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Preface

At the Eighth Congress of the International Society for Analysis, its Applications
and Computations (ISAAC) held at the Peoples’ Friendship University of Russia
in Moscow on August 22–27, 2011, a new initiative on selecting contributions from
two special sessions, one on Pseudo-Differential Operators and the other on Gen-
eralized Functions and Asymptotics, for one volume was taken to heart by many
participants. This resonates well with the grandeur of ISAAC of considering Analy-
sis, Applications and Computations on an international scale as a unified discipline.
This can be achieved, notwithstanding the diversity of the disciplines, by building
synergies among clusters consisting of several closely related disciplines. To that
end, volumes on pseudo-differential operators and applications in mathematical
sciences have been published since the ISAAC Congress held at York University
in 2003. The present volume entitled “Pseudo-Differential Operators, Generalized
Functions and Asymptotics” is another project with this vision in mind.

This volume contains three categories of papers, originated from the Eighth
ISAAC Congress or solicited by invitations, corresponding to each of the three
areas in the title. The category of papers on pseudo-differential operators contains
such topics as elliptic operators associated to diffeomorphisms of smooth manifolds,
analysis on singular manifolds with edges, heat kernels and Green functions of sub-
Laplacians on the Heisenberg group and Lie groups with more complexities than
but closely related to the Heisenberg group, 𝐿𝑝-boundedness of pseudo-differential
operators on the torus, pseudo-differential operators and Gelfand–Shilov spaces,
and pseudo-differential operators in the context of time-frequency analysis.

The second group of papers is on generalized functions. Various classes of
distributions and algebras of generalized functions are used for various linear par-
tial differential equations and some of these have nonregular coefficients. More-
over, nonlinear problems with nonregular initial values or boundary conditions are
treated in this framework. Featured in this volume are also papers on stochastic
and Malliavin-type differential equations in which generalized functions are instru-
mental. This second group of papers are related to the third collection of papers
via the setting of Colombeau-type spaces and algebras in which microlocal analysis
is developed by means of various techniques of asymptotics.

This volume contains interesting topics in pseudo-differential operators, gen-
eralized functions and asymptotics that are essential in modern mathematical sci-
ences and engineering. It is a volume that put different but related areas of analysis
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on an equal footing. It is through working with colleagues with a diversity of re-
lated expertise and through regular meetings and publishing that we can deepen
our understanding of a vast area of mathematics that has been known as analysis.
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Elliptic Theory for Operators Associated with
Diffeomorphisms of Smooth Manifolds

Anton Savin and Boris Sternin

Abstract. In this paper we give a survey of elliptic theory for operators as-
sociated with diffeomorphisms of smooth manifolds. Such operators appear
naturally in analysis, geometry and mathematical physics. We survey classical
results as well as results obtained recently. The paper consists of an introduc-
tion and three sections. In the introduction we give a general overview of
the area of research. For the reader’s convenience here we tried to keep spe-
cial terminology to a minimum. In the remaining sections we give detailed
formulations of the most important results mentioned in the introduction.

Mathematics Subject Classification (2010). Primary 58J20; Secondary 58J28,
58J32, 19K56, 46L80, 58J22.

Keywords. Elliptic operator, index, index formula, cyclic cohomology, diffeo-
morphism, 𝐺-operator.

Introduction

The aim of this paper is to give a survey of index theory for elliptic operators
associated with diffeomorphisms of smooth manifolds. Recall that the construction
of index theory includes the following main stages:

1) (finiteness theorem) Here one gives conditions, called ellipticity conditions,
under which the operators under consideration are Fredholm in relevant func-
tion spaces;

2) (index theorem) Here one presents and proves an index formula, that is,
an expression for the index of an elliptic operator in terms of topological
invariants of the symbol of the operator and the manifold, on which the
operator is defined.

The first index theorem on high-dimensional manifolds was the celebrated
Atiyah–Singer theorem [11] on the index of elliptic pseudodifferential operators
(𝜓DO) on a closed smooth manifold. This theorem appeared as an answer to a
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question posed by Gelfand [26]. Note that the statement and the proof of the index
formula relied on most up to date methods of analysis and topology and stimulated
interactions between them.

After that index theorems were obtained for many other classes of operators.
In this paper we consider the class of operators associated with diffeomorphisms
of closed smooth manifolds. One of advantages of this theory is that, besides the
mentioned interaction of analysis and topology, here an important role is played
by the theory of dynamical systems.

1. Elliptic operators for a discrete group of diffeomorphisms (analytical aspects).
The theory of elliptic operators associated with diffeomorphisms and the corre-
sponding theory of boundary value problems with nonlocal boundary conditions
go back to the paper by T. Carleman [17], where he considered the problem of
finding a holomorphic function in a bounded domain Ω, which satisfies a nonlocal
boundary condition, which relates the values of the function at a point 𝑥 ∈ ∂Ω
of the boundary and at the point 𝑔(𝑥) ∈ ∂Ω, where 𝑔 : ∂Ω → ∂Ω is a smooth
mapping of period two: 𝑔2 = 𝐼𝑑. A reduction of this boundary value problem to
the boundary does not give usual integral equation as it was the case with the
local boundary condition. Rather, it gives an integro-functional equation, which
we call equation associated with diffeomorphism 𝑔. This paper motivated the study
of a more general class of operators on closed smooth manifolds. Let us give the
general definition of such operators.

On a closed smooth manifold 𝑀 we consider operators of the form

𝐷 =
∑
𝑔∈𝐺

𝐷𝑔𝑇𝑔 : 𝐶
∞(𝑀)→ 𝐶∞(𝑀), (0.1)

where:

∙ 𝐺 is a discrete group of diffeomorphisms of 𝑀 ;
∙ (𝑇𝑔𝑢)(𝑥) = 𝑢(𝑔

−1(𝑥)) is the shift operator corresponding to the diffeomor-
phism 𝑔;

∙ {𝐷𝑔} is a collection of pseudodifferential operators of order ≤ 𝑚;
∙ 𝐶∞(𝑀) is the space of smooth functions on 𝑀 . Of course, one can also
consider operators acting in sections of vector bundles.

Operators (0.1) will be called 𝐺-pseudodifferential operators (𝐺-𝜓DO) or simply
𝐺-operators.1 Such operators were intensively studied (see the fundamental works
of Antonevich [4, 5], and also the papers [2, 7] and the references cited there). In
particular, an extremely important notion of symbol of a 𝐺-operator was intro-
duced there. More precisely, two definitions of the symbol of a 𝐺-operator were
given. First, the symbol was defined as a function on the cotangent bundle 𝑇 ∗𝑀
of the manifold taking values in operators acting on the space 𝑙2(𝐺) of square
integrable functions on the group. Second, the symbol was defined as an element
of the crossed product [69] of the algebra of continuous functions on the cosphere

1In the literature such operators are also called functional-differential, nonlocal, noncommutative
operators and operators with shifts.
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bundle 𝑆∗𝑀 of the manifold and the group 𝐺. Further, we introduce the ellipticity
condition in this situation, which is the requirement of invertibility of the symbol of
the operator. It was proved that the two ellipticity conditions (they correspond to
the two definitions of the symbol) are equivalent under quite general assumptions.
Ellipticity implies Fredholm property of the operator in Sobolev spaces 𝐻𝑠.

Let us note here one essential difference between the theory of elliptic 𝐺-
𝜓DO and a similar theory of 𝜓DO. Namely, examples show (see [6, 1, 45]) that
the ellipticity (and the Fredholm property of operator (0.1) in the Sobolev spaces
𝐻𝑠) essentially depends on the smoothness exponent 𝑠. Thus, there arise natural
questions on the description of the possible values of 𝑠, for which a given𝐺-operator
is elliptic and the question about the dependence of the index on 𝑠. The answers to
these questions are well known in the situation of an isometric action of the group,
that is, if the diffeomorphisms preserve a Riemannian metric on the manifold. In
this case the symbol and the index do not depend on 𝑠. First steps in the study
of these questions for nonisometric actions were done in the papers [58, 52], where
it was shown for the simplest nonisometric diffeomorphism of dilation of spheres
that the set of 𝑠, for which a 𝐺-operator is elliptic, is always an interval and the
index (inside this interval) does not depend on 𝑠.

2. Index of elliptic operators for a discrete group of diffeomorphisms. Let us now
turn attention to the problem of computing the index of elliptic 𝐺-operators. The
first formula for the index of 𝐺-operators was obtained in the paper [3] for a
finite group 𝐺 of diffeomorphisms.2 In this case the index of a 𝐺-operator was
expressed in terms of Lefschetz numbers of an auxiliary elliptic 𝜓DO on 𝑀 . Since
the Lefschetz numbers are expressed by a formula [12] similar to the Atiyah–Singer
index formula the index problem for a finite group is thus solved.

The index problem for infinite groups turned out to be much more difficult
and required application of new methods related with noncommutative geometry of
Connes [20, 22]. The first advance was done in the celebrated work of Connes [19].
There an index formula was obtained for operators of the form

𝐷 =
∑
𝛼𝛽

𝑎𝛼𝛽𝑥
𝛼(𝑑/𝑑𝑥)𝛽 (0.2)

acting on the real line, where the coefficients 𝑎𝛼𝛽 are Laurent polynomials in the
operators

(𝑈𝑓)(𝑥) = 𝑒𝑖𝑥𝑓(𝑥), (𝑉 𝑓)(𝑥) = 𝑓(𝑥− 𝜃),
and 𝜃 is some fixed number. The index theorem of Connes for such differential-
difference operators is naturally formulated in terms of noncommutative geometry.
Operators (0.2), which are also called operators on the noncommutative torus3,
were used in a mathematical formulation of the quantum Hall effect [22]. It became

2These results were rediscovered in [39].
3This name is motivated by the fact that the algebra generated by 𝑈 and 𝑉 is a noncommutative
deformation of the algebra of functions on the torus 𝕋2.
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clear after the cited papers of Connes that noncommutative geometry is not only
useful, but also natural in the index problem for 𝐺-operators, and since then
noncommutative geometry is used in all the papers on the index of 𝐺-operators, we
are aware of. For instance, methods of noncommutative geometry were applied to
solve the index problem for deformations of algebras of functions on toric manifolds
in [34, 23, 24] and other papers.

Further progress in the solution of the index problem for 𝐺-operators was
made in the monograph [38]. Namely, an index formula for operators (0.1) was
obtained in the situation, when the action is isometric. Let us note here that this
index formula for isometric actions contains all the above-mentioned formulas as
special cases.

In the situation of a general (that is, nonisometric) action there were no
index formulas until recently. There were only partial results. Namely, the index
problem for ℤ-operators (that is, operators for the group of integers) was reduced
to a similar problem for an elliptic 𝜓DO (see [4, 51, 56]). The first index formula
in the nonisometric case was obtained in the paper [58] for operators associated
with dilation diffeomorphism of spheres. The index formula for elliptic operators
associated with the group ℤ was obtained in [49]. Finally, an index formula for an
arbitrary torsion free group acting on the circle was stated in [44].

Let us mention several interesting examples of elliptic 𝐺-operators. Suppose
that 𝐺 preserves some geometric structure on the manifold (for instance, Rie-
mannian metric, complex structure, spin structure,. . . ). Then we can consider an
elliptic operator associated with that structure and twist this operator using a
𝐺-projection (that is an operator of the form (0.1), which is a projection: 𝑃 2 = 𝑃 )
or an invertible 𝐺-operator. This construction produces an elliptic 𝐺-operator. For
instance, if 𝐺 acts isometrically, then one can take classical geometric operators
(Euler, signature, Dolbeault, Dirac operators). The indices of the corresponding
twisted 𝐺-operators were computed in [54]. If 𝐺 acts by conformal diffeomorphisms
of a Riemannian surface, then one can take the ∂ operator. Indices of the corre-
sponding twisted operators were computed in [43, 42]. In the papers [25, 37] there
are index formulas for the twisted Dirac operator for group actions preserving the
conformal structure on the manifold.

3. Operators associated with compact Lie groups. Let now 𝐺 be a compact Lie
group acting on 𝑀 . Consider the class of operators of the form

𝐷 =

∫
𝐺

𝐷𝑔𝑇𝑔𝑑𝑔 : 𝐶
∞(𝑀) −→ 𝐶∞(𝑀) (0.3)

(cf. (0.1)), where 𝑑𝑔 is the Haar measure. Such operators relate values of functions
on submanifolds of𝑀 of positive dimension. They were considered in [55, 66, 50]. In
these papers a 𝐺-operator of the form (0.3) was represented as a pseudodifferential
operator acting in sections of infinite-dimensional bundles [35], whose fiber is the
space of functions on 𝐺. This method goes back to the papers of Babbage [13] and
for a finite group gives a finite system of equations [4]. Moreover, the obtained
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operator, which we denote by 𝒟, is 𝐺-invariant, and its restriction 𝒟𝐺 to the
subspace of 𝐺-invariant functions is isomorphic to the original operator 𝐷. Now

if �̂� = 1 + 𝒟 is transversally elliptic4 with respect to the action of 𝐺, then this

implies the Fredholm property, that is, the index of the operator �̂� = 1 + 𝐷
is finite. The index formula and the corresponding topological invariants of the
symbol of elliptic 𝐺-operators were computed in the papers cited above.

4. Other classes of 𝑮-operators. Operators associated with diffeomorphisms are
not exhausted by operators of the form (0.1). In this section we consider other
classes of operators appearing in the literature. Boundary value problems similar
to Carleman’s problem, with the boundary condition relating the values of the
unknown function at different points on the boundary were considered (see the
monograph by Antonevich, Belousov and Lebedev [1] and the references cited
there). Finiteness theorems were proved and index theorems were obtained for the
case of finite group actions (see also [48]). On the other hand, nonlocal boundary
value problems, in which the boundary condition relates the values of a function
on the boundary of the domain and on submanifolds, which lie inside the domain,
were considered in [15, 62, 63, 64]. We also mention that 𝐺-operators on manifolds
with singularities were considered in [1]. The symbol was defined and a finiteness
theorem was proved.

An important extension of the notion of (Fredholm) index was obtained in
[36]. Namely, given a 𝐶∗-algebra 𝐴 (the algebra of scalars) one considers operators
𝐹 acting on the spaces, which are 𝐴-modules. The index of a Fredholm operator
in this setting, also called Mishchenko–Fomenko index

ind𝐴 𝐹 ∈ 𝐾0(𝐴) (0.4)
is an element of the 𝐾-group of 𝐴. Also, in the cited paper a definition of pseu-
dodifferential operators over 𝐶∗-algebras was given and an index theorem was
proved. Note, however, that it is sometimes useful in applications to have not only
the index (0.4) but some numerical invariants. Such invariants can be constructed
using the approach of noncommutative geometry by pairing the index (0.4) with
cyclic cocycles over 𝐴. In the papers [38, 53, 57] 𝐺-operators over 𝐶∗-algebras were
defined for isometric actions and the finiteness theorem and the index formula were
obtained.

5. Methods used in the theory of 𝑮-operators. Let us know write a few words
about the methods used in obtaining these index formulas. The first approach,
which appears naturally, is to try to adapt the known methods of obtaining index
formulas for 𝜓DOs in our more general setting of 𝐺-operators. This approach was
successfully applied, for instance, in the book [38]. Note, however, that using this
approach we obtain the proof of the index formula, which is quite nontrivial and
relies on serious mathematical results, notions and constructions from noncommu-
tative geometry and algebraic topology.

4This notion was introduced by Atiyah and Singer [8, 61] and actively studied since then (see
especially [31, 32, 33] and the references cited there).
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The second approach uses the idea of uniformization [55, 49] (see also [59,
47, 46]) to reduce the index problem for a 𝐺-operator to a similar problem for
a pseudodifferential operator on a manifold of a higher dimension. The index of
the latter operator can be found using the celebrated Atiyah–Singer formula. The
attractiveness of this approach is based on the fact that this approach is quite
elementary and does not require application of complicated mathematical appara-
tus, which was mentioned above. This method of pseudodifferential uniformization
enabled to give simple and elegant index formulas.

Let us now describe the contents of the remaining sections of the paper.
In Section 1 we recall the definitions of symbol and the finiteness theorem for
𝐺-operators associated with actions of discrete groups. Section 2 is devoted to
index formulas for actions of discrete groups. We start with the index formula for
isometric actions and then give an index formula for nonisometric actions. Finally,
Section 3 is devoted to 𝐺-operators associated with compact Lie group actions.
We show how pseudodifferential uniformization can be used to obtain a finiteness
theorem for such operators.

1. Elliptic operators associated with actions of discrete groups

1.1. Main definitions

Let 𝑀 be a closed smooth manifold and 𝐺 a discrete group acting on 𝑀 by
diffeomorphisms. We consider the class of operators of the form

𝐷 =
∑
𝑔∈𝐺

𝐷𝑔𝑇𝑔 : 𝐶
∞(𝑀) −→ 𝐶∞(𝑀), (1.1)

where {𝐷𝑔}𝑔∈𝐺 is a collection of pseudodifferential operators of order ≤ 𝑚 acting
on 𝑀 . We suppose that only finitely many 𝐷𝑔’s are nonzero. Finally, {𝑇𝑔} stands
for the representation of 𝐺 by the shift operators

(𝑇𝑔𝑢)(𝑥) = 𝑢(𝑔
−1(𝑥)).

Here and below an element 𝑔 ∈ 𝐺 takes a point 𝑥 ∈ 𝑀 to the point denoted by
𝑔(𝑥) ∈𝑀 .

Main problems:

1. Give ellipticity conditions, under which the operator

𝐷 : 𝐻𝑠(𝑀) −→ 𝐻𝑠−𝑚(𝑀), 𝑚 = ord 𝐷, (1.2)

is Fredholm in the Sobolev spaces.
2. Compute the index of operator (1.2).

The first of these problems is treated in this section, while the second problem is
treated in the subsequent section.

Below operators of the form (1.1) are called 𝐺-pseudodifferential operators or
𝐺-operators for short.
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1.2. Symbols of operators

Definition of symbol. The action of 𝐺 on𝑀 induces a representation of this group
by automorphisms of the algebra 𝐶(𝑆∗𝑀) of continuous functions on the cosphere
bundle 𝑆∗𝑀 = 𝑇 ∗0𝑀/ℝ+. Namely, an element 𝑔 ∈ 𝐺 acts as a shift operator along
the trajectory of the mapping ∂𝑔 : 𝑆∗𝑀 → 𝑆∗𝑀 , which is the extension of 𝑔 to the
cotangent bundle and is defined as ∂𝑔 = (𝑡(𝑑𝑔))−1, where 𝑑𝑔 : 𝑇𝑀 → 𝑇𝑀 is the
differential. Consider the 𝐶∗-crossed product 𝐶(𝑆∗𝑀)⋊𝐺 (e.g., see [16, 41, 68, 69])
of the algebra 𝐶(𝑆∗𝑀) by the action of 𝐺. Recall that 𝐶(𝑆∗𝑀)⋊𝐺 is the algebra,
obtained as a completion of the algebra of compactly-supported functions on 𝐺
with values in 𝐶(𝑆∗𝑀) and the product of two elements is defined as:

𝑎𝑏(𝑔) =
∑
𝑘𝑙=𝑔

𝑎(𝑘)𝑘−1
∗
(𝑏(𝑙)), 𝑘, 𝑙 ∈ 𝐺.

The completion is taken with respect to a certain norm.5 Here for 𝑘 ∈ 𝐺 by
𝑘−1∗ : 𝐶(𝑆∗𝑀) → 𝐶(𝑆∗𝑀) we denote the above-mentioned automorphism of
𝐶(𝑆∗𝑀).

To define the symbol for 𝐺-operators, it is useful to replace the shift operator
𝑇𝑔 : 𝐻

𝑠(𝑀) −→ 𝐻𝑠(𝑀) by a unitary operator. We fix a smooth positive density
𝜇 and a Riemannian metric on 𝑀 and treat 𝐻𝑠(𝑀) as a Hilbert space with the
norm

∥𝑢∥2𝐻𝑠 =

∫
𝑀

∣(1 + Δ)𝑠/2𝑢∣2𝜇,
where Δ is the nonnegative Laplacian. A direct computation shows that the op-
erator

𝑇𝑔,𝑠 = (1 +Δ)−𝑠/2𝜇−1/2𝑇𝑔𝜇+1/2(1 + Δ)𝑠/2 : 𝐻𝑠(𝑀) −→ 𝐻𝑠(𝑀)

is unitary. Here

𝜇1/2 : 𝐿2(𝑀)→ 𝐿2(𝑀,Λ1/2)

is the isomorphism of 𝐿2 spaces of scalar functions and half-densities on𝑀 defined
by multiplication by the square root of 𝜇. Note that the operator 𝑇𝑔,𝑠 can be
decomposed as 𝑇𝑔,𝑠 = 𝐴𝑔,𝑠𝑇𝑔, where 𝐴𝑔,𝑠 is an invertible elliptic 𝜓DO of order
zero.

This implies that the class of operators (1.1) does not change if in (1.1) we
replace 𝑇𝑔 by 𝑇𝑔,𝑠. Now we can give the definition of the symbol.

Definition 1. The symbol of operator

𝐷 =
∑
𝑔∈𝐺

𝐷𝑔𝑇𝑔,𝑠 : 𝐻
𝑠(𝑀) −→ 𝐻𝑠−𝑚(𝑀), (1.3)

where {𝐷𝑔} are pseudodifferential operators of order ≤ 𝑚 on 𝑀 , is an element

𝜎𝑠(𝐷) ∈ 𝐶(𝑆∗𝑀)⋊𝐺, (1.4)

defined by the equality 𝜎𝑠(𝐷)(𝑔) = 𝜎(𝐷𝑔) for all 𝑔 ∈ 𝐺.
5Below we consider the so-called maximal crossed product.
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The symbol (1.4) is not completely convenient for applications, since it de-
pends on the choice of Δ and 𝜇. Here we give another definition of the symbol
which is free from this drawback.

Trajectory symbol. So, let us try to define the symbol of the operator (1.2) using
the method of frozen coefficients. Note that the operator is essentially nonlocal.
More precisely, the corresponding equation 𝐷𝑢 = 𝑓 relates values of the unknown
function 𝑢 on the orbit 𝐺𝑥0 ⊂ 𝑀 , rather than at a single point 𝑥0 ∈ 𝑀 . For
this reason, unlike the classical situation, we need to freeze the coefficients of the
operator on the entire orbit of 𝑥0. Freezing the coefficients of the operator (1.2) on
the orbit of 𝑥0 and applying Fourier transform 𝑥 → 𝜉, we can define the symbol
as a function on the cotangent bundle 𝑇 ∗0𝑀 = 𝑇 ∗𝑀 ∖ 0 with zero section deleted.
This function ranges in operators acting on the space of functions on the orbit. A
direct computation gives the following expression for the symbol (see [4, 52]):

𝜎(𝐷)(𝑥0, 𝜉) =
∑
ℎ∈𝐺

𝜎(𝐷ℎ)(𝑔
−1(𝑥0), ∂𝑔−1(𝜉))𝒯ℎ : 𝑙2(𝐺,𝜇𝑥0,𝜉,𝑠) −→ 𝑙2(𝐺,𝜇𝑥0,𝜉,𝑠−𝑚).

(1.5)
Here we identify the orbit 𝐺𝑥0 with the group 𝐺 using the mapping 𝑔(𝑥0) → 𝑔−1

and use the following notation:

∙ (𝒯ℎ𝑤)(𝑔) = 𝑤(𝑔ℎ) is the right shift operator on the group;
∙ the expression 𝜎(𝐷ℎ)(𝑔

−1(𝑥0), ∂𝑔−1(𝜉)) acts as an operator of multiplication
of functions on the group;

∙ the space 𝑙2(𝐺,𝜇𝑥,𝜉,𝑠) consists of functions {𝑤(𝑔)}, 𝑔 ∈ 𝐺, which are square
summable with respect to the density 𝜇𝑥,𝜉,𝑠, which in local coordinates is
defined by the expression [52]

𝜇𝑥,𝜉,𝑠(𝑔) =

∣∣∣∣det ∂𝑔−1∂𝑥

∣∣∣∣ ⋅
∣∣∣∣∣𝑡
(
∂𝑔−1

∂𝑥

)−1
(𝜉)

∣∣∣∣∣
2𝑠

(1.6)

More precisely, here we suppose that the manifold is covered by a finite
number of charts and the diffeomorphism 𝑔−1 is written (in some pair of
charts) as 𝑥 → 𝑔−1(𝑥). The density is unique (up to equivalence of densities).

Definition 2. The operator (1.5) is the trajectory symbol of operator (1.2) at
(𝑥0, 𝜉) ∈ 𝑇 ∗0𝑀 .

Note that in general, the dependence of the trajectory symbol on 𝑥, 𝜉 is quite
complicated. For instance, the symbol may be discontinuous. This is related with
the fact that the structure of the orbits can be quite complicated.

Let us describe the relation between the symbols defined in Definitions 2 and
1. Given (𝑥, 𝜉) ∈ 𝑆∗𝑀 , we define the representation (restriction to trajectory)

𝜋𝑥,𝜉 : 𝐶(𝑆
∗𝑀)⋊𝐺 −→ ℬ𝑙2(𝐺)
𝑓 −→ ∑

ℎ 𝑓(𝑔
−1(𝑥), ∂𝑔−1(𝜉), ℎ)𝒯ℎ
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of the crossed product in the algebra of bounded operators acting on the standard
space 𝑙2(𝐺) (cf. (1.5)). One can show that the diagram

𝑙2(𝐺,𝜇𝑥,𝜉,𝑠)
𝜎(𝐷)(𝑥,𝜉) ��

≃
��

𝑙2(𝐺,𝜇𝑥,𝜉,𝑠−𝑚)

≃
��

𝑙2(𝐺)
𝜋𝑥,𝜉(𝜎𝑠(𝐷))

�� 𝑙2(𝐺),

(1.7)

commutes, where the vertical mappings are isomorphisms defined by multiplication
by the square root of the densities. In other words, this commutative diagram
shows that the restriction of the symbol 𝜎𝑠(𝐷) to a trajectory gives the trajectory
symbol 𝜎(𝐷).

1.3. Ellipticity and finiteness theorem

The two definitions of the symbol give two notions of ellipticity.

Definition 3. Operator (1.2) is elliptic, if its trajectory symbol (1.5) is invertible
on 𝑇 ∗0𝑀 .

Definition 4. Operator (1.2) is called elliptic, if its symbol (1.4) is invertible as an
element of the algebra 𝐶(𝑆∗𝑀)⋊𝐺.

It turns out that these definitions of ellipticity are equivalent, at least for a
quite large class of groups. More precisely, the commutative diagram (1.7) shows
that ellipticity in the sense of Definition 4 implies ellipticity in the sense of Defini-
tion 3; the inverse assertion is more complicated and was proved in [2] for actions
of amenable groups (recall that a discrete group 𝐺 is amenable, if there is a 𝐺-
invariant mean on 𝑙∞(𝐺); for more details see, e.g., [40]). We suppose that below
all groups are amenable and we identify these two notions of ellipticity.

The following finiteness theorem is proved by standard techniques (see [2, 1]).

Theorem 1. If operator (1.2) is elliptic then it is Fredholm.

Remark 1. It is shown in the cited monographs [2, 1] that under quite general
assumptions (namely, the action of 𝐺 on 𝑀 is assumed to be topologically free,
that is, for any finite set {𝑔1, . . . , 𝑔𝑛} ⊂ 𝐺 ∖ {𝑒} the union 𝑀𝑔1 ∪ ⋅ ⋅ ⋅ ∪𝑀𝑔𝑛 of the
fixed point sets has an empty interior), the ellipticity condition is necessary for
the Fredholm property. If the action is not topologically free, then one could give
a finer ellipticity condition. We do not consider these conditions here and refer the
reader to the monograph [2].

1.4. Examples

Let us illustrate the notion of ellipticity for 𝐺-operators on several explicit exam-
ples.
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1. Operators for the irrational rotations of the circle. Consider the group ℤ of
rotations of the circle 𝕊1 by multiples of a fixed angle 𝜃 not commensurable to 𝜋:

𝑔(𝑥) = 𝑥+ 𝑔𝜃, 𝑥 ∈ 𝕊1, 𝑔 ∈ ℤ, 𝜃 /∈ 𝜋ℚ.
A direct computation shows that in this case the densities 𝜇𝑥,𝜉,𝑠 (see (1.6)) are
equivalent to the standard density 𝜇(𝑔) = 1 on the lattice ℤ. Hence, in this case
the symbol of the operator 𝐷 =

∑
𝑔∈ℤ𝐷𝑔𝑇𝑔 is equal to

𝜎(𝐷)(𝑥, 𝜉) =
∑
ℎ

𝜎(𝐷ℎ)(𝑥 − 𝑔𝜃, 𝜉)𝒯 ℎ : 𝑙2(ℤ)→ 𝑙2(ℤ), where 𝒯 𝑢(𝑔) = 𝑢(𝑔 − 1).

Let us make two remarks. First, in this example, as in the classical theory of
𝜓DOs, the symbol does not depend on 𝑠 and therefore an operator is elliptic or
not elliptic for all 𝑠 simultaneously. The same property holds in the general case
if the action is isometric. Second, in this case to check the ellipticity condition, it
suffices to check that the symbol is invertible only for one pair of points (𝑥0,±1).
Indeed, since 𝑆∗𝕊1 = 𝕊1 ∪ 𝕊1, the crossed product 𝐶(𝑆∗𝕊1)⋊ℤ is a direct sum of
two simple algebras6 of irrational rotations 𝐶(𝕊1)⋊ ℤ. Hence, the mapping

𝜋𝑥0,1 ⊕ 𝜋𝑥0,−1 : 𝐶(𝑆
∗𝕊1)⋊ ℤ −→ ℬ𝑙2(ℤ) ⊕ ℬ𝑙2(ℤ)

is a monomorphism. Therefore, the symbol 𝜎(𝐷) is invertible if and only the
trajectory symbols at the points (𝑥0,±1) are invertible.
2. Operators for dilations of the sphere [58]. On the sphere 𝕊𝑚 we fix the North
and the South poles. The complements of the poles are identified with ℝ𝑚 with
the coordinates 𝑥 and 𝑥′, correspondingly. Let us choose the following transition
function 𝑥′(𝑥) = 𝑥∣𝑥∣−2. Consider the action of ℤ on 𝕊𝑚, which in the 𝑥-coordinates
is generated by the dilations

𝑔(𝑥) = 𝛼𝑔𝑥, 𝑔 ∈ ℤ, 𝑥 ∈ ℝ𝑚,

where 𝛼 (0 < 𝛼 < 1) is fixed. This expression defines a smooth action on the
sphere. Let us compute the densities 𝜇𝑥,𝜉,𝑠.

Proposition 1. Depending on whether 𝑥 is a pole of the sphere or not, the density
𝜇𝑥,𝜉,𝑠 in (1.6) is equal to:

𝜇𝑥,𝜉,𝑠(𝑔) =

⎧⎨⎩
𝛼∣𝑔∣(𝑚−2𝑠), if 𝑥 ∕= 0, 𝑥 ∕=∞,
𝛼𝑔(𝑚−2𝑠), if 𝑥 = 0,
𝛼−𝑔(𝑚−2𝑠), if 𝑥 =∞.

Proof. Indeed, given 𝑔 ≤ 0 the points 𝑔−1(𝑥) remain in a bounded domain of
the chart 𝕊𝑚 ∖ ∞. Thus, we can apply the formula (1.6), in which we use the 𝑥-
coordinate in the domain and the range of the diffeomorphism 𝑔. We get ∂𝑔−1/∂𝑥 =
𝛼−𝑔𝐼. Hence

𝜇𝑥,𝜉,𝑠(𝑔) =

∣∣∣∣∣𝑡
(
∂𝑔−1

∂𝑥

)−1
(𝜉)

∣∣∣∣∣
2𝑠

= 𝛼−𝑔𝑚 ⋅ ∣𝜉/𝛼−𝑔∣2𝑠 = 𝛼−𝑔(𝑚−2𝑠)∣𝜉∣2𝑠.

6That is, algebras without nontrivial ideals.
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This gives the desired expression for the measure if 𝑔 ≤ 0. Now if 𝑔 → +∞, then
the points 𝑔−1(𝑥) = 𝛼−𝑔𝑥 tend to infinity and we can apply formula (1.6), where
we use the pair of coordinates 𝑥 and 𝑥′. A computation similar to the previous
one gives the desired expression for the measure at the poles of the sphere: 𝑥 = 0
and 𝑥 =∞. □

Consider the operator

𝐷 =
∑
𝑘

𝐷𝑘𝑇
𝑘 : 𝐻𝑠(𝕊𝑚) −→ 𝐻𝑠(𝕊𝑚), 𝑇 𝑢(𝑥) = 𝑢(𝛼−1𝑥). (1.8)

According to the obtained expressions for the densities, this operator has the
symbol 𝜎(𝐷)(𝑥, 𝜉) at each point (𝑥, 𝜉) ∈ 𝑇 ∗0 𝕊𝑚. For example, consider the point
𝑥 = 0. It follows from Proposition 1 that we obtain an expression for the symbol
at this point

𝜎(𝐷)(0, 𝜉) =
∑
𝑘

𝜎(𝐷𝑘)(0, 𝜉)𝒯 𝑘 : 𝑙2(ℤ, 𝜇𝑠) −→ 𝑙2(ℤ, 𝜇𝑠), 𝜇𝑠(𝑛) = 𝛼
−𝑛(𝑚−2𝑠).

Fourier transform {𝑢(𝑔)} →∑
𝑔 𝑢(𝑔)𝑤

−𝑔 takes the latter operator to the operator
of multiplication

𝜎𝑆(𝐷)(𝜉, 𝑤) =
∑
𝑘

𝜎(𝐷𝑘) (0, 𝜉)𝑤
𝑘 : 𝐿2(𝕊1) −→ 𝐿2(𝕊1), 𝜉 ∈ 𝕊𝑚−1, ∣𝑤∣ = 𝛼−𝑚/2+𝑠

by a smooth function on the circle 𝕊1 of radius 𝛼−𝑚/2+𝑠. This shows that in this
example the ellipticity condition explicitly depends on the smoothness exponent
𝑠. It was proved in [58] that the set of values of 𝑠 for which the operator (1.8) is
elliptic is an open interval (possibly (semi)infinite or empty).

2. Index formulas for actions of discrete groups

In the previous section we defined the symbol of a 𝐺-operator as an element of the
corresponding crossed product. If an operator 𝐷 elliptic (its symbol is invertible)
then 𝐷 has Fredholm property and its index ind𝐷 is defined. To solve the index
problem means to express the index in terms of the symbol of the operator and
the topological characteristics of the 𝐺-manifold.

2.1. Isometric actions

The index problem for 𝐺-operators was solved in 2008 for isometric actions in
[38]. Here we discuss the index formula from the cited monograph. This formula
is proved under the following assumption.

Assumption 1.

1. 𝐺 is a discrete group of polynomial growth (see [28]), i.e., the number of
elements of the group, whose length is ≤ 𝑁 in the word metric on the group,
grows at most as a polynomial in 𝑁 as 𝑁 →∞.

2. 𝑀 is a Riemannian manifold and the action of 𝐺 on 𝑀 is isometric.



12 A. Savin and B. Sternin

Smooth crossed product. Let 𝐷 be an elliptic operator. Then its symbol is invert-
ible and defines an element

[𝜎(𝐷)] ∈ 𝐾1(𝐶(𝑆∗𝑀)⋊𝐺)

of the odd 𝐾-group of the crossed product 𝐶(𝑆∗𝑀) ⋊ 𝐺 (e.g., see [16]). Note a
significant difference between the elliptic theory of 𝐺-operators and the classical
Atiyah–Singer theory: the algebra of symbols is not commutative and therefore we
use 𝐾-theory of algebras instead of topological𝐾-theory. Further, to give an index
formula, we will use tools from noncommutative differential geometry. Note that
noncommutative differential geometry does not apply in general to 𝐶∗-algebras.
The point here is that in a 𝐶∗-algebra there is a notion of continuity, but there is
no differentiability. Fortunately, in the situation at hand, one can prove that we
only deal with differentiable elements. Let us formulate this statement precisely.

Proposition 2 (see [60]). If the symbol 𝜎(𝐷) is invertible, then the inverse 𝜎(𝐷)−1

lies in the subalgebra

𝐶∞(𝑆∗𝑀)⋊𝐺 ⊂ 𝐶(𝑆∗𝑀)⋊𝐺, (2.1)

of 𝐶∞(𝑆∗𝑀)-valued functions on 𝐺, which (together with all their derivatives)
tend to zero as ∣𝑔∣ → ∞ faster than an arbitrary power of ∣𝑔∣.

The subalgebra (2.1) is called the smooth crossed product.

So, we have

[𝜎(𝐷)] ∈ 𝐾1(𝐶∞(𝑆∗𝑀)⋊𝐺). (2.2)

To write an index formula for 𝐷, we first define a topological invariant of the
symbol. This invariant is called the Chern character of the element (2.2). Then we
define a topological invariant of the manifold.

Equivariant Chern character. Following [38], let us define the Chern character as
the homomorphism of groups

ch : 𝐾1(𝐶
∞(𝑋)⋊𝐺) −→

⊕
⟨𝑔⟩⊂𝐺

𝐻odd(𝑋𝑔), (2.3)

where we put for brevity 𝑋 = 𝑆∗𝑀 , the sum runs over conjugacy classes of 𝐺,
and 𝑋𝑔 denotes the fixed-point set of 𝑔. Since 𝑔 is an isometry by assumption, the
fixed-point set is a smooth submanifold (e.g., see [18]).

We define the Chern character using the abstract approach of noncommuta-
tive geometry. To this end, it suffices to define a pair (Ω, 𝜏), where:

1. Ω = Ω0 ⊕ Ω1 ⊕ Ω2 ⊕ ⋅ ⋅ ⋅ is a differential graded algebra, which contains the
crossed product 𝐶∞(𝑋)⋊𝐺 as a subalgebra of Ω0;
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2. 𝜏 : Ω −→ ⊕
⟨𝑔⟩⊂𝐺 Λ(𝑋𝑔) is a homomorphism of differential complexes such

that

𝜏(𝜔2𝜔1) = (−1)deg𝜔1 deg𝜔2𝜏(𝜔1𝜔2), for all 𝜔1, 𝜔2 ∈ Ω. (2.4)

The algebra Ω is called the algebra of noncommutative differential forms, and the
functional 𝜏 is called the differential graded trace.

If such a pair is given, then the Chern character associated with the pair
(Ω, 𝜏) is defined as

ch(𝑎) = tr 𝜏

⎡⎣∑
𝑛≥0

𝑛!

(2𝜋𝑖)𝑛+1(2𝑛+ 1)!
(𝑎−1𝑑𝑎)2𝑛+1

⎤⎦ , [𝑎] ∈ 𝐾1(𝐶∞(𝑋)⋊𝐺),

(2.5)
where tr is the trace of a matrix. A standard computation shows that the form
in (2.5) is closed and its class in de Rham cohomology is determined by [𝑎] and
defines the homomorphism (2.3). It remains to define the pair (Ω, 𝜏):

1. We set Ω = Λ(𝑋)⋊𝐺, where the differential on the smooth crossed product
of the algebra Λ(𝑋) of differential forms on 𝑋 and the group 𝐺 is equal to

(𝑑𝜔)(𝑔) = 𝑑(𝜔(𝑔)), 𝜔 ∈ Λ(𝑋)⋊𝐺.

2. To define a differential graded trace 𝜏 = {𝜏𝑔}, we fix some 𝑔 ∈ 𝐺 and

introduce necessary notation. Let 𝐺 be the closure of 𝐺 in the compact Lie group
of isometries of 𝑋 . This closure is a compact Lie group. Let 𝐶𝑔 ⊂ 𝐺 be the

centralizer7 of 𝑔. The centralizer is a closed Lie subgroup in 𝐺. Denote the elements
of the centralizer by ℎ, and the induced smooth Haar measure on the centralizer
by 𝑑ℎ.

Let ⟨𝑔⟩ ⊂ 𝐺 be the conjugacy class of 𝑔, i.e., the set of elements equal to
𝑧𝑔𝑧−1 for some 𝑧 ∈ 𝐺. Further, for each 𝑔′ ∈ ⟨𝑔⟩ we fix some element 𝑧 = 𝑧(𝑔, 𝑔′),
which conjugates 𝑔 and 𝑔′ = 𝑧𝑔𝑧−1. Any such element defines a diffeomorphism
𝑧 : 𝑋𝑔 → 𝑋𝑔′ .

Let us define the trace as

𝜏𝑔(𝜔) =
∑
𝑔′∈⟨𝑔⟩

∫
𝐶𝑔

ℎ∗
(
𝑧∗𝜔(𝑔′)

)∣∣∣
𝑋𝑔
𝑑ℎ, where 𝜔 ∈ Λ(𝑋)⋊𝐺. (2.6)

One can show that this expression does not depend on the choice of elements 𝑧
and is indeed a differential graded trace.

Remark 2. For a finite group the Chern character (2.5) coincides with the one
constructed in [65], [14].

7Recall that the centralizer of 𝑔 is the subgroup of elements commuting with 𝑔.
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Equivariant Todd class. Given 𝑔 ∈ 𝐺, the normal bundle of the fixed-point sub-
manifold 𝑀𝑔 ⊂ 𝑀 is denoted by 𝑁𝑔. The differential 𝑑𝑔 defines an orthogonal
endomorphism of 𝑁𝑔 and the corresponding bundle of exterior forms

Ω(𝑁𝑔
ℂ
) = Ω𝑒𝑣(𝑁𝑔

ℂ
)⊕ Ωodd(𝑁𝑔

ℂ
).

Here 𝐸ℂ stands for the complexification of a real vector bundle 𝐸. Consider the
expression (see [12])

chΩ𝑒𝑣(𝑁𝑔
ℂ
)(𝑔)− chΩodd(𝑁𝑔

ℂ
)(𝑔) ∈ 𝐻ev(𝑀𝑔). (2.7)

The zero-degree component of this expression is nonzero [10]. Hence the class (2.7)
is invertible and the following expression is well defined

Td𝑔(𝑇
∗
ℂ𝑀) =

Td(𝑇 ∗
ℂ
𝑀𝑔)

chΩev(𝑁𝑔
ℂ
)(𝑔)− chΩodd(𝑁𝑔

ℂ
)(𝑔)

∈ 𝐻∗(𝑀𝑔), (2.8)

where Td on the right-hand side in the equality is the Todd class of a complex
vector bundle, and the expression is well defined, since the forms have even degrees.

Index theorem.

Theorem 2 (see [38]). Let 𝐷 be an elliptic 𝐺-operator on a closed manifold 𝑀 .
Then

ind𝐷 =
∑
⟨𝑔⟩⊂𝐺

⟨ch𝑔[𝜎(𝐷)] Td𝑔(𝑇 ∗ℂ𝑀), [𝑆∗𝑀𝑔]⟩ , (2.9)

where ⟨𝑔⟩ runs over the set of conjugacy classes of 𝐺; [𝑆∗𝑀𝑔] ∈ 𝐻odd(𝑆∗𝑀𝑔) is
the fundamental class of 𝑆∗𝑀𝑔; the Todd class is lifted from 𝑀𝑔 to 𝑆∗𝑀𝑔 using the
natural projection; the brackets ⟨, ⟩ denote the pairing of cohomology and homology.
The series in (2.9) is absolutely convergent.

In some situations the sum in (2.9) can be reduced to one summand equal to
the contribution of the unit element.

Corollary 1 (see [38, 54]). Suppose that either the action of 𝐺 on 𝑀 is free or 𝐺
is torsion free. Then one has

ind𝐷 = ⟨ch𝑒[𝜎(𝐷)] Td(𝑇 ∗ℂ𝑀), [𝑆∗𝑀 ]⟩. (2.10)

Let us note that the index formula (2.9) contains many other index formulas
as special cases (see [38, 54] for details). Here we give two situations, in which the
index formula can be applied.

Example 1. Index of twisted Toeplitz operators. Let𝑀 be an odd-dimensional ori-
ented manifold. We suppose that 𝑀 is endowed with a 𝐺-invariant spin-structure
(i.e., the action of 𝐺 on 𝑀 lifts to an action on the spin bundle 𝑆(𝑀)). Let 𝒟 be
the Dirac operator [12]

𝒟 : 𝑆(𝑀) −→ 𝑆(𝑀),

acting on spinors. This operator is elliptic and self-adjoint.
Denote by Π+ : 𝑆(𝑀) −→ 𝑆(𝑀) the positive spectral projection of this

operator.
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We define the Toeplitz operator

Π+𝑈 : Π+(𝑆(𝑀))⊗ ℂ𝑛 −→ Π+(𝑆(𝑀))⊗ ℂ𝑛, (2.11)

where 𝑈 is an invertible 𝑛 by 𝑛 matrix with elements in 𝐶∞(𝑀) ⋊ 𝐺. Then the
operator (2.11) is Fredholm (its almost-inverse is equal to Π+𝑈

−1). Let us suppose
for simplicity that either 𝐺 is torsion free, or the action is free. In this case, the
formula (2.10) gives the following expression for the index.

Theorem 3. The index of operator (2.11) is equal to

ind(Π+𝑈) =

∫
𝑀

𝐴(𝑇𝑀) ch𝑒(𝑈), (2.12)

where 𝐴(𝑇𝑀) is the 𝐴-class of the tangent bundle, which in the Borel–Hirzebruch
formalism is defined by the function

𝑥/2

sh 𝑥/2
.

Examples 2. Operators on noncommutative torus. Let us fix 0 < 𝜃 ≤ 1. A. Connes
in [22] considered differential operators of the form

𝐷 =
∑

𝛼+𝛽≤𝑚
𝑎𝛼𝛽𝑥

𝛼

(
−𝑖 𝑑
𝑑𝑥

)𝛽
: 𝑆(ℝ) −→ 𝑆(ℝ), (2.13)

in the Schwartz space 𝑆(ℝ) on the real line. Here the coefficients 𝑎𝛼𝛽 are Laurent
polynomials in operators 𝑈, 𝑉

(𝑈𝑓)(𝑥) = 𝑓(𝑥+ 1), (𝑉 𝑓)(𝑥) = 𝑒−2𝜋𝑖𝑥/𝜃𝑓(𝑥) (2.14)

of shift by one and product by exponential.
Let us show that the operators of the form (2.13) reduce to 𝐺-operators on

a closed manifold. To this end, we consider the real line as the total space of the
standard covering

ℝ −→ 𝕊1,
whose base is the circle of length 𝜃. Then the Schwartz space becomes isomorphic
to the space of smooth sections of a (nontrivial) bundle on the base 𝕊1, whose
fiber is the Schwartz space 𝑆(ℤ) of rapidly decaying sequences (that is, functions
on the fiber). Then we apply Fourier transform

ℱ : 𝑆(ℤ) −→ 𝐶∞(𝕊1)

in each fiber and obtain a space, which is the space of smooth sections of a complex
line bundle over the torus 𝕋2. These transformations define the isomorphism

𝑆(ℝ) ≃ 𝐶∞(𝕋2, 𝛾) (2.15)

of the Schwartz space on the real line and the space

𝐶∞(𝕋2, 𝛾) = {𝑔 ∈ 𝐶∞(ℝ× 𝕊1) ∣ 𝑔(𝜑+ 𝜃, 𝜓) = 𝑔(𝜑, 𝜓)𝑒−2𝜋𝑖𝜓}



16 A. Savin and B. Sternin

of smooth sections of a complex line bundle 𝛾 on the torus. Here on 𝕋2 we consider
the coordinates 0 ≤ 𝜑 ≤ 𝜃, 0 ≤ 𝜓 ≤ 1. This isomorphism is defined by the formula

𝑓(𝑥) −→
∑
𝑛∈ℤ
𝑓(𝜑+ 𝜃𝑛)𝑒2𝜋𝑖𝑛𝜓 .

(This formula was found earlier by S. Novikov.) Using the isomorphism (2.15), it
is easy to obtain the correspondences between the operators:

operators on the line operators on the torus

−𝑖 𝑑𝑑𝑥 −𝑖 ∂∂𝜑
𝑥 −𝑖 𝜃2𝜋 ∂

∂𝜓 + 𝜓

𝑒−2𝜋𝑖𝑥/𝜃 𝑒−2𝜋𝑖𝜑/𝜃

𝑓(𝑥)→ 𝑓(𝑥+ 1) 𝑔(𝜑, 𝜓) → 𝑔(𝜑+ 1, 𝜓)

This table implies that on the torus we obtain 𝐺-operators, which can be studied
using the finiteness theorem and the index formula formulated above. We refer the
reader to [38] for details.

2.2. General actions

In this subsection we survey index formulas for elliptic operators associated with
general actions of discrete groups (see recent papers [49] and [44]). Let 𝐷 be an
elliptic operator of the form (1.1). We will assume for simplicity that the inverse
symbol 𝜎(𝐷)−1 lies in the algebraic crossed product

𝐶∞(𝑆∗𝑀)⋊𝑎𝑙𝑔 𝐺 ⊂ 𝐶(𝑆∗𝑀)⋊𝐺,

which consists of compactly supported functions on the group. Such a symbol
defines an element

[𝜎(𝐷)] ∈ 𝐾1(𝐶∞(𝑆∗𝑀)⋊𝑎𝑙𝑔 𝐺) (2.16)

in 𝐾-theory. We would like to define the topological index as a numerical invariant
associated with [𝜎(𝐷)]. There is a standard procedure in noncommutative geome-
try of constructing such invariants. Namely, one takes the pairing of (2.16) with an
element in cyclic cohomology of the same algebra. Let us recall this construction.

Cyclic cohomology. Pairing with 𝑲-theory. Let 𝐴 be an algebra with unit. Re-
call (see [22]) that the cyclic cohomology 𝐻𝐶∗(𝐴) of 𝐴 is the cohomology of the
bicomplex

𝐴∗ ⋅ ⋅ ⋅
↑ 𝐵

𝐴∗ 𝑏→ 𝐴∗2 ⋅ ⋅ ⋅
↑ 𝐵 ↑ 𝐵

𝐴∗ 𝑏→ 𝐴∗2 𝑏→ 𝐴∗3 ⋅ ⋅ ⋅
...

...
...

(2.17)
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where 𝑏, 𝐵 are some differentials and for simplicity we denote the space of multi-
linear functionals on 𝐴𝑘 by 𝐴∗𝑘. In particular, an element 𝜑 ∈ 𝐻𝐶𝑛(𝐴) of cyclic
cohomology is represented by a finite collection of multi-linear functionals

{𝜑𝑗(𝑎0, . . . , 𝑎𝑗)}, 𝑗 = 𝑛, 𝑛− 2, 𝑛− 4, . . . ,

such that 𝐵𝜑𝑗 + 𝑏𝜑𝑗−2 = 0.
To make the paper self-contained, we recall the formulas for the differentials in the

bicomplex:

(𝑏𝜑)(𝑎0, 𝑎1, . . . , 𝑎𝑗+1) =

𝑗∑
𝑛=0

𝜑(𝑎0, 𝑎1, . . . , 𝑎𝑛𝑎𝑛+1, . . . , 𝑎𝑗+1)

+ (−1)𝑗+1𝜑(𝑎𝑗+1𝑎0, 𝑎1, . . . , 𝑎𝑗).

(2.18)

and 𝐵 = 𝑁𝑠(𝐼𝑑− 𝜆), where 𝜆 = (−1)𝑛(cyclic left shift),

𝑠 : 𝐴∗(𝑛+1) −→ 𝐴∗𝑛, (𝑠𝜑)(𝑎0, . . . , 𝑎𝑛−1) = 𝜑(1, 𝑎0, . . . , 𝑎𝑛−1),

and 𝑁 : 𝐴∗𝑛 −→ 𝐴∗𝑛, 𝑁 = 𝐼𝑑 + 𝜆 + 𝜆2 + ⋅ ⋅ ⋅+ 𝜆𝑛−1 is the symmetrization mapping.

The desired numerical invariants are defined using the pairing

⟨, ⟩ : 𝐾1(𝐴) ×𝐻𝐶odd(𝐴) −→ ℂ (2.19)

of 𝐾-theory and cyclic cohomology. The value of this pairing on the classes [𝑎] and
[𝜑] is equal to

⟨𝑎, 𝜑⟩ = 1√
2𝜋𝑖

∑
𝑘≥0

(−1)𝑘𝑘!𝜑2𝑘+1(𝑎−1, 𝑎, . . . , 𝑎−1, 𝑎).

Now to define the topological index of the element (2.16), it remains to choose
a cocycle over the algebra. It turns out that the desired cocycle can be defined as
a special equivariant characteristic class in cyclic cohomology.

Equivariant characteristic classes. Suppose that a discrete group 𝐺 acts smoothly
on a closed smooth manifold 𝑋 . We shall also assume that 𝑋 is oriented and
the action is orientation-preserving. Let 𝐸 ∈ Vect𝐺(𝑋) be a finite-dimensional
complex 𝐺-bundle on 𝑋 . Connes defined (e.g., see [22]) equivariant characteristic
classes of 𝐸 with values in cyclic cohomology 𝐻𝐶∗(𝐶∞(𝑋)⋊𝑎𝑙𝑔 𝐺) of the crossed
product. However, the formulas for these classes were quite complicated and we
do not give them here. A simple explicit formula was obtained in [27] for the most
important characteristic class, namely, for the equivariant Chern character

ch𝐺(𝐸) ∈ 𝐻𝐶∗(𝐶∞(𝑋)⋊𝑎𝑙𝑔 𝐺). (2.20)

More precisely, it was shown in the cited paper that the class ch𝐺(𝐸) is represented

by the collection of functionals {ch𝑘𝐺(𝐸)} defined as

ch𝑘𝐺(𝐸; 𝑎0, 𝑎1, . . . , 𝑎𝑘)

=
(−1)(𝑛−𝑘)/2
((𝑛+ 𝑘)/2)!

∑
𝑖0+𝑖1+⋅⋅⋅+𝑖𝑘=(𝑛−𝑘)/2

∫
𝑋

tr𝐸
[(
𝑎0𝜃

𝑖0∇(𝑎1)𝜃𝑖1∇(𝑎2) . . .∇(𝑎𝑘)𝜃𝑖𝑘
)
𝑒

]
(2.21)
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(cf. Jaffe–Lesniewski–Osterwalder formula [29]). Here

dim𝑋 = 𝑛, 𝑘 = 𝑛, 𝑛− 2, 𝑛− 4, . . . ,

∇𝐸 is a connection in 𝐸 and 𝜃 = ∇2𝐸 is its curvature form, for a noncommutative
form 𝜔 by 𝜔𝑒 we denote the coefficient of 𝑇𝑒 = 1, while the operator

∇ : 𝐶∞(𝑋)⋊alg 𝐺→ Λ1(𝑋,End𝐸)⋊alg 𝐺

is defined as

∇
(∑

𝑔

𝑎𝑔𝑇𝑔

)
=

∑
𝑔

[
𝑑𝑎𝑔 − 𝑎𝑔(∇𝐸 − (𝑔−1)∗∇𝐸)

]
𝑇𝑔.

It is proved in the cited paper that the collection of functionals {ch𝑘𝐺(𝐸)} defines
a cocycle over 𝐶∞(𝑋) ⋊alg 𝐺, and the class of this cocycle in cyclic cohomology
does not depend on the choice of ∇𝐸 and coincides with the equivariant Chern
character defined by Connes [22].

Explicit formulas for other characteristic classes can be obtained using stan-
dard topological techniques (operations in 𝐾-theory, see [9]). For the index theo-
rem, we need the equivariant Todd class.

Proposition 3 ([49]). The equivariant Todd class

Td𝐺(𝐸) ∈ 𝐻𝐶∗(𝐶∞(𝑋)⋊alg 𝐺) (2.22)

of a complex 𝐺-bundle 𝐸 on a smooth manifold 𝑋 is equal to

Td𝐺(𝐸) = ch𝐺(Φ(𝐸)),

here Φ is the multiplicative operation in 𝐾-theory, which corresponds to the func-
tion 𝜑(𝑡) = 𝑡−1(1 + 𝑡) ln(1 + 𝑡).

Note that Φ can be expressed explicitly in terms of Grothendieck operations.
For instance, if dim𝑋 ≤ 5 then (see [49])

Φ(𝐸) = 1 +
𝐸 − 𝑛
2

+
−2(𝐸2 − 2𝑛𝐸 + 𝑛2) + 7(𝐸 + Λ2𝐸 − 𝑛𝐸 + 𝑛(𝑛− 1)/2)

12

=
3𝑛2 − 19𝑛+ 24

24
+

(−3𝑛+ 13)

12
𝐸 − 1

6
𝐸 ⊗ 𝐸 +

7

12
Λ2𝐸 (2.23)

where 𝑛 = dim𝐸.

Index theorem.

Theorem 4 ([49]). Let 𝐷 be an elliptic operator associated with the action of group
ℤ. Then we have the index formula

ind𝐷 = (2𝜋𝑖)−𝑛⟨[𝜎(𝐷)],Tdℤ(𝜋
∗𝑇 ∗ℂ𝑀)⟩, dim𝑀 = 𝑛, (2.24)

where 𝜋 : 𝑆∗𝑀 −→ 𝑀 is the natural projection and the brackets ⟨, ⟩ denote the
pairing of 𝐾-theory and cyclic cohomology (see (2.19)).

Remark 3. An index formula for operators on the circle associated with an action
of an arbitrary torsion free group is announced in [44]. The index formula in this
case has the same form as (2.24).
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Examples. 1. Suppose that the (usual) Todd class Td(𝑇 ∗
ℂ
𝑀) is trivial and the

diffeomorphisms of the ℤ-action are isotopic to the identity. Then one can show
that the equivariant Todd class is equal to the transverse fundamental cycle (see
[21]) of 𝑆∗𝑀 and the index formula (2.24) is written as:

ind𝐷 =
(𝑛− 1)!

(2𝜋𝑖)𝑛(2𝑛− 1)!

∫
𝑆∗𝑀

(𝜎−1𝑑𝜎)2𝑛−1𝑒 , 𝜎 = 𝜎(𝐷). (2.25)

2. Suppose that the group acts isometrically. Then formula (2.24) reduces
to (2.10) This is obvious if we choose an invariant metric and connection on the
cotangent bundle.

3. Elliptic operators for compact Lie groups

3.1. Main definitions

Let a compact Lie group 𝐺 act smoothly on a closed smooth manifold 𝑀 . An
element 𝑔 ∈ 𝐺 takes a point 𝑥 ∈ 𝑀 to the point denoted by 𝑔(𝑥). We fix a
𝐺-invariant metric on 𝑀 and the Haar measure on 𝐺.

Consider the representation 𝑔 → 𝑇𝑔 of 𝐺 in the space 𝐿2(𝑀) by shift opera-
tors

𝑇𝑔𝑢(𝑥) = 𝑢(𝑔
−1(𝑥)).

Definition 5. A 𝐺-pseudodifferential operator (𝐺-𝜓DO) is an operator

𝐷 : 𝐿2(𝑀) −→ 𝐿2(𝑀)

of the form

𝐷 = 1 +

∫
𝐺

𝐷𝑔𝑇𝑔𝑑𝑔, (3.1)

where 𝐷𝑔, 𝑔 ∈ 𝐺 is a smooth family of pseudodifferential operators of order zero
on 𝑀 .

Consider the equation

𝑢+

∫
𝐺

𝐷𝑔𝑇𝑔𝑢𝑑𝑔 = 𝑓, 𝑢, 𝑓 ∈ 𝐿2(𝑀). (3.2)

Note that if 𝐺 is discrete, then we obtain the class of equations (1.1).

Example 1. Integro-differential equations on the torus. On the torus 𝕋2 = 𝕊1×𝕊1
with coordinates 𝑥1, 𝑥2, consider the integro-differential equation

Δ𝑢(𝑥1, 𝑥2) + 𝛼
∂2

∂𝑥21

∫
𝕊1

𝑢(𝑥1, 𝑦)𝑑𝑦 = 𝑓(𝑥1, 𝑥2),

where Δ stands for the nonnegative Laplace operator, and 𝛼 is a constant. Let us
write this equation as

Δ𝑢+ 𝛼
∂2

∂𝑥21

∫
𝕊1

𝑇𝑔𝑑𝑔𝑢 = 𝑓, (3.3)
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where 𝑇𝑔 denotes the shift operator 𝑇𝑔𝑢(𝑥1, 𝑥2) = 𝑢(𝑥1, 𝑥2 − 𝑔), induced by the
action of the circle 𝐺 = 𝕊1 by shifts in 𝑥2. Note that if we multiply the equa-
tion (3.3) on the left by the almost inverse operator Δ−1, we obtain an equation
of the type (3.2).

Example 2. Integro-differential equations on the plane. Consider the integro-dif-
ferential equation

Δ𝑢(𝑥, 𝑦)

+

(
𝛼
∂2

∂𝑥2
+ 𝛽

∂2

∂𝑥∂𝑦
+ 𝛾

∂2

∂𝑦2

)∫
𝕊1

𝑢(𝑥 cos𝜑−𝑦 sin𝜑, 𝑥 sin𝜑+𝑦 cos𝜑)𝑑𝜑 = 𝑓(𝑥, 𝑦)

on the plane ℝ2𝑥,𝑦, where Δ is the Laplace operator, and 𝛼, 𝛽, 𝛾 are constants. This
equation can be written as

Δ𝑢+

(
𝛼
∂2

∂𝑥2
+ 𝛽

∂2

∂𝑥∂𝑦
+ 𝛾

∂2

∂𝑦2

)∫
𝕊1

𝑇𝜑𝑑𝜑𝑢 = 𝑓, (3.4)

where the shift operator 𝑇𝜑 is induced by the action of the circle 𝐺 = 𝕊1 by
rotations

(𝑥, 𝑦) −→ (𝑥 cos𝜑+ 𝑦 sin𝜑,−𝑥 sin𝜑+ 𝑦 cos𝜑)
around the origin. If we multiply the equation (3.4) on the left by the almost
inverse operator Δ−1, we obtain an equation similar to (3.2).

3.2. Pseudodifferential uniformization

Here we formulate an approach, called pseudodifferential uniformization, which
enables one to reduce a 𝐺-pseudodifferential operator

𝐷 = 1 +

∫
𝐺

𝐷𝑔𝑇𝑔𝑑𝑔 : 𝐿
2(𝑀) −→ 𝐿2(𝑀). (3.5)

to a pseudodifferential operator and then apply the methods of the theory of
pseudodifferential operators.

1. Reduction to a 𝝍DO. This reduction is constructed as follows.

∙ The operator𝐷 is represented as an operator on the quotient𝑀/𝐺 (the space
of orbits).

∙ If the action of 𝐺 on𝑀 has no fixed points, then 𝑀/𝐺 is a smooth manifold;
moreover, 𝐷 can be treated as a 𝜓DO on 𝑀/𝐺 with operator-valued symbol
in the sense of Luke [35] (explanation: this follows from the fact that the
operator 𝑇𝑔 acts only along the fibers of the infinite-dimensional bundle over
𝑀/𝐺, but not along the base).

∙ If the fixed point set is nonempty, then 𝑀/𝐺 has singularities; to construct
a 𝜓DO in this case, we do the following.

∙ We lift 𝐷 from 𝑀 to the product 𝑀 ×𝐺 endowed with the diagonal action
of 𝐺:

(𝑥, ℎ) −→ (𝑔(𝑥), 𝑔ℎ). (3.6)
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M
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M
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Figure 1. The orbits of the diagonal and vertical actions on the prod-
uct 𝑀 ×𝐺.

∙ The action (3.6) is fixed point free. Hence, the obtained 𝐺-pseudodifferential

operator on 𝑀 × 𝐺, which we denote by �̃�, can be represented (see above)
as a 𝜓DO on the smooth orbit space (𝑀 ×𝐺)/𝐺 ≃𝑀 .

These steps give the commutative diagram

𝐿2(𝑀)
𝐷 ��

𝜋∗

��

𝐿2(𝑀)

𝜋∗

��
𝐿2(𝑀 ×𝐺)

�̃� ��

≃
��

𝐿2(𝑀 ×𝐺)

≃
��

𝐿2(𝑀,𝐿2(𝐺))
𝒟 �� 𝐿2(𝑀,𝐿2(𝐺)),

(3.7)

where 𝜋∗ is the induced mapping for the projection 𝜋 : 𝑀 ×𝐺→𝑀 , while 𝒟 is a
pseudodifferential operator on 𝑀 .

Remark 4. The fact that 𝒟 is a 𝜓DO is clear for geometric reasons. Indeed, �̃� has
shifts along the orbits of the diagonal action of 𝐺 (see Figure 1, left). Clearly, these
orbits can be transformed into vertical orbits (see Figure 1, right) by a change of
variables on 𝑀 ×𝐺. The shift operator along the vertical orbits is a 𝜓DO on 𝑀 .

2. Restriction of 𝝍DO to the subspace of invariant sections. The mapping 𝜋∗ in
(3.7) is a monomorphism. Its range is the space of 𝐺-invariant sections. Hence,
(3.7) gives a commutative diagram of the form

𝐿2(𝑀)
𝐷 ��

≃
��

𝐿2(𝑀)

≃
��

𝐿2(𝑀,𝐿2(𝐺))𝐺
𝒟𝐺

�� 𝐿2(𝑀,𝐿2(𝐺))𝐺,

where 𝒟𝐺 stands for the restriction of 𝒟 to the subspace of invariant sections,
which we denote by 𝐿2(𝑀,𝐿2(𝐺))𝐺.

3. Transverse ellipticity. It remains to give conditions, which imply that the re-
striction

𝐿2(𝑀,𝐿2(𝐺))𝐺
𝒟𝐺

−→ 𝐿2(𝑀,𝐿2(𝐺))𝐺
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x
Gx

Figure 2. Transversal to the orbit.

of 𝒟 to the subspace of 𝐺-invariant sections is Fredholm. Let us note that invariant
sections are constant along the orbits of the group action. Hence, it suffices to
impose the condition, which guarantees the Fredholm property, only along the
transverse directions to the orbit (see Figure 2).

Definition 6 ([8, 61]). A pseudodifferential operator 𝒟 is transversally elliptic, if
its symbol 𝜎(𝒟)(𝑥, 𝜉) is invertible for all (𝑥, 𝜉) ∈ 𝑇 ∗𝐺𝑀 ∖ 0, where

𝑇 ∗𝐺𝑀 = {(𝑥, 𝜉) ∈ 𝑇 ∗𝑀 ∣ covector 𝜉 is orthogonal to the orbit 𝐺𝑥}.
stands for the transverse cotangent bundle.

Theorem 5 ([55, 66]). A transversally elliptic operator 𝒟 restricts to a Fredholm
operator on the subspace of 𝐺-invariant sections

𝒟𝐺 : 𝐿2(𝑀,𝐿2(𝐺))𝐺 −→ 𝐿2(𝑀,𝐿2(𝐺))𝐺.

Let us summarize the above discussion.

1. To a 𝐺-pseudodifferential operator 𝐷 we assigned a pseudodifferential oper-
ator 𝒟 such that there is an isomorphism

𝐷 ≃ 𝒟𝐺, (3.8)

where 𝒟𝐺 is the restriction of 𝒟 to the subspace of invariant sections.
2. If 𝒟 is transversally elliptic, then its restriction 𝒟𝐺 is Fredholm. Hence, by

virtue of the isomorphism (3.8) the original operator 𝐷 is also Fredholm.

Since we have isomorphism (3.8), we obtain:

ind𝐷 = ind𝒟𝐺.
Using this equation and the theory of transversally elliptic pseudodifferential oper-
ators [8, 30, 67]), an index theorem for the 𝐺-operator 𝐷 was obtained in [55, 50].
We only mention here that the main ingredients of the index formula are: 1) the
definition of the symbol of 𝐷 as an element of the crossed product of the algebra of
functions on the transverse cotangent bundle by the group 𝐺; 2) a Chern character
mapping on the 𝐾-theory of this algebra ranging in the basic cohomology of fixed
point sets of the group action.
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Introduction

The solutions to elliptic problems on a manifold with edge are expected to have
asymptotics of the form

𝑢(𝑟, 𝑥, 𝑦) ∼
𝐽∑
𝑗=0

𝑚𝑗∑
𝑘=0

𝑐𝑗𝑘(𝑥, 𝑦)𝑟
−𝑝𝑗 log𝑘𝑟 (0.1)

as 𝑟 → 0, with exponents 𝑝𝑗 ∈ ℂ, and 𝑚𝑗 ∈ ℕ (= {0, 1, 2, . . .}). Here (𝑟, 𝑥, 𝑦)
are the variables in an open stretched wedge ℝ+ × 𝑋 × Ω for a closed smooth
manifold 𝑋 of dimension 𝑛 and an open set Ω ⊆ ℝ𝑞. If the respective operator is
a differential operator of the form

𝐴 = 𝑟−𝜇
∑

𝑗+∣𝛼∣≤𝜇
𝑎𝑗𝛼(𝑟, 𝑦)(−𝑟∂𝑟)𝑗(𝑟𝐷𝑦)

𝛼 (0.2)

for coefficients 𝑎𝑗𝛼(𝑟, 𝑦) ∈ 𝐶∞(
ℝ+ × Ω,Diff𝜇−(𝑗+∣𝛼∣)(𝑋)

)
(with Diff 𝜈(𝑋) being

the space of differential operators of order 𝜈 on 𝑋) then the asymptotic data

𝒫 := {(𝑝𝑗 ,𝑚𝑗)}0≤𝑗≤𝐽 ⊂ ℂ× ℕ, (0.3)
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𝐽 = 𝐽(𝒫) ∈ ℕ∪{∞} are known to be determined by the leading conormal symbol

𝜎c(𝐴)(𝑦, 𝑧) :=

𝜇∑
𝑗=0

𝑎𝑗0(0, 𝑦)𝑧
𝑗, (0.4)

regarded as a family of differential operators

𝜎c(𝐴)(𝑦, 𝑧) : 𝐻
𝑠(𝑋)→ 𝐻𝑠−𝜇(𝑋) (0.5)

of order 𝜇, smooth in 𝑦 ∈ Ω and holomorphic in 𝑧. In the elliptic case it is known
that the operators (0.5) are parameter-dependent elliptic of order 𝜇 where the
parameter is Im 𝑧 with 𝑧 varying on a so-called weight line

Γ𝛽 := {𝑧 ∈ ℂ : Re 𝑧 = 𝛽} (0.6)

for every real 𝛽.

It is well known that for any fixed 𝑦 ∈ Ω the operators (0.5) are bijective
for all 𝑧 off some discrete set 𝐷(𝑦) ⊂ ℂ, where 𝐷(𝑦) ∩ {𝑐 < Re 𝑧 < 𝑐′} is finite
for every 𝑐 < 𝑐′, cf. Bleher [1]. Those non-bijectivity points are just responsible

for the exponents −𝑝𝑗 in (0.1). More precisely, 𝜎−1c (𝐴)(𝑦, 𝑧) is an 𝐿−𝜇cl (𝑋)-valued
meromorphic function with poles at the points 𝑝𝑗 of (finite) multiplicities 𝑚𝑗 + 1

and finite rank Laurent coefficients in 𝐿−∞(𝑋) at the powers (𝑧 − 𝑝𝑗)
−(𝑘+1), 0 ≤

𝑘 ≤ 𝑚𝑗 . Here 𝐿𝜈cl(𝑋), 𝜈 ∈ ℝ, means the space of all classical pseudo-differential
operators on 𝑋 of order 𝜈, and 𝐿−∞(𝑋) :=

∩
𝜈∈ℝ 𝐿

𝜈
cl(𝑋) is the space of smoothing

operators.

If 𝜎c(𝐴) is independent of 𝑦 we have constant discrete edge asymptotics of so-
lutions, cf. the terminology below. Even in this case it is interesting to observe the
nature of coefficients 𝑐𝑗𝑘 in (0.1) depending on the considered Sobolev smoothness
𝑠 ∈ ℝ of the solutions. The Sobolev smoothness of the coefficients 𝑐𝑗𝑘 in 𝑦 also
depends on Re 𝑝𝑗 . Clearly in general the leading conormal symbol 𝜎c(𝐴) depends
on 𝑦 and then also the set 𝐷(𝑦). In this case the inverse 𝜎−1c (𝐴) is a 𝑦-dependent
family of meromorphic operator functions with poles 𝑝𝑗(𝑦) varying in the complex
plane and possible branchings where the multiplicities 𝑚𝑗(𝑦)+ 1 may have jumps,
including the above-mentioned Laurent coefficients. These effects have been stud-
ied in a number of papers, cf. [12], [13] and [16]. In particular, also the Sobolev
smoothness in 𝑦 of the coefficients 𝑐𝑗𝑘(𝑥, 𝑦) is branching. The program is going
on, and in the present article we study some features of the functional analytic
structure of singular functions in the variable branching case which are not yet
analyzed so far.

The characterization of asymptotics of solutions to singular PDE-problems
is a central issue of solvability theory of elliptic equations on a singular config-
uration. One of the classical papers in this connection is [9] of Kondratyev on
boundary value problems on manifolds with conical singularities. Since then there
appeared numerous investigations in this field, also on boundary problems for op-
erators without the transmission property, or mixed and transmission problems,
see, in particular, Eskin’s book [3]. The present investigation is dominated by the
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pseudo-differential approach to generate asymptotics via parametrices and ellip-
tic regularity, see, in particular, the monographs [11], [2], [5], and the references
there. Note that a similar philosophy applies also for corner singularities where
asymptotics appear in iterated form, cf. [15], or, the recent investigations, [4], [17].

This paper is organized as follows.

First in Section 1 we outline some necessary tools on constant discrete edge
asymptotics in the frame of weighted edge spaces and corresponding subspaces. We
then pass to a more detailed investigation of the singular functions and show some
essential simplification compared with other expositions, say, [2] or [14], namely,
that the cut-off functions may be chosen independently of the edge covariable
𝜂, modulo edge-flat remainders. We do that including the so-called continuous
asymptotics.

In Section 2 we consider variable branching edge asymptotics, formulated in
terms of smooth functions with values in analytic functionals that are pointwise
discrete and of finite order. Basics and tools can be found in [11], [8]; the notion
itself has been first established in [12], [13] and further studied in detail in [16].
Here we show a refinement of a result of [14] on the representation of singular
functions with variable continuous asymptotics by analytic functionals without
explicit dependence on the edge variable 𝑦. In particular, the preparations from
Section 1 on 𝜂-independent cut-off functions allow us to find the claimed new
representation in a unique way. We finally apply this result to the case of variable
branching asymptotics and obtain the surprising effect that the pointwise discrete
behaviour in 𝑦 may be shifted into a new functional that gives rise to a localization
of Sobolev smoothness of “coefficients of asymptotics”, both in variable branching
as well as in continuous asymptotics.

1. The constant discrete edge asymptotics

1.1. Edge spaces and specific operator-valued symbols

Let us first recall what we understand by abstract edge spaces modelled on a space
with group action.

First if this space is a Hilbert space 𝐻 such a group action is a family 𝜅 =
{𝜅𝜆}𝜆∈ℝ+ of isomorphisms 𝜅𝜆 : 𝐻 → 𝐻 with 𝜅𝜆𝜅𝜆′ = 𝜅𝜆𝜆′ for all 𝜆, 𝜆′ ∈ ℝ+, and
𝜆→ 𝜅𝜆ℎ represents a function in 𝐶(ℝ+, 𝐻) for every ℎ ∈ 𝐻 . As is known we have
an estimate

∥𝜅𝜆∥ℒ(𝐻) ≤ 𝑐
(
max{𝜆, 𝜆−1})𝑀 (1.1)

for all 𝜆 ∈ ℝ+, for some constants 𝑐 > 0,𝑀 > 0, depending on 𝜅 (a proof may be
found in [6]). We also need the case of a Fréchet space 𝐸 written as a projective
limit lim←−−

𝑗∈ℕ
𝐸𝑗 of Hilbert spaces, with continuous embeddings 𝐸𝑗 ↪→ 𝐸0 for all 𝑗,

where 𝐸0 is endowed with a group action 𝜅 and 𝜅∣𝐸𝑗 defines a group action in
𝐸𝑗 for every 𝑗. The constants 𝑐 and 𝑀 in (1.1) then may depend on 𝑗. Now
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𝒲𝑠(ℝ𝑞, 𝐻), 𝑠 ∈ ℝ, is defined to be the completion of 𝒮(ℝ𝑞, 𝐻) with respect to the
norm

∥𝑢∥𝒲𝑠(ℝ𝑞,𝐻) =

{∫
⟨𝜂⟩2𝑠∥𝜅−1⟨𝜂⟩�̂�(𝜂)∥2𝐻 𝑑𝜂

}1/2
(1.2)

with �̂�(𝜂) = (𝐹𝑦→𝜂𝑢)(𝜂) being the Fourier transform, ⟨𝜂⟩ = (1 + ∣𝜂∣2)1/2. For a
Fréchet space 𝐸 = lim←−−

𝑗∈ℕ
𝐸𝑗 we have 𝒲𝑠(ℝ𝑞, 𝐸𝑗), 𝑗 ∈ ℕ, and we set

𝒲𝑠(ℝ𝑞, 𝐸) = lim←−−
𝑗∈ℕ

𝒲𝑠(ℝ𝑞, 𝐸𝑗).

Recall that we obtain an equivalent norm to (1.2) when we replace ⟨𝜂⟩ by a function
𝜂 → [𝜂], strictly positive, smooth, with [𝜂] = ∣𝜂∣ for ∣𝜂∣ > 𝐶 for some 𝐶 > 0.

In the general discussion we often consider the Hilbert space case; the gener-
alization to Fréchet spaces will be obvious. Observe that 𝒲𝑠(ℝ𝑞, 𝐻) ⊂ 𝒮 ′(ℝ𝑞, 𝐻).
For an open set Ω ⊆ ℝ𝑞 by 𝒲𝑠

loc(Ω, 𝐻) we denote the space of all 𝑢 ∈ 𝒟′(Ω, 𝐻)
such that 𝜑𝑢 ∈ 𝒲𝑠(ℝ𝑞, 𝐻) for every 𝜑 ∈ 𝐶∞

0 (Ω). Moreover,𝒲𝑠
comp(Ω, 𝐻) denotes

the subspace of all elements of𝒲𝑠(ℝ𝑞, 𝐻) that have compact support in Ω. Clearly
the spaces𝒲𝑠(ℝ𝑞, 𝐻) depend on the choice of 𝜅. If necessary we write𝒲𝑠(ℝ𝑞, 𝐻)𝜅
in order to indicate the specific group action 𝜅. The case 𝜅 = id for all 𝜆 ∈ ℝ+ is
always admitted. Then we have

𝒲𝑠(ℝ𝑞, 𝐻)id = 𝐻𝑠(ℝ𝑞, 𝐻)

which is the standard Sobolev space of 𝐻-valued distributions. Observe that∩
𝑠∈ℝ𝒲

𝑠(ℝ𝑞, 𝐻)𝜅 =:𝒲∞(ℝ𝑞, 𝐻)𝜅 =𝒲∞(ℝ𝑞, 𝐻)id, (1.3)

i.e., the dependence on 𝜅 disappears when 𝑠 =∞. This is a consequence of (1.1).
From the definition we have an isomorphism

𝕂 := 𝐹−1𝜅[𝜂]𝐹 :𝒲𝑠(ℝ𝑞, 𝐻)id →𝒲𝑠(ℝ𝑞, 𝐻)𝜅 (1.4)

for every 𝑠 ∈ ℝ, in particular,

𝕂 :𝒲∞(ℝ𝑞, 𝐻)id →𝒲∞(ℝ𝑞, 𝐻)id.

We employ analogues of the spaces𝒲𝑠(ℝ𝑞, 𝐻) for certain Hilbert spaces 𝐻 based
on the Mellin transform.

The analysis on a singular manifold refers to a large extent to the Mellin
transform

𝑀𝑢(𝑧) =

∫ ∞

0

𝑟𝑧−1𝑢(𝑟) 𝑑𝑟

first for 𝑢 ∈ 𝐶∞
0 (ℝ+) and then extended to various distribution spaces, also vector-

valued ones. For 𝑢 ∈ 𝐶∞
0 (ℝ+) we obtain an entire function in the complex 𝑧-plane.

Function/distribution spaces on Γ𝛽 always refer to 𝜌 = Im 𝑧 for 𝑧 ∈ Γ𝛽 , e.g., the
Schwartz space 𝒮(Γ𝛽) or 𝐿2(Γ𝛽) with respect to the Lebesgue measure on ℝ𝜌.
Recall that the Mellin transform induces a continuous operator 𝑀 : 𝐶∞

0 (ℝ+) →
𝒜(ℂ) with 𝒜(ℂ) being the space of entire functions in 𝑧. In particular, for 𝑢 ∈
𝐶∞
0 (ℝ+) we can form the weighted Mellin transform 𝑀𝛾 : 𝐶

∞
0 (ℝ+)→ 𝒮(Γ1/2−𝛾)
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of weight 𝛾 ∈ ℝ, defined as 𝑀𝛾𝑢 := 𝑀𝑢∣Γ1/2−𝛾
. As is well known, 𝑀𝛾 extends to

an isomorphism 𝑀𝛾 : 𝑟
𝛾𝐿2(ℝ+)→ 𝐿2(Γ1/2−𝛾), and then

(𝑀−1
𝛾 𝑔)(𝑟) =

∫
Γ1/2−𝛾

𝑟−𝑧𝑔(𝑧) 𝑑𝑧

for 𝑑𝑧 = (2𝜋𝑖)−1𝑑𝑧. Analogously as standard Sobolev spaces based on 𝐿2-norms
and the Fourier transform we can form weighted Mellin–Sobolev spaces ℋ𝑠,𝛾(ℝ+×
ℝ𝑛) as the completion of 𝐶∞

0 (ℝ+ × ℝ𝑛) with respect to the norm

∥𝑢∥ℋ𝑠,𝛾(ℝ+×ℝ𝑛) =

{∫
Γ(𝑛+1)/2−𝛾

∫
ℝ𝑛

⟨𝑧, 𝜉⟩2𝑠 ∣∣(𝑀𝛾−𝑛/2,𝑟→𝑧𝐹𝑥→𝜉𝑢)(𝑧, 𝜉)
∣∣2 𝑑𝑧𝑑𝜉}1/2,

with 𝐹 = 𝐹𝑥→𝜉 being the Fourier transform in ℝ𝑛. Moreover, if 𝑋 is a smooth
closed manifold of dimension 𝑛 we have analogous spaces ℋ𝑠,𝛾(𝑋∧) for

𝑋∧ := ℝ+ ×𝑋

based on the local spaces ℋ𝑠,𝛾(ℝ+ × ℝ𝑛) and defined with the help of charts and
a partition of unity on 𝑋 . Note that (in our notation) the meaning of 𝛾 depends
on the dimension 𝑛. In the case 𝑠 =∞ we have a canonical identification

ℋ∞,𝛾(𝑋∧) = ℋ∞,𝛾−𝑛/2(ℝ+)⊗̂𝜋𝐶∞(𝑋) ∼= 𝐶∞(
𝑋,ℋ∞,𝛾−𝑛/2(ℝ+)

)
; (1.5)

here ⊗̂𝜋 means the projective tensor product between the respective spaces.

In this exposition a cut-off function 𝜔 on the half-axis is any 𝜔 ∈ 𝐶∞
0 (ℝ+)

that is equal to 1 close to 0. It will be essential also to employ the spaces

𝒦𝑠,𝛾(𝑋∧) := {𝜔𝑢+ (1 − 𝜔)𝑣 : 𝑢 ∈ ℋ𝑠,𝛾(𝑋∧), 𝑣 ∈ 𝐻𝑠
cone(𝑋

∧)}. (1.6)

Here 𝐻𝑠
cone(𝑋

∧) is defined as follows. Choose any diffeomorphism 𝜒1 : 𝑈 → 𝑉
from a coordinate neighbourhood 𝑈 on 𝑋 to an open set 𝑉 ⊂ 𝑆𝑛 (the unit sphere
in ℝ𝑛+1�̃� ), and let 𝜒 : ℝ+ × 𝑈 → Γ := {�̃� ∈ ℝ𝑛+1 ∖ {0} : �̃�/∣�̃�∣ ∈ 𝑉 } be defined
by 𝜒(𝑟, 𝑥) := 𝑟𝜒1(𝑥), 𝑟 ∈ ℝ+. Then 𝐻𝑠

cone(𝑋
∧) is the set of all 𝑣 ∈ 𝐻𝑠

loc(ℝ ×
𝑋)∣ℝ+×𝑋 such that for any 𝜑 ∈ 𝐶∞

0 (𝑈) we have ((1 − 𝜔)𝜑𝑣) ∘ 𝜒−1 ∈ 𝐻𝑠(ℝ𝑛+1),
for every coordinate neighbourhood 𝑈 on 𝑋 . Concerning more details on those
spaces, cf. [14] or [15]. In particular, ℋ𝑠,𝛾(𝑋∧) and 𝒦𝑠,𝛾(𝑋∧) are Hilbert spaces in
suitable scalar products, and we have ℋ0,0(𝑋∧) = 𝒦0,0(𝑋∧) = 𝑟−𝑛/2𝐿2(ℝ+ ×𝑋)
with 𝐿2 referring to 𝑑𝑟𝑑𝑥 and 𝑑𝑥 associated with a fixed Riemannian metric on
𝑋 , 𝑛 = dim𝑋 . Analogously as (1.5) we also have

𝒦∞,𝛾(𝑋∧) = 𝒦∞,𝛾−𝑛/2(ℝ+)⊗̂𝜋𝐶∞(𝑋) = 𝐶∞(
𝑋,𝒦∞,𝛾−𝑛/2(ℝ+)

)
. (1.7)

Here 𝒦∞,𝛾−𝑛/2(ℝ+) is endowed with its natural Fréchet topology. In order to
formulate asymptotics of elements in 𝒦𝑠,𝛾(𝑋∧) we first fix so-called weight data
(𝛾,Θ) for 𝛾 ∈ ℝ and Θ = (𝜗, 0],−∞ ≤ 𝜗 < 0. Define the Fréchet space

𝒦𝑠,𝛾Θ (𝑋∧) = lim←−−
𝑘∈ℕ

𝒦𝑠,𝛾−𝜗−(1+𝑘)−1

(𝑋∧)
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of elements of flatness Θ relative to 𝛾. For purposes below we also introduce
the spaces 𝒦𝑠,𝛾;𝑒(𝑋∧) := ⟨𝑟⟩−𝑒𝒦𝑠,𝛾(𝑋∧), 𝒦𝑠,𝛾;𝑒Θ (𝑋∧) := ⟨𝑟⟩−𝑒𝒦𝑠,𝛾Θ (𝑋∧) for any
𝑠, 𝛾, 𝑒 ∈ ℝ. In order to define subspaces with asymptotics we consider a sequence

𝒫 = {(𝑝𝑗 ,𝑚𝑗)}𝑗=0,1,...,𝐽 ⊂ ℂ× ℕ (1.8)

for a 𝐽 = 𝐽(𝒫) ∈ ℕ ∪ {∞} such that (𝑛 + 1)/2 − 𝛾 + 𝜗 < Re 𝑝𝑗 < (𝑛 + 1)/2 − 𝛾
for all 0 ≤ 𝑗 ≤ 𝐽 , 𝐽(𝒫) < ∞ for 𝜗 > −∞. In the case 𝜗 = −∞ and 𝐽 = ∞ we
assume Re 𝑝𝑗 → −∞ as 𝑗 → ∞. Such a 𝒫 will be called a discrete asymptotic
type associated with (𝛾,Θ). We set 𝜋ℂ𝒫 := {𝑝𝑗}𝑗=0,1,...,𝐽 . Observe that for any
𝑝 ∈ ℂ,Re 𝑝 < (𝑛+1)/2−𝛾, and 𝑐 ∈ 𝐶∞(𝑋) we have 𝜔(𝑟)𝑐(𝑥)𝑟−𝑝log𝑘𝑟 ∈ 𝒦∞,𝛾(𝑋∧)
for 𝑘 ∈ ℕ and any cut-off function 𝜔. Given a discrete asymptotic type 𝒫 for finite
Θ we form the space

ℰ𝒫 := {𝜔(𝑟)
𝐽∑
𝑗=0

𝑚𝑗∑
𝑘=0

𝑐𝑗𝑘𝑟
−𝑝𝑗 log𝑘𝑟 : 𝑐𝑗𝑘 ∈ 𝐶∞(𝑋)}, (1.9)

for some fixed cut-off function 𝜔. This space is Fréchet in a natural way (in fact,
isomorphic to a corresponding direct sum of finitely many copies of 𝐶∞(𝑋)), and
we have 𝒦𝑠,𝛾Θ (𝑋∧) ∩ ℰ𝒫 = {0}. Then the direct sum

𝒦𝑠,𝛾𝒫 (𝑋∧) := 𝒦𝑠,𝛾Θ (𝑋∧) + ℰ𝒫 (1.10)

is again a Fréchet space. The spaces (1.10) are examples of subspaces of 𝒦𝑠,𝛾(𝑋∧)
with discrete asymptotics of type 𝒫 . The definition can be easily extended to
asymptotic types 𝒫 = {(𝑝𝑗 ,𝑚𝑗)}𝑗=0,1,...,𝐽 associated with (𝛾, (−∞, 0]) and 𝐽 ∈ ℕ∪
{∞}. In this case we form 𝒫𝑘 := {(𝑝,𝑚) ∈ 𝒫 : Re 𝑝 > (𝑛+1)/2−𝛾−(𝑘+1)}, 𝑘 ∈ ℕ;
then 𝒫𝑘 is finite and associated with

(
𝛾, (−(𝑘 + 1), 0]

)
. Thus we have the spaces

𝒦𝑠,𝛾𝒫𝑘
(𝑋∧) and we set

𝒦𝑠,𝛾𝒫 (𝑋∧) := lim←−−
𝑘∈ℕ

𝒦𝑠,𝛾𝒫𝑘
(𝑋∧).

Another technical tool that we employ later on are operator-valued symbols based
on twisted symbolic estimates. Let 𝐻 and �̃� be Hilbert spaces with group actions
𝜅 and �̃�, respectively.

By 𝑆𝜇(Ω×ℝ𝑞;𝐻, �̃�) for an open set Ω ⊆ ℝ𝑝 we denote the set of all 𝑎(𝑦, 𝜂) ∈
𝐶∞(

Ω× ℝ𝑞,ℒ(𝐻, �̃�)
)
such that

∥�̃�−1[𝜂] {𝐷𝛼
𝑦𝐷

𝛽
𝜂𝑎(𝑦, 𝜂)}𝜅[𝜂]∥ℒ(𝐻,�̃�) ≤ 𝑐[𝜂]𝜇−∣𝛽∣ (1.11)

for all (𝑦, 𝜂) ∈ 𝐾 ×ℝ𝑞,𝐾 ⋐ Ω, and 𝛼 ∈ ℕ𝑝, 𝛽 ∈ ℕ𝑞, for constants 𝑐 = 𝑐(𝛼, 𝛽,𝐾) >
0. Such 𝑎 are called (operator-valued) symbols of order 𝜇. For instance, if 𝑎(𝑦, 𝜂) is

homogeneous of order 𝜇 for large ∣𝜂∣ then it is such a symbol. By 𝑆𝜇cl(Ω×ℝ𝑞;𝐻, �̃�)
we denote the subspace of classical symbols, i.e., the set of those 𝑎(𝑦, 𝜂) ∈ 𝑆𝜇(Ω×
ℝ𝑞;𝐻, �̃�) with an asymptotic expansion into symbols that are homogeneous of

order 𝜇−𝑗, 𝑗 ∈ ℕ, for large ∣𝜂∣. Let 𝑆(𝜇)(Ω×(ℝ𝑞 ∖{0});𝐻, �̃�
)
be the space of those

𝑎(𝜇)(𝑦, 𝜂) ∈ 𝐶∞(
Ω×(ℝ𝑞∖{0}),ℒ(𝐻, �̃�)

)
such that 𝑎(𝜇)(𝑦, 𝜆𝜂) = 𝜆𝜇�̃�𝜆𝑎(𝜇)(𝑦, 𝜂)𝜅

−1
𝜆
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for all 𝜆 ∈ ℝ+. Every 𝑎(𝑦, 𝜂) ∈ 𝑆𝜇cl(Ω× ℝ𝑞;𝐻, �̃�) has a principal symbol of order

𝜇, i.e., the unique 𝑎(𝜇)(𝑦, 𝜂) ∈ 𝑆(𝜇)
(
Ω× (ℝ𝑞 ∖ {0});𝐻, �̃�

)
such that

𝑎(𝑦, 𝜂)− 𝜒(𝜂)𝑎(𝜇)(𝑦, 𝜂) ∈ 𝑆𝜇−1cl (Ω× ℝ𝑞;𝐻, �̃�)

for any fixed excision function 𝜒.
If a consideration is valid in the classical as well as the general case we write

as subscript (cl). If necessary we also write 𝑆𝜇(cl)(Ω×ℝ𝑞;𝐻, �̃�)𝜅,�̃� for the respective

spaces of symbols. The spaces of symbols with constant coefficients will be denoted
by 𝑆𝜇(cl)(ℝ

𝑞;𝐻, �̃�). The spaces 𝑆𝜇(cl)(Ω × ℝ𝑞;𝐻, �̃�) are Fréchet in a natural way,

𝑆𝜇(cl)(ℝ
𝑞;𝐻, �̃�) are closed subspaces, and we have

𝑆𝜇(cl)(Ω× ℝ𝑞;𝐻, �̃�) = 𝐶∞(Ω, 𝑆𝜇(cl)
(
ℝ𝑞;𝐻, �̃�)

)
.

In the case 𝑝 = 2𝑞 and Ω × Ω for Ω ⊆ ℝ𝑞 instead of Ω ⊆ ℝ𝑝 we also write (𝑦, 𝑦′)
rather than 𝑦.

For every 𝑎(𝑦, 𝑦′, 𝜂) ∈ 𝑆𝜇(Ω×Ω×ℝ𝑞;𝐻, �̃�) the operator Op(𝑎) : 𝐶∞
0 (Ω, 𝐻)→

𝐶∞(Ω, �̃�), defined by

Op𝑦(𝑎)𝑢(𝑦) :=

∫∫
𝑒𝑖(𝑦−𝑦

′)𝜂𝑎(𝑦, 𝑦′, 𝜂)𝑢(𝑦′) 𝑑𝑦′𝑑𝜂, (1.12)

extends to a continuous map

Op(𝑎) :𝒲𝑠
comp(Ω, 𝐻)→𝒲𝑠−𝜇

loc (Ω, �̃�) (1.13)

for any 𝑠 ∈ ℝ. The continuity (1.13) has been established in [11, page 283] for all

spaces 𝐻, �̃� that are of interest here. The case of general 𝐻, �̃� with group action
was given in [18]. In the special case of 𝑎(𝜂) ∈ 𝑆𝜇(ℝ𝑞;𝐻, �̃�) the operator Op(𝑎)
induces a continuous operator

Op(𝑎) :𝒲𝑠(ℝ𝑞, 𝐻)→𝒲𝑠−𝜇(ℝ𝑞, �̃�) (1.14)

for any 𝑠 ∈ ℝ. Here

∥Op(𝑎)∥ℒ(𝒲𝑠(ℝ𝑞,𝐻),𝒲𝑠−𝜇(ℝ𝑞,�̃�)) ≤ sup
𝜂∈ℝ𝑞

[𝜂]−𝜇∥�̃�−1[𝜂] 𝑎(𝜂)𝜅[𝜂]∥ℒ(𝐻,�̃�). (1.15)

Remark 1.1. Observe that (1.14) already holds for 𝑎(𝜂) ∈ 𝐶∞(
ℝ𝑞,ℒ(𝐻, �̃�)

)
when

the 0th symbolic estimate (1.11) holds, namely,

∥�̃�−1[𝜂] 𝑎(𝜂)𝜅[𝜂]∥ℒ(𝐻,�̃�) ≤ 𝑐[𝜂]𝜇

for all 𝜂 ∈ ℝ𝑞, for some 𝑐 > 0.

We will employ below a slight modification of such a construction. Let us
start, in particular, with the case 𝐻 = ℂ with the trivial group action. Symbols in
𝑆𝜇(cl)(Ω×ℝ𝑞 ;ℂ, �̃�) are also referred to as potential symbols. Consider, for instance,

the case of symbols 𝑎(𝜂) with constant coefficients, i.e., without 𝑦-dependence.
Such symbols are realized as multiplications of 𝑐 ∈ ℂ by 𝜂-dependent families 𝑓(𝜂)

of elements ∈ �̃� . The symbolic estimates have the form

∥𝜅−1[𝜂]𝐷𝛽
𝜂𝑓(𝜂)∥ℒ(ℂ,�̃�) = ∥𝜅−1[𝜂]𝐷𝛽

𝜂 𝑓(𝜂)∥�̃� ≤ 𝐶[𝜂]𝜇−∣𝛽∣. (1.16)
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In our applications we have the situation that for a Fréchet space 𝐸 = lim←−−
𝑗∈ℕ

𝐸𝑗 for

Hilbert spaces 𝐸𝑗 and the trivial group action id on all 𝐸𝑗 we encounter 𝐸 and
tensor products �̃�⊗̂𝜋𝐸 rather than ℂ and �̃� . In our case 𝐸 will be nuclear, and
then we have

�̃�⊗̂𝜋𝐸 = lim←−−
𝑘∈ℕ

�̃�⊗𝐻𝐸𝑗

with ⊗𝐻 being the Hilbert tensor product. Such things are well known, but details
may be found, e.g., in [10, page 38]. From 𝑓(𝜂) ∈ 𝑆𝜇(cl)(ℝ

𝑞;ℂ, �̃�) we pass to the

operator function 𝑓(𝜂)⊗ id𝐸 . This can be interpreted as a symbol

𝑓 ⊗ id𝐸 ∈ 𝑆𝜇(cl)(ℝ
𝑞;𝐸, �̃�⊗̂𝜋𝐸) = lim←−−

𝑗∈ℕ
𝑆𝜇(cl)(ℝ

𝑞;𝐸𝑗 , �̃�⊗𝐻𝐸𝑗).

In fact, instead of (1.16) we have the symbolic estimates

∥(𝜅−1[𝜂] ⊗ id𝐸𝑗 )𝐷𝛽
𝜂

(
𝑓(𝜂)⊗ id𝐸𝑗

)∥ℒ(𝐸𝑗,�̃�⊗𝐻𝐸𝑗) = ∥𝜅−1[𝜂]𝐷𝛽
𝜂 𝑓(𝜂)∥�̃�∥id𝐸𝑗∥ℒ(𝐸𝑗,𝐸𝑗)

=∥𝜅−1[𝜂]𝐷𝛽
𝜂 𝑓(𝜂)∥�̃� ≤ 𝐶[𝜂]𝜇−∣𝛽∣

for every 𝑗. Similarly as (1.14) we obtain continuous operators

Op𝑦(𝑓 ⊗ id𝐸𝑗 ) : 𝐻𝑠(ℝ𝑞, 𝐸𝑗)→𝒲𝑠−𝜇(ℝ𝑞, �̃�⊗𝐻𝐸𝑗). (1.17)

The space on the right refers to the group action 𝜅𝜆 ⊗ id𝐸 , such that

∥𝑢∥𝒲𝑡(ℝ𝑞,�̃�⊗𝐻𝐸𝑗) =

{∫
[𝜂]2𝑡

∥∥∥(𝜅−1[𝜂] ⊗ id𝐸𝑗 )�̂�(𝜂)
∥∥∥2
�̃�⊗𝐻𝐸𝑗

𝑑𝜂

}1/2
for every 𝑗. We have

𝒲𝑡(ℝ𝑞, �̃�⊗̂𝜋𝐸) = lim←−−
𝑗∈ℕ

𝒲𝑡(ℝ𝑞, �̃�⊗𝐻𝐸𝑗),

𝑡 ∈ ℝ, and it follows altogether

Op𝑦(𝑓 ⊗ id𝐸) : 𝐻
𝑠(ℝ𝑞, 𝐸)→𝒲𝑠−𝜇(ℝ𝑞, �̃�⊗̂𝜋𝐸). (1.18)

1.2. Characterization of singular functions

In order to formulate the singular functions of discrete edge asymptotics we endow
the Fréchet spaces 𝒦𝑠,𝛾𝒫 (𝑋∧) with the group action

(𝜅𝜆𝑢)(𝑟, 𝑥) := 𝜆(𝑛+1)/2𝑢(𝜆𝑟, 𝑥), (1.19)

𝜆 ∈ ℝ+. The larger spaces 𝒦𝑠,𝛾(𝑋∧) are endowed with this group action as well,
and we may consider 𝜅𝜆 also over the spaces 𝒦𝑠,𝛾Θ (𝑋∧) of functions of flatness Θ
relative to 𝛾. This allows us to define the spaces

𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾(𝑋∧)

) ⊃ 𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

) ⊃ 𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾Θ (𝑋∧)

)
.

The space ℰ𝒫 of singular functions of cone asymptotics, defined for any fixed cut-off
function 𝜔, is not invariant under 𝜅. Nevertheless, according to (1.10) it is desirable
also to decompose 𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
into a flat part, namely, 𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾Θ (𝑋∧)

)
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and a subspace generated by the singular functions. Here we proceed as follows.
We first look at the case 𝜅 = id and observe that from (1.10) we have a direct sum

𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
id
=𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾Θ (𝑋∧)

)
id
+𝒲𝑠(ℝ𝑞, ℰ𝒫)id.

Clearly 𝒲𝑠(ℝ𝑞, ℰ𝒫)id is a subspace of 𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
id
. According to (1.4) we

have an isomorphism

𝕂 :𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
id
→𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
𝜅
.

Thus, applying (1.4) to the subspace 𝒲𝑠(ℝ𝑞, ℰ𝒫)id we obtain a subspace of
𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
𝜅
and a direct decomposition

𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
𝜅
=𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾Θ (𝑋∧)

)
𝜅
+𝕂𝒲𝑠(ℝ𝑞, ℰ𝒫)id. (1.20)

By virtue of the definition of the operator 𝕂 we have

𝕂𝒲𝑠(ℝ𝑞, ℰ𝒫)id = span{𝐹−1
𝑦→𝜂[𝜂]

(𝑛+1)/2𝜔(𝑟[𝜂])𝑐𝑗𝑘(𝑥, 𝜂)(𝑟[𝜂])
−𝑝𝑗 log𝑘(𝑟[𝜂])

: 0 ≤ 𝑘 ≤ 𝑚𝑗 , 𝑗 = 0, 1, . . . , 𝐽, 𝑐𝑗𝑘(𝑥, 𝜂) ∈ �̂�𝑠
(
ℝ𝑞𝜂, 𝐶

∞(𝑋)
)} (1.21)

for �̂�𝑠
(
ℝ𝑞𝜂, 𝐶∞(𝑋)

)
:= 𝐹𝑦→𝜂𝐻

𝑠
(
ℝ𝑞𝑦, 𝐶∞(𝑋)

)
. This follows from the fact that

𝒲𝑠(ℝ𝑞, ℰ𝒫)id = 𝐻𝑠(ℝ𝑞, ℰ𝒫) = span{𝜔(𝑟)𝑐𝑗𝑘(𝑥, 𝑦)𝑟−𝑝𝑗 log𝑘𝑟
: 0 ≤ 𝑘 ≤ 𝑚𝑗 , 𝑗 = 0, 1, . . . , 𝐽, 𝑐𝑗𝑘(𝑥, 𝑦) ∈ 𝐻𝑠

(
ℝ𝑞𝑦, 𝐶

∞(𝑋)
)}. (1.22)

The explicit form (1.21) gives us a first impression on the nature of singular terms
of the edge asymptotics for a constant (in 𝑦) asymptotic type 𝒫 and finite Θ.

Let us briefly comment the case 𝑠 =∞ where the 𝒲𝑠-spaces do not depend
on 𝜅, cf. the relation (1.3). In that case we may choose the singular functions in
the form (1.22) for 𝑠 = ∞, i.e., the 𝑟-powers, logarithmic terms and the cut-off
function 𝜔 do not contain 𝜂. In other words we have the direct decomposition

𝒲∞(
ℝ𝑞,𝒦∞,𝛾

𝒫 (𝑋∧)
)
id
=𝒲∞(

ℝ𝑞,𝒦∞,𝛾
Θ (𝑋∧)

)
id
+𝒲∞(ℝ𝑞, ℰ𝒫)id

= 𝐻∞(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
+𝐻∞(ℝ𝑞, ℰ𝒫).

(1.23)

On the other hand we have

𝒲∞(
ℝ𝑞,𝒦∞,𝛾

𝒫 (𝑋∧)
)
𝜅
=𝒲∞(

ℝ𝑞,𝒦∞,𝛾
Θ (𝑋∧)

)
𝜅
+𝕂𝒲∞(ℝ𝑞, ℰ𝒫)id, (1.24)

cf. the relation (1.20) for 𝑠 = ∞. By virtue of (1.3) the only formal difference
between (1.23) and (1.24) for 𝑠 = ∞ lies in the difference between 𝐻∞(ℝ𝑞, ℰ𝒫)
and 𝕂𝒲∞(ℝ𝑞, ℰ𝒫)id.
Proposition 1.2. Let 𝒫 = {(𝑝𝑗,𝑚𝑗)}𝑗=0,1,...,𝐽 be a discrete asymptotic type asso-
ciated with the weight data (𝛾,Θ) for finite Θ = (𝜗, 0]. Then there is a direct
decomposition

𝒲∞(
ℝ𝑞,𝒦∞,𝛾

𝒫 (𝑋∧)
)
𝜅
=𝒲∞(

ℝ𝑞,𝒦∞,𝛾
Θ (𝑋∧)

)
𝜅
+𝐻∞(ℝ𝑞, ℰ𝒫)

where

𝐻∞(ℝ𝑞, ℰ𝒫) = span
{
𝜔(𝑟)𝑐𝑗𝑘(𝑥, 𝑦)𝑟

−𝑝𝑗 log𝑘(𝑟) : 0 ≤ 𝑘 ≤ 𝑚𝑗 ,

𝑗 = 0, 1, . . . , 𝐽, 𝑐𝑗𝑘 ∈ 𝐻∞(
ℝ𝑞𝑦, 𝐶

∞(𝑋)
)}

.
(1.25)
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Proof. We write down once again (1.21) for 𝑠 =∞, namely,

𝕂𝒲∞(ℝ𝑞, ℰ𝒫)id = span
{
𝐹−1
𝑦→𝜂[𝜂]

(𝑛+1)/2𝜔(𝑟[𝜂])𝑐𝑗𝑘(𝑥, 𝜂)(𝑟[𝜂])
−𝑝𝑗

log𝑘(𝑟[𝜂]), 0 ≤ 𝑘 ≤ 𝑚𝑗 , 𝑗 = 0, 1, . . . , 𝐽, 𝑐𝑗𝑘(𝑥, 𝜂) ∈ �̂�∞(
ℝ𝑞𝜂, 𝐶

∞(𝑋)
)}
.

(1.26)

First it is clear that [𝜂]−𝑝𝑗 gives rise to a modification of the coefficients in

�̂�∞(
ℝ𝑞𝜂, 𝐶∞(𝑋)

)
, since [𝜂]𝑀 �̂�∞(

ℝ𝑞𝜂, 𝐶∞(𝑋)
)
= �̂�∞(

ℝ𝑞𝜂, 𝐶∞(𝑋)
)
for any real

𝑀 . Moreover, writing log (𝑟[𝜂]) = log 𝑟+log [𝜂] we can dissolve log𝑘(𝑟[𝜂]) as a sum
of products between powers of log 𝑟 and log[𝜂]. Also the log [𝜂]-terms are absorbed

by �̂�∞(ℝ𝑞𝜂, 𝐶∞(𝑋)), and hence we get rid of [𝜂] in (1.26), except for the cut-off
function 𝜔(𝑟[𝜂]). In order to remove [𝜂] from the cut-off function we apply Taylor’s-
formula. Choose another cut-off function �̃� ≻ 𝜔 where 𝜑 ≻ 𝜑 or 𝜑 ≺ 𝜑 means that
𝜑 is equal to 1 on supp𝜑 such that �̃�(𝑟)

(
𝜔(𝑟[𝜂])−𝜔(𝑟)

)
= 𝜔(𝑟[𝜂])−𝜔(𝑟) for all 𝑟

and 𝜂. Then

𝜔(𝑟[𝜂]) − 𝜔(𝑟) = �̃�(𝑟)

{
(𝑟[𝜂])𝑁+1

𝑁 !

∫ 1

0

(1− 𝑡)𝑁𝜔(𝑁+1)(𝑟[𝜂]𝑡) 𝑑𝑡

−𝑟𝑁+1

𝑁 !

∫ 1

0

(1 − 𝑡)𝑁𝜔(𝑁+1)(𝑟𝑡) 𝑑𝑡

}
.

(1.27)

If we verify that this function belongs to𝒲∞(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
for sufficiently large

𝑁 we may replace in the formula (1.26) 𝜔(𝑟[𝜂]) by 𝜔(𝑟), i.e., after the comments

before on how to remove [𝜂] from (𝑟[𝜂])−𝑝𝑗 or log𝑘(𝑟[𝜂]) we see altogether, that
the singular functions of edge asymptotics for 𝑠 = ∞ are of the form (1.25).
The fact that a function 𝜓 ∈ 𝐶∞

0 (ℝ+) of sufficiently high flatness at 𝑟 = 0, i.e.,
𝑟−𝑁𝜓(𝑟) ∈ 𝐶∞

0 (ℝ+) for large and fixed𝑁 , belongs to𝒲∞(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
, follows

from the fact that 𝜓(𝑟) may be regarded as an operator-valued symbol

𝜓 ∈ 𝑆𝜇(ℝ𝑞;ℂ, �̃�𝑗)

for �̃�𝑗 := 𝒦𝑠,𝛾−𝑛/2−𝜗−(1+𝑗)−1

(ℝ+) and some 𝜇 = 𝜇(𝑠) ∈ ℝ, for all 𝑗 ∈ ℕ.
In fact, it is clear that 𝜓 ∈ �̃�𝑗 for a fixed sufficiently large 𝑁 ∈ ℕ. Moreover,

{𝜅𝜆}𝜆∈ℝ+ defined by (1.19) acts on �̃�𝑗 for every 𝑗. Thus, by virtue of (1.1) we

have ∥𝜅𝜆∥ℒ(�̃�𝑗) ≤ 𝑐max{𝜆, 𝜆−1}𝑀 for constants 𝑐,𝑀 > 0 depending on the space

�̃�𝑗 , in fact, on 𝑠. The symbolic estimates (1.16) for 𝜓 rather than 𝑓(𝜂), here
independent of 𝜂, reduce to the estimate to 𝛽 = 0, and we have

∥𝜅−1[𝜂]𝜓∥ℒ(ℂ,�̃�𝑗) ≤ ∥𝜅−1[𝜂] ∥ℒ(�̃�𝑗)∥𝜓∥ℒ(ℂ,�̃�𝑗) ≤ 𝑐[𝜂]𝜇∥𝜓∥�̃�𝑗

for some 𝜇 and constants 𝑐 = 𝑐(𝑗) > 0. Then, writing 𝐸 := 𝐶∞(𝑋) = lim←−−
𝑗∈ℕ

𝐸𝑗 ,

where we may take 𝐸𝑗 := 𝐻𝑗(𝑋), we obtain 𝜓 ⊗ id𝐸𝑗 ∈ 𝑆𝜇(ℝ𝑞;𝐸𝑗 , �̃�𝑗⊗𝐻𝐸𝑗).
This gives us the continuity

Op𝑦(𝜓 ⊗ id𝐸𝑗 ) : 𝐻𝑠(ℝ𝑞, 𝐸𝑗)→𝒲𝑠−𝜇(ℝ𝑞, �̃�𝑗⊗𝐻𝐸𝑗)
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for every 𝑠 ∈ ℝ, cf. (1.17) which entails

Op𝑦(𝜓 ⊗ id𝐸𝑗 ) : 𝐻∞(ℝ𝑞, 𝐸𝑗)→𝒲∞(ℝ𝑞, �̃�𝑗⊗𝐻𝐸𝑗)

and

Op𝑦
(
𝜓 ⊗ id𝐶∞(𝑋)

)
: 𝐻∞(

ℝ𝑞, 𝐶∞(𝑋)
)→𝒲∞(

ℝ𝑞,𝒦∞,𝛾−𝑛/2
Θ (ℝ+)

)⊗̂𝜋𝐶∞(𝑋)

=𝒲∞(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
.

Here we employed the relation 𝒦∞,𝛾
Θ (𝑋∧) = 𝒦∞,𝛾−𝑛/2

Θ (ℝ+)⊗̂𝜋𝐶∞(𝑋). For the

second summand in (1.27) we argue as follows. The function 𝑔(𝑟) :=
∫ 1
0
(1 −

𝑡)𝑁𝜔(𝑁+1)(𝑟𝑡) 𝑑𝑡 on ℝ+ belongs to 𝐶∞(ℝ+) and is bounded on ℝ+ including
all its 𝑟-derivatives. The same is true of 𝑓(𝜂) = 𝑔(𝑟[𝜂]) as a function in 𝑟 ∈ ℝ+.
The notation 𝑓(𝜂) indicates that 𝑓 is regarded as an operator-valued symbol. The

operator of multiplication by 𝑔(𝑟) induces continuous operators 𝑔 : �̃�𝑗 → �̃�𝑗 for

all 𝑗. Thus Op𝑦(𝑓) :𝒲𝑠(ℝ𝑞, �̃�𝑗)→𝒲𝑠(ℝ𝑞, �̃�𝑗) is continuous for every 𝑠 ∈ ℝ, cf.
Remark 1.1. Setting ℎ(𝜂) = 𝑓(𝜂)�̃�(𝑟)(𝑟[𝜂])𝑁+1/𝑁 ! and 𝜓(𝑟) = �̃�(𝑟)𝑟𝑁+1/𝑁 ! we
have

Op𝑦(ℎ⊗ id𝐸𝑗 ) = [𝜂]𝑁+1Op𝑦(𝑓 ⊗ id𝐸𝑗 )Op𝑦(𝜓 ⊗ id𝐸𝑗 ).

From the first step of the proof we know that

𝜓 ⊗ id𝐸𝑗 ∈ 𝑆𝜇+𝑁+1(ℝ𝑞;𝐸𝑗 , �̃�𝑗⊗𝐻�̃�𝑗).

It follows altogether

Op𝑦(ℎ)⊗ id𝐸𝑗 : 𝐻𝑠(ℝ𝑞, 𝐸𝑗)→𝒲𝑠−(𝜇+𝑁+1)(ℝ𝑞, �̃�𝑗⊗𝐻𝐸𝑗)

for every 𝑠 ∈ ℝ, and finally

Op𝑦(ℎ)⊗ id𝐸 : 𝐻∞(
ℝ𝑞, 𝐶∞(𝑋)

)→𝒲∞(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
. □

The case of variable discrete asymptotics will be prepared here by a number
of specific observations. We saw that the space (1.21) is the image of

𝐻𝑠(ℝ𝑞)⊗̂𝜋𝐶∞(𝑋)

under the action of a pseudo-differential operator

Op𝑦(𝑘)⊗̂𝜋id𝐶∞(𝑋) : 𝐻
𝑠(ℝ𝑞)⊗̂𝜋𝐶∞(𝑋)→ 𝕂𝒲𝑠(ℝ𝑞, ℰ𝒫)id

for symbols 𝑘(𝜂) ∈ 𝑆0cl
(
ℝ𝑞;ℂ,𝒦∞,𝛾−𝑛/2(ℝ+)

)
, 𝑘(𝜂) : 𝑐 → 𝑘(𝜂)𝑐, 𝑐 ∈ ℂ, where

𝑘(𝜂) :=
∑𝐽

𝑗=0

∑𝑚𝑗

𝑘=0 𝑐𝑗𝑘[𝜂]
(𝑛+1)/2𝜔(𝑟[𝜂])(𝑟[𝜂])−𝑝𝑗 log𝑘(𝑟[𝜂]) for arbitrary constants

𝑐𝑗𝑘 ∈ ℂ, 0 ≤ 𝑗 ≤ 𝑚𝑗, 𝑗 = 0, 1, . . . , 𝐽 .
Let us form the compact set 𝐾 := 𝜋ℂ𝒫 = {𝑝𝑗}𝑗=0,1,...,𝐽 and choose any

counter clockwise oriented (say, smooth) curve 𝐶 surrounding 𝐾 such that the
winding number with respect to any 𝑧 ∈ 𝐾 is equal to 1. The function

𝑀𝑟→𝑧

⎛⎝𝜔(𝑟)

𝐽∑
𝑗=0

𝑚𝑗∑
𝑘=0

𝑐𝑗𝑘(𝑥)𝑟
−𝑝𝑗 log𝑘𝑟

⎞⎠ (𝑧) =: 𝑓(𝑧)
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with 𝑀 being the weighted Mellin transform for the weight 𝛾 − 𝑛/2 is meromor-
phic with poles at the points 𝑝𝑗 of multiplicity 𝑚𝑗 + 1 and Laurent coefficients
(−1)𝑘𝑘!𝑐𝑗𝑘(𝑥). This comes from the identity

𝑀𝑟→𝑧

(
𝜔(𝑟)𝑟−𝑝log𝑘𝑟

)
(𝑧) =

(−1)𝑘𝑘!
(𝑧 − 𝑝)𝑘+1

for any 𝑝 ∈ ℂ, 𝑘 ∈ ℕ, modulo an entire function. For any compact set 𝐾 ⊂ ℂ
by 𝒜′(𝐾) we denote the space of analytic functionals carried by 𝐾, see [7, Vol.
1] or [8, Section 2.3]. The space 𝒜′(𝐾) is a nuclear Fréchet space. Given another
Fréchet space 𝐸 we set 𝒜′(𝐾,𝐸) := 𝒜′(𝐾)⊗̂𝜋𝐸. Now

𝒜(ℂ) ∋ ℎ→ ⟨𝜁𝑓,𝑧, ℎ⟩ :=
∫
𝐶

𝑓(𝑧)ℎ(𝑧)𝑑𝑧 (1.28)

is an analytic functional with carrier 𝐾, more precisely, 𝜁 ∈ 𝒜′(𝐾,𝐶∞(𝑋)
)
. It is

of finite order in the sense of a linear combination of finite order derivatives of the
Dirac measures at the points 𝑝𝑗 . Inserting ℎ(𝑧) := 𝑟−𝑧 we just obtain

⟨𝜁𝑓,𝑧 , 𝑟−𝑧⟩ =
𝐽∑
𝑗=0

𝑚𝑗∑
𝑘=0

𝑐𝑗𝑘(𝑥)𝑟
−𝑝𝑗 log𝑘𝑟, (1.29)

i.e., the singular functions are again reproduced as a linear superposition of 𝑟−𝑧

with the density 𝜁.

The above-mentioned singular functions (1.21) of constant discrete edge asy-
mptotics of type 𝒫 may be written in the form

𝐹−1
𝜂→𝑦

{
[𝜂](𝑛+1)/2𝜔(𝑟[𝜂])⟨𝜁(𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩

}
where 𝜁(𝜂) ∈ 𝒜′(𝐾, �̂�𝑠

(
ℝ𝑞𝜂, 𝐶∞(𝑋)

))
is applied to (𝑟[𝜂])−𝑧 ; subscript 𝑧 indicates

the pairing with respect to 𝑧. The form of 𝜁(𝜂) is subordinate to 𝒫 in the sense that

⟨𝜁(𝜂)𝑧 , 𝑟−𝑧⟩ is a �̂�𝑠
(
ℝ𝑞𝜂, 𝐶∞(𝑋)

)
-valued meromorphic function with poles at the

points 𝑝𝑗 ∈ 𝜋ℂ𝒫 of multiplicity 𝑚𝑗 +1. To have a notation, if 𝐸 is a Fréchet space
then a 𝜁 ∈ 𝒜′(𝐾,𝐸) is said to be subordinate to 𝒫 if ⟨𝜁, 𝑟−𝑧⟩ is meromorphic with
such poles and multiplicities, determined by 𝒫 . Let 𝒜′𝒫 (𝐾,𝐸) denote the subspace
of all 𝜁 ∈ 𝒜′(𝐾,𝐸) of that kind.

2. Branching edge asymptotics

2.1. Wedge spaces with branching edge asymptotics

The role of the present section is to deepen and complete material from [16] on
wedge space with variable branching edge asymptotics. To this end we first recall
the notion of variable discrete asymptotic types.

Let 𝒰(Ω) for an open set Ω ⊆ ℝ𝑞 denote the system of all open subsets 𝑈 ⊂ Ω
with compact closure 𝑈 ⊂ Ω.
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Definition 2.1. A variable discrete asymptotic type 𝒫 over an open set Ω ⊆ ℝ𝑞 as-
sociated with weight data (𝛾,Θ),Θ = (𝜗, 0],−∞ < 𝜗 < 0, is a system of sequences
of pairs

𝒫(𝑦) = {(𝑝𝑗(𝑦),𝑚𝑗(𝑦)
)}𝑗=0,1,...,𝐽(𝑦) (2.1)

for 𝐽(𝑦) ∈ ℕ, 𝑦 ∈ Ω, such that 𝜋ℂ𝒫 := {𝑝𝑗(𝑦)}𝑗=0,1,...,𝐽(𝑦) ⊂ {(𝑛+ 1)/2− 𝛾 + 𝜗 <
Re 𝑧 < (𝑛+ 1)/2− 𝛾} for all 𝑦 ∈ Ω, and for every 𝑏 = (𝑐, 𝑈), (𝑛+ 1)/2− 𝛾 + 𝜗 <
𝑐 < (𝑛 + 1)/2 − 𝛾, 𝑈 ∈ 𝒰(Ω), there are sets {𝑈𝑖}0≤𝑖≤𝑁 , {𝐾𝑖}0≤𝑖≤𝑁 , for some
𝑁 = 𝑁(𝑏), where 𝑈𝑖 ∈ 𝒰(Ω), 0 ≤ 𝑖 ≤ 𝑁, form an open covering of 𝑈 , moreover,

𝐾𝑖 ⋐ ℂ,𝐾𝑖 ⊂ {𝑐− 𝜀𝑖 < Re 𝑧 < (𝑛+ 1)/2− 𝛾} for some 𝜀𝑖 > 0, (2.2)

such that

𝜋ℂ𝒫 ∩ {𝑐− 𝜀𝑖 < Re 𝑧 < (𝑛+ 1)/2− 𝛾} ⊂ 𝐾𝑖 for all 𝑦 ∈ 𝑈𝑖 (2.3)

and

sup
𝑦∈𝑈𝑖

∑
𝑗

(
1 +𝑚𝑗(𝑦)

)
<∞

where the sum is taken over those 0 ≤ 𝑗 ≤ 𝐽(𝑦) such that 𝑝𝑗(𝑦) ∈ 𝐾𝑖, 𝑖 =
0, 1, . . . , 𝑁.

We will say that a variable discrete asymptotic type 𝒫 satisfies the shadow
condition if (𝑝(𝑦),𝑚(𝑦)) ∈ 𝒫(𝑦) implies (𝑝(𝑦) − 𝑙,𝑚(𝑦)) ∈ 𝒫(𝑦) for every 𝑙 ∈ ℕ,
such that Re 𝑝(𝑦) − 𝑙 > (𝑛 + 1)/2 − 𝛾 + 𝜗, for all 𝑦 ∈ Ω. Observe that such a
condition is natural when we ask the spaces of functions 𝑢 with asymptotics (0.1)
to be closed under multiplication by functions 𝜑 ∈ 𝐶∞(ℝ+), and then the Taylor
asymptotics of 𝜑 at 𝑟 = 0 contributes to the asymptotics of 𝜑𝑢. For any open
Ω̃ ⊆ Ω we define the restriction 𝒫∣Ω̃ := {(𝑝(𝑦),𝑚(𝑦)

) ∈ 𝒫 : 𝑦 ∈ Ω̃}. We also define

restrictions to 𝐴 ⊆ ℂ by setting r𝐴𝒫 := {(𝑝(𝑦),𝑚(𝑦)
) ∈ 𝒫 : 𝑝(𝑦) ∈ 𝐴}.

In future if𝐾 ⊂ ℂ is a compact set and we are talking about a curve𝐶 ⊂ ℂ∖𝐾
counter clockwise surrounding 𝐾 we tacitly assume that the winding number is 1
with respect to every 𝑧 ∈ 𝐾. It is well known, that for every 𝐾 such a 𝐶 always
exists in an 𝜀-neighbourhood of 𝐾 for any 𝜀 > 0.

Parallel to variable discrete asymptotic types 𝒫 we consider families of an-
alytic functionals that are 𝑦-wise discrete and of finite order. Typical families of
that kind are generated by functions 𝑓(𝑦, 𝑧) ∈ 𝐶∞(

Ω,𝒜(ℂ ∖ 𝐾)
)
that extend

across 𝐾 for every 𝑦 ∈ Ω to a meromorphic function in 𝑧, with finitely many poles
𝑝0(𝑦), 𝑝1(𝑦), . . . , 𝑝𝐽(𝑦) ∈ 𝐾 where 𝑝𝑗(𝑦) is of multiplicity 𝑚𝑗(𝑦) + 1. The corre-
sponding system 𝒫(𝑦) of the form (2.1) is a variable discrete asymptotic type in
the sense of Definition 2.1.

More generally, if we have a family of meromorphic functions 𝑓(𝑦, 𝑧), paramet-
rized by 𝑦 ∈ Ω we will say that 𝑓 is subordinate to (2.1) if for every 𝑦 ∈ Ω the
system of poles is contained in 𝜋ℂ𝒫(𝑦) and the multiplicities are ≤ 𝑚𝑗(𝑦) + 1.
With such an 𝑓(𝑦, 𝑧) we can associate a family of analytic functionals as follows.
We fix 𝑏 = (𝑐, 𝑈) as in Definition 2.1 and choose a pair (𝑈𝑖,𝐾𝑖) and a smooth
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curve 𝐶𝑖 ⊂ {𝑐− 𝜀𝑖 < Re 𝑧 < (𝑛+1)/2− 𝛾} counter clockwise surrounding 𝐾𝑖, and
then we form 𝛿𝑖(𝑦) ∈ 𝒜′(𝐾𝑖) by

⟨𝛿𝑖(𝑦)𝑧 , ℎ⟩ :=
∫
𝐶

𝑓(𝑦, 𝑧)ℎ(𝑧) 𝑑𝑧,

ℎ ∈ 𝒜(ℂ). The family 𝑓 is called smooth in 𝑦 ∈ Ω if 𝛿𝑖(𝑦) ∈ 𝐶∞(
𝑈𝑖,𝒜′(𝐾𝑖)

)
for

all 𝑖 = 0, 1, . . . , 𝑁 , and if this is also the case for all 𝑈 ∈ 𝒰(Ω).
In the following constructions it will be convenient to fix for any given 𝑈 ∈ 𝒰

a system of 𝜑𝑖 ∈ 𝐶∞
0 (𝑈𝑖), 𝑖 = 0, 1, . . . , 𝑁 , such that

∑𝑁
𝑖=0 𝜑𝑖 = 1 for all 𝑦 ∈ 𝑈 .

This yields a family

𝛿𝑈 (𝑦) :=

𝑁∑
𝑖=0

𝜑𝑖(𝑦)𝛿𝑖(𝑦) ∈ 𝐶∞(
𝑈,𝒜′(𝐾)

)
(2.4)

for 𝐾 :=
∪𝑁
𝑖=0𝐾𝑖 which has the property that 𝑀𝑟→𝑧

(
𝜔(𝑟)⟨𝛿𝑈 (𝑦)𝑤, 𝑟−𝑤⟩

)
is a

family of meromorphic functions over 𝑈 equal to 𝑓(𝑦, 𝑧)∣𝑈 modulo a function in
𝐶∞(

𝑈,𝒜(
𝑐− 𝜀 < Re 𝑧 < (𝑛+ 1)/2− 𝛾

))
, 𝜀 = min{𝜀0, 𝜀1, . . . , 𝜀𝑁}.

Let us summarize these observations in the analogous case of 𝐸-valued mero-
morphic functions and 𝐸-valued analytic functionals as follows.

Given a Fréchet space 𝐸 and a family of 𝐸-valued functions 𝑓(𝑦, 𝑧) parametri-
zed by 𝑦 ∈ Ω and meromorphic in (𝑛+1)/2−𝛾+𝜗 < Re 𝑧 < (𝑛+1)/2−𝛾, we say
that 𝑓 is subordinate to 𝒫 if every pole of 𝑓(𝑦, ⋅) belongs to a pair (𝑝(𝑦),𝑚(𝑦)) ∈ 𝒫
where the multiplicity is less or equal 𝑚(𝑦) + 1.

Let 𝑈 ∈ 𝒰 ,𝐾 ⊆ ℂ, then 𝐶∞(
𝑈,𝒜(ℂ ∖ 𝐾,𝐸)

)∙
will denote the subspace of

all 𝑓(𝑦, 𝑧) ∈ 𝐶∞(
𝑈,𝒜(ℂ ∖𝐾,𝐸)

)
that extend for every 𝑦 ∈ 𝑈 to a meromorphic

function across 𝐾, again denoted by 𝑓(𝑦, 𝑧), where poles and multiplicities minus
1 form a 𝒫 as in Definition 2.1. If we specify 𝒫 we also denote the space of such
functions by 𝐶∞(

Ω,𝒜𝒫(ℂ, 𝐸)
)
.

If 𝑓(𝑦, 𝑧) is any family of meromorphic functions parametrized by 𝑦 ∈ Ω such
that the pattern of poles together with multiplicities minus 1 is a 𝒫 as in Definition
2.1 we may define smoothness in 𝑦 as follows. First we fix any 𝑦0 ∈ Ω and a 𝑏 =
(𝑐, 𝑈) and sets 𝐾𝑖, 𝑈𝑖, 𝑖 = 0, 1, . . .𝑁, as in Definition 2.1. Choose compact smooth
curves 𝐶𝑖 ⊂ {𝑐 − 𝜀𝑖 < Re 𝑧 < (𝑛 + 1)/2 − 𝛾} counter clockwise surrounding 𝐾𝑖

and define 𝛿𝑖(𝑦) ∈ 𝒜′(𝐾𝑖, 𝐸) by ⟨𝛿𝑖(𝑦)𝑧, ℎ⟩ :=
∫
𝐶𝑖

𝑓(𝑦, 𝑧)ℎ(𝑧)𝑑𝑧, ℎ ∈ 𝒜(ℂ), 𝑦 ∈ 𝑈𝑖.

Then 𝑓 is called smooth if 𝛿𝑖 ∈ 𝐶∞(
𝑈𝑖,𝒜′(𝐾𝑖, 𝐸)

)
for 𝑖 = 0, 1, . . . , 𝑁 .

Remark 2.2. Consider the above-mentioned 𝑓(𝑦, 𝑧). Setting 𝑓𝑖(𝑦, 𝑧) := 𝑀𝑟→𝑧𝜔(𝑟)
⟨𝛿𝑖(𝑦)𝑧, 𝑟−𝑧⟩ with 𝑀 being the weighted Mellin transform for any weight 𝛽 such
that Γ1/2−𝛽 ∩ 𝐾𝑖 = ∅ we obtain an element in 𝐶∞(

𝑈𝑖,𝒜(ℂ ∖ 𝐾𝑖, 𝐸)
)
subor-

dinate to 𝒫∣𝑈𝑖 . Clearly, in this case we have 𝑓𝑖(𝑦, 𝑧) ∈ 𝐶∞(
𝑈𝑖,𝒜(ℂ ∖ 𝐾𝑖, 𝐸)

)
.

Moreover, if {𝜑𝑖}𝑖=0,1,...,𝑁 is a system 𝜑𝑗 ∈ 𝐶∞
0 (𝑈𝑗) such that

∑𝑁
𝑗=0 𝜑𝑗 ≡ 1

over 𝑈 ⊂ ∪𝑁
𝑖=0 𝑈𝑖, then 𝑓𝑏(𝑦, 𝑧) :=

∑𝑁
𝑖=0 𝜑𝑖(𝑦)𝑓𝑖(𝑦, 𝑧) satisfies the relation 𝑓 ∣𝑈 =

𝑓𝑏 mod 𝐶∞(
𝑈,𝒜(𝑐−𝜀 < Re 𝑧 < (𝑛+1)/2−𝛾,𝐸)

)
for 𝜀 := min{𝜀0, 𝜀1, . . . , 𝜀𝑁}.
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Let us now recall from [16] the definition of weighted edge distributions of
variable discrete asymptotic type 𝒫 , cf. Definition 2.1.

Definition 2.3. Let Ω ⊆ ℝ𝑞 be open and let 𝒫 be a variable discrete asymp-
totic type, cf. Definition 2.1 associated with the weight data (𝛾,Θ), Θ = (𝜗, 0]
finite. Then 𝒲𝑠

loc

(
Ω,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
for 𝑠 ∈ ℝ is defined to be the set of all 𝑢 ∈

𝒲𝑠
loc

(
Ω,𝒦𝑠,𝛾(𝑋∧)

)
such that for every 𝑏 := (𝑐, 𝑈) for any (𝑛+1)/2− 𝛾+𝜗 < 𝑐 <

(𝑛+1)/2− 𝛾 and 𝑈 ∈ 𝒰(Ω) there exists a compact set 𝐾𝑏 ⊂ {(𝑛+1)/2− 𝛾+𝜗 <

Re 𝑧 < (𝑛+ 1)/2− 𝛾} and a function 𝑓𝑏(𝑦, 𝑧, 𝜂) ∈ 𝐶∞(
𝑈,𝒜(ℂ ∖𝐾𝑏, 𝐸

𝑠)
)∙

for

𝐸𝑠 := �̂�𝑠
(
ℝ𝑞𝜂, 𝐶

∞(𝑋)
)

(2.5)

subordinate to 𝒫∣𝑈 and a corresponding 𝛿𝑏(𝑦, 𝜂) ∈ 𝐶∞(
𝑈,𝒜′(𝐾𝑏, 𝐸

𝑠)
)∙
,

⟨𝛿𝑏(𝑦, 𝜂)𝑧, ℎ⟩ =
∫
𝐶𝑏

𝑓𝑏(𝑦, 𝑧, 𝜂)ℎ(𝑧) 𝑑𝑧, ℎ ∈ 𝒜(ℂ), (2.6)

with 𝐶𝑏 counter clockwise surrounding 𝐾𝑏, such that

𝑢(𝑟, 𝑥, 𝑦)− 𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟[𝜂])⟨𝛿𝑏(𝑦, 𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩} ∈ 𝒲𝑠

loc

(
𝑈,𝒦𝑠,𝛾+𝛽(𝑋∧)

)
(2.7)

for 𝛽 := 𝛽0 + 𝜀 for any 0 < 𝜀 < 𝜀(𝑏), 𝛽0 := (𝑛+ 1)/2− 𝛾 − 𝑐. Moreover, we set

𝒲𝑠
comp

(
Ω,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
:=𝒲𝑠

loc

(
Ω,𝒦𝑠,𝛾𝒫 (𝑋∧)

) ∩𝒲𝑠
comp

(
Ω,𝒦𝑠,𝛾(𝑋∧)

)
.

For convenience, as a consequence of Definition 2.3, we characterize the space
𝒲𝑠
loc

(
Ω,𝒦𝑠,𝛾𝒫 (𝑋∧)

)
as the set of all 𝑢 ∈ 𝒲𝑠

loc(Ω,𝒦𝑠,𝛾
(
𝑋∧)

)
such that for every

𝑏 = (𝑐, 𝑈) the function 𝑢∣𝑈 belongs to the space

𝒲𝑠
loc

(
𝑈,𝒦𝑠,𝛾+𝛽(𝑋∧)

)
+𝒲𝑠

𝑏,𝒫(𝑈) (2.8)

where 𝒲𝑠
𝑏,𝒫(𝑈) := {𝐹−1

𝜂→𝑦(𝜅[𝜂]𝜔(𝑟)⟨𝛿𝑏(𝑦, 𝜂)𝑧 , 𝑟−𝑧⟩)}, 𝛿𝑏(𝑦, 𝜂) as in (2.6) for an

𝑓𝑏(𝑦, 𝑧, 𝜂) subordinate to 𝒫𝑏 := r𝐾𝑏
(𝒫∣𝑈 ).

Definition 2.3 expresses asymptotics of type 𝒫 in terms of pairs 𝑈𝑖,𝐾𝑖 as
in Definition 2.1, i.e., localizations in 𝑦 ∈ Ω and 𝑧 ∈ ℂ. Therefore, for simplicity
we focus on an open set 𝑈 ∈ 𝒰(Ω) and a compact 𝐾 in the complex plane,
𝐾 ⊂ {𝑐 − 𝜀 < Re 𝑧 < (𝑛 + 1)/2 − 𝛾} for some 𝜀 > 0, such that 𝜋ℂ𝒫 ⊂ 𝐾. This
allows us to drop subscript 𝑏, i.e., we may write 𝐾 = 𝐾𝑏, 𝛿 = 𝛿𝑏,

𝛿(𝑦, 𝜂) ∈ 𝐶∞(
𝑈,𝒜′(𝐾,𝐸𝑠)

)∙
. (2.9)

It is instructive to compare the notion of 𝑦-wise discrete asymptotics with contin-

uous asymptotics where 𝛿(𝑦, 𝜂) ∈ 𝐶∞(
𝑈,𝒜′(𝐾,𝐸𝑠)

)
.

Formally, the singular functions of continuous asymptotics are as before,
namely, of the form

𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟[𝜂])⟨𝛿(𝑦, 𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩}.

In contrast to the latter explicit 𝑦-dependence of the analytic functionals there is
also the case of constant continuous asymptotics carried by the compact set 𝐾.
In this case we can proceed in an analogous manner as in the constant discrete
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case, outlined in Subsection 1.2. When we fix the position of 𝐾 as above, i.e.,
𝐾 ⊂ {(𝑛+ 1)/2− 𝛾 + 𝜗 < Re 𝑧 < (𝑛+ 1)/2− 𝛾}, then we have

𝜔(𝑟)⟨𝜁𝑧 , 𝑟−𝑧⟩ ⊂ 𝒦∞,𝛾(𝑋∧)

for every 𝜁 ∈ 𝒜′(𝐾,𝐶∞(𝑋)
)
, and

ℰ𝐾 := {𝜔(𝑟)⟨𝜁𝑧 , 𝑟−𝑧⟩ : 𝜁 ∈ 𝒜′
(
𝐾,𝐶∞(𝑋)

)} (2.10)

is a continuous analogue of ℰ𝒫 in (1.9). Again we have 𝒦𝑠,𝛾Θ (𝑋∧)
∩ ℰ𝐾 = {0} for

any 𝑠 ∈ ℝ, and analogously as (1.10) we set

𝒦𝑠,𝛾𝒞 (𝑋∧) := 𝒦𝑠,𝛾Θ (𝑋∧) + ℰ𝐾 . (2.11)

The notation 𝒞 means that with𝐾 we associate a corresponding continuous asymp-
totic type. The space ℰ𝐾 is nuclear Fréchet in a natural way via an isomorphism

ℰ𝐾 ∼= 𝒜′
(
𝐾,𝐶∞(𝑋)

)
. (2.12)

Thus (2.11) is Fréchet in the topology of the direct sum. The group action {𝜅𝜆}𝜆∈ℝ+

defined by (1.19) is also defined on 𝒦𝑠,𝛾𝒞 (𝑋∧) which allows us to define

𝒲𝑠
(
ℝ𝑞,𝒦𝑠,𝛾𝒞 (𝑋∧)

)
:=𝒲𝑠

(
ℝ𝑞,𝒦𝑠,𝛾Θ (𝑋∧)

)
+𝕂𝐻𝑠(ℝ𝑞, ℰ𝐾).

From (2.12) it follows that

𝐻𝑠(ℝ𝑞𝑦, ℰ𝐾) = {𝜔(𝑟)⟨𝜁(𝑦)𝑧 , 𝑟−𝑧⟩ : 𝜁 ∈ 𝒜′
(
𝐾,𝐻𝑠

(
ℝ𝑞𝑦, 𝐶

∞(𝑋)
))}. (2.13)

Then

𝕂𝐻𝑠(ℝ𝑞𝑦, ℰ𝐾) = {𝐹−1
𝜂→𝑦𝜅[𝜂][𝜔(𝑟)𝐹𝑦′→𝜂⟨𝜁(𝑦′)𝑧, 𝑟−𝑧⟩] :

𝜁(𝑦′) ∈ 𝒜′(𝐾,𝐻𝑠
(
ℝ𝑞𝑦′ , 𝐶

∞(𝑋)
))}. (2.14)

Let us now make some general remarks about managing analytic functionals. If 𝐸
is a Fréchet space and 𝒜′(𝐾,𝐸) the space of 𝐸-valued analytic functionals carried
by the compact set 𝐾 ⊂ ℂ we have

𝒜′(𝐾,𝐸) = 𝒜′(𝐾c, 𝐸) (2.15)

where𝐾c means the complement of the unbounded connected component of ℂ∖𝐾,
cf. [8, Section 2.3]. Recall that the classical Cousin theorem also admits decompo-
sitions of the carrier, more precisely, if 𝐾1,𝐾2 are compact sets in ℂ, then setting
𝐾1 +𝐾2 := (𝐾1 ∪𝐾2)

c we have a non-direct sum of Fréchet spaces

𝒜′(𝐾,𝐸) = 𝒜′(𝐾1, 𝐸) +𝒜′(𝐾2, 𝐸), (2.16)

for any Fréchet space 𝐸, cf. also [11].
In the discussion so far we assumed that𝐾

∩
Γ(𝑛+1)/2−𝛾 = ∅. However, in the

edge calculus with continuous asymptotics also requires the case𝐾
∩
Γ(𝑛+1)/2−𝛾 ∕=

∅. Without loss of generality we may assume 𝐾 = 𝐾c. Then (2.11) is not direct
and only {𝑧 ∈ 𝐾 : Re 𝑧 > (𝑛+1)/2− 𝛾+𝜗} contributes to 𝒞. Writing 𝐾 as a sum
𝐾 = 𝐾1+𝐾2 for 𝐾1 = {𝑧 ∈ 𝐾 : Re 𝑧 ≤ (𝑛+1)/2− 𝛾+𝜗}, 𝐾2 = {𝑧 ∈ 𝐾 : Re 𝑧 ≥
(𝑛+1)/2− 𝛾+𝜗} we have a decomposition (2.16). Therefore, every 𝜁 ∈ 𝒜′(𝐾,𝐸)
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may be written as 𝜁 = 𝜁1 + 𝜁2 for suitable 𝜁𝑖 ∈ 𝒜′(𝐾𝑖, 𝐸), 𝑖 = 1, 2. This leads to a
decomposition of the space (2.14) as

𝕂𝐻𝑠(ℝ𝑞, ℰ𝐾) = 𝕂𝐻𝑠(ℝ𝑞, ℰ𝐾1) +𝕂𝐻𝑠(ℝ𝑞, ℰ𝐾2).

Clearly we have 𝕂𝐻𝑠(ℝ𝑞, ℰ𝐾1) ⊂ 𝒲𝑠
(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
, but also 𝐾2 gives rise to a

flat contribution, namely, from 𝐾0 := 𝐾2

∩
Γ(𝑛+1)/2−𝛾+𝜗. The notions and results

that we are formulating here on continuous asymptotics have a natural modifica-
tion for the case of arbitrary 𝐾. If necessary, we have to admit flat contributions.

Proposition 2.4. For a compact set 𝐾 ⊂ {(𝑛+1)/2−𝛾+𝜗 < Re 𝑧 < (𝑛+1)/2−𝛾}
we have

𝕂𝐻𝑠(ℝ𝑞𝑦, ℰ𝐾) =
{
𝜔(𝑟)𝐹−1

𝜂→𝑦𝜅[𝜂][𝐹𝑦′→𝜂⟨𝜁(𝑦′)𝑧 , 𝑟−𝑧⟩] :
𝜁(𝑦′) ∈ 𝒜′(𝐾,𝐻𝑠

(
ℝ𝑞𝑦′ , 𝐶

∞(𝑋)
))}

mod𝒲𝑠
(
ℝ𝑞,𝒦∞,𝛾

Θ (𝑋∧)
)
.

Proof. Let us first drop 𝐶∞(𝑋∧); this can be tensor-multiplied to the result in
the final step, cf. the considerations in connection with (1.17). For 𝜁 we then have

𝜁 ∈ 𝒜′(𝐾,𝐻𝑠(ℝ𝑞𝑦′)
)
= 𝒜′(𝐾)⊗̂𝜋𝐻𝑠(ℝ𝑞𝑦′).

We employ the fact that 𝜁 can be written as a convergent sum 𝜁 =
∑∞

𝑗=0 𝜆𝑗𝜁𝑗𝑣𝑗 for

𝜆𝑗 ∈ ℂ,
∑∞
𝑗=0 ∣𝜆𝑗 ∣ < ∞, 𝜁𝑗 ∈ 𝒜′(𝐾), 𝑣𝑗 ∈ 𝐻𝑠(ℝ𝑞), tending to 0 in the respective

spaces, as 𝑗 →∞. Then, we form

𝑘𝑗(𝜂) : 𝑐→ 𝜔(𝑟[𝜂])[𝜂](𝑛+1)/2⟨𝜁𝑗,𝑧, (𝑟[𝜂])−𝑧⟩𝑐,
𝑙𝑗(𝜂) : 𝑐→ 𝜔(𝑟)[𝜂](𝑛+1)/2⟨𝜁𝑗,𝑧 , (𝑟[𝜂])−𝑧⟩𝑐,

𝑐 ∈ ℂ and write

𝑑𝑗(𝜂) := 𝑙𝑗(𝜂)− 𝑘𝑗(𝜂) = [𝜂](𝑛+1)/2𝜔(𝑟)
(
1− 𝜔(𝑟[𝜂])

)⟨𝜁𝑗,𝑧 , (𝑟[𝜂])−𝑧⟩.
We will show that

𝑑𝑗(𝜂) ∈ 𝑆0cl
(
ℝ𝑞;ℂ,𝒦∞,𝛽(ℝ+)

)
(2.17)

for every 𝛽 ∈ ℝ and that 𝑑𝑗(𝜂) → 0 in that symbol spaces as 𝑗 → ∞. This will
give us

Op𝑦(𝑑𝑗) : 𝐻
𝑠(ℝ𝑞)→𝒲𝑠

(
ℝ𝑞,𝒦∞,𝛽(ℝ+)

)
.

For fixed 𝑣 ∈ 𝐻𝑠(ℝ𝑞) we can interpret Op𝑦(𝑑𝑗)𝑣 = Op𝑦(𝑙𝑗)𝑣 −Op𝑦(𝑘𝑗)𝑣 as

𝐹−1
𝜂→𝑦

[
[𝜂](𝑛+1)/2𝜔(𝑟)⟨𝜁𝑗,𝑧𝑣(𝜂), (𝑟[𝜂])−𝑧⟩

]
− 𝐹−1

𝜂→𝑦

[
[𝜂](𝑛+1)/2𝜔(𝑟[𝜂])⟨𝜁𝑗,𝑧𝑣(𝜂), (𝑟[𝜂])−𝑧⟩

]
,

i.e., the difference between the respective singular functions for 𝜔(𝑟) and 𝜔(𝑟[𝜂]),
respectively.

Let us now turn to (2.17) and set for the moment

𝑑(𝜂) = [𝜂](𝑛+1)/2𝜔(𝑟)
(
1− 𝜔(𝑟[𝜂])

)⟨𝜁𝑧 , (𝑟[𝜂])−𝑧⟩,
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i.e., we first drop subscript 𝑗. In order to show that 𝑑(𝜂) ∈ 𝑆0cl
(
ℝ𝑞;ℂ,𝒦∞,𝛽(ℝ+)

)
we check the symbolic estimates

∥𝜅−1[𝜂]𝐷𝛿
𝜂𝑑(𝜂)∥ℒ(ℂ,𝒦𝑠,𝛽(ℝ+)) = ∥𝜅−1[𝜂]𝐷𝛿

𝜂𝑑(𝜂)∥𝒦𝑠,𝛽(ℝ+) ≤ 𝑐[𝜂]−∣𝛿∣, (2.18)

𝛿 ∈ ℕ𝑞, cf. the relation (1.16). It suffices to do that for every 𝑠 ∈ ℕ, and we first
consider the case 𝑠 = 0 and 𝛽 = 0. Let 𝑘𝛽(𝑟) ∈ 𝐶∞

0 (ℝ+) be any function that
is strictly positive and 𝑘𝛽(𝑟) = 𝑟𝛽 for 0 < 𝑟 < 𝑐0, 𝑘

𝛽(𝑟) = 1 for 𝑟 > 𝑐1, for
some 0 < 𝑐0 < 𝑐1. Then 𝒦𝑠,𝛽(𝑋∧) = 𝑘𝛽(𝑟)𝒦𝑠,0(𝑋∧). In particular, by virtue of
𝒦0,0(ℝ+) = 𝐿2(ℝ+) we have 𝒦0,𝛽(ℝ+) = 𝑘𝛽(𝑟)𝐿2(ℝ+) and

∥𝑓∥𝒦0,𝛽(ℝ+) = ∥𝑘−𝛽𝑓∥𝐿2(ℝ+).

In connection with (2.18) we have to consider

∥𝜅−1[𝜂] 𝑑(𝜂)∥𝒦0,𝛽(ℝ+) = ∥𝑘−𝛽(𝑟)𝜔(𝑟[𝜂]−1)
(
1− 𝜔(𝑟)

)⟨𝜁𝑧 , 𝑟−𝑧⟩∥𝐿2(ℝ+).

From the carrier of 𝜁 we know that 𝜔(𝑟[𝜂]−1)⟨𝜁𝑧 , 𝑟−𝑧⟩ ∈ 𝒦∞,𝛾−𝑛/2(ℝ+) for all 𝜁; to-
gether with the factor 𝑘−𝛽(𝑟)

(
1−𝜔(𝑟)) we get 𝑘−𝛽(𝑟)(1−𝜔(𝑟))𝜔(𝑟[𝜂]−1)⟨𝜁𝑧 , 𝑟−𝑧⟩ ∈

𝐿2(ℝ+). It follows that ∥𝜅−1[𝜂] 𝑑(𝜂)∥𝒦0,𝛽(ℝ+) ≤ 𝑐 for all 𝜂 ∈ ℝ𝑞. For the 𝜂-derivatives
we obtain (2.18) in general. Let us check, for instance, the case 𝛿 = (1, 0, . . . , 0),
i.e., 𝐷𝛿

𝜂 = −𝑖∂𝜂1 . In this case we have

∂𝜂1𝑑(𝜂) = (∂𝜂1 [𝜂]
(𝑛+1)/2)𝜔(𝑟)

(
1− 𝜔(𝑟[𝜂])

)⟨𝜁𝑧 , (𝑟[𝜂])−𝑧⟩ − 𝑟[𝜂](𝑛+1)/2(∂𝜂1 [𝜂])

𝜔(𝑟)𝜔′(𝑟[𝜂])⟨𝜁𝑧 , (𝑟[𝜂])−𝑧⟩ − [𝜂](𝑛+1)/2𝜔(𝑟)
(
1− 𝜔(𝑟[𝜂])

)⟨𝜁𝑧 , 𝑧[𝜂]−1(∂𝜂1 [𝜂])(𝑟[𝜂])−𝑧⟩.
This gives us the desired estimate with [𝜂]−1 on the right. The general case may
easily be treated in a similar manner. Now an elementary consideration shows that
the constants 𝑐 = 𝑐(𝜁) in the symbolic estimates (2.18) tend to 0 as 𝜁 → 0 in𝒜′(𝐾).
Moreover, we can easily treat the case 𝒦𝑠,𝛽(ℝ+) rather than 𝒦0,𝛽(ℝ+), 𝑠 ∈ ℕ. This
implies the asserted estimates for all 𝑠 ∈ ℝ. In other words, as claimed above,
𝑑𝑗(𝜂) = 𝑙𝑗(𝜂) − 𝑘𝑗(𝜂) tends to 0 in 𝑆0cl

(
ℝ𝑞;ℂ,𝒦∞,𝛽(ℝ+)

)
as 𝑗 →∞.

Now we characterize the difference between the singular terms defined with
𝜔(𝑟) and 𝜔(𝑟[𝜂]), respectively. It is equal to

𝐹−1
𝜂→𝑦𝜔(𝑟)

[
𝜅[𝜂]𝐹𝑦′→𝜂⟨𝜁(𝑦′)𝑧, 𝑟−𝑧⟩

]− 𝐹−1
𝜂→𝑦𝜔(𝑟[𝜂])

[
𝜅[𝜂]𝐹𝑦′→𝜂⟨𝜁(𝑦′)𝑧 , 𝑟−𝑧⟩

]
=𝐹−1

𝜂→𝑦𝜔(𝑟)
(
1− 𝜔(𝑟[𝜂]

)[
𝜅[𝜂]𝐹𝑦′→𝜂⟨𝜁(𝑦′)𝑧, 𝑟−𝑧⟩

]
=𝐹−1

𝜂→𝑦𝜔(𝑟)
(
1− 𝜔(𝑟[𝜂])

)
𝜅[𝜂]𝐹𝑦′→𝜂

〈 ∞∑
𝑗=0

𝜆𝑗𝜁𝑗,𝑧𝑣𝑗(𝑦
′), 𝑟−𝑧

〉
=

∞∑
𝑗=0

𝜆𝑗𝐹
−1
𝜂→𝑦𝜔(𝑟)

(
1− 𝜔(𝑟[𝜂])

)⟨𝜁𝑗,𝑧 , (𝑟[𝜂])−𝑧⟩𝑣𝑗(𝜂) = ∞∑
𝑗=0

𝜆𝑗Op𝑦(𝑑𝑗)𝑣𝑗 .

This sum converges in 𝒲𝑠
(
ℝ𝑞,𝒦∞,𝛽(ℝ+)

)
.
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In fact, for every 𝑡 ≥ 0 we have∥∥∥∥∥∥
∞∑
𝑗=0

𝜆𝑗Op𝑦(𝑑𝑗)𝑣𝑗

∥∥∥∥∥∥
𝒲𝑠(ℝ𝑞,𝒦𝑡,𝛽(ℝ+))

≤
∞∑
𝑗=0

∣𝜆𝑗 ∣ ∥Op𝑦(𝑑𝑗)𝑣𝑗∥𝒲𝑠(ℝ𝑞,𝒦𝑡,𝛽(ℝ+))

≤
∞∑
𝑗=0

∣𝜆𝑗 ∣ ∥Op𝑦(𝑑𝑗)∥ℒ(𝐻𝑠(ℝ𝑞),𝒲𝑠(ℝ𝑞,𝒦𝑡,𝛽(ℝ+)))∥𝑣𝑗∥𝐻𝑠(ℝ𝑞).

(2.19)

By virtue of (1.15) we have

∥Op𝑦(𝑑𝑗)∥ℒ(𝐻𝑠(ℝ𝑞),𝒲𝑠(ℝ𝑞,𝒦𝑡,𝛽(ℝ+))) → 0

as 𝑗 → ∞. Then 𝑣𝑗 → 0 in 𝐻𝑠(ℝ𝑞) as 𝑗 → ∞ shows the convergence of the
right-hand side of (2.19) for every 𝑡 ≥ 0, and hence it follows that

∞∑
𝑗=0

𝜆𝑗Op𝑦(𝑑𝑗)𝑣𝑗 ∈ 𝒲𝑠
(
ℝ𝑞,𝒦∞,𝛽(ℝ+)

)
.

So far we considered the case without 𝐶∞(𝑋). However, as illustrated at the
beginning, a tensor product argument gives us the result in general. □

Let us finally discuss to what extent the singular functions of variable branch-
ing or continuous edge asymptotics depend on the specific choice of the function
𝜂 → [𝜂]. The other “non-classical” ingredient, namely, the cut-off function 𝜔 has
been considered before. After Proposition 2.4 it is clear that changing 𝜔 only
causes a flat remainder. If we replace [𝜂] by an [𝜂]1 of analogous properties we ob-
tain smoothing remainders with asymptotics. More precisely we have the following
behaviour.

Remark 2.5. For any 𝜁 ∈ 𝒜′(𝐾,𝐻𝑠
(
ℝ𝑞𝑦′ , 𝐶

∞(𝑋)
))
,𝐾 ⊂ {Re 𝑧 < (𝑛 + 1)/2− 𝛾},

the difference

𝜔(𝑟)𝐹−1
𝜂→𝑦𝜅[𝜂]⟨𝜁𝑧 , 𝑟−𝑧⟩ − 𝜔(𝑟)𝐹−1

𝜂→𝑦𝜅[𝜂]1⟨𝜁𝑧 , 𝑟−𝑧⟩ (2.20)

belongs to ∈ 𝒲∞(
ℝ𝑞,𝒦∞,𝛾

𝒞 (𝑋∧)
)
, cf. the notation (2.11).

In fact, (2.20) has compact support in 𝜂 ∈ ℝ𝑞. We have

[𝜂](𝑛+1)/2
〈
𝜁𝑧, (𝑟[𝜂])

−𝑧
〉
− [𝜂]

(𝑛+1)/2
1

〈
𝜁𝑧 , (𝑟[𝜂]1)

−𝑧
〉

(2.21)

= [𝜂](𝑛+1)/2
[𝜂](𝑛+1)/2 − [𝜂]

(𝑛+1)/2
1

[𝜂](𝑛+1)/2

×
〈
𝜁𝑧, (𝑟[𝜂])

−𝑧
〉
+ [𝜂](𝑛+1)/2

(
[𝜂]1
[𝜂]

)(𝑛+1)/2〈
𝜁𝑧 , (𝑟[𝜂])

−𝑧 [𝜂]
−𝑧 − [𝜂]1

−𝑧

[𝜂]−𝑧

〉
.

For the first summand we employ that

[𝜂](𝑛+1)/2 − [𝜂]
(𝑛+1)/2
1

[𝜂](𝑛+1)/2
𝜁 =: 𝜈 ∈ 𝒜′

(
𝐾, �̂�∞(

ℝ𝑞𝜂, 𝐶
∞(𝑋)

))
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since [𝜂] = [𝜂]1, for large ∣𝜂∣. Moreover, we have(
[𝜂]1
[𝜂]

)(𝑛+1)/2
[𝜂]−𝑧 − [𝜂]1

−𝑧

[𝜂]−𝑧
𝜁 =: �̂� ∈ 𝒜′

(
𝐾, �̂�∞(

ℝ𝑞𝜂, 𝐶
∞(𝑋)

))
.

Thus (2.21) is equal to [𝜂](𝑛+1)/2⟨(𝜈 + �̂�)𝑧, (𝑟[𝜂])
−𝑧⟩ and hence (2.20) is equal to

𝐹−1
𝜂→𝑦[𝜂]

(𝑛+1)/2⟨(𝜈 + �̂�)𝑧, (𝑟[𝜂])
−𝑧⟩

which belongs to 𝒲∞(
ℝ𝑞,𝒦∞,𝛾

𝒞 (𝑋∧)
)
.

2.2. The Sobolev regularity of coefficients in branching edge asymptotics

Our next objective is to consider singular functions of continuous edge asymptotics,
described in terms of smooth functions on 𝑦 ∈ Ω with compact support with values
in 𝒜′(𝐾, �̂�𝑠

(
ℝ𝑞𝜂, 𝐶∞(𝑋)

))
. We show that those functions may be represented by

functionals without dependence on 𝑦. A similar result has been formulated in
[14, Proposition 3.1.35], but here we give an alternative proof, and we obtain
more information. For convenience we start with Schwartz functions in 𝑦 ∈ ℝ𝑞
which covers the case of functions with compact support in 𝑦 ∈ Ω. In addition we
always write 𝜔(𝑟) rather than 𝜔(𝑟[𝜂]) which is admitted for similar reasons as in
Proposition 2.4, modulo flat remainders.

Theorem 2.6. Let 𝜁(𝑦, 𝜂) ∈ 𝒮(ℝ𝑞,𝒜′(𝐾, �̂�𝑠
(
ℝ𝑞𝜂, 𝐶∞(𝑋)

)))
, 𝐾 ⊂ {(𝑛+1)/2−𝛾+

𝜗 < Re 𝑧 < (𝑛+ 1)/2− 𝛾} compact, and form

𝑓(𝑟, 𝑦) := 𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟)⟨𝜁(𝑦, 𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩} (2.22)

(the dependence on 𝑥 ∈ 𝑋 is dropped in the notation). Then there is a unique

�̂� ∈ 𝒜′(𝐾, �̂�𝑠
(
ℝ𝑞𝜂, 𝐶∞(𝑋)

))
such that

𝑓(𝑟, 𝑦) := 𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟)⟨�̂�(𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩}, (2.23)

and the correspondence 𝜁 → �̂� defines an operator

𝐵 : 𝒮(ℝ𝑞,𝒜′(𝐾, �̂�𝑠
(
ℝ𝑞𝜂, 𝐶

∞(𝑋)
)))→ 𝒜′(𝐾, �̂�𝑠

(
ℝ𝑞𝜂, 𝐶

∞(𝑋)
))
. (2.24)

Proof. We employ some background on the pseudo-differential calculus with opera-
tor-valued symbols of the kind 𝑆𝜇(cl)(Ω×ℝ𝑞;𝐻, �̃�) with twisted symbolic estimates

(1.11). In our case we set Ω = ℝ𝑞 and look at the subspace 𝒮(ℝ𝑞𝑦, 𝑆𝜇(cl)(ℝ𝑞𝜂;𝐻, �̃�)
)
.

Given an 𝑎L(𝑦, 𝜂) in that space we have (by notation) the situation of a left symbol
in the calculus of pseudo-differential operators Op𝑦(𝑎L), cf. the expression (1.12)
where the respective amplitude function is a double symbol. It will be necessary
to generate right symbols 𝑎R(𝑦

′, 𝜂) such that

Op𝑦(𝑎L) = Op𝑦(𝑎R). (2.25)

A modification of the Kumano-go’s global (in ℝ𝑞) pseudo-differential calculus is
that 𝑎L → 𝑎R with (2.25) defines continuous operator

𝒮(ℝ𝑞𝑦, 𝑆𝜇(cl)(ℝ𝑞𝜂;𝐻, �̃�)
)→ 𝒮(ℝ𝑞𝑦′ , 𝑆𝜇(cl)(ℝ𝑞𝜂;𝐻, �̃�)

)
.
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Using an expansion for 𝑎R with remainder we have, in particular,

𝑎R(𝑦
′, 𝜂) = 𝑎L(𝑦

′, 𝜂) + 𝑟R(𝑦
′, 𝜂) (2.26)

for

𝑟R(𝑦
′, 𝜂) = −

∑
∣𝛼∣=1

∫ 1

0

∫∫
𝑒−𝑖𝑥𝜉(𝐷𝛼

𝑦 ∂
𝛼
𝜂 𝑎)(𝑦

′ + 𝑥, 𝜂 − 𝑡𝜉) 𝑑𝑥𝑑𝜉𝑑𝑡. (2.27)

Here ∂𝛼𝜂 = ∂𝛼1
𝜂1 . . . ∂𝛼

𝑞

𝜂𝑞 and𝐷𝛼
𝑦 = (−𝑖)∣𝛼∣∂𝛼𝑦 for 𝛼 = (𝛼1, . . . , 𝛼𝑞), ∣𝛼∣ = 𝛼1+⋅ ⋅ ⋅+𝛼𝑞.

The map 𝑎L(𝑦, 𝜂)→ 𝑟R(𝑦
′, 𝜂) defines a continuous operator

𝒮(ℝ𝑞𝑦, 𝑆𝜇(cl)(ℝ𝑞𝜂;𝐻, �̃�)
)→ 𝒮(ℝ𝑞𝑦′ , 𝑆𝜇−1(cl) (ℝ

𝑞
𝜂;𝐻, �̃�)

)
. (2.28)

In our concrete situation similarly as before we first look at the case without
𝐶∞(𝑋); then a tensor product consideration gives us the result in general. We

express 𝜁(𝑦, 𝜂) ∈ 𝒮(ℝ𝑞,𝒜′(𝐾, �̂�𝑠(ℝ𝑞𝜂)
))

as an expansion

𝜁(𝑦, 𝜂) =

∞∑
𝑗=0

𝜆𝑗𝜁𝑗𝜑𝑗(𝑦)𝑣𝑗(𝜂)

for 𝜆𝑗 ∈ ℂ,
∑∞
𝑗=0 ∣𝜆𝑗 ∣ < ∞, 𝜑𝑗 ∈ 𝒮(ℝ𝑞𝑦), 𝑣𝑗 ∈ 𝐻𝑠(ℝ𝑞𝑦′), tending to zero in the

respective spaces. This allows us to write the function (2.22) in the form

𝑓(𝑟, 𝑦) =

∞∑
𝑗=0

𝜆𝑗𝐹
−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟)𝜑𝑗(𝑦)⟨𝜁𝑗,𝑧 , (𝑟[𝜂])−𝑧⟩𝑣𝑗(𝜂)} =

∞∑
𝑗=0

𝜆𝑗Op𝑦(𝑘𝑗)𝑣𝑗

where 𝑘𝑗(𝑦, 𝜂) ∈ 𝒮
(
ℝ𝑞𝑦, 𝑆𝜇(ℝ𝑞𝜂;ℂ, �̃�𝑙)

)
is defined by

𝑘𝑗(𝑦, 𝜂) : 𝑐→ [𝜂](𝑛+1)/2𝜔(𝑟)𝜑𝑗(𝑦)⟨𝜁𝑗,𝑧 , (𝑟[𝜂])−𝑧⟩𝑐,
and �̃�𝑙, 𝑙 ∈ ℕ, is a scale of Hilbert spaces with 𝜅-action such that

𝒦∞,𝛾−𝑛/2
𝒞 (ℝ+) = lim←−−

𝑙∈ℕ
�̃�𝑙,

cf. equation (2.11). In other words we apply the above general relations on symbols

to the case 𝐻 := ℂ with the trivial group action and �̃� = �̃�𝑙 endowed with 𝜅,
for every fixed 𝑙. Writing for the moment 𝑘𝑗(𝑦, 𝜂) = 𝑘𝑗,L(𝑦, 𝜂) we obtain a right
symbol 𝑘𝑗,R(𝑦

′, 𝜂) which is of the form

𝑘𝑗,R(𝑦
′, 𝜂)𝑐 = [𝜂](𝑛+1)/2𝜔(𝑟)𝜑𝑗(𝑦

′)⟨𝜁𝑗,𝑧 , (𝑟[𝜂])−𝑧⟩𝑐+ 𝑟𝑗,R(𝑦
′, 𝜂)𝑐,

where 𝑟𝑗,R is obtained from (2.27) for 𝑎L = 𝑘𝑗,L. Let us consider for the moment
the case 𝑞 = 1, and then write 𝑦 = 𝑦1, 𝜂 = 𝜂1. The general case is completely
analogous. Later on in the function and symbol spaces we tacitly return again to
ℝ𝑞 rather than ℝ1. Then the remainder expression takes the form

𝑟𝑗,R(𝑦
′, 𝜂) = −

∫ 1

0

∫∫
𝑒−𝑖𝑥𝜉𝑟−(𝑛+1)/2𝜔(𝑟)(𝐷𝑦𝜑𝑗)(𝑦

′ + 𝑥)

⟨𝜁𝑗,𝑧 ,
(
∂𝜂((𝑟[𝜂])

−𝑧+(𝑛+1)/2)
)∣𝜂−𝑡𝜉⟩ 𝑑𝑥𝑑𝜉𝑑𝑡.
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We now apply an element of Kumano-go’s calculus for scalar symbols and observe
that

𝑑𝑗(𝑧, 𝑦
′, 𝜂) =

∫ 1

0

∫∫
𝑒−𝑖𝑥𝜉(𝐷𝑦𝜑𝑗)(𝑦

′ + 𝑥)
(
∂𝜂([𝜂]

−𝑧+(𝑛+1)/2)
)∣𝜂−𝑡𝜉 𝑑𝑥𝑑𝜉𝑑𝑡

belongs to 𝒮(ℝ𝑦′ , 𝑆−Re 𝑧+(𝑛+1)/2−1(ℝ𝜂)) for every fixed 𝑧. In addition 𝑑𝑗(𝑧, 𝑦
′, 𝜂)

is an entire function in 𝑧. This gives us

𝑟𝑗,R(𝑦
′, 𝜂) = −𝑟−(𝑛+1)/2𝜔(𝑟)⟨𝜁𝑗,𝑧 , 𝑟−𝑧+(𝑛+1)/2𝑑𝑗(𝑧, 𝑦′, 𝜂)⟩

= −𝑟−(𝑛+1)/2+1𝜔(𝑟)⟨𝛿𝑗,𝑧(𝑦′, 𝜂), (𝑟[𝜂])−𝑧−1+(𝑛+1)/2⟩
(2.29)

for 𝛿𝑗(𝑦
′, 𝜂) := 𝜁𝑗𝑑𝑗(𝑧, 𝑦

′, 𝜂)/[𝜂]−𝑧−1+(𝑛+1)/2. We now employ the fact that the
pseudo-differential action with a right symbol 𝑏(𝑦′, 𝜂), say, in the scalar case
𝑏(𝑦′, 𝜂) ∈ 𝒮(ℝ𝑞𝑦′ , 𝑆𝜈(ℝ𝑞𝜂)) for some 𝜈, operating on 𝑣 ∈ 𝐻𝑠(ℝ𝑞) has the form

Op𝑦(𝑏)𝑣 =

∫
𝑒𝑖𝑦𝜂

{∫
𝑒−𝑖𝑦

′𝜂𝑏(𝑦′, 𝜂)𝑣(𝑦′) 𝑑𝑦′
}
𝑑𝜂.

In order to analyze the expression we may apply a tensor product expansion

𝑏(𝑦′, 𝜂) =
∞∑
𝑙=0

𝛾𝑙𝜓𝑙(𝑦
′)𝑏𝑙(𝜂)

with
∑∞

𝑙=0 ∣𝛾𝑙∣ < ∞, 𝜓𝑙 ∈ 𝒮(ℝ𝑞), 𝑏𝑙 ∈ 𝑆𝜈(ℝ𝑞), tending to zero in the considered
spaces when 𝑙 →∞. Then

Op𝑦(𝑏)𝑣 =

∫
𝑒𝑖𝑦𝜂

{∫
𝑒−𝑖𝑦

′𝜂
∞∑
𝑙=0

𝛾𝑙𝜓𝑙(𝑦
′)𝑏𝑙(𝜂)𝑣(𝑦′) 𝑑𝑦′

}
𝑑𝜂

=

∫
𝑒𝑖𝑦𝜂

∞∑
𝑙=0

𝛾𝑙𝑏𝑙(𝜂)𝜓𝑙𝑣(𝜂) 𝑑𝑦
′𝑑𝜂.

We have 𝜓𝑙𝑣 ∈ 𝐻𝑠(ℝ𝑞𝑦′), 𝜓𝑙𝑣 → 0 in 𝐻𝑠(ℝ𝑞𝑦′), and we obtain altogether a sum

Op𝑦(𝑏)𝑣 =

∞∑
𝑙=0

𝛾𝑙Op𝑦(𝑏𝑙)(𝜓𝑙𝑣),

convergent in 𝐻𝑠−𝜈(ℝ𝑞). This consideration may be modified for the present case.
Let us write (2.29) as

𝑟𝑗,R(𝑦
′, 𝜂) = −[𝜂](𝑛+1)/2−1𝜔(𝑟)⟨𝛿𝑗,𝑧(𝑦′, 𝜂), (𝑟[𝜂])−𝑧⟩. (2.30)

We have

𝛿𝑗(𝑦
′, 𝜂) =

∞∑
𝑙=0

𝛾𝑙𝜓𝑙(𝑦
′)𝑏𝑗𝑙(𝜂),

for 𝛿𝑗(𝑦
′, 𝜂) ∈ 𝒜′(𝐾,𝒮(ℝ𝑞𝑦′ , 𝑆0cl(ℝ𝑞𝜂))), where �̂�𝑗𝑙(𝜂) ∈ 𝒜′

(
𝐾,𝑆0cl(ℝ

𝑞
𝜂)
)
. We employ

the fact that the pairing 𝑆0cl(ℝ
𝑞
𝜂)× �̂�𝑠(ℝ𝑞𝜂)→ �̂�𝑠(ℝ𝑞𝜂) gives rise to a bilinear map(

id𝒜′(𝐾) ⊗ 𝑆0cl(ℝ
𝑞
𝜂)
)× �̂�𝑠(ℝ𝑞𝜂)→ 𝒜′(𝐾)⊗̂𝜋�̂�𝑠(ℝ𝑞𝜂).
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It follows that

𝑟𝑗,R(𝑦
′, 𝜂) = −[𝜂](𝑛+1)/2−1𝜔(𝑟)

〈 ∞∑
𝑙=0

𝛾𝑙𝜓𝑙(𝑦
′)𝑏𝑗𝑙(𝜂), (𝑟[𝜂])−𝑧

〉
and

Op𝑦(𝑟𝑗,R)𝑣𝑗(𝑦) = 𝐹−1
𝜂→𝑦

{
−[𝜂](𝑛+1)/2−1𝜔(𝑟)

∞∑
𝑙=0

𝛾𝑙⟨𝑏𝑗𝑙,𝑧(𝜂), (𝑟[𝜂])−𝑧
〉
𝜓𝑙𝑣𝑗(𝜂)

}
.

For

�̂�𝑗,rest(𝜂) :=

∞∑
𝑙=0

𝛾𝑙𝑏𝑗𝑙(𝜂)𝜓𝑙𝑣𝑗(𝜂) ∈ 𝒜′
(
𝐾, �̂�𝑠(ℝ𝑞)

)
(2.31)

it follows that

Op𝑦(𝑟𝑗,R)𝑣𝑗(𝑦) = 𝐹−1
𝜂→𝑦{−[𝜂](𝑛+1)/2−1𝜔(𝑟)⟨�̂�𝑗,𝑧(𝜂), (𝑟[𝜂])−𝑧⟩}.

Returning to (2.26) from (2.30) we obtain

𝑟R(𝑦
′, 𝜂) = −[𝜂](𝑛+1)/2−1𝜔(𝑟)

∞∑
𝑗=0

𝜆𝑗
〈
𝛿𝑗,𝑧(𝑦

′, 𝜂), (𝑟[𝜂])−𝑧
〉

and

𝐹−1
𝜂→𝑦

(
𝐹𝑦′→𝜂𝑟𝑗,R)(𝑦

′, 𝜂)
)
= −𝐹−1

𝜂→𝑦

⎧⎨⎩[𝜂](𝑛+1)/2−1𝜔(𝑟)
∞∑
𝑗=0

𝜆𝑗
〈
�̂�𝑗,𝑧(𝜂), (𝑟[𝜂])

−𝑧〉⎫⎬⎭ .

By notation we have 𝑘L(𝑦, 𝜂) =
∑∞
𝑗=0 𝜆𝑗𝑘𝑗,L(𝑦, 𝜂) where 𝑘𝑗,L(𝑦, 𝜂) → 0 in 𝒮(ℝ𝑞𝑦,

𝑆0(ℝ𝑞;ℂ, �̃�𝑙)
)
and then 𝑘𝑗,R(𝑦

′, 𝜂)→ 0 in 𝒮(ℝ𝑞𝑦, 𝑆0(ℝ𝑞;ℂ, �̃�𝑙)
)
and 𝑟𝑗,R(𝑦

′, 𝜂)→ 0

in 𝒮(ℝ𝑞𝑦, 𝑆−1(ℝ𝑞;ℂ, �̃�𝑙)
)
as 𝑗 →∞.

This implies that 𝑘R(𝑦
′, 𝜂) =

∑∞
𝑗=0 𝜆𝑗𝑘𝑗,R(𝑦

′, 𝜂). We obtain that �̂�𝑗,rest(𝜂)→
0 in 𝒜′(𝐾, �̂�𝑠(ℝ𝑞)

)
as 𝑗 →∞, cf. (2.31), hence it follows an element

�̂�rest(𝜂) :=
∞∑
𝑗=0

𝜆𝑗 �̂�𝑗,rest(𝜂) ∈ 𝒜′
(
𝐾, �̂�𝑠(ℝ𝑞)

)
.

In a similar (simpler) manner we can treat the term 𝑎L(𝑦
′, 𝜂), cf. (2.26), which

gives us a �̂�main ∈ 𝒜′
(
𝐾, �̂�𝑠(ℝ𝑞𝜂)

)
, and it follows altogether

𝑓(𝑟, 𝑦) = 𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟)⟨�̂�main(𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩}
− 𝐹−1

𝜂→𝑦{[𝜂](𝑛+1)/2−1𝜔(𝑟)⟨�̂�rest(𝜂)𝑧 , (𝑟[𝜂])−𝑧⟩}.
Note that [𝜂]−1�̂�rest ∈ 𝒜′

(
𝐾, �̂�𝑠+1(ℝ𝑞𝜂)

)
↪→ 𝒜′(𝐾, �̂�𝑠(ℝ𝑞𝜂)

)
. Analogous considera-

tions apply for the 𝐶∞(𝑋)-valued case. We thus obtain the claimed representation
(2.23) where

�̂�(𝜂) := �̂�main(𝜂) − [𝜂]−1�̂�rest(𝜂) ∈ 𝒜′
(
𝐾,𝐻𝑠

(
ℝ𝑞, 𝐶∞(𝑋)

))
.
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Let us now prove the uniqueness of �̂� in the formula (2.23). Without loss of gen-
erality we assume 𝐾 = 𝐾c, cf. the relation (2.15). We have an isomorphism

𝒜′(𝐾,𝐸) ∼= {𝜔(𝑟)⟨𝜒𝑧 , 𝑟−𝑧⟩ : 𝜒 ∈ 𝒜′(𝐾,𝐸)}
where on the right-hand side we talk about functions in 𝐶∞(ℝ+, 𝐸), and 𝜔 is
a fixed cut-off function. Clearly we know much more about such functions; they
belong to 𝒦∞,𝛾(ℝ+, 𝐸) where 𝛾 ∈ ℝ is any real such that 𝐾 ⊂ {Re 𝑧 < 1/2− 𝛾}.
The notation 𝒦∞,𝛾(ℝ+, 𝐸) is an 𝐸-valued generalization of the above-mentioned
𝒦∞,𝛾(ℝ+). Up to a translation in the complex plane we may assume 𝛾 = 0. Then
the Mellin transform

𝑀𝑟→𝑤

(
𝜔(𝑟)⟨𝜒𝑧 , 𝑟−𝑧⟩

)
=: 𝑚(𝑤)

gives us an element in 𝐿2(Γ1/2, 𝐸) which is holomorphic in ℂ ∖ 𝐾c, and we can
recover 𝜒 by forming

𝜒 : ℎ→
∫
𝐶

𝑚(𝑤)ℎ(𝑤) 𝑑𝑤, ℎ ∈ 𝒜(ℂ)

for any 𝐶 counter clockwise surrounding 𝐾.
The multiplication of a 𝜒 ∈ 𝒜′(𝐾,𝐸) by 𝑔 ∈ 𝒜(ℂ), defined by ⟨𝜒, ℎ⟩ :=

⟨𝜒, 𝑔ℎ⟩ gives us again an element in 𝒜′(𝐾,𝐸). Now looking at the expression
(2.23) it suffices to recover

𝜗(𝜂) := [𝜂](𝑛+1)/2�̂�(𝜂) ∈ 𝒜′(𝐾, �̂�𝑠−(𝑛+1)/2(ℝ𝑞𝜂, 𝐶∞(𝑋)
))

from

𝐹𝑦→𝜂(𝑓)(𝑟, 𝜂) = 𝜔(𝑟)⟨𝜗(𝜂), (𝑟[𝜂])−𝑧⟩ = 𝜔(𝑟)⟨[𝜂]−𝑧𝜗(𝜂), 𝑟−𝑧⟩
the Mellin transform of which belongs to 𝒜(

ℂ∖𝐾, �̂�𝑠−(𝑛+1)/2(ℝ𝑞𝜂, 𝐶∞(𝑋)
))

where

[𝜂]−𝑤𝜗(𝜂) : ℎ→
∫
𝐶

𝑀𝑟→𝑤

(
𝜔(𝑟)⟨[𝜂]−𝑧𝜗(𝜂), 𝑟−𝑧⟩)ℎ(𝑤) 𝑑𝑤.

Thus we find [𝜂]−𝑤𝜗(𝜂) and hence 𝜗(𝜂) itself by composing the result with the
entire function [𝜂]𝑤. In other words �̂� in the formula (2.23) is unique. □

Let us now discuss the Sobolev regularity of coefficients in the singular func-
tions of edge asymptotics. In order to illustrate what we mean we first look at
constant discrete asymptotics of type 𝒫 . According to Proposition 2.4 the singular
functions are finite linear combinations of expressions

𝜔(𝑟)𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2(𝑟[𝜂])−𝑝 log𝑘(𝑟[𝜂])𝑣𝑝,𝑘(𝜂, 𝑥)},

for 𝑣𝑝,𝑘(𝜂, 𝑥) ∈ �̂�𝑠
(
ℝ𝑞, 𝐶∞(𝑋)

)
, 𝑝 ∈ 𝜋ℂ𝒫 , and some 𝑘 ∈ ℕ, cf. the formulas (1.19),

(1.22) and (1.29). The 𝜂-dependence lies in

[𝜂](𝑛+1)/2−𝑝 log𝑙[𝜂]𝑣𝑝,𝑘(𝜂, 𝑥) =: �̂�𝑝,𝑘(𝜂, 𝑥) (2.32)

for some 0 ≤ 𝑙 ≤ 𝑘, i.e.,

𝑤𝑝,𝑘(𝑦, 𝑥) ∈ 𝐻𝑠+Re 𝑝−𝜀−(𝑛+1)/2(ℝ𝑞𝑦, 𝐶∞(𝑋)
)
, (2.33)
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for any 𝜀 > 0. The case of constant continuous asymptotics can be interpreted
in terms of Sobolev regularity as well. Here in the representation as in Propo-
sition 2.4 the analytic functional 𝜁 is independent of 𝑦′. The meaning of the
singular functions is a superposition of such functions with discrete asymptotics
with exponents 𝑟−𝑧 for 𝑧 ∈ 𝐾, and 𝜁 is just the “density” of the superposition.
Then, taking into account what we obtained in the constant discrete case the
Sobolev regularity which is determined by the occurring [𝜂]-powers together with

the �̂�𝑠
(
ℝ𝑞𝜂, 𝐶∞(𝑋)

)
-valued character of 𝜁 is nothing else than

inf
𝑧∈𝐾

(
𝑠+Re 𝑧 − 𝜀− (𝑛+ 1)/2

)
(2.34)

for any 𝜀 > 0.
Let us now draw some conclusions of Theorem 2.6 on a way to approximate

the singular functions of branching edge asymptotics by singular functions of con-
tinuous asymptotics belonging to a decomposition of the considered compact set

𝐾 =
∪𝑁
𝑖=0𝐾𝑖, where the 𝐾𝑖 are as in (2.2). The decomposition (2.4) may also be

applied to the 𝐸𝑠-valued case, cf. (2.5), i.e., we can write (2.9) in the form

𝛿(𝑦, 𝜂) =

𝑁∑
𝑖=0

𝜑𝑖(𝑦)𝛿𝑖(𝑦, 𝜂) (2.35)

for summands 𝛿𝑖(𝑦, 𝜂) ∈ 𝒮
(
ℝ𝑞,𝒜′(𝐾𝑖, 𝐸

𝑠)
)∙

(the Schwartz function is taken for

convenience; it does not affect the results). The space 𝒮(ℝ𝑞,𝒜′(𝐾𝑖, 𝐸
𝑠)
)∙

is closed

in 𝒮(ℝ𝑞,𝒜′(𝐾𝑖, 𝐸
𝑠)
)
. Let 𝐵𝑖 denote the analogue of the operator𝐵 in the Theorem

2.6 now referring to 𝐾𝑖, i.e., 𝐵𝑖 : 𝒮
(
ℝ𝑞,𝒜′(𝐾𝑖, 𝐸

𝑠)
)→ 𝒜′(𝐾𝑖, 𝐸

𝑠). Then, applying

𝐵𝑖 to 𝛿𝑖(𝑦, 𝜂) ∈ 𝒮
(
ℝ𝑞,𝒜′(𝐾𝑖, 𝐸

𝑠)
)∙

we obtain an element

�̂�(𝑦, 𝜂) :=

𝑁∑
𝑖=0

𝜑𝑖(𝑦)𝐵𝑖�̂�𝑖(𝑦, 𝜂) (2.36)

which is now a kind of approximation of the branching pointwise discrete func-

tional 𝛿(𝑦, 𝜂) by �̂�(𝑦, 𝜂) which turns the asymptotics to a continuous behaviour
over 𝐾𝑖 where 𝑦 varies over 𝑈𝑖. Since by Theorem 2.6 the singular functions asso-

ciated with 𝛿(𝑦, 𝜂) and �̂�(𝑦, 𝜂) remain the same, we obtain the following Sobolev
regularity approximation of the coefficients in the singular functions of branching
edge asymptotics.

Corollary 2.7. Consider the branching discrete functional 𝛿(𝑦, 𝜂) and the associated
singular functions

𝐹−1
𝜂→𝑦{[𝜂](𝑛+1)/2𝜔(𝑟)⟨𝛿(𝑦, 𝜂), (𝑟[𝜂])−𝑧⟩}.

Then according to (2.35) we may replace 𝛿(𝑦, 𝜂) by the finite sum (2.36), and from
(2.34) we obtain the Sobolev regularity in the edge variables 𝑦 ∈ 𝑈𝑖, namely,

inf
𝑧∈𝐾𝑖

(
𝑠+Re 𝑧 − 𝜀− (𝑛+ 1)/2

)
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for any 𝜀 > 0, 𝑖 = 0, 1, . . . , 𝑁 . In other words the Sobolev regularity may be localized
over 𝑈𝑖 for the corresponding 𝐾𝑖, and, of course, the diameters both of 𝑈𝑖 and 𝐾𝑖

may be chosen as small as we want when we choose 𝑁 sufficiently large.

In other words, if we apply Theorem 2.6 to a 𝛿(𝑦, 𝜂) ∈ 𝒮(ℝ𝑞,𝒜′(𝐾,𝐸𝑠)
)∙

with
variable in 𝑦 and in general branching patterns of 𝑦-wise discrete asymptotics, then
“intuitively” the Sobolev regularity at a point 𝑦 ∈ ℝ𝑞 has the form (2.33), now
for 𝑝 = 𝑝(𝑦). Clearly the Sobolev smoothness in correct form refers to an open
set in the 𝑦-variables. But Corollary 2.7 tells us how to collapse such open sets
to a single point, and then the Sobolev smoothness itself appears variable and
branching under varying 𝑦.

Note that also the general continuous asymptotics carried by a compact set
𝐾 can be interpreted in terms of decompositions into “small” parts 𝐾𝑖 when we

write 𝐾 =
∑𝑁

𝑖=0𝐾𝑖. This allows us to read off the “content” of Sobolev regularity
of singular functions as in Proposition 2.4 from the summands coming from 𝐾𝑖,
and then we have similar relations as in Corollary 2.7.
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The Heat Kernel and Green Function of
the Sub-Laplacian on the Heisenberg Group

Xiaoxi Duan

Abstract. We give a construction of the heat kernel and Green function of a
hypoelliptic operator on the one-dimensional Heisenberg group ℍ, the sub-
Laplacian ℒ. The explicit formulas are developed using Fourier–Wigner trans-
forms, pseudo-differential operators of the Weyl type, i.e., Weyl transforms,
and spectral analysis. These formulas are obtained by first finding the formu-
las for the heat kernels and Green functions of a family of twisted Laplacians
𝐿𝜏 for all non-zero real numbers 𝜏 . In the case when 𝜏=1, 𝐿1 is just the usual
twisted Laplacian.

Mathematics Subject Classification (2010). 47F05, 47G30.

Keywords. Heisenberg group, sub-Laplacian, twisted Laplacians, Hermite
functions, Weyl transforms, heat kernels, Green functions.

1. Introduction

In this survey paper, we use the identification

ℝ2 ∋ (𝑥, 𝑦)↔ 𝑧 = 𝑥+ 𝑖𝑦 ∈ ℂ.

We consider the set ℍ given by

ℍ = ℂ× ℝ.

Then ℍ becomes a non-commutative Lie group when equipped with the multipli-
cation ⋅ given by

(𝑧, 𝑡) ⋅ (𝑤, 𝑠) =
(
𝑧 + 𝑤, 𝑡+ 𝑠+

1

4
[𝑧, 𝑤]

)
, (𝑧, 𝑡), (𝑤, 𝑠) ∈ ℍ,

where [𝑧, 𝑤] is the symplectic form of 𝑧 and 𝑤 defined by

[𝑧, 𝑤] = 2 Im(𝑧𝑤).

This research has been supported by the Natural Science and Engineering Research Council of
Canada.
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Lemma 1.1. The left Haar measure and right Haar measure on ℍ are equal to the
Lebesgue measure 𝑑𝑧 𝑑𝑡.

Proof. Let 𝑓 be a measurable function on ℍ. Then∫ ∞

−∞

∫
ℂ

𝑓((𝑤, 𝑠) ⋅ (𝑧, 𝑡)) 𝑑𝑧 𝑑𝑡

=

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
𝑓

(
𝑢+ 𝑥, 𝑣 + 𝑦, 𝑠+ 𝑡+

1

2
(𝑣𝑥− 𝑢𝑦)

)
𝑑𝑥 𝑑𝑦 𝑑𝑡.

Let 𝑥′ = 𝑢 + 𝑥, 𝑦′ = 𝑣 + 𝑦, and 𝑡′ = 𝑠 + 𝑡+ 1
2 (𝑣𝑥 − 𝑢𝑦). Then the above integral

becomes ∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
𝑓(𝑥′, 𝑦′, 𝑡′) 𝑑𝑥′ 𝑑𝑦′ 𝑑𝑡′.

This shows that the Lebesgue measure is left-invariant. Similarly, we can show
that it is also right-invariant. □

Since the left and right Haar measures are equal, it follows that ℍ is uni-
modular. Having defined the Heisenberg group, we move on to introduce the heat
kernel on ℍ. Consider the partial differential equation

∂𝑢

∂𝜌
(𝑧, 𝑡, 𝜌) = (ℒ𝑢) (𝑧, 𝑡, 𝜌)

with initial condition

𝑢(𝑧, 𝑡, 0) = 𝑓(𝑧, 𝑡),

where (𝑧, 𝑡) ∈ ℍ, 𝜌 > 0, 𝑓 is a suitable function on ℍ, and ℒ is the sub-Laplacian
on ℍ to be defined in Section 2. Its solution can be expressed formally as

𝑢(𝑧, 𝑡, 𝜌) =
(
𝑒−𝜌ℒ𝑓

)
(𝑧, 𝑡), (𝑧, 𝑡) ∈ ℍ, 𝜌 > 0.

The heat kernel 𝐾𝜌 of ℒ is the kernel of the integral operator 𝑒−𝜌ℒ, which satisfies

𝑒−𝜌ℒ𝑓 = 𝑓 ∗ℍ 𝐾𝜌,

where the convolution 𝑓 ∗ℍ 𝐾𝜌 of 𝑓 and 𝐾𝜌 on ℍ is given by

(𝑓 ∗ℍ 𝐾𝜌)(𝑧, 𝑡) =

∫ ∞

−∞

∫
ℂ

𝑓((𝑧, 𝑡) ⋅ (−𝑤,−𝑠))𝐾𝜌(𝑤, 𝑠) 𝑑𝑤 𝑑𝑠, (𝑧, 𝑡) ∈ ℍ,

for all suitable functions 𝑓 on ℍ, provided that the integral exists. On the other
hand, the Green function 𝒢 of ℒ is the kernel of the integral operator representing
ℒ−1, and

ℒ−1𝑓 = 𝑓 ∗ℍ 𝒢
for all suitable functions 𝑓 on ℍ.

The formula for the heat kernel can be traced back to the independent works
of Gaveau [5] and Hulanicki [13]. More recent derivation of the heat kernel can be
found in Klingler [15]. The works of Hulanicki and Klingler are based on probability
theory. The explicit expression for the Green function dates back to the work of
Folland [3], in which the formula is given in terms of the distance on the Heisenberg
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group based on the analogy with the Green function for the Euclidean Laplacian,
which is also given by a distance at least when the dimension of the Euclidean
space is greater than 2. A geometric approach for finding the heat kernel and Green
function of the sub-Laplacian on the Heisenberg group can be found in [1]. In [18],
the formulas for the heat kernel and Green function for the twisted Laplacian 𝐿
are derived by means of pseudo-differential operators of the Weyl type, i.e., Weyl
transforms and the Fourier–Wigner transforms of Hermite functions, which form
an orthonormal basis for 𝐿2(ℂ). These facts can be found in the book [18] by
Wong.

In this paper, the aim is to find the formulas for the heat kernel and Green
function of the sub-Laplacian ℒ on ℍ. In order to do so, we first introduce a family
of twisted Laplacians 𝐿𝜏 on ℝ2, for 𝜏 ∈ ℝ such that 𝜏 ∕= 0. Using the more general
formulas for the heat kernels and Green functions for these parametrized twisted
Laplacians, we are able to compute the heat kernel and Green function for the
sub-Laplacian on ℍ.

In Section 2, we first define the sub-Laplacian ℒ on the Heisenberg group ℍ
and then introduce a family of twisted Laplacians 𝐿𝜏 for 𝜏 ∈ ℝ∖{0} by taking the
inverse Fourier transform of the sub-Laplacian with respect to 𝑡. The hypoellip-
ticity of the sub-Laplacian and the ellipticity of the twisted Laplacians are briefly
discussed. In Section 3, we give a result on the relationship between convolutions
on the Heisenberg group and twisted convolutions. This can be used to relate the
heat kernel of the sub-Laplacian to the heat kernels of the twisted Laplacians.
In Section 4, we define the Fourier–Wigner transforms of Hermite functions. In
Section 5, we define the Weyl transforms, give the formula for the product of two
Weyl transforms and prove that the Fourier–Wigner transforms of Hermite func-
tions given in Section 4 form an orthonormal basis for 𝐿2(ℝ2). Weyl transforms
are used again in Section 6 to prove that the twisted convolution of two Fourier–
Wigner transforms of Hermite functions is again a Fourier–Wigner transform of
Hermite functions. This fact and the spectral analysis of 𝐿𝜏 for 𝜏 ∈ ℝ∖{0} are then
used in the same section to construct the heat kernels of the twisted Laplacians
𝐿𝜏 and hence the heat kernel of ℒ. The Green functions of the twisted Laplacians
𝐿𝜏 and the Green function of the sub-Laplacian ℒ are given in Section 7.

The formulas for the heat kernel and Green function of the sub-Laplacian
on the Heisenberg group are well known in the mathematical literature. To date
several methods are available and the reconstructions of these formulas have be-
come somewhat of an industry. This is due not only to the beauty and contents of
the formulas, but also the need to construct similar formulas for other hypoelliptic
operators. To wit, the techniques in this paper have the potential of constructing
the heat kernel and Green function of the product of 𝐿𝜏𝐿−𝜏 for a nonzero real
number 𝜏 , which is a fourth-order operator whose eigenvalues have finite multiplic-
ities. And the heat kernels and Green functions of these operators can enable us
to find those for a fourth-order hypoelliptic operator on ℍ, in fact, a fourth-order
sub-Laplacian. This is a project in progress, and is the motivation for this survey
paper.
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The results in this survey paper are valid for the 𝑛-dimensional Heisenberg
group and we have chosen to work on the one-dimensional Heisenberg group ℍ
just for the simplicity and transparency of the notation. The inner products and
the norms in 𝐿2(ℝ), 𝐿2(ℝ2), 𝐿2(ℂ) and 𝐿2(ℝ𝑛) and so on are all denoted by ( , )
and ∥ ∥ respectively and the space in which the inner product and norm is taken
should be clear from the context.

2. The sub-Laplacian on ℍ and twisted Laplacians

A vector field 𝑉 on ℍ is given by

𝑉 (𝑥, 𝑦, 𝑡) = 𝑎(𝑥, 𝑦, 𝑡)
∂

∂𝑥
+ 𝑏(𝑥, 𝑦, 𝑡)

∂

∂𝑦
+ 𝑐(𝑥, 𝑦, 𝑡)

∂

∂𝑡
,

where 𝑎, 𝑏, 𝑐 are 𝐶∞ functions in 𝑥, 𝑦, 𝑡.

A vector field 𝑉 is left-invariant if it commutes with left translations, i.e.,

𝑉 𝐿(𝑤,𝑠) = 𝐿(𝑤,𝑠)𝑉,

for all (𝑤, 𝑠) ∈ ℍ, where for all 𝐶∞ functions 𝑓 on ℍ,

(𝐿(𝑤,𝑠)𝑓)(𝑧, 𝑡) = 𝑓((𝑤, 𝑠) ⋅ (𝑧, 𝑡)), (𝑧, 𝑡) ∈ ℍ.

Now, let 𝛾1, 𝛾2, 𝛾3 : ℝ→ ℍ be curves in ℍ given by

𝛾1(𝑟) = (𝑟, 0, 0), 𝑟 ∈ ℝ,
𝛾2(𝑟) = (0, 𝑟, 0), 𝑟 ∈ ℝ,
𝛾3(𝑟) = (0, 0, 𝑟), 𝑟 ∈ ℝ,

for all 𝑟 in ℝ, and we define the vector fields𝑋 , 𝑌, and 𝑇 as follows. Let 𝑓 ∈ 𝐶∞(ℍ).
Then the function 𝑋𝑓 is defined by

(𝑋𝑓)(𝑥, 𝑦, 𝑡) =
∂

∂𝑟
𝑓((𝑥, 𝑦, 𝑡) ⋅ 𝛾1(𝑟))

∣∣∣∣
𝑟=0

=
∂

∂𝑟
𝑓

(
𝑥+ 𝑟, 𝑦, 𝑡+

1

2
𝑟𝑦

)∣∣∣∣
𝑟=0

=
∂𝑓

∂𝑥
(𝑥, 𝑦, 𝑡) +

1

2
𝑦
∂𝑓

∂𝑡
(𝑥, 𝑦, 𝑡),

the function 𝑌 𝑓 is defined by

(𝑌 𝑓)(𝑥, 𝑦, 𝑡) =
∂

∂𝑟
𝑓((𝑥, 𝑦, 𝑡) ⋅ 𝛾2(𝑟))

∣∣∣∣
𝑟=0

=
∂

∂𝑟
𝑓

(
𝑥, 𝑦 + 𝑟, 𝑡− 1

2
𝑟𝑥

)∣∣∣∣
𝑟=0

=
∂𝑓

∂𝑦
(𝑥, 𝑦, 𝑡)− 1

2
𝑥
∂𝑓

∂𝑡
(𝑥, 𝑦, 𝑡),
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and the function 𝑇𝑓 is defined by

(𝑇𝑓)(𝑥, 𝑦, 𝑡) =
∂

∂𝑟
𝑓((𝑥, 𝑦, 𝑡) ⋅ 𝛾3(𝑟))

∣∣∣∣
𝑟=0

=
∂

∂𝑟
𝑓 (𝑥, 𝑦, 𝑡+ 𝑟)

∣∣∣∣
𝑟=0

=
∂𝑓

∂𝑡
(𝑥, 𝑦, 𝑡)

for all (𝑥, 𝑦, 𝑡) ∈ ℍ. To summarize, we have

𝑋 =
∂

∂𝑥
+

1

2
𝑦
∂

∂𝑡
, 𝑌 =

∂

∂𝑦
− 1

2
𝑥
∂

∂𝑡
and 𝑇 =

∂

∂𝑡
.

It can be checked easily that

[𝑋,𝑌 ] = −𝑇,
and all other first-order commutators of 𝑋 , 𝑌 and 𝑇 are zero. Moreover, it can
be checked easily that 𝑋 , 𝑌 and 𝑇 are left-invariant vector fields on ℍ. Indeed,
direct calculations give for all (𝑧, 𝑡) and (𝑤, 𝑠) in ℍ,

(𝑋(𝐿(𝑤,𝑠)𝑓))(𝑧, 𝑡) = (𝑋𝑓)((𝑤, 𝑠) ⋅ (𝑧, 𝑡))

=

(
∂1𝑓 +

1

2
𝑦∂3𝑓

)(
𝑥+ 𝑢, 𝑦 + 𝑣, 𝑠+ 𝑡+

1

2
(𝑦𝑢− 𝑥𝑣)

)
=

∂𝑓

∂𝑥

(
𝑥+ 𝑢, 𝑦 + 𝑣, 𝑠+ 𝑡+

1

2
(𝑦𝑢− 𝑥𝑣)

)
+

1

2
(𝑣 + 𝑦)

∂𝑓

∂𝑡

(
𝑥+ 𝑢, 𝑦 + 𝑣, 𝑠+ 𝑡+

1

2
(𝑦𝑢− 𝑥𝑣)

)
.

On the other hand,

(𝐿(𝑤,𝑠)(𝑋𝑓))(𝑧, 𝑡) = (𝑋𝑓)((𝑤, 𝑠) ⋅ (𝑧, 𝑡))

=
∂𝑓

∂𝑥

(
𝑥+ 𝑢, 𝑦 + 𝑣, 𝑠+ 𝑡+

1

2
(𝑦𝑢− 𝑥𝑣)

)
+

1

2
(𝑣 + 𝑦)

∂𝑓

∂𝑡

(
𝑥+ 𝑢, 𝑦 + 𝑣, 𝑠+ 𝑡+

1

2
(𝑦𝑢− 𝑥𝑣)

)
.

Thus, 𝑋
(
𝐿(𝑤,𝑠)𝑓

)
= 𝐿(𝑤,𝑠) (𝑋𝑓) for all (𝑤, 𝑠) ∈ ℍ. Similarly, we have

𝑌 𝐿(𝑤,𝑠) = 𝐿(𝑤,𝑠)𝑌 and 𝑇𝐿(𝑤,𝑠) = 𝐿(𝑤,𝑠)𝑇

for all (𝑤, 𝑠) in ℍ.
In addition, we can show that 𝑋, 𝑌 and 𝑇 are linearly independent. Indeed,

we set (𝑎𝑋 + 𝑏𝑌 + 𝑐𝑇 )𝑓 = 0 for all 𝐶∞ function 𝑓 on ℝ3, where 𝑎, 𝑏 and 𝑐 are
real numbers. We need to show that

𝑎 = 𝑏 = 𝑐 = 0.

Let 𝑓 be the function on ℝ3 defined by

𝑓(𝑥, 𝑦, 𝑧) = 𝑥, (𝑥, 𝑦, 𝑧) ∈ ℝ3.



60 X. Duan

Then

𝑎
∂

∂𝑥
𝑓(𝑥, 𝑦, 𝑡) + 𝑏

∂

∂𝑦
𝑓(𝑥, 𝑦, 𝑡) + 𝑐

∂

∂𝑡
𝑓(𝑥, 𝑦, 𝑡) = 0⇒ 𝑎 = 0.

Similarly, by setting 𝑓(𝑥, 𝑦, 𝑡) = 𝑦 and 𝑓(𝑥, 𝑦, 𝑡) = 𝑡, we get 𝑏 = 0 and 𝑐 = 0, as
desired.

Now, let 𝔥 be the Lie algebra of all left-invariant vector fields on ℍ. Then
𝑋 , 𝑌 and 𝑇 form a basis for 𝔥. In fact, 𝔥 is the tangent space of ℍ at the origin,
which is a three-dimensional vector space.

Let ℒ = −(𝑋2 + 𝑌 2). Then we call ℒ the sub-Laplacian on the Heisenberg
group ℍ and it can be expressed as

ℒ = −
(

∂2

∂𝑥2
+

∂2

∂𝑦2

)
− 1

4

(
𝑥2 + 𝑦2

) ∂2

∂𝑡2
+

(
𝑥
∂

∂𝑦
− 𝑦

∂

∂𝑥

)
∂

∂𝑡
.

Now, by replacing ∂
∂𝑡 by −𝑖𝜏 , where 𝜏 ∈ ℝ such that 𝜏 ∕= 0, we obtain a family of

twisted Laplacians 𝐿𝜏 with respect to 𝜏 on ℝ2, which can be written as

𝐿𝜏 = −
(

∂2

∂𝑥2
+

∂2

∂𝑦2

)
+

1

4
(𝑥2 + 𝑦2)𝜏2 − 𝑖

(
𝑥
∂

∂𝑦
− 𝑦

∂

∂𝑥

)
𝜏.

In the case when 𝜏 = 1, we get back our ordinary twisted Laplacian 𝐿1. In fact, the
twisted Laplacian 𝐿𝜏 is a perturbation of the Hermite operator by −𝑖𝑁𝜏 , where
𝑁 is the rotation given by

𝑁 = 𝑥
∂

∂𝑦
− 𝑦

∂

∂𝑥
.

Twisted Laplacians and their variants have been studied extensively in [2, 4,
6, 7, 8, 9, 14, 16].

The connections between ℒ and 𝐿𝜏 can be explained by the following theo-
rem. Before introducing the theorem, we give the definition of 𝑓 𝜏 . Let 𝑓 ∈ 𝒮(ℍ).
Then we define 𝑓 𝜏 by

𝑓 𝜏 (𝑧) = (2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑡𝜏𝑓(𝑧, 𝑡) 𝑑𝑡, 𝑧 ∈ ℂ,

which is the inverse Fourier transform of 𝑓 with respect to 𝑡, at each 𝑧, evaluated
at 𝜏.

Theorem 2.1. Let 𝑔 ∈ 𝒮(ℍ). Then for any 𝜏 ∈ ℝ such that 𝜏 ∕= 0,

(ℒ𝑔)𝜏 (𝑧) = (𝐿𝜏𝑔
𝜏 ) (𝑧), 𝑧 ∈ ℂ.

Proof. We only need to look at (∂𝑔∂𝑡 )
𝜏 , and compute

(2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑡𝜏

∂𝑔

∂𝑡
(𝑧, 𝑡) 𝑑𝑡

for all 𝑧 in ℂ. Integrating by parts, we get for all 𝑧 in ℂ,

(2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑡𝜏

∂𝑔

𝑑𝑡
(𝑧, 𝑡) = (2𝜋)−1/2

(
−

∫ ∞

−∞
𝑖𝜏𝑒𝑖𝑡𝜏𝑔(𝑧, 𝑡)𝑑𝑡

)
= −𝑖𝜏𝑔𝜏 (𝑧). □
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The theorem above justifies our replacement of ∂
∂𝑡 in the sub-Laplacian by

−𝑖𝜏 to get the twisted Laplacian at 𝜏 . Now, we give some properties of the oper-
ators ℒ and 𝐿𝜏 .

Theorem 2.2. Let 𝜏 ∈ ℝ be such that 𝜏 ∕= 0. Then 𝐿𝜏 is elliptic on ℝ2.

Theorem 2.3. ℒ is nowhere elliptic on ℝ3.

Before we give the proofs of the above two theorems, we give a discussion on
the ellipticity of operators. Let

𝑃 (𝑥,𝐷) =
∑
∣𝛼∣≤𝑚

𝑎𝛼(𝑥)𝐷
𝛼,

where 𝑎𝛼 ∈ 𝐶∞(ℝ𝑛), 𝐷𝛼 = 𝐷𝛼1
1 𝐷𝛼2

2 ⋅ ⋅ ⋅𝐷𝛼𝑛
𝑛 with 𝐷𝑗 = −𝑖 ∂

∂𝑥𝑗
, and the symbol of

𝑃 (𝑥,𝐷) is given by

𝑃 (𝑥, 𝜉) =
∑
∣𝛼∣≤𝑚

𝑎𝛼(𝑥)𝜉
𝛼, 𝑥, 𝜉 ∈ ℝ𝑛.

Definition 2.4. Let 𝑃𝑚(𝑥, 𝜉) be the principal symbol of an operator of order 𝑚,
i.e.,

𝑃𝑚(𝑥, 𝜉) =
∑
∣𝛼∣=𝑚

𝑎𝛼(𝑥)𝜉
𝛼, 𝑥, 𝜉 ∈ ℝ𝑛.

Let 𝑥0 ∈ ℝ𝑛. Then 𝑃 (𝑥,𝐷) is elliptic at the point 𝑥0 if

𝑃𝑚(𝑥0, 𝐷) = 0, 𝜉 ∈ ℝ𝑛 ⇒ 𝜉 = 0.

If 𝑃 (𝑥,𝐷) is elliptic at every point in ℝ𝑛, it is said to be elliptic everywhere on ℝ𝑛.

An operator 𝑃 (𝑥,𝐷) is hypoelliptic on ℝ𝑛 if

𝑢 ∈ 𝒟′(ℝ𝑛), 𝑃 (𝑥,𝐷)𝑢 ∈ 𝐶∞(ℝ𝑛)⇒ 𝑢 ∈ 𝐶∞(ℝ𝑛),

where 𝒟′(ℝ𝑛) represents the space of distributions of Laurent Schwartz.
We now give the proofs of the above two theorems.

Proof of Theorem 2.2. Since

𝐿𝜏 = −
(

∂2

∂𝑥2
+

∂2

∂𝑦2

)
− 1

4

(
𝑥2 + 𝑦2

)
𝜏2 − 𝑖

(
𝑥
∂

∂𝑦
− 𝑦

∂

∂𝑥

)
𝜏,

the principal part of 𝐿𝜏 is −
(
∂2

∂𝑥2 +
∂2

∂𝑦2

)
, whose symbol is ∣𝜉∣2 ∈ ℝ2, which

vanishes only at 𝜉 = 0, for all 𝑥, 𝑦 ∈ ℝ. Thus, by the previous definition, 𝐿𝜏
is elliptic on ℝ2 for all 𝜏 such that 𝜏 ∕= 0. □
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Proof of Theorem 2.3. Replacing ∂
∂𝑥 ,

∂
∂𝑦 and ∂

∂𝑡 by 𝑖𝜉, 𝑖𝜎 and 𝑖𝜆 respectively, the

symbol of ℒ is given by

𝑃2(𝑥, 𝑦, 𝑡, 𝜉, 𝜎, 𝜆) = −
(
𝑖𝜉 − 1

2
𝑦𝑖𝜆

)2
−

(
𝑖𝜎 +

1

2
𝑥𝑖𝜆

)2
=

(
𝜉 − 1

2
𝑦𝜆

)2
+

(
𝜎 +

1

2
𝑥𝜆

)2
.

Observe that

𝑃2(𝑥, 𝑦, 𝑡, 𝜉, 𝜎, 𝜆) = 0 ⇔ 𝜉 =
1

2
𝑦𝜆 and 𝜎 = −1

2
𝑥𝜆.

Case 1: 𝑥 = 𝑦 = 0. Then

𝑃2(𝑥, 𝑦, 𝑡, 𝜉, 𝜎, 𝜆) = 0⇒ 𝜉 = 𝜎 = 0.

However, 𝜆 can take any real value.

Case 2: 𝑥 or 𝑦 is different from 0. Then 𝑃2 vanishes along a line in the 𝜉𝜆-plane
or 𝜎𝜆-plane. Hence by our definition, ℒ is not elliptic anywhere in ℝ3. □

To end this section, we apply a simplified version of Hörmander’s theorem to
show the hypoellipticity of the sub-Laplacian on ℍ.

Theorem 2.5 (Hörmander). Suppose 𝑋𝑗, 𝑓𝑜𝑟 𝑗 = 1, 2, . . . , 𝑁, are vector fields and

their commutators up to a certain order span its Lie algebra. Then
∑𝑁
𝑗=1𝑋

2
𝑗 is

hypoelliptic.

We have shown that 𝑋 , 𝑌 and [𝑋,𝑌 ] span the Lie algebra 𝔥 of ℍ. Thus, by
Hörmander’s theorem [11], ℒ is hypoelliptic on ℝ3.

3. Convolutions on the Heisenberg group and twisted convolutions

Let 𝑓 and 𝑔 be measurable functions on ℍ. Then we define the convolution 𝑓 ∗ℍ 𝑔
of 𝑓 and 𝑔 on ℍ by

(𝑓 ∗ℍ 𝑔)(𝑧, 𝑡) =

∫ ∞

−∞

∫
ℂ

𝑓((𝑧, 𝑡) ⋅ (−𝑤,−𝑠))𝑔(𝑤, 𝑠) 𝑑𝑤 𝑑𝑠, (𝑧, 𝑡) ∈ ℍ,

provided that the integral exists. For a parameter 𝜆 ∈ ℝ, the twisted convolution
𝑓 ∗𝜆 𝑔 of 𝑓 and 𝑔 is given by

(𝑓 ∗𝜆 𝑔)(𝑧, 𝑡) =
∫
ℂ

𝑓(𝑧 − 𝑤)𝑔(𝑤)𝑒𝑖𝜆[𝑧,𝑤] 𝑑𝑤, 𝑧 ∈ ℂ.

The theorem below gives the connection between convolutions on ℍ and twisted
convolutions. It can be found in [20].

Theorem 3.1. Let 𝑓, 𝑔 ∈ 𝐿1(ℍ). Then

(𝑓 ∗ℍ 𝑔)𝜏 = (2𝜋)1/2𝑓 𝜏 ∗𝜏/4 𝑔𝜏 .
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Proof. We have

(2𝜋)1/2𝐿𝐻𝑆 =

∫ ∞

−∞
𝑒𝑖𝑡𝜏 (𝑓 ∗ℍ 𝑔)(𝑧, 𝑡) 𝑑𝑡

=

∫ ∞

−∞
𝑒𝑖𝑡𝜏

(∫ ∞

−∞

∫
ℂ

𝑓((𝑧, 𝑡) ⋅ (−𝑤,−𝑠))𝑔(𝑤, 𝑠) 𝑑𝑤 𝑑𝑠

)
𝑑𝑡

=

∫ ∞

−∞
𝑒𝑖𝑡𝜏

(∫ ∞

−∞

∫
ℂ

𝑓

(
𝑧 − 𝑤, 𝑡− 𝑠− 1

4
[𝑧, 𝑤]

)
𝑔(𝑤, 𝑠) 𝑑𝑤 𝑑𝑠

)
𝑑𝑡.

Let 𝑡′ = 𝑡− 1
4 [𝑧, 𝑤]. Then

𝐿𝐻𝑆 = (2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑡

′𝜏+𝑖𝜏 1
4 [𝑧,𝑤]

(∫ ∞

−∞

∫
ℂ

𝑓(𝑧 − 𝑤, 𝑡′ − 𝑠)𝑔(𝑤, 𝑠) 𝑑𝑤 𝑑𝑠

)
𝑑𝑡′.

On the other hand,

𝑅𝐻𝑆 = (2𝜋)1/2
∫
ℂ

𝑓 𝜏 (𝑧 − 𝑤)𝑔𝜏 (𝑤)𝑒𝑖
𝜏
4 [𝑧,𝑤] 𝑑𝑤

= (2𝜋)1/2(2𝜋)−1/2
∫
ℂ

(∫ ∞

−∞
𝑓(𝑧 − 𝑤, ⋅ − 𝑠)𝑔(𝑤, 𝑠)𝑑𝑠

)∨
(𝜏)𝑒

𝑖𝜏
4 [𝑧,𝑤] 𝑑𝑤

= (2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑡𝜏+𝑖

𝜏
4 [𝑧,𝑤]

∫ ∞

−∞

∫
ℂ

𝑓(𝑧 − 𝑤, 𝑡− 𝑠)𝑔(𝑤, 𝑠) 𝑑𝑤 𝑑𝑠 𝑑𝑡.

Thus, 𝐿𝐻𝑆 = 𝑅𝐻𝑆. □

By Theorems 2.1 and 3.1, we can relate the heat kernel of the sub-Laplacian
to the heat kernels of the twisted Laplacians as given in the following theorem.

Theorem 3.2. Let 𝐾𝜌 be as given in Section 1. Then for suitable functions 𝑓 on ℍ,

𝑒−𝜌𝐿𝜏 𝑓 𝜏 = (𝑒−𝜌ℒ𝑓)𝜏 = (𝑓 ∗ℍ 𝐾𝜌)
𝜏 = (2𝜋)1/2𝑓 𝜏 ∗𝜏/4𝐾𝜏

𝜌 .

4. Fourier–Wigner transforms of Hermite functions

Let 𝑓 and 𝑔 be functions in the Schwartz space 𝒮(ℝ) on ℝ. Then

𝑉𝜏 (𝑓, 𝑔)(𝑞, 𝑝) = ∣𝜏 ∣1/2(2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝜏𝑞𝑦𝑓

(
𝑦 +

𝑝

2

)
𝑔
(
𝑦 − 𝑝

2

)
𝑑𝑦

for all 𝑞, 𝑝 ∈ ℝ.
For 𝜏 ∈ ℝ such that 𝜏 ∕= 0, and for 𝑘 = 0, 1, 2, . . . , we define 𝑒𝜏𝑘 by

𝑒𝜏𝑘(𝑥) = ∣𝜏 ∣1/4𝑒𝑘(
√
∣𝜏 ∣𝑥), 𝑥 ∈ ℝ,

where 𝑒𝑘 is the Hermite function of degree 𝑘 given by

𝑒𝑘(𝑥) =
1

(2𝑘𝑘!
√
𝜋)1/2

𝑒−𝑥
2/2𝐻𝑘(𝑥),
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for all 𝑥 in ℝ, and 𝐻𝑘 is the Hermite polynomial of degree 𝑘 given by

𝐻𝑘(𝑥) = (−1)𝑘𝑒𝑥2

(
𝑑

𝑑𝑥

)𝑘
(𝑒−𝑥

2

)

for all 𝑥 in ℝ.

Theorem 4.1. The set {𝑒𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} is an orthonormal basis for 𝐿2(ℝ2).

The proof of this theorem will be given in the next section where the Weyl
transforms are introduced.

For 𝑗, 𝑘 = 0, 1, 2, . . . , we define 𝑒𝜏𝑗,𝑘 by

𝑒𝜏𝑗,𝑘 = 𝑉𝜏 (𝑒
𝜏
𝑗 , 𝑒

𝜏
𝑘).

We now establish the connection of {𝑒𝜏𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} with {𝑒𝑗,𝑘 : 𝑗, 𝑘 =

0, 1, 2, . . .}, which is studied in [18].

Theorem 4.2. For 𝜏 ∈ ℝ such that 𝜏 ∕= 0, and for 𝑗, 𝑘 = 0, 1, 2, . . . ,

𝑒𝜏𝑗,𝑘(𝑞, 𝑝) = ∣𝜏 ∣1/2𝑒𝑗,𝑘
(

𝜏√∣𝜏 ∣𝑞,√∣𝜏 ∣𝑝
)
, 𝑞, 𝑝 ∈ ℝ.

Proof. By the Fourier–Wigner transform and a change of variables,

𝑒𝜏𝑗,𝑘(𝑞, 𝑝) = 𝑉𝜏
(
𝑒𝜏𝑗 , 𝑒

𝜏
𝑘

)
(𝑞, 𝑝)

= ∣𝜏 ∣1/2(2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑞𝑦𝜏𝑒𝜏𝑗

(
𝑦 +

𝑝

2

)
𝑒𝜏𝑘

(
𝑦 − 𝑝

2

)
𝑑𝑦

= ∣𝜏 ∣(2𝜋)−1/2
∫ ∞

−∞
𝑒𝑖𝑞𝑦𝜏𝑒𝑗

(√
∣𝜏 ∣

(
𝑦 +

𝑝

2

))
𝑒𝑘

(√
∣𝜏 ∣

(
𝑦 − 𝑝

2

))
𝑑𝑦

= ∣𝜏 ∣1/2(2𝜋)−1/2
∫ ∞

−∞
𝑒

𝑖𝑞𝑦𝜏√
∣𝜏∣ 𝑒𝑗

(
𝑦 +

𝑝

2

√
∣𝜏 ∣

)
𝑒𝑘

(
𝑦 − 𝑝

2

√
∣𝜏 ∣

)
𝑑𝑦

= ∣𝜏 ∣1/2𝑒𝑗,𝑘
(
𝑞

𝜏√∣𝜏 ∣ ,√∣𝜏 ∣𝑝
)

for all 𝜏 ∈ ℝ with 𝜏 ∕= 0, and 𝑞, 𝑝 ∈ ℝ. □

Theorem 4.3. {𝑒𝜏𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} forms an orthonormal basis for 𝐿2(ℝ2).

Proof. We first show orthogonality. For all nonnegative integers 𝛼, 𝛽, 𝜇 and 𝜈,

(𝑒𝜏𝛼,𝛽, 𝑒
𝜏
𝜇,𝜈) = ∣𝜏 ∣1/2∣𝜏 ∣1/2

∫
ℂ

𝑒𝛼,𝛽

(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)
𝑒𝜇,𝜈

(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)
𝑑𝑞 𝑑𝑝.

Let 𝑞′ = 𝑞 𝜏√
∣𝜏 ∣ and 𝑝′ = 𝑝

√∣𝜏 ∣. Then
(𝑒𝜏𝛼,𝛽 , 𝑒

𝜏
𝜇,𝜈) =

∫
ℂ

𝑒𝛼,𝛽(𝑞
′, 𝑝′)𝑒𝜇,𝜈(𝑞′, 𝑝′) 𝑑𝑞′ 𝑑𝑝′ = (𝑒𝛼,𝛽, 𝑒𝜇,𝜈).
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Since {𝑒𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} is an orthonormal set in 𝐿2(ℝ2), so does {𝑒𝜏𝑗,𝑘 :

𝑗, 𝑘 = 0, 1, 2, . . .}. Secondly, we show that {𝑒𝜏𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} spans the

whole space. Let 𝑓 ∈ 𝐿2(ℂ) be such that (𝑓, 𝑒𝜏𝑗,𝑘) = 0 for all 𝑗, 𝑘 = 0, 1, 2, . . . . We

need to show 𝑓(𝑞, 𝑝) = 0 for almost all 𝑞, 𝑝 ∈ ℝ. But∫
ℂ

𝑓(𝑞, 𝑝)
√
∣𝜏 ∣𝑒𝑗,𝑘

(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)
𝑑𝑞 𝑑𝑝 = 0

for all 𝑗, 𝑘 = 0, 1, 2, . . . . By letting 𝑞′ = 𝑞 𝜏√
∣𝜏 ∣ , and 𝑝′ = 𝑝

√∣𝜏 ∣, the above integral
becomes ∫

ℂ

𝑓(𝐶𝑞′, 𝐷𝑝′)𝑒𝑗,𝑘(𝑞′, 𝑝′) 𝑑𝑞′ 𝑑𝑝′ = 0

for all 𝑗, 𝑘 = 0, 1, 2, . . . , where

𝐶 =

√∣𝜏 ∣
𝜏

,𝐷 =
1√∣𝜏 ∣ .

The preceding equation on the vanishing of the integral holds only when 𝑓(𝑞, 𝑝) = 0
for all most all 𝑞, 𝑝 ∈ ℝ. So, {𝑒𝜏𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} is indeed an orthonormal

basis for 𝐿2(ℂ). □

5. Wigner transforms and Weyl transforms

Now we have another look at the Fourier–Wigner transform. Let 𝑞, 𝑝 ∈ ℝ𝑛, and
let 𝑓 be a measurable function on ℝ𝑛. We define 𝜌(𝑞, 𝑝)𝑓 on ℝ𝑛 by

(𝜌(𝑞, 𝑝)𝑓)(𝑥) = 𝑒𝑖𝑞𝑥+
1
2 𝑖𝑞𝑝𝑓(𝑥+ 𝑝), 𝑥 ∈ ℝ𝑛.

Then 𝜌(𝑞, 𝑝) : 𝐿2(ℝ𝑛) → 𝐿2(ℝ𝑛) is a unitary operator. Let 𝑓 and 𝑔 be in 𝒮(ℝ𝑛).
Then we define the Fourier–Wigner transform 𝑉 (𝑓, 𝑔) of 𝑓 and 𝑔 by

𝑉 (𝑓, 𝑔)(𝑞, 𝑝) = (2𝜋)−𝑛/2(𝜌(𝑞, 𝑝)𝑓, 𝑔), 𝑞, 𝑝 ∈ ℝ𝑛,

where ( , ) is the inner product in 𝐿2(ℝ𝑛).
An equivalent definition of the Fourier–Wigner transform is given in the

following theorem, which can be found in [18].

Theorem 5.1. Let 𝑓 , 𝑔, 𝑞 and 𝑝 be the same as above. Then

𝑉 (𝑓, 𝑔)(𝑞, 𝑝) = (2𝜋)−𝑛/2
∫
ℝ𝑛

𝑒𝑖𝑞⋅𝑦𝑓
(
𝑦 +

𝑝

2

)
𝑔
(
𝑦 − 𝑝

2

)
𝑑𝑦.

Proof. We have

𝑉 (𝑓, 𝑔)(𝑞, 𝑝) = (2𝜋)−𝑛/2
∫
ℝ𝑛

𝑒𝑖𝑞⋅𝑥+
1
2 𝑞⋅𝑝𝑓(𝑥+ 𝑝)𝑔(𝑥)𝑑𝑥

= (2𝜋)−𝑛/2
∫
ℝ𝑛

𝑒𝑖𝑞⋅𝑦𝑓
(
𝑥+

𝑝

2

)
𝑔
(
𝑦 − 𝑝

2

)
𝑑𝑦,

where a change of variable 𝑥 = 𝑦 − 𝑝
2 is used. □
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Let 𝑓 and 𝑔 be in 𝒮(ℝ𝑛). Then the Wigner transform 𝑊 (𝑓, 𝑔) of 𝑓 and 𝑔 is
given by

𝑊 (𝑓, 𝑔) = 𝑉 (𝑓, 𝑔)∧.

Lemma 5.2. For all 𝑓 and 𝑔 in 𝐿2(ℝ𝑛),

𝑊 (𝑓, 𝑔)(𝑥, 𝜉) = (2𝜋)−𝑛/2
∫
ℝ𝑛

𝑒−𝑖𝜉⋅𝑝𝑓
(
𝑥+

𝑝

2

)
𝑔
(
𝑥− 𝑝

2

)
𝑑𝑝, 𝑥, 𝜉 ∈ ℝ𝑛.

Proof. By our definition of the Wigner transform, we have for all 𝑥 and 𝜉 in ℝ𝑛,

𝑊 (𝑓,𝑔)(𝑥,𝜉)=(2𝜋)−3𝑛/2
∫
ℝ𝑛

∫
ℝ𝑛

𝑒−𝑖𝑥⋅𝑞−𝑖𝜉⋅𝑦
(∫

ℝ𝑛

𝑒𝑖𝑞⋅𝑦𝑓
(
𝑦+

𝑝

2

)
𝑔
(
𝑥− 𝑝

2

)
𝑑𝑦

)
𝑑𝑞𝑑𝑝

=(2𝜋)−3𝑛/2
∫
ℝ𝑛

∫
ℝ𝑛

(∫
ℝ𝑛

𝑒−𝑖𝑞⋅(𝑥−𝑦)𝑑𝑞
)
𝑒𝑖𝜉⋅𝑝𝑓

(
𝑦+

𝑝

2

)
𝑔
(
𝑦− 𝑝

2

)
𝑑𝑦𝑑𝑝

=(2𝜋)−𝑛
∫
ℝ𝑛

𝑒−𝑖𝜉⋅𝑝
(∫

ℝ𝑛

𝛿(𝑥−𝑦)𝑓
(
𝑦+

𝑝

2

)
𝑔
(
𝑥− 𝑝

2

)
𝑑𝑦

)
𝑑𝑝

=(2𝜋)−𝑛/2
∫
ℝ𝑛

𝑒−𝑖𝜉⋅𝑝𝑓
(
𝑥+

𝑝

2

)
𝑔
(
𝑥− 𝑝

2

)
𝑑𝑝,

where we have used the fact that

(2𝜋)−𝑛/2
∫
ℝ𝑛

𝑒𝑖𝑞⋅(𝑦−𝑥) 𝑑𝑞 = 𝛿(𝑦 − 𝑥) = 𝛿(𝑥− 𝑦),

and ∫
ℝ𝑛

𝛿(𝑥− 𝑦)𝑓(𝑦) 𝑑𝑦 = 𝑓(𝑥),

where 𝛿 is the Dirac delta. □
An important theorem involving Wigner transforms is the Moyal identity.

Theorem 5.3 (Moyal Identity). For all functions 𝑓1, 𝑓2, 𝑔1 and 𝑔2 in 𝐿2(ℝ𝑛),

(𝑊 (𝑓1, 𝑔1),𝑊 (𝑓2, 𝑔2)) = (𝑓1, 𝑓2)(𝑔1, 𝑔2).

Proof. By Plancherel’s theorem, we have

(𝑊 (𝑓1, 𝑔1), 𝑊 (𝑓2, 𝑔2)) = (𝑉 (𝑓1, 𝑔1)
∧, 𝑉 (𝑓2, 𝑔2)∧)

=

∫
ℝ𝑛

∫
ℝ𝑛

𝑓1

(
𝑥+

𝑝

2

)
𝑔1

(
𝑥− 𝑝

2

)
𝑓2

(
𝑥+

𝑝

2

)
𝑔2

(
𝑥− 𝑝

2

)
𝑑𝑥 𝑑𝑝

=

∫
ℝ𝑛

∫
ℝ𝑛

𝑓1(𝑢)𝑔1(𝑣)𝑓2(𝑢)𝑔2(𝑣) 𝑑𝑢 𝑑𝑣

= (𝑓1, 𝑓2)(𝑔1, 𝑔2),

where we have used the change of variables 𝑢 = 𝑥+ 𝑝
2 and 𝑣 = 𝑥− 𝑝

2 . □

Definition 5.4. Let 𝜎 ∈ 𝐿2(ℝ𝑛×ℝ𝑛). Then for all functions 𝑓 in 𝐿2(ℝ𝑛), the Weyl
transform 𝑊𝜎𝑓 of 𝑓 with symbol 𝜎 is given by

(𝑊𝜎𝑓, 𝑔) = (2𝜋)−𝑛/2
∫
ℝ𝑛

∫
ℝ𝑛

𝜎(𝑥, 𝜉)𝑊 (𝑓, 𝑔)(𝑥, 𝜉)𝑑𝑥 𝑑𝜉, 𝑔 ∈ 𝐿2(ℝ𝑛).
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In fact, by the adjoint formula, we have

(𝑊𝜎𝑓, 𝑔) = (2𝜋)−𝑛/2
∫
ℝ𝑛

∫
ℝ𝑛

𝜎(𝑞, 𝑝)𝑉 (𝑓, 𝑔)∧(𝑞, 𝑝) 𝑑𝑞 𝑑𝑝

= (2𝜋)−𝑛/2
∫
ℝ𝑛

∫
ℝ𝑛

�̂�(𝑞, 𝑝)𝑉 (𝑓, 𝑔)(𝑞, 𝑝) 𝑑𝑞 𝑑𝑝

= (2𝜋)−𝑛
∫
ℝ𝑛

∫
ℝ𝑛

�̂�(𝑞, 𝑝)(𝜌(𝑞, 𝑝)𝑓, 𝑔) 𝑑𝑞 𝑑𝑝,

and hence

𝑊𝜎𝑓 = (2𝜋)−𝑛
∫
ℝ𝑛

∫
ℝ𝑛

�̂�(𝑞, 𝑝)𝜌(𝑞, 𝑝)𝑓 𝑑𝑞 𝑑𝑝.

We also need a simple fact on the Wigner transform.

Theorem 5.5. Let 𝑓 and 𝑔 be in 𝐿2(ℝ𝑛). Then

𝑊 (𝑔, 𝑓) = 𝑊 (𝑓, 𝑔).

Now, we introduce a theorem that plays a crucial role in the construction
of the heat kernels of the twisted Laplacians in the next section. It is a result of
Grossmann, Loupias and Stein in [10].

Theorem 5.6. Let 𝜎 and 𝜏 be in 𝐿2(ℝ𝑛 × ℝ𝑛). Then we have

𝑊𝜎𝑊𝜏 = 𝑊𝜔, where �̂� = (2𝜋)−𝑛�̂� ∗1/4 𝜏.
Proof. Let 𝑧 = (𝑞, 𝑝) ∈ ℂ. Then by the previous theorem, we have

(𝑊𝜎𝑓, 𝑔) = (2𝜋)−𝑛
∫
ℝ𝑛

𝑔(𝑥)

(∫
ℂ𝑛

�̂�(𝑧)(𝜌(𝑧)𝑓)(𝑥) 𝑑𝑧

)
𝑑𝑥.

Then for all 𝑥 in ℝ𝑛,

(𝑊𝜎(𝑊𝜏𝑓))(𝑥) = (2𝜋)−𝑛
∫
ℂ𝑛

�̂�(𝑧)(𝜌(𝑧)𝑊𝜏𝑓)(𝑥) 𝑑𝑧.

Since

(𝜌(𝑧)𝑊𝜏𝑓)(𝑥) = 𝑒𝑖𝑞⋅𝑥+
1
2 𝑖𝑞⋅𝑝(2𝜋)−𝑛

∫
ℂ

𝜏 (𝑤)(𝜌(𝑤)𝑓)(𝑥 + 𝑝) 𝑑𝑤

= (2𝜋)−𝑛
∫
ℂ𝑛

𝜏(𝑤)(𝜌(𝑧)𝜌(𝑤)𝑓)(𝑥) 𝑑𝑤

= (2𝜋)−𝑛
∫
ℂ𝑛

𝜏(𝑤)(𝜌(𝑧 + 𝑤)𝑒
1
4 𝑖[𝑧,𝑤]𝑓)(𝑥) 𝑑𝑤,

where we have used
𝜌(𝑧)𝜌(𝑤) = 𝜌(𝑧 + 𝑤)𝑒

1
4 𝑖[𝑧,𝑤].

We have for all 𝑥 in ℝ𝑛,

(𝑊𝜎(𝑊𝜏𝑓))(𝑥) = (2𝜋)−2𝑛
∫
ℂ𝑛

�̂�(𝑧)

(∫
ℂ𝑛

𝜏 (𝑤)(𝜌(𝑧 + 𝑤)𝑒
1
4 𝑖[𝑧,𝑤]𝑓)(𝑥) 𝑑𝑤

)
𝑑𝑧

= (2𝜋)−2𝑛
∫
ℂ𝑛

𝜌(𝜁)𝑓(𝑥)

∫
ℂ𝑛

�̂�(𝜁 − 𝑤)𝜏 (𝑤)𝑒
1
4 𝑖[𝜁−𝑤,𝑤]𝑑𝑤 𝑑𝑧,
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where we have introduced a change of variable 𝑧 = 𝜁 −𝑤. Since [𝑤,𝑤] = 0, we let

�̂�(𝜁) = (2𝜋)−𝑛
∫
ℂ𝑛

�̂�(𝜁 − 𝑤)𝜏 (𝑤)𝑒
1
4 𝑖[𝜁−𝑤,𝑤] 𝑑𝑤, 𝜁 ∈ ℂ,

to obtain �̂� = (2𝜋)−𝑛�̂� ∗1/4 𝜏 . □

Now, we give the proof of Theorem 4.1 mentioned in the last section.

Proof of Theorem 4.1. By the Moyal identity for the Fourier–Wigner transform
and the Plancherel theorem, we get for all nonnegative integers 𝑗1, 𝑗2, 𝑘1 and 𝑘2,

(𝑒𝑗1,𝑘1 , 𝑒𝑗2,𝑘2) = (𝑉 (𝑒𝑗1 , 𝑒𝑘1), 𝑉 (𝑒𝑗2 , 𝑒𝑘2))

= (𝑒𝑗1 , 𝑒𝑗2)(𝑒𝑘1 , 𝑒𝑘2) = 0

unless 𝑗1 = 𝑗2 and 𝑘1 = 𝑘2; and if 𝑗1 = 𝑗2 and 𝑘1 = 𝑘2, we have

(𝑒𝑗1,𝑘1 , 𝑒𝑗2,𝑘2) = 1.

So, the set {𝑒𝑗,𝑘 : 𝑗, 𝑘 = 0, 1, 2, . . .} is an orthonormal set in 𝐿2(ℝ2). Secondly, we
show that if 𝑓 ∈ 𝐿2(ℝ2) is such that (𝑓, 𝑒𝑗,𝑘) = 0, for 𝑗, 𝑘 = 0, 1, 2, . . . , then 𝑓 = 0
almost everywhere on ℝ2. We let 𝑔 ∈ 𝐿2(ℝ2) be such that 𝑔 = 𝑓 . Then, by the
previous step, we have

(𝑊𝑔𝑒𝑗, 𝑒𝑘) = (2𝜋)−1/2
∫ ∞

−∞

∫ ∞

−∞
𝑔(𝑥, 𝜉)𝑊 (𝑒𝑗 , 𝑒𝑘)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉

= (2𝜋)−1/2
∫ ∞

−∞

∫ ∞

−∞
𝑓(𝑞, 𝑝)𝑉 (𝑒𝑗 , 𝑒𝑘)(𝑞, 𝑝) 𝑑𝑞 𝑑𝑝

= (2𝜋)−1/2
∫ ∞

−∞

∫ ∞

−∞
𝑓(𝑞, 𝑝)𝑒𝑗,𝑘(𝑞, 𝑝) 𝑑𝑞 𝑑𝑝 = 0

for 𝑗, 𝑘 = 0, 1, 2, . . . . Then

𝑊𝑔𝑒𝑗 = 0, 𝑗 = 0, 1, 2, . . . .

Now, let ℎ ∈ 𝐿2(ℝ) and 𝜀 be any positive number. Then we can find a finite linear
combination of the 𝑒𝑗 ’s such that∣∣∣∣∣∣∑ 𝑎𝑗𝜆𝑒𝑗𝜆 − ℎ

∣∣∣∣∣∣ < 𝜖.

So,

∥𝑊𝑔ℎ∥ ≤
∥∥∥𝑊𝑔

(
ℎ−

∑
𝑎𝑗𝜆𝑒𝑗𝜆

)∥∥∥+ ∥∥∥𝑊𝑔

(∑
𝑎𝑗𝜆𝑒𝑗𝜆

)∥∥∥ ≤ 𝜀∣∣𝑊𝑔∣∣∗,
where ∥𝑊𝑔∥∗ is the norm of 𝑊𝑔. Since 𝜀 is arbitrary, it follows that

𝑊𝑔ℎ = 0, ℎ ∈ 𝐿2(ℝ).

But then for all ℎ in 𝐿2(ℝ),

(𝑊𝑔ℎ)(𝑥) = (2𝜋)−1
∫
ℂ

𝑔(𝑞, 𝑝)(𝜌(𝑞, 𝑝)ℎ)(𝑥) 𝑑𝑞 𝑑𝑝

= (2𝜋)−1
∫
ℂ

𝑔(𝑞, 𝑝)𝑒𝑖𝑞𝑥+
1
2 𝑖𝑞𝑝ℎ(𝑥 + 𝑝) 𝑑𝑞 𝑑𝑝 = 0, 𝑥 ∈ ℝ.
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Let 𝑝′ = 𝑥+ 𝑝. Then

(𝑊𝑔ℎ)(𝑥) = (2𝜋)−1
∫ ∞

−∞
ℎ(𝑝′)

(∫ ∞

−∞
𝑔(𝑞, 𝑝′ − 𝑥)𝑒𝑖𝑞𝑥+

1
2 𝑖𝑞(𝑝

′−𝑥)𝑑𝑞
)
𝑑𝑝′ = 0, 𝑥 ∈ ℝ.

Therefore for almost all 𝑥 and 𝑝′ in ℝ,

(2𝜋)−1/2
∫ ∞

−∞
𝑔(𝑞, 𝑝′ − 𝑥)𝑒𝑖𝑞𝑥+

1
2 𝑖𝑞(𝑝

′−𝑥)𝑑𝑞 = 0.

So, by the Fourier inversion formula, we have for almost all 𝑥 and 𝑝′ in ℝ,

(ℱ2𝑔)
(
1

2
𝑝′ +

1

2
𝑥, 𝑝′ − 𝑥

)
= 0,

where ℱ2 denotes the Fourier transform with respect to the second variable. So,
𝑔 = 0 and the proof is complete. □

6. Heat kernels of twisted Laplacians and the sub-Laplacian on ℍ
As our aim is to first compute the heat kernel of the twisted Laplacian 𝐿𝜏 , we
need Theorem 5.6 that enables us to do so.

Theorem 6.1. For all nonnegative integers 𝛼, 𝛽, 𝜇 and 𝜈,

𝑒𝛼,𝛽 ∗1/4 𝑒𝜇,𝜈 = (2𝜋)1/2𝛿𝛽,𝜇𝑒𝛼,𝜈,

where

𝛿𝛽,𝜇 =

{
1, 𝛽 = 𝜇.

0, 𝛽 ∕= 𝜇.

Proof. Let 𝜑, 𝜓 ∈ 𝒮. Then by the definition of the Weyl transform and the Moyal
identity,

(𝑊𝑒𝛼,𝛽𝜑, 𝜓) = (2𝜋)−1/2
∫
ℂ

𝑒𝛼,𝛽(𝑧)𝑊 (𝜑, 𝜓)(𝑧)𝑑𝑧

= (2𝜋)−1/2
∫
ℂ

𝑊 (𝑒𝛽 , 𝑒𝛼)(𝑧)𝑊 (𝜑, 𝜓)(𝑧)𝑑𝑧

= (2𝜋)−1/2(𝑊 (𝜑, 𝜓),𝑊 (𝑒𝛽 , 𝑒𝛼))

= (2𝜋)−1/2(𝜑, 𝑒𝛽)(𝜓, 𝑒𝛼)

= (2𝜋)−1/2(𝜑, 𝑒𝛽)(𝑒𝛼, 𝜓).

Hence for all 𝜑 in 𝒮,
𝑊𝑒𝛼,𝛽𝜑 = (2𝜋)−1/2(𝜑, 𝑒𝛽)𝑒𝛼

and therefore

𝑊𝑒𝛼,𝛽𝑊𝑒𝜇,𝜈𝜑 = (2𝜋)−1/2(𝑊𝑒𝜇,𝜈𝜑, 𝑒𝛽)𝑒𝛼

= (2𝜋)−1(𝜑, 𝑒𝜈)(𝑒𝜇, 𝑒𝛽)𝑒𝛼

= (2𝜋)−1/2𝑊𝛿𝜇,𝛽𝑒𝛼,𝜈𝜑.
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By the Weyl calculus in the Theorem 5.6, we have

𝑊𝑒𝛼,𝛽𝑊𝑒𝜇,𝜈 = 𝑊𝜔,

where
�̂� = (2𝜋)−1𝑒𝛼,𝛽 ∗1/4 𝑒𝜇,𝜈 .

Since
𝜔 = (2𝜋)−1/2𝛿𝜇,𝛽𝑒𝛼,𝜈 ,

we have

�̂� = (2𝜋)−1/2𝛿𝜇,𝛽𝑒𝛼,𝜈 .
So,

𝛿𝜇,𝛽𝑒𝛼,𝜈 = (2𝜋)−1/2𝑒𝛼,𝛽 ∗−1/4 𝑒𝜇,𝜈 . □

The preceding theorem gives us the following more general theorem.

Theorem 6.2. For 𝜏 ∈ ℝ be such that 𝜏 ∕= 0. Then for all nonnegative integers
𝛼, 𝛽, 𝜇 and 𝜈,

𝑒𝜏𝛼,𝛽 ∗𝜏/4 𝑒𝜏𝜇,𝜈 = (2𝜋)1/2∣𝜏 ∣−1/2𝛿𝛽,𝜇𝑒𝜏𝛼,𝜈 ,
where 𝛿𝛽,𝜇 is the Kronecker delta.

Proof. We have

(𝑒𝜏𝛼,𝛽 ∗𝜏/4 𝑒𝜏𝜇,𝜈)(𝑧) =
∫
ℂ

𝑒𝜏𝛼,𝛽(𝑧 − 𝑤)𝑒𝜏𝜇,𝜈(𝑤)𝑒
𝑖 𝜏4 [𝑧,𝑤] 𝑑𝑤

= ∣𝜏 ∣
∫
ℝ2

𝑒𝛼,𝛽

(
𝜏√∣𝜏 ∣ (𝑞 − 𝑥),

√
∣𝜏 ∣(𝑝− 𝜉)

)

× 𝑒𝜇,𝜈

(
𝜏√∣𝜏 ∣ (𝑞 − 𝑥),

√
∣𝜏 ∣(𝑝− 𝜉)

)
𝑒𝑖

𝜏
4 [𝑧,𝑤] 𝑑𝑥 𝑑𝜉.

Let 𝑞′ = 𝜏√
∣𝜏 ∣𝑥 and 𝑝′ =

√∣𝜏 ∣𝜉. Then for all 𝑞 and 𝑝 in ℝ,

(𝑒𝜏𝛼,𝛽 ∗𝜏/4 𝑒𝜏𝜇,𝜈)(𝑞, 𝑝) =
∫
ℝ2

𝑒𝛼,𝛽

(
𝜏√∣𝜏 ∣𝑞 − 𝑞′,

√
∣𝜏 ∣𝑝− 𝑝′

)

× 𝑒𝜇,𝜈(𝑞
′, 𝑝′)𝑒

𝑖𝜏
2

(√
∣𝜏∣
𝜏 𝑞′𝑝− 1√

∣𝜏∣𝑝
′𝑞
)
𝑑𝑞′ 𝑑𝑝′

= (𝑒𝛼,𝛽 ∗1/4 𝑒𝜇,𝜈)
(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)

= (2𝜋)1/2∣𝜏 ∣1/2𝛿𝛽,𝜇𝑒𝛼,𝜈
(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)
. □

Theorem 6.3. Let 𝜏 ∈ ℝ such that 𝜏 ∕= 0. Then for 𝑗, 𝑘 = 0, 1, 2, . . . ,

𝐿𝜏𝑒
𝜏
𝑗,𝑘 = (2𝑘 + 1)∣𝜏 ∣𝑒𝜏𝑗,𝑘.
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In order to prove the theorem, we need a lemma.

Lemma 6.4. Let 𝑥 = 𝑞 𝜏√
∣𝜏 ∣ and 𝑦 = 𝑝

√∣𝜏 ∣. Then

𝐿(𝑞,𝑝)𝜏 = ∣𝜏 ∣𝐿(𝑥,𝑦).
Proof. We have

∂

∂𝑞
=

∂

∂𝑥

𝜏√∣𝜏 ∣ , ∂

∂𝑝
=

∂

∂𝑦

√
∣𝜏 ∣.

So,

∂2

∂𝑞2
=

∂2

∂𝑥2
∣𝜏 ∣, ∂2

∂𝑝2
=

∂2

∂𝑦2
∣𝜏 ∣.

Therefore

𝐿(𝑞,𝑝)𝜏 = −Δ+
1

4
(𝑞2 + 𝑝2)𝜏2 − 𝑖

(
𝑞
∂

∂𝑝
− 𝑝

∂

∂𝑞

)
𝜏

= ∣𝜏 ∣Δ+ ∣𝜏 ∣1
4
(𝑥2 + 𝑦2)− 𝑖∣𝜏 ∣

(
𝑥
∂

∂𝑦
− 𝑦

∂

∂𝑥

)
= ∣𝜏 ∣𝐿(𝑥,𝑦). □

Proof of Theorem 6.3. The case when 𝜏 = 1 is proved in [18]. Now, by Theorem
4.2 and Lemma 6.4, we get

(𝐿𝜏𝑒
𝜏
𝑗,𝑘)(𝑞, 𝑝) = 𝐿𝜏 ∣𝜏 ∣1/2𝑒𝑗,𝑘

(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)

= ∣𝜏 ∣𝐿∣𝜏 ∣1/2𝑒𝑗,𝑘(𝑥, 𝑦)
= ∣𝜏 ∣∣𝜏 ∣1/2𝑒𝑗,𝑘(𝑥, 𝑦)

= (2𝑘 + 1)∣𝜏 ∣∣𝜏 ∣1/2𝑒𝑗,𝑘
(
𝑞

𝜏√∣𝜏 ∣ ,√∣𝜏 ∣
)

= (2𝑘 + 1)∣𝜏 ∣𝑒𝜏𝑗,𝑘(𝑞, 𝑝)
for all 𝑞 and 𝑝 in ℝ. □

By Theorem 6.3 and the spectral theorem, for all functions 𝑓 in 𝐿2(ℂ), we
have

𝑒−𝜌𝐿𝜏𝑓 =

∞∑
𝑘=0

∞∑
𝑗=0

𝑒−∣𝜏 ∣(2𝑘+1)𝜌(𝑓, 𝑒𝜏𝑗,𝑘)𝑒
𝜏
𝑗,𝑘, 𝜌 > 0,

and for 𝜌 > 0, we have

𝑒−𝜌𝐿𝜏 𝑓 =

∞∑
𝑘=0

𝑒−(2𝑘+1)∣𝜏 ∣𝜌
∞∑
𝑗=0

(𝑓, 𝑒𝜏𝑗,𝑘)𝑒
𝜏
𝑗,𝑘.
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To simplify the problem, we first compute the term
∑∞
𝑗=0(𝑓, 𝑒

𝜏
𝑗,𝑘)𝑒

𝜏
𝑗,𝑘. Since for

𝑘 = 0, 1, 2, . . .

𝑓 ∗𝜏/4 𝑒𝜏𝑘,𝑘 =
∞∑
𝑗=0

∞∑
𝑙=0

(𝑓, 𝑒𝜏𝑗,𝑙)𝑒
𝜏
𝑗,𝑙 ∗𝜏/4 𝑒𝜏𝑘,𝑘

=

∞∑
𝑗=0

∞∑
𝑙=0

(𝑓, 𝑒𝜏𝑗,𝑙)(2𝜋)
1/2∣𝜏 ∣−1/2𝛿𝑙,𝑘𝑒𝜏𝑗,𝑘

= (2𝜋)1/2∣𝜏 ∣−1/2
∞∑
𝑗=0

(𝑓, 𝑒𝜏𝑗,𝑘)𝑒
𝜏
𝑗,𝑘.

We have for 𝑘 = 0, 1, 2, . . . ,
∞∑
𝑗=0

(𝑓, 𝑒𝜏𝑗,𝑘)𝑒
𝜏
𝑗,𝑘 = (2𝜋)−1/2∣𝜏 ∣1/2𝑓 ∗𝜏/4 𝑒𝜏𝑘,𝑘.

Therefore

𝑒−𝜌𝐿𝜏 𝑓 = (2𝜋)−1/2∣𝜏 ∣1/2
∞∑
𝑘=0

𝑒−(2𝑘+1)∣𝜏 ∣𝜌𝑒𝜏𝑘,𝑘 ∗−𝜏/4 𝑓, 𝜌 > 0.

Now, in order to find an explicit formula for the heat kernel of the twisted
Laplacians, we need Mehler’s formula, which can be found in the book [18].

Theorem 6.5 (Mehler’s formula). For all 𝑥 and 𝑦 ∈ ℝ and all 𝑤 ∈ ℂ with ∣𝑤∣ < 1,
∞∑
𝑘=0

ℎ𝑘(𝑥)ℎ𝑘(𝑦)

2𝑘𝑘!
𝑤𝑘 = (1 − 𝑤2)−1/2𝑒−

1
2

1+𝑤2

1−𝑤2 (𝑥
2+𝑦2)+𝑥𝑦 2𝑤

1−𝑤2 ,

where the series is uniformly and absolutely convergent on the open disk {𝑤 ∈ ℂ :
∣𝑤∣ < 1}.

Finally, by applying Theorem 4.2 and Mehler’s formula, we are able to get
the formula for our 𝑒−𝜌𝐿𝜏𝑓. Indeed, for all 𝑧 = (𝑞, 𝑝) ∈ ℂ and 𝜌 > 0,

(𝑒−𝜌𝐿𝜏 𝑓)(𝑞, 𝑝) = (2𝜋)−1/2∣𝜏 ∣1/2
∞∑
𝑘=0

𝑒−(2𝑘+1)∣𝜏 ∣𝜌𝑒𝜏𝑘,𝑘(𝑞, 𝑝)

= (2𝜋)−1/2∣𝜏 ∣1/2𝑒−∣𝜏 ∣𝜌
∞∑
𝑘=0

𝑒−2𝑘∣𝜏 ∣𝜌𝑒𝑘,𝑘

(
𝑞

𝜏√∣𝜏 ∣ , 𝑝√∣𝜏 ∣
)

= (2𝜋)−1/2∣𝜏 ∣1/2𝑒−∣𝜏 ∣𝜌 1

1− 𝑒−2∣𝜏 ∣𝜌
𝑒
−∣𝜏 ∣∣𝑧∣2 1

4
1+𝑒−2∣𝜏∣𝜌
1−𝑒−2∣𝜏∣𝜌

=
1

4𝜋

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝜏 ∣∣𝑧∣2coth(𝜏𝜌).

Hence the heat kernel 𝜅𝜏𝜌, for 𝜌 > 0, of 𝐿𝜏 is given by

𝜅𝜏𝜌(𝑧, 𝑤) =
1

4𝜋

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝜏 ∣∣𝑧−𝑤∣2coth(𝜏𝜌)𝑒𝑖

𝜏
4 [𝑧,𝑤], 𝑧, 𝑤 ∈ ℂ.
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By Theorem 3.2, the heat kernel of ℒ which we denote by 𝐾𝜌 for 𝜌 > 0
satisfies

𝐾𝜏
𝜌 = (2𝜋)−1/2𝑘𝜏𝜌 , 𝜏 ∈ ℝ ∖ {0}.

where

𝑘𝜏𝜌 (𝑧) =
1

4𝜋

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝜏 ∣∣𝑧−𝑤∣2coth(𝜏𝜌), 𝑧 ∈ ℂ.

By taking the Fourier transform, we have the following theorem that gives
the formula for the heat kernel 𝐾𝜌, 𝜌 > 0, of the sub-Laplacian ℒ on ℍ.

Theorem 6.6. For 𝜌 > 0, and 𝜏 ∈ ℝ such that 𝜏 ∕= 0,

𝐾𝜌(𝑧, 𝑡) =
1

8𝜋2

∫ ∞

−∞
𝑒−𝑖𝑡𝜏

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝜏 ∣∣𝑧∣2coth(𝜏𝜌)𝑑𝜏, (𝑧, 𝑡) ∈ ℍ.

7. The Green functions for the twisted Laplacians and
the sub-Laplacian on ℍ

The Green function 𝐺𝜏 of 𝐿𝜏 is the kernel of the integral operator representing
𝐿−1𝜏 , which can be obtained by integrating the heat kernel of the twisted Laplacian
𝐿𝜏 from 0 to ∞ with respect to time 𝜌. Then we get

𝐺𝜏 (𝑧, 𝑤) =
1

4𝜋

(∫ ∞

0

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝜏 ∣∣𝑧−𝑤∣2coth(𝜏𝜌)

)
𝑑𝜌 𝑒−

𝑖
4 𝜏 [𝑧,𝑤]

=
1

4𝜋

(∫ ∞

0

1

(𝑣2 − 1)1/2
𝑒−

1
4 ∣𝜏 ∣∣𝑧−𝑤∣2𝑣2 𝑑𝑣

)
𝑒−

𝑖
4 𝜏 [𝑧,𝑤]

=
1

4
𝐾0

(
1

4
∣𝜏 ∣∣𝑧 − 𝑤∣2

)
𝑒−

𝑖
4 𝜏 [𝑧,𝑤],

where the change of variable 𝑣 = coth(𝜌𝜏) is used, and 𝐾0 is the modified Bessel
function of order 0 given by

𝐾0(𝑥) =

∫ ∞

0

𝑒−𝑥 cosh 𝛿 𝑑𝛿, 𝑥 > 0.

Similarly, the Green function 𝒢 of the sub-Laplacian ℒ is the kernel of the
integral operator representing ℒ−1. And it can be computed by integrating the
heat kernel of ℒ with respect to time 𝜌 from 0 to ∞. More explicitly,

𝒢(𝑧, 𝑤) = 1

8𝜋2

∫ ∞

0

∫ ∞

−∞
𝑒−𝑖𝑡𝜏

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝑧∣2coth(𝜏𝜌) 𝑑𝜏 𝑑𝜌

=
1

8𝜋2

∫ ∞

−∞
𝑒−𝑖𝑡𝜏

∫ ∞

0

𝜏

sinh(𝜏𝜌)
𝑒−

1
4 ∣𝜏 ∣∣𝑧∣2coth(𝜏𝜌) 𝑑𝜌 𝑑𝜏

=
1

8𝜋2

∫ ∞

−∞

∫ ∞

0

1

(𝑣2 − 1)1/2
𝑒−

1
4 ∣𝜏 ∣∣𝑧−𝑤∣2𝑣2 𝑑𝑣 𝑑𝜏

=
1

8𝜋2

∫ ∞

−∞
𝑒−𝑖𝑡𝜏𝐾0

(
1

4
∣𝜏 ∣∣𝑧∣2

)
𝑑𝜏 =

1

8𝜋2

∫ ∞

0

∫ ∞

−∞
𝑒𝑖𝑡𝜏𝑒−

1
4 ∣𝜏 ∣∣𝑧∣2cosh𝛿 𝑑𝜏 𝑑𝛿.
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For all 𝑧 in ℂ and 𝑡 in ℝ,∫ ∞

−∞
𝑒−𝑖𝑡𝜏𝑒−

1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿 𝑑𝜏 =

∫ 0

−∞
𝑒−𝑖𝑡𝜏𝑒

1
4 𝜏 ∣𝑧∣2cosh 𝛿𝑑𝜏 +

∫ ∞

0

𝑒−𝑖𝑡𝜏𝑒−
1
4 𝜏 ∣𝑧∣2cosh 𝛿 𝑑𝜏

=
𝑒𝜏(

1
4 ∣𝑧∣2cosh𝛿−𝑖𝑡)

1
4 ∣𝑧∣2cosh𝛿 − 𝑖𝑡

∣∣∣∣∣
0

−∞
+

𝑒−𝜏(
1
4 ∣𝑧∣2cosh 𝛿+𝑖𝑡)

1
4 ∣𝑧∣2cosh 𝛿 + 𝑖𝑡

∣∣∣∣∣
∞

0

=
1
2 ∣𝑧∣2cosh 𝛿

(∣𝑧∣4/16)cosh2𝛿 + 𝑡2
.

So, for all 𝑧 in ℂ and 𝑡 in ℝ,∫ ∞

0

∫ ∞

−∞
𝑒−𝑖𝑡𝜏𝑒−

1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿𝑑𝜏 𝑑𝛿 =

∫ ∞

0

1
2 ∣𝑧∣2cosh 𝛿

(∣𝑧∣4/16)cosh2𝛿 + 𝑡2
𝑑𝛿

=
∣𝑧∣2
2

∫ ∞

0

cosh 𝛿

(∣𝑧∣4/16)cosh2𝛿 + 𝑡2
𝑑𝛿

=
8

∣𝑧∣2
∫ ∞

0

cosh 𝛿

cosh2𝛿 + (16𝑡2/∣𝑧∣4) 𝑑𝛿

=
8

∣𝑧∣2
∫ ∞

0

1

𝜌2 + 1 + (16𝑡2/∣𝑧∣4) 𝑑𝜌

=
4𝜋

∣𝑧∣2
1√

1 + (16𝑡2/∣𝑧∣4)
=

4𝜋√∣𝑧∣4 + 16𝑡2
.

Hence

𝒢(𝑧, 𝑡) = 1

8𝜋2
∣𝑧∣2 1√

1 + (16𝑡2/∣𝑧∣4) =
1

2𝜋

1√∣𝑧∣4 + 16𝑡2

for all (𝑧, 𝑡) in ℍ.
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Abstract. We use a metaplectic operator to prove that the hierarchical twisted
Laplacian 𝐿𝑚 is unitarily equivalent to the tensor product of the one-dimen-
sional Hermite operator and the identity operator on 𝐿2(ℝ𝑚+1), and we
use this unitary equivalence to show that 𝐿𝑚 is globally hypoelliptic in the
Schwartz space and in the Gelfand–Shilov spaces.
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1. Introduction

For all 𝑥 ∈ ℝ and all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚, let

𝑧 = 𝑥+ 𝑖𝑠(𝑣),

where 𝑠(𝑣) = 𝑣1+𝑣2+ ⋅ ⋅ ⋅+𝑣𝑚. Then we let
∂
∂𝑧 and

∂
∂𝑧 be linear partial differential

operators on ℝ𝑚+1 defined by

∂

∂𝑧
=

∂

∂𝑥
− 𝑖

𝑚∑
𝑙=1

∂

∂𝑣𝑙
+

𝑖

2

(
1− 1

𝑚

)
𝑠(𝑣),

and

∂

∂𝑧
=

∂

∂𝑥
+ 𝑖

𝑚∑
𝑙=1

∂

∂𝑣𝑙
+

𝑖

2

(
1− 1

𝑚

)
𝑠(𝑣).

Then the hierarchical twisted Laplacian 𝐿𝑚 is defined on ℝ𝑚+1 by

𝐿𝑚 = −1

2
(𝑍𝑍 + 𝑍𝑍),

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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where

𝑍 =
∂

∂𝑧
+

1

2
𝑧 and 𝑍 =

∂

∂𝑧
− 1

2
𝑧.

By an easy calculation, we see that 𝐿𝑚 is the linear partial differential operator
on ℝ𝑚+1 given by

𝐿𝑚 = −
⎛⎝ ∂2

∂𝑥2
+

𝑚∑
𝑗,𝑙=1

∂2

∂𝑣𝑗∂𝑣𝑙

⎞⎠+
1

4

(
𝑥2 +

𝑠(𝑣)2

𝑚2

)
− 𝑖

⎛⎝𝑠(𝑣)

𝑚

∂

∂𝑥
− 𝑥

𝑚∑
𝑗=1

∂

∂𝑣𝑗

⎞⎠ .

In the case when 𝑚 = 1, 𝐿1 is a linear partial differential operator on ℝ2 and has
the form

𝐿1 = −Δ+
1

4
(𝑥2 + 𝑣21)− 𝑖

(
𝑣1

∂

∂𝑥
− 𝑥

∂

∂𝑣1

)
,

which is the ordinary twisted Laplacian and we denote it by 𝐿. It is a perturbation
of the Hermite operator by a rotation operator.

The twisted Laplacian 𝐿 comes up as the quantum-mechanical Hamiltonian of
the motion of an electron in the infinite two-dimensional plane under the influence
of a constant magnetic field perpendicular to the plane. The eigenvalues of the
system are known as Landau levels and the corresponding eigenfunctions are the
Wigner transforms of Hermite functions. The twisted Laplacian has been studied
extensively in, e.g., [4, 5, 6, 7, 11, 12, 13, 14, 16, 17, 18].

The twisted Laplacian 𝐿 can in fact be obtained from the sub-Laplacian on
the one-dimensional Heisenberg group ℂ×ℝ by taking the Fourier transform with
respect to the center, and is hence a linear partial differential operator on ℝ2.
Higher-dimensional twisted Laplacians on ℝ2𝑛 can be obtained similarly using the
𝑛-dimensional Heisenberg group ℂ𝑛×ℝ. Therefore the twisted Laplacian is defined
on even-dimensional Euclidean spaces. The hierarchical twisted Laplacian 𝐿𝑚 on
ℝ𝑚+1 can be seen as a twisted Laplacian on ℝ𝑛, where the dimension 𝑛 can now
be even or odd with 𝑛 > 1.

The ordinary twisted Laplacian is well known to be elliptic, but not globally
elliptic in the sense of Shubin defined in Section 25 of [10]. By explicit formulas
of the heat kernel and the Green function of 𝐿, it is shown in [18] by Wong that
𝐿 is globally hypoelliptic in the Schwartz space 𝒮(ℝ2) and in [4] by Dasgupta
and Wong that 𝐿 is globally hypoelliptic in Gelfand–Shilov spaces. In [7], the
global hypoellipticity of the twisted Laplacian is recaptured using the fact that 𝐿
is unitarily equivalent to a tensor product of the ordinary Hermite operator and
the identity operator.

The hierarchical twisted Laplacian 𝐿𝑚 can be written in the form

𝐿𝑚 =

(
𝐷𝑥 − 1

2𝑚
𝑠(𝑣)

)2
+

⎛⎝ 𝑚∑
𝑗=1

𝐷𝑣𝑗 +
1

2
𝑥

⎞⎠2

. (1.1)
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Its symbol is given by

𝜎𝑚(𝑥, 𝑣; 𝜉, 𝜂) =

(
𝜉 − 1

2𝑚
𝑠(𝑣)

)2
+

⎛⎝ 𝑚∑
𝑗=1

𝜂𝑗 +
1

2
𝑥

⎞⎠2

,

for all 𝑥, 𝜉 ∈ ℝ and 𝑣, 𝜂 ∈ ℝ𝑚. Thus, 𝐿𝑚 is not globally elliptic, in the sense that
we cannot find positive constants 𝐶 and 𝑅 such that

∣𝜎𝑚(𝑥, 𝑣; 𝜉, 𝜂)∣ ≥ 𝐶

⎛⎝1 + 𝑥2 + 𝜉2 +
𝑚∑
𝑗=1

𝑣2𝑗 +
𝑚∑
𝑗=1

𝜂2

⎞⎠
whenever

𝑥2 + 𝜉2 +
𝑚∑
𝑗=1

𝑣2𝑗 +
𝑚∑
𝑗=1

𝜂2𝑗 ≥ 𝑅.

In fact, it is not even elliptic.
The aim of this paper is to establish a unitary equivalence between the hi-

erarchical twisted Laplacian 𝐿𝑚 and the tensor product of the one-dimensional
Hermite operator with the identity operator on ℝ𝑚. An immediate application of
this unitary equivalence to the global hypoellipticity of the hierarchical twisted
Laplacian is given.

In Section 2, we recall some of the definitions and results of the hierarchical
twisted Laplacian from [9] that we need in this paper. In Section 3, we prove that
the hierarchical twisted Laplacian 𝐿𝑚 is unitarily equivalent to the tensor product
of the one-dimensional Hermite operator with the identity on ℝ𝑚. Then in Section
4, we prove the global hypoellipticity of 𝐿𝑚 using the global hypoellipticity of the
Hermite operator.

2. Hierarchical Wigner transforms

Let 𝑓 ∈ 𝒮(ℝ𝑚). Then for all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚 and 𝑤 ∈ ℝ, we define the
function 𝜌(𝑤, 𝑣)𝑓 on ℝ by

(𝜌(𝑤, 𝑣)𝑓)(𝑥) = 𝑒𝑖𝑤⋅𝑥+
1

2𝑚 𝑖𝑤⋅∣𝑣∣𝑓(𝑥⊕ 𝑣), 𝑥 ∈ ℝ,

where

𝑥⊕ 𝑣 = (𝑥+ 𝑣1, 𝑥+ 𝑣2, . . . , 𝑥+ 𝑣𝑚).

Now, we can define the hierarchical Fourier–Wigner transform 𝑉 (𝑓, 𝑔) of two func-
tions 𝑓 ∈ 𝒮(ℝ𝑚) and 𝑔 ∈ 𝒮(ℝ) by

𝑉 (𝑓, 𝑔)(𝑤, 𝑣) = (2𝜋)−𝑚/2(𝜌(𝑤, 𝑣)𝑓, 𝑔)𝐿2(ℝ)

for all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) in ℝ𝑚 and 𝑤 in ℝ.
The following integral representation of hierarchical Fourier–Wigner trans-

forms can be derived from the corresponding integral representation of multilinear
Fourier–Wigner transforms in [3] using a density argument with tensor products.
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Proposition 2.1. Let 𝑓 ∈ 𝒮(ℝ𝑚) and let 𝑔 ∈ 𝒮(ℝ). Then

𝑉 (𝑓, 𝑔)(𝑤, 𝑣) = (2𝜋)−𝑚/2
∫
ℝ

𝑒𝑖𝑦⋅𝑤𝑓
((

𝑦 − 1

2𝑚
𝑠(𝑣)

)
⊕ 𝑣

)
𝑔

(
𝑦 − 1

2𝑚
𝑠(𝑣)

)
𝑑𝑦

for all 𝑤 in ℝ and all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) in ℝ𝑚.

The hierarchical Wigner transform 𝑊 (𝑓, 𝑔) of 𝑓 in 𝒮(ℝ𝑚) and 𝑔 in 𝒮(ℝ) is
defined by

𝑊 (𝑓, 𝑔) = 𝑉 (𝑓, 𝑔)∧,

where 𝑉 (𝑓, 𝑔)∧, also denoted by ℱ𝑉 (𝑓, 𝑔), is the Fourier transform of 𝑉 (𝑓, 𝑔).

For 𝑘 = 0, 1, 2, . . . , the Hermite function 𝑒𝑘 of order 𝑘 is the function on ℝ
defined by

𝑒𝑘(𝑥) =
1

(2𝑘𝑘!
√
𝜋)1/2

𝑒−𝑥
2/2𝐻𝑘(𝑥)

for all 𝑥 in ℝ, where 𝐻𝑘 is the Hermite polynomial of degree 𝑘 given by

𝐻𝑘(𝑥) = (−1)𝑘𝑒𝑥2

(
𝑑

𝑑𝑥

)𝑘
(𝑒−𝑥

2

)

for all 𝑥 in ℝ.
For all nonnegative integers 𝑗1, 𝑗2, . . . , 𝑗𝑚 and 𝑘, we define the function

𝑒𝑗1,...,𝑗𝑚,𝑘 on ℝ𝑚+1 by

𝑒𝑗1,...,𝑗𝑚,𝑘 = 𝑉 (𝑒𝑗1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑒𝑗𝑚 , 𝑒𝑘).

So,

𝑒𝑗1,...,𝑗𝑚,𝑘(𝜉, 𝑣) = (2𝜋)−𝑚/2
∫
ℝ

𝑒𝑖𝑦𝜉
𝑚∏
𝑙=1

𝑒𝑗𝑙

(
𝑦 + 𝑣𝑙 − 1

2𝑚
𝑠(𝑣)

)
𝑒𝑘

(
𝑦 − 1

2𝑚
𝑠(𝑣)

)
𝑑𝑦

for all 𝜉 ∈ ℝ and 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚. It is obvious that when 𝑚 = 1, we get
back the classical Fourier–Wigner transform of Hermite functions.

Proposition 2.2. {𝑒𝑗1,...,𝑗𝑚,𝑘 : 𝑗1, . . . , 𝑗𝑚, 𝑘 = 0, 1, 2, . . .} is an orthonormal basis
for 𝐿2(ℝ𝑚+1).

For 𝑚 = 1, the results hitherto described can be found in the book [15] by
Wong.

The following theorem gives the complete spectrum of the hierarchical twisted
Laplacian. For a proof, see [9].

Theorem 2.3. For all nonnegative integers 𝑗1, 𝑗2, . . . , 𝑗𝑚 and 𝑘,

𝐿𝑚𝑒𝑗1,...,𝑗𝑚,𝑘 = (2𝑘 + 1)𝑒𝑗1,...,𝑗𝑚,𝑘.
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3. A unitary equivalence

We define the linear operator 𝑇 : 𝐿2(ℝ𝑚+1)→ 𝐿2(ℝ𝑚+1) by

(𝑇𝑓)(𝑦, 𝑣) = 𝑓

(
𝑦 − 1

2𝑚
𝑠(𝑣), 𝑦 + 𝑣 − 1

2𝑚
𝑠(𝑣), . . . , 𝑦 + 𝑣𝑚 − 1

2𝑚
𝑠(𝑣)

)
for all 𝑓 ∈ 𝐿2(ℝ𝑚+1), 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚 and 𝑦 ∈ ℝ. We call 𝑇 the twisting
operator on 𝐿2(ℝ𝑚+1). The following proposition is Proposition 3.2 in [9].

Proposition 3.1. 𝑇 : 𝐿2(ℝ𝑚+1)→ 𝐿2(ℝ𝑚+1) is a unitary operator and

(𝑇−1𝑓)(𝑦, 𝑧) = 𝑓

(
1

2𝑚
𝑠(𝑧) +

1

2
𝑦, 𝑧1 − 𝑦, . . . , 𝑧𝑚 − 𝑦

)
for all 𝑓 ∈ 𝐿2(ℝ𝑚+1), 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑚) ∈ ℝ𝑚 and 𝑦 ∈ ℝ.

Let 𝐹 ∈ 𝐿2(ℝ𝑚+1). Then we define 𝐽𝐹 on ℝ𝑚+1 by

(𝐽𝐹 )(𝑤, 𝑣) = (2𝜋)−𝑚/2
∫
ℝ

𝑒𝑖𝑦𝑤(𝑇𝐹 )(𝑦, 𝑣) 𝑑𝑦 (3.1)

for all 𝑤 ∈ ℝ and 𝑣 ∈ ℝ𝑚.

Theorem 3.2. 𝐽 : 𝐿2(ℝ𝑚+1)→ 𝐿2(ℝ𝑚+1) is a bijection and

∥𝐽∥∗ = (2𝜋)(−𝑚+1)/2,

where ∥ ∥∗ in the norm in the 𝐶∗-algebra of all bounded linear operators on
𝐿2(ℝ𝑚+1). Furthermore, let 𝐺 ∈ 𝐿2(ℝ𝑚+1). Then(

𝐽−1𝐺
)
(𝑦, 𝑧) = (2𝜋)(𝑚−1)/2

∫
ℝ

𝑒−𝑖𝑡(
1

2𝑚 𝑠(𝑧)+
1
2 𝑦)𝐺(𝑡, 𝑧1 − 𝑦, . . . , 𝑧𝑚 − 𝑦) 𝑑𝑡

for all 𝑦 ∈ ℝ and 𝑧 ∈ ℝ𝑚.

Proof. Let 𝐹 ∈ 𝐿2(ℝ𝑚+1). Then by Proposition 3.1, 𝑇𝐹 ∈ 𝐿2(ℝ𝑚+1). It is easy
to see that

(𝐽𝐹 )(𝑤, 𝑣) = (2𝜋)(−𝑚+1)/2
(ℱ−1

1 𝑇𝐹
)
(𝑤, 𝑣)

for almost all 𝑤 ∈ ℝ and 𝑣 ∈ ℝ𝑚, where ℱ−1
1 𝑇𝐹 is the inverse Fourier transform

of 𝑇𝐹 with respect to the first variable. Therefore 𝐽𝐹 ∈ 𝐿2(ℝ𝑚+1). Since ℱ1 and
𝑇 are unitary operators, it follows that

∥𝐽∥∗ = (2𝜋)(−𝑚+1)/2 and 𝐽−1 = (2𝜋)(𝑚−1)/2𝑇−1ℱ1.
Therefore for all 𝐺 ∈ 𝐿2(ℝ𝑚+1), we get by Proposition 3.1

(𝐽−1𝐹 )(𝑦, 𝑧) = (2𝜋)(𝑚−1)/2
∫
ℝ

𝑒−𝑖𝑡(
1

2𝑚 𝑠(𝑧)+
1
2𝑦)𝐺(𝑡, 𝑧1 − 𝑦, . . . , 𝑧𝑚 − 𝑦) 𝑑𝑡. □

The one-dimensional Hermite operator 𝐻 on 𝐿2(ℝ) is given by

𝐻 = − 𝑑2

𝑑𝑥2
+ 𝑥2, 𝑥 ∈ ℝ.

Theorem 3.3. Let 𝐻1 = 𝐻 ⊗ 𝐼, where 𝐼 is the identity operator on ℝ𝑚. Then

𝐽𝐻1𝐽
−1 = 𝐿𝑚.
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Proof. Since
{
𝑒𝑗1,𝑗2, ..., 𝑗𝑚,𝑘 : 𝑗1, 𝑗2, . . . , 𝑗𝑚, 𝑘

}
forms an orthonormal basis for

𝐿2(ℝ𝑚+1), it follows from Theorem 2.3 that it is enough to show that

(𝐽𝐻1𝐽
−1)𝑒𝑗1,...,𝑗𝑚,𝑘 = (2𝑘 + 1)𝑒𝑗1,...,𝑗𝑚,𝑘.

By the definition of 𝐽 , we get for all nonnegative integers 𝑗1, 𝑗2, . . . , 𝑗𝑚, 𝑘,

𝐽(𝑒𝑘 ⊗ 𝑒𝑗1 ⊗ 𝑒𝑗2 ⊗ ⋅ ⋅ ⋅ 𝑒𝑗𝑚) = 𝑒𝑗1,...,𝑗𝑚,𝑘. (3.2)

On the other hand, for 𝑘 = 0, 1, 2, . . . ,

𝐻𝑒𝑘 = (2𝑘 + 1)𝑒𝑘.

Therefore

𝐻1(𝑒𝑘 ⊗ 𝑒𝑗1 ⊗ 𝑒𝑗2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑒𝑗𝑚) = (2𝑘 + 1)𝑒𝑘 ⊗ 𝑒𝑗1 ⊗ 𝑒𝑗2 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑒𝑗𝑚 . (3.3)

Hence by (3.2) and (3.3), we get for all nonnegative integers 𝑗1, 𝑗2, . . . , 𝑗𝑚, 𝑘,

𝐽𝐻1𝐽
−1𝑒𝑗1,...,𝑗𝑚,𝑘 = (2𝑘 + 1)𝑒𝑗1,...,𝑗𝑚,𝑘. □

Remark 3.4. A more general class of operators identifying 𝐿𝑚 with 𝐻1 can be
found by means of linear symplectic transformations and related metaplectic op-
erators on pages 157–159 in the book [8] by Hörmander. To be more specific,
in ℝ2(𝑚+1), regarded as a symplectic vector space with variables (𝑥, 𝑣; 𝜉, 𝜂), we
can find a linear symplectic mapping 𝑋 changing the coordinates (𝑥, 𝑣; 𝜉, 𝜂) into
(𝑦, 𝑧; 𝛾, 𝜁) such that

𝑦 = 𝜉 − 1

2𝑚
𝑠(𝑣), 𝛾 = 𝑠(𝜂) +

1

2
𝑥,

𝑧𝑗 = 𝑣𝑗 + 𝑦 = 𝑣𝑗 + 𝜉 − 1

2𝑚
𝑠(𝑣), 𝑗 = 1, 2, . . . ,𝑚,

and

𝜁𝑗 = 𝜂𝑗 − 1

2𝑚
𝑥, 𝑗 = 1, 2, . . . ,𝑚.

That this is possible is due to the fact that

{𝑦, 𝛾} = 1.

In fact, 𝑋 can be so defined as to preserve the symplectic form and we can apply
Theorem 18.5.9 in [8] to the effect that there is a unitary operator 𝐽 , uniquely
determined up to a constant factor with modulus 1, such that

𝐽−1
(
𝐷𝑥 − 1

2𝑚
𝑠(𝑣)

)
𝐽 = 𝑦 and 𝐽−1

( 𝑚∑
𝑗=1

𝐷𝑣𝑗 +
1

2
𝑥

)
𝐽 = 𝐷𝑦.

Hence by (1.1),

𝐽−1𝐿𝑚𝐽 = 𝐷2
𝑦 + 𝑦2 = 𝐻1.

The unitary operator 𝐽 in Theorems 3.2 and 3.4, which is distinguished by its
connections with the Wigner theory, is a particular case of this general class of
metaplectic operators. The detailed definition of the mapping 𝑋 in this particular
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case can be written down easily from the definition of 𝐽 in (3.1), which is the
composition of a linear change of coordinates and a Fourier conjugation.

Remark 3.5. In fact, by conjugation with a suitable metaplectic operator, we can
reduce to a simple canonical form any operator with quadratic symbol and hence
compute the spectrum. See, for example, [1] for applications to the hypoellipticity
of pseudo-differential operators with double characteristics.

4. Global hypoellipticity

In order to prove the global hypoellipticity of the hierarchical twisted Laplacian,
we use the well-known fact about the global hypoellipticity of the Hermite operator
which can be found in Shubin’s book [10]. See also [7].

Theorem 4.1. 𝐿𝑚 is globally hypoelliptic in the sense that

𝑢 ∈ 𝒮 ′(ℝ𝑚+1), 𝐿𝑚𝑢 ∈ 𝒮(ℝ𝑚+1)⇒ 𝑢 ∈ 𝒮(ℝ𝑚+1).
Proof. Let 𝑢 ∈ 𝒮 ′(ℝ𝑚+1) be such that 𝐿𝑚𝑢 ∈ 𝒮(ℝ𝑚+1). We need to show that
𝑢 ∈ 𝒮(ℝ𝑚+1). It is easy to see that 𝐽 : 𝒮(ℝ𝑚+1) → 𝒮(ℝ𝑚+1) is a bijection.
Therefore 𝐽−1𝐿𝑚𝑢 ∈ 𝒮(ℝ𝑚+1). But by Theorem 3.3,

𝐻1𝐽
−1𝑢 = 𝐽−1𝐿𝑚𝑢.

Hence 𝐻1𝐽
−1𝑢 ∈ 𝒮(ℝ𝑚+1). Since 𝐻1 is globally hypoelliptic, it follows that

𝐽−1𝑢 ∈ 𝒮(ℝ𝑚+1). Again using the fact that 𝐽−1 maps 𝒮(ℝ𝑚+1) onto 𝒮(ℝ𝑚+1),
we get 𝑢 ∈ 𝒮(ℝ𝑚+1). □
Remark 4.2. Using the global hypoellipticity in [2] of the Hermite operator on the
Gelfand–Shilov spaces 𝒮𝜇𝜈 (ℝ𝑚+1), where 𝜇 and 𝜈 are nonnegative real numbers
such that 𝜇 ≥ 1

2 and 𝜈 ≥ 1
2 , the same proof of Theorem 4.1 can be used to prove the

global hypoellipticity of 𝐿𝑚 on Gelfand–Shilov spaces 𝑆𝜇𝜇(ℝ𝑚+1) in the sense that

𝑢 ∈ 𝒮 ′(ℝ𝑚+1), 𝐿𝑚𝑢 ∈ 𝒮𝜇𝜇 (ℝ𝑚+1)⇒ 𝑢 ∈ 𝑆𝜇𝜇(ℝ
𝑚+1)

because 𝐽 : 𝒮𝜇𝜇 (ℝ𝑚+1 → 𝒮𝜇𝜇 (ℝ𝑚+1), 𝜇 ≥ 1
2 , is a bijection.
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Via Carlo Alberto 10, I-10123 Torino, Italy
e-mail: luigi.rodino@unito.it

M.W. Wong
Department of Mathematics and Statistics, York University
4700 Keele Street, Toronto, Ontario M3J 1P3, Canada
e-mail: mwwong@mathstat.yorku.ca

mailto:molahajloo@mast.queensu.ca
mailto:luigi.rodino@unito.it
mailto:mwwong@mathstat.yorku.ca


Operator Theory:
Advances and Applications, Vol. 231, 85–102
c⃝ 2013 Springer Basel

The Heat Kernel and Green Function
of a Sub-Laplacian on
the Hierarchical Heisenberg Group

Shahla Molahajloo and M.W. Wong

Abstract. We give the hierarchical Heisenberg group underpinning the hierar-
chical twisted Laplacian discovered recently. This hierarchical twisted Lapla-
cian is obtained by taking the inverse Fourier transform of a sub-Laplacian
with respect to a subcenter of the hierarchical Heisenberg group. Using para-
metrized versions of Wigner transforms and Weyl transforms, we give for-
mulas for the heat kernels and Green functions of the parametrized hierar-
chical twisted Laplacians. Taking the Fourier transform of the parametrized
heat kernels so obtained, we give explicit formulas for the heat kernel and
Green function of the hierarchical sub-Laplacian on the hierarchical Heisen-
berg group.
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1. Introduction

For all 𝑥 in ℝ and all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) in ℝ𝑚, we let

𝑧 = 𝑥+ 𝑖𝑠(𝑣),

where 𝑠(𝑣) =
∑𝑚
𝑗=1 𝑣𝑗 . Then we let ∂

∂𝑧 and ∂
∂𝑧 be linear partial differential opera-

tors on ℝ𝑚+1 defined by

∂

∂𝑧
=

∂

∂𝑥
− 𝑖

𝑚∑
𝑙=1

∂

∂𝑣𝑙
+

𝑖

2

(
1− 1

𝑚

)
𝑠(𝑣),

This research has been supported by the Natural Sciences and Engineering Research Council of
Canada.
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and
∂

∂𝑧
=

∂

∂𝑥
+ 𝑖

𝑚∑
𝑙=1

∂

∂𝑣𝑙
+

𝑖

2

(
1− 1

𝑚

)
𝑠(𝑣).

The hierarchical twisted Laplacian 𝐿𝑚 is defined on ℝ𝑚+1 by

𝐿𝑚 = −1

2
(𝑍𝑍 + 𝑍𝑍),

where

𝑍 =
∂

∂𝑧
+

1

2
𝑧 and 𝑍 =

∂

∂𝑧
− 1

2
𝑧.

In explicit detail,

𝐿𝑚 = −
(

∂2

∂𝑥2
+

𝑚∑
𝑗,𝑙=1

∂2

∂𝑣𝑗∂𝑣𝑙

)
+

1

4

(
𝑥2 +

𝑠(𝑣)2

𝑚2

)
− 𝑖

(
𝑠(𝑣)

𝑚

∂

∂𝑥
− 𝑥

𝑚∑
𝑗=1

∂

∂𝑣𝑗

)
.

If 𝑚 = 1, then 𝐿1 is the ordinary twisted Laplacian given by

𝐿1 = −Δ+
1

4
(𝑥2 + 𝑣21)− 𝑖

(
𝑣1

∂

∂𝑥
− 𝑥

∂

∂𝑣1

)
,

which comes up as the quantum-mechanical Hamiltonian of the motion of an
electron in the infinite two-dimensional plane under the influence of a constant
magnetic field perpendicular to the plane. The twisted Laplacian 𝐿1 and its various
extensions have been studied in the works [2, 3, 4, 5, 7, 8, 11, 16, 17].

The twisted Laplacian 𝐿1 can in fact be obtained from the sub-Laplacian
on the one-dimensional Heisenberg group ℂ × ℝ by taking the inverse Fourier
transform with respect to the center, and is therefore an elliptic partial differ-
ential operator on ℝ2. Higher-dimensional twisted Laplacians on ℝ2𝑛 can be ob-
tained similarly using the 𝑛-dimensional Heisenberg group ℂ𝑛 × ℝ. Therefore the
twisted Laplacian is defined on even-dimensional Euclidean spaces. The hierar-
chical twisted Laplacian 𝐿𝑚 on ℝ𝑚+1 can be seen as a twisted Laplacian on ℝ𝑛,
where the dimension 𝑛 can now be arbitrary but not equal to 1. This is a rai-
son d’ être of the adjective hierarchical in this paper and related papers. Another
raison d’ être is given at the end of Section 2. The heat semigroup generated by
the hierarchical twisted Laplacian has been computed in [13]. A unitary equiv-
alence between the hierarchical twisted Laplacian 𝐿𝑚 and the tensor product of
the one-dimensional Hermite operator with the identity operator on ℝ𝑚 can be
established using a metaplectic operator as in [12]. It is also shown in [12] that the
alluded unitary equivalence can be used to prove the global hypoellipticity of the
hierarchical twisted Laplacian 𝐿𝑚 to the effect that

𝑢 ∈ 𝒮 ′(ℝ𝑚+1), 𝐿𝑚𝑢 ∈ 𝒮(ℝ𝑚+1)⇒ 𝑢 ∈ 𝒮(ℝ𝑚+1).
In this paper we first give the Lie group that underpins the hierarchical

twisted Laplacian 𝐿𝑚 first studied in [13] as an answer to the questions asked
for the group underlying the hierarchical twisted Laplacian at the talk given by
the first author at the International Conference on Generalized Functions held at
the University of Vienna in 2009. The resulting Lie group is naturally dubbed the
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hierarchical Heisenberg group and is denoted by ℍ𝑛𝑚. On ℍ𝑛𝑚 is then constructed
a sub-Laplacian ℒ𝑚 that we call the hierarchical sub-Laplacian. From the sub-
Laplacian we generate a parametrized family of hierarchical twisted Laplacians
𝐿𝜆𝑚 for

𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚) ∈ ℝ𝑚

with 𝑠(𝜆) ∕= 0. These parametrized hierarchical twisted Laplacians include 𝐿𝑚 as a
special case. It is then noted that 𝐿𝜆𝑚 is in general not elliptic on ℝ𝑚+1 unless 𝑚 =
1. The heat kernels and Green functions of the parametrized twisted Laplacians
are then constructed using parametrized versions of Fourier–Wigner transforms,
Wigner transforms and Weyl transforms as in [13]. Using the Green functions so
constructed, we prove the hypoellipticity of the parametrized hierarchical twisted
Laplacians. We then give formulas for the heat kernel and the Green function of
the hierarchical sub-Laplacian ℒ𝑚 on the hierarchical Heisenberg group ℍ𝑛𝑚.

In Section 2 we introduce the hierarchical Heisenberg groupℍ𝑛𝑚 and then con-
struct on it the hierarchical sub-Laplacian ℒ𝑚. The hierarchical twisted Laplacians
parametrized by 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚) in ℝ𝑚 are obtained by taking the inverse
Fourier transform of ℍ𝑛𝑚 with respect to a subcenter of ℍ𝑛𝑚. In Section 3 we give
the Fourier–Wigner transforms, the Wigner transforms and the Weyl transforms,
which are parametrized by 𝜆 in ℝ𝑚. These, together with the 𝜆-version of the
Hermite functions in [13], are then used to diagonalize the parametrized twisted
Laplacians in Section 4. In Section 5 twisted convolutions based on the parameter
𝜆 are introduced and they are then used to give explicit formulas for the heat ker-
nels of the parametrized hierarchical twisted Laplacians in Section 6. We give in
Section 7 the Green functions of the parametrized hierarchical twisted Laplacians
using the heat kernels obtained in Section 6. Since the methods are very similar to
those developed in [17], we are content with simply writing down the results. The
heat kernels and Green functions in, respectively, Sections 6 and 7 are then trans-
ferred back to the heat kernel and Green function of the hierarchical sub-Laplacian
on the hierarchical Heisenberg group in, respectively, Sections 8 and 9.

We end this section with a note that for a function 𝑓 in 𝐿1(ℝ𝑁 ), the Fourier
transform 𝑓 of 𝑓 is defined by

𝑓(𝜉) = (2𝜋)−𝑁/2
∫
ℝ𝑁

𝑒−𝑖𝑥⋅𝜉𝑓(𝑥) 𝑑𝑥, 𝜉 ∈ ℝ𝑁 .

2. The hierarchical Heisenberg group

We consider the set ℍ𝑛𝑚 given by

ℍ𝑛𝑚 = ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑚.

Then ℍ𝑛𝑚 is the set of points (𝑥, 𝑣, 𝑡) in ℝ𝑛 × ℝ𝑛𝑚 × ℝ𝑛, where

𝑥 = (𝑥1, 𝑥2, . . . , 𝑥𝑛) ∈ ℝ𝑛, 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑛𝑚

and
𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) ∈ ℝ𝑚.
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Of particular note here is that

𝑣𝑗 ∈ ℝ𝑛, 𝑗 = 1, 2, . . . ,𝑚,

and we define 𝑠(𝑣) by

𝑠(𝑣) =

𝑚∑
𝑗=1

𝑣𝑗 .

If we define the multiplication ⋅ on ℍ𝑛𝑚 by

(𝑥, 𝑣, 𝑡) ⋅ (𝑦, 𝑤, 𝑠) =
(
𝑥+ 𝑦, 𝑣 + 𝑤, (𝑡 + 𝑠)⊕

(
1

2
𝑠(𝑣) ⋅ 𝑦 − 1

2
𝑠(𝑤) ⋅ 𝑥

))
for all (𝑥, 𝑣, 𝑡) and (𝑦, 𝑤, 𝑠) in ℍ𝑛𝑚, where ⊕ : ℝ𝑚 × ℝ → ℝ𝑚 is the mapping
defined by

𝑡⊕ 𝛼 = (𝑡1 + 𝛼, 𝑡2 + 𝛼, . . . , 𝑡𝑚 + 𝛼)

for all 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑚) in ℝ𝑚 and all 𝛼 in ℝ, then it can be easily checked
that ℍ𝑛𝑚 becomes a group with respect to the group law ⋅ in which the identity
element is (0, 0, 0) and the inverse (𝑥, 𝑣, 𝑡)−1 of every element (𝑥, 𝑣, 𝑡) in ℍ𝑛𝑚 is
(−𝑥,−𝑣,−𝑡). We also need 𝑡⊖ 𝛼, which is defined by

𝑡⊖ 𝛼 = (𝑡1 − 𝛼, 𝑡2 − 𝛼, . . . , 𝑡𝑚 − 𝛼).

Note that if we let 𝑚 = 1, then we get back the ordinary Heisenberg group
ℝ𝑛 × ℝ𝑛 × ℝ. For simplicity, we work on ℍ1𝑚 only, i.e., the case when 𝑛 = 1.

We can easily check that the center 𝑍(ℍ1𝑚) of the hierarchical Heisenberg
group ℍ1𝑚 is given by

𝑍(ℍ1𝑚) = {(0, 𝑤, 𝑡) ∈ ℍ1𝑚 : 𝑠(𝑤) = 0}.
Thus, the subgroup {(0, 0, 𝑡) ∈ ℍ1𝑚 : 𝑡 ∈ ℝ𝑚} of the hierarchical Heisenberg group
ℍ1𝑚 is a subcenter of ℍ1𝑚.

Let 𝔥1𝑚 be the Lie algebra of all left-invariant vector fields on ℍ1𝑚. Let 𝛾1 :
ℝ→ ℍ1𝑚 be the curve in ℍ1𝑚 given by

𝛾1(𝑟) = (𝑟, 0, 0), 𝑟 ∈ ℝ.

For 𝑗 = 1, 2, . . . ,𝑚, let 𝛾2𝑗 : ℝ→ ℍ1𝑚 and 𝛾3𝑗 : ℝ→ ℍ1𝑚 be curves in ℍ1𝑚 given by

𝛾2𝑗(𝑟) = (0, 𝑟𝑒𝑗 , 0) and 𝛾3𝑗(𝑟) = (0, 0, 𝑟𝑒𝑗)

for all 𝑟 in ℝ, where 𝑒𝑗 is the standard unit vector in ℝ𝑚 along the 𝑗𝑡ℎ coordinate
axis. Then we define the left-invariant vector fields 𝑋 , 𝑌𝑗 and 𝑇𝑗 , 𝑗 = 1, 2, . . . ,𝑚,
on ℍ1𝑚 as follows. Let 𝑓 ∈ 𝐶∞(ℍ1𝑚). Then the function 𝑋𝑓 is defined by

(𝑋𝑓) (𝑥, 𝑣, 𝑡) =
∂

∂𝑟
𝑓((𝑥, 𝑣, 𝑡) ⋅ 𝛾1(𝑟))

∣∣∣∣
𝑟=0

=
∂

∂𝑟
𝑓

(
𝑥+ 𝑟, 𝑣, 𝑡⊕ 1

2
𝑠(𝑣)𝑟

)∣∣∣∣
𝑟=0

=
∂𝑓

∂𝑥
(𝑥, 𝑣, 𝑡) +

1

2
𝑠(𝑣)

𝑚∑
𝑘=1

∂𝑓

∂𝑡𝑘
(𝑥, 𝑣, 𝑡)
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for all (𝑥, 𝑣, 𝑡) ∈ ℍ1𝑚. For 𝑗 = 1, 2, . . . ,𝑚, we define 𝑌𝑗𝑓 and 𝑇𝑗𝑓 by

(𝑌𝑗𝑓) (𝑥, 𝑣, 𝑡) =
∂

∂𝑟
𝑓((𝑥, 𝑣, 𝑡) ⋅ 𝛾2𝑗(𝑟))

∣∣∣∣
𝑟=0

=
∂

∂𝑟
𝑓

(
𝑥, 𝑣 + 𝑟𝑒𝑗 , 𝑡⊖

(
1

2
𝑟𝑥

))∣∣∣∣
𝑟=0

=
∂𝑓

∂𝑣𝑗
(𝑥, 𝑣, 𝑡)− 1

2
𝑥

𝑚∑
𝑘=1

∂𝑓

∂𝑡𝑘
(𝑥, 𝑣, 𝑡)

and

(𝑇𝑗𝑓) (𝑥, 𝑣, 𝑡) =
∂

∂𝑟
𝑓((𝑥, 𝑣, 𝑡) ⋅ 𝛾3𝑗(𝑟))

∣∣∣∣
𝑟=0

=
∂

∂𝑟
𝑓(𝑥, 𝑣, 𝑡+ 𝑟𝑒𝑗)

∣∣∣∣
𝑟=0

=
∂𝑓

∂𝑡𝑗
(𝑥, 𝑣, 𝑡)

for all (𝑥, 𝑣, 𝑡) in ℍ1𝑚. It can be checked by easy computations that

[𝑋,𝑌𝑗 ] = 𝑇𝑗 , 𝑗 = 1, 2, . . . ,𝑚,

and all other first-order commutators are equal to zero.
Now, if we let 𝑌 and 𝑇 be vector fields on ℍ1𝑚 such that

𝑌 =

𝑚∑
𝑗=1

𝑌𝑗 and 𝑇 =

𝑚∑
𝑗=1

𝑇𝑗 ,

then we get

𝑌 =

𝑚∑
𝑗=1

∂

∂𝑣𝑗
+

𝑚

2
𝑥

𝑚∑
𝑘=1

∂

∂𝑡𝑘
and 𝑇 =

𝑚∑
𝑘=1

∂

∂𝑡𝑘
.

It can be checked easily that

[𝑋,𝑌 ] = −𝑚𝑇.

Let ℒ𝑚 = −(𝑋2 + 𝑌 2). Then we call ℒ𝑚 the hierarchical sub-Laplacian on
the Heisenberg group ℍ1𝑚 and it can be expressed as

ℒ𝑚 = −
(

∂2

∂𝑥2
+

𝑚∑
𝑗,𝑘=1

∂2

∂𝑣𝑗∂𝑣𝑘

)
− 1

4

(
𝑚2𝑥2 + 𝑠(𝑣)2

) 𝑚∑
𝑗,𝑘=1

∂2

∂𝑡𝑗∂𝑡𝑘

+

(
𝑠(𝑣)

∂

∂𝑥
−𝑚𝑥

𝑚∑
𝑗=1

∂

∂𝑣𝑗

)( 𝑚∑
𝑘=1

∂

∂𝑡𝑘

)
.

Since the vector fields 𝑋 and 𝑌 have analytic coefficients and commutators of ar-
bitrary length generated by them do not span the Lie algebra 𝔥1𝑚, it follows from
a theorem of Hörmander [9] and related results [6, 18] that ℒ𝑚 is not hypoelliptic
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on ℝ2𝑚+1 unless 𝑚 = 1. By taking the inverse Fourier transform of the hierar-
chical sub-Laplacian with respect to 𝑡 = (𝑡1, 𝑡2, . . . , 𝑡𝑚), we get the parametrized
hierarchical twisted Laplacians 𝐿𝜆𝑚, 𝜆 ∈ ℝ𝑚, given by

𝐿𝜆𝑚 = −
(

∂2

∂𝑥2
+

𝑚∑
𝑗,𝑘=1

∂2

∂𝑣𝑗∂𝑣𝑘

)
+

1

4

(
𝑚2𝑥2 + 𝑠(𝑣)2

)
𝑠(𝜆)2

+ 𝑖𝑠(𝜆)

(
𝑠(𝑣)

∂

∂𝑥
−𝑚𝑥

𝑚∑
𝑗=1

∂

∂𝑣𝑗

)
,

where 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚) ∈ ℝ𝑚. If we let

𝜆𝑗 = − 1

𝑚2
, 𝑗 = 1, 2, . . . ,𝑚,

then

𝑠(𝜆) = − 1

𝑚
.

and

𝐿1𝑚 = −
(

∂2

∂𝑥2
+

𝑚∑
𝑗,𝑘=1

∂2

∂𝑣𝑗∂𝑣𝑘

)
+

1

4

(
𝑥2 +

𝑠(𝑣)2

𝑚2

)
+ 𝑖

(
𝑠(𝑣)

𝑚

∂

∂𝑥
− 𝑥

𝑚∑
𝑗=1

∂

∂𝑣𝑗

)
,

which is the ordinary hierarchical twisted Laplacian described earlier.
It can be seen easily that 𝐿𝜆𝑚 is not elliptic unless 𝑚 = 1. Thus, ℒ𝑚 is not

hypoelliptic unless 𝑚 = 1; and 𝐿𝜆𝑚 is not elliptic unless 𝑚 = 1. This is another
raison d’ être of the hierarchy.

3. Hierarchical Wigner transforms and
hierarchical Weyl transforms

The most basic Wigner transforms and Weyl transforms in the books [14, 15] need
to be modified for the analysis of the hierarchical twisted Laplacian. To this end,
let 𝑓 ∈ 𝒮(ℝ𝑚). Then for all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚 and 𝑤 ∈ ℝ, we define the
function 𝜌(𝑤, 𝑣)𝑓 on ℝ by

(𝜌(𝑤, 𝑣)𝑓)(𝑥) = 𝑒𝑖𝑤𝑥+
1

2𝑚 𝑖𝑤𝑠(𝑣)𝑓(𝑥⊕ 𝑣), 𝑥 ∈ ℝ.

Now, we can define the hierarchical Fourier–Wigner transform 𝑉 (𝑓, 𝑔) of 𝑓 in
𝒮(ℝ𝑚) and 𝑔 in 𝒮(ℝ) by

𝑉 (𝑓, 𝑔)(𝑤, 𝑣) = (2𝜋)−𝑚/2(𝜌(𝑤, 𝑣)𝑓, 𝑔)𝐿2(ℝ)

for all 𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) in ℝ𝑚 and 𝑤 in ℝ. The Wigner transform 𝑊 (𝑓, 𝑔) of 𝑓
in 𝒮(ℝ𝑚) and 𝑔 in 𝒮(ℝ) is defined by

𝑊 (𝑓, 𝑔) = 𝑉 (𝑓, 𝑔)∧,

where 𝑉 (𝑓, 𝑔)∧, also denoted by ℱ𝑉 (𝑓, 𝑔), is the Fourier transform of 𝑉 (𝑓, 𝑔).
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Let 𝜎 ∈ 𝒮(ℝ𝑚+1). Then for all 𝑓 in 𝒮(ℝ𝑚), we define the hierarchical Weyl
transform 𝑊𝜎𝑓 of 𝑓 corresponding to the symbol 𝜎 to be the function on ℝ by

(𝑊𝜎𝑓, 𝑔)𝐿2(ℝ) = (2𝜋)−𝑚/2
∫
ℝ𝑚

∫
ℝ

𝜎(𝑥, 𝜉)𝑊 (𝑓, 𝑔)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉

for all 𝑔 in 𝒮(ℝ).
The following theorem gives a sufficient condition on the symbol 𝜎 to guar-

antee that a hierarchical Weyl transform is a Hilbert–Schmidt operator.

Theorem 3.1. Let 𝜎 ∈ 𝐿2(ℝ𝑚+1). Then 𝑊𝜎 : 𝐿2(ℝ𝑚) → 𝐿2(ℝ) is a Hilbert–
Schmidt operator and

∥𝑊𝜎∥𝐻𝑆 = (2𝜋)−𝑚/2∥𝜎∥𝐿2(ℝ𝑚+1),

where ∥𝑊𝜎∥𝐻𝑆 denotes the Hilbert–Schmidt norm of 𝑊𝜎 .

The results hitherto recapitulated can be found in [1] and [13].
For 𝜆 = (𝜆1, 𝜆2, . . . , 𝜆𝑚) ∈ ℝ𝑚 with 𝑠(𝜆) ∕= 0, we define the linear partial

differential operators 𝑍𝜆 and 𝑍𝜆 by

𝑍𝜆 =
∂

∂𝑥
− 𝑖

𝑚∑
𝑙=1

∂

∂𝑣𝑙
− 𝑖

2
𝑠(𝜆) 𝑠(𝑣) +

𝑚

2
𝑠(𝜆)𝑥

and

𝑍𝜆 =
∂

∂𝑥
+ 𝑖

𝑚∑
𝑙=1

∂

∂𝑣𝑙
− 𝑖

2
𝑠(𝜆) 𝑠(𝑣) − 𝑚

2
𝑠(𝜆)𝑥.

Then it can be checked easily that

𝐿𝜆𝑚 = −1

2
(𝑍𝜆𝑍𝜆 + 𝑍𝜆𝑍𝜆).

Now, we define 𝜌𝜆(𝑤, 𝑣) for all 𝑤 in ℝ and 𝑣 in ℝ𝑚 by

𝜌𝜆(𝑤, 𝑣) = ∣𝑠(𝜆)∣1/2𝜌(𝑠(𝜆)𝑤, 𝑣).
For all 𝑓 in 𝒮(ℝ𝑚) and 𝑔 in 𝒮(ℝ), the 𝜆-hierarchical Fourier–Wigner transform
𝑉 𝜆(𝑓, 𝑔) of 𝑓 and 𝑔 is defined by

𝑉 𝜆(𝑓, 𝑔)(𝑤, 𝑣) = (2𝜋)−𝑚/2(𝜌𝜆(𝑤, 𝑣)𝑓, 𝑔)𝐿2(ℝ).

In fact,

𝑉 𝜆(𝑓, 𝑔)(𝑤, 𝑣) =
√
∣𝑠(𝜆)∣𝑉 (𝑓, 𝑔)(𝑠(𝜆)𝑤, 𝑣)

=
√
∣𝑠(𝜆)∣(2𝜋)−𝑚/2

∫
ℝ

𝑒𝑖𝑠(𝜆)𝑦𝑤𝑓

((
𝑦 − 1

2𝑚
𝑠(𝑣)

)
⊕ 𝑣

)
× 𝑔

(
𝑦 − 1

2𝑚
𝑠(𝑣)

)
𝑑𝑦. (3.1)

The 𝜆-Wigner transform 𝑊𝜆(𝑓, 𝑔) of 𝑓 in 𝒮(ℝ𝑚) and 𝑔 in 𝒮(ℝ) is defined by

𝑊𝜆(𝑓, 𝑔) = 𝑉 𝜆(𝑓, 𝑔)∧.
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Then for 𝑠(𝜆) ∕= 0,

𝑊𝜆(𝑓, 𝑔)(𝑥, 𝜉) =
√
∣𝑠(𝜆)∣𝑊 (𝑓, 𝑔)

(
𝑥

𝑠(𝜆)
, 𝜉

)
, 𝑥 ∈ ℝ, 𝜉 ∈ ℝ𝑚. (3.2)

The following theorem gives the Moyal identity for 𝜆-hierarchical Wigner trans-
forms.

Theorem 3.2. For all 𝑓1 and 𝑓2 in 𝐿2(ℝ𝑚), and all 𝑔1 and 𝑔2 in 𝐿2(ℝ),

(𝑊𝜆(𝑓1, 𝑔1),𝑊
𝜆(𝑓2, 𝑔2))𝐿2(ℝ𝑚+1) = (𝑓1, 𝑓2)𝐿2(ℝ𝑚)(𝑔1, 𝑔2)𝐿2(ℝ).

Remark 3.3. Similarly, we have the Moyal identity for the 𝜆-hierarchical Fourier–
Wigner transform.

Using the 𝜆-hierarchical Wigner transform, the 𝜆-hierarchical Weyl transform
𝑊𝜆
𝜎 𝑓 of a function 𝑓 in 𝒮(ℝ𝑚) corresponding to the symbol 𝜎 in 𝒮(ℝ𝑚+1) is defined

to be the function on ℝ by

(𝑊𝜆
𝜎 𝑓, 𝑔)𝐿2(ℝ) = (2𝜋)−𝑚/2

∫
ℝ𝑚

∫
ℝ

𝜎(𝑥, 𝜉)𝑊𝜆(𝑓, 𝑔)(𝑥, 𝜉) 𝑑𝑥 𝑑𝜉

for all functions 𝑔 in 𝒮(ℝ). Using (3.2) and a change of variables, we get the
following relationship between the ordinary hierarchical Weyl transform and the
𝜆-hierarchical Weyl transform.

Proposition 3.4. Let 𝜎 ∈ 𝒮(ℝ𝑚+1). Then

𝑊𝜆
𝜎 =

√
∣𝑠(𝜆)∣𝑊𝜎𝜆 ,

where 𝜎𝜆 is given by

𝜎𝜆(𝑥, 𝜉) = 𝜎(𝑠(𝜆)𝑥, 𝜉), 𝑥 ∈ ℝ, 𝜉 ∈ ℝ𝑚.

Using Proposition 3.4, we have the following result, which is an analog of
Theorem 3.1 in [13], on the 𝐿2-boundedness of 𝜆-Weyl transforms with symbols
in 𝐿2(ℝ𝑚+1).

Proposition 3.5. Let 𝜎 ∈ 𝐿2(ℝ𝑚+1). Then 𝑊𝜆
𝜎 : 𝐿2(ℝ𝑚) → 𝐿2(ℝ) is a bounded

linear operator and

∥𝑊𝜆
𝜎 ∥𝐵(𝐿2(ℝ𝑚),𝐿2(ℝ)) ≤ (2𝜋)−𝑚/2∥𝜎∥𝐿2(ℝ𝑚+1),

where ∥ ∥𝐵(𝐿2(ℝ𝑚),𝐿2(ℝ)) is the norm in the Banach algebra of all bounded linear

operators from 𝐿2(ℝ𝑚) into 𝐿2(ℝ).

Using Theorem 3.1 and Proposition 3.4, we have the following result on the
Hilbert–Schmidt property of 𝜆-hierarchical Weyl transforms.

Theorem 3.6. Let 𝜎 ∈ 𝐿2(ℝ𝑚+1). Then 𝑊𝜆
𝜎 : 𝐿2(ℝ𝑚) → 𝐿2(ℝ) is a Hilbert–

Schmidt operator and

∥𝑊𝜆
𝜎 ∥𝐻𝑆 = (2𝜋)−𝑚/2∥𝜎∥𝐿2(ℝ𝑚+1).
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4. Spectral analysis of 𝝀-hierarchical twisted Laplacians

Let 𝜆 ∈ ℝ𝑚 be such that 𝑠(𝜆) ∕= 0. Then for 𝑘 = 0, 1, 2, . . . , we define 𝑒𝜆𝑘 to be the
function on ℝ by

𝑒𝜆𝑘(𝑥) = ∣𝑠(𝜆)∣1/4𝑒𝑘
(√

∣𝑠(𝜆)∣𝑥
)
, 𝑥 ∈ ℝ,

where 𝑒𝑘 is the Hermite function of order 𝑘 on ℝ defined by

𝑒𝑘(𝑥) =
1

(2𝑘𝑘!
√
𝜋)1/2

𝑒−𝑥
2/2𝐻𝑘(𝑥)

for all 𝑥 in ℝ and 𝐻𝑘 is the Hermite polynomial of degree 𝑘 given by

𝐻𝑘(𝑥) = (−1)𝑘𝑒𝑥2

(
𝑑

𝑑𝑥

)𝑘
(𝑒−𝑥

2

)

for all 𝑥 in ℝ. Now, for all nonnegative integers 𝑗1, 𝑗2, . . . , 𝑗𝑚 and 𝑘, we define the
function 𝑒𝜆𝑗1,...,𝑗𝑚,𝑘 on ℝ𝑚+1 by

𝑒𝜆𝑗1,...,𝑗𝑚,𝑘 = 𝑉 𝜆
(⊗𝑚𝑙=1𝑒𝜆𝑗𝑙 , 𝑒𝜆𝑘) .

It should be noted that 𝑒𝜆𝑗1,...,𝑗𝑚,𝑘 is the parametrized version of the function

𝑒𝑗1,...,𝑗𝑚,𝑘 defined in [13] by

𝑒𝑗1,...,𝑗𝑚,𝑘 = 𝑉 (⊗𝑚𝑙=1𝑒𝑗𝑙 , 𝑒𝑘) .
The following lemma is the precise manifesto of the connection.

Lemma 4.1. For all 𝜆 in ℝ𝑚 with 𝑠(𝜆) ∕= 0, and 𝑗1, 𝑗2, . . . , 𝑗𝑚, 𝑘 = 0, 1, 2, . . . ,

𝑒𝜆𝑗1,...,𝑗𝑚,𝑘(𝑤, 𝑣) = ∣𝑠(𝜆)∣(𝑚+1)/4𝑒𝑗1,...,𝑗𝑚,𝑘
(

𝑠(𝜆)√∣𝑠(𝜆)∣𝑤,√∣𝑠(𝜆)∣𝑣
)

for all 𝑤 in ℝ and 𝑣 in ℝ𝑚.

Proof. By (3.1) and a change of variables,

𝑒𝜆𝑗1,...,𝑗𝑚,𝑘(𝑤, 𝑣) = ∣𝑠(𝜆)∣1/2𝑉
(⊗𝑚𝑙=1𝑒𝜆𝑗𝑙 , 𝑒𝜆𝑘) (𝑠(𝜆)𝑤, 𝑣)

= ∣𝑠(𝜆)∣1/2(2𝜋)−𝑚/2
∫
ℝ

𝑒𝑖𝑠(𝜆)𝑦𝑤(⊗𝑚𝑙=1𝑒𝜆𝑗𝑙)
((

𝑦 − 1

2𝑚
𝑠(𝑣)

)
⊕ 𝑣

)
× 𝑒𝜆𝑘

(
𝑦 − 1

2𝑚
𝑠(𝑣)

)
𝑑𝑦

= ∣𝑠(𝜆)∣(𝑚+3)/4(2𝜋)−𝑚/2
∫
ℝ

𝑒𝑖𝑠(𝜆)𝑦𝑤

× (⊗𝑚𝑙=1𝑒𝑗𝑙)
(√

∣𝑠(𝜆)∣
{(

𝑦 − 1

2𝑚
(𝑣)

)
⊕ 𝑣

})
× 𝑒𝑘

(√
∣𝑠(𝜆)∣

{
𝑦 − 1

2𝑚
𝑠(𝑣)

})
𝑑𝑦
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= ∣𝑠(𝜆)∣(𝑚+1)/4(2𝜋)−𝑚/2
∫
ℝ

𝑒𝑖𝑠(𝜆)𝑦𝑤/
√
∣𝑠(𝜆)∣

× (⊗𝑚𝑙=1𝑒𝑗𝑙)
((

𝑦 − 1

2𝑚

√
∣𝑠(𝜆)∣𝑠(𝑣)

)
⊕

√
∣𝑠(𝜆)∣𝑣

)
× 𝑒𝑘

(
𝑦 − 1

2𝑚

√
∣𝑠(𝜆)∣𝑠(𝑣)

)
𝑑𝑦

= ∣𝑠(𝜆)∣(𝑚+1)/4𝑒𝑗1,...,𝑗𝑚,𝑘
(

𝑠(𝜆)√∣𝑠(𝜆)∣𝑤,√∣𝑠(𝜆)∣𝑣
)

for all 𝜆 in ℝ𝑚 with 𝑠(𝜆) ∕= 0, and 𝑗1, 𝑗2, . . . , 𝑗𝑚, 𝑘 = 0, 1, 2, . . . . □

Corollary 4.2. {𝑒𝜆𝑗1,...,𝑗𝑚,𝑘 : 𝑗1, . . . , 𝑗𝑚, 𝑘 = 0, 1, 2, . . .} forms an orthonormal basis

for 𝐿2(ℝ𝑚+1).

Corollary 4.2 follows from Lemma 4.1 and Proposition 4.1 in [13] to the
effect that {𝑒𝑗1,...,𝑗𝑚,𝑘 : 𝑗1, . . . , 𝑗𝑘, 𝑘 = 0, 1, 2, . . .} forms an orthonormal basis for
𝐿2(ℝ𝑚+1). It can also be proved as in [17] using the Hilbert–Schmidt property
of 𝜆-hierarchical Weyl transforms in Theorem 3.6 and the Moyal identity for 𝜆-
hierarchical Fourier–Wigner transforms in Remark 3.3.

The following proposition shows that 𝑍𝜆 and 𝑍𝜆 are, respectively, annihila-
tion and creation operators.

Proposition 4.3. For all nonnegative integers 𝑗1, . . . , 𝑗𝑚, and positive integers 𝑘,

𝑍𝜆𝑒
𝜆
𝑗1,...,𝑗𝑚,𝑘 = 𝑖

√
∣𝑠(𝜆)∣(2𝑘)1/2𝑒𝑗1,...,𝑗𝑚,𝑘−1,

and for all nonnegative integers 𝑗1, . . . , 𝑗𝑚, 𝑘,

𝑍𝜆𝑒𝑗1,...,𝑗𝑚,𝑘 = 𝑖
√
∣𝑠(𝜆)∣(2𝑘 + 2)1/2𝑒𝑗1,...,𝑗𝑚,𝑘+1.

The proof of Proposition 4.3 follows from Lemma 4.1 and Proposition 4.2 in
[13]. Using Proposition 4.3, we can easily obtain the following spectral decompo-
sition of the 𝜆-hierarchical twisted Laplacian.

Theorem 4.4. For all nonnegative integers 𝑗1, . . . , 𝑗𝑚 and 𝑘,

𝐿𝜆𝑚𝑒
𝜆
𝑗1,...,𝑗𝑚,𝑘 = (2𝑘 + 1)∣𝑠(𝜆)∣𝑒𝜆𝑗1,...,𝑗𝑚,𝑘.

5. Twisted convolutions

For 𝑧 = (𝑞, 𝑝) ∈ ℝ2 and 𝜁 = (𝑤, 𝑣) ∈ ℝ𝑚+1, where 𝑤 ∈ ℝ and

𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚,

we define 𝜁 ⊞ 𝑧 and 𝜁 ⊟ 𝑧 by

𝜁 ⊞ 𝑧 = (𝑤 + 𝑞, 𝑣1 + 𝑝, . . . , 𝑣𝑚 + 𝑝) and 𝜁 ⊟ 𝑧 = (𝑤 − 𝑞, 𝑣1 − 𝑝, . . . , 𝑣𝑚 − 𝑝).
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Now, we define the twisted convolution 𝜏 ∗𝜆𝜎 of 𝜏 in 𝐿2(ℝ2) and 𝜎 in 𝐿2(ℝ𝑚+1) by

(𝜏 ∗𝜆 𝜎)(𝜁) =
∫
ℂ

𝜎(𝜁 ⊟ 𝑧)𝜏(𝑧)𝑒−𝑖𝑠(𝜆)[𝜁,𝑧]𝑑𝑧, 𝜁 ∈ ℝ𝑚+1,

where [𝜁, 𝑧] is the symplectic form of 𝜁 and 𝑧 given by

[𝜁, 𝑧] =
1

2
𝑤𝑝− 1

2𝑚
𝑞𝑠(𝑣).

We also need the convolution 𝜏 ∗− 𝜎 defined by

(𝜏 ∗− 𝜎)(𝜁) =

∫
ℂ

𝜎(𝜁 ⊟ 𝑧)𝜏(𝑧)𝑒−𝑖[𝜁,𝑧]𝑑𝑧, 𝜁 ∈ ℝ𝑚+1.

Theorem 5.1. Let 𝜆 ∈ ℝ𝑚 be such that 𝑠(𝜆) ∕= 0. Then for all nonnegative integers
𝛼, 𝛽, 𝑙, and 𝑗1, . . . , 𝑗𝑚,

𝑒𝜆𝛼,𝛽 ∗𝜆 𝑒𝜆𝑗1,...,𝑗𝑚,𝑙 = (2𝜋)1/2∣𝑠(𝜆)∣−1/2𝛿𝛼,𝑙𝑒𝜆𝑗1,...,𝑗𝑚,𝛽.
Proof. It is easy to see that

𝑠(𝜆)[(𝑤, 𝑣), (𝑞, 𝑝)] =

[(
𝑠(𝜆)√∣𝑠(𝜆)∣𝑤,√∣𝑠(𝜆)∣𝑣

)
,

(
𝑠(𝜆)√∣𝑠(𝜆)∣ ,√∣𝑠(𝜆)∣𝑝

)]

for all 𝑧 = (𝑞, 𝑝) ∈ ℝ2 and 𝜁 = (𝑤, 𝑣) ∈ ℝ𝑚+1, where 𝑤 ∈ ℝ and

𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚.

So, by Lemma 4.1,

(𝑒𝜆𝛼,𝛽 ∗𝜆 𝑒𝜆𝑗1,...,𝑗𝑚,𝑙)(𝑤, 𝑣)
=

∫
ℂ

𝑒𝜆𝑗1,...,𝑗𝑚,𝑙(𝜁 ⊟ 𝑧)𝑒𝜆𝛼,𝛽(𝑧)𝑒
−𝑖𝑠(𝜆)[𝜁,𝑧]𝑑𝑧

= ∣𝑠(𝜆)∣(𝑚+3)/4

×
∫
ℂ

𝑒𝑗1,...,𝑗𝑚,𝑙

(
𝑠(𝜆)√∣𝑠(𝜆)∣ (𝑤 − 𝑞),

√
∣𝑠(𝜆)∣(𝑣1 − 𝑝, . . . , 𝑣𝑚 − 𝑝)

)

× 𝑒𝛼,𝛽

(
𝑠(𝜆)√∣𝑠(𝜆)∣𝑞,√∣𝑠(𝜆)∣𝑝

)
𝑒
−𝑖

[(
𝑠(𝜆)√
∣𝑠(𝜆)∣𝑤,

√
∣𝑠(𝜆)∣𝑣

)
,

(
𝑠(𝜆)√
∣𝑠(𝜆)∣ 𝑞,

√
∣𝑠(𝜆)∣𝑝

)]
𝑑𝑧

= ∣𝑠(𝜆)∣(𝑚−1)/4

×
∫
ℂ

𝑒𝑗1,...,𝑗𝑚,𝑙

(
𝑠(𝜆)√∣𝑠(𝜆)∣𝑤 − 𝑞,

√
∣𝑠(𝜆)∣𝑣1 − 𝑝, . . . ,

√
∣𝑠(𝜆)∣𝑣𝑚 − 𝑝

)

× 𝑒𝛼,𝛽(𝑞, 𝑝)𝑒
−𝑖

[(
𝑠(𝜆)√
∣𝑠(𝜆)∣𝑤,

√
∣𝑠(𝜆)∣𝑣

)
,(𝑞,𝑝)

]
𝑑𝑧
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= ∣𝑠(𝜆)∣(𝑚−1)/4(𝑒𝛼,𝛽 ∗− 𝑒𝑗1,...,𝑗𝑚,𝑙)

(
𝑠(𝜆)√∣𝑠(𝜆)∣𝑤,√∣𝑠(𝜆)∣𝑣

)

= (2𝜋)1/2∣𝑠(𝜆)∣(𝑚−1)/4𝛿𝛼,𝑙𝑒𝑗1,...,𝑗𝑚,𝛽
(

𝑠(𝜆)√∣𝑠(𝜆)∣𝑤,√∣𝑠(𝜆)∣𝑣
)

(5.1)

for all 𝑤 in ℝ and
𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚)

in ℝ𝑚. Let us note that (5.1) is derived using Theorem 5.5 in [13]. Using Lemma
4.1 again, we get

𝑒𝜆𝛼,𝛽 ∗𝜆 𝑒𝑗1,...,𝑗𝑚,𝑙(𝑤, 𝑣) = (2𝜋)1/2∣𝑠(𝜆)∣−1/2𝛿𝛼,𝑙𝑒𝜆𝑗1,...,𝑗𝑚,𝛽(𝑤, 𝑣)
for all 𝑤 in ℝ and

𝑣 = (𝑣1, 𝑣2, . . . , 𝑣𝑚) ∈ ℝ𝑚,
as asserted. □

6. Heat kernels for 𝝀-hierarchical twisted Laplacians

Theorem 6.1. Let 𝜆 ∈ ℝ𝑚 be such that 𝑠(𝜆) ∕= 0. Then for all 𝑓 in 𝐿2(ℝ𝑚+1) and
𝜌 > 0,

𝑒−𝜌𝐿
𝜆
𝑚𝑓 = 𝑘𝜆𝜌 ∗𝜆 𝑓,

where

𝑘𝜆𝜌 (𝑧) =
1

4𝜋

∣𝑠(𝜆)∣
sinh(∣𝑠(𝜆)∣𝜌) 𝑒

− 1
4 ∣𝑠(𝜆)∣ ∣𝑧∣2coth(∣𝑠(𝜆)∣𝜌)

for all 𝑧 in ℂ.

Proof. Let 𝑓 ∈ 𝒮(ℝ𝑚+1). Then for 𝜌 > 0, we get by means of Corollary 4.2 and
Theorem 4.4,

𝑒−𝜌𝐿
𝜆
𝑚𝑓 =

∞∑
𝑘=0

∞∑
𝑗1,...,𝑗𝑚=0

𝑒−∣𝑠(𝜆)∣(2𝑘+1)𝜌(𝑓, 𝑒𝜆𝑗1,...,𝑗𝑚,𝑘)𝐿2(ℝ𝑚+1)𝑒
𝜆
𝑗1,...,𝑗𝑚,𝑘.

By Theorem 5.1,

𝑒𝜆𝑘,𝑘 ∗𝜆 𝑓 = 𝑒𝜆𝑘,𝑘 ∗𝜆
∞∑
𝑙=0

∞∑
𝑗1,...,𝑗𝑚=0

(𝑓, 𝑒𝜆𝑗1,...,𝑗𝑚,𝑙)𝐿2(ℝ𝑚+1)𝑒
𝜆
𝑗1,...,𝑗𝑚,𝑙

=

∞∑
𝑙=0

∞∑
𝑗1,...,𝑗𝑚=0

(𝑓, 𝑒𝜆𝑗1,...,𝑗𝑚,𝑙)𝐿2(ℝ𝑚+1)𝑒
𝜆
𝑘,𝑘 ∗𝜆 𝑒𝜆𝑗1,...,𝑗𝑚,𝑙

=

∞∑
𝑙=0

∞∑
𝑗1,...,𝑗𝑚=0

(𝑓, 𝑒𝜆𝑗1,...,𝑗𝑚,𝑙)𝐿2(ℝ𝑚+1)∣𝑠(𝜆)∣−1/2(2𝜋)1/2𝛿𝑘,𝑙𝑒𝜆𝑗1,...,𝑗𝑚,𝑘

= ∣𝑠(𝜆)∣−1/2(2𝜋)1/2
∞∑

𝑗1,...,𝑗𝑚=0

(𝑓, 𝑒𝜆𝑗1,...,𝑗𝑚,𝑘)𝐿2(ℝ𝑚+1)𝑒
𝜆
𝑗1,...,𝑗𝑚,𝑘.
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Thus,

𝑒−𝜌𝐿
𝜆
𝑚𝑓 = ∣𝑠(𝜆)∣1/2(2𝜋)−1/2

∞∑
𝑘=0

𝑒−∣𝑠(𝜆)∣(2𝑘+1)𝜌𝑒𝜆𝑘,𝑘 ∗𝜆 𝑓.

Now, for 0 < 𝑟 < 1 and 𝑧 ∈ ℂ,
∞∑
𝑘=0

𝑒𝑘,𝑘(𝑧)𝑟
𝑘 = (2𝜋)−1/2

1

1− 𝑟
𝑒−∣𝑧∣

2 1
4

1+𝑟
1−𝑟 .

By Lemma 4.1, for all 𝜆 with 𝑠(𝜆) ∕= 0,

𝑒𝜆𝑘,𝑘(𝑞, 𝑝) = ∣𝑠(𝜆)∣1/2𝑒𝑘,𝑘
(

𝑠(𝜆)√∣𝑠(𝜆)∣𝑞,√∣𝑠(𝜆)∣𝑝
)

(6.1)

for all 𝑧 = 𝑞 + 𝑖𝑝 in ℂ. Thus, by Lemma 4.1 and (6.1), we get

∞∑
𝑘=0

𝑒−∣𝑠(𝜆)∣(2𝑘+1)𝜌𝑒𝜆𝑘,𝑘(𝑧) = (2𝜋)−1/2
∣𝑠(𝜆)∣−1/2

2 sinh(∣𝑠(𝜆)∣𝜌) 𝑒
− 1

4 ∣𝑠(𝜆)∣ ∣𝑧∣2coth(∣𝑠(𝜆)∣𝜌)

for all 𝑧 in ℂ and 𝜌 > 0. Therefore

𝑒−𝜌𝐿
𝜆
𝑚𝑓 = 𝑘𝜆𝜌 ∗𝜆 𝑓, 𝜌 > 0, (6.2)

as claimed. □

7. Green functions for 𝝀-hierarchical twisted Laplacians

For 𝜆 ∈ ℝ𝑚 with 𝑠(𝜆) ∕= 0, we let 𝐺𝜆𝑚 be the function on ℝ2 such that

(𝐿𝜆𝑚)
−1𝑓 = 𝐺𝜆𝑚 ∗𝜆 𝑓

for all 𝑓 in 𝐿2(ℝ𝑚+1).
Using the heat kernels obtained in the preceding section, we can integrate

with respect to time 𝜌 from 0 to ∞ as in [17] to find the Green functions of
the 𝜆-hierarchical twisted Laplacians. The result is encapsulated in the following
theorem.

Theorem 7.1. Let 𝜆 ∈ ℝ𝑚 be such that 𝑠(𝜆) ∕= 0. Then

𝐺𝜆(𝑧) =
1

4𝜋
𝐾0

(
1

4
∣𝑠(𝜆)∣ ∣𝑧∣2

)
for all 𝑧 in ℂ, where 𝐾0 is the modified Bessel function of order 0 given by

𝐾0(𝑥) =

∫ ∞

0

𝑒−𝑥 cosh 𝑡𝑑𝑡, 𝑥 > 0.
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8. The heat kernel for the sub-Laplacian

In order to get a heat kernel for the hierarchical sub-Laplacian ℒ𝑚 on the hierar-
chical Heisenberg group ℍ1𝑚, we start with the initial value problem for the heat
equation for ℒ𝑚 given by⎧⎨⎩

∂𝑢

∂𝜌
(𝜁, 𝑡, 𝜌) = −(ℒ𝑚𝑢)(𝜁, 𝑡, 𝜌),

𝑢(𝜁, 𝑡, 0) = 𝑓(𝜁, 𝑡),

(8.1)

for all (𝜁, 𝑡) in ℍ1𝑚 and 𝜌 > 0. Taking the inverse Fourier transform of (8.1)
with respect to 𝑡, we get the initial value problem for the heat equation for the
𝜆-hierarchical twisted Laplacian, i.e.,⎧⎨⎩

∂𝑢𝜆

∂𝜌
(𝜁, 𝜌) = −(𝐿𝜆𝑚𝑢𝜆)(𝜁, 𝜌),

𝑢𝜆(𝜁, 0) = 𝑓𝜆(𝜁),

for all 𝜁 in ℝ𝑚+1, 𝜌 > 0, and all 𝜆 in ℝ𝑚 with 𝑠(𝜆) ∕= 0. By Theorem 6.1,

𝑢𝜆(𝜁, 𝜌) =

∫
ℂ

𝑓𝜆(𝜁 ⊟ 𝑧)𝑘𝜆𝜌 (𝑧)𝑒
−𝑖𝑠(𝜆)[𝜁,𝑧]𝑑𝑧, 𝜁 ∈ ℝ𝑚+1, (8.2)

where 𝜆 ∈ ℝ𝑚 with 𝑠(𝜆) ∕= 0. So, by taking the Fourier transform of the solution
𝑢𝜆 of (8.2) with respect to 𝜆, we get

𝑢(𝜁, 𝑡, 𝜌) =

∫
ℂ

{
(2𝜋)−𝑚/2

∫
ℝ𝑚

𝑒−𝑖𝜆⋅𝑡𝑓𝜆(𝜁 ⊟ 𝑧)𝑘𝜆𝜌 (𝑧)𝑒
−𝑖𝑠(𝜆)[𝜁,𝑧]𝑑𝜆

}
𝑑𝑧

= (2𝜋)−𝑚/2
∫
ℂ

(𝑓(𝜁 ⊟ 𝑧, ⋅) ∗𝐾𝜌(𝜁, 𝑧, ⋅)) (𝑡)𝑑𝑧,

where

(ℱ−1
2 𝐾𝜌)(𝜁, 𝑧, 𝜆) = 𝑘𝜆𝜌 (𝑧)𝑒

−𝑖𝑠(𝜆)[𝜁,𝑧], 𝑧 ∈ ℂ,

and (ℱ−1
2 𝐾𝜌)(𝜁, 𝑧, 𝜆) is the inverse Fourier transform of 𝐾𝜌(𝜁, 𝑧, 𝑡) with respect to

𝑡 in ℝ𝑚. Thus,

𝑢(𝜁, 𝑡, 𝜌) = (2𝜋)−𝑚/2
∫
ℂ

∫
ℝ𝑚

𝑓(𝜁 ⊟ 𝑧, 𝑡− 𝑠)𝐾𝜌(𝜁, 𝑧, 𝑠) 𝑑𝑠 𝑑𝑧, (8.3)

where

𝐾𝜌(𝜁, 𝑧, 𝑠) = (2𝜋)−𝑚/2
∫
ℝ𝑚

𝑒−𝑖𝑠⋅𝜆𝑘𝜆𝜌 (𝑧)𝑒
−𝑖𝑠(𝜆)[𝜁,𝑧]𝑑𝜆

for all 𝜁 in ℝ𝑚+1, 𝑧 in ℂ and 𝑠 in ℝ𝑚.
We call the function 𝐾𝜌, 𝜌 > 0, the heat kernel of the sub-Laplacian ℒ𝑚. In

glorious detail,

𝐾𝜌(𝜁,𝑧,𝑠)=(2𝜋)−𝑚/2
∫
ℝ𝑚

𝑒−𝑖𝑠⋅𝜆
1

4𝜋

∣𝑠(𝜆)∣
sinh(∣𝑠(𝜆)∣𝜌)𝑒

− 1
4 ∣𝑠(𝜆)∣∣𝑧∣2coth(∣𝑠(𝜆)∣𝜌)𝑒−𝑖𝑠(𝜆)[𝜁,𝑧]𝑑𝜆.

(8.4)
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9. The Green function for the sub-Laplacian

The Green function 𝒢𝑚 of ℒ𝑚 is the kernel of the integral operator representing
ℒ−1𝑚 , i.e.,

(ℒ−1𝑚 𝑓)(𝜁, 𝑡) = (2𝜋)−𝑚/2
∫
ℂ

∫
ℝ𝑚

𝑓(𝜁 ⊟ 𝑧, 𝑡− 𝑠)𝒢𝑚(𝜁, 𝑧, 𝑠) 𝑑𝑠 𝑑𝑧

for all (𝜁, 𝑡) in ℍ1𝑚 and all suitable functions on ℍ1𝑚, and can be obtained by
integrating the heat kernel of ℒ𝑚 with respect to time 𝜌 from 0 to ∞. Before
formulating the result, we give the following lemma.

Lemma 9.1. For all 𝑧 in ℂ and 𝑡 in ℝ,∫ ∞

0

∫ ∞

−∞
𝑒−𝑖𝑡𝜏𝑒−

1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿𝑑𝜏 𝑑𝛿 =

4𝜋√∣𝑧∣4 + 16𝑡2
.

Proof. For all 𝑧 in ℂ and 𝑡 in ℝ,∫ ∞

−∞
𝑒−𝑖𝑡𝜏𝑒−

1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿𝑑𝜏 =

∫ 0

−∞
𝑒−𝑖𝑡𝜏𝑒

1
4 𝜏 ∣𝑧∣2cosh 𝛿𝑑𝜏 +

∫ ∞

0

𝑒−𝑖𝑡𝜏𝑒−
1
4 𝜏 ∣𝑧∣2cosh 𝛿𝑑𝜏

=
𝑒𝜏(

1
4 ∣𝑧∣2cosh 𝛿−𝑖𝑡)

1
4 ∣𝑧∣2cosh 𝛿 − 𝑖𝑡

∣∣∣∣∣
0

−∞
+

𝑒−𝜏(
1
4 ∣𝑧∣2cosh 𝛿+𝑖𝑡)

1
4 ∣𝑧∣2cosh 𝛿 + 𝑖𝑡

∣∣∣∣∣
∞

0

=
1
2 ∣𝑧∣2cosh 𝛿

(∣𝑧∣4/16)cosh2𝛿 + 𝑡2
.

So, for all 𝑧 in ℂ and 𝑡 in ℝ,∫ ∞

0

∫ ∞

−∞
𝑒−𝑖𝑡𝜏𝑒−

1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿𝑑𝜏 𝑑𝛿 =

∫ ∞

0

1
2 ∣𝑧∣2cosh 𝛿

(∣𝑧∣4/16)cosh2𝛿 + 𝑡2
𝑑𝛿

=
∣𝑧∣2
2

∫ ∞

0

cosh 𝛿

(∣𝑧∣4/16)cosh2𝛿 + 𝑡2
𝑑𝛿 =

8

∣𝑧∣2
∫ ∞

0

cosh 𝛿

cosh2𝛿 + (16𝑡2/∣𝑧∣4)𝑑𝛿

=
8

∣𝑧∣2
∫ ∞

0

1

𝜌2 + 1 + (16𝑡2/∣𝑧∣4)𝑑𝜌 =
4𝜋

∣𝑧∣2
1√

1 + (16𝑡2/∣𝑧∣4) =
4𝜋√∣𝑧∣4 + 16𝑡2

. □

Theorem 9.2. For all 𝜁 in ℝ𝑚+1, 𝑧 in ℂ and 𝑠 = (𝑠1, 𝑠2, . . . , 𝑠𝑚) in ℝ𝑚,

𝒢𝑚(𝜁, 𝑧, 𝑠) = 2(2𝜋)−(𝑚−2)/2𝛿(𝑠1 − 𝑠2, . . . , 𝑠𝑚−1 − 𝑠𝑚)
1√∣𝑧∣4 + 16(𝑠𝑚 + [𝜁, 𝑧])2

,

where 𝛿 is the Dirac delta on ℝ𝑚−1.

Proof. First, we note that∫ ∞

0

1

4𝜋

∣𝑠(𝜆)∣
sinh(∣𝑠(𝜆)∣𝜌) 𝑒

− 1
4 ∣𝑠(𝜆)∣ ∣𝑧∣2coth(∣𝑠(𝜆)∣𝜌)𝑑𝜌 =

∫ ∞

0

1

(𝑣2 − 1)1/2
𝑒−

1
4 ∣𝑠(𝜆)∣ ∣𝑧∣2𝑣𝑑𝑣

= 𝐾0

(
1

4
∣𝑠(𝜆)∣ ∣𝑧∣2

)
=

∫ ∞

0

𝑒−
1
4 ∣𝑠(𝜆)∣ ∣𝑧∣2cosh 𝛿𝑑𝛿. (9.1)

So, by Lemma 9.1, (8.4) and (9.1), we get for all 𝜁 in ℝ𝑚+1, 𝑧 in ℂ and 𝑠 in ℝ𝑚,∫ ∞

0

𝐾𝜌(𝜁, 𝑧, 𝑠) 𝑑𝜌 =

∫ ∞

0

(2𝜋)−𝑚/2
∫
ℝ𝑚

𝑒−𝑖𝜆⋅(𝑠⊕[𝜁,𝑧])𝑒−
1
4 ∣𝑠(𝜆)∣ ∣𝑧∣2cosh 𝛿𝑑𝜆 𝑑𝛿.
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Let

𝜆1 + 𝜆2 + ⋅ ⋅ ⋅+ 𝜆𝑚 = 𝜏,
...

𝜆1 + 𝜆2 = 𝜇2,
𝜆1 = 𝜇1.

Then ∫ ∞

0

(2𝜋)−𝑚/2
∫
ℝ𝑚

𝑒−𝑖𝜆⋅(𝑠⊕[𝜁,𝑧])𝑒−
1
4 ∣𝑠(𝜆)∣ ∣𝑧∣2cosh 𝛿𝑑𝜆 𝑑𝛿

=

∫ ∞

0

(2𝜋)−𝑚/2
∫ ∞

−∞

∫
ℝ𝑚−1

× 𝑒−𝑖(𝜇1(𝑠1+[𝜁,𝑧]+(𝜇2−𝜇1)(𝑠2+[𝜁,𝑧])+⋅⋅⋅+(𝜏−𝜇𝑚−1(𝑠𝑚−1+[𝜁,𝑧]))

× 𝑑𝜇1 ⋅ ⋅ ⋅ 𝑑𝜇𝑚−1𝑑𝜏𝑒−𝑖𝜏𝑠𝑚𝑒− 1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿𝑑𝛿

=

∫ ∞

0

(2𝜋)(𝑚−2)/2𝛿(𝑠1 − 𝑠2, . . . , 𝑠𝑚−1 − 𝑠𝑚)

×
∫ ∞

−∞
𝑒−𝑖𝜏(𝑠𝑚+[𝜁,𝑧])𝑒−

1
4 ∣𝜏 ∣ ∣𝑧∣2cosh 𝛿𝑑𝜏 𝑑𝛿

= 2(2𝜋)−(𝑚−2)/2𝛿(𝑠1 − 𝑠2, . . . , 𝑠𝑚−1 − 𝑠𝑚)
1√∣𝑧∣4 + 16(𝑠𝑚 + [𝜁, 𝑧])2

,

as required. □

So, by (8.3) and Theorem 9.2, for all suitable functions 𝑓 on ℍ1𝑚,

(ℒ−1𝑚 𝑓)(𝜁, 𝑡) = 2(2𝜋)−(𝑚−2)/2
∫
ℂ

∫
ℝ𝑚

𝑓(𝜁 ⊟ 𝑧, 𝑡− 𝑠)𝛿(𝑠1 − 𝑠2, . . . , 𝑠𝑚−1 − 𝑠𝑚)√∣𝑧∣4 + 16(𝑠𝑚 + [𝜁, 𝑧])2
𝑑𝑠 𝑑𝑧.

Now, let

𝜎1 = 𝑠1 − 𝑠2,

𝜎2 = 𝑠2 − 𝑠3,
...

𝜎𝑚 = 𝑠𝑚−1 − 𝑠𝑚.

Then

(ℒ−1𝑚 𝑓)(𝜁, 𝑡) = 2(2𝜋)−(𝑚−2)/2
∫
ℂ

∫ ∞

−∞

×
∫
ℝ𝑚−1

𝑓

(
𝜁 ⊟ 𝑧, 𝑡1 −

𝑚∑
𝑗=1

𝜎𝑗 − 𝑠𝑚, 𝑡2 −
𝑚∑
𝑗=2

𝜎𝑗 − 𝑠𝑚, . . . , 𝑡𝑚−1 − 𝑠𝑚

)
× 𝛿(𝜎1, 𝜎2, . . . , 𝜎𝑚−1)𝑑𝜎1 ⋅ ⋅ ⋅ 𝑑𝜎𝑚−1
× 1√∣𝑧∣4 + 16(𝑠𝑚 + [𝜁, 𝑧])2

𝑑𝑠𝑚 𝑑𝑧
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= 2(2𝜋)−(𝑚−2)/2
∫
ℂ

∫ ∞

−∞

𝑓(𝜁 ⊟ 𝑧, 𝑡1 − 𝑠𝑚, . . . , 𝑡𝑚 − 𝑠𝑚)√∣𝑧∣4 + (𝑠𝑚 + [𝜁, 𝑧])2
𝑑𝑠𝑚 𝑑𝑧

= 2(2𝜋)−(𝑚−2)/2
∫
ℂ

∫ ∞

−∞
𝑓(𝜁 ⊟ 𝑧, 𝑡⊖ 𝑠𝑚)

1√∣𝑧∣4 + (𝑠𝑚 + [𝜁, 𝑧])2
𝑑𝑠𝑚 𝑑𝑧

= 2(2𝜋)−(𝑚−2)/2
∫
ℂ

∫ ∞

−∞
𝑓(𝜁 ⊟ 𝑧, 𝑡⊖ 𝑢⊕ [𝜁, 𝑧])

1√∣𝑧∣4 + 16𝑢2
𝑑𝑢 𝑑𝑧

for all (𝜁, 𝑡) in ℍ1𝑚.
Thus, the function 𝑑 on ℂ× ℝ given by

𝑑(𝑧, 𝑢) =
𝐶𝑚√∣𝑧∣4 + 𝑢2

, (𝑧, 𝑢) ∈ ℂ× ℝ,

where

𝐶𝑚 = 2(2𝜋)−(𝑚−2)/2

can be thought of as the Green function of ℒ𝑚.
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[1] V. Catană, S. Molahajloo and M.W. Wong, 𝐿𝑝-boundedness of multilinear pseudo-
differential operators, in Pseudo-Differential Operators: Complex Analysis and Par-
tial Differential Equations, Operator Theory: Advances and Applications 205,
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𝑳𝒑-bounds for Pseudo-differential
Operators on the Torus

Julio Delgado

Abstract. We establish 𝐿𝑝 bounds for a class of periodic pseudo-differential
operators corresponding to symbols with limited regularity on the torus 𝕋𝑛.
The analysis is carried out using global representation of the symbols on
𝕋𝑛 × ℤ𝑛.
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42B05.
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ysis.

1. Introduction

In this paper we study 𝐿𝑝-boundedness for periodic pseudo-differential operators or
pseudo-differential operators on the torus 𝕋𝑛 = (ℝ/2𝜋ℤ)𝑛. The group structure of
𝕋𝑛 enables us to obtain globally defined symbols on 𝕋𝑛×ℤ𝑛 and the corresponding
𝑆𝑚𝜌,𝛿 Hörmander classes. The idea of the formulation of pseudo-differential opera-

tors on the circle 𝕊1 using Fourier series yielding global symbols was first suggested
by Mikhail Semenovich Agranovich (cf. [1]). As has been pointed out in [17], de-
spite of the intense research on periodic integral operators, the theory of periodic
pseudo-differential operators has been difficult to find. Here, we consider periodic
pseudo-differential operators in the framework of the pseudo-differential calculus
on the torus recently developed in the works of M. Ruzhansky, V. Turunen and
G. Vainikko (cf. [16], [17], [21]). The 𝑆𝑚𝜌,𝛿 Hörmander classes can be defined on
manifolds using charts, in the case of the torus the equivalence of this local and
the global definition has been proved by W. McLean [14]. A different approach
to obtain that equivalence based on extension and periodisation techniques was
developed by M. Ruzhansky and V. Turunen [17].

One of the most interesting topics in the theory of pseudodifferential opera-
tors is to investigate the behavior of pseudodifferential operators of Hörmander’s

This work has been partially supported by Universidad del Valle, Vicerrectoria Inv. Grant#7840.
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class 𝑆𝑚𝜌,𝛿 in 𝐿𝑝. In a classical paper (cf. [10]) Charles Fefferman establishes 𝐿𝑝-

bounds for 𝑆𝑚𝜌,𝛿(ℝ
𝑛 × ℝ𝑛) classes, those estimates are obtained via real and com-

plex interpolation from a 𝐿∞-𝐵𝑀𝑂 bound. Extensions of the Fefferman’s 𝐿𝑝

estimates have been obtained in [2], [13] on ℝ𝑛; the references [7], [8] consider a
non-homogeneous setting. 𝐿𝑝-bounds on the torus have been investigated for in-
stance in [15], [16] and [17], and multipliers on compact Lie groups can be found
in [18]. 𝐿𝑝 bounds on the circle which can be routinely extended to the torus can
be found in [24]. The boundedness on 𝐿𝑝(ℝ𝑛) for all 1 < 𝑝 <∞ fails for symbols
in 𝑆0𝜌,𝛿(ℝ

𝑛 × ℝ𝑛) with 𝜌 < 1, further when 𝑚 > 0 is small in 𝑆−𝑚𝜌,𝛿 (ℝ
𝑛 × ℝ𝑛)

with 𝜌 < 1 one can only get 𝐿𝑝(ℝ𝑛) boundedness for finite intervals centered at
𝑝 = 2, this is a consequence of Fefferman’s estimates and the work on multipliers
of Hirschman (cf. [11]) and Wainger (cf. [22]). The obstruction for the bounded-
ness on 𝐿𝑝(ℝ𝑛) for all 1 < 𝑝 < ∞ of operators in 𝑂𝑃𝑆0𝜌,𝛿(ℝ

𝑛 × ℝ𝑛) with 𝜌 < 1

is explained in a more general setting by the works of Richard Beals [3] and [4].
In order to illustrate our main results we recall the 𝐿∞-𝐵𝑀𝑂 bound obtained by
C. Fefferman.

Theorem A. Let 𝜎(𝑥, 𝜉) ∈ 𝑆
−𝑛𝜖/2
1−𝜖, 𝛿 (ℝ

𝑛 × ℝ𝑛), where 0 ≤ 𝛿 < 1 − 𝜖 < 1. Then

𝜎(𝑥,𝐷) is a bounded operator from 𝐿∞ into 𝐵𝑀𝑂.

We will obtain in the periodic case a version of theorem 𝐴 in terms of sym-
bols with limited regularity and making use of a recent 𝐿2 estimate on the torus
by Ruzhansky and Turunen (cf. [17], Theorem 4.8.1). More specifically we will
establish the following theorem. Δ𝛼

𝜉 denotes partial differences on the lattice ℤ𝑛.

Main Theorem. Let 0 < 𝜖 < 1 and 𝑘 ∈ ℕ with 𝑘 > 𝑛
2 , let 𝑎 : 𝕋𝑛 × ℤ𝑛 → ℂ

be a symbol such that ∣Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩− 𝑛

2 𝜖−(1−𝜖)∣𝛼∣, ∣∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛽⟨𝜉⟩−𝑛
2 𝜖 for

∣𝛼∣, ∣𝛽∣ ≤ 𝑘, then 𝑎(𝑥,𝐷) is bounded from 𝐿∞(𝕋𝑛) into 𝐵𝑀𝑂(𝕋𝑛).

As a consequence of real interpolation and the 𝐿2 estimate by Ruzhansky
and Turunen (cf. [17]) we obtain:

Theorem. Let 0 < 𝜖 < 1 and 𝑘 ∈ ℕ with 𝑘 > 𝑛
2 , let 𝑎 : 𝕋𝑛 × ℤ𝑛 → ℂ be

a symbol such that ∣Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩−𝑛

2 𝜖−(1−𝜖)∣𝛼∣, ∣∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛽⟨𝜉⟩− 𝑛
2 𝜖, for

∣𝛼∣, ∣𝛽∣ ≤ 𝑘. Then 𝜎(𝑥,𝐷) is a bounded operator from 𝐿𝑝(𝕋𝑛) into 𝐿𝑝(𝕋𝑛) for
2 ≤ 𝑝 <∞.

2. Basics on pseudo-differential calculus on the torus

In this section we recall some elements of the basic theory of pseudo-differential
operators on the torus. We refer the reader to [16] and [17] for a more comprehen-
sive account on this theory. The dual group of 𝕋𝑛 being ℤ𝑛 we shall need of some
elements of calculus on finite differences, a classical reference for this topic is [12].
Standard references for the study of pseudodifferential operators on the Euclidean
space are [19], [20], [23].
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Definition 2.1 (Periodic functions). A function 𝑓 : ℝ𝑛 → ℂ is 2𝜋-periodic if 𝑓(𝑥+
𝑘) = 𝑓(𝑥) for every 𝑥 ∈ ℝ𝑛 and 𝑘 ∈ 2𝜋ℤ𝑛. We shall identify these functions with
functions defined on 𝕋𝑛 = ℝ𝑛/2𝜋ℤ𝑛 = {𝑥 + 2𝜋ℤ𝑛 : 𝑥 ∈ ℝ𝑛}. The space of 2𝜋-
periodic 𝑚 times continuously differentiable functions is denoted by 𝐶𝑚(𝕋𝑛). The
test functions are the elements of the space 𝐶∞(𝕋𝑛) = ∩𝑚𝐶𝑚(𝕋𝑛).
Definition 2.2 (Schwartz space 퓢(ℤ𝒏)). Let us denote by 𝒮(ℤ𝑛) the space of rapidly
decaying functions 𝜙 : ℤ𝑛 → ℂ. That is, 𝜑 ∈ 𝒮(ℤ𝑛) if for all 0 < 𝑀 < ∞ there
exists a constant 𝐶𝜑,𝑀 such that

∣𝜑(𝜉)∣ ≤ 𝐶𝜑,𝑀 ⟨𝜉⟩−𝑀
holds for all 𝜉 ∈ ℤ𝑛. The topology on 𝒮(ℤ𝑛) is defined by the seminorms 𝑝𝑘, where
𝑘 ∈ ℕ0 and 𝑝𝑘(𝜑) = sup

𝜉∈ℤ𝑛
⟨𝜉⟩𝑘∣𝜑∣.

In order to define the class of symbols that we will use, let us recall the
definition of the Fourier transform on the torus for a function 𝑓 in 𝐶∞(𝕋𝑛)

(ℱ𝕋𝑛𝑢)(𝜉) = 𝑢(𝜉) =

∫
𝕋𝑛

𝑒−𝑖𝑥𝜉𝑢(𝑥)𝑑𝑥

where 𝑑𝑥 = (2𝜋)−𝑛𝑑𝑥. One can prove that

ℱ𝕋𝑛 : 𝐶∞(𝕋𝑛)→ 𝒮(ℤ𝑛)
is a continuous bijection. The inverse ℱ−1

𝕋𝑛
: 𝒮(ℤ𝑛)→ 𝐶∞(𝕋𝑛) is obtained in order

to get the reconstruction formula of 𝑓 in the form of a discrete integral or sum
over the dual group ℤ𝑛

𝑓(𝑥) =
∑
𝜉∈ℤ𝑛

𝑒𝑖𝑥𝜉(ℱ𝕋𝑛𝑓)(𝜉),

so that for 𝑔 ∈ 𝒮(ℤ𝑛)
(ℱ−1

𝕋𝑛
𝑔)(𝑥) =

∑
𝜉∈ℤ𝑛

𝑒𝑖𝑥𝜉𝑔(𝜉).

We shall need a suitable notion of derivative on the lattice ℤ𝑛. On the discrete
group ℤ𝑛 we define the partial difference operator. Let 𝜎 : ℤ𝑛 → ℂ. Let 𝑒𝑗 ∈
ℕ𝑛, (𝑒𝑗)𝑗 = 1, and (𝑒𝑗)𝑖 = 0 if 𝑖 ∕= 𝑗. We define the partial difference operator
Δ𝜉𝑗 by

Δ𝜉𝑗𝜎(𝜉) := 𝜎(𝜉 + 𝑒𝑗)− 𝜎(𝜉) and Δ𝛼
𝜉 = Δ𝛼1

𝜉1
⋅ ⋅ ⋅Δ𝛼𝑛

𝜉𝑛

for 𝛼 ∈ ℕℕ
0 .

The operator above enjoys good properties: discrete Leibniz formula, summa-
tion by parts, discrete Taylor expansion, discrete fundamental theorem of calculus
(cf. [17]). We just recall a formula for higher-order partial differences and the
discrete Leibniz formula.

Proposition 2.3. Let 𝜑 : ℤ𝑛 → ℂ. We have

Δ𝛼
𝜉 𝜑(𝜉) =

∑
𝛽≤𝛼

(−1)∣𝛼−𝛽∣
(
𝛼

𝛽

)
𝜑(𝜉 + 𝛽).
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Lemma 2.4 (Discrete Leibniz formula). Let 𝜙, 𝜓 : ℤ𝑛 → ℂ then

Δ𝛼
𝜉 (𝜙𝜓)(𝜉) =

∑
𝛽≤𝛼

(
𝛼

𝛽

)(
Δ𝛽
𝜉 𝜙(𝜉)

)
𝜓𝛼−𝛽(𝜉 + 𝛽).

We now can define Hörmander’s classes on the torus.

Definition 2.5. Let 𝑚 ∈ ℝ, 0 ≤ 𝛿, 𝜌 ≤ 1. We say that a function 𝑎(𝑥, 𝜉) which is
smooth in 𝑥 for all 𝜉 ∈ ℤ𝑛 belongs to the toroidal symbol class 𝑆𝑚𝜌,𝛿(𝕋

𝑛 × ℤ𝑛), if
the following inequalities hold

∣∂𝛽𝑥Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼,𝛽⟨𝜉⟩𝑚−𝜌∣𝛼∣+𝛿∣𝛽∣ (2.1)

for every 𝑥 ∈ 𝕋𝑛, for every 𝛼, 𝛽 ∈ ℕ𝑛0 , and for all 𝜉 ∈ ℤ𝑛.

A countable family of seminorms can be associated in the following way, for
each 𝛼, 𝛽 we define

𝑝𝑚𝛼,𝛽(𝑎) = sup

{ ∣Δ𝛼
𝜉 ∂

𝛽
𝑥𝑎(𝑥, 𝜉)∣

⟨𝜉⟩𝑚−𝜌∣𝛼∣+𝛿∣𝛽∣ : (𝑥, 𝜉) ∈ 𝕋𝑛 × ℤ𝑛
}
.

Then {𝑝𝑚𝛼,𝛽 : 𝛼, 𝛽 ∈ ℕ𝑛0} is a countable family of seminorms and defines a Fréchet

topology on 𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℤ𝑛).

Remark 2.6. When the symbol 𝑎(𝑥, 𝜉) has finite regularity with respect to the spa-
tial variable we will keep the notation of 𝑝𝑚𝛼,𝛽 from the corresponding seminorms.

A corresponding operator is associated to a symbol 𝑎(𝑥, 𝜉) in 𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℤ𝑛)

which will be called a periodic pseudo-differential operator or pseudo-differential
operator on the torus 𝕋𝑛

𝑎(𝑥,𝐷)𝑓(𝑥) =
∑
𝜉∈ℤ𝑛

𝑒𝑖2𝜋𝑥⋅𝜉𝑎(𝑥, 𝜉)(ℱ𝕋𝑛𝑓)(𝜉), (2.2)

which can also be written as

𝑎(𝑥,𝐷)𝑓(𝑥) =
∑
𝜉∈ℤ𝑛

∫
𝕋𝑛

𝑒𝑖2𝜋(𝑥−𝑦)⋅𝜉𝑎(𝑥, 𝜉)𝑓(𝑦)𝑑𝑦. (2.3)

The corresponding class of operators with symbols in 𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℤ𝑛) will be

denoted by 𝑂𝑃𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℤ𝑛).

Remark 2.7. Let 𝑎 : 𝕋𝑛 × ℤ𝑛 → ℂ be a measurable function and 𝑚 ∈ ℝ such
that ∣𝑎(𝑥, 𝜉)∣ ≤ 𝐶 < 𝜉 >𝑚 for some constant 𝐶 > 0. It is not hard to prove
that 𝑎(𝑥,𝐷)𝑓 is well defined for 𝑓 ∈ 𝐶∞(𝕋𝑛). Hence, we can associate a pseudo-
differential operator to such a symbol. In particular, we will do so for symbols with
limited regularity.

In order to employ some multipliers on the torus we shall need the following
lemma.

Lemma 2.8. Let 𝑚 ∈ ℝ, if 𝜎 ∈ 𝑆𝑚𝜌,𝛿(ℝ
𝑛 × ℝ𝑛) and 𝜎 only depends on the Fourier

variable 𝜉 then 𝜎 ∈ 𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℤ𝑛).
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Proof. For the partial differences of order 1, ∣𝛼∣ = 1, we have

Δ𝛼
𝜉 = 𝜎(𝜉 + 𝑒𝑗)− 𝜎(𝜉).

Applying the mean value theorem we get 𝜂 ∈ [𝜉, 𝜉+ 𝑒𝑗] and a constant 𝐶 > 0 such
that

∣𝜎(𝜉 + 𝑒𝑗)− 𝜎(𝜉)∣ ≤ ∣∂𝑗𝜎(𝜂)∣ ≤ ⟨𝜂⟩𝑚−(𝜌−𝛿) ≤ 𝐶⟨𝜉⟩𝑚−(𝜌−𝛿).
The last inequality because in the interval [𝜉, 𝜉+𝑒𝑗 ] we have ⟨𝜂⟩ ≤ 𝐶⟨𝜉⟩. For higher-
order differences and derivatives we apply Proposition 2.3 and induction. □

There exists a process to interpolate the second argument of symbols on
𝕋𝑛 × ℤ𝑛 in a smooth way to get a symbol defined on 𝕋𝑛 × ℝ𝑛. We recall a few
consequences of this process linking symbols on 𝕋𝑛 × ℤ𝑛 and 𝕋𝑛 × ℝ𝑛 (cf. [17]).

Theorem 2.9. Let 0 ≤ 𝛿 ≤ 1, 0 < 𝜌 ≤ 1. The symbol �̃� ∈ 𝑆𝑚𝜌,𝛿(𝕋
𝑛×ℤ𝑛) is a toroidal

symbol if and only if there exists a Euclidean symbol 𝑎 ∈ 𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℝ𝑛) such that

�̃� = 𝑎∣𝕋𝑛×ℤ𝑛. Moreover, this extended symbol 𝑎 is unique modulo 𝑆−∞(𝕋𝑛 × ℝ𝑛).

Theorem 2.10 (Equality of Operator Classes). For 0 ≤ 𝛿 ≤ 1, 0 < 𝜌 ≤ 1 we have

𝑂𝑝𝑆𝑚𝜌,𝛿(𝕋
𝑛 × ℝ𝑛) = 𝑂𝑝𝑆𝑚𝜌,𝛿(𝕋

𝑛 × ℤ𝑛).

A look at the proof (cf. [17]) of Theorem 2.9 shows us that a more general
version is still valid for symbols with limited regularity as follows:

Corollary 2.11. Let 0 ≤ 𝛿 ≤ 1, 0 < 𝜌 ≤ 1. Let the function 𝑎 : 𝕋𝑛×ℝ𝑛 → ℂ satisfy

∣∂𝛼𝜉 ∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼,𝛽⟨𝜉⟩𝑚−𝜌∣𝛼∣+𝛿∣𝛽∣ (2.4)

for every 𝑥 ∈ 𝕋𝑛, for all 𝜉 ∈ ℤ𝑛, for every ∣𝛼∣ ≤ 𝑁1 and ∣𝛽∣ ≤ 𝑁2. Then the
restriction �̃� = 𝑎∣𝕋𝑛×ℤ𝑛 satisfies

∣Δ𝛼
𝜉 ∂

𝛽
𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼,𝛽 < 𝜉 >𝑚−𝜌∣𝛼∣+𝛿∣𝛽∣, (2.5)

for every 𝑥 ∈ 𝕋𝑛, for all 𝜉 ∈ ℤ𝑛, for every ∣𝛼∣ ≤ 𝑁1 and ∣𝛽∣ ≤ 𝑁2. Conversely,
every function �̃� : 𝕋𝑛 × ℤ𝑛 → ℂ satisfying (2.5) for every ∣𝛼∣ ≤ 𝑁1 and ∣𝛽∣ ≤ 𝑁2
is a restriction �̃� = 𝑎∣𝕋𝑛×ℤ𝑛 of some function 𝑎 : 𝕋𝑛 ×ℝ𝑛 → ℂ satisfying (2.4) for
every ∣𝛼∣ ≤ 𝑁1 and ∣𝛽∣ ≤ 𝑁2.

Remark 2.12. It is important to point out that in the previous three statements
the restriction 𝛿 ≤ 𝜌 is not imposed and so 𝛿 > 𝜌 is allowed.

Note that in the corollary above we lose the uniqueness we have in Theorem
2.9. Our main results will be stated for symbols with limited regularity, to do so
we will introduce the following notation.

Definition 2.13. Let the function 𝑎 : 𝕋𝑛 × ℝ𝑛 → ℂ satisfy (2.4). We will say that
𝑎 ∈ 𝑆𝑚𝜌,𝛿,𝑁1,𝑁2

(𝕋𝑛 × ℝ𝑛). If 𝑎 : 𝕋𝑛 × ℤ𝑛 → ℂ satisfies (2.5) for 𝑁1, 𝑁2 we will

say that 𝑎 ∈ 𝑆𝑚𝜌,𝛿,𝑁1,𝑁2
(𝕋𝑛 × ℤ𝑛). The corresponding classes of operators will be

denoted by 𝑂𝑝𝑆𝑚𝜌,𝛿,𝑁1,𝑁2
(𝕋𝑛 × ℝ𝑛) and 𝑂𝑝𝑆𝑚𝜌,𝛿,𝑁1,𝑁2

(𝕋𝑛 × ℤ𝑛) respectively.
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It is also possible to obtain a version of Theorem 2.10 for symbols with limited
regularity:

Theorem 2.14. For 0 ≤ 𝛿 ≤ 1, 0 < 𝜌 ≤ 1 we have

𝑂𝑝𝑆𝑚𝜌,𝛿,𝑁1,𝑁2
(𝕋𝑛 × ℝ𝑛) = 𝑂𝑝𝑆𝑚𝜌,𝛿,𝑁1,𝑁2

(𝕋𝑛 × ℤ𝑛).

Remark 2.15.

i) ⟨𝜉⟩𝑚 ∈ 𝑆𝑚1,0(𝕋𝑛 × ℤ𝑛) for all 𝑚 ∈ ℝ. This is a consequence of Lemma 2.8.

ii) Symbols 𝜎(𝑥, 𝜉) in 𝑆𝑚𝜌,𝛿(𝕋
𝑛×ℤ𝑛) can be obtained from symbols in 𝑆𝑚𝜌,𝛿(𝕋

𝑛×
ℝ𝑛) due to Theorem 2.9.

iii) It is possible to construct a symbol 𝜎(𝑥, 𝜉) in 𝑆𝑚1,𝛿(𝕊
1 × ℤ) in the following

way: consider 𝛾(𝑥, 𝜉) = exp(𝑖∣𝜉∣𝛿𝑥) < 𝜉 >𝑚 for −𝜋
4 ≤ 𝑥 ≤ 𝜋

4 , 𝜉 ∈ ℤ, extend 𝛾
smoothly to −𝜋 ≤ 𝑥 ≤ 𝜋, 𝜉 ∈ ℤ with 𝛾(𝑥, 𝜉) = 0 if 𝜋2 ≤ ∣𝑥∣ ≤ 𝜋, 𝜉 ∈ ℤ.

3. 𝑳𝒑(𝕋𝒏) estimates

In order to get our 𝐿𝑝(𝕋𝑛) bounds we shall interpolate between 𝐿2 and 𝐿∞−𝐵𝑀𝑂
bounds. The proposition below (cf. [17], Theorem 4.8.1) does not impose any
regularity condition on the symbol in contrast with similar results on ℝ𝑛, the
authors give a sufficient condition for 𝐿2(𝕋𝑛) boundedness:

Theorem 3.1. Let 𝑘 ∈ ℕ and 𝑘 > 𝑛
2 . Let 𝑎 : 𝕋

𝑛 × ℤ𝑛 → ℂ be a symbol such that

∣∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛽 , ∣𝛽∣ ≤ 𝑘 (3.1)

then

𝑎(𝑥,𝐷) : 𝐿2(𝕋𝑛)→ 𝐿2(𝕋𝑛).
Moreover, there exists a constant 𝐶 such that

∥𝑎(𝑥,𝐷)𝑓∥𝐿2(𝕋𝑛) ≤ 𝐶max{𝐶𝛽 : ∣𝛽∣ ≤ 𝑘}∥𝑓∥𝐿2(𝕋𝑛). (3.2)

The theorem above will be our 𝐿2 starting point. We now prove some prepara-
tory results.

Lemma 3.2. Let 𝑏(𝑥, 𝜉), 𝑐(𝜉) be symbols on 𝕋𝑛 × ℤ𝑛. Then the composition
𝑏(𝑥,𝐷)𝑐(𝐷) possesses a symbol with exact representation 𝑏(𝑥, 𝜉) ⋅ 𝑐(𝜉).
Proof. It is a direct consequence of the definition of pseudodifferential operator
having into account that ℱ𝕋𝑛(𝑐(𝐷)𝑓)(𝜉) = 𝑐(𝜉)ℱ𝕋𝑛(𝑓)(𝜉). □

The following lemma is a consequence of Theorem 3.1:

Lemma 3.3. Let 𝑘 ∈ ℕ and 𝑘 > 𝑛
2 . Let 𝑏 : 𝕋

𝑛 × ℤ𝑛 → ℂ be a symbol and 𝑚 ∈ ℝ,
if there exists a constant 𝐶𝛽 > 0 such that for ∣𝛽∣ ≤ 𝑘

∣∂𝛽𝑥 𝑏(𝑥, 𝜉)∣ ≤ 𝐶𝛽⟨𝜉⟩𝑚, (3.3)

then

𝑏(𝑥,𝐷)𝐽−𝑚 : 𝐿2(𝕋𝑛)→ 𝐿2(𝕋𝑛),
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where 𝐽𝑚 denotes the Bessel potential with symbol ⟨𝜉⟩𝑚. Moreover there exists a
constant 𝐶 such that

∥𝑏(𝑥,𝐷)𝐽−𝑚𝑓∥𝐿2(𝕋𝑛) ≤ 𝐶 max
∣𝛽∣≤𝑘

sup
(𝑥,𝜉)

∣∂𝛽𝑥 𝑏(𝑥, 𝜉)⟨𝜉⟩−𝑚∣ ∥𝑓∥𝐿2(𝕋𝑛).

Proof. We observe that by Lemma 3.2 the symbol of 𝑏(𝑥,𝐷)𝐽−𝑚 is 𝑏(𝑥, 𝜉)⟨𝜉⟩−𝑚,
the proof follows now from Theorem 3.1 since

∣∂𝛽𝑥 (𝑏(𝑥, 𝜉)⟨𝜉⟩−𝑚)∣ ≤ ∣∂𝛽𝑥 𝑏(𝑥, 𝜉)∣⟨𝜉⟩−𝑚 ≤ 𝐶𝐶𝛽⟨𝜉⟩𝑚⟨𝜉⟩−𝑚,
for ∣𝛽∣ ≤ 𝑘. □

Lemma 3.4. Let 𝜙 be a function in 𝐶∞(𝕋𝑛) and 𝑏 : 𝕋𝑛 × ℤ𝑛 → ℂ a symbol, then
the commutator [𝜙, 𝑏(𝑥,𝐷)] is a pseudodifferential operator with symbol

𝜃(𝑥, 𝜉) =
∑
𝜂∈ℤ𝑛

𝑒2𝜋𝑖𝑥⋅𝜂𝜙(𝜂) [𝑏(𝑥, 𝜉) − 𝑏(𝑥, 𝜉 + 𝜂)] .

Proof. We identify 𝜙 with the multiplication operator (by 𝜙) that will be denoted
by 𝑀𝜙. Then

𝑀𝜙𝑓(𝑦) = 𝜙(𝑦)𝑓(𝑦) =
∑
𝜉∈ℤ𝑛

𝑒𝑖𝜉⋅𝑦𝜙(𝑦)𝑓 (𝜉),=
∫
𝕋𝑛

𝑒𝑖𝜉⋅(𝑦−𝑧)𝜙(𝑦)𝑓(𝑧)𝑑𝑧.

Now,

𝑏(𝑥,𝐷) ∘𝑀𝜙𝑓(𝑥) =

∫
ℝ𝑛

∑
𝜂∈ℤ𝑛

𝑒𝑖𝜂⋅(𝑥−𝑦)𝑏(𝑥, 𝜂)𝑇𝜙𝑓(𝑦)𝑑𝑦

=

∫
𝕋𝑛

∑
𝜉∈ℤ𝑛

∫
𝕋𝑛

∑
𝜂∈ℤ𝑛

𝑒𝑖𝜂⋅(𝑥−𝑦)𝑒𝑖𝜉⋅(𝑦−𝑧)𝑏(𝑥, 𝜂)𝜙(𝑦)𝑓(𝑧)𝑑𝑧𝑑𝑦.

We will use the following identity

𝑒𝑖𝜂⋅(𝑥−𝑦)𝑒𝑖𝜉⋅(𝑦−𝑧) = 𝑒𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝑒𝑖(𝑥−𝑧)⋅𝜉,

thus,

𝑏(𝑥,𝐷) ∘𝑀𝜙𝑓(𝑥) =

∫
𝕋𝑛

∑
𝜉∈ℤ𝑛

∫
𝕋𝑛

∑
𝜂∈ℤ𝑛

𝑒𝑖(𝑥−𝑦)⋅(𝜂−𝜉)𝑒𝑖(𝑥−𝑧)⋅𝜉𝑏(𝑥, 𝜂)𝜙(𝑦)𝑓(𝑧)𝑑𝑧𝑑𝑦

=

∫
𝑐(𝑥, 𝜉)𝑒𝑖(𝑥−𝑧)⋅𝜉𝑓(𝑧)𝑑𝑧,

where
𝑐(𝑥, 𝜉) =

∑
𝜂∈ℤ𝑛

𝑒𝑖𝑥⋅𝜂𝜙(𝜂)𝑏(𝑥, 𝜉 + 𝜂)𝑑𝜂.

Hence, 𝑐(𝑥, 𝜉) is the symbol of 𝑏(𝑥,𝐷) ∘𝑀𝜙. On the other hand the symbol
of 𝑀𝜙 ∘ 𝑏(𝑥,𝐷) is 𝜙(𝑥) ⋅ 𝑏(𝑥, 𝜉). □

The following lemma will be applied to analyze local 𝐿∞(𝕋𝑛) − 𝐿∞(𝕋𝑛)
bounds.
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Lemma 3.5. Let 𝜎 be a symbol on 𝕋𝑛×ℤ𝑛, if 𝜂 : ℤ→ ℂ is a function supported in
𝑅 ≤ ∣𝑧∣ ≤ 3𝑅 with 𝑅 > 1, then for every 𝛼 there exist constants 𝐴 and 𝐶𝛼𝛽 such
that for all 𝜆 ∈ ℝ, 𝑠 ∈ ℕ and for every (𝑥, 𝜉) ∈ 𝕋𝑛 × ℤ𝑛 we have

∣Δ𝛼
𝜉 (𝜎(𝑥, 𝜉)𝜂(𝑠∣𝜉∣))∣ ≤ 𝐶𝛼max

𝛽≤𝛼
∣Δ𝛽

𝜉 𝜎(𝑥, 𝜉)∣𝐴∣𝜆∣⟨𝜉⟩𝜆𝑠𝜆. (3.4)

Proof.

Δ𝛼
𝜉 (𝜎(𝑥, 𝜉)𝜂(𝑠∣𝜉∣)) =

∑
𝛽≤𝛼

(
𝛼

𝛽

)(
Δ𝛽
𝜉 𝜎(𝑥, 𝜉)

)
Δ𝛼−𝛽
𝜉 𝜂(𝑠∣𝜉∣)

=
∑
𝛽≤𝛼

(
𝛼

𝛽

)(
Δ𝛽
𝜉 𝜎(𝑥, 𝜉)

) ∑
𝛾≤𝛼−𝛽

(−1)∣𝛼−𝛽−𝛾∣
(
𝛼− 𝛽

𝛾

)
𝜂(𝑠∣𝜉 + 𝛾∣).

Hence we obtain

∣Δ𝛼
𝜉 (𝜎(𝑥, 𝜉)𝜂(𝑠∣𝜉∣))∣ ≤ 𝐶𝛼max

𝛽≤𝛼
∣Δ𝛽

𝜉 𝜎(𝑥, 𝜉)∣𝐶𝛼
∑

𝛾≤𝛼−𝛽
∣𝜂(𝑠∣𝜉 + 𝛾∣)∣.

Taking into account that 𝜂(𝑠∣ ⋅ ∣) is supported in 𝑅 ≤ ∣ ⋅ ∣ ≤ 3𝑅 there exists a
constant 𝐴 > 1 such that

𝐴−1𝑠−1 ≤ ⟨𝜉⟩ ≤ 𝐴𝑠−1,

thus for every 𝜆 ∈ ℝ
1 ≤ 𝐴∣𝜆∣⟨𝜉⟩𝜆𝑠𝜆.

Therefore

∣Δ𝛼
𝜉 (𝜎(𝑥, 𝜉)𝜂(𝑠∣𝜉∣))∣ ≤ 𝐶𝛼max

𝛽≤𝛼
∣Δ𝛽

𝜉 𝜎(𝑥, 𝜉)∣𝐴∣𝜆∣⟨𝜉⟩𝜆𝑠𝜆. □

The next lemma is a periodic version of a classical by Charles Fefferman ([10],
page 415). It furnishes local 𝐿∞(𝕋𝑛)−𝐿∞(𝕋𝑛) bounds, that kind of boundedness
joint with the application of suitable partitions of unity will be essential in our
analysis in the spirit of Littlewood–Paley theory.

Lemma 3.6. Let 0 < 𝜖 < 1 and 𝑘 ∈ ℕ with 𝑘 > 𝑛
2 , let 𝑎 : 𝕋𝑛 × ℤ𝑛 → ℂ

be a symbol supported in ∣𝜉∣ ≤ 1 or 𝑅 ≤ ∣𝜉∣ ≤ 3𝑅 for some 𝑅 > 0 and such that
∣Δ𝛼

𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩−𝑛
2 𝜖−(1−𝜖)∣𝛼∣, for ∣𝛼∣ ≤ 𝑘 then 𝑎(𝑥,𝐷) is bounded from 𝐿∞(𝕋𝑛)

into 𝐿∞(𝕋𝑛) moreover there exists a constant 𝐶 independent of 𝑎 and 𝑓 such that

∥𝑎(𝑥,𝐷)𝑓∥∞ ≤ 𝐶𝐶(𝑎)∥𝑓∥𝐿∞ ,

where 𝐶(𝑎) = max{𝐶0, 𝐶𝛼 : ∣𝛼∣ = 𝑘}.
Remark 3.7. The fact that the above estimate is independent of 𝑅 will be crucial
for us in order to apply dyadic decompositions.

Proof of Lemma 3.6. Let 𝑎(𝑥, 𝜉) be supported in

{(𝑥, 𝜉) ∈ 𝕋𝑛 × ℤ𝑛/𝑅 ≤ ∣𝜉∣ ≤ 3𝑅},
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for 𝑅 > 1 and such that ∣Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩− 𝑛

2 𝜖−(1−𝜖)∣𝛼∣, for ∣𝛼∣ ≤ 𝑘. Applying

Corollary 2.11 to the symbol 𝑎 we obtain �̃� ∈ 𝑆
−𝑛

2

𝜌,𝛿,𝑘,0(𝕋
𝑛 ×ℝ𝑛) such that 𝑎 and �̃�

coincide in 𝕋𝑛 × ℤ𝑛. Then �̃� has the same support as 𝑎 and we notice that

𝑎(𝑥,𝐷)𝑓(𝑥) = �̃�(𝑥,𝐷)𝑓(𝑥) =

∫
ℝ𝑛

∫
𝕋𝑛

𝑒2𝜋𝑖(𝑥−𝑦)⋅𝜉�̃� (𝑥, 𝜉) 𝑓(𝑦)𝑑𝑦𝑑𝜉

=

∫
𝕋𝑛

ℱℝ𝑛 �̃�(𝑥, 𝑦 − 𝑥)𝑓(𝑦)𝑑𝑦 = (ℱℝ𝑛 �̃�(𝑥, ⋅) ∗ 𝑓)(𝑥).

We obtain

∣�̃�(𝑥,𝐷)𝑓(𝑥)∣ ≤ ∥ℱℝ𝑛 �̃�(𝑥, ⋅)∥𝐿1(ℝ𝑛)∥𝑓∥𝐿∞(𝕋𝑛), 𝑥 ∈ 𝕋𝑛.

It will be enough to prove that for every 𝑥 ∈ ℝ𝑛

∥ℱℝ𝑛 �̃�(𝑥, ⋅)∥𝐿1 ≤ 𝐶𝐶(�̃�).

We set 𝑏 = 𝑅𝜖−1. By the Cauchy–Schwarz inequality we get∫
∣𝑦∣<𝑏

∣ℱℝ𝑛 �̃�(𝑥, 𝑦)∣𝑑𝑦 ≤ 𝐶𝑏
𝑛
2

( ∫
∣𝑦∣<𝑏

∣ℱℝ𝑛 �̃�(𝑥, 𝑦)∣2𝑑𝑦
) 1

2

≤ 𝐶𝑏
𝑛
2

(∫
∣�̃�(𝑥, 𝜉)∣2𝑑𝜉

) 1
2

≤ 𝐶𝐶0𝑏
𝑛
2

( ∫
∣𝜉∣≤3𝑅

⟨𝜉⟩−𝑛𝜖𝑑𝜉
) 1

2

≤ 𝐶𝐶0𝑅
(𝜖−1)𝑛2

( ∫
∣𝜉∣≤3𝑅

⟨𝜉⟩−𝑛𝜖𝑑𝜉
) 1

2

≤ 𝐶𝐶0, for all 𝑅 > 1.

Now, since 𝑘 > 𝑛
2 we get∫

∣𝑦∣≥𝑏

∣ℱℝ𝑛 �̃�(𝑥, 𝑦)∣𝑑𝑦 ≤ 𝐶𝑏
𝑛
2−𝑘

( ∫
𝑦≥𝑏

∣𝑦∣2𝑘∣ℱℝ𝑛 �̃�(𝑥, 𝑦)∣2𝑑𝑦
) 1

2

≤ 𝐶𝑏
𝑛
2−𝑘

(∫
ℝ𝑛

∣∇𝑘𝜉 �̃�(𝑥, 𝜉)∣2𝑑𝜉
) 1

2

≤ 𝐶 max
∣𝛼∣=𝑘

𝐶𝛼𝑅
(𝜖−1)(𝑛2−𝑘)

( ∫
𝑅≤∣𝜉∣

⟨𝜉⟩−𝑛𝜖−2𝑘(1−𝜖)𝑑𝜉
) 1

2

≤ 𝐶 max
∣𝛼∣=𝑘

𝐶𝛼𝑅
(𝜖−1)(𝑛2−𝑘)𝑂

(
𝑅(1−𝜖)(

𝑛
2−𝑘)

)
≤ 𝐶 max

∣𝛼∣=𝑘
𝐶𝛼.

Therefore

∥ℱℝ𝑛 �̃�(𝑥, ⋅)∥𝐿1 ≤ 𝐶𝐶(𝑎), for every 𝑥 ∈ 𝕋𝑛.
The proof is similar for the other type of support. □
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We are now ready to establish our main result which can be seen as a gener-
alization of the Fefferman bounds (Theorem A) in the introduction but improving
the estimation of the suitable indices in the case of the torus.

Theorem 3.8. Let 0 < 𝜖 < 1 and 𝑘 ∈ ℕ with 𝑘 > 𝑛
2 , let 𝑎 : 𝕋

𝑛×ℤ𝑛 → ℂ be a symbol

such that ∣Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩−𝑛

2 𝜖−(1−𝜖)∣𝛼∣, ∣∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛽⟨𝜉⟩𝑛2 𝜖 for ∣𝛼∣, ∣𝛽∣ ≤ 𝑘

then 𝑎(𝑥,𝐷) is bounded from 𝐿∞(𝕋𝑛) into 𝐵𝑀𝑂(𝕋𝑛), moreover there exists a
constant 𝐶 independent of 𝑎 and 𝑓 such that

∥𝑎(𝑥,𝐷)𝑓∥𝐵𝑀𝑂 ≤ 𝐶𝑝
−𝑛

2 𝜖

𝑘,𝑘 (𝑎)∥𝑓∥𝐿∞.

We shall need the following lemma for symbols supported in ∣𝜉∣ > 𝑅.

Lemma 3.9. Let 0 < 𝜖 < 1 and 𝑘 ∈ ℕ with 𝑘 > 𝑛
2 , let 𝑎 : 𝕋

𝑛×ℤ𝑛 → ℂ be a symbol

supported in ∣𝜉∣ > 𝑅 with 𝑅 > 1 such that ∣Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩−𝑛

2 𝜖−(1−𝜖)∣𝛼∣ and
∣∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛽⟨𝜉⟩− 𝑛

2 𝜖, for ∣𝛼∣, ∣𝛽∣ ≤ 𝑘 then 𝑎(𝑥,𝐷) is bounded from 𝐿∞(𝕋𝑛) into
𝐵𝑀𝑂(𝕋𝑛). Moreover there exists a constant 𝐶 independent of 𝑎 and 𝑓 such that

∥𝑎(𝑥,𝐷)𝑓∥𝐵𝑀𝑂 ≤ 𝐶𝑚𝑎𝑥{𝑝−𝑛
2 𝜖

0,0 (𝑎), 𝑝
−𝑛

2 𝜖

𝑘,0 (𝑎)}∥𝑓∥𝐿∞.

Proof. We begin by considering a function 𝜙 on 𝕋𝑛, with 0 ≤ 𝜙 ≤ 10, 𝜙 ≥ 1 on

𝐵(𝑥0, 𝑟) ⊂ 𝕋𝑛 and the Fourier transform 𝜙 verifying supp(𝜙) ⊂ {𝜉 ∈ ℤ𝑛 : ∣𝜉∣ ≤
(𝐶−1𝑟)

1
1−𝜖 }. We write

𝜙(𝑥) ⋅ 𝑎(𝑥,𝐷)𝑓(𝑥) = 𝑎(𝑥,𝐷)(𝜙𝑓)(𝑥) + [𝜙, 𝑎(𝑥,𝐷)] 𝑓(𝑥) = 𝐼 + 𝐼𝐼. (3.5)

In order to manage the term I let us consider the Bessel potential 𝐽𝑚, then 𝐽−𝑚 :
𝐻−𝑚(𝕋𝑛)→ 𝐿2(𝕋𝑛) isomorphically. We decompose

𝑎(𝑥,𝐷)(𝜙𝑓) = (𝑎(𝑥,𝐷) ⋅ 𝐽𝑚) (𝐽−𝑚 ⋅ (𝜙𝑓)) . (3.6)

Now, since the symbol of 𝑎(𝑥,𝐷) ⋅ 𝐽𝑚 satisfies the hypothesis of Lemma 3.3
with 𝑚 = 𝑛

2 𝜖, then there exists a constant 𝐶 > 0

∥𝑎(𝑥,𝐷)(𝜙𝑓)∥2𝐿2 ≤ 𝐶𝑀2
𝑎 ⋅ ∥𝐽−𝑚(𝜙𝑓)∥2𝐿2 , (3.7)

where 𝑀𝑎 = max
∣𝛽∣≤𝑘

sup
(𝑥,𝜉)

∣∂𝛽𝑥𝑎(𝑥, 𝜉)⟨𝜉⟩𝑚∣.
Now

∥𝐽−𝑚(𝜙𝑓)∥2𝐿2 = ∥𝜙𝑓∥2𝐻−𝑚 ,

since the Bessel potential 𝐽−𝑚 is a positive operator (preserves positivity of func-
tions) and a multiplier with symbol 𝐽(𝜉) = ⟨𝜉⟩−𝑚, we obtain

∥𝐽−𝑚(𝜙𝑓)∥2𝐿2 ≤ ∥𝑓∥2𝐿∞∥𝐽−𝑚(𝜙)∥2𝐿2 ≤ 𝐶1∥𝑓∥2𝐿∞∥𝜙∥2𝐻−𝑚

≤ 𝐶1∥𝑓∥2𝐿∞(𝐶−1𝑟)𝑛 ≤ 𝐶∥𝑓∥2𝐿∞∣𝐵(𝑥0, 𝑟)∣.
Therefore

∥𝑎(𝑥,𝐷)(𝜙𝑓)∥2𝐿2 ≤ 𝐶𝑀2
𝑎∥𝑓∥2𝐿∞∣𝐵(𝑥0, 𝑟)∣. (3.8)



𝐿𝑝-bounds for Pseudo-differential Operators 113

Applying the Cauchy–Schwarz inequality, we have

1

∣𝐵(𝑥0, 𝛿)∣
∫
𝐵

∣𝑎(𝑥,𝐷)(𝜙𝑓)(𝑥)∣𝑑𝑥 ≤
(

1

∣𝐵∣
∫
𝐵

∣𝑎(𝑥,𝐷)(𝜙𝑓)(𝑥)∣2𝑑𝑥
) 1

2

≤𝐶𝑀𝑎∥𝑓∥𝐿∞. (3.9)

This proves the estimate for 𝐼.
By Lemma 3.4 the commutator [𝜙, 𝑎(𝑥,𝐷)] appearing in II is a pseudodiffer-

ential operator 𝜃(𝑥,𝐷) with symbol

𝜃(𝑥, 𝜉) =
∑
𝜂∈ℤ𝑛

𝑒𝑖𝑥⋅𝜃𝜙(𝜂) [𝑎(𝑥, 𝜉)− 𝑎(𝑥, 𝜉 + 𝜂)] .

We write

𝜃(𝑥, 𝜉) =

∞∑
𝑗=0

𝜃𝑗(𝑥, 𝜉),

with 𝜃𝑗(𝑥, 𝜉) supported in ∣𝜉∣ ∼ 2𝑗𝑟−1. Now

𝜃(𝑥, 𝜉) =
∑

∣𝜂∣≤(𝐶−1𝑟)2(𝜖−1)

𝑒𝑖𝑥⋅𝜂𝜙(𝜂) [𝑎(𝑥, 𝜉) − 𝑎(𝑥, 𝜉 + 𝜂)] .

Hence and by Lemma 3.6 we obtain

∥ [𝜙, 𝑎(𝑥,𝐷)𝑓 ] ∥𝐿∞ ≤
∞∑
𝑗=0

∥𝜃𝑗(𝑥,𝐷)𝑓∥𝐿∞ ≤
∞∑
𝑗=0

𝐶2−
𝑗
2𝐶(𝑎)∥𝑓∥𝐿∞

≤𝐶𝐶(𝑎)∥𝑓∥𝐿∞ , (3.10)

where 𝐶(𝑎) is as in Lemma 3.6.
Since 𝜙 ≥ 1 on 𝐵(𝑥0, 𝑟), using (3.9) and (3.10) into (3.5) we have

1

∣𝐵(𝑥0, 𝑟)∣
∫
𝐵

∣𝑎(𝑥,𝐷)𝑓(𝑥)∣𝑑𝑥 ≤ 1

∣𝐵(𝑥0, 𝑟)∣
∫
𝐵

∣𝜙(𝑥) ⋅ 𝑎(𝑥,𝐷)𝑓(𝑥)∣𝑑𝑥

≤𝐶𝐶(𝑎)∥𝑓∥𝐿∞ . □

Proof of Theorem 3.8. Let 𝑓 ∈ 𝐿∞(𝕋𝑛), 𝑥0 ∈ 𝕋𝑛, and 𝐵 = 𝐵(𝑥0, 𝑟) ⊂ 𝕋𝑛. We
will show that there exist an integer 𝑗 and a constant 𝐶 > 0 independent of 𝑓 and
𝐵, such that

1

∣𝐵(𝑥0, 𝑟)∣
∫
𝐵

∣𝜎(𝑥,𝐷)𝑓(𝑥) − 𝑔𝐵∣𝑑𝑥 ≤ 𝐶∥𝜎∥𝑗;𝑆ℎℎ()∥𝑓∥𝐿∞, (3.11)

where we have denoted 𝑔 = 𝜎(𝑥,𝐷)𝑓.

We decompose 𝜎(𝑥, 𝜉) into two parts, 𝜎 = 𝜎0 + 𝜎1, with 𝜎0 supported in
∣𝜉∣ ≤ 2𝑟−1, 𝜎1 supported in ∣𝜉∣ ≥ 1

2𝑟
−1. One can obtain such a decomposition in the

following way. Let 𝛽 = 1𝐴 be the characteristic function for 𝐴 = {𝑧 ∈ ℤ : ∣𝑧∣ ≤ 1}
and then

𝜎0(𝑥, 𝜉) = 𝜎(𝑥, 𝜉)𝛽(𝑟∣𝜉∣),
and put 𝜎1 = 𝜎 − 𝜎0.
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In order to obtain (3.11) it will be enough to consider 𝜎0, the corresponding
estimation for 𝜎1 is a consequence of Lemma 3.9. We can write

∂𝑥𝑘𝜎
0(𝑥,𝐷)𝑓(𝑥) = 𝜎′𝑥(𝑥,𝐷)𝑓(𝑥),

where 𝜎′𝑥 is the symbol

𝜎′𝑥(𝑥, 𝜉) = ∂𝑥𝑘𝜎
0(𝑥, 𝜉) + 𝑖𝜉𝑘𝜎

0(𝑥, 𝜉).

We shall use a partition of unity to study 𝜎′𝑥

𝜎′𝑥(𝑥, 𝜉) =
∞∑
𝑗=1

𝜌𝑗(𝑥, 𝜉),

with 𝜌𝑗 supported in ∣𝜉∣ ∼ 2−𝑗𝑟−1. Such a partition of unity is obtained from
𝜂 : ℝ→ ℝ defined by

𝜂(𝑠) =

{
0 , if ∣𝑠∣ ≤ 1

1 , if ∣𝑠∣ ≥ 2.

Let 𝜌(𝑠) = 𝜂(𝑠)− 𝜂(2−1𝑠). Then supp 𝜌 = {1 ≤ ∣𝑠∣ ≤ 4}. One can verify that

1 = 𝜂(𝑠) +
∞∑
𝑗=1

𝜌(2𝑗𝑠) , 𝑠 ∈ ℝ.

Now, set 𝑠 = 𝑟∣𝜉∣ then

1 = 𝜂(𝑟∣𝜉∣) +
∞∑
𝑗=1

𝜌(𝑟2𝑗(∣𝜉∣).

The support of 𝜂 being {∣𝑠∣ > 1} and 𝑟∣𝜉∣ ≤ 1, we obtain

1 =

∞∑
𝑗=1

𝜌(𝑟2𝑗 ∣𝜉∣)

for {∣𝜉∣ ≤ 𝑟−1}.
Since supp𝜎′ = supp𝜎0 we have

𝜎′𝑥(𝑥, 𝜉) =
∞∑
𝑗=1

𝜌(𝑟2𝑗 ∣𝜉∣) ⋅ 𝜎′𝑥(𝑥, 𝜉).

Then one can choose

𝜌𝑗(𝑥, 𝜉) = 𝜌(𝑟2𝑗 ∣𝜉∣) ⋅ 𝜎′𝑥(𝑥, 𝜉).
We will apply Lemma 3.6 to each term 𝜌𝑗(𝑥, 𝜉) and for the estimation of

the derivatives Lemma 3.5, since 𝜎′𝑥 = ∂𝑥𝑘𝜎
0 + 𝑖𝜉𝑘𝜎

0 we consider first ∂𝑥𝑘𝜎
0 and

choosing 𝜆 = −1 we obtain
∣Δ𝛼

𝜉 (∂𝑥𝑘𝜎
0(𝑥, 𝜉)𝜌(𝑟2𝑗 ∣𝜉∣))∣ ≤ 𝐶𝛼max

𝛽≤𝛼
∣Δ𝛽

𝜉 ∂𝑥𝑘𝜎
0(𝑥, 𝜉)∣𝐴∣𝜆∣⟨𝜉⟩𝜆(𝑟2𝑗)𝜆,

≤ 𝐶𝛼max
𝛽≤𝛼

⟨𝜉⟩−𝑛
2 𝜖−(1−𝜖)∣𝛽∣⟨𝜉⟩𝐴⟨𝜉⟩−1(𝑟2𝑗)−1 ≤ 𝐶𝛼max

𝛽≤𝛼
⟨𝜉⟩−𝑛

2 𝜖−(1−𝜖)∣𝛽∣𝑟−12−𝑗 .
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Therefore, there exists a constant 𝐶 such that

∥∂𝑥𝑘𝜎0(𝑥,𝐷)𝑓∥𝐿∞ ≤
∞∑
𝑗=0

∥𝜌𝑗(𝑥,𝐷)𝑓∥𝐿∞ ≤ 𝐶𝑟−1
∞∑
𝑗=0

2−𝑗∥𝑓∥𝐿∞ ≤ 𝐶𝑟−1∥𝑓∥𝐿∞.

Now, by the mean value theorem we have

∣𝜎0(𝑥,𝐷)𝑓(𝑥) − 𝑔𝐵∣ ≤ 𝐶∥𝑓∥𝐿∞.

Then
1

∣𝐵(𝑥0, 𝑟)∣
∫
𝐵

∣𝜎0(𝑥,𝐷)𝑓(𝑥) − 𝑔𝐵∣𝑑𝑥 ≤ 𝐶∥𝜎∥𝑙;𝑆∥𝑓∥𝐿∞. (3.12)

This proves (3.11) for 𝜎0. □

Interpolation between 𝐿2(𝕋𝑛) and 𝐵𝑀𝑂(𝕋𝑛) estimates allows us to obtain
the next 𝐿𝑝(𝕋𝑛) boundedness.

Theorem 3.10. Let 0 < 𝜖 < 1 and 𝑘 ∈ ℕ with 𝑘 > 𝑛
2 , let 𝑎 : 𝕋𝑛 × ℤ𝑛 → ℂ be

a symbol such that ∣Δ𝛼
𝜉 𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛼⟨𝜉⟩−𝑛

2 𝜖−(1−𝜖)∣𝛼∣, ∣∂𝛽𝑥𝑎(𝑥, 𝜉)∣ ≤ 𝐶𝛽⟨𝜉⟩− 𝑛
2 𝜖, for

∣𝛼∣, ∣𝛽∣ ≤ 𝑘. Then 𝜎(𝑥,𝐷) is a bounded operator from 𝐿𝑝(𝕋𝑛) into 𝐿𝑝(𝕋𝑛) for
2 ≤ 𝑝 <∞.

Proof. The boundedness on 𝐿2(𝕋𝑛) is a consequence of the hypothesis on the
derivatives with respect to 𝑥 and Theorem 3.1. The 𝐿∞(𝕋𝑛)− 𝐵𝑀𝑂(𝕋𝑛) bound
is a consequence of Theorem 3.8. The theorem follows then from real interpolation.

□
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Multiplication Properties in Gelfand–Shilov
Pseudo-differential Calculus

Joachim Toft

Abstract. We consider modulation space and spaces of Schatten–von Neu-
mann symbols where corresponding pseudo-differential operators map one
Hilbert space to another. We prove Hölder–Young and Young type results
for such spaces under dilated convolutions and multiplications. We also prove
continuity properties for such spaces under the twisted convolution, and the
Weyl product. These results lead to continuity properties for twisted convo-
lutions on Lebesgue spaces, e.g., 𝐿𝑝

(𝜔) is a twisted convolution algebra when

1 ≤ 𝑝 ≤ 2 and appropriate weight 𝜔.
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0. Introduction

The aim of the paper is to extend the results in [51] on various types of products in
pseudo-differential calculus to include convenient Banach spaces of Gelfand–Shilov
functions and distributions. The family of Banach spaces consists of (weighted)
Lebesgue spaces, modulation spaces and spaces of Schatten–von Neumann symbols
in the pseudo-differential calculus. The products concern the usual multiplication
and convolution, twisted convolution and the Weyl product. Especially we estab-
lish continuity properties for Lebesgue and modulation spaces under the twisted
convolution and the Weyl product, and prove Young type results for Schatten–von
Neumann symbols under the ordinary multiplication and convolution.

We recall that the composition of twoWeyl operators corresponds to the Weyl
product of the two operator symbols on the symbol level, and the twisted convo-
lution appears when Weyl product is conjugated by symplectic Fourier transform.
(See Section 1 for the details.) Convolution and multiplication products appear
when investigating Toeplitz operators (also known as localization operators) in
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the framework of pseudo-differential calculus. More precisely, each Toeplitz oper-
ator is equal to a pseudo-differential operator, where the symbol of the pseudo-
differential operator is a convolution between the Toeplitz symbol and a rank one
symbol, which is an ordinary multiplication on the Fourier transform side. We
remark that Toeplitz operators might be convenient to use when approximating
certain pseudo-differential operators (see, e.g., [7, 44]), and in computation of ki-
netic energy in mechanics (cf. [31]).

The most of the questions here were carefully investigated in [51] in the case
when the involved spaces are defined by weights of polynomial type (see, e.g., [28]
for notations concerning the usual function and distribution spaces, and Section 1
for other notations). In particular, all function and distribution spaces in [51] stay
between S and S ′. In the present paper we use the framework in [51], and extend
the results in [51] such that we permit general moderate weights. This implies
that the function and distribution spaces can be arbitrary close to Gelfand–Shilov
spaces of the form 𝒮𝑠𝑠 and Σ𝑠𝑠 when 𝑠 ≥ 1, and their duals.

In several questions we may use similar arguments as in [51], while new
types of difficulties appear in other questions, when passing from the distribution
theory for Schwartz functions in [51], to corresponding theory for Gelfand–Shilov
functions.

In order to be more specific, let H1 and H2 be modulation spaces which are
Hilbert spaces (see [52]). Also let I𝑝(H1,H2), 𝑝 ∈ [1,∞], be the set of Schatten–
von Neumann operators of order 𝑝 from H1 to H2, and let 𝑠𝑤𝑝 (H1,H2) be the

set of all distributions 𝑎 ∈ 𝒮 ′1/2(R2𝑑) such that the corresponding Weyl operators

Op𝑤(𝑎) belong to I𝑝(H1,H2).

In general it is not complicated to establish continuity properties for spaces
of the form 𝑠𝑤𝑝 = 𝑠𝑤𝑝 (H1,H2) under the Weyl product and twisted convolution,
because such questions can easily be reformulated into questions of compositions
for Schatten–von Neumann operators on the operator level. It is more complicated
to find continuity relations for dilated multiplications and convolutions on the 𝑠𝑤𝑝
spaces, because such products take complicated forms on the operator level. In
this situation we use certain Fourier techniques, similar to those in [44, Section 3]
and [51], to get convenient integral formulas. By making appropriate estimates on
these formulas in combination with duality and interpolation, we establish Young
type results for 𝑠𝑤𝑝 spaces under such products.

For Lebesgue and general modulation spaces, the situation is different. In fact,
in contrast to spaces of Schatten symbols, it is complicated to find certain results
under the Weyl product and the twisted convolution, while finding Hölder–Young
results under convolutions and multiplications are straightforward. For example,
continuity properties for modulation spaces under the Weyl product have been
investigated in, e.g., [23, 27, 30, 40, 51]. In Section 2 we extend these properties by
enlarging the family of weights in the definition of modulation and Lebesgue spaces.
In particular we prove that 𝐿2(𝜔) is an algebra under the twisted convolution, when

𝜔(𝑋) = 𝑒𝑐∣𝑋∣ and 𝑐 ≥ 0.
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For further considerations we recall some definitions. Let 𝑡 ∈ R be fixed and
let 𝑎 ∈ 𝒮1/2(R2𝑑). Then the pseudo-differential operator Op𝑡(𝑎) with symbol 𝑎 is

the continuous operator on 𝒮1/2(R𝑑), defined by the formula

(Op𝑡(𝑎)𝑓)(𝑥) = (2𝜋)−𝑑
∫∫

𝑎((1 − 𝑡)𝑥+ 𝑡𝑦, 𝜉)𝑓(𝑦)𝑒𝑖⟨𝑥−𝑦,𝜉⟩ 𝑑𝑦𝑑𝜉. (0.1)

The definition of Op𝑡(𝑎) extends to each 𝑎 ∈ 𝒮 ′1/2(R2𝑑), and then Op𝑡(𝑎) is con-

tinuous from 𝒮1/2(R𝑑) to 𝒮 ′1/2(R𝑑). (Cf., e.g., [28] or Section 1.) If 𝑡 = 1/2, then

Op𝑡(𝑎) is equal to the Weyl operator Op𝑤(𝑎) for 𝑎. If instead 𝑡 = 0, then the
standard (Kohn–Nirenberg) representation 𝑎(𝑥,𝐷) is obtained.

The modulation spaces were introduced by Feichtinger in [13], and developed
further and generalized in [14, 16–18, 22]. We are especially interested in the
modulation spaces 𝑀𝑝,𝑞

(𝜔)(R
𝑑) and 𝑊 𝑝,𝑞

(𝜔)(R
𝑑) which are the sets of Gelfand–Shilov

distributions on R𝑑 whose short-time Fourier transform (STFT) belong to the
weighted and mixed Lebesgue spaces 𝐿𝑝,𝑞1,(𝜔)(R

2𝑑) and 𝐿𝑝,𝑞2,(𝜔)(R
2𝑑) respectively.

Here, and 𝑝, 𝑞 ∈ [1,∞], and we refer to (1.26) and (1.27) below for the definition
of the latter space norms. In contrast to [51], the weight function 𝜔 here is allowed
to belong to P𝐸(R

2𝑑), the set of all moderated functions on the phase (or time-
frequency shift) space R2𝑑. We remark that the family P𝐸 contain all polynomial
type weights. It follows that 𝜔, 𝑝 and 𝑞 to some extent quantify the degrees of
asymptotic decay and singularity of the distributions in 𝑀𝑝,𝑞

(𝜔) and 𝑊 𝑝,𝑞
(𝜔) . (We refer

to [15] for a modern description of modulation spaces.)
In the Weyl calculus of pseudo-differential operators, operator composition

corresponds on the symbol level to the Weyl product #, which on the symplectic
Fourier transform side corresponds to the twisted convolution ∗𝜎. Sometimes, the
Weyl product is called the twisted product. A problem in this field is to find
conditions on the weight functions 𝜔𝑗 and 𝑝𝑗 , 𝑞𝑗 ∈ [1,∞], for the mappings

(𝑎1, 𝑎2) → 𝑎1#𝑎2 and (𝑎1, 𝑎2) → 𝑎1 ∗𝜎 𝑎2
on 𝒮1/2(R2𝑑) to be uniquely extendable to continuous mappings from

ℳ𝑝1,𝑞1
(𝜔1)

(R2𝑑)×ℳ𝑝2,𝑞2
(𝜔2)

(R2𝑑) to ℳ𝑝0,𝑞0
(𝜔0)

(R2𝑑),

and from
𝒲𝑝1,𝑞1
(𝜔1)

(R2𝑑)×𝒲𝑝2,𝑞2
(𝜔2)

(R2𝑑) to 𝒲𝑝0,𝑞0
(𝜔0)

(R2𝑑).

Here the modulation spaces ℳ𝑝,𝑞
(𝜔) and 𝒲𝑝,𝑞

(𝜔) are obtained by replacing the usual

STFT with the symplectic STFT in the definition of modulation space norms.
One part of such questions might be to find appropriate conditions on 𝜔𝑗 and
𝑝𝑗 , 𝑞𝑗 ∈ [1,∞] such that

∥𝑎1 ∗𝜎 𝑎2∥𝒲𝑝0,𝑞0
(𝜔0)

≲ ∥𝑎1∥𝒲𝑝1,𝑞1
(𝜔1)

∥𝑎2∥𝒲𝑝2,𝑞2
(𝜔2)

, (0.2)

when 𝑎𝑗 ∈ 𝒮1/2, 𝑗 = 0, 1, 2. Here and in what follows we let 𝐴 ≲ 𝐵 indicate 𝐴 ≤ 𝑐𝐵,
for a suitable constant 𝑐 > 0, and we write 𝐴 ≍ 𝐵 when 𝐴 ≲ 𝐵 and 𝐵 ≲ 𝐴.
Important contributions in this context can be found in [23, 27, 30, 40, 43, 52],
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where Theorem 0.3′ in [27] and Theorem 6.4 in [52] seem to be the most general
results so far (see also Theorem 2.2).

The result for twisted convolution on modulation spaces which corresponds
to Theorem 0.3′ in [27] and Theorem 6.4 in [52] is given by Theorem 0.1 below.
Here the assumptions on the involved weight functions and Lebesgue exponents
on the modulation spaces are

𝜔0(𝑋,𝑌 ) ≲ 𝜔1(𝑋 − 𝑌 + 𝑍,𝑍)𝜔2(𝑌 − 𝑍,𝑋 + 𝑍), 𝑋, 𝑌, 𝑍 ∈ R2𝑑, (0.3)

1

𝑝1
+

1

𝑝2
− 1

𝑝0
= 1−

( 1

𝑞1
+

1

𝑞2
− 1

𝑞0

)
(0.4)

and

0 ≤ 1

𝑞1
+

1

𝑞2
− 1

𝑞0
≤ 1

𝑝𝑗
,
1

𝑞𝑗
≤ 1

𝑝1
+

1

𝑝2
− 1

𝑝0
, 𝑗 = 0, 1, 2. (0.5)

Theorem 0.1. Let 𝜔0, 𝜔1, 𝜔2 ∈ P𝐸(R
4𝑑) satisfy (0.3), and that 𝑝𝑗, 𝑞𝑗 ∈ [1,∞]

for 𝑗 = 0, 1, 2, satisfy (0.4) and (0.5). Then the map (𝑎1, 𝑎2) → 𝑎1 ∗𝜎 𝑎2 on
𝒮(R2𝑑) extends uniquely to a continuous map from 𝒲𝑝1,𝑞1

(𝜔1)
(R2𝑑) × 𝒲𝑝2,𝑞2

(𝜔2)
(R2𝑑)

to 𝒲𝑝0,𝑞0
(𝜔0)

(R2𝑑), and for some constant 𝐶 > 0, the bound (0.2) holds for every

𝑎1 ∈ 𝒲𝑝1,𝑞1
(𝜔1)

(R2𝑑) and 𝑎2 ∈ 𝒲𝑝2,𝑞2
(𝜔2)

(R2𝑑).

In Section 2 we also consider the case when 𝑝𝑗 = 𝑞𝑗 = 2, and the involved
weights 𝜔𝑗(𝑋,𝑌 ) are independent of the 𝑌 -variable, i.e., 𝜔𝑗(𝑋,𝑌 ) = 𝜔𝑗(𝑋). In

this case, 𝒲2,2
(𝜔𝑗)

agrees with 𝐿2(𝜔𝑗), and the condition (0.3) is reduced to

𝜔0(𝑋1 +𝑋2) ≲ 𝜔1(𝑋1)𝜔2(𝑋2) (0.6)

Hence, Theorem 0.1 shows that the map (𝑎1, 𝑎2) → 𝑎1∗𝜎𝑎2 extends to a continuous
mapping from 𝐿2(𝜔1)

× 𝐿2(𝜔2)
to 𝐿2(𝜔0)

, and that

∥𝑎1 ∗𝜎 𝑎2∥𝐿2
(𝜔0)

≲ ∥𝑎1∥𝐿2
(𝜔1)
∥𝑎2∥𝐿2

(𝜔2)
, (0.7)

holds when 𝑎1 ∈ 𝐿2(𝜔1)
(R2𝑑) and 𝑎2 ∈ 𝐿2(𝜔2)

(R2𝑑). Here and in what follows,

𝑝′ ∈ [1,∞] denotes the conjugate exponent to 𝑝 ∈ [1,∞], i.e., 𝑝 and 𝑝′ should
satisfy 1/𝑝 + 1/𝑝′ = 1. The latter property is extended in Section 2 to involve
mixed weighted norm spaces of Lebesgue type. As a special case we obtain the
following generalization of (0.7).

Theorem 0.2. Let 𝜔𝑗 ∈ P𝐸(R
2𝑑), and let 𝑝𝑗 ∈ [1,∞] for 𝑗 = 0, 1, 2 satisfy (0.6)

and

max
𝑗=0,1,2

( 1

𝑝𝑗
,
1

𝑝′𝑗

)
≤ 1

𝑝1
+

1

𝑝2
− 1

𝑝0
≤ 1.

Then the map (𝑎1, 𝑎2) → 𝑎1 ∗𝜎 𝑎2 extends uniquely to a continuous mapping from
𝐿𝑝1(𝜔1)

(R2𝑑)× 𝐿𝑝2(𝜔2)
(R2𝑑) to 𝐿𝑝0(𝜔0)

(R2𝑑), and

∥𝑎1 ∗𝜎 𝑎2∥𝐿𝑝0
(𝜔0)

≲ ∥𝑎1∥𝐿𝑝1
(𝜔1)
∥𝑎2∥𝐿𝑝2

(𝜔2)
(0.8)

when 𝑎1 ∈ 𝐿𝑝1(𝜔1)
(R2𝑑) and 𝑎2 ∈ 𝐿𝑝2(𝜔2)

(R2𝑑).
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Theorem 0.2 and its extensions are used in the end of Section 2 to extend the
class of possible window functions in the definition of modulation space norms.

In Section 5 we establish Young type results for dilated multiplications and
convolutions for the spaces 𝑠𝑤𝑝 (𝜔1, 𝜔2) ≡ 𝑠𝑤𝑝 (H1,H2), when H𝑗 for 𝑗 = 1, 2 is mod-

ulation space 𝑀2,2
(𝜔𝑗)

(R𝑑) = 𝑀2
(𝜔𝑗)

(R𝑑) with appropriate weights 𝜔𝑗 . The involved

Schatten exponents should satisfy the Young condition

1

𝑝1
+

1

𝑝2
= 1 +

1

𝑟
, 1 ≤ 𝑝1, 𝑝2, 𝑟 ≤ ∞, (0.9)

and the involved dilation factors should satisfy

(−1)𝑗1𝑡−21 + (−1)𝑗2𝑡−22 = 1 (0.10)

or

(−1)𝑗1𝑡21 + (−1)𝑗2𝑡22 = 1, (0.11)

when 𝑗1, 𝑗2 ∈ {0, 1}. The conditions for the involved weight functions are

𝜗(𝑋1 +𝑋2) ≲ 𝜗𝑗1,1(𝑡1𝑋1)𝜗𝑗2,2(𝑡2𝑋2),

𝜔(𝑋1 +𝑋2) ≲ 𝜔𝑗1,1(𝑡1𝑋1)𝜔𝑗2,2(𝑡2𝑋2),
(0.12)

where

𝜔0,𝑘(𝑋) = 𝜗1,𝑘(𝑋) = 𝜔𝑘(𝑋), 𝜗0,𝑘(𝑋) = 𝜔1,𝑘(𝑋) = 𝜗𝑘(𝑋). (0.13)

With these conditions we prove

∥𝑎1,𝑡1 ∗ 𝑎2,𝑡2∥𝑠𝑤𝑟 (1/𝜔,𝜗) ≤ 𝐶𝑑∥𝑎1∥𝑠𝑤𝑝1(1/𝜔1,𝜗1)∥𝑎2∥𝑠𝑤𝑝2 (1/𝜔2,𝜗2), (0.14)

∥𝑎1,𝑡1𝑎2,𝑡2∥𝑠𝑤𝑟 (1/𝜔,𝜗) ≤ 𝐶𝑑∥𝑎1∥𝑠𝑤𝑝1(1/𝜔1,𝜗1)∥𝑎2∥𝑠𝑤𝑝2 (1/𝜔2,𝜗2), (0.15)

for admissible 𝑎1 and 𝑎2. Here and in what follows we set 𝑎𝑗,𝑡 = 𝑎𝑗(𝑡 ⋅ ). More
precisely, in Section 5 we prove the following two theorems, as well as multi-linear
extensions of these results (cf. Theorems 0.3′ and 0.4′), which generalize Theorem
3.3, Theorem 3.3′ and Corollary 3.5 in [44] and corresponding results in [51]. In
fact, these results in [44] follow by letting H1 = H2 = 𝐿2 in Theorems 0.3′ and 0.4′.

Theorem 0.3. Let 𝑝1, 𝑝2, 𝑟 ∈ [1,∞] satisfy (0.9), and let 𝑡1, 𝑡2 ∈ R∖0 satisfy (0.10),
for some choices of 𝑗1, 𝑗2 ∈ {0, 1}. Also let 𝜔, 𝜔𝑗, 𝜗, 𝜗𝑗 ∈ P𝐸(R

2𝑑) for 𝑗 = 1, 2
satisfy (0.12) and (0.13). Then the map (𝑎1, 𝑎2) → 𝑎1,𝑡1 ∗ 𝑎2,𝑡2 on 𝒮1/2(R2𝑑),
extends uniquely to a continuous mapping from

𝑠𝑤𝑝1(1/𝜔1, 𝜗1)× 𝑠𝑤𝑝2(1/𝜔2, 𝜗2)

to 𝑠𝑤𝑟 (1/𝜔, 𝜗). Furthermore, (0.14) holds for some constant

𝐶 = 𝐶20 ∣𝑡1∣−2/𝑝1 ∣𝑡2∣−2/𝑝2 ,
where 𝐶0 is independent of 𝑎1 ∈ 𝑠𝑤𝑝1(1/𝜔1, 𝜗1), 𝑎2 ∈ 𝑠𝑤𝑝2(1/𝜔2, 𝜗2), 𝑡1, 𝑡2 and 𝑑.

Moreover, Op𝑤(𝑎1,𝑡1 ∗ 𝑎2,𝑡2) ≥ 0 when Op𝑤(𝑎𝑗) ≥ 0 for each 1 ≤ 𝑗 ≤ 2.
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Theorem 0.4. Let 𝑝1, 𝑝2, 𝑟 ∈ [1,∞] satisfy (0.9), and let 𝑡1, 𝑡2 ∈ R∖0 satisfy (0.11),
for some choices of 𝑗1, 𝑗2 ∈ {0, 1}. Also let 𝜔, 𝜔𝑗, 𝜗, 𝜗𝑗 ∈ P𝐸(R

2𝑑) for 𝑗 = 1, 2
satisfy (0.12) and (0.13). Then the map (𝑎1, 𝑎2) → 𝑎1,𝑡1𝑎2,𝑡2 on 𝒮1/2(R2𝑑), extends
uniquely to a continuous mapping from

𝑠𝑤𝑝1(1/𝜔1, 𝜗1)× 𝑠𝑤𝑝2(1/𝜔2, 𝜗2)

to 𝑠𝑤𝑟 (1/𝜔, 𝜗). Furthermore, (0.15) holds for some constant

𝐶 = 𝐶20 ∣𝑡1∣−2/𝑝
′
1 ∣𝑡2∣−2/𝑝′2 ,

where 𝐶0 is independent of 𝑎1 ∈ 𝑠𝑤𝑝1(1/𝜔1, 𝜗1), 𝑎2 ∈ 𝑠𝑤𝑝2(1/𝜔2, 𝜗2), 𝑡1, 𝑡2 and 𝑑.

Some preparations to the dilated convolution and multiplication results in
Section 5 are given in Sections 3 and 4. In Section 3 we introduce the notion of
Gelfand–Shilov and Beurling tempered (quasi-)Banach and Hilbert spaces, and
prove certain properties. Especially we establish embedding properties between
such spaces, modulation spaces and Gelfand–Shilov spaces. These embeddings are
also used in [54], when establishing Schatten–von Neumann results for operators
with Gelfand–Shilov kernels. Furthermore we investigate certain relations for bases
in the Hilbert space case.

In Section 4 we consider dual properties for 𝑠𝑤𝑝 (H1,H2). Here H1 and H2

belong to a broad class of Hilbert spaces containing any𝑀2,2
(𝜔) space. More precisely,

assume that 𝑝 <∞. Then we prove that the dual for 𝑠𝑤𝑝 (H1,H2) can be identified
with 𝑠𝑤𝑝 (H

′
1 ,H

′
2 ) for appropriate Hilbert spaces H ′

1 and H ′
2 through a unique

extension of the 𝐿2 form on 𝒮1/2. (Cf. Theorem 4.8.) In the last part of Section 4
we show some properties on bases and Hilbert–Schmidt operators. We use these
results to establish estimates for generalized gamma functions evaluated in integer
points (cf. Example 3.6).

In the last section we apply the results in Section 5 to prove that the class
of trace-class symbols is invariant under compositions with odd entire functions.
Here we also show how Theorem 0.3 can be used to define Toeplitz operators with
symbols in dilated 𝑠𝑤𝑝 spaces, and that such operators fulfill certain Schatten–von
Neumann properties.

1. Preliminaries

In this section we introduce some notations and discuss basic results. We start by
recalling some facts concerning Gelfand–Shilov spaces. Thereafter we recall some
properties about pseudo-differential operators. Especially we discuss the Weyl
product and twisted convolution. Finally we recall some facts about modulation
spaces. The proofs are in general omitted, since the results can be found in the
literature.
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We start by considering Gelfand–Shilov spaces. Let 0 < ℎ, 𝑠 ∈ R be fixed.
Then 𝒮𝑠,ℎ(R𝑑) consists of all 𝑓 ∈ 𝐶∞(R𝑑) such that

∥𝑓∥𝒮𝑠,ℎ ≡ sup
∣𝑥𝛽∂𝛼𝑓(𝑥)∣

ℎ∣𝛼∣+∣𝛽∣𝛼!𝑠 𝛽!𝑠

is finite. Here the supremum should be taken over all 𝛼, 𝛽 ∈ N𝑑 and 𝑥 ∈ R𝑑.
Obviously 𝒮𝑠,ℎ ↪→ S is a Banach space which increases with ℎ and 𝑠. Here

and in what follows we use the notation 𝐴 ↪→ 𝐵 when the topological spaces 𝐴
and 𝐵 satisfy 𝐴 ⊆ 𝐵 with continuous embeddings. Furthermore, if 𝑠 > 1/2, or
𝑠 = 1/2 and ℎ is sufficiently large, then 𝒮𝑠,ℎ contains all finite linear combinations
of Hermite functions. Since such linear combinations are dense in S , it follows
that the dual (𝒮𝑠,ℎ)′(R𝑑) of 𝒮𝑠,ℎ(R𝑑) is a Banach space which contains S ′(R𝑑).

The Gelfand–Shilov spaces 𝒮𝑠(R𝑑) and Σ𝑠(R
𝑑) are the inductive and projec-

tive limits respectively of 𝒮𝑠,ℎ(R𝑑). This implies that

𝒮𝑠(R𝑑) =
∪
ℎ>0

𝒮𝑠,ℎ(R𝑑) and Σ𝑠(R
𝑑) =

∩
ℎ>0

𝒮𝑠,ℎ(R𝑑), (1.1)

and that the topology for 𝒮𝑠(R𝑑) is the strongest possible one such that the in-
clusion map from 𝒮𝑠,ℎ(R𝑑) to 𝒮𝑠(R𝑑) is continuous, for every choice of ℎ > 0.
The space Σ𝑠(R

𝑑) is a Fréchet space with semi norms ∥ ⋅ ∥𝒮𝑠,ℎ , ℎ > 0. Moreover,

Σ𝑠(R
𝑑) ∕= {0}, if and only if 𝑠 > 1/2, and 𝒮𝑠(R𝑑) ∕= {0}, if and only if 𝑠 ≥ 1/2.

From now on we assume that 𝑠 > 1/2 when considering Σ𝑠(R
𝑑), and 𝑠 ≥ 1/2

when considering 𝒮𝑠(R𝑑)

The Gelfand–Shilov distribution spaces 𝒮 ′𝑠(R𝑑) and Σ′𝑠(R
𝑑) are the projective

and inductive limit respectively of 𝒮 ′𝑠(R𝑑). This means that

𝒮 ′𝑠(R𝑑) =
∩
ℎ>0

𝒮 ′𝑠,ℎ(R𝑑) and Σ′𝑠(R
𝑑) =

∪
ℎ>0

𝒮 ′𝑠,ℎ(R𝑑). (1.1)′

We remark that in [20, 29, 34] it is proved that 𝒮 ′𝑠(R𝑑) is the dual of 𝒮𝑠(R𝑑), and
Σ′𝑠(R𝑑) is the dual of Σ𝑠(R

𝑑) (also in topological sense).
For each 𝜀 > 0 and 𝑠 > 1/2 we have

𝒮1/2(R𝑑) ↪→Σ𝑠(R
𝑑) ↪→𝒮𝑠(R𝑑) ↪→ Σ𝑠+𝜀(R

𝑑)

and Σ′𝑠+𝜀(R
𝑑) ↪→𝒮 ′𝑠(R𝑑) ↪→Σ′𝑠(R

𝑑) ↪→ 𝒮 ′1/2(R𝑑).
(1.2)

The Gelfand–Shilov spaces are invariant under several basic transformations.
For example they are invariant under translations, dilations, tensor products and
under (partial) Fourier transformations.

From now on we let F be the Fourier transform which takes the form

(F𝑓)(𝜉) = 𝑓(𝜉) ≡ (2𝜋)−𝑑/2
∫
R𝑑

𝑓(𝑥)𝑒−𝑖⟨𝑥,𝜉⟩ 𝑑𝑥

when 𝑓 ∈ 𝐿1(R𝑑). Here ⟨ ⋅ , ⋅ ⟩ denotes the usual scalar product on R𝑑. The map
F extends uniquely to homeomorphisms on S ′(R𝑑), 𝒮 ′𝑠(R𝑑) and Σ′𝑠(R

𝑑), and
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restricts to homeomorphisms on S (R𝑑), 𝒮𝑠(R𝑑) and Σ𝑠(R
𝑑), and to a unitary

operator on 𝐿2(R𝑑).
It follows from the following lemma that elements in Gelfand–Shilov spaces

can be characterized by estimates of the form

∣𝑓(𝑥)∣ ≲ 𝑒−𝜀∣𝑥∣
1/𝑠

and ∣𝑓(𝜉)∣ ≲ 𝑒−𝜀∣𝜉∣
1/𝑠

. (1.3)

The proof is omitted, since the result can be found in, e.g., [4, 20].

Lemma 1.1. Let 𝑓 ∈ 𝒮 ′1/2(R𝑑). Then the following is true:

(1) if 𝑠 ≥ 1/2, then 𝑓 ∈ 𝒮𝑠(R𝑑), if and only if (1.3) holds for some 𝜀 > 0;

(2) if 𝑠 > 1/2, then 𝑓 ∈ Σ𝑠(R
𝑑), if and only if (1.3) holds for each 𝜀 > 0.

Gelfand–Shilov spaces can also easily be characterized by Hermite functions.
We recall that the Hermite function ℎ𝛼 with respect to the multi-index 𝛼 ∈ N𝑑 is
defined by

ℎ𝛼(𝑥) = 𝜋−𝑑/4(−1)∣𝛼∣(2∣𝛼∣𝛼!)−1/2𝑒∣𝑥∣2/2(∂𝛼𝑒−∣𝑥∣2).
The set {ℎ𝛼}𝛼∈N𝑑 is an orthonormal basis for 𝐿2(R𝑑). In particular,

𝑓 =
∑
𝛼

𝑐𝛼ℎ𝛼, 𝑐𝛼 = (𝑓, ℎ𝛼)𝐿2(R𝑑), (1.4)

and
∥𝑓∥𝐿2 = ∥{𝑐𝛼}𝛼∥𝑙2 <∞,

when 𝑓 ∈ 𝐿2(R𝑑). Here and in what follows, ( ⋅ , ⋅ )𝐿2(R𝑑) denotes any continuous

extension of the 𝐿2 form on 𝒮1/2(R𝑑).
The Hermite expansions can also be used to characterize distributions and

their test function spaces. More precisely, let 𝑝 ∈ [1,∞] be fixed. Then it is well
known that 𝑓 here belongs to S (R𝑑), if and only if

∥{𝑐𝛼⟨𝛼⟩𝑡}𝛼∥𝑙𝑝 <∞ (1.5)

for every 𝑡 ∈ R. Furthermore, for every 𝑓 ∈ S ′(R𝑑), the expansion (1.4) still
holds, where the sum converges in S ′, and (1.5) holds for some choice of 𝑡 ∈ R,
which depends on 𝑓 .

The following proposition, which can be found in, e.g., [21], shows that similar
conclusion for Gelfand–Shilov spaces hold, after the estimate (1.5) is replaced by

∥{𝑐𝛼𝑒𝑡∣𝛼∣1/2𝑠}𝛼∥𝑙𝑝 <∞. (1.6)

(Cf. formula (2.12) in [21].)

Proposition 1.2. Let 𝑝 ∈ [1,∞], 𝑓 ∈ 𝒮 ′1/2R𝑑), 𝑠1 ≥ 1/2, 𝑠2 > 1/2 and let 𝑐𝛼 be as

in (1.4). Then the following is true:

(1) 𝑓 ∈ 𝒮 ′𝑠1(R𝑑), if and only if (1.6) holds with 𝑠 = 𝑠1 for every 𝑡 < 0. Further-
more, (1.4) holds where the sum converges in 𝒮 ′𝑠1 ;

(2) 𝑓 ∈ Σ′𝑠2(R
𝑑), if and only if (1.6) holds with 𝑠 = 𝑠2 for some 𝑡 < 0. Further-

more, (1.4) holds where the sum converges in Σ′𝑠2 ;
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(3) 𝑓 ∈ 𝒮𝑠1(R𝑑), if and only if (1.6) holds with 𝑠 = 𝑠1 for some 𝑡 > 0. Further-
more, (1.4) holds where the sum converges in 𝒮𝑠1 ;

(4) 𝑓 ∈ Σ𝑠2(R
𝑑), if and only if (1.6) holds with 𝑠 = 𝑠2 for every 𝑡 > 0. Further-

more, (1.4) holds where the sum converges in Σ𝑠2 .

Next we recall some properties in pseudo-differential calculus. Let 𝑠 ≥ 1/2,
𝑎 ∈ 𝒮𝑠(R2𝑑), and 𝑡 ∈ R be fixed. Then the pseudo-differential operator Op𝑡(𝑎)
in (0.1) is a linear and continuous operator on 𝒮𝑠(R𝑑). For general 𝑎 ∈ 𝒮 ′𝑠(R2𝑑),
the pseudo-differential operator Op𝑡(𝑎) is defined as the continuous operator from
𝒮𝑠(R𝑑) to 𝒮 ′𝑠(R𝑑) with distribution kernel given by

𝐾𝑎,𝑡(𝑥, 𝑦) = (2𝜋)−𝑑/2(F−1
2 𝑎)((1− 𝑡)𝑥 + 𝑡𝑦, 𝑥− 𝑦). (1.7)

Here F2𝐹 is the partial Fourier transform of 𝐹 (𝑥, 𝑦) ∈ 𝒮 ′𝑠(R2𝑑) with respect to
the 𝑦 variable. This definition makes sense, since the mappings

F2 and 𝐹 (𝑥, 𝑦) → 𝐹 ((1− 𝑡)𝑥+ 𝑡𝑦, 𝑦 − 𝑥) (1.8)

are homeomorphisms on 𝒮 ′𝑠(R2𝑑). In particular, the map 𝑎 → 𝐾𝑎,𝑡 is a homeo-
morphism on 𝒮 ′𝑠(R2𝑑).

For any 𝐾 ∈ 𝒮 ′𝑠(R𝑑1+𝑑2), we let 𝑇𝐾 be the linear and continuous mapping
from 𝒮𝑠(R𝑑1) to 𝒮 ′𝑠(R𝑑2), defined by the formula

(𝑇𝐾𝑓, 𝑔)𝐿2(R𝑑2) = (𝐾, 𝑔 ⊗ 𝑓)𝐿2(R𝑑1+𝑑2). (1.9)

It is well known that if 𝑡 ∈ R, then it follows from Schwartz kernel theorem that
𝐾 → 𝑇𝐾 and 𝑎 → Op𝑡(𝑎) are bijective mappings from S ′(R2𝑑) to the set of linear
and continuous mappings from S (R𝑑) to S ′(R𝑑) (cf., e.g., [28]).

In this context we remark that the maps 𝐾 → 𝑇𝐾 and 𝑎 → Op𝑡(𝑎) are
uniquely extendable to bijective mappings from 𝒮 ′𝑠(R2𝑑) to the set of linear and
continuous mappings from 𝒮𝑠(R𝑑) to 𝒮 ′𝑠(R𝑑). In fact, the asserted bijectivity for
the map 𝐾 → 𝑇𝐾 follows from the kernel theorem [32, Theorem 2.2], by Lozanov–
Crvenković, Perǐsić and Taskovic. This kernel theorem corresponds to Schwartz
kernel theorem in the usual distribution theory. The other assertion follows from
the fact that the map 𝑎 → 𝐾𝑎,𝑡 is a homeomorphism on 𝒮 ′𝑠.

In particular, for each 𝑎1 ∈ 𝒮 ′𝑠(R2𝑑) and 𝑡1, 𝑡2 ∈ R, there is a unique 𝑎2 ∈
𝒮 ′𝑠(R2𝑑) such that Op𝑡1(𝑎1) = Op𝑡2(𝑎2). The relation between 𝑎1 and 𝑎2 is given by

Op𝑡1(𝑎1) = Op𝑡2(𝑎2) ⇐⇒ 𝑎2(𝑥, 𝜉) = 𝑒𝑖(𝑡2−𝑡1)⟨𝐷𝑥,𝐷𝜉⟩𝑎1(𝑥, 𝜉). (1.10)

(Cf. [28].) Note here that the right-hand side makes sense, since it is equivalent to
�̂�2 = 𝑒𝑖(𝑡2−𝑡1)⟨𝑥,𝜉⟩�̂�1, and that the map 𝑎 → 𝑒𝑖𝑡⟨𝑥,𝜉⟩𝑎 is continuous on 𝒮 ′𝑠.

Let 𝑡 ∈ R and 𝑎 ∈ 𝒮 ′𝑠(R2𝑑) be fixed. Then 𝑎 is called a rank-one element
with respect to 𝑡, if the corresponding pseudo-differential operator is of rank-one,
i.e.,

Op𝑡(𝑎)𝑓 = (𝑓, 𝑓2)𝑓1, 𝑓 ∈ 𝒮𝑠(R𝑑), (1.11)

for some 𝑓1, 𝑓2 ∈ 𝒮 ′𝑠(R𝑑). By straightforward computations it follows that (1.11) is
fulfilled, if and only if 𝑎 = (2𝜋)𝑑/2𝑊 𝑡

𝑓1,𝑓2
, where𝑊 𝑡

𝑓1,𝑓2
is the 𝑡-Wigner distribution,
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defined by the formula

𝑊 𝑡
𝑓2,𝑓1(𝑥, 𝜉) ≡ F (𝑓2(𝑥+ 𝑡 ⋅ )𝑓1(𝑥− (1 − 𝑡) ⋅ ))(𝜉), (1.12)

which takes the form

𝑊 𝑡
𝑓2,𝑓1(𝑥, 𝜉) = (2𝜋)−𝑑/2

∫
𝑓2(𝑥+ 𝑡𝑦)𝑓1(𝑥− (1− 𝑡)𝑦)𝑒−𝑖⟨𝑦,𝜉⟩ 𝑑𝑦,

when 𝑓1, 𝑓2 ∈ 𝒮𝑠(R𝑑). By combining these facts with (1.10), it follows that

𝑊 𝑡2
𝑓2,𝑓1

= 𝑒𝑖(𝑡2−𝑡1)⟨𝐷𝑥,𝐷𝜉⟩𝑊 𝑡1
𝑓2,𝑓1

, (1.13)

for each 𝑓1, 𝑓2 ∈ 𝒮 ′𝑠(R𝑑) and 𝑡1, 𝑡2 ∈ R. Since the Weyl case is particularly impor-
tant, we set 𝑊 𝑡

𝑓2,𝑓1
= 𝑊𝑓2,𝑓1 when 𝑡 = 1/2, i.e., 𝑊𝑓2,𝑓1 is the usual (cross-)Wigner

distribution of 𝑓1 and 𝑓2.
For future references we note the link

(Op𝑡(𝑎)𝑓, 𝑔)𝐿2(R𝑑) = (2𝜋)−𝑑/2(𝑎,𝑊 𝑡
𝑔,𝑓 )𝐿2(R2𝑑),

𝑎 ∈ 𝒮 ′𝑠(R2𝑑) and 𝑓, 𝑔 ∈ 𝒮𝑠(R𝑑)
(1.14)

between pseudo-differential operators and Wigner distributions, which follows by
straightforward computations (see also, e.g., [10, 11]).

Next we discuss the Weyl product, twisted convolution and related objects.
Let 𝑠 ≥ 1/2 and let 𝑎, 𝑏 ∈ 𝒮 ′𝑠(R2𝑑) be appropriate. Then the Weyl product 𝑎#𝑏
between 𝑎 and 𝑏 is the function or distribution which fulfills Op𝑤(𝑎#𝑏) = Op𝑤(𝑎)∘
Op𝑤(𝑏), provided the right-hand side makes sense as a continuous operator from
𝒮𝑠(R𝑑) to 𝒮 ′𝑠(R𝑑). More general, if 𝑡 ∈ R, then the product #𝑡 is defined by the
formula

Op𝑡(𝑎#𝑡𝑏) = Op𝑡(𝑎) ∘Op𝑡(𝑏), (1.15)

provided the right-hand side makes sense as a continuous operator from 𝒮𝑠(R𝑑)
to 𝒮 ′𝑠(R𝑑).

The Weyl product can also, in a convenient way, be expressed in terms of the
symplectic Fourier transform and twisted convolution. More precisely, let 𝑠 ≥ 1/2.
Then the symplectic Fourier transform for 𝑎 ∈ 𝒮𝑠(R2𝑑) is defined by the formula

(F𝜎𝑎)(𝑋) = 𝜋−𝑑
∫

𝑎(𝑌 )𝑒2𝑖𝜎(𝑋,𝑌 ) 𝑑𝑌,

where 𝜎 is the symplectic form, given by

𝜎(𝑋,𝑌 ) = ⟨𝑦, 𝜉⟩ − ⟨𝑥, 𝜂⟩, 𝑋 = (𝑥, 𝜉) ∈ R2𝑑, 𝑌 = (𝑦, 𝜂) ∈ R2𝑑.

We note that F𝜎 = 𝑇 ∘ (F ⊗ (F−1)), when (𝑇𝑎)(𝑥, 𝜉) = 2𝑑𝑎(2𝜉, 2𝑥). In par-
ticular, F𝜎 is continuous on 𝒮𝑠(R2𝑑), and extends uniquely to a homeomorphism
on 𝒮 ′𝑠(R2𝑑), and to a unitary map on 𝐿2(R2𝑑), since similar facts hold for F .
Furthermore, F 2

𝜎 is the identity operator.
Let 𝑠 ≥ 1/2 and 𝑎, 𝑏 ∈ 𝒮𝑠(R2𝑑). Then the twisted convolution of 𝑎 and 𝑏 is

defined by the formula

(𝑎 ∗𝜎 𝑏)(𝑋) = (2/𝜋)𝑑/2
∫

𝑎(𝑋 − 𝑌 )𝑏(𝑌 )𝑒2𝑖𝜎(𝑋,𝑌 ) 𝑑𝑌. (1.16)
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The definition of ∗𝜎 extends in different ways. For example, it extends to a con-
tinuous multiplication on 𝐿𝑝(R2𝑑) when 𝑝 ∈ [1, 2], and to a continuous map from
𝒮 ′𝑠(R2𝑑)×𝒮𝑠(R2𝑑) to 𝒮 ′𝑠(R2𝑑). If 𝑎, 𝑏 ∈ 𝒮 ′𝑠(R2𝑑), then 𝑎#𝑏 makes sense if and only

if 𝑎 ∗𝜎 �̂� makes sense, and then

𝑎#𝑏 = (2𝜋)−𝑑/2𝑎 ∗𝜎 (F𝜎𝑏). (1.17)

We also remark that for the twisted convolution we have

F𝜎(𝑎 ∗𝜎 𝑏) = (F𝜎𝑎) ∗𝜎 𝑏 = �̌� ∗𝜎 (F𝜎𝑏), (1.18)

where �̌�(𝑋) = 𝑎(−𝑋) (cf. [42, 44, 45]). A combination of (1.17) and (1.18) gives

F𝜎(𝑎#𝑏) = (2𝜋)−𝑑/2(F𝜎𝑎) ∗𝜎 (F𝜎𝑏). (1.19)

In the Weyl calculus it is in several situations convenient to use the operator
𝐴 on 𝒮 ′𝑠(R2𝑑), defined by the formula

𝐴𝑎(𝑥, 𝑦) = (F−1
2 𝑎)((𝑦 − 𝑥)/2,−(𝑥+ 𝑦)), 𝑎 ∈ 𝒮 ′𝑠(R2𝑑). (1.20)

Here and in what follows we identify operators with their distribution kernels. We
note that 𝐴𝑎(𝑥, 𝑦) agrees with (2𝜋)𝑑/2𝐾𝑤

𝑎 (−𝑥, 𝑦), where 𝐾𝑤
𝑎 is the distribution

kernel to the Weyl operator Op𝑤(𝑎). If 𝑎 ∈ 𝒮𝑠(R2𝑑), then 𝐴𝑎 is given by

𝐴𝑎(𝑥, 𝑦) = (2𝜋)−𝑑/2
∫

𝑎((𝑦 − 𝑥)/2, 𝜉)𝑒−𝑖⟨𝑥+𝑦,𝜉⟩ 𝑑𝑦.

In particular, the map 𝑎 → 𝐴𝑎 is bijective from 𝒮 ′𝑠(R2𝑑) to the set of linear and
continuous operators from 𝒮𝑠(R𝑑) to 𝒮 ′𝑠(R𝑑), since similar facts are true for the
Weyl quantization.

The operator 𝐴 is important when using the twisted convolution, because for
each 𝑎, 𝑏 ∈ 𝒮𝑠(R2𝑑) we have

𝐴(𝑎 ∗𝜎 𝑏) = 𝐴𝑎 ∘𝐴𝑏. (1.21)

(See [19, 42, 44, 45].)
In the following lemma we list some facts about the operator 𝐴. The result is

a consequence of Fourier’s inversion formula, and the verifications are left for the
reader.

Lemma 1.3. Let 𝑠 ≥ 1/2, 𝐴 be as above, 𝑎, 𝑎1, 𝑎2, 𝑏 ∈ 𝒮 ′𝑠(R2𝑑), where at least two
of 𝑎1, 𝑎2, 𝑏 should belong to 𝒮 ′𝑠(R2𝑑), and set 𝑈 = 𝐴𝑎. Then the following is true:

(1) �̌� = 𝐴�̌�, if �̌�(𝑋) = 𝑎(−𝑋);

(2) 𝐽F𝑈 = 𝐴F𝜎𝑎, where 𝐽F𝑈(𝑥, 𝑦) = 𝑈(−𝑥, 𝑦);
(3) 𝐴(F𝜎𝑎) = (2𝜋)𝑑/2Op𝑤(𝑎) and (Op𝑤(𝑎)𝑓, 𝑔) = (2𝜋)−𝑑/2(𝐴𝑎, 𝑔 ⊗ 𝑓) when

𝑓, 𝑔 ∈ 𝒮1/2(R𝑑);

(4) the Hilbert space adjoint of 𝐴𝑎 equals 𝐴�̃�, where �̃�(𝑋) = 𝑎(−𝑋). Further-
more,

(𝑎1 ∗𝜎 𝑎2, 𝑏) = (𝑎1, 𝑏 ∗𝜎 �̃�2) = (𝑎2, �̃�1 ∗𝜎 𝑏),
(𝑎1 ∗𝜎 𝑎2) ∗𝜎 𝑏 = 𝑎1 ∗𝜎 (𝑎2 ∗𝜎 𝑏).
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A linear and continuous operator from 𝒮𝑠(R𝑑) to 𝒮 ′𝑠(R𝑛) is called positive
semi-definite (of order 𝑠 ≥ 1/2) when (𝑇𝑓, 𝑓)𝐿2 ≥ 0 for every 𝑓 ∈ 𝒮𝑠(R𝑑). We
write 𝑇 ≥ 0 when 𝑇 is positive semi-definite or order 𝑠. A distribution 𝑎 ∈ 𝒮 ′𝑠(R2𝑑)
is called 𝜎-positive (of order 𝑠) if 𝐴𝑎 is a positive semi-definite operator. The set
of all 𝜎-positive distributions on R2𝑑 is denoted by 𝒮 ′𝑠,+(R2𝑑). Since 𝒮𝑠 increases
with 𝑠 and that 𝒮1/2 is dense in 𝒮𝑠, it follows that

𝒮 ′𝑡,+(R2𝑑) = 𝒮 ′𝑠,+(R2𝑑)
∩
𝒮 ′𝑡(R2𝑑), 𝑡 ≥ 𝑠.

The following result is an immediate consequence of Lemma 1.3.

Proposition 1.4. Let 𝑠 ≥ 1/2 and 𝑎 ∈ 𝒮′𝑠(R2𝑑). Then

𝑎 ∈ 𝒮 ′𝑠,+(R2𝑑) ⇐⇒ 𝐴𝑎 ≥ 0 as operator ⇐⇒ Op𝑤(F𝜎𝑎) ≥ 0.

We refer to [44, 45] for more facts about 𝜎-positive functions and distributions
in the framework of tempered distributions.

In the end of Section 5 we also discuss continuity for Toeplitz operators. Let
𝑠 ≥ 1/2, 𝑎 ∈ 𝒮𝑠(R2𝑑) and ℎ1, ℎ2 ∈ 𝒮𝑠(R𝑑). Then the Toeplitz operator Tpℎ1,ℎ2

(𝑎),
with symbol 𝑎, and window functions ℎ1 and ℎ2, is defined by the formula

(Tpℎ1,ℎ2
(𝑎)𝑓1, 𝑓2) = (𝑎(2 ⋅ )𝑊𝑓1,ℎ1 ,𝑊𝑓2,ℎ2) (1.22)

when 𝑓1, 𝑓2 ∈ 𝒮𝑠(R𝑑). The definition of Tpℎ1,ℎ2
(𝑎) extends in several ways (cf.,

e.g., [6, 26, 42, 44, 46, 49, 50, 52]).
In several of these extensions as well as in Section 5, we interpret Toeplitz

operators as pseudo-differential operators, using the fact that

Tpℎ1,ℎ2
(𝑎) = Op𝑡(𝑎 ∗ 𝑢) when

𝑢(𝑋) = (2𝜋)−𝑑/2𝑊 𝑡
ℎ2,ℎ1

(−𝑋),
(1.23)

ℎ1, ℎ2 are suitable window functions on R𝑑 and 𝑎 is an appropriate distribution
on R2𝑑. The relation (1.23) is well known when 𝑡 = 0 or 𝑡 = 1/2 (cf., e.g., [6, 8,
38, 42, 44, 46–48, 50]). For general 𝑡, (1.23) is an immediate consequence of the
case 𝑡 = 1/2, (1.13), and the fact that

𝑒𝑖𝑡⟨𝐷𝑥,𝐷𝜉⟩(𝑎 ∗ 𝑢) = 𝑎 ∗ (𝑒𝑖𝑡⟨𝐷𝑥,𝐷𝜉⟩𝑢),

which follows by integration by parts.

Next we discuss basic properties for modulation spaces, and start by recalling
the conditions for the involved weight functions. Let 0 < 𝜔, 𝑣 ∈ 𝐿∞loc(R

𝑑). Then 𝜔
is called moderate or 𝑣-moderate if

𝜔(𝑥+ 𝑦) ≲ 𝜔(𝑥)𝑣(𝑦), 𝑥, 𝑦 ∈ R𝑑. (1.24)

Here the function 𝑣 is called submultiplicative, if (1.24) holds when 𝜔 = 𝑣. We note
that if (1.24) holds, then

𝑣(−𝑥)−1 ≲ 𝜔(𝑥) ≲ 𝑣(𝑥).
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Furthermore, for such 𝜔 it follows that (1.24) is true when

𝑣(𝑥) = 𝐶𝑒𝑐∣𝑥∣,

for some positive constants 𝑐 and 𝐶. In particular, if 𝜔 is moderate on R𝑑, then

𝑒−𝑐∣𝑥∣ ≲ 𝜔(𝑥) ≲ 𝑒𝑐∣𝑥∣,

for some constant 𝑐 > 0.

The set of all moderate functions onR𝑑 is denoted by P𝐸(R
𝑑). Furthermore,

if 𝑣 in (1.24) can be chosen as a polynomial, then 𝜔 is called of polynomial type, or
polynomially moderate. We let P(R𝑑) be the set of all polynomially moderated
functions on R𝑑. If 𝜔(𝑥, 𝜉) ∈ P𝐸(R

2𝑑) is constant with respect to the 𝑥-variable
(𝜉-variable), then we write 𝜔(𝜉) (𝜔(𝑥)) instead of 𝜔(𝑥, 𝜉). In this case we consider
𝜔 as an element in P𝐸(R

2𝑑) or in P𝐸(R
𝑑) depending on the situation.

Let 𝜙 ∈ 𝒮 ′𝑠(R𝑑) be fixed. Then the short-time Fourier transform 𝑉𝜙𝑓 of 𝑓 ∈
𝒮 ′𝑠(R𝑑) with respect to the window function 𝜙 is the Gelfand–Shilov distribution
on R2𝑑, defined by

𝑉𝜙𝑓(𝑥, 𝜉) ≡ (F2(𝑈(𝑓 ⊗ 𝜙)))(𝑥, 𝜉) = F (𝑓 𝜙( ⋅ − 𝑥))(𝜉),

where (𝑈𝐹 )(𝑥, 𝑦) = 𝐹 (𝑦, 𝑦 − 𝑥). If 𝑓, 𝜙 ∈ 𝒮𝑠(R𝑑), then it follows that

𝑉𝜙𝑓(𝑥, 𝜉) = (2𝜋)−𝑑/2
∫

𝑓(𝑦)𝜙(𝑦 − 𝑥)𝑒−𝑖⟨𝑦,𝜉⟩ 𝑑𝑦.

We recall that the short-time Fourier transform is closely related to the Wigner
distribution, because

𝑊𝑓,𝜙𝑓(𝑥, 𝜉) = 2𝑑𝑒2𝑖⟨𝑥,𝜉⟩𝑉𝜙𝑓(2𝑥, 2𝜉), (1.25)

which follows by elementary manipulations. In particular, Toeplitz operators can
be expressed by the formula

(Tpℎ1,ℎ2
(𝑎)𝑓1, 𝑓2) = (𝑎𝑉ℎ̌1

𝑓1, 𝑉ℎ̌2
𝑓2). (1.22)′

Let 𝜔 ∈P𝐸(R
2𝑑), 𝑝, 𝑞 ∈ [1,∞] and 𝜙 ∈ 𝒮1/2(R𝑑)∖0 be fixed. Then the mixed

Lebesgue space 𝐿𝑝,𝑞1,(𝜔)(R
2𝑑) consists of all 𝐹 ∈ 𝐿1loc(R

2𝑑) such that ∥𝐹∥𝐿𝑝,𝑞
1,(𝜔)

<∞,

and 𝐿𝑝,𝑞2,(𝜔)(R
2𝑑) consists of all 𝐹 ∈ 𝐿1loc(R

2𝑑) such that ∥𝐹∥𝐿𝑝,𝑞
2,(𝜔)

<∞. Here

∥𝐹∥𝐿𝑝,𝑞
1,(𝜔)

=
( ∫ ( ∫

∣𝐹 (𝑥, 𝜉)𝜔(𝑥, 𝜉)∣𝑝 𝑑𝑥
)𝑞/𝑝

𝑑𝜉
)1/𝑞

, (1.26)

and

∥𝐹∥𝐿𝑝,𝑞
2,(𝜔)

=
( ∫ ( ∫

∣𝐹 (𝑥, 𝜉)𝜔(𝑥, 𝜉)∣𝑞 𝑑𝜉
)𝑝/𝑞

𝑑𝑥
)1/𝑝

, (1.27)

with obvious modifications when 𝑝 = ∞ or 𝑞 = ∞. We note that these norms
might attain +∞.



130 J. Toft

The modulation spaces 𝑀𝑝,𝑞
(𝜔)(R

𝑑) and𝑊 𝑝,𝑞
(𝜔)(R

𝑑) are the Banach spaces which

consist of all 𝑓 ∈ 𝒮 ′1/2(R𝑑) such that ∥𝑓∥𝑀𝑝,𝑞
(𝜔)

<∞ and ∥𝑓∥𝑊𝑝,𝑞
(𝜔)

<∞ respectively.

Here
∥𝑓∥𝑀𝑝,𝑞

(𝜔)
≡ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞

1,(𝜔)
, and ∥𝑓∥𝑊𝑝,𝑞

(𝜔)
≡ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞

2,(𝜔)
. (1.28)

We remark that the definitions of 𝑀𝑝,𝑞
(𝜔)(R

𝑑) and 𝑊 𝑝,𝑞
(𝜔)(R

𝑑) are independent of the

choice of 𝜙 ∈ 𝒮1/2(R𝑑) ∖ 0 and different 𝜙 gives rise to equivalent norms. (See
Proposition 1.5 below.) From the fact that

𝑉𝜙𝑓(𝜉,−𝑥) = 𝑒𝑖⟨𝑥,𝜉⟩𝑉𝜙𝑓(𝑥, 𝜉), 𝜙(𝑥) = 𝜙(−𝑥), (1.29)

it follows that

𝑓 ∈𝑊 𝑞,𝑝
(𝜔)(R

𝑑) ⇐⇒ 𝑓 ∈𝑀𝑝,𝑞
(𝜔0)

(R𝑑), 𝜔0(𝜉,−𝑥) = 𝜔(𝑥, 𝜉).

For convenience we set 𝑀𝑝
(𝜔) = 𝑀𝑝,𝑝

(𝜔), which agrees with 𝑊 𝑝
(𝜔) = 𝑊 𝑝,𝑝

(𝜔) . Fur-

thermore we set 𝑀𝑝,𝑞 = 𝑀𝑝,𝑞
(𝜔) and 𝑊 𝑝,𝑞 = 𝑊 𝑝,𝑞

(𝜔) when 𝜔 ≡ 1.

The proof of the following proposition is omitted, since the results can be
found in [5, 12, 13, 16–18, 22, 46–49, 52]. Here we recall that 𝑝, 𝑝′ ∈ [1,∞] satisfy
1/𝑝+ 1/𝑝′ = 1.

Proposition 1.5. Let 𝑝, 𝑞, 𝑝𝑗, 𝑞𝑗 ∈ [1,∞] for 𝑗 = 1, 2, and 𝜔, 𝜔1, 𝜔2, 𝑣 ∈ P𝐸(R
2𝑑)

be such that 𝑣 = 𝑣, 𝜔 is 𝑣-moderate and 𝜔2 ≲ 𝜔1. Then the following is true:

(1) 𝑓 ∈𝑀𝑝,𝑞
(𝜔)(R

𝑑) if and only if (1.28) holds for any 𝜙 ∈𝑀1
(𝑣)(R

𝑑)∖0. Moreover,

𝑀𝑝,𝑞
(𝜔) is a Banach space under the norm in (1.28) and different choices of 𝜙

give rise to equivalent norms;

(2) if 𝑝1 ≤ 𝑝2 and 𝑞1 ≤ 𝑞2 then

Σ1(R
𝑑) ↪→𝑀𝑝1,𝑞1

(𝜔1)
(R𝑑) ↪→𝑀𝑝2,𝑞2

(𝜔2)
(R𝑑) ↪→ Σ′1(R

𝑑).

(3) the 𝐿2 product ( ⋅ , ⋅ )𝐿2 on 𝒮1/2 extends uniquely to a continuous map from

𝑀𝑝,𝑞
(𝜔)(R

𝑛)×𝑀𝑝′,𝑞′

(1/𝜔)(R
𝑑) to C. On the other hand, if ∥𝑎∥ = sup ∣(𝑎, 𝑏)∣, where

the supremum is taken over all 𝑏 ∈ 𝒮1/2(R𝑑) such that ∥𝑏∥
𝑀𝑝′,𝑞′

(1/𝜔)

≤ 1, then

∥ ⋅ ∥ and ∥ ⋅ ∥𝑀𝑝,𝑞
(𝜔)

are equivalent norms;

(4) if 𝑝, 𝑞 < ∞, then 𝒮1/2(R𝑑) is dense in 𝑀𝑝,𝑞
(𝜔)(R

𝑑) and the dual space of

𝑀𝑝,𝑞
(𝜔)(R

𝑑) can be identified with 𝑀𝑝′,𝑞′

(1/𝜔)(R
𝑑), through the 𝐿2-form ( ⋅ , ⋅ )𝐿2 .

Moreover, 𝒮1/2(R𝑑) is weakly dense in 𝑀𝑝′,𝑞′

(𝜔) (R𝑑) with respect to the 𝐿2-

form.

Similar facts hold if the 𝑀𝑝,𝑞
(𝜔) spaces are replaced by 𝑊 𝑝,𝑞

(𝜔) spaces.

Proposition 1.5 (1) allows us be rather vague concerning the choice of 𝜙 ∈
𝑀1
(𝑣) ∖ 0 in (1.28). For example, if 𝐶 > 0 is a constant and A is a subset of 𝒮 ′1/2,

then ∥𝑎∥𝑀𝑝,𝑞
(𝜔)

≤ 𝐶 for every 𝑎 ∈ A , means that the inequality holds for some

choice of 𝜙 ∈ 𝑀1
(𝑣) ∖ 0 and every 𝑎 ∈ A . Evidently, a similar inequality is true
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for any other choice of 𝜙 ∈ 𝑀1
(𝑣) ∖ 0, with a suitable constant, larger than 𝐶 if

necessary.

Remark 1.6. By Theorem 3.9 in [52] and Proposition 1.5 (2) it follows that∩
𝜔∈P𝐸

𝑀𝑝,𝑞
(𝜔)(R

𝑑) = Σ1(R
𝑑),

∪
𝜔∈P𝐸

𝑀𝑝,𝑞
(𝜔)(R

𝑑) = Σ′1(R
𝑑)

More generally, let 𝑠 ≥ 1, and let 𝒫 be the set of all 𝜔 ∈ P𝐸(R
2𝑑) such that

𝜔(𝑥+ 𝑦, 𝜉 + 𝜂) ≲ 𝜔(𝑥, 𝜉)𝑒𝑐(∣𝑦∣
1/𝑠+∣𝜂∣1/𝑠),

for some 𝑐 > 0. Then∩
𝜔∈𝒫

𝑀𝑝,𝑞
(𝜔)(R

𝑑) = Σ𝑠(R
𝑑),

∪
𝜔∈𝒫

𝑀𝑝,𝑞
(1/𝜔)(R

𝑑) = Σ′𝑠(R
𝑑)∪

𝜔∈𝒫
𝑀𝑝,𝑞
(𝜔)(R

𝑑) = 𝒮𝑠(R𝑑) and
∩
𝜔∈𝒫

𝑀𝑝,𝑞
(1/𝜔)(R

𝑑) = 𝒮 ′𝑠(R𝑑),

and that

Σ𝑠(R
𝑑) ↪→𝑀𝑝,𝑞

(𝜔)(R
𝑑) ↪→ 𝒮𝑠(R𝑑) and 𝒮 ′𝑠(R𝑑) ↪→𝑀𝑝,𝑞

(1/𝜔)(R
𝑑) ↪→ Σ′𝑠(R

𝑑).

(Cf. Proposition 4.5 in [9], Proposition 4. in [25], Corollary 5.2 in [35] or Theorem
4.1 in [41]. See also [52, Theorem 3.9] for an extension of these inclusions to broader
classes of Gelfand–Shilov and modulation spaces.)

We refer to Example 3.4 below and to [51, Remark 1.4] for other examples
on interesting modulation spaces.

We finish the section by giving some remarks on the symplectic short-time
Fourier transform. The symplectic short-time Fourier transform of 𝑎 ∈ 𝒮 ′1/2(R2𝑑)

with respect to the window function Φ ∈ 𝒮 ′1/2(R2𝑑) is defined by

𝒱Φ𝑎(𝑋,𝑌 ) = F𝜎

(
𝑎Φ( ⋅ −𝑋)

)
(𝑌 ), 𝑋, 𝑌 ∈ R2𝑑.

Let 𝜔 ∈ P𝐸(R
4𝑑). Then ℳ𝑝,𝑞

(𝜔)(R
2𝑑) and 𝒲𝑝,𝑞

(𝜔)(R
2𝑑) denote the modulation

spaces, where the symplectic short-time Fourier transform is used instead of the
usual short-time Fourier transform in the definitions of the norms. It follows that
any property valid for 𝑀𝑝,𝑞

(𝜔)(R
2𝑑) or 𝑊 𝑝,𝑞

(𝜔)(R
2𝑑) carry over to ℳ𝑝,𝑞

(𝜔)(R
2𝑑) and

𝒲𝑝,𝑞
(𝜔)(R

2𝑑) respectively. For example, for the symplectic short-time Fourier trans-

form we have

𝒱F𝜎Φ(F𝜎𝑎)(𝑋,𝑌 ) = 𝑒2𝑖𝜎(𝑌,𝑋)𝒱Φ𝑎(𝑌,𝑋), (1.30)

(cf. (1.29)) which implies that

F𝜎ℳ𝑝,𝑞
(𝜔)(R

2𝑑) =𝒲𝑞,𝑝
(𝜔0)

(R2𝑑), 𝜔0(𝑋,𝑌 ) = 𝜔(𝑌,𝑋). (1.31)
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2. Twisted convolution on modulation spaces
and Lebesgue spaces

In this section we discuss algebraic properties of the twisted convolution when act-
ing on modulation spaces of the form𝒲𝑝,𝑞

(𝜔). The most general result corresponds to

Theorem 0.3′ in [27], which concerns continuity for the Weyl product on modula-
tion spaces of the formℳ𝑝,𝑞

(𝜔). Thereafter we use this result to establish continuity

properties for the twisted convolution when acting on weighted Lebesgue spaces.
We will mainly follow the analysis in Section 2 in [51], and the proofs are similar.

In these investigations we need the following lemma, which is strongly related
to Lemma 4.4 in [43] and Lemma 2.1 in [27]. The latter results were fundamental
in the proofs of [43, Theorem 4.1] and for the Weyl product results in [27].

Lemma 2.1. Let 𝑠 > 1/2, 𝑎1 ∈ 𝒮 ′𝑠(R2𝑑), 𝑎2 ∈ 𝒮𝑠(R2𝑑), Φ1,Φ2 ∈ Σ𝑠(R
2𝑑) and

𝑋,𝑌 ∈ R2𝑑. Then the following is true:

(1) if Φ = 𝜋𝑑Φ1#Φ2, then Φ ∈ Σ𝑠(R
2𝑑), and the map

𝑍 → 𝑒2𝑖𝜎(𝑍,𝑌 )(𝒱Φ1𝑎1)(𝑋 − 𝑌 + 𝑍,𝑍) (𝒱Φ2𝑎2)(𝑋 + 𝑍, 𝑌 − 𝑍)

belongs to 𝐿1(R2𝑑), and

𝒱Φ(𝑎1#𝑎2)(𝑋,𝑌 )

=

∫
𝑒2𝑖𝜎(𝑍,𝑌 )(𝒱Φ1𝑎1)(𝑋 − 𝑌 + 𝑍,𝑍) (𝒱Φ2𝑎2)(𝑋 + 𝑍, 𝑌 − 𝑍) 𝑑𝑍;

(2) if Φ = 2−𝑑Φ1 ∗𝜎 Φ2, then Φ ∈ Σ𝑠(R
2𝑑), and the map

𝑍 → 𝑒2𝑖𝜎(𝑋,𝑍−𝑌 )(𝒱Φ1𝑎1)(𝑋 − 𝑌 + 𝑍,𝑍) (𝒱Φ2𝑎2)(𝑌 − 𝑍,𝑋 + 𝑍)

belongs to 𝐿1(R2𝑑), and

𝒱Φ(𝑎1 ∗𝜎 𝑎2)(𝑋,𝑌 )

=

∫
𝑒2𝑖𝜎(𝑋,𝑍−𝑌 )(𝒱Φ1𝑎1)(𝑋 − 𝑌 + 𝑍,𝑍) (𝒱Φ2𝑎2)(𝑌 − 𝑍,𝑋 + 𝑍) 𝑑𝑍.

Proof. The 𝐿1-continuity for the mapping in (1) and (2) follow immediately from
Theorems 6.4 and 6.5 in [52]. The integral formula for 𝒱Φ(𝑎1#𝑎2) in (1) then
follows by similar arguments as for the proof of [43, Lemma 4.4], based on repeated
applications of Fourier’s inversion formula. The details are left for the reader. This
gives (1).

The integral formula 𝒱Φ(𝑎1 ∗𝜎 𝑎2) in (2) now follows from (1), (1.17), (1.18)
and (1.30). The proof is complete. □

For completeness we also write down the following extension of Theorem 0.3′

in [27]. Here the involved weight functions should satisfy

𝜔0(𝑋,𝑌 ) ≲ 𝜔1(𝑋 − 𝑌 + 𝑍,𝑍)𝜔2(𝑋 + 𝑍, 𝑌 − 𝑍), 𝑋, 𝑌, 𝑍 ∈ R2𝑑, (2.1)
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and the exponent 𝑝𝑗 , 𝑞𝑗 ∈ [1,∞] satisfy (0.4) and

0 ≤ 1

𝑝1
+

1

𝑝2
− 1

𝑝0
≤ 1

𝑝𝑗
,
1

𝑞𝑗
≤ 1

𝑞1
+

1

𝑞2
− 1

𝑞0
, 𝑗 = 0, 1, 2. (2.2)

Theorem 2.2. Let 𝜔𝑗 ∈ P𝐸(R
4𝑑) and 𝑝𝑗, 𝑞𝑗 ∈ [1,∞], 𝑗 = 0, 1, 2, satisfy (0.4),

(2.1) and (2.2). Then the map (𝑎1, 𝑎2) → 𝑎1#𝑎2 on 𝒮1/2(R2𝑑) extends uniquely

to a continuous map from ℳ𝑝1,𝑞1
(𝜔1)

(R2𝑑) ×ℳ𝑝2,𝑞2
(𝜔2)

(R2𝑑) to ℳ𝑝0,𝑞0
(𝜔0)

(R2𝑑), and the

bound

∥𝑎1#𝑎2∥ℳ𝑝0,𝑞0
(𝜔0)

≲ ∥𝑎1∥ℳ𝑝1,𝑞1
(𝜔1)

∥𝑎2∥ℳ𝑝2,𝑞2
(𝜔2)

, (2.3)

holds for every 𝑎1 ∈ℳ𝑝1,𝑞1
(𝜔1)

(R2𝑑) and 𝑎2 ∈ ℳ𝑝2,𝑞2
(𝜔2)

(R2𝑑).

The proof of Theorem 2.2 is similar to the proof of [27, Theorem 0.3′], after
Proposition 1.9 and Lemma 2.1 in [27] have been replaced by Theorem 4.19 in [52]
and Lemma 2.1. The details are left for the reader.

We note that Theorem 0.1 is an immediate consequence of (1.31), (1.19) and
Theorem 2.2. Another way to prove Theorem 0.1 is to use similar arguments as in
the proof of Theorem 2.2, based on (2) instead of (1) in Lemma 2.1.

We are now able to state and prove mapping results for the twisted convo-
lution on weighted Lebesgue spaces. We start with the extension of Theorem 0.2
from the introduction.

Theorem 0.2′. Let 𝑘 ∈ {1, 2}, 𝜔𝑗 ∈ P𝐸(R
2𝑑) and let 𝑝𝑗 , 𝑞𝑗 ∈ [1,∞] for 𝑗 = 0, 1, 2

satisfy (0.6) and

max
𝑗=0,1,2

(
1

𝑝𝑗
,
1

𝑝′𝑗
,
1

𝑞𝑗
,
1

𝑞′𝑗

)
≤ 1

𝑝1
+

1

𝑝2
− 1

𝑝0
,
1

𝑞1
+

1

𝑞2
− 1

𝑞0
≤ 1,

Then the map (𝑎1, 𝑎2) → 𝑎1 ∗𝜎 𝑎2 extends uniquely to a continuous mapping from
𝐿𝑝1,𝑞1𝑘,(𝜔1)

(R2𝑑)× 𝐿𝑝2,𝑞2𝑘,(𝜔2)
(R2𝑑) to 𝐿𝑝0,𝑞0𝑘,(𝜔0)

(R2𝑑), and

∥𝑎1 ∗𝜎 𝑎2∥𝐿𝑝0,𝑞0
𝑘,(𝜔0)

≲ ∥𝑎1∥𝐿𝑝1,𝑞1
𝑘,(𝜔1)

∥𝑎2∥𝐿𝑝2,𝑞2
𝑘,(𝜔2)

(0.8)′

when 𝑎1 ∈ 𝐿𝑝1,𝑞1𝑘,(𝜔1)
(R2𝑑) and 𝑎2 ∈ 𝐿𝑝2,𝑞2𝑘,(𝜔2)

(R2𝑑).

Remark 2.3. The condition of the Lebesgue exponents for Theorems 0.2 and 0.2′

in [51] should be the same as in Theorems 0.2 and 0.2′ respectively. In this context,
the results here extend corresponding results in [51].

For the proof we need the following lemma.

Lemma 2.4. Let 𝜔 ∈P𝐸(R
2𝑑) be such that 𝜔(𝑥, 𝜉) = 𝜔(𝑥). Then

𝑀2
(𝜔)(R

𝑑) = 𝑊 2
(𝜔)(R

𝑑) = 𝐿2(𝜔)(R
𝑑).
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Proof. It is obvious that 𝑀2
(𝜔) = 𝑊 2

(𝜔). We have to prove 𝑀2
(𝜔) = 𝐿2(𝜔). Let 𝑓 ∈

𝒮1/2(R𝑑), 𝜙 ∈ 𝒮1/2(R𝑑) ∖ 0, and let 𝑣 ∈ P𝐸(R
𝑑) be such that 𝜔 is 𝑣-moderate.

Then (1.24) and Parseval’s formula give

∥𝑓∥2𝑀2
(𝜔)
≍

∫∫
∣𝑓(𝑦)𝜙(𝑦 − 𝑥))𝜔(𝑥)∣2 𝑑𝑥𝑑𝑦

≲
∫∫

∣𝑓(𝑦)𝜔(𝑦)∣2∣𝜙(𝑦 − 𝑥)𝑣(𝑦 − 𝑥)∣2 𝑑𝑥𝑑𝑦 ≍ ∥𝑓∥2𝐿2
(𝜔)

.

Since 𝒮1/2 is dense in 𝐿2(𝜔) and in 𝑀2
(𝜔) it follows that 𝐿

2
(𝜔) ↪→𝑀2

(𝜔).

In order to prove the opposite inclusion we note that 𝜙1𝑣 ≲ 𝜙2, when 𝜙, 𝜙1 ∈
P𝐸 are the Gauss functions 𝜙1(𝑥) = 𝑒−∣𝑥∣

2

and 𝜙2(𝑥) = 𝑒−∣𝑥∣
2/2. Hence (1.24)

and Parseval’s formula give

∥𝑓∥2𝐿2
(𝜔)

≲
∫∫

∣𝑓(𝑦)𝜙1(𝑦 − 𝑥)𝜔(𝑦)∣2 𝑑𝑥𝑑𝑦

≲
∫∫

∣𝑓(𝑦)𝜙1(𝑦 − 𝑥)𝑣(𝑦 − 𝑥)𝜔(𝑥)∣2 𝑑𝑥𝑑𝑦

≲
∫∫

∣𝑓(𝑦)𝜙2(𝑦 − 𝑥)𝜔(𝑥)∣2 𝑑𝑥𝑑𝑦

=

∫∫
∣F (𝑓𝜙2( ⋅ − 𝑥))(𝜉)𝜔(𝑥)∣2 𝑑𝑥𝑑𝜉 ≍ ∥𝑓∥2𝑀2

(𝜔)
.

Hence 𝑀2
(𝜔) ↪→ 𝐿2(𝜔).

The result now follows by combining these embeddings, and the proof is
complete. □

Proof of Theorem 0.2′. By duality we may assume that

max
( 1

𝑝𝑗
,
1

𝑝′𝑗
,
1

𝑞𝑗
,
1

𝑞′𝑗

)
is attained when 𝑗 = 0. Since𝒲2

(𝜔) =ℳ2
(𝜔) = 𝐿2(𝜔) when 𝜔(𝑋,𝑌 ) = 𝜔(𝑋), in view

of Lemma 2.4, the result follows from Theorem 0.1 in the case 𝑝0 = 𝑝1 = 𝑝2 = 2.
Next we consider the case when the Young conditions

1

𝑝1
+

1

𝑝2
− 1

𝑝0
= 1 and

1

𝑞1
+

1

𝑞2
− 1

𝑞0
= 1 (2.4)

are fulfilled.
First we consider the case when 𝑝2, 𝑞2 <∞, and we let 𝑎1 ∈ 𝐿𝑝1,𝑞1(𝜔1)

(R2𝑑) and

that 𝑎2 ∈ 𝒮1/2(R2𝑑). Then

∥𝑎1 ∗𝜎 𝑎2∥𝐿𝑝0,𝑞0
(𝜔0)

≤ (2/𝜋)𝑑/2∥ ∣𝑎1∣ ∗ ∣𝑎2∣ ∥𝐿𝑝0,𝑞0
(𝜔0)

≲ ∥𝑎1∥𝐿𝑝1,𝑞1
(𝜔1)

∥𝑎2∥𝐿𝑝2,𝑞2
(𝜔2)

, (2.5)

by Young’s inequality and (0.6). The result now follows in this case from the fact
that 𝒮1/2 is dense in 𝐿𝑝2,𝑞2(𝜔2)

, when 𝑝2, 𝑞2 <∞.

In the same way, the case 𝑝1, 𝑞1 < ∞ follows. It remain to consider when
𝑝1, 𝑞1 < ∞ and 𝑝2, 𝑞2 < ∞ are violated. By (2.4) we get 𝑝1 = 𝑞2 = ∞ and
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𝑝2 = 𝑞1 = 1, or 𝑝1 = 𝑞2 = 1 and 𝑝2 = 𝑞1 = ∞, and it follows that 𝑌 →
𝑎1(𝑋 − 𝑌 )𝑎2(𝑌 )𝑒

2𝑖𝜎(𝑋,𝑌 ) ∈ 𝐿1(𝜔0)
when 𝑎1 ∈ 𝐿𝑝1,𝑞1(𝜔1)

(R2𝑑) and 𝑎2 ∈ 𝐿𝑝2,𝑞2(𝜔2)
(R2𝑑),

and that (2.5) holds. This proves the result when (2.4) is fulfilled.

Next we let 𝑝𝑗 and 𝑞𝑗 be general. Then we may assume that 𝑝1, 𝑞1 < ∞
or 𝑝2, 𝑞2 < ∞, since otherwise, the Young condition (2.4) must hold, which has
already been considered.

Therefore, by reasons of symmetry we may assume that 𝑝1, 𝑞1 < ∞, and
we let ℒ𝑝,𝑞(𝜔)(R2𝑑) be the completion of 𝒮1/2(R2𝑑). Then ℒ𝑝,𝑞(𝜔)(R2𝑑) possess the

(complex) interpolation property

(ℒ𝑝1,𝑞1(𝜔) (R2𝑑), (ℒ𝑝2,𝑞2(𝜔) (R2𝑑))[𝜃] = ℒ𝑝,𝑞(𝜔)(R2𝑑),

when
1− 𝜃

𝑝1
+

𝜃

𝑝2
=

1

𝑝
,

1− 𝜃

𝑞1
+

𝜃

𝑞2
=

1

𝑞

and 𝑝1, 𝑞1 <∞. (Cf. Chapter 5 in [2].) Hence, by multi-linear interpolation between
the case 𝑝0 = 𝑝1 = 𝑝2 = 2 and the case (2.4) it follows that ℒ𝑝1,𝑞1(𝜔1)

∗𝜎 ℒ𝑝2,𝑞2(𝜔2)
↪→

ℒ𝑝0,𝑞0(𝜔0)
, and that (0.8)′ holds when 𝑎1, 𝑎2 ∈ 𝒮1/2.
The result now follows for general 𝑎1 ∈ 𝐿𝑝1,𝑞1(𝜔1)

and 𝑎2 ∈ 𝐿𝑝2,𝑞2(𝜔) by density

arguments, where 𝑎2 is first approximated by elements in 𝒮1/2 weakly, and there-
after 𝑎1 is approximated by elements in 𝒮1/2 in the norm convergence. The proof
is complete. □

Corollary 2.5. Let 𝜔𝑗 ∈P𝐸(R
2𝑑) for 𝑗 = 0, 1, 2 and 𝑝, 𝑞 ∈ [1,∞] satisfy (0.6), and

𝑞 ≤ min(𝑝, 𝑝′). Then the map (𝑎1, 𝑎2) → 𝑎1 ∗𝜎 𝑎2 extends uniquely to a continuous
mapping from 𝐿𝑝(𝜔1)

(R2𝑑)×𝐿𝑞(𝜔2)
(R2𝑑) or 𝐿𝑞(𝜔1)

(R2𝑑)×𝐿𝑝(𝜔2)
(R2𝑑) to 𝐿𝑝(𝜔0)

(R2𝑑).

In particular, if 𝑝 ∈ [1, 2] and in addition 𝜔0 is submultitplicative, then
(𝐿𝑝(𝜔0)

(R2𝑑), ∗𝜎) is an algebra.

We finish the section by using Theorem 0.2′ to prove that the class of per-
mitted windows in the modulation space norms can be extended. More precisely
we have the following.

Theorem 2.6. Let 𝑝, 𝑝0, 𝑞, 𝑞0 ∈ [1,∞] and 𝜔, 𝑣 ∈ P𝐸(R
2𝑑) be such that 𝑝0, 𝑞0 ≤

min(𝑝, 𝑝′, 𝑞, 𝑞′), 𝑣 = 𝑣 and 𝜔 is 𝑣-moderate. Also let 𝑓 ∈ 𝒮 ′1/2(R𝑑). Then the

following is true:

(1) if 𝜙 ∈ 𝑀𝑝0,𝑞0
(𝑣) (R𝑑) ∖ 0, then 𝑓 ∈ 𝑀𝑝,𝑞

(𝜔)(R
𝑑) if and only if 𝑉𝜙𝑓 ∈ 𝐿𝑝,𝑞1,(𝜔)(R

2𝑑).

Furthermore, ∥𝑓∥ ≡ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
1,(𝜔)

defines a norm for 𝑀𝑝,𝑞
(𝜔)(R

𝑑), and different

choices of 𝜙 give rise to equivalent norms;

(2) if 𝜙 ∈ 𝑊 𝑝0,𝑞0
(𝑣) (R𝑑) ∖ 0, then 𝑓 ∈ 𝑊 𝑝,𝑞

(𝜔)(R
𝑑) if and only if 𝑉𝜙𝑓 ∈ 𝐿𝑝,𝑞2,(𝜔)(R

2𝑑).

Furthermore, ∥𝑓∥ ≡ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
2,(𝜔)

defines a norm for 𝑊 𝑝,𝑞
(𝜔)(R

𝑑), and different

choices of 𝜙 give rise to equivalent norms.
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For the proof we note that (1.25) gives

∥𝑊𝑓,𝜙∥𝐿𝑝,𝑞
𝑘,(𝜔0)

≍ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
𝑘,(𝜔)

, when 𝜔0(𝑥, 𝜉) = 𝜔(2𝑥, 2𝜉) (2.6)

for 𝑘 = 1, 2.
Finally, by Fourier’s inversion formula it follows that if 𝑓1, 𝑔2 ∈ 𝒮 ′1/2(R𝑑) and

𝑓2, 𝑔1 ∈ 𝐿2(R𝑑), then

𝑊𝑓1,𝑔1 ∗𝜎 𝑊𝑓2,𝑔2 = (𝑓2, 𝑔1)𝐿2𝑊𝑓1,𝑔2 . (2.7)

Proof of Theorem 2.6. We may assume that 𝑝0 = 𝑞0 = min(𝑝, 𝑝′, 𝑞, 𝑞′). Assume
that 𝜙, 𝜓 ∈𝑀𝑝0,𝑞0

(𝑣) (R𝑑) ↪→ 𝐿2(R𝑑), where the inclusion follows from the fact that

𝑝0, 𝑞0 ≤ 2 and 𝑣 ≥ 𝑐 for some constant 𝑐 > 0. Since ∥𝑉𝜙𝜓∥𝐿𝑝0,𝑞0
𝑘,(𝑣)

= ∥𝑉𝜓𝜙∥𝐿𝑝0,𝑞0
𝑘,(𝑣)

when 𝑣 = 𝑣, the result follows if we prove that

∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
𝑘,(𝜔)

≲ (∥𝜓∥𝐿2)−2∥𝑉𝜓𝑓∥𝐿𝑝,𝑞
𝑘,(𝜔)

∥𝑉𝜙𝜓∥𝐿𝑝0,𝑞0
𝑘,(𝑣)

, (2.8)

for some constant 𝐶 which is independent of 𝑓 ∈ 𝒮 ′1/2(R𝑑) and 𝜙, 𝜓 ∈𝑀𝑝0,𝑞0
(𝑣) (R𝑑).

For reasons of homogeneity, it is then no restriction to assume that ∥𝜓∥𝐿2 = 1.
If 𝑝1 = 𝑝, 𝑝2 = 𝑝0, 𝑞1 = 𝑞, 𝑞2 = 𝑞0, 𝜔0 = 𝜔(2 ⋅ ) and 𝑣0 = 𝑣(2 ⋅ ), then Theorem

0.2′ and (2.7) give

∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
𝑘,(𝜔)

≍ ∥𝑊𝑓,𝜙∥𝐿𝑝,𝑞
𝑘,(𝜔0)

≍ ∥𝑊𝑓,𝜓 ∗𝜎 𝑊𝜓,𝜙∥𝐿𝑝,𝑞
𝑘,(𝜔0)

≲ ∥𝑊𝑓,𝜓∥𝐿𝑝,𝑞
𝑘,(𝜔0)

∥𝑊𝜓,𝜙∥𝐿𝑝0,𝑞0
𝑘,(𝑣0)

≍ ∥𝑉𝜓𝑓∥𝐿𝑝,𝑞
𝑘,(𝜔)

∥𝑉𝜙𝜓∥𝐿𝑝0,𝑞0
𝑘,(𝑣)

,

and (2.8) follows. The proof is complete. □

3. Gelfand–Shilov tempered vector spaces

In this section we introduce the notion of Gelfand–Shilov and Beurling tempered
(quasi-)Banach and Hilbert spaces, and establish embedding properties for such
spaces. These results are applied in the next sections when discussing Schatten–
von Neumann operators within the theory of pseudo-differential operators. The
results are also applied in [54] where decomposition and Schatten–von Neumann
properties for linear operators with Gelfand–Shilov kernels are established. We
remark that some parts of the approach here are somewhat similar to the first
part of Section 4 in [51], where related questions on tempered Hilbert spaces (with
respect to Schwartz tempered distributions) are considered.

We start by introducing some notations on quasi-Banach spaces. A quasi-
norm ∥ ⋅ ∥B on a vector space B (over C) is a non-negative and real-valued
function ∥ ⋅ ∥B on B which is non-degenerate in the sense

∥𝑓∥B = 0 ⇐⇒ 𝑓 = 0, 𝑓 ∈ B,

and fulfills

∥𝛼𝑓∥B = ∣𝛼∣ ⋅ ∥𝑓∥B, 𝑓 ∈ B, 𝛼 ∈ C

and ∥𝑓 + 𝑔∥B ≤ 𝐷(∥𝑓∥B + ∥𝑔∥B), 𝑓, 𝑔 ∈ B,
(3.1)
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for some constant 𝐷 ≥ 1 which is independent of 𝑓, 𝑔 ∈ B. Then B is a topological
vector space when the topology for B is defined by ∥ ⋅ ∥B, and B is called a quasi-
Banach space if B is complete under this topology.

Let B be a quasi-Banach space such that

𝒮1/2(R𝑑) ↪→ B ↪→ 𝒮 ′1/2(R𝑑), (3.2)

and that 𝒮1/2(R𝑑) is dense in B. We let B̌ and B𝜏 be the sets of all 𝑓 ∈ 𝒮 ′1/2(R𝑑)

such that 𝑓 ∈ B and 𝑓 ∈ B respectively. Then B̌ and B𝜏 are quasi-Banach spaces
under the quasi-norms

∥𝑓∥B̌ ≡ ∥𝑓∥B and ∥𝑓∥B𝜏 ≡ ∥𝑓∥B

respectively. Furthermore, 𝒮1/2(R𝑑) is dense in B̌ and B𝜏 , and (3.2) holds after

B have been replaced by B̌ or B𝜏 . Moreover, if B is a Banach (Hilbert) space,
then B̌ and B𝜏 are Banach (Hilbert) spaces.

The 𝐿2-dual B′ of B is the set of all 𝜑 ∈ 𝒮 ′1/2(R𝑑) such that

∥𝜑∥B′ ≡ sup ∣(𝜑, 𝑓)𝐿2(R𝑑)∣
is finite. Here the supremum is taken over all 𝑓 ∈ 𝒮1/2(R𝑑) such that ∥𝑓∥B ≤ 1.
Let 𝜑 ∈ B′. Since 𝒮1/2 is dense in B, it follows from the definitions that the map

𝑓 → (𝜑, 𝑓)𝐿2 from 𝒮1/2(R𝑑) to C extends uniquely to a continuous mapping from
B to C.

From now on we assume that the (quasi-)Banach spaces B,B0,B1,B2, . . . ,
and the Hilbert spaces H ,H0,H1,H2, . . . are “Gelfand–Shilov tempered” or
“Beurling tempered” in the following sense.

Definition 3.1. Let B be a quasi-Banach space such that (3.2) is fulfilled.

(1) B is called Beurling tempered, or B-tempered (of order 𝑠 > 1/2) on R𝑑, if
B,B′ ↪→ Σ′𝑠(R

𝑑), and Σ𝑠(R
𝑑) is dense in B and B′;

(2) B is called Gelfand–Shilov tempered, or GS-tempered (of order 𝑠 ≥ 1/2) on
R𝑑, if B,B′ ↪→ 𝒮 ′𝑠(R𝑑), and 𝒮𝑠(R𝑑) is dense in both B and B′;

(3) B is called tempered on R𝑑, if B,B′ ↪→ S ′(R𝑑), and S (R𝑑) is dense in B
and B′.

Remark 3.2. Let B be a quasi-Banach space such that (3.2) holds. Then it follows
from (1.2) and the fact that 𝒮1/2 is dense in 𝒮𝑠, Σ𝑠 and S , when 𝑠 > 1/2, that
the following is true:

(1) if 𝑠 > 1/2 and B is GS-tempered of order 𝑠, then B is B-tempered of order
𝑠;

(2) if 𝑠 ≥ 1/2, 𝜀 > 0 and B is B-tempered of order 𝑠+𝜀, then B is GS-tempered
of order 𝑠;

(3) if 𝑠 > 1/2 and B is tempered, then B is GS- and B-tempered of order 𝑠.
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We also note that Definition 3.1 (3) in the Hilbert space case might not be
the same as [51, Definition 4.1]. In fact, H is a tempered Hilbert in the sense
of Definition 3.1 (3), is the same as both H and H ′ are tempered in the sense
of [51, Definition 4.1].

For future references we remark that B̌ and B𝜏 are GS-tempered (B-temp-
ered) quasi-Banach spaces, when B is a GS-tempered (B-tempered) quasi-Banach
space, and that similar facts hold when B is a Banach or Hilbert space.

In the following analogy of [51, Lemma 4.2] we establish basic properties in
the Hilbert space case.

Lemma 3.3. Let 𝑠 ≥ 1/2 (𝑠 > 1/2), and let H be a GS-tempered (B-tempered)
Hilbert space of order 𝑠 on R𝑑, with 𝐿2-dual H ′. Then the following is true:

(1) H ′ is a GS-tempered (B-tempered) Hilbert space of order 𝑠, which can be
identified with the dual space of H through the 𝐿2-form;

(2) there is a unique map 𝑇H from H to H ′ such that

(𝑓, 𝑔)H = (𝑇H 𝑓, 𝑔)𝐿2(R𝑑), 𝑓, 𝑔 ∈H ; (3.3)

(3) if 𝑇H is the map in (2), {𝑒𝑗}𝑗∈𝐼 is an orthonormal basis in H and 𝜀𝑗 =
𝑇H 𝑒𝑗, then 𝑇H is isometric, {𝜀𝑗}𝑗∈𝐼 is an orthonormal basis in H ′ and

(𝜀𝑗 , 𝑒𝑘)𝐿2(R𝑑) = 𝛿𝑗,𝑘.

Proof. We only prove the result when H is GS-tempered. The case when H is
B-tempered follows by similar arguments and is left for the reader.

First assume that 𝑓 ∈ H , 𝑔 ∈ 𝒮1/2(R𝑑), and let 𝑇H 𝑓 ∈ H ′ be defined by
(3.3). Then 𝑇H from H to H ′ is isometric. Furthermore, since 𝒮1/2 is dense in
H , and the dual space of H can be identified with itself, under the scalar product
of H , the asserted duality properties of H ′ follow.

Let {𝑒𝑗}𝑗∈𝐼 be an arbitrary orthonormal basis in H , and let 𝜀𝑗 = 𝑇H 𝑒𝑗 .
Then it follows that ∥𝜀𝑗∥H ′ = 1 and

(𝜀𝑗 , 𝑒𝑘)𝐿2 = (𝑒𝑗 , 𝑒𝑘)H = 𝛿𝑗,𝑘.

Furthermore, if

𝑓 =
∑

𝛼𝑗𝑒𝑗 , 𝜑 =
∑

𝛼𝑗𝜀𝑗, 𝑔 =
∑

𝛽𝑗𝑒𝑗 and 𝛾 =
∑

𝛽𝑗𝜀𝑗

are finite sums, and we set (𝜑, 𝛾)H ′ ≡ (𝑓, 𝑔)H , then it follows that ( ⋅ , ⋅ )H ′ defines
a scalar product on such finite sums in H ′, and that ∥𝜑∥2H ′ = (𝜑, 𝜑)H ′ . By
continuity extensions it now follows that (𝜑, 𝛾)H ′ extends uniquely to each 𝜑, 𝛾 ∈
H ′, and that the identity ∥𝜑∥2H ′ = (𝜑, 𝜑)H ′ holds. This proves the result. □

From now on the basis {𝜀𝑗}𝑗∈𝐼 in Lemma 3.3 is called the dual basis of
{𝑒𝑗}𝑗∈𝐼 .
Example 3.4. Let H1 = 𝐻2

𝑠 (R
𝑑) and H2 = 𝑀2

(𝜔0)
(R𝑑) where 𝜔0 ∈ P𝐸(R

2𝑑).

Then H1 is a tempered Hilbert space with dual H ′
1 = 𝐻2

−𝑠(R
𝑑). The space
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H2 is B-tempered (GS-tempered) of order 𝑠, when 𝑠 ≤ 1 (𝑠 < 1), and H ′
2 =

𝑀2
(1/𝜔0)

(R𝑑).

We note that if 𝜔𝑠(𝑥, 𝜉) = ⟨𝜉⟩𝑠, then 𝑀2
(𝜔𝑠,0)

= 𝐻2
𝑠 , and we refer to [51,

Example 4.3] for more examples on tempered Hilbert spaces.

In several situations, an orthonormal basis {𝑒𝑗} in a GS- or B-tempered
Hilbert space H might be orthogonal in 𝐿2(R𝑑). The following proposition shows
that this is sufficient for {𝑒𝑗} being orthogonal in the dual H ′ of H .

Proposition 3.5. Let H be GS- or B-tempered Hilbert space on R𝑑, {𝑒𝑗}∞𝑗=1 and

{𝑒0,𝑗}∞𝑗=1 be orthonormal bases for H and 𝐿2(R𝑑) respectively, and let {𝜀𝑗}∞𝑗=1 ∈
H ′ be the dual basis of {𝑒𝑗}∞𝑗=1. Then the following is true:

(1) if 𝑒𝑗 = 𝑐𝑗𝑒0,𝑗 for every 𝑗 ≥ 1 and some {𝑐𝑗}∞𝑗=1 ⊆ C, then 𝜀𝑗 = (𝑐𝑗)
−1𝑒0,𝑗;

(2) if 𝜀𝑗 = 𝑐𝑗𝑒𝑗 for every 𝑗 ≥ 1 and some {𝑐𝑗}∞𝑗=1 ⊆ C, then 𝑐𝑗 > 0, and

{𝑐1/2𝑗 𝑒𝑗}∞𝑗=1 is an orthonormal basis for 𝐿2(R𝑑);

(3) if 𝑒𝑗 = 𝑐𝑗𝑒0,𝑗 and 𝜀𝑗 = 𝑑𝑗𝑒0,𝑗 for every 𝑗 ≥ 1 and some {𝑐𝑗}∞𝑗=1 ⊆ C and

{𝑑𝑗}∞𝑗=1 ⊆ C, then

𝑐𝑗𝑑𝑗 = ∥𝑒0,𝑗∥H ⋅ ∥𝑒0,𝑗∥H ′ = ∥𝑒𝑗∥𝐿2∥𝜀𝑗∥𝐿2 = 1.

Proof. (1) We have

𝛿𝑗,𝑘 = (𝑒𝑗 , 𝑒𝑘)H = (𝑒𝑗 , 𝜀𝑘)𝐿2 = 𝑐𝑗(𝑒0,𝑗 , 𝜀𝑘)𝐿2 ,

giving that
𝛿𝑗,𝑘 = 𝑐𝑘(𝑒0,𝑗, 𝜀𝑘)𝐿2 = (𝑒0,𝑗 , 𝑐𝑘𝜀𝑘)𝐿2 . (3.4)

Since {𝑒0,𝑗}∞𝑗=1 is an orthonormal basis for 𝐿2, it follows from (3.4) that 𝑐𝑘𝜀𝑘 =
𝑒0,𝑘, and (1) follows.

(2) We have

1 = (𝑒𝑗 , 𝑒𝑗)H = (𝑒𝑗, 𝜀𝑗)𝐿2 = 𝑐𝑗(𝑒𝑗 , 𝑒𝑗)𝐿2 = 𝑐𝑗∥𝑒𝑗∥2𝐿2,

giving that 𝑐𝑗 > 0. Furthermore, if 𝑓𝑗 = 𝑐
1/2
𝑗 𝑒𝑗, then

(𝑓𝑗 , 𝑓𝑘)𝐿2 = (𝑐𝑗/𝑐𝑘)
1/2(𝑒𝑗 , 𝜀𝑘)𝐿2 = (𝑐𝑗/𝑐𝑘)

1/2𝛿𝑗,𝑘 = 𝛿𝑗,𝑘.

Hence {𝑓𝑗}∞𝑗=1 is an orthonormal basis of 𝐿2.

(3) By applying appropriate norms on the identities 𝑒𝑗 = 𝑐𝑗𝑒0,𝑗 and, 𝜀𝑗 =
𝑑𝑗𝑒0,𝑗 and using the fact that 𝑒𝑗, 𝑒0,𝑗 and 𝜀𝑗 are unit vectors in H , 𝐿2 and H ′

respectively, we get

1 = (𝑒𝑗 , 𝜀𝑗)𝐿2 = 𝑐𝑗𝑑𝑗(𝑒0,𝑗 , 𝑒0,𝑗)𝐿2 = 𝑐𝑗𝑑𝑗 ,

and
∣𝑐𝑗 ∣ = ∥𝑒𝑗∥𝐿2 = 1/∥𝑒0,𝑗∥H and ∣𝑑𝑗 ∣ = ∥𝜀𝑗∥𝐿2 = 1/∥𝑒0,𝑗∥H ′ .

The assertion follows by combining these equalities. The proof is complete. □
Example 3.6. Let 𝜔 ∈ 𝐿∞loc(R

𝑑) be positive. Then 𝜔 is called weakly sub-Gaussian
type weight, if the following conditions are fulfilled:
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∙ 𝑒−𝜀∣𝑥∣
2 ≲ 𝜔(𝑥) ≲ 𝑒𝜀∣𝑥∣

2

, for every choice of 𝜀 > 0;

∙ for some fixed 𝑅 ≥ 2 and some constant 𝑐 > 0, the relation

𝜔(𝑥+ 𝑦)𝜔(𝑥− 𝑦) ≍ 𝜔(𝑥)2

holds when 𝑅𝑐 ≤ ∣𝑥∣ ≤ 𝑐/∣𝑦∣.
The set of all weakly sub-Gaussian weights on R𝑑 is denoted by P0

𝑄(R
𝑑), and is

a family of weights which contains P𝐸(R
𝑑). (Cf. Definition 1.1 in [52].)

Now consider the modulation spaces𝑀2
(𝜔)(R

𝑑), where 𝜔 ∈P0
𝑄(R

2𝑑) satisfies

𝜔(𝑥, 𝜉) = 𝜔0(𝑟) = 𝜔0(𝑟1, . . . , 𝑟𝑑), 𝑟𝑗 = ∣(𝑥𝑗 , 𝜉𝑗)∣, 𝑗 = 1, . . . , 𝑑

(i.e., 𝜔(𝑥, 𝜉) is rotation invariant under each coordinate pair (𝑥𝑗 , 𝜉𝑗)). Note that
the window function 𝜙(𝑥) in the definition of modulation space norms with weights

in P0
𝑄 is fixed and equal to the Gaussian 𝜋−𝑑/4𝑒−∣𝑥∣

2/2. Then there is a constant
𝐶 > 0 such that

𝐶−1 ≤ ∥ℎ𝛼∥𝑀2
(𝜔)
∥ℎ𝛼∥𝑀2

(1/𝜔)
≤ 𝐶, (3.5)

for every Hermite function ℎ𝛼 on R𝑑.

In fact, if H = 𝑀2
(𝜔), then it follows from Theorem 4.17 in [52] that H ′ =

𝑀2
(1/𝜔) and that

∥𝑓∥H ′ ≍ ∥𝑓∥𝑀2
(1/𝜔)

, 𝑓 ∈ H ′.

The statement is now a consequence of Proposition 3.5, and the facts that
{ℎ𝛼}𝛼∈N𝑑 and {ℎ𝛼/∥ℎ𝛼∥𝑀2

(𝜔)
}𝛼∈N𝑑 are orthonormal bases for 𝐿2 and 𝑀2

(𝜔), re-

spectively.

The relation (3.5) in combination with results in [52] can be used to establish
estimates for generalized gamma functions in integer points, in a similar way as
formula (30) in [24]. More precisely, let 𝔙 be the Bargmann transform, and let
𝐴2(𝜔)(C

𝑑) be the weighted Bargmann–Fock space of all entire functions 𝐹 on C𝑑

such that

∥𝐹∥𝐴2
(𝜔)
≡ 𝜋−𝑑/2

(∫
C𝑑

∣𝐹 (𝑧)𝜔(21/2𝑧)∣2𝑒−∣𝑧∣2 𝑑𝜆(𝑧)
)1/2

<∞.

(Cf., e.g., [1, 52].) Here we identify 𝑥 + 𝑖𝜉 in C𝑑 with (𝑥, 𝜉) in R2𝑑, and 𝑑𝜆(𝑧) is
the Lebesgue measure on C𝑑. Then (𝔙ℎ𝛼)(𝑧) = 𝑧𝛼/(𝛼!)1/2, and the map 𝑓 → 𝔙𝑓
is isometric and bijective from 𝑀2

(𝜔) to 𝐴2(𝜔), in view of Theorem 3.4 in [52].

Consequently, (3.5) is equivalent to

𝐼(𝜔0) ⋅ 𝐼(1/𝜔0) ≍ (𝛼!)2, (3.6)

where

𝐼(𝜔0) ≡ 𝜋𝑑∥𝑧𝛼∥2𝐴2
(𝜔)

=

∫
C𝑑

∣𝑧2𝛼∣𝜔0(∣𝑧1∣, . . . , ∣𝑧𝑑∣)2𝑒−∣𝑧∣2 𝑑𝜆(𝑧).
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By writing 𝑧𝑗 = 𝑟𝑗𝑒
𝑖𝜃𝑗 in terms of polar coordinates for every 𝑗 = 1, . . . , 𝑑,

and taking 𝑟2𝑗 and 𝜃𝑗 as new variables of integrations, we get

𝐼(𝜔0) ≍
∫
[0,∞)𝑑

𝑡𝛼𝜗(𝑡)𝑒−∥𝑡∥ 𝑑𝑡,

where 𝜗(𝑡1, . . . , 𝑡𝑑) = 𝜔0(𝑡
1/2
1 , . . . , 𝑡

1/2
𝑑 )2 and ∥𝑡∥ = 𝑡1+ ⋅ ⋅ ⋅+ 𝑡𝑑, 𝑡 ∈ [0,∞)𝑑. Hence

(3.6) is equivalent to∫
[0,∞)𝑑

𝑡𝛼𝜗(𝑡)𝑒−∥𝑡∥ 𝑑𝑡 ⋅
∫
[0,∞)𝑑

𝑡𝛼𝜗(𝑡)−1𝑒−∥𝑡∥ 𝑑𝑡 ≍ (𝛼!)2. (3.7)

In particular, the formula (30) in the remark after Theorem 3.7 in [24] hold for
the broad class P0

𝑄 of weights on R𝑑.

The following result concerns continuous embeddings of the form

𝑀2
(𝜔𝑡)

(R𝑑) ↪→ B,B′ ↪→𝑀2
(1/𝜔𝑡)

(R𝑑), (3.8)

when B is a quasi-Banach space. Here 𝑀2
(𝜔𝑡)

belongs to the extended family of

modulation spaces in [52] and the weights 𝜔𝑡 are given by

𝜔𝑡(𝑥, 𝜉) = 𝑒𝑡(∣𝑥∣
1/𝑠+∣𝜉∣1/𝑠), (3.9)

when 𝑠 ≥ 1/2 and 𝑡 ∈ R.

Proposition 3.7. Let 𝑠 > 1/2, and let 𝜔𝑡 be given by (3.9). Then the following is
true:

(1) if B is a GS-tempered quasi-Banach space on R𝑑 of order 𝑠, then (3.8) hold
for every 𝑡 > 0;

(2) if B is a B-tempered quasi-Banach space on R𝑑 of order 𝑠, then (3.8) hold
for some 𝑡 > 0.

We first prove Proposition 3.7 in the case that B = H is a Hilbert space.
Thereafter, the general result will follow from this case and Proposition 3.8 below.

Proof of Proposition 3.7 when B = H is a Hilbert space. By Remark 1.6 it fol-
lows that

Σ𝑠 ↪→𝑀2
(𝜔𝑡)

↪→ 𝒮𝑠, 𝒮 ′𝑠 ↪→𝑀2
(1/𝜔𝑡)

↪→ Σ′𝑠 (3.10)

when 𝑡 > 0.
If H is GS-tempered, then it follows from these embeddings that 𝑀2

(𝜔𝑡)
↪→

H ,H ′ holds for every 𝑡 > 0. Furthermore, by Theorem 4.17 in [52] it follows
that 𝒮1/2 is dense in these Hilbert spaces, and that the dual of 𝑀2

(𝜔𝑡)
is given by

𝑀2
(1/𝜔𝑡)

.

Now if H is GS-tempered, then (3.10) gives

𝑀2
(𝜔𝑡)

↪→ 𝒮𝑠 ↪→H ,H ′ ↪→ 𝒮 ′𝑠 ↪→𝑀2
(1/𝜔𝑡)

, 𝑡 > 0,

and (1) follows.
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In order to prove (2) we note that Theorem 3.9 and its proof in [52] implies
that the topology for Σ𝑠 is given by the semi-norms

𝑓 → ∥𝑓∥(𝑡) ≡ ∥𝑓∥𝑀2
(𝜔𝑡)

, 𝑡 > 0.

Hence
∥𝑓∥H ≲ ∥𝑓∥𝑀2

(𝜔𝑡)
and ∥𝜑∥H ′ ≲ ∥𝜑∥𝑀2

(𝜔𝑡)
, 𝑓, 𝜑 ∈𝑀2

(𝜔𝑡)

hold for some choice of 𝑡 = 𝑡0 > 0, since Σ𝑠 ↪→ H and Σ𝑠 ↪→ H ′. This gives
𝑀2
(𝜔𝑡0)

↪→ H and 𝑀2
(𝜔𝑡0)

↪→ H ′. The assertion (2) now follows from these em-

beddings and duality. The proof is complete. □
With reference to the Hilbert spaces which occur in Example 3.6 we say that

a Hilbert space H is of Hermite type, if {ℎ𝛼/∥ℎ𝛼∥H }𝛼 is an orthonormal basis
for H ,

(𝑆𝜋𝑓)(𝑥) ≡ 𝑓(𝑥𝜋(1), . . . , 𝑥𝜋(𝑑)) ∈ H when 𝑓 ∈H

for every permutation 𝜋 on {1, . . . , 𝑑}, and that ∥𝑆𝜋𝑓∥H = ∥𝑓∥H for every
𝑓 ∈H an permutation 𝜋.

Proposition 3.8. Let B1,B2 be quasi-Banach spaces which are continuously em-
bedded in 𝒮 ′1/2(R𝑑). Then the following is true:

(1) if 𝑠 ≥ 1/2, 𝒮𝑠(R𝑑) ↪→ B1 and B2 ↪→ 𝒮 ′𝑠(R𝑑), then there are GS-tempered
Hilbert spaces H1 and H2 of order 𝑠 and of Hermite type such that

𝒮𝑠(R𝑑) ↪→H1 ↪→ B1 and B2 ↪→H2 ↪→ 𝒮 ′𝑠(R𝑑)

hold. Furthermore, H1 and H2 can be chosen such that H1 ↪→ 𝒮𝑠/𝛾(R𝑑) and

𝒮 ′𝑠/𝛾(R𝑑) ↪→H2 for every 𝛾 ∈ (0, 1);

(2) if 𝑠 > 1/2, Σ𝑠(R
𝑑) ↪→ B1 and B2 ↪→ Σ′𝑠(R𝑑), then there are B-tempered

Hilbert spaces H1 and H2 of order 𝑠 and of Hermite type such that

Σ𝑠(R
𝑑) ↪→H1 ↪→ B1 and B2 ↪→H2 ↪→ Σ′𝑠(R

𝑑)

hold. Furthermore, H1 and H2 can be chosen such that H1 ↪→ Σ𝑠/𝛾(R
𝑑) and

Σ′𝑠/𝛾(R
𝑑) ↪→H2 for every 𝛾 ∈ (0, 1);

(3) if S (R𝑑) ↪→ B1 and B2 ↪→ S ′(R𝑑), then there are tempered Hilbert spaces
H1 and H2 of Hermite type such that

S (R𝑑) ↪→H1 ↪→ B1 and B2 ↪→H2 ↪→ S ′(R𝑑)

hold.

Proof. We only prove (1). The other assertions follow by similar arguments and
are left for the reader.

In order to prove (1) it is no restriction to assume that 𝒮𝑠 is dense B1 by
replacing B1 with the completion of 𝒮𝑠 under the quasi-norm ∥ ⋅ ∥B1. Let 𝑓 ∈ B1.
Since B1 ↪→ 𝒮 ′1/2, it follows that

𝑓 =
∑
𝛼

𝑐𝛼ℎ𝛼,
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where ℎ𝛼 is the Hermite function of order 𝛼 and its coefficients

𝑐𝛼 = 𝑐𝛼(𝑓) = (𝑓, ℎ𝛼)𝐿2

satisfies ∑
𝛼

∣𝑐𝛼∣2𝑒−𝑐∣𝛼∣ <∞,

for every 𝑐 > 0.
The fact that 𝒮𝑠 is continuously embedded in B1 implies that for every integer

𝑗 > 0 we have

∥𝑓∥2B1
≤ 𝐶𝑗𝐷

−2𝑗∑
𝛼

∣𝑐𝛼∣2𝑒∣𝛼∣1/2𝑠/𝑗 ,

where the constant 𝐷 ≥ 1 is the same as in (3.1), and the constant 𝐶𝑗 ≥ 1 is
independent of 𝑓 (cf. formula (2.12) in [21]).

For every integer 𝑗 ≥ 1, let

𝑁𝑗 = sup{ ∣𝛼∣ ; 𝐶𝑗𝑗2𝑒𝑗𝑗−1𝑒−∣𝛼∣1/2𝑠/𝑗 ≥ 1 },
and define inductively

𝑅1 = 𝑁1 and 𝑅𝑗+1 = max(𝑅𝑗 + 1, 𝑁𝑗+1), 𝑗 ≥ 1.

Furthermore we set

𝐼0 = {𝛼 ; ∣𝛼∣ ≤ 𝑅1 } and 𝐼𝑗 = {𝛼 ; 𝑅𝑗 < ∣𝛼∣ ≤ 𝑅𝑗+1 },
and we let 𝑚(𝛼) = sup𝛼∈𝐼0 𝐶1𝑒

∣𝛼∣1/2𝑠 when 𝛼 ∈ 𝐼0, and 𝑚(𝛼) = 𝑒𝑗
𝑗−1𝑒2∣𝛼∣

1/2𝑠/𝑗

when 𝛼 ∈ 𝐼𝑗 , 𝑗 ≥ 1. We note that 𝑅𝑗 is finite and increases to ∞ as 𝑗 tends to ∞.
Let H1 be the Hilbert space which consists of all 𝑓 ∈ 𝒮 ′𝑠 such that

∥𝑓∥H1 ≡
(∑

𝛼

∣𝑐𝛼(𝑓)∣2𝑚(𝛼)
)1/2

is finite. We shall prove that H1 satisfies the requested properties. Since

lim
∣𝛼∣→∞

𝑚(𝛼)𝑒−𝑐∣𝛼∣
1/2𝑠

= 0

when 𝑐 > 0, it follows that 𝒮𝑠 is continuously embedded in H1. Furthermore, the
fact that 𝑚(𝛼) = 𝑚(𝛽) when ∣𝛼∣ = ∣𝛽∣ implies that 𝑓 → 𝑆𝜋𝑓 is a unitary map on
H1, for every permutation 𝜋 on {1, . . . , 𝑑}.

It remains to prove that H1 is continuously embedded in B1 and in 𝒮𝑠/𝛾
when 0 < 𝛾 < 1. Let 𝑓 ∈ 𝒮𝑠, and let

𝑓𝑗 =
∑
𝛼∈𝐼𝑗

𝑐𝛼(𝑓)ℎ𝛼, 𝑗 ≥ 0.

Then

𝑓 =
∑
𝑗≥0

𝑓𝑗, 𝑐𝛼(𝑓𝑗) =

{
𝑐𝛼(𝑓), 𝛼 ∈ 𝐼𝑗

0, 𝛼 /∈ 𝐼𝑗
and ∥𝑓∥2H1

=
∑
𝑗≥0

∥𝑓𝑗∥2H1
.
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This gives

∥𝑓∥B1 ≲
∑
𝑗

𝐷𝑗∥𝑓𝑗∥B1 ≤
( ∑
𝛼∈𝐼0

∣𝑐𝛼∣2𝑚(𝛼)
)1/2

+
∑
𝑗≥1

(
𝐶𝑗

∑
𝛼∈𝐼𝑗

∣𝑐𝛼∣2𝑒∣𝛼∣1/2𝑠/𝑗
)1/2

≤
( ∑
𝛼∈𝐼0

∣𝑐𝛼∣2𝑚(𝛼)
)1/2

+
∑
𝑗≥1

1

𝑗

( ∑
𝛼∈𝐼𝑗

∣𝑐𝛼∣2𝑒2∣𝛼∣1/2𝑠/𝑗
)1/2

≤ ∥𝑓0∥H1 +
∑
𝑗≥1

1

𝑗
∥𝑓𝑗∥H1 .

Hence, by Cauchy–Schwartz inequality we get

∥𝑓∥B1 ≤ ∥𝑓0∥H1 +
(∑
𝑗≥1

1

𝑗2

)1/2(∑
𝑗≥1

∥𝑓𝑗∥2H1

)1/2
≲

(∑
𝑗≥0

∥𝑓𝑗∥2H1

)1/2
= ∥𝑓∥H1,

which proves that H1 ↪→ B1.
The inclusion H1 ↪→ 𝒮𝑠/𝛾 when 𝛾 > 1 follows if we prove that

𝑒𝑐∣𝛼∣
𝛾/2𝑠 ≲ 𝑚(𝛼), (3.11)

for every 𝑐 > 0. We claim that there is a constant 𝐶0 which is independent of 𝑗 ≥ 1
and 𝛼 such that

𝑒𝑐∣𝛼∣
𝛾/2𝑠 ≤ 𝐶0𝑒

𝑗𝑗−1𝑒2∣𝛼∣
1/2𝑠/𝑗 . (3.12)

In fact, by applying the logarithm, (3.12) follows if we prove that for 𝑟 =
1/2𝑠 ≤ 1 and constants 𝑚1,𝑚2 > 0, the function

ℎ(𝑢, 𝑣) = 𝑚1𝑢
𝑢 + 𝑢−1𝑣𝑟 −𝑚2𝑣

𝛾𝑟

is bounded from below, when 𝑢, 𝑣 ≥ 1.
In order to prove this we let 0 < 𝛾1, 𝛾2 < 1 be chosen such that 𝛾1 > 𝛾 and

𝛾1 + 𝛾2 = 1. Then the inequality on arithmetic and geometric mean-values gives
that ℎ0(𝑢, 𝑣) ≲ ℎ(𝑢, 𝑣), where

ℎ0(𝑢, 𝑣) = 𝑢𝛾2𝑢−𝛾1𝑣𝛾1𝑟 −𝑚′
1𝑣
𝛾𝑟 = 𝑣𝛾𝑟(𝑢𝛾2𝑢−𝛾1𝑣(𝛾1−𝛾)𝑟 −𝑚′

1),

for some 𝑚′
1 > 0. Since 𝛾1 > 𝛾, it follows that ℎ0(𝑢, 𝑣) tends to infinity when

𝑢+ 𝑣 →∞ and 𝑢, 𝑣 ≥ 1. The fact that ℎ0 is continuous then implies that ℎ0(𝑢, 𝑣)
and thereby ℎ(𝑢, 𝑣) is bounded from below when 𝑢, 𝑣 ≥ 1, which proves that (3.12)
holds.

This gives

𝑒𝑐∣𝛼∣
𝛾/2𝑠 ≤ 𝐶0𝑒

𝑗𝑗−1𝑒2∣𝛼∣
1/2𝑠/𝑗 = 𝐶0𝑚(𝛼), 𝛼 ∈ 𝐼𝑗 ,

and (3.11) follows, which proves the first part of (1).
It remains to prove that H2 exists with the asserted properties. The fact that

B2 is continuously embedded in 𝒮 ′𝑠 implies that for every 𝑗 ≥ 1, there is a constant
𝐶𝑗 ≥ 1 such that ∑

𝛼

∣𝑐𝛼∣2𝐶−1
𝑗 𝑒−∣𝛼∣

1/2𝑠/𝑗 ≤ ∥𝑓∥2B2
.
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Let
𝑚(𝛼) =

∑
𝑗≥1

𝑗−2𝑒−𝑗
𝑗

𝐶−1
𝑗 𝑒−∣𝛼∣

1/2𝑠/𝑗 ,

and let H2 be the set of all 𝑓 ∈ 𝒮 ′𝑠 such that

∥𝑓∥H2 ≡
(∑

𝛼

∣𝑐𝛼∣2𝑚(𝛼)
)1/2

is finite.
By the definition it follows that ∥𝑓∥H2 ≲ ∥𝑓∥B2 when 𝑓 ∈ B2, giving that

B2 is continuously embedded in H2. Furthermore, if 𝑐 > 0, then it follows that

lim
∣𝛼∣→∞

𝑒−𝑐∣𝛼∣
1/2𝑠

𝑚(𝛼)
= 0,

which implies that H2 is a Hilbert space.
It remains to prove that 𝒮 ′𝑠/𝛾 ↪→ H2 when 0 < 𝛾 < 1, which follows if we

prove that

𝑚(𝛼) ≲ 𝑒−𝑐∣𝛼∣
𝛾/2𝑠

, (3.13)

for every 𝑐 > 0. By the same arguments as in the last part of the proof we have

𝑒−𝑗
𝑗

𝑒−∣𝛼∣
1/2𝑠/𝑗 ≤ 𝐶0𝑒

−𝑐∣𝛼∣𝛾/2𝑠,

where 𝐶0 neither depends on 𝑗 nor on 𝛼. This gives

𝑚(𝛼) =
∑
𝑗≥1

𝑗−2𝑒−𝑗
𝑗

𝑒−∣𝛼∣
1/2𝑠/𝑗 ≲ 𝑒−𝑐∣𝛼∣

𝛾/2𝑠 ∑
𝑗≥1

1

𝑗2
≍ 𝑒−𝑐∣𝛼∣

𝛾/2𝑠

,

and (3.13) follows. The proof is complete. □
The end of the proof of Proposition 3.7. We only prove (1). The assertion (2) fol-
lows by similar arguments and is left for the reader.

Let B be a GS-tempered quasi-Banach space. By Proposition 3.8 there are
GS-tempered Hilbert spaces H1 and H2 such that H1 ↪→ B ↪→ H2, and by
the first part of the proof it follows that 𝑀2

(𝜔𝑡)
↪→ H𝑗 ↪→ 𝑀2

(1/𝜔𝑡)
for every 𝑡 >

0, 𝑗 = 1, 2. The result now follows by combining these inclusions. The proof is
complete. □

4. Schatten–von Neumann classes and pseudo-differential operators

In this section we discuss Schatten–von Neumann classes of pseudo-differential
operators from a Hilbert space H1 to another Hilbert space H2, or more generally,
from a (quasi-)Banach space B1 to another (quasi-)Banach space B2. Schatten–
von Neumann classes were introduced by R. Schatten in [36] in the case when
H1 = H2 are Hilbert spaces. (See also [39].) The theory was thereafter extended
in [3, 33, 37, 53] to the case when H1 is not necessarily equal to H2, and in
[3, 33, 39], the theory was extended in such way that it includes linear operators
from a Banach space B1 to another Banach space B2. Furthermore, the definitions
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and some of the results in [3, 33, 39] can easily be modified to permit B1 and B2

to be arbitrary quasi-Banach spaces.
We will mainly follow the organization in the second part of Section 4 in [51],

and we remark that there are several similarities between the proofs in this section,
and the proofs of analogous results in Section 4 in [51].

We start by recalling the definition of Schatten–von Neumann operators in
the (quasi-)Banach space case. We remark however that this general setting is not
needed for the main results in the present and next sections (e.g., Theorem 4.8
below). For the reader who is not interested in this general approach may therefore
assume that the operators act on Hilbert spaces.

Let B1 and B2 be (quasi-)Banach spaces, and let 𝑇 be a linear map from
B1 to B2. For every integer 𝑗 ≥ 1, the singular number of 𝑇 of order 𝑗 is given by

𝜎𝑗(𝑇 ) = 𝜎𝑗(B1,B2, 𝑇 ) ≡ inf ∥𝑇 − 𝑇0∥B1→B2 ,

where the infimum is taken over all linear operators 𝑇0 from B1 to B2 with rank at
most 𝑗 − 1. Therefore, 𝜎1(𝑇 ) equals ∥𝑇 ∥B1→B2 , and 𝜎𝑗(𝑇 ) is non-negative which
decreases with 𝑗.

For any 𝑝 ∈ (0,∞] we set

∥𝑇 ∥I𝑝 = ∥𝑇 ∥I𝑝(B1,B2) ≡ ∥{𝜎𝑗(B1,B2, 𝑇 )}∞𝑗=1∥𝑙𝑝
(which might attain +∞). The operator 𝑇 is called a Schatten–von Neumann
operator of order 𝑝 from B1 to B2, if ∥𝑇 ∥I𝑝 is finite, i.e., {𝜎𝑗(B1,B2, 𝑇 )}∞𝑗=1
should belong to 𝑙𝑝. The set of all Schatten–von Neumann operators of order
𝑝 from B1 to B2 is denoted by I𝑝 = I𝑝(B1,B2). We note that I∞(B1,B2)
agrees with ℬ(B1,B2), the set of linear and bounded operators from B1 to B2,
and if 𝑝 < ∞, then I𝑝(B1,B2) is contained in 𝒦(B1,B2), the set of linear and
compact operators from B1 to B2. The spaces I𝑝(B1,B2) for 𝑝 ∈ (0,∞] and
𝒦(B1,B2) are quasi-Banach spaces which are Banach spaces when B1, B2 are
Banach spaces and 𝑝 ≥ 1. Furthermore, I2(B1,B2) is a Hilbert space when B1

and B2 are Hilbert spaces. If B1 = B2, then the shorter notation I𝑝(B1) is used
instead of I𝑝(B1,B2), and similarly for ℬ(B1,B2) and 𝒦(B1,B2).

Now let B3 be an other Banach space (or quasi-Banach space) and let 𝑇𝑘
and 𝑇0,𝑘 be linear and continuous operators from B𝑘 to B𝑘+1 such that the rank
of 𝑇0,𝑘 is at most 𝑗𝑘 for 𝑘 = 1, 2. If 𝑇0 is defined by

𝑇0 = 𝑇0,2 ∘ 𝑇1 + 𝑇2 ∘ 𝑇0,1 − 𝑇0,2 ∘ 𝑇0,1 = 𝑇0,2 ∘ 𝑇1 + (𝑇2 − 𝑇0,2) ∘ 𝑇0,1,
then

𝑇2 ∘ 𝑇1 − 𝑇0 = (𝑇2 − 𝑇0,2) ∘ (𝑇1 − 𝑇0,1),

and it follows that the rank of 𝑇0 is at most 𝑗1 + 𝑗2. Hence

𝜎𝑗1+𝑗2+1(𝑇2 ∘ 𝑇1) ≤ ∥𝑇2 ∘ 𝑇1 − 𝑇0∥ ≤ ∥𝑇1 − 𝑇0,1∥ ⋅ ∥𝑇2 − 𝑇0,2∥,
and by taking the infimum on the right-hand side of all possible 𝑇0,1 and 𝑇0,2 we
get

𝜎𝑗1+𝑗2+1(𝑇2 ∘ 𝑇1) ≤ 𝜎𝑗1+1(𝑇1)𝜎𝑗2+1(𝑇2), 𝑗1, 𝑗2 ≥ 0. (4.1)
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If B𝑗 = H𝑗 , 𝑗 = 1, 2, 3, are Hilbert spaces, then (4.1) can be improved into

𝜎𝑗+1(𝑇2 ∘ 𝑇1) ≤ 𝜎𝑗+1(𝑇1)𝜎𝑗+1(𝑇2), 𝑗 ≥ 0. (4.1)′

(Cf. [33, 39].)

In [33, 39], (4.1) is used to prove that if 𝑝1, 𝑝2, 𝑟 ∈ (0,∞] satisfy the Hölder
condition 1/𝑝1+1/𝑝2 = 1/𝑟, and 𝑇𝑘 ∈ I𝑝𝑘(B𝑘,B𝑘+1), then 𝑇2∘𝑇1 ∈ I𝑟(B1,B3),
and

∥𝑇2 ∘ 𝑇1∥I𝑟(B1,B3) ≤ 𝐶𝑟∥𝑇1∥I𝑝1(B1,B2)∥𝑇2∥I𝑝2(B2,B3). (4.2)

Here 𝐶𝑟 = 1 when B𝑗 , 𝑗 = 1, 2, 3 are Hilbert spaces, and 𝐶𝑟 = 21/𝑟 otherwise. In
order to be self-contained we here give a proof of (4.2).

Let 𝑇 = 𝑇2 ∘𝑇1. Since 𝜎2𝑗+2(𝑇 ) ≤ 𝜎2𝑗+1(𝑇 ), it follows by letting 𝑗1 = 𝑗2 = 𝑗
in (4.1) that

∥𝑇 ∥I𝑟 =

(∑
𝑘≥0

𝜎𝑘+1(𝑇 )
𝑟

)1/𝑟
≤ 21/𝑟

(∑
𝑗≥0

𝜎2𝑗+1(𝑇 )
𝑟

)1/𝑟

≤ 21/𝑟
(∑
𝑗≥0

𝜎𝑗+1(𝑇1)
𝑟𝜎𝑗+1(𝑇2)

𝑟

)1/𝑟

≤ 21/𝑟
(∑
𝑗≥0

𝜎𝑗+1(𝑇1)
𝑝1

)1/𝑝1(∑
𝑗≥0

𝜎𝑗+1(𝑇2)
𝑝2

)1/𝑝2
= 21/𝑟∥𝑇1∥I𝑝1

∥𝑇2∥I𝑝2
.

This gives (4.2).
If B𝑗 , 𝑗 = 1, 2, 3 are Hilbert spaces, then the same arguments, using (4.1)′

instead of (4.1), shows that (4.2) holds for 𝐶𝑟 = 1. (Cf. [33] or Chapters 2 and 3
in [39].)

If B1 and B2 are Banach spaces, then we note that ranks and norms for the
operators are invariant when passing from the operators to their adjoints. This
implies that 𝑇 belongs to I𝑝(B1,B2), if and only if the adjoint 𝑇 ∗ of 𝑇 belongs
to I𝑝(B′

2,B
′
1), and

∥𝑇 ∥I𝑝(B1,B2) = ∥𝑇 ∗∥I𝑝(B′
2,B

′
1)
.

We recall that if B1 = H1 and B2 = H2 are Hilbert spaces, then there is an
alternative way to compute the I𝑝 norms. More precisely, let ON(H𝑘), 𝑘 = 1, 2,
denote the family of orthonormal sequences in H𝑘. If 𝑇 : H1 →H2 is linear, and
𝑝 ∈ (0,∞], then it follows that

∥𝑇 ∥I𝑝(H1,H2) = sup
(∑

∣(𝑇𝑓𝑗, 𝑔𝑗)H2 ∣𝑝
)1/𝑝

(with obvious modifications when 𝑝 = ∞), where the supremum is taken over all
{𝑓𝑗} ∈ ON(H1) and {𝑔𝑗} ∈ ON(H2).

Let {𝑒𝑗} be an orthonormal basis in H1, and let 𝑆 ∈ I1(H1). Then the trace
of 𝑆 is defined as

trH1 𝑆 =
∑

(𝑆𝑒𝑗 , 𝑒𝑗)H1 ,
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and we recall that this is independent of the choice of the orthonormal basis {𝑒𝑗}.
For each pairs of operators 𝑇1, 𝑇2 ∈ I∞(H1,H2) such that 𝑇 ∗2 ∘𝑇1 ∈ I1(H1), the
sesqui-linear form

(𝑇1, 𝑇2) = (𝑇1, 𝑇2)H1,H2 ≡ trH1(𝑇
∗
2 ∘ 𝑇1)

of 𝑇1 and 𝑇2 is well defined. We refer to [3, 33, 39, 53] for more facts about
Schatten–von Neumann classes.

Next we define symbol classes whose corresponding pseudo-differential oper-
ators belongs to I𝑝 for some 𝑝 ∈ (0,∞]. Therefore, let B1,B2 ↪→ 𝒮 ′1/2(R𝑑) be GS-

or B-tempered (quasi-)Banach spaces, 𝑡 ∈ R be fixed and let 𝑝 ∈ (0, ,∞]. Then
we let 𝑠𝐴𝑝 (B1,B2) and 𝑠𝑡,𝑝(B1,B2) be the sets of all 𝑎 ∈ 𝒮 ′1/2(R2𝑑) such that

𝐴𝑎 ∈ I𝑝(B1,B2) and Op𝑡(𝑎) ∈ I𝑝(B1,B2) respectively. We also let 𝑠𝐴♯ (B1,B2)

and 𝑠𝑡,♯(B1,B2) be the sets of all 𝑎 ∈ 𝒮 ′1/2(R2𝑑) such that 𝐴𝑎 ∈ 𝒦(B1,B2) and

Op𝑡(𝑎) ∈ 𝒦(B1,B2) respectively. These spaces are equipped by the (quasi-)norms

∥𝑎∥𝑠𝑡,𝑝(B1,B2) ≡ ∥Op𝑡(𝑎)∥I𝑝(B1,B2), ∥𝑎∥𝑠𝐴𝑝 (B1,B2) ≡ ∥𝐴𝑎∥I𝑝(B1,B2),

∥𝑎∥𝑠𝑡,♯(B1,B2) ≡ ∥𝑎∥𝑠𝑡,∞(B1,B2), ∥𝑎∥𝑠𝐴♯ (B1,B2) ≡ ∥𝑎∥𝑠𝐴∞(B1,B2).

Since the mappings 𝑎 → 𝐴𝑎 and 𝑎 → Op𝑡(𝑎) are bijections from 𝒮 ′1/2(R2𝑑)

to the set of linear and continuous operators from 𝒮1/2(R𝑑) to 𝒮 ′1/2(R𝑑), it follows

that 𝑎 → 𝐴𝑎 and 𝑎 → Op𝑡(𝑎) restrict to isometric bijections from 𝑠𝐴𝑝 (B1,B2)
and 𝑠𝑡,𝑝(B1,B2) respectively to I𝑝(B1,B2). Consequently, the properties for
I𝑝(B1,B2) carry over to 𝑠

𝐴
𝑝 (B1,B2) and 𝑠𝑡,𝑝(B1,B2). In particular, if B1 = H1

and B2 = H2 are Hilbert spaces, then the elements in 𝑠𝐴1 (H1,H2) of finite rank
(i.e., elements of the form 𝑎 ∈ 𝑠𝐴1 (H1,H2) such that 𝐴𝑎 is a finite rank operator),
are dense in 𝑠𝐴♯ (H1,H2) and in 𝑠𝐴𝑝 (H1,H2) when 𝑝 < ∞. Similar facts hold for

𝑠𝑡,♯(H1,H2) and 𝑠𝑡,𝑝(H1,H2). Since the Weyl quantization is particularly impor-
tant in our considerations we also set

𝑠𝑤𝑝 = 𝑠𝑡,𝑝 and 𝑠𝑤♯ = 𝑠𝑡,♯, when 𝑡 = 1/2.

If 𝜔1, 𝜔2 ∈P𝐸(R
2𝑑), then we use the shorter notation 𝑠𝐴𝑝 (𝜔1, 𝜔2) instead of

𝑠𝐴𝑝 (𝑀
2
(𝜔1)

,𝑀2
(𝜔2)

). Furthermore we set 𝑠𝐴𝑝 (𝜔1, 𝜔2) = 𝑠𝐴𝑝 (R
2𝑑) when 𝜔1 = 𝜔2 = 1.

In the same way the notations for 𝑠𝐴♯ , 𝑠𝑡,𝑝, 𝑠
𝑤
𝑝 , 𝑠𝑡,♯ and 𝑠𝑤♯ are simplified.

Remark 4.1. Let H1 and H2 are Hilbert spaces. Then, except for the Hilbert–
Schmidt case (𝑝 = 2), it is in general a hard task to find simple characterizations
for I𝑝(H1,H2). Important questions therefore concern of finding convenient em-
bedding properties between Schatten–von Neumann classes and well-known func-
tion and distribution spaces. We refer to Remark 4.5 in [51], for examples on such
embeddings.

Remark 4.2. Let 𝑡, 𝑡1, 𝑡2 ∈ R, 𝑝 ∈ [1,∞], B1,B2 be GS- or B-tempered quasi-
Banach spaces on R𝑑 and let 𝑎, 𝑏 ∈ 𝒮 ′1/2(R2𝑑). Then it follows by Fourier’s in-

version formula that the map 𝑒𝑖𝑡⟨𝐷𝑥,𝐷𝜉⟩ is a homeomorphism on 𝒮1/2(R2𝑑) which
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extends uniquely to a homeomorphism on 𝒮 ′1/2(R2𝑑). Furthermore, by (1.10) it

follows that 𝑒𝑖(𝑡2−𝑡1)⟨𝐷𝑥,𝐷𝜉⟩ restricts to an isometric bijection from 𝑠𝑡1,𝑝(B1,B2)
to 𝑠𝑡2,𝑝(B1,B2).

The following proposition links 𝑠𝑡,𝑝(B1,B2), 𝑠
𝐴
𝑝 (B1,B2) and other similar

spaces to each others. Here 𝑎𝜏 (𝑥, 𝜉) = 𝑎(𝑥,−𝜉) is the “torsion” of 𝑎 ∈ 𝒮 ′1/2(R2𝑑).

Proposition 4.3. Let 𝑡 ∈ R, B1,B2 be GS- or B-tempered quasi-Banach spaces in
R𝑑, 𝑎 ∈ 𝒮 ′1/2(R2𝑑), and let 𝑝 ∈ (0,∞]. Then 𝑠𝑤𝑝 (B1, B̌2) = 𝑠𝐴𝑝 (B1,B2), and the

following conditions are equivalent:

(1) 𝑎 ∈ 𝑠𝑤𝑝 (B1,B2);

(2) F𝜎𝑎 ∈ 𝑠𝑤𝑝 (B1, B̌2);

(3) 𝑎 ∈ 𝑠𝑤𝑝 (B
′
2,B

′
1);

(4) 𝑎𝜏 ∈ 𝑠𝐴𝑝 (B
𝜏
1 ,B

𝜏
2 );

(5) �̌� ∈ 𝑠𝑤𝑝 (B̌1, B̌2);

(6) �̃� ∈ 𝑠𝑤𝑝 (B̌
′
2, B̌

′
1);

(7) 𝑒𝑖(𝑡−1/2)⟨𝐷𝜉,𝐷𝑥⟩𝑎 ∈ 𝑠𝑡,𝑝(B1,B2).

Proof. Let 𝑎1 = F𝜎𝑎, 𝑎2 = 𝑎, 𝑎3 = 𝑎𝜏 , 𝑎4 = �̌� and 𝑎5 = �̃�. Then the equivalences
follow immediately from Remark 4.2 and the equalities

(Op𝑤(𝑎)𝑓, 𝑔) = (Op𝑤(𝑎1)𝑓, 𝑔) = (𝑓,Op𝑤(𝑎2)𝑔)

= (Op𝑤(𝑎3)(𝑥,𝐷)𝑓 , 𝑔) = (Op𝑤(𝑎4)𝑓, 𝑔) = (𝑓,Op𝑤(𝑎5)𝑔),

when 𝑎 ∈ 𝒮 ′1/2(R2𝑑) and 𝑓, 𝑔 ∈ 𝒮1/2(R𝑑). (Cf. [51, Proposition 4.7].) The proof is

complete. □

In Remarks 4.4 and 4.5 below we list some properties for 𝑠𝑡,𝑝(B1,B2) and
𝑠𝐴𝑝 (H1,H2). These properties follow from well-known Schatten–von Neumann re-
sults in [3, 39, 53], in combination with (1.15), (1.21), (4.2), and the fact that the
mappings 𝑎 → Op𝑡(𝑎) and 𝑎 → 𝐴𝑎 are isometric bijections from 𝑠𝑡,𝑝(B1,B2) and
𝑠𝐴𝑝 (B1,B2) respectively to I𝑝(B1,B2).

Remark 4.4. Let 𝑝, 𝑝𝑗 , 𝑞, 𝑟 ∈ (0,∞], 𝑡 ∈ R, B𝑗 be GS- or B-tempered quasi-Banach
spaces onR𝑑, and let H𝑗 be GS- or B-tempered Hilbert spaces onR𝑑, 𝑗 = 1, . . . , 4.

Also let 𝐶𝑟 = 1 when B1, . . . ,B4 are Hilbert spaces, and 𝐶𝑟 = 21/𝑟 otherwise.
Then the following is true:

(1) the sets 𝑠𝑡,𝑝(B1,B2) and 𝑠𝑡,♯(B1,B2), are quasi-Banach space which in-
creases with the parameter 𝑝. If in addition 𝑟 ≤ 𝑝 < ∞ and 𝑝1 ≤ 𝑝2, then
𝑠𝑡,𝑝(B1,B2) ↪→ 𝑠𝑡,♯(B1,B2), 𝑠𝑡,𝑟(B1,B2) is dense in 𝑠𝑡,𝑝(B1,B2) and in
𝑠𝑡,♯(B1,B2), and

∥𝑎∥𝑠𝑡,𝑝2(B1,B2) ≤ ∥𝑎∥𝑠𝑡,𝑝1(B1,B2), 𝑎 ∈ 𝑠𝑡,∞(B1,B2). (4.3)
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Moreover, if in addition 𝑝 ≥ 1 and B𝑗 , 𝑗 = 1, 2, are Banach spaces, then
𝑠𝑡,𝑝(B1,B2) and 𝑠𝑡,♯(B1,B2) are Banach spaces;

(2) if B𝑗 = H𝑗 , 𝑗 = 1, 2, then equality is attained in (4.3), if and only if 𝑎 is a

rank one element, and then ∥𝑎∥𝑠𝑡,𝑝(H1,H2) = (2𝜋)−𝑑/2∥𝑓1∥H1∥𝑓2∥H2 , when 𝑎
is given by (1.12);

(3) if 1/𝑝1 + 1/𝑝2 = 1/𝑟, 𝑎1 ∈ 𝑠𝑡,𝑝1(B1,B2) and 𝑎2 ∈ 𝑠𝑡,𝑝2(B2,B3), then
𝑎2#𝑡𝑎1 ∈ 𝑠𝑡,𝑟(B1,B3), and

∥𝑎2#𝑡𝑎1∥𝑠𝑡,𝑟(B1,B3) ≤ 𝐶𝑟∥𝑎1∥𝑠𝑡,𝑝1(B1,B2)∥𝑎2∥𝑠𝑡,𝑝2 (B2,B3). (4.4)

On the other hand, for any 𝑎 ∈ 𝑠𝑡,𝑟(H1,H3), there are elements 𝑎1 ∈
𝑠𝑡,𝑝1(H1,H2) and 𝑎2 ∈ 𝑠𝑡,𝑝2(H2,H3) such that 𝑎 = 𝑎2#𝑡𝑎1 and equality
holds in (4.4);

(4) if B1 ↪→ B2 with dense embeddings and B3 ↪→ B4, then 𝑠𝑡,𝑝(B2,B3) ↪→
𝑠𝑡,𝑝(B1,B4).

Similar facts hold when the 𝑠𝑡,𝑝 spaces and the product #𝑡 are replaced by 𝑠𝐴𝑝
spaces and ∗𝜎, respectively.

In the next remark we make some further conclusions on dual forms for
𝑠𝑡,𝑝(H1,H2) and 𝑠𝐴𝑝 (H1,H2) when H1 and H2 are Hilbert spaces. Here the forms
( ⋅ , ⋅ )𝑠𝑡,2(H1,H2) and ( ⋅ , ⋅ )𝑠𝐴2 (H1,H2) are defined by the formulas

(𝑎, 𝑏)𝑠𝑡,2(H1,H2) = (Op𝑡(𝑎),Op𝑡(𝑏))I2(H1,H2), 𝑎, 𝑏 ∈ 𝑠𝑡,2(H1,H2)

and

(𝑎, 𝑏)𝑠𝐴2 (H1,H2) = (𝐴𝑎,𝐴𝑏)I2(H1,H2), 𝑎, 𝑏 ∈ 𝑠𝐴2 (H1,H2).

We also recall that 𝑝′ ∈ [1,∞] is the conjugate exponent for 𝑝 ∈ [1,∞], i.e.,
1/𝑝+ 1/𝑝′ = 1. Finally, the set 𝑙∞0 consists of all sequences in 𝑙∞ which tends to
zero at infinity, and 𝑙10 consists of all sequences {𝜆𝑗}𝑗∈𝐼 such that 𝜆𝑗 = 0 except
for finite numbers of 𝑗 ∈ 𝐼.

Remark 4.5. Let 𝑝, 𝑝𝑗 ∈ [1,∞] for 1 ≤ 𝑗 ≤ 2, 𝑡 ∈ R, and let H1,H2 be GS- or
B-tempered Hilbert spaces on R𝑑. Then the following is true:

(1) the form ( ⋅ , ⋅ )𝑠𝑡,2(H1,H2) on 𝑠𝑡,1(H1,H2) extends uniquely to a sesquilinear
and continuous form on 𝑠𝑡,𝑝(H1,H2) × 𝑠𝑡,𝑝′(H1,H2), and for every 𝑎1 ∈
𝑠𝑡,𝑝(H1,H2) and 𝑎2 ∈ 𝑠𝑡,𝑝′(H1,H2), it holds

(𝑎1, 𝑎2)𝑠𝑡,2(H1,H2) = (𝑎2, 𝑎1)𝑠𝑡,2(H1,H2),

∣(𝑎1, 𝑎2)𝑠𝑡,2(H1,H2)∣ ≤ ∥𝑎1∥𝑠𝑡,𝑝(H1,H2)∥𝑎2∥𝑠𝑡,𝑝′ (H1,H2) and

∥𝑎1∥𝑠𝑡,𝑝(H1,H2) = sup ∣(𝑎1, 𝑏)𝑠𝑡,2(H1,H2)∣,
where the supremum is taken over all 𝑏 ∈ 𝑠𝑡,𝑝′(H1,H2) such that

∥𝑏∥𝑠𝑡,𝑝′(H1,H2) ≤ 1.

If in addition 𝑝 < ∞, then the dual space of 𝑠𝑡,𝑝(H1,H2) can be iden-
tified with 𝑠𝑡,𝑝′(H1,H2) through this form;



Multiplication Properties in Gelfand–Shilov Calculus 151

(2) if 𝑎 ∈ 𝑠𝑡,♯(H1,H2), then

Op𝑡(𝑎)𝑓 =

∞∑
𝑗=1

𝜆𝑗(𝑓, 𝑓𝑗)H1𝑔𝑗, (4.5)

holds for some {𝑓𝑗}∞𝑗=1 ∈ ON(H1), {𝑔𝑗}∞𝑗=1 ∈ ON(H2) and non-negative
decreasing sequence 𝜆 = {𝜆𝑗}∞𝑗=1 ∈ 𝑙∞0 , where the operator on the right-

hand side of (4.5) convergences with respect to the operator norm. Moreover,
𝑎 ∈ 𝑠𝑡,𝑝(H1,H2), if and only if 𝜆 ∈ 𝑙𝑝, and then

∥𝑎∥𝑠𝑡,𝑝 = ∥𝜆∥𝑙𝑝
and the operator on the right-hand side of (4.5) converges with respect to
the norm ∥ ⋅ ∥𝑠𝑡,𝑝(H1,H2);

(3) if 0 ≤ 𝜃 ≤ 1 is such that 1/𝑝 = (1 − 𝜃)/𝑝1 + 𝜃/𝑝2, then the (complex)
interpolation formula

(𝑠𝑡,𝑝1(H1,H2), 𝑠𝑡,𝑝2(H1,H2))[𝜃] = 𝑠𝑡,𝑝(H1,H2)

holds with equality in norms.

Similar facts hold when the 𝑠𝑡,𝑝 spaces are replaced by 𝑠𝐴𝑝 spaces.

In the sequel we assume that B𝑗 = H𝑗 , 𝑗 ≥ 0, are Hilbert spaces. A problem
with the form ( ⋅ , ⋅ )𝑠𝑡,2(H1,H2) in Remark 4.5 is the somewhat complicated struc-
ture. In the following we show that there is a canonical way to replace this form
with ( ⋅ , ⋅ )𝐿2 . We start with the following result concerning polar decomposition
of compact operators.

Proposition 4.6. Let 𝑡 ∈ R, 𝑝 ∈ [1,∞], H1 and H2 be GS- or B-tempered Hilbert
spaces on R𝑑 and let 𝑎 ∈ 𝑠𝑡,♯(H1,H2) (𝑎 ∈ 𝑠𝐴♯ (H1,H2)). Then

𝑎 ≡
∑
𝑗∈𝐼

𝜆𝑗𝑊
𝑡
𝑔𝑗 ,𝜑𝑗

(
𝑎 ≡

∑
𝑗∈𝐼

𝜆𝑗𝑊𝑔𝑗 ,𝜑𝑗

)
(4.6)

(with norm convergence) for some orthonormal sequences {𝜑𝑗}𝑗∈𝐼 in H ′
1 and

{𝑔𝑗}𝑗∈𝐼 in H2, and a sequence {𝜆𝑗}𝑗∈𝐼 ∈ 𝑙∞0 of non-negative real numbers which
decreases to zero at infinity. Furthermore, 𝑎 ∈ 𝑠𝑡,𝑝(H1,H2) (𝑎 ∈ 𝑠𝐴𝑝 (H1,H2)), if
and only if {𝜆𝑗}𝑗∈𝐼 ∈ 𝑙𝑝, and

∥𝑎∥𝑠𝑡,𝑝(H1,H2) = (2𝜋)−𝑑/2∥{𝜆𝑗}𝑗∈𝐼∥𝑙𝑝 (∥𝑎∥𝑠𝐴𝑝 (H1,H2) = ∥{𝜆𝑗}𝑗∈𝐼∥𝑙𝑝).

Proof. By Remark 4.5 (2) it follows that if 𝑓 ∈ 𝒮1/2(R𝑑), then

Op𝑡(𝑎)𝑓(𝑥) =
∑
𝑗∈𝐼

𝜆𝑗(𝑓, 𝑓𝑗)H1𝑔𝑗 (4.7)

for some orthonormal sequences {𝑓𝑗} in H1 and {𝑔𝑗} in H2, and a sequence
{𝜆𝑗} ∈ 𝑙∞0 of non-negative real numbers which decreases to zero at infinity. Now
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let {𝜑𝑗}𝑗∈𝐼 be an orthonormal sequence in H ′
1 such that (𝜑𝑗 , 𝑓𝑘)𝐿2 = 𝛿𝑗,𝑘. Then

(𝑓, 𝑓𝑗)H1 = (𝑓, 𝜑𝑗)𝐿2 , and the result follows from (4.7), and the fact that

Op𝑡(𝑊
𝑡
𝑔𝑗 ,𝜑𝑗

)𝑓 = (2𝜋)−𝑑/2(𝑓, 𝜑𝑗)𝐿2𝑔𝑗 = (2𝜋)−𝑑/2(𝑓, 𝑓𝑗)H1𝑔𝑗 .

The proof is complete. □

We have now the following.

Proposition 4.7. Let 𝑝 ∈ [1,∞), and let H1 and H2 be GS- or B-tempered Hilbert
spaces on R𝑑. Then the following is true:

(1) 𝒮1/2(R2𝑑) is dense in 𝑠𝑡,𝑝(H1,H2), 𝑠
𝐴
𝑝 (H1,H2), 𝑠𝑡,♯(H1,H2)

and 𝑠𝐴♯ (H1,H2);

(2) 𝒮1/2(R2𝑑) is dense in 𝑠𝑡,∞(H1,H2) and 𝑠𝐴∞(H1,H2) with respect
to the weak∗ topology.

Proof. By Proposition 4.6 it follows that any element in 𝑠𝑡,𝑝(H1,H2), 𝑠
𝐴
𝑝 (H1,H2),

𝑠𝑡♯(H1,H2) or in 𝑠𝐴♯ (H1,H2) can be approximated in norm by finite sums of the

forms in (4.6). The assertion (1) now follows from the facts that any 𝜑𝑗 and
𝑔𝑗 can be approximated in norms by elements in 𝒮1/2(R𝑑), and that the map

(𝜑, 𝑔) → 𝑊 𝑡
𝑔,𝜑 is continuous from 𝒮1/2(R𝑑)× 𝒮1/2(R𝑑) to 𝒮1/2(R2𝑑).

The assertion (2) now follows from (1) and the fact that 𝑠𝑡,1 is weakly dense
in 𝑠𝑡,∞, since I1 is weakly dense in I∞. □

Next we prove that the duals for 𝑠𝑡,𝑝(H1,H2) and 𝑠𝐴𝑝 (H1,H2) can be iden-

tified with 𝑠𝑡,𝑝′(H ′
1 ,H

′
2 ) and 𝑠𝐴𝑝′(H

′
1 ,H

′
2 ) respectively through the form ( ⋅ , ⋅ )𝐿2 .

Theorem 4.8. Let 𝑡 ∈ R, 𝑝 ∈ [1,∞) and let H1,H2 be GS- or B-tempered Hilbert
spaces on R𝑑. Then the 𝐿2 form on 𝒮1/2(R2𝑑) extends uniquely to a duality between
𝑠𝑡,𝑝(H1,H2) and 𝑠𝑡,𝑝′(H ′

1 ,H
′
2 ), and the dual of 𝑠𝑡,𝑝(H1,H2) can be identified

with 𝑠𝑡,𝑝′(H
′
1 ,H

′
2 ) through this form. Moreover, if ℓ ∈ 𝑠𝑡,𝑝(H1,H2)

∗ and 𝑎 ∈
𝑠𝑡,𝑝′(H

′
1 ,H

′
2 ) are such that ℓ(𝑏) = (𝑎, 𝑏)𝐿2 when 𝑏 ∈ 𝑠𝑡,𝑝(H1,H2), then

∥ℓ∥ = ∥𝑎∥𝑠𝑡,𝑝′(H ′
1 ,H

′
2 )
.

The same is true if the 𝑠𝑡,𝑝(H1,H2) spaces are replaced by 𝑠𝐴𝑝 (H1,H2)
spaces.

Proof. We only prove the assertion in the case 𝑡 = 1/2. The general case follows by
similar arguments and is left for the reader. Let ℓ ∈ 𝑠𝑤𝑝 (H1,H2)

∗. Since the map
𝑏 → Op𝑤(𝑏) is an isometric bijection from 𝑠𝑤𝑝 (H1,H2) to I𝑝(H1,H2), it follows
from Remark 4.5 (1) that for some 𝑆 ∈ I𝑝′(H1,H2) and each orthonormal basis
{𝑓𝑗} ∈ ON(H1) we have

ℓ(𝑏) = trH1(𝑆
∗ ∘Op𝑤(𝑏)) =

∑
(Op𝑤(𝑏)𝑓𝑗 , 𝑆𝑓𝑗)H2 and

∥ℓ∥ = ∥𝑆∥I𝑝′(H1,H2),
(4.8)

when 𝑏 ∈ 𝑠𝑤𝑝 (H1,H2).
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Now let 𝑏 ∈ 𝑠𝑤𝑝 (H1,H2) be an arbitrary finite rank element. Then

𝑏 =
∑

𝜆𝑗𝑊𝑔𝑗 ,𝜑𝑗 and ∥𝑏∥𝑠𝑤𝑝 (H1,H2) = (2𝜋)−𝑑/2∥{𝜆𝑗}∥𝑙𝑝 ,
for some orthonormal bases {𝜑𝑗} ∈ ON(H ′

1 ) and {𝑔𝑗} ∈ ON(H2), and some
sequence {𝜆𝑗} ∈ 𝑙10. We also let {𝑓𝑗} ∈ ON(H1) be the dual basis of {𝜑𝑗} and
𝑎 the Weyl symbol of the operator 𝑇H2 ∘ 𝑆 ∘ 𝑇H ′

1
. Then 𝑎 ∈ 𝑠𝑤𝑝′(H1,H2) and

∥𝑎∥𝑠𝑤
𝑝′(H1,H2) = ∥ℓ∥. By straightforward computations we also get

ℓ(𝑏) = trH1(𝑆
∗ ∘Op𝑤(𝑏)) =

∑
(Op𝑤(𝑏)𝑓𝑗 , 𝑆𝑓𝑗)H2

= (2𝜋)−𝑑/2
∑

𝜆𝑗(𝑔𝑗 , 𝑆𝑓𝑗)H2 = (2𝜋)−𝑑/2
∑

𝜆𝑗(𝑔𝑗 ,Op
𝑤(𝑎)𝜑𝑗)𝐿2(R𝑑)

= (2𝜋)−𝑑
∑

𝜆𝑗(𝑊𝑔𝑗 ,𝜑𝑗 , 𝑎)𝐿2(R2𝑑) = (2𝜋)−𝑑(𝑏, 𝑎)𝐿2(R2𝑑).

Hence ℓ(𝑏) = (2𝜋)−𝑑(𝑏, 𝑎)𝐿2(R2𝑑). The result now follows from these identities and
the fact that the set of finite rank elements are dense in 𝑠𝑤𝑝 (H1,H2). The proof is
complete. □

An interesting question is wether Theorem 4.8 still holds after the Hilbert
spaces H𝑘 and H ′

𝑘 have been replaced by appropriate Banach spaces.

We finish the section by a side result on bases and Hilbert–Schmidt operators
on GS- or B-tempered Hilbert spaces.

Proposition 4.9. Let H𝑗 be GS- or B-tempered Hilbert space on R𝑑𝑗 for 𝑗 = 1, 2,
and let 𝑇 be a linear and continuous map from H1 to H2. Also let H = H2 ⊗
(H ′

1 )
𝜏 (Hilbert tensor product). If 𝐾𝑇 is the kernel of 𝑇 , then 𝑇 ∈ I2(H1,H2),

if and only if 𝐾𝑇 ∈H , and

∥𝑇 ∥I2(H1,H2) = ∥𝐾𝑇∥H . (4.9)

Proof. First assume that 𝑇 ∈ I2(H1,H2), and let {𝑒𝑗,𝑘}∞𝑘=1 be an orthonormal
basis for H𝑗 and set 𝜀𝑗,𝑘 = 𝑇H𝑗𝑒𝑗,𝑘, 𝑗 = 1, 2. Then {𝜀𝑗,𝑘}∞𝑘=1 is an orthonormal
basis for H ′

𝑗 ,

𝑇𝑒1,𝑘 =
∑
𝑙

𝜆𝑘,𝑙𝑒2,𝑙,

for some {𝜆𝑘,𝑙}∞𝑘,𝑙=1 and
∥𝑇 ∥2I2(H1,H2)

= (𝑇, 𝑇 )I2(H1,H2) = trH1(𝑇
∗ ∘ 𝑇 ),

giving that

∥𝑇 ∥2I2(H1,H2)
=

∑
𝑘

∥𝑇𝑒1,𝑘∥2H2
=

∑
𝑘,𝑙

∣𝜆𝑘,𝑙∣2. (4.10)

Now let 𝑁1, 𝑁2 > 0 be integers and set

𝐻𝑁1,𝑁2(𝑥, 𝑦) =
∑
𝑘≤𝑁1

∑
𝑙≤𝑁2

𝜆𝑘,𝑙(𝑒2,𝑙⊗ 𝜀1,𝑘)(𝑥, 𝑦) =
∑
𝑘≤𝑁1

∑
𝑙≤𝑁2

𝜆𝑘,𝑙𝑒2,𝑙(𝑥)𝜀1,𝑘(𝑦) ∈ H .

We shall prove that𝐻𝑁1,𝑁2 has a limit 𝐻 in H as 𝑁1, 𝑁2 →∞, and that𝐻 = 𝐾𝑇 .
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Since {𝜀1,𝑘}∞𝑘=1 is an orthonormal basis for (H ′
1 )
𝜏 , we get

∥𝐻𝑁1,𝑁2∥2H =
∑
𝑘≤𝑁1

∑
𝑙≤𝑁2

∣𝜆𝑘,𝑙∣2.

Hence (4.10) and the fact that 𝑇 ∈ I2(H1,H2) imply that the limits

𝐻𝑁 = lim
𝑁2→∞

𝐻𝑁,𝑁2 and 𝐻 = lim
𝑁→∞

𝐻𝑁

exist in H , and that

∥𝐻∥2H =
∑
𝑘,𝑙

∣𝜆𝑘,𝑙∣2 = ∥𝑇 ∥2I2(H1,H2)
. (4.11)

In order to prove that 𝐻 = 𝐾𝑇 we let

𝑓 =
∑
𝑘

𝑐𝑘𝑒1,𝑘 ∈ H1 and 𝑔 =
∑
𝑙

𝑑𝑙𝜀2,𝑙 ∈H ′
2

be arbitrary, and we set

𝑓𝑁 =
∑
𝑘≤𝑁

𝑐𝑘𝑒1,𝑘 and 𝑔𝑁 =
∑
𝑙≤𝑁

𝑑𝑙𝜀2,𝑙.

Then ∥𝑓 − 𝑓𝑁∥H1 → 0 and ∥𝑔 − 𝑔𝑁∥H ′
2
→ 0 as 𝑁 →∞. Furthermore,

(𝑇𝑓𝑁1, 𝑔𝑁2)𝐿2(R𝑑2) =
∑
𝑘≤𝑁1

∑
𝑙≤𝑁2

𝜆𝑘,𝑙𝑐𝑘𝑑𝑙 = (𝐻, 𝑔𝑁2 ⊗ 𝑓𝑁1)𝐿2(R𝑑2+𝑑1).

By letting 𝑁1, 𝑁2 →∞ we get

(𝑇𝑓, 𝑔)𝐿2(R𝑑2) = (𝐻, 𝑔 ⊗ 𝑓)𝐿2(R𝑑2+𝑑1).

Hence 𝐻 = 𝐾𝑇 , and (4.9) follows.
If instead 𝐾𝑇 ∈ H , then it follows by similar arguments as in the first

part of the proof that (4.9) and the first equality in (4.11) hold with 𝐻 = 𝐾𝑇 .
Hence, the second inequality in (4.11) shows that 𝑇 ∈ I2(H1,H2). The proof is
complete. □

5. Young inequalities for weighted Schatten–von Neumann classes

In this section we establish Young type results for dilated convolutions and multi-
plications on 𝑠𝑤𝑝 (H1,H2), when H1 and H2 are appropriate modulation spaces of
Hilbert type. Especially we prove multi-linear versions of Theorems 0.3 and 0.4.
We will mainly follow the analysis in Section 5 in [51], and the proofs are similar.
However, in order to be self-contained we here present proofs which are slightly
condensed, where, at the same time, some misprints have been corrected.

We need some preparations for stating the results. If we have 𝑁 convolutions,
then the corresponding conditions compared to (0.9) is

𝑝1
−1 + ⋅ ⋅ ⋅+ 𝑝𝑁

−1 = 𝑁 − 1 + 𝑟−1, 1 ≤ 𝑝1, . . . , 𝑝𝑁 , 𝑟 ≤ ∞. (0.9)′
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In the same way, (0.10) should be replaced by

(−1)𝑗1𝑡−21 + ⋅ ⋅ ⋅+ (−1)𝑗𝑁 𝑡−2𝑁 = 1, (0.10)′

and (0.11) by

(−1)𝑗1𝑡21 + ⋅ ⋅ ⋅+ (−1)𝑗𝑁 𝑡2𝑁 = 1. (0.11)′

The condition (0.12) of the involved weight functions is modified into

𝜗(𝑋1 + ⋅ ⋅ ⋅+𝑋𝑁 ) ≲ 𝜗𝑗1,1(𝑡1𝑋1) ⋅ ⋅ ⋅𝜗𝑗𝑁 ,𝑁 (𝑡𝑁𝑋𝑁 ),

𝜔(𝑋1 + ⋅ ⋅ ⋅+𝑋𝑁 ) ≲ 𝜔𝑗1,1(𝑡1𝑋1) ⋅ ⋅ ⋅𝜔𝑗𝑁 ,𝑁 (𝑡𝑁𝑋𝑁 ),
(0.12)′

where

𝜔0,𝑘(𝑋) = 𝜗1,𝑘(𝑋) = 𝜔𝑘(𝑋), 𝜗0,𝑘(𝑋) = 𝜔1,𝑘(𝑋) = 𝜗𝑘(𝑋). (0.13)′

With these conditions we shall essentially prove estimates of the form

∥𝑎1,𝑡1 ∗ ⋅ ⋅ ⋅ ∗ 𝑎𝑁,𝑡𝑁∥𝑠𝑤𝑟 (1/𝜔,𝜗) ≤ 𝐶𝑑∥𝑎1∥𝑠𝑤𝑝1(1/𝜔1,𝜗1) ⋅ ⋅ ⋅ ∥𝑎𝑁∥𝑠𝑤𝑝𝑁 (1/𝜔𝑁 ,𝜗𝑁 ), (0.14)′

and

∥𝑎1,𝑡1 ⋅ ⋅ ⋅ 𝑎𝑁,𝑡𝑁∥𝑠𝑤𝑟 (1/𝜔,𝜗) ≤ 𝐶𝑑∥𝑎1∥𝑠𝑤𝑝1(1/𝜔1,𝜗1) ⋅ ⋅ ⋅ ∥𝑎𝑁∥𝑠𝑤𝑝𝑁 (1/𝜔𝑁 ,𝜗𝑁 ). (0.15)′

Here and in what follows we let 𝑎𝑠 and 𝑏𝑡 be given by 𝑎𝑠 = 𝑎(𝑡 ⋅ ) and 𝑏𝑡 = 𝑏(𝑡 ⋅ )
when 𝑎, 𝑏 ∈ 𝒮 ′1/2 and 𝑡 ∈ R ∖ 0, and 𝑎𝑗,𝑡 be given by 𝑎𝑗,𝑡 = 𝑎𝑗(𝑡 ⋅ ) when 𝑎𝑗 ∈ 𝒮 ′1/2,
𝑗 ∈ N, and 𝑡 ∈ R ∖ 0.
Theorem 0.3′. Let 𝑝1, . . . , 𝑝𝑁 , 𝑟 ∈ [1,∞] satisfy (0.9)′, and let 𝑡1, . . . , 𝑡𝑁 ∈ R ∖
0 satisfy (0.10)′, for some choices of 𝑗1, . . . , 𝑗𝑁 ∈ {0, 1}. Also let 𝜔, 𝜔𝑗, 𝜗, 𝜗𝑗 ∈
P𝐸(R

2𝑑) for 𝑗 = 1, . . . , 𝑁 satisfy (0.12)′ and (0.13)′.
Then the map (𝑎1, . . . , 𝑎𝑁 ) → 𝑎1,𝑡1∗⋅ ⋅ ⋅∗𝑎𝑁,𝑡𝑁 on 𝒮1/2(R2𝑑), extends uniquely

to a continuous mapping from

𝑠𝑤𝑝1(1/𝜔1, 𝜗1)× ⋅ ⋅ ⋅ × 𝑠𝑤𝑝𝑁 (1/𝜔𝑁 , 𝜗𝑁 )

to 𝑠𝑤𝑟 (1/𝜔, 𝜗). Furthermore, (0.14)′ holds for some constant

𝐶 = 𝐶𝑁0 ∣𝑡1∣−2/𝑝1 ⋅ ⋅ ⋅ ∣𝑡𝑁 ∣−2/𝑝𝑁 ,
where 𝐶0 is independent of 𝑎1 ∈ 𝑠𝑤𝑝1(1/𝜔1, 𝜗1), . . . ,𝑎𝑁 ∈ 𝑠𝑤𝑝𝑁 (1/𝜔𝑁 , 𝜗𝑁 ), 𝑡1, . . . , 𝑡𝑁
and 𝑑.

Moreover, Op𝑤(𝑎1,𝑡1 ∗⋅ ⋅ ⋅∗𝑎𝑁,𝑡𝑁 ) ≥ 0 when Op𝑤(𝑎𝑗) ≥ 0 for each 1 ≤ 𝑗 ≤ 𝑁 .

Theorem 0.4′. Let 𝑝1, . . . , 𝑝𝑁 , 𝑟 ∈ [1,∞] satisfy (0.9)′, and let 𝑡1, . . . , 𝑡𝑁 ∈ R ∖
0 satisfy (0.11)′, for some choices of 𝑗1, . . . , 𝑗𝑁 ∈ {0, 1}. Also let 𝜔, 𝜔𝑗, 𝜗, 𝜗𝑗 ∈
P𝐸(R

2𝑑) for 𝑗 = 1, . . . , 𝑁 satisfy (0.12)′ and (0.13)′.
Then the map (𝑎1, . . . , 𝑎𝑁 ) → 𝑎1,𝑡1 ⋅ ⋅ ⋅ 𝑎𝑁,𝑡𝑁 on 𝒮1/2(R2𝑑), extends uniquely

to a continuous mapping from

𝑠𝑤𝑝1(1/𝜔1, 𝜗1)× ⋅ ⋅ ⋅ × 𝑠𝑤𝑝𝑁 (1/𝜔𝑁 , 𝜗𝑁 )

to 𝑠𝑤𝑟 (1/𝜔, 𝜗). Furthermore, (0.15)′ holds for some constant

𝐶 = 𝐶𝑁0 ∣𝑡1∣−2/𝑝
′
1 ⋅ ⋅ ⋅ ∣𝑡𝑁 ∣−2/𝑝′𝑁 ,



156 J. Toft

where 𝐶0 is independent of 𝑎1 ∈ 𝑠𝑤𝑝1(1/𝜔1, 𝜗1), . . . ,𝑎𝑁 ∈ 𝑠𝑤𝑝𝑁 (1/𝜔𝑁 , 𝜗𝑁 ), 𝑡1, . . . , 𝑡𝑁
and 𝑑.

We need some preparations for the proofs. First we observe that the roles
of multiplications and convolutions are essentially interchanged on the symplectic
Fourier transform side, because

F𝜎(𝑎1 ∗ ⋅ ⋅ ⋅ ∗ 𝑎𝑁 ) = 𝜋𝑑𝑁 (F𝜎𝑎1) ⋅ ⋅ ⋅ (F𝜎𝑎𝑁 ), (5.1)

holds when 𝑎1, . . . , 𝑎𝑁 ∈ 𝒮1/2(R2𝑑). Hence it follows immediately from Lemma 1.3
and Proposition 4.3 that Theorems 0.3′ and 0.4′ are equivalent to the following
two propositions. Here the condition (0.13)′ should be replaced by

𝜔0,𝑘(𝑋) = 𝜗1,𝑘(−𝑋) = 𝜔𝑘(𝑋), 𝜗0,𝑘(𝑋) = 𝜔1,𝑘(−𝑋) = 𝜗𝑘(𝑋). (5.2)

We also recall that 𝑎 ∈ 𝒮 ′𝑠,+(R2𝑑), 𝑠 ≥ 1/2, if and only if the operator 𝐴𝑎 is
positive semi-definite (cf. Proposition 1.4).

Proposition 5.1. Let 𝑝1, . . . , 𝑝𝑁 , 𝑟 ∈ [1,∞] satisfy (0.9)′, and let 𝑡1, . . . , 𝑡𝑁 ∈ R ∖
0 satisfy (0.10)′, for some choices of 𝑗1, . . . , 𝑗𝑁 ∈ {0, 1}. Also let 𝜔, 𝜔𝑗, 𝜗, 𝜗𝑗 ∈
P𝐸(R

2𝑑) for 𝑗 = 1, . . . , 𝑁 satisfy (0.12)′ and (5.2). Then the continuity assertions
in Theorem 0.3 ′ hold after the 𝑠𝑤𝑝 spaces have been replaced by 𝑠𝐴𝑝 spaces.

Proposition 5.2. Let 𝑝1, . . . , 𝑝𝑁 , 𝑟 ∈ [1,∞] satisfy (0.9)′, and let 𝑡1, . . . , 𝑡𝑁 ∈ R ∖
0 satisfy (0.11), for some choices of 𝑗1, . . . , 𝑗𝑁 ∈ {0, 1}. Also let 𝜔, 𝜔𝑗, 𝜗, 𝜗𝑗 ∈
P𝐸(R

2𝑑) for 𝑗 = 1, . . . , 𝑁 satisfy (0.12)′ and (5.2). Then the continuity assertions
in Theorem 0.4 ′ hold after the 𝑠𝑤𝑝 spaces have been replaced by 𝑠𝐴𝑝 spaces.

Moreover, if 𝑠 > 1/2 and 𝑎𝑗 ∈ 𝒮 ′𝑠,+(R2𝑑) ∩ 𝑠𝐴𝑝𝑗 (1/𝜔𝑗, 𝜗𝑗) for every 𝑗 =

1, . . . , 𝑁 , then 𝑎1,𝑡1 ⋅ ⋅ ⋅𝑎𝑁,𝑡𝑁 ∈ 𝒮 ′𝑠,+(R2𝑑) ∩ 𝑠𝐴𝑟 (1/𝜔, 𝜗).

When proving Propositions 5.1 and 5.2 we need some technical lemmas, and
start with the following classification of Hilbert modulation spaces.

Lemma 5.3. Let 𝜔 ∈ P𝐸(R
4𝑑) be such that 𝜔(𝑥, 𝑦, 𝜉, 𝜂) = 𝜔(𝑥, 𝜉), 𝜙 ∈ 𝒮1/2(R𝑑)∖0

and let 𝐹 ∈ 𝒮 ′1/2(R2𝑑). Then 𝐹 ∈𝑀2
(𝜔), if and only if

∥𝐹∥ ≡
( ∫∫∫

∣𝑉𝜙(𝐹 ( ⋅ , 𝑦))(𝑥, 𝜉)𝜔(𝑥, 𝜉)∣2 𝑑𝑥𝑑𝑦𝑑𝜉
)1/2

<∞. (5.3)

Furthermore, 𝐹 → ∥𝐹∥ in (5.3) defines a norm which is equivalent to any 𝑀2
(𝜔)

norm.

Proof. We may assume that ∥𝜙∥𝐿2 = 1. Let Φ = 𝜙⊗ 𝜙, and let F1𝐹 denotes the
partial Fourier transform of 𝐹 (𝑥, 𝑦) with respect to the 𝑥 variable. By Parseval’s
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formula we get

∥𝐹∥2𝑀2
(𝜔)

=

∫∫∫∫
∣(𝑉Φ𝐹 )(𝑥, 𝑦, 𝜉, 𝜂)𝜔(𝑥, 𝜉)∣2 𝑑𝑥𝑑𝑦𝑑𝜉𝑑𝜂

=

∫∫ (∫∫
∣(F(

𝐹 Φ( ⋅ − (𝑥, 𝑦))
)
(𝜉, 𝜂)𝜔(𝑥, 𝜉)∣2 𝑑𝑦𝑑𝜂

)
𝑑𝑥𝑑𝜉

=

∫∫ (∫∫
∣(F1

(
𝐹 ( ⋅ , 𝑧)𝜙( ⋅ − 𝑥)

)
(𝜉)𝜙(𝑧 − 𝑦)𝜔(𝑥, 𝜉)∣2 𝑑𝑦𝑑𝑧

)
𝑑𝑥𝑑𝜉

=

∫∫ (∫
∣(F1

(
𝐹 ( ⋅ , 𝑧)𝜙( ⋅ − 𝑥)

)
(𝜉)𝜔(𝑥, 𝜉)∣2 𝑑𝑧

)
𝑑𝑥𝑑𝜉 = ∥𝐹∥,

where the right-hand side is the same as ∥𝐹∥ in (5.3). The proof is complete. □

We omit the proof of the next lemma, since the result follows immediately
from [44, Lemma 3.2], and the fact that 𝒮1/2 ↪→ S .

Lemma 5.4. Let 𝑠, 𝑡 ∈ R be such that (−1)𝑗𝑠−2 + (−1)𝑘𝑡−2 = 1, for some choice
of 𝑗, 𝑘 ∈ {0, 1}, and that 𝑎, 𝑏 ∈ 𝒮1/2(R2𝑑). Also let 𝑇𝑗,𝑧 for 𝑗 ∈ {0, 1} and 𝑧 ∈ R𝑑

be the operator on 𝒮1/2(R2𝑑), defined by the formula

(𝑇0,𝑧𝑈)(𝑥, 𝑦) = (𝑇1,𝑧𝑈)(𝑦, 𝑥) = 𝑈(𝑥− 𝑧, 𝑦 + 𝑧), 𝑈 ∈ 𝒮1/2(R2𝑑).

Then

𝐴(𝑎(𝑠 ⋅ ) ∗ 𝑏(𝑡 ⋅ )) = (2𝜋)𝑑/2∣𝑠𝑡∣−𝑑
∫
(𝑇𝑗,𝑠𝑧(𝐴𝑎))(𝑠

−1 ⋅ )(𝑇𝑘,−𝑡𝑧(𝐴𝑏))(𝑡−1 ⋅ ) 𝑑𝑧. (5.4)

We note that for the involved spaces in Theorems 0.3′ and 0.4′, and Propo-
sitions 5.1 and 5.2 we have

𝑠𝐴𝑝 (1/𝜔, 𝜗) ↪→ 𝑠𝐴𝑝 (R
2𝑑) ↪→ 𝑠𝐴𝑝 (𝜔, 1/𝜗), when 𝜔, 𝜗 ≥ 𝑐, (5.5)

for some constant 𝑐 > 0, and similarly when 𝑠𝐴𝑝 is replaced by 𝑠𝑤𝑝 . This is an

immediate consequence of Remark 4.4 (4) and the embeddings 𝑀2,2
(𝜔) ↪→ 𝑀2,2 =

𝐿2 ↪→ 𝑀2,2
(1/𝜔) which are valid when 𝜔 is bounded from below. In particular, if

𝐶𝐵(R
𝑑) denotes the set of all continuous functions on R𝑑, vanishing at infinity,

then

𝑠𝐴1 (1/𝜔, 𝜗) ↪→ 𝑠𝐴1 (R
2𝑑) ↪→ 𝐶𝐵(R

2𝑑) ∩F𝐶𝐵(R
2𝑑) ∩ 𝐿2(R2𝑑),

when 𝜔, 𝜗 ≥ 𝑐,
(5.6)

and similarly when 𝑠𝐴1 is replaced by 𝑠𝑤1 . Here the latter embedding follows from
Propositions 1.5 and 1.9 in [45].

Proof of Proposition 5.1 in the case 𝑁 = 2. We only consider the case 𝑗1 = 1 and
𝑗2 = 0, i.e., 𝑡−2 − 𝑠−2 = 1 when 𝑡1 = 𝑠 and 𝑡2 = 𝑡. The other cases follow by
similar arguments and are left for the reader. We start to prove the theorem in
the case 𝑝1 = 𝑝2 = 𝑟 = 1. By Propositions 4.6, 4.7 and a simple argument of
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approximations, it follows that we may assume that 𝑎1 = 𝑢 and 𝑎2 = 𝑣 are rank
one elements in 𝒮1/2 and satisfy

∥𝑢∥𝑠𝐴1 (1/𝜔1,𝜗1) ≤ 𝐶 and ∥𝑣∥𝑠𝐴1 (1/𝜔2,𝜗2) ≤ 𝐶,

for some constant 𝐶. Then 𝐴𝑢 = 𝑓1 ⊗ 𝑓2, 𝐴𝑣 = 𝑔1 ⊗ 𝑔2 and

∥𝑓1∥𝑀2
(𝜗1)
∥𝑓2∥𝑀2

(𝜔1)
≲ ∥𝑢∥𝑠𝐴1 (1/𝜔1,𝜗1), ∥𝑔1∥𝑀2

(𝜗2)
∥𝑔2∥𝑀2

(𝜔2)
≲ ∥𝑣∥𝑠𝐴1 (1/𝜔2,𝜗2),

for some vectors 𝑓1, 𝑓2, 𝑔1, 𝑔2 ∈ 𝒮1/2 such that

∥𝑓1∥𝑀2
(𝜗1)

≤ 𝐶, ∥𝑓2∥𝑀2
(𝜔1)

≤ 𝐶, ∥𝑔1∥𝑀2
(𝜗2)

≤ 𝐶, ∥𝑔2∥𝑀2
(𝜔2)

≤ 𝐶,

for some constant 𝐶 > 0.

Set

𝐹 (𝑥, 𝑧) = 𝑓2(𝑥/𝑠+ 𝑠𝑧)𝑔1(𝑥/𝑡+ 𝑡𝑧), 𝐺(𝑦, 𝑧) = 𝑓1(𝑦/𝑠− 𝑠𝑧)𝑔2(𝑦/𝑡− 𝑡𝑧).

It follows from (5.4) that

𝐴(𝑢𝑠 ∗ 𝑣𝑡)(𝑥, 𝑦) = (2𝜋)𝑑/2∣𝑠𝑡∣−𝑑
∫

𝐹 (𝑥, 𝑧)𝐺(𝑦, 𝑧)𝑑𝑧.

This implies that

∥𝑢𝑠 ∗ 𝑣𝑡∥𝑠𝐴1 (1/𝜔,𝜗) ≲ ∣𝑠𝑡∣−𝑑
∫
∥𝐹 ( ⋅ , 𝑧)∥𝑀2

(𝜗)
∥𝐺( ⋅ , 𝑧)∥𝑀2

(𝜔)
𝑑𝑧

≲ ∣𝑠𝑡∣−𝑑𝐼1 ⋅ 𝐼2, (5.7)

where

𝐼1 =
( ∫∫∫

∣𝑉𝜙(𝐹 ( ⋅ , 𝑧))(𝑥, 𝜉)𝜗(𝑥, 𝜉)∣2 𝑑𝑥𝑑𝑧𝑑𝜉
)1/2

𝐼2 =
( ∫∫∫

∣𝑉𝜙(𝐺( ⋅ , 𝑧))(𝑥, 𝜉)𝜔(𝑥, 𝜉)∣2 𝑑𝑥𝑑𝑧𝑑𝜉
)1/2

,

(5.8)

for some 𝜙 ∈ 𝒮1/2(R𝑑) ∖ 0. Hence, 𝐼1 ≲ ∥𝐹∥𝑀2
(𝜗0)

and 𝐼2 ≲ ∥𝐺∥𝑀2
(𝜔0)

by Lemma

5.3, when 𝜔0(𝑥, 𝑦, 𝜉, 𝜂) = 𝜔(𝑥, 𝜉) and 𝜗0(𝑥, 𝑦, 𝜉, 𝜂) = 𝜗(𝑥, 𝜉).

We need to estimate ∥𝐹∥𝑀2
(𝜗0)

and ∥𝐺∥𝑀2
(𝜔0)

. In order to estimate ∥𝐹∥𝑀2
(𝜗0)

we choose the window function Φ ∈ 𝒮1/2(R2𝑑) as

Φ(𝑥, 𝑧) = 𝜙(𝑥/𝑠+ 𝑠𝑧)𝜙(𝑥/𝑡+ 𝑡𝑧),

for some real-valued 𝜙 ∈ 𝒮1/2(R𝑑). By taking (𝑥1/𝑠+ 𝑠𝑧1, 𝑥1/𝑡+ 𝑡𝑧1) as new vari-

ables when evaluating 𝑉Φ𝐹 , and using 𝑡−2− 𝑠−2 = 1, it follows by straightforward
computations that

𝑉Φ𝐹 (𝑥, 𝑧, 𝜉, 𝜁) = (2𝜋)−𝑑
∫∫

𝐹 (𝑥1, 𝑧1)Φ(𝑥1 − 𝑥, 𝑧1 − 𝑧)𝑒−𝑖⟨𝑥1,𝜉⟩−𝑖⟨𝑧1,𝜁⟩ 𝑑𝑥1𝑑𝑧1

= ∣𝑠𝑡∣−𝑑𝑉𝜙𝑓2(𝑠−1𝑥+ 𝑠𝑧, 𝑠−1𝜉 − (𝑠𝑡2)−1𝜁)𝑉𝜙𝑔1(𝑡−1𝑥+ 𝑡𝑧, 𝑡−1𝜉 − (𝑠2𝑡)−1𝜁).
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Furthermore, by (0.12), (5.2) and the fact that 𝑡−2 − 𝑠−2 = 1, we obtain

𝜗(𝑥, 𝜉) = 𝜗
(
(𝑡−2𝑥+ 𝑧)− (𝑠−2𝑥+ 𝑧), (𝑡−2𝜉 − (𝑠𝑡)−2𝜁)− (𝑠−2𝜉 − (𝑠𝑡)−2𝜁)

)
≲ 𝜔1(𝑠

−1𝑥+ 𝑠𝑧, 𝑠−1𝜉 − (𝑠𝑡2)−1𝜁)𝜗2(𝑡−1𝑥+ 𝑡𝑧, 𝑡−1𝜉 − (𝑠2𝑡)−1𝜁)

A combination of these relations now gives

∣𝑉Φ𝐹 (𝑥, 𝑧, 𝜉, 𝜁)𝜗(𝑥, 𝜉)∣ ≲ ∣𝑠𝑡∣−𝑑𝐽1 ⋅ 𝐽2, (5.9)

where

𝐽1 = ∣𝑉𝜙𝑓2(𝑠−1𝑥+ 𝑠𝑧, 𝑠−1𝜉 − (𝑠𝑡2)−1𝜁)𝜔1(𝑠−1𝑥+ 𝑠𝑧, 𝑠−1𝜉 − (𝑠𝑡2)−1𝜁)∣
and

𝐽2 = ∣𝑉𝜙𝑔1(𝑡−1𝑥+ 𝑡𝑧, 𝑡−1𝜉 − (𝑠2𝑡)−1𝜁)𝜗2(𝑡−1𝑥+ 𝑡𝑧, 𝑡−1𝜉 − (𝑠2𝑡)−1𝜁)∣.
By applying the 𝐿2 norm and taking

𝑠−1𝑥+ 𝑠𝑧, 𝑡−1𝑥+ 𝑡𝑧, 𝑠−1𝜉 − (𝑠𝑡2)−1𝜁, 𝑡−1𝜉 − (𝑠2𝑡)−1𝜁

as new variables of integration we get

∥𝐹∥𝑀2
(𝜗)

≲ ∣𝑠𝑡∣−2𝑑∥𝑓2∥𝑀2
(𝜔1)
∥𝑔1∥𝑀2

(𝜗2)
. (5.10)

By similar computations it also follows that

∥𝐺∥𝑀2
(𝜔)

≲ ∣𝑠𝑡∣−2𝑑∥𝑓1∥𝑀2
(𝜗1)
∥𝑔2∥𝑀2

(𝜔2)
. (5.11)

Hence, a combination of Proposition 4.6, (5.7), (5.8), (5.10) and (5.11) gives

∥𝑢𝑠 ∗ 𝑣𝑡∥𝑠𝐴1 (1/𝜔,𝜗) ≲ ∣𝑠𝑡∣
−𝑑∥𝑓1∥𝑀2

(𝜗1)
∥𝑓2∥𝑀2

(𝜔1)
∥𝑔1∥𝑀2

(𝜗2)
∥𝑔2∥𝑀2

(𝜔2)

≲ ∣𝑠𝑡∣−𝑑∥𝑢∥𝑠𝐴1 (1/𝜔1,𝜗1)∥𝑣∥𝑠𝐴1 (1/𝜔2,𝜗2).

This proves the result in the case 𝑝1 = 𝑝2 = 𝑟 = 1.
Next we consider the case 𝑝1 = ∞, which implies that 𝑝2 = 1 and 𝑟 = ∞.

Let 𝑎 ∈ 𝑠𝐴∞(1/𝜔1, 𝜗1) and let 𝑏, 𝑐 ∈ 𝒮1/2(R2𝑑). Then

(𝑎𝑠 ∗ 𝑏𝑡, 𝑐) = ∣𝑠∣−4𝑑(𝑎, �̃�𝑡0 ∗ 𝑐𝑠0),
where �̃�(𝑋) = 𝑏(−𝑋), 𝑠0 = 1/𝑠 and 𝑡0 = 𝑡/𝑠. We claim that

∥�̃�𝑡0 ∗ 𝑐𝑠0∥𝑠𝐴1 (𝜔1,1/𝜗1) ≲ ∣𝑠2/𝑡∣2𝑑∥𝑏∥𝑠𝐴1 (1/𝜔2,𝜗2)∥𝑐∥𝑠𝐴1 (𝜔,1/𝜗) (5.12)

Admitting this for a while, it follows by duality, using Theorem 4.8 that

∥𝑎𝑠 ∗ 𝑏𝑡∥𝑠𝐴∞(1/𝜔,𝜗) ≲ ∣𝑠2/𝑡∣2𝑑𝑠−4𝑑∥𝑎∥𝑠𝐴∞(1/𝜔1,𝜗1)∥𝑏∥𝑠𝐴1 (1/𝜔2,𝜗2),

which gives (0.14). The result now follows in the case 𝑝1 = 𝑟 =∞ and 𝑝2 = 1 from
the fact that 𝒮1/2 is dense in 𝑠𝐴1 (1/𝜔2, 𝜗2). In the same way the result follows in
the case 𝑝2 = 𝑟 =∞ and 𝑝1 = 1.

For general 𝑝1, 𝑝2, 𝑟 ∈ [1,∞] the result follows by multi-linear interpolation,
using Theorem 4.4.1 in [2] and Remark 4.5 (3).
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It remains to prove (5.12) when 𝑏, 𝑐 ∈ 𝒮1/2(R2𝑑). The condition (0.10) is
invariant under the transformation (𝑡, 𝑠) → (𝑡0, 𝑠0) = (𝑡/𝑠, 1/𝑠). Let

�̃� = 1/𝜔1, 𝜗 = 1/𝜗1, �̃�1 = 1/𝜔,

𝜗1 = 1/𝜗, �̃�2 = 𝜗2 and 𝜗2 = 𝜔2.

If 𝑋1 = −(𝑋 + 𝑌 )/𝑠 and 𝑋2 = 𝑌/𝑠, then it follows that

𝜔(𝑋1 +𝑋2) ≲ 𝜗1(−𝑠𝑋1)𝜔2(𝑡𝑋2), 𝜗(𝑋1 +𝑋2) ≲ 𝜔1(−𝑠𝑋1)𝜗2(𝑡𝑋2),
is equivalent to

�̃�(𝑋 + 𝑌 ) ≲ 𝜗1(−𝑠0𝑋)�̃�2(𝑡0𝑌 ), 𝜗(𝑋 + 𝑌 ) ≲ �̃�1(−𝑠0𝑋)𝜗2(𝑡0𝑌 ).

Hence, the first part of the proof gives

∥�̃�𝑡0 ∗ 𝑐𝑠0∥𝑠𝐴1 (𝜔1,1/𝜗1) = ∥�̃�𝑡0 ∗ 𝑐𝑠0∥𝑠𝐴1 (1/�̃�,𝜗)
≲ ∣𝑠0𝑡0∣−2𝑑∥�̃�∥𝑠𝐴1 (1/�̃�2,𝜗2)

∥𝑐∥𝑠𝐴1 (1/�̃�1,𝜗1)

= ∣𝑠0𝑡0∣−2𝑑∥�̃�∥𝑠𝐴1 (1/𝜗2,𝜔2)∥𝑐∥𝑠𝐴1 (𝜔,1/𝜗)
= ∣𝑠0𝑡0∣−2𝑑∥𝑏∥𝑠𝐴1 (1/𝜔2,𝜗2)∥𝑐∥𝑠𝐴1 (𝜔,1/𝜗),

and (5.12) follows. The proof in the case 𝑁 = 2 is complete. □

We need the following lemma for the proof of Proposition 5.1 in the general
case.

Lemma 5.5. Let 𝜌, 𝑡1, . . . , 𝑡𝑁 ∈ R ∖ 0 fulfill (0.10)′ and 𝜌−2 + (−1)𝑗𝑁 𝑡−2𝑁 = 1. For
𝑡′𝑗 = 𝑡𝑗/𝜌 set

𝜔0(𝑋) = inf 𝜔𝑗1,1(𝑡
′
1𝑋1) ⋅ ⋅ ⋅𝜔𝑗𝑁−1,𝑁−1(𝑡

′
𝑁−1𝑋𝑁−1) and

𝜗0(𝑋) = inf 𝜗𝑗1,1(𝑡
′
1𝑋1) ⋅ ⋅ ⋅𝜗𝑗𝑁−1,𝑁−1(𝑡

′
𝑁−1𝑋𝑁−1),

where the infima are taken over all 𝑋1, . . . , 𝑋𝑁−1 such that 𝑋 = 𝑋1+ ⋅ ⋅ ⋅+𝑋𝑁−1.
Then the following is true:

(1) 𝜔0, 𝜗0 ∈ P𝐸(R
2𝑑);

(2) for each 𝑋1, . . . 𝑋𝑁−1 ∈ R2𝑑 it holds

𝜔0(𝑋1 + ⋅ ⋅ ⋅+𝑋𝑁−1) ≤ 𝜔𝑗1,1(𝑡
′
1𝑋1) ⋅ ⋅ ⋅𝜔𝑗𝑁−1,𝑁−1(𝑡

′
𝑁−1𝑋𝑁−1), and

𝜗0(𝑋1 + ⋅ ⋅ ⋅+𝑋𝑁−1) ≤ 𝜗𝑗1,1(𝑡
′
1𝑋1) ⋅ ⋅ ⋅𝜗𝑗𝑁−1,𝑁−1(𝑡

′
𝑁−1𝑋𝑁−1);

(3) for each 𝑋,𝑌 ∈ R2𝑑 it holds

𝜔(𝑋 + 𝑌 ) ≲ 𝜔0(𝜌𝑋)𝜔𝑁(𝑡𝑁𝑌 ) and 𝜗(𝑋 + 𝑌 ) ≲ 𝜗0(𝜌𝑋)𝜗𝑁 (𝑡𝑁𝑌 ).

Proof. The assertion (2) follows immediately from the definitions of 𝜔0 and 𝜗0,
and (3) is an immediate consequence of (0.12)′.
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In order to prove (1) we assume that 𝑋 = 𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑁−1. Since 𝜔𝑗1,1 ∈
P𝐸(R

2𝑑), it follows that

𝜔0(𝑋 + 𝑌 ) ≤ 𝜔𝑗1,1(𝑡
′
1(𝑋1 + 𝑌 )) ⋅ ⋅ ⋅𝜔𝑗𝑁−1,𝑁−1(𝑡

′
𝑁−1𝑋𝑁−1)

≤ 𝜔𝑗1,1(𝑡
′
1𝑋1) ⋅ ⋅ ⋅𝜔𝑗𝑁−1,𝑁−1(𝑡

′
𝑁−1𝑋𝑁−1)𝑣(𝑌 ),

for some 𝑣 ∈ P𝐸(R
2𝑑). By taking the infimum over all representations 𝑋 =

𝑋1 + ⋅ ⋅ ⋅ + 𝑋𝑁 , the latter inequality becomes 𝜔0(𝑋 + 𝑌 ) ≤ 𝜔0(𝑋)𝑣(𝑌 ). This
implies that 𝜔0 ∈ P𝐸(R

2𝑑), and in the same way it follows that 𝜗0 ∈ P𝐸(R
2𝑑).

The proof is complete. □

Proof of Proposition 5.1 for general 𝑁 . We may assume that 𝑁 > 2 and that the
proposition is already proved for lower values on 𝑁 . The condition on 𝑡𝑗 is that

𝑐1𝑡
−2
1 + ⋅ ⋅ ⋅+ 𝑐𝑁 𝑡

−2
𝑁 = 1, where 𝑐𝑗 ∈ {±1}. For symmetry reasons we may assume

that 𝑐1𝑡
−2
1 + ⋅ ⋅ ⋅+ 𝑐𝑁−1𝑡−2𝑁−1 = 𝜌−2, where 𝜌 > 0. Let 𝑡′𝑗 = 𝑡𝑗/𝜌, 𝜔0 and 𝜗0 be the

same as in Lemma 5.5, and let 𝑟1 ∈ [1,∞] be such that 1/𝑟1 + 1/𝑝𝑁 = 1 + 1/𝑟.

Then 𝑐1(𝑡
′
1)
−2

+ ⋅ ⋅ ⋅+ 𝑐𝑁−1(𝑡′𝑁−1)
−2

= 1, 𝑟1 ≥ 1 since 𝑝𝑁 ≤ 𝑟, and

1/𝑝1 + ⋅ ⋅ ⋅+ 1/𝑝𝑁−1 = 𝑁 − 2 + 1/𝑟1.

By the induction hypothesis and Lemma 5.5 (2) it follows that

𝑏 = 𝑎1,𝑡′1 ∗ ⋅ ⋅ ⋅ ∗ 𝑎𝑁−1,𝑡′𝑁−1
= 𝜌𝑑(2𝑁−4)(𝑎1,𝑡1 ∗ ⋅ ⋅ ⋅ ∗ 𝑎𝑁−1,𝑡𝑁−1)(⋅/𝜌)

makes sense as an element in 𝑠𝐴𝑟1(1/𝜔0, 𝜗0), and

∥𝑏∥𝑠𝐴𝑟1(1/𝜔0,𝜗0) ≲
𝑁−1∏
𝑗=1

∣𝑡′𝑗 ∣−2𝑑/𝑝𝑗∥𝑎∥𝑠𝐴𝑝𝑗 (1/𝜔𝑗 ,𝜗𝑗).

Since 1/𝑟1+1/𝑝𝑁 = 1+1/𝑟, it follows from Lemma 5.5 (3) that 𝑏𝜌 ∗ 𝑎𝑁,𝑡𝑁 makes
sense as an element in 𝑠𝐴𝑟 (1/𝜔, 𝜗), and

∥(𝑎1,𝑡1 ∗ ⋅ ⋅ ⋅ ∗ 𝑎𝑁−1,𝑡𝑁−1) ∗ 𝑎𝑁,𝑡𝑁∥𝑠𝐴𝑟 (1/𝜔,𝜗) = 𝜌−𝑑(2𝑁−4)∥𝑏𝜌 ∗ 𝑎𝑁,𝑡𝑁∥𝑠𝐴𝑟 (1/𝜔,𝜗)
≤ 𝐶1∥𝑎1∥𝑠𝐴𝑝1(1/𝜔1,𝜗1) ⋅ ⋅ ⋅ ∥𝑎𝑁∥𝑠𝐴𝑝𝑁 (1/𝜔𝑁 ,𝜗𝑁 ),

where

𝐶1 ≍ 𝜌𝑑(4−2𝑁−2/𝑟1)∣𝑡𝑁 ∣−2𝑑/𝑝𝑁
𝑁−1∏
𝑗=1

∣𝑡′𝑗 ∣−2𝑑/𝑝𝑗 =
𝑁∏
𝑗=1

∣𝑡𝑗 ∣−2𝑑/𝑝𝑗 .

This proves the extension assertions. The uniqueness as well as the symmetry
assertions follow from the facts that 𝒮1/2 is dense in 𝑠𝐴𝑝 when 𝑝 <∞ and dense in

𝑠𝐴∞ with respect to the weak∗ topology, and that at most one 𝑝𝑗 is equal to infinity
due to the Young condition. The proof is complete. □

Proof of Proposition 5.2. The continuity assertions follow by combining Proposi-
tion 4.3, Proposition 5.1 and (5.1).

When verifying the positivity statement we may argue by induction as in
the proof of Proposition 5.1. This together with Proposition 1.4 and some simple
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arguments of approximation shows that it suffices to prove that 𝑎𝑠𝑏𝑡 is positive
semi-definite when ±𝑠2 ± 𝑡2 = 1, 𝑠𝑡 ∕= 0, and 𝑎, 𝑏 ∈ 𝒮1/2(R2𝑑) are 𝜎-positive
rank-one element.

For any 𝑈 ∈ 𝒮1/2(R2𝑑) we set

𝑈0,𝑧(𝑥, 𝑦) = 𝑈1,𝑧(−𝑦,−𝑥) = 𝑈(𝑥+ 𝑧, 𝑦 + 𝑧).

Then Lemmas 1.3 and 5.4 give

𝐴(𝑎𝑠𝑏𝑡)(𝑥, 𝑦) = (2/𝜋)𝑑/2∣𝑠𝑡∣−𝑑
∫
(𝐴𝑎)𝑗,𝑧/𝑠(𝑠𝑥, 𝑠𝑦)(𝐴𝑏)𝑘,−𝑧/𝑡(𝑡𝑥, 𝑡𝑦) 𝑑𝑧,

for some choice of 𝑗, 𝑘 ∈ {0, 1}. Since 𝑎, 𝑏 ∈ 𝐶+ are rank-one elements, it follows

that the integrand is of the form 𝜙𝑧(𝑥) ⊗ 𝜙𝑧(𝑦) in all these cases. Consequently,
𝐴(𝑎𝑠𝑏𝑡) is a positive semi-definite operator. □

Remark 5.6. We note that the arguments and conclusions in Remark 5.7 in [51]
holds after P has been replaced by P𝐸 .

6. Some consequences

In this section we explain some consequences of the results in previous section.
We omit the proofs since they are the same as corresponding results in Section 6
in [51], after the weight class P has been replaced by P𝐸 . It follows for example
from Proposition 5.2, that 𝑠𝐴1 (1/𝑣, 𝑣) is stable under composition with odd entire
analytic functions, when 𝑣 is submultiplicative,

Thereafter we explain how the definition of Toeplitz operators can be ex-
tended to include appropriate dilations of 𝑠𝑤𝑝 as permitted Toeplitz symbols.

We start by considering compositions of elements in 𝑠𝐴1 (1/𝑣, 𝑣) with ana-
lytic functions. In these considerations we restrict ourself to the case when 𝑣 =
𝑣 ∈ P𝐸(R

2𝑑) is submultiplicative. We note that each element in 𝑠𝐴1 (1/𝑣, 𝑣)
is a continuous function which turns to zero at infinity, since (5.6) shows that
𝑠𝐴1 (1/𝑣, 𝑣) ↪→ 𝐶𝐵(R

2𝑑).
A part of these investigations concerns 𝜎-positive functions and distributions,

and it is convenient to let 𝐶+(R
2𝑑) denote the set of all continuous functions on

R2𝑑, which are 𝜎-positive (cf. [44]).
It follows that any product of odd numbers of elements in 𝑠𝐴1 (1/𝑣, 𝑣) are

again in 𝑠𝐴1 (1/𝑣, 𝑣). In fact, assume that 𝑎1, . . . , 𝑎𝑁 ∈ 𝑠𝐴1 (1/𝑣, 𝑣), ∣𝛼∣ is odd, and
that 𝑡𝑗 = 1. Then it follows from Theorem 5.2 that 𝑎𝛼1

1 ⋅ ⋅ ⋅ 𝑎𝛼𝑁

𝑁 ∈ 𝑠𝐴1 (1/𝑣, 𝑣), and

∥𝑎𝛼1
1 ⋅ ⋅ ⋅𝑎𝛼𝑁

𝑁 ∥𝑠𝐴1 (1/𝑣,𝑣) ≤ 𝐶
𝑑∣𝛼∣
0

∏
∥𝑎𝑗∥𝛼𝑗

𝑠𝐴1 (1/𝑣,𝑣)
, (6.1)

for some constant 𝐶0 which is independent of 𝛼 and 𝑑.
Furthermore, if in addition 𝑎1, . . . , 𝑎𝑁 are 𝜎-positive, then the same is true

for 𝑎𝛼1
1 ⋅ ⋅ ⋅ 𝑎𝛼𝑁

𝑁 . The following result is an immediate consequence of these obser-
vations.
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Proposition 6.1. Let 𝑎1, . . . , 𝑎𝑁 ∈ 𝑠𝐴1 (1/𝑣, 𝑣), where 𝑣 = 𝑣 ∈ P𝐸(R
2𝑑) is submul-

tiplicative, 𝐶0 is the same as in (6.1), and let 𝑅1, . . . , 𝑅𝑁 > 0. Also let 𝑓, 𝑔 be odd
analytic functions from the polydisc

{ 𝑧 ∈ C𝑁 ; ∣𝑧𝑗 ∣ < 𝐶0𝑅𝑗 }
to C, with expansions

𝑓(𝑧) =
∑
𝛼

𝑐𝛼𝑧
𝛼 and 𝑔(𝑧) =

∑
𝛼

∣𝑐𝛼∣𝑧𝛼.

Then 𝑓(𝑎) = 𝑓(𝑎1, . . . , 𝑎𝑁) is well defined and belongs to 𝑠𝐴1 (1/𝑣, 𝑣), and

∥𝑓(𝑎)∥𝑠𝐴1 (1/𝑣,𝑣) ≤ 𝑔(𝐶0∥𝑎1∥𝑠𝐴1 (1/𝑣,𝑣), . . . , 𝐶0∥𝑎𝑁∥𝑠𝐴1 (1/𝑣,𝑣)).
If in addition 𝑎1, . . . , 𝑎𝑁 ∈ 𝐶+(R

2𝑑), then 𝑔(𝑎) ∈ 𝐶+(R
2𝑑).

For rank one elements we also have the following generalization of [44, Propo-
sition 4.10].

Proposition 6.2. Let 𝑣, 𝑣1 ∈ P𝐸(R
2𝑑) are even, submultiplicative and fulfill 𝑣1 =

𝑣( ⋅ /√2 ). Also let 𝑢 ∈ 𝑠𝑤∞(1/𝜔, 𝜔) be an element of rank one, and let 𝑎(𝑋) =

∣𝑢(𝑋/
√
2)∣2. Then 𝑎 ∈ 𝑠𝑤1 (1/𝑣1, 𝑣1), and Op𝑤(𝑎) ≥ 0.

We finish the section by applying our results on Toeplitz operators (cf. (1.22)).
The following result, parallel to Theorems 3.1 and 3.5 in [53], generalizes [46,
Proposition 4.5].

Theorem 6.3. Let 𝑝 ∈ [1,∞] and 𝜔, 𝜔0, 𝜗, 𝜗𝑗 ∈ P𝐸(R
2𝑑) for 𝑗 = 0, 1, 2 be such

that

𝜔(𝑋1 −𝑋2) ≲ 𝜔0(
√
2𝑋1)𝜗2(𝑋2), 𝜗(𝑋1 −𝑋2) ≲ 𝜗0(

√
2𝑋1)𝜗1(𝑋2).

Then the definition of Tpℎ1,ℎ2
(𝑎) extends uniquely to each 𝑎 ∈ 𝒮 ′1/2(R2𝑑) and

ℎ𝑗 ∈𝑀2
(𝜗𝑗)

for 𝑗 = 1, 2 such that 𝑏 = 𝑎(
√
2 ⋅ ) ∈ 𝑠𝑤𝑝 (1/𝜔0, 𝜗0), and

∥Tpℎ1,ℎ2
(𝑎)∥I𝑝(𝑀2

(1/𝜔)
,𝑀2

(𝜗)
) ≲ ∥𝑎(

√
2 ⋅ )∥𝑠𝑤𝑝 (1/𝜔0,𝜗0)∥ℎ1∥𝑀2

(𝜗1)
∥ℎ2∥𝑀2

(𝜗2)
.

Furthermore, if ℎ1 = ℎ2 and Op𝑤(𝑏) ≥ 0, then Tpℎ1,ℎ2
(𝑎) ≥ 0.

Proof. Since 𝑊ℎ2,ℎ1 ∈ 𝑠𝑤1 (1/𝜗1, 𝜗2), the result is an immediate consequence of
(1.23) and Theorem 0.3. □
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Appendix

In this appendix we prove basic results for pseudo-differential operators with sym-
bols in modulation spaces, where the corresponding weights belong to P𝐸 . The
arguments are in general similar as corresponding results in [47, 50].

The continuity results that we are focused on are especially Theorems A.1–
A.3. Here Theorem A.1 is the extension of Feichtinger–Gröchenig’s kernel theorem
for modulation spaces with weights in P𝐸 . This result corresponds to Schwartz
kernel theorem in distribution theory. The second result (Theorem A.2) concerns
pseudo-differential operators with symbols in modulation spaces, which act on
modulation spaces. Theorem A.3 gives necessary and sufficient conditions on sym-
bols such that corresponding pseudo-differential operators are Schatten–von Neu-
mann operators of certain degrees. Finally in Propositions A.4 and A.5 we establish
preparatory results on Wigner distributions and pseudo-differential calculus in the
context of modulation space theory.

Before stating the results we recall same facts on distribution kernels to
linear operators in the background of Gelfand–Shilov spaces. Let 𝑠 ≥ 1/2 and let
𝐾 ∈ 𝒮 ′𝑠(R𝑑1+𝑑2). Then 𝐾 gives rise to a linear and continuous operator 𝑇 = 𝑇𝐾
from 𝒮𝑠(R𝑑1) to 𝒮 ′𝑠(R𝑑2), defined by the formula

𝑇𝑓(𝑥) = ⟨𝐾(𝑥, ⋅ ), 𝑓⟩, (A.1)

which should be interpreted as (1.9) when 𝑓 ∈ 𝒮𝑠(R𝑑1) and 𝑔 ∈ 𝒮𝑠(R𝑑2).

Before establishing the corresponding result for modulation with weights in
P𝐸 , we present appropriate conditions on the involved weights and Lebesgue
exponent. The involved weights are related to each others by the formulas

𝜔2(𝑥, 𝜉)

𝜔1(𝑦, 𝜂)
≲ 𝜔(𝑥, 𝑦, 𝜉,−𝜂), 𝑥, 𝜉 ∈ R2𝑑2 , 𝑦, 𝜂 ∈ R2𝑑1 (A.2)

or
𝜔2(𝑥, 𝜉)

𝜔1(𝑦, 𝜂)
≍ 𝜔(𝑥, 𝑦, 𝜉,−𝜂), 𝑥, 𝜉 ∈ R2𝑑2 , 𝑦, 𝜂 ∈ R2𝑑1 , (A.2)′

and

𝜔(𝑥, 𝑦, 𝜉, 𝜂) ≍ 𝜔0((1 − 𝑡)𝑥+ 𝑡𝑦, 𝑡𝜉 − (1− 𝑡)𝜂, 𝜉 + 𝜂, 𝑦 − 𝑥),

𝑥, 𝑦, 𝜉, 𝜂 ∈R𝑑, (A.3)

or equivalently,

𝜔0(𝑥, 𝜉, 𝜂, 𝑦) ≍ 𝜔(𝑥− 𝑡𝑦, 𝑥+ (1− 𝑡)𝑦, 𝜉 + (1− 𝑡)𝜂,−𝜉 + 𝑡𝜂),

𝑥, 𝑦, 𝜉, 𝜂 ∈R𝑑. (A.3)′

We note that (A.2) and (A.3) imply

𝜔2(𝑥, 𝜉)

𝜔1(𝑦, 𝜂)
≲ 𝜔0((1 − 𝑡)𝑥+ 𝑡𝑦, 𝑡𝜉 + (1− 𝑡)𝜂, 𝜉 − 𝜂, 𝑦 − 𝑥), (A.4)
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and that (A.2)′ and (A.3) imply

𝜔2(𝑥, 𝜉)

𝜔1(𝑦, 𝜂)
≍ 𝜔0((1 − 𝑡)𝑥+ 𝑡𝑦, 𝑡𝜉 + (1− 𝑡)𝜂, 𝜉 − 𝜂, 𝑦 − 𝑥), (A.4)′

The Lebesgue exponents of the modulation spaces should satisfy conditions
of the form

1/𝑝1 − 1/𝑝2 = 1/𝑞1 − 1/𝑞2 = 1− 1/𝑝− 1/𝑞, 𝑞 ≤ 𝑝2, 𝑞2 ≤ 𝑝, (A.5)

or
𝑝1 ≤ 𝑝 ≤ 𝑝2, 𝑞1 ≤ min(𝑝, 𝑝′) and 𝑞2 ≥ max(𝑝, 𝑝′). (A.6)

Theorem A.1. Let 𝑡 ∈ R, 𝜔𝑗 ∈ P𝐸(R
2𝑑𝑗 ) for 𝑗 = 1, 2 and 𝜔 ∈ P𝐸(R

2𝑑2+2𝑑1) be
such that (A.2)′ holds. Also let 𝑇 is a linear and continuous map from 𝒮1/2(R𝑑1)

to 𝒮 ′1/2(R𝑑2). Then the following conditions are equivalent:

(1) 𝑇 extends to a continuous mapping from 𝑀1
(𝜔1)

(R𝑑1) to 𝑀∞
(𝜔2)

(R𝑑2);

(2) there is a unique 𝐾 ∈ 𝑀∞
(𝜔)(R

𝑑2+𝑑1) such that (A.1) holds for every 𝑓 ∈
𝒮1/2(R𝑑1);

(3) if in addition 𝑑1 = 𝑑2 = 𝑑 and (A.3) holds, then there is a unique 𝑎 ∈
𝑀∞
(𝜔0)

(R2𝑑) such that 𝑇𝑓 = Op𝑡(𝑎)𝑓 when 𝑓 ∈ 𝒮1/2(R𝑑).

Furthermore, if (1)–(2) are fulfilled, then ∥𝑇 ∥𝑀1
(𝜔1)

→𝑀∞
(𝜔2)

≍ ∥𝐾∥𝑀∞
(𝜔)

, and if

in addition 𝑑1 = 𝑑2 and 𝑇 = Op𝑡(𝑎) in (3), then ∥𝐾∥𝑀∞
(𝜔)
≍ ∥𝑎∥𝑀∞

(𝜔0)
.

Theorem A.2. Let 𝑡 ∈ R and 𝑝, 𝑞, 𝑝𝑗, 𝑞𝑗 ∈ [1,∞] for 𝑗 = 1, 2, satisfy (A.5). Also
let 𝜔0 ∈ P𝐸(R

2𝑑 ⊕R2𝑑) and 𝜔1, 𝜔2 ∈ P𝐸(R
2𝑑) satisfy (A.4). If 𝑎 ∈ 𝑀𝑝,𝑞

(𝜔)(R
2𝑑),

then Op𝑡(𝑎) from 𝒮1/2(R𝑑) to 𝒮 ′1/2(R𝑑) extends uniquely to a continuous mapping

from 𝑀𝑝1,𝑞1
(𝜔1)

(R𝑑) to 𝑀𝑝2,𝑞2
(𝜔2)

(R𝑑), and

∥Op𝑡(𝑎)∥𝑀𝑝1,𝑞1
(𝜔1)

→𝑀
𝑝2,𝑞2
(𝜔2)

≲ ∥𝑎∥𝑀𝑝,𝑞
(𝜔0)

. (A.7)

Moreover, if in addition 𝑎 belongs to the closure of 𝒮1/2 under the 𝑀𝑝,𝑞
(𝜔0)

norm, then Op𝑡(𝑎) : 𝑀
𝑝1,𝑞1
(𝜔1)

→𝑀𝑝2,𝑞2
(𝜔2)

is compact.

Theorem A.3. Let 𝑡 ∈ R and 𝑝, 𝑞, 𝑝𝑗, 𝑞𝑗 ∈ [1,∞] for 𝑗 = 1, 2, satisfy (A.6). Also
let 𝜔0 ∈P𝐸(R

2𝑑 ⊕R2𝑑) and 𝜔1, 𝜔2 ∈P𝐸(R
2𝑑) satisfy (A.4)′. Then

𝑀𝑝1,𝑞1
(𝜔0)

(R2𝑑) ↪→ 𝑠𝑡,𝑝(𝜔1, 𝜔2) ↪→𝑀𝑝2,𝑞2
(𝜔0)

(R2𝑑).

For the proofs we also need the following extensions of Propositions 4.1 and
4.8 in [49].

Proposition A.4. Let 𝑡 ∈ R, and let 𝑝𝑗 , 𝑞𝑗 , 𝑝, 𝑞 ∈ [1,∞] be such that 𝑝 ≤ 𝑝𝑗 , 𝑞𝑗 ≤ 𝑞,
for 𝑗 = 1, 2, and

1/𝑝1 + 1/𝑝2 = 1/𝑞1 + 1/𝑞2 = 1/𝑝+ 1/𝑞. (A.8)

Also let 𝜔1, 𝜔2 ∈ P𝐸(R
2𝑑) and 𝜔0 ∈P𝐸(R

2𝑑 ⊕R2𝑑) be such that

𝜔0((1− 𝑡)𝑥+ 𝑡𝑦, 𝑡𝜉 + (1 − 𝑡)𝜂, 𝜉 − 𝜂, 𝑦 − 𝑥) ≲ 𝜔1(𝑥, 𝜉)𝜔2(𝑦, 𝜂). (A.9)
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Then the map (𝑓1, 𝑓2) →𝑊 𝑡
𝑓1,𝑓2

from 𝒮 ′1/2(R𝑑)× 𝒮 ′1/2(R𝑑) to 𝒮 ′1/2(R2𝑑) restricts

to a continuous mapping from 𝑀𝑝1,𝑞1
(𝜔1)

(R𝑑)×𝑀𝑝2,𝑞2
(𝜔2)

(R𝑑) to 𝑀𝑝,𝑞
(𝜔0)

(R2𝑑), and

∥𝑊 𝑡
𝑓1,𝑓2∥𝑀𝑝,𝑞

(𝜔0)
≲ ∥𝑓1∥𝑀𝑝1,𝑞1

(𝜔1)
∥𝑓2∥𝑀𝑝2,𝑞2

(𝜔2)
(A.10)

when 𝑓1, 𝑓2 ∈ 𝒮 ′1/2(R𝑑).

Proposition A.5. Let 𝑝 ∈ [1,∞], 𝜔𝑗 ∈ P𝐸(R
2𝑑𝑗), 𝑗 = 1, 2, 𝜔 ∈ P𝐸(R

2𝑑2+2𝑑1),
and let 𝑇 be a linear and continuous operator from 𝒮1/2(R𝑑1) to 𝒮 ′1/2(R𝑑2) with

distribution kernel 𝐾 ∈ 𝒮 ′1/2(R𝑑2+𝑑1). Then the following is true:

(1) if 𝑑1 = 𝑑2 = 𝑑 and 𝜔0 ∈ P𝐸(R
2𝑑 ⊕ R2𝑑) satisfy (A.3)′, 𝑎 ∈ 𝒮 ′1/2(R2𝑑)

and 𝐾 = 𝐾𝑎,𝑡 is given by (1.7), then 𝐾 ∈ 𝑀𝑝
(𝜔)(R

2𝑑), if and only if 𝑎 ∈
𝑀𝑝
(𝜔0)

(R2𝑑), and

∥𝐾∥𝑀𝑝
(𝜔)
≍ ∥𝑎∥𝑀𝑝

(𝜔0)
;

(2) if (A.2)′ holds, then 𝑇 ∈ I2(𝑀
2
(𝜔1)

,𝑀2
(𝜔2)

), if and only if 𝐾 ∈𝑀2
(𝜔)(R

𝑑2+𝑑1),

and then
∥𝑇 ∥I2 ≍ ∥𝐾∥𝑀2

(𝜔)
. (A.11)

For the proofs we note that (A.9) is the same as

𝜔0(𝑥, 𝜉, 𝜂, 𝑦) ≲ 𝜔1(𝑥− 𝑡𝑦, 𝜉 + (1− 𝑡)𝜂)𝜔2(𝑥+ (1− 𝑡)𝑦, 𝜉 − 𝑡𝜂). (A.9)′

Proof of Proposition A.4. We only prove the result when 𝑝, 𝑞 < ∞. The straight-
forward modifications to the cases when 𝑝 = ∞ or 𝑞 = ∞ are left for the reader.
Let 𝜙1, 𝜙2 ∈ Σ1(R

𝑑) ∖ 0, and let Φ = 𝑊 𝑡
𝜙1,𝜙2

. Then Fourier’s inversion formula
gives

(𝑉Φ(𝑊
𝑡
𝑓1,𝑓2))(𝑥, 𝜉, 𝜂, 𝑦)

= 𝑒−𝑖⟨𝑦,𝜉⟩𝐹1(𝑥− 𝑡𝑦, 𝜉 + (1− 𝑡)𝜂)𝐹2(𝑥+ (1 − 𝑡)𝑦, 𝜉 − 𝑡𝜂),

where 𝐹𝑗 = 𝑉𝜙𝑗𝑓𝑗. By applying the 𝐿𝑝,𝑞(𝜔)-norm on the latter equality, and using

(A.9)′, it follows from Minkowski’s inequality that

∥𝑊 𝑡
𝑓1,𝑓2∥𝑀𝑝,𝑞

(𝜔0)
≲

(∥𝐺1 ∗𝐺2∥𝐿𝑟

)1/𝑝 ≤ (∫
𝐻(𝜂) 𝑑𝜂

)1/𝑞
,

where 𝐺𝑗 = ∣𝐹𝑗𝜔𝑗 ∣𝑝, 𝑟 = 𝑞/𝑝 ≥ 1 and

𝐻(𝜂) =
(∫ (∫ ( ∫

𝐺1(𝑦 − 𝑥, 𝜂 − 𝜉)𝐺2(𝑥, 𝜉) 𝑑𝑥
)𝑟

𝑑𝑦
)1/𝑟

𝑑𝜉
)𝑟

.

Now let 𝑟𝑗 , 𝑠𝑗 ∈ [1,∞] for 𝑗 = 1, 2 be chosen such that

1/𝑟1 + 1/𝑟2 = 1/𝑠1 + 1/𝑠2 = 1 + 1/𝑟.

Then Young’s inequality gives

𝐻(𝜂) ≤
( ∫

∥𝐺1( ⋅ , 𝜂 − 𝜉)∥𝐿𝑟1∥𝐺2( ⋅ , 𝜉)∥𝐿𝑟2 𝑑𝜉
)𝑟
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Hence an other application of Young’s inequality gives

∥𝑊 𝑡
𝑓1,𝑓2∥𝑀𝑝,𝑞

(𝜔0)
≲

( ∫
𝐻(𝜂) 𝑑𝜂

)1/𝑞
≲

(∥𝐺1∥𝐿𝑟1,𝑠1∥𝐺2∥𝐿𝑟2,𝑠2

)1/𝑝
By letting 𝑝𝑗 = 𝑝𝑟𝑗 and 𝑞𝑗 = 𝑞𝑠𝑗 , the last inequality gives (A.10). The proof is
complete. □

Proof of Proposition A.5. (1) Let Φ,Ψ ∈ 𝒮1/2(R2𝑑) ∖ 0 be such that

Φ(𝑥, 𝑦) = (F2Ψ)((1− 𝑡)𝑥+ 𝑡𝑦, 𝑥− 𝑦).

Then it follows by straightforward applications of Fourier’s inversion formula that

∣(𝑉Φ𝐾𝑎,𝑡)(𝑥, 𝑦, 𝜉, 𝜂)∣ ≍ ∣(𝑉Ψ𝑎)((1 − 𝑡)𝑥+ 𝑡𝑦, 𝑡𝜉 − (1− 𝑡)𝜂, 𝜉 + 𝜂, 𝑦 − 𝑥)∣.
The assertion now follows by applying the 𝐿𝑝(𝜔) norm on the last equality.

Next we prove (2). Let {𝑓𝑗} ∈ ON(𝑀2
𝜔1
) and {ℎ𝑘} ∈ ON(𝑀2

𝜔2
). Then

∥𝑇 ∥2I2
=

∑
𝑗,𝑘

∣(𝑇𝑓𝑗, ℎ𝑘)𝑀2
(𝜔2)

)∣2 =
∑
𝑗,𝑘

∣(𝐾,ℎ𝑘 ⊗ 𝑓𝑗)𝑀2
(𝜔2)

⊗𝐿2 ∣2 (A.12)

Next we consider the operator 𝑇 ′𝜗 = 𝐼𝑀2
(𝜔2)

⊗ ℛ1/𝜗, where 𝜗(𝑥, 𝜉) = 𝜔1(𝑥,−𝜉),
which acts from 𝑀2

(𝜔2)
⊗𝑀2

(1/𝜗) to 𝑀2
(𝜔2)

⊗𝑀2
(𝜗) (Hilbert tensor products). Then

(A.12) gives

∥𝑇 ∥2I2
=

∑
𝑗,𝑘

∣(𝑇 ′𝜔0
𝐾,ℎ𝑘 ⊗ 𝑓𝑗)𝑀2

(𝜔2)
⊗𝑀2

(𝜔1)
∣2

= ∥𝑇 ′𝜔0
𝐾∥2𝑀2

(𝜔2)
⊗𝑀2

(𝜔0)
= ∥𝐾∥2𝑀2

(𝜔2)
⊗𝑀2

(1/𝜔0)
= ∥𝐾∥2𝑀2

(𝜔)
,

and the result follows. The proof is complete. □

Proof of Theorem A.1. Let 𝑇 be extendable to a continuous map from𝑀1
(𝜔1)

(R𝑑1)

to 𝑀∞
(𝜔2)

(R𝑑2). It follows from [32, Theorem 2.2] and Remark 1.6 that (A.1) holds

for some 𝐾 ∈ 𝒮 ′1/2(R𝑑2+𝑑1). We shall prove that 𝐾 belongs to 𝑀∞
(𝜔).

From the assumptions and Proposition 1.5 (3) it follows that

∣(𝐾, 𝑔 ⊗ 𝑓)𝐿2 ∣ ≲ ∥𝑓∥𝑀1
(𝜔1)
∥𝑔∥𝑀1

(1/𝜔2)
, (A.13)

when 𝑓 ∈ 𝒮1/2(R𝑑1) and 𝑔 ∈ 𝒮1/2(R𝑑2). By letting Φ = 𝑔 ⊗ 𝑓 be fixed, and
replacing 𝑓 and 𝑔 with

𝑓𝑦,𝜂 = 𝑒−𝑖⟨⋅,𝜂⟩𝑓(⋅ − 𝑦) and 𝑔𝑥,𝜉 = 𝑒𝑖⟨⋅,𝜉⟩𝑓(⋅ − 𝑥),

(A.13) takes the form

∣(𝑉Φ𝐾)(𝑥, 𝑦, 𝜉, 𝜂)∣ ≲ ∥𝑓𝑦,𝜂∥𝑀1
(𝜔1)
∥𝑔𝑥,𝜉∥𝑀1

(1/𝜔2)
. (A.13)′
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If 𝑣 ∈ P𝐸 is chosen such that 𝜔1 is 𝑣-moderate, and 𝜙1 ∈ 𝒮1/2 ∖ 0, then

∥𝑓𝑦,𝜂∥𝑀1
(𝜔1)

≍
∫∫

∣(𝑉𝜙1𝑓)(𝑧 − 𝑦, 𝜁 + 𝜂)𝜔1(𝑧, 𝜁)∣ 𝑑𝑧𝑑𝜁
≲ 𝜔1(𝑦,−𝜂)∥𝑓∥𝑀1

(𝑣)
≍ 𝜔1(𝑦,−𝜂).

In the same way we get

∥𝑔𝑥,𝜉∥𝑀1
(1/𝜔2)

≲ 𝜔2(𝑥, 𝜉)
−1.

If these estimates are inserted into (A.13)′, we obtain

∣(𝑉Φ𝐾)(𝑥, 𝑦, 𝜉, 𝜂)𝜔(𝑥, 𝑦, 𝜉, 𝜂)∣ ≲ 1,

By taking the supremum of the left-hand side it follows that ∥𝐾∥𝑀∞
(𝜔)

<∞. Hence

𝐾 ∈𝑀∞
(𝜔), and we have proved that (1) implies (2).

By straightforward computations it also follows that (2) gives (1). The details
are left for the reader.

The equivalence between (2) and (3) follows immediately from Proposition
A.5. The proof is complete. □

Proof of Theorem A.2. The conditions on 𝑝𝑗 and 𝑞𝑗 implies that

𝑝′ ≤ 𝑝1, 𝑞1, 𝑝
′
2, 𝑞

′
2 ≤ 𝑞′, 1/𝑝1 + 1/𝑝′2 = 1/𝑞1 + 1/𝑞′2 = 1/𝑝′ + 1/𝑞′.

Hence Proposition A.4, and (A.4) show that

∥𝑊 𝑡
𝑔,𝑓∥𝑀𝑝′,𝑞′

(1/𝜔)

≲ ∥𝑓∥𝑀𝑝1,𝑞1
(𝜔1)

∥𝑔∥
𝑀

𝑝′2,𝑞′2
(1/𝜔2)

when 𝑓 ∈𝑀𝑝1,𝑞1
(𝜔1)

(R𝑑) and 𝑔 ∈𝑀
𝑝′2,𝑞

′
2

(1/𝜔2)
(R𝑑).

The continuity is now an immediate consequence of (1.14) and Proposition
1.5 (4), except for the case 𝑝 = 𝑞′ =∞, which we need to consider separately.

Therefore assume that 𝑝 = ∞, and 𝑞 = 1, and let 𝑎 ∈ 𝒮1/2(R2𝑑). Then
𝑝1 = 𝑝2 and 𝑞1 = 𝑞2, and it follows from Proposition A.4 and the first part of the
proof that 𝑊 𝑡

𝑔,𝑓 ∈𝑀1,∞
(1/𝜔0)

, and that (A.7) holds. In particular,

∣(Op𝑡(𝑎)𝑓, 𝑔))∣ ≲ ∥𝑓∥𝑀𝑝1,𝑞1
(𝜔1)

∥𝑔∥
𝑀

𝑝′1,𝑞′1
(1/𝜔2)

,

and the result follows when 𝑎 ∈ 𝒮1/2. The result now follows for general 𝑎 ∈𝑀∞,1
(𝜔0)

,

by taking a sequence {𝑎𝑗}𝑗≥1 in 𝒮1/2, which converges narrowly to 𝑎. (For narrow
convergence see Theorems 4.15 and 4.19, and Proposition 4.16 in [52]).

It remains to prove that if 𝑎 belongs to the closure of 𝒮1/2 under 𝑀𝑝,𝑞
(𝜔0)

norm, then Op𝑡(𝑎) : 𝑀𝑝1,𝑞1
(𝜔1)

→ 𝑀𝑝2,𝑞2
(𝜔2)

is compact. As a consequence of Theorem

A.3, it follows that Op𝑡(𝑎0) is compact when 𝑎0 ∈ 𝒮1/2, since 𝒮1/2 ↪→ 𝑀1
(𝜔0)

when 𝜔0 ∈ P𝐸 , and that every trace-class operator is compact. The compactness
of Op𝑡(𝑎) now follows by approximating 𝑎 with elements in 𝒮1/2. The proof is
complete. □
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Proof of Theorem A.3. The first embedding in

𝑀∞,1
(𝜔0)

↪→ 𝑠𝑡,∞(𝜔1, 𝜔2) ↪→𝑀∞
(𝜔0)

follows from Theorem A.2, and the second one from Proposition 1.5 (2) and The-
orem A.1.

By Propositions 1.5 (3) and 4.7, Theorem 4.8 and duality, the latter inclusions
give

𝑀1
(𝜔0)

↪→ 𝑠𝑡,1(𝜔1, 𝜔2) ↪→𝑀1,∞
(𝜔0)

,

and we have proved the result when 𝑝 = 1 and when 𝑝 = ∞. Furthermore, by
Proposition A.5 we have 𝑀2

(𝜔0)
= 𝑠𝑡,2(𝜔1, 𝜔2), and the result also holds in the case

𝑝 = 2. The result now follows for general 𝑝 from these cases and interpolation.
(See, e.g., Proposition 5.8 in [52].) The proof is complete. □
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Operator Invariance

Leon Cohen

Abstract. Linear time invariant (LTI) systems have produced a rich set of
ideas including the concepts of convolution, impulse response function, causal-
ity, and stability, among others. We discuss how these concepts are generalized
when we consider invariance other than time shift invariance. We call such
systems linear operator invariant systems because the invariance is character-
ized by an operator. In the standard case of LTI systems the relation between
input and output function in the Fourier domain is multiplication. We gener-
alize this and show that multiplication still holds in the operator transform
domain. Transforming back to the time domain defines generalized convolu-
tion.

Mathematics Subject Classification (2010). Primary 47G30, 42B10, 44A05.

Keywords. Linear operator invariant systems, operator transform domain,
generalized convolution.

1. Introduction

Many problems in physics, engineering, and mathematics can be formulated as
input-output relations that are characterized by a linear system operator L [6].
One writes

𝑦(𝑡) = L𝑥(𝑡) (1.1)

where 𝑥(𝑡) is said to be the input and 𝑦(𝑡) the output. An important class of
system operators are those that are “linear time invariant” (LTI) systems which
means that if the input is shifted by an amount 𝑡0 then the output will be shifted
by the same amount

𝑦(𝑡+ 𝑡0) = L𝑥(𝑡 + 𝑡0) linear time invariant system. (1.2)

Over the last hundred years the theory of linear time invariant systems has devel-
oped into a rich subject with many associated ideas including convolution, impulse

Work supported by the Office of Naval Research.
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response function, causality, and stability, among others. Our aim here is to dis-
cuss how other possible invariant systems may be formulated and to generalize the
concepts associated with LTI systems.

The notation we use is that operators are capital bold face. All integrals go
from −∞ to ∞ unless noted otherwise. The commutator between two operators
is denote by

[A,B] = AB−BA. (1.3)

Throughout the paper all functions will be supposed to belong to suitably regular
function spaces in order that all performed operations makes sense.

2. How does time invariance arise?

Physically it is clear how “time invariance” can be imposed on Eq. (1.1) to get
Eq. (1.2)[6]. To do it mathematically we need an operator that accomplishes the
desired result. The time shift operator is 𝑒𝑖𝑡0D𝑡

𝑒𝑖𝑡0D𝑡𝑓(𝑡) = 𝑓(𝑡+ 𝑡0) (2.1)

where

D𝑡 =
1

𝑖

𝑑

𝑑𝑡
(2.2)

and 𝑓(𝑡) is any function [2, 7]. Therefore, if we operate on Eq. (1.1) we have

𝑒𝑖𝑡0D𝑡𝑦(𝑡) = 𝑒𝑖𝑡0D𝑡𝐿𝑥(𝑡) (2.3)

giving

𝑦(𝑥+ 𝑡0) = 𝑒𝑖𝑡0D𝑡𝐿𝑥(𝑡). (2.4)

To make this equal to Eq. (1.2) we have to be able to say that

𝑒𝑖𝑡0D𝑡L = L𝑒𝑖𝑡0D𝑡 (2.5)

and therefore the condition for time invariance is that

[𝑒𝑖𝑡0D𝑡 ,L] = 0. (2.6)

Note that Eq. (2.6) implies that

[D𝑡,L] = 0 (2.7)

as can be readily proven by differentiating Eq. (2.6) with regard to 𝑡0 and sub-
sequently setting 𝑡0 = 0. If indeed it is the case that Eq. (2.7) is true then we
have

𝑦(𝑥+ 𝑡0) = 𝑒𝑖𝑡0D𝑡L𝑥(𝑡)

= L𝑒𝑖𝑡0D𝑡𝑥(𝑡)

= L𝑥(𝑡 + 𝑡0) if [D𝑡,L] = 0 (time invariant system). (2.8)
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Generalized operator invariance. One way to generalize time invariance to arbitrary
invariance is to associate a physical attribute by a Hermitian operator A. We
operate with 𝑒𝑖𝑎0A on Eq. (1.1), with 𝑎0 real, to obtain

𝑒𝑖𝑎0A𝑦(𝑡) = L𝑒𝑖𝑎0A𝑥(𝑡) if [A,L] = 0 (“𝑎” invariant system) (2.9)

and therefore we say that for a system represented by L, the system is invariant
with respect to the physical quantity represented by A if L, and A commute. We
call such systems linear operator invariant systems

3. How does the system function arise?

The remarkable property of linear invariant systems is that if we know the response
to a delta function then we explicitly know the response for any other input [1, 2].
In particular if

ℎ(𝑡− 𝑡′) = L𝛿(𝑡− 𝑡′) (3.1)

or
ℎ(𝑡) = L𝛿(𝑡) (3.2)

then

𝑦(𝑡) =

∫ ∞

−∞
ℎ(𝑡− 𝑡′)𝑥(𝑡′)𝑑𝑡. (3.3)

The function ℎ(𝑡) is called the system function, impulse response function, or
Green function. We give the standard proof of this classical result as it will help
us to generalize to arbitrary invariance. Write

𝑥(𝑡) =

∫ ∞

−∞
𝛿(𝑡− 𝑡′)𝑥(𝑡′)𝑑𝑡 (3.4)

and substitute into Eq. (1.1)

𝑦(𝑡) = L𝑥(𝑡) = L

∫ ∞

−∞
𝛿(𝑡− 𝑡′)𝑥(𝑡′)𝑑𝑡. (3.5)

Because of linearity we can put L inside the integral to obtain

𝑦(𝑡) =

∫ ∞

−∞
L𝛿(𝑡− 𝑡′)𝑥(𝑡′)𝑑𝑡 =

∫ ∞

−∞
ℎ(𝑡− 𝑡′)𝑥(𝑡′)𝑑𝑡 (3.6)

which is Eq. (3.3).

Generalization of system function. Notice that in Eq. (3.1) the impulse response
is a function of 𝑡− 𝑡′ which is a characteristic of time invariance. For the general
case, where the operator L is invariant with respect to A, we write

𝑦(𝑡) =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡 (3.7)

and the issue becomes how do we obtain ℎ(𝑡, 𝑡′). We start with

𝑦(𝑡) =

∫ ∞

−∞
L𝛿(𝑡− 𝑡′)𝑥(𝑡′)𝑑𝑡 (3.8)
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and therefore

ℎ(𝑡, 𝑡′) = L 𝛿(𝑡− 𝑡′). (3.9)

We now find the explicit expression for ℎ(𝑡, 𝑡′) that is connected to the operator
A that represents the invariance. It is important to appreciate that even though
L is operating on the delta function of 𝑡− 𝑡′ the result is not generally a function
of 𝑡− 𝑡′; indeed that will only be the case for linear time invariant systems where
the system operator commutes with D𝑡.

There are an infinite number of representations of the delta functions, each
associated with an Hermitian operator as we now explain. Suppose we have a com-
plete and orthogonal set of functions that are the eigenfunctions of the eigenvalue
problem for a Hermitian operator A

A𝑢(𝑎, 𝑡) = 𝑎𝑢(𝑎, 𝑡) (continuous spectrum) (3.10)

A𝑢𝑛(𝑡) = 𝑎𝑛(𝑡)𝑢𝑛(𝑡) (discrete spectrum) (3.11)

then [1, 7, 2]

𝛿(𝑡− 𝑡′) =
∫

𝑢∗(𝑎, 𝑡′)𝑢(𝑎, 𝑡) 𝑑𝑎 (continuous spectrum) (3.12)

𝛿(𝑡− 𝑡′) =
∑
𝑛

𝑢∗𝑛(𝑡′)𝑢𝑛(𝑡) (discrete spectrum). (3.13)

We first consider the continuous spectrum case and subsequently, in Section 9.1,
give the expressions for the discrete case. Substituting Eq. (3.12) into Eq. (3.9) we
have

ℎ(𝑡, 𝑡′) =
∫

𝑢∗(𝑎, 𝑡′)L𝑢(𝑎, 𝑡) 𝑑𝑎 (3.14)

and using Eq. (3.8) we obtain

𝑦(𝑡) =

∫∫
𝑢∗(𝑎, 𝑡′)L𝑢(𝑎, 𝑡)𝑥(𝑡′)𝑑𝑎𝑑𝑡. (3.15)

Now consider the issue of invariance which as discussed means that the operator
A commutes with L. Since commuting operators have common eigenfunctions we
can write

L𝑢(𝑎, 𝑡) = 𝐿(𝑎)𝑢(𝑎, 𝑡) (if A commutes with L) (3.16)

where 𝐿(𝑎) is a function of 𝑎 that of course depends on L. Furthermore we can
obtain 𝐿(𝑎) from

𝐿(𝑎) =

∫
𝑢∗(𝑎, 𝑡)L𝑢(𝑎, 𝑡)𝑑𝑡. (3.17)

Substituting into Eq. (3.17) into Eq. (3.14) results in

ℎ(𝑡, 𝑡′) =
∫

𝑢∗(𝑎, 𝑡′)𝐿(𝑎)𝑢(𝑎, 𝑡) 𝑑𝑎. (3.18)
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4. The transform domain

Since a complete set of functions has been brought in it is natural to examine the
situation in the transform domain. If we have an input function, 𝑥(𝑡), then its
transform, 𝑋(𝑎), in the 𝑎 domain is given by [1, 7, 2]

𝑋(𝑎) =

∫
𝑥(𝑡)𝑢∗(𝑎, 𝑡) 𝑑𝑡 (4.1)

where

𝑥(𝑡) =

∫
𝑋(𝑎)𝑢(𝑎, 𝑡) 𝑑𝑎. (4.2)

𝑋(𝑎) is called the transform of 𝑥(𝑡). For the output we write

𝑌 (𝑎) =

∫
𝑦(𝑡)𝑢∗(𝑎, 𝑡) 𝑑𝑡 (4.3)

𝑦(𝑡) =

∫
𝑌 (𝑎)𝑢(𝑎, 𝑡) 𝑑𝑎. (4.4)

We now derive the input-output relation in the transform domain. Multiply Eq.
(3.7) by 𝑢∗(𝑎, 𝑡) and integrate with respect to 𝑡

𝑌 (𝑎) =

∫
𝑦(𝑡)𝑢∗(𝑎, 𝑡)𝑑𝑡 =

∫
𝑢∗(𝑎, 𝑡)ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′𝑑𝑡

=

∫
𝑢∗(𝑎, 𝑡)ℎ(𝑡, 𝑡′)𝑢(𝑎′, 𝑡′)𝑋(𝑎′)𝑑𝑡𝑑𝑡′𝑑𝑎′. (4.5)

Hence, if we take

𝐻(𝑎, 𝑎′) =
∫

𝑢∗(𝑎, 𝑡)ℎ(𝑡, 𝑡′)𝑢(𝑎′, 𝑡′)𝑑𝑡𝑑𝑡′ (4.6)

then

𝑌 (𝑎) =

∫
𝐻(𝑎, 𝑎′)𝑋(𝑎′)𝑑𝑎′. (4.7)

Also, by inverting Eq. (4.6) we have

ℎ(𝑡, 𝑡′) =
∫

𝑢(𝑎, 𝑡)𝐻(𝑎, 𝑎′)𝑢∗(𝑎′, 𝑡′)𝑑𝑎𝑑𝑎′. (4.8)

Now we impose invariance. Multiply Eq. (3.16) by 𝑢∗(𝑎, 𝑡′) and integrate to
obtain

𝐻(𝑎, 𝑎′) =
∫

𝑢∗(𝑎, 𝑡)𝑢∗(𝑎′′, 𝑡′)𝐿(𝑎′′)𝑢(𝑎′′, 𝑡)𝑢(𝑎′, 𝑡′)𝑑𝑡𝑑𝑡′𝑑𝑎′′ (4.9)

which simplifies to

𝐻(𝑎, 𝑎′) = 𝛿(𝑎− 𝑎′)𝐿(𝑎′). (4.10)

Substituting this into Eq. (4.7) we have

𝑌 (𝑎) = 𝐿(𝑎)𝑋(𝑎). (4.11)
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If we were dealing with the standard LTI case, then in Eq. (4.11) 𝑎 would be
frequency, and 𝑌, 𝐿, and 𝑋 would be the Fourier transforms of the output, sys-
tem function, and input function respectively. In the frequency domain they are
connected by multiplication. What we have shown is that multiplication in the
transform domain holds for any invariant.

4.1. Generalized convolution

In the Fourier case, when we transform Eq. (4.11) back to the time domain we get
convolution. Therefore when we transform Eq. (4.11) back to the time domain we
will get what we call generalized convolution. Multiply Eq. (4.11) with 𝑢(𝑎, 𝑡) and
integrate with respect to 𝑎 to obtain

𝑦(𝑡) =

∫
𝐿(𝑎)𝑋(𝑎)𝑢(𝑎, 𝑡)𝑑𝑎 (4.12)

where we have used Eq. (4.3). Now define

𝑙(𝑡) =

∫
𝐿(𝑎)𝑢(𝑎, 𝑡) 𝑑𝑎 (4.13)

with

𝐿(𝑎) =

∫
𝑙(𝑡)𝑢∗(𝑎, 𝑡) 𝑑𝑡 (4.14)

and substitute into Eq. (4.12) to obtain

𝑦(𝑡) =

∫
𝑙 (𝑡′′)𝑢∗(𝑎, 𝑡′)𝑥(𝑡′)𝑢∗(𝑎, 𝑡′′) 𝑢(𝑎, 𝑡)𝑑𝑎𝑑𝑡′𝑑𝑡′′. (4.15)

We write this as

𝑦(𝑡) =

∫
𝑅(𝑡, 𝑡′, 𝑡′′)𝑥(𝑡′) 𝑙(𝑡′′) 𝑑𝑡′𝑑𝑡′′ (4.16)

where

𝑅(𝑡, 𝑡′, 𝑡′′) =
∫

𝑢(𝑎, 𝑡)𝑢∗(𝑎, 𝑡′)𝑢∗(𝑎, 𝑡′′)𝑑𝑎. (4.17)

We call the left-hand side of Eq. (4.16) the generalized convolution between 𝑥(𝑡)
and 𝑙(𝑡) corresponding to the operator A. As we will see in the examples section
this reduces to ordinary convolution for the Fourier case.

5. Relation between the system function and
the invariance operator

We now address the following problem: Suppose we are given the system function
ℎ(𝑡, 𝑡′) but not the system operator L. How can we tell if a particular operator,
A, commutes with the unknown 𝐿 operator or for invariance to hold? Operate on
Eq. (3.7) with 𝑒𝑖𝑎0A

𝑒𝑖𝑎0A𝑦(𝑡) =

∫ ∞

−∞
𝑒𝑖𝑎0A(𝑡)ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′. (5.1)
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For invariance, hence, we must have

𝑒𝑖𝑎0A𝑦(𝑡) =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑒𝑖𝑎0A(𝑡

′)𝑥(𝑡′)𝑑𝑡′ (5.2)

and therefore the criterion is that∫ ∞

−∞
𝑒𝑖𝑎0A(𝑡)ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑒𝑖𝑎0A(𝑡

′)𝑥(𝑡′)𝑑𝑡′. (5.3)

Note that Eq. (5.3) must be true for any function 𝑥(𝑡). An example of this will be
given for scale in the examples section.

6. Series and parallel connections

Series connections and parallel connections of systems amount, from the math-
ematical point of view, to multiplications and sums of the corresponding linear
operators respectively. We consider them in the following two subsections.

6.1. Series connection

Suppose the output, 𝑦(𝑡), of a linear system (system 1) is the input of another
linear system, 𝑧(𝑡), (system 2). We write

𝑦(𝑡) = L1𝑥(𝑡) (6.1)

𝑧(𝑡) = L2𝑦(𝑡) (6.2)

and we want to be able to write that 𝑧(𝑡) is the output of a third system where
the input is 𝑥(𝑡)

𝑧(𝑡) = L3𝑥(𝑡). (6.3)

This is a series connection for system one and two. Clearly

L3 = L2L1. (6.4)

We now obtain the relationship between the system functions. Writing

𝑦(𝑡) =

∫ ∞

−∞
ℎ1(𝑡, 𝑡

′)𝑥(𝑡′)𝑑𝑡′ (6.5)

𝑧(𝑡) =

∫ ∞

−∞
ℎ2(𝑡, 𝑡

′)𝑦(𝑡′)𝑑𝑡′ (6.6)

𝑧(𝑡) =

∫ ∞

−∞
ℎ3(𝑡, 𝑡

′)𝑥(𝑡′)𝑑𝑡′ (6.7)
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we have

𝑧(𝑡) =

∫ ∞

−∞
ℎ2(𝑡, 𝑡

′)𝑦(𝑡′)𝑑𝑡′ (6.8)

=

∫ ∞

−∞
ℎ2(𝑡, 𝑡

′)
∫ ∞

−∞
ℎ1(𝑡

′, 𝑡′′)𝑥(𝑡′′)𝑑𝑡′′𝑑𝑡′ (6.9)

=

∫ ∞

−∞

{∫ ∞

−∞
ℎ2(𝑡, 𝑡

′)ℎ1(𝑡′, 𝑡′′)𝑑𝑡′
}
𝑥(𝑡′′)𝑑𝑡′′ (6.10)

and therefore

ℎ3(𝑡, 𝑡
′) =

∫ ∞

−∞
ℎ2(𝑡, 𝑡

′′)ℎ1(𝑡′′, 𝑡′)𝑑𝑡′′. (6.11)

In the Fourier domain

𝑍(𝑎) =

∫
𝐻2(𝑎, 𝑎

′)𝑌 (𝑎′)𝑑𝑎′ (6.12)

=

∫
𝐻2(𝑎, 𝑎

′)𝐻1(𝑎′, 𝑎′′)𝑋(𝑎′′)𝑑𝑎′𝑑𝑎′′ (6.13)

and therefore

𝐻3(𝑎, 𝑎
′) =

∫
𝐻2(𝑎, 𝑎

′′)𝐻1(𝑎′′, 𝑎′)𝑑𝑎′′. (6.14)

If we impose invariance by taking

𝐻2(𝑎, 𝑎
′′) = 𝛿(𝑎− 𝑎′′)𝐿2(𝑎′′) (6.15)

𝐻1(𝑎
′′, 𝑎′) = 𝛿(𝑎′ − 𝑎′′)𝐿1(𝑎′′) (6.16)

then

𝐻3(𝑎, 𝑎
′) =

∫
𝛿(𝑎− 𝑎′′)𝐿2(𝑎′′)𝛿(𝑎′ − 𝑎′′)𝐿1(𝑎′′)𝑑𝑎′′ (6.17)

= 𝛿(𝑎− 𝑎′)𝐿2(𝑎′)𝐿1(𝑎′) (6.18)

and therefore

𝐿3(𝑎) = 𝐿2(𝑎)𝐿1(𝑎). (6.19)

6.2. Parallel connection

In a parallel connection we have that the output is given by

𝑧(𝑡) = L2𝑥(𝑡) + L1𝑥(𝑡) (6.20)

= (L2 + L1)𝑥(𝑡). (6.21)

In this case

L3 = L2 + L1 (6.22)

and the impulse response functions also add,

ℎ3(𝑡, 𝑡
′) = ℎ2(𝑡, 𝑡

′) + ℎ1(𝑡
′, 𝑡′). (6.23)
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7. Causality

A causal system is where only the past times affect the output. In terms of the
impulse response function that means

𝑦(𝑡) =

∫ 𝑡

−∞
ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡. (7.1)

That is, the future values do not contribute which means that∫ ∞

𝑡

ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡 = 0. (7.2)

Since this must be true for any function we have that the condition for causality is

ℎ(𝑡, 𝑡′) = 0 for 𝑡 > 𝑡′. (7.3)

8. Stability

The standard definition of stability is that for a bounded input there should be
a bounded output. This is sometimes called the BIBO criterion. To obtain the
condition on the system function for this to be the case we take the absolute value
of Eq. (3.7)

∣𝑦(𝑡)∣ =
∣∣∣∣∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′

∣∣∣∣ ≤ ∫ ∞

−∞
∣ℎ(𝑡, 𝑡′)∣ ∣𝑥(𝑡′)∣ 𝑑𝑡′. (8.1)

Now, if we assume that the input ∣𝑥(𝑡′)∣ is bounded and its highest value is 𝑥max
then

∣𝑦(𝑡)∣ ≤ 𝑥max

∫ ∞

−∞
∣ℎ(𝑡, 𝑡′)∣ 𝑑𝑡′. (8.2)

Hence 𝑦(𝑡) will be bounded if the integral in Eq. (8.2) is a bounded function of 𝑡,
that is ∫ ∞

−∞
∣ℎ(𝑡, 𝑡′)∣ 𝑑𝑡′ <∞ (BIBO stable). (8.3)

9. Summary

We summarize the basic ideas and results we have developed. We have two lin-
ear operators, the system operator, L, and the operator A which represents the
invariant quantity we are interested

𝑦(𝑡) = L𝑥(𝑡) L : the system operator
A : operator that represents the invariant quantity

if [A,L] = 0 we have an “a” invariant system.

Note that the operators L and A operate on functions of time only. We
assume that A is Hermitian and the eigenvalue problem is written as

A𝑢(𝑎, 𝑡) = 𝑎 𝑢(𝑎, 𝑡) (continuous eigenvalues). (9.1)
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Since L commutes with A we can write that

L𝑢(𝑎, 𝑡) = 𝐿(𝑎)𝑢(𝑎, 𝑡) (9.2)

where

𝐿(𝑎) =

∫
𝑢∗(𝑎, 𝑡)L𝑢(𝑎, 𝑡)𝑑𝑡. (9.3)

System function: The system function ℎ(𝑡, 𝑡′) is defined by way of

𝑦(𝑡) =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ (9.4)

and is given by

ℎ(𝑡, 𝑡′) =
∫

𝑢∗(𝑎, 𝑡′)L𝑢(𝑎, 𝑡) 𝑑𝑎 =
∫

𝑢∗(𝑎, 𝑡′) 𝐿(𝑎)𝑢(𝑎, 𝑡) 𝑑𝑎. (9.5)

For invariance with respect to the operator A ℎ(𝑡, 𝑡′) must satisfy∫ ∞

−∞
𝑒𝑖𝑎0A(𝑡)ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑒𝑖𝑎0A(𝑡

′)𝑥(𝑡′)𝑑𝑡′. (9.6)

In the transform domain

𝑌 (𝑎) =

∫ ∞

−∞
𝐻(𝑎, 𝑎′)𝑋(𝑎′)𝑑𝑎′ = 𝐿(𝑎)𝑋(𝑎) (9.7)

where

𝐻(𝑎, 𝑎′) =
∫

𝑢∗(𝑎, 𝑡)ℎ(𝑡, 𝑡′)𝑢(𝑎′, 𝑡′)𝑑𝑡𝑑𝑡′ = 𝛿(𝑎− 𝑎′)𝐿(𝑎). (9.8)

Generalized convolution: The generalized convolution between 𝑥(𝑡) and 𝑙(𝑡) is

𝑦(𝑡) =

∫
𝑅(𝑡, 𝑡′, 𝑡′′)𝑥(𝑡′) 𝑙(𝑡′′)𝑑𝑡′𝑑𝑡′′ (9.9)

where

𝑅(𝑡, 𝑡′, 𝑡′′) =
∫

𝑢(𝑎, 𝑡)𝑢∗(𝑎, 𝑡′)𝑢∗(𝑎, 𝑡′′)𝑑𝑎. (9.10)

9.1. Discrete case

For the discrete case one can write the equivalent equations straightforwardly. We
write

A𝑢𝑛(𝑡) = 𝑎𝑛 𝑢𝑛(𝑡). (9.11)

If L commutes with A

L𝑢𝑛(𝑡) = 𝐿(𝑎𝑛)𝑢𝑛(𝑡) (9.12)

and

𝐿(𝑎𝑛) =

∫
𝑢∗𝑛(𝑡)L𝑢𝑛(𝑡)𝑑𝑡. (9.13)

System function: The system function ℎ(𝑡, 𝑡′) is

𝑦(𝑡) =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ (9.14)



Operator Invariance 183

and is given by

ℎ(𝑡, 𝑡′) =
∑
𝑛

𝑢∗𝑛(𝑡
′)L𝑢𝑛(𝑡) =

∑
𝑛

𝑢∗𝑛(𝑡
′)𝐿(𝑎𝑛)𝑢𝑛(𝑡). (9.15)

For invariance with respect to the operator A ℎ(𝑡, 𝑡′), the condition on the system
function is: ∫ ∞

−∞
𝑒𝑖𝑎0A(𝑡)ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ =

∫ ∞

−∞
ℎ(𝑡, 𝑡′)𝑒𝑖𝑎0A(𝑡

′)𝑥(𝑡′)𝑑𝑡′. (9.16)

In the transform domain

𝑌𝑛(𝑎) =
∑
𝑚

𝐻𝑛𝑚𝑋𝑚 = 𝐿(𝑎𝑛)𝑋𝑛(𝑎) (9.17)

where

𝑋𝑛(𝑎) =

∫
𝑢∗𝑛(𝑡)𝑥(𝑡)𝑑𝑡 (9.18)

𝑌𝑛(𝑎) =

∫
𝑢∗𝑛(𝑡)𝑦(𝑡)𝑑𝑡 (9.19)

𝐻𝑛𝑚 =

∫
𝑢∗𝑛(𝑡)ℎ(𝑡, 𝑡

′)𝑢𝑚(𝑡′)𝑑𝑡𝑑𝑡′ = 𝛿𝑛𝑚𝐿(𝑎𝑛). (9.20)

Generalized convolution: The generalized convolution between 𝑥(𝑡) and 𝑙(𝑡) is

𝑦(𝑡) =

∫
𝑅(𝑡, 𝑡′, 𝑡′′)𝑥(𝑡′) 𝑙(𝑡′′)𝑑𝑡′𝑑𝑡′′ (9.21)

where
𝑅(𝑡, 𝑡′, 𝑡′′) =

∑
𝑛

𝑢𝑛(𝑡)𝑢
∗
𝑛(𝑡

′)𝑢𝑛(𝑡′′). (9.22)

10. Examples

10.1. Example 1: LTI

The linear time invariant case is obtained by taking

A = D𝑡 =
1

𝑖

𝑑

𝑑𝑡
(10.1)

and “a” becomes frequency
𝑎 = 𝜔. (10.2)

The eigenvalue problem
𝐷𝑡𝑢(𝜔, 𝑡) = 𝑐𝑢(𝜔, 𝑡) (10.3)

gives

𝑢(𝜔, 𝑡) =
1√
2𝜋

𝑒𝑖𝑡𝜔. (10.4)

Now consider

L𝑢(𝑎, 𝑡) =
1√
2𝜋

L𝑒𝑖𝑡𝜔 =
1√
2𝜋

𝐿(𝜔)𝑒𝑖𝑡𝜔. (10.5)
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Using Eq. (9.5) we have

ℎ(𝑡, 𝑡′) =
∫

𝑢∗(𝜔, 𝑡′)𝐿(𝜔)𝑢(𝜔, 𝑡) 𝑑𝜔 (10.6)

=
1

2𝜋

∫
𝐿(𝜔) 𝑒𝑖(𝑡−𝑡

′)𝜔 𝑑𝜔. (10.7)

As expected we see that ℎ(𝑡, 𝑡′) is a function of 𝑡− 𝑡′ and therefore we may take

ℎ(𝑡, 𝑡′) = ℎ(𝑡− 𝑡′). (10.8)

Now consider

𝐻(𝜔, 𝜔′) =
∫

𝑢∗(𝜔, 𝑡)ℎ(𝑡, 𝑡′)𝑢(𝜔′, 𝑡′)𝑑𝑡𝑑𝑡′ (10.9)

=
1

2𝜋

∫
𝑒𝑖𝜔𝑡 ℎ(𝑡− 𝑡′)𝑒−𝑖𝜔

′𝑡′𝑑𝑡𝑑𝑡′ (10.10)

= 𝛿(𝜔 − 𝜔′)𝐻(𝜔) (10.11)

which gives

𝐻(𝜔) =
1√
2𝜋

∫
𝑒−𝑖𝜔𝑡 ℎ(𝑡)𝑑𝑡. (10.12)

Comparing with Eq. (10.7) we see that

𝐿(𝜔) = 𝐻(𝜔). (10.13)

Furthermore

𝑌 (𝜔) = 𝐻(𝜔)𝑋(𝜔) (10.14)

which is a standard result of LTI systems.

Now consider convolution. Using Eq. (9.10) we have

𝑦(𝑡) =

∫
𝑅(𝑡, 𝑡′, 𝑡′′)𝑥(𝑡′′) 𝑙(𝑡′)𝑑𝑡′𝑑𝑡′′ (10.15)

where

𝑅(𝑡, 𝑡′, 𝑡′′) =
∫

𝑢(𝜔, 𝑡)𝑢∗(𝜔, 𝑡′)𝑢∗(𝜔, 𝑡′′)𝑑𝜔 (10.16)

=
1

2𝜋

1√
2𝜋

∫
𝑒𝑖𝑡𝜔𝑒−𝑖𝑡

′𝜔𝑒−𝑖𝑡
′′𝜔𝑑𝜔 (10.17)

=
1√
2𝜋

𝛿(𝑡− 𝑡′ − 𝑡′′). (10.18)

Substituting into Eq. (10.15) we obtain

𝑦(𝑡) =
1√
2𝜋

∫
𝑙(𝑡− 𝑡′)𝑥(𝑡′) 𝑑𝑡′ (10.19)

which is the standard convolution.
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10.2. Example 2: Scale

In this section all functions of time are defined only for the positive time axis.
Suppose we take a system function given by

ℎ(𝑡, 𝑡′) =
ℎ(𝑡/𝑡′)

𝑡′
. (10.20)

Is this system function scale invariant? The scale operator, 𝒞, is given by

𝒞 =
1

2
(𝑡𝐷𝑡 +𝐷𝑡𝑡) =

1

2𝑖

(
𝑡
𝑑

𝑑𝑡
+

𝑑

𝑑𝑡
𝑡

)
(10.21)

and has the following fundamental property [3, 2],

𝑒𝑖𝜎𝒞 𝑓(𝑡) = 𝑒𝜎/2 𝑓( 𝑒𝜎𝑡) (10.22)

for real 𝜎. Now we examine the criterion given by Eq. (9.6)∫ ∞

0

𝑒𝑖𝜎𝒞(𝑡)ℎ(𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ =
∫ ∞

0

ℎ(𝑡, 𝑡′)𝑒𝑖𝜎𝒞(𝑡
′)𝑥(𝑡′)𝑑𝑡′ (10.23)

to see whether the system function is scale invariant. Starting with the left-hand
side we have∫ ∞

0

𝑒𝜎/2ℎ( 𝑒𝜎𝑡, 𝑡′)𝑥(𝑡′)𝑑𝑡′ =
∫ ∞

0

𝑒𝜎/2
ℎ( 𝑒𝜎𝑡/𝑡′)

𝑡′
𝑥(𝑡′)𝑑𝑡′ (10.24)

=

∫ ∞

0

𝑒𝜎/2
ℎ(𝑡/𝑡′)

𝑡′
𝑥(𝑒𝜎𝑡′)𝑑𝑡′ (10.25)

=

∫ ∞

0

ℎ(𝑡/𝑡′)
𝑡′

𝑒𝑖𝜎𝒞(𝑡
′)𝑥(𝑡′)𝑑𝑡′. (10.26)

Eq. (10.25) follows from Eq. (10.24) by a simple change of variables, 𝑡′ → 𝑒−𝜎𝑡′.
Hence we have Eq. (10.23) and we have invariance with respect to 𝒞. Explicitly,
we have

𝑒𝑖𝜎𝒞(𝑡)𝑦(𝑡) =
∫ ∞

0

ℎ(𝑡, 𝑡′)𝑒𝑖𝜎𝒞(𝑡
′)𝑥(𝑡′)𝑑𝑡′ (10.27)

which reduces to

𝑦( 𝑒𝜎𝑡) =

∫ ∞

0

ℎ(𝑡, 𝑡′)𝑥( 𝑒𝜎𝑡′)𝑑𝑡′. (10.28)

Since 𝜎 is arbitrary we may write

𝑦( 𝑘𝑡) =

∫ ∞

0

ℎ(𝑡, 𝑡′)𝑥( 𝑘𝑡′)𝑑𝑡′ , 𝑡 ≥ 0, 𝑘 > 0. (10.29)

10.2.1. Transform domain. We now consider the problem in the scale domain. For
that we need the scale eigenfunctions and the scale transform. The eigenvalue
problem 𝒞 𝑢(𝑐, 𝑡) = 𝑐 𝑢(𝑐, 𝑡) gives

𝑢(𝑐, 𝑡) =
1√
2𝜋

𝑒𝑖𝑐 ln 𝑡√
𝑡

, 𝑡 ≥ 0 (10.30)
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which are complete and orthogonal [3],∫ ∞

0

𝑢∗(𝑐′, 𝑡)𝑢(𝑐, 𝑡) 𝑑𝑡=𝛿(𝑐− 𝑐′) (10.31)∫
𝑢∗(𝑐, 𝑡′)𝑢(𝑐, 𝑡) 𝑑𝑐=𝛿(𝑡− 𝑡′) 𝑡, 𝑡′ ≥ 0. (10.32)

The transform pairs are given by

𝑓(𝑡) =
1√
2𝜋

∫
𝐷(𝑐)

𝑒𝑖𝑐 ln 𝑡√
𝑡

𝑑𝑐 ; 𝑡 ≥ 0 (10.33)

and

𝐷(𝑐) =
1√
2𝜋

∫ ∞

0

𝑓(𝑡)
𝑒−𝑖𝑐 ln 𝑡√

𝑡
𝑑𝑡 (10.34)

where 𝐷(𝑐) is called the scale transform of 𝑓(𝑡).
In the transform domain

𝑌 (𝑐) =

∫ ∞

−∞
𝐻(𝑐, 𝑐′)𝑋(𝑐′)𝑑𝑐′ (10.35)

where

𝑌 (𝑐) =
1√
2𝜋

∫ ∞

0

𝑦(𝑡)
𝑒−𝑖𝑐 ln 𝑡√

𝑡
𝑑𝑡 (10.36)

𝑋(𝑐) =
1√
2𝜋

∫ ∞

0

𝑥(𝑡)
𝑒−𝑖𝑐 ln 𝑡√

𝑡
𝑑𝑡 (10.37)

𝐻(𝑐, 𝑐′) =
∫ ∞

0

∫ ∞

0

𝑢∗(𝑐, 𝑡)ℎ(𝑡, 𝑡′)𝑢(𝑐′, 𝑡′)𝑑𝑡𝑑𝑡′. (10.38)

We now evaluate 𝐻(𝑐, 𝑐′)

𝐻(𝑐, 𝑐′) =
∫ ∞

0

∫ ∞

0

𝑢∗(𝑐, 𝑡)
ℎ(𝑡/𝑡′)

𝑡′
𝑢(𝑐′, 𝑡′)𝑑𝑡𝑑𝑡′ (10.39)

which reduces to

𝐻(𝑐, 𝑐′) =𝛿(𝑐− 𝑐′)
∫ ∞

0

𝑒−𝑖𝑐𝑡√
𝑡
ℎ(𝑡)𝑑𝑡. (10.40)

However the scale transform of ℎ(𝑡) is

𝐻(𝑐) =

∫
𝑒−𝑖𝑐𝑡√

𝑡
ℎ(𝑡)𝑑𝑡 (10.41)

and therefore
𝐻(𝑐, 𝑐′) =𝛿(𝑐− 𝑐′)𝐻(𝑐). (10.42)

Convolution theorem. Using Eq. (9.5) we have

𝑅(𝑡, 𝑡′, 𝑡′′) =
1

2𝜋

1√
2𝜋

∫
𝑒𝑖𝑐 ln 𝑡√

𝑡

𝑒−𝑖𝑐 ln 𝑡
′

√
𝑡′

𝑒−𝑖𝑐 ln 𝑡
′′

√
𝑡′′

𝑑𝑐 (10.43)

which reduces to

𝑅(𝑡, 𝑡′, 𝑡′′) =
1√
2𝜋

𝛿(𝑡− 𝑡′𝑡′′) (10.44)
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and therefore

𝑦(𝑡) =
1√
2𝜋

∫ ∞

0

∫ ∞

0

𝛿(𝑡− 𝑡′𝑡′′)𝑥(𝑡′) 𝑙(𝑡′′) 𝑑𝑡′𝑑𝑡′′ (10.45)

which evaluates to

𝑦(𝑡) =
1√
2𝜋

∫ ∞

0

1

𝑡′
𝑥(𝑡′) 𝑙(𝑡/𝑡′) 𝑑𝑡′. (10.46)

This is the convolution theorem for scale between the 𝑥(𝑡) and 𝑙(𝑡).
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Initial Value Problems in
the Time-Frequency Domain

Lorenzo Galleani

Abstract. We transform an initial value problem for a stochastic differential
equation to the time-frequency domain. The result is a deterministic time-
frequency equation whose forcing term incorporates the given set of initial
values. The structure and solution of the time-frequency equation reveal the
spectral properties of the nonstationary random process solution to the sto-
chastic differential equation. By applying our method to the Langevin equa-
tion, we obtain the exact time-frequency spectrum for an arbitrary initial
value.
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1. Introduction

We consider the stochastic differential equation defined as

𝑎𝑛
𝑑𝑛𝑥(𝑡)

𝑑𝑡𝑛
+ ⋅ ⋅ ⋅+ 𝑎1

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝑎0𝑥(𝑡) = 𝑓(𝑡), (1)

where 𝑎0, . . . , 𝑎𝑛 are constant deterministic coefficients, the forcing term 𝑓(𝑡) is
a nonstationary random process, and 𝑥(𝑡) is the nonstationary random process
representing the solution. The processes 𝑓(𝑡) and 𝑥(𝑡) are referred to as the input
and output signal, respectively. A variety of random phenomena can be modeled by
using Eq. (1), such as vibrations of structures [1], electrical and electronic devices
with noisy inputs [2], financial time series [3], and Brownian motion processes [4].

Since 𝑥(𝑡) is a nonstationary random process its properties vary with time,
including the Fourier spectrum. This time variation can be represented by using
time-frequency analysis [5, 6], a body of techniques for the spectral analysis of
nonstationary signals, either deterministic, random, or chaotic [7]. Contrary to
classical spectral analysis, where a unique connection between time and frequency
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exists, namely, the Fourier spectrum, time-frequency analysis provides an infinite
number of representations of the time-varying spectrum of a signal. We consider
the Wigner spectrum [8–10]

𝑊 𝑥(𝑡, 𝜔) =
1

2𝜋

∫ +∞

−∞
𝐸[𝑥∗(𝑡− 𝜏/2)𝑥(𝑡+ 𝜏/2)]𝑒−𝑖𝜏𝜔𝑑𝜏,

obtained by taking the expected value 𝐸 of the Wigner distribution [11, 12]

𝑊𝑥(𝑡, 𝜔) =
1

2𝜋

∫ +∞

−∞
𝑥∗(𝑡− 𝜏/2)𝑥(𝑡 + 𝜏/2)𝑒−𝑖𝜏𝜔𝑑𝜏.

The star sign indicates complex conjugation. Equation (1) can be transformed
to the time-frequency domain of the Wigner spectrum [13–15]. The result of this
transformation is a deterministic time-frequency equation, whose properties clarify
the nature of the nonstationary random process 𝑥(𝑡). In [16] it is proved that the
solution to the time-frequency equation corresponds to the Wigner spectrum of
the solution to the equation in time. In this article we show how to write the
time-frequency equation when we add to Eq. (1) the set of initial values given by

𝑥(0) = 𝑥0, (2)

𝑥(1)(0) = 𝑥1,

...

𝑥(𝑛−1)(0) = 𝑥𝑛−1, (3)

where

𝑥(𝑘)(𝑡) =
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
. (4)

We consider both the case of deterministic and random initial values. We apply
the developed method to the case of the Langevin equation, and we obtain the
exact analytic Wigner spectrum.

The article is organized as follows. In Section 2 we first review the transfor-
mation to the time-frequency domain, and then we show how to add the initial
values. In Section 3 we obtain the Wigner spectrum for the initial value problem
of the Langevin equation.

2. Transformation to the time-frequency domain

We first rewrite Eq. (1) as

𝑎𝑛

𝑛∏
𝑘=1

(𝐷 − 𝜆𝑘)𝑥(𝑡) = 𝑓(𝑡), (5)

where 𝐷 = 𝑑
𝑑𝑡 , and the complex numbers 𝜆1, . . . , 𝜆𝑛 are the roots of the charac-

teristic equation
𝑎𝑛𝜆

𝑛 . . .+ 𝑎1𝜆+ 𝑎0 = 0.
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These roots are referred to as the poles. In general, we can write

𝜆𝑘 = 𝛼𝑘 + 𝑖𝛽𝑘,

where 𝛼𝑘 and 𝛽𝑘 are the real and imaginary parts of 𝜆𝑘, respectively. Equation
(5) can be transformed to the time-frequency equation for the Wigner spectrum
given by [15]

∣𝑎𝑛∣2
4𝑛

𝑛∏
𝑘=1

(∂𝑡 − 𝑝𝑘) (∂𝑡 − 𝑝∗𝑘)𝑊 𝑥(𝑡, 𝜔) = 𝑊 𝑓 (𝑡, 𝜔), (6)

where ∂𝑡 =
∂
∂𝑡 , and 𝑝1, 𝑝

∗
1, . . . , 𝑝𝑛, 𝑝∗𝑛 are the time-frequency poles, defined as

𝑝𝑘 = 2𝛼𝑘 + 2𝑖 (𝛽𝑘 − 𝜔) .

We see that the input of the time-frequency equation is the Wigner spectrum
of the input 𝑓(𝑡), whereas the output 𝑊 𝑥(𝑡, 𝜔) is the Wigner spectrum of the
output 𝑥(𝑡). Since no derivatives with respect to 𝜔 are present, this equation can
be solved as an ordinary differential equation with respect to time. Furthermore,
the Wigner spectrum is a deterministic quantity, and hence the time-frequency
equation is deterministic. We also note that, although the Wigner spectrum is a
nonlinear transformation, the time-frequency equation is still linear.

We now consider the initial value problem

𝑎𝑛

𝑛∏
𝑘=1

(𝐷 − 𝜆𝑘) 𝑥(𝑡) = 𝑓(𝑡),

𝑥(0) = 𝑥0,

𝑥(1)(0) = 𝑥1,

...

𝑥(𝑛−1)(0) = 𝑥𝑛−1,

corresponding to Eq. (5) with the set of initial values given in Eqs. (2)–(3). We
seek a time-frequency equation that can incorporate the initial values 𝑥0, . . . , 𝑥𝑛−1.
First, we rewrite the initial value problem by using delta functions [17]

𝑎𝑛

𝑛∏
𝑘=1

(𝐷 − 𝜆𝑘)𝑥(𝑡) = 𝑓(𝑡) +
𝑛−1∑
𝑘=0

𝑏𝑘𝛿
(𝑘)(𝑡), (7)

where

𝑏𝑘 = 𝑎𝑘+1𝑥0 + 𝑎𝑘+2𝑥1 + ⋅ ⋅ ⋅+ 𝑎𝑛𝑥𝑛−1−𝑘, (8)

and

𝛿(0)(𝑡) ≡ 𝛿(𝑡).

Then, we set

𝑓0(𝑡) = 𝑓(𝑡) +

𝑛−1∑
𝑘=0

𝑏𝑘𝛿
(𝑘)(𝑡). (9)
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Substituting in Eq. (7), we have

𝑎𝑛

𝑛∏
𝑘=1

(𝐷 − 𝜆𝑘)𝑥(𝑡) = 𝑓0(𝑡).

After this change of variable we can apply the usual transformation given in Eq.
(6), obtaining

∣𝑎𝑛∣2
4𝑛

𝑛∏
𝑘=1

(∂𝑡 − 𝑝𝑘) (∂𝑡 − 𝑝∗𝑘)𝑊 𝑥(𝑡, 𝜔) = 𝑊 𝑓0(𝑡, 𝜔), (10)

which is the desired equation. A series of interesting facts about the Wigner spec-
trum of the input term 𝑓0(𝑡) can be immediately derived.

Deterministic initial values. If, in Eq. (9), we indicate the input term due to the
initial values by

𝑓𝐼(𝑡) =

𝑛−1∑
𝑘=0

𝑏𝑘𝛿
(𝑘)(𝑡), (11)

then we can rewrite the input 𝑓0(𝑡) as

𝑓0(𝑡) = 𝑓(𝑡) + 𝑓𝐼(𝑡).

In general, due to the nonlinearity of the Wigner spectrum, it is

𝑊 𝑓0(𝑡, 𝜔) ∕= 𝑊 𝑓 (𝑡, 𝜔) +𝑊𝑓𝐼 (𝑡, 𝜔).

We can in fact write

𝑊 𝑓0(𝑡, 𝜔) = 𝑊 𝑓 (𝑡, 𝜔) +𝑊𝑓𝐼 (𝑡, 𝜔) + 2ℜ{
𝑊 𝑓,𝑓𝐼 (𝑡, 𝜔)

}
, (12)

where

𝑊 𝑓,𝑓𝐼 (𝑡, 𝜔) =
1

2𝜋

∫ +∞

−∞
𝐸 [𝑓∗(𝑡− 𝜏/2)𝑓𝐼(𝑡+ 𝜏/2)] 𝑒−𝑖𝜏𝜔𝑑𝜏

is the cross-Wigner spectrum. For the common case

𝐸 [𝑓(𝑡)] = 0 (13)

we can instead write

𝑊 𝑓0(𝑡, 𝜔) = 𝑊 𝑓 (𝑡, 𝜔) +𝑊𝑓𝐼 (𝑡, 𝜔), (14)

because

𝑊 𝑓,𝑓𝐼 (𝑡, 𝜔) =
1

2𝜋

∫ +∞

−∞
𝐸 [𝑓∗(𝑡− 𝜏/2)𝑓𝐼(𝑡+ 𝜏/2)] 𝑒−𝑖𝜏𝜔𝑑𝜏,

=
1

2𝜋

∫ +∞

−∞
𝑓𝐼(𝑡+ 𝜏/2)𝐸 [𝑓∗(𝑡− 𝜏/2)] 𝑒−𝑖𝜏𝜔𝑑𝜏,

= 0,

which holds since the initial values are deterministic quantities.

Random initial values. When the initial values 𝑥0, . . . , 𝑥𝑛−1 are random vari-
ables, because of Eq. (8) also the coefficients 𝑏0, . . . , 𝑏𝑛−1 are random variables.
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Consequently, 𝑓𝐼(𝑡) is a random process and we have to replace the Wigner dis-
tribution in Eq. (12) with the Wigner spectrum

𝑊 𝑓0(𝑡, 𝜔) = 𝑊 𝑓 (𝑡, 𝜔) +𝑊 𝑓𝐼 (𝑡, 𝜔) + 2ℜ{
𝑊 𝑓,𝑓𝐼 (𝑡, 𝜔)

}
.

A reasonable assumption in a physical system is to consider the mechanisms that
generate the input 𝑓(𝑡) to be statistically independent from those that are re-
sponsible of the initial values. Therefore, the coefficients 𝑏𝑘 and, consequently, the
random process 𝑓𝐼(𝑡), are statistically independent from the input 𝑓(𝑡), and we
can write

𝑊 𝑓,𝑓𝐼 (𝑡, 𝜔) =
1

2𝜋

∫ +∞

−∞
𝐸 [𝑓∗(𝑡− 𝜏/2)𝑓𝐼(𝑡+ 𝜏/2)] 𝑒−𝑖𝜏𝜔𝑑𝜏,

=
1

2𝜋

∫ +∞

−∞
𝐸 [𝑓∗(𝑡− 𝜏/2)]𝐸 [𝑓𝐼(𝑡+ 𝜏/2)] 𝑒−𝑖𝜏𝜔𝑑𝜏.

If we consider an input 𝑓(𝑡) with zero mean, as in Eq. (13), we obtain

𝑊 𝑓,𝑓𝐼 (𝑡, 𝜔) = 0,

and, consequently

𝑊 𝑓0(𝑡, 𝜔) = 𝑊 𝑓 (𝑡, 𝜔) +𝑊 𝑓𝐼 (𝑡, 𝜔).

3. Example

We consider the initial value problem of the Langevin equation [18], defined as

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝛾𝑥(𝑡) = 𝑢(𝑡)𝜉(𝑡),

𝑥(0) = 𝑥0,

where 𝛾 > 0, 𝑥0 is real and deterministic, 𝑢(𝑡) is the step function defined as

𝑢(𝑡) =

{
1, 𝑡 ≥ 0,

0, 𝑡 < 0,

and 𝜉(𝑡) is a white Gaussian noise with zero mean and autocorrelation function
given by

𝑅𝜉(𝑡1, 𝑡2) = 𝐸 [𝑥(𝑡1)𝑥(𝑡2)] = 𝛿(𝑡1 − 𝑡2).

This equation belongs to the class defined in Eq. (1), with

𝑎0 = 𝛾, 𝑎1 = 1.

The factored form is obtained straightforwardly

(𝐷 − 𝜆1)𝑥(𝑡) = 𝑢(𝑡)𝜉(𝑡), where 𝜆1 = −𝛾.
To compute the Wigner spectrum of the solution 𝑥(𝑡), we first rewrite the initial
value problem according to Eq. (7)

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝛾𝑥(𝑡) = 𝑢(𝑡)𝜉(𝑡) + 𝑏0𝛿(𝑡).
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Figure 1. Wigner spectrum 𝑊 𝑥(𝑡, 𝜔) of the solution to the Langevin
equation when 𝑥0 = 0. The plot shows the evolution of the time-
frequency spectrum when the initial value is zero. We observe a transient
spectrum which eventually reaches a steady state corresponding to the
classical power spectrum obtained with the assumption of wide sense
stationarity.

From Eq. (8), it is

𝑏0 = 𝑥0.

Substituting, we have

𝑑𝑥(𝑡)

𝑑𝑡
+ 𝛾𝑥(𝑡) = 𝑢(𝑡)𝜉(𝑡) + 𝑥0𝛿(𝑡).

Therefore, the modified input term which takes into account the initial values is

𝑓0(𝑡) = 𝑢(𝑡)𝜉(𝑡) + 𝑥0𝛿(𝑡).

From Eq. (1) and Eq. (11) it is, respectively

𝑓(𝑡) = 𝑢(𝑡)𝜉(𝑡),

𝑓𝐼(𝑡) = 𝑥0𝛿(𝑡).

By applying the transformation of Eq. (10), we have

1

4
(∂𝑡 − 𝑝1) (∂𝑡 − 𝑝∗1)𝑊 𝑥(𝑡, 𝜔) =𝑊 𝑓0(𝑡, 𝜔), (15)
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Figure 2. Wigner spectrum 𝑊 𝑥(𝑡, 𝜔) of the solution to the Langevin
equation when 𝑥0 = 1. The non-zero initial value interferes with the
transient spectrum shown in Figure 1. As a result, for short times we
observe a larger spread of the time-frequency spectrum. As in Figure 1,
the time-frequency spectrum eventually reaches a steady state corre-
sponding to the classical power spectrum.

where

𝑝1 = 2𝛼1 + 2𝑖 (𝛽1 − 𝜔) .

Since the real and imaginary parts of 𝜆1 are given by, respectively

𝛼1 = −𝛾, 𝛽1 = 0,

it is

𝑝1 = −2𝛾 − 2𝑖𝜔.

Moreover, 𝜉(𝑡) has zero mean, hence

𝐸 [𝑓(𝑡)] = 𝐸 [𝑢(𝑡)𝜉(𝑡)] = 𝑢(𝑡)𝐸 [𝜉(𝑡)] = 0.

Therefore, Eq. (14) holds. The Wigner spectrum of 𝑓(𝑡) is given by [15]

𝑊 𝑓 (𝑡, 𝜔) =
1

2𝜋
𝑢(𝑡).

Furthermore [5]

𝑊𝑓𝐼 (𝑡, 𝜔) =
1

2𝜋
𝑥20𝛿(𝑡).
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Substituting these results in Eq. (14) and then in Eq. (15), we have

(∂𝑡 + 2𝛾 + 2𝑖𝜔) (∂𝑡 + 2𝛾 − 2𝑖𝜔)𝑊 𝑥(𝑡, 𝜔) =
2

𝜋

(
𝑢(𝑡) + 𝑥20𝛿(𝑡)

)
. (16)

We solve this equation by taking the Laplace transform along the time axis [19]

(𝑠+ 2𝛾 + 2𝑖𝜔) (𝑠+ 2𝛾 − 2𝑖𝜔)𝑊 𝑥(𝑠, 𝜔) =
2

𝜋

(
1

𝑠
+ 𝑥20

)
, (17)

where

𝑊 𝑥(𝑠, 𝜔) =

∫ +∞

0

𝑊𝑥(𝑡, 𝜔)𝑒𝑠𝑡𝑑𝑡.

Therefore

𝑊 𝑥(𝑠, 𝜔) =
2

𝜋

(
1

𝑠
+ 𝑥20

)
1

(𝑠+ 2𝛾 + 2𝑖𝜔) (𝑠+ 2𝛾 − 2𝑖𝜔)
. (18)

Inversion of this equation gives, for 𝜔 ∕= 0

𝑊 𝑥(𝑡,𝜔)=𝑢(𝑡)

[
1

2𝜋

1

𝛾2+𝜔2

[
1−𝑒−2𝛾𝑡

(
cos2𝜔𝑡+𝛾

sin2𝜔𝑡

𝜔

)]
+

1

𝜋
𝑥20𝑒

−2𝛾𝑡 sin2𝜔𝑡

𝜔

]
,

(19)
and, for 𝜔 = 0

𝑊 𝑥(𝑡, 0) = 𝑢(𝑡)
1

2𝜋𝛾2
[
1− 𝑒−2𝛾𝑡

(
1 + 2𝛾𝑡− 4𝑥20𝛾

2𝑡
)]
. (20)

In Figure 1 we show 𝑊 𝑥(𝑡, 𝜔) when 𝑥0 = 0, whereas in Figure 2 we consider the
case 𝑥0 = 1. A brute force solution for random initial values is given in [20].

4. Conclusions

We have shown how to transform an initial value problem for a stochastic differ-
ential equation defined in the time domain, to the time-frequency domain of the
Wigner spectrum. The result is a deterministic time-frequency equation which can
be used to better understand the structure of the nonstationary random process
obtained as the solution to the time equation. This problem has a fundamental in-
terest is science and engineering, since the considered class of stochastic differential
equations is the model for several random phenomena.
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Abstract. The aim of this paper is to introduce the notion of 𝑝-caloric distri-
butions with respect to the generalized heat operator and to prove a represen-
tation formula. Based on the representation formula for 𝑝-caloric distributions
and using the parametrix of the generalized heat operator we shall give two
extensions of Poisson formula.

Finally, we shall define the generalized iterated heat operator of order
𝜆 ∈ C, Re 𝜆 < 0 by means of the kernel distribution of its parametrix.
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Introduction

The purpose of this work is to consider the iterated generalized heat equation(
∂

∂𝑡
−𝐴(𝑡)

)𝑝

𝑢 = 0, in 𝑛-dimensional 𝐶∞ manifold countable at infinity 𝑋 . Here

𝐴(𝑡) is a pseudo-differential operator of order 𝑚 in 𝑋 , valued in 𝐿(𝐻), depending
smoothly on 𝑡 in [0, 𝑇 ), where 𝑇 is some real number > 0. 𝐻 is a finite-dimensional
Hilbert space (over C), 𝐿(𝐻) is the space of (bounded) linear operators in 𝐻 and
𝑢 is an 𝐻-valued distribution in 𝑋 .

The operator 𝐿 =
∂

∂𝑡
−𝐴(𝑡) has been studied by several authors, in particular

by Trèves in [8] under the name of generalized heat operator, which we shall adopt
in the following.

We shall give in our paper a necessary and sufficient condition in order that
an 𝐻-valued distribution 𝑢 in 𝑋 to belong to the kernel of the generalized iterated

heat operator 𝐿𝑝 =

(
∂

∂𝑡
−𝐴(𝑡)

)𝑝

, 𝑝 ≥ 1, i.e., 𝑢 to be a polycaloric distribution.
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Our condition can be read as follows: 𝑢 = 𝑢0 + 𝑡𝑢1 + ⋅ ⋅ ⋅ + 𝑡𝑝−1𝑢𝑝−1, where
𝑢0, 𝑢1, . . . , 𝑢𝑝−1 are caloric distributions, i.e., 𝐿𝑢𝑗 = 0, for all 0 ≤ 𝑗 ≤ 𝑝− 1.

Let us remark that such decomposition theorems have been obtained by some
authors in the frame of the theory of polyharmonic or polycaloric functions (see
[1], [4], [6], [7]).

By using the parametrix of the generalized heat operator which has been
obtained by Trèves in [8] we shall give two applications of the representation
formula for polycaloric distributions.

One of these applications refer to the following initial value problem:⎧⎨⎩
𝐿𝑝𝑢 = 0, in 𝑋 × [0, 𝑇 )

∂𝑘𝑢

∂𝑡𝑘
∣𝑡=0 = 𝑤𝑘, in 𝑋, 0 ≤ 𝑘 ≤ 𝑝− 1, 𝑝 ≥ 2.

Its solution will be defined by an expression which will be called the first
extension for Poisson formula in the case of polycaloric distributions.

The other one application refers to the following initial value problem:{
𝐿𝑝𝑢 = 0, in 𝑋 × [0, 𝑇 )

𝐿𝑘𝑢∣𝑡=0 = 𝑣𝑘, in 𝑋, 0 ≤ 𝑘 ≤ 𝑝− 1, 𝑝 ≥ 2.

Then, the expression which will give its solution will be named the second extension
for Poisson formula in the case of polycaloric distributions. Let us see that when
𝑋 = R𝑛, 𝐴(𝑡) = Δ𝑥 is the Laplace operator, then we recover similar results such
as in Nicolescu [4].

In the end, when 𝑋 = R𝑛, by using the Schwartz kernel distribution of the
parametrix of the generalized heat operator and a similar idea such as in [3], we
shall define the generalized iterated heat operator of an arbitrary order 𝜆 ∈ C,
Re 𝜆 < 0.

Some definitions and results from Trèves’ book [8] concerning the generalized
heat equation and its parametrix will be recalled in Section 1.

In Section 2 we shall introduce the notion of polycaloric distribution and
we shall give a decomposition theorem for them. Based on the decomposition
theorem in Section 2 and by using the parametrix of the generalized heat operator
we shall give in Section 3, a first extension for the Poisson formula for 2-caloric
distributions.

In Section 4 we shall give a first extension for the Poisson formula for 𝑝-caloric
distributions.

A second extension for the Poisson formula for 2-caloric distributions will be
given in Section 5.

A similar result as that in Section 5 but in the case of 𝑝-caloric distributions
will be proved in Section 6.

Finally, in Section 7 we shall define the generalized iterated heat operator of
an arbitrary order 𝜆 ∈ C, Re 𝜆 < 0, by using the Schwartz kernel distribution of
the parametrix of the generalized heat operator.
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1. Some preliminaries concerning the generalized heat equation
and its parametrix

The notations and the namings that we shall use in the following are those of [8].
Let 𝑋 be an 𝑛-dimensional 𝐶∞ manifold countable at infinity, let (Ω, 𝑥1, . . .,

𝑥𝑛) be a local chart in 𝑋 , let 𝐻 be a finite-dimensional Hilbert space and let 𝐿(𝐻)
be the space of (bounded) linear operators on 𝐻 . The norm in 𝐻 will be denoted
by ∣ ⋅ ∣𝐻 whereas the operator norm in 𝐿(𝐻) will be denoted by ∣∣ ⋅ ∣∣. Our basic
ingredient is a pseudodifferential operator of order 𝑚 in 𝑋 , 𝐴(𝑡)-valued in 𝐿(𝐻),
depending smoothly on 𝑡 in [0, 𝑇 ).

In fact, 𝐴(𝑡) is a matrix whose entries are scalar pseudodifferential operators
in 𝑋 , if one uses a basis in 𝐻 .

Thus, in every local chart (Ω, 𝑥1, . . . , 𝑥𝑛) in 𝑋 , 𝐴(𝑡) is given by

𝐴Ω(𝑡)𝑢(𝑥) = (2𝜋)−𝑛
∫
R𝑛

𝑒𝑖⟨𝑥,𝜉⟩𝑎Ω(𝑥, 𝑡, 𝜉)�̂�(𝜉)𝑑𝜉,

𝑢 ∈ 𝐶∞
0 (Ω;𝐻),

(1.1)

modulo regularizing operators, depending smoothly on 𝑡 in [0, 𝑇 ), where

𝑎Ω(𝑥, 𝑡, 𝜉) is a 𝐶∞ function of 𝑡 ∈ [0, 𝑇 ),

valued in 𝑆𝑚(Ω;𝐿(𝐻)).
(1.2)

We have denoted by 𝑆𝑚(Ω;𝐿(𝐻)) the space of classical symbols in Ω, valued in
𝐿(𝐻). We shall denote by Ψ𝑚(Ω;𝐿(𝐻)) the corresponding class of operators.

Now, we shall consider the following Cauchy problem from Trèves [8].

𝑑𝑈(𝑡)

𝑑𝑡
−𝐴(𝑡) ⋅ 𝑈(𝑡) = 0, in 𝑋 × [0, 𝑇 ) (1.3)

𝑈(𝑡)∣𝑡=0 = 𝐼, in 𝑋, (1.4)

where 𝐼 : 𝐻 → 𝐻 in the identity operator of 𝐻 .
Let us mention that the equality (1.3) it means congruence modulo regular-

izing operators depending smoothly on 𝑡 in [0, 𝑇 ) and that the equality (1.4) it
means congruence modulo regularizing operators.

We are interested in solving the initial value problem (1.3), (1.4). To this end
let us make the following hypothesis:
(1.5) Let (Ω, 𝑥1, . . . , 𝑥𝑛) be a local chart in 𝑋 . Suppose that there is a symbol
𝑎Ω(𝑥, 𝑡, 𝜉) satisfying (1.2) and defining 𝐴Ω(𝑡) by (1.1), congruent to 𝐴(𝑡) modulo
regularizing operators in Ω depending smoothly on 𝑡 in [0, 𝑇 ), such that
(1.6) to every compact 𝐾 of Ω × [0, 𝑇 ) there is a compact 𝐾 ′ ⊂ 𝐶− = {𝑧 ∈
C; Rez < 0} such that

(1.7) 𝑧𝐼 − 𝑎Ω(𝑥, 𝑡, 𝜉)/(1 + ∣𝜉∣2)𝑚/2 : 𝐻 → 𝐻 is a bijection (hence a homeomor-
phism), for all (𝑥, 𝑡) in 𝐾, 𝜉 in R𝑛 and 𝑧 in C ∖𝐾 ′.

Then, Trèves has proved in his book [8] the following theorem which states the
existence and the “uniqueness” of the parametrix of the generalized heat equation
(1.3).
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Theorem 1.1. Under the hypothesis (1.5)–(1.7), the initial value problem (1.3)–(1.4)
has a solution 𝑈(𝑡) which is a function of 𝑡 ∈ [0, 𝑇 )-valued in

Ψ̇0(𝑋 ;𝐿(𝐻))(= Ψ0(𝑋 ;𝐿(𝐻))/Ψ−∞(𝑋 ;𝐿(𝐻)).

There is a representative of the equivalence class 𝑈(𝑡) with the following prop-
erty. In each local chart (Ω, 𝑥1, . . . , 𝑥𝑛) the representative in question is equivalent
to an element 𝑈Ω(𝑡) of Ψ0(Ω;𝐿(𝐻)) given by

𝑈Ω(𝑡)𝑢(𝑥) = (2𝜋)−𝑛
∫
R𝑛

𝑒𝑖⟨𝑥,𝜉⟩𝒰Ω(𝑥, 𝑡, 𝜉)�̂�(𝜉)𝑑𝜉,
𝑢 ∈ 𝐶∞

0 (Ω;𝐻),
(1.8)

whose symbol 𝒰Ω has the following properties:

𝒰Ω : Ω× [0, 𝑇 )×R𝑛 → 𝐿(𝐻) is a 𝐶∞ function of 𝑡 ∈ [0, 𝑇 ). (1.9)

(1.10) To every compact 𝒦 of Ω× [0, 𝑇 ), to every pair of 𝑛-tuples 𝛼, 𝛽 ∈ Z𝑛
+, and

to every pair of integers 𝑟,𝑁 ≥ 0, there is a constant 𝐶 > 0 such that for all (𝑥, 𝑡)
in 𝒦, 𝜉 ∈ R𝑛

∣∣∂𝛼𝑥 ∂𝛽𝜉 ∂𝑟𝑡 𝒰Ω(𝑥, 𝑡, 𝜉)∣∣ ≤ 𝐶𝑡−𝑁 (1 + ∣𝜉∣)(𝑟−𝑁)𝑚−∣𝛽∣. (1.11)

Any 𝐶∞ function of 𝑡 in [0, 𝑇 ) valued in the space of continuous linear map-
pings ℰ ′(𝑋 ;𝐻) → 𝒟′(𝑋 ;𝐻) which satisfies (1.3), (1.4) belongs to the equivalence
class 𝑈(𝑡).

Remark 1.2. From (1.11) it follows that 𝒰(𝑥, 𝑡, 𝜉) belongs to 𝑆−∞(Ω;𝐿(𝐻)), so,
the operator (1.8) is regularizing; it means that the equivalence class 𝑈(𝑡) is zero.
This generalizes the well-known property of the parametrix of the heat equation.

Remark 1.3. When 𝑋 = R𝑛, 𝐴(𝑡) = Δ𝑥, the Laplace operator in 𝑛 variables (in
which case 𝑎Ω(𝑥, 𝑡, 𝜉) = −∣𝜉∣2), then equation (1.3)–(1.4) define the parametrix in

the forward Cauchy problem for the heat equation
∂𝑈

∂𝑡
−Δ𝑥𝑈 = 0.

In the same manner as above we can consider the following Cauchy problem:

𝑑𝑈(𝑡)

𝑑𝑡
−𝐴(𝑡) ⋅ 𝑈(𝑡) = 0, in 𝑋 × [𝑡′, 𝑇 ), (1.12)

𝑈(𝑡)∣𝑡=𝑡′ = 𝐼, in 𝑋, (1.13)

0 ≤ 𝑡′ ≤ 𝑇 is a fixed real number.
We shall denote by 𝑈(𝑡, 𝑡′) ∈ Ψ̇0(𝑋 ;𝐿(𝐻)) the solution of the initial value

problem (1.12)–(1.13).
In every local chart (Ω, 𝑥1, . . . , 𝑥𝑛) in 𝑋 , this solution is equivalent with the

pseudodifferential operator 𝑈Ω(𝑡, 𝑡
′) ∈ Ψ0(Ω;𝐿(𝐻)), defined by

𝑈Ω(𝑡, 𝑡
′)𝑢(𝑥) = (2𝜋)−𝑛

∫
R𝑛

𝑒𝑖⟨𝑥,𝜉⟩𝒰Ω(𝑥, 𝑡, 𝑡′, 𝜉)�̂�(𝜉)𝑑𝜉,
𝑢 ∈ 𝐶∞

0 (Ω;𝐻).
(1.14)
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By means of the solution of the initial value problem (1.12)–(1.13) it can be solved
the following nonhomogeneous Cauchy problem:

∂𝑢

∂𝑡
−𝐴(𝑡)𝑢 = 𝑓, in 𝑋 × [0, 𝑇 ) (1.15)

𝑢∣𝑡=0 = 𝑢0, in 𝑋, (1.16)

where 𝑓 ∈ 𝒟′(𝑋 × [0, 𝑇 );𝐻), 𝑢0 ∈ 𝒟′(𝑋 ;𝐻).
We mention that the equality (1.15) is understood as congruence modulo

𝐶∞(𝑋 × [0, 𝑇 );𝐻) whereas the equality in (1.16) it means congruence modulo
𝐶∞(𝑋 ;𝐻).

In particular, if 𝑓 ∈ 𝐶0([0, 𝑇 );𝒟′(𝑋 ;𝐻)), then the solution of the initial value
problem (1.15)–(1.16) can be expressed such as

𝑢(𝑡) = 𝑈(𝑡)𝑢0 +

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝑓(𝑡′)𝑑𝑡′. (1.17)

where the equality in (1.17) it means congruence modulo 𝐶∞(𝑋 ;𝐻).

2. Polycaloric distributions and their caloric component parts

Let 𝐿 =
∂

∂𝑡
− 𝐴(𝑡) be the generalized heat operator, where 𝐴(⋅) ∈ 𝐶∞([0, 𝑇 );

Ψ̇𝑚(𝑋 ;𝐿(𝐻)) is a pseudodifferential operator of order 𝑚 in 𝑋 , valued in 𝐿(𝐻),
depending smoothly on 𝑡 in [0, 𝑇 ).

Definition 2.1. Let 𝑝 be any positive integer. We shall denote by 𝐶𝑝 = 𝐶𝑝(𝑋 ×
[0, 𝑇 );𝐻) the subspace of 𝐷′(𝑋 × [0, 𝑇 );𝐻) consisting of the distributions 𝑢 such
that 𝐿𝑝𝑢 = 0 in 𝑋 × [0, 𝑇 ). The elements of 𝐶𝑝 will be called the polycaloric dis-
tributions of degree 𝑝 or the 𝑝-caloric distributions with respect to the operator 𝐿.

When 𝑝 = 1 we often refer to the elements of 𝐶1 such as caloric distributions.

Remark 2.2. Let 𝑝 be any positive integer and let 𝑢 ∈ 𝐶𝑝 be a 𝑝-caloric distribution.
Then 𝐿𝑘𝑢 belongs to 𝐶𝑝−𝑘 for any 0 ≤ 𝑘 ≤ 𝑝. Moreover, 𝑢 is a 𝑞-caloric distribution
for any positive integer 𝑞 ≥ 𝑝.

First we give a lemma which we need in the proof of our main theorem.

Lemma 2.3. Let 𝑢 be a distribution in 𝐷′(𝑋 × [0, 𝑇 );𝐻). Then

𝐿𝑝(𝑡𝑘𝑢) = 𝑡𝑘𝐿𝑝𝑢+

(
𝑘
1

)
𝑡𝑘−1𝑝𝐿𝑝−1𝑢

+

(
𝑘
2

)
𝑡𝑘−2𝑝(𝑝− 1)𝐿𝑝−2𝑢

+ ⋅ ⋅ ⋅+ 𝑝(𝑝− 1) ⋅ ⋅ ⋅ (𝑝− 𝑘 + 1)𝐿𝑝−𝑘𝑢,

(2.1)

for any nonnegative integers 𝑘, 𝑝 and for any 𝑡 in [0, 𝑇 ). By definition we put
𝐿𝑝−𝑖𝑢 = 0, for any integers 𝑖, 𝑝 such that 𝑖 > 𝑝 and 𝐿0𝑢 = 𝑢.
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Corollary 2.4. Let 𝑢 be a caloric distribution in 𝐶1 (that is 𝐿𝑢 = 0 in 𝑋 × [0, 𝑇 )).
Then 𝐿𝑘(𝑡𝑘𝑢) = 𝑢, 𝐿𝑘+1(𝑡𝑘𝑢) = 0 and 𝐿𝑘(𝑡𝑗𝑢) = 0, for any integers 𝑗, 𝑘 such
that 0 ≤ 𝑗 < 𝑘.

The proof of Lemma 2.3 can easily be done by induction.

Remark 2.5. For shorthand, we write (𝐿𝑝𝑢)(0) = 𝐿𝑝𝑢, (𝐿𝑝𝑢)(𝑖) = 𝑝(𝑝− 1) ⋅ ⋅ ⋅ (𝑝−
𝑖 + 1)𝐿𝑝−𝑖𝑢 for any nonnegative integers 𝑖, 𝑝 (we remember the convention that
𝐿𝑝−𝑖𝑢 = 0 for 𝑖 > 𝑝 and 𝐿0𝑢 = 𝑢). By means Newton’s formula we can rewrite in
a symbolic manner (2.1) as

𝐿𝑝(𝑡𝑘𝑢) = (𝑡+ 𝐿𝑝𝑢)(𝑘) =

𝑘∑
𝑖=0

(
𝑘
𝑖

)
𝑡𝑘−𝑖(𝐿𝑝𝑢)(𝑖).

Remark 2.6. By (2.1), we can deduce that if 𝑢 ∈ 𝐷′(𝑋 × [0, 𝑇 );𝐻) is a (𝑝 − 1)-
caloric distribution, 𝑝 ≥ 1, then 𝑡𝑢 is a 𝑝-caloric distribution. Generally, if 𝑢 ∈
𝐷′(𝑋 × [0, 𝑇 );𝐻) is a (𝑝 − 𝑘)-caloric distribution, 𝑝 ≥ 𝑘, then 𝑡𝑘𝑢 is a 𝑝-caloric
distribution.

Our main result concerning 𝑝-caloric distributions in 𝑋 × [0, 𝑇 ), valued in 𝐻
is contained in the following theorem.

Theorem 2.7 (Decomposition theorem for polycaloric distributions). Let us assume
that 𝑢 is a 𝑝-caloric distribution in 𝑋×[0, 𝑇 ), valued in 𝐻 . Then there exist unique
caloric distributions in 𝑋 × [0, 𝑇 ), valued in 𝐻 , 𝑢0, 𝑢1, . . . , 𝑢𝑝−1 such that

𝑢 = 𝑢0 + 𝑡𝑢1 + ⋅ ⋅ ⋅+ 𝑡𝑝−1𝑢𝑝−1, in 𝑋 × [0, 𝑇 ). (2.2)

Moreover, the distributions 𝑢0, 𝑢1, . . . , 𝑢𝑝−1 are given by the following formulae:

𝑢0 = 𝑢− 1

1!
𝑡𝐿𝑢+

1

2!
𝑡2𝐿2𝑢+ ⋅ ⋅ ⋅+ (−1)𝑝−1

(𝑝− 1)!
𝑡𝑝−1𝐿𝑝−1𝑢,

𝑢1 =
1

1!

(
𝐿𝑢− 1

1!
𝑡𝐿2𝑢+ ⋅ ⋅ ⋅+ (−1)𝑝−2

(𝑝− 2)!
𝑡𝑝−2𝐿𝑝−1𝑢

)
,

. . . . . . . . . . . .

𝑢𝑝−2 =
1

(𝑝− 2)!

(
𝐿𝑝−2𝑢− 1

1!
𝑡𝐿𝑝−1𝑢

)
,

𝑢𝑝−1 =
1

(𝑝− 1)!
𝐿𝑝−1𝑢.

(2.3)

Conversely, the sum in (2.2), with 𝑢0, 𝑢1, . . . , 𝑢𝑝−1 caloric distributions in 𝑋 ×
[0, 𝑇 ), valued in 𝐻 , defines a 𝑝-caloric distribution in 𝑋 × [0, 𝑇 ), valued in 𝐻 .

Remark 2.8. We shall call the caloric distributions 𝑢0, 𝑢1, . . . , 𝑢𝑝−1, in 𝑋 × [0, 𝑇 ),
valued in 𝐻 , the caloric component parts of 𝑝-caloric distribution 𝑢.

Let us see that caloric component parts of a 𝑝-caloric distribution are ex-
pressed in a linear manner by means of that distribution and of the operators
𝐿,𝐿2, . . . , 𝐿𝑝−1.
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Proof of Theorem 2.7. The Existence of (2.2). To prove existence of decomposi-
tion relation (2.2), consider the null space 𝐶𝑘 = {𝑢 ∈ 𝐷′(𝑋 × [0, 𝑇 );𝐻);𝐿𝑘𝑢 = 0}
of 𝐿𝑘 and define the multiplication operator by 𝑡𝑘, that is 𝑇𝑘 : 𝐷′(𝑋× [0, 𝑇 );𝐻)→
𝐷′(𝑋 × [0, 𝑇 );𝐻), 𝑇𝑘𝑢 = 𝑡𝑘𝑢, for any distribution 𝑢 in 𝐷′(𝑋 × [0, 𝑇 );𝐻). Then,
it will be sufficient to show that

𝐶𝑘 = 𝐶𝑘−1 + 𝑇𝑘−1𝐶1, (2.4)

for any nonnegative integer 𝑘.
Indeed, we can easily deduce by induction that

𝐶𝑝 = 𝐶1 + 𝑇1𝐶1 + ⋅ ⋅ ⋅+ 𝑇𝑝−1𝐶1, (2.5)

which is another way to express the decomposition relation (2.2). To prove (2.4)
we split the proof into two parts.

𝐶𝑘 ⊃ 𝐶𝑘−1 + 𝑇𝑘−1𝐶1. (i)

As 𝐶𝑘−1 ⊂ 𝐶𝑘 by Remark 2.2, we only need to show that 𝑇𝑘−1𝐶1 ⊂ 𝐶𝑘. But, from
Lemma 2.3 and Corollary 2.4 it follows that 𝐿𝑘(𝑡𝑘−1𝑢) = 0, for any 𝑢 in 𝐶1 and
any nonnegative integer 𝑘, as desired.

𝐶𝑘 ⊂ 𝐶𝑘−1 + 𝑇𝑘−1𝐶. (ii)

Let us remark that we have the following decomposition relation

𝑢 = (𝐼 − [(𝑘 − 1)!]−1𝑇𝑘−1𝐿𝑘−1)𝑢+ [(𝑘 − 1)!]−1𝑇𝑘−1𝐿𝑘−1𝑢. (2.6)

It is evidently that [(𝑘 − 1)!]−1𝐿𝑘−1𝑢 belongs to 𝐶1.
Therefore, we only need to show that the first term in the right-hand side of

(2.6) is in 𝐶𝑘−1. But from Lemma 2.3 and Remark 2.2 it follows that

𝐿𝑘−1(𝑢− [(𝑘 − 1)!]−1𝑇𝑘−1𝐿𝑘−1𝑢)

= 𝐿𝑘−1𝑢− [(𝑘 − 1)!]−1

×
(
𝑇𝑘−1𝐿2𝑘−2 +

(
𝑘 − 1

1

)
𝑇𝑘−2𝐿2𝑘−3 + ⋅ ⋅ ⋅+ (𝑘 − 1)!𝐿𝑘−1

)
𝑢 = 0

as desired. Thus the existence of decomposition relation (2.2) follows.

The Uniqueness of (2.2). First we prove that for any distribution 𝑢 in 𝐶𝑘 the
decomposition formula

𝑢 = 𝑣 + 𝑇𝑘−1𝑤𝑘−1, 𝑣 ∈ 𝐶𝑘−1, 𝑤𝑘−1 ∈ 𝐶1, (2.7)

if it exists then it is unique. Then the uniqueness follows by induction.
Now let us assume that there exists the decomposition formula (2.7). Thus,

by applying the operator 𝐿𝑘−1 on both sides of (2.7), we have

𝐿𝑘−1𝑢 = 𝐿𝑘−1𝑣 + 𝑇𝑘−1𝐿𝑘−1𝑤𝑘−1

+

(
𝑘
1

)
(𝑘 − 1)𝑇𝑘−2𝐿𝑘−2𝑤𝑘−1 + ⋅ ⋅ ⋅+ (𝑘 − 1)!𝑤𝑘−1.

(2.8)

Hence it follows that
𝑤𝑘−1 = [(𝑘 − 1)!]−1𝐿𝑘−1𝑢. (2.9)
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So, by (2.7), (2.9)

𝑣 = 𝑢− 𝑇𝑘−1𝑤𝑘−1 = 𝑢− [(𝑘 − 1)!]−1𝑇𝑘−1𝐿𝑘−1𝑢. (2.10)

Thus, by (2.9), (2.10) it follows the uniqueness of decomposition formula (2.7). To
prove the converse part of Theorem 2.7 let us remark that from Corollary 2.4 it
follows that

𝐿𝑝𝑇𝑗𝐶1 = 0, (2.11)

for any nonnegative integers 𝑗, 𝑝 such that 𝑗 < 𝑝. So, by (2.11)

𝑇𝑗𝐶1 ⊂ 𝐶𝑝, (2.12)

for any nonnegative integers 𝑗, 𝑝, such that 𝑗 < 𝑝, as desired. Now, let us take a 𝑝-
caloric distribution 𝑢 in 𝐶𝑝, and let 𝑢0, 𝑢1, . . . , 𝑢𝑝−1 be its caloric component parts
in 𝐶1. We want to express these caloric component parts by means of distribution
u and the linear operators 𝐿,𝐿2, . . . , 𝐿𝑝−1.

To this end let us observe that by Remark 2.2, Lemma 2.3 and the existence
part of Theorem 2.7, we have

𝐿𝑢 = 𝑣0 + 𝑡𝑣1 + ⋅ ⋅ ⋅+ 𝑡𝑝−2𝑣𝑝−2, in 𝑋 × [0, 𝑇 ), (2.13)

𝐿𝑢 = 𝑢1 + 2𝑡𝑢2 + ⋅ ⋅ ⋅+ (𝑝− 1)𝑡𝑝−2𝑢𝑝−1, in 𝑋 × [0, 𝑇 ), (2.14)

where 𝑣0, . . . , 𝑣𝑝−2 are suitable elements in 𝐶1. By the uniqueness part of Theorem
2.7 and by (2.13), (2.14), we get

𝑢1 = 𝑣0, 𝑢2 =
1

2
𝑣1, . . . , 𝑢𝑝−1 =

1

𝑝− 1
𝑣𝑝−2 (2.15)

𝑢0 = 𝑢−
(
𝑡𝑣0 +

1

2
𝑡2𝑣1 + ⋅ ⋅ ⋅+ 1

𝑝− 1
𝑡𝑝−1𝑣𝑝−2

)
. (2.16)

Now let us denote by 𝑣𝑖0, 𝑣
𝑖
1, . . . , 𝑣

𝑖
𝑖−1 the caloric component parts of 𝑖-caloric

distribution 𝐿𝑝−𝑖𝑢, in the hypothesis that 𝑢 is a 𝑝-caloric distribution, 1 ≤ 𝑖 ≤ 𝑝.
Then we can prove by induction that we get

𝑣𝑖0 = 𝐿𝑝−𝑖𝑢− 1

1!
𝑡𝐿𝑝−𝑖+1𝑢+

1

2!
𝑡2𝐿𝑝−𝑖+2𝑢+ ⋅ ⋅ ⋅+ (−1)𝑖−1

(𝑖− 1)!
𝑡𝑖−1𝐿𝑝−1𝑢,

𝑣𝑖1 =
1

1!

(
𝐿𝑝−𝑖+1𝑢− 1

1!
𝑡𝐿𝑝−𝑖+2𝑢+ ⋅ ⋅ ⋅+ (−1)𝑖−2

(𝑖− 2)!
𝑡𝑖−2𝐿𝑝−1𝑢

)
,

𝑣𝑖2 =
1

2!

(
𝐿𝑝−𝑖+2𝑢− 1

1!
𝑡𝐿𝑝−𝑖+3𝑢+ ⋅ ⋅ ⋅+ (−1)𝑖−3

(𝑖− 3)!
𝑡𝑖−3𝐿𝑝−1𝑢

)
,

. . . . . . . . . . . . . . . . . .

𝑣𝑖𝑖−1 =
1

(𝑖− 1)!
𝐿𝑝−1𝑢.

(2.17)

In particular, if we take 𝑖 = 𝑝 in (2.17), then we get (2.3). This completes the
proof of our theorem. □
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Remark 2.9. We have given by Theorem 2.7 a necessary and sufficient condition
for a distribution to belong to the kernel of the iterated of the generalized heat
operator 𝐿𝑝, 𝑝 ≥ 1.

3. The first extension for poisson formula for 2-caloric distributions

Let us consider the following initial value problem:⎧⎨⎩
𝐿2𝑢 = 0, in 𝑋 × [0, 𝑇 )

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑤0, in 𝑋

∂𝑢

∂𝑡
∣𝑡=0 = 𝑤1(𝑥), in 𝑋,

(3.1)

where 𝐿 =
∂

∂𝑡
− 𝐴(𝑡), 𝐴(⋅) ∈ 𝐶∞([0, 𝑇 ); Ψ𝑚(𝑋 ;𝐿(𝐻)) is the generalized heat

operator, 𝑤0, 𝑤1 ∈ 𝐷′(𝑋 ;𝐻) and 𝑢 ∈ 𝐶∞([0, 𝑇 );𝐷′(𝑋 ;𝐻)).

We mention that in all rigor we must consider the equalities in (3.1) modulo
𝐶∞(𝑋 × [0, 𝑇 );𝐻) respectively modulo 𝐶∞(𝑋 ;𝐻) and that the operator 𝐴(𝑡) is
supposed to be properly supported pseudodifferential operator.

By using Theorem 2.7 we shall look for the solution of the initial value prob-
lem (3.1) in the form

𝑢 = 𝑢0 + 𝑡𝑢1, (3.2)

where 𝑢0, 𝑢1 ∈ 𝐶∞([0, 𝑇 );𝐷′(𝑋 ;𝐻)), 𝐿𝑢0 = 0, 𝐿𝑢1 = 0. Let us remark that 𝑢0 is
the solution for the Cauchy problem{

𝐿𝑢 = 0, in 𝑋 × [0, 𝑇 ),

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑤0(𝑥), in 𝑋.
(3.3)

So,

𝑢0(𝑥, 𝑡) = 𝑈(𝑡)𝑤0(𝑥), (3.4)

where 𝑈(𝑡) is the parametrix of the generalized heat operator. By (3.4), we have

∂𝑢0
∂𝑡

(𝑥, 𝑡) = 𝐴(𝑡)𝑈(𝑡)𝑤0(𝑥). (3.5)

From (3.2) we deduce

∂𝑢

∂𝑡
=

∂𝑢0
∂𝑡

+ 𝑢1 + 𝑡
∂𝑢1
∂𝑡

= 𝑣 + 𝑡
∂𝑢1
∂𝑡

, (3.6)

where we have denoted 𝑣 =
∂𝑢0
∂𝑡

+ 𝑢1. Thus,

𝐿𝑣 = 𝐿
∂𝑢0
∂𝑡

+ 𝐿𝑢1 =
∂2𝑢0
∂𝑡2

−𝐴(𝑡)
∂𝑢0
∂𝑡

=
∂2𝑢0
∂𝑡2

+𝐴′(𝑡)𝑢0 − ∂

∂𝑡
(𝐴(𝑡)𝑢0) = 𝐴′(𝑡)𝑢0.

(3.7)
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because 𝐿𝑢0 = 0, by hypothesis. Thus, by (3.1), (3.6) and (3.7) we deduce that 𝑣
is the solution for the following Cauchy problem{

𝐿𝑣 = 𝐴′(𝑡)𝑈(𝑡)𝑤0 in 𝑋 × [0, 𝑇 ),

𝑣(𝑥, 𝑡)∣𝑡=0 = 𝑤1(𝑥), in 𝑋.
(3.8)

So,

𝑣(𝑥, 𝑡) = 𝑈(𝑡)𝑤1(𝑥) +

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝐴′(𝑡′)𝑈(𝑡′)𝑤0(𝑥)𝑑𝑡′, (3.9)

where 𝑈(𝑡, 𝑡′) is the solution for the Cauchy problem⎧⎨⎩
𝑑𝑈

𝑑𝑡
(𝑡)−𝐴(𝑡) ⋅ 𝑈(𝑡) = 0, in 𝑋 × [𝑡′, 𝑇 )

𝑈(𝑡)∣𝑡=𝑡′ = 𝐼, in 𝑋, 0 ≤ 𝑡′ < 𝑇.

By (3.5), (3.6), (3.9), we get

𝑢1(𝑥, 𝑡) = 𝑣(𝑥, 𝑡) − ∂𝑢0
∂𝑡

= 𝑈(𝑡)𝑤1(𝑥)

+

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝐴′(𝑡′)𝑈(𝑡′)𝑤0(𝑥)𝑑𝑡′ −𝐴(𝑡)𝑈(𝑡)𝑤0(𝑥).

(3.10)

So, by (3.2), (3.4) and (3.10) we get

𝑢(𝑥, 𝑡) = 𝑈(𝑡)𝑤0(𝑥) + 𝑡𝑈(𝑡)𝑤1(𝑥)

+ 𝑡

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝐴′(𝑡′)𝑈(𝑡′)𝑤0(𝑥)𝑑𝑡′

− 𝑡𝐴(𝑡)𝑈(𝑡)𝑤0(𝑥)

= (𝐼 − 𝑡𝐴(𝑡))𝑈(𝑡)𝑤0(𝑥) + 𝑡𝑈(𝑡)𝑤1(𝑥)

+ 𝑡

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝐴′(𝑡′)𝑈(𝑡′)𝑤0(𝑥)𝑑𝑡′,

(3.11)

which gives the solution for the Cauchy problem (3.1).

Remark 3.1. In particular, when we take 𝑋 = R and 𝐴(𝑡) =
∂2

∂𝑥2
, then we get

(10) in Chapter II in [4].

Remark 3.2. The fact that the “abstract” operator 𝐴(𝑡) is a pseudodifferential
operator has a role in the above computations. For example 𝐴′(𝑡) is also a pseudo-
differential operator with symbol 𝑎′(𝑥, 𝑡, 𝜉), where 𝑎(𝑥, 𝑡, 𝜉) is the symbol of 𝐴(𝑡).



Polycaloric Distributions and the Generalized Heat Operator 209

4. The first extension for the Poisson formula
for 𝒑-caloric distributions

We are interested in solving the following initial value problem:⎧⎨⎩
𝐿𝑝𝑢 = 0, in 𝑋 × [0, 𝑇 )

∂𝑘𝑢

∂𝑡𝑘
(𝑥, 𝑡)∣𝑡=0 = 𝑤𝑘(𝑥), in 𝑋, for all 0 ≤ 𝑘 ≤ 𝑝− 1,

(4.1)

where 𝐿 =
∂

∂𝑡
− 𝐴(𝑡), 𝐴(⋅) ∈ 𝐶∞([0, 𝑇 ); Ψ𝑚(𝑋 ;𝐿(𝐻)) is the generalized heat

operator, 𝑤𝑘 ∈ 𝐷′(𝑋 ;𝐻), 0 ≤ 𝑘 ≤ 𝑝− 1, 𝑝 ≥ 2 and 𝑢 ∈ 𝐶∞([0, 𝑇 );𝐷′(𝑋 ;𝐻)).

We look for the solution for initial value problem (4.1) in the form

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑡𝑢1(𝑥, 𝑡) + ⋅ ⋅ ⋅+ 𝑡𝑝−1𝑢𝑝−1(𝑥, 𝑡), (4.2)

where 𝑢𝑘 ∈ 𝐶∞([0, 𝑇 );𝐷′(𝑋 ;𝐻)), 𝐿𝑢𝑘 = 0, for all 0 ≤ 𝑘 ≤ 𝑝− 1. By (4.1), (4.2)
we get {

𝐿𝑢0 = 0, in 𝑋 × [0, 𝑇 )

𝑢0(𝑥, 𝑡)∣𝑡=0 = 𝑤0, in 𝑋.
(4.3)

So, by (4.3)

𝑢0(𝑥, 𝑡) = 𝑈(𝑡)𝑤0(𝑥), (4.4)

where 𝑈(⋅) ∈ 𝐶∞([0, 𝑇 ); Ψ0(𝑋 ;𝐿(𝐻)) is the parametrix of the generalized heat
operator. In the following we try to obtain the caloric component parts 𝑢𝑘, 0 ≤
𝑘 ≤ 𝑝− 1 of 𝑢 by iteration.

By (4.2) we derive by successive derivation with respect to 𝑡

∂𝑙𝑢

∂𝑡𝑙
(𝑥, 𝑡) = 𝑣0(𝑥, 𝑡) + 𝑡𝑣1(𝑥, 𝑡) + ⋅ ⋅ ⋅+ 𝑡𝑝−1𝑣𝑝−1(𝑥, 𝑡), (4.5)

where 𝑣0, 𝑣1, . . . , 𝑣𝑝−1 are not generally caloric distributions (because the operators
∂

∂𝑡
and 𝐿 =

∂

∂𝑡
−𝐴(𝑡), do not commute). Thus, by (4.2), (4.5) we get

𝑣0(𝑥, 𝑡) =
∂𝑙𝑢0
∂𝑡𝑙

(𝑥, 𝑡) + 𝑙
∂𝑙−1

∂𝑡𝑙−1
𝑢1(𝑥, 𝑡) + ⋅ ⋅ ⋅+ 𝑙!𝑢𝑙(𝑥, 𝑡). (4.6)

But, by (4.1), (4.5) it follows that

𝑣0(𝑥, 𝑡)∣𝑡=0 = 𝑤𝑙(𝑥). (4.7)

Then we deduce by (4.6), (4.7) that 𝑣0 is the solution of the initial value problem{
𝐿𝑣(𝑥, 𝑡) = 𝐹𝑙−1(𝑥, 𝑡), in 𝑋 × [0, 𝑇 )

𝑣(𝑥, 𝑡)∣𝑡=0 = 𝑤𝑙(𝑥), in 𝑋,
(4.8)

where

𝐹𝑙−1(𝑥, 𝑡) = 𝐿

(
∂𝑙𝑢0
∂𝑡𝑙

(𝑥, 𝑡) + 𝑙
∂𝑙−1𝑢1
∂𝑡𝑙−1

(𝑥, 𝑡) + ⋅ ⋅ ⋅+ (𝑙 − 1)!
∂𝑢𝑙−1
∂𝑡

(𝑥, 𝑡)

)
.



210 V. Catană

Thus, as in the same manner as in the preceding paragraph, we get

𝑣0(𝑥, 𝑡) = 𝑈(𝑡)𝑤𝑙(𝑥) +

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝐹𝑙−1(𝑥, 𝑡′)𝑑𝑡′. (4.9)

Then, by (4.6), (4.9) the caloric component part of order 𝑙, 𝑢𝑙, 1 ≤ 𝑙 ≤ 𝑝− 1 of 𝑢
is given by the formula

𝑢𝑙(𝑥, 𝑡) =
1

𝑙!
𝑈(𝑡)𝑤𝑙(𝑥) +

1

𝑙!

∫ 𝑡

0

𝑈(𝑡, 𝑡′)𝐹𝑙−1(𝑥, 𝑡′)𝑑𝑡′ (4.10)

− ∂𝑢𝑙−1
∂𝑡

(𝑥, 𝑡) − 1

2!

∂2𝑢𝑙−2
∂𝑡2

(𝑥, 𝑡)− ⋅ ⋅ ⋅ − 1

𝑙!

∂𝑙𝑢0
∂𝑡𝑙

(𝑥, 𝑡),

for all 1 ≤ 𝑙 ≤ 𝑝− 1.
Thus, by (4.4), (4.10) we can deduce by iteration the caloric component parts

𝑢0, 𝑢1, . . . , 𝑢𝑝−1 of 𝑢, which is the solution of the initial value problem (4.1).
Let us also remark that the initial conditions of problem (4.1) are satisfied.

Indeed, by (4.2), (4.10) we get

∂𝑙𝑢

∂𝑡𝑙

∣∣∣∣
𝑡=0

=
∂𝑙𝑢0
∂𝑡𝑙

∣∣∣∣
𝑡=0

+ 1!

(
𝑙
1

)
∂𝑙−1𝑢1
∂𝑡𝑙−1

∣∣∣∣
𝑡=0

+ ⋅ ⋅ ⋅+ (𝑙 − 1)!

(
𝑙

𝑙 − 1

)
∂𝑢𝑙−1
∂𝑡

∣∣∣∣
𝑡=0

+ 𝑙!𝑢𝑙∣𝑡=0 = 𝑤𝑙, for all 0 ≤ 𝑙 ≤ 𝑝− 1.

5. The second extension for the Poisson formula
for 2-caloric distributions

Let us consider in the following the initial value problem:⎧⎨⎩
𝐿2𝑢 = 0, in 𝑋 × [0, 𝑇 )

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣0(𝑥), in 𝑋

𝐿𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣1(𝑥), in 𝑋,

(5.1)

where 𝐿 =
∂

∂𝑡
− 𝐴(𝑡) is the generalized heat operator, 𝑣0, 𝑣1 belong to 𝐷′(𝑋 ;𝐻)

and 𝑢 is an unknown distribution in 𝑋 , valued in 𝐻 and depending smoothly on
𝑡 in [0, 𝑇 ). We mention that we must reason in all rigor modulo 𝐶∞(𝑋 ;𝐻). By
using Theorem 2.7 we shall look for the solution of the initial value problem (5.1)
in the form

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑡𝑢1(𝑥, 𝑡), in 𝑋 × [0, 𝑇 ), (5.2)

where 𝑢0, 𝑢1 belong to 𝐶∞([0, 𝑇 );𝐷′(𝑋 ;𝐻)) such that 𝐿𝑢0 = 0, 𝐿𝑢1 = 0 (that is
𝑢0, 𝑢1 are caloric distributions). By Lemma 2.3 and (5.2) we get

𝐿𝑢(𝑥, 𝑡) = 𝑢1(𝑥, 𝑡), in 𝑋 × [0, 𝑇 ). (5.3)

Moreover, by initial conditions in problem (5.1), we derive

𝐿𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑢1(𝑥, 𝑡)∣𝑡=0 = 𝑣1(𝑥) in 𝑋. (5.4)
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So, by (5.3), (5.4) we deduce that 𝑢1 is a solution of the initial value problem.{
𝐿𝑢 = 0, in 𝑋 × [0, 𝑇 )

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣1(𝑥), in 𝑋.
(5.5)

Then, in accordance with the preceding reasonings we get

𝑢1(𝑥, 𝑡) = 𝑈(𝑡)𝑣1(𝑥), in 𝑋 × [0, 𝑇 ). (5.6)

At the same time, by using (5.1), (5.2) we can deduce as well as in the preceding
paragraphs that 𝑢0 is a solution for the following Cauchy problem{

𝐿𝑢 = 0, in 𝑋 × [0, 𝑇 )

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣0(𝑥), in 𝑋.
(5.7)

So,

𝑢0(𝑥, 𝑡) = 𝑈(𝑡)𝑣0(𝑥). (5.8)

By availing ourselves of (5.6), (5.8) we reach the conclusion that the solution of
the initial value problem (5.1) is given by

𝑢(𝑥, 𝑡) = 𝑈(𝑡)𝑣0(𝑥) + 𝑡𝑈(𝑡)𝑣1(𝑥)

= 𝑈(𝑡)(𝑣0(𝑥) + 𝑡𝑣1(𝑥)).
(5.9)

Formula (5.9) can be thought as an extension for the Poisson formula. Let us
remark that by preceding reasoning 𝑢 given by (5.9) verify the equation in (5.1).
Moreover it is easy to verify that 𝑢 given by (5.9) satisfy the initial conditions in
(5.1).

Remark 5.1. In particular, when 𝑋 = R𝑛, 𝐴 = Δ𝑥, the Laplace operator and
𝑣0, 𝑣1 are continuous functions in 𝑋 , then we recover (4) in Chapter III, §1 in [4].

6. The second extension for the Poisson formula
for 𝒑-caloric distributions

Let us look on the initial value problem:⎧⎨⎩
𝐿𝑝𝑢 = 0, in 𝑋 × [0, 𝑇 )

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣0(𝑥), in 𝑋

𝐿𝑘𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣𝑘(𝑥), in 𝑋, for all

1 ≤ 𝑘 ≤ 𝑝− 1, 𝑝 ≥ 2,

(6.1)

where 𝐿 =
∂

∂𝑡
−𝐴(𝑡) is the generalized heat operator, 𝑣0, 𝑣𝑘, 1 ≤ 𝑘 ≤ 𝑝− 1, 𝑝 ≥ 2

are distributions in 𝑋 , valued in 𝐻 and 𝑢 is an unknown distribution in 𝑋 , valued
in 𝐻 , depending smoothly on 𝑡 in [0, 𝑇 ). We look for a solution of initial value
problem (6.1) in the form

𝑢(𝑥, 𝑡) = 𝑢0(𝑥, 𝑡) + 𝑡𝑢1(𝑥, 𝑡) + ⋅ ⋅ ⋅+ 𝑡𝑝−1𝑢𝑝−1(𝑥, 𝑡), (6.2)
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where 𝑢𝑗 belongs to 𝐶∞([0, 𝑇 );𝐷′(𝑋 ;𝐻)), 𝐿𝑢𝑗 = 0, for all 1 ≤ 𝑗 ≤ 𝑝− 1, 𝑝 ≥ 2.
By applying inductively the operator 𝐿 on both sides of (6.2), we get

𝐿𝑢 = 𝑢1 + 2𝑡𝑢2 + ⋅ ⋅ ⋅+ (𝑝− 1)𝑡𝑝−2𝑢𝑝−1,

𝐿2𝑢 = 2!𝑢2 + 3 ⋅ 2𝑡𝑢3 + ⋅ ⋅ ⋅+ (𝑝− 1)(𝑝− 2)𝑡𝑝−3𝑢𝑝−1,
. . . . . . . . . . . . . . . . . . . . .

𝐿𝑝−2𝑢 = (𝑝− 2)!𝑢𝑝−2 + (𝑝− 1)!𝑡𝑢𝑝−1,

𝐿𝑝−1𝑢 = (𝑝− 1)!𝑢𝑝−1.

(6.3)

By (6.1), (6.3) we get

𝑢𝑝−1(𝑥, 𝑡)∣𝑡=0 =
1

(𝑝− 1)!
𝑣𝑝−1(𝑥). (6.4)

But 𝐿𝑢𝑝−1 = 0, in 𝑋 × [0, 𝑇 ). So, 𝑢 is a solution of the initial value problem⎧⎨⎩
𝐿𝑢 = 0, in 𝑋 ∈ [0, 𝑇 ),

𝑢(𝑥, 𝑡)∣𝑡=0 =
1

(𝑝− 1)!
𝑣𝑝−1(𝑥), in 𝑋.

(6.5)

Thus, 𝑢𝑝−1 is given by

𝑢𝑝−1(𝑥, 𝑡) =
1

(𝑝− 1)!
𝑈(𝑡)𝑣𝑝−1(𝑥), in 𝑋 × [0, 𝑇 ). (6.6)

By (6.3), (6.6) and the fact that 𝐿𝑢𝑝−2 = 0, we deduce that 𝑢𝑝−2 is a solution for
the following Cauchy problem⎧⎨⎩

𝐿𝑢 = 0, in 𝑋 × [0, 𝑇 ),

𝑢(𝑥, 𝑡)∣𝑡=0 =
1

(𝑝− 2)!
𝑣𝑝−2(𝑥), in 𝑋.

(6.7)

So,

𝑢𝑝−2(𝑥, 𝑡) =
1

(𝑝− 2)!
𝑈(𝑡)𝑣𝑝−2(𝑥), in 𝑋 × [0, 𝑇 ). (6.8)

In the same manner we generally get

𝑢𝑝−𝑘−1(𝑥, 𝑡) =
1

(𝑝− 𝑘 − 1)!
𝑈(𝑡)𝑣𝑝−𝑘−1(𝑥) in 𝑋 × [0, 𝑇 ), (6.9)

for all 0 ≤ 𝑘 ≤ 𝑝−1. By availing ourselves of (6.2) and (6.9) we reach the conclusion
that the formal solution for the initial value (6.1) can be written as

𝑢(𝑥, 𝑡) = 𝑈(𝑡)𝐹 (𝑥, 𝑡), in 𝑋 × [0, 𝑇 ), (6.10)

where

𝐹 (𝑥, 𝑡) = 𝑣0(𝑥) +
𝑡

1!
𝑣1(𝑥) + ⋅ ⋅ ⋅+ 𝑡𝑝−1

(𝑝− 1)!
𝑣𝑝−1, in 𝑋 × [0, 𝑇 ). (6.11)

By (6.10), (6.11) we get

𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑈(𝑡)𝐹 (𝑥, 𝑡)∣𝑡=0 = 𝑣0(𝑥), in 𝑋. (6.12)
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By using Lemma 2.3 and the definition of the parametrix of the generalized heat
operator we get

𝐿𝑘𝑢(𝑥, 𝑡) = 𝑈(𝑡)𝐹𝑘(𝑥, 𝑡), (6.13)

where

𝐹𝑘(𝑥, 𝑡) = 𝑣𝑘(𝑥) +
1

1!
𝑣𝑘+1(𝑥) + ⋅ ⋅ ⋅+ 𝑡𝑝−𝑘−1

(𝑝− 𝑘 − 1)!
𝑣𝑝−1(𝑥), in 𝑋 × [0, 𝑇 ). (6.14)

Thus, by (6.13), we have

𝐿𝑘𝑢(𝑥, 𝑡)∣𝑡=0 = 𝑣𝑘(𝑥), in 𝑋, for all 0 ≤ 𝑘 ≤ 𝑝− 1. (6.15)

So, by (6.2), (6.9), (6.12), (6.15) it follows that the distribution 𝑢 is a solution
of the initial value problem (6.1). The uniqueness of this solution follows from its
construction, but it also can be verified directly.

Remark 6.1. When 𝑋 = R𝑛, 𝐴(𝑡) = Δ𝑥 is the Laplace operator and 𝑣𝑙 ∈ 𝐶0(𝑋),
0 ≤ 𝑙 ≤ 𝑝 − 1 are continuous functions in 𝑋 , then we recover (8) in Chapter III,
§2 in [4], as particular case.

7. The generalized iterated heat operator

In this paragraph we shall define the generalized iterated heat operator of an
arbitrary order 𝜆 ∈ C, Re 𝜆 < 0, in the case 𝑋 = R𝑛 by using a similar idea as in
[3] (see also [5]). To this end we shall use the kernel distribution of its parametrix.

Let us remember that if 𝐿 =
∂

∂𝑡
−𝐴(𝑡) is the generalized heat operator and

𝑈(𝑡) is its parametrix, then

𝑑𝑈

𝑑𝑡
(𝑡)−𝐴(𝑡)𝑈(𝑡) = 0, in 𝑋 × [0, 𝑇 ), (7.1)

𝑈(𝑡)∣𝑡=0 = 𝐼, in 𝑋, (7.2)

modulo Ψ−∞(𝑋× [0, 𝑇 );𝐿(𝐻)), respectively Ψ−∞(𝑋 ;𝐿(𝐻)), where 𝐼 : 𝐻 → 𝐻 is

the identity operator of 𝐻 . Moreover, 𝐴(⋅) ∈ 𝐶∞([0, 𝑇 ); Ψ̇𝑚(𝑋 ;𝐿(𝐻))) and 𝑈(⋅) ∈
𝐶∞([0, 𝑇 ); Ψ̇0(𝑋 ;𝐿(𝐻))). By Theorem 1.1 in each local chart (Ω, 𝑥1, . . . , 𝑥𝑛)
of 𝑋 we can write

𝑈Ω(𝑡)𝑢(𝑥) = (2𝜋)−𝑛
∫
R𝑛

𝑒𝑖⟨𝑥,𝜉⟩𝒰Ω(𝑥, 𝑡, 𝜉)�̂�(𝜉)𝑑𝜉

=

∫
Ω

𝐾(𝑥, 𝑦, 𝑡)𝑢(𝑦)𝑑𝑦, 𝑢 ∈ 𝐶∞
0 (Ω;𝐻),

(7.3)

where 𝒰Ω ∈ 𝐶∞([0, 𝑇 )); 𝑆−∞(Ω ×R𝑛;𝐿(𝐻)), 𝑈Ω ∈ 𝐶∞([0, 𝑇 ); Ψ−∞(Ω;𝐿(𝐻))),
𝐾 ∈ 𝐶∞(Ω× Ω× [0, 𝑇 );𝐿(𝐻)) (that is 𝐾 is a function type distribution) and

𝐾(𝑥, 𝑦, 𝑡) = (2𝜋)−𝑛
∫
R𝑛

𝑒𝑖⟨𝑥−𝑦,𝜉⟩𝒰Ω(𝑥, 𝑡, 𝜉)𝑑𝜉 (7.4)
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represents the Schwartz kernel distribution of pseudodifferential operator 𝑈Ω(𝑡),
𝑡 ∈ [0, 𝑇 ). By (7.1) and (7.3) we get

∂𝐾

∂𝑡
−𝐴(𝑡)𝐾 = 0, in 𝑋 ×𝑋 × [0, 𝑇 ),

modulo 𝐶∞(𝑋 ×𝑋 × [0, 𝑇 );𝐻).
(7.5)

∫
R𝑛

𝐾(𝑥, 𝑦, 𝑡)𝑢(𝑦)𝑑𝑦∣𝑡=0 = 𝑢(𝑥), 𝑢 ∈ 𝐶∞
0 (𝑋 ;𝐻). (7.6)

We want to associate to the Schwartz kernel distribution of the parametrix of
the generalized heat operator a family of distributions, depending of a complex
parameter 𝜆 in C such that if we take 𝜆 = −𝑘, 𝑘 a positive integer, then we get
the iterated of the operator 𝐿.

To this end let us consider the generalized function

𝑡𝜆−1+ =

{
𝑡𝜆−1, 𝑡 > 0

0, 𝑡 ≤ 0, 𝜆 ∈ C.

Let also 𝛿(𝑥, 𝑡) be the Dirac distribution in R𝑛+1 and let Γ(𝜆) be the Euler function
of second kind.

Then we can prove the following theorem.

Theorem 7.1. Let the generalized function

𝐿𝜆(𝑥, 𝑦, 𝑡) =
𝑡𝜆−1+

Γ(𝜆)
𝐾(𝑥, 𝑦, 𝑡),

where we assume that 𝐾 = 0, when 𝑡 /∈ [0, 𝑇 ) and 𝑦 is considered such as a
parameter. Then, 𝐿𝜆(𝑡, 𝑥, 𝑦) is an entire function of 𝜆 and for 𝜆 = −𝑘, 𝑘 ∈ N,
the support of this distribution is concentrated in (0, 𝑦). Moreover, the following
relations are true

𝐿𝜆(𝑥, 𝑦, 𝑡)∣𝜆=−𝑘 = 𝐿𝑘𝛿(𝑥− 𝑦, 𝑡), (7.7)

for any nonnegative integer 𝑘, where 𝐿0 = 𝐼, 𝐿𝑘 = 𝐿𝐿𝑘−1, for all 𝑘 ≥ 1.

Proof. The idea of proof is to consider the generalized function 𝑓𝜆(𝑥, 𝑦, 𝑡) =

𝑡𝜆−1+ 𝐾(𝑥, 𝑦, 𝑡) defined by the relation

⟨𝑓𝜆, 𝜑⟩ = ⟨𝑡𝜆−1+ 𝐾(𝑥, 𝑦, 𝑡), 𝜑(𝑥, 𝑡)⟩ = ⟨𝑡𝜆−1+ , 𝜓(𝑡)⟩, (7.8)

where

𝜓(𝑡) = ⟨𝐾(𝑥, 𝑦, 𝑡), 𝜑(𝑥, 𝑡)⟩, 𝜑 ∈ 𝐶∞
0 (𝑋 ×R;𝐻) (7.9)

and to prove that

𝜓(𝑘)(0) = (−1)𝑘⟨𝐿𝑘𝛿(𝑥 − 𝑦, 𝑡), 𝜑(𝑥, 𝑡)⟩ (7.10)

for all 𝑘 ≥ 0.
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In order to prove (7.10) let us remark that the function type distribution
𝐾(𝑥, 𝑦, 𝑡) with respect to (𝑥, 𝑡) (𝑦 is considered such as a parameter) satisfies the
following relation∫

R𝑛

𝐾(𝑥, 𝑦, 𝑡)𝑢(𝑥)𝑑𝑥

∣∣∣∣
𝑡=0

= 𝑢(𝑦), 𝑢 ∈ 𝐶∞
0 (𝑋 ;𝐻), (7.11)

which is a consequence of the fact that 𝒰Ω(𝑥, 0, 𝜉) = 𝐼, where 𝐼 : 𝐻 → 𝐻 is the
identity operators of 𝐻 . Now, by an easy calculation and using (7.9) we obtain

𝜓′(𝑡) =

〈
∂𝐾

∂𝑡
(𝑥, 𝑦, 𝑡), 𝜑(𝑥, 𝑡)

〉
+

〈
𝐾(𝑥, 𝑦, 𝑡),

∂𝜑

∂𝑡
(𝑥, 𝑡)

〉
= ⟨𝐴(𝑡)𝐾(𝑥, 𝑦, 𝑡), 𝜑(𝑥, 𝑡)⟩ +

〈
𝐾(𝑥, 𝑦, 𝑡),

∂𝜑

∂𝑡
(𝑥, 𝑡)

〉
=

〈
𝐾(𝑥, 𝑦, 𝑡),

[
∂

∂𝑡
+𝐴∗(𝑡)

]
𝜑(𝑥, 𝑡)

〉
,

(7.12)

where 𝐴∗(𝑡) is the adjoint of the operator 𝐴(𝑡) as an 𝐿(𝐻)-valued pseudodifferen-
tial operator in 𝑋 .

So, by induction we see easily that

(7.13) 𝜓(𝑘)(𝑡) =

〈
𝐾(𝑥, 𝑦, 𝑡),

[
∂

∂𝑡
+𝐴∗(𝑡)

]𝑘
𝜑(𝑥, 𝑡)

〉
, 𝑘 ∈ N. (7.13)

Thus, by (7.11), (7.13) we get

𝜓(𝑘)(0) =

[
∂

∂𝑡
+𝐴∗(𝑡)

]𝑘
𝜑(𝑦, 𝑡)

∣∣∣∣∣
𝑡=0

=

〈
𝛿(𝑥− 𝑦, 𝑡),

[
∂

∂𝑡
+𝐴∗(𝑡)

]𝑘
𝜑(𝑥, 𝑡)

〉

= (−1)𝑘

〈[
∂

∂𝑡
−𝐴(𝑡)

]𝑘
𝛿(𝑥− 𝑦, 𝑡), 𝜑(𝑥, 𝑡)

〉
(7.14)

= (−1)𝑘⟨𝐿𝑘𝛿(𝑥− 𝑦, 𝑡), 𝜑(𝑥, 𝑡)⟩,
for all 𝑘 ∈ N.

Then, by (7.8), (7.10) and using the fact that 𝑡𝜆−1+ and Γ(𝜆) are meromorphic
functions of 𝜆 in C which have simple poles in 𝜆𝑘 = −𝑘, for all nonnegative integers

𝑘 with the residue
(−1)𝑘

𝑘!
𝛿(𝑘) respectively

(−1)𝑘

𝑘!
(see [2]), the conclusion of the

Theorem 7.1 follows. □

Now, let us consider the distribution

𝑢𝜆(𝑥, 𝑡) = 𝐿𝜆(𝑥, 𝑦, 𝑡) ∗ 𝑢(𝑥, 𝑡), (7.15)

where 𝑢(𝑥, 𝑡) ∈ 𝐷′(𝑋 × R;𝐻) is a suitable chosen distribution such that the
convolution in (7.15) is defined. Then the following relation

𝑢𝜆(𝑥, 𝑡) = 𝑓(𝑥, 𝑡), 𝑓 ∈ 𝐷′(𝑋 × [0, 𝑇 );𝐻) (7.16)
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coincide when we take 𝜆 = −𝑘, 𝑘 ≥ 1 with the equation

𝐿𝑘𝑢 = 𝑓. (7.17)

Indeed, by (7.7), (7.15) and (7.16) in which we take 𝑦 = 0 and 𝜆 = −𝑘 respectively
we get

𝑢−𝑘(𝑥, 𝑡) = 𝐿−𝑘(𝑥, 𝑡) ∗ 𝑢(𝑥, 𝑡) = 𝐿𝑘𝛿(𝑥, 𝑡) ∗ 𝑢(𝑥, 𝑡)
= 𝐿𝑘𝑢(𝑥, 𝑡) = 𝑓(𝑥, 𝑡).

Thus, the equation (7.16) can be used to define the iterated of an arbitrary order

𝜆 in C with Re 𝜆 < 0 of the generalized heat operator 𝐿 =
∂

∂𝑡
−𝐴(𝑡).

In the following let us recall that Trèves also has considered in his book [8]
the initial value problem

𝑑𝑈

𝑑𝑡
(𝑡)−𝐴(𝑡)𝑈(𝑡) = 0, in 𝑋 × [𝑡′, 𝑇 ) (7.18)

𝑈(𝑡)∣𝑡=𝑡′ = 𝐼, in 𝑋, (7.19)

where 𝑡′ is any number such that 0 ≤ 𝑡′ < 𝑇 . The equality in (7.18) it means
congruence modulo 𝐶∞([𝑡′, 𝑇 ); Ψ−∞(𝑋 ;𝐿(𝐻))) whereas the equality in (7.19)
means congruence modulo Ψ−∞(𝑋 ;𝐿(𝐻)). 𝐼 is the identity operator of 𝐻 .

Trèves has showed that a solution 𝑈(𝑡, 𝑡′) of (7.18)–(7.19) is an equivalence
class, which has a representation in any local chart (Ω, 𝑥1, . . . , 𝑥𝑛) in 𝑋 which is
equivalent to an operator 𝑈Ω(𝑡, 𝑡

′) defined by

𝑈Ω(𝑡, 𝑡
′)𝑢(𝑥) = (2𝜋)−𝑛

∫
R𝑛

𝑒𝑖⟨𝑥,𝜉⟩𝒰Ω(𝑥, 𝑡, 𝑡′, 𝜉)�̂�(𝜉)𝑑𝜉,

where 𝑢 ∈ 𝐶∞
0 (Ω;𝐻) and

𝒰Ω(𝑥, 𝑡, 𝑡′, 𝜉) = (2𝜋𝑖)−1
∮
𝛾

𝑒(𝑡−𝑡
′)𝜌𝑧ℎΩ(𝑥, 𝑡, 𝜉, 𝑧)𝑑𝑧,

𝜌 = 𝜌(𝜉) = (1 + ∣𝜉∣2)𝑚/2, 𝑘Ω ∈ 𝑆0(Ω× [0, 𝑇 ];𝐿(𝐻)).

Here 𝑘Ω is a suitable formal symbol of degree zero, valued in 𝐿(𝐻) depending holo-
morphically on the complex variable 𝑧 is an open neighborhood of the integration
contour 𝛾 provided (𝑥, 𝑡) ranges in a compact subset of Ω× [0, 𝑇 ).

Let us remark that we can write

𝑈Ω(𝑡, 𝑡
′)𝑢(𝑥) =

∫
Ω

𝐾(𝑥, 𝑦, 𝑡, 𝑡′)𝑢(𝑦)𝑑𝑦, 𝑢 ∈ 𝐶∞
0 (Ω;𝐻),

where

𝐾(𝑥, 𝑦, 𝑡, 𝑡′) = (2𝜋)−𝑛
∫
R𝑛

𝑒𝑖⟨𝑥−𝑦,𝜉⟩𝒰Ω(𝑥, 𝑡, 𝑡′, 𝜉)𝑑𝜉.
By (7.18) and (7.19), we get

∂𝐾

∂𝑡
−𝐴(𝑡)𝐾 = 0, in 𝑋 × [𝑡′, 𝑇 )∫

R𝑛

𝐾(𝑥, 𝑦, 𝑡, 𝑡′)𝑢(𝑦)𝑑𝑦
∣∣∣∣
𝑡=𝑡′

= 𝑢(𝑥), 𝑢 ∈ 𝐶∞
0 (𝑋 ;𝐻).
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Then we can state and prove by analogy with Theorem 7.1 the following theorem.

Theorem 7.2. The generalized function

𝐿𝜆(𝑥, 𝑦, 𝑡, 𝑡
′) =

(𝑡− 𝑡′)𝜆−1+

Γ(𝜆)
𝐾(𝑥, 𝑦, 𝑡, 𝑡′),

where 𝐾 = 0 for 𝑡 /∈ [𝑡′, 𝑇 ) and where (𝑦, 𝑡′) are considered such as parameters, is
an entire function of 𝜆 and for 𝜆 = −𝑘, 𝑘 ∈ N the support of this distribution is
concentrated in (𝑦, 𝑡′). In addition to the following relations are valid

𝐿𝜆(𝑥, 𝑦, 𝑡, 𝑡
′)∣𝜆=−𝑘 = 𝐿𝑘𝛿(𝑥− 𝑦, 𝑡, 𝑡′), 𝑘 ∈ N,

where 𝐿𝑘 denote the iterations of order 𝑘 of the operator 𝐿.
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Smoothing Effect and Fredholm Property
for First-order Hyperbolic PDEs

I. Kmit

Abstract. We give an exposition of recent results on regularity and Fredholm
properties for first-order one-dimensional hyperbolic PDEs. We show that
large classes of boundary operators cause an effect that smoothness increases
with time. This property is the key in finding regularizers (parametrices)
for hyperbolic problems. We construct regularizers for periodic problems for
dissipative first-order linear hyperbolic PDEs and show that these problems
are modeled by Fredholm operators of index zero.
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Keywords. First-order hyperbolic systems, initial-boundary problems; time-
periodic solutions, regularity of solutions; Fredholm solvability.

1. Introduction

In contrast to ODEs and parabolic PDEs, the Fredholm property and regularity
behavior of hyperbolic problems are much less understood. In a recent series of
papers [18, 20, 21], the latter two written jointly with Lutz Recke, we undertook
a detailed analysis of this subject for first-order one-dimensional hyperbolic oper-
ators. The purpose of the present survey paper is to present some of our results
and their extensions with emphasize on the smoothing phenomenon, construction
of parametrices, and the Fredholmness of index zero.

An important step in local investigations of nonlinear differential equations
(many ODEs and parabolic PDEs) is to establish the Fredholm solvability of their
linearized versions. In the hyperbolic case this step is much more involved. Since the
singularities of (semi-)linear hyperbolic equations propagate along characteristic
curves, a solution cannot be more regular in the entire time-space domain than
it is on the boundary. It can even be less regular which is known as the loss-of-
smoothness effect. Therefore the Fredholm analysis of hyperbolic problems requires
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establishing an optimal regularity relation between the spaces of solutions and
right-hand sides of the differential equations.

Proving a Fredholm solvability is typically based on the basic fact that any
Fredholm operator is exactly a compact perturbation of a bijective operator. In
the hyperbolic case, using the compactness argument gets complicated because of
the lack of regularity over the whole time-space domain.

Our approach is based on the fact that for a range of boundary operators,
solutions improve smoothness dynamically, more precisely, they eventually become
𝑘-times continuously differentiable for each particular 𝑘. We prove such kind of
results in Section 2. Note that in some interesting cases the smoothing phenomenon
was shown earlier in [10, 13, 23, 25].

This phenomenon allows us in Section 3 to work out a regularization proce-
dure via construction of a parametrix. We here present a quite general approach
to proving the Fredholmness for first-order dissipative hyperbolic PDEs and apply
it to the periodic problems. Our Fredholm results cover non-strictly hyperbolic
systems with discontinuous coefficients, but they are new even in the case of strict
hyperbolicity and smooth coefficients.

From a more general perspective, the smoothing effect and Fredholmness
properties play an important role in the study of the Hopf bifurcation and periodic
synchronizations in nonlinear hyperbolic PDEs [2, 22] via the Implicit Function
Theorem and Lyapunov–Schmidt procedure [7, 15] and averaging procedure [6, 32].

From the practical point of view, our techniques cover the so-called traveling-
wave models from laser dynamics [24, 30] (describing the appearance of self-
pulsations of lasers and modulation of stationary laser states by time periodic elec-
tric pumping), population dynamics [9, 14, 36], and chemical kinetics [3, 4, 5, 38]
(describing mass transition in terms of convective diffusion and chemical reaction
and analysis of chemical processes in counterflow chemical reactors).

2. Smoothing effect

Here we describe some classes of (initial-)boundary problems for first-order one-
dimensional hyperbolic PDEs whose solutions improve their regularity in time.

Set
Π𝑇 = {(𝑥, 𝑡) : 0 < 𝑥 < 1, 𝑇 < 𝑡 <∞}.

We address the problem

(∂𝑡 + 𝑎(𝑥, 𝑡)∂𝑥 + 𝑏(𝑥, 𝑡))𝑢 = 𝑓(𝑥, 𝑡), (2.1)

𝑢(𝑥, 0) = 𝜑(𝑥), (2.2)

𝑢𝑗(0, 𝑡) = (𝑅𝑢)𝑗(𝑡), 1 ≤ 𝑗 ≤ 𝑚

𝑢𝑗(1, 𝑡) = (𝑅𝑢)𝑗(𝑡), 𝑚 < 𝑗 ≤ 𝑛
(2.3)

in the semi-strip Π0 and the problem (2.1), (2.3) in the strip Π−∞. Here 𝑢 =
(𝑢1, . . . , 𝑢𝑛), 𝑓 = (𝑓1, . . . , 𝑓𝑛), and 𝜑 = (𝜑1, . . . , 𝜑𝑛) are vectors of real-valued
functions, 𝑏 = {𝑏𝑗𝑘}𝑛𝑗,𝑘=1 and 𝑎 = diag(𝑎1, . . . , 𝑎𝑛) are matrices of real-valued
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functions, and 0 ≤ 𝑚 ≤ 𝑛 are fixed integers. Furthermore, 𝑅 is an operator
mapping 𝐶

(
Π0

)𝑛
into 𝐶 ([0,∞))

𝑛
, and similarly for 𝑅 in Π−∞. In Sections 2.1–

2.3 we give examples of 𝑅 as representatives of some classes of boundary operators
ensuring smoothing solutions.

In the domain under consideration we assume that

𝑎𝑗 > 0 for all 𝑗 ≤ 𝑚 and 𝑎𝑗 < 0 for all 𝑗 > 𝑚, (2.4)

inf
𝑥,𝑡
∣𝑎𝑗 ∣ > 0 for all 𝑗 ≤ 𝑛, (2.5)

and
for all 1 ≤ 𝑗 ∕= 𝑘 ≤ 𝑛 there exists 𝑝𝑗𝑘 ∈ 𝐶1([0, 1]× ℝ)
such that 𝑏𝑗𝑘 = 𝑝𝑗𝑘(𝑎𝑘 − 𝑎𝑗).

(2.6)

Note that all these conditions are not restrictive neither from the practical nor from
the theoretical points of view. In particular, condition (2.4) is true in traveling-
wave models of laser and population dynamics as well as chemical kinetics, where
the functions 𝑢𝑗 for 𝑗 ≤ 𝑚 (respectively, 𝑚 + 1 ≤ 𝑗 ≤ 𝑛) describe “species”
traveling to the right (respectively, to the left). Condition (2.5) means that all
characteristics of the system (2.1) are bounded and the system (2.1) is, hence,
non-degenerate. Finally, the condition (2.6) is a kind of Levy condition usually
appearing to compensate non-strict hyperbolicity where the coefficients 𝑎𝑗 and 𝑎𝑘
for some 𝑗 ∕= 𝑘 coincide at least at one point, say, (𝑥0, 𝑡0). In this case the lower-
order terms with the coefficients 𝑏𝑗𝑘 and 𝑏𝑘𝑗 contribute to the system at (𝑥0, 𝑡0)
longitudinally to characteristic directions (keeping responsibility for the propaga-
tion of singularities), while in the strictly hyperbolic case we have a qualitatively
different transverse contribution at that point. The purpose of (2.6) is to suppress
propagation of singularities through the non-diagonal lower-order terms of (2.1).

We will impose the following smoothness assumptions on the initial data:
The entries of 𝑎, 𝑏, and 𝑓 are 𝐶∞-smooth in all their arguments in the respective
domains, while the entries of 𝜑 are assumed to be continuous functions only.

Let us introduce the system resulting from (2.1)–(2.3) (resp., from (2.1),
(2.3)) via integration along characteristic curves. For given 𝑗 ≤ 𝑛, 𝑥 ∈ [0, 1], and
𝑡 ∈ ℝ, the 𝑗th characteristic of (2.1) passing through the point (𝑥, 𝑡) is defined as
the solution 𝜉 ∈ [0, 1] → 𝜔𝑗(𝜉;𝑥, 𝑡) ∈ ℝ of the initial value problem

∂𝜉𝜔𝑗(𝜉;𝑥, 𝑡) =
1

𝑎𝑗(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))
, 𝜔𝑗(𝑥;𝑥, 𝑡) = 𝑡. (2.7)

Define

𝑐𝑗(𝜉, 𝑥, 𝑡) = exp

∫ 𝜉

𝑥

(
𝑏𝑗𝑗
𝑎𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂, 𝑑𝑗(𝜉, 𝑥, 𝑡) =

𝑐𝑗(𝜉, 𝑥, 𝑡)

𝑎𝑗(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))
.

Due to (2.5), the characteristic curve 𝜏 = 𝜔𝑗(𝜉;𝑥, 𝑡) reaches the boundary of
Π𝑇 in two points with distinct ordinates. Let 𝑥𝑗(𝑥, 𝑡) denote the abscissa of that
point whose ordinate is smaller. Straightforward calculations show that a 𝐶1-map
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𝑢 : [0, 1] × [0,∞) → ℝ𝑛 is a solution to (2.1)–(2.3) if and only if it satisfies the
following system of integral equations

𝑢𝑗(𝑥, 𝑡) = (𝐵𝑆𝑢)𝑗(𝑥, 𝑡)

−
∫ 𝑥

𝑥𝑗(𝑥,𝑡)

𝑑𝑗(𝜉, 𝑥, 𝑡)

𝑛∑
𝑘=1
𝑘 ∕=𝑗

𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑢𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑑𝜉

+

∫ 𝑥

𝑥𝑗(𝑥,𝑡)

𝑑𝑗(𝜉, 𝑥, 𝑡)𝑓𝑗(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑑𝜉, 𝑗 ≤ 𝑛, (2.8)

where

(𝐵𝑢)𝑗(𝑥, 𝑡) = 𝑐𝑗(𝑥𝑗(𝑥, 𝑡), 𝑥, 𝑡)𝑢𝑗 (𝑥𝑗(𝑥, 𝑡), 𝜔𝑗(𝑥𝑗(𝑥, 𝑡);𝑥, 𝑡)) , (2.9)

(𝑆𝑢)𝑗(𝑥, 𝑡) =

{
(𝑅𝑢)𝑗(𝑡) if 𝑡 > 0,

𝜑𝑗(𝑥) if 𝑡 = 0.
(2.10)

Here 𝐵 is a shifting operator from ∂Π0 along characteristic curves of (2.1), while
the operator 𝑆 is used to denote the boundary operator on the whole ∂Π0. Sim-
ilarly, a 𝐶1-map 𝑢 : [0, 1] × ℝ → ℝ𝑛 is a solution to (2.1), (2.3) if and only if it
satisfies the system (2.8), where the definition of 𝑆 is changed to 𝑆 = 𝑅.

This motivates the following definition:

Definition 2.1.
(1) A continuous function 𝑢 is called a continuous solution to (2.1)–(2.3) in Π0

if it satisfies (2.8) with 𝑆 defined by (2.10).
(2) A continuous function 𝑢 is called a continuous solution to (2.1), (2.3) in Π−∞

if it satisfies (2.8) with 𝑆 = 𝑅.

Existence results for (continuous) solutions to the problems under consider-
ation are obtained in [1, 16, 17, 19].

Definition 2.2. A solution 𝑢 to the problem (2.1)–(2.3) or (2.1), (2.3) is called
smoothing if, for every 𝑘 ∈ ℕ, there exists 𝑇 > 0 such that 𝑢𝑗 ∈ 𝐶𝑘

(
Π𝑇

)
for all

𝑗 ≤ 𝑛.

For the initial-boundary value problem (2.1)–(2.3) Definition 2.2 reflects a
dynamic nature of the smoothing property stating that the regularity of solutions
increases in time. The fact that the regularity cannot be uniform in the entire
domain is a straightforward consequence of the propagation of singularities along
characteristic curves. Moreover, switching from 𝐶𝑘 to 𝐶𝑘+1-regularity is jump-like;
this phenomenon is usually observed in the situations when solutions of hyperbolic
PDEs change their regularity (see, e.g., [25, 27, 29, 31]).

Note that, if the problem (2.1), (2.3) is subjected to periodic conditions in 𝑡,
then Definition 2.2 implies that the smoothing solutions immediately meet the
𝐶∞-regularity in the entire domain.

Definition 2.2 captures the general nature of the smoothing phenomenon for
hyperbolic PDEs. A more precise information can be extracted from the proof of
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Theorems 2.3, 2.4, and 2.5 below: Reaching the 𝐶𝑘-regularity for solutions needs
only a 𝐶𝑘-regularity for 𝑎, 𝑏, and 𝑓 . More exact regularity conditions for the
boundary data, which also depend on 𝑘, can be derived from these proofs as well.
These refinements are useful in some applications.

Definition 2.2 can be strengthened by admitting worse regularities for the
initial data. One extension of this kind, when the initial data are strongly singular
distributions concentrated at a finite number of points, can be found in [18]. In [18]
we used a delta-wave solution concept. Another result in this direction [20, 21]
concerns periodic problems and uses a variational setting of the problem (see also
Theorem 3.2 (ii)). In [20, 21] we get an improvement of the solution regularity
from being functionals to being functions.

In what follows we demonstrate the smoothing effect on generic examples
of large classes of boundary operators and show which kinds of problems can
be covered by our techniques. Our approach to establishing smoothing results is
based on the consideration of the integral representation of the problems and the
observation that the boundary and the integral parts of this representation have
different influence on the regularity of solutions. Our main idea is to show that
the integral part has a “self-improvement” property, while in many interesting
cases the boundary part is not responsible for propagation of singularities. The
latter contrasts to the case of the Cauchy problem where the solutions cannot
be smoothing as the boundary term all the time “remembers” the regularity of
the initial data. It is worthy to note that in the case of the problem (2.1)–(2.3)
in Π0 the domain of influence of the initial conditions is determined by both parts
of the integral system and is in general infinite. This makes the smoothing effect
non-obvious.

2.1. Classical boundary conditions

Here we specify conditions (2.3) to

𝑢𝑗(0, 𝑡) = ℎ𝑗(𝑡), 1 ≤ 𝑗 ≤ 𝑚,
𝑢𝑗(1, 𝑡) = ℎ𝑗(𝑡), 𝑚 < 𝑗 ≤ 𝑛.

(2.11)

and consider the problem (2.1), (2.2), (2.11).

Theorem 2.3. Assume that the data 𝑎𝑗, 𝑏𝑗𝑘, 𝑓𝑗, and ℎ𝑗 are smooth in all their
arguments and 𝜑𝑗 are continuous functions. Assume also (2.4), (2.5), and (2.6).
Then any continuous solution to the problem (2.1), (2.2), (2.11) is smoothing.

Note that in the case of smooth classical boundary conditions (2.11), the
domain of influence of the initial data 𝜑(𝑥) on 𝑢𝑖 for every 𝑖 ≤ 𝑛 in general is
unbounded (due to the lower-order terms in (2.1)). In spite of this, the influence of
the initial data on the regularity of 𝑢 becomes weaker and weaker in time causing
the smoothing effect.

Proof. Suppose that 𝑢 is a continuous solution to the problem (2.1)–(2.3) and
show that the operator of the problem improves the regularity of 𝑢 in time. The
idea of the proof is similar to [18].
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We start with an operator representation of 𝑢. To this end, introduce linear
bounded operators 𝐷,𝐹 : 𝐶

(
Π0

)𝑛 → 𝐶
(
Π0

)𝑛
by

(𝐷𝑢)𝑗 (𝑥, 𝑡) = −
∫ 𝑥

𝑥𝑗(𝑥,𝑡)

𝑑𝑗(𝜉, 𝑥, 𝑡)

𝑛∑
𝑘=1
𝑘 ∕=𝑗

𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑢𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑑𝜉,

(𝐹𝑓)𝑗 (𝑥, 𝑡) =

∫ 𝑥

𝑥𝑗(𝑥,𝑡)

𝑑𝑗(𝜉, 𝑥, 𝑡)𝑓𝑗(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑑𝜉.

Note that 𝐹𝑓 is a smooth function in 𝑥, 𝑡. In this notation the integral system
(2.8) can be written as

𝑢 = 𝐵𝑆𝑢+𝐷𝑢+ 𝐹𝑓. (2.12)

It follows that
𝑢 = 𝐵𝑆𝑢+ (𝐷𝐵𝑆 +𝐷2)𝑢+ (𝐼 +𝐷)𝐹𝑓. (2.13)

In the first step we prove that the right-hand side of (2.13) restricted to

Π𝑇1 for some 𝑇1 > 0 is continuously differentiable in 𝑡. The 𝐶1
(
Π𝑇1

)𝑛
-regularity

of 𝑢 will then follow from the fact that 𝑢 given by (2.8) satisfies (2.1) in the
distributional sense. By the assumption (2.5), we can fix a large enough 𝑇1 > 0
such that the operator 𝑆 in the right-hand side of (2.13) restricted to Π𝑇1 does
not depend on 𝜑 and, hence, 𝑆𝑢 = 𝑅𝑢 = ℎ, where ℎ = (ℎ1, . . . , ℎ𝑛). We therefore
arrive at the equality

𝑢∣Π𝑇1
= 𝐵ℎ+𝐷𝐵ℎ+𝐷2𝑢+ (𝐼 +𝐷)𝐹𝑓, (2.14)

where 𝑢∣Π𝑇1
denotes the restriction of 𝑢 to Π𝑇1 . By the regularity assumption on

𝑎, 𝑏, 𝑓 , and ℎ, the function 𝐵ℎ +𝐷𝐵ℎ + (𝐼 +𝐷)𝐹𝑓 is smooth. We have reduced
the problem to show that the operator 𝐷2 is smoothing, more specifically, that
𝐷2𝑢 is 𝐶1-smooth in 𝑡 on Π𝑇1 .

Notice that for 𝑡 ≥ 𝑇1 the function 𝑥𝑗(𝑥, 𝑡) is a constant depending only on 𝑗.
Below we therefore will drop the dependence of 𝑥𝑗 on 𝑥 and 𝑡. Fix a sequence

𝑢𝑙 ∈ 𝐶1
(
Π0

)𝑛
such that

𝑢𝑙 → 𝑢 in 𝐶
(
Π0

)𝑛
as 𝑙 →∞. (2.15)

By convergence in 𝐶 (Ω)
𝑛

here and below we mean the uniform convergence on any

compact subset of Ω. Then𝐷2𝑢𝑙 → 𝐷2𝑢 in 𝐶
(
Π0

)𝑛
as well. It suffices to prove that

∂𝑡
[
𝐷2𝑢𝑙

]
converges in 𝐶

(
Π𝑇1

)𝑛
as 𝑙 → ∞. Given 𝑗 ≤ 𝑛, consider the following

expression for
(
𝐷2𝑢𝑙

)
𝑗
(𝑥, 𝑡), obtained by change of the order of integration:(

𝐷2𝑢𝑙
)
𝑗
(𝑥, 𝑡) (2.16)

=

𝑛∑
𝑘=1
𝑘 ∕=𝑗

𝑛∑
𝑖=1
𝑖∕=𝑘

∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑢
𝑙
𝑖(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂

with

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡) = 𝑑𝑗(𝜉, 𝑥, 𝑡)𝑑𝑘(𝜂, 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑏𝑘𝑖(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))).
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It follows that

∂𝑡

[(
𝐷2𝑢𝑙

)
𝑗
(𝑥, 𝑡)

]
=

𝑛∑
𝑘=1
𝑘 ∕=𝑗

𝑛∑
𝑖=1
𝑖∕=𝑘

∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

∂𝑡
[
𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))

]
𝑢𝑙𝑖(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂

+

𝑛∑
𝑘=1
𝑘 ∕=𝑗

𝑛∑
𝑖=1
𝑖∕=𝑘

∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)) (2.17)

× ∂3𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))∂𝑡𝜔𝑗(𝜉;𝑥, 𝑡)∂2𝑢
𝑙
𝑖(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂,

where ∂𝑟𝑔 here and below denotes the derivative of 𝑔 with respect to the 𝑟th
argument. The first summand in the right-hand side converges in 𝐶

(
Π𝑇1

)
. Our

task is therefore reduced to show the uniform convergence of all integrals in the
second summand, whenever (𝑥, 𝑡) varies on a compact subset of Π𝑇1 . For this
purpose we will transform the integrals as follows. Using (2.6) and the formulas

∂𝑥𝜔𝑗(𝜉;𝑥, 𝑡) = − 1

𝑎𝑗(𝑥, 𝑡)
exp

∫ 𝑥

𝜉

(
∂𝑡𝑎𝑗
𝑎2𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡))𝑑𝜂, (2.18)

∂𝑡𝜔𝑗(𝜉;𝑥, 𝑡) = exp

∫ 𝑥

𝜉

(
∂𝑡𝑎𝑗
𝑎2𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡))𝑑𝜂, (2.19)

we get∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))

× ∂3𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))∂𝑡𝜔𝑗(𝜉;𝑥, 𝑡)∂2𝑢
𝑙
𝑖(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂

=

∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)∂3𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))∂𝑡𝜔𝑗(𝜉;𝑥, 𝑡)

× 𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))
[(
∂𝜉𝜔𝑘

)
(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))

]−1(
∂𝜉𝑢

𝑙
𝑖

)
(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂

=

∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)∂𝑡𝜔𝑗(𝜉;𝑥, 𝑡)
(
𝑎𝑘𝑎𝑗𝑝𝑗𝑘

)
(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))

× (
∂𝜉𝑢

𝑙
𝑖

)
(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂

=

∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)
(
∂𝜉𝑢

𝑙
𝑖

)
(𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉𝑑𝜂

= −
∫ 𝑥

𝑥𝑗

∫ 𝑥

𝜂

∂𝜉𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)𝑢
𝑙
𝑖 (𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))) 𝑑𝜉𝑑𝜂

+

∫ 𝑥

𝑥𝑗

[
𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)𝑢

𝑙
𝑖 (𝜂, 𝜔𝑘(𝜂; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))

]𝜉=𝑥
𝜉=𝜂

𝑑𝜂.
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Here

𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡) = 𝑑𝑗𝑘𝑖(𝜉, 𝜂, 𝑥, 𝑡)∂𝑡𝜔𝑗(𝜉;𝑥, 𝑡) (𝑎𝑘𝑎𝑗𝑝𝑗𝑘) (𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)).

Now, the desired convergence follows from (2.15).
In the second step we prove that there exists 𝑇2 > 𝑇1 such that ∂𝑡𝑢 restricted

to Π𝑇2 is 𝐶1-smooth in 𝑡 on Π𝑇2 . Once this is done, we differentiate (2.1) with

respect to 𝑡 and get ∂2𝑥𝑡𝑢 ∈ 𝐶
(
Π𝑇2

)𝑛
; differentiating (2.1) with respect to 𝑥, we

get ∂2𝑥𝑢 ∈ 𝐶
(
Π𝑇2

)𝑛
. We will be able to conclude that 𝑢 ∈ 𝐶2

(
Π𝑇2

)𝑛
, as desired.

To prove the existence of 𝑇2, let 𝑣 = ∂𝑡𝑢. Differentiation of (2.1) formally in 𝑡
leads to

(∂𝑡 + 𝑎𝑗∂𝑥)𝑣𝑗 +

𝑛∑
𝑘=1

𝑏𝑗𝑘𝑣𝑘 +

𝑛∑
𝑘=1

∂𝑡𝑏𝑗𝑘𝑢𝑘 + ∂𝑡𝑎𝑗∂𝑥𝑢𝑗 = ∂𝑡𝑓𝑗 .

Combining this with (2.1), we obtain

(∂𝑡 + 𝑎𝑗∂𝑥)𝑣𝑗 +

𝑛∑
𝑘=1

𝑏𝑗𝑘𝑣𝑘 − ∂𝑡𝑎𝑗
𝑎𝑗

𝑣𝑗 (2.20)

= ∂𝑡𝑓𝑗 −
𝑛∑

𝑘=1

∂𝑡𝑏𝑗𝑘𝑢𝑘 +
∂𝑡𝑎𝑗
𝑎𝑗

(
𝑛∑

𝑘=1

𝑏𝑗𝑘𝑢𝑘 − 𝑓𝑗

)
= 𝐺𝑗(𝑓𝑗 , ∂𝑡𝑓𝑗 , 𝑢).

Here, for each 𝑗 ≤ 𝑛, 𝐺𝑗 is a certain linear function with smooth coefficients. Set

𝑐𝑗(𝜉, 𝑥, 𝑡) = exp

∫ 𝜉

𝑥

(
𝑏𝑗𝑗
𝑎𝑗
− ∂𝑡𝑎𝑗

𝑎2𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂, 𝑑𝑗(𝜉, 𝑥, 𝑡) =

𝑐𝑗(𝜉, 𝑥, 𝑡)

𝑎𝑗(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))

and introduce three linear operators �̃�, �̃�, 𝐹 : 𝐶
(
Π0

)𝑛 → 𝐶
(
Π0

)𝑛
by(

�̃�𝑢
)
𝑗
(𝑥, 𝑡) = 𝑐𝑗(𝑥𝑗 , 𝑥, 𝑡)𝑢𝑗 (𝑥𝑗 , 𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡)) ,(

�̃�𝑢
)
𝑗
(𝑥, 𝑡) = −

∫ 𝑥

𝑥𝑗

𝑑𝑗(𝜉, 𝑥, 𝑡)
𝑛∑

𝑘=1
𝑘 ∕=𝑗

𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑢𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑑𝜉,

(
𝐹𝑓

)
𝑗
(𝑥, 𝑡) =

∫ 𝑥

𝑥𝑗

𝑑𝑗(𝜉, 𝑥, 𝑡)𝑓𝑗(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑑𝜉.

Similarly to the above, our starting point is that for any 𝑇2 ≥ 𝑇1 the function 𝑣
satisfies the following operator equation resulting from (2.20):

𝑣∣Π𝑇2
= �̃�ℎ′ + �̃�𝑣 + 𝐹𝐺(𝑓, ∂𝑡𝑓, 𝑢),

and, hence, the equation

𝑣∣Π𝑇2
= �̃�ℎ′ + �̃��̃�ℎ′ + �̃�2𝑣 + (𝐼 + �̃�)𝐹𝐺(𝑓, ∂𝑡𝑓, 𝑢), (2.21)

where 𝐺 = (𝐺1, . . . , 𝐺𝑛) and ℎ′ = (ℎ′1, . . . , ℎ
′
𝑛). Again, due to the assumption

(2.5), we can fix 𝑇2 > 𝑇1 such that the right-hand side of (2.21) does not depend

on 𝑢 and 𝑣 in Π∖Π𝑇1 . Due to Step 1, the function (𝐼+�̃�)𝐹𝐺(𝑓, ∂𝑡𝑓, 𝑢) then meets



First-order Hyperbolic PDEs 227

the 𝐶1𝑡 -regularity. Moreover, �̃�ℎ′ + �̃��̃�ℎ′ ∈ 𝐶∞. We are thus left to show that

the operator �̃�2 is smoothing in the above sense. As �̃� is exactly the operator 𝐷
with 𝑐𝑗 and 𝑑𝑗 replaced by the smooth functions 𝑐𝑗 and 𝑑𝑗 , the desired smoothing

property of �̃�2 follows from the proof of the smoothness of 𝐷2 and the fact that
�̃�2𝑣 in (2.21) does not depend on 𝑣 in Π ∖Π𝑇1 .

Proceeding further by induction, assume that, given 𝑟 ≥ 2, there is 𝑇𝑟 > 0
such that 𝑢 ∈ 𝐶𝑟

(
Π𝑇𝑟

)𝑛
and prove that 𝑢 meets the 𝐶𝑟+1-regularity in 𝑡 on Π𝑇𝑟+1

for some 𝑇𝑟+1 > 𝑇𝑟. Set 𝑤 = ∂𝑟𝑡 𝑢 and write our starting operator equation for 𝑤
resulting from (2.1), (2.3) after 𝑟-times differentiation in 𝑡:

𝑤∣Π𝑇𝑟+1
= �̃�ℎ(𝑟) + �̃��̃�ℎ(𝑟) + �̃�2𝑤 + (𝐼 + �̃�)𝐹�̃�(𝑓, ∂𝑡𝑓, . . . , ∂

𝑟
𝑡 𝑓, 𝑢, ∂𝑡𝑢, . . . , ∂

𝑟−1
𝑡 𝑢)

(2.22)

where �̃� is a vector of certain linear functions with smooth coefficients and the
operators �̃�, �̃�, and 𝐹 are modified by 𝑐𝑗(𝜉, 𝑥, 𝑡) changing to

𝑐𝑗(𝜉, 𝑥, 𝑡) = exp

∫ 𝜉

𝑥

(
𝑏𝑗𝑗
𝑎𝑗
− 𝑟

∂𝑡𝑎𝑗
𝑎2𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂.

Similarly to the above, fix 𝑇𝑟+1 > 𝑇𝑟 such that the right-hand side of (2.22) does
not depend on 𝑢, ∂𝑡𝑢, . . . , ∂

𝑟−1
𝑡 𝑢, and 𝑤 in Π ∖Π𝑇𝑟 . This ensures that the last two

summands in (2.22) are 𝐶1𝑡 -functions. The first two summands are 𝐶1𝑡 -smooth by
the regularity assumptions on the data. Finally, the 𝐶𝑟+1

(
Π𝑇𝑟+1

)
-regularity of 𝑢

follows from the previous steps of the proof and suitable differentiations of the
system (2.1). □

Theorem 2.3 can be extended over the boundary operators of the following
kind (both linear and nonlinear). Given 𝑇 > 0, in the domain Π𝑇 let us consider the
problem (2.1)–(2.3) with 𝑏𝑗𝑘 ≡ 0 for all 𝑗 ∕= 𝑘 (i.e., the system (2.1) is decoupled)
and with (2.2) replaced by 𝑢(𝑥, 𝑇 ) = 𝜑(𝑥) (the initial values are given at 𝑡 = 𝑇 ).
This entails that the domain of influence of 𝜑 now depends only on the boundary
conditions. For the latter it is supposed that, for every 𝑇 > 0 and 𝜑(𝑥), the
function 𝜑(𝑥) has a bounded domain of influence on 𝑢. In other words, for any
decoupled system (2.1), if 𝜑(𝑥) has a singularity at some point 𝑥 ∈ [0, 1], then this
singularity expands along a finite number of characteristic curves (we have a finite
number of “reflections” from the boundary), and this number is bounded from
above uniformly in 𝑥 ∈ [0, 1]. This class of boundary operators is in detail described
in [18], where the necessary and sufficient conditions for smoothing solutions are
given. The results of [18] generalize the smoothing results obtained in [10, 13, 23,
25] for the system (2.1) with time-independent coefficients and (a kind of) Dirichlet
boundary conditions.

2.2. Integral boundary conditions in age structured population models

Here we address another class of boundary operators admitting smoothing solu-
tions. Though it covers a range of (partial) integral operators, we illustrate our
smoothing result with an example from population dynamics.



228 I. Kmit

Integral boundary conditions are usually used in continuous age structured
population models to describe a fertility of populations. Let 𝑢(𝑥, 𝑡) denote the
density of a population of age 𝑥 at time 𝑡. Then the dynamics of 𝑢 can be described
by the following model (see, e.g., [11, 26, 36] and references therein):

(∂𝑡 + ∂𝑥 + 𝜇)𝑢 = 0, (𝑥, 𝑡) ∈ Π0, (2.23)

𝑢(𝑥, 0) = 𝜑(𝑥), 𝑥 ∈ [0, 1], (2.24)

𝑢(0, 𝑡) = ℎ

(∫ 1

0

𝛾(𝑥)𝑢(𝑥, 𝑡) 𝑑𝑥

)
, 𝑡 ∈ ℝ, (2.25)

where 𝜇 > 0 is the mortality rate of the population and the functions ℎ and
𝛾 describe the fertility of the population. Without losing potential applicability
to the topic of population dynamics, ℎ and 𝛾 are supposed to be 𝐶∞-smooth
functions. The integral in (2.25) is a kind of the so-called “partial” integral, since
𝑢 depends not only on the variable of integration 𝑥, but also on the free variable 𝑡.
Therefore the right-hand side of (2.25) is not smoothing. Nevertheless, it turns out
that it is regular enough to contribute into smoothing solutions.

Theorem 2.4. Assume that ℎ and 𝛾 are 𝐶∞-smooth functions and 𝜑 is a continuous
function. Then any continuous solution to the problem (2.23)–(2.25) is smoothing.

Proof. It suffices to show the smoothing property starting from large enough 𝑡.
Therefore, we can use the notation:

(𝑅𝑢)(𝑡) = ℎ

(∫ 1

0

𝛾(𝑥)𝑢(𝑥, 𝑡) 𝑑𝑥

)
𝜔(𝜉;𝑥, 𝑡) = 𝑡+ 𝜉 − 𝑥

𝑐(𝜉, 𝑥, 𝑡) = 𝑐(𝜉, 𝑥, 𝑡) = 𝑒𝜇(𝜉−𝑥)

(𝐵𝑢)(𝑥, 𝑡) = (�̃�𝑢)(𝑥, 𝑡) = 𝑒−𝜇𝑥𝑢(0, 𝑡− 𝑥),

the latter two being introduced for all large enough 𝑡. Integration along the char-
acteristic curves implies that any continuous solution to (2.23)–(2.25) satisfies the
operator equations 𝑢 = 𝐵𝑅𝑢 and 𝑢 = 𝐵𝑢 and, hence,

𝑢 = 𝐵𝑅𝐵𝑢 (2.26)

whenever 𝑡 > 𝑇1, where 𝑇1 is chosen to be so large that the operator 𝐵𝑅𝐵 moves
away from the initial boundary (the right-hand side of (2.26) does not depend
on 𝜑). Since

(𝐵𝑅𝐵𝑢)(𝑡) = 𝑒−𝜇𝑥ℎ
(∫ 1

0

𝛾(𝜉)𝑒−𝜇𝜉𝑢(0, 𝑡− 𝑥− 𝜉) 𝑑𝜉

)
= 𝑒−𝜇𝑥ℎ

(∫ 𝑡−𝑥

𝑡−𝑥−1
𝛾(𝑡− 𝑥− 𝜏)𝑒𝜇(𝑥−𝑡+𝜏)𝑢(0, 𝜏) 𝑑𝜏

)
,

we obtain the 𝐶1𝑡 -smoothness of 𝐵𝑅𝐵𝑢 and, hence, of 𝑢 on Π𝑇1 . The 𝐶1-smooth-
ness of 𝑢 on Π𝑇1 now follows from (2.23).
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Proceeding similarly to the proof of Theorem 2.3, in the second step we
consider the following operator equation with respect to 𝑣 = ∂𝑡𝑢, obtained after
differentiation of (2.23) and (2.25) with respect to 𝑡 and integration along charac-
teristic curves:

𝑣∣Π𝑇2
= 𝐵∂𝑡𝑅𝐵𝑣, (2.27)

where

(∂𝑡𝑅𝑣)(𝑡) = ℎ′
(∫ 1

0

𝛾(𝑥)𝑢(𝑥, 𝑡) 𝑑𝑥

)∫ 1

0

𝛾(𝑥)𝑣(𝑥, 𝑡) 𝑑𝑥

and 𝑇2 > 𝑇1 is fixed to satisfy the property that the right-hand side of (2.27) does
not depend on 𝑢 and 𝑣 in Π0 ∖Π𝑇1 . It follows that

𝑣∣Π𝑇2
= 𝑒−𝜇𝑥ℎ′

(∫ 1

0

𝛾(𝜉)𝑢(𝜉, 𝑡− 𝑥) 𝑑𝜉

)∫ 1

0

𝛾(𝜉)𝑒−𝜇𝜉𝑣(0, 𝑡− 𝑥− 𝜉) 𝑑𝜉

= 𝑒−𝜇𝑥ℎ′
(∫ 1

0

𝛾(𝜉)𝑢(𝜉, 𝑡− 𝑥) 𝑑𝜉

)∫ 𝑡−𝑥

𝑡−𝑥−1
𝛾(𝑡− 𝑥− 𝜏)𝑒𝜇(𝑥−𝑡+𝜏)𝑣(0, 𝜏) 𝑑𝜏.

To conclude that 𝑣 ∈ 𝐶1𝑡
(
Π𝑇2

)𝑛
, it remains to note that 𝑢 under the first integral

in the right-hand side meets the 𝐶1𝑡 -regularity, while the second integral gives us
the desired smoothing property.

In general, given 𝑇𝑟 for 𝑟 ≥ 2, we choose 𝑇𝑟+1 > 𝑇𝑟 by the argument as above
and for 𝑤 = ∂𝑟𝑡 𝑢 have the equation

𝑤∣Π𝑇𝑟+1
= 𝐵∂𝑟𝑡𝑅𝐵𝑤, (2.28)

where

(∂𝑟𝑡𝑅𝑤)(𝑡) = ℎ′
(∫ 1

0

𝛾(𝑥)𝑢(𝑥, 𝑡) 𝑑𝑥

)∫ 1

0

𝛾(𝑥)𝑤(𝑥, 𝑡) 𝑑𝑥

+
𝑑𝑟−1

𝑑𝑡𝑟−1

[
ℎ′

(∫ 1

0

𝛾(𝑥)𝑢(𝑥, 𝑡) 𝑑𝑥

)]∫ 1

0

𝛾(𝑥)∂𝑡𝑢(𝑥, 𝑡) 𝑑𝑥

+
𝑑𝑟−2

𝑑𝑡𝑟−2

[
ℎ′

(∫ 1

0

𝛾(𝑥)𝑢(𝑥, 𝑡) 𝑑𝑥

)∫ 1

0

𝛾(𝑥)∂𝑡𝑢(𝑥, 𝑡) 𝑑𝑥

]
.

Substituting the latter into (2.28) and changing variables under the integral of 𝑤
similarly to the first two steps, we get the desired smoothing property for 𝑤. This
completes the proof. □
2.3. Dissipative boundary conditions and periodic problems

Now we switch to boundary conditions having dissipative nature and fitting the
smoothing property. A large class of dissipative boundary conditions for hyperbolic
PDEs is described in [8].

To give an idea of the smoothing effect in this case, consider the following
specification of (2.1):

𝑢𝑗(0, 𝑡) = ℎ𝑗(𝑧(𝑡)), 1 ≤ 𝑗 ≤ 𝑚,

𝑢𝑗(1, 𝑡) = ℎ𝑗(𝑧(𝑡)), 𝑚 < 𝑗 ≤ 𝑛,
(2.29)



230 I. Kmit

with
𝑧(𝑡) = (𝑢1(1, 𝑡), . . . , 𝑢𝑚(1, 𝑡), 𝑢𝑚+1(0, 𝑡), . . . , 𝑢𝑛(0, 𝑡)) . (2.30)

In the domain Π−∞ we address the problem (2.1), (2.29) subjected to periodic
boundary conditions

𝑢(𝑥, 𝑡+ 2𝜋) = 𝑢(𝑥, 𝑡). (2.31)

The problems of this kind appear in laser dynamics and chemical kinetics (in Sec-
tion 3 we investigate a traveling-wave model of kind (2.1), (2.29), (2.31) from laser
dynamics). Within this section, using the standard notation for the (sub)spaces
of continuous functions, we assume that the functions have additional property of
2𝜋-periodicity in 𝑡. Write

ℎ′𝑗(𝑧) = ∇𝑧ℎ𝑗(𝑧), ℎ′(𝑧) =
{
∂𝑘ℎ𝑗(𝑧)

}𝑛
𝑗,𝑘=1

.

Theorem 2.5. Assume that 𝑎𝑗, 𝑏𝑗𝑘, 𝑓𝑗, and ℎ𝑗 are 𝐶𝑁 -smooth functions in all their
arguments and the conditions (2.4)–(2.6) a re fulfilled. Moreover, the functions 𝑎𝑗,
𝑏𝑗𝑘, 𝑓𝑗 are supposed to be 2𝜋-periodic in 𝑡. If

exp

{∫ 𝑥𝑗

𝑥

(
𝑏𝑗𝑗
𝑎𝑗
− 𝑟

∂𝑡𝑎𝑗
𝑎2𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂

}
𝑛∑

𝑘=1

∣∂𝑘ℎ𝑗(𝑧)∣ < 1 (2.32)

for all 𝑗 ≤ 𝑛, 𝑥 ∈ [0, 1], 𝑡 ∈ ℝ, 𝑧 ∈ ℝ𝑛, and 𝑟 = 0, 1, . . . , 𝑁 , then any continuous
solution to the problem (2.1), (2.29), (2.31) belongs to 𝐶𝑁 (Π−∞).

Proof. Any continuous solution to the problem (2.1), (2.29), (2.31) in Π−∞ fulfills
(2.12) with 𝑆 = 𝑅 and also satisfies the equation

𝑢 = 𝐵𝑢+𝐷𝑢+ 𝐹𝑓 (2.33)

where the boundary conditions are not specified. Substituting (2.33) into (2.12),
we obtain

𝑢 = 𝐵𝑅𝑢+ (𝐷𝐵 +𝐷2)𝑢 + (𝐼 +𝐷)𝐹𝑓. (2.34)

We first show the bijectivity of 𝐼 − 𝐵𝑅 ∈ ℒ
(
𝐶1𝑡

(
Π−∞

)𝑛)
. On the account of

(2.19) and the definition of 𝐵 given by (2.9), we have

(𝐵𝑅𝑢)𝑗(𝑥, 𝑡) = 𝑐𝑗(𝑥𝑗 , 𝑥, 𝑡)ℎ𝑗 (𝑧(𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡))) = 𝑐𝑗(𝑥𝑗 , 𝑥, 𝑡)ℎ𝑗(0)

+ exp

{∫ 𝑥𝑗

𝑥

(
𝑏𝑗𝑗
𝑎𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂

}
×

∫ 1

0

ℎ′𝑗 (𝛼𝑧(𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡))) 𝑑𝛼 ⋅ 𝑧(𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡))
and

∂𝑡 [(𝐵𝑅𝑢)𝑗(𝑥, 𝑡)] = ∂𝑡𝑐𝑗(𝑥𝑗 , 𝑥, 𝑡)ℎ𝑗 (𝑧(𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡)))

+ ℎ′𝑗 (𝑧(𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡))) ⋅ 𝑧′(𝜔𝑗(𝑥𝑗 ;𝑥, 𝑡))

× exp

{∫ 𝑥𝑗

𝑥

(
𝑏𝑗𝑗
𝑎𝑗
− ∂𝑡𝑎𝑗

𝑎2𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂

}
,
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where ⋅ denotes the scalar product in ℝ𝑛. Taking into account (2.30), the bijectivity

of 𝐼 −𝐵𝑅 ∈ ℒ
(
𝐶1𝑡

(
Π−∞

)𝑛)
now follows from the contractibility condition (2.32)

with 𝑟 = 0, 1 and from the proof of the 𝐶𝑘-regularity result for solutions of first-
order hyperbolic PDEs given in [31].

Now we claim that the operators 𝐷𝐵 and 𝐷2 in (2.34) are smoothing. The
latter is smoothing by the proof in Theorem 2.3. Similar argument works also for
𝐷𝐵. Indeed, by the definition of the operators 𝐷 and 𝐵 we have(

𝐷𝐵𝑢𝑙
)
𝑗
(𝑥, 𝑡) =

𝑛∑
𝑘=1
𝑘 ∕=𝑗

∫ 𝑥𝑗

𝑥

𝑑𝑗(𝜉, 𝑥, 𝑡)𝑏𝑗𝑘(𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))𝑐𝑘(𝑥𝑘, 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡))

× 𝑢𝑙𝑘(𝑥𝑘, 𝜔𝑘(𝑥𝑘; 𝜉, 𝜔𝑗(𝜉;𝑥, 𝑡)))𝑑𝜉, (2.35)

where the sequence 𝑢𝑙 is fixed to satisfy (2.15) with Π0 replaced by Π−∞. To show
that ∂𝑡

[
𝐷𝐵𝑢𝑙

]
converges uniformly on Π−∞, we transform the integrals in (2.35)

like to the case of 𝐷2, that is, we differentiate (2.35) in 𝑡, use (2.6), and integrate
by parts. In this way we get the smoothing property for 𝐷𝐵. Turning back to the
formula (2.34) and using in addition the fact that (𝐼 + 𝐷)𝐹𝑓 is 𝐶∞-smooth, we
can rewrite (2.34) in the equivalent form

𝑢 = (𝐼 −𝐵𝑅)−1
[
(𝐷𝐵 +𝐷2)𝑢+ (𝐼 +𝐷)𝐹𝑓

]
,

thereby reaching the 𝐶1𝑡 -regularity for 𝑢. Afterwards, the 𝐶1-regularity of 𝑢 is a
straightforward consequence of the system (2.1).

Proceeding similarly to the proof of Theorem 2.3, we come to the formula for
𝑣 = ∂𝑡𝑢:

𝑣 = (𝐼 − �̃�𝑅′
𝑧)
−1

[
(�̃��̃� + �̃�2)𝑣 + (𝐼 + �̃�)𝐹𝐺(𝑓, ∂𝑡𝑓, 𝑢)

]
,

where 𝑅′
𝑧𝑦 = ℎ′(𝑧)𝑦. The property that 𝑣 ∈ 𝐶1𝑡

(
Π−∞

)𝑛
follows from the bijectivity

of 𝐼 − �̃�𝑅′
𝑧 ∈ ℒ

(
𝐶1𝑡

(
Π−∞

)𝑛)
, which we have by condition (2.32) with 𝑟 = 1, 2

and the 𝐶1𝑡 -regularity of �̃��̃� + �̃�2 and (𝐼 + �̃�)𝐹𝐺(𝑓, ∂𝑡𝑓, 𝑢). This entails 𝑢 ∈
𝐶2𝑡

(
Π−∞

)𝑛
. It follows by (2.1) that 𝑢 ∈ 𝐶2

(
Π−∞

)𝑛
.

To complete the proof, we proceed by induction on the order of regularity of 𝑢.
Assume that 𝑢 ∈ 𝐶𝑟

(
Π−∞

)𝑛
for some 𝑟 ≥ 2 and prove that 𝑢 ∈ 𝐶𝑟+1

(
Π−∞

)𝑛
.

Our starting formula for 𝑤 = ∂𝑟𝑡 𝑢 is as follows:

𝑤 = (𝐼 − �̃�𝑅′
𝑧)
−1

[
(�̃��̃� + �̃�2)𝑤

+ (𝐼 + �̃�)𝐹�̃�(𝑓, ∂𝑡𝑓, . . . , ∂
𝑟
𝑡 𝑓, 𝑢, ∂𝑡𝑢, . . . , ∂

𝑟−1
𝑡 𝑢)

+ �̃�∂𝑟−1𝑡 𝑅′
𝑧𝑧
′ + �̃�∂𝑟−2𝑡 (𝑅′

𝑧𝑧
′)
]
,

where ∂𝑟−1𝑡 𝑅′
𝑧 =

{
∂𝑟−1𝑡 (∂𝑘ℎ𝑗(𝑧))

}𝑛
𝑗,𝑘=1

and �̃�, �̃�, and 𝐹 are modified by 𝑐𝑗(𝜉, 𝑥, 𝑡)

changing to 𝑐𝑗(𝜉, 𝑥, 𝑡) = exp
∫ 𝜉

𝑥

(
𝑏𝑗𝑗
𝑎𝑗
− 𝑟

∂𝑡𝑎𝑗
𝑎2
𝑗

)
(𝜂, 𝜔𝑗(𝜂;𝑥, 𝑡)) 𝑑𝜂. By the regularity
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assumptions on the data and the induction assumption, the last three summands
in the square brackets are 𝐶1𝑡 -functions. Using in addition our smoothing argument

for �̃��̃�+�̃�2 and the regularity properties of (𝐼− �̃�𝑅′
𝑧)
−1, we arrive at the desired

conclusion. □

3. Fredholm solvability of periodic problems

In [20, 21] we suggest an approach to establish the Fredholm property for first-order
hyperbolic operators. This is done by construction an equivalent regularization in
the form of a parametrix. The construction is, implicitly but essentially, based
on the smoothing effect investigated in Section 2. Consider the first-order one-
dimensional hyperbolic system

(∂𝑡 + 𝑎(𝑥)∂𝑥 + 𝑏(𝑥))𝑢 = 𝑓(𝑥, 𝑡), 𝑥 ∈ (0, 1), (3.36)

subjected to periodic conditions (2.31) and reflection boundary conditions

𝑢𝑗(0, 𝑡) =

𝑛∑
𝑘=𝑚+1

𝑟0𝑗𝑘𝑢𝑘(0, 𝑡), 1 ≤ 𝑗 ≤ 𝑚,

𝑢𝑗(1, 𝑡) =

𝑚∑
𝑘=1

𝑟1𝑗𝑘𝑢𝑘(1, 𝑡), 𝑚 < 𝑗 ≤ 𝑛.

(3.37)

Here 𝑟0𝑗𝑘 and 𝑟1𝑗𝑘 are real numbers and the right-hand sides 𝑓𝑗 : [0, 1]×ℝ→ ℝ are
supposed to be 2𝜋-periodic with respect to 𝑡.

The main result of this section states that the system (3.36), (2.31), (3.37)
is solvable if and only if the right-hand side is orthogonal to all solutions to the
corresponding homogeneous adjoint system

−∂𝑡𝑢− ∂𝑥 (𝑎(𝑥)𝑢) + 𝑏𝑇 (𝑥)𝑢 = 0, 𝑥 ∈ (0, 1),

subjected to periodic conditions (2.31) and adjoint boundary conditions

𝑎𝑗(0)𝑢𝑗(0, 𝑡) = −
𝑚∑
𝑘=1

𝑟0𝑘𝑗𝑎𝑘(0)𝑢𝑘(0, 𝑡), 𝑚 < 𝑗 ≤ 𝑛,

𝑎𝑗(1)𝑢𝑗(1, 𝑡) = −
𝑛∑

𝑘=𝑚+1

𝑟1𝑘𝑗𝑎𝑘(1)𝑢𝑘(1, 𝑡), 1 ≤ 𝑗 ≤ 𝑚.

(3.38)

We will present our result in three steps. First we introduce appropriate
function spaces for solutions. Then we decompose the operator of the problem into
two parts, only one being responsible for propagation of singularities. Finally, based
on this decomposition and the smoothing property, we construct a parametrix
thereby establishing the Fredholm solvability.

When choosing the function spaces, note that the problem (3.36), (2.31),
(3.37) describes the so-called traveling-wave models from laser dynamics [24, 30].
From the physical point of view, it is desirable to allow discontinuities in the coef-
ficients and the right-hand side of (3.36). This entails that the spaces of solutions
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should not be too small. On the other hand, they should not be too large, in order
to admit embeddings into an algebra of functions with pointwise multiplication
of its elements. The last property is important for potential applicability of our
results to nonlinear problems, like describing such dynamic phenomena as Hopf
bifurcation and periodic synchronizations. Finally, the solution spaces capable to
capture the Fredholm solvability need to have optimal regularity with respect to
the function spaces of the right-hand side.

We now describe the scale of spaces 𝑉 𝛾 (for the solutions) and 𝑊 𝛾 (for
the right-hand side) meeting all these properties. For 𝛾 ≥ 0, let 𝑊 𝛾 denote the
vector space of all locally integrable functions 𝑓 : [0, 1] × ℝ → ℝ𝑛 such that
𝑓(𝑥, 𝑡) = 𝑓 (𝑥, 𝑡+ 2𝜋) for almost all 𝑥 ∈ (0, 1) and 𝑡 ∈ ℝ and that

∥𝑓∥2𝑊𝛾 =
∑
𝑠∈ℤ

(1 + 𝑠2)𝛾
∫ 1

0

∥∥∥∥∫ 2𝜋

0

𝑓(𝑥, 𝑡)𝑒−𝑖𝑠𝑡 𝑑𝑡
∥∥∥∥2 𝑑𝑥 <∞. (3.39)

Here and in what follows ∥ ⋅ ∥ is the Hermitian norm in ℂ𝑛. It is well known that
𝑊 𝛾 is a Banach space with the norm (3.39); see, e.g., [12], [33, Chapter 5.10], and
[35, Chapter 2.4].

Furthermore, for 𝛾 ≥ 1 and 𝑎 ∈ 𝐿∞ ((0, 1);𝕄𝑛), where 𝕄𝑛 denotes the space
of real 𝑛 × 𝑛 matrices, with ess inf ∣𝑎𝑗 ∣ > 0 for all 𝑗 ≤ 𝑛 we will work with the
function spaces

𝑈𝛾 =
{
𝑢 ∈𝑊 𝛾 : ∂𝑥𝑢 ∈ 𝑊 0, ∂𝑡𝑢+ 𝑎∂𝑥𝑢 ∈ 𝑊 𝛾

}
endowed with the norms

∥𝑢∥2𝑈𝛾 = ∥𝑢∥2𝑊𝛾 + ∥∂𝑡𝑢+ 𝑎∂𝑥𝑢∥2𝑊𝛾 .

Remark that the space 𝑈𝛾 depends on 𝑎 and is larger than the space of all 𝑢 ∈𝑊 𝛾

such that ∂𝑡𝑢 ∈ 𝑊 𝛾 and ∂𝑥𝑢 ∈ 𝑊 𝛾 (which does not depend on 𝑎). For 𝑢 ∈ 𝑈𝛾

there exist traces 𝑢(0, ⋅), 𝑢(1, ⋅) ∈ 𝐿2loc(ℝ;ℝ𝑛) (see [21]), and, hence, it makes sense
to consider the closed subspaces in 𝑈𝛾

𝑉 𝛾 = {𝑢 ∈ 𝑈𝛾 : (3.37) is fulfilled},
𝑉 𝛾 = {𝑢 ∈ 𝑈𝛾 : (3.38) is fulfilled}.

Our next task is to decompose the operator of our problem into two parts
in order to single out the part, denoted below by 𝒜, which is bijective and at the
same time is responsible for the propagation of singularities. If this decomposition
is optimal, then after a regularization procedure the other part becomes smoothing
and therefore meets the compactness property. Let

𝑏0 = diag(𝑏11, 𝑏22, . . . , 𝑏𝑛𝑛) and 𝑏1 = 𝑏− 𝑏0

denote the diagonal and the off-diagonal parts of the coefficient matrix 𝑏, respec-
tively.
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Let us introduce operators 𝒜 ∈ ℒ(𝑉 𝛾 ;𝑊 𝛾), 𝒜 ∈ ℒ(𝑉 𝛾 ;𝑊 𝛾), and ℬ, ℬ̃ ∈
ℒ(𝑊 𝛾) by

𝒜𝑢 = ∂𝑡𝑢+ 𝑎∂𝑥𝑢+ 𝑏0𝑢,

𝒜𝑢 = −∂𝑡𝑢− ∂𝑥(𝑎𝑢) + 𝑏0𝑢,

ℬ𝑢 = 𝑏1𝑢,

ℬ̃𝑢 = (𝑏1)𝑇𝑢.

Remark that the operators 𝒜, ℬ, and ℬ̃ are well defined for 𝑎𝑗 , 𝑏𝑗𝑘 ∈ 𝐿∞(0, 1),

while 𝒜 is well defined under additional regularity assumptions with respect to the
coefficients 𝑎𝑗 , for example, for 𝑎𝑗 ∈ 𝐶0,1([0, 1]). Note that the operator equation

𝒜𝑢 + ℬ𝑢 = 𝑓

is an abstract representation of the problem (3.36), (2.31), (3.37).
Finally, for 𝑠 ∈ ℤ we introduce the complex (𝑛−𝑚)× (𝑛−𝑚) matrices

𝑅𝑠 =

[
𝑚∑
𝑙=1

𝑒𝑖𝑠(𝛼𝑗(1)−𝛼𝑙(1))+𝛽𝑗(1)−𝛽𝑙(1)𝑟1𝑗𝑙𝑟
0
𝑙𝑘

]𝑛
𝑗,𝑘=𝑚+1

,

where

𝛼𝑗(𝑥) =

∫ 𝑥

0

1

𝑎𝑗(𝑦)
𝑑𝑦, 𝛽𝑗(𝑥) =

∫ 𝑥

0

𝑏𝑗𝑗(𝑦)

𝑎𝑗(𝑦)
𝑑𝑦.

The following theorem states, first, that the pair of spaces (𝑉 𝛾 ,𝑊 𝛾) gives an
optimal regularity trade-off between the spaces of solutions and right-hand sides
and, second, that 𝒜 meets the bijectivity property. The second desirable property
for 𝒜 of being an optimal operator responsible for propagation of singularities will
be a consequence of our Fredholmness result.

Theorem 3.1 ([21]). For every 𝑐 > 0 there exists 𝐶 > 0 such that the following is
true: If

𝑎𝑗 , 𝑏𝑗𝑗 ∈ 𝐿∞(0, 1) and ess inf ∣𝑎𝑗 ∣ ≥ 𝑐 for all 𝑗 = 1, . . . , 𝑛, (3.40)

𝑛∑
𝑗=1

∥𝑏𝑗𝑗∥∞ +

𝑚∑
𝑗=1

𝑛∑
𝑘=𝑚+1

∣𝑟0𝑗𝑘 ∣+
𝑛∑

𝑗=𝑚+1

𝑚∑
𝑘=1

∣𝑟1𝑗𝑘∣ ≤
1

𝑐
,

and
∣ det(𝐼 −𝑅𝑠)∣ ≥ 𝑐 for all 𝑠 ∈ ℤ, (3.41)

then for all 𝛾 ≥ 1 the operator 𝒜 is an isomorphism from 𝑉 𝛾 onto 𝑊 𝛾 and

∥𝒜−1∥ℒ(𝑊𝛾 ;𝑉 𝛾) ≤ 𝐶.

Let

⟨𝑓, 𝑢⟩𝐿2 =
1

2𝜋

∫ 2𝜋

0

∫ 1

0

⟨𝑓(𝑥, 𝑡), 𝑢(𝑥, 𝑡)⟩ 𝑑𝑥𝑑𝑡
denote the scalar product in the Hilbert space 𝐿2 ((0, 1)× (0, 2𝜋);ℝ𝑛) and ⟨⋅, ⋅⟩
denote the Euclidean scalar product in ℝ𝑛. As usual, by 𝐵𝑉 (0, 1) we denote the
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Banach space of all functions ℎ : (0, 1) → ℝ with bounded variation, i.e., of all
ℎ ∈ 𝐿∞(0, 1) such that there exists 𝐶 > 0 with∣∣∣∣∫ 1

0

ℎ(𝑥)𝜑′(𝑥)𝑑𝑥
∣∣∣∣ ≤ 𝐶∥𝜑∥𝐿∞(0,1) for all 𝜑 ∈ 𝐶∞

0 (0, 1). (3.42)

The norm of ℎ in 𝐵𝑉 (0, 1) is the sum of the norm of ℎ in 𝐿∞(0, 1) and of the
smallest possible constant 𝐶 in (3.42). We are prepared to formulate the main
result of this section.

Theorem 3.2 ([21]). Suppose that conditions (3.40) and (3.41) are fulfilled for some
𝑐 > 0. Suppose also that

for all 𝑗 ∕= 𝑘 there is 𝑝𝑗𝑘 ∈ 𝐵𝑉 (0, 1) such that
𝑎𝑘(𝑥)𝑏𝑗𝑘(𝑥) = 𝑝𝑗𝑘(𝑥)(𝑎𝑗(𝑥)− 𝑎𝑘(𝑥)) for a.a. 𝑥 ∈ [0, 1].

(3.43)

Then the following is true:

(i) The operator 𝒜+ℬ is a Fredholm operator with index zero from 𝑉 𝛾 into 𝑊 𝛾

for all 𝛾 ≥ 1, and ker(𝒜 + ℬ) = {𝑢 ∈ 𝑉 𝛾 : (𝒜+ ℬ)𝑢 = 0} does not depend
on 𝛾.

(ii) (smoothing effect) If 𝑎 ∈ 𝐶0,1 ([0, 1];𝕄𝑛), then ker(𝒜 + ℬ)∗ = ker(𝒜 + ℬ̃)
and

{(𝒜+ ℬ)𝑢 : 𝑢 ∈ 𝑉 𝛾} =
{
𝑓 ∈𝑊 𝛾 : ⟨𝑓, 𝑢⟩𝐿2 = 0 for all 𝑢 ∈ ker(𝒜+ ℬ̃)

}
,

where ker(𝒜+ ℬ̃) = {𝑢 ∈ 𝑉 𝛾 : (𝒜+ ℬ̃)𝑢 = 0} does not depend on 𝛾.

Theorem 3.2 (ii) states that the kernel of the adjoint operator is actually
defined on the classical function spaces. In other words, the kernel has much bet-
ter regularity than ensured just by the formal definition of the adjoint operator.
Here we encounter a smoothing effect for the solutions (of the adjoint hyperbolic
problem), that are originally functionals. The proof of this effect in [20, 21] uses
completely different techniques, based on a functional-analytic approach.

Finally, we outline the proof of Theorem 3.2 (i). As mentioned above, we
construct a parametrix to the operator of the problem. By Theorem 3.1, the zero-
order Fredholmness of the operator 𝒜+ ℬ ∈ ℒ(𝑉 𝛾 ;𝑊 𝛾) is equivalent to the zero-
order Fredholmness of the operator 𝐼 + ℬ𝒜−1 ∈ ℒ(𝑊 𝛾). Furthermore, we use the
following Fredholmness criterion (see [34, Theorem 5.5] or [37, Proposition 5.7.1]).

Lemma 3.3. Let 𝐼 denote the identity in a Banach space 𝑊 . Suppose that 𝒟 ∈
ℒ(𝑊 ) and 𝒟2 is compact. Then 𝐼 +𝒟 is Fredholm.

Setting 𝒟 = ℬ𝒜−1 ∈ ℒ(𝑊 𝛾), we prove that 𝒟2 ∈ ℒ(𝑊 𝛾) is compact (while
𝒟 alone can hardly be compact, being a type of a partial integral operator). This
actually means that 𝒟2 has smoothing property. In fact, 𝒟2 is basically the same
as the operator 𝐷2, that we used in the proof of Theorem 2.3.

Since 𝐼 − 𝒟2 = (𝐼 − 𝒟)(𝐼 + 𝒟) = (𝐼 + 𝒟)(𝐼 − 𝒟), the operator 𝐼 − 𝒟 is
a parametrix of 𝐼 + 𝒟. It follows that the operator 𝒜 + ℬ admits an equivalent
regularization in the form of the right parametrix 𝒜−1(𝐼 − ℬ𝒜−1).
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of Roumieu Type Ultradistributions
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Abstract. We study wave-front sets in weighted Fourier–Lebesgue spaces and
corresponding spaces of ultradistributions. We give a comparison of these
sets with the well-known wave-front sets of Roumieu type ultradistributions.
Then we study convolution relations in the framework of ultradistributions.
Finally, we introduce modulation spaces and corresponding wave-front sets,
and establish invariance properties of such wave-front sets.
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Keywords. Wave-front sets, weighted Fourier–Lebesgue spaces, ultradistribu-
tions.

0. Introduction

This paper can be considered as a companion to [7], where the authors considered
spaces of Beurling type ultradistributions mainly. The basic definitions and results
are parallel to those given in [7]. However, apart from this, here one can find some
new results. In particular, we focus our attention to convolution relations in the
framework of ultradistributions, which is not considered in [7]. In that direction
we extend some results from [11, 13]. The results of the present paper are mainly
formulated both for Beurling and Roumieu type ultradistributions, and the proofs
are presented for the Roumieu case only.

One of the main ingredients is the choice of test function space 𝒮(𝑠)(R𝑑) for
the analysis of wave-front sets both for Beurling and Roumieu type ultradistribu-
tions, see Subsection 0.2 for definitions. Although the space 𝒮{𝑠}(R𝑑) is the test
function space for Roumieu type ultradistributions, here we show that it is natural
and necessary to use a smaller space in our approach to wave-front sets.

This research is supported by MPNTR of Serbia, project no 174024.
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The paper is organized as follows. In the present section, we recall the no-
tion and elementary properties of weights, ultradistribution spaces and Fourier–
Lebesgue type spaces. In Section 1 we introduce wave-front sets in Fourier–
Lebesgue spaces in analogous way as it is done in [7, 12], and compare these
sets with the well-known wave-front sets of Roumieu type ultradistributions, cf.
[5, 10, 15]. In particular, in Proposition 1.3, we recover [7, Proposition 1.6 (1)].
In Section 2 we study convolutions in Fourier–Lebesgue spaces and extend corre-
sponding results from [14] to spaces of ultradistributions. (Cf. Theorem 2.2 and
Remark 2.3.) Finally, in Section 3 we introduce modulation spaces and the corre-
sponding wave-front sets in the framework of ultradistributions. We prove Proposi-
tion 3.1 concerning the behavior of the short-time Fourier transform of a compactly
supported ultradistributions of Roumieu type, cf. [7, Proposition 2.2]. This result
is interesting in itself and it is used to show the invariance properties of the wave-
front sets in Theorem 3.3. Here we give a complete proof to enlighten the role of
the test function space 𝒮(𝑠)(R𝑑) once again. Since modulation spaces and Fourier–
Lebesgue spaces are locally the same, cf. Corollary 3.4, the results from Section 2
can be formulated in terms of modulation spaces. We left the technical details as
an exercise to the reader.

We put N = {0, 1, 2, . . .}, Z+ = {1, 2, 3, . . .}, ⟨𝑥⟩ = (1+ ∣𝑥∣2)1/2, for 𝑥 ∈ R𝑑,
and 𝐴 ≲ 𝐵 to indicate 𝐴 ≤ 𝑐𝐵 for a suitable constant 𝑐 > 0. The symbol 𝐵1 ↪→ 𝐵2
denotes the continuous and dense embedding of the topological vector space 𝐵1
into 𝐵2. The scalar product in 𝐿2 is denoted by (⋅, ⋅)𝐿2 = (⋅, ⋅) and ∁𝐴 denotes the
complement of the set 𝐴 ⊂ R𝑑.

0.1. Weights

In general, a weight function is a non-negative function in 𝐿∞loc.

Definition 0.1. Let 𝜔, 𝑣 be non-negative functions. Then

1. 𝑣 is called submultiplicative if

𝑣(𝑥+ 𝑦) ≤ 𝑣(𝑥)𝑣(𝑦), ∀ 𝑥, 𝑦 ∈ R𝑑;

2. 𝜔 is called 𝑣-moderate if

𝜔(𝑥+ 𝑦) ≲ 𝑣(𝑥)𝜔(𝑦), ∀ 𝑥, 𝑦 ∈ R𝑑.

Let 𝑠 > 1. By M{𝑠}(R𝑑) we denote the set of all weights which are moderate

with respect to a weight 𝑣 which satisfies 𝑣 ≤ 𝐶𝑒𝑘∣ ⋅ ∣
1/𝑠

for some positive constants
𝐶 and 𝑘. We refer to [3] for more facts about such weights.

Note that, if 𝜔 ∈ M{𝑠} and 𝑣 is even, then 1/𝑣 ≲ 𝜔 ≲ 𝑣, 𝜔 ∕= 0 everywhere
and 1/𝜔 ∈ M{𝑠}.

0.2. Test function spaces and their duals

Next we introduce spaces of test functions and their duals in the context of spaces
of ultradistributions. These test function spaces correspond to the spaces 𝐶∞

0 , S
and 𝐶∞ in the distribution theory in [5, 17]. We start by giving the definition of
Gelfand–Shilov type spaces.

K. Johansson, S. Pilipov ć, N. Teofanov and J. Tofti
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Definition 0.2. Let 𝑠 > 1 and 𝐴 > 0. The space 𝒮𝑠𝐴(R𝑑) consists of all functions
𝜑 ∈ 𝐶∞(R𝑑) such that the norm

∥𝜑∥𝑠,𝐴 = sup
𝛼,𝛽∈N𝑑

0

sup
𝑥∈R𝑑

𝐴∣𝛼+𝛽∣

𝛼!𝑠𝛽!𝑠
⟨𝑥⟩∣𝛼∣∣𝜑(𝛽)(𝑥)∣

is finite. The Gelfand–Shilov type spaces 𝒮(𝑠)(R𝑑) and 𝒮{𝑠}(R𝑑) are given by

𝒮(𝑠)(R𝑑) =
∩
𝐴>0

𝒮𝑠𝐴(R𝑑) 𝒮{𝑠}(R𝑑) =
∪
𝐴>0

𝒮𝑠𝐴(R𝑑),

with topologies given by the projective and the inductive limit, respectively.

We note that 𝒮𝐴(R𝑑) is a Banach space, for every 𝐴 > 0, and its dual is de-
noted by (𝒮𝐴)′(R𝑑). Then the Gelfand–Shilov type distribution spaces (𝒮(𝑠))′(R𝑑)
and (𝒮{𝑠})′(R𝑑) are defined as

(𝒮(𝑠))′(R𝑑) =
∪
𝐴>0

(𝒮𝑠𝐴)′(R𝑑), (𝒮{𝑠})′(R𝑑) =
∩
𝐴>0

(𝒮𝑠𝐴)′(R𝑑).

These spaces are the strong dual spaces of 𝒮(𝑠)(R𝑑) and 𝒮{𝑠}(R𝑑), and are called
the spaces of tempered ultradistributions of Beurling type and Roumieu type, re-
spectively. If 𝑠 > 𝑡, then

𝒮(𝑡)(R𝑑) ↪→ 𝒮{𝑡}(R𝑑) ↪→ 𝒮(𝑠)(R𝑑) ↪→ 𝒮{𝑠}(R𝑑)

↪→ (𝒮{𝑠})′(R𝑑) ↪→ (𝒮(𝑠))′(R𝑑) ↪→ (𝒮{𝑡})′(R𝑑) ↪→ (𝒮(𝑡))′(R𝑑).

In order to perform (micro)local analysis we use the following test function
spaces on open sets, cf. [9].

Definition 0.3. Let 𝑋 be an open set in R𝑑. For a given compact set 𝐾 ⊂ 𝑋 ,
𝑠 > 1 and 𝐴 > 0, we denote by ℰ𝑠𝐴,𝐾 the space of all 𝜑 ∈ 𝐶∞(𝑋) such that the
semi-norm

∥𝜑∥𝑠,𝐴,𝐾 = sup
𝛽∈N𝑛

0

sup
𝑥∈𝐾

𝐴∣𝛽∣

𝛽!𝑠
∣𝜑(𝛽)(𝑥)∣ (0.1)

is finite.
The space of functions 𝜑 ∈ 𝐶∞(𝑋) such that (0.1) holds and supp𝜑 ⊆ 𝐾 is

denoted by 𝒟𝑠
𝐴(𝐾).

Let (𝐾𝑛)𝑛∈N be a sequence of compact sets such that 𝐾𝑛 ⊂⊂ 𝐾𝑛+1, 𝑛 ∈ N,
and

∪
𝑛∈N𝐾𝑛 = 𝑋 . Then

ℰ(𝑠)(𝑋) = proj lim
𝑛→∞

(proj lim
𝐴→∞

ℰ𝑠𝐴,𝐾𝑛
), ℰ{𝑠}(𝑋) = proj lim

𝑛→∞
(ind lim

𝐴→0
ℰ𝑠𝐴,𝐾𝑛

),

𝒟(𝑠)(𝑋) = ind lim
𝑛→∞ (proj lim

𝐴→∞
𝒟𝑠
𝐴(𝐾𝑛)), 𝒟{𝑠}(𝑋) = ind lim

𝑛→∞ (ind lim
𝐴→0

𝒟𝑠
𝐴(𝐾𝑛)).

From now on, we let ∗ denote (𝑠) or {𝑠}.
Obviously, 𝒟∗(𝑋) is the subspace of ℰ∗(𝑋) whose elements are compactly

supported.
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The spaces of linear functionals over 𝒟(𝑠)(𝑋) and 𝒟{𝑠}(𝑋), denoted by
(𝒟(𝑠))′(𝑋) and (𝒟{𝑠})′(𝑋) respectively, are called the spaces of ultradistributions
of Beurling and Roumieu type respectively, while the spaces of linear functionals
over ℰ(𝑠)(𝑋) and ℰ{𝑠}(𝑋), denoted by (ℰ(𝑠))′(𝑋) and (ℰ{𝑠})′(𝑋), respectively are
called the spaces of ultradistributions of compact support of Beurling and Roumieu
type respectively. We have

(ℰ{𝑠})′(𝑋) ⊆ (ℰ(𝑠))′(𝑋) and (ℰ∗)′(𝑋) ⊆ (ℰ∗)′(R𝑑) ⊆ (𝒮∗)′(R𝑑) ⊆ (𝒟∗)′(R𝑑).

0.3. Fourier–Lebesgue spaces

The Fourier transform F is the linear and continuous mapping on S ′(R𝑑) which
takes the form

(F𝑓)(𝜉) = 𝑓(𝜉) ≡ (2𝜋)−𝑑/2
∫
R𝑑

𝑓(𝑥)𝑒−𝑖⟨𝑥,𝜉⟩ 𝑑𝑥

when 𝑓 ∈ 𝐿1(R𝑑). It is a homeomorphism on (𝒮∗)′(R𝑑) which restricts to a home-
omorphism on 𝒮∗(R𝑑) and to a unitary operator on 𝐿2(R𝑑).

Let 𝑞 ∈ [1,∞], 𝑠 > 1 and 𝜔 ∈ M{𝑠}(R𝑑). The (weighted) Fourier–Lebesgue

space F𝐿𝑞(𝜔)(R
𝑑) is the inverse Fourier image of 𝐿𝑞(𝜔)(R

𝑑), i.e., F𝐿𝑞(𝜔)(R
𝑑) consists

of all 𝑓 ∈ (𝒮∗)′(R𝑑) such that

∥𝑓∥F𝐿𝑞
(𝜔)
≡ ∥𝑓 ⋅ 𝜔∥𝐿𝑞 . (0.2)

is finite. If 𝜔 = 1, then the notation F𝐿𝑞 is used instead of F𝐿𝑞(𝜔). We note that

if 𝜔(𝜉) = ⟨𝜉⟩𝑠, then F𝐿𝑞(𝜔) is the Fourier image of the Bessel potential space 𝐻𝑞
𝑠 .

Remark 0.4. Whenever it is convenient we permit an 𝑥 dependency for the weight 𝜔
in the definition of Fourier–Lebesgue spaces. More precisely, for each 𝜔∈M{𝑠}(R2𝑑)

we let F𝐿𝑞(𝜔) be the set of all 𝑓 ∈ (𝒮∗)′(R𝑑) such that

∥𝑓∥F𝐿𝑞
(𝜔)
≡ ∥𝑓 𝜔(𝑥, ⋅ )∥𝐿𝑞

is finite. Since 𝜔 is 𝑣-moderate it follows that different choices of 𝑥 give rise to
equivalent norms.

Next we introduce local Fourier–Lebesgue spaces of ultradistributions. Let
𝑋 be an open set in R𝑑, 𝜔 ∈ M{𝑠}(R2𝑑) and let 𝑠 > 1. Then the local Fourier–

Lebesgue space F𝐿𝑞(𝜔),loc(𝑋) consists of all 𝑓 ∈ (𝒮∗)′(R𝑑) such that 𝜑𝑓 ∈
F𝐿𝑞(𝜔)(R

𝑑) for each 𝜑 ∈ 𝒟(𝑠)(𝑋). We note that F𝐿𝑞(𝜔),loc(𝑋) is a Fréchet space

under the topology, defined by the family of seminorms 𝑓 → ∥𝜑𝑓∥F𝐿𝑞
(𝜔)

, where

𝜑 ∈ 𝒟(𝑠)(𝑋).

Furthermore,

F𝐿𝑞(𝜔)(R
𝑑) ⊆ F𝐿𝑞(𝜔),loc(R

𝑑) ⊆ F𝐿𝑞(𝜔),loc(𝑋). (0.3)
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In fact, if 𝑓 ∈ F𝐿𝑞(𝜔)(R
𝑑), 𝜑 ∈ 𝒟(𝑠)(𝑋) and if 𝑣 ∈ M{𝑠}(R𝑑) is chosen such that

𝜔 is 𝑣-moderate, then Young’s inequality gives

∥𝜑𝑓∥F𝐿𝑞
(𝜔)

= ∥F (𝜑𝑓)𝜔∥𝐿𝑞 = (2𝜋)−𝑑/2∥(𝜑 ∗ 𝑓 )𝜔∥𝐿𝑞

≲ ∥∣𝜑𝑣∣ ∗ ∣𝑓 𝜔∣∥𝐿𝑞 ≤ 𝐶𝜑∥𝑓 𝜔∥𝐿𝑞 = 𝐶𝜑∥𝑓∥F𝐿𝑞
(𝜔)
,

where 𝐶𝜑 = (2𝜋)−𝑑/2∥𝜑𝑣∥𝐿1 . We claim that 𝐶𝜑 is finite. If 𝜑 ∈ 𝒟(𝑠)(𝑋), then for
every 𝑁 > 0 we have

∣𝜑(𝜉)𝑣(𝜉)∣ ≲ 𝑒−(𝑁+𝑘)∣𝜉∣
1/𝑠

𝑒𝑘∣𝜉∣
1/𝑠

= 𝑒−𝑁 ∣𝜉∣
1/𝑠

. (0.4)

It follows that ∥𝜑𝑣∥𝐿𝑝 < ∞ for every 𝑝 ∈ [1,∞]. This proves that 𝐶𝜑 is finite
and (0.3).

Let 𝑞1, 𝑞2 ∈ [1,∞] and 𝜔1, 𝜔2 ∈ M{𝑠}(R𝑑). Then

F𝐿𝑞1(𝜔1),loc
(𝑋) ⊆ F𝐿𝑞2(𝜔2),loc

(𝑋), when 𝑞1 ≤ 𝑞2 and 𝜔2 ≲ 𝜔1. (0.5)

The inclusion in (0.5) is clear when 𝑞1 = 𝑞2 and 𝜔2 ≲ 𝜔1. It remains to show
that F𝐿𝑞(𝜔),loc increases with respect to 𝑞. Assume, without any loss of generality,

that 𝑓 ∈ (ℰ∗)′(𝑋), and that 𝜑 ∈ 𝒟(𝑠)(R𝑑) is such that 𝜑 ≡ 1 in the neighborhood
of supp 𝑓 . Choose 𝑝 ∈ [1,∞] such that 1/𝑞1+1/𝑝 = 1/𝑞2+1. Then, for a 𝑣-moderate
weight 𝜔, it follows from Young’s inequality that

∥𝑓∥F𝐿
𝑞2
(𝜔)

≲ ∥(𝜑 ∗ 𝑓 )𝜔∥𝐿𝑞2 ≲ ∥𝜑𝑣∥𝐿𝑝∥𝑓𝜔∥𝐿𝑞1 = 𝐶∥𝑓∥F𝐿
𝑞1
(𝜔)
,

for some constant 𝐶, and the result follows.

1. Wave-front sets of Fourier–Lebesgue type
in some spaces of ultradistributions

In this section we introduce wave-front sets of Fourier–Lebesgue type in spaces
of ultradistributions of Roumieu type, and refer to [7] for the Beurling case. The
key difference between such wave-front sets can be realized through their relation
with other types of wave-front sets of ultradistributions. The main result in this
direction is Proposition 1.3, cf. [7, Proposition 1.6].

Let 𝑠 > 1, 𝑞 ∈ [1,∞], and Γ ⊆ R𝑑 ∖ 0 be an open cone. If 𝑓 ∈ (𝒮{𝑠})′(R𝑑)
and 𝜔 ∈ M{𝑠}(R2𝑑) we define

∣𝑓 ∣F𝐿𝑞,Γ
(𝜔)

= ∣𝑓 ∣F𝐿𝑞,Γ
(𝜔),𝑥

≡
( ∫

Γ

∣𝑓(𝜉)𝜔(𝑥, 𝜉)∣𝑞 𝑑𝜉
)1/𝑞

(1.1)

(with obvious interpretation when 𝑞 =∞). We note that ∣ ⋅ ∣F𝐿𝑞,Γ
(𝜔),𝑥

defines a semi-

norm on (𝒮{𝑠})′(R𝑑) which might attain the value +∞. Since 𝜔 is 𝑣-moderate
it follows that different 𝑥 ∈ R𝑑 gives rise to equivalent semi-norms ∣𝑓 ∣F𝐿𝑞,Γ

(𝜔),𝑥
.

Furthermore, if Γ = R𝑑 ∖ 0, 𝑓 ∈ F𝐿𝑞(𝜔)(R
𝑑) and 𝑞 < ∞, then ∣𝑓 ∣F𝐿𝑞,Γ

(𝜔),𝑥
agrees

with the Fourier–Lebesgue norm ∥𝑓∥F𝐿𝑞
(𝜔),𝑥

of 𝑓 .
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For the sake of notational convenience we set

ℬ = F𝐿𝑞(𝜔) = F𝐿𝑞(𝜔)(R
𝑑), and ∣ ⋅ ∣ℬ(Γ) = ∣ ⋅ ∣F𝐿𝑞,Γ

(𝜔),𝑥
. (1.2)

We let Θℬ(𝑓) = ΘF𝐿𝑞
(𝜔)

(𝑓) be the set of all 𝜉 ∈ R𝑑 ∖ 0 such that ∣𝑓 ∣ℬ(Γ) <∞, for

some open conical neighborhood Γ = Γ𝜉 of 𝜉. We also let Σℬ(𝑓) be the complement
of Θℬ(𝑓) in R𝑑 ∖ 0. Then Θℬ(𝑓) and Σℬ(𝑓) are open respectively closed subsets
in R𝑑 ∖ 0, which are independent of the choice of 𝑥 ∈ R𝑑 in (1.1).

Definition 1.1. Let 𝑠 > 1, 𝑞 ∈ [1,∞], ℬ be as in (1.2), and let 𝑋 be an open
subset of R𝑑. If 𝜔 ∈ M{𝑠}(R2𝑑), then the wave-front set of ultradistribution 𝑓 ∈
(𝒮{𝑠})′(R𝑑), WFℬ(𝑓) ≡WFF𝐿𝑞

(𝜔)
(𝑓) with respect to ℬ consists of all pairs (𝑥0, 𝜉0)

in 𝑋 × (R𝑑 ∖ 0) such that 𝜉0 ∈ Σℬ(𝜑𝑓) holds for each 𝜑 ∈ 𝒟(𝑠)(𝑋) such that
𝜑(𝑥0) ∕= 0.

We note that WFℬ(𝑓) is a closed set in R𝑑 × (R𝑑 ∖ 0), and if 𝑥 ∈ R𝑑 is fixed
and 𝜔0(𝜉) = 𝜔(𝑥, 𝜉), then WFℬ(𝑓) = WFF𝐿𝑞

(𝜔0)
(𝑓), since Σℬ is independent of 𝑥.

If 𝜔 ∈ M{𝑠}(R2𝑑) is moderated with respect to a weight of polynomial growth
at infinity and 𝑓 ∈ 𝒟′(𝑋),then WFF𝐿𝑞

(𝜔)
(𝑓) in Definition 1.1 is the same as the

wave-front set introduced in [12, Definition 3.1]. Therefore, the information on reg-
ularity in the background of wave-front sets of Fourier–Lebesgue type in Definition
1.1 might be compared to the information obtained from the classical wave-front
sets, cf. Example 4.9 in [12].

The following theorem shows that wave-front sets with respect to F𝐿𝑞(𝜔)
satisfy appropriate micro-local properties. It also shows that such wave-front sets
are decreasing with respect to the parameter 𝑞, and increasing with respect to the
weight 𝜔.

Theorem 1.2. Let 𝑠 > 1, 𝑞, 𝑟 ∈ [1,∞], 𝑋 be an open set in R𝑑 and 𝜔, 𝜗 ∈
M{𝑠}(R2𝑑) be such that

𝑟 ≤ 𝑞, and 𝜗(𝑥, 𝜉) ≲ 𝜔(𝑥, 𝜉). (1.3)

If 𝑓 ∈ (𝒟{𝑠})′(R𝑑) and 𝜑 ∈ 𝒟(𝑠)(𝑋) then

WFF𝐿𝑞
(𝜔)

(𝜑𝑓) ⊆WFF𝐿𝑟
(𝜗)

(𝑓).

Proof. Note that it is enough to prove the theorem for 𝑓 ∈ (ℰ{𝑠})′(R𝑑) since the

statement only involves local assertions. Then it follows that ∣𝑓(𝜉)𝜔(𝜉)∣ ≲ 𝑒𝑘∣𝜉∣
1/𝑠

for every 𝑘 > 0, cf. [2]. Otherwise, the proof is similar to proofs of [12, Theorem
3.2] and [7, Theorem 1.2] and is therefore omitted. □

Next we compare the wave-front sets introduced in Definition 1.1 to the
wave-front sets in spaces of ultradistributions given in [5, 10, 15]. In particular, we
recover [7, Proposition 1.6 (1)].

Let 𝑠 > 1 and let 𝑋 be an open subset of R𝑑. The ultradistribution 𝑓 ∈
(𝒟{𝑠})′(R𝑑) is 𝑠-micro-regular at (𝑥0, 𝜉0) if there exists 𝜑 ∈ 𝒟{𝑠}(𝑋) such that
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𝜑(𝑥) = 1 in a neighborhood of 𝑥0 and an open cone Γ which contains 𝜉0 such that
for some 𝐶, 𝑘 > 0,

∣𝜑𝑓(𝜉)∣ ≤ 𝐶𝑒−𝑘∣𝜉∣
1/𝑠

, 𝜉 ∈ Γ. (1.4)

The 𝑠-wave-front set of 𝑓 , WF{𝑠}(𝑓) is defined as the complement in 𝑋 ×R𝑑 ∖ 0
of the set of all (𝑥0, 𝜉0) where 𝑓 is 𝑠-micro-regular, cf. [15, Definition 1.7.1] where
the notation WF𝑠(𝑓) is used. See also [10] and [5, Chapter 8.4].

Proposition 1.3. Let 𝑞 ∈ [1,∞], 𝑠 > 1, and let 𝜔𝑘(𝜉) ≡ 𝑒𝑘∣𝜉∣
1/𝑠

for 𝜉 ∈ R𝑑 and
𝑘 > 0. If 𝑓 ∈ (ℰ{𝑠})′(R𝑑) then∩

𝑘>0

WFF𝐿𝑞
(𝜔𝑘)

(𝑓) = WF{𝑠}(𝑓). (1.5)

Proof. Recall that when 𝑘 is fixed, the set WFF𝐿𝑞
(𝜔𝑘)

(𝑓) is defined via 𝜑 ∈ 𝒟(𝑠)(𝑋),

𝑠 > 1, cf. Definition 1.1. Using the freedom of choice of 𝑘 one can may show that
the set

∩
𝑘>0WFF𝐿𝑞

(𝜔𝑘)
(𝑓) is the complement of the set of points (𝑥0, 𝜉0) ∈ R2𝑑

for which there exists 𝑘 > 0, 𝜑 ∈ 𝒟{𝑠}(𝑋) such that 𝜑(𝑥) = 1 in a neighborhood
of 𝑥0 and an open cone Γ which contains 𝜉0 such that(∫

Γ

∣𝜑𝑓(𝜉)𝑒𝑘∣𝜉∣1/𝑠 ∣𝑞 𝑑𝜉
)1/𝑞

<∞. (1.6)

The assertion of the proposition is obviously true when 𝑞=∞. Then (𝑥0, 𝜉0) ∕∈
WF{𝑠}(𝑓) means (𝑥0, 𝜉0) ∕∈WFF𝐿∞

(𝜔𝑘)
(𝑓) where 𝑘 > 0 is the same as in (1.4). On

the other hand, if 𝜔 ∈ M{𝑠}(R𝑑) is of the form 𝜔𝑘(𝜉) = 𝑒𝑘∣𝜉∣
1/𝑠

, 𝜉 ∈ R𝑑, for some
𝑘 > 0, then, by Definition 1.1, (𝑥0, 𝜉0) ∕∈WFF𝐿∞

(𝜔𝑘)
(𝑓) implies (1.4), that is

WF{𝑠}(𝑓) =
∩
𝑘>0

WFF𝐿∞
(𝜔𝑘)

(𝑓).

Let 𝑞 ∈ [1,∞) and assume that (𝑥0, 𝜉0) ∕∈WFF𝐿∞
(𝜔𝑘)

(𝑓) for some 𝑘 > 0. Then

for any 𝜀 > 0 such that 𝑘 − 𝜀 > 0 we have∫
Γ

∣𝜑𝑓(𝜉)𝜔𝑘−𝜀(𝜉)∣𝑞 𝑑𝜉 ≤ sup
𝜉∈Γ

∣𝜑𝑓(𝜉)∣𝑞𝑒𝑘𝑞∣𝜉∣1/𝑠
∫
Γ

𝑒−𝜀∣𝜉∣
1/𝑠

𝑑𝜉 <∞,

which means that

(𝑥0, 𝜉0) ∕∈
∩
𝑘>0

WFF𝐿𝑞
(𝜔𝑘)

(𝑓) when (𝑥0, 𝜉0) ∕∈
∩
𝑘>0

WFF𝐿∞
(𝜔𝑘)

(𝑓).

Therefore
WFF𝐿𝑞

(𝜔𝑘−𝜀)
(𝑓) ⊆WFF𝐿∞

(𝜔𝑘)
(𝑓).

On the other hand, since the wave-front WFF𝐿𝑞
(𝜔)

(𝑓) is decreasing with re-

spect to the parameter 𝑞, see Theorem 1.2, we have∩
𝑘>0

WFF𝐿∞
(𝜔𝑘)

(𝑓) ⊆
∩
𝑘>0

WFF𝐿𝑞
(𝜔𝑘)

(𝑓), 𝑞 ∈ [1,∞].

This completes the proof. □
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2. Wave-front sets for convolutions in Fourier–Lebesgue spaces

In this section we prove that convolution properties, valid for standard wave-front
sets of Hörmander type, also hold for the wave-front sets of Fourier–Lebesgue
types, see [13, 14] for related results in the framework of tempered distributions.

We start with convolutions in Fourier–Lebesgue spaces, parallel to [13, Sec-
tion 2].

Lemma 2.1. Let 𝑠 > 1, 𝑞, 𝑞1, 𝑞2 ∈ [1,∞] and let 𝜔, 𝜔1, 𝜔2 ∈M{𝑠}(R𝑑) satisfy

1

𝑞1
+

1

𝑞2
=

1

𝑞
and 𝜔(𝜉) ≲ 𝜔1(𝜉)𝜔2(𝜉). (2.1)

Then the convolution map (𝑓1, 𝑓2) → 𝑓1 ∗ 𝑓2 from 𝒮∗(R𝑑) × 𝒮∗(R𝑑) to 𝒮∗(R𝑑)
extends to a continuous mapping from F𝐿𝑞1(𝜔1)

(R𝑑)×F𝐿𝑞2(𝜔2)
(R𝑑) to F𝐿𝑞(𝜔)(R

𝑑).

This extension is unique if 𝑞1 <∞ or 𝑞2 <∞.

The proof is omitted, since the arguments are the same as in the proof of
[13, Lemma 2.1], taking into account that 𝒮∗ is dense in F𝐿𝑞(𝜔) when 𝑞 <∞.

Theorem 2.2. Let 𝑠 > 1, 𝑞, 𝑞1, 𝑞2 ∈ [1,∞] and let 𝜔, 𝜔1, 𝜔2 ∈ M{𝑠}(R𝑑) satisfy

(2.1). If 𝑓1 ∈ F𝐿𝑞1(𝜔1),loc
(R𝑑), 𝑓2 ∈ (𝒟∗)′(R𝑑) and 𝑓1 or 𝑓2 have compact supports,

then

WFF𝐿𝑞
(𝜔)

(𝑓1 ∗ 𝑓2) ⊆ { (𝑥+ 𝑦, 𝜉) ; 𝑥 ∈ supp 𝑓1 and (𝑦, 𝜉) ∈WFF𝐿
𝑞2
(𝜔2)

(𝑓2) }.

The proof of Theorem 2.2 is similar to the proof of [13, Proposition 2.2]. In
order to be self-contained we present here a complete proof.

For the proof we let 𝐵𝜀(𝑥) be the open ball in R𝑑 with radius 𝜀 > 0 and
center at 𝑥 ∈ R𝑑.

Proof. We prove the assertion when 𝑓2 ∈ (𝒟{𝑠})′(R𝑑) and leave the other case to
the reader. From the local property of the wave-front sets and the assumptions we
may assume that both 𝑓1 and 𝑓2 have compact supports.

Let (𝑥0, 𝜉0) be chosen such that (𝑦, 𝜉0) /∈ WFF𝐿
𝑞2
(𝜔2)

(𝑓2) when 𝑥 ∈ supp 𝑓1

and 𝑥0 = 𝑥 + 𝑦, and let 𝐹 (𝑥, 𝑡) = 𝑓2(𝑥 − 𝑡)𝑓1(𝑡). Since 𝑓1 and 𝑓2 have compact
supports, it follows by the definition that for some conical neighborhood Γ𝜉0 of 𝜉0,
for some

𝑦1, . . . , 𝑦𝑛 ∈ R𝑑, 𝑟 > 0, 𝑟0 > 0,

and suitable

𝜑 ∈ 𝒟(𝑠)(𝐵𝑟(0)), 𝜑0 ∈ 𝒟(𝑠)(𝐵𝑟0(𝑥0)), and 𝜑1 ∈ 𝒟(𝑠)(R𝑑),

with 𝜑0 = 1 in a neighborhood of 𝑥0, the following holds true:

1)
∑𝑛

𝑗=1 𝜑(𝑥 − 𝑡− 𝑦𝑗)𝜑1(𝑡) ≡ 1 when 𝑥 ∈ supp𝜑0 and 𝑡 belongs to

{ 𝑡 ∈ R𝑑 ; (𝑥, 𝑡) ∈ supp𝐹 for some 𝑥 ∈ supp𝜑0 }.
2) ∣𝜑( ⋅ − 𝑦𝑗)𝑓2∣F𝐿

𝑞2,Γ

(𝜔2)

<∞, 1 ≤ 𝑗 ≤ 𝑛.
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By Hölder’s inequality we get

∣𝜑0(𝑓1 ∗ 𝑓2)∣F𝐿𝑞,Γ
(𝜔)

≲
𝑛∑

𝑗=1

∣((𝜑1𝑓1) ∗ (𝜑( ⋅ − 𝑦𝑗)𝑓2)∣F𝐿𝑞,Γ
(𝜔)

≲
𝑛∑

𝑗=1

∥(F (𝜑1𝑓1)𝜔1) (F (𝜑( ⋅ − 𝑦𝑗)𝑓2)𝜔2)∥𝐿𝑞(Γ)

≲
𝑛∑

𝑗=1

∥F (𝜑1𝑓1)𝜔1∥𝐿𝑞1(Γ)∥F (𝜑( ⋅ − 𝑦𝑗)𝑓2)𝜔2∥𝐿𝑞2(Γ).

Since the right-hand side is finite in the view of 2), it follows that (𝑥0, 𝜉0) /∈
WFF𝐿𝑞

(𝜔)
(𝑓1 ∗ 𝑓2), and the theorem is proved. □

Remark 2.3. Let 𝑠 > 1, 𝜔1(𝜉) = 𝜔2(𝜉) = 𝑒𝑘∣𝜉∣
1/𝑠

and let 𝑓1 ∈ (𝒟∗)′(R𝑑) and 𝑓2 ∈
(ℰ∗)′(R𝑑). By letting 𝑘 tend to infinity, it follows by a straightforward application
of (1.5) and Theorem 2.2 that

WF{𝑠}(𝑓1 ∗ 𝑓2) ⊆ { (𝑥+ 𝑦, 𝜉) ; (𝑥, 𝜉) ∈WF{𝑠}(𝑓1) and (𝑦, 𝜉) ∈WF{𝑠}(𝑓2) }.

3. Invariance properties of wave-front sets
with respect to modulation spaces

In this section we define wave-front sets with respect to modulation spaces, and
show that they coincide with wave-front sets of Fourier–Lebesgue types. See [6, 7,
12] for related results.

3.1. Modulation spaces

In this subsection we consider properties of modulation spaces which will be used
in microlocal analysis of ultradistributions.

Let 𝑠 > 1. For a fixed non-zero window 𝜙 ∈ 𝒮∗(R𝑑) the short-time Fourier
transform (STFT) of 𝑓 ∈ 𝒮∗(R𝑑) with respect to the window 𝜙 is given by

𝑉𝜙𝑓(𝑥, 𝜉) = (2𝜋)−𝑑/2
∫
R𝑑

𝑓(𝑦)𝜙(𝑦 − 𝑥) 𝑒−𝑖⟨𝜉,𝑦⟩ 𝑑𝑦 , (3.1)

The map (𝑓, 𝜙) → 𝑉𝜙𝑓 from 𝒮∗(R𝑑)× 𝒮∗(R𝑑) to 𝒮∗(R2𝑑) extends uniquely
to a continuous mapping from (𝒮∗)′(R𝑑)× (𝒮∗)′(R𝑑) to (𝒮∗)′(R2𝑑) by duality.

Moreover, for a fixed 𝜙 ∈ 𝒮∗(R𝑑) ∖ 0, 𝑠 ≥ 1, the following characterization of
𝒮∗(R𝑑) holds:

𝑓 ∈ 𝒮∗(R𝑑) ⇐⇒ 𝑉𝜙𝑓 ∈ 𝒮∗(R2𝑑). (3.2)

We refer to [4, 18] for the proof and more details on STFT in Gelfand–Shilov
spaces.

The following proposition is an extension of [1, Proposition 4.2] where it has
been proved in the context of Beurling type ultradistributions. Although the proof
given in [7] can be easily modified for the Roumieu case, here we give another
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proof which uses the structural theorem for ultradistributions. This result plays
an essential role in the proof of Theorem 3.3 which states that the wave-front sets
of Fourier–Lebesgue and modulation space types are the same.

Proposition 3.1. Let 𝑠 > 1 and 𝑓 ∈ (ℰ{𝑠})′(R𝑑). Then the STFT of 𝑓 with respect
to any window 𝜙 ∈ 𝒮(𝑠)(R𝑑), satisfies

∣𝑉𝜙𝑓(𝑥, 𝜉)∣ ≲ 𝑒−ℎ∣𝑥∣
1/𝑠

𝑒𝑐∣𝜉∣
1/𝑠

,

for every ℎ > 0 and for every 𝑐 > 0.

Proof. Let 𝑇𝑥 and 𝑀𝜉 (the translation and modulation operators) be given by

𝑇𝑥𝑓(𝑡) = 𝑓(𝑡− 𝑥) and 𝑀𝜉𝑓(𝑡) = 𝑒𝑖⟨𝜉,𝑡⟩𝑓(𝑡) . (3.3)

Then

∂𝛼(𝑀𝜉𝑇𝑥𝜙)(𝑦) =
∑
𝛽≤𝛼

(
𝛼

𝛽

)
(𝑖𝜉)𝛽𝑀𝜉𝑇𝑥(∂

𝛼−𝛽𝜙)(𝑦),

and for each term in the sum we have:

∣𝑀𝜉𝑇𝑥(∂
𝛼−𝛽𝜙)(𝑦)∣ ≤ 𝐶ℎ(𝛼− 𝛽)!𝑠ℎ∣𝛼−𝛽∣𝑒−ℎ∣𝑦−𝑥∣

1/𝑠

,

for every ℎ > 0, see, e.g., [1, 2]. Furthermore, by [1, Theorem 4.1] it follows that
every 𝑓 ∈ (ℰ{𝑠})′(R𝑑) can be represented as

𝑓 =
∑
𝛼∈N𝑑

∂𝛼𝜇𝛼. (3.4)

Here 𝜇𝛼 is a measure such that for every 𝜀 = (𝜀1, . . . , 𝜀𝑑) > 0 we have supp𝜇𝛼 ⊆
𝐾1, 𝐾 ⊂⊂ 𝐾1, for some compact sets 𝐾 and 𝐾1, and∫

𝐾

∣𝑑𝜇𝛼∣ ≤ 𝐶𝜀𝜀
𝛼(𝛼!)−𝑠, (3.5)

for a suitable constant 𝐶𝜀 > 0 which is independent of 𝛼. Furthermore, for each
compact set𝐾 such that supp𝑓⊂⊂𝐾, the 𝜇𝛼 can be chosen such that supp𝜇𝛼⊂𝐾.

This gives,

∣𝑉𝜙𝑓(𝑥, 𝜉)∣ ≤
∑
𝛼∈N𝑑

∣⟨∂𝛼𝜇𝛼,𝑀𝜉𝑇𝑥𝜙⟩∣ =
∑
𝛼∈N𝑑

∣⟨𝜇𝛼, ∂𝛼(𝑀𝜉𝑇𝑥𝜙)⟩∣

≤
∑
𝛼∈N𝑑

∑
𝛽≤𝛼

(
𝛼

𝛽

)
∣𝜉𝛽 ∣

∫
R𝑑

(𝑀𝜉𝑇𝑥∂
𝛼−𝛽
𝑦 𝜙)(𝑦)∣ ∣𝑑𝜇𝛼(𝑦)∣

≤
∑
𝛼∈N𝑑

ℎ∣𝛼∣
∑
𝛽≤𝛼

(
𝛼

𝛽

)
∣(𝜉/ℎ)𝛽∣(𝛼 − 𝛽)!𝑠

∫
R𝑑

𝑒−ℎ∣𝑦−𝑥∣
1/𝑠 ∣𝑑𝜇𝛼(𝑦)∣.
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Since
∑
𝛽≤𝛼

(
𝛼

𝛽

)
= 2∣𝛼∣, using (3.5) and the fact that (𝛼 − 𝛽)!𝛽! ≤ 𝛼! we get

∣𝑉𝜙𝑓(𝑥, 𝜉)∣ ≲
∑
𝛼∈N𝑑

ℎ∣𝛼∣
∑
𝛽≤𝛼

(
𝛼

𝛽

)
∣(𝑖𝜉/ℎ)𝛽∣𝛼!𝑠

𝛽!𝑠
𝑒−ℎ∣𝑥∣

1/𝑠

∫
𝐾

𝑒ℎ∣𝑦∣
1/𝑠 ∣𝑑𝜇𝛼(𝑦)∣

≲ 𝑒−ℎ∣𝑥∣
1/𝑠 ∑

𝛼∈N𝑑

(2∣𝜀∣ℎ)∣𝛼∣
∑
𝛽≤𝛼

∣(𝑖𝜉/ℎ)𝛽∣
𝛽!𝑠

. (3.6)

Let 𝑐 > 0 be arbitrary. Since ℎ > 0 can be chosen arbitrary, we have

∑
𝛽∈N𝑑

∣(𝑖𝜉/ℎ)𝛽∣
𝛽!𝑠

≤
⎛⎝ ∑

𝛽∈N𝑑

∣𝜉/ℎ∣∣𝛽/𝑠∣
𝛽!

⎞⎠𝑠

= 𝑒𝑠∣𝜉/ℎ∣
1/𝑠 ≤ 𝑒𝑐∣𝜉∣

1/𝑠

,

when ℎ is chosen large enough. Hence, (3.6) gives

∣𝑉𝜙𝑓(𝑥, 𝜉)∣ ≤ 𝐶𝑒−ℎ⋅∣𝑥∣
1/𝑠

𝑒𝑐∣𝜉∣
1/𝑠 ∑

𝛼∈N𝑑

(2∣𝜀∣ℎ)∣𝛼∣.

The result now follows by choosing ∣𝜀∣ < 1/(2ℎ). □

Now we recall the definition of modulation spaces. Let 𝑠 > 1, 𝜔 ∈ M{𝑠}(R2𝑑),

𝑝, 𝑞 ∈ [1,∞], and the window 𝜙 ∈ 𝒮(𝑠)(R𝑑)∖0 be fixed. Then the modulation space
𝑀𝑝,𝑞
(𝜔)(R

𝑑) is the set of all ultra-distributions 𝑓 ∈ (𝒮∗)′(R𝑑) such that

∥𝑓∥𝑀𝑝,𝑞
(𝜔)

= ∥𝑓∥𝑀𝑝,𝑞,𝜙
(𝜔)

≡ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
(𝜔)
≡ ∥𝑉𝜙𝑓 𝜔∥𝐿𝑝,𝑞

1
<∞. (3.7)

Here ∥ ⋅ ∥𝐿𝑝,𝑞
1

is the norm given by

∥𝐹∥𝐿𝑝,𝑞
1
≡

( ∫
R𝑑

( ∫
R𝑑

∣𝐹 (𝑥, 𝜉)∣𝑝 𝑑𝑥
)𝑞/𝑝

𝑑𝜉
)1/𝑞

,

when 𝐹 ∈ 𝐿1loc(R
2𝑑) (with obvious interpretation when 𝑝 = ∞ or 𝑞 = ∞). Fur-

thermore, the modulation space 𝑊 𝑝,𝑞
(𝜔)(R

𝑑) consists of all 𝑓 ∈ (𝒮∗)′(R𝑑) such that

∥𝑓∥𝑊𝑝,𝑞
(𝜔)

= ∥𝑓∥𝑊𝑝,𝑞,𝜙
(𝜔)

≡ ∥𝑉𝜙𝑓 𝜔∥𝐿𝑝,𝑞
2

<∞,

where ∥ ⋅ ∥𝐿𝑝,𝑞
2

is the norm given by

∥𝐹∥𝐿𝑝,𝑞
2
≡

( ∫
R𝑑

( ∫
R𝑑

∣𝐹 (𝑥, 𝜉)∣𝑞 𝑑𝜉
)𝑝/𝑞

𝑑𝑥
)1/𝑝

,

when 𝐹 ∈ 𝐿1loc(R
2𝑑).

If 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞] and 𝜔 ∈M{𝑠}(R2𝑑), then one can show that the spaces

F𝐿𝑞(𝜔)(R
𝑑), 𝑀𝑝,𝑞

(𝜔)(R
𝑑) and 𝑊 𝑝,𝑞

(𝜔)(R
𝑑) are locally the same, in the sense that

F𝐿𝑞(𝜔)(R
𝑑)

∩
(ℰ∗)′(R𝑑) = 𝑀𝑝,𝑞

(𝜔)(R
𝑑)

∩
(ℰ∗)′(R𝑑) = 𝑊 𝑝,𝑞

(𝜔)(R
𝑑)

∩
(ℰ∗)′(R𝑑).

This follows by similar arguments as in [16] (and replacing the space of polyno-
mially moderated weights P(R2𝑑) with M{𝑠}(R2𝑑)). Later on we extend these
properties in the context of wave-front sets and recover the equalities above.



250

The proof of the next proposition can be found in [1]. It concerns topological
questions of modulation spaces, and properties of the adjoint of the short-time
Fourier transform 𝑡𝑉𝜙𝐹 , Here we recall that

(𝑡𝑉𝜙𝐹, 𝑓) ≡ (𝐹, 𝑉𝜙𝑓), 𝑓 ∈ 𝒮∗(R𝑑),

when 𝜔 ∈ M{𝑠}(R2𝑑), 𝜙 ∈ 𝒮(𝑠)(R𝑑) ∖ 0 and 𝐹 (𝑥, 𝜉) ∈ 𝐿𝑝,𝑞(𝜔)(R
2𝑑).

Proposition 3.2 ([1]). Let 𝑠 > 1, 𝜔 ∈ M{𝑠}(R2𝑑), 𝑝, 𝑞 ∈ [1,∞], and 𝜙, 𝜙1 ∈
𝒮(𝑠)(R𝑑), with (𝜙, 𝜙1)𝐿2 ∕= 0. Then the following is true:

1. the operator 𝑡𝑉𝜙 from 𝒮(𝑠)(R2𝑑) to 𝒮(𝑠)(R𝑑) extends uniquely to a continuous
operator from 𝐿𝑝,𝑞(𝜔)(R

2𝑑) to 𝑀𝑝,𝑞
(𝜔)(R

𝑑), and

∥𝑡𝑉𝜙𝐹∥𝑀𝑝,𝑞
(𝜔)

≲ ∥𝑉𝜙1𝜙∥𝐿1
(𝑣)
∥𝐹∥𝐿𝑝,𝑞

(𝜔)
; (3.8)

2. 𝑀𝑝,𝑞
(𝜔)(R

𝑑) is a Banach space whose definition is independent on the choice of

window 𝜙 ∈ 𝒮(𝑠) ∖ 0;

3. the set of windows can be extended from 𝒮(𝑠)(R𝑑) ∖ 0 to 𝑀1
(𝑣)(R

𝑑) ∖ 0.

3.2. Wave-front sets with respect to modulation spaces

Next we define wave-front sets with respect to modulation spaces and show that
they agree with corresponding wave-front sets of Fourier–Lebesgue types. As in
[7], we show that [12, Theorem 6.1] holds if the weights of polynomial growth are
replaced by more general submultiplicative weights.

Let 𝑠 > 1, 𝜙 ∈ 𝒮(𝑠)(R𝑑) ∖ 0, 𝜔 ∈ M{𝑠}, Γ ⊆ R𝑑 ∖ 0 be an open cone and let

𝑝, 𝑞 ∈ [1,∞]. For any 𝑓 ∈ (𝒮∗)′(R𝑑) we set

∣𝑓 ∣ℬ(Γ) = ∣𝑓 ∣ℬ(𝜙,Γ) ≡ ∥𝑉𝜙𝑓∥𝐿𝑝,𝑞
(𝜔)
(R𝑑×Γ) when ℬ = 𝑀𝑝,𝑞

(𝜔) = 𝑀𝑝,𝑞
(𝜔)(R

𝑑). (3.9)

Thus we define by ∣ ⋅ ∣ℬ(Γ) a semi-norm on (𝒮∗)′(R𝑑) which might attain the value

+∞. If Γ = R𝑑 ∖ 0 and 𝜙 ∈ 𝒮(𝑠)(R𝑑), then ∣𝑓 ∣ℬ(Γ) = ∥𝑓∥𝑀𝑝,𝑞
(𝜔)

.

We also set

∣𝑓 ∣ℬ(Γ) = ∣𝑓 ∣ℬ(𝜙,Γ) ≡
(∫

R𝑑

( ∫
Γ

∣𝑉𝜙𝑓(𝑥, 𝜉)𝜔(𝑥, 𝜉)∣𝑞 𝑑𝜉
)𝑝/𝑞

𝑑𝑥
)1/𝑝

when ℬ = 𝑊 𝑝,𝑞
(𝜔) = 𝑊 𝑝,𝑞

(𝜔)(R
𝑑) (3.10)

and note that similar properties hold for this semi-norm compared to (3.9).

Let 𝜔 ∈ M{𝑠}(R2𝑑), 𝑝, 𝑞 ∈ [1,∞], 𝑓 ∈ (𝒮∗)′(R𝑑), and let ℬ = 𝑀𝑝,𝑞
(𝜔) or

ℬ = 𝑊 𝑝,𝑞
(𝜔). Then Θℬ(𝑓), Σℬ(𝑓) and the wave-front set WFℬ(𝑓) of 𝑓 with respect

to the modulation space ℬ are defined in the same way as in Section 1, after
replacing the semi-norms of Fourier–Lebesgue types in (1.1) with the semi-norms
in (3.9) or (3.10) respectively.

The next result is proved in [12] in the case of tempered distributions and in
[7] in the cases of ultradistributions of Beurling type.
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Theorem 3.3. Let 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞] and 𝜔 ∈M{𝑠}(R2𝑑). If 𝑓 ∈ (𝒟∗)′(R𝑑) then

WFF𝐿𝑞
(𝜔)
(R𝑑)(𝑓) = WFℬ(𝑓), (3.11)

where ℬ = 𝑀𝑝,𝑞
(𝜔)(R

𝑑) or ℬ = 𝑊 𝑝,𝑞
(𝜔)(R

𝑑). In particular, WFℬ(𝑓) is independent of

𝑝 and 𝜙 ∈ 𝒮(𝑠)(R𝑑) ∖ 0 in (3.9) and (3.10).

The proof follows the same ideas as in the proof of [12, Theorem 6.1] and
[7, Theorem 2.3]. The main part concerns proving that the wave-front sets of mod-
ulation types are independent of the choice of window 𝜙 ∈ 𝒮(𝑠)(R𝑑) ∖ 0. Therefore
we need the result of Proposition 3.1. Note also that the dual pairing between
𝑓 ∈ (𝒮{𝑠})′(R𝑑) and 𝜙 ∈ 𝒮(𝑠)(R𝑑) is well defined. Otherwise, the proof of Theo-
rem 3.3 differs from the above-mentioned proofs in small technical details and it
is therefore omitted.

Corollary 3.4. Let 𝑠 > 1, 𝑝, 𝑞 ∈ [1,∞], and 𝜔 ∈M{𝑠}(R2𝑑). If 𝑓 ∈ (ℰ∗)′(R𝑑), then

𝑓 ∈ ℬ ⇐⇒ WFℬ(𝑓) = ∅,
where ℬ is equal to F𝐿𝑞(𝜔), 𝑀

𝑝,𝑞
(𝜔) or 𝑊 𝑝,𝑞

(𝜔).

In particular, we recover [12, Corollary 6.2] and [16, Theorem 2.1 and Remark
4.6], see also [8].
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Ordinary Differential Equations
in Algebras of Generalized Functions

Evelina Erlacher and Michael Grosser

Abstract. A local existence and uniqueness theorem for ODEs in the special
algebra of generalized functions is established, as well as versions including
parameters and dependence on initial values in the generalized sense. Finally,
a Frobenius theorem is proved. In all these results, composition of generalized
functions is based on the notion of c-boundedness.
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1. Introduction

At the time of their introduction in the 1980s ([2], [3]), algebras of generalized
functions in the Colombeau setting were primarily intended as a tool for treating
nonlinear (partial) differential equations in the presence of singularities. Since then,
many types of differential equations have been studied in the Colombeau setting
(see [16], together with the references given therein, and the first part of [9] for
a variety of examples). Nevertheless, the authors of [10] feel compelled to declare
some 15 years later that “a refined theory of local solutions of ODEs is not yet
fully developed” (p. 80). In fact, this state of affairs has not changed much since
then. It is the purpose of this article to lay the foundations for such a theory, with
composition of generalized functions based on the concept of c-boundedness.

As the basic object of study one may view the differential equation �̇�(𝑡) =

𝐹 (𝑡, 𝑢(𝑡)) with initial condition 𝑢(�̃�0) = 𝑥0. Since 𝑢(𝑡) gets plugged into the second
slot of 𝐹 it is evident that one has to adopt a suitable concept of composition of gen-
eralized functions in order to give meaning to the right-hand side of the ODE, keep-
ing in mind that in general, the composition of generalized functions is not defined.

One way of handling the composition 𝑢∘𝑣 of generalized functions 𝑢, 𝑣 is to as-
sume the left member 𝑢 to be tempered (see [10, Subsection 1.2.3] for a definition).
In this setting, a number of results on ODEs have been established, including a
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global existence and uniqueness theorem ([12, Theorem 3.1], [10, Theorem 1.5.2]).
A more recent concept of composing generalized functions goes back to Aragona
and Biagoni (cf. [1]): Here, the right member 𝑣 is assumed to be compactly bounded
(c-bounded ) into the domain of 𝑢 (see Section 2 for details); then the composition
𝑢 ∘ 𝑣 is defined as a generalized function. It is this latter approach we will adopt in
this article. It seems to be suited better to local questions; moreover, the concept
of c-boundedness permits an intrinsic generalization to smooth manifolds ([10,
Subsection 3.2.4], contrary to that of tempered generalized distributions.

In a number of contributions, the notion of c-boundedness has already been
taken as the basis for the treatment of generalized ODEs. The first instance, dating
back to [15], served as a tool for an application to a problem in general relativity,
see [10, Lemma 5.3.1] and the improved version in [6, Lemma 4.2]. Theorem 3.1 of
[14] – where a theory of singular ordinary differential equations on differentiable
manifolds is developed – provides a global existence and uniqueness result for
autonomous ODEs on ℝ𝑛. Theorem 1.9 in [11] establishes existence of a solution
assuming an L1-bound (as a function of 𝑡, uniformly on ℝ𝑛 with respect to the
second slot) on the representatives of 𝐹 . Finally, the study of the Hamilton–Jacobi
equation in the framework of generalized functions in [7] led to some local existence
and uniqueness results for ODEs, in a setting adapted to this particular problem.
We will discuss one of these Theorems in more detail in Section 3.

A special feature of the existence and uniqueness results 3.1 and 3.8 in Section
3 consists in their capacity to simultaneously allow generalized values both for �̃�0
and 𝑥0 in the initial conditions, and to have, nevertheless, the domain of existence
of the local solution equal to the one in the classical case.

The results of this article may be viewed as extending and refining the mate-
rial of Chapter 5 of [4]. Section 2 makes available the necessary technical prereq-
uisites. Local existence and uniqueness results for ODEs in the c-bounded setting
are the focus of Section 3: Following the basic theorem handling the initial value
problem mentioned above, two more statements are established covering ODEs
with parameters and 𝒢-dependence of the solution on initial values, respectively.
Section 4, finally, presents a generalized version of the theorem of Frobenius, also
in the c-bounded setting.

2. Notation and preliminaries

For subsets 𝐴,𝐵 of a topological space 𝑋 , we write 𝐴 ⊂⊂ 𝐵 if 𝐴 is a compact
subset of the interior 𝐵∘ of 𝐵. By 𝐵𝑟(𝑥) we denote the open ball with centre 𝑥
and radius 𝑟 > 0. We will make free use of the exponential law and the argument
swap (flip), i.e., for functions 𝑓 : 𝑋 × 𝑌 → 𝑍 we will write 𝑓(𝑥)(𝑦) = 𝑓(𝑥, 𝑦) =
𝑓fl(𝑦, 𝑥) = 𝑓fl(𝑦)(𝑥).

Generally, the special Colombeau algebra can be constructed with real-valued
or with complex-valued functions. For the purposes of the present article we con-
sider the real version only. Concerning fundamentals of (special) Colombeau alge-
bras, we follow [10, Subsection 1.2].
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In particular, for defining the special Colombeau algebra 𝒢(𝑈) on a given
(non-empty) open subset 𝑈 of ℝ𝑛, we set ℰ(𝑈) := 𝒞∞(𝑈,ℝ)(0,1] and

ℰ𝑀 (𝑈) := {(𝑢𝜀)𝜀 ∈ ℰ(𝑈) ∣ ∀𝐾 ⊂⊂ 𝑈 ∀𝛼 ∈ ℕ𝑛
0 ∃𝑁 ∈ ℕ :

sup
𝑥∈𝐾

∣∂𝛼𝑢𝜀(𝑥)∣ = 𝑂(𝜀−𝑁 ) as 𝜀→ 0},
𝒩 (𝑈) := {(𝑢𝜀)𝜀 ∈ ℰ(𝑈) ∣ ∀𝐾 ⊂⊂ 𝑈 ∀𝛼 ∈ ℕ𝑛

0 ∀𝑚 ∈ ℕ :

sup
𝑥∈𝐾

∣∂𝛼𝑢𝜀(𝑥)∣ = 𝑂(𝜀𝑚) as 𝜀→ 0}.

Elements of ℰ𝑀 (𝑈) and 𝒩 (𝑈) are called moderate and negligible functions, respec-
tively. By [10, Theorem 1.2.3], (𝑢𝜀)𝜀 is already an element of 𝒩 (𝑈) if the above
conditions are satisfied for 𝛼 = 0. ℰ𝑀 (𝑈) is a subalgebra of ℰ(𝑈), 𝒩 (𝑈) is an ideal
in ℰ𝑀 (𝑈). The special Colombeau algebra on 𝑈 is defined as

𝒢(𝑈) := ℰ𝑀 (𝑈)/𝒩 (𝑈).

The class of a moderate net (𝑢𝜀)𝜀 in this quotient space will be denoted by
[(𝑢𝜀)𝜀]. A generalized function on some open subset 𝑈 of ℝ𝑛 with values in ℝ𝑚

is given as an 𝑚-tuple (𝑢1, . . . , 𝑢𝑚) ∈ 𝒢(𝑈)𝑚 of generalized functions 𝑢𝑗 ∈ 𝒢(𝑈)
where 𝑗 = 1, . . . ,𝑚.

𝑈 → 𝒢(𝑈) is a fine sheaf of differential algebras on ℝ𝑛.
The composition 𝑣 ∘ 𝑢 of two arbitrary generalized functions is not defined,

not even if 𝑣 is defined on the whole of ℝ𝑚 (i.e., if 𝑢 ∈ 𝒢(𝑈)𝑚 and 𝑣 ∈ 𝒢(ℝ𝑚)𝑙).
A convenient condition for 𝑣 ∘ 𝑢 to be defined is to require 𝑢 to be “compactly
bounded” (c-bounded) into the domain of 𝑣. Since there is a certain inconsistency
in [10] concerning the precise description of c-boundedness (see [5, Section 2] for
details) we include the explicit definition of this important property below. For a
full discussion, see again [5, Section 2].

Definition 2.1. Let 𝑈 and 𝑉 be open subsets of ℝ𝑛 and ℝ𝑚, respectively.

(1) An element (𝑢𝜀)𝜀 of ℰ𝑀 (𝑈)𝑚 is called c-bounded from 𝑈 into 𝑉 if the following
conditions are satisfied:
(i) There exists 𝜀0 ∈ (0, 1], such that 𝑢𝜀(𝑈) ⊆ 𝑉 for all 𝜀 ≤ 𝜀0.
(ii) For every 𝐾 ⊂⊂ 𝑈 there exist 𝐿 ⊂⊂ 𝑉 and 𝜀0 ∈ (0, 1] such that

𝑢𝜀(𝐾) ⊆ 𝐿 for all 𝜀 ≤ 𝜀0.
The collection of c-bounded elements of ℰ𝑀 (𝑈)𝑚 is denoted by ℰ𝑀 [𝑈, 𝑉 ].

(2) An element 𝑢 of 𝒢(𝑈)𝑚 is called c-bounded from 𝑈 into 𝑉 if it has a rep-
resentative which is c-bounded from 𝑈 into 𝑉 . The space of all c-bounded
generalized functions from 𝑈 into 𝑉 will be denoted by 𝒢[𝑈, 𝑉 ].

Proposition 2.2. Let 𝑢 ∈ 𝒢(𝑈)𝑚 be c-bounded into 𝑉 and let 𝑣 ∈ 𝒢(𝑉 )𝑙, with
representatives (𝑢𝜀)𝜀 and (𝑣𝜀)𝜀, respectively. Then the composition

𝑣 ∘ 𝑢 := [(𝑣𝜀 ∘ 𝑢𝜀)𝜀]
is a well-defined generalized function in 𝒢(𝑈)𝑙.
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Generalized functions can be composed with smooth classical functions pro-
vided they do not grow “too fast”: The space of slowly increasing smooth functions
is given by

𝒪𝑀 (ℝ𝑛) := {𝑓 ∈ 𝒞∞(ℝ𝑛) ∣ ∀𝛼 ∈ ℕ𝑛
0 ∃𝑁 ∈ ℕ0 ∃𝐶 > 0 :

∣∂𝛼𝑓(𝑥)∣ ≤ 𝐶(1 + ∣𝑥∣)𝑁 ∀𝑥 ∈ ℝ𝑛}.
Proposition 2.3. If 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢(𝑈)𝑚 and 𝑣 ∈ 𝒪𝑀 (ℝ𝑚), then

𝑣 ∘ 𝑢 := [(𝑣 ∘ 𝑢𝜀)𝜀]
is a well-defined generalized function in 𝒢(𝑈).

We call ℛ := ℰ𝑀/𝒩 the ring of generalized numbers, where

ℰ𝑀 := {(𝑟𝜀)𝜀 ∈ ℝ(0,1] ∣ ∃𝑁 ∈ ℕ : ∣𝑟𝜀∣ = 𝑂(𝜀−𝑁 ) as 𝜀→ 0},
𝒩 := {(𝑟𝜀)𝜀 ∈ ℝ(0,1] ∣ ∀𝑚 ∈ ℕ : ∣𝑟𝜀∣ = 𝑂(𝜀𝑚) as 𝜀→ 0}.

For 𝑢 := [(𝑢𝜀)𝜀] ∈ 𝒢(𝑈) and 𝑥0 ∈ 𝑈 , the point value of 𝑢 at 𝑥0 is defined as the
class of (𝑢𝜀(𝑥0))𝜀 in ℛ.

On

𝑈𝑀 := {(𝑥𝜀)𝜀 ∈ 𝑈 (0,1] ∣ ∃𝑁 ∈ ℕ : ∣𝑥𝜀∣ = 𝑂(𝜀−𝑁 ) as 𝜀→ 0}
we introduce an equivalence relation by

(𝑥𝜀)𝜀 ∼ (𝑦𝜀)𝜀 ⇔ ∀𝑚 ∈ ℕ : ∣𝑥𝜀 − 𝑦𝜀∣ = 𝑂(𝜀𝑚) as 𝜀→ 0

and denote by 𝑈 := 𝑈𝑀/∼ the set of generalized points. For 𝑈 = ℝ we have

ℝ̃ = ℛ. Thus, we have the canonical identification ℝ̃𝑛 = ℝ̃𝑛 = ℛ𝑛.

The set of compactly supported points is

𝑈𝑐 := {𝑥 = [(𝑥𝜀)𝜀] ∈ 𝑈 ∣ ∃𝐾 ⊂⊂ 𝑈 ∃ 𝜀0 ∈ (0, 1] ∀ 𝜀 ≤ 𝜀0 : 𝑥𝜀 ∈ 𝐾}.
Obviously, for 𝑢 ∈ 𝒢(𝑈) and 𝑥 ∈ 𝑈𝑐, 𝑢(𝑥) is a generalized number, the generalized
point value of 𝑢 at 𝑥.

A point 𝑥 ∈ 𝑈𝑐 is called near-standard if there exists 𝑥 ∈ 𝑈 such that 𝑥𝜀 → 𝑥
as 𝜀 → 0 for one (thus, for every) representative (𝑥𝜀)𝜀 of 𝑥. In this case we write
𝑥 ≈ 𝑥.

Two generalized functions are equal in the Colombeau algebra if and only
if their generalized point values coincide at all compactly supported points ([10,
Theorem 1.2.46]). By [13], it is even sufficient to check the values at all near-
standard points. We will need a slightly refined result which is easy to prove using
the techniques of [10, Theorem 1.2.46] and [13]:

Proposition 2.4. Let 𝑢 ∈ 𝒢(𝑈 × 𝑉 ). Then

𝑢 = 0 in 𝒢(𝑈 × 𝑉 ) ⇔ 𝑢( . , 𝑦) = 0 in 𝒢(𝑈) for all near-standard

points 𝑦 ∈ 𝑉𝑐.
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3. Local existence and uniqueness results for ODEs

In the first theorem of this section we give sufficient conditions to guarantee a
(unique) solution of the local initial value problem

�̇�(𝑡) = 𝐹 (𝑡, 𝑢(𝑡)), 𝑢(�̃�0) = 𝑥0, (1)

where 𝐼 is an open interval in ℝ, 𝑈 an open subset of ℝ𝑛, 𝐹 ∈ 𝒢(𝐼 × 𝑈)𝑛, �̃�0 ∈ 𝐼𝑐
and 𝑥0 ∈ 𝑈𝑐. A generalized function 𝑢 ∈ 𝒢[𝐽, 𝑈 ] (where 𝐽 is some open subinterval

of 𝐼) is called a (local) solution of (1) on 𝐽 around �̃�0 ∈ 𝐼𝑐 with initial value 𝑥0 if
the differential equation in (1) is satisfied in 𝒢(𝐽)𝑛 and the initial condition in (1)

is satisfied in the set 𝑈 of generalized points.
Reflecting our decision to employ the concept of c-boundedness to ensure the

existence of compositions, a solution on some subinterval 𝐽 of 𝐼 will be a c-bounded
generalized function from 𝐽 into 𝑈 satisfying (1). Due to the c-boundedness of 𝑢
the requirement for 𝑥0 to be compactly supported in fact does not constitute a
restriction.

Theorem 3.1 generalizes Theorem 5.2 of [4] insofar as the domain of existence
of the local solution precisely equals the one in the classical case whereas the
solution in [4] is only defined on a strictly smaller interval. Moreover, the present
version establishes uniqueness with respect to the largest sensible target space (i.e.,
𝑈), as opposed to the more restricted statement in [4].

Theorem 3.1. Let 𝐼 be an open subinterval of ℝ, U an open subset of ℝ𝑛, �̃�0 a

near-standard point in 𝐼𝑐 with �̃�0 ≈ 𝑡0 ∈ 𝐼, 𝑥0 ∈ 𝑈𝑐 and 𝐹 ∈ 𝒢(𝐼 × 𝑈)𝑛.
Let 𝛼 be chosen such that [𝑡0−𝛼, 𝑡0+𝛼] ⊂⊂ 𝐼. Let (𝑥0𝜀)𝜀 be a representative

of 𝑥0 and 𝐿 ⊂⊂ 𝑈 , 𝜀0 ∈ (0, 1] such that 𝑥0𝜀 ∈ 𝐿 for all 𝜀 ≤ 𝜀0. With 𝛽 > 0

satisfying 𝐿𝛽 := 𝐿+𝐵𝛽(0) ⊂⊂ 𝑈 set

𝑄 := [𝑡0 − 𝛼, 𝑡0 + 𝛼]× 𝐿𝛽 (⊂⊂ 𝐼 × 𝑈).

Assume that 𝐹 has a representative (𝐹𝜀)𝜀 satisfying

sup
(𝑡,𝑥)∈𝑄

∣𝐹𝜀(𝑡, 𝑥)∣ ≤ 𝑎 (𝜀 ≤ 𝜀0) (2)

for some constant 𝑎 > 0. Then the following holds:

(i) The initial value problem

�̇�(𝑡) = 𝐹 (𝑡, 𝑢(𝑡)), 𝑢(�̃�0) = 𝑥0, (3)

has a solution 𝑢 ∈ 𝒢[𝐽,𝑊 ] where 𝐽 = (𝑡0−ℎ, 𝑡0+ℎ) with ℎ = min(𝛼, 𝛽𝑎 ) and
𝑊 = 𝐿+𝐵𝛽(0).

(ii) Every solution of (3) in 𝒢[𝐽, 𝑈 ] is already an element of 𝒢[𝐽,𝑊 ].
(iii) The solution of (3) is unique in 𝒢[𝐽, 𝑈 ] if, in addition to (2),

sup
(𝑡,𝑥)∈𝐽×𝑊

∣∂2𝐹𝜀(𝑡, 𝑥)∣ = 𝑂(∣ log 𝜀∣) (4)

holds.
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Proof. Throughout the proof, it suffices to consider only values of 𝜀 not exceeding
𝜀0. Moreover, we can assume without loss of generality that

∣�̃�0𝜀 − 𝑡0∣ ≤ ℎ/4 holds for all 𝜀 ≤ 𝜀0. (5)

(i) In a first step we fix 𝜀 and solve the (classical) initial value problem

�̇�𝜀(𝑡) = 𝐹𝜀(𝑡, 𝑢𝜀(𝑡)), 𝑢𝜀(�̃�0𝜀) = 𝑥0𝜀, (6)

on a suitable subinterval of [𝑡0 − ℎ, 𝑡0 + ℎ]. To this end, set

𝛿𝜀 := sup{∣�̃�0𝜀′ − 𝑡0∣ ∣ 0 < 𝜀′ ≤ 𝜀} and 𝐽𝜀 := [𝑡0 − ℎ+ 𝛿𝜀, 𝑡0 + ℎ− 𝛿𝜀],

both for 𝜀 ≤ 𝜀0; note that 𝛿𝜀 → 0 as 𝜀 → 0. By this choice, we have 𝐽𝜀 ⊆ [𝑡0 −
ℎ, 𝑡0+ℎ]. Indeed, from 𝑡 ∈ 𝐽𝜀 we infer ∣𝑡− �̃�0𝜀∣ ≤ ∣𝑡−𝑡0∣+∣𝑡0− �̃�0𝜀∣ ≤ ℎ−𝛿𝜀+𝛿𝜀. The
solution 𝑢𝜀 of (6) now is obtained as the fixed point of the operator 𝑇𝜀 : 𝑋𝜀 → 𝑋𝜀

defined by

(𝑇𝜀𝑓)(𝑡) := 𝑥0𝜀 +

∫ 𝑡

�̃�0𝜀

𝐹𝜀(𝑠, 𝑓(𝑠)) d𝑠 (𝑡 ∈ 𝐽𝜀)

where 𝑋𝜀 := {𝑓 : 𝐽𝜀 → 𝐿𝛽 ∣ 𝑓 is continuous} becomes a complete metric space
when being equipped with the metric 𝑑(𝑓, 𝑔) := ∥𝑓 − 𝑔∥∞ = sup𝑡∈𝐽𝜀 ∣𝑓(𝑡)− 𝑔(𝑡)∣.
That 𝑇𝜀 in fact maps 𝑋𝜀 into 𝑋𝜀 is immediate from

∣(𝑇𝜀𝑓)(𝑡)− 𝑥0𝜀∣ ≤
∣∣∣∣∫ 𝑡

�̃�0𝜀

∣𝐹𝜀(𝑠, 𝑓(𝑠))∣ d𝑠
∣∣∣∣ ≤ 𝑎 ⋅ ∣𝑡− �̃�0𝜀∣ (7)

by noting that 𝑎 ⋅ ∣𝑡− �̃�0𝜀∣ ≤ 𝑎ℎ ≤ 𝛽 for 𝑡 ∈ 𝐽𝜀.
Now the existence of a fixed point of 𝑇𝜀 (hence, of a solution of (6)) follows

from Weissinger’s fixed point theorem ([17, §1], [8, I.1.6 (A5)]) by the following
argument: A variant of [10, Lemma 3.2.47] referring only to the second slot (see [4,
Remark 3.12] for an explicit version) yields a positive constant 𝛾 (depending on 𝜀)
such that ∣𝐹𝜀(𝑡, 𝑥)−𝐹𝜀(𝑡, 𝑦)∣ ≤ 𝛾 ⋅∣𝑥−𝑦∣ for all (𝑡, 𝑥), (𝑡, 𝑦) ∈ 𝑄. From this we derive,

by induction, ∣(𝑇 𝑘
𝜀 𝑓)(𝑡)− (𝑇 𝑘

𝜀 𝑔)(𝑡)∣ ≤ 𝛾𝑘

𝑘! (𝑡− �̃�0𝜀)
𝑘∥𝑓 − 𝑔∥∞ for 𝑡 ∈ [�̃�0𝜀, 𝑡0+ℎ− 𝛿𝜀]

and 𝑘 ∈ ℕ0. The case of 𝑡 ∈ [𝑡0 − ℎ + 𝛿𝜀, �̃�0𝜀] being similar, we finally arrive at

∥𝑇 𝑘
𝜀 𝑓 − 𝑇 𝑘

𝜀 𝑔∥∞ ≤ (ℎ𝛾)𝑘

𝑘! ∥𝑓 − 𝑔∥∞ which, due to
∑∞

𝑘=0
(ℎ𝛾)𝑘

𝑘! = 𝑒ℎ𝛾 < ∞, suffices
for an appeal to Weissinger’s theorem. We obtain a solution 𝑢𝜀 of (6) on 𝐽𝜀 taking
values in 𝐿𝛽. Moreover, 𝑢𝜀(𝑡) ∈𝑊 := 𝐿+𝐵𝛽(0) for 𝑡 ∈ 𝐽∘𝜀 by (7).

If 𝛿𝜀 = 0 (i.e., if 𝑡0 is standard) then 𝑢𝜀 is defined on [𝑡0 − ℎ, 𝑡0 + ℎ] and
we set 𝑢𝜀 := 𝑢𝜀; by (7), 𝑢𝜀(𝐽) ⊆ 𝑊 . In the case 𝛿𝜀 > 0, Lemma 3.3 provides

𝑢𝜀 ∈ 𝒞∞([𝑡0 − ℎ, 𝑡0 + ℎ],𝑊 ) being equal to 𝑢𝜀 on 𝐽𝜀 := [𝑡0 − ℎ+2𝛿𝜀, 𝑡0 + ℎ− 2𝛿𝜀].

In both cases, �̃�0𝜀 ∈ 𝐽𝜀, 𝑢𝜀(�̃�0𝜀) = 𝑥0𝜀 and ˙̃𝑢𝜀(𝑡) = 𝐹𝜀(𝑡, 𝑢𝜀(𝑡)) holds on 𝐽𝜀.
In order to show that (𝑢𝜀)𝜀 is moderate on 𝐽 = (𝑡0 − ℎ, 𝑡0 + ℎ) it suffices to

establish the corresponding estimates on each 𝐽𝜀∗ (with 𝜀∗ ≤ 𝜀0), allowing us to

deal with 𝑢𝜀 rather than with 𝑢𝜀 for all 𝜀 ≤ 𝜀∗. Thus, let 𝑡 ∈ 𝐽𝜀∗ and 𝜀 ≤ 𝜀∗. We
have 𝑢𝜀(𝑡) ∈ 𝐿𝛽 and ∣�̇�𝜀(𝑡)∣ ≤ 𝑎. Via the moderateness estimates for ∂𝑖𝐹𝜀 (𝑖 = 1, 2)
we now obtain, by differentiating �̇�𝜀(𝑡) = 𝐹𝜀(𝑡, 𝑢𝜀(𝑡)), an estimate of the form

∣�̈�𝜀(𝑡)∣ ≤ ∣∂1𝐹𝜀(𝑡, 𝑢𝜀(𝑡))∣ + ∣∂2𝐹𝜀(𝑡, 𝑢𝜀(𝑡))∣ ⋅ ∣�̇�𝜀(𝑡)∣ ≤ 𝐶𝜀−𝑁
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with constants 𝐶 > 0 and 𝑁 ∈ ℕ not depending on 𝜀. The estimates for the
higher-order derivatives of 𝑢𝜀 are now obtained inductively by differentiating the
equation for �̈�𝜀.

Concerning c-boundedness of (𝑢𝜀)𝜀 from 𝐽 into 𝑊 let 𝐽† := [𝑡0 − ℎ′, 𝑡0 + ℎ′]
with ℎ

4 < ℎ′ < ℎ. For 𝜀 small enough as to satisfy 2𝛿𝜀 ≤ ℎ− ℎ′, we have 𝐽† ⊆ 𝐽𝜀.

(7) now yields 𝑢𝜀(𝐽
†) = 𝑢𝜀(𝐽

†) ⊆ 𝐿+𝐵𝑎(ℎ′+𝛿𝜀) ⊂⊂ 𝐿+𝐵𝛽(0).

Now that we have shown that the net (𝑢𝜀)𝜀 represents a member of 𝒢[𝐽,𝑊 ]
(⊆ 𝒢[𝐽, 𝑈 ]), it follows from the result established for fixed 𝜀 that the class of (𝑢𝜀)𝜀
is a solution of (3) on 𝐽 in the sense specified at the beginning of this section:
Due to the fact that equality in Colombeau spaces involves null estimates only
on compact subsets of the domain, it indeed suffices that every 𝑢𝜀 satisfies the

(classical) equation on 𝐽𝜀, taking into account 𝛿𝜀 → 0.

(ii) Assume that 𝑣 = [(𝑣𝜀)𝜀] ∈ 𝒢[𝐽, 𝑈 ] satisfies �̇�(𝑡) = 𝐹 (𝑡, 𝑣(𝑡)) and 𝑣(�̃�0) =

𝑥0. With �̃�0𝜀, 𝑥0𝜀 and 𝐹𝜀 as in part (i) we have 𝑣𝜀(�̃�0𝜀) = 𝑥0𝜀 + �̃�𝜀 and �̇�𝜀(𝑡) =
𝐹𝜀(𝑡, 𝑣𝜀(𝑡)) + 𝑛𝜀(𝑡) for some (�̃�𝜀)𝜀 ∈ 𝒩𝑛 and (𝑛𝜀)𝜀 ∈ 𝒩 (𝐽)𝑛, respectively.

In order to show that 𝑣 ∈ 𝒢[𝐽,𝑊 ] with 𝑊 = 𝐿 + 𝐵𝛽(0) we again choose

𝐽† = [𝑡0 − ℎ′, 𝑡0 + ℎ′] ⊂⊂ 𝐽 with ℎ
4 < ℎ′ < ℎ. Setting 𝛿 := 𝑎

2 (ℎ − ℎ′), we select

𝜀1(≤ 𝜀0) such that for all 𝜀 ≤ 𝜀1, the three conditions ∣�̃�𝜀∣ < 𝛿
3 ,

∫
𝐽† ∣�̃�𝜀(𝑠)∣ d𝑠 < 𝛿

3

and 𝑎∣𝛿𝜀∣ < 𝛿
3 are satisfied. Now for 𝜀 ≤ 𝜀1, we claim that ∣𝑣𝜀(𝑡)−𝑥0𝜀∣ ≤ 𝑎

2 (ℎ+ℎ′)
holds for all 𝑡 ∈ 𝐽†+ := [�̃�0𝜀, 𝑡0+ ℎ′]. If ∣𝑣𝜀(𝑡)− 𝑥0𝜀∣ < 𝑎

2 (ℎ+ ℎ′) for all 𝑡 ∈ 𝐽†+, then

we are done. Otherwise, choose 𝑡∗ minimal in 𝐽†+ with ∣𝑣𝜀(𝑡∗)− 𝑥0𝜀∣ = 𝑎
2 (ℎ+ ℎ′).

We demonstrate that, in fact, 𝑡∗ = 𝑡0 + ℎ′. From the estimate

𝑎

2
(ℎ+ ℎ′) = ∣𝑣𝜀(𝑡∗)− 𝑥0𝜀∣ ≤ ∣�̃�𝜀∣+

∫ 𝑡∗

�̃�0𝜀

∣�̃�𝜀(𝑠)∣ d𝑠+

∫ 𝑡∗

�̃�0𝜀

∣𝐹𝜀(𝑡, 𝑣𝜀(𝑡)︸︷︷︸
∈𝐿𝛽

)∣ d𝑠

≤ 𝛿

3
+
𝛿

3
+ 𝑎∣𝛿𝜀∣+ 𝑎(𝑡∗ − 𝑡0)

≤ 𝑎

2
(ℎ− ℎ′) + 𝑎(𝑡∗ − 𝑡0)

it readily follows that 𝑡∗ ≥ 𝑡0 + ℎ′, and thus 𝑡∗ = 𝑡0 + ℎ′. Since, by a similar

argument, ∣𝑣𝜀(𝑡) − 𝑥0𝜀∣ ≤ 𝑎
2 (ℎ + ℎ′) holds also for all 𝑡 ∈ 𝐽†− = [𝑡0 − ℎ′, �̃�0𝜀] we

finally arrive at

𝑣𝜀(𝐽
†) ⊆ 𝐿+𝐵 𝑎

2 (ℎ+ℎ
′)(0) ⊂⊂ 𝐿+𝐵𝛽(0) = 𝑊.

This proves that 𝑣 is c-bounded from 𝐽 into 𝑊 .

(iii) Let 𝑣 = [(𝑣𝜀)𝜀] ∈ 𝒢[𝐽, 𝑈 ] be another solution and (𝑛𝜀)𝜀 ∈ 𝒩𝑛, (�̃�𝜀)𝜀 ∈ 𝒩𝑛

as above. By (ii), 𝑣 ∈ 𝒢[𝐽,𝑊 ]. As before let 𝐽† := [𝑡0−ℎ′, 𝑡0+ℎ′] (with ℎ
4 < ℎ′ < ℎ)

be a compact subinterval of 𝐽 . Since both (𝑢𝜀)𝜀 and (𝑣𝜀)𝜀 are c-bounded from 𝐽 into
𝑊 , there exists a compact subset 𝐾 of 𝑊 such that 𝑢𝜀(𝐽

†) ⊆ 𝐾 and 𝑣𝜀(𝐽
†) ⊆ 𝐾

for 𝜀 sufficiently small. Moreover, we can assume 𝛿𝜀 < ℎ−ℎ′. Applying the second-
slot version of [10, Lemma 3.2.47] to the function 𝐹𝜀 and some (fixed) compact set
𝐾 ′ with 𝐾 ⊂⊂ 𝐾 ′ ⊂⊂ 𝑊 = 𝐿 + 𝐵𝛽(0) yields a constant 𝐶′ (only depending on
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𝐾 ′) such that

∣𝐹𝜀(𝑡, 𝑥) − 𝐹𝜀(𝑡, 𝑦)∣ ≤ 𝐶 ′ sup
(𝑠,𝑧)∈𝐽†×𝐾′

(∣𝐹𝜀(𝑠, 𝑧)∣+ ∣∂2𝐹𝜀(𝑠, 𝑧)∣) ⋅ ∣𝑥− 𝑦∣

≤ 𝐶′(𝑎+ 𝐶1∣ log 𝜀∣) ⋅ ∣𝑥− 𝑦∣
holds for all 𝑡 ∈ 𝐽† and all 𝑥, 𝑦 ∈ 𝐾 (note that 𝐽† × 𝐾 ′ ⊆ 𝐽 ×𝑊 ⊆ 𝑄) where
𝐶1 > 0 is the constant provided by (4). Therefore, for 𝑡 ∈ 𝐽† it follows that

∣𝑣𝜀(𝑡)− 𝑢𝜀(𝑡)∣ ≤ ∣𝑦0𝜀 − 𝑥0𝜀∣+
∣∣∣∣ ∫ 𝑡

�̃�0𝜀

(∣𝐹𝜀(𝑠, 𝑣𝜀(𝑠)) − 𝐹𝜀(𝑠, 𝑢𝜀(𝑠))∣+ ∣𝑛𝜀(𝑠)∣) d𝑠
∣∣∣∣

≤ ∣�̃�𝜀∣+
∣∣∣∣ ∫ 𝑡

�̃�0𝜀

∣𝑛𝜀(𝑠)∣d𝑠
∣∣∣∣ + 𝐶 ′(𝑎+ 𝐶1∣ log 𝜀∣) ⋅

∣∣∣∣ ∫ 𝑡

�̃�0𝜀

∣𝑣𝜀(𝑠)− 𝑢𝜀(𝑠)∣d𝑠
∣∣∣∣

≤ 𝐶2 𝜀
𝑚 + (𝐶3 + 𝐶4∣ log 𝜀∣) ⋅

∣∣∣∣ ∫ 𝑡

�̃�0𝜀

∣𝑣𝜀(𝑠)− 𝑢𝜀(𝑠)∣ d𝑠
∣∣∣∣

for suitable constants 𝐶2, 𝐶3, 𝐶4 > 0 and arbitrary 𝑚 ∈ ℕ. By Gronwall’s Lemma,
we obtain

sup
𝑡∈𝐽†

∣𝑣𝜀(𝑡)− 𝑢𝜀(𝑡)∣ ≤ 𝐶2 𝜀
𝑚 ⋅ 𝑒(𝐶3+𝐶4∣ log 𝜀∣)⋅∣

∫
𝑡
𝑡0𝜀

1 d𝑠∣ ≤ 𝐶0 𝜀
𝑚−ℎ𝐶4

for some constant 𝐶0 > 0 (note that ∣�̃�0𝜀 − 𝑡0∣ ≤ ℎ′ + 𝛿𝜀 ≤ ℎ). This concludes the
proof of the theorem. □

Remark 3.2.

(i) The proof of Theorem 3.1 establishes the following statement on the level of

representatives: For any given representatives (�̃�0𝜀)𝜀 of �̃�0 ∈ 𝐼𝑐 (�̃�0𝜀 → 𝑡0 ∈ 𝐼),

(𝑥0𝜀)𝜀 of 𝑥0 ∈ 𝑈𝑐 and (𝐹𝜀)𝜀 of 𝐹 ∈ 𝒢(𝐼 × 𝑈)𝑛 satisfying (2) the following
holds: If 𝛼, 𝐿, 𝜀0 and 𝛽 are chosen as in Theorem 3.1 (including condition (5)
as to 𝜀0), then 𝑢 has a representative (𝑢𝜀)𝜀 that on every compact subinterval
of 𝐽 satisfies the classical initial value problem (6) for 𝜀 sufficiently small.

(ii) If �̃�0 is standard, i.e., (without loss of generality) �̃�0𝜀 = 𝑡0 ∈ 𝐼 for all 𝜀, then
𝛿𝜀 = 0 and every 𝑢𝜀 exists (as a solution of (6)) even on [𝑡0 − ℎ, 𝑡0 + ℎ].

(iii) If 𝑥0 is standard, i.e., (without loss of generality) 𝑥0𝜀 = 𝑥0 ∈ 𝑈 for all 𝜀, then

𝐿 := {𝑥0} yields 𝐿𝛽 = 𝐵𝛽(𝑥0) as in the classical case.

Lemma 3.3.

(i) Let 𝑎 < 𝑎1 < 𝑎2 < 𝑏2 < 𝑏1 < 𝑏 and let 𝑈 be a (non-empty) open subset of

ℝ𝑛. Then for 𝑓 ∈ 𝒞∞([𝑎1, 𝑏1], 𝑈) being given, there exists 𝑓 ∈ 𝒞∞([𝑎, 𝑏], 𝑈)

with 𝑓 = 𝑓 on some open neighbourhood of [𝑎2, 𝑏2].

(ii) For any given positive 𝛿, the function 𝑓 can be chosen such as to satisfy

𝑓([𝑎, 𝑏]) ⊆ 𝑓([𝑎1, 𝑏1]) ∪𝐵𝛿(𝑓(𝑎1)) ∪𝐵𝛿(𝑓(𝑏1)).

Proof. (i) Choose 𝛿 > 0 as to satisfy 𝐵𝛿(𝑓(𝑎1)) ∪ 𝐵𝛿(𝑓(𝑎2)) ⊆ 𝑈 . Choose 𝜂 > 0
such that 𝑓(𝑡) ∈ 𝐵𝛿(𝑓(𝑎1)) holds for 𝑡 ∈ [𝑎1, 𝑎1+2𝜂] and 𝑓(𝑡) ∈ 𝐵𝛿(𝑓(𝑏1)) holds for
𝑡 ∈ [𝑏1−2𝜂, 𝑏1]; without loss of generality we may assume 𝜂 < 1

3 min(𝑎2−𝑎1, 𝑏1−𝑏2).
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Now let 𝜓 be a smooth function with 0 ≤ 𝜓 ≤ 1 such that 𝜓 = 1 on

[𝑎1 + 2𝜂, 𝑏1 − 2𝜂] and 𝜓 = 0 outside (𝑎1 + 𝜂, 𝑏1 − 𝜂). Then 𝑓 defined on [𝑎, 𝑏] by

𝑓(𝑡) :=

⎧⎨⎩

𝑓(𝑎1) 𝑡 ∈ [𝑎, 𝑎1 + 𝜂]

𝑓(𝑡)𝜓(𝑡) + 𝑓(𝑎1)(1− 𝜓(𝑡)) 𝑡 ∈ [𝑎1, 𝑎2]

𝑓(𝑡) 𝑡 ∈ [𝑎1 + 2𝜂, 𝑏1 − 2𝜂]

𝑓(𝑡)𝜓(𝑡) + 𝑓(𝑏1)(1 − 𝜓(𝑡)) 𝑡 ∈ [𝑏2, 𝑏1]

𝑓(𝑏1) 𝑡 ∈ [𝑏1 − 𝜂, 𝑏]

satisfies all requirements since each of the five defining terms is smooth and on
overlaps the two relevant terms give rise to the same values.

(ii) is clear from the proof of (i). □
Theorem 3.1 is distinguished from the related result [7, Theorem 4.5] by the

following features: The existence statement (i) of Theorem 3.1 does not require
logarithmic control of derivatives of 𝐹 which, by contrast, is assumed in [7]; the
domain interval of the solution in Theorem 3.1 equals the classical (open) one

given by (𝑡0 − ℎ, 𝑡0 + ℎ) with ℎ = min(𝛼, 𝛽𝑎 ) while in [7] one has to take ℎ <

min(𝛼, 𝛽𝑎 ); finally, the boundedness assumption on 𝐹 in [7] refers to the whole
open domain of 𝐹 whereas in Theorem 3.1 it suffices to have boundedness of 𝐹 on
the (compact) subset𝑄. Generally, all existence and uniqueness results for ODEs in
[7] are tailored for applications of the method of characteristics to the generalized
Hamilton–Jacobi problem; hence the setting of [7] always includes initial conditions
as parameters, necessitating the logarithmic growth condition even for existence
results (compare Theorem 3.8 below).

The following three examples illustrate the significance of the boundedness
assumption on 𝐹 by displaying increasing obstacles against obtaining a generalized
solution from the classical ones obtained for fixed 𝜀, in the absence of condition (2).

Example 3.4. Let 𝐹 ∈ 𝒢(ℝ × ℝ) be given by the representative 𝐹𝜀(𝑡, 𝑥) := 1
𝜀

(
2−

1
1+𝑥2

)
, and let 𝑡0 = 0 and 𝑥0 = 0. Then 𝐹 fails to satisfy condition (2) on any

neighbourhood of (𝑡0, 𝑥0). Nevertheless, there exists a unique global solution for

every 𝜀: Integrating �̇�(𝑡) = 𝐹𝜀(𝑡, 𝑥) yields 𝑥
2 + 1

2
√
2
arctan(

√
2𝑥) = 1

𝜀 𝑡. Setting

𝑓(𝑥) = 𝑥
2 + 1

2
√
2
arctan(

√
2𝑥), we obtain 𝑢𝜀(𝑡) := 𝑓−1(1𝜀 𝑡) as the solution of the

classical initial value problem. By Proposition 2.3, (𝑢𝜀)𝜀 ∈ ℰ𝑀 (ℝ). However, (𝑢𝜀)𝜀
is not c-bounded. Hence, 𝑢𝜀 solves the differential equation for every 𝜀 but on
any interval around 0, the generalized function [(𝑢𝜀)𝜀] is not a solution of the
initial value problem in the setting of the c-bounded theory of ODEs since the
composition 𝐹 (𝑡, 𝑢(𝑡)) exists only componentwise on the level of representatives,
yet not in the sense of Proposition 2.2.

Example 3.5. Let 𝐹 ∈ 𝒢(ℝ×ℝ) be given by the representative 𝐹𝜀(𝑡, 𝑥) := 𝑥
𝜀 , and let

𝑡0 = 0 and 𝑥0 = 1. Again, 𝐹 does not satisfy condition (2) on any neighbourhood

of (𝑡0, 𝑥0). For each 𝜀, there exists a unique (even global) solution 𝑢𝜀(𝑡) = 𝑒
𝑡
𝜀 .

However, (𝑢𝜀)𝜀 is not moderate on any neighbourhood of 0.
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Example 3.6. Let 𝐹 ∈ 𝒢(ℝ × (ℝ∖{−1})) be defined by the representative

𝐹𝜀(𝑡, 𝑥) := − 𝑡
𝑥+1 ⋅ 𝑔(𝜀) where 𝑔 : (0, 1]→ ℝ is a smooth map satisfying 𝑔(𝜀)→∞

for 𝜀→ 0. Let 𝑡0 = 0 and 𝑥0 = 0. Then 𝐹 violates condition (2) on any neighbour-

hood of (𝑡0, 𝑥0). For every 𝜀 we obtain (unique) solutions 𝑢𝜀(𝑡) =
√

1− 𝑔(𝜀) 𝑡2− 1

that are defined, at most, on the open interval (−1/
√
𝑔(𝜀), 1/

√
𝑔(𝜀)). Hence, there

is not even a common domain. In this example, 𝐹 failing to satisfy condition (2)
leads to shrinking of the solutions’ domains as 𝜀→ 0. Note that this result is not a
consequence of the rate of growth of ∣𝐹𝜀(𝑡, 𝑥)∣ on any compact set; rather, it only
matters that ∣𝐹𝜀(𝑡, 𝑥)∣ does increase infinitely (as 𝜀→ 0).

Theorem 3.1 can handle jumps as the following example shows.

Example 3.7. Let 𝐼 be an open interval in ℝ and 𝑈 an open subset of ℝ𝑛. Consider
the initial value problem

�̇�(𝑡) = 𝑓(𝑡, 𝑢(𝑡)) ⋅ (𝜄𝐻)(𝑡) + 𝑔(𝑡, 𝑢(𝑡)), 𝑢(𝑡0) = 𝑥0, (8)

where 𝑓, 𝑔 ∈ 𝒞∞(𝐼 ×𝑈,ℝ𝑛), 𝑡0 ∈ 𝐼, 𝑥0 ∈ 𝑈 , and where 𝜄𝐻 denotes the embedding
of the Heaviside function 𝐻 into the Colombeau algebra. If 𝜌 is a mollifier (i.e.,
a Schwartz function on ℝ satisfying

∫
𝜌(𝑥) d𝑥 = 1 and

∫
𝑥𝛼𝜌(𝑥) d𝑥 = 0 for all

𝛼 ≥ 1), then a representative (𝐻𝜀)𝜀 of 𝜄𝐻 is given by 𝐻𝜀(𝑡) =
∫ 𝑡

−∞
1
𝜀 𝜌

(
𝑠
𝜀

)
d𝑠. Fix

some 𝛼 > 0 such that [𝑡0 −𝛼, 𝑡0 + 𝛼] ⊆ 𝐼 and choose an open subset 𝑊 of 𝑈 with
𝑥0 ∈𝑊 ⊆𝑊 ⊂⊂ 𝑈 . A short computation shows that ∣𝐻𝜀(𝑡)∣ ≤ ∥𝜌∥𝐿1(ℝ𝑛) for all 𝑡.

Thus, ∣𝑓(𝑡, 𝑥)⋅𝐻𝜀(𝑡)+𝑔(𝑡, 𝑥)∣ ≤ 𝑎1∥𝜌∥𝐿1(ℝ𝑛)+𝑎2 =: 𝑎 on [𝑡0−𝛼, 𝑡0+𝛼]×𝑊 for some
constants 𝑎1, 𝑎2 > 0. Hence, by Theorem 3.1, the initial value problem (8) possesses

a solution 𝑢 in 𝒢[𝐽,𝑊 ] where 𝐽 := (𝑡0 − ℎ, 𝑡0 + ℎ) and ℎ = min
(
𝛼, dist(𝑥0,∂𝑊 )

𝑎

)
.

Since the initial value problem also satisfies (4), the solution is unique in 𝒢[𝐽, 𝑈 ].

Next, we turn our attention to generalized ODEs including parameters. In
view of our goal to establish a Frobenius theorem in the present setting, we want
the solution to be 𝒢-dependent on the parameter.

Theorem 3.8. Let 𝐼 be an open subinterval of ℝ, 𝑈 an open subset of ℝ𝑛, 𝑃 an

open subset of ℝ𝑙, �̃�0 a near-standard point in 𝐼𝑐 with �̃�0 ≈ 𝑡0 ∈ 𝐼, 𝑥0 ∈ 𝑈𝑐 and
𝐹 ∈ 𝒢(𝐼 × 𝑈 × 𝑃 )𝑛.

Let 𝛼 be chosen such that [𝑡0−𝛼, 𝑡0+𝛼] ⊂⊂ 𝐼. Let (𝑥0𝜀)𝜀 be a representative
of 𝑥0 and 𝐿 ⊂⊂ 𝑈 , 𝜀0 ∈ (0, 1] such that 𝑥0𝜀 ∈ 𝐿 for all 𝜀 ≤ 𝜀0. With 𝛽 > 0

satisfying 𝐿𝛽 := 𝐿+𝐵𝛽(0) ⊂⊂ 𝑈 set

𝑄 := [𝑡0 − 𝛼, 𝑡0 + 𝛼]× 𝐿𝛽 (⊂⊂ 𝐼 × 𝑈).

Assume that 𝐹 has a representative (𝐹𝜀)𝜀 satisfying

sup
(𝑡,𝑥,𝑝)∈𝑄×𝑃

∣𝐹𝜀(𝑡, 𝑥, 𝑝)∣ ≤ 𝑎 (𝜀 ≤ 𝜀0) (9)

for some constant 𝑎 > 0 and that for all compact subsets 𝐾 of 𝑃

sup
(𝑡,𝑥,𝑝)∈𝑄×𝐾

∣∂2𝐹𝜀(𝑡, 𝑥, 𝑝)∣ = 𝑂(∣ log 𝜀∣). (10)
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Then the following holds: There exists 𝑢 ∈ 𝒢[𝑃×𝐽,𝑊 ] with 𝐽 := [𝑡0−ℎ, 𝑡0+ℎ],
ℎ = min

(
𝛼, 𝛽𝑎

)
and 𝑊 = 𝐿 + 𝐵𝛽(0) such that for all 𝑝 ∈ 𝑃𝑐 the map 𝑢(𝑝, . ) ∈

𝒢[𝐽,𝑊 ] is a solution of the initial value problem

�̇�(𝑡) = 𝐹 (𝑡, 𝑢(𝑡), 𝑝), 𝑢(�̃�0) = 𝑥0.

The solution 𝑢 is unique in 𝒢[𝑃 × 𝐽, 𝑈 ].

Proof. Existence: Let (�̃�0𝜀)𝜀 be a representative of �̃�0. Proceeding as in the proof of

Theorem 3.1, we set 𝛿𝜀 := sup{∣�̃�0𝜀′−𝑡0∣ ∣ 0 < 𝜀′ ≤ 𝜀} and 𝐽𝜀 := [𝑡0−ℎ+𝛿𝜀, 𝑡0+ℎ−
𝛿𝜀]. For every 𝑝 ∈ 𝑃 there exists a net of (classical) solutions 𝑢𝜀(𝑝, . ) : 𝐽𝜀 → 𝐿𝛽
of the initial value problem

�̇�𝜀(𝑡) = 𝐹𝜀(𝑡, 𝑢𝜀(𝑡), 𝑝), 𝑢𝜀(�̃�0𝜀) = 𝑥0𝜀 (𝜀 ≤ 𝜀0), (11)

satisfying 𝑢𝜀(𝑝, 𝐽
∘
𝜀 ) ⊆𝑊 . By the classical Existence and Uniqueness Theorem for

ODEs with parameter, the mappings (𝑝, 𝑡) → 𝑢𝜀(𝑝, 𝑡) are 𝒞∞. Lemma 3.3 provides

𝑢𝜀 ∈ 𝒞∞(𝑃×[𝑡0−ℎ, 𝑡0+ℎ],𝑊 ) being equal to 𝑢𝜀 on 𝐽𝜀 := [𝑡0−ℎ+2𝛿𝜀, 𝑡0+ℎ−2𝛿𝜀].
In order to show that (𝑢𝜀)𝜀 is moderate on 𝐽 it again suffices to establish

the corresponding estimates for (𝑢𝜀)𝜀. C-boundedness of (𝑢𝜀)𝜀 is shown as in the
proof of Theorem 3.1.

The moderateness of (𝑢𝜀)𝜀 will be shown in three steps: First we consider
derivatives with respect to 𝑡, then only derivatives with respect to 𝑝 and, finally,
mixed derivatives.

The ℰ𝑀 -estimates for 𝑢𝜀(𝑝, 𝑡), ∂2𝑢𝜀(𝑝, 𝑡) and all its derivatives with respect
to 𝑡 are obtained in the same way as in the proof of Theorem 3.1.

Next, we consider the derivatives with respect to 𝑝. Differentiating the inte-
gral equation corresponding to the initial value problem (on the level of represen-
tatives) with respect to 𝑝 yields

∂1𝑢𝜀(𝑝, 𝑡) =

∫ 𝑡

𝑡0𝜀

(
∂2𝐹𝜀

(
𝑠, 𝑢𝜀(𝑝, 𝑠), 𝑝

) ⋅ ∂1𝑢𝜀(𝑝, 𝑠) + ∂3𝐹𝜀
(
𝑠, 𝑢𝜀(𝑝, 𝑠), 𝑝

))
d𝑠. (12)

Let 𝐾1 ×𝐾2 ⊂⊂ 𝑃 × 𝐽 and (𝑝, 𝑡) ∈ 𝐾1 ×𝐾2. By 𝑢𝜀(𝐾1 ×𝐾2) ⊆ 𝐿𝛽 ⊂⊂ 𝑈 and
(10), we obtain

∣∂1𝑢𝜀(𝑝, 𝑡)∣ ≤ ℎ𝐶1𝜀
−𝑁1 +

∣∣∣∣ ∫ 𝑡

�̃�0𝜀

𝐶2∣ log 𝜀∣ ⋅ ∣∂1𝑢𝜀(𝑝, 𝑠)∣ d𝑠
∣∣∣∣

for constants 𝐶1, 𝐶2 > 0 and some fixed 𝑁 ∈ ℕ. By Gronwall’s Lemma, it follows
that

∣∂1𝑢𝜀(𝑝, 𝑡)∣ ≤ ℎ𝐶1𝜀
−𝑁1 ⋅ 𝑒∣

∫
𝑡
𝑡0𝜀

𝐶2∣ log 𝜀∣ d𝑠∣ ≤ (ℎ𝐶1) 𝜀
−(𝑁1+ℎ𝐶2).

Differentiating (12) 𝑖 − 1 times with respect to 𝑝 (𝑖 ∈ ℕ) gives an integral for-
mula for ∂𝑖1𝑢𝜀(𝑝, 𝑡). Observe that in this formula ∂𝑖1𝑢𝜀(𝑝, 𝑡) itself appears on the
right-hand side only once, namely with ∂2𝐹𝜀(𝑠, 𝑢𝜀(𝑝, 𝑠), 𝑝) as coefficient, and that
the remaining terms contain only ∂1-derivatives of 𝑢𝜀 of order less than 𝑖. Thus,
we may estimate the higher-order derivatives with respect to 𝑝 inductively by
differentiating equation (12) and applying Gronwall’s Lemma.
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Finally, it remains to handle the case of mixed derivatives. For arbitrary 𝑖 ∈ ℕ
we have

∂𝑖1∂2 𝑢𝜀(𝑝, 𝑡) =
∂𝑖

∂𝑝𝑖
∂

∂𝑡

(
𝑥0𝜀 +

∫ 𝑡

�̃�0𝜀

𝐹𝜀
(
𝑠, 𝑢𝜀(𝑝, 𝑠), 𝑝

)
d𝑠

)
=

∂𝑖

∂𝑝𝑖
𝐹𝜀

(
𝑡, 𝑢𝜀(𝑝, 𝑡), 𝑝

)
.

(13)
By carrying out the 𝑖-fold differentiation on the right-hand side of equation (13),
we obtain a polynomial expression in ∂𝑘2𝐹𝜀

(
𝑡, 𝑢𝜀(𝑝, 𝑡), 𝑝

)
, ∂𝑘3𝐹𝜀

(
𝑡, 𝑢𝜀(𝑝, 𝑡), 𝑝

)
and

∂𝑘1𝑢𝜀(𝑝, 𝑡) for 1 ≤ 𝑘 ≤ 𝑖 all of which satisfy the ℰ𝑀 -estimates. The estimates for

∂𝑖1∂
𝑗
2 𝑢𝜀(𝑝, 𝑡) with 𝑗 ≥ 2 are now obtained inductively by differentiating equation

(13) with respect to 𝑡.

Uniqueness: By Proposition 2.4, it suffices to show that for every near-standard

point 𝑝 ∈ 𝑃𝑐 the solution 𝑢(𝑝, . ) is unique in 𝒢[𝐽, 𝑈 ]. For a fixed near-standard

point 𝑝 = [(𝑝𝜀)𝜀] ∈ 𝑃𝑐, condition (10) implies the condition for uniqueness (4)
in Theorem 3.1 with respect to 𝐺𝜀(𝑡, 𝑥) := (𝐹𝜀( . , . , 𝑝𝜀))𝜀, yielding uniqueness of
𝑢(𝑝, . ) in 𝒢[𝐽, 𝑈 ]. □
Remark 3.9. Similarly to Remark 3.2 (i), a corresponding statement on the level
of representatives can be extracted from the proof of the preceding theorem. Also
(ii) and (iii) of Remark 3.2 apply.

Requiring also 𝑥0 in the initial condition in Theorem 3.8 to be near-standard,
we even can prove 𝒢-dependence of the solution on the initial values.

Theorem 3.10. Let 𝐼 be an open subinterval of ℝ, 𝑈 an open subset of ℝ𝑛, 𝑃 an

open subset of ℝ𝑙, �̃�0 a near-standard point in 𝐼𝑐 with �̃�0 ≈ 𝑡0 ∈ 𝐼, 𝑥0 a near-

standard point in 𝑈𝑐 with 𝑥0 ≈ 𝑥0 ∈ 𝑈 and 𝐹 ∈ 𝒢(𝐼 × 𝑈 × 𝑃 )𝑛.

With 𝛼 > 0 and 𝛽 > 0 satisfying [𝑡0 − 𝛼, 𝑡0 + 𝛼] ⊂⊂ 𝐼 and 𝐵𝛽(𝑥0) ⊂⊂ 𝑈 ,
respectively, set

𝑄 := [𝑡0 − 𝛼, 𝑡0 + 𝛼]×𝐵𝛽(𝑥0) (⊂⊂ 𝐼 × 𝑈).

Assume that 𝐹 has a representative (𝐹𝜀)𝜀 satisfying

sup
(𝑡,𝑥,𝑝)∈𝑄×𝑃

∣𝐹𝜀(𝑡, 𝑥, 𝑝)∣ ≤ 𝑎 (𝜀 ≤ 𝜀0) (14)

for some constant 𝑎 > 0 and 𝜀0 ∈ (0, 1] and that for all compact subsets 𝐾 of 𝑃

sup
(𝑡,𝑥,𝑝)∈𝑄×𝐾

∣∂2𝐹𝜀(𝑡, 𝑥, 𝑝)∣ = 𝑂(∣ log 𝜀∣). (15)

Then the following holds: For fixed ℎ ∈
(
0,min

(
𝛼, 𝛽𝑎

))
there exist open neigh-

bourhoods 𝐽1 of 𝑡0 in 𝐽 := (𝑡0−ℎ, 𝑡0+ℎ) and 𝑈1 of 𝑥0 in 𝑈 and a generalized func-
tion 𝑢 ∈ 𝒢[𝐽1×𝑈1×𝑃 ×𝐽,𝐵𝛾(𝑥0)] with 𝛾 ∈ (0, 𝛽) and 𝛽−𝛾 > 0 sufficiently small,

such that for all (�̃�1, 𝑥1, 𝑝) ∈ 𝐽1𝑐 × 𝑈1𝑐 × 𝑃𝑐 the map 𝑢(�̃�1, 𝑥1, 𝑝, . ) ∈ 𝒢[𝐽,𝐵𝛾(𝑥0)]
is a solution of the initial value problem

�̇�(𝑡) = 𝐹 (𝑡, 𝑢(𝑡), 𝑝), 𝑢(�̃�1) = 𝑥1. (16)

The solution 𝑢 is unique in 𝒢[𝐽1 × 𝑈1 × 𝑃 × 𝐽,𝐵𝛾(𝑥0)].
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Proof. Existence: The basic strategy of the proof is to consider (�̃�0, 𝑥0) as part of
the parameter and apply Theorem 3.8. However, we will have to cope with some
technicalities.

Let (�̃�0𝜀)𝜀 and (𝑥0𝜀)𝜀 be representatives of �̃�0 and 𝑥0, respectively. From now
on, we always let 𝜀 ≤ 𝜀0. Let 𝜆 ∈ (0, 1) and set

𝐼 := (−𝜆𝛼, 𝜆𝛼), 𝐼1 := (𝑡0 − (1− 𝜆)𝛼, 𝑡0 + (1− 𝜆)𝛼).

Choose 𝜇 ∈ (
0, 𝛽3

)
, set 𝛾 := 𝛽 − 2𝜇 and define

�̂� := 𝐵𝛾+𝜇(0), 𝑈1 := 𝐵𝜇(𝑥0).

Then 𝐼 + 𝐼1 = (𝑡0 − 𝛼, 𝑡0 + 𝛼) ⊆ 𝐼 and �̂� + 𝑈1 = 𝐵𝛽(𝑥0) ⊆ 𝑈 . Hence, we may

define 𝐺𝜀 : 𝐼 × �̂� × (𝐼1 × 𝑈1 × 𝑃 )→ ℝ𝑛 by

𝐺𝜀(𝑡, 𝑥, (𝑡1, 𝑥1, 𝑝)) := 𝐹𝜀(𝑡+ 𝑡1, 𝑥+ 𝑥1, 𝑝).

Obviously, (𝐺𝜀)𝜀 is moderate and, therefore, 𝐺 := [(𝐺𝜀)𝜀] is in 𝒢(𝐼 × �̂� × (𝐼1 ×
𝑈1 × 𝑃 ))𝑛. Now let 𝛿 ∈ (0, 𝜆𝛼) and 𝜂 ∈ (0, 𝛾 − 𝜇). By assumptions (14) and

(15), we obtain ∣𝐺𝜀(𝑡, 𝑥, (𝑡1, 𝑥1, 𝑝))∣ ≤ 𝑎 for all (𝑡, 𝑥, (𝑡1, 𝑥1, 𝑝)) ∈ 𝐵𝛿(0)×𝐵𝜂(0)×
(𝐼1 × 𝑈1 × 𝑃 ) and ∣∂2𝐺𝜀(𝑡, 𝑥, (𝑡1, 𝑥1, 𝑝))∣ = 𝑂(∣ log 𝜀∣) for all 𝐾 ⊂⊂ 𝐼1 × 𝑈1 × 𝑃

and (𝑡, 𝑥, (𝑡1, 𝑥1, 𝑝)) ∈ 𝐵𝛿(0) × 𝐵𝜂(0) × 𝐾. By Theorem 3.8, there exists 𝑣 ∈
𝒢[(𝐼1 ×𝑈1×𝑃 )× 𝐽,𝐵𝜂(0)] with 𝐽 := (−ℎ̂, ℎ̂) and ℎ̂ = min

(
𝛿, 𝜂𝑎

)
such that for all

(�̃�1, 𝑥1, 𝑝) ∈ 𝐼1𝑐 ×𝑈1𝑐 ×𝑃𝑐 the map 𝑣(�̃�1, 𝑥1, 𝑝, . ) ∈ 𝒢[𝐽,𝐵𝜂(0)] is a solution of the
initial value problem

�̇�(𝑡) = 𝐺(𝑡, 𝑣(𝑡), (�̃�1, 𝑥1, 𝑝)), 𝑣(0) = 0. (17)

The solution 𝑣 is unique in 𝒢[(𝐼1 × 𝑈1 × 𝑃 )× 𝐽, �̂� ].

By Remark 3.9, there exists a representative (𝑣𝜀)𝜀 of 𝑣 that satisfies the
classical initial value problem for all (𝑡1, 𝑥1, 𝑝) ∈ 𝐼1 × 𝑈1 × 𝑃 and 𝜀 sufficiently

small. Let 𝜎 ∈ [
1
2 , 1

)
, ℎ := 𝜎ℎ̂ and ℎ1 := min((1 − 𝜎)ℎ̂, (1 − 𝜆)𝛼). Set 𝐽 :=

(𝑡0 − ℎ, 𝑡0 + ℎ) and 𝐽1 := (𝑡0 − ℎ1, 𝑡0 + ℎ1). Then 𝐽1 ⊆ 𝐽 ⊆ 𝐽 . We now define
𝑢𝜀 : 𝐽1 × 𝑈1 × 𝑃 × 𝐽 → ℝ𝑛 by

𝑢𝜀(𝑡1, 𝑥1, 𝑝, 𝑡) := 𝑣𝜀(𝑡1, 𝑥1, 𝑝, 𝑡− 𝑡1) + 𝑥1.

The map 𝑢𝜀 is well defined since 𝐽1 ⊆ 𝐼1 and

∣𝑡− 𝑡1∣ ≤ ∣𝑡− 𝑡0∣+ ∣𝑡0 − 𝑡1∣ ≤ ℎ+ ℎ1 ≤ 𝜎ℎ̂+ (1 − 𝜎)ℎ̂ = ℎ̂. (18)

The moderateness of (𝑢𝜀)𝜀 is an immediate consequence of the moderateness of
(𝑣𝜀)𝜀. By (18) and since 𝑥1 − 𝑥0 ∈ 𝐵𝜇(0) for all 𝑥1 ∈ 𝑈1, it follows that

𝑢𝜀(𝐽1 × 𝑈1 × 𝑃 × 𝐽) ⊆ 𝑣𝜀(𝐼1 × 𝑈1 × 𝑃 × 𝐽) + 𝑥1 ⊆ 𝐵𝜂(0) + 𝑥1

⊆ 𝐵𝜂(𝑥0)− 𝑥0 + 𝑥1 ⊆ 𝐵𝜂(𝑥0) +𝐵𝜇(0) ⊆ 𝐵𝛾(𝑥0),
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i.e., 𝑢 := [(𝑢𝜀)𝜀] is an element of 𝒢[𝐽1 × 𝑈1 × 𝑃 × 𝐽,𝐵𝛾(𝑥0)]. Furthermore, the

function 𝑢𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, . ) satisfies

∂

∂𝑡
𝑢𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, 𝑡) =

∂

∂𝑡

(
𝑣𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, 𝑡− �̃�1𝜀) + 𝑥1𝜀

)
= 𝐺𝜀(𝑡− �̃�1𝜀, 𝑣𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, 𝑡− �̃�1𝜀), (�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀))

= 𝐹𝜀(𝑡, 𝑣𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, 𝑡− �̃�1𝜀) + 𝑥1𝜀, 𝑝𝜀) = 𝐹𝜀(𝑡, 𝑢𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, 𝑡), 𝑝𝜀)

and

𝑢𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, �̃�1𝜀) = 𝑣𝜀(�̃�1𝜀, 𝑥1𝜀, 𝑝𝜀, 0) + 𝑥1𝜀 = 𝑥1𝜀

for all (�̃�1, 𝑥1, 𝑝) = ([(�̃�1𝜀)𝜀], [(𝑥1𝜀)𝜀], [(𝑝𝜀)𝜀]) ∈ 𝐽1𝑐 × 𝑈1𝑐 × 𝑃𝑐 and 𝑡 ∈ 𝐽 . Thus,

𝑢(�̃�1, 𝑥1, 𝑝, . ) is indeed a solution of the initial value problem (16).

Note that for any ℎ ∈
(
0,min

(
𝛼, 𝛽𝑎

))
the constants 𝜆, 𝜇, 𝛿, 𝜂, ℎ̂ and 𝜎 can

be chosen within their required bounds such that all the necessary inequalities in
the construction of (𝑢𝜀)𝜀 are satisfied.

Uniqueness: By Proposition 2.4, it suffices to show that for every near-

standard point (�̃�1, 𝑥1, 𝑝) = ([(�̃�1𝜀)𝜀], [(𝑥1𝜀)𝜀], 𝑝) ∈ 𝐽1𝑐 × 𝑈1𝑐 × 𝑃𝑐 the solution

𝑢(�̃�1, 𝑥1, 𝑝, . ) is unique in 𝒢[𝐽,𝐵𝛾(𝑥0)]: Let (�̃�1𝜀, 𝑥1𝜀) → (𝑡1, 𝑥1) ∈ 𝐽1 × 𝑈1 for

𝜀 → 0. Assume that 𝑤(�̃�1, 𝑥1, 𝑝) ∈ 𝒢[𝐽,𝐵𝛾(𝑥0)] is another solution of (16). For

brevity’s sake we simply write 𝑢 and 𝑤 in place of 𝑢(�̃�1, 𝑥1, 𝑝) and 𝑤(�̃�1, 𝑥1, 𝑝),
respectively.

We will show that 𝑤∣(𝑡0−𝑟,𝑡0+𝑟) = 𝑢∣(𝑡0−𝑟,𝑡0+𝑟) holds for any 𝑟 ∈ (0, ℎ). Since
𝒢 is a sheaf, the equality of 𝑤 and 𝑢 then also holds on 𝐽 .

Now, let 𝑟 ∈ (0, ℎ) and set 𝜌 := 1
2 (ℎ − 𝑟). Define �̄� : 𝐵𝑟+𝜌(𝑡0 − 𝑡1) →

𝐵𝛾+𝜇(0) by �̄�(𝑡) := 𝑤(𝑡 + �̃�1) − 𝑥1. From �̃�1𝜀 → 𝑡1 as 𝜀 → 0 it follows that �̄�
is well defined. Then, by the choice of 𝜌 and Proposition 2.2, �̄� ∈ 𝒢[𝐵𝑟+𝜌(𝑡0 −
𝑡1), 𝐵𝛾+𝜇(0)]. Moreover, �̄� is a solution of the initial value problem (17). Since

𝐵𝑟+𝜌(𝑡0− 𝑡1) ⊆ 𝐽 and solutions of (17) are unique in 𝒢[𝐽,𝐵𝛾+𝜇(0)], it follows that

�̄� = 𝑣(�̃�1, 𝑥1, 𝑝, . )∣𝐵𝑟+𝜌(𝑡0−𝑡1). Noting that

𝑤(𝑡) = �̄�(𝑡− �̃�1) + 𝑥1 = 𝑣(�̃�1, 𝑥1, 𝑝, 𝑡− �̃�1) + 𝑥1 = 𝑢(𝑡),

we finally arrive at 𝑤∣(𝑡0−𝑟,𝑡0+𝑟) = 𝑢∣(𝑡0−𝑟,𝑡0+𝑟). □

Remark 3.11. Concerning representatives, a remark analogous to 3.9 also applies
to Theorem 3.10.

4. A Frobenius theorem in generalized functions

In this section, we will use the following notation: By ℝ𝑚×𝑛 we denote the space
ℝ𝑚𝑛, viewed as the space of (𝑚×𝑛)-matrices over ℝ. A similar convention applies
to ℛ𝑚×𝑛 and 𝒢(𝑈)𝑚×𝑛. For any 𝑢 ∈ 𝒢(𝑈)𝑚 the derivative D𝑢 can be regarded as
an element of 𝒢(𝑈)𝑚×𝑛.

Now we are ready to prove a generalized version of the Frobenius Theorem.
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Theorem 4.1. Let 𝑈 be an open subset of ℝ𝑛, 𝑉 an open subset of ℝ𝑚 and 𝐹 ∈
𝒢(𝑈 × 𝑉 )𝑚×𝑛. Let 𝛼 > 0 be chosen such that 𝐵𝛼(𝑥0) ⊂⊂ 𝑈 . Let (𝑦0𝜀)𝜀 be a
representative of 𝑦0 and 𝐿 ⊂⊂ 𝑉 , 𝜀0 ∈ (0, 1] such that 𝑦0𝜀 ∈ 𝐿 for all 𝜀 ≤ 𝜀0. With

𝛽 > 0 satisfying 𝐿𝛽 := 𝐿+𝐵𝛽(0) ⊂⊂ 𝑉 set

𝑄 := 𝐵𝛼(𝑥0)× 𝐿𝛽 (⊂⊂ 𝑈 × 𝑉 ).

Assume that 𝐹 has a representative (𝐹𝜀)𝜀 satisfying

sup
(𝑥,𝑦)∈𝑄

∣𝐹𝜀(𝑥, 𝑦)∣ ≤ 𝑎 (𝜀 ≤ 𝜀0) (19)

for some constant 𝑎 > 0 and

sup
(𝑥,𝑦)∈𝑄

∣∂2𝐹𝜀(𝑥, 𝑦)∣ = 𝑂(∣ log 𝜀∣). (20)

Then the following are equivalent:

(A) For all (𝑥0, 𝑦0) ∈ 𝑈𝑐 × 𝑉𝑐 with 𝑥0 ≈ 𝑥0 ∈ 𝑈 the initial value problem

D𝑢(𝑥) = 𝐹 (𝑥, 𝑢(𝑥)), 𝑢(𝑥0) = 𝑦0 (21)

has a unique solution 𝑢(𝑥0, 𝑦0) in 𝒢[𝑈(𝑥0, 𝑦0),𝑊 ], where 𝑈(𝑥0, 𝑦0) is an open
neighbourhood of 𝑥0 in 𝑈 and 𝑊 = 𝐿+𝐵𝛽(0).

(B) The integrability condition is satisfied, i.e., the mapping

(𝑥, 𝑦, 𝑣1, 𝑣2) → D𝐹 (𝑥, 𝑦)(𝑣1, 𝐹 (𝑥, 𝑦)(𝑣1))(𝑣2) (22)

is symmetric in 𝑣1, 𝑣2 ∈ ℝ𝑛 as a generalized function in 𝒢(𝑈×𝑉 ×ℝ𝑛×ℝ𝑛)𝑚.

Proof. We follow the line of argument of the classical proof based on the ODE
theorem with parameters.

(A) ⇒ (B): By Proposition 2.4, we only have to check the integrability con-

dition (22) for all near-standard points 𝑣1, 𝑣2 ∈ ℝ̃𝑛
𝑐 and (𝑥, 𝑦) ∈ 𝑈𝑐 × 𝑉𝑐: By (A),

there exists a solution 𝑢 of the initial value problem D𝑢(𝑥) = 𝐹 (𝑥, 𝑢(𝑥)), 𝑢(𝑥) = 𝑦.
Writing D𝑢 as D𝑢 = 𝐹 ∘ (id, 𝑢), we obtain

D2𝑢(𝑥)(𝑣1, 𝑣2) =
(
D2𝑢(𝑥)(𝑣1)

)
(𝑣2) =

(
D(𝐹 ∘ (id, 𝑢))(𝑥)(𝑣1)

)
(𝑣2)

=
((

D𝐹 (𝑥, 𝑢(𝑥)) ∘ (id,D𝑢(𝑥))
)
(𝑣1)

)
(𝑣2)

=
(
D𝐹

(
𝑥, 𝑢(𝑥)

)(
𝑣1, 𝐹 (𝑥, 𝑢(𝑥))(𝑣1)

))
(𝑣2) = D𝐹 (𝑥, 𝑦)

(
𝑣1, 𝐹 (𝑥, 𝑦)(𝑣1)

)
(𝑣2)

for all near-standard points 𝑣1, 𝑣2 ∈ ℝ̃𝑛
𝑐 . The last expression is symmetric in 𝑣1

and 𝑣2 since, by Schwarz’s Theorem, D2𝑢(𝑥) has this property.

(B) ⇒ (A): Let 𝑥0 = [(𝑥0𝜀)𝜀] be a near-standard point in 𝑈𝑐 with 𝑥0 ≈ 𝑥0
and let 𝑦0 ∈ 𝑉𝑐.

Existence: Choose 𝛿 ∈ (0, 𝛼) and set 𝛾 := 𝛼 − 𝛿. We can assume without loss of
generality that 𝑥0𝜀 ∈ 𝐵𝛿(𝑥0) for all 𝜀 ≤ 𝜀0. Then, for 𝑡 ∈ (−𝛾, 𝛾) and 𝑣 ∈ 𝐵1(0) ⊆
ℝ𝑛, we have 𝑥0𝜀 + 𝑡𝑣 ∈ 𝐵𝛼(𝑥0) ⊆ 𝑈 and, thus, the function

𝐺𝜀 : (−𝛾, 𝛾)× 𝑉 ×𝐵1(0) → ℝ𝑚

(𝑡, 𝑦, 𝑣) → 𝐹𝜀(𝑥0𝜀 + 𝑡𝑣, 𝑦)(𝑣)
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is well defined. By Proposition 2.2, 𝐺 := [(𝐺𝜀)𝜀] is a well-defined generalized
function in 𝒢 ((−𝛾, 𝛾)× 𝑉 × 𝐵1(0))

𝑚
. Now consider the initial value problem

𝑓(𝑡) = 𝐺(𝑡, 𝑓(𝑡), 𝑣), 𝑓(0) = 𝑦0, (23)

with parameter 𝑣 ∈ 𝐵1(0). Then the conditions of Theorem 3.8 are satisfied, i.e.,

∣𝐺𝜀(𝑡, 𝑦, 𝑣)∣ ≤ 𝑎 and ∂2𝐺𝜀(𝑡, 𝑦, 𝑣) = 𝑂(∣ log 𝜀∣)
for all (𝑡, 𝑦, 𝑣) ∈ 𝐵𝜂(0) × 𝐿𝛽 × 𝐵1(0) with 𝜂 ∈ (0, 𝛾) fixed. From Theorem 3.8,
it follows that there exists a generalized function 𝑓 ∈ 𝒢[𝐵1(0) × 𝐽,𝑊 ] with 𝐽 :=

[−ℎ, ℎ], ℎ := min
(
𝜂, 𝛽𝑎

)
and 𝑊 := 𝐿+𝐵𝛽(0) such that 𝑓(𝑣, . ) is a solution of (23)

for all 𝑣 ∈ 𝐵1(0). Fix some 𝑟 ∈ (0, ℎ) and 𝜆 ∈ (0, 1) and set

𝑈(𝑥0, 𝑦0) := 𝐵𝜆𝑟(𝑥0).

Assuming without loss of generality that ∣𝑥0 − 𝑥0𝜀∣ < (1 − 𝜆)𝑟 for all 𝜀 ≤ 𝜀0, the
function 𝑢𝜀(𝑥0, 𝑦0) : 𝑈(𝑥0, 𝑦0)→ 𝑊 given by

𝑢𝜀(𝑥0, 𝑦0)(𝑥) := 𝑓𝜀

(
1

𝑟
(𝑥 − 𝑥0𝜀), 𝑟

)
is well defined. By Proposition 2.2, 𝑢(𝑥0, 𝑦0) := [(𝑢𝜀(𝑥0, 𝑦0))𝜀] ∈ 𝒢[𝑈(𝑥0, 𝑦0),𝑊 ].
From now on, we will denote 𝑢(𝑥0, 𝑦0) simply by 𝑢.

The fact that 𝑢 is indeed a solution of (21) follows from

∂1𝑓(𝑣, 𝑡)(𝑤) = 𝐹 (𝑥0 + 𝑡𝑣, 𝑓(𝑣, 𝑡))(𝑡𝑤) in 𝒢((−ℎ, ℎ)×𝐵1(0)× ℝ𝑛)𝑚. (24)

Assuming this to be true for the moment, we have

D𝑢(𝑥)(𝑤) =
( ∂

∂𝑥
𝑓
(𝑥− 𝑥0

𝑟
, 𝑟
))

(𝑤) = ∂1𝑓
(𝑥− 𝑥0

𝑟
, 𝑟
)(1

𝑟
𝑤
)

= 𝐹 (𝑥, 𝑢(𝑥))(𝑤)

for all 𝑤 ∈ ℝ̃𝑛
𝑐 . Applying Proposition 2.4 to the above equation, we obtain D𝑢(𝑥) =

𝐹 (𝑥, 𝑢(𝑥)) in 𝒢[𝑈(𝑥0, 𝑦0),𝑊 ]. Moreover, we observe that 𝑓(0, . ) is the (in
𝒢[(−ℎ, ℎ),𝑊 ]) constant function 𝑡 → 𝑦0, and hence we obtain 𝑢(𝑥0) = 𝑓(1𝑟 (𝑥0 −
𝑥0), 𝑟) = 𝑦0. Thus, 𝑢 is indeed a solution of the initial value problem (21).

To complete the proof of existence, it remains to show (24): Consider the net
(𝑘𝜀)𝜀 given by 𝑘𝜀 : (−ℎ, ℎ)×𝐵1(0)× ℝ𝑛 → ℝ𝑚,

𝑘𝜀(𝑡, 𝑣, 𝑤) := ∂1𝑓𝜀(𝑣, 𝑡)(𝑤) − 𝐹𝜀(𝑥0𝜀 + 𝑡𝑣, 𝑓𝜀(𝑣, 𝑡))(𝑡𝑤).

Note that, by Proposition 2.2, 𝑘 := [(𝑘𝜀)𝜀] is a well-defined generalized function in

𝒢((−ℎ, ℎ) × 𝐵1(0) × ℝ𝑛)𝑚. Let 𝑣 ∈ 𝐵1(0)𝑐 and 𝑤 ∈ ℝ̃𝑛
𝑐 . Differentiating 𝑘(𝑡, 𝑣, 𝑤)

with respect to 𝑡, using the fact that 𝑓(𝑣, . ) is a solution of (23) and setting
𝑧 = (𝑥0 + 𝑡𝑣, 𝑓(𝑣, 𝑡)), we obtain

�̇�(𝑡, 𝑣, 𝑤) = ∂1𝐹 (𝑧)(𝑡𝑤, 𝑣) + ∂2𝐹 (𝑧)(∂1𝑓(𝑣, 𝑡)(𝑤), 𝑣)−D𝐹 (𝑧)(𝑣, 𝐹 (𝑧)(𝑣))(𝑡𝑤).

Applying the integrability condition (B) to the last term on the right-hand side,
we arrive at

�̇�(𝑡, 𝑣, 𝑤) =
(
∂2𝐹 (𝑥0 + 𝑡𝑣, 𝑓(𝑣, 𝑡))fl(𝑣)

)
⋅ 𝑘(𝑡, 𝑣, 𝑤). (25)
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Moreover, observe that 𝑘(0, 𝑣, 𝑤) = 0 in ℝ̃𝑚. Hence, 𝑘( . , 𝑣, 𝑤) is a solution of a
linear initial value problem. Setting 𝐴𝑣(𝑡) := ∂2𝐹 (𝑥0 + 𝑡𝑣, 𝑓(𝑣, 𝑡))fl(𝑣), it follows
from (20) that

sup
𝑡∈(−ℎ,ℎ)

∣𝐴𝑣(𝑡)∣ = 𝑂(∣ log 𝜀∣).

By a Gronwall argument similar to the one in the uniqueness proof of Theorem
3.1 we infer that 𝑘( . , 𝑣, 𝑤) = 0 is the only solution of (25). By Proposition 2.4, we
conclude that 𝑘 = 0 in 𝒢((−ℎ, ℎ)×𝐵1(0)×ℝ𝑛)𝑚, thereby establishing the claim.

Uniqueness: Let �̄� ∈ 𝒢[𝐵𝜆𝑟(𝑥0),𝑊 ] be another solution of (21). We will show that
�̄�∣𝐵𝑠(𝑥0) = 𝑢∣𝐵𝑠(𝑥0) for all 𝑠 < 𝜆𝑟. Since 𝒢 is a sheaf, the equality then also holds
on 𝐵𝜆𝑟(𝑥0) = 𝑈(𝑥0, 𝑦0).

Let 𝑠 ∈ (0, 𝜆𝑟) and let 𝑣 = [(𝑣𝜀)𝜀] ∈ 𝐵1(0)𝑐. Setting 𝜎 := 1
3 (𝜆𝑟− 𝑠), we define

𝑔(𝑣, . ) : (−𝑠− 2𝜎, 𝑠+ 2𝜎)→𝑊 by 𝑔(𝑣, 𝑡) := �̄�(𝑥0 + 𝑡𝑣). From 𝑥0𝜀 → 𝑥0 as 𝜀→ 0
it follows that 𝑔(𝑣, . ) is well defined. Then, by the choice of 𝜎 and by Proposition
2.2, 𝑔(𝑣, . ) ∈ 𝒢[(−𝑠 − 2𝜎, 𝑠 + 2𝜎),𝑊 ]. Moreover, 𝑔(𝑣, . ) is a solution of (23) for
𝑣 = 𝑣. Since (−𝑠− 2𝜎, 𝑠+ 2𝜎) ⊆ 𝐽 and solutions of (23) are unique in 𝒢[𝐽,𝑊 ], it

follows that 𝑔(𝑣, . ) = 𝑓(𝑣, . )∣(−𝑠−2𝜎,𝑠+2𝜎) for all 𝑣 ∈ 𝐵1(0)𝑐. By Proposition 2.4,
𝑔 : (𝑣, 𝑡) → 𝑔(𝑣, 𝑡) is equal to 𝑓 on (−𝑠 − 2𝜎, 𝑠 + 2𝜎). Observe that for 𝑐1, 𝑐2 > 0

the generalized functions (𝑣, 𝑡) → 𝑓
(
1
𝑐1
𝑣, 𝑐1𝑡

)
and (𝑣, 𝑡) → 𝑓

(
1
𝑐2
𝑣, 𝑐2𝑡

)
are equal

on the intersection of their domains. Hence, we obtain

�̄�(𝑥) = 𝑔
( 1

𝑠+ 𝜎
(𝑥− 𝑥0)

)
(𝑠+ 𝜎) = 𝑓

( 1

𝑠+ 𝜎
(𝑥− 𝑥0)

)
(𝑠+ 𝜎)

= 𝑓
(1

𝑟
(𝑥− 𝑥0)

)
(𝑟) = 𝑢(𝑥),

thereby establishing the claim. □
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[11] S. Haller and G. Hörmann, Comparison of some solution concepts for linear first-
order hyperbolic differential equations with non-smooth coefficients, Publ. Inst.
Math. (Beograd) (N.S.), 84(98) (2008), 123–157.

[12] R. Hermann and M. Oberguggenberger, Ordinary differential equations and general-
ized functions, in Nonlinear theory of generalized functions (Vienna, 1997), editors:
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1. Introduction

The algebra of generalized functions initiated by J.F. Colombeau, see [5] and [6], in
connection with the problem of multiplication of Schwartz distributions, contains
the space of Schwartz distributions [10]. These generalized functions are currently
the subject of many scientific works, see [8] and [9].

An algebra of almost periodic generalized functions of Colombeau type has
been introduced in [3], it contains classical almost period functions as well as
almost periodic Schwartz distributions.

Asymptotically almost periodic functions were introduced and studied by
M. Fréchet [7]. Asymptotically almost periodic Schwartz distributions have been
introduced in [4].

The first aim of this paper is to introduce an algebra of asymptotically almost
periodic generalized functions of Colombeau type containing Fréchet asymptoti-
cally almost period functions as well as asymptotically almost periodic Schwartz
distributions. We also give some essential properties of these generalized functions.
In a forthcoming paper, we will study some ordinary differential equations in this
algebra of asymptotically almost periodic generalized functions.
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2. Asymptotically almost periodic functions and distributions

This section recalls the main features of asymptotically almost periodic functions
and distributions, for a more detailed study see [7] and [4].

Let 𝒞𝑏 denote the space of bounded and continuous complex-valued functions
on ℝ endowed with the norm ∥ ∥∞ of uniform convergence on ℝ, (𝒞𝑏, ∥ ∥∞) is
a Banach algebra.

Definition 1. A continuous function 𝑓 on ℝ is called Bohr almost periodic function,
if it satisfies any of the following equivalent conditions:

i) Given any sequence of real numbers (ℎ𝑛)𝑛 , one can extract a subsequence
(ℎ𝑛𝑘

)𝑘 such that the sequence (𝑓 (.+ ℎ𝑛𝑘
))𝑘 converges uniformly on ℝ.

ii) For every 𝜀 > 0, the set

𝐸 {𝜀, 𝑓} =

{
𝜏 ∈ ℝ : sup

𝑥∈ℝ
∣𝑓 (𝑥+ 𝜏)− 𝑓 (𝑥)∣ < 𝜀

}
,

is relatively dense in ℝ.

iii) For every 𝜀 > 0, there is a trigonometric polynomial 𝑃 such that

∥𝑓 − 𝑃∥∞ < 𝜀.

The space of Bohr almost periodic functions on ℝ is denoted by 𝒞ap.
Definition 2. The space of complex-valued continuous and bounded functions on
ℝ vanishing at infinity, is defined and denoted by

𝒞+𝑏0 :=

{
𝑓 ∈ 𝒞𝑏 : lim

𝑥−→+∞𝑓 (𝑥) = 0

}
.

Denote by ℝ+ the half-line [0,+∞[ .

Definition 3. A complex-valued function 𝑓 defined and continuous on ℝ is called
asymptotically almost periodic function, if there exist functions 𝑔 ∈ 𝒞ap and ℎ ∈
𝒞+𝑏0 , such that 𝑓 = 𝑔 + ℎ on ℝ+, i.e.,

𝒞aap (ℝ+) :=
{
𝑓 ∈ 𝒞 (ℝ) : ∃𝑔 ∈ 𝒞ap, ∃ℎ ∈ 𝒞+𝑏0 , 𝑓 = 𝑔 + ℎ on ℝ+

}
. (1)

Remark 1. The decomposition 𝑓 = 𝑔 + ℎ is unique, so the functions 𝑔 and ℎ are
called respectively the almost periodic part and the corrective part of 𝑓.

For asymptotic almost periodicity of Schwartz distributions see [4]. Let 𝒟
denotes the space of test functions and 𝒟′ the space of Schwartz distributions. If
ℎ ∈ ℝ and 𝑇 ∈ 𝒟′, the translate of 𝑇 by ℎ, denoted by 𝜏ℎ𝑇, is defined as

⟨𝜏ℎ𝑇, 𝜑⟩ = ⟨𝑇, 𝜏−ℎ𝜑⟩ , 𝜑 ∈ 𝒟,
where 𝜏−ℎ𝜑 (𝑥) = 𝜑 (𝑥+ ℎ).

Let 𝒟′𝐿∞ be the space of bounded distributions.
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Definition 4. A distribution 𝑇 ∈ 𝒟′𝐿∞ is said vanishing at infinity if

∀𝜑 ∈ 𝒟, lim
ℎ→+∞

⟨𝜏ℎ𝑇, 𝜑⟩ = 0 in ℂ.

Denote by ℬ′0+ the space of bounded distributions vanishing at infinity.

Definition 5. A distribution 𝑇 ∈ 𝒟′𝐿∞ is said asymptotically almost periodic if
there exist 𝑅 ∈ ℬ′ap and 𝑆 ∈ ℬ′0+ such that 𝑇 = 𝑅 + 𝑆 on ℝ+. The space of
asymptotically almost periodic distributions is denoted by ℬ′aap (ℝ+) .

Remark 2. If 𝑇 ∈ ℬ′aap (ℝ+) , the decomposition 𝑇 = 𝑅+ 𝑆 on ℝ+ is unique.

Set 𝒟+ := {𝜑 ∈ 𝒟, supp𝜑 ⊂ ℝ+} . We have the following characterizations
of ℬ′aap (ℝ+) .

Theorem 1. Let 𝑇 ∈ 𝒟′𝐿∞ , the following assertions are equivalent:

i) 𝑇 ∈ ℬ′aap (ℝ+) .
ii) 𝑇 ∗ 𝜑 ∈ 𝒞aap (ℝ+) , ∀𝜑 ∈ 𝒟+.
iii) ∃𝑘 ∈ ℤ+, ∃ (𝑓𝑗)𝑗 ⊂ 𝒞aap (ℝ+) : 𝑇 =

∑
𝑗≤𝑘

𝑓
(𝑗)
𝑗 on ℝ+.

3. Almost periodic generalized functions

Uniformly almost periodic functions have been introduced and studied by H. Bohr,
see [2]. There exist three equivalent definitions of uniformly almost periodic func-
tions, the first definition of H. Bohr, S. Bochner’s definition and the definition
based on the approximation property, see [1].

The Bochner’s definition is more suitable for extension to distributions.
L. Schwartz in [10] introduced the basic elements of almost periodic distributions.

In this section we recall the main properties of an algebra of almost periodic
generalized functions generalizing trigonometric polynomials, classical almost pe-
riodic functions as well as almost periodic Schwartz distributions, for a detailed
study see [3].

Let 𝐼 = ]0, 1] and

ℳ𝐿∞ :=
{
(𝑢𝜀)𝜀 ∈ (𝒟𝐿∞)

𝐼
, ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀−𝑚) , 𝜀 −→ 0

}
𝒩𝐿∞ :=

{
(𝑢𝜀)𝜀 ∈ (𝒟𝐿∞)

𝐼
, ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀𝑚) , 𝜀 −→ 0

}
.

Definition 6. The algebra of bounded generalized functions, denoted by 𝒢𝐿∞ , is
defined by the quotient 𝒢𝐿∞ = ℳ𝐿∞

𝒩𝐿∞

Define

ℳap =
{
(𝑢𝜀)𝜀 ∈ (ℬap)𝐼 , ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀−𝑚) , 𝜀 −→ 0

}
𝒩ap =

{
(𝑢𝜀)𝜀 ∈ (ℬap)𝐼 , ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀𝑚) , 𝜀 −→ 0

}
.

(2)

The properties ofℳap and 𝒩ap are summarized in the following proposition.
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Proposition 2.

i) The space ℳap is a subalgebra of (𝒟𝐿∞)
𝐼
.

ii) The space 𝒩ap is an ideal of ℳap.

The following definition introduces the algebra of almost periodic generalized
functions.

Definition 7. The algebra of almost periodic generalized functions is the quotient
algebra

𝒢ap =
ℳap

𝒩ap .

We have a characterization of elements of 𝒢ap similar to the result (ii) of
Theorem 2.2 for almost periodic distributions.

Theorem 3. Let 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝐿∞ , the following assertions are equivalent:

i) 𝑢 is almost periodic.

ii) 𝑢𝜀 ∗ 𝜑 ∈ ℬap, ∀𝜀 ∈ 𝐼, ∀𝜑 ∈ 𝒟.
Remark 3. The characterization (ii) does not depend on representatives.

Definition 8. Denote by Σ the set of functions 𝜌 ∈ 𝒮 satisfying
∫
𝜌 (𝑥) 𝑑𝑥 = 1 and∫

𝑥𝑘𝜌 (𝑥) 𝑑𝑥 = 0, ∀ 𝑘 = 1, 2, . . . . Set 𝜌𝜀 (.) := 1
𝜀𝜌

(
.
𝜀

)
, 𝜀 > 0.

Proposition 4. Let 𝜌 ∈ Σ, the map

𝑖ap : ℬ′ap −→ 𝒢ap
𝑢 −→ (𝑢 ∗ 𝜌𝜀)𝜀 +𝒩ap,

is a linear embedding which commutes with derivatives.

The space ℬap is embedded into 𝒢ap canonically, i.e.,

𝜎ap : ℬap −→ 𝒢ap
𝑓 −→ [(𝑓)𝜀] = (𝑓)𝜀 +𝒩ap.

There is two ways to embed 𝑓 ∈ ℬap into 𝒢ap. Actually, we have the same
result.

Proposition 5. The following diagram

ℬap ��

𝜎ap ���
��

��
��

�
ℬ′ap
𝑖ap

��
𝒢ap

is commutative.
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4. Asymptotically almost periodic generalized functions

In this section, we introduce the algebra of asymptotically almost periodic gener-
alized functions of Colombeau type and we give their main properties.

Let 𝑝 ∈ [1,+∞] , the space

𝒟𝐿𝑝 :=
{
𝜑 ∈ 𝐶∞ : 𝜑(𝑗) ∈ 𝐿𝑝, ∀𝑗 ∈ ℤ+

}
endowed with the topology defined by the countable family of norms

∣𝜑∣𝑘,𝑝 =
∑
𝑗≤𝑘

∥∥∥𝜑(𝑗)∥∥∥
𝑝
, ∀𝑘 ∈ ℤ+,

is a differential Fréchet subalgebra of 𝐶∞.

Definition 9. The space of infinitely differentiable asymptotically almost periodic
functions on ℝ is denoted and defined by

ℬaap (ℝ+) :=
{
𝜑 ∈ 𝒟𝐿∞ : 𝜑(𝑗) ∈ 𝒞aap (ℝ+) , ∀𝑗 ∈ ℤ+

}
.

We give some, easy to prove, properties of the space ℬaap (ℝ+) .

Proposition 6. We have

i) ℬaap (ℝ+) is a closed subalgebra of 𝒟𝐿∞ stable by derivation.
ii) If 𝑇 ∈ ℬ′aap (ℝ+) and 𝜑 ∈ ℬaap (ℝ+) , then 𝜑𝑇 ∈ ℬ′aap (ℝ+) .

iii) ℬaap (ℝ+) ∗ 𝐿1 ⊂ ℬaap (ℝ+) .
iv) ℬaap (ℝ+) = 𝒟𝐿∞ ∩ 𝒞aap (ℝ+) .

Let 𝐼 = ]0, 1] .

Definition 10. Define

ℳaap =
{
(𝑢𝜀)𝜀 ∈ ℬaap (ℝ+)

𝐼
, ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀−𝑚) , 𝜀 −→ 0

}
𝒩aap =

{
(𝑢𝜀)𝜀 ∈ ℬaap (ℝ+)𝐼 , ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀𝑚) , 𝜀 −→ 0

}
.

The properties of ℳaap and 𝒩aap are summarized in the following proposi-
tion.

Proposition 7.

i) The space ℳaap is a subalgebra of ℬaap (ℝ+)
𝐼
.

ii) The space 𝒩aap is an ideal of ℳaap.

Proof. i) It follows from the fact that ℬaap (ℝ+) is a differential algebra.
ii) Let (𝑢𝜀)𝜀 ∈ 𝒩aap and (𝑣𝜀)𝜀 ∈ℳaap, we have

∀𝑘 ∈ ℤ+, ∃𝑚′ ∈ ℤ+, ∃𝑐1 > 0, ∃𝜀0 ∈ 𝐼, ∀𝜀 < 𝜀0, ∣𝑣𝜀∣𝑘,∞ < 𝑐1𝜀
−𝑚′

.

Take 𝑚 ∈ ℤ+, then for 𝑚′′ = 𝑚 + 𝑚′, ∃𝑐2 > 0 such that ∣𝑢𝜀∣𝑘,∞ < 𝑐2𝜀
𝑚′′

. Since

the family of the norms ∣ ∣𝑘,∞ is compatible with the algebraic structure of 𝒟𝐿∞ ,
then ∀𝑘 ∈ ℤ+, ∃𝑐𝑘 > 0 such that

∣𝑢𝜀𝑣𝜀∣𝑘,∞ ≤ 𝑐𝑘 ∣𝑢𝜀∣𝑘,∞ ∣𝑣𝜀∣𝑘,∞ ,
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consequently

∣𝑢𝜀𝑣𝜀∣𝑘,∞ < 𝑐𝑘𝑐2𝜀
𝑚

′′
𝑐1𝜀

−𝑚′ ≤ 𝐶𝜀𝑚, where 𝐶 = 𝑐1𝑐2𝑐𝑘.

Hence (𝑢𝜀𝑣𝜀)𝜀 ∈ 𝒩aap. □

Definition 11. The algebra of asymptotically almost periodic generalized functions
is defined by the quotient algebra

𝒢aap (ℝ+) =
ℳaap

𝒩aap .

Recall the algebra of bounded generalized functions on ℝ,

𝒢𝐿∞ :=
ℳ𝐿∞

𝒩𝐿∞
,

where

ℳ𝐿∞ =
{
(𝑢𝜀)𝜀 ∈ (𝒟𝐿∞)𝐼 , ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂

(
𝜀−𝑚

)
, 𝜀 −→ 0

}
,

𝒩𝐿∞ =
{
(𝑢𝜀)𝜀 ∈ (𝒟𝐿∞)

𝐼
, ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀𝑚) , 𝜀 −→ 0

}
.

Remark 4. We have 𝒢aap (ℝ+) ⊂ 𝒢𝐿∞ .

We give the characterization of elements of 𝒢aap (ℝ+) similar to the classical
result for asymptotically almost periodic distributions.

Proposition 8. Let 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝐿∞ , the following assertions are equivalent:

i) 𝑢 is asymptotically almost periodic.

ii) 𝑢𝜀 ∗ 𝜑 ∈ ℬaap (ℝ+) , ∀𝜀 ∈ 𝐼, ∀𝜑 ∈ 𝒟+.
Proof. i) =⇒ ii) If 𝑢 ∈ 𝒢aap (ℝ+) , then for every 𝜀 ∈ 𝐼 we have 𝑢𝜀 ∈ ℬaap (ℝ+) ,
the result (iii) of Proposition 6 gives 𝑢𝜀 ∗ 𝜑 ∈ ℬaap (ℝ+) , ∀𝜀 ∈ 𝐼, ∀𝜑 ∈ 𝒟+.

ii) =⇒ i) Let (𝑢𝜀)𝜀 ∈ ℳ𝐿∞ and 𝑢𝜀 ∗ 𝜑 ∈ ℬaap (ℝ+) , ∀𝜀 ∈ 𝐼, ∀𝜑 ∈ 𝒟+, then
from Theorem 1 (ii) it follows that 𝑢𝜀 ∈ ℬaap (ℝ+) , it suffices to show that

∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂
(
𝜀−𝑚

)
, 𝜀 −→ 0,

which follows from the fact that 𝑢 ∈ ℳ𝐿∞ . If (𝑢𝜀)𝜀 ∈ 𝒩𝐿∞ and 𝑢𝜀∗𝜑 ∈ ℬaap (ℝ+) ,
∀𝜀 ∈ 𝐼, ∀𝜑 ∈ 𝒟+, we obtain the same result, because 𝒩𝐿∞ ⊂ℳ𝐿∞ . □

Remark 5. The characterization (ii) does not depend on representatives.

Definition 12. Denote by Σ the subset of functions 𝜌 ∈ 𝒮 satisfying∫
ℝ

𝜌 (𝑥) 𝑑𝑥 = 1 and

∫
ℝ

𝑥𝑘𝜌 (𝑥) 𝑑𝑥 = 0, ∀𝑘 ≥ 1.

Set 𝜌𝜀 (.) = 1
𝜀𝜌

(
.
𝜀

)
, 𝜀 > 0.
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Proposition 9. Let 𝜌 ∈ Σ, the map

𝑖aap : ℬ′aap (ℝ+) −→ 𝒢aap (ℝ+)
𝑇 −→ (𝑇 ∗ 𝜌𝜀)𝜀 +𝒩aap,

is a linear embedding which commutes with derivatives.

Proof. Let 𝑇 ∈ ℬ′aap (ℝ+) , by characterization of asymptotically almost periodic

distributions ∃ (𝑓𝛽)𝛽 ⊂ 𝒞aap (ℝ+) such that 𝑇 =
∑
𝛽≤𝑚

𝑓
(𝛽)
𝛽 , so ∀𝛼 ∈ ℤ+,

∣∣∣(𝑇 (𝛼) ∗ 𝜌𝜀) (𝑥)
∣∣∣ ≤ ∑

𝛽≤𝑚

1

𝜀𝛼+𝛽

∫
ℝ

∣∣∣𝑓𝛽 (𝑥− 𝜀𝑦)𝜌(𝛼+𝛽) (𝑦)
∣∣∣ 𝑑𝑦

≤
∑
𝛽≤𝑚

1

𝜀𝛼+𝛽
∥𝑓𝛽∥∞

∫
ℝ

∣∣∣𝜌(𝛼+𝛽) (𝑦)∣∣∣ 𝑑𝑦,
consequently, there exist 𝑐 > 0 such that

sup
𝑥∈ℝ

∣∣∣(𝑇 (𝛼) ∗ 𝜌𝜀) (𝑥)
∣∣∣ ≤ 𝑐

𝜀𝛼+𝑚
,

hence, ∃𝑐′ > 0, such that

∣𝑇 ∗ 𝜌𝜀∣𝑚′,∞ =
∑
𝛼≤𝑚′

sup
𝑥∈ℝ

∣∣∣(𝑇 (𝛼) ∗ 𝜌𝜀) (𝑥)
∣∣∣ ≤ 𝑐′

𝜀𝑚+𝑚′ , where 𝑐′ =
∑
𝛼≤𝑚′

𝑐

𝜀𝛼
,

which shows that (𝑇 ∗ 𝜌𝜀)𝜀 ∈ ℳaap. Let (𝑇 ∗ 𝜌𝜀)𝜀 ∈ 𝒩aap, then lim
𝜀−→0

𝑇 ∗ 𝜌𝜀 = 0

in 𝒟′𝐿∞ , but we have also lim
𝜀−→0

𝑇 ∗ 𝜌𝜀 = 𝑇 in 𝒟′𝐿∞ , this mean that 𝑖aap is an

embedding. The linearity of 𝑖aap it results from the fact that the convolution is

linear and that 𝑖aap
(
𝑇 (𝑗)

)
=

(
𝑇 (𝑗) ∗ 𝜌𝜀

)
𝜀
= (𝑇 ∗ 𝜌𝜀)(𝑗)𝜀 = (𝑖aap (𝑇 ))(𝑗) . □

The space ℬaap (ℝ+) is embedded into 𝒢aap (ℝ+) through ℬ′aap (ℝ+) , and
canonically, i.e., by the map

𝜎aap : ℬaap (ℝ+) −→ 𝒢aap (ℝ+)
𝑓 −→ [(𝑓)𝜀] = (𝑓)𝜀 +𝒩aap.

The following result shows that it is not important the way of embedding
ℬaap (ℝ+) .

Proposition 10. The following diagram

ℬaap(ℝ+) ��

𝜎aap ������������
ℬ′aap(ℝ+)

𝑖aap
��

𝒢aap(ℝ+)

is commutative.
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Proof. We must show that (𝑓 ∗ 𝜌𝜀 − 𝑓)𝜀 ∈ 𝒩aap. Let 𝑓 ∈ ℬaap (ℝ+) , by Taylor’s
formula and the fact that 𝜌 ∈ Σ, we have

∥𝑓 ∗ 𝜌𝜀 − 𝑓∥∞

≤ sup
𝑥∈ℝ

∣∣∣∣∫
ℝ

𝑚−1∑
𝑘=0

(−𝜀𝑦)𝑘
𝑘!

𝑓 (𝑘) (𝑥) 𝜌 (𝑦) 𝑑𝑦

∣∣∣∣ + sup
𝑥∈ℝ

∣∣∣∣∫
ℝ

(−𝜀𝑦)𝑚
𝑚!

𝑓 (𝑚) (𝑥− 𝜃𝜀𝑦) 𝜌 (𝑦) 𝑑𝑦

∣∣∣∣
≤ 0 + 𝜀𝑚sup

𝑥∈ℝ

∫
ℝ

∣∣∣∣ (−𝑦)𝑚𝑚!
𝑓 (𝑚) (𝑥− 𝜃𝜀𝑦) 𝜌 (𝑦) 𝑑𝑦

∣∣∣∣ .
Then ∃𝐶𝑚 > 0 such that

∥𝑓 ∗ 𝜌𝜀 − 𝑓∥∞ ≤ 𝐶𝑚

∥∥𝑓 (𝑚)∥∥∞ ∥𝑦𝑚𝜌∥1 𝜀𝑚.
The same result can be obtained for all the derivatives of 𝑓. Hence (𝑓 ∗ 𝜌𝜀 − 𝑓)𝜀 ∈
𝒩aap. □

The algebra of tempered generalized functions on ℂ is denoted 𝒢𝒯 (ℂ) , see [5].

Proposition 11. Let 𝑢 ∈ 𝒢aap (ℝ+) and 𝐹 ∈ 𝒢𝒯 (ℂ), then

𝐹 ∘ 𝑢 = [(𝐹 ∘ 𝑢𝜀)𝜀]
is a well-defined element of 𝒢aap (ℝ+) .

Proof. It follows from the classical case of composition in context of Colombeau
algebra, we have 𝐹 ∘ 𝑢𝜀 ∈ ℬaap (ℝ+) in view of the classical result of composition
and convolution. □

The algebra of integrable generalized functions on ℝ is denoted and defined
by

𝒢𝐿1 :=
ℳ𝐿1

𝒩𝐿1

,

where

ℳ𝐿1 =
{
(𝑢𝜀)𝜀 ∈ (𝒟𝐿1)

𝐼
, ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,1 = 𝑂

(
𝜀−𝑚

)
, 𝜀 −→ 0

}
,

𝒩𝐿1 =
{
(𝑢𝜀)𝜀 ∈ (𝒟𝐿1)𝐼 , ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,1 = 𝑂 (𝜀𝑚) , 𝜀 −→ 0

}
.

Proposition 12. If 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢aap (ℝ+) and 𝑣 ∈ [(𝑣𝜀)𝜀] ∈ 𝒢𝐿1 , then the convo-
lution 𝑢 ∗ 𝑣 given by

(𝑢 ∗ 𝑣) (𝑥) =

⎛⎝∫
ℝ

𝑢𝜀 (𝑥− 𝑦) 𝑣 (𝑦) 𝑑𝑦

⎞⎠
𝜀

+𝒩aap

is a well-defined element of 𝒢aap (ℝ+) .
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Proof. Let (𝑢𝜀)𝜀 ∈ ℳaap be a representative of 𝑢 and (𝑣𝜀)𝜀 ∈ℳ𝐿1 be a represen-
tative of 𝑣, then

∀𝑘 ∈ ℤ+, ∃𝑚1 ∈ ℤ+, ∃𝑐1 > 0, ∃𝜀1 ∈ 𝐼, ∀𝜀 ≤ 𝜀1, ∣𝑢𝜀∣𝑘,∞ < 𝑐1𝜀
−𝑚1 ,

∀𝑘 ∈ ℤ+, ∃𝑚2 ∈ ℤ+, ∃𝑐2 > 0, ∃𝜀2 ∈ 𝐼, ∀𝜀 ≤ 𝜀2, ∣𝑣𝜀∣𝑘,1 < 𝑐2𝜀
−𝑚2 .

From (iii) of Proposition 6 for each 𝜀 ∈ 𝐼, 𝑢𝜀 ∗ 𝑣𝜀 is an infinitely differentiable
asymptotically almost periodic function. Moreover, by the Young inequality there
exist 𝑐3 > 0 such that ∥∥∥(𝑢𝜀 ∗ 𝑣𝜀)(𝑗)∥∥∥∞ ≤ 𝑐3

∥∥∥𝑢(𝑗)𝜀 ∥∥∥
∞
∥𝑣𝜀∥1 ,

so there exist 𝑐 > 0 such that ∀𝑘 ∈ ℤ+, we have

∣𝑢𝜀 ∗ 𝑣𝜀∣𝑘,∞ ≤ 𝑐 ∣𝑢𝜀∣𝑘,∞ ∣𝑣𝜀∣0,1 . (3)

Consequently there exist 𝑚 = 𝑚1 +𝑚2 such that

∣𝑢𝜀 ∗ 𝑣𝜀∣𝑘,∞ = 𝑂
(
𝜀−𝑚

)
, 𝜀 −→ 0,

which shows that (𝑢𝜀 ∗ 𝑣𝜀)𝜀 ∈ ℳaap. The inequality 3 shows that (𝑢𝜀 ∗ 𝑣𝜀)𝜀 is
independent on the representatives of (𝑢𝜀)𝜀 and (𝑣𝜀)𝜀 . □

It remains to prove that an asymptotically almost periodic generalized func-
tion is decomposed uniquely into an almost periodic generalized function and a
generalized function vanishing at infinity.

Recall the space of infinitely differentiable almost periodic functions on ℝ,

ℬap :=
{
𝜑 ∈ 𝒟𝐿∞ : 𝜑(𝑗) ∈ 𝒞ap, ∀𝑗 ∈ ℤ+

}
.

The algebra of almost periodic generalized functions, denoted by 𝒢ap, is defined
as the quotient algebra

𝒢ap =
ℳap

𝒩ap ,
where

ℳap =
{
(𝑢𝜀)𝜀 ∈ (ℬap)𝐼 , ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂

(
𝜀−𝑚

)
, 𝜀 −→ 0

}
,

𝒩ap =
{
(𝑢𝜀)𝜀 ∈ (ℬap)𝐼 , ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀𝑚) , 𝜀 −→ 0

}
.

For more details on 𝒢ap see [3].

Definition 13. The space of infinitely differentiable bounded functions on ℝ van-
ishing at infinity is defined and denoted by

ℬ+0 :=

{
𝜑 ∈ 𝒟𝐿∞ : lim

𝑥−→+∞𝜑
(𝑗) (𝑥) = 0, ∀𝑗 ∈ ℤ+

}
.

Define

ℳ+
0 =

{
(𝑢𝜀)𝜀 ∈

(ℬ+0 )𝐼 , ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂
(
𝜀−𝑚

)
, 𝜀 −→ 0

}
,

𝒩+
0 =

{
(𝑢𝜀)𝜀 ∈

(ℬ+0 )𝐼 , ∀𝑘 ∈ ℤ+, ∀𝑚 ∈ ℤ+, ∣𝑢𝜀∣𝑘,∞ = 𝑂 (𝜀𝑚) , 𝜀 −→ 0
}
.
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Proposition 13. The space ℳ+
0 is a subalgebra of

(ℬ+0 )𝐼 and the space 𝒩+
0 is an

ideal of ℳ+
0 .

Proof. Easy. □

Definition 14. The algebra of bounded generalized functions vanishing at infinity,
denoted by 𝒢+0 , is defined as the quotient algebra

𝒢+0 =
ℳ+

0

𝒩+
0

.

Let us show first the following result.

Proposition 14. Let 𝑣 = [(𝑣𝜀)𝜀] ∈ 𝒢ap and 𝑤 = [(𝑤𝜀)𝜀] ∈ 𝒢+0 , then 𝑣 + 𝑤 ∈
𝒢aap (ℝ+) .

Proof. Let 𝑣 = [(𝑣𝜀)𝜀] ∈ 𝒢ap and 𝑤 = [(𝑤𝜀)𝜀] ∈ 𝒢+0 , since (𝑣𝜀)𝜀 ∈ ℳap and

(𝑤𝜀)𝜀 ∈ ℳ+
0 , then ∀𝑘 ∈ ℤ+, ∃𝑚1,𝑚2 ∈ ℤ+, ∃𝑐1 > 0, 𝑐2 > 0, such that

∣𝑣𝜀∣𝑘,∞ < 𝑐1𝜀
−𝑚1 , 𝜀 −→ 0 and ∣𝑤𝜀∣𝑘,∞ < 𝑐2𝜀

−𝑚2 , 𝜀 −→ 0,

consequently, ∀𝑘 ∈ ℤ+, ∃𝑚 = 𝑚1 +𝑚2, ∃𝑐 = 𝑐1 + 𝑐2 such that

∣𝑣𝜀 + 𝑤𝜀∣𝑘,∞ ≤ ∣𝑣𝜀∣𝑘,∞ + ∣𝑤𝜀∣𝑘,∞ < 𝑐𝜀−𝑚, 𝜀 −→ 0,

hence (𝑣𝜀 + 𝑤𝜀)𝜀 ∈ ℳapp. If (𝑣𝜀)𝜀 ∈ 𝒩ap and (𝑤𝜀)𝜀 ∈ 𝒩+
0 , we will obtain the same

result that (𝑣𝜀 + 𝑤𝜀)𝜀 ∈ 𝒩app. □

The following result is needed in the proof of the theorem.

Lemma 15. If 𝜑 ∈ ℬaap (ℝ+) is such that

𝜑 ≡ 𝜓 + 𝜒 on ℝ+

and 𝜑(𝑗) ≡ 𝑓𝑗 + 𝑔𝑗 on ℝ+, 𝑗 ∈ ℤ+, then 𝜓(𝑗) ≡ 𝑓𝑗 and 𝜒(𝑗) ≡ 𝑔𝑗 on ℝ+.

Proof. We have 𝜑(𝑗) ≡ 𝜓(𝑗) + 𝜒(𝑗) on ℝ+, ∀𝑗 ∈ ℤ+,since 𝜑(𝑗) ∈ 𝒞aap (ℝ+) and the
decomposition of asymptotically almost periodic functions is unique, then ∀𝑗 ∈ ℤ+

𝜓(𝑗) ≡ 𝑓𝑗 and 𝜒(𝑗) ≡ 𝑔𝑗 on ℝ+. □

The following result gives the decomposition of an asymptotically almost
periodic generalized functions.

Theorem 16. Let 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢aap (ℝ+) , then there exist 𝑣 = [(𝑣𝜀)𝜀] uniquely

defined in 𝒢ap and 𝑤 = [(𝑤𝜀)𝜀] uniquely defined in 𝒢+0 such that 𝑢 = 𝑣 + 𝑤 in
𝒢aap (ℝ+) .

Proof. Suppose that (𝑢𝜀)𝜀 ∈ ℳaap (ℝ+) , so ∀𝜀 ∈ 𝐼, 𝑢𝜀 ∈ ℬaap (ℝ+) , then ∃𝑣𝜀 ∈
𝒞ap, ∃𝑤𝜀 ∈ 𝒞+𝑏0 such that ∀𝜀 ∈ 𝐼, 𝑢𝜀 = 𝑣𝜀 + 𝑤𝜀 on ℝ+, by Lemma 15 we have

∀𝜀 ∈ 𝐼, ∀𝑗 ∈ ℤ+, 𝑢
(𝑗)
𝜀 = 𝑣

(𝑗)
𝜀 + 𝑤

(𝑗)
𝜀 on ℝ+ and 𝑣𝜀 ∈ ℬap and 𝑤𝜀 ∈ ℬ+0 . To have
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(𝑣𝜀)𝜀 ∈ ℳap and (𝑤𝜀)𝜀 ∈ ℳ+
0 , it remains to show that ∀𝑘 ∈ ℤ+, ∃𝑚1,𝑚2 ∈ ℤ+,

such that

∣𝑣𝜀∣𝑘,∞ = 𝑂
(
𝜀−𝑚1

)
, 𝜀 −→ 0 and ∣𝑤𝜀∣𝑘,∞ = 𝑂

(
𝜀−𝑚2

)
, 𝜀 −→ 0. (4)

By hypothesis, ∀𝑘 ∈ ℤ+, ∃𝑚 ∈ ℤ+, such that

∣𝑢𝜀∣𝑘,∞ = 𝑂
(
𝜀−𝑚

)
, 𝜀 −→ 0. (5)

Let (𝛼𝑛)𝑛 be a sequence of real numbers which converges to +∞, since for each

𝜀 ∈ 𝐼, (𝑣𝜀)𝜀 is almost periodic function, then there exist
(
𝛼𝜀𝑛𝑘

)
𝑘

a subsequence of

(𝛼𝑛)𝑛 and an almost periodic function 𝑓𝜀 such that

lim
𝑘→+∞

𝑣𝜀
(⋅+ 𝛼𝜀𝑛𝑘

)
= 𝑓𝜀 exist uniformly.

As 𝑤𝜀 ∈ 𝒞+𝑏0 , then lim
𝑘→+∞

𝑤𝜀

(
𝑥+ 𝛼𝜀𝑛𝑘

)
= 0. So ∀𝑥 ∈ ℝ,

lim
𝑘→+∞

𝑢𝜀
(
𝑥+ 𝛼𝜀𝑛𝑘

)
= lim

𝑘→+∞
𝑣𝜀

(
𝑥+ 𝛼𝜀𝑛𝑘

)
= 𝑓𝜀(𝑥).

Hence, ∃𝑐 > 0, ∃𝑚 ∈ ℤ+ such that ∣𝑓𝜀∣0,∞ = 𝑂 (𝜀−𝑚) , 𝜀 −→ 0. On the other hand,
thanks to the almost periodicity of 𝑓𝜀, we have ∀𝜀 ∈ 𝐼, ∀𝑥 ∈ ℝ,

lim
𝑘→+∞

𝑓𝜀
(
𝑥− 𝛼𝜀𝑛𝑘

)
= 𝑣𝜀 (𝑥) ,

which gives ∃𝑚1 ∈ ℤ+ such that ∣𝑣𝜀∣0,∞ = 𝑂 (𝜀−𝑚1) , 𝜀 −→ 0; this estimate and 5

give ∃𝑚2 ∈ ℤ+ such that ∣𝑤𝜀∣0,∞ = 𝑂 (𝜀−𝑚2) , 𝜀 −→ 0; we obtain the estimate 4

for 𝑘 = 0. The same procedure for the derivatives 𝑢
(𝑗)
𝜀 , 𝑣

(𝑗)
𝜀 , 𝑤

(𝑗)
𝜀 gives the estimate

4 for every 𝑘 ∈ ℤ+. Hence (𝑣𝜀)𝜀 ∈ℳap and (𝑤𝜀)𝜀 ∈ℳ+
0 .

The same reasoning shows that if (𝑢𝜀)𝜀 ∈ 𝒩aap (ℝ+) , then there exist (𝑣𝜀)𝜀 ∈
𝒩ap and (𝑤𝜀)𝜀 ∈ 𝒩+

0 , such that ∀𝜀 ∈ 𝐼, ∀𝑗 ∈ ℤ+, 𝑢
(𝑗)
𝜀 = 𝑣

(𝑗)
𝜀 + 𝑤

(𝑗)
𝜀 on ℝ+.

Let us suppose that there exist another 𝑣 = [(𝑣𝜀)𝜀] ∈ 𝒢ap and 𝑤 = [(𝑤𝜀)𝜀] ∈
𝒢+0 such that 𝑢 = 𝑣 + 𝑤 in 𝒢aap (ℝ+) . We obtain that (𝑣𝜀 − 𝑣𝜀)𝜀 + (𝑤𝜀 − 𝑤𝜀)𝜀 ∈
𝒩aap (ℝ+) . The same idea of the proof gives that (𝑣𝜀−𝑣𝜀)𝜀 ∈ 𝒩aap and (𝑤𝜀−𝑤𝜀)𝜀 ∈
𝒩aap (ℝ+) . □

The theorem motivates the following definition.

Definition 15. If 𝑢 ∈ 𝒢aap (ℝ+) is such that 𝑢 = 𝑣+𝑤 in 𝒢aap (ℝ+) , where 𝑣 ∈ 𝒢ap
and 𝑤 ∈ 𝒢+0 , then 𝑣 and 𝑤 are called respectively the almost periodic part and
the corrective part of 𝑢.
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Abstract. We analyse an algorithm of transition between Cauchy problems for
second-order wave equations and first-order symmetric hyperbolic systems in
case the coefficients as well as the data are non-smooth, even allowing for
regularity below the standard conditions guaranteeing well-posedness. The
typical operations involved in rewriting equations into systems are then nei-
ther defined classically nor consistently extendible to the distribution theo-
retic setting. However, employing the nonlinear theory of generalized functions
in the sense of Colombeau we arrive at clear statements about the transfer
of questions concerning solvability and uniqueness from wave equations to
symmetric hyperbolic systems and vice versa. Finally, we illustrate how this
transfer method allows to draw new conclusions on unique solvability of the
Cauchy problem for wave equations with non-smooth coefficients.

Mathematics Subject Classification (2010). Primary: 46F30; Secondary: 35L45,
35D30, 35Q75.

Keywords. Wave equations, symmetric first-order systems, low regularity.

1. Introduction

Theories for higher-order partial differential equations on the one hand and first-
order systems of (pseudo)differential equations on the other hand are to a large
extent developed in parallel, although elaborate mechanisms for rewriting the for-
mer into the latter do exist in terms of modern analysis (cf. [15, 27]). However,
in general the transition methods require high-powered pseudodifferential opera-
tor techniques and, what is even more restrictive in special situations, do often
require a certain smoothness of the coefficients (or symbols) to be mathematically
meaningful in all their intermediate operations beyond mere formal manipulation.
Nonlinear theories of generalized functions, in particular the differential algebras
constructed in the sense of Colombeau, provide a means to embed distributions
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into a wider context where the transition between higher-order equations and first-
order systems can be based on well-defined operations. Thus, Colombeau theory
allows to rigorously address the question about the precise relation between gener-
alized solutions to wave equations and those of corresponding hyperbolic first-order
systems in case of non-smooth coefficients.

The theory of generalized solutions to linear hyperbolic first-order systems
has been developed over 20 years and has achieved a spectrum of results on ex-
istence and uniqueness of solutions to the Cauchy problem, distributional limits
and regularity of solutions, and symmetrizability (cf. [22, 23, 16, 24, 14, 6]).

On the other hand, generalized solutions of wave equations arising via the
Laplace–Beltrami operator of a Lorentzian metric of low regularity have been stud-
ied in [28, 19, 8, 10, 13]. These investigations draw strong motivation from general
relativity, in particular in the context of Chris Clarke’s notion of generalized hy-
perbolicity [1, 2], which generalizes the classical notion of global hyperbolicity (i.e.,
the geometric condition necessary for global well-posedness of the Cauchy problem
for wave equations). More precisely, local and global existence and uniqueness of
generalized solutions have been established for a wide class of “weakly singular”
space-time metrics which are described using the geometric theory of nonlinear
generalized functions ([9, Chapter 3]).

In this paper we establish a rigorous way to translate Cauchy problems for
wave equations into such for symmetric hyperbolic systems and vice versa in case
of low regularity, thereby making results from either theory potentially available to
the other. Also we show some of this potential by inspecting results on wave equa-
tions obtained from statements on first-order systems through a careful analysis
of the translation process.

The plan of the paper is as follows. Section 2 introduces and briefly reviews
the required basic notions from Colombeau’s theory of generalized functions and
numbers. In Section 3 we present an explicit method to transform a second-order
wave equation with generalized function coefficients into a symmetric hyperbolic
system of first order and describe in precise terms the relation between generalized
solutions in either case. The main results here are summarized in Theorem 3.4
and in the simple Example 3.5 we illustrate what kind of difficulties from the pure
distribution theoretic viewpoint are remedied by our result. As an application we
show in Section 4 that solvability results on symmetric hyperbolic systems can be
used to deduce in Theorem 4.3 new aspects on solvability of the Cauchy problem
for wave equations with non-smooth coefficients.

2. Basic notions and spaces

Notation. We assume several notational conventions to keep calculations clearly
laid out: We denote vector-valued functions by bold symbols, e.g., 𝒗, and matrix-
valued functions by bold and sans serif letters, e.g., R. We write 𝑣𝑖 for the com-
ponents of a vector 𝒗 and 𝑅𝑖𝑗 for the components of a matrix R. The 𝑖th row
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respectively 𝑗th column of a matrix R is denoted by 𝑹𝑖⋅ or 𝑹⋅𝑗 respectively. The
spatial gradient of a scalar function 𝑢 shall be 𝒖′ = grad𝑢 = ∂𝑥𝑢, the spatial
Hessian shall be u′′. We denote the Euclidean scalar product by ⟨⋅, ⋅⟩.
Generalized functions. We will use variants of Colombeau algebras as presented
in [3, 23, 9, 5]. Here, we recall their essential features: Let 𝐸 be a locally convex
topological vector space with a topology given by a family of semi-norms {𝑝𝑗} with
𝑗 in some index set 𝐽 . We define

ℳ𝐸 :={(𝑢𝜀)𝜀 ∈ 𝐸(0,1] ∣ ∀𝑗 ∈ 𝐽 ∃𝑁 ∈ ℕ0 : 𝑝𝑗(𝑢𝜀) = 𝑂(𝜀−𝑁 ) as 𝜀→ 0},
𝒩𝐸 :={(𝑢𝜀)𝜀 ∈ 𝐸(0,1] ∣ ∀𝑗 ∈ 𝐽 ∀𝑚 ∈ ℕ0 : 𝑝𝑗(𝑢𝜀) = 𝑂(𝜀𝑚) as 𝜀→ 0},

the moderate respectively negligible subsets of 𝐸(0,1]. Operations are induced
from 𝐸 by 𝜀-wise application, so we have the (vector space) inclusion relation
𝒩𝐸 ⊆ ℳ𝐸 ⊆ 𝐸(0,1]. The generalized functions based on 𝐸 are defined as the
quotient space 𝒢𝐸 := ℳ𝐸/𝒩𝐸 . If 𝐸 is a differential algebra, then 𝒩𝐸 is an ideal
in ℳ𝐸 and therefore 𝒢𝐸 is a differential algebra as well, called the Colombeau
algebra based on 𝐸.

Let now 𝑈 be an open subset of ℝ𝑛. If we choose 𝐸 = 𝒞∞(𝑈) with the
topology of uniform convergence of all derivatives on compact sets, then we obtain
the special Colombeau algebra on 𝑈 , i.e., 𝒢𝒞∞(𝑈) = 𝒢(𝑈).

Moreover, we will also use the following three Sobolev spaces in this con-
struction:

∙ 𝐸 = 𝐻∞(𝑈) = {𝑢 ∈ 𝒞∞(𝑈) ∣ ∂𝛼𝑢 ∈ 𝐿2(𝑈)∀𝛼 ∈ ℕ𝑛
0} with the family of

norms

∥𝑢∥𝐻𝑘 =
( ∑
∣𝛼∣≤𝑘

∥∂𝛼𝑢∥𝐿2

) 1
2

𝑘 ∈ ℕ0,

∙ 𝐸 = 𝑊∞,∞(𝑈) = {𝑢 ∈ 𝒞∞(𝑈) ∣ ∂𝛼𝑢 ∈ 𝐿∞(𝑈)∀𝛼 ∈ ℕ𝑛
0} with the family of

norms

∥𝑢∥𝑊𝑘,∞ = max
∣𝛼∣≤𝑘

∥∂𝛼𝑢∥𝐿∞ 𝑘 ∈ ℕ0,

∙ 𝐸 = 𝒞∞(𝐼 × ℝ𝑛), where 𝐼 is an open, bounded interval, equipped with the
family of semi-norms

∥𝑢∥𝑘,𝐾 = max
∣𝛼∣≤𝑘

∥∂𝛼𝑢∥𝐿∞(𝐼×𝐾),

where 𝐾 is a compact subset of ℝ𝑛 and 𝑘 ∈ ℕ0.
To simplify notation, we denote the corresponding Colombeau algebras as in [12]:

𝒢𝐿2(𝑈) :=𝒢𝐻∞(𝑈) 𝒢𝐿∞(𝑈) :=𝒢𝑊∞,∞(𝑈) 𝒢(𝐼 × ℝ𝑛) :=𝒢𝒞∞(𝐼×ℝ𝑛).

Elements in 𝒢𝐸(𝑈𝑛) are denoted by 𝑢 = [(𝑢𝜀)𝜀] = (𝑢𝜀)𝜀 + 𝒩𝐸(𝑈𝑛). We restrict
a Colombeau function 𝑢(𝑡, 𝑥) to an initial surface by taking 𝑢∣𝑡=0 = [(𝑢𝜀(0, 𝑥))𝜀].

The ring of generalized numbers ℝ̃ consists of elements 𝑢 = [(𝑢𝜀)𝜀], where 𝑢𝜀 ∈ ℝ.

Note that ℝ̃𝑛 is a module over ℝ̃, a fact we have to keep in mind when doing linear
algebra.
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Generalized functions in 𝒢(ℝ𝑛) are characterized by their generalized point
values. In fact, considering only classical point values is insufficient as the following
statement from [25] shows, cf. [9, Thm. 1.2.46]. Let 𝑓 ∈ 𝒢(ℝ𝑛). The following are
equivalent:

(i) 𝑓 = 0 in 𝒢(ℝ𝑛), (ii) 𝑓(�̃�) = 0 in ℝ̃ for each 𝑥 ∈ ℝ̃𝑛
𝑐 .

Here ℝ̃𝑛
𝑐 denotes the set of compactly supported generalized points: A generalized

point 𝑥 ∈ ℝ̃𝑛 is compactly supported if there exists 𝐾 ⊆ ℝ̃𝑛 compact and 𝜂 > 0
such that 𝑥𝜀 ∈ 𝐾 for 𝜀 < 𝜂.

A matrix-valued generalized function G ∈𝑀𝑘(𝒢(ℝ𝑛)) is called symmetric and

nondegenerate if for any �̃� ∈ ℝ̃𝑛
𝑐 the bilinear map G(�̃�) : ℝ̃𝑘×ℝ̃𝑘 → ℝ̃ is symmetric

and nondegenerate, [9, Def. 5.1.2] Here, by nondegenerate we mean that 𝝃 ∈ ℝ̃𝑘,

G(�̃�)(𝝃,𝜼) = 0 ∀𝜼 ∈ ℝ̃𝑘 implies 𝝃 = 0. Apart from this pointwise definition, there
exist equivalent characterizations of nondegeneracy, see [9, Theorem 3.2.74]. In
particular, there always exists a representative entirely consisting of symmetric,
nondegenerate matrices. If, in addition, there exists a representative of constant

index 𝑗, we call 𝑗 = 𝜈(G) the index of G. We call matrices in 𝑀𝑘(ℝ̃) with 𝑗 = 0
Riemannian metrics and such with 𝑗 = 1 Lorentzian metrics. For concepts of

linear algebra in ℝ̃𝑘 we refer to [20]. Finally, we point out the following lemma on
Lorentzian metrics (the proof of which is straightforward).

Lemma 2.1. Let G ∈𝑀𝑛+1(ℝ̃) be of the form

G =

(−1 𝒈𝑇

𝒈 R

)
,

with R a generalized Riemannian metric on ℝ̃𝑛 and 𝒈 a vector with entries in ℝ̃𝑛,
then G is Lorentzian.

3. Transformation between equations and systems

In this section we relate solutions of wave equations to solutions of corresponding
symmetric first-order systems. To this end, consider a wave equation in 𝒢(ℝ𝑛+1)

−∂2𝑡 𝑢+ 2

𝑛∑
𝑖=1

𝑔𝑖∂𝑥𝑖∂𝑡𝑢+

𝑛∑
𝑖,𝑗=1

𝑅𝑖𝑗∂𝑥𝑖∂𝑥𝑗𝑢+ 𝑎∂𝑡𝑢+

𝑛∑
𝑖=1

𝑏𝑖∂𝑥𝑖𝑢+ 𝑐𝑢 = 𝑓, (1)

with principal part derived from G :=
(
−1 𝒈𝑇

𝒈 R

)
, a generalized Lorentzian metric.

In fact, our arguments still hold in the more general case, where the matrix entry
𝐺00 is a strictly negative generalized function (i.e., −𝐺00 > 𝜀𝑚 on compact sets
for some 𝑚 > 0), upon dividing by −𝐺00. Here R = (𝑅𝑖𝑗) is a positive definite,
symmetric matrix of generalized functions, 𝒈 and 𝒃 are vectors with entries in
𝒢(ℝ𝑛+1) and 𝑎, 𝑐, and 𝑓 are generalized functions.

Next we rewrite the wave equation (1) as a first-order system. There exist
several algorithms to obtain a hyperbolic first-order system. However, we employ
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an algorithm that also guarantees the symmetry of the system. Indeed by setting
𝒘 = (𝑢, ∂𝑡𝑢,S𝒖′)𝑇 we arrive at the system

−∂𝑡𝒘 +

𝑛∑
𝑖=1

A𝑖∂𝑥𝑖𝒘 + B𝒘 = 𝑭 (2)

in 𝒢(ℝ𝑛+1)𝑛+2. Here S = R
1
2 is constructed via 𝜀-wise diagonalization. The so-

constructed square root is a symmetric positive definite matrix with entries in
𝒢(ℝ𝑛+1), as we will discuss below. The matrices A𝑖, B, and the vector 𝑭 are given
in the following way:

A𝑖 =

⎛⎝ 0 0 01×𝑛
0 2𝑔𝑖 𝑺𝑖⋅
0𝑛×1 𝑺⋅𝑖 0𝑛×𝑛

⎞⎠ 𝑭 =

⎛⎝ 0
𝑓

0𝑛×1

⎞⎠
B =

⎛⎝ 0 1 01×𝑛
𝑐 𝑎 (div S)𝑇 + (𝒃− div S2)𝑇S−1

0𝑛×1 0𝑛×1 −(∂𝑡S)S−1

⎞⎠ .

(3)

Here we have used the fact that tr(S2u′′) = div(S2𝒖′)− ⟨div S2,𝒖′⟩. A word
on the notation is in order. For any symmetric matrix S, we set the divergence
(divS)𝑖 =

∑𝑛
𝑗=1 ∂𝑥𝑗𝑆𝑖𝑗 , i.e., div S is a vector, whose 𝑖th entry is simply the diver-

gence of the 𝑖th row (or column) of the matrix S.

Finally, we show that S = R
1
2 is a symmetric and positive definite matrix

with generalized functions as entries. A representative of the matrix S is given by

S𝜀(𝑡, 𝑥) = U𝜀(𝑡, 𝑥)
𝑇D𝜀(𝑡, 𝑥)

1
2U𝜀(𝑡, 𝑥) with

D𝜀(𝑡, 𝑥)
1
2 = diag

(√
𝜆1,𝜀(𝑡, 𝑥), . . . ,

√
𝜆𝑛,𝜀(𝑡, 𝑥)

)
,

where 𝜆1,𝜀(𝑡, 𝑥), . . . , 𝜆𝑛,𝜀 are the eigenvalues of a symmetric and positive definite
representative (R𝜀)𝜀 of R. Observe that (D𝜀)𝜀 and (U𝜀)𝜀 are not necessarily nets of

matrices with smooth entries, however, the product (U𝑇
𝜀 D

1
2
𝜀 U𝜀)𝜀 is smooth by the

following lemma (where we denote by 𝑆𝑛(ℝ) and 𝑆+𝑛 (ℝ) the spaces of symmetric
and positive definite symmetric matrices in 𝑀𝑛(ℝ)).

Lemma 3.1. The smooth map 𝑓 : 𝑆+𝑛 (ℝ)→ 𝑆+𝑛 (ℝ) with 𝑓(A) = A2 is a diffeomor-
phism.

Proof. The map 𝑓 : 𝑆+𝑛 (ℝ) → 𝑆+𝑛 (ℝ) is bijective (e.g., [17, Prop. 6.8]) and we
employ the inverse function theorem to conclude that 𝑓 is a global diffeomorphism.
Indeed since 𝑆+𝑛 (ℝ) is an open subset of 𝑆𝑛(ℝ) we may identify the tangent space
TA𝑆

+
𝑛 (ℝ) for A ∈ 𝑆+𝑛 (ℝ) with 𝑆𝑛(ℝ) and obtain d𝑓(A)(B) = AB + BA. Now

injectivity of d𝑓(A) follows since if AB = −BA and B ∕= 0 there is 0 ∕= 𝜆 with
B𝒗 = 𝜆𝒗 for some 𝒗 ∕= 0. But then A𝒗 is an eigenvector to −𝜆 and by symmetry
of B we have ⟨𝒗, 𝐴𝒗⟩ = 0, contradicting positive definiteness of A. □
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From the wave equation to the first-order system. Assuming that we have a solu-
tion 𝑢 to the wave equation (1), in the following lemma we will construct a solution
to the first-order system (2). Basically, we define a vector 𝒘 = (𝑢, ∂𝑡𝑢,S𝒖′)𝑇 and
rewrite the wave equation in terms of the three components of 𝒘.

Lemma 3.2. Let 𝑢0, 𝑢1 ∈ 𝒢(ℝ𝑛) and consider the second-order equation (1) with
initial condition (𝑢, ∂𝑡𝑢)∣𝑡=0 = (𝑢0, 𝑢1). If 𝑢 ∈ 𝒢(ℝ𝑛+1) is a solution of (1), then
the vector 𝒘 = (𝑢, ∂𝑡𝑢,S𝒖′)𝑇 is a solution to the first-order system (2) with initial
condition 𝒘∣𝑡=0 = (𝑢0, 𝑢1,S𝒖′0)

𝑇 .

Proof. First we rewrite equation (1) in divergence form, i.e.,

−∂2𝑡 𝑢+ 2⟨𝒈, ∂𝑡𝒖′⟩+ div(S2𝒖′) + 𝑎∂𝑡𝑢+ ⟨𝒃− div S2,𝒖′⟩+ 𝑐𝑢 = 𝑓.

Introducing new variables 𝑧 := ∂𝑡𝑢 and 𝒗 := S𝒖′, we may write

−∂𝑡𝑧 + 2⟨𝒈, 𝒛′⟩+ div(S𝒗) + 𝑎𝑧 + ⟨𝒃− div S2,S−1𝒗⟩+ 𝑐𝑢 = 𝑓.

Hence we have

−∂𝑡𝒘+
𝑛∑
𝑖=1

⎛⎝ 0 0 01×𝑛
0 2𝑔𝑖 𝑺𝑖⋅
0𝑛×1 𝑺⋅𝑖 0𝑛×𝑛

⎞⎠ ∂𝑥𝑖𝒘

+

⎛⎝ 0 1 01×𝑛
𝑐 𝑎 (div S)𝑇 + (𝒃− div S2)𝑇S−1

0𝑛×1 0𝑛×1 (∂𝑡S)S−1

⎞⎠𝒘 =

⎛⎝ 0
𝑓

0𝑛×1

⎞⎠ ,

where we have used that div(S𝒗) =
∑𝑛

𝑖=1 𝑺𝑖⋅∂𝑥𝑖𝒗+(div S)𝑇𝒗. Note that the second
equation in the above system is just the original wave equation written in new
variables, whereas the other equations represent the transformation of variables.
Finally, evaluating 𝒘 at time 𝑡 = 0 yields 𝒘∣𝑡=0 = (𝑢0, 𝑢1,S𝒖′0)𝑇 . □

From the first-order system to the wave equation. We now look at the converse
situation: Given a solution to the first-order system (2), we would like to prove
existence for wave-type equations. Now, let S be a symmetric and invertible 𝑛-
dimensional matrix with entries in 𝒢(ℝ𝑛+1), let 𝒈 and 𝒃 be vectors with entries
in 𝒢(ℝ𝑛+1), and let 𝑎, 𝑐 be generalized functions. Observe that the matrix B
is not restricted by the structure of the term (div S)𝑇 + (𝒃 − div S2)𝑇S−1. Let

�̃�
𝑇

= (div S)𝑇 + (𝒃− div S2)𝑇S−1. Multiplication with S from the right gives

�̃�
𝑇
S = (div S)𝑇S+ (𝒃− div S2)𝑇 .

Bringing all terms except the one containing 𝒃 to the other side results in

�̃�
𝑇
S− (div S)𝑇S+ (div S2)𝑇 = 𝒃𝑇 .

Finally, transposition leads to an equation for 𝒃 entirely in terms of S and an
arbitrarily chosen coefficient �̃�:

𝒃 = S𝑇 �̃�− S𝑇 div S+ (div S2).
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Lemma 3.3. Let 𝑢0, 𝑢1 ∈ 𝒢(ℝ𝑛). If 𝒘 = (𝑢, 𝑧,𝒗)𝑇 ∈ 𝒢(ℝ𝑛+1)𝑛+2 is a solution to
the first-order system (2) with initial condition 𝒘∣𝑡=0 = (𝑢0, 𝑢1,S𝒖′0)

𝑇 , then 𝑢 is
a solution to (1) with initial condition (𝑢, ∂𝑡𝑢)∣𝑡=0 = (𝑢0, 𝑢1).

Proof. Note that the first equation of our system is just 𝑧 = ∂𝑡𝑢. The last 𝑛
equations read

∂𝑡𝒗 + S𝒛′ + (∂𝑡S)S−1𝒗 = 0,

which is the same as

S𝒛′ = S∂𝑡(S
−1𝒗)

since ∂𝑡𝒗 = ∂𝑡(SS
−1𝒗) = S∂𝑡(S

−1𝒗) + (∂𝑡S)S
−1𝒗. Multiplying by S−1 from the

left and using that 𝑧 = ∂𝑡𝑢 we find

∂𝑡(𝒖
′ − S−1𝒗) = 0.

By the initial condition 𝒖′∣𝑡=0 = S−1𝒗∣𝑡=0, we have 𝒖′ = S−1𝒗 for all 𝑡 which is
equivalent to 𝒗 = S𝒖′. Hence, replacing 𝑧 by ∂𝑡𝑢 as well as 𝒗 by S𝒖′, the second
equation of the system reads

− ∂2𝑡 𝑢+ 2
𝑛∑
𝑖=1

𝑔𝑖∂𝑥𝑖∂𝑡𝑢+ 𝑎∂𝑡𝑢+
𝑛∑
𝑖=1

𝑏𝑖∂𝑥𝑖𝑢+ 𝑐𝑢

+

𝑛∑
𝑖,𝑗,𝑘=1

(
𝑆𝑖𝑗∂𝑥𝑖(𝑆𝑗𝑘∂𝑥𝑘𝑢) + (∂𝑥𝑖𝑆𝑖𝑗)𝑆𝑗𝑘∂𝑥𝑘𝑢− ∂𝑥𝑖(𝑆𝑖𝑗𝑆𝑗𝑘)∂𝑥𝑘𝑢

)
= 𝑓,

which is the same as

−∂2𝑡 𝑢+ 2

𝑛∑
𝑖=1

𝑔𝑖∂𝑥𝑖∂𝑡𝑢+

𝑛∑
𝑖,𝑗,𝑘=1

𝑆𝑖𝑘𝑆𝑘𝑗∂𝑥𝑖∂𝑥𝑗𝑢+ 𝑎∂𝑡𝑢+

𝑛∑
𝑖=1

𝑏𝑖∂𝑥𝑖𝑢+ 𝑐𝑢 = 𝑓.

Moreover, the condition (𝑢, ∂𝑡𝑢)∣𝑡=0 = (𝑢0, 𝑢1) is a direct consequence of the initial
condition for the system. □

Equivalence. The content of Lemmas 3.2 and 3.3 can be summarized as follows.
The problem of finding a solution to the Cauchy problem for the wave equation
(1) is equivalent to the problem of finding a solution to the corresponding Cauchy
problem for the first-order system (2). Uniqueness of solutions is preserved during
the rewriting process as well, more precisely we have the following statement.

Theorem 3.4. Given a wave equation (1) and the corresponding first-order system
(2). Let 𝑢0, 𝑢1 ∈ 𝒢(ℝ𝑛). Then for functions 𝑢 ∈ 𝒢(ℝ𝑛+1) and 𝒘 ∈ 𝒢(ℝ𝑛+1)𝑛+2

such that 𝒘 = (𝑢, ∂𝑡𝑢,S𝒖′)𝑇 the following are equivalent:

(i) The function 𝑢 is the unique solution to the wave equation (1) with initial
condition (𝑢, ∂𝑡𝑢)∣𝑡=0 = (𝑢0, 𝑢1).

(ii) The function 𝒘 is the unique solution to the first-order system (2) with initial
condition 𝒘∣𝑡=0 = (𝑢0, 𝑢1,S𝒖′0)𝑇 .
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Proof. The translation of solutions between wave equations and first-order systems
is an immediate consequence of Lemmas 3.2 and 3.3. To show uniqueness take the
following considerations into account:

By Lemma 3.2, two distinct solutions to the initial value problem (1) would
give rise to two distinct solutions to (2), since 𝑢 → 𝒘 = (𝑢, ∂𝑡𝑢,S𝒖′)𝑇 is injective,
thus contradicting unique solvability of the initial value problem for (2).

Suppose there were two distinct solutions 𝒘 and �̃� to the initial value prob-
lem of (2) with 𝒘∣𝑡=0 = �̃�∣𝑡=0 = (𝑢0, 𝑢1,S𝒖′0)𝑇 . Then the first component of 𝒘
and �̃� would give two distinct solutions to (1). But since the solution of (1) is
unique, the first component of �̃� must be equal to the first component of 𝒘. From
the proof of Lemma 3.3 it is then clear that 𝑧 = 𝑧 and �̃� = 𝒗, hence �̃� = 𝒘. □

Theorem 3.4 guarantees that in the context of the differential algebra 𝒢 the
Cauchy problem for the second-order wave equation (1) is equivalent in fairly gen-
eral circumstances to that for the corresponding first-order system (2–3) provided
only the natural, and merely algebraic, consistency of initial data holds. This is
not true in spaces of distributions. When the coefficients are of low regularity,
the transformation process may fail at various places, e.g., we might end up with
differential equations that do not make sense in any distribution space.

Example 3.5. Consider a wave equation used in linear acoustics: Let 𝑝 : ℝ2 → ℝ
and let 𝑐, 𝜌 : ℝ→ [𝑎, 𝑏] with 𝑎 > 0. The acoustic wave equation reads

∂2𝑡 𝑝− 𝑐2𝜌∂𝑥

(
1

𝜌
∂𝑥𝑝

)
= 0. (4)

We define 𝒘𝑇 =(𝑝,∂𝑡𝑝,𝑐∂𝑥𝑝) and formally obtain the symmetric hyperbolic system

−∂𝑡𝑤1 + 𝑤2 = 0, (5a)

−∂𝑡𝑤2 + 𝑐∂𝑥𝑤3 − (𝑐′ + 𝑐 ⋅ (ln 𝜌)′)𝑤3 = 0, (5b)

−∂𝑡𝑤3 + 𝑐𝑤2 = 0. (5c)

Equation (4) can be regarded as an equality in 𝐿2(ℝ2), if we have 𝑝 ∈ 𝐻2(ℝ2),
𝜌 ∈ Lip(ℝ2) and 𝑐 ∈ 𝐿∞(ℝ2). We then have ∂𝑡𝑝 ∈ 𝐻1(ℝ2) and 𝑐∂𝑥𝑝 ∈ 𝐿2(ℝ2),
since 𝑐 ∈ 𝐿∞(ℝ2) and ∂𝑥𝑝 ∈ 𝐻1(ℝ2). Thus 𝒘 ∈ 𝐻2(ℝ2) × 𝐻1(ℝ2) × 𝐿2(ℝ2),
but not better in general. Hence equation (5b) will in general not be defined on
the level of distributions. For example, if 𝑐(𝑥) = 1 +𝐻(𝑥), then 𝑐′𝑤3 would be a
product of 𝛿 with an 𝐿2-function.

4. Existence and uniqueness for the Cauchy problems

Rewriting the wave equation (1) as the first-order system (2) via Theorem 3.4
allows to apply existence and uniqueness theorems for the latter to prove exis-
tence and uniqueness of a solution to the initial value problem for the wave equa-
tion. More precisely, let a vector 𝒘 of generalized functions with representative
(𝒘𝜀)𝜀 = ((𝑢𝜀, 𝑧𝜀,𝒗𝜀)

𝑇 )𝜀 be given, that is the unique solution of the Cauchy prob-
lem for (2) with initial data 𝒘∣𝑡=0 = (𝑢0, 𝑢1,S𝒖

′
0)
𝑇 , then Theorem 3.4 implies that
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(𝑢𝜀)𝜀 will be the unique generalized solution to the Cauchy problem for (1) with
initial data (𝑢, ∂𝑡𝑢)∣𝑡=0 = (𝑢0, 𝑢1). In the following theorem we will give conditions
on the coefficients of a wave equation (1) that guarantee the existence of a unique
generalized solution to the corresponding first-order problem and, hence, existence
and uniqueness of a generalized solution to the wave equation (1).

To this end, we are going to invoke the existence theory for symmetric hy-
perbolic systems developed in [21, 22, 4, 16, 11] and, in particular, the existence
results of [14], which we will now briefly summarize. We start by recalling the
essential asymptotic conditions. Let 𝑈𝑇 := (0, 𝑇 ) × ℝ𝑛. For a function 𝑔 on 𝑈𝑇 ,

we introduce its mixed 𝐿1-𝐿∞-norm by ∥𝑔∥𝐿1,∞(𝑈𝑇 ) :=
∫ 𝑇

0 ∥𝑔(𝑠, ⋅)∥𝐿∞(ℝ𝑛) ds. A
generalized function 𝑓 ∈ 𝒢(𝑈) is said to be of local 𝐿∞-log-type ([21, Definition
1.1]) if it admits a representative (𝑓𝜀)𝜀 such that for all 𝐾 compact in 𝑈 , we have
∥𝑓𝜀∥𝐿∞(𝐾) = 𝑂(log 1𝜀 ) as 𝜀 → 0; 𝑓 ∈ 𝒢(𝑈) is said to be of 𝐿∞-log-type ([9, Defi-

nition 1.5.1]), if it admits a representative (𝑓𝜀)𝜀 such that ∥𝑓𝜀∥𝐿∞(𝑈) = 𝑂(log 1𝜀 )

as 𝜀 → 0; 𝑓 ∈ 𝒢𝐿∞(𝑈𝑇 ) is said to be of 𝐿1,∞-log-type (cf. [4, Definition 2.1]) if it
admits a representative (𝑓𝜀)𝜀 such that ∥𝑓𝜀∥𝐿1,∞(𝑈𝑇 ) = 𝑂(log 1𝜀 ) as 𝜀→ 0.

Solution candidates to the Cauchy problem for symmetric hyperbolic systems
with Colombeau generalized coefficients (2) are obtained as a net of solutions to
the family of classical equations −∂𝑡𝒘𝜀 +

∑𝑛
𝑖=1 A𝑖,𝜀∂𝑥𝑖𝒘𝜀 + B𝜺𝒘𝜀 = 𝑭 𝜀. By im-

posing additional asymptotic growth conditions in 𝜀 on the coefficient matrices,
a Gronwall-type argument can be used to prove the moderateness of the family
of smooth solutions, hence existence of generalized solutions. Uniqueness of gen-
eralized solutions amounts to stability of the family of smooth solutions under
negligible perturbations of the data. For convenience of the reader, we combine
results from [14], adjusted to the situation at hand, in the following theorem (cf.
[14, Theorems 3.1, 3.2, and 3.4]).

Theorem 4.1. Let A𝑖, B ∈𝑀𝑛+2(𝒢𝐿∞(𝑈𝑇 )), where A𝑖 is symmetric. Then we have
the following three results.

A) The Cauchy problem for the system (2) with initial data 𝒘0 ∈ (𝒢(ℝ𝑛))𝑛+2

and right-hand side 𝑭 ∈ (𝒢(𝑈𝑇 ))𝑛+2 has a unique solution 𝒘 ∈ (𝒢(𝑈𝑇 ))𝑛+2 if

(i) the spatial derivatives A′𝑖 as well as 1
2 (B + B𝑇 ), the symmetric part

of the matrix B, are of local 𝐿∞-log-type,

(ii) there exists some constant 𝑅A > 0 such that sup(𝑡,𝑥) ∣A𝑖,𝜀(𝑡, 𝑥)∣ = 𝑂(1)

on (0, 𝑇 )× {𝑥 ∈ ℝ𝑛 : ∣𝑥∣ > 𝑅A} as 𝜀→ 0.

B) The Cauchy problem for the system (2) with initial data 𝒘0∈ (𝒢𝐿2(ℝ𝑛))𝑛+2

and right-hand side 𝑭 ∈(𝒢𝐿2(𝑈𝑇 ))𝑛+2has a unique solution 𝒘∈(𝒢𝐿2 (𝑈𝑇 ))𝑛+2

if the spatial derivatives A′𝑖 as well as the symmetric part of the matrix B are
of 𝐿1,∞-log-type.

C) Let initial data 𝒘0 ∈ (𝒢𝐿∞(ℝ𝑛))𝑛+2 and right-hand side 𝑭 ∈ (𝒢𝐿∞(𝑈𝑇 ))𝑛+2

be given. If the spatial derivatives A′𝑖 as well as the symmetric part of the ma-
trix B are of 𝐿∞-log-type, then there exists a unique solution 𝒘 ∈ (𝒢(𝑈𝑇 ))𝑛+2

of (2) such that 𝒘∣𝑡=0 −𝒘0 ∈ (𝒩 (ℝ𝑛))𝑛+2.
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Remark 4.2. When considering case C, the situation occurs that the initial data
𝒘0 is an element of the algebra (𝒢𝐿∞(ℝ𝑛))𝑛+2, whereas the restriction of the
solution 𝒘 to the initial surface, i.e., 𝒘∣𝑡=0 is in (𝒢(ℝ𝑛))𝑛+2. This issue can be
resolved in the following way: Every representative (𝑓𝜀)𝜀 of a generalized function
𝑓 ∈ 𝒢𝐿∞(ℝ𝑛) is also moderate in the sense of 𝒢(ℝ𝑛); thus, 𝒢𝐿∞(ℝ𝑛) can be
interpreted as a subset of 𝒢(ℝ𝑛) if we allow the difference of two representatives
of 𝑓 to be in the ideal 𝒩 (ℝ𝑛) instead of 𝒩𝐿∞(ℝ𝑛). So, we obviously have that
𝒘∣𝑡=0 −𝒘0 ∈ (𝒩 (ℝ𝑛))𝑛+2 but not necessarily in (𝒩𝐿∞(ℝ𝑛))𝑛+2. In other words,
we consider the initial data to be in the algebra (𝒢(ℝ𝑛))𝑛+2 but additionally
satisfying the moderateness estimates of (𝒢𝐿∞(ℝ𝑛))𝑛+2.

Finally, we are able to formulate an existence and uniqueness theorem for
wave equations based on Theorems 3.4 and 4.1.

Theorem 4.3. Consider the Cauchy problem

−∂2𝑡 𝑢+ 2

𝑛∑
𝑖=1

𝑔𝑖∂𝑥𝑖∂𝑡𝑢+

𝑛∑
𝑖,𝑗=1

𝑅𝑖𝑗∂𝑥𝑖∂𝑥𝑗𝑢+ 𝑎∂𝑡𝑢+

𝑛∑
𝑖=1

𝑏𝑖∂𝑥𝑖𝑢+ 𝑐𝑢 = 𝑓 (6)

and
(𝑢, ∂𝑡𝑢)∣𝑡=0 = (𝑢0, 𝑢1)

with coefficients 𝑅𝑖𝑗 , 𝑔𝑖, 𝑎, 𝑏𝑖, 𝑐 in 𝒢𝐿∞(𝑈𝑇 ) and R positive definite. Let, further-

more, S = R
1
2 , where we take the square root via diagonalization of R. Then we

have the following three results.

A) The Cauchy problem (6) with initial data 𝑢0, 𝑢1 ∈ 𝒢(ℝ𝑛) and right-hand side
𝑓 ∈ 𝒢(𝑈𝑇 ) has a unique solution 𝑢 ∈ 𝒢(𝑈𝑇 ) if
(i) the lower-order coefficients 𝑎, 𝑐, 𝒃, as well as S, the derivative dS, the

inverse S−1 and g′ are of local 𝐿∞-log-type,
(ii) there exists 𝑅S,𝒈 > 0 such that sup(𝑡,𝑥) ∣𝒈𝜀(𝑡, 𝑥)∣ = 𝑂(1) and

sup(𝑡,𝑥) ∣S𝜀(𝑡, 𝑥)∣ = 𝑂(1) on (0, 𝑇 ) × {𝑥 ∈ ℝ𝑛∣ ∣𝑥∣ > 𝑅S,𝒈} as 𝜀→ 0.

B) The Cauchy problem (6) with initial data 𝑢0, 𝑢1 ∈ 𝒢𝐿2(ℝ𝑛) and right-hand
side 𝑓 ∈ 𝒢𝐿2(𝑈𝑇 ) has a unique solution 𝑢 ∈ 𝒢𝐿2(𝑈𝑇 ) if the lower-order

coefficients 𝑎, 𝑐, 𝒃, as well as S, the derivative dS, the inverse S−1 and g′

are of 𝐿1,∞-log-type.

C) Let initial data 𝑢0, 𝑢1 ∈ 𝒢𝐿∞(ℝ𝑛) and right-hand side 𝑓 ∈ 𝒢𝐿∞(𝑈𝑇 ) be given.
If the lower-order coefficients 𝑎, 𝑐, 𝒃, as well as S, the derivative dS, the
inverse S−1 and g′ are of 𝐿∞-log-type, then there exists a unique solution 𝑢 ∈
𝒢(𝑈𝑇 ) of the wave equation (6) such that (𝑢, ∂𝑡𝑢)∣𝑡=0− (𝑢0, 𝑢1) ∈ (𝒩 (ℝ𝑛))2.

Proof. We start with the proof for case A. We rewrite the wave equation into the
corresponding symmetric hyperbolic system with A𝑖, B and 𝑭 as in (3). Clearly
the coefficients of the hyperbolic system are in 𝒢𝐿∞ since the coefficients of the
wave equation are. From condition (i) and the structure of (3) we obtain that A′𝑖
and 1

2 (B + B𝑇 ) – the symmetric part of B – are locally of 𝐿∞-log-type. Since by
condition (ii) 𝑢0 and 𝑢1 are in 𝒢(ℝ𝑛), and S has entries in 𝒢𝐿∞(𝑈𝑇 ), the initial data
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for the system 𝒘0 = (𝑢0, 𝑢1,S𝒖′0)
𝑇 is in (𝒢(ℝ𝑛))𝑛+2. Furthermore, 𝑓 ∈ 𝒢(𝑈𝑇 ),

thus 𝐹 = (0, 𝑓, 0) ∈ (𝒢(𝑈𝑇 ))𝑛+2. The matrix S and the vector 𝒈 satisfy condition
(ii). Thus, there exists a constant 𝑅S,𝒈 > 0 such that A, which depends only on
S and 𝒈, is 𝑂(1) on (0, 𝑇 ) × {𝑥 ∈ ℝ𝑛∣ ∣𝑥∣ > 𝑅S,𝒈} Summing up, all conditions
of Theorem 4.1, case A are satisfied, and we can apply the theorem to obtain a
solution 𝒘 to the initial value problem of the hyperbolic system. Theorem 3.4
guarantees that the first component 𝑢 of 𝒘 is the unique solution to the Cauchy
problem for the wave equation.

The proofs for cases B [resp. C] follow the same pattern. Again, we rewrite
the wave equation into its corresponding symmetric hyperbolic first-order system
and obtain matrices A𝑖 and B in 𝑀𝑛+2(𝒢𝐿∞(𝑈𝑇 )). By condition (i) we have that
A′𝑖 and the symmetric part of B are 𝐿1,∞-log-type [resp. 𝐿∞-log-type]. Since by
condition (ii) the initial data 𝑢0 and 𝑢1 are in 𝒢𝐿2(ℝ𝑛) [resp. 𝒢𝐿∞(ℝ𝑛)], and S
has entries in 𝒢𝐿∞(𝑈𝑇 ), the initial data for the system 𝒘0 = (𝑢0, 𝑢1,S𝒖′0)𝑇 is in
(𝒢𝐿2(ℝ𝑛))𝑛+2 [resp. (𝒢𝐿∞(ℝ𝑛))𝑛+2]. We also have 𝑓 ∈ 𝒢𝐿2(𝑈𝑇 ) [resp. 𝒢𝐿∞(𝑈𝑇 )],
thus 𝑭 = (0, 𝑓, 0) ∈ (𝒢𝐿2(𝑈𝑇 ))𝑛+2 [resp. (𝒢𝐿∞(𝑈𝑇 ))𝑛+2]. Altogether we can apply
Theorem 4.1, case B [resp. C] and obtain a solution 𝒘 to the initial value problem
for the hyperbolic system. Finally, Theorem 3.4 guarantees its first component 𝑢
is the unique solution to the Cauchy problem for the wave equation, and we are
done. □

The asymptotic estimates on the coefficients required in Theorem 4.3 are less
restrictive than those supposed in the (local) existence results for the initial value
problem for the wave equation on “weakly singular” Lorentzian manifolds, cf. [8,
Theorem 3.1] and [10, Theorem 3.1]. In particular, the conditions of Theorem
4.3 A) are general enough to cover the Laplace–Beltrami operator of metrics in
the Geroch–Traschen class, which is was not possible previously. The relevance of
this class, introduced in [7], comes from the fact that it is viewed as the “maximal
reasonable” class of metrics that allows for the definition of the Riemann curvature
tensor as a distribution (see also [18]). We finish this paper by deriving an existence
result for the wave operator of such metrics.

A Lorentzian metric g0 on a smooth manifold 𝑀 belongs to the Geroch–
Traschen class if g0 and its inverse g−10 belong to 𝐻1

loc(𝑀)∩𝐿∞loc(𝑀) and, further-
more, if ∣ det g0∣ ≥ 𝐶 > 0 almost everywhere on compact sets. Since we are only
interested in a local existence result we may work in a fixed chart and moreover
cut off the metric g0 outside some ball such that it is constant there. We then
regularize g0 via componentwise convolution with a mollifier to obtain a general-
ized metric. More precisely, denoting the components of g0 by 𝑔0,𝑖𝑗 we will write
𝑔𝜀𝑖𝑗 for their smoothing, i.e., 𝑔𝜀𝑖𝑗 = 𝑔0,𝑖𝑗 ∗ 𝜓𝜀, with (𝜓𝜀)𝜀 being a model delta net

(i.e., 𝜓𝜀(𝑥) = 𝜀−(𝑛+1)𝜌(𝑥/𝜀) for some fixed test function 𝜌 with unit integral). For
a more sophisticated way of smoothing metrics of the Geroch–Traschen class see
[26]. We denote by g = [(g𝜀)𝜀] the resulting generalized Lorentzian metric on ℝ𝑛+1.

It is then clear that in general dg𝜀 ∕= 𝑂(1) (otherwise g ∈ 𝑊 1,∞
loc ), hence condition

(B) of [8, Theorem 3.1] is violated as well as condition (i) of [10, Theorem 3.1].
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However, logarithmically rescaling the mollifier (i.e., setting 𝜓𝜀(𝑥) = 𝛾𝑛+1𝜀 𝜌(𝛾𝜀𝑥)
with 𝛾𝜀 = log 1𝜀 ) allows to apply Theorem 4.3 A).

Corollary 4.4 (The Wave Equation for Geroch–Traschen Metrics). Let g be a
generalized metric on ℝ𝑛+1 obtained as the smoothing of a metric of Geroch–
Traschen class as above with a logarithmically rescaled mollifier. Then the Cauchy
problem for the wave equation

□g𝑢 = 0 (𝑢, ∂𝑡𝑢) ∣𝑡=0= (𝑢0, 𝑢1) ∈ 𝒢(ℝ𝑛)

has a unique solution in 𝑢 ∈ 𝒢(𝑈𝑇 ) for arbitrary 𝑇 > 0.

Sketch of proof. We check that the conditions of Theorem 4.3 A) hold. Indeed 𝑎, 𝒃
and 𝑐 vanish as well as 𝑓 . Furthermore 𝑅𝑖𝑗 and 𝑔𝑖 are given by the components of
g which belong to 𝒢𝐿∞(𝑈𝑇 ) due to the cut off applied to the metric g0. Condition
A)(ii) holds true again due to the cut off and local boundedness of g0. As for

condition A)(i), S and its inverse S−1 are even locally uniformly bounded. Finally,
due to the logarithmic rescaling of the mollifier the derivatives of g are of local
𝐿∞-log-type and we are done. □
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Concept of Delta-shock Type Solutions
to Systems of Conservation Laws and
the Rankine–Hugoniot Conditions

V.M. Shelkovich

Abstract. To solve nonlinear systems of conservation laws, we need a proper
concept of weak solution. The aim of this paper is to explain how to derive in-
tegral identities for defining 𝛿-shock type solutions in the sense of Schwartzian
distributions. We consider two types of systems to compare our definitions.
System (1.3) is a standard system admitting delta-shocks and our definition
is given by the identities (2.9). System (3.1) is non-typical, and in addition to
the identities (3.8), we need to use relation (3.7). We restrict ourselves to the
consideration of 𝛿-shocks concentrated only on the surface of codimension 1.
Our approach can be used to derive integral identities for other type systems.

Mathematics Subject Classification (2010). Primary 35L65; Secondary 35L67,
76L05.

Keywords. System of conservation laws, 𝛿-shocks, the Rankine–Hugoniot con-
ditions.

1. Generalized solution to a system of conservation laws

1.1. 𝑳∞-generalized solutions

Consider the Cauchy problem:{
𝑈𝑡 +

(
𝐹 (𝑈)

)
𝑥

= 0, in ℝ× (0, ∞),

𝑈 = 𝑈0, in ℝ× {𝑡 = 0}, (1.1)

where 𝐹 : ℝ𝑚 → ℝ𝑚, 𝑈0 : ℝ → ℝ𝑚 are given vector-functions, 𝑈 = 𝑈(𝑥, 𝑡) =
(𝑢1, . . . , 𝑢𝑚), 𝑡 ≥ 0. As is well known, even in the case of smooth (and, certainly,
in the case of discontinuous) initial data 𝑈0(𝑥), in general, there does not exist
any smooth and global in time solution of (1.1). As noted in [4, 11.1.1.], “the great

The author was supported by the government special program “The development of scientific

investigation of the Higher School”, project 1.370.2011 and Grant 12-01-00308-a of Russian Foun-
dation for Basic Research.
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difficulty in this subject is discovering a proper notion of weak solution for the ini-
tial problem (1.1)”. “We must devise some way to interpret a less regular function
as somehow “solving” this initial-value problem” [4, 3.4.1.a.]. But it is well known
that a partial differential equation may not make sense even if 𝑈 is differentiable.
“However, observe that if we temporarily assume 𝑈 is smooth, we can as follows
rewrite, so that the resulting expression does not directly involve the derivatives
of 𝑈” [4, 3.4.1.a.]. “The idea is to multiply the partial differential equation in (1.1)
by a smooth function 𝜑 and then to integrate by parts, thereby transferring the
derivatives onto 𝜑” [4, 3.4.1.a.;11.1.1.]. Following this suggestion, we shall derive
an integral identity which gives the definition of an 𝐿∞-generalized solution of the
Cauchy problem (1.1): 𝑈 ∈ 𝐿∞

(
ℝ× (0,∞);ℝ𝑚

)
is called a generalized solution of

the Cauchy problem (1.1) if the integral identity∫ ∞

0

∫ (
𝑈 ⋅ 𝜑𝑡 + 𝐹 (𝑈) ⋅ 𝜑𝑥

)
𝑑𝑥 𝑑𝑡+

∫
𝑈0(𝑥) ⋅ 𝜑(𝑥, 0) 𝑑𝑥 = 0 (1.2)

holds for all compactly supported smooth test vector-functions 𝜑 : ℝ × [0,∞) →
ℝ𝑚, where ⋅ is the scalar product of vectors, and

∫
𝑓(𝑥) 𝑑𝑥 denotes the improper

integral
∫∞
−∞ 𝑓(𝑥) 𝑑𝑥. “This identity, which we derived supposing 𝑈 to be a smooth

solution makes sense if 𝑈 is merely bounded” [4, 11.1.1.].

1.2. Generalized solution with the 𝜹-function singularities

There are “nonclassical” situations where, in contrast to Lax’s and Glimm’s clas-
sical results, the Cauchy problem (1.1) either does not possess a weak 𝐿∞-solution
or possesses it for some particular initial data. In order to solve the Cauchy prob-
lem in these cases, it is necessary to seek solutions in the class of singular functions
called 𝛿-shocks. Roughly speaking, a 𝛿-shock is a solution such that its components
contain Dirac delta functions. The theory of 𝛿-shocks has been intensively devel-
oped in the last twenty years (see [2], [8]–[10], [12] and the references therein). In
numerous papers 𝛿-shocks are extensively studied in the system of zero-pressure
gas dynamics:

𝜌𝑡 +∇ ⋅ (𝜌𝑈) = 0, (𝜌𝑈)𝑡 +∇ ⋅ (𝜌𝑈 ⊗ 𝑈) = 0, (1.3)

where 𝜌 ≥ 0 is density, 𝑈 is velocity,⊗ is the tensor product of vectors. System (1.3)
can be considered to describe the formation of large-scale structures of the uni-
verse [11], for modeling the formation and evolution of traffic jams. For modeling
dusty gases one can use zero-pressure gas dynamics with the energy conservation
law [9], [10]. 𝛿-Shocks arise in the model of non-classical shallow water flows [3], in
the model of granular gases [5]. It was observed in [7] that two component system
of nonlinear chromatography(

𝑢𝑗 +
𝑎𝑗𝑢𝑗

1− 𝑢1 + 𝑢2

)
𝑡
+ (𝑢𝑗)𝑥 = 0, 𝑢𝑗 ≥ 0, 𝑥 ≥ 0, 𝑡 ≥ 0, (1.4)

admits 𝛿-shock wave type solutions, where 𝑎𝑗 is a constant, 𝑗 = 1, 2.
Since a “nonclassical” 𝛿-shock wave type solution does not satisfy the standard

integral identities of the type (1.2), it is necessary to understand in which sense
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it may satisfy a nonlinear system of partial differential equations, i.e., to find an
appropriate definition of this weak solution. Unfortunately, using the above-cited
instruction from the Evans’ book [4, 3.4.1.a.], it is impossible to derive integral
identities to define 𝛿- and 𝛿′-shock wave type solutions. Indeed, as can be seen from
(1.1), if by integrating by parts we transfer the derivatives onto a test function
𝜑, under the integral sign there still remain nonlinear terms 𝐹 (𝑈) undefined in
the distributional sense since components of 𝑈 may contain the Dirac measures
and their derivatives. To solve these problems, there are several approaches. For
example, 𝛿-shock can be defined as a measure-valued solution, in the Colombeau
sense, or by using a nonconservative product.

Our approach here is to derive integral identities for defining 𝛿-shock wave
type solution in the sense of Schwartzian distributions. In Section 2, we derive
integral identities for the case of multidimensional zero-pressure gas dynamics
(1.3); and in Section 3, for a class of systems of conservation laws (3.1). System
(3.1) is a substantial generalization of nonlinear chromatography (1.4). The fact
that systems of the type (3.1) can admit delta-shocks gives a new perspective in
the theory of singular solutions to systems of conservation laws. Using the above
definitions one can derive the corresponding Rankine–Hugoniot conditions (see
Theorems 2.1, 3.1).

2. Zero-pressure gas dynamics (1.3)

Let Γ = {(𝑥, 𝑡) : 𝑆(𝑥, 𝑡) = 0} be a hypersurface of codimension 1 in {(𝑥, 𝑡) :
𝑥 ∈ ℝ𝑛, 𝑡 ∈ [0,∞)} ⊂ ℝ𝑛+1, 𝑆 ∈ 𝐶∞(ℝ𝑛 × [0,∞)), with ∇𝑆(𝑥, 𝑡)

∣∣
𝑆=0

∕= 0

for any fixed 𝑡. Let Γ𝑡 = {𝑥 ∈ ℝ𝑛 : 𝑆(𝑥, 𝑡) = 0} be a moving surface in ℝ𝑛.
Denote by 𝜈 the unit space normal to Γ𝑡 pointing (in the positive direction) from

Ω−
𝑡 = {𝑥 ∈ ℝ𝑛 : 𝑆(𝑥, 𝑡) < 0} to Ω+𝑡 = {𝑥 ∈ ℝ𝑛 : 𝑆(𝑥, 𝑡) > 0} such that 𝜈𝑗 =

𝑆𝑥𝑗

∣∇𝑆∣ ,
𝑗 = 1, . . . , 𝑛. The time component of the normal vector −𝐺 = 𝑆𝑡

∣∇𝑆∣ is the velocity

of the wave front Γ𝑡 along the space normal 𝜈. Since we consider the evolution of
a wave front Γ𝑡 along the normal direction,

𝑈𝛿 = 𝜈𝐺 = −𝑆𝑡∇𝑆
∣∇𝑆∣2 (2.1)

is the 𝛿-shock velocity. According to the above-cited papers, the 𝛿-shock for system
(1.3) is a pair of distributions

(𝑈, 𝜌), where 𝜌(𝑥, 𝑡) = 𝜌(𝑥, 𝑡) + 𝑒(𝑥, 𝑡)𝛿(Γ), (2.2)

𝑈 ∈ 𝐿∞
(
ℝ𝑛 × (0,∞);ℝ𝑛

)
, 𝜌 ∈ 𝐿∞

(
ℝ𝑛× (0,∞);ℝ

)
, 𝑒 ∈ 𝐶(Γ). The delta function

concentrated on the surface Γ is introduced as the functional [6, 5.3.(1),(2)]:〈
𝛿(𝑆), 𝜑(𝑥, 𝑡)

〉
=

∫ ∞

−∞

∫
Γ𝑡

𝜑(𝑥, 𝑡) 𝑑Γ𝑡 𝑑𝑡 =

∫
Γ

𝜑(𝑥, 𝑡) 𝑑Γ√
1 +𝐺2

, ∀𝜑 ∈ 𝒟(ℝ𝑛×ℝ). (2.3)

We will consider the 𝛿-shock type initial data

(𝑈0(𝑥), 𝜌0(𝑥); 𝑈0𝛿 (𝑥), 𝑥 ∈ Γ0), where 𝜌0(𝑥) = 𝜌0(𝑥) + 𝑒0(𝑥)𝛿(Γ0), (2.4)
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𝑈0 ∈ 𝐿∞
(
ℝ𝑛;ℝ𝑛

)
, 𝜌0 ∈ 𝐿∞

(
ℝ𝑛;ℝ

)
, 𝑒0 ∈ 𝐶(Γ0), 𝑈

0
𝛿 (𝑥)

∣∣
Γ0

is the initial velocity of

the 𝛿-shock wave, Γ0 = {𝑥 : 𝑆0(𝑥) = 0} is the initial position of the wave front.
For some calculations we need the following formulas. If 𝑓(𝑥, 𝑡) is a differen-

tiable function, then according to [6, 12.6.(15),(16)], we have

∂

∂𝑡

(
𝑓𝛿(𝑆)

)
=

𝛿𝑓

𝛿𝑡
𝛿(𝑆)−𝐺𝑓𝛿′(𝑆),

∂

∂𝑥𝑗

(
𝑓𝛿(𝑆)

)
=

𝛿𝑓

𝛿𝑥𝑗
𝛿(𝑆) + 𝜈𝑗𝑓𝛿

′(𝑆), (2.5)

𝛿𝑓

𝛿𝑡

def
=

∂𝑓

∂𝑡
+𝐺

∂𝑓

∂𝜈
=

∂𝑓

∂𝑡
+ 𝑈𝛿 ⋅ ∇𝑓, 𝛿𝑓

𝛿𝑥𝑗

def
=

∂𝑓

∂𝑥𝑗
− 𝜈𝑗

∂𝑓

∂𝜈
, 𝑗 = 1, . . . , 𝑛, (2.6)

are the 𝛿-derivatives with respect to the time and space variables [6, 5.2.(15),(16)]

and ∂𝑓
∂𝜈 = 𝜈 ⋅ ∇𝑓 is the normal derivative, −𝐺 = 𝑆𝑡

∣∇𝑆∣ .
Now we temporarily assume that system (1.3) admits a 𝛿-shock type solution

of the form (2.2), where 𝑈 and 𝜌 are piecewise smooth. Since 𝜌 ∈ 𝒟′(ℝ𝑛× [0,∞)),
in view of the first equation in (1.3), we conclude that 𝜌𝑈 ∈ 𝒟′(ℝ𝑛× [0,∞)). Sup-
pose that 𝜌𝑈 = 𝐴(𝑈, 𝜌, 𝑒)+𝐵(𝑈, 𝜌, 𝑒)𝛿(−𝑆(𝑥, 𝑡)), where 𝐴(𝑈, 𝜌, 𝑒) = (𝐴1, . . . , 𝐴𝑛)
is piecewise smooth and 𝐵(𝑈, 𝜌, 𝑒) = (𝐵1, . . . , 𝐵𝑛) is continuous. Here the distribu-
tion 𝐵𝑘𝛿(𝑆) is called the simple layer and acts according to the rule: ⟨𝐵𝛿(𝑆), 𝜑⟩ =∫
Γ
𝐵(𝑥,𝑡)𝜑(𝑥,𝑡)√

1+𝐺2
𝑑Γ, 𝜑 ∈ 𝒟(ℝ𝑛×ℝ). Substituting the expression for 𝜌𝑈 and 𝜌(𝑥, 𝑡) =

𝜌(𝑥, 𝑡)+𝑒(𝑥, 𝑡)𝛿(−𝑆(𝑥, 𝑡)) into the first equation in (1.3) and using (2.5), (2.6), we
find that the coefficient of 𝛿′(−𝑆) is equal to 𝑒𝐺−∑𝑛

𝑗=1 𝐵𝑗𝜈𝑗 = 0. To satisfy the

last relation, we choose 𝐵𝑗 = 𝑒𝐺𝜈𝑗 . Thus, in view of (2.1), 𝐵𝑗 = 𝑒𝑈𝛿, and

𝜌𝑈 = 𝐴(𝑈, 𝜌, 𝑒) + 𝑒𝑈𝛿𝛿(−𝑆(𝑥, 𝑡)) ∈ 𝒟′(ℝ𝑛 × [0,∞)). (2.7)

According to the second equation in (1.3), 𝜌𝑈 ⊗ 𝑈 ∈ 𝒟′(ℝ𝑛 × [0,∞)). Let us
suppose that 𝜌𝑈 ⊗ 𝑈 = 𝐶(𝑈, 𝜌, 𝑒) + 𝐷(𝑈, 𝜌, 𝑒)𝛿(−𝑆(𝑥, 𝑡)), 𝐶(𝑈, 𝜌, 𝑒) = (𝐶𝑖𝑗) is a
piecewise smooth tensor-function and 𝐷(𝑈, 𝜌, 𝑒) = (𝐷𝑖𝑗) is a continuous tensor-
function. Next, substituting the last expression for 𝜌𝑈⊗𝑈 and (2.7) into the second
equation in (1.3) and using (2.5), (2.6), we find that the coefficient of 𝛿′(−𝑆) is
equal to 𝑒𝑈𝛿𝑖𝐺 −

∑𝑛
𝑗=1𝐷𝑖𝑗𝜈𝑗 = 0, 𝑖 = 1, 2, . . . , 𝑛. To satisfy this relation, we

choose 𝐷𝑖𝑗 = 𝑒𝑈𝛿𝑖𝐺𝜈𝑗 = 𝑒𝑈𝛿𝑖𝑈𝛿𝑗 . That is, 𝐷 = 𝑒𝑈𝛿 ⊗ 𝑈𝛿. Hence,

𝜌𝑈 ⊗ 𝑈 = 𝐶(𝑈, 𝜌, 𝑒) + 𝑒𝑈𝛿 ⊗ 𝑈𝛿𝛿(−𝑆(𝑥, 𝑡)) ∈ 𝒟′(ℝ𝑛 × [0,∞)). (2.8)

Formulas (2.7), (2.8) imply that 𝐴(𝑈, 𝜌, 𝑒) = 𝜌𝑈 , 𝐶(𝑈, 𝜌, 𝑒) = 𝜌𝑈⊗𝑈 if 𝑆(𝑥, 𝑡) ∕= 0.
In view of (1.3),〈

𝜌𝑡 +∇ ⋅ (𝜌𝑈), 𝜑
〉
= 0,

〈
(𝜌𝑈)𝑡 +∇ ⋅ (𝜌𝑈 ⊗ 𝑈), 𝜑

〉
= 0, ∀𝜑 ∈ 𝒟(ℝ𝑛 × [0,∞)).

Integrating the last relations by parts, using (2.2), (2.7), (2.8), and taking into
account that 𝐴(𝑈, 𝜌, 𝑒) = 𝜌𝑈 , 𝐶(𝑈, 𝜌, 𝑒) = 𝜌𝑈 ⊗ 𝑈 , we obtain〈

𝜌, 𝜑𝑡
〉
+

𝑛∑
𝑗=1

〈
𝜌𝑈𝑗, 𝜑𝑥𝑗

〉
=

∫ ∞

0

∫
𝜌
(
𝜑𝑡 + 𝑈 ⋅ ∇𝜑

)
𝑑𝑥 𝑑𝑡+

∫
𝜌0(𝑥)𝜑(𝑥, 0) 𝑑𝑥

+
〈
𝛿(𝑆), 𝑒(𝜑𝑡 + 𝑈𝛿 ⋅ ∇𝜑)

〉
+

〈
𝛿(𝑆), 𝑒𝜑

〉∣∣
𝑡=0

= 0,
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〈
𝜌𝑈, 𝜑𝑡

〉
+

𝑛∑
𝑗=1

〈
𝜌𝑈𝑈𝑗 , 𝜑𝑥𝑗

〉
=

∫ ∞

0

∫
𝜌𝑈

(
𝜑𝑡 + 𝑈 ⋅ ∇𝜑

)
𝑑𝑥 𝑑𝑡

+

∫
𝑈0(𝑥)𝜌0(𝑥)𝜑(𝑥, 0) 𝑑𝑥+

〈
𝛿(𝑆), 𝑒𝑈𝛿(𝜑𝑡 + 𝑈𝛿 ⋅ ∇𝜑)

〉
+

〈
𝛿(𝑆), 𝑒𝑈𝛿𝜑

〉∣∣
𝑡=0

= 0,

where in view of (2.3), (2.6), we have ⟨𝛿(𝑆), 𝑒(𝜑𝑡 + 𝑈𝛿 ⋅ ∇𝜑)⟩ =
∫
Γ
𝑒 𝛿𝜑𝛿𝑡

𝑑Γ√
1+𝐺2

,

⟨𝛿(𝑆), 𝑒𝜑⟩∣∣
𝑡=0

=
∫
Γ0
𝑒0(𝑥)𝜑(𝑥, 0) 𝑑Γ0, ⟨𝛿(𝑆), 𝑒𝑈𝛿(𝜑𝑡+𝑈𝛿 ⋅∇𝜑)⟩ =

∫
Γ
𝑒𝑈𝛿

𝛿𝜑
𝛿𝑡

𝑑Γ√
1+𝐺2

,

⟨𝛿(𝑆), 𝑒𝑈𝛿𝜑⟩
∣∣
𝑡=0

=
∫
Γ0
𝑒0(𝑥)𝑈0𝛿 (𝑥)𝜑(𝑥, 0) 𝑑Γ0. Thus, we derive integral identities.

Generalization of the above identities gives the following definition.

Definition 2.1 ([12, Definition 9.1]). A pair of distributions (𝑈, 𝜌) and a hyper-
surface Γ, where 𝜌(𝑥, 𝑡) = 𝜌(𝑥, 𝑡) + 𝑒(𝑥, 𝑡)𝛿(Γ) and 𝑈 ∈ 𝐿∞

(
ℝ𝑛 × (0,∞);ℝ𝑛

)
,

𝜌,∈ 𝐿∞
(
ℝ𝑛 × (0,∞);ℝ

)
, 𝑒,∈ 𝐶(Γ), is called a 𝛿-shock wave type solution of the

Cauchy problem (1.3), (2.4) if the integral identities∫ ∞

0

∫
𝜌
(
𝜑𝑡 + 𝑈 ⋅ ∇𝜑

)
𝑑𝑥 𝑑𝑡 +

∫
Γ

𝑒
𝛿𝜑

𝛿𝑡

𝑑Γ√
1 +𝐺2

+

∫
𝜌0(𝑥)𝜑(𝑥, 0) 𝑑𝑥 +

∫
Γ0

𝑒0(𝑥)𝜑(𝑥, 0) 𝑑Γ0 = 0,∫ ∞

0

∫
𝜌𝑈

(
𝜑𝑡 + 𝑈 ⋅ ∇𝜑

)
𝑑𝑥 𝑑𝑡+

∫
Γ

𝑒𝑈𝛿
𝛿𝜑

𝛿𝑡

𝑑Γ√
1 +𝐺2

+

∫
𝑈0(𝑥)𝜌0(𝑥)𝜑(𝑥, 0) 𝑑𝑥 +

∫
Γ0

𝑒0(𝑥)𝑈0𝛿 (𝑥)𝜑(𝑥, 0) 𝑑Γ0 = 0,

(2.9)

hold for all 𝜑 ∈ 𝒟(ℝ𝑛×[0,∞)). Here −𝐺 = 𝑆𝑡

∣∇𝑆∣ ;
∫
𝑓(𝑥) 𝑑𝑥 is the improper integral∫

ℝ𝑛 𝑓(𝑥) 𝑑𝑥; 𝑈𝛿 is the 𝛿-shock velocity defined by (2.1); 𝛿𝜑
𝛿𝑡 is the 𝛿-derivative (2.6).

Using Definition 2.1, we derive the Rankine–Hugoniot conditions for (1.3).

Theorem 2.1 ([12, Theorem 9.1; (9.19)]). Let us assume that Ω ⊂ ℝ𝑛 × (0,∞) is
a region cut by a smooth hypersurface Γ =

{
(𝑥, 𝑡) : 𝑆(𝑥, 𝑡) = 0

}
into left- and

right-hand parts Ω∓ = {(𝑥, 𝑡) : ∓𝑆(𝑥, 𝑡) > 0}. Let (𝑈, 𝜌,𝐻), Γ be a 𝛿-shock wave
type solution of system (1.3) (in the sense of Definition 2.1), and suppose that
𝑈, 𝜌,𝐻 are smooth in Ω± and have one-sided limits 𝑈±, 𝜌±, 𝐻± on Γ. Then the
Rankine–Hugoniot conditions for the 𝛿-shock

𝛿𝑒

𝛿𝑡
+∇Γ𝑡 ⋅ (𝑒𝑈𝛿) =

(
[𝜌𝑈 ]− [𝜌]𝑈𝛿

) ⋅ 𝜈,
𝛿(𝑒𝑈𝛿)

𝛿𝑡
+∇Γ𝑡 ⋅ (𝑒𝑈𝛿 ⊗ 𝑈𝛿) =

(
[𝜌𝑈 ⊗ 𝑈 ]− [𝜌𝑈 ]𝑈𝛿

) ⋅ 𝜈, (2.10)

hold on the discontinuity hypersurface Γ, where
[
𝑓(𝑈, 𝜌)

]
= 𝑓(𝑈−, 𝜌−, )−𝑓(𝑈+, 𝜌+)

is the jump of the function 𝑓(𝑈, 𝜌) across the discontinuity hypersurface Γ, ∇Γ𝑡 =(
𝛿
𝛿𝑥1

, . . . , 𝛿
𝛿𝑥𝑛

)
, 𝛿-derivatives 𝛿

𝛿𝑡 and 𝛿
𝛿𝑥𝑗

are defined by (2.6).
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3. New class of systems of conservation laws admitting 𝜹-shocks

Consider the system of conservation laws

(𝑢𝑗)𝑡 +
(
𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)

)
𝑥

= 0,

𝑥 ∈ ℝ, 𝑡 ≥ 0,
(3.1)

where 𝑓𝑗(⋅) is a smooth function, 𝜇𝑗 is a constant, 𝑗 = 1, 2, . . . , 𝑛. This class in-
cludes some Temple type systems, the system of nonlinear chromatography (see [7]);
the system for isotachophoresis [1, (1.1.2), (1.1.3)]. A 𝛿-shock type solution for sys-
tem (3.1) is a vector-distribution 𝑢 = (𝑢1, . . . , 𝑢𝑛), where

𝑢𝑗(𝑥, 𝑡) = 𝑢𝑗(𝑥, 𝑡) + 𝑒𝑗(𝑥, 𝑡)𝛿(Γ),

𝑗 = 1, 2, . . . , 𝑛,
(3.2)

where 𝑢𝑗 ∈ 𝐿∞
(
ℝ × (0,∞);ℝ

)
, 𝑒𝑗 ∈ 𝐶(Γ), Γ = {(𝑥, 𝑡) : 𝑆(𝑥, 𝑡) = 0} is the

discontinuity curve in the half-plane {(𝑥, 𝑡) : 𝑥 ∈ ℝ, 𝑡 ≥ 0}, 𝛿(Γ) (≡ 𝛿(𝑆)) is the
delta function (2.3) concentrated on Γ, −𝐺 = 𝑆𝑡

∣𝑆𝑥∣ . For system (3.1), we will use

the 𝛿-shock type initial data

𝑢0 =
(
𝑢01, . . . , 𝑢

0
𝑛

)
, (3.3)

where

𝑢0𝑗(𝑥) = 𝑢0𝑗(𝑥) + 𝑒0𝑗𝛿(Γ0),

and 𝑢0𝑗 ∈ 𝐿∞
(
ℝ;ℝ

)
, 𝑒0 is a constant.

(1) Since 𝑢𝑗 is given, by (3.2), in order to define the term 𝑓𝑗(𝜇1𝑢1+⋅ ⋅ ⋅+𝜇𝑛𝑢𝑛)
in the sense of Schwartzian distributions, we need to assume that

∑𝑛
𝑗=1 𝜇𝑗𝑒𝑗(𝑥, 𝑡) =

0. In view of this condition, 𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛 = 𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛.

(2) Let us temporarily assume that system (3.1) admits a 𝛿-shock of the form
(3.2), where 𝑢𝑗 is piecewise smooth. Since (𝑢𝑗)𝑡 ∈ 𝒟′(ℝ× [0,∞)), in view of (3.1),
the flux-functions 𝑢𝑗 𝑓𝑗(𝑢1+⋅ ⋅ ⋅+𝑢𝑛) will necessarily be distributions. Suppose that
𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛) = 𝐴𝑗(𝑢) +𝐵𝑗(𝑢, 𝑒)𝛿(−𝑆(𝑥, 𝑡)), where 𝐴𝑗(𝑢) is piecewise
smooth and 𝐵𝑗(𝑢, 𝑒) is continuous, 𝑗 = 1, . . . , 𝑛. Substituting the last relation and
(3.2) into system (3.1) and using formulas (2.5), (2.6), we find that the coefficient
of 𝛿′(Γ) is 𝑒𝑗

𝑆𝑡

∣𝑆𝑥∣ +𝐵𝑗
𝑆𝑥

∣𝑆𝑥∣ = 0, i.e., 𝐵𝑗 = − 𝑆𝑡

𝑆𝑥
𝑒𝑗, 𝑗 = 1, . . . , 𝑛. Thus,

𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛) = 𝐴𝑗(𝑢) + 𝑢𝛿(𝑥, 𝑡)𝑒𝑗𝛿(−𝑆(𝑥, 𝑡)),

𝑗 = 1, . . . , 𝑛,
(3.4)

where

𝑢𝛿(𝑥, 𝑡)
∣∣
Γ

= 𝐺𝜈 = −𝑆𝑡/𝑆𝑥
∣∣
Γ

(3.5)

is the velocity of the 𝛿-shock, 𝜈 = 𝑆𝑥

∣𝑆𝑥∣ . It is clear that if 𝑆(𝑥, 𝑡) ∕= 0, then

𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛) = 𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛) = 𝐴𝑗(𝑢).
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Consider the expression
〈
(𝑢𝑗)𝑡 +

(
𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅ + 𝜇𝑛𝑢𝑛)

)
𝑥
, 𝜑

〉
= 0, 𝜑 ∈

𝒟(ℝ× [0,∞)). Integrating it by parts and using (3.2), (3.4), (2.3), (2.6), we obtain∫ ∞

0

∫ (
𝑢𝑗𝜑𝑡 +𝐴𝑗(𝑢)𝜑𝑥

)
𝑑𝑥 𝑑𝑡+

〈
𝛿(Γ), 𝑒𝑗

(
𝜑𝑡 + 𝑢𝛿𝜑𝑥

)〉
+

∫
𝑢0𝑗(𝑥)𝜑(𝑥, 0) 𝑑𝑥 +

〈
𝛿(Γ0), 𝑒

0
𝑗𝜑(𝑥, 0)

〉
(3.6)

=

∫ ∞

0

∫
𝑢𝑗

(
𝜑𝑡 + 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)𝜑𝑥

)
𝑑𝑥 𝑑𝑡+

∫
𝑢0𝑗(𝑥)𝜑(𝑥, 0) 𝑑𝑥

+

∫
Γ

𝑒𝑗(𝑥, 𝑡)
𝛿𝜑(𝑥, 𝑡)

𝛿𝑡

𝑑𝑙√
1 +𝐺2

+ 𝑒0𝑗𝜑(𝑥, 0)
∣∣
Γ0

= 0, ∀𝜑 ∈ 𝒟(ℝ× [0,∞)),

𝑗 = 1, 2, . . . , 𝑛, where
∫
Γ ⋅ 𝑑𝑙 is the line integral over the arc Γ. Under our as-

sumptions relations (3.6) constitute the integral identities.

Now we suppose that Γ = {𝛾𝑖 : 𝑖 ∈ 𝐼} is a set of curves 𝛾𝑖 = {(𝑥, 𝑡) : 𝑆𝑖(𝑥, 𝑡) =
0} of the class 𝐶1, (𝑆𝑖)𝑥 ∕= 0, 𝑖 ∈ 𝐼, and 𝐼 is a finite set. Let 𝐼0 be a subset of 𝐼 such
that the arcs 𝛾𝑘 for 𝑘 ∈ 𝐼0 start from points of the 𝑥-axis and let Γ0 = {𝑥0𝑘 : 𝑘 ∈ 𝐼0}
be the set of initial points of the arcs 𝛾𝑘, 𝑘 ∈ 𝐼0. We consider the initial data (3.3),

where
∑𝑛

𝑗=1 𝜇𝑗𝑒
0
𝑗 = 0, and 𝑢0𝑗 ∈ 𝐿∞

(
ℝ;ℝ

)
; 𝑒0𝑗𝛿(Γ0)

def
=

∑
𝑘∈𝐼0 𝑒

0
𝑗;𝑘𝛿(𝑥− 𝑥0𝑘), 𝑒

0
𝑗;𝑘 is

a constant; 𝑘 ∈ 𝐼0; 𝑗 = 1, 2, . . . , 𝑛. Generalization of (3.6) implies

Definition 3.1 ([13]). A distribution 𝑢(𝑥, 𝑡) = (𝑢1(𝑥, 𝑡), . . . , 𝑢𝑛(𝑥, 𝑡)) and a set
of curves Γ, where 𝑢𝑗(𝑥, 𝑡) = 𝑢𝑗(𝑥, 𝑡) + 𝑒𝑗(𝑥, 𝑡)𝛿(Γ), 𝑢𝑗 ∈ 𝐿∞

(
ℝ × (0,∞);ℝ

)
,

𝑒𝑗(𝑥, 𝑡)𝛿(Γ)
def
=

∑
𝑖∈𝐼 𝑒𝑗;𝑖(𝑥, 𝑡)𝛿(𝛾𝑖), 𝑒𝑗;𝑖 ∈ 𝐶(𝛾𝑖), 𝑖 ∈ 𝐼, 𝑗 = 1, 2, . . . , 𝑛, and

𝑛∑
𝑗=1

𝜇𝑗𝑒𝑗(𝑥, 𝑡) = 0, (3.7)

is called a 𝛿-shock wave type solution of the Cauchy problem (3.1), (3.3) if∫ ∞

0

∫
𝑢𝑗

(
𝜑𝑡 + 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)𝜑𝑥

)
𝑑𝑥 𝑑𝑡+

∫
𝑢0𝑗(𝑥)𝜑(𝑥, 0) 𝑑𝑥 (3.8)

+
∑
𝑖∈𝐼

∫
𝛾𝑖

𝑒𝑗;𝑖(𝑥, 𝑡)
𝛿𝜑(𝑥, 𝑡)

𝛿𝑡

𝑑𝑙√
1 + 𝑢2𝛿

+
∑
𝑘∈𝐼0

𝑒0𝑗;𝑘𝜑(𝑥0𝑘, 0) = 0, 𝑗 = 1, 2, . . . , 𝑛,

hold for all 𝜑 ∈ 𝒟(ℝ× [0,∞)).

If Γ = {𝛾𝑖 : 𝑖 ∈ 𝐼}, where 𝛾𝑖 = {(𝑥, 𝑡) : 𝑥 = 𝜙𝑖(𝑡)}, 𝜙𝑖(𝑡) ∈ 𝐶1, 𝑖 ∈ 𝐼,

and ˙(⋅) = 𝑑
𝑑𝑡 (⋅), then 𝛿𝜑

𝛿𝑡

∣∣
𝛾𝑖

= 𝜑𝑡(𝜙𝑖(𝑡), 𝑡) + �̇�𝑖(𝑡)𝜑𝑥(𝜙𝑖(𝑡), 𝑡) = 𝑑𝜑(𝜙𝑖(𝑡),𝑡)
𝑑𝑡 . The

assumption (3.7) implies that for 𝑡 = 0 we have
∑𝑛

𝑗=1 𝜇𝑗𝑒
0
𝑗 = 0. Since 𝑢𝑗 =

𝑢𝑗 + 𝑒𝑗𝛿(Γ), 𝑗 = 1, 2, . . . , 𝑛, we need the condition (3.7) to define the relation
𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛) in the sense of Schwartzian distributions.

Using Definition 3.1, similarly to [12, Theorem 2.1.], we derive the Rankine–
Hugoniot conditions for (3.1).
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Theorem 3.1 ([13]). Let us assume that Ω ⊂ ℝ+ × (0,∞) is a region cut by a
smooth curve Γ = {(𝑥, 𝑡) : 𝑆(𝑥, 𝑡) = 0} into the left- and right-hand parts Ω∓. Let
𝑢 = (𝑢1, . . . , 𝑢𝑛) and let Γ be a 𝛿-shock wave type solution of system (3.1) such
that 𝑢𝑗(𝑥, 𝑡) = 𝑢𝑗(𝑥, 𝑡) + 𝑒𝑗(𝑥, 𝑡)𝛿(Γ) are smooth in Ω± and have one-sided limits
𝑢𝑗± on Γ, 𝑗 = 1, . . . , 𝑛. Then the Rankine–Hugoniot conditions for the 𝛿-shock

𝛿𝑒𝑗(𝑥, 𝑡)

𝛿𝑡
=

(
[𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)]Γ −

[
𝑢𝑗

]
Γ
𝑢𝛿

) 𝑆𝑥
∣𝑆𝑥∣

∣∣∣
Γ
,

𝑢𝛿(𝑥, 𝑡) =

∑𝑛
𝑗=1 𝜇𝑗 [𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)]∑𝑛

𝑗=1 𝜇𝑗 [𝑢𝑗 ]

∣∣∣
Γ
, 𝑗 = 1, . . . , 𝑛,

(3.9)

hold along Γ, where 𝑢𝛿(𝑥, 𝑡) is the velocity (3.5) of the 𝛿-shock. If Γ = {(𝑥, 𝑡) : 𝑥 =
𝜙(𝑡)}, 𝜙(𝑡) ∈ 𝐶1(0,+∞), relations (3.9) take the form

�̇�𝑗(𝑡) =
(
[𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)]− [𝑢𝑗]�̇�(𝑡)

)∣∣
𝑥=𝜙(𝑡)

,

�̇�(𝑡) =

∑𝑛
𝑗=1 𝜇𝑗 [𝑢𝑗 𝑓𝑗(𝜇1𝑢1 + ⋅ ⋅ ⋅+ 𝜇𝑛𝑢𝑛)]∑𝑛

𝑗=1 𝜇𝑗 [𝑢𝑗 ]

∣∣∣
𝑥=𝜙(𝑡)

, 𝑗 = 1, . . . , 𝑛.
(3.10)

It is easy to see that (3.10) implies (3.7).
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Classes of Generalized Functions
with Finite Type Regularities

Stevan Pilipović, Dimitris Scarpalézos and Jasson Vindas

Abstract. We introduce and analyze spaces and algebras of generalized func-
tions which correspond to Hölder, Zygmund, and Sobolev spaces of functions.
The main scope of the paper is the characterization of the regularity of dis-
tributions that are embedded into the corresponding space or algebra of gen-
eralized functions with finite type regularities.
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Keywords. Algebras of generalized functions, Sobolev spaces, Zygmund spaces,
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1. Introduction

In this paper we develop regularity theory in generalized function algebras parallel
to the corresponding theory within distribution spaces. We consider subspaces or
subalgebras in algebras of generalized functions which correspond to the classical
Sobolev spaces 𝑊 𝑘,𝑝, Zygmund spaces 𝐶𝑠

∗ , and Hölder spaces ℋ𝑘,𝜏 . We refer to
[2, 6, 14] for the theory of generalized function algebras and their use in the study
of various classes of equations.

It is known that the elements of algebras of generalized functions are rep-
resented by nets (𝑓𝜀)𝜀 of smooth functions, with appropriate growth as 𝜀 → 0,
that the spaces of Schwartz’s distributions are embedded into the corresponding
algebras, and that the algebra of regular generalized functions corresponding to
the space of smooth functions is 𝒢∞ (cf. [14, 22]). Intuitively, these algebras are
obtained through regularization of distributions (convolving them with delta nets)
and factorization of an appropriate algebra of moderate nets of smooth functions

The work of S. Pilipović is supported by the Serbian Ministry of Education and Science, through

project number 174024; J. Vindas gratefully acknowledges support by a Postdoctoral Fellowship
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with respect to an ideal of negligible nets, as Colombeau did [2] with his algebra
𝒢(ℝ𝑑) (in this way the name Colombeau algebras has appeared). By construc-
tion distributions are included in the corresponding Colombeau algebras and their
natural linear operations are preserved.

The main goal of this paper is to find out natural conditions with respect to
the growth order in 𝜀 which characterize generalized function spaces and algebras
with finite type regularities. Actually, our main task is to seek optimal definitions
for such generalized function spaces, since we would like to have backward infor-
mation on the regularity properties of Schwartz distributions that are embedded
into the corresponding space of generalized functions. Sobolev and Zygmund type
spaces are very suitable for this purpose. Particularly, the Zygmund type spaces
are useful in this respect, since we can almost literary transfer classical properties
of these spaces into their generalized versions.

One can find many articles in the literature where local and microlocal proper-
ties of generalized functions in generalized function algebras have been considered;
besides the quoted monographs, we refer to the papers [4]–[7], [9, 10, 15, 18, 22].
The motivation of this article came partly from the papers [9, 7], where Zygmund
type algebras of generalized functions were studied and used in the qualitative
analysis of certain hyperbolic problems. We shall define new classes of generalized
functions that are also intrinsically connected with the classical Zygmund spaces.

Note that in our paper [19] we have studied regularity properties of distribu-
tions 𝑇 in terms of growth properties of regularizing sequences 𝑇 ∗ 𝛿𝑛 with respect
to the parameter 𝑛 ∈ ℕ and various seminorms. Some ideas from that paper are
implicitly employed in Section 4 of the present article, where we reinterpret them
in the setting of the Colombeau algebra.

The paper is organized as follows. Preliminaries are given in Section 2. In
Section 3 we define our new spaces of generalized functions with finite type regu-
larities, the spaces 𝒢𝑘,−𝑠, which correspond to local versions of the Zygmund spaces
𝐶𝑟
∗ . They are subspaces of the Colombeau algebra 𝒢(Ω). Then, in Section 4, we

investigate the role of these new classes of generalized functions in the regularity
analysis of distributions; we characterize the regularity properties of those distri-
butions that, after embedding or association, belong to one of these classes. Our
main result is Theorem 1 of Section 4, we show that the intersection of 𝒢𝑘,−𝑠(Ω)

with the embedded image of 𝒟′(Ω) is precisely 𝜄(𝐶𝑘−𝑠
∗,loc(Ω)). As a consequence, we

obtain a quick proof of the important regularity theorem for 𝒢∞ ([14]). Theorems
2 and 3 deal with the analysis of the regularity of a distribution via strong versions
of association. Finally, Section 5 is devoted to the study of some generalized func-
tion spaces and algebras that are very helpful in global regularity analysis. The
global classes that we introduce are capable of recovering the embedded image of
the classical Zygmund and Hölder spaces of functions. We shall also compare our
global Zygmund type generalized function spaces with the one proposed in [9, 7].
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2. Preliminaries and notation

We denote by Ω an open subset of ℝ𝑑. We consider the families of local Sobolev
seminorms ∣∣𝜌∣∣𝑊𝑚,𝑝(𝜔) = sup{∣∣𝜌(𝛼)∣∣𝐿𝑝(𝜔); ∣𝛼∣ ≤ 𝑚}, where 𝑚 ∈ ℕ0, 𝑝 ∈ [1,∞],
and 𝜔 runs over all open subsets of Ω with compact closure (𝜔 ⊂⊂ Ω). The local
Sobolev space is then denoted as 𝑊𝑚,𝑝

loc (Ω). In case 𝜔 is replaced by Ω, we obtain
the family of norms ∣∣ ⋅ ∣∣𝑊𝑚,𝑝(Ω),𝑚 ∈ ℕ0.

Let ℰ(Ω) be the space of smooth functions in Ω. The spaces of moderate nets
and negligible nets ℰ𝐿𝑝

loc,𝑀
(Ω) and 𝒩𝐿𝑝

loc
(Ω) consist, resp., of nets (𝑓𝜀)𝜀∈(0,1) =

(𝑓𝜀)𝜀 ∈ ℰ(Ω)(0,1) with the properties

(∀𝑚 ∈ ℕ0)(∀𝜔 ⊂⊂ Ω)(∃𝑎 ∈ ℝ)(∣∣𝑓𝜀∣∣𝑊𝑚,𝑝(𝜔) = 𝑂(𝜀𝑎))

and (∀𝑚 ∈ ℕ0)(∀𝜔 ⊂⊂ Ω)(∀𝑏 ∈ ℝ)(∣∣𝑓𝜀∣∣𝑊𝑚,𝑝(𝜔) = 𝑂(𝜀𝑏))
(2.1)

(big 𝑂 and small 𝑜 are the Landau symbols). Note that, 𝑝 ∈ [1,∞],

ℰ𝑀 (Ω) := ℰ𝐿∞
loc,𝑀

(Ω) = ℰ𝐿𝑝
loc,𝑀

(Ω), 𝒩 (Ω) = 𝒩𝐿∞
loc

(Ω) = 𝒩𝐿𝑝
loc

(Ω).

We obtain the Colombeau algebra of generalized functions as a quotient:

𝒢(Ω) = 𝒢𝐿𝑝
loc

(Ω) = ℰ𝐿𝑝
loc,𝑀

(Ω)/𝒩𝐿𝑝
loc

(Ω), 𝑝 ∈ [1,∞].

The embedding of the Schwartz distribution space ℰ ′(Ω) into 𝒢(Ω) is realized
through the sheaf homomorphism ℰ ′(Ω) ∋ 𝑇 → 𝜄(𝑇 ) = [(𝑇 ∗𝜙𝜀∣Ω)𝜀] ∈ 𝒢(Ω), where
the fixed net of mollifiers (𝜙𝜀)𝜀 is defined by 𝜙𝜀 = 𝜀−𝑑𝜙(⋅/𝜀), 𝜀 < 1, and 𝜙 ∈ 𝒮(ℝ𝑑)
satisfies ∫

ℝ𝑑

𝜙(𝑡)𝑑𝑡 = 1,

∫
ℝ𝑑

𝑡𝛼𝜙(𝑡)𝑑𝑡 = 0, ∣𝛼∣ > 0.

This sheaf homomorphism [6], extended over 𝒟′, gives the embedding of 𝒟′(Ω)
into 𝒢(Ω). We also use the notation 𝜄 for the mapping from ℰ ′(Ω) into ℰ𝑀 (Ω),
𝜄(𝑇 ) = (𝑇 ∗ 𝜙𝜀∣Ω)𝜀. Throughout this article, 𝜙 will always be fixed and satisfy the
above condition over its moments.

The generalized algebra of “regular generalized functions” 𝒢∞(Ω) is defined
in [14] as the quotient of the algebras ℰ∞𝑀 (Ω) and 𝒩 (Ω), where ℰ∞𝑀 (Ω) consists of

those nets (𝑓𝜀)𝜀 ∈ ℰ(Ω)(0,1) with the property

(∀𝜔 ⊂⊂ Ω)(∃𝑎 ∈ ℝ)(∀𝛼 ∈ ℕ)(sup∣𝛼∣≤𝑚 ∣∣𝑓 (𝛼)𝜀 (𝑥)∣∣𝐿∞(𝜔) = 𝑂(𝜀𝑎)). (2.2)

Observe that 𝒢∞ is a subsheaf of 𝒢; it has a similar role as 𝐶∞ in 𝒟′.
2.1. Hölder–Zygmund spaces

We will employ the Hölder–Zygmund spaces [8, 12, 24]. We now collect some
background material about these spaces. We start with Hölder spaces. Let 𝑘 ∈ ℕ0
and 𝜏 ∈ (0, 1), then the global Hölder space ℋ𝑘,𝜏 (ℝ𝑑) [8, Chap. 8] consists of those
𝐶𝑘 functions such that

∣∣𝑓 ∣∣ℋ𝑘,𝜏 (ℝ𝑑) = ∣∣𝑓 ∣∣𝑊𝑘,∞(ℝ𝑑) + sup
∣𝛼∣=𝑘,𝑥 ∕=𝑦,𝑥,𝑦∈ℝ𝑑

∣𝑓 (𝛼)(𝑥) − 𝑓 (𝛼)(𝑦)∣
∣𝑥− 𝑦∣𝜏 <∞. (2.3)

The definition of the local space ℋ𝑘,𝜏
loc (Ω) is clear.
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There are several ways to introduce the global Zygmund space 𝐶𝑟
∗(ℝ𝑑) [8, 11,

24]. When 𝑟 = 𝑘 + 𝜏, 𝑘 ∈ ℕ0, 𝜏 ∈ (0, 1), we have the equality 𝐶𝑟
∗(ℝ𝑑) = ℋ𝑘,𝜏 (ℝ𝑑),

but the Zygmund spaces are actually defined for all 𝑟 ∈ ℝ. They are usually
introduced via either a dyadic Littlewood–Paley resolution [24] or a continuous
Littlewood–Paley decomposition of the unity [8]. We follow the slightly more flex-
ible approach from [16] via generalized (continuous) Littlewood–Paley pairs (a
dyadic version can be found in [24, p. 7, Thm. 1.7]). Let 𝑟 ∈ ℝ. We say that
𝜑, 𝜓 ∈ 𝒮(ℝ𝑑) form a generalized Littlewood–Paley pair (of order 𝑟) if they satisfy
the following compatibility conditions:

(∃𝜎 > 0, 𝜂 ∈ (0, 1))(∣𝜑(𝜉)∣ > 0 for ∣𝜉∣ ≤ 𝜎

and ∣𝜓(𝜉)∣ > 0 for 𝜂𝜎 ≤ ∣𝜉∣ ≤ 𝜎)
(2.4)

and ∫
ℝ𝑑

𝑡𝛼𝜓(𝑡)𝑑𝑡 = 0 for ∣𝛼∣ ≤ [𝑟]. (2.5)

When 𝑟 < 0, the vanishing requirement over the moments is dropped. Then,
𝐶𝑟∗(ℝ𝑑) is the space of all distributions 𝑇 ∈ 𝒮 ′(ℝ𝑑) satisfying:

∥𝑇 ∥𝐶𝑟∗(ℝ𝑑) := ∣∣𝑇 ∗ 𝜑∣∣𝐿∞(ℝ𝑑) + sup
𝑦<1

𝑦−𝑟∣∣𝑇 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑) <∞. (2.6)

The definition and the norm (2.6) are independent of the choice of the pair (𝜑, 𝜓)
as long as (2.4) and (2.5) hold [16]. When 𝑟 = 𝑘 + 𝜏, 𝑘 ∈ ℕ0, 𝜏 ∈ (0, 1), the
norms (2.3) and (2.6) are equivalent. A distribution 𝑇 ∈ 𝒟′(Ω) is said to belong
to 𝐶𝑟

∗,loc(Ω) if for all 𝜌 ∈ 𝒟(Ω) we have 𝜌𝑇 ∈ 𝐶𝑟∗(ℝ𝑑).

3. Classes of generalized functions with finite type regularities

In this paper we are interested in nets (𝑓𝜀)𝜀 ∈ ℰ𝑀 (Ω) such that for given 𝑘 ∈ ℕ
there exists 𝑠 > 0 such that (𝑝 ∈ [1,∞])

(∀𝜔 ⊂⊂ Ω)(∣∣𝑓𝜀∣∣𝑊𝑘,𝑝(𝜔) = 𝑂(𝜀−𝑠), 𝜀→ 0). (3.1)

Observe that (3.1) is closely related to (2.2). When 𝑝 = ∞, such nets will be the

representatives of, roughly speaking, 𝐶𝑘−𝑠
∗,loc-generalized functions.

Definition 1. Let 𝑠 ∈ ℝ, 𝑘 ∈ ℕ0, and 𝑝 ∈ [1,∞].

(i) A net (𝑓𝜀)𝜀 ∈ ℰ𝑀 (Ω) is said to belong to ℰ𝑘,−𝑠
𝐿𝑝

loc,𝑀
(Ω) if (3.1) holds.

(ii) A generalized function 𝑓 = [(𝑓𝜀)𝜀] ∈ 𝒢(Ω) is said to belong to 𝒢𝑘,−𝑠
𝐿𝑝

loc
(Ω) if

(𝑓𝜀)𝜀 ∈ ℰ𝑘,−𝑠𝐿𝑝
loc,𝑀

(Ω).

(iii) We set 𝒢∞,−𝑠
𝐿𝑝

loc
(Ω) =

∩
𝑘∈ℕ 𝒢𝑘,−𝑠𝐿𝑝

loc
(Ω) and ℰ∞,−𝑠

𝐿𝑝
loc,𝑀

(Ω) =
∩
𝑘∈ℕ ℰ𝑘,−𝑠𝐿𝑝

loc,𝑀
(Ω).

(iv) When 𝑝 =∞, we write 𝒢𝑘,−𝑠(Ω) = 𝒢𝑘,−𝑠𝐿∞
loc

(Ω) and ℰ𝑘,−𝑠𝑀 (Ω) = ℰ𝑘,−𝑠𝐿∞
loc,𝑀

(Ω).

We list some properties of these classes of generalized functions in the next
proposition. Their proofs follow immediately from Definition 1.
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Proposition 1. Let 𝑠 ∈ ℝ, 𝑘 ∈ ℕ0 ∪ {∞}, and 𝑝 ∈ [1,∞].

(i) 𝒢𝑘,−𝑠
𝐿𝑝

loc
(Ω) are vector spaces.

(ii) 𝒢𝑘,−𝑠
𝐿𝑝

loc
(Ω) ⊆ 𝒢𝑘1,−𝑠1

𝐿𝑝
loc

(Ω) if 𝑘 ≥ 𝑘1 and 𝑠 ≤ 𝑠1.

(iii) Let 𝑃 (𝐷) be a differential operator of order 𝑚 ≤ 𝑘 with constant coefficients.

Then 𝑃 (𝐷) : 𝒢𝑘,−𝑠
𝐿𝑝

loc
(Ω)→ 𝒢𝑘−𝑚,−𝑠

𝐿𝑝
loc

(Ω).

The intuitive idea behind these notions is to measure the regularity of the
net in terms of the two parameters 𝑘 and 𝑠: As the parameters 𝑘 increases and 𝑠
decreases, the net becomes more regular. Furthermore, it should be noticed that
𝑓 belongs to the algebra of smooth generalized functions 𝒢∞(Ω) if and only if
(∀𝜔 ⊂⊂ Ω)(∃𝑠)(𝑓∣𝜔 ∈ 𝒢∞,−𝑠(𝜔)).

4. Characterization of local regularity through association

In this section we characterize local regularity of distributions via either embedding

in our classes 𝒢𝑘,−𝑠
𝐿𝑝

loc
(Ω) or association with its elements.

Recall that we say that the net (𝑓𝜀)𝜀 ∈ ℰ(0,1)(Ω), or the generalized function
𝑓 = [(𝑓𝜀)𝜀], is (distributionally) associated to the distribution 𝑇 if lim𝜀→0 𝑓𝜀 = 𝑇
in the weak topology of 𝒟′(Ω), that is,

(∀𝜌 ∈ 𝒟(Ω))(⟨𝑇 − 𝑓𝜀, 𝜌⟩ = 𝑜(1), 𝜀→ 0). (4.1)

We then write (𝑓𝜀)𝜀 ∼ 𝑇 , or 𝑓 ∼ 𝑇 . In many cases, the rate of approximation in
(4.1) may be much better than just 𝑜(1); one can often profit from the knowledge of
such an additional useful asymptotic information. Let 𝑅 : (0, 1]→ ℝ+ be a positive
function such that 𝑅(𝜀) = 𝑜(1), 𝜀→ 0. We write 𝑇 − 𝑓𝜀 = 𝑂(𝑅(𝜀)) in 𝒟′(Ω) if

(∀𝜌 ∈ 𝒟(Ω))(⟨𝑇 − 𝑓𝜀, 𝜌⟩ = 𝑂(𝑅(𝜀)), 𝜀 < 1).

We begin with the following standard proposition. It gives the characteriza-

tion of the embedding of 𝑊 𝑘,𝑝
loc . The case 𝑝 =∞ motivates our main results of this

section.

Proposition 2. Let 𝑘 ∈ ℕ0 and 𝑝 ∈ (1,∞].

(a) 𝜄(𝑊 𝑘,𝑝
loc (Ω)) = 𝜄(𝒟′(Ω)) ∩ 𝒢𝑘,0

𝐿𝑝
loc

(Ω).

(b) More generally, if (𝑓𝜀)𝜀 ∼ 𝑇 ∈ 𝒟′(Ω) and 𝑓 = [(𝑓𝜀)𝜀] ∈ 𝒢𝑘,0
𝐿𝑝

loc
(Ω), then

𝑇 ∈𝑊 𝑘,𝑝
loc (Ω).

Proof. It is enough to show part b). We have that for every ∣𝛼∣ ≤ 𝑘, ((𝑓
(𝛼)
𝜀 )∣𝜔)𝜀 is

weakly precompact in 𝐿𝑝(𝜔) if 𝑝 < ∞, resp. weakly∗ precompact in 𝐿∞(𝜔). The

rest follows from the distributional convergence of 𝑓
(𝛼)
𝜀 to 𝑇 (𝛼). □

We now formulate and prove the main results of this section. We focus on
the case 𝑝 =∞ of the classes of generalized functions defined in Section 3.
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4.1. Characterization of 𝑪𝒓
∗,loc – the role of 퓖𝒌,−𝒔

The next important theorem provides the precise characterization of those distri-
butions that belong to 𝒢𝑘,−𝑠(Ω), they turn out to be elements of a Zygmund space.
We only consider the case 𝑠 > 0; otherwise, one has 𝒢𝑘,−𝑠(Ω) ∩ 𝜄(𝒟′(Ω)) = {0}.
Theorem 1. Let 𝑠 > 0. We have 𝒢𝑘,−𝑠(Ω) ∩ 𝜄(𝒟′(Ω)) = 𝜄(𝐶𝑘−𝑠

∗,loc(Ω)).

Before giving the proof of Theorem 1, we would like to discuss two corollaries
of it. It is worth reformulating Theorem 1 in order to privilege the role of the
Zygmund space.

Corollary 1. Let 𝑟 ∈ ℝ. If 𝑘 is any non-negative integer such that 𝑘 > 𝑟, then

𝜄(𝐶𝑟
∗,loc(Ω)) = 𝒢𝑘,𝑟−𝑘(Ω) ∩ 𝜄(𝒟′(Ω)).

Corollary 1 can be used to give a striking proof of Oberguggenberger’s regu-
larity result [14] for the smooth algebra 𝒢∞(Ω):

Corollary 2. We have 𝜄(𝒟′(Ω)) ∩ 𝒢∞(Ω) = 𝜄(𝐶∞(Ω)).

Proof. One inclusion is obvious. By localizing, it suffices to show that if 𝑇 ∈ ℰ ′(Ω)
and 𝜄(𝑇 ) ∈ 𝒢∞,−𝑠(Ω) for some 𝑠 ∈ ℝ+ ∖ ℕ, then 𝑇 ∈ 𝐶∞(Ω). Given any 𝑘 > 0,
write 𝑟 = 𝑘 − 𝑠. Corollary 1 yields 𝑇 ∈ 𝐶𝑘−𝑠∗ (Ω). Since this can be done for all 𝑘,
we conclude that 𝑓 ∈ 𝐶∞(Ω). □

Proof of Theorem 1. Observe that the statement of Theorem 1 is a local one. Thus,
it is enough to show that 𝒢𝑘,−𝑠(Ω) ∩ 𝜄(ℰ ′(Ω)) = 𝜄(𝐶𝑘−𝑠

∗ (ℝ𝑑) ∩ ℰ ′(Ω)). So, further
on, in this proof we assume 𝑇 ∈ ℰ ′(Ω). Let us show the reverse inclusion. The

partial derivatives continuously act on the Zygmund spaces [8] as ∂𝑚 : 𝐶𝛽
∗ (ℝ𝑑) →

𝐶
𝛽−∣𝑚∣
∗ (ℝ𝑑). Thus, if 𝑇 ∈ 𝐶𝑘−𝑠

∗ (ℝ𝑑) ∩ ℰ ′(Ω) then 𝑇 (𝛼) ∈ 𝐶−𝑠
∗ (ℝ𝑑) ∩ ℰ ′(Ω) for all

∣𝛼∣ ≤ 𝑘. We can then apply [16, Lemm. 5.2] to each 𝑇 (𝛼) (with 𝜃 = 𝜙 in [16, Lemm.
5.2, Eq. (5.7)]) and conclude

∣∣𝑇 (𝛼) ∗ 𝜙𝜀∣∣𝐿∞(ℝ𝑑) ≤ 𝐶𝜀−𝑠∣∣𝑇 (𝛼)∣∣𝐶−𝑠
∗ (ℝ𝑑).

Thus ((𝑇 ∗ 𝜙𝜀)∣Ω)𝜀 ∈ ℰ𝑘,−𝑠𝑀 (Ω).

Assume now that ((𝑇 ∗ 𝜙𝜀)∣Ω)𝜀 ∈ ℰ𝑘,−𝑠𝑀 (Ω). We first show that actually (𝑇 ∗
𝜙𝜀)𝜀 ∈ ℰ𝑘,−𝑠𝑀 (ℝ𝑑). Indeed, let supp𝑇 ⊂ 𝜔1 ⊂⊂ 𝜔2 ⊂⊂ Ω. It suffices to prove that
for every multi-index 𝛼 ∈ ℝ𝑑

sup
𝑥∈ℝ𝑑∖𝜔2

∣∣∣(𝑇 (𝛼) ∗ 𝜙𝜀)(𝑥)∣∣∣ = 𝑂(1), 0 < 𝜀 ≤ 1. (4.2)

Let 𝐴 be the distance between 𝜔1 and ∂𝜔2. Find 𝑟 such that

(∀𝜌 ∈ ℰ(ℝ𝑑))(∣⟨𝑇 (𝛼), 𝜌⟩∣ < 𝐶∥𝜌∥𝑊 𝑟,∞(𝜔1)).

Setting 𝜌(𝑢) = 𝜙𝜀(𝑥−𝑢) and using the fact that 𝜙 is rapidly decreasing, we obtain,

sup
𝑥∈ℝ𝑑∖𝜔2

∣∣∣(𝑇 (𝛼) ∗ 𝜙𝜀)(𝑥)∣∣∣ < 𝐶 sup
𝑥∈ℝ𝑑∖𝜔2

sup
𝑢∈𝜔1

(𝜀+ ∣𝑥− 𝑢∣)−𝑟−𝑑 ≤ 𝐶𝐴−𝑟−𝑑,
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which yields (4.2). Next, set 𝑔𝜀 = 𝜀𝑠(𝑇 ∗𝜙𝜀). Then, (𝑇 ∗𝜙𝜀)𝜀 ∈ ℰ𝑘,−𝑠𝑀 (ℝ𝑑) precisely

tells us that (𝑔𝜀)𝜀 is a bounded net in the space 𝐶𝑘
𝑏 (ℝ

𝑑), the Banach space of 𝑘-
times continuously differentiable functions that are globally bounded together with
all their partial derivatives of order ≤ 𝑘. Since the inclusion mapping 𝐶𝑘

𝑏 (ℝ
𝑑) →

𝐶𝑘
∗ (ℝ𝑑) is obviously continuous, we obtain that (𝑔𝜀)𝜀 is a bounded net in the

Zygmund space 𝐶𝑘∗ (ℝ𝑑). Let 𝜓 ∈ 𝒮(ℝ𝑑) be such that (𝜙, 𝜓) forms a generalized
Littlewood–Paley pair of order 𝑘 (cf. (2.4) and (2.5)). Then 𝑇 ∗ 𝜙 ∈ 𝐿∞(ℝ𝑑) and

sup
𝑦∈(0,1]

𝑦−𝑘∣∣𝑔𝜀 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑) = sup
𝑦∈(0,1]

𝜀𝑠𝑦−𝑘∣∣𝑇 ∗ 𝜙𝜀 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑) = 𝑂(1), 𝜀 ∈ (0, 1].

Setting 𝜀 = 𝑦 and 𝜓1 = 𝜙 ∗ 𝜓 in the previous estimate and noticing that (𝜙, 𝜓1) is
again a Littlewood–Paley pair, we obtain

sup
𝑦∈(0,1]

𝑦𝑠−𝑘∣∣𝑇 ∗ (𝜓1)𝑦 ∣∣𝐿∞(ℝ𝑑) = 𝑂(1),

which in turn implies that 𝑇 ∈ 𝐶𝑘−𝑠
∗ (ℝ𝑑). □

4.2. Regularity via association

We now move to regularity analysis through association. Theorem 1 can be also
used to recover the following general form of Corollary 2, originally obtained in [17].

Theorem 2. Let 𝑇 ∈ 𝒟′(Ω) and let 𝑓 = [(𝑓𝜀)𝜀] ∈ 𝒢(Ω) be associated to it. Assume
that 𝑓 ∈ 𝒢∞(Ω). If (𝑓𝜀)𝜀 approximates 𝑇 with convergence rate:

(∃𝑏 > 0)(𝑇 − 𝑓𝜀 = 𝑂(𝜀𝑏) in 𝒟′(Ω)). (4.3)

Then 𝑇 ∈ 𝐶∞(Ω).

Proof. Since the hypotheses and the conclusion of Theorem 2 are local statements,
we may assume that 𝑇 ∈ ℰ ′(Ω) and there exists an open subset 𝜔 ⊂⊂ Ω such that

supp𝑇, supp 𝑓𝜀 ⊂ 𝜔, 𝜀 ∈ (0, 1). (4.4)

We will show that 𝑇 ∈ 𝒟(Ω). Our assumption now becomes (𝑓𝜀)𝜀 ∈ ℰ∞,−𝑠
𝑀 (Ω) for

some 𝑠 > 0. The support condition (4.4), the rate of convergence (4.3), and the
equivalence between weak and strong boundedness on ℰ ′(Ω) (Banach–Steinhaus
theorem) yield

(∃𝑟 ∈ ℕ)(∃𝐶 > 0)(∀𝜌 ∈ ℰ(Ω))(∀𝑡 ∈ (0, 1))(∣⟨𝑇 − 𝑓𝑡, 𝜌⟩∣ ≤ 𝐶𝑡𝑏∥𝜌∥𝑊 𝑟,∞(Ω)). (4.5)

Let 𝛽 be an arbitrary positive number. Then, by (𝑓𝜀)𝜀 ∈ ℰ∞,−𝑠
𝑀 (Ω) and (4.5), given

any 𝑘 ∈ ℕ, we can find positive constants 𝐶1 and 𝐶2 (depending only on 𝑘, 𝜙) such
that

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶1𝑡
−𝑠 + 𝐶2𝑡

𝑏𝜀−𝑑−𝑟−𝑘, 𝜀, 𝑡 ∈ (0, 1).

Find 𝜂 > 0 such that 𝜂𝑠/𝑏 < 1/2. Setting 𝑡 = 𝜀𝑘𝜂/𝑏, we obtain

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶1𝜀
−𝑘/2 + 𝐶2𝜀

𝜂𝑘−𝑑−𝑟−𝑘, 𝜀 ∈ (0, 1).
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We can now choose 𝑘 such that 𝛽 < min {𝑘/2, 𝜂𝑘 − 𝑑− 𝑟}; the conclusion from

the previous estimate is that ((𝑇 ∗ 𝜙𝜀)∣𝜔)𝜀 ∈ ℰ𝑘,𝛽−𝑘𝑀 (𝜔), and hence, by Corollary

1, 𝑇 ∈ 𝐶𝛽
∗,loc(𝜔). Since 𝛽 was arbitrary, it follows that 𝑇 ∈ 𝐶∞(ℝ𝑑). □

We now discuss other sufficient criteria for regularity. The ensuing result is
directly motivated by Proposition 2. We relax the growth constrains in it, and, by
requesting an appropriate rate of convergence, we obtain two sufficient conditions
for regularity of distributions.

Theorem 3. Let 𝑇 ∈ 𝒟′(Ω) and let 𝑓 = [(𝑓𝜀)𝜀] ∈ 𝒢(Ω) be a generalized function
associated to it. Furthermore, let 𝑘 ∈ ℕ. Assume that either of following pair of
conditions hold:

(i) 𝑓 ∈ 𝒢𝑘,−𝑎(Ω), ∀𝑎 > 0, namely,

(∀𝑎 > 0)(∀𝜔 ⊂⊂ Ω)(∀𝛼 ∈ ℕ𝑑, ∣𝛼∣ ≤ 𝑘)(sup
𝑥∈𝜔

∣𝑓 (𝛼)𝜀 (𝑥)∣ = 𝑂(𝜀−𝑎)), (4.6)

and the convergence rate of (𝑓𝜀)𝜀 to 𝑇 is as in (4.3).
(ii) 𝑓 ∈ 𝒢𝑘,−𝑠(Ω) for some 𝑠 > 0, and there is a rapidly decreasing function

𝑅 : (0, 1]→ ℝ+, i.e., (∀𝑎 > 0)(lim𝜀→0 𝜀−𝑎𝑅(𝜀) = 0), such that

𝑇 − 𝑓𝜀 = 𝑂(𝑅(𝜀)) in 𝒟′(Ω). (4.7)

Then, 𝑇 ∈ 𝐶𝑘−𝜂
∗, loc(Ω) for every 𝜂 > 0.

Proof. By localization, it suffices again to assume that 𝑇 ∈ ℰ ′(Ω) and there exists
an open subset 𝜔 ⊂⊂ Ω such that (4.4) holds. The proof is analogous to that of
Theorem 2.

(i) In view of the Banach–Steinhaus theorem, the conditions (4.3) and (4.4)
imply (4.5). Thus, with 𝐶2 = 𝐶∣∣𝜙∣∣𝑊 𝑟,∞(ℝ𝑑),

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶2𝑡
𝑏𝜀−𝑑−𝑟−𝑘 + ∥𝑓𝑡 ∗ 𝜙𝜀∥𝑊𝑘,∞(𝜔),

≤ 𝐶2𝑡
𝑏𝜀−𝑑−𝑟−𝑘 + ∥𝜙∥𝐿1(ℝ𝑑) ∥𝑓𝑡∥𝑊𝑘,∞(𝜔), 𝑡, 𝜀 ∈ (0, 1).

By (4.6), given any 𝑎 > 0, there exists 𝑀 = 𝑀𝑎 > 0 such that

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶2𝑡
𝑏𝜀−𝑑−𝑟−𝑘 +𝑀𝑡−𝑎, 𝑡, 𝜀 ∈ (0, 1).

By taking 𝑡 = 𝜀(𝑘+𝑟+𝑑)/𝑏, it follows that

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶2 +𝑀𝜀−𝑎(𝑘+𝑟+𝑑)/𝑏, 𝜀 ∈ (0, 1).

If we take sufficiently small 𝑎, we conclude that (𝑇 ∗𝜙𝜀)𝜀 ∈ ℰ𝑘,−𝜂𝑀 (𝜔) for all 𝜂 > 0,
and the assertion follows from Theorem 1.

(ii) The relation (4.7), the fact that 𝑅 is rapidly decreasing, and the Banach–
Steinhaus theorem imply

(∃𝑟 ∈ ℕ)(∀𝑎 > 0)(∀𝜌 ∈ ℰ𝑟(Ω))(∣⟨𝑇 − 𝑓𝜀, 𝜌⟩∣ = 𝑂(𝜀𝑎)).

As in part (i), we have

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶𝑡𝑎𝜀−𝑑−𝑟−𝑘 + ∥𝜙∥𝐿1(ℝ𝑑) ∥𝑓𝑡∥𝑊𝑘,∞(𝜔), 𝑡, 𝜀 ∈ (0, 1).
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for some constant 𝐶 = 𝐶𝑎. Since (𝑓𝜀)𝜀 ∈ ℰ𝑘,−𝑠𝑀 , there is another constant 𝐶 =
𝐶𝑠,𝑎 > 0 such that

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶𝑡𝑎𝜀−𝑑−𝑟−𝑘 + 𝐶𝑡−𝑠, 𝑡, 𝜀 ∈ (0, 1).

Setting 𝑡 = 𝜀(𝑘+𝑟+𝑑)/𝑎, we have

∣∣𝑇 ∗ 𝜙𝜀∣∣𝑊𝑘,∞(𝜔) ≤ 𝐶 + 𝐶𝜀−𝑠(𝑘+𝑟+𝑑)/𝑎, 𝜀 ∈ (0, 1).

Thus, taking large enough 𝑎 > 0, one establishes 𝜄(𝑇 ) ∈ 𝒢𝑘,−𝜂(𝜔) for all 𝜂 > 0.

The conclusion 𝑇 ∈ 𝐶𝑘−𝜂
∗ (ℝ𝑑) follows once again from Theorem 1. □

The hypotheses (4.3) and (4.7) are essential parts of (i) and (ii) in Theorem 3;
we illustrate that fact in the next two examples.

Example 1. Consider the generalized function 𝑓=[(∣log𝜀∣−𝑑𝜙( ⋅ ∣log𝜀∣))𝜀]. Clearly,
𝑓 ∈ 𝒢∞,−𝑠(ℝ𝑑), ∀𝑠 > 0. Moreover, 𝑓 ∼ 𝛿, the Dirac delta distribution. The
conclusion of Theorem 3 fails in this example because the rate of convergence is
too slow.

Example 2. Let 𝑇 ∈ ℰ ′(Ω) and 𝑘 > 2𝑠 > 0. Suppose that 𝑇 ∈ 𝐶𝑘−2𝑠
∗ (ℝ𝑑) but

𝑇 /∈ 𝐶𝑘−𝑠
∗ (ℝ𝑑). By Theorem 1, 𝜄(𝑇 ) ∈ 𝒢𝑘,−2𝑠(ℝ𝑑). However, the conclusion of

Theorem 3 fails for 𝑇 because the approximation rate is actually much slower
than (4.7).

For distributions 𝑇 ∈ ℰ ′(Ω), part (i) of Theorem 3 is applicable to the regu-
larization net 𝑓𝜀 = (𝑇 ∗𝜙𝜀)∣Ω; however, for this particular case Theorem 1 provides
the same conclusion.

5. Global Zygmund-type spaces and algebras

Let 𝑟 ∈ ℝ, Hörmann ([9]) defined the Zygmund-type space of generalized functions

𝒢𝑟∗(ℝ𝑑) via representatives (𝑢𝜀)𝜀 satisfying, for each 𝛼 ∈ ℕ𝑑
0,

∥𝑢(𝛼)𝜀 ∥𝐿∞(ℝ𝑑) =

⎧⎨⎩
𝑂(1), 0 ≤ ∣𝛼∣ < 𝑟,

𝑂(log(1/𝜀)), ∣𝛼∣ = 𝑟 ∈ ℕ0
𝑂(𝜀𝑟−∣𝛼∣), ∣𝛼∣ > 𝑟.

as 𝜀→ 0, (5.1)

We shall propose in this section several other Zygmund-type classes of gen-
eralized functions. Since we are interested in global properties, it appears that the
most natural framework to define them is the algebra 𝒢𝐿∞(ℝ𝑑), defined below in
Subsection 5.1, and not the usual Colombeau algebra 𝒢(ℝ𝑑). Otherwise, the defini-
tions would depend on representatives, and more seriously, some global properties
that are intrinsically encoded in such spaces would be totally lost. Therefore, we
have decided to study first 𝒢𝐿∞(ℝ𝑑). Subsection 5.2 is devoted to Zygmund-type
classes of generalized functions and global regularity results. In Subsection 5.3, we
introduce Hölder-type classes of generalized functions.
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5.1. The algebra 퓖𝑳∞(ℝ𝒅)

The globally 𝐿∞-based algebra of generalized functions is defined as follows [14,
13]. First consider the algebra

ℰ𝐿∞,𝑀 (ℝ𝑑) =
{
(𝑢𝜀)𝜀 ∈ ℰ𝑀 (ℝ𝑑); (∀𝛼 ∈ ℕ0)(∃𝑎 ∈ ℝ)(∣∣𝑢(𝛼)𝜀 ∣∣𝐿∞(ℝ𝑑) = 𝑂(𝜀𝑎))

}
and the ideal

𝒩𝐿∞(ℝ𝑑) =
{
(𝑢𝜀)𝜀 ∈ ℰ𝑀 (ℝ𝑑); (∀𝛼 ∈ ℕ0)(∀𝑏 ∈ ℝ)(∣∣𝑢(𝛼)𝜀 ∣∣𝐿∞(ℝ𝑑) = 𝑂(𝜀𝑏))

}
−

The algebra 𝒢𝐿∞(ℝ𝑑) is defined as the quotient

𝒢𝐿∞(Ω) = ℰ𝐿∞,𝑀 (ℝ𝑑)/𝒩𝐿∞(ℝ𝑑).

The natural class of distributions that can be embedded into 𝒢𝐿∞(ℝ𝑑) is the
Schwartz distribution space of the so-called bounded distributions [21]. More pre-
cisely, this space is given by

𝒟′𝐿∞(ℝ𝑑) =
∪

𝑚∈ℕ0

𝑊−𝑚,∞(ℝ𝑑) =
∪
𝑠∈ℝ

𝐶𝑠
∗(ℝ

𝑑).

It is the dual of the test function space [21] 𝒟𝐿1(ℝ𝑑) =
∩
𝑚∈ℕ𝑊

𝑚,1(ℝ𝑑). Clearly,

𝜄 : 𝒟′𝐿∞(ℝ𝑑) → 𝒢𝐿∞(ℝ𝑑) given as usual by 𝜄(𝑇 ) = [(𝑇 ∗ 𝜙𝜀)𝜀] provides a natural
embedding. On the other hand, the embedding does not extend to 𝒮 ′(ℝ𝑑), and
more interestingly, as long as 𝜄(𝑇 ) ∈ 𝒢𝐿∞(ℝ𝑑) for a tempered distribution, it is
forced to belong to 𝒟′𝐿∞(ℝ𝑑).

Theorem 4. Let 𝑇 ∈ 𝒮 ′(ℝ𝑑). If (𝑇 ∗ 𝜙𝜀)𝜀 ∈ ℰ𝐿∞,𝑀 (ℝ𝑑), then 𝑇 ∈ 𝒟′𝐿∞(ℝ𝑑).

Proof. Because of the Schwartz characterization [21, Chap. VI] of 𝒟′𝐿∞(ℝ𝑑), it
would be enough to show that, for each 𝜌 ∈ 𝒮(ℝ𝑑), 𝑇 ∗ 𝜌 ∈ 𝐶𝑏(ℝ𝑑), the Ba-
nach space of continuous and bounded functions. In order to show so, we will use
the vector-valued Tauberian theory for class estimates developed in [20, Chap. 7]
(see also [3, 23]). Define the vector-valued distribution T whose action on test
functions 𝜌 ∈ 𝒮(ℝ𝑑) is given by ⟨T, 𝜌⟩ = 𝑇 ∗ 𝜌. Therefore, we must show that
T ∈ 𝒮 ′(ℝ𝑑, 𝐶𝑏(ℝ𝑑)). Since 𝑇 is tempered, there exists 𝑁 ∈ ℕ such that T takes
values in the Banach space 𝑋 consisting of continuous functions 𝑔 on ℝ𝑑 such that
∥𝑔∥𝑋 := sup𝑡∈ℝ𝑑(1+∣𝑡∣)−𝑁 ∣𝑔(𝑡)∣ <∞. Clearly, the inclusion mapping 𝐶𝑏(ℝ𝑑) → 𝑋
is continuous. On the other hand, we have the local class estimate

∥(T ∗ 𝜙𝜀)(𝑥)∥𝐿∞(ℝ𝑑) = sup
𝜉∈ℝ𝑑

∣(𝑇 ∗ 𝜙𝜀)(𝑥 + 𝜉)∣ = ∥𝑇 ∗ 𝜙𝜀∥𝐿∞(ℝ𝑑) = 𝑂(𝜀−𝑎),

for some 𝑎 > 0. Thus, in view of the [20, Thm. 7.9], we obtain the desired conclusion
T ∈ 𝒮 ′(ℝ𝑑, 𝐶𝑏(ℝ𝑑)). □

Let us note that ℰ𝐿∞,𝑀 (ℝ𝑑) ⊂ ℰ𝑀 (ℝ𝑑) is a differential subalgebra and
𝒩𝐿∞(ℝ𝑑) ⊂ 𝒩 (ℝ𝑑). There is a canonical differential algebra mapping 𝒢𝐿∞(ℝ𝑑)→
𝒢(ℝ𝑑); however, this mapping is not injective. Hence 𝒢𝐿∞(ℝ𝑑) cannot be seen as
a differential subalgebra of 𝒢(ℝ𝑑).
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Example 3. This example shows that the canonical mapping 𝒢𝐿∞(ℝ𝑑)→ 𝒢(ℝ𝑑) is
not injective. Equivalently, we find a net (𝑢𝜀)𝜀 ∈ 𝒩 (ℝ𝑑) ∩ ℰ𝐿∞,𝑀 (ℝ𝑑) which does
not belong to 𝒩𝐿∞(ℝ𝑑). Let 𝜌 ∈ 𝒟(ℝ𝑑) be non-trivial and supported by the ball
with center at the origin and radius 1/2. Consider the net of smooth functions

𝑢𝜀(𝑥) =

∞∑
𝑛=0

𝜒[(𝑛+1)−1,1](𝜀)

(𝑛+ 1)2
𝜌(𝑥 − 2𝑛𝑒1),

where 𝜒[(𝑛+1)−1,1] is the characteristic function of the interval [1/(𝑛+1), 1] and 𝑒1 =

(1, 0, . . . , 0). Then, clearly (𝑢𝜀)𝜀 ∈ 𝒩 (ℝ𝑑) because on compact sets it identically
vanishes for small enough 𝜀. On the other hand,

∣∣𝑢𝜀∣∣𝑊𝑚,∞ = ∣∣𝜌∣∣𝑊𝑚,∞

∞∑
1
𝜀−1≤𝑛

1

(𝑛+ 1)2
= 𝜀 ∣∣𝜌∣∣𝑊𝑚,∞ +𝑂(𝜀2) as 𝜀→ 0.

Thus, the net satisfies all the requirements.

5.2. Global Zygmund classes

We come back to Hörmann’s Zygmund class of generalized functions. We slightly
modify his definition. Given 𝑟 ∈ ℝ,, define 𝒢𝑟∗(ℝ𝑑) as the space of those 𝑢 =
[(𝑢𝜀)𝜀] ∈ 𝒢𝐿∞(ℝ𝑑) such that (𝑢𝜀)𝜀 satisfies (5.1). Originally [9], the “tilde” did
not appear in the notation but since we will introduce a new definition, which
is intrinsically related to the classical definition of Zygmund spaces, we leave the
notation 𝒢𝑟∗(ℝ𝑑) for our space.

Definition 2. Let 𝑟 ∈ ℝ and let 𝜑, 𝜓 ∈ 𝒮 ′(ℝ𝑑) be a pair satisfying (2.4) and (2.5)

(i.e., a generalized Littlewood–Paley pair). The space 𝒢𝑟∗(ℝ𝑑) = 𝒢𝑟,0∗ (ℝ𝑑), called
the Zygmund space of generalized functions of 0-growth order, consists of those
𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝐿∞(ℝ𝑑) such that

∣∣𝑢𝜀∣∣𝐶𝑟∗(ℝ𝑑) = ∣∣𝑢𝜀 ∗ 𝜑∣∣𝐿∞(ℝ𝑑) + sup
0<𝑦<1

𝑦−𝑟∣∣𝑢𝜀 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑) = 𝑂(1). (5.2)

Moreover, 𝒢𝑟,−𝑠∗ (ℝ𝑑), the Zygmund space of generalized functions of −𝑠-growth
order, consists of those 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝐿∞(ℝ𝑑) such that [(𝜀𝑠𝑢𝜀)𝜀] ∈ 𝒢𝑟∗(ℝ𝑑).

Observe that Definition 2 is independent of the choice of representatives. The
main properties of these spaces are summarized in the next theorem. In partic-
ular, we show the embedding of the ordinary Zygmund spaces of functions and
characterize those distributions which, after embedding, belong to our generalized
Zygmund classes.

Theorem 5. The following properties hold:

(i) 𝜄(𝐶𝑟∗ (ℝ𝑑)) = 𝒢𝑟∗(ℝ𝑑) ∩ 𝜄(𝒟′𝐿∞(ℝ𝑑)).

(ii) 𝒢𝑟,−𝑠∗ (ℝ𝑑) ∩ 𝜄(𝒟′𝐿∞(ℝ𝑑)) ⊂ 𝜄(𝐶𝑟−𝑠∗ (ℝ𝑑)).

(iii) 𝒢𝑟1,−𝑠∗ (ℝ𝑑) ⊂ 𝒢𝑟,−𝑠∗ (ℝ𝑑) if 𝑟1 > 𝑟; 𝑃 (𝐷)𝒢𝑟,−𝑠∗ (ℝ𝑑) ⊂ 𝒢𝑟−𝑚,−𝑠
∗ (ℝ𝑑), where

𝑃 (𝐷) is a differential operator with constant coefficients and order 𝑚.
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(iv) If 𝑟1 + 𝑟2 > 0, then

𝒢𝑟1,−𝑠1∗ (ℝ𝑑) ⋅ 𝒢𝑟2,−𝑠2∗ (ℝ𝑑) ⊂ 𝒢𝑝,−𝑠1−𝑠2∗ (ℝ𝑑), 𝑝 = min {𝑟1, 𝑟2} .
In particular, 𝒢𝑟,−𝑠∗ (ℝ𝑑) is an algebra if 𝑠 = 0 and 𝑟 > 0.

Proof. (i) and (ii). We first show that 𝜄(𝐶𝑟∗ (ℝ𝑑)) ⊂ 𝒢𝑟∗(ℝ𝑑). Let 𝑢 ∈ 𝐶𝑟∗(ℝ𝑑) and
𝑢𝜀 = 𝑢 ∗ 𝜙𝜀. Obviously,

∣∣𝑢𝜀 ∗ 𝜑∣∣𝐿∞(ℝ𝑑) ≤ ∥𝑢 ∗ 𝜑∥𝐿∞(ℝ𝑑) ∥𝜙∥𝐿1(ℝ𝑑)

and

sup
𝑦<1

𝑦−𝑟∣∣𝑢𝜀 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑) ≤ ∣∣𝜙∣∣𝐿1(ℝ𝑑) sup
0<𝑦<1

𝑦−𝑟∣∣𝑢 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑).

Let us now prove the inclusion 𝒢𝑟,−𝑠∗ (ℝ𝑑)∩𝜄(𝒟′𝐿∞(ℝ𝑑)) ⊂ 𝜄(𝐶𝑟−𝑠
∗ (ℝ𝑑)). The proof is

similar to the last part of the proof of Theorem 1. So, let 𝑢 = [(𝑢∗𝜙𝜀)𝜀] ∈ 𝒢𝑟,−𝑠∗ (ℝ𝑑),
where 𝑢 ∈ 𝒟′𝐿∞(ℝ𝑑). We have freedom of choice for the Littlewood–Paley pair in
(5.2). Let then 𝜓 ∈ 𝒮(ℝ𝑑) be such that (𝜙, 𝜓) forms a generalized Littlewood–
Paley pair of order max {𝑟, 𝑟 − 𝑠} (cf. (2.4) and (2.5)). We have 𝑢 ∗ 𝜙 ∈ 𝐿∞(ℝ𝑑);
on the other hand, setting 𝜀 = 𝑦 < 1 and observing that (𝜙 ∗ 𝜓)𝑦 = 𝜙𝑦 ∗ 𝜓𝑦, one
obtains that

sup
0<𝑦<1

𝑦𝑠−𝑟∣∣𝑢 ∗ (𝜙 ∗ 𝜓)𝑦∣∣𝐿∞(ℝ𝑑) = sup
0<𝑦<1

𝑦𝑠−𝑟∣∣𝑢 ∗ 𝜙𝑦 ∗ 𝜓𝑦∣∣𝐿∞(ℝ𝑑) <∞.

Noticing that (𝜙, 𝜙∗𝜓) is again a generalized Littlewood–Paley pair of order 𝑟−𝑠,
we conclude 𝑇 ∈ 𝐶𝑟−𝑠

∗ (ℝ𝑑).
(iii) The first part is clear. The second part follows from the fact [8] that

𝑃 (𝐷) continuously maps the classical Zygmund space 𝐶𝑟∗(ℝ𝑑) into 𝐶𝑟−𝑚∗ (ℝ𝑑).
(iv) It is a consequence of [8, Prop. 8.6.8]. Actually, we have, by this propo-

sition, that there exists 𝜀0 ∈ (0, 1) and 𝐾 = 𝐾(𝑟1, 𝑟2), which does not depend on
𝜀, such that

∣∣𝜀𝑠1+𝑠2𝑢1,𝜀𝑢2,𝜀∣∣𝐶𝑝
∗ (ℝ𝑑) ≤ 𝐾∣∣𝜀𝑠1𝑢1,𝜀∣∣𝐶𝑟1∗ (ℝ𝑑)∣∣𝜀𝑠2𝑢2,𝜀∣∣𝐶𝑟2∗ (ℝ𝑑), 𝜀 ≤ 𝜀0. □

Remark 1. As in the case of multiplication of continuous functions, we have that
[((𝑢1𝑢2) ∗ 𝜙𝜀)𝜀] ∕= [(𝑢1 ∗ 𝜙𝜀)𝜀][(𝑢2 ∗ 𝜙𝜀)𝜀] but these products are associated.

In analogy with Definition 1, we can also introduce some other classes of
generalized functions. They are now closely related to the classical global Zygmund
spaces.

Definition 3. Let 𝑠 ∈ ℝ and 𝑘 ∈ ℕ0.
(i) A net (𝑓𝜀)𝜀 ∈ ℰ𝐿∞,𝑀 (ℝ𝑑) is said to belong to ℰ𝑘,−𝑠𝐿∞,𝑀 (ℝ𝑑) if

∥𝑓𝜀∥𝑊𝑘,∞(ℝ𝑑) = 𝑂(𝜀−𝑠).

(ii) A generalized function 𝑓 = [(𝑓𝜀)𝜀] ∈ 𝒢𝐿∞(ℝ𝑑) is said to belong to 𝒢𝑘,−𝑠𝐿∞ (ℝ𝑑)

if (𝑓𝜀)𝜀 ∈ ℰ𝑘,−𝑠𝐿∞,𝑀 (ℝ𝑑).
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Definition 3 does not depend on the choice of representatives. The next the-
orem characterizes those distributions that belong to 𝒢𝐿∞(ℝ𝑑) and gives an inclu-

sion relation for Hörmann class 𝒢𝑟∗(ℝ𝑑). Let us mention that a version of Proposi-

tion 1 also holds for 𝒢𝑘,−𝑠𝐿∞ (ℝ𝑑).

Theorem 6. Let 𝑟 ∈ ℝ and 𝑠 > 0.

(i) We have 𝒢𝑘,−𝑠𝐿∞ (ℝ𝑑) ∩ 𝜄(𝒟′𝐿∞(Ω)) = 𝜄(𝐶𝑘−𝑠
∗ (ℝ𝑑)).

(ii) Given any integer 𝑘 > 𝑟, we have 𝜄(𝐶𝑟
∗(ℝ𝑑)) = 𝒢𝑘,𝑟−𝑘𝐿∞ (ℝ𝑑) ∩ 𝜄(𝒟′𝐿∞(Ω)).

(iii) There holds

𝒢𝑟∗(ℝ𝑑) ⊂
∩
𝑘>𝑟

𝒢𝑘,𝑟−𝑘𝐿∞ (ℝ𝑑).

Proof. The property (iii) follows directly from the definitions. Observe that (i)
and (ii) are equivalent. On the other hand, a straightforward modification of the
proof of Theorem 1 yields (i), we leave the details of such a modification to the
reader. □

The following remarks make some partial comparisons between our definition
and Hörmann’s definition [9]. We also formulate an open question.

Remark 2. Clearly, if 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝑟∗(ℝ𝑑), then [(𝑢𝜀 ∗ 𝜙𝜀)𝜀] ∈ 𝒢𝑟∗(ℝ𝑑) but the
opposite does not hold, in general. However, 𝑢 = [(𝑢𝜀)𝜀] and 𝑢 = [(𝑢𝜀 ∗ 𝜙𝜀)𝜀] are
equal in the sense of generalized distributions, which means that

⟨𝑢𝜀 ∗ 𝜙𝜀 − 𝑢𝜀, 𝜃⟩ = 𝑜(𝜀𝑝) for every 𝑝 and every 𝜃 ∈ 𝒟(ℝ𝑑).

Remark 3. Let 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝑟∗(ℝ𝑑). We show that [(𝑢𝜀 ∗𝜙𝜀)𝜀] ∈ 𝒢𝑟∗(ℝ𝑑). For this,
we will make use of Lemma 8.6.5 of [8], which asserts that given 𝜅 ∈ 𝒮(ℝ𝑑), there
exist constants 𝐾𝑟,𝛼, 𝛼 ∈ ℕ0, such that for all 𝑣 ∈ 𝐶𝑟

∗ (ℝ𝑑) and 0 < 𝑦 ≤ 1, there
holds

∥(𝑣 ∗ 𝜅𝑦)(𝛼)∥𝐿∞(ℝ𝑑) ≤

⎧⎨⎩
𝐾𝑟,𝛼∣∣𝑣∣∣𝐶𝑟∗(ℝ𝑑), 0 ≤ ∣𝛼∣ < 𝑟,

𝐾𝑟,𝛼∣∣𝑣∣∣𝐶𝑟∗(ℝ𝑑)(1 + log(1/𝑦)), ∣𝛼∣ = 𝑟 ∈ ℕ0,
𝐾𝑟,𝛼∣∣𝑣∣∣𝐶𝑟∗(ℝ𝑑)(𝑦

𝑟−∣𝛼∣), ∣𝛼∣ > 𝑟,

(5.3)

where, as usual, 𝜅𝑦 = 𝑦−𝑑𝜅( ⋅/𝑦). Thus, if we employ (5.3) with 𝑣 = 𝑢𝜀, 𝜅 = 𝜙, and
𝑦 = 𝜀, together with the fact that ∣∣𝑢𝜀∣∣𝐶𝑟∗(ℝ𝑑) is uniformly bounded with respect

to 𝜀, we obtain at once [(𝑢𝜀 ∗ 𝜙𝜀)𝜀] ∈ 𝒢𝑟∗(ℝ𝑑), as claimed. At this point we should

mention that the precise relation between the spaces 𝒢𝑟∗(ℝ𝑑) and 𝒢𝑟∗(ℝ𝑑) is still
unknown; therefore, we can formulate an open question: Find the precise inclusion
relation between these two spaces.

Remark 4. As seen from the given assertions, our Zygmund generalized function
spaces are suitable for the analysis of pseudodifferential operators.
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5.3. Hölder-type spaces and algebras of generalized functions

We end this article by dealing with Hölderian-type classes of generalized functions.
We will employ the norm (2.3).

Definition 4. Let 𝑘 ∈ ℕ0, 𝑠 ∈ ℝ, 𝜏 ∈ (0, 1] and let 𝑢 = [(𝑢𝜀)𝜀] ∈ 𝒢𝐿∞(ℝ𝑑). It is

said that 𝑢 ∈ 𝒢𝑘,𝜏,−𝑠𝐿∞ (ℝ𝑑) if

∣∣𝑢𝜀∣∣ℋ𝑘,𝜏 (ℝ𝑑) = 𝑂(𝜀−𝑠). (5.4)

Recall [8] the classical situation. Let 𝑘 ∈ ℕ0, then ℋ𝑘,1(ℝ𝑑) ⫋ 𝐶𝑘+1∗ (ℝ𝑑); but
if 𝜏 ∈ (0, 1), then ℋ𝑘,𝜏 (ℝ𝑑) = 𝐶𝑘+𝜏

∗ (ℝ𝑑). In our context, we have,

Proposition 3. If 𝑟 = 𝑘 + 𝜏, 𝜏 ∈ (0, 1), then 𝒢𝑟,𝑠∗ (ℝ𝑑) = 𝒢𝑘,𝜏,𝑠(ℝ𝑑).

Proof. There exists 𝐶 > 0 such that for every 𝜀 < 1,

𝐶−1∣∣𝜀𝑠𝑢𝜀∣∣𝐶𝑘+𝜏
∗ (ℝ𝑑) ≤ ∣∣𝜀𝑠𝑢𝜀∣∣ℋ𝑘,𝜏 (ℝ𝑑) ≤ 𝐶∣∣𝜀𝑠𝑢𝜀∣∣𝐶𝑘+𝜏

∗ (ℝ𝑑),

as follows from the equivalence between the norms (2.3) and (2.6). This implies
the assertion. □

Because of Proposition 3, we will consider below only the case 𝒢𝑘,1,𝑠(ℝ𝑑).

Proposition 4. Let 𝑘 ∈ ℕ0 and 𝑠 ∈ ℝ.

(i) 𝜄(ℋ𝑘,1(ℝ𝑑)) = 𝒢𝑘,1,0(ℝ𝑑) ∩ 𝜄(𝒟′𝐿∞(ℝ𝑑)).

(ii) 𝒢𝑘,1,𝑠(ℝ𝑑) ⫋ 𝒢𝑘+1,𝑠∗ (ℝ𝑑).
(iii) 𝒢𝑘1,1,𝑠(ℝ𝑑) ⊂ 𝒢𝑘,1,𝑠(ℝ𝑑) if 𝑘1 > 𝑘.
(iv) Let 𝑃 (𝐷) be a differential operator of order 𝑚 < 𝑘 with constant coefficients.

Then 𝑃 (𝐷) : 𝒢𝑘,𝜏,𝑠(ℝ𝑑)→ 𝒢𝑘−𝑚,𝜏,𝑠(ℝ𝑑).
(v) Concerning the multiplication, we have

𝒢𝑘1,1,𝑠(ℝ𝑑) ⋅ 𝒢𝑘2,1,𝑠(ℝ𝑑) ⊂ 𝒢𝑝,1,2𝑠(ℝ𝑑),

where 𝑝 = min{𝑘1, 𝑘2}. In particular, 𝒢𝑘1,1,𝑠(ℝ𝑑) is an algebra if and only if
𝑠 = 0.

Proof. The proofs of assertions (ii), (iii), (iv) and (v) are clear. We will prove (i).

The direct inclusion follows from the definition. Suppose that 𝑇 ∈ 𝒟′𝐿∞(ℝ𝑑) is such

that [(𝑇𝜀)𝜀] ∈ 𝒢𝑘,1,0(ℝ𝑑) where 𝑇𝜀 = 𝑇 ∗ 𝜙𝜀. By assumption {𝑇 (𝛼)𝜀 ; 0 < 𝜀 < 1} is a
bounded and equicontinuous net of functions on any compact set in ℝ𝑑, for every
∣𝛼∣ ≤ 𝑘. Thus, by the Arzelà–Ascoli theorem, it has a convergent subsequence
for every ∣𝛼∣ ≤ 𝑘 and, by diagonalization, there exists a sequence (𝑇𝜀𝑛)𝑛 and

𝑇 ∈ 𝐶𝑘(ℝ𝑑) such that 𝑇
(𝛼)
𝜀𝑛 → 𝑇 (𝛼) uniformly on any compact set 𝐾 ⊂ ℝ𝑑. That

∣∣𝑇 ∣∣𝑊𝑘,∞(ℝ𝑑) <∞ follows now easily. Let ∣𝛼∣ = 𝑘. For every 𝑥, 𝑦 ∈ ℝ𝑑, 𝑥 ∕= 𝑦,

∣𝑇 (𝛼)(𝑥) − 𝑇 (𝛼)(𝑦)∣
∣𝑥− 𝑦∣𝜏 = lim

𝑛→∞
∣𝑇 (𝛼)𝜀𝑛 (𝑥) − 𝑇

(𝛼)
𝜀𝑛 (𝑦)∣

∣𝑥− 𝑦∣𝜏 ≤ 𝐶,
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since

sup
𝑥,𝑦∈ℝ𝑑, 𝑥 ∕=𝑦

lim
𝑛→∞

∣𝑇 (𝛼)𝜀𝑛 (𝑥) − 𝑇
(𝛼)
𝜀𝑛 (𝑦)∣

∣𝑥− 𝑦∣𝜏 ≤ sup
𝑥,𝑦∈ℝ𝑑, 𝑥 ∕=𝑦

sup
𝑛∈ℕ

∣𝑇 (𝛼)𝜀𝑛 (𝑥) − 𝑇
(𝛼)
𝜀𝑛 (𝑦)∣

∣𝑥− 𝑦∣𝜏

≤ sup
𝑥,𝑦∈ℝ𝑑, 𝑥 ∕=𝑦,𝜀<1

∣𝑇 (𝛼)𝜀 (𝑥)− 𝑇
(𝛼)
𝜀 (𝑦)∣

∣𝑥− 𝑦∣𝜏 ≤ 𝐶,

and the assertion follows. □
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The Wave Equation with a Discontinuous
Coefficient Depending on Time Only:
Generalized Solutions and Propagation
of Singularities

Hideo Geguchi, Günther Hörmann and Michael Oberguggenberger

Abstract. This paper is devoted to the investigation of propagation of sin-
gularities in hyperbolic equations with non-smooth coefficients, using the
Colombeau theory of generalized functions. As a model problem, we study
the Cauchy problem for the one-dimensional wave equation with a discon-
tinuous coefficient depending on time. After demonstrating the existence and
uniqueness of generalized solutions in the sense of Colombeau to the problem,
we investigate the phenomenon of propagation of singularities, arising from
delta function initial data, for the case of a piecewise constant coefficient.
We also provide an analysis of the interplay between singularity strength and
propagation effects. Finally, we show that in case the initial data are distri-
butions, the Colombeau solution to the model problem is associated with the
piecewise distributional solution of the corresponding transmission problem.
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1. Introduction

This paper is devoted to propagation of singularities in linear hyperbolic par-
tial differential equations with non-smooth coefficients in the framework of the
Colombeau theory of generalized functions [2, 3]. Such equations involve a nonlin-
ear interaction of coefficient singularities with those in the solution which emanate

H. Deguchi was supported by the Austrian Science Fund (FWF), Lise Meitner project M1155-
N13.
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from the initial data. In the past years, this problem has been investigated inten-
sively in a series of papers, in which the coefficients and the solution have been
viewed as elements of the Colombeau algebra of generalized functions.

So far, microlocal elliptic regularity is well understood for general equations
and systems in this framework [6, 8, 18]. Further, generalized Fourier integral op-
erators have been introduced in order to describe the wave front set of generalized
solutions [7, 9, 10, 11]. These methods have allowed to describe the propagation
of singularities in scalar first-order hyperbolic equations with generalized function
coefficients [5, 12, 16]. As a new phenomenon, the Colombeau wave front set has
been shown to possess a more refined structure than the corresponding distribu-
tional wave front set [22]. For a survey of these methods and relations to various
classical approaches we refer to [15].

In the special situation of hyperbolic equations and systems with piecewise
constant coefficients (with possibly jumps across smooth hypersurfaces), the prob-
lem may be interpreted as a transmission problem and can be solved classically by
a piecewise distributional solution. In case of systems or higher-order equations, an
incoming singularity will split at the interface into a refracted and a reflected wave.
While in many cases it has been shown that the Colombeau solution is associated
with the distributional solution of the transmission problem [13, 20], the task of
identifying the refracted and reflected singularity by means of the Colombeau wave
front set – directly in the generalized solution without considering the associated
distribution – has remained open.

The purpose of this paper is to demonstrate – in a simple model problem
– that the splitting of singularities at an interface can indeed be observed in the
Colombeau solution. At the same time, the effect depends on the interplay of the
scale of regularization of coefficients and data. We consider the Cauchy problem
for the one-dimensional wave equation with a discontinuous coefficient depending
on time

∂2𝑡 𝑢− 𝑐(𝑡)2∂2𝑥𝑢 = 0, 𝑡 > 0, 𝑥 ∈ ℝ,
𝑢∣𝑡=0 = 𝑢0, ∂𝑡𝑢∣𝑡=0 = 𝑢1, 𝑥 ∈ ℝ.

(1.1)

We will seek solutions in the Colombeau algebra G ([0,∞) × ℝ) of generalized
functions, which will be defined in Section 2 below. The Colombeau algebras are
constructed as factor algebras of nets of smooth functions, depending on a regu-
larization parameter. They are differential algebras; the space of distributions can
be imbedded as a subspace using regularization by convolution with a Friedrichs
mollifier. The initial data as well as the coefficient will be taken from the algebra
G (ℝ), which contains the space D ′(ℝ) of distributions.

As a model situation, we consider the case when 𝑐(𝑡) = 𝑐0+(𝑐1−𝑐0)𝐻(𝑡−1),
𝑢0 = 0 and 𝑢1 = 𝛿, where 𝑐0, 𝑐1 > 0, 𝑐0 ∕= 𝑐1, 𝐻 is the Heaviside function and
𝛿 is the delta function. The singularity of the initial data propagates from the
origin in the two characteristic directions until it hits the coefficient discontinuity
at time 𝑡 = 1. As the coefficient has a discontinuity in time, the singular support
is expected to split at time 𝑡 = 1 into a transmitted and a refracted part. In the
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classical setting, the piecewise distributional solution exhibits this splitting. We
will demonstrate the occurrence of the splitting effect in the Colombeau setting as
well, using the generalized singular support. However, in the Colombeau setting the
effect depends on the scale in terms of the regularization parameter. If the initial
data and the coefficient are regularized on the same scale, both the transmitted and
the refracted ray will be shown to belong to the Colombeau singular support. If the
coefficient is regularized by means of a slow scale mollifier, only the transmitted
ray belongs to the Colombeau singular support.

In order to be able to observe this effect, we have to prove a new existence
result for the Cauchy problem (1.1) which does not restrict the choice of scale
for the regularization of the coefficient. The equation can be rewritten as a one-
dimensional first-order hyperbolic system with discontinuous coefficients in the
Colombeau algebra of generalized functions. This transformation will be used in
the existence and regularity results. We also demonstrate that the Colombeau
solution has the piecewise solution of the transmission problem as its associated
distribution. That is, the nets defining the Colombeau solution converge to the
piecewise distributional solution. This latter argument relies on energy estimates.

The paper is organized as follows: we recall the definition and basic properties
of the Colombeau algebra G in Section 2. In Section 3, we show that problem (1.1)
is uniquely solvable in the Colombeau algebra G ([0,∞) × ℝ) without restriction
on the scale of regularization of the coefficient (Theorem 3.1). The problem of
propagation of singularities is addressed in Section 4 (Theorem 4.1). The question
whether the regularity of the coefficient affects that of the solution is discussed in
Section 5 (Theorem 5.1). In Section 6, we show that the Colombeau generalized
solutions to problem (1.1) with arbitrary distributions as initial data admit the
piecewise distributional solutions of the corresponding transmission problem as
associated distributions (Theorem 6.1).

2. The Colombeau theory of generalized functions

We will employ the special Colombeau algebra denoted by 𝒢𝑠 in [14], which was
called the simplified Colombeau algebra in [1]. However, here we will simply use
the letter 𝒢 instead. Let us briefly recall the definition and basic properties of the
algebra 𝒢 of generalized functions. For more details, see [14].

Let Ω be a non-empty open subset of ℝ𝑑. Let 𝒞∞(Ω)(0,1] be the differen-
tial algebra of all maps from the interval (0, 1] into 𝒞∞(Ω). Thus each element of
𝒞∞(Ω)(0,1] is a family (𝑢𝜀)𝜀∈(0,1] of real-valued smooth functions on Ω. The subal-

gebra ℰ𝑀 (Ω) is defined by all elements (𝑢𝜀)𝜀∈(0,1] of 𝒞∞(Ω)(0,1] with the property

that, for all 𝐾 ⋐ Ω and 𝛼 ∈ ℕ𝑑
0, there exists 𝑝 ≥ 0 such that

sup
𝑥∈𝐾

∣∂𝛼𝑥 𝑢𝜀(𝑥)∣ = 𝑂(𝜀−𝑝) as 𝜀 ↓ 0. (2.1)
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The ideal𝒩 (Ω) is defined by all elements (𝑢𝜀)𝜀∈(0,1] of 𝒞∞(Ω)(0,1] with the property

that, for all 𝐾 ⋐ Ω, 𝛼 ∈ ℕ𝑑
0 and 𝑞 ≥ 0,

sup
𝑥∈𝐾

∣∂𝛼𝑥 𝑢𝜀(𝑥)∣ = 𝑂(𝜀𝑞) as 𝜀 ↓ 0.

The algebra 𝒢(Ω) of generalized functions is defined by the quotient space

𝒢(Ω) = ℰ𝑀 (Ω)/𝒩 (Ω).

The Colombeau algebra on a closed half-space [0,∞)×ℝ is constructed in a similar
way.

We use capital letters for elements of 𝒢 to distinguish generalized functions
from distributions and denote by (𝑢𝜀)𝜀∈(0,1] a representative of 𝑈 ∈ 𝒢. Then for

any 𝑈 , 𝑉 ∈ 𝒢 and 𝛼 ∈ ℕ𝑑
0, we can define the partial derivative ∂𝛼𝑈 to be the

class of (∂𝛼𝑢𝜀)𝜀∈(0,1] and the product 𝑈𝑉 to be the class of (𝑢𝜀𝑣𝜀)𝜀∈(0,1]. Also,
for any 𝑈 = class of (𝑢𝜀(𝑡, 𝑥))𝜀∈(0,1] ∈ 𝒢([0,∞) × ℝ), we can define its restriction
𝑈 ∣𝑡=0 ∈ 𝒢(ℝ) to the line {𝑡 = 0} to be the class of (𝑢𝜀(0, 𝑥))𝜀∈(0,1].

Remark 2.1. The algebra 𝒢(Ω) contains the space ℰ ′(Ω) of compactly supported
distributions. In fact, the map

𝑓 → class of (𝑓 ∗ 𝜌𝜀 ∣Ω)𝜀∈(0,1]
defines an imbedding of ℰ ′(Ω) into 𝒢(Ω), where

𝜌𝜀(𝑥) =
1

𝜀𝑑
𝜌
(𝑥
𝜀

)
and 𝜌 is a fixed element of 𝒮(ℝ𝑑) such that

∫
𝜌(𝑥) 𝑑𝑥 = 1 and

∫
𝑥𝛼𝜌(𝑥) 𝑑𝑥 = 0

for any 𝛼 ∈ ℕ𝑑
0, ∣𝛼∣ ≥ 1. This can be extended in a unique way to an imbedding

of the space 𝒟′(Ω) of distributions. Moreover, this imbedding turns 𝒞∞(Ω) into a
subalgebra of 𝒢(Ω).

Definition 2.2. A generalized function 𝑈 ∈ 𝒢(Ω) is said to be associated with a
distribution 𝑤 ∈ 𝒟′(Ω) if it has a representative (𝑢𝜀)𝜀∈(0,1] ∈ ℰ𝑀 (Ω) such that

𝑢𝜀 → 𝑤 in 𝒟′(Ω) as 𝜀 ↓ 0.

We write 𝑈 ≈ 𝑤 and call 𝑤 the associated distribution of 𝑈 provided 𝑈 is associated
with 𝑤.

Regularity theory for linear equations has been based on the subalgebra
𝒢∞(Ω) of regular generalized functions in 𝒢(Ω) introduced in [21]. It is defined
by all elements which have a representative (𝑢𝜀)𝜀∈(0,1] with the property that, for

all 𝐾 ⋐ Ω, there exists 𝑝 ≥ 0 such that, for all 𝛼 ∈ ℕ𝑑
0,

sup
𝑥∈𝐾

∣∂𝛼𝑥 𝑢𝜀(𝑥)∣ = 𝑂(𝜀−𝑝) as 𝜀 ↓ 0.

We observe that all derivatives of 𝑢𝜀 have locally the same order of growth in 𝜀 > 0,
unlike elements of ℰ𝑀 (Ω). This subalgebra 𝒢∞(Ω) has the property 𝒢∞(Ω) ∩
𝒟′(Ω) = 𝒞∞(Ω), see [21, Theorem 25.2]. Hence, for the purpose of describing
the regularity of generalized functions, 𝒢∞(Ω) plays the same role for 𝒢(Ω) as
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𝒞∞(Ω) does in the setting of distributions. The 𝒢∞-singular support (denoted by
sing supp𝒢∞) of a generalized function is defined as the complement of the largest
open set on which the generalized function is regular in the above sense.

We end this section by recalling the notion of slow scale nets. A net (𝑟𝜀)𝜀∈(0,1]
is called a slow scale net if

∣𝑟𝜀∣𝑝 = 𝑂(𝜀−1) as 𝜀 ↓ 0

for every 𝑝 ≥ 0. A positive slow scale net is a slow scale net (𝑟𝜀)𝜀∈(0,1] such that
𝑟𝜀 > 0 for all 𝜀 ∈ (0, 1]. We refer to [17] for a detailed discussion of slow scale nets.

Example 2.3. Let 𝜑 be a fixed element of 𝒞∞0 (ℝ) such that 𝜑 is symmetric, 𝜑′ ≥ 0
on [−1, 0], supp𝜑 ⊂ [−1, 1] and

∫
ℝ
𝜑(𝑥) 𝑑𝑥 = 1. Put 𝜑𝜀(𝑥) = 𝜑(𝑥/𝜀)/𝜀. Then

𝑈 ∈ 𝒢(ℝ) defined by the class of (𝜑𝜀)𝜀∈(0,1] is associated with the delta function
𝛿, and sing supp𝒢∞ 𝑈 = {0}. On the other hand, if 𝑈 ∈ 𝒢(ℝ) is defined as the
class of (𝜑ℎ(𝜀))𝜀∈(0,1], where (1/ℎ(𝜀))𝜀∈(0,1] is a positive slow scale net, then it is
associated with the delta function again, but sing supp𝒢∞ 𝑈 = ∅. More generally,
for any distribution 𝑓 ∈ 𝒟′(Ω), there exists a generalized function 𝑈 ∈ 𝒢∞(Ω)
which is associated with 𝑓 , see, e.g., [4]. Thus, any distribution on Ω can be
interpreted as an element of 𝒢∞(Ω) in the sense of association.

3. Existence and uniqueness of generalized solutions

We rewrite problem (1.1) in the form

∂2𝑡𝑈 − 𝐶2∂2𝑥𝑈 = 0 in 𝒢([0,∞)× ℝ),

𝑈 ∣𝑡=0 = 𝑈0, ∂𝑡𝑈 ∣𝑡=0 = 𝑈1 in 𝒢(ℝ)
(3.1)

in the space of generalized functions, where 𝐶 is an element of 𝒢([0,∞) × ℝ). In
the Colombeau setting, existence and uniqueness follows, for example, from results
in [19, 20], provided the coefficient 𝐶 is of logarithmic type, i.e., satisfies bounds of
type 𝑂(log ∣𝜀∣) in (2.1). When the coefficient depends on time only, this hypothesis
is not required, as we are going to show in the following existence and uniqueness
theorem for problem (3.1).

Theorem 3.1. Assume that 𝐶 ∈ 𝒢([0,∞) × ℝ) has a representative (𝑐𝜀(𝑡))𝜀∈(0,1]
independent of 𝑥 and satisfying the following two conditions:

(i) there exist two constants 𝑐0, 𝑐1 > 0 such that, for any 𝜀 ∈ (0, 1] and 𝑡 ≥ 0,

𝑐1 ≥ 𝑐𝜀(𝑡) ≥ 𝑐0 > 0;

(ii) for any 𝜀 ∈ (0, 1], ∫ ∞

0

∣(𝑐𝜀)′(𝑡)∣ 𝑑𝑡 <∞.

Then for any initial data 𝑈0, 𝑈1 ∈ 𝒢(ℝ), problem (3.1) has a unique solution
𝑈 ∈ 𝒢([0,∞)× ℝ).
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Proof. Put 𝑉 = ∂𝑡𝑈 − 𝐶∂𝑥𝑈 and 𝑊 = ∂𝑡𝑈 + 𝐶∂𝑥𝑈 . Then problem (3.1) can be
rewritten as the Cauchy problem for a first-order hyperbolic system

(∂𝑡 + 𝐶∂𝑥)𝑉 = 𝑀𝑉 −𝑀𝑊 in 𝒢([0,∞)× ℝ),

(∂𝑡 − 𝐶∂𝑥)𝑊 = 𝑀𝑊 −𝑀𝑉 in 𝒢([0,∞)× ℝ),

𝑉 ∣𝑡=0 = 𝑉0 = 𝑈1 − (𝐶∣𝑡=0)𝑈 ′
0 in 𝒢(ℝ),

𝑊 ∣𝑡=0 = 𝑊0 = 𝑈1 + (𝐶∣𝑡=0)𝑈 ′
0 in 𝒢(ℝ),

(3.2)

where 𝑀 = 𝐶′/(2𝐶) ∈ 𝒢([0,∞) × ℝ). If problem (3.2) has a unique solution
(𝑉,𝑊 ), then so does problem (3.1). To prove the existence of a solution (𝑉,𝑊 ),
let (𝑣𝜀, 𝑤𝜀) be the unique 𝒞∞-solution to the Cauchy problem

(∂𝑡 + 𝑐𝜀(𝑡)∂𝑥)𝑣
𝜀 = 𝜇𝜀(𝑡)𝑣𝜀 − 𝜇𝜀(𝑡)𝑤𝜀, 𝑡 > 0, 𝑥 ∈ ℝ,

(∂𝑡 − 𝑐𝜀(𝑡)∂𝑥)𝑤
𝜀 = 𝜇𝜀(𝑡)𝑤𝜀 − 𝜇𝜀(𝑡)𝑣𝜀, 𝑡 > 0, 𝑥 ∈ ℝ,

𝑣𝜀∣𝑡=0 = 𝑣𝜀0 = 𝑢𝜀1 − 𝑐𝜀(0)(𝑢𝜀0)
′, 𝑥 ∈ ℝ,

𝑤𝜀∣𝑡=0 = 𝑤𝜀
0 = 𝑢𝜀1 + 𝑐𝜀(0)(𝑢𝜀0)

′, 𝑥 ∈ ℝ,

(3.3)

where (𝑢𝜀0)𝜀∈(0,1], (𝑢𝜀1)𝜀∈(0,1], (𝑐𝜀)𝜀∈(0,1] and (𝜇𝜀)𝜀∈(0,1] are representatives of 𝑈0,
𝑈1, 𝐶 and𝑀 , respectively, such that 𝑐𝜀 is as in the statement and 𝜇𝜀 = (𝑐𝜀)′/(2𝑐𝜀).
For the existence of such (𝑣𝜀, 𝑤𝜀), see [20]. If we show that (𝑣𝜀)𝜀∈(0,1] and (𝑤𝜀)𝜀∈(0,1]
belong to ℰ𝑀 ([0,∞) × ℝ), their equivalence classes in 𝒢([0,∞) × ℝ) will form a
solution of problem (3.2). To show that the zeroth derivatives of 𝑣𝜀 and 𝑤𝜀 satisfy
estimate (2.1), consider the characteristic curves 𝛾𝜀+(𝑡, 𝑥, 𝜏) and 𝛾𝜀−(𝑡, 𝑥, 𝜏) passing
through (𝑡, 𝑥) at time 𝜏 = 𝑡 which satisfy

∂𝜏𝛾
𝜀
+(𝑡, 𝑥, 𝜏) = 𝑐𝜀(𝜏), 𝛾𝜀+(𝑡, 𝑥, 𝑡) = 𝑥,

∂𝜏𝛾
𝜀
−(𝑡, 𝑥, 𝜏) = −𝑐𝜀(𝜏), 𝛾𝜀−(𝑡, 𝑥, 𝑡) = 𝑥.

Along these characteristic curves, 𝑣𝜀 and 𝑤𝜀 are respectively calculated as

𝑣𝜀(𝑡, 𝑥) = 𝑣𝜀0(𝛾
𝜀
+(𝑡, 𝑥, 0)) +

∫ 𝑡

0

𝜇𝜀(𝑠)(𝑣𝜀 − 𝑤𝜀)(𝑠, 𝛾𝜀+(𝑡, 𝑥, 𝑠)) 𝑑𝑠, (3.4)

𝑤𝜀(𝑡, 𝑥) = 𝑤𝜀
0(𝛾

𝜀
−(𝑡, 𝑥, 0)) +

∫ 𝑡

0

𝜇𝜀(𝑠)(𝑤𝜀 − 𝑣𝜀)(𝑠, 𝛾𝜀−(𝑡, 𝑥, 𝑠)) 𝑑𝑠. (3.5)

For each 𝑇 > 0, we define 𝐾𝑇 as the trapezoidal region with corners (0,−𝜉),
(𝑇,−𝜉 + 𝑐1𝑇 ), (𝑇, 𝜉 − 𝑐1𝑇 ), (0, 𝜉). Using (3.4) and (3.5), we see that

∥𝑣𝜀∥𝐿∞(𝐾𝑇 ) ≤ ∥𝑣𝜀0∥𝐿∞(𝐾0) +

∫ 𝑇

0

∣𝜇𝜀(𝑠)∣(∥𝑣𝜀∥𝐿∞(𝐾𝑠) + ∥𝑤𝜀∥𝐿∞(𝐾𝑠)) 𝑑𝑠,

∥𝑤𝜀∥𝐿∞(𝐾𝑇 ) ≤ ∥𝑤𝜀
0∥𝐿∞(𝐾0) +

∫ 𝑇

0

∣𝜇𝜀(𝑠)∣(∥𝑤𝜀∥𝐿∞(𝐾𝑠) + ∥𝑣𝜀∥𝐿∞(𝐾𝑠)) 𝑑𝑠.

We add these two inequalities and apply Gronwall’s inequality to get

∥𝑣𝜀∥𝐿∞(𝐾𝑇 ) + ∥𝑤𝜀∥𝐿∞(𝐾𝑇 ) ≤ (∥𝑣𝜀0∥𝐿∞(𝐾0) + ∥𝑤𝜀
0∥𝐿∞(𝐾0)) exp

(
2

∫ 𝑇

0

∣𝜇𝜀(𝑠)∣ 𝑑𝑠
)
.
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On the right-hand side, the terms involving 𝑣𝜀0 and 𝑤𝜀
0 are of order 𝑂(𝜀−𝑝) for some

𝑝 ≥ 0. The exponential term is uniformly bounded in 𝜀 by the condition (ii) on 𝑐𝜀.
Hence, the zeroth derivatives of 𝑣𝜀 and 𝑤𝜀 satisfy estimate (2.1) on 𝐾𝑇 . We can
obtain analogous estimates for all derivatives of 𝑣𝜀 and 𝑤𝜀 by differentiating the
equations and using the same argument. Thus, (𝑣𝜀)𝜀∈(0,1] and (𝑤𝜀)𝜀∈(0,1] belong
to ℰ𝑀 ([0,∞)× ℝ).

For the proof of uniqueness, we only need to obtain the zero-order estimates
(by Lemma 1.2.3 in [14]), which follow along the same line as above. □

We remark that condition (ii) in Theorem 3.1 can be weakened to the re-
quirement that exp

(∫∞
0
∣𝜇𝜀(𝑡)∣ 𝑑𝑡) = 𝑂(𝜀−𝑝) as 𝜀 ↓ 0 for some 𝑝 ≥ 0.

4. Propagation of singularities

In this section we study the phenomenon of propagation of singularities in the
generalized solution to problem (1.1) with 𝑐(𝑡) = 𝑐0 + (𝑐1 − 𝑐0)𝐻(𝑡 − 1), 𝑢0 ≡ 0
and 𝑢1 = 𝛿, where 𝑐0, 𝑐1 > 0, 𝑐0 ∕= 𝑐1, 𝐻 is the Heaviside function and 𝛿 is the
delta function. Let us begin by regularizing the coefficient and initial data. Let 𝜑
be as in Example 2.3 and put

𝑐𝜀(𝑡) = (𝑐 ∗ 𝜑𝜀)(𝑡) = 𝑐0 + (𝑐1 − 𝑐0)

∫
ℝ

𝐻(𝑡− 1− 𝜀𝑠)𝜑(𝑠) 𝑑𝑠.

Then 𝑐𝜀 → 𝑐 in 𝒟′(ℝ) as 𝜀 ↓ 0, and the family (𝑐𝜀)𝜀∈(0,1] belongs to ℰ𝑀 ([0,∞)×ℝ).
We define 𝐶 ∈ 𝒢([0,∞)×ℝ) as the class of (𝑐𝜀)𝜀∈(0,1]. Then sing supp𝒢∞ 𝐶 = {𝑡 =
1}. We also define 𝑈0 ≡ 0 and 𝑈1 ∈ 𝒢(ℝ) as the class of (𝜑𝜀)𝜀∈(0,1], where 𝜑𝜀 again
is a mollifier as in Example 2.3. (Actually, the mollifier need not be the same as the
one chosen for the regularization of the coefficient 𝑐.) Thus we interpret problem
(1.1) with 𝑐(𝑡) = 𝑐0+(𝑐1−𝑐0)𝐻(𝑡−1), 𝑢0 ≡ 0 and 𝑢1 = 𝛿 as problem (3.1) with 𝐶,
𝑈0 and 𝑈1 defined above. The existence and uniqueness of a generalized solution
is then ensured by Theorem 3.1. As may be seen from the following theorem, the
splitting of the singularities occurs at points of discontinuity of the coefficient (see
Figure 1).

Theorem 4.1. Let 𝐶, 𝑈0 and 𝑈1 be as above and let 𝑈 ∈ 𝒢([0,∞) × ℝ) be the
solution to problem (3.1). Then it holds that

sing supp𝒢∞ 𝑈 =

{
(𝑡, 𝑥) ∣ 𝑥 = ±

∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0

}
∪
{
(𝑡, 𝑥) ∣ 𝑥 = ±

(
2

∫ 1

0

𝑐(𝑠) 𝑑𝑠−
∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠

)
, 𝑡 ≥ 1

}
.

(4.1)

Proof. For the sake of presentation, we first assume that 𝑐1 > 𝑐0. To show that
assertion (4.1) holds, we first calculate the 𝒢∞-singular support of the solution
(𝑉,𝑊 ) to problem (3.2) with 𝑉0 = 𝑈1 and 𝑊0 ≡ 0. As may be seen from the proof
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Figure 1. The 𝒢∞-singular support of the solution 𝑈

of Theorem 3.1, the solution (𝑉,𝑊 ) has a representative (𝑣𝜀, 𝑤𝜀)𝜀∈(0,1], which
satisfies the integral equations (3.4) with 𝑣𝜀0 = 𝜑𝜀 and (3.5) with 𝑤𝜀0 = 0:

𝑣𝜀(𝑡, 𝑥) = 𝜑𝜀(𝛾
𝜀
+(𝑡, 𝑥, 0)) +

∫ 𝑡

0

𝜇𝜀(𝑠)(𝑣𝜀 − 𝑤𝜀)(𝑠, 𝛾𝜀+(𝑡, 𝑥, 𝑠)) 𝑑𝑠,

𝑤𝜀(𝑡, 𝑥) =

∫ 𝑡

0

𝜇𝜀(𝑠)(𝑤𝜀 − 𝑣𝜀)(𝑠, 𝛾𝜀−(𝑡, 𝑥, 𝑠)) 𝑑𝑠,

where

𝛾𝜀+(𝑡, 𝑥, 𝑠) = 𝛾𝜀+(𝑡, 𝑥, 0) +

∫ 𝑠

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝛾𝜀+(𝑡, 𝑥, 𝑡) = 𝑥,

𝛾𝜀−(𝑡, 𝑥, 𝑠) = 𝛾𝜀−(𝑡, 𝑥, 0)−
∫ 𝑠

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝛾𝜀−(𝑡, 𝑥, 𝑡) = 𝑥.

The solution (𝑣𝜀, 𝑤𝜀) is obtained by iteration, see [21]. From this, we can check
that 𝑣𝜀(𝑡, 𝑥) ≥ 0 and 𝑤𝜀(𝑡, 𝑥) ≤ 0 for 𝑡 ≥ 0 and 𝑥 ∈ ℝ. Using this fact, we get

𝑣𝜀(𝑡, 𝑥) ≥ 𝜑𝜀(𝛾𝜀+(𝑡, 𝑥, 0)) ≥ 0, (4.2)

𝑤𝜀(𝑡, 𝑥) ≤ −
∫ 𝑡

0

𝜇𝜀(𝑠)𝑣𝜀(𝑠, 𝛾𝜀−(𝑡, 𝑥, 𝑠)) 𝑑𝑠

≤ −
∫ 𝑡

0

𝜇𝜀(𝑠)𝜑𝜀(𝛾
𝜀
+(𝑠, 𝛾𝜀−(𝑡, 𝑥, 𝑠), 0)) 𝑑𝑠

= −
∫ 𝑡

0

𝜇𝜀(𝑠)𝜑𝜀

(
𝛾𝜀−(𝑡, 𝑥, 0)− 2

∫ 𝑠

0

𝑐𝜀(𝜏) 𝑑𝜏

)
𝑑𝑠 ≤ 0. (4.3)
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Step 1. We first prove that

sing supp𝒢∞ 𝑉 =

{
(𝑡, 𝑥) ∣ 𝑥 =

∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0

}
. (4.4)

It is easy to check that 𝑉 ∈ 𝒢([0,∞)×ℝ) vanishes off {(𝑡, 𝑥) ∣ 𝑥 =
∫ 𝑡

0 𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0}
and thus is 𝒢∞-regular there. We will show first that {(𝑡, 𝑥) ∣ 𝑥 =

∫ 𝑡

0 𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0}
is contained in sing supp𝒢∞ 𝑉 .

Fix 𝑡 > 0 arbitrarily, and consider

𝐴𝑡,𝜀 =

∣∣∣∣𝑣𝜀(𝑡, 𝛾𝜀+(0, 𝜀, 𝑡))− 𝑣𝜀(𝑡, 𝛾𝜀+(0, 0, 𝑡))

𝛾𝜀+(0, 𝜀, 𝑡)− 𝛾𝜀+(0, 0, 𝑡)

∣∣∣∣ .
By inequality (4.2), we have 𝑣𝜀(𝑡, 𝛾𝜀+(0, 0, 𝑡)) ≥ 𝜑(0)/𝜀 > 0. Noting that 𝑣𝜀(𝑡, 𝑥) =
0 for 𝑥 ≥ 𝛾𝜀+(0, 𝜀, 𝑡), we get 𝑣𝜀(𝑡, 𝛾𝜀+(0, 𝜀, 𝑡)) = 0. Furthermore, 𝛾𝜀+(0, 𝜀, 𝑡) −
𝛾𝜀+(0, 0, 𝑡) = 𝜀. Hence, we see that 𝐴𝑡,𝜀 ≥ 𝜑(0)/𝜀2. The mean value theorem shows
that there exists 𝑥𝜀1 ∈ (𝛾𝜀+(0, 0, 𝑡), 𝛾𝜀+(0, 𝜀, 𝑡)) such that

∣∂𝑥𝑣𝜀(𝑡, 𝑥𝜀1)∣ ≥
𝜑(0)

𝜀2
.

Repeat this process to find that for any 𝑛 ≥ 2 there exists 𝑥𝜀𝑛 ∈ (𝑥𝜀𝑛−1, 𝛾
𝜀
+(0, 𝜀, 𝑡))

such that

∣∂𝑛𝑥 𝑣𝜀(𝑡, 𝑥𝜀𝑛)∣ ≥
𝜑(0)

𝜀𝑛+1
.

Since 𝑥𝜀𝑛 →
∫ 𝑡

0 𝑐(𝑠) 𝑑𝑠 as 𝜀 ↓ 0, assertion (4.4) holds.

Step 2. We next prove that

sing supp𝒢∞𝑊 =

{
(𝑡, 𝑥) ∣ 𝑥 = 2

∫ 1

0

𝑐(𝑠) 𝑑𝑠−
∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 1

}
. (4.5)

The proof is similar. We can easily check that 𝑊 equals 0 outside {(𝑡, 𝑥) ∣ 𝑥 =

2
∫ 1
0
𝑐(𝑠) 𝑑𝑠− ∫ 𝑡

0
𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 1} and thus is 𝒢∞-regular there. We will show below

that {(𝑡, 𝑥) ∣ 𝑥 = 2
∫ 1
0
𝑐(𝑠) 𝑑𝑠− ∫ 𝑡

0
𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 1} ⊂ sing supp𝒢∞𝑊 .

Fix 𝑡 > 1 arbitrarily. Let 𝜀 < 𝑡− 1, and consider

𝐵𝑡,𝜀 =

∣∣∣∣∣𝑤𝜀(𝑡, 𝛾𝜀−(1,
∫ 1
0 𝑐

𝜀(𝜏) 𝑑𝜏, 𝑡)) − 𝑤𝜀(𝑡, 𝛾𝜀−(1− 𝜀,−𝜀+ ∫ 1−𝜀
0 𝑐𝜀(𝜏) 𝑑𝜏, 𝑡))

𝛾𝜀−(1,
∫ 1
0
𝑐𝜀(𝜏) 𝑑𝜏, 𝑡) − 𝛾𝜀−(1− 𝜀,−𝜀+ ∫ 1−𝜀

0
𝑐𝜀(𝜏) 𝑑𝜏, 𝑡)

∣∣∣∣∣ .
We see that, for 𝑠 ≥ 0,

𝛾𝜀−

(
1,

∫ 1

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑠

)
= 2

∫ 1

0

𝑐𝜀(𝜏) 𝑑𝜏 −
∫ 𝑠

0

𝑐𝜀(𝜏) 𝑑𝜏. (4.6)

Using this, inequality (4.3) and supp𝜇𝜀 ⊂ [1− 𝜀, 1 + 𝜀], we get

𝑤𝜀
(
𝑡, 𝛾𝜀−

(
1,

∫ 1

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑡

))
≤ −

∫ 1+𝜀

1−𝜀
𝜇𝜀(𝑠)𝜑𝜀

(
2

∫ 1

𝑠

𝑐𝜀(𝜏) 𝑑𝜏

)
𝑑𝑠. (4.7)

Choose 𝑎 ∈ (0, 2𝑐1) so that 𝜑(𝑎) > 0. Then, for 1 − 𝜀 ≤ 1 − (𝑎𝜀)/(2𝑐1) ≤ 𝑠 ≤
1 + (𝑎𝜀)/(2𝑐1) ≤ 1 + 𝜀, we have ∣2 ∫ 1𝑠 𝑐𝜀(𝜏) 𝑑𝜏 ∣ ≤ 𝑎𝜀. Using this and noting that
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𝜑′ ≥ 0 on [−1, 0] and the symmetry of 𝜑, we find that 𝜑𝜀(2
∫ 1
𝑠
𝑐𝜀(𝜏) 𝑑𝜏) ≥ 𝜑𝜀(𝑎𝜀)

for 1− (𝑎𝜀)/(2𝑐1) ≤ 𝑠 ≤ 1 + (𝑎𝜀)/(2𝑐1). Therefore, by inequality (4.7), we obtain

𝑤𝜀
(
𝑡, 𝛾𝜀−

(
1,

∫ 1

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑡

))
≤ −

∫ 1+(𝑎𝜀)/(2𝑐1)

1−(𝑎𝜀)/(2𝑐1)
𝜇𝜀(𝑠)𝜑𝜀(𝑎𝜀) 𝑑𝑠

= −1

2
log
𝑐𝜀(1 + (𝑎𝜀)/(2𝑐1))

𝑐𝜀(1− (𝑎𝜀)/(2𝑐1))
⋅ 𝜑(𝑎)
𝜀
,

where

𝛽 =
𝑐𝜀(1 + (𝑎𝜀)/(2𝑐1))

𝑐𝜀(1− (𝑎𝜀)/(2𝑐1))
=
𝑐0 + (𝑐1 − 𝑐0)

∫ 𝑎/(2𝑐1)

−∞ 𝜑(𝑦) 𝑑𝑦

𝑐0 + (𝑐1 − 𝑐0)
∫ −𝑎/(2𝑐1)
−∞ 𝜑(𝑦) 𝑑𝑦

is independent of 𝜀 and greater than 1. Thus, we obtain

𝑤𝜀
(
𝑡, 𝛾𝜀−

(
1,

∫ 1

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑡

))
≤ −1

2
log 𝛽 ⋅ 𝜑(𝑎)

𝜀
< 0.

We also see that, for 𝑠 ≥ 0,

𝛾𝜀−

(
1− 𝜀,−𝜀+

∫ 1−𝜀

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑠

)
= −𝜀+ 2

∫ 1−𝜀

0

𝑐𝜀(𝜏) 𝑑𝜏 −
∫ 𝑠

0

𝑐𝜀(𝜏) 𝑑𝜏, (4.8)

on which 𝑤𝜀 ≡ 0. Furthermore, by (4.6) and (4.8), we have

𝛾𝜀−

(
1,

∫ 1

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑡

)
− 𝛾𝜀−

(
1− 𝜀,−𝜀+

∫ 1−𝜀

0

𝑐𝜀(𝜏) 𝑑𝜏, 𝑡

)
= 𝜀+ 2

∫ 1

1−𝜀
𝑐𝜀(𝜏) 𝑑𝜏 ≤ (1 + 2𝑐1)𝜀.

Hence, 𝐵𝑡,𝜀 ≥ (log 𝛽 ⋅𝜑(𝑎))/(2(1+2𝑐1)𝜀
2). By the mean value theorem, there exists

𝑥𝜀1 ∈ (𝛾𝜀−(1 − 𝜀,−𝜀+ ∫ 1−𝜀
0 𝑐𝜀(𝜏) 𝑑𝜏, 𝑡), 𝛾𝜀−(1,

∫ 1
0 𝑐

𝜀(𝜏) 𝑑𝜏, 𝑡)) such that

∣∂𝑥𝑤𝜀(𝑡, 𝑥𝜀1)∣ ≥
log 𝛽 ⋅ 𝜑(𝑎)
2(1 + 2𝑐1)𝜀2

.

Repeating this process gives that for any 𝑛 ≥ 2, there exists 𝑥𝜀𝑛 ∈ (𝛾𝜀−(1− 𝜀,−𝜀+∫ 1−𝜀
0 𝑐𝜀(𝜏) 𝑑𝜏, 𝑡), 𝑥𝜀𝑛−1) such that

∣∂𝑛𝑥𝑤𝜀(𝑡, 𝑥𝜀𝑛)∣ ≥
log 𝛽 ⋅ 𝜑(𝑎)

2(1 + 2𝑐1)𝑛𝜀𝑛+1
.

Since 𝑥𝜀𝑛 → 2
∫ 1
0 𝑐(𝑠) 𝑑𝑠−

∫ 𝑡

0 𝑐(𝑠) 𝑑𝑠 as 𝜀 ↓ 0, assertion (4.5) holds.

Step 3. We finally prove that assertion (4.1) holds. Similarly to Steps 1 and 2, we
can show that

sing supp𝒢∞ 𝑉 =

{
(𝑡, 𝑥) ∣ 𝑥 = −

(
2

∫ 1

0

𝑐(𝑠) 𝑑𝑠−
∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠

)
, 𝑡 ≥ 1

}
, (4.9)

sing supp𝒢∞𝑊 =

{
(𝑡, 𝑥) ∣ 𝑥 = −

∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0

}
, (4.10)
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if 𝑉0 ≡ 0 and 𝑊0 = 𝑈1. By the definitions of 𝑉 and 𝑊 , the 𝒢∞-singular support
of 𝑈 coincides with the union of (4.4), (4.5), (4.9) and (4.10). Thus, assertion (4.1)
follows.

The case 𝑐0 > 𝑐1 can be treated by the same arguments, using a change of
sign in 𝑈1 and invoking the linearity of the equation. The proof of Theorem 4.1 is
now complete. □

We remark that assertion (4.1) in Theorem 4.1 still holds when 𝑈1 ∈ 𝒢(ℝ)
is given by the class of (𝜑𝑛𝜀 )𝜀∈(0,1] with 𝑛 ∈ ℕ, i.e., 𝑈1 is any power of the delta
function.

5. Slow scale coefficients and regularity along the refracted ray

We here discuss how the regularity of the coefficient 𝐶 affects that of the solution
𝑈 to problem (3.1). As mentioned in Example 2.3, one may regularize the piecewise
constant propagation speed 𝑐(𝑡) = 𝑐0 + (𝑐1 − 𝑐0)𝐻(𝑡 − 1) in such a way that the
corresponding element 𝐶 ∈ 𝒢(ℝ) belongs to 𝒢∞(ℝ). In fact, it suffices to use a
mollifier 𝜑ℎ(𝜀), where (1/ℎ(𝜀))𝜀∈(0,1] is a positive slow scale net. It has been shown
in [18] that a bounded element 𝐶 of 𝒢(ℝ) belongs to 𝒢∞(ℝ) if and only if all
derivatives satisfy slow scale bounds. Consider problem (3.1) with 𝑈0 ≡ 0 and 𝑈1
given by the class of (𝜑𝜀)𝜀∈(0,1] as in Theorem 4.1. Then as may be seen from the
following theorem, the refracted rays

Γ− =

{
(𝑡, 𝑥) ∣ 𝑥 = 2

∫ 1

0

𝑐(𝑠) 𝑑𝑠−
∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 > 1

}
= {(𝑡, 𝑥) ∣ 𝑥 = 𝑐0 − 𝑐1(𝑡− 1), 𝑡 > 1}

Γ+ =

{
(𝑡, 𝑥) ∣ 𝑥 = −2

∫ 1

0

𝑐(𝑠) 𝑑𝑠+

∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 > 1

}
= {(𝑡, 𝑥) ∣ 𝑥 = −𝑐0 + 𝑐1(𝑡− 1), 𝑡 > 1}

do not belong to sing supp𝒢∞ 𝑈 , if 𝐶 belongs to 𝒢∞(ℝ) (see Figure 2).

Theorem 5.1. Let 𝐶, 𝑈0 and 𝑈1 be as above and let 𝑈 ∈ 𝒢([0,∞) × ℝ) be the
solution to problem (3.1). If 𝐶 ∈ 𝒢∞(ℝ), then

sing supp𝒢∞ 𝑈 =

{
(𝑡, 𝑥) ∣ 𝑥 = ±

∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0

}
.

Proof. As can be seen from the proof of Theorem 4.1, it suffices to consider problem
(3.2) when 𝑉0 = 𝑈1 and 𝑊0 ≡ 0:

(∂𝑡 + 𝐶∂𝑥)𝑉 =𝑀𝑉 −𝑀𝑊 in 𝒢([0,∞)× ℝ),

(∂𝑡 − 𝐶∂𝑥)𝑊 =𝑀𝑊 −𝑀𝑉 in 𝒢([0,∞)× ℝ),

𝑉 ∣𝑡=0 = 𝑈1, 𝑊 ∣𝑡=0 = 0 in 𝒢(ℝ).

(5.1)
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Figure 2. The 𝒢∞-singular support of the solution 𝑈 with slow scale coefficient

The same argument as in the proof of Theorem 4.1 shows that

sing supp𝒢∞ 𝑉 =

{
(𝑡, 𝑥) ∣ 𝑥 =

∫ 𝑡

0

𝑐(𝑠) 𝑑𝑠, 𝑡 ≥ 0

}
holds. Thus, it remains to show that 𝑊 is 𝒢∞-regular in a neighborhood of Γ−.

A simple calculation shows that the commutator of ∂𝑡−𝐶(𝑡)∂𝑥 and ∂𝑡+𝐶(𝑡)∂𝑥
is given by

[∂𝑡 − 𝐶(𝑡)∂𝑥, ∂𝑡 + 𝐶(𝑡)∂𝑥] = 2𝐶′(𝑡)∂𝑥.
Using this commutator relation and the second line of system (5.1), we have

(∂𝑡 − 𝐶∂𝑥)(∂𝑡 + 𝐶∂𝑥)𝑊 = (∂𝑡 + 𝐶∂𝑥)(∂𝑡 − 𝐶∂𝑥)𝑊 + 2𝐶 ′∂𝑥𝑊

= (∂𝑡 + 𝐶∂𝑥)
(
𝑀(𝑊 − 𝑉 )

)
+ 2𝐶 ′∂𝑥𝑊

= 𝑀(∂𝑡 + 𝐶∂𝑥)𝑊 −𝑀(∂𝑡 + 𝐶∂𝑥)𝑉 +𝑀 ′(𝑊 − 𝑉 ) + 2𝐶 ′∂𝑥𝑊.

From the first line of system (5.1),

(∂𝑡 + 𝐶∂𝑥)𝑉 = 𝑀(𝑉 −𝑊 ).

Further,

∂𝑥𝑊 =
1

2𝐶

(
(∂𝑡 + 𝐶∂𝑥)𝑊 − (∂𝑡 − 𝐶∂𝑥)𝑊

)
=

1

2𝐶

(
(∂𝑡 + 𝐶∂𝑥)𝑊 +𝑀(𝑉 −𝑊 )

)
.

Together with 𝐶 ′/(2𝐶) = 𝑀 this leads to

(∂𝑡 − 𝐶∂𝑥)(∂𝑡 + 𝐶∂𝑥)𝑊 = 3𝑀(∂𝑡 + 𝐶∂𝑥)𝑊 + (𝑀2 −𝑀 ′)(𝑉 −𝑊 ).

Let 𝐾𝑇 be as in Theorem 4.1. Then the representatives (𝑣𝜀, 𝑤𝜀) of (𝑉,𝑊 ) are of
order 𝜀−𝑁 on 𝐾𝑇 for some 𝑁 . Further, 𝑀 and its derivatives are slow scale by
assumption; hence ∣(𝜇𝜀)2 − (𝜇𝜀)′∣ ≤ 𝜆1(𝜀) for some slow scale net (𝜆1(𝜀))𝜀∈(0,1].
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From integration along characteristics and Gronwall’s inequality as in the proof of
Theorem 3.1, we get

∥(∂𝑡 + 𝑐𝜀∂𝑥)𝑤𝜀∥𝐿∞(𝐾𝑇 ) ≤ 𝜆1(𝜀)𝜀
−𝑁𝑇 exp

(∫ 𝑇

0

3∣𝜇𝜀(𝑠)∣ 𝑑𝑠
)

= 𝒪(𝜆1(𝜀)𝜀
−𝑁 )

since
∫ 𝑇

0
∣𝜇𝜀(𝑠)∣ 𝑑𝑠 is bounded by construction. Recursively we find that

(∂𝑡 − 𝐶∂𝑥)(∂𝑡 + 𝐶∂𝑥)𝑘𝑊 = (2𝑘 + 1)𝑀(∂𝑡 + 𝐶∂𝑥)𝑘𝑊 + 𝐿(𝑉,𝑊,𝑀,𝐶)

where 𝐿 depends linearly on 𝑉 , 𝑊 , (∂𝑡 + 𝐶∂𝑥)𝑊, . . . , (∂𝑡 + 𝐶∂𝑥)𝑘−1𝑊 and may
contain derivatives of 𝐶, 𝑀 and their products and powers. The linearity of 𝐿 in
the first variables and the slow scale property of 𝐶,𝑀 and their derivatives yield
by induction that

∥(∂𝑡 + 𝑐𝜀∂𝑥)𝑘𝑤𝜀∥𝐿∞(𝐾𝑇 ) = 𝒪(𝜆𝑘(𝜀)𝜀−𝑁 )

for some slow scale net (𝜆𝑘(𝜀))𝜀∈(0,1].
For the remainder of the proof we may use the fact – already shown in

Theorem 4.1 – that 𝑉 vanishes on Γ−, hence

(∂𝑡 − 𝐶∂𝑥)𝑊 = 𝑀𝑊, (∂𝑡 − 𝐶∂𝑥)2𝑊 = 𝑀(∂𝑡 − 𝐶∂𝑥)𝑊 +𝑀 ′𝑊, . . .

along Γ−. Again the higher-order directional derivatives of 𝑊 in the direction
∂𝑡 −𝐶∂𝑥 can be estimated inductively and bounded by some slow scale net times
𝜀−𝑁 . Similarly, all mixed derivatives (∂𝑡 ± 𝐶∂𝑥)𝑘(∂𝑡 ∓ 𝐶∂𝑥)ℓ𝑊 can be estimated
by reduction to previously computed terms. In conclusion, all derivatives of 𝑊
can be bounded by some slow scale net times 𝜀−𝑁 , hence are of order 𝒪(𝜀−𝑁−1).
Thus 𝑊 is 𝒢∞ along Γ−. □

We remark that the result can be generalized in various ways. For exam-
ple, the integral bound on ∣𝜇𝜀∣ can be replaced by the requirement that the net
exp

(∫∞
0
∣𝜇𝜀(𝑡)∣ 𝑑𝑡) is slow scale. The proof is expected to go through for arbitrary

initial data 𝑈1 whose 𝒢∞-singular support is {0}.

6. Associated distributions

We consider again the wave equation in one space dimension with propagation
speed 𝑐 = 𝑐(𝑡) depending on time, i.e.,

∂2𝑡 𝑢− 𝑐(𝑡)2∂2𝑥𝑢 = 0 (6.1)

with initial conditions

𝑢∣𝑡=0 = 𝑢0, ∂𝑡𝑢∣𝑡=0 = 𝑢1. (6.2)

If 𝑐(𝑡) is piecewise constant, say 𝑐(𝑡) = 𝑐0+(𝑐1− 𝑐0)𝐻(𝑡− 1), and 𝑢0, 𝑢1 ∈ 𝒟′, this
problem has a unique solution

𝑢 ∈ 𝒞1([0,∞) : 𝒟′(ℝ)) ∩ (𝒞2((0, 1) : 𝒟′(ℝ))⊕ 𝒞2((1,∞) : 𝒟′(ℝ))
)
. (6.3)
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Thus the problem is interpreted as a transmission problem across a discontinuity
at 𝑡 = 1; the transmission condition is that the solution should be a continuously
differentiable function of time with values in 𝒟′(ℝ). It is simply obtained by solving
the wave equation for 𝑡 < 1 and for 𝑡 > 1 and taking the terminal values at 𝑡 = 1
as initial values for 𝑡 > 1.

On the other hand, imbedding 𝑢0, 𝑢1 and 𝑐 into the Colombeau algebra
by convolution with suitable compactly supported mollifiers (concerning 𝑐, we
use a mollifier as in Example 2.3), problem (6.1), (6.2) has a unique solution
𝑈 ∈ 𝒢([0,∞)×ℝ). We are going to show that the Colombeau solution is associated
with the piecewise distributional solution.

Theorem 6.1. Let 𝑐(𝑡) be a piecewise constant, strictly positive function and let
𝑢0, 𝑢1 ∈ 𝒟′(ℝ). Then the corresponding generalized solution 𝑈 ∈ 𝒢([0,∞)× ℝ) is
associated with the piecewise distributional solution 𝑢 satisfying (6.3).

Proof. We first assume that 𝑢0 ∈ 𝒞2(ℝ) and 𝑢1 ∈ 𝒞1(ℝ) and that both have com-
pact support. Fix some 𝑇 > 1. Let (𝑢𝜀)𝜀∈(0,1] be a representative of the generalized
solution that vanishes for 𝑥 outside some compact set, independently of 𝑡, 0 ≤ 𝑡 ≤
𝑇 . This and the smoothness imply that 𝑢𝜀 belongs to 𝒞∞(

[0, 𝑇 ) : 𝐻∞(ℝ)
)
. Thus

we can use energy estimates. Multiplying the wave equation 𝑢𝜀𝑡𝑡 − 𝑐𝜀(𝑡)2𝑢𝜀𝑥𝑥 = 0
by 𝑢𝜀𝑡 and integrating by parts we get∫

ℝ

(
𝑢𝜀𝑡𝑡𝑢

𝜀
𝑡 + (𝑐𝜀)2𝑢𝜀𝑥𝑢

𝜀
𝑥𝑡

)
𝑑𝑥 = 0.

Observing that
1

2

𝑑

𝑑𝑡
(𝑐𝜀𝑢𝜀𝑥)2 = (𝑐𝜀)2𝑢𝜀𝑥𝑢

𝜀
𝑥𝑡 + 𝑐𝜀(𝑐𝜀)′(𝑢𝜀𝑥)2

we obtain that
1

2

𝑑

𝑑𝑡

∫
ℝ

(∣𝑢𝜀𝑡 ∣2 + (𝑐𝜀)2∣𝑢𝜀𝑥∣2
)
𝑑𝑥 =

∫
ℝ

𝑐𝜀(𝑐𝜀)′∣𝑢𝜀𝑥∣2 𝑑𝑥

for 𝑡 ∈ [0, 𝑇 ) and thus the energy estimate∫
ℝ

(∣𝑢𝜀𝑡 ∣2+(𝑐𝜀)2∣𝑢𝜀𝑥∣2
)
𝑑𝑥 ≤

∫
ℝ

(∣𝑢𝜀1∣2+(𝑐𝜀)2∣𝑢𝜀0𝑥∣2
)
𝑑𝑥+2

∫ 𝑡

0

∣𝑐𝜀(𝑐𝜀)′∣
∫
ℝ

∣𝑢𝜀𝑥∣2 𝑑𝑥 𝑑𝑡.

By assumption, 𝑐𝜀(𝑐𝜀)′ is bounded in 𝐿1(0, 𝑇 ), and so Gronwall’s inequality shows
that

∫
ℝ
∣𝑢𝜀𝑥(𝑡, 𝑥)∣2 𝑑𝑥 and hence also

∫
ℝ
∣𝑢𝜀𝑡 (𝑡, 𝑥)∣2 𝑑𝑥 remain bounded on [0, 𝑇 ],

uniformly in 𝜀. In particular, the family (𝑢𝜀)𝜀∈(0,1] is bounded in 𝒞([0, 𝑇 ) : 𝐻1(ℝ)
)

as well as in 𝒞1([0, 𝑇 ) : 𝐿2(ℝ)
)
. By construction, the supports of the functions

𝑢𝜀 are contained in a common bounded set. Thus the first property implies that
(𝑢𝜀(⋅, 𝑡))𝜀∈(0,1] is relatively compact in 𝐿2(ℝ) for every 𝑡. The second property

shows that (𝑢𝜀)𝜀∈(0,1] is an equicontinuous subset of 𝒞([0, 𝑇 ) : 𝐿2(ℝ)
)
. By Ascoli’s

theorem, the net (𝑢𝜀)𝜀∈(0,1] is relatively compact in 𝒞([0, 𝑇 ) : 𝐿2(ℝ)
)
.

Taking 𝑥-derivatives in equation (6.1) we can apply the same argument to
𝑢𝜀𝑥 and conclude that both

∫
ℝ
∣𝑢𝜀𝑥𝑡(𝑡, 𝑥)∣2 𝑑𝑥 and

∫
ℝ
∣𝑢𝜀𝑥𝑥(𝑡, 𝑥)∣2 𝑑𝑥 remain bounded

on [0, 𝑇 ], uniformly in 𝜀. By the differential equation (6.1), the same is true of
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∫
ℝ
∣𝑢𝜀𝑡𝑡(𝑡, 𝑥)∣2 𝑑𝑥. By the same argument as above, (𝑢𝜀𝑡 )𝜀∈(0,1] is relatively compact

in 𝒞([0, 𝑇 ) : 𝐿2(ℝ)
)

and so (𝑢𝜀)𝜀∈(0,1] is relatively compact in 𝒞1([0, 𝑇 ) : 𝐿2(ℝ)
)
.

There exists a subsequence (𝑢𝜀𝑘)𝑘 such that

lim
𝑘→∞

𝑢𝜀𝑘 = 𝑢 ∈ 𝒞1([0, 𝑇 ) : 𝐿2(ℝ)
) ⊂ 𝒞1([0, 𝑇 ) : 𝒟′(ℝ)).

But on every compact subinterval of (0, 1) and of (1, 𝑇 ), 𝑐𝜀 is identically equal to
𝑐0 or 𝑐1, respectively, when 𝜀 is sufficiently small. This implies that 𝑢 is a distri-
butional solution of the wave equation (6.1) on both strips. Since 𝑢 ∈ 𝒞([0, 𝑇 ) :

𝐷′(ℝ)
)
, so is 𝑢𝑥𝑥. From the equation, we get that

𝑢 ∈ (𝒞2((0, 1) : 𝒟′(ℝ))⊕ 𝒞2((1,∞) : 𝒟′(ℝ))
)
.

In other words, 𝑢 is the unique piecewise distributional solution to (6.1), (6.2).
Consequently, the whole net (𝑢𝜀)𝜀∈(0,1] converges to 𝑢 = 𝑢.

If 𝑢0 ∈ 𝒞2(ℝ) and 𝑢1 ∈ 𝒞1(ℝ) do not have compact support, we consider an
arbitrary rectangle [−𝑅,𝑅]×[0, 𝑇 ] and take a cut-off function 𝜒(𝑥) identically equal
to 1 on a neighborhood of [−𝑅 − 𝑇 max0≤𝑡≤𝑇 𝑐(𝑡), 𝑅 + 𝑇 max0≤𝑡≤𝑇 𝑐(𝑡)] × [0, 𝑇 ].
By the derivation above, the Colombeau solution with initial data 𝜒𝑢0, 𝜒𝑢1 is
associated with the piecewise distributional solution with the corresponding initial
data. But both solutions coincide with the corresponding solutions without cut-off
on the rectangle [−𝑅,𝑅]× [0, 𝑇 ], by finite propagation speed. This shows that the
association result holds without the assumption of compact support.

In the next to last step, take 𝑢0, 𝑢1 ∈ 𝒟′(ℝ) and assume that they are dis-
tributions of finite order. Write 𝑢0 = 𝑢−0 + 𝑢+0 , where 𝑢−0 has its support bounded
from the right, and 𝑢+0 has support bounded from the left, and similarly for 𝑢1.
There is an integer 𝑛 such that 𝑢+0 ∗ 𝐼𝑛 ∈ 𝒞2(ℝ) and 𝑢+1 ∗ 𝐼𝑛 ∈ 𝒞1(ℝ), where 𝐼𝑛
is the 𝑛-fold convolution of the Heaviside function with itself; a similar assertion
holds for 𝑢−0 ∗ 𝐼𝑛 and 𝑢−0 ∗ 𝐼𝑛. We may assume without loss that 𝑢−0 = 𝑢−1 = 0. Let
𝑢 and 𝑈 be the piecewise distributional solution and the Colombeau solution with

initial data 𝑢0, 𝑢1, respectively. Let 𝑢 and 𝑈 be the piecewise distributional solu-
tion and the Colombeau solution with initial data 𝑢0 ∗ 𝐼𝑛 and 𝑢1 ∗ 𝐼𝑛, respectively.

By the previous step, 𝑈 is associated with 𝑢. But ∂𝑛𝑥𝑈 = 𝑈 and ∂𝑛𝑥𝑢 = 𝑢, since
both satisfy the wave equation with initial data 𝑢0, 𝑢1 in the appropriate settings.
Therefore, 𝑈 is associated with 𝑢 as well.

Finally, if 𝑢0, 𝑢1 ∈ 𝒟′(ℝ) are arbitrary distributions, we use the fact that
they are locally of finite order and argue by cut-off and finite propagation speed
as above. □

Remark 6.2. The compactness argument in the first step of the proof can be set
up in various spaces. For example, the uniform boundedness of

∫
ℝ
∣𝑢𝜀𝑥𝑡(𝑡, 𝑥)∣2 𝑑𝑥

on [0, 𝑇 ] implies the equicontinuity of (𝑢𝜀)𝜀∈(0,1] in 𝒞([0, 𝑇 ) : 𝐻1(ℝ)
) ⊂ 𝒞([0, 𝑇 ) :

𝒞(ℝ)
)
. Hence (𝑢𝜀)𝜀∈(0,1] is actually relatively compact in 𝒞([0, 𝑇 ) : 𝒞(ℝ)

)
= 𝒞(ℝ×

[0, 𝑇 )
)
.
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linear partial differential operators with generalized functions as coefficients, Trans.
Amer. Math. Soc. 358 (2006), 3363–3383.

[19] F. Lafon and M. Oberguggenberger, Generalized solutions to symmetric hyperbolic
systems with discontinuous coefficients: the multidimensional case, J. Math. Anal.
Appl. 160 (1991), 93–106.

[20] M. Oberguggenberger, Hyperbolic systems with discontinuous coefficients: general-
ized solutions and a transmission problem in acoustics, J. Math. Anal. Appl. 142
(1989), 452–467.

[21] M. Oberguggenberger, Multiplication of Distributions and Applications to Partial
Differential Equations, Pitman Research Notes Math. 259, Longman Scientific &
Technical, Harlow, 1992.

[22] M. Oberguggenberger, Hyperbolic systems with discontinuous coefficients: general-
ized wavefront sets, in New Developments in Pseudo-Differential Operators, editors:
L. Rodino and M.W. Wong, Birkhäuser, 2009, 117–136.
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Generalized Solutions of
Abstract Stochastic Problems

I.V. Melnikova and M.A. Alshanskiy

Abstract. The Cauchy problem 𝑢′(𝑡) = 𝐴𝑢(𝑡) + 𝐵𝕎(𝑡), 𝑡 ≥ 0, 𝑢(0) = 𝜁 with
singular white noise 𝕎 and 𝐴 not necessarily generating a 𝐶0-semigroup is
studied in spaces of distributions. Spaces of generalized with respect to both
time variable 𝑡 and random variable 𝜔 are built. Existence and uniqueness of
generalized solutions in the obtained spaces is proved.

Mathematics Subject Classification (2010). Primary: 46F25; 47D06; 34K30;
60H40.

Keywords. Cauchy problem, generalized solutions, semigroup, Wiener process,
white noise, distributions.

1. Introduction

Modeling of different evolution processes subject to random perturbations gives
rise to the Cauchy problems for operator-differential equations with white noise
as an inhomogeneity. The basic one among them is the Cauchy problem

𝑋 ′(𝑡) = 𝐴𝑋(𝑡) +𝐵𝕎(𝑡), 𝑡 ∈ [0, 𝜏), 𝜏 ≤ ∞, 𝑋(0) = 𝜁, (1.1)

where 𝐴 is a linear closed operator in a Hilbert space 𝐻 , 𝐵 ∈ ℒ(ℍ, 𝐻) and
{𝕎(𝑡), 𝑡 ≥ 0} is an ℍ-valued white noise. Because of irregularity of the white
noise 𝕎 the problem is usually reduced to an integral Itô type equation with the
“primitive” of 𝕎, i.e., some Wiener process [1, 2]. To make the problem have so-
lutions one has to impose restrictive conditions on 𝐴, or consider less restrictive
concept of solution (weak, mild, generalized).

In our work we study existence of generalized solutions of (1.1) introducing
appropriate spaces of distributions. Our aim is construction of spaces of distribu-
tions where the problem has solutions in the case when 𝐴 is not the generator

This work was completed with the support of the Programme of the Ministry of Education and
Science of Russian Federation 1.1016.2011 and RFFI 10-01-96003 ural.
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of a 𝐶0-semigroup, i.e., the Cauchy problem for the corresponding deterministic
homogeneous equation is not well posed and 𝕎 is the singular white noise.

This work unites the following two approaches to the concept of generalized
solution of problem (1.1). The first one (see [2, 3]) uses spaces 𝒟′(𝐿2(Ω;𝐻)) of dis-
tributions over 𝒟 with values in the space 𝐿2(Ω;𝐻) of 𝐻-valued random variables
with finite second moment, where (Ω,ℱ ,P) is a probability space. We call them
distributions with respect to 𝑡. This approach allows to obtain solutions in the case
when 𝐴 does not generate a 𝐶0-semigroup, but is the generator of an integrated
semigroup. It does not allow to consider the equation with the cylindrical white
nose as the later does not belong to 𝒟′(𝐿2(Ω;ℍ)). One has to replace it with a
“regularized” version called 𝑄-white noise. The second approach developed in [4, 5]
uses spaces of 𝐻-valued stochastic distributions (𝒮)−𝜌(𝐻), 𝜌 ∈ [0; 1], i.e., distribu-
tions with respect to random variable 𝜔 ∈ Ω. One can consider equation with 𝕎(𝑡)
being a singular cylindrical white noise since it belongs to (𝒮)−𝜌(ℍ) for any 𝑡 ∈ ℝ
and is infinitely differentiable, but within this approach solutions of the Cauchy
problem can be obtained only in the case when 𝐴 generates a 𝐶0-semigroup and
if the initial value 𝜁 belongs to (dom𝐴) – the domain of 𝐴 in (𝒮)−𝜌(𝐻).

Taking in account these circumstances we introduce spaces of generalized
functions in both 𝑡 and 𝜔 thus making it possible to obtain solutions of the problem
(1.1) with the generator of an integrated semigroup with no restrictions on 𝜁. The
spaces of ℝ-valued distributions in both 𝑡 and 𝜔 were introduced in [6]. In our
work we build spaces (𝕊)′(𝐻) of 𝐻-valued distributions in 𝑡 and 𝜔 and introduce
its extension – the space (𝕊)′𝑎(𝐻) of distributions growing exponentially in 𝑡, where
we obtain the existence result.

In Section 2 we review the necessary definitions, including definition of spaces
(𝒮)−𝜌(𝐻), considering for simplicity the case 𝜌 = 0. Defining it we use an alter-
native approach, different from the one used in [4, 5], as it can then be used to
define (𝕊)′(𝐻) and (𝕊)′𝑎(𝐻) which we do in Section 3.

2. Definitions

2.1. Integrated semigroups

Let 𝐴 be a closed linear operator in a Banach space 𝐻 .

Definition 2.1. A strongly continuous family 𝑉 =
{
𝑉 (𝑡), 𝑡 ≥ 0

}
of linear bounded

operators in 𝐻 is called an 𝑛-times integrated semigroup with the generator 𝐴 if

𝑉 (𝑡)𝐴𝜁 = 𝐴𝑉 (𝑡)𝜁, 𝜁 ∈ dom𝐴, 𝑉 (𝑡)𝜁 = 𝐴

∫ 𝑡

0

𝑉 (𝑠)𝜁𝑑𝑠 +
𝑡𝑛

𝑛!
𝜁, 𝜁 ∈ 𝐻 .

The semigroup 𝑉 is called exponentially bounded if ∥𝑉 (𝑡)∥ ≤ 𝑀𝑒𝑎𝑡, 𝑡 ≥ 0 for
some 𝑀 > 0, 𝑎 ∈ ℝ.

Integrated semigroups were defined via certain “semigroup property” in [7]
where the notion of the infinitesimal generator of a semigroup was introduced.
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The definition we give here is an equivalent one in the case of densely defined
operator 𝐴 (see details and examples in [8, 9]).

2.2. Wiener processes

Let (Ω,ℱ , 𝑃 ) be a probability space, ℍ be a Hilbert space and 𝑄 be a linear
symmetric positive trace class operator with a system of eigenvectors {𝑒𝑖}, forming
a basis of ℍ, such that 𝑄𝑒𝑖 = 𝜎2𝑖 𝑒𝑖,

∑∞
𝑖=1 𝜎

2
𝑖 <∞.

Definition 2.2. Stochastic process 𝑊𝑄 = {𝑊𝑄(𝑡), 𝑡 ≥ 0} with values in ℍ is called
a 𝑄-Wiener process, if

(W1) 𝑊𝑄(0) = 0 a.s.;
(W2) 𝑊𝑄 has independent increments;
(W3) the increments 𝑊𝑄(𝑡) −𝑊𝑄(𝑠) are normally distributed with mean

zero and covariance operator equal to (𝑡− 𝑠)𝑄;
(W4) the trajectories of 𝑊𝑄 are continuous a.s.

A𝑄-Wiener process is a generalization of the Brownian motion {𝛽(𝑡), 𝑡 ≥ 0}, where
𝛽(𝑡) = 𝛽(𝜔, 𝑡), 𝜔 ∈ Ω, which is defined via conditions (W1)–(W4) in the case ℍ = ℝ
(𝑄 = 𝐼). A finite-dimensional Brownian motion has form

∑𝑛
𝑗=1 𝛽𝑗(𝑡)𝑒𝑗 , where {𝑒𝑗}

is an orthonormal basis in ℝ𝑛 and 𝛽𝑗 are independent Brownian motions. When
passing to infinite dimensions, to avoid divergency in ℍ, one has to consider a
regularized sum

𝑊𝑄(𝑡) :=

∞∑
𝑗=1

𝜎𝑗𝛽𝑗(𝑡)𝑒𝑗 , 𝑡 ≥ 0 , 𝑊𝑄(𝑡) ∈ 𝐿2(Ω;ℍ) ,

with
∑∞

𝑗=1 𝜎
2
𝑗 <∞, which happens to be an ℍ-valued 𝑄-Wiener process.

The formal series
∑∞

𝑗=1 𝛽𝑗(𝑡)𝑒𝑗 =: 𝑊 (𝑡) is called a cylindrical Wiener process.

2.3. Spaces of abstract distributions. White noise in
spaces of abstract distributions

For any Banach space 𝒳 by 𝒟′(𝒳 ) we denote the space of all 𝒳 -valued distributions
over the space of test functions 𝒟. In contrary to the ℝ-valued Schwartz distribu-
tions they are called abstract distributions. By 𝒟′0(𝒳 ) we denote the subspace of
distributions having supports in [0,∞).

Let ℍ now be a separable Hilbert space and 𝑊𝑄 be an ℍ-valued 𝑄-Wiener
process. Since 𝑊𝑄 is a continuous 𝐿2(Ω;ℍ)-valued function of 𝑡 ≥ 0, we can define
𝑄-white noise 𝕎𝑄 ∈ 𝒟′0(𝐿2(Ω;ℍ)) as the generalized derivative of 𝑊𝑄 continued
as zero for 𝑡 < 0, i.e., by the following equality:

⟨𝕎𝑄, 𝜃⟩ := −
∫ ∞

0

𝑊𝑄(𝑡)𝜃′(𝑡) 𝑑𝑡 =

∫ ∞

0

𝜃(𝑡) 𝑑𝑊𝑄(𝑡) , 𝜃 ∈ 𝒟 . (2.1)

The first integral in (2.1) is understood as Bochner integral of an 𝐿2(Ω;ℍ)-valued
function, the second one – as an abstract Itô integral with respect to the Wiener
process. The equality of the integrals follows from the Itô formula.

We will use convolution of distributions defined as follows (see [10]).
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Definition 2.3. Let 𝒳 , 𝒴 and 𝒵 be Banach spaces, such that there exists a con-
tinuous bilinear operation (𝑢, 𝑣) → 𝑢𝑣 ∈ 𝒵 defined on 𝒳 ×𝒴. For any 𝐺 ∈ 𝒟′0(𝒳 )
and 𝐹 ∈ 𝒟′0(𝒴) the convolution 𝐺 ∗ 𝐹 ∈ 𝒟′0(𝒵) is defined by the equality

⟨𝐺 ∗ 𝐹 , 𝜃⟩ :=
〈
(𝑔 ∗ 𝑓)(𝑛+𝑚), 𝜃

〉
= (−1)𝑛+𝑚

∫ ∞

0

(𝑔 ∗ 𝑓)(𝑡)𝜃(𝑛+𝑚)(𝑡) 𝑑𝑡 , 𝜃 ∈ 𝒟 ,

where 𝑔 : ℝ→ 𝒳 , 𝑓 : ℝ→ 𝒴 are continuous functions such that

⟨𝐺, 𝜃⟩ = (−1)𝑛
∫ ∞

0

𝑔(𝑡)𝜃(𝑛)(𝑡) 𝑑𝑡, ⟨𝐹, 𝜃⟩ = (−1)𝑚
∫ ∞

0

𝑓(𝑡)𝜃(𝑚)(𝑡) 𝑑𝑡,

(𝑔 ∗ 𝑓)(𝑡) :=
∫ 𝑡

0 𝑔(𝑡− 𝑠)𝑓(𝑠)𝑑𝑠 .

This definition uses the fact that all distributions in 𝒟′0(𝒳 ) have locally (on
any bounded interval in ℝ) a finite order, i.e., can be represented as a generalized
derivative of some order of a continuous ℍ-valued function with support in [0;∞).
In case of space 𝒮 ′0(𝒳 ) and the subspace 𝒮 ′𝑎0 (𝒳 ) consisting of exponentially (with
type 𝑎) bounded elements of 𝒟′0(𝒳 ) this fact holds true globally.

Note that in the particular case when 𝐺 is a regular distribution, i.e., ⟨𝐺, 𝜃⟩ =∫∞
0
𝐺(𝑡)𝜃(𝑡) 𝑑𝑡 , it holds ⟨𝐺 ∗ 𝐹, 𝜃⟩ =

∫∞
0
𝐺(𝑡)⟨𝐹 (⋅), 𝜃(𝑡 + ⋅)⟩ 𝑑𝑡 .

2.4. Spaces of abstract stochastic distributions. Singular white noise

The theory of stochastic distributions uses the white noise probability space. It is
the triple (𝒮 ′,ℬ(𝒮 ′), 𝜇), where ℬ(𝒮 ′) is the Borel 𝜎-field of 𝒮 ′ – Schwartz space
of tempered distributions, 𝜇 is the centered Gaussian, or white noise measure, on
ℬ(𝒮 ′) satisfying the equality∫

𝒮′
𝑒𝑖⟨𝜔 , 𝜃⟩𝑑𝜇(𝜔) = 𝑒−

1
2 ∣𝜃∣20 , 𝜃 ∈ 𝒮

where ∣ ⋅ ∣0 is the norm of 𝐿2(ℝ). Existence of such measure is stated by the
Bochner–Minlos theorem (see, e.g., [11, 12]).

Construction of spaces of abstract stochastic distributions [11, 12]) is analo-
gous to the construction of the Gelfand triple 𝒮 ⊂ 𝐿2(ℝ) ⊂ 𝒮 ′. Its central element
is the space (𝐿2) of all functions of 𝜔 ∈ 𝒮 ′ which are square integrable with respect

to measure 𝜇. Hermite functions 𝜉𝑘(𝑥) = 𝜋−
1
4

(
(𝑘 − 1)!

)− 1
2 𝑒−

𝑥2

2 ℎ𝑘−1(𝑥) (where

ℎ𝑘(𝑥) = (−1)𝑘𝑒
𝑥2

2 (𝑑/𝑑𝑥)𝑘𝑒−
𝑥2

2 , are Hermite polynomials) are the eigenfunctions

of the differential operator �̂� = − 𝑑2

𝑑𝑡2 + 𝑡2 + 1 with �̂�𝜉𝑘 = (2𝑘)𝜉𝑘 , 𝑘 ∈ ℕ and
form an orthonormal basis of 𝐿2(ℝ). Stochastic Hermite polynomials h𝛼(𝜔) :=∏

𝑘 ℎ𝛼𝑘
(⟨𝜔 , 𝜉𝑘⟩) , 𝜔 ∈ 𝒮 ′, where 𝛼 ∈ 𝒯 (the set of all finite multi-indices) form an

orthogonal basis of (𝐿2) with

(h𝛼 , h𝛽)(𝐿2) = 𝛼!𝛿𝛼,𝛽 , 𝛼! :=
∏
𝑘

𝛼𝑘! .

They are the eigenfunctions of the second quantization operator Γ(�̂�). It holds

Γ(�̂�)h𝛼 =
∏

𝑘(2𝑘)𝛼𝑘h𝛼 =: (2ℕ)𝛼h𝛼.
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The space of test functions (𝒮) is a countably Hilbert space (𝒮) = ∩𝑝∈ℕ(𝒮𝑝)
with the projective limit topology, where

(𝒮𝑝) =
{
𝜑 =

∑
𝛼∈𝒯

𝜑𝛼h𝛼 ∈ (𝐿2) :
∑
𝛼∈𝒯

𝛼!∣𝜑𝛼∣2(2ℕ)2𝑝𝛼 <∞
}

with the norm ∣ ⋅ ∣𝑝, generated by the scalar product

(𝜑, 𝜓)𝑝 = (Γ(�̂�)𝑝𝜑,Γ(�̂�)𝑝𝜓)(𝐿2) =
∑
𝛼∈𝒯

𝛼!𝜑𝛼𝜓𝛼(2ℕ)2𝑝𝛼 .

Its adjoint space (𝒮)′ is called the space of stochastic (Hida) distributions (random
variables). We have (𝒮)′ = ∪𝑝∈ℕ(𝒮−𝑝) with the inductive limit topology, where
(𝒮−𝑝) is the adjoint of (𝒮𝑝). The space (𝒮−𝑝) can be identified with the space of
all formal expansions Φ =

∑
𝛼∈𝒯 Φ𝛼h𝛼, satisfying

∑
𝛼∈𝒯 𝛼!∣Φ𝛼∣2(2ℕ)−2𝑝𝛼 < ∞ ,

with scalar product

(Φ,Ψ)−𝑝 = (Γ(�̂�)−𝑝𝜑,Γ(�̂�)−𝑝𝜓)(𝐿2) =
∑
𝛼∈𝒯

𝛼!Φ𝛼Ψ𝛼(2ℕ)−2𝑝𝛼 .

Denote the corresponding norm by ∣ ⋅ ∣−𝑝. We have:

⟨Φ, 𝜑⟩ =
∑
𝛼∈𝒯

𝛼!Φ𝛼𝜑𝛼 for Φ =
∑
𝛼∈𝒯

Φ𝛼h𝛼 ∈ (𝒮)′ , 𝜑 =
∑
𝛼∈𝒯

𝜑𝛼h𝛼 ∈ (𝒮) .

Thus we have the following Gelfand triple:

(𝒮) ⊂ (𝐿2) ⊂ (𝒮)′ .

Define (𝒮)′(ℍ), the space of ℍ-valued generalized random variables over (𝒮)
as the space of linear continuous operators Φ : (𝒮) → ℍ with the topology of
uniform convergence on bounded subsets of (𝒮). Denote the action of Φ ∈ (𝒮)′(ℍ)
on 𝜑 ∈ (𝒮) by Φ[𝜑]. The structure of (𝒮)′(ℍ) is due to the next proposition (see
the proof in [13]).

Proposition 2.4. Any Φ ∈ (𝒮)′(ℍ) can be extended to a bounded operator from (𝒮𝑝)
to ℍ for some 𝑝 ∈ ℕ.

The space (𝒮) is a nuclear countably Hilbert space since for any 𝑝 ∈ ℕ the
embedding 𝐼𝑝,𝑝+1 : (𝒮𝑝+1) ↪→ (𝒮𝑝) is a Hilbert–Schmidt operator. From this fact
and proposition 2.4 it follows

Corollary 2.5. Any Φ ∈ (𝒮)′(ℍ) is a Hilbert–Schmidt operator from (𝒮𝑝) to ℍ for
some 𝑝 ∈ ℕ.

For any Φ ∈ (𝒮)′(ℍ) denote by Φ𝑗 the linear functional defined on 𝜑 ∈ (𝒮)
by ⟨Φ𝑗 , 𝜑⟩ := (Φ[𝜑], 𝑒𝑗). Let 𝑝 be such that Φ is Hilbert–Schmidt from (𝒮𝑝) to ℍ.
Then all Φ𝑗 , 𝑗 ∈ ℕ belong to the corresponding space (𝒮−𝑝), thus we have

Φ𝑗 =
∑
𝛼∈𝒯

Φ𝛼,𝑗h𝛼 ,
∑
𝛼∈𝒯

𝛼!∣Φ𝛼,𝑗 ∣2(2ℕ)−2𝑝𝛼 <∞ .
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For the Hilbert–Schmidt norm of Φ : (𝒮𝑝) → ℍ we obtain:

∥Φ∥2HS,𝑝 =
∑
𝛼∈𝒯

∥∥∥∥Φ

[
h𝛼

(𝛼!)
1
2 (2ℕ)𝑝𝛼

]∥∥∥∥2 =
∑
𝛼∈𝒯

∞∑
𝑗=1

∣∣∣∣〈Φ𝑗 ,
h𝛼

(𝛼!)
1
2 (2ℕ)𝑝𝛼

〉∣∣∣∣2
=

∑
𝛼∈𝒯 ,𝑗∈ℕ

𝛼!∣Φ𝛼,𝑗 ∣2(2ℕ)−2𝑝𝛼 .

Denote by (𝒮−𝑝)(ℍ) the space of all Hilbert–Schmidt operators acting from (𝒮𝑝) to
ℍ. It is a separable Hilbert space with an orthogonal basis consisting of operators
h𝛼 ⊗ 𝑒𝑗, 𝛼 ∈ 𝒯 , 𝑗 ∈ ℕ, defined by

(h𝛼 ⊗ 𝑒𝑗)𝜑 :=
(
h𝛼, 𝜑

)
(𝐿2)

𝑒𝑗 , 𝜑 ∈ (𝒮𝑝) .
It follows from Corollary 2.5 that (𝒮)′(ℍ) = ∪𝑝∈ℕ(𝒮−𝑝)(ℍ) and any Φ ∈ (𝒮)′(ℍ)
has the following decomposition:

Φ =
∑
𝑗∈ℕ

Φ𝑗𝑒𝑗 =
∑

𝛼∈𝒯 ,𝑗∈ℕ
Φ𝛼,𝑗(h𝛼 ⊗ 𝑒𝑗) =

∑
𝛼∈𝒯

Φ𝛼h𝛼 ,

where Φ𝑗 = (Φ[⋅], 𝑒𝑗) ∈ (𝒮−𝑝) for some 𝑝 ∈ ℕ, Φ𝛼 =
∑

𝑗∈ℕ Φ𝛼,𝑗𝑒𝑗 ∈ ℍ. For the
corresponding norm we have

∥Φ∥2−𝑝 =
∑
𝑗∈ℕ

∣Φ𝑗 ∣2−𝑝 =
∑

𝛼∈𝒯 ,𝑗∈ℕ
𝛼!∣Φ𝛼,𝑗 ∣2(2ℕ)−2𝑝𝛼 =

∑
𝛼∈𝒯

𝛼!∥Φ𝛼∥2(2ℕ)−2𝑝𝛼 <∞ .

We evidently have

(𝒮−𝑝1)(ℍ) ⊆ (𝒮−𝑝2)(ℍ) for 𝑝1 < 𝑝2 ,

and
∥Φ∥−𝑝1 ≥ ∥Φ∥−𝑝2 for all Φ ∈ (𝒮−𝑝1 )(ℍ)

To define singular white noise in these spaces first define a sequence of independent
Brownian motions {𝛽𝑗(𝑡)}. Let 𝑛 : ℕ × ℕ → ℕ be a bijection with the property
𝑛 = 𝑛(𝑖, 𝑗) ≥ 𝑖𝑗. As it was done in [4, 5], we use the Fourier coefficients of the
decomposition of Brownian motion 𝛽(𝑡) in (𝐿2)(ℝ):

𝛽(𝑡, 𝜔) = ⟨𝜔,1[0,𝑡]⟩ =
〈
𝜔,

∞∑
𝑖=1

∫ 𝑡

0

𝜉𝑖(𝑠)𝑑𝑠 𝜉𝑖

〉
=

∞∑
𝑖=1

∫ 𝑡

0

𝜉𝑖(𝑠) 𝑑𝑠h𝜖𝑖 ,

where 𝜖𝑖 := (0, 0, . . . , 1
𝑖
, 0, . . . ). Defining 𝛽𝑗(𝑡) =

∑∞
𝑖=1

∫ 𝑡

0
𝜉𝑖(𝑠) 𝑑𝑠h𝜖𝑛(𝑖,𝑗)

, we obtain

the next decomposition for the Wiener process 𝑊 (𝑡), 𝑡 ≥ 0:

𝑊 (𝑡) =
∞∑
𝑗=1

𝛽𝑗(𝑡) 𝑒𝑗 =
∑
𝑖,𝑗∈ℕ

∫ 𝑡

0

𝜉𝑖(𝑠)𝑑𝑠(h𝜖𝑛(𝑖,𝑗)
⊗𝑒𝑗) =

∞∑
𝑛=1

∫ 𝑡

0

𝜉𝑖(𝑛)(𝑠)𝑑𝑠(h𝜖𝑛⊗𝑒𝑗(𝑛)).

Its derivative with respect to 𝑡 is called singular ℍ-valued white noise. It has the
following decomposition:

𝕎(𝑡) =
∑
𝑖,𝑗∈ℕ

𝜉𝑖(𝑡)(h𝜖𝑛(𝑖,𝑗)
⊗ 𝑒𝑗) =

∞∑
𝑛=1

𝜉𝑖(𝑛)(𝑡)(h𝜖𝑛 ⊗ 𝑒𝑗(𝑛)).
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By the well-known estimates of the Hermite functions:∥∥∥∥∫ 𝑡

0

𝜉𝑖(𝑠) 𝑑𝑠 𝑒𝑗

∥∥∥∥2
ℍ

=

∣∣∣∣∫ 𝑡

0

𝜉𝑖(𝑠) 𝑑𝑠

∣∣∣∣2 = 𝑂(𝑖−
3
2 ) , ∣𝜉𝑖(𝑡)∣ = 𝑂(𝑖−1/4),

we obtain

∥𝑊 (𝑡)∥2−1 =
∑
𝑖,𝑗∈ℕ

∣∣∣∣∫ 𝑡

0

𝜉𝑖(𝑠) 𝑑𝑠

∣∣∣∣2 (2𝑛(𝑖, 𝑗)
)−2 ≤ 𝐶

∑
𝑖,𝑗∈ℕ

𝑖−7/2 𝑗−2 <∞ ,

∥𝕎(𝑡)∥2−1 =
∑
𝑖,𝑗∈ℕ

∣𝜉𝑖(𝑡)∣2
(
2𝑛(𝑖, 𝑗)

)−2 ≤ 𝐶
∑
𝑖,𝑗∈ℕ

𝑖−5/2 𝑗−2 <∞ ,

implying 𝑊 (𝑡) ∈ (𝒮)′(ℍ) and 𝕎(𝑡) ∈ (𝒮)′(ℍ) for all 𝑡 ≥ 0.

3. Spaces of generalized functions in 𝒕 and 𝝎

To define the spaces of generalized ℍ-valued functions of 𝑡 and 𝜔 we take the
tensor product of Hilbert spaces 𝐿2(ℝ) ⊗ (𝐿2) to be the central element of the
corresponding Gelfand triple. The set {𝜉𝑖 ⊗ h𝛼 , 𝑖 ∈ ℕ, 𝛼 ∈ 𝒯 } is the orthogonal
basis of 𝐿2(ℝ)⊗ (𝐿2) with(
𝜉𝑖 ⊗ h𝛼, 𝜉𝑘 ⊗ h𝛽

)
𝐿2(ℝ)⊗(𝐿2)

= 𝛼!𝛿𝑖,𝑘𝛿𝛼,𝛽 ,
[
�̂� ⊗ Γ(�̂�)

]
𝜉𝑖 ⊗ h𝛼 = 2𝑖(2ℕ)𝛼𝜉𝑖 ⊗ h𝛼

Denote by (𝕊𝑝,𝑞), where 𝑝, 𝑞 ∈ ℕ, the subspace of 𝐿2(ℝ) ⊗ (𝐿2) consisting of all
𝜃 ∈ 𝐿2(ℝ)⊗ (𝐿2) having decomposition

𝜃 =
∑
𝑖,𝛼

𝜃𝑖,𝛼(𝜉𝑖 ⊗ h𝛼) =
∑
𝛼

𝜃𝛼h𝛼 , 𝜃𝛼 =
∑
𝑖∈ℕ

𝜃𝑖,𝛼𝜉𝑖 ∈ 𝐿2(ℝ) (3.1)

such that

∣𝜃∣2𝑝,𝑞 := ∥�̂�𝑝 ⊗ Γ(�̂�)𝑞𝜃∥2𝐿2(ℝ)⊗(𝐿2) =
∑
𝑖,𝛼

𝛼!∣𝜃𝑖,𝛼∣2(2𝑖)2𝑝(2ℕ)2𝑞𝛼

=
∑
𝛼

𝛼!∣𝜃𝛼∣2𝑝(2ℕ)2𝑞𝛼 <∞ .

It is a Hilbert space with the scalar product

(𝜃, 𝜂)𝑝,𝑞 =
(
�̂�𝑝 ⊗ Γ(�̂�)𝑞𝜃, �̂�𝑝 ⊗ Γ(�̂�)𝑞𝜂

)
𝐿2(ℝ)⊗(𝐿2)

. (3.2)

We evidently have (𝕊𝑝1,𝑞1) ⊆ (𝕊𝑝2,𝑞2) when 𝑝1 ≥ 𝑝2 and 𝑞1 ≥ 𝑞2. Denote by (𝕊)
the countably Hilbert space ∩𝑝,𝑞(𝕊𝑝,𝑞) with the projective limit topology. It is a
nuclear space since for any 𝑝 and 𝑞 there exist 𝑝′ > 𝑝 and 𝑞′ > 𝑞 such that the
embedding (𝕊𝑝′,𝑞′) ↪→ (𝕊𝑝,𝑞) is Hilbert–Schmidt.

Let (𝕊−𝑝,−𝑞) be the conjugate of (𝕊𝑝,𝑞). It consists of all formal expansions
𝜓 =

∑
𝑖,𝛼 𝜓𝑖,𝛼(𝜉𝑖 ⊗ h𝛼) with

∣𝜓∣2−𝑝,−𝑞 := ∥�̂�−𝑝 ⊗ Γ(�̂�)−𝑞𝜓∥2𝐿2(ℝ)⊗(𝐿2) =
∑
𝑖,𝛼

𝛼!∣𝜓𝑖,𝛼∣2(2𝑖)−2𝑝(2ℕ)−2𝑞𝛼 <∞ .
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Denote by (𝕊)′ the conjugate of (𝕊). We have (𝕊)′ = ∪𝑝,𝑞(𝕊−𝑝,−𝑞) with the inductive
limit topology.

Denote by (𝕊)′(ℍ) the space of all linear continuous operators Φ : (𝕊) → ℍ
with the topology of uniform convergence on bounded subsets of (𝕊). A set𝑀 ⊂ (𝕊)
is called bounded if for any sequence {𝜑𝑛} ⊆𝑀 and any {𝜀𝑛} ⊂ ℝ if 𝜀𝑛 → 0, then
𝜀𝑛𝜑𝑛 → 0 in (𝕊). We will denote by Φ[𝜑] the action of Φ ∈ (𝕊)(ℍ) on 𝜑 ∈ (𝕊).

Similarly to Proposition 2.4 one can prove the next proposition:

Proposition 3.1. Any Φ ∈ (𝕊)′(ℍ) is a bounded operator from (𝕊𝑝,𝑞) to ℍ for some
𝑝, 𝑞 ∈ ℕ.

Since (𝕊) is nuclear, it follows

Corollary 3.2. Any Φ ∈ (𝕊)′(ℍ) is a Hilbert–Schmidt operator from (𝕊𝑝,𝑞) to ℍ for
some 𝑝, 𝑞 ∈ ℕ.

For any Φ ∈ (𝕊)′(ℍ) denote by Φ𝑗 the linear functional, defined by ⟨Φ𝑗 , 𝜑⟩ :=
(Φ[𝜑], 𝑒𝑗) for all 𝜑 ∈ (𝕊). Let 𝑝 and 𝑞 are such that Φ is Hilbert–Schmidt from (𝕊𝑝,𝑞)
to ℍ. Then all Φ𝑗 , 𝑗 ∈ ℕ, belong to corresponding space (𝕊−𝑝,−𝑞), and therefore
can be represented in the form

Φ𝑗 =
∑

𝑖∈ℕ,𝛼∈𝒯
Φ𝑖,𝛼,𝑗(𝜉𝑖 ⊗ h𝛼) ,

∑
𝑖∈ℕ,𝛼∈𝒯

𝛼!∣Φ𝑖,𝛼,𝑗 ∣2(2𝑖)−2𝑝(2ℕ)−2𝑞𝛼 <∞ .

Denote by ∥Φ∥−𝑝,−𝑞 the Hilbert–Schmidt norm of Φ : (𝕊𝑝,𝑞) → ℍ. Then we have:

∥Φ∥2−𝑝,−𝑞 =
∑

𝑖∈ℕ,𝛼∈𝒯

∥∥∥∥Φ

[
𝜉𝑖 ⊗ h𝛼

(𝛼!)
1
2 (2𝑖)𝑝(2ℕ)𝑞𝛼

]∥∥∥∥2

=
∑

𝑖∈ℕ,𝛼∈𝒯

∞∑
𝑗=1

∣∣∣∣〈Φ𝑗,
𝜉𝑖 ⊗ h𝛼

(𝛼!)
1
2 (2𝑖)𝑝(2ℕ)𝑞𝛼

〉∣∣∣∣2
=

∑
𝑖∈ℕ,𝛼∈𝒯 ,𝑗∈ℕ

𝛼!∣Φ𝑖,𝛼,𝑗 ∣2(2𝑖)−2𝑝(2ℕ)−2𝑝𝛼 .

Denote by (𝕊−𝑝,−𝑞)(ℍ) the space of Hilbert–Schmidt operators acting from (𝕊𝑝,𝑞)
to ℍ. It is a separable Hilbert space with the orthogonal basis consisting of oper-
ators 𝜉𝑖 ⊗ h𝛼 ⊗ 𝑒𝑗, 𝛼 ∈ 𝒯 , 𝑖, 𝑗 ∈ ℕ, defined by

(𝜉𝑖 ⊗ h𝛼 ⊗ 𝑒𝑗)𝜃 :=
(
𝜉𝑖 ⊗ h𝛼, 𝜃

)
𝐿2(ℝ)⊗(𝐿2)

𝑒𝑗 , 𝜑 ∈ (𝕊𝑝,𝑞) .

It follows from Corollary 3.2 that (𝕊)′(ℍ) = ∪𝑝,𝑞∈ℕ(𝕊−𝑝,−𝑞)(ℍ), any Φ ∈ (𝕊)′(ℍ)
can be represented as

Φ =
∑
𝑗∈ℕ

Φ𝑗𝑒𝑗 =
∑

𝑖,𝑗∈ℕ, 𝛼∈𝒯
Φ𝑖,𝛼,𝑗(𝜉𝑖 ⊗ h𝛼 ⊗ 𝑒𝑗)

=
∑

𝑖∈ℕ,𝛼∈𝒯
Φ𝑖,𝛼(𝜉𝑖 ⊗ h𝛼) =

∑
𝛼∈𝒯

Φ𝛼h𝛼 ,
(3.3)
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where Φ𝑗 = (Φ[⋅], 𝑒𝑗) ∈ (𝕊−𝑝,−𝑞) for some 𝑝, 𝑞 ∈ ℕ, Φ𝑖,𝛼 =
∑

𝑗∈ℕ Φ𝑖,𝛼,𝑗 𝑒𝑗 ∈ ℍ,

Φ𝛼 =
∑

𝑖,𝑗∈ℕ Ψ𝑖,𝛼,𝑗(𝜉𝑖 ⊗ 𝑒𝑗) ∈ 𝒮−𝑝(ℍ) ⊂ 𝒮 ′(ℍ) and we have

∥Φ∥2−𝑝,−𝑞 =
∑
𝑗∈ℕ

∣Φ𝑗 ∣2−𝑝,−𝑞 =
∑

𝑖∈ℕ, 𝛼∈𝒯 , 𝑗∈ℕ
𝛼!∣Φ𝑖,𝛼,𝑗 ∣2(2𝑖)−2𝑝(2ℕ)−2𝑞𝛼

=
∑

𝑖∈ℕ, 𝛼∈𝒯
𝛼!∥Φ𝑖,𝛼∥2(2𝑖)−2𝑝(2ℕ)−2𝑞𝛼 =

∑
𝛼∈𝒯

𝛼!∥Φ𝛼∥2−𝑝(2ℕ)−2𝑞𝛼 <∞ .

We evidently have

(𝕊−𝑝1,−𝑞1)(ℍ) ⊆ (𝕊−𝑝2,−𝑞2)(ℍ) when 𝑝1 ≤ 𝑝2 , 𝑞1 ≤ 𝑞2

and

∥Φ∥−𝑝1,−𝑞1 ≥ ∥Φ∥−𝑝2,−𝑞2 for all Φ ∈ (𝕊−𝑝1,−𝑞1)(ℍ)

Example. (ℍ-valued cylindrical Wiener process and singular white noise in (𝕊)′(ℍ))
We can consider the cylindrical Wiener process defined in Section 2 as an element
of (𝕊)′(ℍ) defined by

𝑊 =
∑

𝑘,𝑖,𝑗∈ℕ
𝑊𝑘,𝑖,𝑗(𝜉𝑘 ⊗ h𝜖𝑛(𝑖,𝑗)

⊗ 𝑒𝑗)

Where 𝑊𝑘,𝑖,𝑗 =
∫
ℝ
𝜉𝑘(𝑡)

∫
[0∧𝑡,0∨𝑡] 𝜉𝑖(𝑠) 𝑑𝑠 𝑑𝑡 are the Fourier coefficients of functions∫

[0∧𝑡,0∨𝑡] 𝜉𝑖(𝑠) 𝑑𝑠 with respect to the basis {𝜉𝑘} in 𝐿2(ℝ). We have

∣𝑊𝑘,𝑖,𝑗 ∣ ≤ ∥𝜉𝑘∥𝐿1(ℝ)∥𝜉𝑖∥𝐿1(ℝ) = 𝑂(𝑘−
3
4 𝑖−

3
4 ) ,

Consequently ∥𝑊∥−0,−1 < ∞. For the ℍ-valued singular white noise we obtain
decomposition

𝕎 =
∑
𝑖,𝑗∈ℕ

(𝜉𝑖 ⊗ h𝜖𝑛(𝑖,𝑗)
⊗ 𝑒𝑗) ,

it follows that ∥𝕎∥−1,−1 <∞. So, 𝑊 and 𝕎 belong to (𝕊)′(ℍ).

Denote by 𝐷𝑡 the operator of differentiation with respect to 𝑡. For 𝜃 =∑
𝑖,𝛼 𝜃𝑖,𝛼(𝜉𝑖 ⊗ h𝛼) ∈ (𝕊) define

𝐷𝑡𝜃 =
∑
𝑖,𝛼

𝜃𝑖,𝛼(𝜉′𝑖 ⊗ h𝛼) .

By the equality 𝜉′𝑖 =
√

𝑖−1
2 𝜉𝑖−1 −

√
𝑖
2𝜉𝑖+1, 𝑖 ∈ ℕ for Hermite functions it follows

𝐷𝑡𝜃 =
∑
𝑖,𝛼

(√
𝑖

2
𝜃𝑖+1,𝛼 −

√
𝑖− 1

2
𝜃𝑖−1,𝛼

)
(𝜉𝑖 ⊗ h𝛼) .

It is easy to see that 𝐷𝑡 is well defined and is a continuous operator in (𝕊).
For Φ ∈ (𝕊)′(ℍ) we define differentiation with respect to 𝑡 in a natural way:

𝐷𝑡Φ[𝜃] := −Φ[𝐷𝑡𝜃], 𝜃 ∈ (𝕊). One can easily check that the equality 𝐷𝑡𝑊 = 𝕎 is
valid in (𝕊)′(ℍ).
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Let 𝐵 ∈ ℒ(ℍ, 𝐻). Define its action in (𝕊)′(ℍ) by

𝐵Φ :=
∑

𝑖∈ℕ,𝛼∈𝒯
𝐵Φ𝑖,𝛼(𝜉𝑖 ⊗ h𝛼)

for all Φ ∈ (𝕊)′(ℍ) given by (3.3). Let 𝐴 be a linear closed operator in 𝐻 with
domain dom𝐴. Denote its domain in (𝕊)′(𝐻) by (dom𝐴) and define it as the set
of all Φ ∈ (𝕊)′(𝐻) having form (3.3) with Φ𝑖,𝛼 ∈ dom𝐴 for all 𝑖 ∈ ℕ, 𝛼 ∈ 𝒯 and
such that ∑

𝑖∈ℕ, 𝛼∈𝒯
𝛼!∥𝐴Φ𝑖,𝛼∥2(2𝑖)−2𝑝(2ℕ)−2𝑞𝛼 <∞

for some 𝑝, 𝑞 ∈ ℕ.

The above-defined space (𝕊)′(ℍ) of ℍ-valued generalized with respect to 𝑡 and
𝜔 functions is not appropriate for solving the Cauchy problem for the equation
with the generator of an exponentially bounded integrated semigroup. Now we
define a suitable extension of this space.

Denote by 𝒮𝑎 (𝑎 ≥ 0) the space of all 𝜙 ∈ 𝒮 such that

∀𝑝 ∈ ℕ ∃𝐶𝑝 > 0 ∀𝑡 ∈ ℝ ∣𝜙(𝑝)(𝑡)∣ ≤ 𝐶𝑝𝑒
−𝑎∣𝑡∣ . (3.4)

Let (𝕊)𝑎 be the space of all 𝜃 ∈ (𝕊) having form (3.1) with 𝜃𝛼 ∈ 𝒮𝑎 for any 𝛼 ∈ 𝒯 .

Lemma 3.3. (𝕊)𝑎 is a closed subspace of (𝕊).

Proof. Let 𝜃𝑛 =
∑

𝛼 𝜃𝑛,𝛼h𝛼 ∈ (𝕊)𝑎 with 𝜃𝑛,𝛼 ∈ 𝒮, 𝑛 ∈ ℕ, 𝛼 ∈ 𝒯 , be a sequence,
convergent to 𝜃 =

∑
𝛼 𝜃𝛼h𝛼 with 𝜃𝛼 ∈ 𝒮 in the space (𝕊). We evidently have

𝜃𝑛,𝛼 → 𝜃𝛼 in 𝒮 for all 𝛼 ∈ 𝒯 . As it is proved in [14] (Chapter IV, Section 2)
condition (3.4) is equivalent to the following:

∀𝑝 ∈ ℕ ∃𝐶𝑝 > 0 ∀𝑘 ∈ ℕ ∥𝜙∥𝑘,𝑝 = max
𝑥∈ℝ

∣𝑥𝑘𝜙(𝑝)(𝑥)∣ ≤ 𝐶𝑝

(
𝑘

𝑎𝑒

)𝑘

. (3.5)

Since this set of norms defines the equivalent topology in 𝒮, we have ∥𝜃𝑛,𝛼∥𝑘,𝑝 →
∥𝜃𝛼∥𝑘,𝑝 for any 𝑘 and 𝑝. Thus condition (3.5) holds for all 𝜃𝛼, implying
𝜃 ∈ (𝕊)𝑎. □

By the properties of nuclear spaces, (𝕊)𝑎 being a closed subspace of a counta-
bly Hilbert space is also a nuclear countably Hilbert space under the same set of
scalar products. We will denote by (𝕊𝑝,𝑞)𝑎 the completion of (𝕊)𝑎 with respect to
the norm, generated by scalar product (3.2). We have (𝕊)𝑎 = ∩𝑝,𝑞(𝕊𝑝,𝑞)𝑎. Denote
by (𝕊)′𝑎(ℍ) the space of all continuous linear operators acting from (𝕊)𝑎 to ℍ.
We have (𝕊)′(ℍ) = (𝕊)′0(ℍ) ⊆ (𝕊)′𝑎(ℍ). It is easy to see that Proposition 3.1 and
Corollary 3.2 remain valid for (𝕊)′𝑎(ℍ). Differentiation in 𝑡 and action of linear
bounded operators and linear closed operators, defined in ℍ, can be defined in
(𝕊)′𝑎(ℍ) in the same manner as it is done above in (𝕊)′(ℍ).

For Φ ∈ (𝕊)′𝑎(ℍ) having form (3.3) we define the support of Φ by suppΦ :=
∪𝛼suppΦ𝛼 and denote by (𝕊)′𝑎0 (ℍ) the subspace of all Φ ∈ (𝕊)′𝑎(ℍ) with suppΦ ⊆
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[0; +∞). Consider the generalized random process 𝕎0 defined by

𝕎0 =
∑

𝑘,𝑖,𝑗∈ℕ
𝕎0

𝑘,𝑖,𝑗(𝜉𝑘 ⊗ h𝜖𝑛(𝑖,𝑗)
⊗ 𝑒𝑗) ,

where 𝕎0
𝑘,𝑖,𝑗 =

∫∞
0 𝜉𝑘(𝑡)𝜉𝑖(𝑡)𝑑𝑡 is the 𝑘th Fourier coefficient of 𝜉𝑖(𝑡)𝜒[0;∞)(𝑡). We

will call it the white noise with support [0;∞). It evidently belongs to (𝕊)′(ℍ).
Now let us give the setting of the Cauchy problem (1.1) in the constructed

spaces. Let 𝐻𝐴, 𝐻 be Hilbert spaces. For any Φ ∈ (𝕊)′𝑎0 (𝐻𝐴) all Φ𝛼 ∈ 𝒮 ′𝑎0 (𝐻𝐴)
have the same finite order since Φ ∈ (𝕊)𝑎−𝑝,−𝑞(𝐻𝐴) for some 𝑝 and 𝑞. Let 𝑃 ∈
𝒮 ′𝑎0 (ℒ(𝐻𝐴;𝐻)) – the space of ℒ(𝐻𝐴;𝐻)-valued distributions over the space of test
functions 𝒮𝑎. It also has finite order, therefore we can define the convolution 𝑃 ∗Φ
by the equality

𝑃 ∗ Φ =
∑
𝛼

(𝑃 ∗ Φ𝛼)h𝛼 ,

where 𝑃 ∗ Φ𝛼 for all 𝛼 ∈ 𝒯 is understood in the sense of Definition 2.3. The
convolution is well defined and 𝑃 ∗ Φ ∈ 𝕊′𝑎0 (𝐻). For any Φ =

∑
𝛼∈𝒯 Φ𝛼h𝛼 ∈

(𝕊)′𝑎(𝐻) define

𝛿𝑡 ⊗ Φ :=
∑

𝑖∈ℕ,𝛼∈𝒯
𝜉𝑖(𝑡)Φ𝛼(𝜉𝑖 ⊗ h𝛼) ,

(using the Fourier series decomposition 𝛿𝑡 =
∑

𝑖∈ℕ 𝜉𝑖(𝑡)𝜉𝑖 in 𝒮 ′).
We will call 𝑋 ∈ (𝕊)′𝑎(𝐻) a solution of the Cauchy problem (1.1) with

𝜁 ∈ (𝒮)′(𝐻) if it satisfies the equation

𝐷𝑡𝑋 −𝐴𝑋 = 𝛿 ⊗ 𝜁 +𝐵𝕎0 , (3.6)

where 𝛿 = 𝛿0.
Let 𝐻𝐴 further be the space dom𝐴 with the scalar product (𝑥, 𝑦)𝐴 = (𝑥, 𝑦)+

(𝐴𝑥,𝐴𝑦). Then we have 𝑃 := 𝛿′⊗ 𝐼 − 𝛿⊗𝐴 ∈ 𝒮 ′𝑎0 (ℒ(𝐻𝐴;𝐻)). Since the left-hand
side of equation (3.6) is equal to (𝛿′ ⊗ 𝐼 − 𝛿 ⊗𝐴) ∗𝑋 , it follows that the problem
has a unique solution if and only if the distribution has the convolution inverse,
i.e., there exists a distribution 𝐺 ∈ 𝒮 ′𝑎0 (ℒ(𝐻,𝐻𝐴)) such that

𝑃 ∗𝐺 = 𝛿 ⊗ 𝐼𝐻 and 𝐺 ∗ 𝑃 = 𝛿 ⊗ 𝐼𝐻𝐴 .

It is proved in [8] that this is the case when 𝐴 is the generator of an exponentially
bounded integrated semigroup {𝑉 (𝑡); 𝑡 ≥ 0} in 𝐻 . Let ∥𝑉 (𝑡)∥ ≤ 𝑀𝑒𝑎𝑡 , 𝑡 ≥ 0
and define 𝒱 [𝜙]𝑥 =

∫∞
0 𝜙(𝑡)𝑉 (𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒮𝑎, 𝑥 ∈ 𝐻. Then 𝒱 ∈ 𝒮 ′𝑎0 (ℒ(𝐻,𝐻𝐴)) by

the properties of integrated semigroups. The convolution inverse of 𝑃 is given by
𝐺[𝜙]𝑥 = (−1)𝑛

∫∞
0 𝜙(𝑛)(𝑡)𝑉 (𝑡)𝑥 𝑑𝑡, 𝜙 ∈ 𝒮𝑎, 𝑥 ∈ 𝐻 and we get

𝑋 = 𝐺 ∗ (𝛿 ⊗ 𝜁 +𝐵𝕎0) = 𝐷𝑛
𝑡 𝑉 (𝑡)𝜁 +𝐷𝑛

𝑡 (𝑉 ∗𝐵𝕎0) . (3.7)

By exponential boundedness of 𝑉 it belongs to (𝕊)′𝑎(𝐻𝐴) and we obtain

Theorem 3.4. Let 𝐴 be the generator of an 𝑛-times integrated exponentially bounded
semigroup {𝑉 (𝑡); 𝑡 ≥ 0} in 𝐻, dom𝐴 = 𝐻, then for any 𝜁 =

∑
𝛼∈𝒯 𝜁𝛼h𝛼 ∈

(𝒮)′(𝐻) there exists a unique 𝑋 ∈ (𝕊)′𝑎(𝐻𝐴) which is a solution of the problem
(3.6). It is given by the formula (3.7).
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Tijana Levajković and Dora Seleši

Abstract. In this paper we solve a nonhomogeneous first-order linear equa-
tion involving the Malliavin derivative operator with stochastic coefficients
by use of the chaos expansion method. We prove existence and uniqueness of
a solution in a certain weighted space of generalized stochastic distributions
and represent the obtained solution in the Wiener-Itô chaos expansion form.
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1. Introduction

This paper is devoted to study of generalized stochastic processes which have series
expansion representation form given in terms of an orthogonal polynomial basis,
defined on an infinite-dimensional space. In particular, we focus on a Hilbert space
of square integrable processes defined on a Gaussian white noise probability space
where the orthogonal basis is constructed using the Hermite polynomials and the
Hermite functions. We provide definition of stochastic generalized random variable
spaces over a space of square integrable random variables by adding certain weights
in the convergence condition of the series expansion. Introduced by Hida (see [1])
and further developed by many authors (see [2], [3], [7], [10], [12] and references
therein), white noise analysis was applied to solving different classes of stochastic
differential equations ([5], [8], [14]).

This paper deals with the Malliavin derivative, one of three main operators
of the Malliavin stochastic calculus, an infinite-dimensional differential calculus of
variations in the white noise setting. Recall, the Skorokhod integral represents an
extension of the Itô integral from a set of adapted processes to a set of nonanticipat-
ing processes. Its adjoint operator is known as the Malliavin derivative. Operators
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of Malliavin calculus are widely used in solving stochastic differential equations.
In particular, Malliavin differential operator found place in stochastic differential
equations connected to optimal control problems and problems in financial math-
ematics. We give a more general definition of the Malliavin derivative than in [10],
[11]. We allow values in the Kondratiev space of stochastic distributions (𝑆)−𝜌,
𝜌 ∈ [0, 1] and thus obtain a larger domain for the derivative operator. For basic
results related to the Malliavin derivative we refer to [2], [7], [10], [12] and for its
applications we refer to [3], [4], [9], [11], [13].

Furthermore, as a description of the chaos expansion method, we solve a
nonhomogeneous linear stochastic differential equations involving the Malliavin
derivative. We provide a general method of solving, using the Wiener-Itô chaos
decomposition form, also known as the propagator method. This method gives
good framework and opportunity for solving many classes of stochastic equations
(see [7], [8], [9]). The problem is based on finding an appropriate, large enough
space of generalized functions where a solution of a considered equation exists.

The paper is organized in the following manner: In Section 2 we provide
the basic notation used throughout the paper, followed by the survey on chaos
expansions of generalized stochastic processes and 𝑆′-valued generalized stochastic
processes. The Malliavin derivative is defined on a set of generalized stochastic
processes and the characterization of its domain is stated. In Section 3 we apply
the chaos expansion method in order to solve a nonhomogeneous first-order linear
Malliavin type differential equation with singular coefficients, represented in the
form

𝔻𝑢 = 𝑐⊗ 𝑢+ ℎ, 𝐸𝑢 = 𝑢0,

for 𝑐 ∈ 𝒮 ′(ℝ), ℎ ∈ 𝑋 ⊗ 𝑆′(ℝ)⊗ (𝑆)−1, 𝑢0 ∈ 𝑋 and 𝐸 is the expectation.

2. Notions and notations

Let the basic probability space (Ω,ℱ , 𝑃 ) be the Gaussian white noise probability
space (𝑆′(ℝ),ℬ, 𝜇), where 𝑆′(ℝ) denotes the space of tempered distributions, ℬ
the sigma-algebra generated by the weak topology on Ω and 𝜇 denotes the white
noise measure given by the Bochner–Minlos theorem. The Bochner–Minlos theo-
rem states the existence of a Gaussian probability measure given by the integral
transform of the characteristic function

𝐶(𝜙) =

∫
𝑆′(ℝ)

𝑒𝑖⟨𝜔,𝜙⟩𝑑𝜇(𝜔) = 𝑒
− 1

2∥𝜙∥2𝐿2(ℝ) , 𝜙 ∈ 𝒮(ℝ),

where ⟨𝜔, 𝜙⟩ denotes the usual dual paring between a tempered distribution 𝜔 and
a rapidly decreasing function 𝜙.

Let {𝜉𝑘, 𝑘 ∈ ℕ} be the family of Hermite functions and {ℎ𝑘, 𝑘 ∈ ℕ0} the
family of Hermite polynomials. It is well known that the space of rapidly decreas-
ing functions 𝑆(ℝ) =

∩
𝑙∈ℕ0

𝑆𝑙(ℝ), where 𝑆𝑙(ℝ) = {𝜑 =
∑∞

𝑘=1 𝑎𝑘 𝜉𝑘 : ∥𝜑∥2𝑙 =∑∞
𝑘=1 𝑎

2
𝑘(2𝑘)𝑙 < ∞}, 𝑙 ∈ ℕ0, and the space of tempered distributions 𝑆′(ℝ) =
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∪
𝑙∈ℕ0

𝑆−𝑙(ℝ), where 𝑆−𝑙(ℝ) = {𝑓 =
∑∞

𝑘=1 𝑏𝑘 𝜉𝑘 : ∥𝑓∥2−𝑙 =
∑∞

𝑘=1 𝑏
2
𝑘(2𝑘)−𝑙 <

∞}, 𝑙 ∈ ℕ0.
Let (𝐿)2 = 𝐿2(𝑆′(ℝ),ℬ, 𝜇), and 𝐻𝛼(𝜔) =

∏∞
𝑘=1 ℎ𝛼𝑘

(⟨𝜔, 𝜉𝑘⟩), 𝛼 ∈ ℐ be
the Fourier–Hermite orthogonal basis of (𝐿)2, where ℐ denotes the set of se-
quences of nonnegative integers which have only finitely many nonzero compo-
nents 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑚, 0, 0 . . .). In particular, for the 𝑘th unit vector 𝜀(𝑘) =
(0, . . . , 0, 1, 0, . . . ), the sequence of zeros with the number 1 as the 𝑘th compo-
nent, 𝐻𝜀(𝑘)(𝜔) = ⟨𝜔, 𝜉𝑘⟩, 𝑘 ∈ ℕ. The length of a multi-index 𝛼 ∈ ℐ is defined

as ∣𝛼∣ =
∑∞

𝑘=1 𝛼𝑘. Let 𝑎 = (𝑎𝑘)𝑘∈ℕ, 𝑎𝑘 ≥ 1, 𝑎𝛼 =
∏∞

𝑘=1 𝑎
𝛼𝑘

𝑘 , 𝑎𝛼

𝛼! =
∏∞

𝑘=1
𝑎
𝛼𝑘
𝑘

𝛼𝑘!

and (2ℕ𝑎)𝛼 =
∏∞

𝑘=1(2𝑘 𝑎𝑘)𝛼𝑘 . Note that
∑

𝛼∈ℐ(2ℕ)−𝑝𝛼 < ∞ if 𝑝 > 0 and∑
𝛼∈ℐ 𝑎

−𝑝𝛼 <∞ if 𝑝 > 1. Let 𝜌 ∈ [0, 1].
The space of Kondratiev stochastic test functions modified by the sequence 𝑎,

denoted by (𝑆𝑎)𝜌 =
∩
𝑝∈ℕ0

(𝑆𝑎)𝜌,𝑝, 𝑝 ∈ ℕ0, is the projective limit of spaces

(𝑆𝑎)𝜌,𝑝 =

{
𝑓 =

∑
𝛼∈ℐ

𝑏𝛼𝐻𝛼 ∈ 𝐿2(𝜇) : ∥𝑓∥2(𝑆𝑎)𝜌,𝑝 =
∑
𝛼∈ℐ

(𝛼!)1+𝜌 𝑏2𝛼 (2ℕ 𝑎)𝑝𝛼 <∞
}
.

The space of Kondratiev stochastic generalized functions modified by the sequence
𝑎, denoted by (𝑆𝑎)−𝜌 =

∪
𝑝∈ℕ0

(𝑆𝑎)−𝜌,−𝑝, 𝑝 ∈ ℕ0, is the inductive limit of the
spaces

(𝑆𝑎)−𝜌,−𝑝 =

{
𝐹 =

∑
𝛼∈ℐ

𝑐𝛼𝐻𝛼 : ∥𝐹∥2(𝑆𝑎)−𝜌,−𝑝
=

∑
𝛼∈ℐ

(𝛼!)1−𝜌 𝑐2𝛼(2ℕ 𝑎)−𝑝𝛼 <∞
}
.

The action of a generalized function 𝐹 ∈ (𝑆𝑎)−𝜌 onto a test function 𝑓 ∈ (𝑆𝑎)𝜌
is given by ≪ 𝐹, 𝑓 ≫=

∑
𝛼∈ℐ 𝛼! 𝑐𝛼𝑏𝛼. The generalized expectation of 𝐹 is defined

as 𝐸𝜇(𝐹 ) =≪ 𝐹, 1 ≫= 𝑐0. It is considered to be the zero coefficient in the chaos
expansion of a generalized function 𝐹 in orthogonal basis {𝐻𝛼}𝛼∈ℐ . In particular,
if 𝐹 ∈ 𝐿2(𝜇) it coincides with usual expectation.

For 𝑎𝑘 = 1, 𝑘 ∈ ℕ these spaces reduce to the spaces of Kondratiev stochastic
test functions (𝑆)𝜌 and the Kondratiev stochastic generalized functions (𝑆)−𝜌
respectively. For all 𝜌 ∈ [0, 1] we have a Gel’fand triplet

(𝑆𝑎)𝜌 ⊆ 𝐿2(𝜇) ⊆ (𝑆𝑎)−𝜌.

In particular, the largest space of the Kondratiev stochastic distributions modified
by the sequence 𝑎 is obtained for 𝜌 = 1 and is denoted by (𝑆𝑎)−1. In [4] we
introduced the Gaussian type of these spaces and solve equations related to them.

2.1. Generalized stochastic processes

Let 𝐼 ⊂ ℝ and 𝑋 be a Banach space of functions on 𝐼 endowed with ∥ ⋅ ∥𝑋 and
𝑋 ′ its dual. The most common examples used in applications are Schwartz spaces
𝑆(ℝ) and 𝑆′(ℝ), the Sobolev spaces 𝑋 = 𝑊 1,2

0 (ℝ) and 𝑋 ′ = 𝑊−1,2(ℝ).

Definition 2.1. Generalized stochastic processes are elements of tensor product
space 𝑋 ⊗ (𝑆)−𝜌.
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Theorem 2.1 ([14]). Let 𝑋 be a Banach space endowed with ∥ ⋅ ∥𝑋. Generalized
stochastic processes as elements of 𝑋 ⊗ (𝑆)−𝜌 have a chaos expansion of the form

𝑢 =
∑
𝛼∈ℐ

𝑓𝛼 ⊗𝐻𝛼, 𝑓𝛼 ∈ 𝑋,𝛼 ∈ ℐ (1)

and there exists 𝑝 ∈ ℕ0 such that

∣∣𝑢∣∣2𝑋⊗(𝑆)−𝜌,−𝑝
=

∑
𝛼∈ℐ

∥𝑓𝛼∥2𝑋 (𝛼!)1−𝜌 (2ℕ)−𝑝𝛼 <∞.

Remark 2.1. Generalized stochastic processes as elements of 𝑋 ⊗ (𝑆𝑎)−1 have a
chaos expansion of the form (1) and there exists 𝑝 ∈ ℕ0 such that

∥𝑢∥2𝑋⊗(𝑆𝑎)−1,−𝑝
=

∑
𝛼∈ℐ

∥𝑓𝛼∥2𝑋 (2ℕ 𝑎)−𝑝𝛼 <∞.

Recall that (𝑆)−1 is nuclear and thus (𝑋 ⊗ (𝑆)1)
′ ∼= 𝑋 ′⊗ (𝑆)−1. In a similar

manner one can consider processes as elements of 𝑋 ′⊗(𝑆)−1. Note that 𝑋 ′⊗(𝑆)−1
is isomorphic to the space of linear bounded mappings 𝑋 → (𝑆)−1.

Definition 2.2. Singular generalized stochastic processes are linear and continuous
mappings from 𝑋 into the space of generalized stochastic functions (𝑆)−1, i.e.,
elements of ℒ(𝑋, (𝑆)−1).

Theorem 2.2 ([14]). Let 𝑋 =
∩∞
𝑘=0𝑋𝑘 be a nuclear space endowed with a family of

seminorms {∥⋅∥𝑘; 𝑘 ∈ ℕ0} and let 𝑋 ′ =
∪∞
𝑘=0𝑋−𝑘 be its topological dual. Singular

generalized stochastic processes as elements of 𝑋 ′⊗ (𝑆)−𝜌 have a chaos expansion
of the form

𝑢 =
∑
𝛼∈ℐ

𝑓𝛼 ⊗𝐻𝛼, 𝑓𝛼 ∈ 𝑋−𝑘, 𝛼 ∈ ℐ,

where 𝑘 ∈ ℕ0 does not depend on 𝛼 ∈ ℐ, and there exists 𝑝 ∈ ℕ0 such that

∣∣𝑢∣∣2𝑋′⊗(𝑆)−𝜌,−𝑝
=

∑
𝛼∈ℐ

∥𝑓𝛼∥2−𝑘 (𝛼!)1−𝜌 (2ℕ)−𝑝𝛼 <∞.

With the same notation as in (1) we will denote by 𝐸𝑢 = 𝑓(0,0,0,...) the
generalized expectation of the process 𝑢.

Example 2.1. Brownian motion is an element of 𝐶∞(ℝ) ⊗ (𝐿)2 and it is defined

by the chaos expansion 𝐵𝑡(𝜔) =
∑∞

𝑘=1

∫ 𝑡

0
𝜉𝑘(𝑠)𝑑𝑠𝐻𝜀(𝑘)(𝜔). Singular white noise

𝑊𝑡(⋅) is defined by the chaos expansion 𝑊𝑡(𝜔) =
∑∞

𝑘=1 𝜉𝑘(𝑡)𝐻𝜖(𝑘)(𝜔), and it is an
element of the space 𝐶∞(ℝ) ⊗ (𝑆)−1,−𝑝 for 𝑝 > 5

12 and for all 𝑡. It is integrable

and the relation 𝑑
𝑑𝑡𝐵𝑡 = 𝑊𝑡 holds in the (𝑆)−1 sense (see [2]).
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2.2. Schwartz space-valued generalized random processes

In [15] and [16] a general setting of 𝑆′-valued generalized random process is pro-

vided. 𝑆′(ℝ)-valued generalized random processes are elements of �̃�⊗(𝑆)−𝜌, where

�̃� = 𝑋 ⊗ 𝑆′(ℝ), and are given by chaos expansions of the form

𝑓 =
∑
𝛼∈ℐ

∑
𝑘∈ℕ

𝑎𝛼,𝑘 ⊗ 𝜉𝑘 ⊗𝐻𝛼 =
∑
𝛼∈ℐ

𝑏𝛼 ⊗𝐻𝛼 =
∑
𝑘∈ℕ

𝑐𝑘 ⊗ 𝜉𝑘,

where 𝑏𝛼 =
∑

𝑘∈ℕ 𝑎𝛼,𝑘 ⊗ 𝜉𝑘 ∈ 𝑋 ⊗ 𝑆′(ℝ), 𝑐𝑘 =
∑

𝛼∈ℐ 𝑎𝛼,𝑘 ⊗𝐻𝛼 ∈ 𝑋 ⊗ (𝑆)−𝜌 and
𝑎𝛼,𝑘 ∈ 𝑋 . Thus, for some 𝑝, 𝑙 ∈ ℕ0,

∥𝑓∥2𝑋⊗𝑆−𝑙(ℝ)⊗(𝑆)−𝜌,−𝑝
=

∑
𝛼∈ℐ

∑
𝑘∈ℕ

∥𝑎𝛼,𝑘∥2𝑋 (𝛼!)1−𝜌(2𝑘)−𝑙(2ℕ)−𝑝𝛼 <∞.

2.3. The Malliavin derivative within chaos expansion

We provide now the definition of the Malliavin derivative which is an extension of
the classical definition of this operator from the space of random processes to the
space of generalized stochastic processes ([8], [10], [12]).

Definition 2.3. Let a generalized stochastic process 𝑢 ∈ 𝑋 ⊗ (𝑆)−𝜌 be of the
form (1). If there exists 𝑝 ∈ ℕ0 such that∑

𝛼∈ℐ
∣𝛼∣1+𝜌(𝛼!)1−𝜌∥𝑓𝛼∥2𝑋(2ℕ)−𝑝𝛼 <∞ (2)

then the Malliavin derivative of 𝑢 is defined by

𝔻𝑢 =
∑
𝛼∈ℐ

∑
𝑘∈ℕ

𝛼𝑘 𝑓𝛼 ⊗ 𝜉𝑘 ⊗𝐻𝛼−𝜖(𝑘) .

Operator 𝔻 is also called the stochastic gradient of a generalized stochastic
process 𝑢. The set of processes 𝑢 such that (2) is satisfied is the domain of the
Malliavin derivative and is denoted by 𝐷𝑜𝑚(𝔻)−𝜌. A process 𝑢 ∈ 𝐷𝑜𝑚(𝔻)−𝜌 is
called Malliavin differentiable process.

Theorem 2.3. The Malliavin derivative of a process 𝑢 ∈ 𝑋 ⊗ (𝑆)−𝜌 is a linear and
continuous mapping

𝔻 : 𝐷𝑜𝑚(𝔻)−𝜌,−𝑝 ⊆ 𝑋 ⊗ (𝑆)−𝜌,−𝑝 → 𝑋 ⊗ 𝑆−𝑙(ℝ)⊗ (𝑆)−𝜌,−𝑝,

for 𝑙 > 𝑝+ 1 and 𝑝 ∈ ℕ0.

Proof. We use the property (𝛼−𝜀(𝑘))! = 𝛼!
𝛼𝑘

, for 𝑘 ∈ ℕ in the proof of this theorem.

Assume that a generalized process 𝑢 is of the form (1) such that it satisfies (2) for
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some 𝑝 ≥ 0. Then we have

∥𝔻𝑢∥2𝑋⊗𝑆−𝑙(ℝ)⊗(𝑆)−𝜌,−𝑝

=
∑
𝛼∈ℐ

∥∥∥∥∑
𝑘∈ℕ

𝛼𝑘 𝑓𝛼 ⊗ 𝜉𝑘

∥∥∥∥2
𝑋⊗(𝑆)−𝑙(ℝ)

(2ℕ)−𝑝𝛼+𝑝𝜀
(𝑘)

(𝛼− 𝜀(𝑘))!1−𝜌

≤
∑
𝛼∈ℐ

∞∑
𝑘=1

𝛼2𝑘(𝛼− 𝜀(𝑘))!1−𝜌∥𝑓𝛼∥2𝑋(2ℕ)−𝑝(𝛼−𝜀
(𝑘))(2𝑘)−𝑙

=
∑
𝛼∈ℐ

∞∑
𝑘=1

𝛼2𝑘

(
𝛼!

𝛼𝑘

)1−𝜌
∥𝑓𝛼∥2𝑋(2ℕ)−𝑝𝛼(2𝑘)−(𝑙−𝑝)

≤ 𝐶
∑
𝛼∈ℐ

( ∞∑
𝑘=1

𝛼𝑘

)1+𝜌
(𝛼!)1−𝜌∥𝑓𝛼∥2𝑋(2ℕ)−𝑝𝛼

= 𝐶
∑
𝛼∈ℐ

∣𝛼∣1+𝜌(𝛼!)1−𝜌∥𝑓𝛼∥2𝑋(2ℕ)−𝑝𝛼 <∞,

where 𝐶 =
∑∞

𝑘=1(2𝑘)−(𝑙−𝑝) <∞ for 𝑙 > 𝑝+ 1. □

When 𝜌 = 1 the result of the previous theorem reduces to the corresponding
one in [4].

3. Nonhomogeneous first-order linear equation

We consider now a nonhomogeneous linear Malliavin differential type equation{ 𝔻𝑢 = 𝑐⊗ 𝑢 + ℎ,

𝐸𝑢 = 𝑢0,
(3)

where 𝑐 ∈ 𝑆′(ℝ), ℎ is a 𝑆′-valued generalized stochastic process and 𝑢0 ∈ 𝑋 .
Note that in a special case for ℎ = 0 the equation (3) reduces to the corre-

sponding homogeneous equation 𝔻𝑢 = 𝑐 ⊗ 𝑢 satisfying condition 𝐸𝑢 = 𝑢0. To be
precise, in this case we obtain the generalized eigenvalue problem for the Malliavin
derivative operator, which was solved in [4]. Moreover, it was proved that in a spe-
cial case, obtained solution coincide with the stochastic exponential. Additionally,
putting 𝑐 = 0, the initial equation (3) transforms into the first-order differential
equation with the Malliavin derivative operator 𝔻𝑢 = ℎ, 𝐸𝑢 = 𝑢0, which was
recently solved in [6].

The method we will use to solve this equation is a very general and useful
tool of Wiener-Itô chaos expansions, also known as the propagator method. With
this method we reduce the stochastic differential equation to an infinite system of
deterministic equations, which can be solved by induction on length of multi-index.
Summing up all coefficients of the expansion and proving convergence in an appro-
priate weight space, one obtains the solution of the initial stochastic differential
equation. This method is applied in several papers: [4], [5], [6], [7], [8], [9], [14], [15].
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Denote by 𝑟 = 𝑟(𝛼) = min{𝑘 ∈ ℕ : 𝛼𝑘 ∕= 0}, for nonzero multi-index
𝛼 ∈ ℐ. Then the first nonzero component of 𝛼 is the 𝑟th component 𝛼𝑟, i.e.,
𝛼 = (0, 0, . . . , 0, 𝛼𝑟, . . . , 𝛼𝑚, 0, 0, . . . ). Denote by 𝛼𝜀(𝑟) the multi-index with all
components equal to the corresponding components of 𝛼, except the 𝑟th, which is
𝛼𝑟 − 1. We call 𝛼𝜀(𝑟) the representative of 𝛼 and write

𝛼 = 𝛼𝜀(𝑟) + 𝜀(𝑟), 𝛼 ∈ ℐ, ∣𝛼∣ > 0.

Note that 𝛼𝜀(𝑟) is of the length ∣𝛼∣ − 1.

For example, the first nonzero component of 𝛼 = (0, 0, 2, 1, 0, 5, 0, 0, . . .) is
its third component. It follows that 𝑟 = 3, 𝛼𝑟 = 2 and the representative of 𝛼 is
𝛼𝜀(𝑟) = 𝛼− 𝜀(3) = (0, 0, 1, 1, 0, 5, 0, 0, . . .).

The set 𝒦𝛼 = {𝛽 ∈ ℐ : 𝛼 = 𝛽 + 𝜀(𝑗), for some 𝑗 ∈ ℕ}, 𝛼 ∈ ℐ, ∣𝛼∣ > 0 is a
nonempty set, because 𝛼𝜀(𝑟) ∈ 𝒦𝛼. Moreover, if 𝛼=𝑛𝜀(𝑟), 𝑛∈ℕ then Card(𝒦𝛼)=1.
In all other cases Card(𝒦𝛼) > 1. For example if 𝛼 = (0, 1, 3, 0, 0, 5, 0, . . . ), then the
set 𝒦𝛼 has three elements

𝒦𝛼 = {𝛼𝜀(2) = (0, 0, 3, 0, 0, 5, 0, . . . ), (0, 1, 2, 0, 0, 5, 0, . . . ), (0, 1, 3, 0, 0, 4, 0, . . .)}.

For 𝛼 ∈ ℐ such that Card(𝒦𝛼) > 1, we denote by 𝑟1 the smallest 𝑘 ∈ ℕ
such that 𝛼𝜀(𝑟) = 𝜀(𝑟1) + 𝛼𝜀(𝑟1) , i.e., 𝛼𝜀(𝑟1) is the representative of 𝛼𝜀(𝑟) and is of
length ∣𝛼∣ − 2. Then 𝒦𝛼

𝜀(𝑟)
= {𝛽1 ∈ ℐ : 𝛼𝜀(𝑟) = 𝛽1 + 𝜀(𝑘1), for some 𝑘1 ∈ ℕ}.

Further on if, Card(𝒦𝛼
𝜀(𝑟)

) > 1 then we denote by 𝑟2 the smallest 𝑘 ∈ ℕ such

that 𝛼𝜀(𝑟1) = 𝜀(𝑟2) + 𝛼𝜀(𝑟2) and so on. Note that 𝒦𝛼
𝜀(𝑟1)

= {𝛽2 ∈ ℐ : 𝛼𝜀(𝑟1) = 𝛽2 +

𝜀(𝑘2), for some 𝑘2 ∈ ℕ}. With such a procedure we decompose 𝛼 ∈ ℐ recursively
by new representatives of previous representatives and we obtain sequence of 𝒦-
sets. Thus, for 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑚, 0, 0, . . . ) ∈ ℐ, ∣𝛼∣ = 𝑠 + 1 there exists an
increasing family of integers 1 ≤ 𝑟 ≤ 𝑟1 ≤ 𝑟2 ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑠 ≤ 𝑚, 𝑠 ∈ ℕ such that
𝛼𝜀(𝑟𝑠) = (0, 0, . . . ) and every multi-index 𝛼 is decomposed by recurrent sum of
representatives

𝛼 = 𝜀(𝑟) + 𝛼𝜀(𝑟)

= 𝜀(𝑟) + 𝜀(𝑟1) + 𝛼𝜀(𝑟1)

...

= 𝜀(𝑟) + 𝜀(𝑟1) + ⋅ ⋅ ⋅+ 𝜀(𝑟𝑠) + 𝛼𝜀(𝑟𝑠) , 𝛼𝜀(𝑟𝑠) = (0, 0, . . . ). (4)

For example, if 𝛼 = (0, 0, 2, 0, 0, 1, 0, . . . ), then 𝑟 = 3, 𝛼𝑟 = 2, 𝛼𝜀(𝑟) = (0, 0, 1, 0, 0,
1, 0, . . . ), 𝑟1 = 3, 𝛼𝑟1 = 1, 𝛼𝜀(𝑟1) = (0, 0, 0, 0, 0, 1, 0, . . .), 𝑟2 = 6, 𝛼𝑟2 = 1, 𝛼𝜀(𝑟2) =
(0, 0, 0, . . . ), and thus 𝛼 = 𝜀(𝑟) + 𝜀(𝑟1) + 𝜀(𝑟2) + 𝛼𝜀(𝑟2) . Clearly, 𝑠 = ∣𝛼∣ − 1 = 2.

Theorem 3.1. Let 𝑐 =
∑∞

𝑘=1 𝑐𝑘 𝜉𝑘 ∈ 𝑆′(ℝ) and let ℎ ∈ 𝑋 ⊗ 𝑆′(ℝ) ⊗ (𝑆)−1 having
the representation ℎ =

∑
𝛼∈ℐ

∑
𝑘∈ℕ

ℎ𝛼,𝑘 ⊗ 𝜉𝑘 ⊗𝐻𝛼, such that the coefficients ℎ𝛼,𝑘 ∈ 𝑋
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satisfy⎧⎨⎩

for ∣𝛼∣ = 1
1
𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 = 1

𝛽𝑘
ℎ𝛽,𝑘, 𝛽 ∈ 𝒦𝛼,

for ∣𝛼∣ = 2
1
𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 + 1

𝛼𝑟𝛼𝑟1
𝑐𝑟ℎ𝛼

𝜀(𝑟1) ,𝑟1 = 1
𝛽𝑘
ℎ𝛽,𝑘 + 1

𝛽𝑘𝛽𝑘1
𝑐𝑘ℎ𝛽1,𝑘1 ,

𝛽 ∈ 𝒦𝛼, 𝛽1 ∈ 𝒦𝛼
𝜀(𝑟)

,
...

(5)

for all possible decompositions of 𝛼.

If 𝑐𝑘 ≥ 1
2𝑘 , for all 𝑘 ∈ ℕ then equation (3) has a unique solution in 𝑋 ⊗ (𝑆𝑐)−1.

The chaos expansion of the generalized stochastic process, which represents the
unique solution of (3) is given in the form

𝑢 = 𝑢hom + 𝑢nhom

=
∑
𝛼∈ℐ

𝑢hom𝛼 ⊗𝐻𝛼 +
∑

𝛼∈ℐ,∣𝛼∣>0
𝑢nhom𝛼 ⊗𝐻𝛼 (6)

= 𝑢0 ⊗
∑
𝛼∈ℐ

𝑐𝛼

𝛼!
𝐻𝛼 +

∑
𝛼∈ℐ
∣𝛼∣>0

(
1

𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 +

1

𝛼𝑟𝛼𝑟1
𝑐𝑟ℎ𝛼

𝜀(𝑟1) ,𝑟1

+
1

𝛼𝑟𝛼𝑟1𝛼𝑟2
𝑐𝑟𝑐𝑟1ℎ𝛼𝜀(𝑟2) ,𝑟2 + ⋅ ⋅ ⋅+ 1

𝛼!
𝑐𝑟𝑐𝑟1 . . . 𝑐𝑟𝑠−1ℎ0,𝑟𝑠

)
⊗𝐻𝛼,

i.e., as a superposition of a homogeneous part, denoted by 𝑢hom, and its nonho-
mogeneous part denoted by 𝑢nhom. The second sum on right-hand side of (6) runs
through 𝛼 ∈ ℐ represented in the recursive form (4).

Proof. We are looking for the solution 𝑢 in the form 𝑢 =
∑

𝛼∈ℐ 𝑢𝛼 ⊗ 𝐻𝛼, where
the coefficients 𝑢𝛼 ∈ 𝑋 , 𝛼 ∈ ℐ are to be found. From 𝐸𝑢 = 𝑢0 it follows 𝑢(0,0,... ) =
𝑢0 and thus, 𝑢 = 𝑢0 +

∑
𝛼∈ℐ,∣𝛼∣>0

𝑢𝛼 ⊗ 𝐻𝛼. We use the chaos expansion method

and transform the initial equation (3) to an equivalent system of deterministic
equations. Thus,

𝔻

(
𝑢0 +

∑
𝛼∈ℐ
∣𝛼∣>0

𝑢𝛼 ⊗𝐻𝛼

)

=

(∑
𝑘∈ℕ

𝑐𝑘𝜉𝑘

)
⊗

(∑
𝛼∈ℐ

𝑢𝛼 ⊗𝐻𝛼

)
+

∑
𝛼∈ℐ

(∑
𝑘∈ℕ

ℎ𝛼,𝑘 ⊗ 𝜉𝑘

)
⊗𝐻𝛼

∑
𝛼∈ℐ
∣𝛼∣>0

(∑
𝑘∈ℕ

𝛼𝑘𝑢𝛼 ⊗ 𝜉𝑘

)
⊗𝐻𝛼−𝜀(𝑘)
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=
∑
𝛼∈ℐ

(∑
𝑘∈ℕ

𝑐𝑘𝑢𝛼 ⊗ 𝜉𝑘

)
⊗𝐻𝛼 +

∑
𝛼∈ℐ

(∑
𝑘∈ℕ

ℎ𝛼,𝑘 ⊗ 𝜉𝑘

)
⊗𝐻𝛼

∑
𝛼∈ℐ

(∑
𝑘∈ℕ

(𝛼𝑘 + 1)𝑢𝛼+𝜀(𝑘) ⊗ 𝜉𝑘

)
⊗𝐻𝛼

=
∑
𝛼∈ℐ

(∑
𝑘∈ℕ

(𝑐𝑘𝑢𝛼 + ℎ𝛼,𝑘)⊗ 𝜉𝑘

)
⊗𝐻𝛼.

Due to the uniqueness of the chaos expansion of a generalized process in the
orthogonal basis 𝜉𝑘 ⊗ 𝐻𝛼, 𝛼 ∈ ℐ and 𝑘 ∈ ℕ, we transform (3) into a family of
deterministic equations

(𝛼𝑘 + 1)𝑢𝛼+𝜀(𝑘) = 𝑐𝑘𝑢𝛼 + ℎ𝛼,𝑘, for all 𝛼 ∈ ℐ, 𝑘 ∈ ℕ. (7)

The solution 𝑢𝛼, 𝛼 ∈ ℐ is obtained by induction with respect to the length of
multi-indices 𝛼. Recall, from 𝐸𝑢 = 𝑢0 we obtained 𝑢(0,0,... ) = 𝑢0.

Starting with ∣𝛼∣ = 0, i.e., 𝛼 = (0, 0, . . . ), the equations in (7) reduce to

𝑢𝜀(𝑘) = 𝑐𝑘𝑢(0,0,... ) + ℎ(0,0,... ),𝑘, 𝑘 ∈ ℕ (8)

and we obtain the coefficients 𝑢𝛼 for 𝛼 of length one. In particular we have the
system ⎧⎨⎩

𝑢(1,0,0,0,... ) = 𝑐1𝑢0 + ℎ0,1

𝑢(0,1,0,0,... ) = 𝑐2𝑢0 + ℎ0,2

𝑢(0,0,1,0,... ) = 𝑐3𝑢0 + ℎ0,3

𝑢(0,0,0,1,0,... ) = 𝑐4𝑢0 + ℎ0,4

...

. (9)

Note, 𝑢𝛼 for ∣𝛼∣ = 1 are obtained as a superposition of a homogeneous part,
represented in terms of 𝑢0, and a nonhomogeneous part, expressed in terms of
ℎ𝛼

𝜀(𝑟)
,𝑟 = ℎ(0,0,... ),𝑟, 𝑟 ∈ ℕ.

Next, for ∣𝛼∣ = 1 multi-indices are of the form 𝛼 = 𝜀(𝑘), 𝑘 ∈ ℕ and several
cases occur. For 𝑘 = 1, 𝛼 = 𝜀(1) = (1, 0, 0, . . . ) the system (7) transforms into⎧⎨⎩

𝑢(2,0,0,0,... ) = 1
2𝑐1𝑢(1,0,0,... ) + 1

2ℎ(1,0,0,... ),1

𝑢(1,1,0,0,... ) = 𝑐2𝑢(1,0,0,... ) + ℎ(1,0,0,... ),2

𝑢(1,0,1,0,... ) = 𝑐3𝑢(1,0,0,... ) + ℎ(1,0,0,... ),3

𝑢(1,0,0,1,0,... ) = 𝑐4𝑢(1,0,0,... ) + ℎ(1,0,0,... ),4

...

.
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Now we replace expressions 𝑢𝜀(𝑘) , 𝑘 ∈ ℕ with equalities (8), obtained in the previ-
ous step, and receive⎧⎨⎩

𝑢(2,0,0,0,... ) = 1
2𝑐
2
1𝑢0 + 1

2𝑐1ℎ0,1 + 1
2ℎ(1,0,0,... ),1

𝑢(1,1,0,0,... ) = 𝑐1𝑐2𝑢0 + 𝑐2ℎ0,1 + ℎ(1,0,0,... ),2

𝑢(1,0,1,0,... ) = 𝑐1𝑐3𝑢0 + 𝑐3ℎ0,1 + ℎ(1,0,0,... ),3

𝑢(0,0,0,1,0,... ) = 𝑐1𝑐4𝑢0 + 𝑐4ℎ0,1 + ℎ(1,0,0,... ),4

...

. (10)

Continuing, for 𝑘 = 2, 𝛼 = 𝜀(2) = (0, 1, 0, 0, . . . ) the equations in (7) transform to⎧⎨⎩

𝑢(1,1,0,0,... ) = 𝑐1𝑢(0,1,0,0,... ) + ℎ(0,1,0,0,... ),1

𝑢(0,2,0,0,... ) = 1
2𝑐2𝑢(0,1,0,0,... ) + 1

2ℎ(0,1,0,0,... ),2

𝑢(0,1,1,0,... ) = 𝑐3𝑢(0,1,0,0,... ) + ℎ(0,1,0,0,... ),3

𝑢(0,1,0,1,0,... ) = 𝑐4𝑢(0,1,0,0,... ) + ℎ(0,1,0,0,... ),4

...

, (11)

and then after substitution (9) for (11) we obtain⎧⎨⎩

𝑢(1,1,0,0,... ) = 𝑐1𝑐2𝑢0 + 𝑐1ℎ0,2 + ℎ(0,1,0,0,... ),1

𝑢(0,2,0,0,... ) = 1
2𝑐
2
2𝑢0 + 1

2𝑐2ℎ0,2 + 1
2ℎ(0,1,0,0,... ),2

𝑢(0,1,1,0,... ) = 𝑐2𝑐3𝑢0 + 𝑐3ℎ0,2 + ℎ(0,1,0,0,... ),3

𝑢(0,1,0,1,0,... ) = 𝑐2𝑐4𝑢0 + 𝑐4ℎ0,2 + ℎ(0,1,0,0,... ),4

...

. (12)

For 𝑘 = 3, 𝛼 = 𝜀(3) = (0, 0, 1, 0, 0, . . . ) the system (7) reduces to⎧⎨⎩

𝑢(1,0,1,0,0,... ) = 𝑐1𝑐3𝑢0 + 𝑐1ℎ0,3 + ℎ(0,0,1,0,0,... ),1

𝑢(0,1,1,0,0,... ) = 𝑐2𝑐3𝑢0 + 𝑐2ℎ0,3 + ℎ(0,0,1,0,0,... ),2

𝑢(0,0,2,0,... ) = 1
2𝑐
2
3𝑢0 + 1

2 𝑐3ℎ0,3 + 1
2ℎ(0,0,1,0,0,... ),3

𝑢(0,0,1,1,0,... ) = 𝑐3𝑐4𝑢0 + 𝑐4ℎ0,3 + ℎ(0,0,1,0,0,... ),4

...

. (13)

Continuing with the same procedure we obtain the unknown coefficients 𝑢𝛼 of
length two. Further on, we will express all multi-indices, which have two different
representations of the form 𝛼 = 𝜀(𝑘) + 𝜀(𝑘1), for 𝑘 ∕= 𝑘1, 𝑘, 𝑘1 ∈ ℕ in terms of their
representatives.

For example, multi-index

(1, 1, 0, 0, . . . ) = 𝜀(1) + (0, 1, 0, . . . ) = 𝜀(2) + (1, 0, 0, . . . )
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has two different representations of the form 𝛼 = 𝜀(𝑘)+𝛼𝜀(𝑘) and thus the coefficient
𝑢(1,1,0,0,... ) appears in systems (10) and (12). Thus, the additional condition

𝑐2ℎ0,1 + ℎ(1,0,0,... ),2 = 𝑐1ℎ0,1 + ℎ(0,1,0,... ),1

has to hold in order to have a solvable system.
Moreover, we express 𝛼 = (1, 1, 0, 0, . . . ) in terms of a sequence of succes-

sive representatives, i.e., 𝑟 = 1, 𝛼𝜀(𝑟) = (0, 1, 0, 0, . . . ), 𝑟1 = 2 and 𝛼𝜀(𝑟1) =
(0, 0, 0, . . . ). Thus, the element 𝑢(1,1,0,0,... ) is given in the form 𝑢(1,1,0,0,... ) =
𝑐1𝑐2𝑢0 + ℎ(0,1,0,... ),1 + 𝑐1ℎ0,2 obtained in (12). Also, the element 𝑢(1,0,1,0,0,... ) ap-
pears in equalities (10) and (13) and we obtained additional condition

𝑐3ℎ0,1 + ℎ(1,0,0,... ),3 = 𝑐1ℎ0,3 + ℎ(0,0,1,0,... ),1

which need to be satisfied in order to have a unique 𝑢𝛼. Multi-index 𝛼 = (1, 0, 1,
0, 0, . . . ) can be decomposed in terms of a sequence of successive representatives as
follows 𝛼 = 𝜀(𝑟)+𝛼𝜀(𝑟) , where 𝑟 = 1, 𝛼𝜀(𝑟) = (0, 0, 1, 0, . . . ) and 𝛼𝜀(𝑟) = 𝜀(𝑟1)+𝛼𝜀(𝑟1) ,
for 𝑟1 = 3 and 𝛼𝜀(𝑟1) = (0, 0, 0, . . . ). We use the form (13) to represent 𝑢(1,0,1,0,0,... )
in terms of its representatives decomposition. Moreover, the element 𝑢(0,1,1,0,0,... )
appears in equalities (12) and (13), and it follows that also the condition

𝑐3ℎ0,2 + ℎ(0,1,0,0,... ),3 = 𝑐2ℎ0,3 + ℎ(0,0,1,0,... ),2

has to be satisfied, and so on.
In this step we obtained forms of the coefficients 𝑢𝛼 of length two, with

validity of the additional condition

ℎ𝛼
𝜀(𝑟)

,𝑟 + 𝑐𝑟ℎ(0,0,... ),𝑟1 = ℎ𝛽,𝑗 + 𝑐𝑗 ℎ(0,0,... ),𝑘, (14)

where 𝛼 = 𝜀(𝑟) + 𝜀(𝑟1) + (0, 0, . . . ), 1 ≤ 𝑟 ≤ 𝑟1, 𝑟, 𝑟1 ∈ ℕ and all 𝛽 ∈ ℐ such
that 𝛼 = 𝛽 + 𝜀(𝑗) for 𝑗 ≥ 𝑟, and 𝛽 = (0, 0, . . . ) + 𝜀(𝑘), for some 𝑘 ∈ ℕ. Note
that condition (14) corresponds to condition (5) for ∣𝛼∣ = 2. The coefficients 𝑢𝛼 of
length two are represented as a superposition of a homogeneous part, expressed in
terms of 𝑢0 and a nonhomogeneous part expressed as a linear combination of ℎ𝛼,𝑘
for 𝛼 of length one and product of 𝑐𝑘, 𝑘 ∈ ℕ and ℎ𝛼,𝑘 for 𝛼 of length zero, i.e., in

terms of representatives 1
𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 + 1

𝛼!𝑐𝑟ℎ0,𝑟1 for 𝛼 = 𝜀(𝑟) + 𝛼𝜀(𝑟) , 𝛼𝜀(𝑟) = 𝜀(𝑟1),
1 ≤ 𝑟 ≤ 𝑟1.

For ∣𝛼∣ = 2 from system of equations (7) and results (10), (12), (13),. . . ,
calculated in the previous step, we obtain 𝑢𝛼, for 𝛼 of length three. Different
combinations for multi-indices of length two occur. If we choose 𝛼 = (1, 1, 0, 0, . . . )
then the system (7) transforms into the system⎧⎨⎩

𝑢(2,1,0,0,... ) = 1
2𝑐1𝑢(1,1,0,0,... ) + 1

2ℎ(1,1,0,0,... ),1

𝑢(1,2,0,0,... ) = 1
2𝑐2𝑢(1,1,0,0,... ) + 1

2ℎ(1,1,0,0,... ),2

𝑢(1,1,1,0,... ) = 𝑐3𝑢(1,1,0,0,... ) + ℎ(1,1,0,0,... ),3

𝑢(1,1,0,1,0,... ) = 𝑐4𝑢(1,1,0,0,... ) + ℎ(1,1,0,0,... ),4
...

.
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We substitute equalities for 𝑢𝛼 of length two, obtained in the previous step in
terms of their representatives decomposition, and transform the system to a more
elegant one. In particular, we use expression in (12) for the element 𝑢(1,1,0,0,... )
and obtain the system of equations⎧⎨⎩

𝑢(2,1,0,0,... ) = 1
2𝑐
2
1𝑐2𝑢0 + 1

2𝑐
2
1ℎ0,2 + 1

2𝑐1ℎ(0,1,0,0,... ),1 + 1
2ℎ(1,1,0,0,... ),1

𝑢(1,2,0,0,... ) = 1
2𝑐1𝑐

2
2𝑢0 + 1

2𝑐1𝑐2ℎ0,2 + 1
2𝑐2ℎ(0,1,0,... ),1 + 1

2ℎ(1,1,0,0,... ),2

𝑢(1,1,1,0,... ) = 𝑐1𝑐2𝑐3𝑢0 + 𝑐1𝑐3ℎ0,2 + 𝑐3ℎ(0,1,0,0,... ),1 + ℎ(1,1,0,0,... ),3

𝑢(1,1,0,1,0,... ) = 𝑐1𝑐2𝑐4𝑢0 + 𝑐1𝑐4ℎ0,2 + 𝑐4ℎ(0,1,0,0,... ),1 + ℎ(1,1,0,0,... ),4
...

. (15)

For 𝛼 = (1, 0, 1, . . . ) the system (7) transforms to the system⎧⎨⎩

𝑢(2,0,1,0,0,... ) = 1
2𝑐
2
1𝑐3𝑢0 + 1

2𝑐
2
1ℎ0,3 + 1

2𝑐1ℎ(0,0,1,0,0,... ),1 + 1
2ℎ(1,0,1,0,... ),1

𝑢(1,1,1,0,0,... ) = 𝑐1𝑐2𝑐3𝑢0 + 𝑐1𝑐2ℎ0,3 + 𝑐2ℎ(0,0,1,0,... ),1 + ℎ(1,0,1,0,0,... ),2

𝑢(1,0,2,0,... ) = 1
2𝑐1𝑐

2
3𝑢0 + 1

2𝑐1𝑐3ℎ0,3 +
1

2
𝑐3ℎ(0,0,1,0,0,... ),1 + 1

2ℎ(1,0,1,0,0,... ),3

𝑢(1,0,1,1,0,... ) = 𝑐1𝑐3𝑐4𝑢0 + 𝑐1𝑐4ℎ0,3 + 𝑐4ℎ(0,0,1,0,0,... ),1 + ℎ(1,0,1,0,0,... ),4
...

(16)
and for 𝛼 = (1, 0, 0, 1, . . . ) we obtain the system⎧⎨⎩

𝑢(2,0,0,1,0,0,... ) = 1
2𝑐
2
1𝑐4𝑢0 + 1

2𝑐
2
1ℎ0,4 + 1

2𝑐1ℎ(0,0,0,1,0,0,... ),1 + 1
2ℎ(1,0,1,0,... ),1

𝑢(1,1,0,1,0,0,... ) = 𝑐1𝑐2𝑐4𝑢0 + 𝑐1𝑐2ℎ0,4 + 𝑐2ℎ(0,0,0,1,0,... ),1 + ℎ(1,0,0,1,0,0,... ),2

𝑢(1,0,1,1,0,... ) = 𝑐1𝑐3𝑐4𝑢0 + 𝑐1𝑐3ℎ0,4 + 𝑐3ℎ(0,0,0,1,0,0,... ),1 + ℎ(1,0,0,1,0,0,... ),3

𝑢(1,0,0,2,0,... ) = 1
2𝑐1𝑐

2
4𝑢0 + 1

2𝑐1𝑐4ℎ0,4 + 1
2𝑐4ℎ(0,0,0,1,0,0,... ),1 + 1

2ℎ(1,0,0,1,0,0,... ),4
...

.

We continue with multi-indices 𝛼 = (0, 1, 1, 0, 0, . . . ) and 𝛼 = (0, 1, 0, 1, 0, . . . )
and transform the system (7) respectively to the systems⎧⎨⎩

𝑢(1,1,1,0,0,... ) = 𝑐1𝑐2𝑐3𝑢0 + 𝑐1𝑐2ℎ0,3 + 𝑐1ℎ(0,0,1,0,0,... ),2 + ℎ(0,1,1,0,... ),1

𝑢(0,2,1,0,0,... ) = 1
2𝑐
2
2𝑐3𝑢0 + 1

2𝑐
2
2ℎ0,3 + 1

2𝑐2ℎ(0,0,1,0,... ),2 + 1
2ℎ(0,1,1,0,0,... ),2

𝑢(0,1,2,0,... ) = 1
2𝑐2𝑐

2
3𝑢0 + 1

2𝑐2𝑐3ℎ0,3 + 1
2𝑐3ℎ(0,0,1,0,0,... ),1 + ℎ(0,1,1,0,0,... ),3

𝑢(0,1,1,1,0,... ) = 𝑐2𝑐3𝑐4𝑢0 + 𝑐2𝑐4ℎ0,3 + 𝑐4ℎ(0,0,1,0,0,... ),2 + ℎ(0,1,1,0,0,... ),4
...

(17)
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and⎧⎨⎩

𝑢(1,1,0,1,0,0,... ) = 𝑐1𝑐2𝑐4𝑢0 + 𝑐1𝑐2ℎ0,4 + 1
2𝑐1ℎ(0,0,0,1,0,0,... ),2 + ℎ(0,1,0,1,0,... ),1

𝑢(0,2,0,1,0,0,... ) = 1
2𝑐
2
2𝑐4𝑢0 + 1

2𝑐
2
2ℎ0,4 + 1

2𝑐2ℎ(0,0,0,1,0,... ),2 + 1
2ℎ(0,1,0,1,0,0,... ),2

𝑢(0,1,1,1,0,... ) = 𝑐2𝑐3𝑐4𝑢0 + 𝑐2𝑐3ℎ0,4 + 𝑐3ℎ(0,0,0,1,0,0,... ),2 + ℎ(0,1,0,1,0,0,... ),3

𝑢(0,1,0,2,0,... ) = 1
2𝑐2𝑐

2
4𝑢0 + 1

2𝑐2𝑐4ℎ0,4 + 1
2𝑐4ℎ(0,0,0,1,0,0,... ),2 + 1

2ℎ(0,1,0,1,0,0,... ),4
...

.

For multi-indices 𝛼 = (2, 0, 0, 0, . . . ) and 𝛼 = (0, 2, 0, 0, . . . ) the system (7) trans-
forms respectively into⎧⎨⎩

𝑢(3,0,0,0,... ) = 1
6𝑐
3
1𝑢0 + 1

6𝑐
2
1ℎ0,1 + 1

6𝑐1ℎ(1,0,0,0,... ),1 + 1
3ℎ(2,0,0,0,... ),1

𝑢(2,1,0,0,... ) = 1
2𝑐
2
1𝑐2𝑢0 + 1

2 𝑐1𝑐2ℎ0,1 + 1
2𝑐2ℎ(1,0,0,0,... ),1 + ℎ(2,0,0,0,... ),2

𝑢(2,0,1,0,... ) = 1
2𝑐
2
1𝑐3𝑢0 + 1

2 𝑐1𝑐3ℎ0,1 + 1
2𝑐3ℎ(1,0,0,0,... ),1 + 1

2ℎ(2,0,0,0,... ),3

𝑢(2,0,0,1,0,... ) = 1
2𝑐
2
1𝑐4𝑢0 + 1

2 𝑐2𝑐4ℎ0,1 + 1
2𝑐4ℎ(0,0,0,1,0,0,... ),1 + 1

2ℎ(2,0,0,0,... ),4
...

(18)
and⎧⎨⎩

𝑢(1,2,0,0,0,... ) = 1
2𝑐1𝑐

2
2𝑢0 + 1

2𝑐1𝑐2ℎ0,2 + 1
2𝑐1ℎ(0,1,0,0,... ),2 + ℎ(0,2,0,0,... ),1

𝑢(0,3,0,0,0,... ) = 1
6𝑐
3
2𝑢0 + 1

6𝑐
2
2ℎ0,2 + 1

6𝑐2ℎ(0,1,0,... ),2 + 1
3ℎ(0,2,0,0,... ),2

𝑢(0,2,1,0,0,... ) = 1
2𝑐
2
2𝑐3𝑢0 + 1

2𝑐2𝑐3ℎ0,2 + 1
2𝑐3ℎ(0,1,0,0,... ),2 + 1

2ℎ(0,2,0,0,... ),3

𝑢(0,2,0,1,0,... ) = 1
2𝑐
2
2𝑐4𝑢0 + 1

2𝑐2𝑐4ℎ0,2 + 1
2𝑐4ℎ(0,1,0,0,... ),2 + 1

2ℎ(0,2,0,0,... ),4
...

.

Combining with the previous results, we obtain 𝑢𝛼, for ∣𝛼∣ = 3. Further on, we
will express all multi-indices, which have several different representations of the
form 𝛼 = 𝜀(𝑘) + 𝜀(𝑘1) + 𝜀(𝑘2), for 𝑘, 𝑘1, 𝑘2 ∈ ℕ in terms of theirs representatives.
Two different representations of 𝑢(2,1,0,0,... ) appear in the systems (15) and (18),
so the additional condition

1

2
𝑐21ℎ0,2+

1

2
𝑐1ℎ(0,1,0,... ),1+

1

2
ℎ(1,1,0,0,... ),1 =

1

2
𝑐1𝑐2ℎ0,1+

1

2
𝑐2ℎ(1,0,0,... ),1+ℎ(2,0,0,... ),2

follows. We express the element 𝑢(2,1,0,0,... ) in form of the representatives. Clearly,
recursive decomposition of multi-index (2, 1, 0, 0, . . . ) is given by

(2, 1, 0, 0, . . . ) = 𝜀(𝑟) + (1, 1, 0, 0, . . . ) = 𝜀(𝑟) + 𝜀(𝑟1) + (0, 1, 0, 0, . . . )

= 𝜀(𝑟) + 𝜀(𝑟1) + 𝜀(𝑟2) + (0, 0, . . . ),

for 𝑟 = 1, 𝑟1 = 1 and 𝑟2 = 2. Thus, 𝑢(2,1,0,0,... ) = 1
2𝑐
2
1𝑐2𝑢0 + 1

2ℎ(1,1,0,0,... ),1 +
1
2𝑐1ℎ(0,1,0,0,... ),1 + 1

2𝑐
2
1ℎ0,2.
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Since the coefficient 𝑢(1,1,1,0,0,... ) appears in three equations (15), (16) and
(17), we receive another conditions

𝑐1𝑐3ℎ0,2 + 𝑐3ℎ(0,1,0,0,... ),1 + ℎ(1,1,0,0,... ),3

= 𝑐1𝑐2ℎ0,3 + 𝑐2ℎ(0,0,1,0,... ),1 + ℎ(1,0,1,0,0,... ),2

= 𝑐1𝑐2ℎ0,3 + 𝑐1ℎ(0,0,1,0,0,... ),2 + ℎ(0,1,1,0,... ),1

and express 𝛼 = (1, 1, 1, 0, 0, . . . ) by its representatives, 𝑟 = 1, 𝑟1 = 2, 𝑟3 = 2.
The representation of 𝑢(1,1,1,0,0,... ) is given by (15), i.e., 𝑢(1,1,1,0,0,... ) = 𝑐1𝑐2𝑐3𝑢0+
ℎ(0,1,1,0,... ),1+ 𝑐1ℎ(0,0,1,0,... ),2+ 𝑐1𝑐2ℎ0,3. Note that previous conditions correspond
to conditions (5).

We proceed by the same procedure for all multi-index lengths to obtain 𝑢𝛼
in the form

𝑢𝛼 = 𝑢0
𝑐𝛼1
1

𝛼1!
⋅ 𝑐

𝛼2
2

𝛼2!
⋅ ⋅ ⋅+

(
1

𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 +

1

𝛼𝑟𝛼𝑟1
𝑐𝑟ℎ𝛼

𝜀(𝑟1) ,𝑟1 + ⋅ ⋅ ⋅

⋅ ⋅ ⋅+ 1

𝛼𝑟𝛼𝑟1 . . . 𝛼𝑟𝑠
𝑐𝑟𝑐𝑟1 . . . 𝑐𝑟𝑠−1ℎ0,𝑟𝑠

)
and thus the form of the solution (6).

In general, we decompose multi-index 𝛼 recurrently by the representatives.
To be precise, in the firs step we have 𝛼 = 𝜀(𝑟1) + 𝛼𝜀(𝑟1) . Then, in the next step
we find the representative of 𝛼𝜀(𝑟1) , i.e., 𝛼𝜀(𝑟1) = 𝜀(𝑟2) + 𝛼𝜀(𝑟2) and so on. . .

The coefficients 𝑢𝛼 are obtained in the form

𝑢𝛼 =
∏
𝑖∈ℕ

𝑐𝛼𝑖

𝑖

𝛼𝑖!
𝑢0︸ ︷︷ ︸

homogeneous part

+

[
1

𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 +

1

𝛼𝑟𝛼𝑟1
𝑐𝑟ℎ𝛼

𝜀(𝑟1) ,𝑟1 + ⋅ ⋅ ⋅+ 1

𝛼!
𝑐𝑟𝑐𝑟1 . . . 𝑐𝑟𝑠−1ℎ0,𝑟𝑠

]
︸ ︷︷ ︸

nonhomogeneous part

for the decomposition 𝛼 = 𝜀(𝑟) +
∑

1≤𝑗≤𝑠
𝜀(𝑟𝑗) + (0, 0, . . . ), 1 ≤ 𝑟 ≤ 𝑟1 ≤ ⋅ ⋅ ⋅ ≤ 𝑟𝑠,

i.e., 𝛼
𝜀(𝑟𝑗 )

= 𝛼− 𝜀(𝑟) − ∑
1≤𝑖≤𝑗−1

𝜀(𝑟𝑖), 1 ≤ 𝑗 ≤ 𝑠, where ∣𝛼∣ = 𝑠+ 1.

It remains to prove the convergence of the solution (6) in the space𝑋⊗(𝑆𝑐)−1,
i.e., to prove that, for some 𝑝 > 0

∥𝑢∥2𝑋⊗(𝑆𝑐)−1
=

∑
𝛼∈ℐ

∥𝑢𝛼∥2𝑋 (2ℕ𝑐)−𝑝𝛼 <∞.

Let ℎ ∈ 𝑋 ⊗ 𝑆−𝑝(ℝ)⊗ (𝑆)−1,−𝑝. Then, there exists 𝑝 > 0 such that

∥ℎ∥2𝑋⊗𝑆−𝑝(ℝ)⊗(𝑆)−1,−𝑝
=

∑
𝛼∈ℐ

∑
𝑘∈ℕ

∥ℎ𝛼,𝑘∥2𝑋 (2𝑘)−𝑝 (2ℕ)−𝑝𝛼 <∞.
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Note that for 𝑢0 ∈ 𝑋 we have ∥𝑢0∥𝑋 = ∥𝑢0∥𝑋⊗(𝑆)−1,−𝑞
for all 𝑞 > 0. Then,

the convergence follows from

∥𝑢∥2𝑋⊗(𝑆𝑐)−1,−𝑝
=

∑
𝛼∈ℐ

∥𝑢𝛼∥2𝑋(2ℕ𝑐)−𝑝𝛼

≤ 2
∑
𝛼∈ℐ

∥𝑢hom𝛼 ∥2𝑋(2ℕ𝑐)−𝑝𝛼 + 2
∑
𝛼∈ℐ
∣𝛼∣>0

∥𝑢nhom𝛼 ∥2𝑋(2ℕ𝑐)−𝑝𝛼

= 2𝐴+ 2𝐵 <∞.

From assumption 𝑐𝑘 ≥ 1
2𝑘 , for all 𝑘 ∈ ℕ, it follows that

∑
𝛼∈ℐ(2ℕ𝑐)−𝑝𝛼 < ∞ if

𝑝 > 0. Then, for 𝑝 > 3, we have

𝐴 =
∑
𝛼∈ℐ

∥𝑢hom𝛼 ∥2𝑋(2ℕ𝑐)−𝑝𝛼

=
∑
𝛼∈ℐ

∥𝑢0∥2𝑋
𝑐2𝛼

(𝛼!)2
(2ℕ𝑐)−𝑝𝛼

≤ ∥𝑢0∥2𝑋
∑
𝛼∈ℐ

𝑐2𝛼(2ℕ)−𝑝𝛼𝑐−𝑝𝛼

≤ ∥𝑢0∥2𝑋
∑
𝛼∈ℐ

𝑐−(𝑝−2)𝛼
∑
𝛼∈ℐ

(2ℕ)−𝑝𝛼 <∞.

For 𝑝 > 3 the convergence of the second part 𝐵 follows from

𝐵 =
∑
𝛼∈ℐ
∣𝛼∣>0

∥𝑢nhom𝛼 ∥2𝑋(2ℕ𝑐)−𝑝𝛼

=
∑

𝛼∈ℐ,∣𝛼∣>0,
𝛼=𝛼

𝜀(𝑟)
+𝜀(𝑟)

∥∥∥∥ 1

𝛼𝑟
ℎ𝛼

𝜀(𝑟)
,𝑟 +

1

𝛼𝑟𝛼𝑟1
𝑐𝑟ℎ𝛼

𝜀(𝑟1) ,𝑟1 + ⋅ ⋅ ⋅+ 1

𝛼!
𝑐𝑟𝑐𝑟1 . . . 𝑐𝑟𝑠−1ℎ0,𝑟𝑠

∥∥∥∥2
𝑋

× (2ℕ𝑐)−𝑝(𝛼𝜀(𝑟)
+𝜀(𝑟))

≤
∑

𝛼=𝛼
𝜀(𝑟)

+𝜀(𝑟)

∣𝛼∣
𝛼2𝑟

(
∥ℎ𝛼

𝜀(𝑟)
,𝑟∥2𝑋 + 𝑐2𝑟∥ℎ𝛼𝜀(𝑟1) ,𝑟1∥2𝑋 + ⋅ ⋅ ⋅+ 𝑐2𝑟𝑐

2
𝑟1 . . . 𝑐

2
𝑟𝑠−1

∥ℎ0,𝑟𝑠∥2𝑋
)

× (2𝑟𝑐)−𝑝 (2ℕ𝑐)−𝑝𝛼𝜀(𝑟)

≤
∑

𝛼∈ℐ,∣𝛼∣>0
𝑐2𝛼 (2ℕ)𝛼

(
∥ℎ𝛼

𝜀(𝑟)
,𝑟∥2𝑋 + ∥ℎ𝛼

𝜀(𝑟1) ,𝑟1∥2𝑋 + ⋅ ⋅ ⋅+ ∥ℎ0,𝑟𝑠∥2𝑋
)

× (2𝑟)−𝑝 𝑐−𝑝𝛼(2ℕ)−𝑝𝛼𝜀(𝑟)

≤
(∑
𝛼∈ℐ

𝑐−(𝑝−2)𝛼
)
⋅
∑
𝛼∈ℐ

∑
𝑟∈ℕ

∥ℎ𝛼,𝑟∥2𝑋 (2𝑟)−𝑝 (2ℕ)−(𝑝−1)𝛼 <∞,

where we have used the facts that ∣𝛼∣ ≤ (2ℕ)𝛼 and (2ℕ)𝑝𝜀
(𝑟)

(2ℕ)−𝑝𝛼 ≤ 1 for all
𝛼 ∈ ℐ, 𝑟 ∈ ℕ. With this statement we complete the proof. □
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