y), 2 = (21, 22,...,2m) € R™ and y € R.
Let F' € L?(R™*1). Then we define JF on R™*! by

(JF)(w,v) = (2m) "™/ /}R e (TF)(y,v) dy 3.1)

for all w € R and v € R™.
Theorem 3.2. J : L2(R™*1) — L2(R™TY) is a bijection and
17« = (2m) /2,

where || ||« in the norm in the C*-algebra of all bounded linear operators on
L2(R™TY). Furthermore, let G € L>(R™*1). Then

(776 (y,2) = (2m) (" V/2 / M OFIG(t, 21—y, 2 — ) d
R

for ally € R and z € R™.

Proof. Let F € L?(R™*1). Then by Proposition 3.1, TF € L?>(R™*+1). It is easy
to see that
(JF)w,0) = (2m) /2 (F7ATF) (w,0)

for almost all w € R and v € R™, where F; 'T'F is the inverse Fourier transform
of TF with respect to the first variable. Therefore JF € L2(R™*1). Since F; and
T are unitary operators, it follows that

[J]s = (2m)m*D/2 and J= = (2m)m D2 E
Therefore for all G € L?(R™*1), we get by Proposition 3.1
(J7'F)(y,2) = (27r)(m71)/2/ e MamsGTNG(t 2y —y, ..z —y)dt. O
R
The one-dimensional Hermite operator H on L?(R) is given by

d2
T +22, zeR.

Theorem 3.3. Let Hy = H ® I, where I is the identity operator on R™. Then
JH{J ' =Ly,

H=
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Proof. Since {€j, j,. ... jm.k * J1,J2, ---» jm,k} forms an orthonormal basis for
L2(R™*1), it follows from Theorem 2.3 that it is enough to show that
(JH1T e g = (2K + 1), ke
By the definition of J, we get for all nonnegative integers j1, jo, - - ., jm, k,

J(er ©ejy ®ej, @ €5,,) = €y ke (32)
On the other hand, for £k =0,1,2, ...,

Hej, = (2k 4+ 1)ey.

Therefore
Hi(ey®ej, ®ej, @ ®ej,) =2k +lex®ej, @ej, @ ®@ej,.  (3.3)
Hence by (3.2) and (3.3), we get for all nonnegative integers j1, jo, . . ., jm, &,

JH I Vs e = (2K + D)ej, g k- O

Remark 3.4. A more general class of operators identifying L,, with H; can be
found by means of linear symplectic transformations and related metaplectic op-
erators on pages 157-159 in the book [8] by Hoérmander. To be more specific,
in R2(m+1) regarded as a symplectic vector space with variables (z,v;&,1m), we
can find a linear symplectic mapping X changing the coordinates (z,v;£,n) into
(y, z;7, ) such that

1 1
y:£72ms(v)a 7:8(77)+2x3
1
. =0 — =1,2,...
Zj Uj +y Uj +€ 2m8(v)7 J ) &y , M,
and
= — i =1,2,...,m.
C] 1 me> J y 4y ,m
That this is possible is due to the fact that
{y,7}=1

In fact, X can be so defined as to preserve the symplectic form and we can apply
Theorem 18.5.9 in [8] to the effect that there is a unitary operator J, uniquely
determined up to a constant factor with modulus 1, such that

1 e 1
-1 -1
J (Dm - 2ms(v)> J=y and J (]ZIDUJ. + 2x>J = D,.
Hence by (1.1),
J ' LyJ = Dy +y* = Hi.

The unitary operator J in Theorems 3.2 and 3.4, which is distinguished by its
connections with the Wigner theory, is a particular case of this general class of
metaplectic operators. The detailed definition of the mapping X in this particular
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case can be written down easily from the definition of J in (3.1), which is the
composition of a linear change of coordinates and a Fourier conjugation.

Remark 3.5. In fact, by conjugation with a suitable metaplectic operator, we can
reduce to a simple canonical form any operator with quadratic symbol and hence
compute the spectrum. See, for example, [1] for applications to the hypoellipticity
of pseudo-differential operators with double characteristics.

4. Global hypoellipticity

In order to prove the global hypoellipticity of the hierarchical twisted Laplacian,
we use the well-known fact about the global hypoellipticity of the Hermite operator
which can be found in Shubin’s book [10]. See also [7].

Theorem 4.1. L,, is globally hypoelliptic in the sense that
ue S R™Y, Lyue SR™) = ue S(R™H).
Proof. Let u € S'(R™*1) be such that L,,u € S(R™*!). We need to show that

u € S(R™HL). It is easy to see that J : S(R™H) — S(R™*H1) is a bijection.
Therefore J ! L,u € S(R™*1). But by Theorem 3.3,

HiJ 'u=J  Liu.
Hence H;J 'u € S(R™*™!). Since H; is globally hypoelliptic, it follows that

Jlu € S(R™*1). Again using the fact that J~! maps S(R™*!) onto S(R™*1),
we get u € S(R™T1). O

Remark 4.2. Using the global hypoellipticity in [2] of the Hermite operator on the
Gelfand-Shilov spaces S#(R™*1), where y and v are nonnegative real numbers
such that p > ; and v > ;, the same proof of Theorem 4.1 can be used to prove the
global hypoellipticity of L, on Gelfand-Shilov spaces S/ (R™*1) in the sense that

= S/(R'rn-',-l)7 Lmu c Sﬁ(Rm—&-l) =qyuc Sﬁ(R”H—l)

because J : SK(R™T — SK(R™T), 1 > 1 is a bijection.
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The Heat Kernel and Green Function
of a Sub-Laplacian on
the Hierarchical Heisenberg Group
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Abstract. We give the hierarchical Heisenberg group underpinning the hierar-
chical twisted Laplacian discovered recently. This hierarchical twisted Lapla-
cian is obtained by taking the inverse Fourier transform of a sub-Laplacian
with respect to a subcenter of the hierarchical Heisenberg group. Using para-
metrized versions of Wigner transforms and Weyl transforms, we give for-
mulas for the heat kernels and Green functions of the parametrized hierar-
chical twisted Laplacians. Taking the Fourier transform of the parametrized
heat kernels so obtained, we give explicit formulas for the heat kernel and
Green function of the hierarchical sub-Laplacian on the hierarchical Heisen-
berg group.
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1. Introduction
For all z in R and all v = (v1,ve,...,vy) in R™, we let
z =z +is(v),

where s(v) = 377" v;. Then we let 2 and . be linear partial differential opera-

tors on R™*! defined by
o 0 e I 1
= 7 _; 1—
0z Oz Z; vy Ty ( m> s(v),

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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and
o 0 e I 1
= ] 1- .
0z 8x+ll2_;8vl+2( m> s(v)
The hierarchical twisted Laplacian L,,, is defined on R™*+! by
1
L, = —2(ZZ—|— Z7),

where 5 ) 5 )
7z = 7 = -z
0z + QZ and 0z 2z

In explicit detail,

(e Sl ) (0258

j=1
If m =1, then L; is the ordinary twisted Laplacian given by
Li=-A+ i(xz )= (Ulaax xai) ’
which comes up as the quantum-mechanical Hamiltonian of the motion of an
electron in the infinite two-dimensional plane under the influence of a constant
magnetic field perpendicular to the plane. The twisted Laplacian L, and its various
extensions have been studied in the works [2, 3, 4, 5, 7, 8, 11, 16, 17].

The twisted Laplacian L; can in fact be obtained from the sub-Laplacian
on the one-dimensional Heisenberg group C x R by taking the inverse Fourier
transform with respect to the center, and is therefore an elliptic partial differ-
ential operator on R2. Higher-dimensional twisted Laplacians on R?" can be ob-
tained similarly using the n-dimensional Heisenberg group C™ x R. Therefore the
twisted Laplacian is defined on even-dimensional Euclidean spaces. The hierar-
chical twisted Laplacian L,, on R™*! can be seen as a twisted Laplacian on R”,
where the dimension n can now be arbitrary but not equal to 1. This is a rai-
son d’ étre of the adjective hierarchical in this paper and related papers. Another
raison d’ étre is given at the end of Section 2. The heat semigroup generated by
the hierarchical twisted Laplacian has been computed in [13]. A unitary equiv-
alence between the hierarchical twisted Laplacian L, and the tensor product of
the one-dimensional Hermite operator with the identity operator on R™ can be
established using a metaplectic operator as in [12]. It is also shown in [12] that the
alluded unitary equivalence can be used to prove the global hypoellipticity of the
hierarchical twisted Laplacian L,, to the effect that

ue S (R™Y), Loue SR™) = u e S(R™H),

In this paper we first give the Lie group that underpins the hierarchical
twisted Laplacian L,, first studied in [13] as an answer to the questions asked
for the group underlying the hierarchical twisted Laplacian at the talk given by
the first author at the International Conference on Generalized Functions held at
the University of Vienna in 2009. The resulting Lie group is naturally dubbed the
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hierarchical Heisenberg group and is denoted by HJ . On H is then constructed
a sub-Laplacian £,, that we call the hierarchical sub-Laplacian. From the sub-
Laplacian we generate a parametrized family of hierarchical twisted Laplacians
L), for
A= (A1, A2, ) ER™

with s(A) # 0. These parametrized hierarchical twisted Laplacians include L,, as a
special case. It is then noted that L), is in general not elliptic on R™*! unless m =
1. The heat kernels and Green functions of the parametrized twisted Laplacians
are then constructed using parametrized versions of Fourier—Wigner transforms,
Wigner transforms and Weyl transforms as in [13]. Using the Green functions so
constructed, we prove the hypoellipticity of the parametrized hierarchical twisted
Laplacians. We then give formulas for the heat kernel and the Green function of
the hierarchical sub-Laplacian £, on the hierarchical Heisenberg group H7,.

In Section 2 we introduce the hierarchical Heisenberg group H}, and then con-
struct on it the hierarchical sub-Laplacian £,,. The hierarchical twisted Laplacians
parametrized by A = (A1, A2,..., An) in R™ are obtained by taking the inverse
Fourier transform of H! with respect to a subcenter of H . In Section 3 we give
the Fourier—-Wigner transforms, the Wigner transforms and the Weyl transforms,
which are parametrized by A in R™. These, together with the A-version of the
Hermite functions in [13], are then used to diagonalize the parametrized twisted
Laplacians in Section 4. In Section 5 twisted convolutions based on the parameter
A are introduced and they are then used to give explicit formulas for the heat ker-
nels of the parametrized hierarchical twisted Laplacians in Section 6. We give in
Section 7 the Green functions of the parametrized hierarchical twisted Laplacians
using the heat kernels obtained in Section 6. Since the methods are very similar to
those developed in [17], we are content with simply writing down the results. The
heat kernels and Green functions in, respectively, Sections 6 and 7 are then trans-
ferred back to the heat kernel and Green function of the hierarchical sub-Laplacian
on the hierarchical Heisenberg group in, respectively, Sections 8 and 9.

We end this section with a note that for a function f in L!(RY), the Fourier
transform f of f is defined by

£(6) = (2m) V02 / e f(r)dr, €ERV.

RN

2. The hierarchical Heisenberg group
We consider the set H”

m

given by
H =R" x R"™ x R™.
Then H”, is the set of points (z,v,t) in R” x R™ x R™, where
x = (x1,22,...,2,) ER", v =(v1,v2,...,0,m) € R"™

and
t= (t17t27 . ~7tm) e R™.
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Of particular note here is that
v; €ER™, j=1,2,...,m,
and we define s(v) by

s(v) = Zvj.

If we define the multiplication - on H by

(z,0,t) - (y,w,8) = <$+y,v+w,(t+s)® <;s(v)~y ;s(w) x>>

for all (z,v,t) and (y,w,s) in H?,, where @ : R™ x R — R™ is the mapping
defined by

tda=(t+a,te+a,...,tm+ )
for all t = (t1,t,...,tm) in R™ and all « in R, then it can be easily checked
that H} becomes a group with respect to the group law - in which the identity
element is (0,0,0) and the inverse (z,v,t)~! of every element (x,v,t) in H?, is
(—x,—v, —t). We also need t © a, which is defined by

toa=(t1 —a,ta —a,...,tm — ).
Note that if we let m = 1, then we get back the ordinary Heisenberg group
R™ x R™ x R. For simplicity, we work on H}, only, i.e., the case when n = 1.
We can easily check that the center Z(H. ) of the hierarchical Heisenberg
group H! is given by
Z(Hy,) = {(0,w,t) € H,, : s(w) = 0}.
Thus, the subgroup {(0,0,¢) € H}, :t € R™} of the hierarchical Heisenberg group
H}, is a subcenter of H .
Let bl be the Lie algebra of all left-invariant vector fields on HY, . Let 71 :
R — H! be the curve in H., given by

7 (r) = (r,0,0), reR.
For j=1,2,...,m,let y9; : R — H,ln and v3; : R — H}n be curves in H,ln given by
v2;(r) = (0,7€;,0) and ~y3,(r) = (0,0,7e;)
for all r in R, where e; is the standard unit vector in R™ along the 4" coordinate

axis. Then we define the left-invariant vector fields X, Y; and 7}, j =1,2,...,m,
on HY, as follows. Let f € C°°(HY,). Then the function X f is defined by

(XD o0 = 1 o0 m)

r=0

0 1
= 87"f (m—i—r,v,t@ 2s(v)r>

r=0

) 1 "9
= Loty 4 s Y 5 (o
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for all (z,v,t) € HL . For j =1,2,...,m, we define Y; f and T} f by

Do) = 5 Kot )|

= 8f +re;to !
= g, \BUtres, o

8f m
—8vjxvt xzat xvt

r=0

and

(T35) (vt = ) Fl(0,8)755(r)

r=0

0
= 8rf(xavat+rej)

_of
- 8tj (l’,’U,t)

r=0

for all (x,v,t) in H}, . It can be checked by easy computations that
(X.Y;]=T;, 7=1,2,....m,

and all other first-order commutators are equal to zero.
Now, if we let Y and T be vector fields on H?, such that

m

YZYandTZ

then we get
m m m 8

Y = d T= .
Z v, Z oy " kz::l ot
It can be checked easﬂy that
[X,Y] = —mT.

Let £,, = —(X?2 4 Y?). Then we call £,, the hierarchical sub-Laplacian on

the Heisenberg group Hl, and it can be expressed as

= 1
Lm = (a;ﬂ Z avjavk) (i s Z ot 8tk
a m a m a
+ <5(U)8x —mxz 8vj) <Z atk).
Jj=1 k=1

Since the vector fields X and Y have analytic coefficients and commutators of ar-
bitrary length generated by them do not span the Lie algebra bl , it follows from
a theorem of Hormander [9] and related results [6, 18] that £,, is not hypoelliptic
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on R?™+1 unless m = 1. By taking the inverse Fourier transform of the hierar-
chical sub-Laplacian with respect to t = (t1,t2,...,tm), we get the parametrized
hierarchical twisted Laplacians L),, A € R™, given by

m

=g Z(%Javk) + e 1 s sy

where A = (A1, Ag, ..., A) € R™.If we let

)\J:_n;’ i=12...,m,
then
1
s(A) = o
and

1 “ 1/ 5 s(v)? (sv) O L0
L == <8x2 Z 81@8%) (m o )T moae x;avj ’

which is the ordinary hierarchical twisted Laplacian described earlier.

It can be seen easily that L) is not elliptic unless m = 1. Thus, £L,, is not
hypoelliptic unless m = 1; and L?, is not elliptic unless m = 1. This is another
raison d’ étre of the hlerarchy

m

3. Hierarchical Wigner transforms and
hierarchical Weyl transforms

The most basic Wigner transforms and Weyl transforms in the books [14, 15] need
to be modified for the analysis of the hierarchical twisted Laplacian. To this end,
let f € S(R™). Then for all v = (v1,va,...,0,) € R™ and w € R, we define the
function p(w,v)f on R by
(p(w,v) f)(w) = e™tom ™ O f(z @ v), zER.
Now, we can define the hierarchical Fourier—-Wigner transform V(f,g) of f in
S(R™) and ¢ in S(R) by
V(f,9)(w,v) = (21)"™*(p(w,v) f,9) L2 w)
for all v = (v1,va,...,vy) in R™ and w in R. The Wigner transform W (f, g) of f
in S(R™) and g in S(R) is defined by
W(f.9)=V(f,9)"
where V(f,g)", also denoted by FV(f,g), is the Fourier transform of V(f, g).
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Let 0 € S(R™T!). Then for all f in S(R™), we define the hierarchical Weyl
transform W, f of f corresponding to the symbol o to be the function on R by

Wbz = ) ™2 [ [ ol OW(F.0)(w,) o

for all g in S(R).
The following theorem gives a sufficient condition on the symbol ¢ to guar-
antee that a hierarchical Weyl transform is a Hilbert—Schmidt operator.

Theorem 3.1. Let ¢ € L*(R™*Y). Then W, : L*(R™) — L?(R) is a Hilbert-
Schmidt operator and

[Wallzs = @m)~"/2 o] 2qamen)
where |Wo||ns denotes the Hilbert-Schmidt norm of W,.

The results hitherto recapitulated can be found in [1] and [13].
For A = (A1, A2,..., A\pm) € R™ with s(\) # 0, we define the linear partial
differential operators Z) and Z, by

and

Then it can be checked easily that

1
L == o (2325 + Zx2)).
Now, we define p*(w, v) for all w in R and v in R™ by
P (w,v) = [V p(s(A\w, v).

For all f in S(R™) and g in S(R), the A-hierarchical Fourier—Wigner transform
VA(f,g) of f and g is defined by

VA(£,9)(w,v) = 2m) "2 (pM(w, 0)f, 9) 12wy.

In fact‘,/)\( \/IS IV f7 ()\)w7 U)
= VIs(l(zm) /2 [ e ((y - Q;s@)) o )
<9 (1 4,500 ) (3.1)

The A-Wigner transform W (f, g) of f in S(R™) and g in S(R) is defined by
WA(f.9) =V (£,9)"
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Then for s(\) # 0,

WA(f = /|s|W(f, 9) (5(5;),5>, zeR, ECR™.  (3.2)

The following theorem gives the Moyal identity for A-hierarchical Wigner trans-
forms.

Theorem 3.2. For all f1 and fo in L2(R™), and all g1 and g in L*(R),

(WA(f1,91)s W f2,92)) L2 m+1) = (f1s f2) n2em (91, 92) L2 (R).-

Remark 3.3. Similarly, we have the Moyal identity for the A-hierarchical Fourier—
Wigner transform.

Using the A-hierarchical Wigner transform, the A-hierarchical Weyl transform
W2 f of a function f in S(R™) corresponding to the symbol o in S(R™*1) is defined
to be the function on R by

A 2wy = (2m) ™2 oz A x x
W2 1.9 =m0 [ [ oo, W (f.0) (0.6 dode

for all functions g in S(R). Using (3.2) and a change of variables, we get the
following relationship between the ordinary hierarchical Weyl transform and the
A-hierarchical Weyl transform.

Proposition 3.4. Let o € S(Rmﬂ). Then

\/IS Wo,,
where oy is given by
UA(xag) :O'(S(A):L’,f), iL’GR,gGRm.
Using Proposition 3.4, we have the following result, which is an analog of

Theorem 3.1 in [13], on the L2-boundedness of A-Weyl transforms with symbols
in L2(R™*+1).

Proposition 3.5. Let 0 € L2(R™*+1). Then W) : L2(R™) — L2(R) is a bounded
linear operator and

||W;\||B(L2(R1,L)7L2(R)) < (27T)_m/2||0'||L2(]Rm+1),
where || || p(r2rm),L2(r)) 5 the norm in the Banach algebra of all bounded linear

operators from L*(R™) into L*(R).

Using Theorem 3.1 and Proposition 3.4, we have the following result on the
Hilbert—Schmidt property of A-hierarchical Weyl transforms.

Theorem 3.6. Let 0 € L2(R™*1). Then W) : L*(R™) — L%*(R) is a Hilbert-
Schmidt operator and

IW3llas = @m) ™20 L2 gmsry-
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4. Spectral analysis of A-hierarchical twisted Laplacians

Let A € R™ be such that s(A) # 0. Then for k = 0,1,2,..., we define e to be the
function on R by

dw) = s Mien (VIslz) . 7 € R,
where ey, is the Hermite function of order £ on R defined by

1
(2kk1 /)12

for all z in R and Hy, is the Hermite polynomial of degree k given by

ep(z) = e*“"Q/sz(x)

for all z in R. Now, for all nonnegative integers ji, j2, - - ., jm and k, we define the
function e} ., on R™*! by
A
Eregme = V7 (BLL1€5, k) -

It should be noted that e;\hm,jm,k is the parametrized version of the function
€j1,...jm & defined in [13] by

€jtrnjmik =V (®lTllejl ) ek) :
The following lemma is the precise manifesto of the connection.

Lemma 4.1. For all X in R™ with s(A\) #0, and j1,jo, .-, jm,k=0,1,2,...,

gk (W,0) = [N e (\/l w, v/[s (V) )

for allw in R and v in R™.

Proof. By (3.1) and a change of variables,
i e (@,0) =[SOV (@125, e2) (s(Nw,v)

— s 2en 2 [ e (-, s0)) 0 0)
<t (v- Q}ns<v>)dy
=I5 4 amy e [ cisme
Y (I
<o (VIO o, <>})dy

(&
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:|5()\)|(m+1)/4(2ﬂ_)—m/2/eis()\)yw/\/|s()\)|
R

C ((y - an VIsOls(0)) © Vislo)
X ep, ( \/|s )

s, (\/| A) w,\/J5(V) )

A
for all A in R™ with s(\) # 0, and j1,72,...,Jm,k=0,1,2,.... O

Corollary 4.2. {e
fOT L2(R'rn+1>.

ZAN SR FERRRRY k=0,1,2,...} forms an orthonormal basis

Corollary 4.2 follows from Lemma 4.1 and Proposition 4.1 in [13] to the
effect that {e;, .. j..k:J1,.--,Jk, k =0,1,2,...} forms an orthonormal basis for
L?(R™+1). It can also be proved as in [17] using the Hilbert-Schmidt property
of A-hierarchical Weyl transforms in Theorem 3.6 and the Moyal identity for -
hierarchical Fourier—Wigner transforms in Remark 3.3.

The following proposition shows that Z) and Z, are, respectively, annihila-
tion and creation operators.

Proposition 4.3. For all nonnegative integers ji,...,Jm, and positive integers k,
1/2
Z)‘ €1, _Z\/| 2k / €i1yeensim k=15
and for all nonnegative integers ji, ..., jm, k,

Zxejy g = 0V 5N (2k +2)2e5, G ks

The proof of Proposition 4.3 follows from Lemma 4.1 and Proposition 4.2 in
[13]. Using Proposition 4.3, we can easily obtain the following spectral decompo-
sition of the A-hierarchical twisted Laplacian.

Theorem 4.4. For all nonnegative integers ji, ..., jm and k,
A A
L€, g = 2k + D)]sNle3, -

5. Twisted convolutions

For z = (¢,p) € R? and ¢ = (w,v) € R™"!| where w € R and
v =(v1,v2,...,0m) €ER™,

we define (H 2z and ( H z by

CBz=(w+q,v1+p,...,0m+p) and (Bz=(w—quvi—p,...,Um —D).
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Now, we define the twisted convolution 7#) 0 of 7 in L?(R?) and ¢ in L?(R™*1) by

(T*r0)(Q) = / o(CB2)r(z)e *MNAlgz ¢ e RMH
c

where [(, z] is the symplectic form of ¢ and z given by

1
(Gal = jup—

We also need the convolution 7 %_ ¢ defined by

wp— _ qs(v).

(rx-0)O) = [ 0Byl s, ¢ e R
C

Theorem 5.1. Let A € R™ be such that s(\) # 0. Then for all nonnegative integers
«, 67 l7 O/I’Ldjh s 7jm7

Cas AN gma = 22 sN 7200065 i s

Proof. Tt is easy to see that

S(A)[(ww),(q,p)]K\/' w, /Is(A > (\/| VlIs(A ﬂ

for all z = (¢,p) € R? and ¢ = (w,v) € R™*! where w € R and
v=(v1,v2,...,0m) € R™.

So, by Lemma 4.1,
(€36 %X €51, t) (1, )

= [ e . (¢Bz2)e) 4(z)e NIl
c 153 Jmsl a,B
— |s()\)|(m+3)/4

x / Citseedmil <\/|()\) —q), VIsOW|(w1 =, ..., vm p)>
X €q.3 <\/| o ls > .K\/ﬁw“’ \/|S(>\)|v) <J|<X>lq,\/|s(x)|p)]dz

= [s(A)| D

x/eﬁ, ot <¢| w =g /s or = By s V5N o — )

X ea,5(q; p)e .K\/g\i/(\;)\w\/"q()‘)W) q,p)] "
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= [s(N)|"™ D (ea #— €jy.ojm) <¢| w, v/]s(A >
(27r)1/2|s(x)|<m1>/45a,lejl,M,jm,ﬁ(\/| w, \/|s(A > (5.1)

for all w in R and
v =(v1,V2y...,Um)
in R™. Let us note that (5.1) is derived using Theorem 5.5 in [13]. Using Lemma
4.1 again, we get
€06 A st (W, 0) = (20) V25N 7V 2600€5, i p(w,0)
for all w in R and
v=(v1,v2,...,0m) € R™,

as asserted. O

6. Heat kernels for A-hierarchical twisted Laplacians

Theorem 6.1. Let A € R™ be such that s(\) # 0. Then for all f in L2(R™*!) and
p >0,
e f =k f,
where ) 5O
A s — s\ |2]%coth(]s(A
k) (z) = 4 sinh((s(\ )|p)6 alsM ] (Is(Mlp)
for all z in C.

Proof. Let f € S(R™*1). Then for p > 0, we get by means of Corollary 4.2 and
Theorem 4.4,

oo oo
A
—pLy, ¢ — —|s(M)[(2k+1)p A A
€ f*Z Z ¢ (fr €5 oo R L2 RS, ke

k=0 j1,..,jm=0
By Theorem 5.1,

o0 o0
A A A A
i f=erpomn . D (Feh g )L @ e

=0 j1,.--;Jm=0

(oo} (oo}
= Z Z (f’ 6?1,m’jm’l)Lz(R’"*l)eg,k ) e;\l’-u,jm,l
1=0 j1,.--,5m=0
(oo} (oo}
- Z Z (fs € L2 @iy [sO)[TH2@M) 280065,
1=0 j1,.--,5m=0

oo

=[sNT2EMYE Y (fe ) 2@ e
J1redm=0
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Thus,

eprm = [s(\) |1/2 om) —1/2 Ze [s( |(2k+1)p6 At
Now, for 0 <r <1 and z € C,

1 2114
Zekk 7” — ) 1/21 e 77 a1

-T

By Lemma 4.1, for all A with s(\) # 0,

ein(a,p) = s\ e, (\/| g, VIs(A ) (6.1)
for all z = ¢ +ip in C. Thus, by Lemma 4.1 and (6.1), we get

e} —1/2 -
Zef|s()\)|(2k+1)peg,k(z> — (277)71/2 |S()\)| / ef}l|s(>\)| |z|2coth(|s(A)]p)

k=0 2sinh(|s(A)[p)

for all z in C and p > 0. Therefore
e_”L*A"f = k;\ s« f, p>0, (6.2)

as claimed. O

7. Green functions for A-hierarchical twisted Laplacians
For A € R™ with s(\) # 0, we let G, be the function on R? such that
(Ly) ' f =G f

for all f in L2(R™*1).

Using the heat kernels obtained in the preceding section, we can integrate
with respect to time p from 0 to oo as in [17] to find the Green functions of
the A-hierarchical twisted Laplacians. The result is encapsulated in the following
theorem.

Theorem 7.1. Let A € R™ be such that s(\) # 0. Then

GMe) = o o (IO P

for all z in C, where Ky is the modified Bessel function of order 0 given by

Ky(z) :/ e"reoshigr 2 > 0.
0
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8. The heat kernel for the sub-Laplacian

In order to get a heat kernel for the hierarchical sub-Laplacian £,, on the hierar-
chical Heisenberg group H! , we start with the initial value problem for the heat
equation for £, given by

o (Gots) = (L) G, )
u(C,1,0) = f(C,1),

for all (¢,t) in H! and p > 0. Taking the inverse Fourier transform of (8.1)
with respect to t, we get the initial value problem for the heat equation for the
A-hierarchical twisted Laplacian, i.e.,

ou Y
dp (Cap) - 7(Lmu )(Cap)a

u*(¢,0) = f2(0),
for all ¢ in R™*! p > 0, and all X in R™ with s()\) # 0. By Theorem 6.1,

(8.1)

WCp) = / PCB RN #NVEAdz, ¢ e R, (8.2)
C

where A € R™ with s(\) # 0. So, by taking the Fourier transform of the solution
u of (8.2) with respect to A, we get

wetp) = [{ene [ empeaapEe vednt i
= 2m) 2 [ (FCB ) £ Kyl 0) (0
C

where
FolKp)(C 2 \) = k) (2)e VG2l 2 e,
( 2 P 14

and (f{le)(C, z,A) is the inverse Fourier transform of K,((, z,t) with respect to
t in R™. Thus,

w(Cot, p) = (2m) -2 /C [ HCBat- K (Cadsds, (83)

where
KP(C& 2, 3) = (27T)7m/2/ eiis')‘k;‘(Z)efis()‘)[g’z]dA

m

for all ¢ in R™*!, z in C and s in R™.
We call the function K,, p > 0, the heat kernel of the sub-Laplacian L,,. In
glorious detail,

- _isa 1 |S()\)| _1 2 .
K _ (9m)-m/2 is-A |s(V)[2[2coth(|s(A)[p) , —is(N[C2] g
o(6,2,8)=(2m) /me dr sinh(]s(\)]p) ¢ ¢
(8.4)
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9. The Green function for the sub-Laplacian

The Green function G, of L£,, is the kernel of the integral operator representing
L1 ie.,

(L )G, 1) = (2m) ™2 / FCB 2t — 8)Gom(C, 2, 8) ds d
c Jrm

for all (¢,t) in H! and all suitable functions on H},, and can be obtained by
integrating the heat kernel of £,, with respect to time p from 0 to oco. Before

formulating the result, we give the following lemma.

Lemma 9.1. For all z in C and t in R,

/ / eiit"—e*zlll'rl |z|?cosh (SdT ds = 4m )
0 Jooo V2|4 + 1612

Proof. For all zin C and ¢ in R,

0o 0 oo
i _1 2 i 1 2 o 1 2
/ e e b kalEd cosh&dT :/ e zt‘re4'r|z| cosh&dT_i_/ e T 1Tzl cosh&dT
—o0 —o0 0

0 e’}

o7 (4127 cosh 6—it) o7 (12 cosh s+it) %|z|2005h6

o (21/16)cosh?s + 12

"~ Yz|2coshd — it

1lz[2coshé + it

So, for all z in C and ¢ in R,
/oo /OO e—itfe—i|7—||z|zcosh6d7_d6:/oo ;|Z|200Sh(S ds
0 J-oo 0 (|z|4/16)cosh26 + ¢2
|22

coshd 8 [ coshd
) dé =, ) il
2 Jo (|z|*/16)cosh®6 + ¢2 1212 Jo  cosh?§ + (16t2/|z|4)

8 /Oo 1 do — 4 1 _ 47
212 o o2+ 14 (1662219 P T[22 /1 (1682/1204) /|2l + 1662
Theorem 9.2. For all ¢ in R™*, 2 in C and s = (s1,52,...,5m) in R™,
1

Gm (¢, 2, 3) = 2(27r)7(m72)/2(5(81 — 82,y Sm—1 — sm) \/|Z|4 + 16(8 + [C z])Q’

where & is the Dirac delta on R™ 1.

Proof. First, we note that

L s ool sPeoth(s(0 1) /°° 1 1 2
s z|“coth(|s dp = [s(A)] ]z] vd
/o 4 sinh(|s(\)|p) < 7= )y 2t i
1

= Ko (4|s()\)||z|2):/ e alsOlI=PPeoshdgs (g 1)
0

So, by Lemma 9.1, (8.4) and (9.1), we get for all ¢ in R™*! 2 in C and s in R™,

/00 K,(C 2,5) dp = /oo(%)*mﬂ/ =M EBIGD =i seosha g g,
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Let
M+t A, = T,
)\1 + )\2 - Ha,
)\1 = 1.
Then
(oo}
/ (27r)—m/2/ e—z’)\‘(sea[g,z])e—ﬂs()\ﬂ|z|2cosh§d)\d6
0 m
Lef
0 RmMm— 1
w e~ Hp(s1+[C ]+ (pa—p) (s2 4G 2D+ A+ (T—pm—1(sm—1+((,2]))
% d/ll . dum,ldTefi”"‘e*‘llTl |z|?cosh 5d5
(oo}
= / (27r)(m_2)/26(81 — 82,y 8m—1— Sm)
0 oo
% / e—iT(sm,+[C,z])e—}1|T| |z|%cosh 6d7’ s
— 00
1
=2(21)"(M=D/25(s) — 59, .. Sm_1 — Sm) ,
T VA 16(sm + (G, )2
as required. O

So, by (8.3) and Theorem 9.2, for all suitable functions f on H
f(¢Bz,t—s)d(s1—s2,...,Sm—1— Sm)

(1)) =202z [ ] st s
Now, let

o1 = 81— S2,

02 = Sz — 83,

Om = Sm—1— Sm-
Then

(L)1) = 2m) 202 [ /Z

m m
X/ f(CElZatIE O—jis’mntQ*E O—jsma"'atmls'm)
R'm—l N N
Jj=1 Jj=2

X (5(0’1,0’2, .. .,O’m_1)d0'1 . 'dO’m_l
1

X Il + 16(5m + (6, 22
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— 2(27r)—(m—2)/2/ /oo f(C Hz,t1 —sm,-. st — sm)dsm d
coso VI (5m + (¢ 2])?

o 1
:2(27r)—<m—2)/2// fCB2,t0sm
CJ—-—c0

)\/IZI4+(sm+[C,Z])

o0
1
=227 *("“2)/2// Bz,teudl(, 2 dudz

(&) cJ o e S ])\/|z|4+16u2
for all (¢,t) in HL,.

Thus, the function d on C x R given by
Cm
d(z,u) = , (z,u) e CxR,
Gz e G

ds,, dz
2

where
Cp, = 2(2m)~(m=2/2

can be thought of as the Green function of L,,.
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LP-bounds for Pseudo-differential
Operators on the Torus

Julio Delgado

Abstract. We establish LP bounds for a class of periodic pseudo-differential
operators corresponding to symbols with limited regularity on the torus T".
The analysis is carried out using global representation of the symbols on
T x Z".
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1. Introduction

In this paper we study LP-boundedness for periodic pseudo-differential operators or
pseudo-differential operators on the torus T™ = (R/27Z)". The group structure of
T™ enables us to obtain globally defined symbols on T" x Z™ and the corresponding
S,T& Hormander classes. The idea of the formulation of pseudo-differential opera-
tors on the circle S! using Fourier series yielding global symbols was first suggested
by Mikhail Semenovich Agranovich (cf. [1]). As has been pointed out in [17], de-
spite of the intense research on periodic integral operators, the theory of periodic
pseudo-differential operators has been difficult to find. Here, we consider periodic
pseudo-differential operators in the framework of the pseudo-differential calculus
on the torus recently developed in the works of M. Ruzhansky, V. Turunen and
G. Vainikko (cf. [16], [17], [21]). The S}'s Hormander classes can be defined on
manifolds using charts, in the case of the torus the equivalence of this local and
the global definition has been proved by W. McLean [14]. A different approach
to obtain that equivalence based on extension and periodisation techniques was
developed by M. Ruzhansky and V. Turunen [17].

One of the most interesting topics in the theory of pseudodifferential opera-
tors is to investigate the behavior of pseudodifferential operators of Héormander’s

This work has been partially supported by Universidad del Valle, Vicerrectoria Inv. Grant#7840.
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class ST in LP. In a classical paper (cf. [10]) Charles Fefferman establishes LP-
bounds for Ss(R™ x R™) classes, those estimates are obtained via real and com-
plex interpolation from a L*°-BMO bound. Extensions of the Fefferman’s LP
estimates have been obtained in [2], [13] on R™; the references [7], [8] consider a
non-homogeneous setting. LP-bounds on the torus have been investigated for in-
stance in [15], [16] and [17], and multipliers on compact Lie groups can be found
in [18]. L? bounds on the circle which can be routinely extended to the torus can
be found in [24]. The boundedness on L?(R™) for all 1 < p < oo fails for symbols
in 52’5(11%” x R") with p < 1, further when m > 0 is small in S J"(R" x R")
with p < 1 one can only get LP(R™) boundedness for finite intervals centered at
p = 2, this is a consequence of Fefferman’s estimates and the work on multipliers
of Hirschman (cf. [11]) and Wainger (cf. [22]). The obstruction for the bounded-
ness on LP(R™) for all 1 < p < oo of operators in OPSS’(;(]R" x R™) with p < 1
is explained in a more general setting by the works of Richard Beals [3] and [4].
In order to illustrate our main results we recall the L°°-BM O bound obtained by
C. Fefferman.

Theorem A. Let o(z,€) € Sl__":,/f(R” x R™), where 0 < § < 1—¢€ < 1. Then
o(z, D) is a bounded operator from L* into BMO.

We will obtain in the periodic case a version of theorem A in terms of sym-
bols with limited regularity and making use of a recent L? estimate on the torus
by Ruzhansky and Turunen (cf. [17], Theorem 4.8.1). More specifically we will
establish the following theorem. A? denotes partial differences on the lattice Z™.

Main Theorem. Let 0 < e <1 and k € N with k > T, leta : T" x Z" — C
be a symbol such that |[Aga(z, )| < Co (&)~ 2e==9lel 198 a(z, €)| < Cy(€)™2€ for

lal, 18] < K, then a(x, D) is bounded from L*°(T™) into BMO(T").

As a consequence of real interpolation and the L? estimate by Ruzhansky
and Turunen (cf. [17]) we obtain:

Theorem. Let 0 < e < 1 and k € N with k > 7, let a : T" x Z" — C be
a symbol such that |Aga(z,§)| < Co (&)~ 2 =9l 198a(x, €)| < Cp(€)™ 3¢, for
|, 18] < k. Then o(xz,D) is a bounded operator from LP(T™) into LP(T™) for

2 <p<oo.

2. Basics on pseudo-differential calculus on the torus

In this section we recall some elements of the basic theory of pseudo-differential
operators on the torus. We refer the reader to [16] and [17] for a more comprehen-
sive account on this theory. The dual group of T™ being Z" we shall need of some
elements of calculus on finite differences, a classical reference for this topic is [12].
Standard references for the study of pseudodifferential operators on the Euclidean
space are [19], [20], [23].
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Definition 2.1 (Periodic functions). A function f : R™ — C is 27-periodic if f(x +
k) = f(z) for every z € R™ and k € 2nZ™. We shall identify these functions with
functions defined on T" = R"/27Z" = {x + 27Z"™ : © € R"}. The space of 27-
periodic m times continuously differentiable functions is denoted by C™(T"™). The
test functions are the elements of the space C*°(T") = N, C™(T™).

Definition 2.2 (Schwartz space S(Z™)). Let us denote by S(Z"™) the space of rapidly
decaying functions ¢ : Z" — C. That is, ¢ € S(Z") if for all 0 < M < oo there
exists a constant Cy, ps such that

(&) < Conr(§)™M

holds for all £ € Z™. The topology on S(Z") is defined by the seminorms py, where
k € No and py(p) = sup ()" lel.
cin

In order to define the class of symbols that we will use, let us recall the
definition of the Fourier transform on the torus for a function f in C*°(T")

(Frou)©) =1©) = [ e ulopdo
where dx = (27)~™dx. One can prove that
Fra 1 C(T") — S(Z")

is a continuous bijection. The inverse Fr,' : S(Z") — C°(T") is obtained in order
to get the reconstruction formula of f in the form of a discrete integral or sum

over the dual group Z"
z) = ) e (Fr (),
cezn

J,—_-Tn g Z ezxf

gezr
We shall need a suitable notion of derivative on the lattice Z™. On the discrete
group Z" we define the partial difference operator. Let o : Z" — C. Let ¢; €
N”,(e;); = 1, and (e;); = 0 if ¢ # j. We define the partial difference operator
Ag; by

so that for g € S(Z™)

Ag;o(§) =0l +ej)—o(§) and A=A - A"

for o € N§.
The operator above enjoys good properties: discrete Leibniz formula, summa-
tion by parts, discrete Taylor expansion, discrete fundamental theorem of calculus
(cf. [17]). We just recall a formula for higher-order partial differences and the

discrete Leibniz formula.

Proposition 2.3. Let ¢ : Z™ — C. We have

AZp(e) = 3 (~1)laF (g)ms 9.

Ba
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Lemma 2.4 (Discrete Leibniz formula). Let ¢, : Z™ — C then

azn© = X (5) (o) ve(c + ).

B<La B
We now can define Hérmander’s classes on the torus.

Definition 2.5. Let m € R,0 < §,p < 1. We say that a function a(z,£) which is
smooth in z for all £ € Z™ belongs to the toroidal symbol class S;%(’]T” x "), if
the following inequalities hold

105 Aga(a, )] < Ca,p(e)m P10 (2.1)
for every x € T", for every «, 5 € Njj, and for all £ € Z™.

A countable family of seminorms can be associated in the following way, for
each «, 8 we define
m |Ag0 a(x, €)| 0o om
pa,ﬁ(a) = sup { <£>§m_xp|a|+5|5| (2,8 €T X Z }

Then {pg” gra,BE Ny} is a countable family of seminorms and defines a Fréchet
topology on S:,”L(;(T" X Z").

Remark 2.6. When the symbol a(z, ) has finite regularity with respect to the spa-
tial variable we will keep the notation of p; from the corresponding seminorms.

A corresponding operator is associated to a symbol a(z, ) in :,75(']T” X Z™)
which will be called a periodic pseudo-differential operator or pseudo-differential
operator on the torus T"

a(z,D)f(z) = Y €™ a(w, &)(Frn )(6), (2:2)
gezn
which can also be written as

a(e, D)) = 3 / 7@z, €) f(y)dy. (2.3)

EGZ"'HWL

The corresponding class of operators with symbols in S;% (T™ x Z™) will be
denoted by OPS]"s(T" x Z").

Remark 2.7. Let a : T" x Z"™ — C be a measurable function and m € R such
that |a(z,€)] < C < & >™ for some constant C' > 0. It is not hard to prove
that a(x, D) f is well defined for f € C°°(T™). Hence, we can associate a pseudo-
differential operator to such a symbol. In particular, we will do so for symbols with
limited regularity.

In order to employ some multipliers on the torus we shall need the following
lemma.

Lemma 2.8. Let m € R, if o € S7%(R" x R™) and o only depends on the Fourier
variable § then o € S)'s(T" x Z).
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Proof. For the partial differences of order 1, |a| = 1, we have
AZ =0 +ej) —o(f).
Applying the mean value theorem we get 1 € [£, €+ ¢;] and a constant C' > 0 such
that
|o(& +¢5) = o (O] < 9o ()] < ()™~ < Clgm.
The last inequality because in the interval [£, {+e€;] we have () < C(£). For higher-
order differences and derivatives we apply Proposition 2.3 and induction. g

There exists a process to interpolate the second argument of symbols on
T™ x Z™ in a smooth way to get a symbol defined on T™ x R™. We recall a few
consequences of this process linking symbols on T" x Z™ and T" x R™ (cf. [17]).

Theorem 2.9. Let0 <6 <1,0< p<1. The symbol a € S;% (T™ x Z™) is a toroidal
symbol if and only if there exists a Euclidean symbol a € S;%(’]T” x R™) such that
a = a|tnxzn. Moreover, this extended symbol a is unique modulo S~ (T" x R™).

Theorem 2.10 (Equality of Operator Classes). For 0 <6 < 1,0 < p <1 we have
Op ;’}5(’]1‘" x R™) = Op ;’}5(’11‘” x Z").

A look at the proof (cf. [17]) of Theorem 2.9 shows us that a more general
version is still valid for symbols with limited regularity as follows:

Corollary 2.11. Let 0 < § < 1,0 < p < 1. Let the function a : T" x R™ — C satisfy
10207 a(w, €)| < Caple)m POV (2.4)

for every x € T™, for all £ € Z™, for every || < Ny and |8] < Na. Then the
restriction a = a|rnxzn» satisfies

|AZ0S a(x,€)| < Cap < & >mrleltolbl, (2.5)

for every x € T, for all £ € Z™, for every |a] < Ny and |B] < Na. Conversely,
every function @ : T x Z™ — C satisfying (2.5) for every |a] < N1 and |5| < Na
is a restriction a = alpnxzn of some function a : T x R™ — C satisfying (2.4) for
every |a| < Ny and |B| < Ns.

Remark 2.12. It is important to point out that in the previous three statements
the restriction d < p is not imposed and so 6 > p is allowed.

Note that in the corollary above we lose the uniqueness we have in Theorem
2.9. Our main results will be stated for symbols with limited regularity, to do so
we will introduce the following notation.

Definition 2.13. Let the function a : T" x R™ — C satisfy (2.4). We will say that
a € 87 N N, (TT X R If @+ T" x Z" — C satisfies (2.5) for Ny, Na we will
say that a € 57 v, n, (T™ x Z™). The corresponding classes of operators will be
denoted by OpS7's n, n,(T" x R") and OpS7's . n,(T™ x Z") respectively.
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It is also possible to obtain a version of Theorem 2.10 for symbols with limited
regularity:

Theorem 2.14. For 0 <§ <1,0 < p <1 we have
O 0,0T" X B") = 0P, (1" X 27)

Remark 2.15.

i) (§)™ € ST(T™ x Z") for all m € R. This is a consequence of Lemma 2.8.
ii) Symbols o(z,§) in S)’5(T" x Z") can be obtained from symbols in ST (T" x
R™) due to Theorem 2.9.
iii) It is possible to construct a symbol o(z,§) in S{%(Sl X Z) in the following

way: consider y(z, &) = exp(il¢[°x) < & >™ for -1 <z <7, £ €Z, extend vy
smoothly to —m <2 < 7,{ € Z with y(z,§) = 0if § <|z| <7, € Z.

3. LP(T™) estimates

In order to get our LP(T") bounds we shall interpolate between L? and L> —~BMO
bounds. The proposition below (cf. [17], Theorem 4.8.1) does not impose any
regularity condition on the symbol in contrast with similar results on R™, the
authors give a sufficient condition for L?(T™) boundedness:

Theorem 3.1. Let k € N and k > 7. Let a : T" X Z" — C be a symbol such that
|07 a(x,€)] < Cp, |B] < k (3.1)
then
a(z, D) : L*(T") — L*(T").
Moreover, there exists a constant C' such that

la(e, D) fll2zny < Cmax{Cs : |8 < kY| fl2om- (3.2)

The theorem above will be our L? starting point. We now prove some prepara-
tory results.

Lemma 3.2. Let b(z,£),c(§) be symbols on T™ x Z™. Then the composition
b(x, D)c(D) possesses a symbol with exact representation b(x, &) - c(§).

Proof. Tt is a direct consequence of the definition of pseudodifferential operator
having into account that Fpn (¢(D)f)(§) = e(&)Fr=(f)(£). O

The following lemma is a consequence of Theorem 3.1:

Lemma 3.3. Let k € N and k > 7. Let b: T" x Z"™ — C be a symbol and m € R,
if there ezists a constant Cg > 0 such that for |5| < k

09b(x, €)] < Ca(&)™, (3.3)

then
b(z,D)J ™ : L*(T™) — L*(T"),
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where J™ denotes the Bessel potential with symbol (§)™. Moreover there exists a
constant C' such that

16z, D).J mfhﬁmw<<CHﬁ§fgﬂaﬂﬂxfﬂ>_mHUmew-

Proof. We observe that by Lemma 3.2 the symbol of b(z, D)J ™ is b(x,&){{)~™,
the proof follows now from Theorem 3.1 since

105 (b2, )(€)™™)| < |05b(x, ©)[(€) ™™ < CC(E™ (€)™,
for |8] < k. O

Lemma 3.4. Let ¢ be a function in C°(T™) and b: T" x Z" — C a symbol, then
the commutator [¢, (x D)] is a pseudodifferential operator with symbol

=" NG () [b(x, €) — bz, € + )] -
newr

Proof. We identify ¢ with the multiplication operator (by ¢) that will be denoted
by Mg. Then

Myf(y) = oW)f () = Y e<Vo(y) f(€),= / e g(y) f(2)dz
§€Z" ’]I‘n
Now,

b(x, D) o My f(x) > e Ty, )Ty f(y)dy

R"L T]GZ"
S [ e e o, () (:)dxdy.
. EELNEy nELT
We will use the following identity
e (@=y) il (y=2) — gile—y) (=€) gi(w—2)€
thus,
ba. D)o Mof(a) = [ 32 [ 30 ey, oty )y

o EELN G nELT

= /c(x,ﬁ)ei(’”_z)'éf(z)dz

where R
2,6 = D e IGmb(, € +n)dy
newL"
Hence, ¢(z,§) is the symbol of b(z, D) o My. On the other hand the symbol
of My ob(x,D) is ¢(z) - b(x, &). O

The following lemma will be applied to analyze local L°°(T™) — L°°(T™)
bounds.
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Lemma 3.5. Let o be a symbol on T X Z", if n : Z — C is a function supported in
R < |z| < 3R with R > 1, then for every a there exist constants A and Cop such
that for all A € R, s € N and for every (x,&) € T x Z" we have

A (0w, On(sIED)] < Camax|Alo(a, )4 (65, (3.0

Proof.

Azt onisieh) = X () (Aote)) A2~ n(se)

(g> (adote.0)) 3 (_1)@_&_7'(&;ﬁ)ﬁ(sliﬂl)

y<a—p

)

™
IN
Q

=
IN
Q

Hence we obtain
|AE (o (z,En(slé])| < Ca glgg%éga(%ﬁ)léa ;B [n(sl§ + DI
y<a—

Taking into account that 7(s| - |) is supported in R < |-| < 3R there exists a
constant A > 1 such that

A7lsTh <€) < AsTH,
thus for every A € R
1< AR,
Therefore
A (02 n(sIED)] < Cammax [Afo(z, €)| AN (€)s*. 0

The next lemma is a periodic version of a classical by Charles Fefferman ([10],
page 415). It furnishes local L (T™) — L*°(T™) bounds, that kind of boundedness
joint with the application of suitable partitions of unity will be essential in our
analysis in the spirit of Littlewood—Paley theory.

Lemma 3.6. Let 0 < e < 1 and k € N with k > 3, let a : T" x Z" — C

be a symbol supported in |£| < 1 or R < |¢| < 3R for some R > 0 and such that
|Aga(z,§)| < Co (&)=l for|a| < k then a(x, D) is bounded from L>(T™)
into L>°(T™) moreover there exists a constant C independent of a and f such that

la(z, D) fllo < CCa)ll fllL=,
where C(a) = max{Cy, Cy : |a| = k}.

Remark 3.7. The fact that the above estimate is independent of R will be crucial
for us in order to apply dyadic decompositions.

Proof of Lemma 3.6. Let a(x,€) be supported in
{(z,§) e T" x Z" /R < [¢| < 3R},
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for R > 1 and such that [Aga(z,§)| < Co ()2 (=9lol for |a| < k. Applying
Corollary 2.11 to the symbol a we obtain a € S;(;%k’o(']l‘” x R™) such that a and a
coincide in T™ x Z™. Then a has the same support as a and we notice that

ol D)f (@) = ale, D)f(a) = [ [ G (0,6) fy)dys

R Tn

_ / Fanii(z,y — 2)F(y)dy = (Fandlz, ) * £)(2).
’]I“H,

We obtain
ala, D)f ()] < | Fanile, )|, oo
It will be enough to prove that for every z € R™
| Fanii(a, )11 < CC(@).
We set b = R°~!. By the Cauchy-Schwarz inequality we get

[ (Fatealar < cvi ([ 1FatnPa) <o ( [l opa)

ly|<b ly|<b

f”Loo(Tn), xzeT".

<cawi( [ <£>‘”6d5>
[€I<3R
< CCyR\V3 ( / <5>”Ed§) < CCy, for all R > 1.
[€I<3R

Now, since k > 5 we get

/ |fRna<x,y>|dys0b3-k< / |y|2’f|fRna<x,y>|2dy)

ly|=b y=b

< Cbﬁ—’“( / |V’ga(x,5)|2d5)2

Rn

< C max CaR(e—l)(g’ —k) / <§>—ne—2k(l—e)d€>

|a|=k
R<[E|
< O max O, R« VE-ko (R(l_e)(g_k)) < C max C,.
|a|=k |a|=k

Therefore
| Frra(z, )| < CC(a), for every z € T™.
The proof is similar for the other type of support. O



112 J. Delgado

We are now ready to establish our main result which can be seen as a gener-
alization of the Fefferman bounds (Theorem A) in the introduction but improving
the estimation of the suitable indices in the case of the torus.

Theorem 3.8. Let0 < e <1 andk € N withk > 7, leta: T" xZ" — C be a symbol
such that [Aga(z,€)] < Col€)~ 30N |080(z, )| < Ca(€)3¢ for |al, 8] < k
then a(z, D) is bounded from L*(T™) into BMO(T™), moreover there exists a

constant C' independent of a and f such that
la(z, D) fllsaro < Cpy (@)l fll o=
We shall need the following lemma for symbols supported in || > R.

Lemma 3.9. Let 0 <e<1andk € Nwithk > 7, leta:T" xZ" — C be a symbol
supported in || > R with R > 1 such that |Aga(z,§)| < Co (&)~ 2 (=9lel gng
|08a(x,&)| < Cpl€)™ 3¢, for |al,|B] < k then a(x, D) is bounded from L>(T™) into
BMO(T™). Moreover there exists a constant C independent of a and f such that

laz, D) f||saro < Cmax{pyg “(a),pyg (@)} fll L=

Proof. We begin by considering a function ¢ on T™, with 0 < ¢ < 10, ¢ > 1 on

~

B(zg,r) C T™ and the Fourier transform ¢ verifying supp(¢) C {£ € Z" : |§| <
(C—1r) 1 }. We write
o(z) - a(z, D) f(x) = a(x, D)(¢f)(x) + [¢,a(x, D)] f(z) =T + I1. (3.5)

In order to manage the term I let us consider the Bessel potential J™, then J~™ :
H~™(T") — L?(T") isomorphically. We decompose

a(z, D)(¢f) = (a(z, D) - J™) (J7™ - (6f)) - (3.6)

Now, since the symbol of a(z, D) - J™ satisfies the hypothesis of Lemma 3.3
with m = Je, then there exists a constant C' > 0

la(z, DY(¢ )72 < CMZ - |7 (6£)I72, (3.7)

where M, = max sup |02a(z, £)(€)™].
IBI<E (2,¢)
Now

1T~ (@72 = 1o 77—

since the Bessel potential J~™ is a positive operator (preserves positivity of func-
tions) and a multiplier with symbol J(§) = (§) ™™, we obtain

1T (@)l < NI 1T (D)7 < Cull Fll7o 18117
< Cillflz=(C7 )" < Ol f I |B(ao,m)l.

Therefore
la(z, DY(¢f)|I7: < CMZ||f(17<|B(xo,7)|- (3.8)
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Applying the Cauchy—Schwarz inequality, we have

! alx x)ldx 1 alx T 2 T %
B(xo76>|/3| (2, D)(&f)(x)|d §<|B|/3| (z, D)(of)(2)] d>
SCMa|| fllze=- (3.9)

This proves the estimate for I.
By Lemma 3.4 the commutator [¢, a(z, D)] appearing in II is a pseudodiffer-
ential operator 9(1‘ D) with symbol

=" e™9(n) a(z,€) — alx, & +1)].
nezm
We write

x 5) - Zej(xaf)a
=0

with 0;(x, &) supported in [£] ~ 27r~1. Now
b= Y G0 la(,6) —ala, €+ ).
Inl<(C—1r)2e=)

Hence and by Lemma 3.6 we obtain

1, alz, D)f] = <D 10;(2, D) fllz= < > C272C(a)|| ||
=0 =0
<CC@)|If e, (3.10)
where C'(a) is as in Lemma 3.6.
Since ¢ > 1 on B(gvo7 r), using (3.9) and (3. 10) into (3.5) we have
o(x

/|axD Dlds < g /| D) f(x)ldz

<CC(a )||f||L°c- =

Proof of Theorem 3.8. Let f € L>(T"), o € T", and B = B(xg,r) C T". We
will show that there exist an integer ;7 and a constant C' > 0 independent of f and
B, such that

1
0, 7)| /lU(Z’D)f(x) = gldz < Cllofl;srno | fllzee, (3.11)

where we have denoted g = o(z, D) f.

We decompose o(z,&) into two parts, 0 = 0¥ + o, with ¢° supported in
|¢] < 2r~ 1 ol supported in |¢| > ;T*I. One can obtain such a decomposition in the
following way. Let § = 14 be the characteristic function for A={z € Z:|z| <1}
and then

Uo(x7 5) = U(x7 f)ﬁ(ﬂfl),

and put o' = o — Y.



114 J. Delgado

In order to obtain (3.11) it will be enough to consider ¢, the corresponding
estimation for ¢! is a consequence of Lemma 3.9. We can write

02,0 (x, D) f(2) = o (x, D) f(z),
where o/, is the symbol

We shall use a partition of unity to study o7,
oo
ol (2,6) = pj(,8),
j=1

with p; supported in |£] ~ 277771, Such a partition of unity is obtained from
7 : R — R defined by

(s) = 0 ,if |s|<1
=0 , if |s| > 2.
Let p(s) = n(s) —n(271s). Then supp p = {1 < |s| < 4}. One can verify that
1 277(8)+Zp(2]5),5 eER
j=1
Now, set s = r|¢| then
> .
L=n(rlé)) + > p(r2?(€]).
j=1

The support of n being {|s| > 1} and r|¢| < 1, we obtain

oo

1= Zp(fﬁjl&l)

for {|¢] < r~1}.
Since supp o’ = supp ¢° we have

o (2,6) =Y p(r2?|€]) - ol (x,€).
j=1

Then one can choose

pji(@,€) = p(r2|€]) - o5, (, €).
We will apply Lemma 3.6 to each term p;(z,¢) and for the estimation of

the derivatives Lemma 3.5, since o, = 8zk00 + i&,0° we consider first 8zk00 and
choosing A = —1 we obtain

182 (02,0° (@, p(r2 )] < Comax | A0z, (@, O] AM(E (120,

< Camax(€) 50906 A() 7 (r2)) ™! < Comax(g) ™50y ~1273,
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Therefore, there exists a constant C' such that

102,0°(@, D) fllz= <Y llpj(2, D) fllze < Cr Y 277 flpe < Cr Y f ] o=

j=0 j=0
Now, by the mean value theorem we have

0%z, D) f(x) — gB| < C||fl|L~-
Then
1 0
|B(zq,7)| /IU (z,D)f(x) — gBldr < Cllolis| f[| e (3.12)
B

This proves (3.11) for ¢°. O

Interpolation between L?(T") and BMO(T") estimates allows us to obtain
the next LP(T™) boundedness.

Theorem 3.10. Let 0 < e < 1 and k € N with k > 3, let a : T" x Z" — C be
a symbol such that [Afa(z,§)| < Co (&)~ 2= =9lel 19B8q(x, )| < Cg(€)™ 3¢, for
lal, 18] < k. Then o(x,D) is a bounded operator from LP(T™) into LP(T™) for

2<p<oo.

Proof. The boundedness on L?(T") is a consequence of the hypothesis on the
derivatives with respect to  and Theorem 3.1. The L>°(T") — BMO(T") bound
is a consequence of Theorem 3.8. The theorem follows then from real interpolation.

O
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Multiplication Properties in Gelfand—Shilov
Pseudo-differential Calculus

Joachim Toft

Abstract. We consider modulation space and spaces of Schatten—von Neu-
mann symbols where corresponding pseudo-differential operators map one
Hilbert space to another. We prove Holder-Young and Young type results
for such spaces under dilated convolutions and multiplications. We also prove
continuity properties for such spaces under the twisted convolution, and the
Weyl product. These results lead to continuity properties for twisted convo-
lutions on Lebesgue spaces, e.g., L?’w) is a twisted convolution algebra when
1 < p <2 and appropriate weight w.
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0. Introduction

The aim of the paper is to extend the results in [51] on various types of products in
pseudo-differential calculus to include convenient Banach spaces of Gelfand—Shilov
functions and distributions. The family of Banach spaces consists of (weighted)
Lebesgue spaces, modulation spaces and spaces of Schatten—von Neumann symbols
in the pseudo-differential calculus. The products concern the usual multiplication
and convolution, twisted convolution and the Weyl product. Especially we estab-
lish continuity properties for Lebesgue and modulation spaces under the twisted
convolution and the Weyl product, and prove Young type results for Schatten—von
Neumann symbols under the ordinary multiplication and convolution.

We recall that the composition of two Weyl operators corresponds to the Weyl
product of the two operator symbols on the symbol level, and the twisted convo-
lution appears when Weyl product is conjugated by symplectic Fourier transform.
(See Section 1 for the details.) Convolution and multiplication products appear
when investigating Toeplitz operators (also known as localization operators) in
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the framework of pseudo-differential calculus. More precisely, each Toeplitz oper-
ator is equal to a pseudo-differential operator, where the symbol of the pseudo-
differential operator is a convolution between the Toeplitz symbol and a rank one
symbol, which is an ordinary multiplication on the Fourier transform side. We
remark that Toeplitz operators might be convenient to use when approximating
certain pseudo-differential operators (see, e.g., [7, 44]), and in computation of ki-
netic energy in mechanics (cf. [31]).

The most of the questions here were carefully investigated in [51] in the case
when the involved spaces are defined by weights of polynomial type (see, e.g., [28]
for notations concerning the usual function and distribution spaces, and Section 1
for other notations). In particular, all function and distribution spaces in [51] stay
between .# and .#’. In the present paper we use the framework in [51], and extend
the results in [51] such that we permit general moderate weights. This implies
that the function and distribution spaces can be arbitrary close to Gelfand—Shilov
spaces of the form &7 and ¥f when s > 1, and their duals.

In several questions we may use similar arguments as in [51], while new
types of difficulties appear in other questions, when passing from the distribution
theory for Schwartz functions in [51], to corresponding theory for Gelfand—Shilov
functions.

In order to be more specific, let .77{ and 7% be modulation spaces which are
Hilbert spaces (see [52]). Also let .Z, (44, #4), p € [1,00], be the set of Schatten—
von Neumann operators of order p from 77 to .74, and let s;f’(%, %) be the
set of all distributions a € S} /Q(Rgd) such that the corresponding Weyl operators
Op“(a) belong to Z,(H4, 76).

In general it is not complicated to establish continuity properties for spaces
of the form s = s(J, 7) under the Weyl product and twisted convolution,
because such questions can easily be reformulated into questions of compositions
for Schatten—von Neumann operators on the operator level. It is more complicated
to find continuity relations for dilated multiplications and convolutions on the s’
spaces, because such products take complicated forms on the operator level. In
this situation we use certain Fourier techniques, similar to those in [44, Section 3]
and [51], to get convenient integral formulas. By making appropriate estimates on
these formulas in combination with duality and interpolation, we establish Young
type results for s’ spaces under such products.

For Lebesgue and general modulation spaces, the situation is different. In fact,
in contrast to spaces of Schatten symbols, it is complicated to find certain results
under the Weyl product and the twisted convolution, while finding Holder—Young
results under convolutions and multiplications are straightforward. For example,
continuity properties for modulation spaces under the Weyl product have been
investigated in, e.g., [23, 27, 30, 40, 51]. In Section 2 we extend these properties by
enlarging the family of weights in the definition of modulation and Lebesgue spaces.

In particular we prove that L%w) is an algebra under the twisted convolution, when

w(X) =eXl and ¢ > 0.
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For further considerations we recall some definitions. Let t € R be fixed and
let a € S;/2(R??). Then the pseudo differential operator Op,(a) with symbol a is
the continuous operator on Sy /5 ( R?), defined by the formula

Op (@) = n) [ [ al( =t + ty. 7w dyde. (01)

The definition of Op,(a) extends to each a € &, (R??), and then Op,(a) is con-
tinuous from & /2 (R?) to S{/Q(Rd). (Ct., e.g., [28] or Section 1.) If t = 1/2, then
Op,(a) is equal to the Weyl operator Op“(a) for a. If instead ¢t = 0, then the
standard (Kohn—Nirenberg) representation a(x, D) is obtained.

The modulation spaces were introduced by Feichtinger in [13], and developed
further and generalized in [14, 16-18, 22]. We are especially interested in the
modulation spaces M (pj(Rd) and W(’;’]‘)J(Rd) which are the sets of Gelfand—Shilov
distributions on R? whose short-time Fourier transform (STFT) belong to the
weighted and mixed Lebesgue spaces L}"{ (de) and L (RZd) respectively.
Here, and p, ¢ € [1, 00|, and we refer to (1 26) and (1.27) below for the definition
of the latter space norms. In contrast to [51], the weight function w here is allowed
to belong to Zg(R2?9), the set of all moderated functions on the phase (or time-
frequency shift) space R2%. We remark that the family &g contain all polynomial
type weights. It follows that w, p and ¢ to some extent quantify the degrees of
asymptotic decay and singularity of the distributions in M (pu’g and Wp 7 (We refer
to [15] for a modern description of modulation spaces.)

In the Weyl calculus of pseudo-differential operators, operator composition
corresponds on the symbol level to the Weyl product #, which on the symplectic
Fourier transform side corresponds to the twisted convolution *,. Sometimes, the
Weyl product is called the twisted product. A problem in this field is to find
conditions on the weight functions w; and pj, ¢; € [1, c0], for the mappings

(a1,a2) — a1#as and (a1, a2) — a1 %, as
on Sy /2 (R?%) to be uniquely extendable to continuous mappings from

Mpl#h (RZd) % Mpz,qz (RZd) to Mpo,qo (R2d)

(w1) (wo)
and from
WELSH R x W29 (R to W% (R™).
Here the modulation spaces M4 and Wpu’g are obtained by replacing the usual
STFT with the symplectic STFT in the definition of modulation space norms.
One part of such questions might be to find appropriate conditions on w; and
pj,q; € [1,00] such that

||a1 *o G,QHWva‘IO 5 ||a1||WP1741 ||CI,2||1/VPQ,£127 (02)
(wp) (w1) (w2)
when a; € 8y /2,j = 0,1,2. Here and in what follows we let A < B indicate A < ¢B,

for a suitable constant ¢ > 0, and we write A < B when A < B and B < A.
Important contributions in this context can be found in [23, 27, 30, 40, 43, 52],
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where Theorem 0.3’ in [27] and Theorem 6.4 in [52] seem to be the most general
results so far (see also Theorem 2.2).

The result for twisted convolution on modulation spaces which corresponds
to Theorem 0.3" in [27] and Theorem 6.4 in [52] is given by Theorem 0.1 below.
Here the assumptions on the involved weight functions and Lebesgue exponents
on the modulation spaces are

wo(X,Y) Sw(X-Y+Z Z>OJ2(Y — Z,X—&-Z)7 XY, 7 e Rgd, (0.3)
1 1 1 1 1 1

- == (=) (0.4)
b1 D2 Po q1 q2 qo

and

1 1 1 1 1 1 1 1 .
0< 4+ — <, <+ - . j=012 (0.5)
qgq 492 490 Pj 9 P1r P2 Po
Theorem 0.1. Let wy,wi,w2 € Zr(R*) satisfy (0.3), and that pj,q; € [1,00]
for 5 = 0,1,2, satisfy (0.4) and (0.5). Then the map (a1,a2) — a1 %, az on

S(R*) extends uniquely to a continuous map from W(plil')“ (R2%) x W(p:;iz (R%)

to ngj(;()m (R%), and for some constant C > 0, the bound (0.2) holds for every
a, € W&ﬁl (R*) and ay € ijgz(RZd).

In Section 2 we also consider the case when p; = ¢; = 2, and the involved
weights w;(X,Y) are independent of the Y-variable, i.e., w;j(X,Y) = wj(X). In
this case, W(ZMQ) agrees with L(zwj), and the condition (0.3) is reduced to

wo (X1 + X2) S wi(X1)wa(X2) (0.6)

Hence, Theorem 0.1 shows that the map (a1, as) — a1 *, a2 extends to a continuous
mapping from L(zwl) X L(2w2) to L? and that

(wo)?

lar*o azllzz S llaallez, llazliz, s (0.7)

(w1) )

holds when a; € wal)(de) and as € L%wz)(RQd). Here and in what follows,

p’ € [1,00] denotes the conjugate exponent to p € [1,00], i.e., p and p’ should
satisfy 1/p + 1/p’ = 1. The latter property is extended in Section 2 to involve
mixed weighted norm spaces of Lebesgue type. As a special case we obtain the
following generalization of (0.7).

Theorem 0.2. Let w; € Pr(R?*?), and let p; € [1,00] for j = 0,1,2 satisfy (0.6)
and
1 1 1 1
max ( , ,) < + — <1.
i=0.12\p; pi/ T pr p2 po

Then the map (a1,a2) — a1 *, az extends uniquely to a continuous mapping from

Lf;l)(RQd) X ijQ)(RQd) to Lfgg)(RQd), and

llax g azllro S llasllpes flazll e
(wg) (w (wa

5 ) (0.8)
(R2d>.

when a; € L

(wl)(RQd) and ay € L?

(w2)
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Theorem 0.2 and its extensions are used in the end of Section 2 to extend the
class of possible window functions in the definition of modulation space norms.

In Section 5 we establish Young type results for dilated multiplications and
convolutions for the spaces s) (w1, w2) = s, (J4, #3), when 7 for j = 1,2 is mod-
ulation space M(Zu’j)(Rd) = M(ij)(Rd) with appropriate weights w;. The involved

Schatten exponents should satisfy the Young condition

1 1 1
+ =1+, 1<pi,p,r<oo, (0.9)
P11 P2 r
and the involved dilation factors should satisfy
(D72 + (D)2t =1 (0.10)
or
(=147 + (-1)7283 = 1, (0.11)

when j1,j2 € {0,1}. The conditions for the involved weight functions are

(X1 + Xa2) S5, 1(01 X1)05, 2(t2X2),

w(X1 + X3) S wjy 1 (t1X1)wj, 2(62X3), 012)
where
wo,ik(X) =V16(X) =wi(X), Yor(X)=wir(X)="17,(X). (0.13)
With these conditions we prove
lav,e, * az,ta llsw(1/0,0) < Cllarllse, (10,00 lazllsw (102,025 (0.14)
lave azea e (1 /0.0) < Cllarllsy (w00 llazllse (1/0,0,): (0.15)

for admissible a1 and as. Here and in what follows we set a;; = a;(t-). More
precisely, in Section 5 we prove the following two theorems, as well as multi-linear
extensions of these results (cf. Theorems 0.3" and 0.4"), which generalize Theorem
3.3, Theorem 3.3’ and Corollary 3.5 in [44] and corresponding results in [51]. In
fact, these results in [44] follow by letting /4 = % = L? in Theorems 0.3’ and 0.4’

Theorem 0.3. Let p1,p2,7 € [1, 00] satisfy (0.9), and let t1,t2 € R\O satisfy (0.10),
for some choices of j1,j2 € {0,1}. Also let w,w;,9,9; € Pr(R>*?) for j = 1,2
satisfy (0.12) and (0.13). Then the map (ai,a2) — a1, * azy, on Sio(R??),
extends uniquely to a continuous mapping from
sZ’l(l/wl,ﬁl) X 81;2(1/002,192)
to s¥(1/w, V). Furthermore, (0.14) holds for some constant
C = Cglta|~>/Pr|ta| /P2,

where Cy is independent of a1 € s;fl(l/wl,ﬁl), as € s;;(l/wg,ﬁg), t1,t2 and d.
Moreover, Op" (a1, * az.,) > 0 when Op“(a;) > 0 for each 1 < j < 2.
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Theorem 0.4. Let p1,p2, 7 € [1,00] satisfy (0.9), and let t1,t2 € R\O satisfy (0.11),
for some choices of j1,j2 € {0,1}. Also let w,w;,9,9; € Pr(R>*?) for j = 1,2
satisfy (0.12) and (0.13). Then the map (a1, az) — a1, a24, on Sy/2(R??), extends
uniquely to a continuous mapping from

s;fl(l/wl,m) X s;‘;(l/wg,ﬁg)
to s¥(1/w, ). Furthermore, (0.15) holds for some constant
C = C2|ty|2/Pi|ty|~2/P2,
where Cy is independent of a; € sgl(l/wl,ﬁl), as € s;f;(l/wg,ﬁg), t1,to and d.

Some preparations to the dilated convolution and multiplication results in
Section 5 are given in Sections 3 and 4. In Section 3 we introduce the notion of
Gelfand—Shilov and Beurling tempered (quasi-)Banach and Hilbert spaces, and
prove certain properties. Especially we establish embedding properties between
such spaces, modulation spaces and Gelfand—Shilov spaces. These embeddings are
also used in [54], when establishing Schatten-von Neumann results for operators
with Gelfand—Shilov kernels. Furthermore we investigate certain relations for bases
in the Hilbert space case.

In Section 4 we consider dual properties for s;'(1, #3). Here 71 and 7
belong to a broad class of Hilbert spaces containing any M (2(3 space. More precisely,
assume that p < co. Then we prove that the dual for s;f’(jﬁ, %) can be identified
with sy’ (74, 73) for appropriate Hilbert spaces 7 and J# through a unique
extension of the L? form on & /5. (Cf. Theorem 4.8.) In the last part of Section 4
we show some properties on bases and Hilbert—Schmidt operators. We use these
results to establish estimates for generalized gamma functions evaluated in integer
points (cf. Example 3.6).

In the last section we apply the results in Section 5 to prove that the class
of trace-class symbols is invariant under compositions with odd entire functions.
Here we also show how Theorem 0.3 can be used to define Toeplitz operators with
symbols in dilated s} spaces, and that such operators fulfill certain Schatten—von
Neumann properties.

1. Preliminaries

In this section we introduce some notations and discuss basic results. We start by
recalling some facts concerning Gelfand—Shilov spaces. Thereafter we recall some
properties about pseudo-differential operators. Especially we discuss the Weyl
product and twisted convolution. Finally we recall some facts about modulation
spaces. The proofs are in general omitted, since the results can be found in the
literature.
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We start by considering Gelfand—Shilov spaces. Let 0 < h,s € R be fixed.
Then Ss ,(RY) consists of all f € C°(R?) such that

270 f (x))|

Iflls plal+1Blals Bls

n = SUp
is finite. Here the supremum should be taken over all a, 3 € N¢ and z € R¢.

Obviously Ss 5, < . is a Banach space which increases with h and s. Here
and in what follows we use the notation A — B when the topological spaces A
and B satisfy A C B with continuous embeddings. Furthermore, if s > 1/2, or
s =1/2 and h is sufficiently large, then S, j, contains all finite linear combinations
of Hermite functions. Since such linear combinations are dense in .%, it follows
that the dual (Ss ;) (R?) of Ss.n(R?) is a Banach space which contains ./ (R?).

The Gelfand-Shilov spaces Ss(R%) and ¥5(R?) are the inductive and projec-
tive limits respectively of S ,(R%). This implies that

SsRY) = [ JSan(R?) and T(RY) =[] Sen(RY), (1.1)
h>0 h>0

and that the topology for S;(R?) is the strongest possible one such that the in-
clusion map from Ss 5 (R?) to Ss(R?) is continuous, for every choice of h > 0.
The space X,(R?) is a Fréchet space with semi norms || - [|s, ,, h > 0. Moreover,
Ys(R%) # {0}, if and only if s > 1/2, and Ss(R?) # {0}, if and only if s > 1/2.
From now on we assume that s > 1/2 when considering ¥4(R%), and s > 1/2
when considering S, (R?)

The Gelfand-Shilov distribution spaces S.(R?) and ¥/, (R?) are the projective
and inductive limit respectively of S.(R?). This means that

SIRY) = [ S,RY) and LR = (] 8L, RY. (1.1)
h>0 h>0

We remark that in [20, 29, 34] it is proved that S’(R?) is the dual of S;(R?), and
Y (R?) is the dual of ¥,(R?) (also in topological sense).
For each € > 0 and s > 1/2 we have
S12(R?) =35,(RY) = S,(RY) < o4 (RY)

and Y, (R?) =S{(R) =X (RY) < Sf ,(R?).

(1.2)

The Gelfand—Shilov spaces are invariant under several basic transformations.
For example they are invariant under translations, dilations, tensor products and
under (partial) Fourier transformations.

From now on we let .% be the Fourier transform which takes the form

(FNE) = FlO =0 | e ds

when f € L'(R?). Here (-, -) denotes the usual scalar product on R%. The map
Z extends uniquely to homeomorphisms on .#/(R%), S/(R%) and X, (R%), and
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restricts to homeomorphisms on .7 (R%), S;(RY) and ¥,(R%), and to a unitary
operator on L?(R?).

It follows from the following lemma that elements in Gelfand—Shilov spaces
can be characterized by estimates of the form

@IS e and |F(Q) e (1.3)
The proof is omitted, since the result can be found in, e.g., [4, 20].
Lemma 1.1. Let f € Si/Q(Rd). Then the following is true:
(1) if s > 1/2, then f € Ss(R?), if and only if (1.3) holds for some & > 0;
(2) if s > 1/2, then f € S4(RY), if and only if (1.3) holds for each & > 0.
Gelfand—Shilov spaces can also easily be characterized by Hermite functions.
We recall that the Hermite function h, with respect to the multi-index o € N¢ is
defined by
ha(z) = w4 (—1)lel (2ol 1)1/ 2le*/2 (g —lel®y

The set {hq}ocne is an orthonormal basis for L2(R%). In particular,
F=Y caha, ca=(fha)r2ma, (1.4)

and
1fllz2 = [{catallz < oo,
when f € L?(R%). Here and in what follows, (-, -)z2(re) denotes any continuous
extension of the L? form on &) /5(R%).
The Hermite expansions can also be used to characterize distributions and
their test function spaces. More precisely, let p € [1,00] be fixed. Then it is well
known that f here belongs to .#(R?), if and only if

[{cala) Yallir < 00 (1.5)

for every t € R. Furthermore, for every f € .#/(R?), the expansion (1.4) still
holds, where the sum converges in .#’, and (1.5) holds for some choice of t € R,
which depends on f.

The following proposition, which can be found in, e.g., [21], shows that similar
conclusion for Gelfand—Shilov spaces hold, after the estimate (1.5) is replaced by

I{cae™™ Yol < oo. (1.6)
(Ct. formula (2.12) in [21].)
Proposition 1.2. Let p € [1,00], f € S{/QRd), s1>1/2, s9 > 1/2 and let co be as
n (1.4). Then the following is true:

(1) fes, (RY), if and only if (1.6) holds with s = sy for every t < 0. Further-
more, (1.4) holds where the sum converges in S, ;

(2) f e X, (RY), if and only if (1.6) holds with s = s for some t < 0. Further-
more, (1.4) holds where the sum converges in X, ;

1/2s
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(3) f €8s, (RY), if and only if (1.6) holds with s = sy for some t > 0. Further-
more, (1.4) holds where the sum converges in S, ;

(4) f € 35, (RY), if and only if (1.6) holds with s = sa for every t > 0. Further-
more, (1.4) holds where the sum converges in X, .

Next we recall some properties in pseudo-differential calculus. Let s > 1/2,
a € Ss(R??), and t € R be fixed. Then the pseudo-differential operator Op,(a)
in (0.1) is a linear and continuous operator on Ss(R?). For general a € S’ (R?9),
the pseudo-differential operator Op,(a) is defined as the continuous operator from
S:(R%) to S,(RY) with distribution kernel given by

Kau(z,y) = 2m)~2(F; a)(1 - )z + ty,z — ). (1.7)

Here .75 F is the partial Fourier transform of F(x,y) € S:(R??) with respect to
the y variable. This definition makes sense, since the mappings

Fo and F(z,y) = F((1 —t)z +ty,y — x) (1.8)

are homeomorphisms on S’(R??). In particular, the map a — K, is a homeo-
morphism on S’ (R2?9).

For any K € S, (R%%92) we let Tk be the linear and continuous mapping
from S,(R?) to S’ (R%), defined by the formula

(Tr f,9) L2(re2) = (K, 9 @ [)r2(metr+az).- (1.9)
It is well known that if ¢ € R, then it follows from Schwartz kernel theorem that
K + Tk and a — Op,(a) are bijective mappings from .7’ (R2?) to the set of linear
and continuous mappings from .7 (R?) to ./ (R?) (cf., e.g., [28]).

In this context we remark that the maps K — Tk and a — Op,(a) are
uniquely extendable to bijective mappings from S’(R29) to the set of linear and
continuous mappings from S,(R?) to S.(R?). In fact, the asserted bijectivity for
the map K +— Tk follows from the kernel theorem [32, Theorem 2.2], by Lozanov—
Crvenkovié¢, Perisi¢ and Taskovic. This kernel theorem corresponds to Schwartz
kernel theorem in the usual distribution theory. The other assertion follows from
the fact that the map a — K, ¢ is a homeomorphism on S.

In particular, for each a; € S,(R??) and t1,t2 € R, there is a unique ay €
S.(R?%) such that Op,, (a1) = Opy, (a2). The relation between ay and as is given by

Opy, (a1) = Opy, (az) Aand ag(x,§) = e/ PeLelg, (2. €). (1.10)
(Cf. [28].) Note here that the right-hand side makes sense, since it is equivalent to

~

dy = (2=t (=93, and that the map a — e™{*%)q is continuous on S.

Let t € R and a € S(R??) be fixed. Then a is called a rank-one element
with respect to t, if the corresponding pseudo-differential operator is of rank-one,
ie.,

Op(a)f = (f. f2)f1,  fe€S(RY), (1.11)
for some f1, fo € SL(R?). By straightforward computations it follows that (1.11) is
fulfilled, if and only if a = (27)%/ QW}I s Where W . is the t-Wigner distribution,
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defined by the formula

Wi (2,8 = F(fal+t-) falz — (1= 1)-))(), (1.12)
which takes the form

Wi, 1, (@,6) = (2m) /2 / folz+ty)fi(z — (1 — t)y)e “ve ay,

when f1, fo € Ss(RY). By combining these facts with (1.10), it follows that

— ei(trtl)(DdeW;l
2,f17

W, (1.13)
for each fi, fo € S/(R%) and t;,t, € R. Since the Weyl case is particularly impor-
tant, we set W, . =Wy, r, whent =1/2,i.e., Wy, f, is the usual (cross-) Wigner
distribution of f; and fo.

For future references we note the link

(Op;(a)f, 9)r2(ray = (2m) " (a, W ;) 12(R20),
aeS/(R*) and f,geS,(RY)

between pseudo-differential operators and Wigner distributions, which follows by
straightforward computations (see also, e.g., [10, 11]).

(1.14)

Next we discuss the Weyl product, twisted convolution and related objects.
Let s > 1/2 and let a,b € S.(R??) be appropriate. Then the Weyl product a#b
between a and b is the function or distribution which fulfills Op" (a#b) = Op*(a)o
Op®(b), provided the right-hand side makes sense as a continuous operator from
Ss(R%) to S.(R?). More general, if ¢t € R, then the product #, is defined by the
formula
Op; (a#b) = Opy(a) o Op,(b), (1.15)
provided the right-hand side makes sense as a continuous operator from Ss(R?)
to SL(RY).
The Weyl product can also, in a convenient way, be expressed in terms of the
symplectic Fourier transform and twisted convolution. More precisely, let s > 1/2.
Then the symplectic Fourier transform for a € S;(R??) is defined by the formula

(Ze)(X) =7 [ a(v)e?o ) ay,

where o is the symplectic form, given by
o(X,Y) = (y,6) —(z,m), X =(x.8 €R™ Y =(yn)cR™

We note that Z, = To (F @ (F 1)), when (Ta)(z, &) = 2%a(2¢, 2x). In par-
ticular, .%, is continuous on Sy(R??), and extends uniquely to a homeomorphism
on S'(R??), and to a unitary map on L?(R2?9), since similar facts hold for .7.
Furthermore, .#2 is the identity operator.

Let s > 1/2 and a,b € Ss(R??). Then the twisted convolution of a and b is
defined by the formula

(a %4 D)(X) = (2/7)¥/? / a(X = Y)b(Y)e2XY) gy, (1.16)
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The definition of %, extends in different ways. For example, it extends to a con-
tinuous multiplication on LP(R??) when p € [1,2], and to a continuous map from
S (R??) x S,(R??) to S’ (R2?). If a,b € S’ (R??), then a#b makes sense if and only

S

if a x, b makes sense, and then

a#b = (21) "2 %, (F,b). (1.17)

We also remark that for the twisted convolution we have
Folaxsb) = (Foa) %o b= 0%, (Fob), (1.18)
where a(X) = a(—X) (cf. [42, 44, 45]). A combination of (1.17) and (1.18) gives
Fo(a#th) = (27)"Y2(Fpa) %o (Fsb). (1.19)

In the Weyl calculus it is in several situations convenient to use the operator
A on S!(R?), defined by the formula
Aa(z,y) = (F5 'a)((y — 2)/2,—(x +y)), ae€SR™). (1.20)

Here and in what follows we identify operators with their distribution kernels. We
note that Aa(x,y) agrees with (27)%2K¥(—x,y), where K is the distribution
kernel to the Weyl operator Op”(a). If a € S;(R2?), then Aa is given by

Aa(z,y) = (27T)7d/2/a((y — x)/Q,g)e*i<m+y,§> dy.

In particular, the map a — Aa is bijective from S’ (R2?) to the set of linear and
continuous operators from Ss(R?) to S’(R?), since similar facts are true for the
Weyl quantization.

The operator A is important when using the twisted convolution, because for
each a,b € Ss(R*?) we have

A(a *, b) = Aa o Ab. (1.21)

(See [19, 42, 44, 45].)

In the following lemma we list some facts about the operator A. The result is
a consequence of Fourier’s inversion formula, and the verifications are left for the
reader.

Lemma 1.3. Let s > 1/2, A be as above, a, a1, az,b € S.(R??), where at least two
of a1, az, b should belong to S, (R??), and set U = Aa. Then the following is true:

(1) U= Aa, if a(X) = a(—X);
(2) JoU = AZ,a, where JgU (z,y) = U(—=z,y);
(3) A(Foa) = (2m)¥?0p“(a) and (Op“(a)f,g) = (2m)"¥/*(Aa,§ @ f) when
fr9 € S12(RY);
(4) the Hilbert space adjoint of Aa equals Aa, where a(X) = a(—X). Further-
more,
(a1 %o az,b) = (a1,b %, a2) = (az,a1 *5 ),

(a1 #5 a2) %o b = a1 *4 (a2 %, b).
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A linear and continuous operator from Ss(R?) to S’(R") is called positive
semi-definite (of order s > 1/2) when (T'f, f)r> > 0 for every f € S,(R%). We
write T > 0 when T is positive semi-definite or order s. A distribution a € S’(R?2?)
is called o-positive (of order s) if Aa is a positive semi-definite operator. The set
of all o-positive distributions on R*® is denoted by S/ , (R*?). Since S, increases
with s and that S;/, is dense in S, it follows that

SR =S (R*)(S(R™M), 2>
The following result is an immediate consequence of Lemma 1.3.
Proposition 1.4. Let s > 1/2 and a € S,(R??). Then
ae S;7+(R2d) < Aa >0 as operator < Op“(F,a) > 0.

We refer to [44, 45] for more facts about o-positive functions and distributions
in the framework of tempered distributions.

In the end of Section 5 we also discuss continuity for Toeplitz operators. Let
5>1/2,a € §(R*) and hy, hy € Ss(R%). Then the Toeplitz operator Tpy,, 1, (a),
with symbol a, and window functions h; and hs, is defined by the formula

(Tphl,hQ (a')flv f2> = (CL(2 . )Wf1,h17 szﬁz) (1'22>
when fi, f € Ss(R%). The definition of Tpp,, n,(a) extends in several ways (cf.,
e.g., [6, 26, 42, 44, 46, 49, 50, 52]).

In several of these extensions as well as in Section 5, we interpret Toeplitz
operators as pseudo-differential operators, using the fact that

Tpp, ny(a) = Op,(axu) when

1.23
u(X) = @r) W, (X)), (1.23)

h1, he are suitable window functions on R? and « is an appropriate distribution
on R?4. The relation (1.23) is well known when ¢t = 0 or t = 1/2 (cf., e.g., [6, 8,
38, 42, 44, 4648, 50]). For general ¢, (1.23) is an immediate consequence of the
case t = 1/2, (1.13), and the fact that

eit(D””’D@(a xu) = a* (eit(D””’DOu)

)

which follows by integration by parts.

Next we discuss basic properties for modulation spaces, and start by recalling
the conditions for the involved weight functions. Let 0 < w,v € LS (RY). Then w
is called moderate or v-moderate if

w(z+y) Swlx)vly), z,yeR (1.24)

Here the function v is called submultiplicative, if (1.24) holds when w = v. We note
that if (1.24) holds, then

v(=2) 7 Sw(e) S v(@).
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Furthermore, for such w it follows that (1.24) is true when
v(z) = Ceclel,
for some positive constants ¢ and C. In particular, if w is moderate on R%, then
el S w(a) 5 e,

for some constant ¢ > 0.

The set of all moderate functions on R? is denoted by Zx(R?). Furthermore,
if v in (1.24) can be chosen as a polynomial, then w is called of polynomial type, or
polynomially moderate. We let Z(R?) be the set of all polynomially moderated
functions on R%. If w(z, &) € Pr(R2?) is constant with respect to the x-variable
(&-variable), then we write w(§) (w(z)) instead of w(x, ). In this case we consider
w as an element in Zg(R2?) or in Zx(R?) depending on the situation.

Let ¢ € Si(RY) be fixed. Then the short-time Fourier transform Vyf of f €
S’ (R%) with respect to the window function ¢ is the Gelfand—Shilov distribution
on R??, defined by

Vof(z,&) = (FU(f ®¢))(x,&) = F(f ¢(- —x))(&),
where (UF)(x,y) = F(y,y — ). If f,¢ € Sq(R%), then it follows that

Vo f(2.€) = (2m) 2 / F)dly — 2)e 0 dy.

We recall that the short-time Fourier transform is closely related to the Wigner
distribution, because

Wi f (x,€) = 24> @0V, f (21, 2¢), (1.25)

which follows by elementary manipulations. In particular, Toeplitz operators can
be expressed by the formula

(Tpp, ny (@) f1, f2) = (aVi, f1, Vi, f2)- (1.22)’
Let w € Z(R*), p,q € [1,00] and ¢ € Sy /2(R?)\0 be fixed. Then the mixed
Lebesgue space L"! | (R??) consists of all F' € Li, .(R*?) such that ||F||L11’(q | <09,

(w) loc

and Ly{ ) (R2) consists of all F € L _(R2?) such that ||F||L§Ez , < 00. Here

1Pz, = ([ ([P gute.ora)™ )™ a2

and
17y, = ([ ([ utegr i)™ a) ™ am

with obvious modifications when p = oo or ¢ = oo. We note that these norms
might attain +oo.
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The modulation spaces M. &‘;(Rd) and W(’;’]‘)J(Rd) are the Banach spaces which
consist of all f € Si/Q(Rd) such that ||f||Méw)z < oo and ||f||W(p;z < oo respectively.
Here

[Fllazze = Vo Fllee o and  [fllwee = [Voflloze - (1.28)

We remark that the definitions of M. (pu’g(Rd) and W&‘)Z(Rd) are independent of the
choice of ¢ € Sy/2(R%) \ 0 and different ¢ gives rise to equivalent norms. (See
Proposition 1.5 below.) From the fact that

Vof(§, —2) = OV f(2,6), @) = b(—2), (1.29)
it follows that

FEWHRY = FeMPIRY),  wy€ —2)=w(@E).

For convenience we set M (pw) =M (pj)) , which agrees with W(’; ) = W(’;’)) . Fur-
thermore we set MP9 = M(pwg and WP9 = W(pw')l when w = 1.

The proof of the following proposition is omitted, since the results can be
found in [5, 12, 13, 16-18, 22, 46-49, 52]. Here we recall that p,p’ € [1, o] satisfy
/p+1/p' =1
Proposition 1.5. Let p,q,pj,q; € [1,00] for j = 1,2, and w,wr,ws2,v € Z(R??)
be such that v =0, w is v-moderate and wo < wy. Then the following is true:

(1) fe M&‘;(Rd) if and only if (1.28) holds for any ¢ € M(lv) (R%)\ 0. Moreover,

M(pu’g is a Banach space under the norm in (1.28) and different choices of ¢

give rise to equivalent norms;

(2) if p1 < p2 and g1 < go then

Ti(RY) < MV (RY) <= MY (RY) < 1 (RY).

(3) the L? product (-, )2 on S1/2 extends uniquely to a continuous map from
M (R™) x M(pll’/q;)(Rd) to C. On the other hand, if ||a|| = sup|(a,b)|, where
the supremum is taken over all b € Sy/2(R?) such that ol orr < 1, then

(/)

|1 and || - ||M€7<)1 are equivalent norms;

4) if p,q < oo, then Sy,2(R%) is dense in MPY(R%) and the dual space o
/ (w)

M&g(Rd) can be identified with Mg’/q;)(Rd), through the L*-form (-, -)p=.

Moreover, Sl/g(Rd) is weakly dense in M(pw’)q (R?) with respect to the L?-

form.

Similar facts hold if the M(pwg spaces are replaced by W(pw')l spaces.

Proposition 1.5 (1) allows us be rather vague concerning the choice of ¢ €
M(lv) \ 0 in (1.28). For example, if C' > 0 is a constant and &/ is a subset of &,
then ||al|pe < C for every a € &, means that the inequality holds for some

M( ) Yy ) q y

choice of ¢ € M (11}) \ 0 and every a € &/. Evidently, a similar inequality is true
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for any other choice of ¢ € M, (1v) \ 0, with a suitable constant, larger than C' if
necessary.

Remark 1.6. By Theorem 3.9 in [52] and Proposition 1.5 (2) it follows that

N MZIRY =R, ) MEIRY) =3[ (RY)
WEPE wEPR

More generally, let s > 1, and let P be the set of all w € Zx(R??) such that

W@ +y, &+ ) Swla, e W,

for some ¢ > 0. Then

[ MR = (R, U Mpi., (R = (R
weP weP
U MLiRY) =S,®RY  and () MEI, (RY) = S{(RY),
weP weP

and that

Ze(RY) = MES(RY) < So(RT)  and - S[(R) < M7, (RY) <= T{(RY).

(Cf. Proposition 4.5 in [9], Proposition 4. in [25], Corollary 5.2 in [35] or Theorem
4.1 in [41]. See also [52, Theorem 3.9] for an extension of these inclusions to broader
classes of Gelfand—Shilov and modulation spaces.)

We refer to Example 3.4 below and to [51, Remark 1.4] for other examples
on interesting modulation spaces.

We finish the section by giving some remarks on the symplectic short-time
Fourier transform. The symplectic short-time Fourier transform of a € S} /Q(de)

with respect to the window function ® € S] /Q(de) is defined by
Voa(X,Y) = Z,(a®(- — X))(Y), X,Y eR™.

Let w € Zp(R*). Then M (R%) and W&%(Rgd) denote the modulation
spaces, where the symplectic short-time Fourier transform is used instead of the
usual short-time Fourier transform in the definitions of the norms. It follows that
any property valid for M(I)S(Rgd) or W(’:’]‘)Z(Rgd) carry over to ./\/lﬁf)(RQd) and
WP 4(R?24) respectively. For example, for the symplectic short-time Fourier trans-

(w)
form we have
V. o(Fpa)(X,Y) = 27V Vpa(Y, X), (1.30)
(cf. (1.29)) which implies that

Fo MR ) = WP (RY),  wo(X,Y) = w(Y, X). (1.31)

(wo)
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2. Twisted convolution on modulation spaces
and Lebesgue spaces

In this section we discuss algebraic properties of the twisted convolution when act-
ing on modulation spaces of the form W&%. The most general result corresponds to

Theorem 0.3’ in [27], which concerns continuity for the Weyl product on modula-
tion spaces of the form M? f. Thereafter we use this result to establish continuity
properties for the twisted convolution when acting on weighted Lebesgue spaces.
We will mainly follow the analysis in Section 2 in [51], and the proofs are similar.

In these investigations we need the following lemma, which is strongly related
to Lemma 4.4 in [43] and Lemma 2.1 in [27]. The latter results were fundamental
in the proofs of [43, Theorem 4.1] and for the Weyl product results in [27].

Lemma 2.1. Let s > 1/2, a; € S,(R??), ay € Ss(R?*?), &1,P5 € ¥, (R2) and
X,Y € R??. Then the following is true:

(1) if ® = 79P1 4Py, then ® € X (R??), and the map
Z 1 e27E) (Vg an)(X =Y + Z,Z) Va,a2)(X + Z,Y — Z)
belongs to L'(R2%), and
Vo (a1#a2)(X,Y)
— /e%“(z’y) Ve, a1) (X =Y + Z,Z) Va,a2)(X + Z,Y — Z)dZ;

(2) if ® =299y x, By, then ® € X4(R??), and the map
Z s 20 Z) Yy WX =Y + Z,Z) Va,a2)(Y — Z, X + Z)
belongs to L'(R2%), and
Vo (a1 x5 a2)(X,Y)
_ / 27X ZY) (Vo 0 V(X — Y + Z, Z) (Va,a2)(Y — 2, X + Z) dZ.
Proof. The L'-continuity for the mapping in (1) and (2) follow immediately from
Theorems 6.4 and 6.5 in [52]. The integral formula for Vg(ai#a2) in (1) then

follows by similar arguments as for the proof of [43, Lemma 4.4], based on repeated
applications of Fourier’s inversion formula. The details are left for the reader. This

gives (1).
The integral formula Vg (a1 *, a2) in (2) now follows from (1), (1.17), (1.18)
and (1.30). The proof is complete. O

For completeness we also write down the following extension of Theorem 0.3’
in [27]. Here the involved weight functions should satisfy

wo(X,Y) Swn(X =Y + Z, 2)n(X +2,Y — Z), X,Y,ZcR*, (2.1)
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and the exponent pj, g; € [1,00] satisfy (0.4) and

1 1 1 1 1 1 1 1 )
0< 4+ - L < 4+ -, j=0,1,2. (2.2)

PLoP2 Po PG @ @2 Qo

Theorem 2.2. Let w; € Pg(R*) and pj,q; € [1,00], j = 0,1,2, satisfy (0.4),
(2.1) and (2.2). Then the map (a1,az) — ai1#az on Si»2(R??) extends uniquely
to a continuous map from M{5 (R%) x M (R%) to ML (R24), and the
bound

||G,1#a2||MPquo 5 ||a1||Mp1,q1 ||a2||MP2¢12, (23)
(wg) (w1) (w2)

holds for every a1 € M7 (R??) and as € M (R%).

The proof of Theorem 2.2 is similar to the proof of [27, Theorem 0.3'], after
Proposition 1.9 and Lemma 2.1 in [27] have been replaced by Theorem 4.19 in [52]
and Lemma 2.1. The details are left for the reader.

We note that Theorem 0.1 is an immediate consequence of (1.31), (1.19) and
Theorem 2.2. Another way to prove Theorem 0.1 is to use similar arguments as in
the proof of Theorem 2.2, based on (2) instead of (1) in Lemma 2.1.

We are now able to state and prove mapping results for the twisted convo-
lution on weighted Lebesgue spaces. We start with the extension of Theorem 0.2
from the introduction.

Theorem 0.2". Let k € {1,2}, w; € Z(R>?) and let p;,q; € [1,00] for j =0,1,2
satisfy (0.6) and
1 1 1 1 1 1 1 1 1 1
.maX [ VAR v S + - ) + - S ]-a
J=0.12\Dp;j P; 45 q; pPr P2 Po @1 G2 Qo
Then the map (a1, a2) — a1 %, az extends uniquely to a continuous mapping from
[PLa (RQd) % [P2:92 (RQd) to LP0:90 (RQd) and
k,(w1) k,(w2) k,(wo) ’

lay *5 azllppoa0 S asllpzya llazlprz e (0.8)'

when a; € LZ?(’le)(RZd) and ag € LZ?(Zz)(RQd).

Remark 2.3. The condition of the Lebesgue exponents for Theorems 0.2 and 0.2’
in [51] should be the same as in Theorems 0.2 and 0.2’ respectively. In this context,
the results here extend corresponding results in [51].

For the proof we need the following lemma.
Lemma 2.4. Let w € Pr(R?*) be such that w(z,£) = w(x). Then

M, (RT) = WE,) (RY) = LT, (RY).

(w



134 J. Toft

Proof. 1t is obvious that M(2 ) = W(Qw). We have to prove M(Qw) = wa). Let f €
S12(RY), ¢ € Si/2(RY) \ 0, and let v € PE(R?) be such that w is v-moderate.
Then (1.24) and Parseval’s formula give

113, = [[ 111600 — 2@ dsay

S [[ i@ Plot - ooty - o) dody = 1113,

Since Sy /5 is dense in L2 ) and in M(2 ) it follows that L% )< M?

(w)
In order to prove the opposite inclusion we note that ¢1v < ¢o, when ¢, ¢1 €

P are the Gauss functions ¢ (x) = e~l#I" and p2(x) = e*|“"|2/2. Hence (1.24)
and Parseval’s formula give

1912, 5 [[ 1101t~ 2w dody
< / F@)or(y — 2oy — 2)w(@) ] dady
< / P @)y — 2)eo(a)[? dady

~ [[17U6a( — )@@ dude < 1713y,

Hence M(zw) — L(zw)
The result now follows by combining these embeddings, and the proof is
complete. O

Proof of Theorem 0.2'. By duality we may assume that
1 1 1 1 )
pi Py 4 g
is attained when j = 0. Since W7,y = M, = L{,) when w(X,Y) = w(X), in view
of Lemma 2.4, the result follows from Theorem 0.1 in the case pg = p1 = p2 = 2.
Next we consider the case when the Young conditions
1 1 1 1 1 1
_|_

— =1 and + — =1 (2.4)
D1 D2 Do q1 q2 qo

max (

are fulfilled.
First we consider the case when po, g2 < 00, and we let a; € L’();’q)l (R%4) and

that az € S;/2(R??). Then

lar #5 asl| pro.a0 < (2/m) | |ar| * |az] | pro-a0 < lar||prvar [las] pp2es,  (2.5)
(wo) (wo) (w1) (w2)

by Young’s inequality and (0.6). The result now follows in this case from the fact
that Sy /5 is dense in Li)"” )2, when pa, g2 < oo0.
In the same way, the case p1,¢q1 < oo follows. It remain to consider when

p1,q1 < o0 and pa, g2 < oo are violated. By (2.4) we get p1 = ¢2 = oo and
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p2 = q = 1, or pp = g = 1 and po = q1 = oo, and it follows that Y +—
a1 (X — Y)ag(Y)e2 e (X:Y) ¢ L{,,) when a; € L)% (R%*) and ay € LS (R%),
and that (2.5) holds. This proves the result when (2.4) is fulfilled.

Next we let p; and g; be general. Then we may assume that p;,q; < oo
or pa2,qa < 00, since otherwise, the Young condition (2.4) must hold, which has

already been considered.

Therefore, by reasons of symmetry we may assume that p;,q; < oo, and
we let L{7} (R?¥) be the completion of Sj/5(R?*?). Then L (R%4) possess the
(complex) interpolation property

(E7 (R, (L7 (R2) ) = L7 (R2)
1-46 n 6 1 1-6 6 1

when

P2 P @ @ g
and p1,q1 < oo. (Cf. Chapter 5 in [2].) Hence, by multi-linear interpolation between
the case pg = p1 = p2 = 2 and the case (2.4) it follows that E%’;’ql *o L’]gf)’q? <

1) 2)
E?f)(’]q)o, and that (0.8)" holds when a1, az € Sy/s.

The result now follows for general a; € L?:)’Sl and ay € L](”f)’)qz by density
arguments, where ay is first approximated by elements in Sy, weakly, and there-
after a; is approximated by elements in &/, in the norm convergence. The proof

is complete. O

Corollary 2.5. Let w; € Zp(R*) for j =0,1,2 and p,q € [1, 0] satisfy (0.6), and
g < min(p,p’). Then the map (a1,a2) — a1 *, az extends uniquely to a continuous
; 2d 2d 2d 2d 2d
mapping from L’()wl)(R ) X L‘(ZWQ)(R ) or L‘(]wl)(R ) X waQ)(R ) to L’()WU)(R ).
In particular, if p € [1,2] and in addition wgy is submultitplicative, then
(L?wo)(de), *,) is an algebra.

We finish the section by using Theorem 0.2’ to prove that the class of per-
mitted windows in the modulation space norms can be extended. More precisely
we have the following.

Theorem 2.6. Let p,po,q,q0 € [1,00] and w,v € Pr(R>?*?) be such that py,qo <
min(p,p’,q,¢"), ¥ = v and w is v-moderate. Also let f € S{/Z(Rd). Then the
following is true:
(1) ifop e M(plf)’qo (R \ 0, then f € M&‘;(Rd) if and only if Vo f € Lf’?w)(de).
Furthermore, ||f| = ||V¢f||Lzla(q ) defines a norm for M(p’q(Rd), and different

w)
choices of ¢ give rise to equivalent norms;
(2) if o € W(’;")’q" (R4 \ 0, then f € W(’:‘)Z(Rd) if and only if Vuf € Lg”(lw)(RQd).
Furthermore, ||f| = ||V¢f||L§,(q ) defines a norm for W(’:‘)Z(Rd), and different

choices of ¢ give rise to equivalent norms.
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For the proof we note that (1.25) gives
Wy gl = Voflps,. when wo(e,€) =w(2.2¢)  (20)
for k=1,2.
Finally, by Fourier’s inversion formula it follows that if f1, g2 € S] /Q(Rd) and
fg,gl S LQ(Rd), then
Wiig1 %0 W g = (f27gl)L2Wf1,g2' (2.7)
Proof of Theorem 2.6. We may assume that py = ¢o = min(p,p’,q,q’). Assume
that ¢, € M[)* (R?) — L?(R%), where the inclusion follows from the fact that
Po,qo < 2 and v > ¢ for some constant ¢ > 0. Since ||V¢’(/J||Lzo(wq>o = ||Vw¢||L£0(>Q)o

when ¥ = v, the result follows if we prove that

Vo fllizpa, < (le) IV fllzzs, Vel ro ., (2.8)

k,(w) k,(w)

for some constant C' which is independent of f € Sl/Q(Rd) and ¢, € M(qu’)’q" (RY).
For reasons of homogeneity, it is then no restriction to assume that |||/ 2 = 1.

If p1 = p, p2 = po, 1 = ¢, g2 = qo, wo = w(2-) and vo = v(2- ), then Theorem
0.2" and (2.7) give

| ¢f||L£?w = ||Wf¢||Lk Loy Wi %0 W, ¢>||Lk L)
< IWyallizg, Wyl = 1Vefllipe, Vet o,
and (2.8) follows. The proof is complete. O

3. Gelfand—Shilov tempered vector spaces

In this section we introduce the notion of Gelfand—Shilov and Beurling tempered
(quasi-)Banach and Hilbert spaces, and establish embedding properties for such
spaces. These results are applied in the next sections when discussing Schatten—
von Neumann operators within the theory of pseudo-differential operators. The
results are also applied in [54] where decomposition and Schatten—von Neumann
properties for linear operators with Gelfand-Shilov kernels are established. We
remark that some parts of the approach here are somewhat similar to the first
part of Section 4 in [51], where related questions on tempered Hilbert spaces (with
respect to Schwartz tempered distributions) are considered.

We start by introducing some notations on quasi-Banach spaces. A quasi-
norm | - ||z on a vector space Z (over C) is a non-negative and real-valued
function || - || on % which is non-degenerate in the sense

[fllz=0 <= f=0, [fe%,
and fulfills
lafllz =l - fllez fe# acC

3.1
and  [f+gls < D(If]z +lgllz). foge B, (3-1)
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for some constant D > 1 which is independent of f, g € #. Then A is a topological
vector space when the topology for 4 is defined by || - || %, and 2 is called a quasi-
Banach space if Z is complete under this topology.

Let & be a quasi-Banach space such that

51/2(Rd) = B — Si/z(Rd)a (3.2)

and that S /»(R?) is dense in 2. We let % and %7 be the sets of all f € Si/2 (R%)

such that f € 2 and f € 2 respectively. Then 2 and A7 are quasi-Banach spaces
under the quasi-norms

£l = Ifllz and ||z = £l

respectively. Furthermore, Sy /2(R%) is dense in % and %7, and (3.2) holds after
% have been replaced by % or B". Moreover, if % is a Banach (Hilbert) space,
then % and 4" are Banach (Hilbert) spaces.

The L%-dual %' of 4 is the set of all p € S{/Q(Rd) such that

el = sup (e, flrz@ms|

is finite. Here the supremum is taken over all f € S;/2(R?) such that || f||lz < 1.
Let ¢ € #'. Since Sy, is dense in %, it follows from the definitions that the map
[ (¢, f)r2 from S o (R%) to C extends uniquely to a continuous mapping from
A to C.

From now on we assume that the (quasi-)Banach spaces B, By, B1, B2, - . .,
and the Hilbert spaces ¢, .74, 74,75, ... are “Gelfand-Shilov tempered” or
“Beurling tempered” in the following sense.

Definition 3.1. Let Z be a quasi-Banach space such that (3.2) is fulfilled.
(1) % is called Beurling tempered, or B-tempered (of order s > 1/2) on R, if
B, B — Y (RY), and X4(RY) is dense in Z and Z';
(2) Z is called Gelfand—Shilov tempered, or GS-tempered (of order s > 1/2) on
RY, if #, % — S'(R?), and S;(RY) is dense in both % and #';
(3) % is called tempered on R4, if #, %' — #'(R%), and .7 (R?) is dense in &
and %'

Remark 3.2. Let 2 be a quasi-Banach space such that (3.2) holds. Then it follows
from (1.2) and the fact that S/, is dense in S,, ¥, and ., when s > 1/2, that
the following is true:

(1) if s > 1/2 and £ is GS-tempered of order s, then Z is B-tempered of order
53

(2) if s > 1/2, & > 0 and A is B-tempered of order s+¢, then £ is GS-tempered
of order s;

(3) if s > 1/2 and £ is tempered, then £ is GS- and B-tempered of order s.
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We also note that Definition 3.1 (3) in the Hilbert space case might not be
the same as [51, Definition 4.1]. In fact, .# is a tempered Hilbert in the sense
of Definition 3.1 (3), is the same as both s and S’ are tempered in the sense
of [51, Definition 4.1].

For future references we remark that % and %" are GS-tempered (B-temp-
ered) quasi-Banach spaces, when 4 is a GS-tempered (B-tempered) quasi-Banach
space, and that similar facts hold when % is a Banach or Hilbert space.

In the following analogy of [51, Lemma 4.2] we establish basic properties in
the Hilbert space case.

Lemma 3.3. Let s > 1/2 (s > 1/2), and let S be a GS-tempered (B-tempered)
Hilbert space of order s on R%, with L?-dual 5¢'. Then the following is true:

(1) A is a GS-tempered (B-tempered) Hilbert space of order s, which can be
identified with the dual space of F through the L2-form;

(2) there is a unique map Ty from F€ to ' such that
(f> g)ﬁf = (T%ﬂfa g)LQ(Rd)a g€ H; (33)

(3) if T is the map in (2), {e;}er is an orthonormal basis in H and €; =
Topej, then Ty is isometric, {e;};er is an orthonormal basis in H' and

(g4, er)L2(ma) = 0j k-

Proof. We only prove the result when 5 is GS-tempered. The case when 7 is
B-tempered follows by similar arguments and is left for the reader.

First assume that f € 57, g € Sl/g(Rd), and let T,y f € ' be defined by
(3.3). Then T from S to 2" is isometric. Furthermore, since Sy, is dense in
€, and the dual space of S can be identified with itself, under the scalar product
of A, the asserted duality properties of 5’ follow.

Let {e;};er be an arbitrary orthonormal basis in %7, and let €; = Tpe;.
Then it follows that ||e;||, = 1 and

(ejex)rz = (ej,ex)e = 6j k-

Furthermore, if

fZZajem @ZZ%’% QZZBJ'BJ' and ’VZZﬁﬁj

are finite sums, and we set (¢, v) . = (f, )¢, then it follows that (-, - ) 5 defines
a scalar product on such finite sums in J#”, and that [|¢||%, = (¢,¢)w. By
continuity extensions it now follows that (¢, 7). extends uniquely to each p,~ €
A, and that the identity [|¢|%,, = (¢, ). holds. This proves the result. O

From now on the basis {¢;},er in Lemma 3.3 is called the dual basis of
{ej}jer
Example 3.4. Let /4 = H2(R%) and % = M(Zwo)(Rd) where wy € Zr(R%).

Then 7 is a tempered Hilbert space with dual 2% = H2_(R?). The space
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J is B-tempered (GS-tempered) of order s, when s < 1 (s < 1), and J& =
MZ%, (RY).
(1/wo)
We note that if ws(x,&) = (£)*, then M(Zws 0 = H2, and we refer to [51,

Example 4.3] for more examples on tempered Hilbert spaces.

In several situations, an orthonormal basis {e;} in a GS- or B-tempered
Hilbert space . might be orthogonal in L?(R%). The following proposition shows
that this is sufficient for {e;} being orthogonal in the dual ¢’ of 2.
Proposition 3.5. Let 9 be GS- or B-tempered Hilbert space on RY, {ej}32, and
{e0,j}32, be orthonormal bases for ' and L*(R?) respectively, and let {e;}52, €
A" be the dual basis of {e;}52,. Then the following is true:

(1) if ej = cjeo; for every j > 1 and some {c;}32, C C, then ; = (c;) 'eo j;
(2) if ej = cje; for every j > 1 and some {c;}32; C C, then ¢; > 0, and

{c;/gej};";l is an orthonormal basis for L?(R%);

(3) if ej = cjeo,j and €5 = djeq; for every j > 1 and some {c;}52; C C and

{d;}32, € C, then

cidj = lleojlle - lleojlloer = llejllLzllesllce = 1.
Proof. (1) We have
dj.k = (€5, ex)r = (€, 2r) 12 = ¢j(e0,4:€x) L2,
giving that
0k = cileoj,ex)r2 = (€05, CkER) L2 (34
Since {eg,;}32, is an orthonormal basis for L?, it follows from (3.4) that cyer =

€0k, and (1) follows.
(2) We have

1= (e ej)r = (ej,65) 2 = ¢j(ejr )2 = ¢5lej2e,
giving that ¢; > 0. Furthermore, if f; = c;/er, then

(fjs fr)pe = (cj /)P (ej ) p2 = (cj/ex) 2850 = G
Hence {f;}32, is an orthonormal basis of L?.

(3) By applying appropriate norms on the identities e; = cjeq; and, ¢; =
djeo ; and using the fact that e;, eg; and ¢; are unit vectors in 2, L? and 57’
respectively, we get

L= (ej,5)r2 = ¢jdj(eo 5, €0,5) L2 = ¢jd;,
and
lcil = llejllz = 1/lleojll e and  |ds| = llejllr2 = 1/lleo ;-
The assertion follows by combining these equalities. The proof is complete. O

Example 3.6. Let w € L (RY) be positive. Then w is called weakly sub-Gaussian

loc

type weight, if the following conditions are fulfilled:
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2 2 .
o ccl#l” < () < efl*l” ) for every choice of £ > 0;

e for some fixed R > 2 and some constant ¢ > 0, the relation
w(z +y)w(z —y) < w(x)?
holds when Re < |z| < ¢/lyl.

The set of all weakly sub-Gaussian weights on R? is denoted by L@% (R%), and is
a family of weights which contains &Zg(R?). (Cf. Definition 1.1 in [52].)
Now consider the modulation spaces M, (Zw) (R?), where w € @2) (R?9) satisfies

W($7f):OJO(T):OJO(TL...,Td), T‘JZI(%_ﬁf])I? ]:177d

(i.e., w(z, &) is rotation invariant under each coordinate pair (z;,&;)). Note that
the window function ¢(x) in the definition of modulation space norms with weights
in 222 is fixed and equal to the Gaussian 7=4/4e=171*/2 Then there is a constant
C > 0 such that

-1
O < hallaz, Iallas, < C. (35)

for every Hermite function h, on R%.
In fact, if # = M? ,, then it follows from Theorem 4.17 in [52] that ¢’ =

(w)’
M and that

2
(1/w)

1f |2 = 11f las fes

The statement is now a consequence of Proposition 3.5, and the facts that
{ha}aende and {ha/”ha”M(Qw)}aeNd are orthonormal bases for L? and M(Zw)7 re-

2
(1/w)’

spectively.

The relation (3.5) in combination with results in [52] can be used to establish
estimates for generalized gamma functions in integer points, in a similar way as
formula (30) in [24]. More precisely, let 2 be the Bargmann transform, and let
A% w)(Cd) be the weighted Bargmann—Fock space of all entire functions F' on C?
such that

1/2
||F||A(2);7rd/2 (/ |F(z)w(21/zz)|26|z|2d)\(z)) < oo0.
w Cd

(Cf., e.g., [1, 52].) Here we identify x + ¢ in C? with (z,¢) in R?¢, and d\(z) is

the Lebesgue measure on C%. Then (Uh,)(z) = 2%/(a!)!/2, and the map f +— U f

is isometric and bijective from M(Qw) to A%w), in view of Theorem 3.4 in [52].

Consequently, (3.5) is equivalent to
I(wo) . I(l/wo) = (Oz!)2, (36)
where

1.2
Ty = 71121152 :/Cd|22a|w0(|21|,...,|2d|)26 1= dA(z).
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By writing z; = 7;e%% in terms of polar coordinates for every j = 1,...,d,
and taking 7‘]2 and 6; as new variables of integrations, we get

L) = / t9(t)e” 1 g,
[0,00)4

where ¥(t1,...,tq) = wo(t}/Z, e ,tz/Z)Q and ||t| =t1+---+t4, t € [0,00)%. Hence
(3.6) is equivalent to

/ t9(t)e It gt - / te9(t) " te It gt < (al)?. (3.7)
[0,00)¢ [0,00)

In particular, the formula (30) in the remark after Theorem 3.7 in [24] hold for
the broad class @% of weights on R.

The following result concerns continuous embeddings of the form
MZ, (R — B, 2 — M{ ., (RY), (3.8)

when £ is a quasi-Banach space. Here J\J(2 ) belongs to the extended family of
modulation spaces in [52] and the weights w; are given by

wi(z, ) = etlal I, (3.9)
when s > 1/2 and ¢t € R.

Proposition 3.7. Let s > 1/2, and let w; be given by (3.9). Then the following is
true:

(1) if # is a GS-tempered quasi-Banach space on R of order s, then (3.8) hold
for every t > 0;

(2) if # is a B-tempered quasi-Banach space on R® of order s, then (3.8) hold
for some t > 0.

We first prove Proposition 3.7 in the case that % = .77 is a Hilbert space.
Thereafter, the general result will follow from this case and Proposition 3.8 below.

Proof of Proposition 3.7 when 9 = € is a Hilbert space. By Remark 1.6 it fol-
lows that
Se o ME,) = Ss, SL= M, < 5, (3.10)
when t > 0.
If s is GS-tempered, then it follows from these embeddings that M2 | <

(wr)
A, ' holds for every t > 0. Furthermore, by Theorem 4.17 in [52] it follows

that S; /o is dense in these Hilbert spaces, and that the dual of M, (QM) is given by
M{ -
Now if 7 is GS-tempered, then (3.10) gives
MZ, = 8s = H, A" Sy = Mpy,,y, t>0,
and (1) follows.
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In order to prove (2) we note that Theorem 3.9 and its proof in [52] implies
that the topology for ¥, is given by the semi-norms

f e Il = Wl £>0.

Hence

1floe S Uflarz, - and gl < llellasz o fr0 € M2,

hold for some choice of t = ¢y > 0, since ¥; — 5 and X, — . This gives

M(ZM )y < A and M(Q%) — . The assertion (2) now follows from these em-
0
beddings and duality. The proof is complete. O

With reference to the Hilbert spaces which occur in Example 3.6 we say that
a Hilbert space ¢ is of Hermite type, if {ha/||hal|ls#}a 1s an orthonormal basis
for A7,
(Sxf)(x) = f(xra), -+ Tr)) € A when feH
for every permutation m on {1,...,d}, and that ||Srfllse = |flloe for every
f € A an permutation 7.

Proposition 3.8. Let %, P> be quasi-Banach spaces which are continuously em-

bedded in Si/z(Rd). Then the following is true:

(1) if s > 1/2, Ss(RY) — %1 and B> — SL(RY), then there are GS-tempered
Hilbert spaces 76, and 56 of order s and of Hermite type such that

So(RY) < JA — By and By — H — S.(RY)

hold. Furthermore, 741 and 7 can be chosen such that 76 — SS/W (Rd) and

Sg/w(Rd) — St for every v € (0,1);

(2) if s > 1/2, B,(RY) — %, and %2 — Y. (R?), then there are B-tempered
Hilbert spaces 761 and ¢ of order s and of Hermite type such that

S (RY < 4 — B and By — A — YL(RY)

hold. Furthermore, 761 and 56 can be chosen such that 77 — ZS/W(Rd) and

Z;M(Rd) — 5 for every v € (0,1);

(3) if S(RY) — By and By — 7' (R?), then there are tempered Hilbert spaces
J6 and % of Hermite type such that

SRY) = A — B, and By — H — S (R
hold.

Proof. We only prove (1). The other assertions follow by similar arguments and
are left for the reader.

In order to prove (1) it is no restriction to assume that S, is dense %; by
replacing %, with the completion of S under the quasi-norm || - ||z, . Let f € %;.
Since % — S{/Q, it follows that

f= Z Calas
«
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where h,, is the Hermite function of order «v and its coefficients

ca =ca(f) = (f,ha)L2

Z lea|?e™l < oo,
[e%

satisfies

for every ¢ > 0.
The fact that S is continuously embedded in %; implies that for every integer
7 > 0 we have

Y 1/2s )
1£11%, < C;D77 ) Jea| el /7,
«

where the constant D > 1 is the same as in (3.1), and the constant C; > 1 is
independent of f (cf. formula (2.12) in [21]).
For every integer 7 > 1, let
N;j = sup{ |a]; C;j% ~temlol"™ /i > 13,
and define inductively
Ry =N; and Rj41 =max(R; +1,N;41), j>1.
Furthermore we set
Iy={a;|la|<Ri} and Ij={a;R;<|a|<Rj},
and we let m(a) = sup,¢, Crelel”” when a € Iy, and m(a) = ei’ ~1e2alV*/i

when o € I;, j > 1. We note that R; is finite and increases to co as j tends to oo.
Let 74 be the Hilbert space which consists of all f € S, such that

1l = (3 lealNPmie))

[

1/2

is finite. We shall prove that 777 satisfies the requested properties. Since
lim m(a)e‘clall/zs =0
|| =00

when ¢ > 0, it follows that S; is continuously embedded in J# . Furthermore, the
fact that m(a) = m(B) when |a| = |5| implies that f +— S;f is a unitary map on
s, for every permutation 7 on {1,...,d}.

It remains to prove that 77 is continuously embedded in #; and in S,/
when 0 < v < 1. Let f € S;, and let

fi= Z Ca(f)hom Jj=0.

DtGIj
Then

o ) I
=S h ealhy) ={ D€l nd 11120 = 11

>0 0, a gl >0
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This gives

j / 125 7\ 1/
17, S Do, < (3 leaPmi@) ™+ 32 (05 3 feaPel*/5)
J

acly j>1 acl;
1/2 1 1/2s /;
< ( > |ca|2m(a)) +y° ; ( 3 feal?e?e /2 /a)

acly i>1 acl;

1
< [l ol +Zj||fj||jf1~

j>1

1/2

Hence, by Cauchy—Schwartz inequality we get

1\ 1/2 1/2 1/2
1l < Mol + (32 ) (X 0513a) S (X Wl26) " = If 1l
Jj=1 J j>1 >0

which proves that ¢ — ;.
The inclusion 4 < S/, when v > 1 follows if we prove that

el < m(a), (3.11)

for every ¢ > 0. We claim that there is a constant Cy which is independent of j > 1
and « such that ‘
eclol*" < et 12l /i (3.12)

In fact, by applying the logarithm, (3.12) follows if we prove that for r =
1/2s <1 and constants mq, mz > 0, the function

h(u,v) = miu® + v " — mav?”
) 1 2

is bounded from below, when u,v > 1.

In order to prove this we let 0 < 71,72 < 1 be chosen such that v; > v and
Y1 + 72 = 1. Then the inequality on arithmetic and geometric mean-values gives
that ho(u,v) < h(u,v), where

ho(u,v) = w24 MM — 7" = vwr(uvzu—mv(%—v)r —m)),

for some m/ > 0. Since v; > 7, it follows that hg(u,v) tends to infinity when
u—+v — oo and u,v > 1. The fact that hg is continuous then implies that hg(u, v)
and thereby h(u,v) is bounded from below when u, v > 1, which proves that (3.12)
holds.

This gives

pclal™/? < Coej’?162lozll/25/j = Cym(a), ac€lj,

and (3.11) follows, which proves the first part of (1).

It remains to prove that 775 exists with the asserted properties. The fact that
P is continuously embedded in S, implies that for every j > 1, there is a constant
C; > 1 such that

1 aq1/2s
D leal?Cy e T < £,
«
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Let y 1/25 /s
m(a) = j % T Ot MM,
j>1

and let J% be the set of all f € S, such that
1/2
1o = (3 lealPm(a))
«

is finite.

By the definition it follows that || f|l.e < || flle, when f € %o, giving that
P> is continuously embedded in 7%. Furthermore, if ¢ > 0, then it follows that

—clal!/2
lim =0,
|ae] =00 m(a)

which implies that 745 is a Hilbert space.

It remains to prove that S;/w — %% when 0 < v < 1, which follows if we
prove that
m(a) < eclel™” (3.13)
for every ¢ > 0. By the same arguments as in the last part of the proof we have

G |oll/28 s el 28
A L < Cpe clal

where C neither depends on j nor on «. This gives

o ad 1 1/28 /s v/ 2s 1 v/ 2s
m(a)ZE:J 277 e lol i < gelel E:‘erdal ,
i1 ST

and (3.13) follows. The proof is complete. O

The end of the proof of Proposition 3.7. We only prove (1). The assertion (2) fol-
lows by similar arguments and is left for the reader.

Let & be a GS-tempered quasi-Banach space. By Proposition 3.8 there are
GS-tempered Hilbert spaces 57 and % such that 54 — % — 5, and by
the first part of the proof it follows that M(QM) — I — M(Zl/Wt) for every t >
0, j = 1,2. The result now follows by combining these inclusions. The proof is
complete. O

4. Schatten—von Neumann classes and pseudo-differential operators

In this section we discuss Schatten—von Neumann classes of pseudo-differential
operators from a Hilbert space 77 to another Hilbert space 73, or more generally,
from a (quasi-)Banach space %, to another (quasi-)Banach space ;. Schatten—
von Neumann classes were introduced by R. Schatten in [36] in the case when
6 = ¢ are Hilbert spaces. (See also [39].) The theory was thereafter extended
in [3, 33, 37, 53] to the case when . is not necessarily equal to J%, and in
[3, 33, 39], the theory was extended in such way that it includes linear operators
from a Banach space %, to another Banach space %s. Furthermore, the definitions
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and some of the results in [3, 33, 39] can easily be modified to permit %; and %>
to be arbitrary quasi-Banach spaces.

We will mainly follow the organization in the second part of Section 4 in [51],
and we remark that there are several similarities between the proofs in this section,
and the proofs of analogous results in Section 4 in [51].

We start by recalling the definition of Schatten—von Neumann operators in
the (quasi-)Banach space case. We remark however that this general setting is not
needed for the main results in the present and next sections (e.g., Theorem 4.8
below). For the reader who is not interested in this general approach may therefore
assume that the operators act on Hilbert spaces.

Let %, and %2 be (quasi-)Banach spaces, and let T be a linear map from
HB1 to Bs. For every integer j > 1, the singular number of T of order j is given by

Uj(T) = Uj(‘@h f@%T) = inf ”T - T0||%1%.%27

where the infimum is taken over all linear operators Ty from %, to % with rank at
most j — 1. Therefore, 01(T) equals | T||2,—2,, and ¢, (T) is non-negative which
decreases with j.

For any p € (0, 00] we set

1Tz, = 1T 5, (81.22) = [{03(Pr, B2, T)} 51 v

(which might attain +o00). The operator T is called a Schatten-von Neumann
operator of order p from %y to %o, if [T, is finite, ie., {0;(%1, %2, T)}52,
should belong to [P. The set of all Schatten—von Neumann operators of order
p from B to HB, is denoted by S, = S,(%1,P2). We note that S (B1, B2)
agrees with B(%, %2), the set of linear and bounded operators from %) to %s,
and if p < oo, then #,(%1, %-) is contained in K(%A1, HAs), the set of linear and
compact operators from %; to %HBs. The spaces I,(H1, B2) for p € (0,00] and
K(%,,%,) are quasi-Banach spaces which are Banach spaces when %;, %, are
Banach spaces and p > 1. Furthermore, %5 (%1, %-) is a Hilbert space when %
and %, are Hilbert spaces. If %, = s, then the shorter notation .#,(%) is used
instead of .#,(%1, #2), and similarly for B(%1, B2) and K(%1, B2).

Now let A3 be an other Banach space (or quasi-Banach space) and let Ty
and Ty j be linear and continuous operators from %), to %41 such that the rank
of Tp 1, is at most jj for k = 1,2. If T is defined by

To=ToooTi +Tr0To1 —To20Tp1 =To20T1 + (T — To2) o To,1,
then
TooT) — Ty = (To —Toz2) o (Th — To,1),
and it follows that the rank of T} is at most j; + jo. Hence
Ojitjp1(TooTh) < [[Too Ty = To|| < || T7 — Toal - [|T2 — To 2|l

and by taking the infimum on the right-hand side of all possible Ty ; and Tp2 we
get
Ojitjat1(To 0 Th) < 0 41(T1)0s,11(T2),  j1.j2 2 0. (4.1)
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If B; = 5, j =1,2,3, are Hilbert spaces, then (4.1) can be improved into
oj+1(T2 0Ty) < 0jy1(Th)oj41(T2), j = 0. (4.1)

(Ct. [33, 39].)

In [33, 39], (4.1) is used to prove that if p1,ps,r € (0, 00] satisfy the Holder
condition 1/p1+1/ps = 1/r, and Ty, € I, (B, PBr+1), then TroTy € (B, Bs),
and

T2 o T |7, #1,25) < CrlThll.z,, (#1,20) 1 T2] 5, (%2, 25)- (4.2)

Here C, =1 when %;, j = 1,2,3 are Hilbert spaces, and C, = 21/7 otherwise. In
order to be self-contained we here give a proof of (4.2).

Let T' = T5 0 Ty. Since 09j42(T") < 02541 (T), it follows by letting ji; = jo = j
n (4.1) that

k>0 >0

1/r
<2/ (Z ojt1(T1)" o511 (T2)T)
j>0
1/p1 1/p2
<2 (Lo ) (Soar) =210, 1Tl
Jj=0 Jj=0
This gives (4.2).

If #;, j = 1,2,3 are Hilbert spaces, then the same arguments, using (4.1)’
instead of (4.1), shows that (4.2) holds for C, = 1. (Cf. [33] or Chapters 2 and 3
in [39].)

If %, and %5 are Banach spaces, then we note that ranks and norms for the
operators are invariant when passing from the operators to their adjoints. This
implies that T belongs to .%,(%1, %2), if and only if the adjoint T of T belongs
to I (%, AB,), and

175, (81,2) = T |7, (8,21

We recall that if 1 = 54 and %> = 575 are Hilbert spaces, then there is an
alternative way to compute the .#, norms. More precisely, let ON(44), k = 1,2,
denote the family of orthonormal sequences in J7;,. If T : 5] — 4 is linear, and
p € (0, 00], then it follows that

1/p
170y, = 0 (32T 85950017

(with obvious modifications when p = 00), where the supremum is taken over all
{f;} € ON(#) and {g,} € ON(43).

Let {e;} be an orthonormal basis in 44, and let S € #; (44 ). Then the trace
of S is defined as

tr oz S = Z(Sej,ej),%ﬁa
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and we recall that this is independent of the choice of the orthonormal basis {e;}.
For each pairs of operators Ty, Ty € o (A, 73) such that Ty o Ty € #(JA), the
sesqui-linear form

(T, T2) = (T, 12) 1.t = tr6 (15 © T)
of Ty and Ty is well defined. We refer to [3, 33, 39, 53] for more facts about
Schatten—von Neumann classes.

Next we define symbol classes whose corresponding pseudo-differential oper-
ators belongs to .#, for some p € (0, 00]. Therefore, let %y, By — 81/2 (R%) be GS-
or B-tempered (quasi-)Banach spaces, t € R be fixed and let p € (0,,00]. Then
we let s;‘(%’l,%’g) and s; (%1, B2) be the sets of all a € 81/2(R2d) such that
Aa € I,($1,B2) and Op,(a) € F,(HB,1, PB2) respectively. We also let sa“(%’l, PBs)
and sy 4(%1, %B2) be the sets of all a € S{/Q(de) such that Aa € (%1, %>) and
Op,(a) € K(PB1, PB2) respectively. These spaces are equipped by the (quasi-)norms

lalls. (1,22 = 10pe(a)ll.5,(81,2),  Nlallsaz,2.) = [ Aall s, (5, 2.,
lalls,,21,25) = lalls, oo(21.22) lallsp (2, 2.) = llallsa (2,,2.)-

Since the mappings a — Aa and a — Op,(a) are bijections from S{/Q(de)
to the set of linear and continuous operators from Sy /2 (R?) to S /o (R%), it follows

that a — Aa and a — Op,(a) restrict to isometric bijections from s:!(%1, %2)
and s; p(#1, B2) respectively to 7,(%1, A2). Consequently, the properties for
Ip(P$1,P2) carry over to s;‘(%’l, PBsy) and sy p(B1, $B2). In particular, if B = JA4
and %y, = 4 are Hilbert spaces, then the elements in sf(%, ) of finite rank
(i.e., elements of the form a € s1 (A, /%) such that Aa is a finite rank operator),
are dense in sf(%’i,%) and in s;‘(%, ) when p < oo. Similar facts hold for
s1p( A4, H5) and s, , (4, H3). Since the Weyl quantization is particularly impor-
tant in our considerations we also set

sy, =stp and sy’ =s;3, when t=1/2.

If wi,ws € ZE(R??), then we use the shorter notation sz‘j‘(wl,wQ) instead of
s;‘(M(le),M(sz)). Furthermore we set s (wy,w2) = s (R*) when wy = wy = 1.

In the same way the notations for 8&4, St,ps Sp St,p and sy’ are simplified.

Remark 4.1. Let A and 5% are Hilbert spaces. Then, except for the Hilbert—
Schmidt case (p = 2), it is in general a hard task to find simple characterizations
for .Z,(4, #5). Important questions therefore concern of finding convenient em-
bedding properties between Schatten—von Neumann classes and well-known func-
tion and distribution spaces. We refer to Remark 4.5 in [51], for examples on such
embeddings.

Remark 4.2. Let t,t1,t2 € R, p € [1,00|, %1, %P2 be GS- or B-tempered quasi-
Banach spaces on R? and let a,b € S /Z(Rgd). Then it follows by Fourier’s in-

Dz, Dg)

version formula that the map e is a homeomorphism on & /5 (R?%) which
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extends uniquely to a homeomorphism on S} /Z(Rgd). Furthermore, by (1.10) it
follows that e’(t2=#1){P=:De) yestricts to an isometric bijection from s;, ,(%1, Bs)
t0 Sty p(B1, B2).

The following proposition links s; ,(%1, %2), A(%’l, %) and other similar
spaces to each others. Here a”(z,§) = a(z, —¢) is the “torsion” of a € S} , (R%).

Proposition 4.3. Lett € R, %1, P> be GS- or B-tempered quasz Banach spaces in
R% a € SI/Z(RQd), and let p € (0,00]. Then s¥ (%1, %>) = s (%1, %), and the
following conditions are equivalent:

(1) [AS Sp (%1,%2)

2 9}a€ Sp (%1,%2)

(2)

(3) a€s, (%w@i),
(4) a” € 3?(%3%’5);
(5) a € s¥(%1, %a);
(6) a € sy (%, B);
(7

) e’(t 1/2)<D€’Dz>a € $1.p(%1, o).

Proof. Let a1 = %,a, as = a, a3 = a”, ay = a and a5 = a. Then the equivalences
follow immediately from Remark 4.2 and the equalities

(Op*“(a)f,g9) = (Op“(a1)f,g) = (f,0p"(az)g)
= (0p“(as)(z,D)f,g) = (Op“(as)f,4) = (f,0p"(as)3),

when a € Sl/Q(RZd) and f,g € S;/2(R?). (Cf. [51, Proposition 4.7].) The proof is
complete. O

In Remarks 4.4 and 4.5 below we list some properties for s; (%1, %2) and
s;‘(%, 4%). These properties follow from well-known Schatten—von Neumann re-
sults in [3, 39, 53], in combination with (1.15), (1.21), (4.2), and the fact that the
mappings a — Op,(a) and a — Aa are isometric bijections from s, ,(%1, %2) and
s;‘(%’l,%’g) respectively to %,(%1, %B2).

Remark 4.4. Let p,pj,q,7 € (0,00], t € R, %; be GS- or B-tempered quasi-Banach
spaces on RY, and let 7 be GS- or B-tempered Hilbert spaces on R%, j = 1,...,4.
Also let C, = 1 when %, ..., %, are Hilbert spaces, and C, = 2/ otherwise.
Then the following is true:

(1) the sets s p(H1,Bo) and s;4(%1, HB2), are quasi-Banach space which in-
creases with the parameter p. If in addition » < p < oo and p; < po, then
Stp( B, B) — s14(PB1, Ba), Str($1,P2) is dense in s (%1, %2) and in
st.4(%, B2), and

||a||31,,p2(@1,<932) < ||a||8t,p1 (B1,%2)s @ € st’OO(‘%h‘@Q)' (43)
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Moreover, if in addition p > 1 and %;, j = 1,2, are Banach spaces, then
St.p(B1, B2) and s;4(%, PB2) are Banach spaces;

(2) if B; = 5, j = 1,2, then equality is attained in (4.3), if and only if a is a
rank one element, and then ||al|s,  (,75) = (2m)~%2|| f1|| s || f2|l 7 » when a
is given by (1.12);
(3) if 1/py + 1/pa = 1/r, a1 € $4p, (%1, %B2) and az € St p, (B2, PBs3), then
ao#a1 € St (%1, PBs3), and
las#aills, . #:,25) < Crllaills, ,, (2,25 |a2lls, ,, (22,25 (4.4)

On the other hand, for any a € s (54, 743), there are elements a; €
St.p, (H,56) and ay € Spp, (55, 73) such that a = ag#a; and equality
holds in (4.4);

(4) if #1 — P, with dense embeddings and Bs — Ay, then s; p(Ba, B3) —
st,p(%lz <%4)
Similar facts hold when the s;, spaces and the product #; are replaced by s;‘
spaces and *,, respectively.

In the next remark we make some further conclusions on dual forms for
st.p(H4, ) and s;‘(%ﬂl, %) when 774 and 5% are Hilbert spaces. Here the forms
(*5 )sea(oa, ) and (-, 0)59((}%“%) are defined by the formulas

(a, b)St,z(ﬁfhﬁfz) = (Opy(a), Opt(b))ﬂz(ﬁﬁ,&fz% a,b € st,2(H1, H3)
and

(a7b)sé4(ﬁf1,ﬁf2) = (AG,, Ab)yz(%ﬁ,ﬁfz% G,,b € 5124(%7%)
We also recall that p’ € [1,00] is the conjugate exponent for p € [1,00], i.e.,
1/p+ 1/p’ = 1. Finally, the set {§° consists of all sequences in [*° which tends to

zero at infinity, and [} consists of all sequences {\;};cs such that \; = 0 except
for finite numbers of j € I.

Remark 4.5. Let p,p; € [1,00] for 1 < j <2, t € R, and let J4, 7% be GS- or
B-tempered Hilbert spaces on R?. Then the following is true:

(1) the form (-, -)s, ,(s4,5%) On st1(H4, H3) extends uniquely to a sesquilinear
and continuous form on s; (4, 96%) X s1/(JA, 56), and for every aq €
sep(FA, ) and ag € sy (HA, H3), it holds

(a1,a2)s, ,(0,00) = (a2, 01)s, 5 (o4,50)
(a1, a2)s, »(06,0m)| < llarlls, ,a,0m)llazlls, , 6,06) and
la1lls, (o4 ,) = sup [(a1,0)s, , A ,6)|;
where the supremum is taken over all b € s,/ (3, ) such that
1blls, (22, 0) < 1.

If in addition p < oo, then the dual space of s; (7, .74) can be iden-
tified with s; (74, #4) through this form;
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(2) if a € s 4(54, H5), then

o0
Op,(a)f =Y Ni(fs f5) 9 (4.5)

j=1
holds for some {f;}32; € ON(J4), {g;}52; € ON(5%) and non-negative
decreasing sequence A = {\;}%2, € [§°, where the operator on the right-

hand side of (4.5) convergences with respect to the operator norm. Moreover,
a € s4p(A, 75), if and only if A € [P, and then

lalls,., = l[Allw
and the operator on the right-hand side of (4.5) converges with respect to
the norm | - ||, . (4,);
(3) if 0 < 6 < 1 is such that 1/p = (1 — 0)/p1 + 6/p2, then the (complex)
interpolation formula
(St,m (4, %)7 St,p2 (A, %))[9] = St,p(%v j%)

holds with equality in norms.
Similar facts hold when the s;, spaces are replaced by 5;1 spaces.

In the sequel we assume that %; = ¢, j > 0, are Hilbert spaces. A problem
with the form (-, -);, ,(,7) in Remark 4.5 is the somewhat complicated struc-
ture. In the following we show that there is a canonical way to replace this form

with (-, -)p2. We start with the following result concerning polar decomposition
of compact operators.

Proposition 4.6. Lett € R, p € [1,00], S and 5 be GS- or B-tempered Hilbert
spaces on R? and let a € s, 4( /4, 73) (a € sf(%,%)) Then

— t —
0= AW, (a=3AW,) (4.6)
jeI jel
(with norm convergence) for some orthonormal sequences {p;}jer in 7 and
{gj}jer in b, and a sequence {\;}jcr € I§° of non-negative real numbers which

decreases to zero at infinity. Furthermore, a € s, ,(J4, 75) (a € sy (J4, 73)), if
and only if {\;}jer € 1P, and

lalls, ,(a.0m) = @) "2 {0 erlle (lallsaoa.om = I{A erlle)-

Proof. By Remark 4.5 (2) it follows that if f € S;/2(R?), then
Opy(a)f () = > Nl f) 95 (4.7)
jEI
for some orthonormal sequences {f;} in A4 and {g;} in %, and a sequence
{\;} € 1§° of non-negative real numbers which decreases to zero at infinity. Now
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let {¢;}jer be an orthonormal sequence in ¢ such that (¢;, fx)r2 = d;%. Then
(f, fi)sa = (f, ;) 12, and the result follows from (4.7), and the fact that

Opy (W, o )f = 1)~ 2(f,05) 1295 = 2m)~*(f, f) 95
The proof is complete. O

We have now the following.

Proposition 4.7. Let p € [1,00), and let 564 and 5% be GS- or B-tempered Hilbert
spaces on R2. Then the following is true:
(1) Sl/g(RZd) is dense in s p(IA4, 55), s;‘(%,jfg), se(I4, )
and sa“(%, H5);
(2) Si1/2(R2%) is dense in st,00(H4, #3) and st (4, #5) with respect
to the weak* topology.

Proof. By Proposition 4.6 it follows that any element in s; , (54, 7), s?(%, H5),
s (J4, 73) or in 3&4(%”1, %) can be approximated in norm by finite sums of the
forms in (4.6). The assertion (1) now follows from the facts that any ¢; and
g; can be approximated in norms by elements in 81/2(Rd)7 and that the map
(¢,9) = W, , is continuous from S1/2(R?) x 81/2(RY) to Sy j2(R?*).

The assertion (2) now follows from (1) and the fact that s, is weakly dense
in s¢,00, since .#; is weakly dense in 7. O

Next we prove that the duals for s; (7, 7) and 85 A4, #5) can be iden-
tified with sy, (], #5) and s,, A (!, A respectively through the form (-, - )rz.

Theorem 4.8. Lett € R, p € [1,00) and let J4, 5% be GS- or B-tempered Hilbert
spaces on R, Then the L? form on Sl/Q(de) extends uniquely to a duality between
st.p(FA, 7)) and sy (I, 7)), and the dual of s¢ (A, %) can be identified
with sy, (G, 563)) through this form. Moreover, if £ € sy ,(I4,75)* and a €
St (G, ) are such that £(b) = (a,b) 2 when b € s;,(JA, ), then

11l = Nlalls, . o .2)-

The same is true if the sy ,(JA, 7%) spaces are replaced by sﬁ(%,%’é)
spaces.

Proof. We only prove the assertion in the case t = 1/2. The general case follows by
similar arguments and is left for the reader. Let £ € s} W, H5)*. Since the map
b+ Op"(b) is an isometric bijection from s (%,%) to Sp(H4, 6), it follows
from Remark 4.5 (1) that for some S € .#, (jﬁ, %) and each orthonormal basis
{f;} € ON(44) we have

£(b) = tryn (S* 0 Op“ (b)) = Y _(Op“(b)f;, Sfj)e and
1l = 1512, (4 ,52)
when b € s WA, ).

(4.8)
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Now let b € s}, (A4, 7%) be an arbitrary finite rank element. Then

b= MWy p, and [bllswm.m = @m)72{\}Hw,

for some orthonormal bases {¢;} € ON(#7) and {g;} € ON(54%), and some
sequence {\;} € I}. We also let {f;} € ON(54) be the dual basis of {¢;} and
a the Weyl symbol of the operator Tz, o S o Tyy. Then a € sy (4, #) and
|a|| . (,2) = ||£]|. By straightforward computations we also get

0(b) = trom (5™ 0 Op” (b)) = Y _(Op" (B)f;, 5;)
= (2m) "2 " Ni(95. 1) = 2m) "2 " Xi(g;, 0p" (0)95) 12(Re)
27T —d Z )\ g;,tp;a L2(R2d) = (27T)_d(b, a)Lz(de).

Hence £(b) = (2m)~%(b, a) 2 (r22). The result now follows from these identities and
the fact that the set of finite rank elements are dense in s;/ (7, #3). The proof is
complete. O

An interesting question is wether Theorem 4.8 still holds after the Hilbert
spaces ¢, and 7 have been replaced by appropriate Banach spaces.

We finish the section by a side result on bases and Hilbert—Schmidt operators
on GS- or B-tempered Hilbert spaces.

Proposition 4.9. Let J¢; be GS- or B-tempered Hilbert space on R% for j =1,2,
and let T be a linear and continuous map from 4 to . Also let I = H5 ®
(7)) (Hilbert tensor product). If K is the kernel of T, then T € J5(4, 75),
if and only if Kp € €, and

IT||.7s (2, 0) = |1 K || e (4.9)

Proof. First assume that T' € %5(J4, #5), and let {e; 1 }72, be an orthonormal
basis for JZ; and set € = Txejk, j = 1,2. Then {e;}32, is an orthonormal
basis for 7,

Tei, = E Ak,1€2.1,
!

for some { Ay, }7%-; and
||T||3¢2(3f1,ﬁ%) = (1\T).p,(ot1,56) = trom (T" 0 T),
giving that

1T, ) = D I Teril5e = Y [Awal® (4.10)
k
Now let Ny, N2 > 0 be integers and set

Hy,ono(@y) = D > Malear®@eri)(@y) = Y Y Maeza(@)eri(y) € A

k<Np <N k<N I<No
We shall prove that Hy, v, has alimit H in J# as N1, Ny — oo, and that H = K.
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Since {e1,1}72, is an orthonormal basis for (J7)7, we get
[Hnowa M3 = D0 Y Pl
k<Np I<Ns
Hence (4.10) and the fact that T' € (s, 7) imply that the limits
HN: lim HN,N2 and H = lim HN

Ny —o0 N—o0o
exist in .77, and that
1HI%e =D wal® = 1T 00,0 (4.11)
k,l

In order to prove that H = Kp we let
f= cheLk € and g= Zd152,l €
k 1

be arbitrary, and we set
fn= Z cre1r, and gy = Z diea,;.
k<N I<N

Then ||f — fnlloa — 0 and [|g — gn ||y — 0 as N — co. Furthermore,

(TfNs 9N 2y = Y, D Macudi = (H, gny ® fn,)p2(reatan)-
k<N I<Ns

By letting N1, No — oo we get

(Tf,9)L2ra2) = (H, 9 @ f)2maz+ary-

Hence H = K, and (4.9) follows.

If instead Kp € 52, then it follows by similar arguments as in the first
part of the proof that (4.9) and the first equality in (4.11) hold with H = K.
Hence, the second inequality in (4.11) shows that T € #5(J4,.7%). The proof is
complete. O

5. Young inequalities for weighted Schatten—von Neumann classes

In this section we establish Young type results for dilated convolutions and multi-
plications on s’ (74, #3), when 4 and . are appropriate modulation spaces of
Hilbert type. Especially we prove multi-linear versions of Theorems 0.3 and 0.4.
We will mainly follow the analysis in Section 5 in [51], and the proofs are similar.
However, in order to be self-contained we here present proofs which are slightly
condensed, where, at the same time, some misprints have been corrected.

We need some preparations for stating the results. If we have N convolutions,
then the corresponding conditions compared to (0.9) is

p171+"'+pN71:N—1+7‘717 1§p17~-'7pN7T§OO' (09>/
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In the same way, (0.10) should be replaced by
(1) 72 4 (=12 =1, (0.10)’
and (0.11) by
(=172 4 (1M, = 1. (0.11)
The condition (0.12) of the involved weight functions is modified into
X1+ +Xn) SV, 00X Y nNENXN),

(0.12)’
w(Xy+ -+ Xn) Swja(tiXy) - wiy NENXN),
where
wok(X) = V1 k(X) = we(X),  Jok(X) = wik(X) = (X)) (0.13)'
With these conditions we shall essentially prove estimates of the form
lave, * - % anex llswjwn < Cllarllsy (w00 - llanllsy @ jwyox),  (0-14)
and
llat,e, - - anxllse 1 /we) < C'd||a1||sgl(1/w1,191) e llanllsy (jwnon)- (015)

Here and in what follows we let as and b; be given by as = a(t-) and by = b(t-)
when a,b € 81/2 and ¢t € R\ 0, and a;+ be given by a;; = a;(¢-) when a; € 81/2,
jeN,and t € R\ 0.
Theorem 0.3'. Let p1,...,pNn,r € [1,00] satisfy (0.9), and let t1,...,tx € R\
0 satisfy (0.10), for some choices of ji,...,jn € {0,1}. Also let w,w;, 9,9, €
Pr(R*) for j=1,...,N satisfy (0.12)" and (0.13)".

Then the map (a1, ...,aN) = a1, % - *an,ty 0N Sy/2 (R?4), extends uniquely
to a continuous mapping from

spr (L/wi,01) x--- x s (1/wn, UN)
to s¥(1/w, ). Furthermore, (0.14)" holds for some constant
C = O Il 2/ o] 2,

where Cy is independent of a1 € sy, (1/w1,01), ...,an € sy (L/wn,UN), t1,...,tN
and d.
Moreover, Op® (a1, *- - -*an,ty) > 0 when Op*(a;) > 0 for each 1 < j < N.

Theorem 0.4". Let pi1,...,pn,r € [1,00] satisfy (0.9), and let t1,...,tx € R\
0 satisfy (0.11), for some choices of ji,...,jn € {0,1}. Also let w,w;,9,9; €
Pr(R*) for j=1,...,N satisfy (0.12)" and (0.13)".
Then the map (a1,...,aN) ¥ Q14, -+ ANty ON Sl/Q(RQd), extends uniquely
to a continuous mapping from
spr (L/wi,01) x -+ x s (1/wn, Un)
to s¥(1/w, V). Furthermore, (0.15)" holds for some constant

C = Clfta|72/7% - Jtn | 72/75,
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where Cy is independent of a1 € sy, (1/w1,01), ...,an € sy (L/wn,UN), t1,...,tN
and d.

We need some preparations for the proofs. First we observe that the roles
of multiplications and convolutions are essentially interchanged on the symplectic
Fourier transform side, because

ﬁa(al*"'*aN):WdN(ﬁaal)"'(yaaN)a (51)

holds when a1, . ..,an € Si/2(R??). Hence it follows immediately from Lemma 1.3
and Proposition 4.3 that Theorems 0.3' and 0.4’ are equivalent to the following
two propositions. Here the condition (0.13)" should be replaced by

WQ,k(X) = 1917k-(—X) = wk(X), 1907k.(X) = OJLk.(—X) = ﬁk(X) (52)

We also recall that a € S, (R*¥), s > 1/2, if and only if the operator Aa is
positive semi-definite (cf. Proposition 1.4).

Proposition 5.1. Let p1,...,pn,T € [1,00] satisfy (0.9), and let t1,...,tn € R\
0 satisfy (0.10), for some choices of ji,...,jn € {0,1}. Also let w,w;,9,9; €
PR3 forj =1,...,N satisfy (0.12)" and (5.2). Then the continuity assertions
in Theorem 0.3 hold after the s) spaces have been replaced by s;l spaces.

Proposition 5.2. Let p1,...,pn,7 € [1,00] satisfy (0.9), and let ty,...,txy € R\

0 satisfy (0.11), for some choices of ji,...,jn € {0,1}. Also let w,w;, 9,9, €

PR3 forj=1,...,N satisfy (0.12)" and (5.2). Then the continuity assertions

in Theorem 0.4 hold after the s, spaces have been replaced by s;‘ spaces.
Moreover, if s > 1/2 and a; € S;+(R2d) N s;) (1/&)]7 ;) for every j =
N, then ary, - -any €S, (R*) Nsit(1/w, 19)

When proving Propositions 5.1 and 5.2 we need some technical lemmas, and
start with the following classification of Hilbert modulation spaces.

Lemma 5.3. Let w € Zg(R*) be such that w(z,y,&,n) = w(x,), ¢ € S1/2(RY)\0
and let F € Sl/Q(RQd) Then F € M if and only if

(w)”’

171 = ([[[ Walr oo gt P dodya) < e 53)

Furthermore, F — || F|| in (5.3) defines a norm which is equivalent to any M(Zw)
norm.

Proof. We may assume that ||¢||2 = 1. Let ® = ¢ ® ¢, and let % F denotes the
partial Fourier transform of F(x,y) with respect to the x variable. By Parseval’s
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formula we get
1F 152, :////|(V<1>F)(:v,y,§,77)W(x,§)|2dxdydgdn
://(//K'?(Fq’(' — (2,9) ) (€ mw(a, )2 dydn ) dads
- // (//K%(F(wz) O+ — ) ) (6= - y)(a, &) dydz) dudg
= [[([1(F 200 = 0) @t OF dz) e = |7,

where the right-hand side is the same as ||F|| in (5.3). The proof is complete. O

We omit the proof of the next lemma, since the result follows immediately
from [44, Lemma 3.2], and the fact that S/, — .7.

Lemma 5.4. Let s,t € R be such that (—1)7s72 + (=1)*t=2 = 1, for some choice
of j,k € {0,1}, and that a,b € Sy 2(R?*?). Also let Tj . for j € {0,1} and z € R?
be the operator on Sl/g(RZd), defined by the formula

(To,.U)(z,y) = (Th . U)(y,z) =U(x — z,y +2), UEe€ 81/2(R2d>.

Then
Aa(s-)*b(t-)) = (277)d/2|8t|_d/(Tj,sz(Aa))(S_l-)(Tk,—tz(Ab))(t_1~)dZ- (5.4)

We note that for the involved spaces in Theorems 0.3’ and 0.4’, and Propo-
sitions 5.1 and 5.2 we have

A AR2d A
sy (L/w, ) = s, (R™) < s, (w,1/9), when w,9>c, (5.5)

A
p

immediate consequence of Remark 4.4 (4) and the embeddings M

for some constant ¢ > 0, and similarly when s, is replaced by s;’. This is an

= MP? =

L? — M(Ql’?w) which are valid when w is bounded from below. In particular, if
Cp(R%) denotes the set of all continuous functions on R?, vanishing at infinity,
then

s (1/w,9) = s{H(R?*?) — Cp(R*) N.ZCp(R*) N L2 (R?Y),

(5.6)
when w,?d > ¢,

and similarly when s{! is replaced by s%¥. Here the latter embedding follows from
Propositions 1.5 and 1.9 in [45].

Proof of Proposition 5.1 in the case N = 2. We only consider the case j; = 1 and
jo =0, ie.,t2—52=1when t; = s and t, = t. The other cases follow by
similar arguments and are left for the reader. We start to prove the theorem in
the case p;1 = po = r = 1. By Propositions 4.6, 4.7 and a simple argument of
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approximations, it follows that we may assume that a; = u and as = v are rank
one elements in Sy, and satisfy

lullsar/w o) <C and  [[v]|ga(1 w0, < C,
for some constant C. Then Au = f1 ® fo, Av = g1 ® g2 and
[ fillazz, |l f2llar2

(¥1) (w1) S HUHS{‘(l/wl,ﬂl)v ||91||M2

(192)||92||M(2w2) < ||U||sf(1/m,192)7

for some vectors f1, f2, 91,92 € S1/2 such that

1fillass, , <C Ifallae, <Cr llnllae

(1) (92)

<G, gl <G,

for some constant C > 0.
Set

F(z,2z) = fa(x/s + sz)gi(x/t + tz),  G(y,2) = fi(y/s — sz)g2(y/t — t2).
It follows from (5.4) that
Alus s 0)(a,) = (20 st 0 [ P, 2)Gl,2) d

This implies that

el oy S 1510 [ IFC Dz, 1602, d=
< Jst| ™y - I, (5.7)
where

L= (// |V¢(F('az))(x,f)ﬁ(:v,ﬁﬂzdxdzd§)1/2
I, = (// |V¢(G("Z))(x7§)w($,f)|2dxdzd§) 1/2’

for some ¢ € Sy /2(R%) \ 0. Hence, I1 < ||F||M(219 ) and Iy < ||G||M(2 ) by Lemma
0 «“o

5'3a when wo(x7y7f7n) = OJ(.’I,',&) and 190(337%5777) = 19(%75)

We need to estimate ||F||M(219 ) and ||G||M(2 - In order to estimate ||F||M(219 )
0 «“0 0

(5.8)

we choose the window function ® € S; /»(R?*?) as
(I)(:U, Z) = ¢(x/3 + SZ)(;5(Z/t + tZ)a

for some real-valued ¢ € Sy /2(R?). By taking (x1/s + sz1, 21/t +t21) as new vari-
ables when evaluating Ve F, and using t =2 — s~2 = 1, it follows by straightforward
computations that

VaF(x,2,¢,¢) = (2m) ¢ // F(x1,20)®(x1 — 2,21 — 2)e” @08 =4=00 g 4z

= |st|7dV¢f2(s—1x + 52,5716 — (Stz)_lc)v¢g1(t71$ +tz,t7lE — (szt)flg“).
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Furthermore, by (0.12), (5.2) and the fact that =2 — s72 = 1, we obtain
I, &) =9((t7%2 +2) — (s %2 +2), (726 — (1) 72¢) — (7€ — (st) ()
Swi(s™le 452,87 — (st) OO (T e + 2t — (5%) ()
A combination of these relations now gives
Vo F(z,2,6 0)9(z,€)| < [st| "1 - Ja, (5.9)
where
Ji = Vafa(s™ o+ 52,571 — (st?) 1w (s 1o + sz, 571 — (st?) 7 10)
and
Jo = |Vegr(t 7 o+ t2, 671 — (%) 71O (t e+t t 7 — (7)) 71Q)).
By applying the L? norm and taking
sl sz, tTrrmatz, sTE—(stB) Tt —(sP)TI¢
as new variables of integration we get
1z, < st fellare lonllas, (5.10)
By similar computations it also follows that

1Gla, < 1t~ fillasz, lgallasz - (5.11)

(¥1) )

Hence, a combination of Proposition 4.6, (5.7), (5.8), (5.10) and (5.11) gives

—d
s * V|l sa (1 /w0y S |88 f1llar2

o I fellarz lorllase, loollass

(w2)
S |St|7d||u||s{‘(1/w1,191)HUHsf‘(l/wg,ﬁz)'

This proves the result in the case p;y = ps = r = 1.
Next we consider the case p; = oo, which implies that po = 1 and r = co.
Let a € si (1/wy,91) and let b, c € Sy /5(R??). Then

(as % by, c) = |s| 72 (a, by, * csp),

where b(X) = b(—X), so = 1/s and to = t/s. We claim that

bt * Csoll s @r 1/ S 187 /HPBN (1 o 02 €l st (10 (5.12)

Admitting this for a while, it follows by duality, using Theorem 4.8 that

”as * bt”sfo(l/w,ﬁ) g |82/t|2d8_4d||a'||s§o(1/w1ﬂ91)||b||sf(1/w2,192)7

which gives (0.14). The result now follows in the case py = r = oo and p2 = 1 from
the fact that S /5 is dense in s{*(1/ws,¥2). In the same way the result follows in
the case po = r = oo and p; = 1.

For general p1,pa2,r € [1,00] the result follows by multi-linear interpolation,
using Theorem 4.4.1 in [2] and Remark 4.5 (3).
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It remains to prove (5.12) when b,c € Sl/Q(RQd). The condition (0.10) is
invariant under the transformation (¢, s) — (o, so) = (t/s,1/s). Let

O=1/w, U=1/0, o =1/w,
51:1/19, Wy = Vg and 1;2:w2.
If X;=—(X+4Y)/sand Xy =Y/s, then it follows that
w(Xy + X2) S (—sX1)wa(tX2), V(X1 + X2) S wi(—sX1)02(tX2),

is equivalent to

X +Y) ST (—s0X)Da(toY), I(X+Y) SDi(—s0X)Da(teY).
Hence, the first part of the proof gives
Hbto * Cso”sf(wl,l/ﬁl) = ”bto * 080”5{‘(1/&,5)
S |50t0|_2d||b||sf(1/a,2,52)||E||S{\(1/al,51)
= |80t0|_2d||b||s‘14(l/ﬁg,wg)||E||sf(w,1/z9)
= |80t0|72d||b||s{\(1/w2,192)||51|s{‘(w,1/19)7
and (5.12) follows. The proof in the case N = 2 is complete. O

We need the following lemma for the proof of Proposition 5.1 in the general
case.

Lemma 5.5. Let p,ty,...,txy € R\ O fulfill (0.10)" and p=2 + (—1)I~t* = 1. For
t.=t;/p set

wo(X) =infwj, 1(¢1X1) - wjy_y No1(ty_1 XN-1) and

Do(X) = inf I, 1 (01X1) -+ Fj i, N—1(Ey 1 Xv—1),

where the infima are taken over all Xq,..., Xn_1 such that X = X1+ -+ Xn_1.
Then the following is true:

(1) wo, Yo € L@E(RQd),‘
(2) for each X1,... Xny_1 € R*® it holds

wo(X1+ -+ + Xn-1) Swjp 111 X1) - win N1 (v Xn—1),  and
Po(X1+ -+ Xn-1) <950 X1) - Fjn N1 (v 1 Xn1);

(3) for each X,Y € R>? it holds
WX +Y) Sw(pX)wn(tnY) and HX +Y) S do(pX)dn(tnY).

Proof. The assertion (2) follows immediately from the definitions of wg and g,
and (3) is an immediate consequence of (0.12)".
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In order to prove (1) we assume that X = X3 4+ --- 4+ Xy_1. Since wj, 1 €
Z5(R2?), it follows that

wo(X +Y) < wji 11 (X1 +Y)) - wjy_y N-1(ty 1 Xn-1)

< wjl,l(tlle) o 'ijfl,Nfl(th—lXNfl)v(Y)a
for some v € Zr(R??). By taking the infimum over all representations X =
X1 + -+ + Xn, the latter inequality becomes wo(X +Y) < wo(X)v(Y). This

implies that wy € ZE(R2?), and in the same way it follows that ¥y € Zr(R?9).
The proof is complete. O

Proof of Proposition 5.1 for general N. We may assume that N > 2 and that the
proposition is already proved for lower values on /N. The condition on t; is that
cltfz +-+ cNtN2 =1, where ¢; € {£1}. For symmetry reasons we may assume
that cltl_2 4+ 4 cN_lt]_\,Q_1 = p~2, where p > 0. Let t;- =1t;/p, wo and Iy be the
same as in Lemma 5.5, and let r; € [1,00] be such that 1/r; +1/py =14 1/7.
Then cl(t’l)_2 4t CN_1(t§v_1)_2 =1,7r; > 1since py <, and

1/pr+--+1/pn-1=N—-2+1/r.

By the induction hypothesis and Lemma 5.5 (2) it follows that

d(2N74)(

b=ayy *--xan_14,  =p ate, * ok an—1,ey_,)(/P)

oA
makes sense as an element in 7’ (1/wo,Yo), and

N-1
||b||s§1(1/w0,190) N H |t}|72d/p"||a||sgj(1/wj,ﬁj)-
j=1
Since 1/m 4+ 1/py = 14 1/r, it follows from Lemma 5.5 (3) that b, * an ., makes
sense as an element in s (1/w, ), and

[(ar,e, * -k an—1,t5_1) % aniyllsawe) = p 1N b, % an ey $A(1/w,9)
< Cullaallsa (1w - llanllsa (/o on)
where
N—-1 N
Oy = ptA=2N=2/r)|q | =2d/pn H It;I_Qd/pj = H |t;|724/Ps
j=1 j=1

This proves the extension assertions. The uniqueness as well as the symmetry
assertions follow from the facts that S;/; is dense in s;‘ when p < oo and dense in
54 with respect to the weak* topology, and that at most one p; is equal to infinity
due to the Young condition. The proof is complete. O

Proof of Proposition 5.2. The continuity assertions follow by combining Proposi-
tion 4.3, Proposition 5.1 and (5.1).

When verifying the positivity statement we may argue by induction as in
the proof of Proposition 5.1. This together with Proposition 1.4 and some simple
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arguments of approximation shows that it suffices to prove that asb; is positive
semi-definite when +s?> +¢> = 1, st # 0, and a,b € Sl/Q(RQd) are o-positive
rank-one element.

For any U € S; /2(R*®) we set

UO,Z(‘Ta y) = Ul,z(fya 7‘%) = U(fE +z,y+ Z)
Then Lemmas 1.3 and 5.4 give

A(asbt)(xv y) = (2/7r)d/2|8t|_d /(ACL)]"Z/S(SLIJ, Sy) (Ab)k,fz/t (t.’L‘, ty) dz,

for some choice of j,k € {0,1}. Since a,b € C are rank-one elements, it follows
that the integrand is of the form ¢, (z) ® ¢.(y) in all these cases. Consequently,
A(asb:) is a positive semi-definite operator. O

Remark 5.6. We note that the arguments and conclusions in Remark 5.7 in [51]
holds after &7 has been replaced by Zg.

6. Some consequences

In this section we explain some consequences of the results in previous section.
We omit the proofs since they are the same as corresponding results in Section 6
in [51], after the weight class & has been replaced by Zg. It follows for example
from Proposition 5.2, that s{(1/v,v) is stable under composition with odd entire
analytic functions, when v is submultiplicative,

Thereafter we explain how the definition of Toeplitz operators can be ex-
tended to include appropriate dilations of s}’ as permitted Toeplitz symbols.

We start by considering compositions of elements in s7(1/v,v) with ana-
lytic functions. In these considerations we restrict ourself to the case when v =
v € P5(R?*) is submultiplicative. We mnote that each element in s7(1/v,v)
is a continuous function which turns to zero at infinity, since (5.6) shows that
s1(1/v,v) = Cp(R??).

A part of these investigations concerns o-positive functions and distributions,
and it is convenient to let C (R??) denote the set of all continuous functions on
R4, which are o-positive (cf. [44]).

It follows that any product of odd numbers of elements in s{'(1/v,v) are
again in s{'(1/v,v). In fact, assume that ay,...,an € s7(1/v,v), |a| is odd, and
that t; = 1. Then it follows from Theorem 5.2 that a$* ---a%" € sft(1/v,v), and

« o d| o Oéj
la - a5 lap 1wy < Co ™ TT 03155100y (6.1)

for some constant Cy which is independent of o and d.

Furthermore, if in addition aq,...,an are o-positive, then the same is true
for af* --- a%". The following result is an immediate consequence of these obser-
vations.
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Proposition 6.1. Let ay,...,ax € si'(1/v,v), where v =19 € Pr(R*) is submul-
tiplicative, Cy is the same as in (6.1), and let Ry,..., Ry > 0. Also let f, g be odd
analytic functions from the polydisc

{Z S CN; |Z]| < CoRj}
to C, with expansions

f(z) = anza and g(z) = Z leal2®.

[e3

Then f(a) = f(a1,...,an) is well defined and belongs to si*(1/v,v), and
”f(a)”sf(l/v,v) < g(C()”al”sf(l/’u,v)a SRR COHCLN”sf(l/'U,U))'
If in addition ay,...,an € Cy(R??), then g(a) € Cy(R??).

For rank one elements we also have the following generalization of [44, Propo-
sition 4.10].

Proposition 6.2. Let v,v; € Pr(R??) are even, submultiplicative and fulfill v, =
v(-/V2). Also let u € s¥(1/w,w) be an element of rank one, and let a(X) =
|u(X/v/2)|?. Then a € s¥*(1/v1,v1), and Op™(a) > 0.

We finish the section by applying our results on Toeplitz operators (cf. (1.22)).
The following result, parallel to Theorems 3.1 and 3.5 in [53], generalizes [46,
Proposition 4.5].

Theorem 6.3. Let p € [1,00] and w,wy,d,9; € Pr(R?*) for j = 0,1,2 be such
that

W(Xl — X2) S wO(\/2X1)'L92(X2), 19(X1 — XQ) S 190(\/2X1)191(X2)
Then the definition of Tpy, ,,(a) extends uniquely to each a € 8{/2(R2d) and

hj € M(Zﬂj) Jor j =1,2 such that b= a(v2-) € s¥(1/wo, ), and

1 Tony e (@) yara, iy S 102 1o gz, IBallags, -

Furthermore, if h1 = hy and Op”(b) > 0, then Tpy,, j,(a) > 0.

Proof. Since W, p, € sy(1/91,92), the result is an immediate consequence of
(1.23) and Theorem 0.3. O
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Appendix

In this appendix we prove basic results for pseudo-differential operators with sym-
bols in modulation spaces, where the corresponding weights belong to &g. The
arguments are in general similar as corresponding results in [47, 50].

The continuity results that we are focused on are especially Theorems A.1-
A.3. Here Theorem A.1 is the extension of Feichtinger—Grochenig’s kernel theorem
for modulation spaces with weights in &g. This result corresponds to Schwartz
kernel theorem in distribution theory. The second result (Theorem A.2) concerns
pseudo-differential operators with symbols in modulation spaces, which act on
modulation spaces. Theorem A.3 gives necessary and sufficient conditions on sym-
bols such that corresponding pseudo-differential operators are Schatten—von Neu-
mann operators of certain degrees. Finally in Propositions A.4 and A.5 we establish
preparatory results on Wigner distributions and pseudo-differential calculus in the
context of modulation space theory.

Before stating the results we recall same facts on distribution kernels to
linear operators in the background of Gelfand—Shilov spaces. Let s > 1/2 and let
K € 8/(R%+42). Then K gives rise to a linear and continuous operator 7' = T
from S;(R%) to SL(R%), defined by the formula

Tf(LIJ) = <K(:I,‘, ')7f>7 (Al)

which should be interpreted as (1.9) when f € Si(R%) and g € S,(R%).

Before establishing the corresponding result for modulation with weights in
P, we present appropriate conditions on the involved weights and Lebesgue
exponent. The involved weights are related to each others by the formulas

WQ(xv 5)

Sw(r,y.&—n), z,¢&eR* ™ yneR™ (A.2)
w1 (ya 77)
or
wa(,8) w(z,y, & -n), x,&eR™ @, yneR™, (A2)
w1 (ya 77)
and

W(x>ya€>77) = WO((l - t)x + tyvtg - (1 - t)%f + nY— :E),
x? y? 5377 ERd’ (A'g)

or equivalently,
z,y,&n R (A.3)
We note that (A.2) and (A.3) imply

WZ(xa 5)

wi(y,n) Swol(l —t)z +ty, t&+ (1 —t)n,§ —n,y — ), (A.4)
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and that (A.2)" and (A.3) imply

w2 (l‘, 5)
w1 (ya 77)
The Lebesgue exponents of the modulation spaces should satisfy conditions
of the form

pr—1/pe=1/qn —1/qe=1-1/p—1/q, q<p2,¢2 <p, (A.5)

Xwo((l—t)$+ty7tf+(1—75)7775—7779—1’)7 (A4)/

or
p1 <p<ps, ¢ <min(p,p’) and gz > max(p,p). (A.6)

Theorem A.1. Lett € R, w; € Zr(R?%) for j =1,2 and w € P(R?*¥212d1) pe
such that (A.2)" holds. Also let T is a linear and continuous map from 81/2(Rd1>

to S; /Q(RdQ). Then the following conditions are equivalent:

(1) T estends to a continuous mapping from M} (R) to M )(RdQ);

(w1) (w2
(2) there is a unique K € M(‘f)(Rd”dl) such that (A.1) holds for every f €
SI/Z(Rdl);
(3) if in addition di = dy = d and (A.3) holds, then there is a unique a €
M2 (R*) such that T f = Op,(a)f when f € Sy, 2(RY).

(wo)
Furthermore, if (1)—(2) are fulfilled, then ||T||M(1 oM = ||K||M(oc

wq w9 w

in addition di = dg and T = Op,(a) in (3), then ||K||M(°:j) = ||a||pree

(wo)

. and if

Theorem A.2. Lett € R and p,q,p;,q; € [1,00] for j = 1,2, satisfy (A.5). Also
let wop € Pr(R* @ R??) and wy,ws € Pr(R??) satisfy (A4). If a € M&%(Rm),
then Opy(a) from Sy /o (RY) to S{/Q(Rd) extends uniquely to a continuous mapping
from MPY(R?) to MP>%(R?), and

(w1) (w2)

1 Ob(@) gz or s agznie S llallarz (A7)

Moreover, if in addition a belongs to the closure of Sy under the M(pu’)z)
norm, then Op,(a) : M(Tgl’()“ — M(pj;()” is compact.

Theorem A.3. Lett € R and p,q,p;,q; € [1,00] for j = 1,2, satisfy (A.6). Also
let wg € Z(R* @ R*) and wy,ws € Pr(R?*) satisfy (A.4)". Then

MERSH (R < sy p(wn, wa) = ME2ST (RP).

For the proofs we also need the following extensions of Propositions 4.1 and
4.8 in [49].
Proposition A.4. Let t € R, and let pj,q;,p,q € [1,00] be such that p < pj,q; <gq,
for 3 =1,2, and
1/p1+1/pp=1/q1+1/g2=1/p+1/q. (A.8)
Also let wy,ws € ZE(R?*) and wy € Z5(R?* @ R?*) be such that

wo((I =tz +ty, t&+ (1 —t)n, & —n,y — x) S wi(x, §wa(y,n). (A.9)
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Then the map (f1, f2) = W7}, 4, from Si/z(Rd) X Si/z(Rd) to Si/Q(RQd) restricts

to a continuous mapping from M(p(jl")h (R%) x M(pjz’;” (R%) to M(’:}z)(RQd), and

t
Wi gz S U llagzeo [l f2llagrz oo (A.10)

when f1, fo € S{/Q(Rd).

Proposition A.5. Let p € [1,00], w; € Pp(R*), j = 1,2, w € Pp(R¥M=2+24)

and let T be a linear and continuous operator from Sy o(R%M) to Si)2 (R%) with

distribution kernel K € S{/Q(Rdﬁ‘dl). Then the following is true:

(1) if d = do = d and wy € Pr(R* © R satisfy (A.3)', a € Si/Q(RQd)
and K = K, is given by (1.7), then K € M(’;)(RQd), if and only if a €

M(’;O)(RZd), and

1K llasz, < Nl

(2) if (A.2)" holds, then T € fg(M(zwl), M(QWQ)), if and only if K € M(%}J)(RdQ*Fdl)}
and then
T, = 1K Lag. (A11)

For the proofs we note that (A.9) is the same as

WO(xa fa 7, y) S w1 (iL’ - ty?f + (1 - t)W)WZ(x + (1 - t)yaf - t77) (Ag),
Proof of Proposition A.4. We only prove the result when p, g < oco. The straight-
forward modifications to the cases when p = 0o or ¢ = oo are left for the reader.
Let ¢1,¢2 € ¥1(RY) \ 0, and let & = W;n@z' Then Fourier’s inversion formula
gives

(Vq) (W;1 7f2))(x7 53 7]7 y)
= e WPz —ty, &+ (1= t)n) Fa(x + (1 — )y, & — tn),

where F; = Vy. f;. By applying the L%Z}q)—norm on the latter equality, and using

(A.9), it follows from Minkowski’s inequality that
1/ 1/q
Wi s, S (G Gall i) < ([ Han) ™.

where G; = |Fjw;|P, r =¢q/p > 1 and

r 1/r r
1) = ([ ([ ([6rw-on-96alw.e)s) ay) " a)"
Now let rj, s; € [1,00] for j = 1,2 be chosen such that
1/ri+1/ro=1/s1+1/s2 =1+ 1/r.

Then Young’s inequality gives

) < ([ 160 -9 b de)

|G2(7£)|

L™
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Hence an other application of Young’s inequality gives

1/q 1/
||Wﬁ1,f2||M(ﬁ;g) < (/H(n) dn) S (IG Lo |Gallraen) P

By letting p; = pr; and ¢; = g¢s;, the last inequality gives (A.10). The proof is
complete. O

Proof of Proposition A.5. (1) Let ®,¥ € S;/5(R??)\ 0 be such that
Then it follows by straightforward applications of Fourier’s inversion formula that

|(Vo Ka,0)(2,y,&m)| =< [(Vea) (1 = t)x +ty, 8 — (1 = t)n,E + 1,y — o).

The assertion now follows by applying the L’()w) norm on the last equality.
Next we prove (2). Let {f;} € ON(M2) and {hs} € ON(MZ2). Then

TN, = DT hidaez, )P =D 1K e @ fi)uz, wral” (A.12)
5k ik
Next we consider the operator T, = IM(Q ) ® Ry /9, where 9(z,§) = wi(z, =§),
w2
which acts from M(QWQ) ® M(zl/ﬁ) to M(2w2) ® M(Zﬁ) (Hilbert tensor products). Then
(A.12) gives
715, = I e o,
j

(w1)

_ T/ K 2 —||K 2 = ||K 2
1T K e o = 1K ons, = 1K

and the result follows. The proof is complete. O

Proof of Theorem A.1. Let T be extendable to a continuous map from M(lwl) (R%)
to ME’:J’Q)(R@). It follows from [32, Theorem 2.2] and Remark 1.6 that (A.1) holds

for some K € §} ), (R42%d1). We shall prove that K belongs to Mg,
From the assumptions and Proposition 1.5 (3) it follows that

(K 9® f)eal S 1l lollary, . (A13)

2)

when f € Sl/g(Rdl) and g € 81/2(Rd2). By letting ® = g ® f be fixed, and
replacing f and g with

fyn = e—z’(‘mf(. —y) and o = ei<"5)f(- — ),
(A.13) takes the form

(Vo K)(z,y,&m)| S [ fymllar

(w1)

192.¢ll a1 (A.13)

1 .
(1/w2)
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If v € P is chosen such that w; is v-moderate, and ¢ € Sy/2 \ 0, then

Falasy,, = [ [ 10V D= 0.¢ 4 mpen (.0 dede
S @iy, =l fllagy, = wrly, =n)-
In the same way we get
< wa(z, €)™
If these estimates are inserted into (A.13)’, we obtain

(VoK) (z,y, &, mw(x, y,6m)| S 1,

By taking the supremum of the left-hand side it follows that || K| wMes, < oo. Hence
K € Mg, and we have proved that (1) implies (2).

By straightforward computations it also follows that (2) gives (1). The details
are left for the reader.

The equivalence between (2) and (3) follows immediately from Proposition
A.5. The proof is complete. O

192.¢ll a1

(1/w2) ™

Proof of Theorem A.2. The conditions on p; and ¢; implies that

P EpLanph e <d 1p+1/ph=1/a+1/g=1/p"+1/q.
Hence Proposition A.4, and (A.4) show that

| ngMP o S I sz llgllyos .
wn) M)

when f € Mpl")J1 (R%) and g € M(pf/’iz)(Rd).
The continuity is now an immediate consequence of (1.14) and Proposition
1.5 (4), except for the case p = ¢’ = 0o, which we need to consider separately.
Therefore assume that p = oo, and ¢ = 1, and let a € Sl/Q(RZd). Then
p1 = p2 and g1 = ¢, and it follows from Proposition A.4 and the first part of the

proof that W? 0f € M(l/w ) and that (A.7) holds. In particular,

[Ope(a) £, Nl S W flazznanllgll ) ot ot
(1/W2)

and the result follows when a € S; /5. The result now follows for general a € M, (05 ;,
by taking a sequence {a;};>1 in Si /o, which converges narrowly to a. (For narrow
convergence see Theorems 4.15 and 4.19, and Proposition 4.16 in [52]).

It remains to prove that if a belongs to the closure of S;/, under M(pwq)
norm, then Op,(a) : M{)'§" — M(7§* is compact. As a consequence of Theorem
A.3, it follows that Op,(ap) is compact when ag € Syo, since Sy — M(lwo)
when wy € P, and that every trace-class operator is compact. The compactness
of Op,(a) now follows by approximating a with elements in S;/5. The proof is

complete. O
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Proof of Theorem A.3. The first embedding in
M(Ojoi = St,00 (W1, W2) = M)

follows from Theorem A.2, and the second one from Proposition 1.5 (2) and The-
orem A.l.

By Propositions 1.5 (3) and 4.7, Theorem 4.8 and duality, the latter inclusions
give

1,00
M(IWO) — 8.1 (w1, w2) = M5,

and we have proved the result when p = 1 and when p = oo. Furthermore, by
Proposition A.5 we have M(QWO) = $¢,2(w1,ws), and the result also holds in the case
p = 2. The result now follows for general p from these cases and interpolation.

(See, e.g., Proposition 5.8 in [52].) The proof is complete. O
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Operator Invariance

Leon Cohen

Abstract. Linear time invariant (LTI) systems have produced a rich set of
ideas including the concepts of convolution, impulse response function, causal-
ity, and stability, among others. We discuss how these concepts are generalized
when we consider invariance other than time shift invariance. We call such
systems linear operator invariant systems because the invariance is character-
ized by an operator. In the standard case of LTI systems the relation between
input and output function in the Fourier domain is multiplication. We gener-
alize this and show that multiplication still holds in the operator transform
domain. Transforming back to the time domain defines generalized convolu-
tion.

Mathematics Subject Classification (2010). Primary 47G30, 42B10, 44A05.

Keywords. Linear operator invariant systems, operator transform domain,
generalized convolution.

1. Introduction

Many problems in physics, engineering, and mathematics can be formulated as
input-output relations that are characterized by a linear system operator L [6].
One writes

y(t) = La() (L.1)
where x(t) is said to be the input and y(¢) the output. An important class of
system operators are those that are “linear time invariant” (LTI) systems which
means that if the input is shifted by an amount ¢y then the output will be shifted
by the same amount

y(t +to) = La(t + to) linear time invariant system. (1.2)
Over the last hundred years the theory of linear time invariant systems has devel-

oped into a rich subject with many associated ideas including convolution, impulse

Work supported by the Office of Naval Research.
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response function, causality, and stability, among others. Our aim here is to dis-
cuss how other possible invariant systems may be formulated and to generalize the
concepts associated with LTI systems.

The notation we use is that operators are capital bold face. All integrals go
from —oo to oo unless noted otherwise. The commutator between two operators
is denote by

[A,B] = AB — BA. (1.3)

Throughout the paper all functions will be supposed to belong to suitably regular
function spaces in order that all performed operations makes sense.

2. How does time invariance arise?

Physically it is clear how “time invariance” can be imposed on Eq. (1.1) to get
Eq. (1.2)[6]. To do it mathematically we need an operator that accomplishes the

desired result. The time shift operator is e**oP:
"R f(t) = f(t + o) (2.1)
where
D= (2.2)
and f(t) is any function [2, 7]. Therefore, if we operate on Eq. (1.1) we have
eloDry (1) = Pt La(t) (2.3)
giving
y(x + to) = 0Pt La(t). (2.4)
To make this equal to Eq. (1.2) we have to be able to say that
e L = Le'oPr (2.5)
and therefore the condition for time invariance is that
[e'oPr 1] = 0. (2.6)
Note that Eq. (2.6) implies that
D, L] =0 (2.7)

as can be readily proven by differentiating Eq. (2.6) with regard to ¢y and sub-
sequently setting to = 0. If indeed it is the case that Eq. (2.7) is true then we
have

y(x +to) = 0P La(t)
= Le'oPey(t)

= La(t + to) if [D¢, L] = 0 (time invariant system). (2.8)
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Generalized operator invariance. One way to generalize time invariance to arbitrary
invariance is to associate a physical attribute by a Hermitian operator A. We
operate with e?®4 on Eq. (1.1), with ag real, to obtain

elaohy(t) = Le oA x(t) if [A,L] =0 (“a” invariant system) (2.9)
and therefore we say that for a system represented by L, the system is invariant

with respect to the physical quantity represented by A if L, and A commute. We
call such systems linear operator invariant systems

3. How does the system function arise?

The remarkable property of linear invariant systems is that if we know the response
to a delta function then we explicitly know the response for any other input [1, 2].
In particular if

h(t—t')=Lé(t —t") (3.1)

' h(t) = Lé(t) (3.2)
then -

y(t) = [ h(t —t")x(t")dt. (3.3)

The function h(t) is called the system function, impulse response function, or
Green function. We give the standard proof of this classical result as it will help
us to generalize to arbitrary invariance. Write

x(t) = /jo 5(t —t"x(t)dt (3.4)

and substitute into Eq. (1.1)

MQ:Ldﬂ:L/féﬁ—wﬂwﬁ. (3.5)

Because of linearity we can put L inside the integral to obtain

y(t) = /oo Lé(t — )x(t)dt = /oo h(t —t")x(t')dt (3.6)

— 00 — 00

which is Eq. (3.3).

Generalization of system function. Notice that in Eq. (3.1) the impulse response
is a function of ¢ — ¢’ which is a characteristic of time invariance. For the general
case, where the operator L is invariant with respect to A, we write

y(t) = / h(t,t")ax(t")dt (3.7)
and the issue becomes how do we obtain h(t,t"). We start with

Mﬂ:/mhm—KMWMt (3.8)

—00
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and therefore
h(t,t) =Lt —t'). (3.9)

We now find the explicit expression for h(t,t’) that is connected to the operator
A that represents the invariance. It is important to appreciate that even though
L is operating on the delta function of ¢ — ¢’ the result is not generally a function
of t — t/; indeed that will only be the case for linear time invariant systems where
the system operator commutes with Dy.

There are an infinite number of representations of the delta functions, each
associated with an Hermitian operator as we now explain. Suppose we have a com-
plete and orthogonal set of functions that are the eigenfunctions of the eigenvalue
problem for a Hermitian operator A

Au(a,t) = au(a,t) (continuous spectrum) (3.10)
Aun(t) = an(t)un,(t) (discrete spectrum) (3.11)

then [1, 7, 2]
S(t—t) = / u*(a,t') u(a,t) da (continuous spectrum) (3.12)
5t —t") Z wn () un (t (discrete spectrum). (3.13)

We first consider the continuous spectrum case and subsequently, in Section 9.1,
give the expressions for the discrete case. Substituting Eq. (3.12) into Eq. (3.9) we
have

h(t,t’):/u*(a,t’)Lu(a,t) da (3.14)

and using Eq. (3.8) we obtain

= // u*(a,t") Lu(a, t) z(t")dadt. (3.15)

Now consider the issue of invariance which as discussed means that the operator
A commutes with L. Since commuting operators have common eigenfunctions we
can write

Lu(a,t) = L(a)u(a,t) (if A commutes with L) (3.16)

where L(a) is a function of a that of course depends on L. Furthermore we can
obtain L(a) from

L(a) = / w* (a, t)Lu(a, £)dt. (3.17)

Substituting into Eq. (3.17) into Eq. (3.14) results in

h(t,t’):/u*(a,t’)L(a)u(a,t) da. (3.18)
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4. The transform domain

Since a complete set of functions has been brought in it is natural to examine the
situation in the transform domain. If we have an input function, x(t), then its
transform, X (a), in the a domain is given by [1, 7, 2

X(a) = / 2(t) u (0, ) dt (4.1)
where
x(t) = /X(a) u(a,t) da. (4.2)
X (a) is called the transform of x(¢). For the output we write
Y(a) = /y(t) u*(a,t)dt (4.3)
y(t) = /Y(a) u(a,t) da. (4.4)

We now derive the input-output relation in the transform domain. Multiply Eq.
(3.7) by u*(a,t) and integrate with respect to ¢

Y(a) = / Yt (a, £)dt = / * (a, Dh(t, () de dt

_ / w* (a, Dh(t, yuld, #) X (') dtdt' da’. (4.5)
Hence, if we take
H(a,ad) :/u*(a,t)h(t,t’)u(a’,t’)dtdt’ (4.6)
then
Y(a) = / H(a,a') X (a')dd’. (4.7)

Also, by inverting Eq. (4.6) we have
h(t,t") = /u(a, t)H (a,a")u*(a’,t")dada’. (4.8)
Now we impose invariance. Multiply Eq. (3.16) by u*(a,t’) and integrate to
obtain
H(a,d') = /u*(a,t) uw*(a”,t") L(a" )u(a” t) u(a’, t")dtdt' da” (4.9)
which simplifies to
H(a,a') = 6(a—a’") L(a). (4.10)
Substituting this into Eq. (4.7) we have
Y(a) = L(a)X (a). (4.11)
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If we were dealing with the standard LTI case, then in Eq. (4.11) @ would be
frequency, and Y, L, and X would be the Fourier transforms of the output, sys-
tem function, and input function respectively. In the frequency domain they are
connected by multiplication. What we have shown is that multiplication in the
transform domain holds for any invariant.

4.1. Generalized convolution

In the Fourier case, when we transform Eq. (4.11) back to the time domain we get
convolution. Therefore when we transform Eq. (4.11) back to the time domain we
will get what we call generalized convolution. Multiply Eq. (4.11) with w(a,t) and
integrate with respect to a to obtain

y(t) = /L(a)X(a)u(a,t)da (4.12)
where we have used Eq. (4.3). Now define
It) = /L(a) u(a,t)da (4.13)
with
L(a) = / 1(t) u*(a, 1) dt (4.14)

and substitute into Eq. (4.12) to obtain

y(t) = /l(t") u*(a,t)z(t")u*(a,t") u(a,t)dadt'dt". (4.15)
We write this as
y(t) = /R(t,t',t")x(t')l(t") dt'dt” (4.16)
where
R(t,t' ") = /u(a,t)u*(a,t’)u*(a,t”)da. (4.17)

We call the left-hand side of Eq. (4.16) the generalized convolution between z(t)
and [(t) corresponding to the operator A. As we will see in the examples section
this reduces to ordinary convolution for the Fourier case.

5. Relation between the system function and

the invariance operator
We now address the following problem: Suppose we are given the system function
h(t,t") but not the system operator L. How can we tell if a particular operator,

A, commutes with the unknown L operator or for invariance to hold? Operate on
Eq. (3.7) with efaoA

oy = [ e On a(eyar (5.1)
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For invariance, hence, we must have
. 0 . /7
ci0Ay (1) = / h(t, )0 A ) (1)t (5.2)
—0o0

and therefore the criterion is that

oo

(oo}
/ e 0AD Rt )z (t)dt = / h(t,t)e' oA gt )dt. (5.3)
—co —0o0

Note that Eq. (5.3) must be true for any function z(t). An example of this will be
given for scale in the examples section.

6. Series and parallel connections

Series connections and parallel connections of systems amount, from the math-
ematical point of view, to multiplications and sums of the corresponding linear
operators respectively. We consider them in the following two subsections.

6.1. Series connection

Suppose the output, y(t), of a linear system (system 1) is the input of another
linear system, z(t), (system 2). We write

y(t) = Lyx(t) (6.1)

and we want to be able to write that z(¢) is the output of a third system where
the input is x(¢)

z(t) = Lgx(t). (6.3)
This is a series connection for system one and two. Clearly

L3 = LoLy. (6.4)

We now obtain the relationship between the system functions. Writing
oo
y(t) = / ha (¢, ) ()t (6.5)
—o0
A(t) = / ha(t, )y (t')dt (6.6)

2(t) = [ hs(t, ")z (t")dt' (6.7)
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we have

mpfiwmwmw
= /o:o ha(t,t") /Z ha(t' s ")z (t")dt" dt’
- /o:o {/Z ho(t, t' )ha (¢, t")dt’} z(t")dt"

hg(t,t,):/ ho(t, " Yhy (8", ") dt".

— 00

and therefore

In the Fourier domain

@:/mmwwww

= /Hg(a, a'YHi(a',a") X (a")da'da”
and therefore
Hi(a,d") = /Hg(a,a”)Hl(a",a')da".
If we impose invariance by taking
Hy(a,a") = 6(a — a") La(a”)
Hi(a",a") =6(a" —a") Li(a")

then

(a,a") /6 a—a")Ly(a")o(a" —a") Li(a")da”

=d(a —a’')La(a')L1(a")
and therefore

L3(a> = Lg (G,)L1 (G,)

6.2. Parallel connection
In a parallel connection we have that the output is given by
2(t) = Lox(t) + Lix(t)
= (La + Ly)xz(t).
In this case
Ly =Ly + Ly
and the impulse response functions also add,

hS(ta t/) = h2(t> t,) + hl(t,a t/)'

(6.12)

(6.13)

(6.14)

(6.17)
(6.18)

(6.19)

(6.22)

(6.23)
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7. Causality

A causal system is where only the past times affect the output. In terms of the
impulse response function that means

t
y(t) = / h(t,t")x(t")dt. (7.1)
— 00
That is, the future values do not contribute which means that

/ h(t, t)z(t")dt = 0. (7.2)
t
Since this must be true for any function we have that the condition for causality is

h(t,t') =0 for t > . (7.3)

8. Stability

The standard definition of stability is that for a bounded input there should be
a bounded output. This is sometimes called the BIBO criterion. To obtain the
condition on the system function for this to be the case we take the absolute value
of Eq. (3.7)

y(t)] = ] [ neersae| < [ ol ar (8.1)

Now, if we assume that the input |z(¢')| is bounded and its highest value is Zyax
then

oo

()] < T / (h(t, )] dt’. (8.2)

Hence y(t) will be bounded if the integral in Eq. (8.2) is a bounded function of ¢,
that is

/ h(t.t)|dt <o (BIBO stable). (8.3)

9. Summary

We summarize the basic ideas and results we have developed. We have two lin-
ear operators, the system operator, L, and the operator A which represents the
invariant quantity we are interested

y(t) = Lax(t) L : the system operator
A : operator that represents the invariant quantity
if [A,L] =0 we have an “a” invariant system.

Note that the operators L and A operate on functions of time only. We
assume that A is Hermitian and the eigenvalue problem is written as

A u(a,t) = au(a,t) (continuous eigenvalues). (9.1)
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Since L commutes with A we can write that

Lu(a,t) = L(a)u(a,t) (9.2)
where
Lmyi/mm¢mmeﬁ. 9.3)
System function: The system function h(t,t’) is defined by way of
y(t) = / h(t, ")zt )dt’ (9.4)

and is given by

h(t,t") :/u*(a,t') Lu(a,t) da:/u*(a,t’) L(a)u(a,t)da. (9.5)

For invariance with respect to the operator A h(t,t') must satisfy

/WJWMWMJMWMﬂ:/mh@ﬂWmM”dﬂﬁﬁ (9.6)
In the transfo;m domain .
Y@:/mHmﬁﬂmeL@M@ 9.7)
where
H(a,a') = /u*(a,t)h(t, tu(a',t')dtdt’ = 6(a — a’)L(a). (9.8)
Generalized convolution: The generalized convolution between z(t) and [(t) is
mw:/RmﬂﬂnWﬂMMMW 9.9)
where
R(t, ") = J/ii@ht)u*(a,ﬂ)u*(a,t”)da. (9.10)

9.1. Discrete case

For the discrete case one can write the equivalent equations straightforwardly. We
write

Aup(t) = anun(t). (9.11)
If L commutes with A
Lu,(t) = L(ay) un(t) (9.12)
and
L(ay,) = /u:(t)Lun(t)dt. (9.13)

System function: The system function h(t,t') is

y(t) = /_Oo h(t, t")z(t")dt’ (9.14)
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and is given by
Zu "L, (t Zun L(an)un(t). (9.15)

For invariance with respect to the operator A h(t,t ), the condition on the system
function is:

/ e 0AD Rt () dt = / h(t, )t oA g (1)t . (9.16)
In the transform domain
Yo(a) = HumXm = L(an)Xn(a) (9.17)
m

where
Xn(a) = /ufl(t)x(t)dt (9.18)
Y, (a) = /ufl(t)y(t)dt (9.19)
Hpym = /u;;(t)h(t, ), (t")dtdt” = 8 L(an,). (9.20)

Generalized convolution: The generalized convolution between z(t) and I(t) is

y(t) :/R(t,t’,t”)x(t’)l(t”)dt’dt” (9.21)

where
R(t, ', t") = Zun N (8. (9.22)

10. Examples
10.1. Example 1: LTI

The linear time invariant case is obtained by taking

1d
A=D, = ;g (10.1)
and “a” becomes frequency
a=uw. (10.2)
The eigenvalue problem
Diu(w,t) = cu(w,t) (10.3)
gives )
tw
u(w,t) = \/27re . (10.4)
Now consider 1

1 .
Lu(a,t) = Le'™ =

Jor \/ZWL(oJ)e”‘*’. (10.5)
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Using Eq. (9.5) we have

h(t,t’):/u*(w,t')L(w) w(w, t) dw

1 o
= / L(w) e =% du,

2

(10.6)

(10.7)

As expected we see that h(t,t’) is a function of ¢t — ¢’ and therefore we may take

h(t,t") = h(t—1t').
Now consider

H(w,w') = / o (w, )t Yo, ) dtdt

1 . . 147
=, / e“rh(t —te ™ dtdt!

=(w—w')H(w)
which gives

1 .
Hw) = e “th(t)dt.

) V2T / Q

Comparing with Eq. (10.7) we see that
L(w) = H(w).
Furthermore
Y(w)= H(w)X(w)
which is a standard result of LTI systems.
Now consider convolution. Using Eq. (9.10) we have

y(t) = / R(t, ', t")x(t") 1(t))dt' dt”
where

R(,t,47) = / (o, D) (w, ) (w, £ )

— 1 1 / 6itw67it’w67it”wdw
27 \/21

_— 5t —t —t").

\/27r

Substituting into Eq. (10.15) we obtain

y(t) = j% / It — ¥)2(t') dt

which is the standard convolution.

(10.8)

(10.9)

(10.10)
(10.11)

(10.12)

(10.13)

(10.14)

(10.15)

(10.16)
(10.17)

(10.18)

(10.19)
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10.2. Example 2: Scale

In this section all functions of time are defined only for the positive time axis.
Suppose we take a system function given by

h(t/t)
h(t,t") = v (10.20)
Is this system function scale invariant? The scale operator, C, is given by
1 1 d d
C = _(tD:+ Dit) = t t 10.21
o (HDe+ Det) 2i(dt+dt> ( )
and has the following fundamental property [3, 2],
eCf(t) = €7/ f(et) (10.22)
for real 0. Now we examine the criterion given by Eq. (9.6)
(oo} oo
/ 7SO (1, ¢ )t )t = / h(t, )i (¢ dt (10.23)
0 0

to see whether the system function is scale invariant. Starting with the left-hand
side we have

o0 e h(e’t/t
/0 eg/gh( e"t,t’)x(t')dt/ :/O 80/2 (et// )x(t')dt/ (10.24>
o0 /
:/O e"/zh(tt{t)x(e"t’)dt’ (10.25)
oo ’
_ [ g, o
0

Eq. (10.25) follows from Eq. (10.24) by a simple change of variables, ¢’ — e~ “¢'.
Hence we have Eq. (10.23) and we have invariance with respect to C. Explicitly,
we have

o0
€i7C0 (1) — / h(t, )i 2 (¢ d (10.27)
0
which reduces to
o0

y(elt) = /O h(t, t")x(e’t)dt'. (10.28)

Since o is arbitrary we may write
o
y(kt) = / h(t,)x(kt'ydt" , t>0, k>0. (10.29)
0

10.2.1. Transform domain. We now consider the problem in the scale domain. For
that we need the scale eigenfunctions and the scale transform. The eigenvalue
problem Cu(c,t) = cu(c,t) gives

1 6iclnt

Vor Wt ’

u(e,t) = t>0 (10.30)
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which are complete and orthogonal [3],

/OO u*(d t)ule, t) dt=5(c — )
0

/u*(c, tYu(e,t)de=6(t —t") t,t" > 0.

The transform pairs are given by

1 eiclnt
f@) = \/27T/D(c) vt de ; t>0

—zclnt

D(c) ¢2/ F(t) dt

where D(c) is called the scale transform of f(t )
In the transform domain

_ [ O:O Hie,d)X()d

(%S) —iclnt
V()= / yo) ¢
0

and

where

Vor Vi
00 67iclnt
X(C)\/127r/ x(t) Vi dt

) = /Oo /OO w* (e, )h(t,tu(d ) dtdt .
/ / {/) (', t")dtdt’

We now evaluate H(c, ¢

which reduces to

, , o0 672'015
H(c,d')=6(c—¢ h(t)dt.
(e.d)=de=) [ ho)
However the scale transform of h(t) is
e—z’ct
H(c) = h(t)dt
@=[°, n)
and therefore
H(c,d)=6(c—)YH(c).
Convolution theorem. Using Eq. (9.5) we have
1 1 giclnt o—iclnt’ —iclnt”

R(t,t,t") =
NV ) VIR

which reduces to

R(t,t',t") = 5t —t't")

1
\/277

(10.31)

(10.32)

(10.33)

(10.34)

(10.35)

(10.36)
(10.37)

(10.38)

(10.39)

(10.40)

(10.41)

(10.42)

(10.43)

(10.44)
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and therefore
oty = / / 5(t — ")) 1(t") dt'dt” (10.45)
Ve Jo Jo

which evaluates to

y(t) = \/1% /OOO tllx(t')l(t/t’)dt’. (10.46)

This is the convolution theorem for scale between the z(t) and 1(¢).
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Initial Value Problems in
the Time-Frequency Domain

Lorenzo Galleani

Abstract. We transform an initial value problem for a stochastic differential
equation to the time-frequency domain. The result is a deterministic time-
frequency equation whose forcing term incorporates the given set of initial
values. The structure and solution of the time-frequency equation reveal the
spectral properties of the nonstationary random process solution to the sto-
chastic differential equation. By applying our method to the Langevin equa-
tion, we obtain the exact time-frequency spectrum for an arbitrary initial
value.
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1. Introduction

We consider the stochastic differential equation defined as

d"x(t dx(t
oo ™ ) = 100, (1)
where ag, ..., a, are constant deterministic coefficients, the forcing term f(t) is

a nonstationary random process, and z(¢) is the nonstationary random process
representing the solution. The processes f(t) and z(t) are referred to as the input
and output signal, respectively. A variety of random phenomena can be modeled by
using Eq. (1), such as vibrations of structures [1], electrical and electronic devices
with noisy inputs [2], financial time series [3], and Brownian motion processes [4].

Since z(t) is a nonstationary random process its properties vary with time,
including the Fourier spectrum. This time variation can be represented by using
time-frequency analysis [5, 6], a body of techniques for the spectral analysis of
nonstationary signals, either deterministic, random, or chaotic [7]. Contrary to
classical spectral analysis, where a unique connection between time and frequency
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exists, namely, the Fourier spectrum, time-frequency analysis provides an infinite
number of representations of the time-varying spectrum of a signal. We consider
the Wigner spectrum [8-10]

+o0
Wa(t,w) = ;ﬁ/_ Elz*(t — 7/2)a(t +7/2)]e" " dr,

obtained by taking the expected value E of the Wigner distribution [11,12]

[t ,

W (tw) = / 2t — 72t + 7/2)e T dr.

21 J_ o
The star sign indicates complex conjugation. Equation (1) can be transformed
to the time-frequency domain of the Wigner spectrum [13-15]. The result of this
transformation is a deterministic time-frequency equation, whose properties clarify
the nature of the nonstationary random process z(¢). In [16] it is proved that the
solution to the time-frequency equation corresponds to the Wigner spectrum of
the solution to the equation in time. In this article we show how to write the
time-frequency equation when we add to Eq. (1) the set of initial values given by

z(0) = wo, (2)
x(l)(O) =,
2" (0) = x4, (3)
where
ko

We consider both the case of deterministic and random initial values. We apply
the developed method to the case of the Langevin equation, and we obtain the
exact analytic Wigner spectrum.

The article is organized as follows. In Section 2 we first review the transfor-
mation to the time-frequency domain, and then we show how to add the initial
values. In Section 3 we obtain the Wigner spectrum for the initial value problem
of the Langevin equation.

2. Transformation to the time-frequency domain

We first rewrite Eq. (1) as

an [T (D = M) z(t) = f(2), (5)

k=1

where D = jt, and the complex numbers Aq,..., A, are the roots of the charac-
teristic equation

ap\" ...+ a1X+ag=0.



Initial Value Problems in the Time-Frequency Domain 191

These roots are referred to as the poles. In general, we can write
Ak = g + 1Bk,

where oy and [ are the real and imaginary parts of \g, respectively. Equation
(5) can be transformed to the time-frequency equation for the Wigner spectrum
given by [15]

2 n
G .
T 00 00— s Weatt) = W (0.0), )
k=1
where 0; = E;dw and p1, pi,...,pn, Pl are the time-frequency poles, defined as

Dk :2ak+2i(ﬁk—w).
We see that the input of the time-frequency equation is the Wigner spectrum
of the input f(t), whereas the output W,(¢,w) is the Wigner spectrum of the
output x(t). Since no derivatives with respect to w are present, this equation can
be solved as an ordinary differential equation with respect to time. Furthermore,
the Wigner spectrum is a deterministic quantity, and hence the time-frequency
equation is deterministic. We also note that, although the Wigner spectrum is a
nonlinear transformation, the time-frequency equation is still linear.
We now consider the initial value problem
n
an [T (D = M) (t) = f(2),

k=1

x(”*l)(()) =Tp_1,

corresponding to Eq. (5) with the set of initial values given in Eqgs. (2)—(3). We
seek a time-frequency equation that can incorporate the initial values xg, ..., Ty _1.
First, we rewrite the initial value problem by using delta functions [17]

n n—1
Gnp H (D - )\k) x(t) = f(t) + Z bk(s(k) (t>7 (7)
k=1 k=0

where
by, = ary170 + agq2T1 + - F AnTr_1-k, (8)
and
6Oy = a(t).

Then, we set

n—1
folt) = F(&)+ D bo™ (). (9)
k=0
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Substituting in Eq. (7), we have

n

an [T (D =) 2(t) = folt).

k=1

After this change of variable we can apply the usual transformation given in Eq.

(6), obtaining

H (815 *pk) (815 *p?;) Wl(taw) = Wfo (taw)a

k=1

|an|2
4n

(10)

which is the desired equation. A series of interesting facts about the Wigner spec-

trum of the input term fy(¢) can be immediately derived.

Deterministic initial values. If, in Eq. (9), we indicate the input term due to the

initial values by
n—1
frt)y =Y o™ (),
k=0

then we can rewrite the input fo(¢) as
fo(t) = F(t) + fi(t).
In general, due to the nonlinearity of the Wigner spectrum, it is
Wfo (t7w> # Wf(tvw) + WfI (tvw>'

We can in fact write

(11)

Wfo (t7w> = Wf(tvw) + WfI (t7w> + 2% {Wf,ff (tvw)} ) (12)
where
I ;
Wen(tw) =y [ BU(—1/2) 01+ /2] e dr
—o0
is the cross-Wigner spectrum. For the common case
Elf(#)]=0 (13)
we can instead write
Wi, (t7w> = Wf(tvw) + Wy, (tvw>7 (14)
because
1[ree :
Win(tw) =, | Bl —r/2f(+ /2] e dr,
L[t ,
- / filt+7/2)Bf*(t - 7/2)) e dr,
= (),
which holds since the initial values are deterministic quantities.
Random initial values. When the initial values xg,...,x,_1 are random vari-

ables, because of Eq. (8) also the coefficients by, ...,b,_1 are random variables.
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Consequently, fr(t) is a random process and we have to replace the Wigner dis-
tribution in Eq. (12) with the Wigner spectrum

Wi, (tw) = We(t,w) + Wy, (t,w) + 2R {Wy 5, (t,w)} .

A reasonable assumption in a physical system is to consider the mechanisms that
generate the input f(¢) to be statistically independent from those that are re-
sponsible of the initial values. Therefore, the coefficients b5 and, consequently, the
random process f7(t), are statistically independent from the input f(¢), and we
can write

+oo
Wi (tw) = 217r [ Ef*(t —1/2)fr(t +1/2)] e "¥dr,
+oo
= 2];r ‘[m E [f*(t — T/Q)] FE [f[(t + 7_/2)] eIV g

If we consider an input f(¢) with zero mean, as in Eq. (13), we obtain
mefl (ta W) =0,

and, consequently
Wfo (ta W) = Wf(t>w) + WfI (taw)'

3. Example
We consider the initial value problem of the Langevin equation [18], defined as
dx(t
" () = u(te).

x(0) = xp,
where v > 0, z¢ is real and deterministic, u(t) is the step function defined as
1, t>0,
MU{Q t<0,

and &(t) is a white Gaussian noise with zero mean and autocorrelation function
given by
Rg(tl,tg) =F [x(tl)x(tg)] = 5(t1 — tg).
This equation belongs to the class defined in Eq. (1), with
apg =77, a =1.
The factored form is obtained straightforwardly
(D —\)zx(t) =u(t)é(t), where A = —v.
To compute the Wigner spectrum of the solution z(t), we first rewrite the initial
value problem according to Eq. (7)

dfi(tt) + ya(t) = u(t)&(t) + bod(¢).
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FIGURE 1. Wigner spectrum W, (¢,w) of the solution to the Langevin
equation when xg = 0. The plot shows the evolution of the time-
frequency spectrum when the initial value is zero. We observe a transient
spectrum which eventually reaches a steady state corresponding to the
classical power spectrum obtained with the assumption of wide sense
stationarity.

From Eq. (8), it is
bo = xo.

Substituting, we have
dz(t)

gt +yz(t) = w(t)E(t) + zod(2).

Therefore, the modified input term which takes into account the initial values is

fo(t) = u®)§(t) + o6 (t).
From Eq. (1) and Eq. (11) it is, respectively
ft) = u(t)E(t),
fr(t) = xod(t).
By applying the transformation of Eq. (10), we have

3 0= 1) (B =P Walt.) = W (1,00,
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FIGURE 2. Wigner spectrum W, (t,w) of the solution to the Langevin
equation when zg = 1. The non-zero initial value interferes with the
transient spectrum shown in Figure 1. As a result, for short times we
observe a larger spread of the time-frequency spectrum. As in Figure 1,
the time-frequency spectrum eventually reaches a steady state corre-

sponding to the classical power spectrum.

where

I ””IIIIZ[I;;

[
III;I
iy

7

p1 =201 +2i(B1 —w).

Since the real and imaginary parts of Ay are given by, respectively

ap = —7, 61 - 07

it is

p1 = —2v — 2iw.

Moreover, £(t) has zero mean, hence

iy
1
i
)

i
=
g

Ef(t)] = Eu(®)®)] = u(t)EE(t)] = 0.
Therefore, Eq. (14) holds. The Wigner spectrum of f(t) is given by [15]

1
Wie(t,w) = oY

Furthermore [5]

1
WfI (t, w) = 271_37(%

().

3(1).

2275
rs st e
550555555

195
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Substituting these results in Eq. (14) and then in Eq. (15), we have

2

(00 + 29 + 2iw) (0, + 27 = 2iw) W (t,w) = (ult) +230(t)) - (16)

We solve this equation by taking the Laplace transform along the time axis [19]
2 /1
(84 27 + 2iw) (s + 27 — 2iw) W (s, w) = - <s +;vg) , (17)
where
+oo
Wai(s,w) = W (t,w)edt.
0

Therefore

2 (1 1
W:z: 5 == 2 . . .
(8,) v (s+x0) (s 4+ 27+ 2iw) (s + 27 — 2iw)
Inversion of this equation gives, for w # 0

1 1 in2wt 1 9wt
W (t,w)=u(t) |:27T g [162% (COSth+*ysmww >} +ﬂ_x8672"’tsm w ’
(19)

(18)

and, for w =0
1

W (t,0) = u(t) 97y

, [1— e (1 + 29t — 4a3y’t)] . (20)
In Figure 1 we show W (¢,w) when xy = 0, whereas in Figure 2 we consider the
case xo = 1. A brute force solution for random initial values is given in [20].

4. Conclusions

We have shown how to transform an initial value problem for a stochastic differ-
ential equation defined in the time domain, to the time-frequency domain of the
Wigner spectrum. The result is a deterministic time-frequency equation which can
be used to better understand the structure of the nonstationary random process
obtained as the solution to the time equation. This problem has a fundamental in-
terest is science and engineering, since the considered class of stochastic differential
equations is the model for several random phenomena.
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Polycaloric Distributions and
the Generalized Heat Operator

Viorel Catana

Abstract. The aim of this paper is to introduce the notion of p-caloric distri-
butions with respect to the generalized heat operator and to prove a represen-
tation formula. Based on the representation formula for p-caloric distributions
and using the parametrix of the generalized heat operator we shall give two
extensions of Poisson formula.

Finally, we shall define the generalized iterated heat operator of order
A € C, Re A < 0 by means of the kernel distribution of its parametrix.
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Introduction

The purpose of this work is to consider the iterated generalized heat equation
o p

< P A(t)> u = 0, in n-dimensional C* manifold countable at infinity X. Here

A(t) is a pseudo-differential operator of order m in X, valued in L(H), depending

smoothly on ¢ in [0, T"), where T is some real number > 0. H is a finite-dimensional

Hilbert space (over C), L(H) is the space of (bounded) linear operators in H and

u is an H-valued distribution in X.

The operator L = _ — A(t) has been studied by several authors, in particular

by Treves in [8] under the name of generalized heat operator, which we shall adopt
in the following.

We shall give in our paper a necessary and sufficient condition in order that
an H-valued distribution v in X to belong to the kernel of the generalized iterated

0
heat operator LP = ((% — A(t)> ,p>1,1e., uto be a polycaloric distribution.
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Our condition can be read as follows: © = ug + tu; +--- + tp_lup_l, where
Ug, U1, ..., Up—1 are caloric distributions, i.e., Lu; =0, forall 0 < j <p—1.

Let us remark that such decomposition theorems have been obtained by some
authors in the frame of the theory of polyharmonic or polycaloric functions (see
(1], 4], (6], [7]).

By using the parametrix of the generalized heat operator which has been
obtained by Tréves in [8] we shall give two applications of the representation
formula for polycaloric distributions.

One of these applications refer to the following initial value problem:

LPy =0, in X x[0,7T)

oku )
6tk|t:0:wka mX,OSkSP*l,PZQ

Its solution will be defined by an expression which will be called the first
extension for Poisson formula in the case of polycaloric distributions.
The other one application refers to the following initial value problem:

LPy =0, in X x[0,7)
Lku|t:O:Uka mXaOSkSP*l,PZQ

Then, the expression which will give its solution will be named the second extension
for Poisson formula in the case of polycaloric distributions. Let us see that when
X =R", A(t) = A, is the Laplace operator, then we recover similar results such
as in Nicolescu [4].

In the end, when X = R"™, by using the Schwartz kernel distribution of the
parametrix of the generalized heat operator and a similar idea such as in [3], we
shall define the generalized iterated heat operator of an arbitrary order A € C,
Re A < 0.

Some definitions and results from Tréves’ book [8] concerning the generalized
heat equation and its parametrix will be recalled in Section 1.

In Section 2 we shall introduce the notion of polycaloric distribution and
we shall give a decomposition theorem for them. Based on the decomposition
theorem in Section 2 and by using the parametrix of the generalized heat operator
we shall give in Section 3, a first extension for the Poisson formula for 2-caloric
distributions.

In Section 4 we shall give a first extension for the Poisson formula for p-caloric
distributions.

A second extension for the Poisson formula for 2-caloric distributions will be
given in Section 5.

A similar result as that in Section 5 but in the case of p-caloric distributions
will be proved in Section 6.

Finally, in Section 7 we shall define the generalized iterated heat operator of
an arbitrary order A € C, Re A < 0, by using the Schwartz kernel distribution of
the parametrix of the generalized heat operator.
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1. Some preliminaries concerning the generalized heat equation
and its parametrix

The notations and the namings that we shall use in the following are those of [8].
Let X be an n-dimensional C°° manifold countable at infinity, let (22, z1, ...,
xy) be alocal chart in X, let H be a finite-dimensional Hilbert space and let L(H)
be the space of (bounded) linear operators on H. The norm in H will be denoted
by | - |z whereas the operator norm in L(H) will be denoted by || - ||. Our basic
ingredient is a pseudodifferential operator of order m in X, A(t)-valued in L(H),
depending smoothly on ¢ in [0,7).
In fact, A(t) is a matrix whose entries are scalar pseudodifferential operators
in X, if one uses a basis in H.
Thus, in every local chart (Q,z1,...,2,) in X, A(t) is given by
Aatju(e) = 2m) " [ 9an (ot a(e)de, )
u € C§° (% H),
modulo regularizing operators, depending smoothly on ¢ in [0,T"), where
aq(z,t,&) is a C* function of ¢t € [0,T),
valued in S™(Q; L(H)).
We have denoted by S™(€; L(H)) the space of classical symbols in 2, valued in

L(H). We shall denote by ¥™(€; L(H)) the corresponding class of operators.
Now, we shall consider the following Cauchy problem from Treves [8].

dU (t)
dt

(1.2)

—A(t)-U(t) =0, in X x [0,T) (1.3)

U(t)|t:0 = Ia in X> (14)
where I : H — H in the identity operator of H.

Let us mention that the equality (1.3) it means congruence modulo regular-
izing operators depending smoothly on ¢ in [0,7") and that the equality (1.4) it
means congruence modulo regularizing operators.

We are interested in solving the initial value problem (1.3), (1.4). To this end
let us make the following hypothesis:

(1.5)  Let (2,z1,...,2,) be a local chart in X. Suppose that there is a symbol
aq(x,t,§) satisfying (1.2) and defining Aq(t) by (1.1), congruent to A(t) modulo
regularizing operators in € depending smoothly on ¢ in [0,7"), such that

(1.6)  to every compact K of Q x [0,T) there is a compact K/ C C_ = {z €
C;Rez < 0} such that

(1.7) 2l —aq(z,t,€)/(1 +|€]?)™? : H — H is a bijection (hence a homeomor-
phism), for all (z,t) in K,£ in R™ and z in C\ K.

Then, Treves has proved in his book [8] the following theorem which states the
existence and the “uniqueness” of the parametrix of the generalized heat equation
(1.3).
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Theorem 1.1. Under the hypothesis (1.5)—(1.7), the initial value problem (1.3)—(1.4)
has a solution U(t) which is a function of t € [0,T)-valued in

WO(X; L(H))(= W°(X; L(H)) /¥ ~>(X; L(H)).

There is a representative of the equivalence class U(t) with the following prop-
erty. In each local chart (2, x1,...,xy,) the representative in question is equivalent
to an element Uq(t) of ¥O(Q; L(H)) given by

Ua(t)u(z) = (27) " / O U (a1, €)it(€) e,

. (1.8)
ue (L H),

whose symbol Uq has the following properties:
Uq : Q2 x[0,T) x R" — L(H) is a C* function of t € [0,T). (1.9)

(1.10) To every compact K of 2 x [0,T), to every pair of n-tuples o, § € Z" , and
to every pair of integers r, N > 0, there is a constant C > 0 such that for all (x,t)
m K, & e R

1050¢ OFUa (., )| < O N (1 + | Nm=1AL, (1.11)
Any C* function of t in [0,T) valued in the space of continuous linear map-

pings E'(X; H) — D'(X; H) which satisfies (1.3), (1.4) belongs to the equivalence
class U(t).

Remark 1.2. From (1.11) it follows that U(z,t,§) belongs to S~°°(Q); L(H)), so,
the operator (1.8) is regularizing; it means that the equivalence class U(t) is zero.
This generalizes the well-known property of the parametrix of the heat equation.

Remark 1.3. When X = R"”, A(t) = A,, the Laplace operator in n variables (in
which case aq(z,t,&) = —|¢[?), then equation (1.3)—(1.4) define the parametrix in

the forward Cauchy problem for the heat equation o AU =0.

In the same manner as above we can consider the following Cauchy problem:
du(t
[Zli )_ Alt)-U(@) =0, in X x [t',T), (1.12)
U(t)‘tzt’ :I, in )(7 (113)
0 <t <Tis a fixed real number. .
We shall denote by U(t,t') € W(X; L(H)) the solution of the initial value
problem (1.12)—(1.13).
In every local chart (Q,z1,...,2,) in X, this solution is equivalent with the
pseudodifferential operator Uq(t,t') € WO(Q; L(H)), defined by

Ual(t,t'Ju(z) = (2m) ™" / Ut t, a€)de, (1.14)

u € C§° (% H).



Polycaloric Distributions and the Generalized Heat Operator 203

By means of the solution of the initial value problem (1.12)—(1.13) it can be solved
the following nonhomogeneous Cauch