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Preface

This book represents the fruits of our collaboration on the variable Lebesgue spaces.
Our work in this area stretches back over a decade. Its genesis is memorable: it
began in Naples during an exceptionally cold January in 2002, shortly after the
introduction of the euro. We worked through the details of a preprint we had received
from our colleague Lars Diening which gave conditions for the maximal operator
to be bounded on variable Lebesgue spaces defined on bounded sets. Our first task
was to try to understand these previously unknown spaces. The more we worked
with them, the more intrigued we became. Subsequently, we began to study the
maximal operator on unbounded domains; a search for applications led us to the
other classical operators of harmonic analysis and the interplay between weighted
norm inequalities and variable Lebesgue spaces.

In 2007, the first author was invited to teach a graduate course on variable
Lebesgue spaces at the University of Naples, Federico II, an invitation he gladly
accepted. The notes for that course became the basis for this book. One problem,
however, was that our knowledge of the field continued to evolve even as we tried
to convert those notes into a final manuscript. Instead of writing we would stop to
prove new theorems, leading to repeated revisions and expansions of the text. At
this point, however, we think we have reached a reasonable place to stop: we have
written (we believe) an introduction to variable Lebesgue spaces that will be useful
for a wide audience. Simply put, we think we have finally gotten it right.

Many individuals have contributed directly and indirectly to this book. We want
to acknowledge the late Christoph Neugebauer, who collaborated with us on our first
paper on variable Lebesgue spaces and provided key insights. We want to thank our
colleagues Lars Diening, Peter Hästö, Aleš Nekvinda and Stefan Samko, who freely
shared with us preprints of their work. Their generosity kept us abreast of a very
rapidly evolving field. We want to thank Jean Michel Rakotoson for his collegiality
and for sharing with us his ideas and questions on variable Lebesgue spaces. We
also want to thank our colleague Claudia Capone and the students who attended
the variable Lebesgue space course for their patience as we tried for the first time
to shape our knowledge into a coherent whole. We especially want to thank Carlo
Sbordone, who first brought us together and has provided continuing support and

v



vi Preface

encouragement for our joint labors. And finally, we want to thank our wives and our
children for patiently bearing with us as this book became a reality.

Hartford, CT, USA David V. Cruz-Uribe, SFO
Napoli, Italy Alberto Fiorenza
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6.5.6 More on the Poincaré Inequalities. . . . . . . . . . . . . . . . . . . . . . . . . . . 265
6.5.7 More on the Sobolev Embedding Theorem.. . . . . . . . . . . . . . . . 266
6.5.8 Compact Embeddings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
6.5.9 Mean Continuity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
6.5.10 Gagliardo-Nirenberg Inequalities . . . . . . . . . . . . . . . . . . . . . . . . . . . 270

A Appendix: Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279

Symbol Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Subject Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305



Chapter 1
Introduction

The variable Lebesgue spaces, as their name implies, are a generalization of
the classical Lebesgue spaces, replacing the constant exponent p with a variable
exponent function p.�/. The resulting Banach function spaces Lp.�/ have many
properties similar to the Lp spaces, but they also differ in surprising and subtle
ways. For this reason the variable Lebesgue spaces have an intrinsic interest, but
they are also very important for their applications to partial differential equations
and variational integrals with non-standard growth conditions. The past 20 years,
and especially the past decade, have witnessed an explosive growth in the study of
these and related spaces.

The goal of this book is to provide an introduction to the variable Lebesgue
spaces. We first establish their structure and function space properties, paying
special attention to the differences between bounded and unbounded exponents.
Next, we develop the machinery of harmonic analysis on variable Lebesgue spaces.
We first concentrate on the Hardy-Littlewood maximal operator, and then extend
the Rubio de Francia theory of extrapolation to this setting. To do so we introduce
the theory of MuckenhouptAp weights and weighted norm inequalities. With these
tools we can then study other operators, particularly convolution operators, singular
integral operators and Riesz potentials. Finally, as an application of these results we
give the essential properties of the variable Sobolev spaces.

In writing this book we had two different audiences in mind. First, we wanted
to write an introduction suitable for researchers and students interested in learning
about the variable Lebesgue spaces. At the same time, we hoped to create a useful
reference for mathematicians already active in the area. For both audiences we have
provided a coherent treatment of the material—in terms of notation, hypotheses
and overall point of view—and thereby united results by many authors from a
rapidly evolving field. We have also included a concise introduction of weights and
weighted norm inequalities. These have become very important tools in the study
of the variable Lebesgue spaces, and we have given a careful treatment of the key
ideas needed to use them.

We have not, however, merely summarized existing work. We have included
many new and previously unpublished results and new proofs of known results. Our

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3 1, © Springer Basel 2013
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2 1 Introduction

goal was both to build upon earlier work and to fill in the gaps that inevitably arise
in a rapidly developing field. At the end of each chapter we have included extensive
notes, giving detailed references to the literature and summaries of additional topics
not treated in the body. In this way we have made clear the history and current state
of knowledge.

We are mindful, however, that the needs of these two audiences can conflict at
times, since a comprehensive monograph aimed at specialists is usually not the best
choice for students, and an introductory treatment may prove frustratingly slow for
those who are already familiar with the material. In resolving this conflict we have
always thought first of the needs of students, providing many details and exploring
the underlying intuition. We ask the experts for their forbearance and hope they will
remember their own experiences as graduate students.

In this chapter we provide a brief introduction to the variable Lebesgue spaces,
recount some of their history (particularly their development before the “modern”
period of research), and very briefly sketch some of the motivations for their study.
Following this we give a more detailed summary of the contents of each chapter. In
the last section we outline the minimum knowledge we expect of the reader and list
the basic notation we will use throughout.

1.1 An Overview of Variable Lebesgue Spaces

To get a sense of the variable Lebesgue spaces, we begin with an elementary
example. On the real line, consider the function f .x/ D jxj�1=3. The function f
is extremely well-behaved, but it is not in Lp.R/ for any p, 1 � p � 1. Given a
single value of p it either grows too quickly at the origin or decays too slowly at
infinity.

To more fully describe the behavior of f we must bring to bear two different
Lp spaces, for instance, L2 and L4. We can split up the domain of f and say that
f 2 L2.Œ�2; 2�/ and f 2 L4.R n Œ�2; 2�/. The drawback of this approach is that
for more complicated functions we need to introduce additional Lp spaces or lose
information. If we let

g.x/ D jxj�1=3 C jx � 1j�1=4;

then g 2 L2.Œ�2; 2�/, or more generally in Lp.Œ�2; 2�/ for any p < 3, but we have
lost information about the local behavior of the singularity at x D 1. On the other
hand, g is no longer in L4.R n Œ�2; 2�/: we have g 2 Lp.R n Œ�2; 2�/ for p > 4. To
capture this behavior we must subdivide the domain further, for example, writing
g 2 L2.Œ�1; 1=2�/, g 2 L3.Œ1=2; 2�/ and g 2 L9=2.R n Œ�1; 2�/.

The variable Lebesgue spaces give a different approach: we leave the domain
intact and instead allow the exponent to vary. Define the “exponent function”
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p.x/ D 9jxj C 2

2jxj C 1
D 9

2
� 5=2

2jxj C 1
:

Then p.0/ D 2, p.1/ D 11=3 and p.x/ ! 9=2 as jxj ! 1, and it is easy to see
that Z

R

jf .x/jp.x/ dx < 1 and
Z
R

jg.x/jp.x/ dx < 1:

In other words, the single variable exponent p.�/ allows us to describe more
precisely the behavior of each function. Moreover, we can distinguish between them
at infinity by modifying the exponent function. For instance, if we let

q.x/ D 8jxj C 2

2jxj C 1
D 4 � 2

2jxj C 1
;

then Z
R

jf .x/jq.x/ dx < 1

and jg.�/jq.�/ is locally integrable, but

Z
R

jg.x/jq.x/ dx D 1:

These examples motivate the definition of the variable Lebesgue spaces. Given a
set � and a measurable function p.�/ W � ! Œ1;1/, we let Lp.�/.�/ be the set of
functions f such that Z

�

jf .x/jp.x/ dx < 1:

We can even incorporate L1 into the definition: if we allow p.�/ to be infinite on
sets of positive measure and let �1 D fx 2 � W p.x/ D 1g, then we can redefine
Lp.�/.�/ as the set of functions such that

�p.�/.f / D
Z
�n�1

jf .x/jp.x/ dx C kf kL1.�1/ < 1:

While this definition is very suggestive of the classical definition, we immedi-
ately encounter problems. If p.�/ is a bounded function, then it is straightforward to
show that with this definition Lp.�/.�/ is a vector space. But if p.�/ is unbounded,
then this is no longer the case: consider, for example, � D R and p.x/ D
1 C jxj. Then �p.�/.1=2/ < 1, so 1=2 2 Lp.�/.R/, but �p.�/.1/D 1. Further,
the “modular” �p.�/ does not immediately convert into a norm: unlike the case of
constant exponents, we cannot put a power 1=p.x/ on the outside of the integral.

The solution to this problem is similar to the approach taken in Orlicz spaces.
Recall that given a Young functionˆ W Œ0;1/ ! Œ0;1/, (i.e., a continuous, strictly
increasing, convex function), the Orlicz space Lˆ.�/ consists of all functions f
such that for some � > 0,
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�ˆ.f=�/ D
Z
�

ˆ

� jf .x/j
�

�
dx < 1:

This becomes a Banach space when equipped with the Luxemburg norm:

kf kLˆ.�/ D inff� > 0 W �ˆ.f=�/ � 1g:

Similarly, we define Lp.�/.�/ to be the set of functions f such that for some � > 0,
�p.�/.f =�/ < 1, and define the norm

kf kLp.�/.�/ D inff� > 0 W �p.�/.f =�/ � 1g:
When p.�/ is a constant this immediately reduces to the usual norm on the classical
Lebesgue spaces. With this normLp.�/.�/ becomes a Banach space and it has many
properties in common with the classical Lebesgue spaces, especially when p.�/
is bounded function. For example, in this case the variable Lebesgue spaces are
separable, and the dual space of Lp.�/.�/ is isomorphic to Lp

0.�/.�/, where the
exponent p0.�/ is defined pointwise by

1

p.x/
C 1

p0.x/
D 1;

with the convention 1=1 D 0.
On the other hand, they diverge from the Lp spaces in several critical ways.

Most significantly, the variable Lebesgue spaces are not translation invariant: if
p.�/ is non-constant in R

n, then there always exists f 2 Lp.�/.Rn/ and h 2 R
n

such that g.x/ D f .x C h/ is not in Lp.�/.Rn/ . As a consequence the Lp.�/.Rn/
spaces are not rearrangement invariant Banach function spaces, and so a great
deal of classical machinery is not applicable. In developing the theory of harmonic
analysis on variable Lebesgue spaces much of the effort has gone into overcoming
this problem.

When p.�/ is unbounded, even more significant differences arise. In this case,
Lp.�/.�/ is no longer separable and bounded functions of compact support are not
dense. Lp

0.�/.�/ is isomorphic to a proper subspace of Lp.�/.�/�. In addition, it
can happen that L1.�/ � Lp.�/.�/ when � has infinite measure. This is the case,
for instance, if � D R and p.x/ D 1 C jxj. Further, when p.�/ is unbounded,
Lp.�/.�/ can contain unbounded functions whose singularities coincide with those
of the exponent. For example, let � D .0; e�e/ and p.x/ D log log.1=x/. Then

f .x/ D x
�1
2p.x/ is unbounded and f 2 Lp.�/.�/.

1.2 A Brief History of Variable Lebesgue Spaces

In this section we give an overview of the history of variable Lebesgue spaces.
Recounting this history up to the mid 1990s is relatively straightforward, since
relatively few mathematicians worked in this area. However, from that time the field



1.2 A Brief History of Variable Lebesgue Spaces 5

has burgeoned, and we only note a few highlights; we make no pretense of being
comprehensive. Unlike in subsequent chapters, where references are deferred to the
last section, here we will give references to works as we discuss them.

It is generally accepted that the dividing line between the “early” and “modern”
periods in the study of variable Lebesgue spaces is the foundational paper of
Kováčik and Rákosnı́k [219] from 1991. But the origin of the variable Lebesgue
spaces predates their work by 60 years, since they were first studied by Orlicz [290]
in 1931. For exponent functions p.�/ such that 1 < p.x/ < 1, he showed that if

Z 1

0

jf .x/jp.x/ dx < 1;

then a necessary and sufficient condition on a function g so that

Z 1

0

f .x/g.x/ dx < 1

is that for some � > 0,

Z 1

0

� jg.x/j
�

�p0.x/

dx < 1:

However, this paper is essentially the only contribution of Orlicz to the study of
the variable Lebesgue spaces. (The one exception is an oblique reference in a
paper with Musielak [275].) Instead, Orlicz turned his attention to the study of the
spaces now called Orlicz spaces, which he also introduced in 1931 in a joint paper
with Birnbaum [29]. (For the early history of these spaces, see Krasnosel’skiı̆ and
Rutickiı̆ [222].)

The next step in the development of the variable Lebesgue spaces came two
decades later in the work of Nakano [278,280] who developed the theory of modular
spaces, sometimes referred to as Nakano spaces. A modular space is a topological
vector space equipped with a “modular”: a generalization of a norm. An important
example of a modular space is the function space consisting of all functions f such
that for some � > 0, Z

�

ˆ.x; jf .x/j=�/ dx < 1;

where ˆ W � � Œ0;1/ ! Œ0;1� is a function such that for almost every x 2 �,
ˆ.x; �/ behaves like a Young function. These spaces are referred to as Musielak-
Orlicz spaces or generalized Orlicz spaces. (See [274].) They contain a number of
function spaces as special cases. If ˆ.x; t/ D ˆ.t/ is just a function of t , they are
the Orlicz spaces. If ˆ.x; t/ D tp.x/, they are the variable Lebesgue spaces. And if
ˆ.x; t/ D tpw.x/, they become the weighted Lebesgue spaces.

In [278], Nakano introduced the variable Lebesgue spaces as specific examples
of modular spaces, and their properties were further developed in [280]. However,
research in this area was focused on the topological properties of modular or
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Musielak-Orlicz spaces, and the variable Lebesgue spaces were primarily consid-
ered interesting examples: see, for example, Yamamuro [349] and Portnov [292,
293]. One exception is the work of Hudzik [171–179] in the late 1970s. He
introduced the generalized Sobolev spaces defined over Musielak-Orlicz spaces, and
his work foreshadowed many of the results on variable Lebesgue spaces developed
more recently.

The variable Lebesgue spaces reappeared independently in the Russian literature,
where they were studied as spaces of interest in their own right. They were
introduced by Tsenov [344] in 1961. He considered the problem of minimizing the
integral Z 1

0

jf .x/ � �.x/jp.x/ dx;

where f is continuous and � is a polynomial of fixed degree. In 1979, Sharapudi-
nov [329] developed the function space theory of the variable Lebesgue spaces
on intervals on the real line, introducing the Luxemburg norm (though without
reference to the Luxemburg norm, drawing instead on ideas of Kolmogorov [210]),
and showing that whenp.�/ is bounded,Lp.�/.Œ0; 1�/ is separable and its dual space is
Lp

0.�/.Œ0; 1�/. In subsequent papers [330–332] he considered various other problems
in analysis on the variable Lebesgue spaces. In [331] he was the first to consider
questions that involved the regularity of the exponent function p.�/, and introduced
the local log-Hölder continuity condition,

jp.x/ � p.y/j � C0

� log.jx � yj/ ; jx � yj < 1

2
; (1.1)

that has proved to be of critical importance in the theory of variable Lebesgue
spaces. These spaces also appeared in the work of other Russian authors, for exam-
ple, Kozlov [221].

The most influential work is due to Zhikov [353–356, 358–361], who beginning
in 1986 applied the variable Lebesgue spaces to problems in the calculus of
variations. Though, as we noted above, the “modern” period in the study of variable
Lebesgue spaces is usually said to begin with the 1991 paper of Kováčik and
Rákosnı́k, Zhikov’s work provides a bridge from the earlier period.

Zhikov was concerned with minimizing the functionals

F.u/ D
Z
�

f .x;ru/ dx

when the Lagrangian f satisfies the non-standard growth condition

�c0 C c1j�jp � f .x; �/ � c0 C c2j�jq;

where the ci are positive real constants and 0 < p < q. A particular example of
such a Lagrangian is f .x; �/ D j�jp.x/, where p � p.x/ � q. The Euler-Lagrange
equation associated to this functional is the p.�/-Laplacian:
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4p.�/u D �div.p.�/jrujp.�/�2ru/ D 0:

In the mid 1990s, functionals with non-standard growth and the p.�/-Laplacian were
also studied by Fan [111, 112] and Fan and Zhao [120, 121]. (These problems were
developed in a different direction by Marcellini [252, 253].) Since then this field
has expanded tremendously. For an overview of the study of partial differential
equations with non-standard growth conditions, see the survey articles by Fan [113],
Harjulehto, Hästö, Lê and Nuortio [157], and Mingione [263].

A very different problem also provided impetus for the study of the variable
Lebesgue spaces. In the early 1990s, Samko and Ross [300, 320] (see also
Samko [311, 314]) introduced a Riemann-Liouville fractional derivative of variable
order,

D˛.�/
a f .x/ D 1

�.1 � ˛.x//
d

dx

Z x

a

.x � t/�˛.x/f .t/ dt;

and the corresponding variable Riesz potential,

I ˛.�/a f .x/ D 1

�.˛.x//

Z x

a

.x � t/˛.x/�1f .t/ dt:

Investigating the behavior of these operators led naturally to the study of convolution
and potential operators on the variable Lebesgue spaces: see Samko [312,313] (also
see Edmunds and Meskhi [103]).

Interest in the variable Lebesgue spaces has increased since the 1990s because of
their use in a variety of applications. Foremost among these is the mathematical
modeling of electrorheological fluids. These are fluids whose viscosity changes
(often dramatically) when exposed to an electric field. See [147, 336] for a
discussion of their physical properties and applications. Electrorheological fluids are
understood experimentally, but a complete theoretical model is still lacking. In the
study of fluid dynamics they are treated as non-Newtonian fluids; in one extensively
studied model the energy is given by the integral

Z
�

jDu.x/jp.x/ dx;

whereDu is the symmetric part of the gradient of the velocity field and the exponent
is a function of the electric field. Růžička [306, 307] introduced this model, and
it was further developed by Acerbi and Mingione [3–5]. This problem was of
considerable importance in spurring the development of the theory of variable
Lebesgue and Sobolev spaces: see, for example, Diening and Růžička [88–91].

The variable Lebesgue spaces have also been used to model the behavior of other
physical problems. Some examples include quasi-Newtonian fluids [360], the ther-
mistor problem [361], fluid flow in porous media [15, 16], and magnetostatics [43].

The variable Lebesgue spaces have been applied to the study of image process-
ing. As early as 1997, Blomgren et al. [30] suggested that in image reconstruction, a
smoother image could be obtained by an interpolation technique that uses a variable
exponent: the appropriate norm is
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Z
�

jru.x/jp.ru/ dx;

where the exponent p.�/ decreases monotonically from two to one as ru increases.
This approach and related ideas have been explored by a number of authors [1, 2,
32, 45, 46, 156, 236, 237, 348] in recent years.

In much of the work described above there was a need to extend the techniques
and results of harmonic analysis to the variable Lebesgue spaces. It soon became
clear that a central problem was determining conditions on an exponent p.�/ so that
the Hardy-Littlewood maximal operator is bounded on Lp.�/.Rn/. The first major
result was due to Diening [77], who showed that it is sufficient to assume that p.�/
satisfies the local log-Hölder condition (1.1) and is constant outside of a large ball.
This result was generalized in [62] (see also [42,56]), where it was shown that it was
sufficient to assume that (1.1) holds and p.�/ is log-Hölder continuous at infinity:
there exists p1 such that

jp.x/ � p1j � C1
log.e C jxj/ :

Independently, Nekvinda [282] showed that it was sufficient to assume that p.�/
satisfies a somewhat weaker integral decay condition. The log-Hölder conditions
are the sharpest possible pointwise conditions (see Pick and Růžička [291] and [62])
but they are not necessary: see Nekvinda [284], Kopaliani [215] and Lerner [231].
Diening [79] has given a necessary and sufficient condition that is difficult to check
but has important theoretical consequences. The importance of these results was
reinforced by the work in [61], where it was shown that the theory of Rubio de
Francia extrapolation could be extended to the variable Lebesgue spaces. This
allows the theory of weighted norm inequalities to be used to prove that a multitude
of operators (such as singular integrals) are bounded on Lp.�/.Rn/ whenever the
maximal operator is.

1.3 The Organization of this Book

We begin in Chap. 2 with the function space properties of the variable Lebesgue
spaces. We develop the properties of the modular �p.�/ and the norm, including
versions of Hölder’s and Minkowski’s inequalities. We consider the various embed-
dings of variable Sobolev spaces into themselves and into the classical Lebesgue
spaces. We next treat convergence in norm, in modular and in measure, prove that
the spaces Lp.�/.�/ are complete, and determine conditions for various canonical
sets of functions (such as bounded functions of compact support) to be dense. We
discuss duality and show that Lp.�/.�/� is isomorphic to Lp

0.�/.�/ if and only if
p.�/ is bounded. Finally, we give a generalization of the Lebesgue differentiation
theorem.
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Throughout this chapter we have proved results in the fullest generality possible,
though some very technical theorems (such as the fine properties of convergence
when p.�/ is unbounded) are relegated to the notes in the last section. In particular,
while many properties of the variable Lebesgue spaces are easier to prove when
p.�/ is bounded, we have worked out the theory in full generality to illuminate the
precise differences between bounded and unbounded exponents.

In writing this chapter we have chosen to prove everything directly, following
wherever possible the theory of the classical Lebesgue spaces. To illustrate key ideas
we have included a number of concrete examples. There are other approaches to the
properties of the variable Lebesgue spaces. The most common is to treat them as
special cases of the Musielak-Orlicz spaces. This is the point of view adopted in the
recent book by Diening, Harjulehto, Hästö and Růžička [82]. Similarly, many of the
properties of variable Lebesgue spaces can be gotten by viewing them as particular
examples of Banach function spaces (see Bennett and Sharpley [25]). These more
abstract approaches have their advantages, but we believe strongly that our “nuts
and bolts” approach has the singular advantage that any reader who works through
the details will become intimately familiar with the variable Lebesgue spaces.

In the subsequent chapters we turn to the study of harmonic analysis on the
variable Lebesgue spaces. For us this meant beginning with the theory of the Hardy-
Littlewood maximal operator, which we do in Chaps. 3 and 4. In Chap. 3 we develop
the theory assuming that the exponent function satisfies log-Hölder continuity
conditions, both locally and at infinity. These conditions are not necessary, but
they are versatile and have proved to be very important in many applications.
Our main tool for working with the maximal operator is the Calderón-Zygmund
decomposition using dyadic cubes. This is a relatively recent approach in the
variable Lebesgue spaces, but one which has proved to be remarkably flexible. The
earlier techniques used to study the maximal operator are described in the notes.

In Chap. 4 we continue to study the maximal operator, but now our focus is on
weakening the log-Hölder continuity conditions, a problem which is still an area
of active research. The proof of the boundedness of the maximal operator that we
give in Chap. 3 makes it very easy to consider the conditions used locally and at
infinity separately. We first give a weaker condition at infinity, introducing the N1
condition of Nekvinda, and then constructing examples to show that this condition
is still quite far from necessary. To understand the behavior of the maximal operator
locally, we pause to introduce the theory of MuckenhouptAp weights and weighted
norm inequalities. These ideas have, somewhat surprisingly, proved to be both an
important motivation and a useful tool for studying the variable Lebesgue spaces.
For completeness we have given a self-contained presentation of this theory. Using
these ideas we then consider a weaker local condition, introducing theK0 condition
of Kopaliani. This condition is necessary and sufficient for the maximal operator
to be bounded on Lp.�/.�/ when � is bounded; an important open question is to
find an analog of this condition to use at infinity. We conclude this chapter with a
discussion (without proof) of a necessary and sufficient condition, due to Diening,
for the maximal operator to be bounded. While not easy to apply in practice, it has
important theoretical implications.
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In Chap. 5 we study some other important operators from harmonic analysis.
We begin with the theory of convolution operators and approximate identities on
variable Lebesgue spaces. The fact that these spaces are not translation invariant
means that Young’s inequality fails to hold. However, if we assume sufficient
regularity on the exponent p.�/, then we prove that approximate identities converge
pointwise, in measure, and in norm. Throughout this chapter we express this
regularity in terms of boundedness properties of the maximal operator. To study
other operators, we extend to the variable Lebesgue spaces one of the most powerful
ideas in the theory of weighted norm inequalities: the Rubio de Francia theory
of extrapolation. Using this, we show that if an operator satisfies weighted norm
inequalities on the classical Lebesgue spaces, then it satisfies norm inequalities on
variable Lebesgue spaces, assuming some regularity of the exponent p.�/. We apply
extrapolation to study two operators in detail: singular integral operators and Riesz
potentials. These are important in applications and provide good models for using
extrapolation to study other operators. While we state the basic properties of these
operators that we use, we have chosen to omit these proofs and refer the reader to
any of a number of standard reference works.

Finally, in Chap. 6 we develop the basic theory of variable Sobolev spaces,
an essential tool in the study of the calculus of variations and partial differential
equations in the variable Lebesgue spaces. We first prove their basic function space
properties. We then consider the question of when smooth functions are dense in the
variable Sobolev space W 1;p.�/.�/. We prove the Meyers-Serrin theorem assuming
that p.�/ is regular; we also give an example to show that some degree of regularity
is required. As we did in Chap. 5, we state our regularity hypotheses in terms of
the boundedness properties of the maximal operator. We next prove generalizations
of the Poincaré inequality and the Sobolev embedding theorem to the variable
Lebesgue spaces.

Unlike Chap. 2, our intention in Chap. 6 was not to give a comprehensive
development of the theory of variable Sobolev spaces. Rather, we wanted to prove
some essential properties to demonstrate the application of the ideas and techniques
from the previous chapters. In particular, we deliberately omitted any discussion of
questions related to the regularity of the boundary of �.

We conclude every chapter with extensive references for the results in the body
of the chapter. We have attempted to make these notes as comprehensive as possible,
both to make clear the historical development of the field and to give proper credit
to the many people who have contributed to it. We have also included in the notes
discussions of additional topics to illustrate the many directions the field has evolved
and to refer readers to results we felt were important but decided not to include in
the text. In an appendix we have gathered together some open problems which we
believe are important for future research on the variable Lebesgue spaces.
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1.4 Prerequisites and Notation

Throughout this book we assume that the reader knows classical real analysis
through the Lebesgue integral and some of the basic facts from functional analysis
that are usually presented in a standard graduate analysis course. The books by
Brezis [37], Royden [301] or Rudin [305] provide more than adequate background.
In line with our aim of making this work accessible to students, we have generously
scattered references throughout the text, particularly in Chap. 2, for the classical
results we use.

Our treatment of the maximal operator in Chap. 3, weights and weighted norm
inequalities in Chap. 4, and convolution operators and Rubio de Francia extrap-
olation in Chap. 5 is almost completely self-contained; hopefully it will provide
a concise introduction for readers who are not familiar with these essential
tools of harmonic analysis. The most important exception, however, is in our
treatment of singular integral operators and Riesz potentials in Chap. 5. We state
the principal results we use but we do not include any proofs. These sections
will probably be more readily understood by readers who have had some prior
exposure to this material. For readers who need more information, we refer to the
books by Duoandikoetxea [96], Garcı́a-Cuerva and Rubio de Francia [140] and
Grafakos [143]. Similarly, in Chap. 6 we presume that the reader has some basic
familiarity with weak derivatives and the classical Sobolev space theory; the works
by Adams and Fournier [7], Maz’ja [260], Tartar [343] and Ziemer [363] contain
far more information than is required. A brief introduction can be found in Gilbarg
and Trudinger [142].

The following notation will be used throughout the text.
We will always use the convention that 0 � 1 D 0 and 1=1 D 0.
The dimension of the underlying space (i.e., Rn) will be denoted by n; the

variable n is never used as an index or for enumeration. Points x 2 R
n have their

coordinates denoted by superscripts: x D .x1; : : : ; xn/. The norm on R
n will be

denoted by j � j. For x 2 R
n and r > 0, Br.x/ will denote the open ball centered at

x. Given a ball B , 2B will denote the ball with the same center and twice the radius.
If Q � R

n is a cube, then `.Q/ will denote the length of each edge.
A set E � R

n will always be assumed to be measurable. GivenE ,E will denote
the closure of E and @E will denote the boundary of E: @E D E \ .Rn n E/. The
Lebesgue measure of E will be denoted by jEj, and 	E will be the characteristic
function of E:

	E.x/ D
(
1 x 2 E
0 x 62 E:

If E is the empty set, then 	E D 0.
Measurable functions are real-valued and defined up to sets of measure zero:

given two measurable functions f and g, we will write f D g if f .x/ D g.x/

almost everywhere. If f is a continuous function, the support of f , denoted
supp.f /, is the closure of the set fx 2 R

n W f .x/ ¤ 0g. If f is a measurable
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function, let A denote the union of all open sets B such that f .x/ D 0 for almost
every x 2 B . Then supp.f / is defined to be R

n n A. Given a measurable function
f , the sign of f , sgnf , is the function

sgnf .x/ D

8̂
<̂
ˆ̂:
1 f .x/ > 0

�1 f .x/ < 0

0 f .x/ D 0:

Given a measurable function f and a set E , if 0 < jEj < 1, define

fE D �
Z
E

f .y/ dy D 1

jEj
Z
E

f .y/ dy:

Given a set � � R
n, j�j > 0, (which will hereafter be referred to as a domain)

define the classical Lebesgue spaces Lp.�/ to be the Banach function spaces with
norm

kf kLp.�/ D

8̂
<̂
ˆ̂:

�Z
�

jf .x/jp dx
�1=p

1 � p < 1
ess sup
x2�

jf .x/j p D 1:

If there is no confusion about the domain, we will write kf kp .
Given p, 1 � p � 1, define the conjugate exponent p0 by

1

p
C 1

p0 D 1:

The symbol “0” will always be used to denote conjugate exponents and will never
be used for differentiation. For derivatives of functions of one variable we will use
the notationDf D df=dx.

Given an open set �, let C.�/ D C0.�/ denote the set of functions that are
continuous on �, and C.�/ the set of functions continuous up to the boundary.
For 1 � k � 1, let Ck.�/ denote the set of functions that have continuous
partial derivatives of all orders less than or equal to k. If k D 1, then C1.�/
is referred to as the set of smooth functions on �. For k � 0, let Ck

c .�/ be the set
of all functions f 2 Ck.�/ such that supp.f / is compact and contained in �. The
Schwartz functions are the functions f 2 C1.Rn/ such that f and all its partial
derivatives decay more quickly than jxj�k at infinity, for any k > 0.

For brevity we will omit the parentheses from expressions such as Œlog.x/�a and
instead write log.x/a.

Throughout the text the letters C and c will denote a constant whose value may
depend on certain (implicitly) specified parameters and which may change even
between lines in a single expression. To denote the dependence of the constant on
parametersX , Y , . . . , we will write C.X; Y; : : :/.



Chapter 2
Structure of Variable Lebesgue Spaces

In this chapter we give a precise definition of the variable Lebesgue spaces and
establish their structural properties as Banach function spaces. Throughout this
chapter we will generally assume that � is a Lebesgue measurable subset of R

n

with positive measure. Occasionally we will have to assume more, but we make it
explicit if we do.

2.1 Exponent Functions

We begin with a fundamental definition.

Definition 2.1. Given a set �, let P.�/ be the set of all Lebesgue measurable
functions p.�/ W � ! Œ1;1�. The elements of P.�/ are called exponent
functions or simply exponents. In order to distinguish between variable and constant
exponents, we will always denote exponent functions by p.�/.

Some examples of exponent functions on � D R include p.x/ D p for some
constant p, 1 � p � 1, or p.x/ D 2 C sin.x/. Exponent functions can be
unbounded: for instance, if � D .1;1/, let p.x/ D x, and if � D .0; 1/, let
p.x/ D 1=x. We will consider these last two frequently, as they will provide good
examples of the differences between bounded and unbounded exponent functions.

We define some notation to describe the range of exponent functions. Given
p.�/ 2 P.�/ and a set E � �, let

p�.E/ D ess inf
x2E p.x/; pC.E/ D ess sup

x2E
p.x/:

If the domain is clear we will simply write p� D p�.�/, pC D pC.�/. As is
the case for the classical Lebesgue spaces, we will encounter different behavior
depending on whether p.x/ D 1, 1 < p.x/ < 1, or p.x/ D 1. Therefore, we
define three canonical subsets of �:

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3 2, © Springer Basel 2013
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�p.�/1 D fx 2 � W p.x/ D 1g;
�
p.�/
1 D fx 2 � W p.x/ D 1g;

�
p.�/
� D fx 2 � W 1 < p.x/ < 1g:

Again, for simplicity we will omit the superscript p.�/ if there is no possibility of
confusion. Since p.�/ is a measurable function, these sets are only defined up to sets
of measure zero; however, in practice this will have no effect. Below, the value of
certain constants will depend on whether these sets have positive measure; if they
do we will use the fact that, for instance, k	

�
p.�/
1

k1 D 1.

Given p.�/, we define the conjugate exponent function p0.�/ by the formula

1

p.x/
C 1

p0.x/
D 1; x 2 �;

with the convention that 1=1 D 0. Since p.�/ is a function, the notation p0.�/ can
be mistaken for the derivative of p.�/, but we will never use the symbol “0” in this
sense.

The notation p0 will also be used to denote the conjugate of a constant exponent.
The operation of taking the supremum/infimum of an exponent does not commute
with forming the conjugate exponent. In fact, a straightforward computation shows
that �

p0.�/�C D �
p�
�0
;

�
p0.�/�� D �

pC
�0
:

For simplicity we will omit one set of parentheses and write the left-hand side of
each equality as p0.�/C and p0.�/�. We will always avoid ambiguous expressions
such as p0C.

Though the basic theory of variable Lebesgue spaces only requires that p.�/
be a measurable function, in many applications in subsequent chapters we will
often assume that p.�/ has some additional regularity. In particular, there are two
continuity conditions that are of such importance that we want to establish notation
for them.

Definition 2.2. Given � and a function r.�/ W � ! R, we say that r.�/ is locally
log-Hölder continuous, and denote this by r.�/ 2 LH0.�/, if there exists a constant
C0 such that for all x; y 2 �, jx � yj < 1=2,

jr.x/ � r.y/j � C0

� log.jx � yj/ :

We say that r.�/ is log-Hölder continuous at infinity, and denote this by r.�/ 2
LH1.�/, if there exist constants C1 and r1 such that for all x 2 �,

jr.x/ � r1j � C1
log.e C jxj/ :
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If r.�/ is log-Hölder continuous locally and at infinity, we will denote this by writing
r.�/ 2 LH.�/. If there is no confusion about the domain we will sometimes write
LH0, LH1 or LH .

In practice we will often assume that p.�/ or 1=p.�/ is contained in one of the
log-Hölder continuity classes. In the latter case, if p.�/ is unbounded at infinity we
let p1 D 1 and use the convention 1=p1 D 0.

The next result is an immediate consequence of Definition 2.2.

Proposition 2.3. Given a domain�:

1. If r.�/ 2 LH0.�/, then r.�/ is uniformly continuous and r.�/ 2 L1.E/ for every
bounded subset E � �.

2. If r.�/ 2 LH1.�/, then r.�/ 2 L1.�/.
3. If � is bounded and r.�/ 2 L1.�/, then r.�/ 2 LH1.�/, with a constant C1

depending on kr.�/k1, the diameter of �, and its distance from the origin.
4. The inclusion r.�/ 2 LH1.�/ is equivalent to the existence of a constantC such

that for all x; y 2 �, jyj � jxj,

jr.x/ � r.y/j � C

log.e C jxj/ :

5. If pC < 1, then p.�/ 2 LH0.�/ is equivalent to assuming r.�/ D 1=p.�/ 2
LH0.�/: in fact, given x; y 2 �,

ˇ̌
ˇ̌p.x/ � p.y/

.pC/2

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌ 1

p.x/
� 1

p.y/

ˇ̌
ˇ̌ �

ˇ̌
ˇ̌p.x/ � p.y/

.p�/2

ˇ̌
ˇ̌ :

Similarly, p.�/ 2 LH1.�/ if and only if r.�/ D 1=p.�/ 2 LH1.�/.

Given two domains e� � �, we clearly have that if p.�/ 2 LH0.�/, then
Qp.�/ D p.�/ˇ̌ Q� 2 LH0.e�/, and similarly for the class LH1. In applications, we

will be concerned with the converse: given an exponent function in LH.e�/, can it
be extended to a function in LH.�/? The answer is yes as the next result shows.

Lemma 2.4. Given a set� � R
n and p.�/ 2 P.�/ such that p.�/ 2 LH.�/, there

exists a function Qp.�/ 2 P.Rn/ such that:

1. Qp 2 LH ;
2. Qp.x/ D p.x/, x 2 �;
3. Qp� D p� and QpC D pC.

Remark 2.5. It follows from the proof below that if we only have that p.�/ 2
LH0.�/ or LH1.�/ we can extend it to a function in the same class on R

n.

Proof. Since p.�/ is bounded and uniformly continuous, by a well-known result it
extends to a continuous function on �; denote this extension by p.�/ as well. Then
it is immediate that p.�/ 2 LH.�/, p�.�/ D p�.�/, and p�.�/ D p�.�/.
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To extend p.�/ from � to all of R
n we first consider the case when � is

unbounded; the case when � is bounded is simpler and will be sketched below.
Define a new function r.�/ by r.x/ D p.x/�p1. Then r.�/ is still bounded (though
no longer necessarily positive) and r.�/ 2 LH.�/.

We will extend r.�/ to all of Rn. If we define !.t/ D 1= log.e=2t/, 0 < t � 1=2,
and !.t/ D 1 for t � 1=2, then a straightforward calculation shows that !.t/=t is
a decreasing function and !.2t/ � C !.t/. Further, since log.e=2t/ 	 log.1=t/,
0 < t < 1=2, and since r.�/ is bounded, jr.x/ � r.y/j � C!.jx � yj/ for all
x; y 2 �. Therefore, there exists a function Qr.�/ on R

n such that Qr.x/ D r.x/,
x 2 �, and such that Qr.�/ 2 LH0.R

n/, with a constant that depends only on p.�/
and the LH0 constant, and not on �. For a proof, see Stein [339, Corollary 2.2.3,
p. 175]. Briefly, and using the terminology of this reference, the function Qr.�/ is
defined as follows. Form the Whitney decomposition fQkg of Rn n� and let f��

k g
be a partition of unity subordinate to this decomposition. In each cube Qk, fix a
point pk 2 � such that dist.pk;Qk/ D dist.�;Qk/. Then for x 2 R

n n�,

Qr.x/ D
X
k

r.pk/�
�
k .x/:

It follows immediately from this definition that for all x 2 R
n, r� � Qr.x/ � rC.

However, Qr.�/ need not be in LH1, so we must modify it slightly. To do so we
need the following observation: if f1; f2 are functions such that jfi.x/ � fi .y/j �
C!.jx � yj/, x; ; y 2 R

n, i D 1; 2, then min.f1; f2/ and max.f1; f2/ satisfy the
same inequality. The proof of this observation consists of a number of very similar
cases. For instance, suppose min.f1.x/; f2.x// D f1.x/ and min.f1.y/; f2.y// D
f2.y/. Then

f1.x/ � f2.y/ � f2.x/ � f2.y/ � C!.jx � yj/;
f2.y/� f1.x/ � f1.y/� f1.x/ � C!.jx � yj/:

Hence,

j min.f1.x/; f2.x// � min.f1.y/; f2.y//j D jf1.x/ � f2.y/j � C!.jx � yj/:
It follows immediately from this observation that

s.x/ D max.min.Qr.x/; C1= log.e C jxj//;�C1= log.e C jxj//
is in LH.Rn/. Therefore, if we define

Qp.x/ D s.x/C p1;

then .1/–.3/ hold.
Finally, if � is bounded, we define r.x/ D p.x/ � pC and repeat the above

argument essentially without change. ut
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2.2 The Modular

Intuitively, given an exponent function p.�/ 2 P.�/, we want to define the variable
Lebesgue space Lp.�/.�/ as the set of all measurable functions f such that

Z
�

jf .x/jp.x/ dx < 1:

There are problems with this approach, the most obvious being that it does not
work when�1 has positive measure. To remedy them, we begin with the following
definition.

Definition 2.6. Given �, p.�/ 2 P.�/ and a Lebesgue measurable function f ,
define the modular functional (or simply the modular) associated with p.�/ by

�p.�/;�.f / D
Z
�n�1

jf .x/jp.x/ dx C kf kL1.�1/:

If f is unbounded on�1 or if f .�/p.�/ 62 L1.�n�1/, we define �p.�/;�.f / D C1.
When j�1j D 0, in particular when pC < 1, we let kf kL1.�1/ D 0; when
j� n �1j D 0, then �p.�/;�.f / D kf kL1.�1/. In situations where there is no
ambiguity we will simply write �p.�/.f / or �.f /.

We will use the modular to define the space Lp.�/.�/ in the next section. In
preparation, we give here its fundamental properties.

Proposition 2.7. Given � and p.�/ 2 P.�/:
1. For all f , �.f / � 0 and �.jf j/ D �.f /.
2. �.f / D 0 if and only if f .x/ D 0 for almost every x 2 �.
3. If �.f / < 1, then f .x/ < 1 for almost every x 2 �.
4. � is convex: given ˛; ˇ � 0, ˛ C ˇ D 1,

�. f̨ C ˇg/ � ˛�.f /C ˇ�.g/:

5. � is order preserving: if jf .x/j � jg.x/j a.e., then �.f / � �.g/.
6. � has the continuity property: if for someƒ > 0, �.f=ƒ/ < 1, then the function
� 7! �.f=�/ is continuous and decreasing on Œƒ;1/. Further, �.f=�/ ! 0 as
� ! 1.

An immediate consequence of the convexity of � is that if ˛ > 1, then ˛�.f / �
�. f̨ /, and if 0 < ˛ < 1, then �. f̨ / � ˛�.f /. We will often invoke this property
by referring to the convexity of the modular.

Proof. Property (1) is immediate from the definition of the modular, and Proper-
ties (2), (3) and (5) follow from the properties of the L1 and L1 norms.
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Property (4) follows since the L1 norm is convex and since for almost every
x 2 � n�1, the function t 7! tp.x/ is convex.

To prove (6), note that by Property (5), if � � ƒ, then �.f=�/ is a decreasing
function, and by the dominated convergence theorem (applied to the integral) it is
continuous and tends to 0 as � ! 1. ut
Remark 2.8. The modular does not satisfy the triangle inequality, i.e., �.f C g/ �
�.f /C�.g/. However, there is a substitute that is sometimes useful. For 1 � p < 1
and a; b � 0, .aCb/p � 2p�1.ap Cbp/. Therefore, for almost every x 2 �n�1,

jf .x/C g.x/jp.x/ � 2p.x/�1.jf .x/jp.x/ C jg.x/jp.x//I

in particular, if pC < 1,

�.f C g/ � 2pC�1��.f /C �.g/
�
:

We will refer to this as the modular triangle inequality.

2.3 The Space Lp.�/.�/

The most basic property of the classical Lebesgue space Lp is that it is a Banach
space: a normed vector space that is complete with respect to the norm. Here we
define Lp.�/.�/ and use the properties of the modular to show that it is a normed
vector space; we defer the proof that it is complete until Sect. 2.7, after we establish
the requisite convergence properties of the norm.

Definition 2.9. Given � and p.�/ 2 P.�/, define Lp.�/.�/ to be the set of
Lebesgue measurable functions f such that �.f=�/ < 1 for some � > 0. Define
L
p.�/
loc .�/ to be the set of measurable functions f such that f 2 Lp.�/.K/ for every

compact set K � �.

Remark 2.10. By Proposition 2.7, Property (3), if f 2 Lp.�/.�/, then f is finite
almost everywhere.

Since we are dealing with measurable functions, we will adopt the usual
convention that two functions are the same if they are equal almost everywhere;
in particular, we will say f 
 0 if f .x/ D 0 except on a set of measure 0.

In defining Lp.�/.�/ we do not restrict ourselves to a single value of �: for
instance, we do not take Lp.�/.�/ to be the set of all f such that �.f / < 1. We do
so in order to make the space homogeneous when pC.� n�1/ D 1.

Example 2.11. Let � D .1;1/, p.x/ D x, and f .x/ D 1. Then �.f / D 1, but
for all � > 1,

�.f=�/ D
Z 1

1

��x dx D 1

� log.�/
< 1:
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Similarly, if we let � D .0; 1/ and p.x/ D 1=x, and again let f .x/ D 1, then
�.f / < 1, but �.f=�/ D 1 for all � < 1.

However, this technicality is only necessary if p.�/ is unbounded: more precisely,
if pC.� n �1/ < 1, then Lp.�/.�/ coincides with the set of functions such that
�.f / is finite.

Proposition 2.12. Given � and p.�/ 2 P.�/, then the property that f 2 Lp.�/.�/
if and only if

�.f / D
Z
�n�1

jf .x/jp.x/ dx C kf kL1.�/ < 1

is equivalent to assuming that p� D 1 or pC.� n�1/ < 1.

Proof. We first assume that p� D 1 or pC.� n �1/<1. Clearly, if �.f /<1,
then f 2 Lp.�/.�/. Conversely, if f 2 Lp.�/.�/, then by Property (5) in
Proposition 2.7 we have that �.f=�/ < 1 for some � > 1. But then

�.f / D
Z
�n�1

� jf .x/j�
�

�p.x/
dxC�kf=�kL1.�1/ � �pC.�n�1/�.f=�/ < 1:

Now suppose that p� < 1 and pC.� n �1/ D 1. We will construct a
function f such that �.f / D 1 but f 2 Lp.�/.�/. By the definition of the essential
supremum, there exists a sequence of sets fEkg with finite measure such that:

1. Ek � � n�1,
2. EkC1 � Ek and jEk n EkC1j > 0,
3. jEkj ! 0,
4. If x 2 Ek , p.x/ � pk > k.

Define the function f by

f .x/ D
 1X
kD1

1

jEk n EkC1j	EknEkC1
.x/

!1=p.x/
:

Then for any � > 1,

�.f=�/ D
1X
kD1

�
Z
EknEkC1

��p.x/ dx �
1X
kD1

��k < 1;

and the same computation shows that �.f / D 1. ut
Remark 2.13. The construction in the second half of the proof of Proposition 2.12
will be used frequently to prove that there are essential differences among the
variable Lebesgue spaces that depend on whether pC.� n�1/ is finite or infinite.
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This ability to “pull” a constant out of the modular when pC < 1 is very useful,
and makes the study of variable Lebesgue spaces in this case much simpler. The
proof of Proposition 2.12 is easily modified to prove the following inequalities.

Proposition 2.14. Given � and p.�/ 2 P.�/, if pC.� n �1/ < 1, then for all
� � 1,

�.�f / � �pC.�n�1/�.f /:

Moreover, if pC < 1 and � � 1, then

�p��.f / � �.�f / � �pC�.f /;

and if 0 < � < 1, the reverse inequalities are true.

Theorem 2.15. Given � and p.�/ 2 P.�/, Lp.�/.�/ is a vector space.

Proof. Since the set of all Lebesgue measurable functions is itself a vector space,
and since 0 2 Lp.�/.�/, it will suffice to show that for all ˛; ˇ 2 R, not both 0,
if f; g 2 Lp.�/.�/, then f̨ C ˇg 2 Lp.�/.�/. By Property (5) in Proposition 2.7,
there exists � > 0 such that �.f=�/; �.g=�/ < 1. Therefore, by Properties (1), (3)
and (4) of the same proposition, if we let 
 D �j˛j C jˇj��, then

�

�
f̨ C ˇg




�
D �

� j f̨ C ˇgj



�
� �

� j˛j
j˛j C jˇj

jf j
�

C jˇj
j˛j C jˇj

jgj
�

�

� j˛j
j˛j C jˇj�.f=�/C jˇj

j˛j C jˇj�.g=�/ < 1:

ut
On the classical Lebesgue spaces, if 1 � p < 1, then the norm is gotten directly

from the modular:

kf kLp.�/ D
�Z

�

jf .x/jp dx
�1=p

:

Such a definition obviously fails since we cannot replace the constant exponent 1=p
outside the integral with the exponent function 1=p.�/. The solution is a more subtle
approach which is similar to that used to define the Luxemburg norm on Orlicz
spaces.

Definition 2.16. Given� and p.�/ 2 P.�/, if f is a measurable function, define

kf kLp.�/.�/ D inf
˚
� > 0 W �p.�/;�.f=�/ � 1

�
:

If the set on the right-hand side is empty we define kf kLp.�/.�/ D 1. If there is no
ambiguity over the domain�, we will often write kf kp.�/ instead of kf kLp.�/.�/.
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By Property (6) of Proposition 2.7, kf kLp.�/.�/ < 1 for all f 2 Lp.�/.�/;
equivalently, kf kLp.�/.�/ D 1 when f 62 Lp.�/.�/. When p.�/ D p, 1 � p � 1,
Definition 2.16 is equivalent to the classical norm on Lp.�/: if p < 1 and

Z
�

� jf .x/j
�

�p
dx D 1;

then � D kf kLp.�/; the same is true if p D 1.
Given two domains � and e�, if e� � � and p.�/ 2 P.�/, then Qp.�/ D p.�/ˇ̌ Q� 2

P.e�/ and it is immediate from the definition of the norm that for f 2 Lp.�/.�/,

kf kL Qp.�/. Q�/ D kf	 Q�kLp.�/.�/:

Hereafter we will implicitly make these restrictions without comment and simply
write kf kLp.�/. Q�/, etc. Conversely, given p.�/ 2 P.e�/ and f 2 Lp.�/.e�/, we can

extend both to � by defining f .x/ D 0 for x 2 � n e� and defining p.�/ arbitrarily
on� ne�. If we do so, then kf kLp.�/. Q�/ D kf kLp.�/.�/. Moreover, if p.�/ 2 LH.e�/,
by Lemma 2.4 we may assume that p.�/ 2 LH.�/ as well.

Theorem 2.17. Given � and p.�/ 2 P.�/, the function k � kLp.�/.�/ defines a norm
on Lp.�/.�/.

Proof. We will prove that k � kp.�/ has the following properties:

1. kf kp.�/ D 0 if and only if f 
 0;
2. (Homogeneity) for all ˛ 2 R, k f̨ kp.�/ D j˛jkf kp.�/;
3. (Triangle inequality) kf C gkp.�/ � kf kp.�/ C kgkp.�/.

If f 
 0, then �.f=�/ D 0 � 1 for all � > 0, and so kf kp.�/ D 0. Conversely,
if kf kp.�/ D 0, then for all � > 0,

1 � �.f=�/ D
Z
�n�1

� jf .x/j
�

�p.x/
dx C kf=�kL1.�1/:

We consider each term of the modular separately. It is immediate that we have
kf kL1.�1/ � �; hence, f .x/ D 0 for almost every x 2 �1. Similarly, if � < 1,
by Proposition 2.14 we have

1 � ��p�

Z
�n�1

jf .x/jp.x/ dx:

Therefore, kf .�/p.�/kL1.�n�1/ D 0, and so f .x/ D jf .x/jp.x/ D 0 for almost every
x 2 � n�1. Thus f 
 0 and we have proved (1).

To prove (2), note that if ˛ D 0, this follows from (1). Fix ˛ ¤ 0; then by a
change of variables,
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k f̨ kp.�/ D inf f� > 0 W �.j˛jf=�/ � 1g
D j˛j inf f�=j˛j > 0 W �.f=.�=j˛j// � 1g

D j˛j inf f
 > 0 W �.f=
// � 1g D j˛jkf kp.�/:

Finally, to prove (3), fix �f > kf kp.�/ and �g > kgkp.�/; then �.f=�f / � 1 and
�.g=�g/ � 1. Now let � D �f C �g. Then by Property (3) of Proposition 2.7,

�

�
f C g

�

�
D �

�
�f

�

f

�f
C �g

�

g

�g

�
� �f

�
�.f=�f /C �g

�
�.g=�g/ � 1:

Hence, kf C gkp.�/ � �f C �g . If we now take the infimum over all such �f and
�g, we get the desired inequality. ut

An immediate consequence of the order preserving property of the modular
(Property (6) of Proposition 2.7) is that the norm itself is order preserving: if
jf .x/j � jg.x/j almost everywhere, then kf kp.�/ � kgkp.�/.

Another elementary but useful property of the classical Lebesgue norm is that it
is homogeneous in the exponent: more precisely, for 1 < s < 1, kf kssp D kjf jskp .
This property extends to variable Lebesgue spaces.

Proposition 2.18. Given � and p.�/ 2 P.�/ such that j�1j D 0, then for all s,
1=p� � s < 1,

kjf jskp.�/ D kf kssp.�/:

Proof. This follows at once from the definition of the norm: since j�1j D 0, if we
let 
 D �1=s ,

kjf jskp.�/ D inf

(
� > 0 W

Z
�

� jf .x/js
�

�p.x/
dx � 1

)

D inf

(

s > 0 W

Z
�

� jf .x/j



�sp.x/
dx � 1

)
D kf kssp.�/:

ut
Example 2.19. If j� n �1j D 0, then kf kp.�/ D kf k1 and Proposition 2.18 is
still true. However, if j�1j > 0 but p.�/ is not identically infinite, then it need not
hold. To see this, let � D Œ�1; 1�, and define

p.x/ D
(
1 �1 � x � 0

1 0 < x � 1;
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and

f .x/ D
(
1 �1 � x � 0

2 0 < x � 1:

Then

�p.�/.f 2=�/ D
Z 0

�1
��1 dx C 22��1 D 5��1;

and so kf 2kp.�/ D 5. On the other hand, a similar computation shows that
�2p.�/.f =�/ D ��2C2��1; thus, if we solve the quadratic equation��2C2��1�1 D
0, we get that kf k22p.�/ D .

p
2 � 1/�2 ¤ 5.

We conclude this section by considering more closely the relationship between
the norm and the modular. Though the norm is defined as the infimum of the set
f� W �.f=�/ � 1g, there may be an explicit value � for which the infimum is
attained. For instance, in Example 2.11 we see that if � D .1;1/, p.x/ D x and
f 
 1, then the infimum of �.f=�/ is attained when � is such that � log.�/ D 1.
In fact, if f is non-trivial, then the infimum is always attained. (If f 
 0, then
clearly the infimum is zero and is not attained.) In Proposition 2.21 below we will
prove that �.f=kf kp.�// � 1, so � D kf kp.�/ is always an element of the set
f� W �.f=�/ � 1g. However, even though the infimum is attained it is possible that
�.f=kf kp.�// < 1.

Example 2.20. Let � D .1;1/ and p.x/ D x. Then there exists a function f 2
Lp.�/.�/ such that �.f=kf kp.�// < 1.

Proof. We will construct a function f such that �.f / < 1 but for any � < 1,
�.f=�/ D 1. Then kf kp.�/ D 1 and �.f=kf kp.�// D �.f / < 1.

For k � 2 let Ik D Œk; k C k�2� and define the function f by

f .x/ D
1X
kD2

	Ik .x/:

Then

�.f / D
1X
kD2

1

k2
D �2

6
� 1 < 1:

On the other hand, for any � < 1,

�.f=�/ D
1X
kD2

Z kCk�2

k

��x dx �
1X
kD2

1

�kk2
D 1:

ut
This example can be adapted to any space such that pC.� n �1/ D 1;

otherwise, equality must hold.
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Proposition 2.21. Given � and p.�/ 2 P.�/, if f 2 Lp.�/.�/ and kf kp.�/ > 0,
then �.f=kf kp.�// � 1. Further, �.f=kf kp.�// D 1 for all non-trivial f 2 Lp.�/.�/
if and only if pC.� n�1/ < 1.

Proof. Fix a decreasing sequence f�kg such that �k ! kf kp.�/. Then by Fatou’s
lemma and the definition of the modular,

�.f=kf kp.�// � lim inf
k!1 �.f=�k/ � 1:

Now suppose that pC.� n �1/ < 1 but assume to the contrary that
�.f=kf kp.�// < 1. Then for all �, 0 < � < kf kp.�/, by Proposition 2.14,

�.f=�/ D �

�kf kp.�/
�

f

kf kp.�/
�

�
�kf kp.�/

�

�pC.�n�1/

�

�
f

kf kp.�/
�
:

Therefore, we can find � sufficiently close to kf kp.�/ such that �.f=�/ < 1. But by
the definition of the norm, we must have �.f=�/ � 1. From this contradiction we
see that equality holds.

Now suppose that pC.� n �1/ D 1. Form the sets fEkg as in the proof of
Proposition 2.12 and define the function f by

f .x/ D
 1X
kD2

k�2

jEk n EkC1j	EknEkC1
.x/

!1=p.x/
:

Then for all � < 1,

�.f=�/ D
1X
kD2

k�2�
Z
EknEkC1

��p.x/ dx �
1X
kD2

k�2��k D 1:

On the other hand, essentially the same computation shows that

�.f / D
1X
kD2

k�2 < 1:

Therefore, f 2 Lp.�/.�/ and kf kp.�/ D 1, but �.f=kf kp.�// < 1. ut
Corollary 2.22. Fix � and p.�/ 2 P.�/. If kf kp.�/ � 1, then �.f / � kf kp.�/; if
kf kp.�/ > 1, then �.f / � kf kp.�/.
Proof. If kf kp.�/ D 0, then f 
 0 and so �.f / D 0. If 0 < kf kp.�/ � 1, then by
the convexity of the modular (Property (4) of Proposition 2.7) and Proposition 2.21,

�.f / D �.kf kp.�/ f =kf kp.�// � kf kp.�/�.f=kf kp.�// � kf kp.�/:
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If kf kp.�/ > 1, then �.f / > 1: for if �.f / � 1, then by the definition of the norm
we would have kf kp.�/ � 1. But then we have that

�
�
f=�.f /

� D
Z
�n�1

� jf .x/j
�.f /

�p.x/
dx C �.f /�1kf kL1.�1/

�
Z
�n�1

jf .x/jp.x/�.f /�1 dx C �.f /�1kf kL1.�1/ D 1:

It follows that kf kp.�/ � �.f /. ut
The previous result can be strengthened as follows.

Corollary 2.23. Given � and p.�/ 2 P.�/, suppose j�1j D 0. If kf kp.�/ > 1,
then

�.f /1=pC � kf kp.�/ � �.f /1=p� :

If 0 < kf kp.�/ � 1, then

�.f /1=p� � kf kp.�/ � �.f /1=pC :

If p.�/ is constant, Corollary 2.23 reduces to the identity

kf kp D
�Z

�

jf .x/jp dx
�1=p

:

The first inequality makes sense if pC D 1 and �.f / D 1 provided we define
10 D 1. The second inequality makes sense if kf kp.�/ D 0, since in this case
�.f / D 0; if pC D 1, then we need to interpret 00 as 1.

Proof. We prove the first pair of inequalities; the proof of the second is essentially
the same. If pC < 1, by Proposition 2.14,

�.f /

kf kpC

p.�/
� �

�
f

kf kp.�/
�

� �.f /

kf kp�

p.�/
:

By Proposition 2.21, �.f=kf kp.�// D 1, so the desired result follows.
If pC D 1, then �.f /1=pC D 1, so we only need to prove the right-hand

inequality. By Corollary 2.22, �.f / > 1; hence, since j�1j D 0,

�
�
f=�.f /1=p�

� D
Z
�

� jf .x/j
�.f /1=p�

�p.x/
dx �

Z
�

jf .x/jp.x/�.f /�1 dx D 1:

It follows that kf kp.�/ � �.f /1=p� . ut
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Remark 2.24. If j�1j > 0, then Corollary 2.23 does not hold. Fix p.�/ such that
p� > 1 and j�1j > 0, and take f 2 Lp.�/.�/ such that supp.f / � �1 and
kf kp.�/ D kf kL1.�1/ D �.f / ¤ 1. Then neither inequality comparing kf kp.�/ to
�.f /1=p� can hold in general.

As an application of the above results we will give an equivalent norm on
Lp.�/.�/ that is usually referred to as the Amemiya norm.

Proposition 2.25. Given � and p.�/ 2 P.�/, define

kf kAp.�/ D inff� > 0 W �C ��p.�/.f =�/g:

Then for all f 2 Lp.�/.�/,
kf kp.�/ � kf kAp.�/ � 2kf kp.�/:

Proof. Since both k � kp.�/ and k � kAp.�/ are homogeneous, it will suffice to prove that
if kf kp.�/ D 1, then

1 � kf kAp.�/ � 2:

The second inequality is immediate: by the definition and Corollary 2.22,

kf kAp.�/ � 1C �.f / � 1C kf kp.�/ D 2:

To prove the first inequality, note that if � � 1, then

�C ��.f=�/ � � � 1:

On the other hand, if 0 < � < 1, then arguing as in the proof of Proposition 2.14,

�C ��.f=�/ � �1�p�

Z
�n�1

jf .x/j dx C kf kL1.�1/ � �.f / D 1:

Therefore, if we take the infimum over all � > 0 we get the desired inequality. ut

2.4 Hölder’s Inequality and the Associate Norm

In this section we show that the variable Lebesgue space norm satisfies a gener-
alization of Hölder’s inequality, and then use this to define an equivalent norm,
the associate norm, on Lp.�/.�/. The classical Hölder’s inequality is that for all p,
1 � p � 1, given f 2 Lp.�/ and g 2 Lp0

.�/, then fg 2 L1.�/ and
Z
�

jf .x/g.x/j dx � kf kpkgkp0 :

This inequality is true for variable exponents with a constant on the right-hand side.
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Theorem 2.26. Given � and p.�/ 2 P.�/, for all f 2 Lp.�/.�/ and g 2
Lp

0.�/.�/, fg 2 L1.�/ and

Z
�

jf .x/g.x/j dx � Kp.�/kf kp.�/kgkp0.�/;

where

Kp.�/ D
�
1

p�
� 1

pC
C 1

�
k	��

k1 C k	�1
k1 C k	�1k1:

Remark 2.27. Each of the last three terms in the definition of Kp.�/ is equal to 0
or 1, and at least one of them must equal 1. Therefore, if p.�/ is not constant, 1 <
Kp.�/ � 4.

Proof. If kf kp.�/ D 0 or kgkp0.�/ D 0, then fg 
 0 so there is nothing to prove.
Therefore, we may assume that kf kp.�/; kgkp0.�/ > 0; moreover, by homogeneity
we may assume kf kp.�/ D kgkp0.�/ D 1.

We consider the integral of jfgj on the disjoint sets�1,�1 and��. If x 2 �1,
then p.x/ D 1 and p0.x/ D 1, so

Z
�1

jf .x/g.x/j dx � kf	�1
k1kg	�1

k1

D kf	�1
kp.�/kg	�1

kp0.�/ � kf kp.�/kgkp0.�/ D 1:

Similarly, if we reverse the roles of p.�/ and p0.�/, we have that

Z
�1

jf .x/g.x/j dx � 1:

To estimate the integral on�� we use Young’s inequality:

Z
��

jf .x/g.x/j dx

�
Z
��

1

p.x/
jf .x/jp.x/ C 1

p0.x/
jg.x/jp0.x/ dx

� 1

p�
�p.�/.f /C 1

p0.�/�
�p0.�/.g/:

Since
1

p0.�/�
D 1

.pC/0
D 1 � 1

pC
;
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and by Proposition 2.21, �p.�/.f /; �p0.�/.g/ � 1, we have that

Z
��

jf .x/g.x/j dx � 1

p�
C 1 � 1

pC
:

Combining the above terms, and using the fact that each is needed precisely when
the L1 norm of the corresponding characteristic function equals 1, we have that

Z
�

jf .x/g.x/j dx

�
��

1

p�
� 1

pC
C 1

�
k	��

k1 C k	�1
k1 C k	�1k1

�
kf kp.�/kgkp0.�/;

which is the desired inequality. ut
In the classical Lebesgue case, an immediate consequence of Hölder’s inequality

is that for p; q; r such that 1 � p; q; r � 1, and r�1 D p�1Cq�1, if f 2 Lp.�/
and g 2 Lq.�/, then fg 2 Lr.�/ and

kfgkr � kf kpkgkq :

The same result holds in variable Lebesgue spaces; the proof again depends on
Hölder’s inequality, but is somewhat more complicated.

Corollary 2.28. Given � and exponent functions r.�/; q.�/ 2 P.�/ define p.�/ 2
P.�/ by

1

p.x/
D 1

q.x/
C 1

r.x/
:

Then there exists a constant K such that for all f 2 Lq.�/.�/ and g 2 Lr.�/.�/,
fg 2 Lp.�/.�/ and

kfgkp.�/ � Kkf kq.�/kgkr.�/:
Proof. Fix p.�/; q.�/; r.�/ as in the statement of the theorem, and take f 2 Lq.�/.�/
and g 2 Lr.�/.�/. If kf kq.�/ D 0 or if kgkr.�/ D 0, then fg 
 0 so there is nothing
to prove. Therefore, we may assume that these quantities are positive; further, by
homogeneity we may assume that kf kq.�/ D kgkr.�/ D 1.

By the definition of p.�/, �p.�/1 D �
q.�/1 \ �

r.�/1 . Therefore, we can define the
exponent function s.�/ 2 P.� n�p.�/1 / by

s.x/ D

8̂
<̂
ˆ̂:

q.x/

p.x/
x 62 �q.�/1 [�

r.�/1
1 x 2 �r.�/1 n�q.�/1
1 x 2 �q.�/1 n�r.�/1 :
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Suppose for the moment that

jf .�/jp.�/ 2 Ls.�/.� n�p.�/1 / and jg.�/jp.�/ 2 Ls0.�/.� n�p.�/1 /; (2.1)

and kjf .�/jp.�/k
Ls.�/ .�n�p.�/

1
/
; kjg.�/jp.�/k

Ls
0.�/.�n�p.�/

1
/

� 1. Then by the generalized
Hölder’s inequality (Theorem 2.26),

�p.�/.fg/ D
Z
�n�p.�/1

jf .x/jp.x/jg.x/jp.x/ dx C kfgk
L1.�

p.�/
1
/

� Ks.�/kjf .�/jp.�/k
Ls.�/ .�n�p.�/1 /

kjg.�/jp.�/k
Ls

0.�/.�n�p.�/1 /

C kf k
L1.�

q.�/
1
/
kgk

L1.�
r.�/
1
/

� Ks.�/ C kf kq.�/kgkr.�/
D Ks.�/ C 1:

Then by the convexity of the modular (Property (4) of Proposition 2.7) fg 2
Lp.�/.�/ and

kfgkp.�/ � Ks.�/ C 1 D .Ks.�/ C 1/kf kq.�/kgkr.�/:

Therefore, to complete the proof we need to show (2.1) and estimate the norms.
We first consider jf .�/jp.�/. Since kf kq.�/ D 1, by Corollary 2.22, kf k

L1.�
q.�/
1 /

�
�q.�/.f / � 1. Further, �s.�/1 � �

q.�/1 and � n �s.�/1 � � n �q.�/1 , and on �s.�/
1 ,

p.x/ D q.x/ < 1. Hence,

�s.�/.f .�/p.�/	�n�p.�/1

/ �
Z
�n�s.�/1

jf .x/jp.x/s.x/ dx C kjf .�/jp.�/kL1.�1

s.�//

�
Z
�n�q.�/1

jf .x/jq.x/ dx C kjf .�/jp.�/kL1.�1

q.�//

�
Z
�n�q.�/1

jf .x/jq.x/ dx C kf kL1.�1

q.�//

� 1:

Therefore, by the definition of the norm, kjf .�/jp.�/k
Ls.�/ .�n�p.�/1 /

� 1. The same

argument, with s.�/ replaced by s0.�/ and q.�/ replaced by r.�/ gives the correspond-
ing bound for jg.�/jp.�/. This completes the proof. ut
Remark 2.29. It follows from the proof that we can takeK D Ks.�/C1; by an abuse
of notation we can write this as Kq.�/=p.�/ C 1.

As a consequence of Corollary 2.28 we can generalize Theorem 2.26 to three or
more exponents.
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Corollary 2.30. Given �, suppose p1.�/; p2.�/; : : : ; pk.�/ 2 P.�/ is a collection
of exponents that satisfy

kX
iD1

1

pi .x/
D 1; x 2 �:

Then there exists a constantC , depending on the pi , such that for all fi 2 Lpi .�/.�/,
1 � i � k,

Z
�

jf1.x/f2.x/ � � �fk.x/j dx � Ckf1kp1.�/kf2kp2.�/ � � � kfkkpk.�/:

Proof. We prove this by induction. When k D 2, this is just Theorem 2.26. Now
suppose that for some k � 2 the inequality holds; we will prove it true for k C 1

exponents. Given exponents p1.�/; : : : ; pkC1.�/, define r.�/ by

1

r.x/
D 1

pk.x/
C 1

pkC1.x/
:

Fix functions fi 2 Lpi .�/.�/; then by Corollary 2.28, fkfkC1 2 Lr.�/.�/ and

kfkkpk.�/kfkC1kpkC1.�/ � ckfkfkC1kr.�/:

Therefore, by our induction hypothesis applied to p1.�/; : : : ; pk�1.�/; r.�/,

kf1kp1.�/kf2kp2.�/ � � � kfkC1kpkC1.�/
� ckf1kp1.�/kf2kp2.�/ � � � kfk�1kpk�1.�/kfkfkC1kr.�/

� c

Z
�

jf1.x/ � � �fkC1.x/j dx:
ut

In the classical Lebesgue space Lp.�/, 1 � p � 1, the norm can be computed
using the identity

kf kp D sup
Z
�

f .x/g.x/ dx;

where the supremum is taken over all g 2 Lp0

.�/ with kgkp0 � 1. Indeed, g can be
taken from any dense subset of Lp

0

.�/—for example, Cc.�/ if p > 1. A slightly
weaker analog of this equality is true for variable Lebesgue spaces.

Definition 2.31. Given � and p.�/ 2 P.�/, and given a measurable function f ,
define

kf k0
p.�/ D sup

Z
�

f .x/g.x/ dx; (2.2)

where the supremum is taken over all g 2 Lp0.�/.�/ with kgkp0.�/ � 1.
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Temporarily denote by Mp.�/.�/ the set of all measurable functions f such that
kf k0

p.�/ < 1.

Proposition 2.32. Given � and p.�/ 2 P.�/, the set Mp.�/.�/ is a normed vector
space with respect to the norm k � k0

p.�/. Furthermore, the norm is order preserving:

given f; g 2 Mp.�/.�/ such that jf j � jgj, then kf k0
p.�/ � kgk0

p.�/.

Proof. It is immediate that Mp.�/.�/ is a vector space. The fact that k � k0
p.�/

is an order preserving norm is a consequence of the properties of integrals and
supremums and the following equivalent characterization of k � k0

p.�/. First note that
it is immediate from this definition that for all measurable functions f ,

kf k0
p.�/ � sup

kgkp0.�/�1

ˇ̌
ˇ̌
Z
�

f .x/g.x/ dx

ˇ̌
ˇ̌ � sup

kgkp0.�/�1

Z
�

jf .x/g.x/j dx;

but in fact all of these are equal. To see this, it suffices to note that for any g 2
Lp

0.�/.�/, kgkp0.�/ � 1, jf .x/g.x/j D f .x/h.x/, where h.x/ D sgnf .x/jg.x/j
and khkp0.�/ � kgkp0.�/ � 1; hence,

Z
�

jf .x/g.x/j dx D
Z
�

f .x/h.x/ dx � kf k0
p.�/:

ut
Remark 2.33. As a consequence of the proof of Proposition 2.32 we get another
version of Hölder’s inequality:

Z
�

jf .x/g.x/j dx � kf kp.�/kgk0
p0.�/:

In the next result we show that Mp.�/.�/ D Lp.�/.�/ and that the norms k � kp.�/
and k � k0

p.�/ are equivalent. We will refer to the norm k � k0
p.�/ as the associate norm

on Lp.�/.�/.

Theorem 2.34. Given �, p.�/ 2 P.�/, and a measurable f , then f 2 Lp.�/.�/ if
and only if f 2 Mp.�/.�/; furthermore,

kp.�/kf kp.�/ � kf k0
p.�/ � Kp.�/kf kp.�/;

where

Kp.�/ D
�
1

p�
� 1

pC
C 1

�
k	��

k1 C k	�1
k1 C k	�1k1;

1

kp.�/
D k	�1

k1 C k	�1k1 C k	��
k1:
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Remark 2.35. For every variable Lebesgue space we have thatKp.�/ � 4 and kp.�/ �
1=3.

To motivate the proof of Theorem 2.34, recall the proof of (2.2) if 1 < p < 1.
By Hölder’s inequality, kf k0

p � kf kp . To prove the reverse inequality, let

g.x/ D
� jf .x/j

kf kp
�p=p0

sgnf .x/:

Then kgkp0 D 1, and Z
�

f .x/g.x/ dx D kf kp;

and so in fact the supremum is attained.
Our proof will be based on a similar but more complicated function g; first we

need to prove a lemma.

Lemma 2.36. Given � and p.�/ 2 P.�/, if kf	��
k0
p.�/ � 1 and �.f	��

/ < 1,
then �.f	��

/ � 1.

Proof. Suppose to the contrary that �.f	��
/ > 1. Then by the continuity of the

modular (Proposition 2.7, (6)) there exists � > 1 such that �.f	��
=�/ D 1. Let

g.x/ D
� jf .x/j

�

�p.x/�1
sgnf .x/	��

.x/:

Then �p0.�/.g/ D �p.�/.f	��
=�/ D 1, so kgkp0.�/ � 1. Therefore, by the definition

of the associate norm,

kf	��
k0
p.�/ �

Z
�

f .x/	��
.x/ g.x/ dx D �

Z
��

� jf .x/j
�

�p.x/
dx D ��.f	��

=�/>1:

This contradicts our hypothesis on f , so the desired inequality holds. ut
Proof of Theorem 2.34. One implication is immediate: given f 2 Lp.�/.�/, by
Hölder’s inequality for variable Lebesgue spaces (Theorem 2.26),

kf k0
p.�/ � Kp.�/kf kp.�/:

To prove the converse, we will assume that

j�p.�/1 j; j�p.�/
1 j; j�p.�/� j > 0:

If any of these sets has measure 0, then the proof can be readily adapted by omitting
the terms associated with them. Further, by the definition of the norms we only have
to prove this for non-negative functions f .
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We will prove that if kf k0
p.�/ � 1 and �p.�/.f	��

/ < 1, then

�p.�/.kp.�/f / � 1: (2.3)

Given this, the desired inequality follows by an approximation argument. Fix any
non-negative f 2 Mp.�/.�/. By homogeneity we may assume that kf k0

p.�/ D 1.
For each k � 1, define the sets

Ek D Bk.0/\ �
� n�� [ fx 2 �� W p.x/ < kg�;

and define the functions fk D min.f; k/	Ek . Then fk � f , so by Proposition 2.32,
kfkk0

p.�/ � kf k0
p.�/ D 1. Furthermore, the sequence ffkg increases to f pointwise.

Finally, �.fk	��
/ < 1, and so we can apply (2.3) with f replaced by fk .

Therefore, by Fatou’s lemma on the classical Lebesgue spaces and (2.3),

�p.�/.kp.�/f =kf k0
p.�// D �p.�/.kp.�/f / � lim inf

k!1 �p.�/.kp.�/fk/ � 1:

Thus, we have that
kf kp.�/ � k�1

p.�/kf k0
p.�/:

To complete the proof, fix f with kf k0
p.�/ � 1 and �.f	��

/ < 1; we will show
that (2.3) holds. First note that by Proposition 2.32, kf	

�
p.�/
�

k0
p.�/ � 1. Now fix �,

0 < � < 1; then there exists a set E� � �
p.�/1 such that 0 < jE�j < 1, and for each

x 2 E�,
jf .x/j � .1 � �/kf k

L1.�
p.�/
1
/
:

Now define the function g� by

g�.x/ D

8̂
<̂
ˆ̂:
kp.�/jf .x/jp.x/�1 sgnf .x/ x 2 �p.�/� D �

p0.�/� ;

kp.�/ sgnf .x/ x 2 �p.�/
1 D �

p0.�/1 ;

kp.�/jE�j�1	E� .x/ sgnf .x/ x 2 �p.�/1 D �
p0.�/
1 :

We claim that �p0.�/.g�/ � 1, so kg�kp0.�/ � 1. To see this, note that

�p0.�/.g�=kp.�//

�
Z
�
p0.�/
�

jf .x/jp.x/ dx C k sgnf k
L1.�

p0.�/
1 /

C jE�j�1
Z
�
p0.�/
1

	E� .x/ dx

D
Z
�
p.�/
�

jf .x/jp.x/ dx C k sgn f k
L1.�

p.�/
1 /

C jE�j�1
Z
�
p.�/
1

	E� .x/ dx:

By Lemma 2.36, the first term on the right-hand side is dominated by 1; the second
term equals 0 or 1, and the third term always equals 1. Therefore,

�p0.�/.g�=kp.�// � k	
�
p.�/
�

k1 C k	
�
p.�/
1

k1 C k	
�
p.�/
1

k1 D 1

kp.�/
:
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Since kp.�/ � 1, by the convexity of the modular (Proposition 2.7),

�p0.�/.g�/ � kp.�/�p0.�/.g�=kp.�// � 1;

which is what we claimed to be true.
Furthermore, we have that
Z
�

f .x/g�.x/ dx

D kp.�/
Z
�
p.�/
�

jf .x/jp.x/ dx C kp.�/
Z
�
p.�/
1

jf .x/j dx C kp.�/�
Z
E�

jf .x/j dx

� kp.�/
Z
�n�1

jf .x/jp.x/ dx C .1 � �/kp.�/kf kL1.�1/

� .1 � �/kp.�/�p.�/.f /:

Therefore, by the definition of the associate norm, since kg�kp0.�/ � 1,

1 � kf k0
p.�/ �

Z
�

f .x/g�.x/ dx � .1 � �/kp.�/�p.�/.f /:

Since � > 0 was arbitrary, again by the convexity of the modular we have that

1 � kp.�/�p.�/.f / � �p.�/.kp.�/f /:

ut
In the notation introduced above, given an exponent p.�/, the Banach space

Mp0.�/ of measurable functions f such that

kf k0
p0.�/ D sup

�Z
�

f .x/g.x/ dx; g 2 Lp.�/.�/; kgkp.�/ � 1

�
< 1;

is called the associate space of Lp.�/.�/. As an immediate consequence of Theo-
rem 2.34 we have the following result.

Proposition 2.37. Given � and p.�/ 2 P.�/, the associate space of Lp.�/.�/ is
equal to Lp

0.�/.�/, and k � kp0.�/ and k � k0
p0.�/ are equivalent norms.

Finally, as a corollary to Theorem 2.34 we prove a version of Minkowski’s
integral inequality for variable Lebesgue spaces.

Corollary 2.38. Given � and p.�/ 2 P.�/, let f W � �� ! R be a measurable
function (with respect to product measure) such that for almost every y 2 �,
f .�; y/ 2 Lp.�/.�/. Then

				
Z
�

f .�; y/ dy
				
p.�/

� k�1
p.�/Kp.�/

Z
�

kf .�; y/kp.�/ dy: (2.4)
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Proof. If the right-hand side of (2.4) is infinite, then there is nothing to prove, so we
may assume that this integral is finite. Define the function

g.x/ D
Z
�

f .x; y/ dy;

and take any h 2 Lp
0.�/.�/, khkp0.�/ � 1. Then by Fubini’s theorem (see

Royden [301]) and Hölder’s inequality on the variable Lebesgue spaces (Theo-
rem 2.26),

Z
�

jg.x/h.x/j dx �
Z
�

Z
�

jf .x; y/j dy jh.x/j dx

D
Z
�

Z
�

jf .x; y/h.x/j dx dy

� Kp.�/
Z
�

kf .�; y/kp.�/khkp0.�/ dy

� Kp.�/
Z
�

kf .�; y/kp.�/ dy:

Therefore, we have that

kgk0
p.�/ � Kp.�/

Z
�

kf .�; y/kp.�/ dy;

and inequality (2.4) follows by Theorem 2.34. ut

2.5 Embedding Theorems

In this section we consider the embeddings of classical and variable Lebesgue
spaces into one another. We begin by showing that every function in a variable
Lebesgue space is locally integrable. To do so we prove a simple but useful lemma.

Lemma 2.39. Given � and p.�/ 2 P.�/, if E � � is such that jEj < 1, then
	E 2 Lp.�/.�/ and k	Ekp.�/ � jEj C 1.

Proof. Fix � D jEj C 1. Then

�.	E=�/ D
Z
En�1

��p.x/ dx C ��1k	E\�1
k1

� ��p� jEj C ��1: � ��1.jEj C 1/ D 1:

By the definition of the norm we get the desired result. ut
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Remark 2.40. If j�1j D 0, then by Corollary 2.23 we get a sharper bound that
depends on E and p.�/:

k	Ekp.�/ � max
�jEj1=p� ; jEj1=pC

�
:

Proposition 2.41. Given � and p.�/ 2 P.�/, if f 2 Lp.�/.�/, then f is locally
integrable.

Proof. Let E � � be a set of finite measure. Then by the generalized Hölder’s
inequality (Theorem 2.26) and Lemma 2.39,

Z
E

jf .x/j dx � Ckf kp.�/k	Ekp0.�/ < 1:

ut
We now consider the embedding of L1.�/ into Lp.�/.�/. It follows from the

proof of Lemma 2.39 that if j�n�1j < 1, then	� 2 Lp.�/.�/, which immediately
implies that L1.�/ � Lp.�/.�/. However, unlike in the case of classical Lebesgue
spaces, this embedding can hold even if j� n�1j D 1.

Example 2.42. Let � D .1;1/ and p.x/ D x. By Example 2.11, 1 2 Lp.�/.�/,
and so if f 2 L1.�/,

kf kp.�/ � kf k1k1kp.�/ < 1:

More generally, we have the following characterization of when this embedding
holds.

Proposition 2.43. Given � and p.�/ 2 P.�/, L1.�/ � Lp.�/.�/ if and only if
1 2 Lp.�/.�/, which in turn is true if and only if for some � > 1,

Z
�n�1

��p.x/ dx < 1: (2.5)

In particular, the embedding holds if j�j < 1 or if 1=p.�/ 2 LH1.�/ and
p.x/ ! 1 as jxj ! 1.

Proof. We repeat the above argument: L1.�/ � Lp.�/.�/ if and only if 1 2
Lp.�/.�/, and by the definition of Lp.�/.�/ and Proposition 2.7 this is true if and
only if there exists � > 1 such that

�.1=�/ D
Z
�n�1

��p.x/ dx C ��1k1kL1.�1/ < 1:

This in turn is equivalent to (2.5).
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If j�j < 1, then the integral in (2.5) is clearly dominated by j�j. If 1=p.�/ 2
LH1 and p.x/ ! 1 as jxj ! 1, then we have that

1

p.x/
� C1

log.e C jxj/ :

Therefore, for � > 1 sufficiently large,

Z
�n�1

��p.x/ dx �
Z
�n�1

��C�1
1

log.eCjxj/ dx

�
Z
�n�1

.e C jxj/�C�1
1

log.�/ dx < 1:

ut
The smoothness condition LH1 in Proposition 2.43 is in some sense sharp, as

the next example shows.

Example 2.44. Let � D .e;1/, and let p.x/ D �.x/ log.x/, where � is a
decreasing function such that �.x/ ! 0 as x ! 1, and p.�/ is increasing and
p.x/ ! 1 as x ! 1. Then L1.�/ is not contained in Lp.�/.�/.

A simple example of such a function � is �.x/ 	 log log.x/�1.

Proof. We will show that for any � > 1,

Z 1

e

��p.x/ dx D 1:

Fix � > 1; since �.x/ decreases to 0, there exists N > 0 such that if k � N , then
log.�/�.ekC1/ < 1=2. Then, since p.�/ is increasing,

Z 1

e

��p.x/ dx �
X
k�N

Z ekC1

ek
��p.x/ dx �

X
k�N

ek � ���.ekC1/ log.ekC1/

�
X
k�N

eke��.ekC1/ log.�/.kC1/ �
X
k�N

eke� 1
2 .kC1/ D 1:

ut
As a consequence of Proposition 2.43 we can completely characterize the

exponents p.�/ and q.�/ such that Lq.�/.�/ � Lp.�/.�/. Unlike in the case of
classical Lebesgue spaces, this embedding is possible even when j�j D 1.

Theorem 2.45. Given � and p.�/; q.�/ 2 P.�/, then Lq.�/.�/ � Lp.�/.�/ and
there exists K > 1 such that for all f 2 Lq.�/.�/, kf kp.�/ � Kkf kq.�/, if and
only if:
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1. p.x/ � q.x/ for almost every x 2 �;
2. There exists � > 1 such that

Z
D

��r.x/ dx < 1; (2.6)

where D D fx 2 � W p.x/ < q.x/g and r.�/ is the defect exponent defined by

1

p.x/
D 1

q.x/
C 1

r.x/
:

Remark 2.46. If 1=p.�/; 1=q.�/ 2 LH1.�/, then 1=r.�/ 2 LH1.�/ and arguing
as we did in the proof of Proposition 2.43 we have that (2.6) holds if r.x/ ! 1 as
jxj ! 1.

Proof. Suppose first that Conditions (1) and (2) hold. By Proposition 2.43 we have
that 1 2 Lr.�/.�/. Therefore, by Corollary 2.28, given any f 2 Lq.�/.�/,

kf kp.�/ D k1 � f kp.�/ � Kk1kr.�/kf kq.�/:

To prove the converse, we will show that if either Condition (1) or (2) do not
hold, then the embedding also does not hold.

Suppose first that Condition (1) does not hold. Then there exists a set E � �,
jEj > 0, such that if x 2 E , p.x/ > q.x/. We will construct f 2 Lq.�/.�/ n
Lp.�/.�/. There are two cases.

Case 1: j�p.�/1 \ Ej > 0: Since q.�/ is finite onE , there exists a setF � E\�p.�/1 ,
0 < jF j < 1, and r , 1 < r < 1, such that if x 2 F , q.x/ � r . Partition F
as the union of disjoint sets Fj , j � 1, such that jFj j D 2�j jF j and define the
function f by

f .x/ D
1X
jD1

�
3

2

�j=r
	Fj .x/:

Then f is unbounded, and so

kf kp.�/ � kf	F kp.�/ D kf	F k1 D 1:

On the other hand, f 2 Lq.�/.�/ since

�q.�/.f / D
Z
F

jf .x/jq.�/ dx D
1X
jD1

Z
Fj

�
3

2

�jq.x/=r
dx

�
1X
jD1

�
3

2

�j
2�j jF j D 3jF j < 1:
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Case 2: j�p.�/1 \ Ej D 0: In this case, 1 � q.x/ < p.x/ < 1 almost everywhere
on E . Therefore, there exists a set F � E , 0 < jF j < 1, and constants � > 0

and r > 1 such that if x 2 F ,

q.x/C � � p.x/ � r < 1:

In particular,
p.x/

q.x/
� 1C �

r
:

Again partition F into disjoint sets Fj , jFj j D 2�j jF j, and define f by

f .x/ D
1X
jD1

�
2j

j 2

�1=q.x/
	Fj .x/:

Then

�q.�/.f / D
1X
jD1

2j j�2jFj j D jF j
1X
jD1

j�2 < 1:

On the other hand, since for j � 4, 2j =j 2 � 1,

�p.�/;F .f / D
1X
jD1

Z
Fj

�
2j

j 2

�p.x/=q.x/
dx

�
1X
jD4

�
2j

j 2

�1C�=r
jFj j D jF j

1X
jD4

2�j=rj�2.1C�=r/ D 1:

Since pC.F / � r < 1, by Proposition 2.12,

kf kLp.�/.�/ � kf kLp.�/.F / D 1:

This completes the proof.

Now suppose that Condition (2) does not hold. Again there are two cases. Define
the sets

D1 D fx 2 D W q.x/ D 1g; D0 D fx 2 D W p.x/ < q.x/ < 1g:
Then (2.6) must fail to hold for all � > 1 with D replaced by D1 or it fails to hold
for all � > 1 with D replaced by D0.

Case 1: Suppose first that for any � > 1,

Z
D1

��r.x/ dx D 1:
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We will construct f 2 Lq.�/.�/ n Lp.�/.�/. Let f D 	D1
; since D1 � �

q.�/1 ,
kf kq.�/ D kf k

L1.�
q.�/
1
/

D 1, so f � Lq.�/.�/. On the other hand, by the

definition of the defect exponent r.�/, for x 2 D1, p.x/ D r.x/. Hence, for all
� > 1

�p.�/.f =�/ D
Z
D1

��r.x/ dx D 1:

Since the same is obviously true for � � 1, it follows that f 62 Lp.�/.�/.
Case 2: Now suppose that for any � > 1,

Z
D0

��r.x/ dx D 1: (2.7)

We will construct a sequence of functions ffkg � Lq.�/.�/ such that kfkkq.�/ !
0 as k ! 1, but kfkkp.�/ � 1. It follows immediately that the embedding
cannot hold.
Given (2.7), for any compact set K � D0 and any � > 1 we have thatZ

D0nK
��r.x/ dx D 1:

Therefore, by the continuity of the integral we can construct a sequence of disjoint
sets Dj � D0, j � 1, such thatZ

Dj

2�jr.x/ dx D 1:

For each k � 1 define the function fk by

fk.x/ D
X
j>k

2
�j r.x/p.x/ 	Dj .x/:

Then
�p.�/.fk/ D

X
j>k

Z
Dj

2�jr.x/ dx D
X
j>k

1 D 1:

Thus kfkkp.�/ � 1. On the other hand, by the definition of the defect exponent r.�/,
we have that for x 2 D0,

q.x/ � q.x/r.x/

p.x/
D �r.x/:

Hence,

�q.�/.2kfk/ D
X
j>k

Z
Dj

2kq.x/2
�j q.x/r.x/p.x/ dx �

X
j>k

2k�j
Z
Dj

2
j


q.x/� q.x/r.x/

p.x/

�
dx

D
X
j>k

2k�j
Z
Dj

2�jr.x/ dx D
X
j>k

2k�j D 1:

Therefore, kfkkq.�/ � 2�k and so kfkkq.�/ ! 0 as k ! 1. ut
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As a corollary to the construction in the second half of the proof of Theorem 2.45
we have that the spaces Lp.�/.�/ are different for different exponent functions p.�/.
Corollary 2.47. Given � and p.�/; q.�/ 2 P.�/, if there exists a set E � �,
such that jEj > 0 and p.x/ ¤ q.x/, x 2 E , then the set

�
Lp.�/.�/ n Lq.�/.�/� [�

Lq.�/.�/ nLp.�/.�/� is not empty.

If j�p.�/ n�p.�/1 j < 1, then condition (2.6) is true for any � > 1, so a necessary
and sufficient condition for the embedding Lq.�/.�/ � Lp.�/.�/ is that p.x/ �
q.x/. Thus the next result is a corollary of Theorem 2.45. However, we give a direct
proof of one implication since by doing so we get a sharper constant.

Corollary 2.48. Given � and p.�/; q.�/ 2 P.�/, suppose j� n�p.�/1 j < 1. Then
Lq.�/.�/ � Lp.�/.�/ if and only if p.x/ � q.x/ almost everywhere. Furthermore,
in this case we have that

kf kp.�/ � .1C j� n�p.�/1 j/kf kq.�/: (2.8)

Proof. We will assume that p.x/ � q.x/ almost everywhere and prove (2.8). By the
homogeneity of the norm, it will suffice to show that if f 2 Lq.�/.�/, kf kq.�/ � 1,

then kf kp.�/ � 1C j� n�p.�/1 j. By the definition of the norm,

1 � �q.�/.f / D
Z
�n�q.�/1

jf .x/jq.x/ dx C kf k
L1.�

q.�/
1 /
:

In particular, jf .x/j � 1 almost everywhere on �q.�/1 . Further, since p.x/ �
q.x/, �p.�/1 � �

q.�/1 up to a set of measure zero. Therefore,

�p.�/.f / D
Z
�n�q.�/1

jf .x/jp.x/ dx C
Z
�
q.�/
1 n�p.�/1

jf .x/jp.x/ dx C kf k
L1.�

p.�/
1
/

� jfx 2 � n�q.�/1 W jf .x/j � 1gj C
Z
�n�q.�/

1

jf .x/jq.x/ dx

C j�q.�/1 n�p.�/1 j C kf k
L1.�

q.�/
1 /

� j� n�p.�/1 j C �q.�/.f /

� j� n�p.�/1 j C 1:

Hence, by the convexity of the modular,

�p.�/

 
f

j� n�p.�/1 j C 1

!
� �p.�/.f /

j� n�p.�/1 j C 1
� 1;

and so kf kp.�/ � j� n�p.�/1 j C 1. ut
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Remark 2.49. A variant of this result is used in Chap. 3 to prove norm inequalities
for the maximal operator: see Lemma 3.28 below.

Corollary 2.48 is commonly applied with the stronger hypothesis j�j < 1. In
particular, as an immediate consequence we get the following relationship between
the classical and variable Lebesgue spaces on bounded domains.

Corollary 2.50. Given � and p.�/ 2 P.�/, suppose j�j < 1. Then there exist
constants c1; c2 > 0 such that

c1kf kp�
� kf kp.�/ � c2kf kpC

:

Finally, we give an embedding that will be very useful in applications. For 1 �
p < q < 1, define

Lp.�/C Lq.�/ D ˚
f D g C h W g 2 Lp.�/; h 2 Lq.�/�I

this is a Banach space with norm

kf kLp.�/CLq.�/ D inf
f DgChfkgkLp.�/ C khkLq.�/g:

Theorem 2.51. Given � and p.�/ 2 P.�/, then

Lp.�/.�/ � LpC.�/C Lp�.�/

and
kf kLpC .�/CLp� .�/ � 2kf kLp.�/.�/:

Further, this embedding is proper if and only if p.�/ is non-constant.

Proof. By the homogeneity of the norms we may assume without loss of generality
that kf kp.�/ D 1. This implies that kf kL1.�1/ � 1. Decompose f as f1 C f2,
where

f1 D f	fx2�Wjf .x/j�1g; f2 D f	fx2�n�1Wjf .x/j>1g: (2.9)

If pC < 1, j�1j D 0, so by Corollary 2.22,

Z
�

jf1.x/jpC dx �
Z
�n�1

jf .x/jp.x/ dx � kf kp.�/ D 1;

Z
�

jf2.x/jp� dx �
Z
�n�1

jf .x/jp.x/ dx � kf kp.�/ D 1:

Hence,
kf kLpC .�/CLp� .�/ � kf1kpC

C kf2kp�
� 2 D 2kf kp.�/:

If pC D 1, then we argue as before for f2 and for f1 we note that kf1k1 �
1 D kf kp.�/.
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Now assume that p.�/ is non-constant. Then there exists q, p� < q < pC, such
that E D fx 2 � W p.x/ > qg has positive measure. Then by (the proof of)
Corollary 2.47, there exists a function f 2 Lp� .�/ � Lp�.�/ C LpC.�/ but
f 62 Lp.�/.�/.

Conversely, if p.�/ is constant then p� D pC and equality clearly holds. ut
Remark 2.52. In applying Theorem 2.51 we will often use the explicit decomposi-
tion f D f1 C f2 given by (2.9).

If we assume that the exponent p.�/ is log-Hölder continuous at infinity, then we
can give a different decomposition of f that reflects this fact.

Proposition 2.53. Given � and p.�/ 2 P.�/, suppose pC < 1 and p.�/ 2
LH1.�/. Then

Lp.�/.�/ � Lp1.�/C Lp�.�/:

Proof. Fix f 2 Lp.�/.�/. By homogeneity we may assume without loss of
generality that kf kp.�/ D 1. Decompose f as f1 C f2 as in (2.9). Then f2 2
Lp�.�/, so it will suffice to prove that f1 2 Lp1.�/. Let q.x/ D max.p.x/; p1/;
then jf1.x/jq.x/ � jf1.x/jp.x/. Hence, by Proposition 2.12, f1 2 Lq.�/.�/. By the
definition of q.�/,

1

r.x/
D 1

p1
� 1

q.x/
�
ˇ̌
ˇ̌ 1
p1

� 1

p.x/

ˇ̌
ˇ̌ :

Since p.�/ 2 LH1.�/, by Theorem 2.45 and Remark 2.46, Lq.�/.�/ � Lp1.�/.
This completes the proof. ut

2.6 Convergence in Lp.�/.�/

In this section we consider three types of convergence in the variable Lebesgue
spaces: convergence in modular, in norm, and in measure.

Definition 2.54. Given � and p.�/ 2 P.�/, and given a sequence of functions
ffkg � Lp.�/.�/, we say that fk ! f in modular if for some ˇ > 0, �.ˇ.f �
fk// ! 0 as k ! 1. We say that fk ! f in norm if kf �fkkp.�/ ! 0 as k ! 1.

In defining modular convergence it might seem more natural to assume that
�.f � fk/ ! 1. As in the definition of the norm, we introduce the constant ˇ
to preserve the homogeneity of convergence: if fk ! f in modular, then we want
2fk ! 2f in modular. With this alternative definition this is not always the case.

Example 2.55. Let � D .0; 1/ and p.x/ D 1=x. Let fk D 	.0;1=k/. Then �.fk/ D
1=k ! 0, but for all k, �.2fk/ D 1.
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We can reformulate norm convergence in a way that highlights the connection
with modular convergence.

Proposition 2.56. Given� and p.�/ 2 P.�/, the sequence ffkg converges to f in
norm if and only if for every ˇ > 0, �.ˇ.f � fk// ! 0 as k ! 1. In particular,
convergence in norm implies convergence in modular.

Proof. Suppose first that fk ! f in norm. Fix ˇ > 0. Then by the homogeneity of
the norm,

kˇ.f � fk/kp.�/ D ˇkf � fkkp.�/ ! 0:

Hence, by Corollary 2.22, for all k sufficiently large,

�.ˇ.f � fk// � kˇ.f � fk/kp.�/ � 1;

and so �.ˇ.f � fk// ! 0.
To prove the converse, fix � > 0 and let ˇ D ��1. Then for all k sufficiently

large, �..f � fk/=�/ � 1, and so kf � fkkp.�/ � �. Since this is true for any �,
kf � fkkp.�/ ! 0. ut

While convergence in norm implies convergence in modular, the converse does
not always hold.

Example 2.57. Let � D .1;1/ and p.x/ D x. Define f 
 1 and fk D 	.1;k/.
Then fk ! f in modular since

�..f � fk/=2/ D
Z 1

k

2�x dx ! 0

as k ! 1. On the other hand, fk does not converge to f in norm because for all
k � 1,

� .f � fk/ D
Z 1

k

1x dx D 1;

which in turn implies that kf � fkkp.�/ � 1.

This example can be generalized to any space Lp.�/.�/ such that � n �1 has
positive measure and p.�/ is unbounded on � n�1.

Theorem 2.58. Given � and p.�/ 2 P.�/, convergence in norm is equivalent to
convergence in modular if and only if either p� D 1 or pC.� n�1/ < 1.

Proof. By Proposition 2.56, convergence in norm always implies convergence in
modular. Therefore, we need only consider whether modular convergence implies
norm convergence.

Suppose first that p� D 1. Then the modular and the norm are the same and the
result is trivially true.
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Now suppose that p� < 1 and pC.�n�1/ < 1 and fix a sequence ffkg such
that fk ! f in modular. Then there exist ˇ > 0 such that �.ˇ.f � fk// ! 0. Fix
�, 0 < � < ˇ�1. Then by Proposition 2.14,

�..f � fk/=�/ �
�
1

ˇ�

�pC.�n�1/

�.ˇ.f � fk//:

Hence, for all k sufficiently large we have that

�

�
f � fk
�

�
� 1:

Equivalently, for all such k, kf � fkkp.�/ � �. Since � was arbitrary, fk ! f in
norm.

Now suppose p� < 1 and pC.� n �1/ D 1. We will construct a sequence
ffkg � Lp.�/.�/ such that �.fk/ ! 0 but kfkkp.�/ � 1=2 for all k. Let fEkg be the
sequence of sets constructed in the proof of Proposition 2.12. Define the function f
by

f .x/ D
 1X
kD1

1

2kjEk nEkC1j	EknEkC1
.x/

!1=p.x/
;

and for each k let fk D f	Ek . Then for all k � 1,

�.fk/ D
1X
jDk

Z
Ej nEjC1

1

2j jEj nEjC1j dx D
1X
jDk

2�j D 2�kC1I

hence, fk 2 Lp.�/.�/ and �.fk/ ! 0 as k ! 1. On the other hand, for all k � 1,

�

�
fk

1=2

�
D

1X
jDk

Z
Ej nEjC1

2p.x/

2j jEj n EjC1j dx �
1X
jDk

2pj�j D 1:

Thus, kfkkp.�/ � 1=2. This completes the proof. ut
In the classical Lebesgue spaces the three ubiquitous convergence theorems are

the monotone convergence theorem, Fatou’s lemma, and the dominated convergence
theorem. Versions of the first two are always true in variable Lebesgue spaces, but
the third is only true when the exponent function is bounded. We prove each of these
results in turn.

Theorem 2.59. Given � and p.�/ 2 P.�/, let ffkg � Lp.�/.�/ be a sequence
of non-negative functions such that fk increases to a function f pointwise almost
everywhere. Then either f 2 Lp.�/.�/ and kfkkp.�/ ! kf kp.�/, or f 62 Lp.�/.�/
and kfkkp.�/ ! 1.
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Remark 2.60. If f 62 Lp.�/.�/, we have defined kf kp.�/ D 1, so in every case we
may write the conclusion as kfkkp.�/ ! kf kp.�/.

Theorem 2.59 is sometimes referred to as the Fatou property of the norm. To
avoid confusion with the variable Lebesgue space version of Fatou’s lemma and to
stress the parallels with the classical Lebesgue spaces, we will always refer to it as
the monotone convergence theorem.

Proof. Since ffkg is an increasing sequence, so is fkfkkp.�/g; thus, it either
converges or diverges to 1. If f 2 Lp.�/.�/, since fk � f , kfkkp.�/ � kf kp.�/;
otherwise, since fk 2 Lp.�/.�/, kfkkp.�/ < 1 D kf kp.�/. In either case it will
suffice to show that for any � < kf kp.�/, for all k sufficiently large kfkkp.�/ > �.

Fix such a �; by the definition of the norm, �.f=�/ > 1. Therefore, by the
monotone convergence theorem on the classical Lebesgue spaces and the definition
of the L1 norm,

�.f=�/ D
Z
�n�1

� jf .x/j
�

�p.x/
dx C ��1kf kL1.�1/

D lim
k!1

 Z
�n�1

� jfk.x/j
�

�p.x/
dx C ��1kfkkL1.�1/

!

D lim
k!1 �.fk=�/:

(In this calculation we allow the possibility that �.f=�/; �.fk=�/ D 1.) Hence,
for all k sufficiently large, �.fk=�/ > 1, and so kfkkp.�/ > �. ut
Theorem 2.61. Given� and p.�/ 2 P.�/, suppose the sequence ffkg � Lp.�/.�/
is such that fk ! f pointwise almost everywhere. If

lim inf
k!1 kfkkp.�/ < 1;

then f 2 Lp.�/.�/ and
kf kp.�/ � lim inf

k!1 kfkkp.�/:
In the classical version of Fatou’s lemma it is necessary to assume that each

fk is non-negative. However, since we are taking the norm this hypothesis is not
necessary in Theorem 2.61.

Proof. Define a new sequence

gk.x/ D inf
m�k jfm.x/j:

Then for all m � k, gk.x/ � jfm.x/j, and so gk 2 Lp.�/.�/. Further, by definition
fgkg is an increasing sequence and
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lim
k!1gk.x/ D lim inf

m!1 jfm.x/j D jf .x/j; a.e. x 2 �:

Therefore, by Theorem 2.59,

kf kp.�/ D lim
k!1 kgkkp.�/ � lim

k!1
�

inf
m�k kfmkp.�/

� D lim inf
k!1 kfkkp.�/ < 1;

and f 2 Lp.�/.�/. ut
Theorem 2.62. Given � and p.�/ 2 P.�/, suppose pC < 1. If the sequence
ffkg is such that fk ! f pointwise almost everywhere, and there exists g 2
Lp.�/.�/ such that jfk.x/j � g.x/ almost everywhere, then f 2 Lp.�/.�/ and
kf � fkkp.�/ ! 0 as k ! 1.

Further, if pC D 1, then this result is always false.

Remark 2.63. It follows at once from the triangle inequality that the dominated
convergence theorem implies that kfkkp.�/ ! kf kp.�/.

As an immediate corollary to the dominated convergence theorem we can give a
stronger version of the monotone convergence theorem.

Corollary 2.64. Given � and p.�/ 2 P.�/ such that pC < 1, suppose the
sequence of non-negative functions fk increases pointwise almost everywhere to
a function f 2 Lp.�/.�/. Then kf � fkkp.�/ ! 0.

Proof of Theorem 2.62. Suppose first that pC < 1. Then by Proposition 2.12,

jf .x/� fk.x/jp.x/ � 2p.x/�1.jf .x/jp.x/ C jfk.x/jp.x// � 2pC jg.x/jp.x/ 2 L1.�/:

Therefore, by the classical dominated convergence theorem, �.f � fk/ ! 0 as
k ! 0, and so by Theorem 2.58, kf � fkkp.�/ ! 0.

Now suppose that pC D 1; then either j�1j D 0 and pC.� n �1/ D 1,
or j�1j > 0. In the first case, let f and ffkg be the functions constructed in the
second half of the proof of Theorem 2.58. Then f .�/p.�/ 2 L1.�/, so f 2 Lp.�/.�/.
Further, fk � f and fk ! 0 pointwise. However, kfkkp.�/ � 1=2, so the dominated
convergence theorem does not hold.

If j�1j > 0, let fEkg be a sequence of sets such that for each k, jEkj > 0 and
EkC1 � Ek � �1, and jEkj ! 0 as k ! 1. Let fk D 	Ek ; then fk � f1 and
fk ! 0 pointwise, but kfkkp.�/ D kfkk1 D 1. ut

As in the classical Lebesgue spaces, norm convergence need not imply that the
sequence converges pointwise almost everywhere unless p� D 1.

Example 2.65. Given � and p.�/ 2 P.�/, if j� n �1j > 0, then there exists
a sequence ffkg in Lp.�/.�/ such that fk ! 0 in norm but not pointwise almost
everywhere.
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Proof. Since j� n�1j > 0, there exists a set E � � n�1 such that 0 < jEj < 1
and pC.E/ < 1. Form a “dyadic” decomposition of E as follows. Let E D E1

1 [
E1
2 , where the sets E1

1 and E1
2 are disjoint and have measure jEj=2. Repeat this

decomposition. Then by induction, we get a collection of sets fEi
j W i � 1; 1 �

j � 2ig such that for each i , the sets Ei
j are pairwise disjoint, E D S2i

jD1 Ei
j ,

and jEi
j j D jEj=2i . Define the collection of functions fgij g by gij D 	Eij

. Then by

Corollary 2.50,

kgij kLp.�/.�/ D kgij kLp.�/.E/ � Ckgij kpC.E/ D C.jEj=2i/1=pC.E/: (2.10)

Define the sequence ffkg by fg11; g12; g21; g22; g23; g24; : : :g. Then (2.10) shows that
kfkkp.�/ ! 0 as k ! 1. On the other hand, given any point x 2 E , for every
i there exists j such that x 2 Ei

j , so there exists an infinite number of functions
gij such that gij .x/ D 1. Thus the sequence ffkg does not converge to 0 pointwise
almost everywhere. ut

Despite this example, we can always find a subsequence of a norm convergent
sequence that converges pointwise almost everywhere. To show this we will
consider the slightly stronger property of convergence in measure. Given a domain
� and a sequence of functions ffkg, recall that fk ! f in measure if for every
� > 0, there exists K > 0 such that if k � K ,

jfx 2 � W jf .x/ � fk.x/j � �gj < �:

If ffkg converges to f in measure, then there exists a subsequence ffkj g that con-
verges to f pointwise almost everywhere. (See Royden [301].) Norm convergence
implies convergence in measure in the classical Lebesgue spaces, and the same is
true for variable Lebesgue spaces.

Theorem 2.66. Given � and p.�/ 2 P.�/, if the sequence ffkg � Lp.�/.�/
converges to f in norm, then it converges to f in measure.

Proof. Suppose to the contrary that there exists a sequence ffkg that converges to
f in norm but not in measure. Then by passing to a subsequence we may assume
that there exists �, 0 < � < 1, such that for all k,

jfx 2 � W jf .x/ � fk.x/j � �gj � �:

Denote the set on the left-hand side byAk ; since for each k either jAk \�1j � �=2

or jAk n �1j � �=2, by passing to another subsequence we may assume that one
of these inequalities holds for all k.

If jAk \�1j � �=2 for all k, then

kf � fkkp.�/ � k.f � fk/	�1
kp.�/ D kf � fkkL1.�1/ � �;
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contradicting our assumption that fk converges to f in norm. If jAk n�1j � �=2

for all k, then

�

�
f � fk

�2=2

�
�
Z
�n�1

� jf .x/ � fk.x/j
�2=2

�p.x/
dx

�
Z
Akn�1

�
2

�

�p.x/
dx �

�
2

�

�p�

jAk n�1j � 1:

Hence, kf � fkkp.�/ � �2=2 > 0, again contradicting our assumption that fk
converges to f in norm. ut

As an immediate corollary we get that every norm convergent sequence has a
subsequence that converges pointwise almost everywhere. We record this fact as
part of a somewhat stronger result which is a partial converse to the dominated
convergence theorem.

Proposition 2.67. Given � and p.�/ 2 P.�/, suppose the sequence ffkg �
Lp.�/.�/ converges in norm to f 2 Lp.�/.�/. Then there exists a subsequence ffkj g
and g 2 Lp.�/.�/ such that the subsequence converges pointwise almost everywhere
to f , and for almost every x 2 �, jfkj .x/j � g.x/.

Proof. By Theorem 2.66 we immediately have the existence of a subsequence
ffkj g that converges pointwise almost everywhere to f . Further, since convergent
sequences are Cauchy sequences, we may choose the kj large enough that for each
j , kfkjC1

� fkj kp.�/ � 2�j . For simplicity, we will write fj instead of fkj .
For each j , define the function hj by

hj .x/ D
j�1X
iD1

jfiC1.x/ � fi .x/j:

Then fhj g is an increasing sequence and so converges pointwise to a function h. By
our choice of the functions fj ,

khj kp.�/ �
j�1X
iD1

2�i � 1:

Hence, by the monotone convergence theorem (Theorem 2.59), h 2 Lp.�/.�/. But
then, for every j and almost every x 2 �,

jfj .x/ � f1.x/j �
j�1X
iD1

jfiC1 � fi .x/j D hj .x/ � h.x/:
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Thus, if we let g D hC jf1j, we have that g 2 Lp.�/.�/ and jfj .x/j � g.x/ almost
everywhere. ut

We conclude this section by considering more carefully the relationship between
convergence in norm, convergence in modular and convergence in measure.

Theorem 2.68. Given � and p.�/ 2 P.�/, if ffkg � Lp.�/.�/ is such that
kfkkp.�/ ! 0 (or 1), then the sequence �.fk/ ! 0 (or 1). The converse holds if
and only if pC.� n�1/ < 1.

Proof. Suppose first that kfkkp.�/ ! 0 (or 1). Then the fact that �.fk/ ! 0 (or
1) follows immediately from Corollary 2.22.

Now suppose that pC.�n�1/ < 1. Given a sequence ffkg such that �.fk/ !
0, there exists a sequence fakg such that ak � 1, ak ! 0, but a

�pC.�n�1/

k �.fk/ �
1. Then by Proposition 2.14,

�.fk=ak/ � a
�pC.�n�1/

k �.fk/ � 1:

Therefore, kfkkp.�/ � ak and so kfkkp.�/ ! 0.
If �.fk/ ! 1, then the proof is nearly the same: there exists a sequence fakg

such that ak � 1, ak ! 1 but such that, again by Proposition 2.14,

�.fk=ak/ � a
�pC.�n�1/

k �.fk/ > 1;

and so kfkkp.�/ � ak .
Now suppose that pC.� n �1/ D 1; we will show that neither convergence

result holds. First, the example constructed in Theorem 2.58 shows that there is
always a sequence ffkg such that �.fk/ ! 0 but kfkkp.�/ � 1=2. For the other case,
form the sets fEkg as in the proof of Proposition 2.12 and define

fk.x/ D
0
@ kX
jD1

1

jEj n EjC1j	Ej nEjC1
.x/

1
A
1=p.x/

:

Then arguing as in that proof, we have �.fk/ D k but

�.fk=2/ D
kX

jD1
�
Z
Ej nEjC1

2�p.x/ dx �
1X
jD1

2�j D 1:

Hence, �.fk/ ! 1 but kfkkp.�/ � 2. ut
Theorem 2.69. Given � and p.�/ 2 P.�/, suppose pC < 1. Then for f 2
Lp.�/.�/ and a sequence ffkg � Lp.�/.�/, the following are equivalent:

1. fk ! f in norm,
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2. fk ! f in modular,
3. fk ! f in measure and for some 
 > 0, �.
fk/ ! �.
f /.

Proof. The equivalence of (1) and (2) was proved in Theorem 2.58; here we will
prove the equivalence of (2) and (3).

To show that (2) implies (3), first note that by Theorem 2.66 norm convergence
implies convergence in measure, so modular convergence also implies conver-
gence in measure. To complete the proof of this implication we will show that
convergence in modular implies that �.
fk/ ! �.
f / for 
 D 1.

We begin with an elementary inequality. By the mean value theorem, if
1�p<1 and a; b � 0, then

jap � bpj � pmax.ap�1; bp�1/ja � bj � p.ap�1 C bp�1/ja � bj:

Therefore,

j�.f / � �.fk/j �
Z
�

ˇ̌jf .x/jp.x/ � jfk.x/jp.x/
ˇ̌
dx

� pC
Z
�

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx:

To estimate the right-hand side we write the domain of integration as�1 [��. The
integral on �1 is straightforward to estimate:

pC
Z
�1

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

D 2pC
Z
�1

jf .x/ � fk.x/jp.x/ dx � 2pC�.f � fk/:

Since modular convergence and norm convergence are equivalent, by Proposi-
tion 2.56 the right-hand side tends to 0 as k ! 1.

To estimate the integral on��, fix �, 0 < � < 1=4, and apply Young’s inequality
to get

pC
Z
��

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

� pC
Z
��

�p
0.x/

p0.x/
�jf .x/jp.x/�1 C jfk.x/jp.x/�1

�p0.x/
dx

C pC
Z
��

��p.x/

p.x/
jf .x/ � fk.x/jp.x/ dx

D I1 C I2:
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We estimate I1 and I2 separately. Since p.x/ > 1 for all x 2 ��,

I2 � pC�.��1.f � fk//:

To estimate I1 we need two additional inequalities: for p > 0 and a; b > 0, we
have by elementary calculus that

ap C bp � max.1; 21�p/.a C b/p;

.a C b/p � max.1; 2p�1/.ap C bp/:

Hence, since 1 < p0.x/ < 1 on ��,

I1 � pC
Z
��

�p
0.x/ max.1; 22�p.x//p0.x/

�jf .x/j C jfk.x/j
�p.x/

dx

� pC
Z
��

.4�/p
0.x/
�
2jf .x/j C jf .x/ � fk.x/j

�p.x/
dx

� 4�pC
Z
��

2p.x/�1
�
2p.x/jf .x/jp.x/ C jf .x/ � fk.x/jp.x/

�
dx

� �pC22pCC1�.f /C pC�2pCC1�.f � fk/:

Combining this with the previous estimate, we see that

pC
Z
��

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

� �pC22pCC1 �.f /C �pC2pCC1�.f � fk/C pC�.��1.f � fk//:

Therefore, by Proposition 2.56,

lim sup
k!1

pC
Z
��

�jf .x/jp.x/�1 C jfk.x/jp.x/�1
�jf .x/ � fk.x/j dx

� �pC22pCC1 �.f /:

Since � > 0 was arbitrary, we conclude that j�.f /� �.fk/j ! 0.
Now suppose that fk ! f in measure and that for some 
 > 0, �.
fk/ !

�.
f /. Since we also have that 
fk ! 
f in measure, we may assume without loss
of generality that 
 D 1. Then for each �, 0 < � < 1,

jfx 2 � W jf .x/ � fk.x/jp.x/ > �gj � jfx 2 � W jf .x/ � fk.x/j > �1=p�gj
� jfx 2 � W jf .x/ � fk.x/j > �gj � �:
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Hence, jf .�/� fk.�/jp.�/ ! 0 in measure.
Further, arguing as we did above, we have that

ˇ̌jf .x/jp.x/ � jfk.x/jp.x/
ˇ̌

(2.11)

� pC
�jf .x/jp.x/�1 C jfk.x/jp.x/�1

�jf .x/ � fk.x/j
� pCjf .x/jp.x/�1jf .x/ � fk.x/j

C pC max.1; 2p.x/�2/

� �jf .x/jp.x/�1 C jf .x/ � fk.x/jp.x/�1
�jf .x/ � fk.x/j

� pC.2pC C 1/jf .x/jp.x/�1jf .x/ � fk.x/j C pC2pC jf .x/ � fk.x/jp.x/:

Now fix �, 0 < � < 1. Since jf .�/jp.�/ 2 L1.�/, there exists M � 1 such that

jfx W jf .x/jp.x/�1 > M gj � jfx W jf .x/jp.x/ > M gj � �=2:

By inequality (2.11), since fk ! f and jf .�/� fk.�/jp.�/ ! 0 in measure, for all k
sufficiently large,

jfx W ˇ̌jf .x/jp.x/ � jfk.x/jp.x/
ˇ̌
> �gj

� jfx W jf .x/jp.x/�1 > M gj
C jfx W pC.2pC C 1/M jf .x/� fk.x/j > �=2gj
C jfx W pC2pC jf .x/ � fk.x/jp.x/ > �=2gj

<
�

2
C �

2pC.2pC C 1/M
C �

pC2pCC1

<
�

2
C �

4
C �

4

D �:

Therefore, jfk.�/jp.�/ ! jf .�/jp.�/ in measure.
Now define

hk.x/ D 2pC�1jfk.x/jp.x/ C 2pC�1jf .x/jp.x/ � jf .x/ � fk.x/jp.x/ � 0I

then hk ! 2pC jf .�/jp.�/ in measure. Therefore, by Fatou’s lemma on the classical
Lebesgue spaces with respect to convergence in measure (see Royden [301]),

2pC

Z
�

jf .x/jp.x/ dx

� lim inf
k!1

Z
�

2pC�1jfk.x/jp.x/ C 2pC�1jf .x/jp.x/ � jf .x/ � fk.x/jp.x/ dx:
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Rearranging terms and using the fact that �.fk/ ! �.f / we get that

lim sup
k!1

Z
�

jf .x/ � fk.x/jp.x/ dx � 0:

Therefore, fk ! f in modular and our proof is complete. ut

2.7 Completeness and Dense Subsets of Lp.�/.�/

In this section we prove thatLp.�/.�/ is a Banach space—that is, a complete normed
vector space—and determine some canonical dense subsets of Lp.�/.�/. Since we
proved that Lp.�/.�/ is a normed vector space in Sect. 2.3, to see that it is a Banach
space we only have to show that it is complete.

Our proof of completeness follows one of the standard proofs for classical
Lebesgue spaces and so makes heavy use of the convergence theorems proved in
the previous section. We begin with a result that is of independent interest and is
referred to as the Riesz-Fischer property.

Theorem 2.70. Given � and p.�/ 2 Lp.�/.�/, let ffkg � Lp.�/.�/ be such that

1X
kD1

kfkkp.�/ < 1:

Then there exists f 2 Lp.�/.�/ such that

iX
kD1

fk ! f

in norm as i ! 1, and

kf kp.�/ �
1X
kD1

kfkkp.�/:

Proof. Define the function F on � by

F.x/ D
1X
kD1

jfk.x/j;

and define the sequence fFi g by

Fi .x/ D
iX

kD1
jfk.x/j:
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Then the sequence fFig is non-negative and increases pointwise almost everywhere
to F . Further, for each i , Fi 2 Lp.�/.�/, and its norm is uniformly bounded, since

kFikp.�/ �
iX

kD1
kfkkp.�/ �

1X
kD1

kfkkp.�/ < 1:

Therefore, by the monotone convergence theorem (Theorem 2.59), F 2 Lp.�/.�/.
In particular, by Remark 2.10, F is finite almost everywhere, so the sequence

fFig converges pointwise almost everywhere. Hence, if we define the sequence of
functions fGig by

Gi.x/ D
iX

kD1
fk.x/;

then this sequence also converges pointwise almost everywhere since absolute
convergence implies convergence. Denote its sum by f .

Now let G0 D 0; then for any j � 0, Gi � Gj ! f � Gj pointwise almost
everywhere. Furthermore,

lim inf
i!1 kGi �Gjkp.�/ � lim inf

i!1

iX
kDjC1

kfkkp.�/ D
1X

kDjC1
kfkkp.�/ < 1:

By Fatou’s lemma (Theorem 2.61), if we take j D 0, then

kf kp.�/ � lim inf
i!1 kGikp.�/ �

1X
kD1

kfkkp.�/ < 1:

More generally, for each j the same argument shows that

kf �Gj kp.�/ � lim inf
i!1 kGi �Gj kp.�/ �

1X
kDjC1

kfkkp.�/I

since the sum on the right-hand side tends to 0, we see thatGj ! f in norm, which
completes the proof. ut

The completeness of Lp.�/.�/ now follows from the Riesz-Fischer property.

Theorem 2.71. Given � and p.�/ 2 P.�/, Lp.�/.�/ is complete: every Cauchy
sequence in Lp.�/.�/ converges in norm.

Proof. Let ffkg � Lp.�/.�/ be a Cauchy sequence. Choose k1 such that kfi �
fjkp.�/ < 2�1 for i; j � k1, choose k2 > k1 such that kfi � fj kp.�/ < 2�2 for
i; j � k2, and so on. This construction yields a subsequence ffkj g, kjC1 > kj ,
such that

kfkjC1
� fkj kp.�/ < 2�j :
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Define a new sequence fgj g by g1 D fk1 and for j > 1, gj D fkj � fkj�1 . Then
for all j we get the telescoping sum

jX
iD1

gi D fkj I

further, we have that

1X
jD1

kgj kp.�/ � kfk1kp.�/ C
1X
jD1

2�j < 1:

Therefore, by the Riesz-Fischer property (Theorem 2.70), there exists f 2 Lp.�/.�/
such that fkj ! f in norm.

Finally, by the triangle inequality we have that

kf � fkkp.�/ � kf � fkj kp.�/ C kfkj � fkkp.�/I

since ffkg is a Cauchy sequence, for k sufficiently large we can choose kj to make
the right-hand side as small as desired. Hence, fk ! f in norm. ut

We now consider the question of dense subsets of Lp.�/.�/. To simplify our
exposition, we will assume that all domains� are open.

Theorem 2.72. Given an open set � and p.�/ 2 P.�/, suppose that pC < 1.
Then the set of bounded functions of compact support with supp.f / � � is dense
in Lp.�/.�/.

Proof. LetKk be a nested sequence of compact subsets of� such that� D S
k Kk .

(For instance, let Kk D fx 2 � W dist.x; @�/ � 1=kg \ Bk.0/.) Fix f 2 Lp.�/.�/
and define the sequence ffkg by

fk.x/ D

8̂
<̂
ˆ̂:
k fk.x/ > k

f .x/ �k � f .x/ � k

�k fk.x/ < �k;

and let gk.x/ D fk.x/	Kk .x/. Since f is finite almost everywhere, gk ! f

pointwise almost everywhere; since f 2 Lp.�/.�/ and jgk.x/j � jf .x/j, gk 2
Lp.�/.�/. Therefore, since pC < 1, by the dominated convergence theorem
(Theorem 2.62), gk ! f in norm. ut

As a corollary to Theorem 2.72 we get two additional dense subsets. Recall that
Cc.�/ denotes the set of all continuous functions whose support is compact and
contained in �. We define S.�/ to be the collection of all simple functions, that is,
functions whose range is finite: s 2 S.�/ if
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s.x/ D
nX

jD1
aj 	Ej .x/;

where the numbers aj are distinct and the sets Ej � � are pairwise disjoint. The
family S0.�/ is the collection of s 2 S with the additional property that

ˇ̌
ˇ̌
ˇ̌
n[

jD1
Ej

ˇ̌
ˇ̌
ˇ̌ < 1:

Corollary 2.73. Given an open set � and p.�/ 2 P.�/, suppose pC < 1. Then
the sets Cc.�/ and S0.�/ are dense in Lp.�/.�/.

Proof. We will prove this for Cc.�/; the proof for S0.�/ is identical. Fix f 2
Lp.�/.�/ and fix � > 0; we will find a function h 2 Cc.�/ such that kf �hkp.�/ < �.

By Theorem 2.72 there exists a bounded function of compact support, g, such
that kf � gkp.�/ < �=2. Let supp.g/ � B \ � for some open ball B . Then since
pC < 1, Cc.B \�/ is dense in LpC .B \�/; thus there exists h 2 Cc.B \�/ �
Cc.�/ such that

kg � hkLpC .�/ D kg � hkLpC .B\�/ <
�

2.1C jB \�j/ :

Therefore, by Corollary 2.48,

kg � hkLp.�/.�/ D kg � hkLp.�/.B\�/ � .1C jB \�j/kg � hkLpC .B\�/ < �=2;

and so
kf � hkp.�/ � kf � gkp.�/ C kg � hkp.�/ < �:

ut
Remark 2.74. If pC < 1, then the set

T
p>1 L

p.�/ is dense in Lp.�/.�/ since this
intersection contains Cc.�/. This observation will be useful in Chap. 5 below.

Theorem 2.72 need not be true if pC D 1. This is clearly the case if�1 is open
and j�1j > 0, since bounded functions of compact support with supp.f / � �1
are not dense in L1.�1/. But it still fails even if p.�/ is simply unbounded. First,
we will show that bounded functions are not dense, and then show that under certain
conditions functions of compact support are not dense.

Theorem 2.75. Given � open and p.�/ 2 P.�/, if pC.� n �1/ D 1, then
bounded functions are not dense in Lp.�/.�/.

Remark 2.76. It follows from Theorem 2.75 that if pC.�n�1/ D 1, then Cc.�/
and S0.�/ are not dense in Lp.�/.�/.
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Proof. We will construct a function f 2 Lp.�/.�/ that cannot be approximated by
bounded functions. To do so we will modify the construction given in the proof of
Proposition 2.12.

Since pC.� n�1/ D 1, there exists an increasing sequence fpig, pi > i , such
that the sets

Fi D fx 2 � n�1 W pi < p.x/ < piC1g
have positive measure. For each i , choose Gi � Fi such that

0 < jGi j <
�
1

2i

�piC1

< 1:

Then for all � > 0,

�.	Gi =�/ D
Z
�n�1

�
	Gi .x/

�

�p.x/
dx C ��1k	Gi kL1.�1/

D
Z
Gi

��p.x/ dx � jGi j max.��pi ; ��piC1 /:

Hence,

k	Gi kp.�/ � inff� > 0 W jGi j max.��pi ; ��piC1 / � 1g
� inff� > 0 W jGi j � min.�pi ; �piC1 /g

� max.jGi j1=pi ; jGi j1=piC1 / D jGi j1=piC1 < 2�i :

Now define the sets fEkg by

Ek D
1[
iDk

Gi :

Then we have that

1. Ek � � n�1;
2. EkC1 � Ek and jEk n EkC1j D jGkj > 0;
3. jEkj ! 0 since

jEkj D
1X
iDk

jGi j <
1X
iDk

�
2�i�piC1 I

4. If x 2 Ek , then p.x/ � pk > k;
5. k	Ekkp.�/ ! 0 since

k	Ekkp.�/ �
1X
iDk

k	Gi kp.�/ <
1X
iDk

2�i :
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Properties (1)–(4) are exactly the properties from the proof of Proposition 2.12
used in the proof of Theorem 2.58 to construct the function f and show that
f 2 Lp.�/.�/ and kf	Ekkp.�/ � 1=2; repeat this construction using these sets.

For any h 2 L1.�/, by Property (5) fix k sufficiently large such that

kh	Ek kp.�/ � khkL1 k	Ekkp.�/ <
1

4
:

Then by the triangle inequality we have that

kf � hkp.�/ � k.f � h/	Ekkp.�/ � kf	Ekkp.�/ � kh	Ekkp.�/ � 1

2
� 1

4
D 1

4
:

Since h is an arbitrary bounded function, we see that bounded functions are not
dense in Lp.�/.�/. ut

Intuitively, the next result shows that if p.�/ is unbounded at the boundary of �,
then functions of compact support are not dense.

Theorem 2.77. Given� open andp.�/ 2 P.�/, suppose that for every compact set
K � �, pC.� nK/ D 1. Then functions with compact support and supp.f / � �

are not dense in Lp.�/.�/.

Proof. Define the sequenceKk D fx 2 � W dist.x; @�/ � 1=kg \ Bk.0/. Then the
sets Kk are compact, nested, and their union is �. By our hypothesis there exists
a sequence of disjoint sets Ek � � n Kk such that jEkj > 0 and p�.Ek/ > k.
Let E�

k D Ek n �1 and E1
k D Ek \ �1. By passing to a subsequence and

renumbering, we may assume without loss of generality that either jE1
k j > 0 for

every k or jE�
k j > 0 for every k. In the first case, define

f .x/ D
1X
kD1

	E1

k
.x/:

Since the sets E1
k are disjoint, f 2 L1.�1/ � Lp.�/.�/. Further, given any

function g such that supp.g/ is compact and contained in �, there exists k0 such
that supp.g/ � Kk0 . But then,

kf � gkp.�/ � k	E1

k0C1
kp.�/ D k	E1

k0C1
k1 D 1:

Hence, functions of compact support are not dense.
If, on the other hand, jE�

k j > 0 for every k, define

f .x/ D
1X
kD1

jE�
k j�1=p.x/	E�

k
.x/:
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Then for any � > 1,

�.f=�/ D
1X
kD1

�
Z
E�

k

��p.x/ dx �
1X
kD1

��k < 1:

Thus f 2 Lp.�/.�/. But given g as before,

�.f � g/ �
1X

kDk0C1

Z
E�

k

f .x/p.x/ dx D
1X

kDk0C1
1 D 1:

Therefore, kf � gkp.�/ � 1, so again functions of compact support are not dense in
Lp.�/.�/. ut

We conclude this section with an important characterization of the dense subsets
of Lp.�/. Recall that a Banach space is separable if it has a countable dense subset.

Theorem 2.78. Given an open set � and p.�/ 2 P.�/, then Lp.�/.�/ is separable
if and only if pC < 1.

Proof. Suppose first that pC < 1. Then the proof of separability is almost identical
to the proof of Corollary 2.73 so we sketch only the key details. We can write

� D
1[
kD1

Bk.0/\�:

Since Bk.0/\� is open, LpC.Bk.0/\�/ is separable and so contains a countable
dense subset. The union of all of these sets is a countable set contained in Lp.�/.�/.
Arguing exactly as we did before we see that this set is also dense in Lp.�/.�/.

Now suppose that pC D 1. We will show that no countable set is dense. If
j�1j > 0, then this follows from the same construction that shows that L1.�1/
is non-separable, since the restriction of any dense subset of Lp.�/.�/ will be dense
in L1.�1/. (See, for example, Brezis [37].)

Now let j�1j D 0 and pC.� n �1/ D 1, and suppose to the contrary that
there exists a countable dense set fhj g. Let the sets Ek and the function f be as in
the proof of Theorem 2.75. Then for all k, kf	Ekkp.�/ � 1=2, so by Theorem 2.34,
there exist functions gk 2 Lp0.�/.�/, kgkkp0.�/ � 1, and � > 0 such that

Z
�

f .x/	Ek.x/gk.x/ dx � �:

By Hölder’s inequality (Theorem 2.26), for each j ,

ˇ̌
ˇ̌Z
�

hj .x/gk.x/	Ek .x/ dx

ˇ̌
ˇ̌ � Ckhj kp.�/;
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and so the sequence fR hj gk	Ek dxgk is bounded. Hence, it has a convergent sub-
sequence, and so by a Cantor diagonalization argument we can find a subsequence
of functions fgki 	Eki gi such that for every j , the sequence fR hjgki 	Eki dxgi
converges and so is Cauchy.

From this fact we will see that for any F � � the sequence

�Z
�

f .x/	F .x/gki .x/	Eki .x/ dx

�
i

(2.12)

is Cauchy. Fix � > 0 and let hj be such that khj � f	F kp.�/ < �. Then for all i
and l ,

ˇ̌
ˇ̌Z
�

f .x/	F .x/gki .x/	Eki .x/ dx �
Z
�

f .x/	F .x/gkl .x/	Ekl .x/ dx

ˇ̌
ˇ̌

�
ˇ̌
ˇ̌Z
�

�
f .x/	F .x/ � hj .x/

�
gki .x/	Eki .x/ dx

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z
�

�
f .x/	F .x/ � hj .x/

�
gkl .x/	Ekl .x/ dx

ˇ̌
ˇ̌

C
ˇ̌
ˇ̌Z
�

hj .x/
�
gki .x/	Eki .x/ � gkl .x/	Ekl .x/

�
dx

ˇ̌
ˇ̌ :

By Hölder’s inequality the first two terms are bounded by C� and the last term is
less than � for all i and l sufficiently large. Thus the sequence (2.12) is Cauchy and
so converges.

Since the sets Eki are nested, we can define a sequence of measures on E1 by


i.F / D
Z
E1

f .x/	F .x/gki .x/	Eki .x/ dx; F � E1:

Since (2.12) converges, there exists a set function 
 such that


.F / D lim
i!1
i.F /:

Since jE1j < 1, by the Hahn-Saks theorem 
 is an absolutely continuous measure
on E1. (See Hewitt and Stromberg [169, ex. 19.68, p. 339].) Therefore, there exists
g 2 L1loc.E1/ such that


.F / D
Z
F

g.x/ dx:

We claim that g 
 0. To see this, note that since the sets Ek are nested and jEkj !
0, j \i Eki j D 0. Now fix any i and let F be such that jF \ Eki j D 0. Then


.F / D lim
i!1
i.F / D 0:
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This is true for all such sets F ; in particular we can take F to be the set where
g	E1nEki is positive or negative. Hence, we must have that g 
 0 onE1 nEki . Since
this is true for all i , g 
 0 on E1. But then

0 D 
.E1/ D lim
i!1
i.E1/ D lim

i!1

Z
�

f .x/	Eki .x/gki .x/ dx � �;

which is a contradiction. Hence, Lp.�/.�/ is not separable. ut

2.8 The Dual Space of a Variable Lebesgue Space

In this section we consider the dual space of Lp.�/.�/: that is, the Banach space
Lp.�/.�/� of continuous linear functionalsˆ W Lp.�/.�/ ! R with norm

kˆk D sup
kf kp.�/�1

jˆ.f /j:

In the classical Lebesgue spaces, Lp
0 � .Lp/� (up to isomorphism), and equality

holds if p < 1. The behavior of the variable Lebesgue spaces is analogous if
pC < 1.

We will begin by constructing a large family of continuous linear functionals
and showing that they are induced by elements of Lp

0.�/.�/. Given a measurable
function g, define the linear functionalˆg on Lp.�/.�/ by

ˆg.f / D
Z
�

f .x/g.x/ dx:

Proposition 2.79. Given � and p.�/ 2 P.�/, and a measurable function g, then
ˆg is a continuous linear functional on Lp.�/.�/ if and only if g 2 Lp

0.�/.�/.
Furthermore, kˆgk D kgk0

p0.�/, and so

kp0.�/kgkp0.�/ � kˆgk � Kp0.�/kgkp0.�/: (2.13)

Proof. Given any measurable function g, it follows from the definitions that
kˆgk D kgk0

p0.�/, and so by Theorem 2.34 (with the roles of f and g exchanged
in the statement and p.�/ replaced by p0.�/), ˆg is continuous if and only if
g 2 Lp0.�/.�/ and we get inequality (2.13). ut

The linear mapping g 7! ˆg provides a natural identification between Lp
0.�/.�/

and a subspace of Lp.�/.�/�. When p.�/ is bounded, we get every element of the
dual space in this way.
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Theorem 2.80. Given � and p.�/ 2 P.�/, the following are equivalent:

1. pC < 1;
2. The map g 7! ˆg is an isomorphism: given any g 2 Lp

0.�/.�/, the functional
ˆg is continuous and linear; conversely, given any continuous linear functional
ˆ 2 Lp.�/.�/� there exists a unique g 2 Lp

0.�/.�/ such that ˆ D ˆg and
kgkp0.�/ 	 kˆk.

It follows from Theorem 2.80 that when pC < 1 the dual space and the
associate space of Lp.�/.�/ (see Proposition 2.37) coincide. In this case we will
simply write Lp.�/.�/� D Lp

0.�/.�/; the isomorphism will be implicit.
As an immediate corollary to Theorem 2.80 we can characterize when Lp.�/.�/

is reflexive. (Recall that a Banach space X is reflexive if X�� D X , with equality in
the sense of isomorphism.)

Corollary 2.81. Given � and p.�/ 2 P.�/, Lp.�/.�/ is reflexive if and only if
1 < p� � pC < 1.

Proof of Theorem 2.80. Suppose first that pC < 1. Fix ˆ 2 Lp.�/.�/�; we will
find g 2 Lp

0.�/.�/ such that ˆ D ˆg . Note that by (2.13) we immediately get that
kgkp0.�/ 	 kˆk.

We initially consider the case when j�j < 1. Define the set function 
 by

.E/ D ˆ.	E/ for all measurableE � �. Sinceˆ is linear and 	E[F D 	E C	F
if E \ F D ;, 
 is additive. To see that it is countably additive, let

E D
1[
jD1

Ej ;

where the sets Ej � � are pairwise disjoint, and let

Fk D
k[

jD1
Ej :

Then by Corollary 2.48,

k	E � 	Fkkp.�/ � .1C j�j/k	E � 	FkkpC

D .1C j�j/jE n Fkj1=pC :

Since jEj < 1, jE nFkj tends to 0 as k ! 1; thus 	Fk ! 	E in norm. Therefore,
by the continuity of ˆ, ˆ.	Fk / ! ˆ.	E/; equivalently,

1X
jD1


.Ej / D 
.E/;

and so 
 is countably additive.
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In other words 
 is a measure on �. Further, it is absolutely continuous: if E �
�, jEj D 0, then 	E 
 0, and so


.E/ D ˆ.	E/ D 0:

By the Radon-Nikodym theorem (see Royden [301]), absolutely continuous mea-
sures are gotten from L1 functions. More precisely, there exists g 2 L1.�/ such
that

ˆ.	E/ D 
.E/ D
Z
�

	E.x/g.x/ dx:

By the linearity of ˆ, for every simple function f D P
aj 	Ej , Ej � �,

ˆ.f / D
Z
�

f .x/g.x/ dx:

By Corollary 2.73, the simple functions are dense in Lp.�/.�/, and so ˆ and ˆg
agree on a dense subset. Thus, by continuity ˆ D ˆg , and so by Proposition 2.79,
g 2 Lp0.�/.�/.

Finally, to see that g is unique, it is enough to note that if g; Qg 2 Lp
0.�/.�/ are

such that ˆg D ˆQg , then for all f 2 Lp.�/.�/,
Z
�

f .x/.g.x/ � Qg.x// dx D 0: (2.14)

Since j�j < 1, by Corollary 2.50, g � Qg 2 Lp0.�/.�/ � Lp
0.�/

�.�/ D L.pC/
0

.�/,
and since (2.14) holds for all f 2 LpC.�/ � Lp.�/.�/, by the duality theorem for
the classical Lebesgue spaces, g � Qg D 0 almost everywhere.

We now consider the case when j�j D 1. Write

� D
1[
kD1

�k;

where for each k, j�kj < 1 and �k � �kC1. Given ˆ 2 Lp.�/.�/�, by restriction
ˆ induces a bounded linear functional on Lp.�/.�k/ for each k. Therefore, by the
above argument, there exists gk 2 Lp

0.�/.�k/ such that for all f 2 Lp.�/.�/,
supp.f / � �k ,

ˆ.f / D
Z
�k

f .x/gk.x/ dx:

Further, kgkkp0.�/ � k�1
p0.�/;�kkˆk � 3kˆk. Since the sets �k are nested, we must

have that for all f with support in �k ,

Z
�k

f .x/gk.x/ dx D
Z
�kC1

f .x/gkC1.x/ dx:
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Since the functions gk are unique, we must have that gk D gkC1	�k . Therefore,
we can define g by g.x/ D gk.x/ for all x 2 �k . Since supp.gk/ � �k , the
sequence jgkj increases to jgj; hence, by the monotone convergence theorem for
variable Lebesgue spaces (Theorem 2.59),

kgkp0.�/ D lim
k!1 kgkkp0.�/ � 3kˆk < 1:

Thus g 2 Lp0.�/.�/.
Now fix f 2 Lp.�/.�/ and let fk D f	�k . Then fk ! f pointwise almost

everywhere and jf � fkj � jf j, so by the dominated convergence theorem in
variable Lebesgue spaces (Theorem 2.62), fk ! f in norm. Further, fkg ! fg

pointwise, and by Hölder’s inequality for variable Lebesgue spaces (Theorem 2.26),
jfkgj � jfgj 2 L1.�/. Therefore, by the classical dominated convergence theorem
and the continuity of ˆ,

Z
�

f .x/g.x/ dx D lim
k!1

Z
�k

fk.x/g.x/ dx

D lim
k!1

Z
�k

fk.x/gk.x/ dx D lim
k!1ˆ.fk/ D ˆ.f /:

Finally, since the restriction of g to each �k is uniquely determined, g itself is
the unique element of Lp

0.�/.�/ with this property. This completes the proof of the
first half of the theorem.

Now suppose that pC D 1; we will show that there exists ˆ 2 Lp.�/.�/� such
that ˆ ¤ ˆg for any g 2 Lp0.�/.�/.

If j�1j > 0, then we use the fact that L1.�1/� contains (the isomorphic
image of) L1.�1/ D Lp

0.�/.�1/ as a proper subset (see, for example, Brezis [37]
or Dunford and Schwartz [95]); in other words there exists ˆ 2 L1.�1/� that
is not induced by any element of L1.�1/. By the Hahn-Banach theorem we can
extend ˆ to an element of Lp.�/.�/�. This is clearly the desired element: if it were
equal to ˆg for some g 2 Lp

0.�/.�/, then its restriction to Lp.�/.�1/ would be
induced by g	�1

, contradicting our choice of ˆ.
Now assume that j�1j D 0 but pC.� n �1/ D 1. We will prove that the

desired ˆ exists by contradiction. The proof starts as in the proof of Theorem 2.78.
Suppose to the contrary that everyˆ 2 Lp.�/.�/� is of the form ˆg , g 2 Lp0.�/.�/.
Fix sets Ek and the function f as constructed in the proof of Theorem 2.75. Then
f is non-negative, kf kp.�/ � 1, k	Ekkp.�/ ! 0, and for every k, kf	Ekkp.�/ �
1=2. Therefore, by Theorem 2.34 there exist non-negative functions gk 2 Lp0.�/.�/,
kgkkp0.�/ � 1, and � > 0 such that

Z
�

f .x/	Ek .x/gk.x/ dx � �: (2.15)

Without loss of generality we may assume that for all k, gk D gk	Ek .



66 2 Structure of Variable Lebesgue Spaces

Define the sets

Gk D ˚
ˆ 2 Lp.�/.�/� W jˆ.f	Ek /j < �=2

�
:

Then we have that Lp.�/.�/� D S
k Gk . To see this, fix ˆ 2 Lp.�/.�/�; by our

original assumption there exists g 2 Lp
0.�/.�/ such that ˆ D ˆg . By Hölder’s

inequality (Theorem 2.26), fg 2 L1.�/, and so by the classical dominated
convergence theorem,

lim
k!1ˆg.f	Ek / D lim

k!1

Z
�

f .x/	Ek .x/g.x/ dx D 0:

Hence, for k sufficiently large, ˆ 2 Gk .
By definition, the sets Gk are open in the weak� topology on Lp.�/.�/�.

Therefore, the collection fGkg is an open cover of the ball B D fˆ 2 Lp.�/.�/� W
kˆk � 4g. By the Banach-Alaoglu Theorem (see Brezis [37] or Conway [51]),
B is weak� compact, and so there exists N > 0 and a collection of indices
1 � k1 < k2 < � � � < kN such that fGki gNiD1 is a finite subcover of B .

Define ˆk 2 Lp.�/.�/� by

ˆk.h/ D ˆgk .h/ D
Z
�

h.x/	Ekgk.x/ dx:

Since kgkkp0.�/ � 1, by Theorem 2.34, kˆkk � 4 and so ˆk 2 B . Let ki be such
that ˆk 2 Gki ; then we have that ˆk.f	Eki / D jˆk.f	Eki /j < �=2. Since the sets
Ek are nested, for all k � kN ,

Z
Ek

f .x/gk.x/ dx D
Z
�

f .x/	Ek .x/gk.x/ dx

�
Z
�

f .x/	Eki gk.x/ dx D ˆk.f	Eki / < �=2:

But this contradicts inequality (2.15). Therefore, our original supposition is false,
and there exists ˆ 2 Lp.�/.�/� not induced by any g 2 Lp

0.�/.�/. This completes
our proof. ut

2.9 The Lebesgue Differentiation Theorem

We conclude this chapter with a generalization of the Lebesgue differentiation
theorem to variable Lebesgue spaces. In the classical case (see Grafakos [143]) if
f 2 L1loc.R

n/, then for almost every x 2 R
n,
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lim
r!0

�
Z
Br .x/

f .y/ dy D f .x/:

Such points x are referred to as Lebesgue points of the function f . This limit also
holds if balls are replaced by cubes centered at x or more generally by a nested
sequence of balls or cubes whose intersection contains x. In particular, it holds for
the sequence of dyadic cubes containing x. (See Sect. 3.2 below.) If f 2 Lp.�/loc .R

n/,
then by Proposition 2.41 f is locally integrable, so the Lebesgue differentiation
theorem holds for such f .

However, if f 2 L
p

loc.R
n/, 1 � p < 1, then a stronger result holds (again

see [143]): for almost every x 2 R
n,

lim
r!0

�
Z
Br .x/

jf .y/ � f .x/jp dy D 0:

An analog of this is true in the variable Lebesgue spaces.

Proposition 2.82. Given p.�/ 2 P.Rn/ such that j�1j D 0, and f 2 L
p.�/
loc .R

n/,
then for almost every x 2 R

n there exists ˛ > 0 such that

lim
r!0

�
Z
Br .x/

ˇ̌
˛
�
f .y/ � f .x/�ˇ̌p.y/ dy D 0: (2.16)

If pC < 1, then we can take ˛ D 1.

Proof. Since this is a local result, it will suffice to fix a ball B and prove (2.16) for
almost every x 2 B . Since f 2 Lp.�/loc .R

n/, there exists � > 1 such that

Z
B

� jf .y/j
�

�p.y/
dy < 1:

Enumerate the rationals as fqig and define ˇi D �
2�.jqi j C 1/

��1
. Then

Z
B

ˇ̌
ˇi
�
f .y/ � qi

�ˇ̌p.y/
dy �

Z
B

2p.y/�1
�ˇ̌
f̌ .y/

ˇ̌p.y/ C jˇqi jp.y/
�
dy

� 1

2

Z
B

� jf .y/j
�

�p.y/
dy C

Z
B

� jqi j
jqi j C 1

�p.y/
dy < 1:

Therefore, by the classical Lebesgue differentiation theorem, for each i and for
almost every x 2 B ,

lim
r!0

�
Z
Br .x/

ˇ̌
ˇi
�
f .y/ � qi

�ˇ̌p.y/
dy D ˇ̌

ˇi
�
f .x/ � qi

�ˇ̌p.x/
:
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Since the countable union of sets of measure 0 again has measure 0, this limit holds
for all i and almost every x 2 B . Fix such an x and fix �, 0 < � < 1. Then there
exists i such that ˇ̌

ˇi
�
f .x/ � qi

�ˇ̌
< �:

Define ˛ D ˇi=2. Then by Remark 2.8 we have that

lim sup
r!0

�
Z
Br .x/

ˇ̌
˛
�
f .y/ � f .x/

�ˇ̌p.y/
dy

� lim sup
r!0

�
�
Z
Br .x/

2p.y/�1
ˇ̌ˇi
2

�
f .y/ � qi

�ˇ̌p.y/
dy

C �
Z
Br .x/

2p.y/�1
ˇ̌ˇi
2

�
f .x/ � qi

�ˇ̌p.y/
dy

�

� 1

2
lim sup
r!0

�
�
Z
Br .x/

ˇ̌
ˇi
�
f .y/ � qi

�ˇ̌p.y/
dy

C �
Z
Br .x/

ˇ̌
ˇi
�
f .x/ � qi

�ˇ̌
dy

�

D 1

2


ˇ̌
ˇi
�
f .x/ � qi /

�ˇ̌p.x/ C ˇ̌
ˇi
�
f .x/ � qi /

�ˇ̌�

< �:

The limit (2.16) follows at once.
Finally if pC < 1, then the above proof can be readily modified to take ˛ D

ˇi D 1. ut
Remark 2.83. When pC < 1, by Theorem 2.58 the modular limit implies a limit
of norms:

lim
r!0

		jBr.x/j�1=p.�/jf .�/� f .x/j		
p.�/ D 0:

2.10 Notes and Further Results

2.10.1 References

As we discussed in Chap. 1, the variable Lebesgue spaces were considered by a
number of authors independently and so many of the results in this chapter were
probably discovered several times. In our treatment, we have primarily followed
the work of Kováčik and Rákosnı́k [219] and Diening [80]. (This work, Diening’s
habilitation thesis, has recently been expanded into a book, written jointly with
Harjulehto, Hästö and Růžička [82].) The structure of variable Lebesgue spaces
is also treated by Samko [313, 314] and Fan and Zhao [122]. A briefer overview,
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combined with an extensive bibliography, is given by Harjulehto and Hästö [150].
The structural parallels between the classical and variable Lebesgue spaces are
clearest when pC < 1, and this is the case frequently considered in the literature.
Our approach has been to provide a unified treatment of bounded and unbounded
exponents.

The local log-Hölder continuity condition LH0 (Definition 2.2) first appeared
in Sharapudinov [331] and later in Zhikov [358, 359, 361], Karapetyants and
Ginzburg [189, 190], Ross and Samko [300], Samko [313], and Diening [77].
Since these papers this condition has become ubiquitous. The log-Hölder condition
at infinity was introduced in [62]. Both log-Hölder conditions play a central role in
harmonic analysis on variable Lebesgue spaces, as we will make clear in subsequent
chapters.

The modular in Definition 2.6 is taken from [219]; for alternative definitions
see Sect. 2.10.2 below. The variable Lebesgue space norm in Definition 2.16 is
usually referred to as the Luxemburg norm, because it is analogous to the norm on
Orlicz spaces (cf. [25]). However, it appeared in Musielak and Orlicz [275] in the
more general context of modular spaces, and earlier in Nakano [280]. Independently
it was defined by Sharapudinov [329], who based it on a more general result of
Kolmogorov [210] about Minkowski functionals. For this reason, some authors refer
to this norm as the Kolmogorov-Minkowski norm (e.g., [313]).

The extension theorem in Lemma 2.4 was first proved in [61]. A weaker version
for functions in LH0 appeared in [80] and for Lipschitz functions in [106]. The
construction in the second half of the proof of Proposition 2.12 is due to Kováčik and
Rákosnı́k [219]; this construction and the variant of it in Theorem 2.75 play a major
role in understanding the properties of variable Lebesgue spaces with unbounded
exponents. A somewhat different and more general version of Proposition 2.18
(including the case j�1j > 0 and replacing the constant s by a bounded function)
is due independently to Samko [314] and Edmunds and Rakósnı́k [106]; the simpler
version given here was proved independently in [61]. Corollary 2.23 for pC < 1
appeared in [122]; our version is adapted from Diening et al. [81]. Variants of
this estimate have appeared elsewhere in the literature: see, for example, de Cicco
et al. [73]. The proof of Proposition 2.25 is taken from Samko [313]. In the
more general setting of modular spaces this was proved by Nakano [280] (who
attributed this definition of the norm to Amemiya). See also Musielak [274] and
Maligranda [244]. Independently, and both working in the more general setting of
Musielak-Orlicz spaces, Fan [114] and Šragin [335] proved that the Amemiya norm
is equal to the associate norm when j�1j D 0. (Šragin assumed that j�1j D 0.

This result was also noted for modular spaces without proof by Hudzik and
Maligranda [180, Remark 4].) For an application of the Amemiya norm, see [131].

Our proof of Hölder’s inequality (Theorem 2.26) is taken from [219]. The
generalized Hölder’s inequality (Corollary 2.28) was proved by Diening [80] and
earlier by Samko [313,314] with the additional hypothesis that rC.� n�r.�/1 / < 1.
In the same papers, Samko also proved Corollary 2.30 and Minkowski’s integral
inequality (Corollary 2.38). His proof of Corollary 2.30 shows that the constant can
be taken to be

P
Œpi .�/���1.
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The L1 embedding in Proposition 2.43 was shown to us by Diening. Theo-
rem 2.45 is due to Diening [77]; when j�j < 1 (i.e., Corollary 2.48) it was proved
by Kováčik and Rákosnı́k [219] and Samko [314]. A quantitative version when
p.�/ and q.�/ are close was proved by Edmunds, Lang and Nekvinda [102]. The
embedding in Theorem 2.51 was implicit in [67] and is explicit in Diening [80].
Proposition 2.53 and other, related embedding theorems were proved by Diening
and Samko [92].

Our definition of modular convergence, Definition 2.54, is classical in the study
of modular spaces; see Maligranda [244] or Musielak [274]. Diening [80] also
uses this definition; both [219] and [122] assume ˇ D 1 in the definition. The
monotone convergence theorem for variable Lebesgue spaces (Theorem 2.59) was
first stated without proof in [101]; a proof in the case pC < 1 appeared in [58] and
the full result was proved in [56]. Fatou’s lemma and the dominated convergence
theorem for variable Lebesgue spaces (Theorems 2.61 and 2.62) are new. The weak
converse of the dominated convergence theorem, Proposition 2.67 is also new. For
the converse in the case of the classical Lebesgue spaces see Brezis [37] or Lieb and
Loss [238]. Theorem 2.68 for pC < 1 is in [219] and implicit in [122]; our version
is new. Theorem 2.69 is stated by Fan and Zhao [122] but the proof is only sketched.
The complete proof was given in [60]; also see below.

The completeness of the variable Lebesgue spaces was proved by Kováčik and
Rákosnı́k [219] and Diening [80]; our proof is different and follows the proof in
Bennett and Sharpley [25] for abstract Banach function spaces. Our approach also
yields the Riesz-Fischer property (Theorem 2.70). Theorem 2.72 and Corollary 2.73
are in [219]. Theorem 2.75 is due to Kalyabin [187] and also to Edmunds, Lang and
Nekvinda [101]. Theorem 2.77 is new; Harjulehto [149] gave a specific example of
a space in which functions of compact support were not dense. Theorem 2.78 in the
case pC D 1 is new, but it depends critically on the construction from [219] and
adapts an argument in [25].

Theorem 2.80 is proved in [219], but their proof depends on deeper results on
Orlicz-Musielak spaces due to Hudzik [179] and Kozek [220]. Our proof is direct:
when pC < 1 we followed the proof for classical Lebesgue spaces in Roy-
den [301], and for pC D 1 we adapted an argument in Bennett and Sharpley [25].
A different proof of the characterization of reflexivity (Corollary 2.81) is due to
Lukeš, Pick and Pokorný [242]: see Sect. 2.10.3 below.

The generalization of the Lebesgue differentiation theorem to the variable setting
(Proposition 2.82) was proved by Harjulehto and Hästö [152] when pC < 1. Our
proof is a simple modification of theirs.

2.10.2 Musielak-Orlicz Spaces and Modular Spaces

The variable Lebesgue spaces are a particular example of a larger class of function
spaces that also includes the classical and weighted Lebesgue spaces and Orlicz
spaces as special cases. Given a set �, let ˆ W � � R

C ! Œ0;1� be such that
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for each x 2 �, the function ˆ.x; �/ is non-decreasing, continuous and convex on
the set where it is finite. Assume that ˆ.x; 0/ D 0, ˆ.x; t/ > 0 if t > 0, and
ˆ.x; t/ ! 1 as t ! 1. We also assume that for each t � 0, the function ˆ.�; t/
is a measurable function.

Define the Musielak-Orlicz space Lˆ.;/.�/ to be the set of all functions f such
that for some � > 0,

�ˆ.;/.f / D
Z
�

ˆ.x; jf .x/j=�/ dx < C1: (2.17)

Then by arguments analogous to those above one can show that Lˆ.;/.�/ is a
Banach function space with the norm

kf kLˆ.;/.�/ D inf

�
� > 0 W

Z
�

ˆ.x; jf .x/j��1/ dx � 1

�
:

In this setting the norm is referred to as the Luxemburg norm. It is possible to define
a so-called complementary function ‰ which also generates a Musielak-Orlicz
space. This space can be used to define the associate norm, which is also called the
Orlicz norm. See [244, 274] for further details. Because the spaces Lˆ.;/ generalize
Orlicz spaces in the same way that Lp.�/ generalizes the classical Lebesgue spaces,
it makes sense to refer to Lˆ.;/ as a variable Orlicz space, but this terminology has
not been widely adopted.

Musielak-Orlicz spaces are themselves a special case of abstract Banach spaces
called modular spaces. Given a set X that is a real vector space, a convex modular
is a function � W X ! Œ0;1� such that:

1. �.x/ D 0 if and only if x D 0;
2. �.�x/ D �.x/ for all x 2 X ;
3. � is convex;
4. The map � 7! �.�x/ is left-continuous.

If we let X� be the set of all x 2 X such that �.��1x/ < 1 for some � > 0, then
this becomes a normed vector space with norm

kxkX� D inff� > 0 W �.��1x/ � 1g:

For more further details, see [82, 244, 274].
The function �ˆ defined by (2.17) is a convex modular in this sense and Lˆ.;/

is a modular space. In particular, if p.�/ 2 P.�/, then (by Proposition 2.7) �p.�/
is a convex modular. Many of the classical Banach function spaces can also be
viewed as Musielak-Orlicz spaces or as modular spaces. If let ˆ.x; t/ D tp , 1 �
p < 1, we get the classical Lebesgue space Lp.�/. If we let ˆ.x; t/ D tpw.x/,
where w is a positive, locally integrable function, then we get the weighted Lebesgue
space Lp.�;w/. If ˆ.x; t/ D ˆ.t/, then we get the Orlicz spaces. For example, we
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can take ˆ.t/ D tp log.e C t/a, in which case Lˆ becomes the Zygmund space
Lp.logL/a. (See Bennett and Sharpley [25].)

We can weaken the definition of modular by replacing .1/ by

(1a) �.0/ D 0;
(1b) If �.�x/ D 0 for all � > 0, then x D 0.

Such functions � are referred to as semi-modulars, and the theory of modular spaces
readily extends to this setting. For example, if we letˆ.x; t/ D 1�	.1;1/.t/ (letting
0 � 1 D 0), then (2.17) defines a semi-modular and we get L1.�/. We can extend
this approach to get a very elegant definition of the variable Lebesgue spaces. Given
p.�/ 2 P.�/, define

Q�p.�/.f / D
Z
�

jf .x/jp.x/ dx;

with the convention that t1 D 1 � 	.1;1/.t/. Then Q�p.�/ is a semi-modular. It is not
equivalent to �p.�/: for example, if we let � D R, p.x/ D 1, and f .x/ D c > 0,
then �p.�/.f / D c, but Q�p.�/.f / D 0 if 0 < c � 1 and Q�p.�/.f / D 1 if c > 1.
Nevertheless, the norm k � kX

Q�
is equivalent to k � kp.�/: for all f ,

kf kX
Q�

� kf kp.�/ � 2kf kX
Q�
: (2.18)

The whole theory of variable Lebesgue spaces can be developed from this per-
spective; it is done this way, for example, in [80, 82]. (A proof of (2.18) can be
found in both.) This approach is extremely elegant and is also advantageous in
some applications, since in certain limiting cases the space that appears naturally is a
Musielak-Orlicz space. For instance, in Sect. 3.7.3 below, the behavior of the Hardy-
Littlewood maximal operator is considered for functions f 2 Lp.�/.logL/q.�/,
the Musielak-Orlicz space generated by ˆ.x; t/ D tp.x/ log.e C t/q.x/. These are
generalizations of the Zygmund spaces and were first considered in [59] and later by
Mizuta and various co-authors [138, 166, 167, 243, 265, 267]. For another example
generalizing the space expL, see Harjulehto and Hästö [153].

2.10.3 Banach Function Spaces

Another abstract approach to the variable Lebesgue spaces is that of Banach
function spaces as defined by Bennett and Sharpley [25]. Let � � R

n and let
M be the set of all measurable functions with respect to Lebesgue measure. Given
a mapping k � kX W M ! Œ0;1�, the set

X D ff 2 M W kf kX < 1g;

is a Banach function space if the pair .X; k � kX/ satisfies the following properties
for all f; g 2 M:
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1. kf kX D 		jf j		
X

and kf kX D 0 if and only if f 
 0;
2. kf C gkX � kf kX C kgkX ;
3. For all a 2 R, kaf kX D jajkf kX ;
4. X is a complete normed vector space with respect to k � kX ;
5. If jf j � jgj almost everywhere, then kf kX � kgkX ;
6. If ffng � M is a sequence such that jfnj increases to jf j almost everywhere.,

then kfnkX increases to kf kX ;
7. If E � � is a measurable set and jEj < 1, then k	EkX < 1;
8.
R
E jf .x/j dx � CEkf kX if jEj < 1, where CE < 1 depends onE andX , but

not on f .

It follows at once from the results in this chapter that k � kp.�/ is a Banach
function space. This was first observed by Edmunds, Lang and Nekvinda [101] (see
also Lukeš, Pick and Pokorný [242]). Many of the results proved in this chapter—
especially the functional analytic ones on duality, separability, etc.—can be proved
in this more general setting.

Here we give one such general result. We say that a function f 2 X has
absolutely continuous norm if given any nested sequence of sets fEkg such that
jEkj ! 0, kf	EkkX ! 0. The norm k�kX is absolutely continuous if every function
in X has absolutely continuous norm. We define the associate space of X to be the
space X 0 of functions g such that

kgkX 0 D sup

�Z
�

jf .x/g.x/j dx W kf kX � 1

�
< 1:

Denoting by X� the dual space of X , then the following are equivalent [25]:

1. k � kX is absolutely continuous;
2. X is separable;
3. X� D X 0 (up to isomorphism).

As a corollary to Theorems 2.58 and 2.62 we have that the norm k � kp.�/ is
absolutely continuous if and only if pC < 1. In proving this fact, as well as in
proving separability and duality (Theorems 2.78 and 2.80) the construction from
Proposition 2.12 played a central role.

The Banach space properties of the variable Lebesgue spaces have been consid-
ered by several authors. The subspace of functions in Lp.�/, pC D 1, that have
absolutely continuous norm was examined by Edmunds, Lang and Nekvinda [101].
A Banach space X is uniformly convex if for every � > 0 there exists ı > 0 such
that if x; y 2 X , kxkX D kykX D 1 and kx � ykX � �, then kx C ykX � 2 � ı.
Lukeš, Pick and Pokorný [242] showed that the following are equivalent:

1. 1 < p� � pC < 1;
2. Lp.�/.�/ is reflexive;
3. Lp.�/.�/ and Lp

0.�/.�/ have absolutely continuous norms;
4. Lp.�/.�/ is uniformly convex.
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Earlier, the uniform convexity of Lp.�/.�/ was proved by Nakano [280] (when� D
Œ0; 1�, see also [245]), Diening [80] and also by Fan and Zhao [122]; the uniform
convexity of modular spaces was considered by Musielak [274]. In the same paper,
Lukeš et al. characterized the exponents such thatLp.�/.�/ has the Radon-Nikodym
and Daugavet properties. Dinca and Matei [93, 94] have considered the Gateaux
derivative of the norm of Lp.�/.�/ and have also considered uniform convexity and
the derivative of the norm for variable Sobolev spaces (see Chap. 6).

2.10.4 Alternative Definitions of the Modular

In the framework we have adopted there are several equivalent definitions of the
modular. One alternative is

�0
p.�/.f / D max

�Z
�n�1

jf .x/jp.x/ dx; kf kL1.�1/

�
I

then �0
p.�/.f / is equivalent to �p.�/.f / for all f , and the same results hold with

minor modifications of the proof. This definition was used by Edmunds and
Rákosnı́k [106].

Another, more interesting alternative was considered by Samko [313] and
developed systematically by Diening et al. [80, 82]. Modify the definition of the
modular

��
p.�/.f / D

Z
��

1

p.x/
jf .x/jp.x/ dx C kf kL1.�1/;

and use this to define the norm

kf k�
p.�/ D inff� > 0 W ��

p.�/.f =�/ � 1g: (2.19)

If pC < 1, then it is immediate that

.pC/�1��
p.�/.f / � �p.�/.f / � .p�/�1��

p.�/.f /;

and it follows that k � kp.�/ and k � k�
p.�/ are equivalent norms. However, it can be

shown that this is the case even when pC D 1.
One advantage of this definition is that Hölder’s inequality follows with a

universal constant. Indeed, the proof of Theorem 2.26 can be modified to show that

Z
�

jf .x/g.x/j dx � 2kf k�
p.�/kgk�

p0.�/: (2.20)

Furthermore, as Samko [313] pointed out, if in the definition of k � k�
p.�/ we

replace the constant 1 by 1=2 on the right-hand side of (2.19), then the constant
in (2.20) becomes 1. This phenomenon is exactly parallel to the behavior of the
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norm on Orlicz spaces and follows from the structure of the Luxemburg norm. See
Miranda [264] or Greco, Iwaniec and Moscariello [145].

2.10.5 Variable Lebesgue Spaces and Orlicz Spaces

In certain applications where p� D 1 and j�j < 1 (see, for instance Sect. 3.7.3
below) it is natural to ask if there is an embedding of Lp.�/.�/ into the Zygmund
space L logL.�/: more precisely, when

kf kL logL.�/ � Ckf kLp.�/.�/: (2.21)

These embeddings were first studied by Hästö [163], and then in Futamura and
Mizuta [136], Mizuta, Ohno and Shimomura [266], and also in [59]. They hold if
p.�/ satisfies a decay condition when p.�/ is close to 1 in value. More precisely, let

�.s/ D 1C log log.1=s/

log.1=s/
:

If for all s > 0 sufficiently small,

jfx 2 � W p.x/ � �.s/gj � Ks;

then (2.21) holds.
Necessary and sufficient conditions for the embeddings between Orlicz spaces

and variable Lebesgue spaces can be gotten as special cases of a general theorem
for Orlicz-Musielak spaces. Given� and p.�/ 2 P.�/, and given a Young function
ˆ and the corresponding Orlicz space Lˆ.�/, then Lp.�/.�/ � Lˆ.�/ if and only
if there exists K > 1 and h 2 L1.�/ such that for all x 2 � and t > 0,

ˆ.t/ � Ktp.x/ C h.x/:

Conversely, Lˆ.�/ � Lp.�/.�/ if and only if there exists K > 1 and g 2 L1.�/

such that
tp.x/ � Kˆ.t/C g.x/:

This theorem is due to Ishii [182]; see also Hudzik [177], Kozek [220], or
Musielak [274]. This result was used by Diening [77] to prove Theorem 2.45.

2.10.6 More on Convergence

Theorem 2.69 shows that convergence in norm, modular and measure are equivalent
if pC < 1. The relationship between these three kinds of convergence is more
complicated when pC D 1. As we showed in Proposition 2.56 and Theorem 2.66,
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convergence in norm always implies convergence in modular and convergence in
measure. Conversely, convergence in modular implies convergence in norm exactly
whenp� D 1 or pC.�n�1/ < 1 (Theorem 2.58), and the sequence of functions
constructed in Theorem 2.66 also shows that convergence in measure never implies
convergence in norm.

The relationship between convergence in modular and convergence in measure
is more complicated. The proof of Theorem 2.69 can be generalized to prove the
following results.

Theorem 2.84. Given � and p.�/ 2 P.�/, for each M � 1 let

EM D fx 2 � n�1 W p.x/ > M g:

Then the following are equivalent:

1. For any sequence ffkg 2 Lp.�/.�/ and f 2 Lp.�/.�/, if fk ! f in modular,
then fk ! f in measure and for every 
 > 0 sufficiently small, �.
fk/ !
�.
f /;

2. jEM j ! 0 as M ! 1.

Theorem 2.85. Given � and p.�/ 2 P.�/ such that j�1j D 0, if f 2 Lp.�/.�/
and ffkg � Lp.�/.�/ are such that fk ! f in measure and for some 
 , 0 < 
 < 1,
�.
f / < 1 and �.
fk=3/ ! �.
f=3/, then fk ! f in modular.

For proofs and a complete discussion of the relationship between these three
notions of convergence, see [60].

Beyond the three types of convergence, we can also consider weak convergence.
A sequence ffng � Lp.�/.�/ converges weakly to f 2 Lp.�/.�/ if for every ˆ 2
Lp.�/.�/�, ˆ.fn/ ! ˆ.f /. When pC < 1, by Theorem 2.80, we have that fk !
f weakly in Lp.�/.�/ if for every g 2 Lp0.�/.�/ D Lp.�/.�/�,

Z
�

fk.x/g.x/ dx !
Z
�

f .x/g.x/ dx:

In the classical Lebesgue spaces, by the Radon-Riesz theorem, if 1 < p < 1,
fk ! f weakly, and kfkkp ! kf kp , then fk ! f in norm. This is also true in
the variable Lebesgue spaces.

Proposition 2.86. Given � and p.�/ 2 P.�/ such that 1 < p� � pC < 1, if the
sequence ffkg � Lp.�/.�/ converges weakly to f 2 Lp.�/.�/, and if kfkkp.�/ !
kf kp.�/, then fk ! f in norm.

The proof is the same as in the classical case (see Hewitt and Stromberg [169]): it
follows from the fact that with these hypotheses,Lp.�/.�/ is uniformly convex. (See
Sect. 2.10.3.) For an example of the application of weak convergence in variable
Lebesgue spaces, see Zecca [352] (which generalizes [146]).
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2.10.7 Variable Sequence Spaces

The sequence spaces `p , 1 � p < 1, can be generalized to get a discrete version
of the variable Lebesgue spaces. Given a function p.�/ W N ! Œ1;1/, define `p.�/
to be the space of sequences ˛ D fakg such that

k˛k`p.�/ D inf

(
� > 0 W

1X
kD1

� jakj
�

�p.k/
� 1:

)
:

Arguing as above we can prove that `p.�/ is Banach space. These spaces were first
considered by Orlicz [290] and Nakano [279] (see also [245]), and more recently
by Edmunds and Nekvinda [104] and by Nekvinda [281, 283]. Diening [80] treats
variable sequence spaces as a special case of the modular spaces, since the above
definition of the norm is gotten from the definition of the norm onLp.�/ if we replace
the underlying space by N and Lebesgue measure by counting measure.

Recently, Hästö has shown that the variable sequence spaces have applications
to the study of operators on variable Lebesgue spaces. See [165] and Sect. 5.6.6
below.



Chapter 3
The Hardy-Littlewood Maximal Operator

In this chapter we begin the study of harmonic analysis on variable Lebesgue
spaces. Our goal is to determine the behavior of some of the classical operators of
harmonic analysis—approximate identities, singular integrals, and Riesz potentials.
The foundation for this is the Hardy-Littlewood maximal operator, which is the
subject of Chaps. 3 and 4.

In this chapter we first lay out the basic properties of the maximal operator
and then prove the norm inequalities it satisfies on the classical Lebesgue spaces.
To prove these results we will use the Calderón-Zygmund decomposition, an
extremely versatile tool that has found countless applications, to prove the weak
type inequalities and then use Marcinkiewicz interpolation to prove the strong type
inequalities. We present this material in detail for two reasons. First, we will need to
use it to extend these results to variable Lebesgue spaces. Second, we want to draw
a contrast between the two settings: the proof in the variable case is significantly
different since we are unable to use interpolation.

We then turn to our main goal, which is to extend the classical results to the
variable Lebesgue spaces. Our central result, Theorem 3.16 below, shows that log-
Hölder continuity is a sufficient condition for the maximal operator to be bounded
onLp.�/. In Chap. 4 we will consider the ways in which this condition can be relaxed.
We then examine pointwise and modular inequalities for the maximal operator.
Finally, given the importance of interpolation in the classical case, we conclude this
chapter with a digression: we consider interpolation on variable Lebesgue spaces
and use this to prove that the set of exponents for which the maximal operator is
bounded is convex.

3.1 Basic Properties

Given a locally integrable function f , the maximal function Mf gives the largest
average value of f at each point. More precisely, we make the following definition.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3 3, © Springer Basel 2013
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Definition 3.1. Given a function f 2 L1loc.R
n/, then Mf , the Hardy-Littlewood

maximal function of f , is defined for any x 2 R
n by

Mf.x/ D sup
Q3x

�
Z
Q

jf .y/j dy;

where the supremum is taken over all cubesQ � R
n that contain x and whose sides

are parallel to the coordinate axes.

There are several variations of the maximal operator, all of which are equivalent
and are often used interchangeably. For example, the supremum could be taken over
cubes centered at x; this is referred to as the centered maximal operator and is
denoted by Mc. Clearly, Mcf .x/ � Mf.x/. On the other hand, given any cube Q
containing x, there exists a cube QQ centered at x and containingQ such that j QQj �
3njQj. Hence, Mf.x/ � 3nMcf .x/. Similarly, the supremum could be taken over
all cubes and not just those whose sides are parallel to the coordinate axes; again,
this definition is pointwise equivalent to Definition 3.1. In many applications, it
makes more sense to define the maximal operator by taking the supremum over all
balls that contain x, or even over balls centered at x. By much the same argument
as before these two operators are equivalent pointwise to one another. Further, given
any ball B there exist two cubesQ1; Q2, with the same center such thatQ1 � B �
Q2 and such that jQ2j=jQ1j D nn=2; thus, the operators defined with centered balls
and centered cubes are pointwise equivalent as well. Though we will generally use
the maximal operator as given in Definition 3.1, we will occasionally use one of
these equivalent definitions below.

Also, in Definition 3.1 and these alternate definitions, we did not specify if the
cubes and balls were open or closed. Since the boundaries of both have measure
zero, we get the same average if we replace a ball or cube by its closure. We will
do this without comment; so, for instance, in Example 3.2 we will take our averages
over (open) balls such that x is contained on the boundary.

We can also consider the maximal operator for functions defined on some domain
�. There are two ways of doing this. First, given such a function, we extend it to a
function on R

n by making it identically 0 on R
n n �. Then to define the maximal

operator of f on�, we would restrict the supremum to cubesQ such that jQ\�j >
0. On � this definition agrees with the one given above and is the approach we will
use. Alternatively, we could modify the definition by restricting the supremum to
cubes Q (or balls B) contained in �, or even cubes that are compactly contained
in � (e.g., by assuming 2Q � �). This is no longer equivalent to the maximal
operator defined above, but is dominated pointwise by it. In either case, therefore,
when we prove norm inequalities for the maximal operator it will suffice to assume
� D R

n.
The maximal operator is very difficult to compute exactly for most functions, but

in certain cases it can be approximated easily. The following example and variations
of it occur repeatedly in practice.
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Example 3.2. In R
n, let f .x/ D jxj�a, 0 < a < n. Then Mf.x/ 	 jxj�a.

Proof. This equivalence is easier to see if we define the maximal operator using the
supremum over balls containing the point. Fix a point x ¤ 0; it is immediate that

Mf.x/ � �
Z
B

jxj
.0/

jyj�a dy D c.n/

jxjn
Z jxj

0

r�aCn�1 dr D c.n; a/jxj�a:

We will now show the reverse inequality. Let Br.x0/ be any ball containing x. Since
f is radially decreasing, if r � jxj=4, then

�
Z
Br .x0/

jf .y/j dy � �
Z
Br .0/

jf .y/j dy

� �
Z
B

jxj=4.0/

jf .y/j dy � 4n�
Z
B

jxj
.0/

jf .y/j dy � C.n; a/jxj�a:

On the other hand, if r < jxj=4, then for every y 2 Br..1 � r=jxj/x/,

jyj � .1 � r=jxj/jxj � r D jxj � 2r � jxj=2:

Hence, f .y/ � 2ajxj�a, and so

�
Z
Br .x0/

jf .y/j dy � �
Z
Br ..1�r=jxj/x/

jf .y/j dy � 2ajxj�a:

The desired inequality now follows from the definition of the maximal operator. ut
Proposition 3.3. The Hardy-Littlewood maximal operator has the following prop-
erties:

1. M is sublinear: M.f C g/.x/ � Mf.x/ CMg.x/, and M is homogeneous:
for all ˛ 2 R, M. f̨ /.x/ D j˛jMf.x/.

2. For all f , jf .x/j � Mf.x/ almost everywhere.
3. If f 2 L1.Rn/, then Mf 2 L1.Rn/ and kMf k1 D kf k1.
4. If f .x/ ¤ 0 on a set of positive measure, then on any bounded set � there exists
� > 0 such that Mf.x/ � �, x 2 �.

5. If f .x/ ¤ 0 on a set of positive measure, then Mf 62 L1.Rn/.
Proof. Property (1) follows immediately from the definition. Property (2) follows
from the Lebesgue differentiation theorem (see Sect. 2.9): given any Lebesgue point
x of f , if we let Qr.x/ be the cube of side length r centered at x, then

Mf.x/ � lim
r!0

ˇ̌
ˇ̌�
Z
Qr .x/

f .y/ dy

ˇ̌
ˇ̌ D jf .x/j:
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Property (3) follows from Property (2) and the definition.
To prove Property (4): since f .x/ ¤ 0 on a set of positive measure, there exists

a cube Q0 centered at the origin such that

Z
Q0

jf .y/j dy > 0:

Let Q be the smallest cube containing� and Q0. Then for every x 2 �,

Mf.x/ � �
Z
Q

jf .y/j dy � jQj�1
Z
Q0

jf .y/j dy D � > 0:

Finally, to prove (5) let Q0 be as above. For any x 2 R
n nQ0 let Qx be the cube

centered at 0 with `.Qx/ D j2xj. Then

Mf.x/ � �
Z
Qx

jf .y/j dy � j2xj�n
Z
Q0

jf .y/j dy 62 L1.Rn/:
ut

3.2 The Calderón-Zygmund Decomposition

In this section we state and prove the classical norm inequalities for the Hardy-
Littlewood maximal operator. The key idea is that while Mf dominates f
pointwise, they still have comparable norms in Lp , 1 < p � 1, and even for
f 2 L1 the size of Mf can be controlled.

Theorem 3.4. Given f 2 Lp.Rn/, 1 � p < 1, for every t > 0,

jfx 2 R
n W Mf.x/ > tgj � C1

tp

Z
Rn

jf .x/jp dx: (3.1)

Further, if 1 < p � 1, then

kMf kLp.Rn/ � C2kf kLp.Rn/: (3.2)

Remark 3.5. From the proof of Theorem 3.4 we have explicit values for the
constants: C1 D 3n4np and C2 D Œ2p012n�1=p .

Inequality (3.1) is referred to as a weak .p; p/ inequality; when p D 1 it is a
substitute for the fact that M is never bounded on L1.Rn/. We can rewrite it in
terms of Lp norms: take the p-th root of both sides to get, for all t > 0,

tk	fx2Rn WMf.x/>tgkp � C
1=p
1 kf kp: (3.3)
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For p > 1 the weak .p; p/ inequality follows from the strong .p; p/ inequality
(3.2), since by Chebyshev’s inequality we have that

tp
Z
Rn

	fx2RnWMf.x/>tg.x/ dx �
Z
Rn

Mf .x/p dx; t > 0:

The original proof of Theorem 3.4 has two steps: first, prove the weak .1; 1/
inequality using the Vitali or Besicovitch covering lemma, and then prove the
strong .p; p/ inequality using Marcinkiewicz interpolation. Calderón and Zygmund
developed a more complicated decomposition in terms of dyadic cubes: in essence
they showed that norm inequalities for the maximal operator follow from norm
inequalities for the dyadic maximal operator (defined as the supremum over dyadic
cubes). The advantage of their approach is its versatility; we will see this below
when we extend Theorem 3.4 to the variable Lebesgue spaces.

To state the Calderón-Zygmund decomposition we begin with a definition.

Definition 3.6. LetQ0 D Œ0; 1/n, and let�0 be the set of all translates ofQ0 whose
vertices are on the lattice Z

n. More generally, for each k 2 Z, let Qk D 2�kQ0 D
Œ0; 2�k/n, and let �k be the set of all translates of Qk whose vertices are on the
lattice 2�k

Z
n. Define the set of dyadic cubes� by

� D
[
z2Z
�k:

The following properties of dyadic cubes are immediate consequences of the
definition.

Proposition 3.7.

1. For each k 2 Z, if Q 2 �k , then `.Q/ D 2�k .
2. For each x 2 R

n and k 2 Z, there exists a unique cubeQ 2 �k such that x 2 Q.
3. Given any two cubesQ1; Q2 2 �, eitherQ1\Q2 D ;,Q1 � Q2, orQ2 � Q1.
4. For each k 2 Z, if Q 2 �k , then there exists a unique cube eQ 2 �k�1 such that
Q � eQ. (eQ is referred to as the dyadic parent of Q.)

5. For each k 2 Z, if Q 2 �k, then there exist 2n cubes Pi 2 �kC1 such that
Pi � Q.

Given the dyadic cubes we define the associated maximal operator.

Definition 3.8. Given a function f 2 L1loc.R
n/, define the dyadic maximal operator

Md by

Mdf .x/ D sup
Q3x
Q2�

�
Z
Q

jf .y/j dy:

Clearly,Mdf .x/ � Mf.x/. The reverse inequality does not hold pointwise: for
example, if f D 	Œ0;1/n , then for all x not in the first quadrant (i.e., x 62 Œ0;1/n),
Mdf .x/ D 0 butMf.x/ > 0. On the other hand, they are comparable in a weaker,
measure theoretic sense. This is the substance of the next two results.
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Lemma 3.9. If f 2 L1loc.R
n/ is such that �R

Q
jf .y/j dy ! 0 as jQj ! 1, then for

each t > 0 there exists a (possibly empty) set of disjoint dyadic cubes fQj g such that

Ed
t D fx 2 R

n W Mdf .x/ > tg D
[
j

Qj

and

t < �
Z
Qj

jf .x/j dx � 2nt: (3.4)

Further, for almost every x 2 R
n nSj Qj , jf .x/j � t .

Lemma 3.9 is referred to as the Calderón-Zygmund decomposition, and the cubes
fQj g are referred to as the Calderón-Zygmund cubes of f at height t .

Remark 3.10. The condition that �R
Q

jf .y/j dy ! 0 as jQj ! 1 is satisfied if, for
example, f 2 Lp.Rn/, 1 � p < 1, since by Hölder’s inequality,

�
Z
Q

jf .y/j dy � jQj�1=pkf kLp.Rn/:

Remark 3.11. The weaker hypothesis that �R
Q jf .y/j dy is bounded as jQj ! 1

is equivalent to the property that Mf.x/ < 1 almost everywhere. See [129] for
further information.

Proof of Lemma 3.9. Fix t > 0; if Ed
t is empty, then there are no dyadic cubes Q

such that �R
Q

jf .y/j dy > t so we will let the collection fQj g be the empty set.

Otherwise, take x 2 Ed
t . By the definition of the dyadic maximal operator, there

existsQ 2 � such that x 2 Q and

�
Z
Q

jf .y/j dy > t:

Since �R
Q jf .y/j dy ! 0 as the size ofQ increases, if there is more than one dyadic

cube with this property, then there must be a largest such cube. Denote it by Qx .
Since we can do this for every such x,

Ed
t �

[
x2Edt

Qx: (3.5)

Conversely, given any other point x0 2 Qx,

Mdf .x0/ � �
Z
Qx

jf .y/j dy > t;

and so x0 2 Ed
t . Therefore,Qx � Ed

t and equality holds in (3.5).
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Since � is countable, the set fQx W x 2 Ed
t g is at most countable. Re-index

this set as fQj g. The cubes Qj are pairwise disjoint; for if there exist two different
cubes that intersect, then by Proposition 3.7 one is contained in the other. However,
this contradicts the way in which these cubes were chosen since each was supposed
to be the largest such cube.

The left-hand inequality in (3.4) follows from our choice of theQj ; furthermore,
since each Qj was chosen to be the largest cube containing a point x with this
property, if we let eQj be its dyadic parent,

t � �
Z

QQj

jf .y/j dy � 2�n�
Z
Qj

jf .y/j dy:

Finally, for every x 2 R
nnEd

t ,Mdf .x/ � t . Therefore, for almost every such x,
by the Lebesgue differentiation theorem (see Sect. 2.9),

jf .x/j D lim
x2Q2�
jQj!0

ˇ̌
ˇ̌�
Z
Q

f .y/ dy

ˇ̌
ˇ̌ � Mdf .x/ � t:

ut
Remark 3.12. As part of the proof of Lemma 3.9 we get that the Qj are the largest
dyadic cubes with the property that �R

Q
jf .y/j dy > t , and any other dyadic cube

with this property is contained in one of the Qj . We refer to this property as the
maximality of the Calderón-Zygmund cubes.

Lemma 3.13. Let f 2 L1loc.R
n/ be such that �R

Q jf .y/j dy ! 0 as jQj ! 1.
Then for each t > 0, if fQj g is the set of Calderón-Zygmund cubes of f at height
t=4n,

Et D fx 2 R
n W Mf.x/ > tg �

[
j

3Qj :

Proof. Fix x 2 Et ; then there exists a cubeQ containing x such that

�
Z
Q

jf .y/j dy > t:

Let k 2 Z be such that 2�k�1 � `.Q/ < 2�k . Then Q intersects at most M � 2n

dyadic cubes in �k; denote them by P1; : : : ; PM . Since `.Pi / D 2�k � 2`.Q/, we
have that

t < �
Z
Q

jf .y/j dy � jQj�1
MX
iD1

Z
Pi

jf .y/j dy � 2n
MX
iD1

�
Z
Pi

jf .y/j dy:
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Therefore, there must exist at least one index i such that

�
Z
Pi

jf .y/j dy > t

2nM
� t

4n
:

In particular, Pi � Ed
t=4n ; since it is a dyadic cube, by the maximality of the

Calderón-Zygmund cubes, Pi � Qj for some j . Further, Pi and Q intersect, so
x 2 Q � 3Pi � 3Qj . Since such a cube Qj exists for every x 2 Et , we get the
desired inclusion. ut
Proof of Theorem 3.4. We will first prove inequality (3.1) and then prove (3.2) for
1 < p < 1. We have already shown that the maximal operator is bounded on
L1: by Proposition 3.3 we have that kMf k1 D kf k1. Fix p, 1 � p < 1,
and f 2 Lp.Rn/. For any t > 0, by Lemma 3.9, there exist the disjoint Calderón-
Zygmund cubes fQj g of f at height t=4n. By Lemma 3.13 and Hölder’s inequality
(when p > 1),

jfx 2 R
n W Mf.x/ > tgj �

ˇ̌
ˇ̌[
j

3Qj

ˇ̌
ˇ̌

�
1X
jD1

j3Qj j �
1X
jD1

3njQj j
 
4n

t
�
Z
Qj

jf .x/j dx
!p

�
1X
jD1

3njQj j4
np

tp
�
Z
Qj

jf .x/jp dx � 3n4np

tp

Z
Rn

jf .x/jp dx:

Now fix p, 1 < p < 1, and f 2 Lp.Rn/. For each t > 0 we can decompose f
as f t

0 C f t
1 , where

f t
0 D f	fx2RnWjf .x/j>t=2g; f t

1 D f	fx2RnWjf .x/j�t=2g:

Since kf t
1 k1 � t=2, we have by Proposition 3.3 that

Mf.x/ � Mf t
0 .x/CMf t

1 .x/ � Mf t0 .x/C t=2:

Given a function h 2 Lp.Rn/,

khkpp D p

Z 1

0

tp�1jfx 2 R
n W jh.x/j > tgj dt: (3.6)
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(See [238, 305].) Therefore, by the weak .1; 1/ inequality and Fubini’s theorem,

Z
Rn

Mf .x/p dx D p

Z 1

0

tp�1jfx 2 R
n W Mf.x/ > tgj dt

� p

Z 1

0

tp�1jfx 2 R
n W Mf t

0 .x/ > t=2gj dt

� 2p � 12n
Z 1

0

tp�2
Z
Rn

jf t
0 .x/j dx dt

D 2p � 12n
Z 1

0

tp�2
Z

fx2RnWjf .x/j>t=2g
jf .x/j dx dt

D 2p � 12n
Z
Rn

jf .x/j
Z 2jf .x/j

0

tp�2 dt dx

D 2p0 � 12n
Z
Rn

jf .x/jp dx:
ut

In the proof of Theorem 3.4 the argument that the strong .p; p/ inequality follows
from the weak .1; 1/ inequality is a special case of the Marcinkiewicz interpolation
theorem. (For a precise statement of this result, see Sect. 3.7.8 below.) Rather than
apply Marcinkiewicz interpolation we have worked out the details since this is a key
part of the classical proof that does not generalize to the variable Lebesgue spaces.

The proof breaks down in our use of (3.6). This inequality holds in the classical
Lebesgue spaces because they are rearrangement invariant. Given a set � and
measurable function f on �, the distribution function of f is defined by


f .t/ D jfx 2 � W jf .x/j > tgj:

Two functions f and g are said to be equimeasurable if for every t > 0, 
f .t/ D

g.t/. We say that Lp.�/ is rearrangement invariant because given any two
equimeasurable functions f; g 2 Lp.�/, kf kp D kgkp . Indeed, this follows at
once from (3.6). However, this is not the case in a variable Lebesgue space as the
next example shows.

Example 3.14. Given� and p.�/ 2 P.�/, assume p.�/ is non-constant. Then there
exist two equimeasurable functions f; g such that g 2 Lp.�/.�/ but f 62 Lp.�/.�/.
Proof. We consider two cases. First, suppose that p.�/ is non-constant on � n�1.
Then there exist values p0 < p1 < 1 such that the sets

E D fx 2 � n�1 W p.x/ < p0g; F D fx 2 � n�1 W p.x/ > p1g

have positive measure. Form two sequences fEkg; fFkg of pairwise disjoint sets
such that Ek � E , Fk � F , and for each k � 1, jEkj D jFkj < 1. Define the
functions
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f .x/ D
1X
kD1

k�1=p0 jEkj�1=p.x/	Ek .x/;

g.x/ D
1X
kD1

k�1=p0 jFkj�1=p.x/	Fk .x/:

Then f and g are equimeasurable. Moreover,

�.g/ D
1X
kD1

�
Z
Fk

k�p.x/=p0 dx �
1X
kD1

k�p1=p0 < 1;

so g 2 Lp.�/.�/. On the other hand, for any � > 1,

�.f=�/ D
1X
kD1

�
Z
Ek

k�p.x/=p0��p.x/ dx �
1X
kD1

k�1��p0 D 1;

so f 62 Lp.�/.�/.
Now suppose that p.�/ is constant on�n�1 and j�1j > 0. We can immediately

adapt the above argument. Fix p0 > pC.� n �1/; define E as before and let
F D �1. Then given f; g as above, kgkLp.�/.�/ D kgkL1.�1/ D 1 while we
again have f 62 Lp.�/.�/.

ut

3.3 The Maximal Operator on Variable Lebesgue Spaces

We now turn to the central topic of this chapter: the behavior of the maximal operator
on variable Lebesgue spaces. We can immediately show that the maximal operator
is well-defined.

Proposition 3.15. Given any p.�/ 2 Lp.�/.Rn/, if f 2 Lp.�/.Rn/, then Mf is well
defined and Mf.x/ < 1 almost everywhere.

Proof. By Proposition 2.41 f is locally integrable, so Mf is well-defined. By
Theorem 2.51 we can write f D f1 C f2 where f1 2 LpC and f2 2 Lp� .
Then Mf � Mf1 CMf2, and by Theorem 3.4 the right-hand side is finite almost
everywhere. ut

We can, however, say a great deal more if we assume that the exponent p.�/
has a certain amount of regularity. Recall the definition of log-Hölder continuity
(Definition 2.2): given a set � � R

n and a function r.�/ W �!R, we say that
r.�/2LH0.�/ if there exists a constantC0 such that for all x; y 2 �, jx�yj < 1=2,
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jr.x/ � r.y/j � C0

� log.jx � yj/ :

We say that r.�/ 2 LH1.�/ if there exist constants C1 and r1 such that for all
x 2 �,

jr.x/ � r1j � C1
log.e C jxj/ :

Finally, we define LH.�/ D LH0.�/\LH1.�/.
Using this definition we can state the main result of this chapter.

Theorem 3.16. Given a set � and p.�/ 2 P.�/, if 1=p.�/ 2 LH.�/, then

kt	fxWMf.x/>tgkLp.�/.�/ � Ckf kLp.�/.�/: (3.7)

If in addition p� > 1, then

kMf kLp.�/.�/ � Ckf kLp.�/.�/: (3.8)

In both inequalities the constant depends on the dimension n, the log-Hölder
constants of 1=p.�/, p�, and p1 (if this value is finite).

Remark 3.17. If pC < 1, then by Proposition 2.3 the hypothesis 1=p.�/ 2 LH.�/
is equivalent to assuming p.�/ 2 LH.�/.

As we noted in Sect. 2.1, if � is bounded, then 1=p.�/ is automatically in
LH1.�/ with a constant that depends on k1=p.�/k1, the diameter of � and its
distance from the origin. Thus in this case it suffices to assume 1=p.�/ 2 LH0.�/

to conclude that the maximal operator is bounded. However, a close examination of
the proof of Theorem 3.16 (see especially the estimate for the set where jf j � 1,
p. 104) shows that we can sharpen the constant, and we record this as a separate
result.

Corollary 3.18. Given a bounded set � and p.�/ 2 P.�/, if 1=p.�/ 2 LH0.�/,
then (3.7) holds. If p� > 1, then (3.8) holds. The constants depend on n, p�, pC,
and j�j.

We will prove Theorem 3.16 and Corollary 3.18 in Sect. 3.4 below. Here we
examine more closely the statement and hypotheses. First note that by Chebyshev’s
inequality, we have that for all t > 0, kt	fxWMf.x/>tgkLp.�/.�/ � kMf kLp.�/.�/;
therefore, inequality (3.7) is of importance primarily when p� D 1.

In the classical case the maximal operator is bounded on Lp for both p finite and
p D 1, so it is reasonable that Theorem 3.16 includes the case pC D 1. However,
as we shall see, the proof has many technical details that can be eliminated if we
restrict to the special case pC < 1. At the other end of the scale of Lebesgue
spaces, by Proposition 3.3 the maximal operator is not bounded on L1, so the
restriction p� > 1 makes sense for (3.8) to hold, and (3.7) is the appropriate
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replacement whenp� D 1, similar to the weak .1; 1/ inequality. Indeed, if p.x/ D 1

on some open ball B D Br.x0/, then (3.8) cannot hold. For in this case define

f .x/ D 	B.x/

jx � x0jn log.jx � x0j/2 2 L1.B/I

then for x 2 B ,

Mf.x/ 	 	B.x/

jx � x0jnj log.jx � x0j/j 62 L1.B/:

Originally, we conjectured that if p.x/ > 1 everywhere and is “far” from 1

except on a small set (for example, if � D .0; 1=2/ and p.x/ D 1 C j log.x/j�1),
then the maximal operator could be bounded on Lp.�/. However, this is never the
case.

Theorem 3.19. Given p.�/ 2 P.Rn/, if p� D 1, then the maximal operator is not
bounded on Lp.�/.Rn/.

Remark 3.20. Though the maximal operator is not bounded when p� D 1, there
are weaker results related to the so-called variable L logL spaces. See Sect. 3.7.3
below.

Proof. To show that the maximal operator is not bounded, we will construct a
sequence of functions ffkg such that for all k, fk 2 Lp.�/.Rn/ and kMfkkp.�/ �
c.n/.k C 1/kfkkp.�/. For each k � 1, choose sk such that

1 < sk < n

�
n � 1

k C 1

��1
:

Since p� D 1, for each k the set

Ek D fx W p.x/ < skg

has positive measure. If we apply the Lebesgue differentiation theorem (see
Sect. 2.9) to the function 	Ek , then there exists a point xk 2 Ek such that

lim
r!0C

jBr.xk/ \Ekj
jBr.xk/j D 1:

In particular, there exists Rk , 0 < Rk < 1, such that if 0 < r � Rk , then

jBr.xk/\Ekj
jBr.xk/j > 1 � 2�n.kC1/: (3.9)
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Let Bk D BRk .xk/ and define

fk.x/ D jx � xk j�nC 1
kC1 	Bk\Ek .x/:

To show that fk 2 Lp.�/.Rn/, note that since Rk < 1 and �nC 1
kC1 < 0,

�.fk/ D
Z
Bk\Ek

jx � xk j


�nC 1

kC1

�
p.x/

dx �
Z
Bk\Ek

jx � xkj


�nC 1

kC1

�
sk dx < 1:

To estimate the norm of Mfk , we will use the equivalent definition of the
maximal operator and consider averages over balls. Fix x 2 Bk \ Ek and let
r D jx � xkj � Rk . Then

Mfk.x/ � 1

jBr.xk/j
Z
Br .xk/\Ek

jy � xk j�nC 1
kC1 dy:

Let ık D 2�.kC1/; then

jfy W ıkr < jy � xk j < rgj D .1 � 2�n.kC1//jBr.xk/j:

Therefore, since jx�xk j�nC 1
kC1 is radially decreasing and since by (3.9) jBr.xk/\

Ekj � .1 � 2�n.kC1//jBr.xk/j, we have that

Mfk.x/ � 1

jBr.xk/j
Z
Br .xk/\Ek

jy � xk j�nC 1
kC1 dy

� c.n/r�n
Z

fıkr<jy�xk j<rg
jy � xk j�nC 1

kC1 dy

D c.n/.k C 1/.1� ı
1

kC1

k /jx � xkj�nC 1
kC1

� c.n/.k C 1/fk.x/:

Trivially, this inequality also holds if x 62 Bk \ Ek ; hence, we have shown that
kMfkkp.�/ � c.n/.k C 1/kfkkp.�/, and this completes the proof. ut

The assumption that 1=p.�/ 2 LH0.�/ is a very weak regularity condition.
But the following simple counter-example shows that some kind of regularity
assumption is needed.

Example 3.21. Let � D R and define

p.x/ D
(
2 x < 0

3 x � 0:

Then the strong and weak type inequalities do not hold in Lp.�/.R/.
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Proof. Let f .x/ D jxj�2=5	.�1;0/.x/. Since jxj�4=5	.�1;0/ 2 L1.R/, so by
Proposition 2.12, f 2 Lp.�/.R/. On the other hand, Mf 62 Lp.�/.R/: if 0 < x < 1,
then

Mf.x/ � 1

2x

Z x

�x
jf .y/j dy D 1

2x

Z x

0

y�2=5 dy D 5

6
x�2=5 62 L3..0; 1//I

hence, �.Mf / D 1, so again by Proposition 2.12, Mf 62 Lp.�/.�/. Further, from
this inequality we get that for any t > 0,

t3jfx 2 R W Mf.x/ > tgj � t3
�
5

6t

�5=2
I

therefore, by Corollary 2.23,

kt	fxWMf.x/>tgkp.�/ � �
�
t	fxWMf.x/>tg

�1=3 � t

�
5

6t

�5=6
:

Since the right-hand side is unbounded as t ! 1, (3.7) does not hold. ut
Remark 3.22. The values 2 and 3 play no essential role in the construction and can
be replaced by any p1 ¤ p2. Further, a straightforward modification shows that we
can take, for instance, p2 D 1.

The LH1 can be viewed as a regularity condition at infinity. The need for some
control at infinity is shown by the next example.

Example 3.23. Let p.x/ D 3C sin.x/. Then the strong and weak type inequalities
do not hold on Lp.�/.R/.

Proof. For each k � 1, define the sets

Ak D
�
�

4
C 2k�;

3�

4
C 2k�



; Bk D

�
5�

4
C 2k�;

7�

4
C 2k�



:

If we let a D 3 C p
2=2 and b D 3 � p

2=2, then if x 2 Ak , p.x/ � a and if
x 2 Bk , p.x/ � b. Define the function

f .x/ D
1X
kD1

jxj�1=3	Ak .x/:

Since a=3 > 1,

�.f / D
1X
kD1

Z
Ak

jxj�p.x/=3 dx �
Z 1

�=4C2�
jxj�a=3 dx < 1;
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so by Proposition 2.12, f 2 Lp.�/.R/. On the other hand, for x 2 Œ2k�; 2.kC 1/��,

Mf.x/ � 1

2�

Z 2.kC1/�

2k�

f .y/ dy � cjxj�1=3: (3.10)

Therefore, since b=3 < 1,

�.Mf / �
1X
kD1

c

Z
Bk

jxj�p.x/=3 dx

�
1X
kD1

c

Z
Bk

jxj�b=3 dx � c

1X
kD1

�
7�

4
C 2k�

��b=3
D 1;

and so again by Proposition 2.12,Mf 62 Lp.�/.R/.
To see that the weak type inequality does not hold, let tk D c.2.k C 1/�/�1=3,

where c is the constant from (3.10). Then

�.tk	fxWMf.x/>tkg/ �
kX

jD1

Z
Bj

t
p.x/

k dx

�
kX

jD1
jBj j�c.2.k C 1/�/�1=3

�b � ck.k C 1/�b=3:

Since b=3 < 1, we have that as k ! 1,

ktk	fxWMf.x/>tkgkp.�/ ! 1:

ut
Finally, we note that the LH0 and LH1 conditions are not necessary, but are

sharp in the sense that no pointwise condition that decays more slowly to 0 suffices
to guarantee that the maximal operator is bounded. See Examples 4.1 and 4.43
below.

3.4 The Proof of Theorem 3.16

We begin this section with a general discussion on proving norm inequalities in
variable Lebesgue spaces; these remarks summarize our overall approach in the
proof and are applicable to other operators as well. We then prove five lemmas. The
first gives a geometric characterization of the LH0 condition. The next two allow us
to apply theLH1 condition. As will be clear from their use in the proof, we use the
LH0 condition where the function f is large, and the LH1 condition where f is
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small. The last two lemmas allow us to apply the Calderón-Zygmund decomposition
in the variable Lebesgue spaces.

After these preliminaries we prove the strong type inequality (3.8). We do this
in two different ways: we first give a proof assuming that pC < 1, so that we
may simply assume that p.�/ 2 LH ; we then prove it in full generality. We give
two different proofs for both pedagogic and historical reasons. First, the proof when
pC D 1 has many technical details that obscure the main ideas of the proof. We
believe that the reader will have a better understanding of the proof by first seeing
the special case. Second, the proof when pC < 1 uses a technique that played an
important role in the original proofs of this result and which we believe is still of
independent interest. On the other hand, the proof when pC D 1 let us weaken
our hypotheses; we will explore this in detail in Chap. 4. Finally, we prove the weak
type inequality (3.7). Since the proof is very similar to but easier than the proof of
the strong type inequality, we only describe the key details.

Proving Norm Inequalities

In the classical Lebesgue spaces, proving that the maximal operator is bounded on
Lp.�/ is equivalent to showing the modular inequality

Z
�

Mf .x/p dx � C

Z
�

jf .x/jp dx:

By Theorem 3.31 below, however, the modular inequality is never true in variable
Lebesgue spaces. Therefore, we need to work directly with the norm inequality

kMf kLp.�/.�/ � Ckf kLp.�/.�/:

Since the maximal operator is homogeneous—that is, M. f̨ /.x/ D j˛jMf.x/—
it is enough to prove this assuming that kf kLp.�/ D 1, (which by Corollary 2.22
implies that �.f / � 1). In turn, by the definition of the norm, it will suffice to show
that there exists � > 0 such that �.Mf=�/ � 1, since this implies that

kMf kLp.�/.�/ � � D �kf kLp.�/.�/:

In the particular case that pC < 1, by Proposition 2.14,

�.Mf=�/ D
Z
�

�
Mf.x/

�

�p.x/
dx � 1

if and only if there exists C > 0 such that

Z
�

Mf .x/p.x/ dx � C:
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Therefore, though the proofs are formally the same, in the case pC < 1 they are
generally less complicated since we do not have to establish a priori the exact value
of the constant �.

A similar approach is used to prove the weak type inequalities

kt	fxW�WMf.x/>tgkLp.�/.�/ � kf kLp.�/.�/ W
we will show that there exists � > 0 such that

Z
fxWMf.x/>tg

�
t

�

�p.x/
dx � 1:

For both the strong and weak type inequalities we will use both the Calderón-
Zygmund decomposition and the norm inequalities on the classical Lebesgue
spaces. This is a key difference between the proof of the classical theorem and
the proof for the variable Lebesgue spaces: we are unable to use the weak type
inequalities to prove the strong type inequalities by interpolation.

Five Lemmas

Our first lemma characterizes the LH0 condition.

Lemma 3.24. Given r.�/ W R
n ! Œ0;1/ such that rC < 1, the following are

equivalent:

1. r.�/ 2 LH0.R
n/;

2. There exists a constantC depending on n such that given any cubeQ and x 2 Q,

jQjr.x/�rC.Q/ � C and jQjr�.Q/�r.x/ � C:

Proof. Suppose r.�/ 2 LH0.R
n/. We will prove the first inequality in (2); the proof

of the second is identical. Fix Q; without loss of generality we may assume Q is
closed. If `.Q/ � .2

p
n/�1, then

jQjr.x/�rC.Q/ � .2
p
n/n.rC�r�/ D C.n; r.�//:

If `.Q/ < .2
p
n/�1, then for all y 2 Q, jx � yj < p

n`.Q/ < 1=2. In particular,
since r.�/ is continuous, there exists y 2 Q such that r.y/ D rC.Q/. Therefore, by
this estimate and the definition of LH0,

jQjr.x/�rC.Q/ � �
n�1=2jx � yj��njr.x/�r.y/j

� exp

 
C0
�

log.n1=2/� log.jx � yj/�
� log.jx � yj/

!
� C.n; r.�//:
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Now suppose that (2) holds. Fix x; y 2 R
n such that jx � yj < 1=2; then

there exists a cube Q such that x; y 2 Q and `.Q/ � jx � yj (and so jQj < 1).
Combining the two inequalities in (2) we have that

C � jQjr�.Q/�rC.Q/ � jQj�jr.x/�r.y/j

� jx � yj�njr.x/�r.y/j D exp
� � njr.x/ � r.y/j log.jx � yj/�:

If we take the logarithm we get that

jr.x/ � r.y/j � C

� log.jx � yj/ ;

where C does not depend on x; y. Hence r.�/ 2 LH0.R
n/. ut

Remark 3.25. Lemma 3.24 is true (with different constants) if we replace cubes by
balls. Details are left to the reader.

The second lemma lets us use the LH1 condition to replace a variable exponent
with a constant one, and vice versa. We will use this in the proof when pC < 1.

Lemma 3.26. Let r.�/ W R
n ! Œ0;1/ be such that r.�/ 2 LH1.Rn/ and 0 <

r1 < 1, and let R.x/ D .e C jxj/�N , N > n=r�. Then there exists a constant
C depending on n, N and the LH1 constant of r.�/ such that given any set E and
any function F with 0 � F.y/ � 1 for y 2 E ,

Z
E

F.y/r.y/ dy � C

Z
E

F.y/r1 dy C
Z
E

R.y/r� dy; (3.11)

Z
E

F.y/r1 dy � C

Z
E

F.y/r.y/ dy C
Z
E

R.y/r� dy: (3.12)

Proof. We will prove (3.11); the proof of the second inequality is essentially the
same. Write the set E as E1 [ E2, where E1 D fx 2 E W F.y/ � R.y/g and
E2 D fx 2 E W R.y/ < F.y/g. Then

Z
E1

F.y/r.y/ dy �
Z
E1

R.y/r.y/ dy �
Z
E1

R.y/r� dy:

On the other hand, by the LH1 condition,

R.y/�jr.y/�r1j D exp
�
N log.e C jyj/jr.y/� r1j� � exp.NC1/: (3.13)
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Hence, since F.y/ � 1,

Z
E2

F.y/r.y/ dy �
Z
E2

F.y/r1F.y/�jr.y/�r1j dy

�
Z
E2

F.y/r1R.y/�jr.y/�r1j dy � exp.NC1/
Z
E2

F.y/r1 dy:

ut
Remark 3.27. The assumption that N > n=r� is only included to insure that the
last integral in (3.11) and (3.12) is finite. If jEj < 1, then we can take any N > 0.

The third lemma is a variation of the embedding theorems proved in Sect. 2.5.
It does not directly involve the LH1, but we will use it in conjunction with
Proposition 2.43 which does use this condition. This result replaces Lemma 3.26
when pC D 1.

Lemma 3.28. Given � and t.�/; u.�/ 2 P.�/, suppose t.x/ � u.x/ almost
everywhere. Suppose g 2 Lt.�/.�/ and jg.x/j � 1 almost everywhere; then
g 2 Lu.�/.�/. Moreover, if kgkt .�/ � 1, then kgku.�/ � 1Ckgkt .�/, and if kgkt .�/ � 1,
then kgku.�/ � 2kgkt .�/.
Proof. Fix g 2 Lt.�/.�/, jg.x/j � 1, and suppose first that kgkt .�/ � 1. Then by

Corollary 2.22, �t.�/.g/ � kgkt .�/. Then, since �t.�/1 � �
u.�/1 ,

�u.�/.g/ D
Z
�n�u.�/

1

jg.x/ju.x/ dx C kgk
L1.�

u.�/
1
/

�
Z
�n�t.�/

1

jg.x/jt .x/ dx C 1 � �t.�/.g/C 1 � kgkt .�/ C 1:

Hence, by the convexity of the modular (Proposition 2.7), �u.�/.g=.kgkt .�/C1// � 1,
and so kgku.�/ � kgkt .�/ C 1.

Now suppose kgkt .�/ � 1. Let h D g=kgkt .�/. Then jh.x/j � 1 and khkt .�/ D 1.
Therefore, by what we have shown, khku.�/ � khkt .�/ C 1 D 2, and the desired
inequality follows at once. ut

The next two lemmas let us apply the Calderón-Zygmund decomposition in
variable Lebesgue spaces. If pC < 1, then we can apply the decomposition directly
to any function in Lp.�/.Rn/.

Lemma 3.29. Given p.�/ 2 P.Rn/, suppose pC < 1. Then for all f 2 Lp.�/.Rn/,
�R
Q

jf .y/j dy ! 0 as jQj ! 1. In particular, the conclusion of Lemma 3.9 holds.

Proof. Fix f 2 Lp.�/.Rn/; by Theorem 2.51 we have that f D f1 C f2, where
f1 2 LpC.Rn/ and f2 2 Lp� .Rn/. Since pC < 1, by Remark 3.10, as jQj ! 1,

�
Z
Q

f .x/ dx D �
Z
Q

f1.x/ dx C �
Z
Q

f2.x/ dx ! 0:

ut
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The conclusion of Lemma 3.29 need not be true if pC D 1. For example, let
p.x/ D 1 or let p.x/ D 1 C jxj. In either case 1=p.�/ 2 LH1, and so by
Proposition 2.43, 1 2 Lp.�/.Rn/. On the other hand, for all cubes Q, �R

Q
1 dy D 1.

However, we can always apply the Calderón-Zygmund decomposition to bounded
functions of compact support. Even though such functions need not be dense (see
Theorem 2.75) the following lemma lets us reduce to this case by an approximation
argument.

Lemma 3.30. Given a non-negative function f 2 L1loc.R
n/, if the sequence ffkg

is such that fk.x/ � f .x/ and ffk.x/g increases to f .x/ for almost every x, then
fMfk.x/g increases to Mf.x/.

Proof. Since fk � f , Mfk � Mf as well. Since ffkg is an increasing sequence,
so is fMfkg. Therefore, it will suffice to prove that for almost every x,

Mf.x/ � lim
k!1Mfk.x/:

Fix x such thatMf.x/ < 1. Then for every � > 0, there exists a cubeQ containing
x such that

Mf.x/ � .1C �/�
Z
Q

f .y/ dy:

Hence, by the monotone convergence theorem on classical Lebesgue spaces,

Mf.x/ � .1C �/�
Z
Q

f .y/ dy D .1C �/ lim
k!1

�
Z
Q

fk.y/ dy � .1C �/ lim
k!1Mfk.x/:

Since � > 0 is arbitrary, we get the desired inequality. A similar argument holds if
x is such that Mf.x/ D 1. ut

Proof of Inequality (3.8): The Case pC < 1

We begin the proof by making four reductions. First, we may assume that� D R
n.

For if this case is true, given p.�/ 2 LH.�/ by Lemma 2.4 we can extend it to an
exponent function in LH.Rn/. Further, given any f 2 Lp.�/.�/, we may assume
that f 
 0 outside of �. Thus

kMf kLp.�/.�/ � kMf kLp.�/.Rn/ � Ckf kLp.�/.Rn/ D Ckf kLp.�/.�/:
Second, since Mf D M.jf j/, we may assume that f is non-negative. Third, by
homogeneity we may assume that kf kp.�/ D 1. Then by Corollary 2.22,

�.f / D
Z
Rn

f .x/p.x/ dx � 1:

Finally, since pC < 1, by Proposition 2.3 we have that our hypothesis 1=p.�/ 2
LH.Rn/ is equivalent to p.�/ 2 LH.Rn/.
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Decompose f as f1 C f2, where

f1 D f	fxWf .x/>1g; f2 D f	fxWf .x/�1gI

then �.fi / � kfikp.�/ � 1. Further, since Mf � Mf1 C Mf2, it will suffice to
show, for i D 1; 2, that kMfikp.�/ � C.n; p.�//; since pC < 1, as we pointed out
above it will in turn suffice to show that

�.Mfi / D
Z
Rn

Mfi.x/
p.x/ dx � C:

The estimate for f1 Let A D 4n, and for each k 2 Z let

�k D fx 2 R
n W Mf1.x/ > Akg:

Since f1 2 Lp.�/.Rn/, by Proposition 3.15, Mf1.x/ < 1 almost everywhere;
similarly, without loss of generality we may assume f1 is non-zero on a set of
positive measure, and so by Proposition 3.3, Mf.x/ > 0 for all x. Therefore, up to
a set of measure 0, Rn D S

k �k n �kC1. Further, by Lemma 3.29 for each k we
can apply Lemma 3.9 to form the Calderón-Zygmund decomposition of f at height
Ak�1: pairwise disjoint cubes fQk

j gj such that

�k �
[
j

3Qk
j and �

Z
Qk
j

f1.y/ dy > A
k�1:

From the second we get that

�
Z
3Qk

j

f1.y/ dy > 3
�nAk�1:

For each k, define the sets Ek
j inductively: Ek

1 D .�k n �kC1/ \ 3Qk
1 , Ek

2 D
..�k n�kC1/ \ 3Qk

2/ n Ek
1 , Ek

3 D ..�k n�kC1/ \ 3Qk
3/ n .Ek

1 [ Ek
2 /, etc. Then

the sets Ek
j are pairwise disjoint for all j and k and �k n�kC1 D S

j E
k
j .

We now estimate as follows:
Z
Rn

Mf1.x/
p.x/ dx D

X
k

Z
�kn�kC1

Mf1.x/
p.x/ dx

�
X
k

Z
�kn�kC1

ŒAkC1�p.x/ dx

� A2pC3npC

X
k;j

Z
Ekj

 
�
Z
3Qk

j

f1.y/ dy

!p.x/
dx:
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To estimate the last sum, note that since f1.x/ D 0 or f1.x/ � 1 almost
everywhere, if we let pjk D p�.3Qk

j /,

Z
3Qk

j

f1.y/
p.y/=pjk dy �

Z
3Qk

j

f1.y/
p.y/ dy � 1: (3.14)

Further, since p.�/ 2 LH0.R
n/ and pC < 1, by Lemma 3.24 there exists a constant

C depending on p.�/ and n such that for x 2 3Qk
j ,

j3Qk
j j�p.x/ � C j3Qk

j j�pjk : (3.15)

Therefore, since for x 2 Ek
j � 3Qk

j , p.x/ � pjk � p�, by (3.14), (3.15) and
Hölder’s inequality with exponent pjk=p�,

X
k;j

Z
Ekj

 
�
Z
3Qk

j

f1.y/ dy

!p.x/
dx

�
X
k;j

Z
Ekj

j3Qk
j j�p.x/

 Z
3Qk

j

f1.y/
p.y/=pjk dy

!p.x/
dx

� C
X
k;j

Z
Ekj

j3Qk
j j�pjk

 Z
3Qk

j

f1.y/
p.y/=pjk dy

!pjk
dx

� C
X
k;j

Z
Ekj

 
�
Z
3Qk

j

f1.y/
p.y/=pjk dy

!pjk
dx

� C
X
k;j

Z
Ekj

 
�
Z
3Qk

j

f1.y/
p.y/=p� dy

!p�

dx

� C
X
k;j

Z
Ekj

M.f1.�/p.�/=p�/.x/p� dx

� C

Z
Rn

M.f1.�/p.�/=p�/.x/p� dx:

Since p� > 1, by Theorem 3.4 the maximal operator is bounded on Lp�.Rn/.
Hence, Z

Rn

M.f1.�/p.�/=p�/.x/p� dx � C

Z
Rn

f1.x/
p.x/ dx � C:

If we combine the above inequalities we get the desired result.
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The estimate for f2 Since 0 � f2.x/ � 1, we also have that 0 � Mf2.x/ � 1.
Since p� > 1, if we let R.x/ D .e C jxj/�n, then by inequality (3.11),

Z
Rn

Mf2.x/
p.x/ dx � C

Z
Rn

Mf2.x/
p1 dx C

Z
Rn

R.x/p� dx:

The second integral is a constant independent of f . To bound the first integral, since
p1 � p� > 1, by Theorem 3.4 and (3.12),

Z
Rn

Mf2.x/
p1 dx � C

Z
Rn

f2.x/
p1 dx

� C

Z
Rn

f2.x/
p.x/ dx C C

Z
Rn

R.x/p� dx � C:

Combining these inequalities we get the desired estimate for f2. This completes the
proof.

Proof of Inequality (3.8): The General Case

The proof when pC D 1 is similar to the proof when pC < 1: we again write
f D f1 C f2 and estimate each piece separately. The estimate for f1 is similar but
more complicated because we need to deal with the fact that the exponent function
p.�/ is unbounded and may in fact be infinite on a set of positive measure. The
estimate for f2 is different. It is possible to adapt the argument above, but doing
so requires dividing f2 into two pieces supported on �1 and R

n n �1, and the
estimate for each of these pieces then depends on whether p1 D 1 or p1 < 1.
We therefore take a different approach using Proposition 2.43. In those places where
the argument is the same or similar, we will refer to the above proof for details.

As in the proof when pC < 1, we may assume without loss of generality that
f is non-negative and kf kp.�/ D 1. However, we can no longer apply Lemma 3.29
since pC D 1. Instead, it will suffice to prove the desired inequality for functions
that are bounded and have compact support. For if this case is true, given an
arbitrary non-negative f , let fk.x/ D min.f .x/; k/	Bk .0/.x/. Then the sequence
ffkg increases pointwise to f and by Lemma 3.30, Mfk increases pointwise to
Mf . Therefore, by Fatou’s lemma for variable Lebesgue spaces (Theorem 2.61),

kMf kp.�/ � lim inf
k!1 kMfkkp.�/ � C lim inf

k!1 kfkkp.�/ � Ckf kp.�/:
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Fix such a function f . Then by Corollary 2.22,

�.f / D
Z
Rnn�1

f .x/p.x/ dx C kf kL1.�1/ � 1:

Decompose f as f1 C f2, where

f1 D f	fxWf .x/>1g; f2 D f	fxWf .x/�1g:

Then up to a set of measure zero, supp.f1/ � R
n n�1 and �.fi / � kfikp.�/ � 1.

As before, it will suffice to show that for i D 1; 2, kMfikp.�/ � C . For i D 1 we
will find a constant �1 D �1.n; p.�// > 0 such that

�.Mf1=�1/ � 1:

When i D 2 we will show directly that kMf2kp.�/ � C .

The estimate for f1 Let ��1
1 D ˛1ˇ1
1; the specific values of these constants will

be fixed below. Then

�.˛1ˇ1
1Mf1/ D
Z
Rnn�1

Œ˛1ˇ1
1Mf1.x/�
p.x/ dx C ˛1ˇ1
1kMf1kL1.�1/:

(3.16)

We will show that each term on the right is bounded by 1=2. To estimate the first,
we use the same decomposition argument as before. Let A D 4n and define

�k D fx 2 R
n n�1 W Mf1.x/ > Akg:

Since f1 is bounded,Mf1.x/ < 1 everywhere; as before we may assume without
loss of generality that Mf1.x/ > 0. Hence, Rn n �1 D S

k �k n �kC1. Since
f1 also has compact support, by Lemma 3.9 for each k there exists a collection of
disjoint cubes fQk

j gj such that

�k �
[
j

3Qk
j and 3n�

Z
3Qk

j

f1.y/ dy � �
Z
Qk
j

f1.y/ dy > A
k�1:

Form the sets Ek
j that are pairwise disjoint for all j and k and are such that �k n

�kC1 D S
j E

k
j . Let ˛1 D A�23�n and pjk D p�.3Qk

j /; since j3Qk
j \ �kj > 0,

pjk < 1. Then by Hölder’s inequality,
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Z
Rnn�1

Œ˛1ˇ1
1Mf1.x/�
p.x/ dx

D
X
k

Z
�kn�kC1

Œ˛1ˇ1
1Mf1.x/�
p.x/ dx

�
X
k

Z
�kn�kC1

Œ˛1ˇ1
1A
kC1�p.x/ dx

�
X
k;j

Z
Ekj

 
ˇ1
1�

Z
3Qk

j

f1.y/ dy

!p.x/
dx

�
X
k;j

Z
Ekj

 
ˇ1
1

 
�
Z
3Qk

j

f1.y/
pjk=p� dy

!p�=pjk
!p.x/

dx: (3.17)

Let r.�/ D 1=p.�/; then r.�/ 2 LH0.R
n/, rC � 1, and rC.3Qk

j / D 1=pjk.
Therefore, by Lemma 3.24 we can choose ˇ1 < 1 such that

ˇ1j3Qk
j j�p�=pjk � j3Qk

j j�p�=p.x/:

Further, since f1.x/ D 0 or f1.x/ � 1, and supp.f1/ � R
n n�1,

Z
3Qk

j

f1.y/
p.y/=p� dy �

Z
3Qk

j

f1.y/
p.y/ dy � �.f1/ � 1:

Therefore, since x 2 Ek
j � 3Qk

j , p.x/ � pjk, and assuming for the moment that

1 < 1,

X
k;j

Z
Ekj

 
ˇ1
1

 
�
Z
3Qk

j

f1.y/
pjk=p� dy

!p�=pjk
!p.x/

dx

�
X
k;j

Z
Ekj

j3Qk
j j�p�

 

1

Z
3Qk

j

f1.y/
p.y/=p� dy

!p.x/p�=pjk

dx

�
X
k;j

Z
Ekj

j3Qk
j j�p�

 

1

Z
3Qk

j

f1.y/
p.y/=p� dy

!p�

dx

�
X
k;j

Z
Ekj



p�

1 M.f1.�/p.�/=p�/.x/p� dx

�
Z
Rn



p�

1 M.f1.�/p.�/=p�/.x/p� dx:
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Since p� > 1, by Theorem 3.4 we can choose 
1 < 1 such that

Z
Rn



p�

1 M.f1.�/p.�/=p�/.x/p� dx � 1

2

Z
Rnn�1

f1.y/
p.y/ dy � 1

2
:

This gives us the desired estimate for the first term in (3.16).
We will now show that ˛1ˇ1
1kMf1kL1.�1/ � 1=2. Since ˛1 � 1=4, it will

suffice to show (after possibly making ˇ1; 
1 smaller than the values chosen above)
that

ˇ1
1kMf1kL1.�1/ � 2: (3.18)

Fix x 2 �1. Since supp.f1/ � R
n n �1, when computing Mf1.x/ we can

restrict ourselves to cubesQ containing x such that jQ\�n�1j > 0. In particular,
there exists such a cube that satisfies

Mf1.x/ � 2�
Z
Q

f1.y/ dy:

Fix r , p�.Q/ < r < 1; since 1=p.�/ is continuous, there exists a point xr 2
Q n �1 such that p.xr / D r . We claim that there exist ˇ1; 
1 independent of r
such that �

ˇ1
1�
Z
Q

f1.y/ dy

�p.xr /
� �
Z
Q

f1.y/
p.y/ dy � 1

jQj :

The second inequality is immediate since �.f1/ � 1. To prove the first, repeat the
argument above, beginning with the estimate of the integral in (3.17) and replacing
p� with 1, 3Qk

j withQ, and pjk with p�.Q/. This yields the desired inequality for
ˇ1; 
1 > 0 sufficiently small but not depending on our choice of r . Therefore, we
have that

ˇ1
1�
Z
Q

f1.y/ dy � jQj1=r � 1:

Since this is true for all r large, we can take the limit as r ! 1 to get

ˇ1
1Mf1.x/ � 2ˇ1
1�
Z
Q

f1.y/ dy � 2:

Since this estimate holds for almost all x, we have proved inequality (3.18). This
completes the estimate for f1.

The estimate for f2 Define the sets

E D fx 2 R
n W p.x/ � p1g; F D fx 2 R

n W p.x/ < p1g:

Then

kMf2kp.�/ � kMf2	Ekp.�/ C kMf2	F kp.�/ D kMf2kLp.�/.E/ C kMf2kLp.�/.F /:
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We will show that each term on the right-hand side is bounded by a constant
independent of f2. To estimate kMf2kLp.�/.E/, note first that since 0 � f2.x/ � 1,
by Proposition 3.3,Mf2.x/ � 1. Furthermore, since f2 is bounded and has compact
support, f2 2 Lp1.Rn/; since p1 > 1, by Theorem 3.4, Mf2 2 Lp1.Rn/.
If kMf2kLp1 .E/ < 1, then by Lemma 3.28 with g D Mf2, t.�/ D p1 and
u.�/ D p.�/,

kMf2kLp.�/.E/ � kMf2kLp1 .E/ C 1 < 2:

On the other hand, if kMf2kLp1 .E/ � 1, then by Lemma 3.28 and Theorem 3.4,

kMf2kLp.�/.E/ � 2kMf2kLp1 .E/ � 2kMf2kLp1 .Rn/

� Ckf2kLp1 .Rn/ � C
�kf2kLp1 .E/ C kf2kLp1 .F /

�
:

We first estimate the norm of f2 on E . By the definition of E , we can define the
defect exponent r.�/ 2 P.E/ by

1

p1
D 1

p.x/
C 1

r.x/
:

Therefore, by the generalized Hölder’s inequality (Corollary 2.28),

kf2kLp1 .E/ � Kk1kLr.�/.E/kf2kLp.�/.E/
� Kk1kLr.�/.E/kf2kLp.�/.Rn/ � Kk1kLr.�/.E/:

Since 1=p.�/ 2 LH1.E/, r.�/ ! 1 as jxj ! 1, and 1=r.�/ 2 LH1.E/.
Therefore, by Proposition 2.43, 1 2 Lr.�/.E/ and this bound is finite and
independent of f2.

To estimate the norm of f2 on F , we apply Lemma 3.28 with g D f2 2 Lp.�/.F /,
t.�/ D p.�/ and u.�/ D p1; since kf2kLp.�/.F / � kf2kLp.�/.Rn/ � 1, we get that

kf2kLp1 .F / � kf2kLp.�/.F / C 1 � 2:

Combining the above estimates we see that

kMf2kLp.�/.E/ � C
�
Kk1kLr.�/.E/ C 2

�
< 1:

The estimate for kMf2kLp.�/.F / is very similar. Define the defect exponent s.�/ 2
P.F / by

1

p.x/
D 1

p1
C 1

s.x/
:

Then by the generalized Hölder’s inequality,

kMf2kLp.�/.F / � Kk1kLs.�/.F /kMf2kLp1 .F /;
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and again by Proposition 2.43, k1kLs.�/.F / < 1. Further, we can now argue as we
did above to get

kMf2kLp1 .F / � kMf2kLp1 .Rn/ � Ckf2kLp1 .Rn/

� C
�kf2kLp1 .E/ C kf2kLp1 .F /

� � C < 1:

This yields the desired estimate for kMf2kLp.�/.F / and the proof is complete.

Proof of the Weak Type Inequality

The proof of inequality (3.7) is nearly identical to the proof of the strong type
inequality given in the previous section, so here we will only give the principal
details and will refer back for those parts of the proof that remain essentially the
same.

We begin by making the same reductions as before and writing f D f1 C f2.
Then given any t > 0,

fx 2 R
n W Mf.x/ > tg

� fx 2 R
n W Mf1.x/ > t=2g [ fx 2 R

n W Mf2.x/ > t=2g
D F1 [ F2:

Therefore, it will suffice to show that for i D 1; 2, tk	Fi kp.�/ � C . When i D 2,
the argument is almost identical to that given above to estimate kMf2kp.�/, replacing
Mf2 by 1

2
t	F2 . Since f2 � 1,Mf2 � 1, so the set F2 is empty if t > 2, and 1

2
t	F2 �

1 for 0 < t � 2. If p1 < 1, use the weak type inequality from Theorem 3.4
instead of the strong type and proceed as before. If p1 D 1, use the inequality
t	F2.x/ � 2Mf2.x/ and the fact that the maximal operator is bounded on L1.

To estimate k	F1kp.�/ we will show that for some ˛1; ˇ1; 
1 > 0,

�.˛1ˇ1
1t	F1/ D
Z
F1n�1

Œ˛1ˇ1
1t�
p.x/ dx C ˛1ˇ1
1tk	F1kL1.�1/ � 1:

We will show that each term in the middle is bounded by 1=2 for suitable choice of
˛1; ˇ1; 
1.

The estimate for the second term is immediate: since t	F1.x/ � Mf1.x/,

˛1ˇ1
1tk	F1kL1.�1/ � ˛1ˇ1
1kMf1kL1.�1/;

and the proof given above that the right-hand side is bounded does not depend on
the fact that p� > 1. Since the other hypotheses are the same, we get the desired
bound.
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To bound Z
F1n�1

Œ˛1ˇ1
1t�
p.x/ dx

we apply Lemma 3.9 to find disjoint dyadic cubes fQj g such that

F1 �
[
j

3Qj and �
Z
Qj

f1.y/ dy > 4
�n t
2
:

Form disjoint sets Ej such that Ej � 3Qj and F1 n�1 D S
j Ej .

We can now argue as before, replacing 3Qk
j byQj and using the fact that p� � 1

to get

Z
F1n�1

Œ˛1ˇ1
1t�
p.x/ dx �

X
j

Z
Ej

�

1�
Z
Qj

f1.y/
p.y/ dy

�
dx:

Since jEj j � 3njQj j, the cubesQj are disjoint and supp.f1/ � R
n n�1, so if we

let 
1 D 1
2
3�n,

X
j

Z
Ej

�

1�
Z
Qj

f1.y/
p.y/ dy

�
dx D

X
j


1
jEj j
jQj j

Z
Qj

f1.y/
p.y/ dy

�
X
j

1

2

Z
Qj

f1.y/
p.y/ dy � 1

2

Z
Rnn�1

f1.y/
p.y/ dy � 1

2
:

This completes the proof of inequality (3.7).

3.5 Modular Inequalities

In this section we consider a different approach to generalizing Theorem 3.4 for
the Hardy-Littlewood maximal operator. In the classical Lebesgue spaces, norm
inequalities are equivalent to modular inequalities: this suggests that we consider
modular inequalities for the maximal operator in the variable Lebesgue spaces. In
particular, if pC < 1, then corresponding to inequalities (3.7) and (3.8) are the
inequalities

Z
fxWMf.x/>tg

tp.x/ dx � C

Z
Rn

jf .x/jp.x/ dx; (3.19)

Z
Rn

Mf .x/p.x/ dx � C

Z
Rn

jf .x/jp.x/ dx: (3.20)



108 3 The Hardy-Littlewood Maximal Operator

By the definition of the norm, these modular inequalities imply the corresponding
norm inequalities, so for them to be true we would need to make the same or stronger
assumptions on the exponent function. In fact, these inequalities never hold unless
p.�/ is constant.

Theorem 3.31. Given p.�/ 2 P.Rn/, suppose pC < 1. Then the modular
inequalities (3.19) and (3.20) are true if and only if there is a constant p0 such
that p.�/ D p0 almost everywhere.

The proof of Theorem 3.31 depends on results from the theory of weighted norm
inequalities in harmonic analysis, and so we defer it until the end of Sect. 4.3 (p. 158)
below.

Weaker modular inequalities that include an error term, however, are true. A
strong type modular inequality similar to (3.20) is actually implicit in the proof of
Theorem 3.16. Here we give an alternative approach that also yields a weak type
inequality. As a first step we prove a modular inequality that can be thought of as
a modular Hölder’s inequality for variable Lebesgue spaces. Results similar to this
played a very important role in the original proofs of Theorem 3.16.

Theorem 3.32. Given p.�/ 2 P.Rn/, suppose pC < 1 and p.�/ 2 LH.Rn/. Then
for any f 2 Lp.�/.Rn/, kf kp.�/ � 1, any cube Q and any x 2 Q,

�
�
Z
Q

jf .y/j dy
�p.x/

� C�
Z
Q

jf .y/jp.y/ dy C C

.e C jxj/.nC1/p�

C C�
Z
Q

dy

.e C jyj/.nC1/p�

� C�
Z
Q

jf .y/jp.y/ dy C C

.e C jxj/n : (3.21)

Proof. We begin by proving the first inequality in (3.21). Fix Q and x 2 Q.
Without loss of generality, we may assume that f is non-negative. As in the proof
of Theorem 3.16, decompose f as f1 C f2, where

f1 D f	fxWf .x/>1g; f2 D f	fxWf .x/�1g:

Then by Remark 2.8,

�
�
Z
Q

jf .y/j dy
�p.x/

� 2pC�1
��

�
Z
Q

jf1.y/j dy
�p.x/

C
�

�
Z
Q

jf2.y/j dy
�p.x/ 


:

We will estimate each of these integrals in turn. The estimate for f1 is very similar
to the argument for f1 in the proof of Theorem 3.16 when pC < 1; hence, we only
sketch the details. Since f1 D 0 or f1 � 1 and kf1kp.�/ � 1, we have that
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Z
Q

f1.y/ dy �
Z
Q

f1.y/
p.y/ dy � 1;

and so by Lemma 3.24 and Hölder’s inequality (if p� > 1),

�
�
Z
Q

f1.y/ dy

�p.x/
� jQj�p.x/

�Z
Q

f1.y/ dy

�p�

� C jQj�p�

�Z
Q

f1.y/
p.y/=p� dy

�p�

� C�
Z
Q

f1.y/
p.y/ dy:

To prove the estimate for the integral of f2, we adapt the proof of Lemma 3.26.
Let R.y/ D .e C jyj/�n�1 and suppose first that

�
Z
Q

f2.y/ dy � R.x/:

Then by inequality (3.13),

�
�
Z
Q

f2.y/ dy

�p.x/
� R.x/p.x/ � R.x/p1R.x/�jp.x/�p1j � CR.x/p� :

On the other hand, if

�
Z
Q

f2.y/ dy � R.x/;

then by Hölder’s inequality and (3.13),

�
�
Z
Q

f2.y/ dy

�p.x/
�
�

�
Z
Q

f2.y/ dy

�p1
�

�
Z
Q

f2.y/ dy

��jp.x/�p1j

� �
Z
Q

f2.y/
p1 dy �R.x/�jp.x/�p1j � C�

Z
Q

f2.y/
p1 dy:

Since 0 � f2 � 1 we can apply Lemma 3.26 to get

�
Z
Q

f2.y/
p1 dy � C�

Z
Q

f2.y/
p.y/ dy C �

Z
Q

R.y/p� dy:

This completes the proof of the first inequality in (3.21). To prove the second, note
that since R.x/p� � .e C jxj/�n it will suffice to show that

�
Z
Q

R.y/p� dy � C

.e C jxj/n :
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To do so we consider three cases. If jxj > 2pn`.Q/, then there exists a constant C
depending only on n such that for every y 2 Q, R.y/ � CR.x/. Hence,

�
Z
Q

R.y/p� dy � CR.x/p� :

If 1 � jxj � 2
p
n`.Q/, then, since R 2 Lp� .Rn/,

�
Z
Q

R.y/p� dy � C jxj�n
Z
Rn

R.y/p� dy � C.e C jxj/�n:

Finally if jxj � 1, then, since R.y/ � 1,

�
Z
Q

R.y/p� dy � 1 � C.e C jxj/�n:

This completes the proof of (3.21). ut
We now state and prove our modular inequalities.

Theorem 3.33. Given p.�/ 2 P.Rn/ such that pC < 1 and p.�/ 2 LH.Rn/,
suppose f 2 Lp.�/.Rn/ and kf kp.�/ � 1. If p� > 1, then

Z
Rn

Mf .x/p.x/ dx � C

Z
Rn

jf .x/jp.x/ dx C C

Z
Rn

dx

.e C jxj/np�

: (3.22)

If p� D 1, then for all t > 0,

Z
fxWMf.x/>tg

tp.x/ dx � C

Z
Rn

jf .x/jp.x/ dx C C

Z
Rn

dx

.e C jxj/nC1 : (3.23)

Proof. To prove inequality (3.22) we use the second estimate in Theorem 3.32 with
the exponent p.�/ replaced by p.�/=p�. Fix x and fix any cube Q containing x.
Then

�
�
Z
Q

jf .y/j dy
�p.x/

�
�

�
Z
Q

jf .y/jp.y/=p� dy C C

.e C jxj/n
�p�

� CM.jf .�/jp.�/=p�/.x/p� C C

.e C jxj/np�

:

If we take the supremum over all such cubesQ, we get that

Mf.x/p.x/ � CM.jf .�/jp.�/=p�/.x/p� C C

.e C jxj/np�

:
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If we now integrate both sides of this inequality over all x 2 R
n, since p� > 1 by

Theorem 3.4 we have that

Z
Rn

Mf .x/p.x/ dx � C

Z
Rn

M.jf .�/jp.�/=p�/.x/p� dx C C

Z
Rn

dx

.e C jxj/np�

� C

Z
Rn

jf .x/jp.x/ dx C C

Z
Rn

dx

.e C jxj/np�

:

This completes the proof of inequality (3.22).
To prove inequality (3.23) we use the first estimate in Theorem 3.32. Fix t > 0;

then by Lemmas 3.9, 3.13 and 3.29, let fQj g be the Calderón-Zygmund cubes of f
at height t=4n: pairwise disjoint cubes such that

E D fx W Mf.x/ > tg �
[
j

3Qj ; and �
Z
Qj

jf .y/j dy > t=4n:

Form a sequence of pairwise disjoint sets fEj g as follows: E1 D E \ 3Q1, E2 D
.E\3Q2/nE1,E3 D .E\3Q3/n.E1[E2/, . . . . Then jEj j � j3Qj j,E D S

j Ej
and the Ej are pairwise disjoint. Given these sets we have that

Z
fxWMf.x/>tg

tp.x/ dx

� 4pC

X
j

Z
Ej

 
�
Z
Qj

jf .y/j dy
!p.x/

dx

� C
X
j

Z
Ej

�
�
Z
Qj

jf .y/jp.y/ dy C 1

.e C jxj/nC1
C �
Z
Qj

dy

.e C jyj/nC1

�
dx

� C
X
j

 Z
Qj

jf .y/jp.y/ dy C
Z
Ej

dx

.e C jxj/nC1
C
Z
Qj

dy

.e C jyj/nC1

!

� C

Z
Rn

jf .y/jp.y/ dy C C

Z
Rn

dy

.e C jyj/nC1
:

This completes the proof of inequality (3.23). ut
We conclude this section with a different version of the modular weak type

inequality. We can write the weak .p; p/ inequality (3.1) as a modular inequality
in another way:

jfx 2 R
n W Mf.x/ > tgj � C

Z
Rn

� jf .x/j
t

�p
dx: (3.24)
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In light of Theorem 3.31 it is surprising that essentially this inequality holds in the
variable Lebesgue spaces with almost no assumptions on p.�/.
Theorem 3.34. Given p.�/ 2 P.Rn/, if j�1j < 1, then there exists a constant C
such that for all t > 0 and all f 2 Lp.�/.Rn/,

jfx 2 R
n W Mf.x/ > tgj � C�.4f=t/

D C

Z
Rnn�1

�
4jf .x/j
t

�p.x/
dx C C t�1j�1jkf kL1.�1/:

Furthermore, if j�1j D 1, then this inequality is false with any finite constant in
the last term.

Remark 3.35. If pC.Rn n�1/ < 1, then by increasing the constant C by a factor
of 4pC we can replace the right-hand side by C�.f=t/. Also see Sect. 3.7.2 below.

Proof. Assume first that j�1j < 1. Fix f 2 Lp.�/.Rn/ and t > 0. We modify the
decomposition used in the proof of the weak type inequality in Theorem 3.4: define

f1 D f	fx2Rnn�1Wjf .x/j>t=2g; f2 D f	fx2Rnn�1Wjf .x/j�t=2g; f3 D f	�1
:

By Proposition 3.3,Mf2.x/ � t=2. Therefore,

jfx 2 R
n W Mf.x/ > tgj

� jfx 2 R
n W Mf1.x/CMf2.x/CMf3.x/ > tgj

� jfx 2 R
n W Mf1.x/CMf3.x/ > t=2gj

� jfx 2 R
n W Mf1.x/ > t=4gj C jfx 2 R

n W Mf3.x/ > t=4gj:
We estimate the last two terms separately. Since j4t�1f1j � 1, by the weak .p�; p�/
inequality for the maximal operator (Theorem 3.4),

jfx 2 R
n W Mf1.x/ > t=4gj D jfx 2 R

n W M.4t�1f1/.x/ > 1gj
� jfx 2 R

n W M..4t�1jf1j/p.�/=p�/.x/ > 1gj

� C

Z
Rn

�
4jf1.x/j

t

�p.x/
dx

� C

Z
Rnn�1

�
4jf .x/j
t

�p.x/
dx:

Similarly, by the weak .1; 1/ inequality,

jfx 2 R
n W Mf3.x/ > t=4gj � C

t

Z
Rn

jf3.x/j dx � C t�1j�1jkf kL1.�1/:

If we combine these inequalities we get the desired result.
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Now suppose j�1j D 1. Then f D 	�1
2 Lp.�/.Rn/, and we have that

kf kp.�/ D kf kL1.�1/ D 1. On the other hand, for all t < 1,

jfx 2 R
n W Mf.x/ > tgj D 1:

ut

3.6 Interpolation and Convexity

We conclude this chapter by briefly considering the theory of interpolation on
variable Lebesgue spaces and its application to the Hardy-Littlewood maximal
operator. As we noted at the end of Sect. 3.2, the Marcinkiewicz interpolation
theorem is central to the proof of norm inequalities for the maximal operator on
the classical Lebesgue spaces, but it is unknown whether this result is true in the
variable Lebesgue spaces. (See Sect. 3.7.8 below.)

However, other interpolation theorems are true in the variable Lebesgue spaces.
Here we will prove an elementary result that holds for positive integral operators:
that is, operators of the form

Tf .x/ D
Z
�

K.x; y/f .y/ dy;

whereK W � �� ! Œ0;1/ is a non-negative, measurable function.

Theorem 3.36. Given � and pi .�/; qi .�/ 2 P.�/, i D 1; 2, suppose that for all
f 2 Lpi .�/.�/ the positive integral operator T satisfies

kTf kqi .�/ � Bikf kpi .�/: (3.25)

For each � , 0 < � < 1, define p�.�/; q�.�/ 2 P.�/ by

1

p�.x/
D �

p1.x/
C 1 � �

p2.x/
;

1

q� .x/
D �

q1.x/
C 1 � �
q2.x/

:

Then for all f 2 Lp� .�/.�/,

kTf kq� .�/ � CB�
1 B

1��
2 kf kp� .�/; (3.26)

where the constant C depends only on q1.�/, q2.�/ and � .

Remark 3.37. It will follow from the proof of Theorem 3.36 that we can take C to
be the universal constant 48.

Proof. Fix � , 0 < � < 1, and f 2 Lp� .�/.�/. Since T is a positive integral
operator, jT .f /.x/j � T .jf j/.x/, so we may assume without loss of generality
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that f is non-negative. Moreover, we may assume that f is bounded and has
compact support. This follows by an argument similar to the one used in the proof of
Theorem 3.16 when pC D 1. For if this case is true, given a non-negative function
f , let fk.x/ D min.f .x/; k/	Bk .0/.x/. By Fatou’s lemma on the classical Lebesgue
spaces,

Tf .x/ � lim inf
k!1 Tfk.x/:

Therefore, by the monotone convergence theorem on variable Lebesgue spaces
(Theorem 2.59),

kTf kp� .�/ � lim inf
k!1 kTfkkp� .�/ � C lim inf

k!1 kfkkp� .�/ � Ckf kp� .�/:

Finally, since for any a>0, T .af /.x/D aTf .x/, we may assume that kf kp� .�/ D 1.
Given such a function f , by Theorem 2.34,

kTf kq� .�/ � k�1
q� .�/ sup

Z
�

Tf .x/g.x/ dx;

where the supremum is taken over all g 2 Lq
0

� .�/.�/ with kgkq0

� .�/ � 1. Since f is
non-negative, we may also assume that g is non-negative. Fix any such g; then it
will suffice to prove that

Z
�

Tf .x/g.x/ dx � CB�
1 B

�
2 ;

where C only depends on p.�/.
Define the functions fi .x/ D f .x/

p� .x/

pi .x/ . To make sense of this when the exponent
functions are infinite, note that �p� .�/1 � �

p1.�/1 \ �
p2.�/1 . Then for x 2 �

pi .�/1 we
define

p�.x/

pi .x/
D
(
1 x 2 �p� .�/1
0 x 2 �pi .�/1 n�p� .�/1 :

We define the functions gi .x/ D g.x/

q0

�
.x/

q0

i .x/ in the same way, here using that�
q0

� .�/1 �
�
q0

1.�/1 \ �
q0

2.�/1 and the fact that given exponents q1.�/; q2.�/, the interpolation
exponent between the conjugate exponents q0

1.�/ and q0
2.�/ is the same as q0

� .�/, the
conjugate of the interpolation exponent between q1.�/ and q2.�/.

We now claim that kfikpi .�/; kgikq0

i .�/ � 2, i D 1; 2. We will show this for f1;
the proofs for the other three functions are identical. By Corollary 2.22, �p� .�/.f / �
kf kp� .�/ D 1. In particular,

Z
�n�p� .�/1

jf .x/jp� .x/ dx � 1; kf k
L1.�

p� .�/
1

/
� 1: (3.27)
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For almost every x 2 �p1.�/1 , f1.x/ � 1. If x 2 �p� .�/1 , this follows from the second
inequality in (3.27) and the fact that p�.x/=p1.x/ D 1; for x 2 �

p1.�/1 n�p� .�/1 this
follows since p�.x/=p1.x/ D 0. Hence,

kf1kp1.�/ D inf

(
� > 0 W

Z
�n�p1.�/

1

� jf1.x/j
�

�p1.x/
dx C ��1kf1kL1.�

p1.�/
1 /

� 1

)

� inf

(
� > 0 W

Z
�n�p1.�/1

� jf1.x/j
�

�p1.x/
dx C ��1 � 1

)

D inf

(
� > 1 W

Z
�n�p1.�/1

� jf1.x/j
�

�p1.x/
dx C ��1 � 1

)

� inf

�
� > 1 W ��1

Z
�n�p� .�/

1

jf .x/jp.x/ dx C ��1 � 1

�

� inf
˚
� > 1 W 2��1 � 1

�
D 2:

By the definition of the exponents we have that f .x/ D f1.x/
�f2.x/

1�� ; a
similar identity holds for g. Therefore, since the kernelK , f and g are non-negative,
by Hölder’s inequality with exponent ��1, Theorem 2.26 and our hypothesis, we
have that
Z
�

Tf .x/g.x/ dx D
Z
�

Z
�

K.x; y/f .y/g.x/ dy dx

D
Z
�

Z
�

�
K.x; y/f1.y/g1.x/

�� �
K.x; y/f2.y/g2.x/

�1��
dy dx

�
�Z

�

Z
�

K.x; y/f1.y/g1.x/ dy dx

��

�
�Z

�

Z
�

K.x; y/f2.y/g2.x/ dy dx

�1��

D
�Z

�

Tf1.x/g1.x/ dx

�� �Z
�

Tf2.x/g2.x/ dx

�1��

� �
Kq1.�/kTf1kq1.�/kg1kq0

1.�/
���
Kq2.�/kTf2kq2.�/kg2kq0

2.�/
�1��

� 2K�
q1.�/K

1��
q2.�/B

�
1 B

1��
2 kf1k�p1.�/kf2k1��p2.�/

� 4K�
q1.�/K

1��
q2.�/B

�
1 B

1��
2 :

This completes the proof. ut
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As an application of Theorem 3.36 we will show that the set of exponents p.�/
such that the Hardy-Littlewood maximal operator is bounded is convex: that is, if
the maximal operator is bounded on Lpi .�/.�/, i D 1; 2, then it is bounded on
Lp� .�/.�/, where p�.�/ is defined by (3.25). This is trivially true in the classical
Lebesgue spaces since the maximal operator is bounded on Lp for all p, 1 <

p � 1. If 1=p1.�/; 1=p2.�/ 2 LH.�/, then so is p�.�/, so this follows from
Theorem 3.16. The importance of this result is that there exist exponents p.�/ which
are not log-Hölder continuous but the maximal operator is bounded on Lp.�/.�/.
We will consider such exponents in detail in Chap. 4.

Theorem 3.38. Given �, the set of exponents p.�/ such that the Hardy-Littlewood
maximal operator is bounded on Lp.�/.�/ is convex.

Proof. To apply Theorem 3.36 we must first show that the maximal operator can be
approximated by positive integral operators. Let fEkg be a collection of bounded,
pairwise disjoint sets, and for each k let Qk be a cube such that Ek � Qk . Define
the kernelK by

K.x; y/ D
X
k

	Ek .x/jQkj�1	Qk
.y/I (3.28)

then the operator T with kernel K satisfies

jTf .x/j �
X
k

�
Z
Qk

jf .y/j dy � 	Ek.x/ �
X
k

Mf .x/	Ek.x/ D Mf.x/:

Therefore, if the maximal operator is bounded on Lpi .�/.�/, i D 1; 2, then so
is every integral operator T of this form. Hence, by Theorem 3.36 they are all
uniformly bounded on Lp� .�/.�/.

To complete the proof, arguing as we did in the proof of Theorem 3.16 in the
case pC D 1, it will suffice to show that there exists C > 1 such that if f is non-
negative, bounded and has compact support, then kMf kp� .�/ � CkMf kp� .�/. Fix
such a function f ; to prove this inequality we will show that there exists a positive
integral operator T with a kernel of the form (3.28) such that for almost every x,

Mf.x/ � 4nT .jf j/.x/: (3.29)

To do so we employ the same decomposition as was used for the function f1 in the
proof of Theorem 3.16 when pC < 1. (This part of the argument did not depend
on the fact that pC was finite.) Let A D 4n and define the sets �k , Qk

j and Ek
j as

before. Then for almost every x, there exists an integer k such that x 2 �k n�kC1.
Therefore, we have that there exists a set Ek

j and a cubeQk
j such that

Mf.x/ � AkC1 � A�
Z
Qk
j

f .y/ dy � 	Ekj .x/:
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Since the sets Ek
j are pairwise disjoint, if we let T be the integral operator with

kernel
K.x; y/ D

X
k; j

	Ekj
.x/jQk

j j�1	Qk
j
.y/;

we get an operator such that (3.29) holds. This completes the proof. ut

3.7 Notes and Further Remarks

3.7.1 References

The Hardy-Littlewood maximal operator was first introduced by Hardy and Little-
wood [148] in one dimension and extended to R

n by Wiener [347]. They also proved
the Lp estimates in Theorem 3.4. The maximal operator came into prominence
with the work of Calderón and Zygmund [40] on singular integrals; in this paper
they also introduced the dyadic decomposition that bears their name (Lemmas 3.9
and 3.13). Our treatment is based on Duoandikoetxea [96]; see also Garcı́a-Cuerva
and Rubio de Francia [140] and Grafakos [143]. For a proof of the Lp inequalities
using covering lemmas, see Stein [339]. For the alternative definitions of the
maximal operator on a domain�, see [129]. Example 3.14 showing that the variable
Lebesgue spaces are not rearrangement invariant is new.

The maximal operator on variable Lebesgue spaces was considered by several
authors. Diening [77] was the first to find a sufficient condition for boundedness.
He showed that when pC < 1, the LH0 condition is sufficient for the maximal
operator to be bounded on bounded domains. As a corollary to this result he showed
that the maximal operator is bounded on R

n if p.�/ is constant outside of a (large)
ball containing the origin. Nekvinda [282] proved the strong type inequality in
Theorem 3.16 when pC < 1 and with theLH1 condition replaced by a somewhat
more general condition. We will discuss his result in detail in Chap. 4. The LH1
condition was introduced in [62, 63] and the strong type inequality in the case
pC < 1 was proved there. A simpler proof, again with pC < 1 was given in [42]
(see also [128]). The case when pC D 1 and the idea of using 1=p.�/ 2 LH is due
to Diening [80]; see also [81]. A very different proof of the strong type inequality
when pC < 1, gotten by viewing Lp.�/ from the perspective of abstract Banach
function spaces, was given by Lerner and Pérez [235].

The formulation of weak type inequalities in Theorem 3.16 was first suggested
in [86]. They were first proved in [42].

The discussion in Sect. 3.3 is an expanded version of [54]. Theorem 3.19, the
necessity of the condition p� > 1 for the maximal operator to be bounded, was first
proved in [62] with the additional assumption that p.�/ is upper semi-continuous.
This hypothesis was removed by Diening [80] (see also [81]) and our proof follows
his.
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A version of the proof of Theorem 3.16 given in Sect. 3.4 first appeared in [56].
This proof draws upon ideas of Sawyer [325] from the theory of weighted norm
inequalities. The second half of the proof when pC D 1, where we use the two
embedding theorems, is new though it is connected to the proof of Nekvinda [282].
Lemma 3.24 is due to Diening [77] and was a key part of his original proof of
the boundedness of the maximal operator. Lemma 3.26, which is central to the
application of the LH1 condition, appeared in [56]; it is based on earlier versions
found in [42, 58, 62, 63]. A variant of this inequality, with weaker hypotheses, was
proved by Nekvinda [282]. Lemma 3.29, which lets us apply the Calderón-Zygmund
decomposition to functions in Lp.�/ when pC < 1, is new. Lemma 3.30 is part of
the “folklore” of harmonic analysis; for instance, it is implicit in [140]. A proof was
given in [56].

Theorem 3.31 is due to Lerner [228]. This result highlights a significant
difference between variable Lebesgue spaces and Orlicz spaces: in the latter
both norm and modular inequalities are true for the maximal operator. See, for
example, Kokilashvili and Krbec [197]. Versions of the pointwise inequalities in
Theorem 3.32 and the modular strong type inequality in Theorem 3.33 were used
in the original proofs of the boundedness of the maximal operator by Diening [77]
and Nekvinda [282], and also in [42, 62]. A version of the weak type inequality in
Theorem 3.33 for bounded domains is due to Harjulehto and Hästö [153]. A modular
weak type inequality for the maximal operator similar to Theorem 3.34 was first
proved in [62] with different hypotheses; see Sect. 3.7.2 below. The version given
here is a generalization of a result due to Aguilar Cañestro and Ortega Salvador [8].

The interpolation result for positive integral operators in Theorem 3.36 was first
proved in [55]. It is based on a result for classical Lebesgue spaces given by Bennett
and Sharpley [25]. It is a special case of a more general interpolation theorem due
to Musielak [274]: see Sect. 3.7.8 below. The convexity result in Theorem 3.38 was
first proved for the case pC < 1 using a different approach by Diening, Hästö
and Nekvinda [86]. The full result was proved in [55]. The approximation of the
maximal operator by positive integral operators used in the proof was implicit in
Sawyer [325] and developed in detail by de la Torre [75].

3.7.2 More on Modular Inequalities

The pointwise and strong type modular inequalities in Theorems 3.32 and 3.33 can
be generalized to the Musielak-Orlicz spacesLp.�/.logL/q.�/ defined in Sect. 2.10.2.
This leads to proofs that the maximal operator is bounded on such spaces. See [138,
166, 267].

Diening [80, 82] showed that the LH0 condition is necessary for Theorem 3.32
to hold. More precisely, he proved the following result.

Proposition 3.39. Given p.�/ 2 P.Rn/ such that 1 < p� � pC < 1, suppose
that there exists ˇ > 0 and h.�/ 2 L1.Rn/ such that for every f 2 Lp.�/.Rn/,
kf kp.�/ � 1, every cubeQ and every x 2 Q,
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�
ˇ�
Z
Q

jf .y/j dy
�p.x/

� �
Z
Q

jf .y/jp.y/ dy C h.x/;

and the same inequality holds with p.�/ replaced by p0.�/. Then p.�/ 2 LH0.R
n/.

The original version of the modular weak type inequality in Theorem 3.34 proved
in [62] did not have a constant inside the modular, but removing it required a
restriction on the exponent p.�/. We include this proposition here because it was
the first result to suggest a connection between variable Lebesgue spaces and the
MuckenhouptAp weights. We will explore this connection more closely in Chap. 4.

We begin with a definition. A non-negative function u satisfies the RH1
condition if there exists a constant C such that for every cube Q and almost every
x 2 Q,

u.x/ � C�
Z
Q

u.y/ dy:

Examples of such functions include u.x/ D jxjr , r > 0. (See [70].)

Proposition 3.40. Given p.�/ 2 P.Rn/ such that j�1j D 0 and 1=p.�/ 2 RH1,
then for all f 2 Lp.�/.Rn/,

jfx 2 R
n W Mf.x/ > tgj � C

Z
Rn

� jf .x/j
t

�p.x/
dx:

3.7.3 L log L Inequalities in Variable Lebesgue Spaces

Even though the maximal operator does not map L1 into L1, there is an inequality
which gives a sharp condition on f for Mf to be locally integrable. Wiener [347]
(see also [143]) showed that given a locally integrable function f and any cubeQ,

Z
Q

Mf.x/ dx � 2jQj C C

Z
Rn

jf .x/j log.e C jf .x/j/ dx: (3.30)

Stein [338] proved that the converse is also true: given a locally integrable function
f such that supp.f / � Q andMf 2 L1.Q/, then

Z
Q

jf .x/j log.e C jf .x/j/ dx < 1: (3.31)

For general exponents a modular inequality similar to (3.30) holds: given any
p.�/ such that j�1j D 0, then for any � > 0 there exists a constant C such that for
any cube Q,
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Z
Q

Mf.x/ dx � 2jQj C C

Z
Rn

jf .x/jp.x/ log.e C jf .x/j/q.x/ dx;

where q.x/ D max.��1.� C 1 � p.x//; 0/. The key feature is that q.x/ D 1 when
p.x/ D 1, and supp.q.�// � fx W p.x/ < 1C�g. This inequality was proved in [59].

Inequality (3.30) implies an Orlicz space inequality, and an analogous result
holds in the scale of Musielak-Orlicz spaces when p.�/ is log-Hölder continuous.
Recall that in Sect. 2.10.2 we defined Lp.�/.logL/q.�/ to be the Musielak-Orlicz
space generated by the function ˆ.x; t/ D tp.x/ log.e C t/q.x/. Then for any
� > 0, given a cube Q and an exponent function 1=p.�/ 2 LH0.Q/, there
exists a continuous exponent function q.�/ such that q.x/ D 1 when p.x/ D 1,
supp.q.�// � fx W p.x/ < 1C �g, and

kMf kLp.�/.Q/ � Ckf kLp.�/.logL/q.�/ :

This embedding was proved by Diening et al. [81]. Previously, a somewhat weaker
version, assuming that pC < 1 and replacing the exponent p.�/ on the right-hand
side by an exponent r.�/ that is slightly larger on the set fx W 1 < p.x/ < 1 C �g,
was proved in [59]. The generalization of Stein’s converse (3.31) is also considered
in this paper.

A variation on this problem is to consider conditions on the exponent function
p.�/ that are sufficient for the embedding

kMf kL1.Q/ � Ckf kLp.�/.Q/: (3.32)

By (3.30) it suffices to find conditions on p.�/ such that Lp.�/.Q/ is contained in the
Orlicz space L logL.Q/. This question was first considered by Hästö [163], and
later by Futamura and Mizuta [136], Mizuta, Ohno and Shimomura [266], and also
in [59]. These results have been generalized to iterations of the maximal operator
in [158]. For more details on this question, see Sect. 2.10.5 above.

3.7.4 The Fractional Maximal Operator

Closely related to the Hardy-Littlewood maximal operator are the fractional maxi-
mal operators.

Definition 3.41. For each ˛, 0 < ˛ < n, given a function f 2 L1loc.R
n/ define the

fractional maximal operator by

M˛f .x/ D sup
Q3x

jQj˛=n�
Z
Q

jf .y/j dy;
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where the supremum is taken over all cubes in R
n containing x and whose sides are

parallel to the coordinate axes.

The fractional maximal operator was introduced by Muckenhoupt and
Wheeden [272]; it plays a role in estimates for Riesz potentials similar to the
one that the Hardy-Littlewood maximal operator does for singular integrals.

The fractional maximal operator is not bounded onLp; rather, it satisfies an “off-
diagonal” estimate: for 1 < p � n=˛, M˛ W Lp ! Lq , where

1

p
� 1

q
D ˛

n
: (3.33)

When p D n=˛ we define q D 1. If ˛ D 1, q equals the Sobolev exponent
p� D np

n�p . When p D 1 the fractional maximal operator satisfies a weak .1; q/
inequality:

jfx 2 R
n W M˛f .x/ > tgj � C

�
1

t

Z
Rn

jf .x/j dx
� n

n�˛

:

These inequalities can be proved in two different ways. First, the Calderón-
Zygmund decomposition and the proof of Theorem 3.4 can be adapted to the
fractional maximal operator. Marcinkiewicz interpolation is replaced by a more
general, off-diagonal interpolation theorem (see Stein and Weiss [341]). Alterna-
tively, norm inequalities for M˛ can be proved using Theorem 3.4 and a pointwise
inequality that is a consequence of Hölder’s inequality:

M˛f .x/ � kf k˛=nLp Mf .x/
p=q : (3.34)

(For a proof see [56].)
Theorem 3.16 can be extended to the fractional maximal operator.

Theorem 3.42. Fix ˛, 0 < ˛ < n. Given a set �, let p.�/ 2 P.�/ be such that
1=p.�/ 2 LH.�/ and pC � n=˛. Define q.�/ as in (3.33). Then for all t > 0,

kt	fxWM˛f.x/>tgkLq.�/ .�/ � Ckf kLp.�/.�/: (3.35)

If in addition p� > 1, then

kM˛f kLq.�/.�/ � Ckf kLp.�/.�/:

In both inequalities the constant depends on the dimension n, the log-Hölder
constants of 1=p.�/, p�, p1 and ˛.

The proof of Theorem 3.42 is essentially the same as the proof of Theorem 3.16;
indeed the proof given of both in [56] was intended in part to show that a unified
proof could be given for the Hardy-Littlewood and fractional maximal operators.
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In Chap. 5 below (see Remark 5.51) we will sketch another proof of this result
assuming pC < n=˛ using extrapolation. This case was first proved in [42]. The
proof used Theorem 3.16 and a generalization of (3.34) to variable exponents.

Proposition 3.43. Fix ˛, 0 < ˛ < n. Given � and p.�/ 2 P.�/ such that pC <

n=˛ and p.�/ 2 LH.�/, then for all f 2 Lp.�/.�/, kf kp.�/ � 1,

M˛f .x/ � CMf.x/p.x/=q.x/ C CR.x/p�=qC ;

where R.x/ D .eC jxj/�N , N > 0, and the constant C depends on p.�/, ˛ and N .

In fact, a slightly weaker version of Proposition 3.43 was proved in [42] (see
Propositions 3.1 and 3.2) but the version given here follows at once by adapting the
ideas in the proof of Theorem 3.32.

Variable fractional maximal operators were considered by Kokilashvili and
Samko [205] and Kokilashvili and Meskhi [198]. Given an exponent function
˛.�/ W R

n ! .0;1/ such that ˛� > 0 and sup˛.x/p.x/ < n, they defined the
operator

M˛.�/f .x/ D sup
Q3x

jQj˛.x/�
Z
Q

jf .y/j dy:

They proved weighted inequalities of the form

k�.�/M˛.�/f kq.�/ � Ckf kp.�/;

where �.x/ D .1C jxj/
.x/,


.x/ D C1˛.x/
�
1� ˛.x/

n

�
;

and C1 is the LH1 constant of p.�/.

3.7.5 Hardy Operators on Variable Lebesgue Spaces

The classical Hardy inequality states for that for 1 < p < 1, for any f 2
Lp.Œ0;1//,

Z 1

0

ˇ̌
ˇ̌ 1
x

Z x

0

f .y/ dy

ˇ̌
ˇ̌p dx � .p0/p

Z 1

0

jf .x/jp dx:

This inequality has a long history and many generalizations: see Kufner, Maligranda
and Persson [224] and Opic and Kufner [289]. It can be restated in terms of the
Hardy operator, the linear operator given by
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Hf.x/ D 1

x

Z x

0

f .y/ dy

as
kHf kp � p0kf kp: (3.36)

Since jHf.x/j � Mf.x/, (3.36) follows at once (though with a worse constant)
from the Lp inequalities for the maximal operator.

In a similar fashion we can prove norm inequalities for the Hardy operator on
variable Lebesgue spaces. However, H is bounded with assumptions on p.�/ that
are weaker than those that are needed for the maximal operator.

Theorem 3.44. Given p.�/ 2 P.Œ0;1//, suppose that 1 � p� � pC < 1, p.�/ 2
LH1.Œ0;1//, and p.�/ is log-Hölder continuous at the origin:

jp.x/ � p.0/j � C0

� log.x/
; 0 < x < 1=2:

Then kHf kLp.�/.Œ0;1// � Ckf kLp.�/.Œ0;1//.

Theorem 3.44 was proved by Diening and Samko [92] as a consequence of a
more general result about integral operators with “nice” kernels. Their main results
include variable exponent generalizations of H and its adjoint H�. Earlier, weaker
versions of this result were proved by Harjulehto, Hästö and Koskenoja [154],
Kokilashvili and Samko [208], and Mashiyev, Çekiç Mamedov and Ogras [258,
259]. Edmunds, Kokilashvili and Meskhi [98] also studied the compactness of these
operators. Harman [159] has shown that a slightly weaker continuity condition at
the origin is necessary for the Hardy operator to be bounded.

Hardy’s inequality can also be generalized to higher dimensions. An elementary
result appeared as part of the proof of the boundedness of the maximal operator
in [62]. Higher dimensional results were studied in [154], and also by Samko [317,
318], Rafeiro and Samko [295, 296], and Mamedov and Harman [160, 247].

Like the maximal operator, the Hardy operator satisfies a modular inequality

Z 1

0

jHf.x/jp.x/ dx � C

Z 1

0

jf .x/jp.x/ dx (3.37)

only if p.�/ is constant; this was proved by Sinnamon [333]. Somewhat surprisingly,
however, if we restrict f to non-negative, decreasing functions, then inequality
(3.37) can hold for non-constant p.�/. A characterization and examples were given
by Boza and Soria [35]. Further results were proved by Neugebauer [286]. A
modular inequality in higher dimensions, assuming kf k1 � 1 and p.�/ is a radial,
increasing function, was proved in [62].
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3.7.6 Other Maximal Operators

Several variants of the Hardy-Littlewood maximal operator occur in harmonic
analysis and have been studied in the variable Lebesgue space setting. For instance,
the maximal operator as originally defined by Hardy and Littlewood [148] was a
“one-sided” maximal operator: for f 2 L1loc.R/, define

MCf .x/ D sup
h>0

1

h

Z xCh

x

jf .y/j dy:

Similarly, we define

M�f .x/ D sup
h>0

1

h

Z x

x�h
jf .y/j dy:

One-sided maximal operators were studied by Sawyer [326] and then by Martı́n-
Reyes, Ortega Salvador and de la Torre [255, 256]. (See also [52, 71].)

The one-sided maximal operators are bounded on variable Lebesgue spaces if the
exponent p.�/ satisfies one-sided log-Hölder continuity conditions. For simplicity
we will consider MC; the conditions for M� are analogous. We say p.�/ 2
LHC

0 .R/ if

p.x/ � p.y/ � C0

� log.y � x/
; 0 < y � x < 1=2:

We say p.�/ 2 LHC1.R/ if there exists a bounded, non-increasing function q.�/ 2
P.R/ such that

jp.x/ � q.x/j � C1
log.e C jxj/ :

Theorem 3.45. Given p.�/ 2 P.R/, suppose 1 < p� � pC < 1 and p.�/ 2
LHC

0 .R/\ LHC1.R/. Then kMCf kp.�/ � Ckf kp.�/.
Theorem 3.45 was proved by Nekvinda [285]. He actually has a somewhat more

general result related to his condition for the Hardy-Littlewood maximal opera-
tor [282]. This result was proved by Edmunds, Kokilashvili and Meskhi [99] with
the LHC1 condition replaced by the stronger condition that p.�/ is constant outside
of a large ball. Another, very different proof is due to Bernardis, Gogatishvili,
Martı́n-Reyes, Ortega Salvador and Pick [28], who adapted the abstract Banach
function space approach of Lerner and Pérez [235]. Modular weak type inequalities
for one-sided maximal operators were proved by Aguilar Cañestro and Ortega
Salvador [8].
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In higher dimensions the strong maximal operator is defined by

MSf .x/ D sup
R3x

�
Z
R

jf .y/j dy;

where the supremum is taken over all rectangles (i.e., parallelepipeds) in R
n that

contain x and whose sides are parallel to the coordinate axes. Like the Hardy-
Littlewood maximal operator, the strong maximal operator is bounded on Lp.Rn/,
1 < p � 1. (See, for instance, [143].) However, Kopaliani [213] proved that
the strong maximal operator is never bounded on Lp.�/.Rn/ unless p.�/ is constant.
Kokilashvili and Meskhi [200] generalized this to the strong fractional maximal
operator.

To understand this result, it is worth considering the proof in the classical
Lebesgue setting. For clarity we consider only the case R

2. Let Mx denote the
maximal operator acting on the first variable:

Mxf .x0; y0/ D sup
I3x0

�
Z
I

jf .x; y0/j dx;

where the supremum is taken over all intervals I that contain x0. Define My , the
maximal operator acting on the second variable, similarly. Then it is straightforward
to show that

MSf .x0; y0/ � .Mx ıMy/f .x0; y0/:

Since the Hardy-Littlewood maximal operator is bounded on Lp.R/, Mx and
My are bounded on Lp.R2/, and so MS is as well. However, Mx and My need
not be bounded on Lp.�/.R2/. The following counter-example is adapted from
Nägele [276]. Let� D Œ0; 1��Œ0; 1�,�1 D Œ0; 1=3��Œ0; 1� and�2 D Œ2=3; 1��Œ0; 1�.
Let p.�/ 2 P.�/ be any exponent such that p.x; y/ D 2, .x; y/ 2 �1 and
p.x; y/ D 3, .x; y/ 2 �2. Let g 2 L2.Œ0; 1�/ n L3.Œ0; 1�/, and define f .x; y/ D
g.y/	�1.x; y/. Then

Z
�

f .x; y/p.x;y/ dxdy D 1

3

Z 1

0

g.y/2 dy < 1;

so by Proposition 2.12, f 2 Lp.�/.�/. On the other hand, for x0 2 .1=3; 1/,

Mxf .x0; y0/ �
Z 1

0

jf .x; y0/j dx D
Z 1=3

0

jg.y0/j dx D 1

3
jg.y0/j:

Therefore, if Mx were bounded on Lp.�/.�/ we would have (again by Proposi-
tion 2.12) that
Z 1

0

jg.y/j3 dy � C

Z
�2

jf .x; y/jp.x;y/ dxdy � C

Z
�

jMxf .x; y/jp.x;y/ dxdy < 1;

which contradicts our choice of g.
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3.7.7 Decreasing Rearrangements

As we showed in Example 3.14,Lp.�/.�/ is not rearrangement invariant. Therefore,
the decreasing rearrangement of f —that is,

f �.t/ D inffs W 
f .s/ � tg

(where the infimum of the empty set is defined to be 1, and 
f is the distribution
function, see p. 87), the decreasing function on Œ0; j�j/ that is equimeasurable
with f —does not play the same role in the study Lp.�/.�/ as it does for classical
Lebesgue spaces and other rearrangement invariant spaces. (For more on the theory
of decreasing rearrangements see [25, 223, 297].)

Nevertheless, the decreasing rearrangement is still applicable. Given a measur-
able function f with decreasing rearrangement f �, let

f ��.t/ D �
Z t

0

f �.s/ ds D M.f �/.t/ D H.f �/.t/;

where H is the Hardy operator (see Sect. 3.7.5). Kokilashvili and Samko [206]
defined a rearrangement invariant version of Lp.�/. Given� and p.�/ 2 P.Œ0; j�j//,
pC < 1, the spaceƒp.�/.�/ consists of all measurable functions f on� such that

kf kƒp.�/.�/ D kf ��kLp.�/.Œ0;j�j// < 1:

This is a Banach function space; if p.�/ D p > 1, then, since the maximal operator
is bounded on Lp and f ��.t/ 	 .Mf /�.t/ (see [25]), ƒp.�/ equals Lp.�/ with
an equivalent norm.

Ephremidze, Kokilashvili and Samko [108] used the same ideas to generalize the
classical Lorentz Lp;q spaces. Given � and p.�/; q.�/ 2 P.Œ0; j�j//, pC; qC < 1,
the space Lp.�/;q.�/.�/ consists of all measurable functions f on � such that

kf kLp.�/;q.�/ .�/ D kt1=p.t/�1=q.t/f �.t/kLq.�/ .Œ0;j�j// < 1:

If p.�/ and q.�/ are constant, then this becomes the classical Lorentz spaceLp;q.�/;
if p.�/ D q.�/ and the maximal operator is bounded on Lp.�/.Œ0; j�j//, then we have
that Lp.�/;p.�/.�/ D ƒp.�/.�/.

The decreasing rearrangement has also been used to describe properties of
Lp.�/.�/. Let � be bounded, and let Lp.�/a .�/ denote the collection of functions
in Lp.�/.�/ with absolutely continuous norm (see Sect. 2.10.3). Edmunds, Lang
and Nekvinda [101] showed that Lp.�/a .�/ equals the closure of the set of bounded
functions in Lp.�/.�/ if and only if for all A > 1,

Z j�j

0

Ap
�.t/ dt < 1:
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It is also possible to estimate the Lp.�/ norm of f in terms of f �. Given �
bounded and p.�/ 2 P.�/ such that j�1j D 0, define the increasing rearrangement
of p.�/ to be the increasing function p�.t/ D p�.j�j � t/, t 2 Œ0; j�j/. Then it was
shown in [131] that for all f 2 Lp.�/.�/,

1

2.1C j�j/kf
�k

Lp
�.�/.Œ0;j�j// � kf kLp.�/.�/ � 2.1C j�j/kf �kLp�.�/.Œ0;j�j//:

In the same paper there are also examples of f 2 Lp.�/.�/ such that the right-hand
term is infinite.

Rakotoson [298] has shown that decreasing rearrangements are a Lipschitz
functional on the variable Lebesgue spaces. More precisely, given a bounded set
� and p.�/ 2 P.�/ such that p�.�/ 2 LH0..0; �// for some � > 0, then for all
f; g 2 Lp.�/.�/,

kjf � � g�j�k
Lp

�.�/..0;j�j// � Ckf � gkLp.�/.�/:

This extends to the variable Lebesgue spaces results of Chiti [47] and Sakai [308].

3.7.8 Real and Complex Interpolation

As we remarked after the proof of Theorem 3.4, at the heart of the classicalLp norm
inequalities for the maximal operator is the Marcinkiewicz interpolation theorem,
which allows us to pass from weak type to strong type inequalities.

Proposition 3.46. Given a set � and a non-negative measure 
, suppose the
sublinear operator T satisfies the weak .pi ; pi / inequalities,


.fx 2 � W jTf .x/j > tg/ � Mi

tpi

Z
�

jf .x/jpi d
; i D 1; 2;

where 1 � p1 < p2 < 1, or if p2 D 1, satisfies kTf kL1.�;
/ � M2kf kL1.�;
/.
Then for all p, p1 < p < p2,

�Z
�

jTf .x/jp d

�1=p

� C

�Z
�

jf .x/jp d

�1=p

;

where C depends on p, p1, p2, M1 andM2.

For a proof, see Duoandikoetxea [96] or Grafakos [143]. For the history of this
result and its generalizations, see Maligranda [246].

It is an open question whether a version of Marcinkiewicz interpolation is true
in the variable Lebesgue spaces. More precisely, suppose the sublinear operator T
satisfies
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kt	fxWMf.x/>tgkLpi .�/.�/ � Ckf kLpi .�/.�/; i D 1; 2I
then is it true that

kTf kLp� .�/.�/ � Ckf kLp� .�/.�/;

where p�.�/ is defined by

1

p�.x/
D �

p1.x/
C 1 � �

p2.x/
(3.38)

for any � , 0 < � < 1?
This question was first posed by Diening, Hästö and Nekvinda [86]. The proof of

the Marcinkiewicz interpolation theorem and its generalizations (the so-called real
interpolation methods—see Bennett and Sharpley [25]) depend in an essential way
on the fact that the classical Lebesgue spaces are rearrangement invariant, and so
cannot be extended to the variable Lebesgue spaces.

On the other hand, the Riesz-Thorin interpolation theorem (i.e., the complex
interpolation method) extends naturally to the variable Lebesgue spaces.

Theorem 3.47. Given � and pi .�/; qi .�/ 2 P.�/, i D 1; 2, suppose T is a linear
operator such that

kTf kLqi .�/.�/ � Mikf kLpi .�/.�/; i D 1; 2:

Then for each � , 0 < � < 1,

kTf kLq� .�/.�/ � CM�
1 M

1��
2 kf kLp� .�/.�/;

where p�.�/ is defined by (3.38) and q� .�/ is defined similarly.

Theorem 3.47 was proved in [82] when pi .�/ D qi .�/ but the more general
result is proved in exactly the same way. The special case when pi .�/ D qi .�/
and .pi /C < 1 was proved in [86]. Earlier, Musielak [274] gave a proof in the
general setting of Musielak-Orlicz spaces. Karlovich and Lerner [195] proved it
in the special case p1.�/ D p.�/, p2.�/ D p0.�/ and � D 1=2 (i.e., p�.�/ D 2).
Kopaliani [216] generalized this result by showing that one of the endpoint spaces
could be replaced by BMO , the space of functions of bounded mean oscillation,
or H1, the real Hardy space. Theorem 3.36 is a special case of Theorem 3.47 for
positive integral operators.



Chapter 4
Beyond Log-Hölder Continuity

In this chapter we continue our study of the Hardy-Littlewood maximal operator.
In Chap. 3 we showed that the log Hölder continuity conditions LH0 and LH1
are sufficient for the maximal operator to be bounded. In this chapter we will
show that they are not necessary, even though they are the best possible pointwise
decay conditions. To find weaker sufficient conditions we build upon the proof of
Theorem 3.16, which showed that LH0 and LH1 play distinct roles. Intuitively,
the LH0 condition controls the behavior of the maximal operator locally (where a
function is large) and the LH1 condition controls it at infinity (where a function
is small). We will, therefore, study replacements for each condition separately. We
first consider LH1: here the proof of Theorem 3.16 itself, when examined closely,
quickly yields a weaker sufficient condition. However, we will also construct an
example to show that it is still not necessary. The problem of finding a necessary
and sufficient condition to replace LH1 in our proof remains open.

We are able to give a replacement for the LH0 condition, but new techniques are
required. Recall that in the proof of Theorem 3.16 we used it to apply Lemma 3.24,
but this geometric property of an exponent p.�/ is equivalent to p.�/ 2 LH0. Our
new condition is necessary and sufficient for the maximal operator to be bounded
on bounded domains. The proof of this result is quite technical; surprisingly, it
requires machinery from the theory of MuckenhouptAp weights, and we introduce
this useful tool before we discuss controlling the maximal operator locally. These
results suggest that there is a deep and subtle connection between weighted and
variable Lebesgue spaces that needs to be explored.

We will conclude this chapter with a discussion of a very deep theoretical
result that gives a necessary and sufficient condition for the maximal operator to
be bounded on a variable Lebesgue space. This condition, which simultaneously
replaces both LH0 and LH1, is difficult to check in practice, but it has several
important theoretical consequences.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3 4, © Springer Basel 2013
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4.1 Control at Infinity: The N1 Condition

In this section we consider the behavior of the maximal operator at infinity, where
the function f is small. We first show thatLH1 is the best possible pointwise decay
condition: if we replace log.eCjxj/�1 with any function that is substantially larger,
the maximal operator need not be bounded.

To understand the following example, recall Example 3.23 which gave an
exponentp.�/ that oscillates at infinity such that the maximal operator is unbounded.
Moreover, if p.�/ has a “jump discontinuity” at infinity, then the maximal operator
will also be unbounded: for instance, Example 3.21 can be modified to show that if
p.�/ 2 P.R/ is such that for some K > 0, p.x/ D 2 for x < �K and p.x/ D 3

for x > K , then M is not bounded on Lp.�/.R/. But even when p.�/ is uniformly
continuous at infinity, if its modulus of continuity is too large, then the maximal
operator may be unbounded.

Example 4.1. Fix p1, 1 < p1 < 1, and let � W Œ0;1/ ! Œ0; 1/ be such that
�.0C/ D 0, �C < p1 � 1, � is decreasing on Œ1;1/, �.x/ ! 0 as x ! 1, and

lim
x!1�.x/ log.x/ D 1: (4.1)

Define p.�/ 2 P.R/ by

p.x/ D
(
p1 x � 0

p1 � �.x/ x > 0:

Then p.�/ 62 LH1.R/ and the maximal operator is not bounded on Lp.�/.R/.

Remark 4.2. The assumption that �.0C/ D 0 is included only to preclude the
possibility that p.�/ has a jump discontinuity at the origin, thus preventing the
maximal operator from being bounded (see Example 3.21). It otherwise plays no
role in the construction.

Proof. It is immediate from (4.1) that p.�/ does not satisfy the LH1.R/ condition,
so we only have to construct a function f such that f 2 Lp.�/.R/ but Mf 62
Lp.�/.R/. By inequality (4.1) we have that

lim
x!1

�
1 � p1

p.2x/

�
log.x/ D �1;

which in turn implies that

lim
x!1x1�p1=p.2x/ D 0:

Hence, we can form a sequence fcng � .�1;�1/ such that cnC1 < 2cn and
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jcnj1�p1=p.2jcn j/ � 2�n:

Let dn D 2cn and define the function f by

f .x/ D
1X
nD1

jcnj�1=p.jdn j/	.dn;cn/.x/:

Since pC < 1, by Proposition 2.12 it will suffice to show that �.f / < 1 and
�.Mf / D 1. First,

�.f / D
1X
nD1

Z cn

dn

jcnj�p.x/=p.jdnj/ dx D
1X
nD1

Z cn

dn

jcnj�p1=p.jdn j/ dx

D
1X
nD1

jcnj1�p1=p.jdn j/ �
1X
nD1

2�n D 1:

On the other hand, if x 2 .jcnj; jdnj/, then

Mf.x/ � 1

2jdnj
Z jdn j

dn

f .y/ dy � 1

2jdnj
Z cn

dn

jcnj�1=p.jdn j/ dy D 1

4
jcnj�1=p.jdn j/:

Therefore, since p.�/ is an increasing function on .1;1/ and jcnj � 1,

�.Mf / �
�
1

4

�pC
1X
nD1

Z jdnj

jcnj
jcnj�p.x/=p.jdnj/ dx

�
�
1

4

�pC
1X
nD1

Z jdnj

jcnj
jcnj�p.jdnj/=p.jdn j/ dx D

�
1

4

�pC
1X
nD1

1 D 1:

ut
Example 4.3. A family of functions that satisfy the hypotheses of Example 4.1 is

p.x/ D

8̂
<̂
ˆ̂:

p0 x 2 .�1; 0�

p0 � x
log.eC1/a x 2 .0; 1/

p0 � 1
log.eCx/a x 2 Œ1;1/;

where p0 > 2 and 0 < a < 1.

While Example 4.1 shows that LH1 is sharp in terms of pointwise decay
at infinity, the proof of Theorem 3.16 yields a weaker sufficient condition that
controls, in some sense, the average rate of decay. In this proof (see p. 104) the
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LH1 condition was used to estimate the maximal operator of f2 D f	fxWf .x/�1g
by applying Proposition 2.43. More precisely, we needed the two embeddings
L1.E/ � Lr.�/.E/ and L1.F / � Ls.�/.F /, where

E D fx 2 � W p.x/ � p1g; F D fx 2 � W p.x/ < p1g;

and r.�/ and s.�/ are defined on E and F by

1

p1
D 1

p.x/
C 1

r.x/
;

1

p.x/
D 1

p1
C 1

s.x/
:

(Note that in this argument we had for simplicity extended p.�/ to an exponent in
LH1.Rn/ using Lemma 2.4; however, the proof does not require this extension and
goes through if we everywhere replaceRn with�.) By Proposition 2.43, a necessary
and sufficient condition for both of these embeddings to hold is that the integrals

Z
fx2EWr.x/<1g

��r.x/ dx and
Z

fx2F Ws.x/<1g
��s.x/ dx

are both finite for some � > 1. If we combine these two integrals we get the follow-
ing definition and the above argument yields a generalization of Theorem 3.16.

Definition 4.4. Given � and p.�/ 2 P.�/, we say that p.�/ 2 N1.�/ if there
exist constantsƒ1 > 0 and p1 2 Œ1;1� such that

Z
�C

exp

 
�ƒ1

ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌�1
!
dx < 1;

where

�C D
�
x 2 � W

ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌ > 0

�
:

Remark 4.5. If pC < 1, then we can rewrite the N1 condition in a somewhat
simpler form: Z

�C

exp
� �ƒ1jp.x/� p1j�1� dx < 1;

where �C D fx 2 � W jp.x/ � p1j > 0g. This follows at once by an argument
essentially the same as the proof in Proposition 2.3 that if pC < 1, then p.�/ 2
LH1 if and only if 1=p.�/ 2 LH1. Further, if� is bounded, then theN1 condition
holds trivially (just like the LH1 condition), since for every ƒ1 > 0 the integral
is bounded by j�Cj.
Remark 4.6. If p.�/ 2 N1.�/, then it follows at once from Definition 4.4 that
p0.�/ 2 N1.�/.
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Theorem 4.7. Given a set � and p.�/ 2 P.�/, if 1=p.�/ 2 LH0.�/ and p.�/ 2
N1.�/, then

kt	fxWMf.x/>tgkLp.�/.�/ � Ckf kLp.�/.�/: (4.2)

Furthermore, if p� > 1, then for all f 2 Lp.�/.�/,

kMf kLp.�/.�/ � Ckf kLp.�/.�/:

The proof of Theorem 4.7 can be adapted to prove a perturbation result that
complements the convexity result in Theorem 3.38.

Proposition 4.8. Given a set � and p.�/ 2 � such that p� > 1 and 1=p.�/ 2
LH0.�/, suppose there exists q.�/ 2 P.�/ such that for some ƒ1 > 0,

Z
�C

exp

 
�ƒ1

ˇ̌
ˇ̌ 1

p.x/
� 1

q.x/

ˇ̌
ˇ̌�1
!
dx < 1; (4.3)

where�C D fx 2 � W jp.x/�1�q.x/�1j > 0g. If the maximal operator is bounded
on Lq.�/.�/, then it is bounded on Lp.�/.�/. Similarly, if p� D 1 and M satisfies
the weak type inequality (4.2) on Lq.�/.�/, then it also satisfies it on Lp.�/.�/.

Proof. The argument is essentially the same as the proof of Theorem 4.7 (and so
the proof of Theorem 3.16). Decomposing f as f1 C f2, the argument for f1 goes
through without change. To estimate f2 we repeat the argument given above for
Theorem 4.7, replacingp1 by q.�/; then given our hypothesis (4.3) we can prove the
necessary embeddings of L1; the rest of the proof then follows without change. ut

We now consider the relationship between LH1 and N1.

Proposition 4.9. Given � and p.�/ 2 P.�/, if 1=p.�/ 2 LH1.�/, then p.�/ 2
N1.�/. However, there exists p.�/ 2 P.R/, pC < 1, such that p.�/ 2 LH0.R/\
N1.R/ but p.�/ 62 LH1.R/.

Proof. If 1=p.�/ 2 LH1.�/, then it follows immediately from the definitions that
p.�/ 2 N1.�/:

Z
�C

exp

 
�ƒ1

ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌�1
!
dx �

Z
Rn

exp

��ƒ1
C1

log.e C jxj/
�
dx < 1:

The last inequality holds for all ƒ1 > nC1.
To show that N1.R/ is not contained in LH1.R/, fix p1 > 1 and define �.�/

by

�.x/ D
(
1
k

� jek2 � xj 0 � jek2 � xj � 1
k
; 1 � k < 1;

0 otherwise:
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Now let p.x/ D p1 C �.x/; then

jp.ek2/ � p1j D �.ek
2

/ D 1

k
	 k

log.e C ek
2
/
;

so p.�/ 62 LH1.R/. On the other hand, it follows immediately from the definition
that �.�/ is Lipschitz, so p.�/ 2 LH0.R/. Furthermore,

Z
�C

exp
� � jp.x/ � p1j�1� dx D

1X
kD1

Z
fjek2�xj<1=kg

e�1=�.x/ dx

D 2

1X
kD1

Z 1=k

0

e�1=y dy �
1X
kD1

2

kek
< 1:

Hence, by Remark 4.5, p.�/ 2 N1.R/. ut
If p.�/ 2 N1.�/, then p.�/ has a limit (in a weak sense) at infinity.

Proposition 4.10. Given an unbounded set � and p.�/ 2 P.�/, suppose p.�/ 2
N1. Then:

1. 1=p.�/ converges to 1=p1 at infinity in the sense that if we define

�k.x/ D
ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌	�nBk.0/.x/;

then �k ! 0 in measure as k ! 1.
2. If 1=p.�/ is uniformly continuous (e.g., if 1=p.�/ 2 LH0.�/), then 1=p.x/ !
1=p1 as jxj ! 1.

Remark 4.11. The conclusion in .1/ is equivalent to

lim
R!1

ˇ̌
ˇ̌
�
x 2 � n BR.0/ W

ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌ > �

� ˇ̌
ˇ̌ D 0;

and the proof can be readily modified to show this directly.

Remark 4.12. It is not necessary for a limit at infinity to exist, even in the weak
sense of Proposition 4.10, for the maximal operator to be bounded. See Sect. 4.6.3
below.

Proof. To prove .1/, fix � > 0. Since p.�/ 2 N1.�/, for all k > 0 sufficiently
large,

Z
fx2�CWjxj>kg

exp

 
�ƒ1

ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌�1
!
dx < � e���1ƒ1 :
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Thus,

ˇ̌
ˇ̌
�
x 2 �C n Bk.0/ W exp

�
�ƒ1

ˇ̌
ˇ̌ 1

p.x/
� 1

p1

ˇ̌
ˇ̌�1
�

� e���1ƒ1

� ˇ̌
ˇ̌ < �;

and this immediately implies that

jfx 2 � W j�k.x/j � �gj < �:
Hence, �k ! 0 in measure.

To prove .2/, suppose to the contrary that there exists p.�/ 2 N1 such that
1=p.�/ is uniformly continuous, but there exists � > 0 and a sequence fxkg such that
xk ! 1 while j1=p.xk/�1=p1j > �. By passing to a subsequence we may assume
that if j ¤ k, jxj � xkj > 1. Since 1=p.�/ is uniformly continuous there exists ı,
0 < ı < 1, such that for every k, if jxk �xj < ı, then j1=p.x/� 1=p1j > �=2. But
this contradicts .1/ and so we must have that 1=p.�/ converges to 1=p1 pointwise
as jxj ! 1. ut

Since the condition in Proposition 2.43 is necessary and sufficient for the
embedding of L1 into Lp.�/, N1 is the weakest condition we can use in the proof
of Theorem 3.16 to control the maximal operator at infinity. This is analogous to
the fact that LH0 is the weakest condition we can use in this proof to control the
maximal operator locally. It remains an open problem to find a weaker condition on
an exponent p.�/ and a generalization of this proof lets us show that

kMf kp.�/ � Ckf kp.�/
for all f such that jf j � 1. (For a general necessary and sufficient condition, see
Theorem 4.63 below.) The problem of finding such a condition is interesting since,
as the next example shows, there exist exponents p.�/ that do not satisfy the N1
condition but M is bounded on Lp.�/.

Example 4.13. On the real line, given p0 > 1 and 0 < a < 1, define

p.x/ D p0 C 1

log.e C jxj/a :

Then p.�/ 62 N1 but M is bounded on Lp.�/.R/.

Remark 4.14. Compare these exponent functions to the ones in Example 4.3. There,
we needed both the larger modulus of continuity and the asymmetry of p.�/ to show
that the maximal operator is unbounded. In the proof of Example 4.13 we need both
the radial symmetry and the monotonicity of the exponents. While the interplay
of these two hypotheses in the construction of the example is clear, their deeper
significance is not known.

The construction requires a lemma which is a generalization of Lemma 3.26 and
which is proved in exactly the same way.
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Lemma 4.15. Let p.�/; q.�/ 2 P.Rn/ be such that pC; qC < 1 and

jp.x/ � q.x/j � C1
log.e C jxj/ : (4.4)

Then given any function F with 0 � F.y/ � 1 and any N > n, there exists a
constant C > 0 such that

Z
Rn

F .y/p.y/ dy � C

Z
Rn

F .y/q.y/ dy C C

Z
Rn

.e C jyj/�Nq.y/ dy:

The same inequality also holds with the roles of p.�/ and q.�/ reversed.

Proof of Example 4.13. We will follow the proof of Theorem 3.16 in the case pC <

1. Fix a function f and write f D f1 C f2 as before. Since p.�/ is Lipschitz,
p.�/ 2 LH0.R/, and so the estimate for f1 proceeds as before.

The heart of the proof is the estimate for f2. To simplify notation we will write
simply f instead of f2. Then we have that 0 � f .x/ � 1 and

�.f / D
Z
R

f .x/p.x/ dx � 1;

and we need to show that there is a constant C such that
Z
R

Mf.x/p.x/ dx � C:

Our first step is to replace p.�/ with a discrete exponent function q.�/. For x � 1,
let ˛.x/ D x log.xˇ/ D ˇx log.x/, where we fix ˇ > 1 so that

1 <
ˇ C 1

ˇ � 1 < p0: (4.5)

Define the set
E0 D .�e˛.1/; e˛.1// D .�1; 1/;

and for k � 1 define

Ek D .�e˛.kC1/; e˛.kC1// nEk�1:

Note that for all k � 1,
jEkj D 2.e˛.kC1/ � e˛.k//: (4.6)

Now let q0 D q1 D 1, and for k � 2 let

qk D p0 C 1

˛.k � 1/a
D p0 C 1

.ˇ.k � 1/ log.k � 1//a :
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Define q.�/ 2 P.R/ by

q.x/ D
1X
kD0

qk	Ek .x/:

Since ˛.k�1/ < ˛.k/ < log.eCe˛.k//, for all k � 1, qk > p.e˛.k//, and therefore,
since p.�/ is a decreasing function, q.x/ � p.x/ for all x 2 R.

To replace p.�/ by q.�/ we will apply Lemma 4.15. Since p.�/ and q.�/ are
bounded, if x 2 E0 [ E1, (4.4) clearly holds. Now fix x 2 Ek , k � 2. Then

q.x/ � p.x/ D
�

1

.ˇ.k � 1/ log.k � 1//a � 1

.log.jxj//a
�

C
�

1

.log.jxj//a � 1

log.e C jxj/a
�
:

It follows immediately from the mean value theorem that the second term is bounded
by C log.e C jxj/�1, so we only need to estimate the first term. Since x 2 Ek , by
the monotonicity of the logarithm and again by the mean value theorem,

1

.ˇ.k � 1/ log.k � 1//a
� 1

.log.jxj//a

� 1

.ˇ.k � 1/ log.k � 1//a � 1

.ˇ.k C 1/ log.k C 1//a

� 2aˇ.log.k � 1/C 1/

.ˇ.k � 1/ log.k � 1//aC1 � C

.k � 1/1Ca � C

log.e C jxj/ : (4.7)

The last inequality holds since if x 2 Ek ,

9.k � 1/1Ca � .k C 1/1Ca � c.a; ˇ/ log.e C jxj/:

Thus (4.4) holds for all x. Since 0 � f � 1, by Proposition 3.3, Mf � 1.
Hence, by Lemma 4.15,

Z
R

Mf.x/p.x/ dx � C

Z
R

Mf.x/q.x/ dx C C

Z
R

.e C jxj/�2q.x/ dx:

Since the second integral is finite, it remains to bound the first integral. We divide
up the domain of integration:

Z
R

Mf.x/q.x/ dx D
Z
E0[E1

Mf .x/q.x/ dx C
1X
kD2

Z
Ek

Mf .x/q.x/ dx:
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The first integral is easy to estimate:

Z
E0[E1

Mf .x/q.x/ dx � jE0 [E1j D 2e˛.2/:

To estimate the sum for each k � 2 we define the following sets:

Fk D
k�2[
jD0

Ej ; Gk D Ek�1 [ Ek [ EkC1; Hk D
1[

jDkC2
Ej ;

for each k, Fk [ Gk [ Hk D R. Then, since qC < 1, by the modular triangle
inequality (Remark 2.8),

1X
kD2

Z
Ek

Mf .x/q.x/ dx

� C

� 1X
kD2

Z
Ek

M.f	Fk /.x/
qk dx C

1X
kD2

Z
Ek

M.f	Gk /.x/
qk dx

C
1X
kD2

Z
Ek

M.f	Hk/.x/
qk dx

�

D C.I1 C I2 C I3/:

We estimate each summation in turn. We first consider I2. By Theorem 3.4 and
Remark 3.5, the maximal operator is bounded on Lqk .R/ with a constant bounded
by Cq0

k � Cp0
0. Further, for x 2 Gk , qk � p.x/. Thus,

I2 D
1X
kD2

Z
Ek

M.f	Gk/.x/
qk dx � C

1X
kD2

Z
Gk

f .x/qk dx

� C

Z
R

f .x/p.x/

 1X
kD2

	Gk .x/

!
dx � 3C

Z
R

f .x/p.x/ dx � C:

Next we estimate I3. For x 2 Ek ,

M.f	Hk /.x/ D sup
J

�
Z
J

f .y/	Hk .y/ dy;

where the supremum is taken over all intervals J such that x 2 J and jJ \Hkj > 0.
These two conditions combined with (4.6) imply that

jJ j � e˛.kC2/ � e˛.kC1/ D jEkC1j=2:
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For all y 2 Hk , qk � p.y/. Therefore, by Hölder’s inequality,

M.f	Hk /.x/
qk � sup

J

�
Z
J

�
f .y/	Hk .y/

�qk dy

� 2

jEkC1j
Z
Hk

f .y/qk dy � 2

jEkC1j
Z
Hk

f .y/p.y/ dy � 2

jEkC1j :

Hence,

I3 D
1X
kD2

Z
Ek

M.f	Hk /.x/
qk dx � 2

1X
kD2

jEkj
jEkC1j :

By the definition of the sets Ek ,

jEkj
jEkC1j D e˛.kC1/ � e˛.k/

e˛.kC2/ � e˛.kC1/ � 1

e˛.kC2/�˛.kC1/ � 1 :

Moreover,

˛.k C 2/� ˛.k C 1/ D ˇ.k C 2/ log.k C 2/� ˇ.k C 1/ log.k C 1/

� ˇ.k C 2/ log.k C 1/� ˇ.k C 1/ log.k C 1/ D ˇ log.k C 1/: (4.8)

Therefore, since ˇ > 1,

I3 � 2

1X
kD2

1

.k C 1/ˇ � 1
< 1:

Finally, we consider I1; this estimate is the most delicate. Since the maximal
operator is sublinear (Proposition 3.3), for each k � 2,

Z
Ek

M.f	Fk /.x/
qk dx �

Z
Ek

0
@k�2X
jD0

M.f	Ej /.x/

1
A
qk

dx: (4.9)

For x 2 Ek and 0 � j � k � 2,

M.f	Ej /.x/ D sup
J

�
Z
J

f .y/	Ej .y/ dy;

where the supremum is taken over all intervals J such that x 2 J and jJ \Ej j > 0.
Therefore,

jJ j � jxj � e˛.jC1/ � jxj � e˛.k�1/:
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For all y 2 Ej , qjC1 � p.y/, and so by Hölder’s inequality with exponent qjC1,

M.f	Ej /.x/ � 1

jxj � e˛.k�1/

Z
Ej

f .y/ dy

� 1

jxj � e˛.k�1/ jEj j1=q0

jC1

 Z
Ej

f .y/qjC1 dy

!1=qjC1

� 1

jxj � e˛.k�1/ jEj j1=q0

jC1

 Z
Ej

f .y/p.y/ dy

!1=qjC1

� 1

jxj � e˛.k�1/ jEj j1=q0

jC1 :

If we combine this inequality with (4.9), we get

I1 �
1X
kD2

�Z
Ek

�
1

jxj � e˛.k�1/

�qk
dx

�0
@k�2X
jD0

jEj j1=q0

jC1

1
A
qk

:

We first evaluate the integral on the right-hand side:

Z
Ek

�
1

jxj � e˛.k�1/

�qk
dx

� 2

Z 1

e˛.k/

�
1

x � e˛.k�1/

�qk
dx D 2

qk � 1

1

.e˛.k/ � e˛.k�1//qk�1 : (4.10)

Next we estimate the sum. For j � 2, jEj j � 2e˛.jC1/. Since

qjC1 D p0 C 1

˛.j /a
;

we have that

1

q0
jC1

D 1 � ˛.j /a C p�1
0 � p�1

0

p0˛.j /a C 1
D 1

p0
0

C p�1
0

p0˛.j /a C 1
:

Therefore,
˛.j C 1/

q0
jC1

D ˛.j C 1/

p0
0

C p�1
0 ˛.j C 1/˛.j /�a

p0 C ˛.j /�a
:

Since ˛.�/ is an increasing function and ˛.j C 1/˛.j /�a is increasing for j large
and tends to 1 as j ! 1, for 2 � j � k � 2 and k large,
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jEj j1=q0

jC1 � Ce
˛.jC1/=q0

jC1 � Ce˛.k�1/=q0

k�1 :

A similar estimate holds for j D 0; 1 or when k is small. Therefore,

0
@k�2X
jD0

jEj j1=q0

jC1

1
A
qk

� C.k � 1/qk exp

�
˛.k � 1/ qk

q0
k�1

�

D C.k � 1/qk exp

�
˛.k � 1/

qk

q0
k

�
exp

�
˛.k � 1/

�
qk

q0
k�1

� qk

q0
k

��
:

We estimate the last exponential: by the mean value theorem (arguing as we did
for (4.7)),

exp

�
˛.k � 1/

�
qk

q0
k�1

� qk

q0
k

��

D exp

�
˛.k � 1/

�
qk�1 � qk
qk�1

��

� exp

�
1

p0
˛.k � 1/

�
1

˛.k � 2/a � 1

˛.k � 1/a

��

� exp

�
aˇ

p0
˛.k � 1/

log.k � 1/C 1

˛.k � 2/1Ca
�

� C:

Thus we have that

0
@k�2X
jD0

jEj j1=q0

jC1

1
A
qk

� C.k � 1/qk exp

�
˛.k � 1/qk

q0
k

�

D C.k � 1/qk exp .˛.k � 1/.qk � 1// : (4.11)

We can now estimate I1: by (4.10), (4.11) and (4.8),

I1 � C

1X
kD2

.k � 1/qk
�

e˛.k�1/

e˛.k/ � e˛.k�1/

�qk�1

� C

1X
kD2

.k � 1/qk
�

1

e˛.k/�˛.k�1/ � 1

�qk�1
� C

1X
kD2

.k � 1/qk�ˇ.qk�1/:

By (4.5),
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qk � ˇ.qk � 1/ < ˇ � .ˇ � 1/p0 < ˇ � .ˇ C 1/ D �1:

Therefore, the final series converges. This completes the estimate of I1 and so
completes our proof. ut

4.2 A Useful Tool: Muckenhoupt Ap Weights

In this section we pause in our study of the maximal operator on variable Lebesgue
spaces to introduce some ideas from the theory of weighted norm inequalities. The
theory of weights is closely intertwined with the properties of the Hardy-Littlewood
maximal operator, so it is perhaps not surprising, at least in retrospect, that
these results are directly applicable to studying the maximal operator on variable
Lebesgue spaces. We will apply these ideas in Sects. 4.3 and 4.4. Furthermore, we
will show in Chap. 5 that the theory of weights provides an elegant approach to
studying the behavior of other operators on variable Lebesgue spaces.

By a weight we mean a non-negative, measurable function such that 0 < w.x/ <
1 almost everywhere. For 1 < p < 1, a weight w is in the Muckenhoupt class
Ap—or simply, w 2 Ap—if

Œw�Ap D sup
Q

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�p0

dx

�p�1
< 1; (4.12)

where the supremum is taken over all cubes with sides parallel to the coordinate
axes.

Remark 4.16. In the definition of Ap weights the hypothesis 0 < w.x/ < 1
implies that both integrals in (4.12) are positive, and therefore both must be finite:
i.e., w and w1�p0

are locally integrable. We could weaken this hypothesis and instead
assume that w is not identically equal to 0 or infinity; (4.12) would still make sense
if we used the convention that 0 � 1 D 0. However, this gains nothing: implicit in
this more general definition is the fact that w and w1�p0

are locally integrable. See
Remark 4.36 in the next section.

When p D 1 define the class A1 to be the weights such that

Œw�A1 D ess sup
x2Rn

Mw.x/

w.x/
< 1; (4.13)

where M is the Hardy-Littlewood maximal operator. There are two equivalent
definitions that will be useful in practice. First, w 2 A1 if for almost every x,

Mw.x/ � Œw�A1w.x/: (4.14)
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Alternatively, we have that w 2 A1 if for every cubeQ,

�
Z
Q

w.y/ dy � Œw�A1 ess inf
x2Q w.x/: (4.15)

Clearly, (4.13) and (4.14) are equivalent, and (4.14) implies (4.15). To see the
reverse implication, suppose (4.15) holds and fix x such that Mw.x/ > Œw�A1w.x/.
Then there exists a cube Q such that

�
Z
Q

w.y/ dy > Œw�A1w.x/I

we may assume that the vertices ofQ have rational co-ordinates. Thus x belongs to
a subset ofQ with measure 0. Since there are a countable number of such cubes, the
collection of all such x must have measure 0, which shows that (4.14) holds almost
everywhere.

The collection of all the Ap weights is referred to as A1:

A1 D
[
p�1

Ap:

Remark 4.17. In the definition of Ap weights we can substitute balls for cubes. In
Sect. 3.1 we showed that the maximal operator can be defined using either balls or
cubes, and the same reasoning applies here: given any ball B , there exist two cubes
Q1; Q2 with the same center such that Q1 � B � Q2 and jQ2j=jQ1j D nn=2, and
a similar relationship holds with the roles of balls and cubes reversed.

The Ap condition, p > 1, is in some sense a reverse Hölder inequality. To see
this more clearly, we rewrite (4.12) as

kw1=p	Qkpkw�1=p	Qkp0 � Œw�1=pAp jQj: (4.16)

By Hölder’s inequality, the left-hand side is always greater than or equal to jQj
so (4.16) can be regarded as a reverse of this inequality. In Theorem 4.22 below we
will show that theAp condition implies another, fundamental inequality that is more
clearly a reverse Hölder inequality.

The definition of Ap immediately yields four basic properties of these weights.

Proposition 4.18. Given p, 1 � p < 1, then:

1. If p > 1 and w 2 Ap , then w1�p0 2 Ap0 and Œw1�p0

�Ap0
D Œw�p

0�1
Ap

.
2. If p < q < 1, then Ap � Aq and Œw�Aq � Œw�Ap .

3. If p > 1 and w1; w2 2 A1, then w D w1w
1�p
2 2 Ap and Œw�Ap � Œw1�A1 Œw2�

p�1
A1

.
4. If w 2 Ap, then for any cubeQ,
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�
Z
Q

w.x/ dx � Œw�Ap exp

�
�
Z
Q

log
�
w.x/

�
dx

�
:

Remark 4.19. The converse of Property .3/ is also true and is a very deep property
of Ap weights called the Jones factorization theorem. Property .4/ is referred to
as the reverse Jensen inequality for Ap weights. The converse is also true: if this
inequality holds with some constant, then w 2 Ap for some p � 1. The sharp
constant is denoted Œw�A1

.

Proof. Property .1/ follows from the definition and the fact that .p�1/.p0�1/ D 1.
Property .2/ follows from Hölder’s inequality: for q > p > 1, p0 � 1 > q0 � 1, and
so for any cube Q,

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�q0

dx

�q�1

�
�

�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�p0

dx

�p�1
� Œw�Ap :

If p D 1, then by (4.15) for any cube Q,

�
�
Z
Q

w.x/1�q0

dx

�q�1
D
�

�
Z
Q

�
w.x/�1

�q0�1
dx

� 1
q0

�1

� ess sup
x2Q

w.x/�1 D �
ess inf
x2Q w.x/

��1 � Œw�A1

�
�
Z
Q

w.x/ dx

��1
I

hence, �
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�q0

dx

�q�1
� Œw�A1 :

Property .3/ follows by an almost identical argument:

�
�
Z
Q

w1.x/w2.x/
1�p dx

��
�
Z
Q

w1.x/
1�p0

w2.x/
.1�p/.1�p0/ dx

�p�1

� Œw2�
p�1
A1

�
�
Z
Q

w1.x/ dx

��
�
Z
Q

w2.x/ dx

�1�p

� Œw1�A1
�

�
Z
Q

w1.x/ dx

��1 �
�
Z
Q

w2.x/ dx

�p�1

D Œw1�A1 Œw2�
p�1
A1

:
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To prove Property .4/ first note that by .2/ we may assume that p > 1. But then,
for any cubeQ,

ŒAp� � lim
q!1

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�q0

dx

�q�1

D
�

�
Z
Q

w.x/ dx

�
exp

�
�
Z
Q

� log
�
w.x/

�
dx

�
:

The final equality is a well-known identity: see Rudin [305, p. 71]. ut
The simplest examples of Ap weights are the power weights.

Example 4.20. For all a 2 R, w.x/ D jxja 2 A1 if and only if �n < a � 0, and
for 1 < p < 1, w.x/ D jxja 2 Ap if and only if �n < a < .p � 1/n.

Proof. We first consider the case p D 1. Our computations are easier if we consider
the maximal operator as defined in terms of balls containing the point x. Suppose
first that �n < a � 0. Then, as we showed in Example 3.2, Mw.x/ � c.n; a/jxja
for every x ¤ 0, so by (4.14), jxja 2 A1.

On the other hand, if a � �n, then jxja is not integrable on any ball containing
the origin, and so for every x 2 R

n, Mw.x/ D 1. Similarly, if a > 0, then

Mw.x/ � sup
R>jxj

�
Z
BR.0/

jyja dy D c.n; a/ sup
R>jxj

Ra D 1:

Now suppose 1 < p < 1. If �n < a � 0, then by the previous case and by
Proposition 4.18, Property .2/, w 2 A1 � Ap . If 0 < a < n.p � 1/, then the same
argument shows that w.x/1�p0 D jxj�a.p0�1/ 2 A1 � Ap0 since a.p0 � 1/ < n.
Hence, by Proposition 4.18, Property .1/, w D w.1�p0/.1�p/ 2 Ap . Finally, if a �
�n or a � .p � 1/n, then either w or w1�p0

is not integrable on any set containing
the origin, so w 62 Ap . ut

We now turn to a fundamental property of Ap weights: the reverse Hölder
inequality.

Definition 4.21. Given s > 1, a weight w satisfies the reverse Hölder inequality
with exponent s, denoted by w 2 RHs , if

Œw�RHs D sup
Q



�R
Q

w.x/s dx
�1=s

�R
Q

w.x/ dx
< 1:

Theorem 4.22. Given p, 1 � p < 1, if w 2 Ap , then there exists s > 1 such that
w 2 RHs . The constants s and Œw�RHs depend only on p, n and Œw�Ap .
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The proof of Theorem 4.22 requires a definition and two lemmas.

Definition 4.23. Given a cubeQ, let �.Q/ be the set of cubes consisting ofQ and
all the cubes contained inQ gotten by repeatedly bisecting the sides ofQ. We refer
to �.Q/ as the set of dyadic cubes relative to Q.

The dyadic cubes relative to a cube Q have properties very similar to the
properties of dyadic cubes enumerated in Proposition 3.7 and we will make use of
these without comment. Our first lemma is a local version of the Calderón-Zygmund
decomposition (Lemma 3.9).

Lemma 4.24. Given a cube Q and a function f 2 L1.Q/, then for any t �
�R
Q

jf .y/j dy, there exists a (possibly empty) set of disjoint cubes fQj g � �.Q/

such that

t < �
Z
Qj

jf .y/j dy � 2nt;

and for almost every x 2 Q nSj Qj , jf .x/j � t .

The cubes fQj g are called the Calderón-Zygmund cubes of f relative to Q at
height t .

Proof. Fix t ; if t � kf kL1.Q/, then there is no Q0 2 �.Q/ such that
�R
Q0 jf .y/j dy > t so we will let the collection fQj g be the empty set. Otherwise,

let EQ
t D fx W jf .x/j > tg. By the Lebesgue differentiation theorem (applied with

respect to the cubes �.Q/, see Sect. 2.9) for almost every x 2 E
Q
t there exists a

cubeQx 2 �.Q/ containing x such that

�
Z
Qx

jf .y/j dy > t � �
Z
Q

jf .y/j dy:

If more than one cube in �.Q/ has this property, let Qx be the largest one. The
second inequality implies that Qx ¤ Q. Since �.Q/ is countable, the set fQx W
x 2 E

Q
t g is at most countable; re-index it as fQj g. The cubes Qj are pairwise

disjoint: if two cubes in �.Q/ intersect, then one is contained in the other, and so
by the maximality of each Qj it cannot be contained in another such cube.

Furthermore, since Qj ¤ Q, its dyadic parent QQj is contained in �.Q/, and so
by the maximality of Qj ,

�
Z
Qj

jf .y/j dy � 2n�
Z

QQj

jf .y/j dy � 2nt:

Finally, by our choice of the cubesQj the setEQ
t is contained, up to a set of measure

0, in
S
j Qj . This completes our proof. ut
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The second lemma shows that if w 2 Ap , then the measure wdx has homo-
geneity properties similar to the Lebesgue measure. For brevity, hereafter, given a
measurable set E let w.E/ D R

E
w.x/ dx.

Lemma 4.25. If w 2 Ap , then for any cube Q and measurable set E � Q:

1. For any ˛, 0 < ˛ < 1, there exists ˇ, 0 < ˇ < 1, such that if jEj � ˛jQj, then
w.E/ � ˇw.Q/.

2. For any 
 , 0 < 
 < 1, there exists ı, 0 < ı < 1, such that if 
 jQj � jEj, then
ıw.Q/ � w.E/.

Proof. To prove .1/, fix ˛ and fixQ andE such that jEj � ˛jQj. Then by Hölder’s
inequality and the definition of Ap ,

˛ � jEj
jQj D �

Z
Q

	E.x/w.x/
1=pw.x/�1=p dx � w.E/1=p

jQj1=p
�

�
Z
Q

w.x/1�p0

dx

�1=p0

� Œw�1=pAp
w.E/1=p

jQj1=p
�

�
Z
Q

w.x/ dx

��1=p
D Œw�1=pAp

�
w.E/

w.Q/

�1=p
:

Rearranging terms we get w.E/ � ˛pŒw��1Apw.Q/, which gives us the desired value
of ˇ.

Property .2/ follows at once from Property .1/. Fix 
 and setsQ andE such that

 jQj � jEj. Then jQ nEj � .1 � 
/jQj, and so with ˇ D .1 � 
/pŒw��1Ap ,

w.Q/� w.E/ D w.Q n E/ � ˇw.Q/:

Rearranging terms we get .1 � ˇ/w.Q/ � w.E/, which gives us the desired value
of ı. ut
Remark 4.26. As a corollary to Lemma 4.25 we get that wdx is a doubling
measure: there exists a constant Œw�D such that given any cube Q, w.2Q/ �
Œw�Dw.Q/. In fact, this remains true if we replace 2Q by any cubeQ0 that contains
Q such that `.Q0/ D 2`.Q/.

Proof of Theorem 4.22. Fix a cube Q and for k � 0 define the sequence tk D
2k.nC1/�R

Q w.x/ dx D 2k.nC1/t0. For each k form the Calderón-Zygmund cubes

fQk
j g of w relative to Q at height tk (Lemma 4.24), and define the sets �k DS
j Q

k
j . It follows from the construction of these cubes that �kC1 � �k , and in

fact for any i there exists j such that QkC1
i � Qk

j . Then for each j and k we have
that
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j�kC1 \Qk
j j D

X
Q
kC1
i �Qk

j

jQkC1
i j

< t�1kC1
X

Q
kC1
i �Qk

j

w.QkC1
i / � t�1kC1w.Qk

j / � 2ntk

tkC1
jQk

j j D 1

2
jQk

j j:

Hence, by Property .2/ of Lemma 4.25 with 
 D 1=2, there exists ı > 0 such that
w.�kC1 \Qk

j / � ıw.Qk
j /. If we sum over all j , we get w.�kC1/ � ıw.�k/, and

so by induction we have that w.�k/ � ıkw.�0/.
Similarly, we have that j�kj � 2�kj�0j, so

ˇ̌
ˇ̌
ˇ
\
k

�k

ˇ̌
ˇ̌
ˇ D lim

k!1 j�kj D 0:

For almost every x 2 Q n�k , w.x/ � tk . Therefore, for � > 0 to be fixed below,

�
Z
Q

w.x/1C� dx D 1

jQj
Z
Qn�0

w.x/1C� dx C 1

jQj
1X
kD0

Z
�kn�kC1

w.x/1C� dx

� t �0
jQj

Z
Qn�0

w.x/ dx C 1

jQj
1X
kD0

t �kC1w.�k/

� t �0
jQj

Z
Qn�0

w.x/ dx C 1

jQj
1X
kD0

2.kC1/.nC1/�t �0 ıkw.�0/:

Fix � > 0 so that 2.nC1/�ı < 1. Then the series converges and the final term is
bounded by

t �0�
Z
Qn�0

w.x/ dx C C jQj�1t �0w.�0/ � C

�
�
Z
Q

w.x/ dx

�1C�
:

The constant C depends only on n and ı, and so on n, p and Œw�Ap . Since this
estimate is independent of the cube Q we have that w 2 RHs with s D 1C �. ut

As a consequence of the proofs of Lemma 4.25 and Theorem 4.22 we get
the following corollary which will be of central importance in the proof of
Theorem 4.52 in Sect. 4.4 below.

Corollary 4.27. Given a cube Q, suppose a weight w satisfies Property .1/ of
Lemma 4.25 for some ˛; ˇ > 0 and for every Calderón-Zygmund cube of w relative
to Q. Then there exist constants s; C > 1 depending only on n, ˛ and ˇ, such that



4.2 A Useful Tool: Muckenhoupt Ap Weights 149

�
�
Z
Q

w.x/s dx

�1=s
� C�

Z
Q

w.x/ dx:

In particular, if this is true for every cubeQ, w 2 RHs .

The converse of Theorem 4.22 is also true.

Theorem 4.28. Given w 2 RHs , s > 1, there exists p, 1 < p < 1, such that
w 2 Ap. The value of p depends only on s, Œw�RHs , and n.

Proof. The proof requires a generalization of the Ap and RHs conditions. Given a
non-negative measure 
, we say that a weight w such that 0 < w.x/ < 1 
-almost
everywhere is in Ap.
/ for some p, 1 < p < 1, if

Œw�Ap.
/ D sup
Q

�
1


.Q/

Z
Q

w.x/ d


��
1


.Q/

Z
Q

w.x/1�p0

d


�p�1
< 1:

Similarly, we write w 2 RHs.
/ if it satisfies the reverse Hölder inequality

Œw�RHs.
/ D sup
Q



1


.Q/

R
Q w.x/s d


�1=s
1


.Q/

R
Q

w.x/ d

< 1:

Given w 2 Ap, let d
 D w dx. Then the Ap condition can be rewritten as

�Z
Q

w.x/ dx

�p0�1 Z
Q

�
w.x/�1

�p0

w.x/ dx � Œw�p
0�1
Ap

�Z
Q

w.x/�1w.x/ dx
�p0

;

which in turn is equivalent to

1


.Q/

Z
Q

�
w.x/�1

�p0

d
 � Œw�p
0�1
Ap

�
1


.Q/

Z
Q

w.x/�1 d

�p0

:

It follows immediately that w 2 Ap if and only if w�1 2 RHp0.
/. A similar
argument shows that w 2 RHs if and only if w�1 2 As0.
/. Furthermore, we
can repeat the proofs of Lemmas 4.24 and 4.25, and Theorem 4.22 starting with
the assumption w�1 2 As0.
/. The proofs go through as before since 
 is a
doubling measure: more precisely, we apply Remark 4.26 to replace 2n by Œw�D
in the construction of the local Calderón-Zygmund cubes.

Therefore, given w 2 RHs there exists some p > 1 such that w�1 2 RHp0 .
/,
which in turn is equivalent to w 2 Ap . This completes our proof. ut

As a consequence of the reverse Hölder inequality we get that if w 2 Ap for
some p, then there exists s > 1 such that Msw.x/ D M.ws/.x/1=s � CMw.x/.
The next result is a sharper version of this inequality that we will need in Sect. 4.3.
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Proposition 4.29. Given w 2 A1, if s0 D 1C 1

2nC2Œw�A1
, then for 1 < s � s0 and for

almost every x,

Msw.x/ � 2Mw.x/ � 2Œw�A1w.x/: (4.17)

The proof of Proposition 4.29 requires an inequality that is the reverse of the
weak .1; 1/ inequality for the maximal operator (Theorem 3.4).

Lemma 4.30. Given a function f 2 L1loc.R
n/, for every cube Q and t �

�R
Q

jf .x/j dx,

jfx 2 Q W Mf.x/ > tgj � 2�n

t

Z
fx2QWjf .x/j>tg

jf .x/j dx:

Proof. Fix t � �R
Q

jf .x/j dx; if t � kf kL1.Q/, then this result is trivially true.
Otherwise, by Lemma 4.24, let fQj g be the Calderón-Zygmund cubes of f relative
to Q at height t . Then for every x 2 Qj ,

Mf.x/ � �
Z
Qj

jf .x/j dx > t;

and since the cubes Qj are disjoint and jf .x/j � t for almost every x 62 Sj Qj ,

jfx 2 Q W Mf.x/ > tgj �
X
j

jQj j

� 2�n

t

X
Qj

Z
Qj

jf .x/j dx � 2�n

t

Z
fx2QWjf .x/j>tg

jf .x/j dx:

ut
Proof of Proposition 4.29. Fix w 2A1. The second inequality in (4.17) is
immediate. By Hölder’s inequality and the definition of the maximal operator,
to prove the first inequality it will suffice to show that for any cubeQ and x0 2 Q,

�
Z
Q

w.x/s0 dx � 2Mw.x0/
s0 :

Let � D .2nC2Œw�A1 /�1, s0 D 1 C �, and fix a cube Q and x0 2 Q. Then by the
analog of the identity (3.6) for the measure 	Qw dx (see [238, 305]) we have that
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�
Z
Q

w.x/s0 dx D �
Z
Q

w.x/�w.x/ dx D �jQj�1
Z 1

0

t ��1w.fx 2 Q W w.x/ > tg/ dt

D �jQj�1
Z Mw.x0/

0

t ��1w.fx 2 Q W w.x/ > tg/ dt

C �jQj�1
Z 1

Mw.x0/
t ��1w.fx 2 Q W w.x/ > tg/ dt:

The first term is easy to estimate:

�jQj�1
Z Mw.x0/

0

t ��1w.fx 2 Q W w.x/ > tg/ dt

� �jQj�1w.Q/
Z Mw.x0/

0

t ��1 dt D �
Z
Q

w.y/ dy �Mw.x0/
� � Mw.x0/

1C�:

To estimate the second term we use Lemma 4.30 (on the function w) and (3.6)
(on the function .Mw/	Q):

�jQj�1
Z 1

Mw.x0/
t ��1w.fx 2 Q W w.x/ > tg/ dt

D �jQj�1
Z 1

Mw.x0/
t ��1

Z
fx2QWw.x/>tg

w.x/ dx dt

� 2n�jQj�1
Z 1

0

t �jfx 2 Q W Mw.x/ > tgj dt

D 2n�

1C �
�
Z
Q

Mw.x/1C� dx

� 2n�Œw�1C�A1

1C �
�
Z
Q

w.x/1C� dx:

Combining these estimates we get

�
Z
Q

w.x/1C� dx � Mw.x0/
1C� C 2n�Œw�1C�A1

1C �
�
Z
Q

w.x/1C� dx:

Since for all x � 1, x.2
nC2x/�1 � x.8x/

�1 � 2,

2n�Œw�1C�A1

1C �
� 2n2�n�2Œw��1A1 Œw�

1C.2nC2Œw�A1 /
�1

A1
� 1

4
Œw�

.2nC2Œw�A1 /
�1

A1
� 1

2
:

Therefore, if we rearrange terms we get the desired inequality. ut
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4.3 Applications of Weights to the Maximal Operator

In this section we give several applications involving weights, the maximal operator,
and variable Lebesgue spaces. We begin with two results which are weighted norm
inequalities and so do not involve variable Lebesgue spaces, but which will be
an important motivation for the results in Sect. 4.4. We then prove a theoretical
characterization of those variable Lebesgue spaces on which the maximal operator
is bounded; we will apply this result in the proof of Theorem 4.52 in the next section.
Finally, we give the proof of Theorem 3.31 on modular inequalities for the maximal
operator.

Definition 4.31. Given a weight w and p, 1 � p < 1, define the space Lp.w/ to
be the collection of all measurable functions f such that

kf kLp.w/ D
�Z

Rn

jf .x/jpw.x/ dx

�1=p
< 1:

The space Lp.w/ is referred to as a weighted Lebesgue space.

Definition 4.32. Given a cubeQ, define the averaging operator AQ by

AQf .x/ D �
Z
Q

f .y/ dy 	Q.x/:

For brevity, hereafter will often write fQ instead of �R
Q
f .y/ dy.

Proposition 4.33. Given p, 1 � p < 1, and a cube Q,

Z
Q

jAQf .x/jpw.x/ dx � C0

Z
Q

jf .x/jpw.x/ dx (4.18)

for all f such that f	Q 2 Lp.w/ if and only if

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�p0

dx

�p�1
� C0 (4.19)

when p > 1 or

�
Z
Q

w.x/ dx � C0 ess inf
x2Q w.x/ dx (4.20)

when p D 1. As a consequence, w 2 Ap if and only if the operators AQ are
uniformly bounded on Lp.w/ for all Q.

Remark 4.34. Proposition 4.33 remains true if we replace averages AQ over cubes
with averages AB over balls. This follows by the same proof, using the fact, noted
after the definition of Ap , that we can define this condition using balls instead of
cubes.
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Proof. Suppose first that (4.19) holds. By Hölder’s inequality,

Z
Q

jAQf .x/jpw.x/ dx D
�

�
Z
Q

jf .x/jw.x/1=pw.x/�1=p dx

�p Z
Q

w.x/ dx

�
Z
Q

jf .x/jpw.x/ dx

�
�
Z
Q

w.x/1�p
0

dx

�p�1

�
Z
Q

w.x/ dx � C0

Z
Q

jf .x/jpw.x/ dx:

A similar argument yields (4.18) if p D 1 and (4.20) holds.
Now suppose that (4.18) holds. If p > 1, let f D w1�p0

	Q. Then inequal-
ity (4.18) becomes

Z
Q

w.x/ dx

�
�
Z
Q

w.x/1�p0

dx

�p
� C0

Z
Q

w.x/.1�p0/pw.x/ dx;

which in turn immediately yields (4.19).
If p D 1, then for every q > 1, jAQ.f /.x/jq � AQ.jf jq/.x/, and so

Z
Q

jAQf .x/jqw.x/ dx � C0

Z
Q

jf .x/jqw.x/ dx:

Therefore, by the above argument we have that for every q > 1,

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�q0

dx

�q�1
� C0:

However, by a well-known identity (see Rudin [305, Example 4, p. 71])

lim
q!1

�
�
Z
Q

w.x/1�q0

dx

�q�1
D ess sup

x2Q
�
w.x/�1

�
;

which yields (4.20). ut
The next result shows the close connection between Muckenhoupt Ap weights

and the maximal operator, and is fundamental in the study of weighted norm
inequalities.

Theorem 4.35. Given p, 1 � p < 1, then w 2 Ap if and only if for every f 2
Lp.w/ and every t > 0,

w.fx 2 R
n W Mf.x/ > tg/ � C

tp

Z
Rn

jf .x/jpw.x/ dx: (4.21)
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Furthermore, if p > 1, then w 2 Ap if and only if

Z
Rn

Mf .x/pw.x/ dx � C

Z
Rn

jf .x/jpw.x/ dx: (4.22)

In both cases the constant depends on p, n and Œw�Ap .

Proof. The proof of the sufficiency of the Ap condition is very similar to the proof
of Theorem 3.4, so we only give the main steps. Arguing as we did in the proof of
Theorem 3.16 using Lemma 3.30, it will suffice to prove both inequalities assuming
that f is bounded and has compact support. We first prove inequality (4.21). When
p D 1, fix t > 0 and form the Calderón-Zygmund cubes fQj g of f at height t
(Lemma 3.9). Then

w.fx 2 R
n W Mf.x/ > tg/ �

X
j

w.3Qj / � 1

t

X
j

w.3Qj /�
Z
Qj

jf .x/j dx

� 3n

t

X
j

Z
Qj

jf .x/jMw.x/ dx � 3nŒw�A1
t

Z
Rn

jf .x/jw.x/ dx:

When p > 1 the proof is essentially the same, using Hölder’s inequality to get

1

tp

 
�
Z
Qj

jf .x/j dx
!p

� 1

tp

 
�
Z
Qj

jf .x/jpw.x/ dx

! 
�
Z
Qj

w.x/1�p0

dx

!p�1
:

To prove inequality (4.22), note that since w 2 Ap , p > 1, by Proposition 4.18,
w1�p0 2 Ap0 . Therefore, by Theorem 4.22, w1�p0 2 RHs for some s > 1. Fix q < p
such that q0 � 1 D s.p0 � 1/. Then for every cube Q,

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�q0

dx

�q�1

� Œw1�p0

�RHs

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/1�p0

dx

�p�1
� Œw1�p0

�RHs Œw�Ap :

Hence, w 2 Aq . Further, by Proposition 4.18, for any r > p, w 2 Ar . By the
argument above, we have that inequality (4.21) holds with p replaced by either q or
r . Therefore, by the Marcinkiewicz interpolation theorem (Proposition 3.46, which
remains true with Lebesgue measure replaced by the measure wdx: see [96]), we
get (4.22).

Finally we prove that the Ap condition is necessary for (4.21); recall that when
p > 1, (4.22) implies (4.21). When p D 1, fix s > ess infx2Q w.x/. Then there
exists a set E � Q, jEj > 0, such that w.x/ � s for all x 2 E . Let f D 	E ; then
for all t , 0 < t < jEj=jQj, and x 2 Q,
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Mf.x/ � jEj
jQj > t:

Hence, by inequality (4.21),

tw.Q/ � tw.fx 2 R
n W Mf.x/ > tg/ � Cw.E/:

Taking the supremum over all such t we get

w.Q/

jQj � C
w.E/

jEj � Cs:

If we take the infimum over all such s, we get

�
Z
Q

w.x/ dx � C ess inf
x2Q w.x/:

Since the constant is independent of Q, w 2 A1.
Now fix p > 1 and a cube Q, and let f D w1�p0

	Q. Then for x 2 Q,

Mf.x/ � �
Z
Q

w.y/1�p0

dy;

so if we take t > 0 to be any value smaller than the right-hand side, we can argue as
we did above using the weak .p; p/ inequality to get

�
�
Z
Q

w.y/1�p0

dy

�p
w.Q/ � C

Z
Q

w.y/1�p0

dy:

The Ap condition follows immediately. ut
Remark 4.36. In the definition of Ap weights we assumed that 0 < w.x/ < 1
almost everywhere, which implies that w and w1�p0

are locally integrable. However,
if we omit this hypothesis from the definition (see Remark 4.16 above), then we can
still prove that this is the case.

We can modify the proof of the weak type inequality (4.21) so that it works using
the more general definition of Ap weights, assuming only that w is not identically
equal to 0 or infinity. Given that the weak type inequality holds for w 2 Ap, 1 �
p < 1, we can show that 0 < w.x/ < 1 almost everywhere. Fix a cube Q and a
measurable set E � Q; then by modifying the argument for the necessity of the A1
condition above we can show that

� jEj
jQj

�p
w.Q/ � Cw.E/: (4.23)



156 4 Beyond Log-Hölder Continuity

Suppose that there exists a bounded setE of positive measure such that w.x/ D 0

for x 2 E . Then given any cube Q containingE , (4.23) implies that w.Q/ D 0, so
w D 0 almost everywhere onQ. Since we can takeQ arbitrarily large, we have that
w D 0 almost everywhere. Similarly, suppose that w.x/ D 1 on a set E of positive
measure. Then given any cubeQ containingE we must have w.Q/ D 1. But then
(4.23) implies that w.E/ D 1 for every subset E � Q, and so w.x/ D 1 almost
everywhere onQ. Again since we can takeQ arbitrarily large, we have that w D 1
almost everywhere. Thus in either case we contradict our original assumption that
w is not 0 or infinite almost everywhere.

We now turn to applications of weights to the theory of the maximal operator
on variable Lebesgue spaces. Our first result is a characterization of Lp.�/ spaces on
which the maximal operator is bounded. To state it, we first make a definition. Given
�, p.�/ 2 P.�/, and an operator T W Lp.�/.�/ ! Lp.�/.�/, we define the operator
norm of T by

kT kLp.�/.�/ D sup
kf kp.�/�1

kTf kLp.�/.�/:

Theorem 4.37. Given � and p.�/ 2 P.�/, the following are equivalent:

1. M W Lp.�/.�/ ! Lp.�/.�/.
2. For all s > 1, M W Lsp.�/.�/ ! Lsp.�/.�/ and

lim
s!1C

.s � 1/kM kLsp.�/.�/ D 0:

3. There exists r0, 0 < r0 < 1, such that if r0 < r < 1, then

M W Lrp.�/.�/ ! Lrp.�/.�/:

Remark 4.38. It will be clear from the proof that we can weaken Condition .2/ by
assuming that there exists s0 > 1 such thatM is bounded on Lsp.�/.�/ if 1 < s < s0
and this limit holds. The proof that Condition .1/ implies Condition .2/ shows that
if M is bounded on Lsp.�/ for some s > 1, then it is bounded on Lsp.�/ for all larger
values of s.

Remark 4.39. By Theorem 3.19 a necessary condition for M to be bounded on
Lrp.�/ is that rp� > 1, so in Condition .3/ we must have that r0 � 1=p�.

Proof. We first prove that .1/ implies .2/. Fix s > 1 and let r D 1=s. Define
Mrf .x/ D M.jf jr /.x/1=r . Then by Hölder’s inequality, Mrf .x/ � Mf.x/, and
so by Proposition 2.18,

kMf ksp.�/ D kMr.jf js/k1=sp.�/ � kM.jf js/k1=sp.�/ � C1=skjf jsk1=sp.�/ D C1=skf ksp.�/:

Hence, kM kLsp.�/.�/ � kM kLp.�/.�/ which yields Condition .2/.
The implication .3/ implies .1/ is also straightforward. Fix r , r0 < r < 1, and let

s D 1=r . Again by Hölder’s inequality, we have that Mf.x/ � M.jf js/.x/1=s D
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Msf .x/, and so by Proposition 2.18,

kMf kp.�/ � kM.jf js/1=skp.�/ D kM.jf js/krrp.�/ � C rkjf jskrrp.�/ D C rkf kp.�/:

To prove that .1/ implies .3/, we first construct an A1 weight using a powerful
technique referred to as the Rubio de Francia iteration algorithm. Given h 2
Lp.�/.�/, define

Rh.x/ D
1X
kD0

Mkh.x/

2kkM kk
Lp.�/.�/

;

where for k � 1, Mk D M ı M ı � � � ı M denotes k iterations of the maximal
operator and M0f D jf j. This operator has the following properties:

.a/ For all x 2 �, jh.x/j � Rh.x/;

.b/ R is bounded on Lp.�/.�/ and kRhkp.�/ � 2khkp.�/;

.c/ Rh 2 A1 and ŒRh�A1 � 2kM kLp.�/.�/.
Property .a/ follows immediately from the definition. Property .b/ follows from

the subadditivity of the norm:

kRhkp.�/ �
1X
kD0

kMkhkp.�/
2kkM kk

Lp.�/.�/

� kf kp.�/
1X
kD0

2�k D 2khkp.�/:

Property .c/ follows by the subadditivity and homogeneity of the maximal operator
(Proposition 3.3):

M.Rh/.x/ �
1X
kD0

MkC1h.x/
2kkM kk

Lp.�/.�/

� 2kM kLp.�/.�/
1X
kD0

MkC1h.x/
2kC1kM kkC1

Lp.�/.�/

� 2kM kLp.�/.�/Rh.x/:

By Property .c/, Proposition 4.29 and Hölder’s inequality there exists s0 > 1

such that for all s, 1 < s < s0,

Ms.Rh/.x/ � Ms0.Rh/.x/ � 4kM kLp.�/.�/Rh.x/:

Let r0 D 1=s0, fix r , r0 < r < 1, and let s D 1=r . Then by Properties .a/ and .b/
and Proposition 2.18,

kMf krp.�/ D k.Mf /1=sksp.�/ D kMs.jf jr /ksp.�/ � kMs.R.jf jr //ksp.�/
� 4skM ks

Lp.�/.�/
kR.jf jr /ksp.�/ � Ckjf jrksp.�/ D Ckf krp.�/:
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This proves .3/.
Finally, we prove that .2/ implies .1/. Fix �, 0< � <1, such that if sD 1C�2�n�2,

then
�kM kLsp.�/.�/ D 2nC2.s � 1/kM kLsp.�/.�/ < 1=2:

We now define a different version of the Rubio de Francia algorithm: for h 2
Lsp.�/.�/ let

R�h.x/ D
1X
kD0

�kMkh.x/:

Then arguing as we did above we have that:

.a0/ For all x 2 �, jh.x/j � R�h.x/;

.c0/ R�h 2 A1 and ŒR�h�A1 � ��1.

Let r D 1=s and fix f 2 Lp.�/.�/. By Properties .a0/ and .c0/, and by
Proposition 4.29 (which holds by our choice of s)

Mf.x/1=s D Ms.jf jr /.x/ � Ms.R�.jf jr //.x/ � 2��1R�.jf jr /.x/:

Therefore, by Proposition 2.18,

kMf kp.�/ �
�
2

�

�s
kR�.jf jr /skp.�/

D
�
2

�

�s
kR�.jf jr /kssp.�/

�
�
2

�

�s  1X
kD0

�kkMk.jf jr /ksp.�/
!s

�
�
2

�

�s  1X
kD0

�kkM kk
Lsp.�/.�/

kjf jrksp.�/
!s

�
�
2

�

�s
kjf jrkssp.�/

 1X
kD0

2�k
!s

D
�
4

�

�s
kf kp.�/:

ThusM is bounded on Lp.�/.�/. This completes our proof. ut
Remark 4.40. We will use the Rubio de Francia algorithm again in Chap. 5 to prove
our extrapolation theorem, which in turn will let us prove that a wide variety of
operators are bounded on variable Lebesgue spaces. See Sect. 5.4.

Proof of Theorem 3.31. The proof requires one lemma.
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Lemma 4.41. Given p.�/ 2 P.Rn/, suppose pC < 1. Then the family of weights
wt .x/ D tp.x/, t > 0, are in Aq for some q > 1 with uniform constant if and only if
there exists a constant p0 such that p.�/ D p0 almost everywhere.

Proof. Suppose first that p.�/ D p0 almost everywhere. Then the weights wt are
constants, and so for any q > 1, wt 2 Aq and Œwt �Aq D 1.

Conversely, suppose that p.�/ is such that for all t > 0, wt 2 Aq for some q > 1
and Œwt �Aq � K < 1. For N > 1 let QN D Œ�N;N �n and define

pN D �
Z
QN

p.x/ dx:

Then by Property .4/ of Proposition 4.18 (the reverse Jensen inequality) applied to
wt , for every t > 0,

�
Z
QN

tp.x/�pN dx � K:

Now suppose that p.�/ is not constant. If jfx 2 QN W p.x/ > pN gj > 0, then
if we take the limit as t ! 1, the left-hand side is unbounded, a contradiction.
Similarly, if jfx 2 QN W p.x/ < pN gj > 0, the left-hand side is unbounded as
t ! 0. Therefore, p.x/ D pN for almost every x 2 QN . Since this is true for all
N , we must have that p.�/ equals a constant almost everywhere. ut
Remark 4.42. In the hypotheses of Lemma 4.41 it would suffice to assume either
0 < t < 1 or t > 1. For if p.�/ is not constant, then both of the sets fx 2 QN W
p.x/ < pN g and fx 2 QN W p.x/ > pN g must have positive measure. However,
in certain cases the weights wt can behave (locally) like Ap weights with uniform
constant: see Lemma 4.56 below.

Proof of Theorem 3.31. Since the strong type modular inequality (3.20) implies the
weak type modular inequality (3.19), it will suffice to show that

Z
fxWMf.x/>tg

tp.x/ dx � C

Z
Rn

jf .x/jp.x/ dx; t > 0; (4.24)

holds for all f if and only if p.�/ equals a constant almost everywhere. If p.�/ D p0
almost everywhere, then (4.24) follows at once from Theorem 3.4.

Now suppose that (4.24) holds; fix t > 0 and let wt .x/ D tp.x/. By Lemma 4.41
it will suffice to show that wt 2 Aq for some q > 1with Œwt �Aq independent of t . Fix
a cube Q and ˛, 0 < ˛ < 1. Given any measurable set E � Q with ˛jQj < jEj,
define f D t	E . Then for all x 2 Q, Mf.x/ � t jEj=jQj; hence, if s < t jEj=jQj,
by (4.24) and the monotone convergence theorem on the classical Lebesgue spaces
we have that

Z
Q

�
t jEj=jQj�p.x/ dx � lim inf

s!t jEj=jQj

Z
Q

sp.x/ dx � C

Z
E

tp.x/ dx:
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Hence,

˛pC wt .Q/ D ˛pC

Z
Q

tp.x/ dx �
Z
Q

�
t jEj=jQj�p.x/ dx � C

Z
E

tp.x/ dx D Cwt .E/:

Thus, wt satisfies Property .1/ of Lemma 4.25 with this ˛ and ˇ D ˛pCC�1.
Therefore, by Corollary 4.27 and Theorem 4.28, wt 2 Aq for some q > 1, and
Œwt �Aq depends only on ˛ and ˇ. This completes the proof. ut

4.4 Local Control: The K0 Condition

In this section we consider the behavior of the maximal operator locally, where
the function f is large. As we noted in the introduction to this chapter, the LH0

condition is equivalent to the geometric property in Lemma 3.24. Thus, we will
introduce a new condition and adapt our proof of Theorem 3.16 to use it. In doing
so the theory of MuckenhouptAp weights will play a central role.

Before introducing our new condition, however, we first want to show that, as
was the case for the LH1 condition, the LH0 condition is not necessary but is the
best possible pointwise decay condition. As we saw in Example 3.21, if p.�/ has
a jump discontinuity, then M cannot be bounded. The following example shows
that if we replace the discontinuity by a continuous function that is steeper than
j log.x/j�1, then we have the same phenomenon.

Example 4.43. Fix p0, 1 < p0 < 1, and let � W Œ0;1/ ! Œ0; 1� be such that � is
increasing, �.0/ D 0, �.x/ ! 0 as x ! 0C, and

lim
x!0C

�.x/ log.x/ D �1: (4.25)

Let � D .�1; 1/ and define p.�/ 2 P.�/ by

p.x/ D
(
p0 C �.x/ x � 0

p0 x < 0:

Then p.�/ 62 LH0.�/ and the maximal operator is not bounded on Lp.�/.�/.

Proof. The construction of this example is very similar to the construction of
Example 4.1. It is immediate from (4.25) that p.�/ does not satisfy the LH0.�/

condition at the origin, so we only have to construct a function f such that
f 2 Lp.�/.�/ but Mf 62 Lp.�/.�/. Intuitively, we will generalize Example 3.21 by
showing that f .x/ D jxj�1=p.jxj/	.�1;0/.x/ is in Lp.�/.�/ but Mf is not. However,
to simplify the calculations we replace this f by a discrete analog.
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By (4.25) we have that

lim
x!0C

�
1 � p0

p.x=2/

�
log.x/ D �1I

equivalently,
lim
x!0C

x
1� p0

p.x=2/ D 0:

Hence, we can form a sequence fang � .�1; 0/ such that an=2 < anC1 and

janj1�p0=p.jan j=2/ � 2�n:

Let bn D an=2 and define the function f by

f .x/ D
1X
nD1

janj�1=p.jbn j/	.an;bn/.x/:

Since pC < 1, by Proposition 2.12 it will suffice to show that �.f / < 1 and
�.Mf / D 1. First, we have that

�.f / D
1X
nD1

Z bn

an

janj�p0=p.jbnj/ dx D 1

2

1X
nD1

janj1�p0=p.jbnj/ �
1X
nD1

2�n�1 < 1:

On the other hand, if x 2 .jbnj; janj/, then

Mf.x/ � 1

2janj
Z janj

an

f .y/ dy � 1

2janj
Z bn

an

janj�1=p.jbn j/ dy D 1

4
janj�1=p.jbn j/:

Therefore, since p.�/ is an increasing function and janj � 1,

�.Mf / �
�
1

4

�pC
1X
nD1

Z janj

jbnj
janj�p.x/=p.jbn j/ dx

�
�
1

4

�pC
1X
nD1

Z jan j

jbn j
janj�p.jbn j/=p.jbn j/ dx D

�
1

4

�pC
1X
nD1

1

2
D 1:

ut
Example 4.44. A particular family of exponent functions p.�/ that satisfy the
hypotheses of Example 4.43 is

p.x/ D
(
2 x 2 .�1; 0�
2C 1

log.e=x/a x 2 .0; 1/;

where 0 < a < 1.
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We now introduce a condition to replace LH0.

Definition 4.45. Given � and p.�/ 2 P.�/, then p.�/ 2 K0.�/ if there exists a
constant CK such that for every cubeQ,

k	QkLp.�/.�/k	QkLp0.�/.�/ � CK jQj: (4.26)

Remark 4.46. Inequality (4.26) is trivially true for any cubeQ such that jQ\�jD0.

Definition 4.45 is motivated by the definition of the Ap weights given in the
previous section, particularly in the alternate form (4.16): if we take p.�/ constant
in (4.26) and set w 
 1 in (4.16), the two definitions coincide. Furthermore, as the
next proposition shows, the K0 condition plays exactly the same role for averaging
operators on variable Lebesgue spaces as the Muckenhoupt Ap condition does for
weighted Lebesgue spaces (Proposition 4.33).

Proposition 4.47. Given � and p.�/ 2 P.�/, for any cube Q0 there exists a
constant C1 > 0 such that

k	Q0kLp.�/.�/k	Q0kLp0.�/.�/ � C1jQ0j (4.27)

if and only if there exists C2 > 0 such that for all f 2 Lp.�/.�/, supp.f / � �,

kAQ0f kLp.�/.�/ � C2kf kLp.�/.�/: (4.28)

As a consequence, p.�/ 2 K0.�/ if and only if the operators AQ are uniformly
bounded on Lp.�/.�/ for every cube Q.

Remark 4.48. From the proof we have that K�1
p.�/C2 � C1 � 2k�1

p0.�/C2, where Kp.�/
and kp0.�/ are the constants from Theorem 2.34.

Proof. Fix Q0 and let f 2 Lp.�/.�/. Suppose first that (4.27) holds; then by
Hölder’s inequality (Theorem 2.26),

kAQ0f kLp.�/.�/ D jfQ0 jk	Q0kLp.�/.�/
� Kp.�/jQ0j�1kf kLp.�/.�/k	Q0kLp0.�/.�/k	Q0kLp.�/.�/
� Kp.�/C1kf kLp.�/.�/:

Conversely, if (4.28) holds, then by Theorem 2.34 there exists a function g 2
Lp.�/.�/, kgkLp.�/.�/ � 1, such that

k	Q0kLp.�/.�/k	Q0kLp0.�/.�/ � 2k�1
p0.�//k	Q0kLp.�/.�/

Z
�

	Q0.x/g.x/ dx

D 2k�1
p0.�/jQ0jkAQ0gkLp.�/.�/ � 2k�1

p0.�/C2jQ0jkgkLp.�/.�/ � 2k�1
p0.�/C2jQ0j:

ut
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Remark 4.49. Proposition 4.47 remains true if we replace the averages AQ with
averages AB over balls, and replace the K0 condition by the corresponding
inequality for balls:

k	BkLp.�/.�/k	BkLp0.�/.�/ � C jBj:

On R
n the two conditions are equivalent: this follows from the fact that given any

ballB it is contained in a cubeQ such that jBj � C.n/jQj, and the same is true with
the roles of balls and cubes reversed. This is the analog of the corresponding fact
for weighted norm inequalities: see Remark 4.34. This observation will be useful in
our discussion of convolution operators in Chap. 5.

As a corollary to Proposition 4.47 we get a necessary condition for the bounded-
ness of the maximal operator.

Corollary 4.50. Given� and p.�/ 2 P.�/, if the maximal operator is bounded on
Lp.�/.�/ or if it satisfies the weak type inequality

kt	fxWMf.x/>tgkp.�/ � Ckf kp.�/; t > 0;

then p.�/ 2 K0.�/.

Proof. Since the strong type inequality implies the weak type inequality, it will
suffice to show that the latter implies the K0 condition. Fix f 2 Lp.�/.�/ and a
cubeQ. Then for all x 2 Q,

Mf.x/ � �
Z
Q

jf .y/j dy;

and so for all t < �R
Q jf .y/j dy,

tk	Qkp.�/ � kt	fxWMf.x/>tgkp.�/ � Ckf kp.�/:

If we take the supremum over all such t , we get that

kAQf kp.�/ � �
Z
Q

jf .y/j dyk	Qkp.�/ � Ckf kp.�/:

Since the constant is independent of f and Q, we have that all the averaging
operators are uniformly bounded. Therefore, by Proposition 4.47, p.�/ 2 K0.�/. ut

By Theorem 4.35, w 2 Ap is both necessary and sufficient for the maximal
operator to be bounded onLp.w/. But, despite their similarities this is a fundamental
difference between the K0 and Ap conditions: the K0 condition is not sufficient
for the maximal operator to be bounded on Lp.�/, even if combined with the LH0

condition.
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Example 4.51. There exists p.�/ 2 K0.R/\LH0.R/ such that the maximal operator
is not bounded on Lp.�/.R/.

Proof. Let � be a C1 function such that supp.�/ � Œ�1=2; 1=2�, 0 � �.x/ � 1,
and �.x/ D 1 if x 2 Œ�1=4; 1=4�. Define the exponent p.�/ 2 P.R/ by

p.x/ D 3C
1X
kD1

�.x � ek/:

Then 3 � p.x/ � 4, and p.�/ 2 LH0.R/.
To show that p.�/ 2 K0.R/, fix an intervalQ. Since p.�/ 2 LH0.R/, if jQj � 1,

then by the first half of the proof of Proposition 4.57 below, we have that

k	Qkp.�/k	Qkp0.�/ � C jQj:

Now suppose that for some j � 1, ej�1 < jQj � ej . For each k 2 N, define the
intervals Ak D Œek � 1=2; ek C 1=2�. Since �.	Ak / D jAkj D 1, by Corollary 2.23,
k	Akkp.�/ D 1. The interval Q intersects at most j0 � j of these intervals; denote
them by Ak1; : : : ; Akj0 , and let P D Q n Sj0

iD1 Aki . Then, since for all j � 1,
j � 2e.j�1/=3,

k	Qkp.�/ �
j0X
iD1

k	Aki kp.�/ C k	P kp.�/ � j0 C jP j1=3 � j C jQj1=3 � 3jQj1=3:

Essentially the same computation shows that k	Qkp0.�/ � 3jQj2=3, so if we multiply
these estimates we get that p.�/ 2 K0.R/.

To show that the maximal operator is not bounded on Lp.�/.R/, define the sets
Bk D Œek � 1=4; ek C 1=4� and Ck D Œek � 3=2; ek C 3=2� n Ak , and let

f .x/ D
1X
kD1

k�1=3	Bk .x/:

Then

�.f / D
1X
kD1

Z
Bk

k�p.x/=3 dx D 1

2

1X
kD1

k�4=3 < 1;

and so by Proposition 2.12, f 2 Lp.�/.R/. On the other hand, if x 2 Ck,

Mf.x/ � �
Z
Ak[Ck

f .y/ dy D 1

3

Z
Bk

f .y/ dy D 1

6
k�1=3:
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Therefore,

�.Mf / �
1X
kD1

Z
Ck

Mf .x/p.x/ dx �
�
1

6

�3 1X
kD1

k�1 D 1:

So again by Proposition 2.12,Mf 62 Lp.�/.R/. This completes our proof. ut
Example 4.51 shows that the K0 condition does not let us control the maximal

operator at infinity: like the LH0 condition (cf. Example 3.23) it allows p.�/ to
oscillate at infinity and cause the maximal operator to be unbounded. However, it
does let us control the maximal operator locally, and so it is a replacement for the
LH0 condition. The next theorem is the main result of this section.

Theorem 4.52. Given p.�/ 2 P.Rn/, suppose 1 < p� � pC < 1 and p.�/ 2
K0.R

n/ \N1.Rn/. Then

kMf kLp.�/.Rn/ � Ckf kLp.�/.Rn/: (4.29)

Theorem 4.52 can be generalized to arbitrary domains�; however, we must still
assume that p.�/ 2 K0.R

n/ and not simply inK0.�/. The reason for this is that there
does not exist an extension theorem for the K0 condition analogous to Lemma 2.4
for log Hölder continuity. We leave the statement and proof of the most general
result to the reader; here we give one special case that we want to highlight.

Corollary 4.53. Given p.�/ 2 P.Rn/, suppose 1 < p� � pC < 1 and p.�/ 2
K0.R

n/. Then given any bounded set �,

kMf kLp.�/.�/ � Ckf kLp.�/.�/;
where the constant C depends on n, p.�/ and j�j.
Remark 4.54. By the symmetry of the definition, p.�/ 2 K0.R

n/ if and only if
p0.�/ 2 K0.R

n/. Therefore, by Corollaries 4.50 and 4.53, if the maximal operator
is bounded on Lp.�/.Rn/ and pC < 1, then it is bounded on Lp

0.�/.�/ for any
bounded set �. This fact complements the conditions in Theorem 4.37; we will
return to this “duality” property in Sect. 4.5 below.

For the proof of Theorem 4.52 we need two lemmas. (We will prove Corol-
lary 4.53 immediately after we prove the theorem.) The first shows that the K0

condition is actually sufficient for a modular inequality. This result should be
compared to the negative result in Theorem 3.31.

Lemma 4.55. Given p.�/ 2 P.Rn/ such that 1 < p� � pC < 1, suppose p.�/ 2
K0.R

n/. Let f 2 Lp.�/.Rn/. If there exist a cube Q and constants c1; c2 > 0 such
that �R

Q jf .x/j dx � c1 and kf kp.�/ � c2, then there exists a constant C depending
only on p.�/, c1, c2, such that
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Z
Q

�
�
Z
Q

jf .y/j dy
�p.x/

dx � C

Z
Q

jf .x/jp.x/ dx:

Proof. Since p0.�/� D .pC/0 > 1, by continuity there exists a constant ˛ > 0 such
that Z

Q

˛p
0.y/�1 dy D

Z
Q

jf .x/j dx:

Given this value ˛, we have that

Z
Q

�
�
Z
Q

jf .y/j dy
�p.x/

dx

D
Z
Q

�
�
Z
Q

˛p
0.y/�1 dy

�p.x/
dx

D
 Z

Q

˛�p.x/
�

�
Z
Q

˛p
0.y/ dy

�p.x/�1
dx

!
� �
Z
Q

˛p
0.y/ dy

D
 

�
Z
Q

�
�
Z
Q

˛p
0.y/�p0.x/ dy

�p.x/�1
dx

!
�
Z
Q

˛p
0.y/ dy:

We estimate the two terms on the right-hand side separately. The second is
straightforward:

Z
Q

˛p
0.y/ dy D 2˛

Z
Q

jf .y/j dy �
Z
Q

˛p
0.y/ dy

� 2˛

Z
fy2QW2˛jf .y/j>˛p0 .y/g

jf .y/j dy

D 2˛

Z
fy2QW.2jf .y/j/p.y/�1>˛g

jf .y/j dy

� 2

Z
Q

2p.y/�1jf .y/jp.y/ dy

� 2pC

Z
Q

jf .y/jp.y/ dy:

To finish the proof we will show that the first term is bounded by a constant. By
our hypotheses on f ,

c1 � �
Z
Q

˛p
0.y/�1 dy � max

�
˛p

0.�/
C

�1; ˛p0.�/
�

�1�;
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so ˛ � d1 > 0, where d1 depends only on p.�/ and c1. By the generalized Hölder’s
inequality (Theorem 2.26) and Proposition 2.21 (since pC < 1),

Z
Q

˛p
0.y/�1 dy D

Z
Q

jf .x/j dx

� Kp.�/kf kp.�/k	Qkp0.�/
� c2Kp.�/k	Qkp0.�/

D c2Kp.�/k	Qkp0.�/
Z
Q

�
1

k	Qkp0.�/

�p0.y/

dy

�
Z
Q

�
d2

k	Qkp0.�/

�p0.y/�1
dy;

where d2 > 0 depends only on p.�/ and c2. Therefore,

˛ � d2

k	Qkp0.�/
:

For each x 2Q partitionQ into EC.x/D fy 2Q Wp0.y/>p0.x/g andE�.x/ D
Q n EC.x/. Then

Z
Q

˛p
0.y/�p0.x/ dy

D
Z
EC.x/

˛p
0.y/�p0.x/ dy C

Z
E�.x/

˛p
0.y/�p0.x/ dy

�
Z
EC.x/

�
d2

k	Qkp0.�/

�p0.y/�p0.x/

dy C
Z
E�.x/

d
p0.y/�p0.x/
1 dy

� D1k	Qkp0.x/

p0.�/
Z
Q

�
1

k	Qkp0.�/

�p0.y/

dy CD2jQj

� D1k	Qkp0.x/

p0.�/ CD2jQj;

whereD1 D max.1; d
p0.�/

C
�p0.�/

�

2 / andD2 D max.1; d
p0.�/

�
�p0.�/

C

1 /.
Therefore, using the fact that p.�/ 2 K0 (with constant CK) and again by

Proposition 2.21,

�
Z
Q

�
�
Z
Q

˛p
0.y/�p0.x/ dy

�p.x/�1
dx
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� �
Z
Q

0
@D1

k	Qkp0.x/

p0.�/
jQj CD2

1
A
p.x/�1

dx

� .2D1/
pC�1

Z
Q

�k	Qkp0.�/
jQj

�p.x/
dx C .2D2/

pC�1

� .2D1/
pC�1C pC

K

Z
Q

�
1

k	Qkp.�/
�p.x/

dx C .2D2/
pC�1

D .2D1/
pC�1C pC

K C .2D2/
pC�1:

This completes our proof. ut
Our second lemma is a corollary to Lemma 4.55. It shows that there is a deep

connection between theK0 condition and the MuckenhouptAp weights. Its subtlety
can be seen by comparing this result with Lemma 4.41.

Lemma 4.56. Let p.�/ 2 P.Rn/ be such that p.�/ 2 K0.R
n/. Then given any cube

Q0, and constants b1; b2 > 0, for any t such that b1 � t � b2k	Q0kp.�/ , there exist

constants C0; s > 1 such that

�
�
Z
Q0

tsp.x/ dx

�1=s
� C0�

Z
Q0

tp.x/ dx:

The constants s and C0 depend only on b1, b2 and p.�/.
Proof. By Corollary 4.27, it suffices to show that there exist ˛; ˇ such that the
weights wt .x/ D tp.x/ satisfy Property .1/ of Lemma 4.25 on every cube Q � Q0

with a constant depending only on b1, b2 and p.�/. Let ˛ D 1=2. Fix such a cube
Q and let E � Q be any measurable subset with jEj � jQj=2. Define f D t	E .
Then

�
Z
Q

jf .y/j dy D �
Z
Q

t	E.y/ dy D t
jEj
jQj � b1

2
;

and

kf kp.�/ D tk	Ekp.�/ � b2
k	Ekp.�/
k	Q0kp.�/

� b2:

Therefore, f satisfies the hypotheses of Lemma 4.55 with c1 D b1=2 and c2 D b2,
and so there exists a constant C depending only on b1, b2 and p.�/ such that

Z
Q

tp.x/ dx �
� jQj

jEj
�pC

Z
Q

�
�
Z
Q

jf .y/j dy
�p.x/

dx

� 2pCC

Z
Q

jf .x/jp.x/ dx D 2pCC

Z
E

tp.x/ dx:
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Hence, 2�pCC�1wt .Q/ � wt .E/. Let ˇ D 2�pCC�1; since this holds for every
such cubeQ, our proof is complete. ut
Proof of Theorem 4.52. We will not prove directly thatM is bounded on Lp.�/.Rn/.
Rather, we will prove one of the equivalent conditions given in Sect. 4.3. More
precisely, by Theorem 4.37 and Remark 4.38 it will suffice to show that there exists
s0 > 1 such that for all s, 1 < s < s0, M is bounded on Lsp.�/.Rn/ and

kMf kLsp.�/.Rn/ � C.n; p.�//.s � 1/�1=p�kf ksp.�/:

Fix s, 1 < s < s0; the precise value of s0 will be determined below, but for now
we will assume s0 � 2 so that s� 1 � 1. Our proof follows the pattern of the proofs
of Theorems 3.16 and 4.7, and we will refer to them for some details that are the
same. Arguing as we did at the beginning of the proof of Theorem 3.16 (p. 98), we
may make the same reductions. Therefore, we can assume that f is a non-negative,
bounded function of compact support, and kf ksp.�/ D 1. Decompose f as f1 C f2,
where

f1 D f	fxWf .x/>1g; f2 D f	fxWf .x/�1g:

Then kMf ksp.�/ � kMf1ksp.�/ C kMf2ksp.�/, and we will estimate each term
separately. The estimate of the second term is the same as the estimate for this term
in the proof of Theorem 4.7 (p. 131). It follows from Definition 4.4 that p.�/ 2 N1
implies sp.�/ 2 N1: since s > 1,

exp
� � 2ƒ1jsp.x/ � sp1j�1� � exp

� �ƒ1jp.x/ � p1j�1�;
so sp.�/ satisfies theN1 condition with a constant independent of s. Therefore, there
exists a constantC depending only on n and p.�/ such that kMf2ksp.�/ � Ckf ksp.�/.
Since s � 1 � 1, we thus have that

kMf2ksp.�/ � C.s � 1/�1=p�kf ksp.�/:

To complete the proof we will show the same estimate for f1. It will suffice to
prove that there exists C > 1 independent of s such that

Z
Rn

Mf1.x/
sp.x/ dx � C.s � 1/�1I (4.30)

for if this holds, since p.x/=p� � 1 for all x and C.s � 1/�1 > 1,

Z
Rn

�
Mf1.x/

.C.s � 1/�1/1=p�

�sp.x/
dx �

�
s � 1

C

�s Z
Rn

Mf1.x/
sp.x/ dx � 1;

and so kMf1ksp.�/ � C.s � 1/�1=p�kf ksp.�/.
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To prove (4.30) we modify the decomposition argument used in the proof of
Theorem 3.16 in the case when pC < 1 (p. 99). Let A D 4n and for all integers
k � 0 define

�k D fx 2 R
n W Mf1.x/ > Akg:

Then, arguing as before,

Z
Rn

Mf1.x/
sp.x/ dx

D
Z

fxWMf1.x/�1g
Mf1.x/

sp.x/ dx C
1X
kD0

Z
�kn�kC1

Mf1.x/
sp.x/ dx:

The first term is easy to estimate: since Mf1.x/ � 1 and f1.x/ > 1 or f1.x/ D 0,
and since p� > 1, by Theorem 3.4 and Remark 3.5,

Z
fxWMf1.x/�1g

Mf1.x/
sp.x/ dx �

Z
fxWMf1.x/�1g

Mf1.x/
sp� dx

� .sp�/0C.n/
Z
Rn

f1.x/
sp� dx

� .sp�/0C.n/
Z
Rn

f1.x/
sp.x/ dx

� .p�/0C.n/.s � 1/�1:

To estimate the second term, for each k form the Calderón-Zygmund cubes fQk
j g

of f1 at height Ak�1 (Lemma 3.9). Then

�k �
[
j

3Qk
j :

LetEk
j be defined as before, and let F k

j D Qk
j nSi Q

kC1
i . By the maximality of the

Calderón-Zygmund cubes, the sets F k
j are pairwise disjoint for all j and k. Further,

jF k
j j � 1

2
jQk

j j. To see this estimate we argue as we did in the proof of Theorem 4.22.
By the properties of the Calderón-Zygmund cubes, for each j and k,

j�kC1 \Qk
j j D

X
Q
kC1
i

jQkC1
i j � A�k X

Q
kC1
i

Z
Q
kC1
i

f1.y/ dy

� A�k
Z
Qk
j

f1.y/ dy � 2nAk�1

Ak
jQk

j j � 1

2
jQk

j j:

Thus, jF k
j j � 1

2
jQk

j j.
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Therefore, using again that s � 2, we have that

1X
kD0

Z
�kn�kC1

Mf1.x/
sp.x/ dx

�
1X
kD0

Z
�kn�kC1

.AkC1/sp.x/ dx

� 3snpCAs2pC

X
k;j

Z
Ekj

 
�
Z
3Qk

j

f1.y/ dy

!sp.x/
dx

� 2 � 3nC2npCA4pC

X
k;j

�
Z
3Qk

j

 
�
Z
3Qk

j

f1.y/ dy

!sp.x/
dx � jF k

j j: (4.31)

To estimate (4.31) we need to apply Lemmas 4.55 and 4.56. Since k � 0, by the
properties of the Calderón-Zygmund cubes,

�
Z
3Qk

j

f1.y/ dy � 3�n�
Z
Qk
j

f1.y/ dy > 3
�nAk�1 � 12�n > 0: (4.32)

On the other hand, since f1 > 1 or f1 D 0, by Proposition 2.18,

kf1kp.�/ � kf s
1 kp.�/ D kf1kssp.�/ � 1: (4.33)

Therefore, since p.�/ 2 K0.R
n/ with constant CK ,

�
Z
3Qk

j

f1.y/ dy � j3Qk
j j�1kf1kp.�/k	3Qk

j
kp0.�/ � CK

k	3Qk
j
kp.�/ : (4.34)

In both (4.32) and (4.34) the bounds are independent of j and k. Therefore, by
Lemma 4.56 with t D �R

3Qk
j
f1.y/ dy, there exists s0 > 1 and a constant C0 that

depends only on n and p.�/ such that for all s, 1 < s < s0,

0
@�
Z
3Qk

j

 
�
Z
3Qk

j

f1.y/ dy

!sp.x/
dx

1
A
1=s

� C0�
Z
3Qk

j

 
�
Z
3Qk

j

f1.y/ dy

!p.x/
dx: (4.35)

Moreover, by Lemma 4.55,

�
Z
3Qk

j

 
�
Z
3Qk

j

f1.y/ dy

!p.x/
dx � C�

Z
3Qk

j

f1.x/
p.x/ dx: (4.36)



172 4 Beyond Log-Hölder Continuity

By (4.35), (4.36), Theorem 3.4 and Remark 3.5 we can estimate (4.31) as follows:

X
k;j

�
Z
3Qk

j

 
�
Z
3Qk

j

f1.y/ dy

!sp.x/
dx � jF k

j j

� C s
0

X
k;j

0
@�
Z
3Qk

j

 
�
Z
3Qk

j

f1.y/ dy

!p.x/
dx

1
A
s

� jF k
j j

� C s
0C

s
1

X
k;j

 
�
Z
3Qk

j

f1.x/
p.x/ dx

!s
� jF k

j j

� C2
0 C

2
1

X
k;j

Z
F kj

M.f1.�/p.�//.x/s dx

� C2
0 C

2
1

Z
Rn

M.f1.�/p.�//.x/s dx

� C.n; p.�//s0
Z
Rn

f1.x/
sp.x/ dx

� C.n; p.�//.s � 1/�1:

Combining all of the above estimates we get (4.30); this completes our proof. ut
Proof of Corollary 4.53. The proof is essentially the same as the proof of Theo-
rem 4.52. The estimate for f1 is the same, and the constant is independent of �.
To estimate f2, instead of following the proof of Theorem 4.7, we instead use the
argument from the proof of Corollary 3.18. This gives us a constant that depends on
n, p.�/ and j�j. ut

We conclude this section with three results on the relationship between log-
Hölder continuity and the K0 condition.

Proposition 4.57. Given a set � and p.�/ 2 �, suppose pC < 1. If p.�/ 2
LH.�/, then p.�/ 2 K0.�/. In particular, if � is bounded and p.�/ 2 LH0.�/,
then p.�/ 2 K0.�/.

Proof. Since p.�/ 2 LH.�/ implies that the maximal operator is bounded on
Lp.�/.�/, this follows from Corollary 4.50, at least when p� > 1. However, we
can give a direct proof. Fix any cube Q. Since �p.�/.	Q/ D �p0.�/.	Q/ D jQj, by
Corollary 2.22 we must have that k	Qkp.�/ and k	Qkp0.�/ are either both greater than
or less than 1. If k	Qkp.�/; k	Qkp0.�/ � 1, by Corollary 2.23 and Lemma 3.24,

k	Qkp.�/k	Qkp0.�/ � jQj1=pCC1=p0.�/
C D jQj1C1=pC�1=p� � C jQj:
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If k	Qkp.�/; k	Qkp0.�/ � 1, then we estimate them using Lemma 3.26. FixN > 1

such that Z
Rn

.e C jxj/�Np� dx � 1=2:

By Proposition 2.21 and (3.11),

1 D
Z
Q

k	Qk�p.x/
p.�/ dx

� C

Z
Q

k	Qk�p1

p.�/ dx C
Z
Q

dx

.e C jxj/Np�

� C jQjk	Qk�p1

p.�/ C 1

2
:

Rearranging terms we get that k	Qkp.�/ � C jQj1=p1 . The same argument shows
that k	Qkp0.�/ � C jQj1=p0

1 and so

k	Qkp.�/k	Qkp0.�/ � C jQj1=p1C1=p0

1 D C jQj:

ut
One surprising feature of Proposition 4.57 is that even though K0 cannot be

used to control the maximal operator at infinity, which is where we use the LH1
condition, in the proof we need to use LH1 to show that log-Hölder continuity
implies the K0 condition. The next example shows that this hypothesis is in some
sense necessary.

Example 4.58. On R let p.�/ be a smooth, increasing function such that p.x/ D 2

if x � �1 and p.x/ D 3 if x > 1. Then p.�/ 2 LH0.R/ n LH1.R/. Let Q D
Œ�N;N �, N > 3, and let Q� D Œ�N;�1�, QC D Œ1; N �. Then by Corollary 2.23,

k	Qkp.�/k	Qkp0.�/ � k	Q�
kp.�/k	QC

kp0.�/

� jQ�j1=pC.Q�/jQCj1=p0.�/
�
.QC/ D jQ�j1=2jQCj2=3 � cjQjN1=6:

Since we can take N arbitrarily large, p.�/ 62 K0.R/.

While log-Hölder continuity implies the K0 condition, the converse is not true.
Example 4.51 gives an exponent function p.�/ 2 K0 n LH1. There also exist
exponents p.�/ 2 K0 n LH0.

Example 4.59. Given a, 0 < a < 1, let Ia D .�e�31=a ; e�31=a / � R. Then the
exponent p.�/ 2 P.Ia/ defined by

1

p.x/
D 1

2
C 1

log.1=jxj/a

is in K0.Ia/ nLH0.Ia/.
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If we extend the exponent p.�/ in Example 4.59 to be a constant on R n Ia, then
a straightforward modification of the proof shows that p.�/ 2 K0.R/ \ N1.R/.
Therefore, by the definition ofK0 and Remark 4.6, p0.�/ 2 K0.R/\N1.R/. Hence,
by Theorem 4.52 the maximal operator is bounded on Lp

0.�/.R/. For x 2 Ia,

p0.x/ D 2C 4

log.1=jxj/a � 2 :

This exponent function should be compared to Example 4.44. As was the case with
the examples we gave in Sect. 4.1, the symmetry and monotonicity of the exponent
function play significant but not well understood roles in determining whether the
maximal operator is bounded.

Proof. It is immediate that p.�/ 62 LH0.Ia/, so we only need to show that p.�/ 2
K0.Ia/. We make two reductions. First, it will suffice to consider intervals I � Ia.
For suppose I \ .R n Ia/ ¤ ;. If I \ Ia D ;, then the K0 condition is vacuously
true. Otherwise, let I0 D Ia \ I . If the K0 condition holds for I0, then

k	I kLp.�/.Ia/k	I kLp0.�/.Ia/
D k	I0kLp.�/.Ia/k	I0kLp0.�/.Ia/

� CK jI0j � CK jI j:

Second, it will suffice to show that p.�/ satisfies the K0 condition for any interval
I � Œ0; e�31=a /. For suppose this is the case and let I � Ia be such that it intersects
.�e�31=a ; 0/. If it is entirely contained in this interval, let J D fx W �x 2 I g. Then
J � Œ0; e�31=a / and by the symmetry of p.�/,

k	I kp.�/k	I kp0.�/ D k	J kp.�/k	J kp0.�/ � CK jJ j D CK jI j:

Now suppose that 0 2 I . Let J be the smallest interval centered at the origin that
contains I , and define JC D J \ Œ0; e�31=a /. Then jJCj � jI j � 2jJCj and again
by the symmetry of p.�/,

k	I kp.�/k	I kp0.�/ � k	J kp.�/k	J kp0.�/
D k	JnJC

C 	JC
kp.�/k	JnJC

C 	JC
kp0.�/

� �k	JnJC
kp.�/ C k	JC

kp.�/
��k	JnJC

kp0.�/ C k	JC
kp0.�/

�
D 4k	JC

kp.�/k	JC
kp0.�/

� 4CK jJCj
� 4CK jI j:

To prove that p.�/ satisfies theK0 condition for intervals contained in Ia, we will
first show that p.�/ satisfies it on any interval I D .x; y/ � Œ0; e�31=a / such that
y � x � x. To do so we will actually show that 1=p.�/ 2 LH0.I / with constant
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depending only on p.�/, for then, by Propositions 2.3 and 4.57, p.�/ 2 K0.I /. Given
z; w 2 I , z < w, we have that

w � z � y � z � 2x � z � 2z � z D z:

Let f .t/ D log.1=t/�a; then

Df.t/ D at�1 log.1=t/�a�1;

D2f .t/ D �at�2 log.1=t/�a�2� log.1=t/ � .1C a/
�
:

For t < e�.1Ca/, D2f < 0. Since for all a, e�31=a < e�.1Ca/, we have that Df is a
decreasing function on .0; e�31=a /. Therefore, by the mean value theorem,

ˇ̌
ˇ̌ 1

p.z/
� 1

p.w/

ˇ̌
ˇ̌ D jf .z/ � f .w/j (4.37)

� jDf.z/jjz � wj
D Df.z/ � a .Df .w � z//�1 log.1=jw � zj/�a�1

� Df.z/ � aDf .z/�1 log.1=jw � zj/�a�1

� a

� log.w � z/
:

Finally, we will show that p.�/ satisfies theK0 condition for intervals I D .x; y/,
where y � x � x. In this case it will suffice to show this for intervals of the form
J D .0; y/. For if it were true in this special case, then

k	I kp.�/k	I kp0.�/ � k	J kp.�/k	J kp0.�/ � CK jJ j
D CKy � CK.y � x/C CKx � 2CK.y � x/ D 2CKjI j:

Moreover, given y 2 .0; e�31=a / and J D .0; y/, it will suffice to show that there
exists a constant C (independent of k) such that

k	J kp.�/ � C jJ j1=p.y/: (4.38)

For then, since p0.�/ is an increasing function, by Corollary 2.23,

k	J kp.�/k	J kp0.�/ � C jJ j1=p.y/jJ j1=p0.�/
C D C jJ j1=p.y/jJ j1=p0.y/ D C jJ j:

To prove (4.38), fix k � 31=a such that e�k < y � e�kC1. Define

� D jJ j1=p.y/ � jJ j1=p� D jJ j5=6 � e�5k=6:
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Suppose there exists a constant C > 1 such that

Z
J

��p.t/ dt � C I (4.39)

then by the convexity of the modular (Proposition 2.7) we have that

�p.�/
�
.C jJ j1=p.y//�1	J

� � C�1
Z
J

��p.t/ dt � 1;

which in turn gives us (4.38).
To prove (4.39) we replace the integral by an infinite series: since p.�/ is

decreasing,

Z
J

��p.t/ dt �
1X
jDk

Z e�jC1

e�j

��p.t/ dt

� e

1X
jDk

e�j ��p.e�j / D e

1X
jDk

e�.1�a/j exp
� � aj C log.1=�/p.e�j /

�
:

Rewrite the exponent in the final term as

�aj C log.1=�/p.e�j / D �aj C log.1=�/
2

2j�a C 1
;

and define the function

h.x/ D �ax C log.1=�/
2

2x�a C 1
:

We will show that h is decreasing for all x � k. Taking the derivative, we have that

Dh D �aC 4a log.1=�/

x1�a.2C xa/2
I

hence,Dh < 0 if
log.1=�/

x1�a.2C xa/2
< 1=4:

Since � � e�5k=6 and x � k � 31=a > 1,

log.1=�/

x1�a.2C xa/2
� 5k

6k1�a.2C ka/2
� 5ka

6ka.2C ka/
� 1

6
<
1

4
:
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Given that h is decreasing, we have that

1X
jDk

e�.1�a/j exp
�� aj C log.1=�/p.e�j /

�

� exp
� � ak C log.1=�/p.e�k/

� 1X
jDk

e�.1�a/j

� Ce�k��p.e�k /

� C jJ jjJ j�p.e�k/=p.y/

D C jJ j1�p.e�k/=p.y/:

To complete the proof of (4.39) we need to show that the last term is uniformly
bounded. Since jJ j < 1,

jJ j1�p.e�k /=p.y/ D �jJ j1=p.e�k/�1=p.y/�p.e�k / � �jJ j1=p.e�k /�1=p.y/�p�

;

and by Corollary 3.24 the right-hand side would be uniformly bounded if 1=p.�/ 2
LH0..e

�k; e�kC1// with a constant independent of k. We can show this by arguing
as we did above. If e�k < z < w < e�kC1, then w� z � e�k.e�1/ � e�k.eC1/ �
.e C 1/z, so by modifying inequality (4.37) we get

ˇ̌
ˇ̌ 1

p.z/
� 1

p.w/

ˇ̌
ˇ̌ � jDf.z/jjz � wj

� aDf

�
w � z

e C 1

�
.Df .w � z//�1 log.1=jw � zj/�a�1

D a.e C 1/

�
1

log..e C 1/=jw � zj/
�1Ca

� a.e C 1/

� log.w � z/
:

Therefore, 1=p.�/ 2 LH0..e
�k; e�kC1// with constant a.eC1/. This completes our

proof. ut

4.5 A Necessary and Sufficient Condition

We conclude this chapter with a discussion of a necessary and sufficient condition
for the maximal operator to be bounded on Lp.�/.Rn/. Though not easy to check for
a given exponent function p.�/, this condition has very important theoretical conse-
quences. To state it we first define a generalization of the averaging operators AQ.
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Definition 4.60. Let Q D fQj g be a collection of pairwise disjoint cubes. Given a
locally integrable function f , define the averaging operator AQ by

AQf .x/ D
X
j

AQj f .x/ D
X
j

�
Z
Qj

f .y/ dy	Qj .x/:

Definition 4.61. Given � and an exponent p.�/ 2 P.�/, then p.�/ 2 A if there
exists a constant CA such that given any set Q of disjoint cubes and any function
f 2 Lp.�/.Rn/, kAQf kp.�/ � CAkf kp.�/.

If the collection Q consists of a single cube, then AQf D AQf , so by
Proposition 4.47, p.�/ 2 A implies that p.�/ 2 K0.R

n/. The converse is false:
there exist p.�/ 2 K0 n A. The exponent p.�/ in Example 4.51 is one such: in the
construction we showed that if Q D f.ek � 3=2; ek C 3=2/g1

kD1, then AQ is not
bounded on Lp.�/.R/.

The condition A can be thought of as a generalization of the Muckenhoupt
Ap condition in the following sense: for 1 < p < 1, the operators AQ are
uniformly bounded on Lp.w/ if and only if w 2 Ap . Necessity follows from
Proposition 4.33, and the sufficiency from the fact that given any collection Q,
jAQf .x/j � Mf.x/. An important difference, however, is that the Ap condition
is a “geometric” condition depending only on the behavior of w on cubes, while the
condition A requires testing the operators on all functions f 2 Lp.�/.Rn/.

The importance of the condition A is shown by the following two results.

Theorem 4.62. Given� and p.�/ 2 P.�/, if p.�/ 2 A, then the maximal operator
satisfies the weak type inequality

kt	fxWMf.x/>tgkLp.�/.Rn/ � Ckf kLp.�/.Rn/:

Proof. As in the proof of the weak type inequality in Theorem 3.16 (p. 106) we
use the Calderón-Zygmund decomposition, but the argument is simpler. Just as in
that proof, it suffices to prove it for bounded, non-negative functions of compact
support. Fix such a function f and fix t > 0. Since f has compact support, the set
fx W Mf.x/ > tg is bounded. Let fQj g be the Calderón-Zygmund cubes of f at
height t=4n (Lemma 3.9). Since

fx 2 R
n W Mf.x/ > tg �

[
j

3Qj ;

by the Besicovitch-Morse covering lemma (see de Guzmán [74]), there exists a
constantN (depending on the dimension) and collections of pairwise disjoint cubes
Qk D f5Qk

i g � f5Qj g, 1 � k � N , such that

fx 2 R
n W Mf.x/ > tg �

N[
kD1

[
i

5Qk
i :
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Therefore, by the properties of Calderón-Zygmund cubes and since p.�/ 2 A,

kt	fxWMf.x/>tgkp.�/ �
NX
kD1

				t
X
i

	5Qk
i

				
p.�/

�
NX
kD1

5n
				
X
i

�
Z
5Qk

i

f .y/ dy	5Qk
i

				
p.�/

�
NX
kD1

5nkAQk
f kp.�/

� 5nNCAkf kp.�/:
ut

Theorem 4.63. Given p.�/ 2 P.Rn/, suppose 1 < p� � pC < 1. Then the
maximal operator is bounded on Lp.�/.Rn/ if and only if p.�/ 2 A.

Since jAQf .x/j � Mf , one implication is immediate. The heart of the matter
is the converse, and the proof is very long and quite technical. Therefore, we refer
the reader to [82] for the details.

Here we concentrate on two corollaries. First, the proof itself shows that M is
bounded on Lp.�/.Rn/ if and only if it is bounded on Lrp.�/.Rn/ for some r , 0 <
r < 1. (We proved this in a different way in Theorem 4.37.) Second, we have that
even though M is not a linear operator, the boundedness of M implies the “dual”
inequality.

Corollary 4.64. Given p.�/ 2 P.Rn/, suppose 1 < p� � pC < 1. Then M is
bounded on Lp.�/.Rn/ if and only if M is bounded on Lp

0.�/.Rn/.

Proof. By symmetry it will suffice to prove that ifM is bounded on Lp.�/.Rn/, then
it is bounded on Lp

0.�/.Rn/. In this case, by Theorem 4.63 the operators AQ are
uniformly bounded on Lp.�/.Rn/. By Theorem 2.34, Fubini’s theorem and Hölder’s
inequality (Theorem 2.26), given f 2 Lp

0.�/.Rn/, there exists h 2 Lp.�/.Rn/,
khkp.�/ � 1, such that

kAQf kp0.�/ � C

Z
Rn

AQf .x/h.x/ dx

D C

Z
Rn

1X
jD1

�
Z
Qj

f .y/ dy � h.x/	Qj .x/ dx

D C

Z
Rn

f .y/AQh.y/ dy

� Ckf kp0.�/kAQhkp.�/
� Ckf kp0.�/:



180 4 Beyond Log-Hölder Continuity

Since the final constant is the same for all operators AQ, again by Theorem 4.63 we
have that the maximal operator is bounded on Lp

0.�/.Rn/. ut
Remark 4.65. It would be very interesting to have a proof of Corollary 4.64 that did
not rely on Theorem 4.63.

4.6 Notes and Further Results

4.6.1 References

In the study of the maximal operator on variable Lebesgue spaces, the LH0

and LH1 conditions were initially referred to as “almost necessary.” This was
primarily because of Example 4.43, due to Pick and Růžička [291]. Somewhat later,
Example 4.1 appeared in [62]; its construction is a modification of that of Pick and
Růžička. As we noted in Sect. 3.7.2 above, Diening [80, 82] showed that the LH0

was necessary for the pointwise inequalities used in the proofs of the boundedness
of the maximal operator. (See Proposition 3.39.)

The N1 condition was introduced by Nekvinda [282] in the case pC < 1 and
he proved the strong type inequality in Theorem 4.7. (The notation is new.) Earlier,
a related condition for variable sequence spaces was considered by Nakano [279]
(see also [245]). The case pC D 1 is in [80, 82]. This proof makes explicit
the connection between embedding L1 in a variable Lebesgue space and N1
condition. Our proofs of the strong type inequality and the weak type inequality are
new. Proposition 4.8 when pC < 1 is implicit in Nekvinda [282]. Proposition 4.9
showing that there are functions in N1 n LH1 was given in [42]. Proposition 4.10
was known but does not appear to have been stated explicitly. Example 4.13 is
derived from a more general construction by Nekvinda [284], who gave a sufficient
condition on “almost” monotone, radial exponents for the maximal operator to
be bounded. The exact statement of Lemma 4.15 is new, but as we noted it is
closely related to Lemma 3.26; consult the references given for this lemma in
Sect. 3.7.1. A more general version, using the N1 condition instead of LH1, is
due to Nekvinda [282].

The literature on the theory of MuckenhouptAp weights is vast and it is beyond
the scope of this section to give a detailed history of these results. For almost all the
results of Sect. 4.2 we have followed Duoandikoetxea [96] and Garcı́a-Cuerva and
Rubio de Francia [140]; also see Grafakos [144]. For the Jones factorization theorem
and the reverse Jensen inequality, mentioned in Remark 4.19, see [140]. There
is a close connection between the constants Œw�Ap and Œw�A1

: see Sbordone and
Wik [328]. Corollary 4.27 is implicit in the literature; in the folklore the conclusion
of this result is often stated as w is in RHs (or A1) “locally.” The sharp reverse
Hölder inequality in Proposition 4.29 is due to Lerner, Ombrosi and Pérez [234]
(see also [233]). Lemma 4.30 is due to Stein [338] (see also [140]).
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Proposition 4.33 relating the averaging operators and Ap weights was first
stated without proof by Jawerth [185] (see also Berezhnoi [27]). Theorem 4.35
was originally proved by Muckenhoupt [271]; also see the references above on
weights. Remark 4.36 is well-known but often just assumed; our proof is from [140].
Theorem 4.37 was proved by Lerner and Ombrosi [233] for more general maximal
operators on abstract Banach function spaces. The equivalence of Conditions .1/
and .3/ in this result was proved earlier by Diening [79]. The Rubio de Francia
iteration algorithm which is at the heart of the proof plays an important role in the
study of weighted norm inequalities; see [69] for more information and references.
Lemma 4.41 and the proof of Theorem 3.31 are due to Lerner [228].

The K0 condition was first considered by Berezhnoi [27] in the more general
setting of weighted Banach function spaces. He states Proposition 4.47 without
proof (see his Lemma 2.1); our proof is adapted from Diening [80] (see also [82]).
The importance of the K0 condition for the study of variable Lebesgue spaces was
recognized by Kopaliani [212]. He referred to the class as Ap.�/ to emphasize its
connections with Ap weights; our notation is new. He proved Theorem 4.52 with
the N1 condition replaced by the stronger assumption that p.�/ is constant outside
a large ball centered at the origin. His proof relies in a central way on the necessary
and sufficient condition in Theorem 4.63. He proved Lemma 4.55, again using ideas
from Diening [79]. Lerner [231] gave a new proof of Theorem 4.52 which used
Ap weights. Our proofs of Lemmas 4.55 and 4.56 are based on his; our proof of
Theorem 4.52 is new. Proposition 4.57 is due to Diening [80] (see also [82]): see
Sect. 4.6.2 below. Our proof is new. Example 4.51 is also due to Diening [80]. A
different example was constructed by Kopaliani [215]. Example 4.59, an exponent
in K0 n LH0, is new.

The results in Sect. 4.5 are all due to Diening [79] and he first made the
connection between condition A and the Muckenhoupt Ap weights; also see
[80, 82]. Diening also showed that this characterization can be extended to general
Musielak-Orlicz spaces. The generalized averaging operator AQ was considered
in the context of Banach function spaces by Berezhnoi [27] and was implicit in
Kopaliani [211].

4.6.2 More on the K0 Condition

A different characterization of exponents in K0 was given by Diening [80] (see
also [82]).

Proposition 4.66. Given p.�/ 2 P.Rn/ and a cube Q, let PQ and P 0
Q be the

harmonic means of p.�/ and p0.�/ onQ:

1

PQ
D �
Z
Q

1

p.x/
dx;

1

P 0
Q

D �
Z
Q

1

p0.x/
dx:
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Then p.�/ 2 K0.R
n/ if and only if

k	Qkp.�/ 	 jQj1=PQ and k	Qkp0.�/ 	 jQj1=P 0

Q:

The means PQ and P 0
Q at first seem somewhat unnatural, but they play a central

role in the proof of Theorem 4.63, and more generally in the approach to variable
Lebesgue spaces adopted in [80, 82].

Because of its similarity with the Muckenhoupt Ap condition, it was initially
hoped that the K0 condition would be sufficient for the maximal operator to be
bounded on Lp.�/.Rn/, but as Example 4.51 showed, this is not the case. Further-
more, Kopaliani [215] constructed an example of p.�/ 2 K0.R

n/, n � 2, such
that the maximal operator does not satisfy the weak type inequality on Lp.�/.Rn/.
On the other hand, Lerner [231] proved that if p.�/ is radial and decreasing, and
1 < p� � pC < 1, then the maximal operator satisfies the weak type inequality if
and only if p.�/ 2 K0.R

n/. As was the case with Examples 4.13 and 4.59, the fact
that p.�/ is radial and monotone plays a deep and subtle role in the proof.

There is another significant difference between K0 and the Muckenhoupt Ap
condition. As part of the proof of Theorem 4.35 we showed that if w 2 Ap , then
there exists q < p such that w 2 Aq . However, Kopaliani [215] gave an example
(in fact, the same example mentioned above) of p.�/ 2 K0.R

n/ such that for any
r , 1=p� < r < 1, rp.�/ 62 K0.R

n/. If exponent p.�/ 2 K0 had this property,
then we could modify the proof of Theorem 4.52 to prove directly that the maximal
operator is bounded on Lp.�/ without having to use Theorem 4.37. Moreover, by
Theorem 4.37 and Corollary 4.50, if the maximal operator is bounded on Lp.�/, then
p.�/ has this property.

There is another condition, besides N1, that can be combined with K0 to prove
that the maximal operator is bounded. An exponent p.�/ satisfies condition G if
there exists a constant CG such that for all f 2 Lp.�/.Rn/ and g 2 Lp

0.�/.Rn/, and
any collection Q D fQj g of disjoint cubes in R

n,

X
j

kf	Qj kp.�/kg	Qj kp0.�/ � CGkf kp.�/kgkp0.�/:

If p.�/ is constant, then p.�/ 2 G: this is an immediate consequence of Minkowski’s
inequality for series. This condition was introduced by Berezhnoi [27] (see
also [26]). Kopaliani [217] proved the following result.

Proposition 4.67. Given p.�/ 2 P.Rn/, if 1 < p� � pC < 1 and p.�/ 2 G, then
the following are equivalent:

1. p.�/ 2 K0.R
n/;

2. M satisfies the weak type inequality on Lp.�/.Rn/;
3. M is bounded on Lp.�/.Rn/.
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4.6.3 Discontinuous Exponents

Though p.�/ 2 LH0 is not necessary for the maximal operator to be bounded on
Lp.�/, all of the examples considered in this chapter have been uniformly continuous
and have had a limit at infinity, at least in the weak sense of Proposition 4.10. After
proving Theorem 4.63, Diening [79] conjectured that there is an exponent p.�/ that
does not have a limit at infinity but such that the maximal operator is bounded on
Lp.�/. Lerner [229] proved this conjecture. More surprisingly, he also showed that
there exists an exponent that is discontinuous at the origin but M is bounded.

Example 4.68. Given p0 > 1 and 
 2 R, define p.�/ 2 P.R/ by

p.x/ D p0 C 
 sin.log log.1C max.jxj; jxj�1///; x ¤ 0:

Then for 
 sufficiently close to 0, the maximal operator is bounded on Lp.�/.R/, but
p.�/ does not have a limit at 0 or infinity.

Moreover, the behavior at 0 and infinity can be separated, so that, for instance,
p.�/ is continuous at 0 but does not have a limit at infinity. Lerner derived this
example as a special case of a general result. To state it, recall that a function f 2
L1loc.�/ is a function of bounded mean oscillation (denoted by f 2 BMO.�/) if

kf k� D sup
Q

�
Z
Q\�

jf .x/ � fQj dx < 1;

where the supremum is taken over all cubes that intersect �. The space BMO
was introduced in [186]; see also [96, 144]. A function � is called a multiplier
of BMO.�/ if given any f 2 BMO.�/, �f 2 BMO.�/. Multipliers were
characterized in [184, 277, 337].

Proposition 4.69. Given p0 > 1, and a non-negative multiplier � of BMO.Rn/,
there exists a positive constant 
0 D 
0.n; p0; �/ such that if 0 < j
j � 
0 and
p.x/ D p0�
�.x/, then the maximal operator is bounded onLp.�/.Rn/. If �� > 0
and q.x/ D p0 C 
�.x/, then M is bounded on Lq.�/.Rn/.

The proof of this proposition relies on the theory of weighted norm inequalities,
the close connection between BMO functions and Ap weights, and a charac-
terization of the multipliers of BMO . Using this characterization, a lengthy but
straightforward calculation shows that �.x/ D 2C sin.log log.1Cmax.jxj; xj�1///
is a multiplier of BMO.R/ which then gives us Example 4.68.

Examples built using the function sin.log log.x// have a long history in the study
of Orlicz spaces and other problems, beginning with Lindberg [239]. See also [126,
134, 181, 226, 254, 342].

Proposition 4.69 was generalized by Kapanadze and Kopaliani [188]. Given a
function f 2 BMO.�/, define its BMO modulus by
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.f; r/ D sup
jQj�r

�
Z
Q\�

jf .x/ � fQj dx; r > 0:

A function f belongs to VMO.�/ (the space of functions of vanishing mean
oscillation) if 
.f; r/ ! 0 as r ! 0. More generally, given any non-negative
convex, increasing function � W Œ0;1/ ! Œ0;1/ such that �.0C/ D 0, we say that
f 2 BMO�.�/ if 
.f; r/ � C�.r/, and f 2 VMO�.�/ if �.r/�1
.f; r/ ! 0

as r ! 0. These spaces were introduced in [324, 334].

Proposition 4.70. Let �.r/ D min.j log.r/j�1; e/. Given a bounded domain �
with Lipschitz boundary, if p.�/ 2 P.�/ is such that 1 < p� � pC < 1
and p.�/ 2 VMO�.�/, then the maximal operator is bounded on Lp.�/.�/. If
p.�/ 2 BMO�.�/, then there exists p0 > 1 such that if q.�/ D p0 C p.�/, then
M is bounded on Lq.�/.�/.

If � is a multiplier of BMO , then � 2 BMO� with � defined as above, so the
second part of Proposition 4.70 is a local generalization of Proposition 4.69. Further,
this characterization of exponents p.�/ such that M is bounded on Lp.�/.�/ is close
to optimal in this scale. For a proof see [82].

Proposition 4.71. If p.�/ 2 K0.R
n/ and pC < 1, then p.�/ 2 BMO�.Rn/, where

�.r/ D min.j log.r/j�1; e/.

4.6.4 Perturbation of Exponents

By Theorem 4.37, if the maximal operator is bounded on Lp.�/, then there exists
r0, 1=p� � r0 < 1 such that if s > r0, then M is bounded on Lsp.�/. Given this,
Diening, Hästö and Nekvinda [86] asked the following question.

Question 4.72. If the maximal operator is bounded on Lp.�/.Rn/ is it bounded on
Lsp.�/.Rn/ for all s > 1=p�?

In a similar vein, motivated by Proposition 4.69, Lerner [229] asked the following
two questions.

Question 4.73. IfM is bounded on LaCp.�/.Rn/ for some a > 0, isM bounded on
Lp.�/.Rn/?

Question 4.74. If p 2 P.Rn/ is such that 1 < p� � pC < 1 and p.�/ is a
multiplier of BMO , is M bounded on Lp.�/.Rn/?

Using his results, Lerner showed that if the answer to Question 4.73 is positive,
then so is the answer to Question 4.74. Question 4.74 should also be compared to
the second half of Proposition 4.70. Question 4.73 was generalized in [86] to the
following.
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Question 4.75. IfM is bounded onLp.�/.Rn/ isM bounded onLaCp.�/.Rn/ for all
a > 1 � p�?

The answer to Questions 4.72–4.74 is no: in [231], Lerner constructed a
pointwise multiplier of BMO that yields counterexamples for each question.
Question 4.75 remains open for a > 0.

Kopaliani [215] asked similar questions for exponents p.�/ 2 K0.R
n/. As we

noted above, he showed that there exists p.�/ 2 K0.R
n/, 1 < p� � pC < 1,

such that rp.�/ 62 K0 for any r , 1=p� < r < 1. On the other hand, by Hölder’s
inequality, for s > 1, jAQf .x/js � AQ.jf js/.x/. Hence, by Propositions 2.18
and 4.47, if p.�/ 2 K0, then the operators AQ are uniformly bounded on Lsp.�/, so
sp.�/ 2 K0. He also showed that if 1 � p� < a < 0, then a C p.�/ 62 K0. It is not
known if aCp.�/ 2 K0 for all a > 0. The best that can be said (by Propositions 4.70
and 4.71) is that there exists a > 0 such that this is true.

4.6.5 Weighted Variable Lebesgue Spaces

The theory of Ap weights and weighted norm inequalities for the maximal operator
and other operators is a well developed and active field of research. It was natural,
therefore, that a parallel theory of weighted norm inequalities on variable Lebesgue
spaces would be studied. There has been a great deal of work in this area but the
outlines of the theory have only recently begun to emerge.

The first problem is to define a weighted norm inequality on variable Lebesgue
spaces. In the classical Lebesgue spaces there are two (almost) equivalent
approaches: treating the weight as a measure and as a multiplier. The inequalities for
the maximal operator in Theorem 4.35 treat the weight as a measure: the inequality

�Z
Rn

Mf .x/pw.x/ dx

�1=p
� C

�Z
Rn

jf .x/jpw.x/ dx

�1=p

is equivalent to saying that the maximal operator is bounded on Lp.w/: the
Lebesgue space defined with respect to the measure wdx. Alternatively, we can
rewrite this inequality with the weight as a multiplier and with the norm the standard
Lp norm:

k.Mf /w1=pkp � kf w1=pkp:
In this case the weight w is usually replaced by a new weight wp; the norm inequality
then becomes k.Mf /wkp � Ckf wkp , and the MuckenhouptAp condition can be
rewritten as

sup
Q

jQj�1kw	Qkp.�/kw�1	Qkp0 < 1:

(Compare this to inequality (4.16).) In the classical Lebesgue spaces the first
approach is more common, although inequalities for fractional maximal operators
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and Riesz potentials (see Sects. 3.7.4 and 5.5) are usually stated with weights as
multipliers: see Muckenhoupt and Wheeden [272].

When pC < 1 or j�1j D 0, both approaches yield equivalent definitions.
To treat weights as measures, given p.�/ and a weight w, we define the weighted
modular

�p.�/;w.f / D
Z
�n�1

jf .x/jp.x/w.x/ dx:

The space Lp.�/.w; �/ would then consist of all measurable functions f such that
�p.�/;w.f=�/ < 1 for some � > 0. In this case the theory developed in Chap. 2
holds without significant changes. (Such a general framework is developed in [82].)
It is immediate from the definition that f 2 Lp.�/.w; �/ if and only if f w.�/1=p.�/ 2
Lp.�/.�/.

One curious feature of defining weights as measures is that when pC D 1
there exist non-trivial weights such that Lp.�/.w; �/ D Lp.�/.�/. For example, if
we let � D .0; 1/, p.x/ D 1=x and w.x/ D 21=x , then it is immediate that
these spaces are the same. Such weights are called non-effective weights; for
a complete characterization, see [130]. The problem of characterizing when one
weighted variable Lebesgue space embeds into another (with a different weight)
has also been considered: see [22, 97].

If j�1j > 0, these two approaches to defining weighted variable Lebesgue
spaces are no longer equivalent. If w is positive almost everywhere, then L1.w/ D
L1; however, if w tends to 0 at a point (e.g., if w.x/ D jxj) then there exist
unbounded functions such that f w 2 L1.

Both approaches have been adopted in the variable Lebesgue spaces, though
weights as multipliers seem to be the predominant approach. Essentially all work
has been done assuming pC < 1, so the difference is more a matter of outlook
than of substance.

Weighted norm inequalities for the maximal operator have been generalized to
the variable Lebesgue spaces using both approaches. For weights as multipliers the
main result is the following.

Definition 4.76. Given p.�/ 2 P.Rn/, and a weight w, we say that w 2 Ap.�/ if

Œw�Ap.�/ D sup
Q

jQj�1kw	Qkp.�/kw�1	Qkp0.�/ < 1:

Theorem 4.77. Given p.�/ 2 P.Rn/, suppose pC < 1 and p.�/ 2 LH.Rn/. Then
the following are equivalent:

1. w 2 Ap.�/;
2. The Hardy-Littlewood maximal operator satisfies the weak type inequality

sup
t>0

kt	fx2RnWMf.x/>tgwkp.�/ � Ckf wkp.�/I

3. If p� > 1, then the maximal operator satisfies the strong type inequality
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k.Mf /wkp.�/ � Ckf wkp.�/:

Moreover, the necessity of the Ap.�/ condition for either the strong or weak type
inequality is true without the assumption that p.�/ 2 LH.Rn/.

Theorem 4.77 was proved in [64]. The argument is based on a proof of
Theorem 4.35 due to Christ and Fefferman [48]. Central to this approach is the non-
trivial fact that if w 2 Ap.�/, then w.�/p.�/ 2 A1. (See p. 143.) Somewhat earlier and
independently, another proof was given in [57]. (See also [82].) This one depends
heavily on the machinery used to prove Theorem 4.63.

Weights as measures for the maximal operator were considered by Diening and
Hästö [85].

Definition 4.78. Given p.�/ 2 P.Rn/, define A�p.�/ to be the set of weights w such
that

sup
Q

jQj�PQkw	Qk1kw�1	Qkp0.�/=p.�/ < 1;

wherePQ is the harmonic mean of p.�/ onQ (see Proposition 4.66), and k�kp0.�/=p.�/
is defined using Definition 2.16 even if p0.�/=p.�/ is not greater than or equal to 1.

Remark 4.79. One advantage of the A�p.�/ condition is that it is straightforward to

show that if w 2 A�p.�/, then w 2 ApC
. See [85] for details.

Theorem 4.80. Given p.�/ 2 P.Rn/, suppose 1 < p� � pC < 1 and p.�/ 2
LH.Rn/. Then the Hardy-Littlewood maximal operator is bounded on Lp.�/.w;Rn/
if and only if w 2 A�p.�/.

It follows from Theorems 4.77 and 4.80, and the equivalence of weights as
measures and weights as multipliers discussed above, that if w 2 A

�

p.�/, then

w.�/1=p.�/ 2 Ap.�/; Diening and Hästö also gave a direct proof of this fact when
p.�/ 2 LH.Rn/.

There are three open questions related to these results. The first is whether they
can be generalized to include the case pC D 1, and in particular j�1j > 0. In this
case the conditions on the weights will no longer be equivalent. Muckenhoupt [271]
showed that kMf kL1.w/ �Ckf kL1.w/ if and only if w.x/> 0 almost everywhere,
but k.Mf /wk1 � Ckf wk1 if and only if w�1 2 A1. When p.�/ D 1, the
Ap.�/ condition yields this latter condition, so it seems reasonable to conjecture that
Theorem 4.77 holds when pC D 1, with the hypothesis 1=p.�/ 2 LH.Rn/. On the
other hand, it is not clear how to extend the definition ofA�p.�/ weights to include the
case pC D 1.

The second question is to what degree the hypotheses on p.�/ can be relaxed. It
is tempting to conjecture that the Ap.�/ condition is sufficient, but if w D 1, then it
becomes theK0 condition which is not sufficient: see Example 4.51. We conjecture
that on a bounded domain �, k.Mf /wkLp.�/.�/ � Ckf wkLp.�/.�/ if and only if w 2
Ap.�/. More generally, Diening and Hästö [85] have conjectured that if the maximal
operator is bounded on Lp.�/.Rn/ and w 2 Ap.�/, then this inequality holds on R

n.
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The third question is whether the Ap.�/ weights are the correct weights for other
operators on the variable Lebesgue spaces. As we will discuss in Chap. 5, the
Muckenhoupt Ap weights are also the correct weights for a variety of operators
in the classical Lebesgue setting so this conjecture is a natural one. Very little has
been done on this question (but see below). Karlovich [191] considered this problem
for the Cauchy integral on Carleson curves from the more general perspective of
weighted Banach function spaces. More recently, Karlovich and Spitkovsky [196]
proved that the Ap.�/ condition is necessary and sufficient for this operator to be
bounded on Lp.�/.R/.

A number of results are known for maximal operators and other operators in the
special case where the weights are power weights: weights of the form �.x/ D jxja,
a 2 R, or more generally,

�.x/ D
mY
kD1

jx � ck jak ;

or variable power weights of the form �.x/ D jxja.x/ or �.x/ D .1 C jxj/a.x/.
Variable power weights arise naturally when considering the Hardy operator and its
variants (see Sect. 3.7.5 above), since depending on how the operator is defined
the power of x can be treated as either part of the operator or as a multiplier.
Inequalities with power weights have also been proved for maximal operators, Riesz
potentials and singular integral operators. The first results of this kind were proved
by Samko [318], Kokilashvili and Samko [204, 205, 207, 208], and later by Samko,
Shargorodsky and Vakulov [321–323] (here weights are treated as measures) and
Mashiyev, Çekiç, Mamedov and Ogras [258]. Generalizations of power weights
were given by Kokilashvili, Samko and Samko [201, 203], Samko, Samko and
Vakulov [309, 310], and Kokilashvili and Samko [209]. Additional results were
proved by Karlovich [192–194]. Kokilashvili, Samko and Samko [202] considered
an Ap type condition more restrictive than Ap.�/ that included many kinds of power
weights.

There is also a theory of two-weight norm inequalities for variable Lebesgue
spaces: that is, conditions on pairs of weights .u; v/ such that an operator T satisfies
kuTf kp.�/ � kvf kp.�/. (There is an equivalent formulation if we treat the weights as
measures.) In the classical Lebesgue spaces this is an area of ongoing research with
various approaches and many partial results. For more information and extensive
references, see [68, 69, 140].

In the variable Lebesgue spaces, some results are known for various opera-
tors: Hardy operators, maximal operators, Riesz potentials and singular integral
operators. The conditions imposed on the weights are generalizations of the
conditions from the classical Lebesgue spaces; they are often quite restrictive
and vary from operator to operator. One interesting feature is that in some cases
log-Hölder continuity is replaced by decay conditions in which the modular
of continuity depends on the weight. For some recent results, see Kokilashvili
and Meskhi [198, 199], Edmunds, Kokilashvili and Meskhi [98, 100], Mamedov
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and Harman [247, 248], Mamedov and Zeren [249–251], Asif, Kokilashvili and
Meskhi [17], Bandaliev [20, 21], and [65]. Asif and Meskhi [18, 19] have also
considered the problem of compactness for operators in the two-weight case. An
extensive treatment of two-weight norm inequalities, with many references, can be
found in the monograph by Meskhi [262].

Weighted modular inequalities have also been considered by several authors.
Sinnamon [333] has shown that if the Hardy operator satisfies a modular strong
type inequality with exponent p.�/ (see (3.37)) with respect to the measure w dx,
then p.�/ is constant. However, Boza and Soria [35, 36] and Neugebauer [286]
have both proved one-weight modular inequalities for the Hardy operator with non-
constant exponents for non-negative, decreasing functions. Aguilar Cañestro and
Ortega Salvador [8, 9] have proved two-weight modular weak type inequalities for
the maximal operator, generalizing Theorem 3.34.

A few authors have considered applications of norm inequalities in weighted
variable Lebesgue spaces. Diening and Hästö [85] state without proof a weighted
Poincaré inequality. Edmunds and Rákosnı́k [106] and Gao, Zhao and Zhang [139]
proved weighted embedding theorems for variable Sobolev spaces (see Chap. 6
below). Edmunds, Kokilashvili and Meskhi [100] give an application to the norm
convergence of Fourier series. And Boureanu [33] used weighted variable Lebesgue
spaces to show the existence of weak solutions to an elliptic partial differential
equation.



Chapter 5
Extrapolation in the Variable Lebesgue Spaces

In this chapter we consider some of the classical operators of harmonic analysis:
convolution operators, singular integral operators, and Riesz potentials. Rather
than treat each operator separately, we develop a general theory that builds upon
the Rubio de Francia theory of extrapolation from the theory of weighted norm
inequalities. The advantage of this approach is that it quickly yields sufficient con-
ditions for these operators to be bounded on variable Lebesgue spaces; moreover, it
can be applied to many other operators as well.

To motivate our approach we will first consider a model operator: convolution
operators and approximate identities. We first prove the basic results of the theory
to highlight their dependence on the fact that the classical Lebesgue spaces are
translation invariant. We then develop those parts of the theory that remain true
in the variable Lebesgue spaces. One result which does not extend to this setting
is Young’s inequality. For the positive results our key hypothesis on p.�/ is that
the maximal operator is bounded on Lp.�/. Next we give an overview of the theory
of extrapolation, both the classical version and more recent formulations, and then
extend extrapolation to yield inequalities in the variable Lebesgue spaces. This result
further illustrates the connection between weights and the variable Lebesgue spaces
that we saw in Chap. 4. Our approach to extrapolation is influenced by recent work
in this field. Though a more abstract formulation, it has the advantage of increased
flexibility. Finally, we apply extrapolation to study two operators: singular integral
operators and Riesz potentials. These examples illustrate how extrapolation and
the theory of weighted norm inequalities can be combined to prove results in the
variable setting.

5.1 Basic Properties of Convolutions

In this section we give the basic properties of convolution operators in the classical
Lebesgue spaces. The results themselves will be necessary tools for our work, and
the proofs will highlight the problems we encounter when attempting to generalize
them to variable Lebesgue spaces.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3 5, © Springer Basel 2013
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Definition 5.1. Given two locally integrable functions f and g defined on R
n, their

convolution is the function f � g defined by

f � g.x/ D
Z
Rn

f .x � y/g.y/ dy;

wherever this integral is finite.

It is immediate from the definition that convolutions are linear: given functions
f; g; h and a 2 R, f � .g C h/ D f � g C f � h and f � .ag/ D .af / � g D
a.f � g/ whenever all the terms are finite. Further, by a change of variables, we
have that f �g D g �f . The integrability of convolutions is given by the following
proposition.

Proposition 5.2. Given measurable functions f and g, the following are true:

1. For all p, 1 � p � 1, if f 2 Lp.Rn/ and g 2 Lp0

.Rn/, then f � g 2 L1.Rn/
and

kf � gk1 � kf kpkgkp0 : (5.1)

2. For all p, 1 � p � 1, if f 2 Lp.Rn/ and g 2 L1.Rn/, then f � g 2 Lp.Rn/

and

kf � gkp � kf kpkgk1: (5.2)

3. Given p; q; r , 1 � p; q; r � 1, such that

1

r
C 1 D 1

p
C 1

q
;

if f 2 Lp.Rn/ and g 2 Lq.Rn/, then f � g 2 Lr.Rn/ and

kf � gkr � kf kpkgkq: (5.3)

Inequalities (5.2) and (5.3) are referred to as Minkowski’s inequality and Young’s
inequality.

Proof. Inequality (5.1) follows from Hölder’s inequality and the translation invari-
ance of the classical Lebesgue spaces: for all x,

jf � g.x/j � kf .x � �/kpkgkp0 D kf kpkgkp0 :

If p < 1, inequality (5.2) follows by Minkowski’s inequality, Fubini’s theorem
and translation invariance:
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�Z
Rn

jf � g.x/jp dx
�1=p

D
�Z

Rn

ˇ̌
ˇ̌Z

Rn

f .x � y/g.y/ dy

ˇ̌
ˇ̌p dx

�1=p

�
Z
Rn

�Z
Rn

jf .x � y/g.y/jp dx
�1=p

dy

D
Z
Rn

�Z
Rn

jf .x � y/jp dx
�1=p

jg.y/j dy

D kf kpkgk1:

If p D 1, inequality (5.2) reduces to inequality (5.1).
Finally, to prove inequality (5.3), fix p, 1 � p � 1. Given a function f 2

Lp.Rn/ define the linear operator Tf g D f � g. Then inequalities (5.1) and (5.2)
can be restated as kTf gk1 � kf kpkgkp0 and kTf gkp � kf kpkgk1. Therefore, by
the Riesz-Thorin interpolation theorem (see [143, 341] and Sect. 3.7.8), kTf gkr �
kf kpkgkq , which is the desired inequality. ut

While Definition 5.1 is stated for functions defined on all of Rn, we can readily
adapt it to functions defined on a set � by setting f and g equal to 0 on R

n n �.
Hereafter we will do so without comment. Note that the function f � g may be
non-zero on R

n n �, since f .x � y/ will be non-zero for points x 2 R
n n �.

However, if both functions have compact support, then so does f � g. For example,
if supp.f /; supp.g/ � BR.0/, then f .x � y/ can only be non-zero if jx � yj < R,
so supp.f � g/ � B2R.0/.

A very important application of convolution is the technique of approximate
identities, also known as mollification. Given a function �, for each t > 0 let
�t .x/ D t�n�.x=t/. This normalization is such that if � 2 L1.Rn/, then k�tk1 D
k�k1. Define the radial majorant of � to be the function

ˆ.x/ D sup
jyj�jxj

j�.y/j:

The function ˆ is radial and decreasing as jxj increases; however, even if � 2
L1.Rn/, ˆ need not be integrable. For example on the real line, let �.x/ D jx �
1j�1=2	.�2;2/; thenˆ.x/ D 1 for all x 2 .�1; 1/. We will be particularly interested
in � such thatˆ 2 L1; this is the case, for example, if � is bounded and has compact
support. It follows from the definitions that

j�t � f .x/j � .ˆt � jf j/.x/; (5.4)

so in practice we can often replace � by its radial majorant and assume that f is
non-negative.
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Definition 5.3. Given � 2 L1.Rn/ such that
R
Rn
�.x/ dx D 1, the set f�tg D

f�t W t > 0g is called an approximate identity. If the radial majorant of � is also in
L1.Rn/, f�t g is called a potential type approximate identity.

The name “approximate identity” is motivated by the following theorem.

Theorem 5.4. Given an approximate identity f�tg, then for all p, 1 � p < 1, if
f 2 Lp.Rn/, then k�t � f � f kp ! 0 as t ! 0. Further, if f�tg is a potential
type approximate identity, then for all p, 1 � p � 1, �t � f .x/ ! f .x/ pointwise
almost everywhere as t ! 0.

The proof of Theorem 5.4 requires two lemmas. To state the first we need a
definition.

Definition 5.5. Given a measurable function f and h 2 R
n, define the translation

operator �h by �hf .x/ D f .x � h/.

Lemma 5.6. Given p, 1 � p < 1, then Lp.Rn/ is mean continuous: if f 2
Lp.Rn/,

lim
jhj!0

k�hf � f kp D 0:

Proof. If g is a continuous function of compact support then this follows at once
by uniform continuity. Given any f 2 Lp.Rn/, fix � > 0. Since Cc.Rn/ is dense
in Lp.Rn/, there exists g 2 Cc.R

n/ such that kf � gkp < �. Therefore, by the
translation invariance of the classical Lebesgue spaces,

lim sup
jhj!0

k�hf � f kp � lim sup
jhj!0

�k�hg � gkp C k�hg � �hf kp C kf � gkp
�
< 2�:

Since � is arbitrary the desired limit must hold. ut
Lemma 5.7. Let f�tg be a potential type approximate identity and let ˆ be the
radial majorant of �. Then for every locally integrable function f and every x,

sup
t>0

j�t � f .x/j � C.n/kˆk1Mf .x/:

Proof. By (5.4) and the discussion in Sect. 3.1, it will suffice to prove that given any
non-negative f 2 L1loc.R

n/, for all t > 0,

ˆt � f .x/ � kˆk1Mf .x/;

where here we take the maximal operator to be the supremum of averages over balls.
For each j; k � 1 let Bk

j D Bj2�k .0/. Since ˆ is radial, we abuse notation and let
ˆ.jxj/ D ˆ.x/. Define the function ˆk by

ˆk.x/ D
1X
jD1

�
ˆ.j2�k/�ˆ..j C 1/2�k/

�
	Bkj

.x/ D
1X
jD1

akj 	Bkj
.x/:
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Since ˆ is decreasing, akj � 0. Let Akj D Bk
j n Bk

j�1; then for x 2 Akj ,

ˆk.x/ D
1X
iDj

�
ˆ.i2�k/ �ˆ..i C 1/2�k/

� D ˆ.j2�k/ � ˆ.x/:

Since ˆ 2 L1 and is non-negative, it decreases to 0 as jxj ! 1. Therefore, the
middle sum converges. Further, fˆkg increases to ˆ pointwise almost everywhere.
Hence, by the monotone convergence theorem on L1.Rn/, if f is non-negative, for
each t > 0, .ˆk/t � f increases to ˆt � f pointwise as k ! 1. Therefore, it will
suffice to prove that for all k � 1 and t > 0,

.ˆk/t � f .x/ � kˆk1Mf .x/:

We first consider the case t D 1. Since for all x,

jBk
j j�1	Bkj � f .x/ D �

Z
Bkj

f .x � y/ dy D �
Z
B
j2�k

.x/

f .y/ dy � Mf.x/;

we have that

ˆk � f .x/ D
X
j

akj jBk
j j � jBk

j j�1	Bkj � f .x/ � kˆkk1Mf .x/ � kˆk1Mf .x/:

We can now repeat this argument with ˆk replaced by .ˆk/t ; since k.ˆk/tk1 D
kˆkk1, we get the desired inequality for all t > 0. ut
Proof of Theorem 5.4. Fix p < 1 and f 2 Lp.Rn/. Since

R
�.x/ dx D 1,

�t�f .x/�f .x/ D
Z
Rn

�
f .x�y/�f .x/��t.y/ dy D

Z
Rn

�
�tyf .x/�f .x/

�
�.y/ dy:

Therefore, by Minkowski’s inequality,

k�t � f � f kp �
Z
Rn

k�tyf � f kpj�.y/j dy:

Fix � > 0; then by Lemma 5.6 there exists ı > 0 such that if jtyj < ı, k�tyf �
f kp < �. Since � is integrable, there exists t > 0 such that

Z
fyWjyj�ı=tg

j�.y/j dy < �:

Thus, again by the translation invariance of Lp.Rn/,
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k�t �f �f kp � �

Z
fjyj<ı=tg

j�.y/j dyC2kf kp
Z

fjyj�ı=tg
j�.y/j dy D �k�k1 C2kf kp

�
�:

Since � is arbitrary, we have that �t � f ! f in norm.
To prove pointwise convergence, We first consider the case p < 1. If g is a

continuous function of compact support, then �t � g.x/ converges uniformly to
g.x/. To prove this, note that since g is uniformly continuous, k�hg � gk1 ! 0 as
h ! 0, so we can repeat the above proof for norm convergence using the L1 norm.

Since Cc.Rn/ is dense in Lp.Rn/, fix a sequence fgkg � Cc.R
n/ that converges

to f in norm. Then by Lemma 5.7 and Theorem 3.4, for all s > 0,

jfx 2 R
n W lim sup

t!0

j�t � f .x/ � f .x/j > sgj

� lim sup
k!1

�
jfx 2 R

n W lim sup
t!0

j�t � f .x/ � �t � gk.x/j > s=3gj

C jfx 2 R
n W lim sup

t!0

jf .x/ � gk.x/j > s=3gj

C jfx 2 R
n W lim sup

t!0

j�t � gk.x/ � gk.x/j > s=3gj
�

� lim sup
k!1

�
jfx 2 R

n W C.n/kˆk1M.f � gk/.x/ > s=3gj

C jfx 2 R
n W M.f � gk/.x/ > s=3gj

�

� lim sup
k!1

j.C.n/kˆk1 C 1/C s�p
Z
Rn

jf .x/ � gk.x/jp dx

D 0:

Since this is true for all s > 0, we have that

jfx 2 R
n W lim sup

t!0

j�t � f .x/ � f .x/j > 0gj

�
1X
jD1

jfx 2 R
n W lim sup

t!0

j�t � f .x/ � f .x/j > 1=j gj D 0:

Therefore, �t � f .x/ ! f .x/ almost everywhere.
Now suppose p D 1; we will show that given any ball B , �t � f .x/ ! f .x/

for almost every x 2 B . Write f D f1 Cf2, where f1 D f	2B and f2 D f	Rnn2B .
Then �t � f .x/ D �t � f1.x/ C �t � f2.x/, and since f1 2 L1.Rn/, the first term
converges pointwise to f .x/ for almost every x 2 B . Furthermore, if the radius of
B is r , then for x 2 B ,
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lim sup
t!0

j�t � f2.x/j � lim sup
t!0

Z
jyj>r

jf .x � y/jj�t.y/j dy

� lim sup
t!0

kf k1
Z

fjyj>r=tg
j�.y/j dy D 0:

This completes the proof. ut

5.2 Approximate Identities on Variable Lebesgue Spaces

The proofs in the previous section depend heavily on the translation invariance of
the classical Lebesgue spaces. As we will see in Theorem 5.17 below, this property
never holds in the variable Lebesgue spaces unless p.�/ is constant. Therefore,
it would not be completely unexpected if none of the properties of convolutions
remain true in this setting. And some do fail, in particular, Young’s inequality, which
we will consider in more detail in the next section.

Nevertheless, many key properties of approximate identities are preserved if
we assume that the exponent function p.�/ has some regularity. Our main tool is
Lemma 5.7, which shows that there is a close connection between potential type
approximate identities and the maximal operator.

In the classical case, the norm convergence of an approximate identity is
relatively straightforward to prove, but pointwise convergence requires a more
sophisticated argument using the maximal operator. For variable Lebesgue spaces
it is the opposite: pointwise convergence is an immediate consequence of the
classical result for any p.�/, but norm convergence requires additional hypotheses
and the boundedness of the maximal operator. We therefore first consider pointwise
convergence.

Theorem 5.8. Given� and p.�/ 2 P.�/, let f 2 Lp.�/.�/. If f�tg is any potential
type approximate identity, then for all t > 0, �t �f is finite almost everywhere, and
�t � f ! f pointwise almost everywhere.

Proof. By Theorem 2.51, write f D f1 C f2, where f1 2 LpC.�/ and f2 2
Lp�.�/. Since �t � f D �t � f1 C �t � f2, and �t 2 L1.Rn/, by Young’s
inequality (5.3) each term is finite almost everywhere, and the desired limit follows
at once from Theorem 5.4. ut

When � has finite measure, as a corollary to Theorem 5.8 we get that potential
type approximate identities also converge in measure. If we assume that pC < 1,
then this is true for any open set �.

Theorem 5.9. Given � and p.�/ 2 P.�/ such that pC < 1, let f 2 Lp.�/.�/. If
f�tg is any potential type approximate identity, then �t � f ! f in measure on �.
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Proof. Fix f 2 Lp.�/.�/. Since pC < 1, by Theorem 2.72 there exists a sequence
fgkg � Lp.�/.�/ of bounded functions of compact support such that gk ! f in
norm. Fix �, 0 < � < 1; then for any k,

jfx 2 � W j�t � f .x/ � f .x/j � �gj � jfx 2 � W j�t � .f � gk/.x/j � �=3gj
C jfx 2 � W j�t � gk.x/ � gk.x/j � �=3gj
C jfx 2 � W jgk.x/ � f .x/j � �=3gj:

By Theorem 2.69, gk ! f in measure. Therefore, for all k sufficiently large, the
last term is less than �=3. Again using the fact that pC < 1, by Lemma 5.7 and
Theorem 3.34 we have that

jfx 2 � W j�t � .f � gk/.x/j � �=3gj

� jfx 2 � W M.f � gk/.x/ � �=C gj � C��pC

Z
�

jf .x/ � gk.x/jp.x/ dx:

Again by Theorem 2.69, gk ! f in modular, so we may choose k sufficiently large
that the right-hand side is also less than �=3. Finally, given k, gk 2 L1.�/, and so
�t�gk ! gk inL1 norm and so in measure as t ! 0. Therefore, for all t sufficiently
close to 0,

jfx 2 � W j�t � gk.x/ � gk.x/j � �=3gj < �=3:
If we combine the three inequalities, we get that

jfx 2 � W j�t � f .x/ � f .x/j � �gj < �I

since � > 0 is arbitrary, �t � f ! f in measure on�. ut
If � has infinite measure, then the next example shows that we need the

additional hypothesis that pC < 1.

Example 5.10. Define p.�/ 2 P.R/ by p.x/ D 1C jxj, and define the function f
by

f .x/ D
(
1 x 2 Œ2n; 2nC 1�

0 x 2 .2n � 1; 2n/ n � 1:

By Proposition 2.43, L1.R/ � Lp.�/.R/, so f 2 Lp.�/.R/. Let �.x/ D
	.�1=2;1=2/.x/. Then for all t , 0 < t < 1,

�t � f .x/ D t�1
Z xCt=2

x�t=2
f .y/ dy;

and so if x 2 .2n C t=2; 2n C 1 � t=2/, �t � f .x/ D 1; if x 2 .2n � 1 C t=2;

2n� t=2/, �t � f .x/ D 0; and between these intervals the value of �t � f is gotten
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by linearly interpolating between 0 and 1. Thus, �t � f converges to f pointwise
almost everywhere. On the other hand, for any � > 0,

jfx 2 R W j�t � f .x/ � f .x/j � �gj D 1;

and so �t � f does not converge to f in measure.

We now consider the convergence in norm of approximate identities. To achieve
this we need a stronger assumption on p.�/.
Theorem 5.11. Given an open set � and p.�/ 2 P.�/, suppose pC < 1 and the
maximal operator is bounded on Lp

0.�/.�/. If f�t g is a potential type approximate
identity, then

sup
t>0

k�t � f kp.�/ � Ckf kp.�/; (5.5)

and �t � f ! f in norm on Lp.�/.�/. The constant C in (5.5) depends on n, p.�/,
kM kLp0.�/.�/ and kˆk1.
Remark 5.12. The hypothesis pC<1 is redundant: by Theorem 3.19, if the maxi-
mal operator is bounded on Lp

0.�/.�/, then p0.�/�>1, and so pC D .p0.�/�/0 <1.
We include this fact in the statement for clarity.

Remark 5.13. If � is unbounded, by Theorem 3.16 it will suffice to assume that
p.�/ 2 LH.�/; however, if � is bounded then by Corollary 3.18 it suffices to
assume that p.�/ 2 LH0.�/. This fact is often useful in applications.

Proof. Fix f 2 Lp.�/.�/ and t > 0. Letˆ be the radial majorant of �. Then by (5.4)
and Theorem 2.34 there exists h 2 Lp0.�/.�/, khkp0.�/ D 1, such that

k�t � f kp.�/ � kˆt � jf jkp.�/ � 2k�1
p.�/
Z
�

ˆt � jf j.x/h.x/ dx:

Since ˆt is a radial function, by Fubini’s theorem, Theorem 2.26, Lemma 5.7 and
our assumption on p0.�/,
Z
�

.ˆt � jf j/.x/h.x/ dx D
Z
�

jf .x/jˆt � h.x/ dx

� C.n/kˆk1
Z
�

jf .x/jMh.x/ dx � C.n/kˆk1Kp.�/kf kp.�/kMhkp0.�/

� CkM kLp0.�/.�/kf kp.�/khkp0.�/ D Ckf kp.�/:

Since the constants do not depend on t , inequality (5.5) follows at once.
To prove that �t � f converges to f in norm on Lp.�/.�/, we use an approx-

imation argument similar to that in the proof of Theorem 5.9. Fix � >0. By
Theorem 2.72 there exists a function g, bounded with compact support and not
identically zero, such that kf � gkp.�/ < �. Then by (5.5),
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k�t � f � f kp.�/ � k�t � .f � g/kp.�/ C k�t � g � gkp.�/ C kf � gkp.�/
� C� C k�t � g � gkp.�/:

Since � > 0 is arbitrary, to complete the proof it will suffice to show that

lim
t!0

k�t � g � gkp.�/ D 0I

since pC < 1, by Theorem 2.58 it will suffice to show that

lim
t!0

Z
�

j�t � g.x/ � g.x/jp.x/ dx D 0:

Let g0.x/ D g.x/=.2k�k1kgk1/; since k�k1 � 1, kg0k1 � 1=2. Furthermore,

j�t � g0.x/j �
Z
�

j�t .x � y/jjg0.y/j dy � kg0k1
Z
�

j�t .x � y/j dy � 1=2:

Therefore, k�t � g0 � g0k1 � 1, and so

lim
t!0

Z
�

j�t � g.x/ � g.x/jp.x/ dx

D lim
t!0

Z
�

.2k�k1kgk1/p.x/j�t � g0.x/ � g0.x/jp.x/ dx

� .2k�k1kgk1 C 1/pC lim
t!0

Z
�

j�t � g0.x/ � g0.x/jp� dx:

Since g0 2 Lp�.�/ and 1 � p� < 1, by Theorem 5.4 the last term equals 0. This
completes the proof. ut
Remark 5.14. If we assume that p� > 1 and the maximal operator is bounded on
Lp.�/.�/, then inequality (5.5) follows immediately from Lemma 5.7.

Our proof of norm convergence required the assumption that pC < 1, and in
fact this hypothesis is necessary. If �1 is open and has positive measure, then this
is straightforward to prove. Let f 2 Lp.�/.�/ be discontinuous on �1, and let
� 2 C1

c .R
n/. By Lemma 6.15 below, �t � f is continuous. If �t � f ! f in Lp.�/

norm, then k�t � f � f kL1.�1/ converges to 0: i.e., �t � f converges uniformly
to f on �1, and so f is continuous, a contradiction.

Moreover, if j�1j D 0 and pC.� n �1/ D 1, then we can weaken the
hypothesis that the maximal operator is bounded and still show that pC < 1 is
necessary.

Example 5.15. Given � and p.�/ 2 P.�/, suppose p.�/ 2 K0.�/ and pC.� n
�1/ D 1. Then there exists f 2 Lp.�/.�/ and a potential type approximate
identity f�t g such that �t � f does not converge to f in norm.
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Proof. We first construct the function f . Since pC.� n�1/ D 1, there exists an
increasing sequence of natural numbers pk � k such that the sets

Fk D fx 2 � n�1 W pk < p.x/ < pkC1g

have positive measure. For each k let xk 2 Fk be a Lebesgue point of the function
	Fk . Since the sets Fk are disjoint, the xk are distinct. We will show (possibly
after passing to an infinite subsequence) that there exists a sequence of positive
numbers frkg such that the balls Bk D Brk .xk/ are pairwise disjoint. By passing
to a subsequence of fxkg we may assume that no point in the sequence is a limit
point of the sequence. If the original sequence has no limit points, keep the entire
sequence. Otherwise, fix a limit point and pass to a subsequence that converges to
it. If the limit point is an element of the subsequence, create a new subsequence by
eliminating this one point.

We now construct the sequence frkg by induction. Since we have that for every
k, xk is not a limit point of the sequence, there exists a sequence fskg, sk > 0, such
that for j ¤ k, xj 62 Bsk .xk/. Let r1 D s1. Since x2 62 Bs1.x1/, there exists r2,
0 < r2 � s2, such that Br1.x1/ and Br2.x2/ are disjoint and the points xi , i � 3, are
not contained in Br2.x2/. Now for k � 2, suppose we have positive radii r1; : : : ; rk
such that rk � sk and the balls Bri .xi / are pairwise disjoint. Then xkC1 62 Bri .xi /,
1 � i � k, so there exists rkC1, 0 < rkC1 � skC1 such that BrkC1

.xkC1/ is disjoint
from the balls Bri .xi /, 1 � i � k. Continuing this construction, by induction we
get the desired sequence.

Possibly after making each rk smaller, we may assume that the sequence rk ! 0

as k ! 1, and that the balls B�
k D B..2c0/1=nC1/rk .xk/ are disjoint, where c0 is such

that for every ball B the averaging operator satisfies kABhkLp.�/.B/ � c0khkLp.�/.B/.
(Since p.�/ 2 K0.�/, c0 � 1 exists by Proposition 4.47 and Remark 4.49.) If we
pass to a subsequence and relabel the sets Fk so that xk 2 Fk , then by the Lebesgue
differentiation theorem (see Sect. 2.9) we may also assume that

jFk \ Bk j
jBkj � 1

2
:

We can now give the function f . Let Gk D Fk \ Bk . Define the function

f .x/ D
1X
kD1

�jGkj�1	Gk .x/�1=p.x/:

By the definition of Fk , p�.Gk/ > k, and so we have that

�p.�/.f =2/ D
1X
kD1

�
Z
Gk

2�p.x/ dx �
1X
kD1

2�k D 1:

Thus f 2 Lp.�/.�/.
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The desired potential type approximate identity f�tg is given by �.x/ D
jB1.0/j�1	B1.0/.x/. Let tk D .2c0/

1=nrk ; then since the balls B�
k are disjoint, for

any x 2 Bk and y 2 Btk .x/, f .y/ D 0 unless y 2 Bk . Hence,

�tk � f .x/ D
Z
Btk .x/

f .y/ dy D 1

tnk jB1.0/j
Z
Bk

f .y/ dy D .2c0/
�1ABkf .x/:

Therefore,

k�tk � f kLp.�/.Bk/ � .2c0/
�1kABkf kLp.�/.Bk/ � 2�1kf kLp.�/.Bk/:

On the other hand,

Z
Bk

f .y/p.y/ dy D
Z
Gk

jGkj�1 dy D 1;

and so, since Gk � � n�1, by Proposition 2.21,

kf kLp.�/.Bk/ D kf kLp.�/.Gk/ D 1:

But then for every k we have that

kf � �tk � f kLp.�/.�/ � kf � �tk � f kLp.�/.Bk/
� kf kLp.�/.Bk/ � k�tk � f kLp.�/.Bk/ � 1=2:

Since the sequence tk ! 0 as k ! 1, it follows that �t � f does not converge to
f in norm as t ! 0. ut
Remark 5.16. The construction in Example 5.15 should be compared to the con-
struction in the proof of Proposition 2.12 and the related constructions in Chap. 2.

5.3 The Failure of Young’s Inequality

Before considering how to generalize the results in the previous section to other
operators, we first discuss the failure of Young’s inequality to hold on the variable
Lebesgue spaces. As we noted above, the proof of Proposition 5.2 depends funda-
mentally on the fact that the classical Lebesgue spaces are translation invariant: for
any p, if f 2 Lp.Rn/ then for any h 2 R

n, �hf 2 Lp.Rn/ and kf kp D k�hf kp .
This property is never true on the variable Lebesgue spaces unless the exponent is
constant.
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Theorem 5.17. Given p.�/ 2 P.Rn/, each of the translation operators �h, h 2 R
n,

is a bounded operator on Lp.�/.Rn/ if and only if p.�/ is constant. Moreover, if p.�/
is non-constant, there exists f 2 Lp.�/.Rn/ and h 2 R

n such that �hf 62 Lp.�/.Rn/.
Proof. If p.�/ is constant, then this is immediate. To prove the converse, suppose
that p.�/ 2 P.Rn/ is such that for all h 2 R

n, k�hf kp.�/ � Chkf kp.�/. Fix h and a
ball B . If f 2 Lp.�/.B/ and f D 0 on R

n n B , then �hf 2 Lp.�/.B C h/, where
B C h D fx C h W x 2 Bg, and kf kL��hp.�/.B/ D k�hf kLp.�/.BCh/. Hence, by our
assumption on �h,

kf kL��hp.�/.B/ � k�hf kLp.�/.Rn/ � Chkf kLp.�/.Rn/ D Chkf kLp.�/.B/:

Therefore, by Theorem 2.45, ��hp.x/ � p.x/ for almost every x 2 B . If we replace
h by �h and repeat the argument, we get the reverse inequality. Thus, �hp.x/ D
p.x/ almost everywhere in B . Since B and h are arbitrary, this implies that p.�/ is
constant.

Given a non-constant p.�/, to construct the desired function f , fix h2R
n

such that �h is not a bounded operator. Then there exists a sequence of functions
fk 2Lp.�/.Rn/ such that kfkkp.�/ � 1 but k�hfkkp.�/ � 4k. If for some k, �hfk 62
Lp.�/.Rn/, we are done. Otherwise, let

f D
1X
kD1

2�kjfkj:

Then

kf kp.�/ �
1X
kD1

2�kkfkkp.�/ � 1;

but for every k, f � 2�kjfkj, and so

k�hf kp.�/ � 2�kk�hfkkp.�/ � 2k:

Hence, k�hf kp.�/ D 1 and �hf 62 Lp.�/.Rn/. ut
As a corollary to Theorem 5.17 we get that Lemma 5.6 does not hold in the

variable Lebesgue spaces unless p.�/ is constant.

Corollary 5.18. Given p.�/ 2 P.Rn/, p.�/ not constant, thenLp.�/.Rn/ is not mean
continuous: there exists f 2 Lp.�/.Rn/ such that

lim
jhj!0

k�hf � f kp.�/ ¤ 0: (5.6)

Proof. Since for any h 2 R
n, �h=2ı�h=2f D �hf , �h is bounded if �2�kh is bounded.

Hence, by Theorem 5.17 we can find h 2 R
n such that if hk D 2�kh, then �hk is

unbounded. Therefore, we can find functions fk 2Lp.�/.Rn/, kfkkp.�/ � 1, such that
�hkfk 62 Lp.�/.Rn/. Let
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f D
1X
kD1

2�kjfkjI

then f 2 Lp.�/.Rn/, but for any k, f � 2�kjfkj and so �hkf 62 Lp.�/.Rn/. Hence,
�hkf � f 62 Lp.�/.Rn/ and (5.6) does not hold. ut

We can now show that Young’s inequality is never true for non-constant
exponents.

Theorem 5.19. Given p.�/ 2 P.Rn/, the inequality

kf � gkp.�/ � Ckf kp.�/kgk1 (5.7)

is true for every f 2 Lp.�/.Rn/ and g 2 L1.Rn/ if and only if p.�/ is constant.

Proof. If p.�/ is constant, then (5.7) becomes (5.2) in Proposition 5.2.
Now suppose that p.�/ is not constant, but assume to the contrary that (5.7) holds

for all f and g. By Theorem 5.17 there exists h 2 R
n and f 2Lp.�/.Rn/ such

that �hf 62Lp.�/.�/. If we replace f by jf j=kf kp.�/ we may assume f is non-
negative and kf kp.�/ D 1. For each N > 0, let gN .x/ D min.f .x/;N /	BN .0/.
Then kgN kp.�/ � kf kp.�/ � 1. Further, since gN is a bounded function of compact
support, �hgN 2 Lp.�/.Rn/. Since �hgN ! �hf pointwise, by Fatou’s lemma for
the variable Lebesgue spaces (Theorem 2.61),

1 D k�hf kp.�/ � lim inf
N!1 k�hgN kp.�/:

Therefore, for every k � 1 we can find Nk such that fk D gNk 2Lp.�/.�/ and
kfkkp.�/ � 1 but k�hfkkp.�/ � 2k.

Let � be a bounded, non-negative function of compact support such that k�k1 D
1. For every t > 0, let  t;h.x/ D t�n�..x � h/=t/. Then by a change of variables,

 t;h � fk.x/ D t�n
Z
Rn

�

�
x � y � h

t

�
fk.y/ dy

D t�n
Z
Rn

�

x � y

t

�
fk.y � h/ dy D �t � .�hfk/.x/:

Since �hfk 2Lp.�/.Rn/, by Theorem 5.8, �t � .�hfk/! �hfk pointwise almost
everywhere. Therefore, by Fatou’s lemma in variable Lebesgue spaces (Theo-
rem 2.61) and (5.7),

2k � k�hfkkp.�/ � lim inf
t!0

k�t � .�hfk/kp.�/
D lim inf

t!0
k t;h � fkkp.�/ � Ckfkkp.�/k�k1 � C:
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Since this cannot be true for every k, we get a contradiction. Hence, inequality (5.7)
holds if and only if p.�/ is constant. ut

We can prove a very weak version of Young’s inequality as an immediate
consequence of Lemma 5.7.

Proposition 5.20. Let p.�/ 2 P.Rn/ be such that the maximal operator is bounded
on Lp.�/.Rn/. Then for every f 2Lp.�/.Rn/ and every non-negative, radially
decreasing function g 2 L1.Rn/,

kf � gkp.�/ � Ckf kp.�/kgk1:

However, even given the restrictive hypotheses of Proposition 5.20, Young’s
inequality does not hold for general exponents. In particular, inequality (5.1) may
fail as the next example shows.

Example 5.21. Let p.�/ 2 P.R/ be a smooth function such that p.x/ D 2 if x 2
R
n n Œ�2; 2�, and p.x/ D 4 on Œ�1; 1�. Define

f .x/ D jx � 3j�1=3	Œ2;4�; g.x/ D jxj�2=3	Œ�1;1�:

Since f 2 2 L1.R/, by Proposition 2.12, f 2 Lp.�/.R/. Similarly, since p0.x/ D
4=3 on Œ�1; 1� and g4=3 2 L1.R/, g 2 Lp0.�/.R/. However, we do not have that

kf � gk1 � Ckf kp.�/kgkp0.�/;

since f � g is unbounded in a neighborhood of 3. To show this, let Ex D Œ2; 4� \
Œx � 1; x C 1�. Then by Fatou’s lemma on the classical Lebesgue spaces,

lim inf
x!3

f � g.x/ D lim inf
x!3

Z
Rn

jx � yj�2=3jy � 3j�1=3	Ex .y/ dy

�
Z
Rn

lim
x!3

�jx � yj�2=3jy � 3j�1=3	Ex .y/
�
dy D

Z 4

2

jy � 3j�1 dy D 1:

5.4 Rubio de Francia Extrapolation

In this section we state and prove the main result of this chapter, an extension of the
Rubio de Francia extrapolation theorem to variable Lebesgue spaces. To provide
motivation and context for this result, we will first revisit the proof of Theorem 5.11
to show the connection with weighted norm inequalities, and we will then describe
the classical extrapolation theorem and recent generalizations of it.

Given a potential-type approximate identity f�tg, the heart of the proof of
Theorem 5.11 was a duality argument which led to the following inequality (again,
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ˆ is the radial majorant of � and ˆt.x/ D t�nˆ.x=t/):
Z
�

.ˆt � jf j/.x/h.x/ dx � Ckˆk1
Z
�

jf .x/jMh.x/ dx: (5.8)

Suppose for the moment that h2A1 (see p. 142). Then we would have that
Mh.x/ � Œh�A1h.x/, and so we could rewrite (5.8) as

Z
�

.ˆt � jf j/.x/h.x/ dx � Ckˆk1Œh�A1
Z
�

jf .x/jh.x/ dx: (5.9)

We could then continue the proof, applying the generalized Hölder’s inequality to
get the desired conclusion. In other words: treating h as a weight, if we had the
weighted norm inequality (5.9), then we could prove that the convolution operators
ˆt �f are uniformly bounded on Lp.�/.�/. Furthermore, the same argument would
work for any operator T for which we had the same weighted norm inequality.

The problem with this heuristic argument is that in general h is not an A1 weight.
The key to overcoming this difficulty is to use the Rubio de Francia iteration
algorithm, introduced in Sect. 4.3 in the proof of Theorem 4.37. This iteration
algorithm is also the connection with the Rubio de Francia extrapolation theorem,
whose proof is the motivation for our interpretation of the proof of Theorem 5.11.
The extrapolation theorem is one of the most profound results in the theory of
weighted norm inequalities, remarkable for its power and simplicity.

Theorem 5.22. Given an operator T , suppose that for some p0, 1 � p0 < 1, and
every w 2 Ap0 , there exists a constant Cp0 depending on T , p0, n and Œw�Ap0 (but
not on w itself) such that for all f 2 Lp0.w/,

Z
Rn

jTf .x/jp0w.x/ dx � Cp0

Z
Rn

jf .x/jp0w.x/ dx: (5.10)

Then for every p, 1 < p < 1, and every w 2Ap , there exists a constant Cp
depending on p0, n, p and Œw�Ap , such that for all f 2 Lp.w/,

Z
Rn

jTf .x/jpw.x/ dx � Cp

Z
Rn

jf .x/jpw.x/ dx:

The proof of Theorem 5.22 is a more sophisticated version of the heuristic
argument sketched above. Duality is used to pass from Lp.w/ to Lp0.w/, and the
iteration algorithm and the properties of Ap weights are used to modify w to get
a weight in Ap0 so that the hypothesis can be applied. The desired conclusion is
then gotten by Hölder’s inequality and the boundedness of the maximal operator.
(See [69] for the details of this proof.)

To understand the power of the Rubio de Francia extrapolation theorem, consider
the simplest case: p0 D 2. Since for all p > 1, 1 2 Ap , Theorem 5.22 asserts that
to prove an operator is bounded on any Lp space it is enough to prove that it is
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bounded on L2.w/ for all w 2 A2. Our goal is to show that if an operator is bounded
on L2.w/ for all w 2 A2, then it is bounded on Lp.�/ given very natural hypotheses
on p.�/.

Before we state an extrapolation theorem for variable Lebesgue spaces, we first
need to give an abstract generalization of Theorem 5.22. It is an interesting and
somewhat surprising feature of the proof of this result that the properties of the
operator T play no role. In fact, we can replace the hypothesis (5.10) with a more
general inequality,

Z
Rn

F .x/p0w.x/ dx � C0

Z
Rn

G.x/p0w.x/ dx; (5.11)

where .F;G/ are pairs of non-negative, measurable functions, and then conclude
that the weighted Lp inequality holds for these pairs .F;G/ as well. This may seem
a superfluous generalization, but it allows the theory of extrapolation to be extended
to prove a much wider class of results; we will make the utility of this approach
clear below (see Corollaries 5.33 and 5.34).

However, in order to pass from operators to pairs of functions, we need to be more
careful. In the proof we must assume that the left-hand side of (5.11) is finite. When
dealing with an operator T (i.e., with pairs .F;G/ D .jTf j; jf j)) we normally get
this by assuming that the right-hand side is finite. However, when working with
arbitrary pairs it is simpler to assume exactly what we need.

Therefore, hereafter we will let F denote a family of pairs of non-negative,
measurable functions; given p; q, 1 � p; q < 1, if for some w 2 Aq we write

Z
�

F.x/pw.x/ dx � C0

Z
�

G.x/pw.x/ dx; .F;G/ 2 F ;

then we mean that this inequality holds for all pairs .F;G/ 2 F such that the left-
hand side is finite, and that the constant may depend on n, p, � and Œw�Aq but not
on w. Using this convention we can now state the more general form of the Rubio
de Francia extrapolation theorem.

Theorem 5.23. Suppose that for some p0, 1 � p0 < 1, the family F is such that
for all w 2 Ap0 ,

Z
�

F.x/p0w.x/ dx � Cp0

Z
�

G.x/p0w.x/ dx; .F;G/ 2 F :

Then for every p, 1 < p < 1, and every w 2 Ap ,

Z
�

F.x/pw.x/ dx � Cp

Z
�

G.x/pw.x/ dx; .F;G/ 2 F :

To state our version of Rubio de Francia extrapolation for variable Lebesgue
spaces, we extend this convention as follows: if we write
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kF kLp.�/.�/ � Cp.�/kGkLp.�/.�/; .F;G/ 2 F ;

then we mean that this inequality holds for all pairs such that the left-hand side is
finite and the constant may depend on n, p.�/ and �.

Theorem 5.24. Given �, suppose that for some p0 � 1 the family F is such that
for all w 2 A1,

Z
�

F.x/p0w.x/ dx � C0

Z
�

G.x/p0w.x/ dx; .F;G/ 2 F : (5.12)

Given p.�/ 2 P.�/, if p0 � p� � pC < 1 and the maximal operator is bounded
on L.p.�/=p0/0.�/, then

kF kp.�/ � Cp.�/kGkp.�/; .F;G/ 2 F : (5.13)

Remark 5.25. In applications the family F must be constructed by choosing an
appropriate dense subset of Lp.�/.�/ such that the left and right-hand sides of
both (5.12) and (5.13) are finite. The full result is then gotten via an approximation
argument. We will consider this step in greater detail for specific operators in
Sect. 5.5 below.

Remark 5.26. As was the case for Theorem 5.11, the hypothesis pC < 1 is
redundant: if pC D 1, then ..p.�/=p0/0/� D 1 and the maximal operator cannot
be bounded on L.p.�/=p0/0.�/. We again include it for clarity.

Remark 5.27. For p.�/ D p constant in Theorem 5.24, we can only get inequalities
for p � p0. This is different from the conclusion of Theorem 5.23 which yields
inequalities for all p > 1. The reason for this is that we are making a different
assumption on the weighted norm inequality: w 2 A1 versus w 2 Ap0 . In the theory
of extrapolation this is sometimes summarized by saying that one can only “go up”
when extrapolating from A1 weights.

Theorem 5.24 has two main hypotheses: the weighted norm inequality (5.12) and
the boundedness of the maximal operator on L.p.�/=p0/0.�/. We will discuss the first
condition in Sect. 5.5 since this will depend on the specific operator. The second
condition is a natural one in light of Theorem 5.11 (when p0 D 1 we are assuming
that M is bounded on Lp

0.�/.�/) and the close connection between Muckenhoupt
Ap weights and the maximal operator. Our results in Chaps. 3 and 4 provide a variety
of conditions on the exponent p.�/ for this to hold. In particular, by Theorem 3.16
it suffices to assume that p.�/ 2 LH.�/, for in this case we have that .p.�/=p0/0 2
LH.�/. If � is bounded, then by Corollary 3.18 we may assume p.�/ 2 LH0.�/.

In applications we are often given an exponent p.�/ and need to find p0 such
that (5.12) holds. Even if we do not assume log-Hölder continuity (which lets
us take any p0 such that 1<p0 <p�), we always have a possible choice for
p0. If we assume that the maximal operator is bounded on Lp.�/.�/, then by
Theorem 4.37, there exists p0 > 1 such that M is bounded on Lp.�/=p0.�/, and
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so by Corollary 4.64, M is bounded on L.p.�/=p0/0.�/. (We will apply this idea in
Corollary 5.32 below.) Given this, it might seem more natural to simply assume in
Theorem 5.24 that the maximal operator is bounded onLp.�/.�/. However, we want
to include the case p0 D p� D 1 and in this case the maximal operator cannot be
bounded on Lp.�/.�/ but may be bounded on Lp

0.�/.�/.
There is another version of the extrapolation theorem which will be useful in

applications. Certain operators (in particular, the Riesz potentials) are not bounded
on the Lebesgue space Lp.Rn/, but instead map Lp.Rn/ into Lq.Rn/ for some q.
By using the corresponding weighted inequalities, we can use extrapolation to
extend these results to variable Lebesgue spaces. In stating this theorem, we adopt
for “off-diagonal inequalities” the same conventions for the family F as before.

Theorem 5.28. Given �, suppose that for some p0; q0, 1 � p0 � q0, the family F
is such that for all w 2 A1,
�Z

�

F.x/q0w.x/ dx

�1=q0
� C0

�Z
�

G.x/p0w.x/p0=q0 dx

�1=p0
; .F;G/ 2 F :

(5.14)
Given p.�/ 2 P.�/ such that p0 � p� � pC <

p0q0
q0�p0 , define q.�/ by

1

p.x/
� 1

q.x/
D 1

p0
� 1

q0
: (5.15)

If the maximal operator is bounded on L.q.�/=q0/0.�/, then

kF kq.�/ � Cp.�/kGkp.�/; .F;G/ 2 F : (5.16)

Remark 5.29. It follows immediately from the hypotheses of Theorem 5.28 that
q.�/ 2 P.�/, qC < 1 and q� � q0.

Remark 5.30. Off-diagonal weighted norm inequalities are customarily written
with the weights as multipliers instead of measures (see Sect. 4.6.5): in other words,
we would let W D w1=q0 and write inequality (5.14) as

�Z
�

�
F.x/W.x/

�q0
dx

�1=q0
�
�Z

�

�
G.x/W.x/

�p0
dx

�1=p0
:

We have adopted this non-standard form because the proof of Theorem 5.28
is somewhat easier with our hypothesis. In applications this has no effect: see
Remark 5.50 below.

Proof of Theorems 5.24 and 5.28. When q0 D p0 we have that Theorem 5.24 is a
special case of Theorem 5.28, so we only have to prove the latter result.

Fix p.�/; q.�/ 2 P.�/ as in the hypotheses, and let Np.x/ D p.x/=p0 and Nq.x/ D
q.x/=q0. By assumption the maximal operator is bounded on L Nq0.�/.�/. Define an
iteration algorithm R on L Nq0.�/.�/ by
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Rh.x/ D
1X
kD0

Mkh.x/

2kkM kk
LNq0.�/.�/

;

where for k � 1,Mk D M ıM ı� � �ıM denotes k iterations of the maximal operator
and M0h D jhj. Then arguing exactly as we did in the proof of Theorem 4.37, we
have that:

.a/ For all x 2 �, jh.x/j � Rh.x/;

.b/ R is bounded on L Nq0.�/.�/ and kRhk Nq0.�/ � 2khk Nq0.�/;

.c/ Rh 2 A1 and ŒRh�A1 � 2kM kLNq0.�/.�/.

Fix a pair .F;G/ 2 F such that F 2 Lq.�/.�/ (i.e., so that the left-hand side
of (5.16) is finite). By Proposition 2.18 and Theorem 2.34,

kF kq0q.�/ D kF q0k Nq.�/ � k�1
p.�/ sup

Z
�

F.x/q0h.x/ dx;

where the supremum is taken over all non-negative h 2 L Nq0.�/.�/ with khk Nq0.�/ D 1.
Fix any such function h; we will show that

Z
�

F.x/q0h.x/ dx � CkGkq0p.�/

with the constant C independent of h. First note that by Property .a/ we have that

Z
�

F.x/q0 h.x/ dx �
Z
�

F.x/q0 Rh.x/ dx: (5.17)

We want to apply our hypothesis (5.14) to the right-hand term in (5.17). To do
so we have to show that it is finite. But by the generalized Hölder’s inequality
(Theorem 2.26), Property .b/ and Proposition 2.18,

Z
�

F.x/q0Rh.x/ dx � Kp.�/kF q0k Nq.�/kRhk Nq0.�/ � 2Kp.�/kF kq0q.�/khk Nq0.�/ < 1:

Therefore, by Property .c/, (5.14) holds with w D Rh. Further, the constant C0
only depends on ŒRh�A1 and so is independent of h. Hence, by (5.14) and again
by Theorem 2.26 and Proposition 2.18 we get

Z
�

F.x/q0Rh.x/ dx � C
q0
0

�Z
�

G.x/p0Rh.x/p0=q0 dx
�q0=p0

� C
q0
0 kGp0kq0=p0Np.�/ k.Rh/p0=q0kq0=p0Np0.�/ D C

q0
0 kGkq0p.�/k.Rh/p0=q0kq0=p0Np0.�/ :
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To complete the proof of (5.16) we need to show that k.Rh/p0=q0kq0=p0Np0.�/ is bounded
by a constant independent of h. By the definition of q.�/,

Np0.x/ D p.x/

p.x/ � p0
D q0

p0

q.x/

q.x/ � q0
D q0

p0
Nq0.x/:

Therefore, by Proposition 2.18 and Property .b/,

k.Rh/p0=q0kq0=p0Np0.�/ D kRhk Nq0.�/ � 2khk Nq0.�/ D 2:

This completes our proof. ut
Remark 5.31. From the proof we have that Cp.�/ D .2k�1

p.�//1=q0C0, and by
assumption, C0 depends on kM kL.q.�/=q0/.�/0 .

Theorem 5.28 has three immediate corollaries. The first combines it with
classical extrapolation to get results for a larger class of exponents. The other
two illustrate the power of defining extrapolation in terms of pairs of functions by
proving general weak type and vector-valued inequalities.

Corollary 5.32. Given �, suppose that for some p0 � 1 the family F is such that
for all w 2 Ap0 ,

Z
�

F.x/p0w.x/ dx � C0

Z
�

G.x/p0w.x/ dx; .F;G/ 2 F : (5.18)

Given p.�/ 2 P.�/, if 1 < p� � pC < 1 and the maximal operator is bounded
on Lp.�/.�/, then

kF kp.�/ � Cp.�/kGkp.�/; .F;G/ 2 F : (5.19)

Proof. SinceM is bounded onLp.�/.�/, by Theorem 4.37 and Corollary 4.64, there
exists r > 1 such thatM is bounded onL.p.�/=r/0.�/. Given (5.18), by Theorem 5.23
we have that for all w 2 Ar ,

Z
�

F.x/rw.x/ dx � Cr

Z
�

G.x/rw.x/ dx; .F;G/ 2 F : (5.20)

Therefore, by Theorem 5.24, inequality (5.19) holds. ut
Corollary 5.33. Given �, suppose that for some p0; q0, 1 � p0 � q0, the family
F is such that for all w 2 A1,

w.fx 2 � W F.x/ > tg/ � C0

�
1

tp0

Z
�

G.x/p0w.x/p0=q0 dx

�q0=p0
; .F;G/ 2 F :

(5.21)
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Given p.�/ 2 P.�/ such that p0 � p� � pC <
p0q0
q0�p0 , define q.�/ by (5.15). If the

maximal operator is bounded on L.q.�/=q0/0.�/, then for all t > 0,

kt	fx2�WF.x/>tgkq.�/ � Cp.�/kGkp.�/; .F;G/ 2 F : (5.22)

Proof. Define a new family QF consisting of the pairs

.Ft ; G/ D .t	fx2�WF.x/>tg; G/; .F;G/ 2 F ; t > 0:

Then we can restate (5.21) as follows: for every w 2 A1,

kFtkLq0 .w/ D tw.fx 2 � W F.x/ > tg/1=q0 � C
1=q0
0 kGkLp0 .wp0=q0 /; .Ft ; G/ 2 QF :

Therefore, we can apply Theorem 5.28 to the family QF to conclude that (5.16) holds
for the pairs .Ft ; G/ 2 QF , which is exactly (5.22). ut
Corollary 5.34. Given �, suppose that for some p0 � 1 the family F is such that
for all w 2 Ap0 , inequality (5.18) holds. Given p.�/ 2 P.�/, if 1 < p� � pC < 1
and the maximal operator is bounded on Lp.�/.�/, then for every r , 1 < r < 1,
and sequence f.Fi ; Gi /g � F ,

			

X

i

F r
i

�1=r			
p.�/ � Cp.�/

			

X

i

Gr
i

�1=r			
p.�/: (5.23)

Proof. Fix r , 1 < r < 1. We first reduce the proof to the special case of finite
sums. For if this case holds, given any sequence f.Fi ; Gi /g � F , by Fatou’s lemma
for variable Lebesgue spaces (Theorem 2.61),

			

X

i

F r
i

�1=r			
p.�/ � lim inf

N!1

			

 NX
iD1

F r
i

�1=r			
p.�/

� Cp.�/ lim inf
N!1

			

 NX
iD1

Gr
i

�1=r			
p.�/ � Cp.�/

			

X

i

Gr
i

�1=r			
p.�/:

Now form a new family Fr that consists of the pairs of functions .Fr;N ;Gr;N /
defined by

Fr;N .x/ D
 

NX
iD1

Fi .x/
r

!1=r
; Gr;N .x/ D


 NX
iD1

Gi .x/
r

!1=r
;

where N > 1 and f.Fi ; Gi /gNiD1 � F . Arguing as in the proof of Corollary 5.32,
inequality (5.20) holds. Thus, for all .Fr;N ;Gr;N / 2 Fr ,
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Z
�

Fr;N .x/
rw.x/ dx D

NX
iD1

Z
�

Fi .x/
rw.x/ dx

� C0

NX
iD1

Z
�

G.x/rw.x/ dx D C0

Z
�

Fr;N .x/
rw.x/ dx:

Therefore, we can apply Corollary 5.32 with p0 D r to this family to get

kFr;N kp.�/ � Cp.�/kGr;N kp.�/; .Fr;N ;Gr;N / 2 Fr :

But this is (5.23) for all finite sums, which is what we needed to prove. ut

5.5 Applications of Extrapolation

The importance of Theorems 5.24 and 5.28 is that they give us a straightforward
method for deducing norm inequalities on Lp.�/.�/ from weighted norm inequal-
ities. There is a vast literature on weighted norm inequalities, and it is perhaps
only a slight exaggeration to say that every operator in classical harmonic analysis
satisfies a weighted norm inequality useful for extrapolation. (One notable exception
is the Fourier transform: see Sect. 5.6.10 below.) A broad survey of weighted
norm inequalities for a variety of operators is beyond the scope of this work, and
for this we refer the reader to the references given in Sects. 4.6 and 5.6. In this
section we will concentrate on two specific operators: singular integral operators
and Riesz potentials. These are extremely important in a wide range of applications
of harmonic analysis; furthermore, they are very good models for understanding the
technical details involved in applying weighted norm inequalities and extrapolation.

In this section we assume that the reader has some knowledge of the operators
we are considering. Therefore, for brevity we will give a few standard results
concerning them without proof and refer the reader to one of several references
for proofs and further details.

Singular Integrals

The most fundamental singular integral is the Hilbert transform: given a function
f 2 Lp.R/, 1 � p < 1, define the Hilbert transform by the principal value
integral

Hf.x/ D p.v.
1

�

Z
R

f .y/

x � y dy D lim
�!0

1

�

Z
fjx�yj��g

f .y/

x � y
dy:
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This limit exists both in Lp norm and pointwise almost everywhere. Intuitively,Hf
can be thought of as the convolution of f with .�x/�1; for this reason singular
integrals are often referred to as singular convolution operators.

Remark 5.35. The definition of the Hilbert transform in terms of convolutions can
be made precise by introducing the concept of a tempered distribution. We will not
consider this level of generality. See [96, 143] for more information.

In higher dimensions, natural generalizations of the Hilbert transform are the
Riesz transforms Rj , 1 � j � n, defined by

Rjf .x/ D lim
�!0

�.nC1
2
/

�
nC1
2

Z
fjx�yj��g

xj � yj

jx � yjnC1 f .y/ dy;

where � is the Gamma function and if x 2 R
n we write its coordinates as

.x1; : : : ; xn/. For both the Hilbert transform and the Riesz transforms the constants
are chosen so that their Fourier transform are very simple: if f is a Schwartz
function, then

bHf .�/ D �i sgn.�/ Of .�/; bRjf .�/ D �i �
j

j�j
Of .�/:

All of these operators can be treated as special cases of a general theory of
singular integral operators.

Definition 5.36. Given a function K 2 L1loc.R
n n f0g/, suppose that there exists a

constant C > 0 such that:

1. jK.x/j � C

jxjn , x ¤ 0;

2. jrK.x/j � C

jxjnC1 , x ¤ 0;

3. for 0 < r < R,

ˇ̌
ˇ̌Z

fr<jxj<Rg
K.x/ dx

ˇ̌
ˇ̌ � C ;

4. lim
�!0

Z
f�<jxj<1g

K.x/ dx exists.

Then for f 2 Lp.Rn/, 1 � p < 1, define the singular integral operator T with
kernelK by

Tf .x/ D lim
�!0

Z
fjx�yj��g

K.x � y/f .y/ dy; (5.24)

wherever this limit exists.

The first hypothesis in Definition 5.36 guarantees that for each � > 0 the integral
on the right-hand side of (5.24) exists. Furthermore, if f has compact support and
x 62 supp.f /, then the limit exists and we have that
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Tf .x/ D
Z
Rn

K.x � y/f .y/ dy:

It is not immediate whether and in what sense this limit exists for more general f .
But the remaining hypotheses, which can be thought of as “cancellation” conditions
on K , combine to yield the following. (For a proof, see [96, 140, 143].)

Theorem 5.37. Given a singular integral with kernel K , the limit in (5.24) con-
verges both in Lp norm and pointwise almost everywhere. Furthermore, if
f 2 L1.Rn/, then for all t > 0,

jfx 2 R
n W jTf .x/j > tgj � C

t

Z
Rn

jf .x/j dx:

If f 2 Lp.Rn/, 1 < p < 1, then

kTf kp � Ckf kp:

Remark 5.38. The hypotheses of Theorem 5.37 can be relaxed in various ways.
Further, this result holds for a more general class of operators, referred to as
Calderón-Zygmund operators, that are not (singular) convolution operators. With
appropriate assumptions, everything we say below extends to this larger class, but
we restrict ourselves to singular integrals for simplicity. See [96, 143] for more
information.

Our main result for singular integrals extends Theorem 5.37 to the variable
Lebesgue spaces .

Theorem 5.39. Let T be a singular integral operator with kernel K . Given p.�/ 2
P.Rn/ such that 1 < p� � pC < 1, if M is bounded on Lp.�/.Rn/, then for all
functions f that are bounded and have compact support,

kTf kp.�/ � Ckf kp.�/; (5.25)

and T extends to a bounded operator on Lp.�/.Rn/. If p� D 1 andM is bounded on
Lp

0.�/.Rn/, then for all t > 0 and functions f that are bounded and have compact
support,

kt	fxWjTf .x/j>tkkp.�/ � Ckf kp.�/: (5.26)

We will prove Theorem 5.39 using Theorem 5.24. To do so we need a weighted
norm inequality for singular integrals. For a proof, see [96, 140, 143].

Theorem 5.40. Given a singular integral T with kernel K , if w 2 A1, then for all
t > 0,

w.fx 2 R
n W jTf .x/j > tg/ � C

t

Z
Rn

jf .x/jw.x/ dx: (5.27)

Further, if 1 < p < 1 and w 2 Ap , then
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Z
Rn

jTf .x/jpw.x/ dx � C

Z
Rn

jf .x/jpw.x/ dx: (5.28)

In both cases the constant depends on p, n, T and Œw�Ap .

Part of the proof of Theorem 5.40 is showing that if f 2 Lp.w/, then Tf is
well-defined, since Definition 5.36 only defines Tf for f in the unweighted spaces
Lp.Rn/. We will examine this argument more closely since similar questions arise
in weighted norm inequalities for other operators and also in the variable Lebesgue
spaces.

Let f be a bounded function of compact support. Then f 2 Tp�1 Lp and so by
Theorem 5.37, Tf is well-defined and Tf 2 Tp>1 L

p . Since w is locally integrable,
f 2 Lp.w/. Moreover, Tf 2 Lp.w/ for all w 2 Ap , 1 < p < 1. To see this, fix
f and let B be a ball with center x0 such that supp.f / � B , and let 2B be the ball
with the same center and twice the radius. Then for x 2 R

n n 2B and y 2 B , we
have that jx � yj � jx � x0j � jx0 � yj � 1

2
jx � x0j, and so

jTf .x/j D
ˇ̌
ˇ̌Z
B

K.x � y/f .y/ dy

ˇ̌
ˇ̌

� C

Z
B

jf .y/j
jx � yjn dy � C.n/�

Z
B

jx�x0 j
.x0/

jf .y/j dy � C.n/Mf .x/:

Therefore, since p > 1 and w 2 Ap, by Theorem 4.35 we have that

Z
Rnn2B

jTf .x/jpw.x/ dx � C

Z
Rn

Mf .x/pw.x/ dx � C

Z
Rn

jf .x/jpw.x/ dx < 1:

On the other hand, by Theorem 4.22 there exists s > 1 such that w 2 RHs , so
ws 2 L1loc.R

n/. Hence,

Z
2B

jTf .x/jpw.x/ dx �
�Z

2B

jTf .x/jps0 dx
�1=s0 �Z

2B

w.x/s dx

�1=s
< 1:

A similar argument shows that when p D 1, the left-hand side of (5.27) is finite.
Therefore, if f is a bounded function of compact support, Tf 2 Lp.w/, and

the left-hand sides of inequalities (5.27) and (5.28) are finite. These inequalities can
then be proved for such functions. Finally, we can use them to extend the definition
of T to arbitrary f 2 Lp.w/: define Tf as the limit of the sequence fTfj g, where
ffj g is a sequence of bounded functions of compact support that converge to f in
norm onLp.w/: since wdx is an absolutely continuous measure, such functions are
dense in Lp.w/, 1 � p < 1. If p > 1, this limit exists in norm since by (5.28) the
sequence fTfj g is Cauchy; when p D 1, by (5.27) the limit exists in measure. In
both cases, by passing to a subsequence we get that the limit exists pointwise almost
everywhere.
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Proof of Theorem 5.39. We first consider the case p� > 1. Define the family F
to be all pairs .jTf j; jf j/ where f is a bounded function of compact support. By
Theorem 5.40, for all w 2 A1 � Ap0 , T is bounded on Lp0.w/. In particular, for all
such f , kTf kLp0 .w/ < 1. Therefore, by Corollary 5.32,

kTf kp.�/ � Ckf kp.�/
for every bounded function of compact support such that the left-hand side is finite.
But this is the case for every such f : arguing exactly as we did above for Lp.w/, if
supp.f / � B , then, since M is bounded on Lp.�/.Rn/,

kTf kLp.�/.Rnn2B/ � CkMf kp.�/ � Ckf kp.�/ < 1:

Furthermore, by Corollary 2.48 and Theorem 5.37,

kTf kLp.�/.2B/ � .1C j2Bj/kTf kLpC .2B/ � Ckf kLpC .B/ < 1:

This proves inequality (5.25) for bounded functions of compact support.
We now extend T to a bounded operator on all of Lp.�/.Rn/. Fix f 2 Lp.�/.Rn/;

since pC < 1, by Theorem 2.72 and Proposition 2.67 there exists a sequence
ffj g of bounded functions of compact support that converge to f in norm and
pointwise almost everywhere. By inequality (5.25) the sequence fTfj g is a Cauchy
sequence, and so it converges in norm to some limit; we define Tf to be this
limit. Again by Proposition 2.67 we can pass to a subsequence and assume that
Tfj ! Tf pointwise almost everywhere. Therefore, by Fatou’s lemma for the
variable Lebesgue spaces (Theorem 2.61),

kTf kp.�/ � lim inf
j!1 kTfjkp.�/ � lim inf

j!1 Ckfj kp.�/ D Ckf kp.�/:

Inequality (5.26) is proved in almost exactly the same way as (5.25), except that
we take p0 D 1 and use Corollary 5.33 instead of Corollary 5.32. ut

We can use Corollary 5.34 to prove vector-valued inequalities for singular
integral operators.

Theorem 5.41. Let T be a singular integral operator with kernel K . Given p.�/ 2
P.Rn/ such that 1 < p� � pC < 1, ifM is bounded onLp.�/.Rn/, then T satisfies
a vector-valued inequality on Lp.�/.Rn/: for each r , 1 < r < 1,

				
� 1X
iD1

jTfi jr
�1=r				

p.�/
� C

				
� 1X
iD1

jfi jr
�1=r				

p.�/
: (5.29)

Proof. Fix r > 1 and define the family F to consist of all pairs of functions
.jTf j; jf j/, where f is a bounded function of compact support. Then by Theo-
rem 5.40 and Corollary 5.34 we have that for any sequence f.jTfi j; jfi j/ � F ,
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�X

i

jTfi jr
�1=r				

p.�/
� Cp.�/

				
�X

i

jfi jr
�1=r				

p.�/
;

provided that the left-hand side is finite. This is the case if the sum is finite: by
convexity and Theorem 5.39,

				
� NX
iD1

jTfi jr
�1=r				

p.�/
�
				

NX
iD1

jTfi j
				
p.�/

�
NX
iD1

kTfikp.�/ < 1:

To prove the full result, fix any sequence ffi g � Lp.�/.Rn/. By Theorem 2.72,
for each i there exists a sequence ffi;j g of bounded functions of compact support
that converges to fi in norm. Moreover, from the proof of this result we have that
jfi;j j increases pointwise to jfi j. Arguing as we did in the proof of Theorem 5.39,
by passing to a subsequence we may assume that Tfi;j converges pointwise to Tfi .
Therefore, for each N > 1 we have that

� NX
iD1

jTfi;j jr
�1=r

!
� NX
iD1

jTfi jr
�1=r

pointwise as j ! 1. Hence, by Fatou’s Lemma in the variable Lebesgue spaces
(Theorem 2.61) we have that

				
� NX
iD1

jTfi jr
�1=r				

p.�/
� lim inf

j!1

				
� NX
iD1

jTfi;j jr
�1=r				

p.�/

� C lim inf
j!1

				
� NX
iD1

jfi;j jr
�1=r				

p.�/
� C

				
� NX
iD1

jfi jr
�1=r				

p.�/
:

Since this is true for all N > 1, inequality (5.29) follows from the monotone
convergence theorem for the variable Lebesgue spaces (Theorem 2.59). ut

The hypothesis that pC < 1 in Theorem 5.39 is in some sense necessary. In
the classical Lebesgue spaces singular integrals are not bounded on L1 or L1. For
example, on the real line if we let f .x/ D 	Œ0;1�.x/, then a simple computation
shows that

Hf.x/ D 1

�
log

� jxj
jx � 1j

�
;

so Hf 62 L1.R/. Similarly, for x > 0 sufficiently large, Hf.x/ � c
x�1 , so Hf 62

L1.R/. Nevertheless, it is tempting to conjecture that if pC D 1 and j�1j D 0, or
if p� D 1 and j�1j D 0, then the Hilbert transform might be bounded on Lp.�/.R/.
But this is never the case, and the analogous restriction holds in higher dimensions.



5.5 Applications of Extrapolation 219

Theorem 5.42. Given p.�/ 2 P.Rn/, if the Riesz transforms Rj , 1 � j � n, are
bounded on Lp.�/.Rn/, then 1 < p� � pC < 1.

Proof. We first consider the case when p� D 1. Suppose to the contrary that there
exists p.�/ 2 P.Rn/ such that p� D 1 and all of the Riesz transforms are bounded
on Lp.�/.Rn/. To derive a contradiction we repeat the construction in Theorem 3.19
to form sets Ek and balls Bk D B�k .xk/. (To avoid confusion with the Riesz
transforms, we denote the radius by �k instead of Rk as in the original.) Again
define the function fk 2 Lp.�/.Rn/ by

fk.x/ D jx � xk j�nC 1
kC1 	Bk\Ek .x/:

(Recall that the fact that p� D 1 is used to show that kfkkp.�/ < 1.)
The .n� 1/-dimensional hyperplanes parallel to the coordinate axes through the

point xk divide Bk into 2n sectors Si . Since

kfkkLp.�/.Bk/ �
2nX
iD1

kfkkLp.�/.Si /;

one of the terms on the right is greater than or equal to 2�nkfkkLp.�/.Bk/. Denote this
sector by SC, and let S� be the sector gotten by reflecting SC through each of the
hyperplanes through xk .

Define the operatorR D P
j �jRj , where for each j , �j D ˙1 is chosen so that

if x D .x1; : : : ; xn/ 2 SC and yD .y1; : : : ; yn/2S�, �j .xj �yj /D jxj �yj j � 0.
By assumption,R is bounded onLp.�/.Rn/, so if we define gk D fk	S� , there exists
a constant C0 such that for all k,

kRgkkLp.�/.Bk/ � C0kgkkLp.�/.Bk/ � C0kfkkLp.�/.Bk/: (5.30)

We will derive a contradiction to this inequality. Fix x 2 SC and let
r D jx � xkj � �k . Define

S�
r D fy 2 S� W jy � xkj < rg:

Then for all y 2 S�
r , jx � yj � jx � xk j C jy � xkj � 2r . Further, we have that

jx � yj � n1=2 max
j

jxj � yj j � n1=2
nX

jD1
jxj � yj j:

Since gk 2 L1.Rn/ and x 62 supp.gk/, the integral defining each Riesz transform
converges absolutely. Thus, we can estimate as follows:
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Rgk.x/ D c.n/

nX
jD1

Z
S�\Ek

�j .x
j � yj /

jx � yjnC1 jy � xk j�nC 1
kC1 dy

� c.n/n�1=2
Z
S�\Ek

jy � xk j�nC 1
kC1

jx � yjn dy

� c.n/n�1=2
Z
S�

r \Ek
jy � xk j�nC 1

kC1

jx � yjn dy

� c.n/n�1=22�nr�n
Z
S�

r \Ek
jy � xkj�nC 1

kC1 dy:

By the choice of the radius �k (see (3.9), p. 90) we have that

jBr.xk/\ Ekj � .1 � 2�n.kC1//jBr.xk/j:

Since 2njS�
r j D jBr.xk/j, this implies that

.2n � 1/jS�
r j C jS�

r \ Ekj � 2n.1 � 2�n.kC1//jS�
r jI

simplifying, this yields

jS�
r \Ekj � .1 � 2�nk/jS�

r j: (5.31)

Let ık D 2�k and define Wr D fy 2 S�
r W ıkr < jy � xkj < rg; then by (5.31),

jWr j � jS�
r \ Ekj. Since jy � xkj�nC 1

kC1 is radially decreasing, we have, after
integrating in polar coordinates, that

r�n
Z
S�

r \Ek
jy � xk j�nC 1

kC1 dy � r�n
Z
Wr

jy � xk j�nC 1
kC1 dy

D c.n/.k C 1/.1� ı
1

kC1

k /r�nC 1
kC1 � 4�1c.n/.k C 1/jx � xkj�nC 1

kC1 :

If we combine these inequalities, we get that for every x 2 SC,

Rgk.x/ � c.n/.k C 1/fk.x/: (5.32)

Therefore,

kRgkkLp.�/.Bk/ � kRgkkLp.�/.SC/

� c.n/.k C 1/kfkkLp.�/.SC/ � 2�nc.n/.k C 1/kfkkLp.�/.Bk/:
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For all k sufficiently large this inequality contradicts (5.30). This completes the
proof when p� D 1.

We now consider the case pC D 1. This follows from the previous case by
duality. We again proceed by contradiction: suppose p.�/ is such that pC D 1 and
all the Riesz transforms are bounded on Lp.�/.Rn/. Since p0.�/� D 1, we can repeat
the construction above, everywhere replacing p.�/ by p0.�/. Thus for every k we get
a function fk 2 Lp0.�/.Bk/ and a sector SC such that

0 < kfkkLp0.�/.Bk/
� 2nkfkkLp0.�/.SC/:

Further, by its definition we have that fk 2 Lq.Rn/ for some q, 1 < q < 1. By
Theorem 2.34 there exists a non-negative function h 2 Lp.�/.SC/, khkLp.�/.SC/ � 1,
such that Z

SC

fk.x/h.x/ dx � kp.�/
2

kfkkLp0.�/.SC/: (5.33)

By Fatou’s lemma on the classical Lebesgue spaces,

lim inf
N!1

Z
SC

fk.x/min.N; h.x// dx �
Z
SC

fk.x/h.x/ dx;

so we may assume without loss of generality that (5.33) holds for h a bounded
function supported in SC. In particular, we may assume that h 2 Lq0

.Rn/.
Again following the construction above, define the operatorR. Let gk D fk	S� ;

then by (5.32),

Z
SC

fk.x/h.x/ dx � C.n/.k C 1/�1
Z
SC

Rgk.x/h.x/ dx:

By a duality argument in the classical Lebesgue spaces (see [143]), since
fk 2 Lq.Rn/ and h 2 Lq0

.Rn/, for 1 � j � n,
Z
SC

Rjgk.x/h.x/ dx D �
Z
Rn

gk.x/Rj h.x/ dx:

It follows that the same identity holds with R in place of Rj .
Since the Riesz transforms are bounded on Lp.�/.Rn/, so is R. By duality we get

a bounded linear operator R� on Lp.�/.Rn/�. (See Conway [51].) Since Lp
0.�/.Rn/

is (isomorphic to) a closed subspace of Lp.�/.Rn/�, by restriction we may assume
that R� is a bounded operator on Lp

0.�/.Rn/ and we have the relationship

R�gk.h/ D
Z
Rn

gk.x/Rh.x/ dx: (5.34)

(Here,R�gk is a linear functional in Lp.�/.Rn/�; a priori we do not know that it can
be identified with a function in Lp

0.�/.Rn/.) By Hölder’s inequality (Theorem 2.26)
and our assumption on p.�/ we have that
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jR�gk.h/j � Kp.�/kgkkp0.�/kRhkp.�/ � Ckgkkp0.�/khkLp.�/.SC/ � CkfkkLp0.�/.Bk/
:

Therefore, combining the above inequalities we have that

kfkkLp0.�/.Bk/
� C.n; p.�//.k C 1/�1

ˇ̌
ˇ̌Z

Rn

gk.x/Rh.x/ dx

ˇ̌
ˇ̌

D C.n; p.�//.k C 1/�1jR�gk.h/j � C.n; p.�//.k C 1/�1kfkkLp0.�/.Bk/
:

Since kfkkLp0.�/.Rn/ > 0, this inequality cannot hold for k large. This is the

desired contradiction, and so the Riesz transforms are not boundedLp.�/.Rn/ when
pC D 1. This completes our proof. ut

It is unknown whether the hypotheses on the boundedness of the maximal
operator are necessary for Theorem 5.39 to be true. We can prove, however, that
a slightly weaker condition is necessary.

Theorem 5.43. Given p.�/ 2 P.Rn/, suppose that all the Riesz transforms satisfy
the weak type inequality (5.26). Then p.�/ 2 K0.R

n/.

Proof. Our proof is a variant of the proof in Corollary 4.50 that the K0 condition
is necessary for the maximal operator to satisfy the weak type inequality. Define
the operator R D P

j Rj ; then R also satisfies the weak type inequality (5.26).
By Proposition 4.47 it will suffice to prove that this fact implies that the averaging
operatorsAQ are uniformly bounded for all cubesQ.

Fix a cube Q, and a non-negative function f 2 Lp.�/.Rn/. Let QC be the cube
such that if x 2 QC and y 2 Q, then xj � yj � 0. Then arguing as we did in the
proof of Theorem 5.42, for all x 2 QC,

R.f	Q/.x/ D c.n/

nX
jD1

Z
Q

xj � yj

jx � yjnC1 f .y/ dy

� c.n/

Z
Q

f .y/

jx � yjn dy � c.n/�
Z
Q

f .y/ dy:

Therefore, for all t , 0 < t < c.n/�
R
Q
f .y/ dy, by inequality (5.26) we have that

tk	QCkp.�/ � tk	fx2RnWjR.f	Q/.x/j>tgkp.�/ � Ckf	Qkp.�/:

If we take the supremum over all such t , we get

�
Z
Q

f .y/ dyk	QCkp.�/ � Ckf	Qkp.�/:

Let f D 	Q; then this becomes k	QCkp.�/ � Ck	Qkp.�/.
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We can now repeat the above proof, replacing the operator R by �R and
exchanging the roles of QC andQ. Then we also get that k	Qkp.�/ � Ck	QCkp.�/.
Combining all of these inequalities, we get that

kAQf kp.�/ D �
Z
Q

f .y/ dyk	Qkp.�/

� C�
Z
Q

f .y/ dyk	QCkp.�/ � Ckf	Qkp.�/ � Ckf kp.�/:

The constantC is independent ofQ, so we have the desired inequality and our proof
is complete. ut

Riesz Potentials

We begin with a definition.

Definition 5.44. Given ˛, 0 < ˛ < n, define the Riesz potential I˛ , also referred
to as the fractional integral operator with index ˛, to be the convolution operator

I˛f .x/ D 
.˛; n/

Z
Rn

f .y/

jx � yjn�˛ dy;

where


.˛; n/ D �
�
n
2

� ˛
2

�
�n=22˛�

�
˛
2

� :
Since jx � yj˛�n is locally integrable, if f is a bounded function of compact

support, then I˛f .x/ converges absolutely. In fact, if we rewrite the kernel as

jx � yj˛�n	fjx�yj�1g C jx � yj˛�n	fjx�yj>1g;

then by applying Proposition 5.2 we get that I˛f converges for any f 2 Lp.Rn/,
1 � p < n=˛: the first term is immediate; to estimate the second, note that since
p < n=˛, the kernel is in Lp

0

.Rn/.
The constant 
.˛; n/ is chosen so that if f is a Schwartz function, then the

Fourier transform of the Riesz potential is

bI˛f .�/ D .2�j�j/�˛ Of .�/:

(See Stein [339].)
The Riesz potentials are not bounded on Lp.Rn/, but satisfy off-diagonal

inequalities.
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Theorem 5.45. Given ˛, 0 < ˛ < n, and p, 1 � p < n=˛, define q > p by
1=p � 1=q D ˛=n. If p D 1, then for all t > 0,

jfx 2 R
n W jI˛f .x/j > tgj �

�
C

t

Z
Rn

jf .x/j dx
�q
: (5.35)

If p > 1, then
kI˛f kq � Ckf kp: (5.36)

The Riesz potentials are well defined on the variable Lebesgue spaces. If pC <

n=˛ and f 2 Lp.�/.Rn/, then I˛f .x/ converges for every x. To see this, apply
Theorem 2.51 to write f D f1 C f2, where f1 2 Lp�.Rn/ and f2 2 LpC.Rn/.
Then by the above observation, I˛f .x/ D I˛f1.x/CI˛f2.x/ converges absolutely.
Furthermore, we can extend Theorem 5.45 to the variable Lebesgue spaces.

Theorem 5.46. Fix ˛, 0 < ˛ < n. Given p.�/ 2 P.Rn/ such that 1 < p� � pC <

n=˛, define q.�/ by
1

p.x/
� 1

q.x/
D ˛

n
:

If there exists q0 > n
n�˛ such that M is bounded on L.q.�/=q0/0.Rn/, then

kI˛f kq.�/ � Ckf kp.�/: (5.37)

If p� D 1 and if M is bounded on L.q.�/=q0/0.Rn/ when q0 D n
n�˛ , then for every

t > 0,
kt	fx2RnWjI˛f .x/j>tgkq.�/ � Ckf kp.�/: (5.38)

To prove Theorem 5.46 we will use Theorem 5.28. To do so we need the theory
of weighted norm inequalities for the Riesz potentials. This theory is very closely
related to the theory of Ap weights but is adapted to off-diagonal inequalities.

Definition 5.47. Given ˛, 0 < ˛ < n, and p, 1 < p < n=˛, define q by

1

p
� 1

q
D ˛

n
:

Then a weight w satisfies the Ap;q condition (denoted by w 2 Ap;q) if

Œw�Ap;q D sup
Q

�
�
Z
Q

w.x/ dx

��
�
Z
Q

w.x/�p0=q dx

�q=p0

< 1:

When p D 1, let A1;q D A1.

The connection between Ap;q and the Muckenhoupt Ap classes is given by the
following lemma whose proof is an immediate consequence of Definition 5.47.
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Lemma 5.48. Given ˛, 0 < ˛ < n, and p, 1 < p < n=˛, a weight w 2 Ap;q if and
only if w 2 Ar , r D 1C q=p0.

The Riesz potentials satisfy weighted norm inequalities that are the analog of
Theorem 5.45.

Theorem 5.49. Given ˛, 0 < ˛ < n, andp, 1 � p < n=˛, define q by 1=p�1=q D
˛=n and let w 2 Ap;q . If p D 1, then for every t > 0,

w.fx 2 R
n W jI˛f .x/j > tg/ � C

�
1

t

Z
Rn

jf .x/jw.x/1=q dx
�q
:

If p > 1, then

�Z
Rn

jI˛f .x/jqw.x/ dx

�1=q
� C

�Z
Rn

jf .x/jpw.x/p=q dx

�1=p
:

In both cases the constant depends on n, p, ˛ and Œw�Ap;q .

Remark 5.50. Weighted norm inequalities for Riesz potentials are customarily
written with the weight as a multiplier instead of a measure (see Sect. 4.6.5). Define
the weight W D w1=q ; then the Ap;q condition is equivalent to

sup
Q

�
�
Z
Q

W.x/q dx

�1=q �
�
Z
Q

W.x/�p0

dx

�1=p0

< 1;

and the strong type inequality becomes

�Z
Rn

jI˛f .x/W.x/jq dx
�1=q

� C

�Z
Rn

jf .x/W.x/jp dx
�1=p

:

See Remark 5.30 above.

Proof of Theorem 5.46. Fix ˛, p.�/ and q.�/ as in the hypotheses. We will first
prove (5.37). Since q0 > n

n�˛ , if we define p0 by 1=p0 � 1=q0 D ˛=n, then
p0 > 1. Therefore, by Lemma 5.48 and Theorem 5.49, if w 2 A1 � A1Cq0=p0

0
,

then w 2 Ap0;q0 and

�Z
Rn

jI˛f .x/jq0w.x/ dx
�1=q0

� C

�Z
Rn

jf .x/jp0w.x/p0=q0 dx
�1=p0

holds for all functions f that are bounded and have compact support. (Note that the
right-hand side is finite since w 2 A1 is locally integrable. Hence the left-hand side
is finite as well.)

Define the family F to be the pairs .jI˛f j; jf j/ with f a bounded function of
compact support. Then by Theorem 5.28,
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kI˛f kq.�/ � Ckf kp.�/ (5.39)

for all bounded functions of compact support for which the left-hand side is finite.
This is always the case. Fix such a function f , and let B be a ball of radius at
least 1 centered at the origin such that supp.f / � B . Then by Corollary 2.48 and
Theorem 5.45,

kI˛f kLq.�/ .2B/ � .1C j2Bj/kI˛f kLqC .2B/ � Ckf kLpC .B/ < 1:

To estimate the norm of I˛f on R
n n 2B , note first that if x 2 R

n n 2B and y 2 B ,
jx � yj � jxj � jyj � jxj=2. Therefore, for all such x,

jI˛f .x/j � 
.˛; n/

Z
B

jf .y/j
jx � yjn�˛ dy � C jxj˛�n;

and so
kI˛f kLq.�/.Rnn2B/ � Ckj � j˛�nkLq.�/ .Rnn2B/:

Since p� > 1, q� > n
n�˛ , and so

Z
Rnn2B

jxj.˛�n/q.x/ dx �
Z
Rnn2B

jxj.˛�n/q� dx < 1;

and so by Proposition 2.12, kj � j˛�nkLq.�/.Rnn2B/ < 1.
Thus (5.39) holds for all bounded functions of compact support. Since

pC < n=˛ < 1, by Theorem 2.72 there exists a sequence ffkg of such functions
which converge to f in norm and such that jfkj � jf j; by Proposition 2.67 if
we pass to a subsequence, we may assume that it also converges pointwise almost
everywhere. By Fatou’s lemma in the classical Lebesgue spaces,

jI˛f .x/j � I˛.jf j/.x/ � lim inf
k!1 I˛.jfkj/.x/:

Therefore, by Fatou’s Lemma on the variable Lebesgue spaces (Theorem 2.61),

kI˛f kq.�/ � lim inf
k!1 kI˛.jfkj/kq.�/ � C lim inf

k!1 kfkkp.�/ � kf kp.�/:

This completes our proof of inequality (5.37).
The proof of the weak type inequality (5.35) is almost exactly the same, except

that since q0 D n
n�˛ we have p0 D 1 and use the weighted weak type inequality and

Corollary 5.33. ut
Remark 5.51. The argument used to prove Theorem 5.46 can also be used to
prove the corresponding result for the fractional maximal operator, Theorem 3.42
in Sect. 3.7.4. This follows since Theorem 5.49 is also true with I˛ replaced by
the fractional maximal operator M˛; the proof is nearly identical to the proof of
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Theorem 4.35 for the Hardy-Littlewood maximal operator. However, while this
approach yields a short proof of Theorem 3.42, it only works if pC < n=˛ and
Theorem 3.42 is also true when pC D n=˛.

5.6 Notes and Further Results

5.6.1 References

The properties of convolution operators given in Sect. 5.1, particularly Proposi-
tion 5.2, Theorem 5.4 and Lemma 5.7 can be found in Duoandikoetxea [96],
Grafakos [143] and Stein [339]. The key inequality in Lemma 5.7 relating potential
type approximate identities and the Hardy-Littlewood maximal operator was first
discovered (in a special case) by Hardy and Littlewood [148].

Convolution operators on variable Lebesgue spaces were first considered by
Sharapudinov [332] on the unit circle and by Samko [312] on bounded domains.
Both of these authors prove versions of Theorem 5.11 with different assumptions
on the approximate identity. Theorems 5.8 and 5.11 were proved by Diening [77]
assuming that 1 < p� � pC < 1 and the maximal operator is bounded on
Lp.�/.�/. (See Remark 5.14.) The general version of Theorem 5.8 was proved
in [58]. Theorem 5.11 was also proved there assuming that p.�/ 2 LH.�/. This
proof depended on a pointwise estimate for approximate identities; see Sect. 5.6.2
below. The proof of Theorem 5.11 given here is new. Theorem 5.9 and Example 5.15
are new.

The fact that variable Lebesgue spaces are never translation invariant (Theo-
rem 5.17) was first proved by Kováčik and Rákosnı́k [219]. Diening [77] proved
a somewhat different version of Theorem 5.19; see also [82]. Our proof is adapted
from his. Proposition 5.20 and Example 5.21 are from [58]. Weaker versions of
Young’s inequality were also considered by Samko [312] and in [58]; see also [82].

Rubio de Francia first proved the extrapolation theorem that bears his name
(Theorem 5.22) in [302–304]. Since then there have been a number of proofs and
extensions of this result. The approach adopted here in terms of pairs of functions
was implicit in [72] and developed in [66]. For a comprehensive treatment of
extrapolation with extensive references, see [69]. Theorems 5.24 and 5.28 were
first proved in [61]; see [69] for a proof from the more general perspective of
abstract Banach function spaces. Corollary 5.34 was proved in [61]; Corollaries 5.32
and 5.33 were implicit there and in [69].

The modern theory of singular integral operators goes back to the seminal
papers by Calderón and Zygmund [40, 41]. For the properties of Hilbert and Riesz
transforms and for Theorem 5.37, see Stein [339], Garcı́a-Cuerva and Rubio de
Francia [140], Duoandikoetxea [96] and Grafakos [143]. For Theorem 5.40 and for
the theory of weighted norm inequalities for singular integrals in general, see the last
three references; for Calderón-Zygmund operators, the generalization of singular
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integral operators, see the last two and Stein [340]. The strong type inequality in
Theorem 5.39 was first proved by Diening and Růžička [88]; our proof is adapted
from [61], as is the proof of Theorem 5.41; see also [69]. Theorems 5.42 and 5.43
are new; the idea behind their proofs is taken from the proof of the necessity of the
Ap condition for singular integrals in [140].

The Riesz potentials were introduced by M. Riesz [299]. For Theorem 5.45
and their Fourier transform properties, see Stein [339]. The Ap;q weights were
introduced by Muckenhoupt and Wheeden [272]; they also proved Theorem 5.49.
Theorem 5.46 has been considered by several authors. Samko [312] proved a strong
type inequality on a bounded domain � assuming p.�/ 2 LH0.�/ using delicate
kernel estimates. A similar result was proved by Edmunds and Meskhi [103] on
� D .0; 1/. Diening [78] proved the strong type inequality on R

n assuming
p.�/ 2 LH0.R

n/ and p.�/ is constant outside of a large ball. However, his proof
extends to the case p.�/ 2 LH.Rn/ with almost no change. The proof depends on a
pointwise inequality relating the Riesz potential and the Hardy-Littlewood maximal
operator: see Sect. 5.6.2 below. Theorem 5.46 was also proved for p.�/ 2 LH.Rn/

in [42]. The proof depended on norm inequalities for the fractional maximal
operator (Theorem 3.42) and an inequality due to Welland [346] relating the Riesz
potential and the fractional maximal operator. The proof given here is from [61].
The closely related questions of the range and invertibility of the Riesz potential
were studied by Almeida [10] and Almeida and Samko [11].

Weighted inequalities on variable Lebesgue spaces for singular integrals and
Riesz potentials have been considered by a number of authors. See the references in
Sect. 4.6.5.

5.6.2 Pointwise Estimates

As we noted in Remark 5.14, if p� > 1, then the proof of Theorem 5.11 follows
from the norm inequalities for the maximal operator if we assume M is bounded
on Lp.�/. To include the case p� D 1, the proof of this result in [58] avoided the
maximal operator and instead generalized the pointwise inequalities for the maximal
operator. (See Theorem 3.32.)

Proposition 5.52. Given� andp.�/2 P.�/, suppose pC<1 andp.�/2LH.�/.
Let f�tg be a potential-type approximate identity and let ˆ be the radial majorant
of �. Then for f 2 Lp.�/.�/ such that kf kp.�/ � 1, all t > 0 and x 2 �,

j�t � f .x/jp.x/ � C
�
ˆt � jf .�/jp.�//.x/C C

�
ˆt � R/.x/C CR.x/;

where R.x/ D .e C jxj/�n�1.

Inequality (5.5) follows from this result and from Propositions 5.2 and 2.12.
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A similar approach to proving norm inequalities for the Riesz potential was used
by Diening [78], who proved a pointwise estimate relating I˛ and the maximal
operator.

Proposition 5.53. Given ˛, 0 < ˛ < n, let p.�/ 2 P.Rn/ be such that 1 < p� �
pC < n=˛ and p.�/ 2 LH.Rn/. Define q.�/ by 1=p.x/ � 1=q.x/ D ˛=n. Then
there exists a function S 2 L1.Rn/ \ Lp�.Rn/ such that for all f 2 Lp.�/.Rn/
with kf kp.�/ � 1,

jI˛f .x/jq.x/=p� � CMf.x/p.x/=p� C S.x/:

Given these hypotheses we also have that the maximal operator is bounded on
Lp.�/.Rn/, so the desired inequality for the Riesz potential follows by Proposi-
tion 2.12. Proposition 5.53 generalizes to the variable Lebesgue spaces a pointwise
inequality due to Hedberg [168]. This result was generalized to certain Musielak-
Orlicz spaces (see Sect. 2.10.2) by Futamura, Mizuta and Shimomura [138].

5.6.3 More on Approximate Identities

Theorems 5.8 and 5.11 are true for another class of approximate identities. In [58]
it was shown that if p.�/ 2 LH.�/ and � 2 Lp

0.�/
C.�/ has compact support, then

both of these results hold. Proposition 5.52 is valid in this case only if jf j � 1, but
if jf j D 0 or jf j � 1, then a different argument shows that for all t > 0,

Z
�

j�t � f .x/jp.x/ � C < 1:

If the hypothesis that � has compact support is omitted, then these versions of
Theorems 5.8 and 5.11 do not hold in general: see [58] for a counter-example.

In [58] it was conjectured that Theorem 5.11 was true for any � 2 L1.Rn/ if �
satisfies the decay condition

j�.x � y/ � �.x/j � C
jyj

jxjnC1 ; jxj > 2jyj:

(This holds for example if jr�.x/j � C jxj�n�1.) In the classical Lebesgue
spaces this result is due to Zo [364]. It was proved for the variable Lebesgue
spaces in [61] using extrapolation and weighted norm inequalities for vector-valued
singular integrals.

All of these results were extended to the more general setting of the Musielak-
Orlicz spaces Lp.�/.logL/q.�/ (see Sect. 2.10.2) by Maeda, Mizuta and Ohno [243].
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5.6.4 Applications of Extrapolation

As we noted above, the theory of extrapolation can be applied to a much larger
collection of operators than discussed here. In [61] extrapolation was used to
prove norm inequalities for the vector-valued maximal operator, “rough” singular
integrals, commutators, multipliers, and square functions.

In [69] extrapolation was used to show that so-called “admissible” wavelets
form an orthonormal basis for Lp.�/.Rn/ provided that 1 < p� � pC < 1 and
the maximal operator is bounded on Lp.�/.Rn/. A different proof of this result
was given by Izuki [183]. (Wavelets on variable Lebesgue spaces have also been
studied by Kopaliani [214].) Huang and Xu [170] applied extrapolation to study
multilinear singular integrals and commutators on the variable Lebesgue spaces.
Motos, Planells and Talavera [270] used it to study variable Lebesgue spaces of
entire analytic functions.

The proof of Theorem 5.24 can be generalized to many other settings. As
we noted above, in [69] it was proved as a corollary to a general extrapolation
result on abstract Banach function spaces. Implicit in this is an extrapolation result
for Musielak-Orlicz spaces provided the maximal operator satisfies appropriate
boundedness conditions. Maeda, Mizuta and Ohno [243] proved a special case
of this for the Lp.�/.logL/q.�/ spaces. Kokilashvili and Samko [209] proved an
extrapolation theorem for weighted variable Lebesgue spaces defined on metric
spaces. They used this to study norm inequalities for a variety of operators in
this setting. Edmunds, Kokilashvili and Meskhi [99] generalized extrapolation to
variable Lebesgue spaces on which the one-sided maximal operator is bounded (see
Sect. 3.7.6). This yields norm inequalities for the so-called “one-sided” operators.

In Sect. 6.4 we will use extrapolation to prove the Sobolev embedding theorem
for variable Sobolev spaces.

5.6.5 Sharp Maximal Operator Estimates

Another approach to norm inequalities on the variable Lebesgue spaces is to use
the Fefferman-Stein sharp maximal operator. Given a locally integrable function f ,
define the sharp maximal operator by

M #f .x/ D sup
Q

�
Z
Q

jf .y/ � fQj dy;

where fQ D �R
Q f .y/ dy and the supremum is taken over all cubes Q with sides

parallel to the coordinate axes. The sharp maximal operator was introduced by
C. Fefferman and Stein [125].

Given a function f , f and M #f are comparable in Lp norm: for all p,
1 � p < 1,

kf kp � CkM #f kp;
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and in fact this inequality is true if we replace the Lp norm by the Lp.w/ norm for
any w 2 A1. (This was proved in [125]; see also [69,96].) The same inequality also
holds in the variable Lebesgue spaces.

Theorem 5.54. Given p.�/ 2 P.Rn/, 1 � p� � pC < 1, if the maximal operator
is bounded on Lp

0.�/.Rn/, then

sup
t>0

kt	fx2RnWjf .x/j>tgkp.�/ � C sup
t>0

kt	fx2RnWM #f .x/>tgkp.�/:

Moreover,
kf kp.�/ � CkM #f kp.�/:

The strong type inequality in Theorem 5.54 was originally proved by Diening and
Růžička [88] (see also [82]). A different proof using extrapolation was given in [61].
The weak type inequality can be proved via extrapolation using the corresponding
estimate in the classical Lebesgue spaces. (The weighted weak type inequality is
implicit in the so-called good-� inequality used to prove the strong type inequality.
It is proved explicitly in a more general setting in [69].)

The importance of Theorem 5.54 comes from a pointwise estimate due to Álvarez
and Pérez [14] that uses a variant of the sharp maximal operator: for ı > 0, let
M #
ı f .x/ D M #.jf jı/.x/1=ı .

Lemma 5.55. Let T be a singular integral operator with kernel K . Then for all
ı, 0 < ı < 1, there exists a constant C.ı/ such that for all bounded functions of
compact support,

M #
ı .Tf /.x/ � C.ı/Mf .x/:

Given Lemma 5.55 and Theorem 5.54, norm inequalities for singular integrals
(Theorem 5.39) follow immediately from the corresponding inequalities for the
maximal operator. Diening and Růžička [88] used this approach to prove Theo-
rem 5.39.

This technique is extremely flexible, since there exist sharp function estimates
like Lemma 5.55 for many operators. For example, Adams [6] proved that for
all ˛, M #.I˛f /.x/ � C˛M˛f .x/, where M˛ is the fractional maximal operator
(see Sect. 3.7.4). Norm inequalities for Riesz potentials now follow from the
corresponding inequalities forM˛ (Theorem 3.42). Karlovich and Lerner [195] used
a sharp function estimate to prove norm inequalities for commutators of singular
integrals on variable Lebesgue spaces. For a summary of sharp function estimates,
see [69].

5.6.6 Local to Global Estimates

In practice, it is often much easier to prove norm inequalities on bounded domains
than on all of R

n. For example, estimates for the maximal operator on bounded
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domains require only one hypothesis (say p.�/ 2 LH0) and the argument is much
simpler. (See Diening’s original proof [77].) Given an operator T one could naively
try to take advantage of this by decomposing R

n into the union of disjoint cubes
fQj g of side-length 1, and then writing

kTf kLp.�/.Rn/ �
X
j

kTf kLp.�/.Qj /
:

Ideally, one can then prove an estimate of the form kTf kLp.�/.Qj /
� Ckf kLp.�/.Qj /

.
Unfortunately, even if this were possible, the problem remains that

X
j

kf kLp.�/.Qj /

need not be comparable to kf kLp.�/.Rn/. However, a more sophisticated version of
this technique works.

Proposition 5.56. Given p.�/ 2 LH.Rn/, fix a set Q D fQj g of cubes of equal
side-length, ordered so that if i < j , dist.Qi ; 0/ � dist.Qj ; 0/. Define

kf kp.�/;Q D
�X

j

kf kp1

Lp.�/.Qj /

�1=p1

I

then
kf kLp.�/.Rn/ 	 kf kp.�/;Q:

Proposition 5.56 is due to Hästö [165]; the simple proof uses a characteriza-
tion of variable sequence spaces (see Sect. 2.10.7) discovered independently by
Nekvinda [281] and Nakano [279] (see also [245]).

To illustrate how this technique can be used, we sketch an alternate proof
from [165] that the maximal operator is bounded on Lp.�/.Rn/ (Theorem 3.16). We
first need to divide the maximal operator itself into two pieces, a “local” piece and
a “global” one. Define

MLf .x/ D sup
Q3x
`.Q/�1

�
Z
Q

jf .y/j dy; MGf .x/ D sup
Q3x
`.Q/>1

�
Z
Q

jf .y/j dy:

Then Mf.x/ � MLf .x/ C MGf .x/, so to prove that the maximal operator is
bounded on Lp.�/ it will suffice to prove that each of these operators is bounded.
The key estimate is for ML. Fix a collection Q D fQj g of cubes with side-length
1. Then for each j and x 2 Qj ,

MLf .x/ � M.f	3Qj /.x/:
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Therefore, if we assume that the maximal operator is bounded on bounded domains,
by Proposition 5.56 (applied twice) we have that

kMLf kLp.�/.Rn/

� C

�X
j

kMLf kp1

Lp.�/.Qj /

�1=p1

� C

�X
j

kM.f	3Qj /kp1

Lp.�/.Qj /

�1=p1

� C

�X
j

kf kp1

Lp.�/.3Qj /

�1=p1

� Ckf kLp.�/.Rn/:

To estimate kMGf kLp.�/.Rn/ we introduce an ancillary operator. Given x, let Qx be
the cube centered at x such that `.Qx/ D 1, and define Af .x/ D R

Qx
jf .y/j dy.

Then a straightforward argument shows thatMGf .x/ � C.n/MG.Af /.x/. Further,
using an embedding theorem similar to Proposition 2.53 (see also [92]) and the fact
that M is bounded on L1 and Lp1 , one can show that A maps Lp.�/.Rn/ into
L1.Rn/\Lp1.Rn/ andMG mapsL1.Rn/\Lp1.Rn/ intoLp.�/.Rn/. Combining
these estimates shows that kMGf kLp.�/.Rn/ � Ckf kLp.�/.Rn/.

Depending on the operator, the decomposition argument required to use the local
estimate will be more or less complicated. Nevertheless, this technique has some
advantages over extrapolation. It can be used in those cases in which weighted norm
inequalities are not available. It can also be extended to other kinds of spaces, such
as weighted variable Lebesgue spaces, variable Sobolev spaces, and variable Morrey
spaces. For examples of such applications, see [165].

5.6.7 The Variable Riesz Potential

The Riesz potential can be generalized by allowing the value of the index ˛ to vary.
Given �, let ˛.�/ W � ! .0; n/ be a measurable function. Define the variable Riesz
potential by

I˛.�/f .x/ D
Z
�

f .y/

jx � yjn�˛.x/ dy:

These operators were introduced by Samko; on the real line they have applications to
the theory of fractional differentiation and integration. (See [314] and the references
it contains.) If � is bounded and p.�/ 2 LH0.�/, then an equivalent definition is
gotten by replacing ˛.x/ by ˛.y/:

I˛.�/f .x/ 	
Z
�

f .y/

jx � yjn�˛.y/ dy:

A generalization of Theorem 5.46 holds on bounded domains.
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Proposition 5.57. Given a bounded domain � let p.�/ 2 P.�/ be such that 1 <
p� � pC < 1 and p.�/ 2 LH0.�/. Let ˛.�/ W � ! .0; n/ be a measurable
function such that ˛� > 0,

�
p.�/˛.�/�C < n, and ˛.�/ 2 LH0.�/. Define q.�/ by

1

p.x/
� 1

q.x/
D ˛.x/

n
:

Then
kI˛.�/f kLq.�/ .�/ � Ckf kLp.�/.�/:

Proposition 5.57 was proved by Samko [312]. A similar result on� D .0; 1/was
proved by Edmunds and Meskhi [103]. Weighted inequalities were proved for this
operator by Kokilashvili and Samko [205] and Samko, Samko and Vakulov [309,
310].

Samko [319] asked whether these results could be extended to unbounded
domains. Hästö [165] proved that Proposition 5.57 is false if � D R

n. He
gave an example of a smooth index function ˛.�/ and exponent p.�/ that are
constant on B1.0/ and on R

n n B3.0/ and a function f 2 Lp.�/.Rn/ such that
I˛.�/f 62 Lq.�/.Rn/. However, Hästö also showed that by redefining the operator
at infinity, the desired inequalities hold. Given ˛.�/, define the new index function
ˇ.x; y/ D min.˛.x/; ˛.y//, and let

I
ˇ

˛.�/f .x/ D
Z
Rn

f .y/

jx � yjn�ˇ.x;y/ dy:

Proposition 5.58. Let p.�/ 2 P.Rn/ be such that 1 < p� � pC < 1 and p.�/ 2
LH.Rn/. Let ˛.�/ W R

n ! .0; n/ be a measurable function such that ˛� > 0,�
p.�/˛.�/�C < n, and ˛.�/ 2 LH.Rn/. Define q.�/ by

1

p.x/
� 1

q.x/
D ˛.x/

n
:

Then
kIˇ˛.�/f kLq.�/.Rn/ � Ckf kLp.�/.Rn/:

5.6.8 Vector-Valued Maximal Operators

Given r , 1 < r < 1, the vector-valued maximal operator is defined on vector
valued functions f D ffi g by

Mrf .x/ D
 X

i

Mfi .x/
r

!1=r
D kMfi .x/k`r :
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It follows from the weighted norm inequalities for the maximal operator (Theo-
rem 4.35) and Corollary 5.34 that if the Hardy-Littlewood maximal operator is
bounded on Lp.�/.Rn/, then so is Mr . This was first proved in [61].

It is a natural question whether this operator can be generalized to a variable
vector-valued maximal operator Mr.�/ by replacing the `r norm with the norm on
a variable sequence space `r.�/ (see Sect. 2.10.7). However, Diening, Hästö and
Roudenko [87] gave a simple counter-example to show that this does not hold in
general even when p.�/ D p is constant. Let r.�/ be such that there exist bounded
sets �k, k D 1; 2, such that if x 2 �k , r.x/ D rk, and r1 > r2. Fix a sequence
fai g 2 `r1 n `r2 , and define fi D ai	�1 . Then for all x 2 �2, Mfi.x/ � cai .
Therefore, if Mr.�/ were bounded on Lp.Rn/, then

		kaik`r2
		
Lp.�2/

� 		kMfik`r.�/
		
Lp.Rn/

� C
		kfik`r.�/

		
Lp.Rn/

D 		kaik`r1
		
Lp.�1/

;

which implies that fai g � `r2 , a contradiction.

5.6.9 Two Classical PDEs

We can apply the results in Sect. 5.2 to show that the classical solutions to the
Laplacian and the heat equation extend to the variable Lebesgue spaces. Recall the
definition of the Poisson and Gauss-Weierstrass kernels: for t > 0 and x 2 R

n, let

Pt .x/ D �
�
nC1
2

�
�

nC1
2

t

.t2 C jxj2/ nC1
2

; Wt .x/ D t�ne��jxj2=t2 :

It is immediate from the definitions that fPt g and fWtg are potential type approxi-
mate identities.

Proposition 5.59. Given p.�/ 2 P.Rn/, suppose that pC < 1 and the maximal
operator is bounded on Lp

0.�/.Rn/. If f 2 Lp.�/.Rn/, then u.x; t/ D Pt � f .x/ is
the solution of the boundary value problem

(
4u.x; t/ D 0; .x; t/ 2 R

nC1
C ;

u.x; 0/ D f .x/; x 2 R
n;

where the second equality is understood in the sense that u.x; t/ converges to f .x/
as t ! 0 pointwise almost everywhere and in Lp.�/.Rn/ norm.

Proposition 5.60. Given p.�/ 2 P.Rn/, suppose that pC < 1 and the maximal
operator is bounded on Lp

0.�/.Rn/. Given f 2 Lp.�/.Rn/, define w.x; t/ D Wt �
f .x/ and Nw.x; t/ D w.x;

p
4�t/. Then Nw is the solution of the initial value problem
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(
@ Nw
@t
.w; t/ � 4 Nw.x; t/ D 0; .x; t/ 2 R

nC1
C ;

Nw.x; 0/ D f .x/; x 2 R
n;

where the second equality is understood in the sense that Nw.x; t/ converges to f .x/
as t ! 0 pointwise almost everywhere and in Lp.�/.Rn/ norm.

Proof. We sketch the proof of Proposition 5.59; the proof of Proposition 5.60 is
identical. First, we show that u is a solution. By Theorem 2.51 write f D f1 C f2
with f1 2 Lp�.Rn/ and f2 2 LpC.Rn/. Then by the solution of the Laplacian in the
classical Lebesgue spaces (see [142]), u1 D Pt � f1 and u2 D Pt � f2 are solutions,
and so u D u1 C u2 is also a solution. The identity u.x; 0/ D f .x/ follows from the
fact that fPt g is a potential type approximate identity and Theorems 5.8 and 5.11.

ut
Propositions 5.59 and 5.60 were first proved in [58]. Sharapudinov [332] proved

similar results on the unit circle.

5.6.10 The Fourier Transform

The Fourier transform of a function f is defined by

Of .�/ D
Z
Rn

f .x/e�2�ix�� dx; � 2 R
n:

This integral converges if f is a Schwartz function, or more generally is in L1.Rn/.
The definition can be extended in a natural way to functions f 2Lp.Rn/, 1 �
p � 2. A key norm inequality for the Fourier transform is the Hausdorff-Young
inequality: for 1 � p � 2,

k Of kp0 � kf kp:
It is tempting to conjecture that this inequality extends to the variable Lebesgue
spaces: for all p.�/ 2 P.Rn/ such that 1 � p� � pC � 2,

k Of kp0.�/ � kf kp.�/:

However, this is false, and a counter-example is straightforward to construct on the
real line. For �1 < a < 0, let f .x/ D jxja. Then the Fourier transform of f is
given by

Of .�/ D �2 sin
�
�a
2

�
�.aC 1/

j2��jaC1 :
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(See [109, 294].) In particular, let a D �2=3, so that Of .�/ D cj�j�1=3. Now let the
exponent p.�/ 2 P.R/ be such that p.�/ is smooth, p.x/ D 5=4 on .�1; 1/, and
p.x/ D 2 on R n .�2; 2/. Then we have that f 2 Lp.�/.R/ but Of 62 Lp0.�/.R/.

The failure of the Hausdorff-Young inequality for this function f comes from
the fact that the Fourier transform redistributes the mass of f between the origin
and infinity. In the study of weighted norm inequalities for the Fourier transform
this is handled by replacing the weight w.x/ by w.1=x/. For example, Benedetto,
Henig and Johnson [24] showed that if 1 � p � 2 and w 2 A2 is an even function
on R that is non-decreasing on .0;1/, then

�Z
Rn

j Of .x/jp0

w.1=x/ dx

�1=p0

� C

�Z
Rn

jf .x/jpw.x/p=p
0

dx

�1=p
:

The corresponding approach for variable Lebesgue spaces would be to replace the
exponent p0.�/ with q.x/ D p0.1=x/. (Such a transformation has been applied in
another setting: see Samko and Vakulov [323].) In the above example, Of 2 Lq.�/.R/.
However, we must also assume that p.�/ is non-decreasing on .0;1/. For instance,
in the above example if we take p.3=2/ < p.0/, then we could choose p.�/ so that
g.x/ D jx�3=2j�4=5 is in Lp.�/.R/; then by the translation properties of the Fourier
transform, Og.�/ D cj�j�1=5, and Og 62 Lq.�/.R/. This suggests the following problem.

Question 5.61. Given p.�/ 2 P.R/ such that 1 � p� � pC � 2 and p.�/ is even
and non-decreasing on .0;1/, is it the case that there exists a constant C > 0 such
that for all f 2 Lp.�/.R/, k Of kq.�/ � Ckf kp.�/, where q.x/ D p0.1=x/?



Chapter 6
Basic Properties of Variable Sobolev Spaces

In this chapter we present the elementary theory of variable Sobolev spaces. Unlike
Chap. 2, where we systematically developed a complete theory of variable Lebesgue
spaces, our goal here is less ambitious. Our aim is to illustrate how the theorems and
techniques given in previous chapters can be applied to the variable Sobolev spaces.
Consequently, many of our results are not given in the fullest generality possible,
and there are a number of results from the classical theory of Sobolev spaces that
we do not discuss.

We begin with a review of basic terminology and definitions. We assume that
the reader has some knowledge of weak derivatives and classical Sobolev spaces,
and so we state some results without proof and refer the reader to some standard
references. (Additional references are given in Sect. 6.5.) We then discuss three
topics: the density of smooth functions, Poincaré inequalities, and the Sobolev
embedding theorem. The majority of our positive results require some regularity
assumption on the exponent function p.�/; following our approach in Chap. 5, in
most cases we will state these in terms of boundedness properties of the maximal
operator. Throughout this section we assume that� is an open set; unless we specify
otherwise, it may be either bounded or unbounded.

6.1 The Space W k;p.�/.�/

In this section we define the variable Sobolev spaces and give their basic function
space properties. We begin with some preliminary definitions. A multi-index ˛ is a
vector ˛ D .˛1; ˛2; : : : ; ˛n/ of non-negative integers. Define the length of ˛ as

j˛j D ˛1 C � � � C ˛n:

Let ˛Š D ˛1Š˛2Š � � �˛nŠ. Given another multi-index ˇ, define

˛ ˙ ˇ D .˛1 ˙ ˇ1; : : : ; ˛n ˙ ˇn/:

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3 6, © Springer Basel 2013
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If ˇj � ˛j for all j , then we write ˇ � ˛. For ˇ � ˛, define the multi-index
binomial coefficient by

 
˛

ˇ

!
D

nY
jD1

 
˛j

ˇj

!
D ˛Š

ˇŠ.˛ � ˇ/Š
:

Given f 2 C1.�/, for each j , 1 � j � n, let @j f D @f=@xj be the j -th
partial derivative, and for each i > 0 let @ij f D @j ı@j ı� � �ı@j f denote i iterations
of the j -th partial derivative. For each ˛, j˛j > 0, define the differentiation operator
D˛ by

D˛f D @
˛1
1 @

˛2
2 � � � @˛nn f:

If ˛ D .0; : : : ; 0/ D 0 is the zero vector, let D˛f D f . Define the gradient of f to
be the vector rf D .@1f; : : : ; @nf /. When n D 1 we will write Df for df=dx.

Definition 6.1. Given�, a function f 2L1loc.�/ and a multi-index ˛, f has a weak
derivative of order ˛ if there exists a function g˛ 2 L1loc.�/ such that for every
function � 2 C1

c .�/,

Z
�

f .x/D˛�.x/ dx D .�1/j˛j
Z
�

g˛.x/�.x/ dx:

It can be shown that g˛ is unique, and we write D˛f D g˛ .

If a function f is smooth, then by integration by parts we have that the classical
derivatives of f are also weak derivatives. More generally, we have the following
result. For a proof, see [363].

Proposition 6.2. Given �, if the function f 2 L1loc.�/ is absolutely continuous
on almost every line segment in � parallel to the coordinate axes, and if its
classical partial derivatives along these lines are locally integrable, then it is weakly
differentiable and its weak and classical derivatives coincide.

Like the classical derivatives, weak derivatives are linear: if f and g have weak
derivatives of order ˛ thenD˛.f C g/ D D˛f CD˛g andD˛.cf / D cD˛f .

In the classical case, the Sobolev space W k;p.�/ consists of all functions f 2
Lp.�/ such that for all multi-indices ˛ with j˛j � k, D˛f exists and belongs to
Lp.�/. W k;p

loc .�/ is defined in the same way, replacing Lp.�/.�/ with Lp.�/loc .�/. We
extend these definitions to the variable exponent setting.

Definition 6.3. Given �, p.�/ 2 P.�/, and an integer k � 1, define the variable
Sobolev space W k;p.�/.�/ to be the set of all f 2 Lp.�/.�/ such that if j˛j � k,
then D˛f 2 Lp.�/.�/. Let
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kf kW k;p.�/.�/ D
X

j˛j�k
kD˛f kp.�/:

If there is no ambiguity about the domain we will often write kf kk;p.�/ instead of
kf kW k;p.�/.�/. For brevity we will write krf kp.�/ instead of kjrf jkp.�/. The space

W
k;p.�/

loc .�/ is the set of all f such that f 2 W k;p.�/.A/ for every open set A such
that A is compact and contained in �.

If 1 � k < l , then for all p.�/, W l;p.�/.�/ � W k;p.�/.�/ � Lp.�/.�/. The
variable Sobolev spaces can also be embedded in the classical Sobolev spaces. (We
will consider the question of embeddings again in Sect. 6.4 below.)

Proposition 6.4. Given �, p.�/ 2 P.�/ and k � 1, W k;p.�/.�/ � W
k;p�

loc .�/. If
j�j < 1, then W k;p.�/.�/ � W k;p�.�/.

Proposition 6.4 follows at once from Corollary 2.48. This embedding is useful in
proving local or pointwise properties of functions in W k;p.�/.�/. For instance, we
can use it to extend the chain rule to the variable Sobolev spaces.

Lemma 6.5. Given � and p.�/ 2 P.�/, if f 2 W k;p.�/.�/ and � 2 C1
c .�/, then

�f 2 W k;p.�/.�/ and for all multi-indices ˛ with j˛j � k,

D˛.�f / D
X
ˇ�˛

 
˛

ˇ

!
Dˇ�D˛�ˇf: (6.1)

Proof. Since W k;p.�/.�/ � W k;1
loc .�/, the identity (6.1) follows from the chain

rule for classical Sobolev spaces (see [142]). For each ˇ, Dˇ� 2 C1
c .�/ and

D˛�ˇf 2 Lp.�/.�/. Hence, it follows from (6.1) that D˛.�f / 2 Lp.�/.�/ and
so �f 2 W k;p.�/.�/. ut

The variable Sobolev spaces are Banach spaces and have some of the same
properties as Lp.�/.�/. This is the substance of the next three results.

Theorem 6.6. Given �, p.�/ 2 P.�/ and k � 1, W k;p.�/.�/ is a Banach space
with respect to the norm k � kW k;p.�/.�/.

Proof. It is immediate that W k;p.�/.�/ is a vector space; since k � kLp.�/.�/ is a norm
(Theorem 2.17), k � kW k;p.�/.�/ is also a norm. We will show that W k;p.�/.�/ is
complete. Let ffj g � W k;p.�/.�/ be a Cauchy sequence. Then for each ˛, 0 �
j˛j � k, since kD˛fj � D˛fikp.�/ � kfj � fikk;p.�/, the sequence fD˛fj g is
a Cauchy sequence in Lp.�/.�/. Since Lp.�/.�/ is complete (Theorem 2.71) there
exists g˛ 2 Lp.�/.�/ such that D˛fj ! g˛ in norm. Let g D g0.

We clam that g 2 W k;p.�/.�/ and fj ! g in W k;p.�/ norm. To prove this we
will show that if 0 � j˛j � k, D˛g D g˛ . Fix ˛; then for any � 2 C1

c .�/, by the
generalized Hölder’s inequality (Theorem 2.26),
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ˇ̌
ˇ̌
Z
�

�
g.x/ � fj .x/

�
D˛�.x/ dx

ˇ̌
ˇ̌

�
Z
�

jg.x/ � fj .x/jjD˛�.x/j dx � Kp.�/kg � fj kp.�/kD˛�kp0.�/:

Since D˛� 2 Lp0.�/.�/, it follows that

lim
j!1

Z
�

fj .x/D
˛�.x/ dx D

Z
�

g.x/D˛�.x/ dx:

The same argument shows that

lim
j!1

Z
�

D˛fj .x/�.x/ dx D
Z
�

g˛.x/�.x/ dx:

Therefore, by Definition 6.1,D˛g D g˛ and our proof is complete. ut
For the next two theorems we recall some notation and define an auxiliary space.

Given a Banach space X , let X� denote the dual space—the collection of bounded
linear functionals on X . We write X�� D .X�/�. Let M D M.k; n/ be the number
of multi-indices ˛ such that 0 � j˛j � k and define the product space

L
p.�/
M .�/ D

MY
iD1

Lp.�/.�/;

that is, Lp.�/M .�/ is the cartesian product of M (different) copies of Lp.�/.�/. Note

that Lp.�/M .�/ is a Banach space whose norm is the sum of the norms of each copy
of Lp.�/.�/. (See Conway [51].)

Theorem 6.7. Given � and p.�/ 2 P.�/, suppose pC < 1. Then W k;p.�/.�/ is
separable. If 1 < p� � pC < 1, then W k;p.�/.�/ is reflexive: W k;p.�/.�/�� D
W k;p.�/.�/, with equality in the sense of isomorphism.

Proof. If pC < 1, Lp.�/.�/ is separable (Theorem 2.78), and therefore Lp.�/M .�/

is separable. Similarly, if 1 < p� � pC < 1, then Lp.�/.�/ is reflexive
(Corollary 2.81), and therefore so is Lp.�/M .�/. (For these properties of Cartesian
products of Banach spaces, see [51, 95].)

Impose some linear order on the M multi-indices ˛ with j˛j � k, and associate
to each f 2 W k;p.�/.�/ the vector .D˛f /j˛j�k . Then this map is an isometry from

W k;p.�/.�/ intoLp.�/M .�/, and sinceW k;p.�/.�/ is a Banach space (Theorem 6.6), its

image in Lp.�/M .�/ is closed. Therefore, wheneverLp.�/M .�/ is separable or reflexive,
so is W k;p.�/.�/. ut
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Theorem 6.8. Given � and p.�/ 2 P.�/, suppose pC < 1. Then ˆ 2
W k;p.�/.�/� if and only if there exists .v˛/j˛j�k 2 L

p0.�/
M .�/ such that for all

f 2 W k;p.�/.�/,

ˆ.f / D ˆ.v˛/.f / D
X

j˛j�k

Z
�

D˛f .x/v˛.x/ dx: (6.2)

Proof. Given any .v˛/j˛j�k 2 L
p0.�/
M .�/, by the generalized Hölder’s inequality

(Theorem 2.26),ˆ.v˛/ defines a bounded linear functional onW k;p.�/.�/. To see the
converse, fix ˆ 2 W k;p.�/.�/�. Since W k;p.�/.�/ is isometric to a closed subspace
of Lp.�/M .�/, by an abuse of notation identify W k;p.�/.�/ with its image and regard
ˆ as a linear functional on this subspace. By the Hahn-Banach theorem (see [51])
there exists Q̂ 2 Lp.�/M .�/� such that Q̂ D ˆ on W k;p.�/.�/. But we have that

L
p.�/
M .�/� D

MY
iD1

Lp.�/.�/� D L
p0.�/
M .�/;

where equality is understood in terms of isomorphism: for the first equality, see [51];
the second is a consequence of Theorem 2.80 since pC < 1. Therefore, there exists

.v˛/j˛j�k 2 Lp0.�/
M .�/ such that Q̂ D ˆ.v˛/, and so by restriction we get (6.2). ut

Remark 6.9. In Sect. 2.10.3 we defined Banach function spaces. Though spaces of
functions, the variable Sobolev spaces W k;p.�/.�/ are not Banach function spaces
since they do not satisfy all of the axioms. In particular, given E � �, jEj < 1,
then 	E 62 W k;p.�/.�/ since it is not an element ofW 1;1

loc .�/. (Cf. [363].)

6.2 Density of Smooth Functions

Since W k;p.�/.�/ is a Banach space, it is natural to consider the question of dense
subsets. If pC < 1, it is separable and so there exists a countable dense subset.
However, we would like to identify particular families of functions that are dense.
Because weak derivatives coincide with classical derivatives for smooth functions,
it is natural to consider the question of when such functions are dense. We begin by
defining two subspaces of W k;p.�/.�/.

Definition 6.10. Given� and p.�/ 2 P.�/, for k � 1 letW k;p.�/
0 .�/ be the closure

of C1
c .�/ inW k;p.�/.�/, and let Hk;p.�/.�/ be the closure of Ck.�/\W k;p.�/.�/.

Arguing as we did above, we have that if j�j < 1, then W
k;p.�/
0 .�/ �

W
k;p�

0 .�/ and Hk;p.�/.�/ � Hk;p�.�/. The next proposition is an immediate
consequence of Theorems 6.6 and 6.7, and the fact that closed subspaces of a Banach
space are themselves Banach spaces.
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Proposition 6.11. Given � and p.�/ 2 P.�/, for k � 1, W k;p.�/
0 .�/ and

Hk;p.�/.�/ are Banach spaces. If pC < 1, then they are separable, and if
1 < p� � pC < 1, they are reflexive.

In the classical Sobolev spaces, by the Meyers-Serrin theorem we have that for
1 � p < 1, Hk;p.�/ D W k;p.�/. (See [142].) This is not the case in variable
Sobolev spaces: as the next example shows, for this equality to hold we must assume
some kind of regularity on the exponent p.�/.
Example 6.12. In R

2, let B D B1.0/. Then there exists p.�/ 2 P.B/ such that
C1.B/\W 1;p.�/.B/ is not dense in W 1;p.�/.B/.

Proof. The coordinate axes divideB into four regions: denote them byQ1; : : : ;Q4,
beginning with the upper-right quadrant and proceeding counter-clockwise. Fix
p1; p2, 1 < p1 < 2 < p2 < 1, and define p.�/ 2 P.B/ by

p.x/ D
(
p2 x 2 Q1 [Q3

p1 x 2 Q2 [Q4:

For x D .x1; x2/ 2 B , define the function f by

f .x/ D

8̂
ˆ̂̂<
ˆ̂̂̂
:

1 x 2 Q1

x2=jxj x 2 Q2

0 x 2 Q3

x1=jxj x 2 Q4:

It is immediate that f 2 L1.B/ � L1.B/ and is continuous on B n f0g. We will
show that f 2 W 1;p.�/.B/ but f cannot be approximated by functions in C1.B/.
For x 2 Q2,

@1f .x/ D �x1x2
jxj3 ; @2f .x/ D .x1/2

jxj3 I

hence, by Proposition 6.2, the weak and classical derivatives of f coincide.
Moreover, since p1 < 2, integrating in polar coordinates we get

Z
Q2

j@1f .x/jp1 dx D
Z �=2

0

Z 1

0

r2p1
�

cos.�/ sin.�/
�p1

r3p1
r dr d� < 1:

A similar computation holds for @2f inQ2, and again for both partial derivatives in
Q4. Therefore, by Proposition 2.12, f 2 W 1;p.�/.B/.

To show that f cannot be approximated in norm byC1 functions, fix g 2 C1.B/;
then by the definition of f and p.�/,

kf � gkW 1;p.�/.B/ � max
�kgkW 1;p2 .Q3/

; k1 � gkW 1;p2 .Q1/

�
:
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Suppose g.0/ � 1=2; we will show that there exists a constant c.p2/ > 0 such that
kgkW 1;p2 .Q3/

� c.p2/. If g.0/ < 1=2, then essentially the same argument shows that
k1 � gkW 1;p2 .Q1/ � c > 0.

Let @r denote the radial derivative; then

j@1g.x/j C j@2g.x/j � jrg.x/j � j@rg.x/j:

Therefore,

kgkp2
W 1;p2 .Q3/

�
Z
Q3

jg.x/jp2 dx C
Z
Q3

j@1g.x/jp2 dx C
Z
Q3

j@2g.x/jp2 dx

�
Z
Q3

jg.x/jp2 dx C 2�p2
Z
Q3

j@rg.x/jp2 dx:
(6.3)

We estimate the right-hand side by converting to polar coordinates. Let ‚ be the
part of the boundary of Q3 that lies on the unit circle. Define

S D f� 2 ‚ W g.r; �/ > 1=4; 1=4 � r � 1=2g;

and define T D ‚ n S . Let jS j1, jT j1 be their one-dimensional Hausdorff measure;
then jS j1 C jT j1 D �=2. Suppose jS j1 � �=4. Then

Z
Q3

jg.x/jp2 dx �
Z
S

Z 1=2

1=4

jg.r; �/jp2r dr d� � 3jS j1
32 � 4p2 � 3�

128 � 4p2 :

On the other hand, suppose jT j1 � �=4. If � 2 T , then there exists r� , 1=4 �
r� � 1=2, such that g.r� ; �/ � 1=4. Therefore, by the fundamental theorem of
calculus and Hölder’s inequality we have that

1=4 � jg.r� ; �/�g.0; 0/j �
Z r�

0

j@rg.r; �/j dr �
Z 1=2

0

j@rg.r; �/jr1=p2r�1=p2 dr

�
 Z 1=2

0

j@rg.r; �/jp2r dr

!1=p2  Z 1=2

0

r�p0

2=p2 dr

!1=p0

2

:

Since p2 > 2, p0
2=p2 D p0

2 � 1 < 1, and so the second integral on the right-hand
side is finite. If we evaluate it and rearrange terms, we get that

Z
Q3

j@rg.x/jp2 dx �
Z
T

Z 1=2

0

j@rg.r; �/jp2r dr d�

� .2 � p0
2/
p2=p

0

2 jT j1
2p2

� .2 � p0
2/
p2=p

0

2�

4 � 2p2 :
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In either case, therefore, the right-hand side of (6.3) is bounded away from zero.
Since this bound holds for every g 2 C1.B/, f cannot be approximated in norm by
functions in C1.B/. ut

Example 6.12 shows that we need some kind of regularity on the exponent p.�/
for Hk;p.�/.�/ to be equal to W k;p.�/.�/. For example, as we will show below, we
could assume that p.�/ 2 LH.�/. But in fact, it suffices to assume that p.�/ is
locally regular: for example, that p.�/ 2 LH0.�/, even if � is unbounded. We will
state our hypotheses more generally in terms of the boundedness of the maximal
operator.

Definition 6.13. Given � and p.�/ 2 P.�/, the maximal operator is locally
bounded in Lp.�/.�/ if for every open set A such that A is compact and contained
in �, the maximal operator is bounded in Lp.�/.A/.

Our first result extends the Meyers-Serrin theorem to the variable Sobolev spaces.

Theorem 6.14. Given � and p.�/ 2 P.�/, suppose pC < 1 and the maximal
operator is locally bounded on Lp

0.�/.�/. Then Hk;p.�/.�/ D W k;p.�/.�/.

The proof requires one lemma about the regularity of convolutions whose proof
is a straightforward application of calculus; see [142] for details.

Lemma 6.15. If f 2 L1loc.R
n/ and � 2 C1

c .R
n/, then � � f 2 C1.Rn/, and for

any multi-index ˛, D˛.� � f / D .D˛�/ � f .

Proof of Theorem 6.14. Since Hk;p.�/.�/ � W k;p.�/.�/ we only have to prove the
reverse inclusion. To do so, it will suffice to show that given any f 2 W k;p.�/.�/
and � > 0, there exists g 2 Ck.�/ such that kf � gkk;p.�/ < �. (By the triangle
inequality we get g 2 W k;p.�/.�/.)

For each j � 1 define the sets

�j D fx 2 � W jxj < j; dist.x; @�/ > 1=j g:

Let �0 D ��1 D ; and let

Aj D �jC1 n�j�1:

The sets Aj are open,Aj is compact, and given any x 2 �, x is contained in a finite
number of the sets Aj . Therefore, there exists a partition of unity subordinate to this
cover. (See [7].) More precisely, there exists a collection of functions f j g such that
 j 2 C1

c .Aj / and for all x 2 �, 0 �  j .x/ � 1, and

1X
jD1

 j .x/ D 1:
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Further, by Lemma 6.5 for each j we have that  j f 2W k;p.�/.�/ and
supp. j f / � Aj .

Let � 2 C1
c .B1.0// be non-negative and such that

R
�.x/ dx D 1. Since

�t � . j f /.x/ D
Z
Aj

�t .x � y/ j .y/f .y/ dy;

this convolution is non-zero only if jx � yj < t and y 2 Aj . Therefore, if we let
0 < t < .jC1/�1�.jC2/�1, then this is the case only if .jC2/�1 < dist.x; @�/ �
.j � 2/�1, the second inequality holding if j � 3. Hence, supp.�t � . jf // �
�jC2 n�j�2 D Bj . Note that Bj is compact and contained in �.

Since the maximal operator is locally bounded on Lp
0.�/.�/, it is bounded on

Lp
0.�/.Bj /, and so by Theorem 5.11 there exists tj < .j C 1/�1 � .j C 2/�1 such

that for all ˛, 0 � j˛j � k,

k�tj �D˛. jf /�D˛. jf /kLp.�/.�/
D k�tj �D˛. jf /�D˛. j f /kLp.�/.Bj / <

�

2jM
;

where M is the total number of multi-indices with j˛j � k. By Lemma 6.15,
�tj �D˛. j f / D D˛.�tj � . j f //. Therefore,

k�tj � . jf /�  j f kk;p.�/ D
X

j˛j�k
k�tj �D˛. jf /�D˛. jf /kp.�/ � 2�j �:

Define the function g by

g.x/ D
1X
jD1

�tj � . j f /.x/:

Again by Lemma 6.15, each summand is in C1.�/. Further, if x 2 �, it is
contained in a finite number of setsBj , so only a finite number of terms of this series
are non-zero at x. Therefore, it converges locally uniformly and g 2 C1.�/ �
Ck.�/. Finally, we have that

kg � f kk;p.�/ D
				

1X
jD1

�
�tj � . j f / �  j f

�				
k;p.�/

�
1X
jD1

k�tj � . j f /�  j f kk;p.�/ <
1X
jD1

2�j � D �:

This completes the proof. ut
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Remark 6.16. As a corollary to the proof of Theorem 6.14 we get that the smaller
set C1.�/\W k;p.�/.�/ is dense in W k;p.�/.�/.

Our second density theorem shows that if � D R
n, then smooth functions of

compact support are dense.

Theorem 6.17. Given p.�/ 2 P.Rn/, suppose that pC < 1 and the maximal
operator is locally bounded on Lp

0.�/.Rn/. Then W k;p.�/
0 .Rn/ D W k;p.�/.Rn/.

Proof. Since W
k;p.�/
0 .Rn/ � W k;p.�/.Rn/, we only need to prove the reverse

inequality. Fix f 2 W k;p.�/.Rn/ and � > 0; we will show that there exists
� 2 C1

c .R
n/ such that kf � �kk;p.�/ < �. By Theorem 6.14 (see Remark 6.16)

there exists g 2 C1.Rn/ \W k;p.�/.Rn/ such that kf � gkk;p.�/ < �=2. Therefore,
it remains to show that we can find � 2 C1

c .R
n/ such that kg � �kk;p.�/ < �=2.

For each N > 1 let �N 2 C1
c .R

n/ be such that:

1. supp.�N / � BN .0/;
2. For all x, 0 � �N .x/ � 1;
3. If x 2 BN=2.0/, �N .x/ D 1;
4. There existsK > 0 such that for all j˛j � k, kD˛�N k1 � K .

Let �N D g�N . Then �N 2 C1
c .R

n/. By the product rule, for any multi-index ˛,
j˛j � k,

D˛�N D �ND
˛g C

X
ˇ�˛
ˇ¤0

 
˛

ˇ

!
Dˇ�ND

˛�ˇg:

Therefore, for all x,

jD˛�N .x/j � C
X

j˛j�k
jD˛g.x/j;

and the sum on the right-hand side is in Lp.�/.Rn/. For all x and any ˛ with j˛j > 0,
D˛�N .x/ ! 0 as N ! 1. Hence, D˛�N ! �ND

˛g pointwise as N ! 1.
Therefore, by the dominated convergence theorem for the variable Lebesgue spaces
(Theorem 2.62), for all ˛, j˛j � k, D˛�N ! D˛g in Lp.�/.Rn/. Therefore, we can
findN sufficiently large that if we let � D �N , kg��kk;p.�/ < �=2. This completes
the proof. ut

The hypothesis that pC < 1 in Theorem 6.17 is necessary, as the next example
shows.

Example 6.18. Let p.x/ D jxj C 1. Then p.�/ 2 P.R/, and by Proposition 2.43,
the function f .x/ D 1 is in Lp.�/.R/; since Df D 0, f 2 W 1;p.�/.R/. On the
other hand, by Theorem 2.77 bounded functions of compact support are not dense
in Lp.�/.R/, and so C1

c .R/ cannot be dense in W 1;p.�/.R/.
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6.3 The Poincaré Inequalities

In this section we give sufficient regularity conditions on the exponent p.�/ for
the Poincaré inequalities to hold in the variable Sobolev spaces. As before, these
conditions are in terms of the boundedness of the maximal operator. Recall that
given a bounded set � and a function f , f� D �R

�
f .y/ dy.

Theorem 6.19. Given a bounded, convex set � with diameter D, let p.�/ 2 P.�/
be such that pC < 1 and the maximal operator is bounded on Lp

0.�/.�/. Then for
all f 2 W 1;p.�/.�/,

kf � f�kLp.�/.�/ � C.n; p.�//kM kLp0.�/.�/

DnC1

j�j krf kLp.�/.�/:

If the maximal operator is bounded on Lp.�/.�/, then it is bounded on Lp.�/.A/
for any A � � with the same constant. Therefore, Theorem 6.19 has the following
corollary.

Corollary 6.20. Given � and p.�/ 2 P.�/, suppose pC < 1 and the maximal
operator is bounded on Lp

0.�/.�/. Then for every ball B � � with radius R, and
for all f 2 W 1;p.�/.B/,

kf � fBkLp.�/.B/ � C.n; p.�//kM kLp0.�/.�/Rkrf kLp.�/.B/:

The second Poincaré inequality is restricted to functions in W 1;p.�/
0 .�/.

Theorem 6.21. Given a bounded set � with diameter D, let p.�/ 2 P.�/ be such
that pC < 1 and the maximal operator is bounded on Lp

0.�/.�/. Then for all
f 2 W 1;p.�/

0 .�/,

kf kLp.�/.�/ � C.n; p.�//kM kLp0.�/.�/Dkrf kLp.�/.�/:

The proofs of Theorems 6.19 and 6.21 require three lemmas. Recall that I1 is the
Riesz potential with index 1: see Definition 5.44.

Lemma 6.22. Let � be a bounded set with diameter D, and let p.�/ 2 P.�/ be
such that pC < 1 and the maximal operator is bounded on Lp

0.�/.�/. Then for all
f 2 Lp.�/.�/,

kI1f kLp.�/.�/ � C.n; p.�//kM kLp0.�/.�/Dkf kLp.�/.�/: (6.4)

Remark 6.23. If p.�/ D p, 1 � p < 1, then inequality (6.4) is always true. The
proof is much simpler and does not involve the maximal operator: it is an immediate
consequence of Proposition 5.2 and the constant is C.n/D.
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Remark 6.24. By Remark 5.14, we could change the hypotheses of Lemma 6.22 to
be that p� > 1 and the maximal operator is bounded on Lp.�/.�/; in this case we
do not need to assume pC < 1. We can therefore make the corresponding change
in the hypotheses of Theorems 6.19 and 6.21, and Corollary 6.20.

Proof. Fix f 2 Lp.�/.�/ and extend f to equal 0 on R
n n�. Then for all x 2 �,

I1f .x/ D
Z
�

f .y/

jx � yjn�1 dy D
Z
BD.x/

f .y/

jx � yjn�1 dy D ˆ � f .x/;

whereˆ.x/ D jxj1�n	BD.0/ is a positive, radially decreasing function in L1.Rn/. If
we integrate in polar coordinates we get that

Z
BD.0/

ˆ.x/ dx D
Z

j� jD1

Z D

0

r1�nrn�1 dr d� D C.n/D:

Therefore, by Theorem 5.11,

kI1f kLp.�/.�/ � C.n; p.�//kM kLp0.�/.�/Dkf kLp.�/.�/:

ut
Lemma 6.25. Given a bounded convex set � with diameter D, for every f 2
W 1;1.�/,

jf .x/ � f�j � Dn

nj�jI1.jrf j/.x/:

Proof. We first prove this for f 2 C1.�/. Fix f 2 C1.�/ and for x; y 2 � let

� D y � x

jy � xj :

Since � is convex, by the fundamental theorem of calculus

f .x/ � f .y/ D �
Z jy�xj

0

rf .x C �r/ � � dr:

If we integrate in y over�, we get

f .x/ � f� D �1
j�j

Z
�

Z jy�xj

0

rf .x C � r/ � � dr dy:

Let B D BD.x/; then � � B . Hence, by changing between Cartesian and polar
coordinates, we have that
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jf .x/ � f�j � 1

j�j
Z
B

Z jy�xj

0

jrf .x C � r/j	�.x C � r/ dr dy

� 1

j�j
Z

j� jD1

Z D

0

Z �

0

jrf .x C � r/j	�.x C � r/ dr �n�1 d� d�

� 1

j�j
Z

j� jD1

Z 1

0

Z D

0

jrf .x C � r/j	�.x C � r/ �n�1 d� dr d�

D Dn

nj�j
Z

j� jD1

Z 1

0

jrf .x C � r/j	�.x C � r/r1�nrn�1 d� dr

D Dn

nj�j
Z
�

jrf .y/j
jx � yjn�1 dy

D Dn

nj�jI1.jrf j/.x/:

To prove this inequality in general, fix f 2 W 1;1.�/. By Theorem 6.14 there
exists a sequence fgkg � C1.�/ \W 1;1.�/ that converges to f in W 1;1.�/ norm
and so also in L1.�/. Therefore, if we pass to a subsequence we may assume that
gk ! f pointwise almost everywhere. By Remark 6.23 we have that (6.4) holds
when p D 1 which in turn implies that I1.jrgkj/ ! I1.jrf j/ in L1.�/ norm; by
passing to another subsequence we may assume that it converges pointwise almost
everywhere. Hence,

jf .x/�f�j D lim
k!1

jgk.x/�.gk/�j � lim
k!1

Dn

nj�jI1.jrgk j/.x/ D Dn

nj�jI1.jrf j/.x/:

ut
Lemma 6.26. Given a bounded set �, then for every f 2 W 1;1

0 .�/,

jf .x/j � C.n/I1.jrf j/.x/:

Proof. We first prove this for f 2C1
c .�/. Since f has compact support, given any

� 2 R
n, j� j D 1, by the fundamental theorem of calculus,

f .x/ D
Z 1

0

rf .x � � t/ � � dt:

If we integrate over the unit sphere and change from polar to Cartesian coordinates,
we get

f .x/ D C.n/

Z
j� jD1

Z 1

0

rf .x � � t/ � � dt d�

D C.n/

Z
Rn

rf .x � y/
y

jyjn dy D C.n/

Z
Rn

rf .y/ x � y
jx � yjn dy:
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If we now take absolute values, this becomes

jf .x/j � C.n/

Z
�

jrf .x/j
jx � yjn�1 dy D C.n/I1.jrf j/.x/:

To prove this inequality for f 2 W 1;1
0 .�/, we argue exactly as we did at the end

of the proof of Lemma 6.25, using the fact that C1
c .�/ is dense in W 1;1

0 .�/. ut
Proof of Theorems 6.19 and 6.21. Fix f 2 W 1;p.�/.�/; then by Proposition 6.4, we
have that f 2 W 1;p�.�/ � W 1;1.�/. Therefore, by Lemmas 6.22 and 6.25,

kf � f�kLp.�/.�/ � Dn

nj�j kI1.jrf j/kLp.�/.�/

� C.n; p.�//kM kLp0.�/.�/

DnC1

j�j krf kLp.�/.�/:

The proof of Theorem 6.21 is identical except that we use Lemma 6.26 in place
of Lemma 6.25. ut

6.4 Sobolev Embedding Theorems

A key result in the classical theory is the Sobolev embedding theorem: if
1 � p < n, then W 1;p

0 .�/ � Lp
�

.�/, where p� D np=.n � p/. This result can be
extended to variable Sobolev spaces. However, as the next example shows, just as
we had to do for the density theorems in Sect. 6.2, we must assume some regularity
on the exponent p.�/. To state our results we first make a definition.

Definition 6.27. Given � and p.�/ 2 P.�/ such that pC � n, define the Sobolev
exponent p�.�/ 2 P.�/ by

p�.x/ D np.x/

n � p.x/
:

Example 6.28. In R
2, let B D B1.0/. Then there exists an exponent p.�/ 2 P.B/

and f 2 W 1;p.�/.B/ such that f 62 Lp�.�/.B/.

Proof. Fix p1 and p2, 1 < p1 < p2 < 2, and let � D 2.p2 � p1/=p1. Define the
region A � B in terms of polar coordinates,

A D f.r; �/ 2 B W j� j < r�g;
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and define p.�/ 2 P.B/ by

p.x/ D
(
p1 x 2 B n A
p2 x 2 A:

Let f .x/ D jxj�
, where
 D .2�p2/=p1. Note that by Proposition 6.2 its weak
and classical partial derivatives are the same. We will show that f 2 W 1;p.�/.B/ but
f 62 Lp�.�/.B/. Integrating in polar coordinates we get

Z
B

jf .x/jp.x/ dx D
Z
A

jf .x/jp2 dx C
Z
BnA

jf .x/jp1 dx

�
Z 1

0

Z r�

�r�
r1�
p2 d� dr C 2�

Z 1

0

r1�
p1 dr

� 2

Z 1

0

r1�
p2C� dr C 2�

Z 1

0

r1�
p1 dr:

Since

1 � 
p2 C � D p22 � p1

p1
> 0 and 1 � 
p1 D p2 � 1 > 0;

both integrals converge. Further, a straightforward computation shows that
jrf .x/j D 
jxj�
�1, and so

Z
B

jrf .x/jp.x/ dx � 2j
jp2
Z 1

0

Z r�

0

r1�p2.
C1/ d� drC2� j
jp1
Z 1

0

r1�p1.
C1/ dr

D 2j
jp2
Z 1

0

r1�p2.
C1/C� dr C 2� j
jp1
Z 1

0

r1�p1.
C1/ dr:

Since

1 � p2.
C 1/C � D p22 � p1

p1
� p2 D p22 � p1p2 � p1

p1
> �1

and

1 � p1.
C 1/ D p2 � p1 � 1 > �1;

these integrals also converge. Thus, by Proposition 2.12, f 2 W 1;p.�/.B/.
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On the other hand,

Z
B

jf .x/jp�.x/ dx >

Z
A

jf .x/jp�

2 dx D 2

Z 1

0

r
1� 2p2

2�p2

C� dr D 2

Z 1

0

r�1 dr D 1;

and so again by Proposition 2.12, f 62 Lp�.�/.B/. ut
By assuming that the exponent p.�/ is regular, we can extend the Sobolev

embedding theorem to variable Sobolev spaces by using extrapolation theory.

Theorem 6.29. Given � and p.�/ 2 P.�/ such that pC < n, suppose that the
maximal operator is bounded on L.p

�.�/=n0/0.�/. ThenW 1;p.�/
0 .�/ � Lp

�.�/.�/, and

kf kp�.�/ � Ckrf kp.�/:

Remark 6.30. The hypotheses of Theorem 6.29 allow p� D 1, including the case
p.�/D 1. If p.�/D 1, then .p�.�/=n0/0 D 1 and by Proposition 3.3 the maximal
operator is bounded on L1.�/. More generally, by Definition 6.27 we always have
that p�.�/� � n0, and so .p�.�/=n0/0 is well-defined. Further, ..p�.�/=n0/0/� > 1,
and so if we assume, for example, that p.�/ 2 LH.�/, then 1=.p�.�/=n0/0 2
LH.�/ and the maximal operator is again bounded. (We take the inverse since
.p�.�/=n0/0 may be unbounded.)

Remark 6.31. In the classical Sobolev spaces, the embedding theorem holds for
functions f 2 W 1;p.�/ with additional assumptions on the boundary of �. The
same is true in variable Lebesgue spaces; see Sect. 6.5.7 below.

To apply extrapolation we need the corresponding weighted norm inequality.

Lemma 6.32. Given �, then for all p, 1 � p < n, w 2 A1, and f 2 C1
c .�/,

�Z
�

jf .x/jp�

w.x/ dx

�1=p�

� C

�Z
�

jrf .x/jpw.x/p=p� dx

�1=p
;

where p� D np=.n � p/.

Proof. Fix f 2 C1
c .�/. For each j 2 Z let

�j D fx 2 � W 2j < jf .x/j � 2jC1g;

and define the function fj by

fj .x/ D

8̂
<̂
ˆ̂:

jf .x/j � 2j x 2 �j ;

2j x 2 �i ; i > j;

0 otherwise:
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The function fj is weakly differentiable and jrfj .x/j D jrf .x/j	�j almost
everywhere. (See [142].) Further, if x 2 �j , by Lemma 6.26,

I1.jrfj�1j/.x/ � c.n/jfj�1.x/j D c.n/2j�1: (6.5)

Since a strong type inequality implies the corresponding weak type inequality,
by Theorem 5.49, since w 2 A1 � Ap;p� , we have that

w.fx 2 � W jI1h.x/j > tg/ � C

�
1

tp

Z
�

jh.x/jw.x/p=p�

dx

�p�=p

: (6.6)

Therefore, by (6.5) and (6.6) with h D jrfj�1j, we have that

Z
�

jf .x/jp�

w.x/ dx D
X
j

Z
�j

jf .x/jp�

w.x/ dx

�
X
j

Z
�j

2.jC1/p�

w.x/ dx

D 4p
�

c.n/�p�
X
j

Z
�j

�
c.n/2j�1�p�

w.x/ dx

� C
X
j

Z
fx2�WI1.jrfj�1j/.x/>c.n/2j�1g

�
c.n/2j�1�p�

w.x/ dx

� C
X
j

�Z
�

jrfj�1.x/jpw.x/p=p� dx

�p�=p

� C

0
@X

j

Z
�j�1

jrf .x/jpw.x/p=p� dx

1
A
p�=p

� C

�Z
�

jrf .x/jpw.x/p=p� dx

�p�=p

:

This completes the proof. ut
Proof of Theorem 6.29. Define the family F to be all the pairs .jf j; jrf j/ with
f 2 C1

c .�/. Fix q.�/ D p�.�/, and q0 D n0. By assumption, the maximal operator
is bounded on L.q.�/=q0/0.�/. Therefore, by Theorem 5.28 and Lemma 6.32 (with
p D 1), for all f 2 C1

c .�/

kf kLp�.�/.�/ � Ckrf kLp.�/.�/;

provided the left-hand side is finite. But this is always the case.
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Now fix f 2 W
1;p.�/
0 .�/. Then there exists a sequence fgkg � C1

c .�/ such

that gk ! f in W 1;p.�/
0 norm, and so gk ! f and rgk ! rf in Lp.�/ norm.

By Proposition 2.67, if we pass to a subsequence, we may assume that gk ! f

pointwise almost everywhere. Hence, by Fatou’s lemma in the variable Lebesgue
spaces (Theorem 2.61),

kf kp�.�/ � lim inf
k!1 kgkkp�.�/ � C lim inf

k!1 krgkkp.�/ � Ckrf kp.�/:

ut
As a corollary to Theorem 6.29 we can prove an embedding theorem for

W
k;p.�/
0 .�/. To avoid cumbersome hypotheses, we will only consider the case when

p.�/ is log-Hölder continuous.

Corollary 6.33. Given �, p.�/2 P.�/ and k� 1, suppose pC<n=k and p.�/ 2
LH.�/. Define p�

k .�/ 2 P.�/ by

p�
k .x/ D np.x/

n � kp.x/
:

Then for all f 2 W k;p.�/
0 .�/,

kf k
L
p�

k
.�/
.�/

�
X

j˛jDk
kD˛f kLp.�/.�/:

Proof. We proceed by induction. If k D 1, then this follows from Theorem 6.29
and Remark 6.30: since p.�/ 2 LH.�/, the maximal operator is bounded on
L.p

�.�/=n0/0.�/, and so

kf kLp�.�/.�/ � Ckrf kLp.�/.�/ � C
X

j˛jD1
kD˛f kLp.�/.�/:

Now suppose that the result is true for some k. Fix f 2 W kC1;p.�/.�/. For each
multi-index ˛, j˛j D 1, D˛f 2 W k;p.�/.�/, and so

X
j˛jD1

kD˛f k
L
p�

k
.�/
.�/

� C
X

j˛jD1

X
jˇjDk

kDˇD˛f kLp.�/.�/ � C
X

j˛jDkC1
kD˛f kLp.�/.�/: (6.7)

The Sobolev exponent corresponding to p�
k .�/ is

np�
k .x/

n� p�
k .x/

D np.x/

n � .k C 1/p.x/
D p�

kC1.x/:
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Since p.�/ 2 LH.�/, p�
k .�/ 2 LH.�/, so we can again apply Theorem 6.29 as we

did above to get
kf k

L
p�

kC1 .�/
�
X

j˛jD1
kD˛f k

L
p�

k
.�/
.�/
: (6.8)

If we combine (6.7) and (6.8), we get the desired inequality. ut
In the classical case the Sobolev embedding theorem requires p < n: if p D n,

then p� D 1, but there exist unbounded functions in W 1;n. A similar phenomenon
holds in the variable Lebesgue spaces if pC D n, even if p.x/ < n for all x 2 �.

Example 6.34. Let � D .0; 1/ � .0; 1/ � R
2, and for x D .x1; x2/ let p.x/ D

1Cx2. ThenpC D 2 and p�.x/ D 2.1Cx2/=.1�x2/. Let f .x/ D .2Cx2/1=.1Cx2/.
Then by Proposition 2.12, f 2 Lp.�/.�/. Further,

@2f .x/ D
�

1

.2C x2/.1C x2/
� log.2C x2/

.1C x2/2

�
f .x/;

and so rf 2 Lp.�/.�/. On the other hand,

Z
�

f .x/p
�.x/ dx D

Z 1

0

.2C x2/2=.1�x2/ dx2 �
Z 1

0

41=.1�x2/ dx2 D 1;

and again by Proposition 2.12 f 62 Lp�.�/.�/.

In the classical Sobolev spaces, if p > n, then functions in W 1;p.�/ are Hölder
continuous. The analogous result is true in variable Sobolev spaces. If p� > n and
� is bounded, then we could use the fact that W 1;p.�/.�/ � W 1;p�.�/ to draw the
same conclusion. However, by taking into account the variable exponent we can get
a sharper result.

Definition 6.35. Given a function ˛.�/ W � ! .0; 1/, a function f is said to be
˛.�/-Hölder continuous on �, denoted by f 2 C˛.�/.�/, if for every x 2 � there
exists r D r.x/, 0 < r < dist.x; @�/, such that

sup
y2Br .x/

jf .x/ � f .y/j
jx � yj˛.x/ < 1:

Theorem 6.36. Given a set � and p.�/ 2 P.�/, suppose that 1=p.�/ 2 LH0.�/

and for all x 2 �, p.x/ > n. Let ˛.x/ D 1� n=p.x/. If f 2 W 1;p.�/.�/, then f is
continuous. Moreover, if r D r.x/ D min.1=2; dist.x; @�//, then for all y 2 Br.x/,

jf .x/ � f .y/j � C.n; p�.Br.x///krf kLp.�/.�/jx � yj˛.x/: (6.9)

Moreover, if p� > n, then f 2 C˛.�/.�/.

The proof requires one lemma.
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Lemma 6.37. Given a ball B of radius r < 1=4, suppose p.�/ 2 P.B/ is such that
p�.B/ > n. If f 2 Lp.�/.B/ and x 2 B , then

jI1f .x/j � C.n; p�.B///r1�n=p�.B/kf kLp.�/.B/:
The constant increases as p�.B/ decreases.

Proof. Let d D 2r < 1=2, and fix x 2B . Extend f to a function that is zero outside
of B . For each k � 0 define

Ak D fy 2 B W 2�.kC1/d � jx � yj < 2�kd g:
Then B � S

k Ak , and so by the generalized Hölder’s inequality (Theorem 2.26)
and Corollary 2.23 (since p0.�/C.B/ D p�.B/0 < n0),

jI1f .x/j �
Z
B

jf .y/j
jx � yjn�1 dy

D
1X
kD0

Z
Ak

jf .y/j
jx � yjn�1 dy

�
1X
kD0
.2�.kC1/d /1�n

Z
Ak

jf .y/j dy

�
1X
kD0
.2�.kC1/d /1�nkf kLp.�/.B/k	AkkLp0.�/.B/

�
1X
kD0
.2�.kC1/d /1�nkf kLp.�/.B/jAkj1=p0.�/

C
.B/:

Since 1=p0.�/C.B/ � 1, a straightforward argument shows that

jAkj1=p0.�/
C
.B/ � C.n/.2�kd/n=p�.B/

0

:

Therefore, if we continue the above estimate, we have that

1X
kD0

.2�.kC1/d /1�nkf kLp.�/.B/jAkj1=p0.�/
C
.B/

� C.n/

1X
kD0

.2�.kC1/d /1�n=p�.B/kf kLp.�/.B/

� C.n; p�.B//d1�n=p�.B/kf kLp.�/.B/
D C.n; p�.B//r1�n=p�.B/kf kLp.�/.B/:
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The constant C.n; p�.B// depends on the sum of the geometric series in this
estimate, which converges because p�.B/ > n. Further, this constant increases
as p�.B/ decreases towards n. ut
Proof of Theorem 6.36. Fix x 2 � and let r D r.x/. Since Br.x/ � � and
1=p.�/ is continuous, p�.Br .x// > n. Fix y 2 Br.x/ and let B � Br.x/ be
the smallest ball containing both x and y. Denote its radius by �; since r < 1=2,
�< 1=4. Therefore, by Lemmas 6.25 and 6.37,

jf .x/ � f .y/j � jf .x/ � fB j C jf .y/ � fB j
� C.n/I1.jrf j	B/.x/C C.n/I1.jrf j	B/.y/
� C.n; p�.B//�1�n=p�.B/kf kLp.�/.B/
� C.n; p�.B//�1�n=p�.B/kf kLp.�/.�/:

Since 1=p.�/ 2 LH0.�/, by Lemma 3.24 and Remark 3.25,

�1�n=p�.B/ D c.n/jBj1=n�1=p�.B/

� c.n; p.�//jBj1=n�1=p.x/ D c.n; p.�//jx � yj˛.x/:

If we combine these two estimates, we get (6.9).
Finally, since p�.B/ � p�, if p� > n, we can substitute p� for p�.B/ into the

estimate from Lemma 6.37 and get a bound in (6.9) independent of x. Hence, we
have that f 2 C˛.�/.�/. ut

Finally, we give an example to show that in Theorem 6.36 the restriction that
p.x/ > n is necessary. For simplicity we only consider the case when is n large.

Example 6.38. For n > 3, there exists a bounded set � � R
n, p.�/ 2 P.�/ with

p.�/ 2 LH0.�/ and p� D n, and an unbounded (and so discontinuous) function
f 2 W 1;p.�/.�/.

Proof. Fix n > 3 and let a D 2
n�1 and b D 1 � a > 0. Fix R, 0 < R < e�1, such

that the function

�.r/ D �1
log.r j log.r/ja/

is positive and increasing on .0;R/. Let � D BR.0/ and define p.�/ 2 P.�/ by
p.x/ D nC �.jxj/. Then p� D p.0/ D n and p.�/ 2 LH0.�/.

Let f .x/ D j log.jxj/jb; then f is unbounded at the origin. It remains to show
that f 2 W 1;p.�/.�/. Integrating in polar coordinates, we have that
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Z
�

jf .x/jp.x/ dx D C.n/

Z R

0

j log.r/jbp.r/rn�1 dr

� C.n/

Z R

0

j log.r/jbpCrn�1 dr < 1:

A straightforward computation shows that

jrf .x/j D b

r j log.r/ja ;

and by Proposition 6.2 the weak and classical derivatives coincide. Hence, again
changing to polar coordinates, since an > 1,

Z
�

jrf .x/jp.x/ dx D C.n/

Z R

0

1

r j log.r/jan
1

.r j log.r/ja/�.r/ dr

� C.n/

Z R

0

dr

r j log.r/jan < 1:

Thus, f 2 W 1;p.�/.�/. ut

6.5 Notes and Further Results

6.5.1 References

For results on the classical Sobolev spaces we primarily followed Adams and
Fournier [7], Gilbarg and Trudinger [142], Maz’ja [260], and Ziemer [363]. There is
a vast literature on this subject: see also [76, 110, 161, 227, 343]. As we noted in the
introduction to this chapter, our treatment of variable Sobolev spaces is deliberately
brief. For a comprehensive treatment from a somewhat different perspective, see
Diening et al. [82]. Two useful introductory articles are Kováčik and Rákosnı́k [219]
and Fan and Zhao [122].

The variable Sobolev spaces were first explicitly defined by Kováčik and
Rákosnı́k [219]. Somewhat earlier, a special case was introduced by Zhikov [357].
Much earlier, generalized Sobolev spaces defined using Musielak-Orlicz spaces (see
Sect. 2.10.2) were treated in a series of papers by Hudzik [171–179]. Versions of
many of the results in this chapter are implicit in his work.

The definition of weak derivatives and Proposition 6.2 are well-known: see,
for instance, [363]. For the chain rule, Lemma 6.5, see [142]. The proofs of
Theorems 6.6–6.8 are adapted from the proofs in the classical case given in [7].
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For our definition of W k;p.�/
0 we have followed [219]. A somewhat different

definition that is equivalent in many cases is used in [82] (see also Sect. 6.5.6 below.)
The density of smooth functions in the variable Sobolev spaces was first considered
by Zhikov [355,357]; he constructed Example 6.12 and our construction is based on
his. Later, Zhikov [362] showed that this example is actually a particular case of a
more general result. (See Sect. 6.5.5 below.) A proof of Theorem 6.14 was sketched
in [58] assuming 1=p.�/ 2 LH0.�/; the proof given here is adapted from the proof
in the classical case in [7]. (See also Diening [77] for a related result when p� > 1.)
The proof of Lemma 6.15 is well-known: see, for instance, [142]. Theorem 6.17
was first proved by Samko [315,316]. A different proof was outlined briefly in [58].

The Poincaré inequality (Theorem 6.19) was first proved in variable Sobolev
spaces by Harjulehto and Hästö [151] with somewhat different assumptions on the
exponents. (See Sect. 6.5.6 below.) They also gave an example to show that the
exponent p.�/ needs some regularity. Theorem 6.21 was first proved, with different
hypotheses, in [219]. It is implicit in [106]. The versions given here are similar to
those in [82] but have slightly stronger hypotheses. (See Sect. 6.5.6 below.) The
proofs of Lemmas 6.25 and 6.26 are taken from [142].

The Sobolev embedding theorem (Theorem 6.29) has been studied extensively.
It was first considered by Kováčik and Rákosnı́k [219], who constructed Exam-
ple 6.28. They also proved a version of Theorem 6.29 assuming p.�/ is continuous
on � and with the weaker conclusion that f 2 Lq.�/.�/, where q.x/ � p.x/ � �

for some � > 0. Their results were generalized to certain kinds of discontinuous
exponents by Alisoy, Çekiç and Mashiyev [44, 257]. Fan, Shen and Zhao [118]
proved Theorem 6.29 if p.�/ is a Lipschitz function; this was proved independently
by Edmunds and Rákosnı́k [106,107] who later proved that it was enough to assume
that p.�/ is Hölder continuous. Diening [78] proved it assuming that p� > 1 and
p.�/ 2 LH.�/; this was proved independently in [42]. Another proof that included
the case p� D 1 was given by Harjulehto and Hästö [153] for bounded domains;
this was extended by Hästö [165] to unbounded domains using the technique of
local to global estimates (Sect. 5.6.6). The proof given here first appeared in [69].
Lemma 6.32 is well-known if p > 1; when p D 1 it is due to Maz’ja [260]. Our
proof of this lemma was implicit in [132] and is explicit in [69]. The decomposition
argument used in the proof is often attributed to Long and Nie [241] but it is implicit
in Maz’ja [260]. A similar argument was used in [153]. Example 6.34 is due to Fan
and Zhao [122].

The variable Hölder classes (Definition 6.35) were first considered by Ross and
Samko [300] and by Karapetyants and Ginzburg [189,190] in the study of fractional
derivatives. Theorem 6.36 was first proved by Edmunds and Rákosnı́k [106], and a
slightly more general version with a very different proof was given by Almeida and
Samko [12, 13]; our proof is adapted from theirs. A slightly weaker version based
on the classical continuity results was proved by Harjulehto and Hästö [151]; they
also gave a generalization based on capacity theory for variable Sobolev spaces.
Example 6.38 is new; related examples are given in [106, 151].



262 6 Basic Properties of Variable Sobolev Spaces

6.5.2 An Alternative Definition of the Norm

There is an equivalent definition of the norm on W k;p.�/.�/ that has been adopted
by some authors: see, for instance [31, 82]. Given �, p.�/ 2 P.�/ and k � 1, let

kf k�
W k;p.�/.�/

D inf

�
� > 0 W

X
j˛j�k

�p.�/.D˛=�/ � 1

�
:

It is immediate that for each ˛, j˛j � k, kD˛f kp.�/ � kf k�
W k;p.�/ , and so

kf kW k;p.�/.�/ � M.k; n/kf k�
W k;p.�/ ;

where M.k; n/ is the number of multi-indices ˛, j˛j � k. To see the opposite
inequality, note that

X
j˛j�k

�p.�/.D˛=�/ D
Z
�n�1

X
j˛j�k

� jD˛f .x/j
�

�p.x/
dx C

X
j˛j�k

��1kD˛f kL1.�1/

�
Z
�n�1

0
@M.k; n/ X

j˛j�k

jD˛f .x/j
�

1
A
p.x/

dx C ��1
				M.k; n/

X
j˛j�k

jD˛f j
				
L1.�1/

:

Therefore, by the definition of the norms and the triangle inequality,

kf k�
W k;p.�/.�/

� M.k; n/

				
X

j˛j�k
jD˛f j

				
p.�/

� M.k; n/kf kW k;p.�/.�/:

6.5.3 Boundary Regularity

In our discussion of variable Sobolev spaces we have avoided the important but
more delicate questions related to the regularity of the boundary of �. However,
these have been considered by many authors. The simplest assumption is that
the domain � is bounded and has a Lipschitz boundary. Given this assumption,
Diening [77] noted that Theorem 6.14 could be extended to show that C1.�/ is
dense inW k;p.�/.�/ providedp.�/ 2 LH0.�/ and p� > 1. This result was extended
to include the case p� D 1 in [58]. Similarly, Edmunds and Rákosnı́k [106] proved
their version of the Sobolev embedding theorem (Theorem 6.29) with W 1;p.�/

0 .�/

replaced by W 1;p.�/.�/ provided� is bounded and has a Lipschitz boundary.
A generalization of the Lipschitz boundary condition that is well-suited to

variable Lebesgue spaces is the John domain. A bounded set� is an ˛-John domain,
˛ > 0, if there exists x0 2 � such that given any x 2 �, there exists a rectifiable
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curve 
x W Œ0; `x� ! �, parameterized according to arc length, with 
x.0/ D x0 and

x.`x/ D x, such that B˛�1t .
x.t// � �. An unbounded set is an ˛-John domain if
it is the nested union of bounded ˛-John domains. These domains were introduced
in the study of variable Lebesgue spaces by Harjulehto and Hästö [151] and have
been used by a number of authors since then: in particular they are used extensively
in [82].

6.5.4 Extension Theorems

Closely related to boundary regularity is the question of extension theorems. Given
W k;p.�/.�/, an extension operator is a bounded linear map E W W k;p.�/.�/ !
W k;p.�/.Rn/ such that for all x 2 �, Ef .x/ D f .x/. The existence of an extension
operator is closely related to the geometry of the boundary of �. Unlike in the
classical case, in the variable Sobolev spaces the exponent p.�/ 2 P.�/ must also
be extended to an exponent p.�/ 2 P.Rn/; when p.�/ 2 LH.�/ this has been
done using variants of Lemma 2.4. Edmunds and Rákosnı́k [106] proved that if �
is bounded and has a Lipschitz boundary, and p.�/ is a Lipschitz function, then p.�/
can be extended to a Lipschitz function on R

n and there is an extension operator
from W 1;p.�/.�/ into W 1;p.�/.�/. Diening [78] generalized this result to exponents
p.�/ 2 LH0.�/. An elementary proof using extrapolation is given in [82], assuming
p.�/ 2 P.Rn/, 1 < p� � pC < 1 and the maximal operator is bounded on
Lp.�/.�/. An elementary extension theorem for cubes was proved in [127].

Extrapolation results exist for more general domains. To state one such we begin
with two definitions. (For more details, see [7].)

Definition 6.39. Given a point x 2 R
n, a finite cone with vertex at x, Cx , is a set of

the form
Cx D B1 \ fx C t.y � x/ W y 2 B2; 0 < t < 1g;

where B1 is an open ball centered at x, and B2 is an open ball which does not
contain x.

Definition 6.40. A set� � R
n has the uniform cone property if there exists a finite

collection of open sets fUj g (not necessarily bounded) and an associated collection
fCj g of finite cones such that the following hold:

1. There exists ı > 0 such that

�ı D fx 2 � W dist.x; @�/ < ıg �
[
j

Uj I

2. For every index j and every x 2 � \ Uj , x C Cj � �.

An example of a domain with the uniform cone property is any domain whose
boundary is locally a Lipschitz graph.
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Theorem 6.41. Given a set � with the uniform cone property, suppose p.�/ 2
P.�/ is such that 1 < p� � pC < 1 and p.�/ 2 LH.�/. Then for every k � 1

there exists a bounded linear extension operator

Ek W W k;p.�/.�/ ! W k;p.�/.Rn/:

In the classical case Theorem 6.41 is due to Calderón [39] (see also [7]). In
the variable Sobolev spaces it was proved in [61] as a (non-trivial) application of
extrapolation theory.

Another extension theorem that applies to a large class of domains (the so-called
.�;1/-domains) and eliminates the restriction 1 < p� � pC < 1, is due to
Fröschl [133] (see also [82]).

6.5.5 More on the Density of Smooth Functions

The density of smooth functions in W k;p.�/.�/ is a delicate problem, but one which
appears to be central to a deeper understanding of the variable Sobolev spaces as
well as in applications: see, for example, Harjulehto et al. [155], Nuortio [287] and
Proposition 6.48 below. In Example 6.12 we gave an example of an exponent with a
jump discontinuity such that smooth functions were not dense. On the other hand, by
Theorem 6.14 and Example 4.68, we have that there exist discontinuous exponents
such that smooth functions are dense.

One approach to this problem is to give conditions on the modulus of continuity
of p.�/ that are sufficient for bounded functions to be dense. As we showed
in Chap. 4, log-Hölder continuity is the best possible condition for the maximal
operator, but this condition can be weakened and smooth functions are still dense in
W k;p.�/.�/.

Proposition 6.42. Given � and p.�/ 2 P.�/, suppose there exists a function !
such that jp.x/ � p.y/j � !.jx � yj/ whenever jx � yj < 1=2. If ! satisfies

Z 1=2

0

t
�1C n

p�
!.t/ dt D 1; (6.10)

then C1.�/\W 1;p.�/.�/ is dense in W 1;p.�/.�/.

Proposition 6.42 is due to Zhikov [362]. Condition (6.10) holds, for example, if

!.t/ D k log log.1=t/

log.1=t/
; k � p�=n:

Note that by Example 4.43 this shows that there exist exponents p.�/ such that the
maximal operator is not bounded on Lp.�/.�/ but smooth functions are dense in
W 1;p.�/.�/.
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This condition is very close to optimal: Hästö [162] constructed an exponent on
� D B1.0/ in R

2 for which the best modulus of continuity is

!.t/ D .1C �/ log log.1=t/

log.1=t/
; � > 0;

and smooth functions are not dense in W 1;p.�/.�/. (For a more general condition
guaranteeing smooth functions are not dense, see [82].)

A different approach is due to Edmunds and Rákosnı́k [105]. They proved
Theorem 6.14 assuming a complicated monotony condition on p.�/. Hästö [164]
generalized this condition by showing that it could be combined with a weaker form
of log-Hölder continuity. In the same paper he also considered the question of when
continuous functions are dense in W 1;p.�/.�/. Similar results on the density of C1
were derived by Fan, Wang and Zhao [119].

Finally, we note that on the real line, if pC < 1, then C1.�/ \W 1;p.�/.�/ is
always dense in W 1;p.�/.�/. This was proved by Harjulehto and Hästö [150].

6.5.6 More on the Poincaré Inequalities

Theorems 6.19 and 6.21 hold with weaker hypotheses on the exponent p.�/. In
terms of regularity related to the maximal operator, Diening et al. [82] showed that
both theorems are true for any p.�/ 2 P.�/ provided p.�/ 2 A. (See Sect. 4.5
for the definition of the condition A.) Note that this eliminates the assumption that
pC < 1 or p�>1 that our proofs required. Since theK0 condition is necessary and
sufficient for the maximal operator to be bounded on Lp.�/.�/ when � is bounded,
we conjecture that these results hold if we instead assume that p.�/ 2 K0.

Even weaker conditions unrelated to the maximal operator are sufficient.

Theorem 6.43. Given a bounded convex set � and p.�/ 2 P.�/, suppose p.�/ is
continuous on �. Then for all f 2 W 1;p.�/.�/,

kf � f�kp.�/ � C.n; p.�/;�/krf kp.�/:

Theorem 6.44. Given a bounded set � and p.�/ 2 P.�/, suppose p.�/ is
continuous on �. Then for all f 2 W 1;p.�/

0 .�/,

kf kp.�/ � C.n; p.�/;�/krf kp.�/:

Theorem 6.43 is due to Harjulehto and Hästö [151]. They also proved a version
when p.�/ has no regularity but has limited oscillation: i.e., if (p�/� � pC. Kováčik
and Rákosnı́k [219] proved Theorem 6.44. (See also [82].) Mercaldo et al. [261]
have shown that Theorem 6.44 is true on Lipschitz domains if p.�/ is discontinuous
and takes on just two values: 2 and p0, 1 < p0 < 2, on Lipschitz subsets of�.
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Theorem 6.44 can be extended to a subspace of W 1;p.�/.�/ that may be larger
than W 1;p.�/

0 .�/ Define VW 1;p.�/.�/ D W 1;p.�/.�/ \ W 1;1
0 .�/, or equivalently, let

VW 1;p.�/.�/ be the closure inW 1;p.�/.�/ of the set of all functions inW 1;p.�/.�/ with
compact support. It is immediate that the proofs of Theorems 6.19 and 6.21 extend
to this space. Similarly, Theorem 6.44 can be proved in this setting: see [82]. More
recently, with the additional hypothesis that p� > 1, Ciarlet and Dinca [50] gave a
proof that did not rely on density arguments.

In the constant exponent case it is always the case that VW 1;p.�/ D W
1;p
0 .�/.

However, in the variable exponent case VW 1;p.�/ can be larger. Fan and Zhao [122]
pointed out that an example of Zhikov (Example 6.12) can be adapted to show this.
But with some regularity on p.�/, the two are the same: Harjulehto [149] showed
that if C1.�/ \W 1;p.�/.�/ is dense in W 1;p.�/.�/ (see Sects. 6.2 and 6.5.5), then
equality holds. (See also [82].)

When @� has some regularity (e.g., is Lipschitz) the space VW 1;p.�/.�/ can also be
defined as the space of all functions in W 1;p.�/.�/ that have zero trace—intuitively,
functions that are zero on @�. The existence of a bounded trace operator for classical
Sobolev spaces has many applications in the study of PDEs. The trace operator in
the variable Sobolev space has been studied by several authors: see Diening and
Hästö [83,84] and Fan [115]. Liu [240] has considered the trace operator in weighted
Sobolev spaces.

6.5.7 More on the Sobolev Embedding Theorem

The extension theorems discussed above let us extend the Sobolev embedding
theorem to the spacesW 1;p.�/.�/. For example, the following result is an immediate
consequence of Theorems 6.17, 6.29 and 6.41.

Theorem 6.45. Given a set � with the uniform cone property, and p.�/ 2 P.�/
such that p.�/ 2 LH.�/ and 1<p� �pC<n, then W 1;p.�/.�/ � Lp

�.�/.�/, and

kf kp�.�/ � Ckrf kp.�/: (6.11)

In the classical case, when p D n inequality (6.11) is false: W 1;n.�/ is not
contained in L1.�/. (This is actually shown by the function in Example 6.38.)
As a substitute, there are exponential integrability results: for example, if � is a
bounded domain, then for all f 2 W 1;n

0 .�/,

Z
�

exp

��
C1

jf .x/j
krf kLn.�/

�n0 

dx � C2j�j: (6.12)

(See [363].) This inequality implies that f is in the Orlicz space Exp.Ln
0

/.�/.
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This result can be generalized to the variable Sobolev spaces. Given a bounded
domain� and p.�/ 2 P.�/ such that p.�/ 2 LH0.�/ and pC � n, Harjulehto and
Hästö [153] defined the Musielak-Orlicz space Lˆ.;/.�/ with

ˆ.x; t/ D max.log.jt j/; 1/
�.t=n0/

Z p�.x/

1

jt j�d�

(see Sect. 2.10.2), and proved that if f 2 W 1;p.�/.�/, then f 2 Lˆ.;/.�/. The
functionˆ is such that if pC < n, then Lˆ.;/.�/ D Lp

�.�/.�/, and if p.�/Dn, then
Lˆ.;/.�/ D Exp.Ln

0

/.�/.
Another approach when pC D n using weighted variable Lebesgue spaces is due

to Edmunds and Rákosnı́k [106]. Given a bounded set� with a Lipschitz boundary,
let p.�/ 2 P.�/ be a Lipschitz function such that pC D n. Define the weight

w.x/ D min
�
.n � p.x//b; 1

�
;

where b > 4 � 1=n. Then for all f 2 W 1;p.�/.�/,

kf wkLp�.�/.�/ � Ckf k1;p.�/:

A similar result was proved by Futamura and Mizuta [135].
Recently, Fan [116] showed that if � is an unbounded domain that satisfies the

cone property, and if p.�/ 2 P.�/ is Lipschitz, then

kf kLq.�/.�/ � Ckf k1;p.�/;

where q.�/ is such that qC < 1 and q.x/ � p�.x/ for all x 2 �. For instance, we
can take q.x/ D min.p�.x/;N / for any N > 1.

Though Example 6.38 shows that in general functions in W 1;p.�/.�/ need not be
continuous when p� D n, Futamura and Mizuta [135] showed that they are log-
Hölder continuous provided that p.�/ decays to n sufficiently slowly. For exponents
that decay more quickly they proved an exponential integrability result similar to
inequality (6.12).

In Theorem 6.29 the regularity of the exponent is given in terms of the
boundedness properties of the maximal operator. The exponentp.�/ in Example 6.28
has a jump discontinuity, so we know (see Example 3.21) that the maximal operator
is not bounded on Lp.�/. Diening, Hästö and Nekvinda [86] modified this example
to produce an exponent p.�/ that is continuous, but not uniformly continuous, such
that the Sobolev embedding theorem fails.

On the other hand if p.�/; q.�/ are continuous on � and q.x/ < p.x/ for
x 2 �, then kf kq.�/ � Ckf k1;p.�/. (See Sect. 6.5.8 below.) Futamura, Mizuta
and Shimomura [137, 269] considered uniformly continuous exponents that are
not log-Hölder continuous, but gave embeddings into a Musielak-Orlicz space
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(see Sect. 2.10.2). In light of these results we have the following open question,
a generalization of a question first posed in [86].

Question 6.46. Does there exist a set � and a uniformly continuous exponent
p.�/ 2 P.�/ such that the Sobolev embedding theorem is false for W 1;p.�/

0 .�/? Is
there a uniform continuity condition weaker than LH0.�/ such that if an exponent
satisfies it, then the Sobolev embedding theorem holds?

Finally, we note an application of rearrangement inequalities to the Sobolev
embedding theorem. (See Sect. 3.7.7.) Given a bounded set � and p.�/ 2 P.�/
with p� > 1, suppose the increasing rearrangement p�.�/ of p.�/ is in LH0.Œ0; �//

for some � > 0. If r.�/ 2 P.�/ is such that its decreasing rearrangement satisfies
r�.0/ < .p�/� D np�=.n � p�/, then for all f 2 W

1;p.�/
0 .�/, f 2 Lr.�/.�/.

This embedding is similar to the suboptimal results in [219]; what is of interest is
the extremely weak regularity assumptions on p.�/: p.�/ does not itself need to be
continuous. For this and related results, see [131, 298].

6.5.8 Compact Embeddings

In the classical Sobolev spaces, given a bounded set �, if p < n and q < p�, then
W

1;p
0 .�/ is compactly embedded in Lq.�/: if fgkg � W 1;p.�/.�/ is bounded in

W 1;p.�/ norm, then it has a subsequence that converges in Lq norm. (This is referred
to as the Rellich-Kondrachov theorem: see [7, 142].) This result extends to the
variable Sobolev spaces.

Proposition 6.47. Given a bounded set�, suppose p.�/ 2 P.�/ is such that pC <

n and p.�/ is continuous on�. (e.g. p.�/ 2 LH0.�/). Let q.�/ 2 P.�/ be such that
q.x/ � p.x/ � � for all x 2 � and some � > 0. Then W 1;p.�/

0 .�/ is compactly
embedded in Lq.�/.�/.

Proposition 6.47 was first proved by Kováčik and Rákosnı́k [219]; other proofs
are due to Fan and Zhao [122], Fan, Shen and Zhao [118], and Diening [78].

Proposition 6.47 has been generalized in various directions. Fan, Zhao and
Zhao [123] proved a compact embedding theorem for radial functions inW 1;p.�/.Rn/
assuming p.�/ is also radial. These results were generalized by Yao and Wang [350].
(They also generalize a compact embedding from a weighted Sobolev space given
without proof by Fan and Han [117].) Ohno [288] examined compact embeddings
into Musielak-Orlicz spaces.

In the classical case the embedding is not compact if qDp�. However, in
variable Sobolev spaces it is possible to have a compact embedding even if
q.x/Dp�.x/ at some points in the domain. This was first considered by Kurata
and Shioji [225] and later by Mizuta, Ohno, Shimomura and Shioji [268]. Gao,
Zhao and Zhang [139] gave embeddings into a weighted variable Lebesgue space
when q.x/ < p�.x/C � for some � > 0.



6.5 Notes and Further Results 269

6.5.9 Mean Continuity

Functions in the classical Sobolev space are mean continuous: given� and any set
A such that A � �, then for all h, jhj < dist.A; @�/,

kf � �hf kLp.A/ � C jhjkrf kLp.�/:

(See [142].) Since the variable Lebesgue spaces are not mean continuous
(Corollary 5.18), it is not surprising that this result fails in the variable Sobolev
spaces. There exists a smooth exponent p.�/ on � D .0; 1/ � .0; 1/ (though not
continuous on�) and a function f 2W 1;p.�/.�/ such that �hf 62 Lp.�/.Ah/, where h
can be taken arbitrarily small and Ah is compactly contained in �. See [127].

This paper also contains a substitute result. Given a lower semi-continuous
exponent p.�/ and h 2 R

n, define ph.�/ by

ph.x/ D inffp.x C ht/ W 0 � t � 1g:

Proposition 6.48. Given a cube Q and p.�/ 2 P.Q/, suppose p.�/ is lower semi-
continuous, 1 < p� � pC < 1, and that the maximal operator is locally bounded
on Lp

0.�/.Q/. Given an open set A such that A � Q and h, jhj < dist.A; @Q/, then
for all f 2 W 1;p.�/.Q/,

kf � �hf kLph.�/.A/ � C jhjkrf kLp.�/.Q/:

In the proof of Proposition 6.48 the key property needed is that smooth functions
are dense in W 1;p.�/.Q/; our hypothesis is sufficient for this, but as we noted in
Sect. 6.5.5, it also holds with other assumptions.

As a consequence of Proposition 6.48 we can generalize a characterization of
W 1;p.�/ in terms of the double integral of differences quotients due to Bourgain,
Brezis and Mironescu [34]. They showed that if � 2 C1

c is a radial function, then
there exists a constantK D K.p; n/ such that for all f 2 W 1;p.�/,

lim
t!0

Z
�

Z
�

� jf .x/ � f .y/j
jx � yj

�p
�t .x � y/ dy dx D Kkrf kpp:

In [127] a weaker version of this result was proved.

Proposition 6.49. GivenQ and p.�/ as in Proposition 6.48, suppose p.�/ 2 C.Q/.
Let � 2 C1

c be a radial function. OnQ�Q define q.x; y/D inffp..1� t/xC ty/ W
0 � t � 1g and Ft .x; y/ D jf .x/�f .y/j

jx�yj �t .x � y/1=q.x;y/. Then for all f 2
W 1;p.�/.Q/,

c lim sup
t!0

kFtkLq.�/ .Q	Q/ � krf kp.�/ � C lim inf
t!0

kFtkLq.�/.Q	Q/:
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Mean continuity in mixed norm variable Lebesgue spaces was considered by
Bandaliev and Abbasova [23]. Modular mean continuity along the lines of the
Lebesgue differentiation theorem (see Sect. 2.9) was considered by Harjulehto
and Hästö [152] using a capacity theory for variable Sobolev spaces developed
in [155]. (See also [82]). These results were generalized to Musielak-Orlicz spaces
by Futamura, Mizuta and Shimomura [137].

6.5.10 Gagliardo-Nirenberg Inequalities

In the classical Sobolev space W k;p.Rn/ it is possible to estimate the norms of the
derivatives of order j < k by the Lp norms of f and the derivatives of order k. For
brevity, let

jf jj;p D
X

j˛jDj
kD˛f kpI

then for 0� j � k, � > 0 sufficiently close to 0, and for f 2W k;p.Rn/, 1 � p < 1,

jf jj;p � C
�
�jf jk;p C ��j=.k�j /kf kp

�
:

(See [7].) Zang and Fu [351] extended this inequality to the variable Sobolev space
W k;p.�/.Rn/:

jf jj;p.�/ � C
�
�jf jk;p.�/ C ��j=.k�j /kf kp.�/

�
; (6.13)

assuming that p�>1 and the maximal operator is bounded on Lp.�/.Rn/. A gen-
eralization, with the same hypotheses on p.�/, was proved by Kopaliani and
Chelidze [218]. In the case p� � 1, a modular interpolation inequality was proved
by Giannetti [141] assuming p.�/2LH.Rn/. A weighted interpolation theorem,
with very different hypotheses, was proved by Cianci and Nicolosi [49].



Appendix A
Appendix: Open Problems

In this appendix we present a collection of open problems that we believe will be
fruitful for further research. Some of these were already mentioned in the text and
they are all listed roughly in the order the relevant material appears in the book.
We do not include any problems beyond the scope of this book; in particular, we
do not include anything related to the calculus of variations or partial differential
equations, two areas of intense activity. For these problems we refer the reader to
the survey articles by Fan [113], Harjulehto et al. [157] and Mingione [263].

Problem A.1. Let � be an unbounded set. Characterize the closure of bounded
functions in Lp.�/.�/ when pC.� n�1/ D 1. In particular, if L1.�/ is a subset
of Lp.�/.�/, characterize its closure.

By Theorem 2.75, if pC.�n�1/ D 1 then bounded functions are never dense.
If � is bounded, this question was studied by Edmunds, Lang and Nekvinda [101].
They showed that in this case the closure of the set of bounded functions is equal to
the set of functions with absolutely continuous norm (see Sect. 2.10.3) if and only
for every A > 1, Z j�j

0

Ap
�.t/ dt < 1;

where p� is the decreasing rearrangement of p.�/.
Problem A.2. Find “useful” dense subsets of Lp.�/.�/ when pC D 1.

By Theorem 2.75, if pC.�n�1/ D 1, bounded functions are not dense, and by
Theorem 2.77, functions with compact support are not dense if p.�/ is unbounded
on the boundary of �. As we saw in Chap. 5, bounded functions of compact
support play an important role in studying the operators of harmonic analysis when
pC < 1. Is there a useful substitute when pC D 1? For instance, under what
circumstances is the set

Lp.�/.�/ \
[

1�p<1
Lp.�/

dense in Lp.�/.�/?

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3, © Springer Basel 2013
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Problem A.3. Characterize the dual space Lp.�/.�/� if pC D 1.

We have that Lp.�/.�/� D Lp
0.�/.�/ (up to isomorphism) if and only if

pC < 1 (Theorem 2.80). When pC D 1, Lp
0.�/.�/ is (isomorphic to) a closed

subspace of Lp.�/.�/�. When p.�/ is constant the dual of L1 is the set of finitely
additive measures that are absolutely continuous with respect to Lebesgue measure
(see [95]).

The solution to this problem may depend on whether p.�/ is such that L1.�/ �
Lp.�/.�/. In this case, since the identity map I W L1.�/ ! Lp.�/.�/ is bounded,
any element ofLp.�/.�/� induces a bounded linear functional onL1.�/. The above
characterization of L1.�/� may then become relevant.

Problem A.4. Generalize the Marcinkiewicz interpolation theorem, or more gener-
ally, one of the real interpolation methods, to the scale of variable Lebesgue spaces.

The problem of interpolation was discussed in Sect. 3.7.8. Given the close con-
nection between Marcinkiewicz interpolation and rearrangements (see Sect. 3.7.7)
one initial step would be to find a replacement in the variable Lebesgue spaces for
the Lp identity

Z
�

jf .x/jp dx D p

Z 1

0

tp�1jfx 2 � W jf .x/j > tgj dt:

Recall that this identity is central to proving the classical norm inequalities for
the maximal operator (Theorem 3.4); therefore, it may be reasonable to assume
boundedness of the maximal operator as a hypothesis when proving such a
replacement.

A weaker version of this problem would be to prove a strong type norm inequality
for the maximal operator (as in Theorem 3.16) as a consequence of the weak type
inequality.

Problem A.5. Explore the interaction between the symmetry of the exponent
function and log-Hölder continuity in controlling the boundedness of the maximal
operator.

As we discussed in Chap. 4, while log-Hölder continuity is the sharpest possible
pointwise decay condition on p.�/ for the maximal operator to be bounded on
Lp.�/, Examples 4.1 and 4.43 depend on the exponent p.�/ being non-symmetric.
In Examples 4.13 and 4.59 we gave symmetric exponents that decay more slowly
but the maximal operator is still bounded.

It is not clear what role symmetry plays. A first step would be to determine
if Example 4.43 could be improved by showing there exists a symmetric function
p.�/ 2 P..�1; 1//which has the specified decay and such that the maximal operator
is not bounded on Lp.�/..�1; 1//. Or is it the case that symmetry, monotonicity and
continuity are sufficient to prove the maximal operator is bounded? The construction
of Example 4.59 will be relevant to this question.
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Problem A.6. Find a condition weaker than the N1 condition that, together with
theK0 condition is necessary and sufficient for the maximal operator to be bounded
on Lp.�/.Rn/.

Theorem 4.63 gives a single necessary and sufficient condition—the condition A,
due to Diening—for the maximal operator to be bounded. While of great theoretical
importance, it is difficult to check: in practice, one shows that an averaging operator
is bounded by showing that the maximal operator is bounded.

Therefore, it would be interesting to have a different condition. As our approach
in Chaps. 3 and 4 demonstrated, it is natural to consider two conditions, one to
control the maximal operator locally (i.e., the K0 condition), and one to control
it at infinity. However, at this point it is unclear what this condition should look like.
A more careful analysis of the maximal operator at infinity (i.e., the estimates for f2
in our proofs) is needed.

Problem A.7. Adapt the ideas from the theory of two weight norm inequalities to
find necessary and sufficient conditions for the maximal operator to be bounded on
Lp.�/.Rn/.

There are several approaches in the theory of two weight norm inequalities that
may be applicable to the variable Lebesgue spaces. One would be to generalize the
K0 condition so that it also controls the maximal operator at infinity. For example,
if we define

TQ.x/ D jQj
jQj C jx � xQjn 	 M.	Q/.x/;

we could replace the K0 condition with the “tail” condition

sup
Q

jQj�1kTQkp.�/kTQkp0.�/ < 1;

where the supremum is taken over all cubes. This is referred to as a tail condition
since it depends not only on the local behavior of the norm but also its behavior at
infinity. Clearly, this condition implies p.�/ 2 K0.R

n/. Such conditions have played
a role in the study of two-weight norm inequalities for the maximal operator. See,
for example, Muckenhoupt and Wheeden [273] and Sawyer and Wheeden [327].

Another possibility is to adapt the “testing” condition for the maximal operator
introduced by Sawyer [325] (see also [53, 140]). He showed that a necessary and
sufficient condition for the inequality

Z
Rn

Mf .x/pu.x/ dx � C

Z
Rn

jf .x/jpv.x/ dx

is that for every cubeQ,

Z
Q

M.v1�p0

	Q/.x/
pu.x/ dx � C

Z
Q

v.x/1�p0

dx:
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The necessity of this condition comes from setting f D v1�p0

	Q in the norm
inequality and restricting the integral on the left-hand side to Q.

The analogous testing condition for the variable Lebesgue spaces would be
Z
Rn

M.	Q/.x/
p.x/ dx � C jQj:

The domain of integration on the left-hand side must remain equal to R
n: otherwise,

since for x 2 Q, M.	Q/.x/ D 1, the inequality would be trivial. Modular Sawyer-
type conditions for weighted norm inequalities in the variable Lebesgue spaces on
the real line have been considered by Kokilashvili and Meskhi [199], but with the
additional assumption that p.�/ 2 LH0.R/ and p.�/ is constant outside of a large
ball. It may be better to express this condition in terms of the norm instead of the
modular: kM.	Q/kp.�/ � Ck	Qkp.�/:
Moreover, by Corollary 4.64, if 1 < p� � pC < 1, then M is bounded on Lp.�/
if and only if it is bounded on Lp

0.�/; hence, it may be necessary to also assume the
“dual” inequality, kM.	Q/kp0.�/ � Ck	Qkp0.�/:
To determine if both conditions are necessary, the exponent constructed in Exam-
ple 4.51 may be relevant. One obstacle to this approach is that Sawyer’s proof relies
on Marcinkiewicz interpolation.

Finally, though it would not yield necessary conditions, another approach to
generalizing the K0 condition might be to emulate the “Ap bump” conditions used
in the theory of two-weight norm inequalities to variable Lebesgue spaces. See [69]
for details and further references. Related ideas were used in [57] to prove weighted
norm inequalities on variable Lebesgue spaces, Theorem 4.77. (See also [82].)

Problem A.8. Given � and p.�/ 2 P.�/ such that 1 < p� � pC < 1 and
the maximal operator is bounded on Lp.�/.�/, give a direct proof that the maximal
operator is bounded on Lp

0.�/.�/.

This result is true: see Corollary 4.64. However, the only known proof is indirect,
passing through the characterization of the boundedness of the maximal operator
in Theorem 4.63. Even in the classical Lebesgue spaces, this is known only as a
consequence of the fact that the maximal operator is bounded on every Lp space,
1 < p < 1.

By duality, it is very easy to show that if M is bounded on Lp.�/, then it satisfies
the weak type inequality on Lp

0.�/. By Theorem 2.34 and the Fefferman-Stein
inequality [124], there exists g 2 Lp.�/.Rn/, kgkp.�/ � 1, such that

kt	fxWMf.x/>tgkp0.�/ � 2k�1
p0.�/

Z
Rn

t	fxWMf.x/>tg.x/g.x/ dx

� C

Z
Rn

jf .x/jMg.x/ dx � Ckf kp0.�/kMgkp.�/ � Ckf kp0.�/:



A Appendix: Open Problems 275

There are several possible approaches to this problem. One is to try to improve
this duality argument, perhaps using the characterization of boundedness in Theo-
rem 4.37. One can show using the bounds in Theorem 3.4 that if M is bounded on
Lp.�/.Rn/, then, in the notation of that result, .s � 1/kM kB.Lsp.�//.Rn/ is bounded for
s > 1. However, it not clear how to sharpen this argument to get that this quantity
goes to 0 as s ! 1.

Another, more abstract approach would be to work with the generalization of
Lorentz-Shimogaki indices for non-rearrangement invariant Banach function spaces
developed by Lerner and Pérez [235].

A third approach would be to use a recent paper by Lerner [232]. As a
consequence of his more general results in Banach function spaces, he shows that
M is bounded on Lp

0.�/.Rn/ if and only the sharp maximal operator M # (see
Sect. 5.6.5) satisfies the Fefferman-Stein inequality

kf kp.�/ � CkM #f kp.�/:

This inequality is true, but the only known proofs use the fact that maximal operator
is bounded on Lp

0.�/.

Problem A.9. Characterize the sets � and the exponents p.�/ 2 P.�/ such that if
the maximal operator is bounded on Lp.�/.�/, there exists an extension of p.�/ to
all of Rn such that the maximal operator is bounded on Lp.�/.Rn/.

When 1=p.�/ 2 LH.�/, then by Lemma 2.4 such an extension always
exists. However, given that log-Hölder continuity is not a necessary condition, and
boundedness of the maximal operator is an ubiquitous assumption, more general
conditions are desirable.

A related problem would be to determine conditions such that if p.�/ 2 K0.�/,
then p.�/ can be extended to an exponent function in K0.R

n/.

Problem A.10. If the maximal operator is bounded on Lp.�/.Rn/, determine
whether it is bounded on LaCp.�/.Rn/ for all a > 0.

This is just a restatement of Question 4.75, which is discussed in Sect. 4.6.4.

Problem A.11. Determine whether Theorems 4.77 and 4.80 can be extended to
include the case pC D 1.

Problem A.12. Given p.�/ 2 P.Rn/ such that the maximal operator is bounded
on Lp.�/.Rn/, determine whether w 2 Ap.�/ is a sufficient condition for the maximal
operator to satisfy kwMf kp.�/ � Ckwf kp.�/.
Problem A.13. Given p.�/ 2 P.Rn/ such that 1 < p� � pC < 1 and p.�/ 2
LH.Rn/, and given w 2 Ap.�/, determine whether a singular integral (as defined in
Sect. 5.5) satisfies

k.Tf /wkp.�/ � Ckf wkp.�/:
Explore the same question for other classical operators.
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The above three problems are just a restatement of questions discussed in
Sect. 4.6.5.

Problem A.14. Find the sharp constant in Theorem 4.77 in terms of the Œw�Ap.�/
constant of the weight w.

In the theory of weighted norm inequalities, the problem of finding sharp
constants in terms of the Œw�Ap constant of a Muckenhoupt weight w has been of
great interest. (See [68] and the references it contains.) For the maximal operator,
this problem was solved by Buckley [38] (see also Lerner [230]). It would be of
interest to have similar sharp bounds for weighted estimates in the variable Lebesgue
spaces. A first step to this problem would be to determine if the examples given by
Buckley can be adapted to give useful lower bounds.

Problem A.15. Let f�tg be a potential type approximate identity. Characterize the
exponents p.�/ with pC D 1 such that �t � f ! f in modular and in measure.

When pC < 1, then by Theorem 5.9 we always have convergence in measure,
and by Theorem 2.56 convergence in modular is equivalent to convergence in norm,
which is characterized in Theorem 5.11. However, when pC D 1, Example 5.10
shows that if � is unbounded, then �t � f may not converge in measure. Similarly,
Example 5.15 shows that norm convergence does not hold when pC D 1. The
convergence results in [60] (see also Sect. 2.10.6) are relevant to this question.

Problem A.16. Given an approximate identity f�t g, characterize the exponents
p.�/ such that �p.�/.�t � f / ! �p.�/.f /.

We conjecture that if � has compact support, it will suffice to assume that p.�/ 2
LH0. Weaker conditions may also hold.

Problem A.17. If p.�/ is such that all the Riesz transforms are bounded on
Lp.�/.Rn/, then determine whether the maximal operator is bounded on Lp.�/.Rn/.

Theorems 5.42 and 5.43 together imply that if all the Riesz transforms are
bounded, then 1 < p� � pC < 1 and p.�/ 2 K0.R

n/, so the maximal operator is
bounded on Lp.�/.�/ for any bounded set �. In the weighted Lebesgue spaces the
analogous result is true, since if the Riesz transforms are bounded on Lp.w/, then
w 2 Ap. (See [140].)

Problem A.18. If p.�/ is unbounded, find BMO type estimates for singular
integrals on Lp.�/.

Given Theorem 5.42, we cannot have that singular integrals are bounded onLp.�/
if pC D 1. This corresponds to the fact that singular integrals are not bounded on
L1. However, it is known that if f 2 L1, then Tf 2 BMO , the space of functions
of bounded mean oscillation. This raises the question of whether comparable results
exist for f 2 Lp.�/.Rn/, provided that L1.Rn/ � Lp.�/.Rn/.
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Problem A.19. Given p.�/ 2 P.R/ such that 1 � p� � pC � 2 and p.�/ is even
and non-decreasing on .0;1/, determine whether the Fourier transform satisfies
the generalized Hausdorff-Young inequality k Of kq.�/ � Ckf kp.�/, where q.x/ D
p0.1=x/.

This is a restatement of Question 5.61 discussed in Sect. 5.6.10.

Problem A.20. Characterize the sets � and exponents p.�/ such that smooth
functions are dense in W 1;p.�/.�/.

This and related questions were discussed in Sect. 6.5.5.

Problem A.21. Given a bounded set � and p.�/ 2 P.�/, determine if it is
sufficient to assume that p.�/ 2 K0.�/ for the Poincaré inequalities Theorems 6.19
and 6.21 to hold in W 1;p.�/.�/.

This is a restatement of a question discussed in Sect. 6.5.6.

Problem A.22. Determine whether there exist � and a uniformly continuous
exponent p.�/ 2 P.�/ such that the Sobolev embedding theorem (Theorem 6.29)
does not hold for W 1;p.�/

0 .�/. Determine whether the embedding theorem is true if
LH0.�/ is replaced by a weaker decay condition.

This is a restatement of Question 6.46 discussed in Sect. 6.5.7.

Problem A.23. Determine whether the Gagliardo-Nirenberg inequalities on the
variable Sobolev spaces can be extended to the case p� D 1.

The Gagliardo-Nirenberg inequalities (6.13) discussed in Sect. 6.5.10 assume
that p� > 1. The reason for this is that their proofs require the maximal operator
to be bounded on Lp.�/. Since in the classical case they are true if p D 1, it is
reasonable to conjecture that they hold in the variable case when p� D 1. There are
two possible approaches to this problem: one is to extend the modular inequality
due to Giannetti [141] so that it could be used to prove norm inequalities. The other
is to use extrapolation; this would require the assumption that pC < 1 and that the
maximal operator is bounded on Lp

0.�/. It would also require weighted Gagliardo-
Nirenberg inequalities: for results of this kind, see [345].

Problem A.24. Determine whether Riesz-Thorin interpolation (i.e., complex inter-
polation) can be extended to the scale of the variable Sobolev spaces.

Complex interpolation holds for the variable Lebesgue spaces: see Sect. 3.7.8.
Moreover, this problem is true for the classical Sobolev spaces (see [25]); therefore,
it is reasonable to conjecture that it is also true for the variable Sobolev spaces.
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[Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie
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Amer. Math. Soc., 347(8):2941–2960, 1995.

71. D. Cruz-Uribe and C. J. Neugebauer. Weighted norm inequalities for the centered maximal
operator on RC. Ricerche Mat., 48(2):225–241 (2000), 1999.
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équations aux dérivées partielles. [Application to the solution of partial differential equations].

77. L. Diening. Maximal function on generalized Lebesgue spaces Lp.�/. Math. Inequal. Appl.,
7(2):245–253, 2004.

78. L. Diening. Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev
spaces Lp.�/ and W k;p.�/. Math. Nachr., 268:31–43, 2004.

79. L. Diening. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces.
Bull. Sci. Math., 129(8):657–700, 2005.

80. L. Diening. Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, Universität
Freiburg, 2007.
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259. R. A. Mashiyev, B. Çekiç, and S. Ogras. On Hardy’s inequality in Lp.x/.0;1/. JIPAM. J.
Inequal. Pure Appl. Math., 7(3):Article 106, 5 pp. (electronic), 2006.

260. V. G. Maz’ja. Sobolev Spaces. Springer Series in Soviet Mathematics. Springer-Verlag,
Berlin, 1985. Translated from the Russian by T. O. Shaposhnikova.



290 Bibliography

261. A. Mercaldo, J. D. Rossi, S. Segura de León, and C. Trombetti. On the behaviour of solutions
to the Dirichlet problem for the p.x/-Laplacian when p.x/ goes to 1 in a subdomain.
Differential Integral Equations, 25(1–2):53–74, 2012.

262. A. Meskhi. Measure of Non-compactness for Integral Operators in Weighted Lebesgue
Spaces. Nova Science Publishers, Hauppauge, New York, 2009.

263. G. Mingione. Regularity of minima: an invitation to the dark side of the calculus of variations.
Appl. Math., 51(4):355–426, 2006.

264. C. Miranda. Istituzioni di Analisi Funzionale Lineare, volume I. Unione Matematica Italiana,
Pitagora Editrice, Bologna, 1978.

265. Y. Mizuta, E. Nakai, T. Ohno, and T. Shimomura. Hardy’s inequality in Orlicz-Sobolev spaces
of variable exponent. Hokkaido Math. J., 40(2):187–203, 2011.

266. Y. Mizuta, T. Ohno, and T. Shimomura. Integrability of maximal functions for generalized
Lebesgue spaces with variable exponent. Math. Nachr., 281(3):386–395, 2008.

267. Y. Mizuta, T. Ohno, and T. Shimomura. Sobolev’s inequalities and vanishing integrability
for Riesz potentials of functions in the generalized Lebesgue space Lp.�/.logL/q.�/ . J. Math.
Anal. Appl., 345(1):70–85, 2008.

268. Y. Mizuta, T. Ohno, T. Shimomura, and N. Shioji. Compact embeddings for Sobolev spaces
of variable exponents and existence of solutions for nonlinear elliptic problems involving the
p.x/-Laplacian and its critical exponent. Ann. Acad. Sci. Fenn. Math., 35(1):115–130, 2010.

269. Y. Mizuta and T. Shimomura. Sobolev’s inequality for Riesz potentials with variable exponent
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Symbol Index

Sets, functions and integration

R
n Euclidean space of dimension n, 11

x D .x1; : : : ; xn/ point in R
n, 11

j � j norm on R
n, 11

E closure of the set E , 11

@E boundary of the set E , 11

jEj Lebesgue measure of E , 11

Br.x/ open ball of radius r centered at x, 11

2B ball with the same center as the ball B and double radius, 11

`.Q/ length of the side of a cube Q, 11

�, �0, �k sets of dyadic cubes, 83

�.Q/ set of dyadic cubes relative to Q, 146

� measurable set of positive Lebesgue measure, 12

M set of Lebesgue measurable functions, 72

	E characteristic function of E , 11

S.�/, S0.�/ simple functions on �, 57

supp.f / support of the function f , 11

sgn f sign of the (real) function f , 12

fE , �
Z
E

f .y/ dy integral mean of f on the set E , 0 < jEj < 1, 12

f � decreasing rearrangement of f , in Chap. 3, 126

f �� maximal function of the decreasing rearrangement of f , 126

Continuity and differentiability

j˛j length of multi-index ˛, 239

ˇ � ˛ partial ordering for multi-indices, 240

˛! multi-index factorial, 239 
˛

ˇ

!
multi-index binomial coefficient, 240
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@j j -th partial derivative, 240

@ij i iterations of the j -th partial derivative, 240

rf gradient of f , 240

D˛ multi-index differentiation operator, 240

4p.�/ p.�/-Laplacian, 6

C.�/, C0.�/ continuous functions on the open set �, 12

C.�/ continuous functions on �, the closure of �, 12

Ck.�/ functions with continuous partial derivatives of all orders less than or

equal to k on the open set �, 12

Ck
c .�/ functions in Ck.�/ with supp.f / compact and contained in the open

set �, 12

C1.�/ smooth functions, i.e. functions with continuous partial derivatives of

all orders on the open set �, 12

C˛.�/.�/ ˛.�/-Hölder continuous functions, 257

Pt .x/ Poisson kernel, 235

Wt.x/ Gauss-Weierstrass kernel, 235

Cx finite cone with vertex at x, 263

Properties of exponents

p.�/ exponent function, or simply exponent, 13

p� essential infimum of p.�/ in�, 13

p�.E/ essential infimum of p.�/ in E , 13

pC essential supremum of p.�/ in �, 13

pC.E/ essential supremum of p.�/ in E , 13

p1 limit at infinity of exponents in LH1, 15

p0 conjugate exponent of the constant exponent p, 12

p0.�/ conjugate exponent of p.�/, 14

p0.�/
C

essential supremum of p0.�/, 14

p0.�/
�

essential infimum of p0.�/, 14

p� Sobolev exponent of p (p constant), 121

p�.�/ Sobolev exponent of p.�/, 252

PQ harmonic mean of p.�/ on Q, 181

�
p.�/
1 , �1 subset of � where p.x/ D 1 a.e., 13

�
p.�/
�

, �� subset of � where 1 < p.x/ < 1 a.e., 13

�
p.�/
1 , �1 subset of � where p.x/ D 1 a.e., 13

P.�/ set of exponents on �, 13

Kp.�/ constant in Hölder’s inequality for Lp.�/.�/, 27

kp.�/ constant in equivalence of k�kp.�/ and k�k0

p.�/, 31

LH.�/, LH set of exponents log-Hölder continuous on �, locally and at infinity,

15

LH0.�/, LH0 local log-Hölder continuity, 14
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LH1.�/, LH1 log-Hölder continuity at infinity, 14

LH
C

0 .R/ one-sided local log-Hölder continuity, 124

LH
C

1.R/ one-sided log-Hölder continuity at infinity, 124

N1.�/ integral growth condition on p.�/ at infinity, 132

K0.�/ local integral growth condition on p.�/, 162

G Berezhnoi condition on p.�/, 182

Norms and modulars

k�kp , k�kLp.�/ norm on Lp.�/, 12

k�kLp.�/ .�/, k�kp.�/ norm on Lp.�/.�/, 20

k�kAp.�/ Amemiya norm on Lp.�/.�/, 26

k�k�

p.�/ definition of norm on Lp.�/.�/ using ��

p.�/, 74

k�kLp.�/CLq .�/ norm on Lp.�/CLq.�/, 42

kf kp.�/;Q norm of f in Lp.�/ with respect to Q, 232

k�k0

p.�/ associate norm on Lp.�/.�/, 30

k�kLp.w/ norm on Lp.w/, 152

k�kLˆ.�/ norm on Lˆ.�/, 4

k�kLˆ.;/ .�/ norm on Lˆ.;/.�/, 71

k�kLp.�/;q.�/ .�/ norm on Lp.�/;q.�/.�/, 126

k�kƒp.�/ .�/ norm on ƒp.�/.�/, 126

k�k� norm on BMO.�/, 183

k�k`p.�/ norm on `p.�/, 77

k�kW k;p.�/.�/, k�kk;p.�/ norm on W k;p.�/.�/, 240

k�k�

W k;p.�/.�/
alternative norm on W k;p.�/.�/, 262

k�kX norm on the Banach function space X , 72

k�kX 0 norm on X 0, the associate space of the Banach function space X , 73

k�kX� norm on the modular space X�, 71

�p.�/;�, �p.�/, � modular associated with p.�/, 17

�0

p.�/, �
�

p.�/ alternative definitions of the modular �p.�/, 74

Q�p.�/ semi-modular associated with p.�/, 72

�p.�/;w weighted modular associated with p.�/, 186

�ˆ modular associated with the Young function ˆ, 3

�ˆ.;/ modular associated with ˆ.; /, 71

Function spaces

Lp.�/ Lebesgue space on � with constant exponent p, 12

Lp.�/.�/ variable Lebesgue space with exponent p.�/ on �, 18

Lp.�/C Lq.�/ sum of Lp.�/ and Lq.�/, 42

L
p.�/
M .�/ cartesian product of M copies of Lp.�/.�/, 242

L
p.�/
loc .�/ space of functions in Lp.�/.K/ for every compact set K � �, 18

L
p.�/
a .�/ functions in Lp.�/.�/ with absolutely continuous norm, 126
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Lp.�/.�/� dual space of Lp.�/.�/, 62

Lp.w/ weighted Lebesgue space, 152

Lp.�/.w; �/ weighted variable Lebesgue space with exponent p.�/ on �, 186

Lˆ.�/ Orlicz space on �, generated by the Young function ˆ, 3

L logL.�/ Orlicz space on � generated by ˆ.t/ D t log.e C t /, 75

Lp.�/.logL/q.�/ Musielak-Orlicz space generated by ˆ.x; t/ D tp.x/ log.e C t /q.x/ ,

72

Lˆ.;/.�/ Musielak-Orlicz space on �, generated by ˆ D ˆ.x; t/, 71

Lp.�/;q.�/.�/ variable Lorentz space, 126

ƒp.�/.�/ rearrangement invariant version of Lp.�/, 126

BMO.�/ functions of bounded mean oscillation, 183

BMO� .�/ BMO functions with modulus � , 184

VMO.�/ functions of vanishing mean oscillation, 184

VMO� .�/ VMO functions with modulus � , 184

`p classical sequence space with constant exponent p, 77

`p.�/ sequence space with variable exponent p.�/, 77

W k;p.�/ Sobolev space on � with constant exponent p and k 2 N, 240

W k;p.�/.�/ variable Sobolev space on � with exponent p.�/, k 2 N, 240

W
k;p

loc .�/ functions inW k;p.A/ for every open set A�� such that A is compact,

240

W
k;p.�/

loc .�/ functions in W k;p.�/.A/ for every open set A�� such that A is

compact, 241

W
k;p.�/
0 .�/ closure of C1

c .�/ inW k;p.�/.�/, 243
VW 1;p.�/.�/ closure in W 1;p.�/.�/ of the set of all functions in W 1;p.�/.�/ with

compact support, 266

Hk;p.�/.�/ closure of Ck.�/\W k;p.�/.�/ inW k;p.�/.�/, 243

X 0 associate space of the Banach function space X , 73

X� dual space of the Banach space X , 73

X�� dual space of the Banach space X�, 63

Operators

�h translation operator, 194

�t .x/ mollification of � by t > 0, 193

f�tg approximate identity, 193

f � g convolution of f by g, 192

Q collection of pairwise disjoint cubes, 178

AQ averaging operator on a cube Q, 152

AQ averaging operator on family of cubes Q, 178
Of Fourier transform of f , 236

H Hardy operator, in Chap. 3, 122

H Hilbert transform, in Chap. 5, 213
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I˛ Riesz potential with index ˛, 0 < ˛ < n, 223

I˛.�/, I
ˇ

˛.�/ variable Riesz potentials, 233

M Hardy-Littlewood maximal operator, 80

Mc centered maximal operator, 80

Mk k iterations of the maximal operator, k � 1, M0f D jf j, 157

Md dyadic maximal operator, 83

M˛ fractional maximal operator with index ˛, 0 < ˛ < n, 120

M˛.�/ variable fractional maximal operator, 122

M # sharp maximal operator, 230

M #
ı variant of the sharp maximal operator, ı > 0, 231

MS strong maximal operator, 125

MC;M� one-sided maximal operators, 124

Mr vector-valued maximal operator, 1 < r < 1, 234

Rj Riesz transforms, 1 � j � n, 214

kT kLp.�/.�/ operator norm of T , 156

Weights and weight conditions

w.E/ measure of E with respect to wdx, 147

Œw�D doubling constant for the measure wdx, 147

A1 Muckenhoupt Ap condition with p D 1, 142

Ap Muckenhoupt Ap condition, 142

A1 The union of the Ap classes, 143

Ap;q off-diagonal Muckenhoupt weights, 224

Ap.�/ variable Muckenhoupt condition with weight as multiplier, 186

A
�

p.�/ variable Muckenhoupt condition with weight as measure, 187

Ap.
/ Muckenhoupt Ap weights with respect to measure 
, 149

Œ��A1 A1 constant, 142

Œ��Ap Ap constant, 142

Œ��A1
A1 constant; constant in reverse Jensen inequality, 144

Œ��Ap;q Ap;q constant, 224

Œ��Ap.�/ Ap.�/ constant, 186

Œ��Ap.
/ Ap.
/ constant, 149

RHs Reverse Hölder weights, 145

RH1 Limiting reverse Hölder condition, 119

RHs.
/ Reverse Hölder weights with respect to measure 
, 149

Œ��RHs Reverse Hölder constant, 145

Œ��RHs.
/ RHs.
/ constant, 149

Rh.�/ Rubio de Francia iteration algorithm, 157
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Electrorheological fluids, 7
Embedding theorems for Lp.�/, 35–43
.�;1/ domain, 264
Equimeasurable functions, 87, 126
Euler-Lagrange equation, 6
Exponent function, 13

bounded vs. unbounded, 19, 24, 44, 50, 60,
63, 73, 271

condition
A, 178, 181
G, 182
K0.�/, 162, 181
LH.�/, LH , 15
LH0.�/, LH0, 14
LH1.�/, LH1, 14
LH

C

0 .R/, 124
LH

C

1.R/, 124
N1.�/, 132, 180
RH1, 119

conjugate, 14
decreasing rearrangement, 126, 268, 271
discontinuous, 183

extension, 15, 21, 275
non-constant vs. constant, 4, 27, 36, 37, 87,

108, 123, 125, 159, 189, 203, 204
perturbation, 133, 156, 184
re-scaling, 22
Sobolev, 252
symmetry, 135, 174, 272

Extension operator, 263
Extrapolation. See Rubio de Francia

extrapolation

Factorial of multi-index, 239
Fatou property, 46, 70
Fefferman-Stein inequality, 230, 275
Fluid flow in porous media, 7
Fourier transform, 236, 277

Hilbert, Riesz transforms, 214
Riesz potential, 223

Fractional integral operator. See Riesz potential
Fractional maximal operator, 120

pointwise estimate, 121
in Lp.�/, 121

strong type inequality
Lp-Lq , 121
Lp.�/-Lq.�/ , 121, 226
weighted Lp-Lq , 226

variable, 122
weak type inequality

Lp-Lq , 121
Lp.�/-Lq.�/ , 121

Function spaces
BMO.�/, 183
BMO� .�/, 184
Banach function, 71, 72
classical Lebesgue, 12
classical sequence, 77
classical Sobolev, 240
Hk;p.�/.�/, 243
ƒp.�/.�/, 126
Musielak-Orlicz, 5, 69, 70
Orlicz, 3, 70, 71, 75
product of Lp.�/.�/, 242
variable Hölder continuous, 257, 261
variable Lebesgue, 18
variable Lorentz, 126
variable sequence, 77
Variable Sobolev, 240, 260
VMO.�/, 184
VMO� .�/, 184
W

k;p.�/
0 .�/, 243

VW 1;p.�/.�/, 266
weighted Lebesgue, 5, 70, 71, 152
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weighted variable Lebesgue, 186
Zygmund, 72, 75

Gagliardo-Nirenberg inequality, 270
Gateaux derivative of norm in Lp.�/, W k;p.�/,

74
Gauss-Weierstrass kernel, 235
Generalized Hölder’s inequality. See Hölder’s

inequality, variable Lebesgue spaces
Generalized Orlicz space. See Musielak-Orlicz

space
Good-� inequality, 231
Gradient, 240

Hardy inequality
classical, 122
Lp.�/ modular, 123

Hardy-Littlewood maximal operator. See
Maximal operator

Hardy operator, 122, 126
strong type inequality

Lp.�/ modular, 123
Lp.�/ norm, 123
weighted Lp.�/, 188

Hausdorff-Young inequality, 236, 277
Heat equation, 235
Hedberg’s inequality, 229

in Lp.�/, 229
Hilbert transform, 213

Fourier transform, 214
Hölder’s inequality

classical Lebesgue spaces, 26
variable Lebesgue spaces, 27, 69, 74

Homogeneity
maximal operator, 81, 94
norm on Lp.�/.�/, 21

Image reconstruction, 7
Integral operators, 113
Interpolation of operators

Marcinkiewicz, 127, 272
Riesz-Thorin for Lp.�/, 113, 128
Riesz-Thorin for W k;p.�/, 277

Iteration
maximal operator, 120, 125, 157, 210
partial derivatives, 240

Iteration algorithm. See Rubio de Francia
iteration algorithm

John domain, 262
Jones factorization theorem, 144, 180

Kolmogorov-Minkowski norm. See Norm on
Lp.�/.�/

L logL inequality
maximal operator

classical, 119
Lp.�/.logL/q.�/ modular, 119
Lp.�/.logL/q.�/ norm, 120

Lp -Lq norm inequality
fractional maximal operator, 121

weighted, 226
Riesz potential, 224

weighted, 225
Lp.�/-Lq.�/ norm inequality

fractional maximal operator, 121, 226
Riesz potential, 224, 233

weighted, 188
variable fractional maximal operator, 122
variable Riesz potential, 234

Lp.�/ modular inequality
Hardy operator, 123
maximal operator, 107, 110

Lp norm inequality
maximal operator, 82

weighted, 153, 181
sharp maximal operator, 230

weighted, 231
singular integrals, 215

weighted, 215
Lp.�/ norm inequality

averaging operator AQ, 178
averaging operator AQ, 162
Cauchy integral

weighted, 188
Hardy operator, 123

weighted, 188
maximal operator, 89, 132, 163, 165,

182–184, 272–276
weighted, 186–188

one-sided maximal operator, 124
Riesz potential, 249
Riesz transform, 219, 276
sharp maximal operator, 231, 275
singular integrals, 215

weighted, 188, 275
Lagrangian, 6
Laplacian, 235
Lebesgue differentiation theorem

classical, 66, 81, 85, 90
variable, 67, 70, 270

Lebesgue point, 67
Lebesgue space, 12

completeness, 18
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dual space, 62
Hölder’s inequality, 26
mean continuity, 194
Musielak-Orlicz space, 71
rearrangement invariant, 87
sum, 42
variable (see variable Lebesgue space)

Length of multi-index, 239
Local to global estimates, 232
Log-Hölder continuity, 6

at infinity, 14, 69
local, 14, 69, 95
one-sided, 124
optimality, 130, 160, 180

Lorentz space
variable, 126

Lorentz-Shimogaki indices, 275
Luxemburg norm, 4, 6

Musielak-Orlicz space, 71
variable Lebesgue space, 20, 69

Marcinkiewicz interpolation theorem, 127,
272

Maximal operator, 80
approximation by positive integral

operators, 116
centered, 80
convexity of exponents, 116, 118
dyadic, 83
finiteness, 88
fractional, 120
homogeneity, 81, 94
iterations, 120, 125, 157, 210
local to global estimates, 232
locally bounded on Lp.�/.�/, 246
one-sided, 124
reverse weak .1; 1/ inequality, 150
sharp, 230, 231
strong, 125

unbounded non-constant exponents,
125

strong type inequality
L1, 81, 86
L logL modular, 119
Lp.�/.logL/q.�/ modular, 119
Lp.�/.logL/q.�/ norm, 120
Lp.�/ modular, 107, 110
Lp norm, 82
Lp.�/ norm, 89, 132, 163, 165, 182–184,

272–276
weighted Lp , 153, 181
weighted Lp.�/, 186–188, 275

sublinearity, 81

unbounded on L1 , 81, 90
variable fractional, 122
vector-valued, 234
weak type inequality

Lp.�/ modular, 107, 110, 111, 119, 159
Lp norm, 82
Lp.�/ norm, 89, 132, 163, 178, 182
weighted Lp , 153, 181
weighted Lp.�/, 186

Maximality of Calderón-Zygmund cubes, 85,
86

Mean continuity
failure in Lp.�/, 203
Lp.Rn/, 194
W 1;p.�/, 269
W 1;p.�/.�/, 269

Measurable function, 11
Minkowski’s convolution inequality, 192
Minkowski’s integral inequality, 34, 69
Modular inequality

Hardy operator
strong type on Lp.�/, 123

maximal operator
L logL norm, 119
Lp.�/.logL/q.�/, 119
strong type on Lp.�/, 107, 110
weak type on Lp.�/, 107, 110, 111, 119,

159
Modular on Lp.�/.�/, 17, 69, 74

continuity, 17
convergence in, 43, 44, 50, 70, 75, 76
convexity, 17, 71
order preserving, 17
pointwise inequality, 108, 118
triangle inequality, 18
weighted, 186

Modular space, 5, 69, 71, 77
convex modular, 71

Modular triangle inequality, 18
Mollification, 193
Monotone convergence theorem, 45, 47, 70
Muckenhoupt Ap theorem, 153, 181
Muckenhoupt weights. See Weights
Multi-index, 239

binomial coefficient, 240
factorial, 239
length, 239

Multi-linear singular integrals, 230
Multiplier of BMO.�/, 183
Musielak-Orlicz space, 5, 70, 71

Lp.�/ results extended to, 69, 72, 75,
118, 128, 181, 229, 230, 268,
270

Luxemburg norm, 71
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Nakano space. See Modular space
Non-constant exponents. See Exponent

function
Non-effective weight, 186
Norm inequality

averaging operator AQ Lp.�/ norm, 178
averaging operator AQ Lp.�/ norm, 162
Cauchy integral

weighted Lp.�/, 188
fractional maximal operator

strong type Lp -Lq , 121
strong type Lp.�/-Lq.�/ , 121, 226
weak type Lp.�/-Lq.�/ , 121
weighted Lp -Lq , 226

Hardy operator
strong type on Lp.�/, 123
weighted Lp.�/, 188

maximal operator
L1, 81, 86
Lp.�/.logL/q.�/ , 120
strong type on Lp.�/, 82, 89, 132, 163,

165, 182–184, 272–276
weak type on Lp.�/, 82, 89, 132, 163,

178, 182
weighted Lp , 153, 181
weighted Lp.�/, 186–188

one weight on Lp.�/, 185–188
one-sided maximal operator

strong type on Lp.�/, 124
Riesz potential

local Lp.�/, 249
strong type Lp -Lq , 224
strong type Lp.�/-Lq.�/ , 224
weak type Lp.�/-Lq.�/ , 224
weighted Lp -Lq , 225, 255
weighted Lp.�/-Lq.�/ , 188

Riesz transform
strong type on Lp.�/, 219, 276
weak type on Lp.�/, 222

sharp maximal operator
strong type on Lp , 230
strong type on Lp.�/, 231, 275
weighted Lp , 231

singular integrals
strong type on Lp , 215
strong type on Lp.�/, 215, 275
weak type on Lp , 215
weak type on Lp.�/, 215
weighted Lp , 215
weighted Lp.�/, 188

two weight on Lp.�/, 188
variable fractional maximal operator

strong type Lp.�/-Lq.�/ , 122
variable Riesz potential

strong type Lp.�/-Lq.�/ , 233, 234
Norm on Lp.�/.�/, 20, 69, 74

absolute continuity, 73
convergence in, 43, 44, 47–50, 75
Fatou property, 46, 70
homogeneity, 21
order preserving, 22
triangle inequality, 21

Norm on Lp.�/.�/�, 62, 73
Norm on W k;p.�/.�/, 240, 262

One-sided maximal operator, 124
strong type inequality

Lp.�/.�/ norm, 124
One weight norm inequalities on Lp.�/,

185–188
Operator norm, 156
Order preserving property

Lp.�/.�/ associate norm, 31
Lp.�/.�/ modular, 17
Lp.�/.�/ norm, 22

Orlicz space, 3, 5, 70
Musielak-Orlicz space, 71, 75
variable Lebesgue space embedding, 75

Partial derivative, 240
Partition of unity, 16, 246
Perturbation of exponents, 133, 156, 184
p.�/-Laplacian, 6
Poincaré inequality, 249, 261, 265, 277
Pointwise convergence, 46, 47, 49
Poisson kernel, 235
Potential operators, 7
Potential type approximate identity, 193, 227,

276
Gauss-Weierstrass kernel, 235
pointwise estimate, 194, 228
Poisson kernel, 235

Product of Lp.�/.�/, 242

Quasi-Newtonian fluids, 7

Radial majorant, 193
Radon-Nikodym property of Lp.�/, 74
Rearrangement invariant, 4, 87
Reflexivity of Lp.�/.�/, 63, 70
Rellich-Kondrachov theorem, 268
Reverse Hölder inequality, 145, 149
Reverse Jensen inequality, 144, 180
Reverse weak .1; 1/ inequality, 150
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Riemann-Liouville fractional derivative of
variable order, 7

Riesz potential, 223, 228
Fourier transform, 223
pointwise estimate, 229, 258
strong type inequality

local Lp.�/, 249
Lp-Lq , 224
Lp.�/-Lq.�/, 224
weighted Lp -Lq , 225
weighted Lp.�/-Lq.�/ , 188

variable, 233, 234
weak type inequality

Lp-Lq , 224
Lp.�/-Lq.�/, 224
weighted Lp -Lq , 225, 255

Riesz transform, 214
Fourier transform, 214
strong type inequality

Lp.�/ norm, 219, 276
weak type inequality

Lp.�/ norm, 222
Riesz-Fischer property, 54, 55, 70
Riesz-Thorin interpolation
Lp.�/, 113, 128
W k;p.�/, 277

Rubio de Francia extrapolation
classical, 206, 227
in Lp.�/, 208, 211, 227
off-diagonal in Lp.�/, 209
one-sided, 230
pairs of functions, 207, 227
vector-valued, 212
weak type, 211

Rubio de Francia iteration algorithm, 157, 158,
181, 209

Schwartz function, 12
Semi-modular, 72
Separability of Lp.�/.�/, 4, 60
Sequence space, 77
Sharp maximal operator, 230

good-� inequality, 231
pointwise estimates, 231
strong type inequality

Lp norm, 230
Lp.�/ norm, 231, 275
weighted Lp , 231

weak type inequality
Lp.�/ norm, 231

Sign of a function, 12
Simple function, 56
Singular convolution operators, 214

Singular integrals, 214, 227
BMO estimates, 276
multi-linear, 230
strong type inequality

Lp.�/ norm, 215
Lp norm, 215
weighted Lp , 215
weighted Lp.�/, 188, 275

vector-valued inequality, 217
weak type inequality

Lp.�/ norm, 215
Lp norm, 215
weighted Lp , 215

Smooth function, 12
Sobolev embedding theorem, 252

variable exponent case, 254, 261, 266, 267,
277

weighted case, 254
Sobolev exponent, 121, 252
Sobolev space, 240

compact embeddings, 268
Gagliardo-Nirenberg inequality, 270
mean continuity, 269
Meyers-Serrin theorem, 246
Rellich-Kondrachov theorem, 268
Sobolev embedding theorem, 252
variable (see Variable Sobolev space)
weighted Sobolev inequality, 254

Strong maximal operator, 125
unbounded non-constant exponents, 125

Strong type inequality
averaging operator AQ Lp.�/ norm, 178
averaging operator AQ Lp.�/ norm, 162
Cauchy integral

weighted Lp.�/, 188
fractional maximal operator

Lp-Lq , 121
Lp.�/-Lq.�/ , 121, 226
weighted Lp-Lq , 226

Hardy operator
Lp.�/ modular, 123
Lp.�/ norm, 123
weighted Lp.�/, 188

maximal operator
Lp.�/ modular, 107, 110
Lp norm, 82
Lp.�/ norm, 89, 132, 163, 165, 182–184,

187, 272–276
weighted Lp , 153, 181
weighted Lp.�/, 186, 188

one-sided maximal operator
Lp.�/ norm, 124

Riesz potential
Lp-Lq , 224
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Lp.�/-Lq.�/, 224
local Lp.�/, 249
weighted Lp -Lq , 225
weighted Lp.�/-Lq.�/ , 188

Riesz transform
Lp.�/ norm, 219, 276

sharp maximal operator
Lp norm, 230
Lp.�/ norm, 231, 275
weighted Lp , 231

singular integrals
Lp.�/ norm, 215
Lp norm, 215
weighted Lp , 215
weighted Lp.�/, 188, 275

variable fractional maximal operator
Lp.�/-Lq.�/, 122

variable Riesz potential
Lp.�/-Lq.�/, 233, 234

Sublinearity of maximal operator, 81
Support of a function, 11
Symmetry of exponent, 135, 174, 272

Telescoping sum, 56
Thermistor problem, 7
Translation invariance, 4, 203
Translation operator, 194
Triangle inequality, 18
Lp.�/.�/ norm, 21
modular, 18

Two weight norm inequalities on Lp.�/, 188

Unbounded, maximal operator on L1, 81, 90
Uniform cone property, 263
Uniform convexity of Lp.�/.�/, 73, 76

Vanishing mean oscillation, 184
Variable fractional maximal operator, 122

strong type inequality
Lp.�/-Lq.�/, 122

Variable Hölder continuity, 257, 261
Variable Lebesgue differentiation theorem, 67,

70, 270
Variable Lebesgue space, 4, 18, 68

absolute continuity of norm, 73
alternative definition of norm, 74
Amemiya norm, 26, 69
associate norm, 30, 69
associate space, 63
Banach function space, 72, 73
completeness, 54, 55, 70

Daugavet property, 74
dense subsets, 56, 57, 59, 60, 70, 271
dual space, 62, 63, 271
dual space norm, 62, 73
embedding in Orlicz space, 75
embedding theorems, 35–43, 70
entire analytic functions, 230
Gateaux derivative of norm, 74
Hölder’s inequality, 27, 31, 69, 74
Lipschitz functional, 127
local integrability, 36
Luxemburg norm, 20, 69
Minkowski’s integral inequality, 34
modular, 17, 69, 74
modular convergence, 43, 44, 50, 70, 75, 76
Musielak-Orlicz space, 70, 71
norm convergence, 43, 44, 47–50, 75
not rearrangement invariant, 4, 87
Radon-Nikodym property, 74
rearrangement invariant version, 126
reflexivity, 63, 70
Riesz-Fischer property, 54, 55, 70
semi-modular space, 72
separability, 4, 60
uniform convexity, 73, 76
vector space, 20
weak convergence, 76
weighted, 186

Variable Morrey space, 233
Variable Orlicz space, 71
Variable power weights, 122, 188
Variable Riesz potential, 7, 233, 234

strong type inequality
Lp.�/-Lq.�/ , 233, 234

Variable sequence space, 77
Variable Sobolev space, 240, 260, 266

alternative definition of norm, 262
capacity, 261, 270
chain rule, 241, 260
compact embeddings, 268
completeness, 241
decreasing rearrangement, 268
density of smooth functions, 246, 261,

264–266, 277
dual space, 243
extension operator, 263
Gagliardo-Nirenberg inequality, 270, 277
Gateaux derivative of norm, 74
mean continuity, 269

modular, 270
Meyers-Serrin theorem, 246
norm, 240
not Banach function space, 243
Poincaré inequality, 249, 261, 265, 277
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reflexivity, 242
Rellich-Kondrachov theorem, 268
separability, 242
Sobolev embedding theorem, 254, 261,

266, 267, 277
trace operator, 266

Vector space, 20
Vector-valued maximal operator, 234

Wavelets, 230
Weak convergence in variable Lebesgue

spaces, 76
Weak derivative, 240
Weak type inequality

fractional maximal operator
Lp-Lq , 121
Lp.�/-Lq.�/, 121

maximal operator
Lp.�/ modular, 107, 110, 111, 119, 159
Lp norm, 82
Lp.�/ norm, 89, 132, 163, 178, 182
reverse, 150
weighted Lp , 153, 181
weighted Lp.�/, 186

Riesz potential
Lp-Lq , 224
Lp.�/-Lq.�/, 224
weighted Lp -Lq , 225, 255

Riesz transform
Lp.�/ norm, 222

sharp maximal operator
Lp.�/ norm, 231

singular integrals
Lp.�/ norm, 215
Lp norm, 215
weighted Lp , 215

Weighted Lebesgue space, 70, 71, 152
Weighted modular on Lp.�/.�/, 186
Weighted norm inequality. See Norm inequality
Weighted Sobolev inequality, 254
Weighted variable Lebesgue space, 186
Weights, 71, 142, 155

A1, 143, 144
A1, 142
Ap , 142, 153, 180, 181
Ap.
/, 149
Ap.�/, 186
Ap;q , 224, 228

A
�

p.�/, 187
as measure, 147, 185–189

doubling, 147
Muckenhoupt (see Ap)
as multiplier, 185, 186, 188
Jones factorization theorem, 144, 180
non-effective, 186
RH1, 119
RHs , 145
RHs.
/, 149
reverse Hölder inequality, 145
reverse Jensen inequality, 180

Whitney decomposition, 16

Young function, 3
Young’s inequality, 27
Young’s inequality for convolutions

classical, 192
failure in Lp.�/, 204
version for Lp.�/, 205, 227

Zygmund space, 72, 75
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