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Abstract. Following a strategy recently developed by Ivan Nourdin and Gio-
vanni Peccati, we provide a general technique to compare the tail of a given
random variable to that of a reference distribution, and apply it to all reference
distributions in the so-called Pearson class. This enables us to give concrete
conditions to ensure upper and/or lower bounds on the random variable’s
tail of various power or exponential types. The Nourdin-Peccati strategy an-
alyzes the relation between Stein’s method and the Malliavin calculus, and is
adapted to dealing with comparisons to the Gaussian law. By studying the
behavior of the solution to general Stein equations in detail, we show that the
strategy can be extended to comparisons to a wide class of laws, including all
Pearson distributions.
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1. Introduction

In this article, following a strategy recently developed by Ivan Nourdin and Gio-
vanni Peccati, we provide a general technique to compare the tail of a given random
variable to that of a reference distribution, and apply it to all reference distribu-
tions in the so-called Pearson class, which enables us to give concrete conditions
to ensure upper and/or lower bounds on the random variable’s tail of power or
exponential type. The strategy uses the relation between Stein’s method and the

Both authors’ research partially supported by NSF grant DMS-0907321.



56 R. Eden and F. Viens

Malliavin calculus. In this introduction, we detail the main ideas of this strategy,
including references to related works; we also summarize the results proved in this
article, and the methods used to prove them.

1.1. Stein’s method and the analysis of Nourdin and Peccati

Stein’s method is a set of procedures that is often used to measure distances
between distributions of random variables. The starting point is the so-called Stein
equation. To motivate it, recall the following result which is sometimes referred to

as Stein’s lemma. Suppose 𝑋 is a random variable. Then 𝑋
Law
= 𝑍 ∼ 𝒩 (0, 1) if

and only if

E[𝑓 ′(𝑋)−𝑋𝑓(𝑋)] = 0 (1.1)

for all continuous and piecewise differentiable functions 𝑓 such that E[∣𝑓 ′(𝑋)∣]
< ∞ (see, e.g., [4, 5, 21]). If the above expectation is non-zero but close to zero,
Stein’s method can give us a way to express how close the law of 𝑋 might be to
the standard normal law, in particular by using the concept of Stein equation. For
a given test function ℎ, this is the ordinary differential equation 𝑓 ′ (𝑥)− 𝑥𝑓 (𝑥) =
ℎ (𝑥) − E [ℎ (𝑍)] with continuous and piecewise differentiable solution 𝑓 . As we
will see in more detail and greater generality further below, if one is able to prove
boundedness properties of 𝑓 and 𝑓 ′ for a wide class of test functions ℎ, this can
help evaluate the distance between the law of 𝑍 and laws of random variables that
might be close to 𝑍, including methods for proving convergence in distribution.
This fundamental feature of Stein’s method is described in many works; see [4] for
a general introduction and review.

As a testament to the extraordinary versatility of Stein’s method, recently
Ivan Nourdin and Giovanni Peccati discovered a connection between Stein’s
method and the Malliavin calculus, with striking applications in a number of
problems in stochastic analysis. Motivated by Berry–Esséen-type theorems for
convergence of sequences of random variables in Wiener chaos, Nourdin and Pec-
cati’s first paper [8] on this connection considers an arbitrary square-integrable
Malliavin-differentiable random variable 𝑋 on a Wiener space, and associates the
random variable

𝐺 := ⟨𝐷𝑋 ;−𝐷𝐿−1𝑋⟩ (1.2)

where 𝐷 is the Malliavin derivative operator on the Wiener space, and 𝐿−1 is
the pseudo-inverse of the generator of the Ornstein–Uhlenbeck semigroup (see
Section 3.1 for precise definitions of these operators). One easily notes that if 𝑋
is standard normal, then 𝐺 ≡ 1 (Corollary 3.4 in [16]). Then by measuring the
distance between 𝐺 and 1 for an arbitrary 𝑋 , one can measure how close the law
of 𝑋 is to the normal law. The connection to Stein’s method comes from their
systematic use of the basic observation that E [𝐺𝑓 (𝑋)] = E [𝑋𝑓 ′ (𝑋)]. It leads
to the following simple and efficient strategy for measuring distances between the
laws of 𝑋 and 𝑍. To evaluate, e.g., E [ℎ(𝑋)] − E [ℎ(𝑍)] for test functions ℎ, one
can:
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1. write E [ℎ(𝑋)]−E [ℎ(𝑍)] using the solution of Stein’s equation, as E [𝑓 ′ (𝑋)]−
E [𝑋𝑓 (𝑋)];

2. use their observation to transform this expression into E [𝑓 ′ (𝑋) (1−𝐺)];
3. use the boundedness and decay properties of 𝑓 ′ (these are classically known

from Stein’s equation) to exploit the proximity of 𝐺 to 1.

As we said, this strategy of relating Stein’s method and the Malliavin calcu-
lus is particularly useful for analyzing problems in stochastic analysis. In addition
to their study of convergence in Wiener chaos in [8], which they followed up with
sharper results in [9], Nourdin and Peccati have implemented several other appli-
cations including: the study of cummulants on Wiener chaos [11], of fluctuations of
Hermitian random matrices [12], and, with other authors, other results about the
structure of inequalities and convergences on Wiener space, such as [3, 13, 14, 15].
In [16], it was pointed out that if 𝜌 denotes the density of 𝑋 , then the function

𝑔(𝑧) := 𝜌−1(𝑧)
∫ ∞

𝑧

𝑦𝜌(𝑦) 𝑑𝑦, (1.3)

which was originally defined by Stein in [21], can be represented as

𝑔 (𝑧) = E[𝐺∣𝑋 = 𝑧],

resulting in a convenient formula for the density 𝜌, which was then exploited to
provide new Gaussian lower bound results for certain stochastic models, in [16]
for Gaussian fields, and subsequently in [22] for polymer models in Gaussian and
non-Gaussian environments, in [18] for stochastic heat equations, in [3] for statis-
tical inference for long-memory stochastic processes, and multivariate extensions
of density formulas in [1].

1.2. Summary of our results

Our specific motivation is drawn from the results in [22] which make assump-
tions on how 𝐺 compares to 1 almost surely, and draw conclusions on how the
tail of 𝑋 , i.e., P [𝑋 > 𝑧], compares to the normal tail P [𝑍 > 𝑧]. By the above
observations, these types of almost-sure assumptions are equivalent to comparing
the deterministic function 𝑔 to the value 1. For instance, one result in [22] can
be summarized by saying that (under some additional regularity conditions) if
𝐺 ≥ 1 almost surely, i.e., if 𝑔 (𝑧) ≥ 1 everywhere, then for some constant 𝑐 and
large enough 𝑧, P [𝑋 > 𝑧] > 𝑐P [𝑍 > 𝑧]. This result, and all the ones mentioned
above, concentrate on comparing laws to the standard normal law, which is done
by comparing 𝐺 to the constant 1, as this constant is the “𝐺” for the standard
normal 𝑍.

In this paper, we find a framework which enables us to compare the law of
𝑋 to a wide range of laws. Instead of assuming that 𝑔 is comparable to 1, we
only assume that it is comparable to a polynomial of degree less than or equal to
2. In [21], Stein had originally noticed that the set of all distributions such that
their 𝑔 is such a polynomial, is precisely the so-called Pearson class of distribu-
tions. They encompass Gaussian, Gamma, and Beta distributions, as well as the
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inverse-Gamma, and a number of continuous distributions with only finitely many
moments, with prescribed power tail behavior. This means that one can hope to
give precise criteria based on 𝑔, or via Malliavin calculus based on 𝐺, to guar-
antee upper and/or lower bounds on the tail P [𝑋 > 𝑧], with various Gaussian,
exponential, or power-type behaviors. We achieve such results in this paper.

Specifically, our first set of results is in the following general framework. Let 𝑍
be a reference random variable supported on (𝑎, 𝑏) where −∞ ≤ 𝑎 < 𝑏 ≤ +∞, with
a density 𝜌∗ which is continuous on R and differentiable on (𝑎, 𝑏). The function 𝑔
corresponding to 𝜌∗ is given as in (1.3), and we denote it by 𝑔∗ (the subscripts ∗
indicate that these are relative to our reference r.v.):

𝑔∗ (𝑧) =

∫∞
𝑧

𝑦𝜌∗(𝑦) 𝑑𝑦
𝜌∗(𝑧)

1(𝑎,𝑏)(𝑧). (1.4)

We also use the notation

Φ∗ (𝑧) = P [𝑍 > 𝑧]

for our reference tail. Throughout this article, for notational convenience, we as-
sume that 𝑍 is centered (except when specifically stated otherwise in Section A.2
in the Appendix). Let 𝑋 be Malliavin-differentiable, supported on (𝑎, 𝑏), with its
𝐺 := ⟨𝐷𝑋 ;−𝐷𝐿−1𝑋⟩ as in (1.2).

∙ (Theorem 3.4) Under mild regularity and integrability conditions on 𝑍 and
𝑋 , if 𝐺 ≥ 𝑔∗ (𝑋) almost surely, then for all 𝑧 < 𝑏,

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

𝑄(𝑧)

∫ 𝑏

𝑧

(2𝑦 − 𝑧)P[𝑋 > 𝑦] 𝑑𝑦,

where

𝑄 (𝑧) := 𝑧2 − 𝑧𝑔′∗ (𝑧) + 𝑔∗ (𝑧) ; (1.5)

typically 𝑄 is of order 𝑧2 for large 𝑧.
∙ (Theorem 3.5) Under mild regularity and integrability conditions on 𝑍 and

𝑋 , if 𝐺 ≤ 𝑔∗ (𝑋) almost surely, then for some constant 𝑐 and all large enough
𝑧 < 𝑏,

P[𝑋 > 𝑧] ≤ 𝑐Φ∗(𝑧).
These results are generalizations of the work in [22], where only the standard

normal 𝑍 was considered. They can be rephrased by referring to 𝑔 as in (1.3),
which coincides with 𝑔 (𝑧) = E [𝐺∣𝑋 = 𝑧], rather than 𝐺; this can be useful to
apply the theorems in contexts where the definition of 𝑋 as a member of a Wiener
space is less explicit than the information one might have directly about 𝑔. We
have found, however, that the Malliavin-calculus interpretation makes for efficient
proofs of the above theorems.

The main application of these general theorems are to the Pearson class:
𝑍 such that its 𝑔∗ is of the form 𝑔∗ (𝑧) = 𝛼𝑧2 + 𝛽𝑧 + 𝛾 in the support of 𝑍.
Assume 𝑏 = +∞, i.e., the support of 𝑍 is (𝑎,+∞). Assume E

[∣𝑍∣3] < ∞ (which
is equivalent to 𝛼 < 1/2). Then the lower bound above can be made completely
explicit, as can the constant 𝑐 in the upper bound.
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∙ (Corollary 4.8) Under mild regularity and integrability conditions on 𝑋 [in-
cluding assuming that there exists 𝑐 > 2 such that 𝑔 (𝑧) ≤ 𝑧2/𝑐 for large 𝑧],
if 𝐺 ≥ 𝑔∗ (𝑋) almost surely, then for any 𝑐′ < 1

1+2(1−𝛼)(𝑐−2) and all 𝑧 large

enough,

P[𝑋 > 𝑧] ≥ 𝑐′Φ∗(𝑧).

∙ (Corollary 4.7) Under mild regularity and integrability conditions on 𝑋 , if
𝐺 ≤ 𝑔∗ (𝑋) almost surely, then for any 𝑐 > (1 − 𝛼)/(1 − 2𝛼), and all 𝑧 large
enough,

P[𝑋 > 𝑧] ≤ 𝑐Φ∗(𝑧).

The results above can be used conjointly with asymptotically sharp conclu-
sions when upper and lower bound assumptions on 𝐺 are true simultaneously. For
instance, we have the following, phrased using 𝑔’s instead of 𝐺’s.

∙ (Corollary 4.9, point 2) On the support (𝑎,+∞), let 𝑔∗ (𝑧) = 𝛼𝑧2 + 𝛽𝑧 + 𝛾
and let 𝑔∗ (𝑧) = �̄�𝑧2 + 𝛽𝑧 + 𝛾 with non-zero 𝛼 and �̄�. If for the Malliavin-
differentiable 𝑋 and its corresponding 𝑔, we have for all 𝑧 > 𝑎, 𝑔∗ (𝑧) ≤
𝑔 (𝑧) ≤ 𝑔∗ (𝑧), then there are constants 𝑐 and 𝑐 such that for large 𝑧,

𝑐𝑧−1−1/𝛼 ≤ P[𝑋 > 𝑧] ≤ 𝑐𝑧−1−1/�̄�.

∙ (see Corollary 4.10) A similar result holds when 𝛼 = �̄� = 0, in whichP[𝑋 > 𝑧]

compares to the Gamma-type tail 𝑧−1−𝛾/𝛽
2

exp (−𝑧/𝛽).

The strategy used to prove these results is an analytic one, following the
initial method of Nourdin and Peccati, this time using the Stein equation relative
to the function 𝑔∗ defined in (1.4) for a general reference r.v. 𝑍:

𝑔∗ (𝑥) 𝑓 ′ (𝑥) − 𝑥𝑓 (𝑥) = ℎ (𝑥)−E [ℎ (𝑍)] .

Our mathematical techniques are based on a careful analysis of the properties of
𝑔∗, its relation to the function 𝑄 defined in (1.5), and what consequences can be
derived for the solutions of Stein’s equation. The basic general theorems’ proofs use
a structure similar to that employed in [22]. The applications to the Pearson class
rely heavily on explicit computations tailored to this case, which are facilitated
via the identification of 𝑄 as a useful way to express these computations.

This article is structured as follows. Section 2 gives an overview of Stein’s
equations, and derives some fine properties of their solutions by referring to the
function 𝑄. These will be crucial in the proofs of our general upper and lower
bound results, which are presented in Section 3 after an overview of the tools of
Malliavin calculus which are needed in this article. Applications to comparisons
with Pearson distributions, with a particular emphasis on tail behavior, including
asymptotic results, are in Section 4. Section 5 is an Appendix containing the proofs
of some technical lemmas and some details on Pearson distributions.
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2. The Stein equation

2.1. Background and classical results

Characterization of the law of 𝒁. As before, let 𝑍 be centered with a differentiable
density on its support (𝑎, 𝑏), and let 𝑔∗ be defined as in (1.4). Nourdin and Peccati
(Proposition 6.4 in [8]) collected the following results concerning this equation. If
𝑓 is a function that is continuous and piecewise continuously differentiable, and if
E[∣𝑓 ′(𝑍)∣𝑔∗(𝑍)] <∞, Stein (Lemma 1, p. 59 in [21]) proved that

E[𝑔∗(𝑍)𝑓 ′(𝑍)− 𝑍𝑓(𝑍)] = 0

(compare this with (1.1) for the special case 𝑍 ∼ 𝒩 (0, 1)). Conversely, assume
that ∫ 𝑏

0

𝑧

𝑔∗(𝑧)
𝑑𝑧 =∞ and

∫ 0

𝑎

𝑧

𝑔∗(𝑧)
𝑑𝑧 = −∞. (2.1)

If a random variable 𝑋 has a density, and for any differentiable function 𝑓 such
that 𝑥 �→ ∣𝑔∗(𝑥)𝑓 ′(𝑥)∣ + ∣𝑥𝑓(𝑥)∣ is bounded,

E[𝑔∗(𝑋)𝑓 ′(𝑋)−𝑋𝑓(𝑋)] = 0 (2.2)

then 𝑋 and 𝑍 have the same law. In other words, under certain conditions, (2.2)
can be used to characterize the law of a centered random variable 𝑋 as being equal
to that of 𝑍.

Stein’s equation, general case; distances between distributions. If ℎ is a fixed
bounded piecewise continuous function such that E[∣ℎ(𝑍)∣] <∞, the correspond-
ing Stein equation for 𝑍 is the ordinary differential equation in 𝑓 defined by

ℎ(𝑥) −E[ℎ(𝑍)] = 𝑔∗(𝑥)𝑓 ′(𝑥)− 𝑥𝑓(𝑥). (2.3)

The utility of such an equation is apparent when we evaluate the functions at 𝑋
and take expectations:

E[ℎ(𝑋)]−E[ℎ(𝑍)] = E[𝑔∗(𝑋)𝑓 ′(𝑋)−𝑋𝑓(𝑋)]. (2.4)

The idea is that if the law of 𝑋 is “close” to the law of 𝑍, then the right side of
(2.4) would be close to 0. Conversely, if the test function ℎ can be chosen from
specific classes of functions so that the left side of (2.4) denotes a particular notion
of distance between 𝑋 and 𝑍, the closeness of the right-hand side of (2.4) to zero,
in some uniform sense in the 𝑓 ’s satisfying Stein’s equation (2.3) for all the ℎ’s
in that specific class of test functions, will imply that the laws of 𝑋 and 𝑍 are
close in the corresponding distance. For this purpose, it is typically crucial to
establish boundedness properties of 𝑓 and 𝑓 ′ which are uniform over the class of
test functions being considered.

For example, if ℋ ={ℎ : ∣∣ℎ∣∣𝐿 + ∣∣ℎ∣∣∞ ≤ 1} where ∣∣ ⋅ ∣∣𝐿 is the Lipschitz
seminorm, then the Fortet–Mourier distance 𝑑𝐹𝑀 (𝑋,𝑍) between 𝑋 and 𝑍 is de-
fined as

𝑑𝐹𝑀 (𝑋,𝑍) = sup
ℎ∈ℋ

∣E[ℎ(𝑋)]−E[ℎ(𝑍)]∣.
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This distance metrizes convergence in distribution, so by using properties of the
solution 𝑓 of the Stein equation (2.4) for ℎ ∈ ℋ, we can draw conclusions on the
convergence in distribution of a sequence {𝑋𝑛} to 𝑍. See [8] and [6] for details and
other notions of distance between random variables.

Solution of Stein’s equation. Stein (Lemma 4, p. 62 in [21]) proved that if (2.1)
is satisfied, then his equation (2.3) has a unique solution 𝑓 which is bounded and
continuous on (𝑎, 𝑏). If 𝑥 /∈ (𝑎, 𝑏), then

𝑓(𝑥) = −ℎ(𝑥)−E [ℎ(𝑍)]

𝑥
(2.5)

while if 𝑥 ∈ (𝑎, 𝑏),

𝑓(𝑥) =

∫ 𝑥

𝑎

(ℎ(𝑦)−E [ℎ(𝑍)])
𝑒
∫
𝑥
𝑦

𝑧 𝑑𝑧
𝑔∗(𝑧)

𝑔∗(𝑦)
𝑑𝑦. (2.6)

2.2. Properties of solutions of Stein’s equations

We assume throughout that 𝜌∗ is differentiable on (𝑎, 𝑏) and continuous on R (for
which it is necessary that 𝜌∗ be null onR−(𝑎, 𝑏) ). Consequently, 𝑔∗ is differentiable
and continuous on (𝑎, 𝑏). The next lemma records some elementary properties of
𝑔∗, such as its positivity and its behavior near 𝑎 and 𝑏. Those facts which are not
evident are established in the Appendix. All are useful in facilitating the proofs of
other lemmas presented in this section, which are key to our article.

Lemma 2.1. Let 𝑍 be centered and continuous, with a density 𝜌∗ that is continuous
on R and differentiable on its support (𝑎, 𝑏), with 𝑎 and 𝑏 possibly infinite.

1. 𝑔∗ (𝑥) > 0 if and only if 𝑥 ∈ (𝑎, 𝑏);
2. 𝑔∗ is differentiable on (𝑎, 𝑏) and [𝑔∗(𝑥)𝜌∗(𝑥)]′ = −𝑥𝜌∗(𝑥) therein;
3. lim

𝑥→𝑎 𝑔∗(𝑥)𝜌∗(𝑥) = lim
𝑥→𝑏

𝑔∗(𝑥)𝜌∗(𝑥) = 0.

A different expression for the solution 𝑓 of Stein’s equation (2.3) than the
one given in (2.5), (2.6), which will be more convenient for our purposes, such as
computing 𝑓 ′ in the support of 𝑍, was given by Schoutens [20] as stated in the
next lemma.

Lemma 2.2. For all 𝑥 ∈ (𝑎, 𝑏),

𝑓(𝑥) =
1

𝑔∗(𝑥)𝜌∗(𝑥)

∫ 𝑥

𝑎

(ℎ(𝑦)−E [ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦. (2.7)

If 𝑥 /∈ [𝑎, 𝑏], differentiating (2.5) gives

𝑓 ′(𝑥) =
−𝑥ℎ′(𝑥) + ℎ(𝑥)−E [ℎ(𝑍)]

𝑥2
(2.8)

while if 𝑥 ∈ (𝑎, 𝑏), differentiating (2.7) gives

𝑓 ′(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
ℎ(𝑥)−E[ℎ(𝑍)]

𝑔∗(𝑥)
. (2.9)
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The proof of this lemma (provided in the Appendix for completeness) also
gives us the next one.

Lemma 2.3. Under our assumption of differentiability on (𝑎, 𝑏) of 𝜌∗ and hence of
𝑔∗, Stein’s condition (2.1) on 𝑔∗ is satisfied.

In Stein’s equation (2.3), the test function ℎ = 1(−∞,𝑧] lends itself to useful
tail probability results since E[ℎ(𝑍)] = P[𝑍 ≤ 𝑧]. From this point on, we will
assume that ℎ = 1(−∞,𝑧] with fixed 𝑧 > 0, and that 𝑓 is the corresponding solution
of Stein’s equation (we could denote the parametric dependence of 𝑓 on 𝑧 by 𝑓𝑧,
but choose to omit the subscript to avoid overburdening the notation).

As opposed to the previous lemmas, the next two results, while still elemen-
tary in nature, appear to be new, and their proofs, which require some novel ideas
of possibly independent interest, have been kept in the main body of this paper,
rather than having them relegated to the Appendix. We begin with an analysis of
the sign of 𝑓 ′, which will be crucial to prove our main general theorems.

Lemma 2.4. Suppose 0 < 𝑧 < 𝑏. If 𝑥 ≤ 𝑧, then 𝑓 ′(𝑥) ≥ 0. If 𝑥 > 𝑧, then 𝑓 ′(𝑥) ≤ 0.

Proof. The result follows easily from (2.8) when 𝑥 /∈ [𝑎, 𝑏]: if 𝑥 < 𝑎, then 𝑓 ′(𝑥) =
(1−E[ℎ(𝑍)]) /𝑥2 ≥ 0, while if 𝑥 > 𝑏, then 𝑓 ′(𝑥) = −E[ℎ(𝑍)]/𝑥2 ≤ 0. So now we
can assume that 𝑥 ∈ (𝑎, 𝑏). We will use the expression for the derivative 𝑓 ′ given
in (2.9).

Suppose 𝑎 < 𝑥 ≤ 𝑧. Then ℎ(𝑥) = 1 and for any 𝑦 ≤ 𝑥, ℎ(𝑦) = 1 so

𝑓 ′(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

(1−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
1−E[ℎ(𝑍)]

𝑔∗(𝑥)

=
1−E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 + 𝑔∗(𝑥)𝜌∗(𝑥)
)
.

Clearly, 𝑓 ′(𝑥) ≥ 0 if 𝑥 ≥ 0. Now define

𝑛1(𝑥) :=

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 +
𝑔∗(𝑥)𝜌∗(𝑥)

𝑥
.

We will show that 𝑥𝑛1(𝑥) ≥ 0 when 𝑥 < 0. Since

𝑛′1(𝑥) = 𝜌∗(𝑥) +
𝑥[𝑔∗(𝑥)𝜌∗(𝑥)]′ − 𝑔∗(𝑥)𝜌∗(𝑥)

𝑥2

= 𝜌∗(𝑥) +
−𝑥2𝜌∗(𝑥) − 𝑔∗(𝑥)𝜌∗(𝑥)

𝑥2
= −𝑔∗(𝑥)𝜌∗(𝑥)

𝑥2
≤ 0

then 𝑛1 is nonincreasing on (𝑎, 0) which means that whenever 𝑎 < 𝑥 < 0, 𝑛1(𝑥) ≤
lim
𝑥→𝑎𝑛1(𝑥) = lim

𝑥→𝑎
𝑔∗(𝑥)𝑝(𝑥)

𝑥 = 0 since lim
𝑥→𝑎 𝑔∗(𝑥)𝜌∗(𝑥) = 0. Therefore, 𝑥𝑛1(𝑥) ≥ 0 for

𝑥 < 0. This completes the proof that 𝑓 ′(𝑥) ≥ 0 whenever 𝑥 ≤ 𝑧.
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Finally, suppose that 𝑧 < 𝑥 < 𝑏 so ℎ(𝑥) = 0. Since E[ℎ(𝑍)] = P[𝑍 ≤ 𝑧] =∫ 𝑧
𝑎 𝜌∗(𝑦) 𝑑𝑦,

𝑓 ′(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

ℎ(𝑦)𝜌∗(𝑦) 𝑑𝑦

− 𝑥E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − E[ℎ(𝑍)]

𝑔∗(𝑥)

=
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑧

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑥E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − E[ℎ(𝑍)]

𝑔∗(𝑥)

=
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
E[ℎ(𝑍)]− 𝑥E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − E[ℎ(𝑍)]

𝑔∗(𝑥)

=
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥− 𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑔∗(𝑥)𝜌∗(𝑥)
)

=
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)
⋅ 𝑥𝑛2(𝑥)

where

𝑛2(𝑥) := 1−
∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑔∗(𝑥)𝜌∗(𝑥)
𝑥

= 1− 𝑛1(𝑥).

It is enough to show that 𝑛2(𝑥) ≤ 0 since 𝑥 > 𝑧 ≥ 0. Since 𝑛′2(𝑥) = −𝑛′1(𝑥) ≥
0, then 𝑛2(𝑥) ≤ lim

𝑥→𝑏
𝑛2(𝑥) = 1 − lim

𝑥→𝑏
∫ 𝑥
𝑎
𝜌∗(𝑦) 𝑑𝑦 − lim

𝑥→𝑏
𝑔∗(𝑥)𝜌∗(𝑥)

𝑥 = 0 because

lim
𝑥→𝑏

𝑔∗(𝑥)𝜌∗(𝑥) = 0. Therefore, 𝑓 ′(𝑥) ≤ 0 if 𝑥 > 𝑧, finishing the proof of the

lemma. □

As alluded to in the previous subsection, of crucial importance in the use of
Stein’s method, is a quantitatively explicit boundedness result on the derivative
of the solution to Stein’s equation. We take this up in the next lemma.

Lemma 2.5. Recall the function

𝑄(𝑥) := 𝑥2 − 𝑥𝑔′∗(𝑥) + 𝑔∗(𝑥)

defined in (1.5), for all 𝑥 ∈ R except possibly at 𝑎 and 𝑏. Assume that 𝑔′′∗ (𝑥) < 2

for all 𝑥 and that
𝑥−𝑔′∗(𝑥)
𝑄(𝑥) tends to a finite limit as 𝑥 → 𝑎 and as 𝑥 → 𝑏. Suppose

0 < 𝑧 < 𝑏. Then 𝑓 ′(𝑥) is bounded. In particular, if 𝑎 < 𝑥 ≤ 𝑧,

0 ≤ 𝑓 ′(𝑥) ≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
<∞,

while if 𝑏 > 𝑥 > 𝑧,

−∞ < − 1

𝑄(𝑧)
≤ 𝑓 ′(𝑥) ≤ 0. (2.10)

To prove this lemma, we need two auxiliary results. The first one introduces
and studies the function 𝑄 which we already encountered in the introduction, and
which will help us state and prove our results in an efficient way. The second one
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shows the relation between 𝑄, 𝑔∗, and the tail Φ∗ of 𝑍, under conditions which
will be easily verified later on in the Pearson case.

Lemma 2.6.

1. If 𝑥 /∈ (𝑎, 𝑏), then 𝑄(𝑥) = 𝑥2 > 0.
2. If 𝑔∗ is twice differentiable in (𝑎, 𝑏) (for example, when 𝜌∗ is twice differen-

tiable), then 𝑄′(𝑥) = 𝑥 (2− 𝑔′′∗ (𝑥)).
3. If moreover 𝑔′′∗ (𝑥) < 2 in (𝑎, 𝑏), a reasonable assumption as we shall see

later when 𝑍 is a Pearson random variable, then min (𝑎,𝑏)𝑄 = 𝑄 (0) so that
𝑄(𝑥) ≥ 𝑄(0) = 𝑔∗(0) > 0.

Lemma 2.7. With the assumptions on 𝑔∗ and 𝑄 as in Lemma 2.5, then for all 𝑥,

max (𝑥− 𝑔′∗(𝑥), 0)
𝑄(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥) ≤ Φ∗(𝑥) (2.11)

and

max (𝑔′∗(𝑥)− 𝑥, 0)

𝑄(𝑥)
𝑔∗(𝑥)𝜌∗(𝑥) ≤ 1− Φ∗(𝑥). (2.12)

Moreover for 0 < 𝑥 < 𝑏, we have

Φ∗(𝑥) ≤ 1

𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥) (2.13)

while if 𝑎 < 𝑥 < 0, then

1− Φ∗(𝑥) ≤ 1

−𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥). (2.14)

Proof of Lemma 2.5. If 𝑥 < 𝑎 with 𝑎 > −∞, then 𝑓 ′(𝑥) = 1−E[ℎ(𝑍)]
𝑥2 ≤ 1−E[ℎ(𝑍)]

𝑎2 .

If 𝑥 > 𝑏 with 𝑏 < ∞, then 𝑓 ′(𝑥) = −E[ℎ(𝑍)]
𝑥2 ≥ −E[ℎ(𝑍)]

𝑏2 . So now we only need to
assume that 𝑥 ∈ (𝑎, 𝑏).

Suppose 𝑎 < 𝑥 ≤ 𝑧. Use 𝑓 ′(𝑥) ≥ 0 given in (2.9):

𝑓 ′(𝑥) =
1− E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 + 𝑔∗(𝑥)𝜌∗(𝑥)
)

≤ 𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(1− Φ∗(𝑥)) +

1

𝑔∗(𝑥)
.

When 𝑥 ≥ 0, we can rewrite the upper bound as:

𝑓 ′(𝑥) ≤ 𝑟(𝑥) +
1

𝑔∗(𝑥)

[
1− 𝑥Φ∗(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥)

]
where

𝑟(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
=

𝑥

𝑔∗(𝑥)[𝑔∗(𝑥)𝜌∗(𝑥)]
.
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We can bound 𝑟(𝑥) above since

𝑟′(𝑥) =
[𝑔∗(𝑥)]2𝜌∗(𝑥) − 𝑥 [𝑔∗(𝑥) (−𝑥𝜌∗(𝑥)) + 𝑔∗(𝑥)𝜌∗(𝑥)𝑔′∗(𝑥)]

[𝑔∗(𝑥)]4 [𝜌∗(𝑥)]
2

=
𝑔∗(𝑥) + 𝑥2 − 𝑥𝑔′∗(𝑥)

[𝑔∗(𝑥)]3𝜌∗(𝑥)
=

𝑄(𝑥)

[𝑔∗(𝑥)]3𝜌∗(𝑥)
> 0

so 𝑟(𝑥) ≤ 𝑟(𝑧). To bound [1− 𝑥Φ∗(𝑥)/ (𝑔∗(𝑥)𝜌∗(𝑥))] /𝑔∗(𝑥), use (2.11) of Lem-
ma 2.7:

1

𝑔∗(𝑥)

[
1− 𝑥Φ∗(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥)

]
≤ 1

𝑔∗(𝑥)

[
1− 𝑥

𝑔∗(𝑥)𝜌∗(𝑥)
⋅ 𝑥− 𝑔′∗(𝑥)

𝑄(𝑥)
𝑔∗(𝑥)𝜌∗(𝑥)

]
=

1

𝑔∗(𝑥)

[
1− 𝑥2 − 𝑥𝑔′∗(𝑥)

𝑄(𝑥)

]
=

1

𝑔∗(𝑥)
⋅ 𝑔∗(𝑥)
𝑄(𝑥)

=
1

𝑄(𝑥)
≤ 1

𝑄(0)
.

Therefore,

𝑓 ′(𝑥) ≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
.

When 𝑥 < 0, we use (2.12) of Lemma 2.7:

𝑓 ′(𝑥) ≤ 𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(1− Φ∗(𝑥)) +

1

𝑔∗(𝑥)

≤ 𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
⋅ 𝑔
′
∗(𝑥)− 𝑥

𝑄(𝑥)
𝑔∗(𝑥)𝜌∗(𝑥) +

1

𝑔∗(𝑥)

=
1

𝑔∗(𝑥)
⋅ 𝑥𝑔

′
∗(𝑥)− 𝑥2

𝑄(𝑥)
+

1

𝑔∗(𝑥)

=
1

𝑔∗(𝑥)

[
𝑥𝑔′∗(𝑥)− 𝑥2 +𝑄(𝑥)

𝑄(𝑥)

]
=

1

𝑄(𝑥)
≤ 1

𝑄(0)

≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
.

Now we prove (2.10) and so suppose 𝑥 > 𝑧 > 0. From the proof of Lemma 2.4,

𝑓 ′(𝑥) =
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥− 𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑔∗(𝑥)𝜌∗(𝑥)
)

=
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(𝑥Φ∗(𝑥) − 𝑔∗(𝑥)𝜌∗(𝑥)) .
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We conclude by again using (2.11) of Lemma 2.7, to get

−𝑓 ′(𝑥) ≤ 1

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(𝑔∗(𝑥)𝜌∗(𝑥)− 𝑥Φ∗(𝑥))

≤ 1

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑔∗(𝑥)𝜌∗(𝑥)− 𝑥 ⋅ 𝑥− 𝑔′∗(𝑥)

𝑄(𝑥)
⋅ 𝑔∗(𝑥)𝜌∗(𝑥)

)
=

1

𝑔∗(𝑥)

(
1− 𝑥2 − 𝑥𝑔′∗(𝑥)

𝑄(𝑥)

)
=

1

𝑔∗(𝑥)
⋅ 𝑔∗(𝑥)
𝑄(𝑥)

=
1

𝑄(𝑥)
≤ 1

𝑄(𝑧)
. □

Remark 2.8. Since 𝑧 > 0, and 𝑄 (𝑧) > 𝑄 (0), Lemma 2.5 implies the following
convenient single bound for any fixed 𝑧 > 0, uniform for all 𝑥 ∈ (𝑎, 𝑏):

∣𝑓 ′(𝑥)∣ ≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
.

Occasionally, this will be sufficient for some of our purposes. The more precise
bounds in Lemma 2.5 will also be needed, however.

3. Main results

In order to exploit the boundedness of 𝑓 ′, we adopt the technique pioneered by
Nourdin and Peccati, to rewrite expressions of the form E[𝑋𝑚(𝑋)] where 𝑚 is a
function, using the Malliavin calculus. For ease of reference, we include here the
requisite Malliavin calculus constructs. Full details can be found in [17]; also see
[22, Section 2] for an exhaustive summary.

3.1. Elements of Malliavin calculus

We assume our random variable 𝑋 is measurable with respect to an isonormal
Gaussian process 𝑊 , associated with its canonical separable Hilbert space 𝐻 .
For illustrative purposes, one may further assume, as we now do, that 𝑊 is the
standard white-noise corresponding to 𝐻 = 𝐿2 ([0, 1]), which is constructed using
a standard Brownian motion on [0, 1], also denoted by 𝑊 , endowed with its usual
probability space (Ω,ℱ ,P). This means that the white noise 𝑊 is defined by

𝑊 (𝑓) =
∫ 1

0 𝑓 (𝑠) 𝑑𝑊 (𝑠) for any 𝑓 ∈ 𝐻 , where the stochastic integral is the Wiener
integral of 𝑓 with respect to the Wiener process 𝑊 . If we denote 𝐼0 (𝑓) = 𝑓 for any
non-random constant 𝑓 , then for any integer 𝑛 ≥ 1 and any symmetric function
𝑓 ∈ 𝐻𝑛, we let

𝐼𝑛 (𝑓) := 𝑛!

∫ 1

0

∫ 𝑠1

0

⋅ ⋅ ⋅
∫ 𝑠𝑛−1

0

𝑓 (𝑠1, 𝑠2, . . . , 𝑠𝑛) 𝑑𝑊 (𝑠𝑛) ⋅ ⋅ ⋅ 𝑑𝑊 (𝑠2) 𝑑𝑊 (𝑠1) ,

where this integral is an iteration of 𝑛 Itô integrals. It is called the 𝑛th multiple
Wiener integral of 𝑓 w.r.t. 𝑊 , and the set ℋ𝑛 := {𝐼𝑛 (𝑓) : 𝑓 ∈ 𝐻𝑛} is the 𝑛th
Wiener chaos of 𝑊 . Note that 𝐼1 (𝑓) = 𝑊 (𝑓), and that E [𝐼𝑛 (𝑓)] = 0 for all
𝑛 ≥ 1. Again, see [17, Section 1.2] for the general definition of 𝐼𝑛 and ℋ𝑛 when 𝑊
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is a more general isonormal Gaussian process. The main representation theorem
of the analysis on Wiener space is that 𝐿2 (Ω,ℱ ,P) is the direct sum of all the
Wiener chaoses. In other words, 𝑋 ∈ 𝐿2 (Ω,ℱ ,P) if and only if there exists a

sequence of non-random symmetric functions 𝑓𝑛 ∈ 𝐻𝑛 with
∑∞
𝑛=0 ∥𝑓𝑛∥2𝐻𝑛 < ∞

such that 𝑋 =
∑∞
𝑛=0 𝐼𝑛 (𝑓𝑛). Note that E [𝑋 ] = 𝑓0. Moreover, the terms in this

so-called Wiener chaos decomposition of 𝑋 are orthogonal in 𝐿2 (Ω,ℱ ,P), and we

have the isometry property E
[
𝑋2

]
=

∑∞
𝑛=0 𝑛! ∥𝑓𝑛∥2𝐻𝑛 . We are now in a position

to define the Malliavin derivative 𝐷.

Definition 3.1. Let D1,2 be the subset of 𝐿2 (Ω,ℱ ,P) formed by those 𝑋 =∑∞
𝑛=0 𝐼𝑛 (𝑓𝑛) such that

∞∑
𝑛=1

𝑛 𝑛! ∥𝑓𝑛∥2𝐻𝑛 <∞.

The Malliavin derivative operator 𝐷 is defined from D1,2 to 𝐿2 (Ω× [0, 1]) by
𝐷𝑋 = 0 if 𝑋 = E𝑋 is non-random, and otherwise, for all 𝑟 ∈ [0, 1], by

𝐷𝑟𝑋 =

∞∑
𝑛=1

𝑛𝐼𝑛−1 (𝑓𝑛 (𝑟, ⋅)) .

This can be understood as a Fréchet derivative of 𝑋 with respect to the
Wiener process 𝑊 . If 𝑋 = 𝑊 (𝑓) then 𝐷𝑋 = 𝑓 . Of note is the chain-rule formula
𝐷 (𝐹 (𝑋)) = 𝐹 ′ (𝑋)𝐷𝑋 for any differentiable 𝐹 with bounded derivative, and any
𝑋 ∈ D1,2.

Definition 3.2. The generator of the Ornstein–Uhlenbeck semigroup 𝐿 is defined as
follows. Let 𝑋 =

∑∞
𝑛=1 𝐼𝑛 (𝑓𝑛) be a centered r.v. in 𝐿2 (Ω). If

∑∞
𝑛=1 𝑛

2𝑛! ∣𝑓𝑛∣2 <
∞, then we define a new random variable 𝐿𝑋 in 𝐿2 (Ω) by −𝐿𝑋 =

∑∞
𝑛=1 𝑛𝐼𝑛 (𝑓𝑛).

The pseudo-inverse of 𝐿 operating on centered r.v.’s in 𝐿2 (Ω) is defined by the
formula −𝐿−1𝑋 =

∑∞
𝑛=1

1
𝑛𝐼𝑛 (𝑓𝑛) . If 𝑋 is not centered, we define its image by 𝐿

and 𝐿−1 by applying them to 𝑋 −E𝑋 .

As explained in the introduction, for 𝑋 ∈ D1,2, the random variable 𝐺 :=〈
𝐷𝑋 ;−𝐷𝐿−1𝑋

〉
𝐻

plays a crucial role to understand how 𝑋 ’s law compares to
that of our reference random variable 𝑍. The next lemma is the key to combining
the solutions of Stein’s equations with the Malliavin calculus. Its use to prove
our main theorems relies heavily on the fact that these solutions have bounded
derivatives.

Lemma 3.3 (Theorem 3.1 in [8], Lemma 3.5 in [22]). Let 𝑋 ∈ D1,2 be a centered
random variable with a density, and 𝐺 = ⟨𝐷𝑋 ;−𝐷𝐿−1𝑋⟩𝐻 . For any determinis-
tic, continuous and piecewise differentiable function 𝑚 such that 𝑚′ is bounded,

E[𝑋𝑚(𝑋)] = E[𝑚′(𝑋)𝐺].
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3.2. General tail results

The main theoretical results of this paper compare the tails of any two random
variables 𝑋 and 𝑍, as we now state in the next two theorems. In terms of their
usage, 𝑍 represents a reference random variable in these theorems; this can be
seen from the fact that we have a better control in the theorems’ assumption on
the 𝑔∗ coming from 𝑍 than on the law of 𝑋 . Also, we will apply these theorems to
a Pearson random variable 𝑍 in the next section, while there will be no restriction
on 𝑋 ∈ D1,2 beyond the assumption of the theorems in the present section. We
will see that all assumptions on 𝑍 in this section are satisfied when 𝑍 is a Pearson
random variable.

Theorem 3.4. Let 𝑍 be a centered random variable with a twice differentiable den-
sity over its support (𝑎, 𝑏). Let 𝑔∗ and 𝑄 be defined as in (1.4) and (1.5), respec-

tively. Suppose that 𝑔′′∗ (𝑥) < 2, and
𝑥−𝑔′∗(𝑥)
𝑄(𝑥) has a finite limit as 𝑥→ 𝑎 and 𝑥→ 𝑏.

Let 𝑋 ∈ D1,2 be a centered random variable with a density, and whose support
(𝑎, 𝑏𝑋) contains (𝑎, 𝑏). Let 𝐺 be as in (1.2). If 𝐺 ≥ 𝑔∗ (𝑋) a.s., then for every
𝑧 ∈ (0, 𝑏),

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

𝑄(𝑧)

∫ 𝑏

𝑧

(2𝑥− 𝑧)P[𝑋 > 𝑥] 𝑑𝑥.

Proof. Taking expectations in Stein’s equation (2.3), i.e., referring to (2.4), we
have

P[𝑋 ≤ 𝑧]−P[𝑍 ≤ 𝑧] = E[𝑔∗(𝑋)𝑓 ′(𝑋)−𝑋𝑓(𝑋)]

which is equivalent to

P[𝑋 > 𝑧]− Φ∗(𝑧) = E[𝑋𝑓(𝑋)− 𝑔∗(𝑋)𝑓 ′(𝑋)].

Since 𝑔∗(𝑋) ≥ 0 almost surely and 𝑓 ′(𝑥) ≤ 0 if 𝑥 > 𝑧,

P[𝑋 > 𝑧]− Φ∗(𝑧)

= E[1𝑋≤𝑧𝑋𝑓(𝑋)] +E[1𝑋>𝑧𝑋𝑓(𝑋)]−E[1𝑋≤𝑧𝑔∗(𝑋)𝑓 ′(𝑋)]

−E[1𝑋>𝑧𝑔∗(𝑋)𝑓 ′(𝑋)]

≥ E[1𝑋≤𝑧𝑋𝑓(𝑋)] +E[1𝑋>𝑧𝑋𝑓(𝑋)]−E[1𝑋≤𝑧𝑔∗(𝑋)𝑓 ′(𝑋)].

Let 𝑚(𝑥) = [𝑓(𝑎)− 𝑓(𝑧)]1𝑥≤𝑎+ [𝑓(𝑥)− 𝑓(𝑧)]1𝑎<𝑥≤𝑧 where the first term is 0
if 𝑎 = −∞. Note that 𝑚 is continuous and piecewise differentiable. The derivative
is 𝑚′(𝑥) = 𝑓 ′(𝑥)1𝑎<𝑥≤𝑧 except at 𝑥 = 𝑎 and 𝑥 = 𝑧. We saw in Lemma 2.5 that 𝑓 ′

is bounded. Therefore, since 𝑋 ∈ D1,2, we can use Lemma 3.3 to conclude that

[𝑓(𝑎)− 𝑓(𝑧)]E[1𝑋≤𝑎𝑋 ] +E[1𝑎<𝑋≤𝑧𝑋(𝑓(𝑋)− 𝑓(𝑧))] = E[1𝑎<𝑋≤𝑧𝑓 ′(𝑋)𝐺]

from which we derive

E[1𝑋≤𝑧𝑋𝑓(𝑋)]− 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] = E[1𝑋≤𝑧𝑓 ′(𝑋)𝐺].
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Therefore,

P[𝑋 > 𝑧]− Φ∗(𝑧)

≥ {E[1𝑋≤𝑧𝑓 ′(𝑋)𝐺] + 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ]}+E[1𝑋>𝑧𝑋𝑓(𝑋)]

−E[1𝑋≤𝑧𝑔∗(𝑋)𝑓 ′(𝑋)]

= E[1𝑋≤𝑧𝑓 ′(𝑋)(𝐺− 𝑔∗(𝑋))] + 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] +E[1𝑋>𝑧𝑋𝑓(𝑋)]

≥ 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] +E[1𝑋>𝑧𝑋𝑓(𝑋)]

= 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] +E[1𝑋>𝑧𝑋𝑓(𝑋)]− 𝑓(𝑧)E[1𝑋>𝑧𝑋 ] + 𝑓(𝑧)E[1𝑋>𝑧𝑋 ]

= 𝑓(𝑧)E[𝑋 ] +E[1𝑋>𝑧𝑋(𝑓(𝑋)− 𝑓(𝑧))]

= E[1𝑋>𝑧𝑋(𝑓(𝑋)− 𝑓(𝑧))] .

Write 𝑓(𝑋)− 𝑓(𝑧) = 𝑓 ′(𝜉)(𝑋− 𝑧) for some random 𝜉 > 𝑧 (𝑋 > 𝜉 also). Note
that 𝑓 ′(𝜉) < 0 since 𝜉 > 𝑧. We have P[𝑋 > 𝑧]− Φ∗(𝑧) ≥ E[1𝑋>𝑧𝑓

′(𝜉)𝑋(𝑋 − 𝑧)].
From Lemma 2.5,

𝑓 ′(𝜉) ≥ − 1

𝑄(𝑧)

since from Lemma 2.6, 𝑄 is nondecreasing on (0, 𝑏).
If we define 𝑆(𝑧) := P[𝑋 > 𝑧], it is elementary to show (see [22]) that

E[1𝑋>𝑧𝑋(𝑋 − 𝑧)] ≤
∫ 𝑏

𝑧

(2𝑥− 𝑧)𝑆(𝑥) 𝑑𝑥.

From P[𝑋 > 𝑧]− Φ∗(𝑧) ≥ E[1𝑋>𝑧𝑓
′(𝜉)𝑋(𝑋 − 𝑧)],

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

𝑄(𝑧)

∫ 𝑏

𝑧

(2𝑥− 𝑧)𝑆(𝑥) 𝑑𝑥

which is the statement of the theorem.
Lastly the reader will check that the assumption that the supports of 𝑍 and

𝑋 have the same left-endpoint is not a restriction: stated briefly, this assumption
is implied by the assumption 𝐺 ≥ 𝑔∗ (𝑋) a.s., because 𝐺 = 𝑔𝑋 (𝑋) and 𝑔∗ (resp.
𝑔𝑋) has the same support as 𝑍 (resp. 𝑋). □

To obtain a similar upper bound result, we will consider only asymptotic
statements for 𝑧 near 𝑏, and we will need an assumption about the relative growth
rate of 𝑔∗ and 𝑄 near 𝑏. We will see in the next section that this assumption is
satisfied for all members of the Pearson class with four moments, although that
section also contains a modification of the proof below which is more efficient when
applied to the Pearson class.

Theorem 3.5. Assume all the conditions of Theorem 3.4 hold, except for the support
of 𝑋, which we now assume is contained in (𝑎, 𝑏). Assume moreover that there
exists 𝑐 < 1 such that lim sup𝑧→𝑏 𝑔∗ (𝑧) /𝑄 (𝑧) < 𝑐. If 𝐺 ≤ 𝑔∗ (𝑋) a.s., then there
exists 𝑧0 such that 𝑏 > 𝑧 > 𝑧0 implies

P[𝑋 > 𝑧] ≤ 1

1− 𝑐
Φ∗(𝑧).
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Proof. From Stein’s equation (2.3), and its application (2.4),

P[𝑋 > 𝑧]− Φ∗(𝑧) = E[𝑋𝑓(𝑋)− 𝑔∗(𝑋)𝑓 ′(𝑋)].

Since 𝑋 ∈ D1,2, in Lemma 3.3, we can let 𝑚 = 𝑓 since 𝑓 is continuous,
differentiable everywhere except at 𝑥 = 𝑎 and 𝑥 = 𝑏, and from Lemma 2.5 has a
bounded derivative. Therefore,

P[𝑋 > 𝑧]− Φ∗(𝑧)

= E[𝐺𝑓 ′(𝑋)]−E[𝑔∗(𝑋)𝑓 ′(𝑋)]

= E[𝑓 ′(𝑋) (𝐺− 𝑔∗(𝑋))]

= E[1𝑋≤𝑧𝑓 ′(𝑋) (𝐺− 𝑔∗(𝑋))] +E[1𝑋>𝑧𝑓
′(𝑋) (𝐺− 𝑔∗(𝑋))]

≤ E[1𝑋>𝑧𝑓
′(𝑋) (𝐺− 𝑔∗(𝑋))]

= E[1𝑋>𝑧𝑓
′(𝑋)E [𝐺∣𝑋 ]]−E[1𝑋>𝑧𝑓

′(𝑋)𝑔∗(𝑋)]

where the last inequality follows from the assumption 𝐺 − 𝑔∗(𝑋) ≤ 0 a.s. and if
𝑋 ≤ 𝑧, then 𝑓 ′(𝑋) ≥ 0. By Proposition 3.9 in [8], E [𝐺∣𝑋 ] ≥ 0 a.s. Since 𝑓 ′(𝑋) ≤ 0
if 𝑋 > 𝑧, then by the last statement in Lemma 2.5, and the assumption on the
asymptotic behavior of 𝑔∗/𝑄, for 𝑧 large enough,

P[𝑋 > 𝑧]− Φ∗(𝑧) ≤ −E[1𝑋>𝑧𝑓
′(𝑋)𝑔∗(𝑋)]

≤ E

[
1𝑋>𝑧

𝑔∗(𝑋)

𝑄 (𝑋)

]
≤ 𝑐P[𝑋 > 𝑧].

The theorem immediately follows. □

4. Pearson distributions

By definition, the law of a random variable 𝑍 is a member of the Pearson fam-
ily of distributions if 𝑍’s density 𝜌∗ is characterized by the differential equa-
tion 𝜌′∗(𝑧)/𝜌∗(𝑧) = (𝑎1𝑧 + 𝑎0)/(𝛼𝑧

2 + 𝛽𝑧 + 𝛾) for 𝑧 in its support (𝑎, 𝑏), where
−∞ ≤ 𝑎 < 𝑏 ≤ ∞. If furthermore E[𝑍] = 0, Stein (Theorem 1, p. 65 in [21])
proved that 𝑔∗ has a simple form: in fact, it is quadratic in its support. Specifi-
cally, 𝑔∗(𝑧) = 𝛼𝑧2 + 𝛽𝑧 + 𝛾 for all 𝑧 ∈ (𝑎, 𝑏) if and only if

𝜌′∗(𝑧)
𝜌∗(𝑧)

= − (2𝛼+ 1)𝑧 + 𝛽

𝛼𝑧2 + 𝛽𝑧 + 𝛾
. (4.1)

The Appendix contains a description of various cases of Pearson distributions,
which are characterized by their first four moments, if they exist. In this section,
we will operate under the following.

Assumption P1. Our Pearson random variable satisfies E
[
𝑍2

]
<∞ and 𝑧3𝜌∗(𝑧)→

0 as 𝑧 → 𝑎 and 𝑧 → 𝑏.
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Remark 4.1. This assumption holds as soon as E
[
𝑍3

]
<∞, which, by Lemma A.2

in the Appendix, holds if and only if 𝛼 < 1/2. The existence of a second moment,
by the same lemma, holds if and only if 𝛼 < 1.

4.1. General comparisons to Pearson tails

In preparation to stating corollaries to our main theorems, applicable to all Pearson
𝑍’s simultaneously, we begin by investigating the specific properties of 𝑔∗ and 𝑄 in
the Pearson case. Because 𝑔∗(𝑧) =

(
𝛼𝑧2 + 𝛽𝑧 + 𝛾

)
1(𝑎,𝑏)(𝑧), we have the following

observations:

∙ Since 𝑔′′∗ (𝑧) = 2𝛼 on (𝑎, 𝑏), and 𝛼 < 1 according to Remark 4.1, it follows
that 𝑔′′∗ (𝑧) < 2.

∙ If 𝑧 ∈ (𝑎, 𝑏), then

𝑄(𝑧) = 𝑧2 − 𝑧𝑔′∗(𝑧) + 𝑔∗(𝑧) = (1− 𝛼) 𝑧2 + 𝛾

and so 𝑄(𝑧) ≥ 𝑄(0) = 𝛾 = 𝑔∗ (0) > 0, where the last inequality is because
𝑔∗ is strictly positive on the interior of its support, which always contains 0.
This is a quantitative confirmation of an observation made earlier about the
positivity of 𝑄 in the general case.

∙ As 𝑧 → 𝑎 and 𝑧 → 𝑏,

𝑧 − 𝑔′∗(𝑧)
𝑄(𝑧)

=
(1− 2𝛼) 𝑧 − 𝛽

(1− 𝛼) 𝑧2 + 𝛾

approaches a finite number in case 𝑎 and 𝑏 are finite. As ∣𝑧∣ → ∞, the above
ratio approaches 0.

∙ We have E
[
𝑍2

]
= 𝛾

1−𝛼 . Again, this is consistent with 𝛾 > 0 and 𝛼 < 1.

Remark 4.2. The above observations collectively mean that all the assumptions
of Theorem 3.4 are satisfied for our Pearson random variable 𝑍, so we can state
the following.

Proposition 4.3. Let 𝑍 be a centered Pearson random variable satisfying Assump-
tion P1. Let 𝑔∗ be defined as in (1.4). Let 𝑋 ∈ D1,2 be a centered random variable
with a density, and whose support (𝑎, 𝑏𝑋) contains (𝑎, 𝑏). Suppose that 𝐺 ≥ 𝑔∗ (𝑋)
a.s. Then for every 𝑧 ∈ (0, 𝑏),

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

(1− 𝛼) 𝑧2 + 𝛾

∫ 𝑏

𝑧

(2𝑥− 𝑧)P[𝑋 > 𝑥] 𝑑𝑥. (4.2)

We have a quantitatively precise statement on the relation between Var[𝑋 ]
and the Pearson parameters.

Proposition 4.4.

1. Assume that the conditions of Proposition 4.3 hold, particularly that 𝐺 ≥
𝑔∗(𝑋); assume the support (𝑎, 𝑏) of 𝑔∗ coincides with the support of 𝑋. Then

Var[𝑋 ] ≥ 𝛾

1− 𝛼
= Var[𝑍].
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2. If we assume instead that 𝐺 ≤ 𝑔∗(𝑋) a.s., then the inequality above is re-
versed.

Proof. Since 𝑋 has a density, we can apply Lemma 3.3 and let 𝑚(𝑥) = 𝑥.

Var[𝑋 ] = E[𝑋𝑚(𝑋)] = E[𝐺] ≥ E[𝑔∗(𝑋)]

= E[1𝑎<𝑋<𝑏
(
𝛼𝑋2 + 𝛽𝑋 + 𝛾

)
] = 𝛼E[𝑋2] + 𝛽E[𝑋 ] + 𝛾

(1− 𝛼)Var[𝑋 ] ≥ 𝛽 ⋅ 0 + 𝛾

This proves point 1. Point 2 is done identically. □

In order to formulate results that are specifically tailored to tail estimates,
we now make the following

Assumption P2. The right-hand endpoint of our Pearson distribution’s support is
𝑏 = +∞
Remark 4.5. Assumption P2 leaves out Case 3 in the Appendix in our list of
Pearson random variables, i.e., the case of Beta distributions. Therefore, inspecting
the parameter values in the other 4 Pearson cases, we see that Assumption P2
implies 𝛼 ≥ 0, and also implies that if 𝛼 = 0, then 𝛽 ≥ 0.

Remark 4.6. In most of the results to follow, we will assume moreover that 𝛼 < 1
2 .

By Lemma A.2, this is equivalent to requiring E
[
∣𝑍∣3

]
< ∞, and more generally

from the lemma, our Pearson distribution has moment of order 𝑚 if and only if
𝛼 < 1/(𝑚− 1). As mentioned, 𝛼 < 1

2 thus implies Assumption P1. Consequently
Theorem 3.5 implies the following.

Corollary 4.7. Let 𝑍 be a centered Pearson random variable satisfying Assumption
P2 (support of 𝑍 is (𝑎,+∞)). Assume 𝛼 < 1/2. Let 𝑔∗ be defined as in (1.4). Let
𝑋 ∈ D1,2 be a centered random variable with a density and support contained in
(𝑎,+∞). If 𝐺 ≤ 𝑔∗ (𝑋) a.s., for any 𝐾 > 1−𝛼

1−2𝛼 , there exists 𝑧0 such that if 𝑧 > 𝑧0,
then

P[𝑋 > 𝑧] ≤ 𝐾 Φ∗(𝑧).

Proof. Since
𝑔∗ (𝑧)
𝑄 (𝑧)

=
𝛼𝑧2 + 𝛽𝑧 + 𝛾

(1− 𝛼) 𝑧2 + 𝛾

then lim sup𝑧→∞ 𝑔∗ (𝑧) /𝑄 (𝑧) = 𝛼/ (1− 𝛼) < 1 if and only if 𝛼 < 1
2 . Therefore,

Theorem 3.5 applies in this case, and with the 𝑐 defined in that theorem, we
may take here any 𝑐 > 𝛼/ (1− 𝛼), so that we may take any 𝐾 = 1/(1 − 𝑐) as
announced. □

The drawback of our general lower bound theorems so far is that their state-
ments are somewhat implicit. Our next effort is to fix this problem in the specific
case of a Pearson 𝑍: we strengthen Proposition 4.3 so that the tail P [𝑋 > 𝑧] only
appears in the left-hand side of the lower bound inequality, making the bound
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explicit. The cost for this is an additional regularity and integrability assumption,
whose scope we also discuss.

Corollary 4.8. Assume that the conditions of Proposition 4.3 hold; in particular,
assume 𝑋 ∈ D1,2 and 𝐺 ≥ 𝛼𝑋2 + 𝛽𝑋 + 𝛾 a.s. In addition, assume there exists
a constant 𝑐 > 2 such that P [𝑋 > 𝑧] ≤ 𝑧𝜌 (𝑧) /𝑐 holds for large 𝑧 (where 𝜌 is the
density of 𝑋). Then for large 𝑧,

P[𝑋 > 𝑧] ≥ (𝑐− 2)𝑄(𝑧)

(𝑐− 2)𝑄(𝑧) + 2𝑧2
Φ∗(𝑧) ≈ (𝑐− 2)− 𝛼 (𝑐− 2)

𝑐− 𝛼 (𝑐− 2)
Φ∗(𝑧).

The existence of such a 𝑐 > 2 above is guaranteed if we assume 𝑔(𝑧) ≤
𝑧2/𝑐 for large 𝑧, where 𝑔 (𝑥) := E [𝐺∣𝑋 = 𝑥] (or equivalently, 𝑔 defined in (1.3)).
Moreover, this holds automatically if 𝐺 ≤ 𝑔∗ (𝑋) a.s. for some quadratic function
𝑔∗ (𝑥) = �̄�𝑥2 + 𝛽𝑥+ 𝛾 with �̄� < 1/2.

Proof. Since 𝑧 > 0, we can replace 2𝑥− 𝑧 by 2𝑥 in the integral of (4.2).

𝐹 (𝑧) :=

∫ ∞

𝑧

𝑥𝑆(𝑥) 𝑑𝑥 ≤ 1

𝑐

∫ ∞

𝑧

𝑥2∣𝑆′(𝑥)∣ 𝑑𝑥

=
1

𝑐

(
𝑧2𝑆(𝑧)− lim

𝑥→∞𝑥2𝑆(𝑥) + 2

∫ ∞

𝑧

𝑥𝑆(𝑥) 𝑑𝑥

)
≤ 1

𝑐

(
𝑧2𝑆(𝑧) + 2𝐹 (𝑧)

)
𝐹 (𝑧) ≤ 1

𝑐− 2
𝑧2𝑆(𝑧) .

Therefore

𝑆(𝑧) = P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 2

𝑄(𝑧)
𝐹 (𝑧) ≥ Φ∗(𝑧)− 2𝑧2

(𝑐− 2)𝑄(𝑧)
𝑆(𝑧)

𝑆(𝑧)

[
1 +

2𝑧2

(𝑐− 2)𝑄(𝑧)

]
≥ Φ∗(𝑧)

𝑆(𝑧) ≥ (𝑐− 2)𝑄(𝑧)

(𝑐− 2)𝑄(𝑧) + 2𝑧2
Φ∗(𝑧)

≈ (𝑐− 2) (1− 𝛼)

(𝑐− 2) (1 − 𝛼) + 2
Φ∗(𝑧).

This proves the inequality of the corollary.
To prove the second statement, recall that Nourdin and Viens (Theorem 3.1

in [16]) showed that

𝑔(𝑋) =

∫ ∞

𝑋

𝑥𝜌(𝑥) 𝑑𝑥

𝜌(𝑋)

𝑃 -a.s. They also noted that the support of 𝜌 is an interval since 𝑋 ∈ D1,2. There-
fore,

𝑧

𝑐
𝜌(𝑧) ≥ 1

𝑧
𝑔(𝑧)𝜌(𝑧) =

∫ ∞

𝑧

𝑥

𝑧
𝜌(𝑥) 𝑑𝑥 ≥

∫ ∞

𝑧

𝜌(𝑥) 𝑑𝑥

a.s. This finishes the proof of the corollary. □
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4.2. Comparisons in specific scales

In this section and the next, we will always assume 𝑋 ∈ D1,2 is a centered random
variable with a density and with support (𝑎,∞), and we will continue to denote by
𝑔 the function defined by 𝑔 (𝑥) := E [𝐺∣𝑋 = 𝑥], or equivalently, defined in (1.3).

We can exploit the specific asymptotic behavior of the tail of the various
Pearson distributions, via Lemma A.1 in the Appendix, to draw sharp conclusions
about 𝑋 ’s tail. For instance, if 𝑔 is comparable to a Pearson distribution’s 𝑔∗ with
𝛼 ∕= 0, we get a power decay for the tail (Corollary 4.9 below), while if 𝛼 is zero and
𝛽 is not, we get comparisons to exponential-type or gamma-type tails (Corollary
4.10 below). In both cases, when upper and lower bounds on 𝐺 occur with the
same 𝛼 on both sides, we get sharp asymptotics for 𝑋 ’s tail, up to multiplicative
constants.

Corollary 4.9. Let 𝑔∗ (𝑥) := 𝛼𝑥2+𝛽𝑥+𝛾 and 𝑔∗ (𝑥) := �̄�𝑥2+𝛽𝑥+𝛾 be two functions
corresponding to Pearson distributions (e.g., via (1.4)) where 0 < 𝛼 ≤ �̄� < 1/2.

1. If 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥 ≥ 𝑎, then there is a constant 𝑐𝑢
(
�̄�, 𝛽, 𝛾

)
> 0 such

that for large 𝑧,

P[𝑋 > 𝑧] ≤ 𝑐𝑢
𝑧1+1/�̄�

.

2. If 𝑔∗ (𝑥) ≤ 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥 ≥ 𝑎, then there are constants 𝑐𝑢
(
�̄�, 𝛽, 𝛾

)
>

0 and 𝑐𝑙 (�̄�, 𝛼, 𝛽, 𝛾) > 0 such that for large 𝑧,

𝑐𝑙
𝑧1+1/𝛼

≤ P[𝑋 > 𝑧] ≤ 𝑐𝑢
𝑧1+1/�̄�

.

Proof. Let Φ∗𝛼,𝛽,𝛾 and Φ∗�̄�,𝛽,𝛾 be the probability tails of the Pearson distributions
corresponding to 𝑔∗ and 𝑔∗ respectively. We can prove Point 1 by using Corollary
4.7 and Lemma A.1. There is a constant 𝑘𝑢

(
�̄�, 𝛽, 𝛾

)
> 0 such that, for any 𝐾 >

1−�̄�
1−2�̄� , for large 𝑧,

P[𝑋 > 𝑧] ≤ 𝐾Φ∗�̄�,𝛽,𝛾 (𝑧) ≤ 𝐾 ⋅ 𝑘𝑢
𝑧1+1/�̄�

.

The upper bound in Point 2 follows directly from Point 1 because of the condition
𝑔 (𝑥) ≤ 𝑔∗ (𝑥). This same condition also allows us to give a lower bound for P[𝑋 >
𝑧]. Fix any 𝑐 ∈ (2, 1/�̄�). By Corollary 4.8 and Lemma A.1, there is a constant
𝑘𝑙 (𝛼, 𝛽, 𝛾) > 0 such that for large 𝑧,

P[𝑋 > 𝑧] ≥ (𝑐− 2)− 𝛼 (𝑐− 2)

𝑐− 𝛼 (𝑐− 2)
Φ∗𝛼,𝛽,𝛾 (𝑧) ≥ (𝑐− 2)− 𝛼 (𝑐− 2)

𝑐− 𝛼 (𝑐− 2)
⋅ 𝑘𝑙
𝑧1+1/𝛼

. □

Corollary 4.10. Let 𝑔∗ (𝑥) := (𝛽𝑥+ 𝛾)+ and 𝑔∗ (𝑥) =
(
𝛽𝑥+ 𝛾

)
+

be two functions

corresponding to Pearson distributions (e.g., via (1.4)) where 𝛽, 𝛽, 𝛾, 𝛾 > 0 and
𝑎 = −𝛾/𝛽.

1. If 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥, then there is a constant 𝑐𝑢
(
𝛽, 𝛾

)
> 0 such that for

large 𝑧,

P[𝑋 > 𝑧] ≤ 𝑐𝑢𝑧
−1+𝛾/𝛽2

𝑒−𝑧/𝛽.
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2. If 𝑔∗ (𝑥) ≤ 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥, then there are constants 𝑐𝑢
(
𝛽, 𝛾

)
>

𝑐𝑙 (𝛽, 𝛾) > 0 such that for large 𝑧,

𝑐𝑙 𝑧
−1+𝛾/𝛽2

𝑒−𝑧/𝛽 ≤ P[𝑋 > 𝑧] ≤ 𝑐𝑢𝑧
−1+𝛾/𝛽2

𝑒−𝑧/𝛽 .

Proof. Let Φ∗𝛽,𝛾 and Φ∗𝛽,𝛾 be as in the proof of the previous corollary, noting
here that 𝛼 = �̄� = 0. The proof of Point 1 is similar to the proof of Point 1 in
Corollary 4.9. The upper bound in Point 2 follows from Point 1 above and Point
1 of Corollary 4.9. For the lower bound of Point 2, if we fix any 𝑐 > 2, then
by Corollary 4.8 and Lemma A.1, there is a constant 𝑘𝑙 (𝛽, 𝛾) > 0 such that for
large 𝑧,

P[𝑋 > 𝑧] ≥ 𝑐− 2

𝑐
Φ∗𝛽,𝛾 ≥ 𝑐− 2

𝑐
𝑘𝑙 𝑧

−1+𝛾/𝛽2

𝑒−𝑧/𝛽. □

Remark 4.11. The above corollary improves on a recently published estimate: in
[16, Theorem 4.1], it was proved that if the law of 𝑋 ∈ D1,2 has a density and
if 𝑔(𝑋) ≤ 𝛽𝑋 + 𝛾 a.s. (with 𝛽 ≥ 0 and 𝛾 > 0), then for all 𝑧 > 0, P[𝑋 > 𝑧] ≤
exp

(
− 𝑧2

2𝛽𝑧+2𝛾

)
. Using 𝑔∗ (𝑧) = (𝛽𝑧 + 𝛾)+, Point 1 in Corollary 4.10 gives us an

asymptotically better upper bound, with exponential rate 𝑒−𝑧/𝛽 instead of 𝑒−𝑧/2𝛽 .
Our rate is sharp, since our upper bound has the same exponential asymptotics
as the corresponding Pearson tail, which is a Gamma tail.

4.3. Asymptotic results

Point 2 of Corollary 4.10 shows the precise behavior, up to a possibly different
leading power term which is negligible compared to the exponential, of any ran-
dom variable in D1,2 whose function 𝑔 is equal to a Pearson function up to some
uncertainty on the 𝛾 value. More generally, one can ask about tail asymptotics for
𝑋 when 𝑔 is asymptotically linear, or even asymptotically quadratic. Asymptotic
assumptions on 𝑔 are not as strong as assuming bounds on 𝑔 which are uniform
in the support of 𝑋 , and one cannot expect them to imply statements that are
as strong as in the previous subsection. We now see that in order to prove tail
asymptotics under asymptotic assumptions, it seems preferable to revert to the
techniques developed in [22]. We first propose upper bound results for tail asymp-
totics, which follow from Point 1 of Corollary 4.9 and Point 1 of Corollary 4.10.
Then for full asymptotics, Point 2 of each of these corollaries do not seem to be
sufficient, while [22, Corollary 4.5] can be applied immediately. Recall that in what
follows 𝑋 ∈ D1,2 is centered, has a density, and support (𝑎,∞), and 𝑔 is defined
by 𝑔 (𝑥) := E [𝐺∣𝑋 = 𝑥], or equivalently, by (1.3).

Proposition 4.12.

1. Suppose lim sup𝑧→+∞ 𝑔 (𝑧) /𝑧2 = 𝛼 ∈ (0, 1/2). Then

lim sup
𝑧→+∞

lnP[𝑋 > 𝑧]

ln 𝑧
≤ −

(
1 +

1

𝛼

)
.
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2. Suppose lim sup𝑧→+∞ 𝑔 (𝑧) /𝑧 = 𝛽 > 0. Then

lim sup
𝑧→+∞

lnP[𝑋 > 𝑧]

𝑧
≤ − 1

𝛽
.

Proof. Fix 𝜀 ∈ (0, 1/2− 𝛼). Then 𝑔 (𝑥) < (𝛼+ 𝜀)𝑥2 if 𝑥 is large enough. Therefore,
there exists a constant 𝛾𝜀 > 0 such that 𝑔 (𝑥) < (𝛼+ 𝜀)𝑥2 + 𝛾𝜀 for all 𝑥. Let 𝑍𝜀
be the Pearson random variable for which 𝑔∗ (𝑧) = (𝛼+ 𝜀) 𝑧2 + 𝛾𝜀. This falls
under Case 5 in Appendix A.2, so its support is (−∞,∞), which then contains
the support of 𝑋 . From Point 1 of Corollary 4.9, there is a constant 𝑐𝜀 depending
on 𝜀 such that for 𝑧 large enough,

P[𝑋 > 𝑧] ≤ 𝑐𝜀𝑧
−1− 1

𝛼+𝜀 .

We then have

lnP[𝑋 > 𝑧] ≤ ln 𝑐𝜀 −
(
1 +

1

𝛼+ 𝜀

)
ln 𝑧,

lnP[𝑋 > 𝑧]

ln 𝑧
≤ ln 𝑐𝜀

ln 𝑧
−

(
1 +

1

𝛼+ 𝜀

)
,

lim sup
𝑧→∞

lnP[𝑋 > 𝑧]

ln 𝑧
≤ −

(
1 +

1

𝛼+ 𝜀

)
.

Since 𝜀 can be arbitrarily close to 0, Point 1 of the corollary is proved. The proof
of Point 2 is entirely similar, following from Corollary 4.10, which refers to Case 2
of the Pearson distributions given in Appendix A.2. This corollary could also be
established by using results from [22]. □

Our final result gives full tail asymptotics. Note that it is not restricted to
linear and quadratic behaviors.

Theorem 4.13.

1. Suppose lim𝑧→+∞ 𝑔 (𝑧) /𝑧2 = 𝛼 ∈ (0, 1). Then

lim
𝑧→+∞

lnP[𝑋 > 𝑧]

ln 𝑧
≤ −

(
1 +

1

𝛼

)
.

2. Suppose lim𝑧→+∞ 𝑔 (𝑧) /𝑧𝑝 = 𝛽 > 0 for some 𝑝 ∈ [0, 1). Then

lim
𝑧→+∞

lnP[𝑋 > 𝑧]

𝑧2−𝑝
≤ − 1

𝛽(2− 𝑝)
.

Proof. Since for any 𝜀 ∈ (0,min(𝛼, 1−𝛼)), there exists 𝑧0 such that 𝑧 > 𝑧0 implies
(𝛼− 𝜀) 𝑧2 ≤ 𝑔 (𝑧) ≤ (𝛼+ 𝜀) 𝑧2, the assumptions of Points 2 and 4 (a) in [22,
Corollary 4.5] are satisfied, and Point 1 of the Theorem follows easily. Point 2 of
the Theorem follows identically, by invoking Points 3 and 4 (b) in [22, Corollary
4.5]. All details are left to the reader. □
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Appendix

A.1. Proofs of lemmas

Proof of Lemma 2.1. Proof of point 1. If 0 ≤ 𝑥 < 𝑏, then clearly 𝑔∗(𝑥) > 0.
If 𝑎 < 𝑥 < 0, we claim that 𝑔∗(𝑥) > 0 still. Suppose we have the opposite:

𝑔∗(𝑥) ≤ 0. Then
∫ 𝑏
𝑥
𝑦𝜌∗(𝑦) 𝑑𝑦 = 𝑔∗(𝑥)𝜌∗(𝑥) ≤ 0. Since

∫ 𝑥
𝑎
𝑦𝜌∗(𝑦) 𝑑𝑦 < 0, then∫ 𝑏

𝑎
𝑦𝜌∗(𝑦) 𝑑𝑦 < 0, contradicting E[𝑍] = 0. Thus, 𝑔∗(𝑥) ≥ 0 for all 𝑥, and 𝑔∗(𝑥) > 0

if and only if 𝑎 < 𝑥 < 𝑏.
Proof of point 2. Trivial.
Proof of point 3. This is immediate since

lim
𝑥↓𝑎

𝑔∗(𝑥)𝜌∗(𝑥) = lim
𝑥↓𝑎

∫ 𝑏

𝑥

𝑦𝜌∗(𝑦) 𝑑𝑦 = E[𝑍]

and similarly for lim
𝑥↑𝑏

𝑔∗(𝑥)𝜌∗(𝑥) = −E[𝑍]. □

Proof of Lemma 2.2. It is easy to verify that (2.6) and (2.7) are solutions to
Stein’s equation (2.3). To show that they are the same, let 𝜑(𝑧) := 𝑔∗(𝑧)𝜌∗(𝑧) =∫ 𝑏
𝑧 𝑤𝜌∗(𝑤) 𝑑𝑤 for 𝑧 ∈ (𝑎, 𝑏). Then

𝜑′(𝑧)
𝜑(𝑧)

= − 𝑧𝜌∗(𝑧)
𝑔∗(𝑧)𝜌∗(𝑧)

= − 𝑧

𝑔∗(𝑧)
.

Integrating over (𝑦, 𝑥) ⊆ (𝑎, 𝑏) leads to∫ 𝑥

𝑦

𝑧

𝑔∗(𝑧)
𝑑𝑧 = log

𝜑(𝑦)

𝜑(𝑥)
= log

𝑔∗(𝑦)𝜌∗(𝑦)
𝑔∗(𝑥)𝜌∗(𝑥)

(A.1)

and so
𝑒
∫
𝑥
𝑦

𝑧 𝑑𝑧
𝑔∗(𝑧)

𝑔∗(𝑦)
=

1

𝑔∗(𝑦)
⋅ 𝑔∗(𝑦)𝜌∗(𝑦)
𝑔∗(𝑥)𝜌∗(𝑥)

=
𝜌∗(𝑦)

𝑔∗(𝑥)𝜌∗(𝑥)
.

The derivative formula (2.9) comes via an immediate calculation

𝑓 ′(𝑥) = − [𝑔∗(𝑥)𝜌∗(𝑥)]′

[𝑔∗(𝑥)𝜌∗(𝑥)]2

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦

+
(ℎ(𝑥) −E[ℎ(𝑍)]) 𝜌∗(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥)

= − −𝑥𝜌∗(𝑥)
[𝑔∗(𝑥)𝜌∗(𝑥)]2

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
ℎ(𝑥)−E[ℎ(𝑍)]

𝑔∗(𝑥)

=
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
ℎ(𝑥) −E[ℎ(𝑍)]

𝑔∗(𝑥)
. □

Proof of Lemma 2.3. From (A.1) in the previous proof, we have∫ 𝑏

0

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↗𝑏

∫ 𝑥

0

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↗𝑏
log

𝑔∗(0)𝜌∗(0)
𝑔∗(𝑥)𝜌∗(𝑥)

= log [𝑔∗(0)𝜌∗(0)]− lim
𝑥↗𝑏

log [𝑔∗(𝑥)𝜌∗(𝑥)] =∞



78 R. Eden and F. Viens

and ∫ 0

𝑎

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↘𝑎

∫ 0

𝑥

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↘𝑎
log

𝑔∗(𝑥)𝜌∗(𝑥)
𝑔∗(0)𝜌∗(0)

= lim
𝑥↘𝑎

log [𝑔∗(𝑥)𝜌∗(𝑥)] − log [𝑔∗(0)𝜌∗(0)] = −∞. □

Proof of Lemma 2.7. We prove (2.11) first. It is trivially true if 𝑥 /∈ [𝑎, 𝑏], so sup-
pose 𝑥 ∈ (𝑎, 𝑏). Let

𝑚(𝑥) := Φ∗(𝑥)− 𝑥− 𝑔′∗(𝑥)
𝑄(𝑥)

⋅ 𝑔∗(𝑥)𝜌∗(𝑥).

By a standard calculus proof, we will show that 𝑚′(𝑥) ≤ 0 so that 𝑚(𝑥) ≥
lim
𝑦→𝑏

𝑚(𝑦). The result follows after observing that lim
𝑦→𝑏

𝑚(𝑦) = 0. This is true since

lim
𝑦→𝑏

𝑔∗(𝑦)𝜌∗(𝑦) = 0 and lim
𝑦→𝑏

Φ∗(𝑥) = 0. Now we show that 𝑚′(𝑥) ≤ 0.

𝑚′ = −𝜌∗ − 𝑔∗𝜌∗

[
𝑥− 𝑔′∗

𝑥2 − 𝑥𝑔′∗ + 𝑔∗

]′
− 𝑥− 𝑔′∗

𝑄
[𝑔∗𝜌∗]

′

= −𝜌∗ − 𝑔∗𝜌∗

[
(𝑥 (𝑥− 𝑔′∗) + 𝑔∗) (1− 𝑔′′∗ )− (𝑥− 𝑔′∗) (2𝑥− 𝑥𝑔′′∗ )

𝑄2

]
− 𝑥− 𝑔′∗

𝑄
[−𝑥𝜌∗]

𝑄2

𝜌∗
𝑚′ = −𝑄2 − 𝑔∗ [(𝑥− 𝑔′∗) (𝑥− 𝑥𝑔′′∗ − 2𝑥+ 𝑥𝑔′′∗ ) + 𝑔∗ (1− 𝑔′′∗ )]

+𝑄𝑥 (𝑥− 𝑔′∗)

=
[
−𝑥2 (𝑥− 𝑔′∗)

2 − 2𝑥𝑔∗ (𝑥− 𝑔′∗)− 𝑔2∗
]
+ 𝑥𝑔∗ (𝑥− 𝑔′∗)− 𝑔2∗ (1− 𝑔′′∗ )

+
[
𝑥2 (𝑥− 𝑔′∗)

2
+ 𝑥𝑔∗ (𝑥− 𝑔′∗)

]
= −𝑔2∗ − 𝑔2∗ (1− 𝑔′′∗ ) = −𝑔2∗ (2− 𝑔′′∗ ) ≤ 0.

To prove (2.12) (again, it suffices to prove this for 𝑥 ∈ (𝑎, 𝑏)), let

𝑛(𝑥) := 1− Φ∗(𝑥)− 𝑔′∗(𝑥) − 𝑥

𝑄(𝑥)
⋅ 𝑔∗(𝑥)𝜌∗(𝑥) = 1−𝑚(𝑥)

so 𝑛′(𝑥) = −𝑚′(𝑥) ≥ 0. 𝑛 is then nondecreasing so 𝑛(𝑥) ≥ lim
𝑥→𝑎𝑛(𝑥) = 0.

Now we prove (2.13). If 𝑥 > 0,

Φ∗(𝑥) =
∫ ∞

𝑥

𝜌∗(𝑦) 𝑑𝑦 ≤ 1

𝑥

∫ ∞

𝑥

𝑦𝜌∗(𝑦) 𝑑𝑦 =
1

𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥).

On the other hand, if 𝑥 < 0,

1− Φ∗(𝑥) =
∫ 𝑥

−∞
𝜌∗(𝑦) 𝑑𝑦 ≤ 1

𝑥

∫ 𝑥

−∞
𝑦𝜌∗(𝑦) 𝑑𝑦 = − 1

𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥).

This proves (2.14). □
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Proof of last bullet point on page 71. We replicate here a method commonly used
to find a recursive formula for the moments. See for example [7] and [19]. Cross-
multiplying the terms in (4.1), multiplying by 𝑥𝑟 and integrating over the support
gives us∫ 𝑏

𝑎

[
(2𝛼+ 1)𝑧𝑟+1 + 𝛽𝑧𝑟

]
𝜌∗(𝑧) 𝑑𝑧 = −

∫ 𝑏

𝑎

(
𝛼𝑧𝑟+2 + 𝛽𝑧𝑟+1 + 𝛾𝑧𝑟

)
𝜌′∗(𝑧) 𝑑𝑧

and so

− (2𝛼+ 1)E
[
𝑍𝑟+1

]− 𝛽E [𝑍𝑟]

=
(
𝛼𝑧𝑟+2 + 𝛽𝑧𝑟+1 + 𝛾𝑧𝑟

)
𝜌∗(𝑧)

∣∣∣∣𝑏
𝑎

−
∫ 𝑏

𝑎

[
𝛼(𝑟 + 2)𝑧𝑟+1 + 𝛽(𝑟 + 1)𝑧𝑟 + 𝛾𝑟𝑧𝑟−1

]
𝜌∗(𝑧) 𝑑𝑧

= 𝛼(𝑟 + 2)E
[
𝑍𝑟+1

]
+ 𝛽(𝑟 + 1)E [𝑍𝑟] + 𝛾𝑟E

[
𝑍𝑟−1

]
where we assumed that 𝑧𝑟+2𝜌∗(𝑧) → 0 at the endpoints 𝑎 and 𝑏 of the support.
For the case 𝑟 = 1, this reduces to 𝑧3𝜌∗(𝑧) → 0 at the endpoints 𝑎 and 𝑏, which
we are assuming. Therefore,

(2𝛼+ 1)E
[
𝑍2

]
+ 𝛽E [𝑍] = 3𝛼E

[
𝑍2

]
+ 2𝛽E [𝑍] + 𝛾E

[
𝑍0

]
.

Since E [𝑍] = 0 and E
[
𝑍0

]
= 1, this gives E

[
𝑍2

]
= 𝛾

1−𝛼 . □

A.2. Examples of Pearson distributions

We present cases of Pearson distributions depending on the degree and number of
zeroes of 𝑔∗(𝑥) as a quadratic polynomial in (𝑎, 𝑏). The Pearson family is closed un-
der affine transformations of the random variable, so we can limit our focus on the
five special cases below. The constant 𝐶 in each case represents the normalization
constant. See Diaconis and Zabell [5] for a discussion of these cases.

∙ Case 1. If deg 𝑔∗(𝑧) = 0, 𝜌∗ can be (after an affine transformation) written

in the form 𝜌∗(𝑧) = 𝐶𝑒−𝑧
2/2 for −∞ < 𝑧 < ∞. This is the standard normal

density, and 𝐶 = 1√
2𝜋

. For this case, 𝑔∗(𝑧) ≡ 1. Consequently, 𝑄(𝑧) = 𝑧2+1.

If 𝑧 > 0, the inequalities (2.11) and (2.13) of Lemma 2.7 can be written

𝑧

(𝑧2 + 1)
√
2𝜋

𝑒−𝑧
2/2 ≤ Φ∗(𝑧) ≤ 1

𝑧
√
2𝜋

𝑒−𝑧
2/2,

a standard inequality involving the tail of the standard normal distribution.
∙ Case 2. If deg 𝑔∗(𝑧) = 1, 𝜌∗ can be written in the form 𝜌∗(𝑧) = 𝐶𝑧𝑟−1𝑒−𝑧/𝑠

for 0 < 𝑧 < ∞, with parameters 𝑟, 𝑠 > 0. This is a Gamma density, and
𝐶 = 1

𝑠𝑟Γ(𝑟) . It has mean 𝜇 = 𝑟𝑠 > 0 and variance 𝑟𝑠2. If one wants to make

𝑍 centered, the density takes the form 𝜌∗(𝑧) = 𝐶(𝑧 + 𝜇)𝑟−1𝑒−(𝑧+𝜇)/𝑠 for
−𝜇 < 𝑧 <∞. For this case, 𝑔∗(𝑧) = 𝑠(𝑧 + 𝜇)+.
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∙ Case 3. If deg 𝑔∗(𝑥) = 2 and 𝑔∗ has two real roots, 𝜌∗ can be written in the
form 𝜌∗(𝑥) = 𝐶𝑥𝑟−1(1− 𝑥)𝑠−1 for 0 < 𝑥 < 1, with parameters 𝑟, 𝑠 > 0. This
is a Beta density, and 𝐶 = 1

𝛽(𝑟,𝑠) . It has mean 𝜇 = 𝑟
𝑟+𝑠 > 0 and variance

𝑟𝑠
(𝑟+𝑠)2(𝑟+𝑠+1) . Centering the density gives 𝜌∗(𝑥) = 𝐶(𝑥+𝜇)𝑟−1(1−𝑥−𝜇)𝑠−1

for −𝜇 < 𝑥 < 1−𝜇. For this case, 𝑔∗(𝑥) =
(𝑥+𝜇)(1−𝑥−𝜇)

𝑟+𝑠 when −𝜇 < 𝑥 < 1−𝜇
and 0 elsewhere.

∙ Case 4. If deg 𝑔∗(𝑥) = 2 and 𝑔∗ has exactly one real root, 𝜌∗ can be written
in the form 𝜌∗(𝑥) = 𝐶𝑥−𝑟𝑒−𝑠/𝑥 for 0 < 𝑥 < ∞, with parameters 𝑟 > 1 and

𝑠 ≥ 0. The normalization constant is 𝐶 = 𝑠𝑟−1

Γ(𝑟−1) . If 𝑟 > 2, it has mean

𝜇 = 𝑠
𝑟−2 ≥ 0. If 𝑟 > 3, it has variance 𝑠2Γ(𝑟−3)

Γ(𝑟−1) . Centering this density yields

𝜌∗(𝑥) = 𝐶(𝑥+ 𝜇)−𝑟𝑒−𝑠/(𝑥+𝜇) for −𝜇 < 𝑥 <∞. For this case, 𝑔∗(𝑥) =
(𝑥+𝜇)2

𝑟−2
when −𝜇 < 𝑥 and 0 elsewhere.

∙ Case 5. If deg 𝑔∗(𝑥) = 2 and 𝑔∗ has no real roots, 𝜌∗ can be written in

the form 𝜌∗(𝑥) = 𝐶
(
1 + 𝑥2

)−𝑟
𝑒𝑠 arctan 𝑥 for −∞ < 𝑥 < ∞, with pa-

rameters 𝑟 > 1/2 and −∞ < 𝑠 < ∞. The normalization constant is

𝐶 = Γ(𝑟)√
𝜋Γ(𝑟−1/2)

∣∣∣Γ(𝑟−𝑖𝑠/2)Γ(𝑟)

∣∣∣2. If 𝑟 > 1, it has mean 𝜇 = 𝑠
2(𝑟−1) . If 𝑟 > 3/2,

it has variance 4(𝑟−1)2+𝑠2
4(𝑟−1)2(2𝑟−3) . The centered form of the density is 𝜌∗(𝑥) =

𝐶
[
1 + (𝑥+ 𝜇)

2
]−𝑟

𝑒𝑠 arctan(𝑥+𝜇). For this case, 𝑔∗(𝑥) =
1+(𝑥+𝜇)2

2(𝑟−1) . Using our

original notation, 𝛼 = 1
2(𝑟−1) , 𝛽 = 𝜇

𝑟−1 and 𝛾 = 𝜇2+1
2(𝑟−1) .

A.3. Other lemmas

Lemma A.1. Let 𝑍 be a centered Pearson random variable. Then there exist con-
stants 𝑘𝑢 > 𝑘𝑙 > 0 depending only on 𝛼, 𝛽, 𝛾 such that when 𝑧 is large enough, we
have the following inequalities.

1. If 𝛼 = 0 and 𝛽 > 0, when 𝑧 is large enough,

𝑘𝑙
𝑧1−𝛾/𝛽2𝑒𝑧/𝛽

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1−𝛾/𝛽2𝑒𝑧/𝛽

.

2. If 𝛼 > 0, when 𝑧 is large enough,

𝑘𝑙
𝑧1+1/𝛼

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1+1/𝛼

.

3. Assuming 𝑍’s support extends to −∞, if 𝛼 > 0, when 𝑧 < 0 and ∣𝑧∣ is large
enough,

𝑘𝑙

∣𝑧∣1+1/𝛼
≤ 1− Φ∗ (𝑧) ≤ 𝑘𝑢

∣𝑧∣1+1/𝛼
.

Proof. For the proof of this lemma, which is presumably well known, but is in-
cluded for completeness, we will use 𝐶 for the normalization constant of each
density to be considered.
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In Point 1, let 𝜇 = 𝛾/𝛽 > 0. Then 𝑍 has support (−𝜇,∞); see Case 2 in
Appendix A.2. In its support, 𝑍 has 𝑔∗ (𝑧) = 𝛽𝑧 + 𝛾 = 𝛽 (𝑧 + 𝜇) and density

𝜌∗ (𝑧) = 𝐶 (𝑧 + 𝜇)𝜇/𝛽−1 exp
(
−𝑧 + 𝜇

𝛽

)
.

Note that

lim
𝑧→∞ 𝑧−𝜇/𝛽𝑒𝑧/𝛽𝑔∗ (𝑧) 𝜌∗ (𝑧)

= 𝐶𝛽 lim
𝑧→∞

(𝑧 + 𝜇)
𝜇/𝛽

𝑧𝜇/𝛽
exp

(
𝑧

𝛽
− 𝑧 + 𝜇

𝛽

)
= 𝐶𝛽𝑒−𝜇/𝛽 .

From Lemma 2.7,

𝑧 − 𝛽

𝑧2 + 𝛾
𝑔∗ (𝑧) 𝜌∗ (𝑧) ≤ Φ∗ (𝑧) ≤ 1

𝑧
𝑔∗ (𝑧)𝜌∗ (𝑧)

so

𝐶𝛽𝑒−𝜇/𝛽 ≤ lim inf
𝑧→∞ 𝑧1−𝜇/𝛽𝑒𝑧/𝛽Φ∗ (𝑧) ≤ lim sup

𝑧→∞
𝑧1−𝜇/𝛽𝑒𝑧/𝛽Φ∗ (𝑧) ≤ 𝐶𝛽𝑒−𝜇/𝛽 .

Therefore, we can choose some constants 𝑘𝑢 (𝛽, 𝛾) > 𝑘𝑙 (𝛽, 𝛾) > 0 such that when
𝑧 is large enough,

𝑘𝑙
𝑧1−𝜇/𝛽𝑒𝑧/𝛽

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1−𝜇/𝛽𝑒𝑧/𝛽

.

To prove Point 2, we first show that lim𝑧→∞ 𝑧1/𝛼𝑔∗ (𝑧)𝜌∗ (𝑧) is a finite num-
ber 𝐾. We consider the cases 4𝛼𝛾− 𝛽2 = 0 and 4𝛼𝛾−𝛽2 > 0 separately. We need
not consider 4𝛼𝛾 − 𝛽2 < 0 since it corresponds to Case 3 in Appendix A.2 for
which the right endpoint of the support of 𝑍 is 𝑏 <∞ and so necessarily 𝛼 < 0.

Supose that 4𝛼𝛾−𝛽2 = 0 and let 𝜇 = 𝛽
2𝛼 > 0. Then 𝛼𝑧2+𝛽𝑧+𝛾 = 𝛼 (𝑧 + 𝜇)

2

has one real root and the support of 𝑍 is (−𝜇,∞); see Case 4 in Appendix A.2.

In its support, 𝑍 has 𝑔∗ (𝑧) = 𝛼 (𝑧 + 𝜇)
2
and density

𝜌∗ (𝑧) = 𝐶 (𝑧 + 𝜇)
−2−1/𝛼

exp

(
− 𝑠

𝑧 + 𝜇

)
where 𝑠 = 𝜇/𝛼 = 𝛽/

(
2𝛼2

)
. Therefore,

lim
𝑧→∞ 𝑧1/𝛼𝑔∗ (𝑧)𝜌∗ (𝑧) = 𝐶𝛼 lim

𝑧→∞
𝑧1/𝛼

(𝑧 + 𝜇)
1/𝛼

exp

(
− 𝑠

𝑧 + 𝜇

)
= 𝐶𝛼.

Now suppose that 𝛿2 :=
(
4𝛼𝛾 − 𝛽2

)
/
(
4𝛼2

)
> 0 so 𝛼𝑧2+𝛽𝑧+𝛾 has two imaginary

roots and the support of 𝑍 is (−∞,∞). Letting 𝜇 = 𝛽/ (2𝛼) allows us to write

𝑔∗ (𝑧) = 𝛼 (𝑧 + 𝜇)
2
+ 𝛼𝛿2 and the density of 𝑍 as

𝜌∗ (𝑧) = 𝐶
[
(𝑧 + 𝜇)

2
+ 𝛿2

]−1− 1
2𝛼

exp

[
𝜇

𝛼𝛿
arctan

(
𝑧 + 𝜇

𝛿

)]
,
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a slight variation of the density in Case 5 in Appendix A.2. Note that in our present
case,

lim
𝑧→∞ 𝑧1/𝛼𝑔∗ (𝑧)𝜌∗ (𝑧)

= 𝐶𝛼 lim
𝑧→∞

𝑧1/𝛼[
(𝑧 + 𝜇)

2
+ 𝛿2

] 1
2𝛼

exp

[
𝜇

𝛼𝛿
arctan

(
𝑧 + 𝜇

𝛿

)]

= 𝐶𝛼 exp
[ 𝜇𝜋

2𝛼𝛿

]
.

From Lemma 2.7,

(1− 2𝛼) 𝑧 − 𝛽

(1− 𝛼) 𝑧2 + 𝛾
𝑔∗ (𝑧) 𝜌∗ (𝑧) ≤ Φ∗ (𝑧) ≤ 1

𝑧
𝑔∗ (𝑧)𝜌∗ (𝑧) .

From these bounds we conclude

𝐾
1− 2𝛼

1− 𝛼
≤ lim inf

𝑧→∞ 𝑧1+1/𝛼Φ∗ (𝑧) ≤ lim sup
𝑧→∞

𝑧1+1/𝛼Φ∗ (𝑧) ≤ 𝐾.

Therefore, when 𝑧 is large enough,

𝑘𝑙
𝑧1+1/𝛼

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1+1/𝛼

for some constants 𝑘𝑢 (𝛼, 𝛽, 𝛾) > 𝑘𝑙 (𝛼, 𝛽, 𝛾) > 0.

To prove Point 3, we consider Case 5 again.

lim
𝑧→−∞ ∣𝑧∣

1/𝛼
𝑔∗ (𝑧)𝜌∗ (𝑧)

= 𝐶𝛼 lim
𝑦→∞

𝑦1/𝛼[
(−𝑦 + 𝜇)

2
+ 𝛿2

] 1
2𝛼

exp

[
𝜇

𝛼𝛿
arctan

(−𝑦 + 𝜇

𝛿

)]

= 𝐶𝛼 exp
[
− 𝜇𝜋

2𝛼𝛿

]
.

The conclusion follows similarly after using Lemma 2.7 when 𝑧 < 0:

(1− 2𝛼) ∣𝑧∣ − 𝛽

(1− 𝛼) ∣𝑧∣2 + 𝛾
𝑔∗ (𝑧)𝜌∗ (𝑧) ≤ 1− Φ∗ (𝑧) ≤ 1

∣𝑧∣𝑔∗ (𝑧) 𝜌∗ (𝑧) . □

Lemma A.2. Let 𝑍 be a centered Pearson random variable. If 𝛼 ≤ 0, all moments
of positive order exist. If 𝛼 > 0, the moment of order 𝑚 exists if and only if
𝑚 < 1 + 1/𝛼.

Proof. The random variables in Case 1 (𝛼 = 𝛽 = 0) of Appendix A.2 are normal,
while those in Case 3 (𝛼 < 0) have finite intervals for support. It suffices to consider
the cases where 𝛼 = 0 and 𝛽 > 0, and where 𝛼 > 0. Let 𝑚 > 0. We will use the
fact that E [∣𝑍∣𝑚] <∞ if and only if

∑∞
𝑛=1 𝑛

𝑚−1P [∣𝑍∣ ≥ 𝑛] <∞.
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If 𝛼 = 0 and 𝛽 > 0, and 𝑍 is supported over (𝑎,∞), then by Lemma A.1,
E [∣𝑍∣𝑚] <∞ if and only if

∞∑
𝑛=1

𝑛𝑚−1

𝑛1+𝛾/𝛽2𝑒𝑛/𝛽
<∞,

which is always the case.
Now suppose 𝛼 > 0. Since P [∣𝑍∣ ≥ 𝑛] = Φ∗ (𝑛)+1−Φ∗ (−𝑛), then by Lemma

A.1 again, E [∣𝑍∣𝑚] <∞ if and only if
∞∑
𝑛=1

𝑛𝑚−1

𝑛1+1/𝛼
=

∞∑
𝑛=1

1

𝑛2+1/𝛼−𝑚<∞.

This is the case if and only if 2 + 1/𝛼−𝑚 > 1, i.e., 𝑚 < 1 + 1/𝛼. □
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