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Preface

This book represents the fruits of our collaboration on the variable Lebesgue spaces.
Our work in this area stretches back over a decade. Its genesis is memorable: it
began in Naples during an exceptionally cold January in 2002, shortly after the
introduction of the euro. We worked through the details of a preprint we had received
from our colleague Lars Diening which gave conditions for the maximal operator
to be bounded on variable Lebesgue spaces defined on bounded sets. Our first task
was to try to understand these previously unknown spaces. The more we worked
with them, the more intrigued we became. Subsequently, we began to study the
maximal operator on unbounded domains; a search for applications led us to the
other classical operators of harmonic analysis and the interplay between weighted
norm inequalities and variable Lebesgue spaces.

In 2007, the first author was invited to teach a graduate course on variable
Lebesgue spaces at the University of Naples, Federico II, an invitation he gladly
accepted. The notes for that course became the basis for this book. One problem,
however, was that our knowledge of the field continued to evolve even as we tried
to convert those notes into a final manuscript. Instead of writing we would stop to
prove new theorems, leading to repeated revisions and expansions of the text. At
this point, however, we think we have reached a reasonable place to stop: we have
written (we believe) an introduction to variable Lebesgue spaces that will be useful
for a wide audience. Simply put, we think we have finally gotten it right.

Many individuals have contributed directly and indirectly to this book. We want
to acknowledge the late Christoph Neugebauer, who collaborated with us on our first
paper on variable Lebesgue spaces and provided key insights. We want to thank our
colleagues Lars Diening, Peter Histo, AleS Nekvinda and Stefan Samko, who freely
shared with us preprints of their work. Their generosity kept us abreast of a very
rapidly evolving field. We want to thank Jean Michel Rakotoson for his collegiality
and for sharing with us his ideas and questions on variable Lebesgue spaces. We
also want to thank our colleague Claudia Capone and the students who attended
the variable Lebesgue space course for their patience as we tried for the first time
to shape our knowledge into a coherent whole. We especially want to thank Carlo
Sbordone, who first brought us together and has provided continuing support and
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encouragement for our joint labors. And finally, we want to thank our wives and our
children for patiently bearing with us as this book became a reality.

Hartford, CT, USA David V. Cruz-Uribe, SFO
Napoli, Italy Alberto Fiorenza
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Chapter 1
Introduction

The variable Lebesgue spaces, as their name implies, are a generalization of
the classical Lebesgue spaces, replacing the constant exponent p with a variable
exponent function p(-). The resulting Banach function spaces L?”") have many
properties similar to the L? spaces, but they also differ in surprising and subtle
ways. For this reason the variable Lebesgue spaces have an intrinsic interest, but
they are also very important for their applications to partial differential equations
and variational integrals with non-standard growth conditions. The past 20 years,
and especially the past decade, have witnessed an explosive growth in the study of
these and related spaces.

The goal of this book is to provide an introduction to the variable Lebesgue
spaces. We first establish their structure and function space properties, paying
special attention to the differences between bounded and unbounded exponents.
Next, we develop the machinery of harmonic analysis on variable Lebesgue spaces.
We first concentrate on the Hardy-Littlewood maximal operator, and then extend
the Rubio de Francia theory of extrapolation to this setting. To do so we introduce
the theory of Muckenhoupt 4, weights and weighted norm inequalities. With these
tools we can then study other operators, particularly convolution operators, singular
integral operators and Riesz potentials. Finally, as an application of these results we
give the essential properties of the variable Sobolev spaces.

In writing this book we had two different audiences in mind. First, we wanted
to write an introduction suitable for researchers and students interested in learning
about the variable Lebesgue spaces. At the same time, we hoped to create a useful
reference for mathematicians already active in the area. For both audiences we have
provided a coherent treatment of the material—in terms of notation, hypotheses
and overall point of view—and thereby united results by many authors from a
rapidly evolving field. We have also included a concise introduction of weights and
weighted norm inequalities. These have become very important tools in the study
of the variable Lebesgue spaces, and we have given a careful treatment of the key
ideas needed to use them.

We have not, however, merely summarized existing work. We have included
many new and previously unpublished results and new proofs of known results. Our

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 1
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3_1, © Springer Basel 2013



2 1 Introduction

goal was both to build upon earlier work and to fill in the gaps that inevitably arise
in a rapidly developing field. At the end of each chapter we have included extensive
notes, giving detailed references to the literature and summaries of additional topics
not treated in the body. In this way we have made clear the history and current state
of knowledge.

We are mindful, however, that the needs of these two audiences can conflict at
times, since a comprehensive monograph aimed at specialists is usually not the best
choice for students, and an introductory treatment may prove frustratingly slow for
those who are already familiar with the material. In resolving this conflict we have
always thought first of the needs of students, providing many details and exploring
the underlying intuition. We ask the experts for their forbearance and hope they will
remember their own experiences as graduate students.

In this chapter we provide a brief introduction to the variable Lebesgue spaces,
recount some of their history (particularly their development before the “modern”
period of research), and very briefly sketch some of the motivations for their study.
Following this we give a more detailed summary of the contents of each chapter. In
the last section we outline the minimum knowledge we expect of the reader and list
the basic notation we will use throughout.

1.1 An Overview of Variable Lebesgue Spaces

To get a sense of the variable Lebesgue spaces, we begin with an elementary
example. On the real line, consider the function f(x) = |x|~!/3. The function f
is extremely well-behaved, but it is not in L”(RR) for any p, 1 < p < oo. Given a
single value of p it either grows too quickly at the origin or decays too slowly at
infinity.

To more fully describe the behavior of f we must bring to bear two different
L” spaces, for instance, L? and L*. We can split up the domain of f and say that
f € L*([-2,2]) and f € L*(R \ [-2,2]). The drawback of this approach is that
for more complicated functions we need to introduce additional L? spaces or lose
information. If we let

g() = |x|77 e — 17V,

then g € L?([—2,2]), or more generally in L”([—2,2]) for any p < 3, but we have
lost information about the local behavior of the singularity at x = 1. On the other
hand, g is no longerin L*(R \ [-2,2]): we have g € L?(R\ [-2,2]) for p > 4. To
capture this behavior we must subdivide the domain further, for example, writing
g€ L*([-1,1/2]),g € L3([1/2,2]) and g € L*>(R\ [-1,2]).

The variable Lebesgue spaces give a different approach: we leave the domain
intact and instead allow the exponent to vary. Define the “exponent function”
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C9x[+2 9 52

PO = T T2 At

Then p(0) = 2, p(1) = 11/3 and p(x) — 9/2 as |x| — oo, and it is easy to see
that

/ | F(x)]"®) dx < 0o and / lg(x)|?®) dx < 0.
R R

In other words, the single variable exponent p(-) allows us to describe more
precisely the behavior of each function. Moreover, we can distinguish between them
at infinity by modifying the exponent function. For instance, if we let

) 8lx|+2 2
X = — = _—
q 20x| + 1 20x| + 1

then

/ [ ()™ dx < oo
R

and |g(-)|9") is locally integrable, but

/mmww=w
R

These examples motivate the definition of the variable Lebesgue spaces. Given a
set © and a measurable function p(-) : Q — [1,00), we let L?0) () be the set of
functions f such that

/ | £(x)]P%) dx < 0.
Q

We can even incorporate L into the definition: if we allow p(-) to be infinite on
sets of positive measure and let Qo = {x € Q : p(x) = oo}, then we can redefine
L?0(Q) as the set of functions such that

mMﬂ=Am|ﬂmWwwwmmm@<w

While this definition is very suggestive of the classical definition, we immedi-
ately encounter problems. If p(-) is a bounded function, then it is straightforward to
show that with this definition L?¢) () is a vector space. But if p(-) is unbounded,
then this is no longer the case: consider, for example, 2 = R and p(x) =
1 + |x|. Then p,((1/2) < oo, so 1/2 € LPO(R), but p, (1) = oco. Further,
the “modular” p,(.) does not immediately convert into a norm: unlike the case of
constant exponents, we cannot put a power 1/ p(x) on the outside of the integral.

The solution to this problem is similar to the approach taken in Orlicz spaces.
Recall that given a Young function ® : [0, co) — [0, 00), (i.e., a continuous, strictly
increasing, convex function), the Orlicz space L®(2) consists of all functions f
such that for some A > 0,
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palf/3) = /ﬂ <I>(

This becomes a Banach space when equipped with the Luxemburg norm:

|f ()]
3 ) dx < oco.

[fllLe@) = infid > 0: pa(f/A) < 1}.

Similarly, we define L?")(Q) to be the set of functions f such that for some A > 0,
pPpe)(f/A) < oo, and define the norm

I flLrer @) = infid > 01 ppy (f/A) < 13

When p(-) is a constant this immediately reduces to the usual norm on the classical
Lebesgue spaces. With this norm L) () becomes a Banach space and it has many
properties in common with the classical Lebesgue spaces, especially when p(-)
is bounded function. For example, in this case the variable Lebesgue spaces are
separable, and the dual space of L?)(Q) is isomorphic to L? ©)(Q), where the
exponent p’(-) is defined pointwise by

LI
p(x)  px)

with the convention 1/00 = 0.

On the other hand, they diverge from the L’ spaces in several critical ways.
Most significantly, the variable Lebesgue spaces are not translation invariant: if
p(+) is non-constant in R”, then there always exists f € LPO(R") and h € R”
such that g(x) = f(x + h) is not in L?O(R") . As a consequence the L7 (R")
spaces are not rearrangement invariant Banach function spaces, and so a great
deal of classical machinery is not applicable. In developing the theory of harmonic
analysis on variable Lebesgue spaces much of the effort has gone into overcoming
this problem.

When p(-) is unbounded, even more significant differences arise. In this case,
L?0(Q) is no longer separable and bounded functions of compact support are not
dense. L”' () is isomorphic to a proper subspace of L?®)(Q)*. In addition, it
can happen that L>®°(Q2) C L?)(Q) when  has infinite measure. This is the case,
for instance, if 2 = R and p(x) = 1 + |x|. Further, when p(-) is unbounded,
L?0(Q) can contain unbounded functions whose singularities coincide with those
of the exponent. For example, let 2 = (0,e7¢) and p(x) = loglog(1/x). Then

fx) = X709 is unbounded and f e LrO(Q).

1.2 A Brief History of Variable Lebesgue Spaces

In this section we give an overview of the history of variable Lebesgue spaces.
Recounting this history up to the mid 1990s is relatively straightforward, since
relatively few mathematicians worked in this area. However, from that time the field
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has burgeoned, and we only note a few highlights; we make no pretense of being
comprehensive. Unlike in subsequent chapters, where references are deferred to the
last section, here we will give references to works as we discuss them.

It is generally accepted that the dividing line between the “early” and “modern”
periods in the study of variable Lebesgue spaces is the foundational paper of
Kovéacik and Rékosnik [219] from 1991. But the origin of the variable Lebesgue
spaces predates their work by 60 years, since they were first studied by Orlicz [290]
in 1931. For exponent functions p(-) such that 1 < p(x) < oo, he showed that if

1
/|ﬂmwmu<m,
0

then a necessary and sufficient condition on a function g so that

1
/0 f(x)g(x)dx < o0

is that for some A > 0,

"(x)
/1 (lgix)l)p dx < oo.
0

However, this paper is essentially the only contribution of Orlicz to the study of
the variable Lebesgue spaces. (The one exception is an oblique reference in a
paper with Musielak [275].) Instead, Orlicz turned his attention to the study of the
spaces now called Orlicz spaces, which he also introduced in 1931 in a joint paper
with Birnbaum [29]. (For the early history of these spaces, see Krasnosel’skii and
Rutickif [222].)

The next step in the development of the variable Lebesgue spaces came two
decades later in the work of Nakano [278,280] who developed the theory of modular
spaces, sometimes referred to as Nakano spaces. A modular space is a topological
vector space equipped with a “modular”: a generalization of a norm. An important
example of a modular space is the function space consisting of all functions f such
that for some A > 0,

L¢WUUWMM<w,

where ® : Q x [0,00) — [0, 00] is a function such that for almost every x € €,
®(x,-) behaves like a Young function. These spaces are referred to as Musielak-
Orlicz spaces or generalized Orlicz spaces. (See [274].) They contain a number of
function spaces as special cases. If ®(x,7) = P(¢) is just a function of 7, they are
the Orlicz spaces. If ®(x, 1) = 17, they are the variable Lebesgue spaces. And if
®(x,t) = t?w(x), they become the weighted Lebesgue spaces.

In [278], Nakano introduced the variable Lebesgue spaces as specific examples
of modular spaces, and their properties were further developed in [280]. However,
research in this area was focused on the topological properties of modular or
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Musielak-Orlicz spaces, and the variable Lebesgue spaces were primarily consid-
ered interesting examples: see, for example, Yamamuro [349] and Portnov [292,
293]. One exception is the work of Hudzik [171-179] in the late 1970s. He
introduced the generalized Sobolev spaces defined over Musielak-Orlicz spaces, and
his work foreshadowed many of the results on variable Lebesgue spaces developed
more recently.

The variable Lebesgue spaces reappeared independently in the Russian literature,
where they were studied as spaces of interest in their own right. They were
introduced by Tsenov [344] in 1961. He considered the problem of minimizing the
integral

1
Alf@)—Wﬁdem

where f is continuous and ¢ is a polynomial of fixed degree. In 1979, Sharapudi-
nov [329] developed the function space theory of the variable Lebesgue spaces
on intervals on the real line, introducing the Luxemburg norm (though without
reference to the Luxemburg norm, drawing instead on ideas of Kolmogorov [210]),
and showing that when p(-) is bounded, L?*) ([0, 1]) is separable and its dual space is
L?'O([0, 1]). In subsequent papers [330-332] he considered various other problems
in analysis on the variable Lebesgue spaces. In [331] he was the first to consider
questions that involved the regularity of the exponent function p(-), and introduced
the local log-Holder continuity condition,

Co

_ 1.1
—log(|x — y|) (D

() = ()] = -yl <3
that has proved to be of critical importance in the theory of variable Lebesgue
spaces. These spaces also appeared in the work of other Russian authors, for exam-
ple, Kozlov [221].

The most influential work is due to Zhikov [353-356,358-361], who beginning
in 1986 applied the variable Lebesgue spaces to problems in the calculus of
variations. Though, as we noted above, the “modern” period in the study of variable
Lebesgue spaces is usually said to begin with the 1991 paper of Kovacik and
Rékosnik, Zhikov’s work provides a bridge from the earlier period.

Zhikov was concerned with minimizing the functionals

Fu) = / f(x,Vu)dx
Q
when the Lagrangian f satisfies the non-standard growth condition
—co +a1l§l” = f(x,§) < co+ e2f§]7,
where the ¢; are positive real constants and 0 < p < ¢. A particular example of

such a Lagrangian is f(x,£) = |£|?™), where p < p(x) < ¢. The Euler-Lagrange
equation associated to this functional is the p(-)-Laplacian:
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A pyu = —div(p ()| Vu|PO72Vu) = 0.

In the mid 1990s, functionals with non-standard growth and the p(-)-Laplacian were
also studied by Fan [111, 112] and Fan and Zhao [120, 121]. (These problems were
developed in a different direction by Marcellini [252,253].) Since then this field
has expanded tremendously. For an overview of the study of partial differential
equations with non-standard growth conditions, see the survey articles by Fan [113],
Harjulehto, Histo, Lé and Nuortio [157], and Mingione [263].

A very different problem also provided impetus for the study of the variable
Lebesgue spaces. In the early 1990s, Samko and Ross [300, 320] (see also
Samko [311,314]) introduced a Riemann-Liouville fractional derivative of variable
order,

1 d [
Da(') = ——/ —t —o(x) t dt’
0 = f ey s ), G0
and the corresponding variable Riesz potential,

1
[ (a(x))

Investigating the behavior of these operators led naturally to the study of convolution
and potential operators on the variable Lebesgue spaces: see Samko [312,313] (also
see Edmunds and Meskhi [103]).

Interest in the variable Lebesgue spaces has increased since the 1990s because of
their use in a variety of applications. Foremost among these is the mathematical
modeling of electrorheological fluids. These are fluids whose viscosity changes
(often dramatically) when exposed to an electric field. See [147, 336] for a
discussion of their physical properties and applications. Electrorheological fluids are
understood experimentally, but a complete theoretical model is still lacking. In the
study of fluid dynamics they are treated as non-Newtonian fluids; in one extensively
studied model the energy is given by the integral

190 f(x) = / S = "9 f() .

/ | Du()|P dox,
Q

where Du is the symmetric part of the gradient of the velocity field and the exponent
is a function of the electric field. Ruzic¢ka [306, 307] introduced this model, and
it was further developed by Acerbi and Mingione [3-5]. This problem was of
considerable importance in spurring the development of the theory of variable
Lebesgue and Sobolev spaces: see, for example, Diening and Rizicka [88-91].
The variable Lebesgue spaces have also been used to model the behavior of other
physical problems. Some examples include quasi-Newtonian fluids [360], the ther-
mistor problem [361], fluid flow in porous media [15, 16], and magnetostatics [43].
The variable Lebesgue spaces have been applied to the study of image process-
ing. As early as 1997, Blomgren et al. [30] suggested that in image reconstruction, a
smoother image could be obtained by an interpolation technique that uses a variable

exponent: the appropriate norm is
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/ V()| dx,
Q

where the exponent p(-) decreases monotonically from two to one as Vu increases.
This approach and related ideas have been explored by a number of authors [1, 2,
32,45,46,156,236,237,348] in recent years.

In much of the work described above there was a need to extend the techniques
and results of harmonic analysis to the variable Lebesgue spaces. It soon became
clear that a central problem was determining conditions on an exponent p(-) so that
the Hardy-Littlewood maximal operator is bounded on L?®)(IR"). The first major
result was due to Diening [77], who showed that it is sufficient to assume that p(-)
satisfies the local log-Holder condition (1.1) and is constant outside of a large ball.
This result was generalized in [62] (see also [42,56]), where it was shown that it was
sufficient to assume that (1.1) holds and p(-) is log-Holder continuous at infinity:
there exists poo such that

o0
X)— Poo| £ ——m.
[p(x) = pool log(e + [x])

Independently, Nekvinda [282] showed that it was sufficient to assume that p(-)
satisfies a somewhat weaker integral decay condition. The log-Hdolder conditions
are the sharpest possible pointwise conditions (see Pick and Rtizi¢ka [291] and [62])
but they are not necessary: see Nekvinda [284], Kopaliani [215] and Lerner [231].
Diening [79] has given a necessary and sufficient condition that is difficult to check
but has important theoretical consequences. The importance of these results was
reinforced by the work in [61], where it was shown that the theory of Rubio de
Francia extrapolation could be extended to the variable Lebesgue spaces. This
allows the theory of weighted norm inequalities to be used to prove that a multitude
of operators (such as singular integrals) are bounded on L”")(R") whenever the
maximal operator is.

1.3 The Organization of this Book

We begin in Chap.2 with the function space properties of the variable Lebesgue
spaces. We develop the properties of the modular p,) and the norm, including
versions of Holder’s and Minkowski’s inequalities. We consider the various embed-
dings of variable Sobolev spaces into themselves and into the classical Lebesgue
spaces. We next treat convergence in norm, in modular and in measure, prove that
the spaces L”)(2) are complete, and determine conditions for various canonical
sets of functions (such as bounded functions of compact support) to be dense. We
discuss duality and show that L”)()* is isomorphic to L” /() if and only if
p(-) is bounded. Finally, we give a generalization of the Lebesgue differentiation
theorem.



1.3 The Organization of this Book 9

Throughout this chapter we have proved results in the fullest generality possible,
though some very technical theorems (such as the fine properties of convergence
when p(-) is unbounded) are relegated to the notes in the last section. In particular,
while many properties of the variable Lebesgue spaces are easier to prove when
p(-) is bounded, we have worked out the theory in full generality to illuminate the
precise differences between bounded and unbounded exponents.

In writing this chapter we have chosen to prove everything directly, following
wherever possible the theory of the classical Lebesgue spaces. To illustrate key ideas
we have included a number of concrete examples. There are other approaches to the
properties of the variable Lebesgue spaces. The most common is to treat them as
special cases of the Musielak-Orlicz spaces. This is the point of view adopted in the
recent book by Diening, Harjulehto, Hésto and Razicka [82]. Similarly, many of the
properties of variable Lebesgue spaces can be gotten by viewing them as particular
examples of Banach function spaces (see Bennett and Sharpley [25]). These more
abstract approaches have their advantages, but we believe strongly that our “nuts
and bolts” approach has the singular advantage that any reader who works through
the details will become intimately familiar with the variable Lebesgue spaces.

In the subsequent chapters we turn to the study of harmonic analysis on the
variable Lebesgue spaces. For us this meant beginning with the theory of the Hardy-
Littlewood maximal operator, which we do in Chaps. 3 and 4. In Chap. 3 we develop
the theory assuming that the exponent function satisfies log-Hdolder continuity
conditions, both locally and at infinity. These conditions are not necessary, but
they are versatile and have proved to be very important in many applications.
Our main tool for working with the maximal operator is the Calderén-Zygmund
decomposition using dyadic cubes. This is a relatively recent approach in the
variable Lebesgue spaces, but one which has proved to be remarkably flexible. The
earlier techniques used to study the maximal operator are described in the notes.

In Chap.4 we continue to study the maximal operator, but now our focus is on
weakening the log-Holder continuity conditions, a problem which is still an area
of active research. The proof of the boundedness of the maximal operator that we
give in Chap. 3 makes it very easy to consider the conditions used locally and at
infinity separately. We first give a weaker condition at infinity, introducing the Noo
condition of Nekvinda, and then constructing examples to show that this condition
is still quite far from necessary. To understand the behavior of the maximal operator
locally, we pause to introduce the theory of Muckenhoupt 4, weights and weighted
norm inequalities. These ideas have, somewhat surprisingly, proved to be both an
important motivation and a useful tool for studying the variable Lebesgue spaces.
For completeness we have given a self-contained presentation of this theory. Using
these ideas we then consider a weaker local condition, introducing the K condition
of Kopaliani. This condition is necessary and sufficient for the maximal operator
to be bounded on L”")(£2) when  is bounded; an important open question is to
find an analog of this condition to use at infinity. We conclude this chapter with a
discussion (without proof) of a necessary and sufficient condition, due to Diening,
for the maximal operator to be bounded. While not easy to apply in practice, it has
important theoretical implications.
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In Chap.5 we study some other important operators from harmonic analysis.
We begin with the theory of convolution operators and approximate identities on
variable Lebesgue spaces. The fact that these spaces are not translation invariant
means that Young’s inequality fails to hold. However, if we assume sufficient
regularity on the exponent p(-), then we prove that approximate identities converge
pointwise, in measure, and in norm. Throughout this chapter we express this
regularity in terms of boundedness properties of the maximal operator. To study
other operators, we extend to the variable Lebesgue spaces one of the most powerful
ideas in the theory of weighted norm inequalities: the Rubio de Francia theory
of extrapolation. Using this, we show that if an operator satisfies weighted norm
inequalities on the classical Lebesgue spaces, then it satisfies norm inequalities on
variable Lebesgue spaces, assuming some regularity of the exponent p(-). We apply
extrapolation to study two operators in detail: singular integral operators and Riesz
potentials. These are important in applications and provide good models for using
extrapolation to study other operators. While we state the basic properties of these
operators that we use, we have chosen to omit these proofs and refer the reader to
any of a number of standard reference works.

Finally, in Chap.6 we develop the basic theory of variable Sobolev spaces,
an essential tool in the study of the calculus of variations and partial differential
equations in the variable Lebesgue spaces. We first prove their basic function space
properties. We then consider the question of when smooth functions are dense in the
variable Sobolev space W!7()(Q). We prove the Meyers-Serrin theorem assuming
that p(-) is regular; we also give an example to show that some degree of regularity
is required. As we did in Chap.5, we state our regularity hypotheses in terms of
the boundedness properties of the maximal operator. We next prove generalizations
of the Poincaré inequality and the Sobolev embedding theorem to the variable
Lebesgue spaces.

Unlike Chap.?2, our intention in Chap.6 was not to give a comprehensive
development of the theory of variable Sobolev spaces. Rather, we wanted to prove
some essential properties to demonstrate the application of the ideas and techniques
from the previous chapters. In particular, we deliberately omitted any discussion of
questions related to the regularity of the boundary of 2.

We conclude every chapter with extensive references for the results in the body
of the chapter. We have attempted to make these notes as comprehensive as possible,
both to make clear the historical development of the field and to give proper credit
to the many people who have contributed to it. We have also included in the notes
discussions of additional topics to illustrate the many directions the field has evolved
and to refer readers to results we felt were important but decided not to include in
the text. In an appendix we have gathered together some open problems which we
believe are important for future research on the variable Lebesgue spaces.
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1.4 Prerequisites and Notation

Throughout this book we assume that the reader knows classical real analysis
through the Lebesgue integral and some of the basic facts from functional analysis
that are usually presented in a standard graduate analysis course. The books by
Brezis [37], Royden [301] or Rudin [305] provide more than adequate background.
In line with our aim of making this work accessible to students, we have generously
scattered references throughout the text, particularly in Chap. 2, for the classical
results we use.

Our treatment of the maximal operator in Chap. 3, weights and weighted norm
inequalities in Chap.4, and convolution operators and Rubio de Francia extrap-
olation in Chap.5 is almost completely self-contained; hopefully it will provide
a concise introduction for readers who are not familiar with these essential
tools of harmonic analysis. The most important exception, however, is in our
treatment of singular integral operators and Riesz potentials in Chap.5. We state
the principal results we use but we do not include any proofs. These sections
will probably be more readily understood by readers who have had some prior
exposure to this material. For readers who need more information, we refer to the
books by Duoandikoetxea [96], Garcia-Cuerva and Rubio de Francia [140] and
Grafakos [143]. Similarly, in Chap. 6 we presume that the reader has some basic
familiarity with weak derivatives and the classical Sobolev space theory; the works
by Adams and Fournier [7], Maz’ja [260], Tartar [343] and Ziemer [363] contain
far more information than is required. A brief introduction can be found in Gilbarg
and Trudinger [142].

The following notation will be used throughout the text.

We will always use the convention that 0 - co = 0 and 1 /00 = 0.

The dimension of the underlying space (i.e., R") will be denoted by n; the
variable n is never used as an index or for enumeration. Points x € R”" have their
coordinates denoted by superscripts: x = (x!,...,x"). The norm on R" will be
denoted by | - |. For x € R"” and r > 0, B,(x) will denote the open ball centered at
x. Given a ball B, 2B will denote the ball with the same center and twice the radius.
If O C R" is a cube, then £(Q) will denote the length of each edge.

A set E C R" will always be assumed to be measurable. Given E, 'E will denote
the closure of E and dE will denote the boundary of E: 0E = E N (R" \ E). The
Lebesgue measure of E will be denoted by |E|, and yg will be the characteristic
function of E:

1 xeFE
XE(X) 0 xdE.
If E is the empty set, then yz = 0.

Measurable functions are real-valued and defined up to sets of measure zero:
given two measurable functions f and g, we will write f = g if f(x) = g(x)
almost everywhere. If f is a continuous function, the support of f, denoted
supp(f), is the closure of the set {x € R" : f(x) # 0}. If f is a measurable
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function, let A denote the union of all open sets B such that f(x) = 0 for almost
every x € B. Then supp(f) is defined to be R" \ A. Given a measurable function
f, the sign of f, sgn f, is the function

1 f(x)>0
sgn f(x) =73-1 f(x) <0
0 f(x)=0.

Given a measurable function f and aset £, if 0 < |E| < oo, define

1
ﬁ=ﬁﬂw®=ﬁiéﬂww

Given a set Q C R”, |2|] > 0, (which will hereafter be referred to as a domain)
define the classical Lebesgue spaces L”(2) to be the Banach function spaces with
norm

1/p
( uquﬁ l<p<oo
Q

esssup | f(x)| p = 0.
XEQ

| f L@ =

If there is no confusion about the domain, we will write || /[ ,.
Given p, | < p < o0, define the conjugate exponent p’ by

1 1

—+—==1
p D

The symbol “/” will always be used to denote conjugate exponents and will never

be used for differentiation. For derivatives of functions of one variable we will use

the notation Df = df/dx.

Given an open set Q, let C(R2) = C°(R2) denote the set of functions that are
continuous on €2, and C(Q) the set of functions continuous up to the boundary.
For1l < k < oo, let C k(Q) denote the set of functions that have continuous
partial derivatives of all orders less than or equal to k. If k = oo, then C*°(R2)
is referred to as the set of smooth functions on 2. For k£ > 0, let Cck (R2) be the set
of all functions f € C*(Q) such that supp( f) is compact and contained in Q. The
Schwartz functions are the functions f € C°(R") such that f and all its partial
derivatives decay more quickly than |x|~* at infinity, for any k > 0.

For brevity we will omit the parentheses from expressions such as [log(x)]* and
instead write log(x)*.

Throughout the text the letters C and ¢ will denote a constant whose value may
depend on certain (implicitly) specified parameters and which may change even
between lines in a single expression. To denote the dependence of the constant on
parameters X, Y, ..., we will write C(X,Y,...).



Chapter 2
Structure of Variable Lebesgue Spaces

In this chapter we give a precise definition of the variable Lebesgue spaces and
establish their structural properties as Banach function spaces. Throughout this
chapter we will generally assume that €2 is a Lebesgue measurable subset of R”
with positive measure. Occasionally we will have to assume more, but we make it
explicit if we do.

2.1 Exponent Functions

We begin with a fundamental definition.

Definition 2.1. Given a set €2, let P(2) be the set of all Lebesgue measurable
functions p(-) : € — [1,00]. The elements of P(2) are called exponent
functions or simply exponents. In order to distinguish between variable and constant
exponents, we will always denote exponent functions by p(-).

Some examples of exponent functions on & = R include p(x) = p for some
constant p, 1 < p < oo, or p(x) = 2 + sin(x). Exponent functions can be
unbounded: for instance, if 2 = (1,00), let p(x) = x, and if @ = (0, 1), let
p(x) = 1/x. We will consider these last two frequently, as they will provide good
examples of the differences between bounded and unbounded exponent functions.

We define some notation to describe the range of exponent functions. Given
p(-) € P(Q2)andaset E C 2, let

p—(E) =essinf p(x), p+(E) = esssup p(x).
xX€E xeE

If the domain is clear we will simply write p— = p_(R), p+ = p+(R). As is
the case for the classical Lebesgue spaces, we will encounter different behavior
depending on whether p(x) = 1,1 < p(x) < oo, or p(x) = oo. Therefore, we
define three canonical subsets of €2:

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 13
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3_2, © Springer Basel 2013
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Q’o’é') ={xeQ:plk) =00},
QMY = (xeQ:px) =1}

QY ={xeQ:1< px) < ool

Again, for simplicity we will omit the superscript p(-) if there is no possibility of
confusion. Since p(-) is a measurable function, these sets are only defined up to sets
of measure zero; however, in practice this will have no effect. Below, the value of
certain constants will depend on whether these sets have positive measure; if they
do we will use the fact that, for instance, | x, r0 loo = 1.

Given p(-), we define the conjugate exponent function p’(-) by the formula

Ll
I .

x € Q,

with the convention that 1/00 = 0. Since p(-) is a function, the notation p’(-) can
be mistaken for the derivative of p(-), but we will never use the symbol “/ in this
sense.

The notation p’ will also be used to denote the conjugate of a constant exponent.
The operation of taking the supremum/infimum of an exponent does not commute
with forming the conjugate exponent. In fact, a straightforward computation shows
that

POy =) (PO)_=(p+)"
For simplicity we will omit one set of parentheses and write the left-hand side of
each equality as p’(-), and p’(-)_. We will always avoid ambiguous expressions
such as p/, .

Though the basic theory of variable Lebesgue spaces only requires that p(-)
be a measurable function, in many applications in subsequent chapters we will
often assume that p(-) has some additional regularity. In particular, there are two
continuity conditions that are of such importance that we want to establish notation
for them.

Definition 2.2. Given 2 and a function r(-) : 2 — R, we say that r(-) is locally
log-Holder continuous, and denote this by 7(-) € LH(£2), if there exists a constant
Co such that forall x, y € Q, |[x — y| < 1/2,

Co

|r(x) —V(J’)| = m

We say that r(-) is log-Holder continuous at infinity, and denote this by r(-) €
L Hyo(R2), if there exist constants Coo, and ro such that for all x € Q,

C

o0
r(X) —reo| < ——8 .
() = reol = log(e + |x])
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If r () is log-Holder continuous locally and at infinity, we will denote this by writing
r(-) € LH(2). If there is no confusion about the domain we will sometimes write
LHy, LHs or LH.

In practice we will often assume that p(-) or 1/p(-) is contained in one of the
log-Holder continuity classes. In the latter case, if p(-) is unbounded at infinity we
let poo = 00 and use the convention 1/ ps = 0.

The next result is an immediate consequence of Definition 2.2.

Proposition 2.3. Given a domain Q2.:

1. Ifr(-) € LHy(2), then r(-) is uniformly continuous and r (-) € L>®°(E) for every

bounded subset E C .

Ifr(-) € LHoo(2), then r(-) € L*(R2).

3. If Q is bounded and r(-) € L*°(R2), then r(-) € LHoo(S2), with a constant Coo
depending on |1 ()| o, the diameter of 2, and its distance from the origin.

4. The inclusionr(-) € LHo(S2) is equivalent to the existence of a constant C such
thatforall x, y € Q, |y| > |x|,

N

C
[r(x) —r(y)| < m-

5. If p+ < oo, then p(-) € LHy(RQ) is equivalent to assuming r(-) = 1/p(-) €
LHy(R2): in fact, given x, y € Q,

)p(X)—p(y) - ) o1 ‘ - ‘p(X)—p(y)

(p+)* |7 lpx) pOMI ™| ()7

Similarly, p(-) € LHx(R2) ifand only if r(-) = 1/p(-) € LHx(R2).

Given two domains g C 2, we clearly have that if p(-) € LHy(S2), then
pC) = p(-)\f2 € LHy(2), and similarly for the class L Hy. In applications, we

will be concerned with the converse: given an exponent function in LH (5), can it
be extended to a function in L H(€2)? The answer is yes as the next result shows.

Lemma 2.4. Givena set 2 C R" and p(-) € P(2) such that p(-) € LH(R2), there
exists a function p(-) € P(R") such that:

1. pe LH;

2. p(x) = p(x), x € Q;

3. p-=p-and py = p4.

Remark 2.5. Tt follows from the proof below that if we only have that p(-) €
LHy(2) or LHx(S2) we can extend it to a function in the same class on R”.

Proof. Since p(-) is bounded and uniformly continuous, by a well-known result it
extends to a continuous function on £2; denote this extension by p() as well. Then
it is immediate that p(-) € LH(2), p—(R2) = p—_(2), and p_(R2) = p_(R2).
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To extend p(-) from Q to all of R” we first consider the case when € is
unbounded; the case when Q is bounded is simpler and will be sketched below.
Define a new function r(-) by r(x) = p(x) — poo. Then r(:) is still bounded (though
no longer necessarily positive) and r(-) € LH(Q).

We will extend r(-) to all of R". If we define w(¢) = 1/log(e/2t),0 <t < 1/2,
and w(t) = 1 fort > 1/2, then a straightforward calculation shows that w(¢)/¢ is
a decreasing function and w(2t) < C w(¢). Further, since log(e/2¢) =~ log(1/?),
0 <t < 1/2, and since r(-) is bounded, |r(x) — r(y)| < Cw(|x — y|) for all
X,y € Q. Therefore, there exists a function 7(-) on R” such that #(x) = r(x),
x € Q, and such that 7(-) € LHy(R"), with a constant that depends only on p(-)
and the L H, constant, and not on 2. For a proof, see Stein [339, Corollary 2.2.3,
p. 175]. Briefly, and using the terminology of this reference, the function 7(-) is
defined as follows. Form the Whitney decomposition {Q;} of R” \ € and let o)
be a partition of unity subordinate to this decomposition. In each cube Qy, fix a
point p; €  such that dist(p, Qi) = dist(Q, Q). Then for x € R" \ ,

Fx) =Y r(podi (x).

k

It follows immediately from this definition that for all x € R”, r— < 7(x) < r4.
However, 7(-) need not be in LH, so we must modify it slightly. To do so we
need the following observation: if fj, f, are functions such that | f;(x) — fi(y)| <
Co(lx —y|), x,,y € R",i = 1,2, then min( f1, f>) and max( fi, f>) satisfy the
same inequality. The proof of this observation consists of a number of very similar

cases. For instance, suppose min( f1(x), f>(x)) = fi(x) and min( fi(y), f2(y)) =
f2(y). Then

fi(x) = f2(y) = fo(x) = f2(y) = Co(lx = y)).
L) = L) = fi(y) = filx) = Collx = y).

Hence,
| min(f1(x). f2(x)) —min(fi(y). L) = [/1(x) = L(V)] = Co(lx = y]).
It follows immediately from this observation that
s(x) = max(min(7(x), Coo/ log(e + |x|)), —Coo/ log(e + |x]))
is in L H(R"). Therefore, if we define
p(x) = 5(x) + Poo-
then (1)—(3) hold.

Finally, if 2 is bounded, we define r(x) = p(x) — p+ and repeat the above
argument essentially without change. O
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2.2 The Modular

Intuitively, given an exponent function p(-) € P(£2), we want to define the variable
Lebesgue space L) () as the set of all measurable functions f such that

/ | £()]P®) dx < oo.
Q

There are problems with this approach, the most obvious being that it does not
work when €2, has positive measure. To remedy them, we begin with the following
definition.

Definition 2.6. Given Q, p(-) € P(2) and a Lebesgue measurable function f,
define the modular functional (or simply the modular) associated with p(-) by

proalf) = /ﬂ LFID dx 4 | f 1@

Qoo

If f is unbounded on Qoo orif f(-)7") & L1(Q\Reo), we define p,() o (f) = +oo.
When |Q4| = 0, in particular when p; < oo, we let || f||LoQs) = 0; when
|2\ Qoo| = 0, then pp)a(f) = [[f|lLo@o)- In situations where there is no
ambiguity we will simply write p,(f) or p(f).

We will use the modular to define the space L?”)(R2) in the next section. In
preparation, we give here its fundamental properties.

Proposition 2.7. Given Q2 and p(-) € P(R2):

1. Forall f, p(f) = 0and p(|f]) = p(f).
. p(f) = 0ifandonly if f(x) = 0 for almost every x € Q.

2
3. If p(f) < o0, then f(x) < oo for almost every x € Q.
4. pisconvex: givena, B >0, a+ 8 =1,

plaf + Bg) = ap(f) + Pp(g).

5. pis order preserving: if | f(x)| > |g(x)]| a.e., then p(f) > p(g).

6. p has the continuity property: if for some A > 0, p(f/A) < oo, then the function
A+ p(f/A) is continuous and decreasing on [A, 00). Further, p(f/1) — 0 as
A — 0.

An immediate consequence of the convexity of p is that if &« > 1, then ap(f) <
plaf),andif 0 < o < 1, then p(af) < ap(f). We will often invoke this property
by referring to the convexity of the modular.

Proof. Property (1) is immediate from the definition of the modular, and Proper-
ties (2), (3) and (5) follow from the properties of the L' and L norms.
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Property (4) follows since the L norm is convex and since for almost every
x € Q\ Qoo, the function ¢ + 7% is convex.

To prove (6), note that by Property (5), if A > A, then p(f/1) is a decreasing
function, and by the dominated convergence theorem (applied to the integral) it is
continuous and tends to 0 as A — oo. O

Remark 2.8. The modular does not satisfy the triangle inequality, i.e., p(f + g) <
p(f)+p(g). However, there is a substitute that is sometimes useful. For I < p < oo
anda, b > 0, (a +b)? < 277" (a”? + b?). Therefore, for almost every X € Q\ Qoo

| /() + g )P < 27007 £(0) 17D+ g (x) |7

in particular, if p4 < oo,

p(f +g) <277 (p(f) + p(2)).

We will refer to this as the modular triangle inequality.

2.3 The Space L?")(R)

The most basic property of the classical Lebesgue space L” is that it is a Banach
space: a normed vector space that is complete with respect to the norm. Here we
define L?")(Q) and use the properties of the modular to show that it is a normed
vector space; we defer the proof that it is complete until Sect. 2.7, after we establish
the requisite convergence properties of the norm.

Definition 2.9. Given Q and p(-) € P(R), define L’ (Q) to be the set of

Lebesgue measurable functions f such that p(f/1) < oo for some A > 0. Define
L{Z,(c') () to be the set of measurable functions f such that f € L?")(K) for every

compact set K C 2.

Remark 2.10. By Proposition 2.7, Property (3), if f € LPO(Q), then f is finite
almost everywhere.

Since we are dealing with measurable functions, we will adopt the usual
convention that two functions are the same if they are equal almost everywhere;
in particular, we will say f = 0if f(x) = 0 except on a set of measure 0.

In defining L”") () we do not restrict ourselves to a single value of A: for
instance, we do not take L”)(Q) to be the set of all f such that p(f) < co. We do
so in order to make the space homogeneous when p4+ (22 \ Q) = 00.

Example 2.11. Let Q = (1,00), p(x) = x, and f(x) = 1. Then p(f) = oo, but
forall A > 1,



2.3 The Space L”0(RQ) 19

Similarly, if we let @ = (0,1) and p(x) = 1/x, and again let f(x) = 1, then
p(f) <oo,but p(f/A) = coforall A < 1.

However, this technicality is only necessary if p(-) is unbounded: more precisely,
if p+(Q\ Qo) < 00, then L?O(Q) coincides with the set of functions such that

p(f) is finite.

Proposition 2.12. Given Q and p(-) € P(Q), then the property that f € LP") ()
if and only if

o(f) = /Q\Q | £C)PX dx + || fllLoo) < 00

is equivalent to assuming that p— = 00 or p+(2 \ Qo) < 00.

Proof. We first assume that p_ =00 or p4+ (2 \ Q) <o00. Clearly, if p(f) < oo,
then f € LPO(Q). Conversely, if f € LPO(Q), then by Property (5) in
Proposition 2.7 we have that p(f/A) < oo for some A > 1. But then

A p(x)
o= [ (LRR) el falian = 27200173 <

Now suppose that p— < oo and p4+(R2 \ Q) = o0. We will construct a
function f such that p(f) = oo but f € L?(Q). By the definition of the essential
supremum, there exists a sequence of sets { £} } with finite measure such that:

1. B C Q\ Qoos

2. Ex41 C Ex and |E \ Eg41] > 0,
3. |Ex| = 0,

4. If x € Ex, p(x) > pr > k.

Define the function f by

00 1 1/p(x)
f(x) = (]; mXEk\EHI (X)) .

Then for any A > 1,

p(f/A) = i][ AP dx < i/rk < 00,
k=1"E

K \Ek41 k=1

and the same computation shows that p( f) = oco. O

Remark 2.13. The construction in the second half of the proof of Proposition 2.12
will be used frequently to prove that there are essential differences among the
variable Lebesgue spaces that depend on whether p1 (2 \ Q) is finite or infinite.
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This ability to “pull” a constant out of the modular when p < oo is very useful,
and makes the study of variable Lebesgue spaces in this case much simpler. The
proof of Proposition 2.12 is easily modified to prove the following inequalities.

Proposition 2.14. Given 2 and p(-) € P(RQ), if p+(RQ \ Qo) < 00, then for all
A>1,
p(Af) < AP+ @\2) p( f),

Moreover, if p4 < oo and A > 1, then

AP=p(f) = p(Af) = AP p(f),

and if 0 < A < 1, the reverse inequalities are true.

Theorem 2.15. Given Q and p(-) € P(RQ), L?(Q) is a vector space.

Proof. Since the set of all Lebesgue measurable functions is itself a vector space,
and since 0 € L7V (Q), it will suffice to show that for all o, B € R, not both 0,
if £, g € LPY(Q), then af + Bg € LPY (). By Property (5) in Proposition 2.7,
there exists A > 0 such that p( /1), p(g/A) < oo. Therefore, by Properties (1), (3)
and (4) of the same proposition, if we let u = (|a| + |8 |))L, then

() = (55 ) = (@i s )

el A

A .
=+ 181" ol + 1B P&/ <

O

On the classical Lebesgue spaces, if 1 < p < oo, then the norm is gotten directly

from the modular: 1/
Y4
1/ N = ( | If(x)l"dX) -

Such a definition obviously fails since we cannot replace the constant exponent 1/ p
outside the integral with the exponent function 1/ p(-). The solution is a more subtle
approach which is similar to that used to define the Luxemburg norm on Orlicz
spaces.

Definition 2.16. Given 2 and p(-) € P(R2), if f is a measurable function, define

£ lLoorgy = inf{A > 0 ppya(f/A) < 1}.

If the set on the right-hand side is empty we define || /||, (q) = oc. If there is no
ambiguity over the domain €2, we will often write || /|| o instead of || f'[| ;r0(q)-
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By Property (6) of Proposition 2.7, || f |l .ro ) < oo forall f € LPO(Q);
equivalently, || f || .»¢)q) = 00 when f & LPO(Q). When p(-) = p,1 < p < oo,
Definition 2.16 is equivalent to the classical norm on L?(2): if p < oo and

[ (9 =,

then A = || f'[|Lr(); the same is true if p =
Given two domains € and Q, if @ C Q and p(:) € P(R2), then p(:) = p(: )’Q
P(Q) and it is immediate from the definition of the norm that for f € L?)(Q),

”f”Lp()(Q) ”fXQ”Lp()(Q)

Hereafter we will implicitly make these restrictions without comment and simply
write || /[l ¢ (&) etc. Conversely, given p(-) € P(Q) and f € L"Y(Q), we can

extend both to 2 by defining f(x) = 0 forx € Q\ Q and defining p(-) arbitrarily
on Q \Q If we do so, then || /| ;o) = I/ |r¢) (@) Moreover, if p(:) € LH(Q)
by Lemma 2.4 we may assume that p(-) € LH(L2) as well.

Theorem 2.17. Given Q and p(-) € P(R), the function || - || »0q) defines a norm
on LPO(Q).

Proof. We will prove that || - || ,.) has the following properties:

L. |flp¢y = 0if and only if f = 0;
2. (Homogeneity) for all o« € R, [loef || piy = ||| f || o3
3. (Triangle inequality) | /' + gl o) = [/ llp0) + €l o)
If f =0,then p(f/A) =0 <1forallA > 0,andso || f|,. = 0. Conversely,
it | f|l oy = 0, then for all A > 0,

p(x)
1> o(f/4) = /Q ; ('ff“)') dx + 1 f /A | @

We consider each term of the modular separately. It is immediate that we have
| fllLo(@oo) < A; hence, f(x) = O for almost every x € Qqo. Similarly, if A < 1,
by Proposition 2.14 we have

1> AP / |f ()" dx.
Q\ Qoo

Therefore, || £(-)?*) l1@\@0) = 0,and so f(x) = | f(x)|?®) = 0 for almost every
x € Q\ Qoo Thus f = 0 and we have proved (1).

To prove (2), note that if @« = 0, this follows from (1). Fix @ # 0; then by a
change of variables,
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lef ey = inf{A >0 p(laf f/A) < 1}
= |a|inf{A/]a| > 0 p(f/(A/|a])) = 1}
= la|inf{u > 0:p(f/1)) = 13 = [l f 1l -

Finally, to prove (3), fix Ay > || fl| p¢) and Az > [|g|| o5 then p(f/A ) < 1 and
p(g/Ag) < 1.Nowlet A = A + A,. Then by Property (3) of Proposition 2.7,

Sre\_ (A f  reg\_As X j
p( A )'_p(xxf+'kkg)—‘leM¢%+Ap@%@)_L

Hence, || f + gllp¢) < Ay + Ag. If we now take the infimum over all such A ; and
Ag, we get the desired inequality. O

An immediate consequence of the order preserving property of the modular
(Property (6) of Proposition 2.7) is that the norm itself is order preserving: if
| f(x)| > |g(x)| almost everywhere, then || f || 5y = 18]l p()-

Another elementary but useful property of the classical Lebesgue norm is that it
is homogeneous in the exponent: more precisely, for I < s < oo, | 115, = [/l »-
This property extends to variable Lebesgue spaces.

Proposition 2.18. Given Q and p(-) € P(Q) such that |Qs| = 0, then for all s,
1/p- <s <oo

APl ey = 15 pe)-

Proof. This follows at once from the definition of the norm: since |Q2| = 0, if we
let w = A5,

s\ P(x)
|||f|“'||p<.>=inf{x>o:/9('f(j)') dxfl}

sp(x)
= infg,us >0: /Q (|ffjf)|) dx < 1} = I/l

|

Example 2.19. 1If |Q \ Qo] = 0, then || f| 5y = |l.fllco and Proposition 2.18 is
still true. However, if |Qo0| > 0 but p(-) is not identically infinite, then it need not
hold. To see this, let Q2 = [—1, 1], and define

1 -1<x<0

oo O0<x<l1,

p(x) = {
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and
1 -1<x<0
flx) =
2 0<x<Il1.
Then
0
0pe) (f2/A) = / Ahdx + 227 =507,
-1
and so || f?l,c) = 5. On the other hand, a similar computation shows that

0250 (f/A) = A724+2171; thus, if we solve the quadratic equation A 2 +2171—1 =
0, we get that || £[3,, = (V2= 1)72 # 5.

We conclude this section by considering more closely the relationship between
the norm and the modular. Though the norm is defined as the infimum of the set
{A : p(f/A) < 1}, there may be an explicit value A for which the infimum is
attained. For instance, in Example 2.11 we see that if 2 = (1, 00), p(x) = x and
f =1, then the infimum of p(f/A) is attained when A is such that A log(A) = 1.
In fact, if f is non-trivial, then the infimum is always attained. (If f = 0, then
clearly the infimum is zero and is not attained.) In Proposition 2.21 below we will
prove that p(f/[| fllp¢)) < 1,s0 A = | fll ¢ is always an element of the set
{A : p(f/A) < 1}. However, even though the infimum is attained it is possible that

p(f/ I lpey) < 1.

Example 2.20. Let Q = (1,00) and p(x) = x. Then there exists a function f €
LPO(Q) such that o(f/ || f || i) < 1.

Proof. We will construct a function f such that p(f) < 1 but for any A < 1,

p(f/A) = oo. Then || fll,¢) = Land p(f/[I flIp¢) = p(f) < 1.
For k > 2let Iy = [k, k + k2] and define the function f by

F) =" x5
k=2
Then
01 w2
=) m="F—1<1
k=2
On the other hand, for any A < 1,
00 Ltk 2 ©
LULEDY Ay =y s =00
=27k P

|

This example can be adapted to any space such that p4(Q2 \ Q) = 00;
otherwise, equality must hold.



24 2 Structure of Variable Lebesgue Spaces

Proposition 2.21. Given Q and p(-) € P(Q), if f € LPY(Q) and £l >0,

then p(f/ 1 f o)) < 1. Further, o(f/| fll p(») = 1 forall non-trivial f € LPO(Q)
ifand only if p+ (2 \ L) < 00.

Proof. Fix a decreasing sequence {Ax} such that Ay — | f ). Then by Fatou’s
lemma and the definition of the modular,

PU/ lpey) = liminf p(f/Ax) < 1.

Now suppose that p4+ (2 \ Qo) < o0 but assume to the contrary that
p(f/Iflp¢)) <1.Thenforall A,0 <A < || f| ), by Proposition 2.14,

1f oy f ) £ ey \ P\ ( f )
A) = < .
pUIA) p( r 17 o —( x ) "\ he

Therefore, we can find A sufficiently close to || /|| () such that p(f/A) < 1. But by
the definition of the norm, we must have p( f/A) > 1. From this contradiction we
see that equality holds.

Now suppose that p4 (2 \ Q) = oo. Form the sets {E;} as in the proof of
Proposition 2.12 and define the function f by

S k=2 1/p()
.x ey - x |
e (kz=:2 |Ex \ Ek+1|XE"\Ek+1( ))

Then forall A < 1,
o(f/A) = Zk‘z][ AP0 dx = kAT = oo
k=2 VE\Ee k=2

On the other hand, essentially the same computation shows that
o0
pf) =) k7 <1
k=2

Therefore, £ € LPY(Q) and || f || ) = 1, but o(f /|l .f | ) < 1. O

Corollary 2.22. Fix Q and p(-) € P(Q). If | f |l ¢y < 1 then p(f) < || f s if
[/ lpe) > 1, then p(f) = [ f1l -

Proof. If | f||p¢) = 0, then f = 0andso p(f) =0.If0 < || f|l,y <1, then by
the convexity of the modular (Property (4) of Proposition 2.7) and Proposition 2.21,

p(f) =P ooy F/1ATp0) = 1A M0 pC /IS Tpe) = I e
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If || fllpy > 1, then p(f) > 1: forif p(f) < I, then by the definition of the norm
we would have || f'|| ,) < 1. But then we have that

o(f/p(f)) = /Q . ('j: ((;;'

= / | S p(f) dx + p(f) 7 f ooy = 1.
2\ Qoo

p(x)
) dx + p() S et

It follows that || f'[| oy < p(f). O

The previous result can be strengthened as follows.

Corollary 2.23. Given Q and p(:) € P(), suppose |Qoo| = 0. If || fllpy > L
then

PP+ <11 f ooy < POV
O <1 fllpe) = 1, then

PP~ < 1S llpey < p()P+.

If p(-) is constant, Corollary 2.23 reduces to the identity

1/p
||f||p=(/9|f(x)|f’dx) .

The first inequality makes sense if py = oo and p(f) = oo provided we define
o0® = 1. The second inequality makes sense if || f||,) = 0, since in this case

p(f) = 0;if p4 = oo, then we need to interpret 0° as 1.

Proof. We prove the first pair of inequalities; the proof of the second is essentially
the same. If p4 < oo, by Proposition 2.14,

o) ( f )< p(f)
17178 = "\ ) = 1,

By Proposition 2.21, po(f/| f | 5¢)) = 1, so the desired result follows.
If p. = oo, then p(f)"/P+ = 1, so we only need to prove the right-hand
inequality. By Corollary 2.22, p( f) > 1; hence, since |Q| = 0,

p(x)
p(f/p()P) =/ ) dxf/glf(x)lp(“‘)p(f)_l dx = 1.

Q

( )]
p(F)7-

It follows that || £ || 5, < p(f)"/P-. -
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Remark 2.24. 1f |Qs| > 0, then Corollary 2.23 does not hold. Fix p(-) such that
p— > land |Qs| > 0, and take f € LPO(Q) such that supp(f) C Qoo and

/1o = Il fllLe(@ee) = p(f) # 1. Then neither inequality comparing || f|| ,( to
o(f)/P= can hold in general.

As an application of the above results we will give an equivalent norm on
LPO(Q) that is usually referred to as the Amemiya norm.

Proposition 2.25. Given Q and p(-) € P(R2), define
£ 1y = InfEA > 02 &+ Ay (/1))
Then forall f € LPO(Q),

1A per < W Iy < 20 1lpe-

Proof. Since both || - || ,(y and | - ||ﬁ(,) are homogeneous, it will suffice to prove that
if ||f||p(.) = 1, then
L<f1, <2.

The second inequality is immediate: by the definition and Corollary 2.22,
1 e < 1+ p(f) < T+ 1 fllpe) = 2.
To prove the first inequality, note that if A > 1, then
A+Ap(f/A)=A>1.

On the other hand, if 0 < A < 1, then arguing as in the proof of Proposition 2.14,

A+ Ap(f/A) = Kl_p‘/g |l dx + [ fllz@ee) = p(f) = 1.

oo

Therefore, if we take the infimum over all A > 0 we get the desired inequality. O

2.4 Holder’s Inequality and the Associate Norm

In this section we show that the variable Lebesgue space norm satisfies a gener-
alization of Holder’s inequality, and then use this to define an equivalent norm,
the associate norm, on L?0) (). The classical Holder’s inequality is that for all p,
1 <p<oo,given f € LP(Q2)and g € L”' (), then fg € L'(2) and

/ﬂlf(X)g(X)ldx =17 1pllglly-

This inequality is true for variable exponents with a constant on the right-hand side.
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Theorem 2.26. Given Q and p(-) € P(R), for all f € LPY)(Q) and g €
LY O(Q), fg € L'(Q) and

/Q F@)g@)dx < Kool £ 1rolglyo.

where

1 1
Ky = (— -—+ 1) X2 lloo + X200 lloo + X221 lloo-
pP—- P+

Remark 2.27. Each of the last three terms in the definition of K, is equal to 0
or 1, and at least one of them must equal 1. Therefore, if p(-) is not constant, 1 <
Kp(.) < 4.

Proof. It || fllp¢y = O or | gll,r¢y = O, then fg = O so there is nothing to prove.
Therefore, we may assume that || f|| ¢y, [1gll,7¢) > 0; moreover, by homogeneity
we may assume || f||,) = lIgllpr¢) = 1.

We consider the integral of | fg| on the disjoint sets Q0, 21 and Q. If x € Q,
then p(x) = oo and p’(x) = 1, so

/Q | f()g(0)| dx = [[f X200 lloollg X200 I

= [l f xeccllpollgxec ey = IF 1o &lyre = 1.

Similarly, if we reverse the roles of p(-) and p’(-), we have that

/ f (g dx < 1.
Q

To estimate the integral on 2, we use Young’s inequality:

[ f (g ()] dx
Qe

1 @) 1 7
< / (x)lf( L
1
=< p—_Pp(~)(f)+ ,()_Pp()(g)
Since
1 1 1

PO (o) pe
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and by Proposition 2.21, p,)(f). pp(1(g) < 1, we have that

/ g dx < —— 41— 1,
* 2= P+

Combining the above terms, and using the fact that each is needed precisely when
the L°° norm of the corresponding characteristic function equals 1, we have that

[ 1/ ()8 ()] dx
Q

1 1
< ((— -+ 1)||x9*||oo e oo + e, ||oo) 1/ 1oolglo.

which is the desired inequality. O

In the classical Lebesgue case, an immediate consequence of Holder’s inequality
is that for p, g, r suchthat 1 < p, ¢, r < oo, and rl = p_1 +q7Lif f € LP(Q)
and g € L9(R2), then fg € L"(2) and

gl = 1f1pllglly-

The same result holds in variable Lebesgue spaces; the proof again depends on
Holder’s inequality, but is somewhat more complicated.

Corollary 2.28. Given Q2 and exponent functions r(-), q(-) € P(2) define p(-) €

P(2) by | X X

) @

Then there exists a constant K such that for all f € L1O(Q) and g € L"O(Q),
fg € LPO(Q) and

I fgllpey < Kl fllgoliglre-

Proof. Fix p(-), q(-), r(-) as in the statement of the theorem, and take f € L0 (Q)
and g € L"(Q). If || f l4¢) = O orif ||g|l;) = 0, then fg = 0 so there is nothing
to prove. Therefore, we may assume that these quantities are positive; further, by
homogeneity we may assume that || f|l,) = lgll-¢) = 1.

By the definition of p(-), Qgg) = Q?,.S" N Qgg) . Therefore, we can define the
exponent function s(-) € P(2\ Q) ) by

9 ygalfluay
s(x) =191 xeQf\ W

00 X € 9?,.5" \ Qgg).
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Suppose for the moment that
O e 9@\ QL) and |g())PY e LTO@\ Q). @D

and |||f(.)|p(~)||le(')(9\ﬂgg))’ |||g(')|"(')||L.«<->(Q\Qgg>) < 1. Then by the generalized
Hoélder’s inequality (Theorem 2.26),

— (x) (x)
Pro (f2) = /Q o O 1 gl g

= Koll7o1"” lo@az)] 8O lo@aze)

Koy + 1 F llger 1g e
= KS(.) + 1.

IA

Then by the convexity of the modular (Property (4) of Proposition 2.7) fg €
LPO(Q) and

Ifgllper = Ksey + 1= (Ksey + DILS g lIgllre)-
Therefore, to complete the proof we need to show (2.1) and estimate the norms.
We first consider | f(-)|”"). Since || f|l4¢) = 1, by Corollary 2.22, ||f||Lm(Qq<'>) <

pq(»(f) =< 1. Further, Qé(o') C Q?,.S" and Q \ QSOE;) c Q\ Q?,.S”, and on Qi('),
p(x) = g(x) < oco. Hence,

PO g ) = /Q g O dx IO vz

< [ @E a4 O e,
Q\Qq() q

< [ SN dx g
Q\ng) q0)

<1.

Therefore, by the definition of the norm, ||| (-)|”"|| so@gryy = 1. The same
argument, with s(-) replaced by s'(-) and ¢(-) replaced by r(-) gives the correspond-

ing bound for |g(-)|?*). This completes the proof. O

Remark 2.29. 1t follows from the proof that we can take K = Kj.)+ 1; by an abuse
of notation we can write this as K,/ ) + 1.

As a consequence of Corollary 2.28 we can generalize Theorem 2.26 to three or
more exponents.
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Corollary 2.30. Given 2, suppose p1(-), p2(-), ..., pr(-) € P(R) is a collection
of exponents that satisfy

k

Z ! 1, x e Q.

=P

Then there exists a constant C, depending on the p;, such that for all f; € LPi*)(Q),
1<i<k,

/Q |1(0) f2(x) -+ fe (D) dx < ClLfillpioll L2l pacy == L el i -

Proof. We prove this by induction. When k = 2, this is just Theorem 2.26. Now
suppose that for some k > 2 the inequality holds; we will prove it true for k + 1
exponents. Given exponents pi(-), ..., pr+1(-), define () by

Lot
re) () ()’

Fix functions f; € L?)(Q); then by Corollary 2.28, f; fi+1 € L™ () and

I fell pe Ol S+ 1l e = €l S feallry-

Therefore, by our induction hypothesis applied to pi(-), ..., pr—1(-), r(-),

”fl ||p1(~) ||f2||pz(~) T ||fk+1 “pk+1(')
> cll fill oy 12l pacy = N fie=t g ) Il e Sl

Zc'/ﬂlfl(X)mka(X)ldX-
O

In the classical Lebesgue space L?(2), 1 < p < oo, the norm can be computed
using the identity

1£1l, = sup /Q F(0)g(x) dx.

where the supremum is taken over all g € L?' (Q) with || g|| » < 1.Indeed, g can be
taken from any dense subset of L7 (Q)—for example, C.(2) if p > 1. A slightly
weaker analog of this equality is true for variable Lebesgue spaces.

Definition 2.31. Given Q and p(-) € P(£2), and given a measurable function f,
define

1£1) = sup /ﬂ F()g(x) dox, (22)

where the supremum is taken over all g € L7 O(Q) with lgll,ye < 1.
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Temporarily denote by M ?)(2) the set of all measurable functions f such that
AN () < 0.

Proposition 2.32. Given Q and p(-) € P(RQ), the set MO (Q) is a normed vector
space with respect to the norm | - ||’ vy Furthermore, the norm is order preserving:

given f. g € M?O(Q) such that | f| < |gl. then | £, < llgll",,.

Proof. Tt is immediate that M7 (Q) is a vector space. The fact that || - | 0
is an order preserving norm is a consequence of the properties of integrals and
supremums and the following equivalent characterization of || - ||’p(,). First note that
it is immediate from this definition that for all measurable functions f,

/ F()g(x) dx

< sup / f (g ()] dox.

gl =<1 /2

If e < sup

gl <t
but in fact all of these are equal. To see this, it suffices to note that for any g €

LPO@), gl < L If()g)] = f(x)h(x), where h(x) = sgn f(x)[g(x)]|
and |2 /) < lgllpr¢) < 1; hence,

dx = h(x)dx < Lo
[ 1rwstas = [ rwneodr =111,

O

Remark 2.33. As a consequence of the proof of Proposition 2.32 we get another
version of Holder’s inequality:

/Q F @ dx < 1 f olel .

In the next result we show that M 70 (Q) = L?9)(Q) and that the norms || - || o
and | - ||/p(,) are equivalent. We will refer to the norm || - ||/p(,) as the associate norm

on LPO(Q).

Theorem 2.34. Given Q, p(-) € P(Q), and a measurable f, then f € LPY(Q) if
and only if f € MPO(Q); furthermore,

kpo)ll fllpey = N F 1 < Kpollf e
where

1 1
Ky = (— -—+ 1) X2 lloo + X200 lloo + X221 [loo-
p— P+

1
= X200 lloo + X221 loo + [ X224 lloo-
r()
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Remark 2.35. For every variable Lebesgue space we have that K ) < 4and k() >
1/3.

To motivate the proof of Theorem 2.34, recall the proof of (2.2) if 1 < p < oo.
By Holder’s inequality, || f||’, < || f ||, To prove the reverse inequality, let

p/r
g(x) = ('”f ﬁl)') sen £(x).
P

Then || g|,» = 1, and
| st dx =111,

and so in fact the supremum is attained.
Our proof will be based on a similar but more complicated function g; first we
need to prove a lemma.

Lemma 2.36. Given Q and p(-) € P(Q), if || fxa. ||’p(,) < land p(fxa,) < oo,
then p(fxq,) = 1.

Proof. Suppose to the contrary that p(f xq,) > 1. Then by the continuity of the
modular (Proposition 2.7, (6)) there exists A > 1 such that p( fyq,/A) = 1. Let

p(x)—1
g(x) = ('f f)') sen (0 xa. (2).

Then p,)(g) = Ppy(fx2./A) = 1,50 |Igll 7y < 1. Therefore, by the definition
of the associate norm,

: o (SN
If 22 llpe) = Qf(x))(sz*(x) gx)dx = A T dx = Ap(fxa./A)>1.
This contradicts our hypothesis on f, so the desired inequality holds. O

Proof of Theorem 2.34. One implication is immediate: given f € LPO(Q), by
Holder’s inequality for variable Lebesgue spaces (Theorem 2.26),

./ ||/p(~) < Kyl f 1 pey-
To prove the converse, we will assume that
2291, 12771, 1947 > 0.
If any of these sets has measure 0, then the proof can be readily adapted by omitting

the terms associated with them. Further, by the definition of the norms we only have
to prove this for non-negative functions f.
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We will prove that if ||f||/p(,) < landp,(fxe,) < oo, then
ppe)(kpey f) = 1. (2.3)

Given this, the desired inequality follows by an approximation argument. Fix any
non-negative f € MP?()(Q2). By homogeneity we may assume that ||f||’p() = 1.
For each k > 1, define the sets

Ep = Bi(0) N (Q\ Qs U {x € Qi : p(x) <k}),

and define the functions f; = min(f,k)yg,. Then fi < f,so by Proposition 2.32,
I fk||;(.) <If ||;(.) = 1. Furthermore, the sequence { f; } increases to f pointwise.
Finally, p(fixe,.) < o0, and so we can apply (2.3) with f replaced by fx.
Therefore, by Fatou’s lemma on the classical Lebesgue spaces and (2.3),

oy kpey 11 o) = Py (kpey /) = Timiinf pycy (ke fio) = 1.

Thus, we have that
1 ooy < KL ey
To complete the proof, fix f with ||f||;(.) < 1landp(fyq,) < oo; we will show
that (2.3) holds. First note that by Proposition 2.32, ||f)(9i(<> ||;(.) < 1. Now fix €,
0 < € < 1; then there exists a set £, C Qgé') such that 0 < |E| < 00, and for each
x € E.,

F@ = (1= O N g,

Now define the function g, by

Kyl FQ)PO T sgn f(x)  x e @0 =¥,
gé(-x) = kp() Sgn f(x) x e le() _ Qg;(),
kpolEcl ™ xe (x)sgn f(x) x € QLo — Qr O

We claim that p,(y(ge) < 1,50 ||ge|l ¢y < 1. To see this, note that
Pp')(8e/ kpiy)

< [ OO dx - sen 1, oy + B [ s (o dn
Qi() Qo) Qf()

— p(x) —1
= [ 7 dx s o, + 1B [ xs ) ax

By Lemma 2.36, the first term on the right-hand side is dominated by 1; the second
term equals O or 1, and the third term always equals 1. Therefore,

1
Pre)(8e/kpey) = X gpolloo + llxgrolloo + llxgrollee = ko)’
"
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Since k() < 1, by the convexity of the modular (Proposition 2.7),

Pp)(&) < kpeypp)(&e/kpy) < 1,

which is what we claimed to be true.
Furthermore, we have that

[Q F()ge(x) dx
= k(s /Q I dx + kg /Q If)ldx + kp(.)]i £ ()] dx

> kp() o | £GP dx + (1= )k pio | £ | 250 (200)

> (1= e)kpeyppe)(f)-

Therefore, by the definition of the associate norm, since ||g¢|| /) < I,

L=l = /Q f(x)ge(x)dx = (1 =€)k p)pp( (f)-
Since € > 0 was arbitrary, again by the convexity of the modular we have that

1= kpyppy(f) = ppey (kpiy £
O

In the notation introduced above, given an exponent p(-), the Banach space
/ .
M 7?0 of measurable functions f such that

IIfII;/<.)=sup{ [Q Fg) dx.g € LPO@), lgllo < 1) < oo,

is called the associate space of L”)(2). As an immediate consequence of Theo-
rem 2.34 we have the following result.

Proposition 2.37. Given Q and p(-) € P(Q), the associate space of LPO(Q) is
equal to L?" (), and || - |y and || - ||’p,(,) are equivalent norms.

Finally, as a corollary to Theorem 2.34 we prove a version of Minkowski’s
integral inequality for variable Lebesgue spaces.

Corollary 2.38. Given Q and p(-) € P(R2), let f : Q x Q — R be a measurable
function (with respect to product measure) such that for almost every y € €,
f(,y) € LPO(RQ). Then

H /Q Feoy)dy

< 58Ky [ 16l - )
rC) Q
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Proof. 1f the right-hand side of (2.4) is infinite, then there is nothing to prove, so we
may assume that this integral is finite. Define the function

g(x) = /Q Flxy)dy.

and take any & € L”O(Q), [|h]l,;y < 1. Then by Fubini’s theorem (see
Royden [301]) and Hoélder’s inequality on the variable Lebesgue spaces (Theo-
rem 2.26),

/ g ()h(x)] dx < / / (e )] dy |h(x)] dx
Q QJQ
- / [ |/ G y)h(x)| dx dy
QJIQ
< K0 [Q 1 G Lo Il o dy
< Ky /Q 1£Co o dy.
Therefore, we have that

gl < Koo [ 1G9 dy.
Q

and inequality (2.4) follows by Theorem 2.34. O

2.5 Embedding Theorems

In this section we consider the embeddings of classical and variable Lebesgue
spaces into one another. We begin by showing that every function in a variable
Lebesgue space is locally integrable. To do so we prove a simple but useful lemma.

Lemma 2.39. Given Q and p(-) € P(R), if E C S is such that |E| < oo, then
xE € LPO(Q) and || k|l po) < |E| + 1.

Proof. Fix A = |E| 4+ 1. Then

p(xe/h) = [ AP dx 4 A7 g o
E\Qoo

<A P|E|+ AL < ATHE|+ 1) =1.

By the definition of the norm we get the desired result. O
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Remark 2.40. 1f |Qs| = 0, then by Corollary 2.23 we get a sharper bound that
depends on E and p(-):

2l pey < max (|E|Y7P=|E|"/7+).
Proposition 2.41. Given Q and p(-) € P(Q), if f € L?0(Q), then f is locally
integrable.

Proof. Let E C Q be a set of finite measure. Then by the generalized Holder’s
inequality (Theorem 2.26) and Lemma 2.39,

Luuwusaumwumw<w.

O

We now consider the embedding of L>®°(L2) into L?)(). It follows from the
proof of Lemma 2.39 that if |2\ Q0| < 00, then yq € L?V(Q), which immediately
implies that L°°(Q) C L?0 (). However, unlike in the case of classical Lebesgue
spaces, this embedding can hold even if |2 \ Qoo| = 00.

Example 2.42. Let @ = (1,00) and p(x) = x. By Example 2.11, 1 € L?O(Q),
and soif f € L°(RQ),

1oy = 1 ool Tl pey < 00

More generally, we have the following characterization of when this embedding
holds.

Proposition 2.43. Given Q and p(-) € P(RQ), L®(RQ) C LPY(Q) if and only if
1 € LPY(Q), which in turn is true if and only if for some A > 1,

/ AP0 dx < 0. (2.5)
Q\ Qoo

In particular, the embedding holds if |2] < oo or if 1/p(:) € LHx(R2) and
p(x) = oo as |x| = oo.

Proof. We repeat the above argument: L>®(Q) C LPY(Q) if and only if 1 €
L?Y(R), and by the definition of L?)(Q) and Proposition 2.7 this is true if and
only if there exists A > 1 such that

,0(1/},) = / A—p(x) dx + A_lHIHLOO(Qoo) < oQ.
A\ Qo

This in turn is equivalent to (2.5).
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If |2] < oo, then the integral in (2.5) is clearly dominated by |Q2]. If 1/p(-) €
LHs and p(x) — o0 as |x| — oo, then we have that
1 < Cxo '
p(x) ~ log(e + [x|)
Therefore, for A > 1 sufficiently large,

/ AP gy < / L —Coc logletIxD) 7,
Q\ Qoo " Je\es

< / (e + |x[)~C 2™ gy < 0.
2\ Qo

|

The smoothness condition L H, in Proposition 2.43 is in some sense sharp, as
the next example shows.

Example 2.44. Let Q = (e,00), and let p(x) = ¢(x)log(x), where ¢ is a
decreasing function such that ¢(x) — 0 as x — oo, and p(-) is increasing and
p(x) = 0o as x — o0o. Then L%°(R2) is not contained in L7 ().

A simple example of such a function ¢ is ¢ (x) ~ loglog(x)™"'.
Proof. We will show that for any A > 1,

/ A7P9) dx = 0.

e

Fix A > 1; since ¢(x) decreases to 0, there exists N > 0 such that if k > N, then
log(A)¢(e*T1) < 1/2. Then, since p(-) is increasing,

00 ek t1
/\—p(x) dx > § : / /\—p(x) dx > § :ek . /\_¢(ek+l)log(ek+1)
/Cj ek

k>N k>N

> Z ok o= ®(@ T log(R) (k+1) > Z ke kD — oo
k=N k=N

|

As a consequence of Proposition 2.43 we can completely characterize the
exponents p(-) and ¢(-) such that L¢0(Q) c LPV(). Unlike in the case of
classical Lebesgue spaces, this embedding is possible even when |Q2| = oo.

Theorem 2.45. Given Q and p(-), q(-) € P(RQ), then L1V(Q) C L") (Q) and
there exists K > 1 such that for all f € LIYRQ), | fll,o) < KIIf g if and
only if:



38 2 Structure of Variable Lebesgue Spaces

1. p(x) < q(x) for almost every x € Q;
2. There exists A > 1 such that

/ A7 dx < oo, (2.6)
D

where D = {x € Q : p(x) < q(x)} and r(-) is the defect exponent defined by
1 1 1
= +—
p(x)  qlx)  r(x)

Remark 2.46. 1f 1/p(-), 1/q(-) € LHx(S2), then 1/r(-) € LHx(S2) and arguing
as we did in the proof of Proposition 2.43 we have that (2.6) holds if r(x) — oo as
[x] = oo.

Proof. Suppose first that Conditions (1) and (2) hold. By Proposition 2.43 we have
that 1 € L") (). Therefore, by Corollary 2.28, given any f € L10(Q),

1/ 1pe =11 fllpey = KIS llge)-

To prove the converse, we will show that if either Condition (1) or (2) do not
hold, then the embedding also does not hold.

Suppose first that Condition (1) does not hold. Then there exists a set £ C €2,
|E| > 0, such that if x € E, p(x) > g(x). We will construct f € LIO(Q) \
L?0(Q). There are two cases.

Case 1: |Slgg) N E| > 0. Since g (-) is finite on E, there exists a set F' C ENQEY,
0 < |F| <oo,andr,1 <r < oo, such thatif x € F, g(x) < r. Partition F
as the union of disjoint sets F;, j > 1, such that |F;| = 27/|F| and define the

function f by
X 3N\
f =3 (5) X, ().

Jj=1

Then f is unbounded, and so

1A lpey Z 1 fxEllpey = ILf XFlloo = o0

On the other hand, f € L9°)(Q) since

o0 Jjax)/r
poth) = [1rwmoa =3 [ (3)7 as
j=17F
) 3 j B
52(5) 27 |F| = 3|F| < .

=1
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Case 2: |szgg> N E| = 0. In this case, 1 < g(x) < p(x) < co almost everywhere
on E. Therefore, there exists a set F C E,0 < |F| < o0, and constants € > 0
andr > 1 suchthatif x € F,

gx)+e<pkx)<r<oo.

In particular,
@ > 1 + €

q(x) = r
Again partition F into disjoint sets F;, |F;| = 27/ |F|, and define f by

00 iy 1400
() = Z(.—z) X, ().
=1/

Then
o0 o0
paer () =D 2 jF;| = |F| ) j7 < oo
j=1 J=l1

On the other hand, since for j > 4,2/ /j2 > 1,

00 57\ PWa)
prorN =3 [ (—2) dx
j=I1 Fj J

[e%e) 2]- 1+e/r [e%e) '
j=+ N/ j=4

Since p4+(F) < r < oo, by Proposition 2.12,
I/ ey = I ey = 00
This completes the proof.

Now suppose that Condition (2) does not hold. Again there are two cases. Define
the sets

Doo ={x €D :q(x) =00}, Do={xe€ D:px) <q(x) < oo}

Then (2.6) must fail to hold for all A > 1 with D replaced by D or it fails to hold
for all A > 1 with D replaced by D.

Case 1:  Suppose first that for any A > 1,

A7) dy = oo,
Doo
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We will construct f € LIO(Q) \ LPO(Q). Let f = yp..; since Doy C Q243,
I fllqey = ”f”LOO(QgQ) = 1,s0 f C L49(Q). On the other hand, by the
definition of the defect exponent r(-), for x € Dy, p(x) = r(x). Hence, for all
A>1
pro(f/A) = | 27 dx = cc.
DOO

Since the same is obviously true for A < 1, it follows that f ¢ L?0(Q).
Case 2: Now suppose that for any A > 1,

/ AT dx = oo. (2.7)
Dy

We will construct a sequence of functions { fy} C L0 (Q) such that || fi |l4¢) —
0 as k — oo, but || fill,y = 1. It follows immediately that the embedding
cannot hold.

Given (2.7), for any compact set K C Dy and any A > 1 we have that

/ A7 dx = co.
Do\K

Therefore, by the continuity of the integral we can construct a sequence of disjoint
sets D; C Dy, j > 1, such that

/ 27 dx = 1.
Dj
For each k > 1 define the function f; by
i
Sex) =) 2700 yp ().

Jj>k

b =Y [ 2ax =3 1=

j>k Dj >k
Thus || fx || p¢» = 1. On the other hand, by the definition of the defect exponent r(-),
we have that for x € D,

Then

q(x)r(x)
q(x) = ——— = —r(x).
p(x)
Hence,
Pur @ i) = ) / DKW G g < 3 2k / 21 (10=15E52) 1
j>k 7P >k D
= sz_j/ 2 dx = "2 =1,
j>k Dj i~k

Therefore, || fi |l4¢) < 27 and so | fills¢) — 0 as k — oo. O
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As a corollary to the construction in the second half of the proof of Theorem 2.45
we have that the spaces L?0)(Q) are different for different exponent functions p(-).

Corollary 2.47. Given 2 and p(-), q(-) € P(RQ), if there exists a set E C L,
such that |E| > 0 and p(x) # q(x), x € E, then the set (LP(')(Q) \ Lq(')(Q)) u
(Lq(')(Q) \ LPO (Q)) is not empty.

If |70\ Qgé')l < 00, then condition (2.6) is true for any A > 1, so a necessary
and sufficient condition for the embedding L") (Q) C LPO(Q) is that p(x) <
q(x). Thus the next result is a corollary of Theorem 2.45. However, we give a direct
proof of one implication since by doing so we get a sharper constant.

Corollary 2.48. Given Q and p(-), q(-) € P(R), suppose |2 \ Qé’é”| < oo. Then
LiO(Q) c LPY(Q) if and only if p(x) < q(x) almost everywhere. Furthermore,
in this case we have that

1f oy < (112N QEODIS - (2.8)

Proof. We will assume that p(x) < g(x) almost everywhere and prove (2.8). By the
homogeneity of the norm, it will suffice to show that if f € LIO(Q), || f[l4¢) < 1,

then || fll,¢) < 1412\ Qgé')l. By the definition of the norm,
— (x)
U2 ()= [ VO 1F1e

In particular, | f(x)| < 1 almost everywhere on Q'ég). Further, since p(x) <
q(x), Qgé') C sz?,.ﬂ" up to a set of measure zero. Therefore,

pro(f) = [Q o @It Lo PP 3 1 g

QI\aLs

< e @\ QU0 ()] < 1}] +/ ()[4 dx
Q\Q4Y)

+ 10\ QO + || £

< 2\ QL+ pyy (f)
<@\ Q)+ 1.

Lo (@4)

Hence, by the convexity of the modular,

Ppe) ()
pP(') () =< - )p() =
12\ Q%7+ 1 12\ Q57|+ 1

and so || ]l ,¢) < 192\ Q&) + 1. O
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Remark 2.49. A variant of this result is used in Chap. 3 to prove norm inequalities
for the maximal operator: see Lemma 3.28 below.

Corollary 2.48 is commonly applied with the stronger hypothesis [2| < co. In
particular, as an immediate consequence we get the following relationship between
the classical and variable Lebesgue spaces on bounded domains.

Corollary 2.50. Given Q and p(-) € P(2), suppose |2| < oo. Then there exist
constants cy, ¢, > 0 such that

allfllp- = 17 ooy = 2l Fllpy-

Finally, we give an embedding that will be very useful in applications. For 1 <
p < q < 00, define

LP(Q)+LIQ)={f=g+h:geLl(Q),heLI(Q)}
this is a Banach space with norm

1A lr @+ = inf {llgller@) + [17]e@))i-
f=g+h

Theorem 2.51. Given 2 and p(-) € P(S2), then
LPO(Q) C LP+(Q) + LP—(Q)

and
I/ 2r+ @)+ Lr—@) = 21 f lro (@)
Further, this embedding is proper if and only if p(-) is non-constant.
Proof. By the homogeneity of the norms we may assume without loss of generality

that || /|| o) = 1. This implies that || ||z Qo) < 1. Decompose f as fi + f,
where

f1 = frpea:rmi<1ys fo = frre\Qooil f(0)]>1}- (2.9)
If py+ < 00, || = 0, so by Corollary 2.22,

/ i1+ dx s/ LFIPD dx < (£ e = 1.
Q Q\Qoo

/ LGOI~ dx < / FPD dx < [ f e = 1.
Q Q\Qoo

Hence,
I F e+ @yt Lr—@) = Ifillpr + 1 40- =2 =2[Flp0)-

If p4 = oo, then we argue as before for f, and for f; we note that || fi]jcc <

L=11/1p0)-
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Now assume that p(-) is non-constant. Then there exists ¢, p— < ¢ < p+, such
that £ = {x € Q : p(x) > g} has positive measure. Then by (the proof of)
Corollary 2.47, there exists a function f € LP~(Q2) C L~ () + LP+(2) but
/¢ LOQ).

Conversely, if p(-) is constant then p_ = p4 and equality clearly holds. O

Remark 2.52. In applying Theorem 2.51 we will often use the explicit decomposi-
tion f = fi + f> given by (2.9).

If we assume that the exponent p(-) is log-Holder continuous at infinity, then we
can give a different decomposition of f that reflects this fact.

Proposition 2.53. Given Q2 and p(-) € P(RQ), suppose p1 < oo and p(-) €
LHy(R2). Then
LPO(Q) C LP=(Q) + LP—(RQ).

Proof. Fix f € LPY(Q). By homogeneity we may assume without loss of
generality that || f||,y = 1. Decompose f as fi + f> as in (2.9). Then f, €
LP=(2), so it will suffice to prove that f; € LP>(Q2). Let g(x) = max(p(x), Poo);
then | £1(x)|7%) < | f1(x)|?™). Hence, by Proposition 2.12, f; € L1°(). By the
definition of ¢(-),

1 1 1 1 1
<

rX) P 4 " P P(X)

Since p(-) € LHy(R2), by Theorem 2.45 and Remark 2.46, L0 (Q) C LP=(Q).
This completes the proof. O

2.6 Convergence in L7 (Q)

In this section we consider three types of convergence in the variable Lebesgue
spaces: convergence in modular, in norm, and in measure.

Definition 2.54. Given €2 and p(-) € P(R2), and given a sequence of functions
{fi} C LPY(Q), we say that f; — f in modular if for some 8 > 0, p(B(f —
Ji)) = Oas k — oo. We say that fy — f innormif || f — fi| o) = Oas k — oo.

In defining modular convergence it might seem more natural to assume that
p(f — fi) = o0. As in the definition of the norm, we introduce the constant
to preserve the homogeneity of convergence: if f; — f in modular, then we want
2 fr — 2f in modular. With this alternative definition this is not always the case.

Example 2.55. Let Q = (0,1) and p(x) = 1/x. Let fi = x(0,1/%)- Then p(fi) =
1/k — 0, but for all k, p(2 fx) = oo.
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We can reformulate norm convergence in a way that highlights the connection
with modular convergence.

Proposition 2.56. Given Q and p(-) € P(S2), the sequence { fi } convergesto f in
norm if and only if for every B > 0, p(B(f — fx)) — 0 as k — oo. In particular,
convergence in norm implies convergence in modular.

Proof. Suppose first that fy — f in norm. Fix 8 > 0. Then by the homogeneity of
the norm,

1BCf = Jllpey = BILS = fillpey = 0.
Hence, by Corollary 2.22, for all k sufficiently large,

P(B(f = fi) = IBUf = fllpe) = 1.
and so p(B(f — f¥)) = 0.

To prove the converse, fix A > 0 and let 8 = A~!. Then for all k sufficiently
large, p((f — fx)/A) < 1,and so || f — fi|lp) < A. Since this is true for any A,
If = Jillpey = . 0

While convergence in norm implies convergence in modular, the converse does
not always hold.

Example 2.57. Let @ = (1,00) and p(x) = x. Define f = 1and fy = xax.
Then f; — f in modular since

mu—ﬂvm=L 2 dx -0

as k — 0. On the other hand, f; does not converge to f in norm because for all
k>1,

pq—m=A 1" dx = oo,

which in turn implies that || f — fillp¢) > 1.

This example can be generalized to any space L”)(2) such that Q \ Q4 has
positive measure and p(-) is unbounded on Q2 \ Q.

Theorem 2.58. Given Q and p(-) € P(S2), convergence in norm is equivalent to
convergence in modular if and only if either p— = 00 or p4(R2 \ Qo) < 0.

Proof. By Proposition 2.56, convergence in norm always implies convergence in
modular. Therefore, we need only consider whether modular convergence implies
norm convergence.

Suppose first that p_ = oco. Then the modular and the norm are the same and the
result is trivially true.
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Now suppose that p_ < oo and p4(2\ Q) < 00 and fix a sequence { fi} such
that fy — f in modular. Then there exist 8 > 0 such that p(B(f — fr)) — 0. Fix
A,0 < A < B~!. Then by Proposition 2.14,

1 P+(Q\Qoo)
o= fom=(g) B
Hence, for all k sufficiently large we have that
P (%) < 1.

Equivalently, for all such k, || f — fi|lp) < A. Since A was arbitrary, fr — f in
norm.

Now suppose p— < oo and p4 (2 \ Q) = 00. We will construct a sequence
{fi} € LPY(Q) such that p( fi) — 0 but || fi|l o) > 1/2 for all k. Let { Ex} be the
sequence of sets constructed in the proof of Proposition 2.12. Define the function f

by
00 1 1/p(x)
f(x) = (1; mXEk\EHI(X)) )

and for each k let fy = fyg,. Thenforall k > 1,

dx =) 27/ =27+
p(fi) = Z/E\E,H T, \E/+1| Z

hence, f; € L?Y(Q) and p(f;) — 0as k — oo. On the other hand, for all k > 1,

fk) oo/ 2P(x) ®
— = dx>)) 207 =0,
(1/2 ; ENEj 1 2V 1Ej \ Ejqil ;

Thus, || fk || ) = 1/2. This completes the proof. O

In the classical Lebesgue spaces the three ubiquitous convergence theorems are
the monotone convergence theorem, Fatou’s lemma, and the dominated convergence
theorem. Versions of the first two are always true in variable Lebesgue spaces, but
the third is only true when the exponent function is bounded. We prove each of these
results in turn.

Theorem 2.59. Given Q and p(-) € P(Q), let { fi} C LPY(Q) be a sequence
of non-negative functions such that fy increases to a function f pointwise almost
everywhere. Then either f € LPY(Q) and I ficllpoy = N fllpey or f & LPO(Q)
and || fill p¢y = o0.
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Remark 2.60. 1f f ¢ L) (Q), we have defined || f || ) = oo, so in every case we
may write the conclusion as || fi | ,c) = | f 1l p¢)-

Theorem 2.59 is sometimes referred to as the Fatou property of the norm. To
avoid confusion with the variable Lebesgue space version of Fatou’s lemma and to
stress the parallels with the classical Lebesgue spaces, we will always refer to it as
the monotone convergence theorem.

Proof. Since {fi} is an increasing sequence, so is {|| fxllp)}; thus, it either
converges or diverges to co. If f € LPO(Q), since fx < f, | fellpey < IIf lpes
otherwise, since f; € L’O(Q), | fllpoy < 00 = || fllpe)- In either case it will
suffice to show that for any A < || /|| (), for all k sufficiently large || fx || o) > A.
Fix such a A; by the definition of the norm, p(f/A) > 1. Therefore, by the
monotone convergence theorem on the classical Lebesgue spaces and the definition

of the L*° norm,
£ _
L. () et i1 i

p(x)
lim (/ (Ifk(x)l) dx +l_1||fk||L°°(Qoo))
k—00 Q\ Qoo A

Jim o(fic/A).

p(f/A)

(In this calculation we allow the possibility that p(f/A), p(fr/A) = o00.) Hence,
for all k sufficiently large, o(fx/A) > 1, and so || fi | o) > A. O

Theorem 2.61. Given Q and p(-) € P(Q), suppose the sequence { f} C LPO(Q)
is such that fi — f pointwise almost everywhere. If

liminf||fk||p(.) < 00,
k—00
then f e LPO(Q) and
£ Nlpey < liminf || ficll o,
k—o00

In the classical version of Fatou’s lemma it is necessary to assume that each
fr is non-negative. However, since we are taking the norm this hypothesis is not
necessary in Theorem 2.61.

Proof. Define a new sequence
gk(x) = inf [ £ (x)].
m>k

Then for all m > k, g (x) < | f.(x)|, and so g; € LP(Q). Further, by definition
{gx} is an increasing sequence and
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lim gx(x) = liminf|f,(x)| = | f(x)], ae.x € Q.
k—o00 m—00
Therefore, by Theorem 2.59,
)= 1i )< 1l inf || £l »¢y) = liminf ) < 00,
1/ lpey = tim ligellpe _kggo(’;gk 1 £l o) iminf | ficll ) < 00

and f € LPO(Q). O

Theorem 2.62. Given Q and p(-) € P(RQ), suppose p4 < oo. If the sequence
{fr} is such that fr — [ pointwise almost everywhere, and there exists g €
LPO(Q) such that | fi(x)| < g(x) almost everywhere, then f € LPO(Q) and
f = fellpoy = 0ask — oo.

Further, if py = 00, then this result is always false.

Remark 2.63. 1t follows at once from the triangle inequality that the dominated
convergence theorem implies that || fx|l ;) = || f 1l p)-

As an immediate corollary to the dominated convergence theorem we can give a
stronger version of the monotone convergence theorem.

Corollary 2.64. Given Q and p(-) € P(2) such that py < oo, suppose the
sequence of non-negative functions fi increases pointwise almost everywhere to
a function f € LPO(Q). Then || f — fi|lp¢y — 0.

Proof of Theorem 2.62. Suppose first that p; < oco. Then by Proposition 2.12,
|f(0) = fe(o) 7D < 2PC7H(| f(0) 17D+ | fie(0)[PY) < 274 [g ()P € LY(Q).

Therefore, by the classical dominated convergence theorem, p(f — fi) — 0 as
k — 0, and so by Theorem 2.58, || f — fi|lp¢) — O.

Now suppose that p4 = oo; then either |[Qo0] = 0 and p4+ (2 \ Qo) = 00,
or |Qeo| > 0. In the first case, let f and { f¢} be the functions constructed in the
second half of the proof of Theorem 2.58. Then f(-)?©) € L'(Q),s0 f € LPY(Q).
Further, f; < f and f; — 0 pointwise. However, || fi || 5y > 1/2, so the dominated
convergence theorem does not hold.

If || > 0, let { Ex} be a sequence of sets such that for each k, |Ex| > 0 and
Ery1 C Ex C Quo, and |Ex| — O ask — oo. Let fy = yg,; then fy < fi and
Jx — O pointwise, but || x|l ,) = || filloo = 1. O

As in the classical Lebesgue spaces, norm convergence need not imply that the
sequence converges pointwise almost everywhere unless p_ = oo.

Example 2.65. Given Q and p(-) € P(Q), if |2 \ Qo] > 0, then there exists
a sequence { f;} in L?©)(Q) such that f; — 0 in norm but not pointwise almost
everywhere.
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Proof. Since |2\ Q0| > 0, there exists aset £ C Q2 \ Q240 suchthat 0 < [E| < 00
and p4+(E) < oo. Form a “dyadic” decomposition of E as follows. Let E = Ell U
E}, where the sets E| and E] are disjoint and have measure |E|/2. Repeat this
decomposition. Then by induction, we get a collection of sets {E£ ; 1> 1,1 <

j < 2%} such that for each i, the sets £ ; are pairwise disjoint, E = U?lzl E j.,
and |E}}| = |E|/2'. Define the collection of functions {g"} by g’ = ypi. Then by

J
Corollary 2.50,

||g'] ”Lp(')(Q) = ||g'] ”Lp(')(E) = C”gj'”er(E) = C(|E|/2i)l/p+(E)- (2.10)

Define the sequence { fi} by {g}, g1, g7, g%, 47,43, ...}. Then (2.10) shows that
|| fcllpcy = 0 as k — oc. On the other hand, given any point x € E, for every
i there exists j such that x € E j., so there exists an infinite number of functions
g; such that g; (x) = 1. Thus the sequence { f; } does not converge to 0 pointwise
almost everywhere. O

Despite this example, we can always find a subsequence of a norm convergent
sequence that converges pointwise almost everywhere. To show this we will
consider the slightly stronger property of convergence in measure. Given a domain
Q and a sequence of functions { f;}, recall that fy — f in measure if for every
€ > 0, there exists K > 0 such thatif k > K,

HrxeQ: /() — filx)] = €} <e.

If { fi} converges to f in measure, then there exists a subsequence { fk; } that con-
verges to f pointwise almost everywhere. (See Royden [301].) Norm convergence
implies convergence in measure in the classical Lebesgue spaces, and the same is
true for variable Lebesgue spaces.

Theorem 2.66. Given Q and p(-) € P(RQ), if the sequence {f;} C LPO(Q)
converges to f in norm, then it converges to [ in measure.

Proof. Suppose to the contrary that there exists a sequence { f;} that converges to
f in norm but not in measure. Then by passing to a subsequence we may assume
that there exists €, 0 < € < 1, such that for all k,

HxeQ: /()= /i) = €}| = €.

Denote the set on the left-hand side by Ay ; since for each k either | Ay N Qoo| > €/2
or |Ax \ Qoo| > €/2, by passing to another subsequence we may assume that one
of these inequalities holds for all k.

If |Ar N Qoo| > €/2 for all k, then

If = fillpey = ICf = fid xasellpey = I1f = fellL=(@oo) = €.
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contradicting our assumption that f; converges to f in norm. If |4 \ Qoo| > €/2
for all k, then

f—fe | f(x) = fix)[ "™
P ( /2 )3/9\900( /2 ) dx

2 p(x) 2 P—
z/ (—) dx = (—) A\ Qoo = 1.
Ak\Qoo € €

Hence, ||/ — fkllpy = €*/2 > 0, again contradicting our assumption that f;

converges to f in norm. O

As an immediate corollary we get that every norm convergent sequence has a
subsequence that converges pointwise almost everywhere. We record this fact as
part of a somewhat stronger result which is a partial converse to the dominated
convergence theorem.

Proposition 2.67. Given Q and p(-) € P(R2), suppose the sequence {fi} C
LPO(Q) convergesin normto f € LPY (). Then there exists a subsequence { f; i
and g € LPY(Q) such that the subsequence converges pointwise almost everywhere
to f, and for almost every x € Q, | fi; (x)| < g(x).

Proof. By Theorem 2.66 we immediately have the existence of a subsequence
{/k;} that converges pointwise almost everywhere to f. Further, since convergent
sequences are Cauchy sequences, we may choose the k; large enough that for each
Js W ki = Jisllpey = 27/ For simplicity, we will write f; instead of Ji;

For each j, define the function /; by

j—1

hj(x) = Z [ fi+1(x) = fi(x)].

i=1
Then {A} is an increasing sequence and so converges pointwise to a function /2. By

our choice of the functions f;,

j—1

Ihillpe <D 27 < 1.

i=1

Hence, by the monotone convergence theorem (Theorem 2.59), h € LP)(Q). But
then, for every j and almost every x € 2,

j—1
/5 = A < D1 firr = i) = by (x) < h(x).

i=1
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Thus, if we let g = /1 + | f1], we have that g € L?V(2) and | f; (x)| < g(x) almost
everywhere. O

We conclude this section by considering more carefully the relationship between
convergence in norm, convergence in modular and convergence in measure.

Theorem 2.68. Given Q and p(-) € P(Q), if {fi} C LPO(RQ) is such that
| fcll ¢y = O (or 00), then the sequence p( fr) — 0 (or 0o). The converse holds if
andonly if p+ (2 \ Qoo) < 0.

Proof. Suppose first that || fx||,y — O (or oo). Then the fact that p(fx) — 0 (or
00) follows immediately from Corollary 2.22.
Now suppose that p4 (2 \ Q) < 0o. Given a sequence { f;} such that p( fx) —

0, there exists a sequence {ay } such that ay < 1, ay — 0, but a;”(g\gw)p(fk) <
1. Then by Proposition 2.14,

p(fifar) < a; "+ () < 1.

Therefore, || fx|l () < ax and so || fi||p) — O.
If p(fx) — oo, then the proof is nearly the same: there exists a sequence {ay}
such that ay > 1, ax — oo but such that, again by Proposition 2.14,

p(fifa) = a " o(fi) > 1,

and so | fillp¢) = a.

Now suppose that p4 (22 \ Q) = o0; we will show that neither convergence
result holds. First, the example constructed in Theorem 2.58 shows that there is
always a sequence { fi } such that p(fx) — Obut || fi ||, > 1/2. For the other case,
form the sets { i} as in the proof of Proposition 2.12 and define

x 1/p(x)
1
Je(x) = Z mXE,-\E,-+1(x)

J=1

Then arguing as in that proof, we have p( fx) = k but

k [e%e}
pAD=F  rrar=y oot
EJNEj+1

j=1 =
Hence, p( fx) — oo but || fi |l o) < 2. o

Theorem 2.69. Given Q and p(-) € P(RQ), suppose py < oo. Then for [ €
LPY(Q) and a sequence { f} C LPO(Q), the following are equivalent:

1. fx — f innorm,
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2. fr — f inmodular,
3. fx = f inmeasure and for some y > 0, p(yfr) = p(yf).

Proof. The equivalence of (1) and (2) was proved in Theorem 2.58; here we will
prove the equivalence of (2) and (3).

To show that (2) implies (3), first note that by Theorem 2.66 norm convergence
implies convergence in measure, so modular convergence also implies conver-
gence in measure. To complete the proof of this implication we will show that
convergence in modular implies that p(y fx) — p(yf) fory = 1.

We begin with an elementary inequality. By the mean value theorem, if
I<p<oocanda, b > 0, then

la? —b?| < pmax(a”~! . b""Y]a —b| < pa”™! +b""")]a — b].

Therefore,

IP(f) = Pl < [9 LGP = | fe (ol dx

=< p+/Q (1P 4+ 1 £GP O £ (x) = fi(x)] dx.

To estimate the right-hand side we write the domain of integration as 2| U 2. The
integral on €2 is straightforward to estimate:

P+ [Q (D™ | A@PD™ £ — fulx)] dx

— 2, [Q () = Sl dx < 2pynl(f — fi).

Since modular convergence and norm convergence are equivalent, by Proposi-
tion 2.56 the right-hand side tends to 0 as k — oo.

To estimate the integral on Q., fix €, 0 < € < 1/4, and apply Young’s inequality
to get

p+/Q (LSOO [ f)PD ™) f(x) = fie(x)] dx

P’ ) o)
<ps / —— (| ) PO | fie () [P dx
Q. P'(x)

e PX) B 20)
e [ SS@ = AP dx

=1+ I,
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We estimate /; and I, separately. Since p(x) > 1 forall x € Q,,

L < pep(e (f = fi)

To estimate /1 we need two additional inequalities: for p > 0 and a, b > 0, we
have by elementary calculus that

a” +b” < max(1,2'77)(a + b)”,
(a + b)? <max(1,2”" Y (a? + bP).

Hence, since 1 < p’(x) < oo on Q4,

I < p+/ P’ ) max(l,22—P(X))p'(x)(|f(x)| + |fk(X)|)p(X) dx
5P+A(%WWQM@N+UUJ—ﬂwm””w

< 4€p+/ zp(x)—l(zp(x)lf(x)lp(x) + |f(x) _ fk(x)|p(x)) dx

*

<ep+ 227t p(f) + pre2P+ T o(f — fi).

Combining this with the previous estimate, we see that

p+/Q (17O ] /) PO £ () = fi(x)] dx

< ep+ 227 p(f) + ep 2P p(f = fi) + p4p(e (f — fi)).

Therefore, by Proposition 2.56,

k—00

nmsupp+/£ (/D™ AP f() = filx)] dx

< ep+ 227+ p(f).

Since € > 0 was arbitrary, we conclude that |p(f) — p(fx)| — O.

Now suppose that f; — f in measure and that for some y > 0, p(yfy) —
p(yf). Since we also have that y fy — yf in measure, we may assume without loss
of generality that y = 1. Then foreache,0 <€ < 1,

x € Q:1/(0) = A" > ] < [ix € Q1| () — i) > €/}
<lxeQ: 10~ il > el <e.
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Hence, | f(-) — fx(-)]?®) — 0 in measure.
Further, arguing as we did above, we have that

1 £GP = fie ()] 2.11)
< p+ (ISP + [ ) PO f(x) = fi(x)]
< P+l SO F(x) = fi(0)]
+ py max(1,2/072)
X (1 FIPIOT + 1 f(x) = @) PO f(x) = fi(x)]
< p QP+ DIS@IPOTN (X)) = S + pr 2P| f(x) = fi(x)|PY.
Now fix €, 0 < ¢ < 1. Since | £(-)|?® € L'(2), there exists M > 1 such that
x| fIPO™ > MY < [{x: [ f(0)PY) > M| < €/2.

By inequality (2.11), since fy — f and | f(-) — fx(-)|”") — 0 in measure, for all k
sufficiently large,

[ LSOOI = | fe(0)1PY] > €}

=[x | f )P > My
1w pe QP DM f(x) = fi(x)| > €/2}]
+ 1 pr27H f(0) = fi(0)17Y > €/2}]
€ € €
= E + 2p+(2p+ + I)M + p+2p++l
€ € €
27474
= €.

Therefore, | f4(-)|?©) — | £(-)|?©) in measure.
Now define

hic(x) = 2747 e (0P + 277 f (0179 — | f(x) = fie ()P = 0;

then h; — 27+ £(-)|?") in measure. Therefore, by Fatou’s lemma on the classical
Lebesgue spaces with respect to convergence in measure (see Royden [301]),

27+ / ()17 dx
Q

<timind [ 277 AP + 2747 I~ ) = A1 d
-0 Jq
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Rearranging terms and using the fact that p( fy) — p(f) we get that

lim sup /Q [ F(x) = fr(x)|[P™ dx < 0.

k—00

Therefore, f; — f in modular and our proof is complete. O

2.7 Completeness and Dense Subsets of L?¢) ()

In this section we prove that L”)(2) is a Banach space—that is, a complete normed
vector space—and determine some canonical dense subsets of L?0) (). Since we
proved that L?®) () is a normed vector space in Sect. 2.3, to see that it is a Banach
space we only have to show that it is complete.

Our proof of completeness follows one of the standard proofs for classical
Lebesgue spaces and so makes heavy use of the convergence theorems proved in
the previous section. We begin with a result that is of independent interest and is
referred to as the Riesz-Fischer property.

Theorem 2.70. Given Q and p(-) € L?O(Q), let { fi} C L?O(Q) be such that

o0
D M fellpey < oo

k=1

Then there exists f € LPY(Q) such that

i
E Je = f
k=1
innormasi — oo, and

o0
1l = S 1 fellpo:

k=1

Proof. Define the function F on 2 by
o0
F(x) = Y|/l
k=1

and define the sequence { F;} by

Fi(x) =Y [fi)l.
k=1
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Then the sequence { F;} is non-negative and increases pointwise almost everywhere
to F. Further, foreach i, F; € LPO (£2), and its norm is uniformly bounded, since

i 0o
IFillper < Y Wil < D W fillpey < oo
k=1 k=1

Therefore, by the monotone convergence theorem (Theorem 2.59), F € LPV(Q).

In particular, by Remark 2.10, F is finite almost everywhere, so the sequence
{F;} converges pointwise almost everywhere. Hence, if we define the sequence of
functions {G; } by

Gi(x) =) filx),
k=1

then this sequence also converges pointwise almost everywhere since absolute
convergence implies convergence. Denote its sum by f.

Now let Gy = 0; then for any j > 0, G; — G; — f — G, pointwise almost
everywhere. Furthermore,

i [ele]
liminf |G; — G; ¢ <liminf Y [ fillpo = D Ifillpe) < oo
k=j+1 k=j+1

By Fatou’s lemma (Theorem 2.61), if we take j = 0, then

oo
1 llp) < liminf | Gi ¢ < ; [ fillpesy < 00,

More generally, for each j the same argument shows that

oo

If = Gillpey < liminf |G; — Gl < kZ 1fell o
=j+1

since the sum on the right-hand side tends to 0, we see that G; — f in norm, which
completes the proof. O

The completeness of L) (2) now follows from the Riesz-Fischer property.

Theorem 2.71. Given Q and p(-) € P(Q), LPO(Q) is complete: every Cauchy
sequence in L0 () converges in norm.

Proof. Let { fi} C L?Y() be a Cauchy sequence. Choose k; such that | f; —
fillpey < 27V fori, j > ki, choose ky > ki such that || f; — fjl ¢ < 272 for
i, j = ka, and so on. This construction yields a subsequence { fi,}, k;+1 > k;,
such that

I fij1 = Jiej oy <277
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Define a new sequence {g;} by g1 = fi, and for j > 1, g; = fi;, — fk;,_,. Then
for all j we get the telescoping sum

J

Y &= fi

i=1

further, we have that

o0 o0
Y o lgilpe < 1 fiallpo + Y27 < oo

J=1 Jj=1

Therefore, by the Riesz-Fischer property (Theorem 2.70), there exists f € L?0(Q)
such that fi, — f in norm.
Finally, by the triangle inequality we have that

I = fillpey = I = i Loy + 1k, = Sell e

since { fx } is a Cauchy sequence, for k sufficiently large we can choose k; to make
the right-hand side as small as desired. Hence, f; — f in norm. O

We now consider the question of dense subsets of L?)(Q2). To simplify our
exposition, we will assume that all domains €2 are open.

Theorem 2.72. Given an open set Q and p(-) € P(2), suppose that p; < oo.
Then the set of bounded functions of compact support with supp(f) C Q is dense
in LPY(RQ).

Proof. Let K be a nested sequence of compact subsets of €2 such that @ = (J, K.
(For instance, let K = {x € Q : dist(x,dQ) > 1/k} N Bx(0).) Fix f € L?Y(Q)
and define the sequence { f; } by

k Jie(x) >k
fx) =9 f(x) —k=flx) <k
-k fulx) < -k,

and let gx(x) = fi(x)xk,(x). Since f is finite almost everywhere, gr — f
pointwise almost everywhere; since f € LPO(Q) and |gx(x)| < | f(x)], gk €
LPO(Q). Therefore, since p; < oo, by the dominated convergence theorem
(Theorem 2.62), gx — f in norm. O

As a corollary to Theorem 2.72 we get two additional dense subsets. Recall that
C.(S2) denotes the set of all continuous functions whose support is compact and
contained in 2. We define S(£2) to be the collection of all simple functions, that is,
functions whose range is finite: s € S(€2) if
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s(0) =Y ajxe (%),
j=1

where the numbers «a; are distinct and the sets £; C €2 are pairwise disjoint. The
family Sy(€2) is the collection of s € S with the additional property that

n
UE]' < 0.
j=1

Corollary 2.73. Given an open set Q and p(-) € P(2), suppose p+ < oo. Then
the sets C.(Q) and So() are dense in L") ().

Proof. We will prove this for C.(€2); the proof for So(£2) is identical. Fix f €
LPY(Q) and fix € > 0; we will find a function 1 € C.(2) such that || f —&|| 5 < €.

By Theorem 2.72 there exists a bounded function of compact support, g, such
that || /' — gllp) < €/2. Let supp(g) C B N 2 for some open ball B. Then since
P+ <00, C.(BNQ)isdense in L+ (B N Q); thus there exists h € C.(B N Q) C
C.(2) such that

€

—h = —h < —.
lg ||L”+(Q) lg ||L1’+(Bm§z) 20+ |BNQ)

Therefore, by Corollary 2.48,

lg —llro@) = 18 —hlleroang) < (1 + BN QDG —hllLr+ sne) < €/2,

and so
I/ =hllpey =1 —gllpey + 118 —Allpe) <e.
O

Remark 2.74. If p4 < oo, then the set ﬂp>l L?(R) is dense in L?0) () since this
intersection contains C,(£2). This observation will be useful in Chap. 5 below.

Theorem 2.72 need not be true if p; = oo. This is clearly the case if 2 is open
and |Q| > 0, since bounded functions of compact support with supp(f) C Qe
are not dense in L°°(Q). But it still fails even if p(-) is simply unbounded. First,
we will show that bounded functions are not dense, and then show that under certain
conditions functions of compact support are not dense.

Theorem 2.75. Given Q open and p(-) € P(RQ), if p+(Q \ Qo) = 00, then
bounded functions are not dense in L?0)(Q).

Remark 2.76. Tt follows from Theorem 2.75 that if p4+ (2 \ Qoo) = 00, then C,(2)
and Sy(Q) are not dense in L0 ().
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Proof. We will construct a function f € L?0)(Q) that cannot be approximated by
bounded functions. To do so we will modify the construction given in the proof of
Proposition 2.12.

Since p4+ (2 \ Qo0) = 00, there exists an increasing sequence {p; }, p; > i, such
that the sets

Fi={xe€eQ\Qw:pi <px)<pi+1}

have positive measure. For each i, choose G; C F; such that

1 Pi+1
0<|G,<|<(—) < 1.
Qi

Then for all A > 0,

i(x p(x) _
s/ = [ (252) T dx 4 el
Q\Qoo

= / A_P(X) dx < |Gi|max(k_]71’k—]71+1)'
Gi
Hence,
X6l pey < inf{fA > 0:|G;| max(A~7 A7Pi+1) < 1}
<inf{A > 0:|G;| < min(A?, APi+1)}
< max(|G; |7, |G;|"/Pi+1) = |G; |/ P+ < 270,

Now define the sets { £} by

o0
E.=|JGi.
i=k

Then we have that

1. B CQ\ Qoo
2. Ex41 C Ex and |E \ Ex41] = |Gi| > 03
3. |Ex| — 0 since

oo oo )
Exl =) _1Gil <Y (27)"*":
i=k i=k

4. If x € E, then p(x) > pr > k;
5. | xg llp¢y — O since

o0 (o]
Iz dpo =D lxe e < Y 27
i=k i=k
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Properties (1)—(4) are exactly the properties from the proof of Proposition 2.12
used in the proof of Theorem 2.58 to construct the function f and show that
feLPO(Q)and | fyE, | () = 1/2; repeat this construction using these sets.

For any h € L°°(2), by Property (5) fix k sufficiently large such that

1
Mxelloey = Mo lixellpe < -

Then by the triangle inequality we have that

1 1 1
If =nllpe) = I =M xedlpo = 1 xellpey = 1hxe e = > i1
Since & is an arbitrary bounded function, we see that bounded functions are not
dense in L7V (). O

Intuitively, the next result shows that if p(-) is unbounded at the boundary of €2,
then functions of compact support are not dense.

Theorem 2.77. Given Q openand p(-) € P(S2), suppose that for every compact set
K C Q, p1(Q\ K) = oo. Then functions with compact support and supp(f) C Q
are not dense in L0 (Q).

Proof. Define the sequence Ky = {x € Q : dist(x, 02) > 1/k} N By (0). Then the
sets Ky are compact, nested, and their union is 2. By our hypothesis there exists
a sequence of disjoint sets Ex C Q2 \ Kj such that |Ex| > 0 and p_(Ey) > k.
Let Ef = Ei \ Q and E° = Ej; N Qoo. By passing to a subsequence and
renumbering, we may assume without loss of generality that either |EZ°| > 0 for
every k or |[E[| > 0 for every k. In the first case, define

f) =) xpee ().
k=1

Since the sets E° are disjoint, f € L®(Qy) C L?O(Q). Further, given any
function g such that supp(g) is compact and contained in €2, there exists ko such
that supp(g) C Kx,. But then,

1f =gl = Wxese, oo = lxege, lloo = 1.

Hence, functions of compact support are not dense.
If, on the other hand, |E ,’{"| > 0 for every k, define

S =Y IEETYPO yp ().
k=1
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Then for any A > 1,

o0 o0
o(f/A) = Z][ A dx < 3 A < os.
k=17 EX =1

Thus f € L?O(Q). But given g as before,

p(f-2)= Y. /*f(x)”("")dx= > 1=oc.
k=ko+1" Ex le=ko+1

Therefore, || f — gl 57 = 1, so again functions of compact support are not dense in
LPO(Q). O

We conclude this section with an important characterization of the dense subsets
of LP0)_ Recall that a Banach space is separable if it has a countable dense subset.

Theorem 2.78. Given an open set Q@ and p(-) € P(Q), then L?O(Q) is separable
if and only if p4+ < oo.

Proof. Suppose first that p < oco. Then the proof of separability is almost identical
to the proof of Corollary 2.73 so we sketch only the key details. We can write

Q=]JBOne.
k=1

Since By (0) N 2 is open, L7+ (B (0) N 2) is separable and so contains a countable
dense subset. The union of all of these sets is a countable set contained in L?") ().
Arguing exactly as we did before we see that this set is also dense in L?0)(Q).

Now suppose that p; = oo. We will show that no countable set is dense. If
|Qoo| > 0, then this follows from the same construction that shows that L°°(Q2)
is non-separable, since the restriction of any dense subset of L?®)(Q) will be dense
in L*®°(Q). (See, for example, Brezis [37].)

Now let Qo] = 0 and p4 (2 \ Rs) = 00, and suppose to the contrary that
there exists a countable dense set {/, }. Let the sets £} and the function f be as in
the proof of Theorem 2.75. Then for all k, || f x £, || o) = 1/2, so by Theorem 2.34,
there exist functions g € L” (), || g« |7y <1, and € > 0 such that

/Q f(x)XEk(x)gk(x) dx > e.

By Holder’s inequality (Theorem 2.26), for each j,

‘/th(x)gk(X)XEk(x)dx = Cllhjllpe
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and so the sequence { [ h; gk x g, dx}i is bounded. Hence, it has a convergent sub-
sequence, and so by a Cantor diagonalization argument we can find a subsequence
of functions {g, xk,, }i such that for every j, the sequence { S hjgr, XE, dx}i
converges and so is Cauchy.

From this fact we will see that for any F' C 2 the sequence

{ /Q £ 1 ()8 (x5, () dx} 2.12)

i

is Cauchy. Fix € > 0 and let /2; be such that ||h; — fxFll,) < €. Then for all i
and /,

’ /Q FO X ()88 () x5, () dx — /Q £ xr(0)gh (¥) 2, (1) dx

=

/Q (S xr(x) = hj(0) gk () xE,, () dx

" ' [ 2000 = ) (0115, )

+ ’/Q hj () (gr () x5, (X) = 8r (V) xEy, (X)) dx

By Holder’s inequality the first two terms are bounded by Ce and the last term is
less than € for all i and / sufficiently large. Thus the sequence (2.12) is Cauchy and
SO converges.

Since the sets Ej, are nested, we can define a sequence of measures on E; by

pi(P) = [ e g s, dv. F ek
1
Since (2.12) converges, there exists a set function p such that
u(F) = lim p;(F).
1 —>00

Since | E1| < oo, by the Hahn-Saks theorem p is an absolutely continuous measure
on Ej. (See Hewitt and Stromberg [169, ex. 19.68, p. 339].) Therefore, there exists
g € L! (E)) such that

loc

H(F) = /F g(x) dx.

We claim that g = 0. To see this, note that since the sets £} are nested and | E;| —
0, | N; Eg;| = 0. Now fix any i and let F be such that | F N Ej,| = 0. Then

p(F) = lim p;(F) = 0.
1—>00
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This is true for all such sets F; in particular we can take F to be the set where
8XE\E,, s positive or negative. Hence, we must have that ¢ = O on £ \ Ey, . Since
this is true for all i, g = 0 on E;. But then

0= () = lim pi(E) = fim [ F00ts, (g () dx = e
1—>00 1—>00 Q

which is a contradiction. Hence, L?") () is not separable. O

2.8 The Dual Space of a Variable Lebesgue Space

In this section we consider the dual space of L?()(Q): that is, the Banach space
LPO()* of continuous linear functionals ® : L7 () — R with norm

@] = sup |P(f)I.

I/ 1lpe=<1

In the classical Lebesgue spaces, LY c (LP)* (up to isomorphism), and equality
holds if p < oo. The behavior of the variable Lebesgue spaces is analogous if
P+ < OQ.

We will begin by constructing a large family of continuous linear functionals
and showing that they are induced by elements of L7 O(R). Given a measurable
function g, define the linear functional ®, on LPO(Q) by

¢Aﬂ=Lf@ﬂnw-

Proposition 2.79. Given Q and p(-) € P(2), and a measurable function g, then
®, is a continuous linear functional on L) (Q) if and only if g € L7 O(Q).
Furthermore, ||®gq| = ||g||’p,(,), and so

kp’(~)||g||p’(~) =< ||q>g|| = Kp/(~)||g||p/(~)- (2.13)

Proof. Given any measurable function g, it follows from the definitions that
| Pl = ||g||;/(,), and so by Theorem 2.34 (with the roles of f and g exchanged
in the statement and p(-) replaced by p’(-)), ®, is continuous if and only if
g € L”0(Q) and we get inequality (2.13). O

The linear mapping g > @, provides a natural identification between L7O(Q)
and a subspace of L?")()*. When p(-) is bounded, we get every element of the
dual space in this way.
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Theorem 2.80. Given Q2 and p(-) € P(S2), the following are equivalent:

1. P+ <00,

2. The map g — @, is an isomorphism: given any g € L7 (), the functional
®, is continuous and linear; conversely, given any continuous linear functional
® € LPO(Q)* there exists a unique g € L”/(')(Q) such that ® = ®, and
lgllprey = Il
It follows from Theorem 2.80 that when p; < oo the dual space and the

associate space of LP)(Q) (see Proposition 2.37) coincide. In this case we will

simply write LP0)(Q)* = L7 O(R); the isomorphism will be implicit.

As an immediate corollary to Theorem 2.80 we can characterize when L") ()
is reflexive. (Recall that a Banach space X is reflexive if X** = X, with equality in
the sense of isomorphism.)

Corollary 2.81. Given Q and p(-) € P(Q), LPY(Q) is reflexive if and only if
Il <p_<py <o

Proof of Theorem 2.80. Suppose first that p < oo. Fix ® € LPO(Q)*; we will
find g € L”’ () such that ® = ®,. Note that by (2.13) we immediately get that

lgllpre) = (1.

We initially consider the case when |2| < oo. Define the set function u by
W(E) = ®(yg) for all measurable E C Q. Since ® is linear and ygur = £ + XF
if EN F = @, p is additive. To see that it is countably additive, let

where the sets E; C 2 are pairwise disjoint, and let
k
Fe=JE;.
j=1
Then by Corollary 2.48,
lxe = xrllpe = A+ I[2DIXE — xFpy
= (1+[2DIE\ Fi|""+.

Since |E| < o0, |E \ Fi| tends to 0 as k — oo; thus s, — g in norm. Therefore,
by the continuity of ®, ®(yr,) — P(x£); equivalently,

> W(E)) = u(E),

Jj=1

and so pu is countably additive.
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In other words p is a measure on 2. Further, it is absolutely continuous: if £ C
Q, |E| =0, then yg = 0, and so

ME) = ®(xe) = 0.

By the Radon-Nikodym theorem (see Royden [301]), absolutely continuous mea-
sures are gotten from L' functions. More precisely, there exists g € L'(2) such
that

D(xp) = w(E) = /Q Ye(x)g(x)dx.

By the linearity of ®, for every simple function /' = ) a; yg;, E; C Q,

o(f) = /Q F()g() dx.

By Corollary 2.73, the simple functions are dense in L?)(Q), and so ® and d,
agree on a dense subset. Thus, by continuity ® = ®,, and so by Proposition 2.79,
g€ L70O(Q).

Finally, to see that g is unique, it is enough to note thatif g, g € LP/(')(Q) are
such that ®, = @y, then forall /' € LP(Q),

/ﬂ FO)(g(x) — §x)) dx = 0, (2.14)

Since || < oo, by Corollary 2.50, g — g € L”'O(Q) ¢ LV’ O-(Q) = L+ (Q),
and since (2.14) holds for all € LP+(Q) C L?Y(Q), by the duality theorem for
the classical Lebesgue spaces, g — & = 0 almost everywhere.

We now consider the case when |Q2| = co. Write

o0
Q= U Q.
k=1

where for each k, || < oo and Q; C Q4. Given ® € LPV(Q)*, by restriction
® induces a bounded linear functional on L?")(€2;) for each k. Therefore, by the
above argument, there exists gx € LP/(')(Q;C) such that for all f e LPO(Q),

supp(f) C S,
o(f) = /ﬂ F()ge(x) dx.

Further, [|gk|l () < k;/l(,).gk @] < 3||®]|. Since the sets £ are nested, we must

have that for all f with support in Q,

/ S(x)gr(x)dx =/ f(x)gry1(x)dx.
e Q1
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Since the functions g, are unique, we must have that g = gi+1xq,. Therefore,
we can define g by g(x) = gi(x) for all x € Q. Since supp(gr) C S, the
sequence |gx| increases to |g|; hence, by the monotone convergence theorem for
variable Lebesgue spaces (Theorem 2.59),

sy = lim oy < 3P| < 0.
Iglyo = Jim Nzl <310

Thus g € L7 O(Q).

Now fix f € LPO(Q) and let fy = fyq,. Then f; — f pointwise almost
everywhere and | f — fix| < |f|, so by the dominated convergence theorem in
variable Lebesgue spaces (Theorem 2.62), fi; — f in norm. Further, fyg — fg
pointwise, and by Holder’s inequality for variable Lebesgue spaces (Theorem 2.26),
| fegl < | fgl € L'(RQ). Therefore, by the classical dominated convergence theorem
and the continuity of ®,

[ s ax = im [ ficogedx
Q =00 JQp

= Jim /ﬂ g dx = lim @A) = 9(F)

Finally, since the restriction of g to each 2 is uniquely determined, g itself is
the unique element of L7 O(2) with this property. This completes the proof of the
first half of the theorem.

Now suppose that p. = 0o; we will show that there exists ® € L”)(Q)* such
that ® # @, forany g € L” (Q).

If [Qoo] > 0, then we use the fact that L°°(Q00)* contains (the isomorphic
image of) L'(Qoo) = L” () as a proper subset (see, for example, Brezis [37]
or Dunford and Schwartz [95]); in other words there exists ® € L*°(Qy)* that
is not induced by any element of L'(Q4,). By the Hahn-Banach theorem we can
extend @ to an element of L?)(Q)*. This is clearly the desired element: if it were
equal to ®, for some g € L”)(Q), then its restriction to L") (24) would be
induced by g yq.,, contradicting our choice of ®.

Now assume that |[Qe] = 0 but p4 (R \ Qo) = co. We will prove that the
desired ® exists by contradiction. The proof starts as in the proof of Theorem 2.78.
Suppose to the contrary that every ® € L?)(Q)* is of the form ®,, g € L”' ().
Fix sets E} and the function f as constructed in the proof of Theorem 2.75. Then
f is non-negative, || f |,y < L, lxe |,y — O, and for every k, || fxg, lpc) =
1/2. Therefore, by Theorem 2.34 there exist non-negative functions g € L7 O(Q),
llgkll7¢» < 1,and € > 0 such that

/Q JX) xE (x)gk (x) dx > €. (2.15)

Without loss of generality we may assume that for all k, gx = gx ¥k, -
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Define the sets
Gr = {® € L"(Q)" 1 |®(fx5)| < €/2}.

Then we have that L?(Q)* = |J, Gi. To see this, fix ® € LPV(Q)*; by our
original assumption there exists g € L' O() such that & = ®,. By Holder’s
inequality (Theorem 2.26), fg € L'(R), and so by the classical dominated
convergence theorem,

Jim (50 = Jim [ 005, (20 dx = 0.

Hence, for k sufficiently large, ® € G.

By definition, the sets Gj are open in the weak* topology on L”0)(Q)*.
Therefore, the collection {Gy} is an open cover of the ball B = {® € L7V (Q)* :
||®|| < 4}. By the Banach-Alaoglu Theorem (see Brezis [37] or Conway [51]),
B is weak® compact, and so there exists N > 0 and a collection of indices
1 <k <k, <--- <ky such that {Gk,.}f\'=1 is a finite subcover of B.

Define ®; € LPV(Q)* by

By (h) = Dy, (h) = /Q 7O x5, 81(x) dx.

Since ||gk ||,y < 1, by Theorem 2.34, || ®;|| < 4 and so ®; € B. Let k; be such
that &, € Gy,; then we have that Ok (fxg,,) = |P(fXxE, )| < €/2. Since the sets
E) are nested, for all k > ky,

/ F()ge) dx = / FC i, (g1 (x) dx
Ey Q

< /Q £, () dx = D (frm, ) < /2.

But this contradicts inequality (2.15). Therefore, our original supposition is false,
and there exists ® € L?)(Q)* not induced by any g € L”/(')(Q). This completes
our proof. O

2.9 The Lebesgue Differentiation Theorem

We conclude this chapter with a generalization of the Lebesgue differentiation
theorem to variable Lebesgue spaces. In the classical case (see Grafakos [143]) if
f € L. (R"), then for almost every x € R”",

loc
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lim )f(y) dy = f(x).

r—>0 By (x

Such points x are referred to as Lebesgue points of the function f. This limit also
holds if balls are replaced by cubes centered at x or more generally by a nested
sequence of balls or cubes whose intersection contains x. In particular, it holds for
the sequence of dyadic cubes containing x. (See Sect. 3.2 below.) If f € Llpo(c') (R™),
then by Proposition 2.41 f is locally integrable, so the Lebesgue differentiation
theorem holds for such f.

However, if f € L{;c(R”), 1 < p < oo, then a stronger result holds (again

see [143]): for almost every x € R",

lim )If(y)—f(X)I” dy =0.

r—>0/p (

An analog of this is true in the variable Lebesgue spaces.

Proposition 2.82. Given p() € P(R") such that || = 0, and f € LIV (R"),
then for almost every x € R" there exists a > 0 such that

lim la(f() = f) " dy =o. (2.16)

r—0 B, (x)

If p+ < o0, then we can take o = 1.

Proof. Since this is a local result, it will suffice to fix a ball B and prove (2.16) for
almost every x € B. Since f € L? 0 (R™), there exists A > 1 such that

loc

)
[ (Ifiy)l)” iy < oo
B

Enumerate the rationals as {g; } and define §; = (2/X(|qi| + 1))_1. Then

/B B (/) =)™ dy < /B 2O (|BF D™ +1Bail?) dy

1 If(y)l)”(” / ( i )f’”"
<= LA AN dy + dy < oo.
2 /B ( A Y s \gi| +1 J

Therefore, by the classical Lebesgue differentiation theorem, for each i and for
almost every x € B,

him |:3i(f(y)_qi)|p(y) dy = \ﬂf(f(x)—ql‘ﬂpm.

r—0 B, (x)
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Since the countable union of sets of measure 0 again has measure 0, this limit holds
for all i and almost every x € B. Fix such an x and fix €, 0 < € < 1. Then there
exists 7 such that

‘.31' (f(x) _(Ii)‘ < €.
Define « = f;/2. Then by Remark 2.8 we have that

r—>0

lim sup ]i el o) = o)™ ay

< limsup (][ 2p(y)—l|%(f(y) _ ql_)‘p(y) dy
By (x)

r—0

1 Bi ) )
p(y)—1 L —g.) PV
+f OIS0 D

IA

1 ,
5 lim sup (]i " 18:(f () — )" dy

r—0

+f 1 (f () — )] dy)
B, (x)

= (8@ =)™ + |8 (F@ —a))])

< €.

The limit (2.16) follows at once.
Finally if p4 < oo, then the above proof can be readily modified to take o =
Bi =1L O

Remark 2.83. When p; < oo, by Theorem 2.58 the modular limit implies a limit
of norms:

}1_1)1}) HlBr(X)|_l/p(')|f(') - f(x)lup(.) = 0.

2.10 Notes and Further Results

2.10.1 References

As we discussed in Chap. 1, the variable Lebesgue spaces were considered by a
number of authors independently and so many of the results in this chapter were
probably discovered several times. In our treatment, we have primarily followed
the work of Kovacik and Rakosnik [219] and Diening [80]. (This work, Diening’s
habilitation thesis, has recently been expanded into a book, written jointly with
Harjulehto, Histo and Ridzicka [82].) The structure of variable Lebesgue spaces
is also treated by Samko [313, 314] and Fan and Zhao [122]. A briefer overview,
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combined with an extensive bibliography, is given by Harjulehto and Histo [150].
The structural parallels between the classical and variable Lebesgue spaces are
clearest when py < oo, and this is the case frequently considered in the literature.
Our approach has been to provide a unified treatment of bounded and unbounded
exponents.

The local log-Hdlder continuity condition LH, (Definition 2.2) first appeared
in Sharapudinov [331] and later in Zhikov [358, 359, 361], Karapetyants and
Ginzburg [189, 190], Ross and Samko [300], Samko [313], and Diening [77].
Since these papers this condition has become ubiquitous. The log-Holder condition
at infinity was introduced in [62]. Both log-Holder conditions play a central role in
harmonic analysis on variable Lebesgue spaces, as we will make clear in subsequent
chapters.

The modular in Definition 2.6 is taken from [219]; for alternative definitions
see Sect.2.10.2 below. The variable Lebesgue space norm in Definition 2.16 is
usually referred to as the Luxemburg norm, because it is analogous to the norm on
Orlicz spaces (cf. [25]). However, it appeared in Musielak and Orlicz [275] in the
more general context of modular spaces, and earlier in Nakano [280]. Independently
it was defined by Sharapudinov [329], who based it on a more general result of
Kolmogorov [210] about Minkowski functionals. For this reason, some authors refer
to this norm as the Kolmogorov-Minkowski norm (e.g., [313]).

The extension theorem in Lemma 2.4 was first proved in [61]. A weaker version
for functions in L H, appeared in [80] and for Lipschitz functions in [106]. The
construction in the second half of the proof of Proposition 2.12 is due to Kovacik and
Rékosnik [219]; this construction and the variant of it in Theorem 2.75 play a major
role in understanding the properties of variable Lebesgue spaces with unbounded
exponents. A somewhat different and more general version of Proposition 2.18
(including the case || > 0 and replacing the constant s by a bounded function)
is due independently to Samko [314] and Edmunds and Rakésnik [106]; the simpler
version given here was proved independently in [61]. Corollary 2.23 for p4 < oo
appeared in [122]; our version is adapted from Diening er al. [81]. Variants of
this estimate have appeared elsewhere in the literature: see, for example, de Cicco
et al. [73]. The proof of Proposition 2.25 is taken from Samko [313]. In the
more general setting of modular spaces this was proved by Nakano [280] (who
attributed this definition of the norm to Amemiya). See also Musielak [274] and
Maligranda [244]. Independently, and both working in the more general setting of
Musielak-Orlicz spaces, Fan [114] and Sragin [335] proved that the Amemiya norm

is equal to the associate norm when |Qoo| = 0. (Sragin assumed that |Q | = 0.
This result was also noted for modular spaces without proof by Hudzik and
Maligranda [180, Remark 4].) For an application of the Amemiya norm, see [131].

Our proof of Holder’s inequality (Theorem 2.26) is taken from [219]. The
generalized Holder’s inequality (Corollary 2.28) was proved by Diening [80] and
earlier by Samko [313,314] with the additional hypothesis that r (R \ Q55) < co.
In the same papers, Samko also proved Corollary 2.30 and Minkowski’s integral
inequality (Corollary 2.38). His proof of Corollary 2.30 shows that the constant can
be taken to be >_[p; (-)-] "
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The L°° embedding in Proposition 2.43 was shown to us by Diening. Theo-
rem 2.45 is due to Diening [77]; when |Q2| < oo (i.e., Corollary 2.48) it was proved
by Kovacik and Rékosnik [219] and Samko [314]. A quantitative version when
p(-) and ¢(-) are close was proved by Edmunds, Lang and Nekvinda [102]. The
embedding in Theorem 2.51 was implicit in [67] and is explicit in Diening [80].
Proposition 2.53 and other, related embedding theorems were proved by Diening
and Samko [92].

Our definition of modular convergence, Definition 2.54, is classical in the study
of modular spaces; see Maligranda [244] or Musielak [274]. Diening [80] also
uses this definition; both [219] and [122] assume 8 = 1 in the definition. The
monotone convergence theorem for variable Lebesgue spaces (Theorem 2.59) was
first stated without proof in [101]; a proof in the case p4+ < oo appeared in [58] and
the full result was proved in [56]. Fatou’s lemma and the dominated convergence
theorem for variable Lebesgue spaces (Theorems 2.61 and 2.62) are new. The weak
converse of the dominated convergence theorem, Proposition 2.67 is also new. For
the converse in the case of the classical Lebesgue spaces see Brezis [37] or Lieb and
Loss [238]. Theorem 2.68 for p4 < oo is in [219] and implicit in [122]; our version
is new. Theorem 2.69 is stated by Fan and Zhao [122] but the proof is only sketched.
The complete proof was given in [60]; also see below.

The completeness of the variable Lebesgue spaces was proved by Kovacik and
Rékosnik [219] and Diening [80]; our proof is different and follows the proof in
Bennett and Sharpley [25] for abstract Banach function spaces. Our approach also
yields the Riesz-Fischer property (Theorem 2.70). Theorem 2.72 and Corollary 2.73
are in [219]. Theorem 2.75 is due to Kalyabin [187] and also to Edmunds, Lang and
Nekvinda [101]. Theorem 2.77 is new; Harjulehto [149] gave a specific example of
a space in which functions of compact support were not dense. Theorem 2.78 in the
case p4+ = oo is new, but it depends critically on the construction from [219] and
adapts an argument in [25].

Theorem 2.80 is proved in [219], but their proof depends on deeper results on
Orlicz-Musielak spaces due to Hudzik [179] and Kozek [220]. Our proof is direct:
when py < oo we followed the proof for classical Lebesgue spaces in Roy-
den [301], and for p4+ = co we adapted an argument in Bennett and Sharpley [25].
A different proof of the characterization of reflexivity (Corollary 2.81) is due to
Lukes, Pick and Pokorny [242]: see Sect.2.10.3 below.

The generalization of the Lebesgue differentiation theorem to the variable setting
(Proposition 2.82) was proved by Harjulehto and Héasto [152] when p4 < oo. Our
proof is a simple modification of theirs.

2.10.2 Musielak-Orlicz Spaces and Modular Spaces

The variable Lebesgue spaces are a particular example of a larger class of function
spaces that also includes the classical and weighted Lebesgue spaces and Orlicz
spaces as special cases. Given a set 2, let ® : Q x RT — [0, 00] be such that
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for each x € 2, the function ®(x, -) is non-decreasing, continuous and convex on
the set where it is finite. Assume that ®(x,0) = 0, &(x,t) > 0if r > 0, and
D(x,t) - oo ast — oo. We also assume that for each ¢ > 0, the function ®(-, ¢)
is a measurable function.

Define the Musielak-Orlicz space L) (2) to be the set of all functions f such
that for some A > 0,

poiy(f) = /ﬂ B(x. | f(x)]/A) dx < +oo. 2.17)

Then by arguments analogous to those above one can show that L®0(Q) is a
Banach function space with the norm

I/l o0 @) = inf%/\ >0: / O(x, | f(X) A Hdx <1} .
Q

In this setting the norm is referred to as the Luxemburg norm. It is possible to define
a so-called complementary function W which also generates a Musielak-Orlicz
space. This space can be used to define the associate norm, which is also called the
Orlicz norm. See [244,274] for further details. Because the spaces L®") generalize
Orlicz spaces in the same way that L”") generalizes the classical Lebesgue spaces,
it makes sense to refer to L®") as a variable Orlicz space, but this terminology has
not been widely adopted.

Musielak-Orlicz spaces are themselves a special case of abstract Banach spaces
called modular spaces. Given a set X that is a real vector space, a convex modular
is a function p : X — [0, oo] such that:

1. p(x) = 0if and only if x = 0;

2. p(=x) = p(x) forall x € X;

3. pis convex;

4. The map A — p(Ax) is left-continuous.

If we let X, be the set of all x € X such that p(A~'x) < oo for some A > 0, then
this becomes a normed vector space with norm

Ix|lx, = inf(A > 0: p(A~"x) < 1.

For more further details, see [82,244,274].

The function pg defined by (2.17) is a convex modular in this sense and L%0
is a modular space. In particular, if p(-) € P(£2), then (by Proposition 2.7) p,,
is a convex modular. Many of the classical Banach function spaces can also be
viewed as Musielak-Orlicz spaces or as modular spaces. If let ®(x,1) = 7,1 <
p < oo, we get the classical Lebesgue space L7 (S2). If we let ®(x,1) = tw(x),
where w is a positive, locally integrable function, then we get the weighted Lebesgue
space LP(Q2,w). If ®(x, 1) = P(¢), then we get the Orlicz spaces. For example, we
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can take ®(t) = t” log(e + )¢, in which case L® becomes the Zygmund space
L?(log L)*. (See Bennett and Sharpley [25].)
We can weaken the definition of modular by replacing (1) by

(1a) p(0) = 0;
(1b) If p(Ax) = O for all A > 0, then x = 0.

Such functions p are referred to as semi-modulars, and the theory of modular spaces
readily extends to this setting. For example, if we let ®(x, ) = 00- x(1,00) (¢) (letting
0- 00 = 0), then (2.17) defines a semi-modular and we get L°°(£2). We can extend
this approach to get a very elegant definition of the variable Lebesgue spaces. Given
p() € P(2), define

Bor () = /Q £ dx,

with the convention that > = 00 - x(1,00)(¢). Then p,(, is a semi-modular. It is not
equivalent to p,(,: for example, if we let @ = R, p(x) = oo, and f(x) = ¢ > 0,
then p,(f) = ¢, but p,(f) = 0if 0 < ¢ < 1and p,(y(f) = oo ifc > 1.
Nevertheless, the norm || - || x; is equivalent to || - || o, for all f,

11l < 1A ooy = 2017 Mx5- (2.18)

The whole theory of variable Lebesgue spaces can be developed from this per-
spective; it is done this way, for example, in [80, 82]. (A proof of (2.18) can be
found in both.) This approach is extremely elegant and is also advantageous in
some applications, since in certain limiting cases the space that appears naturally is a
Musielak-Orlicz space. For instance, in Sect. 3.7.3 below, the behavior of the Hardy-
Littlewood maximal operator is considered for functions f € L (logL)4®),
the Musielak-Orlicz space generated by ®(x,) = 1) log(e + 1)), These are
generalizations of the Zygmund spaces and were first considered in [59] and later by
Mizuta and various co-authors [138, 166, 167,243,265, 267]. For another example
generalizing the space exp L, see Harjulehto and Hésto [153].

2.10.3 Banach Function Spaces

Another abstract approach to the variable Lebesgue spaces is that of Banach
function spaces as defined by Bennett and Sharpley [25]. Let @ C R” and let
M be the set of all measurable functions with respect to Lebesgue measure. Given
amapping || - [|x : M — [0, o], the set

X ={feM:|[fllx < oo},

is a Banach function space if the pair (X, || - ||x) satisfies the following properties
forall f, g € M:
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N flx = |1f1]y and || flx = 0if and only if /= 0;

N+l = 1S 1x + lgllxs

- Foralla € R, [laf|x = |alll fx:

. X is a complete normed vector space with respect to || - || x;

. If | f] < |g| almost everywhere, then || f||x < ||g]lx;

L If { fu} C M is a sequence such that | f,| increases to | f| almost everywhere.,
then || f, ||x increases to || f | x;

. If E C Q is ameasurable set and |E| < oo, then || yg||x < 003

8. [p|f(x)|dx < Cg| fllxif |E| < oo, where C < oo depends on E and X, but

noton f.

AN AW

~

It follows at once from the results in this chapter that || - ||, is a Banach
function space. This was first observed by Edmunds, Lang and Nekvinda [101] (see
also Lukes, Pick and Pokorny [242]). Many of the results proved in this chapter—
especially the functional analytic ones on duality, separability, etc.—can be proved
in this more general setting.

Here we give one such general result. We say that a function f € X has
absolutely continuous norm if given any nested sequence of sets {Ex} such that
|Ex| = 0, || fx£, lx = 0. The norm ||-|| x is absolutely continuous if every function
in X has absolutely continuous norm. We define the associate space of X to be the
space X’ of functions g such that

lgllx = SUP{/Q | f(x)gCo)ldx = [ fllx =1 < oo.

Denoting by X * the dual space of X, then the following are equivalent [25]:

1. || - ||x is absolutely continuous;
2. X is separable;
3. X* = X’ (up to isomorphism).

As a corollary to Theorems 2.58 and 2.62 we have that the norm || - ||, is
absolutely continuous if and only if p;+ < oo. In proving this fact, as well as in
proving separability and duality (Theorems 2.78 and 2.80) the construction from
Proposition 2.12 played a central role.

The Banach space properties of the variable Lebesgue spaces have been consid-
ered by several authors. The subspace of functions in LrO), p+ = 00, that have
absolutely continuous norm was examined by Edmunds, Lang and Nekvinda [101].
A Banach space X is uniformly convex if for every € > 0 there exists § > 0 such
thatif x, y € X, [x[lx = llyllx = 1 and [|x — yllx > €, then [|x + y[lxy <2—4.
Lukes, Pick and Pokorny [242] showed that the following are equivalent:

1. 1 < p- < py <o0;

2. LPO(Q) is reflexive;

3. LP9(Q) and L”'V)(S2) have absolutely continuous norms;
4. LPY)(Q) is uniformly convex.
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Earlier, the uniform convexity of L?¢)(2) was proved by Nakano [280] (when Q =
[0, 1], see also [245]), Diening [80] and also by Fan and Zhao [122]; the uniform
convexity of modular spaces was considered by Musielak [274]. In the same paper,
Lukes et al. characterized the exponents such that L?) () has the Radon-Nikodym
and Daugavet properties. Dinca and Matei [93, 94] have considered the Gateaux
derivative of the norm of L”®)(2) and have also considered uniform convexity and
the derivative of the norm for variable Sobolev spaces (see Chap. 6).

2.10.4 Alternative Definitions of the Modular

In the framework we have adopted there are several equivalent definitions of the
modular. One alternative is

Pl (f) = max ( /Q o T, ||f||Loo<szoo>) :

then ,o/p(,)( f) is equivalent to p,)(f) for all f, and the same results hold with
minor modifications of the proof. This definition was used by Edmunds and
Rakosnik [106].

Another, more interesting alternative was considered by Samko [313] and
developed systematically by Diening et al. [80, 82]. Modify the definition of the
modular )

PN = [ S @I dx 4 1 i

and use this to define the norm

1/ 15y = infid > 0l (F/3) < 11, (2.19)

If p+ < oo, then it is immediate that

(P) "' 05y () < ppy () < (p=) "' 05 (),

and it follows that || - ||, and || - ||;(,) are equivalent norms. However, it can be
shown that this is the case even when p; = oo.

One advantage of this definition is that Holder’s inequality follows with a
universal constant. Indeed, the proof of Theorem 2.26 can be modified to show that

/Q /g dx < 21715 g5 (2.20)

Furthermore, as Samko [313] pointed out, if in the definition of | - ||;(,) we
replace the constant 1 by 1/2 on the right-hand side of (2.19), then the constant
in (2.20) becomes 1. This phenomenon is exactly parallel to the behavior of the
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norm on Orlicz spaces and follows from the structure of the Luxemburg norm. See
Miranda [264] or Greco, Iwaniec and Moscariello [145].

2.10.5 Variable Lebesgue Spaces and Orlicz Spaces

In certain applications where p— = 1 and |Q2| < oo (see, for instance Sect.3.7.3
below) it is natural to ask if there is an embedding of L”")(R2) into the Zygmund
space L log L(€2): more precisely, when

I/l Logr@ < Clf Lrog)- (2.21)

These embeddings were first studied by Histd [163], and then in Futamura and
Mizuta [136], Mizuta, Ohno and Shimomura [266], and also in [59]. They hold if
p(-) satisfies a decay condition when p(-) is close to 1 in value. More precisely, let

loglog(1/s)

M= et /s)

If for all s > O sufficiently small,
[{x € Q: p(x) < A(s)}| = Ks,

then (2.21) holds.

Necessary and sufficient conditions for the embeddings between Orlicz spaces
and variable Lebesgue spaces can be gotten as special cases of a general theorem
for Orlicz-Musielak spaces. Given €2 and p(:) € P(£2), and given a Young function
® and the corresponding Orlicz space L*(Q), then L7V () C L®(R) if and only
if there exists K > 1 and 4 € L' () such that forall x € Q and ¢ > 0,

d(r) < K™ + h(x).

Conversely, L*(Q) c LPY(Q) if and only if there exists K > 1 and g € L'(Q)
such that
PN < Kd(1) + g(x).

This theorem is due to Ishii [182]; see also Hudzik [177], Kozek [220], or
Musielak [274]. This result was used by Diening [77] to prove Theorem 2.45.

2.10.6 More on Convergence

Theorem 2.69 shows that convergence in norm, modular and measure are equivalent
if py < oco. The relationship between these three kinds of convergence is more
complicated when p; = oco. As we showed in Proposition 2.56 and Theorem 2.66,
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convergence in norm always implies convergence in modular and convergence in
measure. Conversely, convergence in modular implies convergence in norm exactly
when p_ = oo or p4(2\ Qo) < o0 (Theorem 2.58), and the sequence of functions
constructed in Theorem 2.66 also shows that convergence in measure never implies
convergence in norm.

The relationship between convergence in modular and convergence in measure
is more complicated. The proof of Theorem 2.69 can be generalized to prove the
following results.

Theorem 2.84. Given Q2 and p(-) € P(2), for each M > 1 let
Ey ={xeQ\Quw:pkx)> M}

Then the following are equivalent:

1. For any sequence { f;,} € L?Y(Q) and f € LPY(Q), if fi — [ in modular,
then fi — f in measure and for every y > 0 sufficiently small, p(yfr) —
p(vf);

2. |Ey| = 0as M — oo.

Theorem 2.85. Given Q and p(-) € P(RQ) such that |Qe0| = 0, if f € LPO(Q)
and { fi} C LPY(Q) are such that f; — [ in measure and for some y, 0 <y < 1,

p(yf) < ooand p(yfi/3) = p(yf/3), then fy — f in modular.

For proofs and a complete discussion of the relationship between these three
notions of convergence, see [60].

Beyond the three types of convergence, we can also consider weak convergence.
A sequence { f,} C L?0(Q) converges weakly to f € L?0(Q) if for every ® €
LPO(Q)*, ®(f,) — ®(f). When py < 0o, by Theorem 2.80, we have that f; —
f weakly in LPO(Q) if for every g € L? (Q) = LPO(Q)*,

/ fe)g(x) dx — / Fg() dx.
Q Q

In the classical Lebesgue spaces, by the Radon-Riesz theorem, if 1 < p < oo,
Je — f weakly, and | fi|l, = || fllp, then fy — f in norm. This is also true in
the variable Lebesgue spaces.

Proposition 2.86. Given 2 and p(-) € P(R2) such that 1 < p_ < p4 < o0, if the
sequence { fy} C LPO(Q) converges weakly to f € LPO(RQ), and if I ficll ey —
I £l o), then fi — f in norm.

The proof is the same as in the classical case (see Hewitt and Stromberg [169]): it
follows from the fact that with these hypotheses, L?)(Q) is uniformly convex. (See
Sect.2.10.3.) For an example of the application of weak convergence in variable
Lebesgue spaces, see Zecca [352] (which generalizes [146]).
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2.10.7 Variable Sequence Spaces

The sequence spaces £7, 1 < p < oo, can be generalized to get a discrete version
of the variable Lebesgue spaces. Given a function p(-) : N — [1, 00), define £7()
to be the space of sequences « = {ay} such that

o [ lax )"
lloellgpr = inf A>O:Z(T) <1.5.

k=1

Arguing as above we can prove that £70) is Banach space. These spaces were first
considered by Orlicz [290] and Nakano [279] (see also [245]), and more recently
by Edmunds and Nekvinda [104] and by Nekvinda [281, 283]. Diening [80] treats
variable sequence spaces as a special case of the modular spaces, since the above
definition of the norm is gotten from the definition of the norm on L?®) if we replace
the underlying space by N and Lebesgue measure by counting measure.

Recently, Héstd has shown that the variable sequence spaces have applications
to the study of operators on variable Lebesgue spaces. See [165] and Sect. 5.6.6
below.



Chapter 3
The Hardy-Littlewood Maximal Operator

In this chapter we begin the study of harmonic analysis on variable Lebesgue
spaces. Our goal is to determine the behavior of some of the classical operators of
harmonic analysis—approximate identities, singular integrals, and Riesz potentials.
The foundation for this is the Hardy-Littlewood maximal operator, which is the
subject of Chaps. 3 and 4.

In this chapter we first lay out the basic properties of the maximal operator
and then prove the norm inequalities it satisfies on the classical Lebesgue spaces.
To prove these results we will use the Calderén-Zygmund decomposition, an
extremely versatile tool that has found countless applications, to prove the weak
type inequalities and then use Marcinkiewicz interpolation to prove the strong type
inequalities. We present this material in detail for two reasons. First, we will need to
use it to extend these results to variable Lebesgue spaces. Second, we want to draw
a contrast between the two settings: the proof in the variable case is significantly
different since we are unable to use interpolation.

We then turn to our main goal, which is to extend the classical results to the
variable Lebesgue spaces. Our central result, Theorem 3.16 below, shows that log-
Holder continuity is a sufficient condition for the maximal operator to be bounded
on LP®) In Chap. 4 we will consider the ways in which this condition can be relaxed.
We then examine pointwise and modular inequalities for the maximal operator.
Finally, given the importance of interpolation in the classical case, we conclude this
chapter with a digression: we consider interpolation on variable Lebesgue spaces
and use this to prove that the set of exponents for which the maximal operator is
bounded is convex.

3.1 Basic Properties

Given a locally integrable function f, the maximal function M f gives the largest
average value of f at each point. More precisely, we make the following definition.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 79
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3_3, © Springer Basel 2013
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Definition 3.1. Given a function f/ € L| (R"), then M f, the Hardy-Littlewood
maximal function of f, is defined for any x € R” by

MFe) = s ][ 1fO)]dy.

where the supremum is taken over all cubes Q C R” that contain x and whose sides
are parallel to the coordinate axes.

There are several variations of the maximal operator, all of which are equivalent
and are often used interchangeably. For example, the supremum could be taken over
cubes centered at x; this is referred to as the centered maximal operator and is
denoted by M €. Clearly, M€ f(x) < M f(x). On the other hand, given any cube Q
containing x, there exists a cube Q centered at x and containing Q such that |Q|
3"|Q|. Hence, M f(x) < 3"M*° f(x). Similarly, the supremum could be taken over
all cubes and not just those whose sides are parallel to the coordinate axes; again,
this definition is pointwise equivalent to Definition 3.1. In many applications, it
makes more sense to define the maximal operator by taking the supremum over all
balls that contain x, or even over balls centered at x. By much the same argument
as before these two operators are equivalent pointwise to one another. Further, given
any ball B there exist two cubes Q, Q», with the same center such that 0; C B C
0, and such that |Q,|/| Q| = n"/?; thus, the operators defined with centered balls
and centered cubes are pointwise equivalent as well. Though we will generally use
the maximal operator as given in Definition 3.1, we will occasionally use one of
these equivalent definitions below.

Also, in Definition 3.1 and these alternate definitions, we did not specify if the
cubes and balls were open or closed. Since the boundaries of both have measure
zero, we get the same average if we replace a ball or cube by its closure. We will
do this without comment; so, for instance, in Example 3.2 we will take our averages
over (open) balls such that x is contained on the boundary.

We can also consider the maximal operator for functions defined on some domain
Q2. There are two ways of doing this. First, given such a function, we extend it to a
function on R” by making it identically 0 on R” \ . Then to define the maximal
operator of f on 2, we would restrict the supremum to cubes Q such that |Q N[ >
0. On €2 this definition agrees with the one given above and is the approach we will
use. Alternatively, we could modify the definition by restricting the supremum to
cubes Q (or balls B) contained in €2, or even cubes that are compactly contained
in 2 (e.g., by assuming 2Q C €2). This is no longer equivalent to the maximal
operator defined above, but is dominated pointwise by it. In either case, therefore,
when we prove norm inequalities for the maximal operator it will suffice to assume
Q=R".

The maximal operator is very difficult to compute exactly for most functions, but
in certain cases it can be approximated easily. The following example and variations
of it occur repeatedly in practice.
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Example 3.2. InR", let f(x) = |x|7,0 <a < n. Then M f(x) ~ |x|™°.

Proof. This equivalence is easier to see if we define the maximal operator using the
supremum over balls containing the point. Fix a point x # 0; it is immediate that

|x|
MW = | |y|—ady=C(Tj [ rear = oo

By, (0) |x

We will now show the reverse inequality. Let B, (x() be any ball containing x. Since
f is radially decreasing, if r > |x|/4, then

][ Lf )] dy 5][ LfO)] dy
By (x0) B (0)

5][ 1f ) dy < 4"][ | FO5)ldy < Cln,a)|x|.
Byx1/4(0)

By, (0)
On the other hand, if r < |x|/4, then for every y € B,((1 — r/|x|)x),
Iyl = @ =r/lxDlx| —r = [x| =2r = |x]|/2.

Hence, f(y) < 2%|x|™, and so

f F ()] dy 5][ )] dy < 2]
By (x0) By ((1=r/lx])x)

The desired inequality now follows from the definition of the maximal operator. O

Proposition 3.3. The Hardy-Littlewood maximal operator has the following prop-
erties:

1. M is sublinear: M(f + g)(x) < M f(x) + Mg(x), and M is homogeneous:
foralla € R, M(af)(x) = |a|Mf(x).

2. Forall f,|f(x)| < Mf(x) almost everywhere.

JIffelL®R"), then Mf € L*(R") and |Mf |loo = ||.f || co-

4. If f(x) # 0on a set of positive measure, then on any bounded set 2 there exists
€ > 0 such that M f(x) > ¢, x € Q.

5. If f(x) # 0 on a set of positive measure, then M f ¢ L'(R").

Proof. Property (1) follows immediately from the definition. Property (2) follows
from the Lebesgue differentiation theorem (see Sect. 2.9): given any Lebesgue point
x of f,if we let Q,(x) be the cube of side length r centered at x, then

M=t | =1rwl
=00 ()
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Property (3) follows from Property (2) and the definition.
To prove Property (4): since f(x) # 0 on a set of positive measure, there exists
a cube Q centered at the origin such that

[ £ dy > 0.
Qo

Let Q be the smallest cube containing 2 and Q. Then for every x € Q,

Mfx) zfQ fldy = IQI‘I/

o

| f(»]dy =€>0.

Finally, to prove (5) let Qg be as above. For any x € R" \ Qg let O, be the cube
centered at 0 with £(Q,) = |2x/|. Then

Mi@ = f 17y = e

x ¢

|f()ldy & L'(R").

3.2 The Calderén-Zygmund Decomposition

In this section we state and prove the classical norm inequalities for the Hardy-
Littlewood maximal operator. The key idea is that while M f dominates f
pointwise, they still have comparable norms in L?, 1 < p < oo, and even for
f e L' the size of M f can be controlled.

Theorem 3.4. Given f € LP(R"), 1 < p < oo, for everyt > 0,

C
x e R Mf(x) > 1}] < t—;/ f@)I7 d. 3.1)
Rn
Further, if 1 < p < oo, then

IMfllLr@ny < Coll fllLr@ny- (3.2)

Remark 3.5. From the proof of Theorem 3.4 we have explicit values for the
constants: C; = 3"4"? and C, = [2p'12"]"/7.

Inequality (3.1) is referred to as a weak (p, p) inequality; when p = litisa
substitute for the fact that M is never bounded on L'(R"). We can rewrite it in
terms of L? norms: take the p-th root of both sides to get, for all # > 0,

tlxerearssnll, < CP1E . (3.3)
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For p > 1 the weak (p, p) inequality follows from the strong (p, p) inequality
(3.2), since by Chebyshev’s inequality we have that

ﬁ/‘mﬁWMﬂmﬁanus/‘Mfanm (>0,
]Rn R”

The original proof of Theorem 3.4 has two steps: first, prove the weak (1, 1)
inequality using the Vitali or Besicovitch covering lemma, and then prove the
strong (p, p) inequality using Marcinkiewicz interpolation. Calderén and Zygmund
developed a more complicated decomposition in terms of dyadic cubes: in essence
they showed that norm inequalities for the maximal operator follow from norm
inequalities for the dyadic maximal operator (defined as the supremum over dyadic
cubes). The advantage of their approach is its versatility; we will see this below
when we extend Theorem 3.4 to the variable Lebesgue spaces.

To state the Calderén-Zygmund decomposition we begin with a definition.

Definition 3.6. Let Q¢ = [0, 1)", and let A( be the set of all translates of Oy whose
vertices are on the lattice Z". More generally, for each k € Z, let QO = 2~k Qo =
[0,27%)" and let A be the set of all translates of Q) whose vertices are on the
lattice 277" . Define the set of dyadic cubes A by

A= UAk

The following properties of dyadic cubes are immediate consequences of the
definition.

Proposition 3.7.

1. Foreachk € 7, if Q € Ay, then £(Q) = 27,

2. Foreachx € R" and k € Z, there exists a unique cube Q € Ay suchthat x € Q.

3. Given any two cubes Q1, Q2 € A, either Q1N Q2 =0, Q1 C Oz, 0r 02 C Q1.

4. Foreachk € Z, if Q € Ay, then there exists a unique cube Q € Ak—1 such that
0 cC Q ( Q is referred to as the dyadic parent of Q.)

5. For each k € Z, if Q € Ay, then there exist 2" cubes P; € Ap4y such that
P, CO.

Given the dyadic cubes we define the associated maximal operator.

Definition 3.8. Given a function f € L/
M? by

1oc R™), define the dyadic maximal operator

Mww=wfmmw
i

Clearly, M? f(x) < M f(x). The reverse inequality does not hold pointwise: for
example, if f = y[0.1)», then for all x not in the first quadrant (i.e., x & [0, 00)"),
M f(x) = 0but M f(x) > 0. On the other hand, they are comparable in a weaker,
measure theoretic sense. This is the substance of the next two results.
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Lemma 3.9. If f € L. (R") is such thath | f)|dy — 0as|Q| — oo, then for

loc

each t > 0 there exists a (possibly empty) set of disjoint dyadic cubes {Q ;} such that

Eﬁ:{xeR“:Mdf(x)>t}=UQj
J

and

t <][ | f(x)|dx <2"t. (3.4)

Q;

Further, for almost every x € R" \ Uj O, 1 fx)| <t

Lemma 3.9 is referred to as the Calderén-Zygmund decomposition, and the cubes
{0} are referred to as the Calderén-Zygmund cubes of f at height 7.

Remark 3.10. The condition that fQ | f(¥)|dy — 0as|Q| — oo is satisfied if, for
example, f € L?(R"), 1 < p < oo, since by Holder’s inequality,

][Qlf(y)l dy < 10171 f L.

Remark 3.11. The weaker hypothesis that fQ | f(v)| dy is bounded as |Q| — oo
is equivalent to the property that M f(x) < oo almost everywhere. See [129] for
further information.

Proof of Lemma 3.9. Fix t > 0; if EZ is empty, then there are no dyadic cubes Q
such that fQ | f(»)|dy > t so we will let the collection {Q ;} be the empty set.

Otherwise, take x € E¢. By the definition of the dyadic maximal operator, there
exists Q € A suchthat x € Q and

][ FO)ldy > 1.
[¢)

Since fQ | f(»)| dy — 0 as the size of Q increases, if there is more than one dyadic
cube with this property, then there must be a largest such cube. Denote it by Q..
Since we can do this for every such x,

Ef c | 0. (3.5)

erﬂ

Conversely, given any other point x’ € Qy,

MY F() = ][ LFO)]dy > 1.

X

and so x” € EZ. Therefore, O, C E? and equality holds in (3.5).
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Since A is countable, the set {Q, : x € E;”} is at most countable. Re-index
this set as {0 ; }. The cubes Q; are pairwise disjoint; for if there exist two different
cubes that intersect, then by Proposition 3.7 one is contained in the other. However,
this contradicts the way in which these cubes were chosen since each was supposed
to be the largest such cube.

The left-hand inequality in (3.4) follows from our choice of the Q ;; furthermore,
since each Q; was chosen to be the largest cube containing a point x with this
property, if we let O ; be its dyadic parent,

’ z][Q f)dy = 2_"][@. f ()] dy.

Finally, for every x € R"\ E¢, M¢ f(x) < t. Therefore, for almost every such x,
by the Lebesgue differentiation theorem (see Sect.2.9),

<MYf(x) <t

= 1
[/l = lim
|00

][Qf(y)dy

O

Remark 3.12. As part of the proof of Lemma 3.9 we get that the O ; are the largest
dyadic cubes with the property that fQ | f(y)|dy > t, and any other dyadic cube
with this property is contained in one of the O ;. We refer to this property as the
maximality of the Calderén-Zygmund cubes.

Lemma 3.13. Let f € Ll (R") be such that fQ | fO)|dy — 0as |Q] — oc.

loc

Then for eacht > 0, if {Q;} is the set of Calderon-Zygmund cubes of f at height
t/4",

E ={xeR': Mf(x)>1}c| 30,
J

Proof. Fix x € E;; then there exists a cube Q containing x such that

][ fO)dy > 1.
(¢

Let k € Z be such that 27¥=! < £(Q) < 27%. Then Q intersects at most M < 2"
dyadic cubes in Ay; denote them by Py, ..., Py. Since £(P;) = 275 < 24(Q), we
have that

M M
‘ <][Q )l dy < |Q|*Z/Pi f 0l dy < zﬂzﬁi F )] dy.

i=1 i=1
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Therefore, there must exist at least one index i such that

t
d
; | f()ldy > M

t
> .
Z

In particular, P; C E{‘{/ 45 since it is a dyadic cube, by the maximality of the
Calder6én-Zygmund cubes, P; C Q; for some j. Further, P; and Q intersect, so
x € Q C 3P, C 3Q;. Since such a cube Q; exists for every x € E;, we get the

desired inclusion. O

Proof of Theorem 3.4. We will first prove inequality (3.1) and then prove (3.2) for
1 < p < oo. We have already shown that the maximal operator is bounded on
L°°: by Proposition 3.3 we have that |[Mf|lcc = ||flloo- Fix p, 1 < p < o0,
and f € L?(R"). For any ¢ > 0, by Lemma 3.9, there exist the disjoint Calderén-
Zygmund cubes {Q ;} of f at height/4". By Lemma 3.13 and Holder’s inequality
(when p > 1),

{x e R": Mf(x) >t} <

U3Qj
j

0o 00 4 )
< ;|3Qj| < 23"|Qj| (7][Q,~ If(x)ldx)

J=1

3n4np
tpP

o0 4np
< 23”|Qj|t—p][gj GOl dx <

j=1

/ f)I? dx.
5

Now fix p, 1 < p < oo, and f € L?(R"). For eacht > 0 we can decompose f
as fy + f|, where

fo = Frueriswpya f = Frxernisoiz-
Since || f{ loo < /2, we have by Proposition 3.3 that
Mf(x) = Mfi(x) + Mf(x) < Mfj(x) +1/2.

Given a function h € L?(R"),

WAl = p / P x € R - |h(x)| > 1)) (3.6)
0
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(See [238,305].) Therefore, by the weak (1, 1) inequality and Fubini’s theorem,
o0
Mf(x)? dx = p/ PH{x e R Mf(x) >t} dt
R” 0
o0
< p/ P N{x e R" : Mf{ (x) > t/2}| dt
0

o0
§2p-12”/ zP—Z/ | fi ()| dx dt
0 R”

o0
=2p-12"/ t”_z/ | f(x)|dx dt
0 {xeR:| £(x)|>1/2}
2| ()
=2p-12"/ |f(x)|/ tP2dt dx
R? 0

=2p- 12”/ | f(x)]” dx.

R .
In the proof of Theorem 3.4 the argument that the strong (p, p) inequality follows
from the weak (1, 1) inequality is a special case of the Marcinkiewicz interpolation
theorem. (For a precise statement of this result, see Sect. 3.7.8 below.) Rather than
apply Marcinkiewicz interpolation we have worked out the details since this is a key
part of the classical proof that does not generalize to the variable Lebesgue spaces.
The proof breaks down in our use of (3.6). This inequality holds in the classical
Lebesgue spaces because they are rearrangement invariant. Given a set 2 and

measurable function f on €2, the distribution function of f is defined by

pr(t) =[x € Q:[f(x)] >},

Two functions f and g are said to be equimeasurable if for every ¢ > 0, u /() =
Mg(t). We say that LP(£2) is rearrangement invariant because given any two
equimeasurable functions f, g € L?(Q), | f|l, = llgllp- Indeed, this follows at
once from (3.6). However, this is not the case in a variable Lebesgue space as the
next example shows.

Example 3.14. Given 2 and p(-) € P(2), assume p(-) is non-constant. Then there
exist two equimeasurable functions f, g such that g € L?O(Q) but f & LP0)(Q).

Proof. We consider two cases. First, suppose that p(-) is non-constant on Q \ Q.
Then there exist values py < p; < oo such that the sets

E={xeQ\Qo:plx) <pop. F={xeQ\Qw:px)>pi}
have positive measure. Form two sequences {Ey}, { Fi} of pairwise disjoint sets

such that £y C E, F, C F, and foreach k > 1, |Ex| = |Fi| < oo. Define the
functions
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)= kT BT POy (),
k=1

o0
gx) =Y kTP F TPy ().
k=1

Then f and g are equimeasurable. Moreover,

o 0
o(g) = f =P/ po gy < k—pi/po 0.

s0 g € LPY(Q). On the other hand, for any A > 1,
o0 o0
o(f/1) = ][ J— P&/ po ) —p(x) gy > k™A = oo,

so f & LPO(Q).

Now suppose that p(-) is constant on 2\ Q24 and || > 0. We can immediately
adapt the above argument. Fix py > p4+(Q2 \ Qu); define E as before and let
F = Q. Then given f, g as above, [|g|l1r0@) = |€llLeo(@e) = 1 while we
again have f ¢ L?0(Q).

O

3.3 The Maximal Operator on Variable Lebesgue Spaces

We now turn to the central topic of this chapter: the behavior of the maximal operator
on variable Lebesgue spaces. We can immediately show that the maximal operator
is well-defined.

Proposition 3.15. Given any p(-) € LPOR"), if f € LPO(R"), then M f is well
defined and M f(x) < oo almost everywhere.

Proof. By Proposition 2.41 f is locally integrable, so M f is well-defined. By
Theorem 2.51 we can write f = f; + f, where fi € L+ and f, € LP-.
Then Mf < M fi + M f,, and by Theorem 3.4 the right-hand side is finite almost
everywhere. O

We can, however, say a great deal more if we assume that the exponent p(-)
has a certain amount of regularity. Recall the definition of log-Ho6lder continuity
(Definition 2.2): given a set 2 C R” and a function r(-) : 2 — R, we say that
r(-) € LHy(S2) if there exists a constant Cy such that forall x, y € @, |[x—y| < 1/2,
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Co

|I'(X) —V(Y)| = m

We say that r(-) € LHx(S2) if there exist constants Co, and ro such that for all
x € Q,

Coo
rX) —reo| < ——— .
e CPR
Finally, we define LH(2) = LHy(2) N LHoo(S2).
Using this definition we can state the main result of this chapter.

Theorem 3.16. Given a set Q and p(-) € P(R), if 1/p(-) € LH(R2), then

e xxemreo=eillLro@) < ClILS lro@)- (3.7)

If in addition p_ > 1, then

IMf o) = ClILf lLro@)- (3.8)

In both inequalities the constant depends on the dimension n, the log-Holder
constants of 1/ p(+), p—, and peo (if this value is finite).

Remark 3.17. If p+ < oo, then by Proposition 2.3 the hypothesis 1/ p(-) € LH(2)
is equivalent to assuming p(-) € LH ().

As we noted in Sect.2.1, if Q is bounded, then 1/p(:) is automatically in
LHx(S2) with a constant that depends on ||1/p(-)|lco0, the diameter of 2 and its
distance from the origin. Thus in this case it suffices to assume 1/p(-) € LHy(S2)
to conclude that the maximal operator is bounded. However, a close examination of
the proof of Theorem 3.16 (see especially the estimate for the set where | f| < 1,
p. 104) shows that we can sharpen the constant, and we record this as a separate
result.

Corollary 3.18. Given a bounded set 2 and p(-) € P(R), if 1/p(-) € LHy(R2),
then (3.7) holds. If p— > 1, then (3.8) holds. The constants depend onn, p_, p4,
and |L2|.

We will prove Theorem 3.16 and Corollary 3.18 in Sect. 3.4 below. Here we
examine more closely the statement and hypotheses. First note that by Chebyshev’s
inequality, we have that for all # > 0, [t xgemrsilloro@ = IMflLro@)s
therefore, inequality (3.7) is of importance primarily when p_ = 1.

In the classical case the maximal operator is bounded on L? for both p finite and
p = 00, s0 it is reasonable that Theorem 3.16 includes the case p = co. However,
as we shall see, the proof has many technical details that can be eliminated if we
restrict to the special case p; < oo. At the other end of the scale of Lebesgue
spaces, by Proposition 3.3 the maximal operator is not bounded on L', so the
restriction p_— > 1 makes sense for (3.8) to hold, and (3.7) is the appropriate



90 3 The Hardy-Littlewood Maximal Operator

replacement when p_ = 1, similar to the weak (1, 1) inequality. Indeed, if p(x) =1
on some open ball B = B, (xy), then (3.8) cannot hold. For in this case define

_ xB(x) 1 i
S = P log(x —xap? < & B
then for x € B,
Mf(x) ~ 15(%) ¢ L'(B).

|x = xo["[log(|x — xo[)]

Originally, we conjectured that if p(x) > 1 everywhere and is “far” from 1
except on a small set (for example, if 2 = (0,1/2) and p(x) = 1 + |log(x)|™"),
then the maximal operator could be bounded on L?0 . However, this is never the
case.

Theorem 3.19. Given p(-) € P(R"), if p— = 1, then the maximal operator is not
bounded on LPO (R").

Remark 3.20. Though the maximal operator is not bounded when p_ = 1, there
are weaker results related to the so-called variable L log L spaces. See Sect.3.7.3
below.

Proof. To show that the maximal operator is not bounded, we will construct a
sequence of functions { fi} such that for all k, fi € LPO(R") and |M fi| ) >
c(m)(k + D fell p¢)- For each k > 1, choose s such that

1 -1
1< < - — .
Sk n(n k+1)

Since p— = 1, for each k the set
Ep ={x: p(x) < st}

has positive measure. If we apply the Lebesgue differentiation theorem (see
Sect.2.9) to the function y g, , then there exists a point x; € Ej such that

By (k) N Ex|
lim ———————— =1
r—0t | Br(x)|

In particular, there exists Rx, 0 < Ry < 1, such thatif 0 < r < Ry, then

| Br(xr) N Eg|

> 1 —7nk+D), 3.9
1B, (x0)] G2
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Let By = Bp, (xx) and define

4L
Je¥) = |x = x| 7T g, (%),

To show that f; € L) (R"), note that since Ry < 1 and —n + 4 <0,

_ 1 _ 1
(i) = / e — g | ()P0 g < / v — xR g < oo
BirNEk BrNEy

To estimate the norm of M f;, we will use the equivalent definition of the
maximal operator and consider averages over balls. Fix x € By N Ej; and let
r = |x — xx| < Rg. Then

Mfi(x) > ly — x| "TE dy.

| B (x1)] By (x;)NEg

Let 8 = 2~ *+D: then
Ky 8kr < |y — x| <r}l = (1 —27"CD)[B,(xp)].

Therefore, since |x — xi |_”+ﬁ is radially decreasing and since by (3.9) | B, (xx) N
Er| = (1 —27"*+D)| B.(x¢)|, we have that

L
M fi(x) = |y — x| 7" dy

| B (xi)| J B, (x)nE;

> c(m)r™ / |y — x| T dy
pr<ly—xi|<r}

1
= c(n)(k + D)(1 = 57 )|x — x|
> c(n)(k + 1) fi(x).
Trivially, this inequality also holds if x & By N Ej; hence, we have shown that
M fill pey = c(n)(k + )|l fxll p¢)» and this completes the proof. O

The assumption that 1/p(-) € LHy(S2) is a very weak regularity condition.
But the following simple counter-example shows that some kind of regularity
assumption is needed.

Example 3.21. Let 2 = R and define

2 x<0

p(x) =
3 x>0.

Then the strong and weak type inequalities do not hold in L7 (R).
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Proof. Let f(x) = |x|72Sxc10)(x). Since |x|™*Sy10 € L'(R), so by
Proposition 2.12, f € L?Y(R). On the other hand, M f ¢ LPO(R):if 0 < x < 1,
then

o 1

M@ = oo [ 1oldy = o [y ay = 2 ¢ Loy

hence, p(M f) = oo, so again by Proposition 2.12, M f ¢ L?")(Q). Further, from
this inequality we get that for any ¢ > 0,

5/2
Blx eR: Mf(x) >t} >13 (%) :

therefore, by Corollary 2.23,

5/6
1/3 5
It X gentrco=a3llpey = P(ExGempo=) T~ =t (6) _

Since the right-hand side is unbounded as ¢t — oo, (3.7) does not hold. O

Remark 3.22. The values 2 and 3 play no essential role in the construction and can
be replaced by any p; # p». Further, a straightforward modification shows that we
can take, for instance, p, = oo.

The L Hy can be viewed as a regularity condition at infinity. The need for some
control at infinity is shown by the next example.

Example 3.23. Let p(x) = 3 + sin(x). Then the strong and weak type inequalities
do not hold on L?)(R).

Proof. For each k > 1, define the sets

T 3 S5 I
Ay = | — 4+ 2km, — + 2k B, =|— +2kn, — +2knm|.
k [4+ JT,4+ JT:|, k [4+ JT,4+ 71:|

Ifweleta = 34 +/2/2and b = 3 — +/2/2, then if x € A, p(x) > a and if
X € By, p(x) < b. Define the function

) =" 1x17 Py, ().
k=1

Since a/3 > 1,

o

o0
P =Y [ Pars [ P ar < oo,
k=14 ﬂ

/4+2m
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so by Proposition 2.12, f € L?®)(R). On the other hand, for x € [2km,2(k + 1)7],

2k+1)7

Mf) =z o / £ dy = elx| 7, (3.10)

2k

Therefore, since b/3 < 1,
o0
pMf) = Y e [ a7
k=1 B

00 . —b/3
ch |x|_b/3deCZ(T+2k7t) = 00,
k=1 Y B k=1

and so again by Proposition 2.12, M f ¢ L?O(R).
To see that the weak type inequality does not hold, let tx = ¢(2(k + 1)7)~'/3,
where c is the constant from (3.10). Then

k
P X M f(x)>13) = Z/ f]f(X) dx
j=1"7J

= Zk: |B;|[ck + Dm)™ ] = ck(k + 1),

j=1
Since b/3 < 1, we have that as k — oo,

Itk X x:mfo>u3 | pey = 00
O
Finally, we note that the LH, and L H, conditions are not necessary, but are
sharp in the sense that no pointwise condition that decays more slowly to O suffices
to guarantee that the maximal operator is bounded. See Examples 4.1 and 4.43
below.

3.4 The Proof of Theorem 3.16

We begin this section with a general discussion on proving norm inequalities in
variable Lebesgue spaces; these remarks summarize our overall approach in the
proof and are applicable to other operators as well. We then prove five lemmas. The
first gives a geometric characterization of the L H, condition. The next two allow us
to apply the L H, condition. As will be clear from their use in the proof, we use the
L Hj condition where the function f is large, and the L Ho, condition where f is
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small. The last two lemmas allow us to apply the Calderén-Zygmund decomposition
in the variable Lebesgue spaces.

After these preliminaries we prove the strong type inequality (3.8). We do this
in two different ways: we first give a proof assuming that p4 < oo, so that we
may simply assume that p(-) € LH; we then prove it in full generality. We give
two different proofs for both pedagogic and historical reasons. First, the proof when
p+ = oo has many technical details that obscure the main ideas of the proof. We
believe that the reader will have a better understanding of the proof by first seeing
the special case. Second, the proof when p; < oo uses a technique that played an
important role in the original proofs of this result and which we believe is still of
independent interest. On the other hand, the proof when py = oo let us weaken
our hypotheses; we will explore this in detail in Chap. 4. Finally, we prove the weak
type inequality (3.7). Since the proof is very similar to but easier than the proof of
the strong type inequality, we only describe the key details.

Proving Norm Inequalities

In the classical Lebesgue spaces, proving that the maximal operator is bounded on
L7 (L2) is equivalent to showing the modular inequality

/ Mf(x) dx < C / £ @)I? dx.
Q Q

By Theorem 3.31 below, however, the modular inequality is never true in variable
Lebesgue spaces. Therefore, we need to work directly with the norm inequality

IMfllLro@) < CIS N Lrog):-

Since the maximal operator is homogeneous—that is, M (cf)(x) = |a|M f(x)—
it is enough to prove this assuming that || f'||.»@) = 1, (which by Corollary 2.22
implies that p( f) < 1). In turn, by the definition of the norm, it will suffice to show
that there exists A > 0 such that p(M f/1) < 1, since this implies that

IMfllro@) <A =ASlLro@)-

In the particular case that p4 < oo, by Proposition 2.14,

M p(x)
p(MfM)z/Q( ];(x)) dx <1

if and only if there exists C > 0 such that

/ Mf(x)P™ dx < C.
Q
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Therefore, though the proofs are formally the same, in the case p4 < oo they are
generally less complicated since we do not have to establish a priori the exact value
of the constant A.
A similar approach is used to prove the weak type inequalities
||tX{x:Q:Mf(x)>t}”LP(')(Q) = ”f ”LP(')(Q) :

we will show that there exists A > 0 such that

t 17()()
— dx < 1.
/{x:Mf(x)>t} (A)

For both the strong and weak type inequalities we will use both the Calderdn-
Zygmund decomposition and the norm inequalities on the classical Lebesgue
spaces. This is a key difference between the proof of the classical theorem and
the proof for the variable Lebesgue spaces: we are unable to use the weak type
inequalities to prove the strong type inequalities by interpolation.

Five Lemmas

Our first lemma characterizes the L H, condition.

Lemma 3.24. Given r(-) : R" — [0, 00) such that r+ < oo, the following are
equivalent:

1. r(-) € LHy(R"),
2. There exists a constant C depending on n such that given any cube Q and x € Q,

|Q|r(X)—r+(Q) <C and |Q|L(Q)—I'(X) < C.

Proof. Suppose r(-) € LHy(R"). We will prove the first inequality in (2); the proof
of the second is identical. Fix Q; without loss of generality we may assume Q is
closed. If £(Q) > (2+4/n)"}, then

|Q|r(x)—r+(Q) < (Zﬁ)n(r+_r7) = C(n,r())
If£(Q) < (24/n) !, thenforall y € Q, |x — y| < /nl(Q) < 1/2.In particular,

since r(+) is continuous, there exists y € Q such that r(y) = r4(Q). Therefore, by
this estimate and the definition of L Hy,

QPO THO) < (41125 — y[) OO

~ oy [ Collog' ) ~ og(lx — yD))
=P “Tog(x — y])

) =Cn,r().
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Now suppose that (2) holds. Fix x, y € R”" such that |x — y| < 1/2; then
there exists a cube Q such that x, y € Q and £(Q) < |x — y| (and so |Q| < 1).
Combining the two inequalities in (2) we have that

C > |Q|L(Q)—"+(Q) > |Q|—|l‘(X)—l‘(y)\

> |x — y IO Ol = exp (= n|r(x) — r(y)|log(]x — y|)).

If we take the logarithm we get that
r() —rl = —————.

—log(|x — y[)

where C does not depend on x, y. Hence r(-) € LHy(R"). O

Remark 3.25. Lemma 3.24 is true (with different constants) if we replace cubes by
balls. Details are left to the reader.

The second lemma lets us use the L Hs, condition to replace a variable exponent
with a constant one, and vice versa. We will use this in the proof when p < oo.

Lemma 3.26. Let r(-) : R" — [0,00) be such that r(-) € LHx(R") and 0 <
Foo < 00, and let R(x) = (e + |x|)™, N > n/r_. Then there exists a constant
C depending on n, N and the L H, constant of r () such that given any set E and
any function F with0 < F(y) < 1fory € E,

/ FY©dy <C / Fyy= dy + / RO~ dy. 3.11)
E E E

/ F(yy=dy <C / FOY©O dy + / RO~ dy. (3.12)
E E E

Proof. We will prove (3.11); the proof of the second inequality is essentially the
same. Write the set £ as £y U E;, where E; = {x € E : F(y) < R(y)} and
E,={x e E:R(y) < F(y)} Then

/E FOY©dy < [ royvay = [ roY-ay.

E1 El

On the other hand, by the L H, condition,

R(y)7Ir=reel = exp (N log(e + [y])|r(y) — rool) < exp(NCoo).  (3.13)
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Hence, since F(y) <1,

/E FOY® dy < / F(yy™ F(y)re—resl gy
2

E>

< /E FOY™=R() 07l dy < exp(NCoo) /E FoY™ dy.
2 2
O

Remark 3.27. The assumption that N > n/r_ is only included to insure that the
last integral in (3.11) and (3.12) is finite. If | E'| < oo, then we can take any N > 0.

The third lemma is a variation of the embedding theorems proved in Sect.2.5.
It does not directly involve the LHy,, but we will use it in conjunction with
Proposition 2.43 which does use this condition. This result replaces Lemma 3.26
when p+ = oo.

Lemma 3.28. Given Q and t(), u(-) € P(R), suppose t(x) < u(x) almost
everywhere. Suppose g € L'(Q) and |g(x)| < 1 almost everywhere; then
g € L*O(R). Moreover, if | glli¢) < 1, then ||gllu¢y < 1+Igllicy, and if llgllecy = 1,
then || g|lu¢) = 2[Igll:()-

Proof. Fix g € L'V(Q), |g(x)| < 1, and suppose first that ||g[|;; < 1. Then by
Corollary 2.22, p;¢(g) < ||g|l+¢)- Then, since 92‘3 C Qgg),

— u(x)
pio@) = [ 181 dx + gl

< [ IOl dx 1= o) + 1 = gl + 1.
o\
Hence, by the convexity of the modular (Proposition 2.7), pu)(g/(llgll:)+1)) < 1,
and 50 [[gluc) < llgllicy + 1.

Now suppose | gll;() > 1. Leth = g/|gll:). Then |A(x)| < 1 and ||k, = 1.
Therefore, by what we have shown, |||, < ||hll;) + 1 = 2, and the desired
inequality follows at once. O

The next two lemmas let us apply the Calder6n-Zygmund decomposition in
variable Lebesgue spaces. If p; < 0o, then we can apply the decomposition directly
to any function in L7 (R").

Lemma 3.29. Given p(-) € P(R"), suppose p+ < oo. Then forall f € LV (R"),
fQ | f()]dy = 0as |Q| — oo. In particular, the conclusion of Lemma 3.9 holds.

Proof. Fix f € LPY(R"); by Theorem 2.51 we have that f = f; + f», where
fi € LPH(R") and f, € LP—(R"). Since p4+ < oo, by Remark 3.10, as |Q| — oo,

][Qf(x)dx=][Qf1(x)dx+][Qf2(x)dx—>0.
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The conclusion of Lemma 3.29 need not be true if p; = oo. For example, let
p(x) = oo orlet p(x) = 1+ |x|. In either case 1/p(-) € LHx, and so by
Proposition 2.43, 1 € L?O(R"). On the other hand, for all cubes Q, fQ ldy = 1.
However, we can always apply the Calderén-Zygmund decomposition to bounded
functions of compact support. Even though such functions need not be dense (see
Theorem 2.75) the following lemma lets us reduce to this case by an approximation
argument.

Lemma 3.30. Given a non-negative function f € L (R"), if the sequence { fi}

is such that fr(x) < f(x) and { fr.(x)} increases to f(x) for almost every x, then
{M fr(x)} increases to M f(x).

Proof. Since fi < f, Mfr < Mf as well. Since { f} is an increasing sequence,
so is { M fi }. Therefore, it will suffice to prove that for almost every x,

Mf(x) = lim M fi(x).

Fix x such that M f(x) < oco. Then for every € > 0, there exists a cube Q containing
x such that

Mf) < (1 +e>][Q £() dy.

Hence, by the monotone convergence theorem on classical Lebesgue spaces,
Mf(x) =1+ 6)][ f(y)dy = (1+¢€) lim ][ fe()dy = (1+¢€) lim Mfi(x).
0 k—>00 0 k—o00

Since € > 0 is arbitrary, we get the desired inequality. A similar argument holds if
x is such that M f(x) = oo. O

Proof of Inequality (3.8): The Case p+ < oo

We begin the proof by making four reductions. First, we may assume that Q = R”".
For if this case is true, given p(-) € LH(2) by Lemma 2.4 we can extend it to an
exponent function in L H(R"). Further, given any f € L?0(Q), we may assume
that f = 0 outside of Q2. Thus

IMfllro@) < IMfllro@y < CIf lero@ny = CILf lLro@)-

Second, since Mf = M(|f|), we may assume that f is non-negative. Third, by
homogeneity we may assume that || || ,; = 1. Then by Corollary 2.22,

o(f) = /R f@Mdx <1,

Finally, since p;+ < oo, by Proposition 2.3 we have that our hypothesis 1/p(:) €
LH(R") is equivalent to p(-) € LH(R").
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Decompose f as fi + f>, where

f1= e rms1 fo= e rm=<ty

then p(f;) < || fillpy < 1. Further, since Mf < Mf; + M f>, it will suffice to
show, fori = 1,2, that | M f;| o) < C(n, p(-)); since p4 < oo, as we pointed out
above it will in turn suffice to show that

MMf)zA;Mﬁmedxfc

The estimate for f1 Let A = 4", and for each k € Z let
Qr = {x e R" : Mfi(x) > A}

Since f; € LPY(R"), by Proposition 3.15, M fi(x) < oo almost everywhere;
similarly, without loss of generality we may assume f; is non-zero on a set of
positive measure, and so by Proposition 3.3, M f(x) > 0 for all x. Therefore, up to
a set of measure 0, R" = (J, Q¢ \ Qk+1. Further, by Lemma 3.29 for each k we
can apply Lemma 3.9 to form the Calderén-Zygmund decomposition of f at height
AF=1: pairwise disjoint cubes {Qlj‘-} ; such that

Q| J30% and ][ fi(y)dy > A
j 9]
From the second we get that
][ A)dy > 374
30k

For each k, define the sets Ej‘ inductively: E{‘ = (Q \ Qks1) N 30K, Eé‘ =
(R \ Qus1) N 305\ EX, EX = (@4 \ Q1) N 304) \ (EX U EX), etc. Then
the sets Ef are pairwise disjoint for all j and k and Q4 \ Q41 = Uj Ef

We now estimate as follows:

LMMWWW:;L Mfi (0P dx

K\Qk+1

< [AF 1P dx
Zk: /Qk\9k+1

p(x)
< A3y '/ f Aydy| .
§3w(wﬁ
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To estimate the last sum, note that since fi(x) = 0 or fi(x) > 1 almost
everywhere, if welet pjx = p_ (3Q];.),

/ APk dy < / AOYD dy < 1. (3.14)
304 304

Further, since p(-) € LHy(R") and p4+ < oo, by Lemma 3.24 there exists a constant
C depending on p(-) and n such that for x € 3Q]]‘-,

|3Q1;'|_p(X) < C|3Q];|_pjk- (315)

Therefore, since for x € Ej‘ C 30%, p(x) = pjx = p—, by (3.14), (3.15) and
Holder’s inequality with exponent px/p—,

p(x)
Z/k(][kfl(y)dy) dx
Ky B \39;
p(x)
= [ potrr (/ fl(y)””/l’fkdy) dx
I o)

Pjk
scy [ poi ( [ Ay dy) dx
kj U 9;

Pjk
C rW/pjk g d
< ;/Eﬁ (]Eq AK) y) x
p7
C r/r— g d
< §L§<3Q§ﬁ(y) y) x
=CX [ MGAOM )@ dx
kj YEj

<c / M(i()PO!7=)(x)P- dx.
Rl’l

Since p— > 1, by Theorem 3.4 the maximal operator is bounded on L7~ (R").
Hence,

/ MO (OPP-) ()P dx < € / AP dx < C.
R» R?

If we combine the above inequalities we get the desired result.



3.4 The Proof of Theorem 3.16 101

The estimate for f> Since 0 < f>(x) < 1, we also have that 0 < M f5(x) < 1.
Since p— > 1, if we let R(x) = (e + |x|)™", then by inequality (3.11),

M fr(x)PW) dx < c/ M fr(x)P> dx +/ R(x)P~ dx.
Rn Rn n

The second integral is a constant independent of f. To bound the first integral, since
Poo = p— > 1, by Theorem 3.4 and (3.12),

M fr(x)P> dx < C/ fa(x)P>=dx
Rl’l RI'I

<C | f(x)Pdx+ c/ R(x)P~dx < C.
Rn Rn

Combining these inequalities we get the desired estimate for f,. This completes the
proof.

Proof of Inequality (3.8): The General Case

The proof when p4 = oo is similar to the proof when p; < oo: we again write
f = fi + f> and estimate each piece separately. The estimate for f; is similar but
more complicated because we need to deal with the fact that the exponent function
p(-) is unbounded and may in fact be infinite on a set of positive measure. The
estimate for f, is different. It is possible to adapt the argument above, but doing
so requires dividing f, into two pieces supported on Qs and R” \ Q4, and the
estimate for each of these pieces then depends on whether po, = 00 or poo < 0.
We therefore take a different approach using Proposition 2.43. In those places where
the argument is the same or similar, we will refer to the above proof for details.

As in the proof when p; < oo, we may assume without loss of generality that
f is non-negative and || f'|| ,) = 1. However, we can no longer apply Lemma 3.29
since p4+ = oo. Instead, it will suffice to prove the desired inequality for functions
that are bounded and have compact support. For if this case is true, given an
arbitrary non-negative f, let f; (x) = min(f(x), k) x5, 0)(x). Then the sequence
{ fi} increases pointwise to f and by Lemma 3.30, M f; increases pointwise to
M f. Therefore, by Fatou’s lemma for variable Lebesgue spaces (Theorem 2.61),

1M f N py = Uminf [ M fell o) = € Iminf | fillp) < ClLf llpeo-
—00 k—00
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Fix such a function f. Then by Corollary 2.22,
p(f) = / \2 )P dx + || f oo (o) < 1.
R\ Qoo

Decompose f as fi + f>, where

Si = Fxeereo=13s fo= Fxeerm=<iy-

Then up to a set of measure zero, supp(f1) C R" \ Qoo and p(f;) < || fillpy < 1.
As before, it will suffice to show that fori = 1, 2, ||[M fi||,) < C.Fori =1 we
will find a constant A; = A (n, p(-)) > 0 such that

p(Mfi/A1) < 1.

When i = 2 we will show directly that | M f>| ) < C.

The estimate for f; Let Al_l = o B1Y1; the specific values of these constants will
be fixed below. Then

pler iy MA) = / B AMACO dx B M Al
Rn co
(3.16)

We will show that each term on the right is bounded by 1/2. To estimate the first,
we use the same decomposition argument as before. Let A = 4" and define

Qr = {x e R"\ Qo : Mfi(x) > A

Since f; is bounded, M fi(x) < oo everywhere; as before we may assume without
loss of generality that M fi(x) > 0. Hence, R" \ Qoo = U, Q& \ Qi41. Since
J1 also has compact support, by Lemma 3.9 for each k there exists a collection of
disjoint cubes {Q’J‘} ; such that

acJsob wa 3 fmvdr=f Aordy >4
j 30) 0}

Form the sets E f that are pairwise disjoint for all j and k and are such that Qj \
Qi1 =U; Ef. Letay = A7237" and pjr = p-(30Q%); since [30% N Q| > 0,
Pjk < oo. Then by Holder’s inequality,



3.4 The Proof of Theorem 3.16 103

[ epmmaer s
R\ Qoo

- ; /Q o B MA@ dx

< Z/Q [o1 By AFPD dx
k

K\ k41

p(x)
d d
< kZ,:/E'f (51)’1]{@ fi(y) J’) X
P—/Pjk \ P(X)
pjkl =g dx. 3.17
E;/E (ﬁm (ﬁgﬁfl(y) y) ) ERNERTS

Let r(-) = 1/p(-); then r(-) € LHy(R"), r+ < 1, and r+(3Q’;) = 1/pjk.
Therefore, by Lemma 3.24 we can choose 8; < 1 such that

Bi |3Q1]§|—p—/ﬁjk < |3Q1]§|—P7/P(X)‘

Further, since fi(x) = 0or fi(x) > 1, and supp(f1) C R" \ Qoo

/ AP dy < / AP dy < p(fi) < 1.
30k 30k

Therefore, since x € Ef C 30K p(x) > p ik» and assuming for the moment that
7 <1,

P—/Pjk \ P(x)
>/ k(ﬂm (][ kfl(y)f’fk“’—dy) ) dx
kj Ej 30;
P(X)p—/Pjk
= [ ot (yl | Ay dy) dx
kj UES 30;
p7
< 1304 7- (yl / ﬁ(y)P<y>/P—dy) dx
kZ/ ' 0

= [ ot MG ax
k) Y E

< / yP~ M(fi ()PP (x)P- dx.
Rl’l
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Since p— > 1, by Theorem 3.4 we can choose y; < 1 such that

- 20/ p— — <l ) <l
[ o dr s [ ey s

oo

This gives us the desired estimate for the first term in (3.16).

We will now show that o1 81 y1 || M fi]| Lo (@ee) < 1/2. Since a; < 1/4, it will
suffice to show (after possibly making f;, y; smaller than the values chosen above)
that

BivilIM fill Lo (oo = 2. (3.18)

Fix x € Q. Since supp(f;) C R" \ Qo, when computing M f;(x) we can
restrict ourselves to cubes Q containing x such that |Q NQ2\ Q| > 0. In particular,
there exists such a cube that satisfies

Mfi(x) <2 . Si(y)dy.

Fix r, p_(Q) < r < oo; since 1/p(-) is continuous, there exists a point x, €
0 \ Qo such that p(x,) = r. We claim that there exist 81, y; independent of r
such that

p(xr) 1
(ﬂm][g ﬁ(y)dy) 5][Qf1(y)"(y’ dy < ol

The second inequality is immediate since p(f;) < 1. To prove the first, repeat the
argument above, beginning with the estimate of the integral in (3.17) and replacing
p—with 1, 3Q’; with Q, and p;; with p_(Q). This yields the desired inequality for
B1, y1 > 0 sufficiently small but not depending on our choice of r. Therefore, we
have that

ﬁm][g Ady- 101V <1.

Since this is true for all r large, we can take the limit as r — oo to get

BiyiMfi(x) < 2/31%][{2 Ay <2.

Since this estimate holds for almost all x, we have proved inequality (3.18). This
completes the estimate for fj.

The estimate for f> Define the sets
E={xeR":p(x) = poo}, F={x€eR":p(x) < poo}.
Then

IMfallpey = IMfaxellpe) + IMbxEllpe = IM Ao + 1M Lo F)-
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We will show that each term on the right-hand side is bounded by a constant
independent of f>. To estimate || M f2| . »¢(g), note first that since 0 < fr(x) < 1,
by Proposition 3.3, M f,(x) < 1. Furthermore, since f, is bounded and has compact
support, fo € LP>(R"); since poo > 1, by Theorem 3.4, Mf, € LP>(R").
If |Mfsllpreory < 1, then by Lemma 3.28 with ¢ = Mf, 1() = po and
u() = p(),
1Ml ooy ey < M fallLroog) +1 < 2.
On the other hand, if | M f5 || roo (£) > 1, then by Lemma 3.28 and Theorem 3.4,

IM P2l ooy < 20M fallLree () < 2 M f2 | Lroo mr)
< Cll fallzros @y < C(Il fallLroo ey + Il follLroo (r))-

We first estimate the norm of f> on E. By the definition of E, we can define the
defect exponent r(-) € P(E) by

1 1 1

FRRTrS T

Therefore, by the generalized Holder’s inequality (Corollary 2.28),

I 2llLroo () < KNI Lrov gyl L2l Lo i)

= KltlzromlLllro@) < Kl zroe)-

Since 1/p(-) € LHx(E), r(-) — o0 as |x| — oo, and 1/r(-) € LHx(E).
Therefore, by Proposition 2.43, 1 € L’(')(E) and this bound is finite and
independent of f,.

To estimate the norm of f> on F, we apply Lemma 3.28 with g = f, € LPV)(F),

1() = p() and u() = poos since || 2]l ooy (ry = 1 f2ll oo ey < 1, we get that
I A2llLroe(ry < 12l Lroriry +1 < 2.
Combining the above estimates we see that
IM foll sy < C (KNI Lroriy + 2) < o0
The estimate for || M f2| ;»)(f) is very similar. Define the defect exponent s(-) €

P(F) by ' | |

—=—+ .
p(X) P S(X)
Then by the generalized Holder’s inequality,

IM LNl Lrorry < KNI ooy () 1M f2ll Lroo £y,
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and again by Proposition 2.43, |[1| s (ry < oo. Further, we can now argue as we
did above to get

| M f2llLroo (Fy < 1M follLroo ey < C || f2llLroo ey
< C(Ifalroe ey + Il fallLroo(ry) < € < o0

This yields the desired estimate for || M f3[|»¢)(r) and the proof is complete.

Proof of the Weak Type Inequality

The proof of inequality (3.7) is nearly identical to the proof of the strong type
inequality given in the previous section, so here we will only give the principal
details and will refer back for those parts of the proof that remain essentially the
same.

We begin by making the same reductions as before and writing f = f; + f>.
Then given any ¢ > 0,

{xeR": Mf(x) >t}
Ci{xeR'":Mfi(x) >t/2}U{x e R" : Mfr(x) >t/2}
=FUF.

Therefore, it will suffice to show that fori = 1, 2, t{|xr [|p) < C. Wheni = 2,
the argument is almost identical to that given above to estimate || M f> || (), replacing
M f, by %t)(pz. Since f, <1, Mf, < 1,sotheset F; isempty if £ > 2, and %IXFZ <
I for0 <t < 2. If poo < 00, use the weak type inequality from Theorem 3.4
instead of the strong type and proceed as before. If po, = 00, use the inequality
tyF,(x) < 2M f>(x) and the fact that the maximal operator is bounded on L*°.

To estimate || x , || o) we will show that for some o, B1, y1 > 0,

plariBivitxr) = / [ B1y1t]"™ dx + ar Bryitl g r | Lo (@uo) < 1.

Fi\Qoo

We will show that each term in the middle is bounded by 1/2 for suitable choice of

ai, Bi, yi.
The estimate for the second term is immediate: since ¢ y , (x) < M fi(x),

ar1Biyit| xFlloe@oo) < €1B1yilIM fillLoo(@eo)s

and the proof given above that the right-hand side is bounded does not depend on
the fact that p— > 1. Since the other hypotheses are the same, we get the desired
bound.
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To bound
/ o1 Bry1t]7) dx
Fl\Qoo

we apply Lemma 3.9 to find disjoint dyadic cubes {Q ;} such that
4
F C U3Qj and ][ fi(y)dy > 4_”5.
i Qj
J

Form disjoint sets £; suchthat £; C 3Q; and F; \ Qo = Uj E;.
We can now argue as before, replacing SQIJ‘- by Q; and using the fact that p— > 1
to get

e p(y)
/FI\QOO[CKI,BIVII] dx < XJ:/E, (Vl][Qj Si(y) dy) dx.

Since | E;| < 3"|Q}], the cubes Q ; are disjoint and supp(fi1) C R" \ Qc, so if we
lety; = %3_",

3 |E)|
PO dy ) dx = S r 4
j /Ej (”][ij‘(y) y) i ;”|Q,-|/Q,.fl(” Y

1 1
< — PO gy < _/ PO gy <
< Ej 2/9,- S() y=3 e Si(y) y <

N =

This completes the proof of inequality (3.7).

3.5 Modular Inequalities

In this section we consider a different approach to generalizing Theorem 3.4 for
the Hardy-Littlewood maximal operator. In the classical Lebesgue spaces, norm
inequalities are equivalent to modular inequalities: this suggests that we consider
modular inequalities for the maximal operator in the variable Lebesgue spaces. In
particular, if p4 < oo, then corresponding to inequalities (3.7) and (3.8) are the
inequalities

/ P9 dx < c/ | £(x)]P) dx, (3.19)
{x:Mf(x)>t} R”

Mf(x)PWdx <C / | £(0)]P) dx. (3.20)
Rn

R~
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By the definition of the norm, these modular inequalities imply the corresponding
norm inequalities, so for them to be true we would need to make the same or stronger
assumptions on the exponent function. In fact, these inequalities never hold unless
p(+) is constant.

Theorem 3.31. Given p(-) € P(R"), suppose py < oo. Then the modular
inequalities (3.19) and (3.20) are true if and only if there is a constant py such
that p(-) = po almost everywhere.

The proof of Theorem 3.31 depends on results from the theory of weighted norm
inequalities in harmonic analysis, and so we defer it until the end of Sect. 4.3 (p. 158)
below.

Weaker modular inequalities that include an error term, however, are true. A
strong type modular inequality similar to (3.20) is actually implicit in the proof of
Theorem 3.16. Here we give an alternative approach that also yields a weak type
inequality. As a first step we prove a modular inequality that can be thought of as
a modular Holder’s inequality for variable Lebesgue spaces. Results similar to this
played a very important role in the original proofs of Theorem 3.16.

Theorem 3.32. Given p(:) € P(R"), suppose py+ < oo and p(-) € LH(R"). Then
forany f € LPOR"), | flpe) < 1, any cube Q and any x € Q,

p(x)
( ) dy)
[¢)

, C dy
p(y)
=< C.fQ |f(y)| dy + (@ + |X|)(n+l)p7 + Cé (6‘ + |y|)(n+1)p,
C
< c][ gy 4+ — S @an
[f (D) y Cr

Proof. We begin by proving the first inequality in (3.21). Fix Q and x € Q.
Without loss of generality, we may assume that f is non-negative. As in the proof
of Theorem 3.16, decompose f as fi + f», where

fi= fX{x:f(x)>l}s L= fX{x:f(x)sl}-

Then by Remark 2.8,

p(x) p(x) p(x)
( If(y)ldy) szp+—l[( Iﬁ(y)ldy) +( Ifz(y)ldy) ]
0 [¢) [¢)

We will estimate each of these integrals in turn. The estimate for f is very similar
to the argument for f; in the proof of Theorem 3.16 when p4 < co; hence, we only
sketch the details. Since f; = 0or f; > 1 and || fi| ,) < I, we have that
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/fl(y)dyE/ f)Pdy <1,
0 0

and so by Lemma 3.24 and Holder’s inequality (if p— > 1),

p(x) p—
(][ ﬁ(y)dy) < lo[ ( / ﬁ(y)dy)
(¢ 0
p7
< —p- r(»)/p— < ()
< clo| (/Qﬁ(y) dy) _c][Qfl(y) dy.

To prove the estimate for the integral of f,, we adapt the proof of Lemma 3.26.
Let R(y) = (e + |y|)™ ! and suppose first that

][Q A dy < R().

Then by inequality (3.13),

®)
(][ L) dy)p < R(x)"™ < R(x)P>R(x)" P77l < CR(x)"-.
0

On the other hand, if
][Q £ dy > R(x),

then by Holder’s inequality and (3.13),

(][Q fz(J’)dy)”(x) < (][Q £0) dy)ﬂoo (][Q o) dy)—ll(x)—poo

= Lor=dy Ryl < cf foyray.
0 0
Since 0 < f> < 1 we can apply Lemma 3.26 to get

f por=ar=cf poyoarsf Rov-a

This completes the proof of the first inequality in (3.21). To prove the second, note
that since R(x)?~ < (e + |x|)™" it will suffice to show that

P— < —_
][QR(y) dy < D
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To do so we consider three cases. If |x| > 2./nf(Q), then there exists a constant C
depending only on n such that for every y € Q, R(y) < CR(x). Hence,

f R()P- dy < CR(x)".
0
If 1 < |x| <2/nt(Q), then, since R € LP—(R"),
][ RGP~ dy < Cla|™ / RO)P- dy < Cle + x))™".

Q RI'I

Finally if |x| < 1, then, since R(y) < 1,
][ RGP dy <1< Cle+ )™
[¢)

This completes the proof of (3.21). O

We now state and prove our modular inequalities.
Theorem 3.33. Given p(-) € P(R") such that p+ < oo and p(-) € LH(R"),
suppose f € LPO(R") and | fllpey <1 If p— > 1, then

dx
(x) (x) -
/R” Mf(x)’™dx <C /R” | F(x)|PY dx + C e C (3.22)

If p— =1, then forallt > 0,

dx
PO dx < c/ | £(x)|P) dx+C/ — . (323)
/{x:Mf(x)>t} Rn g (€ + |x|)n !

Proof. To prove inequality (3.22) we use the second estimate in Theorem 3.32 with
the exponent p(-) replaced by p(-)/p—. Fix x and fix any cube Q containing x.
Then

d e rO»/r— g ¢ "
(frona) = (f rorora+ —5)

C

- MPOIP=Y(x)P— 4 — =
SCM(L O Py (x)” T

If we take the supremum over all such cubes Q, we get that

Mf()"™ < CMfOIOP)E +
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If we now integrate both sides of this inequality over all x € R”, since p_— > 1 by
Theorem 3.4 we have that

dx

re (€ + |x[)"7—
dx

i (e + |x[)mr="

Mf(x)"™ dx < C / M(LfFOPO/P)(x)P= dx + C
R» R»

< c/ | F(0)]P® dx + C
RI‘I

This completes the proof of inequality (3.22).

To prove inequality (3.23) we use the first estimate in Theorem 3.32. Fix ¢ > 0;
then by Lemmas 3.9, 3.13 and 3.29, let { O ; } be the Calderén-Zygmund cubes of
at height 7 /4": pairwise disjoint cubes such that

E={x:Mf(x)>1}c| J30;. and ][Q | )| dy > 1/4".
j J

Form a sequence of pairwise disjoint sets { £} as follows: £y = E N30, E, =
(EN3Q2)\E1, E3 = (EN30Q3)\(E\UE)),....Then |E;| < [3Q,;[.E =, E;
and the E; are pairwise disjoint. Given these sets we have that

[ o
{xiMf(x)>t}
p(x)
=y [ (][ If(y)ldy) dx
; JE Q)
, 1 dy
ey | (f I dy 4 o + oo )
XJ-:E/ 0; (e +[xDtt  Jo, (e + [y !

! dx dy
C P g - [
=L (/Q o ”/E, e+ <y +/Q,- <e+|y|)"+1)

dy
SC/ r0) g +C/ —_
y | fDIP dy e @t D

This completes the proof of inequality (3.23). O

We conclude this section with a different version of the modular weak type
inequality. We can write the weak (p, p) inequality (3.1) as a modular inequality
in another way:

|{xeR":Mf(x)>l}|§C/Rn ('f(x)|)p dx. (3.24)

t
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In light of Theorem 3.31 it is surprising that essentially this inequality holds in the
variable Lebesgue spaces with almost no assumptions on p(-).

Theorem 3.34. Given p(-) € P(R"), if |200| < 00, then there exists a constant C
such that forall t > 0 and all f € LPO(R"),

{x e R": Mf(x) > 1}| < Cp(4f/1)

4| £\ P
_c / (M) dx + C17 Qoo f 150000
R\ Qoo 4

Furthermore, if |Qeo| = 00, then this inequality is false with any finite constant in
the last term.

Remark 3.35. 1f p4+(R" \ Q) < 00, then by increasing the constant C' by a factor
of 47+ we can replace the right-hand side by Cp( f/t). Also see Sect. 3.7.2 below.

Proof. Assume first that | Q| < 00. Fix f € LPO(R") and ¢ > 0. We modify the
decomposition used in the proof of the weak type inequality in Theorem 3.4: define

J1 = [Xxern\Qooilf@)>1/20 2 = flxern\Qooil fI<t/2)s 3 = fXQ00-
By Proposition 3.3, M f,(x) < t/2. Therefore,
{x e R" : Mf(x) >t}
< Hx eR" : Mfi(x) + Mfo(x) + Mf3(x) > t}]
< l{x e R" : Mfi(x) + M f3(x) > t/2}]
<Hx eR": Mfi(x) >t/4} + |{x e R" : M f3(x) > t/4}].

We estimate the last two terms separately. Since [47~! f;| > 1, by the weak (p—, p—)
inequality for the maximal operator (Theorem 3.4),

lx € R : Mfi(x) > 1/4}] = |{x e R" : M(47" fi)(x) > 1}]
< [tx € R M((47' | ADPO77)(x) > 1

- 4 AN
< C/n ( . ) dx

- 4/ )1\
_C/R"\Qoo( t ) >

Similarly, by the weak (1, 1) inequality,

C
{x e R" : Mf3(x) > 1/4}] < 7/Rn |50 dx = Ct7! Qoo [l f | 290(200) -

If we combine these inequalities we get the desired result.
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Now suppose |Qc| = oo. Then f = yq. € LPO(R"), and we have that
11 p¢) = | fllLo(0e) = 1. On the other hand, for all r < 1,

{x e R" : M f(x) >t} = oc.

3.6 Interpolation and Convexity

We conclude this chapter by briefly considering the theory of interpolation on
variable Lebesgue spaces and its application to the Hardy-Littlewood maximal
operator. As we noted at the end of Sect.3.2, the Marcinkiewicz interpolation
theorem is central to the proof of norm inequalities for the maximal operator on
the classical Lebesgue spaces, but it is unknown whether this result is true in the
variable Lebesgue spaces. (See Sect. 3.7.8 below.)

However, other interpolation theorems are true in the variable Lebesgue spaces.
Here we will prove an elementary result that holds for positive integral operators:
that is, operators of the form

U@=LMwwmw,

where K : 2 x Q — [0, 00) is a non-negative, measurable function.

Theorem 3.36. Given Q and p;(-), q¢:(-) € P(RQ), i = 1,2, suppose that for all
f € LPiC)(Q) the positive integral operator T satisfies

ITf Ny = Bill £l picy- (3.25)
Foreach 6,0 < 0 < 1, define pg(-), qo(-) € P(RQ) by

N b N
pox)  pi(x)  pa() ge(x)  qi(x)  qa(x)

Then forall f € LP"O(Q),
ITf gy < CBY By 1S | poc» (3.26)

where the constant C depends only on q,(-), q2(-) and 6.

Remark 3.37. 1t will follow from the proof of Theorem 3.36 that we can take C to
be the universal constant 48.

Proof. Fix 6,0 < 6 < 1,and f € LP0(Q). Since T is a positive integral
operator, |T(f)(x)| < T(|f)(x), so we may assume without loss of generality
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that f is non-negative. Moreover, we may assume that f is bounded and has
compact support. This follows by an argument similar to the one used in the proof of
Theorem 3.16 when p = oo. For if this case is true, given a non-negative function
S let fi(x) = min(f(x), k) x B, 0)(x). By Fatou’s lemma on the classical Lebesgue
spaces,
Tf(x) <liminf T fi (x).
k—o0

Therefore, by the monotone convergence theorem on variable Lebesgue spaces
(Theorem 2.59),

ITf I psy < liminf [T fk|l ey < C Liminf || fic [l poy < C 1 f M poc-
k—00 k—o00

Finally, since for any a > 0, T'(af)(x) = aT f(x), we may assume that || f'|| p,) = 1.
Given such a function f, by Theorem 2.34,

I s < K2, sup /Q T/ (x)g(x) dx.

where the supremum is taken over all g € L% () with || glly ) < 1. Since f s
non-negative, we may also assume that g is non-negative. Fix any such g; then it
will suffice to prove that

/ T/(x)g(x)dx < CB!BY.
Q

where C only depends on p(:).

Po

Define the functions f;(x) = f(x) 7™ . To make sense of this when the exponent
functions are infinite, note that Q2 ¢ Q2 N Q2. Then for x € Q%" we
define

po(x) |1 xe Qnt
pi(x) 0 xeQ\ Qo

i 10
We define the functions g; (x) = g(x) % in the same way, here using that Qi <

Qgéﬂ) al Qgé(.) and the fact that given exponents ¢;(-), ¢2(-), the interpolation
exponent between the conjugate exponents qi(-) and % () is the same as q(; (), the
conjugate of the interpolation exponent between ¢ (-) and g»(:).

We now claim that [| fi[| ;). llgi ||q;(-) < 2,i = 1,2. We will show this for f;
the proofs for the other three functions are identical. By Corollary 2.22, p,,)(f) <
I/l poy = 1. In particular,

Po(x)
/Q\Qggm'f(x)' dx <1 ] oo gpee, < 1. (3.27)
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For almost every x € Q2O fi(x) < 1.If x € Q%Y. this follows from the second

inequality in (3.27) and the fact that py(x)/p1(x) = 1; for x € Q2 \ Q2" this
follows since pg(x)/pi1(x) = 0. Hence,

. LA _
il = 1nf{)k > o:/ﬂ\ﬂm(‘)( lx dx + A ‘Ilfllle(Qgg») =1
p1(x)
Iﬁ(x)l) 42!

<1nf{k> Q\Qm()( A 1}

=inf{A > 1 MRS dx + 27" <1
Q\Qm() A -

IA

| /\

f{x>1:r1/ |f(x)|1’(")dx+/\_1§1}
o\e2"
{

A>1:227" <1}

By the definition of the exponents we have that f(x) = fi(x)? (x)!7%; a
similar identity holds for g. Therefore, since the kernel K, f and g are non-negative,
by Holder’s inequality with exponent §~!, Theorem 2.26 and our hypothesis, we
have that

[ T/ (x)g(x) dx = / [ K(x.y) f(5)g(x) dy dx
Q QJQ

= /Q/Q (K(x, ») i g1(0)) (K (x, ) () g2(x)) ™ dy dx

0

< ( [ [ xenamawa dx)

QJQ

1—-6
x( [Q /Q K(x,ym(y)gz(xwydx)
0 1—6

- ( / Tfl(x)gl(x)dX) ( / sz(X)gz(x)dX)

Q Q

(% 1—6
< (KpollTAillaolgilly o) (KeolTAlnolg2llyeo)
0 1—6
< 2Kg, o K BY By 1Al 0l 2l

1-6 1-6
< 4K, K; (BB

This completes the proof. O
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As an application of Theorem 3.36 we will show that the set of exponents p(-)
such that the Hardy-Littlewood maximal operator is bounded is convex: that is, if
the maximal operator is bounded on L”)(Q), i = 1, 2, then it is bounded on
LP*0(Q), where py(-) is defined by (3.25). This is trivially true in the classical
Lebesgue spaces since the maximal operator is bounded on L? for all p, 1 <
p < oo. If 1/pi(-), 1/p2(-) € LH(R2), then so is py(-), so this follows from
Theorem 3.16. The importance of this result is that there exist exponents p(-) which
are not log-Holder continuous but the maximal operator is bounded on L") ().
We will consider such exponents in detail in Chap. 4.

Theorem 3.38. Given 2, the set of exponents p(-) such that the Hardy-Littlewood
maximal operator is bounded on L?V) (Q) is convex.

Proof. To apply Theorem 3.36 we must first show that the maximal operator can be
approximated by positive integral operators. Let { £} be a collection of bounded,
pairwise disjoint sets, and for each k let Q; be a cube such that E; C Q. Define
the kernel K by

K(x,y) =D xe (01 Qcl ™ xoe (0); (3.28)
k

then the operator 7" with kernel K satisfies
ITfl <Y ][Q SOy X < Y M) xEw = M),
k UGk k

Therefore, if the maximal operator is bounded on L7 (')(Q), i = 1,2, then so
is every integral operator 7" of this form. Hence, by Theorem 3.36 they are all
uniformly bounded on L7*0)(Q).

To complete the proof, arguing as we did in the proof of Theorem 3.16 in the
case p4+ = 00, it will suffice to show that there exists C > 1 such that if f is non-
negative, bounded and has compact support, then || M f |,y < CIIMf || py()- Fix
such a function f'; to prove this inequality we will show that there exists a positive
integral operator T with a kernel of the form (3.28) such that for almost every x,

Mf(x) =4"T( /D). (3.29)

To do so we employ the same decomposition as was used for the function f] in the
proof of Theorem 3.16 when p4 < oo. (This part of the argument did not depend
on the fact that p was finite.) Let A = 4" and define the sets Qx, Q% and E¥ as
before. Then for almost every x, there exists an integer k such that x € Qj \ Q1.
Therefore, we have that there exists a set E f and a cube Q’; such that

Mf(x) < AFT < 4 . SO dy - g (),

J



3.7 Notes and Further Remarks 117

Since the sets E j‘ are pairwise disjoint, if we let T be the integral operator with
kernel

K(ry) = xpr 01051 1ot (),
k,j

we get an operator such that (3.29) holds. This completes the proof. O

3.7 Notes and Further Remarks

3.7.1 References

The Hardy-Littlewood maximal operator was first introduced by Hardy and Little-
wood [148] in one dimension and extended to R” by Wiener [347]. They also proved
the L? estimates in Theorem 3.4. The maximal operator came into prominence
with the work of Calderén and Zygmund [40] on singular integrals; in this paper
they also introduced the dyadic decomposition that bears their name (Lemmas 3.9
and 3.13). Our treatment is based on Duoandikoetxea [96]; see also Garcia-Cuerva
and Rubio de Francia [140] and Grafakos [143]. For a proof of the L? inequalities
using covering lemmas, see Stein [339]. For the alternative definitions of the
maximal operator on a domain €2, see [129]. Example 3.14 showing that the variable
Lebesgue spaces are not rearrangement invariant is new.

The maximal operator on variable Lebesgue spaces was considered by several
authors. Diening [77] was the first to find a sufficient condition for boundedness.
He showed that when py < oo, the L Hy condition is sufficient for the maximal
operator to be bounded on bounded domains. As a corollary to this result he showed
that the maximal operator is bounded on R” if p(-) is constant outside of a (large)
ball containing the origin. Nekvinda [282] proved the strong type inequality in
Theorem 3.16 when p4 < oo and with the L H, condition replaced by a somewhat
more general condition. We will discuss his result in detail in Chap.4. The LH,
condition was introduced in [62, 63] and the strong type inequality in the case
P+ < oo was proved there. A simpler proof, again with p < co was given in [42]
(see also [128]). The case when p4 = oo and the idea of using 1/ p(-) € LH is due
to Diening [80]; see also [81]. A very different proof of the strong type inequality
when py < oo, gotten by viewing L”") from the perspective of abstract Banach
function spaces, was given by Lerner and Pérez [235].

The formulation of weak type inequalities in Theorem 3.16 was first suggested
in [86]. They were first proved in [42].

The discussion in Sect.3.3 is an expanded version of [54]. Theorem 3.19, the
necessity of the condition p_ > 1 for the maximal operator to be bounded, was first
proved in [62] with the additional assumption that p(-) is upper semi-continuous.
This hypothesis was removed by Diening [80] (see also [81]) and our proof follows
his.



118 3 The Hardy-Littlewood Maximal Operator

A version of the proof of Theorem 3.16 given in Sect. 3.4 first appeared in [56].
This proof draws upon ideas of Sawyer [325] from the theory of weighted norm
inequalities. The second half of the proof when p; = oo, where we use the two
embedding theorems, is new though it is connected to the proof of Nekvinda [282].
Lemma 3.24 is due to Diening [77] and was a key part of his original proof of
the boundedness of the maximal operator. Lemma 3.26, which is central to the
application of the L H, condition, appeared in [56]; it is based on earlier versions
found in [42,58, 62, 63]. A variant of this inequality, with weaker hypotheses, was
proved by Nekvinda [282]. Lemma 3.29, which lets us apply the Calderén-Zygmund
decomposition to functions in L”) when p; < oo, is new. Lemma 3.30 is part of
the “folklore” of harmonic analysis; for instance, it is implicit in [140]. A proof was
given in [56].

Theorem 3.31 is due to Lerner [228]. This result highlights a significant
difference between variable Lebesgue spaces and Orlicz spaces: in the latter
both norm and modular inequalities are true for the maximal operator. See, for
example, Kokilashvili and Krbec [197]. Versions of the pointwise inequalities in
Theorem 3.32 and the modular strong type inequality in Theorem 3.33 were used
in the original proofs of the boundedness of the maximal operator by Diening [77]
and Nekvinda [282], and also in [42,62]. A version of the weak type inequality in
Theorem 3.33 for bounded domains is due to Harjulehto and Hasto [153]. A modular
weak type inequality for the maximal operator similar to Theorem 3.34 was first
proved in [62] with different hypotheses; see Sect.3.7.2 below. The version given
here is a generalization of a result due to Aguilar Caiiestro and Ortega Salvador [8].

The interpolation result for positive integral operators in Theorem 3.36 was first
proved in [55]. It is based on a result for classical Lebesgue spaces given by Bennett
and Sharpley [25]. It is a special case of a more general interpolation theorem due
to Musielak [274]: see Sect. 3.7.8 below. The convexity result in Theorem 3.38 was
first proved for the case p4 < oo using a different approach by Diening, Histd
and Nekvinda [86]. The full result was proved in [55]. The approximation of the
maximal operator by positive integral operators used in the proof was implicit in
Sawyer [325] and developed in detail by de la Torre [75].

3.7.2 More on Modular Inequalities

The pointwise and strong type modular inequalities in Theorems 3.32 and 3.33 can
be generalized to the Musielak-Orlicz spaces L”") (log L)) defined in Sect. 2.10.2.
This leads to proofs that the maximal operator is bounded on such spaces. See [138,
166,267].

Diening [80, 82] showed that the L H, condition is necessary for Theorem 3.32
to hold. More precisely, he proved the following result.

Proposition 3.39. Given p(-) € P(R") such that 1 < p_ < p4 < 00, suppose
that there exists f > 0 and h(-) € L®(R") such that for every f € LPO(R"),
| £l o) <1, every cube Q and every x € Q,
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p(x)
(ﬂ][Q If(y)ldy) < ][Q SO dy + h(x),

and the same inequality holds with p(-) replaced by p'(-). Then p(-) € LHy(R").

The original version of the modular weak type inequality in Theorem 3.34 proved
in [62] did not have a constant inside the modular, but removing it required a
restriction on the exponent p(-). We include this proposition here because it was
the first result to suggest a connection between variable Lebesgue spaces and the
Muckenhoupt A, weights. We will explore this connection more closely in Chap. 4.

We begin with a definition. A non-negative function u satisfies the RHo
condition if there exists a constant C such that for every cube Q and almost every

x €,
ulx) <C u dy.
()_ ’ (Y)y

Examples of such functions include u(x) = |x|", r > 0. (See [70].)

Proposition 3.40. Given p(-) € P(R") such that |Qeo| = 0and 1/p(-) € RHe,
then for all f € LPO(RM),

(x)
If(X)I)” "

t

|{xeR”:Mf(x)>t}|§C/Rn(

3.7.3 L log L Inequalities in Variable Lebesgue Spaces

Even though the maximal operator does not map L' into L', there is an inequality
which gives a sharp condition on f for M f to be locally integrable. Wiener [347]
(see also [143]) showed that given a locally integrable function f and any cube Q,

/QMf(x) dx <2|0|+C /Rn | f(x)|log(e + | f(x)]) dx. (3.30)

Stein [338] proved that the converse is also true: given a locally integrable function
£ such that supp(f) C Q and Mf € L'(Q), then

/Q | f(x)|log(e + | f(x)|) dx < oo. (3.31)

For general exponents a modular inequality similar to (3.30) holds: given any
p(-) such that || = 0, then for any € > 0 there exists a constant C such that for
any cube Q,
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/ Mf(x)dx <2[Q] + c/ | £(x)[P9) Tog(e + | f(x))1™) dx,
0 R"

where ¢(x) = max(e~'(e + 1 — p(x)),0). The key feature is that ¢(x) = 1 when
p(x) = 1,and supp(g(-)) C {x : p(x) < 1+¢€}. This inequality was proved in [59].

Inequality (3.30) implies an Orlicz space inequality, and an analogous result
holds in the scale of Musielak-Orlicz spaces when p(-) is log-Holder continuous.
Recall that in Sect.2.10.2 we defined L”®)(log L)?") to be the Musielak-Orlicz
space generated by the function ®(x,7) = t?™log(e + ¢)?™). Then for any
€ > 0, given a cube Q and an exponent function 1/p(-) € LHy(Q), there
exists a continuous exponent function ¢g(-) such that g(x) = 1 when p(x) = 1,

supp(¢q () C {x: p(x) <1+ €}, and
IMf ooy < CILS ILroog Lyse) -

This embedding was proved by Diening et al. [81]. Previously, a somewhat weaker
version, assuming that p4 < oo and replacing the exponent p(-) on the right-hand
side by an exponent r(-) that is slightly larger on the set {x : 1 < p(x) < 1 + €},
was proved in [59]. The generalization of Stein’s converse (3.31) is also considered
in this paper.

A variation on this problem is to consider conditions on the exponent function
p(-) that are sufficient for the embedding

IMf i) = Clf Lroco)- (3.32)

By (3.30) it suffices to find conditions on p(-) such that L?®)(Q) is contained in the
Orlicz space Llog L(Q). This question was first considered by Hésto [163], and
later by Futamura and Mizuta [136], Mizuta, Ohno and Shimomura [266], and also
in [59]. These results have been generalized to iterations of the maximal operator
in [158]. For more details on this question, see Sect.2.10.5 above.

3.7.4 The Fractional Maximal Operator

Closely related to the Hardy-Littlewood maximal operator are the fractional maxi-
mal operators.

Definition 3.41. Foreach o, 0 < & < n, given a function f € L] _(R") define the
fractional maximal operator by

Mo f(x) = sup IQI“/”][ f ()] dy.
05x 0
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where the supremum is taken over all cubes in R” containing x and whose sides are
parallel to the coordinate axes.

The fractional maximal operator was introduced by Muckenhoupt and
Wheeden [272]; it plays a role in estimates for Riesz potentials similar to the
one that the Hardy-Littlewood maximal operator does for singular integrals.

The fractional maximal operator is not bounded on L7; rather, it satisfies an “off-
diagonal” estimate: for1 < p <n/o, My : L? — L9, where

1 1

o= (3.33)

p q n
When p = n/a we define ¢ = oco. If @ = 1, g equals the Sobolev exponent
p* = %. When p = 1 the fractional maximal operator satisfies a weak (1, q)
inequality:

n
n—a

(X € R : My f(x) > )] < C (}/ If(x)ldx)
N

These inequalities can be proved in two different ways. First, the Calder6n-
Zygmund decomposition and the proof of Theorem 3.4 can be adapted to the
fractional maximal operator. Marcinkiewicz interpolation is replaced by a more
general, off-diagonal interpolation theorem (see Stein and Weiss [341]). Alterna-
tively, norm inequalities for M, can be proved using Theorem 3.4 and a pointwise
inequality that is a consequence of Holder’s inequality:

Mo f () < IIF 17 Mf ()", (334)
(For a proof see [56].)
Theorem 3.16 can be extended to the fractional maximal operator.
Theorem 3.42. Fix o, 0 < o < n. Given a set 2, let p(-) € P(2) be such that
1/p() € LH(R2) and p+ < n/w. Define q(-) as in (3.33). Then for all t > 0,

||tX{x:Mo,f(x)>t}||Lq(~)(g) = C||f||Lp(~)(Q)- (3.35)

If in addition p— > 1, then

[Ma fll ao@) < CIS Lrore)-

In both inequalities the constant depends on the dimension n, the log-Holder
constants of 1/ p(-), p—, Poo and a.

The proof of Theorem 3.42 is essentially the same as the proof of Theorem 3.16;
indeed the proof given of both in [56] was intended in part to show that a unified
proof could be given for the Hardy-Littlewood and fractional maximal operators.
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In Chap.5 below (see Remark 5.51) we will sketch another proof of this result
assuming py4 < n/a« using extrapolation. This case was first proved in [42]. The
proof used Theorem 3.16 and a generalization of (3.34) to variable exponents.

Proposition 3.43. Fix o, 0 < o < n. Given Q and p(-) € P(RQ) such that p4 <
n/a and p(-) € LH(Q), then for all f € LPO(Q), lfllpe <1,
M, f(x) < CM f(x)P™/40) 4 CR(x)P—/4+,

where R(x) = (e + |x|)™™, N > 0, and the constant C depends on p(-), o and N.

In fact, a slightly weaker version of Proposition 3.43 was proved in [42] (see
Propositions 3.1 and 3.2) but the version given here follows at once by adapting the
ideas in the proof of Theorem 3.32.

Variable fractional maximal operators were considered by Kokilashvili and
Samko [205] and Kokilashvili and Meskhi [198]. Given an exponent function
a(-) : R" — (0,00) such that o— > 0 and supa(x)p(x) < n, they defined the
operator

May f(x) = sup IQI“(“"][ £ dy.
03x 0

They proved weighted inequalities of the form

ITOMaey fllgor = ClA N per
where I'(x) = (1 + |x])7™),
o(x)
n

y(x) = Cooar(x) (1 - —) ,

and Co, is the L Hy, constant of p(-).

3.7.5 Hardy Operators on Variable Lebesgue Spaces

The classical Hardy inequality states for that for 1 < p < oo, for any f €

L7([0.00)).
o0 1 X
/0 ‘; /0 £ dy

This inequality has a long history and many generalizations: see Kufner, Maligranda
and Persson [224] and Opic and Kufner [289]. It can be restated in terms of the
Hardy operator, the linear operator given by

P oo
dx < (p")? P dx.
x_(p)/o ()P dx
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Hiw = [ 1oy

as
||Hf||p =< P/”f”p- (3.36)

Since |Hf(x)] < Mf(x), (3.36) follows at once (though with a worse constant)
from the L? inequalities for the maximal operator.

In a similar fashion we can prove norm inequalities for the Hardy operator on
variable Lebesgue spaces. However, H is bounded with assumptions on p(-) that
are weaker than those that are needed for the maximal operator.

Theorem 3.44. Given p(-) € P([0, 00)), suppose that 1 < p_ < p4 < o0, p(-) €
LHx([0,00)), and p(-) is log-Holder continuous at the origin:

C
p(x) = p(0)] < Tg(x)

Then ||Hf||Lp(~)([o,oo)) = C”f”LP(')([O,OO))'

Theorem 3.44 was proved by Diening and Samko [92] as a consequence of a
more general result about integral operators with “nice” kernels. Their main results
include variable exponent generalizations of H and its adjoint H *. Earlier, weaker
versions of this result were proved by Harjulehto, Hésté and Koskenoja [154],
Kokilashvili and Samko [208], and Mashiyev, Cekic Mamedov and Ogras [258,
259]. Edmunds, Kokilashvili and Meskhi [98] also studied the compactness of these
operators. Harman [159] has shown that a slightly weaker continuity condition at
the origin is necessary for the Hardy operator to be bounded.

Hardy’s inequality can also be generalized to higher dimensions. An elementary
result appeared as part of the proof of the boundedness of the maximal operator
in [62]. Higher dimensional results were studied in [154], and also by Samko [317,
318], Rafeiro and Samko [295,296], and Mamedov and Harman [160, 247].

Like the maximal operator, the Hardy operator satisfies a modular inequality

0<x<1/2.

/ S HF)1P dx < € | Z P dx (3.37)
0 0

only if p(-) is constant; this was proved by Sinnamon [333]. Somewhat surprisingly,
however, if we restrict f to non-negative, decreasing functions, then inequality
(3.37) can hold for non-constant p(-). A characterization and examples were given
by Boza and Soria [35]. Further results were proved by Neugebauer [286]. A
modular inequality in higher dimensions, assuming || f'|cc < 1 and p(-) is a radial,
increasing function, was proved in [62].
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3.7.6 Other Maximal Operators

Several variants of the Hardy-Littlewood maximal operator occur in harmonic
analysis and have been studied in the variable Lebesgue space setting. For instance,
the maximal operator as originally defined by Hardy and Littlewood [148] was a

“one-sided” maximal operator: for f € L! (R), define

1 x+h
M@ =sw s [ 1o

h>0

Similarly, we define
1 X
M@ =swpy [ 1 mldy.
h>0 x—h

One-sided maximal operators were studied by Sawyer [326] and then by Martin-
Reyes, Ortega Salvador and de la Torre [255,256]. (See also [52,71].)

The one-sided maximal operators are bounded on variable Lebesgue spaces if the
exponent p(-) satisfies one-sided log-Holder continuity conditions. For simplicity
we will consider M *; the conditions for M~ are analogous. We say p(-) €
LH (R) if

px)—p(y) = , 0<y—x<1/2.

>0
—log(y — x)

We say p(-) € LHF(R) if there exists a bounded, non-increasing function ¢ (-) €
P(R) such that
C

o0
xX)—q(x)| < ————.
() =40 =
Theorem 3.45. Given p(-) € P(R), suppose 1 < p_ < py < oo and p(-) €
LH (R) N LHE(R). Then [M* £ i) < CI.f [l 0.

Theorem 3.45 was proved by Nekvinda [285]. He actually has a somewhat more
general result related to his condition for the Hardy-Littlewood maximal opera-
tor [282]. This result was proved by Edmunds, Kokilashvili and Meskhi [99] with
the LHJ condition replaced by the stronger condition that p(-) is constant outside
of a large ball. Another, very different proof is due to Bernardis, Gogatishvili,
Martin-Reyes, Ortega Salvador and Pick [28], who adapted the abstract Banach
function space approach of Lerner and Pérez [235]. Modular weak type inequalities
for one-sided maximal operators were proved by Aguilar Cafestro and Ortega
Salvador [8].
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In higher dimensions the strong maximal operator is defined by

Ms () = sup ﬁ £ ()] dy.

where the supremum is taken over all rectangles (i.e., parallelepipeds) in R” that
contain x and whose sides are parallel to the coordinate axes. Like the Hardy-
Littlewood maximal operator, the strong maximal operator is bounded on L?(R"),
1 < p < oo. (See, for instance, [143].) However, Kopaliani [213] proved that
the strong maximal operator is never bounded on L?®)(R") unless p(-) is constant.
Kokilashvili and Meskhi [200] generalized this to the strong fractional maximal
operator.

To understand this result, it is worth considering the proof in the classical
Lebesgue setting. For clarity we consider only the case R?. Let M, denote the
maximal operator acting on the first variable:

M. £ (xo. yo) = sup ]{ £ (x yo)l dx,

VER

where the supremum is taken over all intervals I that contain x¢. Define M, the
maximal operator acting on the second variable, similarly. Then it is straightforward
to show that

Mg f(x0. y0) < (M, o My) f(xo, y0)-

Since the Hardy-Littlewood maximal operator is bounded on L”(R), M, and
M, are bounded on L” (Rz), and so My is as well. However, M, and M, need
not be bounded on L”")(R?). The following counter-example is adapted from
Nigele [276]. Let 2 = [0, 1]x[0, 1], 2, = [0, 1/3]x][0, 1] and 2, = [2/3, 1]x[0, 1].
Let p(-) € P(2) be any exponent such that p(x,y) = 2, (x,y) € £2; and
p(x,y) =3, (x,y) € Q. Let g € L*([0,1]) \ L3([0, 1]), and define f(x,y) =
g(y)xa,(x,y). Then

, 1!
/Qf(x,y)p(x’” dxdy = 5/0 g(y)*dy < oo,

so by Proposition 2.12, f € L?®) (). On the other hand, for xo € (1/3, 1),

1 1/3 1
M, f(xo. yo) Z/O |/ Cx, yo)| dx :/0 l8(vo)l dx = S[g (o).

Therefore, if M, were bounded on L?)(Q) we would have (again by Proposi-
tion 2.12) that

1
/ lgIP dy < C/ |/ e, PSP dxdy < C/ |M. f (x, p)|P*Y dxdy < oo,
0 Q) Q

which contradicts our choice of g.
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3.7.7 Decreasing Rearrangements

As we showed in Example 3.14, LP)(Q) is not rearrangement invariant. Therefore,
the decreasing rearrangement of f—that is,

SR =infls () <1

(where the infimum of the empty set is defined to be oo, and ji ¢ is the distribution
function, see p. 87), the decreasing function on [0, |[©2]) that is equimeasurable
with f—does not play the same role in the study L) (R2) as it does for classical
Lebesgue spaces and other rearrangement invariant spaces. (For more on the theory
of decreasing rearrangements see [25,223,297].)

Nevertheless, the decreasing rearrangement is still applicable. Given a measur-
able function f* with decreasing rearrangement f*, let

AN =]€ fHs)ds = M(f)(1) = H(f ")),

where H is the Hardy operator (see Sect.3.7.5). Kokilashvili and Samko [206]
defined a rearrangement invariant version of L”®). Given Q and p(-) € P([0, |2])),
p+ < 00, the space A”")(R2) consists of all measurable functions f on £ such that

£ laro@) = 1 v o apy) < 0o

This is a Banach function space; if p(-) = p > 1, then, since the maximal operator
is bounded on L” and f**(r) ~ (M f)*(t) (see [25]), AP(2) equals L”(2) with
an equivalent norm.

Ephremidze, Kokilashvili and Samko [108] used the same ideas to generalize the
classical Lorentz L7 spaces. Given 2 and p(-), ¢(-) € P([0,|2])), p+, g+ < oo,
the space L?()40)(Q) consists of all measurable functions f on Q such that

I £ 1l Lrerae (82) = [[1/PO7VID £2D)| Laer ogapy) < 00-

If p(-) and ¢(-) are constant, then this becomes the classical Lorentz space L7 (S2);
if p(-) = q(-) and the maximal operator is bounded on L?")([0, |2])), then we have
that LPO-20(Q) = APO(Q).

The decreasing rearrangement has also been used to describe properties of
LPO(R). Let © be bounded, and let L7 () denote the collection of functions
in LPO(Q) with absolutely continuous norm (see Sect.2.10.3). Edmunds, Lang
and Nekvinda [101] showed that L7 0 (£2) equals the closure of the set of bounded
functions in L?)(Q) if and only if for all 4 > 1,

ol
/ AP D dt < 0.
0
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It is also possible to estimate the L?) norm of f in terms of f*. Given Q
bounded and p(-) € P(2) such that |2 | = 0, define the increasing rearrangement
of p(-) to be the increasing function p'(¢) = p*(|Q| —t), ¢ € [0, |2|). Then it was
shown in [131] that for all £ € LPO(Q),

sarrap Y Tertoqaan = 1o = 20+ 1D Lo oy

In the same paper there are also examples of f € L”")(2) such that the right-hand
term is infinite.

Rakotoson [298] has shown that decreasing rearrangements are a Lipschitz
functional on the variable Lebesgue spaces. More precisely, given a bounded set
Q and p(-) € P(RQ) such that p(-) € LH((0,¢)) for some € > 0, then for all
f. g € LPO(Q),

|||f* - g*l*”LPT(')((O,\QD) = C”f - g”LP(‘)(Q)'

This extends to the variable Lebesgue spaces results of Chiti [47] and Sakai [308].

3.7.8 Real and Complex Interpolation

As we remarked after the proof of Theorem 3.4, at the heart of the classical L” norm
inequalities for the maximal operator is the Marcinkiewicz interpolation theorem,
which allows us to pass from weak type to strong type inequalities.

Proposition 3.46. Given a set 2 and a non-negative measure |, suppose the
sublinear operator T satisfies the weak (p;, p;) inequalities,

u({xesz:|Tf(x)|>t})s%/ P du, P =1.2,
Q

where 1 < p; < py < 00, orif py = 00, satisfies |Tf || oo u)y < Mall fllLoo(@ -
Then for all p, py < p < pa,

1/p 1/p
([ ITf(X)I”du) fC(/ If(X)I”du) ,
Q Q

where C depends on p, pi, p», My and M.

For a proof, see Duoandikoetxea [96] or Grafakos [143]. For the history of this
result and its generalizations, see Maligranda [246].

It is an open question whether a version of Marcinkiewicz interpolation is true
in the variable Lebesgue spaces. More precisely, suppose the sublinear operator 7'
satisfies
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||f)({x:Mf(x)>r}||Lp,~<~>(g) = C”f”LPi(')(Q)’ =12

then is it true that
”Tf”Ll’(?(‘)(Q) = C”f”LP@(‘)(Q)v

where pg(-) is defined by

N
po(x) — pi(x)  pa(x)

(3.38)

forany 6,0 < 6 < 1?

This question was first posed by Diening, Hést6 and Nekvinda [86]. The proof of
the Marcinkiewicz interpolation theorem and its generalizations (the so-called real
interpolation methods—see Bennett and Sharpley [25]) depend in an essential way
on the fact that the classical Lebesgue spaces are rearrangement invariant, and so
cannot be extended to the variable Lebesgue spaces.

On the other hand, the Riesz-Thorin interpolation theorem (i.e., the complex
interpolation method) extends naturally to the variable Lebesgue spaces.

Theorem 3.47. Given Q2 and p;(:), qi(-) € P(RQ), i = 1,2, suppose T is a linear
operator such that

ITf Lo = Mill fllLno@), =12

Then for each 6,0 < 0 < 1,

6 1-6
ITF [ oy @) < CMYMy 7N f 1l ooy

where pg(-) is defined by (3.38) and qq(-) is defined similarly.

Theorem 3.47 was proved in [82] when p;(-) = ¢;(-) but the more general
result is proved in exactly the same way. The special case when p;(-) = ¢;()
and (p;)+ < oo was proved in [86]. Earlier, Musielak [274] gave a proof in the
general setting of Musielak-Orlicz spaces. Karlovich and Lerner [195] proved it
in the special case pi(-) = p(-), p2() = p'(:) and 8 = 1/2 (ie., po(-) = 2).
Kopaliani [216] generalized this result by showing that one of the endpoint spaces
could be replaced by BM O, the space of functions of bounded mean oscillation,
or H', the real Hardy space. Theorem 3.36 is a special case of Theorem 3.47 for
positive integral operators.



Chapter 4
Beyond Log-Holder Continuity

In this chapter we continue our study of the Hardy-Littlewood maximal operator.
In Chap.3 we showed that the log Holder continuity conditions LHy and LH
are sufficient for the maximal operator to be bounded. In this chapter we will
show that they are not necessary, even though they are the best possible pointwise
decay conditions. To find weaker sufficient conditions we build upon the proof of
Theorem 3.16, which showed that L H, and L Hs, play distinct roles. Intuitively,
the L Hy condition controls the behavior of the maximal operator locally (where a
function is large) and the L Hs, condition controls it at infinity (where a function
is small). We will, therefore, study replacements for each condition separately. We
first consider L Ho: here the proof of Theorem 3.16 itself, when examined closely,
quickly yields a weaker sufficient condition. However, we will also construct an
example to show that it is still not necessary. The problem of finding a necessary
and sufficient condition to replace L H, in our proof remains open.

We are able to give a replacement for the L H condition, but new techniques are
required. Recall that in the proof of Theorem 3.16 we used it to apply Lemma 3.24,
but this geometric property of an exponent p(:) is equivalent to p(-) € LH,. Our
new condition is necessary and sufficient for the maximal operator to be bounded
on bounded domains. The proof of this result is quite technical; surprisingly, it
requires machinery from the theory of Muckenhoupt 4, weights, and we introduce
this useful tool before we discuss controlling the maximal operator locally. These
results suggest that there is a deep and subtle connection between weighted and
variable Lebesgue spaces that needs to be explored.

We will conclude this chapter with a discussion of a very deep theoretical
result that gives a necessary and sufficient condition for the maximal operator to
be bounded on a variable Lebesgue space. This condition, which simultaneously
replaces both LH( and L Hx, is difficult to check in practice, but it has several
important theoretical consequences.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 129
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3_4, © Springer Basel 2013
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4.1 Control at Infinity: The N, Condition

In this section we consider the behavior of the maximal operator at infinity, where
the function f is small. We first show that L H is the best possible pointwise decay
condition: if we replace log(e + |x|)~" with any function that is substantially larger,
the maximal operator need not be bounded.

To understand the following example, recall Example 3.23 which gave an
exponent p(-) that oscillates at infinity such that the maximal operator is unbounded.
Moreover, if p(-) has a “jump discontinuity” at infinity, then the maximal operator
will also be unbounded: for instance, Example 3.21 can be modified to show that if
p(-) € P(R) is such that for some K > 0, p(x) = 2forx < —K and p(x) = 3
for x > K, then M is not bounded on L?")(R). But even when p(-) is uniformly
continuous at infinity, if its modulus of continuity is too large, then the maximal
operator may be unbounded.

Example 4.1. FiX peo, | < poo < 00, and let ¢ : [0,00) — [0, 1) be such that

¢(04) =0, p+ < poo — 1, ¢ is decreasing on [1, 00), ¢ (x) — 0 as x — oo, and
lim ¢(x)log(x) = oc. 4.1
X—>00

Define p(-) € P(R) by

p x<0
plx) =377

Poo —P(x) x>0.

Then p(-) & LHs(R) and the maximal operator is not bounded on L?O)(R).

Remark 4.2. The assumption that ¢(0+) = 0 is included only to preclude the
possibility that p(-) has a jump discontinuity at the origin, thus preventing the
maximal operator from being bounded (see Example 3.21). It otherwise plays no
role in the construction.

Proof. 1t is immediate from (4.1) that p(-) does not satisfy the L H (R) condition,
so we only have to construct a function f such that f € LPO(R) but Mf ¢
L?O(R). By inequality (4.1) we have that

lim (1 - %) log(x) = —oo0,

which in turn implies that

lim x!77ee/P29) =,
X—>00

Hence, we can form a sequence {c,} C (—oo, —1) such that ¢, < 2¢, and
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|Cn|l—poo/p(2\cn\) <2,

Let d, = 2c¢, and define the function f by

o

f(x) = Z len| 7V P0ED y 0 ().

n=1

Since p+ < oo, by Proposition 2.12 it will suffice to show that p(f) < oo and
o(M f) = oo. First,

© e, © e,
o(f) = Z/ |cn | 7P/ PUdnl) gy — Z/ |cn|Poo/PUdnD g
n=1 dn n=1 dy

o0 o0
Z |Cn|1—Poo/P(\dn\) < Zz—n = 1.
n=1 n=1

On the other hand, if x € (|c,], |d,]), then

1
Mf(x)ZM/(;

Therefore, since p(-) is an increasing function on (1, co) and |¢,| > 1,

] L pen |
f(y)dy = M/d e, |7V PUD gy = Z|cﬂ|—1/p<\azn\>_

n

NS 1 et
pMfY = () Do len TP ax
n=1 [en]
NP+ 22 pldl NV
. (Z) Z/ oy [P0/ PD g — (Z) 3 1=
n=1

n=1 lenl
O

Example 4.3. A family of functions that satisfy the hypotheses of Example 4.1 is

Do x € (—00,0]
px) = Po—log(e"+l)a x €(0,1)

1
po—w xe[l,oo),

where pp > 2and 0 <a < 1.

While Example 4.1 shows that LH, is sharp in terms of pointwise decay
at infinity, the proof of Theorem 3.16 yields a weaker sufficient condition that
controls, in some sense, the average rate of decay. In this proof (see p. 104) the
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LH, condition was used to estimate the maximal operator of f, = fx(x: rv<1}
by applying Proposition 2.43. More precisely, we needed the two embeddings
L®(E) C L"(E) and L®(F) C L*V(F), where

E={xeQ:p(x)=po}, F={xeQ:px)<ps},
and r(-) and s(-) are defined on E and F by

R A S T S S
P P(x)  r(x) p(x)  pe S(x)

(Note that in this argument we had for simplicity extended p(-) to an exponent in
L Hy (R") using Lemma 2.4; however, the proof does not require this extension and
goes through if we everywhere replace R” with €2.) By Proposition 2.43, a necessary
and sufficient condition for both of these embeddings to hold is that the integrals

/ AT dx  and / AT
{x€E:r(x)<oo} {xeF:s(x)<oo}

are both finite for some A > 1. If we combine these two integrals we get the follow-
ing definition and the above argument yields a generalization of Theorem 3.16.

Definition 4.4. Given Q2 and p(-) € P(R2), we say that p(-) € No(2) if there
exist constants Ao, > 0 and pso € [1, 00] such that

1 1!
/ exp —Aoo'— -— dx < o0,
Q+ ( p(x) pOO

1 1
Q+:{x69:‘——— >o}.
p(X) P
Remark 4.5. If p4 < oo, then we can rewrite the N, condition in a somewhat
simpler form:

where

/ exp (= Aol p(x) — pool ™) dix < o0,
24

where Q4 = {x € Q : |p(x) — pso| > 0}. This follows at once by an argument
essentially the same as the proof in Proposition 2.3 that if p; < oo, then p(-) €
LHy ifandonlyif 1/ p(-) € L Hy. Further, if € is bounded, then the Ny, condition
holds trivially (just like the L Ho condition), since for every Ao, > 0 the integral
is bounded by |24 |.

Remark 4.6. If p(-) € Noo(£2), then it follows at once from Definition 4.4 that
P'() € Noo().
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Theorem 4.7. Given a set Q and p(-) € P(R), if 1/p(-) € LHo(R2) and p(-) €
Noo(R2), then
||f)({x:Mf(x)>r}||Lp(->(9) = C||f||u<->(sz)- (4.2)

Furthermore, if p— > 1, then for all f € LPO(Q),

IMfllLro@) < CIS N Lrog)-
The proof of Theorem 4.7 can be adapted to prove a perturbation result that
complements the convexity result in Theorem 3.38.

Proposition 4.8. Given a set Q2 and p(-) € Q such that p— > 1 and 1/p(-) €
LHy(R2), suppose there exists q(-) € P(2) such that for some A > 0,

1 1
/Q+ o (‘Aw FoRre

where Q1 = {x € Q 1 |p(x)~'—q(x)7!| > 0. If the maximal operator is bounded
on L1O(Q), then it is bounded on LP)(Q). Similarly, if p— = 1 and M satisfies
the weak type inequality (4.2) on L1V (Q), then it also satisfies it on LP) ().

—1
) dx < oo, 4.3)

Proof. The argument is essentially the same as the proof of Theorem 4.7 (and so
the proof of Theorem 3.16). Decomposing f as fi + f>, the argument for f; goes
through without change. To estimate f, we repeat the argument given above for
Theorem 4.7, replacing poo by ¢(+); then given our hypothesis (4.3) we can prove the
necessary embeddings of L°°; the rest of the proof then follows without change. O

We now consider the relationship between L Hy, and Neo.

Proposition 4.9. Given Q and p(-) € P(RQ), if 1/p(-) € LHx(R), then p(-) €
Noo(€2). However, there exists p(-) € P(R), p+ < oo, such that p(-) € LHy(R) N
Noo(R) but p(-) & LHoo(R).

Proof. 1f 1/ p(-) € LHx(L2), then it follows immediately from the definitions that

P() € Noo(R2):
—1
/Q+ exp (—Aw‘ﬁ - P%.o ) dx < /n exp (_C/‘:O log(e + |x|)) dx < 0.

The last inequality holds for all A > nCxo.
To show that Noo(R) is not contained in L Hx (R), fix poo > 1 and define ¢ (:)
by

¢(x):{%_|ek2—x| Oflekz—x|§%, 1<k < oo,
0

otherwise.
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Now let p(x) = poo + ¢(x); then

k

|P(€ ) poo|_¢(€ )_E W’

so p(-) € LHs(R). On the other hand, it follows immediately from the definition
that ¢ (-) is Lipschitz, so p(-) € LHy(R). Furthermore,

/Q eXp( [p(X) — pool™ 1 dx—Z/ e /() g

Iek —x|<1/k}

o0

Hence, by Remark 4.5, p(-) € Noo(R). O
If p(:) € Noo(£2), then p(-) has a limit (in a weak sense) at infinity.

Proposition 4.10. Given an unbounded set Q2 and p(-) € P(S2), suppose p(-) €
Noo. Then:

1. 1/ p(-) converges to 1/ peo at infinity in the sense that if we define

1
(X)) = |—— — . X\B; (0)(X),

(X)

then m, — 0 in measure as k — 00.
2. If 1/ p(-) is uniformly continuous (e.g., if 1/p(-) € LHy(S2)), then 1/p(x) —
1/ pso as |x| — oo

Remark 4.11. The conclusion in (1) is equivalent to

hrn

=0,

{er\BR(O) ) 1 >e}
p(Y)  Poo

and the proof can be readily modified to show this directly.

Remark 4.12. 1t is not necessary for a limit at infinity to exist, even in the weak
sense of Proposition 4.10, for the maximal operator to be bounded. See Sect. 4.6.3
below.

Proof. To prove (1), fix € > 0. Since p(-) € Noo(L2), for all & > 0 sufficiently
large,

1 1! _
/ exp —Aoo‘——— dx < ee™€ Moo,
{(xeQp:lx[>k} P(¥)  Peo
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Thus,

1 1

— <e,
P(X) P

—1

{x € Q:|m(x)| > €} <e.

{x € Q+\Bk(0):exp(—Aoo‘

and this immediately implies that

Hence, ;. — 0 in measure.

To prove (2), suppose to the contrary that there exists p(-) € N such that
1/ p(-) is uniformly continuous, but there exists € > 0 and a sequence {x } such that
xp — oo while |1/ p(xx)—1/poo| > €. By passing to a subsequence we may assume
that if j # k, |x; — xx| > 1. Since 1/ p(-) is uniformly continuous there exists §,
0 < 8 < 1, such that for every k, if |x; — x| < 8, then |1/ p(x) —1/pso| > €/2. But
this contradicts (1) and so we must have that 1/ p(-) converges to 1/ ps pointwise
as |x| — oo. O

Since the condition in Proposition 2.43 is necessary and sufficient for the
embedding of L% into LP"), N, is the weakest condition we can use in the proof
of Theorem 3.16 to control the maximal operator at infinity. This is analogous to
the fact that L H, is the weakest condition we can use in this proof to control the
maximal operator locally. It remains an open problem to find a weaker condition on
an exponent p(-) and a generalization of this proof lets us show that

IMflper = ClUA Mo

for all f such that | f| < 1. (For a general necessary and sufficient condition, see
Theorem 4.63 below.) The problem of finding such a condition is interesting since,
as the next example shows, there exist exponents p(-) that do not satisfy the N
condition but M is bounded on L?®).

Example 4.13. On the real line, given pp > 1 and 0 < a < 1, define

1

X)=po+ ——.
p(x) = po log(e + [x])°

Then p(-) & Noo but M is bounded on L?O)(R).

Remark 4.14. Compare these exponent functions to the ones in Example 4.3. There,
we needed both the larger modulus of continuity and the asymmetry of p(-) to show
that the maximal operator is unbounded. In the proof of Example 4.13 we need both
the radial symmetry and the monotonicity of the exponents. While the interplay
of these two hypotheses in the construction of the example is clear, their deeper
significance is not known.

The construction requires a lemma which is a generalization of Lemma 3.26 and
which is proved in exactly the same way.
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Lemma 4.15. Let p(-), q(-) € P(R") be such that p+, g+ < oo and

Coo
[p(x) —q(x)| < m‘ 4.4)

Then given any function F with 0 < F(y) < 1 and any N > n, there exists a
constant C > 0 such that

[ Foroay=c [ Foyody e [ e a.
R R R

The same inequality also holds with the roles of p(-) and q(-) reversed.

Proof of Example 4.13. We will follow the proof of Theorem 3.16 in the case p4 <
co. Fix a function f and write f = f; + f» as before. Since p(-) is Lipschitz,
p(-) € LHy(R), and so the estimate for f; proceeds as before.

The heart of the proof is the estimate for f,. To simplify notation we will write
simply f instead of f,. Then we have that 0 < f(x) < 1 and

p(f) = [ ferdx <1,
R
and we need to show that there is a constant C such that
/ Mf(x)"™ dx < C.
R

Our first step is to replace p(-) with a discrete exponent function g(-). For x > 1,
let a(x) = x log(x?) = Bxlog(x), where we fix B > 1 so that

1

1 <
Define the set
Ep = (—e®W My = (—1,1),
and for k > 1 define

Ek — (—ea(k+l),€a(k+l)) \ Ek—l-

Note that for all k > 1,
|Ex| = 2(e*®+D — p2k)y, (4.6)

Now let go = ¢q; = 1, and for k > 2 let

1 1
ek —1e P T BE - Dlogk — D)o

qk = P
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Define ¢(:) € P(R) by
q(x) =Y qrxe (x).

k=0
Since a(k—1) < a(k) < log(e 4+e*®)), forallk > 1, g; > p(e*®), and therefore,
since p(-) is a decreasing function, g(x) > p(x) forall x € R.

To replace p(-) by g(-) we will apply Lemma 4.15. Since p(:) and g(-) are
bounded, if x € Ey U E}, (4.4) clearly holds. Now fix x € E, k > 2. Then

1 1
q(x) = p(x) = ((ﬂ(k —1)log(k — 1)) (log(IXI))“)

1 1
* ((1og<|x|)>u logle 1 |x|>“) '

It follows immediately from the mean value theorem that the second term is bounded
by C log(e + |x|)~!, so we only need to estimate the first term. Since x € Ej, by
the monotonicity of the logarithm and again by the mean value theorem,

1 1
(B(k — 1) log(k — 1))¢  (log(]x[))
1 1
= (Bk — D log(k —1))*  (B(k + 1)log(k + 1))
2aB(log(k — 1) + 1) _ C _ C
= (B(k — 1) log(k — 1))a+!1 = (k — 1)1« ~ log(e + |x|)’

4.7)
The last inequality holds since if x € Ey,
9k — ' > (k + 1) = c(a, B) log(e + |x]).

Thus (4.4) holds for all x. Since 0 < f < 1, by Proposition 3.3, Mf < 1.
Hence, by Lemma 4.15,

/Mf(x)]’(x) dx < C/ Mf(x)q(’f) dx +C/(€ + |x|)—2q(x) dx.
R R R

Since the second integral is finite, it remains to bound the first integral. We divide
up the domain of integration:

q(x) — q(x) q(x)
/RMf(x) dx /E(,UEI MFf(x) dx—i-]; Mf(x)?™) dx.

Ex
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The first integral is easy to estimate:
/ Mf(x)?™ dx < |EyU E,| = 2¢*?.
EgUE;

To estimate the sum for each k > 2 we define the following sets:

k=2 [els)
Fo=|JE;, Gi=E-UEUEy, H= |J E.
j=0 j=k+2

for each k, Fy U Gy U Hy = R. Then, since g4+ < oo, by the modular triangle
inequality (Remark 2.8),

S Mfx)I dx
k=2 Ek
< c( M(fxr) (0% dx + M(fx6,)(x)% dx
]; /l;k /; /Ek

+ M ) () dx)
=C(, + L+ I5).

We estimate each summation in turn. We first consider /,. By Theorem 3.4 and
Remark 3.5, the maximal operator is bounded on L4 (R) with a constant bounded
by Cq, < Cpj. Further, for x € Gy, gx > p(x). Thus,

=X [ M= ey [ s
k=2 Ek = Ja

= C/Rf(x)f’(” (;XGk(X)) dx < 3C/Rf(x)”("‘) dx < C.

Next we estimate /3. For x € Ej,
M) = s £ () dy,

where the supremum is taken over all intervals J such that x € J and |J N Hy| > 0.
These two conditions combined with (4.6) imply that

|J] = e®"F — "D = | Eyy]/2.
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Forall y € Hy, qx > p(y). Therefore, by Holder’s inequality,

M(f 1) (0% < sup ][ (fO) 2 )" dy
J J

< f)%dy < F)P dy < :
|Exy1] |Ex+1] J | Ex 1]

Hence,
I = / M(f ) ()% dx <2 .
; E ‘ ; |Er+1]

By the definition of the sets Ek,

|Ek| ek+1) _ palk) - 1
|Ek+l| T eak+2) _ pak+1) — patk+2)—alk+1) _ 1°

Moreover,

atk +2)—alk +1) = B(k +2)log(k +2) — B(k + 1) log(k + 1)
> B(k 4+ 2)log(k + 1) — B(k + 1) log(k + 1) = Blog(k + 1). (4.8)

Therefore, since 8 > 1,

o0 1
;<2 —— < 0.
P = ;(kJrl)ﬂ—l

Finally, we consider [;; this estimate is the most delicate. Since the maximal
operator is sublinear (Proposition 3.3), for each k > 2,

qk

k—2
[ Mt ax < [ (X mtaee | dx @9
Ex Ej =0

Forx € Exrand0 < j <k —2,
M(fxe)(x) = Sl}p][J fOxe; (y)dy,

where the supremum is taken over all intervals J such thatx € J and [J N E;| > 0.
Therefore,

|J| > |x| —e®UTD > | x| —e2*=D,
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Forally € E;, qj+1 > p(y), and so by Holder’s inequality with exponent g, 1,

MU 1)) = i | oy

1/q
< ;|E‘|l/q;+l F(y)4it dy .
= x| —exk=D Ej

1/q;
<;|EA|1/4}+1 / F()PY dy b
= x| —exk=D Ej

1 1/q".
N |X|—e“(k—1)|Ej| I

If we combine this inequality with (4.9), we get

qi k—2

/4]

11<Z(/ (|x|—e”‘(" 1)) dx) Z:O|E;| 9j+1
i=

We first evaluate the integral on the right-hand side:

1 qk
/Ek (|x| - eu<’<—l>) dx

[} 1 qk 2 1
< 2/em) (—x — ea(k_l)) dx = e 1 (o ey (4.10)

Next we estimate the sum. For j > 2, |E;| < 2e%U+D. Since

qk

qdj+1 = Po + T
’ a(j)e
we have that
Lo e+t =yt L P
‘I;-H poce(j)e +1 P(/) poo(j)* +1

Therefore,
@+ _e(G+D  pylal+Da@)~
911 Po po+a(j)™
Since «(+) is an increasing function and a(j + 1)a(j)™ is increasing for j large
and tends to oo as j — oo, for2 < j < k —2 and k large,
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|Ej |1/q‘;+1 < Cea(j+l)/q,;'+l < Ceot(k—l)/q,i_1 )
A similar estimate holds for j = 0, 1 or when k is small. Therefore,

k—2 qk

S 1| = otk exp (ath - 1))
j=0 k 1

= C(k — )% exp (oz(k — 1)q—]f) exp (oz(k -1 ( ?k — q—]f)) .
q -1 4k

We estimate the last exponential: by the mean value theorem (arguing as we did

for (4.7)),
exp(a(k—l)( . q’,‘))
q
_ (Ol(k (le Qk))
qk—1
1 1
= e (_“(k ( & — 2y a(k—m))

a log(k — 1) + 1)

a(k —1) a(k —2)1+a

Thus we have that

qk

k—2

o1 | et esp (ate - %)
‘ q
=0

k
= C(k — )% exp (a(k — 1)(gr — 1)). (4.11)

We can now estimate /;: by (4.10), (4.11) and (4.8),
0 eek=1) ar—1
h=€) - (m)

qr—1 o
—Blar—1)
<CZ(k—1) (m) SCZ(k_l)lIk Bla=1)

k=2

By (4.5),
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g —Blar—1) <B—-—B-Dpo<p—-(B+1)=-1

Therefore, the final series converges. This completes the estimate of /; and so
completes our proof. O

4.2 A Useful Tool: Muckenhoupt A4 , Weights

In this section we pause in our study of the maximal operator on variable Lebesgue
spaces to introduce some ideas from the theory of weighted norm inequalities. The
theory of weights is closely intertwined with the properties of the Hardy-Littlewood
maximal operator, so it is perhaps not surprising, at least in retrospect, that
these results are directly applicable to studying the maximal operator on variable
Lebesgue spaces. We will apply these ideas in Sects. 4.3 and 4.4. Furthermore, we
will show in Chap.5 that the theory of weights provides an elegant approach to
studying the behavior of other operators on variable Lebesgue spaces.

By a weight we mean a non-negative, measurable function such that 0 < w(x) <
oo almost everywhere. For 1 < p < oo, a weight w is in the Muckenhoupt class
Ap,—or simply, w € A,—if

-1
Wla, = Sgp (][Q w(x) dx) (][Q w(x)l_]’/ dx)p < 00, (4.12)

where the supremum is taken over all cubes with sides parallel to the coordinate
axes.

Remark 4.16. In the definition of A, weights the hypothesis 0 < w(x) < oo
implies that both integrals in (4.12) are positive, and therefore both must be finite:
ie.,wandw!' = are locally integrable. We could weaken this hypothesis and instead
assume that w is not identically equal to O or infinity; (4.12) would still make sense
if we used the convention that 0 - co = 0. However, this gains nothing: implicit in
this more general definition is the fact that w and wi=?" are locally integrable. See
Remark 4.36 in the next section.

When p = 1 define the class A; to be the weights such that

Mw(x)
[W]4, = esssup
x€R" W()C)

< 00, (4.13)

where M is the Hardy-Littlewood maximal operator. There are two equivalent
definitions that will be useful in practice. First, w € A; if for almost every x,

Mw(x) < [w]a, w(x). (4.14)
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Alternatively, we have that w € A, if for every cube Q,
][ w(y)dy < [w]a, essinf w(x). (4.15)
Q XEQ

Clearly, (4.13) and (4.14) are equivalent, and (4.14) implies (4.15). To see the
reverse implication, suppose (4.15) holds and fix x such that Mw(x) > [w]4, w(x).
Then there exists a cube Q such that

][Q w(y)dy > [wlawix):

we may assume that the vertices of Q have rational co-ordinates. Thus x belongs to
a subset of O with measure 0. Since there are a countable number of such cubes, the
collection of all such x must have measure 0, which shows that (4.14) holds almost
everywhere.

The collection of all the A, weights is referred to as Ao:

A =] 4,.

p=1

Remark 4.17. In the definition of A, weights we can substitute balls for cubes. In
Sect. 3.1 we showed that the maximal operator can be defined using either balls or
cubes, and the same reasoning applies here: given any ball B, there exist two cubes
Q1. Q, with the same center such that Q1 C B C Q, and |Q»|/| Q1| = n"/?, and
a similar relationship holds with the roles of balls and cubes reversed.

The A, condition, p > 1, is in some sense a reverse Holder inequality. To see
this more clearly, we rewrite (4.12) as

W7 xollp w7 X0l < WY1 Q1. (4.16)

By Holder’s inequality, the left-hand side is always greater than or equal to | Q|
s0 (4.16) can be regarded as a reverse of this inequality. In Theorem 4.22 below we
will show that the A, condition implies another, fundamental inequality that is more
clearly a reverse Holder inequality.

The definition of A, immediately yields four basic properties of these weights.

Proposition 4.18. Given p, 1 < p < oo, then:

1. If p>1landw € A, then wl=r' e Ay and [WI_P/]AP/ = [W]Z;_l.
2.Ifp<q<oo,then Ay C Ay and [w]a, < [W]4,.

3. Ifp>landwy, wy € Ay, thenw = wlwé_p € Ay and [wla, < [wi]a, [wz]ﬁl_l.
4. Ifw € A, then for any cube Q,
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][ w(x) dx < [w]4, exp (][ log (w(x)) dx) )
0 0

Remark 4.19. The converse of Property (3) is also true and is a very deep property
of A, weights called the Jones factorization theorem. Property (4) is referred to
as the reverse Jensen inequality for A, weights. The converse is also true: if this
inequality holds with some constant, then w € A, for some p > 1. The sharp
constant is denoted [w] 4. .

Proof. Property (1) follows from the definition and the fact that (p—1)(p'—1) = 1.
Property (2) follows from Holder’s inequality: forg > p > 1, p’ —1 > ¢’ — 1, and
so for any cube O,

q—1
1—q’
(][Q w(x) dx) (][Q w(x) dx)
p—1
< (][ w(x) dx) (][ w(x)' = dx) < [wla,-
0 0

If p = 1, then by (4.15) for any cube O,

1 %1
(][ w(x)' =7 dx)q = (][ (w(x)_l)q/_1 dx)q
0 0

—1
<esssupw(x)”! = (essinfw(x))_l < [w]a, (][ w(x) dx) ;
xX€0 xeQ 0

q—1
(][ w(x) dx) (][ w(x)' ™ dx) < [Wla,.
% 0

Property (3) follows by an almost identical argument:

-1
(][ W w6 dx) (][ w1 () s ()P0 dx)p
% %
1—
< bl (f o) (f waewar)
-1 p—1
< il (][Q wix) dx) (][Q wa(x) dx)

= [wily, [Wz]ﬁl_l-

hence,
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To prove Property (4) first note that by (2) we may assume that p > 1. But then,
for any cube Q,

-1
4702 i, (f ey (f weor < ax)
= (][ w(x) dx) exp (][ —log (w(x)) dx) .
% 0

The final equality is a well-known identity: see Rudin [305, p. 71]. O

The simplest examples of A, weights are the power weights.

Example 4.20. For all a € R, w(x) = |x|* € A; if and only if —n < a < 0, and
forl < p < oo, w(x) = |x|*“ € A, ifandonlyif —n <a < (p — D)n.

Proof. We first consider the case p = 1. Our computations are easier if we consider
the maximal operator as defined in terms of balls containing the point x. Suppose
first that —n < a < 0. Then, as we showed in Example 3.2, Mw(x) < c¢(n, a)|x|*
for every x # 0, so by (4.14), |x|* € A;.

On the other hand, if ¢ < —n, then |x|* is not integrable on any ball containing
the origin, and so for every x € R", Mw(x) = oo. Similarly, if a > 0, then

Mw(x) > sup][ [v|“dy = c¢(n,a) sup R = oo.
R>|x|J Bgr(0) R>|x|

Now suppose 1 < p < oo.If —n < a < 0, then by the previous case and by
Proposition 4.18, Property (2), w € A C A,.1f0 < a < n(p — 1), then the same
argument shows that w(x)!™?" = |x|7*®'~) ¢ A, C A, since a(p’ — 1) < n.
Hence, by Proposition 4.18, Property (1), w = w!=?)(0=7) ¢ A Finally, if a <
—nora > (p — 1)n, then either w or w'=" is not integrable on any set containing
the origin,sow & A4,. O

We now turn to a fundamental property of A, weights: the reverse Holder
inequality.

Definition 4.21. Given s > 1, a weight w satisfies the reverse Holder inequality
with exponent s, denoted by w € RHj, if

(fQ w(x)* dx) .
e, = sup=- e <o

Theorem 4.22. Given p, 1 < p < oo, if w € A, then there exists s > 1 such that
w € RHy. The constants s and [w]ru, depend only on p, n and [w]a,.
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The proof of Theorem 4.22 requires a definition and two lemmas.

Definition 4.23. Given a cube Q, let A(Q) be the set of cubes consisting of Q and
all the cubes contained in Q gotten by repeatedly bisecting the sides of Q. We refer
to A(Q) as the set of dyadic cubes relative to Q.

The dyadic cubes relative to a cube Q have properties very similar to the
properties of dyadic cubes enumerated in Proposition 3.7 and we will make use of
these without comment. Our first lemma is a local version of the Calderén-Zygmund
decomposition (Lemma 3.9).

Lemma 4.24. Given a cube Q and a function f € L'(Q), then for any t >
fQ | f(¥)| dy, there exists a (possibly empty) set of disjoint cubes {Q ;} C A(Q)
such that

z<][ 1)y <2,

J

and for almost every x € Q \Uj 0, 1fx)] =t

The cubes {Q;} are called the Calderén-Zygmund cubes of f relative to Q at
height 7.

Proof. Fix t; if t > || f|lroo(g), then there is no Q' € A(Q) such that
fQ/ | f(»)|dy > t so we will let the collection {Q ;} be the empty set. Otherwise,

let E,Q = {x : | f(x)| > t}. By the Lebesgue differentiation theorem (applied with
respect to the cubes A(Q), see Sect.2.9) for almost every x € E,Q there exists a
cube Q. € A(Q) containing x such that

][ FO)ldy > 1 z][ 1f ()] dy.
Ox [¢)

If more than one cube in A(Q) has this property, let O, be the largest one. The
second inequality implies that Q, # Q. Since A(Q) is countable, the set {Q :
x € E[} is at most countable; re-index it as {Q;}. The cubes Q; are pairwise
disjoint: if two cubes in A(Q) intersect, then one is contained in the other, and so
by the maximality of each Q ; it cannot be contained in another such cube.

Furthermore, since Q; # Q, its dyadic parent 0 ; is contained in A(Q), and so
by the maximality of O,

| orolar=2f iroia <2

¥ Q;

Finally, by our choice of the cubes Q ; the set E ,Q is contained, up to a set of measure
0,in ; Q- This completes our proof. O
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The second lemma shows that if w € A, then the measure w dx has homo-
geneity properties similar to the Lebesgue measure. For brevity, hereafter, given a
measurable set E let w(E) = [ w(x) dx.

Lemma 4.25. Ifw € A, then for any cube Q and measurable set E C Q:

1. Foranya, 0 < o < 1, there exists B, 0 < B < 1, such that if |E| > «|Q|, then

w(E) = Bw(Q).
2. Foranyy, 0 <y < 1, there exists 6, 0 < § < 1, such that if y|Q| > |E|, then

$w(Q) = w(E).

Proof. To prove (1), fix @ and fix Q and E such that |E| > «|Q|. Then by Holder’s
inequality and the definition of 4,

E] : (E)'? v ax)”
@< ﬁ :][Q 1 E(WE) Pw(x)"VP dx < VTQW (][Q w(x)! =7 dx)

=g WE)? ( )_1/,, e (w(E))‘/P
=< [wl4, 0|7 ][Qw(x) dx = [wl4, w(0) .

Rearranging terms we get w(E) > o? [W]ZII)W(Q), which gives us the desired value

of B.
Property (2) follows at once from Property (1). Fix y and sets Q and E such that

y|Q| = |E|. Then |Q \ E| = (1 - y)|Q], and so with B = (1 — y)”[w];},
w(Q) —w(E) =w(Q \ E) = pw(0Q).

Rearranging terms we get (1 — B)w(Q) > w(E), which gives us the desired value
of §. O

Remark 4.26. As a corollary to Lemma 4.25 we get that wdx is a doubling
measure: there exists a constant [w]p such that given any cube Q, w(2Q) <
[W]pw(Q). In fact, this remains true if we replace 2Q by any cube Q' that contains

O such that £(Q’) = 2£(0Q).

Proof of Theorem 4.22. Fix a cube Q and for k > 0 define the sequence #;, =
Zk(”'H)fQ w(x)dx = 2F*TDy, For each k form the Calderén-Zygmund cubes
{Q’]‘ } of w relative to Q at height #; (Lemma 4.24), and define the sets Q; =
U j Q’j‘ It follows from the construction of these cubes that Q41 C Q, and in

fact for any i there exists j such that Q,/-‘+1 C Q’]‘-. Then for each j and k we have
that
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QN k=Y ot

k+1
oftcok

on
<l Y Wl = ilw(eh = Z"|Q|——|Q|

k41
ot cok

Hence, by Property (2) of Lemma 4.25 with y = 1/2, there exists § > 0 such that
w(Qg41 N Q’j‘.) < SW(Q]]‘.). If we sum over all j, we get w(Qp+1) < dw(2y), and
so by induction we have that w(2;) < §*w(R).

Similarly, we have that || < 27|, so

= lim || = 0.
k—00

For almost every x € Q \ Q, w(x) < t. Therefore, for € > 0 to be fixed below,

1
wx) T dy = — w(x) T dx + — / w(x)'Te dx
-fQ |Q| 0\Qo |Q| Z Qe \ Q41
1€ ad
<0 w(x) dx + w(%)
101 Jora, ; (S

W(X) dx - (k+1)(n+l)et68kw(9 )
= 10| / 0\2, 0] 2 o

Fix € > 0 so that 21§ < . Then the series converges and the final term is
bounded by

1+e€
tg][ w(x)dx + C|Q| ' t§w(Q) < C (][ w(x) dx) .
0\Qo %

The constant C depends only on n and §, and so on n, p and [w]4,. Since this
estimate is independent of the cube Q we have thatw € RH; withs =1+e€. O

As a consequence of the proofs of Lemma 4.25 and Theorem 4.22 we get
the following corollary which will be of central importance in the proof of
Theorem 4.52 in Sect. 4.4 below.

Corollary 4.27. Given a cube Q, suppose a weight w satisfies Property (1) of
Lemma 4.25 for some «, B > 0 and for every Calderén-Zygmund cube of w relative
to Q. Then there exist constants s, C > 1 depending only on n, a and B, such that
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(][Q w(x)* dx)l/s < C][Q w(x)dx.

In particular, if this is true for every cube Q, w € RHj.
The converse of Theorem 4.22 is also true.

Theorem 4.28. Given w € RH, s > 1, there exists p, 1| < p < oo, such that
w € Ap. The value of p depends only on s, [Wgn,, and n.

Proof. The proof requires a generalization of the 4, and RH; conditions. Given a
non-negative measure [, we say that a weight w such that 0 < w(x) < oo p-almost
everywhere is in A ,(u) for some p, 1 < p < oo, if

1 1 , p-l
W4, = sgp (@/QW(X) du) (wfgw(x)l_” du) < o0.

Similarly, we write w € RH () if it satisfies the reverse Holder inequality

1/s
(s Jo Wiy dpt)
@ IQ W(x) d:u*

WlRH, () = sup

Given w € A, let du = wdx. Then the A, condition can be rewritten as

P/_l ’ / p/
( / w(x)dx) / (W) ™) w(x) dx < )} ( / w(x)_lw(x)dx) ,
0 0 0

which in turn is equivalent to

7’ 7 p/
—M(IQ) /Q () ™) dp < W} (—M(IQ) /Q w(x) ™! du) :

It follows immediately that w € A, if and only if w™! € RH, (w). A similar
argument shows that w € RH; if and only if w™' € Ay (u). Furthermore, we
can repeat the proofs of Lemmas 4.24 and 4.25, and Theorem 4.22 starting with
the assumption w™! € Ay (). The proofs go through as before since u is a
doubling measure: more precisely, we apply Remark 4.26 to replace 2" by [w]p
in the construction of the local Calderén-Zygmund cubes.

Therefore, given w € RH, there exists some p > 1 such thatw™! € RH (1),
which in turn is equivalent to w € A . This completes our proof. O

As a consequence of the reverse Holder inequality we get that if w € A, for
some p, then there exists s > 1 such that Myw(x) = M(W*)(x)"/* < CMw(x).
The next result is a sharper version of this inequality that we will need in Sect. 4.3.
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Proposition 4.29. Givenw € Ay, if so =1+ , then for 1 < s < sg and for

1
2n+2[W]Al
almost every Xx,

Mw(x) <2Mw(x) < 2[w]4,w(x). 4.17)

The proof of Proposition 4.29 requires an inequality that is the reverse of the
weak (1, 1) inequality for the maximal operator (Theorem 3.4).

Lemma 4.30. Given a function f € L} (R"), for every cube Q and t >
£, £ ()] dx,

—n

e QM == | @ dx.
{reQ:|f(x)|>1}

Proof. Fix t > fQ | f(x)dx; it t > | fllLeo(p), then this result is trivially true.
Otherwise, by Lemma 4.24, let { O ; } be the Calderén-Zygmund cubes of f relative
to Q at height ¢. Then forevery x € 0,

Mf(x) Z][ . | f(x)|dx >t,

9

and since the cubes Q; are disjoint and | f(x)| < ¢ for almost every x ¢ Uj 0;,

xe Q:Mf(x)>1}] =) |0/l

J
2—n 2—)1
= [ wlar= = [ £l dx.
0, /0 U Jxegilfl>1}

|

Proof of Proposition 4.29. Fix we A;. The second inequality in (4.17) is
immediate. By Holder’s inequality and the definition of the maximal operator,
to prove the first inequality it will suffice to show that for any cube Q and xp € Q,

][ w(x)®* dx < 2Mw(xp)®.
0

Lete = (2”+2[W]A1)_1, so = 1 + €, and fix a cube Q and xo € Q. Then by the
analog of the identity (3.6) for the measure yow dx (see [238,305]) we have that
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o0
][ w(x)* dx :][ w(x)w(x)dx = €|Q|_l/ “'wx € O tw(x) > t))dt
0 0 0

Mw(xo)
= 45|Q|_1/0 " lw(x € Q 1 w(x) > t})dt

+e€l0]™! /00 “'wx € Ot w(x) > t))dt.

Mw(xo)

The first term is easy to estimate:

Mw(xo) .
€|Q|_1/0 T w(x € 0 tw(x) >t})dt

Mw(xo)
< ¢[0]"'w(0) /0 i = ][Q w() dy - Mw(xo) < Mw(xo)™*.

To estimate the second term we use Lemma 4.30 (on the function w) and (3.6)
(on the function (M w) xo):

elo|™! /OO 'w({x € O tw(x) > 1)) dt

Mw(xo)

o0
=€|0|™! / <! / w(x)dx dt
Mw(xp) {xeQ:w(x)>t}

< 2"e|Q|“/OOOt€|{x €0 : Mw(x) > t}|dt

27!
- ][ Mw(x)'T¢ dx
+e€ 0

1
2"e[w] L’ILE

< —][ w(x)'T€ dx.
1+4+¢€ 0

Combining these estimates we get
n [ ]l+e

2"e[w
][ w(x)' T dx < Mw(xo)'™ + —A][ w(x)! "€ dx.
0 1+6 0

Since forall x > 1, x@ 07" < x60™" < o

2"e[w]+e

14+ ¢

n—+2 —1 1 n—+2 —1
< 2n2—n—2 [W]le [W]L‘:'(z [Wlay) < Z [W](Azl wlap) <

N =

Therefore, if we rearrange terms we get the desired inequality. O
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4.3 Applications of Weights to the Maximal Operator

In this section we give several applications involving weights, the maximal operator,
and variable Lebesgue spaces. We begin with two results which are weighted norm
inequalities and so do not involve variable Lebesgue spaces, but which will be
an important motivation for the results in Sect.4.4. We then prove a theoretical
characterization of those variable Lebesgue spaces on which the maximal operator
is bounded; we will apply this result in the proof of Theorem 4.52 in the next section.
Finally, we give the proof of Theorem 3.31 on modular inequalities for the maximal
operator.

Definition 4.31. Given a weight w and p, 1 < p < oo, define the space L”(w) to
be the collection of all measurable functions f such that

1/p
1/ N = ( /R ) dx) < oo,

The space L?(w) is referred to as a weighted Lebesgue space.

Definition 4.32. Given a cube O, define the averaging operator Ao by
A0s) = f 01y o)

For brevity, hereafter will often write fy instead of fQ f()dy.
Proposition 4.33. Given p, 1 < p < oo, and a cube Q,

/ Ao f()Pw(x) dx < Cy / )P w(x) dx @.18)
(9] 0

Sorall f suchthat fyo € L?(w) if and only if
’ p_l
(][ w(x) dx) (][ w(x)! =7 dx) < Cy (4.19)
0 0

][ w(x)dx < Cyessinfw(x) dx (4.20)
0 xX€Q

when p > 1 or

when p = 1. As a consequence, w € A, if and only if the operators Ap are
uniformly bounded on L? (w) for all Q.

Remark 4.34. Proposition 4.33 remains true if we replace averages Ao over cubes
with averages Ap over balls. This follows by the same proof, using the fact, noted
after the definition of A, that we can define this condition using balls instead of
cubes.
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Proof. Suppose first that (4.19) holds. By Holder’s inequality,

[ 140 s dx = (f LGOI ()P dx)p [ werax
0 0 0
-1
< /Q 1) Pw(x) dx (][Q ()" dx)p ][Q w(x)dx < Gy fQ ) Pw() dx.

A similar argument yields (4.18) if p = 1 and (4.20) holds.
Now suppose that (4.18) holds. If p > 1, let f = wl_”/)(Q. Then inequal-
ity (4.18) becomes

’ p A
/ w(x) dx (][ w(x)! =P dx) < Cy / w(x)1P)Pyw(x) dx,
0 % %

which in turn immediately yields (4.19).
If p =1, thenforeveryq > 1, [Ag(f)(x)|? < Ap(]f]?)(x), and so

[ A f(0)"w(x) dx < Co / () w(x) dx.
0 0

Therefore, by the above argument we have that for every g > 1,

q—1
(][ w(x) dx) (][ w(x)l_q/ dx) < Co.
0 0

However, by a well-known identity (see Rudin [305, Example 4, p. 71])

q—1
lim (][ w(x)' ™ dx) = esssup (w(x)™"),
0

g—1 x€Q

which yields (4.20). O

The next result shows the close connection between Muckenhoupt 4, weights
and the maximal operator, and is fundamental in the study of weighted norm
inequalities.

Theorem 4.35. Given p, 1 < p < oo, then w € A, if and only if for every f €
L?(w) and everyt > 0,

wlx e R" : Mf(x) >t}) < %An | f()|Pw(x) dx. (4.21)



154 4 Beyond Log-Holder Continuity

Furthermore, if p > 1, thenw € A, if and only if

/ Mf(x)Pw(x)dx < C/ | f(0)|Pw(x) dx. (4.22)
R R

In both cases the constant depends on p, n and [w]a,.

Proof. The proof of the sufficiency of the A, condition is very similar to the proof
of Theorem 3.4, so we only give the main steps. Arguing as we did in the proof of
Theorem 3.16 using Lemma 3.30, it will suffice to prove both inequalities assuming
that f is bounded and has compact support. We first prove inequality (4.21). When
p = 1, fix t > 0 and form the Calderén-Zygmund cubes {Q;} of f at height ¢
(Lemma 3.9). Then

Wix € R Mf(x) > 1) = Y w(30)) < §Zw<3Q,->fQ £l dx
j j i

< 37; /Q @M dx 5 adlul /R )

When p > 1 the proof is essentially the same, using Holder’s inequality to get

p 1
s =3 o) f o)

To prove inequality (4.22), note that since w € A,, p > 1, by Proposition 4.18,
wi=r' ¢ A . Therefore, by Theorem 4.22, wi=r' ¢ RH; forsomes > 1.Fixqg < p
such that ¢’ — 1 = s(p’ — 1). Then for every cube O,

-1
(][Q w(x) dx) (][Q w(x)l_”/ dx)q
-1
< W L, (][Q W) dx) (][Q W)~ dx),, < ' e, ol

Hence, w € A,. Further, by Proposition 4.18, for any r > p, w € A,. By the
argument above, we have that inequality (4.21) holds with p replaced by either g or
r. Therefore, by the Marcinkiewicz interpolation theorem (Proposition 3.46, which
remains true with Lebesgue measure replaced by the measure w dx: see [96]), we
get (4.22).

Finally we prove that the A, condition is necessary for (4.21); recall that when
p > 1, (4.22) implies (4.21). When p = 1, fix s > essinf,eg w(x). Then there
existsaset E C Q,|E| > 0, such that w(x) < s forall x € E.Let f = yg; then
forallz,0 <t < |E|/|Q],and x € Q,
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Mf(x)>@>t.

~ 1ol
Hence, by inequality (4.21),

w(Q) <tw({x e R" : Mf(x) > t}) < Cw(E).
Taking the supremum over all such ¢t we get

Q) _  w(E) _
o] =€ =

If we take the infimum over all such s, we get

Cs.

][ w(x)dx < C essinf w(x).
0 X€EQ

Since the constant is independentof Q, w € A;.
Now fix p > 1 and acube Q, and let f = wl_”/)(Q. Then for x € Q,

Mf() = ][Q W) dy,

so if we take r > 0 to be any value smaller than the right-hand side, we can argue as
we did above using the weak (p, p) inequality to get

/ p /
(][ () dy) Ww(Q) < C / W)\ dy.
0 0

The A, condition follows immediately. o

Remark 4.36. In the definition of A, weights we assumed that 0 < w(x) < oo
almost everywhere, which implies that w and w!=7" are locally integrable. However,
if we omit this hypothesis from the definition (see Remark 4.16 above), then we can
still prove that this is the case.

We can modify the proof of the weak type inequality (4.21) so that it works using
the more general definition of 4, weights, assuming only that w is not identically
equal to O or infinity. Given that the weak type inequality holds forw € A4,, 1 <
p < 0o, we can show that 0 < w(x) < oo almost everywhere. Fix a cube Q and a
measurable set £ C Q; then by modifying the argument for the necessity of the A;
condition above we can show that

|E\”
(@) w(Q) < Cw(E). (4.23)
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Suppose that there exists a bounded set E of positive measure such that w(x) = 0
for x € E. Then given any cube Q containing E, (4.23) implies that w(Q) = 0, so
w = 0 almost everywhere on Q. Since we can take Q arbitrarily large, we have that
w = 0 almost everywhere. Similarly, suppose that w(x) = oo on a set E of positive
measure. Then given any cube Q containing £ we must have w(Q) = oo. But then
(4.23) implies that w(E) = oo for every subset £ C (Q, and so w(x) = oo almost
everywhere on Q. Again since we can take Q arbitrarily large, we have thatw = oo
almost everywhere. Thus in either case we contradict our original assumption that
w is not O or infinite almost everywhere.

We now turn to applications of weights to the theory of the maximal operator
on variable Lebesgue spaces. Our first result is a characterization of L) spaces on
which the maximal operator is bounded. To state it, we first make a definition. Given
Q, p(-) € P(R), and an operator T : LPV)(Q) — L?V(Q), we define the operator
norm of 7" by

”T”Ll’(')(Q) = sup ITf ”Ll’(‘)(Q)'

I£1lpe=1
Theorem 4.37. Given Q2 and p(-) € P(S2), the following are equivalent:

1. M : LPO(Q) — LPO(Q).
2. Foralls > 1, M : L*?0(Q) — L*?0(Q) and

lim (s = DM |50 = 0
5—)l+

3. There exists ro, 0 < ro < 1, such that if ro <r < 1, then
M : L"7O(Q) — L"PY(Q).

Remark 4.38. 1t will be clear from the proof that we can weaken Condition (2) by
assuming that there exists so > 1 such that M is bounded on L**O(Q)if 1 < s < 50
and this limit holds. The proof that Condition (1) implies Condition (2) shows that
if M is bounded on L*”*) for some s > 1, then it is bounded on L*?") for all larger
values of s.

Remark 4.39. By Theorem 3.19 a necessary condition for M to be bounded on
L'P") is that rp_ > 1, so in Condition (3) we must have that 7o > 1/p_.

Proof. We first prove that (1) implies (2). Fix s > 1 and let » = 1/s. Define
M, f(x) = M(|f|")(x)"/". Then by Hélder’s inequality, M, f(x) < Mf(x), and
so by Proposition 2.18,

syl syl s sl s
IMf lspey = 1M LIS < IMALIGS < CENLELES = C 1 llpo-

Hence, || M || 1sp0 ) < M || Lro (@) Which yields Condition (2).
The implication (3) implies (1) is also straightforward. Fix r, ro < r < 1, and let
s = 1/r. Again by Holder’s inequality, we have that M f(x) < M(|f]°)(x)"/* =
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M; f(x), and so by Proposition 2.18,

1M S lpey < IMASE) ooy = IMAS I iy < CTNL LU ey = CT1S Npeo-

To prove that (1) implies (3), we first construct an A; weight using a powerful
technique referred to as the Rubio de Francia iteration algorithm. Given h €
LPO(Q), define

Rh(x) = i M¥*h(x)
x —5
o 2| M1}

LPO(Q)

where for k > 1, MK = M o M o--- o M denotes k iterations of the maximal
operator and M° f = | f|. This operator has the following properties:

(a) Forall x € Q, |h(x)| < Rh(x);
(b) R is bounded on L7V () and |RA| p¢y < 2[|2]l pe;
(¢) Rh € Ayand [Rh]a, = 2| M ||pr0q)-

Property (a) follows immediately from the definition. Property (b) follows from
the subadditivity of the norm:

o I M¥R] 0 ok
IRA ey < Z My S <1y D_27% = 2[Rl ey
LrO(RQ) k=0

Property (c) follows by the subadditivity and homogeneity of the maximal operator
(Proposition 3.3):

o0 k+1

M*T h(x)
M(Rh)(x) < Z W

” ”Lp()(Q)

o0
Mk'Hh(x)
< 2[[M |l roe) Z W = 2[M|[Lrer @) RA(x).
LrO(Q)

By Property (c), Proposition 4.29 and Holder’s inequality there exists so > 1
such that forall s, 1 < s < 50,

M (Rh)(x) = Ms,(Rh)(x) < 4IM || o)) RA(X).

Letrg = 1/sg, fix r,rg < r < 1,and let s = 1/r. Then by Properties (a) and (b)
and Proposition 2.18,

UMl pey = 1M 5y = 1M AL < IMRAS D e
< EIMN 0@ IRAS e = CHAT 0 = CUL llrpe)-
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This proves (3).
Finally, we prove that (2) implies (1). Fix €, 0 < € < 1, such thatif s = 14+€27"72,
then
€||M||Lw('>(s2) = 2n+2(s - I)HM”LSP(‘)(Q) <1/2.

We now define a different version of the Rubio de Francia algorithm: for 7 €
LPO(Q) let

Reh(x) =Y e M h(x).

k=0

Then arguing as we did above we have that:

(a’) Forall x € Q, |h(x)] < Reh(x);
(¢") Reh € Ay and [Reh]a, < el

Let r = 1/s and fix f € LPU(Q). By Properties (a’) and (c’), and by
Proposition 4.29 (which holds by our choice of )

Mf)'" = My(If")(x) = MyRe(1f1))(x) < 267" Re(| 1) (%)

Therefore, by Proposition 2.18,

)

) IRV

(%) (i:je IIM"(IfI’)IIS,,(.))S
<(5) (ZG i S”<‘><Q>|||f|’||sp<~))s
) 1T @)ﬂ)s

= (2) o

Thus M is bounded on L?®)(Q). This completes our proof. O

Remark 4.40. We will use the Rubio de Francia algorithm again in Chap. 5 to prove
our extrapolation theorem, which in turn will let us prove that a wide variety of
operators are bounded on variable Lebesgue spaces. See Sect. 5.4.

Proof of Theorem 3.31. The proof requires one lemma.
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Lemma 4.41. Given p(-) € P(R"), suppose p+ < oo. Then the family of weights
wi(x) = tPX) ¢t > 0, are in Ay for some q > 1 with uniform constant if and only if
there exists a constant py such that p(-) = po almost everywhere.

Proof. Suppose first that p(-) = po almost everywhere. Then the weights w, are
constants, and so forany ¢ > 1, w, € A, and [w;]4, = 1.

Conversely, suppose that p(-) is such that for all > 0, w;, € A, for some g > 1
and [w;]4, < K < oo.For N > llet Qy = [N, N]" and define

Py =][N px)dx.

Then by Property (4) of Proposition 4.18 (the reverse Jensen inequality) applied to
wy, forevery ¢t > 0,

][ PPN dx < K.
N

Now suppose that p(-) is not constant. If [{x € Oy : p(x) > pny}| > 0, then
if we take the limit as ¢ — oo, the left-hand side is unbounded, a contradiction.
Similarly, if [{x € On : p(x) < pn}| > 0, the left-hand side is unbounded as
t — 0. Therefore, p(x) = py for almost every x € Q. Since this is true for all
N, we must have that p(-) equals a constant almost everywhere. O

Remark 4.42. In the hypotheses of Lemma 4.41 it would suffice to assume either
0 <t < lort > 1. Forif p(-) is not constant, then both of the sets {x € Qy :
p(x) < pyyand {x € Oy : p(x) > py} must have positive measure. However,
in certain cases the weights w; can behave (locally) like A, weights with uniform
constant: see Lemma 4.56 below.

Proof of Theorem 3.31. Since the strong type modular inequality (3.20) implies the
weak type modular inequality (3.19), it will suffice to show that

/ t’Wdx < C / | £(x)|P) dx, t>0, (4.24)
{x:Mf(x)>t} R”

holds for all f if and only if p(-) equals a constant almost everywhere. If p(-) = po
almost everywhere, then (4.24) follows at once from Theorem 3.4.

Now suppose that (4.24) holds; fix ¢ > 0 and let w, (x) = ?*). By Lemma 4.41
it will suffice to show that w, € A, for some ¢ > 1 with [w;]4, independent of 7. Fix
acube Q and o, 0 < @ < 1. Given any measurable set £ C Q with ¢|Q| < |E]|,
define f = tyg. Thenforallx € Q, M f(x) > t|E|/|Q]; hence, if s < ¢|E|/|Q],
by (4.24) and the monotone convergence theorem on the classical Lebesgue spaces
we have that

/ (11El/|Q))"" dx < liminf /s”(x) dxfC/ P dx.
0 s—>t|E|/101 J o E
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Hence,
aP+w,(Q) = al’+/ 1P dx 5[ (t1El/101)" dx < c/ 179 dx = Cw;(E).
0 0 E

Thus, w, satisfies Property (1) of Lemma 4.25 with this « and B = a?+C~!.
Therefore, by Corollary 4.27 and Theorem 4.28, w;, € A, for some ¢ > 1, and
[w:]4, depends only on « and 8. This completes the proof. O

4.4 Local Control: The K, Condition

In this section we consider the behavior of the maximal operator locally, where
the function f is large. As we noted in the introduction to this chapter, the LH,
condition is equivalent to the geometric property in Lemma 3.24. Thus, we will
introduce a new condition and adapt our proof of Theorem 3.16 to use it. In doing
so the theory of Muckenhoupt 4, weights will play a central role.

Before introducing our new condition, however, we first want to show that, as
was the case for the L Hy, condition, the L Hy condition is not necessary but is the
best possible pointwise decay condition. As we saw in Example 3.21, if p(-) has
a jump discontinuity, then M cannot be bounded. The following example shows
that if we replace the discontinuity by a continuous function that is steeper than
|log(x)|~", then we have the same phenomenon.

Example 4.43. Fix po, 1 < pp < 00, and let ¢ : [0,00) — [0, 1] be such that ¢ is
increasing, ¢(0) = 0, ¢(x) — 0 as x — 0, and

lim ¢(x)log(x) = —oo. (4.25)
x—0F
Let Q = (—1, 1) and define p(-) € P(R2) by

po+@(x) x=0
px) =
Po x <0.

Then p(-) & LHy(S2) and the maximal operator is not bounded on L?0) ().

Proof. The construction of this example is very similar to the construction of
Example 4.1. It is immediate from (4.25) that p(-) does not satisfy the L H(2)
condition at the origin, so we only have to construct a function f such that
f e LPO(Q) but Mf ¢ LPO(RQ). Intuitively, we will generalize Example 3.21 by
showing that f(x) = |x|~"/P0D y ;5 (x) is in LPO(Q) but M f is not. However,
to simplify the calculations we replace this f by a discrete analog.
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By (4.25) we have that
lim (1— =—
i (1= 575 ) s =
equivalently, 0
lim x'"775 =0,
x—0t

Hence, we can form a sequence {a,} C (—1,0) such thata,/2 < a,+; and

|an|1—po/p(\anl/2) <2,

Let b, = a, /2 and define the function f by

o0
@) = an) 77D g, 0, ().
n=1

Since p+ < oo, by Proposition 2.12 it will suffice to show that p(f) < oo and
p(M f) = oo. First, we have that

oo
o(f) = Z/ ||~ po/p(bal) gy — Zla |1 po/p(Ibal) < Zz_n < 0.
n=1"6n n=1

On the other hand, if x € (|b,], |a,|), then

len |

Mf(x) = fydy =

b
" 1
|a |—1/p(|bn\) dy = -|a I_l/]’(“’n‘)‘
2|a n| 2|ay| /u,, ! 47"

Therefore, since p(-) is an increasing function and |a,| < 1,
lan|
o(Mf) > (_) Z/ |a, |77/ PUBD g x

AR (b )/ p(Ubal) AR
> | — UG/ PUORD) e = | = -
=(3) X, =(5) Li==

n=1
O

Example 4.44. A particular family of exponent functions p(-) that satisfy the
hypotheses of Example 4.43 is

x € (—1,0]

plx) = .
24 e X €0,1),

where 0 < a < 1.
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We now introduce a condition to replace L Hy.
Definition 4.45. Given Q2 and p(:) € P(2), then p(-) € Ko(2) if there exists a

constant Ck such that for every cube Q,

IxollLro@lixellirow = CxlQl. (4.26)

Remark 4.46. Inequality (4.26) is trivially true for any cube Q such that |Q NQ|=0.

Definition 4.45 is motivated by the definition of the A, weights given in the
previous section, particularly in the alternate form (4.16): if we take p(-) constant
in (4.26) and set w = 1 in (4.16), the two definitions coincide. Furthermore, as the
next proposition shows, the Ky condition plays exactly the same role for averaging
operators on variable Lebesgue spaces as the Muckenhoupt A, condition does for
weighted Lebesgue spaces (Proposition 4.33).

Proposition 4.47. Given Q and p(-) € P(2), for any cube Qg there exists a
constant C, > 0 such that

”XQ()”Lp()(Q)”XQo”Lp’()(Q) C1|Q0| (4~27)
if and only if there exists Cy > 0 such that for all f € LPY(Q), supp(f) C R,

A0, fllLror ) < Call fllLroy @) (4.28)

As a consequence, p(-) € Ko(2) if and only if the operators Ao are uniformly
bounded on L") () for every cube Q.

Remark 4.48. From the proof we have that K;(%) C,<(C < Zk;,I(,)Cz, where K,
and k (. are the constants from Theorem 2.34.

Proof. Fix Qg and let f € LPO(Q). Suppose first that (4.27) holds; then by
Holder’s inequality (Theorem 2.26),

400 fllLror@) = [foolllXoollLrog)
< Ky | Qo I roney X 0ol Loror iy I 00 oo ()
= KP(')CIHf”LP(‘)(Q)-

Conversely, if (4.28) holds, then by Theorem 2.34 there exists a function g €
LP(.)(Q), “g”LpM(Q) <1, such that

”XQO”LP(‘)(Q)”XQO”]_p’(‘)(g) = ka_’l(.))||XQ0”LP(‘>(Q)/ X00(X)g(x) dx

= 2k, Qolll AgogllLro ey < 2k, Cal Qolllg oo @) < 2Kk i, Cal Qol.-
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Remark 4.49. Proposition 4.47 remains true if we replace the averages Ap with
averages Ap over balls, and replace the Ky condition by the corresponding
inequality for balls:

lxsllLro@lxsliroq < CIBI.

On R” the two conditions are equivalent: this follows from the fact that given any
ball B itis contained in a cube Q such that |B| < C(n)|Q]|, and the same is true with
the roles of balls and cubes reversed. This is the analog of the corresponding fact
for weighted norm inequalities: see Remark 4.34. This observation will be useful in
our discussion of convolution operators in Chap. 5.

As a corollary to Proposition 4.47 we get a necessary condition for the bounded-
ness of the maximal operator.

Corollary 4.50. Given Q2 and p(-) € P(2), if the maximal operator is bounded on
LPO(Q) or if it satisfies the weak type inequality

lexeemrays=allpey < CIHflpe. >0,
then p(-) € Ko(R2).

Proof. Since the strong type inequality implies the weak type inequality, it will
suffice to show that the latter implies the K, condition. Fix f € L?"(Q) and a
cube Q. Then forall x € Q,

Mf(x) > ][Q f )] dy.

and so forall 7 < fQ [ f(O)|dy,

txollpey < ltxgemrcosnllpe) < ClILNpe-

If we take the supremum over all such 7, we get that

40 fllpe E][Q lfWldylixellser = ClL e

Since the constant is independent of f and Q, we have that all the averaging
operators are uniformly bounded. Therefore, by Proposition 4.47, p(-) € Ko(2). O

By Theorem 4.35, w € A, is both necessary and sufficient for the maximal
operator to be bounded on L” (w). But, despite their similarities this is a fundamental
difference between the Ky and A, conditions: the Ky condition is not sufficient
for the maximal operator to be bounded on L?0), even if combined with the LH,
condition.
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Example 4.51. Thereexists p(-) € Ko(R)NLHy(R) such that the maximal operator
is not bounded on L?)(R).

Proof. Let ¢ be a C* function such that supp(¢) C [-1/2,1/2],0 < ¢(x) < 1,
and ¢ (x) = 1 if x € [-1/4, 1/4]. Define the exponent p(-) € P(R) by

p(x) =3+ Zqﬁ(x —eby.

k=1

Then 3 < p(x) <4, and p(-) € LHy(R).
To show that p(-) € Ky(R), fix an interval Q. Since p(-) € LHy(R), if |Q] < 1,
then by the first half of the proof of Proposition 4.57 below, we have that

Ixoll,ollxellye = ClOI.

Now suppose that for some j > 1, e/~ < |Q| < e/. For each k € N, define the
intervals Ay = [eX — 1/2,e* + 1/2]. Since p(y4,) = |Ax| = 1, by Corollary 2.23,
| x4, I pcy = 1. The interval Q intersects at most jo, < j of these intervals; denote
them by Akl,...,Ak‘/.O, and let P = Q \ Uljo=1 Ay, . Then, since for all j > 1,
j <2eU=0/3,

Jo
xolloe =Y lxag ooy + lxellpe < jo+ P12 < j +10]"° < 3|07,

i=1

Essentially the same computation shows that || o || /¢y < 3|Q|*/3, so if we multiply
these estimates we get that p(-) € Ko(R).

To show that the maximal operator is not bounded on L?®)(R), define the sets
By = [eF —1/4,eF + 1/4] and C; = [eF —3/2,eF +3/2]\ Ay, and let

f) ="k yp(x).
k=1
Then

o0 1 o0
o(f) = Z/ kPR dx = =3 "k < oo,
k=1" Bk 2k=1

and so by Proposition 2.12, f € L?(R). On the other hand, if x € Cy,

Mf(x) > ][

AU

_! _ L
Sy =3 [ oy = g
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Therefore,
po) =3 [ Mpere vz (¢) Yk =
k=1 Cr k=1
So again by Proposition 2.12, M f ¢ L?)(R). This completes our proof. O

Example 4.51 shows that the K, condition does not let us control the maximal
operator at infinity: like the L H, condition (cf. Example 3.23) it allows p(-) to
oscillate at infinity and cause the maximal operator to be unbounded. However, it
does let us control the maximal operator locally, and so it is a replacement for the
L H, condition. The next theorem is the main result of this section.

Theorem 4.52. Given p(-) € P(R"), suppose 1 < p_ < py < oo and p(-) €
Ko(R™) N Noo (R™). Then

IMF Il ror@ny < CNS I Lro @ (4.29)

Theorem 4.52 can be generalized to arbitrary domains €2; however, we must still
assume that p(-) € Ko(R") and not simply in K((€2). The reason for this is that there
does not exist an extension theorem for the K, condition analogous to Lemma 2.4
for log Holder continuity. We leave the statement and proof of the most general
result to the reader; here we give one special case that we want to highlight.

Corollary 4.53. Given p(-) € P(R"), suppose 1 < p_ < py < oo and p(-) €
Ko(R"). Then given any bounded set 2,

IMfllLro@) < CISro@)
where the constant C depends on n, p(-) and |2|.

Remark 4.54. By the symmetry of the definition, p(-) € Ky(R") if and only if
P'(-) € Ko(R"). Therefore, by Corollaries 4.50 and 4.53, if the maximal operator
is bounded on L?")(R") and py < oo, then it is bounded on L? ©)(Q) for any
bounded set 2. This fact complements the conditions in Theorem 4.37; we will
return to this “duality” property in Sect. 4.5 below.

For the proof of Theorem 4.52 we need two lemmas. (We will prove Corol-
lary 4.53 immediately after we prove the theorem.) The first shows that the K
condition is actually sufficient for a modular inequality. This result should be
compared to the negative result in Theorem 3.31.

Lemma 4.55. Given p(-) € P(R") such that 1 < p— < p4 < oo, suppose p(-) €
Ko(R"). Let f € LPO(R"). If there exist a cube Q and constants ci, ¢, > 0 such
that fQ | f(x)|dx = cyand || f |l p¢) < c2, then there exists a constant C depending
only on p(:), ¢, ca, such that
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p(x)
[Q(][mendy) dx_C/QIf(x)I” dx.

Proof. Since p'(-)_ = (p+)’ > 1, by continuity there exists a constant @ > 0 such

that
/ W’ O gy = / f )] dx.
0 (¢

Given this value o, we have that

p(x)
[ (L 1ronar) ax
0 Vo
p(x)
:/ (][ ap/(y)_ldy) dx
0 Vo
p(x)—1

— (/ a—P(X) (][ ap’(y) dy) dx) f ap’(y) dy

0 0 0

plx)—1

= (][ (][ a? 1" @) dy) dx) / a? O gy,

0 VO 0

We estimate the two terms on the right-hand side separately. The second is
straightforward:

/ O(P/(Y) dy — 2()[/ |f(y)| dy _/ O{p/(y) dy
0 0 0
= 2“/ £y
{ye0:2a| f(y)|>a? )}

=2 [ f ()] dy
{yeQ:2lf ()P~ >a}

< 2/ zp(y)—1|f(y)|p(y) dy
0
<27+ [ 110)P .
0

To finish the proof we will show that the first term is bounded by a constant. By
our hypotheses on f,

‘o 5][ o O gy < max (o O+, P O-71),
0
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soa > d; > 0, where d; depends only on p(-) and c;. By the generalized Holder’s
inequality (Theorem 2.26) and Proposition 2.21 (since p4 < 00),

Pmn-1 —
/Qa dy /Qlf(x)ldx

< Kpoll f oo lxollpe
<aKyullxollyeo

1 ()
:CZKP(~)||XQ||17’(~)/ (—) dy
o \Uxollye

d p(yn—1
5/ (—2 ) dy,
o \lxolye

where d, > 0 depends only on p(-) and c;. Therefore,

S S
lxollye

For each x € Q partition Q into E+(x)={y € Q:p'(y)>p'(x)}and E_(x) =
O\ E+(x). Then

/ @ O=1'® gy
0

= / a? W=r'x) dy + / P W=r'x) dy
E4(x) E—(x)

d> Py)=p(x) , ,
5/ ( ) dy+/ a7 0@ gy
E4(x) Ixollye E_(x)

- 1 P
< Dillxoly /Q (W) dy + D| 0]

< Dillxol” + DalQl.
where Dy = max(1.d} "+ 7" ") and Dy = max(1.a 7",

Therefore, using the fact that p(-) € Ky (with constant Cg) and again by
Proposition 2.21,

, , px)—1
][ (][ aP =P ) dy) dx
0 \Jo
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() Pt

lxoll,.
S][ p, el p dx
0 O]

S\ PO
(IIXQHp(-)) dx + (2Dq)P+!

2D)P+7 ! L2
<(@D) / .

0
1 p(x)
5(2Dl)ﬂ+—1c,’;+/ (—) dx + (2D,)P+7!
o \Uxollpe
= Q2D)"*I'CRt + (2Dy)P+

This completes our proof. O

Our second lemma is a corollary to Lemma 4.55. It shows that there is a deep
connection between the K condition and the Muckenhoupt 4, weights. Its subtlety
can be seen by comparing this result with Lemma 4.41.

Lemma 4.56. Let p(-) € P(R") be such that p(-) € Ko(R"). Then given any cube
Qo, and constants by, by > 0, for any t such that by <t < , there exist

constants Cy, s > 1 such that

1/s
(][ t“'”(x)dx) gco][ PO dx.
0 0

The constants s and C depend only on by, b, and p(-).

2
200115

Proof. By Corollary 4.27, it suffices to show that there exist ¢, 8 such that the
weights w,; (x) = t7™) satisfy Property (1) of Lemma 4.25 on every cube O C Q,
with a constant depending only on by, b, and p(-). Let « = 1/2. Fix such a cube
Q and let E C Q be any measurable subset with |E| > |Q|/2. Define f = tyg.
Then

|E| _ b
¢ 0 0]~ 2
and -
XE |l p(
I ooy = tlxelpe < bz—ﬂ) <
”XQ0||17(~)

Therefore, f satisfies the hypotheses of Lemma 4.55 with ¢; = by/2 and ¢; = by,
and so there exists a constant C depending only on by, b, and p(-) such that

P+ p(x)
/Q (70 gy < (%) /Q (][Q If(y)ldy) dx

=< 2”+C/ | /()P dx = 2P+c/ 170 dx.
0 E
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Hence, 277+ C~'w,(Q) < w,(E). Let B = 27P+C~'; since this holds for every
such cube Q, our proof is complete. O

Proof of Theorem 4.52. We will not prove directly that M is bounded on L?*)(R").
Rather, we will prove one of the equivalent conditions given in Sect.4.3. More
precisely, by Theorem 4.37 and Remark 4.38 it will suffice to show that there exists
so > 1 such that forall s, 1 < s < 59, M is bounded on L*7®) (R") and

1M Nl oy < C, pOYs = DT f lspes-

Fix s, 1 < s < s0; the precise value of sy will be determined below, but for now
we will assume 5o < 2 so that s —1 < 1. Our proof follows the pattern of the proofs
of Theorems 3.16 and 4.7, and we will refer to them for some details that are the
same. Arguing as we did at the beginning of the proof of Theorem 3.16 (p. 98), we
may make the same reductions. Therefore, we can assume that f is a non-negative,
bounded function of compact support, and || f'[|s ) = 1. Decompose f as fi + f2,
where

Si = Fxereo=1s fo= Fxeerm=<iy-

Then [[Mfllspey < IMfillspy + 1M fallspey, and we will estimate each term
separately. The estimate of the second term is the same as the estimate for this term
in the proof of Theorem 4.7 (p. 131). It follows from Definition 4.4 that p(-) € Neo
implies s p(-) € Noo: since s > 1,

exp (= 2A0osp(x) = $Poo| ') = €xp (= Aco| P(x) = Poo| ™).

so sp(-) satisfies the N, condition with a constant independent of s. Therefore, there
exists a constant C depending only on z and p(-) such that | M f>/sp) < C|| f llspc)-
Since s — 1 < 1, we thus have that

IMFrllspey < Cls = D727 £ llpeo-

To complete the proof we will show the same estimate for fi. It will suffice to
prove that there exists C > 1 independent of s such that

MFA(x)PPdx <C(s— 17" (4.30)
Rn

for if this holds, since p(x)/p— > 1forall x and C(s — 1)~! > 1,

Mfl (X) e < s=1Y sp(x) <
/Rn (W) dx < (T) g Mfi(x)P™ dx < 1,

and so | M fillspey < C(s = DTP= | f llspeo-
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To prove (4.30) we modify the decomposition argument used in the proof of
Theorem 3.16 in the case when py < oo (p. 99). Let A = 4" and for all integers
k > 0 define

Qi = {x e R" : Mfi(x) > A}

Then, arguing as before,
M fi(x)*P™ dx
RH

o0
- / Mfi(x)"Wdx+ ) / M fi(x)*P® dx.
M fi(x)<1} k=0 ¥ 2k \Qu+1

The first term is easy to estimate: since M f1(x) < 1 and f;(x) > 1 or fi(x) =0,
and since p— > 1, by Theorem 3.4 and Remark 3.5,

/ M £ (x)P® dx < / M fi(x)*P~ dx
{x:M fi(x)<1}

M fio)=<1}

< (sp_)C(n) A e e

< (sp_)C(n) / AP dy
]Rn
< (p_yCln)(s — )",

To estimate the second term, for each k form the Calderén-Zygmund cubes {Q];-}
of fi at height A¥~! (Lemma 3.9). Then

Q| 304
J

Let £ f be defined as before, and let F ]k =0 ’j‘ \U; QfC *1. By the maximality of the
Calder6n-Zygmund cubes, the sets F' ]k are pairwise disjoint for all j and k. Further,

|F]k| > %| Q]]‘ |. To see this estimate we argue as we did in the proof of Theorem 4.22.
By the properties of the Calderén-Zygmund cubes, for each j and k,

QN 05 = Y o <4t Y /QHI £ dy

k+1 k+1
oft oft

n gk—1 f 1
VG |07 < 5

2
=4 [ Aoas = 0%,

Thus, |FF| > 3|Q%.
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Therefore, using again that s < 2, we have that

o0

S [ MA@ a
k=0 Y @\ Q41

oo

< Z/ (Ak+l)sp(x) dx
k=0 U\t

sp(x)
< 3P+ AS2P+ Z/k (][ . A1) dy) dx
kj CE \/39;

sp(x)
< 2.3+ gir+ Z][ ) <][ kfl(y)dy) dx-|FF|. (431
k7395 \V39;

To estimate (4.31) we need to apply Lemmas 4.55 and 4.56. Since k > 0, by the
properties of the Calderén-Zygmund cubes,

f fily)dy = 3—"7[ fiy)ydy > 3741 > 127" > 0. (4.32)
30k ok
J J

On the other hand, since f; > 1 or f; = 0, by Proposition 2.18,

I fillpe = W ey = I Al ) = 1 (4.33)
Therefore, since p(-) € Ko(R") with constant Cg,

C
L dy =BT AO gt o < T
ﬁQlf J p 305 P ”)(3

K
. (4.34)
ok o)

In both (4.32) and (4.34) the bounds are independent of j and k. Therefore, by
Lemma 4.56 with ¢ = f3Q"- fi(y) dy, there exists s > 1 and a constant Cy that
J

depends only on n and p(-) such that forall s, 1 <5 < 59,

]EQk (]{Qk i) dy)‘f’(,o N

Moreover, by Lemma 4.55,

/s ()
=< Cof fl (y) dy dx. (4.35)
30k \J30%

p(x)
][ ( AO) dy) dx < c][ F1(x)P™) dx. (4.36)
305 /305 30%



172 4 Beyond Log-Holder Continuity

By (4.35), (4.36), Theorem 3.4 and Remark 3.5 we can estimate (4.31) as follows:

sp(x)
>f (f ﬁ(y)dy) dx - |F¥|
= Jiot \ o}

p(x)
<Gy, ][Qk(3Qkf1(y)dy) dx | -|Ff]
J J

kj \”3

< G Cy PWdx | - |Ff
< 1§<]£Q§ﬁ(x) x) |F|
<ty / MO (x)* dx

kj Fi

=G} [ MCAOM ) d

< Cn. p())s’ /R [T dx
< Cln pNs— 1),

Combining all of the above estimates we get (4.30); this completes our proof. 0O

Proof of Corollary 4.53. The proof is essentially the same as the proof of Theo-
rem 4.52. The estimate for f; is the same, and the constant is independent of 2.
To estimate f5, instead of following the proof of Theorem 4.7, we instead use the
argument from the proof of Corollary 3.18. This gives us a constant that depends on
n, p(-) and |2|. O

We conclude this section with three results on the relationship between log-
Holder continuity and the K condition.

Proposition 4.57. Given a set Q and p(-) € R, suppose py < oo. If p(-) €
LH(R2), then p(-) € Ky(RQ). In particular, if Q is bounded and p(-) € LHy(2),
then p(-) € Ko(S2).

Proof. Since p(-) € LH(S2) implies that the maximal operator is bounded on
LPO(R), this follows from Corollary 4.50, at least when p_— > 1. However, we
can give a direct proof. Fix any cube Q. Since p,)(x0) = pp)(x0) = 10|, by
Corollary 2.22 we must have that || yo | ¢y and || xo || /() are either both greater than
orless than 1. If || xo |l y(». X0l 7y < 1, by Corollary 2.23 and Lemma 3.24,

lxolpollxollye < 1QVPHTYFO+ = gt V/re=l/r= < C|Q.
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If | xollpy- Ixollpr¢y = 1, then we estimate them using Lemma 3.26. Fix N > 1
such that

(e + |x])™M—dx < 1/2.
]Rn

By Proposition 2.21 and (3.11),

1= /Q 2ol dx
_ dx _ 1
sc/ ™ ’.’°°dx+/—§C|QIIIX e 4 L
0 2llp() o (e + [x)Vr- 2lipey )

Rearranging terms we get that || o,y < C |Q|'/Peo. The same argument shows
that || xo |l /() < C|Q|"/7> and so

Ixollsllxellye < ClOVPetlre = ClQ|.
u]

One surprising feature of Proposition 4.57 is that even though K, cannot be
used to control the maximal operator at infinity, which is where we use the L Hy,
condition, in the proof we need to use LH, to show that log-Hdlder continuity
implies the K condition. The next example shows that this hypothesis is in some
sense necessary.

Example 4.58. On R let p(-) be a smooth, increasing function such that p(x) = 2
if x < —land p(x) = 3if x > 1. Then p(-) € LHy(R) \ LHx(R). Let Q =
[-N,N], N > 3,andlet Q_ = [-N,—1], Q4+ = [1, N]. Then by Corollary 2.23,

Ixollsolxell,yey = lxo_llpolxos e
> QY@ |V0O-Q0) =0 _|'2]0 73 = ¢|Q|NVC.

Since we can take N arbitrarily large, p(-) & Ko(R).

While log-Holder continuity implies the K, condition, the converse is not true.
Example 4.51 gives an exponent function p(-) € Ky \ LHs. There also exist
exponents p(-) € Ko \ LH.

Example 4.59. Givena, 0 < a < 1,let I, = (—e=3"",¢3"") C R. Then the
exponent p(-) € P(I,) defined by

Lt r
p(x) 2 log(1/]x|)

isin Ko(1,) \ LHo(1,).
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If we extend the exponent p(-) in Example 4.59 to be a constant on R \ /,, then
a straightforward modification of the proof shows that p(:) € Ko(R) N Noo(R).
Therefore, by the definition of Ky and Remark 4.6, p’(-) € Ko(R) N Noo(R). Hence,
by Theorem 4.52 the maximal operator is bounded on LPO (R). Forx € 1,,

4

TR )

This exponent function should be compared to Example 4.44. As was the case with
the examples we gave in Sect. 4.1, the symmetry and monotonicity of the exponent
function play significant but not well understood roles in determining whether the
maximal operator is bounded.

Proof. Tt is immediate that p(-) € LHy(1,), so we only need to show that p(-) €
Ky(1,). We make two reductions. First, it will suffice to consider intervals I C I,.
For suppose I N (R\ 1,) # 9.1f I N I, = @, then the K, condition is vacuously
true. Otherwise, let I = I, N I. If the K( condition holds for I, then

Ixelleroanplxillizroa, = xnlooanlxnlroa, < Cxlll < Ckl1].
(1q) (1q)

Second, it will suffice to show that p(-) satisfies the Ky condition for any interval
I Clo, e_3l/u). For suppose this is the case and let I C I, be such that it intersects
(—e‘31/" ,0). If it is entirely contained in this interval, let / = {x : —x € I}. Then
J C[o, e_3l/a) and by the symmetry of p(-),

Ixrllpo el = Ixslpolxslye < CklJ| = CklI].

Now suppose that 0 € 7. Let J be the smallest interval centered at the origin that
contains /, and define J+ = J N [O,e‘wu). Then |J4| < |I| < 2|J4+| and again
by the symmetry of p(-),
Ixrllpollxrlye < Ixrllpelxs e
= llxnuge + xilpolxnog + xillpe
= (o ooy + e o) (s o + g o)
=4l g o
=< 4Ck|J+]
< 4Ck|I].
To prove that p(-) satisfies the K condition for intervals contained in /,, we will

first show that p(-) satisfies it on any interval / = (x,y) C [0, e_3l/u) such that
y —x < x. To do so we will actually show that 1/p(-) € LHy(I) with constant
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depending only on p(-), for then, by Propositions 2.3 and 4.57, p(-) € Ko(I). Given
z, w € I,z <w, we have that

wW—z<y—z<2x—2z=<2z—z=2
Let f(¢) = log(1/¢)™%; then

Df(t) = at 'log(1/t)~*7!,
D*f(t) = —at*log(1/1)**(log(1/1) — (1 + a)).

Fort < e=U+9 D2 < 0. Since for all a, e " < e=(179 we have that Df is a
decreasing function on (0, e_31/“). Therefore, by the mean value theorem,

1 1
5 | = @~ fo (437)
< |Df@)lz—wl
— DY) -a (Df ow—2) " log(1/w—2) "
< Df(2)-aDf(z)~"log(1/|w — 2~
a
= log(w —2)°

Finally, we will show that p(-) satisfies the K¢ condition for intervals I = (x, y),
where y — x > Xx. In this case it will suffice to show this for intervals of the form
J = (0, y). For if it were true in this special case, then

Ixrllpollxillye < lxillpolxsllye < CklJ|
= Cky < Ck(y —x) + Cgx <2Ck(y —x) = 2Ck]|I]|.

Moreover, given y € (0, e_3l/a) and J = (0, y), it will suffice to show that there
exists a constant C (independent of k) such that

Ixsllpey = C1I1VP0. (4.38)
For then, since p’(-) is an increasing function, by Corollary 2.23,
s sl e < CLPOTP O = €I /PO [P0 = ¢ ).
To prove (4.38), fix k > 3/ such that e ¥ < y < e ¥*!. Define

A= |J|1/p(y) > |J|1/p— — |J|5/6 > e kI,
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Suppose there exists a constant C > 1 such that
/, AP0 dr < C; (4.39)
then by the convexity of the modular (Proposition 2.7) we have that
Poy ((CITNPON) T ) < €7 /, AP0 dr <1,

which in turn gives us (4.38).
To prove (4.39) we replace the integral by an infinite series: since p(-) is
decreasing,

i

AP0 4t < / AP0 Jt
/ )3

j=k7e

oo oo
<ey e A =y e exp (—aj +log(1/2) ple™)).
j=k j=k

Rewrite the exponent in the final term as

’

. —J ; 2
—aj +log(1/A)p(e™) = —aj +10g(1//\)ﬁ

and define the function

h(x) = —ax + log(l/k)m

We will show that / is decreasing for all x > k. Taking the derivative, we have that

4alog(1/A)

Dh = — _
a+ xl—u(z + xa)Z

hence, Dh < 0 if

log(1/A
_oel/M) )y
xl—a(z + xa)Z
Since A > e K/® and x > k > 3/ > 1,
log(1/4)  _ 5k 5k 1o

< < — —.
X2+ a9 = 6keQ2 + k92~ 6ke(2+ ke) — 6 4
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Given that £ is decreasing, we have that

Z e "D exp (—aj +log(1/A)p(e™))
j=k

< exp(—ak +log(1/2)p(e™)) Y e 17/
j =k

< Ce*)—p™
< C|J||J|—P(e”‘)/p(y)

= C|J|\mPe™/P0),

To complete the proof of (4.39) we need to show that the last term is uniformly
bounded. Since |J]| < 1,

|J|1—P(e”‘)/lf(y) - (|J|1/p(e”‘)—1/p(y))1’(efk) < (|J|1/1)(e”‘)—1/p(y))1’*’

and by Corollary 3.24 the right-hand side would be uniformly bounded if 1/p(-) €
LHy((e7*,e=**1)) with a constant independent of k. We can show this by arguing
aswe didabove. If e ® <z <w < e * ! thenw—z <e ¥ (e—1) <e¥(e+1) <
(e + 1)z, so by modifying inequality (4.37) we get

1 1

‘m - W < |Df(2)||z—w|

<anf (W _Z) (Df (w — 2 log(1/[w — 2}y
e+ 1
1 14+a
=ale+1) (log((e T 1>/|w—z|>)
ale+1)

~ —logw—2)

Therefore, 1/ p(-) € LHy((e ™, e %)) with constant a(e + 1). This completes our
proof. O

4.5 A Necessary and Sufficient Condition

We conclude this chapter with a discussion of a necessary and sufficient condition
for the maximal operator to be bounded on L?®)(R"). Though not easy to check for
a given exponent function p(-), this condition has very important theoretical conse-
quences. To state it we first define a generalization of the averaging operators Ag.
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Definition 4.60. Let Q = {Q;} be a collection of pairwise disjoint cubes. Given a
locally integrable function f, define the averaging operator Ao by

Ao f(x) =Y Ag f(x) =) ][Q fO)dyyo, (x).
j juE

Definition 4.61. Given Q and an exponent p(-) € P(2), then p(-) € A if there
exists a constant C 4 such that given any set Q of disjoint cubes and any function

f e LPO®RY), [Aaflpey < Callf -

If the collection Q consists of a single cube, then Ao f = Apf, so by
Proposition 4.47, p(-) € A implies that p(-) € Ky(R"). The converse is false:
there exist p(-) € Ko \ A. The exponent p(-) in Example 4.51 is one such: in the
construction we showed that if Q = {(e* —3/2,eX + 3/2)}72,, then Ag is not
bounded on L?O (R).

The condition A can be thought of as a generalization of the Muckenhoupt
A, condition in the following sense: for I < p < oo, the operators Ag are
uniformly bounded on L?(w) if and only if w € A,. Necessity follows from
Proposition 4.33, and the sufficiency from the fact that given any collection Q,
| Ao f(x)] < Mf(x). An important difference, however, is that the A, condition
is a “geometric” condition depending only on the behavior of w on cubes, while the
condition A requires testing the operators on all functions f € L?0)(R").

The importance of the condition A is shown by the following two results.

Theorem 4.62. Given Q2 and p(-) € P(R2), if p(-) € A, then the maximal operator
satisfies the weak type inequality

||f)({x:Mf(x)>z}||Lp<~>(Rn) = C||f||Lp<~)(Rn)~

Proof. As in the proof of the weak type inequality in Theorem 3.16 (p. 106) we
use the Calderén-Zygmund decomposition, but the argument is simpler. Just as in
that proof, it suffices to prove it for bounded, non-negative functions of compact
support. Fix such a function f and fix # > 0. Since f has compact support, the set
{x : Mf(x) > t} is bounded. Let {Q;} be the Calderén-Zygmund cubes of f at
height ¢ /4" (Lemma 3.9). Since

{xeR":Mf(x)>1}c|J30;.
J

by the Besicovitch-Morse covering lemma (see de Guzman [74]), there exists a
constant N (depending on the dimension) and collections of pairwise disjoint cubes
Or = {50%} c {50;},1 <k < N, such that

N

{xeR":Mf(x)>1}c | JJs50F

k=1 1
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Therefore, by the properties of Calderén-Zygmund cubes and since p(-) € A,

=

X temprs3 pey < Z
p()

IA

Mz ||M2 [

5" Ag, £l pey

—_

IA
U‘W

A”f“p()

|

Theorem 4.63. Given p(-) € P(R"), suppose 1 < p— < py < oo. Then the
maximal operator is bounded on LPY)(R") if and only if p(-) € A.

Since | Ag f(x)| < Mf, one implication is immediate. The heart of the matter
is the converse, and the proof is very long and quite technical. Therefore, we refer
the reader to [82] for the details.

Here we concentrate on two corollaries. First, the proof itself shows that M is
bounded on L”)(R") if and only if it is bounded on L7 (R") for some r, 0 <
r < 1. (We proved this in a different way in Theorem 4.37.) Second, we have that
even though M is not a linear operator, the boundedness of M implies the “dual”
inequality.

Corollary 4.64. Given p(-) € P(R"), suppose 1 < p— < py < oco. Then M is
bounded on L?)(R") if and only if M is bounded on L?"©)(R").

Proof. By symmetry it will suffice to prove that if M is bounded on L?®)(R"), then
it is bounded on L” ©)(R"). In this case, by Theorem 4.63 the operators Ag are
uniformly bounded on L?)(R"). By Theorem 2.34, Fubini’s theorem and Holder’s
inequality (Theorem 2.26), given f € L?”O(R"), there exists h € LPO(R"),
17]l oy < 1, such that

Ao fll,yy=C / ) Ao f(x)h(x) dx

e FO) dy - h(x) xo, (x) dx
[.xf, 0
—c / F() Aah(y) dy
R”
< CIf ol Akl
<ClIflye-
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Since the final constant is the same for all operators .4, again by Theorem 4.63 we
have that the maximal operator is bounded on L7 ) (R"). O

Remark 4.65. It would be very interesting to have a proof of Corollary 4.64 that did
not rely on Theorem 4.63.

4.6 Notes and Further Results

4.6.1 References

In the study of the maximal operator on variable Lebesgue spaces, the LH,
and L H,, conditions were initially referred to as “almost necessary.” This was
primarily because of Example 4.43, due to Pick and Ruizicka [291]. Somewhat later,
Example 4.1 appeared in [62]; its construction is a modification of that of Pick and
Ruzicka. As we noted in Sect.3.7.2 above, Diening [80, 82] showed that the L H
was necessary for the pointwise inequalities used in the proofs of the boundedness
of the maximal operator. (See Proposition 3.39.)

The N condition was introduced by Nekvinda [282] in the case p4+ < oo and
he proved the strong type inequality in Theorem 4.7. (The notation is new.) Earlier,
a related condition for variable sequence spaces was considered by Nakano [279]
(see also [245]). The case p+ = oo is in [80, 82]. This proof makes explicit
the connection between embedding L°° in a variable Lebesgue space and Neo
condition. Our proofs of the strong type inequality and the weak type inequality are
new. Proposition 4.8 when p; < oo is implicit in Nekvinda [282]. Proposition 4.9
showing that there are functions in No, \ L Hs was given in [42]. Proposition 4.10
was known but does not appear to have been stated explicitly. Example 4.13 is
derived from a more general construction by Nekvinda [284], who gave a sufficient
condition on “almost” monotone, radial exponents for the maximal operator to
be bounded. The exact statement of Lemma 4.15 is new, but as we noted it is
closely related to Lemma 3.26; consult the references given for this lemma in
Sect.3.7.1. A more general version, using the N, condition instead of L H, is
due to Nekvinda [282].

The literature on the theory of Muckenhoupt A, weights is vast and it is beyond
the scope of this section to give a detailed history of these results. For almost all the
results of Sect. 4.2 we have followed Duoandikoetxea [96] and Garcia-Cuerva and
Rubio de Francia [140]; also see Grafakos [144]. For the Jones factorization theorem
and the reverse Jensen inequality, mentioned in Remark 4.19, see [140]. There
is a close connection between the constants [w]4, and [w]4.,: see Sbordone and
Wik [328]. Corollary 4.27 is implicit in the literature; in the folklore the conclusion
of this result is often stated as w is in RH (or As) “locally.” The sharp reverse
Holder inequality in Proposition 4.29 is due to Lerner, Ombrosi and Pérez [234]
(see also [233]). Lemma 4.30 is due to Stein [338] (see also [140]).
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Proposition 4.33 relating the averaging operators and A, weights was first
stated without proof by Jawerth [185] (see also Berezhnoi [27]). Theorem 4.35
was originally proved by Muckenhoupt [271]; also see the references above on
weights. Remark 4.36 is well-known but often just assumed; our proof is from [140].
Theorem 4.37 was proved by Lerner and Ombrosi [233] for more general maximal
operators on abstract Banach function spaces. The equivalence of Conditions (1)
and (3) in this result was proved earlier by Diening [79]. The Rubio de Francia
iteration algorithm which is at the heart of the proof plays an important role in the
study of weighted norm inequalities; see [69] for more information and references.
Lemma 4.41 and the proof of Theorem 3.31 are due to Lerner [228].

The K, condition was first considered by Berezhnoi [27] in the more general
setting of weighted Banach function spaces. He states Proposition 4.47 without
proof (see his Lemma 2.1); our proof is adapted from Diening [80] (see also [82]).
The importance of the K condition for the study of variable Lebesgue spaces was
recognized by Kopaliani [212]. He referred to the class as A, to emphasize its
connections with 4, weights; our notation is new. He proved Theorem 4.52 with
the N, condition replaced by the stronger assumption that p(-) is constant outside
a large ball centered at the origin. His proof relies in a central way on the necessary
and sufficient condition in Theorem 4.63. He proved Lemma 4.55, again using ideas
from Diening [79]. Lerner [231] gave a new proof of Theorem 4.52 which used
A, weights. Our proofs of Lemmas 4.55 and 4.56 are based on his; our proof of
Theorem 4.52 is new. Proposition 4.57 is due to Diening [80] (see also [82]): see
Sect.4.6.2 below. Our proof is new. Example 4.51 is also due to Diening [80]. A
different example was constructed by Kopaliani [215]. Example 4.59, an exponent
in Ko \ LH), is new.

The results in Sect.4.5 are all due to Diening [79] and he first made the
connection between condition .4 and the Muckenhoupt A, weights; also see
[80, 82]. Diening also showed that this characterization can be extended to general
Musielak-Orlicz spaces. The generalized averaging operator Ao was considered
in the context of Banach function spaces by Berezhnoi [27] and was implicit in
Kopaliani [211].

4.6.2 More on the K, Condition

A different characterization of exponents in K, was given by Diening [80] (see
also [82)).

Proposition 4.66. Given p(-) € P(R") and a cube Q, let Py and Pé be the
harmonic means of p(-) and p'(-) on Q:

1 ][ 1 1 ][ 1
— =1 ——dx, — =1 ——dx.
Po o P(x) ) o P'(x)
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Then p(-) € Ko(R") if and only if

1/P/
lxollye ~ 101772 and |xolye =~ Q)" e.

The means Py and P’Q at first seem somewhat unnatural, but they play a central
role in the proof of Theorem 4.63, and more generally in the approach to variable
Lebesgue spaces adopted in [80, 82].

Because of its similarity with the Muckenhoupt 4, condition, it was initially
hoped that the K, condition would be sufficient for the maximal operator to be
bounded on L (R"), but as Example 4.51 showed, this is not the case. Further-
more, Kopaliani [215] constructed an example of p(-) € Ko(R"), n > 2, such
that the maximal operator does not satisfy the weak type inequality on L?C)(R").
On the other hand, Lerner [231] proved that if p(:) is radial and decreasing, and
1 < p— < p4+ < oo, then the maximal operator satisfies the weak type inequality if
and only if p(-) € Ko(R"). As was the case with Examples 4.13 and 4.59, the fact
that p(-) is radial and monotone plays a deep and subtle role in the proof.

There is another significant difference between K, and the Muckenhoupt A4,
condition. As part of the proof of Theorem 4.35 we showed that if w € A, then
there exists ¢ < p such that w € A,. However, Kopaliani [215] gave an example
(in fact, the same example mentioned above) of p(-) € Ky(R") such that for any
r,1/p— <r < 1,rp(:) & Ko(R"). If exponent p(-) € Ky had this property,
then we could modify the proof of Theorem 4.52 to prove directly that the maximal
operator is bounded on L”®) without having to use Theorem 4.37. Moreover, by
Theorem 4.37 and Corollary 4.50, if the maximal operator is bounded on L?®), then
() has this property.

There is another condition, besides N, that can be combined with K to prove
that the maximal operator is bounded. An exponent p(-) satisfies condition G if
there exists a constant Cg such that for all f € L?(R") and g € L” ©)(R"), and
any collection Q@ = {Q} of disjoint cubes in R”,

Yo Ifxoslholgxe;llyo < Col Fllpolglyo.
J

If p(-) is constant, then p(-) € G: this is an immediate consequence of Minkowski’s
inequality for series. This condition was introduced by Berezhnoi [27] (see
also [26]). Kopaliani [217] proved the following result.

Proposition 4.67. Given p(-) € P(R"), if | < p— < py+ <ooand p(-) € G, then
the following are equivalent:

1. p() € Ko(R");
2. M satisfies the weak type inequality on LP) (R");
3. M is bounded on LPV) (R").
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4.6.3 Discontinuous Exponents

Though p(-) € LH, is not necessary for the maximal operator to be bounded on
L7 all of the examples considered in this chapter have been uniformly continuous
and have had a limit at infinity, at least in the weak sense of Proposition 4.10. After
proving Theorem 4.63, Diening [79] conjectured that there is an exponent p(:) that
does not have a limit at infinity but such that the maximal operator is bounded on
LP0). Lerner [229] proved this conjecture. More surprisingly, he also showed that
there exists an exponent that is discontinuous at the origin but M is bounded.

Example 4.68. Given pg > 1 and p € R, define p(-) € P(R) by
p(x) = po + psin(loglog(l + max(|x|, [x[7"))).  x #0.

Then for p sufficiently close to 0, the maximal operator is bounded on L”®)(R), but
p(-) does not have a limit at O or infinity.

Moreover, the behavior at 0 and infinity can be separated, so that, for instance,
p(-) is continuous at 0 but does not have a limit at infinity. Lerner derived this
example as a special case of a general result. To state it, recall that a function f €
L}OC(Q) is a function of bounded mean oscillation (denoted by f € BMO(R2)) if

1l = sup][ () — fol dx < oo,
0 JoNQ

where the supremum is taken over all cubes that intersect 2. The space BMO
was introduced in [186]; see also [96, 144]. A function ¢ is called a multiplier
of BMO(R2) if given any f € BMO(RQ), ¢f € BMO(2). Multipliers were
characterized in [184,277,337].

Proposition 4.69. Given py > 1, and a non-negative multiplier ¢ of BMO(R"),
there exists a positive constant [ty = o(n, po, P) such that if 0 < || < po and
p(x) = po— g (x), then the maximal operator is bounded on LPO (R"). If ¢_ > 0
and q(x) = po + pn¢(x), then M is bounded on L10)(R").

The proof of this proposition relies on the theory of weighted norm inequalities,
the close connection between BM O functions and A, weights, and a charac-
terization of the multipliers of BM O. Using this characterization, a lengthy but
straightforward calculation shows that ¢ (x) = 2 +sin(loglog(1 +max(|x|, x|™1)))
is a multiplier of BM O(R) which then gives us Example 4.68.

Examples built using the function sin(log log(x)) have a long history in the study
of Orlicz spaces and other problems, beginning with Lindberg [239]. See also [126,
134,181,226,254,342].

Proposition 4.69 was generalized by Kapanadze and Kopaliani [188]. Given a
function f € BMO(S2), define its BM O modulus by
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y(fir) = supf ) — foldr, 150,
[Ql=rJQNQ

A function f belongs to VM O(2) (the space of functions of vanishing mean
oscillation) if y(f,r) — 0 as r — 0. More generally, given any non-negative
convex, increasing function ¢ : [0, 00) — [0, 00) such that 6 (0+) = 0, we say that
f e BMO°(Q) ify(f.r) < Co(r),and f € VMO°(Q) ifo(r)'y(fir) = 0
as r — 0. These spaces were introduced in [324,334].

Proposition 4.70. Let o(r) = min(|log(r)|™!, ). Given a bounded domain S
with Lipschitz boundary, if p(-) € P(Q) is such that 1 < p_ < py < o0
and p(-) € VMO°(R), then the maximal operator is bounded on LPO(Q). If
p() € BMO°(R2), then there exists po > 1 such that if q(-) = po + p(:), then
M is bounded on L10) ().

If ¢ is a multiplier of BM O, then ¢ € BMO° with o defined as above, so the
second part of Proposition 4.70 is a local generalization of Proposition 4.69. Further,
this characterization of exponents p(-) such that M is bounded on L?")(Q) is close
to optimal in this scale. For a proof see [82].

Proposition 4.71. If p(-) € Ko(R") and p+ < oo, then p(-) € BMO°(R"), where
o(r) = min(|log(r)|", e).

4.6.4 Perturbation of Exponents

By Theorem 4.37, if the maximal operator is bounded on L”"), then there exists
ro, 1/p— < ro < 1 such that if s > r¢, then M is bounded on L570)_ Given this,
Diening, Hésto and Nekvinda [86] asked the following question.

Question 4.72. If the maximal operator is bounded on L") (IR") is it bounded on
LPOR") forall s > 1/p_?

In a similar vein, motivated by Proposition 4.69, Lerner [229] asked the following
two questions.

Question 4.73. If M is bounded on L4+70) (R") for some a > 0, is M bounded on
LPO@R™)?

Question4.74. If p € P(R") issuch that 1 < p_ < py < oo and p(-) is a
multiplier of BM O, is M bounded on L”") (R")?

Using his results, Lerner showed that if the answer to Question 4.73 is positive,
then so is the answer to Question 4.74. Question 4.74 should also be compared to
the second half of Proposition 4.70. Question 4.73 was generalized in [86] to the
following.
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Question 4.75. If M is bounded on L7)(R") is M bounded on L**+70) (R") for all
a>1-—p.?

The answer to Questions 4.72-4.74 is no: in [231], Lerner constructed a
pointwise multiplier of BM O that yields counterexamples for each question.
Question 4.75 remains open for a > 0.

Kopaliani [215] asked similar questions for exponents p(-) € Ko(R"). As we
noted above, he showed that there exists p(-) € Ko(R"), 1 < p— < py < o0,
such that r p(-) € Ko for any r, 1/p— < r < 1. On the other hand, by Holder’s
inequality, for s > 1, |[Ag f(x)|° < Ag(|f|°)(x). Hence, by Propositions 2.18
and 4.47, if p(-) € Ko, then the operators Ay are uniformly bounded on L5700
sp(-) € Kj. He also showed thatif ] — p_ < a < 0,thena + p(-) € K. Itis not
knownifa+ p(-) € Ky forall ¢ > 0. The best that can be said (by Propositions 4.70
and 4.71) is that there exists @ > 0 such that this is true.

4.6.5 Weighted Variable Lebesgue Spaces

The theory of A, weights and weighted norm inequalities for the maximal operator
and other operators is a well developed and active field of research. It was natural,
therefore, that a parallel theory of weighted norm inequalities on variable Lebesgue
spaces would be studied. There has been a great deal of work in this area but the
outlines of the theory have only recently begun to emerge.

The first problem is to define a weighted norm inequality on variable Lebesgue
spaces. In the classical Lebesgue spaces there are two (almost) equivalent
approaches: treating the weight as a measure and as a multiplier. The inequalities for
the maximal operator in Theorem 4.35 treat the weight as a measure: the inequality

1/p 1/p
( / Mf ()P w(x) dx) -c ( / 1 CO1w(x) dx)
Rn Rn

is equivalent to saying that the maximal operator is bounded on L7 (w): the
Lebesgue space defined with respect to the measure w dx. Alternatively, we can
rewrite this inequality with the weight as a multiplier and with the norm the standard
L? norm:

MW PN, < [ f w7

In this case the weight w is usually replaced by a new weight w?; the norm inequality
then becomes |[(M f)w|, < C| fwl|,, and the Muckenhoupt 4, condition can be
rewritten as

Sup 1017 Iwxollpollw™ xoll,y < oo

(Compare this to inequality (4.16).) In the classical Lebesgue spaces the first
approach is more common, although inequalities for fractional maximal operators
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and Riesz potentials (see Sects.3.7.4 and 5.5) are usually stated with weights as
multipliers: see Muckenhoupt and Wheeden [272].

When py < oo or || = 0, both approaches yield equivalent definitions.
To treat weights as measures, given p(-) and a weight w, we define the weighted
modular

b = [ 1@ dx
Q\Qco
The space L”)(w, Q) would then consist of all measurable functions f such that
Ppeyw(f/A) < oo for some A > 0. In this case the theory developed in Chap.2
holds without significant changes. (Such a general framework is developed in [82].)
It is immediate from the definition that f € L?")(w, Q) if and only if fw(-)!/?0) €
LPO (Q).

One curious feature of defining weights as measures is that when py = oo
there exist non-trivial weights such that L0 (w, Q) = L?Y (). For example, if
we let @ = (0,1), p(x) = 1/x and w(x) = 2'*, then it is immediate that
these spaces are the same. Such weights are called non-effective weights; for
a complete characterization, see [130]. The problem of characterizing when one
weighted variable Lebesgue space embeds into another (with a different weight)
has also been considered: see [22,97].

If |Qs| > 0, these two approaches to defining weighted variable Lebesgue
spaces are no longer equivalent. If w is positive almost everywhere, then L*°(w) =
L>°; however, if w tends to 0 at a point (e.g., if w(x) = |x]|) then there exist
unbounded functions such that fw € L*.

Both approaches have been adopted in the variable Lebesgue spaces, though
weights as multipliers seem to be the predominant approach. Essentially all work
has been done assuming p4 < oo, so the difference is more a matter of outlook
than of substance.

Weighted norm inequalities for the maximal operator have been generalized to
the variable Lebesgue spaces using both approaches. For weights as multipliers the
main result is the following.

Definition 4.76. Given p(-) € P(R"), and a weight w, we say thatw € A, if

Wla,, = sup 1017 Iwxollpe W™ xoll ey < oo

Theorem 4.77. Given p(-) € P(R"), suppose p+ < oo and p(-) € LH(R"). Then
the following are equivalent:

1. we Ap(.),'
2. The Hardy-Littlewood maximal operator satisfies the weak type inequality

sug txixerr:mreosawlipe < Cl Wl pey:
>

3. If p— > 1, then the maximal operator satisfies the strong type inequality
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1M Il pey = CLI Wl pes-

Moreover, the necessity of the Ay condition for either the strong or weak type
inequality is true without the assumption that p(-) € LH(R").

Theorem 4.77 was proved in [64]. The argument is based on a proof of
Theorem 4.35 due to Christ and Fefferman [48]. Central to this approach is the non-
trivial fact that if w € A (., then w(-)?®) € A. (See p. 143.) Somewhat earlier and
independently, another proof was given in [57]. (See also [82].) This one depends
heavily on the machinery used to prove Theorem 4.63.

Weights as measures for the maximal operator were considered by Diening and
Histo [85].

Definition 4.78. Given p(-) € P(R"), define A;(,) to be the set of weights w such
that

Sgp 11772 lwxollilw™ xollyey/pe) < o0,

where Py is the harmonic mean of p(:) on Q (see Proposition 4.66), and ||+ || /()
is defined using Definition 2.16 even if p’(-)/ p(-) is not greater than or equal to 1.

Remark 4.79. One advantage of the AL(,) condition is that it is straightforward to

show thatif w € AT thenw e A, . See [85] for details.

1Ok
Theorem 4.80. Given p(-) € P(R"), suppose 1 < p_ < py < oo and p(-) €
LH(R"). Then the Hardy-Littlewood maximal operator is bounded on LP©) (w, R")
if and only if w € A;(,).

It follows from Theorems 4.77 and 4.80, and the equivalence of weights as
measures and weights as multipliers discussed above, that if w € A;(.), then

w(-)/?0) € A,; Diening and Histo also gave a direct proof of this fact when
p() € LHR").

There are three open questions related to these results. The first is whether they
can be generalized to include the case p+ = o0, and in particular | Q0| > 0. In this
case the conditions on the weights will no longer be equivalent. Muckenhoupt [271]
showed that || M f || Loe(w) < C || f || L= () if and only if w(x) > 0 almost everywhere,
but [[(Mf)W]eo < C|lfw|leo if and only if w=!' € A4;. When p(-) = oo, the
A p( condition yields this latter condition, so it seems reasonable to conjecture that
Theorem 4.77 holds when p4 = oo, with the hypothesis 1/ p(-) € LH(R"). On the
other hand, it is not clear how to extend the definition of A;(,) weights to include the
case p4 = 00.

The second question is to what degree the hypotheses on p(-) can be relaxed. It
is tempting to conjecture that the 4, condition is sufficient, but if w = 1, then it
becomes the K condition which is not sufficient: see Example 4.51. We conjecture
that on a bounded domain 2, [[(M /)W 01 @) < Cllf Wl L0 (q) if and only if w €
Ap(y. More generally, Diening and Histo [85] have conjectured that if the maximal
operator is bounded on L) (R") and w € A »(-)> then this inequality holds on R".
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The third question is whether the A, weights are the correct weights for other
operators on the variable Lebesgue spaces. As we will discuss in Chap.5, the
Muckenhoupt 4, weights are also the correct weights for a variety of operators
in the classical Lebesgue setting so this conjecture is a natural one. Very little has
been done on this question (but see below). Karlovich [191] considered this problem
for the Cauchy integral on Carleson curves from the more general perspective of
weighted Banach function spaces. More recently, Karlovich and Spitkovsky [196]
proved that the A, condition is necessary and sufficient for this operator to be
bounded on L?O (R).

A number of results are known for maximal operators and other operators in the
special case where the weights are power weights: weights of the form p(x) = |x|¢,
a € R, or more generally,

m
p(x) = [T lx —exl™,
k=1

or variable power weights of the form p(x) = |x[*®) or p(x) = (1 + |x[)*™.
Variable power weights arise naturally when considering the Hardy operator and its
variants (see Sect.3.7.5 above), since depending on how the operator is defined
the power of x can be treated as either part of the operator or as a multiplier.
Inequalities with power weights have also been proved for maximal operators, Riesz
potentials and singular integral operators. The first results of this kind were proved
by Samko [318], Kokilashvili and Samko [204,205,207,208], and later by Samko,
Shargorodsky and Vakulov [321-323] (here weights are treated as measures) and
Mashiyev, Ceki¢, Mamedov and Ogras [258]. Generalizations of power weights
were given by Kokilashvili, Samko and Samko [201, 203], Samko, Samko and
Vakulov [309, 310], and Kokilashvili and Samko [209]. Additional results were
proved by Karlovich [192-194]. Kokilashvili, Samko and Samko [202] considered
an A, type condition more restrictive than A4 (., that included many kinds of power
weights.

There is also a theory of two-weight norm inequalities for variable Lebesgue
spaces: that is, conditions on pairs of weights (u, v) such that an operator 7 satisfies
luTf 1l pey < VSl p)- (There is an equivalent formulation if we treat the weights as
measures.) In the classical Lebesgue spaces this is an area of ongoing research with
various approaches and many partial results. For more information and extensive
references, see [68, 69, 140].

In the variable Lebesgue spaces, some results are known for various opera-
tors: Hardy operators, maximal operators, Riesz potentials and singular integral
operators. The conditions imposed on the weights are generalizations of the
conditions from the classical Lebesgue spaces; they are often quite restrictive
and vary from operator to operator. One interesting feature is that in some cases
log-Holder continuity is replaced by decay conditions in which the modular
of continuity depends on the weight. For some recent results, see Kokilashvili
and Meskhi [198, 199], Edmunds, Kokilashvili and Meskhi [98, 100], Mamedov
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and Harman [247, 248], Mamedov and Zeren [249-251], Asif, Kokilashvili and
Meskhi [17], Bandaliev [20, 21], and [65]. Asif and Meskhi [18, 19] have also
considered the problem of compactness for operators in the two-weight case. An
extensive treatment of two-weight norm inequalities, with many references, can be
found in the monograph by Meskhi [262].

Weighted modular inequalities have also been considered by several authors.
Sinnamon [333] has shown that if the Hardy operator satisfies a modular strong
type inequality with exponent p(-) (see (3.37)) with respect to the measure w dx,
then p(:) is constant. However, Boza and Soria [35, 36] and Neugebauer [286]
have both proved one-weight modular inequalities for the Hardy operator with non-
constant exponents for non-negative, decreasing functions. Aguilar Cafiestro and
Ortega Salvador [8, 9] have proved two-weight modular weak type inequalities for
the maximal operator, generalizing Theorem 3.34.

A few authors have considered applications of norm inequalities in weighted
variable Lebesgue spaces. Diening and Histo [85] state without proof a weighted
Poincaré inequality. Edmunds and Rékosnik [106] and Gao, Zhao and Zhang [139]
proved weighted embedding theorems for variable Sobolev spaces (see Chap. 6
below). Edmunds, Kokilashvili and Meskhi [100] give an application to the norm
convergence of Fourier series. And Boureanu [33] used weighted variable Lebesgue
spaces to show the existence of weak solutions to an elliptic partial differential
equation.



Chapter 5
Extrapolation in the Variable Lebesgue Spaces

In this chapter we consider some of the classical operators of harmonic analysis:
convolution operators, singular integral operators, and Riesz potentials. Rather
than treat each operator separately, we develop a general theory that builds upon
the Rubio de Francia theory of extrapolation from the theory of weighted norm
inequalities. The advantage of this approach is that it quickly yields sufficient con-
ditions for these operators to be bounded on variable Lebesgue spaces; moreover, it
can be applied to many other operators as well.

To motivate our approach we will first consider a model operator: convolution
operators and approximate identities. We first prove the basic results of the theory
to highlight their dependence on the fact that the classical Lebesgue spaces are
translation invariant. We then develop those parts of the theory that remain true
in the variable Lebesgue spaces. One result which does not extend to this setting
is Young’s inequality. For the positive results our key hypothesis on p(-) is that
the maximal operator is bounded on L”). Next we give an overview of the theory
of extrapolation, both the classical version and more recent formulations, and then
extend extrapolation to yield inequalities in the variable Lebesgue spaces. This result
further illustrates the connection between weights and the variable Lebesgue spaces
that we saw in Chap. 4. Our approach to extrapolation is influenced by recent work
in this field. Though a more abstract formulation, it has the advantage of increased
flexibility. Finally, we apply extrapolation to study two operators: singular integral
operators and Riesz potentials. These examples illustrate how extrapolation and
the theory of weighted norm inequalities can be combined to prove results in the
variable setting.

5.1 Basic Properties of Convolutions

In this section we give the basic properties of convolution operators in the classical
Lebesgue spaces. The results themselves will be necessary tools for our work, and
the proofs will highlight the problems we encounter when attempting to generalize
them to variable Lebesgue spaces.

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 191
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3_5, © Springer Basel 2013
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Definition 5.1. Given two locally integrable functions f and g defined on R”, their
convolution is the function f * g defined by

Fes = [ fe=neea,

wherever this integral is finite.

It is immediate from the definition that convolutions are linear: given functions
fig,handa € R, fx(g+h) = f*xg+ fxhand f x(ag) = (af)x g =
a(f * g) whenever all the terms are finite. Further, by a change of variables, we
have that f x g = g * f. The integrability of convolutions is given by the following
proposition.

Proposition 5.2. Given measurable functions f and g, the following are true:

1. Forallp,1 < p <oo,if f € LP(R")and g € L”/(R”), then f x g € L*°(R")
and

If *glloo = I/ Ipllgllp- (5.1

2. Forallp,1 < p <oo,if f € LP(R") and g € L'(R"), then f * g € L?(R")
and

I *gll, <1/ 1Ml (5.2)

3. Given p, q, r, 1 < p, q, r < oo, such that

if f e LP(R")Yand g € L1(R"), then f x g € L"(R") and

ILf gl <1 Npligly- (5.3)

Inequalities (5.2) and (5.3) are referred to as Minkowski’s inequality and Young’s
inequality.

Proof. Inequality (5.1) follows from Holder’s inequality and the translation invari-
ance of the classical Lebesgue spaces: for all x,

|f g = I1f G =Iplglyy =11l

If p < o0, inequality (5.2) follows by Minkowski’s inequality, Fubini’s theorem
and translation invariance:
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1/p )4 1/p

(/ If*g(x)l”dx) =(/ dx)

R" R

1/p

< [ ([ 1ra-nsorax)
1/p
=/ (/ If(x—y)lpdx) 2| dy
R” Rn

= £l lgl-

| re=nemas

If p = oo, inequality (5.2) reduces to inequality (5.1).

Finally, to prove inequality (5.3), fix p, 1 < p < oo. Given a function f €
LP(IR") define the linear operator 7yg = f * g. Then inequalities (5.1) and (5.2)
can be restated as || 7 glloo < [/ ,llgll, and | Ty, < IL£ 15 llg]ls. Therefore, by
the Riesz-Thorin interpolation theorem (see [143,341] and Sect.3.7.8), [|Trg|, <
I /1 ,glly, which is the desired inequality. O

While Definition 5.1 is stated for functions defined on all of R”, we can readily
adapt it to functions defined on a set 2 by setting f and g equal to 0 on R" \ Q.
Hereafter we will do so without comment. Note that the function f * g may be
non-zero on R" \ 2, since f(x — y) will be non-zero for points x € R" \ Q.
However, if both functions have compact support, then so does f * g. For example,
if supp(f'), supp(g) C Br(0), then f(x — y) can only be non-zero if |[x — y| < R,
so supp(f * g) C Byr(0).

A very important application of convolution is the technique of approximate
identities, also known as mollification. Given a function ¢, for each >0 let
¢:(x) = t™"¢p(x/t). This normalization is such that if ¢ € L'(IR"), then ||¢,||; =
ll¢|l1. Define the radial majorant of ¢ to be the function

@(x) = sup [p(y)].

[y|=1x|

The function @ is radial and decreasing as |x| increases; however, even if ¢ €
L'(R™), ® need not be integrable. For example on the real line, let ¢(x) = |x —
11712 y(Z2.2); then ®(x) = oo forall x € (—1,1). We will be particularly interested
in ¢ such that ® € L' this is the case, for example, if ¢ is bounded and has compact
support. It follows from the definitions that

| * fOO)| = (P * | fD(x), (5.4)

so in practice we can often replace ¢ by its radial majorant and assume that f is
non-negative.
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Definition 5.3. Given ¢ € L'(R") such that [p, ¢(x)dx = 1, the set {¢y} =
{¢: : t > 0} is called an approximate identity. If the radial majorant of ¢ is also in
L'(R™), {¢} is called a potential type approximate identity.

The name “approximate identity” is motivated by the following theorem.

Theorem 5.4. Given an approximate identity {¢,}, then for all p, 1 < p < oo, if
f € LP(R"), then ||¢; * f — fll, = 0ast — O. Further, if {¢;} is a potential
type approximate identity, then for all p, 1 < p < o0, ¢ * f(x) — f(x) pointwise
almost everywhere as t — 0.

The proof of Theorem 5.4 requires two lemmas. To state the first we need a
definition.

Definition 5.5. Given a measurable function f and & € R", define the translation
operator t, by 7, f(x) = f(x — h).
Lemma 5.6. Given p, 1 < p < oo, then L?(R") is mean continuous: if f €
LP(R"),

lim |z, f = f|, = 0.

|h|—0

Proof. If g is a continuous function of compact support then this follows at once
by uniform continuity. Given any f € L?(R"), fix ¢ > 0. Since C.(R") is dense
in L?(R"), there exists g € C.(R") such that ||/ — g||, < €. Therefore, by the
translation invariance of the classical Lebesgue spaces,

limsup ||z f — fll, < limsup (Itag — gll, + lag = fll, + 1/ —gll,) < 2e.

|h|—0 |h|—0

Since € is arbitrary the desired limit must hold. O

Lemma 5.7. Let {¢,;} be a potential type approximate identity and let ® be the
radial majorant of ¢. Then for every locally integrable function f and every x,

sup ¢, * f(x)| = C(n)||P[l1 M S (x).

t>0

Proof. By (5.4) and the discussion in Sect. 3.1, it will suffice to prove that given any
non-negative f € L! (R"), forallt > 0,

loc
D * fx) < | @M f(x),

where here we take the maximal operator to be the supremum of averages over balls.
For each j, k > 1 let Bj? = B;,-+(0). Since P is radial, we abuse notation and let
d(]x|) = P(x). Define the function ®; by

[e.]

Oe(x) = D (@27 = @ + D27 ppe(x) = Za X (%)

Jj=1
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Since ® is decreasing, a’; > 0. Let A’; = B}‘ \ Bf—ﬂ then for x € A’]‘-,

o0

Dp(x) = Y (PE27F) = @(( + 1)27F)) = B(j27F) < D(x).

i=j

Since ® € L' and is non-negative, it decreases to 0 as |x| — oo. Therefore, the
middle sum converges. Further, {® } increases to ® pointwise almost everywhere.
Hence, by the monotone convergence theorem on L! (R™), if f is non-negative, for
eacht > 0, (®y), * f increases to O, * f pointwise as k — oo. Therefore, it will
suffice to prove that forall k > 1 and ¢ > 0,

(Pr)r * f(x) < [[ R M]f(x).

We first consider the case t = 1. Since for all x,

BE e % ) :]i; fa=ndy=f oy < Mf)

=k (X)

we have that

O f(x) =) a5 [BS] B g+ f(0) < |0k 1M (x) < |91 MS(x).
J

We can now repeat this argument with ®; replaced by (®y),; since ||[(Py):|l1 =
|Dr |1, we get the desired inequality for all # > 0. O

Proof of Theorem 5.4. Fix p < co and f € L?(R"). Since [ ¢(x)dx =1,

85 f@-F0) = [ (Fa-n=f@)00)dy = [ (a f0-F )00 .
R Rn

Therefore, by Minkowski’s inequality,

1605 £ = £y = [ Vet = Flalp] dy.

Fix € > 0; then by Lemma 5.6 there exists § > 0 such that if [ty| < &, ||z, f —
fllp < €. Since ¢ is integrable, there exists ¢ > 0 such that

/ ()| dy <e.
{y:ly|=8/1}

Thus, again by the translation invariance of L?(R"),
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6Ol dy +211 /1, /

{ly=8/1

||¢t*f—f||pse/

oldy = (llol +2 :
{Iyl=<s/1} ol dy = (I8l +2171)e

Since € is arbitrary, we have that ¢, * f — f in norm.

To prove pointwise convergence, We first consider the case p < oco. If gisa
continuous function of compact support, then ¢, * g(x) converges uniformly to
g(x). To prove this, note that since g is uniformly continuous, ||7,¢ — gllcc — 0 as
h — 0, so we can repeat the above proof for norm convergence using the L norm.

Since C.(R") is dense in L”(IR"), fix a sequence {gr} C C.(R") that converges
to f in norm. Then by Lemma 5.7 and Theorem 3.4, for all s > 0,

[{x e R" ili?lsypldh * f(x) = f(O)] > s)

< limsup (I{x € R HTimsup g% () — ¢ % 60| > 5/3)

k—00

+ [{x e R": 1ims(;1p|f(x) —gr(x)| > s/3}
+ {x eR": lims(;lp|¢>, * gr(x) —gr ()| > 5/3}|)

< limsup (I{)C eR": C)|PIM(f — gi)(x) > 5/3}]

k—00

Ll e R M(f - g0() > s/3}|)

< Tim sup | (C(n) [ ], + 1)Cs~7 / () = g (O dx
k—o00 R”
= 0.

Since this is true for all s > 0, we have that
[tx € R" :limsup |¢, * f(x) — f(x)| > O}
t—0

<) lixeRr" IliltnS(l)lplqﬁr * f(x) = f()]>1/j3| = 0.

Jj=1

Therefore, ¢, * f(x) — f(x) almost everywhere.

Now suppose p = oo; we will show that given any ball B, ¢; * f(x) — f(x)
for almost every x € B. Write f = f; + f>, where f| = fy2p and fo = fyre\25-
Then ¢, * f(x) = ¢ * fi(x) + ¢ * fo(x), and since f; € L'(R"), the first term
converges pointwise to f(x) for almost every x € B. Furthermore, if the radius of
B is r, then for x € B,
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fimsup g, f200)| < limsup / £ = le)] dy

[y|>r

< lim sup ||f||oo/ ()| dy = 0.
{lyl>r/t}

t—0

This completes the proof. O

5.2 Approximate Identities on Variable Lebesgue Spaces

The proofs in the previous section depend heavily on the translation invariance of
the classical Lebesgue spaces. As we will see in Theorem 5.17 below, this property
never holds in the variable Lebesgue spaces unless p(-) is constant. Therefore,
it would not be completely unexpected if none of the properties of convolutions
remain true in this setting. And some do fail, in particular, Young’s inequality, which
we will consider in more detail in the next section.

Nevertheless, many key properties of approximate identities are preserved if
we assume that the exponent function p(-) has some regularity. Our main tool is
Lemma 5.7, which shows that there is a close connection between potential type
approximate identities and the maximal operator.

In the classical case, the norm convergence of an approximate identity is
relatively straightforward to prove, but pointwise convergence requires a more
sophisticated argument using the maximal operator. For variable Lebesgue spaces
it is the opposite: pointwise convergence is an immediate consequence of the
classical result for any p(-), but norm convergence requires additional hypotheses
and the boundedness of the maximal operator. We therefore first consider pointwise
convergence.

Theorem 5.8. Given Q and p(-) € P(R), let f € LPO(Q). If {¢,} is any potential
type approximate identity, then for allt > 0, ¢, x f is finite almost everywhere, and
¢ x [ — f pointwise almost everywhere.

Proof. By Theorem 2.51, write f = fi + f», where f; € L?+(Q) and f, €
LP=(Q). Since ¢, * f = ¢ * fi + ¢ * fo, and ¢, € L'(R"), by Young’s
inequality (5.3) each term is finite almost everywhere, and the desired limit follows
at once from Theorem 5.4. O

When 2 has finite measure, as a corollary to Theorem 5.8 we get that potential
type approximate identities also converge in measure. If we assume that p4 < oo,
then this is true for any open set 2.

Theorem 5.9. Given Q and p(-) € P(R) such that p4 < oo, let f € LPY(Q). If
{¢;} is any potential type approximate identity, then ¢, x f — f in measure on Q.
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Proof. Fix f € LPY)(Q). Since p1 < oo, by Theorem 2.72 there exists a sequence
{gx} C LPY(RQ) of bounded functions of compact support such that g — f in
norm. Fix €, 0 < € < 1; then for any k,

{x e Qg x f(x)— f(X)] =€} <{x € Q:|p * (f —gu)(x)| > €/3}]
+ [{x € Qg * gi(x) — gr(x)] = €/3}]
+ H{x € Q:lge(x) — f(x)| = €/3}].

By Theorem 2.69, g — f in measure. Therefore, for all k sufficiently large, the
last term is less than €/3. Again using the fact that p; < oo, by Lemma 5.7 and
Theorem 3.34 we have that

{x € Qg+ (f —g)(X)] = €/3]]

SHxeQ:M(f —g)(x) = €/C}[ = Ce™ Pt /Q | £(x) — gk (x)]7™) dx.

Again by Theorem 2.69, g — f in modular, so we may choose k sufficiently large
that the right-hand side is also less than €/3. Finally, given k, gx € L'(R), and so
¢:*gr — gk in L' norm and so in measure as t — 0. Therefore, for all # sufficiently
close to 0,

[{x € Qg+ gr(x) — gr(x)| = €/3}] < €/3.

If we combine the three inequalities, we get that

{x € Q:ld* f(x) — f(X)] = €} <€
since € > 0 is arbitrary, ¢, * f — f in measure on . O

If Q has infinite measure, then the next example shows that we need the
additional hypothesis that p; < oo.

Example 5.10. Define p(-) € P(R) by p(x) = 1 + |x/|, and define the function f
by
1 xe€2n,2n+1]

fo) = {0 x € (2n—1,2n)

By Proposition 2.43, L®*([R) C LPO(R), so f € LPO(R). Let ¢(x) =
X(~1/2,1/2(x). Thenforall#,0 <t < 1,

x+t/2

box f(0) =17 / £) dy.

x—t/2

andsoif x € @Qn +1¢/2,2n+1—1/2),¢: % f(x) = Liifx e Qn—1+4+1/2,
2n —1t/2), ¢ * f(x) = 0; and between these intervals the value of ¢; * f is gotten
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by linearly interpolating between 0 and 1. Thus, ¢, * f converges to f pointwise
almost everywhere. On the other hand, for any € > 0,

{x e R: g * f(x) = f(0)] = €}| = o0,

and so ¢, * f does not converge to f in measure.

We now consider the convergence in norm of approximate identities. To achieve
this we need a stronger assumption on p(-).

Theorem 5.11. Given an open set Q and p(-) € P(Q), suppose p4+ < oo and the
maximal operator is bounded on L?"(Q). If {¢,} is a potential type approximate
identity, then

Sulg o * fllpey < CNfllpe)s (5.5)
>

and ¢, * [ — f innorm on LPV) (). The constant C in (5.5) depends on n, p(-),
”M”Lp’v)(g) and ”q)”l

Remark 5.12. The hypothesis p < oo is redundant: by Theorem 3.19, if the maxi-
mal operator is bounded on L?' 0 (), then p/(-)_ > 1, and so py = (p'()_) < oo.
We include this fact in the statement for clarity.

Remark 5.13. If Q2 is unbounded, by Theorem 3.16 it will suffice to assume that
p() € LH(S2); however, if Q2 is bounded then by Corollary 3.18 it suffices to
assume that p(-) € LHy(€2). This fact is often useful in applications.

Proof. Fix f € LPO(Q)andt > 0. Let ® be the radial majorant of ¢. Then by (5.4)
and Theorem 2.34 there exists i € L (Q), ||h ) = 1, such that

e * S llpey < 190 1S 1llpey < 2k55¢, /Q ;[ f(x)h(x) dx.

Since ®; is a radial function, by Fubini’s theorem, Theorem 2.26, Lemma 5.7 and
our assumption on p’(-),

/ (@, % | ) (0h(x) dx = / | (OIPs  h(x) dx
Q Q

=Cm)[|®[h /Q | f)IMh(x)dx < C)|[ PN Kp)llf 1 pe) Ml
=< C”M||Lp’(<)(g)”f”p(')”hup’(') = C”f“p(')'

Since the constants do not depend on 7, inequality (5.5) follows at once.

To prove that ¢, * f converges to f in norm on L?")(Q), we use an approx-
imation argument similar to that in the proof of Theorem 5.9. Fix € >0. By
Theorem 2.72 there exists a function g, bounded with compact support and not
identically zero, such that || f — gl ,() < €. Then by (5.5),
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pe * f = Fllpey S Npe * (f = Dllpey + 1Pe g —gllpey + 1f —&llpey
<Ce+ ¢ *xg—2gllpe)-

Since € > 0 is arbitrary, to complete the proof it will suffice to show that
lim [|¢; + g —gllpe) = 0:
since p4 < 0o, by Theorem 2.58 it will suffice to show that
fim [ 19 g0 = 2017 dx = 0.
Let go(x) = g(x)/ 2l #ll1lIglleo)s since [|pl1 = 1, [|gollec = 1/2. Furthermore,

s * go(x)| < /Q ¢ (x = »)lgo(¥)|dy =< ||go||oo/Q ¢ (x — )| dy < 1/2.

Therefore, ||¢; * g0 — golloo < 1, and so

lim/ |y * g(x) — g(x)|P™ dx
t—0 Q
= tim [ oIl = 8066) — 8000
< @l#lhlgleo + D™ IIEI(I)/Q [¢r * go(x) — go(x)|7~ dx.

Since ggp € LP—(2) and 1 < p_ < oo, by Theorem 5.4 the last term equals 0. This
completes the proof. O

Remark 5.14. 1If we assume that p_ > 1 and the maximal operator is bounded on
LP0(R), then inequality (5.5) follows immediately from Lemma 5.7.

Our proof of norm convergence required the assumption that p; < oo, and in
fact this hypothesis is necessary. If ., is open and has positive measure, then this
is straightforward to prove. Let f € L?0(Q) be discontinuous on 4, and let
¢ € C>®(R"). By Lemma 6.15 below, ¢, * f is continuous. If ¢, * f — f in LPO
norm, then ||¢; * f — f|roo(.) converges to O: i.e., ¢, * f converges uniformly
to f on R, and so f is continuous, a contradiction.

Moreover, if |Qs| = 0 and p4+ (2 \ Qo) = 00, then we can weaken the
hypothesis that the maximal operator is bounded and still show that p4 < oo is
necessary.

Example 5.15. Given Q and p(-) € P(R2), suppose p(-) € Ko(2) and p4+ (2 \
Qo) = oo. Then there exists f € L?)(Q) and a potential type approximate
identity {¢,} such that ¢, x f does not converge to f in norm.
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Proof. We first construct the function f. Since p4 (2 \ Q) = 00, there exists an
increasing sequence of natural numbers p; > k such that the sets

Fi ={x € Q\ Q : pr < p(X) < pr+1}

have positive measure. For each k let x; € Fy be a Lebesgue point of the function
X F.. Since the sets Fy are disjoint, the x; are distinct. We will show (possibly
after passing to an infinite subsequence) that there exists a sequence of positive
numbers {r} such that the balls By = B, (xx) are pairwise disjoint. By passing
to a subsequence of {x;} we may assume that no point in the sequence is a limit
point of the sequence. If the original sequence has no limit points, keep the entire
sequence. Otherwise, fix a limit point and pass to a subsequence that converges to
it. If the limit point is an element of the subsequence, create a new subsequence by
eliminating this one point.

We now construct the sequence {ry} by induction. Since we have that for every
k, xx is not a limit point of the sequence, there exists a sequence {s }, sy > 0, such
that for j # k, x; & By, (xx). Let ri = s1. Since x» & By, (x1), there exists r,
0 < rp < 7, such that B,, (x) and B,,(x») are disjoint and the points x;, i > 3, are
not contained in B,,(x2). Now for k > 2, suppose we have positive radii ry, ..., g
such that r, < s; and the balls B, (x;) are pairwise disjoint. Then xx+; & B, (x;),
1 <i <k, so there exists rx+1, 0 < rg41 < sg+1 such that By, | (xx+1) is disjoint
from the balls By, (x;), 1 < i < k. Continuing this construction, by induction we
get the desired sequence.

Possibly after making each r smaller, we may assume that the sequence ry — 0
as k — oo, and that the balls B; = B (y)/141)y, (Xx) are disjoint, where ¢y is such
that for every ball B the averaging operator satisfies || A/ || ro gy < coll|l Lre)(p)-
(Since p(-) € Ko(£2), co > 1 exists by Proposition 4.47 and Remark 4.49.) If we
pass to a subsequence and relabel the sets Fj so that x; € Fj, then by the Lebesgue
differentiation theorem (see Sect.2.9) we may also assume that

| Fi N By| 1
| B 2

We can now give the function f. Let Gy = F N By. Define the function

£ =3 (16 x6,() 7.
k=1

By the definition of Fy, p_(Gy) > k, and so we have that

o0 o0
Ppy(f/2) = Z][ 27 dx <Y 2k =1
k=17 Ok k=1

Thus f € L?O(Q).
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The desired potential type approximate identity {¢;} is given by ¢(x) =
|B1(0)| " x5, 0)(x). Let 5 = (2¢0)"/"ri; then since the balls B} are disjoint, for
any x € By and y € By (x), f(y) = Ounless y € By. Hence,

_ _ 1 _ -1
b f0= [ sy =g [ I dr=eeo™ dn s,

Therefore,
||¢tk * f”Lp(-)(Bk) = (200)_1||A3kf||m<~)(3k) = 2_l||f||Lp(~)(Bk)-
On the other hand,

FO)PW dy = [ Gl dy = 1,

By Gk

and so, since Gy C Q2 \ Q0. by Proposition 2.21,

”f”LP(‘)(Bk) = ”f”Ll’(')(Gk) =1

But then for every k we have that

I/ — by * f”LP(')(Q) > f =y f”Ll’(')(Bk)
> N flleror sy = Po * fllros,) = 1/2.

Since the sequence t; — 0 as k — oo, it follows that ¢, * f does not converge to
f innormas t — 0. O

Remark 5.16. The construction in Example 5.15 should be compared to the con-
struction in the proof of Proposition 2.12 and the related constructions in Chap. 2.

5.3 The Failure of Young’s Inequality

Before considering how to generalize the results in the previous section to other
operators, we first discuss the failure of Young’s inequality to hold on the variable
Lebesgue spaces. As we noted above, the proof of Proposition 5.2 depends funda-
mentally on the fact that the classical Lebesgue spaces are translation invariant: for
any p,if f € L?(R") thenforany 7 € R", t; f € LP(R") and || f ||, = [t f |l -
This property is never true on the variable Lebesgue spaces unless the exponent is
constant.



5.3 The Failure of Young’s Inequality 203

Theorem 5.17. Given p(-) € P(R"), each of the translation operators ty,, h € R",
is a bounded operator on LP)(R") if and only if p(-) is constant. Moreover, if p(-)
is non-constant, there exists f € LPO(R") and h € R" such that v, f ¢ L?O(R").

Proof. If p(-) is constant, then this is immediate. To prove the converse, suppose
that p(-) € P(R") is such that for all # € R", ||z f || oy < Cull fllp- Fix h and a
ball B.If f € LPY(B)and f = 0 on R" \ B, then 1, f € L?O(B + h), where
B+h=A{x+h:xeB}and|fll o = ltafllrosn- Hence, by our
assumption on ty,

I/ enrer sy < lTn fllLro@ny < Cull Fllpror @y = Call Sl oo 5)-

Therefore, by Theorem 2.45, t—j, p(x) < p(x) for almostevery x € B.If we replace
h by —h and repeat the argument, we get the reverse inequality. Thus, 7, p(x) =
p(x) almost everywhere in B. Since B and / are arbitrary, this implies that p(-) is
constant.

Given a non-constant p(-), to construct the desired function f, fix heR”
such that 7 is not a bounded operator. Then there exists a sequence of functions
fi € LPO(R") such that || fi|l,¢) <1 but |4 fill oy > 4% If for some k, © fi &
Lo (R"), we are done. Otherwise, let

f=> 27 4l

k=1

Then
o0
1 e < 32750 fellp < 1.

k=1

but for every k, f > 27¥| |, and so
Io Sl = 27 e fill oy = 2°.
Hence, ||t f || p¢) = co and 7, f & LPO(R"). O

As a corollary to Theorem 5.17 we get that Lemma 5.6 does not hold in the
variable Lebesgue spaces unless p(-) is constant.

Corollary 5.18. Given p(-) € P(R"), p(-) not constant, then L") (R") is not mean
continuous: there exists f € LPO(R") such that

Jim 5 = fllpo #0. (5.6)

Proof. Sinceforany h € R", typ01,/2 f = 1y f, y is bounded if 7,—x, is bounded.
Hence, by Theorem 5.17 we can find 4 € R” such that if iy = 27%h, then T, 1S
unbounded. Therefore, we can find functions f; € L?O(R"), || fi |l p¢y < 1, such that
o fi & LPO(RY). Let
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o0
=Y 27 Al
k=1
then f € LPO(R"), but for any k, f > 27%| f;| and so 7;, f & LP(R"). Hence,
[ — f & LPO(R") and (5.6) does not hold. O

We can now show that Young’s inequality is never true for non-constant
exponents.

Theorem 5.19. Given p(-) € P(R"), the inequality

ILf *gllpey < Clf e lglh (5.7)
is true for every f € LPO(R") and g € L' (R") if and only if p(-) is constant.

Proof. 1f p(-) is constant, then (5.7) becomes (5.2) in Proposition 5.2.

Now suppose that p(-) is not constant, but assume to the contrary that (5.7) holds
for all f and g. By Theorem 5.17 there exists # € R” and f € L?O(R") such
that 7, f ¢ L?Y(Q). If we replace f by |f|/| fll,¢) we may assume f is non-
negative and | f||,y = 1. Foreach N > 0, let gn(x) = min(f(x), N)xBy©)-
Then ||gn |l o) < Il fllp¢y < 1. Further, since gy is a bounded function of compact
support, ,gy € LPO(R"). Since 1,gy — 1, f pointwise, by Fatou’s lemma for
the variable Lebesgue spaces (Theorem 2.61),

0o = |t fllpe) < im ini Itngn Il e

Therefore, for every k > 1 we can find Ny such that fy = gy, € LPO(Q) and
Ifellpey < 1butllm, fillpey = 2%

Let ¢ be a bounded, non-negative function of compact support such that ||¢|; =
1. For every t > 0, let ¥, ,(x) = t™"¢((x — h)/t). Then by a change of variables,

A
Yon * felx) =17 / ¢ (L

t

) Je(y)dy

= [ 6 () RO -y = g (@A,

t
Since 1, fi € LPY(R"), by Theorem 5.8, ¢, * (t; fx) — T fi pointwise almost

everywhere. Therefore, by Fatou’s lemma in variable Lebesgue spaces (Theo-
rem 2.61) and (5.7),

25 <o fellpey < 11}11)1(§lf||¢r * (Th fi)ll )

= liminf [ * fillper < Cll fellpo 9 < C.
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Since this cannot be true for every k, we get a contradiction. Hence, inequality (5.7)
holds if and only if p(-) is constant. O

We can prove a very weak version of Young’s inequality as an immediate
consequence of Lemma 5.7.

Proposition 5.20. Let p(-) € P(R") be such that the maximal operator is bounded
on LPORM). Then for every f e LPO(R") and every non-negative, radially
decreasing function g € L'(R"),

If* gl < Clflpoligl-

However, even given the restrictive hypotheses of Proposition 5.20, Young’s
inequality does not hold for general exponents. In particular, inequality (5.1) may
fail as the next example shows.

Example 5.21. Let p(-) € P(R) be a smooth function such that p(x) = 2 if x €
R"\ [-2,2], and p(x) = 4 on [—1, 1]. Define

f@) =1x =3 ypa,  gx) =[x i

Since f2 € L'(R), by Proposition 2.12, f € LP(R). Similarly, since p’(x) =
4/30on[—1,1] and g*3 € L'(R), g € L”’O(R). However, we do not have that

ILf * glloo = ClLAIper €11

since f * g is unbounded in a neighborhood of 3. To show this, let E, = [2,4] N
[x — 1, x 4 1]. Then by Fatou’s lemma on the classical Lebesgue spaces,

timint f  ¢() = timinf [ |x = 3]y = 37 () dy
x—3 x—3 R~ :

4
zA lim (|x—y|—2/3|y—3|—1/3xEx(y))dy=/2 v =37 dy = co.

n X—>3

5.4 Rubio de Francia Extrapolation

In this section we state and prove the main result of this chapter, an extension of the
Rubio de Francia extrapolation theorem to variable Lebesgue spaces. To provide
motivation and context for this result, we will first revisit the proof of Theorem 5.11
to show the connection with weighted norm inequalities, and we will then describe
the classical extrapolation theorem and recent generalizations of it.

Given a potential-type approximate identity {¢,}, the heart of the proof of
Theorem 5.11 was a duality argument which led to the following inequality (again,
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® is the radial majorant of ¢ and ®;(x) =" P(x/1)):

/(CI% | fD)A(x) dx < C||<I>||1/ | f ()M h(x) dx. (5.8)
Q Q

Suppose for the moment that 7€ A; (see p. 142). Then we would have that
M h(x) < [h]4,h(x), and so we could rewrite (5.8) as

/(CI% | fD)A(x) dx < C||<I>||1[h]A1/ | f()[A(x) dx. (5.9)
Q Q

We could then continue the proof, applying the generalized Holder’s inequality to
get the desired conclusion. In other words: treating & as a weight, if we had the
weighted norm inequality (5.9), then we could prove that the convolution operators
®, * f are uniformly bounded on L?) (). Furthermore, the same argument would
work for any operator 7' for which we had the same weighted norm inequality.

The problem with this heuristic argument is that in general / is not an A; weight.
The key to overcoming this difficulty is to use the Rubio de Francia iteration
algorithm, introduced in Sect.4.3 in the proof of Theorem 4.37. This iteration
algorithm is also the connection with the Rubio de Francia extrapolation theorem,
whose proof is the motivation for our interpretation of the proof of Theorem 5.11.
The extrapolation theorem is one of the most profound results in the theory of
weighted norm inequalities, remarkable for its power and simplicity.

Theorem 5.22. Given an operator T, suppose that for some py, 1 < py < 00, and
every w € Ay, there exists a constant Cp, depending on T, po, n and [w]a,, (but
not on w itself) such that for all f € L (w),

/ ITF(0)Pow(x) dx < Cpy / o) Pow(x) dx. (5.10)
Rn R”

Then for every p, 1 < p < oo, and every w€ A, there exists a constant C,
depending on po, n, p and [wl]y,, such that for all f € L (w),

/ ITf(x)Pw(x)dx < C])/ | F()|Pw(x)dx.
R~ R

The proof of Theorem 5.22 is a more sophisticated version of the heuristic
argument sketched above. Duality is used to pass from L?(w) to L (w), and the
iteration algorithm and the properties of A, weights are used to modify w to get
a weight in A, so that the hypothesis can be applied. The desired conclusion is
then gotten by Holder’s inequality and the boundedness of the maximal operator.
(See [69] for the details of this proof.)

To understand the power of the Rubio de Francia extrapolation theorem, consider
the simplest case: pg = 2. Since forall p > 1,1 € A, Theorem 5.22 asserts that
to prove an operator is bounded on any L? space it is enough to prove that it is
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bounded on L?(w) for all w € A,. Our goal is to show that if an operator is bounded
on L?(w) for all w € A», then it is bounded on L”") given very natural hypotheses
on p(:).

Before we state an extrapolation theorem for variable Lebesgue spaces, we first
need to give an abstract generalization of Theorem 5.22. It is an interesting and
somewhat surprising feature of the proof of this result that the properties of the
operator 7" play no role. In fact, we can replace the hypothesis (5.10) with a more
general inequality,

/ F(x)"w(x)dx < CO/ G(x)P'w(x) dx, (5.11)
R R

where (F, G) are pairs of non-negative, measurable functions, and then conclude
that the weighted L? inequality holds for these pairs (F, G) as well. This may seem
a superfluous generalization, but it allows the theory of extrapolation to be extended
to prove a much wider class of results; we will make the utility of this approach
clear below (see Corollaries 5.33 and 5.34).

However, in order to pass from operators to pairs of functions, we need to be more
careful. In the proof we must assume that the /eft-hand side of (5.11) is finite. When
dealing with an operator 7" (i.e., with pairs (F, G) = (|Tf|.|f])) we normally get
this by assuming that the right-hand side is finite. However, when working with
arbitrary pairs it is simpler to assume exactly what we need.

Therefore, hereafter we will let F denote a family of pairs of non-negative,
measurable functions; given p, ¢, 1 < p, g < oo, if for some w € A, we write

/ F(x)?w(x)dx < CO/ G(x)?w(x) dx, (F.G) e F,
Q Q

then we mean that this inequality holds for all pairs (F, G) € F such that the left-
hand side is finite, and that the constant may depend on n, p, 2 and [w] A, but not
on w. Using this convention we can now state the more general form of the Rubio
de Francia extrapolation theorem.

Theorem 5.23. Suppose that for some py, 1 < po < oo, the family F is such that
forallw e Ay,

/ F(x)"w(x)dx < C,,O/ G(x)"w(x)dx, (F,G) e F.
Q Q
Then for every p, 1 < p < oo, and everyw € A,
/ F(x)?w(x)dx < Cp/ G(x)?w(x) dx, (F,G) e F.
Q Q

To state our version of Rubio de Francia extrapolation for variable Lebesgue
spaces, we extend this convention as follows: if we write
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IFlLro@) < CpelG Il Lrora)s (F,G) € F,

then we mean that this inequality holds for all pairs such that the left-hand side is
finite and the constant may depend on n, p(-) and 2.

Theorem 5.24. Given 2, suppose that for some py > 1 the family F is such that
forallw € Ay,

/ F(x)"w(x)dx < CO/ G(x)Pw(x) dx, (F,G) e F. (5.12)
Q Q

Given p(-) € P(2), if po < p— < p+ < oo and the maximal operator is bounded
on LPO/P0)(Q), then

1EN o) < CoorllGllpeys (F,G) e F. (5.13)

Remark 5.25. In applications the family F must be constructed by choosing an
appropriate dense subset of L”)(Q) such that the left and right-hand sides of
both (5.12) and (5.13) are finite. The full result is then gotten via an approximation
argument. We will consider this step in greater detail for specific operators in
Sect. 5.5 below.

Remark 5.26. As was the case for Theorem 5.11, the hypothesis p; < oo is
redundant: if p4 = oo, then ((p(-)/ po)’)— = 1 and the maximal operator cannot
be bounded on L")/ (). We again include it for clarity.

Remark 5.27. For p(-) = p constant in Theorem 5.24, we can only get inequalities
for p > po. This is different from the conclusion of Theorem 5.23 which yields
inequalities for all p > 1. The reason for this is that we are making a different
assumption on the weighted norm inequality: w € A; versus w € A, . In the theory
of extrapolation this is sometimes summarized by saying that one can only “go up”
when extrapolating from A; weights.

Theorem 5.24 has two main hypotheses: the weighted norm inequality (5.12) and
the boundedness of the maximal operator on L)/ ro)’ (£2). We will discuss the first
condition in Sect.5.5 since this will depend on the specific operator. The second
condition is a natural one in light of Theorem 5.11 (when py = 1 we are assuming
that M is bounded on L”/(')(Q)) and the close connection between Muckenhoupt
A, weights and the maximal operator. Our results in Chaps. 3 and 4 provide a variety
of conditions on the exponent p(-) for this to hold. In particular, by Theorem 3.16
it suffices to assume that p(-) € LH(2), for in this case we have that (p(-)/po)’ €
LH(2).If 2 is bounded, then by Corollary 3.18 we may assume p(-) € LHy(S2).

In applications we are often given an exponent p(-) and need to find py such
that (5.12) holds. Even if we do not assume log-Holder continuity (which lets
us take any po such that 1 < py < p—), we always have a possible choice for
po. If we assume that the maximal operator is bounded on L?0)(Q2), then by
Theorem 4.37, there exists py > 1 such that M is bounded on L”")/7(Q), and
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so by Corollary 4.64, M is bounded on L0/ ”0)/(9). (We will apply this idea in
Corollary 5.32 below.) Given this, it might seem more natural to simply assume in
Theorem 5.24 that the maximal operator is bounded on L”")(£2). However, we want
to include the case po = p— = 1 and in this case the maximal operator cannot be
bounded on L”®) () but may be bounded on Lr'o (RQ).

There is another version of the extrapolation theorem which will be useful in
applications. Certain operators (in particular, the Riesz potentials) are not bounded
on the Lebesgue space L”(R"), but instead map L?(R") into L?(R") for some q.
By using the corresponding weighted inequalities, we can use extrapolation to
extend these results to variable Lebesgue spaces. In stating this theorem, we adopt
for “off-diagonal inequalities” the same conventions for the family F as before.

Theorem 5.28. Given 2, suppose that for some py, qo, | < po < qo, the family F
is such that for allw € Ay,

1/q0 1/po
(/ F(x)®w(x) dx) < Cy (/ G(x)p"w(x)p"/q" dx) , (F,G) e F.
Q Q

(5.14)
Given p(-) € P(Q) such that py < p— < p+ < qgo_q;)oy define q(-) by
1 1 1 (5.15)
p(x) q(x)  po qo '
If the maximal operator is bounded on L0/ (Q), then
IFllge) = CpyIGllpey.  (F.G) € F. (5.16)

Remark 5.29. It follows immediately from the hypotheses of Theorem 5.28 that
q() € P(2),q+ <ooandg— = qo.

Remark 5.30. Off-diagonal weighted norm inequalities are customarily written
with the weights as multipliers instead of measures (see Sect. 4.6.5): in other words,
we would let W = w!/% and write inequality (5.14) as

1/40 1/po
( / (F(x)W(x))" dx) ’ < ( / (G(x)W(x))" dx) ’ .
Q Q

We have adopted this non-standard form because the proof of Theorem 5.28
is somewhat easier with our hypothesis. In applications this has no effect: see
Remark 5.50 below.

Proof of Theorems 5.24 and 5.28. When gy = po we have that Theorem 5.24 is a
special case of Theorem 5.28, so we only have to prove the latter result.

Fix p(-), ¢(-) € P(R2) as in the hypotheses, and let p(x) = p(x)/po and §(x) =
q(x)/qo. By assumption the maximal operator is bounded on L’?/(')(Q). Define an
iteration algorithm R on L’Y(')(Q) by
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S MFh(x)
RHC) =2 g
k=0 L7 O(Q)

where fork > 1, M¥ = M oM o---0o M denotes k iterations of the maximal operator
and M°h = |h|. Then arguing exactly as we did in the proof of Theorem 4.37, we
have that:

(a) Forall x € Q, [h(x)| < Rh(x);
(b) R is bounded on L4’ () and IRANG ¢ <2007 )
() Rh € Ayand [Rh]a, <2(|M |l 70 q)

Fix a pair (F,G) € F such that F € L40(Q) (i.e., so that the left-hand side
of (5.16) is finite). By Proposition 2.18 and Theorem 2.34,

IF1g = 15l = Kty sup [ PO dx,

where the supremum is taken over all non-negative i € L7 ©(Q) with || 7:¢) = 1.
Fix any such function /; we will show that

[ Feomn ax < i,
Q

with the constant C independent of /. First note that by Property (a) we have that

/F(x)q"h(x)de/ F(xX)® Rh(x)dx. (5.17)
Q Q

We want to apply our hypothesis (5.14) to the right-hand term in (5.17). To do
so we have to show that it is finite. But by the generalized Holder’s inequality
(Theorem 2.26), Property (b) and Proposition 2.18,

/Q F(x)q"Rh(x) dx < Kp(.)”FqO”g(.)||Rh||(;/(.) < ZKP(')||F||Z(z~)||h”f7(') < 0.

Therefore, by Property (c¢), (5.14) holds with w="Rh. Further, the constant Cy
only depends on [Rh]4, and so is independent of /. Hence, by (5.14) and again
by Theorem 2.26 and Proposition 2.18 we get

90/ o
/ F(x)®Rh(x)dx < Cg" (/ G(x)""Rh(x)P"/‘f" dx)
Q Q

< GG 15 IR/ 50 = CIG NG IRy (5.



5.4 Rubio de Francia Extrapolation 211

To complete the proof of (5.16) we need to show that ||(R})?0/% ||Z_‘l{.’)7" is bounded
by a constant independent of /. By the definition of ¢(-),

px) g0 q(x) ~ Doy
p(X)=po  poq(x)—qo  po ’

p'(x) =
Therefore, by Proposition 2.18 and Property (),
[(RRyPe/40|| %07 = | Rhllg ey < 2[lhllg e = 2.

This completes our proof. O

Remark 5.31. From the proof we have that C,. = (ka_(l,))l/q"Co, and by
assumption, Cy depends on || M || ;«()/40) () -

Theorem 5.28 has three immediate corollaries. The first combines it with
classical extrapolation to get results for a larger class of exponents. The other
two illustrate the power of defining extrapolation in terms of pairs of functions by
proving general weak type and vector-valued inequalities.

Corollary 5.32. Given Q, suppose that for some py > 1 the family F is such that
Jorallw € Ay,

/ F(x)"w(x)dx < CO/ G(x)Pw(x) dx, (F,G) e F. (5.18)
Q Q

Given p(-) € P(Q), if 1 < p_ < py < 0o and the maximal operator is bounded
on LPO(R), then

IFlpe) = CpsllGllpey.  (F.G) € F. (5.19)
Proof. Since M is bounded on L") (), by Theorem 4.37 and Corollary 4.64, there

exists 7 > 1 such that M is bounded on L(?)/7) (€2). Given (5.18), by Theorem 5.23
we have that forallw € A4,,

/ F(x)'w(x)dx < C,/ G(x) w(x)dx, (F,G) e F. (5.20)
Q Q

Therefore, by Theorem 5.24, inequality (5.19) holds. O

Corollary 5.33. Given 2, suppose that for some po, qo, 1 < po < qo, the family
F is such that for allw € Ay,

490/ po
w{x e Q: F(x)>t}) <C (t%/ G(x)Pyw(x)Po/ %0 dx) . (F.G)eF.
Q
(5.21)
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Given p() € P(RQ) such that pg < p— < py < L9 define q(-) by (5.15). If the

q0=po
maximal operator is bounded on LY¢ )/ a0)' (2), then for all t > 0,

lt X txe:r=i3la) = Crr IG Il pey (F.G)e F. (5.22)
Proof. Define a new family F consisting of the pairs
(Fi.G) = (Y xea:F0>13-G).  (F.G)eF, 1>0.
Then we can restate (5.21) as follows: for every w € A,
Il = tw(fx € @ : F(x) > 1)1 < C/™ |G oo uroianys  (Fin G) € F.

Therefore, we can apply Theorem 5.28 to the family F to conclude that (5.16) holds
for the pairs (F;, G) € F, which is exactly (5.22). O

Corollary 5.34. Given 2, suppose that for some py > 1 the family F is such that
Sforallw € Ay, inequality (5.18) holds. Given p(-) € P(R), ifl < p- < py <00
and the maximal operator is bounded on LPY) (), then for every r, 1 < r < 0o,
and sequence {(F;, G;)} C F,

()", = el(ze)’

Proof. Fix r, 1 < r < oo. We first reduce the proof to the special case of finite
sums. For if this case holds, given any sequence {(F;, G;)} C F, by Fatou’s lemma
for variable Lebesgue spaces (Theorem 2.61),

r

. (5.23)
r()

()", = i (7).

4

o =Gl ()"

Now form a new family F, that consists of the pairs of functions (F; y, G, n)
defined by

N 1/r N 1/r
F,..N(x>=<ZF,-(x>’) : Gr,N<x)=(ZG,-(x>’) :
i=1

L N 1/r
=G 111vnl>lor<laf H Z ) ()

where N > 1 and {(F;, G;)})_, C F. Arguing as in the proof of Corollary 5.32,
inequality (5.20) holds. Thus, for all (F, y, G, y) € F;,
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N
/Q Fon(x) w(x)dx =y /Q Fr(x) w(x) dx

i=1

N
<Gy /Q G(x)" w(x)dx = Cy /Q Fon(x)" w(x) dx.

i=1

Therefore, we can apply Corollary 5.32 with py = r to this family to get

1En o) < ColGrnllp (Frn.Gry) € Fr.

But this is (5.23) for all finite sums, which is what we needed to prove. O

5.5 Applications of Extrapolation

The importance of Theorems 5.24 and 5.28 is that they give us a straightforward
method for deducing norm inequalities on L?")(Q) from weighted norm inequal-
ities. There is a vast literature on weighted norm inequalities, and it is perhaps
only a slight exaggeration to say that every operator in classical harmonic analysis
satisfies a weighted norm inequality useful for extrapolation. (One notable exception
is the Fourier transform: see Sect.5.6.10 below.) A broad survey of weighted
norm inequalities for a variety of operators is beyond the scope of this work, and
for this we refer the reader to the references given in Sects.4.6 and 5.6. In this
section we will concentrate on two specific operators: singular integral operators
and Riesz potentials. These are extremely important in a wide range of applications
of harmonic analysis; furthermore, they are very good models for understanding the
technical details involved in applying weighted norm inequalities and extrapolation.

In this section we assume that the reader has some knowledge of the operators
we are considering. Therefore, for brevity we will give a few standard results
concerning them without proof and refer the reader to one of several references
for proofs and further details.

Singular Integrals

The most fundamental singular integral is the Hilbert transform: given a function
f € LP(R), 1 < p < oo, define the Hilbert transform by the principal value
integral

Hf(x) =p.V.i/ Ma’y = liml/ /) dy.
TJrX—)Y {

0T Hx—ylzer ¥ Y
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This limit exists both in L” norm and pointwise almost everywhere. Intuitively, H f
can be thought of as the convolution of f with (x)™!; for this reason singular
integrals are often referred to as singular convolution operators.

Remark 5.35. The definition of the Hilbert transform in terms of convolutions can
be made precise by introducing the concept of a tempered distribution. We will not
consider this level of generality. See [96, 143] for more information.

In higher dimensions, natural generalizations of the Hilbert transform are the
Riesz transforms R;, 1 < j < n, defined by

INE==Y) x/ =yl
R f(x) = lim —2 / XYy dy,
’ o Sz lx =y

e—>0

T2

where I" is the Gamma function and if x € R" we write its coordinates as
(xl ,...,x™). For both the Hilbert transform and the Riesz transforms the constants
are chosen so that their Fourier transform are very simple: if f is a Schwartz
function, then

— A — I
Hf(§) =—isgn@) f(). R f()= —il%f(é)-

All of these operators can be treated as special cases of a general theory of
singular integral operators.

Definition 5.36. Given a function K € L}
constant C > 0 such that:

¥ 70
C
2. [VK(x)| = e #0;

/ K(x)dx
{r<|x|<R}

4. lim K(x) dx exists.

€0 Jee<|x|<1}

(R™ \ {0}), suppose that there exists a

L |K(x)| =

3. for0 <r <R, <C;

Then for f € L?(R"), 1 < p < oo, define the singular integral operator 7" with
kernel K by

Tf(x) = lim K(x—y)f(y)dy. (5.24)

€20 Jfx—yl|>e}
wherever this limit exists.

The first hypothesis in Definition 5.36 guarantees that for each € > 0 the integral
on the right-hand side of (5.24) exists. Furthermore, if f has compact support and
x ¢ supp(f), then the limit exists and we have that
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11 = [ K@= f)dy.

It is not immediate whether and in what sense this limit exists for more general f.
But the remaining hypotheses, which can be thought of as “cancellation” conditions
on K, combine to yield the following. (For a proof, see [96, 140, 143].)

Theorem 5.37. Given a singular integral with kernel K, the limit in (5.24) con-
verges both in LP norm and pointwise almost everywhere. Furthermore, if
f € L'(R"), then forall t > 0,

C
o € R : TF()| > 1}] < 7/ ()] dx.
RH
If f e LP(R"), 1< p < oo, then

ITf 1, = ClLf A,

Remark 5.38. The hypotheses of Theorem 5.37 can be relaxed in various ways.
Further, this result holds for a more general class of operators, referred to as
Calderén-Zygmund operators, that are not (singular) convolution operators. With
appropriate assumptions, everything we say below extends to this larger class, but
we restrict ourselves to singular integrals for simplicity. See [96, 143] for more
information.

Our main result for singular integrals extends Theorem 5.37 to the variable
Lebesgue spaces .

Theorem 5.39. Let T be a singular integral operator with kernel K. Given p(-) €
P(R") such that 1 < p— < py < 00, if M is bounded on L") (R"), then for all
functions f that are bounded and have compact support,

1T/ oy = CILS e (5.25)

and T extends to a bounded operator on LPO(R"). If p_ = 1 and M is bounded on
LP" O(R"), then for all t > 0 and functions f that are bounded and have compact
support,

I xeeirroosilloe < CILllpe- (5.26)

We will prove Theorem 5.39 using Theorem 5.24. To do so we need a weighted
norm inequality for singular integrals. For a proof, see [96, 140, 143].

Theorem 5.40. Given a singular integral T with kernel K, if w € Ay, then for all
t >0,

Wl € B |T7C1 > 1) = /R @I dx. (527)

Further, if 1 < p <ocoandw € A, then
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/ ITF (P w(x) dx < € / () Pw(x) dx. (5.28)
R» R»

In both cases the constant depends on p, n, T and [w]4,.

Part of the proof of Theorem 5.40 is showing that if f € L?(w), then Tf is
well-defined, since Definition 5.36 only defines T'f for f in the unweighted spaces
L?(R"). We will examine this argument more closely since similar questions arise
in weighted norm inequalities for other operators and also in the variable Lebesgue
spaces.

Let f be a bounded function of compact support. Then f € [ p>1 L7 and so by
Theorem 5.37, T'f is well-definedand T'f € ﬂp>l L?. Since w is locally integrable,
f € L?(w). Moreover, Tf € L?(w) forallw € 4,,1 < p < oo. To see this, fix
f and let B be a ball with center x, such that supp(f) C B, and let 2B be the ball
with the same center and twice the radius. Then for x € R" \ 2B and y € B, we
have that |x — y| > |x — xo| — |xo — y| > %|x — Xol, and so

Tf(x)] = ’ /B K& =)/ dy’

<c /B IO 4 < oy F)dy = CONMF (),

|x — y| Blx—xy1(x0)

Therefore, since p > 1 and w € A, by Theorem 4.35 we have that

/ |Tf(x)|?w(x)dx < C/ Mf(x)’w(x)dx < C/ | f()|Pw(x)dx < oo.
R"\2B R R

On the other hand, by Theorem 4.22 there exists s > 1 such that w € RH;, so
w' e L} (R"). Hence,

loc

1/s" 1/s
/ I Tf(x)]Pw(x)dx < (/ |Tf(x)|”s/ dx) (/ w(x)* dx) < 00.
2B 2B 2B

A similar argument shows that when p = 1, the left-hand side of (5.27) is finite.

Therefore, if f is a bounded function of compact support, Tf € L?(w), and
the left-hand sides of inequalities (5.27) and (5.28) are finite. These inequalities can
then be proved for such functions. Finally, we can use them to extend the definition
of T to arbitrary f € L”(w): define T'f as the limit of the sequence {7f; }, where
{fj} is a sequence of bounded functions of compact support that converge to f in
norm on L?(w): since w dx is an absolutely continuous measure, such functions are
dense in L?(w), 1 < p < oo. If p > 1, this limit exists in norm since by (5.28) the
sequence {71'f;} is Cauchy; when p = 1, by (5.27) the limit exists in measure. In
both cases, by passing to a subsequence we get that the limit exists pointwise almost
everywhere.
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Proof of Theorem 5.39. We first consider the case p— > 1. Define the family F
to be all pairs (|7f]|,|f]) where f is a bounded function of compact support. By
Theorem 5.40, forall w € A C A, T is bounded on L?°(w). In particular, for all
such f, |Tf ||Lrow) < 00. Therefore, by Corollary 5.32,

ITfpey = CIS e

for every bounded function of compact support such that the left-hand side is finite.
But this is the case for every such f: arguing exactly as we did above for L? (w), if
supp(f) C B, then, since M is bounded on L7 (R"),

ITf Lo @nag) < CIMSlpey < ClUllpey < oo

Furthermore, by Corollary 2.48 and Theorem 5.37,

ITf ro@ry = A+ 12BDITS 2o+ @) = CIf lr+(m) < 0.

This proves inequality (5.25) for bounded functions of compact support.

We now extend T to a bounded operator on all of L?®)(R"). Fix f € L?O(R");
since p4+ < 0o, by Theorem 2.72 and Proposition 2.67 there exists a sequence
{fj} of bounded functions of compact support that converge to f in norm and
pointwise almost everywhere. By inequality (5.25) the sequence {7'f;} is a Cauchy
sequence, and so it converges in norm to some limit; we define 7/ to be this
limit. Again by Proposition 2.67 we can pass to a subsequence and assume that
Tf; — Tf pointwise almost everywhere. Therefore, by Fatou’s lemma for the
variable Lebesgue spaces (Theorem 2.61),

ITf | pey < liminf [T/}l o) < EminfCl fillp) = ClI S pe)-
] —>00 ] —>00

Inequality (5.26) is proved in almost exactly the same way as (5.25), except that
we take po = 1 and use Corollary 5.33 instead of Corollary 5.32. O

We can use Corollary 5.34 to prove vector-valued inequalities for singular
integral operators.

Theorem 5.41. Let T be a singular integral operator with kernel K. Given p(-) €
PR") suchthat 1 < p— < py < 00, if M is bounded on LP")(R"), then T satisfies
a vector-valued inequality on LP")(R"): for eachr, 1 < r < oo,

[(Em)"], el (Zm)”

i=1
Proof. Fix r > 1 and define the family F to consist of all pairs of functions
(ITf1,1f]), where f is a bounded function of compact support. Then by Theo-
rem 5.40 and Corollary 5.34 we have that for any sequence {(|Tf;|, | fi|) C F,

(5.29)

()
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()], el (Z0er)”

provided that the left-hand side is finite. This is the case if the sum is finite: by
convexity and Theorem 5.39,

N NG
()

To prove the full result, fix any sequence { f;} C L”")(R"). By Theorem 2.72,
for each i there exists a sequence { f; ;} of bounded functions of compact support
that converges to f; in norm. Moreover, from the proof of this result we have that
| fi.j| increases pointwise to | f;|. Arguing as we did in the proof of Theorem 5.39,
by passing to a subsequence we may assume that 7'f; ; converges pointwise to 7'f;.
Therefore, for each N > 1 we have that

N 1/r N 1/r
(Z|Tff,,»|') - (ZITﬁI’)

i=1 i=1

=G
)40

’

r()

N
> It
i=1

N
<Y ATfillpe) < oo
i=1

=
r() r()

pointwise as j — oco. Hence, by Fatou’s Lemma in the variable Lebesgue spaces
(Theorem 2.61) we have that

N 1/r
(&
i=l1

< C liminf
] —>00

N 1/r
(Z|Tﬁ,jr)
i=1 )40
N 1/r N 1/r
(Zm;v) ()ECH(ZMV)
i=1 : i=1

Since this is true for all N > 1, inequality (5.29) follows from the monotone
convergence theorem for the variable Lebesgue spaces (Theorem 2.59). O

< liminf
pe) ST

r p()

The hypothesis that p4 < oo in Theorem 5.39 is in some sense necessary. In
the classical Lebesgue spaces singular integrals are not bounded on L™ or L'. For
example, on the real line if we let f(x) = y,1(x), then a simple computation
shows that

1
i = og ()

so Hf & L°(R). Similarly, for x > 0 sufficiently large, Hf(x) > -5, s0 Hf ¢
L'(R). Nevertheless, it is tempting to conjecture that if p4 = oo and |Qeo| = 0, or
if p_ = 1and |Q,| = 0, then the Hilbert transform might be bounded on L") (R).

But this is never the case, and the analogous restriction holds in higher dimensions.
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Theorem 5.42. Given p(-) € P(R"), if the Riesz transforms R;, 1 < j < n, are
bounded on LPV)(R"), then 1 < p_ < py4 < oo.

Proof. We first consider the case when p_ = 1. Suppose to the contrary that there
exists p(-) € P(R") such that p_ = 1 and all of the Riesz transforms are bounded
on L?O(R™). To derive a contradiction we repeat the construction in Theorem 3.19
to form sets E; and balls By = B, (xx). (To avoid confusion with the Riesz
transforms, we denote the radius by p; instead of Ry as in the original.) Again
define the function f; € L?©)(R") by

T
fi(x) = |x = x| 7"TET y g, (X).

(Recall that the fact that p— = 1 is used to show that || fx || ,() < 00.)
The (n — 1)-dimensional hyperplanes parallel to the coordinate axes through the
point xj divide By into 2" sectors S;. Since

2}’1
I ficll ooz < D I ficllzrogs)-

i=1

one of the terms on the right is greater than or equal to 27" | fi [l .»¢)(p,)- Denote this
sector by ST, and let S~ be the sector gotten by reflecting S through each of the
hyperplanes through xy .

Define the operator R = 3, 0; R;, where foreach j, 0; = &1 is chosen so that
ifx=(xh....x")eStandy=(y',....y") €S, 0;(x/—y/)=|x/—y/| = 0.
By assumption, R is bounded on L?)(R"), so if we define gy = f ys—, there exists
a constant C such that for all k,

IRk Lo By = CollgrllLeomy = Coll fillLro(ay)- (5.30)

We will derive a contradiction to this inequality. Fix x € ST and let
r = |x — xx| < pg. Define

ST ={yeS |ly—xx| <r}
Thenforall y € S, |[x — y| < |x —xx| + |y — xx| < 2r. Further, we have that
n
v =yl < P max |/ =yl <nl2 Y |x] =y,
j =

Since gy € L'(R") and x ¢ supp(gx), the integral defining each Riesz transform
converges absolutely. Thus, we can estimate as follows:
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» . .
oj(x) —y’) L
Rei) = e Y- [ SRy a7y
i=1/STNE |x =yl

—x —n+ﬁ
> c(n)n_l/Z/ u dy
S—NE; [x —y|"

1
— x| TR

o [ bnlT

STNE; [x — y|"

> c(n)n~ V227" / |y — xkl_"+ﬁ dy.
STNEg

By the choice of the radius px (see (3.9), p. 90) we have that
| B (xi0) N Ex| = (1=27"04D)|B, ().
Since 2"|S,"| = | B+ (xt)|, this implies that
Q"= D[S+ 187N Ex = 2"(1 =27 FD)|S7;
simplifying, this yields
|S” N E| > (1—27"%)|87]. (5.31)

Let §y = 27" and define W, = {y € S7 : §r < |y — x| < r}; then by (5.31),

. a1l . .
[W:| < IS N Eg|. Since |y — xi| "tT+ is radially decreasing, we have, after
integrating in polar coordinates, that

W,

1 1
r‘”/s . ly — x| HEFT dy zr‘”/ |y — x| " dy
- NEg

1
= )k + DA =8 )yr " > 47 e(n)(k 4 1)|x — x| "
If we combine these inequalities, we get that for every x € S,
Rgi(x) = c(n)(k + 1) fr(x). (5.32)

Therefore,

”ng”Lp(')(Bk) = ”ng”Ll’(')(S+)
> c(n)(k + 1)”fk||LP(‘)(S+) >2""cn)(k + 1)”fk||LP(‘>(Bk)-
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For all k sufficiently large this inequality contradicts (5.30). This completes the
proof when p_ = 1.

We now consider the case p; = oo. This follows from the previous case by
duality. We again proceed by contradiction: suppose p(-) is such that p; = oo and
all the Riesz transforms are bounded on L) (R"). Since p’(-)_ = 1, we can repeat
the construction above, everywhere replacing p(-) by p’(-). Thus for every k we get
a function f; € L”©(By) and a sector ST such that

0 < fillLromy <21 fell oo s+)-

Further, by its definition we have that f; € L4(R") for some ¢, 1 < ¢ < oco. By
Theorem 2.34 there exists a non-negative function h € LPV(ST), ||k lLros+) < 1,
such that

ko
[ A dx = S0 el (5.33)

By Fatou’s lemma on the classical Lebesgue spaces,

l}vrriioréf[q+ fr(x) min(N, h(x)) dx > /s+ fr(x)h(x) dx,

so we may assume without loss of generality that (5.33) holds for # a bounded
function supported in S . In particular, we may assume that i € LY R™).

Again following the construction above, define the operator R. Let g = fr xs—;
then by (5.32),

/ FOhE) dx < Conk + 1) / Rge(x)h(x) dx.
s+ S+

By a duality argument in the classical Lebesgue spaces (see [143]), since
fe € Li(R"y and h € LY (R"),for1 < j <n,

/ Rjgi(x)h(x)dx = —/ gk(x)R;h(x)dx.
S+ RI‘I

It follows that the same identity holds with R in place of R;.

Since the Riesz transforms are bounded on L?®)(R"), so is R. By duality we get
a bounded linear operator R* on L”)(R")*. (See Conway [51].) Since L? O)(R")
is (isomorphic to) a closed subspace of L?C)(IR")*, by restriction we may assume
that R* is a bounded operator on LP'O (R™) and we have the relationship

R*gi(h) = /R ge()R(x) dx. (5.34)

(Here, R* gy is a linear functional in L? © (R™)*; a priori we do not know that it can
be identified with a function in L?'©) (R™).) By Holder’s inequality (Theorem 2.26)
and our assumption on p(-) we have that
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IR* gk (W] = Kpoy gkl IRAN ey = Cllgellyr oy bl Lrers+y = Cll ficll oo s,)-

Therefore, combining the above inequalities we have that

1 ficll e gy = €. pO) (K + 17!

/]R” gk(x)Rh(x)dx

= C(n, pO)k + DR g (W) < Cn, pO)k + D7 fill Lrer s,

Since || fx || Lro@n > 0, this inequality cannot hold for k large. This is the

desired contradiction, and so the Riesz transforms are not bounded L?®) (R") when
p+ = oo. This completes our proof. O

It is unknown whether the hypotheses on the boundedness of the maximal
operator are necessary for Theorem 5.39 to be true. We can prove, however, that
a slightly weaker condition is necessary.

Theorem 5.43. Given p(-) € P(R"), suppose that all the Riesz transforms satisfy
the weak type inequality (5.26). Then p(-) € Ko(R").

Proof. Our proof is a variant of the proof in Corollary 4.50 that the K condition
is necessary for the maximal operator to satisfy the weak type inequality. Define
the operator R = ) ;j Rj; then R also satisfies the weak type inequality (5.20).
By Proposition 4.47 it will suffice to prove that this fact implies that the averaging
operators A¢ are uniformly bounded for all cubes Q.

Fix a cube Q, and a non-negative function f € L?")(R"). Let Q" be the cube
such thatif x € QT and y € Q, then x/ — y/ > 0. Then arguing as we did in the
proof of Theorem 5.42, for all x € Q+,

R(F10)@) = e Y / s |,,+1f(y) dy

j=1
/)
> c(n) /Q Ly zcm)fg £ dy.

Therefore, forall £, 0 < t < c(n)fQ f(y) dy, by inequality (5.26) we have that

Hxo+llpe) = thxixernirirroy@i=tllpey < CllLf X0l pe)-

If we take the supremum over all such 7, we get
{ roravixg i = Clixolio

Let f = yg; then this becomes [ x o+l ,¢) < Clixollpe)-
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We can now repeat the above proof, replacing the operator R by —R and
exchanging the roles of O and Q. Then we also get that || o || ) < C Ixo+p0)-
Combining all of these inequalities, we get that

140 f 150 =][Q Fdylixollye

= cf S drlzg+lng = Cllixolo = CIf
The constant C is independent of O, so we have the desired inequality and our proof
is complete. O
Riesz Potentials

We begin with a definition.

Definition 5.44. Given o, 0 < « < n, define the Riesz potential [, also referred
to as the fractional integral operator with index «, to be the convolution operator

o) =y [ Ty
where . (n a)
_rG-3
)/(ot,n) - Jr”/ZZO‘F (%)

Since |x — y|*™" is locally integrable, if f is a bounded function of compact
support, then I, f(x) converges absolutely. In fact, if we rewrite the kernel as

[x = Y* 7 xfe—yl<1y + X = Y1 X x—y> 13

then by applying Proposition 5.2 we get that I, f converges for any f € L?(R"),
1 < p < n/a: the first term is immediate; to estimate the second, note that since
p < n/a, the kernel is in L? (R").

The constant y(«,n) is chosen so that if f is a Schwartz function, then the
Fourier transform of the Riesz potential is

I.f (&) = @rleN™ f ().

(See Stein [339].)
The Riesz potentials are not bounded on L7 (R"), but satisfy off-diagonal
inequalities.
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Theorem 5.45. Given o, 0 < o < n, and p, 1 < p < n/a, defineq > p by
1/p—1/q=a/n.If p =1, thenforallt > 0,

C q
xR : |1 f()] > 1}] < (7 /R |f(x)|dx) . (5.35)

If p > 1, then
e fllg = CISp- (5.36)
The Riesz potentials are well defined on the variable Lebesgue spaces. If p4 <
nj/a and f € LPO(R"), then I, f(x) converges for every x. To see this, apply
Theorem 2.51 to write f = fi + f», where fi € LP~(R") and f, € LP+(R").
Then by the above observation, I, f(x) = I, fi(x) + Iy f>(x) converges absolutely.
Furthermore, we can extend Theorem 5.45 to the variable Lebesgue spaces.

Theorem 5.46. Fix o, 0 < o < n. Given p(-) € P(R") such that1 < p_ < p4 <

n/a, define q(-) by
1 1

p(x)  q(x)
If there exists qo > = such that M is bounded on L@O/a0) (R™), then

o
n

e fllgey = ClLEMpes- (5.37)

If p— = 1 and if M is bounded on L4/4%0)" (R") when gy = =, then for every
>0,
||tX{xeR”:\1uf'(x)|>t}||q(~) = C||f||p(~)- (5~38)

To prove Theorem 5.46 we will use Theorem 5.28. To do so we need the theory
of weighted norm inequalities for the Riesz potentials. This theory is very closely
related to the theory of A, weights but is adapted to off-diagonal inequalities.

Definition 5.47. Giveno, 0 <« <n,and p, 1 < p < n/«, define ¢ by

Then a weight w satisfies the A, , condition (denotedby w € A, ,) if

/ 4
Wla,, = sgp (][Q w(x) dx) (][Q w(x) P dx)q ! < 0.

When p =1,let A; 4 = A;.

The connection between A4, , and the Muckenhoupt A, classes is given by the
following lemma whose proof is an immediate consequence of Definition 5.47.
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Lemma 5.48. Givena, 0 <a <n,and p, 1 < p <n/a, aweightw € A, if and
onlyifwe A, r=1+4+q/p'.

The Riesz potentials satisfy weighted norm inequalities that are the analog of
Theorem 5.45.

Theorem 5.49. Giveno, 0 <o <n,andp,1 < p <n/a, defineqbyl/p—1/q =
a/nandletw e Ay, If p =1, then for every t > 0,

w(lx € R" : |1, f(x)] > 1}) < C (1 / @) () e dx)q.
¢ S

If p > 1, then

1/q 1/p
([ |1af(x)|qw<x>dx) sC(/ If(x)IPW(x)”/”dX) .
Rn Rn

In both cases the constant depends on n, p, o and [w]4,,,,-

Remark 5.50. Weighted norm inequalities for Riesz potentials are customarily
written with the weight as a multiplier instead of a measure (see Sect.4.6.5). Define
the weight W = w!/9; then the A4 ¢ condition is equivalent to

1/q 1/p
q =7’
sgp (][Q W(x) dx) (][Q W(x) dx) < 00,

and the strong type inequality becomes

1/q
(/ IIaf(X)W(X)I”dX) sc( / If(x)W(X)I”dx)
R» R

See Remark 5.30 above.

1/p

Proof of Theorem 5.46. Fix «, p(-) and ¢(:) as in the hypotheses. We will first
prove (5.37). Since qo > %, if we define po by 1/po — 1/q0 = a/n, then

po > 1. Therefore, by Lemma 5.48 and Theorem 5.49, if w € A} C A1+f10/176’
thenw € A, 4, and

Vo 1/po
(/ [ 1y f(x)|7w(x) dx) <C (/ | £(x)[Pow(x)Po/40 dx)
R R

holds for all functions f that are bounded and have compact support. (Note that the
right-hand side is finite since w € A; is locally integrable. Hence the left-hand side
is finite as well.)

Define the family F to be the pairs (|1, f|, | f|) with f a bounded function of
compact support. Then by Theorem 5.28,
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1o fllgey < CILf e (5.39)

for all bounded functions of compact support for which the left-hand side is finite.
This is always the case. Fix such a function f, and let B be a ball of radius at
least 1 centered at the origin such that supp(f) C B. Then by Corollary 2.48 and
Theorem 5.45,

1o f Nl a2y < A+ 2BD o f |20+ 28y < CILf Lo+ () < 00

To estimate the norm of [, f on R" \ 2B, note first that if x € R” \ 2B and y € B,
|x —y| > |x|—|y| = |x|/2. Therefore, for all such x,

1 f ] = yam [ IO

—————dy < C|x|*™",
-yl

and so
o f | Lo @nomy < ClI 17" Ml La0) @r\28)-

Since p— > 1,¢g— > -2, and so

n—a’
/ |x |40 gy < / |x|@9= dx < oo,
R"\2B R"\2B
and so by Proposition 2.12, ||| - |*7"{| ) gr\28) < O©-

Thus (5.39) holds for all bounded functions of compact support. Since
p+ < n/a < oo, by Theorem 2.72 there exists a sequence { fi} of such functions
which converge to f in norm and such that | fx| < |f|; by Proposition 2.67 if
we pass to a subsequence, we may assume that it also converges pointwise almost
everywhere. By Fatou’s lemma in the classical Lebesgue spaces,

o f ()] = Lo(| f1)(x) < liminf I, (] fic[) (x).
k—o0
Therefore, by Fatou’s Lemma on the variable Lebesgue spaces (Theorem 2.61),
1o fllger < liminf | (| fiDlly = € liminf [ felpey < £ 1150

This completes our proof of inequality (5.37).

The proof of the weak type inequality (5.35) is almost exactly the same, except
that since qo = ;= we have pp = 1 and use the weighted weak type inequality and
Corollary 5.33. O

Remark 5.51. The argument used to prove Theorem 5.46 can also be used to
prove the corresponding result for the fractional maximal operator, Theorem 3.42
in Sect.3.7.4. This follows since Theorem 5.49 is also true with /, replaced by
the fractional maximal operator M, ; the proof is nearly identical to the proof of
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Theorem 4.35 for the Hardy-Littlewood maximal operator. However, while this
approach yields a short proof of Theorem 3.42, it only works if p; < n/a and
Theorem 3.42 is also true when py = n/a.

5.6 Notes and Further Results

5.6.1 References

The properties of convolution operators given in Sect. 5.1, particularly Proposi-
tion 5.2, Theorem 5.4 and Lemma 5.7 can be found in Duoandikoetxea [96],
Grafakos [143] and Stein [339]. The key inequality in Lemma 5.7 relating potential
type approximate identities and the Hardy-Littlewood maximal operator was first
discovered (in a special case) by Hardy and Littlewood [148].

Convolution operators on variable Lebesgue spaces were first considered by
Sharapudinov [332] on the unit circle and by Samko [312] on bounded domains.
Both of these authors prove versions of Theorem 5.11 with different assumptions
on the approximate identity. Theorems 5.8 and 5.11 were proved by Diening [77]
assuming that 1| < p_ < p; < oo and the maximal operator is bounded on
LPO(R). (See Remark 5.14.) The general version of Theorem 5.8 was proved
in [58]. Theorem 5.11 was also proved there assuming that p(-) € LH(S2). This
proof depended on a pointwise estimate for approximate identities; see Sect. 5.6.2
below. The proof of Theorem 5.11 given here is new. Theorem 5.9 and Example 5.15
are new.

The fact that variable Lebesgue spaces are never translation invariant (Theo-
rem 5.17) was first proved by Kovacik and Réakosnik [219]. Diening [77] proved
a somewhat different version of Theorem 5.19; see also [82]. Our proof is adapted
from his. Proposition 5.20 and Example 5.21 are from [58]. Weaker versions of
Young’s inequality were also considered by Samko [312] and in [58]; see also [82].

Rubio de Francia first proved the extrapolation theorem that bears his name
(Theorem 5.22) in [302-304]. Since then there have been a number of proofs and
extensions of this result. The approach adopted here in terms of pairs of functions
was implicit in [72] and developed in [66]. For a comprehensive treatment of
extrapolation with extensive references, see [69]. Theorems 5.24 and 5.28 were
first proved in [61]; see [69] for a proof from the more general perspective of
abstract Banach function spaces. Corollary 5.34 was proved in [61]; Corollaries 5.32
and 5.33 were implicit there and in [69].

The modern theory of singular integral operators goes back to the seminal
papers by Calderén and Zygmund [40,41]. For the properties of Hilbert and Riesz
transforms and for Theorem 5.37, see Stein [339], Garcia-Cuerva and Rubio de
Francia [140], Duoandikoetxea [96] and Grafakos [143]. For Theorem 5.40 and for
the theory of weighted norm inequalities for singular integrals in general, see the last
three references; for Calderén-Zygmund operators, the generalization of singular
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integral operators, see the last two and Stein [340]. The strong type inequality in
Theorem 5.39 was first proved by Diening and Razicka [88]; our proof is adapted
from [61], as is the proof of Theorem 5.41; see also [69]. Theorems 5.42 and 5.43
are new; the idea behind their proofs is taken from the proof of the necessity of the
A, condition for singular integrals in [140].

The Riesz potentials were introduced by M. Riesz [299]. For Theorem 5.45
and their Fourier transform properties, see Stein [339]. The A,, weights were
introduced by Muckenhoupt and Wheeden [272]; they also proved Theorem 5.49.
Theorem 5.46 has been considered by several authors. Samko [312] proved a strong
type inequality on a bounded domain 2 assuming p(-) € LHy(2) using delicate
kernel estimates. A similar result was proved by Edmunds and Meskhi [103] on
Q = (0,1). Diening [78] proved the strong type inequality on R” assuming
p(-) € LHy(R") and p(-) is constant outside of a large ball. However, his proof
extends to the case p(-) € L H(R") with almost no change. The proof depends on a
pointwise inequality relating the Riesz potential and the Hardy-Littlewood maximal
operator: see Sect.5.6.2 below. Theorem 5.46 was also proved for p(-) € LH(R")
in [42]. The proof depended on norm inequalities for the fractional maximal
operator (Theorem 3.42) and an inequality due to Welland [346] relating the Riesz
potential and the fractional maximal operator. The proof given here is from [61].
The closely related questions of the range and invertibility of the Riesz potential
were studied by Almeida [10] and Almeida and Samko [11].

Weighted inequalities on variable Lebesgue spaces for singular integrals and
Riesz potentials have been considered by a number of authors. See the references in
Sect. 4.6.5.

5.6.2 Pointwise Estimates

As we noted in Remark 5.14, if p_ > 1, then the proof of Theorem 5.11 follows
from the norm inequalities for the maximal operator if we assume M is bounded
on L”V. To include the case p— = 1, the proof of this result in [58] avoided the
maximal operator and instead generalized the pointwise inequalities for the maximal
operator. (See Theorem 3.32.)

Proposition 5.52. Given Q2 and p(-) € P(R2), suppose p+ < oo and p(-) € LH(R2).
Let {¢;} be a potential-type approximate identity and let ® be the radial majorant
of . Then for f € LPO(Q) such that lfllpey <1 allt >0andx € R,

| fO)PD < C (D # | FOIP)(x) + C (P % R)(x) + CR(x),

where R(x) = (e + |x|)™"1.

Inequality (5.5) follows from this result and from Propositions 5.2 and 2.12.
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A similar approach to proving norm inequalities for the Riesz potential was used
by Diening [78], who proved a pointwise estimate relating /, and the maximal
operator.

Proposition 5.53. Given o, 0 < o < n, let p(-) € P(R") be such that 1 < p_ <
p+ < n/a and p(-) € LH(R"). Define q(-) by 1/p(x) — 1/q(x) = a/n. Then
there exists a function S € L®(R") N LP~(R") such that for all f € LPO(R")
with || fllp¢) < 1,

|Iaf(x)|q(x)/”* < CMf(x)]’(X)/”* + S(x).

Given these hypotheses we also have that the maximal operator is bounded on
LPO(R™), so the desired inequality for the Riesz potential follows by Proposi-
tion 2.12. Proposition 5.53 generalizes to the variable Lebesgue spaces a pointwise
inequality due to Hedberg [168]. This result was generalized to certain Musielak-
Orlicz spaces (see Sect.2.10.2) by Futamura, Mizuta and Shimomura [138].

5.6.3 More on Approximate Identities

Theorems 5.8 and 5.11 are true for another class of approximate identities. In [58]
it was shown that if p(-) € LH(Q) and ¢ € L” O+(Q) has compact support, then
both of these results hold. Proposition 5.52 is valid in this case only if | /| < I, but
if | f| =0or|f| > 1, then a different argument shows that for all ¢ > 0,

[wwfuwm§C<m.
Q

If the hypothesis that ¢ has compact support is omitted, then these versions of
Theorems 5.8 and 5.11 do not hold in general: see [58] for a counter-example.

In [58] it was conjectured that Theorem 5.11 was true for any ¢ € L!(R") if ¢
satisfies the decay condition

b= =90 S Coli lal > 2,

(This holds for example if [V¢(x)| < C|x|™") In the classical Lebesgue
spaces this result is due to Zo [364]. It was proved for the variable Lebesgue
spaces in [61] using extrapolation and weighted norm inequalities for vector-valued
singular integrals.

All of these results were extended to the more general setting of the Musielak-
Orlicz spaces Lo (log L)40) (see Sect.2.10.2) by Maeda, Mizuta and Ohno [243].
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5.6.4 Applications of Extrapolation

As we noted above, the theory of extrapolation can be applied to a much larger
collection of operators than discussed here. In [61] extrapolation was used to
prove norm inequalities for the vector-valued maximal operator, “rough” singular
integrals, commutators, multipliers, and square functions.

In [69] extrapolation was used to show that so-called “admissible” wavelets
form an orthonormal basis for L?)(R") provided that | < p_ < p4 < oo and
the maximal operator is bounded on L?)(R"). A different proof of this result
was given by Izuki [183]. (Wavelets on variable Lebesgue spaces have also been
studied by Kopaliani [214].) Huang and Xu [170] applied extrapolation to study
multilinear singular integrals and commutators on the variable Lebesgue spaces.
Motos, Planells and Talavera [270] used it to study variable Lebesgue spaces of
entire analytic functions.

The proof of Theorem 5.24 can be generalized to many other settings. As
we noted above, in [69] it was proved as a corollary to a general extrapolation
result on abstract Banach function spaces. Implicit in this is an extrapolation result
for Musielak-Orlicz spaces provided the maximal operator satisfies appropriate
boundedness conditions. Maeda, Mizuta and Ohno [243] proved a special case
of this for the L?)(log L)4") spaces. Kokilashvili and Samko [209] proved an
extrapolation theorem for weighted variable Lebesgue spaces defined on metric
spaces. They used this to study norm inequalities for a variety of operators in
this setting. Edmunds, Kokilashvili and Meskhi [99] generalized extrapolation to
variable Lebesgue spaces on which the one-sided maximal operator is bounded (see
Sect. 3.7.6). This yields norm inequalities for the so-called “one-sided” operators.

In Sect. 6.4 we will use extrapolation to prove the Sobolev embedding theorem
for variable Sobolev spaces.

5.6.5 Sharp Maximal Operator Estimates

Another approach to norm inequalities on the variable Lebesgue spaces is to use
the Fefferman-Stein sharp maximal operator. Given a locally integrable function f,
define the sharp maximal operator by

M* £(x) = sup f 1fO) = fol dy.
0 Jo

where fp = fQ f(»)dy and the supremum is taken over all cubes Q with sides
parallel to the coordinate axes. The sharp maximal operator was introduced by
C. Fefferman and Stein [125].
Given a function f, f and M*f are comparable in L” norm: for all p,
1 <p<oo,
1£1l, < CIM* £,
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and in fact this inequality is true if we replace the L” norm by the L”(w) norm for
any w € Aoo. (This was proved in [125]; see also [69,96].) The same inequality also
holds in the variable Lebesgue spaces.

Theorem 5.54. Given p(-) € P(R"), 1 < p_ < py < oo, if the maximal operator
is bounded on L?'©) (R™), then

sup (|7 x txerr:| foo) >3 1 pe) < € SUp 1 X geernanet roy=i3 | pe)-
>0 t>0

Moreover,
£ 1pe) < CUM? fllpey-

The strong type inequality in Theorem 5.54 was originally proved by Diening and
Ruzicka [88] (see also [82]). A different proof using extrapolation was given in [61].
The weak type inequality can be proved via extrapolation using the corresponding
estimate in the classical Lebesgue spaces. (The weighted weak type inequality is
implicit in the so-called good-A inequality used to prove the strong type inequality.
It is proved explicitly in a more general setting in [69].)

The importance of Theorem 5.54 comes from a pointwise estimate due to Alvarez
and Pérez [14] that uses a variant of the sharp maximal operator: for § > 0, let

MJf(x) = MP(f1P)(0)".

Lemma 5.55. Let T be a singular integral operator with kernel K. Then for all
8,0 < 8 < 1, there exists a constant C(8) such that for all bounded functions of
compact support,

M{(Tf)(x) < CEMS(x).

Given Lemma 5.55 and Theorem 5.54, norm inequalities for singular integrals
(Theorem 5.39) follow immediately from the corresponding inequalities for the
maximal operator. Diening and Ruzicka [88] used this approach to prove Theo-
rem 5.39.

This technique is extremely flexible, since there exist sharp function estimates
like Lemma 5.55 for many operators. For example, Adams [6] proved that for
all o, M #(Ia Hx) < CyM, f(x), where M,, is the fractional maximal operator
(see Sect.3.7.4). Norm inequalities for Riesz potentials now follow from the
corresponding inequalities for M, (Theorem 3.42). Karlovich and Lerner [195] used
a sharp function estimate to prove norm inequalities for commutators of singular
integrals on variable Lebesgue spaces. For a summary of sharp function estimates,
see [69].

5.6.6 Local to Global Estimates

In practice, it is often much easier to prove norm inequalities on bounded domains
than on all of R"”. For example, estimates for the maximal operator on bounded
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domains require only one hypothesis (say p(-) € LH,) and the argument is much
simpler. (See Diening’s original proof [77].) Given an operator 7" one could naively
try to take advantage of this by decomposing R" into the union of disjoint cubes
{Q} of side-length 1, and then writing

TS oy < DTS o,)-
J

Ideally, one can then prove an estimate of the form || 7f || Loor0,) < C Il f | ror(g -
Unfortunately, even if this were possible, the problem remains that

S S o))
J

need not be comparable to || /|| ;»¢) gy However, a more sophisticated version of
this technique works.

Proposition 5.56. Given p(-) € LH(R"), fix a set Q = {Q;} of cubes of equal
side-length, ordered so that if i < j, dist(Q;,0) < dist(Q,0). Define

1/poo
1712 = (L1 i;z?.)(Qj)) ;
J

then
I FlLro@y 2 1 pe).0-

Proposition 5.56 is due to Héasto [165]; the simple proof uses a characteriza-
tion of variable sequence spaces (see Sect.2.10.7) discovered independently by
Nekvinda [281] and Nakano [279] (see also [245]).

To illustrate how this technique can be used, we sketch an alternate proof
from [165] that the maximal operator is bounded on L” © (R™) (Theorem 3.16). We
first need to divide the maximal operator itself into two pieces, a “local” piece and
a “global” one. Define

Mf@) = s {10y, Maf@) = s f 1f0)]dy.
03x JQ 03x JQ
{(o)=1 {o)>1
Then Mf(x) < My f(x) + Mg f(x), so to prove that the maximal operator is
bounded on L”") it will suffice to prove that each of these operators is bounded.

The key estimate is for M . Fix a collection Q = {Q} of cubes with side-length
1. Then for each j and x € Q,

My f(x) = M(fx30,)(x).



5.6 Notes and Further Results 233

Therefore, if we assume that the maximal operator is bounded on bounded domains,
by Proposition 5.56 (applied twice) we have that

||MLf ”LP(‘)(R”)

1/poo
< C(Z ML f] it;(j-)(Qj)) = C(Z IM(f 330, iﬁ’)’?')(Q,/))
j J

1/poo

1/poo
<o( T M00,) = O e
J

To estimate || Mg f || .»¢)wn) We introduce an ancillary operator. Given x, let O, be
the cube centered at x such that £(Q,) = 1, and define Af(x) = fo |f(y)|dy.
Then a straightforward argument shows that Mg f(x) < C(n)Mg(Af)(x). Further,
using an embedding theorem similar to Proposition 2.53 (see also [92]) and the fact
that M is bounded on L*™ and L”°, one can show that A maps L”")(R") into
L% (R")N L7 (R") and Mg maps L (R") N L7>(R") into L7 (R"). Combining
these estimates shows that | M¢ f'[| ooy gny < Cl|.f | L6 mr)-

Depending on the operator, the decomposition argument required to use the local
estimate will be more or less complicated. Nevertheless, this technique has some
advantages over extrapolation. It can be used in those cases in which weighted norm
inequalities are not available. It can also be extended to other kinds of spaces, such
as weighted variable Lebesgue spaces, variable Sobolev spaces, and variable Morrey
spaces. For examples of such applications, see [165].

5.6.7 The Variable Riesz Potential

The Riesz potential can be generalized by allowing the value of the index « to vary.
Given €, let @(-) : 2 — (0, n) be a measurable function. Define the variable Riesz

potential by
S
Lo f ) = [ T .
o lx—yl

These operators were introduced by Samko; on the real line they have applications to
the theory of fractional differentiation and integration. (See [314] and the references
it contains.) If 2 is bounded and p(-) € LHy(2), then an equivalent definition is
gotten by replacing o(x) by a(y):

/)
Logy f(x) ~ /Q md%

A generalization of Theorem 5.46 holds on bounded domains.
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Proposition 5.57. Given a bounded domain Q2 let p(-) € P(2) be such that 1 <
p— < p+ < ooand p(-) € LHy(R2). Let a(-) : Q — (0,n) be a measurable
function such that a— > 0, (p(-)ot(-))+ <n, and a(-) € LHy(S2). Define q(-) by

1 1 a(x)

p(x) qx)  n

Then
I aey f 1l Laor @) < ClLS lrog)-

Proposition 5.57 was proved by Samko [312]. A similar resulton Q2 = (0, 1) was
proved by Edmunds and Meskhi [103]. Weighted inequalities were proved for this
operator by Kokilashvili and Samko [205] and Samko, Samko and Vakulov [309,
310].

Samko [319] asked whether these results could be extended to unbounded
domains. Histd [165] proved that Proposition 5.57 is false if & = R”". He
gave an example of a smooth index function «(-) and exponent p(-) that are
constant on B;(0) and on R” \ B3(0) and a function f € LP©)(R") such that
Loy f ¢ LYO(R"). However, Histo also showed that by redefining the operator
at infinity, the desired inequalities hold. Given «(-), define the new index function

B(x,y) = min(a(x),x(y)), and let

P B AS))
Ly f(¥) = /R Ix — y[r—Pen -

Proposition 5.58. Let p(-) € P(R") be suchthat1 < p_ < py < oo and p(-) €
LH(R"). Let a(-) : R* — (0,n) be a measurable function such that a— > 0,
(p(~)0l(-))+ <n, and a(-) € LH(R"). Define q(-) by

1 a(x)
p(x) qx) n

Then
1220, | aor @y < CILE oo eoy-

5.6.8 Vector-Valued Maximal Operators

Given r, 1 < r < o0, the vector-valued maximal operator is defined on vector
valued functions f = { f;} by

1/r
M, f(x) = (Z Mﬁ(x)’) = [|Mf; (x)ler-
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It follows from the weighted norm inequalities for the maximal operator (Theo-
rem 4.35) and Corollary 5.34 that if the Hardy-Littlewood maximal operator is
bounded on L”)(R™"), then so is M ,. This was first proved in [61].

It is a natural question whether this operator can be generalized to a variable
vector-valued maximal operator M ,(,, by replacing the £ norm with the norm on
a variable sequence space £ (see Sect.2.10.7). However, Diening, Histo and
Roudenko [87] gave a simple counter-example to show that this does not hold in
general even when p(-) = p is constant. Let r(-) be such that there exist bounded
sets Qk, k = 1, 2, such that if x € Q, r(x) = rg, and r; > r,. Fix a sequence
{a;} € €\ €7, and define f; = a;xq,. Then for all x € Q,, M fi(x) > ca;.
Therefore, if Mr(.) were bounded on L”(R"), then

Haillex | Ly < MM filleor | Loy < CHLA N0 | oy = [l llen

Lr(S2)’

which implies that {a;} C £"2, a contradiction.

5.6.9 Two Classical PDEs

We can apply the results in Sect.5.2 to show that the classical solutions to the
Laplacian and the heat equation extend to the variable Lebesgue spaces. Recall the
definition of the Poisson and Gauss-Weierstrass kernels: for r > 0 and x € R”, let

(&L t
Py = ) e W) = e
7T+ )T

It is immediate from the definitions that { P,} and {W,} are potential type approxi-
mate identities.

Proposition 5.59. Given p(-) € P(R"), suppose that py+ < oo and the maximal
operator is bounded on L?" OO (R"). If f € LPO(R"), then u(x,t) = P, * f(x) is
the solution of the boundary value problem

Au(x,t) =0,  (x,1) e RP,
u(x,0) = f(x), xeR",

where the second equality is understood in the sense that u(x,t) converges to f(x)
ast — 0 pointwise almost everywhere and in L") (R") norm.

Proposition 5.60. Given p(-) € P(R"), suppose that p4 < oo and the maximal
operator is bounded on L”/(')(R”). Given f € LPO(R"), define w(x,t) = W,
f(x) andw(x,t) = w(x, V4nt). Then w is the solution of the initial value problem
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Bw,t) — Aw(x,1) =0, (x,1) e R
w(x,0) = f(x), x € R,

where the second equality is understood in the sense that w(x,t) converges to f(x)
ast — 0 pointwise almost everywhere and in L") (R") norm.

Proof. We sketch the proof of Proposition 5.59; the proof of Proposition 5.60 is
identical. First, we show that u is a solution. By Theorem 2.51 write f = f; + f>
with f; € LP~(R") and f, € L?+(R"). Then by the solution of the Laplacian in the
classical Lebesgue spaces (see [142]), u; = P, x f; and up = P; x f, are solutions,
and so u = uj + uy is also a solution. The identity u(x,0) = f(x) follows from the
fact that { P, } is a potential type approximate identity and Theorems 5.8 and 5.11.
O

Propositions 5.59 and 5.60 were first proved in [58]. Sharapudinov [332] proved
similar results on the unit circle.

5.6.10 The Fourier Transform

The Fourier transform of a function f is defined by
f@ = [ feetan gex
Rl’l

This integral converges if f is a Schwartz function, or more generally is in L!(R").
The definition can be extended in a natural way to functions f € L”(R"), 1 <
p =< 2. A key norm inequality for the Fourier transform is the Hausdorff-Young
inequality: for 1 < p <2,

1A < 1f1,-

It is tempting to conjecture that this inequality extends to the variable Lebesgue
spaces: for all p(-) € P(R") suchthat1 < p_ < py <2,

I/ e = M1 e

However, this is false, and a counter-example is straightforward to construct on the
real line. For —1 < a < 0, let f(x) = |x|*. Then the Fourier transform of f is
given by

—2sin (%) I'e+1)

f® =52




5.6 Notes and Further Results 237

(See [109,294].) In particular, let a = —2/3, so that f(£) = c|&|""/3. Now let the
exponent p(-) € P(R) be such that p(-) is smooth, p(x) = 5/4 on (—1,1), and
p(x) =2o0on R\ (=2,2). Then we have that f € L”")(R) but f & L?" O(R).

The failure of the Hausdorff-Young inequality for this function f comes from
the fact that the Fourier transform redistributes the mass of f between the origin
and infinity. In the study of weighted norm inequalities for the Fourier transform
this is handled by replacing the weight w(x) by w(1/x). For example, Benedetto,
Henig and Johnson [24] showed that if 1 < p < 2 and w € A5 is an even function
on R that is non-decreasing on (0, co), then

1/p

A , 1/p /
( / S Q17 w(l/x) dx) =C ( / /)P w(x)?/” dx)
R" R

The corresponding approach for variable Lebesgue spaces would be to replace the
exponent p’(-) with g(x) = p’(1/x). (Such a transformation has been applied in
another setting: see Samko and Vakulov [323].) In the above example, f € L1O(R).
However, we must also assume that p(-) is non-decreasing on (0, co). For instance,
in the above example if we take p(3/2) < p(0), then we could choose p(:) so that
g(x) = |x—3/2|7**isin L?")(R); then by the translation properties of the Fourier
transform, g(§) = c|&|~'/%, and ¢ & L9 (R). This suggests the following problem.

Question 5.61. Given p(-) € P(R) such that 1 < p_ < p4 < 2 and p(-) is even
and non-decreasing on (0, 00), is it the case that there exists a constant C > 0 such
that forall f € LPO®R), || f 4y < C Il f | o> where g(x) = p'(1/x)?



Chapter 6
Basic Properties of Variable Sobolev Spaces

In this chapter we present the elementary theory of variable Sobolev spaces. Unlike
Chap. 2, where we systematically developed a complete theory of variable Lebesgue
spaces, our goal here is less ambitious. Our aim is to illustrate how the theorems and
techniques given in previous chapters can be applied to the variable Sobolev spaces.
Consequently, many of our results are not given in the fullest generality possible,
and there are a number of results from the classical theory of Sobolev spaces that
we do not discuss.

We begin with a review of basic terminology and definitions. We assume that
the reader has some knowledge of weak derivatives and classical Sobolev spaces,
and so we state some results without proof and refer the reader to some standard
references. (Additional references are given in Sect.6.5.) We then discuss three
topics: the density of smooth functions, Poincaré inequalities, and the Sobolev
embedding theorem. The majority of our positive results require some regularity
assumption on the exponent function p(-); following our approach in Chap.5, in
most cases we will state these in terms of boundedness properties of the maximal
operator. Throughout this section we assume that €2 is an open set; unless we specify
otherwise, it may be either bounded or unbounded.

6.1 The Space WP (Q)

In this section we define the variable Sobolev spaces and give their basic function
space properties. We begin with some preliminary definitions. A multi-index ¢ is a
vector @ = (a1, 0y, ..., ®,) of non-negative integers. Define the length of « as

|a| = +"'+Oln-

Leta! = aglap! - - - @, !. Given another multi-index 8, define

at B =(a;£P1,....,0, = B,).

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 239
Harmonic Analysis, DOI 10.1007/978-3-0348-0548-3_6, © Springer Basel 2013
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If B; < «; forall j, then we write B < o. For B < «, define the multi-index

binomial coefficient by
o . n aj _ Ol—'
Q)_Jl(@) Bla— B!

Given f € C®(Q), foreach j, 1 < j < n,let 9;f = 9f/dx/ be the j-th
partial derivative, and foreachi > Olet 9. f = 9;00;0---00; f denote iterations
of the j-th partial derivative. For each «, || > 0, define the differentiation operator
D* by

D*f = 9795 --- 9% f.

Ifa = (0,...,0) = Ois the zero vector, let D* f = f. Define the gradient of f to
be the vector V f = (01 f,...,0, f). When n = 1 we will write Df for df /dx.

Definition 6.1. Given €2, a function f € L{ () and a multi-index , f has a weak
derivative of order « if there exists a function g, € L! () such that for every

loc
function ¢ € C>°(R2),

/me%@MxZPDM/&@wwa
Q Q

It can be shown that g, is unique, and we write D% f = g,.

If a function f is smooth, then by integration by parts we have that the classical
derivatives of f are also weak derivatives. More generally, we have the following
result. For a proof, see [363].

Proposition 6.2. Given Q, if the function f € Ll () is absolutely continuous
on almost every line segment in 2 parallel to the coordinate axes, and if its
classical partial derivatives along these lines are locally integrable, then it is weakly

differentiable and its weak and classical derivatives coincide.

Like the classical derivatives, weak derivatives are linear: if f and g have weak
derivatives of order « then D*(f + g) = D* f + D%g and D*(cf) = cD“ f.

In the classical case, the Sobolev space W*?(Q2) consists of all functions f €
L?(2) such that for all multi-indices o with |a| < k, D% f exists and belongs to
L7(Q). Wllgc’p () is defined in the same way, replacing L?") () with Lf:)(c')(Q). We
extend these definitions to the variable exponent setting.

Definition 6.3. Given @, p(-) € P(R2), and an integer k > 1, define the variable
Sobolev space W 70 (Q) to be the set of all £ € L?O(Q) such that if || < k,
then D f € LPV(Q). Let
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1S lwero = Y ID* fllpe-

o] <k

If there is no ambiguity about the domain we will often write || f'[|x, () instead of
I/ lwk.re)(q)- For brevity we will write ||V f|| 5 instead of |||V f[[| . The space

wkro () is the set of all f such that f € WP (A) for every open set A such

loc
that A is compact and contained in €2.

If 1 < k < I, then for all p(-), WrO(Q) ¢ WkrO(Q) c LPY(RQ). The
variable Sobolev spaces can also be embedded in the classical Sobolev spaces. (We
will consider the question of embeddings again in Sect. 6.4 below.)

Proposition 6.4. Given Q, p(-) € P(Q) and k > 1, WkrO(Q) ¢ Wi~ (). If
[Q| < oo, then WEPO(Q) ¢ Wkr—(Q).

Proposition 6.4 follows at once from Corollary 2.48. This embedding is useful in
proving local or pointwise properties of functions in W*?0)(Q). For instance, we
can use it to extend the chain rule to the variable Sobolev spaces.

Lemma 6.5. Given Q and p(-) € P(Q), if f € WKPO(Q) and ¢ € C(R2), then
of € WhrO(Q) and for all multi-indices o with || < k,

D)= (;) DPD* ©.1)

p<a

Proof. Since WKrO(Q) C Wl];él (£2), the identity (6.1) follows from the chain
rule for classical Sobolev spaces (see [142]). For each B, Df¢ € C>*(£2) and
D* P f e LPO(Q). Hence, it follows from (6.1) that D*(¢f) € LPV(Q) and

sopf € WhrO(Q). O

The variable Sobolev spaces are Banach spaces and have some of the same
properties as L?()(2). This is the substance of the next three results.

Theorem 6.6. Given 2, p(-) € P(Q) and k > 1, WFPO(Q) is a Banach space
with respect to the norm || - || yx.p0()-

Proof. It is immediate that W*?0)(Q) is a vector space; since | - || .r¢1(q) is @ norm
(Theorem 2.17), || - [lwrro)(q) is also a norm. We will show that W570(Q) is
complete. Let { f;} C WP (Q) be a Cauchy sequence. Then for each o, 0 <
la| < k, since |D*f; — D fillpy =< II.fj — fillk.p() the sequence { D f;} is
a Cauchy sequence in L7 (). Since L”")(2) is complete (Theorem 2.71) there
exists g € L”V(Q) such that D f; — g, in norm. Let g = go.

We clam that g € W570)(Q) and fi — gin WP norm. To prove this we
will show that if 0 < |a| < k, D*g = g,. Fix «; then for any ¢ € C°(R2), by the
generalized Holder’s inequality (Theorem 2.26),
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/Q (g(x) = fj(x)) D“¢p(x) dx

< /Q 18() = £, DD ()] dx < Koo lg — 13 1o 1Dl

Since D%¢ € L O(Q), it follows that

lim / j”j(x)D“qb(x)dx:/g(x)D“qS(x)dx.

The same argument shows that

Jim [ D dx = [ g0t dx

Therefore, by Definition 6.1, D*g = g, and our proof is complete. O

For the next two theorems we recall some notation and define an auxiliary space.
Given a Banach space X, let X* denote the dual space—the collection of bounded
linear functionals on X. We write X ** = (X*)*. Let M = M (k, n) be the number
of multi-indices « such that 0 < || < k and define the product space

M
L@ =T,

i=1

that is, Lﬁ,[(') () is the cartesian product of M (different) copies of L?") (). Note

that Lﬂ') (€2) is a Banach space whose norm is the sum of the norms of each copy
of LP(Q). (See Conway [51].)

Theorem 6.7. Given Q and p(-) € P(R), suppose p+ < oo. Then W*rPO(Q) is
separable. If | < p_ < py < oo, then W5PO(Q) is reflexive: WHrO(Q)** =
WkrO)(Q), with equality in the sense of isomorphism.

Proof. If p+ < oo, LPY(Q) is separable (Theorem 2.78), and therefore Lﬁ,l(')(Q)
is separable. Similarly, if 1 < p_— < p;s < oo, then LPO(Q) is reflexive
(Corollary 2.81), and therefore so is Lﬂ') (€2). (For these properties of Cartesian
products of Banach spaces, see [51,95].)

Impose some linear order on the M multi-indices & with || < k, and associate
to each f € W5PO)(Q) the vector (D% f )|a|<k- Then this map is an isometry from
Wkr)(Q) into LPM(') (), and since W*?0) () is a Banach space (Theorem 6.6), its
image in Lﬁl(') (R2) is closed. Therefore, whenever Lﬁl(') (2) is separable or reflexive,
sois WkrO(Q). O
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Theorem 6.8. Given Q2 and p(-) € P(R), suppose p+ < oo. Then & €
WkPO(Q)* if and only if there exists (Vo) jul<k € Lf,[(.)(Q) such that for all
f e Wkri(Q),

() = @) = X [ D i) ax 6.2)

o] <k

Proof. Given any (Vo)jq|<k € LKI/(') (2), by the generalized Holder’s inequality
(Theorem 2.26), ®,,,) defines a bounded linear functional on W*-?0)(Q). To see the
converse, fix ® € W PO (Q)*. Since W20 (Q) is isometric to a closed subspace
of Lﬁ,[(') (), by an abuse of notation identify W*-7()(Q) with its image and regard
® as a linear functional on this subspace. By the Hahn-Banach theorem (see [51])
there exists ® € L2\ (2)* such that ® = ® on W 70 (Q). But we have that

M

i=1

where equality is understood in terms of isomorphism: for the first equality, see [51];
the second is a consequence of Theorem 2.80 since p4+ < oo. Therefore, there exists

(Vo) |u|<k € LKI/(') () such that & = ®,,), and so by restriction we get (6.2). O

Remark 6.9. In Sect.2.10.3 we defined Banach function spaces. Though spaces of
functions, the variable Sobolev spaces W*7()(Q) are not Banach function spaces
since they do not satisfy all of the axioms. In particular, given £ C 2, |E| < oo,
then yg ¢ W*P0(Q) since it is not an element of Wlé’cl (2). (Cf. [363].)

6.2 Density of Smooth Functions

Since W70 (Q) is a Banach space, it is natural to consider the question of dense
subsets. If p4 < oo, it is separable and so there exists a countable dense subset.
However, we would like to identify particular families of functions that are dense.
Because weak derivatives coincide with classical derivatives for smooth functions,
it is natural to consider the question of when such functions are dense. We begin by
defining two subspaces of W70 (Q).

Definition 6.10. Given Q and p(-) € P(R), fork > 11et Wy ")(Q) be the closure
of CX(Q) in WkPO(Q), and let H*?0) () be the closure of CK(Q) N Wk0(Q).

Arguing as we did above, we have that if |Q2] < oo, then Wok’p(')(Q) C
WP~ (Q) and HFPO(Q) c H*P~(RQ). The next proposition is an immediate
consequence of Theorems 6.6 and 6.7, and the fact that closed subspaces of a Banach
space are themselves Banach spaces.
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Proposition 6.11. Given Q and p(-) € P(Q), for k > 1, W(Q) and
H*PO(Q) are Banach spaces. If py < oo, then they are separable, and if
1 < p— < py < 00, they are reflexive.

In the classical Sobolev spaces, by the Meyers-Serrin theorem we have that for
1 < p < oo, HEP(Q) = W5P(Q). (See [142].) This is not the case in variable
Sobolev spaces: as the next example shows, for this equality to hold we must assume
some kind of regularity on the exponent p(-).

Example 6.12. In R?, let B = B;(0). Then there exists p(-) € P(B) such that
C'(B) N WO (B) is not dense in W20 (B).

Proof. The coordinate axes divide B into four regions: denote them by Q1, ..., Qu,
beginning with the upper-right quadrant and proceeding counter-clockwise. Fix
P1s P2, 1 < p1 <2 < pp < 0o, and define p(-) € P(B) by

P2 x€Q1UQ;

):
e p1 X € QrU Q,.

For x = (x!,x?) € B, define the function f by

1 XEQ]
P/lx] x € Qs
fx) = x e 0

x'/|x] x € Q..

It is immediate that f € L>°(B) C L'(B) and is continuous on B \ {0}. We will
show that f € W'?0O(B) but f cannot be approximated by functions in C'(B).
For x € Q»,
_xlxz (xl)z
nfx) =——7—-.  0f(x) =7
|x| |x|

hence, by Proposition 6.2, the weak and classical derivatives of f coincide.
Moreover, since p; < 2, integrating in polar coordinates we get

/2 1 ,.2p1 0) sin(@ p1
/ |01 f(x)|" dx = / / 27! (cos(®) sin(®)) rdrdf < oo.
0> 0 0

r3]71

A similar computation holds for d, f in O, and again for both partial derivatives in
Q.. Therefore, by Proposition 2.12, f € W!»0)(B).

To show that f cannot be approximated in norm by C! functions, fix g € C!(B);
then by the definition of f and p(-),

1/ = gllwsos = max (Iglhwir gy 11 = &llwiro)-
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Suppose g(0) > 1/2; we will show that there exists a constant ¢(p;) > 0 such that

lgllwir(gs) = c(p2). 1f g(0) < 1/2, then essentially the same argument shows that
1= gllwrr(Q1) = ¢ > 0.
Let 0, denote the radial derivative; then

191g(0)| + [028(x)| = [Vg(x)[ = [3,g(x)].

Therefore,
[Eq (. 2/ g (X)) dx+/ 1918 (x)[7 dx+/ 028 (x)|7* dx
03 03 03

2/ |g(x)|f’2dx+2‘f’2/ |0-g (x)|”* dx.
3 03
(6.3)

We estimate the right-hand side by converting to polar coordinates. Let ® be the
part of the boundary of Q3 that lies on the unit circle. Define

S={0e®@:g(r0)>1/4,1/4<r <1/2},

and define 7 = ® \ S. Let |S|;, |T|; be their one-dimensional Hausdorff measure;
then |S|; + |T|; = m/2. Suppose |S|; > /4. Then

1/2 3lS 3
/ lg(x)|P2 dx > / / lg(r,0)|72r drd® > IS > T '
e s Jija 32-47 = 128 4m

On the other hand, suppose |T'|; > 7/4.If 6 € T, then there exists ry, 1/4 <

ro < 1/2, such that g(rg,0) < 1/4. Therefore, by the fundamental theorem of
calculus and Holder’s inequality we have that

ry 1/2
1/4 < |g(rs. 6) — £(0.0)] < / 19, 5(r. 0)] dr < / 19, 8(r.0)[r /P27 iy
0 0

1/2 1/p2 1/2 , 1/172
< (/ |0,g(r,0)|P*r dr) (/ rP/ P2 dr) .
0 0

Since p, > 2, p5/p> = p5—1 < 1, and so the second integral on the right-hand
side is finite. If we evaluate it and rearrange terms, we get that

12
/ 19,¢(0)|7 dx = / / 3,90 0)|72r dr d6
03 T Jo

_@p)PRITI @ = py)Prin
- 202 - 4.2p2 ’
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In either case, therefore, the right-hand side of (6.3) is bounded away from zero.
Since this bound holds for every g € C'(B), f cannot be approximated in norm by
functions in C'(B). O

Example 6.12 shows that we need some kind of regularity on the exponent p(-)
for H*PO(Q) to be equal to W5 PO (Q). For example, as we will show below, we
could assume that p(-) € LH(S2). But in fact, it suffices to assume that p(-) is
locally regular: for example, that p(-) € LHy(2), even if © is unbounded. We will
state our hypotheses more generally in terms of the boundedness of the maximal
operator.

Definition 6.13. Given €2 and p(-) € P(£2), the maximal operator is locally
bounded in LP")(Q) if for every open set A such that 4 is compact and contained
in ©, the maximal operator is bounded in L?®)(A).

Our first result extends the Meyers-Serrin theorem to the variable Sobolev spaces.

Theorem 6.14. Given Q2 and p(-) € P(R2), suppose p+ < oo and the maximal
operator is locally bounded on L?" ) (Q). Then H*PO(Q) = WkrO(Q).

The proof requires one lemma about the regularity of convolutions whose proof
is a straightforward application of calculus; see [142] for details.

Lemma 6.15. If f € L. (R") and ¢ € CX(R"), then ¢ * f € C®°(R"), and for

any multi-index «, D”‘(qbloi f)=(D%p) x f.
Proof of Theorem 6.14. Since H*P©)(Q) c W*?0(Q) we only have to prove the
reverse inclusion. To do so, it will suffice to show that given any f € Wkr0(Q)
and € > 0, there exists g € C¥(Q) such that || f — gllx.p¢y < €. (By the triangle
inequality we get g € WK70)(Q).)

For each j > 1 define the sets

Q; ={xeQ:|x| <jdist(x,0Q) > 1/j}.
Let Qo = Q2_; = @ and let
Aj = Qj-l—l \ﬁj_l.

The sets A are open, A ;j 1s compact, and given any x € €2, x is contained in a finite
number of the sets A ;. Therefore, there exists a partition of unity subordinate to this
cover. (See [7].) More precisely, there exists a collection of functions {1, } such that
Y; € CX(Aj)andforall x € 2,0 < v;(x) <1, and

2w =1
j=1
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Further, by Lemma 6.5 for each j we have that y; f € W5?0(Q) and

supp(V; f) C A;.
Let ¢ € C2°(B1(0)) be non-negative and such that [ ¢ (x) dx = 1. Since

b Wi N0 = [ B0 701y

this convolution is non-zero only if |[x — y| < ¢t and y € A;. Therefore, if we let
0 <t < (j+1)""'=(j+2)7!, then this is the case only if (j +2)~! < dist(x, 9Q) <
(j —2)7', the second inequality holding if j > 3. Hence, supp(¢; * (¥; 1)) C
Qj40\ §j_2 = B;. Note that Ej is compact and contained in 2.

Since the maximal operator is locally bounded on L”/(')(Q), it is bounded on
L”/(')(Bj), and so by Theorem 5.11 there exists #; < (j + 1)™! — (j +2)~! such
that for all @, 0 < || < k,

pe;  D* (W f) = D (W )l Lrore)

||¢t, *Da(ij)_Da(l/fjf)”Lp()(Bj) ZJM

where M is the total number of multi-indices with |¢| < k. By Lemma 6.15,

$1, % D*(Y; f) = D*(¢y, * (¥, f)). Therefore,

e, * (Wi ) =V fllipery = D Ny % DEWif) = DA Wi f)llpey <27 .

|| <k

Define the function g by
gx) =Y ¢, * (¥ ().
j=1

Again by Lemma 6.15, each summand is in C°(2). Further, if x € €, it is
contained in a finite number of sets B}, so only a finite number of terms of this series
are non-zero at x. Therefore, it converges locally uniformly and g € C*°(R2) C
C*(R2). Finally, we have that

3

k(Y )=, f)

j=1 k,p()

lg — fllkpe =

<D Ny * W) =V flleps < D 27 e=e.

J=1 J=1

This completes the proof. O
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Remark 6.16. As a corollary to the proof of Theorem 6.14 we get that the smaller
set C® () N WkrO(Q) is dense in WKPO(Q).

Our second density theorem shows that if 2 = R”, then smooth functions of
compact support are dense.

Theorem 6.17. Given p(-) € P(R"), suppose that p+ < oo and the maximal
operator is locally bounded on L?"©)(R"). Then Wok’p(') (R") = WkrO(R™).

Proof. Since Wok’p © R") c WFkPO(R"), we only need to prove the reverse

inequality. Fix f € WFKPO(R") and € > 0; we will show that there exists

¢ € CX(R") such that || /' — ¢|lx,p¢) < €. By Theorem 6.14 (see Remark 6.16)

there exists g € C®°(R") N WkPO(R") such that | f — g|lk.p¢) < €/2. Therefore,

it remains to show that we can find ¢ € C>°(R") such that ||g — @ ||k p¢) < €/2.
Foreach N > 1let vy € CX(R") be such that:

- supp(vy) C By (0);

. Forall x,0 <wvy(x) <1;

Ifx € Byja(0), vn(x) = 15

. There exists K > 0 such that for all || <k, [ D*Vn]le < K.

AW N =

Let ¢y = gvn. Then ¢y € C2°(R"). By the product rule, for any multi-index «,
lo| <k,

Da(ﬁN = vND“g + Z (Ol) DﬂVNDa_ﬂg.
p<a

B0

Therefore, for all x,

IDgpn(x)| < C Y |Dg(x).

|| <k

and the sum on the right-hand side is in L?®)(R"). For all x and any « with |a| > 0,
D%vy(x) - 0as N — oo. Hence, D%y — vy D%g pointwise as N — oo.
Therefore, by the dominated convergence theorem for the variable Lebesgue spaces
(Theorem 2.62), for all , |et| < k, D%y — D%g in L?O)(R"). Therefore, we can
find N sufficiently large that if we let ¢ = ¢y, ||g§ — @[k, p() < €/2. This completes
the proof. O

The hypothesis that p; < oo in Theorem 6.17 is necessary, as the next example
shows.

Example 6.18. Let p(x) = |x| + 1. Then p(-) € P(R), and by Proposition 2.43,
the function f(x) = 1 is in LPO(R); since Df = 0, f € WI'PO(R). On the
other hand, by Theorem 2.77 bounded functions of compact support are not dense
in L”Y(R), and so C2°(R) cannot be dense in W17 (R).



6.3 The Poincaré Inequalities 249
6.3 The Poincaré Inequalities

In this section we give sufficient regularity conditions on the exponent p(-) for
the Poincaré inequalities to hold in the variable Sobolev spaces. As before, these
conditions are in terms of the boundedness of the maximal operator. Recall that
given a bounded set 2 and a function f, fo = f, f()dy.

Theorem 6.19. Given a bounded, convex set Q2 with diameter D, let p(-) € P(2)
be such that p4 < oo and the maximal operator is bounded on Lp/(')(Q). Then for
all f € WhrO(Q),

Dn+l
If = fallLro@ = Cln, p(-))IIMIILm(Q)WIIVfIIme)-

If the maximal operator is bounded on L?")(Q), then it is bounded on L”*)(A)
for any A C @ with the same constant. Therefore, Theorem 6.19 has the following
corollary.

Corollary 6.20. Given 2 and p(-) € P(S2), suppose p4 < oo and the maximal
operator is bounded on LYO (2). Then for every ball B C Q2 with radius R, and
forall f € WhPO(B),

If = F8llerom) = COr pIIM | Lo @) RIV S Lo s)-

The second Poincaré inequality is restricted to functions in Wol’p © ().

Theorem 6.21. Given a bounded set 2 with diameter D, let p(-) € P(2) be such
that p+ < oo and the maximal operator is bounded on LYO (2). Then for all
S ewy @),

”f”L!’(‘)(Q) = C(nvp('))”M”Lﬂ'(‘)(Q)D”Vf”Ll’(‘)(Q)'

The proofs of Theorems 6.19 and 6.21 require three lemmas. Recall that /; is the
Riesz potential with index 1: see Definition 5.44.

Lemma 6.22. Let Q2 be a bounded set with diameter D, and let p(-) € P(2) be
such that p4 < oo and the maximal operator is bounded on L7O(Q). Then for all
[ e L),

Iy f Loy = €O pOIM Lo @) PILS ITLeo @) (6.4)

Remark 6.23. If p(-) = p, 1 < p < oo, then inequality (6.4) is always true. The
proof is much simpler and does not involve the maximal operator: it is an immediate
consequence of Proposition 5.2 and the constant is C(n)D.
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Remark 6.24. By Remark 5.14, we could change the hypotheses of Lemma 6.22 to
be that p_ > 1 and the maximal operator is bounded on L”")(R2); in this case we
do not need to assume p4 < oo. We can therefore make the corresponding change
in the hypotheses of Theorems 6.19 and 6.21, and Corollary 6.20.

Proof. Fix f € LPY(Q) and extend f to equal 0 on R” \ Q. Then for all x € Q,

[ SO e SO
Ilf(x)_/;zlx_yyl—l dy /I;D(X) |x =yt

where ®@(x) = |x|'™" x5, (o) is a positive, radially decreasing function in L'(R"). If
we integrate in polar coordinates we get that

D
/ d(x)dx = / / PV drd® = C(n)D.
Bp(0) |0]=1Jo

Therefore, by Theorem 5.11,

dy = @ f(x),

Iy fllLeo@) = €O pOIM Lo @) PILS ITLeo @)
O
Lemma 6.25. Given a bounded convex set Q with diameter D, for every [ €

wh(Q),

n

£ = fol = o

LAV fD().
Proof. We first prove this for f € C!'(Q). Fix f € C'(R) and for x, y € Q let

_y—x
ly — x|’

Since €2 is convex, by the fundamental theorem of calculus

ly—x]|
=10 == [ Vfee om0
0
If we integrate in y over €2, we get
—1 ly—x]|
S(x) = fa = —/ / Vf(x+0r)-0drdy.
12| Ja Jo

Let B = Bp(x); then Q2 C B. Hence, by changing between Cartesian and polar
coordinates, we have that
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ly—x|
) fal<ﬁ// IV /(x4 00| xax + 0r) drdy

n—1
|Q|/9| 1/ / IVf(x+0r)ye(x+0r)drp" " dpdf

1
< ﬁ/ / / IVFf(x+0r)|xa(x+6r)p" Y dodrdb
l6]=1

= / / IVf(x 4+ 60r)|xalx + 0r)yr' """ do dr
16]=1

nig]
_ D" [ V)
n2 Jo =y
VD).

To prove this inequality in general, fix f € W!!(Q). By Theorem 6.14 there
exists a sequence {g;} C C'(Q) N W1 (Q) that converges to f in W!!(Q) norm
and so also in L'(). Therefore, if we pass to a subsequence we may assume that
gr — [ pointwise almost everywhere. By Remark 6.23 we have that (6.4) holds
when p = 1 which in turn implies that I, (|Vgi|) — I;(|V f]) in L'(Q) norm; by
passing to another subsequence we may assume that it converges pointwise almost
everywhere. Hence,

n

n|Q|

[ f(x)— fal = k1—1>n;o lgr (x)—(gr)el < k1_1>rgo L(|VgiD(x) = 11(|Vf|)(x)

n|Q|
u]

Lemma 6.26. Given a bounded set <2, then for every f € Wol’l (R2),

If()] = C) LV fD(x).

Proof. We first prove this for f € C>°(€2). Since f has compact support, given any
6 € R", |6| = 1, by the fundamental theorem of calculus,

f(x):/oww(x_ez).edt.

If we integrate over the unit sphere and change from polar to Cartesian coordinates,
we get

f(x) = Cn) /|9=1/(; Vf(x—0t)-0dtdd

cmy | Vi) —2

Y
—c [ V- dy = ;
R |yl R lx =yl

dy.
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If we now take absolute values, this becomes

f( )I

1f()] < Cn) / e dy = COn(9 S ).

To prove this inequality for f € Wol’1 (2), we argue exactly as we did at the end
of the proof of Lemma 6.25, using the fact that C>°(£2) is dense in WOI’1 (). O

Proof of Theorems 6.19 and 6.21. Fix f € W20 (Q); then by Proposition 6.4, we
have that f € W!7—(Q) c W!!(Q). Therefore, by Lemmas 6.22 and 6.25,

n

—— 1LV Dl Lroe)

Dn+1
<C(n, p('))”M||LP’(')(Q)W||Vf||LP(')(Q)~

The proof of Theorem 6.21 is identical except that we use Lemma 6.26 in place
of Lemma 6.25. O

6.4 Sobolev Embedding Theorems

A key result in the classical theory is the Sobolev embedding theorem: if
1 < p < n, then Wol’p(Q) C L”" (), where p* = np/(n — p). This result can be
extended to variable Sobolev spaces. However, as the next example shows, just as
we had to do for the density theorems in Sect. 6.2, we must assume some regularity
on the exponent p(-). To state our results we first make a definition.

Definition 6.27. Given 2 and p(-) € P(R2) such that p4 < n, define the Sobolev
exponent p*(-) € P(2) by

np(x)

pr(x) = o)

Example 6.28. In R?, let B = B;(0). Then there exists an exponent p(-) € P(B)
and f € WO (B) such that / ¢ L?"O(B).

Proof. Fix pyand p2, 1 < p; < p; < 2,and let 0 = 2(p2 — p1)/ p1. Define the
region A C B in terms of polar coordinates,

A={(r0)eB:|0] <rol,
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and define p(-) € P(B) by

p1 x€B\A
p(x) =
P2 x €A

Let f(x) = |x|™", where & = (2— p»)/ p1. Note that by Proposition 6.2 its weak
and classical partial derivatives are the same. We will show that f € W70 (B) but
f & LP"O(B). Integrating in polar coordinates we get

/B ()P dx = /A LF)P dx + /B el s

1 ro 1
5/ / rl_“md@dr—i—27t/ pl=me gy
0 —r° 0
1

1
< 2/ plompto gy —|—27t/ pl=men g,
0 0

Since

pi—p

l—upr+o0o = L'>0 and 1—upr =pr—1>0,
P1

both integrals converge. Further, a straightforward computation shows that

IV f()| = plx[7#", and so

1 r 1
/ |Vf(x)|p(x) dx < 2|M|p2 / / plmp2pth) do dr+27‘r|u|p‘ / Flmpietl) g,
B 0o Jo 0

1 1
:2|M|P2/ rl=p2(uthto dr+27r|u|1"/ et g,
0 0

Since

2 _ 2_ —
Py~ D = PP P
P1 Pi

I—p(u+1)+0= 1

and

l—pi(p+1)=pr—p—1>—1,

these integrals also converge. Thus, by Proposition 2.12, f € W1PO(B).
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On the other hand,
* * 1 l_ﬂ + 1
/ | f(x)]” @ dx > / | £(x)|7> dx :2/ riomt Udr:2/ rldr = oo,
B A 0 0

and so again by Proposition 2.12, f & L?"O(B). O

By assuming that the exponent p(-) is regular, we can extend the Sobolev
embedding theorem to variable Sobolev spaces by using extrapolation theory.

Theorem 6.29. Given Q2 and p(-) € P(S2) such that py < n, suppose that the
maximal operator is bounded on L™ O/ (Q). Then Wol'p(')(Q) C LP"O(Q), and

I £l < CIV £l pe-

Remark 6.30. The hypotheses of Theorem 6.29 allow p_ = 1, including the case
p()=1.1f p(-)=1, then (p*(-)/n’) = oo and by Proposition 3.3 the maximal
operator is bounded on L*°(£2). More generally, by Definition 6.27 we always have
that p*(-)_ > n’, and so (p*(-)/n’) is well-defined. Further, ((p*(-)/n’))- > 1,
and so if we assume, for example, that p(-) € LH(R), then 1/(p*())/n’) €
LH(L2) and the maximal operator is again bounded. (We take the inverse since
(p*(-)/n’) may be unbounded.)

Remark 6.31. In the classical Sobolev spaces, the embedding theorem holds for
functions f € W'?(Q) with additional assumptions on the boundary of Q. The
same is true in variable Lebesgue spaces; see Sect. 6.5.7 below.

To apply extrapolation we need the corresponding weighted norm inequality.

Lemma 6.32. Given Q, thenforall p, 1 < p <n,we Ay, and f € C>(RQ),

1/p* 1/p
(/ |G w(x) dx) <C (/ |V £ (x)|[Pw(x)P/P= dx) ,
Q Q

where p* =np/(n — p).
Proof. Fix f € C2°(Q). Foreach j € Z let

Q={xeQ:2 <|f(x) <2/*},
and define the function f; by
lf()I =2 xeQ;

fi(x) =42/ X €, i >,

0 otherwise.
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The function f; is weakly differentiable and |V f;(x)| = |V f(x)|xq, almost
everywhere. (See [142].) Further, if x € 2, by Lemma 6.26,

LAV fi-1DG) = e fi-1(x)] = e(m)2/ 7" (6.5)

Since a strong type inequality implies the corresponding weak type inequality,
by Theorem 5.49, since w € A; C A, p+, we have that

1 . p*/p
w{x € Q:|L1h(x)|>1}) <C (—/ |7 (x)|w(x)?/? dx) i (6.6)
7 Jo

Therefore, by (6.5) and (6.6) with 1 = |V f;_|, we have that
/Q P Wy di =Y /ﬂ LGOI w(x) dx
TR
< 2 +Dp* d
< 2,: /Q j w(x) dx
= 4”*c(n)_”* Z/ (c(n)Zj_l)p*w(x) dx
TR

<cC Z/{ (c)27 =) w(x) dx
J

€L (IV fi—1D(x)>c(m)2/ 1}

r*/p
=cy ( /Q 1y Oy dx)
J

p*/p

c Z/Q |V £ (x)|Pw(x)P/P* dx
J J=l

IA

p*/p
<C (/ |V £ (x)|Pw(x)?/ P dx) .
Q

This completes the proof. O

Proof of Theorem 6.29. Define the family F to be all the pairs (| f], |V f]) with
f € CX().Fix q(-) = p*(-), and go = n’. By assumption, the maximal operator
is bounded on L)/ ’10)/(9). Therefore, by Theorem 5.28 and Lemma 6.32 (with
p=1),forall f e C>(Q)

||f||Lp*(~)(Q) = C||Vf||Lp(~)(Q),

provided the left-hand side is finite. But this is always the case.
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Now fix f € Wol’p (')(Q). Then there exists a sequence {gx} C C>°(2) such
that gy — f in Wol’p(') norm, and so gx — f and Vg — V f in L?") norm.
By Proposition 2.67, if we pass to a subsequence, we may assume that g — f
pointwise almost everywhere. Hence, by Fatou’s lemma in the variable Lebesgue
spaces (Theorem 2.61),

1A lpey < liminfllgi =) = Climinf [V ) < CIV fllpe-
—00 k—00

|

As a corollary to Theorem 6.29 we can prove an embedding theorem for

Wok’p 0 (£2). To avoid cumbersome hypotheses, we will only consider the case when
p(+) is log-Holder continuous.

Corollary 6.33. Given Q, p(-) e P(R2) and k > 1, suppose p+ <n/k and p(-) €
LH(R). Define p;(-) € P(2) by

np(x)

PZ(X) = m

Then forall | € Wok’p(')(Q),

||f||L,,;:<.)(Q) = Z ID% f Il Lror@)-

lo|=k

Proof. We proceed by induction. If k = 1, then this follows from Theorem 6.29
and Remark 6.30: since p(-) € LH(S2), the maximal operator is bounded on
L(I’*(')/"/)/(Q), and so

LA o < CIVFlo@ < C Y 1D f o)

loe|=1

Now suppose that the result is true for some k. Fix f € W**1.20(Q). For each
multi-index a, || = 1, D¥ f € WFPO(Q), and so

o
DD fll o,

loe|=1

<C Y D UDPD fllwo <C Y 1Dl (6.7)
la|=11B|=k lo|=k+1
The Sobolev exponent corresponding to p/(-) is
np; (x) np(x)

n—pix)  n—(k+Dpx) Pip (%)
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Since p(-) € LH(R2), p;(-) € LH(2), so we can again apply Theorem 6.29 as we
did above to get

10,010y = 22 1Pl o (6.8)
a|=1
If we combine (6.7) and (6.8), we get the desired inequality. O

In the classical case the Sobolev embedding theorem requires p < n: if p = n,
then p* = oo, but there exist unbounded functions in Wln A similar phenomenon
holds in the variable Lebesgue spaces if p4 = n, evenif p(x) < n forall x € Q.

Example 6.34. Let @ = (0,1) x (0,1) C R?, and for x = (x',x?) let p(x) =
1+x2.Then py = 2and p*(x) = 2(1+x2)/(1—x?). Let f(x) = (2+x2)1/0+x"),
Then by Proposition 2.12, f € L?(Q). Further,

1 log(2 + x?)
C+x2)(1+x2)  (1+x2)2

D f(x) = ( ) (0.

andso V f € L?Y(). On the other hand,

1 1
/ F()P O gy = / 2+ xz)z/(l_"z) dx* > / 410=) 432 = oo,
Q 0 0

and again by Proposition 2.12 f ¢ L7 O(Q).

In the classical Sobolev spaces, if p > n, then functions in W7 (Q) are Holder
continuous. The analogous result is true in variable Sobolev spaces. If p— > n and
Q is bounded, then we could use the fact that W!-?0)(Q) ¢ W'P—(Q) to draw the
same conclusion. However, by taking into account the variable exponent we can get
a sharper result.

Definition 6.35. Given a function «(-) : 2 — (0, 1), a function f is said to be
a(-)-Holder continuous on €2, denoted by f € C*0(Q), if for every x € Q there
exists r = r(x), 0 < r < dist(x, d2), such that

lf) = fODII _

veB (x) |x—yle®)
Theorem 6.36. Given a set Q2 and p(-) € P(Q), suppose that 1/ p(-) € LHy(S2)

andforall x € Q, p(x) > n. Leta(x) = 1 —n/p(x). If f € W'PO(Q), then f is
continuous. Moreover, if r = r(x) = min(1/2, dist(x, 0R2)), thenforall y € B,(x),

|f(x) = fF)] = Cn, p—(Br CODIV f | roreylx =y, (6.9)

Moreover, if p— > n, then f € C*O(Q).

The proof requires one lemma.
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Lemma 6.37. Given a ball B of radius r < 1/4, suppose p(-) € P(B) is such that
p—(B)>n.If f € LP(B) and x € B, then

[ f ()] < Co, p— BN PPN ] Lo 3)-

The constant increases as p—(B) decreases.

Proof. Letd =2r <1/2, and fix x € B. Extend f to a function that is zero outside
of B. For each k > 0 define

A ={y € B:27%tVg < |x — y| < 27%d}.

Then B C |J; A, and so by the generalized Holder’s inequality (Theorem 2.26)
and Corollary 2.23 (since p’(-) (B) = p—(B) < n'),

nfel = [ 0L e
o)l
SRS

< 00(2_(k+”d)1_” | f (") dy
Z l

Mg

k 1—
Q™ D f Loy It acl o)

=
I

0

(2—(k+l)d)l—n ”f”LP(‘)(B)|Ak|l/p/(')+(3)-

Me 11

»
Il

0

Since 1/p’(-), (B) < 1, a straightforward argument shows that
|Ak|1/p’(~)+(B) < C(n)(Z_kd)”/”*(B)/,
Therefore, if we continue the above estimate, we have that

00
Z(z—(k+l)d)l—n ”f”LP(‘)(B)|Ak|l/p/(.)+(3)
k=0

o0
<Cm) Y @ V@)= B £l p)
k=0

C(n, p—(B)A" "= B £ yor )
C(n, P—(B))"l_n/p_(B)||f||Lp(->(B)-

IA
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The constant C(n, p—(B)) depends on the sum of the geometric series in this
estimate, which converges because p_(B) > n. Further, this constant increases
as p_(B) decreases towards 7. O

Proof of Theorem 6.36. Fix x € 2 and let r = r(x). Since B,(x) C € and
1/p() is continuous, p_(B,(x)) > n. Fix y € B,(x) and let B C B,(x) be
the smallest ball containing both x and y. Denote its radius by p; since r <1/2,
p < 1/4. Therefore, by Lemmas 6.25 and 6.37,

|f() = fO < [ f () = f5l+ | f(3) = f3]
< CNL(Vfxp)x) + CL(Y flx) ()
< Cn.p-BNP "= P [l oorm)
< Cn. p-B)P 7= B|| £l 1o -

Since 1/p(-) € LHy(£2), by Lemma 3.24 and Remark 3.25,

pl—n/p,(B) _ C(n)|B|1/n—1/P7(B)
<c(n, p()|B|""7VPY = c(n, p())|x — y[*™.

If we combine these two estimates, we get (6.9).

Finally, since p_(B) > p_, if p_ > n, we can substitute p_ for p_(B) into the
estimate from Lemma 6.37 and get a bound in (6.9) independent of x. Hence, we
have that f € C*0(Q). O

Finally, we give an example to show that in Theorem 6.36 the restriction that
p(x) > n is necessary. For simplicity we only consider the case when is n large.

Example 6.38. For n > 3, there exists a bounded set 2 C R”, p(-) € P(R2) with
p() € LHy(2) and p— = n, and an unbounded (and so discontinuous) function
f e whro(Q).

Proof. Fixn > 3andleta = -2 andb =1—a > 0.Fix R,0 < R < ¢!, such
that the function

—1
log(r[log(r)[*)

is positive and increasing on (0, R). Let 2 = Bg(0) and define p(-) € P(2) by
p(x) =n + o(]x|). Then p— = p(0) =n and p(-) € LHy(R2).

Let f(x) = |log(|x|)|’; then f is unbounded at the origin. It remains to show
that £ € WP (Q). Integrating in polar coordinates, we have that

o(r) =
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R
[ 1rere dx = e [ l1og)Prorar
@ 0
R
= C(”)/ [log(r)[?P+r" " dr < oo.
0

A straightforward computation shows that

b

IV (x)| = W’

and by Proposition 6.2 the weak and classical derivatives coincide. Hence, again
changing to polar coordinates, since an > 1,

1
dr
r 10g(r)|‘“’ (r[log(r)[*)o®)

dr
<C _— <
= (")/o og =

Thus, f € WPO(Q). O

/ IV £(0)|P dx = C(n) /

6.5 Notes and Further Results

6.5.1 References

For results on the classical Sobolev spaces we primarily followed Adams and
Fournier [7], Gilbarg and Trudinger [142], Maz’ja [260], and Ziemer [363]. There is
a vast literature on this subject: see also [76, 110, 161,227,343]. As we noted in the
introduction to this chapter, our treatment of variable Sobolev spaces is deliberately
brief. For a comprehensive treatment from a somewhat different perspective, see
Diening et al. [82]. Two useful introductory articles are Kovéacik and Réakosnik [219]
and Fan and Zhao [122].

The variable Sobolev spaces were first explicitly defined by Kovacik and
Rékosnik [219]. Somewhat earlier, a special case was introduced by Zhikov [357].
Much earlier, generalized Sobolev spaces defined using Musielak-Orlicz spaces (see
Sect.2.10.2) were treated in a series of papers by Hudzik [171-179]. Versions of
many of the results in this chapter are implicit in his work.

The definition of weak derivatives and Proposition 6.2 are well-known: see,
for instance, [363]. For the chain rule, Lemma 6.5, see [142]. The proofs of
Theorems 6.6—6.8 are adapted from the proofs in the classical case given in [7].
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For our definition of Wok’p © we have followed [219]. A somewhat different
definition that is equivalent in many cases is used in [82] (see also Sect. 6.5.6 below.)
The density of smooth functions in the variable Sobolev spaces was first considered
by Zhikov [355,357]; he constructed Example 6.12 and our construction is based on
his. Later, Zhikov [362] showed that this example is actually a particular case of a
more general result. (See Sect. 6.5.5 below.) A proof of Theorem 6.14 was sketched
in [58] assuming 1/ p(-) € LHy(L2); the proof given here is adapted from the proof
in the classical case in [7]. (See also Diening [77] for a related result when p_— > 1.)
The proof of Lemma 6.15 is well-known: see, for instance, [142]. Theorem 6.17
was first proved by Samko [315,316]. A different proof was outlined briefly in [58].

The Poincaré inequality (Theorem 6.19) was first proved in variable Sobolev
spaces by Harjulehto and Histo [151] with somewhat different assumptions on the
exponents. (See Sect.6.5.6 below.) They also gave an example to show that the
exponent p(-) needs some regularity. Theorem 6.21 was first proved, with different
hypotheses, in [219]. It is implicit in [106]. The versions given here are similar to
those in [82] but have slightly stronger hypotheses. (See Sect.6.5.6 below.) The
proofs of Lemmas 6.25 and 6.26 are taken from [142].

The Sobolev embedding theorem (Theorem 6.29) has been studied extensively.
It was first considered by Kovacik and Rékosnik [219], who constructed Exam-
ple 6.28. They also proved a version of Theorem 6.29 assuming p(-) is continuous
on © and with the weaker conclusion that f € L4 (), where g(x) < p(x) — €
for some € > 0. Their results were generalized to certain kinds of discontinuous
exponents by Alisoy, Ceki¢c and Mashiyev [44, 257]. Fan, Shen and Zhao [118]
proved Theorem 6.29 if p(-) is a Lipschitz function; this was proved independently
by Edmunds and Rakosnik [106,107] who later proved that it was enough to assume
that p(-) is Holder continuous. Diening [78] proved it assuming that p_ > 1 and
p(-) € LH(R2); this was proved independently in [42]. Another proof that included
the case p— = 1 was given by Harjulehto and Histo [153] for bounded domains;
this was extended by Hésto [165] to unbounded domains using the technique of
local to global estimates (Sect.5.6.6). The proof given here first appeared in [69].
Lemma 6.32 is well-known if p > 1; when p = 1 it is due to Maz’ja [260]. Our
proof of this lemma was implicit in [132] and is explicit in [69]. The decomposition
argument used in the proof is often attributed to Long and Nie [241] but it is implicit
in Maz’ja [260]. A similar argument was used in [153]. Example 6.34 is due to Fan
and Zhao [122].

The variable Holder classes (Definition 6.35) were first considered by Ross and
Samko [300] and by Karapetyants and Ginzburg [189,190] in the study of fractional
derivatives. Theorem 6.36 was first proved by Edmunds and Rékosnik [106], and a
slightly more general version with a very different proof was given by Almeida and
Samko [12, 13]; our proof is adapted from theirs. A slightly weaker version based
on the classical continuity results was proved by Harjulehto and Histo [151]; they
also gave a generalization based on capacity theory for variable Sobolev spaces.
Example 6.38 is new; related examples are given in [106, 151].
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6.5.2 An Alternative Definition of the Norm

There is an equivalent definition of the norm on W*?0)(Q) that has been adopted
by some authors: see, for instance [31,82]. Given 2, p(-) € P(R) and k > 1, let

1 gy = inf{x >0: 3 ppo(DY/A) < 13,

lo|<k

It is immediate that for each , |a| < k, | D* fl o) < I £l and so

*
whk.p()?
I/ lweror@y < ME S [wpe

where M(k,n) is the number of multi-indices «, |o| < k. To see the opposite
inequality, note that

DY p(x)
> pp(DY/A) = /Q\Q > (M) dx + Y 27D fllo(200)

A
loe| <k  |a| <k lor| <k
I p(x)
5/ M(k.n) Y ﬁ dx + A7 [ M(k,n) Y |D* f] .
2\ Qoo lo| <k lor| <k L2(R00)

Therefore, by the definition of the norms and the triangle inequality,

> D f]

lo|<k

< M) f llwiro -

1 o @y < Mk )
()

6.5.3 Boundary Regularity

In our discussion of variable Sobolev spaces we have avoided the important but
more delicate questions related to the regularity of the boundary of 2. However,
these have been considered by many authors. The simplest assumption is that
the domain €2 is bounded and has a Lipschitz boundary. Given this assumption,
Diening [77] noted that Theorem 6.14 could be extended to show that C () is
dense in W570(Q) provided p(-) € LHy(R2) and p_ > 1. This result was extended
to include the case p— = 1 in [58]. Similarly, Edmunds and Rékosnik [106] proved
their version of the Sobolev embedding theorem (Theorem 6.29) with WOI”7 0 ()
replaced by W'70)(Q) provided € is bounded and has a Lipschitz boundary.

A generalization of the Lipschitz boundary condition that is well-suited to
variable Lebesgue spaces is the John domain. A bounded set €2 is an «-John domain,
a > 0, if there exists xo € €2 such that given any x € €2, there exists a rectifiable
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curve yy : [0, £,] — €, parameterized according to arc length, with y,(0) = x, and
yx(€y) = x, such that B,—1,(yx(t)) C Q. An unbounded set is an a-John domain if
it is the nested union of bounded a-John domains. These domains were introduced
in the study of variable Lebesgue spaces by Harjulehto and Histd [151] and have
been used by a number of authors since then: in particular they are used extensively
in [82].

6.5.4 Extension Theorems

Closely related to boundary regularity is the question of extension theorems. Given
WkrO(Q), an extension operator is a bounded linear map E : W5rO(Q) —
Wk.PC)(R™) such that for all x € Q, Ef(x) = f(x). The existence of an extension
operator is closely related to the geometry of the boundary of 2. Unlike in the
classical case, in the variable Sobolev spaces the exponent p(-) € P(£2) must also
be extended to an exponent p(-) € P(R"); when p(-) € LH(2) this has been
done using variants of Lemma 2.4. Edmunds and Rakosnik [106] proved that if ©
is bounded and has a Lipschitz boundary, and p(-) is a Lipschitz function, then p(-)
can be extended to a Lipschitz function on R” and there is an extension operator
from W1P0)(Q) into W70 (Q). Diening [78] generalized this result to exponents
p(-) € LHy(L2). An elementary proof using extrapolation is given in [82], assuming
p() € PR"),1 < p—- < ps < oo and the maximal operator is bounded on
L?0(L). An elementary extension theorem for cubes was proved in [127].

Extrapolation results exist for more general domains. To state one such we begin
with two definitions. (For more details, see [7].)

Definition 6.39. Given a point x € R”, a finite cone with vertex at x, Cy, is a set of
the form
Ci=B N{x+t(y—x):y€B,0<t <1},

where B is an open ball centered at x, and B, is an open ball which does not
contain Xx.

Definition 6.40. A set 2 C R” has the uniform cone property if there exists a finite
collection of open sets {U, } (not necessarily bounded) and an associated collection
{C;} of finite cones such that the following hold:

1. There exists § > 0 such that
Qs = {x € Q: dist(x,0Q) < 8} ¢ | Uz
J
2. For every index j andeveryx € Q NU;, x + C; C Q.

An example of a domain with the uniform cone property is any domain whose
boundary is locally a Lipschitz graph.
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Theorem 6.41. Given a set Q2 with the uniform cone property, suppose p(-) €
P(2) is such that 1 < p— < py < oo and p(-) € LH(S2). Then for every k > 1
there exists a bounded linear extension operator

Ep : WEPO(Q) — whrO @),

In the classical case Theorem 6.41 is due to Calderén [39] (see also [7]). In
the variable Sobolev spaces it was proved in [61] as a (non-trivial) application of
extrapolation theory.

Another extension theorem that applies to a large class of domains (the so-called
(e, 00)-domains) and eliminates the restriction 1 < p_ < pi < oo, is due to
Froschl [133] (see also [82]).

6.5.5 More on the Density of Smooth Functions

The density of smooth functions in W*7)(Q) is a delicate problem, but one which
appears to be central to a deeper understanding of the variable Sobolev spaces as
well as in applications: see, for example, Harjulehto et al. [155], Nuortio [287] and
Proposition 6.48 below. In Example 6.12 we gave an example of an exponent with a
jump discontinuity such that smooth functions were not dense. On the other hand, by
Theorem 6.14 and Example 4.68, we have that there exist discontinuous exponents
such that smooth functions are dense.

One approach to this problem is to give conditions on the modulus of continuity
of p(-) that are sufficient for bounded functions to be dense. As we showed
in Chap.4, log-Holder continuity is the best possible condition for the maximal
operator, but this condition can be weakened and smooth functions are still dense in
WwkrO(Q).

Proposition 6.42. Given 2 and p(-) € P(K2), suppose there exists a function @
such that |p(x) — p(¥)| < w(|x — y|) whenever |x — y| < 1/2. If w satisfies

/2 .
/ =00 g = o0, (6.10)
0

then C® () N WLPO(Q) is dense in WPO(Q).
Proposition 6.42 is due to Zhikov [362]. Condition (6.10) holds, for example, if

kloglog(1/t)
)= ——"1 - k< p_/n.
0= T og(1/n) =i
Note that by Example 4.43 this shows that there exist exponents p(-) such that the
maximal operator is not bounded on L”®)(2) but smooth functions are dense in
whro(Q).
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This condition is very close to optimal: Histd [162] constructed an exponent on
Q = B;(0) in R? for which the best modulus of continuity is

(1) = (1+e) loglog(l/t)’ >0,

log(1/1)

and smooth functions are not dense in W70 (Q). (For a more general condition
guaranteeing smooth functions are not dense, see [82].)

A different approach is due to Edmunds and Rakosnik [105]. They proved
Theorem 6.14 assuming a complicated monotony condition on p(-). Hésto [164]
generalized this condition by showing that it could be combined with a weaker form
of log-Holder continuity. In the same paper he also considered the question of when
continuous functions are dense in W'-?0)(Q). Similar results on the density of C >
were derived by Fan, Wang and Zhao [119].

Finally, we note that on the real line, if py < oo, then C®(Q) N WPO(Q) is
always dense in W!-?0)(Q). This was proved by Harjulehto and Hist6 [150].

6.5.6 More on the Poincaré Inequalities

Theorems 6.19 and 6.21 hold with weaker hypotheses on the exponent p(-). In
terms of regularity related to the maximal operator, Diening et al. [82] showed that
both theorems are true for any p(-) € P(2) provided p(-) € A. (See Sect.4.5
for the definition of the condition .4.) Note that this eliminates the assumption that
P+ < ooor p_> 1 that our proofs required. Since the K condition is necessary and
sufficient for the maximal operator to be bounded on L”®)(Q) when 2 is bounded,
we conjecture that these results hold if we instead assume that p(-) € K.
Even weaker conditions unrelated to the maximal operator are sufficient.

Theorem 6.43. Given a bounded convex set 2 and p(-) € P(K), suppose p(:) is
continuous on Q. Then for all f € W'PO(Q),

ILf = fallpe) = Cn. pC). IV Sl py-

Theorem 6.44. Given a bounded set Q2 and p(-) € P(R), suppose p(-) is
continuous on Q. Then for all f € Wol’p 0 (),

£ llpey = €, pO)L DNV Sl pey-

Theorem 6.43 is due to Harjulehto and Hésto [151]. They also proved a version
when p(-) has no regularity but has limited oscillation: i.e., if (p—)* > p4. Kovacik
and Rékosnik [219] proved Theorem 6.44. (See also [82].) Mercaldo et al. [261]
have shown that Theorem 6.44 is true on Lipschitz domains if p(-) is discontinuous
and takes on just two values: 2 and pg, | < py < 2, on Lipschitz subsets of 2.
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Theorem 6.44 can be extended to a subspace of W17)(Q) that may be larger
than WOLP(')(Q) Define I/(IJ/L”(')(Q) = WhrO(Q) N W, (Q), or equivalently, let
Wipe) (2) be the closure in W70 () of the set of all functions in W7 () with
compact support. It is immediate that the proofs of Theorems 6.19 and 6.21 extend
to this space. Similarly, Theorem 6.44 can be proved in this setting: see [82]. More
recently, with the additional hypothesis that p_ > 1, Ciarlet and Dinca [50] gave a
proof that did not rely on density arguments.

o
In the constant exponent case it is always the case that W7 (Q) = Wol’p ().

However, in the variable exponent case Wi (£2) can be larger. Fan and Zhao [122]
pointed out that an example of Zhikov (Example 6.12) can be adapted to show this.
But with some regularity on p(-), the two are the same: Harjulehto [149] showed
that if C®(2) N W1PO(Q) is dense in W70 (Q) (see Sects. 6.2 and 6.5.5), then
equality holds. (See also [82].)

When 02 has some regularity (e.g., is Lipschitz) the space Wipe) (£2) can also be
defined as the space of all functions in W70 (Q) that have zero trace—intuitively,
functions that are zero on d€2. The existence of a bounded trace operator for classical
Sobolev spaces has many applications in the study of PDEs. The trace operator in
the variable Sobolev space has been studied by several authors: see Diening and
Histd [83,84] and Fan [115]. Liu [240] has considered the trace operator in weighted
Sobolev spaces.

6.5.7 More on the Sobolev Embedding Theorem

The extension theorems discussed above let us extend the Sobolev embedding
theorem to the spaces W !?0)(2). For example, the following result is an immediate
consequence of Theorems 6.17, 6.29 and 6.41.

Theorem 6.45. Given a set Q with the uniform cone property, and p(-) € P(S2)
such that p(-) € LH(Q) and 1 < p_ < py <n, then W'-PO(Q) c L?"O(Q), and

I/ oy = CIV Sl pey- (6.11)

In the classical case, when p = n inequality (6.11) is false: W1 () is not
contained in L°°(€2). (This is actually shown by the function in Example 6.38.)
As a substitute, there are exponential integrability results: for example, if 2 is a
bounded domain, then for all f € Wol’" (),

|f()] H
Cl————— d C,|22]. 6.12
/Qexp[( "V e * = Glal 12

(See [363].) This inequality implies that f is in the Orlicz space Exp(L"/)(Q).
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This result can be generalized to the variable Sobolev spaces. Given a bounded
domain 2 and p(-) € P(2) such that p(-) € LHy(2) and p4+ < n, Harjulehto and
Histo [153] defined the Musielak-Orlicz space L®V)(Q) with

max(log(|¢]), 1) P ()
L'(t/n')

(see Sect.2.10.2), and proved that if f € W!1PO(Q), then f € L®V(Q). The
function ® is such that if p4 < n, then L®O(Q) = L?"O(Q), and if p(-) = n, then
LPO(Q) = Exp(L")(RQ).

Another approach when p4 = n using weighted variable Lebesgue spaces is due
to Edmunds and Rakosnik [106]. Given a bounded set 2 with a Lipschitz boundary,
let p(-) € P(2) be a Lipschitz function such that p4 = n. Define the weight

d(x,1) = tI°do

w(x) = min ((n — p(x))°, 1),
where b > 4 — 1/n. Then for all £ € W'rO(Q),

”fW”Lp*(-)(Q) = Cllflhpe-

A similar result was proved by Futamura and Mizuta [135].
Recently, Fan [116] showed that if €2 is an unbounded domain that satisfies the
cone property, and if p(-) € P(2) is Lipschitz, then

1/ l2e0 @) = ClILf hper

where ¢(-) is such that g+ < oo and ¢(x) < p*(x) for all x € Q. For instance, we
can take ¢(x) = min(p*(x), N) forany N > 1.

Though Example 6.38 shows that in general functions in W17()(Q) need not be
continuous when p_ = n, Futamura and Mizuta [135] showed that they are log-
Holder continuous provided that p(-) decays to n sufficiently slowly. For exponents
that decay more quickly they proved an exponential integrability result similar to
inequality (6.12).

In Theorem 6.29 the regularity of the exponent is given in terms of the
boundedness properties of the maximal operator. The exponent p(-) in Example 6.28
has a jump discontinuity, so we know (see Example 3.21) that the maximal operator
is not bounded on L?"). Diening, Hiisto and Nekvinda [86] modified this example
to produce an exponent p(-) that is continuous, but not uniformly continuous, such
that the Sobolev embedding theorem fails.

On the other hand if p(-), ¢(-) are continuous on Q and g(x) < p(x) for
x € Q, then | fllgey < Cllfllipe. (See Sect.6.5.8 below.) Futamura, Mizuta
and Shimomura [137, 269] considered uniformly continuous exponents that are
not log-Holder continuous, but gave embeddings into a Musielak-Orlicz space
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(see Sect.2.10.2). In light of these results we have the following open question,
a generalization of a question first posed in [86].

Question 6.46. Does there exist a set 2 and a uniformly continuous exponent
p(-) € P(R2) such that the Sobolev embedding theorem is false for Wol’p 0 (2)?1s
there a uniform continuity condition weaker than L Hy(€2) such that if an exponent
satisfies it, then the Sobolev embedding theorem holds?

Finally, we note an application of rearrangement inequalities to the Sobolev
embedding theorem. (See Sect.3.7.7.) Given a bounded set 2 and p(-) € P(2)
with p_ > 1, suppose the increasing rearrangement p'(-) of p(-) is in LHy([0, €))
for some € > 0. If r(-) € P(R2) is such that its decreasing rearrangement satisfies
r*(0) < (p_)* = np_/(n — p_), then for all f € W,"(Q), f € L'O(Q).
This embedding is similar to the suboptimal results in [219]; what is of interest is
the extremely weak regularity assumptions on p(-): p(-) does not itself need to be
continuous. For this and related results, see [131,298].

6.5.8 Compact Embeddings

In the classical Sobolev spaces, given a bounded set 2, if p < n and ¢ < p*, then
W, 7 (2) is compactly embedded in L4(R2): if {gx} C W'?O(R) is bounded in
W1-P0) norm, then it has a subsequence that converges in L9 norm. (This is referred
to as the Rellich-Kondrachov theorem: see [7, 142].) This result extends to the
variable Sobolev spaces.

Proposition 6.47. Given a bounded set 2, suppose p(-) € P(2) is such that p4 <
n and p(-) is continuous on Q. (e.g. p(-) € LHy(RQ)). Let q(-) € P() be such that
q(x) < p(x) —€ forall x € Q and some € > 0. Then Wol’p(')(Q) is compactly
embedded in L1V ().

Proposition 6.47 was first proved by Kovacik and Rakosnik [219]; other proofs
are due to Fan and Zhao [122], Fan, Shen and Zhao [118], and Diening [78].

Proposition 6.47 has been generalized in various directions. Fan, Zhao and
Zhao [123] proved a compact embedding theorem for radial functions in W70 (R")
assuming p(-) is also radial. These results were generalized by Yao and Wang [350].
(They also generalize a compact embedding from a weighted Sobolev space given
without proof by Fan and Han [117].) Ohno [288] examined compact embeddings
into Musielak-Orlicz spaces.

In the classical case the embedding is not compact if ¢ = p*. However, in
variable Sobolev spaces it is possible to have a compact embedding even if
q(x) = p*(x) at some points in the domain. This was first considered by Kurata
and Shioji [225] and later by Mizuta, Ohno, Shimomura and Shioji [268]. Gao,
Zhao and Zhang [139] gave embeddings into a weighted variable Lebesgue space
when ¢ (x) < p*(x) + € for some € > 0.
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6.5.9 Mean Continuity

Functions in the classical Sobolev space are mean continuous: given €2 and any set
A such that A C Q, then for all &, |h| < dist(A4, 0R2),

I f = fllercy < CIAINV fllir@).

(See [142].) Since the variable Lebesgue spaces are not mean continuous
(Corollary 5.18), it is not surprising that this result fails in the variable Sobolev
spaces. There exists a smooth exponent p(-) on 2 = (0,1) x (0, 1) (though not
continuous on ) and a function f € W70 (Q) such that 7, f & LP)(Ay), where h
can be taken arbitrarily small and A, is compactly contained in 2. See [127].

This paper also contains a substitute result. Given a lower semi-continuous
exponent p(-) and & € R”, define pj(-) by

pr(x) =inf{p(x + ht) : 0 <t < 1}.

Proposition 6.48. Given a cube Q and p(-) € P(Q), suppose p(-) is lower semi-
continuous, 1 < p_ < p4 < oo, and that the maximal operator is locally bounded
on L?'O(Q). Given an open set A such that A C Q and h, |h| < dist(4, dQ), then
forall f € WhrO(Q),

I =t f I ponoray < CIRIIV fllro0)-

In the proof of Proposition 6.48 the key property needed is that smooth functions
are dense in W'?0)(Q); our hypothesis is sufficient for this, but as we noted in
Sect. 6.5.5, it also holds with other assumptions.

As a consequence of Proposition 6.48 we can generalize a characterization of
WP (Q) in terms of the double integral of differences quotients due to Bourgain,
Brezis and Mironescu [34]. They showed that if ¢ € C*° is a radial function, then
there exists a constant K = K(p, n) such that for all f € W'7(Q),

1fG) = fOl

m [ [ Ui =y dydx = KIV L,
t—>0 |x -y

In [127] a weaker version of this result was proved.

Proposition 6.49. Given Q and p(-) as in Proposition 6.48, suppose p(:) € C(Q).
Let ¢ € C° be a radial function. On Q x Q define q(x,y) =inf{p((1—t)x +1ty) :
0 <t < 1}and Fi(x,y) = qu (x — Y)WV4&D) Then for all f €
Wi0(0),

chmsup I FellLaeroxoy S NV S llpey =€ hmlnf”Ft”LqU(QxQ)
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Mean continuity in mixed norm variable Lebesgue spaces was considered by
Bandaliev and Abbasova [23]. Modular mean continuity along the lines of the
Lebesgue differentiation theorem (see Sect.2.9) was considered by Harjulehto
and Histd [152] using a capacity theory for variable Sobolev spaces developed
in [155]. (See also [82]). These results were generalized to Musielak-Orlicz spaces
by Futamura, Mizuta and Shimomura [137].

6.5.10 Gagliardo-Nirenberg Inequalities

In the classical Sobolev space WX (IR") it is possible to estimate the norms of the
derivatives of order j < k by the L? norms of f and the derivatives of order k. For
brevity, let

[l =Y IID* fll,:

loe|=j

then for 0 < j <k, e > O sufficiently close to 0, and for f € wk.p R"),1 < p < oo,

|/l < C(elflkp +€CDNS 1)

(See [7].) Zang and Fu [351] extended this inequality to the variable Sobolev space
WkpC) (R™):
| £1ipe) < C(el Flepey + €7 C DN £y, (6.13)

assuming that p_ > 1 and the maximal operator is bounded on L?)(R"). A gen-
eralization, with the same hypotheses on p(-), was proved by Kopaliani and
Chelidze [218]. In the case p— > 1, a modular interpolation inequality was proved
by Giannetti [141] assuming p(-) € LH(R"). A weighted interpolation theorem,
with very different hypotheses, was proved by Cianci and Nicolosi [49].



Appendix A
Appendix: Open Problems

In this appendix we present a collection of open problems that we believe will be
fruitful for further research. Some of these were already mentioned in the text and
they are all listed roughly in the order the relevant material appears in the book.
We do not include any problems beyond the scope of this book; in particular, we
do not include anything related to the calculus of variations or partial differential
equations, two areas of intense activity. For these problems we refer the reader to
the survey articles by Fan [113], Harjulehto ef al. [157] and Mingione [263].

Problem A.1. Let Q be an unbounded set. Characterize the closure of bounded
functions in LPO(Q) when p4(Q \ Qo) = 00. In particular, if L () is a subset
of LPO(RQ), characterize its closure.

By Theorem 2.75, if p4 (£2\ 200) = oo then bounded functions are never dense.
If © is bounded, this question was studied by Edmunds, Lang and Nekvinda [101].
They showed that in this case the closure of the set of bounded functions is equal to
the set of functions with absolutely continuous norm (see Sect.2.10.3) if and only
forevery A > 1,

Il
/ AP O dr < 0o,
0
where p* is the decreasing rearrangement of p(-).
Problem A.2. Find “useful” dense subsets of L") () when p4 = .

By Theorem 2.75, if p4 (2 \ Q) = 00, bounded functions are not dense, and by
Theorem 2.77, functions with compact support are not dense if p(-) is unbounded
on the boundary of 2. As we saw in Chap.5, bounded functions of compact
support play an important role in studying the operators of harmonic analysis when
p+ < oo. Is there a useful substitute when p; = oo? For instance, under what
circumstances is the set

LrY@n | Lr@
1<p<oo

dense in L7 (Q)?

D.V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue Spaces, Applied and Numerical 271
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Problem A.3. Characterize the dual space LPY)(Q)* if p+ = oc.

We have that L?O(Q)* = L”O(Q) (up to isomorphism) if and only if
p4+ < oo (Theorem 2.80). When p, = oo, L” ©)(Q) is (isomorphic to) a closed
subspace of LP)(Q)*. When p(-) is constant the dual of L is the set of finitely
additive measures that are absolutely continuous with respect to Lebesgue measure
(see [95]).

The solution to this problem may depend on whether p(-) is such that L*°(2) C
LPO(R). In this case, since the identity map / : L®(Q) — LY (Q) is bounded,
any element of L”)(Q)* induces a bounded linear functional on L°°(2). The above
characterization of L°°(2)* may then become relevant.

Problem A.4. Generalize the Marcinkiewicz interpolation theorem, or more gener-
ally, one of the real interpolation methods, to the scale of variable Lebesgue spaces.

The problem of interpolation was discussed in Sect. 3.7.8. Given the close con-
nection between Marcinkiewicz interpolation and rearrangements (see Sect. 3.7.7)
one initial step would be to find a replacement in the variable Lebesgue spaces for
the L7 identity

[|f(x>|f’dx=p[ P e Q[ f(0)] > 1] dr.
Q 0

Recall that this identity is central to proving the classical norm inequalities for
the maximal operator (Theorem 3.4); therefore, it may be reasonable to assume
boundedness of the maximal operator as a hypothesis when proving such a
replacement.

A weaker version of this problem would be to prove a strong type norm inequality
for the maximal operator (as in Theorem 3.16) as a consequence of the weak type
inequality.

Problem A.5. Explore the interaction between the symmetry of the exponent
function and log-Holder continuity in controlling the boundedness of the maximal
operator.

As we discussed in Chap. 4, while log-Holder continuity is the sharpest possible
pointwise decay condition on p(-) for the maximal operator to be bounded on
L?0), Examples 4.1 and 4.43 depend on the exponent p(-) being non-symmetric.
In Examples 4.13 and 4.59 we gave symmetric exponents that decay more slowly
but the maximal operator is still bounded.

It is not clear what role symmetry plays. A first step would be to determine
if Example 4.43 could be improved by showing there exists a symmetric function
p(-) € P((—1, 1)) which has the specified decay and such that the maximal operator
is not bounded on L?)((—1, 1)). Or is it the case that symmetry, monotonicity and
continuity are sufficient to prove the maximal operator is bounded? The construction
of Example 4.59 will be relevant to this question.
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Problem A.6. Find a condition weaker than the Noo condition that, together with
the Ko condition is necessary and sufficient for the maximal operator to be bounded
on LPO)(RM).

Theorem 4.63 gives a single necessary and sufficient condition—the condition .4,
due to Diening—for the maximal operator to be bounded. While of great theoretical
importance, it is difficult to check: in practice, one shows that an averaging operator
is bounded by showing that the maximal operator is bounded.

Therefore, it would be interesting to have a different condition. As our approach
in Chaps.3 and 4 demonstrated, it is natural to consider two conditions, one to
control the maximal operator locally (i.e., the Ky condition), and one to control
it at infinity. However, at this point it is unclear what this condition should look like.
A more careful analysis of the maximal operator at infinity (i.e., the estimates for f,
in our proofs) is needed.

Problem A.7. Adapt the ideas from the theory of two weight norm inequalities to
find necessary and sufficient conditions for the maximal operator to be bounded on
LPO (R™).

There are several approaches in the theory of two weight norm inequalities that
may be applicable to the variable Lebesgue spaces. One would be to generalize the
K condition so that it also controls the maximal operator at infinity. For example,
if we define

14

|91 + [x — xol"

we could replace the K condition with the “tail” condition

To(x) = ~ M(xo)(x),

Sgp Q1M Tl po I To ey < oo,

where the supremum is taken over all cubes. This is referred to as a tail condition
since it depends not only on the local behavior of the norm but also its behavior at
infinity. Clearly, this condition implies p(-) € Ko(R"). Such conditions have played
a role in the study of two-weight norm inequalities for the maximal operator. See,
for example, Muckenhoupt and Wheeden [273] and Sawyer and Wheeden [327].

Another possibility is to adapt the “testing” condition for the maximal operator
introduced by Sawyer [325] (see also [53, 140]). He showed that a necessary and
sufficient condition for the inequality

/ Mf(x)Pu(x)dx < C/ | f(xX)|[Pv(x) dx
R R

is that for every cube Q,

/ MO yo)(x)?u(x)dx < C / v(x)' =" dx.
0 %
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The necessity of this condition comes from setting f = =7 Xo in the norm
inequality and restricting the integral on the left-hand side to Q.
The analogous testing condition for the variable Lebesgue spaces would be

| Moy ax < clol.

The domain of integration on the left-hand side must remain equal to R": otherwise,
since for x € Q, M(xo)(x) = 1, the inequality would be trivial. Modular Sawyer-
type conditions for weighted norm inequalities in the variable Lebesgue spaces on
the real line have been considered by Kokilashvili and Meskhi [199], but with the
additional assumption that p(-) € LH(R) and p(-) is constant outside of a large
ball. It may be better to express this condition in terms of the norm instead of the
modular:

IMxo)llpe) = Clixellpo-
Moreover, by Corollary 4.64,if 1 < p_ < p4 < oo, then M is bounded on L?®)
if and only if it is bounded on L?'O); hence, it may be necessary to also assume the
“dual” inequality,

IM o)l = Clixellyo-
To determine if both conditions are necessary, the exponent constructed in Exam-
ple 4.51 may be relevant. One obstacle to this approach is that Sawyer’s proof relies
on Marcinkiewicz interpolation.

Finally, though it would not yield necessary conditions, another approach to
generalizing the K, condition might be to emulate the “A, bump” conditions used
in the theory of two-weight norm inequalities to variable Lebesgue spaces. See [69]
for details and further references. Related ideas were used in [57] to prove weighted
norm inequalities on variable Lebesgue spaces, Theorem 4.77. (See also [82].)

Problem A.8. Given 2 and p(-) € P(R2) such that 1 < p_— < p; < oo and
the maximal operator is bounded on L") (), give a direct proof that the maximal
operator is bounded on L”/(')(Q).

This result is true: see Corollary 4.64. However, the only known proof is indirect,
passing through the characterization of the boundedness of the maximal operator
in Theorem 4.63. Even in the classical Lebesgue spaces, this is known only as a
consequence of the fact that the maximal operator is bounded on every L? space,
1< p<oo.

By duality, it is very easy to show that if M is bounded on L”), then it satisfies
the weak type inequality on LPO, By Theorem 2.34 and the Fefferman-Stein
inequality [124], there exists g € L”Y(R"), ||g|| ) < 1, such that

It xestrcosallre < 2k | Xemresn(X)g(x) dx
7O Je,

<c /R | F@)IMg(x)dx < CILf Lo IMgllo < ClLE Lo,
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There are several possible approaches to this problem. One is to try to improve
this duality argument, perhaps using the characterization of boundedness in Theo-
rem 4.37. One can show using the bounds in Theorem 3.4 that if M is bounded on
LPO(R"), then, in the notation of that result, (s — 1)[|M || 5Ls())(gn) is bounded for
s > 1. However, it not clear how to sharpen this argument to get that this quantity
goestoOass — 1.

Another, more abstract approach would be to work with the generalization of
Lorentz-Shimogaki indices for non-rearrangement invariant Banach function spaces
developed by Lerner and Pérez [235].

A third approach would be to use a recent paper by Lerner [232]. As a
consequence of his more general results in Banach function spaces, he shows that
M is bounded on L”)(R") if and only the sharp maximal operator M* (see
Sect. 5.6.5) satisfies the Fefferman-Stein inequality

1/ 1pe) < CIM* £l o

This inequality is true, but the only known proofs use the fact that maximal operator
is bounded on L”'0).

Problem A.9. Characterize the sets 2 and the exponents p(-) € P(2) such that if
the maximal operator is bounded on LP")(Q2), there exists an extension of p(-) to
all of R" such that the maximal operator is bounded on L0 (R").

When 1/p(-) € LH(R2), then by Lemma 2.4 such an extension always
exists. However, given that log-Holder continuity is not a necessary condition, and
boundedness of the maximal operator is an ubiquitous assumption, more general
conditions are desirable.

A related problem would be to determine conditions such that if p(-) € Ky(2),
then p(-) can be extended to an exponent function in Ky(R").

Problem A.10. If the maximal operator is bounded on LP")(R"), determine
whether it is bounded on L*TPO(R") for all a > 0.

This is just a restatement of Question 4.75, which is discussed in Sect. 4.6.4.

Problem A.11. Determine whether Theorems 4.77 and 4.80 can be extended to
include the case p4+ = oo.

Problem A.12. Given p(-) € P(R") such that the maximal operator is bounded
on LPO)(R"), determine whether w € A p() I8 a sufficient condition for the maximal
operator to satisfy |[WM f || ¢y < Clwf |l p)-

Problem A.13. Given p(-) € P(R") such that 1 < p— < py < oo and p(-) €
LH(R"), and given w € A, determine whether a singular integral (as defined in
Sect. 5.5) satisfies

ITHIWlpey = ClL Wl ey

Explore the same question for other classical operators.
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The above three problems are just a restatement of questions discussed in
Sect. 4.6.5.

Problem A.14. Find the sharp constant in Theorem 4.77 in terms of the [w]a,,
constant of the weight w.

In the theory of weighted norm inequalities, the problem of finding sharp
constants in terms of the [w]4, constant of a Muckenhoupt weight w has been of
great interest. (See [68] and the references it contains.) For the maximal operator,
this problem was solved by Buckley [38] (see also Lerner [230]). It would be of
interest to have similar sharp bounds for weighted estimates in the variable Lebesgue
spaces. A first step to this problem would be to determine if the examples given by
Buckley can be adapted to give useful lower bounds.

Problem A.15. Let {¢,} be a potential type approximate identity. Characterize the
exponents p(-) with p4 = oo such that ¢, * f — f in modular and in measure.

When p4 < oo, then by Theorem 5.9 we always have convergence in measure,
and by Theorem 2.56 convergence in modular is equivalent to convergence in norm,
which is characterized in Theorem 5.11. However, when p4 = oo, Example 5.10
shows that if  is unbounded, then ¢, * f may not converge in measure. Similarly,
Example 5.15 shows that norm convergence does not hold when p = oo. The
convergence results in [60] (see also Sect.2.10.6) are relevant to this question.

Problem A.16. Given an approximate identity {¢,}, characterize the exponents
p () such that py( (¢ * ) = ppe) (f).

We conjecture that if ¢ has compact support, it will suffice to assume that p(-) €
L Hy. Weaker conditions may also hold.

Problem A.17. If p(-) is such that all the Riesz transforms are bounded on
LPO(R™), then determine whether the maximal operator is bounded on LP")(R™").

Theorems 5.42 and 5.43 together imply that if all the Riesz transforms are
bounded, then 1 < p_ < py < oo and p(-) € Ko(R"), so the maximal operator is
bounded on L) (R2) for any bounded set 2. In the weighted Lebesgue spaces the
analogous result is true, since if the Riesz transforms are bounded on L”(w), then
w € A,. (See [140].)

Problem A.18. If p(-) is unbounded, find BMO type estimates for singular
integrals on L),

Given Theorem 5.42, we cannot have that singular integrals are bounded on L7)
if p4 = oo. This corresponds to the fact that singular integrals are not bounded on
L°°. However, it is known that if f € L, then Tf € BM O, the space of functions
of bounded mean oscillation. This raises the question of whether comparable results
exist for f € LPO(R"), provided that L®(R") c L?O(R").
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Problem A.19. Given p(-) € P(R) such that 1 < p_ < p4 < 2 and p(-) is even
and non-decreasing on (0, 00), determine whether the Fourier transform satisfies
the generalized Hausdor(f-Young inequality || f gy < C|l fllp¢), where g(x) =

p'(1/x).
This is a restatement of Question 5.61 discussed in Sect. 5.6.10.

Problem A.20. Characterize the sets Q2 and exponents p(-) such that smooth
functions are dense in W10 (Q).

This and related questions were discussed in Sect. 6.5.5.

Problem A.21. Given a bounded set Q2 and p(-) € P(2), determine if it is
sufficient to assume that p(-) € Ko(2) for the Poincaré inequalities Theorems 6.19
and 6.21 to hold in W'-P0(Q).

This is a restatement of a question discussed in Sect. 6.5.6.

Problem A.22. Determine whether there exist 2 and a uniformly continuous
exponent p(-) € P(Q) such that the Sobolev embedding theorem (Theorem 6.29)
does not hold for WOLP(')(Q). Determine whether the embedding theorem is true if
LHy(S2) is replaced by a weaker decay condition.

This is a restatement of Question 6.46 discussed in Sect. 6.5.7.

Problem A.23. Determine whether the Gagliardo-Nirenberg inequalities on the
variable Sobolev spaces can be extended to the case p— = 1.

The Gagliardo-Nirenberg inequalities (6.13) discussed in Sect. 6.5.10 assume
that p_ > 1. The reason for this is that their proofs require the maximal operator
to be bounded on L?"). Since in the classical case they are true if p = 1, it is
reasonable to conjecture that they hold in the variable case when p_ = 1. There are
two possible approaches to this problem: one is to extend the modular inequality
due to Giannetti [141] so that it could be used to prove norm inequalities. The other
is to use extrapolation; this would require the assumption that p < oo and that the
maximal operator is bounded on L7001t would also require weighted Gagliardo-
Nirenberg inequalities: for results of this kind, see [345].

Problem A.24. Determine whether Riesz-Thorin interpolation (i.e., complex inter-
polation) can be extended to the scale of the variable Sobolev spaces.

Complex interpolation holds for the variable Lebesgue spaces: see Sect.3.7.8.
Moreover, this problem is true for the classical Sobolev spaces (see [25]); therefore,
it is reasonable to conjecture that it is also true for the variable Sobolev spaces.
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R" Euclidean space of dimension n, 11
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B, (x) open ball of radius r centered at x, 11
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Q measurable set of positive Lebesgue measure, 12

M set of Lebesgue measurable functions, 72
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sgn f sign of the (real) function f, 12
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S maximal function of the decreasing rearrangement of f, 126
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modular associated with the Young function ®, 3
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rearrangement invariant version of L”), 126

functions of bounded mean oscillation, 183

BMO functions with modulus o, 184

functions of vanishing mean oscillation, 184

VMO functions with modulus o, 184

classical sequence space with constant exponent p, 77

sequence space with variable exponent p(-), 77

Sobolev space on 2 with constant exponent p and k € N, 240
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strong maximal operator, 125
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operator norm of 7', 156

Weights and weight conditions

w(E)
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Aj constant, 142

A, constant, 142

Ao constant; constant in reverse Jensen inequality, 144

Ap, constant, 224

Ap() constant, 186
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