
Progress in Probability
67

Seminar on 
Stochastic Analysis, 
Random Fields and 
Applications VII

Robert C. Dalang
Marco Dozzi
Francesco Russo 
Editors

Centro Stefano Franscini, Ascona,  
May 2011





For further volumes:

Progress in Probability

Series Editors

Sidney I. Resnick

Volume 67

http://www.springer.com/series/4839

Davar Khoshnevisan
Andreas Kyprianou

http://www.springer.com/series/4839


Editors

Seminar on Stochastic Analysis,

and Applications VII
Random Fields

Centro Stefano Franscini, Ascona, May 2011

Robert C. Dalang
Marco Dozzi
Francesco Russo



 
© Springer Basel 2013  

DOI 10.1007/978-3-0348-0545-2
Springer Basel Heidelberg New York Dordrecht London 

Printed on acid-free paper

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the 
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, 
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information 
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now 
known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with 
reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed 
on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts 
thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current 
version, and permission for use must always be obtained from Springer. Permissions for use may be obtained 
through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution under the 
respective Copyright Law. 
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication 
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant 
protective laws and regulations and therefore free for general use. 
While the advice and information in this book are believed to be true and accurate at the date of publication, 
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or 
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the 
material contained herein. 

 ISBN 978-3-0348-0544-5 ISBN 978-3-0348-0545-2 (eBook)

Springe www.springer.com)

Mathematical Subject Classification (2010): 60-06

Library of Congress Control Number: 

r Basel is part of Springer Science+Business Media (

2013949037

Editors
Robert C. Dalang 
Institut de mathématiques 
Ecole Polytechnique Fédérale de Lausanne 
Switzerland 
 
Francesco Russo 
Unité de Mathématiques appliquées 
Ecole Nationale Supérieure de Techniques Avancées 
ENSTA ParisTech 
Palaiseau 
France 

 
Marco Dozzi 
Institu  Elie Cartan 
Université de Lorraine 
Vandoeuvre-lès-Nancy 
France 

t

http://www.springer.com


Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Participants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Part I: Stochastic Analysis and Random Fields

R.M. Balan
Recent Advances Related to SPDEs with Fractional Noise . . . . . . . . . . . 3

G. Di Nunno and S. Sjursen
On Chaos Representation and Orthogonal Polynomials
for the Doubly Stochastic Poisson Process . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

R. Eden and F. Viens
General Upper and Lower Tail Estimates Using Malliavin
Calculus and Stein’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

B. Ferrario
Uniqueness and Absolute Continuity for Semilinear SPDE’s . . . . . . . . . 85
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Preface

This volume contains the Proceedings of the Seventh Seminar on Stochastic Anal-
ysis, Random Fields and Applications, which took place at the Centro Stefano
Franscini (Monte Verità) in Ascona (Ticino), Switzerland, from May 23 to 27,
2011. All papers in this volume have been refereed.

The seven editions of this conference have occurred with regularity at three-
year intervals, starting in 1993. These conferences aimed to present the state of the
art and attempted to anticipate research trends in the fundamentals of stochas-
tic analysis, which lies at the interface between classical analysis and probability
theory, as well as in adjacent fields and in applications. Traditional topics related
to stochastic analysis include stochastic partial differential equations (SPDEs),
Malliavin calculus, numerical approximations, stochastic control, optimal stop-
ping, stochastic calculus related to singular diffusions and jump processes, frac-
tional processes and rough paths. In recent years, new topics have appeared, such
as Stein’s method and statistics for stochastic processes, non-commutative proba-
bility theory, and stochastic transport problems. Stochastic analysis also includes
numerous applications to science and engineering. In addition to the classical ap-
plications in physics (stochastic mechanics, quantum field theory, fluid dynamics)
and mathematical finance, many specialists participate in active branches of engi-
neering, such as robotics, and biology (brain modeling, Darwin evolution models,
genomic analysis, etc.).

This time, our seminar emphasized innovations in SPDEs, in stochastic meth-
ods for deterministic partial differential equations (PDEs), stochastic numerics,
statistics for stochastic processes and mathematical finance. There is clearly a
wide overlap between these subjects.

In the topic of SPDEs, much research is oriented toward problems that orig-
inate in physical models (for instance, parabolic Anderson models, turbulence,
stochastic porous media equations) and also in financial models (evolution of term
structures for interest rates or forward prices in electricity markets). The driving
noise can be Gaussian or Lévy. Extensions of rough paths to rough sheets were
also presented, with the aim of solving the stochastic Burgers equation.

Stochastic methods in PDEs (and pseudo-differential equations) represent the
natural bridge between stochastic processes in continuous time and classical anal-
ysis. Significant progress was presented, for instance on refinements of Malliavin
calculus applied to the Boltzmann equation. Malliavin calculus is partly related
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to classical analysis on Wiener space, a topic in which important work has been
done to extend to Wiener space the notion of function of bounded variation.

Stochastic numerics is a field which touches upon all of stochastic analy-
sis. Significant work has been done to approximate stochastic PDEs and stochas-
tic differential equations with Lévy noise, and important advances in simulating
forward-backward stochastic differential equations were also presented; these relate
classical techniques, such as Euler methods for discretizing stochastic differential
equations, with improved Monte Carlo algorithms and quantization methods for
evaluating (conditional) expectations.

Other theoretical work, which does not fall directly into the above categories,
is stochastic calculus for non-semimartingales: this subject was approached via
rough paths, as well as regularization and discretization methods.

One central application of stochastic analysis, that our conference has tra-
ditionally focused on, concerns applications to mathematical finance. Some talks
emphasized modeling issues, particularly in models for electricity and insurance
markets, or in the description of financial bubbles. Many contributions were de-
voted to portfolio management with regime switching, risk measures, affine pro-
cesses and variance swap curve models. Here again, high-order numerical approx-
imations were important.

During the conference, it has become our custom to offer a public lecture,
which also constitutes a local cultural event. This time, the organizers invited Pro-
fessor Nicolas Bouleau, who is a distinguished member of the stochastic analysis
community, an expert in mathematical engineering and a pioneer in mathemat-
ical finance. In the current context of financial and economic crises, the speaker
presented his thoughts on the impact of mathematics (and in particular stochastic
analysis) on worldwide events. This public session was opened by Mr. Manuele
Bertoli, the Minister of Education and Culture of the Ticino government, and was
widely reported in local press. The text of Professor Bouleau’s lecture appears in
this volume.

Significant financial support for this meeting was provided by the Fonds Na-
tional Suisse pour la Recherche Scientifique (Berne), the Centro Stefano Franscini
(ETH-Zürich), and the Ecole Polytechnique Fédérale de Lausanne (EPFL). We
take this opportunity to thank these institutions.

February 2013 Robert C. Dalang
Marco Dozzi
Francesco Russo

The editors wish to dedicate this volume to Esko Valkeila (1951–2012).
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Ceci C. Università di Chieti-Pescara, Italy
Cerrai S. University of Maryland, USA
Chen L. EPF-Lausanne, Switzerland
Colaneri K. Università G. D’Annunzio, Italy
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Scarlatti S. Università di Roma Tor-Vergata, Italy
Schmock U. Vienna University of Technology, Austria
Schweizer M. ETH-Zürich, Switzerland
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Teichmann J. ETH-Zürich, Switzerland
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Viens F.G. Purdue University, USA
Vinckenbosch L. EPF-Lausanne, Switzerland
Vostrikova L. Université d’Angers, France
Wörner J.H. Technische Universität Dortmund, Germany
Wu J.-L. University of Swansea, U.K.
Xiao Y. Michigan State University, USA
Zähle M. Friedrich Schiller Universität Jena, Germany
Zambrini J.-C. Universidade de Lisboa, Portugal
Zhao H. Loughborough University, U.K.
Zhu X. Universität Bielefeld, Germany
Zhu R. Universität Bielefeld, Germany





Part I
Stochastic Analysis and
Random Fields



Progress in Probability, Vol. 67, 3–22
c⃝ 2013 Springer Basel

Recent Advances Related to SPDEs
with Fractional Noise

Raluca M. Balan

Abstract. We review the literature related to stochastic partial differential
equations with spatially-homogeneous Gaussian noise, and explain how one
can introduce the structure of the fractional Brownian motion into the tempo-
ral component of the noise. The Hurst parameter 𝐻 is assumed to be greater
than 1/2. In the case of linear equations, we revisit the conditions for the
existence of a mild solution. In the nonlinear case, we point out what are
the difficulties due to the fractional component of the noise. These difficulties
can be avoided in the case of equations with multiplicative noise, since in
this case, the solution has a known Wiener chaos decomposition. Finally, this
methodology is applied to the wave equation (in arbitrary dimension 𝑑 ≥ 1),
driven by a Gaussian noise which has a spatial covariance structure given by
the Riesz kernel.

Mathematics Subject Classification (2010). Primary 60H15; Secondary 60H07.

Keywords. Stochastic wave equation, fractional Brownian motion, spatially-
homogeneous Gaussian noise, Malliavin calculus.

1. Linear SPDEs

Consider a physical system whose space-time behavior is described by the equation
𝐿𝑢 = 0, with some initial conditions, where 𝐿 is a second-order pseudo-differential
operator in 𝑡 > 0 and 𝑥 ∈ ℝ𝑑. For example, the solution 𝑢(𝑡, 𝑥) of the equation
∂𝑢
∂𝑡 − 1

2Δ𝑢 = 0 with initial condition 𝑢(0, 𝑥) = 𝑇 (𝑥) can be interpreted as the
temperature of an insulated medium (of infinite volume) at time 𝑡 and location
𝑥, assuming that at time 0, the medium had a temperature 𝑇 (𝑥) at location 𝑥.
When the system is subject to random perturbations, its evolution in space and
time can be described by the equation:

𝐿𝑢(𝑡, 𝑥) = �̇� (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ ℝ𝑑, (1.1)

Research supported by a grant from the Natural Sciences and Engineering Research Council of
Canada.



4 R.M. Balan

where �̇� represents the perturbing noise. The notation �̇� (𝑡, 𝑥) is standard, but
at this point, it may seem ambiguous. The reason for this notation is explained in
Remark 1.3 below.

The goal of this section is to give a mathematical meaning to the noise �̇� and
the solution of equation (1.1). The definition of the noise used in the present article
is the one commonly encountered in stochastic analysis. Other definitions exist in
the literature related to percolation models (see, e.g., Definition 3d1 of [38]).

The noise is a very important concept in engineering and physics, where it
usually refers to anything that interferes with the state of a system. By analogy
with the white light, which is a uniform mixture of all colors, the white noise has
equal energy per cycle, and produces a flat spectrum over a defined frequency
band. This analogy extends naturally to other “colors” of noise. In signal theory
and audio engineering, the most commonly encountered example is the “power-law
noise”, which has a power spectral density per unit of bandwidth proportional to
1/𝑓𝛼, where 𝑓 is the frequency in Hertz (i.e., the number of cycles per second),
and 𝛼 is a parameter describing the color of the noise. As we will see below, a
similar analogy exists in the mathematical theory of the noise.

Throughout this article, we assume that the noise �̇� can be modeled by an
isonormal Gaussian process {𝑊 (𝜑);𝜑 ∈ 𝐶∞0 (ℝ+ × ℝ𝑑)} with covariance

𝐸[𝑊 (𝜑)𝑊 (𝜓)] = 𝐽(𝜑, 𝜓),

for a non-negative-definite bilinear functional 𝐽 (to be specified below). We endow
𝐶∞0 (ℝ+ × ℝ𝑑) with the inner product

⟨𝜑, 𝜓⟩ℋ = 𝐽(𝜑, 𝜓),

and let ℋ be the Hilbert space defined as the completion of 𝐶∞0 (ℝ+ × ℝ𝑑) with
respect to this inner product.

In the examples that we have in mind, some of the elements of ℋ could
be distributions in 𝑥. For instance, when 𝐽 is given by formula (1.4) below, ℋ
contains the set of all functions ℝ+ ∋ 𝑡 �→ 𝜑(𝑡, ⋅) ∈ 𝒮 ′(ℝ𝑑) such that the Fourier
transform ℱ𝜑(𝑡, ⋅) is a function for all 𝑡, the map (𝑡, 𝜉) �→ ℱ𝜑(𝑡, ⋅)(𝜉) is measurable
on ℝ+×ℝ𝑑, and

∫
ℝ+

∫
ℝ𝑑
∣ℱ𝜑(𝑡, ⋅)(𝜉)∣2𝜇(𝑑𝜉)𝑑𝑡 <∞ (see [8]). Here, 𝒮 ′(ℝ𝑑) denotes

the space of tempered distributions on ℝ𝑑.
The map 𝜑 �→ 𝑊 (𝜑) ∈ 𝐿2(Ω) is an isometry which can be extended to ℋ.

More precisely, if 𝜑 ∈ ℋ, then there exists (𝜑𝑛)𝑛≥1 ⊂ 𝐶∞0 (ℝ+ × ℝ𝑑) such that
∥𝜑𝑛 − 𝜑∥ℋ → 0 as 𝑛 → ∞. By the isometry property, {𝑊 (𝜑𝑛)}𝑛≥1 is a Cauchy
sequence in 𝐿2(Ω). A classical argument shows that its limit does not depend on
the sequence (𝜑𝑛)𝑛≥1. This limit is denoted by:

𝑊 (𝜑) =

∫ ∞

0

∫
ℝ𝑑

𝜑(𝑡, 𝑥)𝑊 (𝑑𝑡, 𝑑𝑥).

The stochastic integral 𝑊 (𝜑) is well defined if and only if 𝜑 ∈ ℋ.
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The following definition gives the rigorous meaning of the solution of equa-
tion (1.1).

Definition 1.1. Let 𝑤 be the solution of the equation 𝐿𝑢 = 0 with the same
(deterministic) initial conditions as (1.1), and 𝐺 be the fundamental solution of
the equation 𝐿𝑢 = 0. The process {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑑} defined by:

𝑢(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) +

∫ 𝑡

0

∫
ℝ𝑑

𝐺(𝑡− 𝑠, 𝑥− 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦) (1.2)

is a mild solution of (1.1), provided that the stochastic integral on the right-hand
side (RHS) of (1.2) is well defined for any (𝑡, 𝑥) ∈ ℝ+ × ℝ𝑑.

Remark 1.2. The approach used in the present article is known as the Walsh ap-
proach, due to the fundamental work [39]. It should be mentioned that there are
some other approaches for the study of SPDEs in the literature. One of them uses
the 𝐿2-theory (initiated in [29] and [34]), which was extended later to an 𝐿𝑝-theory,
in the seminal articles [27] and [28]. This approach has been recently used in [4]
for the study of equations with fractional noise, and in [15] for equations with
more general noise. Another approach is based on stochastic evolution equations
in Hilbert spaces, as developed in the milestone monograph [14], in the case of the
white noise in time (see also [26]). This approach requires the construction of an
infinite-dimensional stochastic integral with respect to a Hilbert-space-valued sto-
chastic process (called a 𝑄-Wiener process). During the past decade, this approach
has been used extensively for the study of equations with infinite-dimensional frac-
tional noise (see [16, 19, 30, 32, 37] for a sample of relevant references). Although
there exists a general technique of converting an SPDE into a stochastic evolution
equation, the results obtained using different approaches are not easily compara-
ble. The articles [17] and [12] fill an important gap in the literature by comparing
the results obtained using the Walsh approach with those obtained using the 𝐿𝑝-
theory, respectively the theory of stochastic evolution equations.

To see how Definition 1.1 works, suppose first that �̇� is a “space-time white
noise”, which in the present article is modeled by a zero-mean Gaussian process
𝑊 = {𝑊 (𝜑);𝜑 ∈ 𝐶∞0 (ℝ+ × ℝ𝑑)} with covariance functional

𝐽(𝜑, 𝜓) =

∫ ∞

0

∫
ℝ𝑑

𝜑(𝑡, 𝑥)𝜓(𝑡, 𝑥)𝑑𝑥𝑑𝑡.

Remark 1.3. In dimension 𝑑 = 1, the process {𝑊 (𝜑);𝜑 ∈ 𝐶∞0 (ℝ2)} has the

same distribution as the generalized derivative �̇� (𝜑) =
∫
�̇�(𝑡, 𝑥)𝑊 (𝑡, 𝑥)𝑑𝑥𝑑𝑡 of

the Brownian sheet {𝑊 (𝑡, 𝑥)}(𝑡,𝑥)∈ℝ2, where �̇� denotes the partial derivative ∂2𝜑
∂𝑡∂𝑥 ;

see p. 260 of [18], or p. 285 of [39]. Hence, by a formal application of the integration

by parts formula, one writes �̇� (𝜑) =
∫
𝜑(𝑡, 𝑥)�̇� (𝑡, 𝑥)𝑑𝑥𝑑𝑡, although the process

{�̇� (𝑡, 𝑥) = ∂2𝑊
∂𝑡∂𝑥 (𝑡, 𝑥)}𝑡≥0,𝑥∈ℝ does not exist.
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Note that ℋ = 𝐿2(ℝ+×ℝ𝑑), and the stochastic integral on the RHS of (1.2)
is well defined if and only if∫ 𝑡

0

∫
ℝ𝑑

𝐺2(𝑡− 𝑠, 𝑥− 𝑦)𝑑𝑦𝑑𝑠 <∞. (1.3)

For example, if 𝐿 = ∂
∂𝑡 − 1

2Δ, then 𝐺(𝑡, 𝑥) = 1{𝑡>0}(2𝜋𝑡)−𝑑/2 exp(− ∣𝑥∣
2

2𝑡 ), and (1.3)
holds if and only if 𝑑 = 1.

A different model for the noise was introduced in [9], which may allow for
the existence of a mild solution in higher dimensions. More precisely, this noise is
defined as a zero-mean Gaussian process 𝑊 = {𝑊 (𝜑);𝜑 ∈ 𝐶∞0 (ℝ+ × ℝ𝑑)} with
covariance functional

𝐽(𝜑, 𝜓) =

∫ ∞

0

∫
ℝ𝑑

∫
ℝ𝑑

𝜑(𝑡, 𝑥)𝜓(𝑡, 𝑦)𝑓(𝑥 − 𝑦)𝑑𝑥𝑑𝑦𝑑𝑡. (1.4)

By the Bochner-Schwartz theorem, 𝐽 is non-negative-definite if and only if the
function 𝑓 (the “spatial parameter” of the noise) is the Fourier transform in 𝒮 ′(ℝ𝑑)
of a tempered measure 𝜇.

In this case, for any functions 𝜑, 𝜓 in the space 𝒮(ℝ𝑑) of rapidly decreasing
infinitely differentiable functions on ℝ𝑑, we have:∫

ℝ𝑑

∫
ℝ𝑑

𝜑(𝑥)𝜓(𝑦)𝑓(𝑥 − 𝑦)𝑑𝑥𝑑𝑦 =

∫
ℝ𝑑
ℱ𝜑(𝜉)ℱ𝜓(𝜉)𝜇(𝑑𝜉),

where ℱ𝜑(𝜉) =
∫
ℝ𝑑

𝑒−𝑖𝜉⋅𝑥𝜑(𝑥)𝑑𝑥 denotes the Fourier transform of 𝜑.

Since 1[0,𝑡]×𝐴 ∈ ℋ for any 𝑡 > 0 and bounded Borel set 𝐴 ⊂ ℝ𝑑, one can
define a random field {𝑊 (𝑡, 𝑥) = 𝑊 (1[0,𝑡]×[0,𝑥])}𝑡>0,𝑥∈ℝ𝑑 , with covariance:

𝐸[𝑊 (𝑡, 𝑥)𝑊 (𝑠, 𝑦)] = (𝑡 ∧ 𝑠)

∫
[0,𝑥]

∫
[0,𝑦]

𝑓(𝑢− 𝑣)𝑑𝑢𝑑𝑣.

If 𝜇 is finite, the spatial component of this covariance is in fact the covari-
ance of a Gaussian process {𝑋(𝑥)}𝑥∈ℝ𝑑 defined as 𝑋(𝑥) =

∫
[0,𝑥]

𝑌 (𝑢)𝑑𝑢, where

{𝑌 (𝑥)}𝑥∈ℝ𝑑 is a stationary process with spectral measure 𝜇. In this case, the de-

rivative ∂𝑑𝑋
∂𝑥1...∂𝑥𝑑

(𝑥) exists in 𝐿2(Ω).

Note that when 𝑑 = 1, the Gaussian process {𝑊 (𝑡, 𝑥)}𝑥∈ℝ has stationary
increments (in space) for any 𝑡 > 0, since for any 𝑥, 𝑦, ℎ ∈ ℝ with 𝑥 < 𝑦, 𝑊 (𝑡, 𝑦)−
𝑊 (𝑡, 𝑥) has the same distribution as 𝑊 (𝑡, 𝑦 + ℎ)−𝑊 (𝑡, 𝑥 + ℎ). To see this, note
that

𝐸∣𝑊 (𝑡, 𝑦 + ℎ)−𝑊 (𝑡, 𝑥+ ℎ)∣2 =
∫ 𝑦+ℎ

𝑥+ℎ

∫ 𝑦+ℎ

𝑥+ℎ

𝑓(𝑢− 𝑣)𝑑𝑢𝑑𝑣

=

∫ 𝑦

𝑥

∫ 𝑦

𝑥

𝑓(𝑢− 𝑣)𝑑𝑢𝑑𝑣 = 𝐸∣𝑊 (𝑡, 𝑦)−𝑊 (𝑡, 𝑥)∣2.
The typical examples of measures 𝜇 are: (see Chapter V of [36])

(i) 𝜇(𝑑𝜉) = ∣𝜉∣−𝛼𝑑𝜉 for some 𝛼 ∈ (0, 𝑑), whose Fourier transform is the Riesz
kernel 𝑓(𝑥) = 𝑐𝛼,𝑑∣𝑥∣−(𝑑−𝛼);
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(ii) 𝜇(𝑑𝜉) = (1 + ∣𝜉∣2)−𝛼/2𝑑𝜉 for some 𝛼 > 0, whose Fourier transform is the
Bessel kernel

𝑓(𝑥) = 𝑐𝛼

∫ ∞

0

𝑤(𝛼−𝑑)/2−1𝑒−𝑤𝑒−∣𝑥∣
2/(4𝑤)𝑑𝑤.

In these examples, if 𝜑 ∈ ℋ, then 𝜑(𝑡, ⋅) is a distribution which lies in the

fractional Sobolev space 𝐻
−𝛼/2
2 (ℝ𝑑). Since in the case of the Bessel kernel, one

does not have any restrictions on the range of the parameter 𝛼, and the density of
the measure 𝜇 behaves as ∣𝜉∣−𝛼 when ∣𝜉∣ → ∞, one may say that the noise induced
by the Bessel kernel is the mathematical analogue of the power-law noise.

Further justification for this analogy comes from the fact that when 𝑑 = 1
and 𝜇(𝑑𝜉) = (1 + ∣𝜉∣2)−1𝑑𝜉, the Gaussian process {𝑊 (𝑡, 𝑥)}𝑥≥0 has the same
distribution as the process {𝑋(𝑥) =

∫ 𝑥
0
𝑌 (𝑠)𝑑𝑠, 𝑥 ≥ 0}, where {𝑌 (𝑡)}𝑡≥0 is an

Ornstein–Uhlenbeck process (i.e., a rescaled Brownian motion). To see this, re-
call that {𝑌 (𝑡)}𝑡≥0 is the solution of the stochastic differential equation 𝑑𝑌 (𝑡) =
−𝑎𝑌 (𝑡)𝑑𝑡 + 𝜎𝑑𝐵(𝑡), where 𝑎 > 0, 𝜎 > 0 and {𝐵(𝑡)}𝑡≥0 is a standard Brown-
ian motion. If the initial value 𝑌0 has a normal distribution with mean 0 and

variance 𝜎2

2𝑎 , then {𝑌 (𝑡)}𝑡≥0 is a zero-mean Gaussian process with covariance

𝑓(𝑡 − 𝑠) := 𝐸[𝑌 (𝑡)𝑌 (𝑠)] = 𝜎2

2𝑎 𝑒
−𝑎∣𝑡−𝑠∣ (see Example 6.8, Chapter 5 of [23]). In

this case, 𝑓 = ℱ𝑔 where 𝑔(𝜉) = 𝜎2

2𝜋 (𝑎
2 + ∣𝜉∣2)−1. When 𝑎 = 1 and 𝜎2 = 2𝜋,

𝑓 coincides with the Bessel kernel of order 2 (see Exercise 2.3.4, Chapter 8 of
[24]). The case of the colored noise with 𝛼 = 2 is known in the signal theory as
the brown(ian) noise, a term which may be justified by the fact that 𝑋(𝑥) is an
integral of a rescaled Brownian motion.

We have the following result.

Theorem 1.4. Let 𝐽 be the functional defined by (1.4). Let [0, 𝑇 ] ∋ 𝑡 �→ 𝑆(𝑡, ⋅) be a
deterministic function with values in the space of distributions with rapid decrease.
Denote by ℱ𝑆(𝑡, ⋅) the Fourier transform of 𝑆(𝑡, ⋅) in 𝒮 ′(ℝ𝑑). Suppose that 𝑆 is
non-negative, or

lim
ℎ↓0

∫ 𝑇

0

∫
ℝ𝑑

sup
𝑡<𝑟<𝑡+ℎ

∣ℱ𝑆(𝑟, ⋅)(𝜉) −ℱ𝑆(𝑡, ⋅)(𝜉)∣2𝜇(𝑑𝜉)𝑑𝑡 = 0.

If

𝐼𝑇 :=

∫ 𝑇

0

∫
ℝ𝑑
∣ℱ𝑆(𝑡, ⋅)(𝜉)∣2𝜇(𝑑𝜉)𝑑𝑡 <∞,

then 𝑆 ∈ ℋ and ∥𝑆∥2ℋ = 𝐼𝑇 . (By convention, we set 𝑆(𝑡, ⋅) = 0 if 𝑡 > 𝑇 .)

Assuming that the function [0, 𝑡] ∋ 𝑠 �→ 𝐺(𝑡−𝑠, 𝑥−⋅) satisfies the hypotheses
of Theorem 1.4, we infer that equation (1.1) has a mild solution if and only if∫

ℝ𝑑

∫ 𝑡

0

∣ℱ𝐺(𝑠, ⋅)(𝜉)∣2𝑑𝑠𝜇(𝑑𝜉) <∞. (1.5)
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Example. Assume that 𝐿 = ∂
∂𝑡 + (−Δ)𝑘, respectively 𝐿 = ∂2

∂2𝑡 + (−Δ)𝑘, for some

𝑘 > 0. Then ℱ𝐺(𝑡, ⋅)(𝜉) = exp(−𝑡∣𝜉∣2𝑘), respectively ℱ𝐺(𝑡, ⋅)(𝜉) = sin(𝑡∣𝜉∣𝑘)
∣𝜉∣𝑘 . In

both cases, one can show that condition (1.5) holds if and only if∫
ℝ𝑑

1

1 + ∣𝜉∣2𝑘 𝜇(𝑑𝜉) <∞. (1.6)

Note that when 𝜇(𝑑𝜉) = ∣𝜉∣−𝛼𝑑𝜉 for 𝛼 ∈ (0, 𝑑), condition (1.6) holds if and
only if 𝛼 > 𝑑− 2𝑘.

To allow for a greater flexibility in the choice of the parameter 𝛼, various
authors (e.g., [5, 19, 30, 37]) considered a noise whose temporal covariance is that
of the fractional Brownian motion (fBm). The fBm was introduced by Kolmogorov
in [25] (who called it “the Wiener spiral”), and is defined as a centered Gaussian
process (𝐵𝑡)𝑡≥0 with

𝐸[𝐵𝑡𝐵𝑠] =
1

2
(𝑡2𝐻 + 𝑠2𝐻 − ∣𝑡− 𝑠∣2𝐻 ) =: 𝑅𝐻(𝑡, 𝑠),

for some𝐻 ∈ (0, 1) (the Hurst parameter). The paths of the fBm are 𝛾-Hölder con-
tinuous for any 𝛾 ∈ (0, 𝐻). Hence, when 𝐻 > 1/2, the fBm paths are “smoother”
than those of the Brownian motion. The fBm has numerous applications and has
been used extensively in statistical analysis, as well as stochastic calculus.

When 𝐻 > 1/2, the covariance 𝑅𝐻 can be written as:

𝑅𝐻(𝑡, 𝑠) = 𝛼𝐻

∫ 𝑡

0

∫ 𝑠

0

∣𝑢− 𝑣∣2𝐻−2𝑑𝑢𝑑𝑣,

where 𝛼𝐻 = 𝐻(2𝐻 − 1). In this case, we consider a zero-mean Gaussian process
𝑊 = {𝑊 (𝜑);𝜑 ∈ 𝐶∞0 (ℝ+ × ℝ𝑑)} with covariance functional:

𝐽(𝜑, 𝜓) = 𝛼𝐻

∫
ℝ2

+

∫
ℝ2𝑑

𝜑(𝑢, 𝑥)𝜓(𝑣, 𝑦)∣𝑢 − 𝑣∣2𝐻−2𝑓(𝑥− 𝑦)𝑑𝑥𝑑𝑦𝑑𝑢𝑑𝑣

= 𝛼𝐻

∫
ℝ2

+

∫
ℝ𝑑
ℱ𝜑(𝑢, ⋅)(𝜉)ℱ𝜓(𝑣, ⋅)(𝜉)∣𝑢− 𝑣∣2𝐻−2𝜇(𝑑𝜉)𝑑𝑢𝑑𝑣. (1.7)

Remark 1.5. A detailed study of stochastic evolution equations driven by an
infinite-dimensional fBm can be found in [37]. In the case of the equations with
additive noise, the authors of [37] gave a necessary and sufficient condition for the
existence of a mild solution, which is valid for both cases 𝐻 > 1/2 and 𝐻 < 1/2.
However, in the case of equations with multiplicative noise, when the solution is
interpreted using a Skorohod integral, the existence of the mild solution can be
proved only in the case 𝐻 > 1/2. The recent article [22] examined the stochastic
heat equation with multiplicative fractional noise in time of Hurst index 𝐻 < 1/2,

but this noise is of the form ∂𝑊
∂𝑡 (𝑡, 𝑥), rather than the form ∂𝑑+1𝑊

∂𝑡∂𝑥1...∂𝑥𝑑
considered

in the present article.

The following theorem was proved in [6] under weaker conditions.
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Theorem 1.6. Let 𝐽 be the functional defined by (1.7). Let [0, 𝑇 ] ∋ 𝑡 �→ 𝑆(𝑡, ⋅) ∈
𝒮 ′(ℝ𝑑) be a deterministic function such that ℱ𝑆(𝑡, ⋅) is a function, and the map
(𝑡, 𝜉) �→ ℱ𝑆(𝑡, ⋅)(𝜉) is measurable and bounded. If

𝐼𝑇 = 𝛼𝐻

∫
ℝ𝑑

∫ 𝑇

0

∫ 𝑇

0

ℱ𝑆(𝑢, ⋅)(𝜉)ℱ𝑆(𝑣, ⋅)(𝜉)∣𝑢− 𝑣∣2𝐻−2𝑑𝑢𝑑𝑣𝜇(𝑑𝜉) <∞,

then 𝑆 ∈ ℋ and ∥𝑆∥2ℋ = 𝐼𝑇 . (By convention, we set 𝑆(𝑡, ⋅) = 0 if 𝑡 > 𝑇.)

By Definition 1.1, equation (1.1) has a mild solution if and only if the sto-
chastic integral on the RHS of (1.2) is well defined, i.e., 𝐺(𝑡 − ⋅, 𝑥− ⋅) ∈ ℋ. This
is equivalent to:

𝐼𝑡 =

∫
ℝ𝑑

∫ 𝑡

0

∫ 𝑡

0

ℱ𝐺(𝑢, ⋅)(𝜉)ℱ𝐺(𝑣, ⋅)(𝜉)∣𝑢 − 𝑣∣2𝐻−2𝑑𝑢𝑑𝑣𝜇(𝑑𝜉) <∞. (1.8)

(To see this, note that if 𝐺(𝑡 − ⋅, 𝑥 − ⋅) ∈ ℋ, then 𝐼𝑡 = ∥𝐺(𝑡 − ⋅, 𝑥 − ⋅)∥2ℋ < ∞.
On the other hand, if 𝐼𝑡 < ∞, then by applying Theorem 1.6 to the function
[0, 𝑡] ∋ 𝑠 �→ 𝐺(𝑡− 𝑠, 𝑥− ⋅), we infer that 𝐺(𝑡− ⋅, 𝑥− ⋅) ∈ ℋ.)

Example. (a) Using the same arguments as in Proposition 4.3 of [6] (in the case
𝑘 = 1), one can show that, if 𝐿 = ∂

∂𝑡 + (−Δ)𝑘 for 𝑘 > 0, condition (1.8) is
equivalent to ∫

ℝ𝑑

(
1

1 + ∣𝜉∣2𝑘
)2𝐻

𝜇(𝑑𝜉) <∞. (1.9)

This follows by providing upper and lower bounds for the inner integral 𝑑𝑢𝑑𝑣 in
the RHS of (1.8). For the upper bound, one uses the fact that

𝛼𝐻

∫ 𝑡

0

∫ 𝑡

0

𝜑(𝑢)𝜑(𝑣)∣𝑢 − 𝑣∣2𝐻−2𝑑𝑢𝑑𝑣 ≤ 𝑏𝐻

(∫ 𝑡

0

∣𝜑(𝑢)∣1/𝐻𝑑𝑢

)2𝐻

,

for any 𝜑 ∈ 𝐿1/𝐻([0, 𝑡]), which can be proved using Littlewood–Hardy inequality
and Hölder inequality (see[31]). If 𝑓 is the Riesz kernel of order 𝛼 ∈ (0, 𝑑), then
𝜇(𝑑𝜉) = ∣𝜉∣−𝛼𝑑𝜉 and condition (1.9) becomes 4𝐻𝑘 > 𝑑 − 𝛼. On the other hand,
when 𝑓 is the covariance kernel of the fractional Brownian sheet with indices
𝐻1, . . . , 𝐻𝑑 ∈ (12 , 1), i.e.,

𝑓(𝑥) =
𝑑∏
𝑖=1

(𝛼𝐻𝑖 ∣𝑥𝑖∣2𝐻𝑖−2), (1.10)

then 𝜇(𝑑𝜉) =
∏𝑑
𝑖=1(𝑐𝐻𝑖 ∣𝜉𝑖∣−(2𝐻𝑖−1))𝑑𝜉 for some constants 𝑐𝐻𝑖 > 0. In this case,

condition (1.9) is equivalent to 4𝐻𝑘 > 𝑑−∑𝑑
𝑖=1(2𝐻𝑖 − 1).

(b) If 𝐿 = ∂2

∂𝑡2 + (−Δ)𝑘 for 𝑘 > 0, condition (1.8) is equivalent to∫
ℝ𝑑

(
1

1 + ∣𝜉∣2𝑘
)𝐻+1/2

𝜇(𝑑𝜉) <∞. (1.11)

This is proved again by providing upper and lower bounds for the integral 𝑑𝑢𝑑𝑣
of (1.8). The idea is to write this integral in the spectral domain, using the fact
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that the Fourier transform of 𝛼𝐻 ∣𝑡∣2𝐻−2 in 𝒮 ′(ℝ) is 𝑐𝐻 ∣𝜏 ∣−(2𝐻−1) (see Theorem
4.3 of [1]). When 𝑓 is the Riesz kernel of order 𝛼 ∈ (0, 𝑑), condition (1.11) becomes
(2𝐻 + 1)𝑘 > 𝑑 − 𝛼. When 𝑓 is given by (1.10), condition (1.11) is equivalent to

(2𝐻 + 1)𝑘 > 𝑑−∑𝑑
𝑖=1(2𝐻𝑖 − 1).

Remark 1.7. In the recent article [2], it has been proved that (1.9) and (1.11)
remain the necessary and sufficient conditions for the existence of the mild solution
of the heat, respectively wave, equation, in the case 𝐻 < 1/2.

2. Non-linear SPDEs

The linear equation considered in the previous section is not appropriate for many
applications. Often, a more realistic model is the equation:

𝐿𝑢(𝑡, 𝑥) = 𝜎(𝑢(𝑡, 𝑥))�̇� (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ ℝ𝑑. (2.1)

Following an idea of [14], one would like to say that a process {𝑢(𝑡, 𝑥); 𝑡 ≥
0, 𝑥 ∈ ℝ𝑑} satisfying the integral equation:

𝑢(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) +

∫ 𝑡

0

∫
ℝ𝑑

𝐺(𝑡− 𝑠, 𝑥− 𝑦)𝜎(𝑢(𝑠, 𝑦))𝑊 (𝑑𝑠, 𝑑𝑦)

is a solution of (2.1). But to do this, one has to give a meaning to the stochastic
integral above, whose integrand is random, due to 𝑍(𝑠, 𝑦) = 𝜎(𝑢(𝑠, 𝑦)).

When 𝑊 is a space-time white noise, the following definition of stochastic
integral was used in [39]. (This definition was generalized in [8] to the case of
a spatially-homogeneous Gaussian noise and distribution-valued integrands.) If
{𝑍(𝑡, 𝑥)} is a predictable and 𝐿2(Ω)-bounded random field, and 𝑡 �→ 𝑔(𝑡, ⋅) is a
(deterministic) function, then∫ 𝑡

0

∫
ℝ𝑑

𝑔(𝑠, 𝑥)𝑍(𝑠, 𝑥)𝑊 (𝑑𝑠, 𝑑𝑥) =

∫ 𝑡

0

∫
ℝ𝑑

𝑔(𝑠, 𝑥)𝑊𝑍(𝑑𝑠, 𝑑𝑥),

where 𝑊𝑍 is the martingale measure: 𝑊𝑍
𝑡 (𝐴) =

∫ 𝑡
0

∫
𝐴
𝑍(𝑠, 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦).

The existence of the solution of (2.1) (with zero initial initial conditions) is
obtained using a Picard’s iteration scheme. Setting 𝑢0(𝑡, 𝑥) = 0 and

𝑢𝑛+1(𝑡, 𝑥) =

∫ 𝑡

0

∫
ℝ𝑑

𝐺(𝑡− 𝑠, 𝑥− 𝑦)𝜎(𝑢𝑛(𝑠, 𝑦))𝑊 (𝑑𝑠, 𝑑𝑦), ∀𝑛 ≥ 0,

one shows that {𝑢𝑛(𝑡, 𝑥)}𝑛 converges in 𝐿2(Ω), uniformly in (𝑡, 𝑥). The martingale
theory is a crucial tool in this development, leading to:

𝐸∣𝑢𝑛+1(𝑡, 𝑥)∣2 =

∫ 𝑡

0

∫
ℝ𝑑
∣𝐺(𝑡− 𝑠, 𝑥− 𝑦)∣2∣𝜎(𝑢𝑛(𝑠, 𝑦))∣2𝑑𝑦𝑑𝑠.

Since for 𝐻 ∕= 1/2, the fBm is not a semimartingale, the previous argument
breaks down in the case of a Gaussian noise with covariance functional 𝐽 given
by (1.7). There are two methods that can be used to circumvent this difficulty:
one is to exploit the sample path regularity of the fBm by defining a path-wise
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integral; the other is Malliavin calculus. The first method was used extensively
in the literature related to stochastic differential equations (SDEs), but is not
easily applicable to SPDEs. In this article, we use the Malliavin calculus, whose
basic ingredient is an isonormal Gaussian process, i.e., a centered Gaussian process
indexed by the elements of a Hilbert space, whose covariance preserves the inner
product in this space (see [33]).

In our case, {𝑊 (𝜑)}𝜑∈ℋ is an isonormal Gaussian process. We consider the
divergence operator 𝛿 : Dom 𝛿 ⊂ 𝐿2(Ω;ℋ) → 𝐿2(Ω), defined as the adjoint of
the Mallliavin derivative 𝐷 (see [33]). For any 𝑢 ∈ Dom 𝛿, we denote 𝛿(𝑢) =∫∞
0

∫
ℝ𝑑

𝑢(𝑡, 𝑥)𝑊 (𝛿𝑡, 𝛿𝑥). By Proposition 1.3.1 of [33],

𝐸∣𝛿(𝑢)∣2 = 𝐸∥𝑢∥2ℋ + 𝐸[Tr(𝐷𝑢 ∘𝐷𝑢)].

Whether the Picard’s iteration actually diverges (or whether there exists a modified
Picard’s iteration which converges) remains an open problem.

3. SPDEs with multiplicative noise

There is a way around this difficulty, when 𝜎(𝑥) = 𝑥. Consider the equation:

𝐿𝑢(𝑡, 𝑥) = 𝑢(𝑡, 𝑥)�̇� (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ ℝ𝑑. (3.1)

A candidate {𝑢(𝑡, 𝑥)}(𝑡,𝑥)∈ℝ+×ℝ𝑑 for a solution of (3.1) should satisfy the equation:

𝑢(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) +

∫ 𝑡

0

∫
ℝ𝑑

𝐺(𝑡− 𝑠, 𝑥− 𝑦)𝑢(𝑠, 𝑦)𝑊 (𝑑𝑠, 𝑑𝑦), (3.2)

where 𝑤 is the solution of the equation 𝐿𝑢 = 0 with some deterministic initial
conditions.

Remark 3.1. To see what 𝑤 looks like, we consider two examples. Suppose first
that 𝐿 = ∂

∂𝑡 − ℒ, where ℒ is the 𝐿2-generator of a 𝑑-dimensional Lévy process,
and the initial condition is 𝑢(0, ⋅) = 𝑢0. Then 𝑤(𝑡, 𝑥) = (𝑃𝑡𝑢0)(𝑥), where (𝑃𝑡)𝑡≥0
is the transition semigroup of the Lévy process. Assume next that 𝐿 = ∂2

∂𝑡2 −Δ,

𝑑 ≤ 2, and the initial conditions are 𝑢(0, ⋅) = 𝑢0,
∂𝑢
∂𝑡 (0, ⋅) = 𝑢1. Then

𝑤(𝑡, 𝑥) =
∂

∂𝑡
(𝐺(𝑡, ⋅) ∗ 𝑢0)(𝑥) + (𝐺(𝑡, ⋅) ∗ 𝑢1)(𝑥),

where ∗ denotes convolution and 𝐺 is the fundamental solution of the equation
𝐿𝑢 = 0:

𝐺(𝑡, 𝑥) =
1

2
1{∣𝑥∣<𝑡} if 𝑑 = 1

𝐺(𝑡, 𝑥) =
1

2𝜋
(𝑡2 − ∣𝑥∣2)−1/21{∣𝑥∣<𝑡} if 𝑑 = 2.

We now return to equation (3.2). The idea is to replace 𝑢(𝑠, 𝑦) in the RHS
of (3.2) by

𝑤(𝑠, 𝑦) +

∫ 𝑠

0

∫
ℝ𝑑

𝐺(𝑠− 𝑟, 𝑦 − 𝑧)𝑢(𝑟, 𝑧)𝑊 (𝑑𝑟, 𝑑𝑧),



12 R.M. Balan

and then iterate this procedure. Intuitively, the solution admits the series repre-
sentation 𝑢(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) +

∑
𝑛≥1 𝐽𝑛(𝑡, 𝑥), where

𝐽𝑛(𝑡, 𝑥) =

∫
𝑓𝑛(𝑡1, 𝑥1, . . . , 𝑡𝑛, 𝑥𝑛, 𝑡, 𝑥)𝑊 (𝑑𝑡1, 𝑑𝑥1) . . .𝑊 (𝑑𝑡𝑛, 𝑑𝑥𝑛),

𝑓𝑛(𝑡1, 𝑥1, . . . , 𝑡𝑛, 𝑥𝑛, 𝑡, 𝑥) =

𝑛∏
𝑖=1

𝐺(𝑡𝑖+1 − 𝑡𝑖, 𝑥𝑖+1 − 𝑥𝑖)𝑤(𝑡1, 𝑥1)1{0<𝑡1<⋅⋅⋅<𝑡𝑛<𝑡}, (3.3)

𝑡𝑛+1 = 𝑡 and 𝑥𝑛+1 = 𝑥. This idea, which originates in the seminal article [13], can
be made rigorous in the present context using Malliavin calculus.

Remark 3.2. In the case of the heat equation with infinite-dimensional fractional
noise, a similar chaos representation for the solution was proposed in [32], where it
was conjectured that the solution admits a certain Feynman–Kac representation.
This conjecture has been recently proved in [21].

We introduce the following definition.

Definition 3.3. A square-integrable adapted process {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑑} is
a solution of equation (3.1) if for any (𝑡, 𝑥) ∈ ℝ+ × ℝ𝑑, the process 𝑣(𝑡,𝑥) =
𝐺(𝑡− ⋅, 𝑥− ⋅)𝑢 belongs to Dom 𝛿 and

𝑢(𝑡, 𝑥) = 𝑤(𝑡, 𝑥) + 𝛿(𝑣(𝑡,𝑥))

Any random variable 𝐹 ∈ 𝐿2(Ω) admits the Wiener chaos representation 𝐹 =∑
𝑛≥0 𝐼𝑛(𝑓𝑛), where 𝐼𝑛 is the multiple Wiener integral of order 𝑛 and 𝑓𝑛 ∈ ℋ⊗𝑛

(see [33]). In particular, 𝐸∣𝐹 ∣2 =
∑
𝑛≥0 𝑛!∥𝑓𝑛∥ℋ⊗𝑛 , 𝑓𝑛 being the symmetrization

of 𝑓𝑛. Based on the heuristics above, a natural candidate for the solution is a
square-integrable process {𝑢(𝑡, 𝑥); 𝑡 ≥ 0, 𝑥 ∈ ℝ𝑑} given by

𝑢(𝑡, 𝑥) =
∑
𝑛≥0

𝐼𝑛(𝑓𝑛(⋅, 𝑡, 𝑥)), (3.4)

provided that the kernel 𝑓𝑛(⋅, 𝑡, 𝑥) given by (3.3) lies in ℋ⊗𝑛.
When 𝐺(𝑡, ⋅) is a distribution, one has to give a meaning to 𝑓𝑛(⋅, 𝑡, 𝑥) using its

action on test functions. The second task is to find suitable conditions which ensure
that 𝑓𝑛(⋅, 𝑡, 𝑥) lies in ℋ⊗𝑛, by generalizing Theorem 1.6 to multiple variables.
Third, one has to show that 𝑢(𝑡, 𝑥) given by (3.4) is a solution of (3.1). We refer
the reader to Section 2 of [3] for the details.

Note that

𝐸∣𝑢(𝑡, 𝑥)∣2 =
∑
𝑛≥1

𝐸∣𝐼𝑛(𝑓𝑛(⋅, 𝑡, 𝑥))∣2 =
∑
𝑛≥1

𝑛!∥𝑓𝑛(⋅, 𝑡, 𝑥)∥2ℋ⊗𝑛 ,

where 𝑓𝑛(⋅, 𝑡, 𝑥) is the symmetrization of 𝑓𝑛(𝑡, 𝑥). If 𝑓𝑛(⋅, 𝑡, 𝑥) is a function,

𝑓𝑛(𝑡1, 𝑥1, . . . , 𝑡𝑛, 𝑥𝑛, 𝑡, 𝑥) =
1

𝑛!

∑
𝜌∈𝑆𝑛

𝑓𝑛(𝑡𝜌(1), 𝑥𝜌(1), . . . , 𝑡𝜌(𝑛), 𝑥𝜌(𝑛), 𝑡, 𝑥), (3.5)

where 𝑆𝑛 denotes the set of all permutations of {1, . . . , 𝑛}.
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A sufficient condition for the existence of a solution {𝑢(𝑡, 𝑥)}(𝑡,𝑥)∈ℝ+×ℝ𝑑 is

that the series of (3.4) converges in 𝐿2(Ω), i.e.,

𝐼(𝑡) :=
∑
𝑛≥1

𝑛!∥𝑓𝑛(⋅, 𝑡, 𝑥)∥2ℋ⊗𝑛 <∞. (3.6)

We should point out that the question of the uniqueness of the solution
remains an open problem.

4. The wave equation

The remaining part of this article is dedicated to verifying condition (3.6) in the
case of the wave equation (in arbitrary dimension 𝑑 ≥ 1). Similar arguments work
for the heat equation. For this, we assume that the covariance functional 𝐽 is given
by (1.7) with 𝑓 being the Riesz kernel of order 𝛼 ∈ (0, 𝑑), i.e.,

𝑓(𝑥) = 𝑐𝛼,𝑑∣𝑥∣−(𝑑−𝛼) and 𝜇(𝑑𝜉) = ∣𝜉∣−𝛼𝑑𝜉.
We consider the equation:

∂2𝑢

∂𝑡2
(𝑡, 𝑥) = Δ𝑢(𝑡, 𝑥) + 𝑢(𝑡, 𝑥)�̇� (𝑡, 𝑥) 𝑡 > 0, 𝑥 ∈ ℝ𝑑

with initial conditions 𝑢(0, ⋅) = 1 and ∂𝑢
∂𝑡 𝑢(0, ⋅) = 0. In this case, 𝑤 = 1 and

ℱ𝐺(𝑡, ⋅) = sin(𝑡∣𝜉∣)
∣𝜉∣ for any 𝑡 > 0, 𝜉 ∈ ℝ𝑑.

Letting 𝛼𝑛(𝑡) = (𝑛!)2∥𝑓𝑛(⋅, 𝑡, 𝑥)∥2ℋ⊗𝑛 , condition (3.6) becomes:∑
𝑛≥1

1

𝑛!
𝛼𝑛(𝑡) <∞. (4.1)

We proceed to the calculation of 𝛼𝑛(𝑡). Assume first that 𝑑 ≤ 2, so that
𝐺(𝑡, ⋅) is a function. Then

𝛼𝑛(𝑡) = (𝑛!)2𝛼𝑛𝐻

∫
[0,𝑡]2𝑛

𝑑t𝑑s

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2
∫
ℝ2𝑛𝑑

𝑑x𝑑y

𝑛∏
𝑗=1

𝑓(𝑥𝑗 − 𝑦𝑗)

𝑓𝑛(𝑡1, 𝑥1, . . . , 𝑡𝑛, 𝑥𝑛, 𝑡, 𝑥)𝑓𝑛(𝑠1, 𝑦1, . . . , 𝑠𝑛, 𝑦𝑛, 𝑡, 𝑥),

where t = (𝑡1, . . . , 𝑡𝑛), s = (𝑠1, . . . , 𝑠𝑛), x = (𝑥1, . . . , 𝑥𝑛) and y = (𝑦1, . . . , 𝑦𝑛).
When 𝑑 ≥ 3, 𝐺(𝑡, ⋅) is a distribution. To calculate the ∥ ⋅ ∥2ℋ⊗𝑛-norm of

𝑓𝑛(⋅, 𝑡, 𝑥), we use a generalization of (1.7) to multiple variables (see Theorem 2.2
of [3]). In this case, 𝛼𝑛(𝑡) can be computed using the fact that ℱ𝐺(𝑡, ⋅) is a function:

𝛼𝑛(𝑡) = (𝑛!)2𝛼𝑛𝐻

∫
[0,𝑡]2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2
∫
ℝ𝑛𝑑

ℱ𝑓𝑛(𝑡1, ⋅, . . . , 𝑡𝑛, ⋅, 𝑡, 𝑥)(𝝃)

ℱ𝑓𝑛(𝑠1, ⋅, . . . , 𝑠𝑛, ⋅, 𝑡, 𝑥)(𝝃)𝜇(𝑑𝜉1) . . . 𝜇(𝑑𝜉𝑛)𝑑t𝑑s,
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where 𝝃 = (𝜉1, . . . , 𝜉𝑛). One can show that:

ℱ𝑓𝑛(𝑡1, ⋅, . . . , 𝑡𝑛, ⋅, 𝑡, 𝑥)(𝝃) = 1

𝑛!
𝑒−𝑖(𝜉1+⋅⋅⋅+𝜉𝑛)⋅𝑥

∑
𝜌∈𝑆𝑛

ℱ𝐺(𝑢1, ⋅)(𝜉𝜌(1))

ℱ𝐺(𝑢2, ⋅)(𝜉𝜌(1)+𝜌(2)) . . .ℱ𝐺(𝑢𝑛, ⋅)(𝜉𝜌(1) + ⋅ ⋅ ⋅+ 𝜉𝜌(𝑛))1{𝑡𝜌(1)<⋅⋅⋅<𝑡𝜌(𝑛)}

where 𝑢𝑗 = 𝑡𝜌(𝑗+1) − 𝑡𝜌(𝑗) for all 1 ≤ 𝑗 ≤ 𝑛, and 𝑡𝜌(𝑛+1) = 𝑡.
We obtain:

𝛼𝑛(𝑡) = 𝛼𝑛𝐻

∫
(0,𝑡)2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2𝜓𝑛(t, s)𝑑t𝑑s, (4.2)

where t = (𝑡1, . . . , 𝑡𝑛) and s = (𝑠1, . . . , 𝑠𝑛). The function 𝜓𝑛(t, s) is given by:

𝜓𝑛(t, s) =

∫
ℝ𝑛𝑑

𝐻𝑛(t, 𝜉1, . . . , 𝜉𝑛)𝐻𝑛(s, 𝜉1, . . . , 𝜉𝑛)𝜇(𝑑𝜉1) . . . 𝜇𝑛(𝑑𝜉𝑛),

where

𝐻𝑛(t, 𝜉1, . . . , 𝜉𝑛) =

𝑛∏
𝑗=1

ℱ𝐺(𝑢𝑗 , ⋅)(𝜉𝜌(1) + ⋅ ⋅ ⋅+ 𝜉𝜌(𝑗)),

if 𝑡𝜌(1) < ⋅ ⋅ ⋅ < 𝑡𝜌(𝑛), and we denote 𝑢𝑗 = 𝑡𝜌(𝑗+1) − 𝑡𝜌(𝑗) and 𝑡𝜌(𝑛+1) = 𝑡.
The difficulty in the calculation of 𝜓𝑛(t, s) stems from the fact that the two

𝑛-tuples t = (𝑡1, . . . , 𝑡𝑛) and s = (𝑠1, . . . , 𝑠𝑛) are ordered by different permutations
𝜌 and 𝜎, so that 𝑡𝜌(1) < ⋅ ⋅ ⋅ < 𝑡𝜌(𝑛) and 𝑠𝜎(1) < ⋅ ⋅ ⋅ < 𝑠𝜎(𝑛).

Remark 4.1. A similar calculation of 𝛼𝑛(𝑡) was carried out in [20], in the case of the
stochastic heat equation with white noise in space. In this case, 𝜇 is the Lebesgue
measure on ℝ𝑑 and 𝜓𝑛(t, s) = (2𝜋)−𝑛𝑑/2det[𝑀(s)+𝑀(t)]−𝑑/2, where 𝑀(s) is the
matrix with entries (𝑠𝑖∧𝑠𝑗)1≤𝑖,𝑗≤𝑑. To separate the two terms (depending on s and
t), the authors of [20] use the inequality: det[𝑀(s)+𝑀(t)] ≥ det𝑀(s) + det𝑀(t)
(see page 294 of [20]). This technique is specific to the white noise in space and
cannot be employed when 𝜇(𝑑𝜉) = ∣𝜉∣−𝛼𝑑𝜉.

To avoid the problem of the two different permutations and separate the
terms depending on t and s, we use the Cauchy–Schwarz inequality. Although this
method may not yield a sharp estimate, it seems to be the only way out of this
difficulty for the present time. We obtain:

𝜓𝑛(t, s) ≤ 𝜓𝑛(t, t)
1/2𝜓𝑛(s, s)

1/2. (4.3)

To calculate 𝜓𝑛(t, t), let 𝑢𝑗 = 𝑡𝜌(𝑗+1) − 𝑡𝜌(𝑗) for 𝑗 = 1, . . . , 𝑛. Using first the
change of variable 𝜉′𝑗 = 𝜉𝜌(𝑗), and then 𝜂𝑗 = 𝜉′1 + ⋅ ⋅ ⋅+ 𝜉′𝑗 , we get:

𝜓𝑛(t, t) =

∫
ℝ𝑑

𝑑𝜂1
sin2(𝑢1∣𝜂1∣)

∣𝜂1∣2 ∣𝜂1∣−𝛼
∫
ℝ𝑑

𝑑𝜂2
sin2(𝑢2∣𝜂2∣)

∣𝜂2∣2 ∣𝜂2 − 𝜂1∣−𝛼 . . .∫
ℝ𝑑

𝑑𝜂𝑛
sin2(𝑢𝑛∣𝜂𝑛∣)

∣𝜂𝑛∣2 ∣𝜂𝑛 − 𝜂𝑛−1∣−𝛼.

The inner integral above is estimated by the following lemma.
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Lemma 4.2. Assume that 𝑑− 2 < 𝛼 < 𝑑. Then,

𝐼 :=

∫
ℝ𝑑

sin2(𝑡∣𝜉∣)
∣𝜉∣2 ∣𝜉 − 𝜂∣−𝛼𝑑𝜉 ≤ 𝐶𝛼,𝑑𝑡

𝛼−𝑑+2, for any 𝑡 > 0, 𝜂 ∈ ℝ𝑑.

Proof. Using the change of variable 𝜉′ = 𝑡𝜉, we obtain,

𝐼 = 𝑡𝛼−𝑑+2

∫
ℝ𝑑

sin2(∣𝜉′∣)
∣𝜉′∣2 ∣𝜉′ − 𝑡𝜂∣−𝛼𝑑𝜉′.

We claim that there exists a constant 𝐶𝛼,𝑑 > 0 such that:

𝐼(𝑎) :=

∫
ℝ𝑑

sin2(∣𝜉∣)
∣𝜉∣2 ∣𝑎− 𝜉∣−𝛼𝑑𝜉 ≤ 𝐶𝛼,𝑑, ∀𝑎 ∈ ℝ𝑑.

To see this, we change the variable 𝑎− 𝜉 into 𝜉, and we write

𝐼(𝑎) =

∫
∣𝜉∣≤1

sin2(∣𝜉 − 𝑎∣)
∣𝜉 − 𝑎∣2 ∣𝜉∣−𝛼𝑑𝜉 +

∫
∣𝜉∣>1

sin2(∣𝜉 − 𝑎∣)
∣𝜉 − 𝑎∣2 ∣𝜉∣−𝛼𝑑𝜉 =: 𝐼1(𝑎) + 𝐼2(𝑎).

For 𝐼1(𝑎), we use the fact that ∣ sin 𝑥𝑥 ∣ ≤ 1 for any 𝑥 > 0. Hence

𝐼1(𝑎) ≤
∫
∣𝜉∣≤1

∣𝜉∣−𝛼𝑑𝜉 = 𝑐𝑑

∫ 1

0

𝜆−𝛼+𝑑−1𝑑𝜆 = 𝑐𝑑
1

𝑑− 𝛼
,

where 𝑐𝑑 > 0 is a constant depending on 𝑑. For 𝐼2(𝑎), we use the fact that

sin2(𝑡∣𝜉∣)
∣𝜉∣2 ≤ 2(𝑡2 + 1)

1

1 + ∣𝜉∣2 , ∀𝑡 > 0, ∀𝜉 ∈ ℝ𝑑.

(see p. 81 of [35]). In our case, 𝑡 = 1. Hence

𝐼2(𝑎) ≤ 4

∫
∣𝜉∣>1

1

1 + ∣𝜉 − 𝑎∣2 ∣𝜉∣
−𝛼𝑑𝜉 ≤ 4 sup

𝑎∈ℝ𝑑

∫
ℝ𝑑

1

1 + ∣𝜉 − 𝑎∣2 ∣𝜉∣
−𝛼𝑑𝜉.

Finally, we observe that 𝛼 > 𝑑 − 2 is equivalent to
∫
ℝ𝑑

1
1+∣𝜉∣2 ∣𝜉∣−𝛼𝑑𝜉 < ∞,

which is in turn equivalent to: (see (5.5) of [7])

sup
𝑎∈ℝ𝑑

∫
ℝ𝑑

1

1 + ∣𝜉 − 𝑎∣2 ∣𝜉∣
−𝛼𝑑𝜉 <∞. □

Using Lemma 4.2 iteratively, we obtain that:

𝜓𝑛(t, t) ≤ 𝐶𝑛𝛼,𝑑(𝑢1 . . . 𝑢𝑛)
𝛼−𝑑+2. (4.4)

From (4.3) and (4.4), it follows that:

𝜓𝑛(t, s) ≤ 𝐶𝑛𝛼,𝑑[𝛽(t)𝛽(s)]
(𝛼−𝑑+2)/2 (4.5)

where 𝛽(t) =
∏𝑛
𝑗=1(𝑡𝜌(𝑗+1) − 𝑡𝜌(𝑗)) and 𝛽(s) =

∏𝑛
𝑗=1(𝑠𝜎(𝑗+1) − 𝑠𝜎(𝑗)). Here 𝜌 and

𝜎 are the permutations which arrange in increasing order the points {𝑡1, . . . , 𝑡𝑛},
respectively {𝑠1, . . . , 𝑠𝑛}.

From (4.2) and (4.5), we obtain:

𝛼𝑛(𝑡) ≤ (𝛼𝐻𝐶𝛼,𝑑)
𝑛

∫
(0,𝑡)2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2[𝛽(t)𝛽(s)](𝛼−𝑑+2)/2𝑑t𝑑s. (4.6)
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Note that (4.6) is the wave equation analogue of the estimate (3.14) obtained in
[20] for the heat equation with white noise in space (in dimension 𝑑 = 1).

We proceed as in the proof of (3.15) of [20]. Using the Cauchy–Schwarz

inequality and the fact that sup𝑟≤𝑡
∫ 𝑡
0 ∣𝑟 − 𝑠∣2𝐻−2𝑑𝑟 ≤ 𝑐𝐻𝑡2𝐻−1, we obtain:

𝛼𝑛(𝑡) ≤ (𝛼𝐻𝐶𝛼,𝑑)
𝑛

⎧⎨⎩
∫
(0,𝑡)2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2𝛽(t)𝛼−𝑑+2𝑑t𝑑s

⎫⎬⎭
1/2

⎧⎨⎩
∫
(0,𝑡)2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2𝛽(s)𝛼−𝑑+2𝑑t𝑑s

⎫⎬⎭
1/2

= (𝛼𝐻𝐶𝛼,𝑑)
𝑛

∫
(0,𝑡)𝑛

𝛽(t)𝛼−𝑑+2

⎛⎝∫
(0,𝑡)𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2𝑑s
⎞⎠ 𝑑t

≤ (𝑐𝐻𝛼𝐻𝐶𝛼,𝑑)
𝑛𝑡𝑛(2𝐻−1)𝑛!

∫
0<𝑡1<⋅⋅⋅<𝑡𝑛<𝑡

[(𝑡− 𝑡𝑛) . . . (𝑡2 − 𝑡1)]
𝛼−𝑑+2𝑑t.

To compute the last integral, we note that for any ℎ > −1,∫
0<𝑡1<⋅⋅⋅<𝑡𝑛<𝑡

[(𝑡− 𝑡𝑛) . . . (𝑡2 − 𝑡1)]
ℎ𝑑t =

1

Γ((1 + ℎ)𝑛+ 1)
Γ(1 + ℎ)𝑛+1𝑡𝑛(1+ℎ).

Letting ℎ = 𝛼−𝑑+2, and using the fact that Γ((1+ℎ)𝑛+1) ∼ (𝑛!)1+ℎ, we obtain:

𝛼𝑛(𝑡) ≤ 𝐶𝑛𝛼,𝑑,𝐻𝑡𝑛(2𝐻+𝛼−𝑑+2) 1

(𝑛!)𝛼−𝑑+2
, (4.7)

where 𝐶𝛼,𝑑,𝐻 > 0 is a constant depending on 𝛼, 𝑑 and 𝐻 .
The major drawback of the previous method is that it yields an upper bound

for 𝛼𝑛(𝑡) in which the power of 𝑛! does not depend on 𝐻 . Clearly, from (4.7),
we see that (4.1) holds if 𝛼 > 𝑑 − 2. But this is the same condition as the one
obtained for the existence of the mild solution in the case of the white noise in time
(see Remark 5.2 of [7]). In fact, in the case of the wave equation, the restriction
𝛼 > 𝑑− 2 comes from Lemma 4.2, which is a key step in all these developments.
One would hope that in the case of the fractional noise in time, the condition for
the existence of the mild solution could be relaxed so that it would reflect the
influence of the time parameter 𝐻 . Unfortunately, this remains an open problem.

Remark 4.3. Similar calculations can be done for the heat equation:

∂𝑢

∂𝑡
(𝑡, 𝑥) =

1

2
Δ𝑢(𝑡, 𝑥) + 𝑢(𝑡, 𝑥)�̇� (𝑡, 𝑥), 𝑡 > 0, 𝑥 ∈ ℝ𝑑 (4.8)

with deterministic initial condition 𝑢(0, ⋅) = 𝑢0. In this case, ℱ𝐺(𝑡, ⋅)(𝜉) = 𝑒−𝑡∣𝜉∣
2/2

and instead of Lemma 4.2, one uses the following estimate:∫
ℝ𝑑

𝑒−𝑡∣𝜉∣
2 ∣𝜉 − 𝜂∣−𝛼𝑑𝜉 ≤ 𝐶𝛼,𝑑𝑡

−(𝑑−𝛼)/2,
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for any 𝛼 ∈ (0, 𝑑), where 𝐶𝛼,𝑑 > 0 is a constant depending on 𝛼 and 𝑑.
Using the same procedure as above, this leads to the estimates: 𝜓𝑛(t, s) ≤
𝐶𝑛𝛼,𝑑[𝛽(t)𝛽(s)]

−(𝑑−𝛼)/4 and

𝛼𝑛(𝑡) ≤ (𝛼𝐻𝐶𝛼,𝑑)
𝑛

∫
(0,𝑡)2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2[𝛽(t)𝛽(s)]−(𝑑−𝛼)/4𝑑t𝑑s.

(Note that the last inequality coincides with (3.14) of [20], in the case 𝑑 = 1 and
𝛼 = 0.) We infer that

𝛼𝑛(𝑡) ≤ 𝐶𝑛𝛼,𝑑,𝐻𝑡𝑛[2𝐻−(𝑑−𝛼)/2](𝑛!)(𝑑−𝛼)/2,

which results in the same problem mentioned above for the wave equation. Again,
(4.1) holds if 𝛼 > 𝑑 − 2, but this last condition may not be optimal. It should
be pointed out that the estimate (3.15) of [20] also does not contain the time
parameter 𝐻 in the power of 𝑛!, and therefore the existence result of [20] can be
viewed as sub-optimal too. More precisely, in the case of the linear heat equation
𝑢𝑡 = 1

2Δ𝑢 + �̇� with white noise in space and 𝐻 > 1/2, the condition for the
existence of the mild solution is known to be 𝐻 > 𝑑/4 (see Theorem 2.7 of [5]).
Since𝐻 < 1, this means that 𝑑 can be 1, 2 or 3. However, in the case of the equation
(4.8) with white noise in space, Proposition 4.3 of [20] proved the existence (and
uniqueness) of the mild solution only in the case 𝑑 = 1, and for 𝑑 = 2, only up to
a time 𝑇0. The necessary condition for the existence of a mild solution of the heat
equation remains to be found.

Remark 4.4. The difficulty with the calculation of 𝛼𝑛(𝑡) is due mainly to the
fractional component of the noise. In the case of the white noise in time, the
calculation of 𝛼𝑛(𝑡) is much simpler. In this case, for each 𝑛 ≥1, there is a single
term which appears in the series (3.6), since

𝑛!∥𝑓𝑛(⋅, 𝑡, 𝑥)∥2ℋ⊗𝑛 = ∥𝑓𝑛(⋅, 𝑡, 𝑥)∥2ℋ⊗𝑛 .

To see this, note that in the case of the white noise in time,

𝛼𝑛(𝑡) = (𝑛!)2𝛼𝑛𝐻

∫
(0,𝑡)𝑛

𝑑t

∫
ℝ2𝑛𝑑

𝑑x𝑑y

𝑛∏
𝑗=1

𝑓(𝑥𝑗 − 𝑦𝑗)

𝑓𝑛(𝑡1, 𝑥1, . . . , 𝑡𝑛, 𝑥𝑛, 𝑡, 𝑥)𝑓𝑛(𝑡1, 𝑦1, . . . , 𝑡𝑛, 𝑦𝑛, 𝑡, 𝑥).

Assume that 𝑓𝑛(⋅, 𝑡, 𝑥) is a function, and use the definition (3.5) of 𝑓𝑛(⋅, 𝑡, 𝑥).
Since the formula (3.3) of 𝑓𝑛(𝑡1, 𝑥1, . . . , 𝑡𝑛, 𝑥𝑛, 𝑡, 𝑥) contains the indicator of the
set {0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 < 𝑡}, it follows that

𝑓𝑛(𝑡𝜌(1), 𝑥𝜌(1), . . . , 𝑡𝜌(𝑛), 𝑥𝜌(𝑛), 𝑡, 𝑥)𝑓𝑛(𝑡𝜎(1), 𝑦𝜎(1), . . . , 𝑡𝜎(𝑛), 𝑦𝜎(𝑛), 𝑡, 𝑥) = 0,

for any 𝜌, 𝜎 ∈ 𝑆𝑛 with 𝜌 ∕= 𝜎. Hence,

𝛼𝑛(𝑡) = 𝛼𝑛𝐻
∑
𝜌∈𝑆𝑛

∫
(0,𝑡)𝑛

𝑑t

∫
ℝ2𝑛𝑑

𝑑x𝑑y

𝑛∏
𝑗=1

𝑓(𝑥𝑗 − 𝑦𝑗)

𝑓𝑛(𝑡𝜌(1), 𝑥𝜌(1), . . . , 𝑡𝜌(𝑛), 𝑥𝜌(𝑛), 𝑡, 𝑥)𝑓𝑛(𝑡𝜌(1), 𝑦𝜌(1), . . . , 𝑡𝜌(𝑛), 𝑦𝜌(𝑛), 𝑡, 𝑥).
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Due to the symmetry of the integrand, this leads to:

𝛼𝑛(𝑡) = 𝑛!∥𝑓𝑛(⋅, 𝑡, 𝑥)∥2ℋ⊗𝑛 .

Remark 4.5. The recent article [21] considered the heat equation (4.8) driven by
a Gaussian noise 𝑊 with covariance functional given by (1.7), where 𝑓 is given by

(1.10). In this case, 𝜇(𝑑𝜉) =
∏𝑑
𝑖=1(𝑐𝐻𝑖 ∣𝜉𝑖∣−(2𝐻𝑖−1))𝑑𝜉 for some constants 𝑐𝐻𝑖 > 0.

Under the condition
∑𝑑
𝑖=1(2𝐻𝑖 − 1) > 𝑑 − 4𝐻 + 2, the authors of [21] estab-

lished Feynman–Kac (FK) formulas for both the weak solution (defined using the
Stratonovich integral) and the mild solution (defined using the Skorohod integral,

as in the present paper). The idea of the proof is to replace �̇� by a regularization

�̇� 𝜀,𝛿, write down a FK formula for the solution 𝑢𝜀,𝛿(𝑡, 𝑥) of the heat equation with
regularized noise, and then show that 𝑢𝜀,𝛿(𝑡, 𝑥) converges in 𝐿2(Ω) to the solution
𝑢(𝑡, 𝑥), as 𝜀 → 0 and 𝛿 → 0. This idea may be carried over to the wave equation,
using a different type of FK formula for the wave equation (developed recently in
[11]), but the details are non-trivial. On the other hand, a careful inspection of
the proofs of [21] shows that the same FK formula for the heat equation continue
to hold if one replaces 𝑓 in (1.10) by the Riesz kernel 𝑓(𝑥) = 𝑐𝛼,𝑑∣𝑥∣−(𝑑−𝛼), with
𝛼 ∈ (0, 𝑑). In this case, the condition for the FK formula is 𝛼 > 𝑑 − 4𝐻 + 2,
which is stronger than the condition 𝛼 > 𝑑 − 2 for the existence of the mild so-
lution, obtained using the methods of the present article (see Remark 4.3). Note
that when 𝑑 = 1 and 𝛼 = 0 (i.e., the noise is white in space), the mild solution
exists for any 𝐻 > 1/2, but a Feynman–Kac formula can be written down only for
𝐻 > 3/4. In particular, there is no Feynman–Kac formula for the equation driven
by a space-time white noise (i.e., 𝑑 = 1, 𝛼 = 0 and 𝐻 = 1/2).

Remark 4.6. A different idea for finding an upper bound for 𝛼𝑛(𝑡) would be to
estimate first the 𝑑t𝑑s integral, as it was done in [6] in the case of the linear wave
(or heat) equation. More precisely, using (4.2) and Fubini’s theorem,

𝛼𝑛(𝑡) =

∫
ℝ𝑛𝑑

𝑁
(𝑛)
𝑡 (𝜉1, . . . , 𝜉𝑛)𝜇(𝑑𝜉1) . . . 𝜇(𝑑𝜉𝑛),

where

𝑁
(𝑛)
𝑡 (𝝃) = 𝛼𝑛𝐻

∫
(0,𝑡)2𝑛

𝑛∏
𝑗=1

∣𝑡𝑗 − 𝑠𝑗 ∣2𝐻−2𝐻(t, 𝝃)𝐻(s; 𝝃)𝑑t𝑑s

and 𝝃 = (𝜉1, . . . , 𝜉𝑑). In particular, 𝛼1(𝑡) =
∫
ℝ𝑑

𝑁
(1)
𝑡 (𝜉)𝜇(𝑑𝜉), where

𝑁
(1)
𝑡 (𝜉) = 𝛼𝐻

∫ 𝑡

0

∫ 𝑡

0

∣𝑟 − 𝑠∣2𝐻−2ℱ𝐺(𝑡− 𝑠, ⋅)(𝜉)ℱ𝐺(𝑡 − 𝑟, ⋅)(𝜉)𝑑𝑠𝑑𝑟.

The recent Theorem 4.3 of [1] showed that for any 𝑡 > 0 and 𝜉 ∈ ℝ𝑑,

𝑐𝑡,𝐻

(
1

1 + ∣𝜉∣2
)𝐻+1/2

≤ 𝑁
(1)
𝑡 (𝜉) ≤ 𝐶𝑡,𝐻

(
1

1 + ∣𝜉∣2
)𝐻+1/2

, (4.9)
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where 𝐶𝑡,𝐻 > 0 is increasing in 𝑡. Therefore, 𝛼1(𝑡) <∞ if and only if∫
ℝ𝑑

(
1

1 + ∣𝜉∣2
)𝐻+1/2

𝜇(𝑑𝜉) <∞, (4.10)

which is the necessary and sufficient condition for the existence of the solution of
the linear wave equation. (In [6], only the upper bound in (4.9) was proved, while
for the necessity part, an indirect argument was used.) When 𝜇(𝑑𝜉) = ∣𝜉∣−𝛼 for
𝛼 ∈ (0, 𝑑), condition (4.10) becomes 𝛼 > 𝑑− 2𝐻 − 1.

In the case of arbitrary 𝑛, 𝑁
(𝑛)
𝑡 (𝝃) is a sum of (𝑛!)2 terms, since each of

𝐻(t, 𝝃) and 𝐻(s, 𝝃) is a sum of 𝑛! terms. Hence, 𝛼𝑛(𝑡) is a sum of (𝑛!)2 terms.

To see what these terms look like, consider the case 𝑛 = 2. 𝑁
(2)
𝑡 (𝜉1, 𝜉2) is the sum

of 4 terms, which correspond to the integrals over the regions {𝑡1 < 𝑡2, 𝑠1 < 𝑠2},
{𝑡1 < 𝑡2, 𝑠2 < 𝑠1}, {𝑡2 < 𝑡1, 𝑠1 < 𝑠2}, and {𝑡2 < 𝑡1, 𝑠2 < 𝑠1}. We examine the term

𝑁
(2)
𝑡,2 (𝜉1, 𝜉2), corresponding to the region {𝑡1 < 𝑡2, 𝑠2 < 𝑠1}:

𝑁
(2)
𝑡,2 (𝜉1, 𝜉2) = 𝛼2

𝐻

∫
(0,𝑡)4

∣𝑡1 − 𝑠1∣2𝐻−2∣𝑡2 − 𝑠2∣2𝐻−2𝜙𝝃(𝑡1, 𝑡2)𝜓𝝃(𝑠1, 𝑠2)𝑑t𝑑s,

where 𝝃 = (𝜉1, 𝜉2) and

𝜙𝝃(𝑡1, 𝑡2) = ℱ𝐺(𝑡2 − 𝑡1; ⋅)(𝜉1)ℱ𝐺(𝑡− 𝑡2; ⋅)(𝜉1 + 𝜉2)1{𝑡1<𝑡2}
𝜓𝝃(𝑠1, 𝑠2) = ℱ𝐺(𝑠1 − 𝑠2; ⋅)(𝜉2)ℱ𝐺(𝑡 − 𝑠1; ⋅)(𝜉1 + 𝜉2)1{𝑠2<𝑠1}.

By the Cauchy–Schwarz inequality,

𝑁
(2)
𝑡,2 (𝜉1, 𝜉2) ≤ ∥𝜙𝝃∥ ⋅ ∥𝜓𝝃∥,

where

∥𝜙𝝃∥2 = 𝛼2
𝐻

∫
(0,𝑡)4

∣𝑡1 − 𝑠1∣2𝐻−2∣𝑡2 − 𝑠2∣2𝐻−2𝜙𝝃(𝑡1, 𝑡2)𝜙𝝃(𝑠1, 𝑠2)𝑑t𝑑s

= 𝛼𝐻

∫ 𝑡

0

∫ 𝑡

0

𝑑𝑡2𝑑𝑠2∣𝑡2 − 𝑠2∣2𝐻−2ℱ𝐺(𝑡2, ⋅)(𝜉1 + 𝜉2)ℱ𝐺(𝑠2, ⋅)(𝜉1 + 𝜉2)(
𝛼𝐻

∫ 𝑡2

0

∫ 𝑠2

0

𝑑𝑡1𝑑𝑠1∣𝑡1 − 𝑠1∣2𝐻−2ℱ𝐺(𝑡2 − 𝑡1, ⋅)(𝜉1)ℱ𝐺(𝑠2 − 𝑠1, ⋅)(𝜉1)
)
.

By the Cauchy–Schwarz inequality, the inner parenthesis above is bounded

by 𝑁
(1)
𝑡2 (𝜉1)

1/2𝑁
(1)
𝑠2 (𝜉1)

1/2, which in turn is bounded by 𝐶𝑡,𝐻(1 + ∣𝜉1∣2)−𝐻−1/2,
using (4.9) and the fact that 𝐶𝑡,𝐻 is increasing in 𝑡. Therefore,

∥𝜙𝝃∥2 ≤ 𝐶𝑡,𝐻

(
1

1 + ∣𝜉1∣2
)𝐻+1/2

𝑁
(1)
𝑡 (𝜉1 + 𝜉2)

≤ 𝐶2
𝑡,𝐻

(
1

1 + ∣𝜉1∣2
)𝐻+1/2 (

1

1 + ∣𝜉1 + 𝜉2∣2
)𝐻+1/2

,
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where we used (4.9) again for the second inequality above. Clearly, ∥𝜓𝝃∥2 satisfies
a similar inequality with 𝜉1 replaced by 𝜉2. Putting together the 4 terms which
make up 𝛼2(𝑡), we arrive at the conclusion that:

𝛼2(𝑡) ≤ 𝐶2
𝑡,𝐻

∑
𝜌,𝜎∈𝑆2

∫
ℝ2𝑑

(
1

1 + ∣𝜉𝜌(1)∣2
)𝐻+1/2

2
(

1

1 + ∣𝜉𝜌(1) + 𝜉𝜌(2)∣2
)𝐻+1/2

2

(
1

1 + ∣𝜉𝜎(1)∣2
)𝐻+1/2

2
(

1

1 + ∣𝜉𝜎(1) + 𝜉𝜎(2)∣2
)𝐻+1/2

2

𝜇(𝑑𝜉1)𝜇(𝑑𝜉2)

= 𝐶2
𝑡,𝐻

∫
ℝ2𝑑

⎡⎣∑
𝜌∈𝑆2

(
1

1 + ∣𝜉𝜌(1)∣2
)𝐻+1/2

2
(

1

1 + ∣𝜉𝜌(1) + 𝜉𝜌(2)∣2
)𝐻+1/2

2

⎤⎦2

𝜇(𝑑𝜉1)𝜇(𝑑𝜉2).

Using the inequality (
∑
𝑖∈𝑆 𝑎𝑖)

2 ≤ card(𝑆)
∑
𝑖∈𝑆 𝑎2𝑖 for any finite set 𝑆 and

any positive numbers 𝑎𝑖, and the symmetry of the integrand, we obtain:

𝛼2(𝑡) ≤ (2!)2𝐶2
𝑡,𝐻

∫
ℝ2𝑑

(
1

1 + ∣𝜉1∣2
)𝐻+1/2 (

1

1 + ∣𝜉1 + 𝜉2∣2
)𝐻+1/2

𝜇(𝑑𝜉1)𝜇(𝑑𝜉2).

Using an argument similar to the proof of Lemma 8 of [10], one can show
that (4.10) is equivalent to:

𝐷𝐻 := sup
𝜂∈ℝ𝑑

∫
ℝ𝑑

(
1

1 + ∣𝜉 + 𝜂∣2
)𝐻+1/2

𝜇(𝑑𝜉) <∞.

Therefore, under (4.10), we have: 𝛼2(𝑡) ≤ (2!)2𝐶2
𝑡,𝐻𝐷2

𝐻 . For general 𝑛, this method
leads to the estimate:

𝛼𝑛(𝑡) ≤ (𝑛!)2𝐶𝑛𝑡,𝐻𝐷𝑛
𝐻 ,

which is not powerful enough to yield the convergence of the series
∑
𝑛≥1

𝛼𝑛(𝑡)
𝑛! .

This shows that the multiplicative case differs significantly from the additive case.
In the multiplicative case, one has to control the (𝑛!)2 terms which appear in the
development of 𝛼𝑛(𝑡) to produce a finite series, whereas in the additive case, all
that is required for the existence of the solution is that the first term 𝛼1(𝑡) of this
series be finite.
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de Probabilités de Saint-Flour XIV, Lecture Notes in Math. 1180, 265–439, Springer-
Verlag, 1986.

Raluca M. Balan
University of Ottawa
Department of Mathematics and Statistics
585 King Edward Avenue
Ottawa, Ontario, K1N 6N5
Canada
e-mail: rbalan@uottawa.ca

mailto:rbalan@uottawa.ca


Progress in Probability, Vol. 67, 23–54
c⃝ 2013 Springer Basel

On Chaos Representation and
Orthogonal Polynomials for the
Doubly Stochastic Poisson Process

Giulia Di Nunno and Steffen Sjursen

Abstract. In an 𝐿2-framework, we study various aspects of stochastic calculus
with respect to the centered doubly stochastic Poisson process. We introduce
an orthogonal basis via multilinear forms of the value of the random measure
and we analyze the chaos representation property. We review the structure of
non-anticipating integration for martingale random fields and in this frame-
work we study non-anticipating differentiation. We present integral represen-
tation theorems where the integrand is explicitly given by the non-anticipating
derivative.

Stochastic derivatives of anticipative nature are also considered: The
Malliavin type derivative is put in relationship with another anticipative de-
rivative operator here introduced. This gives a new structural representation
of the Malliavin derivative based on simple functions. Finally we exploit these
results to provide a Clark–Ocone type formula for the computation of the non-
anticipating derivative.
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Keywords. Doubly stochastic Poisson process, Cox process, orthogonal poly-
nomials, non-anticipating derivative, Malliavin derivative, Clark–Ocone for-
mula, martingale random fields.

1. Introduction

The doubly stochastic Poisson process (DSPP) also known as the Cox process,
was introduced in [8] as a generalization of the Poisson process in the sense that
the intensity is stochastic. Models based on DSPP’s are used in risk theory, in the
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study of ruin probabilities in insurance and insurance-linked securities pricing, and
for stochastic volatility see, e.g., [2, 7, 18, 23].

For a given doubly stochastic Poisson process 𝐻 with intensity 𝛼, we
investigate some elements of stochastic calculus for �̃� := 𝐻 − 𝛼, i.e., the centered
doubly stochastic Poisson process (CDSPP) on a quite general Hausdorff topo-
logical space 𝑋 . The stochastic intensity 𝛼 is assumed non-atomic. The paper is
dedicated to the study of the structure of 𝐿2-spaces generated by the noise and the
non-anticipating integration and differentiation schemes with stochastic integral
representations in view. One foreseen application of such integral representations
is in the study of backward stochastic differential equations and it is, at present,
work in progress, see [17].

First we show that the observations of �̃� = 𝐻−𝛼 give complete information
on both 𝐻 and 𝛼. Specifically, the 𝜎-algebra generated by �̃� coincides with the
one generated by 𝐻 and 𝛼. With respect to the space 𝐿2(Ω,ℱ ,ℙ) generated by
the CDSPP, we suggest an orthogonal system of polynomials which lead to a
chaos expansion type of result. This orthogonal system is based on what we call
𝛼-multilinear forms. These prove to be key constructive elements in our proofs.

After this analysis on a general 𝑋 , we specify the study to the time-space
𝑋 = (0, 𝑇 ] × 𝑍 with the total ordering induced by time. Here we introduce an
information structure associated to the CDSPP. We consider the filtration 𝔾 gen-
erated by the CDSPP augmented by the knowledge of the whole intensity 𝛼. Note
that, with respect to 𝔾, the CDSPP is a stochastic measure with conditionally
independent values. In this setup we study elements of stochastic integration and
differentiation. We find a stochastic integral representation for all elements in
𝐿2(Ω,ℱ ,ℙ) by interpreting the CDSPP as a martingale random field (see, e.g.,
[16]) and applying the corresponding Itô stochastic integration scheme. The repre-
sentation of 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) is explicit in the sense that the integrand is uniquely
determined as the non-anticipating stochastic derivative D𝜉 with respect to the
CDSPP. The non-anticipating derivative, introduced in [12] and later developed
to include Lévy type random measures (see [13, 15]) and martingale random fields
as integrators (see [16]) is defined by the linear operator adjoint to the Itô sto-
chastic integral. A general formula for the calculus is here given in terms of limit
of specific simple stochastic functions. In particular, non-anticipating derivatives
are a natural tool to study mean-variance hedging, see [1, 12, 16].

When discussing non-anticipating differentiation, the connections with the
well-known correspondent of the Clark–Ocone formulae have to be taken into ac-
count. A first study of chaos expansions in terms of iterated integrals for processes
with conditionally independent increments can be found in [29]. Starting from
this set up, a Malliavin derivative operator is defined. In the present paper we dis-
cuss explicitly the relationship between the orthogonal polynomials here suggested
and the Itô type iterated integrals and we retrace the relationships between the
non-anticipating derivative and the Clark–Ocone formula based on the Malliavin
derivative operator given in the literature. Our study however takes a different
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approach to Malliavin calculus. In fact we introduce a new anticipative derivative
operator 𝐷𝑎 as a limit of specific simple stochastic functions. Because of its par-
ticular structure, it is immediate to see that the non-anticipative derivative D𝜉 at
time 𝑡 is the projection of 𝐷𝑎 on the information 𝒢𝑡. On the other side we prove
that this operator coincides with the Malliavin derivative 𝐷𝜉 as introduced in [29].
These arguments provide a new structural approach to the Malliavin derivative.

We have partially considered integration with respect to the smaller filtra-
tion generated by the CDSPP only. Based on the martingale structure the non-
anticipative differentiation can be carried through. However, we remark that there
is no structure of conditional independence in this case and the study of antici-
pative differentiation is rather different. The study of stochastic differentiation in
this setting will be developed separately.

To conclude we remark that stochastic integral representations have been
investigated in [4, 5, 10, 19, 20] for general point processes. Our contribution
differs because we consider the filtration generated by the CDSPP, which is larger
than the filtration generated by the DSPP alone.

The paper is organized as follows. Section 2 provides the basic information on
DSPP and CDSPP on a general space 𝑋 . Multilinear forms and chaos expansions
are studied in Section 3. For𝑋 = (0, 𝑇 ]×𝑍, stochastic non-anticipating integration
and martingale random fields are discussed in Section 4. Section 5 presents the
non-anticipating derivative D . A review on iterated integrals and their connection
with multilinear forms is detailed in Section 6. Finally Section 7 presents the
anticipative derivatives 𝐷𝑎 and 𝐷, their computation, and their relationship with
the non-anticipating derivative D via a Clark–Ocone type formula.

2. The doubly stochastic Poisson process

Let 𝑋 be a locally compact, second countable Hausdorff topological space. Un-
der these conditions, there exists a complete, separable metric 𝜇 generating the
topology on 𝑋 . In particular this implies that 𝑋 is 𝜎-compact, i.e., that it admits
representation as a countable union of compact sets, and that the topology on 𝑋
has a countable basis consisting of precompact sets, i.e., sets with compact closure.
We denote ℬ𝑋 the Borel 𝜎-algebra of 𝑋 and ℬ𝑐𝑋 the precompacts of ℬ𝑋 . The sto-
chastic elements considered in the paper are related to the complete probability
space (Ω,ℱ ,ℙ).

Let 𝛼 be a (positive) random measure on𝑋 . We assume that 𝛼 is non-atomic,
meaning that ℙ

(
𝛼({𝑥}) = 0 for all 𝑥 ∈ 𝑋

)
= 1. For later use in the study of the

polynomials we also assume that

𝔼
[
𝑒𝑐𝛼(Δ)

]
<∞, 𝑐 ∈ ℝ, Δ ∈ ℬ𝑐𝑋 , (2.1)

i.e., the moment generating function of 𝛼(Δ) is well defined on the whole real line
when Δ is precompact. This will in turn imply

𝔼
[
𝛼(Δ)𝑘

]
<∞ for all Δ ∈ ℬ𝑐𝑋 , 𝑘 = 1, 2, . . . (2.2)
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We remark that condition (2.1) is satisfied if 𝑋 = [0,∞) × ℝ0 and 𝛼(𝑑𝑡, 𝑑𝑧) =
𝜈(𝑑𝑧)𝑑𝑡 with 𝜈 a Lévy measure on ℝ0 and 𝑑𝑡 the Lebesgue measure on [0,∞),
i.e., the case of pure jump Lévy processes.

Let us define

𝑉 (Δ) := 𝔼[𝛼(Δ)], Δ ∈ ℬ𝑋 .

We note that 𝑉 is a non-atomic 𝜎-finite measure (see, e.g., [21, Chapter 1.2]),
which is finite at least on all precompact sets. The 𝜎-algebra generated by 𝛼 will
be denoted ℱ𝛼.

Let 𝐻 be a random measure on 𝑋 and let ℱ𝐻Δ denote the 𝜎-algebra generated
by𝐻(Δ′), Δ′ ∈ ℬ𝑋 : Δ′ ⊂ Δ (with Δ ∈ ℬ𝑋). Set ℱ𝐻 to be the 𝜎-algebra generated
by all the values of 𝐻 .

Definition 2.1. The random measure 𝐻 is a doubly stochastic Poisson process
(DSPP) if

A1) ℙ
(
𝐻(Δ) = 𝑘

∣∣∣𝛼(Δ)
)
= 𝛼(Δ)𝑘

𝑘! 𝑒−𝛼(Δ),

A2) ℱ𝐻Δ1
and ℱ𝐻Δ2

are conditionally independent given ℱ𝛼 whenever Δ1 and Δ2

are disjoint sets.

In particular, the conditional independence 2.1 implies that

𝔼
[
𝑓
(
𝐻(Δ1)

) ∣∣∣ℱ𝐻Δ2
∨ ℱ𝛼

]
= 𝔼

[
𝑓
(
𝐻(Δ1)

) ∣∣∣ℱ𝛼],
whenever Δ1,Δ2 ∈ ℬ𝑋 , Δ1 ∩Δ2 = ∅ and for 𝑓 : ℝ→ ℝ such that the conditional
expectation is well defined. From 2.1 we have

𝔼
[
𝑓
(
𝐻(Δ)

) ∣∣∣ℱ𝛼] =

∞∑
𝑘=0

𝑓(𝑘)
𝛼(Δ)𝑘

𝑘!
𝑒−𝛼(Δ), Δ ∈ ℬ𝑋 , (2.3)

and in particular

𝔼
[
𝐻(Δ)

∣∣∣ℱ𝛼] = 𝛼(Δ), Δ ∈ ℬ𝑋 . (2.4)

From the above formulae the following ones are obtained [19, Lemma 3a p. 23]:

𝔼
[
𝐻
(
Δ
)]

= 𝔼
[
𝛼(Δ)

]
= 𝑉 (Δ)

Var
(
𝐻(Δ)

)
= 𝔼

[
𝛼(Δ)

]
+Var

(
𝛼(Δ)

)
𝔼
[
𝐻(Δ)2

]
= 𝔼

[
𝛼(Δ)] + 𝔼

[
𝛼(Δ)2]

for Δ ∈ ℬ𝑋 with 𝑉 (Δ) <∞. In the case 𝑉 (Δ) =∞, the above relationships hold
but clearly Var(𝐻(Δ)) = 𝔼[𝐻(Δ)2] = 𝔼[𝐻(Δ)] =∞.

Definition 2.2. The centered doubly stochastic Poisson process (CDSPP) is the

signed random measure �̃� := 𝐻 − 𝛼, ie

�̃�(Δ) := 𝐻(Δ)− 𝛼(Δ), Δ ∈ ℬ𝑋 .
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We denote ℱ �̃� the filtration generated by �̃� . For any Δ ∈ ℬ𝑋 with 𝑉 (Δ) <
∞, the conditional first moment is

𝔼
[
�̃�(Δ)

∣∣∣ℱ𝛼] = 0.

and the conditional second moment is

𝔼
[
�̃�(Δ)2

∣∣∣ℱ𝛼] = 𝛼(Δ).

and thus

𝔼
[
�̃�(Δ)2

]
= Var

(
�̃�(Δ)

)
= 𝔼

[
𝛼(Δ)

]
= 𝑉 (Δ). (2.5)

For the remaining conditional moments, the following recurrence formula holds:

Proposition 2.3.

𝔼
[
�̃�(Δ)3

∣∣ℱ𝛼] = 𝛼(Δ)

𝔼
[
�̃�(Δ)𝑛

∣∣ℱ𝛼] = 𝛼(Δ) + 𝛼(Δ)

𝑛−2∑
𝑘=2

(
𝑛

𝑘

)
𝔼
[
�̃�(Δ)𝑘

∣∣∣ℱ𝛼], 𝑛 ≥ 4. (2.6)

Proof. The formulae are obtained by induction for the Poisson distribution in [26,
Section 3]. Those computations can easily be adapted to our case using (2.3). □

Corollary 2.4. For 𝑛 ≥ 4, we have that

𝔼
[
�̃�(Δ)𝑛

]
<∞

if and only if

𝔼
[
𝛼(Δ)𝑛/2

]
<∞ for 𝑛 even,

𝔼
[
𝛼(Δ)(𝑛−1)/2

]
<∞ for 𝑛 odd.

Proof. The result follows from an argument by induction using (2.6). □

Remark 2.5. We remark that, in view of Corollary 2.4, the assumption (2.1) is

sufficient to ensure that �̃�(Δ) has finite moments of all orders for Δ ∈ ℬ𝑐𝑋 .
For the arguments presented in the sequel it is crucial to investigate the

relationship between the 𝜎-algebras ℱ �̃� and ℱ𝐻 ∨ ℱ𝛼. While it is immediate to

see that ℱ �̃� ⊆ ℱ𝐻 ∨ ℱ𝛼, the opposite relationship is more delicate. Here after
we introduce a dissecting system on 𝑋 which is instrumental in the study of the
considered random measures and associated structures. Recall that ℬ𝑐𝑋 is a ring
generating the topology on 𝑋 and that 𝑋 is a Hausdorff topological space such
that 𝑋 =

∪∞
𝑛=1 𝑋𝑛, where 𝑋𝑛, 𝑛 = 1, 2, . . . is a growing sequence of compacts.

Hence 𝑉 (𝑋𝑛) <∞. Denote ∣Δ∣ := sup𝑥,𝑦∈Δ 𝜇(𝑥, 𝑦), Δ ⊂ 𝑋 , where 𝜇 is the metric
in 𝑋 . Then ∣𝑋𝑛∣ <∞ for all 𝑛.
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Being 𝑉 non-atomic, for every 𝑛 and 𝜖𝑛 > 0, there exists a partition of 𝑋𝑛,
i.e., a finite family of pairwise disjoint sets:

Δ𝑛,1, . . . ,Δ𝑛,𝐾𝑛 ∈ ℬ𝑐𝑋 : 𝑋𝑛 =

𝐾𝑛∪
𝑘=1

Δ𝑛,𝑘 (2.7)

such that sup𝑘=1,...,𝐾𝑛 𝑉 (Δ𝑛,𝑘) ≤ 𝜖𝑛 and sup𝑘=1,...,𝐾𝑛 ∣Δ𝑛,𝑘∣ ≤ 𝜖𝑛.

Let us consider a decreasing sequence 𝜖𝑛 ↘ 0, 𝑛→∞. Then, based on (2.7),
we give the following definition.

Definition 2.6. A dissecting system of 𝑋 is the sequence of partitions of 𝑋 :

Δ𝑛,1, . . . ,Δ𝑛,𝐾𝑛+1, 𝑛 = 1, 2, . . . (2.8)

with
∪𝐾𝑛
𝑘=1 Δ𝑛,𝑘 = 𝑋𝑛 from (2.7) and Δ𝑛,𝐾𝑛+1 := 𝑋 ∖𝑋𝑛, satisfying the nesting

property:

Δ𝑛,𝑘 ∩Δ𝑛+1,𝑗 = Δ𝑛+1,𝑗 or ∅ (2.9)

for all 𝑘 = 1, . . . ,𝐾𝑛 + 1 and 𝑗 = 1, . . . ,𝐾𝑛+1 + 1.

We remark that, from (2.7) and (2.9), we have

sup
𝑘=1,...,𝐾𝑛

𝑉 (Δ𝑛,𝑘) ≤ 𝜖𝑛 → 0, and sup
𝑘=1,...,𝐾𝑛

∣Δ𝑛,𝑘∣ ≤ 𝜖𝑛 → 0 𝑛→∞. (2.10)

We can refer to, e.g., [21] and [9] for more on dissecting systems and partitions.

Lemma 2.7. For any Δ ∈ ℬ𝑋 such that 𝛼(Δ) <∞ ℙ-a.s. we have that

sup
𝑘=1,...,𝐾𝑛+1

𝛼(Δ ∩Δ𝑛,𝑘) −→ 0, 𝑛→∞ ℙ-a.s.

Proof. The sets

Δ̃𝑛,𝑘 := Δ ∩Δ𝑛,𝑘, 𝑘 = 1, . . .𝐾𝑛, 𝑛 = 1, 2, . . .

constitute a dissecting system of Δ. Note that 𝛼(Δ𝑘,𝑛) <∞ ℙ-a.s. for all 𝑘 and 𝑛.

Let Ω̃ be the event where 𝛼 is non-atomic and 𝛼(Δ) < ∞. Then ℙ(Ω̃) = 1. From
(2.8) we have

𝛼(Δ̃𝑛+1,𝑗 , 𝜔) ≤ sup
𝑘=1,...,𝐾𝑛+1

𝛼(Δ̃𝑛,𝑘, 𝜔) ≤ 𝛼(Δ, 𝜔), 𝜔 ∈ Ω̃

for all 𝑗 = 1, . . . ,𝐾𝑛 + 1. Hence, for every 𝑛 = 1, 2, . . . , we have

sup
𝑗=1,...,𝐾𝑛+1+1

𝛼(Δ̃𝑛+1,𝑗 , 𝜔) ≤ sup
𝑘=1,...,𝐾𝑛+1+1

𝛼(Δ̃𝑛,𝑗 , 𝜔), 𝜔 ∈ Ω̃.

We denote 𝐴(𝜔) := lim𝑛→∞ sup𝑘=1,...,𝐾𝑛+1+1 𝛼(Δ̃𝑛,𝑘, 𝜔), 𝜔 ∈ Ω̃. Naturally 𝐴(𝜔) ≥
0, but we need to prove 𝐴(𝜔) = 0. We proceed by contradiction. Set Ω̃0 := {𝜔 ∈
Ω̃∣𝐴(𝜔) > 0} and suppose ℙ(Ω̃0) > 0. For each 𝑛 there exists a set Δ̃𝑛,𝛿(𝑛) such

that 𝛼(Δ̃𝑛,𝛿(𝑛), 𝜔) ≥ 𝐴(𝜔) > 0, 𝜔 ∈ Ω̃0. Comparing Δ̃𝑛,𝛿(𝑛) with the sets Δ̃𝑛−1,𝑗 ,
𝑗 = 1, . . . ,𝐾𝑛−1+1, we see that there is a set Δ̃𝑛−1,𝛿(𝑛−1) such that Δ̃𝑛−1,𝛿(𝑛−1) ⊇
Δ̃𝑛,𝛿(𝑛).
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Hence there exists a decreasing sequence of sets

Δ̃𝑛,𝛿(𝑛), 𝑛 = 1, 2, . . .

such that for every 𝑛, Δ̃𝑛,𝛿(𝑛) is an element of the dissecting system of Δ and

0 < 𝐴(𝜔) ≤ 𝛼(Δ̃𝑛,𝛿(𝑛), 𝜔) (𝜔 ∈ Ω̃0). On the other side, from the property (2.10)
of the dissecting system on 𝑋 , and hence on Δ, the limit of a decreasing sequence
of sets is either empty or a singleton. Thus we have

lim
𝑛→∞𝛼(Δ̃𝑛,𝛿(𝑛), 𝜔) = 0, 𝜔 ∈ Ω̃0,

since 𝛼 is a non-atomic measure for 𝜔 ∈ Ω̃0. This is a contradiction, and hence
𝐴(𝜔) = 0 for all 𝜔 ∈ Ω̃0. □

Theorem 2.8. The following equality holds:

ℱ �̃� = ℱ𝐻 ∨ ℱ𝛼.
Proof. It is sufficient to show that 𝐻(Δ) and 𝛼(Δ) are ℱ �̃� -measurable for any
Δ ∈ ℬ𝑐𝑋 . Let Δ ∈ ℬ𝑐𝑋 and recall its representation

Δ =

𝐾𝑛+1∪
𝑘

Δ̃𝑛,𝑘 =

𝐾𝑛+1∪
𝑘

(
Δ ∩Δ𝑛,𝑘

)
, 𝑛 = 1, 2, . . . ,

as a pairwise disjoint union of sets obtained from the dissecting system (2.8) of 𝑋 .
Consider

𝑔𝑛(Δ) :=

𝐾𝑛+1∑
𝑘=1

ceil
(
�̃�(Δ̃𝑛,𝑘)

)
=

𝐾𝑛+1∑
𝑘=1

ceil
(
𝐻(Δ̃𝑛,𝑘)− 𝛼(Δ̃𝑛,𝑘)

)
,

where ceil(𝑦) is the smallest integer greater than 𝑦. The random variables 𝑔𝑛(Δ),

𝑛 = 1, . . . , are clearly ℱ �̃�-measurable. From Lemma 2.7 there exists for ℙ-a.a. 𝜔,
a 𝑁(𝜔) ∈ ℕ such that sup𝑘=1,...,𝐾𝑛+1 𝛼(Δ̃𝑛,𝑗 , 𝜔) < 1 for 𝑛 > 𝑁(𝜔). Then we have

lim
𝑛→∞ ceil

(
𝐻(Δ̃𝑛,𝑘)− 𝛼(Δ̃𝑛,𝑘)

)
= 𝐻(Δ̃𝑛,𝑘) ℙ-a.s.

Thus

lim
𝑛→∞ 𝑔𝑛(Δ) = lim

𝑛→∞

𝐾𝑛+1∑
𝑘=1

ceil
(
�̃�(Δ̃𝑛,𝑘)

)
= 𝐻(Δ) ℙ-a.s.

and 𝐻(Δ) is a pointwise limit of ℱ �̃� -measurable functions. Since 𝛼(Δ) = 𝐻(Δ)−
�̃�(Δ), we also have that 𝛼(Δ) is ℱ �̃�-measurable. □

Note that the initial assumption that 𝛼 is ℙ-a.s. non-atomic is crucial for this
result. On the other side we remark that the assumption (2.2) is here not required.

Theorem 2.8 can be regarded as an extension of a result proved for a time-
changed Lévy processes with independent time-change in [27].
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3. Multilinear forms, polynomials, and chaos expansions

In this section we construct a system of multilinear forms and show how they
describe the intrinsic orthogonal structures in 𝐿2(Ω,ℱ ,ℙ). Here and in the sequel

we set ℱ = ℱ �̃� = ℱ𝐻 ∨ ℱ𝛼, see Theorem 2.8.

Definition 3.1. For any group of pairwise disjoint sets Δ1, . . . ,Δ𝑝 ∈ ℬ𝑐𝑋 , an 𝛼-
multilinear form of order 𝑝 is a random variable of type

𝛽

𝑝∏
𝑗=1

�̃�(Δ𝑗), 𝑝 ≥ 1,

where 𝛽 is an ℱ𝛼-measurable random variables with finite moments of all orders.
The 0-order 𝛼-multilinear forms are the ℱ𝛼-measurable random variable with finite
moments of all orders.

This definition is a generalization of the one given in [14, page 7]: A 𝑝-order

multilinear form of the values �̃�(Δ𝑗), 𝑗 = 1, . . . , 𝑝, is a random variable of type

𝑝∏
𝑗=1

�̃�(Δ𝑗), 𝑝 ≥ 1. (3.1)

The 0-order multilinear forms are the constants.
Note that any 𝛼-multilinear form is an element of 𝐿2(Ω,ℱ ,ℙ). In fact, by

assumption (2.2), the following holds:

𝔼
[
𝜉2
]
= 𝔼

[
𝛽2

𝑝∏
𝑗=1

𝔼
[
�̃�(Δ𝑗)

2
∣∣ℱ𝛼]] = 𝔼

[
𝛽2

𝑝∏
𝑗=1

𝛼(Δ𝑗)
]
<∞. (3.2)

In the sequel we will consider multilinear forms on the sets (2.7)–(2.8) of the
dissecting system of 𝑋 .

The present section completes and extends to the CDSPP the results pre-
sented in [14] in which measure based multilinear forms were introduced for the
study of stochastic calculus for Lévy stochastic measures. In that case the structure
of independence of the random measure values was heavily exploited. In particular
we stress that the space ℍ𝑝 via (3.3) here below is a substantial element of novelty
and it is crucial for the forthcoming analysis.

Definition 3.2. For 𝑝 ≥ 1 we write ℍ𝑝 for the subspace in 𝐿2(Ω,ℱ ,ℙ) generated
by the finite linear combinations of 𝑝-order 𝛼-multilinear form:∑

𝑖

𝛽𝑖

𝑝∏
𝑗=1

�̃�(Δ𝑖
𝑗). (3.3)

Here above the sets Δ𝑖
𝑗 , 𝑗 = 1, . . . , 𝑝, are pairwise disjoint and belong to the

dissecting system (2.7)–(2.8) on𝑋 . The subspaceℍ0 is the ℱ𝛼-measurable random
variables with finite variance.
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Remark 3.3. We may consider the multipliers 𝛽 in Definition 3.2 to be finite
products of the form

∏𝑛
𝑖=1 𝛼(Δ𝑖) with Δ𝑖, 𝑖 = 1, . . . , 𝑛 pairwise disjoint sets from

the dissecting system (2.7)–(2.8).

Remark 3.4. Let 𝑝 ≥ 1. By definition, for any 𝜉 ∈ ℍ𝑝 there exists a sequence

{𝜉𝑚}𝑚 such that 𝜉𝑚 → 𝜉, 𝑚 → ∞ in 𝐿2(Ω,ℱ ,ℙ), with 𝜉𝑚 =
∑𝐿𝑚
𝑙=1 𝜉𝑚𝑙 and

𝜉𝑚𝑙 𝑝-order 𝛼-multilinear forms. Note that we can always choose approximating
sequences where the 𝜉𝑚𝑙, 𝑙 = 1, . . . , 𝐿𝑚 are orthogonal.

Lemma 3.5. For 𝑝′ ∕= 𝑝′′, the subspaces ℍ𝑝
′
and ℍ𝑝

′′
are orthogonal in 𝐿2(Ω,ℱ ,ℙ).

Proof. We assume that 𝑝′′ > 𝑝′. It is sufficient to prove the statement for 𝜉′ ∈ ℍ𝑝
′
,

𝜉′′ ∈ ℍ𝑝
′′
of type

𝜉′ = 𝛽′
𝑝′∏
𝑖=1

�̃�(Δ𝑖), 𝜉′′ = 𝛽′′
𝑝′′∏
𝑗=1

�̃�(Δ𝑗)

where Δ𝑖, 𝑖 = 1, . . . , 𝑝′ and Δ𝑗 , 𝑗 = 1 . . . 𝑝′ are two groups of pairwise disjoint
sets (2.8) of the dissecting system of 𝑋 . Note that, in view of the nesting property
(2.9), there exists 𝑛 ∈ ℕ such that all the sets above can be represented in terms
of finite disjoint unions of elements from the same 𝑛th partition (2.8)–(2.9). Thus
we can represent 𝜉′ and 𝜉′′ by finite sums of 𝑝′-order and 𝑝′′-order 𝛼-multilinear
forms respectively over sets (2.8) in the same 𝑛th partition (2.9):

𝜉′ = 𝛽′
∑
𝑘

𝑝′∏
𝑖=1

�̃�(Δ𝑖
𝑛,𝑘)

𝜉′′ = 𝛽′′
∑
𝑙

𝑝′′∏
𝑗=1

�̃�(Δ𝑗
𝑛,𝑙).

To prove the statement it is then enough to verify that for all 𝑘, 𝑙,

𝔼
[
𝛽′

𝑝′∏
𝑖=1

�̃�(Δ𝑖
𝑛,𝑘)𝛽

′′
𝑝′′∏
𝑗=1

�̃�(Δ𝑗
𝑛,𝑙)

]
= 0.

We remark that being 𝑝′′ > 𝑝′, there is at least one set among Δ𝑗
𝑛,𝑙, 𝑗 = 1, . . . , 𝑝′′

that is different from Δ𝑖
𝑛,𝑘, 𝑖 = 1, . . . , 𝑝′. Denote such a set by Δ�̂�

𝑛,𝑙. We have

𝔼
[
𝛽′

𝑝′∏
𝑖=1

�̃�(Δ𝑖
𝑛,𝑘)𝛽

′′�̃�(Δ�̂�
𝑛,𝑙)

𝑝′′∏
𝑗=1

𝑗 ∕=�̂�

�̃�(Δ𝑗
𝑛,𝑙)

]

= 𝔼

[
𝛽′𝛽′′𝔼

[ 𝑝′∏
𝑖=1

�̃�(Δ𝑖
𝑛,𝑘)

𝑝′′∏
𝑗=1

𝑗 ∕=�̂�

�̃�(Δ𝑗
𝑛,𝑙)

∣∣∣ℱ𝛼]𝔼[�̃�(Δ�̂�
𝑛,𝑙)

∣∣∣ℱ𝛼]] = 0.

By this we end the proof. □
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Definition 3.6. We write ℍ𝑝 for the subspaces of 𝐿2(Ω,ℱ ,ℙ) defined by:

ℍ𝑝 :=
𝑝∑
𝑞=0

⊕ℍ𝑞.

Namely the subspaces generated by the linear combinations of 𝛼-multilinear forms:∑
𝑖

𝛽𝑖

𝑝𝑖∏
𝑗=1

�̃�(Δ𝑖
𝑗), 𝑝𝑖 ≤ 𝑝.

We set

ℍ :=

∞∑
𝑞=0

⊕ℍ𝑞.

Lemma 3.7. Let Δ′,Δ′′ ∈ ℬ𝑋 : Δ′ ∩ Δ′′ = ∅. Consider ℱΔ′ and ℱΔ′′ as the 𝜎-
algebras generated by �̃�(Δ), Δ ∈ ℬ𝑋 : Δ ⊂ Δ′ and Δ ⊂ Δ′′, respectively. Let
𝜉′ ∈ ℍ𝑝′ be ℱΔ′-measurable and 𝜉′′ ∈ ℍ𝑝′′ be ℱΔ′′-measurable. The product 𝜉′𝜉′′ is
measurable with respect to ℱΔ′∪Δ′′ and belongs to ℍ𝑝′+𝑝′′ .

Proof. If 𝜉′ and 𝜉′′ are of type (3.3), then clearly the product 𝜉′𝜉′′ ∈ ℍ𝑝′+𝑝′′
and it is ℱΔ′∪Δ′′-measurable. In the general case, 𝜉′ and 𝜉′′ are approximated in
𝐿2(Ω,ℱ ,ℙ) by sequences of elements 𝜉′𝑛 and 𝜉′′𝑛, 𝑛 = 1, 2, . . . of type (3.3):

𝜉′ = lim
𝑛→∞ 𝜉′𝑛 = lim

𝑛→∞

∑
𝑖

𝛽′𝑛𝑖

𝑝′∏
𝑗=1

�̃�(Δ𝑗
𝑛,𝑖)

𝜉′′ = lim
𝑛→∞ 𝜉′′𝑛 = lim

𝑛→∞

∑
𝑘

𝛽′𝑛𝑘

𝑝′′∏
𝑙=1

�̃�(Δ𝑙
𝑛,𝑘).

Note that in view of the measurability assumptions we have Δ𝑗
𝑛,𝑖 ⊂ Δ′, 𝑗 =

1, . . . , 𝑝′ and Δ𝑗
𝑛,𝑖 ⊂ Δ′′, 𝑗 = 1, . . . , 𝑝′′ and also 𝛽′𝑛𝑖 are ℱ𝛼Δ′-measurable, while 𝛽′′𝑛𝑘

are ℱ𝛼Δ′′-measurable. Then it is easy to see that the statement holds. □
We remark that the result still holds true if we consider the 𝜎-algebras ℱ𝐻Δ′ ∨

ℱ𝛼 and ℱ𝐻Δ′′ ∨ ℱ𝛼, for Δ′ ∩Δ′′ = ∅.
The polynomials of the values of �̃� of degree 𝑝 are the random variables 𝜉

admitting representation as

𝜉 =
𝑀∑
𝑚=1

𝑐𝑚

𝐽𝑚∏
𝑗=1

�̃�(Δ𝑚
𝑗 )

𝑝𝑗 , 𝑐𝑚 ∈ ℝ, 𝑀, 𝐽𝑚, 𝑝𝑗 ∈ ℕ (3.4)

such that
∑𝐽𝑚
𝑗=1 𝑝𝑗 ≤ 𝑝, 𝑚 = 1, 2 . . . ,𝑀 and Δ𝑚

𝑗 ∈ ℬ𝑐𝑋 , 𝑗 = 1, . . . , 𝐽𝑚 are pairwise
disjoint.
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Theorem 3.8. All the polynomials of values of �̃� of degree less or equal to 𝑝 belong
to the subspace ℍ𝑝.

Proof. Let 𝜉 be a polynomial of degree 𝑝 as in (3.4). We proceed by induction. If
𝑝 = 0 then 𝜉 ∈ ℍ0 and if 𝑝 = 1 then 𝜉 ∈ ℍ1. Suppose the statement holds for
𝑞 < 𝑝, we verify this for 𝑝. For each 𝑚, let us consider elements

𝜉𝑚 :=

𝐽𝑚∏
𝑗=1

�̃�(Δ𝑚
𝑗 )𝑝𝑗 ,

𝐽𝑚∑
𝑗=1

𝑝𝑗 ≤ 𝑝.

If 𝑝𝑗 < 𝑝 for 𝑗 = 1, . . . , 𝐽𝑚

1. and
∑𝐽𝑚
𝑗=1 𝑝𝑗 < 𝑝 then the induction hypothesis holds and 𝜉𝑚 ∈ ℍ𝑝,

2. and
∑𝐽𝑚
𝑗=1 𝑝𝑗 = 𝑝 with 𝐽𝑚 > 1, then for any 𝑗 we have �̃�(Δ𝑚

𝑗 )
𝑝𝑗 ∈ ℍ𝑝𝑗 by

the induction hypothesis. Furthermore, being the sets disjoint, from Lemma
3.7 we have that

∏𝑚
𝑗=1 �̃�(Δ𝐽𝑚

𝑗 ) ∈ ℍ∑
𝑝𝑗 .

Hence we only have to verify the case 𝐽𝑚 = 1. Namely

𝜉 = �̃�(Δ𝑚
𝑗 )

𝑝 ∈ ℍ𝑝, for 𝑝 > 1.

Set Δ := Δ𝑚
𝑗 . For all 𝑛, we can represent Δ in terms of the sets (2.8) of the

dissecting system of 𝑋 ,

Δ =

𝐾𝑛+1∪
𝑘=1

(
Δ ∩Δ𝑛,𝑘

)
:=

𝐾𝑛+1∪
𝑘=1

Δ̃𝑛,𝑘,

hence we have that

𝜉 = �̃�(Δ)𝑝 =

(
𝐾𝑛+1∑
𝑘=1

�̃�(Δ̃𝑛,𝑘)

)𝑝
.

Let

𝜉(1)𝑛 := 𝜉 −
𝐾𝑛+1∑
𝑘=1

�̃�(Δ̃𝑛,𝑘)
𝑝 =

(
𝐾𝑛+1∑
𝑘=1

�̃�(Δ̃𝑛,𝑘)

)𝑝
−
𝐾𝑛+1∑
𝑘=1

�̃�(Δ̃𝑛,𝑘)
𝑝

and

𝜉(2)𝑛 :=

𝐾𝑛+1∑
𝑘=1

�̃�(Δ̃𝑛,𝑘)
𝑝.

For all 𝑛 we have 𝜉 = 𝜉
(1)
𝑛 +𝜉

(2)
𝑛 and thus 𝜉 = lim𝑛→∞ 𝜉

(1)
𝑛 +𝜉

(2)
𝑛 in 𝐿2(Ω,ℱ ,ℙ). Let

us investigate 𝜉
(1)
𝑛 and 𝜉

(2)
𝑛 separately. First of all we note that 𝜉

(1)
𝑛 is a polynomial,

as in (3.4), with 𝑝𝑗 < 𝑝 for all 𝑗 = 1, . . . ,𝐾𝑛 + 1. Thus 𝜉
(1)
𝑛 ∈ ℍ𝑝. Hence we have

𝜉(1) := lim𝑛→∞ 𝜉
(1)
𝑛 ∈ ℍ𝑝 since ℍ𝑝 is closed in 𝐿2(Ω,ℱ ,ℙ).
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Consider the following limit in 𝐿2(Ω,ℱ ,ℙ):

𝜉(2) := lim
𝑛→∞ 𝜉(2)𝑛 = lim

𝑛→∞

𝐾𝑛+1∑
𝑘=1

(
𝐻(Δ̃𝑛,𝑘)− 𝛼(Δ̃𝑛,𝑘)

)𝑝
= lim

𝑛→∞

𝐾𝑛+1∑
𝑘=1

𝑝∑
𝑗=0

(
𝑝

𝑗

)
𝐻(Δ̃𝑛,𝑘)

𝑝−𝑗(−1)𝑗𝛼(Δ̃𝑛,𝑘)
𝑗

=

𝑝∑
𝑗=0

lim
𝑛→∞

𝐾𝑛+1∑
𝑘=1

(
𝑝

𝑗

)
𝐻(Δ̃𝑛,𝑘)

𝑝−𝑗(−1)𝑗𝛼(Δ̃𝑛,𝑘)
𝑗 . (3.5)

Since ℙ
(
𝐻({𝑥}) ∕= 0, 1 for some 𝑥 ∈ 𝑋

)
= 0 see [19, Theorem 1.3 page 19], we

will ultimately have 𝐻(Δ̃𝑛,𝑘) = 0 or 1 ℙ-a.s. as 𝑛 → ∞. Thus for the first term
(𝑗 = 0) in (3.5), using dominated convergence, we have:

lim
𝑛→∞

𝐾𝑛+1∑
𝑘=1

(
𝐻(Δ̃𝑛,𝑘)

)𝑝
=

𝐻(Δ)∑
𝑘=1

1𝑝 = 𝐻(Δ) = �̃�(Δ) + 𝛼(Δ).

For the remaining terms (𝑗 > 0) in (3.5) the following estimate applies∣∣∣∣𝐾𝑛+1∑
𝑘=1

(−1)𝑗𝐻(Δ̃𝑛,𝑘)
𝑝𝛼(Δ̃𝑛,𝑘)

𝑝−𝑗
∣∣∣∣ ≤ 𝐾𝑛+1∑

𝑘=1

1{𝐻(Δ̃𝑛,𝑘)>0}𝐻(Δ̃𝑛,𝑘)
𝑝𝛼(Δ̃𝑛,𝑘)

𝑝−𝑗

≤ sup
𝑘

𝛼(Δ̃𝑛,𝑘)
𝑝−𝑗

𝐾𝑛∑
𝑘=1

1{𝐻(Δ̃𝑛,𝑘)>0}𝐻(Δ̃𝑛,𝑘)
𝑝

≤ 𝐻(Δ̃)𝑝+1 sup
𝑘

𝛼(Δ̃𝑛,𝑘)
𝑝−𝑗 −→ 0, 𝑛→∞,

by Lemma 2.7. Thus 𝜉(2)=�̃�(Δ)+𝛼(Δ)∈ℍ1⊆ℍ𝑝. Hence 𝜉=𝜉(1)+𝜉(2)∈ℍ𝑝. □

The following statement is a direct consequence of the theorem above.

Corollary 3.9. All the polynomials of all degrees of the values of �̃� belong to ℍ.

Remark 3.10. We note that if the sets in (3.4) were not disjoint, then one could
always represent the same polynomials via disjoint sets by applying the additivity
of the measure �̃� , but the degree would naturally change.

By assumption (2.1),

𝔼
[
𝑒
∑𝐽
𝑗=1 𝑐𝑗�̃�(Δ𝑗)

] ≤ 𝐽∏
𝑗=1

𝔼
[
𝑒2
𝐽𝑐𝑗�̃�(Δ𝑗)

]
=

𝐽∏
𝑗=1

𝔼
[
𝑒(𝑒

2𝐽 𝑐𝑗−1−2𝐽𝑐𝑗)𝛼(Δ𝑗)] <∞.

Following classical arguments via Fourier transforms (see, e.g., [25, Lemma 4.3.1
and Lemma 4.3.2]) one can see that the random variables

exp

{∑𝐽

𝑗=1
𝑥𝑗�̃�(Δ𝑗)

}
, 𝑗 = 1, 2 . . . , 𝐽 ; 𝑥 = (𝑥1, . . . , 𝑥𝐽) ∈ ℝ𝐽 ,
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with Δ𝑗 , 𝑗 = 1, . . . , 𝐽 pairwise disjoint sets in ℬ𝑐𝑋 , constitute a complete system
in 𝐿2(Ω,ℱ ,ℙ). By Taylor approximations of the analytic extension on ℂ𝐽 we have
that

𝔼

[∣∣∣∣ exp{∑𝐽

𝑗=1
𝑥𝑗�̃�(Δ𝑗)

}
−

∑𝑞

𝑝=0

∑𝐽
𝑗=1 𝑖𝑥𝑗�̃�(Δ𝑗)

𝑝

𝑝!

∣∣∣∣2
]
−→ 0, 𝑞 →∞

(see, e.g., [3, Eq. (26.4)] for an estimate of the quantity here above justifying the
convergence.) Hence we can conclude:

Lemma 3.11. The polynomials of the values of �̃�(Δ), Δ ∈ ℬ𝑐𝑋 are dense in
𝐿2

(
Ω,ℱ ,ℙ

)
.

Theorem 3.12 (Chaos expansion). The following equality holds:

ℍ = 𝐿2(Ω,ℱ ,ℙ).

Namely, any 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) can be written as

𝜉 =
∞∑
𝑝=0

𝜉𝑝, where 𝜉𝑝 ∈ ℍ𝑝 for 𝑝 = 1, 2, . . .

Proof. The polynomials of the values of �̃�(Δ) are dense in 𝐿2(Ω,ℱ ,ℙ), see Lemma
3.11. By Theorem 3.8 and Corollary 3.9 all the polynomials are in ℍ. Since ℍ
is closed, we must have 𝐿2(Ω,ℱ ,ℙ) ⊆ ℍ. On the other side we recall that by
construction ℍ ⊆ 𝐿2(Ω,ℱ ,ℙ), see (3.2) and Definitions 3.2 and 3.6. □

Remark 3.13. Definitions 3.2 and 3.6 describe the spaces generated by 𝛼-multi-
linear forms. We can also consider analogous spaces generated only by the multi-
linear forms as in (3.1). However we have to stress that in this case the multilinear
forms are not dense in 𝐿2(Ω,ℱ ,ℙ) with the only exception made when 𝐻 is a Pois-

son random measure, i.e., if 𝛼 is deterministic. Indeed write ℍ̃𝑝 for the subspace
in 𝐿2(Ω,ℱ ,ℙ) generated by the finite linear combinations of 𝑝-order multilinear
forms: ∑

𝑖

𝑐𝑖

𝑝∏
𝑗=1

�̃�(Δ𝑖
𝑗).

The sets Δ𝑖
𝑗 , 𝑗 = 1, . . . , 𝑝, are pairwise disjoint and the 𝑐𝑖 are constants. Set

ℍ̃0 = ℝ and ℍ̃ :=
∑∞
𝑝=0⊕ℍ̃𝑝. It is easily seen that (𝛽 − 𝔼[𝛽]) ∈ 𝐿2(Ω,ℱ ,ℙ) is

orthogonal to ℍ̃ whenever 𝛽 is ℱ𝛼-measurable. There are also 𝛼-multilinear forms

of higher orders that are orthogonal to ℍ̃, one example is (𝔼[𝛽∣ℱ𝛼Δ] − 𝔼[𝛽])�̃�(Δ)

(Δ ∈ ℬ𝑐𝑋). Thus, in general, ℍ̃ ∕= 𝐿2(Ω,ℱ ,ℙ). The case when 𝐻 is a Poisson
random measure was studied in [14] as a particular Lévy random field, and there

we do have ℍ̃ = 𝐿2(Ω,ℱ ,ℙ).
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4. Non-anticipating stochastic integration

In the sequel we consider𝑋 = [0, 𝑇 ]×𝑍 for 𝑇 <∞ and 𝑍 a locally compact, second
countable Hausdorff topological space. Being interested in integration, without loss
of generality we assume that

𝛼
({0} × 𝑍

)
= 0 ℙ-a.s.

Hence we can restrict the attention to 𝑋 = (0, 𝑇 ]× 𝑍.

We chose a dissecting system of 𝑋 to be given by partitions (2.7)–(2.8) of
the form

Δ𝑛,𝑘 = (𝑠𝑛,𝑘, 𝑢𝑛,𝑘]×𝐵𝑛,𝑘, 𝑠𝑛,𝑘 < 𝑢𝑛,𝑘, 𝐵𝑛,𝑘 ∈ ℬ𝑐𝑍 , (4.1)

for 𝑛 = 1, 2, . . . and 𝑘 = 1, 2, . . . ,𝐾𝑛, see Definition 2.6. Here ℬ𝑍 denotes the Borel
𝜎-algebra on 𝑍 and ℬ𝑐𝑍 the family of precompacts for the topology in 𝑍. The set
𝑋 is ordered with the natural ordering given by time in [0, 𝑇 ]. Two filtrations
naturally appear in the present setting:

∙ 𝔽 :=
{ℱ𝑡, 𝑡 ∈ [0, 𝑇 ]

}
where ℱ𝑡 is generated by {�̃�(Δ) : Δ ∈ ℬ[0,𝑡]×𝑍},

∙ 𝔾 := {𝒢𝑡, 𝑡 ∈ [0, 𝑇 ]} with 𝒢𝑡 = ℱ𝑡 ∨ ℱ𝛼.
Clearly we have that ℱ𝑡 ⊆ 𝒢𝑡, ℱ0 is trivial but 𝒢0 = ℱ𝛼 and ℱ𝑇 = 𝒢𝑇 = ℱ .

We define a martingale random field as in [16], see in particular [16, Remark
2.3] for historical notes. We can also refer to the work of [28] and [6] as pioneering
in the use of martingale random fields in stochastic calculus, though mostly related
to Brownian sheet.

Hence we can see that the stochastic set function �̃�(Δ), Δ ∈ ℬ𝑋 is a mar-
tingale random field (with square integrable values) with respect to 𝔽 and 𝔾 as it
satisfies the following properties:

1. �̃� has a 𝜎-finite variance measure 𝑉 (Δ) = 𝐸
[
�̃�(Δ)2], Δ ∈ ℬ𝑋 , recall (2.5).

2. �̃� is additive, i.e., for pairwise disjoint sets Δ1, . . . ,Δ𝐾 : 𝑉 (Δ𝑘) <∞

�̃�
( 𝐾∪
𝑘=1

Δ𝑘) =

𝐾∑
𝑘=1

�̃�(Δ𝑘)

and 𝜎-additive in 𝐿2, i.e., for pairwise disjoint sets Δ1,Δ2, . . . : 𝑉 (Δ𝑘) <∞

�̃�
( ∞∪
𝑘=1

Δ𝑘) =

∞∑
𝑘=1

�̃�(Δ𝑘)

with convergence in 𝐿2(Ω,ℱ ,ℙ).
3. �̃� is adapted to 𝔽 and 𝔾.
4. �̃� has the martingale property. Consider Δ ⊆ (𝑡, 𝑇 ]×𝑍. Then, from (2.4) we

have:

𝔼
[
�̃�(Δ)

∣∣∣ℱ𝑡] = 𝔼
[
𝔼
[
�̃�(Δ)

∣∣ 𝒢𝑡] ∣∣∣ℱ𝑡] = 𝔼
[
𝔼
[
�̃�(Δ)

∣∣ℱ𝛼] ∣∣∣ℱ𝑡] = 0.



Chaos Representation and Orthogonal Polynomials 37

5. �̃� has conditionally orthogonal values. For any Δ1,Δ2 ⊆ (𝑡, 𝑇 ]×𝑍 such that
Δ1 ∩Δ2 = ∅ and. Then, from 2.1, we have:

𝔼
[
�̃�(Δ1)�̃�(Δ2)

∣∣∣ℱ𝑡] = 𝔼
[
𝔼
[
�̃�(Δ1)�̃�(Δ2)

∣∣𝒢𝑡] ∣∣∣ℱ𝑡]
= 𝔼

[
𝔼
[
�̃�(Δ1)

∣∣ℱ𝛼]𝔼[�̃�(Δ2)
∣∣ℱ𝛼]∣∣∣ℱ𝑡] = 0.

Given the martingale structure of the CDSPP �̃� with respect to the filtra-
tions 𝔾 and 𝔽, we can construct a stochastic integration of Itô type according to
the classical scheme, as retraced in [16]. Hereafter we consider 𝔾 as the reference
information flow. Recall that 𝛼 is a positive random measure.

We define the 𝔾-predictable 𝜎-algebra 𝒫𝔾 as the 𝜎-algebra generated by
{𝐹 × (𝑠, 𝑢] × 𝐵 : 𝐹 ∈ 𝒢𝑠, 𝑠 < 𝑢,𝐵 ∈ ℬ𝑍} and, as usual, we will say that
a stochastic process 𝜙 is 𝔾-predictable if the mapping 𝜙 = 𝜙(𝜔, 𝑡, 𝑧), 𝜔 ∈ Ω,
(𝑡, 𝑧) ∈ 𝑋 , is 𝒫𝔾-measurable. Hence we define

∥𝜙∥Φ :=

(
𝔼

[∫ 𝑇

0

∫
𝑍

𝜙2(𝑡, 𝑧)𝛼(𝑑𝑡, 𝑑𝑧)

])1/2

and set Φ to be the 𝐿2-subspace of stochastic processes 𝜙 admitting a 𝔾-predictable
modification and such that ∥𝜙∥Φ <∞.

Lemma 4.1. ℱ𝛼 × ℬ𝑋 ⊂ 𝒫𝒢, and 𝛼 is the 𝔾-predictable compensator of 𝐻.

We take the 𝔾-predictable compensator to be as in [22], a predictable, locally
integrable random measure such that 𝔼[𝐻(Δ)] = 𝔼[𝛼(Δ)].

Proof. For the first claim it is sufficient to show that 𝐴× (𝑎, 𝑏]×𝐵 with 𝐴 ∈ ℱ𝛼,
𝑎 < 𝑏 and 𝐵 ∈ ℬ𝑐𝑍 is an element of 𝒫𝔾. Recall that 𝐴 ∈ 𝒢𝑠 for all 𝑠 and the claim
follows. Since 𝐸[𝐻(Δ)] = 𝔼[𝛼(Δ)] for all Δ ∈ ℬ𝑋 , and 𝛼 is 𝔾-predictable, it is the
𝔾-predictable compensator of 𝐻 . □

The non-anticipating stochastic integral with respect to �̃� under 𝔾 is the
isometric operator 𝐼 mapping:

𝐼 : dom 𝐼 =⇒ 𝐿2(Ω,ℱ ,ℙ)

such that

𝐼(𝜙) :=

𝑇∫
0

∫
𝑍

𝜙(𝑡, 𝑧) �̃�(𝑑𝑡, 𝑑𝑧) :=
𝐾∑
𝑘=1

𝜙𝑘�̃�
(
Δ𝑘

)
for any

𝜙(𝑡, 𝑧) =

𝐾∑
𝑘=1

𝜙𝑘1Δ𝑘(𝑡, 𝑧) (4.2)

with Δ𝑘 = (𝑠𝑘, 𝑢𝑘]×𝐵𝑘 ∈ ℬ𝑐𝑋 and 𝜙𝑘 a 𝒢𝑠𝑘 -measurable random variable such that
∥𝜙∥Φ <∞.
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In fact,

𝔼
[
𝐼(𝜙)2

]
= 𝔼

⎡⎣( 𝐾∑
𝑘=1

𝜙𝑘�̃�
(
Δ𝑘

))2
⎤⎦ = 𝔼

[
𝐾∑
𝑘=1

𝜙2𝑘𝛼
(
Δ𝑘

)]
= ∥𝜙∥2Φ. (4.3)

Naturally the integrands are given by dom 𝐼 ⊆ 𝐿2(Ω × 𝑋), with 𝐿2(Ω × 𝑋) :=
𝐿2(Ω×𝑋,ℱ×ℬ𝑋 ,ℙ×𝛼), which is the linear closure of the stochastic processes (4.2)
and the integral is characterized in a standard manner exploiting the isometry
(4.3).

Actually dom 𝐼 = Φ. In fact the following result holds true.

Lemma 4.2. For any 𝜙 ∈ Φ there exists an approximating sequence of stochastic
processes 𝜙𝑛, 𝑛 = 1, 2, . . . , of type (4.2) having the form:

𝜙𝑛(𝑡, 𝑧) =

𝐾𝑛∑
𝑘=1

𝔼

[
1

𝛼(Δ𝑛,𝑘)

∫
Δ𝑛,𝑘

𝜙(𝜏, 𝜁)𝛼(𝑑𝜏, 𝑑𝜁)
∣∣∣𝒢𝑠𝑛,𝑘

]
1Δ𝑛,𝑘(𝑡, 𝑧),

where Δ𝑘 = (𝑠𝑛,𝑘, 𝑢𝑛,𝑘] × 𝐵𝑛,𝑘 are the sets (4.1) of the dissecting system of 𝑋 =
(0, 𝑇 ]× 𝑍.

Proof. The arguments of [16, Lemma 3.1] can be easily adapted to the present
framework. □

Then, by isometry, it is clear that for any 𝜙 ∈ Φ, 𝐼(𝜙) = lim𝑛→∞ 𝐼(𝜙𝑛) in
𝐿2(Ω,ℱ ,ℙ) where 𝜙𝑛 ∈ Φ are processes of type (4.2) approximating 𝜙 in 𝐿2(Ω×𝑋).

From the construction of the stochastic integral, it follows that for any 𝜙 ∈ Φ,
the stochastic set function

𝜇(𝜙,Δ) :=

∫
Δ

𝜙(𝑡, 𝑧) �̃�(𝑑𝑡, 𝑑𝑧), Δ ∈ ℬ𝑋 , (4.4)

is again a martingale random field [16, Remark 3.2] under 𝔾 with variance measure

𝑚(𝜙,Δ) := 𝔼

[∫
Δ

𝜙2(𝑡, 𝑧)𝛼(𝑑𝑡, 𝑑𝑧)

]
, Δ ∈ ℬ𝑋 .

Proposition 4.3. Consider the ℱ𝛼-measurable 𝛽 ∈ 𝐿2
(
Ω,ℱ ,ℙ

)
and 𝜙 ∈ Φ. Then

𝛽𝐼(𝜙) = 𝐼(𝛽𝜙)

if either side of the equality exists as an element of 𝐿2
(
Ω,ℱ ,ℙ

)
.

Proof. Assume 𝜙 ∈ Φ is of type (4.2) and 𝛽 is bounded. Then, for every 𝑘, 𝛽𝜙𝑘 is
𝒢𝑠𝑘 -measurable and

𝛽𝐼(𝜙) =

𝐾∑
𝑘=1

𝛽𝜙𝑘�̃�
(
(𝑠𝑘, 𝑢𝑘]×𝐵𝑘

)
= 𝐼(𝛽𝜙).

The general case follows by taking limits. □
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The classical calculus rules hold: for any 𝜙 ∈ Φ we have

𝔼

[∫
Δ

𝜙(𝑡, 𝑧) �̃�(𝑑𝑡, 𝑑𝑧) ∣𝒢𝑡
]
= 0, Δ ∈ ℬ(𝑠,𝑇 ]×𝑍,

and

𝔼

[∫
Δ

𝜙1(𝑡, 𝑧)�̃�(𝑑𝑡, 𝑑𝑧)

∫
Δ

𝜙2(𝑡, 𝑧) �̃�(𝑑𝑡, 𝑑𝑧) ∣𝒢𝑠
]

= 𝔼

[∫
Δ

𝜙1(𝑡, 𝑧)𝜙2(𝑡, 𝑧)𝛼(𝑑𝑡, 𝑑𝑧) ∣𝒢𝑠
]

=

∫
Δ

𝔼 [𝜙1(𝑡, 𝑧)𝜙2(𝑡, 𝑧) ∣𝒢𝑠]𝛼(𝑑𝑡, 𝑑𝑧), Δ ∈ ℬ(𝑠,𝑇 ]×𝑍 ,
and in particular we have

𝔼
[
𝐼(𝜙)2

∣∣∣ℱ𝛼] =

𝑇∫
0

∫
𝑍

𝔼
[
𝜙2(𝑡, 𝑧)

∣∣ℱ𝛼]𝛼(𝑑𝑡, 𝑑𝑧). (4.5)

Remark 4.4. In the same way as for the case of information flow 𝔾, we can define
the 𝔽-predictable 𝜎-algebra 𝒫𝔽 and consider the associated 𝔽-predictable random
fields. Being any 𝔽-predictable stochastic process also 𝔾-predictable, the integra-
tion can be done in the same setting as above with the result that the correspond-
ing stochastic functions of type (4.4) will be martingale random fields under 𝔽.
Clearly results as in Proposition 4.3 fail in general in this context. In fact 𝛽 is
𝒢0-measurable, but not ℱ0-measurable in general.

In the sequel we study integral representations with respect to the filtration 𝔾
where the integrands are explicitly characterized via stochastic derivatives. Some
of our results can be adapted to the case of the filtration 𝔽. However the stochastic
calculus is more delicate in the case of 𝔽 and is a matter for future research.

5. Non-anticipating stochastic derivative and
representation theorem

In this section we discuss stochastic differentiation in the context of non-anticipa-
tive calculus. We will use the terminology non-anticipating derivative to emphasize
the fact that the operator introduced embeds the information flow associated with
the framework as time evolves. This differs from other concepts of stochastic dif-
ferentiation, as the Malliavin type derivative. We consider the relationships with
anticipative derivatives in Section 7.

The non-anticipating stochastic derivative is the adjoint linear operator D =
𝐼∗ of the stochastic integral:

D : 𝐿2(Ω,ℱ ,ℙ) =⇒ Φ.

We can see that the non-anticipating derivative can be computed as the limit

D𝜉 = lim
𝑛→∞𝜙𝑛
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with convergence in Φ of the stochastic functions of type (4.2) given by

𝜙𝑛(𝑡, 𝑧) :=

𝐾𝑛∑
𝑘=1

𝔼

[
𝜉
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢𝑠𝑛,𝑘
]
1Δ𝑛,𝑘(𝑡, 𝑧)

where Δ𝑛,𝑘 = (𝑠𝑛,𝑘, 𝑢𝑛,𝑘]×𝐵𝑛,𝑘 refers to the 𝑛th partition sets (4.1) in the dissect-
ing system of 𝑋 = (0, 𝑇 ]×𝑍 (as per Definition 2.6). In fact we have the following
result:

Theorem 5.1. All 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) have representation

𝜉 = 𝜉0 +

𝑇∫
0

∫
𝑍

D𝑡,𝑧𝜉 �̃�(𝑑𝑡, 𝑑𝑧).

Moreover D𝜉0 = 0. In particular we have 𝜉0 = 𝔼[𝜉∣ℱ𝛼].
Proof. We proceed using arguments as those in [12, Theorem 2.1]. Set 𝜙𝑛,𝑘 :=

𝔼
[
𝜉
�̃�(Δ𝑛,𝑘)
𝛼(Δ𝑛,𝑘)

∣∣𝒢𝑠𝑛,𝑘]. First note that

𝔼
[∣∣𝜙𝑛,𝑘�̃�(Δ𝑛,𝑘)

∣∣2 ∣∣𝒢𝑠𝑛,𝑘] ≤ 𝔼
[
𝜉2
∣∣𝒢𝑠𝑛,𝑘]

by application of the conditional Hölder inequality. Thus 𝔼
[∣𝜙𝑛,𝑘�̃�(Δ𝑛,𝑘)∣2

]
<∞.

Moreover, we have that

𝔼
[(
𝜉 − 𝜙𝑛,𝑘�̃�(Δ𝑛,𝑘)

)
𝜓�̃�(Δ𝑛,𝑘)

]
= 0 (5.1)

for all 𝒢𝑠𝑛,𝑘 -measurable 𝜓 ∈ 𝐿2(Ω,ℱ ,ℙ). In fact, we have

𝔼
[(

𝜉 − 𝜙𝑛,𝑘�̃�(Δ𝑛,𝑘)
)
𝜓�̃�(Δ𝑛,𝑘)

∣∣∣𝒢𝑠𝑛,𝑘]
= 𝜓𝔼

[
𝜉�̃�(Δ𝑛,𝑘)

∣∣𝒢𝑠𝑛,𝑘]− 𝜓𝜙𝑛,𝑘𝛼(Δ𝑛,𝑘) = 0.

Then, from (5.1), we conclude that

𝜉𝑛 :=

𝐾𝑛∑
𝑘=1

𝜙𝑛,𝑘�̃�(Δ𝑛,𝑘) =

𝑇∫
0

∫
𝑍

𝜙𝑛(𝑠, 𝑧) �̃�(𝑑𝑠, 𝑑𝑧)

is the projection of 𝜉 onto the subspace of the stochastic integrals of type (4.2).

Moreover, 𝜉 := lim𝑛→∞ 𝜉𝑛 in 𝐿2(Ω,ℱ ,ℙ) is the projection of 𝜉 onto the subspace

of all the stochastic integrals with respect to �̃� . Indeed, for any integral 𝐼(𝜓) with

𝜓 ∈ Φ, and 𝜓 := lim𝑛→∞
∑𝐾𝑛
𝑘=1 𝜓𝑛,𝑘1Δ𝑛,𝑘 ∈ Φ, we have

𝔼
[(

𝜉 − 𝜉
)
𝐼(𝜓)

]
= lim
𝑛→∞

𝐾𝑛∑
𝑘=1

𝔼
[(
𝜉 − 𝜙𝑛,𝑘�̃�(Δ𝑛,𝑘)

)
𝜓𝑛,𝑘�̃�(Δ𝑛,𝑘)

]
= 0

(with convergence in 𝐿2(Ω,ℱ ,ℙ)). Denote by 𝜙 the integrand representing 𝜉, i.e.,

𝜉 =

∫ 𝑇

0

∫
𝑍

𝜙(𝑠, 𝑧) �̃�(𝑑𝑠, 𝑑𝑧).
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Then, by isometry, we have∥∥𝜙− 𝜙𝑛
∥∥2
Φ
= ∥𝜉 − 𝜉𝑛

∥∥2
𝐿2(Ω,ℱ ,ℙ) → 0, 𝑛→∞.

Hence 𝜙 = D𝜉. Moreover, being the difference 𝜉0 := 𝜉 − 𝜉 orthogonal to all
stochastic integrals, we have D𝜉 = 0. In addition we also have that

𝜉0 = 𝔼
[
𝜉
∣∣𝒢0] = 𝔼

[
𝜉
∣∣ℱ𝛼].

By this we end the proof. □
Remark 5.2. Note that the non-anticipating derivative is continuous in 𝐿2. Namely,
if 𝜉 = lim𝑛→∞ 𝜉𝑛 in 𝐿2(Ω,ℱ ,ℙ), then

D𝜉 = lim
𝑛→∞D𝜉𝑛 in Φ.

In fact ∥D𝜉 −D𝜉𝑛∥2Φ ≤ 𝔼
[
(𝜉 − 𝜉𝑛)

2
] −→ 0, 𝑛→∞.

Example 5.3. Let 𝜉 ∈ ℍ𝑝 be a 𝛼-multilinear form 𝜉 = 𝛽
∏𝑝
𝑗=1 �̃�(Δ𝑗) with Δ1 =

(𝑠1, 𝑢1] × 𝐵1,Δ2 = (𝑠2, 𝑢2]× 𝐵2, . . . ,Δ𝑝 = (𝑠𝑝, 𝑢𝑝] × 𝐵𝑝 and 0 ≤ 𝑠1 < 𝑢1 ≤ 𝑠2 <
𝑢2 < ⋅ ⋅ ⋅ < 𝑢𝑝 ≤ 𝑇 . Then

D𝑡,𝑧𝜉 = 𝛽

𝑝−1∏
𝑗=1

�̃�(Δ𝑗)1Δ𝑝(𝑡, 𝑧)

and

𝜉 =

∫
Δ𝑝

𝛽

𝑝−1∏
𝑗=1

�̃�
(
Δ𝑗

)
�̃�(𝑑𝑡, 𝑑𝑧).

Example 5.4. If 𝛽 ∈ 𝐿2(Ω,ℱ ,ℙ) is ℱ𝛼-measurable, then D𝛽 = 0. In fact

𝔼
[
𝛽
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣𝒢𝑡𝑛,𝑘] = 0

for all Δ𝑛,𝑘.

In general we have the following formula:

Proposition 5.5. Let 𝜉 be an 𝛼-multilinear form, 𝜉 = 𝛽
∏𝑝
𝑗=1 �̃�(Δ𝑗). Then

𝜉 =

∫ 𝑇

0

∫
𝑍

D𝑠,𝑧𝜉 �̃�(𝑑𝑠, 𝑑𝑧)

with

D𝑠,𝑧𝜉 = 𝛽
∑

1≤𝑖≤𝑝
Δ𝑖⊆Δ′

1Δ𝑖(𝑠, 𝑧)

𝑝∏
𝑗 ∕=𝑖

�̃�(Δ𝑗 ∩ [0, 𝑠)× 𝑍) (5.2)

Here the set Δ′ is given by

Δ′ =
∪

𝑗 /∈ℐ Δ𝑗 (5.3)

where ℐ =
{
1 ≤ 𝑖 ≤ 𝑝

∣∣Δ𝑖 ⊂ [0, 𝑡) × 𝑍 and Δ𝑗 ⊂ [𝑡, 𝑇 ] × 𝑍 for some 1 ≤ 𝑗 ≤
𝑝 and 𝑡 ∈ [0, 𝑇 ]

}
.
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To explain the set ℐ in Proposition 5.5, in Example 5.3 we would have ℐ =
{1, . . . , 𝑝 − 1}, corresponding to the sets Δ1, . . . ,Δ𝑝−1, i.e., the elements of the
multilinear form that “are entirely before the last set”.

Proof. Let 𝜉 be a multilinear form of order 𝑝 ≥ 1, 𝜉 = 𝛽
∏𝑝
𝑗=1 �̃�(Δ𝑗). For simplic-

ity assume Δ𝑗 ∩Δ𝑛,𝑘 = ∅ or Δ𝑛,𝑘. Denote

𝜓(𝑛, 𝑘) = 𝔼

[
𝛽

𝑝∏
𝑗=1

�̃�(Δ𝑗)
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢𝑡𝑛,𝑘].
The computation of 𝜓(𝑛, 𝑘) is divided into three cases.

1. If (
∪𝑃
𝑗=1 Δ𝑗) ∩Δ𝑛,𝑘 = ∅ then 𝜓(𝑛, 𝑘) = 0.

2. If there exists 𝑖 such that Δ𝑖 ⊂ (𝑡𝑛,𝑘, 𝑇 ]× 𝑍 and Δ𝑖 ∩Δ𝑛,𝑘 = ∅ then

𝜓(𝑛, 𝑘) = 𝔼

[
𝛽
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢𝑡𝑛,𝑘]𝔼[�̃�(Δ𝑖)
∣∣∣ℱ𝛼] = 0.

3. Neither case 1 or 2 is true. This implies that Δ𝑛,𝑘 ⊂ Δ′. By assumption there
exists 1 ≤ 𝑖 ≤ 𝑝 such that Δ𝑖 ∩Δ𝑛,𝑘 = Δ𝑛,𝑘. We have

𝜓(𝑛, 𝑘) = 𝔼

[
𝛽
∏
𝑗 ∕=𝑖

(
�̃�
(
Δ𝑗 ∩ [0, 𝑡𝑛,𝑘]× 𝑍

)
+ �̃�

(
Δ𝑗 ∩ (𝑡𝑛,𝑘, 𝑇 ]× 𝑍

))
(
�̃�(Δ𝑖 ∩Δ𝑛,𝑘) + �̃�(Δ𝑖 ∩Δ𝑐

𝑛,𝑘

) �̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣∣𝒢𝑡𝑛,𝑘]
= 𝔼

[
𝛽
∏
𝑗 ∕=𝑖

�̃�
(
Δ𝑗 ∩ [0, 𝑡𝑛,𝑘]× 𝑍

)∣∣∣∣𝒢𝑡𝑛,𝑘]
= 𝛽

∏
𝑗 ∕=𝑖

�̃�
(
Δ𝑗 ∩ [0, 𝑡𝑛,𝑘]× 𝑍

)
.

Thus

𝜓(𝑛, 𝑘) = 1{Δ𝑛,𝑘∩Δ′ ∕=∅}(𝑛, 𝑘)𝛽
∏
𝑗

Δ𝑗∩Δ𝑛,𝑘=∅

�̃�
(
Δ𝑗 ∩ [0, 𝑡𝑛,𝑘]× 𝑍

)
,

and with Δ′ as above, D𝜉 is given by (5.2). Since 𝔼[𝜉∣ℱ𝛼] = 0 the representation is

𝜉 = 𝔼
[
𝜉
∣∣ℱ𝛼]+ 𝐼(D𝜉) = 𝐼(D𝜉). □

The doubly stochastic Poisson process 𝐻 is an example of a point process.
For point processes in general, some integral representations have been developed
in [4, 5, 10, 20], see also the survey [11]. Note that the filtration of reference in these
studies is 𝔽𝐻 = {ℱ𝐻𝑡 ∣, 𝑡 ∈ [0, 𝑇 ]}. As an illustration consider [5, Theorem 8.8]:
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Theorem 5.6. Let 𝜉 ∈ 𝐿2(Ω,ℱ𝐻𝑇 ,ℙ). Let Λ be the 𝔽𝐻-predictable compensator of
𝐻. Then there exists an 𝔽𝐻-predictable process 𝜙 such that

𝜉 = 𝔼[𝜉] +

𝑇∫
0

∫
𝑍

𝜙(𝑠, 𝑧)
(
𝐻(𝑑𝑠, 𝑑𝑧)− Λ(𝑑𝑠, 𝑑𝑧)

)
(5.4)

and 𝔼
[ ∫ 𝑇

0

∫
𝑍 𝜙(𝑠, 𝑧)2Λ(𝑑𝑠, 𝑑𝑧)

]
<∞.

We remark that Theorem 5.1 allows the representation of random variables
that are ℱ𝑇 = ℱ𝛼𝑇 ∨ ℱ𝐻𝑇 -measurable, which is a larger 𝜎-algebra than ℱ𝐻𝑇 . The
function 𝜙 in (5.4) can be described in explicit terms depending on conditional
expectations. This approach exploits the fact that the filtration 𝔽𝐻 can be fully
characterized by the jump times. This is not the case for the filtration 𝔾 in which
case we consider additional random noise such as the one generated by 𝛼. Theorem
5.1 provides an explicit characterization of the integrand in this setting.

6. Iterated integrals and chaos expansions

In this section, we revise the notion of Itô-type iterated integrals, with the intent to
relate them with the 𝛼-multilinear forms of Section 3. With this in mind, the iter-
ated integrals are developed without any symmetrization schemes. These iterated
integrals will later help us connect the 𝛼-multilinear forms with the Malliavin-type
derivatives developed in [29] using symmetrization schemes and multiple integrals.
In particular, Theorem 6.4 resembles [29, Corollary 14], but our construction is
better suited for an analysis starting from 𝛼-multilinear forms. Let

𝑆𝑝 :=
{
(𝑠1, 𝑧1 . . . 𝑠𝑝, 𝑧𝑝) ∈ ([0, 𝑇 ]× 𝑍)𝑝

∣∣∣0 ≤ 𝑠1 ≤ 𝑠2 ≤ ⋅ ⋅ ⋅ ≤ 𝑠𝑝 ≤ 𝑇
}

Denote Φ𝑝𝛼 the set of ℱ𝛼-measurable functions, 𝜙 : Ω× 𝑆𝑝 → ℝ, such that

∥𝜙∥Φ𝑝𝛼 :=
(
𝔼
[ ∫
𝑆𝑝

𝜙2(𝑠1, 𝑧1, 𝑠2 . . . 𝑠𝑝, 𝑧𝑝)𝛼(𝑑𝑠1𝑑𝑧1) . . . 𝛼(𝑑𝑠𝑝𝑑𝑧𝑝)
]) 1

2

<∞. (6.1)

For any 𝜙 ∈ Φ𝑝𝛼, the 𝑝th iterated integral is defined as

𝐽𝑝(𝑇, 𝜙) :=

𝑇∫
0

∫
𝑍

𝑠−𝑝∫
0

∫
𝑍

. . .

𝑠−2∫
0

∫
𝑍

𝜙(𝑠1, 𝑧1 . . . , 𝑠𝑝, 𝑧𝑝) �̃�(𝑑𝑠1𝑑𝑧1) . . . �̃�(𝑑𝑠𝑝𝑑𝑧𝑝),

and we set 𝐽𝑝 := {𝐽𝑝(𝑇, 𝜙), 𝜙 ∈ Φ𝑝𝛼
}
. From (4.3) and (4.5) we have

𝔼
[
𝐽2
𝑝 (𝑇, 𝜙)

]
= 𝔼

[ 𝑇∫
0

∫
𝑍

𝔼
[( 𝑠𝑝∫

0

∫
𝑍

. . .

𝑠2∫
0

∫
𝑍

𝜙(𝑠1, 𝑧1, . . . , 𝑠𝑝, 𝑧𝑝)

�̃�(𝑑𝑠1𝑑𝑧1) . . . �̃�(𝑑𝑠𝑝−1𝑑𝑧𝑝−1)
)2∣∣∣ℱ𝛼]𝛼(𝑑𝑠𝑝𝑑𝑧𝑝)]
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= 𝔼

[ 𝑇∫
0

∫
𝑍

( 𝑠𝑝∫
0

∫
𝑍

⋅ ⋅ ⋅
𝑠2∫
0

∫
𝑍

𝜙2(𝑠1, 𝑧1, . . . , 𝑠𝑝, 𝑧𝑝)𝛼(𝑑𝑠1, 𝑑𝑧1) . . . 𝛼(𝑑𝑠𝑝𝑑𝑧𝑝)

]
=

∥∥𝜙∥∥2
Φ𝑝𝛼

. (6.2)

The iterated integrals 𝐽𝑝 are in correspondence with the space of 𝛼-
multilinear forms ℍ𝑝 (see Definition 3.6). An example is instructive before consid-
ering the general case.

Example 6.1. Let 𝜉 be a 𝑝-order 𝛼-multilinear form with pairwise disjoint time-
intervals, i.e.,

𝜉 = 𝛽

𝑝∏
𝑗=1

�̃�(Δ𝑗),

with Δ1 = (𝑠1, 𝑢1]×𝑍1, Δ2 = (𝑠2, 𝑢2]×𝑍2, . . . and 0 ≤ 𝑠1 < 𝑢1𝑎 < ⋅ ⋅ ⋅ < 𝑠𝑝 ≤ 𝑢1.
Then

𝜉 = 𝛽

𝑝∏
𝑗=1

�̃�(Δ𝑗) = 𝛽

𝑝∏
𝑗=1

𝐼
(
1Δ𝑗

)

=

𝑇∫
0

∫
𝑍

1Δ𝑝(𝑠𝑝, 𝑧𝑝)𝛽

𝑝−1∏
𝑗=1

𝐼
(
1Δ𝑘

)
�̃�(𝑑𝑠𝑝, 𝑑𝑧𝑝)

=

𝑇∫
0

∫
𝑍

1Δ𝑝(𝑠𝑝, 𝑧𝑝)

𝑠𝑝∫
0

∫
𝑍

1Δ𝑝−1(𝑠𝑝−1, 𝑧𝑝−1)𝛽

𝑝−2∏
𝑗=1

𝐼
(
1Δ𝑗

)
�̃�(𝑑𝑠𝑝−1, 𝑑𝑧𝑝−1) �̃�(𝑑𝑠𝑝, 𝑑𝑧𝑝)

=

𝑇∫
0

∫
𝑍

𝑠𝑝∫
0

∫
𝑍

⋅ ⋅ ⋅
𝑠2∫
0

∫
𝑍

𝛽1Δ𝑝(𝑠𝑝, 𝑧𝑝) . . .1Δ1(𝑠1, 𝑧1) �̃�(𝑑𝑠1𝑑𝑧1) . . . �̃�(𝑑𝑠𝑝𝑑𝑧𝑝).

(6.3)

Next we expand this representation to the case when the sets are “overlap-
ping in time”. It is possible to investigate this using Itô’s formula or symmetric
functions, but instead we exploit the explicit result from Proposition 5.5.

Theorem 6.2. If 𝜉 ∈ ℍ𝑝, 𝑝 ≥ 1, then 𝜉 can be represented as a 𝑝th iterated inte-
gral, i.e.,

𝜉 =

𝑇∫
0

∫
𝑍

𝑠𝑝−∫
0

∫
𝑍

⋅ ⋅ ⋅
𝑠2−∫
0

∫
𝑍

𝜙(𝑠𝑝, 𝑧𝑝, . . . , 𝑠1, 𝑧1) �̃�(𝑑𝑠1𝑑𝑧1) . . . �̃�(𝑑𝑠𝑝𝑑𝑧𝑝), (6.4)

where 𝜙 ∈ Φ𝑝𝛼. Furthermore we have∥∥𝜉∥∥
𝐿2(Ω,ℱ ,ℙ) = ∥𝜙∥Φ𝑝𝑎 . (6.5)



Chaos Representation and Orthogonal Polynomials 45

Proof. First we prove this for the 𝛼-multilinear forms by induction. The result is
true for 𝛼-multilinear forms of order 𝑝 = 1. Consider 𝑝 ≥ 2. Assume, as induction
hypothesis, that a representation of type (6.4) holds for all multilinear forms of
order 𝑝− 1. Let

𝜉′ =
𝑝−1∏
𝑗=1

�̃�(Δ𝑗 ∩ [0, 𝑡)× 𝑍) (6.6)

Being a (𝑝− 1)-order 𝛼-multilinear for, it has representation

𝜉′ =

𝑡∫
0

∫
𝑍

⋅ ⋅ ⋅
𝑠2−∫
0

𝜙′𝑝−1�̃�(𝑑𝑠1, 𝑑𝑧1) . . . �̃�(𝑑𝑧𝑝−1𝑑𝑠𝑝−1),

with means of 𝜙′𝑝−1 ∈ Φ𝑝−1𝛼 . Denote this integral as 𝐽𝑝−1(𝑡, 𝜙′𝑝−1).
Let 𝜉 be an 𝛼-multilinear form of order 𝑝, 𝜉 = 𝛽

∏𝑝
𝑗=1 �̃�(Δ𝑗). From Propo-

sition 5.5, we know that 𝜉 = 𝐼(D𝜉), with

D𝑠,𝑧𝜉 = 𝛽
∑

1≤𝑖≤𝑝
Δ𝑖⊆Δ′

1Δ𝑖(𝑠, 𝑧)

𝑝∏
𝑗 ∕=𝑖

�̃�(Δ𝑗 ∩ [0, 𝑠)× 𝑍).

Hence, by (6.6) we have

𝜉 = 𝐼(D𝜉) =

𝑇∫
0

∫
𝑍

[
𝛽

∑
1≤𝑖≤𝑝
Δ𝑖⊆Δ′

1Δ𝑖(𝑠, 𝑧)

𝑝∏
𝑗 ∕=𝑖

�̃�(Δ𝑗 ∩ [0, 𝑠)× 𝑍)
]
�̃�(𝑑𝑠, 𝑑𝑧)

=

𝑇∫
0

∫
𝑍

[
𝛽

∑
1≤𝑖≤𝑝
Δ𝑖⊆Δ′

1Δ𝑖(𝑠, 𝑧)𝐽𝑝−1(𝑠, 𝜙𝑖)
]
�̃�(𝑑𝑠, 𝑑𝑧)

=

𝑇∫
0

∫
𝑍

𝑠𝑝−∫
0

⋅ ⋅ ⋅
𝑠2−∫
0

∫
𝑍

[
𝛽

∑
1≤𝑖≤𝑝
Δ𝑖⊆Δ′

1Δ𝑖(𝑠𝑝, 𝑧𝑝)𝜙𝑖(𝑠1, . . . , 𝑠𝑝−1, 𝑧𝑝−1)
]

�̃�(𝑑𝑠1, 𝑑𝑧1) . . . �̃�(𝑑𝑠𝑝, 𝑑𝑧𝑝)

which is an iterated integral of order 𝑝.

Any 𝜉 in ℍ𝑝 is the limit in 𝐿2(Ω,ℱ ,ℙ) of a finite sums of multilinear forms of order
𝑝. Let 𝜉𝑛 be such a sequence. Any finite sum of multilinear forms can be written
as a 𝑝th iterated integral, let

𝜉𝑛 = 𝐽𝑝(𝜙𝑛), 𝜙𝑛 ∈ Φ𝑝𝛼.

Since 𝜉𝑛 is a Cauchy sequence in 𝐿2(Ω,ℱ ,ℙ), 𝜙𝑛 is a Cauchy sequence in Φ𝑝𝛼 by
the isometry in (6.2). Hence there exists an unique 𝜙 ∈ Φ𝑝𝛼 such that 𝜙𝑛 → 𝜙 as
𝑛→∞ and we must have 𝜉 = 𝐽𝑝(𝜙). Finally, equation (6.5) follows directly from
(6.2). □
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Remark 6.3. From (6.3), we can see that if 𝜉 = 𝛽
∏𝑝
𝑗=1 �̃�(Δ𝑗) is an 𝛼-multilinear

form, with 𝛽 ∈ ℝ then 𝜉 = 𝐽𝑝(𝜙) with 𝜙 deterministic. For general 𝜉 ∈ ℍ̃𝑝

(Remark 3.13), we can use the same arguments as in Theorem 6.2 to conclude

that 𝜉 = 𝐽𝑝(𝜙), where 𝜙 ∈ Φ𝑝𝛼 is deterministic. Thus ℍ̃𝑝 is the space spanned by
iterated integrals of order 𝑝 with deterministic integrands.

Theorem 6.4 (Chaos expansion). For any 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ), there is unique sequence
of integrands 𝜙𝑝 ∈ Φ𝑝𝛼, 𝑝 = 1, 2, . . . such that the following representation holds:

𝜉 = 𝔼[𝜉∣ℱ𝛼] +
∞∑
𝑝=1

𝐽𝑝(𝜙𝑝).

Proof. Theorem 3.12 shows that any 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) has orthogonal decomposition

𝜉 =
∞∑
𝑝=0

𝜉𝑝

with 𝜉𝑝 ∈ ℍ𝑝, 𝑝 = 0, 1, . . . . Any 𝜉𝑝, 𝑝 ≥ 1 can be written as a 𝑝th iterated integral
by Theorem 6.2 and 𝜉0 = 𝔼[𝜉∣𝒢0] = 𝔼[𝜉∣ℱ𝛼] is the projection of 𝜉 on ℍ0. □

Directly from Theorem 6.4 we can formulate an integral representation the-
orem.

Corollary 6.5. For any 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) there exists a unique 𝜙 ∈ Φ such that

𝜉 = 𝔼[𝜉∣ℱ𝛼] +
𝑇∫
0

∫
𝑍

𝜙(𝑠, 𝑧) �̃�(𝑑𝑠, 𝑑𝑧).

Note that this corollary is in line with classical stochastic integral repre-
sentation theorems with respect to square integrable martingales as integrators.
Corollary 6.5 offers no immediate way of computing the integrand 𝜙 since only the
existence of the representation via the kernel functions of the iterated integrals is
given. Corollary 6.5 deeply differs from Theorem 5.1 and the following Theorem
7.9. The last ones characterize the integrand 𝜙 in terms of derivative operators.

7. Anticipative stochastic derivatives and integral representations

Motivated by Clark–Ocone type formulae we study ways to compute the non-
anticipating derivative and to have stochastic integral representations. We intro-
duce a new anticipative derivative operator 𝐷𝑎, partially inspired by [15]. We
study this operator in relation with a Malliavin-type derivative for processes with
conditionally independent increments developed in [29].

Let 𝒢Δ𝑐 be the minimal complete 𝜎-algebra containing ℱ𝛼 and the sets
{�̃�(Δ′)∣Δ′ ⊂ Δ𝑐}, where Δ𝑐 is the complement of Δ.
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Definition 7.1. For 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) we set 𝐷𝑎
𝑠,𝑧𝜉(𝑛) as the element of 𝐿2(Ω ×𝑋)

given by

𝐷𝑎
𝑠,𝑧𝜉(𝑛) :=

𝐾𝑛∑
𝑘=1

𝔼
[
𝜉
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢Δ𝑐
𝑛,𝑘

]
1Δ𝑛,𝑘(𝑠, 𝑧),

with the 𝑛 referring to the 𝑛th partition of the dissecting system. Denote by 𝐷𝑎𝜉
the limit in 𝐿2(Ω×𝑋) (if it exists) given by

𝐷𝑎𝜉 = lim
𝑛→∞𝐷𝑎𝜉(𝑛). (7.1)

We define 𝔻𝑎 as the subset of 𝐿2(Ω,ℱ ,ℙ) where the limit (7.1) exists and we define
the norm:

∥𝜉∥𝔻𝑎 :=
(
𝔼
[ 𝑇∫
0

∫
𝑍

(𝐷𝑎
𝑠,𝑧𝜉)

2 𝛼(𝑑𝑠, 𝑑𝑧)
]) 1

2

<∞.

Then 𝐷𝑎 is a linear operator, 𝐷𝑎 : 𝔻𝑎 → 𝐿2(Ω×𝑋).

We remark that for any 𝛽 ∈ ℍ0 (recall Definition 3.2), 𝛽 ∈ 𝔻𝑎 and 𝐷𝑎𝛽 = 0.

Lemma 7.2. For 𝑝 ≥ 1, let 𝜉 be a 𝑝-order 𝛼-multilinear form, i.e., we have 𝜉 =
𝛽
∏𝑝
𝑗=1 �̃�(Δ𝑗). Then

𝐷𝑎
𝑠,𝑧𝜉 = 𝛽

𝑝∑
𝑖=1

1Δ𝑖(𝑠, 𝑧)
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗), (7.2)

and

𝐷𝑎𝜉(𝑛) =

𝑝∑
𝑖=1

𝐾𝑛∑
𝑘=1

𝛼(Δ𝑖 ∩Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)1{Δ𝑛,𝑘∩Δ𝑗=∅}(𝑘, 𝑗)1Δ𝑛,𝑘(𝑠, 𝑧). (7.3)

Furthermore
∥𝜉∥𝔻𝑎 = ∥𝐷𝑎𝜉∥𝐿2(Ω×𝑋) =

√
𝑝∥𝜉∥𝐿2(Ω,ℱ ,ℙ).

Proof. For any 𝑛 and 𝑘 = 1, . . . ,𝐾𝑛, denote

𝜓(𝑛, 𝑘) = 𝔼
[
𝛽

𝑝∏
𝑗=1

�̃�(Δ𝑗)
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢Δ𝑐
𝑛,𝑘

]
If Δ𝑛,𝑘 ∩

(∪𝑝
𝑗=1 Δ𝑗

)
= ∅ or if Δ𝑛,𝑘 intersects with more than one of the sets Δ𝑗 ’s,

then 𝜓(𝑛, 𝑘) is equal to zero by direct computation. If Δ𝑛,𝑘 ⊂ Δ𝑖 for some 𝑖, then

𝜓(𝑛, 𝑘) = 𝔼
[
𝛽

𝑝∏
𝑗=1

�̃�(Δ𝑗)
�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢Δ𝑐𝑛,𝑘]
= 𝛽

∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)𝔼
[(

�̃�(Δ𝑖 ∩Δ𝑛,𝑘) + �̃�(Δ𝑖 ∖Δ𝑛,𝑘)
) �̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢Δ𝑐
𝑛,𝑘

]
= 𝛽

∏
𝑗 ∕=𝑖

�̃�(Δ𝑗).
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If Δ𝑖 ⊊ Δ𝑛,𝑘 for some 𝑖 and Δ𝑛,𝑘 ∩Δ𝑗 = ∅ for all 𝑗 ∕= 𝑖, then

𝜓(𝑛, 𝑘) = 𝛽
𝛼(Δ𝑖)

𝛼(Δ𝑛,𝑘)

𝑝∏
𝑗 ∕=𝑖

�̃�(Δ𝑗).

Combining the above cases we conclude that

𝜓(𝑛, 𝑘) =

𝑝∑
𝑖=1

𝛼(Δ𝑖 ∩Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)1{Δ𝑛,𝑘∩Δ𝑗=∅}(𝑘, 𝑗).

and (7.3) follows. Passing to the limit in 𝐿2(Ω×𝑋) we have

𝐷𝑎𝜉 = lim
𝑛→∞𝐷𝑎𝜉(𝑛) = 𝛽

𝑝∑
𝑖=1

1Δ𝑖(𝑠, 𝑧)
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗).

Moreover

∥∥𝜉∥∥2
𝔻𝑎

= 𝔼
[ 𝑇∫
0

∫
𝑍

(
𝛽

𝑝∑
𝑖=1

1Δ𝑖(𝑠, 𝑧)
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)
)2

𝛼(𝑑𝑠, 𝑑𝑧)
]

= 𝔼
[
𝛽2

𝑝∑
𝑖=1

𝛼(Δ𝑖)
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)
2
]
= 𝔼

[
𝛽2𝑝

𝑝∏
𝑗=1

𝛼(Δ𝑗)
]
= 𝑝∥𝜉∥2𝐿2(Ω,ℱ ,ℙ). □

Comparing (7.2) and (7.3) we can see that, for the 𝑝-order 𝛼-multilinear form
𝜉, the following estimate holds for all 𝑛:

∥𝐷𝑎𝜉(𝑛)∥𝐿2(Ω×𝑋) ≤ ∥𝐷𝑎𝜉∥𝐿2(Ω×𝑋) =
√
𝑝∥𝜉∥𝐿2(Ω,ℱ ,ℙ). (7.4)

The following statements are an immediate consequence in Lemma 7.2.

Corollary 7.3. Let 𝑝 ≥ 1. Let 𝜉1 and 𝜉2 be orthogonal 𝑝-order 𝛼-multilinear forms.
Then, for all 𝑛, 𝐷𝑎𝜉1(𝑛) and 𝐷𝑎𝜉2(𝑛) are orthogonal in 𝐿2(Ω × 𝑋). The same
holds for 𝐷𝑎𝜉1 and 𝐷𝑎𝜉2.

Corollary 7.4. For 𝑝1 > 𝑝2 ≥ 1, let 𝜉1 ∈ ℍ𝑝1 and 𝜉2 ∈ ℍ𝑝2 be 𝛼-multilinear forms.
Then 𝐷𝑎𝜉1 and 𝐷𝑎𝜉2 are orthogonal in 𝐿2(Ω×𝑋).

Finally we have the following result:

Proposition 7.5. For 𝑝 ≥ 1, if 𝜉 ∈ ℍ𝑝 then 𝜉 ∈ 𝔻𝑎 with

∥𝜉∥𝔻𝑎 = √
𝑝∥𝜉∥𝐿2(Ω,ℱ ,ℙ) <∞.

Proof. Any 𝜉 ∈ ℍ𝑝 ⊂ 𝐿2(Ω,ℱ ,ℙ) can be approximated by a sequence 𝜉𝑚,
𝑚 = 1, 2, . . . , of finite sums of 𝛼-multilinear forms of order 𝑝: lim𝑚→∞ ∥𝜉𝑚 −
𝜉∥𝐿2(Ω,ℱ ,ℙ) = 0. First of all we observe that, from Remark 3.4, 𝜉𝑚 can be repre-
sented as finite sums of orthogonal 𝑝-order 𝛼-multilinear forms. From Lemma 7.2
and Corollary 7.3 we can see that 𝐷𝑎𝜉𝑚 is a Cauchy sequence in 𝐿2(Ω×𝑋) with
limit 𝜙 such that ∥𝜙∥𝐿2(Ω×𝑋) =

√
𝑝∥𝜉∥𝐿2(Ω,ℱ ,ℙ).
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We show that indeed 𝜙 = 𝐷𝑎𝜉 := lim𝑛→∞𝐷𝑎𝜉(𝑛) in 𝐿2(Ω ×𝑋). By appli-
cation of Corollary 7.3 and (7.4) we have

∥𝐷𝑎𝜉𝑚(𝑛)∥𝐿2(Ω×𝑋) ≤ √
𝑝∥𝜉𝑚∥𝐿2(Ω,ℱ ,ℙ). (7.5)

Moreover we note that

∥𝐷𝑎𝜉𝑚(𝑛)−𝐷𝑎𝜉(𝑛)∥2𝐿2(Ω×𝑋)

= 𝔼

[ 𝑇∫
0

∫
𝑍

𝐾𝑛∑
𝑘=1

(
𝔼
[
(𝜉𝑚 − 𝜉)

�̃�(Δ𝑛,𝑘)

𝛼(Δ𝑛,𝑘)

∣∣∣𝒢Δ𝑐𝑛,𝑘])21Δ𝑛,𝑘(𝑠, 𝑧)𝛼(𝑑𝑠, 𝑑𝑧)]

≤ 𝔼

[ 𝐾𝑛∑
𝑘=1

𝔼
[
(𝜉𝑚 − 𝜉)2

∣∣∣𝒢Δ𝑐𝑛,𝑘]𝔼[�̃�(Δ𝑛,𝑘)
2
∣∣𝒢Δ𝑐𝑛,𝑘] 1

𝛼(Δ𝑛,𝑘)

]
= 𝐾𝑛∥𝜉𝑚 − 𝜉∥2.

Hence we have

lim
𝑛→∞∥𝜙−𝐷𝑎𝜉(𝑛)∥𝐿2(Ω×𝑋)

≤ lim
𝑛→∞ lim

𝑚→∞

{
∥𝜙−𝐷𝑎𝜉𝑚∥𝐿2(Ω×𝑋) + ∥𝐷𝑎𝜉𝑚 −𝐷𝑎𝜉𝑚(𝑛)∥𝐿2(Ω×𝑋)

+ ∥𝐷𝑎𝜉𝑚(𝑛)−𝐷𝑎𝜉(𝑛)∥𝐿2(Ω×𝑋)

}
= 0.

In fact

lim
𝑛→∞ lim

𝑚→∞ ∥𝐷
𝑎𝜉𝑚(𝑛)−𝐷𝑎𝜉(𝑛)∥𝐿2(Ω×𝑋)

≤ lim
𝑛→∞

{√
𝐾𝑛 lim

𝑚→∞ ∥𝜉𝑚 − 𝜉∥𝐿2(Ω,ℱ ,ℙ)
}
= 0

and by (7.5)

lim
𝑛→∞ lim

𝑚→∞ ∥𝐷
𝑎𝜉𝑚 −𝐷𝑎𝜉𝑚(𝑛)∥𝐿2(Ω×𝑋)

≤ lim
𝑞→∞ lim

𝑛→∞ lim
𝑚→∞

{
∥𝐷𝑎𝜉𝑚 −𝐷𝑎𝜉𝑞(𝑛)∥𝐿2(Ω×𝑋)

+ ∥𝐷𝑎𝜉𝑞(𝑛) +𝐷𝑎𝜉𝑚(𝑛)∥𝐿2(Ω×𝑋)

}
≤ lim
𝑞→∞ ∥𝜙−𝐷𝑎𝜉𝑞∥𝐿2(Ω×𝑋) +

√
𝑝 lim
𝑞→∞ lim

𝑚→∞ ∥𝜉𝑞 − 𝜉𝑚∥𝐿2(Ω,ℱ ,ℙ) = 0. □

The Malliavin calculus for processes with conditionally independent incre-
ments was developed in [29], this include the CDSPP. The results and develop-
ments therein are close to those of [24, Chapter 1]. We summarize some of those
results with the aim of showing how these operators relate to the operator 𝐷𝑎 and
the non-anticipating derivative D .

Let 𝑓𝑝 : 𝐿2

(
Ω× ((0, 𝑇 ]×𝑍)𝑝

)→ ℝ where 𝑓𝑝 is ℱ𝛼×ℬ𝑋-measurable. Remark
that 𝑓𝑝 is not defined on Φ𝑝𝛼, which is a smaller space. We say that 𝑓𝑝 is simple if

𝑓𝑝 =
𝑛∑
𝑖=1

𝛽𝑖(𝜔)1Δ1(𝑠1, 𝑧1) . . .1Δ𝑝(𝑠𝑝, 𝑧𝑝)
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where 𝛽𝑖, 𝑖 = 1, . . . , 𝑛 is a bounded ℱ𝛼-measurable random variable and the sets
Δ1, . . . ,Δ𝑝 are pairwise disjoint. The multiple integrals of order 𝑝 of a simple
function are then

𝐼𝑝(𝑇, 𝑓𝑝) :=

𝑛∑
𝑖

𝛽𝑖

𝑝∏
𝑗=1

�̃�(Δ𝑗),

i.e., the multiple integrals of simple functions of order 𝑝 are sums of 𝛼-multilinear
forms of order 𝑝. These multiple integrals are extended to integrals of general
ℱ𝛼 × ℬ𝑋 -measurable functions 𝑓𝑝 : 𝐿2

(
Ω × (0, 𝑇 ] × 𝑍)𝑝

) → ℝ by taking limits
of simple functions. We conclude that the space spanned by multiple integrals of
order 𝑝 on the functions above coincide with ℍ𝑝.

Any 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) has representation (as per Theorem 6.4 and [29, Corol-
lary 14])

𝜉 = 𝔼
[
𝜉
∣∣ℱ𝛼]+ ∞∑

𝑝=1

𝐼𝑝(𝑓𝑝),

by means of a sequence 𝑓𝑝, 𝑝 ≥ 1, of symmetric functions in 𝐿2

(
Ω× ((0, 𝑇 ]× 𝑧)𝑝

)
.

Denote the symmetrization of 𝑓𝑝 by

𝑓𝑝 :=
1

𝑝!

∑
𝜎

𝑓(𝑠𝜎(1), 𝑧𝜎(1), . . . , 𝑠𝜎(𝑝), 𝑧𝜎(𝑝))

where 𝜎 is running over all permutations of 1, . . . , 𝑝. Let 𝜙𝑝 ∈ Φ𝑝𝛼 (see (6.1)) and
𝑓𝑝 = 1𝑆𝑝𝜙𝑝. Then the following equalities hold [29, Section 3]:

𝐽𝑝(𝑇, 𝜙𝑝) = 𝐼𝑝(𝑇, 𝑓𝑝) = 𝐼𝑝(𝑇, 𝑓𝑝) = 𝑝!𝐽𝑝(𝑇, 𝑓𝑝).

The Malliavin derivative 𝐷 : 𝔻1,2 → 𝐿2(Ω×𝑋) is given by

𝐷𝑠,𝑧𝜉 :=
∞∑
𝑝=1

𝑝𝐼𝑝−1
(
𝑓𝑝(⋅, 𝑠, 𝑧)

)
(7.6)

for all 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) with 𝜉 = 𝔼[𝜉∣ℱ𝛼] +∑∞
𝑝=1 𝐼𝑝(𝑓𝑝), such that

∥𝜉∥𝔻1,2 :=
( ∞∑
𝑝=1

𝑝𝑝!∥𝑓𝑝∥2Φ𝑝𝛼
) 1

2

<∞.

Indeed, ∥𝐷𝜉∥2𝐿2(Ω×𝑋) =
∑∞
𝑝=1 𝑝𝑝!∥𝑓𝑝∥2Φ𝑝𝛼 .

Lemma 7.6. For 𝑝 ≥ 1, let 𝜉 = 𝛽
∏𝑝
𝑗=1 �̃�(Δ𝑗) be an 𝛼-multilinear form. Then

𝐷𝑠,𝑧𝜉 = 𝛽

𝑝∑
𝑖=1

1Δ𝑖(𝑠, 𝑧)
∏
𝑖∕=𝑗

�̃�(Δ𝑗) (7.7)

and

∥𝜉∥𝔻1,2 =
√
𝑝∥𝜉∥𝐿2(Ω,ℱ ,ℙ).
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Proof. Since 𝜉 = 𝐽𝑝(𝑇, 𝛽1Δ1 . . .1Δ𝑝), 𝜉 = 𝐼𝑝(𝑓𝑝) with

𝑓 = 𝛽
1

𝑝!

∑
𝜎

1Δ1(𝑠𝜎(1), 𝑧𝜎(1)) . . .1Δ𝑝(𝑠𝜎(𝑝), 𝑧𝜎(𝑝)).

Thus, from (7.6), we have

𝐷𝑠,𝑧𝜉 = 𝛽
1

𝑝!
𝑝
∑
𝜎

1Δ𝑝(𝑠𝜎(𝑝), 𝑧𝜎(𝑝))

𝐼𝑝−1
(
1Δ1(𝑠𝜎(1), 𝑧𝜎(1)) . . .1Δ𝑝(𝑠𝜎(𝑝−1), 𝑧𝜎(𝑝−1))

)∣∣∣𝑠𝜎(𝑝)=𝑠
𝑧𝜎(𝑝)=𝑧

=
𝑝

𝑝!
𝛽

𝑝∑
𝑖=1

1Δ𝑖(𝑠, 𝑧)(𝑝− 1)!
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)

= 𝛽

𝑝∑
𝑖=1

1Δ𝑖(𝑠, 𝑧)
∏
𝑗 ∕=𝑖

�̃�(Δ𝑗).

Let us compute the norm of 𝜉 in 𝔻1,2. Note that

∥𝑓𝑝∥2Φ𝑝𝛼 = 𝔼
[
𝛽2

1

𝑝!

𝑝∏
𝑗=1

𝛼(Δ𝑗)
]
.

Hence

∥𝜉∥2𝔻1,2
= 𝑝𝑝!∥𝑓𝑝∥2Φ𝑝𝛼 = 𝑝𝔼

[
𝛽2

𝑝∏
𝑗=1

𝛼(Δ𝑗)
]
= 𝑝∥𝜉∥2𝐿2(Ω,ℱ ,ℙ). □

We observe that if 𝜉 ∈ ℍ𝑝, 𝑝 ≥ 1, then by the closability of 𝐷, [29, Lemma
21], and Lemma 7.6 it follows that 𝜉 ∈ 𝔻1,2 with

∥𝜉∥𝔻1,2 =
√
𝑝∥𝜉∥𝐿2(Ω,ℱ ,ℙ) <∞.

Moreover, if 𝛽 is ℱ𝛼 measurable we have 𝐷𝛽 = 0 by [29, Proposition 25].
Recall that 𝐿2(Ω,ℱ ,ℙ) = ℍ =

∑∞
𝑝=0⊕ℍ𝑝 (see Theorem 3.12).

Proposition 7.7. If 𝜉 ∈ ℍ then 𝜉 ∈ 𝔻𝑎 if and only if
∞∑
𝑝=1

√
𝑝∥𝜉𝑝∥𝐿2(Ω,ℱ ,ℙ) <∞.

Here 𝜉0, 𝜉1, . . . is the orthogonal decomposition of 𝜉 in the chaos expansion of
Theorem 3.12. Indeed we have ∥𝐷𝑎𝜉∥𝔻𝑎 = ∥𝐷𝜉∥𝔻1,2 =

∑∞
𝑝=1

√
𝑝∥𝜉𝑝∥𝐿2(Ω,ℱ ,ℙ).

Proof. This is a direct application of Lemma 7.2, Corollary 7.4 for 𝐷𝑎 and of
Theorem 6.2, Lemma 7.6, and (7.7), for 𝐷. □

We conclude that the spaces 𝔻𝑎 and 𝔻1,2 coincide but are not equal to the
whole of 𝐿2(Ω,ℱ ,ℙ), i.e.,

𝔻𝑎 = 𝔻1,2 ⊊ 𝐿2(Ω,ℱ ,ℙ).
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Moreover, we stress that for any 𝜉 ∈ 𝔻𝑎, there exists a sequence 𝜉𝑚, 𝑚 = 1, 2 . . . , of
finite sums of 𝛼-multilinear forms approximating 𝜉. Then 𝐷𝑎𝜉𝑚 and 𝐷𝜉𝑚 are two
identical converging sequences by Lemma 7.2 and Lemma 7.6. These two sequences
must have the same limit in 𝐿2(Ω×𝑋).

We summarize the above arguments into the following statement:

Theorem 7.8. The operators 𝐷𝑎 and 𝐷 coincide, i.e., 𝔻𝑎 = 𝔻1,2 and

𝐷𝑎𝜉 = 𝐷𝜉 in 𝐿2(Ω×𝑋).

After the above result we can also interpret the operator 𝐷𝑎 as an alternative
approach to describe the Malliavin derivative which shows the anticipative depen-
dence of the operator on the information in a much more structural and explicit
way than the classical approach via chaos expansions of iterated integrals.

The following theorem is a Clark–Ocone type result which provides an al-
ternative way to compute the non-anticipating derivative in the integral rep-
resentation of Theorem 5.1. Denote 𝔼[𝐷𝑎𝜉∣𝒢] the stochastic process given by
𝜙(𝑠, 𝑧) = 𝔼

[
𝐷𝑎
𝑠,𝑧𝜉∣𝒢𝑠−], 𝑠 ∈ [0, 𝑇 ], 𝑧 ∈ 𝑍.

Theorem 7.9. For any 𝜉 ∈ 𝔻𝑎 we have

𝔼
[
𝐷𝑎𝜉

∣∣𝒢] = 𝔼
[
𝐷𝜉

∣∣𝒢] = D𝜉 ℙ× 𝛼 a.e.

Proof. The first equality follows from Theorem 7.8. Assume 𝜉 ∈ ℍ𝑝 is a 𝑝-order
𝛼-multilinear form, 𝜉 = 𝛽

∏𝑝
𝑗=1 �̃�(Δ𝑗). From (7.2),

𝔼
[
𝐷𝑎
𝑠,𝑧𝜉

∣∣∣𝒢𝑠−] = 𝛽

𝑝∑
𝑖=1

𝔼
[∏
𝑗 ∕=𝑖

�̃�(Δ𝑗)
∣∣∣𝒢𝑠−]1Δ𝑖(𝑠, 𝑧)

= 𝛽
∑

1≤𝑖≤𝑝
Δ𝑖⊆Δ′

1Δ𝑖(𝑠, 𝑧)

𝑝∏
𝑗 ∕=𝑖

�̃�(Δ𝑗 ∩ [0, 𝑠)× 𝑍) = D𝑠,𝑧𝜉

by comparing to (5.2). The set Δ′ is as described in (5.3). By approximation
we obtain the statement first for the general 𝜉 ∈ ℍ𝑝 and then for 𝜉 ∈ ℍ: 𝜉 =
lim𝑞→∞

∑𝑞
𝑝=0 𝜉𝑝 with 𝜉𝑝 ∈ ℍ𝑝. □

Corollary 7.10. For any 𝜉 ∈ 𝐿2(Ω,ℱ ,ℙ) there exists a sequence 𝜉𝑞 ∈ 𝔻𝑎, 𝑞 = 1, . . .
such that 𝜉𝑞 → 𝜉 in 𝐿2(Ω,ℱ ,ℙ) and

D𝜉𝑞 = 𝔼
[
𝐷𝑎𝜉𝑞∣𝒢

] −→ D𝜉 as 𝑞 →∞ in Φ.

Thus

𝜉 = 𝔼[𝜉∣ℱ𝛼] + lim
𝑞→∞

𝑇∫
0

∫
𝑍

𝔼
[
𝐷𝑎
𝑠,𝑧𝜉𝑞∣𝒢𝑠−

]
�̃�(𝑑𝑠, 𝑑𝑧)

with convergence in 𝐿2(Ω,ℱ ,ℙ).

Proof. Take 𝜉𝑞 to be the projection of 𝜉 onℍ𝑞 =
∑𝑞
𝑝=0⊕ℍ𝑝, this is 𝜉𝑞 = 𝔼

[
𝜉
∣∣ℱ𝛼]+∑𝑞

𝑝=1 𝜉𝑝, and apply Remark 5.2 and Theorem 7.9. □
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Mathematical Finance, 13 (1) (2003), 55–72.

[2] T. Bielecki, M. Jeanblanc, and M. Rutkowski, Hedging of Defaultable Claims. Paris-
Princeton Lectures on Mathematical Finance, 2004.

[3] P. Billingsley, Probability and Measure. Wiley, 1995.

[4] R. Boel, P. Varaiya, and E. Wong, Martingales on jump processes. I. Representation
results. SIAM Journal on control, 13 (5) (1975), 999–1021.
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General Upper and Lower Tail Estimates
Using Malliavin Calculus and
Stein’s Equations
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To the memory of Prof. Paul Malliavin

Abstract. Following a strategy recently developed by Ivan Nourdin and Gio-
vanni Peccati, we provide a general technique to compare the tail of a given
random variable to that of a reference distribution, and apply it to all reference
distributions in the so-called Pearson class. This enables us to give concrete
conditions to ensure upper and/or lower bounds on the random variable’s
tail of various power or exponential types. The Nourdin-Peccati strategy an-
alyzes the relation between Stein’s method and the Malliavin calculus, and is
adapted to dealing with comparisons to the Gaussian law. By studying the
behavior of the solution to general Stein equations in detail, we show that the
strategy can be extended to comparisons to a wide class of laws, including all
Pearson distributions.

Mathematics Subject Classification (2010). Primary 60H07; Secondary 60G15,
60E15.

Keywords. Malliavin calculus, tail estimate, Stein’s equation, Pearson distri-
bution.

1. Introduction

In this article, following a strategy recently developed by Ivan Nourdin and Gio-
vanni Peccati, we provide a general technique to compare the tail of a given random
variable to that of a reference distribution, and apply it to all reference distribu-
tions in the so-called Pearson class, which enables us to give concrete conditions
to ensure upper and/or lower bounds on the random variable’s tail of power or
exponential type. The strategy uses the relation between Stein’s method and the

Both authors’ research partially supported by NSF grant DMS-0907321.
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Malliavin calculus. In this introduction, we detail the main ideas of this strategy,
including references to related works; we also summarize the results proved in this
article, and the methods used to prove them.

1.1. Stein’s method and the analysis of Nourdin and Peccati

Stein’s method is a set of procedures that is often used to measure distances
between distributions of random variables. The starting point is the so-called Stein
equation. To motivate it, recall the following result which is sometimes referred to

as Stein’s lemma. Suppose 𝑋 is a random variable. Then 𝑋
Law
= 𝑍 ∼ 𝒩 (0, 1) if

and only if

E[𝑓 ′(𝑋)−𝑋𝑓(𝑋)] = 0 (1.1)

for all continuous and piecewise differentiable functions 𝑓 such that E[∣𝑓 ′(𝑋)∣]
< ∞ (see, e.g., [4, 5, 21]). If the above expectation is non-zero but close to zero,
Stein’s method can give us a way to express how close the law of 𝑋 might be to
the standard normal law, in particular by using the concept of Stein equation. For
a given test function ℎ, this is the ordinary differential equation 𝑓 ′ (𝑥)− 𝑥𝑓 (𝑥) =
ℎ (𝑥) − E [ℎ (𝑍)] with continuous and piecewise differentiable solution 𝑓 . As we
will see in more detail and greater generality further below, if one is able to prove
boundedness properties of 𝑓 and 𝑓 ′ for a wide class of test functions ℎ, this can
help evaluate the distance between the law of 𝑍 and laws of random variables that
might be close to 𝑍, including methods for proving convergence in distribution.
This fundamental feature of Stein’s method is described in many works; see [4] for
a general introduction and review.

As a testament to the extraordinary versatility of Stein’s method, recently
Ivan Nourdin and Giovanni Peccati discovered a connection between Stein’s
method and the Malliavin calculus, with striking applications in a number of
problems in stochastic analysis. Motivated by Berry–Esséen-type theorems for
convergence of sequences of random variables in Wiener chaos, Nourdin and Pec-
cati’s first paper [8] on this connection considers an arbitrary square-integrable
Malliavin-differentiable random variable 𝑋 on a Wiener space, and associates the
random variable

𝐺 := ⟨𝐷𝑋 ;−𝐷𝐿−1𝑋⟩ (1.2)

where 𝐷 is the Malliavin derivative operator on the Wiener space, and 𝐿−1 is
the pseudo-inverse of the generator of the Ornstein–Uhlenbeck semigroup (see
Section 3.1 for precise definitions of these operators). One easily notes that if 𝑋
is standard normal, then 𝐺 ≡ 1 (Corollary 3.4 in [16]). Then by measuring the
distance between 𝐺 and 1 for an arbitrary 𝑋 , one can measure how close the law
of 𝑋 is to the normal law. The connection to Stein’s method comes from their
systematic use of the basic observation that E [𝐺𝑓 (𝑋)] = E [𝑋𝑓 ′ (𝑋)]. It leads
to the following simple and efficient strategy for measuring distances between the
laws of 𝑋 and 𝑍. To evaluate, e.g., E [ℎ(𝑋)] − E [ℎ(𝑍)] for test functions ℎ, one
can:
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1. write E [ℎ(𝑋)]−E [ℎ(𝑍)] using the solution of Stein’s equation, as E [𝑓 ′ (𝑋)]−
E [𝑋𝑓 (𝑋)];

2. use their observation to transform this expression into E [𝑓 ′ (𝑋) (1−𝐺)];
3. use the boundedness and decay properties of 𝑓 ′ (these are classically known

from Stein’s equation) to exploit the proximity of 𝐺 to 1.

As we said, this strategy of relating Stein’s method and the Malliavin calcu-
lus is particularly useful for analyzing problems in stochastic analysis. In addition
to their study of convergence in Wiener chaos in [8], which they followed up with
sharper results in [9], Nourdin and Peccati have implemented several other appli-
cations including: the study of cummulants on Wiener chaos [11], of fluctuations of
Hermitian random matrices [12], and, with other authors, other results about the
structure of inequalities and convergences on Wiener space, such as [3, 13, 14, 15].
In [16], it was pointed out that if 𝜌 denotes the density of 𝑋 , then the function

𝑔(𝑧) := 𝜌−1(𝑧)
∫ ∞

𝑧

𝑦𝜌(𝑦) 𝑑𝑦, (1.3)

which was originally defined by Stein in [21], can be represented as

𝑔 (𝑧) = E[𝐺∣𝑋 = 𝑧],

resulting in a convenient formula for the density 𝜌, which was then exploited to
provide new Gaussian lower bound results for certain stochastic models, in [16]
for Gaussian fields, and subsequently in [22] for polymer models in Gaussian and
non-Gaussian environments, in [18] for stochastic heat equations, in [3] for statis-
tical inference for long-memory stochastic processes, and multivariate extensions
of density formulas in [1].

1.2. Summary of our results

Our specific motivation is drawn from the results in [22] which make assump-
tions on how 𝐺 compares to 1 almost surely, and draw conclusions on how the
tail of 𝑋 , i.e., P [𝑋 > 𝑧], compares to the normal tail P [𝑍 > 𝑧]. By the above
observations, these types of almost-sure assumptions are equivalent to comparing
the deterministic function 𝑔 to the value 1. For instance, one result in [22] can
be summarized by saying that (under some additional regularity conditions) if
𝐺 ≥ 1 almost surely, i.e., if 𝑔 (𝑧) ≥ 1 everywhere, then for some constant 𝑐 and
large enough 𝑧, P [𝑋 > 𝑧] > 𝑐P [𝑍 > 𝑧]. This result, and all the ones mentioned
above, concentrate on comparing laws to the standard normal law, which is done
by comparing 𝐺 to the constant 1, as this constant is the “𝐺” for the standard
normal 𝑍.

In this paper, we find a framework which enables us to compare the law of
𝑋 to a wide range of laws. Instead of assuming that 𝑔 is comparable to 1, we
only assume that it is comparable to a polynomial of degree less than or equal to
2. In [21], Stein had originally noticed that the set of all distributions such that
their 𝑔 is such a polynomial, is precisely the so-called Pearson class of distribu-
tions. They encompass Gaussian, Gamma, and Beta distributions, as well as the
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inverse-Gamma, and a number of continuous distributions with only finitely many
moments, with prescribed power tail behavior. This means that one can hope to
give precise criteria based on 𝑔, or via Malliavin calculus based on 𝐺, to guar-
antee upper and/or lower bounds on the tail P [𝑋 > 𝑧], with various Gaussian,
exponential, or power-type behaviors. We achieve such results in this paper.

Specifically, our first set of results is in the following general framework. Let 𝑍
be a reference random variable supported on (𝑎, 𝑏) where −∞ ≤ 𝑎 < 𝑏 ≤ +∞, with
a density 𝜌∗ which is continuous on R and differentiable on (𝑎, 𝑏). The function 𝑔
corresponding to 𝜌∗ is given as in (1.3), and we denote it by 𝑔∗ (the subscripts ∗
indicate that these are relative to our reference r.v.):

𝑔∗ (𝑧) =

∫∞
𝑧

𝑦𝜌∗(𝑦) 𝑑𝑦
𝜌∗(𝑧)

1(𝑎,𝑏)(𝑧). (1.4)

We also use the notation

Φ∗ (𝑧) = P [𝑍 > 𝑧]

for our reference tail. Throughout this article, for notational convenience, we as-
sume that 𝑍 is centered (except when specifically stated otherwise in Section A.2
in the Appendix). Let 𝑋 be Malliavin-differentiable, supported on (𝑎, 𝑏), with its
𝐺 := ⟨𝐷𝑋 ;−𝐷𝐿−1𝑋⟩ as in (1.2).

∙ (Theorem 3.4) Under mild regularity and integrability conditions on 𝑍 and
𝑋 , if 𝐺 ≥ 𝑔∗ (𝑋) almost surely, then for all 𝑧 < 𝑏,

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

𝑄(𝑧)

∫ 𝑏

𝑧

(2𝑦 − 𝑧)P[𝑋 > 𝑦] 𝑑𝑦,

where

𝑄 (𝑧) := 𝑧2 − 𝑧𝑔′∗ (𝑧) + 𝑔∗ (𝑧) ; (1.5)

typically 𝑄 is of order 𝑧2 for large 𝑧.
∙ (Theorem 3.5) Under mild regularity and integrability conditions on 𝑍 and

𝑋 , if 𝐺 ≤ 𝑔∗ (𝑋) almost surely, then for some constant 𝑐 and all large enough
𝑧 < 𝑏,

P[𝑋 > 𝑧] ≤ 𝑐Φ∗(𝑧).
These results are generalizations of the work in [22], where only the standard

normal 𝑍 was considered. They can be rephrased by referring to 𝑔 as in (1.3),
which coincides with 𝑔 (𝑧) = E [𝐺∣𝑋 = 𝑧], rather than 𝐺; this can be useful to
apply the theorems in contexts where the definition of 𝑋 as a member of a Wiener
space is less explicit than the information one might have directly about 𝑔. We
have found, however, that the Malliavin-calculus interpretation makes for efficient
proofs of the above theorems.

The main application of these general theorems are to the Pearson class:
𝑍 such that its 𝑔∗ is of the form 𝑔∗ (𝑧) = 𝛼𝑧2 + 𝛽𝑧 + 𝛾 in the support of 𝑍.
Assume 𝑏 = +∞, i.e., the support of 𝑍 is (𝑎,+∞). Assume E

[∣𝑍∣3] < ∞ (which
is equivalent to 𝛼 < 1/2). Then the lower bound above can be made completely
explicit, as can the constant 𝑐 in the upper bound.
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∙ (Corollary 4.8) Under mild regularity and integrability conditions on 𝑋 [in-
cluding assuming that there exists 𝑐 > 2 such that 𝑔 (𝑧) ≤ 𝑧2/𝑐 for large 𝑧],
if 𝐺 ≥ 𝑔∗ (𝑋) almost surely, then for any 𝑐′ < 1

1+2(1−𝛼)(𝑐−2) and all 𝑧 large

enough,

P[𝑋 > 𝑧] ≥ 𝑐′Φ∗(𝑧).

∙ (Corollary 4.7) Under mild regularity and integrability conditions on 𝑋 , if
𝐺 ≤ 𝑔∗ (𝑋) almost surely, then for any 𝑐 > (1 − 𝛼)/(1 − 2𝛼), and all 𝑧 large
enough,

P[𝑋 > 𝑧] ≤ 𝑐Φ∗(𝑧).

The results above can be used conjointly with asymptotically sharp conclu-
sions when upper and lower bound assumptions on 𝐺 are true simultaneously. For
instance, we have the following, phrased using 𝑔’s instead of 𝐺’s.

∙ (Corollary 4.9, point 2) On the support (𝑎,+∞), let 𝑔∗ (𝑧) = 𝛼𝑧2 + 𝛽𝑧 + 𝛾
and let 𝑔∗ (𝑧) = �̄�𝑧2 + 𝛽𝑧 + 𝛾 with non-zero 𝛼 and �̄�. If for the Malliavin-
differentiable 𝑋 and its corresponding 𝑔, we have for all 𝑧 > 𝑎, 𝑔∗ (𝑧) ≤
𝑔 (𝑧) ≤ 𝑔∗ (𝑧), then there are constants 𝑐 and 𝑐 such that for large 𝑧,

𝑐𝑧−1−1/𝛼 ≤ P[𝑋 > 𝑧] ≤ 𝑐𝑧−1−1/�̄�.

∙ (see Corollary 4.10) A similar result holds when 𝛼 = �̄� = 0, in whichP[𝑋 > 𝑧]

compares to the Gamma-type tail 𝑧−1−𝛾/𝛽
2

exp (−𝑧/𝛽).

The strategy used to prove these results is an analytic one, following the
initial method of Nourdin and Peccati, this time using the Stein equation relative
to the function 𝑔∗ defined in (1.4) for a general reference r.v. 𝑍:

𝑔∗ (𝑥) 𝑓 ′ (𝑥) − 𝑥𝑓 (𝑥) = ℎ (𝑥)−E [ℎ (𝑍)] .

Our mathematical techniques are based on a careful analysis of the properties of
𝑔∗, its relation to the function 𝑄 defined in (1.5), and what consequences can be
derived for the solutions of Stein’s equation. The basic general theorems’ proofs use
a structure similar to that employed in [22]. The applications to the Pearson class
rely heavily on explicit computations tailored to this case, which are facilitated
via the identification of 𝑄 as a useful way to express these computations.

This article is structured as follows. Section 2 gives an overview of Stein’s
equations, and derives some fine properties of their solutions by referring to the
function 𝑄. These will be crucial in the proofs of our general upper and lower
bound results, which are presented in Section 3 after an overview of the tools of
Malliavin calculus which are needed in this article. Applications to comparisons
with Pearson distributions, with a particular emphasis on tail behavior, including
asymptotic results, are in Section 4. Section 5 is an Appendix containing the proofs
of some technical lemmas and some details on Pearson distributions.
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2. The Stein equation

2.1. Background and classical results

Characterization of the law of 𝒁. As before, let 𝑍 be centered with a differentiable
density on its support (𝑎, 𝑏), and let 𝑔∗ be defined as in (1.4). Nourdin and Peccati
(Proposition 6.4 in [8]) collected the following results concerning this equation. If
𝑓 is a function that is continuous and piecewise continuously differentiable, and if
E[∣𝑓 ′(𝑍)∣𝑔∗(𝑍)] <∞, Stein (Lemma 1, p. 59 in [21]) proved that

E[𝑔∗(𝑍)𝑓 ′(𝑍)− 𝑍𝑓(𝑍)] = 0

(compare this with (1.1) for the special case 𝑍 ∼ 𝒩 (0, 1)). Conversely, assume
that ∫ 𝑏

0

𝑧

𝑔∗(𝑧)
𝑑𝑧 =∞ and

∫ 0

𝑎

𝑧

𝑔∗(𝑧)
𝑑𝑧 = −∞. (2.1)

If a random variable 𝑋 has a density, and for any differentiable function 𝑓 such
that 𝑥 �→ ∣𝑔∗(𝑥)𝑓 ′(𝑥)∣ + ∣𝑥𝑓(𝑥)∣ is bounded,

E[𝑔∗(𝑋)𝑓 ′(𝑋)−𝑋𝑓(𝑋)] = 0 (2.2)

then 𝑋 and 𝑍 have the same law. In other words, under certain conditions, (2.2)
can be used to characterize the law of a centered random variable 𝑋 as being equal
to that of 𝑍.

Stein’s equation, general case; distances between distributions. If ℎ is a fixed
bounded piecewise continuous function such that E[∣ℎ(𝑍)∣] <∞, the correspond-
ing Stein equation for 𝑍 is the ordinary differential equation in 𝑓 defined by

ℎ(𝑥) −E[ℎ(𝑍)] = 𝑔∗(𝑥)𝑓 ′(𝑥)− 𝑥𝑓(𝑥). (2.3)

The utility of such an equation is apparent when we evaluate the functions at 𝑋
and take expectations:

E[ℎ(𝑋)]−E[ℎ(𝑍)] = E[𝑔∗(𝑋)𝑓 ′(𝑋)−𝑋𝑓(𝑋)]. (2.4)

The idea is that if the law of 𝑋 is “close” to the law of 𝑍, then the right side of
(2.4) would be close to 0. Conversely, if the test function ℎ can be chosen from
specific classes of functions so that the left side of (2.4) denotes a particular notion
of distance between 𝑋 and 𝑍, the closeness of the right-hand side of (2.4) to zero,
in some uniform sense in the 𝑓 ’s satisfying Stein’s equation (2.3) for all the ℎ’s
in that specific class of test functions, will imply that the laws of 𝑋 and 𝑍 are
close in the corresponding distance. For this purpose, it is typically crucial to
establish boundedness properties of 𝑓 and 𝑓 ′ which are uniform over the class of
test functions being considered.

For example, if ℋ ={ℎ : ∣∣ℎ∣∣𝐿 + ∣∣ℎ∣∣∞ ≤ 1} where ∣∣ ⋅ ∣∣𝐿 is the Lipschitz
seminorm, then the Fortet–Mourier distance 𝑑𝐹𝑀 (𝑋,𝑍) between 𝑋 and 𝑍 is de-
fined as

𝑑𝐹𝑀 (𝑋,𝑍) = sup
ℎ∈ℋ

∣E[ℎ(𝑋)]−E[ℎ(𝑍)]∣.
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This distance metrizes convergence in distribution, so by using properties of the
solution 𝑓 of the Stein equation (2.4) for ℎ ∈ ℋ, we can draw conclusions on the
convergence in distribution of a sequence {𝑋𝑛} to 𝑍. See [8] and [6] for details and
other notions of distance between random variables.

Solution of Stein’s equation. Stein (Lemma 4, p. 62 in [21]) proved that if (2.1)
is satisfied, then his equation (2.3) has a unique solution 𝑓 which is bounded and
continuous on (𝑎, 𝑏). If 𝑥 /∈ (𝑎, 𝑏), then

𝑓(𝑥) = −ℎ(𝑥)−E [ℎ(𝑍)]

𝑥
(2.5)

while if 𝑥 ∈ (𝑎, 𝑏),

𝑓(𝑥) =

∫ 𝑥

𝑎

(ℎ(𝑦)−E [ℎ(𝑍)])
𝑒
∫
𝑥
𝑦

𝑧 𝑑𝑧
𝑔∗(𝑧)

𝑔∗(𝑦)
𝑑𝑦. (2.6)

2.2. Properties of solutions of Stein’s equations

We assume throughout that 𝜌∗ is differentiable on (𝑎, 𝑏) and continuous on R (for
which it is necessary that 𝜌∗ be null onR−(𝑎, 𝑏) ). Consequently, 𝑔∗ is differentiable
and continuous on (𝑎, 𝑏). The next lemma records some elementary properties of
𝑔∗, such as its positivity and its behavior near 𝑎 and 𝑏. Those facts which are not
evident are established in the Appendix. All are useful in facilitating the proofs of
other lemmas presented in this section, which are key to our article.

Lemma 2.1. Let 𝑍 be centered and continuous, with a density 𝜌∗ that is continuous
on R and differentiable on its support (𝑎, 𝑏), with 𝑎 and 𝑏 possibly infinite.

1. 𝑔∗ (𝑥) > 0 if and only if 𝑥 ∈ (𝑎, 𝑏);
2. 𝑔∗ is differentiable on (𝑎, 𝑏) and [𝑔∗(𝑥)𝜌∗(𝑥)]′ = −𝑥𝜌∗(𝑥) therein;
3. lim

𝑥→𝑎 𝑔∗(𝑥)𝜌∗(𝑥) = lim
𝑥→𝑏

𝑔∗(𝑥)𝜌∗(𝑥) = 0.

A different expression for the solution 𝑓 of Stein’s equation (2.3) than the
one given in (2.5), (2.6), which will be more convenient for our purposes, such as
computing 𝑓 ′ in the support of 𝑍, was given by Schoutens [20] as stated in the
next lemma.

Lemma 2.2. For all 𝑥 ∈ (𝑎, 𝑏),

𝑓(𝑥) =
1

𝑔∗(𝑥)𝜌∗(𝑥)

∫ 𝑥

𝑎

(ℎ(𝑦)−E [ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦. (2.7)

If 𝑥 /∈ [𝑎, 𝑏], differentiating (2.5) gives

𝑓 ′(𝑥) =
−𝑥ℎ′(𝑥) + ℎ(𝑥)−E [ℎ(𝑍)]

𝑥2
(2.8)

while if 𝑥 ∈ (𝑎, 𝑏), differentiating (2.7) gives

𝑓 ′(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
ℎ(𝑥)−E[ℎ(𝑍)]

𝑔∗(𝑥)
. (2.9)
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The proof of this lemma (provided in the Appendix for completeness) also
gives us the next one.

Lemma 2.3. Under our assumption of differentiability on (𝑎, 𝑏) of 𝜌∗ and hence of
𝑔∗, Stein’s condition (2.1) on 𝑔∗ is satisfied.

In Stein’s equation (2.3), the test function ℎ = 1(−∞,𝑧] lends itself to useful
tail probability results since E[ℎ(𝑍)] = P[𝑍 ≤ 𝑧]. From this point on, we will
assume that ℎ = 1(−∞,𝑧] with fixed 𝑧 > 0, and that 𝑓 is the corresponding solution
of Stein’s equation (we could denote the parametric dependence of 𝑓 on 𝑧 by 𝑓𝑧,
but choose to omit the subscript to avoid overburdening the notation).

As opposed to the previous lemmas, the next two results, while still elemen-
tary in nature, appear to be new, and their proofs, which require some novel ideas
of possibly independent interest, have been kept in the main body of this paper,
rather than having them relegated to the Appendix. We begin with an analysis of
the sign of 𝑓 ′, which will be crucial to prove our main general theorems.

Lemma 2.4. Suppose 0 < 𝑧 < 𝑏. If 𝑥 ≤ 𝑧, then 𝑓 ′(𝑥) ≥ 0. If 𝑥 > 𝑧, then 𝑓 ′(𝑥) ≤ 0.

Proof. The result follows easily from (2.8) when 𝑥 /∈ [𝑎, 𝑏]: if 𝑥 < 𝑎, then 𝑓 ′(𝑥) =
(1−E[ℎ(𝑍)]) /𝑥2 ≥ 0, while if 𝑥 > 𝑏, then 𝑓 ′(𝑥) = −E[ℎ(𝑍)]/𝑥2 ≤ 0. So now we
can assume that 𝑥 ∈ (𝑎, 𝑏). We will use the expression for the derivative 𝑓 ′ given
in (2.9).

Suppose 𝑎 < 𝑥 ≤ 𝑧. Then ℎ(𝑥) = 1 and for any 𝑦 ≤ 𝑥, ℎ(𝑦) = 1 so

𝑓 ′(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

(1−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
1−E[ℎ(𝑍)]

𝑔∗(𝑥)

=
1−E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 + 𝑔∗(𝑥)𝜌∗(𝑥)
)
.

Clearly, 𝑓 ′(𝑥) ≥ 0 if 𝑥 ≥ 0. Now define

𝑛1(𝑥) :=

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 +
𝑔∗(𝑥)𝜌∗(𝑥)

𝑥
.

We will show that 𝑥𝑛1(𝑥) ≥ 0 when 𝑥 < 0. Since

𝑛′1(𝑥) = 𝜌∗(𝑥) +
𝑥[𝑔∗(𝑥)𝜌∗(𝑥)]′ − 𝑔∗(𝑥)𝜌∗(𝑥)

𝑥2

= 𝜌∗(𝑥) +
−𝑥2𝜌∗(𝑥) − 𝑔∗(𝑥)𝜌∗(𝑥)

𝑥2
= −𝑔∗(𝑥)𝜌∗(𝑥)

𝑥2
≤ 0

then 𝑛1 is nonincreasing on (𝑎, 0) which means that whenever 𝑎 < 𝑥 < 0, 𝑛1(𝑥) ≤
lim
𝑥→𝑎𝑛1(𝑥) = lim

𝑥→𝑎
𝑔∗(𝑥)𝑝(𝑥)

𝑥 = 0 since lim
𝑥→𝑎 𝑔∗(𝑥)𝜌∗(𝑥) = 0. Therefore, 𝑥𝑛1(𝑥) ≥ 0 for

𝑥 < 0. This completes the proof that 𝑓 ′(𝑥) ≥ 0 whenever 𝑥 ≤ 𝑧.
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Finally, suppose that 𝑧 < 𝑥 < 𝑏 so ℎ(𝑥) = 0. Since E[ℎ(𝑍)] = P[𝑍 ≤ 𝑧] =∫ 𝑧
𝑎 𝜌∗(𝑦) 𝑑𝑦,

𝑓 ′(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

ℎ(𝑦)𝜌∗(𝑦) 𝑑𝑦

− 𝑥E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − E[ℎ(𝑍)]

𝑔∗(𝑥)

=
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑧

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑥E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − E[ℎ(𝑍)]

𝑔∗(𝑥)

=
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
E[ℎ(𝑍)]− 𝑥E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − E[ℎ(𝑍)]

𝑔∗(𝑥)

=
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥− 𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑔∗(𝑥)𝜌∗(𝑥)
)

=
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)
⋅ 𝑥𝑛2(𝑥)

where

𝑛2(𝑥) := 1−
∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑔∗(𝑥)𝜌∗(𝑥)
𝑥

= 1− 𝑛1(𝑥).

It is enough to show that 𝑛2(𝑥) ≤ 0 since 𝑥 > 𝑧 ≥ 0. Since 𝑛′2(𝑥) = −𝑛′1(𝑥) ≥
0, then 𝑛2(𝑥) ≤ lim

𝑥→𝑏
𝑛2(𝑥) = 1 − lim

𝑥→𝑏
∫ 𝑥
𝑎
𝜌∗(𝑦) 𝑑𝑦 − lim

𝑥→𝑏
𝑔∗(𝑥)𝜌∗(𝑥)

𝑥 = 0 because

lim
𝑥→𝑏

𝑔∗(𝑥)𝜌∗(𝑥) = 0. Therefore, 𝑓 ′(𝑥) ≤ 0 if 𝑥 > 𝑧, finishing the proof of the

lemma. □

As alluded to in the previous subsection, of crucial importance in the use of
Stein’s method, is a quantitatively explicit boundedness result on the derivative
of the solution to Stein’s equation. We take this up in the next lemma.

Lemma 2.5. Recall the function

𝑄(𝑥) := 𝑥2 − 𝑥𝑔′∗(𝑥) + 𝑔∗(𝑥)

defined in (1.5), for all 𝑥 ∈ R except possibly at 𝑎 and 𝑏. Assume that 𝑔′′∗ (𝑥) < 2

for all 𝑥 and that
𝑥−𝑔′∗(𝑥)
𝑄(𝑥) tends to a finite limit as 𝑥 → 𝑎 and as 𝑥 → 𝑏. Suppose

0 < 𝑧 < 𝑏. Then 𝑓 ′(𝑥) is bounded. In particular, if 𝑎 < 𝑥 ≤ 𝑧,

0 ≤ 𝑓 ′(𝑥) ≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
<∞,

while if 𝑏 > 𝑥 > 𝑧,

−∞ < − 1

𝑄(𝑧)
≤ 𝑓 ′(𝑥) ≤ 0. (2.10)

To prove this lemma, we need two auxiliary results. The first one introduces
and studies the function 𝑄 which we already encountered in the introduction, and
which will help us state and prove our results in an efficient way. The second one
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shows the relation between 𝑄, 𝑔∗, and the tail Φ∗ of 𝑍, under conditions which
will be easily verified later on in the Pearson case.

Lemma 2.6.

1. If 𝑥 /∈ (𝑎, 𝑏), then 𝑄(𝑥) = 𝑥2 > 0.
2. If 𝑔∗ is twice differentiable in (𝑎, 𝑏) (for example, when 𝜌∗ is twice differen-

tiable), then 𝑄′(𝑥) = 𝑥 (2− 𝑔′′∗ (𝑥)).
3. If moreover 𝑔′′∗ (𝑥) < 2 in (𝑎, 𝑏), a reasonable assumption as we shall see

later when 𝑍 is a Pearson random variable, then min (𝑎,𝑏)𝑄 = 𝑄 (0) so that
𝑄(𝑥) ≥ 𝑄(0) = 𝑔∗(0) > 0.

Lemma 2.7. With the assumptions on 𝑔∗ and 𝑄 as in Lemma 2.5, then for all 𝑥,

max (𝑥− 𝑔′∗(𝑥), 0)
𝑄(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥) ≤ Φ∗(𝑥) (2.11)

and

max (𝑔′∗(𝑥)− 𝑥, 0)

𝑄(𝑥)
𝑔∗(𝑥)𝜌∗(𝑥) ≤ 1− Φ∗(𝑥). (2.12)

Moreover for 0 < 𝑥 < 𝑏, we have

Φ∗(𝑥) ≤ 1

𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥) (2.13)

while if 𝑎 < 𝑥 < 0, then

1− Φ∗(𝑥) ≤ 1

−𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥). (2.14)

Proof of Lemma 2.5. If 𝑥 < 𝑎 with 𝑎 > −∞, then 𝑓 ′(𝑥) = 1−E[ℎ(𝑍)]
𝑥2 ≤ 1−E[ℎ(𝑍)]

𝑎2 .

If 𝑥 > 𝑏 with 𝑏 < ∞, then 𝑓 ′(𝑥) = −E[ℎ(𝑍)]
𝑥2 ≥ −E[ℎ(𝑍)]

𝑏2 . So now we only need to
assume that 𝑥 ∈ (𝑎, 𝑏).

Suppose 𝑎 < 𝑥 ≤ 𝑧. Use 𝑓 ′(𝑥) ≥ 0 given in (2.9):

𝑓 ′(𝑥) =
1− E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 + 𝑔∗(𝑥)𝜌∗(𝑥)
)

≤ 𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(1− Φ∗(𝑥)) +

1

𝑔∗(𝑥)
.

When 𝑥 ≥ 0, we can rewrite the upper bound as:

𝑓 ′(𝑥) ≤ 𝑟(𝑥) +
1

𝑔∗(𝑥)

[
1− 𝑥Φ∗(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥)

]
where

𝑟(𝑥) =
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
=

𝑥

𝑔∗(𝑥)[𝑔∗(𝑥)𝜌∗(𝑥)]
.
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We can bound 𝑟(𝑥) above since

𝑟′(𝑥) =
[𝑔∗(𝑥)]2𝜌∗(𝑥) − 𝑥 [𝑔∗(𝑥) (−𝑥𝜌∗(𝑥)) + 𝑔∗(𝑥)𝜌∗(𝑥)𝑔′∗(𝑥)]

[𝑔∗(𝑥)]4 [𝜌∗(𝑥)]
2

=
𝑔∗(𝑥) + 𝑥2 − 𝑥𝑔′∗(𝑥)

[𝑔∗(𝑥)]3𝜌∗(𝑥)
=

𝑄(𝑥)

[𝑔∗(𝑥)]3𝜌∗(𝑥)
> 0

so 𝑟(𝑥) ≤ 𝑟(𝑧). To bound [1− 𝑥Φ∗(𝑥)/ (𝑔∗(𝑥)𝜌∗(𝑥))] /𝑔∗(𝑥), use (2.11) of Lem-
ma 2.7:

1

𝑔∗(𝑥)

[
1− 𝑥Φ∗(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥)

]
≤ 1

𝑔∗(𝑥)

[
1− 𝑥

𝑔∗(𝑥)𝜌∗(𝑥)
⋅ 𝑥− 𝑔′∗(𝑥)

𝑄(𝑥)
𝑔∗(𝑥)𝜌∗(𝑥)

]
=

1

𝑔∗(𝑥)

[
1− 𝑥2 − 𝑥𝑔′∗(𝑥)

𝑄(𝑥)

]
=

1

𝑔∗(𝑥)
⋅ 𝑔∗(𝑥)
𝑄(𝑥)

=
1

𝑄(𝑥)
≤ 1

𝑄(0)
.

Therefore,

𝑓 ′(𝑥) ≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
.

When 𝑥 < 0, we use (2.12) of Lemma 2.7:

𝑓 ′(𝑥) ≤ 𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(1− Φ∗(𝑥)) +

1

𝑔∗(𝑥)

≤ 𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)
⋅ 𝑔
′
∗(𝑥)− 𝑥

𝑄(𝑥)
𝑔∗(𝑥)𝜌∗(𝑥) +

1

𝑔∗(𝑥)

=
1

𝑔∗(𝑥)
⋅ 𝑥𝑔

′
∗(𝑥)− 𝑥2

𝑄(𝑥)
+

1

𝑔∗(𝑥)

=
1

𝑔∗(𝑥)

[
𝑥𝑔′∗(𝑥)− 𝑥2 +𝑄(𝑥)

𝑄(𝑥)

]
=

1

𝑄(𝑥)
≤ 1

𝑄(0)

≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
.

Now we prove (2.10) and so suppose 𝑥 > 𝑧 > 0. From the proof of Lemma 2.4,

𝑓 ′(𝑥) =
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑥− 𝑥

∫ 𝑥

𝑎

𝜌∗(𝑦) 𝑑𝑦 − 𝑔∗(𝑥)𝜌∗(𝑥)
)

=
E[ℎ(𝑍)]

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(𝑥Φ∗(𝑥) − 𝑔∗(𝑥)𝜌∗(𝑥)) .
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We conclude by again using (2.11) of Lemma 2.7, to get

−𝑓 ′(𝑥) ≤ 1

[𝑔∗(𝑥)]2𝜌∗(𝑥)
(𝑔∗(𝑥)𝜌∗(𝑥)− 𝑥Φ∗(𝑥))

≤ 1

[𝑔∗(𝑥)]2𝜌∗(𝑥)

(
𝑔∗(𝑥)𝜌∗(𝑥)− 𝑥 ⋅ 𝑥− 𝑔′∗(𝑥)

𝑄(𝑥)
⋅ 𝑔∗(𝑥)𝜌∗(𝑥)

)
=

1

𝑔∗(𝑥)

(
1− 𝑥2 − 𝑥𝑔′∗(𝑥)

𝑄(𝑥)

)
=

1

𝑔∗(𝑥)
⋅ 𝑔∗(𝑥)
𝑄(𝑥)

=
1

𝑄(𝑥)
≤ 1

𝑄(𝑧)
. □

Remark 2.8. Since 𝑧 > 0, and 𝑄 (𝑧) > 𝑄 (0), Lemma 2.5 implies the following
convenient single bound for any fixed 𝑧 > 0, uniform for all 𝑥 ∈ (𝑎, 𝑏):

∣𝑓 ′(𝑥)∣ ≤ 𝑧

[𝑔∗(𝑧)]2𝜌∗(𝑧)
+

1

𝑄(0)
.

Occasionally, this will be sufficient for some of our purposes. The more precise
bounds in Lemma 2.5 will also be needed, however.

3. Main results

In order to exploit the boundedness of 𝑓 ′, we adopt the technique pioneered by
Nourdin and Peccati, to rewrite expressions of the form E[𝑋𝑚(𝑋)] where 𝑚 is a
function, using the Malliavin calculus. For ease of reference, we include here the
requisite Malliavin calculus constructs. Full details can be found in [17]; also see
[22, Section 2] for an exhaustive summary.

3.1. Elements of Malliavin calculus

We assume our random variable 𝑋 is measurable with respect to an isonormal
Gaussian process 𝑊 , associated with its canonical separable Hilbert space 𝐻 .
For illustrative purposes, one may further assume, as we now do, that 𝑊 is the
standard white-noise corresponding to 𝐻 = 𝐿2 ([0, 1]), which is constructed using
a standard Brownian motion on [0, 1], also denoted by 𝑊 , endowed with its usual
probability space (Ω,ℱ ,P). This means that the white noise 𝑊 is defined by

𝑊 (𝑓) =
∫ 1

0 𝑓 (𝑠) 𝑑𝑊 (𝑠) for any 𝑓 ∈ 𝐻 , where the stochastic integral is the Wiener
integral of 𝑓 with respect to the Wiener process 𝑊 . If we denote 𝐼0 (𝑓) = 𝑓 for any
non-random constant 𝑓 , then for any integer 𝑛 ≥ 1 and any symmetric function
𝑓 ∈ 𝐻𝑛, we let

𝐼𝑛 (𝑓) := 𝑛!

∫ 1

0

∫ 𝑠1

0

⋅ ⋅ ⋅
∫ 𝑠𝑛−1

0

𝑓 (𝑠1, 𝑠2, . . . , 𝑠𝑛) 𝑑𝑊 (𝑠𝑛) ⋅ ⋅ ⋅ 𝑑𝑊 (𝑠2) 𝑑𝑊 (𝑠1) ,

where this integral is an iteration of 𝑛 Itô integrals. It is called the 𝑛th multiple
Wiener integral of 𝑓 w.r.t. 𝑊 , and the set ℋ𝑛 := {𝐼𝑛 (𝑓) : 𝑓 ∈ 𝐻𝑛} is the 𝑛th
Wiener chaos of 𝑊 . Note that 𝐼1 (𝑓) = 𝑊 (𝑓), and that E [𝐼𝑛 (𝑓)] = 0 for all
𝑛 ≥ 1. Again, see [17, Section 1.2] for the general definition of 𝐼𝑛 and ℋ𝑛 when 𝑊
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is a more general isonormal Gaussian process. The main representation theorem
of the analysis on Wiener space is that 𝐿2 (Ω,ℱ ,P) is the direct sum of all the
Wiener chaoses. In other words, 𝑋 ∈ 𝐿2 (Ω,ℱ ,P) if and only if there exists a

sequence of non-random symmetric functions 𝑓𝑛 ∈ 𝐻𝑛 with
∑∞
𝑛=0 ∥𝑓𝑛∥2𝐻𝑛 < ∞

such that 𝑋 =
∑∞
𝑛=0 𝐼𝑛 (𝑓𝑛). Note that E [𝑋 ] = 𝑓0. Moreover, the terms in this

so-called Wiener chaos decomposition of 𝑋 are orthogonal in 𝐿2 (Ω,ℱ ,P), and we

have the isometry property E
[
𝑋2

]
=

∑∞
𝑛=0 𝑛! ∥𝑓𝑛∥2𝐻𝑛 . We are now in a position

to define the Malliavin derivative 𝐷.

Definition 3.1. Let D1,2 be the subset of 𝐿2 (Ω,ℱ ,P) formed by those 𝑋 =∑∞
𝑛=0 𝐼𝑛 (𝑓𝑛) such that

∞∑
𝑛=1

𝑛 𝑛! ∥𝑓𝑛∥2𝐻𝑛 <∞.

The Malliavin derivative operator 𝐷 is defined from D1,2 to 𝐿2 (Ω× [0, 1]) by
𝐷𝑋 = 0 if 𝑋 = E𝑋 is non-random, and otherwise, for all 𝑟 ∈ [0, 1], by

𝐷𝑟𝑋 =

∞∑
𝑛=1

𝑛𝐼𝑛−1 (𝑓𝑛 (𝑟, ⋅)) .

This can be understood as a Fréchet derivative of 𝑋 with respect to the
Wiener process 𝑊 . If 𝑋 = 𝑊 (𝑓) then 𝐷𝑋 = 𝑓 . Of note is the chain-rule formula
𝐷 (𝐹 (𝑋)) = 𝐹 ′ (𝑋)𝐷𝑋 for any differentiable 𝐹 with bounded derivative, and any
𝑋 ∈ D1,2.

Definition 3.2. The generator of the Ornstein–Uhlenbeck semigroup 𝐿 is defined as
follows. Let 𝑋 =

∑∞
𝑛=1 𝐼𝑛 (𝑓𝑛) be a centered r.v. in 𝐿2 (Ω). If

∑∞
𝑛=1 𝑛

2𝑛! ∣𝑓𝑛∣2 <
∞, then we define a new random variable 𝐿𝑋 in 𝐿2 (Ω) by −𝐿𝑋 =

∑∞
𝑛=1 𝑛𝐼𝑛 (𝑓𝑛).

The pseudo-inverse of 𝐿 operating on centered r.v.’s in 𝐿2 (Ω) is defined by the
formula −𝐿−1𝑋 =

∑∞
𝑛=1

1
𝑛𝐼𝑛 (𝑓𝑛) . If 𝑋 is not centered, we define its image by 𝐿

and 𝐿−1 by applying them to 𝑋 −E𝑋 .

As explained in the introduction, for 𝑋 ∈ D1,2, the random variable 𝐺 :=〈
𝐷𝑋 ;−𝐷𝐿−1𝑋

〉
𝐻

plays a crucial role to understand how 𝑋 ’s law compares to
that of our reference random variable 𝑍. The next lemma is the key to combining
the solutions of Stein’s equations with the Malliavin calculus. Its use to prove
our main theorems relies heavily on the fact that these solutions have bounded
derivatives.

Lemma 3.3 (Theorem 3.1 in [8], Lemma 3.5 in [22]). Let 𝑋 ∈ D1,2 be a centered
random variable with a density, and 𝐺 = ⟨𝐷𝑋 ;−𝐷𝐿−1𝑋⟩𝐻 . For any determinis-
tic, continuous and piecewise differentiable function 𝑚 such that 𝑚′ is bounded,

E[𝑋𝑚(𝑋)] = E[𝑚′(𝑋)𝐺].
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3.2. General tail results

The main theoretical results of this paper compare the tails of any two random
variables 𝑋 and 𝑍, as we now state in the next two theorems. In terms of their
usage, 𝑍 represents a reference random variable in these theorems; this can be
seen from the fact that we have a better control in the theorems’ assumption on
the 𝑔∗ coming from 𝑍 than on the law of 𝑋 . Also, we will apply these theorems to
a Pearson random variable 𝑍 in the next section, while there will be no restriction
on 𝑋 ∈ D1,2 beyond the assumption of the theorems in the present section. We
will see that all assumptions on 𝑍 in this section are satisfied when 𝑍 is a Pearson
random variable.

Theorem 3.4. Let 𝑍 be a centered random variable with a twice differentiable den-
sity over its support (𝑎, 𝑏). Let 𝑔∗ and 𝑄 be defined as in (1.4) and (1.5), respec-

tively. Suppose that 𝑔′′∗ (𝑥) < 2, and
𝑥−𝑔′∗(𝑥)
𝑄(𝑥) has a finite limit as 𝑥→ 𝑎 and 𝑥→ 𝑏.

Let 𝑋 ∈ D1,2 be a centered random variable with a density, and whose support
(𝑎, 𝑏𝑋) contains (𝑎, 𝑏). Let 𝐺 be as in (1.2). If 𝐺 ≥ 𝑔∗ (𝑋) a.s., then for every
𝑧 ∈ (0, 𝑏),

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

𝑄(𝑧)

∫ 𝑏

𝑧

(2𝑥− 𝑧)P[𝑋 > 𝑥] 𝑑𝑥.

Proof. Taking expectations in Stein’s equation (2.3), i.e., referring to (2.4), we
have

P[𝑋 ≤ 𝑧]−P[𝑍 ≤ 𝑧] = E[𝑔∗(𝑋)𝑓 ′(𝑋)−𝑋𝑓(𝑋)]

which is equivalent to

P[𝑋 > 𝑧]− Φ∗(𝑧) = E[𝑋𝑓(𝑋)− 𝑔∗(𝑋)𝑓 ′(𝑋)].

Since 𝑔∗(𝑋) ≥ 0 almost surely and 𝑓 ′(𝑥) ≤ 0 if 𝑥 > 𝑧,

P[𝑋 > 𝑧]− Φ∗(𝑧)

= E[1𝑋≤𝑧𝑋𝑓(𝑋)] +E[1𝑋>𝑧𝑋𝑓(𝑋)]−E[1𝑋≤𝑧𝑔∗(𝑋)𝑓 ′(𝑋)]

−E[1𝑋>𝑧𝑔∗(𝑋)𝑓 ′(𝑋)]

≥ E[1𝑋≤𝑧𝑋𝑓(𝑋)] +E[1𝑋>𝑧𝑋𝑓(𝑋)]−E[1𝑋≤𝑧𝑔∗(𝑋)𝑓 ′(𝑋)].

Let 𝑚(𝑥) = [𝑓(𝑎)− 𝑓(𝑧)]1𝑥≤𝑎+ [𝑓(𝑥)− 𝑓(𝑧)]1𝑎<𝑥≤𝑧 where the first term is 0
if 𝑎 = −∞. Note that 𝑚 is continuous and piecewise differentiable. The derivative
is 𝑚′(𝑥) = 𝑓 ′(𝑥)1𝑎<𝑥≤𝑧 except at 𝑥 = 𝑎 and 𝑥 = 𝑧. We saw in Lemma 2.5 that 𝑓 ′

is bounded. Therefore, since 𝑋 ∈ D1,2, we can use Lemma 3.3 to conclude that

[𝑓(𝑎)− 𝑓(𝑧)]E[1𝑋≤𝑎𝑋 ] +E[1𝑎<𝑋≤𝑧𝑋(𝑓(𝑋)− 𝑓(𝑧))] = E[1𝑎<𝑋≤𝑧𝑓 ′(𝑋)𝐺]

from which we derive

E[1𝑋≤𝑧𝑋𝑓(𝑋)]− 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] = E[1𝑋≤𝑧𝑓 ′(𝑋)𝐺].



Tail Estimates Using Malliavin Calculus and Stein’s Equations 69

Therefore,

P[𝑋 > 𝑧]− Φ∗(𝑧)

≥ {E[1𝑋≤𝑧𝑓 ′(𝑋)𝐺] + 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ]}+E[1𝑋>𝑧𝑋𝑓(𝑋)]

−E[1𝑋≤𝑧𝑔∗(𝑋)𝑓 ′(𝑋)]

= E[1𝑋≤𝑧𝑓 ′(𝑋)(𝐺− 𝑔∗(𝑋))] + 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] +E[1𝑋>𝑧𝑋𝑓(𝑋)]

≥ 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] +E[1𝑋>𝑧𝑋𝑓(𝑋)]

= 𝑓(𝑧)E[1𝑋≤𝑧𝑋 ] +E[1𝑋>𝑧𝑋𝑓(𝑋)]− 𝑓(𝑧)E[1𝑋>𝑧𝑋 ] + 𝑓(𝑧)E[1𝑋>𝑧𝑋 ]

= 𝑓(𝑧)E[𝑋 ] +E[1𝑋>𝑧𝑋(𝑓(𝑋)− 𝑓(𝑧))]

= E[1𝑋>𝑧𝑋(𝑓(𝑋)− 𝑓(𝑧))] .

Write 𝑓(𝑋)− 𝑓(𝑧) = 𝑓 ′(𝜉)(𝑋− 𝑧) for some random 𝜉 > 𝑧 (𝑋 > 𝜉 also). Note
that 𝑓 ′(𝜉) < 0 since 𝜉 > 𝑧. We have P[𝑋 > 𝑧]− Φ∗(𝑧) ≥ E[1𝑋>𝑧𝑓

′(𝜉)𝑋(𝑋 − 𝑧)].
From Lemma 2.5,

𝑓 ′(𝜉) ≥ − 1

𝑄(𝑧)

since from Lemma 2.6, 𝑄 is nondecreasing on (0, 𝑏).
If we define 𝑆(𝑧) := P[𝑋 > 𝑧], it is elementary to show (see [22]) that

E[1𝑋>𝑧𝑋(𝑋 − 𝑧)] ≤
∫ 𝑏

𝑧

(2𝑥− 𝑧)𝑆(𝑥) 𝑑𝑥.

From P[𝑋 > 𝑧]− Φ∗(𝑧) ≥ E[1𝑋>𝑧𝑓
′(𝜉)𝑋(𝑋 − 𝑧)],

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

𝑄(𝑧)

∫ 𝑏

𝑧

(2𝑥− 𝑧)𝑆(𝑥) 𝑑𝑥

which is the statement of the theorem.
Lastly the reader will check that the assumption that the supports of 𝑍 and

𝑋 have the same left-endpoint is not a restriction: stated briefly, this assumption
is implied by the assumption 𝐺 ≥ 𝑔∗ (𝑋) a.s., because 𝐺 = 𝑔𝑋 (𝑋) and 𝑔∗ (resp.
𝑔𝑋) has the same support as 𝑍 (resp. 𝑋). □

To obtain a similar upper bound result, we will consider only asymptotic
statements for 𝑧 near 𝑏, and we will need an assumption about the relative growth
rate of 𝑔∗ and 𝑄 near 𝑏. We will see in the next section that this assumption is
satisfied for all members of the Pearson class with four moments, although that
section also contains a modification of the proof below which is more efficient when
applied to the Pearson class.

Theorem 3.5. Assume all the conditions of Theorem 3.4 hold, except for the support
of 𝑋, which we now assume is contained in (𝑎, 𝑏). Assume moreover that there
exists 𝑐 < 1 such that lim sup𝑧→𝑏 𝑔∗ (𝑧) /𝑄 (𝑧) < 𝑐. If 𝐺 ≤ 𝑔∗ (𝑋) a.s., then there
exists 𝑧0 such that 𝑏 > 𝑧 > 𝑧0 implies

P[𝑋 > 𝑧] ≤ 1

1− 𝑐
Φ∗(𝑧).
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Proof. From Stein’s equation (2.3), and its application (2.4),

P[𝑋 > 𝑧]− Φ∗(𝑧) = E[𝑋𝑓(𝑋)− 𝑔∗(𝑋)𝑓 ′(𝑋)].

Since 𝑋 ∈ D1,2, in Lemma 3.3, we can let 𝑚 = 𝑓 since 𝑓 is continuous,
differentiable everywhere except at 𝑥 = 𝑎 and 𝑥 = 𝑏, and from Lemma 2.5 has a
bounded derivative. Therefore,

P[𝑋 > 𝑧]− Φ∗(𝑧)

= E[𝐺𝑓 ′(𝑋)]−E[𝑔∗(𝑋)𝑓 ′(𝑋)]

= E[𝑓 ′(𝑋) (𝐺− 𝑔∗(𝑋))]

= E[1𝑋≤𝑧𝑓 ′(𝑋) (𝐺− 𝑔∗(𝑋))] +E[1𝑋>𝑧𝑓
′(𝑋) (𝐺− 𝑔∗(𝑋))]

≤ E[1𝑋>𝑧𝑓
′(𝑋) (𝐺− 𝑔∗(𝑋))]

= E[1𝑋>𝑧𝑓
′(𝑋)E [𝐺∣𝑋 ]]−E[1𝑋>𝑧𝑓

′(𝑋)𝑔∗(𝑋)]

where the last inequality follows from the assumption 𝐺 − 𝑔∗(𝑋) ≤ 0 a.s. and if
𝑋 ≤ 𝑧, then 𝑓 ′(𝑋) ≥ 0. By Proposition 3.9 in [8], E [𝐺∣𝑋 ] ≥ 0 a.s. Since 𝑓 ′(𝑋) ≤ 0
if 𝑋 > 𝑧, then by the last statement in Lemma 2.5, and the assumption on the
asymptotic behavior of 𝑔∗/𝑄, for 𝑧 large enough,

P[𝑋 > 𝑧]− Φ∗(𝑧) ≤ −E[1𝑋>𝑧𝑓
′(𝑋)𝑔∗(𝑋)]

≤ E

[
1𝑋>𝑧

𝑔∗(𝑋)

𝑄 (𝑋)

]
≤ 𝑐P[𝑋 > 𝑧].

The theorem immediately follows. □

4. Pearson distributions

By definition, the law of a random variable 𝑍 is a member of the Pearson fam-
ily of distributions if 𝑍’s density 𝜌∗ is characterized by the differential equa-
tion 𝜌′∗(𝑧)/𝜌∗(𝑧) = (𝑎1𝑧 + 𝑎0)/(𝛼𝑧

2 + 𝛽𝑧 + 𝛾) for 𝑧 in its support (𝑎, 𝑏), where
−∞ ≤ 𝑎 < 𝑏 ≤ ∞. If furthermore E[𝑍] = 0, Stein (Theorem 1, p. 65 in [21])
proved that 𝑔∗ has a simple form: in fact, it is quadratic in its support. Specifi-
cally, 𝑔∗(𝑧) = 𝛼𝑧2 + 𝛽𝑧 + 𝛾 for all 𝑧 ∈ (𝑎, 𝑏) if and only if

𝜌′∗(𝑧)
𝜌∗(𝑧)

= − (2𝛼+ 1)𝑧 + 𝛽

𝛼𝑧2 + 𝛽𝑧 + 𝛾
. (4.1)

The Appendix contains a description of various cases of Pearson distributions,
which are characterized by their first four moments, if they exist. In this section,
we will operate under the following.

Assumption P1. Our Pearson random variable satisfies E
[
𝑍2

]
<∞ and 𝑧3𝜌∗(𝑧)→

0 as 𝑧 → 𝑎 and 𝑧 → 𝑏.
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Remark 4.1. This assumption holds as soon as E
[
𝑍3

]
<∞, which, by Lemma A.2

in the Appendix, holds if and only if 𝛼 < 1/2. The existence of a second moment,
by the same lemma, holds if and only if 𝛼 < 1.

4.1. General comparisons to Pearson tails

In preparation to stating corollaries to our main theorems, applicable to all Pearson
𝑍’s simultaneously, we begin by investigating the specific properties of 𝑔∗ and 𝑄 in
the Pearson case. Because 𝑔∗(𝑧) =

(
𝛼𝑧2 + 𝛽𝑧 + 𝛾

)
1(𝑎,𝑏)(𝑧), we have the following

observations:

∙ Since 𝑔′′∗ (𝑧) = 2𝛼 on (𝑎, 𝑏), and 𝛼 < 1 according to Remark 4.1, it follows
that 𝑔′′∗ (𝑧) < 2.

∙ If 𝑧 ∈ (𝑎, 𝑏), then

𝑄(𝑧) = 𝑧2 − 𝑧𝑔′∗(𝑧) + 𝑔∗(𝑧) = (1− 𝛼) 𝑧2 + 𝛾

and so 𝑄(𝑧) ≥ 𝑄(0) = 𝛾 = 𝑔∗ (0) > 0, where the last inequality is because
𝑔∗ is strictly positive on the interior of its support, which always contains 0.
This is a quantitative confirmation of an observation made earlier about the
positivity of 𝑄 in the general case.

∙ As 𝑧 → 𝑎 and 𝑧 → 𝑏,

𝑧 − 𝑔′∗(𝑧)
𝑄(𝑧)

=
(1− 2𝛼) 𝑧 − 𝛽

(1− 𝛼) 𝑧2 + 𝛾

approaches a finite number in case 𝑎 and 𝑏 are finite. As ∣𝑧∣ → ∞, the above
ratio approaches 0.

∙ We have E
[
𝑍2

]
= 𝛾

1−𝛼 . Again, this is consistent with 𝛾 > 0 and 𝛼 < 1.

Remark 4.2. The above observations collectively mean that all the assumptions
of Theorem 3.4 are satisfied for our Pearson random variable 𝑍, so we can state
the following.

Proposition 4.3. Let 𝑍 be a centered Pearson random variable satisfying Assump-
tion P1. Let 𝑔∗ be defined as in (1.4). Let 𝑋 ∈ D1,2 be a centered random variable
with a density, and whose support (𝑎, 𝑏𝑋) contains (𝑎, 𝑏). Suppose that 𝐺 ≥ 𝑔∗ (𝑋)
a.s. Then for every 𝑧 ∈ (0, 𝑏),

P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 1

(1− 𝛼) 𝑧2 + 𝛾

∫ 𝑏

𝑧

(2𝑥− 𝑧)P[𝑋 > 𝑥] 𝑑𝑥. (4.2)

We have a quantitatively precise statement on the relation between Var[𝑋 ]
and the Pearson parameters.

Proposition 4.4.

1. Assume that the conditions of Proposition 4.3 hold, particularly that 𝐺 ≥
𝑔∗(𝑋); assume the support (𝑎, 𝑏) of 𝑔∗ coincides with the support of 𝑋. Then

Var[𝑋 ] ≥ 𝛾

1− 𝛼
= Var[𝑍].
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2. If we assume instead that 𝐺 ≤ 𝑔∗(𝑋) a.s., then the inequality above is re-
versed.

Proof. Since 𝑋 has a density, we can apply Lemma 3.3 and let 𝑚(𝑥) = 𝑥.

Var[𝑋 ] = E[𝑋𝑚(𝑋)] = E[𝐺] ≥ E[𝑔∗(𝑋)]

= E[1𝑎<𝑋<𝑏
(
𝛼𝑋2 + 𝛽𝑋 + 𝛾

)
] = 𝛼E[𝑋2] + 𝛽E[𝑋 ] + 𝛾

(1− 𝛼)Var[𝑋 ] ≥ 𝛽 ⋅ 0 + 𝛾

This proves point 1. Point 2 is done identically. □

In order to formulate results that are specifically tailored to tail estimates,
we now make the following

Assumption P2. The right-hand endpoint of our Pearson distribution’s support is
𝑏 = +∞
Remark 4.5. Assumption P2 leaves out Case 3 in the Appendix in our list of
Pearson random variables, i.e., the case of Beta distributions. Therefore, inspecting
the parameter values in the other 4 Pearson cases, we see that Assumption P2
implies 𝛼 ≥ 0, and also implies that if 𝛼 = 0, then 𝛽 ≥ 0.

Remark 4.6. In most of the results to follow, we will assume moreover that 𝛼 < 1
2 .

By Lemma A.2, this is equivalent to requiring E
[
∣𝑍∣3

]
< ∞, and more generally

from the lemma, our Pearson distribution has moment of order 𝑚 if and only if
𝛼 < 1/(𝑚− 1). As mentioned, 𝛼 < 1

2 thus implies Assumption P1. Consequently
Theorem 3.5 implies the following.

Corollary 4.7. Let 𝑍 be a centered Pearson random variable satisfying Assumption
P2 (support of 𝑍 is (𝑎,+∞)). Assume 𝛼 < 1/2. Let 𝑔∗ be defined as in (1.4). Let
𝑋 ∈ D1,2 be a centered random variable with a density and support contained in
(𝑎,+∞). If 𝐺 ≤ 𝑔∗ (𝑋) a.s., for any 𝐾 > 1−𝛼

1−2𝛼 , there exists 𝑧0 such that if 𝑧 > 𝑧0,
then

P[𝑋 > 𝑧] ≤ 𝐾 Φ∗(𝑧).

Proof. Since
𝑔∗ (𝑧)
𝑄 (𝑧)

=
𝛼𝑧2 + 𝛽𝑧 + 𝛾

(1− 𝛼) 𝑧2 + 𝛾

then lim sup𝑧→∞ 𝑔∗ (𝑧) /𝑄 (𝑧) = 𝛼/ (1− 𝛼) < 1 if and only if 𝛼 < 1
2 . Therefore,

Theorem 3.5 applies in this case, and with the 𝑐 defined in that theorem, we
may take here any 𝑐 > 𝛼/ (1− 𝛼), so that we may take any 𝐾 = 1/(1 − 𝑐) as
announced. □

The drawback of our general lower bound theorems so far is that their state-
ments are somewhat implicit. Our next effort is to fix this problem in the specific
case of a Pearson 𝑍: we strengthen Proposition 4.3 so that the tail P [𝑋 > 𝑧] only
appears in the left-hand side of the lower bound inequality, making the bound
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explicit. The cost for this is an additional regularity and integrability assumption,
whose scope we also discuss.

Corollary 4.8. Assume that the conditions of Proposition 4.3 hold; in particular,
assume 𝑋 ∈ D1,2 and 𝐺 ≥ 𝛼𝑋2 + 𝛽𝑋 + 𝛾 a.s. In addition, assume there exists
a constant 𝑐 > 2 such that P [𝑋 > 𝑧] ≤ 𝑧𝜌 (𝑧) /𝑐 holds for large 𝑧 (where 𝜌 is the
density of 𝑋). Then for large 𝑧,

P[𝑋 > 𝑧] ≥ (𝑐− 2)𝑄(𝑧)

(𝑐− 2)𝑄(𝑧) + 2𝑧2
Φ∗(𝑧) ≈ (𝑐− 2)− 𝛼 (𝑐− 2)

𝑐− 𝛼 (𝑐− 2)
Φ∗(𝑧).

The existence of such a 𝑐 > 2 above is guaranteed if we assume 𝑔(𝑧) ≤
𝑧2/𝑐 for large 𝑧, where 𝑔 (𝑥) := E [𝐺∣𝑋 = 𝑥] (or equivalently, 𝑔 defined in (1.3)).
Moreover, this holds automatically if 𝐺 ≤ 𝑔∗ (𝑋) a.s. for some quadratic function
𝑔∗ (𝑥) = �̄�𝑥2 + 𝛽𝑥+ 𝛾 with �̄� < 1/2.

Proof. Since 𝑧 > 0, we can replace 2𝑥− 𝑧 by 2𝑥 in the integral of (4.2).

𝐹 (𝑧) :=

∫ ∞

𝑧

𝑥𝑆(𝑥) 𝑑𝑥 ≤ 1

𝑐

∫ ∞

𝑧

𝑥2∣𝑆′(𝑥)∣ 𝑑𝑥

=
1

𝑐

(
𝑧2𝑆(𝑧)− lim

𝑥→∞𝑥2𝑆(𝑥) + 2

∫ ∞

𝑧

𝑥𝑆(𝑥) 𝑑𝑥

)
≤ 1

𝑐

(
𝑧2𝑆(𝑧) + 2𝐹 (𝑧)

)
𝐹 (𝑧) ≤ 1

𝑐− 2
𝑧2𝑆(𝑧) .

Therefore

𝑆(𝑧) = P[𝑋 > 𝑧] ≥ Φ∗(𝑧)− 2

𝑄(𝑧)
𝐹 (𝑧) ≥ Φ∗(𝑧)− 2𝑧2

(𝑐− 2)𝑄(𝑧)
𝑆(𝑧)

𝑆(𝑧)

[
1 +

2𝑧2

(𝑐− 2)𝑄(𝑧)

]
≥ Φ∗(𝑧)

𝑆(𝑧) ≥ (𝑐− 2)𝑄(𝑧)

(𝑐− 2)𝑄(𝑧) + 2𝑧2
Φ∗(𝑧)

≈ (𝑐− 2) (1− 𝛼)

(𝑐− 2) (1 − 𝛼) + 2
Φ∗(𝑧).

This proves the inequality of the corollary.
To prove the second statement, recall that Nourdin and Viens (Theorem 3.1

in [16]) showed that

𝑔(𝑋) =

∫ ∞

𝑋

𝑥𝜌(𝑥) 𝑑𝑥

𝜌(𝑋)

𝑃 -a.s. They also noted that the support of 𝜌 is an interval since 𝑋 ∈ D1,2. There-
fore,

𝑧

𝑐
𝜌(𝑧) ≥ 1

𝑧
𝑔(𝑧)𝜌(𝑧) =

∫ ∞

𝑧

𝑥

𝑧
𝜌(𝑥) 𝑑𝑥 ≥

∫ ∞

𝑧

𝜌(𝑥) 𝑑𝑥

a.s. This finishes the proof of the corollary. □
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4.2. Comparisons in specific scales

In this section and the next, we will always assume 𝑋 ∈ D1,2 is a centered random
variable with a density and with support (𝑎,∞), and we will continue to denote by
𝑔 the function defined by 𝑔 (𝑥) := E [𝐺∣𝑋 = 𝑥], or equivalently, defined in (1.3).

We can exploit the specific asymptotic behavior of the tail of the various
Pearson distributions, via Lemma A.1 in the Appendix, to draw sharp conclusions
about 𝑋 ’s tail. For instance, if 𝑔 is comparable to a Pearson distribution’s 𝑔∗ with
𝛼 ∕= 0, we get a power decay for the tail (Corollary 4.9 below), while if 𝛼 is zero and
𝛽 is not, we get comparisons to exponential-type or gamma-type tails (Corollary
4.10 below). In both cases, when upper and lower bounds on 𝐺 occur with the
same 𝛼 on both sides, we get sharp asymptotics for 𝑋 ’s tail, up to multiplicative
constants.

Corollary 4.9. Let 𝑔∗ (𝑥) := 𝛼𝑥2+𝛽𝑥+𝛾 and 𝑔∗ (𝑥) := �̄�𝑥2+𝛽𝑥+𝛾 be two functions
corresponding to Pearson distributions (e.g., via (1.4)) where 0 < 𝛼 ≤ �̄� < 1/2.

1. If 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥 ≥ 𝑎, then there is a constant 𝑐𝑢
(
�̄�, 𝛽, 𝛾

)
> 0 such

that for large 𝑧,

P[𝑋 > 𝑧] ≤ 𝑐𝑢
𝑧1+1/�̄�

.

2. If 𝑔∗ (𝑥) ≤ 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥 ≥ 𝑎, then there are constants 𝑐𝑢
(
�̄�, 𝛽, 𝛾

)
>

0 and 𝑐𝑙 (�̄�, 𝛼, 𝛽, 𝛾) > 0 such that for large 𝑧,

𝑐𝑙
𝑧1+1/𝛼

≤ P[𝑋 > 𝑧] ≤ 𝑐𝑢
𝑧1+1/�̄�

.

Proof. Let Φ∗𝛼,𝛽,𝛾 and Φ∗�̄�,𝛽,𝛾 be the probability tails of the Pearson distributions
corresponding to 𝑔∗ and 𝑔∗ respectively. We can prove Point 1 by using Corollary
4.7 and Lemma A.1. There is a constant 𝑘𝑢

(
�̄�, 𝛽, 𝛾

)
> 0 such that, for any 𝐾 >

1−�̄�
1−2�̄� , for large 𝑧,

P[𝑋 > 𝑧] ≤ 𝐾Φ∗�̄�,𝛽,𝛾 (𝑧) ≤ 𝐾 ⋅ 𝑘𝑢
𝑧1+1/�̄�

.

The upper bound in Point 2 follows directly from Point 1 because of the condition
𝑔 (𝑥) ≤ 𝑔∗ (𝑥). This same condition also allows us to give a lower bound for P[𝑋 >
𝑧]. Fix any 𝑐 ∈ (2, 1/�̄�). By Corollary 4.8 and Lemma A.1, there is a constant
𝑘𝑙 (𝛼, 𝛽, 𝛾) > 0 such that for large 𝑧,

P[𝑋 > 𝑧] ≥ (𝑐− 2)− 𝛼 (𝑐− 2)

𝑐− 𝛼 (𝑐− 2)
Φ∗𝛼,𝛽,𝛾 (𝑧) ≥ (𝑐− 2)− 𝛼 (𝑐− 2)

𝑐− 𝛼 (𝑐− 2)
⋅ 𝑘𝑙
𝑧1+1/𝛼

. □

Corollary 4.10. Let 𝑔∗ (𝑥) := (𝛽𝑥+ 𝛾)+ and 𝑔∗ (𝑥) =
(
𝛽𝑥+ 𝛾

)
+

be two functions

corresponding to Pearson distributions (e.g., via (1.4)) where 𝛽, 𝛽, 𝛾, 𝛾 > 0 and
𝑎 = −𝛾/𝛽.

1. If 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥, then there is a constant 𝑐𝑢
(
𝛽, 𝛾

)
> 0 such that for

large 𝑧,

P[𝑋 > 𝑧] ≤ 𝑐𝑢𝑧
−1+𝛾/𝛽2

𝑒−𝑧/𝛽.
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2. If 𝑔∗ (𝑥) ≤ 𝑔 (𝑥) ≤ 𝑔∗ (𝑥) for all 𝑥, then there are constants 𝑐𝑢
(
𝛽, 𝛾

)
>

𝑐𝑙 (𝛽, 𝛾) > 0 such that for large 𝑧,

𝑐𝑙 𝑧
−1+𝛾/𝛽2

𝑒−𝑧/𝛽 ≤ P[𝑋 > 𝑧] ≤ 𝑐𝑢𝑧
−1+𝛾/𝛽2

𝑒−𝑧/𝛽 .

Proof. Let Φ∗𝛽,𝛾 and Φ∗𝛽,𝛾 be as in the proof of the previous corollary, noting
here that 𝛼 = �̄� = 0. The proof of Point 1 is similar to the proof of Point 1 in
Corollary 4.9. The upper bound in Point 2 follows from Point 1 above and Point
1 of Corollary 4.9. For the lower bound of Point 2, if we fix any 𝑐 > 2, then
by Corollary 4.8 and Lemma A.1, there is a constant 𝑘𝑙 (𝛽, 𝛾) > 0 such that for
large 𝑧,

P[𝑋 > 𝑧] ≥ 𝑐− 2

𝑐
Φ∗𝛽,𝛾 ≥ 𝑐− 2

𝑐
𝑘𝑙 𝑧

−1+𝛾/𝛽2

𝑒−𝑧/𝛽. □

Remark 4.11. The above corollary improves on a recently published estimate: in
[16, Theorem 4.1], it was proved that if the law of 𝑋 ∈ D1,2 has a density and
if 𝑔(𝑋) ≤ 𝛽𝑋 + 𝛾 a.s. (with 𝛽 ≥ 0 and 𝛾 > 0), then for all 𝑧 > 0, P[𝑋 > 𝑧] ≤
exp

(
− 𝑧2

2𝛽𝑧+2𝛾

)
. Using 𝑔∗ (𝑧) = (𝛽𝑧 + 𝛾)+, Point 1 in Corollary 4.10 gives us an

asymptotically better upper bound, with exponential rate 𝑒−𝑧/𝛽 instead of 𝑒−𝑧/2𝛽 .
Our rate is sharp, since our upper bound has the same exponential asymptotics
as the corresponding Pearson tail, which is a Gamma tail.

4.3. Asymptotic results

Point 2 of Corollary 4.10 shows the precise behavior, up to a possibly different
leading power term which is negligible compared to the exponential, of any ran-
dom variable in D1,2 whose function 𝑔 is equal to a Pearson function up to some
uncertainty on the 𝛾 value. More generally, one can ask about tail asymptotics for
𝑋 when 𝑔 is asymptotically linear, or even asymptotically quadratic. Asymptotic
assumptions on 𝑔 are not as strong as assuming bounds on 𝑔 which are uniform
in the support of 𝑋 , and one cannot expect them to imply statements that are
as strong as in the previous subsection. We now see that in order to prove tail
asymptotics under asymptotic assumptions, it seems preferable to revert to the
techniques developed in [22]. We first propose upper bound results for tail asymp-
totics, which follow from Point 1 of Corollary 4.9 and Point 1 of Corollary 4.10.
Then for full asymptotics, Point 2 of each of these corollaries do not seem to be
sufficient, while [22, Corollary 4.5] can be applied immediately. Recall that in what
follows 𝑋 ∈ D1,2 is centered, has a density, and support (𝑎,∞), and 𝑔 is defined
by 𝑔 (𝑥) := E [𝐺∣𝑋 = 𝑥], or equivalently, by (1.3).

Proposition 4.12.

1. Suppose lim sup𝑧→+∞ 𝑔 (𝑧) /𝑧2 = 𝛼 ∈ (0, 1/2). Then

lim sup
𝑧→+∞

lnP[𝑋 > 𝑧]

ln 𝑧
≤ −

(
1 +

1

𝛼

)
.
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2. Suppose lim sup𝑧→+∞ 𝑔 (𝑧) /𝑧 = 𝛽 > 0. Then

lim sup
𝑧→+∞

lnP[𝑋 > 𝑧]

𝑧
≤ − 1

𝛽
.

Proof. Fix 𝜀 ∈ (0, 1/2− 𝛼). Then 𝑔 (𝑥) < (𝛼+ 𝜀)𝑥2 if 𝑥 is large enough. Therefore,
there exists a constant 𝛾𝜀 > 0 such that 𝑔 (𝑥) < (𝛼+ 𝜀)𝑥2 + 𝛾𝜀 for all 𝑥. Let 𝑍𝜀
be the Pearson random variable for which 𝑔∗ (𝑧) = (𝛼+ 𝜀) 𝑧2 + 𝛾𝜀. This falls
under Case 5 in Appendix A.2, so its support is (−∞,∞), which then contains
the support of 𝑋 . From Point 1 of Corollary 4.9, there is a constant 𝑐𝜀 depending
on 𝜀 such that for 𝑧 large enough,

P[𝑋 > 𝑧] ≤ 𝑐𝜀𝑧
−1− 1

𝛼+𝜀 .

We then have

lnP[𝑋 > 𝑧] ≤ ln 𝑐𝜀 −
(
1 +

1

𝛼+ 𝜀

)
ln 𝑧,

lnP[𝑋 > 𝑧]

ln 𝑧
≤ ln 𝑐𝜀

ln 𝑧
−

(
1 +

1

𝛼+ 𝜀

)
,

lim sup
𝑧→∞

lnP[𝑋 > 𝑧]

ln 𝑧
≤ −

(
1 +

1

𝛼+ 𝜀

)
.

Since 𝜀 can be arbitrarily close to 0, Point 1 of the corollary is proved. The proof
of Point 2 is entirely similar, following from Corollary 4.10, which refers to Case 2
of the Pearson distributions given in Appendix A.2. This corollary could also be
established by using results from [22]. □

Our final result gives full tail asymptotics. Note that it is not restricted to
linear and quadratic behaviors.

Theorem 4.13.

1. Suppose lim𝑧→+∞ 𝑔 (𝑧) /𝑧2 = 𝛼 ∈ (0, 1). Then

lim
𝑧→+∞

lnP[𝑋 > 𝑧]

ln 𝑧
≤ −

(
1 +

1

𝛼

)
.

2. Suppose lim𝑧→+∞ 𝑔 (𝑧) /𝑧𝑝 = 𝛽 > 0 for some 𝑝 ∈ [0, 1). Then

lim
𝑧→+∞

lnP[𝑋 > 𝑧]

𝑧2−𝑝
≤ − 1

𝛽(2− 𝑝)
.

Proof. Since for any 𝜀 ∈ (0,min(𝛼, 1−𝛼)), there exists 𝑧0 such that 𝑧 > 𝑧0 implies
(𝛼− 𝜀) 𝑧2 ≤ 𝑔 (𝑧) ≤ (𝛼+ 𝜀) 𝑧2, the assumptions of Points 2 and 4 (a) in [22,
Corollary 4.5] are satisfied, and Point 1 of the Theorem follows easily. Point 2 of
the Theorem follows identically, by invoking Points 3 and 4 (b) in [22, Corollary
4.5]. All details are left to the reader. □
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Appendix

A.1. Proofs of lemmas

Proof of Lemma 2.1. Proof of point 1. If 0 ≤ 𝑥 < 𝑏, then clearly 𝑔∗(𝑥) > 0.
If 𝑎 < 𝑥 < 0, we claim that 𝑔∗(𝑥) > 0 still. Suppose we have the opposite:

𝑔∗(𝑥) ≤ 0. Then
∫ 𝑏
𝑥
𝑦𝜌∗(𝑦) 𝑑𝑦 = 𝑔∗(𝑥)𝜌∗(𝑥) ≤ 0. Since

∫ 𝑥
𝑎
𝑦𝜌∗(𝑦) 𝑑𝑦 < 0, then∫ 𝑏

𝑎
𝑦𝜌∗(𝑦) 𝑑𝑦 < 0, contradicting E[𝑍] = 0. Thus, 𝑔∗(𝑥) ≥ 0 for all 𝑥, and 𝑔∗(𝑥) > 0

if and only if 𝑎 < 𝑥 < 𝑏.
Proof of point 2. Trivial.
Proof of point 3. This is immediate since

lim
𝑥↓𝑎

𝑔∗(𝑥)𝜌∗(𝑥) = lim
𝑥↓𝑎

∫ 𝑏

𝑥

𝑦𝜌∗(𝑦) 𝑑𝑦 = E[𝑍]

and similarly for lim
𝑥↑𝑏

𝑔∗(𝑥)𝜌∗(𝑥) = −E[𝑍]. □

Proof of Lemma 2.2. It is easy to verify that (2.6) and (2.7) are solutions to
Stein’s equation (2.3). To show that they are the same, let 𝜑(𝑧) := 𝑔∗(𝑧)𝜌∗(𝑧) =∫ 𝑏
𝑧 𝑤𝜌∗(𝑤) 𝑑𝑤 for 𝑧 ∈ (𝑎, 𝑏). Then

𝜑′(𝑧)
𝜑(𝑧)

= − 𝑧𝜌∗(𝑧)
𝑔∗(𝑧)𝜌∗(𝑧)

= − 𝑧

𝑔∗(𝑧)
.

Integrating over (𝑦, 𝑥) ⊆ (𝑎, 𝑏) leads to∫ 𝑥

𝑦

𝑧

𝑔∗(𝑧)
𝑑𝑧 = log

𝜑(𝑦)

𝜑(𝑥)
= log

𝑔∗(𝑦)𝜌∗(𝑦)
𝑔∗(𝑥)𝜌∗(𝑥)

(A.1)

and so
𝑒
∫
𝑥
𝑦

𝑧 𝑑𝑧
𝑔∗(𝑧)

𝑔∗(𝑦)
=

1

𝑔∗(𝑦)
⋅ 𝑔∗(𝑦)𝜌∗(𝑦)
𝑔∗(𝑥)𝜌∗(𝑥)

=
𝜌∗(𝑦)

𝑔∗(𝑥)𝜌∗(𝑥)
.

The derivative formula (2.9) comes via an immediate calculation

𝑓 ′(𝑥) = − [𝑔∗(𝑥)𝜌∗(𝑥)]′

[𝑔∗(𝑥)𝜌∗(𝑥)]2

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦

+
(ℎ(𝑥) −E[ℎ(𝑍)]) 𝜌∗(𝑥)

𝑔∗(𝑥)𝜌∗(𝑥)

= − −𝑥𝜌∗(𝑥)
[𝑔∗(𝑥)𝜌∗(𝑥)]2

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
ℎ(𝑥)−E[ℎ(𝑍)]

𝑔∗(𝑥)

=
𝑥

[𝑔∗(𝑥)]2𝜌∗(𝑥)

∫ 𝑥

𝑎

(ℎ(𝑦)−E[ℎ(𝑍)]) 𝜌∗(𝑦) 𝑑𝑦 +
ℎ(𝑥) −E[ℎ(𝑍)]

𝑔∗(𝑥)
. □

Proof of Lemma 2.3. From (A.1) in the previous proof, we have∫ 𝑏

0

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↗𝑏

∫ 𝑥

0

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↗𝑏
log

𝑔∗(0)𝜌∗(0)
𝑔∗(𝑥)𝜌∗(𝑥)

= log [𝑔∗(0)𝜌∗(0)]− lim
𝑥↗𝑏

log [𝑔∗(𝑥)𝜌∗(𝑥)] =∞
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and ∫ 0

𝑎

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↘𝑎

∫ 0

𝑥

𝑧

𝑔∗(𝑧)
𝑑𝑧 = lim

𝑥↘𝑎
log

𝑔∗(𝑥)𝜌∗(𝑥)
𝑔∗(0)𝜌∗(0)

= lim
𝑥↘𝑎

log [𝑔∗(𝑥)𝜌∗(𝑥)] − log [𝑔∗(0)𝜌∗(0)] = −∞. □

Proof of Lemma 2.7. We prove (2.11) first. It is trivially true if 𝑥 /∈ [𝑎, 𝑏], so sup-
pose 𝑥 ∈ (𝑎, 𝑏). Let

𝑚(𝑥) := Φ∗(𝑥)− 𝑥− 𝑔′∗(𝑥)
𝑄(𝑥)

⋅ 𝑔∗(𝑥)𝜌∗(𝑥).

By a standard calculus proof, we will show that 𝑚′(𝑥) ≤ 0 so that 𝑚(𝑥) ≥
lim
𝑦→𝑏

𝑚(𝑦). The result follows after observing that lim
𝑦→𝑏

𝑚(𝑦) = 0. This is true since

lim
𝑦→𝑏

𝑔∗(𝑦)𝜌∗(𝑦) = 0 and lim
𝑦→𝑏

Φ∗(𝑥) = 0. Now we show that 𝑚′(𝑥) ≤ 0.

𝑚′ = −𝜌∗ − 𝑔∗𝜌∗

[
𝑥− 𝑔′∗

𝑥2 − 𝑥𝑔′∗ + 𝑔∗

]′
− 𝑥− 𝑔′∗

𝑄
[𝑔∗𝜌∗]

′

= −𝜌∗ − 𝑔∗𝜌∗

[
(𝑥 (𝑥− 𝑔′∗) + 𝑔∗) (1− 𝑔′′∗ )− (𝑥− 𝑔′∗) (2𝑥− 𝑥𝑔′′∗ )

𝑄2

]
− 𝑥− 𝑔′∗

𝑄
[−𝑥𝜌∗]

𝑄2

𝜌∗
𝑚′ = −𝑄2 − 𝑔∗ [(𝑥− 𝑔′∗) (𝑥− 𝑥𝑔′′∗ − 2𝑥+ 𝑥𝑔′′∗ ) + 𝑔∗ (1− 𝑔′′∗ )]

+𝑄𝑥 (𝑥− 𝑔′∗)

=
[
−𝑥2 (𝑥− 𝑔′∗)

2 − 2𝑥𝑔∗ (𝑥− 𝑔′∗)− 𝑔2∗
]
+ 𝑥𝑔∗ (𝑥− 𝑔′∗)− 𝑔2∗ (1− 𝑔′′∗ )

+
[
𝑥2 (𝑥− 𝑔′∗)

2
+ 𝑥𝑔∗ (𝑥− 𝑔′∗)

]
= −𝑔2∗ − 𝑔2∗ (1− 𝑔′′∗ ) = −𝑔2∗ (2− 𝑔′′∗ ) ≤ 0.

To prove (2.12) (again, it suffices to prove this for 𝑥 ∈ (𝑎, 𝑏)), let

𝑛(𝑥) := 1− Φ∗(𝑥)− 𝑔′∗(𝑥) − 𝑥

𝑄(𝑥)
⋅ 𝑔∗(𝑥)𝜌∗(𝑥) = 1−𝑚(𝑥)

so 𝑛′(𝑥) = −𝑚′(𝑥) ≥ 0. 𝑛 is then nondecreasing so 𝑛(𝑥) ≥ lim
𝑥→𝑎𝑛(𝑥) = 0.

Now we prove (2.13). If 𝑥 > 0,

Φ∗(𝑥) =
∫ ∞

𝑥

𝜌∗(𝑦) 𝑑𝑦 ≤ 1

𝑥

∫ ∞

𝑥

𝑦𝜌∗(𝑦) 𝑑𝑦 =
1

𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥).

On the other hand, if 𝑥 < 0,

1− Φ∗(𝑥) =
∫ 𝑥

−∞
𝜌∗(𝑦) 𝑑𝑦 ≤ 1

𝑥

∫ 𝑥

−∞
𝑦𝜌∗(𝑦) 𝑑𝑦 = − 1

𝑥
⋅ 𝑔∗(𝑥)𝜌∗(𝑥).

This proves (2.14). □
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Proof of last bullet point on page 71. We replicate here a method commonly used
to find a recursive formula for the moments. See for example [7] and [19]. Cross-
multiplying the terms in (4.1), multiplying by 𝑥𝑟 and integrating over the support
gives us∫ 𝑏

𝑎

[
(2𝛼+ 1)𝑧𝑟+1 + 𝛽𝑧𝑟

]
𝜌∗(𝑧) 𝑑𝑧 = −

∫ 𝑏

𝑎

(
𝛼𝑧𝑟+2 + 𝛽𝑧𝑟+1 + 𝛾𝑧𝑟

)
𝜌′∗(𝑧) 𝑑𝑧

and so

− (2𝛼+ 1)E
[
𝑍𝑟+1

]− 𝛽E [𝑍𝑟]

=
(
𝛼𝑧𝑟+2 + 𝛽𝑧𝑟+1 + 𝛾𝑧𝑟

)
𝜌∗(𝑧)

∣∣∣∣𝑏
𝑎

−
∫ 𝑏

𝑎

[
𝛼(𝑟 + 2)𝑧𝑟+1 + 𝛽(𝑟 + 1)𝑧𝑟 + 𝛾𝑟𝑧𝑟−1

]
𝜌∗(𝑧) 𝑑𝑧

= 𝛼(𝑟 + 2)E
[
𝑍𝑟+1

]
+ 𝛽(𝑟 + 1)E [𝑍𝑟] + 𝛾𝑟E

[
𝑍𝑟−1

]
where we assumed that 𝑧𝑟+2𝜌∗(𝑧) → 0 at the endpoints 𝑎 and 𝑏 of the support.
For the case 𝑟 = 1, this reduces to 𝑧3𝜌∗(𝑧) → 0 at the endpoints 𝑎 and 𝑏, which
we are assuming. Therefore,

(2𝛼+ 1)E
[
𝑍2

]
+ 𝛽E [𝑍] = 3𝛼E

[
𝑍2

]
+ 2𝛽E [𝑍] + 𝛾E

[
𝑍0

]
.

Since E [𝑍] = 0 and E
[
𝑍0

]
= 1, this gives E

[
𝑍2

]
= 𝛾

1−𝛼 . □

A.2. Examples of Pearson distributions

We present cases of Pearson distributions depending on the degree and number of
zeroes of 𝑔∗(𝑥) as a quadratic polynomial in (𝑎, 𝑏). The Pearson family is closed un-
der affine transformations of the random variable, so we can limit our focus on the
five special cases below. The constant 𝐶 in each case represents the normalization
constant. See Diaconis and Zabell [5] for a discussion of these cases.

∙ Case 1. If deg 𝑔∗(𝑧) = 0, 𝜌∗ can be (after an affine transformation) written

in the form 𝜌∗(𝑧) = 𝐶𝑒−𝑧
2/2 for −∞ < 𝑧 < ∞. This is the standard normal

density, and 𝐶 = 1√
2𝜋

. For this case, 𝑔∗(𝑧) ≡ 1. Consequently, 𝑄(𝑧) = 𝑧2+1.

If 𝑧 > 0, the inequalities (2.11) and (2.13) of Lemma 2.7 can be written

𝑧

(𝑧2 + 1)
√
2𝜋

𝑒−𝑧
2/2 ≤ Φ∗(𝑧) ≤ 1

𝑧
√
2𝜋

𝑒−𝑧
2/2,

a standard inequality involving the tail of the standard normal distribution.
∙ Case 2. If deg 𝑔∗(𝑧) = 1, 𝜌∗ can be written in the form 𝜌∗(𝑧) = 𝐶𝑧𝑟−1𝑒−𝑧/𝑠

for 0 < 𝑧 < ∞, with parameters 𝑟, 𝑠 > 0. This is a Gamma density, and
𝐶 = 1

𝑠𝑟Γ(𝑟) . It has mean 𝜇 = 𝑟𝑠 > 0 and variance 𝑟𝑠2. If one wants to make

𝑍 centered, the density takes the form 𝜌∗(𝑧) = 𝐶(𝑧 + 𝜇)𝑟−1𝑒−(𝑧+𝜇)/𝑠 for
−𝜇 < 𝑧 <∞. For this case, 𝑔∗(𝑧) = 𝑠(𝑧 + 𝜇)+.
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∙ Case 3. If deg 𝑔∗(𝑥) = 2 and 𝑔∗ has two real roots, 𝜌∗ can be written in the
form 𝜌∗(𝑥) = 𝐶𝑥𝑟−1(1− 𝑥)𝑠−1 for 0 < 𝑥 < 1, with parameters 𝑟, 𝑠 > 0. This
is a Beta density, and 𝐶 = 1

𝛽(𝑟,𝑠) . It has mean 𝜇 = 𝑟
𝑟+𝑠 > 0 and variance

𝑟𝑠
(𝑟+𝑠)2(𝑟+𝑠+1) . Centering the density gives 𝜌∗(𝑥) = 𝐶(𝑥+𝜇)𝑟−1(1−𝑥−𝜇)𝑠−1

for −𝜇 < 𝑥 < 1−𝜇. For this case, 𝑔∗(𝑥) =
(𝑥+𝜇)(1−𝑥−𝜇)

𝑟+𝑠 when −𝜇 < 𝑥 < 1−𝜇
and 0 elsewhere.

∙ Case 4. If deg 𝑔∗(𝑥) = 2 and 𝑔∗ has exactly one real root, 𝜌∗ can be written
in the form 𝜌∗(𝑥) = 𝐶𝑥−𝑟𝑒−𝑠/𝑥 for 0 < 𝑥 < ∞, with parameters 𝑟 > 1 and

𝑠 ≥ 0. The normalization constant is 𝐶 = 𝑠𝑟−1

Γ(𝑟−1) . If 𝑟 > 2, it has mean

𝜇 = 𝑠
𝑟−2 ≥ 0. If 𝑟 > 3, it has variance 𝑠2Γ(𝑟−3)

Γ(𝑟−1) . Centering this density yields

𝜌∗(𝑥) = 𝐶(𝑥+ 𝜇)−𝑟𝑒−𝑠/(𝑥+𝜇) for −𝜇 < 𝑥 <∞. For this case, 𝑔∗(𝑥) =
(𝑥+𝜇)2

𝑟−2
when −𝜇 < 𝑥 and 0 elsewhere.

∙ Case 5. If deg 𝑔∗(𝑥) = 2 and 𝑔∗ has no real roots, 𝜌∗ can be written in

the form 𝜌∗(𝑥) = 𝐶
(
1 + 𝑥2

)−𝑟
𝑒𝑠 arctan 𝑥 for −∞ < 𝑥 < ∞, with pa-

rameters 𝑟 > 1/2 and −∞ < 𝑠 < ∞. The normalization constant is

𝐶 = Γ(𝑟)√
𝜋Γ(𝑟−1/2)

∣∣∣Γ(𝑟−𝑖𝑠/2)Γ(𝑟)

∣∣∣2. If 𝑟 > 1, it has mean 𝜇 = 𝑠
2(𝑟−1) . If 𝑟 > 3/2,

it has variance 4(𝑟−1)2+𝑠2
4(𝑟−1)2(2𝑟−3) . The centered form of the density is 𝜌∗(𝑥) =

𝐶
[
1 + (𝑥+ 𝜇)

2
]−𝑟

𝑒𝑠 arctan(𝑥+𝜇). For this case, 𝑔∗(𝑥) =
1+(𝑥+𝜇)2

2(𝑟−1) . Using our

original notation, 𝛼 = 1
2(𝑟−1) , 𝛽 = 𝜇

𝑟−1 and 𝛾 = 𝜇2+1
2(𝑟−1) .

A.3. Other lemmas

Lemma A.1. Let 𝑍 be a centered Pearson random variable. Then there exist con-
stants 𝑘𝑢 > 𝑘𝑙 > 0 depending only on 𝛼, 𝛽, 𝛾 such that when 𝑧 is large enough, we
have the following inequalities.

1. If 𝛼 = 0 and 𝛽 > 0, when 𝑧 is large enough,

𝑘𝑙
𝑧1−𝛾/𝛽2𝑒𝑧/𝛽

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1−𝛾/𝛽2𝑒𝑧/𝛽

.

2. If 𝛼 > 0, when 𝑧 is large enough,

𝑘𝑙
𝑧1+1/𝛼

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1+1/𝛼

.

3. Assuming 𝑍’s support extends to −∞, if 𝛼 > 0, when 𝑧 < 0 and ∣𝑧∣ is large
enough,

𝑘𝑙

∣𝑧∣1+1/𝛼
≤ 1− Φ∗ (𝑧) ≤ 𝑘𝑢

∣𝑧∣1+1/𝛼
.

Proof. For the proof of this lemma, which is presumably well known, but is in-
cluded for completeness, we will use 𝐶 for the normalization constant of each
density to be considered.
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In Point 1, let 𝜇 = 𝛾/𝛽 > 0. Then 𝑍 has support (−𝜇,∞); see Case 2 in
Appendix A.2. In its support, 𝑍 has 𝑔∗ (𝑧) = 𝛽𝑧 + 𝛾 = 𝛽 (𝑧 + 𝜇) and density

𝜌∗ (𝑧) = 𝐶 (𝑧 + 𝜇)𝜇/𝛽−1 exp
(
−𝑧 + 𝜇

𝛽

)
.

Note that

lim
𝑧→∞ 𝑧−𝜇/𝛽𝑒𝑧/𝛽𝑔∗ (𝑧) 𝜌∗ (𝑧)

= 𝐶𝛽 lim
𝑧→∞

(𝑧 + 𝜇)
𝜇/𝛽

𝑧𝜇/𝛽
exp

(
𝑧

𝛽
− 𝑧 + 𝜇

𝛽

)
= 𝐶𝛽𝑒−𝜇/𝛽 .

From Lemma 2.7,

𝑧 − 𝛽

𝑧2 + 𝛾
𝑔∗ (𝑧) 𝜌∗ (𝑧) ≤ Φ∗ (𝑧) ≤ 1

𝑧
𝑔∗ (𝑧)𝜌∗ (𝑧)

so

𝐶𝛽𝑒−𝜇/𝛽 ≤ lim inf
𝑧→∞ 𝑧1−𝜇/𝛽𝑒𝑧/𝛽Φ∗ (𝑧) ≤ lim sup

𝑧→∞
𝑧1−𝜇/𝛽𝑒𝑧/𝛽Φ∗ (𝑧) ≤ 𝐶𝛽𝑒−𝜇/𝛽 .

Therefore, we can choose some constants 𝑘𝑢 (𝛽, 𝛾) > 𝑘𝑙 (𝛽, 𝛾) > 0 such that when
𝑧 is large enough,

𝑘𝑙
𝑧1−𝜇/𝛽𝑒𝑧/𝛽

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1−𝜇/𝛽𝑒𝑧/𝛽

.

To prove Point 2, we first show that lim𝑧→∞ 𝑧1/𝛼𝑔∗ (𝑧)𝜌∗ (𝑧) is a finite num-
ber 𝐾. We consider the cases 4𝛼𝛾− 𝛽2 = 0 and 4𝛼𝛾−𝛽2 > 0 separately. We need
not consider 4𝛼𝛾 − 𝛽2 < 0 since it corresponds to Case 3 in Appendix A.2 for
which the right endpoint of the support of 𝑍 is 𝑏 <∞ and so necessarily 𝛼 < 0.

Supose that 4𝛼𝛾−𝛽2 = 0 and let 𝜇 = 𝛽
2𝛼 > 0. Then 𝛼𝑧2+𝛽𝑧+𝛾 = 𝛼 (𝑧 + 𝜇)

2

has one real root and the support of 𝑍 is (−𝜇,∞); see Case 4 in Appendix A.2.

In its support, 𝑍 has 𝑔∗ (𝑧) = 𝛼 (𝑧 + 𝜇)
2
and density

𝜌∗ (𝑧) = 𝐶 (𝑧 + 𝜇)
−2−1/𝛼

exp

(
− 𝑠

𝑧 + 𝜇

)
where 𝑠 = 𝜇/𝛼 = 𝛽/

(
2𝛼2

)
. Therefore,

lim
𝑧→∞ 𝑧1/𝛼𝑔∗ (𝑧)𝜌∗ (𝑧) = 𝐶𝛼 lim

𝑧→∞
𝑧1/𝛼

(𝑧 + 𝜇)
1/𝛼

exp

(
− 𝑠

𝑧 + 𝜇

)
= 𝐶𝛼.

Now suppose that 𝛿2 :=
(
4𝛼𝛾 − 𝛽2

)
/
(
4𝛼2

)
> 0 so 𝛼𝑧2+𝛽𝑧+𝛾 has two imaginary

roots and the support of 𝑍 is (−∞,∞). Letting 𝜇 = 𝛽/ (2𝛼) allows us to write

𝑔∗ (𝑧) = 𝛼 (𝑧 + 𝜇)
2
+ 𝛼𝛿2 and the density of 𝑍 as

𝜌∗ (𝑧) = 𝐶
[
(𝑧 + 𝜇)

2
+ 𝛿2

]−1− 1
2𝛼

exp

[
𝜇

𝛼𝛿
arctan

(
𝑧 + 𝜇

𝛿

)]
,
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a slight variation of the density in Case 5 in Appendix A.2. Note that in our present
case,

lim
𝑧→∞ 𝑧1/𝛼𝑔∗ (𝑧)𝜌∗ (𝑧)

= 𝐶𝛼 lim
𝑧→∞

𝑧1/𝛼[
(𝑧 + 𝜇)

2
+ 𝛿2

] 1
2𝛼

exp

[
𝜇

𝛼𝛿
arctan

(
𝑧 + 𝜇

𝛿

)]

= 𝐶𝛼 exp
[ 𝜇𝜋

2𝛼𝛿

]
.

From Lemma 2.7,

(1− 2𝛼) 𝑧 − 𝛽

(1− 𝛼) 𝑧2 + 𝛾
𝑔∗ (𝑧) 𝜌∗ (𝑧) ≤ Φ∗ (𝑧) ≤ 1

𝑧
𝑔∗ (𝑧)𝜌∗ (𝑧) .

From these bounds we conclude

𝐾
1− 2𝛼

1− 𝛼
≤ lim inf

𝑧→∞ 𝑧1+1/𝛼Φ∗ (𝑧) ≤ lim sup
𝑧→∞

𝑧1+1/𝛼Φ∗ (𝑧) ≤ 𝐾.

Therefore, when 𝑧 is large enough,

𝑘𝑙
𝑧1+1/𝛼

≤ Φ∗ (𝑧) ≤ 𝑘𝑢
𝑧1+1/𝛼

for some constants 𝑘𝑢 (𝛼, 𝛽, 𝛾) > 𝑘𝑙 (𝛼, 𝛽, 𝛾) > 0.

To prove Point 3, we consider Case 5 again.

lim
𝑧→−∞ ∣𝑧∣

1/𝛼
𝑔∗ (𝑧)𝜌∗ (𝑧)

= 𝐶𝛼 lim
𝑦→∞

𝑦1/𝛼[
(−𝑦 + 𝜇)

2
+ 𝛿2

] 1
2𝛼

exp

[
𝜇

𝛼𝛿
arctan

(−𝑦 + 𝜇

𝛿

)]

= 𝐶𝛼 exp
[
− 𝜇𝜋

2𝛼𝛿

]
.

The conclusion follows similarly after using Lemma 2.7 when 𝑧 < 0:

(1− 2𝛼) ∣𝑧∣ − 𝛽

(1− 𝛼) ∣𝑧∣2 + 𝛾
𝑔∗ (𝑧)𝜌∗ (𝑧) ≤ 1− Φ∗ (𝑧) ≤ 1

∣𝑧∣𝑔∗ (𝑧) 𝜌∗ (𝑧) . □

Lemma A.2. Let 𝑍 be a centered Pearson random variable. If 𝛼 ≤ 0, all moments
of positive order exist. If 𝛼 > 0, the moment of order 𝑚 exists if and only if
𝑚 < 1 + 1/𝛼.

Proof. The random variables in Case 1 (𝛼 = 𝛽 = 0) of Appendix A.2 are normal,
while those in Case 3 (𝛼 < 0) have finite intervals for support. It suffices to consider
the cases where 𝛼 = 0 and 𝛽 > 0, and where 𝛼 > 0. Let 𝑚 > 0. We will use the
fact that E [∣𝑍∣𝑚] <∞ if and only if

∑∞
𝑛=1 𝑛

𝑚−1P [∣𝑍∣ ≥ 𝑛] <∞.
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If 𝛼 = 0 and 𝛽 > 0, and 𝑍 is supported over (𝑎,∞), then by Lemma A.1,
E [∣𝑍∣𝑚] <∞ if and only if

∞∑
𝑛=1

𝑛𝑚−1

𝑛1+𝛾/𝛽2𝑒𝑛/𝛽
<∞,

which is always the case.
Now suppose 𝛼 > 0. Since P [∣𝑍∣ ≥ 𝑛] = Φ∗ (𝑛)+1−Φ∗ (−𝑛), then by Lemma

A.1 again, E [∣𝑍∣𝑚] <∞ if and only if
∞∑
𝑛=1

𝑛𝑚−1

𝑛1+1/𝛼
=

∞∑
𝑛=1

1

𝑛2+1/𝛼−𝑚<∞.

This is the case if and only if 2 + 1/𝛼−𝑚 > 1, i.e., 𝑚 < 1 + 1/𝛼. □
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Uniqueness and Absolute Continuity
for Semilinear SPDE’s

Benedetta Ferrario

Abstract. Given a weak solution of a semilinear stochastic partial differential
equation, sufficient conditions for its uniqueness in law are presented. More-
over we characterize this law and prove that it is absolutely continuous with
respect to the law of the process solving the corresponding linear stochas-
tic partial differential equation, obtained neglecting the nonlinear term. The
conditions imposed involve a ℙ-a.s. assumption on the solution process. This
allows to avoid a boundeness or linear growth condition on the nonlinear term.
Finally, we prove the equivalence of the laws.

Mathematics Subject Classification (2010). Primary 60H15; Secondary 35R60,
60H30.

Keywords. Uniqueness in law, absolute continuity, Girsanov transform.

1. Introduction

Let a stochastic partial differential equation (SPDE) be written in abstract form
as an infinite-dimensional stochastic differential equation (see, e.g., [1, 2]). In par-
ticular we consider a semilinear SPDE in the form{

𝑑𝑋𝑡 = 𝐴𝑋𝑡 𝑑𝑡+ 𝐹 (𝑡,𝑋𝑡) 𝑑𝑡+𝐵 𝑑𝑊𝑡, 0 < 𝑡 ≤ 𝑇,

𝑋0 = 𝑥.
(1.1)

We assume that there exists a weak solution of Equation (1.1). First, we ask when
it is unique; moreover, we want to characterize its law. To this end, we look at
Equation (1.1) as a perturbation of the linear SPDE{

𝑑𝑍𝑡 = 𝐴𝑍𝑡 𝑑𝑡+𝐵 𝑑𝑊𝑡, 0 < 𝑡 ≤ 𝑇,

𝑍0 = 𝑥
(1.2)

by adding the drift term 𝐹 . This linear equation, the so-called Ornstein–Uhlenbeck
equation, under suitable assumptions has a unique solution, which is a Gaussian
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measure on some infinite-dimensional space. This measure is the natural measure
to put in relationship with the law of the solution to Equation (1.1).

The basic tool used in our proofs is the Girsanov transform. We follow
the lines of Liptser and Shiryaev [9], who used Girsanov theorem avoiding the
Novikov’s condition (see [10])

𝔼
[
𝑒
1
2

∫ 𝑇
0 ∥𝐵−1𝐹 (𝑡, 𝑍𝑡)∥2𝑑𝑡] <∞

(the notations will be specified in the next section) or other 𝔼[𝑒...]-conditions (see,
e.g., [6, 8]).

However, notice that [9] deals only with the finite-dimensional setting,
whereas we work with stochastic differential equations in infinite-dimensional
Hilbert spaces. Moreover, our setting is a bit different from that of [9], since we
focus our attention on semilinear SPDE’s and therefore our assumptions involve
mainly the nonlinear term 𝐹 which characterize the change of drift between Equa-
tions (1.2) and (1.1). Indeed, as it is usual in the infinite-dimensional setting,
the basic starting point in the analysis of a stochastic equation is the Ornstein–
Uhlenbeck Equation (1.2), and Equation (1.1) can be seen as a perturbation of
Equation (1.2) by adding the nonlinear term 𝐹 .

As far as the presentation of the results is concerned, we give the basic as-
sumptions in Section 2. Then, Section 3 deals with the uniqueness in law for
Equation (1.1), Section 4 with the absolute continuity of the law of (1.1) with
respect to the law of (1.2) and Section 5 with the equivalence of these laws. This
latter result is the same obtained by Kozlov [7], but we present it here since it is
the easy consequence of our previous results of Sections 3 and 4.

2. Mathematical setting

For our framework we refer the reader to [1], where many examples are given.
Let 𝐻 and 𝑈 be separable Hilbert spaces. We denote by ∥ ⋅ ∥𝐻 and ⟨⋅, ⋅⟩𝐻 the

norm and scalar product in 𝐻 , respectively; similarly for 𝑈 .
We are given

∙ 𝐴 : 𝐷(𝐴) ⊂ 𝐻 → 𝐻 a linear unbounded operator, which is the infinitesimal
generator of a 𝐶0 semigroup {𝑆𝑡}{𝑡≥0} in 𝐻

∙ 𝐹 : [0, 𝑇 ]×𝐻 → 𝐻 measurable mapping
∙ 𝐵 : 𝑈 → 𝐻 linear bounded operator

𝑊 denotes a cylindrical Wiener process in 𝑈 , defined on a stochastic basis
(Ω,𝔽, {𝔽𝑡}𝑡≥0,ℙ); 𝔼 is the mathematical expectation with respect to the measure
ℙ; 𝔽𝑇 (𝑍) denotes the 𝜎-algebra generated by the process {𝑍𝑡}0≤𝑡≤𝑇 .

To any separable metric space, we associate by default the Borel 𝜎-algebra.
Given two probability measures 𝜇 and 𝜈 on the same measurable space, we

write 𝜇 ≺ 𝜈 if 𝜇 is absolutely continuous with respect to 𝜈, and 𝜇 ∼ 𝜈 is they are
mutually absolutely continuous, that is they are equivalent.
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Let us consider the mild solution of the Ornstein–Uhlenbeck equation

𝑍𝑡 = 𝑆𝑡𝑥+

∫ 𝑡

0

𝑆𝑡−𝑠𝐵 𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ]. (2.1)

We assume that this is the unique strong solution of the stochastic Equation (1.2);
on the other hand, for the semilinear Equation (1.1) we assume that there exists
a weak solution in the mild form

𝑋𝑡 = 𝑆𝑡𝑥+

∫ 𝑡

0

𝑆𝑡−𝑠𝐹 (𝑠,𝑋𝑠) 𝑑𝑠+

∫ 𝑡

0

𝑆𝑡−𝑠𝐵 𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ].

Here, weak and strong solutions denote the kind of solutions from the probabilistic
point of view (see, e.g., [9]). In this paper we always consider a finite final time 𝑇
and the solutions are the mild ones.

Remark 2.1. We denote by 𝐵★ the adjoint operator of 𝐵. The linear Equation (1.2)
has a unique mild solution if and only if

𝑄𝑡 :=

∫ 𝑡

0

𝑆𝑟𝐵𝐵★𝑆★𝑟 𝑑𝑟

is a trace class operator in 𝐻 for any 𝑡 ∈ [0, 𝑇 ] (see [1, 2]). Moreover, if there exists
𝛼 > 0 such that ∫ 𝑇

0

𝑡−𝛼𝑇𝑟(𝑆𝑡𝐵𝐵★𝑆★𝑡 )𝑑𝑡 <∞,

then the solution process has an 𝐻-continuous version (see [1, Ch. 5]).

We denote by 𝐵−1 the pseudoinverse operator of 𝐵 (see, e.g., [1, Appendix
B]) and when Im(𝐹 ) ⊆ Im(𝐵) we set

Φ = 𝐵−1𝐹.

Now we list our assumptions

[A0] Im(𝐹 ) ⊆ Im(𝐵) and ∃ Ψ : [0, 𝑇 ]×𝐻 → 𝑈 measurable such that

𝐵Ψ(𝑡, 𝑥) = 𝐹 (𝑡, 𝑥), for 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ 𝐻.

[A1] for any 𝑥 ∈ 𝐻 there exists a unique strong solution 𝑍 to the linear Equation
(1.2) with paths in 𝐶([0, 𝑇 ];𝐻) ℙ-a.s.

[A2] for any 𝑥 ∈ 𝐻 there exists a weak solution 𝑋 to the semilinear Equa-
tion (1.1) with paths in 𝐶([0, 𝑇 ];𝐻) ℙ-a.s.

[A3i] ℙ{∫ 𝑇
0
∥Φ(𝑠,𝑋𝑠)∥2𝑈𝑑𝑠 <∞} = 1.

[A3ii] ℙ{∫ 𝑇0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠 <∞} = 1.

Moreover, we assume {Φ(𝑡,𝑋𝑡)}𝑡, {Φ(𝑡, 𝑍𝑡)}𝑡 to be progressively measurable pro-
cesses.

Remark 2.2. (i) [A0] contains a compatibility condition between 𝐵 and 𝐹 . For
instance, let 𝐵 be a diagonal operator in 𝐻 = 𝑈 , i.e., 𝐵𝑒𝑗 = 𝑏𝑗𝑒𝑗 for all 𝑗 ∈ ℕ
({𝑒𝑗}𝑗 is a complete orthonormal system in 𝐻); when 𝑏ℎ = 0 for some ℎ it is
necessary that ⟨𝐹 (𝑡, 𝑥), 𝑒ℎ⟩𝐻 = 0.
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(ii) If 𝐵 is invertible there is only one Ψ fulfilling [A0] and this Ψ coincides
with Φ. Otherwise, when there are many functions Ψ such that 𝐵Ψ = 𝐹 , we
focus the attention on the expression Φ given by the pseudoinverse operator, as
explained in [4, §8].

Conditions [A0], [A1], [A2], [A3i] are always assumed from now on; condition
[A3ii] will appear only in the last section.

For sake of completeness, we state Girsanov theorem (see, e.g., [5] or [1,
Ch. 10]).

Theorem 2.3. Assume that {Γ(𝑡)}𝑡≥0 is a 𝑈 -valued 𝔽𝑡-predictable process such that

𝔼
[
𝑒

∫ 𝑇
0 ⟨Γ𝑠, 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0 ∥Γ𝑠∥2𝑈𝑑𝑠

]
= 1.

Then the process

�̃�𝑡 = 𝑊𝑡 −
∫ 𝑡

0

Γ𝑠𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇

is a 𝑈 -cylindrical Wiener process with respect to {𝔽𝑡}𝑡 on the probability space

(Ω,𝔽𝑇 , ℙ̃), where

𝑑ℙ̃ = 𝑒

∫ 𝑇
0
⟨Γ𝑠, 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0
∥Γ𝑠∥2𝑈𝑑𝑠 𝑑ℙ.

3. Uniqueness in law

Proposition 3.1. We assume [A0], [A1]. If there exist two weak solutions(
𝑋, (Ω,𝔽, {𝔽𝑡},ℙ), 𝑊

)
and

(
𝑋 ′, (Ω′,𝔽′, {𝔽′𝑡},ℙ′), 𝑊 ′)

to Equation (1.1) with the same initial data 𝑥 ∈ 𝐻 and with a.e. path in
𝐶([0, 𝑇 ];𝐻), such that

ℙ{∫ 𝑇
0
∥Φ(𝑠,𝑋𝑠)∥2𝑈𝑑𝑠 <∞} = ℙ′{∫ 𝑇

0
∥Φ(𝑠,𝑋 ′

𝑠)∥2𝑈𝑑𝑠 <∞} = 1,

then the laws of 𝑋 and 𝑋 ′ are the same.

Proof. For each 𝑛 ∈ ℕ, given 𝑌 ∈ 𝐶([0, 𝑇 ];𝐻) we define a truncation coefficient

𝜒𝑛𝑡 (𝑌 ) = indicator function of the set {∫ 𝑡0 ∥Φ(𝑠, 𝑌𝑠)∥2𝑈𝑑𝑠 < 𝑛}
for 0 ≤ 𝑡 ≤ 𝑇 .

We want to prove uniqueness in law for the semilinear Equation (1.1). To this
end, we introduce an auxiliary equation, putting in front of the nonlinear term 𝐹
the truncation coefficient 𝜒𝑛:

𝑑𝑌 𝑛𝑡 = 𝐴𝑌 𝑛
𝑡 𝑑𝑡+ 𝜒𝑛𝑡 (𝑌

𝑛)𝐹 (𝑡, 𝑌 𝑛
𝑡 ) 𝑑𝑡+𝐵 𝑑𝑊𝑛

𝑡 , 𝑌 𝑛0 = 𝑥. (3.1)

We study this new equation, starting from the Ornstein–Uhlenbeck Equation (1.2).
We consider the weak solution

(
𝑋, (Ω,𝔽, {𝔽𝑡},ℙ), 𝑊

)
to Equation (1.1) and the

strong solution 𝑍 to Equation (1.2) with this stochastic basis (Ω,𝔽, {𝔽𝑡},ℙ) and
this Wiener process 𝑊 .
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We use the Girsanov transform and obtain that there exists a unique weak
solution of Equation (3.1). Indeed, for any 𝑛 Novikov condition holds true:

𝔼
[
𝑒
1
2

∫ 𝑇
0

𝜒𝑛𝑠 (𝑍)∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠
]
≤ 𝑒

1
2𝑛 <∞.

Therefore, the process 𝜌𝑛 defined by

𝜌𝑛𝑡 = 𝑒

∫ 𝑡
0 𝜒𝑛𝑠 (𝑍)⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑡
0 𝜒𝑛𝑠 (𝑍)∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

(0 ≤ 𝑡 ≤ 𝑇 ) is a martingale (see [10]). To highlight the dependence on 𝑍 and 𝑊
we will often write 𝜌𝑛 as 𝜌𝑛(𝑍,𝑊 ).

Then the Girsanov theorem can be applied: we define a new probability
measure on (Ω,ℱ𝑇 ) by 𝑑ℙ̃𝑛 = 𝜌𝑛𝑇 (𝑍,𝑊 )𝑑ℙ and

�̃�𝑛
𝑡 = 𝑊𝑡 −

∫ 𝑡

0

𝜒𝑛𝑠 (𝑍)Φ(𝑠, 𝑍𝑠) 𝑑𝑠 , 𝑡 ∈ [0, 𝑇 ],

is a 𝑈 -cylindrical Wiener process with respect to (Ω,𝔽, {𝔽𝑡}, ℙ̃𝑛). Substituting into
Equation (2.1) we get

𝑍𝑡 = 𝑆𝑡𝑥+

∫ 𝑡

0

𝑆𝑡−𝑠𝐵 𝑑𝑊𝑠 = 𝑆𝑡𝑥+

∫ 𝑡

0

𝑆𝑡−𝑠𝐵 𝑑�̃�𝑛
𝑠 +

∫ 𝑡

0

𝑆𝑡−𝑠𝜒𝑛𝑠 (𝑍)𝐹 (𝑠, 𝑍𝑠) 𝑑𝑠

This means that
(
𝑍, (Ω,𝔽, {𝔽𝑡}, ℙ̃𝑛), �̃�𝑛

)
is a weak solution of Equation (3.1).

Moreover, the law of the process solving (3.1) is absolutely continuous with
respect to the law of the process solving (1.2). Indeed, let 𝐷𝑛 : 𝐶([0, 𝑇 ];𝐻)→ ℝ be
a measurable non-negative function such that𝐷𝑛(𝑍(𝜔)) = 𝔼[𝜌𝑛𝑇 (𝑍,𝑊 )∣ 𝔽𝑇 (𝑍)](𝜔)
for ℙ-a.e. 𝜔. For any Borelian subset Λ of 𝐶([0, 𝑇 ];𝐻),

ℒ𝑌 𝑛(Λ) = ℙ̃𝑛{𝑍 ∈ Λ} =
∫
{𝑍∈Λ}

𝜌𝑛𝑇 (𝑍,𝑊 ) 𝑑ℙ

=

∫
{𝑍∈Λ}

𝔼
[
𝜌𝑛𝑇 (𝑍,𝑊 )∣ 𝔽𝑇 (𝑍)

]
𝑑ℙ =

∫
{𝑍∈Λ}

𝐷𝑛(𝑍) 𝑑ℙ =

∫
Λ

𝐷𝑛(𝑧) 𝑑ℒ𝑍(𝑧).

Hence
𝑑ℒ𝑌 𝑛
𝑑ℒ𝑍 (𝑍) = 𝐷𝑛(𝑍) for 𝑍 ∈ 𝐶([0, 𝑇 ];𝐻), i.e.,

𝑑ℒ𝑌 𝑛
𝑑ℒ𝑍 (𝑍) = 𝔼

[
𝜌𝑛𝑇 (𝑍,𝑊 )∣ 𝔽𝑇 (𝑍)

]
ℙ-a.s. (3.2)

Uniqueness in law comes from the fact that the linear equation has a unique
solution and the laws of these two equations can be related using the Girsanov
transform also starting from Equation (3.1); this also shows that these two laws
are equivalent (see also §3 in [4]).

Now, we want to relate the solutions of the auxiliary Equation (3.1) and of
the semilinear Equation (1.1). Given the weak solution

(
𝑋, (Ω,𝔽, {𝔽𝑡},ℙ), 𝑊

)
to

the semilinear Equation (1.1), we define

𝜏𝑛 = inf{𝑡 ∈ [0, 𝑇 ] : 𝜒𝑛𝑡 (𝑋) = 0} ∧ 𝑇,

setting the infimum equal to +∞ when the set is empty.
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Then each path 𝑋 solving equation (1.1) is a solution of (3.1) (with the
Wiener process 𝑊 ) on the time interval [0, 𝜏𝑛); otherwise, on the time interval
[𝜏𝑛, 𝑇 ] Equation (3.1) evolves as the Ornstein–Uhlenbeck equation.

Therefore, we define (pathwise) a process solving Equation (3.1) with the
Wiener process 𝑊 , as

𝑋𝑛
𝑡 =

{
𝑋𝑡 for 𝑡 ∈ [0, 𝜏𝑛],

the solution of the linear equation for 𝑡 ∈ [𝜏𝑛, 𝑇 ].

In particular, 𝑋 = 𝑋𝑛 on the set {𝜏𝑛 = 𝑇 }. Therefore
ℙ{∥𝑋 −𝑋𝑛∥𝐶([0,𝑇 ];𝐻) > 0} ≤ ℙ{𝜏𝑛 < 𝑇 }.

Moreover, {𝜏𝑛 = 𝑇 } ⊇ {𝜒𝑛𝑇 (𝑋) = 1}; hence
ℙ{𝜏𝑛 < 𝑇 } ≤ ℙ{𝜒𝑛𝑇 (𝑋) = 0} = ℙ{∫ 𝑇

0
∥Φ(𝑠,𝑋𝑠)∥2𝑈𝑑𝑠 ≥ 𝑛} −→ 0 as 𝑛→∞

by [A3i]. Summing up, we have got that

lim
𝑛→∞ℙ{∥𝑋 −𝑋𝑛∥𝐶([0,𝑇 ];𝐻) > 0} = 0.

This means that the law ℒ𝑋𝑛 of the process 𝑋𝑛 converges in the metric of total
variation to the law ℒ𝑋 of the process 𝑋 , as measures on 𝐶([0, 𝑇 ];𝐻):

lim
𝑛→∞ ∥ℒ𝑋 − ℒ𝑋𝑛∥𝑇𝑉 = 0. (3.3)

But ℒ𝑋𝑛 = ℒ𝑌 𝑛 and is unique. Hence the limit law (which is the law of a process
solving (1.1)) is unique. □

Henceforth, we denote by ℒ𝑋 and ℒ𝑍 the unique laws for the solutions of
Equations (1.1) and (1.2) respectively.

Remark 3.2. We have proved the uniqueness in law for the semilinear equation
without any boundedness or sublinear growth assumption on the nonlinear term
𝐹 . For instance, the requirements [A2] and [A3i] allow to consider nonlinear terms
𝐹 with polynomial growth; indeed, it is enough to have

∃ 𝑐 > 0, 𝑝 > 0 : ∥Φ(𝑠, 𝑥)∥𝑈 ≤ 𝑐(1 + ∥𝑥∥𝑝𝐻) ∀𝑠 ∈ [0, 𝑇 ], 𝑥 ∈ 𝐻

in order to apply our result. Some interesting examples in fluid dynamics, with
𝑝 = 2, are given in [3].

4. Absolute continuity

We define

𝜒𝑇 (𝑌 ) = indicator function of the set
{∫ 𝑇

0
∥Φ(𝑠, 𝑌𝑠)∥2𝑈𝑑𝑠 <∞

}
.

We consider Equations (1.1) and (1.2) with the same assumptions as for the unique-
ness result of the previous section. We have the following result.
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Proposition 4.1. We assume [A0], [A1], [A2] and [A3i] and consider 𝑥 ∈ 𝐻. Then
uniqueness in law holds for Equation (1.1) and ℒ𝑋 ≺ ℒ𝑍 . Moreover,

𝑑ℒ𝑋
𝑑ℒ𝑍 (𝑍) = 𝔼

[
𝑒ℐ𝑇 (𝑍)− 1

2

∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

∣∣∣ 𝔽𝑇 (𝑍)
]
, (4.1)

ℙ-a.s., where

ℐ𝑇 (𝑍) = ℙ− lim
𝑛→∞𝜒𝑇 (𝑍)

∫ 𝑇

0

𝜒𝑛𝑠 (𝑍)⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 .

Proof. For each 𝑛, in (3.2) we have obtained that ℒ𝑌 𝑛 ≺ ℒ𝑍 . Using (3.3), in the
limit we get

ℒ𝑋 ≺ ℒ𝑍 .
We now consider the limit of the Radon–Nikodym derivative given by (3.2)

as 𝑛 → ∞. The limit ∥ℒ𝑌 𝑛 − ℒ𝑋∥𝑇𝑉 → 0 implies that ℒ𝑌 𝑛 (equivalently, ℙ̃𝑛)
is a Cauchy sequence in the metric of total variation. Since ∥ℙ̃𝑛 − ℙ̃𝑚∥𝑇𝑉 =

∥ 𝑑ℙ̃𝑛𝑑ℙ − 𝑑ℙ̃𝑚

𝑑ℙ ∥𝐿1(ℙ), this is the same as saying that

𝑑ℙ̃𝑛

𝑑ℙ
= 𝜌𝑛𝑇 (𝑍,𝑊 )

is a Cauchy sequence in the metric of 𝐿1(ℙ). Therefore, the sequence of random
variables

𝜌𝑛𝑇 (𝑍,𝑊 ) = 𝑒

∫ 𝑇
0 𝜒𝑛𝑠 (𝑍)⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0 𝜒𝑛𝑠 (𝑍)∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

converges in the norm of 𝐿1(ℙ) to some limit, which we denote by 𝜌𝑇 (𝑍,𝑊 ). We
want to identify 𝜌𝑇 (𝑍,𝑊 ).

Notice that if
∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠 <∞ ℙ-a.s., then the stochastic integral in the

exponent of 𝜌𝑛𝑇 (𝑍,𝑊 ) would converge in probability to
∫ 𝑇
0
⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 (see

[9], Section 4.2.6) and the deterministic integral to
∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠. Otherwise,

we consider the random variable

ℐ𝑛𝑇 (𝑍) := 𝜒𝑇 (𝑍)

∫ 𝑇

0

𝜒𝑛𝑠 (𝑍)Φ(𝑠, 𝑍𝑠)𝑑𝑊𝑠,

which converges in probability to the random variabile ℐ𝑇 (𝑍) (see [9]). It follows
that

𝜒𝑇 (𝑍)𝜌𝑇 (𝑍,𝑊 ) = 𝜒𝑇 (𝑍)𝑒ℐ𝑇 (𝑍)− 1
2

∫ 𝑇
0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

ℙ-a.s. Moreover, with some elementary calculations (see [4, §5]) we show that

𝜌𝑇 (𝑍,𝑊 ) = 𝑒ℐ𝑇 (𝑍)− 1
2

∫ 𝑇
0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

ℙ-a.s. From this we obtain (4.1) as we did for (3.2). □



92 B. Ferrario

Remark 4.2. The random variable

𝑒ℐ𝑇 (𝑍)− 1
2

∫ 𝑇
0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

is non-negative and it vanishes (a.s.) on the set {∫ 𝑇0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠 =∞}. It defines
the Radon–Nikodym derivative 𝑑ℙ̃

𝑑ℙ , where ℙ̃ is the limit of ℙ̃𝑛 in the total variation
norm.

5. Equivalence of laws

Now, if we assume also [A3ii], that is

ℙ{∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠 <∞} = 1,

it is clear from the previous section that 𝜒𝑇 (𝑍) = 1 and

ℐ𝑇 (𝑍) =

∫ 𝑇

0

⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 .

Thus, the Radon–Nikodym 𝑑ℙ̃
𝑑ℙ derivative is given by

𝑒

∫ 𝑇
0
⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠.

Under these assumptions, we have a first result.

Theorem 5.1. We are given 𝑥 ∈ 𝐻. We assume [A0], [A1], [A2], [A3i] and [A3ii].
Then

i) the process 𝜌 = 𝜌(𝑍,𝑊 ) given by

𝜌𝑡 = 𝑒+
∫ 𝑇
0 ⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠, 0 ≤ 𝑡 ≤ 𝑇,

is a positive {𝔽𝑡}-martingale; in particular

𝔼[𝜌𝑡(𝑍,𝑊 )] = 1 for any 𝑡 ∈ [0, 𝑇 ].

ii) �̃�𝑡 = 𝑊𝑡 −
∫ 𝑡

0

Φ(𝑠, 𝑍𝑠) 𝑑𝑠, 𝑡 ∈ [0, 𝑇 ], (5.1)

is a 𝑈 -cylindrical Wiener process with respect to ℙ̃, where the probability
measure ℙ̃ is defined on (Ω,𝔽𝑇 ) by

𝑑ℙ̃ = 𝜌𝑇 (𝑍,𝑊 ) 𝑑ℙ.

Proof. i) Notice that the exponential process 𝜌(𝑍,𝑊 ) is a positive local martingale
and then, by Fatou lemma, a supermartingale. Since 𝜌0(𝑍,𝑊 ) = 1, it is enough to
have 𝔼[𝜌𝑇 (𝑍,𝑊 )] = 1 in order to prove that it is a martingale. But, 𝜌𝑇 (𝑍,𝑊 ) is
the 𝐿1(ℙ)-limit of 𝜌𝑛𝑇 (𝑍,𝑊 ); since we already know from the proof of Proposition
3.1 that

𝔼[𝜌𝑛𝑇 (𝑍,𝑊 )] = 1 for any 𝑛 = 1, 2, . . .

we get that 𝔼[𝜌𝑇 (𝑍,𝑊 )] = 1.
ii) Given i), this is the Girsanov theorem. □
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In this section we add condition [A3ii] to all the previous ones and therefore
the results of Proposition 3.1 and Proposition 4.1 hold true. Moreover, we have
that

(
𝑍, (Ω,𝔽, {𝔽𝑡}, ℙ̃), �̃�

)
is a weak solution to Equation (1.1) and

ℙ{𝑋 ∈ Λ} = ℒ𝑋(Λ) = ℙ̃{𝑍 ∈ Λ}
for any Borelian subset Λ of 𝐶([0, 𝑇 ];𝐻).

Now, by means of Theorem 5.1 we get the equivalence of the laws.

Proposition 5.2. We assume [A0], [A1], [A2], [A3i] and [A3ii] with 𝑥 ∈ 𝐻 fixed.
Then ℒ𝑋 ∼ ℒ𝑍 ; in particular

𝑑ℒ𝑋
𝑑ℒ𝑍 (𝑍) = 𝔼

[
𝑒+

∫ 𝑇
0
⟨Φ(𝑠, 𝑍𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

∣∣∣ 𝔽𝑇 (𝑍)
]
,

𝑑ℒ𝑍
𝑑ℒ𝑋 (𝑋) = 𝔼

[
𝑒−

∫ 𝑇
0 ⟨Φ(𝑠,𝑋𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0 ∥Φ(𝑠,𝑋𝑠)∥2𝑈𝑑𝑠

∣∣∣ 𝔽𝑇 (𝑋)
]
,

ℙ-a.s.

Proof. Thanks to [A3ii], the Radon–Nikodym derivative 𝜌𝑇 = 𝑑ℙ̃
𝑑ℙ is strictly posi-

tive; therefore there exists 𝑑ℙ
𝑑ℙ̃
, that is ℙ ≺ ℙ̃. Thus ℙ ∼ ℙ̃ and ℒ𝑋 ∼ ℒ𝑍 .

What remains to prove is the expression of the second Radon–Nikodym de-

rivative. From 𝑑ℙ
𝑑ℙ̃

=
(
𝜌𝑇 (𝑍,𝑊 )

)−1
and (5.1), we get

𝑑ℙ

𝑑ℙ̃
= 𝑒−

∫ 𝑇
0
⟨Φ(𝑠, 𝑍𝑠), 𝑑�̃�𝑠⟩𝑈 − 1

2

∫ 𝑇
0
∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠.

In particular,

�̃�
[
𝑒−

∫ 𝑇
0 ⟨Φ(𝑠, 𝑍𝑠), 𝑑�̃�𝑠⟩𝑈 − 1

2

∫ 𝑇
0 ∥Φ(𝑠, 𝑍𝑠)∥2𝑈𝑑𝑠

]
= 1,

where the mathematical expectation is with respect to the probability measure
ℙ̃. This is written for the solution

(
𝑍, (Ω,𝔽, {𝔽𝑡}, ℙ̃), �̃�

)
of Equation (1.1). Since

there is uniqueness in law for Equation (1.1), if we consider the same relationship
for the solution

(
𝑋, (Ω,𝔽, {𝔽𝑡},ℙ), 𝑊

)
we get

𝔼
[
𝑒−

∫ 𝑇
0
⟨Φ(𝑠,𝑋𝑠), 𝑑𝑊𝑠⟩𝑈 − 1

2

∫ 𝑇
0
∥Φ(𝑠,𝑋𝑠)∥2𝑈𝑑𝑠

]
= 1. (5.2)

Now, let us start from Equation (1.1) and consider Equation (1.2) as a modification
of Equation (1.1) by a change of drift. Thanks to (5.2), we can use Girsanov

theorem and obtain 𝑑ℒ𝑍
𝑑ℒ𝑋 (𝑋) as usual. □

Remark 5.3. The same results hold true in a more general setting. Here we have
presented the basic one. In particular, we can deal with the covariance of the noise
depending on time and on the unknown, and with 𝐹 and 𝐵 taking values in a
space bigger than 𝐻 if the semigroup {𝑆𝑡} is analytic (see, e.g., [11]) so that it has

a regulazing effect in the terms
∫ 𝑡
0
𝑆𝑡−𝑠𝐵 𝑑𝑊𝑠,

∫ 𝑡
0
𝑆𝑡−𝑠𝐹 (𝑠,𝑋𝑠) 𝑑𝑠 appearing in

the mild solutions. Finally, the initial data 𝑥 can be an 𝔽0-measurable 𝐻-valued
random variable.
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Rate of Convergence of Wong–Zakai
Approximations for Stochastic Partial
Differential Equations

István Gyöngy and Pablo Raúl Stinga

Abstract. In this paper we show that the rate of convergence of Wong–Zakai
approximations for stochastic partial differential equations driven by Wiener
processes is essentially the same as the rate of convergence of the driving
processes 𝑊𝑛 approximating the Wiener process, provided the area processes
of𝑊𝑛 also converge to those of𝑊 with that rate. We consider non-degenerate
and also degenerate stochastic PDEs with time dependent coefficients.
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1. Introduction

Consider for each integer 𝑛 ≥ 1 the stochastic PDE

𝑑𝑢𝑛(𝑡, 𝑥) = (𝐿𝑛𝑢𝑛(𝑡, 𝑥) + 𝑓𝑛) 𝑑𝑡+ (𝑀𝑘
𝑛𝑢𝑛(𝑡, 𝑥) + 𝑔𝑘𝑛) 𝑑𝑊

𝑘
𝑛 (𝑡), (1.1)

for (𝑡, 𝑥) ∈ 𝐻𝑇 = (0, 𝑇 ]× ℝ𝑑, for a fixed 𝑇 > 0, with initial condition

𝑢𝑛(0, 𝑥) = 𝑢𝑛0(𝑥), 𝑥 ∈ ℝ𝑑, (1.2)

given on a probability space (Ω,ℱ , 𝑃 ), where 𝐿𝑛 and 𝑀𝑘
𝑛 are second- and first-

order differential operators in 𝑥 ∈ ℝ𝑑, respectively for every 𝜔 ∈ Ω. The free terms,
𝑓𝑛 and 𝑔𝑛 = (𝑔𝑘𝑛) are random fields, and𝑊𝑛 = (𝑊 𝑘

𝑛 ) is a continuous 𝑑1-dimensional
stochastic process with finite variation over [0, 𝑇 ], for 𝑘 = 1, . . . , 𝑑1.

Unless otherwise stated we use the summation convention with respect to
repeated indices throughout the paper. The summation convention is not used if
the repeated index is the subscript 𝑛.

The second author was supported by Ministerio de Ciencia e Innovación de España MTM2008-

06621-C02-01, Grant MTM2011-28149-C02-01 and Grant COLABORA 2010/01 from Planes
Riojanos de I+D+I.
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The operators 𝐿𝑛, 𝑀
𝑘
𝑛 are of the form

𝐿𝑛 = 𝑎𝑖𝑗𝑛 (𝑡, 𝑥)𝐷𝑖𝐷𝑗 + 𝑎𝑖𝑛(𝑡, 𝑥)𝐷𝑖 + 𝑎𝑛(𝑡, 𝑥),

𝑀𝑘
𝑛 = 𝑏𝑖𝑘𝑛 (𝑡, 𝑥)𝐷𝑖 + 𝑏𝑘𝑛(𝑡, 𝑥),

where 𝑎𝑖𝑗𝑛 , . . . , 𝑏
𝑘
𝑛 are real-valued bounded functions on Ω × [0, 𝑇 ] × ℝ𝑑 for all

𝑖, 𝑗 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1, and integers 𝑛 ≥ 1, 𝐷𝑖 =
∂
∂𝑥𝑖 for 𝑖 = 1, 2, . . . , 𝑑, and

𝑥𝑖 is the 𝑖th co-ordinate of 𝑥 ∈ ℝ𝑑. The free terms, 𝑓𝑛, 𝑔
1
𝑛,. . . ,𝑔

𝑑1
𝑛 are real-valued

functions on Ω × [0, 𝑇 ] × ℝ𝑑 for each 𝑛. We assume that 𝐿𝑛 is either uniformly
elliptic or degenerate elliptic for all 𝑛.

Assume that the operators 𝐿𝑛, 𝑀
𝑘
𝑛 , the free terms 𝑓𝑛, 𝑔

𝑘
𝑛 and the initial data

𝑢𝑛0 converge to some operators

𝐿 = 𝑎𝑖𝑗(𝑡, 𝑥)𝐷𝑖𝑗 + 𝑎𝑖(𝑡, 𝑥)𝐷𝑖 + 𝑎(𝑡, 𝑥),

𝑀𝑘 = 𝑏𝑖𝑘(𝑡, 𝑥)𝐷𝑖 + 𝑏𝑘(𝑡, 𝑥),

random fields 𝑓 , 𝑔𝑘 and initial data 𝑢0 respectively, and 𝑊𝑛(𝑡) converges to a
𝑑1-dimensional Wiener process in probability, uniformly in 𝑡 ∈ [0, 𝑇 ]. Then under
some smoothness conditions on the coefficients of 𝐿𝑛, 𝐿, 𝑀

𝑘
𝑛 , 𝑀

𝑘 and on the data
𝑢0𝑛, 𝑓𝑛, 𝑔

𝑘
𝑛, 𝑢0, 𝑓 , 𝑔

𝑘, and under some additional conditions on the convergence of
the related area processes and on the growth of the auxiliary process 𝐵𝑛 (defined
in (2.1) and (2.2) below), the solution 𝑢𝑛 to (1.1) converges in probability to a
random field 𝑢 that satisfies the stochastic PDE

𝑑𝑢(𝑡, 𝑥) = (𝐿𝑢(𝑡, 𝑥) + 𝑓) 𝑑𝑡+ (𝑀𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘) ∘ 𝑑𝑊 𝑘(𝑡), (𝑡, 𝑥) ∈ 𝐻𝑇

with initial condition

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ ℝ𝑑,

where ‘∘’ indicates the Stratonovich differential. (See, e.g., [8] and [9].) When 𝑀𝑘

and 𝑔𝑘 do not depend on the variable 𝑡, then

(𝑀𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘) ∘ 𝑑𝑊 𝑘 = 1
2 (𝑀

𝑘𝑀𝑘𝑢(𝑡, 𝑥) +𝑀𝑘𝑔𝑘) 𝑑𝑡+ (𝑀𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘) 𝑑𝑊 𝑘.

One of the important questions in the analysis of approximation schemes is
the estimation of the speed of convergence. In this paper we show that, if the
continuous finite variation processes 𝑊𝑛 and their area processes converge almost
surely to a Wiener process 𝑊 and to its area processes, respectively, with a given
rate, then 𝑢𝑛(𝑡) converges almost surely with essentially the same rate. The results
of this paper are motivated by a question about robustness of nonlinear filters for
partially observed processes, (𝑋(𝑡), 𝑌 (𝑡))𝑡∈[0,𝑇 ]. For a large class of signal and ob-
servation models, the signal 𝑋 and the observation 𝑌 are governed by stochastic
differential equations with respect to Wiener processes, and a basic assumption is
that the observation process is a non-degenerate Itô process. Thus the observation
is modelled by a process, which has infinite (first) variation on any (small) finite
interval. In practice, however, due to the smoothing effect of measurements, the
“signal data” is a process which has finite variation on any finite interval. This
process can be viewed as an approximation 𝑌𝑛 to 𝑌 , and it is natural to assume
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that 𝑌𝑛 and its area processes converge almost surely in the sup norm to 𝑌 and
its area processes, with some speed. By a direct application of the main theorems
of the present article one can show that the “robust filtering equation”, with 𝑌𝑛
in place of 𝑌 , admits a unique solution 𝑝𝑛 which converges almost surely with
almost the same order to the conditional density of 𝑋(𝑡) given the observation
{𝑌 (𝑠) : 𝑠 ∈ [0, 𝑡]}. The filtering equations in case of correlated signal and obser-
vation noise are stochastic PDEs with coefficients depending on the observations.
Thus approximating the observations we approximate also the differential opera-
tors in the stochastic PDEs. This is why we consider Equation (1.1) with random
operators 𝐿𝑛 and 𝑀𝑘

𝑛 depending also on 𝑛, the parameter of the approximation.
Our results improve and generalise the results of [12] and [17], where only

half of the order of convergence of 𝑊𝑛 is obtained for the order of convergence of
𝑢𝑛. Moreover, our conditions are weaker, and we prove the optimal rate also in the
case of degenerate stochastic PDEs, which allows to get our rate of convergence
result also in the case of degenerate signal and observation models.

Wong–Zakai approximations of stochastic PDEs were studied intensively in
the literature. See, for example, [1]–[9], [12]–[14], [17]–[18], and the references
therein. With the exception of [4], [12], [14] and [17] the papers above prove con-
vergence results of Wong–Zakai approximations for stochastic PDEs with various
generalities, but do not present rate of convergence estimates. Wong–Zakai type
approximation results for semilinear and fully nonlinear SPDEs are obtained via
rough path approach in [5]–[7].

In [4], the initial value problem (1.1)–(1.2) is considered with non-random
coefficients and without free terms, when 𝑊𝑛 are polygonal approximations to
the Wiener process 𝑊 . By the method of characteristics it is proved that 𝑢𝑛(𝑡, 𝑥)
converges almost surely, uniformly in (𝑡, 𝑥) ∈ [0, 𝑇 ] × ℝ𝑑. Though the rate of
convergence of 𝑢𝑛 to 𝑢 is not stated explicitly in [4], from the rate of conver-
gence result proved in [4] for the characteristics, one can easily deduce that for
every 𝜅 < 1/4 there exists a finite random variable 𝜉𝜅 such that almost surely
∣𝑢𝑛(𝑡, 𝑥)−𝑢(𝑡, 𝑥)∣ ≤ 𝜉𝑛−𝜅 for all 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ ℝ𝑑. We note that for polygonal
approximations the almost sure order of convergence of 𝑊𝑛 and its area processes
are of order 𝜅 < 1/2, and thus by our paper the almost sure rate of convergence
of the Wong–Zakai approximations is the same 𝜅 < 1/2, in Sobolev norms, and
via Sobolev’s embedding in the supremum norm as well. In [14] the rate of con-
vergence of Wong–Zakai approximations of stochastic PDEs driven by Poisson
random measures is investigated.

Let us conclude with introducing some notation used throughout the paper.
All random objects are given on a fixed probability space (Ω,ℱ , 𝑃 ) equipped with
a right-continuous filtration 𝔽 = (ℱ𝑡)𝑡≥0, such that ℱ0 contains all the 𝑃 -null sets
of the complete 𝜎-algebra ℱ . The 𝜎-algebra of predictable subsets of [0,∞) × Ω
is denoted by 𝒫 and the 𝜎-algebra of Borel subsets of ℝ𝑑 is denoted by ℬ(ℝ𝑑).
The notation 𝐶∞0 = 𝐶∞0 (ℝ𝑑) stands for the space of real-valued smooth functions
with compact support on ℝ𝑑. For an integer 𝑚 we use the notation 𝐻𝑚 for the
Hilbert–Sobolev space 𝑊𝑚

2 (ℝ𝑑) of generalized functions on ℝ𝑑. For 𝑚 ≥ 0 it is the
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closure of 𝐶∞0 in the norm ∣ ⋅ ∣𝑚 defined by

∣𝑓 ∣2𝑚 =
∑
∣𝛼∣≤𝑚

∫
ℝ𝑑
∣𝐷𝛼𝑓(𝑥)∣2 𝑑𝑥,

where 𝐷𝛼 = 𝐷𝛼1
1 𝐷𝛼2

2 ⋅ ⋅ ⋅𝐷𝛼𝑑
𝑑 for multi-indices 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑑) ∈ {0, 1, . . .}𝑑,

and 𝐷0 is the identity operator. For 𝑚 < 0, 𝐻𝑚 is the closure of 𝐶∞0 in the norm

∣𝑓 ∣𝑚 = sup
𝑔∈𝐶∞

0 ,∣𝑔∣−𝑚≤1
(𝑓, 𝑔)0,

where (𝑓, 𝑔)0 denotes the inner product in 𝐿2 = 𝐻0. We define in the same way the
Hilbert–Sobolev space 𝐻𝑚 = 𝐻𝑚(ℝ𝑙) of ℝ𝑙-valued functions 𝑔 = (𝑔1, . . . , 𝑔𝑙) on

ℝ𝑑, such that ∣𝑔∣2𝑚 =
∑𝑙
𝑘=1 ∣𝑔𝑘∣2𝑚. We use the notation (⋅ , ⋅)𝑚 for the inner product

in 𝐻𝑚, and for 𝑚 = 0 we often use the notation (⋅ , ⋅) instead of (⋅ , ⋅)0. For 𝑚 ≥ 0
denote by ⟨⋅ , ⋅⟩𝑚 the duality product between𝐻𝑚+1 and𝐻𝑚−1, based on the inner
product (⋅ , ⋅)𝑚 in 𝐻𝑚. For real numbers 𝐴 and 𝐵 we set 𝐴 ∨ 𝐵 = max {𝐴,𝐵}
and 𝐴 ∧𝐵 = min {𝐴,𝐵}. For sequences of random variables (𝑎𝑛)

∞
𝑛=1 and (𝑏𝑛)

∞
𝑛=1

the notation 𝑎𝑛 = 𝑜(𝑏𝑛) means that there exist random variables 𝜉𝑛 converging
almost surely to zero such that almost surely ∣𝑎𝑛∣ ≤ 𝜉𝑛∣𝑏𝑛∣ for all 𝑛. The notation
𝑎𝑛 = 𝑂(𝑏𝑛) means that there exists a random variable 𝜂 such that almost surely
∣𝑎𝑛∣ ≤ 𝜂∣𝑏𝑛∣ for all 𝑛.

2. Formulation of the results

Let 𝑊 = (𝑊 (𝑡))𝑡∈[0,𝑇 ] be a 𝑑1-dimensional Wiener martingale with respect to 𝔽,
and consider for every integer 𝑛 ≥ 1 an ℝ𝑑1-valued ℱ𝑡-adapted continuous process
𝑊𝑛 = (𝑊𝑛(𝑡))𝑡∈[0,𝑇 ] of finite variation. Define the area processes of 𝑊 and 𝑊𝑛 as

𝐴𝑖𝑗(𝑡) :=
1

2

∫ 𝑡

0

𝑊 𝑖(𝑠) 𝑑𝑊 𝑗(𝑠)−𝑊 𝑗(𝑠) 𝑑𝑊 𝑖(𝑠), 𝑖, 𝑗 = 1, 2, . . . , 𝑑1,

𝐴𝑖𝑗𝑛 (𝑡) :=
1

2

∫ 𝑡

0

𝑊 𝑖
𝑛(𝑠) 𝑑𝑊

𝑗
𝑛(𝑠)−𝑊 𝑗

𝑛(𝑠) 𝑑𝑊 𝑖
𝑛(𝑠), 𝑖, 𝑗 = 1, 2, . . . , 𝑑1, (2.1)

and also the process

𝐵𝑖𝑗
𝑛 (𝑡) :=

∫ 𝑡

0

(𝑊 𝑖(𝑠)−𝑊 𝑖
𝑛(𝑠)) 𝑑𝑊

𝑗
𝑛(𝑠), 𝑖, 𝑗 = 1, . . . , 𝑑1, (2.2)

that will play a crucial role. We denote by ∥𝑞∥ (𝑡) the first variation of a process 𝑞
over the interval [0, 𝑡] for 𝑡 ≤ 𝑇 .

Let 𝛾 > 0 be a fixed real number and assume that the following conditions
hold.

Assumption 2.1. For each 𝜅 < 𝛾 almost surely

(i) sup𝑡≤𝑇 ∣𝑊 (𝑡)−𝑊𝑛(𝑡)∣ = 𝑂(𝑛−𝜅),
(ii) sup𝑡≤𝑇

∣∣𝐴𝑖𝑗(𝑡)− 𝐴𝑖𝑗𝑛 (𝑡)
∣∣ = 𝑂(𝑛−𝜅) 𝑖 ∕= 𝑗,

(iii) ∣∣𝐵𝑖𝑗
𝑛 ∣∣(𝑇 ) = 𝑜(ln𝑛) for all 𝑖, 𝑗 = 1, . . . , 𝑑1.
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The following remark is shown in [12].

Remark 2.2. Define the matrix-valued process 𝑆𝑛 = (𝑆𝑖𝑗𝑛 (𝑡)), 𝑡 ∈ [0, 𝑇 ] by

𝑆𝑖𝑗𝑛 (𝑡) =

∫ 𝑡

0

(𝑊 𝑖(𝑠)−𝑊 𝑖
𝑛(𝑠)) 𝑑𝑊

𝑗
𝑛(𝑠)−

1

2
⟨𝑊 𝑖,𝑊 𝑗⟩(𝑡)

=

∫ 𝑡

0

(𝑊 𝑖(𝑠)−𝑊 𝑖
𝑛(𝑠)) 𝑑𝑊

𝑗
𝑛(𝑠)−

1

2
𝛿𝑖𝑗𝑡, 𝑖, 𝑗 = 1, 2, . . . , 𝑑1,

for each integer 𝑛 ≥ 1, where ⟨𝑊 𝑖,𝑊 𝑗⟩ denotes the quadratic covariation process
of 𝑊 𝑖 and 𝑊 𝑗 , and 𝛿𝑖𝑗 = 1 for 𝑖 = 𝑗 and it is zero otherwise. Then by Itô’s formula
for 𝑞𝑖𝑗𝑛 := (𝑊 𝑖 −𝑊 𝑖

𝑛)(𝑊
𝑗 −𝑊 𝑗

𝑛) we have

𝑆𝑖𝑗𝑛 (𝑡) + 𝑆𝑗𝑖𝑛 (𝑡) = 𝑞𝑖𝑗𝑛 (0)− 𝑞𝑖𝑗𝑛 (𝑡) +𝑅𝑖𝑗𝑛 (𝑡) +𝑅𝑗𝑖𝑛 (𝑡)

with

𝑅𝑖𝑗𝑛 (𝑡) :=

∫ 𝑡

0

(𝑊 𝑖(𝑠)−𝑊 𝑖
𝑛(𝑠)) 𝑑𝑊

𝑗(𝑠).

Moreover, given Part (i) in Assumption 2.1, Part (ii) is equivalent to condition (ii′):

sup
𝑡≤𝑇

∣𝑆𝑖𝑗𝑛 (𝑡)∣ = 𝑂(𝑛−𝜅) (a.s.) for each 𝜅 < 𝛾, for 𝑖, 𝑗 = 1, . . . , 𝑑1. (2.3)

Assumption 2.1 holds for a large class of approximations 𝑊𝑛 of 𝑊 . The main
examples are the following.

Example. (Polygonal approximations) Set 𝑊𝑛(𝑡) = 0 for 𝑡 ∈ [0, 𝑇/𝑛) and

𝑊𝑛(𝑡) = 𝑊 (𝑡𝑘−1) + 𝑛(𝑡− 𝑡𝑘)(𝑊 (𝑡𝑘)−𝑊 (𝑡𝑘−1))/𝑇

for 𝑡 ∈ [𝑡𝑘, 𝑡𝑘+1), where 𝑡𝑘 := 𝑘𝑇/𝑛 for integers 𝑘 ≥ 0.

Example. (Smoothing) Define

𝑊𝑛(𝑡) =

∫ 1

0

𝑊 (𝑡− 𝑢/𝑛) 𝑑𝑢, 𝑡 ≥ 0,

where 𝑊 (𝑠) := 0 for 𝑠 < 0.

One can prove, see [13], that these examples satisfy the conditions of As-
sumptions 2.1 with 𝛾 = 1/2.

Now we formulate the conditions on the operators 𝐿𝑛, 𝑀
𝑘
𝑛 and their con-

vergence to operators 𝐿 and 𝑀𝑘. We fix an integer 𝑚 ≥ 0 and a real number
𝐾 ≥ 0.

Assumption 2.3 (Ellipticity). There exists a constant 𝜆 ≥ 0 such that for each
integer 𝑛 ≥ 1 for 𝑑𝑃 × 𝑑𝑡× 𝑑𝑥 almost all (𝜔, 𝑡, 𝑥) ∈ Ω× [0, 𝑇 ]× ℝ𝑑

𝑎𝑖𝑗𝑛 (𝑡, 𝑥)𝑧
𝑖𝑧𝑗 ≥ 𝜆∣𝑧∣2,

for all 𝑧 = (𝑧1, 𝑧2, . . . , 𝑧𝑑) ∈ ℝ𝑑.
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If 𝜆 > 0 then we need the following conditions on the regularity of the coeffi-
cients a𝑛 = (𝑎𝑖𝑗𝑛 , 𝑎

𝑖
𝑛, 𝑎𝑛 : 𝑖, 𝑗 = 1, . . . , 𝑑), b𝑛 = (𝑏𝑖𝑘𝑛 , 𝑏𝑘𝑛 : 𝑖 = 1, . . . , 𝑑; 𝑘 = 1, . . . , 𝑑1),

a := (𝑎𝑖𝑗 , 𝑎𝑖, 𝑎 : 𝑖, 𝑗 = 1, . . . , 𝑑), b := (𝑏𝑖𝑘, 𝑏𝑘 : 𝑖 = 1, . . . , 𝑑; 𝑘 = 1, . . . , 𝑑1) for all
𝑛 ≥ 1, and on the data 𝑢𝑛0, 𝑓𝑛 and 𝑔𝑛 = (𝑔𝑘𝑛), 𝑢0, 𝑓 , 𝑔 = (𝑔𝑘).

Assumption 2.4. The coefficients a𝑛, b𝑛 and their derivatives in 𝑥 up to order
𝑚 + 4 are 𝒫 × ℬ(ℝ𝑑)-measurable functions, and they are in magnitude bounded
by 𝐾. For each 𝑛 ≥ 1, 𝑓𝑛 is an 𝐻𝑚+3-valued predictable process, 𝑔𝑛 = (𝑔𝑘𝑛) is an
𝐻𝑚+4(ℝ𝑑1)-valued predictable process and 𝑢𝑛0 is an 𝐻𝑚+4-valued ℱ0-measurable
random variable, such that for every 𝜀 > 0 almost surely

∣𝑢𝑛0∣𝑚+3 = 𝑂(𝑛𝜀),

∫ 𝑇

0

∣𝑓𝑛∣2𝑚+3 𝑑𝑡 = 𝑂(𝑛𝜀), sup
𝑡≤𝑇

∣𝑔𝑛(𝑡)∣𝑚+4 = 𝑂(𝑛𝜀).

One knows, see Theorem 3.5 below, that if Assumption 2.3 with 𝜆 > 0 and
Assumption 2.4 hold, then for each 𝑛 ≥ 1 there is a unique generalized solution
𝑢𝑛 to (1.1)–(1.2).

Assumption 2.5. The coefficients a and b and their derivatives in 𝑥 up to order
𝑚+1 are 𝒫 ×ℬ(ℝ𝑑)-measurable functions on Ω×𝐻𝑇 , and they are in magnitude
bounded by 𝐾. The initial value 𝑢0 is an 𝐻𝑚+1-valued ℱ0-measurable random
variable, 𝑓 is an 𝐻𝑚-valued predictable processes and 𝑔 = (𝑔𝑘) is an 𝐻𝑚+1(ℝ𝑑1)-
valued predictable process such that almost surely∫ 𝑇

0

∣𝑓(𝑡)∣2𝑚 𝑑𝑡+ sup
𝑡≤𝑇

∣𝑔(𝑡)∣2𝑚+1 <∞.

Assumption 2.6. We have

sup
𝐻𝑇

∣𝐷𝛼a𝑛 −𝐷𝛼a∣ = 𝑂(𝑛−𝛾), sup
𝐻𝑇

∣𝐷𝛽b𝑛 −𝐷𝛽b∣ = 𝑂(𝑛−𝛾),

for all ∣𝛼∣ ≤ (𝑚− 1) ∨ 0 and ∣𝛽∣ ≤ 𝑚+ 1, and∫ 𝑇

0

∣𝑓𝑛(𝑡)− 𝑓(𝑡)∣2𝑚−1 𝑑𝑡+ sup
𝑡≤𝑇

∣𝑔𝑛(𝑡)− 𝑔(𝑡)∣2𝑚+1 = 𝑂(𝑛−2𝛾).

Now we formulate our main result when 𝜆 > 0 in Assumption 2.3, and 𝑏𝑖𝑘𝑛 ,
𝑏𝑘𝑛 and 𝑔𝑘𝑛 do not depend on 𝑡 ∈ [0, 𝑇 ].

Theorem 2.7. Assume that b𝑛 and 𝑔𝑛 are independent of 𝑡. Let Assumptions 2.1,
2.3 with 𝜆 > 0, 2.4, 2.5 and 2.6 hold. Then almost surely

sup
𝑡≤𝑇

∣𝑢𝑛(𝑡)− 𝑢(𝑡)∣2𝑚 +

∫ 𝑇

0

∣𝑢𝑛(𝑡)− 𝑢(𝑡)∣2𝑚+1 𝑑𝑡 = 𝑂(𝑛−2𝜅), for any 𝜅 < 𝛾.

In the degenerate case, 𝜆 = 0, instead of Assumptions 2.4, 2.5 and 2.6 we
need to impose stronger conditions.
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Assumption 2.8.

(i) For each 𝑛 ≥ 1 there exist functions 𝜎𝑖𝑟𝑛 on Ω × 𝐻𝑇 , for 𝑖 = 1, . . . , 𝑑 and
𝑟 = 1, . . . , 𝑝, for some 𝑝 ≥ 1, such that 𝑎𝑖𝑗𝑛 = 𝜎𝑖𝑟𝑛 𝜎𝑗𝑟𝑛 for all 𝑖, 𝑗 = 1, . . . , 𝑑.

(ii) The functions 𝜎𝑖𝑟𝑛 , 𝑏𝑖𝑛 and their derivatives in 𝑥 up to order𝑚+6, the functions
𝑎𝑖𝑛, 𝑎𝑛, 𝑏𝑛 and their derivatives in 𝑥 up to order 𝑚+5 are 𝒫⊗ℬ(ℝ𝑑)-measur-
able functions on Ω×𝐻𝑇 , and in magnitude are bounded by𝐾 for 𝑖 = 1, . . . , 𝑑
and 𝑟 = 1, . . . , 𝑝. For each 𝑛 ≥ 1, 𝑓𝑛 is an 𝐻𝑚+4-valued predictable process,
𝑔𝑛 = (𝑔𝑘𝑛) is an 𝐻𝑚+5(ℝ𝑑1)-valued predictable process and 𝑢𝑛0 is an 𝐻𝑚+4-
valued ℱ0-measurable random variable, such that for every 𝜀 > 0

∣𝑢𝑛0∣𝑚+4 = 𝑂(𝑛𝜀),

∫ 𝑇

0

∣𝑓𝑛∣2𝑚+4 𝑑𝑡 = 𝑂(𝑛𝜀), sup
𝑡≤𝑇

∣𝑔𝑛(𝑡)∣𝑚+5 = 𝑂(𝑛𝜀).

Assumption 2.9. The coefficients a and b and their derivatives in 𝑥 up to order
𝑚+2 are 𝒫 ×ℬ(ℝ𝑑)-measurable functions on Ω×𝐻𝑇 , and they are in magnitude
bounded by 𝐾. The initial value 𝑢0 is an 𝐻𝑚+2-valued ℱ0-measurable random
variable, 𝑓 is an 𝐻𝑚+2-valued predictable process and 𝑔 = (𝑔𝑘) is an 𝐻𝑚+3(ℝ𝑑1)-
valued predictable process such that∫ 𝑇

0

∣𝑓(𝑡)∣2𝑚+2 𝑑𝑡+ sup
𝑡≤𝑇

∣𝑔(𝑡)∣2𝑚+2 <∞.

Assumption 2.10. We have

sup
𝐻𝑇

∣𝐷𝛼a𝑛 −𝐷𝛼a∣ = 𝑂(𝑛−𝛾), sup
𝐻𝑇

∣𝐷𝛽b𝑛 −𝐷𝛽b∣ = 𝑂(𝑛−𝛾)

for all ∣𝛼∣ ≤ 𝑚 and ∣𝛽∣ ≤ 𝑚+ 1, and∫ 𝑇

0

∣𝑓𝑛 − 𝑓 ∣2𝑚 𝑑𝑡 = 𝑂(𝑛−2𝛾),
∫ 𝑇

0

∣𝑔𝑛 − 𝑔∣2𝑚+1 𝑑𝑡 = 𝑂(𝑛−2𝛾).

Remark 2.11. Notice that Assumption 2.8 (i) implies Assumption 2.3 with 𝜆 = 0.

Theorem 2.12. Assume that b𝑛 and 𝑔𝑛 do not depend on 𝑡. Let Assumptions 2.1,
2.8, 2.9 and 2.10 hold. Then

sup
𝑡≤𝑇

∣𝑢𝑛 − 𝑢∣𝑚 = 𝑂(𝑛−𝜅) a.s. for each 𝜅 < 𝛾.

Let us now consider the case when all the coefficients and free terms may
depend on 𝑡 ∈ [0, 𝑇 ]. We use the notation

ℎ𝑛 :=
(
𝑏𝑖𝑘𝑛 , 𝑏𝑘𝑛, 𝑔

𝑘
𝑛 : 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1

)
, 𝑛 ≥ 1,

ℎ :=
(
𝑏𝑖𝑘, 𝑏𝑘, 𝑔𝑘 : 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1

)
.

We make the following assumption.

Assumption 2.13. There exist 𝒫⊗ℬ(ℝ𝑑)-measurable bounded functions

b(𝑟)
𝑛 = (𝑏𝑖𝑘(𝑟)𝑛 , 𝑏𝑘(𝑟)𝑛 : 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1), 𝑟 = 0, . . . , 𝑑1, 𝑛 ≥ 1
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and 𝐻0(ℝ𝑑1)-valued bounded predictable processes 𝑔
(𝑟)
𝑛 = (𝑔

𝑘(𝑟)
𝑛 : 𝑘 = 1, . . . , 𝑑1),

such that

𝑑(ℎ𝑛(𝑡), 𝜑) = (ℎ(0)𝑛 (𝑡), 𝜑) 𝑑𝑡 + (ℎ(𝑘)𝑛 (𝑡), 𝜑) 𝑑𝑊 𝑘
𝑛 (𝑡), 𝑛 ≥ 1,

where ℎ
(𝑟)
𝑛 = (b

(𝑟)
𝑛 , 𝑔

(𝑟)
𝑛 ). For 𝑟 = 0, . . . , 𝑑1 and 𝑗 = 1, . . . , 𝑑1 there exist 𝒫⊗ℬ(ℝ𝑑)-

measurable bounded functions

b(𝑟) = (𝑏𝑖𝑘(𝑟), 𝑏𝑘(𝑟) : 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1),

b(𝑗𝑟) = (𝑏𝑖𝑘(𝑗𝑟), 𝑏𝑘(𝑗𝑟) : 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1),

and 𝐻0(ℝ𝑑1)-valued bounded predictable processes 𝑔𝑘(𝑟) and 𝑔𝑘(𝑗𝑟), 𝑘 = 1, . . . , 𝑑1,
such that

𝑑(ℎ(𝑡), 𝜑) = (ℎ(0)(𝑡), 𝜑) 𝑑𝑡+ (ℎ(𝑘)(𝑡), 𝜑) 𝑑𝑊 𝑘
𝑛 (𝑡),

𝑑(ℎ(𝑗)(𝑡), 𝜑) = (ℎ(𝑗0)(𝑡), 𝜑) 𝑑𝑡+ (ℎ(𝑗𝑘)(𝑡), 𝜑) 𝑑𝑊 𝑘(𝑡)

for 𝜑 ∈ 𝐶∞0 (ℝ𝑑), for 𝑗 = 1, . . . , 𝑑1, where ℎ(𝑟) = (b(𝑟), 𝑔𝑘(𝑟) : 𝑘 = 1, . . . , 𝑑1) and
ℎ(𝑗𝑟) = (b(𝑗𝑟), 𝑔𝑘(𝑗𝑟) : 𝑘 = 1, . . . , 𝑑1), 𝑟 = 0, . . . , 𝑑1.

If Assumption 2.3 holds with 𝜆 > 0, then we impose the following conditions.

Assumption 2.14. For 𝑛 ≥ 1 the coefficients b
(𝑟)
𝑛 and their derivatives in 𝑥 up to

order 𝑚+3 are 𝒫⊗ℬ(ℝ𝑑)-measurable functions on Ω×𝐻𝑇 , and they are bounded

in magnitude by 𝐾 for 𝑟 = 0, 1, . . . , 𝑑1. The functions 𝑔
𝑘(0)
𝑛 are 𝐻𝑚+2-valued, 𝑔

𝑘(𝑗)
𝑛

are 𝐻𝑚+3-valued predictable processes, such that∫ 𝑇

0

∣𝑔𝑘(0)𝑛 (𝑡)∣2𝑚+2 𝑑𝑡 = 𝑂(𝑛𝜀), sup
𝐻𝑇

∣𝑔𝑘(𝑗)𝑛 ∣𝑚+3 = 𝑂(𝑛𝜀)

for each 𝜀 > 0 and all 𝑘, 𝑗 = 1, . . . , 𝑑1.

Assumption 2.15. The coefficients b(𝑟), b(𝑗𝑟) and their derivatives in 𝑥 up to order
𝑚+ 1 are 𝒫 ⊗ ℬ(ℝ𝑑)-measurable functions on Ω×𝐻𝑇 , and they are bounded in
magnitude by 𝐾 for 𝑟 = 0, 1, . . . , 𝑑1 and 𝑗 = 1, 2, . . . , 𝑑1. The functions 𝑔𝑘(𝑟)

and 𝑔𝑘(𝑗𝑟) are 𝐻𝑚+1-valued predictable processes, and are bounded in 𝐻𝑚+1, for
𝑟 = 0, 1, . . . , 𝑑1 and 𝑗 = 1, 2, . . . , 𝑑1.

Assumption 2.16. For 𝑗 = 1, 2, . . . , 𝑑1 we have

sup
𝐻𝑇

∣𝐷𝛼b(𝑗)
𝑛 −𝐷𝛼b(𝑗)∣ = 𝑂(𝑛−𝛾) for ∣𝛼∣ ≤ 𝑚,

sup
𝑡≤𝑇

∣𝑔𝑘(𝑗)𝑛 − 𝑔𝑘(𝑗)∣𝑚 = 𝑂(𝑛−𝛾) for 𝑘 = 1, . . . , 𝑑1.

One knows, see [9], that under the assumptions above the limit 𝑢 of 𝑢𝑛 for
𝑛→∞ exists and satisfies

𝑑𝑢(𝑡, 𝑥) = (𝐿𝑢(𝑡, 𝑥) + 𝑓) 𝑑𝑡+ (𝑀𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘) ∘ 𝑑𝑊 𝑘(𝑡), (𝑡, 𝑥) ∈ 𝐻𝑇 (2.4)

with initial condition
𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ ℝ𝑑, (2.5)



Wong–Zakai Approximations for SPDEs 103

where

(𝑀𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘) ∘ 𝑑𝑊 𝑘 =
1

2
(𝑀𝑘𝑀𝑘𝑢(𝑡, 𝑥) +𝑀𝑘𝑔𝑘(𝑡, 𝑥)) 𝑑𝑡

+ (𝑀𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘(𝑡, 𝑥)) 𝑑𝑊 𝑘(𝑡)

+
1

2

𝑑1∑
𝑘=1

(𝑀𝑘(𝑘)𝑢(𝑡, 𝑥) + 𝑔𝑘(𝑘)(𝑡, 𝑥)) 𝑑𝑡,

with 𝑀𝑘(𝑘) := 𝑏𝑖𝑘(𝑘)(𝑡, 𝑥)𝐷𝑖 + 𝑏𝑘(𝑘)(𝑡, 𝑥).
We have the following results on the rate of convergence.

Theorem 2.17. Let Assumptions 2.1, 2.3 with 𝜆 > 0, 2.4, 2.5, 2.6 and 2.13 through
2.16 hold. Then for each 𝜅 < 𝛾

sup
𝑡≤𝑇

∣𝑢𝑛(𝑡)− 𝑢(𝑡)∣2𝑚 +

∫ 𝑇

0

∣𝑢𝑛(𝑡)− 𝑢(𝑡)∣2𝑚+1 𝑑𝑡 = 𝑂(𝑛−2𝜅),

where 𝑢 is the generalized solution of (2.4)–(2.5).

Let us now consider the case when 𝜆 = 0 in Assumption 2.3.

Assumption 2.18. For 𝑛 ≥ 1 the coefficients b
(𝑟)
𝑛 and their derivatives in 𝑥 up to

order 𝑚+4 are 𝒫⊗ℬ(ℝ𝑑)-measurable functions on Ω×𝐻𝑇 , and they are bounded

in magnitude by 𝐾 for 𝑟 = 0, 1, . . . , 𝑑1. The functions 𝑔
𝑘(0)
𝑛 are 𝐻𝑚+3-valued, 𝑔

𝑘(𝑗)
𝑛

are 𝐻𝑚+4-valued predictable processes, such that∫ 𝑇

0

∣𝑔𝑘(0)(𝑡)∣2𝑚+3 𝑑𝑡 = 𝑂(𝑛𝜀), sup
𝐻𝑇

∣𝑔𝑘(𝑗)∣𝑚+4 = 𝑂(𝑛𝜀)

for each 𝜀 > 0 and all 𝑘, 𝑗 = 1, . . . , 𝑑1.

Assumption 2.19. The coefficients b(𝑟), b(𝑗𝑟) and their derivatives in 𝑥 up to order
𝑚+ 2 are 𝒫 ⊗ ℬ(ℝ𝑑)-measurable functions on Ω×𝐻𝑇 , and they are bounded in
magnitude by 𝐾 for 𝑟 = 0, 1, . . . , 𝑑1 and 𝑗 = 1, 2, . . . , 𝑑1. The functions 𝑔𝑘(𝑟)

and 𝑔𝑘(𝑗𝑟) are 𝐻𝑚+1-valued predictable processes, and are bounded in 𝐻𝑚+1, for
𝑟 = 0, 1, . . . , 𝑑1 and 𝑘, 𝑗 = 1, 2, . . . , 𝑑1.

Assumption 2.20. For 𝑗 = 1, 2, . . . , 𝑑1 we have

sup
𝐻𝑇

∣𝐷𝛼b(𝑗)
𝑛 −𝐷𝛼b(𝑗)∣ = 𝑂(𝑛−𝛾) for ∣𝛼∣ ≤ 𝑚+ 1,

sup
𝑡≤𝑇

∣𝑔𝑘(𝑗)𝑛 − 𝑔𝑘(𝑗)∣𝑚+1 = 𝑂(𝑛−𝛾) for 𝑘 = 1, . . . , 𝑑1.

Theorem 2.21. Let Assumption 2.1, Assumptions 2.8 through 2.13, and Assump-
tions 2.18 through 2.20 hold. Then

sup
𝑡≤𝑇

∣𝑢𝑛 − 𝑢∣𝑚 = 𝑂(𝑛−𝜅) for each 𝜅 < 𝛾,

where 𝑢 is the generalized solution of (2.4)–(2.5).
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3. Auxiliaries

3.1. Existence, uniqueness and known estimates for solutions

Consider the equation

𝑑𝑢(𝑡, 𝑥) =(ℒ𝑢(𝑡, 𝑥) + 𝑓(𝑡, 𝑥)) 𝑑𝑡+ (ℳ𝑘𝑢(𝑡, 𝑥) + 𝑔𝑘(𝑡, 𝑥)) 𝑑𝑊 𝑘(𝑡)

+ (𝒩 𝜌𝑢(𝑡, 𝑥) + ℎ𝜌(𝑡, 𝑥)) 𝑑𝐵𝜌(𝑡), 𝑡 ∈ (0, 𝑇 ], 𝑥 ∈ ℝ𝑑 (3.1)

with initial condition

𝑢(0, 𝑥) = 𝑢0(𝑥), 𝑥 ∈ ℝ𝑑, (3.2)

where 𝑊 = (𝑊 1, . . . ,𝑊 𝑑1) is a 𝑑1-dimensional Wiener martingale with respect
to (ℱ𝑡)𝑡≥0, and 𝐵1,. . . ,𝐵𝑑2 are real-valued adapted continuous processes of finite
variation over [0, 𝑇 ]. The operators ℒ, ℳ𝑘 and 𝒩 𝜌 are of the form

ℒ = 𝔞𝑖𝑗𝐷𝑖𝐷𝑗 + 𝔞𝑖𝐷𝑖 + 𝔞, ℳ𝑘 = 𝔟𝑖𝑘𝐷𝑖 + 𝔟𝑘, 𝒩 𝜌 = 𝔠𝑖𝜌𝐷𝑖 + 𝔠𝜌,

where the coefficients 𝔞𝑖𝑗 , 𝔞𝑖, 𝔞, 𝔟𝑖𝑘, 𝔟𝑘, 𝔠𝑖𝜌 and 𝔠𝜌 are 𝒫 ×ℬ(ℝ𝑑)-measurable real-
valued bounded functions defined on Ω × [0, 𝑇 ] × ℝ𝑑 for all 𝑖, 𝑗 = 1, . . . , 𝑑, 𝑘 =
1, . . . , 𝑑1 and 𝜌 = 1, . . . , 𝑑2. The free terms 𝑓 = 𝑓(𝑡, ⋅), 𝑔𝑘(𝑡, ⋅) and ℎ𝜌 = ℎ𝜌(𝑡, ⋅) are
𝐻0-valued predictable processes, and 𝑢0 is an 𝐻1-valued ℱ0-measurable random
variable.

To formulate the notion of the solution we assume that the generalized deriva-
tives in 𝑥, 𝐷𝑗𝑎

𝑖𝑗 , are also bounded functions on Ω×𝐻𝑇 for all 𝑖, 𝑗 = 1, . . . , 𝑑.

Definition 3.1. By a solution of (3.1)–(3.2) we mean an 𝐻1-valued weakly contin-
uous adapted process 𝑢 = (𝑢(𝑡))𝑡∈[0,𝑇 ], such that

(𝑢(𝑡), 𝜑) = (𝑢0, 𝜑) +

∫ 𝑡

0

{−(𝔞𝑖𝑗𝐷𝑖𝑢,𝐷𝑗𝜑) +
(
(𝔞𝑖 − 𝔞𝑖𝑗𝑗 )𝐷𝑖𝑢+ 𝔞𝑢+ 𝑓, 𝜑

)} 𝑑𝑠
+

∫ 𝑡

0

(ℳ𝑘𝑢+ 𝑔𝑘, 𝜑) 𝑑𝑊 𝑘 +

∫ 𝑡

0

(𝒩 𝜌𝑢+ ℎ𝜌, 𝜑) 𝑑𝐵𝜌,

holds for 𝑡 ∈ [0, 𝑇 ] and 𝜑 ∈ 𝐶∞0 (ℝ𝑑), where 𝔞𝑖𝑗𝑗 = 𝐷𝑗𝔞
𝑖𝑗 .

To present those existence and uniqueness theorems from the 𝐿2-theory of
stochastic PDEs which we use in this paper, we formulate some assumptions.

Assumption 3.2. There is a constant 𝜆 ≥ 0 such that for all 𝑛 ≥ 1, 𝑑𝑃 × 𝑑𝑡× 𝑑𝑥
almost all (𝜔, 𝑡, 𝑥) ∈ Ω×𝐻𝑇 we have

(𝔞𝑖𝑗 − 1
2𝔟
𝑖𝑘𝔟𝑗𝑘)𝑧𝑖𝑧𝑗 ≥ 𝜆∣𝑧∣2 for all 𝑧 = (𝑧1, . . . , 𝑧𝑑) ∈ ℝ𝑑.

To formulate some further conditions on the smoothness of the coefficients
and the data of (3.1)–(3.2) we fix an integer 𝑚 ≥ 1. We consider first the case
𝜆 > 0 in Assumption 3.2, and make the following assumptions.

Assumption 3.3. The coefficients 𝔞𝑖𝑗 , 𝔞𝑖, 𝔞, 𝔟𝑖𝑘, 𝔟𝑘, 𝔠𝑖𝜌, 𝔠𝜌 and their derivatives in
𝑥 ∈ ℝ𝑑 up to order 𝑚 are 𝒫 ×ℬ(ℝ𝑑)-measurable real functions on Ω×𝐻𝑇 and in
magnitude are bounded by 𝐾.
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Assumption 3.4. The initial value 𝑢0 is an 𝐻𝑚-valued random variable. The free
terms 𝑓 = 𝑓(𝑡), 𝑔𝑘 = 𝑔𝑘(𝑡), ℎ𝜌 = ℎ𝜌(𝑡) are predictable 𝐻𝑚-valued processes such
that almost surely∫ 𝑇

0

∣𝑓(𝑡)∣2𝑚−1 𝑑𝑡 <∞,

∫ 𝑇

0

∣𝑔(𝑡)∣2𝑚 𝑑𝑡 <∞,

∫ 𝑇

0

∣ℎ𝜌(𝑡)∣𝑚 𝑑∥𝐵𝜌∥(𝑡) <∞

for all 𝑘 = 1, . . . , 𝑑1 and 𝜌 = 1, . . . , 𝑑2, where ∣𝑔∣2𝑙 =
∑
𝑘 ∣𝑔𝑘∣2𝑙 and ∣ℎ∣2𝑙 =

∑
𝜌 ∣ℎ𝜌∣2𝑙

for ever 𝑙 ≥ 0.

Theorem 3.5. Let Assumptions 3.2 with 𝜆 > 0, 3.3 and 3.4 hold. Then (3.1)–
(3.2) has a unique generalized solution 𝑢. Moreover, 𝑢 is an 𝐻𝑚-valued weakly
continuous process, it is strongly continuous as an 𝐻𝑚−1-valued process, 𝑢(𝑡) ∈
𝐻𝑚+1 for 𝑃 × 𝑑𝑡 a.e. (𝜔, 𝑡), and there exist constants 𝜈 ≥ 0 and 𝐶 > 0 such that
for every 𝑙 ∈ [0,𝑚]

𝐸 sup
𝑡≤𝑇

𝑒−𝜈𝑉 ∣𝑢∣2𝑙 + 𝐸

∫ 𝑇

0

𝑒−𝜈𝑉 ∣𝑢∣2𝑙+1 𝑑𝑡

≤ 𝐶

{
∣𝑢0∣2𝑙 +

∫ 𝑇

0

𝑒−𝜈𝑉 (∣𝑓 ∣2𝑙−1 + ∣𝑔∣2𝑙 ) 𝑑𝑡+
∫ 𝑇

0

𝑒−𝜈𝑉 ∣ℎ𝜌∣2𝑙 𝑑∥𝐵𝜌∥
}
,

where 𝑉 (𝑡) = 𝑡+
∑𝑑2
𝜌=1 ∥𝐵𝜌(𝑡)∥. The constants 𝜈 and 𝐶 depend only on 𝜆, 𝐾, 𝑑,

𝑑1, 𝑑2 and 𝑙.

In the degenerate case, i.e., when 𝜆 = 0 in Assumption 3.2, we need to impose
somewhat stronger conditions in the other assumptions of the previous theorem.

Theorem 3.6. Let Assumptions 3.2 (with 𝜆 = 0), 3.3 and 3.4 hold. Assume, more-
over, that the derivatives in 𝑥 ∈ ℝ𝑑 of 𝑎𝑖𝑗 up to order 𝑚 ∨ 2 are bounded real
functions on Ω× [0, 𝑇 ]×ℝ𝑑 for all 𝑖, 𝑗 = 1, . . . , 𝑑, and that 𝑔𝑘 = 𝑔𝑘(𝑡) are 𝐻𝑚+1-
valued predictable processes for all 𝑘 = 1, . . . , 𝑑1, such that almost surely∫ 𝑇

0

∣𝑔(𝑡)∣2𝑚+1 𝑑𝑡 <∞.

Then the conclusion of Theorem 3.5 remains valid.

Theorem 3.6 is a slight modification of [11, Theorem 3.1] and can be proved
in the same way. We can prove Theorem 3.5 in the same fashion.

3.2. Inequalities in Sobolev spaces and a Gronwall-type lemma

In the following lemmas we present some estimates we use in the paper. We con-
sider the differential operators

ℳ = 𝑏𝑖𝐷𝑖 + 𝑏0, 𝒩 = 𝑐𝑖𝐷𝑖 + 𝑐0, 𝒦 = 𝑑𝑖𝐷𝑖 + 𝑑0,

and
ℒ = 𝑎𝑖𝑗𝐷𝑖𝐷𝑗 + 𝑎𝑖𝐷𝑖 + 𝑎0,

where 𝑎𝑖𝑗 , 𝑎𝑖, 𝑎0, 𝑏𝑖, 𝑏0, 𝑐𝑖, 𝑐0, 𝑑𝑖 and 𝑑0 are Borel functions defined on ℝ𝑑 for
𝑖, 𝑗 = 1, . . . , 𝑑. We fix an integer 𝑙 ≥ 0 and a constant 𝐾. Recall the notation
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(⋅ , ⋅) = (⋅ , ⋅)0 for the inner product in 𝐻0 ≡ 𝐿2(ℝ𝑛), and ⟨⋅ , ⋅⟩ for the duality
product between 𝐻1 and 𝐻−1.

Lemma 3.7.

(i) Assume that 𝑏0 and its derivatives up to order 𝑙, and 𝑏𝑖 and their derivatives
up to order 𝑙 ∨ 1 are real functions, in magnitude bounded by 𝐾. Then for a
constant 𝐶 = 𝐶(𝐾, 𝑙, 𝑑)

∣(𝐷𝛼ℳ𝑣,𝐷𝛼𝑣)∣ ≤ 𝐶∣𝑣∣2𝑙 , (3.3)

∣(𝐷𝛼ℳ𝑣,𝐷𝛼𝑢) + (𝐷𝛼ℳ𝑢,𝐷𝛼𝑣)∣ ≤ 𝐶∣𝑣∣𝑙∣𝑢∣𝑙 (3.4)

for all 𝑢, 𝑣 ∈ 𝐻 𝑙+1 and multi-indices 𝛼, ∣𝛼∣ ≤ 𝑙.
(ii) Assume that 𝑏0, 𝑐0 and their derivatives up to order 𝑙∨ 1, 𝑏𝑖 and 𝑐𝑖 and their

derivatives up to order (𝑙 + 1) ∨ 2 are real functions, in magnitude bounded
by 𝐾. Then for a constant 𝐶 = 𝐶(𝐾, 𝑙, 𝑑)

∣(𝐷𝛼ℳ𝒩𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩𝑣)∣ ≤ 𝐶∣𝑣∣2𝑙 ,
for all 𝑣 ∈ 𝐻 𝑙+2 and multi-indices 𝛼, ∣𝛼∣ ≤ 𝑙.

(iii) Assume that 𝑏0, 𝑐0, 𝑑0 and their derivatives up to order (𝑙+1)∨2, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖 and
their derivatives up to order (𝑙 + 2) ∨ 3 are real functions, and in magnitude
are bounded by 𝐾 for 𝑖 = 1, . . . , 𝑑. Then for a constant 𝐶 = 𝐶(𝐾, 𝑙, 𝑑)

∣(𝐷𝛼ℳ𝒩𝒦𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝒩𝑣,𝐷𝛼𝒦𝑣)
+ (𝐷𝛼ℳ𝒦𝑣,𝐷𝛼𝒩𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩𝒦𝑣)∣ ≤ 𝐶∣𝑣∣2𝑙 ,

for all 𝑣 ∈ 𝐻 𝑙+3 and multi-indices 𝛼, ∣𝛼∣ ≤ 𝑙.

Proof. These and similar estimates are proved in [9]. For the sake of completeness
and the convenience of the reader we present a proof here. We can assume that
𝑣 ∈ 𝐶∞0 (ℝ𝑛). Let us start with (i). Integrating by parts, we have

(ℳ𝐷𝛼𝑣,𝐷𝛼𝑣) = −(𝐷𝛼𝑣,ℳ𝐷𝛼𝑣) + (𝐷𝛼𝑣, �̄�𝐷𝛼𝑣),

where �̄� := 2𝑏0 −∑𝑑
𝑖=1 𝐷𝑖𝑏

𝑖. Therefore, by writing [ℳ, 𝐷𝛼] = 𝐷𝛼ℳ−ℳ𝐷𝛼,

(𝐷𝛼ℳ𝑣,𝐷𝛼𝑣) = (ℳ𝐷𝛼𝑣,𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝑣,𝐷𝛼𝑣)

= 1
2 (𝐷

𝛼𝑣, �̄�𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝑣,𝐷𝛼𝑣) ≤ 𝐶∣𝑣∣2𝑙 ,
by the regularity assumed on the coefficients. Let us write

𝑝(𝑣) := (𝐷𝛼ℳ𝑣,𝐷𝛼𝑣) = 1
2 (𝐷

𝛼𝑣, �̄�𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝑣,𝐷𝛼𝑣) =: 𝑞(𝑣) + 𝑟(𝑣).

Defining

2𝑎(𝑢, 𝑣) := 𝑝(𝑢+ 𝑣)− 𝑝(𝑢)− 𝑝(𝑣) = (𝐷𝛼ℳ𝑢,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝑢),

2𝑏(𝑢, 𝑣) := 𝑞(𝑢 + 𝑣)− 𝑞(𝑢)− 𝑞(𝑣) = (�̄�𝐷𝛼𝑢,𝐷𝛼𝑣),

and

2𝑐(𝑢, 𝑣) := 𝑟(𝑢 + 𝑣)− 𝑟(𝑢) − 𝑟(𝑣) = ([ℳ, 𝐷𝛼]𝑢,𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝑣,𝐷𝛼𝑢),
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we have

𝑎(𝑢, 𝑣) = 𝑏(𝑢, 𝑣) + 𝑐(𝑢, 𝑣) (3.5)

and

∣𝑎(𝑢, 𝑣)∣ ≤ ∣𝑏(𝑢, 𝑣)∣+ ∣𝑐(𝑢, 𝑣)∣ ≤ 𝐶∣𝑢∣𝑙∣𝑣∣𝑙,
which proves the second inequality in (3.3). The identity (3.5) applied with 𝑢 = 𝑁𝑣
establishes that

(𝐷𝛼ℳ𝒩𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩𝑣)

= (�̄�𝐷𝛼𝒩𝑣,𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝒩𝑣,𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝑣,𝐷𝛼𝒩𝑣).

By the previous case,

∣(𝐷𝛼ℳ𝒩𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩𝑣)∣ ≤ 𝐶∣𝑣∣2𝑙 ,
and (ii) is proved. For (iii), integrating by parts,

𝑝(𝑣) := (𝐷𝛼ℳ𝒩𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩𝑣)

= (𝐷𝛼𝒩𝑣, �̄�𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼𝒩 ]𝑣,𝐷𝛼𝑣) + ([ℳ, 𝐷𝛼]𝑣,𝐷𝛼𝒩𝑣)

= 𝑞(𝑣) + 𝑟(𝑣) + 𝑠(𝑣).

By polarizing this last identity as above and letting 𝑢 = 𝒦𝑣, we have

(𝐷𝛼ℳ𝒩𝒦𝑣,𝐷𝛼𝑣)+(𝐷𝛼ℳ𝒩𝑣,𝐷𝛼𝒦𝑣)+(𝐷𝛼ℳ𝒦𝑣,𝐷𝛼𝒩𝑣)+(𝐷𝛼ℳ𝑣,𝐷𝛼𝒩𝒦𝑣)
=(𝐷𝛼𝒩𝒦𝑣,�̄�𝐷𝛼𝑣)+(𝐷𝛼𝒩𝑣,�̄�𝐷𝛼𝒦𝑣)+([ℳ,𝐷𝛼𝒩 ]𝒦𝑣,𝐷𝛼𝑣)

+([ℳ,𝐷𝛼𝒩 ]𝑣,𝐷𝛼𝒦𝑣)([ℳ,𝐷𝛼]𝒦𝑣,𝐷𝛼𝒩𝑣)+([ℳ,𝐷𝛼]𝑣,𝐷𝛼𝒩𝒦𝑣)≤𝐶∣𝑣∣2𝑙 ,
where in the last inequality we used (ii). Hence (iii) is proved. □

Lemma 3.8. Assume that 𝑎𝑖𝑗 , 𝑏0 and their derivatives up to order 𝑙 ∨ 1, 𝑏𝑖 and
their derivatives up to order 𝑙 ∨ 2, 𝑎𝑖, 𝑎0 and their derivatives up to order 𝑙 are
real functions, in magnitude bounded by 𝐾 for 𝑖 = 1, . . . , 𝑑. Then for a constant
𝐶 = 𝐶(𝐾, 𝑙, 𝑑)

∣(𝐷𝛼ℳ𝑣,𝐷𝛼ℒ𝑣) + ⟨𝐷𝛼𝑣,𝐷𝛼ℳℒ𝑣⟩∣ ≤ 𝐶∣𝑣∣2𝑙+1,

for 𝑣 ∈ 𝐻 𝑙+2 and multi-indices ∣𝛼∣ ≤ 𝑙.

Proof. Let us check first the case 𝑙 = 0. Denote by ℳ∗ the formal adjoint of ℳ.
We have

∣(ℳ𝑣,ℒ𝑣) + ⟨𝑣,ℳℒ𝑣⟩ = ∣((ℳ +ℳ∗)𝑣,ℒ𝑣)∣ = ∣(−𝑏𝑖𝑖𝑣 + 2𝑏0𝑣,ℒ𝑣)∣ ≤ 𝐶∣𝑣∣1,
where 𝑏𝑖𝑖 = 𝐷𝑖𝑏

𝑖. For the general case, let ∣𝛼∣ ≤ 𝑙 and write

(𝐷𝛼ℳ𝑣,𝐷𝛼ℒ𝑣) + ⟨𝐷𝛼𝑣,𝐷𝛼ℳℒ𝑣⟩
= (𝐷𝛼𝑀𝑣,𝐷𝛼𝐿𝑣) + ⟨𝐷𝛼𝑣,𝑀𝐷𝛼ℒ𝑣⟩+ (𝐷𝛼𝑣, [ℳ, 𝐷𝛼]ℒ𝑣)
= (𝐷𝛼𝑀𝑣,𝐷𝛼ℒ𝑣) + (𝑀∗𝐷𝛼𝑣,𝐷𝛼ℒ𝑣) + (𝐷𝛼𝑣, [ℳ, 𝐷𝛼]𝐿𝑣)

= ([𝑀,𝐷𝛼]𝑣,𝐷𝛼ℒ𝑣) + (−𝑏𝑖𝑖𝐷
𝛼𝑣 + 2𝑏0𝐷𝛼𝑣,𝐷𝛼𝐿𝑣) + (𝐷𝛼𝑣, [ℳ, 𝐷𝛼]ℒ𝑣),

from which the estimate follows. □
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The next lemma is a standard fact for elliptic differential operators ℒ =
𝑎𝑖𝑗𝐷𝑖𝐷𝑗 + 𝑎𝑖𝐷𝑖 + 𝑎0.

Lemma 3.9. Assume there exists a constant 𝜆 > 0 such that

𝑎𝑖𝑗(𝑥)𝑧𝑖𝑧𝑗 ≥ 𝜆 ∣𝑧∣2 , for all 𝑧, 𝑥 ∈ ℝ𝑑,

and that the derivatives of 𝑎𝑖 and 𝑎0 up to order (𝑙− 1)∨ 0, and the derivatives of
𝑎𝑖𝑗 up to order 𝑙 ∨ 1 are functions, bounded by 𝐾, for 𝑖, 𝑗 = 1, . . . , 𝑑. Then there
is a constant 𝐶 = 𝐶(𝐾𝜆, 𝑙, 𝑑) such that

(𝐷𝛼𝑣,𝐷𝛼ℒ𝑣) ≤ 𝐶∣𝑣∣2𝑙 −
𝜆

2
∣𝑣∣2𝑙+1,

for all 𝑣 ∈ 𝐻 𝑙+2 and multi-indices ∣𝛼∣ ≤ 𝑙.

In the next two lemmas we assume that there exist vector fields

𝜎1 = (𝜎𝑖1(𝑥)), . . . , 𝜎𝑝 = (𝜎𝑖𝑝(𝑥)),

such that 𝑎𝑖𝑗 = 𝜎𝑖𝑟𝜎𝑗𝑟 for all 𝑖, 𝑗 = 1, . . . , 𝑑. Set

𝒩 𝑟 := 𝜎𝑖𝑟𝐷𝑖, 𝑟 = 1, . . . , 𝑝,

and notice that if the 𝜎𝑟 are differentiable then we can write ℒ =
∑𝑝
𝑟=1(𝒩 𝑟)2+𝒩 0,

where 𝒩 0 =
(
𝑎𝑗 − 𝜎𝑖𝑟(𝐷𝑖𝜎

𝑗𝑟)
)
𝐷𝑗 + 𝑎0.

Lemma 3.10. Assume that the derivatives of 𝜎 up to order (𝑙 + 1) ∨ 2 and the
derivatives of 𝑎𝑖, 𝑎0 up to order 𝑙 ∨ 1 are functions, bounded by a constant 𝐾 for
𝑖 = 1, . . . , 𝑑. Then

(𝐷𝛼ℒ𝑣,𝐷𝛼𝑣) ≤ −
𝑝∑
𝑟=1

∣𝐷𝛼𝒩 𝑟𝑣∣20 + 𝐶∣𝑣∣2𝑙 ,

and

∣(𝐷𝛼ℒ𝑣,𝐷𝛼𝑢)∣ ≤
𝑝∑
𝑟=1

∣𝐷𝛼𝒩 𝑟𝑣∣20 + 𝐶(∣𝑣∣2𝑙 + ∣𝑢∣2𝑙+1),

for all 𝑣, 𝑢 ∈ 𝐻 𝑙+2 and multi-indices ∣𝛼∣ ≤ 𝑙, with a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑙, 𝑝).

Proof. By Lemma 3.7 (ii) and (iii),

(𝐷𝛼𝑣,𝐷𝛼ℒ𝑣) = (𝐷𝛼𝑣,𝐷𝛼𝒩 𝑟𝒩 𝑟𝑣)0 + (𝐷𝛼𝑣,𝐷𝛼𝒩 0𝑣)0

≤ −(𝐷𝛼𝒩 𝑟𝑣,𝐷𝛼𝒩 𝑟𝑣)0 + 𝐶∣𝑣∣2𝑙 ,
with a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑙, 𝑝) and the first inequality of the statement fol-
lows. To get the second one we need only note that by interchanging differential
operators and by integration by parts we have

∣(𝐷𝛼𝒩 𝑟𝒩 𝑟𝑣,𝐷𝛼𝑢)∣ ≤ ∣(𝐷𝛼𝒩 𝑟𝑣,𝒩 𝑟𝐷𝛼𝑢)∣+ ∣([𝒩 𝑟, 𝐷𝛼]𝒩 𝑟𝑣,𝐷𝛼𝑢)∣+ 𝐶∣𝑢∣2𝑙+1

≤
∑𝑝

𝑟=1
∣𝐷𝛼𝒩 𝑟𝑣∣20 + 𝐶∣𝑢∣2𝑙+1,

∣(𝐷𝛼𝒩 0𝑣,𝐷𝛼𝑢)∣ ≤ 𝐶(∣𝑣∣2𝑙 + ∣𝑢∣2𝑙+1),

with constants 𝐶 = 𝐶(𝐾, 𝑑, 𝑝, 𝑙). □
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Lemma 3.11. Assume that the derivatives of 𝜎𝑖 and 𝑏𝑖 up to order (𝑙+ 2) ∨ 3 and
the derivatives of 𝑎𝑖, 𝑎0 and 𝑏0 up to order (𝑙+1)∨ 2 are functions, bounded by a
constant 𝐾 for 𝑖 = 1, . . . , 𝑑. Then

∣(𝐷𝛼ℳℒ𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℒ𝑣,𝐷𝛼ℳ𝑣)∣ ≤ 𝐶

𝑝∑
𝑟=1

∣𝒩 𝑟𝑣∣2𝑙 + 𝐶∣𝑣∣2𝑙 ,

with a constant 𝐶 = 𝐶(𝐾, 𝑙, 𝑑, 𝑝) for all 𝑣 ∈ 𝐻 𝑙+3 and multi-indices ∣𝛼∣ ≤ 𝑙.

Proof. Put 𝒩 = 𝒦 = 𝒩 𝑟, 𝑟 = 1, . . . , 𝑝 in Lemma 3.7 (iii) and use (i) of the same
lemma for 𝒩 𝑟𝑣 to get

∣(𝐷𝛼ℳ𝒩 𝑟𝒩 𝑟𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩 𝑟𝒩 𝑟𝑣)∣

≤ 𝐶∣𝑣∣2𝑙 + 2∣(𝐷𝛼ℳ𝒩 𝑟𝑣,𝐷𝛼𝒩 𝑟𝑣)∣ ≤ 𝐶∣𝑣∣2𝑙 + 𝐶

𝑝∑
𝑟=1

∣𝒩 𝑟𝑣∣2𝑙 ,

and apply Lemma 3.7 (ii) to obtain

∣(𝐷𝛼ℳ𝒩 0𝑣,𝐷𝛼𝑣) + (𝐷𝛼ℳ𝑣,𝐷𝛼𝒩 0𝑣)∣ ≤ 𝐶∣𝑣∣2𝑙 ,
which prove the corollary. □

The following Gronwall-type lemma will be useful for our estimates in the
next section.

Lemma 3.12. Let 𝑦𝑛, 𝑚𝑛, 𝑄𝑛 and 𝑞𝑛 be sequences of real-valued continuous ℱ𝑡-
adapted stochastic processes given on the interval [0, 𝑇 ], such that 𝑄𝑛 is a non-
decreasing non-negative process and 𝑚𝑛 is a local martingale starting from 0. Let
𝛿, 𝛾 be some real numbers with 𝛿 < 𝛾. Assume that almost surely

0 ≤ 𝑦𝑛(𝑡) ≤
∫ 𝑡

0

𝑦𝑛(𝑠) 𝑑𝑄𝑛(𝑠) +𝑚𝑛(𝑡) + 𝑞𝑛(𝑡),

holds for all 𝑡 ∈ [0, 𝜏𝑛] and integers 𝑛 ≥ 1, where

𝜏𝑛 = inf
{
𝑡 ≥ 0 : 𝑦𝑛(𝑡) ≥ 𝑛−𝛿

} ∧ 𝑇.

Suppose that almost surely

𝑄𝑛(𝜏𝑛) = 𝑜(ln𝑛), sup
𝑡≤𝜏𝑛

𝑞𝑛(𝑡) = 𝑂(𝑛−𝛾),

𝑑⟨𝑚𝑛⟩ ≤ (𝑦2𝑛 + 𝑘𝑛𝑦𝑛) 𝑑𝑄𝑛, on 𝑡 ∈ [0, 𝜏𝑛],

∫ 𝜏𝑛

0

𝑘𝑛(𝑠) 𝑑𝑄𝑛 = 𝑂(𝑛−𝛾)

for a sequence of non-negative ℱ𝑡-adapted processes 𝑘𝑛. Then almost surely

sup
𝑡≤𝑇

𝑦𝑛(𝑡) = 𝑂(𝑛−𝜅), for each 𝜅 < 𝛾. (3.6)

Proof. Let us assume first that 𝛾 > 0. The case 𝛿 = 0 is a slight modification of [12,
Lemma 3.8]. It can be proved in the same way by using a suitable generalization
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of Lemma 3.7 from [12] (see [10]). For 𝛿 < 𝛾 ∈ (0,∞), we see that the conditions
of the lemma are satisfied with 𝛾′ = 𝛾 − 𝛿,

𝑦′𝑛(𝑡) =
𝑦𝑛(𝑡)

𝑛−𝛿
, 𝑚′𝑛(𝑡) =

𝑚𝑛(𝑡)

𝑛−𝛿
, 𝑞′𝑛(𝑡) =

𝑞𝑛(𝑡)

𝑛−𝛿
, 𝑘′𝑛(𝑡) =

𝑘𝑛(𝑡)

𝑛−𝛿
, (3.7)

in place of 𝛾, 𝑦𝑛, 𝑚𝑛, 𝑞𝑛 and 𝑘𝑛, with 𝛿 = 0. Hence we have (3.6) for 𝑦′𝑛 in place
of 𝑦𝑛 for each 𝜅 < 𝛾′, which gives (3.6) in this case.

Suppose now that 𝛾 ≤ 0. Take 𝛾 ∈ (𝛿, 𝛾) and set 𝛾′ := 𝛾 − 𝛾, 𝛿′ := 𝛿 − 𝛾.
Define 𝑦′𝑛, 𝑚

′
𝑛, 𝑞

′
𝑛 and 𝑘′𝑛 as in (3.7) with 𝛾 in place of 𝛿. Notice that 𝛾′ > 0 and

that the conditions of the lemma are satisfied by the processes 𝑦′𝑛, 𝑚′𝑛, 𝑞′𝑛 and 𝑘′𝑛
in place of 𝑦𝑛, 𝑚𝑛, 𝑞𝑛 and 𝑘𝑛, with 𝛾′ and 𝛿′ instead of 𝛾 and 𝛿. Hence (3.6) holds
for 𝑦′𝑛 and 𝛾′ in place of 𝑦𝑛 and 𝛾, which gives the lemma. □
Corollary 3.13. Let 𝜎𝑛 be an increasing sequence of stopping times converging
to infinity almost surely. Assume that the conditions of the previous lemma are
satisfied with 𝜏𝑛 = inf{𝑡 ≥ 0 : 𝑦𝑛(𝑡) ≥ 𝑛−𝛿} ∧ 𝑇 ∧ 𝜎𝑛 in place of 𝜏𝑛. Then its
conclusion, (3.6), still holds.

Proof. The conditions of Lemma 3.12 are satisfied by the processes

𝑦′𝑛(𝑡) = 𝑦𝑛(𝑡 ∧ 𝜎𝑛), 𝑚′𝑛(𝑡) = 𝑚𝑛(𝑡 ∧ 𝜎𝑛), 𝑞′𝑛(𝑡) = 𝑞𝑛(𝑡 ∧ 𝜎𝑛),

𝑘′𝑛(𝑡) = 𝑘𝑛(𝑡 ∧ 𝜎𝑛),

in place of 𝑦𝑛, 𝑚𝑛, 𝑞𝑛 and 𝑘𝑛 and with 𝜏 ′𝑛 = inf
{
𝑡 ≥ 0 : 𝑦′𝑛(𝑡) ≥ 𝑛−𝛿

}
in place of

𝜏𝑛. Hence
sup
𝑡≤𝑇

𝑦′𝑛(𝑡) = 𝑂(𝑛−𝜅), for each 𝜅 < 𝛾. (3.8)

Define the set Ω𝑛 := [𝜎𝑛 ≥ 𝑇 ] and note that since 𝜎𝑛 ↗∞ almost surely, the set
Ω′ = ∪𝑛≥1Ω𝑛 has full probability. It remains to prove that the random variable

𝜉 := sup
𝑚≥1

sup
𝑡≤𝑇

𝑦𝑚(𝑡)

𝑚−𝜅

is finite almost surely for all 𝜅 < 𝛾. Indeed, take 𝜔 ∈ Ω′. Then 𝜔 ∈ Ω𝑛 for some
𝑛(𝜔) ≥ 1, hence 𝜎𝑚(𝜔) ≥ 𝑇 for all 𝑚 ≥ 𝑛(𝜔) and, by (3.8),

sup
𝑡≤𝑇

𝑦𝑚(𝑡 ∧ 𝜎𝑚) = sup
𝑡≤𝑇

𝑦𝑚(𝑡) ≤ 𝜁𝜅𝑚
−𝜅,

for all 𝑚 ≥ 𝑛(𝜔). Since 𝜁𝜅 is finite almost surely, so it is 𝜉. □

4. The growth of the approximations

In this section we estimate solutions 𝑢𝑛 of (1.1) for large 𝑛. We fix an integer 𝑙 ≥ 0,
a constant 𝐾 ≥ 0, and make the following assumptions.

Assumption 4.1. The derivatives in 𝑥 of the coefficients 𝑎𝑖𝑗𝑛 , 𝑎𝑖𝑛, 𝑎𝑛, 𝑏𝑘𝑛 up to
order 𝑙 + 1, and the derivatives in 𝑥 of 𝑏𝑖𝑘𝑛 up to order (𝑙 + 1) ∨ 2 are 𝒫 × ℬ(ℝ𝑑)-
measurable real functions on Ω× [0, 𝑇 ]×ℝ𝑑 and in magnitude are bounded by 𝐾,
for all 𝑖, 𝑗 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1, and all 𝑛 ≥ 1.
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Assumption 4.2. For each 𝜀 > 0 almost surely

∣𝑢𝑛0∣𝑙 = 𝑂(𝑛𝜀),

∫ 𝑇

0

(∣𝑓𝑛∣2𝑙 + ∣𝑔𝑛∣2𝑙+1

)
𝑑𝑡 = 𝑂(𝑛𝜀), sup

𝑡≤𝑇
∣𝑔𝑛(𝑡)∣2𝑙 = 𝑂(𝑛𝜀).

We will often use the notation notation 𝑓 ⋅ 𝑉 (𝑡) for the integral∫ 𝑡

0

𝑓(𝑠) 𝑑𝑉 (𝑠),

when 𝑉 is a semimartingale and 𝑓 is a predictable process such that the stochastic
integral of 𝑓 against 𝑑𝑉 over [0, 𝑡] is well defined. We define

𝜂𝑛(𝑡) = sup
𝑚≥𝑛

sup
𝑠≤𝑡

∣𝑊 (𝑠)−𝑊𝑚(𝑠)∣ .

Notice that Assumption 2.1 (i) clearly implies that 𝜂𝑛(𝑇 ) = 𝑂(𝑛−𝜅) almost surely
for each 𝜅 < 𝛾.

First we study the case when 𝑏𝑖𝑘𝑛 , 𝑏𝑘𝑛 and 𝑔𝑘𝑛 do not depend on 𝑡 ∈ [0, 𝑇 ].

Theorem 4.3. Assume that 𝑏𝑖𝑘𝑛 , 𝑏𝑘𝑛 and 𝑔𝑘𝑛 do not depend on 𝑡 for 𝑖 = 1, . . . , 𝑑,
𝑘 = 1, . . . , 𝑑1 and 𝑛 ≥ 1. Let Assumptions 2.1 (i) and (iii), 4.1, 4.2 and 2.3 with
𝜆 > 0 hold. Then for every 𝜀 > 0 almost surely

sup
𝑡≤𝑇

∣𝑢𝑛(𝑡)∣2𝑙 +
∫ 𝑇

0

∣𝑢𝑛∣2𝑙+1 𝑑𝑡 = 𝑂(𝑛𝜀).

Proof. Assume for the moment that 𝑢𝑛0 ∈ 𝐻 𝑙+1 almost surely. Recall that we are
assuming that 𝑊 𝑘

𝑛 is of bounded variation, 𝑛 ≥ 1, 𝑘 = 1, . . . , 𝑑1. Then by Theorem
3.5, under Assumptions 4.1, 4.2 and 2.3 with 𝜆 > 0 there is a unique generalized
solution 𝑢𝑛 of (1.1)–(1.2), and it is an 𝐻 𝑙+1-valued weakly continuous process such
that almost surely ∫ 𝑇

0

∣𝑢𝑛(𝑡)∣2𝑙+2 𝑑𝑡 <∞.

In particular,

(𝑢𝑛(𝑡), 𝜑)0

= (𝑢𝑛0, 𝜑)0 +

∫ 𝑡

0

[− (𝑎𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝜑)0 +
(
(𝑎𝑖𝑛 −𝐷𝑗𝑎

𝑖𝑗
𝑛 )𝐷𝑖𝑢𝑛 + 𝑎𝑛𝑢𝑛 + 𝑓𝑛, 𝜑

)
0

]
𝑑𝑠

+

∫ 𝑡

0

(𝑏𝑖𝑘𝑛 𝐷𝑖𝑢𝑛 + 𝑏𝑘𝑛𝑢𝑛 + 𝑔𝑘𝑛, 𝜑)0 𝑑𝑊
𝑘
𝑛

holds for all 𝑡 ∈ [0, 𝑇 ] and 𝜑 ∈ 𝐶∞0 (ℝ𝑑). Substituting here
∑
∣𝛼∣≤𝑙(−1)∣𝛼∣𝐷2𝛼𝜑 in

place of 𝜑 and integrating by parts, we get

(𝑢𝑛(𝑡), 𝜑)𝑙

= (𝑢𝑛0, 𝜑)𝑙 +

∫ 𝑡

0

[− (𝑎𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝜑)𝑙 +
(
(𝑎𝑖𝑛 −𝐷𝑗𝑎

𝑖𝑗
𝑛 )𝐷𝑖𝑢𝑛 + 𝑎𝑛𝑢𝑛 + 𝑓𝑛, 𝜑

)
𝑙

]
𝑑𝑠

+

∫ 𝑡

0

(𝑏𝑖𝑘𝑛 𝐷𝑖𝑢+ 𝑏𝑘𝑛𝑢𝑛 + 𝑔𝑘𝑛, 𝜑)𝑙 𝑑𝑊
𝑘
𝑛 (𝑠).
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Hence using Itô’s formula in the triple 𝐻𝑚+1 ↪→ 𝐻𝑚 ≡ (𝐻𝑚)∗ ↪→ 𝐻𝑚−1, we have

𝑑∣𝑢𝑛∣2𝑙 = 2(𝑢𝑛, 𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑙 𝑑𝑡+ 2(𝑢𝑛,𝑀
𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 𝑑𝑊

𝑘
𝑛

= 2(𝑢𝑛, 𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑙 𝑑𝑡+ 2(𝑢𝑛,𝑀
𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 𝑑𝑊

𝑘

+ 2(𝑢𝑛,𝑀
𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 𝑑(𝑊

𝑘
𝑛 −𝑊 𝑘).

Therefore, integrating by parts in the last term above we have

∣𝑢𝑛∣2𝑙 =
6∑
𝑗=1

𝐼(𝑗)𝑛 , (4.1)

where

𝐼(1)𝑛 = ∣𝑢𝑛0∣2𝑙 ,
𝐼(2)𝑛 = 2(𝑢𝑛, 𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑙 ⋅ 𝑡,
𝐼(3)𝑛 = 2(𝑢𝑛,𝑀

𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 ⋅𝑊 𝑘(𝑡),

𝐼(4)𝑛 = 2(𝑢𝑛,𝑀
𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙(𝑊

𝑘
𝑛 −𝑊 𝑘)

∣∣∣𝑡
0
,

𝐼(5)𝑛 = 2
({(𝐿𝑛𝑢𝑛 + 𝑓𝑛,𝑀

𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 + ⟨𝑢𝑛,𝑀𝑘

𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛)⟩𝑙}(𝑊 𝑘 −𝑊 𝑘
𝑛 )

)⋅ 𝑡,
𝐼(6)𝑛 = 2

(
(𝑀 𝑗

𝑛𝑢𝑛 + 𝑔𝑗 ,𝑀𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 + ⟨𝑢𝑛,𝑀𝑘

𝑛(𝑀
𝑗
𝑛𝑢𝑛 + 𝑔𝑗𝑛)⟩𝑙

) ⋅ 𝐵𝑘𝑗
𝑛 (𝑡),

and ⟨⋅ , ⋅⟩𝑙 is the duality product between 𝐻 𝑙+1 and 𝐻 𝑙−1, based on the inner
product (⋅ , ⋅)𝑙 in 𝐻 𝑙. Using Lemma 3.9 we obtain

𝐼(2)𝑛 ≤
[
𝐶 ∣𝑢𝑛∣2𝑙 − 𝜆∣𝑢𝑛∣2𝑙+1 + 𝐶∣𝑓𝑛∣2𝑙−1

]
⋅ 𝑡

with a constant 𝐶 = 𝐶(𝐾, 𝑙, 𝑑, 𝜆). The term 𝐼
(3)
𝑛 is a continuous local martingale

starting from 0, such that its quadratic variation, ⟨𝐼(3)𝑛 ⟩, satisfies, by Lemma 3.7 (i)

𝑑⟨𝐼(3)𝑛 ⟩ ≤ 𝐶(∣𝑢𝑛∣4𝑙 + ∣𝑢𝑛∣2𝑙 ∣𝑔𝑛∣2𝑙 ) 𝑑𝑡, (4.2)

and also by Lemma 3.7 (i) we have

𝐼(4)𝑛 (𝑡) ≤ 𝐶 sup
0≤𝑠≤𝑡

(
∣𝑢𝑛(𝑠)∣2𝑙 + ∣𝑔𝑛(𝑠)∣2𝑙

)
𝜂𝑛(𝑡)

with a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑑1, 𝑙), where ∣𝑔𝑛∣2𝑙 =
∑
𝑘 ∣𝑔𝑘𝑛∣2𝑙 . Using Lemmas 3.7 (ii)

and 3.8, we have

𝐼(5)𝑛 (𝑡) ≤ 𝐶
[
∣𝑢𝑛∣2𝑙+1 + ∣𝑓𝑛∣2𝑙 + ∣𝑔𝑛∣2𝑙+1

]
𝜂𝑛 ⋅ 𝑡,

and

𝐼(6)𝑛 (𝑡) ≤ 𝐶
[
∣𝑢𝑛∣2𝑙 + ∣𝑔𝑛∣2𝑙

]
⋅ ∥𝐵𝑛∥(𝑡),
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with ∥𝐵𝑛∥ :=
∑
𝑗,𝑘 ∥𝐵𝑗𝑘

𝑛 ∥ and a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑑1, 𝑙). Therefore, from (4.1),

∣𝑢𝑛(𝑡)∣2𝑙 ≤
∫ 𝑡

0

(∣𝑢𝑛(𝑠)∣2𝑙 + ∣𝑔𝑛∣2𝑙 ) 𝑑𝑄𝑛(𝑠) +𝑚𝑛(𝑡)

−
∫ 𝑡

0

(𝜆− 𝐶𝜂𝑛(𝑠)) ∣𝑢𝑛(𝑠)∣2𝑙+1 𝑑𝑠+ 𝐶

∫ 𝑡

0

(∣𝑓𝑛(𝑠)∣𝑙 + ∣𝑔𝑛∣2𝑙+1)(1 + 𝜂𝑛(𝑠)) 𝑑𝑠

+ ∣𝑢0∣2𝑙 + 𝐶 sup
0≤𝑠≤𝑡

(
∣𝑢𝑛(𝑠)∣2𝑙 + ∣𝑔𝑛(𝑠)∣2𝑙

)
𝜂𝑛(𝑡), (4.3)

with 𝑚𝑛 = 𝐼
(3)
𝑛 and 𝑄𝑛(𝑠) = 𝐶(𝑠+ ∥𝐵𝑛∥(𝑠)). Define

𝜎𝑛 := inf {𝑡 ≥ 0 : 2𝐶𝜂𝑛(𝑡) ≥ 𝜆} ,
and note that almost surely

𝑦𝑛(𝑡) := ∣𝑢𝑛(𝑡)∣2𝑙 +
𝜆

2

∫ 𝑡

0

∣𝑢𝑛(𝑠)∣2𝑙+1 𝑑𝑠 ≤
∫ 𝑡

0

∣𝑢𝑛(𝑠)∣2𝑙 𝑑𝑄𝑛(𝑠) +𝑚𝑛(𝑡) + 𝑞𝑛(𝑡)

≤
∫ 𝑡

0

𝑦𝑛(𝑠) 𝑑𝑄𝑛(𝑠) +𝑚𝑛(𝑡) + 𝑞𝑛(𝑡) for all 𝑡 ∈ [0, 𝜎𝑛], (4.4)

with 𝑞𝑛 = 𝑞
(1)
𝑛 + 𝑞

(2)
𝑛 , where

𝑞(1)𝑛 (𝑡) = ∣𝑢𝑛0∣2𝑙 + 𝐶𝜂𝑛(𝑡) sup
0≤𝑠≤𝑡

∣𝑔𝑛∣2𝑙

+ 𝐶

∫ 𝑡

0

(1 + 𝜂𝑛)(∣𝑓𝑛(𝑠)∣2𝑙 + ∣𝑔𝑛∣2𝑙+1) 𝑑𝑠+ 𝐶

∫ 𝑡

0

∣𝑔𝑛∣2𝑙 𝑑∥𝐵𝑛∥(𝑠),

𝑞(2)𝑛 (𝑡) = 𝐶𝜂𝑛(𝑡) sup
0≤𝑠≤𝑡

∣𝑢𝑛(𝑠)∣2𝑙 .

Due to Assumptions 2.1 (i) and (iii) and 4.2 we have

sup
𝑡≤𝑇

∣𝑞(1)𝑛 (𝑡)∣ = 𝑂(𝑛𝜀) almost surely for each 𝜀 > 0.

For a given 𝜅 ∈ (0, 𝛾) and any 𝜀 ∈ (0, 𝜅) take 𝜀 ∈ (𝜀, 𝜅) and define

𝜏𝑛 = inf{𝑡 ≥ 0 : ∣𝑢𝑛(𝑡)∣2𝑙 ≥ 𝑛𝜀}.
Then clearly

sup
𝑡≤𝜏𝑛

∣𝑞(2)𝑛 (𝑡)∣ = 𝑂(𝑛𝜀) a.s. for each 𝜀 > 0.

Thus

sup
𝑡≤𝜏𝑛

∣𝑞𝑛(𝑡)∣ = 𝑂(𝑛𝜀) a.s. for each 𝜀 > 0.

Now taking into account (4.2) and noting that 𝜎𝑛 ↗∞, we finish the proof of the
theorem by applying Corollary 3.13 to (4.4). Since our estimates do not depend
on the norm of 𝑢𝑛0 in 𝐻 𝑙+1 but on its norm in 𝐻 𝑙, by a standard approximation
argument we can relax the assumption that 𝑢𝑛0 is almost surely in 𝐻 𝑙+1. □

In the case when 𝑏𝑖𝑘𝑛 , 𝑏𝑘𝑛 and 𝑔𝑘𝑛 depend on 𝑡 we make the following assumption.
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Assumption 4.4. For each 𝑛 ≥ 1, 𝑖 = 1, 2, . . . , 𝑑 and 𝑘 = 1, . . . , 𝑑1 there exist

real-valued 𝒫 × ℬ(ℝ𝑑)-measurable functions 𝑏
𝑖𝑘(𝑟)
𝑛 , 𝑏

𝑘(𝑟)
𝑛 on Ω × [0, 𝑇 ] × ℝ𝑑 and

𝐻0-valued predictable processes 𝑔
𝑘(𝑟)
𝑛 for 𝑟 = 0, 1, . . . , 𝑑1, such that almost surely

𝑑(𝑏𝑖𝑘𝑛 (𝑡), 𝜑) = (𝑏𝑖𝑘(0)𝑛 (𝑡), 𝜑) 𝑑𝑡 + (𝑏𝑖𝑘(𝑝)𝑛 (𝑡), 𝜑) 𝑑𝑊 𝑝
𝑛 (𝑡),

𝑑(𝑏𝑘𝑛(𝑡), 𝜑) = (𝑏𝑘(0)𝑛 (𝑡), 𝜑) 𝑑𝑡+ (𝑏𝑘(𝑝)𝑛 (𝑡), 𝜑) 𝑑𝑊 𝑝
𝑛 (𝑡),

𝑑(𝑔𝑘𝑛(𝑡), 𝜑) = (𝑔𝑘(0)𝑛 (𝑡), 𝜑) 𝑑𝑡+ (𝑔𝑘(𝑝)𝑛 (𝑡), 𝜑) 𝑑𝑊 𝑝
𝑛 (𝑡),

for all 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1, every 𝑛 ≥ 1 and 𝜑 ∈ 𝐶∞0 (ℝ𝑑). The functions

𝑏
𝑖𝑘(𝑟)
𝑛 together with their derivatives in 𝑥 up to order 𝑙 ∨ 1 and the functions

𝑏
𝑘(𝑟)
𝑛 together with their derivatives in 𝑥 up to order 𝑙 are 𝒫 × ℬ(ℝ𝑑)-measurable
functions, bounded by 𝐾 for all 𝑛 ≥ 1 and 𝑟 = 0, 1, . . . , 𝑑1. Moreover, for each
𝜀 > 0∫ 𝑇

0

∣𝑔𝑘(0)𝑛 ∣2𝑙−1 𝑑𝑡 = 𝑂(𝑛𝜀), sup
𝑡≤𝑇

𝑑∑
𝑝=1

∣𝑔𝑘(𝑝)𝑛 ∣2𝑙 = 𝑂(𝑛𝜀) for 𝑘 = 1, . . . , 𝑑1.

Theorem 4.5. Let the assumptions of Theorem 4.3 together with Assumption 4.4
hold. Then we have the conclusion of Theorem 4.3.

Proof. We can follow the proof of the previous theorem with minor changes. We
need only add an additional term,

𝐼(7)𝑛 = 2{(𝑊 𝑘 −𝑊 𝑘
𝑛 )(𝑢𝑛,𝑀

𝑘(0)
𝑛 𝑢𝑛 + 𝑔𝑘(0))𝑙} ⋅ 𝑡+ 2(𝑢𝑛,𝑀

𝑘(𝑝)
𝑛 𝑢𝑛 + 𝑔𝑘(𝑝))𝑙 ⋅𝐵𝑘𝑝

𝑛 (𝑡),

to the right-hand side of (4.1), where for each 𝑛 ≥ 1,

𝑀𝑘(𝑟)
𝑛 = 𝑏𝑖𝑘(𝑟)𝑛 𝐷𝑖 + 𝑏𝑘(𝑟)𝑛 ,

for 𝑘 = 1, . . . , 𝑑1 and 𝑟 = 0, . . . , 𝑑1. Clearly, 2(𝑢𝑛, 𝑔
𝑘(0))𝑙 ≤ ∣𝑢𝑛∣2𝑙+1 + ∣𝑔𝑘∣2𝑙−1, and

hence

∣2(𝑊 𝑘 −𝑊 𝑘
𝑛 )(𝑢𝑛,𝑀

𝑘(0)
𝑛 𝑢𝑛 + 𝑔𝑘(0))𝑙∣

≤ 𝜂𝑛(∣𝑢𝑛∣2𝑙+1 + ∣𝑔(0)𝑛 ∣2𝑙−1 + 𝐶∣𝑢𝑛∣2𝑙 ),
and, by Lemma 3.7 (i),

2∣(𝑢𝑛,𝑀𝑘(𝑝)
𝑛 𝑢𝑛 + 𝑔𝑘(𝑝))𝑙∣ ≤ 𝐶∣𝑢𝑛∣2𝑙 + ∣𝑔𝑘(𝑝)∣2𝑙

with a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑑1, 𝑙), where ∣𝑔(0)𝑛 ∣2𝑙−1 =
∑𝑑1
𝑘=1 ∣𝑔𝑘(0)𝑛 ∣2𝑙−1. Thus in-

equality (4.3) holds with the additional term

𝑞(3)𝑛 (𝑡) = 𝜂𝑛(𝑡)

∫ 𝑡

0

∣𝑔(0)𝑛 (𝑠)∣2𝑙−1 𝑑𝑠+
∫ 𝑡

0

∣𝑔𝑘(𝑝)(𝑠)∣2𝑙 𝑑∥𝐵𝑘𝑝∥(𝑠)

added to its left-hand side and with a constant 𝐶 = 𝐶(𝜆,𝐾, 𝑑1, 𝑙). Since due to
Assumptions 4.4 and 2.1 (iii), for each 𝜀 > 0 we have

sup
𝑡≤𝑇

𝑞(3)𝑛 (𝑡) = 𝑂(𝑛𝜀) almost surely,

we can finish the proof as in the proof of Theorem 4.3. □
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Let us consider now the degenerate case, 𝜆 = 0 in Assumption 2.3.

Assumption 4.6. For each 𝑛 ≥ 1 there exist real-valued functions 𝜎𝑖𝑝𝑛 on Ω ×𝐻𝑇

for 𝑝 = 1, 2, . . . , 𝑑2 such that 𝑎𝑖𝑗𝑛 = 𝜎𝑖𝑝𝑛 𝜎𝑗𝑝𝑛 for all 𝑖, 𝑗 = 1, . . . , 𝑑. For all 𝑛 ≥ 1 the
functions 𝜎𝑖𝑝𝑛 and 𝑏𝑖𝑛 and their derivatives in 𝑥 ∈ ℝ𝑑 up to order (𝑙 + 2) ∨ 3, the
functions 𝑎𝑖𝑛, 𝑎𝑛, 𝑏𝑛 and their derivatives in 𝑥 up to order (𝑙+1)∨2 are 𝒫×ℬ(ℝ𝑑)-
measurable functions, bounded by 𝐾, for all 𝑖 = 1, . . . , 𝑑 and 𝑝 = 1, . . . , 𝑑2.

Assumption 4.7. Let Assumption 4.4 hold and assume that for each 𝜀 > 0∫ 𝑇

0

∣𝑔𝑘(0)𝑛 (𝑡)∣2𝑙 𝑑𝑡 = 𝑂(𝑛𝜀) almost surely for each 𝑘 = 1, 2, . . . , 𝑑1.

Theorem 4.8. Let Assumptions 2.1 (i) and (iii), 2.3 (with 𝜆 = 0), 4.2, 4.6 and 4.7
hold. Then

sup
𝑡≤𝑇

∣𝑢𝑛(𝑡)∣2𝑙 +
𝑑2∑
𝑟=1

∫ 𝑇

0

∣𝑁 𝑟
𝑛𝑢𝑛∣2𝑙 𝑑𝑠 = 𝑂(𝑛𝜀), for every 𝜀 > 0 almost surely,

where 𝑁 𝑟
𝑛 = 𝜎𝑖𝑟𝑛 𝐷𝑖, for 𝑟 = 1, . . . , 𝑑2.

Proof. The proof follows the lines of that of Theorems 4.3 and 4.5, but instead of

estimating 𝐼
(2)
𝑛 and 𝐼

(5)
𝑛 separately, we estimate their sum as follows. Note that

𝑑𝐼(5)𝑛 = 2{(𝐿𝑛𝑢𝑛 + 𝑓𝑛,𝑀
𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)𝑙 + ⟨𝑢𝑛,𝑀𝑘

𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛)⟩𝑙}(𝑊 𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝑡

= 2{(𝐿𝑛𝑢𝑛,𝑀𝑘
𝑛𝑢𝑛)𝑙 + ⟨𝑢𝑛,𝑀𝑘

𝑛𝐿𝑛𝑢𝑛⟩𝑙 + (𝐿𝑛𝑢𝑛, 𝑔
𝑘
𝑛)𝑙}(𝑊 𝑘 −𝑊 𝑘

𝑛 ) 𝑑𝑡

+ 2{(𝑓𝑛,𝑀𝑘
𝑛𝑢𝑛)𝑙 + (𝑢𝑛,𝑀

𝑘
𝑛𝑓𝑛)𝑙}(𝑊 𝑘 −𝑊 𝑘

𝑛 ) 𝑑𝑡

+ 2(𝑓𝑛, 𝑔
𝑘
𝑛)𝑙(𝑊

𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝑡.

Using Lemmas 3.11, 3.10, 3.7 (i) and (ii), we obtain

∣(𝐿𝑛𝑢𝑛,𝑀𝑘
𝑛𝑢𝑛)𝑙 + ⟨𝑢𝑛,𝑀𝑘

𝑛𝐿𝑛𝑢𝑛⟩𝑙∣ ≤ 𝐶

𝑑2∑
𝑟=1

∣𝑁 𝑟
𝑛𝑢𝑛∣2𝑙 + 𝐶∣𝑢𝑛∣2𝑙 ,

(𝑢𝑛, 𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑙 ≤ −
𝑑2∑
𝑟=1

∣𝑁 𝑟
𝑛𝑢𝑛∣2𝑙 + 𝐶∣𝑢𝑛∣2𝑙 + ∣𝑓𝑛∣2𝑙 ,

∣(𝑓𝑛,𝑀𝑘
𝑛𝑢𝑛)𝑙 + (𝑢𝑛,𝑀

𝑘
𝑛𝑓𝑛)𝑙∣ ≤ 𝐶

(∣𝑢𝑛∣2𝑙 + ∣𝑓𝑛∣2𝑙
)
,

∣(𝐿𝑛𝑢𝑛, 𝑔𝑘𝑛)𝑙∣ ≤
𝑑2∑
𝑟=1

∣𝑁 𝑟
𝑛𝑢𝑛∣2 + 𝐶(∣𝑢𝑛∣2𝑙 + ∣𝑔𝑘𝑛∣2𝑙+1)

with a constant 𝐶 = 𝐶(𝐾, 𝑙, 𝑑, 𝑑2). Hence

𝑑𝐼(5)𝑛 (𝑡) ≤ 𝐶𝜂𝑛(𝑡)

(
𝑑2∑
𝑟=1

∣𝑁 𝑟
𝑛𝑢𝑛∣2𝑙 + ∣𝑔𝑛∣2𝑙+1 + ∣𝑓𝑛∣2𝑙 + ∣𝑢𝑛∣2𝑙

)
𝑑𝑡,
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and recalling that 𝐼
(2)
𝑛 (𝑡) = 2(𝑢𝑛, 𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑙 ⋅ 𝑡, we get

𝐼(2)𝑛 (𝑡) + 𝐼(5)𝑛 (𝑡) ≤ 𝐶
{
(𝜂𝑛 + 1)(∣𝑢𝑛∣2𝑙 + ∣𝑓𝑛∣2𝑙 ) + 𝜂𝑛

∣∣𝑔𝑛∣2𝑙+1

)} ⋅ 𝑡
+ {(𝐶𝜂𝑛 − 2)

𝑑2∑
𝑟=1

∣𝑁 𝑟
𝑛𝑢𝑛∣2𝑙 } ⋅ 𝑡.

To estimate 𝐼
(7)
𝑛 we use that, by Lemma 3.7(i),

∣2(𝑊 𝑘 −𝑊 𝑘
𝑛 ){(𝑢𝑛,𝑀𝑘(0)

𝑛 𝑢𝑛 + 𝑔𝑘(0)𝑛 )𝑙}∣ ≤ 𝐶𝜂𝑛(∣𝑢𝑛∣2𝑙 + ∣𝑔(0)𝑛 ∣2𝑙 )
with a constant 𝐶 and ∣𝑔(0)𝑛 ∣2𝑙 =

∑
𝑘 ∣𝑔𝑘(0)𝑛 ∣2𝑙 . Thus using the estimates for 𝐼

(1)
𝑛 ,

𝐼
(3)
𝑛 , 𝐼

(4)
𝑛 and 𝐼

(6)
𝑛 given in the proof of Theorem 4.3, and defining

𝜎𝑛 = inf {𝑡 ≥ 0 : 𝐶𝜂𝑛 ≥ 1} ,
and

𝑦𝑛(𝑡) = ∣𝑢𝑛(𝑡)∣2𝑙 +
𝑑2∑
𝑟=1

∫ 𝑡

0

∣𝐾𝑟𝑢𝑛∣2𝑙 𝑑𝑠,

we get

𝑦𝑛(𝑡) ≤
∫ 𝑡

0

𝑦𝑛(𝑠) 𝑑𝑄𝑛(𝑠) +𝑚𝑛(𝑡) + 𝑞𝑛(𝑡) almost surely for all 𝑡 ∈ [0, 𝜎𝑛],

with

𝑄𝑛(𝑠) = 𝐶{(𝜂𝑛 + 1)𝑠+ ∥𝐵𝑛∥(𝑠) + 𝜂𝑛}, 𝑚𝑛 = 𝐼(3)𝑛 , 𝑞𝑛 = 𝑞(1)𝑛 + 𝑞(2)𝑛 + 𝑞(3)𝑛 ,

𝑞(3)𝑛 :=

∫ 𝑡

0

∣𝑔(0)𝑛 (𝑠)∣2𝑙 sup
𝑟≤𝑡

∣𝑊 (𝑟) −𝑊𝑛(𝑟)∣ 𝑑𝑠+
∫ 𝑡

0

∣𝑔𝑘(𝑝)𝑛 (𝑠)∣2𝑙 𝑑∥𝐵𝑘𝑝
𝑛 ∥(𝑠),

where ∥𝐵𝑛∥(𝑠) =
∑
𝑘,𝑝 ∥𝐵𝑘𝑝

𝑛 ∥(𝑠), 𝑞(1)𝑛 and 𝑞
(2)
𝑛 are defined in the proof Theorem

4.3, and 𝐶 is a constant depending only on 𝐾, 𝑑, 𝑑1, 𝑑2 and 𝑙. Hence the proof is
the same as that of Theorem 4.3. □

5. Rate of convergence results for SPDEs

Here we present two theorems on rate of convergence which provide us with a
technical tool to prove our main results. Consider for each integer 𝑛 ≥ 1 the
problem

𝑑𝑢𝑛(𝑡, 𝑥) = (ℒ𝑛𝑢𝑛(𝑡, 𝑥) + 𝑓𝑛(𝑡, 𝑥)) 𝑑𝑡+ (ℳ𝑘
𝑛𝑢𝑛(𝑡, 𝑥) + 𝑔𝑘𝑛(𝑡, 𝑥)) 𝑑𝑊

𝑘(𝑡)

+ (𝒩 𝜌
𝑛𝑢𝑛(𝑡, 𝑥) + ℎ𝜌𝑛(𝑡, 𝑥)) 𝑑𝐵

𝜌
𝑛(𝑡), (𝑡, 𝑥) ∈ 𝐻𝑇 , (5.1)

𝑢𝑛(0, 𝑥) = 𝑢𝑛0(𝑥) 𝑥 ∈ ℝ𝑑, (5.2)

where 𝐵𝑛 = (𝐵𝜌
𝑛) is an ℝ𝑑2-valued continuous adapted process of finite variation

on [0, 𝑇 ]. The operators ℒ𝑛, ℳ𝑘
𝑛 and 𝒩 𝜌

𝑛 are of the form

ℒ𝑛 = 𝔞𝑖𝑗𝑛 (𝑡, 𝑥)𝐷𝑖𝑗 + 𝔞𝑖𝑛(𝑡, 𝑥)𝐷𝑖 + 𝔞𝑛(𝑡, 𝑥),

ℳ𝑘
𝑛 = 𝔟𝑖𝑘𝑛 (𝑡, 𝑥)𝐷𝑖 + 𝔟𝑘𝑛(𝑡, 𝑥), 𝒩 𝜌

𝑛 = 𝔠𝑖𝜌𝑛 (𝑡, 𝑥)𝐷𝑖 + 𝔠𝜌𝑛(𝑡, 𝑥)
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where 𝔞𝑖𝑗𝑛 , 𝔞
𝑖
𝑛, 𝔞𝑛, 𝔟

𝑖𝑘
𝑛 , 𝔟𝑘𝑛, 𝔠

𝑖𝜌
𝑛 and 𝔠𝜌𝑛 are 𝒫 ⊗ ℬ(ℝ𝑑)-measurable real functions on

Ω×𝐻𝑇 for 𝑖, 𝑗 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1, 𝜌 = 1, . . . , 𝑑2 and 𝑛 ≥ 1. For each 𝑛 the
initial value 𝑢𝑛0 is an 𝐻0-valued ℱ0-measurable random variable, 𝑓𝑛 is an 𝐻−1-
valued predictable process and 𝑔𝑘𝑛 and ℎ𝜌𝑛 are 𝐻0-valued predictable processes
for 𝑘 = 1, . . . , 𝑑1 and 𝜌 = 1, . . . , 𝑑2. We use the notation ∣𝑔𝑛∣2𝑟 =

∑
𝑘 ∣𝑔𝑘𝑛∣2𝑟 and

∣ℎ𝑛∣2𝑟 =
∑
𝜌 ∣ℎ𝜌𝑛∣2𝑟 for 𝑟 ≥ 0.

Let 𝑙 ≥ 0 be an integer and let 𝐾 ≥ 0, 𝛾 > 0 be fixed constants.
We assume the stochastic parabolicity condition.

Assumption 5.1. There is a constant 𝜆 ≥ 0 such that for all 𝑛 ≥ 1, 𝑑𝑃 × 𝑑𝑡× 𝑑𝑥
almost all (𝜔, 𝑡, 𝑥) ∈ Ω×𝐻𝑇 we have

(𝔞𝑖𝑗𝑛 − 1
2𝔟
𝑖𝑘
𝑛 𝔟

𝑗𝑘
𝑛 )𝑧𝑖𝑧𝑗 ≥ 𝜆∣𝑧∣2 for all 𝑧 = (𝑧1, . . . , 𝑧𝑑) ∈ ℝ𝑑.

In the case when 𝜆 > 0 we will use the following conditions.

Assumption 5.2. The coefficients 𝔞𝑖𝑗𝑛 , 𝔟𝑖𝑘𝑛 , 𝔠𝑖𝜌𝑛 and their derivatives in 𝑥 up to
order 𝑙 ∨ 1 are bounded in magnitude by 𝐾 for all 𝑖, 𝑗 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1,
𝜌 = 1, . . . , 𝑑2 and 𝑛 ≥ 1. The coefficients 𝔞𝑖𝑛, 𝔞𝑛, 𝔟

𝑘
𝑛, 𝔠

𝜌
𝑛 and their derivatives in 𝑥

up to order 𝑙 are bounded in magnitude by 𝐾 for all 𝑖 = 1, . . . , 𝑑, 𝑘 = 1, . . . , 𝑑1,
𝜌 = 1, . . . , 𝑑2 and 𝑛 ≥ 1.

Assumption 5.3. We have ∣𝑢𝑛0∣𝑙 = 𝑂(𝑛−𝛾),∫ 𝑇

0

∣𝑓𝑛(𝑠)∣2𝑙−1 𝑑𝑠 = 𝑂(𝑛−2𝛾),
∫ 𝑇

0

∣𝑔𝑛(𝑠)∣2𝑙 𝑑𝑠 = 𝑂(𝑛−2𝛾),∫ 𝑇

0

∣ℎ𝜌𝑛(𝑡)∣2𝑙 𝑑∥𝐵𝜌∥(𝑡) = 𝑂(𝑛−2𝛾),
𝑑2∑
𝜌=1

∥𝐵𝜌
𝑛∥(𝑇 ) = 𝑜(ln𝑛).

Let 𝑢𝑛 be a generalized solution of (5.1)–(5.2) in the sense of Definition 3.1,
such that 𝑢𝑛 is an 𝐻 𝑙-valued weakly continuous process, 𝑢𝑛(𝑡) ∈ 𝐻 𝑙+1 for 𝑃 × 𝑑𝑡-
almost every (𝜔, 𝑡) ∈ Ω× [0, 𝑇 ], and almost surely∫ 𝑇

0

∣𝑢𝑛(𝑡)∣2𝑙+1 𝑑𝑡 <∞.

Then for 𝑛→∞ we have the following result.

Theorem 5.4. Let Assumptions 5.2, 5.3 and 5.1 with 𝜆 > 0 hold. Then

sup
𝑡≤𝑇

∣𝑢𝑛(𝑡)∣2𝑙 +
∫ 𝑇

0

∣𝑢𝑛(𝑡)∣2𝑙+1 𝑑𝑡 = 𝑂(𝑛−2𝜅) a.s. for 𝜅 < 𝛾. (5.3)

Proof. By the definition of the generalized solution

(𝑢𝑛(𝑡), 𝜑) = (𝑢𝑛0, 𝜑)

+

∫ 𝑡

0

[− (𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛(𝑠), 𝐷𝑗𝜑) +
(
(𝔞𝑖𝑛 − (𝐷𝑗𝔞

𝑖𝑗
𝑛 ))𝐷𝑖𝑢𝑛(𝑠) + 𝔞𝑛𝑢𝑛(𝑠) + 𝑓𝑛(𝑠), 𝜑

)]
𝑑𝑠

+

∫ 𝑡

0

(ℳ𝑘𝑢𝑛(𝑠) + 𝑔𝑘𝑛(𝑠), 𝜑) 𝑑𝑊
𝑘(𝑠) +

∫ 𝑡

0

(𝒩 𝜌
𝑛𝑢𝑛(𝑠) + ℎ𝜌𝑛(𝑠), 𝜑) 𝑑𝐵

𝜌
𝑛(𝑠)
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for all 𝜑 ∈ 𝐶∞0 (ℝ𝑑). By Itô’s formula

∣𝑢𝑛(𝑡)∣20 = ∣𝑢𝑛0∣20 +
∫ 𝑡

0

ℐ𝑛(𝑠) 𝑑𝑠+
∫ 𝑡

0

𝒥 𝑘
𝑛 (𝑠) 𝑑𝑊

𝑘(𝑠) +

∫ 𝑡

0

𝒦𝜌𝑛(𝑠) 𝑑𝐵𝜌(𝑠),

with

ℐ𝑛 = − 2(𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝑢𝑛) + 2
(
(𝔞𝑖𝑛 − 𝔞𝑖𝑗𝑛𝑗)𝐷𝑖𝑢𝑛 + 𝔞𝑛𝑢𝑛 + 𝑓𝑛, 𝑢𝑛

)
+ (𝔟𝑖𝑘𝑛 𝐷𝑖𝑢𝑛 + 𝔟𝑘𝑛𝑢𝑛 + 𝑔𝑘𝑛, 𝔟

𝑗𝑘
𝑛 𝐷𝑗𝑢𝑛 + 𝔟𝑘𝑛𝑢𝑛 + 𝑔𝑘𝑛),

𝒥 𝑘
𝑛 = 2(ℳ𝑘

𝑛𝑢𝑛 + 𝑔𝑘𝑛, 𝑢𝑛), 𝒦𝜌𝑛 = 2(𝒩 𝜌
𝑛𝑢𝑛 + ℎ𝜌𝑛, 𝑢𝑛),

where 𝔞𝑖𝑗𝑛𝑗 := 𝐷𝑗𝔞
𝑖𝑗
𝑛 . By Assumption 5.1

−2(𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝑢𝑛) + (𝔟𝑖𝑘𝑛 𝐷𝑖𝑢𝑛, 𝔟
𝑗𝑘
𝑛 𝐷𝑗𝑢𝑛) ≤ −2𝜆

𝑑∑
𝑖=1

∣𝐷𝑖𝑢𝑛∣2.

Hence by standard estimates and Lemma 3.7 (i),

ℐ𝑛 ≤ −𝜆∣𝑢𝑛∣21 + 𝐶(∣𝑢𝑛∣2 + ∣𝑓𝑛∣2−1 + ∣𝑔𝑛∣2), ∣𝒦𝜌𝑛∣ ≤ 𝐶(∣𝑢𝑛∣2 + ∣ℎ𝜌𝑛∣2),

∣𝒥 𝑘
𝑛 ∣2 ≤ 𝐶(∣𝑢𝑛∣4 + ∣𝑔𝑘𝑛∣2∣𝑢𝑛∣2),

with a constant 𝐶 = 𝐶(𝐾,𝜆, 𝑑, 𝑑1). Consequently, almost surely

∣𝑢𝑛(𝑡)∣2 + 𝜆

∫ 𝑡

0

∣𝑢𝑛∣21 𝑑𝑠 ≤ ∣𝑢𝑛0∣2 +
∫ 𝑡

0

∣𝑢𝑛∣2 𝑑𝑄𝑛 +
∫ 𝑡

0

𝒥 𝑘
𝑛 𝑑𝑊 𝑘 (5.4)

+ 𝐶

∫ 𝑡

0

(∣𝑓𝑛∣2−1 + ∣𝑔𝑛∣2
)
𝑑𝑠+ 𝐶

∫ 𝑡

0

∣ℎ𝜌𝑛∣2 𝑑∥𝐵𝜌
𝑛∥

for all 𝑡 ∈ [0, 𝑇 ] and 𝑛 ≥ 1, where𝑄𝑛(𝑠) = 𝐶
(
𝑠+

∑𝑑2
𝜌=1 ∥𝐵𝜌

𝑛∥(𝑠)
)
. By Assumption

5.3 we have

𝑄𝑛(𝑇 ) = 𝑜(ln𝑛), ∣𝑢𝑛0∣2 +
∫ 𝑇

0

∣𝑓𝑛∣2−1 𝑑𝑠+
∫ 𝑇

0

∣ℎ𝜌𝑛(𝑠)∣2 𝑑∥𝐵𝜌
𝑛∥(𝑠) = 𝑂(𝑛−2𝛾)

almost surely. Notice also that for

𝑚𝑛(𝑡) :=

∫ 𝑡

0

𝒥 𝑘
𝑛 𝑑𝑊 𝑘(𝑠) (5.5)

we have

𝑑⟨𝑚𝑛⟩ =
𝑑1∑
𝑘=1

∣𝒥 𝑘
𝑛 ∣2 𝑑𝑡 ≤ 𝐶𝑑1(∣𝑢𝑛(𝑡)∣4 + 𝛾𝑛∣𝑔𝑛∣2∣𝑢𝑛(𝑡)∣2) 𝑑𝑄𝑛,

where 𝛾𝑛(𝑡) = 𝑑𝑡/𝑑𝑄𝑛(𝑡). Due to Assumption 5.3∫ 𝑇

0

𝛾𝑛∣𝑔𝑛∣2 𝑑𝑄𝑛 =

∫ 𝑇

0

∣𝑔𝑛∣2 𝑑𝑠 = 𝑂(𝑛−2𝛾) almost surely.



Wong–Zakai Approximations for SPDEs 119

Hence applying Lemma 3.12 with

𝑦𝑛(𝑡) := ∣𝑢𝑛∣2 + 𝜆

∫ 𝑡

0

∣𝑢𝑛∣21 𝑑𝑠,

𝑞𝑛(𝑡) := ∣𝑢𝑛0∣2 + 𝐶

∫ 𝑡

0

(∣𝑓𝑛∣2−1 + ∣𝑔𝑛∣2) 𝑑𝑠+ 𝐶

∫ 𝑡

0

∣ℎ𝜌𝑛∣2 𝑑∥𝐵𝜌
𝑛∥,

and with 𝑚𝑛 defined in (5.5), from (5.4) we get (5.3) for 𝑙 = 0.

Assume now that 𝑙 ≥ 1 and let 𝛼 be a multi-index such that 1 ≤ ∣𝛼∣ ≤ 𝑙. Then
𝛼 = 𝛽 + 𝛾 for some multi-index 𝛾 of length 1, and by definition of the generalized
solution we get

(𝐷𝛼𝑢𝑛(𝑡), 𝜑) = (𝐷𝛼𝑢𝑛0, 𝜑)

−
∫ 𝑡

0

[
(𝐷𝛼𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝜑) +

(
𝐷𝛽{(𝔞𝑖𝑛 − 𝔞𝑖𝑗𝑛𝑗)𝐷𝑖𝑢𝑛 + 𝔞𝑛𝑢+ 𝑓𝑛}, 𝐷𝛾𝜑

)]
𝑑𝑠

+

∫ 𝑡

0

(𝐷𝛼ℳ𝑘𝑢𝑛 +𝐷𝛼𝑔𝑘, 𝜑) 𝑑𝑊 𝑘(𝑠) +

∫ 𝑡

0

(𝐷𝛼𝒩 𝜌
𝑛𝑢𝑛 +𝐷𝛼ℎ𝜌𝑛, 𝜑) 𝑑𝐵

𝜌(𝑠).

Hence by Itô’s formula

∣𝐷𝛼𝑢𝑛(𝑡)∣20 = ∣𝐷𝛼𝑢𝑛0∣20 +
∫ 𝑡

0

ℐ𝛼𝑛 𝑑𝑠+

∫ 𝑡

0

𝒦𝜌𝛼𝑛 𝑑𝐵𝜌 +𝑚𝛼
𝑛(𝑡),

with

𝑚𝛼
𝑛(𝑡) =

∫ 𝑡

0

𝒥 𝑘𝛼
𝑛 𝑑𝑊 𝑘, 𝒥 𝑘𝛼

𝑛 = 2(𝐷𝛼ℳ𝑘
𝑛𝑢𝑛 +𝐷𝛼𝑔𝑘𝑛, 𝐷

𝛼𝑢𝑛),

ℐ𝛼𝑛 = − 2(𝐷𝛼𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝐷
𝛼𝑢𝑛)− 2

(
𝐷𝛽{(𝔞𝑖𝑛 − 𝔞𝑖𝑗𝑛𝑗)𝐷𝑖𝑢𝑛 + 𝔞𝑛𝑢+ 𝑓𝑛}, 𝐷𝛼𝐷𝛾𝑢𝑛

)
+ (𝐷𝛼{𝔟𝑖𝑘𝑛 𝐷𝑖𝑢𝑛 + 𝔟𝑘𝑢𝑛 + 𝑔𝑘}, 𝐷𝛼{𝔟𝑗𝑘𝑛 𝐷𝑗𝑢𝑛 + 𝔟𝑘𝑛𝔟

𝑘
𝑛𝑢𝑛 + 𝑔𝑘}),

𝒦𝜌𝛼𝑛 = 2(𝐷𝛼𝒩 𝜌
𝑛𝑢𝑛 +𝐷𝛼ℎ𝜌𝑛, 𝐷

𝛼𝑢𝑛).

Due to Assumptions 5.1 and 5.2 we get

− 2(𝐷𝛼𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷
𝛼𝐷𝑗𝑢𝑛) + (𝐷𝛼𝔟𝑖𝑘𝑛 𝐷𝑖𝑢𝑛, 𝐷

𝛼𝔟𝑗𝑘𝑛 𝐷𝑗𝑢𝑛)

≤ −𝜆

𝑑∑
𝑖=1

∣𝐷𝛼𝐷𝑖𝑢𝑛∣2 + 𝐶∣𝑢𝑛∣2𝑙

with a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑑1, 𝑙). Thus by standard estimates

ℐ𝛼𝑛 ≤ −𝜆

2

𝑑∑
𝑖=1

∣𝐷𝛼𝐷𝑖𝑢𝑛∣2 + 𝐶(∣𝑢𝑛∣2𝑙 + ∣𝑓𝑛∣2𝑙−1 + ∣𝑔𝑛∣2𝑙 ),

and by Lemma 3.7 (i),

∣𝒦𝜌𝛼𝑛 ∣ ≤ 𝐶(∣𝑢𝑛∣2𝑙 + ∣ℎ𝜌𝑛∣2𝑙 ), ∣𝒥 𝑘𝛼
𝑛 ∣2 ≤ 𝐶(∣𝑢𝑛∣4𝑙 + ∣𝑔𝑘𝑛∣2𝑙 ∣𝑢𝑛∣2𝑙 ),
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with a constant 𝐶 = 𝐶(𝐾,𝜆, 𝑑, 𝑑1, 𝑙). Consequently, almost surely

∣𝐷𝛼𝑢𝑛(𝑡)∣20 +
𝜆

2

∫ 𝑡

0

𝑑∑
𝑖=1

∣𝐷𝛼𝐷𝑖𝑢𝑛∣2 𝑑𝑠 (5.6)

≤ ∣𝐷𝛼𝑢𝑛0∣2 + 𝐶

∫ 𝑡

0

∣𝑢𝑛∣2𝑙 𝑑𝑉𝑛 + 𝐶

∫ 𝑡

0

(∣𝑓𝑛∣2𝑙−1 + ∣𝑔𝑛∣2𝑙 ) 𝑑𝑠+ 𝐶

∫ 𝑡

0

∣ℎ𝜌𝑛∣2𝑙 𝑑∥𝐵𝜌
𝑛∥+𝑚𝛼

𝑛(𝑡)

for every 𝛼, such that 1 ≤ ∣𝛼∣ ≤ 𝑙. By virtue of (5.4) this inequality holds also for
∣𝛼∣ = 0. Thus summing up inequality (5.6) over all multi-indices 𝛼 with ∣𝛼∣ ≤ 𝑙 we
get almost surely

𝑦𝑛(𝑡) := ∣𝑢𝑛(𝑡)∣2𝑙 +
𝜆

2

∫ 𝑡

0

∣𝑢𝑛∣2𝑙+1 𝑑𝑠 ≤
∫ 𝑡

0

∣𝑢𝑛∣2𝑙 𝑑𝑄𝑛 +𝑀𝑛(𝑡) + 𝑞𝑛(𝑡)

≤
∫ 𝑡

0

𝑦𝑛 𝑑𝑄𝑛 +𝑀𝑛(𝑡) + 𝑞𝑛(𝑡)

for all 𝑡 ∈ [0, 𝑇 ] and 𝑛 ≥ 1, with

𝑀𝑛(𝑡) =
∑
∣𝛼∣≤𝑙

𝑚𝛼
𝑛(𝑡),

𝑞𝑛(𝑡) = ∣𝑢𝑛0∣2𝑙 + 𝐶

∫ 𝑡

0

(∣𝑓𝑛∣2𝑙−1 + ∣𝑔𝑛∣2𝑙 ) 𝑑𝑠+ 𝐶

∫ 𝑡

0

∣ℎ𝜌𝑛∣2𝑙 𝑑∥𝐵𝜌
𝑛∥(𝑠),

and a constant 𝐶 = 𝐶(𝐾,𝜆, 𝑑, 𝑑1, 𝑙). Clearly,

𝑑⟨𝑚𝛼
𝑛⟩ =

𝑑1∑
𝑘=1

∣𝒥 𝑘𝛼
𝑛 ∣2 𝑑𝑡 ≤ 𝐶(∣𝑢𝑛∣4𝑙 + 𝛾𝑛∣𝑔𝑛∣2𝑙 ∣𝑢𝑛∣2𝑙 ) 𝑑𝑄𝑛,

so

𝑑⟨𝑀𝑛⟩ ≤ 𝐶(∣𝑢𝑛∣4𝑙 + 𝛾𝑛∣𝑔𝑛∣2𝑙 ∣𝑢𝑛∣2𝑙 ) 𝑑𝑄𝑛 ≤ 𝐶(𝑦2𝑛 + 𝛾𝑛∣𝑔𝑛∣2𝑙 𝑦𝑛) 𝑑𝑄𝑛
with constants 𝐶 = 𝐶(𝐾,𝜆, 𝑑, 𝑑1, 𝑙). Hence we finish the proof of the lemma by
using Assumption 5.3 and applying Lemma 3.12. □

In the degenerate case, i.e., when 𝜆 = 0 in Assumption 5.1, we need to replace
Assumptions 5.2 and 5.3 by somewhat stronger assumptions in order to have the
conclusion of the previous lemma.

Assumption 5.5. The coefficients 𝔞𝑖𝑗𝑛 and their derivatives in 𝑥 up to order 𝑙 ∨ 2,
the coefficients 𝔟𝑖𝑘𝑛 , 𝔞𝑖𝑛, 𝔠

𝑖𝜌
𝑛 and their derivatives in 𝑥 up to order 𝑙 ∨ 1, and the

coefficients 𝔞𝑛, 𝔟
𝑘
𝑛, 𝔠

𝜌
𝑛 and their derivatives in 𝑥 up to order 𝑙 are 𝒫 × ℬ(ℝ𝑑)-

measurable real functions, in magnitude bounded by 𝐾 for all 𝑖, 𝑗 = 1, . . . , 𝑑,
𝑘 = 1, . . . , 𝑑1, 𝜌 = 1, . . . , 𝑑2 and 𝑛 ≥ 1.
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Assumption 5.6. We have ∣𝑢𝑛0∣𝑙 = 𝑂(𝑛−𝛾),∫ 𝑇

0

∣𝑓𝑛∣2𝑙 𝑑𝑠 = 𝑂(𝑛−2𝛾),
∫ 𝑇

0

∣𝑔𝑛∣2𝑙+1 𝑑𝑠 = 𝑂(𝑛−2𝛾),∫ 𝑡

0

∣ℎ𝑛(𝑡)∣2𝑙 𝑑∥𝐵𝜌∥(𝑡) = 𝑂(𝑛−2𝛾),
∑𝑑2

𝜌=1
∥𝐵𝜌

𝑛∥(𝑇 ) = 𝑜(ln𝑛).

Theorem 5.7. Let Assumptions 5.5, 5.6 and 5.1 (with 𝜆 = 0) hold. Let 𝑢𝑛 be an
𝐻 𝑙+1-valued weakly continuous generalized solution of (5.1)–(5.2). Then

sup𝑡≤𝑇 ∣𝑢𝑛(𝑡)∣𝑙 = 𝑂(𝑛−𝜅) a.s. for each 𝜅 < 𝛾.

Proof. Let 𝛼 be a multi-index such that ∣𝛼∣ ≤ 𝑙. Then, as in the proof of the
previous theorem, by Itô’s formula we have

∣𝐷𝛼𝑢𝑛(𝑡)∣2 = ∣𝐷𝛼𝑢𝑛0∣2 +
∫ 𝑡

0

ℐ𝛼𝑛 𝑑𝑠+

∫ 𝑡

0

𝒦𝜌𝛼𝑛 𝑑𝐵𝜌 +𝑚𝛼
𝑛(𝑡), (5.7)

with

𝑚𝛼
𝑛(𝑡) =

∫ 𝑡

0

𝒥 𝑘𝛼
𝑛 𝑑𝑊 𝑘, 𝒥 𝑘𝛼

𝑛 = 2(𝐷𝛼ℳ𝑘
𝑛𝑢𝑛 +𝐷𝛼𝑔𝑘𝑛, 𝐷

𝛼𝑢𝑛),

ℐ𝛼𝑛 = − 2(𝐷𝛼𝔞𝑖𝑗𝑛𝐷𝑖𝑢𝑛, 𝐷𝑗𝐷
𝛼𝑢𝑛)− 2

(
𝐷𝛽{(𝔞𝑖𝑛 − 𝔞𝑖𝑗𝑛𝑗)𝐷𝑖𝑢𝑛 + 𝔞𝑛𝑢+ 𝑓𝑛}, 𝐷𝛼𝐷𝛾𝑢𝑛

)
+ (𝐷𝛼𝔟𝑖𝑘𝑛 𝐷𝑖𝑢𝑛 +𝐷𝛼𝔟𝑘𝑛𝑢𝑛 +𝐷𝛼𝑔𝑘𝑛, 𝐷

𝛼𝔟𝑗𝑘𝑛 𝐷𝑗𝑢𝑛 +𝐷𝛼𝔟𝑘𝑛𝑢𝑛 +𝐷𝛼𝑔𝑘𝑛),

𝒦𝜌𝛼𝑛 = 2(𝐷𝛼𝒩 𝜌
𝑛𝑢𝑛 +𝐷𝛼ℎ𝜌𝑛, 𝐷

𝛼𝑢𝑛),

where 𝛽 and 𝛾 are multi-indices such that 𝛼 = 𝛽 + 𝛾 and ∣𝛾∣ = 1 if ∣𝛼∣ ≥ 1. By
[15, Lemma 2.1] and [15, Remark 2.1],

ℐ𝛼𝑛 ≤ 𝐶(∣𝑢𝑛∣2𝑙 + ∣𝑓𝑛∣2 + ∣𝑔𝑛∣2𝑙+1),

and by Lemma 3.7 (i),
∣𝒦𝜌𝛼𝑛 ∣ ≤ 𝐶(∣𝑢𝑛∣2𝑙 + ∣ℎ𝜌𝑛∣2𝑙 )

with a constant 𝐶 = 𝐶(𝐾, 𝑑, 𝑑1, 𝑙). Thus from (5.7) we get

∣𝐷𝛼𝑢𝑛(𝑡)∣2

≤ ∣𝐷𝛼𝑢𝑛0∣2 +
∫ 𝑡

0

∣𝑢𝑛∣2𝑙 𝑑𝑄𝑛 + 𝐶

∫ 𝑡

0

(∣𝑓𝑛∣2𝑙 + ∣𝑔𝑛∣2𝑙+1) 𝑑𝑠+ 𝐶

∫ 𝑡

0

∣ℎ𝜌𝑛∣2𝑙 𝑑∥𝐵𝜌
𝑛∥+𝑚𝛼

𝑛(𝑡)

for ∣𝛼∣ ≤ 𝑙, where 𝑄𝑛(𝑠) = 𝐶
(
𝑠+

∑𝑑2
𝜌=1 ∥𝐵𝜌

𝑛∥(𝑠)
)
. Summing up these inequalities

over 𝛼, ∣𝛼∣ ≤ 𝑙, we obtain

𝑦𝑛(𝑡) := ∣𝑢𝑛(𝑡)∣2𝑙 ≤
∫ 𝑡

0

∣𝑢𝑛∣2𝑙 𝑑𝑄𝑛 +𝑀𝑛(𝑡) + 𝑞𝑛(𝑡)

for all 𝑡 ∈ [0, 𝑇 ] and 𝑛 ≥ 1, where

𝑀𝑛(𝑡) =
∑
∣𝛼∣≤𝑙

𝑚𝛼
𝑛(𝑡), 𝑞𝑛(𝑡) = ∣𝑢𝑛0∣2𝑙+𝐶

∫ 𝑡

0

(∣𝑓𝑛∣2𝑙+∣𝑔𝑛∣2𝑙+1) 𝑑𝑠+𝐶

∫ 𝑡

0

∣ℎ𝜌𝑛∣2𝑙 𝑑∥𝐵𝜌
𝑛∥,

and 𝐶 = 𝐶(𝐾, 𝑑, 𝑑1, 𝑙) is a constant. Hence the rest of the proof is the same as
that in the proof of the previous theorem. □
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6. Proof of the main theorems

To prove our main results we look for processes 𝑟𝑛 such that

sup
𝑡≤𝑇

∣𝑟𝑛(𝑡)∣𝑚 = 𝑂(𝑛−𝜅) a.s. for each 𝜅 < 𝛾, (6.1)

and 𝑣𝑛 := 𝑢 − 𝑢𝑛 − 𝑟𝑛 solves a suitable Cauchy problem of the type (5.1)–(5.2),
satisfying the conditions of Theorem 5.4 or Theorem 5.7, so that we could get for
each 𝜅 < 𝛾

sup
𝑡≤𝑇

∣𝑣𝑛∣𝑚 = 𝑂(𝑛−𝜅) a.s. for each 𝜅 < 𝛾.

6.1. Proof of Theorem 2.7

We will carry out the strategy above in several steps, formulated as lemmas below.
By a well-known result, see, e.g., [16], 𝑢 is an 𝐻𝑚+1-valued strongly continuous
process, and

sup
𝑡≤𝑇

∣𝑢∣2𝑚+1 +

∫ 𝑇

0

∣𝑢∣2𝑚+2 𝑑𝑡 <∞ almost surely. (6.2)

Moreover, we can apply Theorem 4.3 with 𝑙 = 𝑚+ 3 to get

sup
𝑡≤𝑇

∣𝑢𝑛∣2𝑚+3 +

∫ 𝑇

0

∣𝑢𝑛∣2𝑚+4 𝑑𝑡 = 𝑂(𝑛𝜀) a.s. for any 𝜀 > 0. (6.3)

Notice that 𝑢− 𝑢𝑛 satisfies

𝑑(𝑢 − 𝑢𝑛) = {𝐿𝑛(𝑢− 𝑢𝑛) + 𝑓𝑛} 𝑑𝑡+ {𝑀𝑘
𝑛(𝑢− 𝑢𝑛) + 𝑔𝑘𝑛} 𝑑𝑊 𝑘

+ 1
2{𝑀𝑘𝑀𝑘𝑢+𝑀𝑘𝑔𝑘} 𝑑𝑡+ (𝑀𝑘

𝑛𝑢𝑛 + 𝑔𝑘𝑛) 𝑑(𝑊
𝑘 −𝑊 𝑘

𝑛 ), (6.4)

with

𝑓𝑛 := 𝑓 − 𝑓𝑛 + (𝐿− 𝐿𝑛)𝑢, 𝑔𝑘𝑛 := 𝑔𝑘 − 𝑔𝑘𝑛 + (𝑀𝑘 −𝑀𝑘
𝑛)𝑢.

Notice also that due to (6.2) and Assumption 2.6 we have∫ 𝑇

0

(∣𝑓𝑛∣2𝑚−1 + ∣𝑔𝑛∣2𝑚) 𝑑𝑡 = 𝑂(𝑛−2𝛾). (6.5)

Next we rewrite Equation (6.4) as an equation for

𝑤𝑛 = 𝑢− 𝑢𝑛 − 𝑧𝑛, where 𝑧𝑛 = (𝑀𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ).

Note that by (6.3) and by our assumptions we have for each 𝜅 < 𝛾

sup
𝑡≤𝑇

∣𝑧𝑛(𝑡)∣2𝑚 +

∫ 𝑇

0

∣𝑧𝑛(𝑡)∣2𝑚+1 𝑑𝑡 = 𝑂(𝑛−2𝜅) almost surely. (6.6)

Set ℒ𝑛 := 𝐿𝑛 +
1
2𝑀

𝑘
𝑛𝑀

𝑘
𝑛 and recall the definition of 𝑆𝑘𝑙𝑛 in Remark 2.2.
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Lemma 6.1. The process 𝑤𝑛 solves

𝑑𝑤𝑛 = (ℒ𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (𝑀𝑘
𝑛𝑤𝑛 +𝐺𝑘𝑛) 𝑑𝑊

𝑘

−𝑀𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑆

𝑘𝑙
𝑛 , (6.7)

where 𝐺𝑘𝑛 = 𝑔𝑘𝑛 +𝑀𝑘
𝑛𝑧𝑛 and

𝐹𝑛 = 𝑓𝑛 + 1
2 (𝑀

𝑘𝑀𝑘 −𝑀𝑘
𝑛𝑀

𝑘
𝑛)𝑢+ 1

2 (𝑀
𝑘𝑔𝑘 −𝑀𝑘

𝑛𝑔
𝑘
𝑛)

− (𝑀𝑘
𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛))(𝑊

𝑘 −𝑊 𝑘
𝑛 ) + ℒ𝑛𝑧𝑛.

Proof. By using Itô’s formula one can easily verify that

𝑑𝑧𝑛 = 𝑀𝑘
𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝑡+𝑀𝑘

𝑛(𝑀
𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝑊

𝑙
𝑛

+ (𝑀𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛) 𝑑(𝑊

𝑘 −𝑊 𝑘
𝑛 ). (6.8)

Hence

𝑑𝑤𝑛 = {𝐿𝑛(𝑢− 𝑢𝑛) + 𝑓𝑛 +
1
2𝑀

𝑘𝑀𝑘𝑢+ 1
2𝑀

𝑘𝑔𝑘

−𝑀𝑘
𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 )} 𝑑𝑡

+ {𝑀𝑘
𝑛(𝑢 − 𝑢𝑛) + 𝑔𝑘𝑛} 𝑑𝑊 𝑘 −𝑀𝑘

𝑛(𝑀
𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝑊

𝑙
𝑛

= {ℒ𝑛(𝑢− 𝑢𝑛) + 𝑓𝑛 +
1
2 (𝑀

𝑘𝑀𝑘 −𝑀𝑘
𝑛𝑀

𝑘
𝑛)𝑢 + 1

2 (𝑀
𝑘𝑔𝑘 −𝑀𝑘

𝑛𝑔
𝑘
𝑛)} 𝑑𝑡

− (𝑀𝑘
𝑛𝐿𝑛𝑢𝑛 + 𝑓𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 )) 𝑑𝑡

+ (𝑀𝑘
𝑛𝑤𝑛 +𝐺𝑘𝑛) 𝑑𝑊

𝑘 −𝑀𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑆

𝑘𝑙
𝑛

= (ℒ𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (𝑀𝑘𝑣𝑛 +𝐺𝑘𝑛) 𝑑𝑊
𝑘 −𝑀𝑘

𝑛(𝑀
𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑆

𝑘𝑙
𝑛 ,

The lemma is proved. □

It is easy to show that due to (6.5), (6.3), (6.2), Assumptions 2.4, 2.5, 2.6,
and 2.1 (i) we have∫ 𝑇

0

(∣𝐹𝑛∣2𝑚−1 + ∣𝐺𝑛∣2𝑚) 𝑑𝑡 = 𝑂(𝑛−2𝜅) (a.s.) for each 𝜅 < 𝛾. (6.9)

We rewrite the last term in the right-hand side of (6.7) into symmetric and
antisymmetric parts as follows:

𝑀𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑆

𝑘𝑙
𝑛

= 1
2 (𝑀

𝑘
𝑛𝑀

𝑙
𝑛 +𝑀 𝑙

𝑛𝑀
𝑘
𝑛)𝑢𝑛 𝑑𝑆

𝑘𝑙
𝑛 + 1

2 (𝑀
𝑘
𝑛𝑀

𝑙
𝑛 −𝑀 𝑙

𝑛𝑀
𝑘
𝑛)𝑢𝑛 𝑑𝑆

𝑘𝑙
𝑛

+ 1
2𝑀

𝑘
𝑛𝑔

𝑙
𝑛 𝑑(𝑆

𝑘𝑙
𝑛 + 𝑆𝑙𝑘𝑛 ) + 1

2 (𝑀
𝑙
𝑛𝑔
𝑘
𝑛 −𝑀𝑘

𝑛𝑔
𝑙
𝑛) 𝑑𝑆

𝑙𝑘
𝑛

= 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑(𝑆

𝑘𝑙
𝑛 + 𝑆𝑙𝑘𝑛 ) + 1

2

(
[𝑀 𝑙

𝑛,𝑀
𝑘
𝑛 ]𝑢𝑛 +𝑀𝑘

𝑛𝑔
𝑙
𝑛 −𝑀 𝑙

𝑛𝑔
𝑘
𝑛

)
𝑑𝑆𝑘𝑙𝑛 ,

where [𝐴,𝐵] = 𝐵𝐴−𝐴𝐵. Thus using Remark 2.2 we get

𝑀𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑆

𝑘𝑙
𝑛

= − 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛 + 1

2𝑀
𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑(𝑅

𝑘𝑙
𝑛 +𝑅𝑙𝑘𝑛 )

+ 1
2

(
[𝑀 𝑙

𝑛,𝑀
𝑘
𝑛 ]𝑢𝑛 +𝑀𝑘

𝑛𝑔
𝑙
𝑛 −𝑀 𝑙

𝑛𝑔
𝑘
𝑛

)
𝑑𝑆𝑘𝑙𝑛
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= − 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛 + 1

2

(
𝑀 𝑙
𝑛 ⋄𝑀𝑘

𝑛𝑢𝑛 +𝑀𝑘𝑔𝑙𝑛 +𝑀 𝑙
𝑛𝑔
𝑘
𝑛

)
𝑑𝑅𝑘𝑙𝑛

+ 1
2

(
[𝑀 𝑙

𝑛,𝑀
𝑘
𝑛 ]𝑢𝑛 +𝑀𝑘

𝑛𝑔
𝑙
𝑛 −𝑀 𝑙

𝑛𝑔
𝑘
𝑛

)
𝑑𝑆𝑘𝑙𝑛 , (6.10)

where we use the notation 𝐴 ⋄𝐵 = 𝐵𝐴+𝐴𝐵 for linear operators 𝐴 and 𝐵. Thus
Equation (6.7) can be rewritten as follows.

Lemma 6.2. The process 𝑤𝑛 solves

𝑑𝑤𝑛 = (ℒ𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 [𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑤𝑛 +𝐻𝑘𝑙

𝑛 ) 𝑑𝑆𝑘𝑙𝑛 + (𝑀𝑘
𝑛𝑤𝑛 + �̄�𝑘𝑛) 𝑑𝑊

𝑘

+ 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛 + 1

2

(
[𝑀𝑘,𝑀 𝑙]𝑢+𝑀 𝑙𝑔𝑘 −𝑀𝑘𝑔𝑙

)
𝑑𝑆𝑘𝑙𝑛 , (6.11)

where

𝐻𝑘𝑙
𝑛 = 1

2 [𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ](𝑀

𝑟
𝑛𝑢𝑛 + 𝑔𝑟𝑛)(𝑊

𝑟 −𝑊 𝑟
𝑛)

+ 1
2 ([𝑀

𝑘
𝑛 ,𝑀

𝑙
𝑛]− [𝑀𝑘,𝑀 𝑙])𝑢+ 1

2 (𝑀
𝑙
𝑛𝑔
𝑘
𝑛 −𝑀 𝑙𝑔𝑘 +𝑀𝑘𝑔𝑙 −𝑀𝑘

𝑛𝑔
𝑙
𝑛),

�̄�𝑘𝑛 = 𝐺𝑘𝑛 − 1
2

(
𝑀𝑘
𝑛 ⋄𝑀 𝑙

𝑛𝑢𝑛 +𝑀 𝑙
𝑛𝑔
𝑘
𝑛 +𝑀𝑘

𝑛𝑔
𝑙
𝑛

)
(𝑊 𝑙 −𝑊 𝑙

𝑛).

Proof. Plugging (6.10) into (6.7) we get

𝑑𝑤𝑛 = (ℒ𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (𝑀𝑘
𝑛𝑤𝑛 + �̄�𝑘𝑛) 𝑑𝑊

𝑘

+ 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛 − 1

2{[𝑀 𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑢𝑛 +𝑀𝑘

𝑛𝑔
𝑙
𝑛 −𝑀 𝑙

𝑛𝑔
𝑘
𝑛} 𝑑𝑆𝑘𝑙𝑛

= (ℒ𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (𝑀𝑘
𝑛𝑤𝑛 + �̄�𝑘𝑛) 𝑑𝑊

𝑘

+ 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛 +

(
1
2 [𝑀

𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑤𝑛 +𝑀 𝑙

𝑛𝑔
𝑘
𝑛 −𝑀𝑘

𝑛𝑔
𝑙
𝑛

)
𝑑𝑆𝑘𝑙𝑛

− 1
2 [𝑀

𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑢 𝑑𝑆𝑘𝑙𝑛 + 1

2 [𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ](𝑀

𝑟
𝑛𝑢𝑛 + 𝑔𝑟𝑛)(𝑊

𝑟 −𝑊 𝑟
𝑛) 𝑑𝑆

𝑘𝑙
𝑛

= (ℒ𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 [𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑤𝑛 +𝐻𝑘𝑙

𝑛 ) 𝑑𝑆𝑘𝑙𝑛 + (𝑀𝑘
𝑛𝑤𝑛 + �̄�𝑘𝑛) 𝑑𝑊

𝑘

+ 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛 + 1

2{[𝑀𝑘,𝑀 𝑙]𝑢+𝑀 𝑙𝑔𝑘 −𝑀𝑘𝑔𝑙} 𝑑𝑆𝑘𝑙𝑛 . □

In the same way as (6.9) is proved, we can easily get∫ 𝑇

0

∣�̄�𝑛∣2𝑚−1 𝑑𝑡 = 𝑂(𝑛−2𝜅), sup
𝑡≤𝑇

∣𝐻𝑘𝑙
𝑛 (𝑡)∣2𝑚 = 𝑂(𝑛−2𝜅) for 𝜅 < 𝛾 (6.12)

almost surely for all 𝑘, 𝑙 = 1, . . . , 𝑑1. Finally we rewrite (6.11) as an equation for
𝑣𝑛 = 𝑤𝑛 − 𝑟𝑛, where

𝑟𝑛 = 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛)𝑞

𝑘𝑙
𝑛 + 1

2{[𝑀𝑘,𝑀 𝑙]𝑢+𝑀𝑘𝑔𝑙 −𝑀 𝑙𝑔𝑘}𝑆𝑘𝑙𝑛 .

Notice that by (6.3) and Remark 2.2, 𝑟𝑛 satisfies (6.6) in place of 𝑧𝑛.

Lemma 6.3. The process 𝑣𝑛 solves

𝑑𝑣𝑛 = (ℒ𝑛𝑣𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 [𝑀
𝑘
𝑛 ,𝑀

𝑙
𝑛]𝑣𝑛 + �̃�𝑘𝑙

𝑛 ) 𝑑𝑆𝑘𝑙𝑛 + (𝑀𝑘
𝑛𝑣𝑛 + �̃�𝑘𝑛) 𝑑𝑊

𝑘

− 1
2𝑀

𝑘
𝑛𝑀

𝑙
𝑛(𝑀

𝑟
𝑛𝑢𝑛 + 𝑔𝑟𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝐵

𝑙𝑟
𝑛 , (6.13)
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where 𝐵𝑙𝑟
𝑛 is as in (2.2) and

𝐹𝑛 = 𝐹𝑛 + ℒ𝑛𝑟𝑛 − 1
2𝑀

𝑘
𝑛𝑀

𝑙
𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑞

𝑘𝑙
𝑛 − 1

2 [𝑀
𝑘,𝑀 𝑙](ℒ𝑢+ 1

2𝑀
𝑟𝑔𝑟 + 𝑓)𝑆𝑘𝑙𝑛 ,

�̃�𝑘𝑛 = �̄�𝑛 +𝑀𝑘
𝑛𝑟𝑛 − 1

2 [𝑀
𝑟,𝑀 𝑙](𝑀𝑘𝑢+ 𝑔𝑘)𝑆𝑟𝑙𝑛 ,

�̃�𝑘𝑙
𝑛 = 𝐻𝑘𝑙

𝑛 + 1
2 [𝑀

𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑟𝑛.

Proof. Indeed,

𝑑𝑣𝑛 = (ℒ𝑛𝑣𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 [𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑣𝑛 + �̃�𝑘𝑙

𝑛 ) 𝑑𝑆𝑘𝑙𝑛 + (𝑀𝑘
𝑛𝑣𝑛 + �̄�𝑘𝑛) 𝑑𝑊

𝑘

+ ℒ𝑛𝑟𝑛 𝑑𝑡+𝑀𝑘
𝑛𝑟𝑛 𝑑𝑊

𝑘

− 1
2𝑀

𝑘
𝑛𝑀

𝑙
𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛)𝑞

𝑘𝑙
𝑛 𝑑𝑡− 1

2𝑀
𝑘
𝑛𝑀

𝑙
𝑛(𝑀

𝑟
𝑛𝑢𝑛 + 𝑔𝑟𝑛)𝑞

𝑘𝑙
𝑛 𝑑𝑊 𝑟

𝑛

− 1
2 [𝑀

𝑘
𝑛 ,𝑀

𝑙
𝑛](ℒ𝑢+ 1

2𝑀
𝑟𝑔𝑟 + 𝑓)𝑆𝑘𝑙𝑛 𝑑𝑡− 1

2 [𝑀
𝑘
𝑛 ,𝑀

𝑙
𝑛](𝑀

𝑟𝑢+ 𝑔𝑟)𝑆𝑘𝑙𝑛 𝑑𝑊 𝑟

= (ℒ𝑣𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 [𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ]𝑣𝑛 + �̃�𝑘𝑙

𝑛 ) 𝑑𝑆𝑘𝑙𝑛 + (𝑀𝑘
𝑛𝑣𝑛 + �̃�𝑘𝑛) 𝑑𝑊

𝑘

− 1
2𝑀

𝑘
𝑛𝑀

𝑙
𝑛(𝑀

𝑟
𝑛𝑢𝑛 + 𝑔𝑟𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝐵

𝑙𝑟
𝑛 . □

Making use of (6.9), (6.12) and (2.3), we easily obtain that for 𝜅 < 𝛾∫ 𝑇

0

(∣𝐹𝑛∣2𝑚−1 + ∣�̃�𝑘𝑛∣2𝑚) 𝑑𝑡 = 𝑂(𝑛−2𝜅), sup
𝑡≤𝑇

∣�̃�𝑘𝑙
𝑛 (𝑡)∣2𝑚 = 𝑂(𝑛−2𝛾) (6.14)

almost surely for 𝑘, 𝑙 = 1, . . . , 𝑑1. Hence we finish the proof of the theorem by
applying Theorem 5.4 with 𝑙 = 𝑚 to Equation (6.13) and using (6.1) for 𝑧𝑛 and 𝑟𝑛.

□

6.2. Proof of Theorem 2.12

We follow the proof of Theorem 2.7 with the necessary changes. By a well-known
theorem on degenerate stochastic PDEs from [15], 𝑢 is an 𝐻𝑚+2-valued weakly
continuous process, and by Theorem 4.8 with 𝑙 = 𝑚+ 4 we have

sup
𝑡≤𝑇

∣𝑢𝑛∣2𝑚+4 = 𝑂(𝑛𝜀) a.s. for 𝜀 > 0. (6.15)

Clearly, 𝑢− 𝑢𝑛 satisfies Equation (6.4), and∫ 𝑇

0

(∣𝑓𝑛∣2𝑚 + ∣𝑔𝑛∣2𝑚+1) 𝑑𝑡 = 𝑂(𝑛−2𝛾). (6.16)

Moreover, Lemmas 6.1, 6.2 and 6.3 remain valid, and due to (6.15), (6.16) and our
assumptions, we have for each 𝜅 < 𝛾∫ 𝑇

0

(∣𝐹𝑛∣2𝑚 + ∣𝐺𝑛∣2𝑚+1) 𝑑𝑡 = 𝑂(𝑛−2𝜅),∫ 𝑇

0

∣�̄�𝑛∣2𝑚+1 𝑑𝑡 = 𝑂(𝑛−2𝜅), sup
𝑡≤𝑇

∣𝐻𝑘𝑙
𝑛 (𝑡)∣2𝑚 = 𝑂(𝑛−2𝜅),∫ 𝑇

0

∣𝐹𝑛∣2𝑚 + ∣�̃�𝑛∣2𝑚+1 𝑑𝑡 = 𝑂(𝑛−2𝜅), sup
𝑡≤𝑇

∣�̃�𝑘𝑙
𝑛 (𝑡)∣2𝑚 = 𝑂(𝑛−2𝜅)
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almost surely for 𝑘, 𝑙 = 1, . . . , 𝑑1. Note also that 𝑟𝑛 and 𝑧𝑛 satisfy (6.1). Hence we
finish the proof of the theorem by applying Theorem 5.7 with 𝑙 = 𝑚 to Equation
(6.13). □

Now we prove our main results in the case when the coefficients and the free
terms depend on 𝑡.

6.3. Proof of Theorem 2.17

We follow the proof of Theorem 2.7 with the necessary changes. As before, (6.2)
and (6.3) hold. Now 𝑢− 𝑢𝑛 satisfies Equation (6.4) with an additional term,

1

2

𝑑1∑
𝑘=1

(
𝑀𝑘(𝑘)𝑢+ 𝑔𝑘(𝑘)

)
𝑑𝑡,

added to the right-hand side of (6.4). Thus to get the analogue of Lemma 6.1 we
set

𝑁𝑛 =
1

2

𝑑1∑
𝑘=1

𝑀𝑘(𝑘)
𝑛 , ℒ̄𝑛 = ℒ𝑛 +𝑁𝑛 = 𝐿𝑛 +

1

2

(
𝑀𝑘
𝑛𝑀

𝑘
𝑛 +

𝑑1∑
𝑘=1

𝑀𝑘(𝑘)
𝑛

)
,

𝑀𝑘(𝑙)
𝑛 = 𝑏𝑖𝑘(𝑙)𝑛 𝐷𝑖 + 𝑏𝑘(𝑙)𝑛 , 𝑀𝑘𝑙 = 𝑏𝑖𝑘(𝑙)𝐷𝑖 + 𝑏𝑘(𝑙)

for 𝑘 = 1, . . . , 𝑑1, 𝑙 = 0, . . . , 𝑑1 and 𝑛 ≥ 1. Then for

𝑤𝑛 = 𝑢− 𝑢𝑛 − 𝑧𝑛, 𝑧𝑛 = (𝑀𝑘
𝑛𝑢𝑛 + 𝑔𝑘𝑛)(𝑊

𝑘 −𝑊 𝑘
𝑛 ) (6.17)

the corresponding lemma reads as follows.

Lemma 6.4. The process 𝑤𝑛 solves

𝑑𝑤𝑛 = (ℒ̄𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (𝑀𝑘
𝑛𝑤𝑛 +𝐺𝑘𝑛) 𝑑𝑊

𝑘

−𝑀𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑆

𝑘𝑙
𝑛 − (𝑀𝑘(𝑙)

𝑛 𝑢𝑛 + 𝑔𝑘(𝑙)𝑛 ) 𝑑𝑆𝑘𝑙𝑛 ,

where

𝐹𝑛 = 𝐹𝑛 +
1

2

𝑑1∑
𝑘=1

(𝑀𝑘(𝑘) −𝑀𝑘(𝑘)
𝑛 )𝑢 +

1

2

𝑑1∑
𝑘=1

(𝑔𝑘(𝑘) − 𝑔𝑘(𝑘)𝑛 )

− (𝑀𝑘(0)𝑢𝑛 + 𝑔𝑘(0))(𝑊 𝑘 −𝑊 𝑘
𝑛 ) +𝑁𝑛𝑧𝑛, (6.18)

and 𝐹𝑛 and 𝐺𝑛 are defined in Lemma 6.1.

Proof. We need only notice that for 𝑧𝑛 Equation (6.8) holds with a new term,

(𝑀𝑘(0)
𝑛 𝑢𝑛 + 𝑔𝑘(0))(𝑊 𝑘 −𝑊 𝑘

𝑛 ) 𝑑𝑡+ (𝑀𝑘(𝑙)
𝑛 𝑢𝑛 + 𝑔𝑘(𝑖)𝑛 )(𝑊 𝑘 −𝑊 𝑘

𝑛 ) 𝑑𝑊
𝑙
𝑛,

added to its right-hand side. □

Hence we get the following modification of Lemma 6.2.
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Lemma 6.5. The process 𝑤𝑛 solves

𝑑𝑤𝑛 = (ℒ̄𝑛𝑤𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 ([𝑀
𝑙
𝑛,𝑀

𝑘
𝑛 ] +𝑀𝑘(𝑙)

𝑛 )𝑤𝑛 + �̄�𝑘𝑙
𝑛 ) 𝑑𝑆𝑘𝑙𝑛

+ (𝑀𝑘
𝑛𝑤𝑛 + �̄�𝑘𝑛) 𝑑𝑊

𝑘 + 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛) 𝑑𝑞

𝑘𝑙
𝑛

+ 1
2

(
([𝑀𝑘,𝑀 𝑙]−𝑀𝑘(𝑙))𝑢+𝑀 𝑙𝑔𝑘 −𝑀𝑘𝑔𝑙 − 𝑔𝑘(𝑙)

)
𝑑𝑆𝑘𝑙𝑛 , (6.19)

where

�̄�𝑘𝑙
𝑛 = 𝐻𝑘𝑙

𝑛 + 1
2𝑀

𝑘(𝑙)
𝑛 (𝑀 𝑟

𝑛𝑢𝑛 + 𝑔𝑟𝑛)(𝑊
𝑟 −𝑊 𝑟

𝑛)

+ 1
2 (𝑀

𝑘(𝑙) −𝑀𝑘(𝑙)
𝑛 )𝑢+ 1

2 (𝑔
𝑘(𝑙) − 𝑔𝑘(𝑙)𝑛 ), (6.20)

and 𝐻𝑘𝑙
𝑛 and �̄�𝑘𝑛 are defined in Lemma 6.2.

Now we rewrite Equation (6.19) as an equation for 𝑣𝑛 := 𝑤𝑛 − 𝑟𝑛, where

𝑟𝑛 = 𝑟𝑛 − 1
2 (𝑀

𝑘(𝑙)𝑢+ 𝑔𝑘(𝑙))𝑆𝑘𝑙𝑛 (6.21)

= 1
2𝑀

𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛)𝑞

𝑘𝑙
𝑛 + 1

2 (([𝑀
𝑘,𝑀 𝑙]−𝑀𝑘(𝑙))𝑢 +𝑀 𝑙𝑔𝑘 −𝑀𝑘𝑔𝑙 − 𝑔𝑘(𝑙))𝑆𝑘𝑙𝑛 .

To this end we set

𝑓 = 𝑓 + 1
2𝑀

𝑘𝑔𝑘 + 1
2

𝑑1∑
𝑘=1

𝑔𝑘(𝑘),

and notice that

𝑑𝑀𝑘
𝑛(𝑀

𝑙
𝑛𝑢𝑛 + 𝑔𝑙𝑛)

= 𝑀𝑘
𝑛𝑀

𝑙
𝑛(𝐿𝑛𝑢𝑛 + 𝑓𝑛) 𝑑𝑡+𝑀𝑘

𝑛𝑀
𝑙
𝑛(𝑀

𝑗
𝑛𝑢𝑛 + 𝑔𝑗𝑛) 𝑑𝑊

𝑗
𝑛 + 𝑇 𝑘𝑙0𝑛 𝑑𝑡+ 𝑇 𝑘𝑙𝑗𝑛 𝑑𝑊 𝑗

𝑛,

where

𝑇 𝑘𝑙0𝑛 = (𝑀𝑘(0)
𝑛 𝑀 𝑙

𝑛 +𝑀𝑘
𝑛𝑀

𝑙(0)
𝑛 )𝑢𝑛 +𝑀𝑘(0)

𝑛 𝑔𝑙𝑛 +𝑀𝑘
𝑛𝑔

𝑙(0)
𝑛 ,

𝑇 𝑘𝑙𝑗𝑛 = (𝑀𝑘(𝑗)
𝑛 𝑀 𝑙

𝑛 +𝑀𝑘
𝑛𝑀

𝑙(𝑗)
𝑛 )𝑢𝑛 +𝑀𝑘(𝑗)

𝑛 𝑔𝑙𝑛 +𝑀𝑘
𝑛𝑔

𝑙(𝑗)
𝑛 .

Similarly,

𝑑[𝑀𝑘,𝑀 𝑙]𝑢 = [𝑀𝑘,𝑀 𝑙](ℒ𝑢 + 𝑓 + 1
2𝑀

𝑗𝑔𝑗) 𝑑𝑡+ [𝑀𝑘,𝑀 𝑙](𝑀 𝑗 + 𝑔𝑗) 𝑑𝑊 𝑗

+ 𝑃 𝑘𝑙0 𝑑𝑡+ 𝑃 𝑘𝑙𝑗 𝑑𝑊 𝑗 ,

𝑑(−𝑀𝑘(𝑙)𝑢+𝑀 𝑙𝑔𝑘 −𝑀𝑘𝑔𝑙 − 𝑔𝑘(𝑙)) = 𝑈𝑘𝑙0 𝑑𝑡+ 𝑈𝑘𝑙𝑗 𝑑𝑊 𝑗 ,

where ℒ = 𝐿+ 1
2𝑀

𝑘𝑀𝑘,

𝑃 𝑘𝑙0 = [𝑀𝑘,𝑀 𝑙(0)]𝑢+ [𝑀𝑘(0),𝑀 𝑙]𝑢+

𝑑1∑
𝑗=1

[𝑀𝑘(𝑗),𝑀 𝑙(𝑗)]𝑢

+ ([𝑀𝑘,𝑀 𝑙(𝑗)] + [𝑀𝑘(𝑗),𝑀 𝑙])(𝑀 𝑗𝑢+ 𝑔𝑗)

+ 1
2

𝑑1∑
𝑗=1

[𝑀𝑘,𝑀 𝑙](𝑀 𝑗(𝑗)𝑢+ 𝑔𝑗(𝑗)),

𝑃 𝑘𝑙𝑗 = ([𝑀𝑘,𝑀 𝑙(𝑗)] + [𝑀𝑘(𝑗),𝑀 𝑙])𝑢,
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𝑈𝑘𝑙0 = −𝑀𝑘(𝑙0)𝑢−𝑀𝑘(𝑙)(ℒ̄𝑢+ 𝑓)−𝑀𝑘(𝑙𝑗)(𝑀 𝑗𝑢+ 𝑔𝑗)

+𝑀 𝑙(0)𝑔𝑘 +𝑀 𝑙𝑔𝑘(0) +𝑀 𝑙(𝑗)𝑔𝑘(𝑗)

−𝑀𝑘(0)𝑔𝑙 −𝑀𝑘𝑔𝑙(0) −𝑀𝑘(𝑗)𝑔𝑙(𝑗) − 𝑔𝑘(𝑙0),

𝑈𝑘𝑙𝑗 = −𝑀𝑘(𝑙𝑗)𝑢−𝑀𝑘(𝑙)(𝑀 𝑗𝑢+ 𝑔𝑗) +𝑀 𝑙(𝑗)𝑔𝑘 +𝑀 𝑙𝑔𝑘(𝑗)

−𝑀𝑘(𝑗)𝑔𝑙 −𝑀𝑘𝑔𝑙(𝑗) − 𝑔𝑘(𝑙𝑗).

Let 𝐹𝑛, �̃�
𝑘
𝑛 and �̃�𝑘𝑙

𝑛 be defined now as in Lemma 6.3, but with 𝐹𝑛 and 𝐺𝑘𝑛 replaced
there by 𝐹𝑛 and �̄�𝑘𝑛 in (6.18) and (6.20), respectively.

Thus we have the following modification of Lemma 6.3.

Lemma 6.6. The process 𝑣𝑛 = 𝑤𝑛 − 𝑟𝑛 solves

𝑑𝑣𝑛 = (ℒ̄𝑛𝑣𝑛 + 𝐹𝑛) 𝑑𝑡+ (12 ([𝑀
𝑘
𝑛 ,𝑀

𝑙
𝑛] +𝑀𝑘(𝑙))𝑣𝑛 + �̂�𝑘𝑙

𝑛 ) 𝑑𝑆𝑘𝑙𝑛

+ (𝑀𝑘
𝑛𝑣𝑛 + �̂�𝑘𝑛) 𝑑𝑊

𝑘 − 1
2𝑇

𝑘𝑙𝑗(𝑊 𝑘 −𝑊 𝑘
𝑛 ) 𝑑𝐵

𝑙𝑟
𝑛 , (6.22)

where

𝐹𝑛 = 𝐹𝑛 +𝑁𝑛𝑟𝑛 − 1
2 ℒ̄𝑛(𝑀𝑘(𝑙)𝑢+ 𝑔𝑘(𝑙))𝑆𝑘𝑙𝑛

− 1
2𝑇

𝑘𝑙0𝑞𝑘𝑙𝑛 − 1
2 (𝑃

𝑘𝑙0
𝑛 + 𝑈𝑘𝑙0𝑛 )𝑆𝑘𝑙𝑛 ,

�̂�𝑘𝑛 = �̃�𝑛 − 1
2𝑀

𝑘
𝑛(𝑀

𝑗(𝑙)𝑢+ 𝑔𝑗(𝑙))𝑆𝑗𝑙𝑛 − 1
2 (𝑃

𝑗𝑙𝑘 + 𝑈 𝑗𝑙𝑘)𝑆𝑗𝑙𝑛

�̂�𝑘𝑙
𝑛 = �̃�𝑘𝑙

𝑛 + 1
2𝑀

𝑘(𝑙)𝑟𝑛 − 1
4 ([𝑀

𝑙
𝑛,𝑀

𝑘
𝑛 ] +𝑀𝑘𝑙

𝑛 )(𝑀𝑘(𝑙)𝑢+ 𝑔𝑘(𝑙))𝑆𝑘𝑙𝑛 .

We can verify that (6.14) holds with 𝐹𝑛, �̂�
𝑘
𝑛 and �̂�𝑘𝑙 in place of 𝐹𝑛, �̃�

𝑘
𝑛 and

�̃�𝑘𝑙, respectively. We can also see that 𝑧𝑛 and 𝑟𝑛 satisfy (6.6). Hence we finish the
proof by applying Theorem 5.4 with 𝑙 = 𝑚 to Equation (6.22).

6.4. Proof of Theorem 2.21

We get Lemma 6.6 in the same way as Lemma 6.3 is proved, and we can also see
that ∫ 𝑇

0

(∣𝐹𝑛∣2𝑚 + ∣�̂�𝑘𝑛∣2𝑚+1) 𝑑𝑡 = 𝑂(𝑛−2𝜅), sup
𝑡≤𝑇

∣�̂�𝑘𝑙
𝑛 (𝑡)∣2𝑚 = 𝑂(𝑛−2𝜅)

for each 𝜅 < 𝛾, almost surely for 𝑘, 𝑙 = 1, . . . , 𝑑1, where 𝐹𝑛, �̂�
𝑘
𝑛 and �̂�𝑘𝑙

𝑛 are defined
in Lemma 6.3. We can also verify that for 𝑧𝑛 and 𝑟𝑛, defined in (6.17) and (6.21),
we have

sup
𝑡≤𝑇

∣𝑧𝑛(𝑡)∣𝑚 + sup
𝑡≤𝑇

∣𝑟𝑛(𝑡)∣𝑚 = 𝑂(𝑛−𝜅) for each 𝜅 < 𝛾.

Hence we obtain the theorem by applying Theorem 5.7 with 𝑙 = 𝑚 to Equation
(6.22).
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Weak Approximations for SDE’s
Driven by Lévy Processes

Arturo Kohatsu-Higa and Hoang-Long Ngo

Abstract. In this article we briefly survey recent advances in some simulation
methods for Lévy driven stochastic differential equations. We give a brief
description of each method and extend the one jump scheme method for some
subordinated models like the NIG process. Simulations of all the presented
methods are performed and compared.
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Keywords. SDE’s, Lévy process, numerical approximation, simulation.

1. Introduction

Let 𝑋 be an ℝ𝑁 -valued adapted stochastic process, unique solution of the sto-
chastic differential equation (SDE) with jumps

𝑋𝑡(𝑥) = 𝑥+

∫ 𝑡

0

𝑉0(𝑋𝑠(𝑥))𝑑𝑠 +

∫ 𝑡

0

𝑉 (𝑋𝑠(𝑥))𝑑𝐵𝑠 +

∫ 𝑡

0

ℎ(𝑋𝑠−(𝑥))𝑑𝑍𝑠, 𝑡 ∈ [0, 1],

(1.1)

with smooth coefficients 𝑉0 : ℝ𝑁 → ℝ𝑁 , 𝑉 = (𝑉
(𝑗)
𝑖 )𝑖=1,...,𝑑

𝑗=1,...,𝑁 : ℝ𝑁 → ℝ𝑁 ⊗ℝ𝑑, ℎ :

ℝ𝑁 → ℝ𝑁 ⊗ℝ𝑑 whose derivatives of any order (≥ 1) are bounded. Here 𝐵 denotes
an 𝑑-dimensional standard Brownian motion and 𝑍 denotes an 𝑑-dimensional Lévy
process with Lévy triplet (𝛾, 0, 𝜈) such that all of its moments are finite unless
stated otherwise.

In this report, we numerically compare and evaluate two types of discrete
approximation schemes for 𝑋 in order to estimate 𝔼[𝑓(𝑋1)] for smooth functions

𝑓 . More precisely, we find a discretization scheme (𝑋
(𝑛)
𝑡𝑗 (𝑥))𝑛𝑗=0 for a partition

This research was supported by a grant of JST.
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0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 1 such that

∣𝔼[𝑓(𝑋1(𝑥))]− 𝔼[𝑓(𝑋(𝑛)
1 (𝑥))]∣ ≤ 𝐶(𝑓, 𝑥)

𝑛𝑚
, (1.2)

for some 𝑚 ∈ ℕ and a positive constant 𝐶(𝑓, 𝑥).

In such a case, we say that such a scheme is an 𝑚th order discretization
scheme for 𝑋 . The actual simulation to estimate 𝔼[𝑓(𝑋1(𝑥))] is carried out us-

ing Monte Carlo methods. That is, one computes 1
𝑁𝑀𝐶

∑𝑁𝑀𝐶
𝑖=1 𝑓(𝑋

(𝑛),𝑖
1 (𝑥)) where

𝑋
(𝑛),𝑖
1 (𝑥), 𝑖 = 1, . . . , 𝑁𝑀𝐶 denotes 𝑁𝑀𝐶 i.i.d copies of 𝑋

(𝑛)
1 (𝑥). Therefore, us-

ing the law of large numbers, the final error of the estimate is of the order
𝑂( 1√

𝑁𝑀𝐶
+ 1

𝑛𝑚 ). Then the optimal choice of 𝑛 is 𝑂(𝑛𝑚) = 𝑂(
√
𝑁𝑀𝐶).

From this result, we can see that there is a reduction in computation time
if one can obtain a scheme with a high value of 𝑚 even if the computational cost
increases linearly with 𝑚. In this light, we want to address in this article, the
performance of some competing approximation schemes for jump driven sde’s of
the type (1.1) in the infinite activity case (i.e., 𝜈(ℝ𝑑) = ∞) as it is in the case in
many financial models.

The first simulation proposal is to simulate all the jump times and their corre-
sponding jump sizes in the case that 𝑍 is a finite activity process (i.e., 𝜈(ℝ𝑑) <∞)
(see, e.g., [3]). This becomes impossible in the infinite activity case as the number
of jumps in any interval is infinite a.s. and therefore instead one may simulate all
jump times for jump sizes bigger than a fixed small parameter 𝜀. Following a pro-
posal by Asmussen and Rosiński [2], the small jumps are replaced by an indepen-
dent Brownian motion with variance given by

∫
∣𝑦∣≤𝜀 ∣𝑦∣2𝜈(𝑑𝑦). It has been shown

in [2] and [6] that when approximating the small jumps by Gaussian variables, the
convergence rates, which are measured by either the Kolmogorov distance between
laws of processes at a fixed time or the mean square of the supremum of the error
during a finite and fixed interval, are significantly improved (see also [12]). In our
context of weak approximation (1.2), we would also like that the approximation
of small jumps should be accurate. When drift and/or continuous diffusion com-
ponents appear in the stochastic differential equation then one naturally faces an
optimality problem. That is, how to match the computational effort done on the
jump part with efficient approximation schemes for the drift and the Brownian
part of the equation between jump times.

This issue was addressed in the article [8]. The method introduced in that
article will be one of the methods that we will use in our comparison. In that
method one uses all the jumps of size bigger than 𝜀, the jump times become time
partition points and one approximates the effect of the drift up to a high order of
accuracy and there is no continuous diffusion part. In [8] it is proven that the rate
of convergence is fast but the calculation time may be long.

On another article [14], the authors take a different point of view. Instead
of using a random time partition points given by the jumps times corresponding
to jump sizes bigger than 𝜀, a fixed time partition is used and an approximation
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for the increments of the Lévy process is used. In this approximation, one uses an
approximation with at most a finite number of jumps per interval. The maximum
number of jumps is set by the user and therefore this becomes a limitation on the
computation time by the part of the user. This approach which, in some sense,
goes in the reverse direction of the scheme in [8] assumes that an approximation
for the drift and the continuous diffusion part have been set and one tries to find
a simple approximation of the increment of the Lévy process so as to match the
computational effort invested in the Brownian and drift part of the equation. In
order to introduce this method, one needs to explain the framework of the operator
splitting method in its stochastic form.

This method is well known as a numerical method for partial differential
equations. The idea is to use it, finding stochastic representations for the approx-
imating splitting therefore providing new simulations methods based on compo-
sition of flows which parallel the composition of semigroups. This idea has been
successfully used for stochastic differential equations driven by Brownian motion
(see [9] and [10]).

Nevertheless, it should be noted that the performance of every estimation
scheme depends on the activity level of small jump of the driving Lévy process 𝑍,
which is measured by the Blumenthal–Getoor index

𝜚 = inf{𝑝 ≥ 0 :

∫
∥𝑥∥≤1

∥𝑥∥𝑝𝜈(𝑑𝑥) <∞}.

Since the Lévy measure 𝜈 satisfying
∫
∥𝑥∥≤1 ∥𝑥∥2𝜈(𝑑𝑥) <∞, the index 𝜚 ∈ [0, 2].

The goal of the present article is to give a non-technical introduction to
these schemes and to present a throughout simulation study in order to assess
the properties of the approximation schemes described above. Therefore we refer
the reader for the proofs to the corresponding articles and we only give here the
intuition behind the schemes.

In order to give the reader an idea of what are the technical conditions that
need to be satisfied to obtain a new scheme, in Section 2.4.5, we deal with one case
that was not treated in [14]. The case we study corresponds to a normal subordi-
nated model. In this case, we have that

∫ ∣𝑦∣𝜈(𝑑𝑦) = ∞. We will verify the main
two conditions needed in order to establish the weak rate for the approximation
method which follows from the main Theorems 4.1, 4.3 and 5.1 in [14].

2. Approximation schemes

In this section, we define the approximation schemes for equation (1.1) which we
will compare in this paper. For proofs we refer the reader to the corresponding the-
oretical articles. We strive here for understanding and intuition of these schemes.

2.1. Euler’s scheme

The Euler scheme is the most natural approximation scheme. Its programming
flow is as follows. We denote 𝑡𝑛𝑖 = 𝑖/𝑛, 𝑖 = 1, . . . , 𝑛.
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1. Generate a sequence of independent random variables Δ𝑍𝑛𝑖 , 𝑖 = 0, . . . , 𝑛− 1,
which have the same distribution as 𝑍1/𝑛.

2. Generate a sequence of independent random variables Δ𝐵𝑛
𝑖 , 𝑖 = 0, . . . , 𝑛− 1,

which have the same distribution as 𝐵1/𝑛.

3. �̄�0 = 𝑥 and for 𝑖 = 0, . . . , 𝑛− 1,

�̄�(𝑖+1)/𝑛 = �̄�𝑖/𝑛 +
1

𝑛
𝑉0(�̄�𝑖/𝑛(𝑥)) + 𝑉 (�̄�𝑖/𝑛(𝑥))Δ𝐵𝑛

𝑖 + ℎ(�̄�𝑖/𝑛(𝑥))Δ𝑍𝑛𝑖 .

Various articles and results have been written on this scheme. The main problem
with this scheme is that it assumes that one can simulate the Brownian increment
and the Lévy increment with the same computational effort. This is hardly the
case in general, as the law of Lévy processes is generally given through their
characteristic function. Therefore in general, an inversion procedure is needed.
For more on this direction, see [7].

This simulation scheme is an approximation scheme of order 1 under sufficient
conditions on the Lévy measure and it has been proven in, e.g., [11].

2.2. Jump-size adapted discretization schemes

The purpose of this section is to introduce a simulation method which uses all
the jumps associated with the Lévy process whose norm are bigger than a certain
fixed value 𝜀. As the number of this type of jumps is finite on finite intervals
then this approximation process defines a compound Poisson process. Therefore
its simulation may be possible if we assume that the jump distribution can be
simulated. The main drawback of the method is that it may take long time to
compute as 𝜀 becomes small. On the other hand, it is a very accurate method. For
further details, we refer the reader to [8].

To introduce the method, suppose that 𝑉 = 𝑉0 = 0 and 𝑍 is a 𝑑-dimensional
Lévy process without diffusion component. That is,

𝑍𝑡 = 𝛾𝑡+

∫ 𝑡

0

∫
∣𝑦∣≤1

𝑦�̂�(𝑑𝑦, 𝑑𝑠) +

∫ 𝑡

0

∫
∣𝑦∣>1

𝑦𝑁(𝑑𝑦, 𝑑𝑠), 𝑡 ∈ [0, 1].

Here, 𝛾 ∈ ℝ𝑑 and 𝑁 is a Poisson random measure on ℝ𝑑 × [0,∞] with intensity

𝜈 satisfying
∫
(1 ∧ ∣𝑦∣2)𝜈(𝑑𝑦) < ∞. �̂�(𝑑𝑦, 𝑑𝑠) = 𝑁(𝑑𝑦, 𝑑𝑠) − 𝜈(𝑑𝑦)𝑑𝑠 denotes the

compensated version of 𝑁 .
Consider a family of measurable functions (𝜒𝜀)𝜀>0 : ℝ𝑑 → [0, 1] such that∫

ℝ𝑑
𝜒𝜀(𝑦)𝜈(𝑑𝑦) <∞ for all 𝜀 > 0, and lim𝜀→0 𝜒𝜀(𝑦) = 0, for all 𝑦 ∕= 0. This function

will serve as the localization function for the jumps which will be simulated. There-
fore, unless explicitly mentioned otherwise, we will usually take 𝜒𝜀(𝑦) = 1(∣𝑦∣ > 𝜀).

We assume that the associated Lévy measure 𝜈 satisfies that

𝜈(ℝ𝑑) =∞,

∫
ℝ𝑑
∣𝑦∣2𝜈(𝑑𝑦) <∞.

Let 𝑁𝜀 be a Poisson random measure with intensity 𝜒𝜀𝜈 × 𝑑𝑠 and 𝑁𝜀 its

compensated Poisson random measure. Denote �̂�𝜀 a compensated Poisson random
measure with intensity 𝜒𝜀𝜈 × 𝑑𝑠, where 𝜒𝜀 = 1− 𝜒𝜀.
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The processes 𝑍 can then be represented in law as follows

𝑍𝑡
𝑑
= 𝛾𝜀𝑡+ 𝑍𝜀𝑡 +𝑅𝜀𝑡 ,

𝛾𝜀 = 𝛾 −
∫
∣𝑦∣≤1

𝑦𝜒𝜀𝜈(𝑑𝑦) +

∫
∣𝑦∣>1

𝑦𝜒𝜀𝜈(𝑑𝑦),

𝑍𝜀𝑡 =

∫ 𝑡

0

∫
ℝ𝑑

𝑦𝑁𝜀(𝑑𝑦, 𝑑𝑠),

𝑅𝜀𝑡 =

∫ 𝑡

0

∫
ℝ𝑑

𝑦�̂�𝜀(𝑑𝑦, 𝑑𝑠).

We denote by 𝜆𝜀 =
∫
ℝ𝑑

𝜒𝜀(𝑦)𝜈(𝑑𝑦) the intensity of 𝑍𝜀, by 𝑇 𝜀𝑖 , 𝑖 ∈ ℕ the

𝑖th jump time of 𝑍𝜀 with 𝑇 𝜀0 = 0, and by Σ𝜀 =
( ∫

ℝ𝑑
𝑦𝑖𝑦𝑗𝜒𝜀(𝑦)𝜈(𝑑𝑦)

)
1≤𝑖,𝑗≤𝑑

the covariance matrix of 𝑅𝜀1. In the one-dimensional case, 𝑑 = 1, we set 𝜎2𝜀 =
(Σ𝜀)11. Given 𝜀 > 0 and Lévy measure 𝜈, one can compute 𝜆𝜀,Σ𝜀 and generate
the sequence (𝑇 𝜀𝑖 ). The random variable 𝑅𝜀1 will be approximated using a Gaussian
random variable with mean zero and variance Σ𝜀. This is the so-called Asmussen–
Rosiński approximation.

2.2.1. Kohatsu–Tankov scheme in dimension one. The following one-dimensional
scheme (𝑑 = 𝑁 = 1) uses an explicit transformation between jump times in order
to solve explicitly the ODE.

𝑑𝑋𝑡 = ℎ(𝑋𝑡)𝑑𝑡, 𝑋0 = 𝑥.

Suppose that 1/ℎ is locally integrable, this equation has a solution

𝑋𝑡 = 𝜃(𝑡;𝑥) = 𝐹−1(𝑡+ 𝐹 (𝑥)),

where 𝐹 is a primitive of 1/ℎ.

We define inductively �̂�(0) = 𝑋0 and for 𝑖 ≥ 0,

�̂�(𝑇 𝜀𝑖+1−) = 𝜃
(
𝛾𝜀(𝑇

𝜀
𝑖+1 − 𝑇 𝜀𝑖 ) + 𝜎𝜀(𝑊 (𝑇 𝜀𝑖+1)−𝑊 (𝑇 𝜀𝑖 ))

− 1

2
ℎ′(�̂�(𝑇 𝜀𝑖 ))𝜎

2
𝜀 (𝑇

𝜀
𝑖+1 − 𝑇 𝜀𝑖 ); �̂�(𝑇 𝜀𝑖 )

)
, (2.1)

�̂�(𝑇 𝜀𝑖+1) = �̂�(𝑇 𝜀𝑖+1−) + ℎ(�̂�(𝑇 𝜀𝑖+1−))Δ𝑍(𝑇 𝜀𝑖+1). (2.2)

For an arbitrary point 𝑡, we define

�̂�(𝑡) = 𝜃
(
𝛾𝜀(𝑡− 𝜂𝑡) + 𝜎𝜀(𝑊 (𝑡)−𝑊 (𝜂𝑡))− 1

2
ℎ′(�̂�(𝜂𝑡))𝜎

2
𝜀 (𝑡− 𝜂𝑡); �̂�(𝜂𝑡)

)
, (2.3)

where 𝜂𝑡 = sup{𝑇 𝜀𝑖 : 𝑇 𝜀𝑖 ≤ 𝑡}.
The logic behind the above scheme should be clear. Between jumps we use

a high-order approximation to the solution of the stochastic differential equation
driven by the drift coefficient 𝛾𝜀 and the Wiener process 𝑊 which replaces the
small jumps (i.e., Asmussen–Rosiński approximation). When a jump happens the
corresponding jump is added to the system.
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The rate of convergence of this scheme, under the condition
∫ ∣𝑦∣6𝜈(𝑑𝑦) <∞

is given by ∣∣𝔼(𝑓(�̂�1)− 𝑓(𝑋1))
∣∣ ≤ 𝐶

(𝜎2𝜀
𝜆𝜀

(𝜎2𝜀 + ∣𝛾𝜀∣) +
∫
ℝ

∣𝑦∣3�̄�𝜀𝜈(𝑑𝑦)
)
,

for some constant 𝐶 > 0 not depend on 𝜀 (see [8, Theorem 2]).

The above scheme can be applied when 𝐹 can be computed explicitly. Other-
wise, one has to resort to approximations for 𝐹 and then the order of the approx-
imation becomes an important issue. See [8] for more comments on this matter.

2.2.2. Kohatsu–Tankov scheme in higher dimension. This scheme uses instead a
Taylor expansion between jumps as the respective stochastic differential equation
between jumps can not be solved explicitly. We denote

�̃�(𝑡) = 𝑌 0(𝑡) + 𝑌1(𝑡), 𝑡 > 𝜂𝑡,

�̃�(𝑇 𝜀𝑖 ) = �̃�(𝑇 𝜀𝑖 −) + ℎ(�̃�(𝑇 𝜀𝑖 −))Δ𝑍(𝑇 𝜀𝑖 ),

𝑌 0(𝑡) = �̃�(𝜂𝑡) +

∫ 𝑡

𝜂𝑡

ℎ(𝑌 0(𝑡))𝛾𝜀𝑑𝑠,

𝑌1(𝑡) =
𝑁∑
𝑖=1

∫ 𝑡

𝜂𝑡

∂ℎ

∂𝑥𝑖
(𝑌 0(𝑠))𝑌 𝑖

1 (𝑠)𝛾𝜀𝑑𝑠+

∫ 𝑡

𝜂𝑡

ℎ(𝑌 0(𝑠))𝑑𝑊 𝜀(𝑠),

where

∙ 𝑊 𝜀 is a 𝑑-dimensional Brownian motion with covariance matrix Σ𝜀 indepen-
dent of 𝑍;

∙ the random vector 𝑌1(𝑡) conditioned on 𝑇 𝜀𝑖 , 𝑖 ∈ ℕ, 𝑡 ∈ (𝑇 𝜀𝑗 , 𝑇
𝜀
𝑗+1) and �̃�(𝑇 𝜀𝑗 )

is a Gaussian random vector with conditional covariance matrix Ω(𝑡) which
satisfies the (matrix) linear equation

Ω(𝑡) =

∫ 𝑡

𝜂𝑡

(Ω(𝑠)𝑀(𝑠) +𝑀⊥(𝑠)Ω⊥(𝑠) +𝑁(𝑠))𝑑𝑠,

where 𝑀⊥ denotes the transpose of the matrix 𝑀 and

𝑀𝑖𝑗(𝑡) =
∂ℎ𝑗𝑘(𝑌

0(𝑡))

∂𝑥𝑖
𝛾𝑘𝜀 and 𝑁(𝑡) = ℎ(𝑌 0(𝑡))Σ𝜀ℎ

⊥(𝑌 0(𝑡)).

The rate of convergence of the above scheme under the condition
∫ ∣𝑦∣6𝜈(𝑑𝑦) <∞

is given by∣∣𝔼(𝑓(�̃�1)− 𝑓(𝑋1))
∣∣ ≤ 𝐶

(∥Σ𝜀∥
𝜆𝜀

(∥Σ𝜀∥+ ∣𝛾𝜀∣) +
∫
ℝ

∣𝑦∣3�̄�𝜀𝜈(𝑑𝑦)
)
,

for some constant 𝐶 > 0 which does not depend on 𝜀 (see Theorem 16 [8]).
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2.3. Operator splitting schemes

We define 𝑉0 = 𝑉0 − 1
2

∑𝑑
𝑖=1

∑𝑁
𝑗=1

∂𝑉𝑖
∂𝑥𝑗

𝑉
(𝑗)
𝑖 . Then Equation (1.1) can be rewritten

in the following Stratonovich form

𝑋𝑡(𝑥) = 𝑥+

𝑑∑
𝑖=0

∫ 𝑡

0

𝑉𝑖(𝑋𝑠−(𝑥)) ∘ 𝑑𝐵𝑖
𝑠 +

∫ 𝑡

0

ℎ(𝑋𝑠−(𝑥))𝑑𝑍𝑠, (2.4)

where 𝐵0
𝑡 = 𝑡. We define the semigroup 𝑃𝑡 by

𝑃𝑡𝑓(𝑥) = 𝔼[𝑓(𝑋𝑡(𝑥))],

where 𝑓 : ℝ𝑁 → ℝ is a continuous smooth function with polynomial growth at
infinity.

We will approximate 𝑃𝑡𝑓(𝑥) = 𝔼[𝑓(𝑋𝑡(𝑥))] by using its Taylor expansion for
small 𝑡 > 0. We will first compute, using Itô’s formula

𝑃ℎ𝑓(𝑥)− 𝑓(𝑥)

ℎ
.

For this, note that Itô’s formula gives

𝑓(𝑋ℎ(𝑥)) − 𝑓(𝑥) =

∫ ℎ

0

∇𝑓(𝑋𝑠(𝑥))𝑑𝑋
𝑐
𝑠 (𝑥)

+
1

2

𝑑∑
𝑖=1

𝑁∑
𝑗=1

∫ ℎ

0

𝐷2
𝑖𝑗𝑓(𝑋𝑠(𝑥))𝑑⟨𝑋 𝑖(𝑥), 𝑋𝑗(𝑥)⟩𝑠

+
∑
𝑠≤ℎ

{𝑓(𝑋𝑠−(𝑥) + ℎ(𝑋𝑠−(𝑥))Δ𝑍𝑠)

−𝑓(𝑋𝑠−(𝑥)) −∇𝑓(𝑋𝑠−(𝑥))ℎ(𝑋𝑠−(𝑥))Δ𝑍𝑠} .
After taking expectations and limits we obtain:

lim
ℎ→0

𝑃ℎ𝑓(𝑥)− 𝑓(𝑥)

ℎ
= 𝐿𝑓(𝑥) =

𝑑+1∑
𝑘=0

𝐿𝑖𝑓(𝑥), (2.5)

where

𝐿0𝑓(𝑥) ≡ 𝑉0𝑓(𝑥) =

𝑁∑
𝑘=1

∂𝑓

∂𝑥𝑘
(𝑥)𝑉

(𝑘)
0 (𝑥),

𝐿𝑖𝑓(𝑥) =
1

2
𝑉 2
𝑖 𝑓(𝑥) =

1

2

𝑁∑
𝑗,𝑘=1

∂2𝑓(𝑥)

∂𝑥𝑗∂𝑥𝑘
𝑉

(𝑗)
𝑖 𝑉

(𝑘)
𝑖 (𝑥), 𝑖 = 1, . . . , 𝑑,

𝐿𝑑+1𝑓(𝑥) = ∇𝑓(𝑥)ℎ(𝑥)𝛾 +

∫
(𝑓(𝑥+ ℎ(𝑥)𝑦)− 𝑓(𝑥)−∇𝑓(𝑥)ℎ(𝑥)𝑦)𝜈(𝑑𝑦). (2.6)

From the above calculation one clearly understands that the operator 𝐿0 is asso-
ciated to the drift of Equation (2.4), 𝐿𝑖 for 𝑖 = 1, . . . , 𝑑 is associated to the 𝑖th
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Brownian motion and 𝐿𝑑+1 is associated to the Lévy process. Note also that

∂𝑃𝑡𝑓(𝑥)

∂𝑡
= 𝐿𝑃𝑡𝑓(𝑥)

∂𝑘𝑃𝑡𝑓(𝑥)

∂𝑡𝑘
= 𝐿𝑘𝑃𝑡𝑓(𝑥).

Operator 𝐿 is called the generator of 𝑃 and this fact is usually written as 𝑃𝑡 =
𝑒𝑡𝐿. Due to the semigroup property of 𝑃 , say 𝑃𝑡1+𝑡2 = 𝑃𝑡1𝑃𝑡2 , one understands
that in order to approximate 𝑋 one needs only to approximate 𝑃𝑡 for small values
of 𝑡 and then use the following composition property

Important property: Let 𝑌 1 and 𝑌 2 be two independent stochastic processes
generating semigroups 𝑅1 and 𝑅2 and with generators 𝐾1 and 𝐾2 respectively,
then

𝔼[𝑓(𝑌 1
𝑡 (𝑌

2
𝑡 (𝑥)))] = 𝑅2

𝑡𝑅
1
𝑡 𝑓(𝑥) = 𝑒𝑡𝐾

2

𝑒𝑡𝐾
1

𝑓(𝑥).

Note that the operators above are not in general commutative.

In fact, if we iterate the above arguments we have that for a smooth func-
tion 𝑓 ,

𝑃𝑡𝑓(𝑥) = 𝑓(𝑥) + 𝑡𝐿𝑓(𝑥) +
𝑡2

2
𝐿2𝑓(𝑥) + ⋅ ⋅ ⋅ = 𝑒𝑡𝐿𝑓(𝑥).

Example. In this example, we retake the case of the Euler scheme in Section 2.1
and analyze it in the light of the previous argument.

Now let 𝑄 be the “semigroup” associated to the Euler scheme. That is, define
𝑄𝑡𝑓(𝑥) = 𝐸[𝑓(�̄�𝑡)] for 𝑡 ≤ 1

𝑛 . Then one can obtain the following expansion

𝑄𝑡𝑓(𝑥) = 𝑓(𝑥) + 𝑡�̄�1𝑓(𝑥) +
𝑡2

2
�̄�2𝑓(𝑥) + ⋅ ⋅ ⋅

In fact, let ℎ ≤ 1/𝑛 then

𝑓(𝑋𝑛
ℎ (𝑥)) − 𝑓(𝑥) =

∫ ℎ

0

∇𝑓(𝑋𝑛
𝑠 (𝑥))𝑑𝑋

𝑛,𝑐
𝑠 (𝑥)

+
1

2

𝑑∑
𝑖=1

𝑁∑
𝑗=1

∫ ℎ

0

𝐷2
𝑖𝑗𝑓(𝑋

𝑛
𝑠 (𝑥))𝑑⟨𝑋𝑛,𝑖(𝑥), 𝑋𝑛,𝑗(𝑥)⟩𝑠

+
∑
𝑠≤ℎ

{
𝑓(𝑋𝑛

𝑠−(𝑥) + ℎ(𝑋𝑛
𝑠−(𝑥))Δ𝑌𝑠)− 𝑓(𝑋𝑛

𝑠−(𝑥))

−∇𝑓(𝑋𝑛
𝑠−(𝑥))ℎ(𝑋

𝑛
𝑠−(𝑥))Δ𝑌𝑠

}
.

After some calculation one obtains that �̄�1 = 𝐿 and that �̄�2 ∕= 𝐿2. Therefore
one has that the local error 𝑃𝑡𝑓(𝑥)−𝑄𝑡𝑓(𝑥) = 𝑂(𝑡2). The proof finishes by using
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the following telescoping decomposition

𝐸[𝑓(𝑋1(𝑥))]− 𝐸[𝑓(�̄�1(𝑥))] = −
𝑛∑
𝑖=1

{
𝑄𝑖1/𝑛𝑃1−𝑡𝑖𝑓(𝑥)−𝑄𝑖−11/𝑛𝑃1−𝑡𝑖−1𝑓(𝑥)

}
=

𝑛∑
𝑖=1

{
𝑄𝑖−11/𝑛𝑄1/𝑛𝑃1−𝑡𝑖𝑓(𝑥)−𝑄𝑖−11/𝑛𝑃1/𝑛𝑃1−𝑡𝑖𝑓(𝑥)

}
=

𝑛∑
𝑖=1

{
𝑄𝑖−11/𝑛

(
𝑄1/𝑛 − 𝑃1/𝑛

)
𝑃1−𝑡𝑖𝑓(𝑥)

}
.

Remark 2.1. One also needs the “stability” property of the operator 𝑄 in order
to finish the argument above. That is, we need two properties: (1) the different
𝑄1/𝑛𝑓 − 𝑃1/𝑛𝑓 is of order 𝑂(𝑛−2) under certain regularity conditions on 𝑓 (e.g.,

𝑓 ∈ 𝐶3
𝑝 ); and (2) the iteration 𝑄𝑖−11/𝑛 preserves the error rate of 𝑄1/𝑛−𝑃1/𝑛 without

demanding any further regularity of (𝑄1/𝑛 − 𝑃1/𝑛)𝑃1−𝑡𝑖𝑓(𝑥).

Next, we define the following stochastic processes 𝑋𝑖,𝑡(𝑥), 𝑖 = 0, . . . , 𝑑 + 1,
usually called coordinate processes, which will correspond to the operator decom-
position in (2.5) and which are the unique solutions of

𝑋0,𝑡(𝑥) = 𝑥+

∫ 𝑡

0

𝑉0(𝑋0,𝑠(𝑥))𝑑𝑠,

𝑋𝑖,𝑡(𝑥) = 𝑥+

∫ 𝑡

0

𝑉𝑖(𝑋𝑖,𝑠(𝑥)) ∘ 𝑑𝐵𝑖
𝑠, 1 ≤ 𝑖 ≤ 𝑑,

𝑋𝑑+1,𝑡(𝑥) = 𝑥+

∫ 𝑡

0

ℎ(𝑋𝑑+1,𝑠−(𝑥))𝑑𝑍𝑠.

Then we define

𝑄𝑖,𝑡𝑓(𝑥) = 𝔼[𝑓(𝑋𝑖,𝑡(𝑥))],

for a continuous function 𝑓 : ℝ𝑁 → ℝ with polynomial growth at infinity.

𝑃𝑡 = 𝑒𝑡𝐿 =

𝑚∑
𝑘=0

𝑡𝑘

𝑘!
𝐿𝑘 +𝒪(𝑡𝑚+1).

Note that 𝐿 =
∑𝑑+1
𝑖=0 𝐿𝑖 and we also let

𝑃 𝑖𝑡 = 𝑒𝑡𝐿𝑖 =
𝑚∑
𝑘=0

𝑡𝑘

𝑘!
𝐿𝑘𝑖 +𝒪(𝑡𝑚+1).

Our next goal is to approximate 𝑒𝑡𝐿, through a combination of the “coordinate”
semigroups 𝑒𝑠𝐿𝑖 ’s such that

𝑒𝑡𝐿 −
𝑘∑
𝑗=1

𝜉𝑗𝑒
𝑡1,𝑗𝐴1,𝑗 ⋅ ⋅ ⋅ 𝑒𝑡ℓ𝑗 ,𝑗𝐴ℓ𝑗,𝑗 = 𝒪(𝑡𝑚+1),
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with 𝑡𝑖,𝑗 = 𝑡𝑖,𝑗(𝑡) > 0, 𝐴𝑖,𝑗 ∈ {𝐿0, 𝐿1, . . . , 𝐿𝑑+1} and weights {𝜉𝑗} ⊂ [0, 1] with∑𝑘
𝑗=1 𝜉𝑗 = 1. In this case, one can define

𝑄𝑡 =
𝑘∑
𝑗=1

𝜉𝑗𝑒
𝑡1,𝑗𝐴1,𝑗 ⋅ ⋅ ⋅ 𝑒𝑡ℓ𝑗,𝑗𝐴ℓ𝑗 ,𝑗 . (2.7)

If needed one may further approximate each 𝑒𝑡1,𝑗𝐴1,𝑗 (𝑚th order scheme) and in
that case the definition of 𝑄 has to be further modified.

For simplicity let 𝑑+ 1 = 2 then

𝑒𝑡𝐿 = 𝐼 + 𝑡𝐿+
𝑡2

2
𝐿2 +𝑂(𝑡3),

𝑒𝑡𝐿1𝑒𝑡𝐿2 = (𝐼 + 𝑡𝐿1 +
𝑡2

2
𝐿2
1 + ⋅ ⋅ ⋅ )(𝐼 + 𝑡𝐿2 +

𝑡2

2
𝐿2
2 + ⋅ ⋅ ⋅ )

= 𝐼 + 𝑡𝐿+
𝑡2

2

(
𝐿2
2 + 𝐿2

1 + 2𝐿1𝐿2

)
+𝑂(𝑡3),

then

𝑒𝑡𝐿 − 𝑒𝑡𝐿1𝑒𝑡𝐿2 = 𝑂(𝑡2).

Therefore the composition of the semigroups in the above order will lead to an
approximation with local error of order𝑂(𝑡2). This approximation can be improved
by randomizing it as follows

𝑒𝑡𝐿 − 1

2
𝑒𝑡𝐿1𝑒𝑡𝐿2 − 1

2
𝑒𝑡𝐿2𝑒𝑡𝐿1 = 𝑂(𝑡3),

since 𝐿2 = 𝐿2
1 + 𝐿2

2 + 𝐿1𝐿2 + 𝐿2𝐿1. Finally one needs to obtain a stochastic
representation for 1

2𝑒
𝑡𝐿1𝑒𝑡𝐿2+ 1

2𝑒
𝑡𝐿2𝑒𝑡𝐿1 and possibly approximate each coordinate

process. These approximation methods for semigroups can be generalized in higher
dimension as follows:

Example. Examples of schemes of order 2 = 𝑂(𝑡3):

Ninomiya–Ninomiya (see [10]):

𝑄𝑡 =
1

2
𝑒
𝑡
2𝐿0𝑒𝑡𝐿1 ⋅ ⋅ ⋅ 𝑒𝑡𝐿𝑑+1𝑒

𝑡
2𝐿0 +

1

2
𝑒
𝑡
2𝐿0𝑒𝑡𝐿𝑑+1 ⋅ ⋅ ⋅ 𝑒𝑡𝐿1𝑒

𝑡
2𝐿0 .

Ninomiya–Victoir (see [9]):

𝑄𝑡 =
1

2
𝑒𝑡𝐿0𝑒𝑡𝐿1 ⋅ ⋅ ⋅ 𝑒𝑡𝐿𝑑+1 +

1

2
𝑒𝑡𝐿𝑑+1 ⋅ ⋅ ⋅ 𝑒𝑡𝐿1𝑒𝑡𝐿0 .

Splitting (Strang) method:

𝑄𝑡 = 𝑒
𝑡
2𝐿0 ⋅ ⋅ ⋅ 𝑒 𝑡2𝐿𝑑𝑒𝑡𝐿𝑑+1𝑒

𝑡
2𝐿𝑑 ⋅ ⋅ ⋅ 𝑒 𝑡2𝐿0 . (2.8)

It is easy to see that all the approximation operators 𝑄 mentioned above are
special case of (2.7). For example, the operator 𝑄 in Splitting (Strang) method is
deduced from (2.7) by putting 𝑘 = 1; 𝜉 = 1; 𝑡𝑖 =

𝑡
2 , for 1 ≤ 𝑖 ≤ 2𝑑 + 1, 𝑖 ∕= 𝑑 + 1,

𝑡𝑑+1 = 𝑡; 𝐴𝑖 = 𝐴2𝑑+2−𝑖 = 𝐿𝑖−1, for 𝑖 = 1, . . . , 𝑑+ 1.
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Splitting is a classical idea that is used in approximations for partial differ-
ential equations. The only new feature in the present situation is that we make
use of stochastic representations in order to obtain the associated Monte Carlo
method to (2.7). So the idea of this approximation method is to combine the
above algebraic approach with its stochastic representation and if necessary the
associated approximation of the stochastic representation in order to obtain the
definition of 𝑄.

The first approximation is obtained through the algebraic semigroup methods
described above. The second approximation corresponds to an approximation to
the corresponding semigroup 𝑒𝑡ℓ𝑗,𝑗𝐴ℓ𝑗 ,𝑗 which is amenable to a stochastic represen-
tation and that can be easily simulated or easily approximated and then simulated.
In the remainder of the paper, we will concentrate on this second aspect of the
approximations.

2.4. Stochastic representations and their approximations

In this section we will show various cases where we approximate or simulate directly
the stochastic representation of 𝑄.

2.4.1. Diffusion process with a finite number of jumps per interval. In this section
we will consider a full example by considering equation (2.4) in the particular
case that 𝑍 is a compound Poisson process. First, we need to approximate the
semigroup associated to the coordinate processes defined by

𝑄𝑖,𝑡𝑓(𝑥) := 𝐸[𝑓(𝑋𝑖,𝑡(𝑥))].

In the case of 𝑖 = 1, . . . , 𝑑 we can approximate 𝑄 using the following result. Before
that we need to introduce the exponential mapping. For given 𝛼 : ℝ𝑁 → ℝ𝑁 ,
denote by 𝑧𝑡(𝛼, 𝑥) the solution of

𝑑𝑧𝑠(𝛼, 𝑥)

𝑑𝑠
= 𝛼(𝑧𝑠(𝛼, 𝑥)), 𝑧0(𝛼, 𝑥) = 𝑥, 𝑠 ∈ [0, 1].

Theorem 2.2. Let 𝑉𝑖 : ℝ𝑁 → ℝ𝑁 be a smooth function satisfying the linear growth
condition: ∣𝑉𝑖(𝑥)∣ ≤ 𝐶(1 + ∣𝑥∣). Let 𝑧𝑠(𝐵𝑖

𝑡𝑉𝑖, 𝑥), 𝑠 ∈ [0, 1] be the exponential map
defined as above for fixed 𝑡 ∈ [0, 1].

For 𝑖 = 0, 1, . . . , 𝑑, the sde

𝑋𝑖,𝑡(𝑥) = 𝑥+

∫ 𝑡

0

𝑉𝑖(𝑋𝑖,𝑠(𝑥)) ∘ 𝑑𝐵𝑖
𝑠

has a unique solution given by

𝑋𝑖,𝑡(𝑥) = 𝑧1(𝐵
𝑖
𝑡𝑉𝑖, 𝑥).

Idea of the proof: Differentiating, we obtain

𝑑𝑧𝑠(𝛼𝑉𝑖, 𝑥)

𝑑𝛼
=

∫ 𝑠

0

𝑉𝑖(𝑧𝑢(𝛼𝑉𝑖, 𝑥))𝑑𝑢 + 𝛼

∫ 𝑠

0

∇𝑉𝑖(𝑧
𝑖
𝑢(𝛼, 𝑥))

𝑑𝑧𝑢(𝛼𝑉𝑖, 𝑥)

𝑑𝛼
𝑑𝑢.
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This gives by Itô’s formula that

𝑑𝑧1(𝐵
𝑖
𝑡𝑉𝑖, 𝑥) =

𝑑𝑧1(𝐵
𝑖
𝑡𝑉𝑖, 𝑥)

𝑑𝛼
∘ 𝑑𝐵𝑖

𝑡 .

Therefore the result follows if one proves that (exercise)

𝑑𝑧1(𝛼𝑉𝑖, 𝑥)

𝑑𝛼
= 𝑉𝑖(𝑧1(𝛼𝑉𝑖, 𝑥)).

Now, the process 𝑋 can be simulated as follows: First, we can solve for each time
interval (𝑡𝑖, 𝑡𝑖+1] the coordinate processes equations

1. Solve (say exactly) the 𝑑+ 1 ODE’s

𝑋0,𝑡/2(𝑥) = 𝑥+

∫ 𝑡/2

0

𝑉0(𝑋0,𝑠(𝑥))𝑑𝑠

𝑑𝑧𝑠(𝐵
𝑖
𝑡/2𝑉𝑖, 𝑥)

𝑑𝑠
= 𝐵𝑖

𝑡/2𝑉𝑖(𝑧𝑠(𝐵
𝑖
𝑡/2𝑉𝑖, 𝑥)), 𝑧0(𝐵

𝑖
𝑡/2𝑉𝑖, 𝑥) = 𝑥,

for 𝑠 ∈ [0, 1] and 𝑖 = 1, . . . , 𝑑. Denote 𝑋𝑖,𝑡(𝑥) = 𝑧1(𝐵
𝑖
𝑡/2𝑉𝑖, 𝑥).

2. Solve (say exactly) the 𝑑+ 1 ODE’s

�̄�0,𝑡/2(𝑥) = 𝑥+

∫ 𝑡/2

0

𝑉0(�̄�0,𝑠(𝑥))𝑑𝑠

𝑑𝑧𝑠(�̄�
𝑖
𝑡/2𝑉𝑖, 𝑥)

𝑑𝑠
= �̄�𝑖

𝑡/2𝑉𝑖(𝑧𝑠(�̄�
𝑖
𝑡/2𝑉𝑖, 𝑥)), 𝑧0(�̄�

𝑖
𝑡/2𝑉𝑖, 𝑥) = 𝑥,

for 𝑠 ∈ [0, 1], 𝑖 = 1, . . . , 𝑑 and �̄� is an independent copy of 𝐵. Denote
�̄�𝑖,𝑡(𝑥) = 𝑧1(�̄�

𝑖
𝑡/2𝑉𝑖, 𝑥).

3. Solve (say exactly) the difference equation

𝑋𝑑+1,𝑡(𝑥) = 𝑥+

∫ 𝑡

0

ℎ(𝑋𝑑+1,𝑠−(𝑥))𝑑𝑍𝑠.

The global idea is that 𝑋𝑖,𝑡(𝑥) represents the process that has as generator 𝐿𝑖.
Hence, we use (say) the splitting (Strang) formula (2.8) to write

�̂�𝑡(𝑥) = 𝑋0,𝑡/2 ∘ ⋅ ⋅ ⋅ ∘𝑋𝑑,𝑡/2 ∘𝑋𝑑+1,𝑡 ∘ �̄�𝑑,𝑡/2 ∘ ⋅ ⋅ ⋅ ∘ �̄�1,𝑡/2 ∘ �̄�0,𝑡/2(𝑥).

This gives a scheme of order 2.
On the other hand, if we approximate processes 𝑋𝑖,𝑡 and �̄�𝑖,𝑡 with a good

high-order approximation, say 𝑌 𝑖𝑡 and 𝑌 𝑖𝑡 , respectively, then we can obtain an
approximate of 𝑋 by

�̃�𝑡(𝑥) = 𝑌 0
𝑡/2 ∘ ⋅ ⋅ ⋅ ∘ 𝑌 𝑑𝑡/2 ∘ 𝑌 𝑑+1

𝑡 ∘ 𝑌 𝑑𝑡/2 ⋅ ⋅ ⋅ ∘ 𝑌 0
𝑡/2(𝑥).

The semigroup associated with the process 𝑋𝑡 is 𝑄𝑡 in (2.7). Finally the Monte
Carlo method is given by

1

𝑀

𝑀∑
𝑗=1

𝑓((�̃�1/𝑛 ∘ ⋅ ⋅ ⋅ ∘ �̃�1/𝑛(𝑥))
(𝑗)).
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In the particular case that𝑋𝑖,⋅ can be solved exactly one can always take 𝑌 𝑖
𝑠 = 𝑋𝑖,𝑠,

𝑠 = 𝑡/2, 𝑡.

Remark 2.3.

1. If one can solve the above ODE and difference equations 1, 2 and 3 without
much effort then the scheme can be implemented. But if so, there is no reason
to use the splitting method of order 2. One can use a higher-order method
that will lead to better accuracy just by using compositions.

2. It is very rarely the case when one can in fact solve explicitly 1, 2 and 3 above.
Usually one has to approximate the solutions of the ODE’s. Then the order
of approximation has to match the order of the semigroup approximation
method used. For example, in the above case if we use methods of order 2
to approach the ODE’s then the order of the whole scheme will be order 2.
In this case also the definition of 𝑄 has to be changed into the semigroup
associated with the approximation process.

3. For the compounded Poisson case, we have that if 𝜆 is large, many jumps
will appear in any interval and so the calculation time will be long. Later,
we will see that we do not need to consider all the jumps in order to obtain
an approximation of order 2. This can be intuitively understood because the
probability of having two or more jumps in an interval of size 𝑡 is 𝑂(𝑡2).

2.4.2. On the two basic properties in order to prove the error of approximation.
In order to find an approximation of order 𝑛, one needs to check the two conditions
mentioned in Remark 2.1. That is,

1. 𝑄𝑡𝑓 preserves the regularity properties of the function 𝑓 .
2. (𝑄𝑡 − 𝑃𝑡)(𝑓) = 𝑂(𝑡𝑛+1).

According to the operator splitting scheme explained in the previous section, one
may even verify these conditions for each of the operators used in the decomposi-
tion. This first property when written mathematically becomes:

(H1) For 𝑓𝑝(𝑥) := ∣𝑥∣2𝑝 (𝑝 ∈ N),

𝑄𝑡𝑓𝑝(𝑥) ≤ (1 +𝐾𝑡)𝑓𝑝(𝑥) +𝐾 ′𝑡

for 𝐾 = 𝐾(𝑇, 𝑝), 𝐾 ′ = 𝐾 ′(𝑇, 𝑝) > 0.

This condition expresses the fact that 𝑄 does not alter the smoothness
properties of the function 𝑓𝑝. The following condition expresses the fact that
𝑃𝑡 − 𝑄𝑡 = 𝑂(𝑡𝑛+1) and therefore the resulting scheme will be of order 𝑛. To
be precise, we need to recall the definition of the functional space 𝐶𝑚𝑝 for each
𝑚 ∈ ℕ and 𝑝 > 0. For each function 𝑓 : ℝ𝑛 → ℝ in 𝐶𝑚, denote

∥𝑓∥𝐶𝑚𝑝 := inf{𝐶 ≥ 0 : ∣∂𝛼𝑥 𝑓(𝑥)∣ ≤ 𝐶(1 + ∣𝑥∣𝑝), 0 ≤ ∣𝛼∣ ≤ 𝑚,𝑥 ∈ ℝ𝑛}.
Then, denote

𝐶𝑚𝑝 = {𝑓 ∈ 𝐶𝑚 : ∥𝑓∥𝐶𝑚𝑝 <∞}.
Property 2 above when written mathematically becomes:

(H2)
∣∣𝐸[𝑓(�̄�𝑡)]− 𝐸[𝑓(𝑋𝑡)]

∣∣ ≤ ∥𝑓∥𝐶2𝑛
𝑝
(1 + ∣𝑥∣𝑝+𝑛)𝑡𝑛+1.
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Or in a more generalized form for 𝑞 ≡ 𝑞(𝑛, 𝑝) and 𝑚 ≡ 𝑚(𝑛)

∣𝐸[𝑓(�̄�𝑡)]− 𝐸[𝑓(𝑋𝑡)]∣ ≤ ∥𝑓∥𝐶𝑚𝑝 (1 + ∣𝑥∣𝑞)𝑡𝑛+1.

In Section 2.4.5, we propose an scheme and verify that conditions (H1) and
(H2) are valid in the case that

∫ ∣𝑦∣𝜈(𝑑𝑦) =∞.

2.4.3. The study of the jump-size adapted scheme using the operator splitting
method. Here we only discuss the approximation of the (𝑑+1)th coordinate which
corresponds to the jump process. Define for 𝜀 > 0 the finite activity Lévy process
(𝑍𝜀𝑡 ) with the Lévy triple (𝛾, 0, 𝜈𝜀) where the Lévy measure 𝜈𝜀 is defined by

𝜈𝜀(𝐸) = 𝜈(𝐸 ∩ {𝑦 : ∣𝑦∣ > 𝜀}), 𝐸 ∈ ℬ(ℝ𝑑0).
We consider the approximate SDE

𝑌 𝑑+1,𝜀
𝑡 (𝑥) = 𝑥+

∫ 𝑡

0

ℎ(𝑌 𝑑+1,𝜀
𝑠− (𝑥))(𝑑𝑍𝜀𝑠 + 𝛾𝜀𝑑𝑠).

In this case it is clear that the order to approximation on the jumps components
is given by

𝐸[𝑓(𝑋𝑑+1,𝑡(𝑥))] − 𝐸[𝑓(𝑌 𝑑+1,𝜀
𝑡 (𝑥))]

= 𝑡

∫
∣𝑦∣≤𝜀

(𝑓(𝑥+ ℎ(𝑥)𝑦)− 𝑓(𝑥)−∇𝑓(𝑥)ℎ(𝑥)𝑦)𝜈(𝑑𝑦) +𝑂(𝑡2).

By a further Taylor expansion one obtains that∫
∣𝑦∣≤𝜀

(𝑓(𝑥+ ℎ(𝑥)𝑦) − 𝑓(𝑥)−∇𝑓(𝑥)ℎ(𝑥)𝑦)𝜈(𝑑𝑦)

≈ 𝐷2𝑓(𝑥)ℎ(𝑥)⊗2
∫
∣𝑦∣≤𝜀

∣𝑦∣2𝜈(𝑑𝑦) +𝑅

∫
∣𝑦∣≤𝜀

∣𝑦∣3𝜈(𝑑𝑦).

Therefore one sees that if 𝜀 > 0 is chosen so that
∫
∣𝑦∣≤𝜀 ∣𝑦∣2𝜈(𝑑𝑦) = 𝐶𝑡 then

(H2) is satisfied with 𝑛 = 1. Furthermore, the Asmussen–Rosiński approach [2]
corresponds to the first term in the above expansion.

The verification of (H1) in this case is done in [14].

2.4.4. Approximate small jumps scheme. In this section, we give an approxima-
tion scheme which uses a limited number of jumps per interval. We assume that∫
∣𝑦∣<1 ∣𝑦∣𝜈(𝑑𝑦) < ∞. Then we further decompose the operator 𝐿𝑑+1 defined in

(2.6) as follows

𝐿𝑑+1 = 𝐿1,𝜀
𝑑+1 + 𝐿2,𝜀

𝑑+1 + 𝐿3,𝜀
𝑑+1,

𝐿1,𝜀
𝑑+1𝑓(𝑥) := ∇𝑓(𝑥)ℎ(𝑥)

(
𝛾 −

∫
𝜀<∣𝑦∣≤1

𝑦𝜈(𝑑𝑦)

)
,

𝐿2,𝜀
𝑑+1𝑓(𝑥) :=

∫
∣𝑦∣≤𝜀

(𝑓(𝑥+ ℎ(𝑥)𝑦)− 𝑓(𝑥)−∇𝑓(𝑥)ℎ(𝑥)𝑦)𝜈(𝑑𝑦),
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𝐿3,𝜀
𝑑+1𝑓(𝑥) :=

∫
𝜀<∣𝑦∣

𝑓(𝑥+ ℎ(𝑥)𝑦)− 𝑓(𝑥)𝜈(𝑑𝑦).

The operator 𝐿1,𝜀
𝑑+1 can be exactly generated using

�̄�1,𝜀
𝑑+1,𝑡 = 𝑥+

(
𝛾 −

∫
𝜀<∣𝑦∣≤1

𝑦𝜈(𝑑𝑦)

)∫ 𝑡

0

ℎ
(
�̄�1,𝜀
𝑑+1,𝑠

)
𝑑𝑠.

For 𝐿2,𝜀
𝑑+1 one can use Asmussen–Rosinski (see [14]). We discuss 𝐿3,𝜀

𝑑+1.

The approximation for 𝐿3,𝜀
𝑑+1 is defined as follows. Let 𝜆𝜀 =

∫
∣𝑦∣>𝜀 𝜈(𝑑𝑦),

𝐺𝜀(𝑑𝑦) = 𝜆−1𝜀 1∣𝑦∣>𝜀𝜈(𝑑𝑦), and let 𝑍𝜀 ∼ 𝐺𝜀 and let 𝑆𝜀 be a Bernoulli random
variable independent of 𝑍𝜀.

�̄�3,𝜀
𝑑+1,𝑡(𝑥) =

{
𝑥 if 𝑆𝜀 = 0,
𝑥+ ℎ(𝑥)𝑍𝜀 if 𝑆𝜀 = 1.

Lemma 2.4. Assume that
∣∣𝜆−1𝜀 ℙ [𝑆𝜀 = 1]− 𝑡

∣∣ ≤ 𝐶𝑡2 then∣∣∣𝔼 [
𝑓(�̄�3,𝜀

𝑑+1,𝑡)
]
− 𝑓(𝑥)− 𝑡𝐿3,𝜀

𝑑+1𝑓(𝑥)
∣∣∣ ≤ 𝐶𝑡2 ∥𝑓∥𝐶1

𝑝
(1 + ∣𝑥∣𝑝+1)

∫
∣𝑦∣>𝜀

∣𝑦∣𝜈(𝑑𝑦).

In [14] an approximation for 𝐿3,𝜀
𝑑+1 with importance sampling and restriction

on the number of jumps is proposed.

Remark 2.5. This approximate small jumps scheme has some advantages in com-
parison with the Jump-size adapted discretization schemes presented in Section
2.2. The first advantage is that in the former scheme we can control the number of
jumps needed to be simulated. This fact is important especially in the case that it
takes time to generate jump sizes. The second advantage is that the former scheme
can be applied for SDE driven by both Brownian motion and jump processes while
the latter scheme can be applied only for SDE driven by pure jump processes.

An extension with at most two jumps per interval. Considering more jumps per
interval will give higher-order approximations.

For 𝐿3,𝜀
𝑑+1 one can do the following: Let 𝐺𝜀(𝑑𝑦) = 𝜆−1𝜀 1∣𝑦∣>𝜀𝜈(𝑑𝑦), 𝜆𝜀 =∫

∣𝑦∣>𝜀 𝜈(𝑑𝑦) and let 𝑍𝜀1 , 𝑍𝜀2 ∼ 𝐺𝜀 independent between themselves and let 𝑆𝜀1
and 𝑆𝜀2 be two independent Bernoulli random variables independent of 𝑍𝜀1 , 𝑍

𝜀
2 .

�̄�3,𝜀
𝑑+1,𝑡(𝑥) :=

⎧⎨⎩
𝑥 if 𝑆𝜀1 = 0,

𝑥+ ℎ(𝑥)𝑍𝜀1 if 𝑆𝜀1 = 1 and 𝑆𝜀2 = 0

𝑥+ ℎ(𝑥)𝑍𝜀1 + ℎ(𝑥+ ℎ(𝑥)𝑍𝜀1)𝑍
𝜀
2 if 𝑆𝜀1 = 1 and 𝑆𝜀2 = 1.

Denote

𝑝𝜀 := ℙ [𝑆𝜀1 = 1] (1 + ℙ [𝑆𝜀2 = 1]) ,

𝑞𝜀 := ℙ [𝑆𝜀1 = 1]ℙ [𝑆𝜀2 = 1] .
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Lemma 2.6. Assume that
∣∣𝜆−1𝜀 𝑝𝜀 − 𝑡

∣∣ ≤ 𝐶𝑡3 and
∣∣2𝜆−2𝜀 𝑞𝜀 − 𝑡2

∣∣ ≤ 𝐶𝑡3 then∣∣∣∣𝔼 [
𝑓(�̂�3,𝜀

𝑑+1,𝑡)
]
− 𝑓(𝑥) − 𝑡𝐿3

𝑑+1𝑓(𝑥)−
𝑡2

2

(
𝐿3
𝑑+1

)2
𝑓(𝑥)

∣∣∣∣
≤ 𝐶𝑡3 ∥𝑓∥𝐶2

𝑝
(1 + ∣𝑥∣𝑝+2)

⎛⎝1 +

(∫
∣𝑦∣>𝜀

∣𝑦∣𝜈(𝑑𝑦)
)2

⎞⎠ .

2.4.5. A case study. In some cases it is possible to introduce the limited number
of jumps scheme even when

∫
∣𝑦∣≤1 ∣𝑦∣𝜈(𝑑𝑦) =∞. We suppose the one-dimensional

case for simplicity. Let 𝑆 be a subordinator (an increasing Lévy process on ℝ) with
Lévy density 𝜌 and drift 𝛾𝑆 . That is,

𝑆𝑡 = 𝛽0𝑡+

∫ 𝑡

0

∫ ∞

0

𝑧𝑁𝑆(𝑑𝑧, 𝑑𝑡),

𝛽0 = 𝛾𝑆 −
∫ ∞

0

𝑧𝜌(𝑧)𝑑𝑧,

where 𝑁𝑆 is a Poisson random measure on [0,∞) × [0,∞) with intensity 𝜌(𝑧)𝑑𝑧
and

𝛽0 ≥ 0,

∫ ∞

0

(1 ∧ 𝑧)𝜌(𝑧)𝑑𝑧 <∞. (2.9)

Let 𝑍𝑡 = 𝜃𝑆𝑡 + 𝜎𝑊𝑆𝑡 where 𝑊 is a standard Brownian motion independent of 𝑆.
This is the setup in Section 2.2 in the particular case that the Lévy process 𝑍 is a
subordinate to a Brownian motion with drift. It follows from Theorem 30.1 in [13]
that 𝑍 is a Lévy process with the generating triplet (𝛾,𝐴, 𝜈) defined as follows

𝐴 = 𝜎𝛽0,

𝜈(𝑑𝑦) =

∫ ∞

0

1√
2𝜋𝜎2𝑡

exp
(
− (𝑦 − 𝜃𝑡)2

2𝜎2𝑡

)
𝜌(𝑡)𝑑𝑡𝑑𝑦, (2.10)

𝛾 = 𝜃𝛽0 +

∫ ∞

0

∫
∣𝑦∣≤1

𝑦√
2𝜋𝜎2𝑡

exp
(
− (𝑦 − 𝜃𝑡)2

2𝜎2𝑡

)
𝜌(𝑡)𝑑𝑦 𝑑𝑡.

Let 𝜚 denote the Blumenthal–Getoor index of 𝑆. That is,

𝜚 = inf{𝑝 > 0 :

∫ 1

0

𝑧𝑝𝜌(𝑧)𝑑𝑧 <∞}.

It follows from (2.9) that 𝜚 ∈ [0, 1].

The Blumenthal–Getoor index plays an essential role in our approximation.
The following result relates the Blumenthal–Getoor indices of 𝑆 and 𝑍.

Lemma 2.7. The Blumenthal–Getoor index of 𝑆 is 𝜚 if and only if the Blumenthal–
Getoor index of 𝑍 is 2𝜚.
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Proof. Since the integral on [−1, 0] can be converted into an integral on [0, 1] by
doing a change of variable 𝑤 = −𝑦, for any 𝛼 ∈ (0, 1), we have∫

∣𝑦∣≤1
∣𝑦∣2𝛼𝜈(𝑑𝑦)

=

∫ 1

0

𝑑𝑦

∫ ∞

0

𝑦2𝛼
1√

2𝜋𝜎2𝑡

[
exp

(
− (𝑦 − 𝜃𝑡)2

2𝜎2𝑡

)
+ exp

(
− (𝑦 + 𝜃𝑡)2

2𝜎2𝑡

)]
𝜌(𝑡)𝑑𝑡

=

∫ 1

0

𝑑𝑦

∫ ∞

0

𝑦2𝛼√
2𝜋𝜎2𝑡

exp
(
− 𝑦2 + 𝜃2𝑡2

2𝜎2𝑡

)[
exp

(𝜃𝑦

𝜎2

)
+ exp

(
− 𝜃𝑦

𝜎2

)]
𝜌(𝑡)𝑑𝑡.

Since exp
(
𝜃𝑦
𝜎2

)
+ exp

(
− 𝜃𝑦

𝜎2

)
≥ 2, we have∫

∣𝑦∣≤1
∣𝑦∣2𝛼𝜈(𝑑𝑦) ≥ 2

∫ 1

0

𝑑𝑦

∫ ∞

0

𝑦2𝛼√
2𝜋𝜎2𝑡

exp
(
− 𝑦2 + 𝜃2𝑡2

2𝜎2𝑡

)
𝜌(𝑡)𝑑𝑡.

Since the integrand is non-negative, by using the Fubini theorem, we have using
the change of variables 𝑧 = 𝑦

𝜎
√
𝑡
,∫

∣𝑦∣≤1
∣𝑦∣2𝛼𝜈(𝑑𝑦) ≥ 𝐶𝜎2𝛼

∫ 1

0

𝑑𝑡

∫ 1/(𝜎
√
𝑡)

0

𝑧2𝛼𝑒−𝑧
2/2𝑡𝛼 exp

(
− 𝜃2𝑡

2𝜎2

)
𝜌(𝑡)𝑑𝑧.

For each 𝑡 ∈ (0, 1), one has∫ 1/(𝜎
√
𝑡)

0

𝑧2𝛼𝑒−𝑧
2/2𝑑𝑧 ≥

∫ 1/𝜎

0

𝑧2𝛼𝑒−𝑧
2/2𝑑𝑧 > 0,

and exp
(− 𝜃2𝑡

2𝜎2

) ≥ exp
(− 𝜃2

2𝜎2

)
. Hence,∫

∣𝑦∣≤1
∣𝑦∣2𝛼𝜈(𝑑𝑦) ≥ 𝐶

∫ 1

0

𝑡𝛼𝜌(𝑡)𝑑𝑡. (2.11)

On the other hand, one has∫
∣𝑦∣≤1

∣𝑦∣2𝛼𝜈(𝑑𝑦)

≤ 2

∫ 1

0

𝑑𝑦

∫ ∞

0

𝑦2𝛼√
2𝜋𝜎2𝑡

exp
(
− 𝑦2 + 𝜃2𝑡2

2𝜎2𝑡

)
exp

(𝜃𝑦

𝜎2

)
𝜌(𝑡)𝑑𝑡.

= 2

∫ 1

0

𝑑𝑦

(∫ 1

0

+

∫ ∞

1

)
𝑦2𝛼√
2𝜋𝜎2𝑡

exp
(
− 𝑦2 + 𝜃2𝑡2

2𝜎2𝑡

)
exp

(𝜃𝑦

𝜎2

)
𝜌(𝑡)𝑑𝑡.

The second term above is less than 1√
2𝜋𝜎2

exp
(
𝜃
𝜎2

) ∫∞
1

𝜌(𝑡)𝑑𝑡 <∞ while the first

term is bounded by (using again 𝑧 = 𝑦

𝜎
√
𝑡
),

𝐶

∫ ∞

0

𝑧2𝛼𝑒−𝑧
2/2𝑑𝑧

∫ 1

0

𝑡𝛼𝜌(𝑡)𝑑𝑡 ≤ 𝐶

∫ 1

0

𝑡𝛼𝜌(𝑡)𝑑𝑡.
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Hence ∫
∣𝑦∣≤1

∣𝑦∣2𝛼𝜈(𝑑𝑦) ≤ 𝐶
(
1 +

∫ 1

0

𝑡𝛼𝜌(𝑡)𝑑𝑡
)
.

This fact together with (2.11) implies, for any 𝛼 ∈ (0, 1),∫
∣𝑦∣≤1

∣𝑦∣2𝛼𝜈(𝑑𝑦) <∞⇔
∫ 1

0

𝑡𝛼𝜌(𝑡)𝑑𝑡 <∞.

This yields the desired result. □

Remark 2.8. It follows from Lemma 2.7 that if the Blumenthal–Getoor index 𝜌 of
subordinator 𝑆 is bigger than 1/2, then∫

∣𝑦∣≤1
∣𝑦∣𝜈(𝑑𝑦) =∞.

The following simple observation plays an important role in the next discus-
sion.

Lemma 2.9. Suppose that 𝜚 ∈ (0, 1) and
∫∞
1 𝑡𝜌(𝑡)𝑑𝑡 <∞, then∣∣∣ ∫

∣𝑦∣≤1
𝑦𝜈(𝑑𝑦)

∣∣∣ <∞.

Proof. We have∫
∣𝑦∣≤1

𝑦𝜈(𝑑𝑦)

=

∫ 1

0

𝑑𝑦

∫ ∞

0

𝑦√
2𝜋𝜎2𝑡

exp
(
− 𝑦2 + 𝜃2𝑡2

2𝜎2𝑡

)[
exp

(𝜃𝑦

𝜎2

)
− exp

(
− 𝜃𝑦

𝜎2

)]
𝜌(𝑡)𝑑𝑡,

Hence as 𝑒𝑥 − 𝑒−𝑥 ≤ 2𝑥𝑒𝑥 for 𝑥 ∈ [0, 1] and for each 𝛽 > 0, sup𝑥>0 𝑥
𝛽𝑒−𝑥 < ∞,

we obtain∣∣∣ ∫
∣𝑦∣≤1

𝑦𝜈(𝑑𝑦)
∣∣∣ ≤ 2

∫ 1

0

𝑑𝑦

∫ ∞

0

𝑦√
2𝜋𝜎2𝑡

exp
(
− 𝑦2 + 𝜃2𝑡2

2𝜎2𝑡

) ∣𝜃∣𝑦
𝜎2

exp
( ∣𝜃∣𝑦

𝜎2

)
𝜌(𝑡)𝑑𝑡

≤ 𝐶

∫ 1

0

𝑑𝑦

∫ ∞

0

( 𝑦2

2𝜎2𝑡

)1+𝛿/2
exp

(
− 𝑦2

2𝜎2𝑡

)
𝑦−𝛿𝑡(𝛿+1)/2𝜌(𝑡)𝑑𝑡

≤ 𝐶

∫ 1

0

𝑦−𝛿𝑑𝑦
∫ ∞

0

𝑡(𝛿+1)/2𝜌(𝑡)𝑑𝑡 <∞,

for some constant 𝛿 ∈ (2𝜚−1, 1) where 𝐶 is a positive constant that depends on 𝜎2.
□

Throughout the rest of this section, we suppose that 𝜚 < 1. Then we can
rewrite 𝛾 = 𝜃𝛽0+

∫
∣𝑥∣≤1 𝑥𝜈(𝑑𝑥). We decompose the operator 𝐿𝑑+1 defined in (2.6)
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by 𝐿𝑑+1 = 𝐿1
𝑑+1 + 𝐿2

𝑑+1, where

𝐿1
𝑑+1𝑓(𝑥) := 𝜃𝛽0ℎ(𝑥)𝑓

′(𝑥),

𝐿2
𝑑+1𝑓(𝑥) :=

∫
ℝ

(
𝑓(𝑥+ ℎ(𝑥)𝑦) − 𝑓(𝑥)

)
𝜈(𝑑𝑦). (2.12)

The operator 𝐿1
𝑑+1 can be exactly generated using

𝑋
1

𝑑+1,𝑡(𝑥) = 𝑥+ 𝜃𝛽0

∫ 𝑡

0

ℎ(𝑋
1

𝑑+1,𝑠(𝑥))𝑑𝑠,

as before. The approximation for 𝐿2
𝑑+1 is defined as follows: For some 𝜀 ∈ (0, 1)

which will be specified later, let 𝐻𝜀(𝑥) = 𝐶−1𝜀 1𝑥>𝜀𝜌(𝑥), 𝐶𝜀 =
∫∞
𝜀

𝜌(𝑥)𝑑𝑥 and

𝜁𝜀 =
∫ 𝜀
0 𝑥𝜌(𝑥)𝑑𝑥. Furthermore let 𝑆𝜀 be a Bernoulli random variable with 𝑝𝑖 =

ℙ[𝑆𝜀 = 𝑖], 𝑖 = 0, 1. We define

𝑋
2,𝜀

𝑡 (𝑥) =

{
𝑥+ ℎ(𝑥)

(
𝜁𝜀𝑡𝜃 + 𝜎

√
𝜁𝜀𝑡𝑍

)
if 𝑆𝜀 = 0,

𝑥+ ℎ(𝑥)
(
𝜁𝜀𝑡𝜃 + 𝜃𝑈𝜀 + 𝜎

√
𝜁𝜀𝑡+ 𝑈𝜀𝑍

)
if 𝑆𝜀 = 1,

where 𝑍 is a standard normal random variable and 𝑈𝜀 is a random variable with
density function 𝐻𝜀. We suppose that 𝑍, 𝑈𝜀, 𝑆𝜀 and 𝑊 are mutually independent.
Throughout this section we assume without loss of generality that 𝑡 ≤ 1.

We need the following auxiliary estimate.

Lemma 2.10. For any 𝜚0 ∈ (𝜚, 1), there exists a positive constant 𝐶(𝜚0) which does
not depend on 𝜀 such that for any 𝜀 ∈ (0, 1),

𝜁𝜀 ≤ 𝐶(𝜚0)𝜀
1−𝜚0 , (2.13)

𝐶𝜀 =

∫ ∞

𝜀

𝜌(𝑧)𝑑𝑧 ≤ 𝐶(𝜚0)𝜀
−𝜚0 , (2.14)∫ ∞

𝜀

√
𝑧𝜌(𝑧)𝑑𝑧 ≤ 𝐶(𝜚0)(1 + 𝜀1/2−𝜌0), (2.15)∫ 𝜀

0

𝑧3/2𝜌(𝑧)𝑑𝑧 ≤ 𝐶(𝜚0)𝜀
3/2−𝜚0 . (2.16)

Proof. Because 𝜚0 ∈ (𝜚, 1), there exists a positive constant 𝐶0 = 𝐶(𝜚0) such that∫ 1

0

𝑧𝜚0𝜌(𝑧)𝑑𝑧 < 𝐶0.

Hence one has the following estimate for 𝜁𝜀,

𝜁𝜀 =

∫ 𝜀

0

𝑧𝜌(𝑧)𝑑𝑧 =

∫ 𝜀

0

𝑧1−𝜚0𝑧𝜚0𝜌(𝑧)𝑑𝑧 ≤ 𝜀1−𝜚0
∫ 𝜀

0

𝑧𝜚0𝜌(𝑧)𝑑𝑠 ≤ 𝐶0𝜀
1−𝜚0 .
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Next one has,∫ ∞

𝜀

𝜌(𝑧)𝑑𝑧 =

∫ 1

𝜀

𝜌(𝑧)𝑑𝑧 +

∫ ∞

1

𝜌(𝑧)𝑑𝑧 ≤
∫ 1

𝜀

(𝑧
𝜀

)𝜚0
𝜌(𝑧)𝑑𝑧 +

∫ ∞

1

𝜌(𝑧)𝑑𝑧

≤ 𝐶0𝜀
−𝜚0 +

∫ ∞

1

𝜌(𝑧)𝑑𝑧 ≤ 𝐶1𝜀
−𝜚0 ,

where 𝐶1 = 𝐶0 +
∫∞
1 𝜌(𝑧)𝑑𝑧 < ∞ since 𝜀 < 1 and

∫∞
1 𝜌(𝑧)𝑑𝑧 < ∞. A similar

calculation gives (2.15).
Finally, one has that as 𝜚0 < 3

2 ,∫ 𝜀

0

𝑧3/2𝜌(𝑧)𝑑𝑧 =

∫ 𝜀

0

𝑧−𝜚0+3/2𝑧𝜚0𝜌(𝑧)𝑑𝑧 ≤ 𝐶0𝜀
−𝜚0+3/2. □

The following lemma will be used to justify condition (H2).

Lemma 2.11. Assume that 𝑓 ∈ 𝐶4
𝑝 for some 𝑝 > 1, ℙ[𝑆𝜀 = 1] = 𝐶𝜀𝑡 < 1 and∫∞

1
𝑧𝑝+2𝜌(𝑧)𝑑𝑧 < ∞, then for each 𝜚0 ∈ (𝜚, 1), there exists a positive constant

𝐶(𝜚0) which does not depend on 𝜀 and 𝑡 such that∣∣𝔼[𝑓(𝑋2,𝜀

𝑡 (𝑥)
] − 𝑓(𝑥)− 𝑡𝐿2

𝑑+1𝑓(𝑥)
∣∣ (2.17)

≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝

(
𝑡3/2𝜀3(1−𝜚0)/2 + 𝑡2𝜀3/2−2𝜚0 + 𝑡2𝜀1−𝜚0 + 𝑡𝜀3/2−𝜚0

)
.

Proof. Before we start the proof, we remind the reader the properties that will
be used repeatedly without further mention. These are: 1. sup0<𝜀<1 𝜁𝜀 < ∞ and
𝜁𝜀 → 0 as 𝜀→ 0. 2. ∣ℎ(𝑥)∣𝑞 ≤ 𝐶(1 + ∣𝑥∣𝑞) and 3. sup0<𝜀<1 𝐶𝜀𝑡 ≤ 1.

1) First we expand 𝔼
[
𝑓(𝑋

2,𝜀

𝑡 (𝑥))
]− 𝑓(𝑥). Set 𝑝𝑖 = ℙ[𝑆𝜀 = 𝑖], 𝑖 = 0, 1. Using

Taylor’s expansion, one has

𝔼
[
𝑓(𝑋

2,𝜀

𝑡 (𝑥))
] − 𝑓(𝑥)

= 𝑝0

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦)

∫ 1

0

𝑓 ′(𝑥+ 𝑢ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦))𝑑𝑢 𝑑𝑦

+ 𝐶−1𝜀 𝑝1

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

∫ ∞

𝜀

ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)𝜌(𝑧)

×
∫ 1

0

𝑓 ′(𝑥+ 𝑢ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑢 𝑑𝑧 𝑑𝑦 = 𝐼1 + 𝐼2.

Using Taylor’s expansion again, 𝐼1 becomes

𝐼1 = 𝑝0

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦)𝑓
′(𝑥)𝑑𝑦

+ 𝑝0

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

ℎ(𝑥)2(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦)
2

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦))𝑑𝑣 𝑑𝑦
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= 𝑝0ℎ(𝑥)𝑓
′(𝑥)𝜁𝜀𝑡𝜃

+
𝑝0
2
ℎ(𝑥)2

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

𝜁𝜀𝑡𝜎
2𝑦2𝑓 ′′(𝑥) 𝑑𝑦

+ 𝑝0ℎ(𝑥)
3

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

𝜁𝜀𝑡𝜎
2𝑦2(𝜁𝜀𝑡𝜃 + 𝜎

√
𝜁𝜀𝑡𝑦)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑑𝑣∫ 1

0

𝑢2𝑣𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦))𝑑𝑤 𝑑𝑦

+ 𝑝0ℎ(𝑥)
2

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

((𝜁𝜀𝑡𝜃)
2 + 2𝜎𝜃𝑦(𝜁𝜀𝑡)

3/2)

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦))𝑑𝑣 𝑑𝑦

= 𝐼11 + 𝐼12 + 𝐼13 + 𝐼14, (2.18)

where the second equation is obtained by writing (𝜁𝜀𝑡𝜃 + 𝜎
√
𝜁𝜀𝑡𝑦)

2 = 𝜎2𝑦2𝜁𝜀𝑡 +

((𝜁𝜀𝑡𝜃)
2 + 2𝜎𝜃𝑦(𝜁𝜀𝑡)

3/2) and using the fact that
∫
ℝ
𝑦𝑒−𝑦

2/2𝑑𝑦 = 0.
The second term 𝐼12 can be rewritten as

𝐼12 =
𝑝0
2
𝜁𝜀𝑡𝜎

2ℎ(𝑥)2𝑓 ′′(𝑥). (2.19)

Since 𝑓 ∈ 𝐶4
𝑝 , one can show that

∣𝐼13∣ ≤ 𝐶(𝜁𝜀𝑡)
3/2∥𝑓∥𝐶4

𝑝

∫
ℝ

𝑒−𝑦
2/2𝑦2(1 + ∣𝑥∣3)(

√
𝜁𝜀𝑡+ 𝑦)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑑𝑣

×
∫ 1

0

𝑢2𝑣(1 + ∣𝑥∣𝑝)
(
1 + 𝑢𝑝𝑣𝑝

(
(𝜁𝜀𝑡)

𝑝 + (𝜁𝜀𝑡)
𝑝/2𝑦𝑝

))
𝑑𝑤𝑑𝑦

≤ 𝐶(1 + ∣𝑥∣𝑝+3)∥𝑓∥𝐶4
𝑝
(𝜁𝜀𝑡)

3/2.

It follows from (2.13) that

∣𝐼13∣ ≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝑡3/2𝜀3(1−𝜚0)/2.

After using a similar argument for 𝐼14, we finally get

∣𝐼13∣+ ∣𝐼14∣ ≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝑡3/2𝜀3(1−𝜚0)/2. (2.20)

Furthermore, one has

𝐼2 = 𝑡ℎ(𝑥)2
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)2𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢

× 𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑣 𝑑𝑧

+ 𝑡ℎ(𝑥)𝑓 ′(𝑥)
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)𝜌(𝑧)𝑑𝑧.

In the first integral, we decompose (𝜁𝜀𝑡𝜃+𝜃𝑧+𝜎
√
𝜁𝜀𝑡+ 𝑧𝑦)2 = (𝜁𝜀𝑡𝜃)

2+2𝜁𝜀𝑡𝜃(𝜃𝑧+
𝜎
√
𝜁𝜀𝑡+ 𝑧𝑦) + (𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)2 to define 𝐼21, 𝐼22 and 𝐼23; and in the second
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integral, 𝜃𝑧 together with 𝜁𝜀𝑡𝜃 define 𝐼24 and 𝐼25, respectively. Note that, the last
integral corresponding to 𝜎

√
𝜁𝜀𝑡+ 𝑧 is zero. In detail, we write

𝐼2 =
5∑
𝑖=1

𝐼2𝑖,

where

𝐼21 = 𝑡ℎ(𝑥)2
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

(𝜁𝜀𝑡𝜃)
2𝜌(𝑧)

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑣 𝑑𝑧,

𝐼22 = 𝑡ℎ(𝑥)2
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

2𝜁𝜀𝑡𝜃(𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢

× 𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑣 𝑑𝑧,

𝐼23 = 𝑡ℎ(𝑥)2
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)2𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢

× 𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑣 𝑑𝑧,

𝐼24 = 𝑡ℎ(𝑥)𝑓 ′(𝑥)𝜃
∫ ∞

𝜀

𝑧𝜌(𝑧)𝑑𝑧,

and

𝐼25 = 𝑡2𝜁𝜀𝜃ℎ(𝑥)𝑓
′(𝑥)

∫ ∞

𝜀

𝜌(𝑧)𝑑𝑧 = 𝑝1𝑡𝜁𝜀𝜃ℎ(𝑥)𝑓
′(𝑥).

We have

𝐼11 + 𝐼25 + 𝐼24 = 𝑡ℎ(𝑥)𝑓 ′(𝑥)𝜃
∫ ∞

0

𝑧𝜌(𝑧)𝑑𝑧. (2.21)

Since 𝑓 ∈ 𝐶4
𝑝 and 𝜚 < 1, one gets∫ ∞

𝜀

𝑧𝑞𝜌(𝑧)𝑑𝑧 ≤
∫ 1

0

𝑧𝜌(𝑧)𝑑𝑧 +

∫ ∞

1

𝑧𝑝+2𝜌(𝑧)𝑑𝑧 <∞,

for all 1 ≤ 𝑞 ≤ 𝑝+ 2. Furthermore, one has

∣𝐼21∣ ≤ 𝐶𝑡3𝜁2𝜀 (1 + 𝑥2)∥𝑓∥𝐶4
𝑝

∫
ℝ

𝑑𝑦𝑒−𝑦
2/2

∫ ∞

𝜀

𝜌(𝑧)

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢
(
1 + ∣𝑥∣𝑝 + 𝑢𝑝𝑣𝑝(1 + ∣𝑥∣𝑝)(𝑡𝑝 + 𝑧𝑝 + (𝑧𝑝/2 + (𝜁𝜀𝑡)

𝑝/2)𝑦𝑝
))

𝑑𝑣 𝑑𝑧

≤ 𝐶𝑡3𝜁2𝜀 (1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4
𝑝

∫ ∞

𝜀

(1 + 𝑧𝑝)𝜌(𝑧)𝑑𝑧.

≤ 𝐶(1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4
𝑝
𝐶𝜀𝑡

3𝜁2𝜀

≤ 𝐶(1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4
𝑝
𝑡2𝜁2𝜀 .
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The last inequality follows from the fact that 𝑝1 = 𝐶𝜀𝑡 ≤ 1. It then follows from
(2.13) that

∣𝐼21∣ ≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝑡2𝜀1−𝜚0 .

By a similar argument, one has

∣𝐼22∣ ≤ 𝐶𝑡2𝜁𝜀(1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4
𝑝

( ∫ ∞

𝜀

(
√
𝑧 + 𝑧𝑝+1)𝜌(𝑧)𝑑𝑧 +

√
𝑡𝜁𝜀

∫ ∞

𝜀

𝜌(𝑧)𝑑𝑧
)

≤ 𝐶𝑡2𝜁𝜀(1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4
𝑝

(
1 +

∫ ∞

𝜀

√
𝑧𝜌(𝑧)𝑑𝑧 + 𝐶𝜀

√
𝑡𝜁𝜀

)
≤ 𝐶(1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4

𝑝

(
𝑡2𝜁𝜀

∫ ∞

𝜀

√
𝑧𝜌(𝑧)𝑑𝑧 + (𝑡𝜁𝜀)

3/2 + 𝑡2𝜁𝜀

)
.

It follows from (2.13) and (2.15) that

∣𝐼22∣ ≤ 𝐶(1 + ∣𝑥∣𝑝+2)∥𝑓∥𝐶4
𝑝

(
𝑡2𝜀1−𝜚0 + 𝑡2𝜀3/2−2𝜚0 + 𝑡3/2𝜀3(1−𝜚0)/2

)
. (2.22)

Next, by applying Taylor’s expansion for 𝑓 ′′, one gets 𝐼23 = 𝐼23𝑎 + 𝐼23𝑏, where

𝐼23𝑎 = 𝑡ℎ(𝑥)2𝑓 ′′(𝑥)
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

2
√
2𝜋

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)2𝜌(𝑧)𝑑𝑧, (2.23)

and

𝐼23𝑏 = 𝑡ℎ(𝑥)3
∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)2(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)𝜌(𝑧)

×
∫ 1

0

𝑑𝑢

∫ 1

0

𝑢2𝑣

∫ 1

0

𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑤 𝑑𝑣 𝑑𝑧 𝑑𝑦.

(2.24)

2) Next, we expand 𝐿2
𝑑+1𝑓(𝑥). It follows from (2.10) and (2.12) and Taylor’s ex-

pansion for 𝑓 that

𝐿2
𝑑+1𝑓(𝑥)

= ℎ(𝑥)

∫
ℝ

𝑦

∫ 1

0

𝑓 ′(𝑥+ 𝑢ℎ(𝑥)𝑦)𝑑𝑢

∫ ∞

0

1√
2𝜋𝜎2𝑧

exp
(
− (𝑦 − 𝜃𝑧)2

2𝜎2𝑧

)
𝜌(𝑧)𝑑𝑧 𝑑𝑦

= ℎ(𝑥)

∫
ℝ

∫ ∞

0

(𝜃𝑧 + 𝜎
√
𝑧𝑦)

∫ 1

0

𝑓 ′(𝑥 + 𝑢ℎ(𝑥)(𝜃𝑧 + 𝜎
√
𝑧𝑦))𝑑𝑢

𝑒−𝑦
2/2

√
2𝜋

𝜌(𝑧)𝑑𝑧𝑑𝑦

= ℎ(𝑥)2
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

(∫ 𝜀

0

+

∫ ∞

𝜀

)
(𝜃𝑧 + 𝜎

√
𝑧𝑦)2

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜃𝑧 + 𝜎
√
𝑧𝑦))𝑑𝑣𝜌(𝑧)𝑑𝑧

+ ℎ(𝑥)𝑓 ′(𝑥)𝜃
∫ ∞

0

𝑧𝜌(𝑧)𝑑𝑧

= 𝐽1 + 𝐽2 + 𝐽3,
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where the second equation follows by using an appropriate change of variables. By
applying Taylor’s expansion for 𝑓 ′′, one gets 𝐽2 = 𝐽21 + 𝐽22, where

𝐽21 = ℎ(𝑥)2
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√
𝑧𝑦)2

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢𝑓 ′′(𝑥)𝑑𝑣𝜌(𝑧)𝑑𝑧

= ℎ(𝑥)2𝑓 ′′(𝑥)
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

2
√
2𝜋

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√
𝑧𝑦)2𝜌(𝑧)𝑑𝑧, (2.25)

and

𝐽22 = ℎ(𝑥)3
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

√
2𝜋

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√
𝑧𝑦)3

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢2𝑣

×
∫ 1

0

𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜃𝑧 + 𝜎
√
𝑧𝑦))𝑑𝑤𝑑𝑣𝜌(𝑧)𝑑𝑧. (2.26)

Next, we write (𝜃𝑧 + 𝜎
√
𝑧𝑦)2 = 𝜎2𝑦2𝑧 + (𝜃2𝑧2 + 2𝜎𝜃𝑦𝑧3/2) and after applying

Taylor’s expansion for 𝑓 ′′, we get

𝐽1 = 𝜎2ℎ(𝑥)2𝑓 ′′(𝑥)
∫
ℝ

𝑦2
𝑒−𝑦

2/2

2
√
2𝜋

𝑑𝑦

∫ 𝜀

0

𝑧𝜌(𝑧)𝑑𝑧

+ 𝜎2ℎ(𝑥)3
∫
ℝ

𝑦2
𝑒−𝑦

2/2

√
2𝜋

∫ 𝜀

0

𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢2𝑣(𝜃𝑧 + 𝜎
√
𝑧𝑦)3

×
∫ 1

0

𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜃𝑧 + 𝜎
√
𝑧𝑦))𝑑𝑤 𝑑𝑣 𝑑𝑧 𝑑𝑦

+ ℎ(𝑥)2
∫
ℝ

𝑑𝑦

∫ 𝜀

0

𝑑𝑧(𝜃2𝑧2 + 2𝜃𝜎𝑦𝑧3/2)𝜌(𝑧)
𝑒−𝑦

2/2

√
2𝜋

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢𝑓 ′′(𝑥+ 𝑢𝑣ℎ(𝑥)(𝜃𝑧 + 𝜎
√
𝑧𝑦))𝑑𝑣

= 𝐽11 + 𝐽12 + 𝐽13.

Using a similar argument as before, one has

∣𝐽12∣+ ∣𝐽13∣ ≤ 𝐶(1 + ∣𝑥∣𝑝+3)∥𝑓∥𝐶4
𝑝

∫ 𝜀

0

𝑧3/2𝜌(𝑧)𝑑𝑧.

Therefore, it follows from (2.16) that

∣𝐽12∣+ ∣𝐽13∣ ≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝜀3/2−𝜚0 . (2.27)

3) Now we compare the factors of 𝔼
[
𝑓(𝑋

2,𝜀

𝑡 (𝑥))
] − 𝑓(𝑥) and 𝐿2

𝑑+1𝑓(𝑥). First, it
follows from (2.21) that

𝐼11 + 𝐼25 + 𝐼24 = 𝑡𝐽3. (2.28)

And it follows from (2.19) that

𝑡𝐽11 − 𝐼12 =
1

2
𝜎2𝑝1𝑡𝜁𝜀ℎ(𝑥)

2𝑓 ′′(𝑥). (2.29)
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Next, it follows from (2.23) and (2.25) that

𝐼23𝑎 − 𝑡𝐽21

= 𝑡ℎ(𝑥)2𝑓 ′′(𝑥)
∫
ℝ

𝑑𝑦
𝑒−𝑦

2/2

2
√
2𝜋

∫ ∞

𝜀

(
𝜎2𝜁𝜀𝑡𝑦

2 + 2𝜃𝜎𝑧(
√

𝑧 + 𝜁𝜀𝑡−
√
𝑧)𝑦

)
𝜌(𝑧)𝑑𝑧,

hence as 𝑝1 = 𝐶𝜀𝑡 it follows from the above and (2.29)

𝐼23𝑎 + 𝐼12 = 𝑡(𝐽11 + 𝐽21). (2.30)

Next, we compare 𝐼23𝑏 and 𝐽22. It follows from (2.24) and (2.26) that 𝐼23𝑏− 𝑡𝐽22 =
𝐾1 +𝐾2, where

𝐾1 = 𝑡ℎ(𝑥)3
∫
ℝ

𝑑𝑦

∫ ∞

𝜀

(
(𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)2(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)

− (𝜃𝑧 + 𝜎
√
𝑧𝑦)3

)
𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢2𝑣

×
∫ 1

0

𝑒−𝑦
2/2

√
2𝜋

𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑤 𝑑𝑣 𝑑𝑧,

and

𝐾2 = 𝑡ℎ(𝑥)3
∫
ℝ

𝑑𝑦

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√
𝑧𝑦)3𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑑𝑣

∫ 1

0

𝑑𝑤 𝑢2𝑣
𝑒−𝑦

2/2

√
2𝜋

×
(
𝑓 ′′′(𝑥 + 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)

− 𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√
𝑧𝑦))

)
𝑑𝑧.

We rewrite 𝐾1 = 𝐾11 +𝐾12, where

𝐾11 = 𝑡2𝜁𝜀𝜃ℎ(𝑥)
3

∫
ℝ

𝑑𝑦

∫ ∞

𝜀

(𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)2𝜌(𝑧)

∫ 1

0

𝑑𝑢

∫ 1

0

𝑢2𝑣

×
∫ 1

0

𝑒−𝑦
2/2

√
2𝜋

𝑓 ′′′(𝑥+ 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑤 𝑑𝑣 𝑑𝑧,

and

𝐾12 = 𝑡ℎ(𝑥)3
∫
ℝ

𝑑𝑦

∫ ∞

𝜀

(
(𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)3 − (𝜃𝑧 + 𝜎

√
𝑧𝑦)3

)
𝜌(𝑧)

∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢2𝑣

∫ 1

0

𝑒−𝑦
2/2

√
2𝜋

𝑓 ′′′(𝑥 + 𝑢𝑣𝑤ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦))𝑑𝑤 𝑑𝑣 𝑑𝑧.

By using a similar argument as before, we have

∣𝐾11∣ ≤ 𝐶(1 + ∣𝑥∣𝑝+3)∥𝑓∥𝐶4
𝑝
𝜁𝜀𝑡

2

∫ ∞

𝜀

(𝜁𝜀𝑡+ 𝑧 + 𝑧𝑝+2)𝜌(𝑧)𝑑𝑧

≤ 𝐶(1 + ∣𝑥∣𝑝+3)∥𝑓∥𝐶4
𝑝
𝜁𝜀𝑡

2(1 + 𝐶𝜀𝜁𝜀𝑡)

≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝑡2𝜀1−𝜚0 ,
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where the last inequality follows from the fact that 𝐶𝜀𝑡 ≤ 1 and (2.13). Next, we
will estimate 𝐾12. First, we have

(𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)3 − (𝜃𝑧 + 𝜎
√
𝑧𝑦)3

= 𝜎𝑦(
√

𝜁𝜀𝑡+ 𝑧 −√
𝑧)
(
(𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)2 + (𝜃𝑧 + 𝜎

√
𝜁𝜀𝑡+ 𝑧𝑦)(𝜃𝑧 + 𝜎

√
𝑧𝑦)

+ (𝜃𝑧 + 𝜎
√
𝑧𝑦)2

)
≤ 𝐶𝑦(

√
𝜁𝜀𝑡+ 𝑧 −√

𝑧)(𝑧2 + 𝑦2𝑧 + 𝑦2𝜁𝜀𝑡).

Furthermore, since∫ ∞

𝜀

(
√

𝜁𝜀𝑡+ 𝑧 −√
𝑧)𝑧𝜌(𝑧)𝑑𝑧 ≤ 𝜁𝜀𝑡

∫ ∞

𝜀

𝑧𝜌(𝑧)√
𝜁𝜀𝑡+ 𝑧 +

√
𝑧
𝑑𝑧 ≤ 𝜁𝜀𝑡

∫ ∞

𝜀

√
𝑧𝜌(𝑧)𝑑𝑧,∫ ∞

𝜀

(
√

𝜁𝜀𝑡+ 𝑧 −√
𝑧)𝜌(𝑧)𝑑𝑧 ≤

√
𝑡𝜁𝜀

∫ ∞

𝜀

𝜌(𝑧)𝑑𝑧 = 𝐶𝜀
√

𝑡𝜁𝜀,

and for all 𝑞 ≥ 3/2,∫ ∞

𝜀

(
√

𝜁𝜀𝑡+ 𝑧 −√
𝑧)𝑧𝑞𝜌(𝑧)𝑑𝑧 ≤ 𝜁𝜀𝑡

∫ ∞

𝜀

𝑧𝑞−1/2𝜌(𝑧)𝑑𝑧 ≤ 𝐶𝜁𝜀𝑡,

we have

∣𝐾12∣ ≤ 𝐶(1 + ∣𝑥∣𝑝+3)∥𝑓∥𝐶4
𝑝
𝑡2𝜁𝜀

(
1 + 𝐶𝜀(𝜁𝜀𝑡)

1/2 +

∫ ∞

𝜀

√
𝑧𝜌(𝑧)𝑑𝑧

)
≤ 𝐶(1 + ∣𝑥∣𝑝+3)∥𝑓∥𝐶4

𝑝

(
𝑡2𝜁𝜀 + (𝜁𝜀𝑡)

3/2 + 𝑡2𝜁𝜀

∫ ∞

𝜀

√
𝑧𝜌(𝑧)𝑑𝑧

)
≤ 𝐶(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4

𝑝

(
𝑡2𝜀1−𝜚0 + 𝑡3/2𝜀3(1−𝜚0)/2 + 𝑡2𝜀3/2−2𝜚0

)
, (2.31)

where the last inequality follows from (2.13)–(2.15). Now we estimate 𝐾2. Since
𝑓 ∈ 𝐶4

𝑝 , for any 𝑢, 𝑣 ∈ ℝ, one has ∣𝑓 ′′′(𝑢)−𝑓 ′′′(𝑣)∣ ≤ 𝐶∥𝑓∥𝐶4
𝑝
∣𝑢−𝑣∣(1+ ∣𝑢∣𝑝+ ∣𝑣∣𝑝),

hence

∣𝐾2∣ ≤ 𝐶𝑡∣ℎ(𝑥)∣4∥𝑓∥𝐶4
𝑝

∫
ℝ

𝑑𝑦

∫ ∞

𝜀

∣(𝜃𝑧 + 𝜎
√
𝑧𝑦)3𝑦∣(

√
𝑧 + 𝜁𝜀𝑡−

√
𝑧)𝜌(𝑧)

×
∫ 1

0

𝑑𝑢

∫ 1

0

𝑑𝑣

∫ 1

0

𝑑𝑤𝑢2𝑣
𝑒−𝑦

2/2

√
2𝜋

𝑢𝑣

×
(
1 + ∣𝑥∣𝑝 + 𝑢𝑝𝑣𝑝𝑤𝑝(1 + ∣𝑥∣𝑝)(𝜁𝑝𝜀 𝑡𝑝 + 𝑧𝑝 + (𝑧𝑝/2 + 𝜁𝑝/2𝜀 𝑡𝑝/2)𝑦𝑝

))
𝑑𝑧

≤ 𝐶ℎ(𝑥)4∥𝑓∥𝐶4
𝑝
𝑡2𝜁𝜀

∫
ℝ

𝑑𝑦

∫ ∞

𝜀

∣𝑦𝑧(√𝑧 + 𝑦)3∣𝜌(𝑧)

×
∫ 1

0

𝑑𝑢

∫ 1

0

𝑑𝑣

∫ 1

0

𝑑𝑤 𝑢2𝑣
𝑒−𝑦

2/2

√
2𝜋

𝑢𝑣

×
(
1 + ∣𝑥∣𝑝 + 𝑢𝑝𝑣𝑝𝑤𝑝(1 + ∣𝑥∣𝑝)(𝜁𝑝𝜀 𝑡𝑝 + 𝑧𝑝 + (𝑧𝑝/2 + 𝜁𝑝/2𝜀 𝑡𝑝/2)𝑦𝑝

))
𝑑𝑧.
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Therefore

∣𝐾2∣ ≤ 𝐶(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝑡2𝜁𝜀

∫ ∞

𝜀

𝑧𝜌(𝑧)𝑑𝑧

≤ 𝐶(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝
𝑡2𝜀1−𝜚0 , (2.32)

since
∫∞
𝜀 𝑧𝜌(𝑧)𝑑𝑧 <∞.

4) Finally, it follows from (2.20), (2.22), (2.27), (2.28) and (2.30)–(2.32) that for
any 𝜚0 ∈ (𝜚, 1), there exists a positive constant 𝐶(𝜚0) which does not depend on 𝜀
such that∣∣𝔼[𝑓(𝑋2,𝜀

𝑡 (𝑥)
] − 𝑓(𝑥)− 𝑡𝐿2

𝑑+1𝑓(𝑥)
∣∣

≤ 𝐶(𝜚0)(1 +∣𝑥∣𝑝+4)∥𝑓∥𝐶4
𝑝

(
𝑡3/2𝜀3(1−𝜚0)/2 + 𝑡2𝜀3/2−2𝜚0 + 𝑡2𝜀1−𝜚0 +𝑡𝜀3/2−𝜚0

)
,

this implies (2.17). □
Next, the parameter 𝜀 should be chosen in order to obtain the best bound in

(2.17). After a simple calculation, we have the following result.

Lemma 2.12. Assume that 𝑓 ∈ 𝐶4
𝑝 and

∫∞
1 𝑧𝑝+2𝜌(𝑧)𝑑𝑧 <∞. For each 𝜚0 ∈ (𝜚, 1),

if we choose 𝜀 = 𝑂(𝑡1/𝜚0 ) and such that 𝐶𝜀𝑡 < 1, then there exists a positive
constant 𝐶(𝜚0) which does not depend on 𝜀 and 𝑡 such that∣∣𝔼[𝑓(𝑋2,𝜀

𝑡 (𝑥)
]− 𝑓(𝑥)− 𝑡𝐿2

𝑑+1𝑓(𝑥)
∣∣ ≤ 𝐶(𝜚0)(1 + ∣𝑥∣𝑝+4)∥𝑓∥𝐶4

𝑝
(𝑡1+1/𝜚0 + 𝑡3/(2𝜌0)).

This result shows that if 𝜀 = 𝑂(𝑡1/𝜌0 ) and 𝐶𝜀𝑡 < 1 then the analog of (H2)
will be satisfied (𝑛 = 1 if 𝜌 ≥ 1/2 and 𝑛 = 2 if 𝜌 < 1/2). We also remark that the
fact that 𝜀 = 𝜅0𝑡

1/𝜌0 together with 𝐶𝜀𝑡 < 1 results on a choice for 𝜅0.
The next lemma verifies condition (H1) which corresponds to the assumption

(ℳ) in [14].

Lemma 2.13. Assume that ℙ[𝑆𝜀 = 1] = 𝐶𝜀𝑡 < 1. Then for any 𝑝 ≥ 2 such that∫∞
1

𝑧𝑝𝜌(𝑧)𝑑𝑧 <∞, there exist constants 𝐾 and 𝐾 ′ satisfying

𝔼
[∣𝑋2,𝜀

𝑡 (𝑥)∣𝑝] ≤ (1 +𝐾𝑡)∣𝑥∣𝑝 +𝐾 ′𝑡.

Proof. We first denote 𝑓(𝑥) = ∣𝑥∣𝑝 and write 𝔼[𝑓(�̄�2,𝜀
𝑡 (𝑥)] − 𝑓(𝑥) = 𝐼1 + 𝐼2 as in

the first part of the proof of Lemma 2.11. We need to show that

∣𝐼1∣+ ∣𝐼2∣ ≤ 𝑐𝑡(1 + ∣𝑥∣𝑝), ∀𝑥 ∈ ℝ.

It follows from (2.18) that

∣𝐼1∣ ≤ 𝑡𝜁𝜀𝑝𝜃∣ℎ(𝑥)∣∣𝑥∣𝑝−1
∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

𝑑𝑦

+ 𝑡𝜁𝜀𝑝(𝑝− 1)ℎ(𝑥)2
∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

(
√

𝜁𝜀𝑡𝜃 + 𝜎𝑦)2
∫ 1

0

𝑑𝑢

×
∫ 1

0

𝑢∣𝑥+ 𝑢𝑣ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜎
√

𝜁𝜀𝑡𝑦)∣𝑝−2𝑑𝑣𝑑𝑦.
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Since ∣ℎ(𝑥)∣ ≤ 𝐶(1 + ∣𝑥∣), we get

∣𝐼1∣ ≤ 𝐶𝑡𝜁𝜀(1 + ∣𝑥∣𝑝)
≤ 𝐶𝑡(1 + ∣𝑥∣𝑝),

since 𝜁𝜀 is bounded. It remains to bound 𝐼2. Since 𝐶−1𝜀 𝑝1 = 𝑡, we have

𝐼2 ≤ 𝑡𝑝

∫
ℝ

𝑒−𝑦
2/2

√
2𝜋

∫ ∞

𝜀

∣ℎ(𝑥)∣(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧∣𝑦∣)𝜌(𝑧)

×
∫ 1

0

∣𝑥+ 𝑢ℎ(𝑥)(𝜁𝜀𝑡𝜃 + 𝜃𝑧 + 𝜎
√

𝜁𝜀𝑡+ 𝑧𝑦)∣𝑝−1𝑑𝑢𝑑𝑧𝑑𝑦.

And it follows from (2.13) that

∣𝐼2∣ ≤ 𝐶𝑡(1 + ∣𝑥∣𝑝)
(
1 +

∫ ∞

𝜀

𝑧𝑝𝜌(𝑧)𝑑𝑧
)

≤ 𝐶𝑡(1 + ∣𝑥∣𝑝),

since 𝐶𝜀𝑡 < 1 and
∫∞
𝜀 𝑧𝑝𝜌(𝑧)𝑑𝑧 ≤ ∫ 1

0 𝑧𝜌(𝑧)𝑑𝑧 +
∫∞
1 𝑧𝑝𝜌(𝑧)𝑑𝑧 <∞. □

Finally, the rate of convergence of our scheme can be established by following
the guide in Section 2.4.2 under appropriate regularity conditions.

3. Numerical study

In our numerical study, we concentrate on examples from three points of view.

∙ Lévy measures with different values of the Blumenthal–Getoor index.
∙ Different types of expectations. That is, to consider the calculation of
𝔼[𝑓(𝑋1)] for different functions 𝑓 .

∙ Different types of SDE’s (different types of coefficients). In particular, we
consider oscillating type of coefficients sin(𝑎𝑥) for different values of 𝑎.

In some of the cases considered, the theory provided so far does not tell us the the-
oretical rate of convergence. Still, by doing the simulations one can learn that the
proposed methods still apply and points to further possible theoretical extensions
of these methods.

3.1. Example 1: Weak approximation for an SDE driven by a
tempered stable Lévy process

Let 𝑍 be a tempered stable Lévy process with Lévy measure 𝜈 defined on ℝ by

𝜈(𝑑𝑦) =
1

∣𝑦∣𝛼+1

(
𝑐+𝑒

−𝜆+∣𝑦∣1𝑦>0 + 𝑐−𝑒−𝜆−∣𝑦∣1𝑦<0
)
𝑑𝑦.
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3.1.1. We consider the following one-dimensional SDE

𝑑𝑋𝑡 = sin(𝑎𝑋𝑡−)𝑑𝑍𝑡, 𝑋0 = 1.

We will estimate 𝔼[𝑓(𝑋1)] with 𝑓(𝑥) = 2 − 2 cos(𝑥 − 𝑋0) using various schemes
mentioned in the last section.

We choose the parameter values 𝑎 = 1.0, 𝜆+ = 1.0, 𝑐+ = 1, 𝛾 = 1 and
𝑐− = 0. Figures 1 and 2 present the Monte Carlo estimators and the corresponding
variances obtained by using various schemes with the jump index Blumenthal–
Getoor 𝛼 = 0.1 and 𝛼 = 0.9, respectively. The symbols ES, JSAS, 1JS and 2JS
stand for Euler scheme (Section 2.1), Jump size adapted scheme (Section 2.2), One
jump scheme (Section 2.4.4) and Two jump scheme (Section 2.4.4), respectively.

In the case that these schemes use the Asmussen–Rosiński approximation for
small jumps, we append in parentheses “AR” to their symbols.

In the following, we provide some detailed information about each scheme
and compute their theoretical computational costs. To be precise, we fix the error
of the estimate at a level 𝜀0 and compute the expected computational cost, which
is needed asymptotically in order to reach this level of error in the weak sense,
with respect to 𝜀0. As usual, these calculations are exact up to constants.

First, we remark that in any scheme, if needed, we will always use the RK4
method (Runge–Kutta scheme of order 4) to solve the ode 𝑑𝑥𝑡 = sin(𝑎𝑥𝑡)𝑑𝑡 (see
[4]) if needed.

1. Euler scheme without AR-correction: We use the scheme presented in page
187 [5] to generate 𝑍. The method consists of simulating the big jumps and
replacing the small ones with their expectation.

Fixed a jump threshold level 𝜀 > 0, then we approximate 𝑍 by a com-
pound Poisson process 𝑍𝜀 which has finite Lévy measure with density

𝜈𝜀(𝑦) =
1

∣𝑦∣𝛼+1

(
𝑐+𝑒

−𝜆+∣𝑦∣1𝑦>𝜀 + 𝑐−𝑒−𝜆−∣𝑦∣1𝑦<−𝜀
)
.

Hence 𝑍 has intensity 𝜆𝜀 =
∫
ℝ
𝜈𝜀(𝑦)𝑑𝑦, and jump size distribution 𝑝𝜀(𝑥) =

𝜈𝜀(𝑥)/𝜆𝜀. The jump size distribution can be simulated by using the accept-
ance-rejection method. It has been shown in [5] that the average number
of loops needed to generate one random variable tends to 1 when 𝜀 → 0.
Hence the computational cost to generate 𝑍𝜀 is proportional to 𝜆𝜀 = 𝑂(𝜀−𝛼).
Therefore considering that there are 𝑡−1 time partition points, we obtain a
total cost of 𝑡−1 + 𝜀−𝛼.

On the other hand, the order of convergence of this scheme is

𝑡+

∫
∣𝑦∣≤𝜀

∣𝑦∣2𝜈(𝑑𝑦) ≈ 𝑡+ 𝜀2−𝛼.

If we choose 𝑡 = 𝜀2−𝛼 = 𝜀0 then the computational cost to reach to error of
level 𝜀0 is ( 1

𝜀0
)1∨(𝛼/(2−𝛼)). One should remark that this computational cost

blows up when 𝛼→ 2 even if the error level 𝜀0 stays constant and sufficiently
small.
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2. Euler scheme with AR-correction: The increment of 𝑍 is generated as before
with a modification: we replace the small jumps by a Brownian motion with
the same local mean and variance as explained in Section 2.2.

The order of convergence of this scheme is

𝑡+

∫
∣𝑦∣≤𝜀

∣𝑦∣3𝜈(𝑑𝑦) ≈ 𝑡+ 𝜀3−𝛼.

As before, if we choose 𝑡 = 𝜀3−𝛼 = 𝜀0 then the computational cost to reach
to error of level 𝜀0 is (1𝜀 )

1∨(𝛼/(3−𝛼)).
3. JSAS without AR-correction: The approximated solution �̂� is defined induc-

tively as follow: �̂�(0) = 𝑋0 and for 𝑖 ≥ 0,

�̂�(𝑇 𝜀𝑖+1−) = 𝜃
(
𝛾𝜀(𝑇

𝜀
𝑖+1 − 𝑇 𝜀𝑖 ); �̂�(𝑇 𝜀𝑖 )

)
,

�̂�(𝑇 𝜀𝑖+1) = �̂�(𝑇 𝜀𝑖+1−) + ℎ(�̂�(𝑇 𝜀𝑖+1−))Δ𝑍(𝑇 𝜀𝑖+1).

For an arbitrary point 𝑡, we define

�̂�(𝑡) = 𝜃
(
𝛾𝜀(𝑡− 𝜂𝑡); �̂�(𝜂𝑡)

)
,

where 𝜂𝑡 = sup{𝑇 𝜀𝑖 : 𝑇 𝜀𝑖 ≤ 𝑡}.
Although this scheme was not directly studied in [8]. The same ideas

give that the error is of the order 𝜀2−𝛼. Therefore the computational cost to
reach to error of level 𝜀0 is ( 1

𝜀0
)
𝛼

2−𝛼 .
Now we introduce the cost for the schemes with limited number of

jumps. Recall that for these schemes, we only consider the case that 𝛼 < 1.
4. JSAS with AR-correction: The computational cost is proportional to 𝜆𝜀 =∫

∣𝑦∣>𝜀 𝜈(𝑑𝑦) = 𝑂(𝜀−𝛼).
The order of convergence of this scheme is

𝜎2𝜀
𝜆𝜀

(𝜎2𝜀 + ∣𝛾𝜀∣) +
∫
∣𝑦∣≤𝜀

∣𝑦∣3�̄�𝜀𝜈(𝑑𝑦) = 𝜀2∧(3−𝛼).

Hence, the computational cost to reach to error of level 𝜀0 is 𝜀
−𝛼/(2∧(3−𝛼))
0 .

5. 1JS without AR-correction: The weak error of this scheme is proportional to
𝑡+ 𝜀2−𝛼. Therefore, the optimal choice of parameters is 𝑡 = 𝜀2−𝛼 = 𝜀0. The
computational cost is proportional to 𝑡−1. On the other hand, if we choose
𝑡 = 𝜅𝜀2−𝛼, where the positive 𝜅 is small enough such that ℙ[𝑆𝜀 = 1] = 𝜆𝜀𝑡 <
1, then the computational cost to reach an error of level 𝜀0 is 𝜀−10 .

6. 1JS with AR-correction: In this case the weak error is of the order 𝑡+ 𝜀3−𝛼.
Then the calculation of cost follows as in the previous case, which gives a
computational cost of 𝜀−10 . The main difference with the previous scheme
is that fitting the side condition ℙ[𝑆𝜀 = 1] = 𝜆𝜀𝑡 < 1 becomes easier. In
fact, we choose 𝜀 = ( 𝑡𝜅 )

1/𝛼, where the positive 𝜅 is small enough such that

ℙ[𝑆𝜀 = 1] = 𝜅𝜀𝛼𝜆𝜀 = 𝜅𝜀𝛼
∫
∣𝑦∣>𝜀 𝜈(𝑑𝑦) < 1, then the scheme is of order 1.
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7. 2JS without AR-correction: The weak error is of order 𝑡2 + 𝜀2−𝛼 if the side
conditions stated in Lemma 2.6 are satisfied.

In this case, one needs to consider a non-regular choice of parameters
due to these side conditions. In fact, besides the condition that the weak
error has to be of order 𝜀0 one also needs to have that 𝜆𝜀𝑡 < 2. This raises
an optimization problem which one can solve easily. The solution is to take
𝑡 = 𝜅𝜀𝛼∨(1−

𝛼
2 ), where the positive 𝜅 is small enough such that ℙ[𝑆𝜀1 = 1] =

𝜆𝜀𝑡− 𝜆2
𝜀𝑡

2

2 < 1 and ℙ[𝑆𝜀2 = 1] = 𝜆𝜀𝑡
2−𝜆𝜀𝑡 < 1.

This choice gives a final computational cost of ( 1
𝜀0
)

1
2∨ 𝛼

2−𝛼 .

8. 2JS with AR-correction: In this case the optimization problem that appeared
in the previous case is simplified due to the higher weak rate of convergence
and one may choose 𝑡 = 𝜅𝜀𝛼, where the positive 𝜅 is small enough such that

ℙ[𝑆𝜀1 = 1] = 𝜆𝜀𝑡− 𝜆2
𝜀𝑡

2

2 < 1 and ℙ[𝑆𝜀2 = 1] = 𝜆𝜀𝑡
2−𝜆𝜀𝑡 < 1, then the scheme is of

order 𝑡2. The computational cost to reach to error of level 𝜀0 is 𝜀
−1/2
0 .

Putting this information on a table for the case 𝛼 < 1, we obtain

method ES ES(AR) JSAS JSAS(AR)

cost 𝜀−10 𝜀−10 (𝜀0)
− 𝛼

2−𝛼 𝜀
−𝛼/2
0

t 𝜀2−𝛼 𝜀3−𝛼 – –

𝜀 𝜀
1

2−𝛼
0 𝜀

1
3−𝛼
0 𝜀

1
2−𝛼
0 𝜀

1
2
0

𝑁 𝑡−1 𝑡−1 𝜆𝜀 𝜆𝜀

method 1JS 1JS(AR) 2JS 2JS(AR)

cost 𝜀−10 (𝜀0)
− 1

2∨ 𝛼
2−𝛼 𝜀−10 𝜀

−1/2
0

t 𝜀2−𝛼 𝜀𝛼 𝜀𝛼∨(1−
𝛼
2 ) 𝜀𝛼

𝜀 𝜀
1

2−𝛼
0 𝜀

1
3−𝛼
0 𝜀

1
2−𝛼
0 𝜀

1
3−𝛼
0

𝑁 𝑡−1 𝑡−1 𝑡−1 𝑡−1

From this table one can deduce that the JSAS methods have the lowest
theoretical expected computational cost while the Euler scheme methods perform
the worst.

This table assumes the general situation where one does not have information
of how to generate the increments of the Lévy process exactly.

Let us now procceed with the experimental results. The estimator and vari-
ance of each scheme is plotted as a function of log(𝑁) where 𝑁 is the numbers of
discretization points 𝑛 between 0 and 1. The parameter 𝜆𝜀 appearing in the JSAS
method is chosen equal to𝑁 in order to allow for comparison of computational cost.

We have decided to use this as it would seem the most natural measure of
computational time. The only case where this will differ with theoretical com-
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Figure 1. Numerical comparison of various schemes for estimating
𝔼[𝑓(𝑋1)] with 𝛼 = 0.1. (Left: mean, right: variance)

Figure 2. Numerical comparison of various schemes for estimating
𝔼[𝑓(𝑋1)] with 𝛼 = 0.9. (Left: mean, right: variance)

putational time is in the case of the Euler scheme when all jumps have to be
simulated.

For each point, we simulated 106 trajectories. In Figures 1 and 2, we see the
convergence and the variance of each estimator. The computational times with
respect to the case log(𝑁) = 6 are shown in Figure 3. This figure shows that the
theoretical computational estimates are not necessarily accurate at this level and
shows the difference of the constants in the asymptotic estimates. For example,
the increase of computational time for the Euler scheme from 𝛼 = 0.1 to 𝛼 = 0.9
is due to the increase in the number of jumps. Even more, the fact that the
JSAS schemes have a random number of partitions seems to play an important
role in the computational time. In fact, asymptotically speaking, the number of
calculations needed is a Poisson random variable with mean 𝜆𝜖 which behaves like
a Gaussian r.v. with variance proportional to 𝜆𝜖. From this figure, we can also see
the increasing dependence of these constants with respect to the value of 𝛼.

Next, we perform the same simulation as above but with a different value of
parameter 𝑎. More precisely, we choose 𝑎 = 5.0, 𝜆+ = 1.0, 𝛼 = 0.9, 𝑐+ = 1, 𝛾 = 1
and 𝑐− = 0. The results are presented in Figures 4 and 5.
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Figure 3. Computation time taken in the estimation of 𝔼[𝑓(𝑋1)]

Figure 4. Numerical comparison of various schemes for estimating
𝔼[𝑓(𝑋1)] with 𝑎 = 5.0. (Left: mean, right: variance)

Figure 5. Computation time taken in the estimation of 𝔼[𝑓(𝑋1)] with
respect to log(𝑁) = 6

The conclusion is that in general the 1JS method is fast and gives good results
for coefficients that do not oscillate too much. This contrasts with the theoretical
results shown in the previous table. This seems to be caused by the size of the
constants in the error expansions.

If the coefficients have rapidly growing derivatives then the method looses
accuracy and one may better use the JSAS method which may be time consuming.
In between these two methods one has the 2JS method. Therefore a practical issue
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Figure 6. Numerical comparison of various schemes for estimating
ℙ[𝑋1 > 2]

is how to determine before implementing the method which one should use and
the range of applicability of each method.

3.1.2. The approximation schemes presented in Section 2 are only applicable for
smooth functions 𝑓 . However, in the next simulation, we will use this scheme to
estimate the probability ℙ(𝑋1 > 𝑥0), or in other words, to estimate the expectation
𝔼(𝑓(𝑋1)) with 𝑓(𝑥) = 1𝑥>𝑥0.

We choose 𝑎 = 5.0, 𝜆+ = 0.5, 𝛼+ = 0.9, 𝑐+ = 1, 𝛾 = 1 and 𝑐− = 0. The
results are presented in Figure 6. This study reveals that one may need to use an
importance sampling method in order to improve the accuracy of the proposed
method.

3.2. Example 2: Weak approximation for an SDE driven by a NIG Lévy process

Let 𝑍 be a normal inverse Gaussian Lévy process whose characteristic function is
defined by

𝜙𝑡(𝑢) = 𝔼(𝑒𝑖𝑢𝑍𝑡) = exp
{− 𝛿𝑡

(√
𝛼2 − (𝛽 − 𝑖𝑢)2 −

√
𝛼2 − 𝛽2

)}
where 𝛼 > 0 and 𝛽 ∈ (−𝛼, 𝛼) and 𝛿 > 0 are parameters. The Lévy density is
given by

𝜈(𝑥) =
𝛿𝛼

𝜋

𝑒𝛽𝑥𝐾1(𝛼∣𝑥∣)
∣𝑥∣ ,

where 𝐾 is a modified Bessel function of the second kind. The NIG process can
be defined as

𝑍𝑡 = 𝜃𝑌𝑡 + 𝜎𝑊𝑌𝑡 , (3.1)

where𝑊 is a standard Brownian motion and 𝑌 is a inverse Gaussian subordinator:
a pure jump Lévy process with Lévy density 𝜌(𝑥) = 2√

2𝜅𝜋
𝑒−

𝑥
2𝜅

∣𝑥∣3/2 and therefore
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𝜌0 = 0.5 in this case. The parameters (𝜎, 𝜃, 𝜅) and (𝛼, 𝛽, 𝛿) are related by⎧⎨⎩
𝜅 = 1

𝛿
√
𝛼2−𝛽2

𝜃 = 𝛽𝛿√
𝛼2−𝛽2

𝜎2 = 𝛿√
𝛼2−𝛽2

⇔

⎧⎨⎩
𝛼 =

√
𝜃2+𝜎2𝜅−1

𝜎2

𝛽 = 𝜃𝜎−2

𝛿 = 𝜎𝜅−1/2.

The representation (3.1) allows to simulate exact increments of NIG process in
order to perform an Euler approximation scheme.

Let 𝑝𝑡 be the density of 𝜃𝑡 + 𝜎𝑊𝑡, the density of the NIG process can be
presented as 𝜈(𝑥) =

∫∞
0 𝑝𝑡(𝑥)𝜌(𝑡)𝑑𝑡. We define the finite measure 𝜈𝜀 via 𝜈𝜀(𝑥) =∫∞

𝜀 𝑝𝑡(𝑥)𝜌(𝑡)𝑑𝑡, and then 𝜒𝜀(𝑥) =
𝜈𝜀(𝑥)
𝜈(𝑥) .

The constants 𝜆𝜀, 𝛾𝜀, 𝜎𝜀 are computed as follows

𝜆𝜀 =

√
2

𝜋𝜅𝜀
exp

(
− 𝜀

2𝜅

)
− 2

𝜅
𝑁
(
−

√
𝜀

𝜅

)
,

𝛾𝜀 = 𝜃 − 2𝜃𝑁
(
−

√
𝜀

𝜅

)
,

𝜎2𝜀 = (𝜎2 + 𝜅𝜃2)
(
1− 2𝑁

(
−

√
𝜀

𝜅

))
−

√
2𝜅𝜀

𝜋
exp

(
− 𝜀

2𝜅

)
𝜃2,

where 𝑁(𝑥) = 1√
2𝜋

∫ 𝑥
−∞ exp(−𝑥2

2 )𝑑𝑥.

We choose 𝜎 = 0.5; 𝜃 = 0.4; 𝜅 = 0.6, and solve the one-dimensional SDE

𝑑𝑋𝑡 = sin(𝑎𝑋𝑡)𝑑𝑍𝑡,

where 𝑍 is the NIG process with drift adjusted to have 𝔼(𝑍𝑡) = 0. In other words,

𝑍𝑡 = 𝑍𝑡 − 𝜃𝑡. In this case, the values of 𝜆𝜀 and 𝜎𝜀 are the same as before but

𝛾𝜀 = −2𝜃𝑁
(
−√

𝜀
𝜅

)
.

We first use the representation (3.1) to define the Euler’s scheme for 𝑋1.
Besides, we also use JSAS method and 1JS method to simulate 𝑋1 as introduced
in Section 2.4.5.

We now explain how to define the JSAS1 scheme (2.1)–(2.3) to simulate 𝑋1:

1. (𝑇 𝜀𝑖 )𝑖∈ℕ denotes jump times of a Poisson process whose intensity is 𝜆𝜀, 𝑇
𝜀
0 = 0.

2. (Δ𝑍(𝑇 𝜀𝑖 ))𝑖∈ℕ denotes a sequence of independent random variables whose den-
sity is 𝜈𝜀

𝜆𝜀
.

3. The solution of the ODE 𝑑𝑋𝑡 = sin(𝑎𝑋𝑡)𝑑𝑡 is approximated using the RK4
method.

A random variable with density 𝜈𝜀
𝜆𝜀

can be sampled using the following algorithm:

1. Sample a random variable 𝑌 with probability density 𝜌(𝑥)𝐼𝑥>𝜀
𝜆𝜀

using the

acceptance-rejection method (see [5], Example 6.9).
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Figure 7. 𝑎 = 5, 𝑓(𝑥) = 2− 2 cos(𝑥−𝑋0). Left: Mean. Right: Variance

Figure 8. 𝑎 = 5, 𝑓(𝑥) = 1{𝑥>3/2}. Left: Mean. Right: Variance

2. Conditional on 𝑌 , sample 𝑋 with law 𝑝𝑌 . It means that 𝑋 is sampled by
𝑋 = 𝜃𝑌 + 𝜎

√
𝑌𝑊 ′, where 𝑊 ′ is a standard normal distributed random

variable.

Next, we use JSAS2 method introduced in Section 2.2.2 to simulate 𝑋1. In
this setting, Ω(𝑡) = 𝜎2𝜀ℎ

2(𝑌 0
𝑡 )(𝑡− 𝜂𝑡).

Finally, we use 1JS(AR) method defined in Section 2.4.5 to simulate 𝑋1. We
remark that this method already incorporates the Asmussen–Rosiński approxima-
tion in its definition. One can also do a similar computational cost study for this
case. We do not give details but only the following table.

method ES JSAS1 JSAS1(AR) JSAS2 1JS(AR)

cost 𝜀−10 𝜀−10 𝜀
−1/2
0 𝜀

−1/2
0 𝜀

−1/2
0

Figures 7, 8 and 9 show the Monte Carlo estimation for 𝔼[𝑓(𝑋1)] with 𝑓(𝑥) =
2−2 cos(𝑥−𝑋0), 𝑓(𝑥) = 1{𝑥>3/2} and 𝑓(𝑥) = 𝑒𝑥, and the corresponding variances,
respectively, with 𝑎 = 5.0.

Figures 10, 11 and 12 show the Monte Carlo estimation for 𝔼[𝑓(𝑋1)] with
𝑓(𝑥) = 2 − 2 cos(𝑥 −𝑋0), 𝑓(𝑥) = 1{𝑥>3/2} and 𝑓(𝑥) = 𝑒𝑥, and the corresponding
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Figure 9. 𝑎 = 5, 𝑓(𝑥) = 𝑒𝑥. Left: Mean. Right: Variance

Figure 10. 𝑎 = 10, 𝑓(𝑥) = 2− 2 cos(𝑥−𝑋0). Left: Mean. Right: Variance

Figure 11. 𝑎 = 10, 𝑓(𝑥) = 1{𝑥>3/2}. Left: Mean. Right: Variance

variances, respectively, with 𝑎 = 10.0. The computational time of each method
with respect to the case log(𝑁) = 7 and 𝑁𝑀𝐶 = 106 are shown in Figure 13.

The conclusion is that, on one hand, JSAS methods have higher rates of con-
vergence than the other methods. On the other hand, 1JS(AR) method defined in
Section 2.4.5 is very fast and gives good results even when coefficients oscillate a lot.
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Figure 12. 𝑎 = 10, 𝑓(𝑥) = 𝑒𝑥. Left: Mean. Right: Variance

Figure 13. Computation time for estimating 𝔼𝑓(𝑋1)

3.3. Some conclusions

Throughout the experiments, we see that there is a big gap between theoretical
asymptotic values and the actual computational results. So far, one can see that
the 1JS is a fairly efficient scheme in most situations considering its accuracy
and computational time. If high accuracy is required then the JSAS or 2JS can
be used. Further studies are needed which may also incorporate new schemes. We
have striven here for generality and therefore many faster schemes may be provided
for particular situations.
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[6] N. Fournier, Simulation and approximation of Lévy-driven stochastic differential
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Abstract. We prove Itô’s formula for a general class of functions𝐻 : ℝ+×𝐹 →
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1. Introduction

We prove Itô’s formula for Banach-space-valued stochastic jump processes driven
by a compensated Poisson random measure.

In this context, Itô’s formula was originally given in [14]. However, there it
was only proven for a smaller class of integrands, as stochastic integration for
Banach-space-valued integrands was still not understood in the generality of the
forthcoming papers [9, 10]. We remind here also the work of E. Hausenblas [6],
where Itô’s formula on Banach spaces was proven assuming additional conditions
on the integrands. In a previous work of Graveraux and Pellaumail [5], where
also additional conditions on the integrands are required, the Itô formula was not
given in terms of the compensator. However, this is necessary in case the formula
is used to find the generator of a Markov process. In this article, we provide an
improvement of the work of [14]. Even if the methods are similar, the current
article is presented in a clearer and direct way, due to integrands having general
integrability conditions. The mark space (𝐸, ℰ), associated to the compensated
Poisson random measure, is also allowed to be more general than in [14], where 𝐸
has been a separable Banach space. We refer Remark 2.1 and Remark 3.2, where
this generalization is discussed. Moreover, an additional improvement is given,
which is important for applications: The condition 𝐻 ∈ 𝐶1,2

𝑏 (ℝ+ × 𝐹 ;𝐺), i.e.,
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that the function 𝐻 and its partial derivatives are bounded, is not required any
more. This means that Itô’s formula can be applied to functionals such as ∥ ⋅ ∥2,
as discussed in Example 3.

2. Preliminaries

Let (Ω,ℱ , (ℱ𝑡)𝑡≥0,ℙ) be a filtered probability space satisfying the usual conditions,
and let (𝐹, ∥ ⋅ ∥) be a separable Banach space. Let (𝐸, ℰ) be a measurable space
which we assume to be a Blackwell space (see [1, 4]). Furthermore, let 𝑁 be a
time-homogeneous Poisson random measure on ℝ+×𝐸, see [7, Def. II.1.20]. Then
its compensator is of the form 𝜈(𝑑𝑡, 𝑑𝑥) = 𝑑𝑡𝛽(𝑑𝑥), where 𝛽 is a 𝜎-finite measure
on (𝐸, ℰ). We call 𝑞(𝑑𝑡, 𝑑𝑥) = 𝑁(𝑑𝑡, 𝑑𝑥) − 𝜈(𝑑𝑡, 𝑑𝑥) the associated compensated
Poisson random measure.

Remark 2.1. In previous works on this topic, see, e.g., [9, 10, 13, 14], the mark
space (𝐸, ℰ) is a separable Banach space equipped with its Borel 𝜎-field, and
𝑁 is the Poisson random measure associated to an 𝐸-valued Lévy process with
Lévy measure 𝛽. The upcoming results from this Section, which we take from
[9, 10, 13, 14], also hold true in our present, more general framework, and with
analogous proofs (see, e.g., [2, 8] for the case where 𝐹 is a separable Hilbert space).
Indeed, the crucial point is whether the integral operator (2.3) can be extended
to a continuous linear operator, and this property does not rely on the structure
of 𝐸 (see also Remark 2.4 below). The assumption that the measurable space
(𝐸, ℰ) is a Blackwell space is a standard assumption when dealing with random
measures, see, e.g., [7, Chapter II.1]. It ensures the existence and uniqueness of the
predictable compensator, see [7, Thm. II.1.8]. We remark that every Polish space
with its Borel 𝜎-field is a Blackwell space.

We fix an arbitrary 𝑇 ∈ ℝ+. Let us consider the set of progressively measur-
able functions on the time interval [0, 𝑇 ], i.e.,

𝑀𝑇 (𝐸/𝐹 ) := {𝑓 : Ω× [0, 𝑇 ]× 𝐸 → 𝐹 : 𝑓 is ℬ[0, 𝑇 ]⊗ ℰ ⊗ ℱ𝑇 -measurable

and 𝑓(𝑡, 𝑥) is ℱ𝑡-measurable for all 𝑡 ∈ [0, 𝑇 ] and 𝑥 ∈ 𝐸}.
Furthermore, we define

𝑀𝑇,2
𝜈 (𝐸/𝐹 ) :=

{
𝑓 ∈𝑀𝑇 (𝐸/𝐹 ) :

∫ 𝑇

0

∫
𝐸

𝔼[∥𝑓(𝑡, 𝑥)∥2]𝜈(𝑑𝑡, 𝑑𝑥) <∞
}
,

where 𝔼[𝑓 ] denotes the expectation with respect to the probability measure ℙ.

Definition 2.2. A function 𝑓 ∈ 𝑀𝑇 (𝐸/𝐹 ) belongs to the set Σ𝑇 (𝐸/𝐹 ) of simple
functions, if there exist 𝑛,𝑚 ∈ ℕ such that

𝑓(𝑡, 𝑥) =
𝑛−1∑
𝑘=1

𝑚∑
𝑙=1

�𝐴𝑘,𝑙(𝑥)�𝐹𝑘,𝑙�(𝑡𝑘,𝑡𝑘+1](𝑡)𝑎𝑘,𝑙,
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where 𝛽(𝐴𝑘,𝑙) < ∞, 𝑡𝑘 ∈ (0, 𝑇 ], 𝑡𝑘 < 𝑡𝑘+1, 𝐹𝑘,𝑙 ∈ ℱ𝑡𝑘 , 𝑎𝑘,𝑙 ∈ 𝐹 , and for all
𝑘 ∈ 1, . . . , 𝑛− 1 we have 𝐴𝑘,𝑙1 × 𝐹𝑘,𝑙1 ∩ 𝐴𝑘,𝑙2 × 𝐹𝑘,𝑙2 = ∅ if 𝑙1 ∕= 𝑙2.

The set Σ𝑇 (𝐸/𝐹 ) of simple functions is dense in the Banach space𝑀𝑇,2
𝜈 (𝐸/𝐹 )

with norm

∥𝑓∥2 :=
√∫ 𝑇

0

∫
𝐸

𝔼[∥𝑓(𝑡, 𝑢)∥2]𝜈(𝑑𝑡, 𝑑𝑥).

The proof only uses the fact that the simple functions are defined on the
sets of a semiring which generates the 𝜎-algebra ℬ[0, 𝑇 ] ⊗ ℰ ⊗ ℱ𝑇 and that the
compensator is of the form 𝜈(𝑑𝑡, 𝑑𝑥) = 𝑑𝑡𝛽(𝑑𝑥), see [13, Theorem 4.2] (where this
is proven for slightly more general compensated Poisson random measures having
compensators 𝛼(𝑑𝑡)𝛽(𝑑𝑥) with 𝛼(𝑑𝑡) being absolutely continuous w.r.t. Lebesgue
measure). We remark that in [15, Chapter 2.4], which deals the case of real-valued
integrands, a bigger set of simple functions is considered.

The Itô integral of simple functions is defined as usual pathwise in a very
natural way (see Chapter 3 in [13]): For 𝑓 ∈ Σ𝑇 (𝐸/𝐹 ), the “natural stochastic
integral” of 𝑓 is given by∫ 𝑇

0

∫
𝐸

𝑓(𝑡, 𝑥)𝑞(𝑑𝑡, 𝑑𝑥) :=

𝑛−1∑
𝑘=1

𝑚∑
𝑙=1

𝑎𝑘,𝑙�𝐹𝑘,𝑙𝑞((𝑡𝑘, 𝑡𝑘+1] ∩ (0, 𝑇 ]×𝐴𝑘,𝑙).

Remark 2.3. Suppose the mark space (𝐸, ℰ) is a separable Banach space equipped
with its Borel 𝜎-field. Then, for each 𝑓 ∈ Σ𝑇 (𝐸/𝐹 ) we have∫ 𝑇

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥) =
∑

0<𝑠≤𝑇
𝑓(𝑠,Δ𝑋𝑠)− 𝔼

[ ∑
0<𝑠≤𝑇

𝑓(𝑠,Δ𝑋𝑠)

]
, (2.1)

where (𝑋𝑡)𝑡≥0 is the Lévy process associated to the compensated Poisson random
measure 𝑞(𝑑𝑠, 𝑑𝑥), and Δ𝑋𝑠 denotes the jump of 𝑋 at time 𝑠, i.e., Δ𝑋𝑠 = 𝑋𝑠 −
lim𝑢↑𝑠𝑋𝑢.

Let ℳ2
𝑇 (𝐹 ) be the linear space of all 𝐹 -valued square integrable martingales

𝑀 = (𝑀𝑡)𝑡∈[0,𝑇 ] with norm

∥𝑀∥ℳ2
𝑇
=

(
𝔼[∥𝑀𝑇 ∥2]

)1/2
.

The Itô integral for functions 𝑓 ∈𝑀𝑇,2
𝜈 (𝐸/𝐹 ) is well defined, if the linear operator

Σ𝑇 (𝐸/𝐹 )→ℳ2
𝑇 (𝐹 ), 𝑓 �→

(∫ 𝑡

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥)

)
𝑡∈[0,𝑇 ]

(2.2)

can uniquely be extended to a continuous linear operator

𝑀𝑇,2
𝜈 (𝐸/𝐹 )→ℳ2

𝑇 (𝐹 ), 𝑓 �→
(∫ 𝑡

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥)

)
𝑡∈[0,𝑇 ]

. (2.3)
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In particular, if this is the case, for all 𝑓 ∈ 𝑀𝑇,2
𝜈 (𝐸/𝐹 ) there is a sequence

(𝑓𝑛)𝑛∈ℕ ⊂ Σ𝑇 (𝐸/𝐹 ) such that lim𝑛→∞ ∥𝑓 − 𝑓𝑛∥2 = 0 and

lim
𝑛→0

𝔼

[∥∥∥∥ ∫ 𝑇

0

∫
𝐸

(𝑓(𝑠, 𝑥)− 𝑓𝑛(𝑠, 𝑥))𝑞(𝑑𝑠, 𝑑𝑥)

∥∥∥∥2
]
= 0.

Remark 2.4. In [10] we have proven that the Itô Integral for simple functions in
(2.2) can uniquely be extended to a continuous linear operator (2.3) if and only if
there is a constant 𝐾𝛽, depending on the Lévy measure 𝛽, such that

𝔼

[∥∥∥∥ ∫ 𝑇

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥)

∥∥∥∥2
]

≤ 𝐾𝛽𝔼

[ ∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥2𝛽(𝑑𝑥)𝑑𝑠
]

for all 𝑓 ∈ Σ𝑇 (𝐸/𝐹 ).

(2.4)

If the Banach space F is of M-type 2, then such a constant exists and does not
depend on the Lévy measure 𝛽, see [9]. We also emphasize that – as indicated in
Remark 2.1 – the proof of this result does not rely on the structure of 𝐸. Hence, the
M-type 2 condition is a sufficient, but not necessary condition for the Itô integral
with respect to compensated Poisson random measures to be well defined. Typical
examples of M-type 2 Banach spaces are the Lebesgue spaces 𝐿𝑝(𝐺,𝒢, 𝜇) with
2 ≤ 𝑝 <∞ and (𝐺,𝒢, 𝜇) being a measure space, see [11, 12]. On the other hand, if
such a constant exists and does not depend on the Lévy measure 𝛽, i.e., 𝐾𝛽 = 𝐾,
then the Banach space 𝐹 has to be of type 2, see [10]. We also remark that in case
𝐹 = 𝐻 being a Hilbert space, the linear operator (2.3) is even an isometry, see [13].

There are separable Banach spaces which are not of M-type 2, as the following
example shows:

Example. Let ℓ1 be the space of all real-valued sequences (𝑥𝑗)𝑗∈ℕ ⊂ ℝ which are
absolutely convergent, that is

∥𝑥∥ℓ1 :=

∞∑
𝑗=1

∣𝑥𝑗 ∣ <∞.

Then (ℓ1, ∥ ⋅ ∥ℓ1) is a separable Banach space which is not of M-type 2. Indeed, let
(𝑒𝑗)𝑗∈ℕ be the standard unit sequences in ℓ1, which are given by

𝑒1 = (1, 0, . . .), 𝑒2 = (0, 1, 0, . . .), . . .

Let 𝑛 ∈ ℕ be arbitrary. We denote by (𝑋
(𝑛)
𝑗 )𝑗=1,...,𝑛 independent random vari-

ables having a normal distribution 𝑁(0, 1/𝑛), and we define the ℓ1-valued process

𝑀 (𝑛) = (𝑀
(𝑛)
𝑘 )𝑘=0,...,𝑛 as

𝑀
(𝑛)
0 := 0 and 𝑀

(𝑛)
𝑘 :=

𝑘∑
𝑗=1

𝑋
(𝑛)
𝑗 𝑒𝑗 , 𝑘 = 1, . . . , 𝑛.
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Then 𝑀 (𝑛) is a martingale with respect to the filtration (ℱ (𝑛)
𝑘 )𝑘=0,...,𝑛 given by

ℱ (𝑛)
0 = {∅,Ω} and ℱ (𝑛)

𝑘 = 𝜎(𝑋
(𝑛)
1 , . . . , 𝑋

(𝑛)
𝑘 ), 𝑘 = 1, . . . , 𝑛.

Moreover, we have

𝑛∑
𝑘=1

𝔼
[∥𝑀 (𝑛)

𝑘 −𝑀
(𝑛)
𝑘−1∥2ℓ1

]
=

𝑛∑
𝑘=1

𝔼[∥𝑋(𝑛)
𝑘 𝑒𝑘∥2ℓ1 ] =

𝑛∑
𝑘=1

𝔼
[∣𝑋(𝑛)

𝑘 ∣2] = 1

as well as

𝔼
[∥𝑀 (𝑛)

𝑛 ∥2ℓ1
]
= 𝔼

[∥∥∥∥ 𝑛∑
𝑗=1

𝑋
(𝑛)
𝑗 𝑒𝑗

∥∥∥∥2
ℓ1

]
= 𝔼

[( 𝑛∑
𝑗=1

∣𝑋(𝑛)
𝑗 ∣

)2
]

=

𝑛∑
𝑖=1

𝑛∑
𝑗=1

𝔼
[∣𝑋(𝑛)

𝑖 𝑋
(𝑛)
𝑗 ∣] = 𝑛∑

𝑗=1

𝔼
[∣𝑋(𝑛)

𝑗 ∣2]+∑
𝑖∕=𝑗

𝔼
[∣𝑋(𝑛)

𝑖 ∣]𝔼[∣𝑋(𝑛)
𝑗 ∣]

= 1+
∑
𝑖∕=𝑗

2

𝜋𝑛
= 1 +

2𝑛(𝑛− 1)

𝜋𝑛
= 1 +

2(𝑛− 1)

𝜋
→∞ for 𝑛→∞,

showing that ℓ1 is not of M-type 2.

Remark 2.5. The space ℓ1 has also been utilized in [17] in order to provide coun-
terexamples for stochastic integration in Banach spaces with respect to a Wiener
process. In [16], the stochastic integral with respect to a Wiener process has been
defined on so-called UMD Banach spaces. This approach is based on a two-sided
decoupling inequality for UMD spaces due to [3].

Together with Example 2, the next result shows that ℓ1 is a separable Banach
space, which is not of M-type 2, but where inequality (2.4) is satisfied for certain
Poisson random measures.

Proposition 2.6. We suppose that 𝛽(𝐸) < ∞. Then inequality (2.4) is satisfied
with 𝐾𝛽 = 4 + 6𝑇𝛽(𝐸).

Proof. Let 𝑓 ∈ Σ𝑇 (𝐸/𝐹 ) be arbitrary. Then we have

𝔼

[∥∥∥∥∫ 𝑇

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥)

∥∥∥∥2
]

≤ 2𝔼

[(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝑁(𝑑𝑠, 𝑑𝑥)

)2
]
+ 2𝔼

[(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝛽(𝑑𝑥)𝑑𝑠
)2

]

≤ 2𝔼

[(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝑞(𝑑𝑠, 𝑑𝑥) +
∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝛽(𝑑𝑥)𝑑𝑠
)2

]

+ 2𝔼

[(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝛽(𝑑𝑥)𝑑𝑠
)2

]
.
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Thus, by the Itô isometry for real-valued integrands and the Cauchy–Schwarz
inequality we obtain

𝔼

[∥∥∥∥ ∫ 𝑇

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥)

∥∥∥∥2
]

≤ 4𝔼

[(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝑞(𝑑𝑠, 𝑑𝑥)
)2

]
+ 6𝔼

[(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝛽(𝑑𝑥)𝑑𝑠
)2

]

≤ 4𝔼

[ ∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥2𝛽(𝑑𝑥)𝑑𝑠
]
+ 6𝑇𝛽(𝐸)𝔼

[∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥2𝛽(𝑑𝑥)𝑑𝑠
]
.

Consequently, inequality (2.4) is satisfied with 𝐾𝛽 = 4 + 6𝑇𝛽(𝐸). □
If the continuous linear operator (2.3) is well defined, then the definition of

the Itô integral can be extended to all 𝑓 ∈ 𝒦2
𝑇,𝛽(𝐸/𝐹 ), where 𝒦2

𝑇,𝛽(𝐸/𝐹 ) denotes

the linear space of all progressively measurable 𝑓 ∈𝑀𝑇 (𝐸/𝐹 ) such that

ℙ

(∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥2𝛽(𝑑𝑥)𝑑𝑠 <∞
)

= 1.

For all 𝑓 ∈ 𝒦2
𝑇,𝛽(𝐹 ) we define the sequence of stopping times

𝜏𝑛 := inf
{
𝑡 ∈ [0, 𝑇 ] :

∫ 𝑡

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥2𝛽(𝑑𝑥)𝑑𝑠 ≥ 𝑛
}
, 𝑛 ∈ ℕ.

Note that 𝑓�[0,𝜏𝑛] ∈𝑀𝑇,2
𝜈 (𝐸/𝐹 ) for all 𝑛 ∈ ℕ. Hence, we can define the Itô integral∫ 𝑡

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥) := lim
𝑛→∞

∫ 𝑡

0

∫
𝐸

𝑓(𝑠, 𝑥)�[0,𝜏𝑛]𝑞(𝑑𝑠, 𝑑𝑥), 𝑡 ∈ [0, 𝑇 ]

which is a local martingale.

In the sequel we will use Theorem 7.7 with Remark 7.8 from [13]. We recall
the result here:

Theorem 2.7. Let 𝑓 ∈ 𝒦2
𝑇,𝛽(𝐸/𝐹 ) be arbitrary and let (𝑓𝑛)𝑛∈ℕ be a sequence such

that 𝑓𝑛 ∈ 𝒦2
𝑇,𝛽(𝐸/𝐹 ) for all 𝑛 ∈ ℕ. Suppose that 𝑓𝑛 converges 𝜈⊗ℙ-almost surely

to 𝑓 on Ω× [0, 𝑇 ]× 𝐸, when 𝑛→∞, and ℙ-almost surely

lim
𝑛→∞

∫ 𝑇

0

∫
𝐸

∥𝑓𝑛 − 𝑓∥2𝑑𝜈 = 0.

Assume there is 𝑔 ∈ 𝒦2
𝑇,𝛽(𝐸/𝐹 ) such that∫ 𝑇

0

∫
𝐸

∥𝑓𝑛∥2𝑑𝜈 ≤
∫ 𝑇

0

∫
𝐸

∥𝑔∥2𝑑𝜈.
Then, we have∫ 𝑡

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥) = lim
𝑛→∞

∫ 𝑡

0

∫
𝐸

𝑓𝑛(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥),

where the limit is in probability.
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3. Itô’s formula for Banach-space-valued functions

Let 𝐹 be a separable Banach space and the integral operator (2.3) be a continuous
linear operator for each 𝑇 ∈ ℝ+. By Remark 2.4 this is equivalent to state that
there is a constant 𝐾𝛽 such that (2.4) holds. As pointed out in Remark 2.4, this
is in particular satisfied when the Banach space 𝐹 is of M-type 2.

Remark 3.1. According to [7, Prop. II.1.14], there exist a sequence (𝜏𝑘)𝑘∈ℕ of finite
stopping times with [[𝜏𝑘]] ∩ [[𝜏𝑙]] = ∅ for 𝑘 ∕= 𝑙 and an 𝐸-valued optional process 𝜉
such that for every optional process 𝑓 : Ω× ℝ+ × 𝐸 → 𝐻 with

ℙ

(∫ 𝑡

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥𝑁(𝑑𝑠, 𝑑𝑥) <∞
)

= 1 for all 𝑡 ≥ 0

we have the identity∫ 𝑡

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥) =
∑
𝑘∈ℕ

𝑓(𝜏𝑘, 𝜉𝜏𝑘)�{𝜏𝑘≤𝑡}, 𝑡 ≥ 0. (3.1)

Remark 3.2. Suppose the mark space (𝐸, ℰ) is a separable Banach space equipped
with its Borel 𝜎-field. From Remark 2.3 it follows that the stopping times 𝜏𝑘 in
Remark 3.1 can be chosen to be the jump times of the corresponding Lévy process
(𝑋𝑡)𝑡≥0, with the random variables 𝜉𝜏𝑘 being the jumps of the process at time
𝜏𝑘, that is 𝜉 = Δ𝑋 . An analogous statement for 𝐸 = ℝ𝑑 and an adapted càdlàg
process 𝑋 can be found in [7, Prop.II.1.16]. The corresponding result, where 𝐸 is
a separable Banach space, is given by Theorem 5.1 in [13]. The result [7, Prop.
II.1.14] used in Remark 3.1 allows us to use a more general mark space (𝐸, ℰ) than
in [13], i.e., a Blackwell space.

From now on, let 𝐺 be another separable Banach space such that integral
operator (2.3) with 𝐹 = 𝐺 is a continuous linear operator for each 𝑇 ∈ ℝ+. Again
by Remark 2.4, this ensures that all upcoming stochastic integrals are well defined,
and that, for some constant 𝐾𝛽 > 0, for each 𝑇 ∈ ℝ+ we have the estimates

𝔼

[∥∥∥∥ ∫ 𝑇

0

∫
𝐸

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥)

∥∥∥∥2
]
≤ 𝐾𝛽𝐸

[ ∫ 𝑇

0

∫
𝐸

∥𝑓(𝑠, 𝑥)∥2𝑑𝑠𝛽(𝑑𝑥)
]

for all 𝑓 ∈ 𝑀𝑇,2
𝜈 (𝐸/𝐹 ) and all 𝑓 ∈ 𝑀𝑇,2

𝜈 (𝐸/𝐺). We start with a version of Itô’s
formula, where the mark space is finite. Based on this result, we shall prove The-
orem 3.6 later on.

Proposition 3.3. We suppose that:

∙ 𝐻 ∈ 𝐶1,2(ℝ+ × 𝐹 ;𝐺) is a function.
∙ 𝐶 ∈ ℰ is a set with 𝛽(𝐶) <∞.
∙ 𝑓 : Ω× ℝ+ × 𝐸 → 𝐹 is a progressively measurable process.
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∙ 𝑔 : Ω × ℝ+ × 𝐸 → 𝐹 is a progressively measurable process such that for all
𝑡 ∈ ℝ+ we have ℙ-almost surely∫ 𝑡

0

∫
𝐶

∥𝑔(𝑠, 𝑥)∥𝜈(𝑑𝑠, 𝑑𝑥) <∞. (3.2)

∙ 𝑌 is an Itô process of the form

𝑌𝑡 = 𝑌0 +

∫ 𝑡

0

∫
𝐶

𝑓(𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡

0

∫
𝐶

𝑔(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Then, the following statements are true:

1. For all 𝑡 ∈ ℝ+ we have ℙ-almost surely∫ 𝑡

0

∥∂𝑠𝐻(𝑠, 𝑌𝑠)∥𝑑𝑠 <∞, (3.3)∫ 𝑡

0

∫
𝐶

∥𝐻(𝑠, 𝑌𝑠− + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠−)∥𝑁(𝑑𝑠, 𝑑𝑥) <∞, (3.4)∫ 𝑡

0

∫
𝐶

∥∂𝑦𝐻(𝑠, 𝑌𝑠)𝑔(𝑠, 𝑥)∥𝜈(𝑑𝑠, 𝑑𝑥) <∞. (3.5)

2. We have ℙ-almost surely

𝐻(𝑡, 𝑌𝑡) = 𝐻(0, 𝑌0) +

∫ 𝑡

0

∂𝑠𝐻(𝑠, 𝑌𝑠)𝑑𝑠

+

∫ 𝑡

0

∫
𝐶

(
𝐻(𝑠, 𝑌𝑠− + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠−)

)
𝑁(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐶

∂𝑦𝐻(𝑠, 𝑌𝑠)𝑔(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Proof. Estimates (3.3), (3.5) hold true by (3.2) and the continuity of the partial
derivatives ∂𝑠𝐻 , ∂𝑦𝐻 , and (3.4) is valid, because 𝛽(𝐶) < ∞. We define the Itô
processes

𝑌 𝑁𝑡 := 𝑌0 +

∫ 𝑡

0

∫
𝐶

𝑓(𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0

𝑍𝜈𝑡 :=

∫ 𝑡

0

∫
𝐶

𝑔(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Let ℎ ∈ 𝐶1,2,2(ℝ+×𝐹×𝐹 ;𝐺) be the function ℎ(𝑡, 𝑦, 𝑧) := 𝐻(𝑡, 𝑦+𝑧). Furthermore,
let (Π𝑛)𝑛∈ℕ be a sequence of decompositions of ℝ+ with ∣Π𝑛∣ → 0. Let 𝑡 ∈ ℝ+ be
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arbitrary. Then, we have

𝐻(𝑡, 𝑌𝑡)−𝐻(0, 𝑌0) = ℎ(𝑡, 𝑌 𝑁
𝑡 , 𝑍𝜈𝑡 )− ℎ(0, 𝑌 𝑁0 , 𝑍𝜈0 )

= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖+1 ∧ 𝑡, 𝑌 𝑁𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖)

)
= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖+1 ∧ 𝑡, 𝑌 𝑁𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
+ lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
+ lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖)

)
.

By Taylor’s theorem, the first term equals

lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖+1 ∧ 𝑡, 𝑌 𝑁

𝑡𝑖+1∧𝑡, 𝑍
𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

∫ 1

0

∂𝑠ℎ(𝑡𝑖 + 𝜃((𝑡𝑖+1 ∧ 𝑡)− 𝑡𝑖), 𝑌
𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)((𝑡𝑖+1 ∧ 𝑡)− 𝑡𝑖)𝑑𝜃

= lim
𝑛→∞

∫ 𝑡

0

( ∑
𝑡𝑖∈Π𝑛

∫ 1

0

∂𝑠ℎ(𝑡𝑖 + 𝜃((𝑡𝑖+1 ∧ 𝑡)− 𝑡𝑖), 𝑌
𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)𝑑𝜃

�(𝑡𝑖,𝑡𝑖+1∧𝑡](𝑠)
)
𝑑𝑠.

Using Lebesgue’s dominated convergence theorem, we obtain

lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖+1 ∧ 𝑡, 𝑌 𝑁𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
=

∫ 𝑡

0

∂𝑠ℎ(𝑠, 𝑌
𝑁
𝑠 , 𝑍𝜈𝑠 )𝑑𝑠 =

∫ 𝑡

0

∂𝑠𝐻(𝑠, 𝑌𝑠)𝑑𝑠.

By Remark 3.1 we have

𝑌 𝑁𝑡 = 𝑌0 +
∑
𝑘∈ℕ

𝑓(𝜏𝑘, 𝜉𝜏𝑘)�{𝜏𝑘≤𝑡}, 𝑡 ≥ 0.

Therefore, we obtain

lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

∑
𝑘∈ℕ

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝜏𝑘

, 𝑍𝜈𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌
𝑁
𝜏𝑘−, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
�(𝑡𝑖,𝑡𝑖+1∧𝑡](𝜏𝑘)

= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

∑
𝑘∈ℕ

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝜏𝑘− + 𝑓(𝜏𝑘, 𝜉𝜏𝑘), 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝜏𝑘−, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
�(𝑡𝑖,𝑡𝑖+1∧𝑡](𝜏𝑘)
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= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

∫ 𝑡𝑖+1∧𝑡

𝑡𝑖

∫
𝐶

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑠− + 𝑓(𝑠, 𝑥), 𝑍𝜈𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑠−, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
𝑁(𝑑𝑠, 𝑑𝑥).

Consequently, by Lebesgue’s dominated convergence theorem, the second term
equals

lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖+1∧𝑡, 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
= lim
𝑛→∞

∫ 𝑡

0

∫
𝐶

( ∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑠− + 𝑓(𝑠, 𝑥), 𝑍𝜈𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑠−, 𝑍

𝜈
𝑡𝑖+1∧𝑡)

)
�(𝑡𝑖,𝑡𝑖+1∧𝑡](𝑠)

)
𝑁(𝑑𝑠, 𝑑𝑥)

=

∫ 𝑡

0

∫
𝐶

(
ℎ(𝑠, 𝑌 𝑁𝑠− + 𝑓(𝑠, 𝑥), 𝑍𝜈𝑠 )− ℎ(𝑠, 𝑌 𝑁𝑠−, 𝑍

𝜈
𝑠 )

)
𝑁(𝑑𝑠, 𝑑𝑥)

=

∫ 𝑡

0

∫
𝐶

(
𝐻(𝑠, 𝑌𝑠− + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠−)

)
𝑁(𝑑𝑠, 𝑑𝑥).

By Taylor’s theorem, for the third term we obtain

lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖)

)
= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

∫ 1

0

∂𝑧ℎ(𝑡𝑖, 𝑌
𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖 + 𝜃(𝑍𝜈𝑡𝑖+1∧𝑡 − 𝑍𝜈𝑡𝑖))(𝑍

𝜈
𝑡𝑖+1∧𝑡 − 𝑍𝜈𝑡𝑖)𝑑𝜃

= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

∫ 1

0

∂𝑧ℎ(𝑡𝑖, 𝑌
𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖 + 𝜃(𝑍𝜈𝑡𝑖+1∧𝑡 − 𝑍𝜈𝑡𝑖))

𝑡𝑖+1∧𝑡∫
𝑡𝑖

∫
𝐶

𝑔(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥)𝑑𝜃

= lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

𝑡𝑖+1∧𝑡∫
𝑡𝑖

∫
𝐶

∫ 1

0

∂𝑧ℎ(𝑡𝑖, 𝑌
𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖 + 𝜃(𝑍𝜈𝑡𝑖+1∧𝑡 − 𝑍𝜈𝑡𝑖))𝑔(𝑠, 𝑥)𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥).

Therefore, by Lebesgue’s dominated convergence theorem we get

lim
𝑛→∞

∑
𝑡𝑖∈Π𝑛

(
ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖+1∧𝑡)− ℎ(𝑡𝑖, 𝑌

𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖)

)
= lim
𝑛→∞

∫ 𝑡

0

∫
𝐶

∫ 1

0

( ∑
𝑡𝑖∈Π𝑛

∂𝑧ℎ(𝑡𝑖, 𝑌
𝑁
𝑡𝑖 , 𝑍

𝜈
𝑡𝑖 + 𝜃(𝑍𝜈𝑡𝑖+1∧𝑡 − 𝑍𝜈𝑡𝑖))𝑔(𝑠, 𝑥)𝑑𝜃

�(𝑡𝑖,𝑡𝑖+1∧𝑡](𝑠)
)
𝜈(𝑑𝑠, 𝑑𝑥)

=

∫ 𝑡

0

∫
𝐶

∂𝑧ℎ(𝑠, 𝑌
𝑁
𝑠 , 𝑍𝜈𝑠 )𝑔(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥) =

∫ 𝑡

0

∫
𝐶

∂𝑦𝐻(𝑠, 𝑌𝑠)𝑔(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥).

This completes the proof. □
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Remark 3.4. In the proof of Proposition 3.3 we used the representation (3.1),
whereas in [14] we have used the natural representation (2.1) of simple functions.
Due to Remark 3.2, these methods are more or less equivalent, but the proof here
is shorter and allows a more general mark space (𝐸, ℰ).
Definition 3.5. We call a continuous, non-decreasing function ℎ : ℝ+ → ℝ+ quasi-
sublinear if there is a constant 𝐶 > 0 such that

ℎ(𝑥+ 𝑦) ≤ 𝐶
(
ℎ(𝑥) + ℎ(𝑦)

)
, 𝑥, 𝑦 ∈ ℝ+,

ℎ(𝑥𝑦) ≤ 𝐶ℎ(𝑥)ℎ(𝑦), 𝑥, 𝑦 ∈ ℝ+.

Theorem 3.6. We suppose that:

∙ 𝐻 ∈ 𝐶1,2(ℝ+ × 𝐹 ;𝐺) is a function such that

∥∂𝑦𝐻(𝑠, 𝑦)∥ ≤ ℎ1(∥𝑦∥), (𝑠, 𝑦) ∈ ℝ+ × 𝐹 (3.6)

∥∂𝑦𝑦𝐻(𝑠, 𝑦)∥ ≤ ℎ2(∥𝑦∥), (𝑠, 𝑦) ∈ ℝ+ × 𝐹 (3.7)

for quasi-sublinear functions ℎ1, ℎ2 : ℝ+ → ℝ+.
∙ 𝐵 ∈ ℰ is a set with 𝛽(𝐵𝑐) <∞.
∙ 𝑓 : Ω × ℝ+ × 𝐸 → 𝐹 is a progressively measurable process such that for all

𝑡 ∈ ℝ+ we have ℙ-almost surely∫ 𝑡

0

∫
𝐵

∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) +
∫ 𝑡

0

∫
𝐵

ℎ1(∥𝑓(𝑠, 𝑥)∥)2∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵

ℎ2(∥𝑓(𝑠, 𝑥)∥)∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) <∞.

(3.8)

∙ 𝑔 : Ω× ℝ+ × 𝐸 → 𝐹 is a progressively measurable process.
∙ 𝑌 is an Itô process of the form

𝑌𝑡 = 𝑌0 +

∫ 𝑡

0

∫
𝐵

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡

0

∫
𝐵𝑐

𝑔(𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Then, the following statements are true:

1. For all 𝑡 ∈ ℝ+ we have ℙ-almost surely∫ 𝑡

0

∥∂𝑠𝐻(𝑠, 𝑌𝑠)∥𝑑𝑠 <∞, (3.9)∫ 𝑡

0

∫
𝐵

∥𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠)∥2𝜈(𝑑𝑠, 𝑑𝑥) <∞, (3.10)∫ 𝑡

0

∫
𝐵

∥𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠)− ∂𝑦𝐻(𝑠, 𝑌𝑠)𝑓(𝑠, 𝑥)∥𝜈(𝑑𝑠, 𝑑𝑥) <∞, (3.11)∫ 𝑡

0

∫
𝐵𝑐
∥𝐻(𝑠, 𝑌𝑠− + 𝑔(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠−)∥𝑁(𝑑𝑠, 𝑑𝑥) <∞. (3.12)
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2. We have ℙ-almost surely

𝐻(𝑡, 𝑌𝑡) = 𝐻(0, 𝑌0) +

∫ 𝑡

0

∂𝑠𝐻(𝑠, 𝑌𝑠)𝑑𝑠 (3.13)

+

∫ 𝑡

0

∫
𝐵

(
𝐻(𝑠, 𝑌𝑠− + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠−)

)
𝑞(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵

(
𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠)− ∂𝑦𝐻(𝑠, 𝑌𝑠)𝑓(𝑠, 𝑥)

)
𝜈(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵𝑐

(
𝐻(𝑠, 𝑌𝑠− + 𝑔(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠−)

)
𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Proof. Estimate (3.9) holds true by the continuity of the partial derivative ∂𝑠𝐻 ,
and (3.12) is valid, because 𝛽(𝐵𝑐) <∞. By Taylor’s theorem, the Cauchy–Schwarz
inequality and (3.6), we obtain ℙ-almost surely∫ 𝑡

0

∫
𝐵

∥𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠)∥2𝜈(𝑑𝑠, 𝑑𝑥)

=

∫ 𝑡

0

∫
𝐵

∥∥∥∥ ∫ 1

0

∂𝑦𝐻(𝑠, 𝑌𝑠 + 𝜃𝑓(𝑠, 𝑥))𝑓(𝑠, 𝑥)𝑑𝜃

∥∥∥∥2𝜈(𝑑𝑠, 𝑑𝑥)
≤

∫ 𝑡

0

∫
𝐵

∫ 1

0

∥∂𝑦𝐻(𝑠, 𝑌𝑠 + 𝜃𝑓(𝑠, 𝑥))∥2∥𝑓(𝑠, 𝑥)∥2𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥)

≤
∫ 𝑡

0

∫
𝐵

∫ 1

0

ℎ1(∥𝑌𝑠 + 𝜃𝑓(𝑠, 𝑥))∥)2∥𝑓(𝑠, 𝑥)∥2𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥).

Since ℎ1 is quasi-sublinear, for some constant 𝐶 > 0 we get ℙ-almost surely∫ 𝑡

0

∫
𝐵

∥𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠)∥2𝜈(𝑑𝑠, 𝑑𝑥)

≤ 𝐶2

∫ 𝑡

0

∫
𝐵

∫ 1

0

(
ℎ1(∥𝑌𝑠∥) + 𝐶ℎ1(𝜃)ℎ1(∥𝑓(𝑠, 𝑥)∥)

)2∥𝑓(𝑠, 𝑥)∥2𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥)
≤ 2𝐶2

∫ 𝑡

0

∫
𝐵

ℎ1(∥𝑌𝑠∥)2∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥)

+ 2𝐶4ℎ1(1)

∫ 𝑡

0

∫
𝐵

ℎ1(∥𝑓(𝑠, 𝑥)∥)2∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) <∞,

showing (3.10). By Taylor’s theorem and (3.7), we obtain ℙ-almost surely∫ 𝑡

0

∫
𝐵

∥𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌𝑠)− ∂𝑦𝐻(𝑠, 𝑌𝑠)𝑓(𝑠, 𝑥)∥𝜈(𝑑𝑠, 𝑑𝑥)

=

∫ 𝑡

0

∫
𝐵

∥∥∥∥ ∫ 1

0

∂𝑦𝑦𝐻(𝑠, 𝑌𝑠 + 𝜃𝑓(𝑠, 𝑥))(𝑓(𝑠, 𝑥), 𝑓(𝑠, 𝑥))𝑑𝜃

∥∥∥∥𝜈(𝑑𝑠, 𝑑𝑥)
≤

∫ 𝑡

0

∫
𝐵

∫ 1

0

∥∂𝑦𝑦𝐻(𝑠, 𝑌𝑠 + 𝜃𝑓(𝑠, 𝑥))∥ ∥𝑓(𝑠, 𝑥)∥2𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥)
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≤
∫ 𝑡

0

∫
𝐵

∫ 1

0

ℎ2(∥𝑌𝑠 + 𝜃𝑓(𝑠, 𝑥)∥)∥𝑓(𝑠, 𝑥)∥2𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥).

Since ℎ2 is quasi-sublinear, for some constant 𝐶 > 0 we get ℙ-almost surely∫ 𝑡

0

∫
𝐵

∥𝐻(𝑠, 𝑌𝑠 + 𝑓(𝑠, 𝑥)) −𝐻(𝑠, 𝑌𝑠)− ∂𝑦𝐻(𝑠, 𝑌𝑠)𝑓(𝑠, 𝑥)∥𝜈(𝑑𝑠, 𝑑𝑥)

≤ 𝐶

∫ 𝑡

0

∫
𝐵

∫ 1

0

(
ℎ2(∥𝑌𝑠∥) + 𝐶ℎ2(𝜃)ℎ2(∥𝑓(𝑠, 𝑥)∥)

)∥𝑓(𝑠, 𝑥)∥2𝑑𝜃𝜈(𝑑𝑠, 𝑑𝑥)
≤ 𝐶

∫ 𝑡

0

∫
𝐵

ℎ2(∥𝑌𝑠∥)∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥)

+ 𝐶2ℎ2(1)

∫ 𝑡

0

∫
𝐵

ℎ2(∥𝑓(𝑠, 𝑥)∥)∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) <∞,

providing (3.11). Since the measure 𝛽 is 𝜎-finite, there exists a sequence (𝐶𝑛)𝑛∈ℕ ⊂
ℰ such that 𝐶𝑛 ↑ 𝐸 and 𝛽(𝐶𝑛) < ∞ for all 𝑛 ∈ ℕ. For each 𝑛 ∈ ℕ let 𝑌 𝑛 be the
Itô process

𝑌 𝑛
𝑡 := 𝑌0 +

∫ 𝑡

0

∫
𝐵∩𝐶𝑛

𝑓(𝑠, 𝑥)𝑞(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡

0

∫
𝐵𝑐∩𝐶𝑛

𝑔(𝑠, 𝑥)𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Then, we can express 𝑌 𝑛 as

𝑌 𝑛
𝑡 = 𝑌0 +

∫ 𝑡

0

∫
𝐶𝑛

(
𝑓(𝑠, 𝑥)�𝐵(𝑥) + 𝑔(𝑠, 𝑥)�𝐵𝑐(𝑥)

)
𝑁(𝑑𝑠, 𝑑𝑥)

−
∫ 𝑡

0

∫
𝐵∩𝐶𝑛

𝑓(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Note that, by the Cauchy–Schwarz inequality and (3.8), for each 𝑡 ∈ ℝ+ we have∫ 𝑡

0

∫
𝐵∩𝐶𝑛

∥𝑓(𝑠, 𝑥)∥𝜈(𝑑𝑠, 𝑑𝑥)

≤ (
𝑡𝛽(𝐵 ∩ 𝐶𝑛)

)1/2(∫ 𝑡

0

∫
𝐵∩𝐶𝑛

∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥)
)1/2

<∞,

showing that condition (3.2) with 𝑔 = −𝑓�𝐵 and 𝐶 = 𝐶𝑛 is satisfied. Using
Proposition 3.3, we obtain ℙ-almost surely

𝐻(𝑌 𝑛
𝑡 ) = 𝐻(𝑌0) +

∫ 𝑡

0

∂𝑠𝐻(𝑠, 𝑌 𝑛𝑠 )𝑑𝑠

+

∫ 𝑡

0

∫
𝐶𝑛

(
𝐻(𝑠, 𝑌 𝑛

𝑠− + 𝑓(𝑠, 𝑥)�𝐵(𝑥) + 𝑔(𝑠, 𝑥)�𝐵𝑐(𝑥)) −𝐻(𝑠, 𝑌 𝑛𝑠−)
)
𝑁(𝑑𝑠, 𝑑𝑥)

−
∫ 𝑡

0

∫
𝐵∩𝐶𝑛

∂𝑦𝐻(𝑠, 𝑌 𝑛𝑠 )𝑓(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.
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We can rewrite this formula as

𝐻(𝑌 𝑛
𝑡 ) = 𝐻(𝑌0) +

∫ 𝑡

0

∂𝑠𝐻(𝑠, 𝑌 𝑛𝑠 )𝑑𝑠

+

∫ 𝑡

0

∫
𝐵∩𝐶𝑛

(
𝐻(𝑠, 𝑌 𝑛𝑠− + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌 𝑛𝑠−)

)
𝑁(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵𝑐∩𝐶𝑛

(
𝐻(𝑠, 𝑌 𝑛𝑠− + 𝑔(𝑠, 𝑥))−𝐻(𝑠, 𝑌 𝑛𝑠−)

)
𝑁(𝑑𝑠, 𝑑𝑥)

−
∫ 𝑡

0

∫
𝐵∩𝐶𝑛

∂𝑦𝐻(𝑠, 𝑌 𝑛𝑠 )𝑓(𝑠, 𝑥)𝜈(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0,

and therefore, we obtain

𝐻(𝑌 𝑛
𝑡 ) = 𝐻(𝑌0) +

∫ 𝑡

0

∂𝑠𝐻(𝑠, 𝑌 𝑛𝑠 )𝑑𝑠

+

∫ 𝑡

0

∫
𝐵∩𝐶𝑛

(
𝐻(𝑠, 𝑌 𝑛𝑠− + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌 𝑛𝑠−)

)
𝑞(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵∩𝐶𝑛

(
𝐻(𝑠, 𝑌 𝑛𝑠 + 𝑓(𝑠, 𝑥))−𝐻(𝑠, 𝑌 𝑛

𝑠 )− ∂𝑦𝐻(𝑠, 𝑌 𝑛𝑠 )𝑓(𝑠, 𝑥)
)
𝜈(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵𝑐∩𝐶𝑛

(
𝐻(𝑠, 𝑌 𝑛

𝑠− + 𝑔(𝑠, 𝑥))−𝐻(𝑠, 𝑌 𝑛
𝑠−)

)
𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Letting 𝑛→∞, by virtue of Theorem 2.7 we arrive at (3.13). □

Example. Suppose that 𝐻 ∈ 𝐶1,2
𝑏 (ℝ+ × 𝐹 ;𝐺) and∫ 𝑡

0

∫
𝐵

∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) <∞ for all 𝑡 ∈ ℝ+.

Then Theorem 3.6 applies and yields the Itô formula (3.13), cf. [14].

Example. If 𝐻 ∈ 𝐿(𝐹,𝐺) is a continuous linear operator and∫ 𝑡

0

∫
𝐵

∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) <∞ for all 𝑡 ∈ ℝ+,

then Theorem 3.6 applies and yields that ℙ-almost surely

𝐻(𝑌𝑡) = 𝐻(𝑌0) +

∫ 𝑡

0

∫
𝐵

𝐻(𝑓(𝑠, 𝑥))𝑞(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵𝑐

𝐻(𝑔(𝑠, 𝑥))𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.

Example. Suppose that 𝐹 is a separable Hilbert space. Then 𝐻(𝑥) = ∥𝑥∥2 is of
class 𝐶2(𝐹 ;ℝ) with

𝐻𝑥(𝑥)𝑣 = 2⟨𝑥, 𝑣⟩ and 𝐻𝑥𝑥(𝑥)(𝑣, 𝑤) = 2⟨𝑣, 𝑤⟩.
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Therefore, we have

∥𝐻𝑥(𝑥)∥ ≤ 2∥𝑥∥ and ∥𝐻𝑥𝑥(𝑥)∥ ≤ 2.

Consequently, if∫ 𝑡

0

∫
𝐵

∥𝑓(𝑠, 𝑥)∥2𝜈(𝑑𝑠, 𝑑𝑥) +
∫ 𝑡

0

∫
𝐵

∥𝑓(𝑠, 𝑥)∥4𝜈(𝑑𝑠, 𝑑𝑥) <∞ for all 𝑡 ∈ ℝ+,

then Theorem 3.6 applies and yields that ℙ-almost surely

∥𝑌𝑡∥2 = ∥𝑌0∥2 +
∫ 𝑡

0

∫
𝐵

(∥𝑌𝑠− + 𝑓(𝑠, 𝑥)∥2 − ∥𝑌𝑠−∥2
)
𝑞(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵

(∥𝑌𝑠 + 𝑓(𝑠, 𝑥)∥2 − ∥𝑌𝑠∥2 − 2⟨𝑌𝑠, 𝑓(𝑠, 𝑥)⟩
)
𝜈(𝑑𝑠, 𝑑𝑥)

+

∫ 𝑡

0

∫
𝐵𝑐

(∥𝑌𝑠− + 𝑔(𝑠, 𝑥)∥2 − ∥𝑌𝑠−∥2
)
𝑁(𝑑𝑠, 𝑑𝑥), 𝑡 ≥ 0.
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Well-posedness for a Class of
Dissipative Stochastic Evolution Equations
with Wiener and Poisson Noise

Carlo Marinelli

Abstract. We prove existence and uniqueness of mild and generalized solu-
tions to a class of stochastic semilinear evolution equations driven by additive
Wiener and Poisson noise. The non-linear drift term is supposed to be the
evaluation operator associated to a continuous monotone function satisfying a
polynomial growth condition. The results are extensions to the jump-diffusion
case of the corresponding ones proved in [3] for equations driven by purely
discontinuous noise.
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1. Introduction

Let 𝐷 be a bounded domain of ℝ𝑑. The purpose of this note is to show that
stochastic evolution equations of the type

𝑑𝑢(𝑡)+𝐴𝑢(𝑡) 𝑑𝑡+𝑓(𝑢(𝑡)) 𝑑𝑡 = 𝐵(𝑡) 𝑑𝑊 (𝑡)+

∫
𝑍

𝐺(𝑧, 𝑡) �̄�(𝑑𝑧, 𝑑𝑡), 𝑢(0) = 𝑢0, (1.1)

where 𝐴 is a linear 𝑚-accretive operator on 𝐿2(𝐷), 𝑓 : ℝ→ ℝ is a continuous in-
creasing function of polynomial growth, 𝑊 is a cylindrical Wiener noise on 𝐿2(𝐷),
and �̄� is a compensated Poisson random measure, admit a unique mild solution.
Precise assumptions on the notion of solution and on the data of the problem are
given in the next section.

Global well-posedness of (1.1) in the case of purely discontinuous noise (i.e.,
with 𝐵 ≡ 0) has been proved in [3] showing that solutions to regularized equations
converge to a process which solves the original equation. This was achieved proving
a priori estimates for the approximating processes by rewriting the regularized
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stochastic equations as deterministic evolution equations with random coefficients
and using monotonicity arguments. These a priori estimates essentially rely, in
turn, on a maximal inequality of Bichteler–Jacod type for stochastic convolutions
on 𝐿𝑝 spaces with respect to compensated Poisson random measures, that is also
proved in [3].

The well-posedness results of [3] will be here extended to the more general
class of equations like (1.1). We shall adapt the method used in [3], but instead
of rewriting the regularized (stochastic) equations as deterministic equations with
random coefficients, we shall rewrite them as stochastic equations driven just by
Wiener noise (we might say that, in a sense, we “hide the jumps”), the solutions
of which will be shown to satisfy suitable a priori estimates allowing to pass to the
limit in the regularized equations.

The result might be interesting even in the case of equations driven only
by a Wiener process (i.e., with 𝐺 ≡ 0). In fact, the usual approach to establish
well-posedness for such equations is to rewrite them as deterministic equations
with random coefficients and to consider them on a Banach space of continuous
functions. This approach requires the stochastic convolution to have paths in such
a space of continuous functions. The latter condition (indeed a quite strong one)
is not needed in our setting. Let us also remark that we do not assume that 𝑓
is locally Lipschitz, hence all methods based on establishing first existence (and
uniqueness) of a local solution and then continuation to a global solution cannot
be applied. For recent results and a detailed bibliographic overview on dissipative
parabolic stochastic PDEs driven by Wiener noise we refer to [1]. Some references
to the much less extensive literature on equations with jumps are collected in [3].

Let us conclude this introductory section with some words about notation
used throughout the paper: 𝑎 ≲ 𝑏 stands for 𝑎 ≤ 𝑁𝑏 for some constant 𝑁 (if the
constant𝑁 depends on parameters 𝑝1, . . . , 𝑝𝑛 we shall also write 𝑁(𝑝1, . . . , 𝑝𝑛) and
𝑎 ≲𝑝1,...,𝑝𝑛 , respectively). For any 𝑞 ≥ 0, we set 𝑞∗ := 𝑞2/2. The duality mapping
of a Banach space 𝑋 with (algebraic and topological) dual 𝑋∗ and duality form

⟨⋅, ⋅⟩ is the (multi-valued) map 𝐽 : 𝑋 → 2𝑋
∗
, 𝐽 : 𝑥 �→ {𝑥∗ ∈ 𝑋∗ : ⟨𝑥∗, 𝑥⟩ = ∥𝑥∥2𝑋}.

2. Main result

Let (Ω,ℱ , (ℱ𝑡)0≤𝑡≤𝑇 ,ℙ), with 𝑇 > 0 fixed, be a filtered probability space satis-
fying the “usual conditions”, and let 𝔼 denote expectation with respect to ℙ. All
stochastic elements will be defined on this stochastic basis, and any equality or
inequality between random quantities will be meant to hold ℙ-almost surely. Let
(𝑍,𝒵,𝑚) be a measure space, �̄� a Poisson measure on [0, 𝑇 ]×𝑍 with compensator
Leb ⊗ 𝑚, where Leb stands for Lebesgue measure. Let 𝐷 be an open bounded
subset of ℝ𝑑 with smooth boundary. All Lebesgue spaces on 𝐷 will be denoted
without explicit mention of the domain, e.g., 𝐿𝑝 := 𝐿𝑝(𝐷). Given 𝑞 ≥ 1 and a Ba-
nach space 𝑋 , we shall denote the set of all 𝑋-valued random variables 𝜉 such that
𝔼∥𝜉∥𝑞𝑋 < ∞ by 𝕃𝑞(𝑋). We call ℍ𝑞(𝑋) the set of all adapted 𝑋-valued processes
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such that
∥𝑢∥ℍ𝑞(𝑋) :=

(
𝔼 sup
𝑡≤𝑇

∥𝑢(𝑡)∥𝑞𝑋
)1/𝑞

<∞.

For compactness of notation, we shall also write 𝕃𝑞 in place of 𝕃𝑞(𝐿𝑞). and ℍ𝑞 in
place of ℍ𝑞(𝐿𝑞). We shall denote by 𝑊 a cylindrical Wiener process on 𝐿2(𝐷).

Let 𝑝 ≥ 2, and 𝑓 : ℝ→ ℝ be a continuous monotonically increasing function
with 𝑓(0) = 0, such that ∣𝑓(𝑥)∣ ≲ 1 + ∣𝑥∣𝑝/2 for all 𝑥 ∈ ℝ. Moreover, let 𝐴 be a
linear (unbounded) 𝑚-accretive operator in the spaces 𝐿2, 𝐿𝑝 and 𝐿𝑝∗ , and denote
by 𝑆 the strongly continuous semigroup generated by −𝐴. Assuming that the
realizations of 𝐴 and 𝑆 on the above spaces are consistent, we shall not distinguish
them notationally. For notational convenience, we shall set throughout the paper
𝐻 := 𝐿2 and 𝐸 := 𝐿𝑝.

Denoting by ℒ(𝐻 → 𝐸) and by 𝛾(𝐻 → 𝐸) the space of bounded linear
operators and 𝛾-Radonifying operators from 𝐻 to 𝐸, respectively, for any 𝑞 ≥ 1,
the class of adapted processes 𝐵 : [0, 𝑇 ]→ ℒ(𝐻 → 𝐸) such that

∥𝐵∥𝑞ℒ𝛾𝑞 := 𝔼

∫ 𝑇

0

∥𝐵(𝑡)∥𝑞𝛾(𝐻→𝐸) 𝑑𝑡 <∞

will be denoted by ℒ𝛾𝑞 (𝐻 → 𝐸). Similarly, denoting the predictable 𝜎-algebra by

𝒫 and the Borel 𝜎-algebra of ℝ𝑑 by ℬ(ℝ𝑑), the space of 𝒫⊗𝒵⊗ℬ(ℝ𝑑)-measurable
processes 𝑔 : [0, 𝑇 ]× 𝑍 ×𝐷 → ℝ such that

∥𝑔∥𝑞ℒ𝑚𝑞 := 𝔼

∫ 𝑇
0

∫
𝑍

∥𝑔(𝑡, 𝑧)∥𝑞𝐿𝑞 𝑚(𝑑𝑧) 𝑑𝑡+ 𝔼

∫ 𝑇
0

(∫
𝑍

∥𝑔(𝑡, 𝑧)∥2𝐿𝑞 𝑚(𝑑𝑧)
)𝑞/2

𝑑𝑡 < ∞

will be denoted by ℒ𝑚𝑞 . It was proved in [3] that, for any strongly continuous
semigroup of positive contractions 𝑅 on 𝐿𝑞, 𝑞 ∈ [2,∞[, one has the maximal
inequality

𝔼 sup
𝑡≤𝑇

∥∥∥ ∫ 𝑡

0

∫
𝑍

𝑅(𝑡− 𝑠)𝑔(𝑠, 𝑧) �̄�(𝑑𝑠, 𝑑𝑧)
∥∥∥𝑞
𝐿𝑞

≲ ∥𝑔∥𝑞ℒ𝑚𝑞 . (2.1)

Let us now define mild and generalized solutions of (1.1).

Definition 2.1. Let 𝑢0 be an 𝐻-valued ℱ0-measurable random variable. A
(strongly) measurable adapted 𝐻-valued process 𝑢 is a mild solution to (1.1) if,
for all 𝑡 ∈ [0, 𝑇 ],

𝑢(𝑡) +

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑓(𝑢(𝑠)) 𝑑𝑠

= 𝑆(𝑡)𝑢0 +

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝐵(𝑠) 𝑑𝑊 (𝑠) +

∫ 𝑡

0

∫
𝑍

𝑆(𝑡− 𝑠)𝐺(𝑠, 𝑧) �̄�(𝑑𝑧, 𝑑𝑠)

and all integrals are well defined.

As is well known, the stochastic convolution with respect to 𝑊 is well defined
(as an 𝐻-valued random variable) if the operator 𝑄𝑡 is nuclear for all 𝑡 ∈ [0, 𝑇 ],
where

𝑄𝑡 :=

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝐵(𝑠)𝐵∗(𝑠)𝑆∗(𝑡− 𝑠) 𝑑𝑠.
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This condition is verified, for instance, if 𝐵 ∈ ℒ𝛾2 , i.e., if

𝔼

∫ 𝑇

0

∥𝐵(𝑠)∥2𝛾(𝐻→𝐻) 𝑑𝑠 <∞

(recall that 𝛾(𝐻 → 𝐻) is just the space of Hilbert–Schmidt operators from 𝐻
to itself). Similarly, the stochastic convolution with respect to �̄� is well defined if
𝐺 ∈ ℒ𝑚2 , i.e., if

𝔼

∫ 𝑇

0

∫
𝑍

∥𝐺(𝑠, 𝑧)∥2𝐿2
𝑚(𝑑𝑧) 𝑑𝑠 <∞.

The deterministic convolution term is well defined if 𝑓(𝑢) ∈ 𝐿1([0, 𝑇 ]→ 𝐻), or if
𝑢 ∈ 𝐿𝑝/2([0, 𝑇 ]→ 𝐿𝑝).

Definition 2.2. A process 𝑢 ∈ ℍ2 is a generalized solution to (1.1) if there exist
sequences {𝑢0𝑛}𝑛 ⊂ 𝕃𝑝, {𝐵𝑛}𝑛 ⊂ ℒ𝛾𝑝 , {𝐺𝑛}𝑛 ⊂ ℒ𝑚𝑝∗ , and {𝑢𝑛}𝑛 ⊂ ℍ2(𝑇 ) such

that 𝑢0𝑛 → 𝑢0 in 𝕃2, 𝐵𝑛 → 𝐵 in ℒ𝛾2 , 𝐺𝑛 → 𝐺 in ℒ𝑚2 and 𝑢𝑛 → 𝑢 in ℍ2(𝑇 ) as
𝑛→∞, where 𝑢𝑛 is the (unique) mild solution of

𝑑𝑢𝑛(𝑡) + 𝐴𝑢𝑛(𝑡) 𝑑𝑡+ 𝑓(𝑢𝑛(𝑡)) 𝑑𝑡 = 𝐵𝑛(𝑠) 𝑑𝑊 (𝑡) +

∫
𝑍

𝐺𝑛(𝑧) �̄�(𝑑𝑡, 𝑑𝑧), 𝑢𝑛(0) = 𝑢0𝑛.

Here are the results, which will be proved in the next sections.

Theorem 2.3. Assume that 𝑢0∈𝕃𝑝, 𝐵∈ℒ𝛾𝑝 and 𝐺∈ℒ𝑚𝑝∗ . Then there exists a unique

càdlàg mild solution 𝑢 ∈ ℍ2 to equation (1.1) such that 𝑓(𝑢) ∈ 𝐿1[0, 𝑇 ]→ 𝐻).

Theorem 2.4. Assume that 𝑢0 ∈ 𝕃2, 𝐵 ∈ ℒ𝛾2 , 𝐺 ∈ ℒ𝑚2 . Then there exists a unique
generalized solution to equation (1.1).

Remark 2.5. By inspection of the corresponding proof in [3], it is clear that the
same argument used there applies to Theorem 2.3 if one assumes 𝐵 ∈ ℒ𝛾𝑝∗ , i.e.,

𝔼 sup
𝑡≤𝑇

∥𝑊𝐴(𝑡)∥𝑝
∗
𝐿𝑝∗ <∞.

In the proof of Theorem 2.3 below we show that in fact 𝐵 ∈ ℒ𝛾𝑝∗ is too strong
an assumption, and that 𝐵 ∈ ℒ𝛾𝑝 is enough. It is natural to conjecture that also
𝐺 ∈ ℒ𝑚𝑝∗ is too strong, and that it should suffice to assume 𝐺 ∈ ℒ𝑚𝑝 . Unfortunately,
thus far we have not been able to replace the exponent 𝑝∗ by 𝑝 in the hypotheses
on 𝐺 of Theorem 2.3.

Example. The above results apply to a large class of dissipative parabolic semilin-
ear evolution equations perturbed by noise. For instance, if −𝐴 is the generator
of a sub-Markovian strongly continuous semigroup of contractions 𝑆 on 𝐿2, then
it is well known that 𝑆 induces a strongly continuous sub-Markovian contraction
semigroup (consistent, hence denoted by the same symbol) on all 𝐿𝑝, 𝑝 ∈ [2,∞[.
The operator −𝐴 can then be, for example, the Dirichlet Laplacian, or a frac-
tional power thereof. The assumptions on the diffusion coefficient 𝐵 of Theorem
2.3 are automatically satisfied if, e.g., 𝐵 is a deterministic time-independent oper-
ator belonging to ℒ(𝐿2 → 𝐿∞). It is well known that the latter condition implies
𝐵 ∈ 𝛾(𝐿2 → 𝐿𝑝) for all 𝑝 ≥ 2.
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3. Proofs

3.1. Proof of Theorem 2.3

Let 𝑓𝜆 := 𝜆−1(𝐼−(𝐼+𝜆𝑓)−1), 𝜆 > 0, be the Yosida approximation of 𝑓 , and recall
that 𝑓𝜆 is Lipschitz continuous with Lipschitz constant bounded by 1/𝜆. Let us
consider the regularized equation

𝑑𝑢𝜆(𝑡)+𝐴𝑢𝜆(𝑡) 𝑑𝑡+𝑓𝜆(𝑢𝜆(𝑡)) 𝑑𝑡 = 𝐵(𝑡) 𝑑𝑊 (𝑡)+

∫
𝑍

𝐺(𝑧, 𝑡) �̄�(𝑑𝑧, 𝑑𝑡), 𝑢𝜆(0) = 𝑢0. (3.1)

Assuming that 𝐵 ∈ ℒ𝛾𝑝 and 𝐺 ∈ ℒ𝑚𝑝 , one could prove by a fixed point argument
that (3.1) admits a unique càdlàg mild 𝐸-solution (by which we mean, here and
in the following, a mild solution with values in 𝐸).1 However, we prefer to proceed
in a less direct way, for reasons that will become apparent later. In particular, we
“hide the jumps” in (3.1) writing an equation for the difference between 𝑢𝜆 and
the stochastic convolution with respect to the Poisson random measure as follows:
setting, for notational compactness,

𝑊𝐴(𝑡) :=

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝐵(𝑠) 𝑑𝑊 (𝑠), 𝐺𝐴(𝑡) :=

∫ 𝑡

0

∫
𝑍

𝑆(𝑡− 𝑠)𝐺(𝑠, 𝑧) �̄�(𝑑𝑠, 𝑑𝑧),

the integral form of (3.1) reads

𝑢𝜆(𝑡) +

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑓𝜆(𝑢𝜆(𝑠)) 𝑑𝑠 = 𝑆(𝑡)𝑢0 +𝑊𝐴(𝑡) +𝐺𝐴(𝑡), (3.2)

which can be equivalently written as

𝑢𝜆(𝑡)−𝐺𝐴(𝑡) +

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑓𝜆(𝑢𝜆(𝑠)−𝐺𝐴(𝑠) +𝐺𝐴(𝑠)) 𝑑𝑠 = 𝑆(𝑡)𝑢0 +𝑊𝐴(𝑡),

hence also, setting 𝑣𝜆 := 𝑢𝜆 − 𝐺𝐴 and 𝑓𝜆(𝑡, 𝑦) := 𝑓𝜆(𝑦 + 𝐺𝐴(𝑡)), for 𝑦 ∈ ℝ and
𝑡 ≥ 0, as

𝑣𝜆(𝑡) +

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑓𝜆(𝑣𝜆(𝑠)) 𝑑𝑠 = 𝑆(𝑡)𝑢0 +𝑊𝐴(𝑡),

which is the mild form of

𝑑𝑣𝜆(𝑡) +𝐴𝑣𝜆(𝑡) 𝑑𝑡+ 𝑓𝜆(𝑡, 𝑣𝜆(𝑡)) 𝑑𝑡 = 𝐵(𝑡) 𝑑𝑊 (𝑡), 𝑣𝜆(0) = 𝑢0. (3.3)

It is clear that 𝑣𝜆 is a mild 𝐸-solution of (3.3) if and only if 𝑣𝜆 + 𝐺𝐴 is a mild
𝐸-solution of (3.1).

In the next Proposition we show that (3.3) admits a unique mild 𝐸-solution
𝑣𝜆, hence identifying also the unique 𝐸-mild solution of (3.1).

Proposition 3.1. If 𝑢0 ∈ 𝕃𝑝, 𝐵 ∈ ℒ𝛾𝑝 and 𝐺 ∈ ℒ𝑚𝑝 , then equation (3.3) admits a
unique càdlàg mild 𝐸-solution 𝑣𝜆 ∈ ℍ𝑝. Therefore equation (3.1) admits a unique
càdlàg mild 𝐸-solution 𝑢𝜆 ∈ ℍ𝑝, and 𝑢𝜆 = 𝑣𝜆 +𝐺𝐴.

1Since 𝐵 ∈ ℒ𝛾𝑝 and 𝐸 = 𝐿𝑝, 𝑝 ≥ 2, is a UMD Banach space (and 𝑆 is strongly continuous on 𝐸

by hypothesis), the stochastic convolution is well defined. One can thus lawfully talk about mild
𝐸-solutions. See, e.g., [4] for details.
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Proof. We use a fixed point argument on the spaceℍ𝑝. Let us consider the operator

𝔉 : ℍ𝑝 ∋ 𝜙 �→
(
𝑡 �→ 𝑆(𝑡)𝑢0 −

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑓𝜆(𝑠, 𝜙(𝑠)) 𝑑𝑠+𝑊𝐴(𝑡)
)
.

We shall prove that 𝔉 is a contraction on ℍ𝑝, if 𝑇 is small enough. Since 𝑢0 ∈ 𝕃𝑝
and 𝑆 is strongly continuous on 𝐿𝑝, it is clear that we can (and will) assume,
without loss of generality, that 𝑢0 = 0. Then∥∥𝔉(𝜙)∥∥

ℍ𝑝
≤ ∥∥𝑆 ∗ 𝑓𝜆(⋅, 𝜙)∥∥ℍ𝑝

+
∥∥𝑊𝐴

∥∥
ℍ𝑝

.

By a maximal inequality for stochastic convolutions we have

∥𝑊𝐴∥𝑝ℍ𝑝 ≲ 𝔼

∫ 𝑇

0

∥𝐵(𝑡)∥𝑝𝛾(𝐻→𝐸) 𝑑𝑡,
where the right-hand side is finite by assumption. Moreover, Jensen’s inequality
and strong continuity of 𝑆 on 𝐿𝑝 yield

𝔼 sup
𝑡≤𝑇

∥∥∥ ∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑓𝜆(𝑠, 𝜙(𝑠)) 𝑑𝑠
∥∥∥𝑝
𝐸
≲𝑇 𝔼 sup

𝑡≤𝑇

∥∥𝑓𝜆(𝑡, 𝜙(𝑡))∥∥𝑝𝐸 .
Since the Lipschitz constant of 𝑓𝜆 is not larger than 1/𝜆, we have

∣𝑓𝜆(𝑡, 𝑥) − 𝑓𝜆(𝑡, 𝑦)∣ = ∣𝑓𝜆(𝑥+𝐺𝐴(𝑡))− 𝑓𝜆(𝑦 +𝐺𝐴(𝑡))∣ ≤ 1

𝜆
∣𝑥− 𝑦∣,

hence

∣𝑓𝜆(𝑡, 𝑥)∣ ≤ ∣𝑓𝜆(𝑡, 𝑥)− 𝑓𝜆(𝑡, 0)∣+ ∣𝑓𝜆(𝑡, 0)∣
≤ 1

𝜆
∣𝑥∣+ ∣𝑓𝜆(𝐺𝐴(𝑡))∣ ≤ 1

𝜆
∣𝑥∣+ 1

𝜆
∣𝐺𝐴(𝑡)∣,

thus also

𝔼 sup
𝑡≤𝑇

∥∥𝑓𝜆(𝑡, 𝜙(𝑡))∥∥𝑝𝐸 ≲𝜆 𝔼 sup
𝑡≤𝑇

∥𝜙(𝑡)∥𝑝𝐸 + 𝔼 sup
𝑡≤𝑇

∥𝐺𝐴(𝑡)∥𝑝𝐸 ,

where the right-hand side is finite because of (2.1) and because 𝐺 ∈ ℒ𝑚𝑝 by hy-

pothesis. We have thus proved that 𝔉(ℍ𝑝) ⊆ ℍ𝑝. Since 𝑥 �→ 𝑓𝜆(𝑡, 𝑥, 𝜔) is Lipschitz
continuous, uniformly over 𝑡 ∈ [0, 𝑇 ] and 𝜔 ∈ Ω, analogous computations show
that 𝔉 is Lipschitz on ℍ𝑝, with a Lipschitz constant that depends continuously
on 𝑇 . Choosing 𝑇 = 𝑇0, for a small enough 𝑇0 such that 𝔉 is a contraction, and
then covering the interval [0, 𝑇 ] by intervals of lenght 𝑇0, one obtains the desired
existence and uniqueness of a fixed point of 𝔉 in a standard way. □
Remark 3.2.

(i) Note that we have assumed the more natural condition 𝐺 ∈ ℒ𝑚𝑝 for the well-
posedness of the regularized equation (3.1) rather than 𝐺 ∈ ℒ𝑚𝑝∗ . Let us show
that the latter condition also ensures that ∥𝐺𝐴∥ℍ𝑝 is finite: since 𝐷 has finite

Lebesgue measure and 𝑝∗ = 𝑝2/2 ≥ 𝑝, Hölder’s inequality implies

𝔼 sup
𝑡≤𝑇

∥𝐺𝐴(𝑡)∥𝑝𝐿𝑝 ≲𝐷 𝔼 sup
𝑡≤𝑇

∥𝐺𝐴(𝑡)∥𝑝𝐿𝑝∗ ≤
(
𝔼 sup
𝑡≤𝑇

∥𝐺𝐴(𝑡)∥𝑝
∗
𝐿𝑝∗

)2/𝑝
<∞.
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(ii) The previous existence and uniqueness result also follows by an adaptation
of [4, Thm. 6.2], which is a more general and more precise result about well-
posedness for equations with Wiener noise and Lipschitz coefficients. In [4]
the nonlinearity in the drift is Lipschitz continuous and satisfies a linear
growth condition with a constant that does not depend on 𝑡 and 𝜔, hence it
does not apply directly to our situation. A reasoning completely analogous
to the above one permits however to circumvent this problem.

We shall need the following a priori estimate for the solution to the regularized
equation (3.1).

Lemma 3.3. Assume that 𝑢0 ∈ 𝕃𝑝, 𝐵 ∈ ℒ𝛾𝑝 and 𝐺 ∈ ℒ𝑚𝑝∗ . Then there exists a
constant 𝑁 , independent of 𝜆, such that

𝔼 sup
𝑡≤𝑇

∥𝑢𝜆(𝑡)∥𝑝𝐸 ≤ 𝑁
(
1 + 𝔼∥𝑢0∥𝑝𝐸

)
.

Proof. Let 𝑣𝜆 be the mild 𝐸-solution to (3.3). For 𝜀 > 0, set

𝑢𝜀0 := (𝐼 + 𝜀𝐴)−1𝑢0, 𝐵𝜀(𝑡) := (𝐼 + 𝜀𝐴)−1𝐵(𝑡),

𝑔𝜆(𝑡) := 𝑓𝜆(𝑡, 𝑣𝜆), 𝑔𝜀𝜆(𝑡) := (𝐼 + 𝜀𝐴)−1𝑔𝜆(𝑡),

and let 𝑤𝜀𝜆 be the mild 𝐸-solution to

𝑑𝑤𝜀𝜆 +𝐴𝑤𝜆 𝑑𝑡+ 𝑔𝜀𝜆 𝑑𝑡 = 𝐵𝜀 𝑑𝑊, 𝑤𝜀𝜆(0) = 𝑢𝜀0,

that is

𝑤𝜀𝜆(𝑡) = 𝑆(𝑡)𝑢𝜀0 −
∫ 𝑡

0

𝑆(𝑡− 𝑠)𝑔𝜀𝜆(𝑠) 𝑑𝑠+

∫ 𝑡

0

𝑆(𝑡− 𝑠)𝐵𝜀(𝑠) 𝑑𝑠

for all 𝑡 ∈ [0, 𝑇 ]. It is easily seen that 𝑤𝜀𝜆 is a strong solution, i.e., that one has

𝑤𝜀𝜆(𝑡) +

∫ 𝑡

0

(
𝐴𝑤𝜀𝜆(𝑠) + 𝑔𝜀𝜆(𝑠)

)
𝑑𝑠 = 𝑢𝜀0 +

∫ 𝑡

0

𝐵(𝑠) 𝑑𝑊 (𝑠)

for all 𝑡 ∈ [0, 𝑇 ], and that 𝑤𝜀𝜆 = (𝐼 + 𝜀𝐴)−1𝑣𝜆 → 𝑣𝜆 in ℍ𝑝 as 𝜀→ 0. We are going
to apply Itô’s formula (in particular we shall use the version in [5, Thm. 3.1]) to
obtain estimates for ∥𝑤𝜀𝜆∥𝑝𝐸 . To this purpose, we have to check that

𝔼
( ∫ 𝑇

0

∥𝑏(𝑡)∥𝐸 𝑑𝑡
)𝑝

<∞,

where 𝑏 := 𝐴𝑤𝜀𝜆 + 𝑔𝜀𝜆. One has

𝔼
( ∫ 𝑇

0

∥𝑏(𝑡)∥𝐸 𝑑𝑡
)𝑝

≲ 𝔼

∫ 𝑇

0

∥𝑏(𝑡)∥𝑝𝐸 𝑑𝑡 ≲ 𝔼

∫ 𝑇

0

∥𝐴𝑤𝜀𝜆∥𝑝𝐸 𝑑𝑡+ 𝔼

∫ 𝑇

0

∥𝑔𝜀𝜆∥𝑝𝐸 𝑑𝑡,

where

∥𝐴𝑤𝜀𝜆∥𝐸 = ∥𝐴(𝐼 + 𝜀𝐴)−1𝑣𝜆∥𝐸 ≲𝜀 ∥𝑣𝜆∥𝐸
and

∥𝑔𝜀𝜆∥𝐸 = ∥(𝐼 + 𝜀𝐴)−1𝑓𝜆(𝑣𝜆 +𝐺𝐴)∥𝐸 ≤ ∥𝑓𝜆(𝑣𝜆 +𝐺𝐴)∥𝐸 ≲𝜆 ∥𝑣𝜆∥𝐸 + ∥𝐺𝐴∥𝐸,
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hence

𝔼
( ∫ 𝑇

0

∥𝑏(𝑡)∥𝐸 𝑑𝑡
)𝑝

≲𝜆,𝜀,𝑇 ∥𝑣𝜆∥𝑝ℍ𝑝 + ∥𝐺𝐴∥𝑝ℍ𝑝 <∞,

which justifies applying Itô’s formula. Setting 𝜓(𝑥) := ∥𝑥∥𝑝𝐸 , we have

𝜓(𝑤𝜀𝜆) +

∫ 𝑡

0

⟨𝐴𝑤𝜀𝜆 + 𝑔𝜀𝜆, 𝜓
′(𝑤𝜀𝜆)⟩ 𝑑𝑠 =

∫ 𝑡

0

𝜓′(𝑤𝜀𝜆)𝐵
𝜀(𝑠) 𝑑𝑊 (𝑠) +𝑅(𝑡),

where 𝑅 is a “remainder” term, the precise definition of which is given in [5].

Note that 𝜓(𝑢) =
(∥𝑢∥2𝐸)𝑝/2 and 𝜓′(𝑢) = 𝑝∣𝑢∣𝑝−2𝑢 = 𝑝∥𝑢∥𝑝−2𝐸 𝐽(𝑢), where 𝐽 is the

duality mapping of 𝐸,

𝐽 : 𝑢 �→ 𝑢∣𝑢∣𝑝−2∥𝑢∥2−𝑝𝐸 ,

i.e., 𝐽 is the Gâteaux (and Fréchet) derivative of ∥ ⋅ ∥2𝐸/2. Since 𝐴 is 𝑚-accretive
on 𝐸, it holds

⟨𝐴𝑤𝜀𝜆, 𝜓
′(𝑤𝜀𝜆)⟩ = 𝑝∥𝑤𝜀𝜆∥𝑝−2𝐸 ⟨𝐴𝑤𝜀𝜆, 𝐽(𝑤

𝜀
𝜆)⟩ ≥ 0.

Moreover, there exists 𝛿 > 0 and 𝑁 = 𝑁(𝛿) > 0 such that (cf. [5])

𝔼 sup
𝑡≤𝑇

∣𝑅(𝑡)∣ ≤ 𝛿𝔼 sup
𝑡≤𝑇

∥𝑤𝜀𝜆(𝑡)∥𝑝𝐸 +𝑁𝔼
( ∫ 𝑇

0

∥𝐵𝜀(𝑠)∥2𝛾(𝐻→𝐸) 𝑑𝑠
)𝑝/2

and, by some calculations based on Young’s and Burkholder’s inequalities,

𝔼 sup
𝑡≤𝑇

∣∣∣ ∫ 𝑡

0

𝜓′(𝑤𝜀𝜆(𝑠))𝐵
𝜀(𝑠) 𝑑𝑊 (𝑠)

∣∣∣
≲ 𝛿𝔼 sup

𝑡≤𝑇
∥𝑤𝜀𝜆(𝑡)∥𝑝𝐸 +𝑁𝔼

( ∫ 𝑇

0

∥𝐵𝜀(𝑠)∥2𝛾(𝐻→𝐸) 𝑑𝑠
)𝑝/2

.

We thus arrive at the estimate

𝔼 sup
𝑡≤𝑇

∥𝑤𝜀𝜆∥𝑝𝐸 ≲ 𝛿𝔼 sup
𝑡≤𝑇

∥𝑤𝜀𝜆∥𝑝𝐸 + ∥𝐵𝜀∥𝑝ℒ𝛾𝑝 + 𝔼 sup
𝑡≤𝑇

∫ 𝑡

0

⟨−𝑔𝜀𝜆, 𝑤
𝜀
𝜆∣𝑤𝜀𝜆∣𝑝−2⟩ 𝑑𝑠.

Letting 𝜀→ 0, we are left with

𝔼 sup
𝑡≤𝑇

∥𝑣𝜆∥𝑝𝐸 ≲ 𝛿𝔼 sup
𝑡≤𝑇

∥𝑣𝜆∥𝑝𝐸 + ∥𝐵∥𝑝ℒ𝛾𝑝 + 𝔼 sup
𝑡≤𝑇

∫ 𝑡

0

〈− 𝑓𝜆(𝑠, 𝑣𝜆(𝑠)), 𝜓
′(𝑣𝜆(𝑠))

〉
𝑑𝑠.

Note that we have

⟨𝑓𝜆(𝑡, 𝑣𝜆), 𝜓′(𝑣𝜆)⟩ = 𝑝∥𝑣𝜆∥𝑝−2
𝐸 ⟨𝑓𝜆(𝑡, 𝑣𝜆), 𝐽(𝑣𝜆)⟩ = 𝑝∥𝑣𝜆∥𝑝−2

𝐸 ⟨𝑓𝜆(𝐺𝐴 + 𝑣𝜆), 𝐽(𝑣𝜆)⟩,
where, by accretivity of 𝑓𝜆,

⟨𝑓𝜆(𝐺𝐴 + 𝑣𝜆), 𝐽(𝑣𝜆)⟩ = ⟨𝑓𝜆(𝐺𝐴 + 𝑣𝜆)− 𝑓(𝐺𝐴), 𝐽(𝐺𝐴 + 𝑣𝜆 −𝐺𝐴)⟩
+ ⟨𝑓𝜆(𝐺𝐴), 𝐽(𝑣𝜆)⟩

≥ ⟨𝑓𝜆(𝐺𝐴), 𝐽(𝑣𝜆)⟩,
hence, recalling that 𝜓′(𝑢) = 𝑝𝑢∣𝑢∣𝑝−2,

⟨𝑓𝜆(𝑡, 𝑣𝜆), 𝜓′(𝑣𝜆)⟩ ≥ 𝑝⟨𝑓𝜆(𝐺𝐴), 𝑣𝜆∣𝑣𝜆∣𝑝−2⟩,
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and, by Young’s inequality with conjugate exponents 𝑝 and 𝑝′ = 𝑝/(𝑝− 1),

⟨𝑓𝜆(𝐺𝐴), 𝑣𝜆∣𝑣𝜆∣𝑝−2⟩ ≲ 𝑁∥𝑓𝜆(𝐺𝐴)∥𝑝𝐿𝑝 + 𝛿∥𝑣𝜆∣𝑣𝜆∣𝑝−2∥𝑝
′
𝐿𝑝′

= 𝑁∥𝑓𝜆(𝐺𝐴)∥𝑝𝐿𝑝 + 𝛿∥𝑣𝜆∥𝑝𝐿𝑝 ,
so that

𝔼 sup
𝑡≤𝑇

∣∣∣ ∫ 𝑡

0

⟨𝑓𝜆(𝑡, 𝑣𝜆), 𝜓′(𝑣𝜆)⟩ 𝑑𝑠
∣∣∣ ≲ 𝛿𝔼 sup

𝑡≤𝑇
∥𝑣𝜆(𝑡)∥𝑝𝐸 +𝑁𝔼 sup

𝑡≤𝑇
∥𝑓𝜆(𝐺𝐴(𝑡))∥𝑝𝐸

≲ 1 + 𝛿𝔼 sup
𝑡≤𝑇

∥𝑣𝜆(𝑡)∥𝑝𝐸 +𝑁∥𝐺∥ℒ𝑚
𝑝∗ ,

where the last constant does not depend on 𝜆.
Combining the above estimates and choosing 𝛿 small enough, we are left with

𝔼 sup
𝑡≤𝑇

∥𝑣𝜆∥𝑝𝐸 ≲ 1 + 𝔼∥𝑢0∥𝑝𝐸 + ∥𝐺∥𝑝∗ℒ𝑚
𝑝∗

+ ∥𝐵∥𝑝ℒ𝛾𝑝 ,

with implicit constant independent of 𝜆. □

Thanks to the a priori estimate just established, we are now going to show
that {𝑢𝜆}𝜆 is a Cauchy sequence in ℍ2, hence that there exists 𝑢 ∈ ℍ2 such that
𝑢𝜆 → 𝑢 in ℍ2 as 𝜆→ 0. In particular, we have

𝑑(𝑢𝜆 − 𝑢𝜇) +𝐴(𝑢𝜆 − 𝑢𝜇) 𝑑𝑡+ (𝑓𝜆(𝑢𝜆)− 𝑓𝜇(𝑢𝜇)) 𝑑𝑡 = 0,

from which we obtain, using the same argument as in [3, pp. 1539–1540],

𝔼 sup
𝑡≤𝑇

∥𝑢𝜆 − 𝑢𝜇∥2𝐿2
≲𝑇 (𝜆+ 𝜇)

(
𝔼 sup
𝑡≤𝑇

∥𝑓𝜆(𝑢𝜆(𝑡))∥2𝐿2
+ 𝔼 sup

𝑡≤𝑇
∥𝑓𝜇(𝑢𝜇(𝑡))∥2𝐿2

)
≲ (𝜆+ 𝜇)

(
1 + 𝔼 sup

𝑡≤𝑇
∥𝑢𝜆(𝑡)∥𝑝𝐿𝑝 + 𝔼 sup

𝑡≤𝑇
∥𝑢𝜇(𝑡)∥𝑝𝐿𝑝

)
.

Since

∥𝑢𝜆∥ℍ𝑝 ≤ ∥𝑣𝜆∥ℍ𝑝 + ∥𝐺𝐴∥ℍ𝑝
and ∥𝐺𝐴∥ℍ𝑝 is finite because 𝐺 ∈ ℒ𝑚𝑝∗ , we conclude that 𝔼 sup𝑡≤𝑇 ∥𝑢𝜆(𝑡)∥𝑝𝐸 is
bounded uniformly over 𝜆, hence that there exists 𝑢 ∈ ℍ2 such that 𝑢𝜆 → 𝑢 in ℍ2

as 𝜆→ 0.
As in [3], one can now pass to the limit as 𝜆→ 0 in (3.2), concluding that 𝑢

is indeed a mild solution of (1.1). Since 𝔼 sup𝑡≤𝑇 ∥𝑢∥𝑝𝐿𝑝 < ∞, one also gets that

𝑓(𝑢) ∈ 𝐿1([0, 𝑇 ] → 𝐻), hence, by the uniqueness results in [2], 𝑢 is the unique
càdlàg mild solution belonging to ℍ2.

3.2. Proof of Theorem 2.4

We need the following lemma, whose proof is completely analogous to the proof
of [3, Lemma 9], hence omitted.

Lemma 3.4. Assume that 𝑢01, 𝑢02 ∈ 𝕃𝑝; 𝐵1, 𝐵2 ∈ ℒ𝛾𝑝 ; 𝐺1, 𝐺2 ∈ ℒ𝑚𝑝∗ , and denote
the unique càdlàg mild solutions of

𝑑𝑢+𝐴𝑢𝑑𝑡+ 𝑓(𝑢) 𝑑𝑡 = 𝐵1 𝑑𝑊 +

∫
𝑍

𝐺1 𝑑�̄�, 𝑢(0) = 𝑢01
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and

𝑑𝑢+𝐴𝑢𝑑𝑡+ 𝑓(𝑢) 𝑑𝑡 = 𝐵2 𝑑𝑊 +

∫
𝑍

𝐺2 𝑑�̄�, 𝑢(0) = 𝑢02

by 𝑢1 and 𝑢2, respectively. Then one has

𝔼 sup
𝑡≤𝑇

∥𝑢1(𝑡)− 𝑢2(𝑡)∥2𝐻 ≲𝑇 𝔼∥𝑢01 − 𝑢02∥2𝐻 + 𝔼

∫ 𝑇

0

∥𝐵1(𝑡)−𝐵2(𝑡)∥2𝛾(𝐻→𝐻) 𝑑𝑡

+ 𝔼

∫ 𝑇

0

∫
𝑍

∥𝐺1(𝑡, 𝑧)−𝐺2(𝑡, 𝑧)∥2𝐻 𝑚(𝑑𝑧) 𝑑𝑡.

Let us consider sequences {𝑢0𝑛}𝑛 ⊂ 𝕃𝑝, {𝐵𝑛}𝑛 ⊂ ℒ𝛾𝑝 and {𝐺𝑛}𝑛 ⊂ ℒ𝑚𝑝∗ such

that 𝑢0𝑛 → 𝑢0 in 𝕃2, 𝐵𝑛 → 𝐵 in ℒ𝛾2 and 𝐺𝑛 → 𝐺 in ℒ𝑚2 as 𝑛→∞. Denoting by
𝑢𝑛 the unique mild solution in ℍ2 of

𝑑𝑢𝑛 +𝐴𝑢𝑛 𝑑𝑡+ 𝑓(𝑢𝑛) 𝑑𝑡 = 𝐵𝑛 𝑑𝑊 +

∫
𝑍

𝐺𝑛 𝑑�̄�, 𝑢𝑛(0) = 𝑢0𝑛,

the previous lemma yields

𝔼 sup
𝑡≤𝑇

∥𝑢𝑛(𝑡)− 𝑢𝑚(𝑡)∥2𝐻 ≲𝑇 𝔼∥𝑢0𝑛 − 𝑢0𝑚∥2𝐻

+ 𝔼

∫ 𝑇
0

∥𝐵𝑛(𝑡)−𝐵𝑚(𝑡)∥2𝛾(𝐻→𝐻) 𝑑𝑡+ 𝔼

∫ 𝑇
0

∫
𝑍

∥𝐺𝑛(𝑡, 𝑧)−𝐺𝑚(𝑡, 𝑧)∥2𝐻 𝑚(𝑑𝑧) 𝑑𝑡,

i.e., {𝑢𝑛}𝑛 is a Cauchy sequence in ℍ2. This implies that 𝑢𝑛 → 𝑢 in ℍ2 as 𝑛→∞,
and 𝑢 is a generalized solution of (1.1). Since the limit does not depend on the
choice of 𝑢0𝑛, 𝐵𝑛 and 𝐺𝑛, the generalized solution is unique.
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Localization of Relative Entropy in
Bose–Einstein Condensation of
Trapped Interacting Bosons

Laura M. Morato and Stefania Ugolini

Abstract. We consider a system of interacting diffusions which is naturally
associated to the ground state of the Hamiltonian of a system of 𝑁 pair-
interacting bosons and we give a detailed description of the phenomenon of
the “localization of the relative entropy”. The method is based on peculiar
rescaling properties of the mean energy functional.
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1. Introduction

The new state of matter known as Bose–Einstein condensation was predicted from
a theoretical point of view by Bose and Einstein in 1925 and it was confirmed in
the experiment only in 1995. To be precise, it was observed that if a large number
of identical pair interacting bosons is confined in a trap of macroscopic size at
very low temperature, then almost all particles belong to a “condensed” cloud,
where every particle is in the same macroscopic one-body quantum state, called
the “wave function of the condensate”. As far as the interacting case is concerned,
this phenomenon was firstly investigated by Bogolubov [4] and later by Gross
[5] and Pitaevskii [28]. In the Gross–Pitaevskii theory the wave function of the
condensate satisfies a cubic nonlinear Schrödinger equation, in this context called
Gross–Pitaevskii equation, where the effect of the interactions gives rise to the non
linear term. This model has been widely confirmed by experimental results.

A completely rigorous derivation of the Bose–Einstein condensation, for the
case of the ground state of a diluted pair-interacting Bose gas in a trap, was
done quite recently by Lieb and Sieringer [22], exploiting a suitable scaling limit,
consistent with the Gross–Pitaewskii theory, with the number of particles going to
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infinity. In particular they can prove that any finite-order reduced density matrix
converges in the trace norm to the factorized one.

Stochastic tools have also been considered and in particular the interest in
stochastic descriptions has increased during the last decade.

For example boson random point processes (fields or general Cox processes),
have been exploited by many authors. For the ideal case we quote [6, 7, 11, 12,
13] and [8]. In particular in [8] the random point field describing the position
distribution of the ideal boson gas in a state of Bose–Einstein condensation is
obtained in the thermodynamic limit. Limit theorems for this field, including a
large deviation principle, are established in [10].

For the interacting case interesting results were obtained in [14] and in [9].

We also quote the work [3], where the authors exploit a model of spatial
random permutations, finding the occurrence of infinite cycles and [2], where large
deviation principles are obtained for a model consisting of 𝑁 mutually repellent
Brownian Motions confined in a bounded region.

The possibility offered by Nelson processes, that can be rigorously associated
to the quantum 𝑁 -body Hamiltonians, was considered only very recently [15, 32].
In this approach the 𝑁 -body system is described by a system of 𝑁 interacting
diffusions, the interaction being described by the structure of the Mean Energy
Functional. Under the assumption of strict positivity and continous differentiabil-
ity of the many-body ground state wave function, all one-particle diffusions have
the same law. This allows to consider a generic one-particle process and to show
that, in a proper scaling limit, such a process continuously remains outside a time
dependent random interaction set with probability one and that its stopped ver-
sion converges, in a relative entropy sense, toward a Markov diffusion whose drift
is uniquely determined by wave function of the condensate [32].

In this paper we focus our attention on the scaling properties of the Mean
Energy Functional which is associated to the system of the 𝑁 interacting diffusions
and we describe in detail the phenomenon of the concentration of relative entropy,
which plays a fundamental role in understanding the peculiarities of the stochastic
motion of a particle in the condensate.

2. Basics

We start by considering a single spinless quantum particle of mass 𝑚 in a potential
𝑉 . Denoting by 𝜓 its wave function, we know that it is a solution of the Schrödinger
equation

𝑖ℏ∂𝑡𝜓 =

(
− ℏ2

2𝑚
△+ 𝑉

)
𝜓.

We also know that, if 𝑉 is of Rellich class and the initial kinetic energy is
finite [15], then there exists a weak solution 𝑋 to the three-dimensional stochastic
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differential equation

𝑑𝑋𝑡 =
ℏ

𝑚

(
Re
∇𝜓

𝜓
+ Im

∇𝜓

𝜓

)
(𝑋𝑡, 𝑡)𝑑𝑡+

(
ℏ

𝑚

) 1
2

𝑑𝑊𝑡

where 𝑑𝑊𝑡 denotes the increment of a standard Brownian Motion.

Notably, the diffusion 𝑋 satisfies the stochastic version of the second New-
ton’s law

𝑎𝑁 (𝑋𝑡, 𝑡) = − 1

𝑚
∇𝑉 (𝑋𝑡.𝑡)

where 𝑎𝑁 denotes the natural mean stochastic acceleration as introduced by Nelson
in 1966 [27]. In addition, up to regularity assumptions, 𝑋 is critical for the mean
classical action functional [18] (see also [16] for a recent review).

The system we are considering consists of 𝑁 pair interacting copies of such
a particle, with Hamiltonian

𝐻𝑁 =

𝑁∑
𝑖=1

(
− ℏ2

2𝑚
△𝑖 + 𝑉 (ri)

)
+

∑
1≤𝑖<𝑗≤𝑁

𝑣(ri − rj). (2.1)

We adopt the following notations: bold letters denote vectors in ℝ3, capital
letters stochastic processes and �̂� = (𝑋1, . . . , 𝑋𝑁) arrays in ℝ3𝑁 .

Under suitable assumptions on 𝑉 and 𝑣 one can prove the existence of the
ground state Ψ𝑁 of (2.1), which is unique up to a phase coefficient. We also assume
that it is strictly positive and continuously differentiable (see [29], Thms. XIII.46
and XIII.47, for the regularity conditions on the potentials 𝑉 and 𝑣 implying
the strictly positivity, and (XIII.11) for those implying the differentiability of the
ground state wave function).

We denote by �̂� the corresponding 3𝑁 -dimensional Nelson’s diffusion, whose
generator is related to 𝐻𝑁 by a Doob’s transformation [17, 30] (see also [31] for
extensions).

�̂� is the 𝑁 -body ground state process and it consists of a family of 𝑁 three-
dimensional one-particle interacting diffusions (𝑋1, . . . , 𝑋𝑁 ).

It satisfies the SDE, written in compact form,

𝑑�̂�𝑡 = �̂�(�̂�𝑡)𝑑𝑡+

(
ℏ

𝑚

) 1
2

𝑑�̂�𝑡 (2.2)

where �̂� = (𝑏1, . . . , 𝑏𝑁 ), �̂�𝑖(�̂�𝑡) = ∇𝑖Ψ𝑁
Ψ𝑁

(�̂�𝑡) for 𝑖 = 1, . . . , 𝑁 , and �̂� is a 3𝑁 -
dimensional standard Brownian Motion.

If Bose–Einstein condensation occurs, the condensate is usually described by
the order parameter 𝜙𝐺𝑃 ∈ 𝐿2(ℝ3), also called the wave function of the condensate,
which is the minimizer of the Gross–Pitaevskii functional

𝐸𝐺𝑃 [𝜙] =

∫ (
ℏ2

2𝑚
∣∇𝜙(𝑟)∣2 + 𝑉 (𝑟)∣𝜙(𝑟)∣2 + 𝑔∣𝜙(𝑟)∣4

)
𝑑r (2.3)
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under the 𝐿2-normalization condition∫
ℝ3

∣𝜙𝐺𝑃 ∣2𝑑r = 1

and where 𝑔 > 0 is a parameter depending on the interaction potential 𝑣 (see
also next assumption h2)). Therefore 𝜙𝐺𝑃 solves the stationary cubic non-linear
equation (in this context called Gross–Pitaevskii equation)

− ℏ2

2𝑚
△𝜙+ 𝑉 𝜙+ 2𝑔∣𝜙∣2𝜙 = 𝜆𝜙 (2.4)

𝜆 denoting the chemical potential.

3. Mean energy and rescaling

The basic mathematical object which contains all elements necessary to prove,
from first principles, the existence of BEC and its proper stochastic description, is
the quantum mechanical energy of the 𝑁 -body system in the ground state.

Its explicit expression, with ℏ = 𝑚 = 1, is

𝐸(Ψ𝑁 ) = ⟨Ψ𝑁 , 𝐻𝑁Ψ𝑁 ⟩ (3.1)

=

𝑁∑
𝑖=1

∫
ℝ3𝑁

1

2
∣∇𝑖Ψ𝑁 ∣2𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 +

𝑁∑
𝑖=1

∫
ℝ3𝑁

𝑉 (r𝑖)∣Ψ𝑁 ∣2𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁

+

𝑁∑
1≤𝑖<𝑗≤𝑁

∫
𝑣(r𝑗 − r𝑖)∣Ψ𝑁 ∣2𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 .

Exploiting the 3𝑁 -dimensional ground state process �̂� , the kinetic quantum
mechanical energy turns to be the sum of the expectation of the kinetic energies of
the single particles at any time 𝑡 and the quantum energy takes the more compact
form

𝐸(Ψ𝑁 ) = 𝔼

⎧⎨⎩
𝑁∑
𝑖=1

[
1

2
𝑏2𝑖 (�̂�(𝑡)) + 𝑉 (𝑋𝑖(𝑡))

]
+

𝑁∑
1≤𝑖<𝑗≤𝑁

[𝑣(𝑋𝑗(𝑡)−𝑋𝑖(𝑡))]

⎫⎬⎭ , (3.2)

𝑏𝑖 being the drift of the interacting 𝑖th particle.

A possible rescaling which leads to the Gross–Pitaevskii description of the
condensate is defined as follows [21]:

h1) 𝑉 is locally bounded, positive and going to infinity when ∣ri∣ goes to infinity.
The interaction potential 𝑣 is smooth, compactly supported, non-negative,
spherically symmetric, with finite scattering length 𝑎 ([23, Appendix C]).
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h2) 𝑁 −→∞ and the interaction potential 𝑣 satisfies the Gross–Pitaevskii scaling
[21], that is

𝑣(𝑟) = 𝑣1

( 𝑟

𝑎

)
/𝑎2,

𝑎 =
𝑔

4𝜋𝑁
,

where 𝑣1 has scattering length equal to 1. We notice that 𝑔 is positive as a
consequence of our assumptions on 𝑣 (see h1)) and it is kept constant in the
rescaling.

For given 𝑁 and 𝑎 we denote by 𝐸𝑜(𝑁, 𝑎) the ground state energy 𝐸(Ψ𝑁)
of the 𝑁 -body system and by 𝐸𝐺𝑃 the minimum value of the Gross–Pitaevskii
functional (2.3).

The following two theorems, proved in [21] and [22], clarify the two main
properties of the rescaling procedure. The first is the important

Theorem 3.1 (Energy Theorem [21]). If 𝑁 ↑ +∞ with 𝑁𝑎 fixed, then

lim
𝑁→∞

𝐸0(𝑁, 𝑎)

𝑁
= 𝐸𝐺𝑃

and

lim
𝑁→∞

∫
∣Ψ𝑁 ∣2𝑑r2 ⋅ ⋅ ⋅ r𝑁 = ∣𝜙𝐺𝑃 ∣2.

Moreover there exists 𝑠 ∈ (0, 1], depending on the interaction potential 𝑣
through the solution of the zero-energy scattering equation, such that

lim
𝑁↑∞

∫
ℝ3𝑁

∣∇1Ψ𝑁(r1, . . . , r𝑁 )∣2𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁

=

∫
ℝ3

∣∇𝜙𝐺𝑃 (r)∣2𝑑r+ 𝑔𝑠

∫
ℝ3

(𝜙𝐺𝑃 )4𝑑r,

(3.3)

lim
𝑁↑∞

∫
ℝ3𝑁

𝑉 (r)∣Ψ𝑁 (r1, 𝑋)∣2𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 =

∫
𝑉 (r)∣𝜙𝐺𝑃 ∣2𝑑r (3.4)

and

lim
𝑁↑∞

1

2

𝑁∑
𝑗=2

∫
ℝ3𝑁

𝑣(∣r1 − r𝑗 ∣)∣Ψ𝑁 (r1, . . . , r𝑁 )∣2𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 = (1 − 𝑠)𝑔

∫
∣𝜙𝐺𝑃 ∣4𝑑r.

(3.5)

A second fundamental tool, originally called “Localization of energy” is the
following.

Theorem 3.2 (Localization Theorem [22]). Defining

𝐹𝑁 (r2, . . . , r𝑁 ) :=

(
𝑁∪
𝑖=2

𝐵𝑁 (r𝑖)

)𝑐
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where 𝐵𝑁 (r) denotes the open ball centered in r with radius 𝑁− 1
3−𝛿 where 0 <

𝛿 ≤ 4
51 ,

lim
𝑁↑∞

∫
ℝ3(𝑁−1)

𝑑r2 . . . 𝑑r𝑁

∫
𝐹𝑁 (r2,...,r𝑁 )

(
∇1

Ψ𝑁
𝜙𝐺𝑃

)2

(𝜙𝐺𝑃 )
2𝑑r1 = 0. (3.6)

These “quantum mechanical” theorems allow to prove that, in the limit of
𝑁 going to infinity, one has a complete condensation, in the sense that any finite-
order reduced density matrix converges in the trace norm to the factorized one [22].
Moreover they can be seen as analytical tools which are crucial in understanding
the scaling properties of the mean energy of the 𝑁 -body interacting system repre-
sented by the system of interacting diffusions (2.2), the interaction being defined
by the Mean Energy Functional 𝐸(Ψ𝑁) by (3.2). They also allow to study the
limit stochastic behavior of a single generic particle [32].

In particular the Localization Theorem is very interesting and gains a clear
meaning in the stochastic framework.

For this reason we report in the appendix a synthesis of the main analytical
steps which lead to its proof.

4. Localization of relative entropy and the BEC process

We now turn to the stochastic description and notice that the fixed time joint
probability density of the 𝑁 -body ground state process �̂� = (𝑋1, . . . , 𝑋𝑁 ) is
given by 𝜌𝑁 := ∣Ψ𝑁 ∣2, which is invariant under spatial permutations. Moreover,
as expected, if some smoothness conditions are assumed for Ψ𝑁 , the processes
{𝑋𝑖}𝑖=1,...,𝑁 are equal in law. To be more precise (see [32]), one can say that, if
Ψ𝑁 is the ground state of 𝐻𝑁 and it is strictly positive and of class 𝐶1, then the
three-dimensional one-particle interacting diffusions {𝑋𝑖}𝑖=1,...,𝑁 are equal in law.

Motivated by the fact that the first part of the energy theorem claims that
the one-particle marginal density of 𝜌𝑁 converges to ∣𝜙𝐺𝑃 ∣2 in 𝐿1(ℝ3), we consider
a three-dimensional process 𝑋𝐺𝑃 with invariant density 𝜌𝐺𝑃 := ∣𝜙𝐺𝑃 ∣2 and we
compare it with the generic interacting non-Markovian diffusion 𝑋1.

We assume that 𝑋𝐺𝑃 is a solution of the SDE

𝑑𝑋𝐺𝑃
𝑡 := 𝑢𝐺𝑃 (𝑋

𝐺𝑃
𝑡 )𝑑𝑡+

(
ℏ

𝑚

) 1
2

𝑑𝑊𝑡

where,

𝑢𝐺𝑃 :=
∇𝜙𝐺𝑃
𝜙𝐺𝑃

.

Then, since 𝜙𝐺𝑃 is a solution to the stationary Gross–Pitaevkii equation (2.4),
a standard calculation in Stochastic Mechanics shows that Nelson acceleration of
𝑋𝐺𝑃 reads, quite reasonably,

𝑎𝑁 (𝑋
𝐺𝑃
𝑡 ) = − 1

𝑚
∇

{
𝑉 (𝑋𝐺𝑃

𝑡 ) + 𝑔
∣∣𝜙𝐺𝑃 (𝑋𝐺𝑃

𝑡 )
∣∣2} .
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(On the other side one could observe that now, by the non-linearity of (2.4),
Doob’s transformation is not expected to play any role.)

By the equality

∣ 𝜙𝐺𝑃 ∣2
(
∇ Ψ𝑁
𝜙𝐺𝑃

)2

=∣ Ψ𝑁 ∣2
(∇Ψ𝑁

Ψ𝑁
− ∇𝜙𝐺𝑃

𝜙𝐺𝑃

)2

we see that the 𝐿2 distance between the two drifts 𝑏𝑁1 and 𝑢𝐺𝑃 , is given by∫
ℝ3𝑁

∥𝑏𝑁1 − 𝑢𝐺𝑃 ∥2𝜌𝑁𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 =

∫
ℝ3𝑁

(
∇1

Ψ𝑁
𝜙𝐺𝑃

)2

∣ 𝜙𝐺𝑃 ∣2 𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 . (4.1)

This can be exploited to show that the localization theorem is related to the
localization of the relative entropy between the generic one particle non-Markovian
interacting diffusion and the process 𝑋𝐺𝑃 .

To do this we introduce a 3𝑁 -dimensional process �̂�𝐺𝑃 which satisfies a
stochastic differential equation with the same diffusion coefficient as �̂� and drift
�̂�𝐺𝑃 , defined by

�̂�𝐺𝑃 (r1, . . . , r𝑁 ) = (𝑢𝐺𝑃 (r1), . . . , 𝑢𝐺𝑃 (r𝑁 )).

We consider the measurable space (Ω𝑁 ,ℱ𝑁 ) where Ω𝑁 is 𝐶(ℝ+ → ℝ3𝑁 ),

and ℱ𝑁 is its Borel sigma-algebra. We denote by 𝑌 := (𝑌1, . . . , 𝑌𝑁 ) the coordinate
process and by ℱ𝑁𝑡 the natural filtration.

We denote by ℙ𝑁 and ℙ𝐺𝑃 the measures corresponding to the weak solutions
of the 3𝑁 -dimensional stochastic differential equations

𝑌𝑡 − �̂�0 =

∫ 𝑡

0

�̂�𝑁(𝑌𝑠)𝑑𝑠+ �̂�𝑡,

𝑌𝑡 − �̂�0 =

∫ 𝑡

0

�̂�𝐺𝑃 (𝑌𝑠)𝑑𝑠+ �̂� ′
𝑡 ,

(4.2)

where �̂�0 is a random variable with probability density equal to ∣ Ψ𝑁 ∣2 while �̂�𝑡

and �̂� ′
𝑡 are 3𝑁 -dimensional ℙ𝑁 and ℙ𝐺𝑃 standard BrownianMotions, respectively.

We will assume for simplicity that 𝑢𝐺𝑃 is bounded, that is in fact true if the
trap is finite and 𝜙𝐺𝑃 is smooth and strictly positive.

We recall that under our hypothesis on the potentials 𝑣 and 𝑉 , 𝜙𝐺𝑃 is strictly
positive and in 𝐶1(ℝ3)

∩
𝐿∞(ℝ3) and therefore 𝑢𝐺𝑃 ∈ 𝐿2(ℝ3) (see [21, Thm. 2.1]).

Then, since Ψ𝑁 is the minimizer of 𝐸𝑁 [Ψ] and 𝑢𝐺𝑃 is bounded, the following

finite energy conditions hold (with the shorthand notation �̂�𝑁𝑠 =: �̂�𝑁 (𝑌𝑠) and

�̂�𝑁𝑠 =: 𝑢𝐺𝑃 (𝑌𝑠)):

𝐸ℙ𝑁

∫ 𝑡

0

∥�̂�𝑁𝑠 ∥2𝑑𝑠 <∞, (4.3)

𝐸ℙ𝑁

∫ 𝑡

0

∥ �̂�𝐺𝑃𝑠 ∥2𝑑𝑠 <∞. (4.4)
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Then, by Girsanov theorem, we have, for all 𝑡 > 0,

𝑑ℙ𝑁
𝑑ℙ𝐺𝑃

∣ℱ𝑡 = exp

{
−

∫ 𝑡

0

(�̂�𝑁𝑠 − 𝑢𝐺𝑃𝑠 ) ⋅ 𝑑�̂�𝑠 +
1

2

∫ 𝑡

0

∥�̂�𝑁𝑠 − �̂�𝐺𝑃𝑠 ∥2𝑑𝑠
}

where ∣.∣ denotes the Euclidean norm in ℝ3𝑁 . The relative entropy restricted to
ℱ𝑡 reads

ℋ(ℙ𝑁 ,ℙ𝐺𝑃 )∣ℱ𝑡 =: 𝔼ℙ𝑁 [log
𝑑ℙ𝑁
𝑑ℙ𝐺𝑃

∣ℱ𝑡 ] =
1

2
𝐸ℙ𝑁

∫ 𝑡

0

∥�̂�𝑁𝑠 − �̂�𝐺𝑃𝑠 ∥2𝑑𝑠.

Since under ℙ𝑁 the 3𝑁 -dimensional process 𝑌 is a solution of (4.2) with
invariant probability density ∣ Ψ𝑁 ∣2, we can write, recalling also (4.3) and (4.4),

1

2
𝐸ℙ𝑁

∫ 𝑡

0

∥�̂�𝑁𝑠 − �̂�𝐺𝑃𝑠 ∥2𝑑𝑠 =
1

2

∫ 𝑡

0

𝐸ℙ𝑁∥�̂�𝑁𝑠 − 𝑢𝐺𝑃𝑠 ∥2𝑑𝑠

=
1

2
𝑡

∫
ℝ3𝑁

∥�̂�𝑁 (r1, . . . , r𝑁 )− �̂�𝐺𝑃 (r1, . . . , r𝑁 )∥2𝜌𝑁𝑑r1 . . . 𝑑r𝑁

so that, the symbol ∥ . ∥ now denoting the euclidean norm in ℝ3, we get

ℋ(ℙ𝑁 ,ℙ𝐺𝑃 )∣ℱ𝑡 =
1

2
𝑡

∫
ℝ3𝑁

𝑁∑
𝑖=1

∥𝑏𝑁𝑖 (r1, . . . , r𝑁 )− 𝑢𝐺𝑃 (r𝑖)∥2𝜌𝑁𝑑r1 . . . 𝑑r𝑁

=
1

2
𝑁𝑡

∫
ℝ3𝑁

∥𝑏𝑁1 (r1, . . . , r𝑁 )− 𝑢𝐺𝑃 (r1)∥2𝜌𝑁𝑑r1 . . . 𝑑r𝑁

=
1

2
𝑁𝐸ℙ𝑁

∫ 𝑡

0

∥𝑏𝑁1 (𝑌𝑠)− 𝑢𝐺𝑃 (𝑌1(𝑠))∥2𝑑𝑠

where the symmetry of �̂�𝑁 and Ψ𝑁 has been exploited.
Finally we get the sum of 𝑁 identical one-particle relative entropies, each of

them being defined by

ℋ̄(ℙ𝑁 ,ℙ𝐺𝑃 )∣ℱ𝑡 =:
1

𝑁
ℋ(ℙ𝑁 ,ℙ𝐺𝑃 )∣ℱ𝑡 =

1

2
𝐸ℙ𝑁

∫ 𝑡

0

∥𝑏𝑁1 (𝑌𝑠)− 𝑢𝐺𝑃 (𝑌1(𝑠))∥2𝑑𝑠.

Recalling (3.3) in Energy Theorem and (4.1), we can write

lim
𝑁↑∞

∫
ℝ3𝑁

∥𝑏𝑁1 − 𝑢𝐺𝑃∥2𝜌𝑁𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 = 𝑔𝑠

∫
ℝ3

(𝜙𝐺𝑃 )4𝑑r.

As a consequence, for all 𝑡 > 0, the one particle relative entropy is asymp-
totically finite but it does not go to zero in the scaling limit. This means that the
process 𝑋𝐺𝑃 cannot be directly interpreted as the stochastic description of the
generic particle in the condensate.

But the key point is that, for great 𝑁 , the one particle process continously
“lives” outside a properly defined “random interaction-set” 𝐷𝑁 (𝑡).

We define it by the equality

𝐷𝑁 (𝑡) :=
𝑁∪
𝑖=2

𝐵𝑁 (𝑋𝑖(𝑡))
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where 𝐵𝑁 (r) is again the ball with radius 𝑁−1/3−𝛿, 0 < 𝛿 ≤ 4/51 centered in r.
We also introduce the stopping time

𝜏𝑁 := inf{𝑡 ≥ 0 : 𝑋1(𝑡) ∈ 𝐷𝑁 (𝑡)}. (4.5)

The following proposition claims that, in the scaling limit, a generic particle
remains outside the interaction-set, for any finite time interval, with probability
one.

Notice that the result is not obvious: even in dimension 𝑑 = 3, where the
Lebesgue measure of 𝐷𝑁 (𝑡) goes to zero for all 𝑡, it could happen that, asymptoti-
cally, such a set takes the form of a very complicated surface, dividing the physical
three-dimensional space into smaller and smaller non connected regions.

Proposition 4.1 ([32]). Let h1) and h2) hold and the ground state Ψ𝑁 be of class
𝐶1. Then in dimension 𝑑 = 3, for all 𝑡 > 0, we have

lim
𝑁→∞

ℙ(𝜏𝑁 > 𝑡 ∣ 𝑋1(0) /∈ 𝐷𝑁 (0)) = 1

and 𝜏𝑁 has an exponential distribution.

This allows to apply the Localization Theorem to the stopped one-particle
process:

Theorem 4.2. Let h1) and h2) hold. Assume also that Ψ𝑁 is of class 𝐶1 and that
𝑢𝐺𝑃 is bounded. Then, with 𝜏𝑁 defined as in (4.5), we have

lim
𝑁↑∞

ℋ̄(ℙ𝑁 ,ℙ𝐺𝑃 ) ∣ℱ
𝑡∧𝜏𝑁= 0.

Proof, cf. [32]. Recalling (4.3) and (4.4) we can write

ℋ̄(ℙ𝑁 ,ℙ𝐺𝑃 )∣ℱ
𝑡∧𝜏𝑁 =

1

2
𝐸ℙ𝑁

∫ 𝑡∧𝜏𝑁

0

∥𝑏𝑁1 (𝑌𝑠)− 𝑢𝐺𝑃 (𝑌1(𝑠))∥2𝑑𝑠

≤ 1

2

∫ 𝑡

0

𝐸ℙ𝑁{∥𝑏𝑁1 (𝑌𝑠)− 𝑢𝐺𝑃 (𝑌1(𝑠))∥2𝐼{𝑌1 /∈𝐷𝑁𝑠 }}𝑑𝑠

=
1

2
𝑡𝐸ℙ𝑁{∥𝑏𝑁1 (𝑌𝑠)− 𝑢𝐺𝑃 (𝑌1(𝑠))∥2𝐼{𝑌1 /∈𝐷𝑁𝑠 }}

=
1

2
𝑡

∫
ℝ3𝑁

∥𝑏𝑁1 (r1, . . . , r𝑁 )− 𝑢𝐺𝑃 (r1)∥2𝐼𝐹𝑁 (r2,...,r𝑁 ) (r1)𝜌
2
𝑁𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 .

Thus, by (4.1) and the Localization Theorem, we finally get

lim
𝑁↑∞

ℋ̄(ℙ𝑁 ,ℙ𝐺𝑃 )∣ℱ
𝑡∧𝜏𝑁

=
1

2
𝑡 lim
𝑁↑∞

∫
ℝ3(𝑁−1)

𝑑r2 . . . 𝑑r𝑁

∫
𝐹𝑁 (r2,...,r𝑁 )

∥𝑏𝑁1 − 𝑢𝐺𝑃 ∥2𝜌2𝑁𝑑r1 ⋅ ⋅ ⋅ 𝑑r𝑁 = 0. □

Concluding, for great 𝑁 , 𝑋𝑡∧𝜏𝑁 is close in the sense of relative entropy to
the “BEC process” 𝑋𝐺𝑃

𝑡∧𝜏𝑁 , whenever at an arbitrary time-origine the particle is
not in the random interacting set, while the probability that the particle hits such
a set in a finite time becomes negligible.
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Appendix

In this section we put ℏ2

2𝑚 = 1.
The proof of the Localization Theorem is essentially devoted to establish a

proper lower bound for the Energy Functional (3.1) and it is based on two results
concerning the following interacting Hamiltonian for the homogeneous case

𝐻𝐼
𝑁 = −

𝑁∑
𝑖=1

Δ𝑖 +
∑

1≤𝑖≤𝑗≤𝑁
𝑣(∣𝑥𝑖 − 𝑥𝑗 ∣). (A.1)

Lemma A.1 (Smoothing Lemma). Let 𝑣 be non-negative with finite range 𝑅0 and
let 𝑈 be any non-negative function satisfying,∫

𝑈(𝑟)𝑟2𝑑𝑟 ≤ 1 𝑈(𝑟) = 0 𝑟 < 𝑅0

then, 𝑎 being the scattering length and 𝜖 ∈ (0, 1),

𝐻𝐼
𝑁 ≥ 𝜖𝑇𝑁 + (1− 𝜖)𝑎𝑊𝑅

where

𝑇𝑁 = −
∑
𝑖

Δ𝑖, 𝑊𝑅 =

𝑁∑
𝑖

𝑈(𝑡𝑖)

with

𝑡𝑖 = 𝑡𝑖(𝑥1, 𝑥2, . . . , 𝑥𝑁 ) := min
𝑗,𝑗 ∕=𝑖

∣𝑥𝑖 − 𝑥𝑗 ∣.

Moreover one can take

𝑈(𝑟) = 3(𝑅3 −𝑅3
0)
−1 𝑅0 < 𝑟 < 𝑅

and otherwise equal to zero, where 𝑅 represents the range of the potential 𝑈 .
We can observe that in the lower bound operator, only a part of the kinetic

energy survives and the interaction potential is softer than 𝑣, but with a larger
range.

The proof is based on a generalization of a Dyson’s Lemma [25] due to Lieb
and Yngvason [24].

Lemma A.2 (Lower Bound Theorem in a finite box [24]). Let (A.1) the Hamil-
tonian for 𝑁 interacting bosons in a cubic box Λ with side length 𝐿, where 𝑣 is a
spherically symmetric pair potential having finite scattering length 𝑎. Then there
exists 𝜆 > 0 such that, denoting by 𝐸0(𝑁,𝐿) the ground state energy of 𝐻𝐼

𝑁 , with
Neumann boundary conditions, one has

𝐸0(𝑁,𝐿)

𝑁
≥ 4𝜋𝜌𝑎(1− 𝐶𝑌 1/17)

where 𝜌 = 𝑁
𝐿3 is the particle density, 𝑌 = 4𝜋𝜌𝑎

3

3 is the number of particles in the

ball of radius 𝑎 and 𝐿 is such that 𝑌 < 𝜆 and 𝐿
𝑎 > 𝐶1𝑌

− 6
17 .

Moreover 𝐶 and 𝐶1 are positive constants independent of 𝑁 and 𝐿.
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For the proof see [23, Thm. 2.4].

Proof of the Localization Theorem ([23], Lemma 7.3 and [22]). It is sufficient to
show that, when 𝑁 ↑ ∞∫

ℝ3(𝑁−1)

𝑑r2 ⋅ ⋅ ⋅ 𝑑r𝑁
∫
𝐹 𝑐𝑁 (r2,...,r𝑁 )

(
∇1

Ψ𝑁
𝜙𝐺𝑃

)2

(𝜙𝐺𝑃 )
2𝑑r1

+

∫
ℝ3(𝑁−1)

𝑑r2 ⋅ ⋅ ⋅ 𝑑r𝑁
∫
∣Ψ𝑁 ∣2

[
1

2

∑
𝑘≥2

𝑣(∣r− r𝑘∣)− 2𝑔𝜙𝐺𝑃
2

]
≥ −𝑔

∫
∣𝜙𝐺𝑃 ∣4𝑑r− 𝑜(1). (A.2)

This implies the thesis because (A.2) can be written as∫
ℝ3(𝑁−1)

𝑑r2 ⋅ ⋅ ⋅ 𝑑r𝑁
∫ (

∇1
Ψ𝑁
𝜙𝐺𝑃

)2

(𝜙𝐺𝑃 )
2𝑑r1

+

∫
ℝ3(𝑁−1)

𝑑r2 ⋅ ⋅ ⋅ 𝑑r𝑁
∫
∣Ψ𝑁 ∣2

[
1

2

∑
𝑘≥2

𝑣(∣r− r𝑘∣)− 2𝑔𝜙𝐺𝑃
2

]

−
∫
ℝ3(𝑁−1)

𝑑r2 ⋅ ⋅ ⋅ 𝑑r𝑁
∫
𝐹𝑁 (r2,...,r𝑁 )

(
∇1

Ψ𝑁
𝜙𝐺𝑃

)2

(𝜙𝐺𝑃 )
2𝑑r1

≥ −𝑔

∫
∣𝜙𝐺𝑃 ∣4𝑑r− 𝑜(1)

and then, by (3.3), (3.4) and (3.5) in the Energy Theorem, with the external
potential 𝑉 particularized to 2𝑔∣𝜙𝐺𝑃 ∣2 in (3.4), one obtains the thesis (3.6).

To prove (A.2) one introduces a function 𝐹 such that

Ψ𝑁
𝜙𝐺𝑃 (r1)

:=
∏
𝑘≥2

𝜙𝐺𝑃 (r𝑘)𝐹 (r1, . . . , r𝑁 ).

Using the fact that 𝐹 is symmetric in the particle coordinates, one can see that
(A.2) is equivalent to

𝑄𝛿(𝐹 )

𝑁
≥ −𝑔

∫
∣𝜙𝐺𝑃 ∣4𝑑r− 𝑜(1) (A.3)

where 𝑄𝛿 has the following definition

𝑄𝛿 :=
𝑁∑
𝑖=1

∫
Γ𝑐𝑖

∣∇𝑖𝐹 ∣2
𝑁∏
𝑘=1

∣𝜙𝐺𝑃 (r𝑘)∣2𝑑r𝑘

+
∑

1≤𝑖≤𝑗≤𝑁

∫
𝑣(∣r𝑖 − r𝑗 ∣)∣𝐹 ∣2

𝑁∏
𝑘=1

∣𝜙𝐺𝑃 (r𝑘)∣2𝑑r𝑘

− 2𝑔
𝑁∑
𝑖=1

∫
∣𝜙𝐺𝑃 (r𝑖)∣2∣𝐹 ∣2

𝑁∏
𝑘=1

∣𝜙𝐺𝑃 (r𝑘)∣2𝑑r𝑘
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with

Γ𝑐𝑖 = {(r1, . . . , r𝑁 ) ∈ ℝ3𝑁 ∣min
𝑘 ∕=𝑖

∣r𝑖 − r𝑘∣ ≤ 𝑅′}

where 𝑅′ = 𝑁− 1
3−𝛿.

To handle the expression of 𝑄𝛿 one applies the “cell-method”, considering
the space as divided into cells of width 𝐿, and then minimizing over all possible
distributions of the particles in the different cells. Since one is looking for a lower
bound and 𝑣 is positive, the interactions due to particles in different cells can be
ignored. Finally one leaves the width of the cells going to zero.

Labeling cells with the index 𝛼, one has,

inf
𝐹

𝑄𝛿(𝐹 ) ≥ inf
𝑛𝛼

∑
𝛼

inf
𝐹𝛼

𝑄𝛼𝛿 (𝐹𝛼)

where 𝑄𝛼𝛿 is defined as 𝑄𝛿 but with the integrations limited to the cell 𝛼. 𝐹𝛼 is
defined as 𝐹 but with 𝑁 replaced by 𝑛𝛼. The infimum is taken over all distributions
such that

∑
𝛼 𝑛𝛼 = 𝑁 .

One now fixes some 𝑀 > 0 and considers only cells inside a cube Λ𝑀 of
side length 𝑀 . For the cells belonging to Λ𝑀 one can evaluate the maximum and
minimum value of 𝜌𝐺𝑃 . For the cell 𝛼 those are denoted by 𝜌𝛼,𝑚𝑎𝑥 and 𝜌𝛼,𝑚𝑖𝑛,
respectively.

One then can observe that, if the range 𝑅 of the smoothing potential 𝑈 is
sufficiently small, one can apply the Smoothing Lemma “in the cell 𝛼” and restrict
all integrations to Γ𝑐𝑖 .

This at the end leads to the inequality

𝑄𝛼𝛿 (𝐹𝛼) ≥
𝜌𝛼,min

𝜌𝛼,max
𝐸𝑈0 (𝑛𝛼, 𝐿)− 8𝜋𝑎𝑁𝜌𝛼,max𝑛𝛼 − 𝜖𝐶𝑀𝑛𝛼 (A.4)

where 𝐸𝑈0 (𝑛𝛼, 𝐿) is the ground state energy of

𝑛𝛼∑
𝑖=1

(
−1

2
𝜖△𝑖 + (1− 𝜖)𝑎𝑈(𝑡𝑖)

)
with 𝐶𝑀 = supr∈Λ𝑀 ∣∇𝜙𝐺𝑃 (r)∣2, independent of 𝑁 .

To minimize (A.4) with respect to 𝑛𝛼 one takes advantage of the Lower Bound
Theorem and of Lemma 6.4 in [23], p. 55.

One finds after some manipulations that �̄�𝛼 is at least of the order of 𝑁𝐿3.

If one takes 𝐿 ∼ 𝑁− 1
10 , the range of smoothing potential 𝑈 can be shown to

be well estimated as 𝑅 ∼ 𝑁− 1
17 and the assumption on 𝛿 is sufficient to guarantee

that 𝑅 remains lower or equal to 𝑅′, allowing the application of the Smoothing
Lemma in constructing the lower bound for 𝑄𝛼𝛿 .

Further standard manipulations then give rise, 𝐶𝑜 denoting a positive con-
stant independent of 𝑁 , to the following inequality:

𝑄𝛿(𝐹 ) ≥ 4𝜋𝑎𝑁2

∫
∣𝜙𝐺𝑃 ∣4[1+𝐶𝑜 ⋅𝑁−1/10]−𝑌 1/17𝑁𝐶𝑀 − 8𝜋𝑎𝑁2 sup

r/∈Λ𝑀
∣𝜙𝐺𝑃 ∣2(r).
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Dividing by 𝑁 , taking 𝑁 ↑ ∞ and then 𝑀 ↑ ∞, one obtains the result. In
fact, since 𝜙𝐺𝑃 decreases more than exponentially at infinity ([21, Lemma A.5]),
the last term is arbitrarily small for 𝑀 large. This proves (A.3), which is equivalent
to (A.2). □
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Multi-dimensional Semicircular Limits
on the Free Wigner Chaos

Ivan Nourdin, Giovanni Peccati and Roland Speicher

Abstract. We show that, for sequences of vectors of multiple Wigner inte-
grals with respect to a free Brownian motion, componentwise convergence
to semicircular law is equivalent to joint convergence. This result extends to
the free probability setting some findings by Peccati and Tudor (2005), and
represents a multi-dimensional counterpart of a limit theorem inside the free
Wigner chaos established by Kemp, Nourdin, Peccati and Speicher (2011).
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1. Introduction

Let 𝑊 = {𝑊𝑡 : 𝑡 ≥ 0} be a one-dimensional standard Brownian motion (living
on some probability space (Ω,F , 𝑃 )). For every 𝑛 ≥ 1 and every real-valued,
symmetric and square-integrable function 𝑓 ∈ 𝐿2(ℝ𝑛+), we denote by 𝐼𝑊 (𝑓) the
multiple Wiener–Itô integral of 𝑓 , with respect to 𝑊 . Random variables of this
type compose the so-called 𝑛th Wiener chaos associated with 𝑓 . In an infinite-
dimensional setting, the concept of Wiener chaos plays the same role as that
of the Hermite polynomials for the one-dimensional Gaussian distribution, and
represents one of the staples of modern Gaussian analysis (see, e.g., [5, 10, 13, 15]
for an introduction to these topics).

In recent years, many efforts have been made in order to characterize Central
Limit Theorems (CLTs) – that is, limit theorems involving convergence in distri-
bution to a Gaussian element – for random variables living inside a Wiener chaos.
The following statement gathers the main findings of [14] (Part 1) and [16] (Part
2), and provides a complete characterization of (both one- and multi-dimensional)
CLTs on the Wiener chaos.
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Theorem 1.1 (See [14, 16]).

(A) Let 𝐹𝑘 = 𝐼𝑊 (𝑓𝑘), 𝑘 ≥ 1, be a sequence of multiple integrals of order 𝑛 ≥ 2,
such that 𝐸[𝐹 2

𝑘 ] → 1. Then, the following two assertions are equivalent, as
𝑘 →∞:
(i) 𝐹𝑘 converges in distribution to a standard Gaussian random variable

𝑁 ∼ N (0, 1);
(ii) 𝐸[𝐹 4

𝑘 ]→ 3 = 𝐸[𝑁4].

(B) Let 𝑑 ≥ 2 and 𝑛1, . . . , 𝑛𝑑 be integers, and let (𝐹
(1)
𝑘 , . . . , 𝐹

(𝑑)
𝑘 ), 𝑘 ≥ 1, be a

sequence of random vectors such that, for every 𝑖 = 1, . . . , 𝑑, the random

variable 𝐹
(𝑖)
𝑘 lives in the 𝑛𝑖th Wiener chaos of 𝑊 . Assume that, as 𝑘 → ∞

and for every 𝑖, 𝑗 = 1, . . . , 𝑑, 𝐸[𝐹
(𝑖)
𝑘 𝐹

(𝑗)
𝑘 ] → 𝑐(𝑖, 𝑗), where 𝑐 = {𝑐(𝑖, 𝑗) : 𝑖, 𝑗 =

1, . . . , 𝑑} is a positive definite symmetric matrix. Then, the following two
assertions are equivalent, as 𝑘 →∞:

(i) (𝐹
(1)
𝑘 , . . . , 𝐹

(𝑑)
𝑘 ) converges in distribution to a centered 𝑑-dimensional

Gaussian vector (𝑁1, . . . , 𝑁𝑑) with covariance 𝑐;

(ii) for every 𝑖 = 1, . . . , 𝑑, 𝐹
(𝑖)
𝑘 converges in distribution to a centered Gauss-

ian random variable with variance 𝑐(𝑖, 𝑖).

Roughly speaking, Part (B) of the previous statement means that, for vec-
tors of random variables living inside some fixed Wiener chaoses, componentwise
convergence to Gaussian always implies joint convergence. The combination of
Part (A) and Part (B) of Theorem 1.1 represents a powerful simplification of the
so-called ‘method of moments and cumulants’ (see, e.g., [15, Chapter 11] for a
discussion of this point), and has triggered a considerable number of applications,
refinements and generalizations, ranging from Stein’s method to analysis on ho-
mogenous spaces, random matrices and fractional processes – see the survey [9] as
well as the monograph [10] for details and references.

Now, let (A , 𝜑) be a non-commutative tracial 𝑊 ∗-probability space (in par-
ticular, A is a von Neumann algebra and 𝜑 is a trace – see Section 2.1 for details),
and let 𝑆 = {𝑆𝑡 : 𝑡 ≥ 0} be a free Brownian motion defined on it. It is well known
(see, e.g., [2]) that, for every 𝑛 ≥ 1 and every 𝑓 ∈ 𝐿2(ℝ𝑛+), one can define a free
multiple stochastic integral with respect to 𝑓 . Such an object is usually denoted
by 𝐼𝑆(𝑓). Multiple integrals of order 𝑛 with respect to 𝑆 compose the so-called
𝑛th Wigner chaos associated with 𝑆. Wigner chaoses play a fundamental role in
free stochastic analysis – see again [2].

The following theorem, which is the main result of [4], is the exact free anal-
ogous of Part (A) of Theorem 1.1. Note that the value 2 coincides with the fourth
moment of the standard semicircular distribution 𝑆(0, 1).

Theorem 1.2 (See [4]). Let 𝑛 ≥ 2 be an integer, and let (𝑓𝑘)𝑘∈ℕ be a sequence of
mirror symmetric (see Section 2.2 for definitions) functions in 𝐿2(ℝ𝑛+), each with
∥𝑓𝑘∥𝐿2(ℝ𝑛+) = 1. The following statements are equivalent.
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(1) The fourth moments of the stochastic integrals 𝐼(𝑓𝑘) converge to 2, that is,

lim
𝑘→∞

𝜑(𝐼𝑆(𝑓𝑘)
4) = 2.

(2) The random variables 𝐼𝑆(𝑓𝑘) converge in law to the standard semicircular
distribution 𝑆(0, 1) as 𝑘 →∞.

The aim of this paper is to provide a complete proof of the following Theorem
1.3, which represents a free analogous of Part (B) of Theorem 1.1.

Theorem 1.3. Let 𝑑 ≥ 2 and 𝑛1, . . . , 𝑛𝑑 be some fixed integers, and consider a
positive definite symmetric matrix 𝑐 = {𝑐(𝑖, 𝑗) : 𝑖, 𝑗 = 1, . . . , 𝑑}. Let (𝑠1, . . . , 𝑠𝑑) be
a semicircular family with covariance 𝑐 (see Definition 2.10). For each 𝑖 = 1, . . . , 𝑑,

we consider a sequence (𝑓
(𝑖)
𝑘 )𝑘∈ℕ of mirror-symmetric functions in 𝐿2(ℝ𝑛𝑖+ ) such

that, for all 𝑖, 𝑗 = 1, . . . , 𝑑,

lim
𝑘→∞

𝜑[𝐼𝑆(𝑓
(𝑖)
𝑘 )𝐼𝑆(𝑓

(𝑗)
𝑘 )] = 𝑐(𝑖, 𝑗). (1.1)

The following three statements are equivalent as 𝑘 →∞.

(1) The vector ((𝐼𝑆(𝑓
(1)
𝑘 ), . . . , 𝐼𝑆(𝑓

(𝑑)
𝑘 )) converges in distribution to (𝑠1, . . . , 𝑠𝑑).

(2) For each 𝑖 = 1, . . . , 𝑑, the random variable 𝐼𝑆(𝑓
(𝑖)
𝑘 ) converges in distribution

to 𝑠𝑖.
(3) For each 𝑖 = 1, . . . , 𝑑,

lim
𝑘→∞

𝜑[𝐼𝑆(𝑓
(𝑖)
𝑘 )4] = 2 𝑐(𝑖, 𝑖)2.

Remark 1.4. In the previous statement, the quantity 𝜑[𝐼𝑆(𝑓
(𝑖)
𝑘 )𝐼𝑆(𝑓

(𝑗)
𝑘 )] equals

⟨𝑓 (𝑖)𝑘 , 𝑓
(𝑗)
𝑘 ⟩𝐿2(ℝ

𝑛𝑖
+ ) if 𝑛𝑖 = 𝑛𝑗 , and equals 0 if 𝑛𝑖 ∕= 𝑛𝑗 . In particular, the limit

covariance matrix 𝑐 is necessarily such that 𝑐(𝑖, 𝑗) = 0 whenever 𝑛𝑖 ∕= 𝑛𝑗 .

Remark 1.5. Two additional references deal with non-semicircular limit theorems
inside the free Wigner chaos. In [11], one can find necessary and sufficient con-
ditions for the convergence towards the so-called Marčenko–Pastur distribution
(mirroring analogous findings in the classical setting – see [8]). In [3], conditions
are established for the convergence towards the so-called ‘tetilla law’ (or ‘symmet-
ric Poisson distribution’ – see also [6]).

Combining the content of Theorem 1.3 with those in [4, 16], we can finally
state the following Wiener–Wigner transfer principle, establishing an equivalence
between multi-dimensional limit theorems on the classical and free chaoses.

Theorem 1.6. Let 𝑑 ≥ 1 and 𝑛1, . . . , 𝑛𝑑 be some fixed integers, and consider a
positive definite symmetric matrix 𝑐 = {𝑐(𝑖, 𝑗) : 𝑖, 𝑗 = 1, . . . , 𝑑}. Let (𝑁1, . . . , 𝑁𝑑)
be a 𝑑-dimensional Gaussian vector and (𝑠1, . . . , 𝑠𝑑) be a semicircular family, both

with covariance 𝑐. For each 𝑖 = 1, . . . , 𝑑, we consider a sequence (𝑓
(𝑖)
𝑘 )𝑘∈ℕ of fully-

symmetric functions (cf. Definition 2.2) in 𝐿2(ℝ𝑛𝑖+ ). Then:



214 I. Nourdin, G. Peccati and R. Speicher

1. For all 𝑖, 𝑗 = 1, . . . , 𝑑 and as 𝑘 →∞, 𝜑[𝐼𝑆(𝑓
(𝑖)
𝑘 )𝐼𝑆(𝑓

(𝑗)
𝑘 )]→ 𝑐(𝑖, 𝑗) if and only

if 𝐸[𝐼𝑊 (𝑓
(𝑖)
𝑘 )𝐼𝑊 (𝑓

(𝑗)
𝑘 )]→√

(𝑛𝑖)!(𝑛𝑗)! 𝑐(𝑖, 𝑗).
2. If the asymptotic relations in (1) are verified then, as 𝑘 →∞,(

𝐼𝑆(𝑓
(1)
𝑘 ), . . . , 𝐼𝑆(𝑓

(𝑑)
𝑘 )

) law→ (𝑠1, . . . , 𝑠𝑑)

if and only if(
𝐼𝑊 (𝑓

(1)
𝑘 ), . . . , 𝐼𝑊 (𝑓

(𝑑)
𝑘 )

) law→ (√
(𝑛1)!𝑁1, . . . ,

√
(𝑛𝑑)!𝑁𝑑

)
.

The remainder of this paper is organized as follows. Section 2 gives concise
background and notation for the free probability setting. Theorems 1.3 and 1.6
are then proved in Section 3.

2. Relevant definitions and notations

We recall some relevant notions and definitions from free stochastic analysis. For
more details, we refer the reader to [2, 4, 7].

2.1. Free probability, free Brownian motion and stochastic integrals

In this note, we consider as given a so-called (tracial) 𝑊 ∗ probability space (A , 𝜑),
where A is a von Neumann algebra (with involution 𝑋 �→ 𝑋∗), and 𝜑 : →ℂ is
a tracial state (or trace). In particular, 𝜑 is weakly continuous, positive (that is,
𝜑(𝑌 ) ≥ 0 whenever 𝑌 is a non-negative element of A ), faithful (that is, 𝜑(𝑌 𝑌 ∗) =
0 implies 𝑌 = 0, for every 𝑌 ∈ A ) and tracial (that is, 𝜑(𝑋𝑌 ) = 𝜑(𝑌 𝑋), for every
𝑋,𝑌 ∈ A ). The self-adjoint elements of A are referred to as random variables.
The law of a random variable 𝑋 is the unique Borel measure on ℝ having the same
moments as 𝑋 (see [7, Proposition 3.13]). For 1 ≤ 𝑝 ≤ ∞, one writes 𝐿𝑝(A , 𝜑) to
indicate the 𝐿𝑝 space obtained as the completion of A with respect to the norm
∥𝑎∥𝑝 = 𝜏(∣𝑎∣𝑝)1/𝑝, where ∣𝑎∣ = √

𝑎∗𝑎, and ∥ ⋅ ∥∞ stands for the operator norm.

Definition 2.1. Let A1, . . . ,A𝑛 be unital subalgebras of A . Let 𝑋1, . . . , 𝑋𝑚 be
elements chosen from among the A𝑖’s such that, for 1 ≤ 𝑗 < 𝑚, 𝑋𝑗 and 𝑋𝑗+1 do
not come from the same A𝑖, and such that 𝜑(𝑋𝑗) = 0 for each 𝑗. The subalge-
bras A1, . . . ,A𝑛 are said to be free or freely independent if, in this circumstance,
𝜑(𝑋1𝑋2 ⋅ ⋅ ⋅𝑋𝑛) = 0. Random variables are called freely independent if the unital
algebras they generate are freely independent.

Definition 2.2. The (centered) semicircular distribution (or Wigner law) 𝑆(0, 𝑡) is
the probability distribution

𝑆(0, 𝑡)(𝑑𝑥) =
1

2𝜋𝑡

√
4𝑡− 𝑥2 𝑑𝑥, ∣𝑥∣ ≤ 2

√
𝑡.

Being symmetric around 0, the odd moments of this distribution are all 0. Simple
calculations (see, e.g., [7, Lecture 2]) show that the even moments can be expressed
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in therms of the so-called Catalan numbers: for non-negative integers 𝑚,∫ 2
√
𝑡

−2√𝑡
𝑥2𝑚𝑆(0, 𝑡)(𝑑𝑥) = 𝐶𝑚𝑡𝑚,

where 𝐶𝑚 = 1
𝑚+1

(
2𝑚
𝑚

)
is the 𝑚th Catalan number. In particular, the second

moment (and variance) is 𝑡 while the fourth moment is 2𝑡2.

Definition 2.3. A free Brownian motion 𝑆 consists of: (i) a filtration {A𝑡 : 𝑡 ≥ 0}
of von Neumann sub-algebras of A (in particular, A𝑠 ⊂ A𝑡, for 0 ≤ 𝑠 < 𝑡), (ii)
a collection 𝑆 = {𝑆𝑡 : 𝑡 ≥ 0} of self-adjoint operators in A such that: (a) 𝑆0 = 0
and 𝑆𝑡 ∈ A𝑡 for every 𝑡, (b) for every 𝑡, 𝑆𝑡 has a semicircular distribution with
mean zero and variance 𝑡, and (c) for every 0 ≤ 𝑢 < 𝑡, the increment 𝑆𝑡 − 𝑆𝑢 is
free with respect to A𝑢, and has a semicircular distribution with mean zero and
variance 𝑡− 𝑢.

For the rest of the paper, we consider that the 𝑊 ∗-probability space (A , 𝜑)
is endowed with a free Brownian motion 𝑆. For every integer 𝑛 ≥ 1, the collection
of all operators having the form of a multiple integral 𝐼𝑆(𝑓), 𝑓 ∈ 𝐿2(ℝ𝑛+;ℂ) =

𝐿2(ℝ𝑛+), is defined according to [2, Section 5.3], namely: (a) first define 𝐼𝑆(𝑓) =
(𝑆𝑏1 − 𝑆𝑎1) ⋅ ⋅ ⋅ (𝑆𝑏𝑛 − 𝑆𝑎𝑛) for every function 𝑓 having the form

𝑓(𝑡1, . . . , 𝑡𝑛) = 1(𝑎1,𝑏1)(𝑡1)× ⋅ ⋅ ⋅ × 1(𝑎𝑛,𝑏𝑛)(𝑡𝑛), (2.1)

where the intervals (𝑎𝑖, 𝑏𝑖), 𝑖 = 1, . . . , 𝑛, are pairwise disjoint; (b) extend linearly
the definition of 𝐼𝑆(𝑓) to ‘simple functions vanishing on diagonals’, that is, to
functions 𝑓 that are finite linear combinations of indicators of the type (2.1); (c)
exploit the isometric relation

⟨𝐼𝑆(𝑓), 𝐼𝑆(𝑔)⟩𝐿2(A ,𝜑) =

∫
ℝ𝑛+

𝑓(𝑡1, . . . , 𝑡𝑛)𝑔(𝑡𝑛, . . . , 𝑡1)𝑑𝑡1 . . . 𝑑𝑡𝑛, (2.2)

where 𝑓, 𝑔 are simple functions vanishing on diagonals, and use a density argument
to define 𝐼(𝑓) for a general 𝑓 ∈ 𝐿2(ℝ𝑛+).

As recalled in the introduction, for 𝑛 ≥ 1, the collection of all random vari-
ables of the type 𝐼𝑆(𝑓), 𝑓 ∈ 𝐿2(ℝ𝑛+), is called the 𝑛th Wigner chaos associated

with 𝑆. One customarily writes 𝐼𝑆(𝑎) = 𝑎 for every complex number 𝑎, that is,
the Wigner chaos of order 0 coincides with ℂ. Observe that (2.2) together with the
above sketched construction imply that, for every 𝑛,𝑚 ≥ 0, and every 𝑓 ∈ 𝐿2(ℝ𝑛+),
𝑔 ∈ 𝐿2(ℝ𝑚+ ),

𝜑[𝐼𝑆(𝑓)𝐼𝑆(𝑔)] = 1𝑛=𝑚 ×
∫
ℝ𝑛+

𝑓(𝑡1, . . . , 𝑡𝑛)𝑔(𝑡𝑛, . . . , 𝑡1)𝑑𝑡1 . . . 𝑑𝑡𝑛, (2.3)

where the right-hand side of the previous expression coincides by convention with
the inner product in 𝐿2(ℝ0

+) = ℂ whenever 𝑚 = 𝑛 = 0.



216 I. Nourdin, G. Peccati and R. Speicher

2.2. Mirror symmetric functions and contractions

Definition 2.4. Let 𝑛 be a natural number, and let 𝑓 be a function in 𝐿2(ℝ𝑛+).

(1) The adjoint of 𝑓 is the function 𝑓∗(𝑡1, . . . , 𝑡𝑛) = 𝑓(𝑡𝑛, . . . , 𝑡1).
(2) 𝑓 is called mirror symmetric if 𝑓 = 𝑓∗, i.e., if

𝑓(𝑡1, . . . , 𝑡𝑛) = 𝑓(𝑡𝑛, . . . , 𝑡1)

for almost all 𝑡1, . . . , 𝑡𝑛 ≥ 0 with respect to the product Lebesgue measure
(3) 𝑓 is called fully symmetric if it is real-valued and, for any permutation 𝜎 in

the symmetric group Σ𝑛, 𝑓(𝑡1, . . . , 𝑡𝑛) = 𝑓(𝑡𝜎(1), . . . , 𝑡𝜎(𝑛)) for almost every
𝑡1, . . . , 𝑡𝑛 ≥ 0 with respect to the product Lebesgue measure.

An operator of the type 𝐼𝑆(𝑓) is self-adjoint if and only if 𝑓 is mirror sym-
metric.

Definition 2.5. Let 𝑛,𝑚 be natural numbers, and let 𝑓 ∈ 𝐿2(ℝ𝑛+) and 𝑔 ∈ 𝐿2(ℝ𝑚+ ).

Let 𝑝 ≤ min{𝑛,𝑚} be a natural number. The 𝑝th contraction 𝑓
𝑝
⌢ 𝑔 of 𝑓 and 𝑔 is

the 𝐿2(ℝ𝑛+𝑚−2𝑝+ ) function defined by nested integration of the middle 𝑝 variables
in 𝑓 ⊗ 𝑔:

𝑓
𝑝
⌢ 𝑔 (𝑡1, . . . , 𝑡𝑛+𝑚−2𝑝)

=

∫
ℝ
𝑝
+

𝑓(𝑡1, . . . , 𝑡𝑛−𝑝, 𝑠1, . . . , 𝑠𝑝)𝑔(𝑠𝑝, . . . , 𝑠1, 𝑡𝑛−𝑝+1, . . . , 𝑡𝑛+𝑚−2𝑝) 𝑑𝑠1 ⋅ ⋅ ⋅ 𝑑𝑠𝑝.

Notice that when 𝑝 = 0, there is no integration, just the products of 𝑓 and 𝑔

with disjoint arguments; in other words, 𝑓
0
⌢ 𝑔 = 𝑓 ⊗ 𝑔.

2.3. Non-crossing partitions

A partition of [𝑛] = {1, 2, . . . , 𝑛} is (as the name suggests) a collection of mutually
disjoint nonempty subsets 𝐵1, . . . , 𝐵𝑟 of [𝑛] such that 𝐵1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝐵𝑟 = [𝑛]. The
subsets are called the blocks of the partition. By convention we order the blocks
by their least elements; i.e., min𝐵𝑖 < min𝐵𝑗 iff 𝑖 < 𝑗. If each block consists of
two elements, then we call the partition a pairing. The set of all partitions on [𝑛]
is denoted P(𝑛), and the subset of all pairings is P2(𝑛).

Definition 2.6. Let 𝜋 ∈ P(𝑛) be a partition of [𝑛]. We say 𝜋 has a crossing if there
are two distinct blocks 𝐵1, 𝐵2 in 𝜋 with elements 𝑥1, 𝑦1 ∈ 𝐵1 and 𝑥2, 𝑦2 ∈ 𝐵2 such
that 𝑥1 < 𝑥2 < 𝑦1 < 𝑦2.

If 𝜋 ∈ P(𝑛) has no crossings, it is said to be a non-crossing partition. The
set of non-crossing partitions of [𝑛] is denoted 𝑁𝐶(𝑛). The subset of non-crossing
pairings is denoted 𝑁𝐶2(𝑛).

Definition 2.7. Let 𝑛1, . . . , 𝑛𝑟 be positive integers with 𝑛 = 𝑛1 + ⋅ ⋅ ⋅+ 𝑛𝑟. The set
[𝑛] is then partitioned accordingly as [𝑛] = 𝐵1 ⊔ ⋅ ⋅ ⋅ ⊔𝐵𝑟 where 𝐵1 = {1, . . . , 𝑛1},
𝐵2 = {𝑛1+1, . . . , 𝑛1+𝑛2}, and so forth through 𝐵𝑟 = {𝑛1+⋅ ⋅ ⋅+𝑛𝑟−1+1, . . . , 𝑛1+
⋅ ⋅ ⋅+ 𝑛𝑟}. Denote this partition as 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟.

We say that a pairing 𝜋 ∈ P2(𝑛) respects 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟 if no block of 𝜋
contains more than one element from any given block of 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟. The set
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of such respectful pairings is denoted P2(𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟). The set of non-crossing
pairings that respect 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟 is denoted 𝑁𝐶2(𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟).

Definition 2.8. Let 𝑛1, . . . , 𝑛𝑟 be positive integers, and let 𝜋 ∈ P2(𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟).
Let 𝐵1, 𝐵2 be two blocks in 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟. Say that 𝜋 links 𝐵1 and 𝐵2 if there is
a block {𝑖, 𝑗} ∈ 𝜋 such that 𝑖 ∈ 𝐵1 and 𝑗 ∈ 𝐵2.

Define a graph 𝐶𝜋 whose vertices are the blocks of 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟; 𝐶𝜋 has
an edge between 𝐵1 and 𝐵2 iff 𝜋 links 𝐵1 and 𝐵2. Say that 𝜋 is connected with
respect to 𝑛1⊗⋅ ⋅ ⋅⊗𝑛𝑟 (or that 𝜋 connects the blocks of 𝑛1⊗⋅ ⋅ ⋅⊗𝑛𝑟) if the graph
𝐶𝜋 is connected. We shall denote by 𝑁𝐶𝑐2(𝑛1⊗⋅ ⋅ ⋅⊗𝑛𝑟) the set of all non-crossing
pairings that both respect and connect 𝑛1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑟.

Definition 2.9. Let 𝑛 be an even integer, and let 𝜋 ∈ P2(𝑛). Let 𝑓 : ℝ𝑛+ → ℂ be
measurable. The pairing integral of 𝑓 with respect to 𝜋, denoted

∫
𝜋
𝑓 , is defined

(when it exists) to be the constant∫
𝜋

𝑓 =

∫
𝑓(𝑡1, . . . , 𝑡𝑛)

∏
{𝑖,𝑗}∈𝜋 𝛿(𝑡𝑖 − 𝑡𝑗) 𝑑𝑡1 ⋅ ⋅ ⋅ 𝑑𝑡𝑛.

We finally introduce the notion of a semicircular family (see, e.g., [7, Defini-
tion 8.15]).

Definition 2.10. Let 𝑑 ≥ 2 be an integer, and let 𝑐 = {𝑐(𝑖, 𝑗) : 𝑖, 𝑗 = 1, . . . , 𝑑} be a
positive definite symmetric matrix. A 𝑑-dimensional vector (𝑠1, . . . , 𝑠𝑑) of random
variables in A is said to be a semicircular family with covariance 𝑐 if for every
𝑛 ≥ 1 and every (𝑖1, . . . , 𝑖𝑛) ∈ [𝑑]𝑛

𝜑(𝑠𝑖1𝑠𝑖2 ⋅ ⋅ ⋅ 𝑠𝑖𝑛) =
∑

𝜋∈𝑁𝐶2(𝑛)

∏
{𝑎,𝑏}∈𝜋

𝑐(𝑖𝑎, 𝑖𝑏).

The previous relation implies in particular that, for every 𝑖 = 1, . . . , 𝑑, the random
variable 𝑠𝑖 has the 𝑆(0, 𝑐(𝑖, 𝑖)) distribution – see Definition 2.2.

For instance, one can rephrase the defining property of the free Brownian
motion 𝑆 = {𝑆𝑡 : 𝑡 ≥ 0} by saying that, for every 𝑡1 < 𝑡2 < ⋅ ⋅ ⋅ < 𝑡𝑑, the vector
(𝑆𝑡1 , 𝑆𝑡2 −𝑆𝑡1 , . . . , 𝑆𝑡𝑑 −𝑆𝑡𝑑−1

) is a semicircular family with a diagonal covariance
matrix such that 𝑐(𝑖, 𝑖) = 𝑡𝑖 − 𝑡𝑖−1 (with 𝑡0 = 0), 𝑖 = 1, . . . , 𝑑.

3. Proof of the main results

A crucial ingredient in the proof of Theorem 1.3 is the following statement, showing
that contractions control all important pairing integrals. This is the generalization
of Proposition 2.2. in [4] to our situation.

Proposition 3.1. Let 𝑑 ≥ 2 and 𝑛1, . . . , 𝑛𝑑 be some fixed positive integers. Consider,

for each 𝑖 = 1, . . . , 𝑑, sequences of mirror-symmetric functions (𝑓
(𝑖)
𝑘 )𝑘∈ℕ with 𝑓

(𝑖)
𝑘 ∈

𝐿2(ℝ𝑛𝑖+ ), satisfying:

∙ There is a constant 𝑀 > 0 such that ∥𝑓 (𝑖)𝑘 ∥𝐿2(ℝ
𝑛𝑖
+ ) ≤𝑀 for all 𝑘 ∈ ℕ and all

𝑖 = 1, . . . , 𝑑.
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∙ For all 𝑖 = 1, . . . , 𝑑 and all 𝑝 = 1, . . . , 𝑛𝑖 − 1,

lim
𝑘→∞

𝑓
(𝑖)
𝑘

𝑝
⌢ 𝑓

(𝑖)
𝑘 = 0 in 𝐿2(ℝ2𝑛𝑖−2𝑝

+ ).

Let 𝑟 ≥ 3, and let 𝜋 be a connected non-crossing pairing that respects 𝑛𝑖1 ⊗
⋅ ⋅ ⋅ ⊗ 𝑛𝑖𝑟 : 𝜋 ∈ 𝑁𝐶𝑐2(𝑛𝑖1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑖𝑟 ). Then

lim
𝑘→∞

∫
𝜋

𝑓
(𝑖1)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘 = 0.

Proof. In the same way as in [4] one sees that without restriction (i.e., up to a
cyclic rotation and relabeling of the indices) one can assume that∫

𝜋

𝑓
(𝑖1)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘 =

∫
𝜋′
(𝑓

(𝑖1)
𝑘

𝑝
⌢ 𝑓

(𝑖2)
𝑘 )⊗ (𝑓

(𝑖3)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘 ),

where 0 < 2𝑝 < 𝑛𝑖1 + 𝑛𝑖2 and

𝜋′ ∈ 𝑁𝐶𝑐2
(
(𝑛𝑖1 + 𝑛𝑖2 − 2𝑝)⊗ 𝑛𝑖3 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑖𝑟

)
.

Note that 0 < 2𝑝 < 𝑛𝑖1 + 𝑛𝑖2 says that 𝑓
(𝑖1)
𝑘

𝑝
⌢ 𝑓

(𝑖2)
𝑘 is not a trivial contraction

(trivial means that either nothing or all arguments are contracted); of course, in
the case 𝑛𝑖1 ∕= 𝑛𝑖2 it is allowed that 𝑝 = min(𝑛𝑖1 , 𝑛𝑖2).

By Lemma 2.1. of [4] we have then∣∣∣∣∫
𝜋

𝑓
(𝑖1)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘

∣∣∣∣
≤ ∥𝑓 (𝑖1)𝑘

𝑝
⌢ 𝑓

(𝑖2)
𝑘 ∥

𝐿2(ℝ
𝑛𝑖1

+𝑛𝑖2
−2𝑝

+ )
⋅ ∥𝑓 (𝑖3)𝑘 ∥

𝐿2(ℝ
𝑛𝑖3
+ )

⋅ ⋅ ⋅ ∥𝑓 (𝑖𝑟)𝑘 ∥
𝐿2(ℝ

𝑛𝑖𝑟
+ )

≤ ∥𝑓 (𝑖1)𝑘

𝑝
⌢ 𝑓

(𝑖2)
𝑘 ∥

𝐿2(ℝ
𝑛𝑖1

+𝑛𝑖2
−2𝑝

+ )
⋅𝑀 𝑟−2.

Now we only have to observe that, by also using the mirror symmetry of 𝑓
(𝑖1)
𝑘 and

𝑓
(𝑖2)
𝑘 , we have

∥𝑓 (𝑖1)𝑘

𝑝
⌢ 𝑓

(𝑖2)
𝑘 ∥2

𝐿2(ℝ
𝑛𝑖1

+𝑛𝑖2
−2𝑝

+ )
=

〈
𝑓
(𝑖1)
𝑘

𝑛𝑖1−𝑝⌢ 𝑓
(𝑖1)
𝑘 , 𝑓

(𝑖2)
𝑘

𝑛𝑖2−𝑝⌢ 𝑓
(𝑖2)
𝑘

〉
𝐿2(ℝ2𝑝

+ )

≤ ∥𝑓 (𝑖1)𝑘

𝑛𝑖1−𝑝⌢ 𝑓
(𝑖1)
𝑘 ∥𝐿2(ℝ2𝑝

+ ) ⋅ ∥𝑓 (𝑖2)𝑘

𝑛𝑖2−𝑝⌢ 𝑓
(𝑖2)
𝑘 ∥𝐿2(ℝ2𝑝

+ ).

According to our assumption we have, for each 𝑖 = 1, . . . , 𝑑 and each 𝑞 = 1, . . . , 𝑛𝑖−
1, that

lim
𝑘→∞

𝑓
(𝑖)
𝑘

𝑞
⌢ 𝑓

(𝑖)
𝑘 = 0 in 𝐿2(ℝ2𝑛𝑖−2𝑞

+ ).

Since now at least one of the two contractions
𝑛𝑖1−𝑝⌢ and

𝑛𝑖2−𝑝⌢ is non-trivial, we
can choose either 𝑞 = 𝑛𝑖1 − 𝑝, 𝑖 = 𝑖1 or 𝑞 = 𝑛𝑖2 − 𝑝, 𝑖 = 𝑖2 in the above, and this
implies that

lim
𝑘→∞

∥𝑓 (𝑖1)𝑘

𝑝
⌢ 𝑓

(𝑖2)
𝑘 ∥

𝐿2(ℝ
𝑛𝑖1

+𝑛𝑖2
−2𝑝

+ )
= 0,

which gives our claim. □
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We can now provide a complete proof of Theorem 1.3.

Proof of Theorem 1.3. The equivalence between (2) and (3) follows from [4].
Clearly, (1) implies (3), so we only have the prove the reverse implication. So
let us assume (3). Note that, by Theorem 1.6 of [4], this is equivalent to the fact

that all non-trivial contractions of 𝑓
(𝑖)
𝑘 converge to 0; i.e., for each 𝑖 = 1, . . . , 𝑑 and

each 𝑞 = 1, . . . , 𝑛𝑖 − 1 we have

lim
𝑘→∞

𝑓
(𝑖)
𝑘

𝑞
⌢ 𝑓

(𝑖)
𝑘 = 0 in 𝐿2(ℝ2𝑛𝑖−2𝑞

+ ). (3.1)

We will use statement (3) in this form. In order to show (1), we have to show

that any moment in the variables 𝐼(𝑓
(1)
𝑘 ), . . . , 𝐼(𝑓

(𝑑)
𝑘 ) converges, as 𝑘 →∞, to the

corresponding moment in the semicircular variables 𝑠1, . . . , 𝑠𝑑. So, for 𝑟 ∈ ℕ and
positive integers 𝑖1, . . . , 𝑖𝑟, we consider the moments

𝜑
[
𝐼𝑆(𝑓

(𝑖1)
𝑘 ) ⋅ ⋅ ⋅ 𝐼𝑆(𝑓 (𝑖𝑟)𝑘 )

]
.

We have to show that they converge, for 𝑘 → ∞, to the corresponding moment
𝜑(𝑠𝑖1 ⋅ ⋅ ⋅ 𝑠𝑖𝑟 ). Note that our assumption (1.1) says that

lim
𝑘→∞

𝜑[𝐼𝑆(𝑓
(𝑖)
𝑘 )𝐼𝑆(𝑓

(𝑗)
𝑘 )] = 𝑐(𝑖, 𝑗) = 𝜑(𝑠𝑖𝑠𝑗).

By Proposition 1.38 in [4] we have

𝜑
[
𝐼𝑆(𝑓

(𝑖1)
𝑘 ) ⋅ ⋅ ⋅ 𝐼𝑆(𝑓 (𝑖𝑟)𝑘 )

]
=

∑
𝜋∈𝑁𝐶2(𝑛𝑖1⊗⋅⋅⋅⊗𝑛𝑖𝑟 )

∫
𝜋

𝑓
(𝑖1)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘 .

By Remark 1.33 in [4], any 𝜋 ∈ 𝑁𝐶2(𝑛𝑖1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑖𝑟 ) can be uniquely de-
composed into a disjoint union of connected pairings 𝜋 = 𝜋1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝜋𝑚 with
𝜋𝑞 ∈ 𝑁𝐶𝑐2(

⊗
𝑗∈𝐼𝑞 𝑛𝑖𝑗 ), where {1, . . . , 𝑟} = 𝐼1 ⊔ ⋅ ⋅ ⋅ ⊔ 𝐼𝑚 is a partition of the index

set {1, . . . , 𝑟}. The above integral with respect to 𝜋 factors then accordingly into∫
𝜋

𝑓
(𝑖1)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘 =

𝑚∏
𝑞=1

∫
𝜋𝑞

⊗
𝑗∈𝐼𝑞

𝑓
(𝑖𝑗)
𝑘 .

Consider now one of those factors, corresponding to 𝜋𝑞. Since 𝜋𝑞 must re-
spect

⊗
𝑗∈𝐼𝑞 𝑛𝑖𝑗 , the number 𝑟𝑞 := #𝐼𝑞 must be strictly greater than 1. On the

other hand, if 𝑟𝑞 ≥ 3, then, from (3.1) and Proposition 3.1, it follows that the

corresponding pairing integral
∫
𝜋𝑞

⊗
𝑗∈𝐼𝑞 𝑓

(𝑖𝑗)
𝑘 converges to 0 in 𝐿2. Thus, in the

limit, only those 𝜋 make a contribution, for which all 𝑟𝑞 are equal to 2, i.e., where
each of the 𝜋𝑞 in the decomposition of 𝜋 corresponds to a complete contraction
between two of the appearing functions. Let 𝑁𝐶2

2 (𝑛𝑖1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑖𝑟 ) denote the set
of those pairings 𝜋. So we get

lim
𝑘→∞

𝜑
[
𝐼(𝑓

(𝑖1)
𝑘 ) ⋅ ⋅ ⋅ 𝐼(𝑓 (𝑖𝑟)𝑘 )

]
=

∑
𝜋∈𝑁𝐶2

2 (𝑛𝑖1⊗⋅⋅⋅⊗𝑛𝑖𝑟 )
lim
𝑘→∞

∫
𝜋

𝑓
(𝑖1)
𝑘 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑓

(𝑖𝑟)
𝑘 ,
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We continue as in [4]: each 𝜋 ∈ 𝑁𝐶2
2 (𝑛𝑖1 ⊗ ⋅ ⋅ ⋅ ⊗ 𝑛𝑖𝑟 ) is in bijection with a non-

crossing pairing 𝜎 ∈ 𝑁𝐶2(𝑟). The contribution of such a 𝜋 is the product of
the complete contractions for each pair of the corresponding 𝜎 ∈ 𝑁𝐶2(𝑟); but the
complete contraction is just the 𝐿2 inner product between the paired functions, i.e.,

lim
𝑘→∞

𝜑
[
𝐼𝑆(𝑓

(𝑖1)
𝑘 ) ⋅ ⋅ ⋅ 𝐼𝑆(𝑓 (𝑖𝑟)𝑘 )

]
=

∑
𝜎∈𝑁𝐶2(𝑟)

∏
{𝑠,𝑡}∈𝜎

𝑐(𝑖𝑠, 𝑖𝑡).

This is exactly the moment 𝜑(𝑠𝑖1 ⋅ ⋅ ⋅ 𝑠𝑖𝑟 ) of a semicircular family (𝑠1, . . . , 𝑠𝑑) with
covariance matrix 𝑐, and the proof is concluded. □

We conclude this paper with the proof of Theorem 1.6.

Proof of Theorem 1.6. Point (1) is a simple consequence of the Wigner isometry

(2.3) (since each 𝑓
(𝑖)
𝑘 is fully symmetric, 𝑓

(𝑖)
𝑘 is in particular mirror-symmetric),

together with the classical Wiener isometry which states that

𝐸[𝐼𝑊 (𝑓)𝐼𝑊 (𝑔)] = 1𝑛=𝑚 × 𝑛!⟨𝑓, 𝑔⟩𝐿2(ℝ𝑛+)

for every 𝑛,𝑚 ≥ 0, and every 𝑓 ∈ 𝐿2(ℝ𝑛+), 𝑔 ∈ 𝐿2(ℝ𝑚+ ). For point (2), we observe
first that the case 𝑑 = 1 is already known, as it corresponds to [4, Theorem 1.8].

Consider now the case 𝑑 ≥ 2. Let us suppose that
(
𝐼𝑆(𝑓

(1)
𝑘 ), . . . , 𝐼𝑆(𝑓

(𝑑)
𝑘 )

) law→
(𝑠1, . . . , 𝑠𝑑). In particular, 𝐼𝑆(𝑓

(𝑖)
𝑘 )

law→ 𝑠𝑖 for all 𝑖 = 1, . . . , 𝑑. By [4, Theorem 1.8]

(case 𝑑 = 1), this implies that 𝐼𝑊 (𝑓
(𝑖)
𝑘 )

law→ √
(𝑛𝑖)!𝑁𝑖. Since the asymptotic rela-

tions in (1) are verified, Theorem 1.1(B) leads then to
(
𝐼𝑊 (𝑓

(1)
𝑘 ), . . . , 𝐼𝑊 (𝑓

(𝑑)
𝑘 )

) law→(√
(𝑛𝑖)!𝑁1, . . . ,

√
(𝑛𝑑)!𝑁𝑑

)
, which is the desired conclusion. The converse impli-

cation follows exactly the same lines,and the proof is concluded. □
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Malliavin Calculus for Stochastic Point
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Abstract. We explore the properties of solutions of two stochastic fluid models
for viscous flow in two dimensions. We establish the absolute continuity of the
law of the corresponding solution using Malliavin calculus.
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1. Introduction

The solution of the two-dimensional Cauchy problem for the Euler equation was
first studied by Yudovich [21], Golovkin [8] and Kato [9]. In [9], the global existence
and uniqueness of a solution was shown, and the quasi-Lipchitz condition of the
velocity field was explored. Properties for flows with irregular velocity coefficient
were also discussed in Le Bris and Lions [11], where the existence and uniqueness of
the solution for a transport equation with partially Sobolev 𝑊 1,1 coefficient were
proved. In Cao and He [3], the well-posedness for a stochastic differential equation
(SDE) with quasi-Lipschitz coefficients was established. Fang and Zhang [7] proved
the uniqueness of a strong solution of a SDE with non-Lipschitz coefficients relaxed
by a logarithmic factor using the Gronwall’s inequality. The continuous and home-
omorphic flow properties of SDEs with non-Lipschitz coefficients were studied by
Ren and Zhang [18] and Zhang [22].

On the other hand, the stochastic calculus of variation developed by Malliavin
[12] is a useful tool for the study of absolute continuity of the law and smoothness
of densities associated to solutions of SDEs. Most of the literature on this topic
deals with continuously differentiable and global Lipschitz coefficients. In two-

This work was completed with the support of the Army Research Probability and Statistics
Program.
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dimensional vortex flows, however, the velocity field only satisfies a quasi-Lipschitz
condition. Recently, Kusuoka [10] discussed the existence of densities of solutions
of SDEs with non-Lipschitz coefficients by Malliavin calculus. There are two major
differences between [10] and our work. First, in Kusuoka [10], the SDE has Lipschitz
drift coefficient and only uniformly bounded noise coefficient, our model instead
contains standard noise coefficient but non-Lipschitz drift term as the flow velocity.
Second, Kusuoka [10] proved the existence of densities of solutions in a class 𝑉ℎ
which is larger than Sobolev spaces. The enlargement of solution spaces allowed the
author to show the existence of densities without imposing ellipticity conditions
on the noise coefficient.

The goal of this paper is to show the existence of a density function associated
to the solution of a stochastic Lagrangian model. The idea is to use a stochastic
chain rule for quasi-Lipschitz functions, which can be proved using a L𝑝 estimate
on the velocity gradient. This generalized stochastic chain rule extends the result
in Nualart [16] to non-Lipschitz functions. The structure of this paper is as fol-
lows: in Section 2 we review some fluid dynamics background and introduce two
important estimates on the velocity function. In Section 3, two different stochastic
fluid models are introduced and their solvability is recalled. The main result on
absolute continuity of the law for the solution of the stochastic Lagrangian model
is proved in Section 4.

2. Fluid dynamics background

We recall the Navier–Stokes equations (NSEs) for incompressible viscous fluid
in ℝ2:

∂u

∂𝑡
+ (u ⋅ ∇)u = −∇𝑝+ 𝜈∇2u,

∇ ⋅ u = 0.
(2.1)

Here u(𝑥, 𝑡) = (𝑢1(𝑥, 𝑡), 𝑢2(𝑥, 𝑡)) is the velocity field, 𝑝 is the pressure field
and 𝜈 is the coefficient of kinematic viscosity. In 2-D, the vorticity equation is
obtained by taking curl of (2.1).

∂𝜔

∂𝑡
+ (u ⋅ ∇)𝜔 = 𝜈∇2𝜔,

u(𝑥, 𝑡) = (𝐾 ∗ 𝜔)(𝑥, 𝑡).
(2.2)

Here 𝜔 denotes the vorticity field. Formula u = 𝐾∗𝜔 is called the Biot–Savart
law and can be written explicitly as:

u(𝑥, 𝑡) = 𝐾 ∗ 𝜔(𝑥, 𝑡) = 1

2𝜋

∫
ℝ2

(𝑦2 − 𝑥2, 𝑥1 − 𝑦1)
𝑇 𝑟−2𝜔(𝑦, 𝑡)𝑑𝑦, (2.3)

where r = ∣𝑥− 𝑦∣ = √
(𝑥1 − 𝑦1)2 + (𝑥2 − 𝑦2)2.

Since ∇ ⋅ u = 0, (2.2) can be written as

∂𝜔

∂𝑡
+∇ ⋅ (u𝜔) = 𝜈∇2𝜔. (2.4)
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We define 𝐴∗ as an operator of the form

𝐴∗𝜙(𝑦) =
∑
𝑖,𝑗

∂2

∂𝑦𝑖∂𝑦𝑗
(𝜎𝑖𝑗𝜙)−

∑
𝑖

∂

∂𝑦𝑖
(𝑢𝑖𝜙), 𝜙 ∈ 𝐶2, (2.5)

where

𝜎𝑖𝑗 =

{
𝜈 if 𝑖 = 𝑗

0 if 𝑖 ∕= 𝑗.

Equation (2.4) reduces to

𝑑

𝑑𝑡
𝜔(𝑥, 𝑡) = 𝐴∗𝜔(𝑥, 𝑡) for all 𝑥 ∈ ℝ2. (2.6)

𝐴∗ turns out to be the adjoint operator of 𝐴 defined as

𝐴𝑓(𝑦) =
∑
𝑖

𝜈
∂2𝑓

∂𝑦2𝑖
+

∑
𝑖

𝑢𝑖(𝑦, 𝑡)
∂𝑓

∂𝑦𝑖
, 𝑓 ∈ 𝐶2

0 . (2.7)

𝐴 is the infinitesimal generator of a diffusion process 𝑋𝑡 of the form:

𝑑𝑋𝑡 = u(𝑋𝑡, 𝑡)𝑑𝑡+ 𝜎𝜈𝑑𝑊𝑡, (2.8)

where 𝜎𝜈 =

(√
2𝜈 0

0
√
2𝜈

)
and 𝑊𝑡 is the standard Brownian motion in ℝ2. Mar-

chioro and Pulvirenti [13] used this stochastic formulation to prove the convergence
of a Navier–Stokes solution to the corresponding Euler solution in the limit 𝜈 → 0.
In addition, equation (2.6) is the forward Kolmogorov equation with density 𝜔 as-
sociated to the law of solution 𝑋𝑡 of (2.8). For studies of (2.8) and Navier–Stokes
equations, readers should refer to the work of Chorin [5] and Arnaudon, Cruzeiro
and Galamba [1].

Definition 2.1. We say a real-valued function 𝑔(𝑡, ⋅) : ℝ+ × ℝ2 → ℝ satisfies the
quasi-Lipschitz condition if

[𝑔(𝑡, ⋅)]𝜑 = sup
𝑥,𝑦∈ℝ2,𝑥 ∕=𝑦

∣𝑔(𝑡, 𝑦)− 𝑔(𝑡, 𝑥)∣
𝜑(∣𝑦 − 𝑥∣) <∞ (2.9)

with

𝜑(𝑟) =

⎧⎨⎩
0 , 𝑟 = 0,

−r ln r+ r , 0 < r < 1,

r , r ≥ 1.

(2.10)

We denote 𝐶𝑏(ℝ2) as the space of all uniformly bounded, continuous functions
in ℝ2, equipped with the norm

∣∣𝑔∣∣0 = sup
𝑧∈ℝ2

∣𝑔(𝑧)∣. (2.11)

Lemma 2.2. Given 𝑇 > 0, the following inequalities hold

1. If 𝜔(⋅, 𝑡) ∈ 𝐶𝑏(ℝ2), then

[𝑢𝑖]𝜑 = [𝐾𝑖 ∗ 𝜔]𝜑 ≤ 𝑐1∣∣𝜔∣∣0. for any 𝑡 ∈ [0, 𝑇 ] (2.12)
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2. If 𝜔(⋅, 𝑡) ∈ L𝑝(ℝ2), 𝑝 > 1, then

∣∣∇𝑢𝑖∣∣L𝑝 = ∣∣∇(𝐾𝑖 ∗ 𝜔)∣∣L𝑝 ≤ 𝑐𝑝∣∣𝜔∣∣L𝑝 , for any 𝑡 ∈ [0, 𝑇 ] (2.13)

where 𝑖 = 1, 2. 𝑐1 and 𝑐𝑝 are constants independent of 𝜔.

Proof. The proof of (2.12) can be found in Rautmann ([17], Proposition 2.1), where
Kato’s result [9] is extended to functions in the whole domain ℝ2. Inequality (2.13)
is proved by Chemin ([4], Theorem 3.1.1). □

3. Stochastic point vortex and lagrangian models

In this section, two stochastic fluid models originated from (2.8) are introduced.
We first consider a model where the velocity is regularized according to the point
vortex approximation. The second model describes the Lagrangian transport of a
particle perturbed by the Gaussian noise, with drift presented by the flow velocity.

An approximation of the Biot–Savart law can be obtained by regularizing its
singular kernel K. For 𝑥 = (𝑥1, 𝑥2), denoting 𝑑 = ∣𝑥∣ = √

𝑥21 + 𝑥22 and considering
a cutoff function

𝜁(𝑥) = 𝜁(∣𝑥∣) = 1

𝜋
exp(−𝑟2), (3.1)

we can define
𝜁𝜖(𝑥) = 𝜖−2𝜁(

𝑥

𝜖
), for 𝜖 > 0 (3.2)

and compute

𝐾𝜖(𝑥) = 𝐾 ∗ 𝜁𝜖 = 1

2𝜋𝑟2
(−𝑥2, 𝑥1){1− exp(−𝑟2/𝜖2)}. (3.3)

For each fixed 𝜖 > 0, it was shown that 𝐾𝜖 is bounded and globally Lipschitz
(see Sritharan and Xu [19]).

Following Chorin [6], we can write the regularized velocity field in terms of
its point vortex approximation as

u𝜖,𝑡(𝑥) =

N∑
𝑗=1

𝛼𝑗K𝜖(𝑥 −𝑋𝑗(𝑡)), ∀𝑥 ∈ R2. (3.4)

Here 𝑁 is the number of point vortices in the fluid, 𝑋𝑗(𝑡) represents the
position of 𝑗th point at time t and 𝛼𝑗 denotes the vorticity intensity for 𝑗th point.
(3.4) is derived from the Biot–Savart law for vorticity field with the form

𝜔(𝑥, 𝑡) =
𝑁∑
𝑗=1

𝛼𝑗𝛿𝑋𝑗(𝑡). (3.5)

Given a complete probability space (Ω,ℱ , 𝑃 ) equipped with a 𝜎-filtration
{ℱ𝑡}𝑡≥0, we denote the initial position for 𝑖th point vortex as a random variable
𝜉𝑖, and introduce a stochastic point vortex model that is described by the following
SDE:

𝑑𝑋 𝑖(𝑡) = u𝜖,𝑡(𝑋
𝑖(𝑡))𝑑𝑡 + 𝜎(𝑋 𝑖(𝑡))𝑑W𝑡, for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑁. (3.6)
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Here 𝑊𝑡 is the two-dimensional Brownian motion and 𝜎 : ℝ2 → ℝ2×2 is the
multiplicative noise coefficient.

Before stating the theorem on the unique solvability of (3.6), we first define
the diffusion matrix for the noise coefficient 𝜎:

𝑎(𝑥, 𝑦) = 𝜎(𝑥)𝜎(𝑦)𝑇 , (3.7)

and the associated seminorm

∣∣𝑎∣∣ =
2∑
𝑖=1

∣𝑎𝑖𝑖∣. (3.8)

Theorem 3.1. Assume the diffusion matrix satisfies the following Lipschitz type
and growth conditions:

∣∣𝑎(𝑦1, 𝑦1)− 2𝑎(𝑦1, 𝑦2) + 𝑎(𝑦2, 𝑦2)∣∣ ≤ 𝐾∣𝑦1 − 𝑦2∣2. (3.9)

Then there exists a unique solution 𝑋 = (𝑋(𝑡), 𝑡 ≥ 0) to the SDE (3.6) with initial
condition 𝑋(0) = 𝜉 and the process 𝑋 is adapted.

Proof. See Sritharan and Xu [19]. □

Our second model describes the trajectory of one fluid particle perturbed by
multiplicative Gaussian noise:

𝑑𝑋𝑖(𝑡) = 𝑢𝑖(𝑋(𝑡), 𝑡)𝑑𝑡+

2∑
𝑗=1

𝜎𝑗𝑖 (𝑋(𝑡))𝑑𝑊 𝑗
𝑡 𝑖 = 1, 2, (3.10)

where 𝑋𝑖, 𝑖 = 1, 2 denotes the coordinate of the fluid particle position. Equation
(3.10) is a system of scalar-valued SDEs with the Navier–Stokes fluid velocity as
the drift coefficient. We note here that this idea can be naturally applied to 𝑁
particles [19] for numerical approximations.

Mikulevicius and Rozovskii [15] analyzed a similar model to (3.10) driven by
the Stratonovich noise. The well-posedness of (3.10) was studied in Sritharan and
Xu [20]. Here we include their result (Theorem 2.2, [20]) for completeness.

Theorem 3.2. Suppose 𝜔(⋅, 𝑡) ∈ 𝐶𝑏(ℝ2) for any 𝑡 ∈ [0, 𝑇 ] and the following
Lipschitz-type and growth conditions on the diffusion coefficient hold:

∣∣𝑎(𝑦1, 𝑦1)− 2𝑎(𝑦1, 𝑦2) + 𝑎(𝑦2, 𝑦2)∣∣ ≤ 𝐾1∣𝑦1 − 𝑦2∣, (3.11)

and

∣∣𝑎(𝑦, 𝑦)∣∣ ≤ 𝐾2(1 + ∣𝑦∣). (3.12)

Then there exists a unique solution 𝑋 = (𝑋(𝑡), 0 ≤ 𝑡 ≤ 𝑇 ) to the SDE (3.10) with
initial conditions satisfying 𝐸(∣𝑋(0)∣2) <∞. Moreover, we have

𝐸(∣𝑋(𝑡)∣2) <∞ for any 𝑡 ∈ [0, 𝑇 ]. (3.13)

Proof. See Sritharan and Xu [20]. □
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4. Malliavin calculus and absolute continuity of law

In this section, we briefly review some concepts and notations from the Malliavin
calculus. Interested readers should refer to Nualart [16] for details.

Definition 4.1. Given 𝐻 is a real separable Hilbert space with scalar product
denoted by ⟨⋅, ⋅⟩𝐻 , we say a stochastic process 𝑊 = {𝑊 (ℎ), ℎ ∈ 𝐻} defined in a
complete probability space (Ω,ℱ , 𝑃 ) is an isonormal Gaussian process if 𝑊 is a
centered Gaussian family of random variables, s.t.

𝐸(𝑊 (ℎ)𝑊 (𝑔)) = ⟨ℎ, 𝑔⟩𝐻 for any ℎ, 𝑔 ∈ 𝐻. (4.1)

We denote by 𝐶∞𝑝 (ℝ𝑚) the set of all infinitely continuously differentiable
functions 𝑓 : ℝ𝑚 → ℝ such that 𝑓 and all its partial derivatives have polynomial
growth. Let 𝒮 denote the class of smooth random variables such that a random
variable 𝐹 ∈ 𝒮 has the form

𝐹 = 𝑓(𝑊 (ℎ1), . . . ,𝑊 (ℎ𝑛)), (4.2)

where 𝑓 belongs to 𝐶∞𝑝 (ℝ𝑚), ℎ1, . . . , ℎ𝑛 are in 𝐻 , and 𝑛 ≥ 1.

Definition 4.2. The Malliavin derivative of a smooth random variable 𝐹 of the
form (4.2) is the 𝐻-valued random variable given by

𝐷𝐹 =

𝑛∑
𝑖=1

∂𝑖𝑓(𝑊 (ℎ1), . . . ,𝑊 (ℎ𝑛))ℎ𝑖. (4.3)

For any 𝑝 ≥ 1 we denote the domain of 𝐷 in L𝑝(Ω) by 𝔻1,𝑝, meaning that
𝔻1,𝑝 is the closure of the class of smooth random variables 𝒮 with respect to the
norm

∣∣𝐹 ∣∣1,𝑝 = [𝐸(∣𝐹 ∣𝑝) + 𝐸(∣∣𝐷𝐹 ∣∣𝑝𝐻)]
1
𝑝 . (4.4)

The closure property of the operator D from 𝐷1,2 to L2 is stated below.

Lemma 4.3. Let {𝐹𝑛, 𝑛 ≥ 1} be a sequence of random variables in 𝔻1,2 that con-
verges to 𝐹 in L2(Ω) and such that

sup
𝑛

𝐸(∣∣𝐷𝐹𝑛∣∣2𝐻) <∞. (4.5)

Then 𝐹 belongs to 𝔻1,2, and the sequence of derivatives {𝐷𝐹𝑛, 𝑛 ≥ 1} converges
to 𝐷𝐹 in the weak topology of L2(Ω;𝐻).

Higher-order Malliavin derivatives can be defined similarly and adapted from
lower-order derivatives.

Proposition 4.4. Let 𝐹 be a random variable in 𝔻𝑘,𝛼 with 𝛼 > 1. Suppose that
𝐷𝑖𝐹 belongs to L𝑝(Ω;𝐻⊗𝑖) for 𝑖 = 0, 1, . . . , 𝑘 and for some 𝑝 > 𝛼. Then 𝐹 ∈ 𝔻𝑘,𝑝,
and there exists a sequence 𝐺𝑛 ∈ 𝒮 that converges to 𝐹 in the norm ∣∣ ⋅ ∣∣𝑘,𝑝.
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Let 𝕃1,2 be the class of processes 𝐹 ∈ L2(𝑇 × Ω) such that 𝐹 (𝑡) ∈ 𝔻1,2 for
almost all 𝑡. It is a Hilbert space with the norm

∣∣𝐹 ∣∣2𝕃2(𝑇 ) = ∣∣𝐹 ∣∣2L2(𝑇×Ω) + ∣∣𝐷𝐹 ∣∣2L2(𝑇×Ω). (4.6)

Note that 𝕃1,2 is isomorphic to L2(𝑇 ;𝔻1,2).
Given the identification between L2(Ω;𝐻) and L2(𝑇 × Ω), we may denote

{𝐷𝑡𝐹, 𝑡 ∈ [0, 𝑇 ]} as the stochastic process of the derivative of a random variable
𝐹 ∈ 𝔻1,2. The following lemma shows that an Itô integral is differentiable if and
only if its integrand is differentiable.

Lemma 4.5. Let 𝑊 = {𝑊 (𝑡), 𝑡 ∈ [0, 1]} be a one-dimensional Brownian motion.
Consider a square integrable adapted process 𝐹 = {𝐹𝑡, 𝑡 ∈ [0, 1]}, and set 𝐼𝑡 =∫ 𝑡
0
𝐹𝑠𝑑𝑊𝑠. Then the process 𝐹 belongs to the space 𝕃1,2 if and only if 𝐼 belongs to

𝔻1,2. In this case the process 𝐼 belongs to 𝕃1,2, and we have

𝐷𝑟𝐼𝑡 = 𝐹𝑟 +

∫ 𝑡

𝑟

𝐷𝑟𝐹𝑠𝑑𝑊𝑠. (4.7)

for all 𝑟 < 𝑡 ∈ [0, 1].

The stochastic chain rule for global Lipschitz functions is given below and its
proof can be found in Nualart [16].

Proposition 4.6. Let 𝜑 : ℝ𝑚 → ℝ be a continuously differentiable function with
bounded partial derivatives. Suppose that 𝐹 = (𝐹 1, . . . , 𝐹𝑚) is a random vector
whose components belong to the space 𝔻1,𝑝. Then 𝜑(𝐹 ) ∈ 𝔻1,𝑝, 𝑝 ≥ 1, and

𝐷(𝜑(𝐹 )) =

𝑚∑
𝑖=1

∂𝑖𝜑(𝐹 )𝐷𝐹 𝑖. (4.8)

Proposition 4.6 is crucial in obtaining the absolute continuity of the law for
our models. Due to the point vortex approximation, the stochastic point vortex
model (3.6) contains global Lipschitz coefficients and the following theorem can be
applied directly. For the stochastic Lagrangian model (3.10), the drift coefficient is
quasi-Lipschitz and thus Proposition 4.6 cannot be applied directly. We overcome
this difficulty by applying (2.13) to derive an identity similar to (4.8) for the non-
Lipschitz drift.

Theorem 4.7. Let 𝐹 = (𝐹 1, . . . , 𝐹𝑚) be a random vector satisfying the following
conditions:

1. 𝐹 𝑖 belongs to the space 𝔻1,2, for all 𝑖 = 1, . . . ,𝑚.
2. The matrix 𝛾𝐹 = (

〈
𝐷𝐹 𝑖, 𝐷𝐹 𝑗

〉
)1≤𝑖,𝑗≤𝑚 is invertible a.s.

Then the law of 𝐹 is absolutely continuous with respect to the Lebesgue measure
on ℝ𝑚.

This criteria for absolute continuity of the law of a random variable is given
in Bouleau and Hirsch [2]. Its proof relies on the properties of approximate deriva-
tives.
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For the stochastic Lagrangian model, we first show that the unique solution
𝑋𝑖 of (3.10) satisfies the first condition of Theorem 4.7. In other words, we prove
that the solution is first-order Malliavin differentiable and its Malliavin derivative
satisfies a linear SDE. We extend results in Nualart [16] to SDEs with non-Lipschitz
coefficients, in particular, to the stochastic Lagrangian equation (3.10) with quasi-
Lipschitz drift coefficient u.

Theorem 4.8. Assume 𝜔(⋅, 𝑡) ∈ L𝑝(ℝ2) for any 𝑝 > 1 and 𝑡 ∈ [0, 𝑇 ]. Suppose that
𝑋 = {𝑋(𝑡), 𝑡 ∈ [0, 𝑇 ]} is the unique solution to equation (3.10), where the diffusion
coefficient is globally Lipschitz. Then 𝑋𝑖(𝑡) belongs to 𝔻1,2 for any 𝑡 ∈ [0, 𝑇 ] and
𝑖 = 1, 2. Moreover,

sup
0≤𝑟≤𝑡

𝐸( sup
𝑟≤𝑠≤𝑇

∣𝐷𝑟𝑋𝑖(𝑠)∣2) <∞, (4.9)

and the derivative 𝐷𝑟𝑋𝑖(𝑡) satisfies the following linear equation:

𝐷𝑟𝑋𝑖(𝑡) = 𝜎𝑗𝑖 (𝑋(𝑟)) +

∫ 𝑡

𝑟

�̄�𝑗𝑖,𝑙(𝑋(𝑠))𝐷𝑟(𝑋𝑙(𝑠))𝑑𝑊
𝑗
𝑠

+

∫ 𝑡

𝑟

�̄�𝑙𝑖(𝑋(𝑠))𝐷𝑟𝑋𝑙(𝑠)𝑑𝑠

(4.10)

for 𝑟 ≤ 𝑡 a.e., where �̄�𝑗𝑖,𝑙(𝑋(𝑠)) and �̄�𝑙𝑖(𝑋(𝑠)) are uniformly bounded and adapted
one-dimensional processes for 𝑙 = 1, 2. Consequently, 𝐷𝑟𝑋𝑖 is the unique adapted
solution to equation (4.10).

Proof. Consider the Picard approximations given by

𝑋0(𝑡) = 𝑥0, (4.11)

𝑋𝑛+1(𝑡) = 𝑥0 +

∫ 𝑡

0

𝜎𝑗(𝑋𝑛(𝑠))𝑑𝑊 𝑗
𝑠 +

∫ 𝑡

0

u(𝑋𝑛(𝑠), 𝑠)𝑑𝑠, 𝑛 ≥ 0, (4.12)

where 𝜎𝑗 = (𝜎𝑗1, 𝜎
𝑗
2). From Theorem 3.2 we know that

𝐸(sup
𝑠≤𝑇

∣𝑋𝑛(𝑠)−𝑋(𝑠)∣2)→ 0 (4.13)

as 𝑛 tends to infinity. We assume that for 𝑖 = 1, 2, 𝑋𝑛
𝑖 ∈ 𝔻1,2.

Let 𝜓𝑛(𝑥) ∈ 𝐶∞𝑜 (ℝ2) be a sequence of regularization kernels with compact
support such that

∫
ℝ𝑚

𝜓𝑛(𝑥)𝑑𝑥 = 1. Set u𝑚 = u∗𝜓𝑚. The sequence {u𝑚} consists
of functions with infinite differentiability, and it is obvious that lim𝑚→∞ u𝑚(𝑥) =
u(𝑥) for any 𝑥 ∈ ℝ2. Therefore 𝑢𝑚𝑖 converges to 𝑢𝑖 in L2(Ω) as 𝑚 tends to infinity.
In addition, by (2.13) in Lemma 2.2, we can show that ∣∇𝑢𝑚𝑖 ∣, 𝑖 = 1, 2 is bounded.
In fact,

∣∇𝑢𝑚𝑖 ∣ = ∣∇(𝑢𝑖 ∗ 𝜓𝑚)∣ = ∣∇𝑢𝑖 ∗ 𝜓𝑚∣
≤ ∣∣∇𝑢𝑖∣∣L𝑝 ∣∣𝜓𝑚∣∣L𝑞 ≤ 𝑐∣∣𝜔∣∣L𝑝 < 𝐶.

(4.14)

Proposition 4.6 tells us that for each 𝑛,

𝐷(𝑢𝑚𝑖 (𝑋
𝑛(𝑠), 𝑠)) =

2∑
𝑗=1

∂𝑗𝑢
𝑚
𝑖 (𝑋

𝑛(𝑠))𝐷𝑋𝑛
𝑗 (𝑠) (4.15)
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and 𝑢𝑚𝑖 (𝑋
𝑛(𝑠), 𝑠) ∈ 𝔻1,2. On the other hand, since ∣∂𝑖𝑢𝑚𝑖 (𝑋𝑛(𝑠), 𝑠)∣ < 𝐶 and

𝐷𝑋𝑛
𝑖 (𝑠) ∈ L2 by the assumption, {𝐷(𝑢𝑚𝑖 (𝑋

𝑛(𝑠), 𝑠)),𝑚 ≥ 1} is bounded in
L2(Ω;𝐻). By Lemma 4.3, 𝑢𝑖(𝑋

𝑛(𝑠), 𝑠) ∈ 𝔻1,2 and {𝐷(𝑢𝑚𝑖 (𝑋
𝑛(𝑠), 𝑠)),𝑚 ≥ 1}

converges in the weak topology of L2(Ω;𝐻) to 𝐷(𝑢𝑖(𝑋
𝑛(𝑠), 𝑠)).

(4.14) tells us that {∇𝑢𝑚𝑖 (𝑋
𝑛(𝑠), 𝑠),𝑚 ≥ 1} is bounded by 𝐶. Hence, there

exists some random vector ū𝑖(𝑋
𝑛(𝑠)) = (�̄�1𝑖 (𝑋

𝑛(𝑠)), 𝑢2𝑖 (𝑋
𝑛(𝑠))) as the weak limit

of {∇𝑢𝑚𝑖 (𝑋
𝑛(𝑠), 𝑠),𝑚 ≥ 1} such that, after taking the limit in (4.15), 𝑢𝑖(𝑋

𝑛(𝑠), 𝑠)
belongs to 𝔻1,2 and

𝐷𝑟𝑢𝑖(𝑋
𝑛(𝑠), 𝑠) = �̄�𝑙𝑖(𝑋

𝑛(𝑠))𝐷(𝑋𝑛
𝑙 (𝑠)) 𝑓𝑜𝑟 𝑟 ≤ 𝑠. (4.16)

A direct application of Proposition 4.6 implies that there exists bounded
random variable �̄�𝑗𝑖 (𝑋

𝑛(𝑠)), such that

𝐷𝑟[𝜎
𝑗
𝑖 (𝑋

𝑛(𝑠))] = �̄�𝑗𝑖,𝑙(𝑋
𝑛(𝑠))𝐷𝑟(𝑋

𝑛
𝑙 (𝑠)), 𝑓𝑜𝑟 𝑟 ≤ 𝑠. (4.17)

Since
∫ 𝑡
0
𝑢𝑖(𝑠,𝑋

𝑛(𝑠), 𝑠)𝑑𝑠 and
∫ 𝑡
0
𝜎𝑗𝑖 (𝑋

𝑛(𝑠))𝑑𝑊 𝑗
𝑠 belong to 𝔻1,2,

𝐷𝑟

[∫ 𝑡

0

𝑢𝑖(𝑋
𝑛(𝑠), 𝑠)𝑑𝑠

]
=

∫ 𝑡

𝑟

𝐷𝑟[𝑢𝑖(𝑋
𝑛(𝑠), 𝑠)]𝑑𝑠, (4.18)

and by Lemma 4.5,

𝐷𝑟

[∫ 𝑡

0

𝜎𝑗𝑖 (𝑋
𝑛(𝑠))𝑑𝑊 𝑗

𝑠 ] = 𝜎𝑙𝑖(𝑋
𝑛(𝑟)) +

∫ 𝑡

𝑟

𝐷𝑟[𝜎
𝑗
𝑖 (𝑋

𝑛(𝑠))

]
𝑑𝑊 𝑗

𝑠 . (4.19)

for any 𝑟 ≤ 𝑡.
From equalities (4.18), (4.19) and (4.12), 𝑋𝑛+1

𝑖 (𝑡) ∈ 𝔻1,2 for all 𝑡 ∈ [0, 𝑇 ],
and we obtain

𝐸( sup
𝑟≤𝑠≤𝑡

∣𝐷𝑟𝑋
𝑛+1
𝑖 (𝑠)∣2) ≤ 𝑐[𝛾 + 𝑇𝐾2

∫ 𝑡

𝑟

𝐸(∣𝐷𝑟𝑋
𝑛
𝑖 (𝑠)∣2)𝑑𝑠], (4.20)

where

𝛾 = sup
𝑛,𝑖

𝐸

(
sup

0≤𝑡≤𝑇
∣𝑋𝑛

𝑖 (𝑡)∣2
)

<∞. (4.21)

Applying Gronwall’s lemma to (4.20), we prove that derivatives of the se-
quence 𝑋𝑛

𝑖 (𝑡) are bounded in L2(Ω;𝐻) uniformly in 𝑛 by induction. Since (4.13)
and Lemma 4.3, we could apply the Malliavin derivative 𝐷 to equation (3.10)
and derive the linear stochastic differential equation (4.10) for the derivative of
𝑋𝑖(𝑡). □

For SDEs with global Lipschitz coefficients of linear growth, Nualart ([16],
Section 2.3.1) showed that if

𝜂𝑇 𝑎(𝑋𝑠)𝜂 ≥ 𝜆(𝑠)∣𝜂∣2, 𝑓𝑜𝑟 𝑎𝑛𝑦 𝜂 ∈ ℝ2, (4.22)

where 𝜆(𝑠) > 0, then the Malliavin matrix for the corresponding solution is in-
vertible a.s. Under the same non-degenerate assumption (4.22), Theorem 4.7 and
4.8 imply the absolute continuity of law for the solution of (3.10).
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Theorem 4.9. Assume 𝜔(⋅, 𝑡) ∈ 𝐶𝑏(ℝ2) ∩ L𝑝(ℝ2) for any 𝑝 > 1 and 𝑡 ∈ [0, 𝑇 ].
Let {𝑋(𝑡), 𝑡 ∈ [0, 𝑇 ]} be the solution of the stochastic differential equation (3.10).
Assume the diffusion coefficient is globally Lipschitz and the diffusion matrix 𝑎𝑖𝑗

satisfies (4.22). Then for any 0 < 𝑡 ≤ 𝑇 the law of 𝑋(𝑡) is absolutely continuous
with respect to the Lebesgue measure on ℝ2, thus there exists a density associated
to the solution {𝑋(𝑡), 𝑡 ∈ [0, 𝑇 ]}.
Proof. See Theorem 2.3.1 in Nualart [16]. □
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abilités XX, Lecture Notes in Math. 1204 (1986), 131–161.

[3] G. Cao and K. He, On a type of stochastic differential equations driven by countably
many Brownian motions. J. Funct. Anal. 203 (2003), 262–285.

[4] J.-Y. Chemin, Perfect Incompressible Fluids. Oxford University Press, New York,
1998.

[5] A.J. Chorin, Numerical study of slightly viscous flow. J. Fluid Mech., 57 (1973),
785–796.

[6] A.J. Chorin, Vorticity and Turbulence. Springer-Verlag, Berlin and Heidelberg, 1994.

[7] S. Fang and T. Zhang, A study of a class of stochastic differential equations with
non-Lipschitzian coefficients. Probab. Theory Relat. Fields 132 (2005), 356–390.

[8] K.K. Golovkin, On vanishing viscosity in the Cauchy problem for the equations of
hydrodynamics. Trudy Mat. Inst. Steklov 92 (1966), 31–49.

[9] T. Kato, On classical solutions of the two-dimensional non-stationary Euler equation.
Arch. Ration. Mech. Anal. 25 3 (1967), 188–200.

[10] S. Kusuoka, Existence of densities of solutions of stochastic differential equations by
Malliavin calculus. J. Funct. Anal. 258 (2010), 758–784.

[11] C. Le Bris and P.-L. Lions, Renormalized solutions of some transport equations with
partially 𝑊 1,1 velocities and applications. Ann. Mat. Pur. Appl. 183 (2004), 97–130.

[12] P. Malliavin, Stochastic calculus of variation and hyperelliptic operators. Proc. Int.
Symp. on S.D.E. Kyoto, Kinokuniya (1978) 327–340.

[13] C. Marchioro and M. Pulvirenti, Vortex Methods in Two-Dimensional Fluid Dynam-
ics. Springer, 1984.

[14] C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Nonviscous
Fluids. Springer, 1994.

[15] R. Mikulevicius and B. Rozovskii, On equations of stochastic fluid mechanics. In:
Stochastics in finite and infinite dimensions, Trends Math., Birkhäuser Boston,
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Two Remarks on the
Wasserstein Dirichlet Form

Wilhelm Stannat

Abstract. The Wasserstein diffusion is an Ornstein–Uhlenbeck type process
on the set of all probability measures with the Wasserstein metric as intrinsic
metric. Sturm and von Renesse constructed in [6] this process in the case
of probability measures over the unit interval using Dirichlet form theory.
An essential step in this construction is the closability of a certain gradient
form, defined for smooth cylindrical test functions, in the space 𝐿2 w.r.t. the
entropic measure ℚ𝛽. In this paper we will first give an alternative proof
for this closability, avoiding the striking, but elaborate integration by parts
formula for ℚ𝛽 used in [6]. Second, we give explicit conditions under which
certain finite-dimensional particle approximations introduced in the paper
[1] by Andres and von Renesse do converge in the resolvent sense to the
Wasserstein diffusion, a question that was left open in the above cited paper.

Mathematics Subject Classification (2010). Primary: 58J65, Secondary: 47D07,
60J35, 60K35.

Keywords. Wasserstein Dirichlet form, closability, particle approximation en-
tropic measure, Dirichlet distribution.

1. The Wasserstein Dirichlet form

Let 𝐼 := [0, 1] be the unit interval andℳ1(𝐼) the space of all probability measures
on the Borel 𝜎-algebra ℬ(𝐼) equipped with the weak topology. Recall that the
quadratic Wasserstein distance

𝑑𝑊 (𝜇, 𝜈) := inf
𝛾∈ℳ1(𝜇,𝜈)

(∫
𝐼

∫
𝐼

∣𝑥− 𝑦∣2 𝛾(𝑑𝑥, 𝑑𝑦)
) 1

2

where ℳ1(𝜇, 𝜈) denotes the set of all couplings of 𝜇 and 𝜈.

Let

𝒢 = {𝑔 : 𝐼 → 𝐼 ∣ 𝑔 right-cont., non-decreas.}
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be the set of monotone right-continuous transformations on 𝐼, considered as a
subset of 𝐿2(𝐼), and for 𝑔 ∈ 𝒢 let 𝜇𝑔 be the probability measure defined by∫

𝐼

𝑓 𝑑𝜇𝑔 :=

∫
𝐼

𝑓(𝑔(𝑡)) 𝑑𝑡 , 𝑓 ∈ ℬ+(𝐼).

It is well known that the transformation

Φ : 𝒢 →ℳ1(𝐼) , 𝑔 �→ 𝜇𝑔

defines an isometry between the spaces 𝒢 and ℳ1(𝐼).

The Wasserstein diffusion constructed by Sturm and von Renesse can be
characterized as a diffusion process (𝕏𝑡)𝑡≥0 on 𝒢 for which the following process

𝑀𝑓
𝑇 :=

∫ 1

0

𝑓(𝕏𝑇 (𝑡)) 𝑑𝑡− 𝛽

2

∫ 𝑇

0

∫ 1

0

Δ𝑓(𝕏𝑠(𝑡)) 𝑑𝑡 𝑑𝑠

− 1

2

∫ 𝑇

0

( ∑
𝐼∈ gaps (𝕏𝑠)

[
Δ𝑓(𝐼−) + Δ𝑓(𝐼+)

2
− 𝑓 ′(𝐼+)− 𝑓 ′(𝐼−)

∣𝐼∣
]

− Δ𝑓(0) + Δ𝑓(1)

2

)
𝑑𝑠

is a continuous martingale with quadratic variation

⟨𝑀𝑓 ⟩𝑇 =

∫ 𝑇

0

∫ 1

0

𝑓 ′(𝕏𝑠(𝑡))2 𝑑𝑡 𝑑𝑠

for all 𝑓 ∈ 𝐶2(𝐼) with Neumann boundary conditions 𝑓 ′(0) = 𝑓 ′(1) = 0 (see [6]).
Here 𝐼 = [𝐼−, 𝐼+] is called a gap of the monotone map 𝑔 if 𝐼− = 𝑔(𝑡−) < 𝑔(𝑡+) = 𝐼+
for some 𝑡 ∈ [0, 1] and 𝛽 > 0. The process therefore describes random fluctuations
around the Neumann heat flow with intrinsic metric given by the Wasserstein
distance.

An important feature of the process is that it is reversible w.r.t. the entropic
measure ℚ𝛽 which is charcterized as the unique probability measure on 𝒢 having
the finite-dimensional distributions

ℚ𝛽 (𝑔(𝑡1) ∈ 𝑑𝑥1, . . . , 𝑔(𝑡𝑛) ∈ 𝑑𝑥𝑛)

=
Γ(𝛽)∏𝑛+1

𝑘=1 Γ(𝛽(𝑡𝑘 − 𝑡𝑘−1))

𝑛+1∏
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1)𝛽(𝑡𝑘−𝑡𝑘−1)−1 𝑑𝑥

for 0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛+1 = 1 on the set

Σ𝑛 = {(𝑥1, . . . , 𝑥𝑛) ∈ [0, 1]𝑛 ∣ 0 = 𝑥0 < 𝑥1 < ⋅ ⋅ ⋅ < 𝑥𝑛+1 = 1} .
The Dirichlet form associated with the Wasserstein diffusion can be obtained

as the closure of the following pre-Dirichlet form

ℰ(𝑓) :=
∫
𝒢
∥𝐹 ′(⋅, 𝑔)∥2𝐿2(𝐼) 𝑑ℚ𝛽(𝑔)
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defined for all 𝐹 contained in the space

ℱ𝐶1
𝑏 :=

{
𝐹 (𝑔) = 𝜑(⟨𝑓1, 𝑔⟩, . . . , ⟨𝑓𝑛, 𝑔⟩) ∣ 𝑛 ≥ 1,

𝜑 ∈ 𝐶1
𝑏 (ℝ

𝑛), 𝑓1, . . . , 𝑓𝑛 ∈ 𝐿2(𝐼)
}

and

𝐹 ′(𝑡, 𝑔) :=
𝑛∑
𝑘=1

(∂𝑘𝜑)(⟨𝑓1, 𝑔⟩, . . . , ⟨𝑓𝑛, 𝑔⟩)𝑓𝑘(𝑡)

denotes the Fréchet derivative of 𝐹 , considered as a function on 𝐿2(𝐼). Here,
⟨𝑓, 𝑔⟩ = ∫

𝐼 𝑓(𝑡)𝑔(𝑡) 𝑑𝑡.

2. Closability of the Wasserstein Dirichlet form

The crucial step in the construction of the Wasserstein diffusion by von Renesse
and Sturm is to prove that ℰ is closable in 𝐿2(ℚ𝛽) which has been achieved in the
paper [6] using an explicit, however elaborate, integration by parts formula for the
entropic measure ℚ𝛽 . Once closability is shown, it is not so difficult to see that
its closure (ℰ , 𝐷(ℰ)) is a local regular Dirichlet form and application of Dirichlet
form theory (see [3]) yields the existence of an associated diffusion process in 𝒢.

We will use the following alternative representation of ℰ , obtained in Propo-
sition 1.1 of [5], to give an independent proof for the closability of ℰ . Let

Ψ :ℳ1(𝐼)→ 𝒢 , 𝜇 �→ 𝑔𝜇

be the usual identification of 𝜇 with its (right.-cont.) cumulative distribution
function 𝑔𝜇(𝑡) := 𝜇([0, 𝑡]), 𝑡 ∈ 𝐼. Then ℚ𝛽 = Ψ(𝜋𝛽 𝑑𝑥), where 𝜋𝛽𝑑𝑥 denotes the
Dirichlet measure on ℳ1(𝐼) with intensity 𝛽 𝑑𝑥 (see (2.2) below) and for given
𝐹 (𝜇) := 𝜑(⟨𝑓1, 𝜇⟩, . . . , ⟨𝑓𝑛, 𝜇⟩) with 𝑓𝑖 ∈ 𝐶1

0 (𝐼) let

𝐹 (𝑔) := 𝜑(−⟨𝑓 ′1, 𝑔⟩, . . . ,−⟨𝑓 ′𝑛, 𝑔⟩).
Then

ℰ(𝐹 ) = ℰ̃(𝐹 ) :=

∫
ℳ1(𝐼)

∥∥∥∥ 𝑑

𝑑𝑥
𝐹 ′(⋅, 𝜇)

∥∥∥∥2
𝐿2(𝐼)

𝜋𝛽 𝑑𝑥(𝑑𝜇). (2.1)

The closability of ℰ in 𝐿2(ℚ𝛽) is therefore equivalent to the closability of ℰ̃
in the space 𝐿2(𝜋𝛽𝑑𝑥).

We will formulate the closability result in a more general framework. To this
end let 𝑆 be a locally compact space, ℳ𝑓 (𝑆) (resp. (ℳ1(𝑆)) be the space of all
finite (resp. normalized) non-negative Borel measures on 𝑆 equipped with the weak
topology. For given 𝜈 ∈ ℳ𝑓(𝑆) the Dirichlet measure 𝜋𝜈 with intensity 𝜈 is the
unique probability measure on ℳ1(𝑆) satisfying

𝜋𝜈 (𝜇(𝐴1) ∈ 𝑑𝑥1, . . . , 𝜇(𝐴𝑛) ∈ 𝑑𝑥𝑛) = 𝜋(𝜈(𝐴1),...,𝜈(𝐴𝑛))(𝑑𝑥1, . . . , 𝑑𝑥𝑛), (2.2)
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for any measurable partition 𝐴1, . . . , 𝐴𝑛 of 𝑆. Here,

𝜋𝑞(𝑑𝑥1, . . . , 𝑑𝑥𝑛)

=
Γ(𝑞1:𝑛)

Π𝑛𝑖=1Γ(𝑞𝑖)
𝑥
𝜈(𝐴1)

−1

1 ⋅ . . . ⋅ 𝑥𝜈(𝐴𝑛)−1

𝑛 ⋅ 𝛿(1−𝑥1:𝑛−1)(𝑑𝑥𝑛)𝑑𝑥𝑛−1 . . . 𝑑𝑥1

denotes the multivariate Dirichlet distribution on the 𝑛 − 1-dimensional simplex

Δ𝑛−1 ⊆ ℝ𝑛+ for 𝑞 ∈
∘
ℝ𝑛+. Here, 𝑞1:𝑛 = 𝑞1 + ⋅ ⋅ ⋅+ 𝑞𝑛 and 𝑥1:𝑛−1 = 𝑥1 + ⋅ ⋅ ⋅+ 𝑥𝑛−1.

Let

𝒟0 :=
{
𝐹 (𝜇) = 𝜑(𝜇(𝐴1), . . . , 𝜇(𝐴𝑛)) ∣ 𝑛 ≥ 1, 𝜑 ∈ 𝐶

1

𝑏 (ℝ
𝑛) ,

{𝐴1, . . . , 𝐴𝑛} measurable partition of 𝑆
}

be the space of continuously differentiable test functions based on finite measurable
partitions of 𝑆. For 𝐹 ∈ 𝒟0 that admits a representation of the type

𝐹 (𝜇) = 𝜑 (𝜇(𝐴1), . . . , 𝜇(𝐴𝑛))

let

𝐹 ′(⋅, 𝜇) :=
𝑛∑
𝑘=1

𝜑𝑥𝑘(𝜇(𝐴1), . . . , 𝜇(𝐴𝑛))1𝐴𝑘

be the differential of 𝐹 at the point 𝜇. Note that 𝐹 ′(⋅, 𝜇) ∈ 𝐿2(𝜈) and that

∥𝐹 ′(⋅, 𝜇)∥2𝐿2(𝑆,𝜈) =

𝑛∑
𝑘=1

𝜑2
𝑥𝑘 (𝜇(𝐴1), . . . , 𝜇(𝐴𝑛)) 𝜈(𝐴𝑘)

is bounded and measurable in 𝜇, so that the integral

𝒜(𝐹 ) :=

∫
ℳ1(𝑆)

∥𝐹 ′(⋅, 𝜇)∥2𝐿2(𝜈) 𝜋𝜈(𝑑𝜇)

is well defined and finite. In the following we will consider 𝒜 as a symmetric
bilinear form in the space 𝐿2(ℳ1(𝑆), 𝜋𝜈) with domain 𝒟0. Our first main result
is the following

Theorem 2.1. (𝒜,𝒟0) is closable in 𝐿2(𝜋𝜈).

For the proof of the theorem let us fix an increasing sequence 𝒜𝑛 =

{𝐴(𝑛)
1 , . . . , 𝐴

(𝑛)
𝑛 } of measurable partitions of 𝑆 generating the Borel 𝜎-algebra,

i.e., ℬ(𝑆) = 𝜎 (
∪
𝑛𝒜𝑛). Denote by

𝒟(𝑛)
0 := {𝐹 (𝜇) = 𝜑(𝜇(𝐴

(𝑛)
1 ), . . . , 𝜇(𝐴(𝑛)

𝑛 )) : 𝜑 ∈ 𝐶1
𝑏 (ℝ

𝑛)}
the set of continuously differentiable test functions based on the fixed partition

𝒜𝑛 and note that 𝒟(𝑛)
0 ⊂ 𝒟(𝑛+1)

0 is increasing with 𝑛. Let 𝒜(𝑛) be the restriction
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of 𝒜 to 𝒟(𝑛)
0 . Then for 𝐹 (𝜇) = 𝜑(𝜇(𝐴

(𝑛)
1 ), . . . , 𝜇(𝐴

(𝑛)
𝑛 )) ∈ 𝒟(𝑛)

0 we obtain that

𝒜(𝑛)(𝐹 ) =

∫
ℳ1(𝑆)

∥𝐹 ′(𝜇, ⋅)∥2𝐿2(𝑆,𝜈)𝜋𝜈(𝑑𝜇)

=

𝑛∑
𝑖=1

𝜈(𝐴
(𝑛)
𝑖 )

∫
Δ𝑛−1

(∂𝑥𝑖𝜑)
2𝑑𝜈(𝑛) =: ℰ(𝑛)(𝜑),

where 𝜈(𝑛) = 𝜋
(𝜈(𝐴

(𝑛)
1 ),...,𝜈(𝐴

(𝑛)
𝑛 ))

denotes the Dirichlet distribution with parameters

𝜈(𝐴
(𝑛)
1 ), . . . , 𝜈(𝑛)(𝐴

(𝑛)
𝑛 ).

In the following denote by

𝑇𝑛𝐹 := 𝐸
(
𝐹 ∣ 𝜇(𝐴(𝑛)

𝑘 ), 1 ≤ 𝑘 ≤ 𝑛
)
, 𝐹 ∈ ℬ𝑏(ℳ1(𝑆))

the conditional expectation of 𝐹 given 𝜎{𝜇(𝐴(𝑛)
𝑘 ) ∣ 1 ≤ 𝑘 ≤ 𝑛}.

Proposition 2.2. Let 𝐹 ∈ 𝒟(𝑛)
0 and 𝑚 ≤ 𝑛. Then 𝑇𝑚𝐹 ∈ 𝒟(𝑚)

0 and

𝒜(𝑚)(𝑇𝑚𝐹 ) ≤ 𝒜(𝑛)(𝐹 ) = 𝒜(𝐹 ).

The proof requires the following

Lemma 2.3. Let 𝐹 ∈ 𝒟(𝑛+1)
0 admit the representation

𝐹 (𝜇) = 𝜑
(
𝜇
(
𝐴
(𝑛+1)
1

)
, . . . , 𝜇

(
𝐴
(𝑛+1)
𝑛+1

))
and assume that

𝐴
(𝑛)
𝑘 = 𝐴

(𝑛+1)
𝑘 , 1 ≤ 𝑘 ≤ 𝑛− 1, 𝐴(𝑛)

𝑛 = 𝐴(𝑛+1)
𝑛 ∪ 𝐴

(𝑛+1)
𝑛+1 .

Then

𝑇𝑛𝜑(𝑥1, . . . , 𝑥𝑛)

=

∫ 1

0

𝜑(𝑥1, . . . , 𝑥𝑛−1, 𝑡𝑥𝑛, (1− 𝑡)𝑥𝑛)𝜋(
𝜈
(
𝐴

(𝑛+1)
𝑛

)
,𝜈
(
𝐴

(𝑛+1)
𝑛+1

))(𝑑𝑡)

is a regular conditional expectation of 𝐹 given 𝜎{𝜇(𝐴(𝑛)
𝑘 ) ∣ 1 ≤ 𝑘 ≤ 𝑛}, i.e.,

𝑇𝑛𝜑(𝜇(𝐴
(𝑛)
1 ), . . . , 𝜇(𝐴

(𝑛)
𝑛 )) is a version of the conditional expectation 𝑇𝑛𝐹 . In par-

ticular, 𝑇𝑛𝐹 ∈ 𝒟(𝑛)
0 and

𝒜(𝑛)(𝑇𝑛𝐹 ) ≤ 𝒜(𝑛+1)(𝐹 ) = 𝒜(𝐹 ).

Proof. To simplify the notation, let

𝜈 := 𝜋(
𝜈
(
𝐴

(𝑛+1)
𝑛

)
,𝜈
(
𝐴

(𝑛+1)
𝑛+1

)).
Consider the transformation

𝑇 : Δ𝑛−1 × [0, 1]→ Δ𝑛 , (𝑥, 𝑡) �→ (𝑥1, . . . , 𝑥𝑛−1, 𝑡𝑥𝑛, (1− 𝑡)𝑥𝑛).

Then it is easy to see that

𝑇
(
𝜈(𝑛) ⊗ 𝜈

)
= 𝜈(𝑛+1).
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Hence, for 𝐺(𝜇) = 𝜓(𝜇(𝐴
(𝑛)
1 ), . . . , 𝜇(𝐴

(𝑛)
𝑛 )), it follows that∫

𝐹𝐺𝑑𝜋𝜈 =

∫
Δ𝑛

𝜑(𝑥1, . . . , 𝑥𝑛+1)𝜓(𝑥1, . . . , 𝑥𝑛 + 𝑥𝑛+1)𝜈
(𝑛+1)(𝑑𝑥)

=

∫
Δ𝑛−1

∫ 1

0

𝜑(𝑥1, . . . , 𝑥𝑛−1, 𝑡𝑥𝑛, (1− 𝑡)𝑥𝑛)𝜈(𝑑𝑡)𝜓(𝑥1, . . . , 𝑥𝑛)𝜈
(𝑛)(𝑑𝑥),

which implies the first assertion.

For the proof of the second assertion first note that 𝜑 ∈ 𝐶1
𝑏 (ℝ

𝑛+1) implies
𝑇𝑛𝜑 ∈ 𝐶1

𝑏 (ℝ
𝑛) with ∂𝑥𝑖𝑇𝑛𝜑 = 𝑇𝑛(∂𝑖𝜑) for 1 ≤ 𝑖 ≤ 𝑛− 1 and

∂𝑥𝑛𝑇𝑛𝜑(𝑥1, . . . , 𝑥𝑛) =

∫ 1

0

𝑡(∂𝑛𝜑)(𝑥1, . . . , 𝑥𝑛−1, 𝑡𝑥𝑛, (1− 𝑡)𝑥𝑛)𝜈(𝑑𝑡)

+

∫ 1

0

(1− 𝑡)(∂𝑛+1𝜑)(𝑥1, . . . , 𝑥𝑛−1, 𝑡𝑥𝑛, (1− 𝑡)𝑥𝑛)𝜈(𝑑𝑡).

Consequently,

(∂𝑥𝑛𝑇𝑛𝜑)
2(𝑥1, . . . , 𝑥𝑛)

≤
∫ 1

0

𝑡2𝜈(𝑑𝑡)𝑇𝑛(∂𝑛𝜑)
2(𝑥1, . . . , 𝑥𝑛) +

∫ 1

0

(1 − 𝑡)2𝜈(𝑑𝑡)𝑇𝑛(∂𝑛+1𝜑)
2(𝑥1, . . . , 𝑥𝑛)

≤
𝜈
(
𝐴
(𝑛+1)
𝑛

)
𝜈
(
𝐴
(𝑛)
𝑛

) 𝑇𝑛(∂𝑛𝜑)
2(𝑥1, . . . , 𝑥𝑛) +

𝜈
(
𝐴
(𝑛+1)
𝑛+1

)
𝜈
(
𝐴
(𝑛)
𝑛

) 𝑇𝑛(∂𝑛+1𝜑)
2(𝑥1, . . . , 𝑥𝑛).

Using (𝑇𝑛∂𝑖𝜑)
2 ≤ 𝑇𝑛(∂𝑖𝜑)

2 we can now conclude that

𝒜(𝑛)(𝑇𝑛𝐹 ) =

𝑛∑
𝑖=1

𝜈
(
𝐴
(𝑛)
𝑖

)∫
Δ𝑛−1

(∂𝑥𝑖𝑇𝑛𝜑)
2𝑑𝜈(𝑛)

≤
𝑛−1∑
𝑖=1

𝜈
(
𝐴
(𝑛+1)
𝑖

)∫
Δ𝑛−1

𝑇𝑛(∂𝑖𝜑)
2𝑑𝜈(𝑛) + 𝜈

(
𝐴(𝑛+1)
𝑛

) ∫
Δ𝑛−1

𝑇𝑛(∂𝑛𝜑)
2𝑑𝜈(𝑛)

+ 𝜈
(
𝐴
(𝑛+1)
𝑛+1

) ∫
Δ𝑛−1

𝑇𝑛(∂𝑛+1𝜑)
2𝑑𝜈(𝑛)

=

𝑛+1∑
𝑖=1

𝜈
(
𝐴
(𝑛+1)
𝑖

)∫
Δ𝑛

(∂𝑖𝜑)
2𝑑𝜈(𝑛) = 𝒜(𝑛+1)(𝐹 ). □

Iterating Lemma 2.3 we can now conclude that for 𝐹 ∈ 𝒟(𝒜(𝑛)) and 𝑚 ≤ 𝑛
it follows that 𝑇𝑚𝐹 ∈ 𝒟(𝒜(𝑚)) and

𝒜(𝑚)(𝑇𝑚𝐹 ) ≤ 𝒜(𝑚+1)(𝑇𝑚+1𝐹 ) ≤ ⋅ ⋅ ⋅ ≤ 𝒜(𝑛)(𝐹 ) = 𝒜(𝐹 ),

hence Proposition 2.2 is proven.
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Proof of Theorem 2.1. It is sufficient to show that (𝒜,𝒟(∞)
0 ) is closable in 𝐿2(𝜋𝜈),

where 𝒟(∞)
0 =

∪
𝑛≥1𝒟(𝑛)

0 , since the domain of the closure of (𝒜,𝒟(∞)
0 ) will contain

𝒟0, using a simple approximation argument.

To this end let (𝐹𝑛)𝑛≥1 ⊂ 𝒟(∞)
0 be an 𝒜-Cauchy sequence with lim𝑛→∞ 𝐹𝑛 =

0 in 𝐿2(𝜋𝜈). Clearly, for any 𝑚 ≥ 1, it follows that

lim
𝑛→∞𝑇𝑚𝐹𝑛 = 0 in 𝐿2(𝜋𝜈),

and Proposition 2.2 implies that (𝑇𝑚𝐹𝑛)𝑛≥1 is 𝒜(𝑚)-Cauchy. Since 𝒜(𝑚) is closable
in 𝐿2(𝜋𝜈) we conclude that

lim
𝑛→∞𝒜

(𝑚)(𝑇𝑚𝐹𝑛) = 0.

Consequently,

𝒜(𝐹𝑛) = lim
𝑚→∞𝒜

(𝑚)(𝑇𝑚𝐹𝑛) = lim
𝑚→∞ lim

𝑘→∞
𝒜(𝑚)(𝑇𝑚𝐹𝑛 − 𝑇𝑚𝐹𝑘)

≤ lim sup
𝑘→∞

𝒜(𝐹𝑛 − 𝐹𝑘)

and the right-hand side in the last inequality can be made arbitrarily small for
large 𝑛. □

The Wasserstein Dirichlet form – extensions to the multivariate case

In this subsection we restrict our general setting to the case Ω ⊂ ℝ𝑑 relatively
compact and 𝑑𝜈 = 𝛽 𝑑𝑥 with 𝛽 > 0. Consider the bilinear form

ℰ̃(𝐹 ) :=

∫
ℳ1(Ω)

∥∣∇𝑥𝐹 ′(⋅, 𝜇)∣∥2𝐿2(Ω)𝜋𝛽𝑑𝑥(𝑑𝜇)

for

𝐹 ∈ 𝒟0(ℰ̃) := {𝐹 (𝜇) = 𝜑(⟨𝑓1, 𝜇⟩, . . . , ⟨𝑓𝑛, 𝜇⟩) : 𝑛 ≥ 1, 𝜑 ∈ 𝐶1
𝑏 (ℝ

𝑛),

𝑓1, . . . , 𝑓𝑛 ∈ 𝐶2
0 (Ω)}.

Here, ∇𝑥𝜑 = (∂𝑥1𝜑, . . . , ∂𝑥𝑑𝜑) denotes the gradient of a function 𝜑 and ∣∇𝑥𝜑∣ its
euclidean norm.

Theorem 2.4. Let Ω be such that the following Poincaré-inequality∫
Ω

𝑓2𝑑𝑥 ≤ 𝑐Ω

∫
Ω

∣∇𝑥𝑓 ∣2𝑑𝑥 ∀𝑓 ∈ 𝐶1
0 (Ω).

holds with some constant 𝑐Ω > 0. Then (ℰ̃ ,𝒟0(ℰ̃)) is closable in 𝐿2(𝜋𝛽𝑑𝑥).

The proof relies on a comparison of ℰ̃ with the simpler Dirichlet form 𝒜,
which is closable in 𝐿2(𝜋𝛽𝑑𝑥) according to Theorem 2.1.
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We will need the following

Proposition 2.5. 𝒟0(ℰ̃) ⊂ 𝒟(𝒜) and the following inequalities hold:

(i) ℰ̃(𝐹,𝐺) = −
∫
ℳ1(Ω)

⟨𝐹 ′(⋅, 𝜇),Δ𝑥𝐺
′(⋅, 𝜇)⟩𝐿2(Ω)𝜋𝛽𝑑𝑥(𝑑𝜇)

≤ 1

2
𝒜(𝐹 ) +

1

2

∫
ℳ1(Ω)

∥Δ𝑥𝐺
′(⋅, 𝜇)∥2𝐿2(Ω)𝜋𝛽𝑑𝑥(𝑑𝜇)

for 𝐹,𝐺 ∈ 𝒟0(ℰ̃).
(ii) 𝒜(𝐹 ) ≤ 𝑐Ωℰ̃(𝐹 ) for all 𝐹 ∈ 𝒟0(ℰ̃).
Proof. Clearly we can approximate any function 𝑓 ∈ 𝐶2

0 (Ω) by a sequence of
elementary functions 𝑔𝑛, 𝑛 ≥ 1, uniformly bounded, and converging to 𝑓 pointwise.
It follows that lim𝑛→∞⟨𝑔𝑛, 𝜇⟩ = ⟨𝑓, 𝜇⟩ for all 𝜇 ∈ ℳ1(Ω). Now, fix 𝐹 ∈ 𝒟0(ℰ̃)
with the representation 𝐹 (𝜇) = 𝜑(⟨𝑓1, 𝜇⟩, . . . , ⟨𝑓𝑚, 𝜇⟩), 𝜑 ∈ 𝐶1

𝑏 (ℝ
𝑚), 𝑓1, . . . , 𝑓𝑚 ∈

𝐶2
0 (Ω). Let 𝑔

(𝑖)
𝑛 , 𝑛 ≥ 1, be a sequence of uniformly bounded elementary functions

converging to 𝑓𝑖 pointwise. Then

𝐹𝑛(𝜇) = 𝜑(⟨𝑔(1)𝑛 , 𝜇⟩, . . . , ⟨𝑔(𝑚)
𝑛 , 𝜇⟩)→ 𝐹 (𝜇)

for all 𝜇 and in 𝐿𝑝(𝜋𝛽𝑑𝑥) for all finite 𝑝. Moreover,

∥𝐹 ′𝑛(⋅, 𝜇)∥2𝐿2(Ω) =
𝑚∑

𝑘,𝑙=1

𝜑𝑥𝑘𝑥𝑙(⟨𝑔(1)𝑛 , 𝜇⟩, . . . , ⟨𝑔(𝑚)
𝑛 , 𝜇⟩)⟨𝑔(𝑘)𝑛 , 𝑔(𝑙)𝑛 ⟩𝐿2(Ω)

→
𝑚∑

𝑘,𝑙=1

𝜑𝑥𝑘𝑥𝑙(⟨𝑓1, 𝜇⟩, . . . , ⟨𝑓𝑚, 𝜇⟩)⟨𝑓𝑘, 𝑓𝑙⟩𝐿2(Ω)

= ∥𝐹 ′(⋅, 𝜇)∥2𝐿2(Ω)

for all 𝜇 ∈ ℳ1(Ω) and in 𝐿𝑝(𝜋𝜈) for all finite 𝑝. It follows that (𝐹𝑛)𝑛≥1 ⊂ 𝐷(𝒜)
is an 𝒜-Cauchy sequence, so that 𝐹 ∈ 𝐷(𝒜) and

𝒜(𝐹, 𝐹 ) = lim
𝑛→∞𝒜(𝐹𝑛, 𝐹𝑛) =

𝑚∑
𝑘,𝑙=1

𝜑𝑥𝑘𝑥𝑙(⟨𝑓1, 𝜇⟩, . . . , ⟨𝑓𝑚⟩)⟨𝑓𝑘, 𝑓𝑙⟩𝐿2(Ω).

Note that for 𝐹,𝐺 ∈ 𝒟0(𝐸) and 𝜇 ∈ℳ1(Ω), a simple integration by parts yields

⟨∇𝑥𝐹 ′(⋅, 𝜇),∇𝑥𝐺′(⋅, 𝜇)⟩𝐿2(Ω) = −
∫
Ω

𝐹 ′(⋅, 𝜇)Δ𝑥𝐺
′(⋅𝜇) 𝑑𝑥

≤ 1

2
∥𝐹 ′(⋅, 𝜇)∥2𝐿2(Ω) +

1

2
∥Δ𝑥𝐺

′(⋅, 𝜇)∥2𝐿2(Ω)

and integration w.r.t. 𝜋𝛽𝑑𝑥 yields the first inequality (i).

For the proof of (ii) note that for given 𝐹 ∈ 𝒟0(𝐸) we have that 𝐹 ′(⋅, 𝜇) ∈
𝐶2
0 (Ω) and therefore

∥𝐹 ′(⋅, 𝜇)∥2𝐿2(Ω) ≤ 𝑐Ω∥∇𝑥𝐹 ′(⋅, 𝜇)∥2𝐿2(Ω)

and integrating the last inequality w.r.t. 𝜋𝛽𝑑𝑥 yields the assertion. □
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Proof of Theorem 2.4. Let (𝐹𝑛)𝑛≥1 ⊂ 𝒟0(ℰ̃) be an ℰ̃-Cauchy sequence such that
lim𝑛→∞ 𝐹𝑛 = 0 in 𝐿2(𝜋𝛽𝑑𝑥). According to (ii) of Proposition 2.5 it follows that
(𝐹𝑛)𝑛≥1 is an 𝒜-Cauchy sequence, hence

lim
𝑛→∞𝒜(𝐹𝑛) = 0

since 𝒜 is closed. For any 𝐺 ∈ 𝒟0(ℰ̃) we now conclude from (i) of Proposition 2.5
that

lim
𝑛→∞ ℰ̃(𝐹𝑛, 𝐺) = 0.

Note that
ℰ̃(𝐹𝑛) = ℰ̃(𝐹𝑛 − 𝐹𝑚, 𝐹𝑛) + ℰ̃(𝐹𝑚, 𝐹𝑛)

≤ 1

2
ℰ̃(𝐹𝑛 − 𝐹𝑚) +

1

2
ℰ̃(𝐹𝑛) + ℰ̃(𝐹𝑚, 𝐹𝑛),

hence

ℰ̃(𝐹𝑛) ≤ ℰ̃(𝐹𝑛 − 𝐹𝑚) + 2ℰ̃(𝐹𝑚, 𝐹𝑛).

Consequently,

ℰ̃(𝐹𝑛) ≤ lim inf
𝑚→∞ ℰ̃(𝐹𝑛 − 𝐹𝑚) + 2ℰ̃(𝐹𝑚, 𝐹𝑛)

= lim inf
𝑚→∞ ℰ̃(𝐹𝑛 − 𝐹𝑚)

and the right-hand side of the last inequality can be made arbitrarily small for 𝑛
large, since (𝐹𝑛)𝑛≥1 is an ℰ̃-Cauchy sequence. It follows that lim𝑛→∞ ℰ̃(𝐹𝑛) = 0,
hence the assertion. □

Corollary 2.6. The Wasserstein pre-Dirichlet form (ℰ ,ℱ𝐶1
𝑏 ) is closable in 𝐿2(ℚ𝛽).

Proof. Using the identity (2.1) it suffices to show that

ℰ̃(𝐹 ) :=

∫
ℳ1(𝐼)

∥ 𝑑

𝑑𝑥
𝐹 ′(⋅, 𝜇)∥2𝐿2(𝐼)𝜋𝛽𝑑𝑥(𝑑𝜇)

with domain 𝒟0(ℰ̃) is closable in 𝐿2(𝜋𝛽𝑑𝑥), which is just Theorem 2.4. □

3. Convergence of finite-dimensional particle approximations

Let us introduce a class of finite-dimensional particle approximations for the
Wasserstein diffusion. To this end consider a sequence (𝑎𝑁 )𝑁≥2 ⊂]0, 1], satisfy-
ing 𝑁𝑎𝑁 < 1 for all 𝑁 , and lim𝑁→∞ 1−𝑁𝑎𝑁 = 0 and let 𝑏𝑁 := 1−(𝑁−2)𝑎𝑁

2 . For
fixed 𝑁 we then consider the following differential operator

𝐿(𝑁)𝑓(𝑥) = Δ𝑓(𝑥) + (𝛽𝑎𝑁 − 1)

𝑁−1∑
𝑘=2

(
1

𝑥𝑘 − 𝑥𝑘−1
− 1

𝑥𝑘+1 − 𝑥𝑘

)
∂𝑥𝑘𝑓(𝑥)

+ 𝛽(𝑏𝑁 − 2𝑎𝑁 )

(
1

𝑥1
∂𝑥1𝑓(𝑥)−

1

1− 𝑥𝑁−1
∂𝑥𝑁−1𝑓(𝑥)

)
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on the space Σ𝑁−1 with Neumann boundary conditions ∂𝑥1𝑓(𝑥) = 0 if 𝑥1 = 0,
∂𝑥𝑁−1𝑓(𝑥) = 0 if 𝑥𝑁−1 = 1 and ∂𝑥𝑘𝑓(𝑥) = ∂𝑥𝑘+1

𝑓(𝑥) if 𝑥𝑘 = 𝑥𝑘+1, 1 ≤ 𝑘 ≤ 𝑁 −2.

It is easy to see that 𝐿(𝑁) has a symmetrizing measure

𝜈(𝑁)(𝑑𝑥) =
Γ (𝛽(1− 2𝑎𝑁 ))

Γ (𝛽𝑎𝑁 )
𝑁−2

Γ (𝛽(𝑏𝑁 − 𝑎𝑁 ))
2

⋅ 𝑥𝛽(𝑏𝑁−𝑎𝑁 )−1
1

𝑁−1∏
𝑘=2

(𝑥𝑘 − 𝑥𝑘−1)𝛽𝑎𝑁−1(1 − 𝑥𝑁−1)𝛽(𝑏𝑁−𝑎𝑁 )−1𝑑𝑥.

The associated symmetric (pre-)Dirichlet form is given by

ℰ(𝑁)(𝑓) =

∫
Σ𝑁−1

∣∇𝑓 ∣2 𝑑𝜈(𝑁) , 𝑓 ∈ 𝐶1(Σ𝑁−1)

in 𝐿2(Σ𝑁−1, 𝜈(𝑁)). We denote the closure of ℰ(𝑁) again with (ℰ(𝑁), 𝐷(ℰ(𝑁))),
and the associated generator, which is a self-adjoint extension of 𝐿(𝑁), again with
(𝐿(𝑁), 𝐷(𝐿(𝑁))). It is easy to see that ℰ(𝑁) is a local regular Dirichlet form and the

associated diffusion process ((𝕏(𝑁)
𝑡 )𝑡≥0, (ℙ𝑥)𝑥∈Σ𝑁−1) is a solution of the martingale

problem associated with 𝐿(𝑁). The quantity 𝑎𝑁 can be interpreted as the average
distance between two neighboured particles in the approximation, and 𝑏𝑁 − 𝑎𝑁
denotes the average distance from the left-most (resp. right-most) particle to the
boundary.

To understand the limit 𝑁 →∞ let us consider the projection

Π𝑁 : 𝒢 → Σ𝑁−1 , 𝑔 �→ (𝑔 (𝑏𝑁) , 𝑔 (𝑏𝑁 + 𝑎𝑁 ) , . . . , 𝑔 (𝑏𝑁 + (𝑁 − 2)𝑎𝑁 )) ,

and let

𝑎
(𝑁)
𝑘 := 𝑏𝑁 + (𝑘 − 1)𝑎𝑁 , 𝑔

(𝑁)
𝑘 := 𝑔(𝑎

(𝑁)
𝑘 ), 𝑘 = 1, . . . , 𝑁.

For given 𝑓 ∈ 𝐶(𝐼) and 𝑠𝑁 (𝑓, 𝑥) := 𝑎𝑁
∑𝑁−1
𝑛=1 𝑓 (𝑥𝑛) it follows that

lim
𝑁→∞

𝑠𝑁 (𝑓,Π𝑁𝑔) = lim
𝑁→∞

𝑎𝑁

𝑁−1∑
𝑘=1

𝑓
(
𝑔
(𝑁)
𝑘

)
=

∫ 1

0

𝑓(𝑔(𝑠)) 𝑑𝑠 =: 𝑠(𝑓, 𝑔)

ℚ𝛽-a.s. and in 𝐿𝑝(ℚ𝛽) for all finite 𝑝. Consequently, if we consider the sequence

𝜓𝑁 (𝑥) := 𝜓 (𝑠𝑁 (𝑓1, 𝑥), . . . , 𝑠𝑁(𝑓𝑚, 𝑥)) , 𝜓 ∈ 𝐶1(ℝ𝑚) , 𝑓𝑘 ∈ 𝐶 (𝐼) (3.1)

it follows that

lim
𝑁→∞

𝜓𝑁 (Π𝑁𝑔) = 𝜓 (𝑠(𝑓1, 𝑔), . . . , 𝑠(𝑓𝑚, 𝑔)) =: 𝐹 (𝑔).
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Similarly,

𝑎−1𝑁 ℰ(𝑁)(𝜑𝑁 ) =

𝑚∑
𝑘,𝑙=1

𝑎𝑁

𝑁−1∑
𝑛=1

∫
Σ𝑁−1

(𝑓 ′𝑘𝑓
′
𝑙 )(𝑥𝑛)(∂𝑘𝜑∂𝑙𝜑)(𝑠𝑁 (𝑓1, 𝑥), . . .) 𝑑𝜈

(𝑁)

=
𝑚∑

𝑘,𝑙=1

𝑎𝑁

𝑁−2∑
𝑛=0

∫
𝒢
(𝑓 ′𝑘𝑓

′
𝑙 )
(
𝑔(𝑁)
𝑛

)
(∂𝑘𝜑∂𝑙𝜑) (𝑠𝑁 (𝑓1,Π𝑁𝑔), . . .) 𝑑ℚ𝛽(𝑔)

→
∫
𝒢

∥∥∥∥∥
𝑚∑
𝑘=1

∂𝑘𝜑 (𝑠(𝑓1, 𝑔), . . . , 𝑠(𝑓𝑚, 𝑔)) 𝑓 ′𝑘 ∘ 𝑔
∥∥∥∥∥
2

𝐿2(𝐼)

𝑑ℚ𝛽(𝑔)

= ℰ(𝐹 ).

Consequently, the quadratic forms associated with the finite-dimensional parti-
cle approximations converge on the set of finitely based test functions towards
the Wasserstein Dirichlet integral. This does, however, not imply that the corre-
sponding transition probabilities converge towards the transition probabilities of
the Wasserstein diffusion, unless the Wasserstein Dirichlet form, restricted to the
set of finitely based test functions ℱ𝐶1

𝑏 , would be Markov unique, i.e., its closure
in 𝐿2(ℚ𝛽) would be the only Dirichlet form on 𝐿2(ℚ𝛽) extending (ℰ ,ℱ𝐶1

𝑏 ). This
Markov-uniqueness however is open and also the question whether and in what

sense the sequence of finite-dimensional diffusion approximations (𝕏(𝑁)
𝑡 )𝑡≥0 con-

verge to the Wasserstein diffusion was left open in the work [1] by Andres and von
Renesse.

In the following we are going to prove the desired convergence of the transition
semigroup under the assumption that

lim
𝑁→∞

𝑎𝑁
𝑏𝑁

= 0. (3.2)

This means that the ratio of the average distance of two neighboured particles and
the average distance of the right-most (resp. left-most) particle to the boundary
converge to zero.

To state the convergence result precisely, let 𝑅
(𝑁)
𝛼 := (𝛼−𝑎−1𝑁 𝐿(𝑁))−1, 𝛼 > 0,

be the resolvent associated with 𝑎−1𝑁 𝐿(𝑁) and let 𝑅𝛼 := (𝛼−𝐿)−1 be the resolvent
associated with the Wasserstein Dirichlet form.

Theorem 3.1. Let (𝑎𝑁 ) be such that (3.2) holds. Let 𝜓 ∈ 𝐶1(ℝ𝑚), 𝜓𝑁 be as in
(3.1) and 𝜓∞(𝑔) = 𝜓(𝑠(𝑓1, 𝑔), . . . , 𝑠(𝑓𝑚, 𝑔)). Then

lim
𝑁→∞

(𝑅(𝑁)
𝛼 𝜓𝑁 ) ∘Π𝑁 = 𝑅𝛼𝜓∞ in 𝐿2(𝒢,ℚ𝛽).

Let us first sketch the main steps in the proof of Theorem 3.1. The main dif-
ficulty in the finite-dimensional approximation of the Wasserstein Dirichlet form is
due to the fact that neither the evaluation map 𝑔 �→ 𝑔(𝑡) nor the linear functionals
𝑔 �→ ⟨𝑓, 𝑔⟩ are contained in the domain𝐷(ℰ), so that in particular 𝜑(Π𝑁𝑔) /∈ 𝐷(ℰ).
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We therefore introduce the following convolutions

Φ(𝑁)(𝜑)(𝑔) :=
1

∣𝐼𝑁 ∣
∫
𝐼𝑁

𝜑(𝑔(𝑁)(𝑠)) 𝑑𝑠 , 𝜑 ∈ ℬ𝑏(Σ𝑁−1). (3.3)

Here, 𝐼𝑁 = [0, 𝑎𝑁 ] and ∣𝐼𝑁 ∣ = 𝑎𝑁 denotes its length. The properties of this
convolution are quite similar to the properties of a Dirac-sequence on ℝ, like, e.g.,

𝑇𝑁𝑓(𝑥) =
√

𝑁
2𝜋

∫
𝑓(𝑥− 𝑦) exp(− 𝑦2

2𝑁 )(𝑑𝑦). In particular, we have that

lim
𝑁→∞

Φ(𝑁)(𝜓(𝑁)) = 𝐹 in 𝐿𝑝(ℚ𝛽) for all finite 𝑝.

A further difficulty now arises from the fact that we need this convergence uni-
formly w.r.t. the sup-norm ∥𝜓(𝑁)∥∞ in the sense that

lim
𝑁→∞

∫
𝒢
Φ(𝑁)(𝑓𝑁 ) 𝑑ℚ𝛽 −

∫
Σ𝑁−1

𝑓𝑁𝑑𝜈
(𝑁)
0 = 0 (3.4)

for 𝑓𝑁 ∈ 𝐶(Σ𝑁−1) with sup𝑁 ∥𝑓𝑁∥∞ < ∞ (cf. Lemma 3.6 below). Here, 𝜈
(𝑁)
𝑠 ,

𝑠 ∈ 𝐼𝑁 , is the distribution of

𝑔(𝑁)(𝑠) =
(
𝑔
(𝑁)
1 (𝑠), . . . , 𝑔

(𝑁)
𝑁−1(𝑠)

)
, 𝑔

(𝑁)
𝑘 (𝑠) = 𝑔(𝑏𝑁 + (𝑘 − 1)𝑎𝑁 + 𝑠)

under ℚ𝛽 , i.e.,

𝜈(𝑁)
𝑠 (𝑑𝑥) =

Γ (𝛽)

Γ(𝛽(𝑏𝑁 + 𝑠))Γ (𝛽𝑎𝑁 )
𝑁−2

Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 𝑠))

⋅ 𝑥𝛽(𝑏𝑁+𝑠)−1
1

𝑁−1∏
𝑘=2

(𝑥𝑘 − 𝑥𝑘−1)
𝛽𝑎𝑁−1 (1− 𝑥𝑁−1)𝛽(𝑏𝑁+𝑎𝑁−𝑠)−1 𝑑𝑥.

The desired convergence (3.4) reduces to show that∫
𝒢
Φ(𝑁)(𝑓𝑁 ) 𝑑ℚ𝛽 −

∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈
(𝑁)
0

=
1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈(𝑁)
𝑠 −

∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈
(𝑁)
0

)
𝑑𝑠→ 0

which requires some uniform control of the Radon–Nikodym derivatives
𝑑𝜈(𝑁)
𝑠

𝑑𝜈
(𝑁)
0

,

𝑁 ≥ 1. In order to ensure this we will show in Lemma 3.2 below that in fact

lim
𝑁→∞

∫
Σ𝑁−1

(
𝑑𝜈

(𝑁)
𝑠

𝑑𝜈
(𝑁)
0

− 1

)2

𝑑𝜈
(𝑁)
0 = 0

if the condition (3.2) on the sequence 𝑎𝑁 and 𝑏𝑁 is satisfied. A similar control is

required for the Radon–Nikodym derivatives
𝑑𝜈(𝑁)
𝑠

𝑑𝜈(𝑁) , 𝑁 ≥ 1 (see Lemma 3.3).

The crucial property of the convolutions Φ(𝑁) is that it maps 𝐶1-functions 𝜑
into the domain 𝐷(ℰ) of the Wasserstein Dirichlet form with the additional fact

that ℰ(Φ(𝑁)(𝜑)) ≤ 𝑐ℰ̃(𝑁)(𝜑) for some uniform constant 𝑐 (cf. Lemma 3.4 below).
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Applying this to the sequence Φ(𝑁)(𝜑𝑁 ), 𝜑𝑁 = 𝛼𝑅
(𝑁)
𝛼 𝜓𝑁 , 𝑁 ≥ 1, now yields a

bounded sequence in 𝐷(ℰ), and any limit 𝐹 ∈ 𝐷(ℰ) of some weakly convergent
subsequence will satisfy the identity

ℰ𝛼(𝐹, exp(𝑠(ℎ, ⋅)) =
∫

𝜓∞ exp(𝑠(ℎ, ⋅)) 𝑑ℚ𝛽
which implies that 𝐹 = 𝑅𝛼𝜓∞ and thus the assertion.

Lemma 3.2. Let

𝑐𝑁 (𝑠) :=
Γ(𝛽𝑏𝑁 )Γ(𝛽(𝑏𝑁 + 𝑎𝑁 ))

Γ(𝛽(𝑏𝑁 + 𝑠))Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 𝑠))
, 𝑠 ∈ 𝐼𝑁

𝑑𝑁 (𝑠, 𝑥) := 𝑥𝛽𝑠1 (1− 𝑥𝑁−1)−𝛽𝑠 , 𝑥 ∈ Σ𝑁−1 , 𝑠 ∈ 𝐼𝑁 .

so that

𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥) =
𝑑𝜈

(𝑁)
𝑠

𝑑𝜈
(𝑁)
0

(𝑥).

Then

lim
𝑁→∞

∫
Σ𝑁

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(1− 𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥))
2
𝑑𝑠 𝜈

(𝑁)
0 (𝑑𝑥) = 0.

Proof. Note that∫
Σ𝑁

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(1− 𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥))
2
𝑑𝑠 𝜈

(𝑁)
0 (𝑑𝑥)

= −1 + 1

∣𝐼𝑁 ∣
∫
𝐼𝑁

𝑐2𝑁 (𝑠)

∫
Σ𝑁−1

𝑑2𝑁 (𝑠, 𝑥)𝜈
(𝑁)
0 (𝑑𝑥) 𝑑𝑠

= −1 + 1

∣𝐼𝑁 ∣
∫
𝐼𝑁

𝑐2𝑁 (𝑠)
Γ (𝛽 (𝑏𝑁 + 2𝑠)) Γ (𝛽 (𝑏𝑁 + 𝑎𝑁 − 2𝑠))

Γ (𝛽𝑏𝑁 ) Γ (𝛽(𝑏𝑁 + 𝑎𝑁 ))
𝑑𝑠.

It is therefore sufficient to show that

lim
𝑁→∞

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

𝑐2𝑁(𝑠)
Γ (𝛽 (𝑏𝑁 + 2𝑠)) Γ (𝛽 (𝑏𝑁 + 𝑎𝑁 − 2𝑠))

Γ (𝛽𝑏𝑁 ) Γ (𝛽(𝑏𝑁 + 𝑎𝑁 ))
𝑑𝑠 = 1.

To this end note that we can write the integrand as

𝑐2𝑁 (𝑠)
Γ (𝛽 (𝑏𝑁 + 2𝑠)) Γ (𝛽 (𝑏𝑁 + 𝑎𝑁 − 2𝑠))

Γ (𝛽𝑏𝑁 ) Γ (𝛽(𝑏𝑁 + 𝑎𝑁 ))

=
(𝑏𝑁 + 𝑠)2(𝑏𝑁 + 𝑎𝑁 − 𝑠)2

𝑏𝑁 (𝑏𝑁 + 𝑎𝑁 )(𝑏𝑁 + 2𝑠)(𝑏𝑁 + 𝑎𝑁 − 2𝑠)
⋅ 𝑒𝑁(𝑠)

with

𝑒𝑁 (𝑠) =
Γ(𝛽(𝑏𝑁 + 𝑠) + 1)2Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 𝑠) + 1)2

Γ(𝛽𝑏𝑁 + 1)Γ(𝛽(𝑏𝑁 + 𝑎𝑁 ) + 1)Γ(𝛽(𝑏𝑁 + 2𝑠) + 1)Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 2𝑠) + 1)
.

Note the two-sided estimate

1

Γ(𝛽(𝑏𝑁 + 2𝑎𝑁) + 1)4
≤ 𝑒𝑁(𝑠) ≤ Γ(𝛽(𝑏𝑁 + 𝑎𝑁 ) + 1)4
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which implies that 𝑒𝑁 (𝑠)→ 1 for 𝑁 →∞ uniformly in 𝑠 ∈ 𝐼𝑁 . Consequently

lim
𝑁→∞

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

𝑐2𝑁 (𝑠)
Γ (𝛽 (𝑏𝑁 + 2𝑠)) Γ (𝛽 (𝑏𝑁 + 𝑎𝑁 − 2𝑠))

Γ (𝛽𝑏𝑁 ) Γ (𝛽(𝑏𝑁 + 𝑎𝑁 ))
𝑑𝑠

= lim
𝑁→∞

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(𝑏𝑁 + 𝑠)2(𝑏𝑁 + 𝑎𝑁 − 𝑠)2

𝑏𝑁 (𝑏𝑁 + 𝑎𝑁 )(𝑏𝑁 + 2𝑠)(𝑏𝑁 + 𝑎𝑁 − 2𝑠)
𝑑𝑠

= lim
𝑁→∞

∫ 1

0

(𝑏𝑁 + 𝑎𝑁 𝑡)2(𝑏𝑁 + 𝑎𝑁 (1− 𝑡))2

𝑏𝑁 (𝑏𝑁 + 𝑎𝑁 )(𝑏𝑁 + 2𝑎𝑁 𝑡)(𝑏𝑁 + 𝑎𝑁 (1− 2𝑡))
𝑑𝑡

= lim
𝑁→∞

∫ 1

0

(1 + 𝑎𝑁
𝑏𝑁

𝑡)2(1 + 𝑎𝑁
𝑏𝑁

(1− 𝑡))2

(1 + 𝑎𝑁
𝑏𝑁

)(1 + 2𝑎𝑁𝑏𝑁 𝑡)(1 + 𝑎𝑁
𝑏𝑁

(1− 2𝑡))
𝑑𝑡 = 1. □

Lemma 3.3. Let

𝑐𝑁 (𝑠) :=
Γ(𝛽)

Γ(𝛽(1− 2𝑎𝑁 ))

Γ(𝛽(𝑏𝑁 − 𝑎𝑁 ))
2

Γ(𝛽(𝑏𝑁 + 𝑠))Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 𝑠))
, 𝑠 ∈ 𝐼𝑁

𝑑𝑁 (𝑠, 𝑥) := 𝑥
𝛽(𝑎𝑁+𝑠)
1 (1 − 𝑥𝑁−1)𝛽(𝑎𝑁−𝑠) , 𝑥 ∈ Σ𝑁−1 , 𝑠 ∈ 𝐼𝑁 .

so that

𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥) =
𝑑𝜈

(𝑁)
𝑠

𝑑𝜈(𝑁)
(𝑥).

Then

lim
𝑁→∞

∫
Σ𝑁

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(1− 𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥))
2
𝑑𝑠 𝜈(𝑁)(𝑑𝑥) = 0.

The proof is completely similar to the proof of the previous lemma, so that
we can omit it.

For the next lemma recall from (3.3) the definition of the convolution Φ(𝑁)(𝜑).

Lemma 3.4. Let 𝜑 ∈ 𝐶1(Σ𝑁−1). Then Φ(𝑁)(𝜑) ∈ 𝐷(ℰ) and

ℰ
(
Φ(𝑁)(𝜑)

)
≤ 1

∣𝐼𝑁 ∣
𝑁−1∑
𝑘=1

∫
Φ(𝑁)

(
(∂𝑥𝑘𝜑)

2
)
(𝑔)ℚ𝛽(𝑑𝑔)

=
1

∣𝐼𝑁 ∣2
∫
𝐼𝑁

∫
Σ𝑁−1

∣∇𝜑∣2 𝑑𝜈(𝑁)
𝑠 𝑑𝑠,

Moreover, there exists a uniform constant 𝑐 such that

ℰ
(
Φ(𝑁)(𝜑)

)
≤ 𝑐

1

𝑎𝑁
ℰ̃(𝑁)(𝜑).

Proof. It is easy to see by suitable approximations that Φ(𝑁)(𝜑) is in the domain
of the closure of ℰ and Fréchet differentiable with differential(

Φ(𝑁)(𝜑)
)′

(𝑠, 𝑔) =
1

∣𝐼𝑁 ∣
𝑁−1∑
𝑘=1

∂𝑥𝑘𝜑
(
𝑔(𝑁)

(
𝑠− 𝑎

(𝑁)
𝑘

))
1[
𝑎
(𝑁)
𝑘 ,𝑎

(𝑁)
𝑘+1

](𝑠).
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Consequently,

ℰ
(
Φ(𝑁)(𝜑)

)
=

1

∣𝐼𝑁 ∣2
𝑁−1∑
𝑘=1

∫
𝒢

∫
𝐼𝑁

(∂𝑥𝑘𝜑)
2
(
𝑔(𝑁)(𝑠)

)
𝑑𝑠ℚ𝛽(𝑑𝑔)

=
1

∣𝐼𝑁 ∣2
∫
𝐼𝑁

∫
Σ𝑁−1

∣∇𝜑∣2 𝑑𝜈(𝑁)
𝑠 𝑑𝑠

which implies the first assertion. The second assertion follows from the fact that

the Radon–Nikodym derivative
𝑑𝜈(𝑁)
𝑠

𝑑𝜈(𝑁) can be uniformly bounded w.r.t. 𝑥 ∈ Σ𝑁−1
and w.r.t. 𝑁 since

𝑑𝜈
(𝑁)
𝑠

𝑑𝜈(𝑁)
(𝑥) ≤ Γ(𝛽)

Γ(𝛽(1 − 2𝑎𝑁 ))

Γ(𝛽(𝑏𝑁 − 𝑎𝑁 ))
2

Γ(𝛽(𝑏𝑁 + 𝑠))Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 𝑠))

≤ Γ(𝛽 + 1)

Γ(𝛽(1 − 2𝑎𝑁 ) + 1)

Γ(𝛽(𝑏𝑁 − 𝑎𝑁 ) + 1)2

Γ(𝛽(𝑏𝑁 + 𝑠) + 1)Γ(𝛽(𝑏𝑁 + 𝑎𝑁 − 𝑠) + 1)

⋅ (1− 2𝑎𝑁)(𝑏𝑁 + 𝑠)(𝑏𝑁 + 𝑎𝑁 − 2)

(𝑏𝑁 − 𝑎𝑁 )2
≤ Γ(𝛽 + 1)3

(𝑏𝑁 + 𝑎𝑁 )
2

(𝑏𝑁 − 𝑎𝑁 )2

is uniformly bounded w.r.t. 𝑁 . □

We now consider in the limit 𝑁 →∞ for given 𝜓 as in (3.1) the sequence

𝜑𝑁 = 𝛼𝑅(𝑁)
𝛼 𝜓𝑁 , 𝑁 ≥ 1.

Lemma 3.5. The sequence
(
Φ(𝑁)(𝜑𝑁 )

)
𝑁≥1 is bounded in 𝒟(ℰ).

Proof. It follows from Lemma 3.4 that Φ(𝑁)(𝜑𝑁 ) ∈ 𝒟(ℰ) and we can estimate

ℰ(Φ(𝑁)(𝜑𝑁 )) ≤ 𝑐
1

𝑎𝑁
ℰ̃(𝑁)(𝜑𝑁 ) = 𝑐

∫
Σ𝑁−1

(𝜓𝑁 − 𝛼𝜑𝑁 )𝜑𝑁 𝑑𝜈(𝑁)

≤ 𝑐∥𝜓∥2∞. □

Lemma 3.6. Let 𝑓𝑁 ∈ 𝐶(Σ𝑁−1), 𝑁 ≥ 1, be uniformly bounded, i.e.,

𝑀 := sup
𝑁≥1

∥𝑓𝑁∥∞,Σ𝑁−1 <∞.

Then

(i) lim
𝑁→∞

∫
𝒢
Φ(𝑁)(𝑓𝑁 ) 𝑑ℚ𝛽 −

∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈
(𝑁)
0 = 0,

(ii) lim
𝑁→∞

∫
𝒢
Φ(𝑁)(𝑓𝑁 ) 𝑑ℚ𝛽 −

∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈(𝑁) = 0.
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Proof. For the proof of (i) we use the notations of Lemma 3.2. We can then write∣∣∣∣ ∫𝒢Φ(𝑁)(𝑓𝑁 )(𝑔)ℚ𝛽(𝑑𝑔)−
∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈
(𝑁)
0

∣∣∣∣
=

∣∣ 1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∫
Σ𝑁−1

𝑓𝑁 𝑑𝜈(𝑁)
𝑠 𝑑𝑠−

∫
Σ𝑁−1

𝑓𝑁 (𝑥) 𝜈
(𝑁)
0 (𝑑𝑥)

∣∣
=

∣∣ 1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∫
Σ𝑁−1

𝑓𝑁 (𝑥)(𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥)− 1) 𝜈
(𝑁)
0 (𝑑𝑥) 𝑑𝑠

∣∣
≤ ∥𝑓𝑁∥∞,Σ𝑁−1

(∫
Σ𝑁−1

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(𝑐𝑁 (𝑠)𝑑𝑁 (𝑠, 𝑥)− 1)2 𝑑𝑠 𝜈
(𝑁)
0 (𝑑𝑥)

) 1
2

which converges to zero according to Lemma 3.2 and the uniform boundedness of
∥𝑓𝑁∥∞.

The proof of (ii) is similar using the Lemma 3.3. □

Lemma 3.7. Let ℎ ∈ 𝐶1(𝐼) and 𝑝 ∈ [1,∞[. Then

lim
𝑁→∞

∫
𝒢

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∣∣∣exp (𝑠(ℎ, 𝑔))− exp
(
𝑠𝑁 (ℎ, 𝑔

(𝑁)(𝑠))
)∣∣∣𝑝 𝑑𝑠ℚ𝛽(𝑑𝑔) = 0.

Proof. Note that for all 𝑔 ∈ 𝒢 and for all 𝑠 ∈ 𝐼𝑁∣∣ exp (𝑠(ℎ, 𝑔))− exp
(
𝑠𝑁(ℎ, 𝑔

(𝑁)(𝑠))
) ∣∣𝑝

≤
∣∣∣𝑠(ℎ, 𝑔)− 𝑠𝑁 (ℎ, 𝑔

(𝑁)(𝑠)
∣∣∣ exp(𝑝∥ℎ∥∞)

≤
(
2𝑏𝑁∥ℎ∥∞

+ 𝑎𝑁

𝑁−1∑
𝑘=1

∫ 𝑎
(𝑁)
𝑘+1

𝑎
(𝑁)
𝑘

∣∣∣ℎ(𝑔(𝑟)) − ℎ
(
𝑔
(𝑁)
𝑘 (𝑠)

)∣∣∣ 𝑑𝑟) exp(𝑝∥ℎ∥∞)

≤
(
2𝑏𝑁∥ℎ∥∞

+ 𝑎𝑁∥ℎ′∥∞
𝑁−1∑
𝑘=1

∫ 𝑎
(𝑁+1)
𝑘+1

𝑎
(𝑁)
𝑘

∣∣∣𝑔(𝑟)− 𝑔
(𝑁)
𝑘 (𝑠)

∣∣∣ 𝑑𝑟) exp(𝑝∥ℎ∥∞).

Using ∫
𝒢

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∫ 𝑎
(𝑁)
𝑘+1

𝑎
(𝑁)
𝑘

∣∣∣𝑔(𝑟) − 𝑔
(𝑁)
𝑘 (𝑠)

∣∣∣ 𝑑𝑟 𝑑𝑠ℚ𝛽(𝑑𝑔)
=

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∫ 𝑎𝑁

0

∣𝑟 − 𝑠∣ 𝑑𝑟 𝑑𝑠 ≤ 𝑎𝑁
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for 𝑘 = 1, . . . , 𝑁 − 1 and 𝑠 ∈ 𝐼𝑁 and 𝑁𝑎𝑁 ≤ 1 we obtain that∫
𝒢

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∣∣∣exp (𝑠(ℎ, 𝑔))− exp
(
𝑠𝑁 (ℎ, 𝑔

(𝑁)(𝑠))
)∣∣∣𝑝 𝑑𝑠ℚ𝛽(𝑑𝑔)

≤ (2𝑏𝑁 + 𝑎𝑁 ) (∥ℎ′∥∞ + ∥ℎ∥∞) exp(𝑝∥ℎ∥∞)→ 0 , 𝑁 →∞. □

Proof of Theorem 3.1. Let 𝐹 ∈ 𝒟(ℰ) be the limit of some weakly convergent sub-
sequence of Φ(𝑁)(𝜑𝑁 ), 𝑁 ≥ 1, again denoted by Φ(𝑁)(𝜑𝑁 ), 𝑁 ≥ 1. Fix ℎ ∈ 𝐶1(𝐼).
Let ℰ𝛼(⋅, ⋅) = ℰ(⋅, ⋅) + 𝛼(⋅, ⋅)𝐿2(ℚ𝛽). Then

ℰ𝛼(𝐹, exp(𝑠(ℎ, ⋅))) = lim
𝑁→∞

ℰ𝛼(Φ(𝑁)(𝜑𝑁 ), exp(𝑠(ℎ, ⋅))). (3.5)

Note that

lim
𝑁→∞

∫
𝒢
Φ(𝑁)(𝜑𝑁 ) exp (𝑠(ℎ, ⋅))− Φ(𝑁)(𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅))) 𝑑ℚ𝛽 = 0

by Lemma 3.7 and

lim
𝑁→∞

∫
𝒢
Φ(𝑁)(𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅))) 𝑑ℚ𝛽 −

∫
Σ𝑁−1

𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁) = 0

by Lemma 3.6 so that

lim
𝑁→∞

∫
𝒢
Φ(𝑁)(𝜑𝑁 ) exp (𝑠(ℎ, ⋅)) 𝑑ℚ𝛽 −

∫
Σ𝑁−1

𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁) = 0. (3.6)

Next, observe that

ℰ
(
Φ(𝑁)(𝜑𝑁 ), exp(𝑠(ℎ, ⋅))

)
=

𝑁−1∑
𝑘=1

∫
𝒢

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

∂𝑥𝑘𝜑𝑁

(
𝑔(𝑁)(𝑠)

)
ℎ′

(
𝑔
(𝑁)
𝑘 (𝑠)

)
𝑑𝑠 exp (𝑠(ℎ, 𝑔)) ℚ𝛽(𝑑𝑔)

=

𝑁−1∑
𝑘=1

∫
𝒢
Φ(𝑁)

(
∂𝑥𝑘𝜑𝑁 (𝑔(𝑁)(𝑠))ℎ′

(
𝑔
(𝑁)
𝑘 (𝑠)

))
exp (𝑠(ℎ, 𝑔)) ℚ𝛽(𝑑𝑔)

and thus

lim
𝑁→∞

ℰ
(
Φ(𝑁)(𝜑𝑁 ), exp(𝑠(ℎ, ⋅))

)
−
𝑁−1∑
𝑘=1

∫
𝒢
Φ(𝑁) (∂𝑥𝑘𝜑𝑁∂𝑥𝑘 exp (𝑠𝑁(ℎ, ⋅))) 𝑑ℚ𝛽

≤ lim
𝑁→∞

∥ℎ′∥∞
(

1

𝑎𝑁

𝑁−1∑
𝑘=1

∫
𝒢
Φ(𝑁)

(
∂𝑥𝑘𝜑

2
𝑁

)
𝑑ℚ𝛽

) 1
2

⋅
(∫

𝒢

∫
𝐼𝑁

(
exp (𝑠(ℎ, 𝑔))− exp

(
𝑠𝑁 (ℎ, 𝑔

(𝑁)(𝑠))
))2

𝑑𝑠ℚ𝛽(𝑑𝑔)

) 1
2

= 0
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again using Lemma 3.7 and 3.5. Using Lemma 3.2 and the assumption 𝑁𝑎𝑁 ≤ 1
we have that

𝑁−1∑
𝑘=1

∫
𝒢
Φ(𝑁) (∂𝑥𝑘𝜑𝑁∂𝑥𝑘 exp (𝑠𝑁 (ℎ, ⋅))) 𝑑ℚ𝛽

−
𝑁−1∑
𝑘=1

∫
Σ𝑁−1

∂𝑥𝑘𝜑𝑁∂𝑥𝑘 exp (𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁)

≤ ∥ℎ′∥∞ exp(∥ℎ∥∞)
(
𝑎−1𝑁 ℰ(𝑁)(𝜑𝑁 )

) 1
2

⎛⎝∫
Σ𝑁−1

1

∣𝐼𝑁 ∣
∫
𝐼𝑁

(
𝑑𝜈

(𝑁)
𝑠

𝑑𝜈(𝑁)
− 1

)2

𝑑𝑠 𝑑𝜈(𝑁)

⎞⎠
1
2

−→ 0

as 𝑁 →∞ by Lemma 3.2 and the assumption 𝑁𝑎𝑁 ≤ 1. Consequently,

lim
𝑁→∞

ℰ
(
Φ(𝑁)(𝜑𝑁 ), exp(𝑠(ℎ, ⋅))

)
−
𝑁−1∑
𝑘=1

∫
Σ𝑁−1

∂𝑥𝑘𝜑𝑁∂𝑥𝑘 exp (𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁) = 0.
(3.7)

Inserting (3.6) and (3.7) into (3.5) we obtain that

lim
𝑁→∞

ℰ𝛼
(
Φ(𝑁)(𝜑𝑁 ), exp (𝑠(ℎ, ⋅))

)
= lim
𝑁→∞

𝛼

∫
Σ𝑁−1

𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁)

−
𝑁−1∑
𝑘=1

∫
Σ𝑁−1

∂𝑥𝑘𝜑𝑁∂𝑥𝑘 exp (𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁)

= lim
𝑁→∞

∫
Σ𝑁−1

𝜓𝑁 exp (𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁)

=

∫
𝒢
𝜓∞ exp (𝑠(ℎ, ⋅)) 𝑑ℚ𝛽 .

In the last equality we used the fact that

lim
𝑁→∞

∫
Σ𝑁−1

𝜓𝑁 exp (𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁) −
∫
𝒢
𝜓𝑁 ∘Π𝑁 exp (𝑠𝑁 (ℎ,Π𝑁 )) 𝑑ℚ𝛽 = 0

by Lemma 3.6 and

lim
𝑁→∞

∫
𝒢
𝜓𝑁 ∘Π𝑁 exp (𝑠𝑁 (ℎ,Π𝑁 )) 𝑑ℚ𝛽 =

∫
𝒢
𝜓∞ exp (𝑠(ℎ, ⋅)) 𝑑ℚ𝛽 .

Since span
{
exp(𝑠(ℎ, ⋅)) ∣ ℎ ∈ 𝐶1(𝐼)

} ⊂ 𝒟(ℰ) dense, the last equality holds for all
𝐺 ∈ 𝒟(ℰ) which implies that 𝐹 = 𝑅𝛼𝜓∞.
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For the proof of the theorem it remains to show that

lim
𝑁→∞

Φ(𝑁)(𝜑𝑁 )− 𝜑𝑁 ∘Π𝑁 = 0

weakly in 𝐿2(ℚ𝛽). But this follows from the fact that the sequence Φ(𝑁)(𝜑𝑁 ) −
𝜑𝑁 ∘Π𝑁 , 𝑁 ≥ 1, is bounded in 𝐿2(ℚ𝛽) and for any ℎ ∈ 𝐶1(𝐼)

lim
𝑁→∞

∫
𝒢

(
Φ(𝑁)(𝜑𝑁 )− 𝜑𝑁 ∘Π𝑁

)
exp(𝑠(ℎ, ⋅)) 𝑑ℚ𝛽

= lim
𝑁→∞

∫
𝒢

(
Φ(𝑁)(𝜑𝑁 )− 𝜑𝑁 ∘Π𝑁

)
exp(𝑠𝑁 (ℎ, ⋅)) ∘Π𝑁 𝑑ℚ𝛽

= lim
𝑁→∞

∫
𝒢
Φ(𝑁) (𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅))) 𝑑ℚ𝛽

−
∫
Σ𝑁−1

𝜑𝑁 exp(𝑠𝑁 (ℎ, ⋅)) 𝑑𝜈(𝑁)
0 = 0

using Lemma 3.3. This implies the assertion of the theorem. □

3.1. The particle approximation of the Wasserstein Dirichlet form
over the unit circle

We can also consider the Wasserstein diffusion over the unit circle 𝑆1 with state
space

𝒢1 = {𝑔 : 𝑆1 → 𝑆1 ∣ 𝑔 = 𝑔−1𝜇 for some 𝜇 ∈ ℳ1(𝑆
1)}

where 𝑔−1𝜇 (𝑡) = inf{𝑠 ∈ [0, 1] ∣ 𝜇([0, 𝑠]) > 𝑡} denotes the inverse cumulative distri-

bution function of 𝜇. The entropic measure ℚ1
𝛽 is uniquely determined through its

finite-dimensional distributions

ℚ1
𝛽 (𝑔(𝑡1) ∈ 𝑑𝑥1, . . . , 𝑔(𝑡𝑛) ∈ 𝑑𝑥𝑛)

=
Γ(𝛽)∏𝑛

𝑘=1 Γ(𝛽(𝑡𝑘 − 𝑡𝑘−1))

𝑛∏
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1)𝛽(𝑡𝑘−𝑡𝑘−1)−1 𝑑𝑥

for any strictly increasing sequence 0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 < 1, identifying 𝑡0 = 𝑡𝑛, on
the set

Σ1
𝑛 =

{
(𝑥1, . . . , 𝑥𝑛) ∈ (𝑆1)𝑛 ∣

𝑛∑
𝑘=1

∣[𝑥𝑘−1, 𝑥𝑘]∣ = 1

}
of 𝑛-partitions of 𝑆1 identifying 𝑥0 = 𝑥𝑛. ℚ1

𝛽 is rotationally invariant in the sense

that the laws of 𝑔 �→ 𝑔(⋅+ 𝑡) are independent of 𝑡 ∈ ℝ, thereby identifying 𝑆1 with
ℝ/ℤ.

The Wasserstein Dirichlet form in this case is the closure (ℰ1, 𝐷(ℰ1)) in
𝐿2(ℚ1

𝛽) of the bilinear form∫
𝒢1

∥𝐹 ′(⋅, 𝑔)∥2𝐿2(𝑆1) 𝑑ℚ
1
𝛽(𝑔),

defined on the space of all functions 𝐹 that admit the representation 𝐹 (𝑔) =
𝜑(⟨𝑓1, 𝑔⟩, . . . , ⟨𝑓𝑚, 𝑔⟩) for some 𝜑 ∈ 𝐶1

𝑏 (ℝ
𝑚), 𝑚 ≥ 1, and 𝑓1, . . . , 𝑓𝑚 ∈ 𝐿2(𝑆1).
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We now consider the finite-dimensional approximations generated by

𝐿1,(𝑁)𝑓(𝑥) = Δ𝑓(𝑥) + (𝛽
1

𝑁 − 1
− 1)

𝑁−1∑
𝑘=1

(
1

𝑥𝑘 − 𝑥𝑘−1
− 1

𝑥𝑘+1 − 𝑥𝑘

)
∂𝑥𝑘𝑓(𝑥)

with Neumann boundary conditions ∂𝑥𝑘𝑓(𝑥) = ∂𝑥𝑘1 𝑓(𝑥) if 𝑥𝑘 = 𝑥𝑘−1, 𝑘 =

1, . . . , 𝑁 − 1. 𝐿1,(𝑁) has symmetrizing measure

𝜈1,(𝑁)(𝑑𝑥) =
Γ (𝛽)

Γ
(
𝛽 1
𝑁−1

)𝑁−1 𝑁−1∏
𝑘=1

(𝑥𝑘 − 𝑥𝑘−1)𝛽
1

𝑁−1−1𝑑𝑥.

Similar to the case of the unit interval we denote the (closure) of the associated
symmetric Dirichlet form

ℰ1,(𝑁)(𝑓) =

∫
Σ1
𝑁−1

∣∇𝑓 ∣2 𝑑𝜈1,(𝑁) , 𝑓 ∈ 𝐶1(Σ1
𝑁−1)

in 𝐿2(Σ1
𝑁−1, 𝜈

1,(𝑁)) again with (ℰ1,(𝑁), 𝐷(ℰ1,(𝑁))).
The analogous convolutions in the periodic case are given by

Φ1,(𝑁)(𝜑)(𝑔) :=
1

∣𝐼𝑁 ∣
∫
𝐼𝑁

𝜑
(
𝑔(𝑁)(𝑠)

)
𝑑𝑠

for 𝜑 ∈ ℬ𝑏(Σ1
𝑁−1) where now 𝐼𝑁 = [0, 1

𝑁−1 ], and

𝑔(𝑁)(𝑠) =

(
𝑔(𝑠), . . . , 𝑔

(
𝑠+

𝑁 − 2

𝑁 − 1

))
, 𝑠 ∈ 𝐼𝑁 .

The convolution has analogous properties to the previous case, and due to the
rotatonal invariance of the entropic measure in this case it follows that the (joint)

distribution 𝜈
1,(𝑁)
𝑠 of 𝑔(𝑁)(𝑠) is independent of 𝑠 and equal to 𝜈1,(𝑁). In particular,∫

𝒢1

Φ1,(𝑁)(𝜑) 𝑑ℚ1
𝛽 =

∫
Σ1
𝑁−1

𝜑𝑑𝜈1,(𝑁)

for all 𝑁 , so that as a consequence Lemmata 3.4, 3.5 and 3.6 hold without any
further restriction. We can therefore state the following result:

Theorem 3.8. Let 𝑅
1,(𝑁)
𝛼 := (𝛼− (𝑁 − 1)𝐿1,(𝑁))−1, 𝛼 > 0, be the resolvent associ-

ated with (𝑁 − 1)𝐿1,(𝑁) and let 𝑅1
𝛼 := (𝛼−𝐿1)−1 be the resolvent associated with

the Wasserstein Dirichlet form on the unit circle. Let

𝜓𝑁 (𝑥) = 𝜓 (𝑠𝑁 (𝑓1, 𝑥), . . . , 𝑠𝑁 (𝑓𝑚, 𝑥)) , 𝜓 ∈ 𝐶1(ℝ𝑚) , 𝑓𝑘 ∈ 𝐶1(𝑆1),

𝜓∞(𝑔) = 𝜓 (𝑠(𝑓1, 𝑔), . . . , 𝑠(𝑓𝑚, 𝑔)) ,

where 𝑠𝑁𝑓(𝑥) = 1
𝑁−1

∑𝑁−1
𝑘=1 𝑓(𝑥𝑘) and 𝑠(𝑓, 𝑔) =

∫
𝑆1 𝑓(𝑔(𝑠)) 𝑑𝑠. Then

lim
𝑁→∞

(𝑅1,(𝑁)
𝛼 𝜓𝑁 ) ∘Π𝑁 = 𝑅1

𝛼𝜓∞ in 𝐿2(𝒢1,ℚ1
𝛽).



Two Remarks on the Wasserstein Dirichlet Form 255

References

[1] S. Andres and M.K. von Renesse, Particle approximation of the Wasserstein diffu-
sion. J. Funct. Anal., 258 (2010), 3879–3905.
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Stochastic Modeling of Power Markets
Using Stationary Processes

Fred Espen Benth and Heidar Eyjolfsson

Abstract. We make a survey over recent developments in stochastic modelling
of power markets, with a particular focus on the application of stationary
processes. We analyse the class of Lévy semistationary processes proposed
by Barndorff-Nielsen, Benth and Veraart [1] for modelling electricity spot
prices. We suggest and analyse different numerical methods for simulating
the paths of these processes, a particulary important question for risk man-
agement studies in power markets. Finally, we discuss the aspect of pricing
forward contracts based on a class of stationary models, and review some
implications.

Mathematics Subject Classification (2010). Primary 60G10; Secondary 91B28,
65C05, 65C20.

Keywords. Energy markets, spot modeling, forward pricing, Lévy semistation-
ary processes, numerical simulation, Fourier transform.

1. A Brief Survey of the Basics of Power Markets

Power markets world-wide have been liberalized over the last decades. The Nordic
exchange NordPool starting in 1992 was one of the first market places where
one could trade in power products. Nowadays, most developed countries have an
organized market for power, where prices are determined by supply and demand.

The structure of these markets are reasonably similar, and we shall use Nord-
Pool and the German market EEX as the prime examples of such power markets.
Typically, there is a so-called spot market, where one can buy or sell electricity. To
operate on this market, one must be either a producer or a consumer of electricity,
since any trade here involves a physical distribution of electricity from the seller to

Rüdiger Kiesel is thanked for valuable discussions. We are grateful to an anonymous referee for
comments and suggestions. Financial support from the Norwegian Research Council of the eVita

project 205328 “Energy Markets: modeling, optimization and simulation” (Emmos) is greatly
acknowledged.
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the buyer. The market place offers forward and futures contracts which are settled
with respect to the power price over a pre-defined period. These periods are typ-
ically weeks, months, quarters and years at the EEX and NordPool markets. For
example, one may buy forward contracts delivering electricity over the year 2012,
2013 and 2014. Since this delivery is financial, in the sense that a buyer of such a
forward contract will receive the money-equivalent of the power delivered against
the agreed forward price. Hence, one does not need to have physical installations
to distribute power to act in this market segment. Finally, many of the developed
power markets, like NordPool and EEX, organize European call and put options
on the forward/futures. These are of course also financial contracts.

The spot market is highly different than other commodity spot markets in
that prices are discrete, describing the price for the distribution of 1MW of power
over an hour. The prices are settled on an auction the day before. This means that
all players in the spot market hand in price and volume bids for all or some of the
24 hours next day. The market then collects all the buy and sell bids into demand
and supply curves, one for each of the 24 hours, describing price as a function
of volume implied by the bids. The intersection of these two curves defines the
spot price for a particular hour. These 24 prices are revealed in the afternoon the
day before. Any distribution of electricity at a given hour the next day will be at
the spot price determined by the market for that particular hour. Prices in the
weekend and Mondays are determined in the auction on Friday.

Noteworthy is that spot prices are truly time series with a fixed time resolu-
tion. In fact, one may view the spot market as a forward market, where the price
is the (futures) price for delivery of 1MWh electricity at a specific hour.

There are many fundamental factors driving the spot prices, and the major
ones include the fuels for power generation and the forces for demand. In the
German EEX market coal and gas are used to a large extent for power production,
and the varying cost of purchasing these commodities on the market will influence
the power price significantly. Nuclear power is a major source of electricity, and
relatively cheap in production compared to gas and coal fired plants. Gas and
coal fired plants also must take into account carbon emissions, and must purchase
allowance certificates on the market. The price of these allowances will also impact
power prices. In the Nordic market, hydro power is dominating, which of course is
a clean and renewable source of energy. Market integration via connecting cables
indirectly transfer the cost of emission to such energy production. Another source
of renewable power is wind, which is predicted to play a major role in the future
power generation. Interestingly, wind power may lead to negative power prices,
something one has in fact already observed at several instances in the EEX market.
The reason being that wind power has priority in the grid, and the unexpected
occurence of high production will lead to over-capacity. Someone will then get paid
for increasing their consumption of power. On the demand side, temperatures play
a major role. For example, in the Nordic market, cold winter periods are usually
giving higher than normal power prices since demand goes up. In the NordPool
market, one may get really high prices if such cold periods come along with low
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reservoir levels in the magazines for hydro power production, as could be observed
in January 2011. Another interesting driver of power prices in the Nordic area is
the snow situation in the spring, since this gives predictions for the coming water
inflow into the reservoirs.

Sudden outages of power plants may lead to significant spikes in the power
prices. Such spikes may also be a result of sudden changes in demand combined
with outages in plants. For example, in the summer of 2009 Europe had a very
hot period, where the use of air-conditioning significantly went up. On the other
hand, power plants had to shut down their production due to lack of river water
cold enough to cool their generators. This led to unusually high electricity prices.

A forward contract on power spot delivers financially the spot over an agreed
period of time. For example, a forward contract with delivery in July, will give the
buyer a stream of money in return for the agreed forward price. The stream of
money will be the sum of the hourly spot prices over the month of July,

31×24∑
𝑖=1

𝑆(𝑖)

with 𝑆(𝑖) being the spot price for hour 𝑖 in July. If the contract was entered at
a time 𝑡 ≤ July1, with a forward price 𝐹 (𝑡, 𝑇1, 𝑇2), 𝑇1 being first hour of July 1,
and 𝑇2 being last hour of July 31, then the buyer of the contract pays in return
for the money stream

(𝑇2 − 𝑇1)𝐹 (𝑡, 𝑇1, 𝑇2) .

From this we see that the forward price is stated in terms of Euro/MWh, which is
the market convention. In essence, one is actually swapping a floating spot price
𝑆(𝑖) against a fixed spot price 𝐹 (𝑡, 𝑇1, 𝑇2) with such an electricity forward. For
this reason forward contracts written on electricity are sometimes called swaps.

At NordPool and EEX one can buy or sell European call and put options
on a selection of forward contracts. In the OTC market, however, one finds an
abundance of different types of exotic derivatives, written on forwards or on power
spot prices directly. Spread options are contracts written on the price spread be-
tween different markets. A typical example is the spark spread, which is an option
written on the difference between electricity and gas, gas being a fuel for elec-
tricity (we refer to Carmona and Durrleman [11] for an extensive discussion and
analysis of spread options in energy markets). Other spread contracts are the so-
called Contracts-for-Difference (CfD), which are traded on the NordPool market
and settled on the difference between spot prices in various areas (for example, the
spread between Norwegian and Swedish spot prices, which are often different due
to congestion). Hence, CfD’s are locational spread contracts. Another important
class of options in power markets is swing options, which are options with multiple
exercise rights and volume control. A simple example could be a contract where
the holder has the right to buy electricity at a fixed price 𝐾 at 𝑁 different hours
in a pre-defined period, being for example a month. Each time the holder decides
to use her option, she can also decide the volume of electricity to be purchased,
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typically within some defined limits. The problem of the buyer is to choose the
optimal 𝑁 hours in the period, and the optimal volume each time to purchase.
Hence, the analysis of swing options involves use of stochastic control theory (see
Benth, Lempa and Nilssen [7] for the analysis of a flexible load contract, as an
example)

2. Models for the spot price dynamics

As we have discussed above, the spot price of electricity is quoted for each hour of
the day, and in this respect may be seen as a time series. A curious fact in these
markets is that the spot moves at discrete times, whereas the forward and futures
contracts are traded continuously. We want to discuss this in some more detail,
and motivate a continuous-time modelling approach for the spot price dynamics
of electricity.

We introduce a continuous-time stochastic process 𝑆(𝑡) on a complete filtered
probability space (Ω,ℱ , {ℱ𝑡}𝑡≥0, 𝑃 ), which we intepret as the unobserved instan-
taneous spot price of electricity, that is, the price of electricity at time 𝑡 with
delivery in the interval [𝑡, 𝑡+𝑑𝑡). Further, let the filtration ℱ𝑡 model the stream of
information in the market. We can think of 𝑆(𝑡) as the price of electricity market
participants know they would have to pay, if they could buy electricity at time 𝑡
with delivery over the infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡]. Integrating 𝑆(𝑡) over
a specific hour would then yield a model for the actual spot price observed in the
market. As is usual in the literature, we suppose that 𝑆(𝑡) is the electricity spot
price, and that 𝑆(𝑡𝑖𝑑) = 𝑠𝑖𝑑 where 𝑠𝑑𝑖 is the observed spot price in the market at
time 𝑡𝑖𝑑, that is, at hour 𝑖 on day 𝑑.

We review some of the popular stochastic processes which have been sug-
gested in the literature, leading up to stationary processes which will be our main
focus next.

Lucia and Schwartz [15] proposed a two-factor Gaussian model for the time
dynamics of spot prices observed in the NordPool market. They consider both an
arithmetic and geometric model of the form

𝑆(𝑡) = Λ(𝑡) +𝑋(𝑡) + 𝑌 (𝑡),

where 𝑆(𝑡) is the spot price at time 𝑡 in the arithmetic case, and the logarithmic
spot price at time 𝑡 for the geometric case. Here, Λ(𝑡) is the deterministic season-
ality function, modelling the trend and mean variations of prices. Furthermore, 𝑋
and 𝑌 are two stochastic processes defined as

𝑑𝑋(𝑡) = −𝛼𝑋(𝑡) 𝑑𝑡+ 𝜎 𝑑𝐵(𝑡),

and
𝑑𝑌 (𝑡) = 𝜇 𝑑𝑡+ 𝜂 𝑑𝑊 (𝑡).

The parameters 𝛼, 𝜎, 𝜇 and 𝜂 are all constants and positive, except possibly 𝜇.
The processes 𝐵 and 𝑊 are correlated Brownian motions, with incremental corre-
lation 𝜌 𝑑𝑡, 𝜌 ∈ [−1, 1]. The Lucia–Schwartz model explains the evolution of power
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spot prices through a short-term factor 𝑋 being stationary, and a long-term non-
stationary factor 𝑌 which is supposed to explain for example inflation, increasing
demand and fuel costs.

By using Brownian motion driven factors, the Lucia–Schwartz model fails to
account for the spikes frequently observed in power spot prices, being sudden huge
price jumps followed by a strong reversion back to “normal levels”. A spike in power
prices can be of several magnitudes, and occurs as a result of sudden imbalances in
supply and/or demand, like for example an unexpected shut-down of a major power
plant. To account for the jumps in prices, Cartea and Figueroa [12] introduces a
one-factor model for the spot price evolution in the UK power market as

𝑆(𝑡) = Λ(𝑡) exp(𝑋(𝑡)),

where

𝑑𝑋(𝑡) = −𝛼𝑋(𝑡) 𝑑𝑡+ 𝜎 𝑑𝐵(𝑡) + 𝑑𝐿(𝑡),

and 𝐿(𝑡) being a compound Poisson process. The unfortunate effect of such an ap-
proach is that the speed of mean reversion 𝛼 is the same for both spikes (modelled
through jumps of 𝐿) and the normal variations (modelled through 𝐵). We expect
the mean reversion to be far stronger in case of spikes than in a market where
prices fluctuate “normally”, and this is indeed the case when doing estimation on
data (see Benth, Kiesel and Nazarova [6]).

Of course, choosing a spot price model of an exponential form ensures pos-
itivity of prices. However, as we shall see later, such models are in general not
suitable for (analytical) pricing of power forward contracts, since these are settled
on the average of the spot over a delivery period. Arithmetic models constitute an
attractive alternative.

Benth, Kallsen and Meyer-Brandis [5] suggested a general multi-factor model
of the form

𝑆(𝑡) = Λ(𝑡) +

𝑛∑
𝑖=1

𝑋𝑖(𝑡)

where

𝑑𝑋𝑖(𝑡) = −𝛼𝑖𝑋𝑖(𝑡) 𝑑𝑡+ 𝑑𝐿𝑖(𝑡),

and 𝛼𝑖 > 0 are constants, for 𝑖 = 1, . . . , 𝑛. To ensure positivity of prices, the
‘function Λ(𝑡) is interpreted as a seasonal “floor”, and 𝐿𝑖(𝑡) are Lévy processes with
only positive jumps, i.e., subordinators. With recent years’ market developments,
the condition of positivity of prices is no longer effective. As we indicated in the
previous section, both EEX and NordPool have opened up for negative spot prices.
Thus, one may suppose that one or more of the factors 𝑋𝑖 can be driven by general
Lévy processes. We refer to Benth, Šaltytė Benth and Koekebakker [8] for a general
account on multi-factor models in power markets.

Garcia, Klüppelberg and Müller [14] have proposed a continuous-time au-
toregressive moving-average (CARMA) model for power spot prices. A CARMA
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model is defined via a special type of multi-dimensional Ornstein–Uhlenbeck pro-
cess. Define the 𝑝× 𝑝 matrix

𝐴 =

[
0𝑝−1 𝐼𝑝−1
−𝛼𝑝 . . . ⋅ ⋅ ⋅ − 𝛼1

]
with 𝛼𝑖 positive constants, 𝑖 = 1, . . . , 𝑝, 0𝑝−1 the 𝑝− 1-dimensional column vector
of zero’s, and 𝐼𝑝−1 the (𝑝− 1)× (𝑝− 1)-dimensional identity matrix. Define X(𝑡)
to be the 𝑝-dimensional Ornstein–Uhlenbeck process

𝑑X(𝑡) = 𝐴X(𝑡) 𝑑𝑡 + e𝑝𝑑𝐿(𝑡),

with e𝑘 the 𝑘th Euclidean unit vector and 𝐿(𝑡) a Lévy process. A process 𝑌 (𝑡) =
b′X(𝑡) is called a CARMA(𝑝, 𝑞) process when the coefficients 𝑏0, 𝑏1, . . . , 𝑏𝑝−1 of b
satisfy 𝑏𝑞 ∕= 0 and 𝑏𝑗 = 0 for 𝑞 < 𝑗 < 𝑝.

The models discussed above consist in general of one or more stationary
factors, along with a possibly non-stationary factor. Recently, a general class of
stochastic processes called Lévy semistationary (LSS) processes have been pro-
posed by Barndorff-Nielsen et al. [1], encompassing the models described above.
Assume that the spot price is

𝑆(𝑡) = Λ(𝑡) +

𝑛∑
𝑖=1

𝑋𝑖(𝑡), (2.1)

with

𝑋𝑖(𝑡) =

∫ 𝑡

−∞
𝑔𝑖(𝑡, 𝑠)𝜎𝑖(𝑠) 𝑑𝐿𝑖(𝑠),

for deterministic “kernel functions” 𝑔𝑖(𝑡, 𝑠) and stochastic processes 𝜎𝑖(𝑠), 𝑖 =
1, . . . , 𝑛. We restrict to (two-sided) Lévy processses 𝐿𝑖(𝑡) being square integrable,
and suppose that 𝑔𝑖(𝑡, 𝑠) and 𝜎𝑖(𝑠) satisfy suitable integrability conditions to ensure
well-defined processes 𝑋𝑖(𝑡) (see, e.g., Protter [16]). If 𝑔𝑖(𝑡, 𝑠) = 𝑔𝑖(𝑡 − 𝑠), we
say that 𝑋𝑖(𝑡) is an LSS process. Typically, 𝜎𝑖(𝑡) plays the role as stochastic
volatility, and is conveniently assumed to be independent of 𝐿𝑖(𝑡) in the modelling.
Furthermore, 𝜎2𝑖 (𝑡) is frequently assumed to be an LSS process itself. If 𝜎2𝑖 (𝑡) is
stationary, then 𝑋𝑖(𝑡) also becomes stationary, whereas any 𝑔𝑖 explicitly depending
on 𝑡 and 𝑠 separately will lead to non-stationary models. One of the novelties of
the LSS modelling framework is that by integrating from −∞ rather than from
zero, we model power prices in stationarity. As an example, let 𝜎𝑖 = 1 and

𝑔(𝑡− 𝑠) = b exp(𝐴(𝑡 − 𝑠))e𝑝

and we recover the stationary solution of a CARMA(𝑝, 𝑞) model introduced above.
Barndorff-Nielsen et al. [1] estimate an LSS model to EEX spot price data with 𝐿
being a normal inverse Gaussian Lévy process and 𝑔(𝑡−𝑠) a sum of two exponential
functions.
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3. A brief analysis of Lévy semistationary processes

LSS processes consitute an important general class of moving-average models for
electricity spot prices. In this section we make an independent study of some
properties of LSS processes interesting for modelling purposes.

Define the LSS process

𝑋(𝑡) =

∫ 𝑡

−∞
𝑔(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) (3.1)

with 𝐿 being a two-sided square integrable Lévy process with mean zero, that is,
𝔼[𝐿(1)] = 0. We restrict our attention to LSS processes with a stochastic volatility
process 𝜎(𝑡) where 𝜎2(𝑡) is modelled as a stationary process independent of 𝐿.
Denote for the sequel the second moment of 𝜎(𝑡) by 𝜅2 := 𝔼[𝜎2(𝑡)], which we
assume to be finite. Furthermore, 𝑔 is assumed to be a Borel measurable function on
ℝ+, the positive half-line including the origin, such that

∫∞
0 𝑔2(𝑢) 𝑑𝑢 <∞. These

conditions ensure that𝑋(𝑡) is well defined, and square-integrable (see Protter [16]).
The characteristic function of 𝑋 is easily computed by conditioning on the

volatility process 𝜎(𝑠):

𝔼[exp(i𝜃𝑋(𝑡))] = 𝔼[exp(

∫ 𝑡

−∞
𝜓(𝜃𝑔(𝑡− 𝑠)𝜎(𝑠)) 𝑑𝑠)],

where 𝜓(𝜃) is the cumulant (i.e., the log-characteristic function) of 𝐿(1). We ob-
serve that

𝔼[𝑋(𝑡)] = −i𝜓′(0)
∫ 𝑡

−∞
𝑔(𝑡− 𝑠)𝔼[𝜎(𝑠)] 𝑑𝑠 = 0

since 𝔼[𝐿(1)] = 𝜓′(0) = 0 by assumption. Furthermore, we find

𝔼[𝑋2(𝑡)] = −𝜓′′(0)𝜅2
∫ ∞

0

𝑔2(𝑠) 𝑑𝑠. (3.2)

Hence, 𝑋(𝑡) is second-order stationary. Note that if 𝜎(𝑠) = 1, then the cumulant
function of 𝑋(𝑡) is

ln𝔼[exp(i𝜃𝑋(𝑡))] =

∫ ∞

0

𝜓(𝜃𝑔(𝑠)) 𝑑𝑠.

In the following proposition we show that LSS processes inherit Hölder con-
tinuity in variance from the kernel function 𝑔, which in turn may be applied to
determine pathwise properties of the spot price model (recall (2.1)).

Proposition 3.1. Suppose 𝑔 is locally 𝐿2-Hölder continuous of order 0 < 𝑝 ≤ 1, in
the sense that there exists a 𝛿 > 0 such that for all 0 < 𝑦 ≤ 𝛿 it holds∫ ∞

0

(𝑔(𝑢+ 𝑦)− 𝑔(𝑢))2 𝑑𝑢 ≤ 𝐶∣𝑦∣2𝑝. (3.3)

Then, for ∣𝑡− 𝑠∣ ≤ 𝛿,

𝔼
[∣𝑋(𝑡)−𝑋(𝑠)∣2] ≤ 𝐾∣𝑡− 𝑠∣𝑝

for some positive constant 𝐾 independent of 𝑡 and 𝑠.
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Proof. Suppose that 𝑡 > 𝑠, then

𝑋(𝑡)−𝑋(𝑠) =

∫ 𝑠

−∞
(𝑔(𝑡− 𝑢)− 𝑔(𝑠− 𝑢))𝜎(𝑠) 𝑑𝐿(𝑢) +

∫ 𝑡

𝑠

𝑔(𝑡− 𝑢)𝜎(𝑠) 𝑑𝐿(𝑢).

Now from (3.2) and the independent increment property of 𝐿

𝔼
[∣𝑋(𝑡)−𝑋(𝑠)∣2]
= (−𝜓′′(0))𝜅2

{∫ 𝑠

−∞
(𝑔((𝑡− 𝑢)− 𝑔(𝑠− 𝑢))2 𝑑𝑢+

∫ 𝑡

𝑠

𝑔2(𝑡− 𝑢) 𝑑𝑢

}
= (−𝜓′′(0))𝜅2

{∫ ∞

0

(𝑔(𝑣 + (𝑡− 𝑠))− 𝑔(𝑣))2 𝑑𝑣 +

∫ 𝑡−𝑠

0

𝑔2(𝑣) 𝑑𝑣

}
.

But, by a simple change of variables,∫ ∞

0

𝑔2(𝑣 + (𝑡− 𝑠)) 𝑑𝑣 =

∫ ∞

𝑡−𝑠
𝑔2(𝑣) 𝑑𝑣,

and therefore, by the Cauchy–Schwarz inequality,

𝔼
[∣𝑋(𝑡)−𝑋(𝑠)∣2] = 2(−𝜓′′(0))𝜅2

∫ ∞

0

𝑔(𝑣)(𝑔(𝑣)− 𝑔(𝑣 + (𝑡− 𝑠))) 𝑑𝑣

≤ 2(−𝜓′′(0))𝜅2(
∫ ∞

0

𝑔2(𝑣) 𝑑𝑣)1/2

× (

∫ ∞

0

(𝑔(𝑣 + (𝑡− 𝑠))− 𝑔(𝑣))2 𝑑𝑣)1/2.

Hence, the result follows by the assumption on 𝑔. □

Note that a sufficient condition for (3.3) on 𝑔 to hold is if there exists a
function ℎ on 𝐿2(ℝ+) such that

∣𝑔(𝑢+ 𝑦)− 𝑔(𝑢)∣ ≤ ℎ(𝑢)∣𝑦∣𝑝 (3.4)

for a 𝛿 > 0 such that ∣𝑦∣ < 𝛿 and 0 < 𝑝 ≤ 1.
The classical Ornstein–Uhlenbeck process with 𝑔(𝑥) = exp(−𝛼𝑥) satisfies the

condition (3.3) in the lemma. However, in this case we can do a direct calculation
to find

𝔼
[∣𝑋(𝑡)−𝑋(𝑠)∣2] = −𝜓′′(0)𝜅2

𝛼
(1− exp(−𝛼(𝑡− 𝑠))).

Thus, for 𝑡− 𝑠 small, we have 1− exp(−𝛼(𝑡− 𝑠)) ∼ 𝑡− 𝑠, and the process is locally
Lipschitz continuous in variance. Another example which is relevant in electricity
markets is to choose 𝑔(𝑥) = 1/(𝑥 + 𝑎), for 𝑎 > 0 (see Barndorff-Nielsen et al. [1]
and Bjerksund, Rasmussen and Stensland [9] for a motivation of this model). Then

∣𝑔(𝑢+ 𝑦)− 𝑔(𝑢)∣ = ∣𝑦∣
(𝑢+ 𝑎)(𝑢+ 𝑦 + 𝑎)

≤ ∣𝑦∣
(𝑢+ 𝑎)2

.

Thus, (3.4) is satisfied with 𝑝 = 1 and ℎ(𝑢) = 1/(𝑢+ 𝑎)2 ∈ 𝐿2(ℝ+).
In general an LSS process is not a semimartingale. Conditions that guarantee

the semimartingale property for moving average processes driven by Lévy processes
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have been studied in, e.g., [4]. We give conditions for the semimartingale property
of an LSS process:

Proposition 3.2. Suppose that 𝑔 is absolutely continuous with a derivative 𝑔′ almost
everywhere, and that

∫∞
0
∣𝑔′(𝑠)∣2 𝑑𝑠 <∞. If ∣𝑔(0)∣ <∞, then the process 𝑋(𝑡) for

𝑡 ≥ 0 is a semimartingale with representation

𝑑𝑋(𝑡) =

∫ 𝑡

−∞
𝑔′(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) 𝑑𝑡 + 𝑔(0)𝜎(𝑡) 𝑑𝐿(𝑡).

Proof. First, decompose 𝑋(𝑡) for 𝑡 ≥ 0 as

𝑋(𝑡) =

∫ 0

−∞
𝑔(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) +

∫ 𝑡

0

𝑔(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠).

By absolute continuity,

𝑔(𝑡− 𝑠)− 𝑔(−𝑠) =

∫ 𝑡

0

𝑔′(𝑢− 𝑠) 𝑑𝑢

for 𝑡 ≥ 0, and therefore, using the stochastic Fubini theorem (see, e.g., Protter [16]),∫ 0

−∞
𝑔(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) =

∫ 0

−∞
(

∫ 𝑡

0

𝑔′(𝑢− 𝑠) 𝑑𝑢+ 𝑔(−𝑠))𝜎(𝑠) 𝑑𝐿(𝑠)

=

∫ 𝑡

0

∫ 0

−∞
𝑔′(𝑢− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) 𝑑𝑢 +

∫ 0

−∞
𝑔(−𝑠)𝜎(𝑠) 𝑑𝐿(𝑠).

Note that the last term is equal to 𝑋(0). Next, using stochastic Fubini theorem
again, we find∫ 𝑡

0

∫ 𝑠

0

𝑔′(𝑠− 𝑢)𝜎(𝑢) 𝑑𝐿(𝑢) 𝑑𝑠 =

∫ 𝑡

0

∫ 𝑡

𝑢

𝑔′(𝑠− 𝑢) 𝑑𝑠𝜎(𝑢) 𝑑𝐿(𝑢)

=

∫ 𝑡

0

{𝑔(𝑡− 𝑢)− 𝑔(0)}𝜎(𝑢) 𝑑𝐿(𝑢)

=

∫ 𝑡

0

𝑔(𝑡− 𝑢)𝜎(𝑢) 𝑑𝐿(𝑢)− 𝑔(0)

∫ 𝑡

0

𝜎(𝑢) 𝑑𝐿(𝑢).

Recall that 𝐿 is a square-integrable Lévy process with zero expectation, thus a
martingale. The proof is complete. □

We remark that electricity spot is not storable, and thus not tradeable in the
financial sense. There is therefore nothing wrong with modelling electricity prices
by non-semimartingales, contrary to what is the usual situation in mathematical
finance models.

The next lemma concerns continuity of LSS processes with respect to the
kernel function 𝑔.
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Lemma 3.3. Consider two LSS processes 𝑋(𝑡) =
∫ 𝑡
−∞ 𝑔(𝑡−𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) and 𝑌 (𝑡) =∫ 𝑡

−∞ ℎ(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠), where
∫∞
0

𝑔2(𝑠) 𝑑𝑠 <∞ and
∫∞
0

ℎ2(𝑠) 𝑑𝑠 <∞. Then,

𝔼
[∣𝑋(𝑡)− 𝑌 (𝑡)∣2] = (−𝜓′′(0))𝜅2∣𝑔 − ℎ∣2𝐿2(ℝ+).

Proof. The proof goes by a straightforward calculation using (3.2):

𝔼
[∣𝑋(𝑡)− 𝑌 (𝑡)∣2] = 𝔼

[(∫ 𝑡

−∞
(𝑔(𝑡− 𝑠)− ℎ(𝑡− 𝑠))𝜎(𝑠) 𝑑𝐿(𝑠)

)2
]

= (−𝜓′′(0))𝜅2
∫ 𝑡

−∞
(𝑔(𝑡− 𝑠)− ℎ(𝑡− 𝑠))2 𝑑𝑠

= (−𝜓′′(0))𝜅2
∫ ∞

0

(𝑔(𝑥) − ℎ(𝑥))2 𝑑𝑥.

Hence, the lemma follows. □

In practice, for a given LSS spot price model, we would estimate the kernel
function 𝑔 from observed price data in the market. Such estimates are prone to
statistical error, and hence we find 𝑔𝜖 rather than 𝑔 itself, where 𝜖 is the error
induced from statistical estimation, being a function of the number of data 𝑛 at
hand. The above result shows that the variance of 𝑋(𝑡) is robust towards this
estimation error.

Let us consider an example of an approximation of a singular kernel 𝑔 coming
from applications to turbulence (see Barndorff-Nielsen and Schmiegel [3]). Suppose
𝑔 is of the form

𝑔(𝑥) = 𝑥𝜈−1e−𝜆𝑥,
where 1/2 < 𝜈 < 1 and 𝜆 > 0. Note that 𝑔 is singular at the origin, and 𝑋(𝑡) is
thus, in general (unless 𝐿 has bounded variaton), not a semimartingale process. By
Proposition 3.2 and Lemma 3.3 we may approximate 𝑋(𝑡) with a semimartingale
LSS process that has the non-singular kernel function

ℎ𝜖(𝑥) =

{
𝑔(𝑥) if 𝑥 ≥ 𝜖

𝑔(𝜖) if 𝑥 ∈ [0, 𝜖].

We easily find that∫ ∞

0

(𝑔(𝑥)− ℎ𝜖(𝑥))
2 𝑑𝑥 ≤ 2

∫ 𝜖

0

𝑥2𝜈−2e−2𝜆𝑥 𝑑𝑥 + 2𝜖2𝜈−1e−2𝜆𝜖

≤ 2𝜖2𝜈−1

2𝜈 − 1
+ 2𝜖2𝜈−1 =

4𝜈𝜖2𝜈−1

2𝜈 − 1
.

Thus we have the rate

∣𝑔 − ℎ𝜖∣2𝐿2(ℝ+)
≤ 4𝜈𝜖2𝜈−1

2𝜈 − 1
,

from which we may observe that the closer 𝜈 is to 1/2, the slower the rate is. If we
want to simulate from 𝑋(𝑡), one would do numerical integration of 𝑔(𝑡 − 𝑠) with
respect to the paths of 𝐿(𝑠) and 𝜎(𝑠) for 𝑠 ≤ 𝑡. To avoid problems around the
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singularity 𝑠 = 𝑡, we can use ℎ𝜖 rather than 𝑔 in the numerical integration, with
an error that we can control.

Another application of Lemma 3.3 is to view the LSS process𝑋(𝑡) as a sliding
window. To this end, fix 𝑁 > 0, and consider

𝑋𝑁(𝑡) :=

∫ 𝑡

𝑡−𝑁
𝑔(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠).

Since,

𝑋𝑁 (𝑡) =

∫ 𝑡

−∞
𝑔(𝑡− 𝑠)1(𝑁 ≥ 𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠)

we find from the lemma that

E
[∣𝑋(𝑡)−𝑋𝑁 (𝑡)∣2

]
= (−𝜓′′(0))𝜅2

∫ ∞

𝑁

𝑔2(𝑥) 𝑑𝑥.

Since 𝑔 is square integrable on ℝ+, the integral on the right-hand side will tend
to zero as 𝑁 increases. This gives the interpretation of LSS processes as limits of
moving average over a sliding window.

4. Simulation of Lévy semistationary processes

In this section we discuss methods to simulate an LSS process which is potentially
more efficient than numerical brute-force integration. A “quick-and-dirty” Euler
scheme is proposed, where one is iterating over some approximation of the kernel
function 𝑔. The method introduces an error, and has restricted application. Alter-
natively, by applying the Fourier transform, we can do an Euler scheme in parallel
with fast Fourier transform inversion in order to simulate a path of the LSS pro-
cess. This scheme is iterative, and at the same time accounts for the memory in
the process.

The problem to simulate the LSS process is as follows: let us say that we
have 𝑋(𝑡), and want to know what is 𝑋(𝑡+ 𝛿) for some increment in time 𝛿 > 0.
From the definition of 𝑋(𝑡), we want to simulate a sample from

𝑋(𝑡+ 𝛿) =

∫ 𝑡+𝛿

−∞
𝑔(𝑡+ 𝛿 − 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) .

A natural approach would be to integrate numerically 𝑔(𝑡+ 𝛿 − 𝑠)𝜎(𝑠) from −∞
to 𝑡+ 𝛿 for a path of 𝐿(𝑠) , 𝑠 ≤ 𝑡+ 𝛿. If we have this path at time 𝑡, we simulate an
independent increment Δ𝐿(𝑡) := 𝐿(𝑡+ 𝛿)− 𝐿(𝑡), and use the simulated values of
𝐿(𝑠) , 𝑠 ≤ 𝑡 along with this new outcome to numerically integrate 𝑔(𝑡+ 𝛿− 𝑠)𝜎(𝑠).
We see that we cannot use information of 𝑋(𝑡), since this is defined as the integral
of 𝑔(𝑡 − 𝑠)𝜎(𝑠). In order to obtain 𝑋(𝑡 + 𝛿), we must perform a complete re-
integration, using the whole path of 𝐿(𝑠).

To make matter slightly more simple, we suppose that the volatility 𝜎(𝑡) = 1
in the following. An approximative simulation method could be to use the following
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Euler scheme idea: suppose that there exists a (positive) function ℎ(𝛿) such that
for all 𝑢 ≥ 0

∣𝑔(𝑢+ 𝛿)− ℎ(𝛿)𝑔(𝑢)∣ ≤ 𝑐(𝑢, 𝛿), (4.1)

for some function 𝑐(𝑢, 𝛿). Note that naturally ℎ(𝛿) → 1 when 𝛿 → 0, at least as
long as 𝑔 is continuous. Define the time series

�̃�(𝑡+ 𝛿) = ℎ(𝛿)�̃�(𝑡) +

∫ 𝑡+𝛿

𝑡

𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠), (4.2)

for a given 𝛿 > 0. We suppose that �̃�(0) = 𝑋(0), and we note that the stochastic

integral on the right-hand side becomes independent of �̃�(𝑡). Thus, we can easily
simulate the time series at different time points given that we can sample from
𝑋(0) and the independent random variables∫ 𝑡+𝛿

𝑡

𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠).

Note that these increments have cumulant function given by

ln𝔼[exp(i𝜃

∫ 𝑡+𝛿

𝑡

𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠))] =

∫ 𝛿

0

𝜓(𝜃𝑔(𝑠)) 𝑑𝑠.

Hence, their characteristics are independent of current time 𝑡. We easily derive the

mean to be zero and variance to be −𝜓′′(0)
∫ 𝛿
0 𝑔2(𝑠) 𝑑𝑠.

We want to investigate to what extent �̃�(𝑡) resembles the path of 𝑋(𝑡). The
following proposition on the closeness of one-step simulations holds (here, ∥ ⋅ ∥2
denotes the 𝐿2-norm):

Proposition 4.1. Suppose 𝑔 satisfies the condition (4.1) with 𝑢 �→ 𝑐(𝑢, 𝛿) being
square integrable for all 𝛿 ≤ 𝜖 for some 𝜖 > 0. Then, for 𝛿 ≤ 𝜖, it holds

∥�̃�(𝑡+ 𝛿)−𝑋(𝑡+ 𝛿)∥2 ≤ ℎ(𝛿)∥�̃�(𝑡)−𝑋(𝑡)∥2 +
(
(−𝜓′′(0))

∫ ∞

0

𝑐2(𝑢, 𝛿) 𝑑𝑢

)1/2

.

Proof. We have

𝑋(𝑡+ 𝛿) =

∫ 𝑡+𝛿

−∞
𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠)

=

∫ 𝑡

−∞
𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠) +

∫ 𝑡+𝛿

𝑡

𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠)

= ℎ(𝛿)𝑋(𝑡) +

∫ 𝑡

−∞
(𝑔(𝑡+ 𝛿 − 𝑠)− ℎ(𝛿)𝑔(𝑡− 𝑠)) 𝑑𝐿(𝑠)

+

∫ 𝑡+𝛿

𝑡

𝑔(𝑡+ 𝛿 − 𝑠) 𝑑𝐿(𝑠).

From the assumption on 𝑔 in (4.1) and the triangle inequality, the proposition
follows. □
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We now apply this to analyse the variance of �̃�(1)−𝑋(1) for a given uniform
sampling 𝛿 = 1/𝑁 of the unit interval. Assume further for notational simplicity
that −𝜓′′(0) = 1. Suppose that ℎ(𝛿) < 1. Define

Δ𝑘 = ∥�̃�(𝑘/𝑁)−𝑋(𝑘/𝑁)∥2
for 𝑘 = 0, 1, 2, . . . , 𝑁 . We have that Δ0 = 0, and from the proposition we see that

Δ𝑘+1 ≤ ℎ(1/𝑁)Δ𝑘 +

(∫ ∞

0

𝑐2(𝑢, 1/𝑁) 𝑑𝑢

)1/2

.

Iterating this, we find that

Δ𝑁 ≤
(∫ ∞

0

𝑐2(𝑢, 1/𝑁) 𝑑𝑢

)1/2 𝑁−1∑
𝑘=0

ℎ(1/𝑁)𝑘

=

(∫ ∞

0

𝑐2(𝑢, 1/𝑁) 𝑑𝑢

)1/2
1− ℎ(1/𝑁)𝑁

1− ℎ(1/𝑁)

≤
(∫∞

0
𝑐2(𝑢, 1/𝑁) 𝑑𝑢

)1/2
1− ℎ(1/𝑁)

.

In order for Δ𝑁 to tend to zero as the partition gets finer, that is, as 𝑁 tends
to infinity, the fraction on the right-hand side must have a limit equal to zero.
Note that if 𝑔 is a continuous function (which is natural in most applications),
ℎ(1/𝑁) should tend to one and 𝑐(𝑢, 1/𝑁) to zero as 𝑁 → ∞. By dominated
convergence theorem, we get that the denominator also tends to zero as 𝑁 →∞.
So, we get a 0/0-expression, and this should have a zero limit in order to get
convergence. However, it is more likely that the limit is bigger than zero, which
then will be a maximal bound for the simulation error, as a result of simulating
using an approximative kernel separation.

Let us look at some examples which satisfy the conditions on 𝑔. As a trivial
example, let 𝑔(𝑢) = exp(−𝛼𝑢), yielding that 𝑋(𝑡) is an OU-process. Then ℎ(𝛿) =
exp(−𝛼𝛿) < 1 and 𝑐(𝑢, 𝛿) = 0. In this case we have an exact simulation of 𝑋(𝑡)
for all choices of 𝑁 , which is known. A less trivial example could be

𝑔(𝑢) =
𝑎

𝑢+ 𝑏
exp(−𝛼𝑢). (4.3)

Such a kernel function will be a blend of the choice suggested by Bjerksund et al. [9]
and a standard OU-process, and thus constitute a potential kernel for applications
in electricity. Choosing

ℎ(𝛿) =
𝑏

𝑏+ 𝛿
exp(−𝛼𝛿),

we find

∣𝑔(𝑢+ 𝛿)− ℎ(𝛿)𝑔(𝑢)∣ = 𝑎

𝑏
ℎ(𝛿)e−𝛼𝑢

𝛿𝑢

(𝑢+ 𝑏)(𝑢+ 𝑏+ 𝛿)

≤ 𝑎

𝑏
ℎ(𝛿)e−𝛼𝑢

𝛿

𝑢+ 𝑏
.
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Thus, let 𝑐(𝑢, 𝛿) = 𝑎𝛿ℎ(𝛿) exp(−𝛼𝑢)/(𝑏(𝑢+ 𝑏)), and it holds that∫ ∞

0

𝑐2(𝑢, 𝛿) 𝑑𝑢 =
𝑎2

𝑏2
(
𝑏−1 − 2𝛼e2𝛼𝑏E1(2𝛼𝑏)

)
𝛿2ℎ2(𝛿) ≤ 𝑎2

𝑏3
𝛿2ℎ2(𝛿),

where E1(𝑧) is the exponential integral. But, as 𝛿 tends to zero, 𝛿ℎ(𝛿)/(1 − ℎ(𝛿))
will converge to 𝑏/(𝛼𝑏+1), and hence the error Δ𝑁 will be bounded by a constant

Δ𝑁 ≤ 𝑎√
𝑏(1 + 𝛼𝑏)

,

as 𝑁 → ∞. If 𝛼 is big, we can make this error small. A big 𝛼 will correspond to
a fast decay of the autocorrelation function for small lags, which is interpretable
as a fast mean-reversion of the process 𝑋 . In the context of electricity, this is a
relevant case.

An alternative to the approximative Euler scheme is a more robust and ac-
curate approach that makes use of the idea to convert integration with respect to
𝑔 into a Fourier transform. We focus on LSS processes with stochastic volatility
𝜎 and a kernel function 𝑔 ∈ 𝐿2(ℝ+). Suppose that there exists a 𝜆 > 0 such that
the function

𝑔𝜆(𝑥) := 𝑔(𝑥)e𝜆𝑥 ∈ 𝐿1(ℝ+). (4.4)

Let the Fourier transform of 𝑔𝜆 be (see Folland [13])

𝑔𝜆(𝑦) =

∫
𝑔𝜆(𝑥)e

−i𝑥𝑦 𝑑𝑥.

Suppose now that 𝑔𝜆 ∈ 𝐿1(ℝ). Then the inverse Fourier transform exists, and we
have (see Folland [13])

𝑔(𝑥) =
1

2𝜋

∫
𝑔𝜆(𝑦)e

(−𝜆+i𝑦)𝑥 𝑑𝑦.

Insert this into the definition of the LSS process to get

𝑋(𝑡) =
1

2𝜋

∫
𝑔𝜆(𝑦)�̂�𝜆(𝑡, 𝑦) 𝑑𝑦 (4.5)

where we have commuted integration using the stochastic Fubini theorem (see
Protter [16]). Here,

�̂�𝜆(𝑡, 𝑦) =

∫ 𝑡

−∞
e(i𝑦−𝜆)(𝑡−𝑠)𝜎(𝑠) 𝑑𝐿(𝑠).

Note that since 𝜆 > 0, �̂�𝜆(𝑡, 𝑦) is a (complex-valued) LSS process for each 𝑦 ∈
ℝ. We observe that for 𝜆 = 0, the definition of �̂�0(𝑡, 𝑦) fails since the complex
exponential has norm 1 (except under stronger conditions on 𝜎 than we have
assumed here).
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Fix 𝛿 > 0, and we find

�̂�𝜆(𝑡+ 𝛿, 𝑦) =

∫ 𝑡+𝛿

−∞
e(i𝑦−𝜆)(𝑡+𝛿−𝑠)𝜎(𝑠) 𝑑𝐿(𝑠)

= e(i𝑦−𝜆)𝛿�̂�𝜆(𝑡, 𝑦) + e(i𝑦−𝜆)𝛿
∫ 𝑡+𝛿

𝑡

e(i𝑦−𝜆)(𝑡−𝑠)𝜎(𝑠) 𝑑𝐿(𝑠).

Now, the residuals can be simulated by the approximation∫ 𝑡+𝛿

𝑡

e(i𝑦−𝜆)(𝑡−𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) ≈ 𝜎(𝑡)Δ𝐿(𝑡).

One can show that the variance of the error in this approximation is independent
of 𝑦, and is of order 𝛿.

Hence, to simulate𝑋(𝑡+𝛿), we do the following: Discretize the Fourier domain
𝑦𝑖 , 𝑖 = 1, . . .𝑁 .

1. Simulate Δ𝐿(𝑡)

2. For each 𝑖 = 1, . . . , 𝑁 , simulate �̂�𝜆(𝑡+ 𝛿, 𝑦𝑖) from �̂�(𝑡, 𝑦𝑖) and Δ𝐿(𝑡)
3. Compute numerically the inverse Fourier transform in (4.5).

Note the advantages here: We have the same residual term for every 𝑦𝑖, except
from a deterministic scaling by a complex exponential. This means that to simulate

�̂�𝜆(𝑡+𝛿, 𝑦), we simulate the outcome of one random variable 𝑍, and then compute

�̂�𝜆(𝑡+ 𝛿, 𝑦) = exp((i𝑦 − 𝜆)𝛿)
{
�̂�𝜆(𝑡, 𝑦) + 𝑍

}
.

Hence, in step 2 above, we just need to have stored the 𝑁 previous values of

�̂�𝜆(𝑡, 𝑦𝑖) along with the simulated 𝑍, in order to compute the next iterative step.
Notice also that the number of sampling points 𝑁 depends on the damping proper-
ties of 𝑔𝜆. The faster 𝑔𝜆(𝑦) decays to zero for large values of 𝑦, the smaller interval
of 𝑦𝑖’s can be chosen. We can also easily change the kernel function 𝑔, without hav-
ing to redo the whole simulation algorithm, since this is going on independently
of 𝑔. This may prove advantageous in estimation studies, where one may want
to simulate over parametric 𝑔’s in order to find the optimal one. Finally, another
advantage compared to direct numerical integration is that with the latter, the ac-
curacy is linked to how many sample points we simulate the Lévy process in time,
whereas with the Fourier technique this is converted into sampling an integral over
space instead.

In principle, we could simulate �̂�𝜆(𝑡, 𝑦) exactly. For example, if 𝜎(𝑠) = 1, we
have that the residual is an independent outcome of a random variable 𝑍 with
cumulant.

ln𝔼[exp(𝑖𝜃

∫ 𝑡+𝛿

𝑡

exp((i𝑦 − 𝜆)(𝑡 − 𝑠)) 𝑑𝐿(𝑠))] =

∫ 𝛿

0

𝜓(𝜃e(i𝑦−𝜆)𝑢) 𝑑𝑢

Thus, error is from numerical integration in Fourier domain only, and not con-
nected to the simulations which are in principle exact.



276 F.E. Benth and H. Eyjolfsson

To illustrate the Fourier transform method let us consider the problem of
simulating the modified Bjerksund model (4.3), with constant volatility 𝜎 = 1 and
Brownian motion, 𝐵, as the driving Lévy process:

𝑋(𝑡) =

∫ 𝑡

−∞

𝑎

𝑡− 𝑠+ 𝑏
exp(−𝛼(𝑡− 𝑠)) 𝑑𝐵(𝑠).

In order for us be able to apply the Fourier transformmethod we need to verify that
(4.4) holds and that 𝑔𝜆 ∈ 𝐿1(ℝ) holds for some 𝜆 > 0. Clearly condition (4.4) is
satisfied if and only if 𝜆 < 𝛼, but the second condition is a bit more problematic.
Indeed the condition 𝑔𝜆 ∈ 𝐿1(ℝ) together with the Riemann–Lebesgue Lemma
implies that 𝑔 should be a continuous function on the entire real line, which fails
at the origin (𝑥 = 0). However this problem may be amended by approximating 𝑔
by some function 𝑔𝜖, and applying Lemma 3.3 for assessing the goodness. Another
path is to observe from Lemma 3.3 that we may choose any function ℎ extending
𝑔 into the negative real line, with 𝑔 = ℎ on ℝ+, without changing the LSS process.
To that end, for a given 𝑀 > 0 consider the function ℎ ∈ 𝐿2(ℝ) defined by

ℎ(𝑥) =

⎧⎨⎩
𝑔(𝑥) if 𝑥 ≥ 0

𝑝(𝑥) if 𝑥 ∈ [−𝑀, 0]

0 if 𝑥 ≤ −𝑀

(4.6)

where 𝑝(𝑥) =
∑5
𝑛=0 𝑐𝑛𝑥

𝑛 is a polynomial with coefficients determined by the
conditions 𝑝𝜆(−𝑀) = 𝑝′𝜆(−𝑀) = 𝑝′′𝜆(−𝑀) = 0, 𝑝𝜆(0) = 𝑔𝜆(0), 𝑝

′
𝜆(0) = 𝑔′𝜆(0), and

𝑝′′𝜆(0) = 𝑔′′𝜆(0). Thus ℎ𝜆 is a 𝐶2(ℝ) function such that ℎ agrees with 𝑔 on ℝ+ (see
Figure 1). It is furthermore easy to check that ℎ′𝜆, ℎ

′′
𝜆 ∈ 𝐿1(ℝ+) are continuous

and vanish at infinity. Therefore (see Folland [13, Section 8.4]) ℎ̂𝜆 ∈ 𝐿1(ℝ) holds
and we have a representation of the type (4.5) for the LSS process with the kernel
function ℎ, i.e., ∫ 𝑡

−∞
𝑔(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠) =

∫ 𝑡

−∞
ℎ(𝑡− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠)

=
1

2𝜋

∫
ℎ̂𝜆(𝑦)�̂�𝜆(𝑡, 𝑦) 𝑑𝑦. (4.7)

An advantage of this approach is that we are able to control the damping properties

of ℎ̂𝜆 by means of calibrating the parameters 𝑀 > 0 and 𝜆 < 𝛼. In our case we
get by integration by parts that

ℎ̂𝜆(𝑦) =

∫ 0

−𝑀
𝑝(𝑥)e𝑥(𝜆−i𝑦) 𝑑𝑥+

∫ ∞

0

𝑎

𝑥+ 𝑏
e−𝑥(𝛼−𝜆+i𝑦) 𝑑𝑥 (4.8)

=

5∑
𝑛=0

(−1)𝑛𝑛!𝑐𝑛 − e−𝑀(𝜆−i𝑦)𝑝(𝑛)(−𝑀)

(𝜆− i𝑦)𝑛+1
+ 𝑎e𝑏(𝛼−𝜆+i𝑦) E1(𝑏(𝛼− 𝜆+ i𝑦)),

which is an integrable function with damping properties depending on the pa-
rameters 𝑀 and 𝜆 (recall that E1(𝑧) is the exponential integral function). In fact

one may choose the parameters such that the Fourier transform ℎ̂𝜆 will decrease
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Figure 1. Above: ℎ from (4.6) where 𝑎 = 1, 𝑏 = 1 and 𝛼 = 1. The
dashed line is a polynomial which interploates the kernel function from
the origin to 𝑀 = −10. Below: The absolute value of the Fourier trans-
form (4.8), where 𝜆 = 0.95 on the interval [−25, 25]. The dashed lines
represent 𝑦 �→ 1/∣𝑦∣ and 𝑦 �→ 1/∣𝑦∣2 respectively.

quite rapidly to zero as ∣𝑦∣ → ∞ (see Figure 1), and therefore one can numerically
estimate the inverse Fourier transform (4.5) over a rather small domain.

Now consider comparing the Fourier transform and approximative Euler
method (4.2) with numerical integration at each time step. We implemented all
three methods in Matlab (R2011a) for the modified Bjerksund model on the unit
interval [0, 1] with parameters 𝑎 = 1, 𝑏 = 1 and 𝛼 = 1. A constant step size of
𝛿 = 0.01 was used for increments in the time domain of all the methods. In the
Fourier integration domain we estimated the integral (4.7) by means of cutting off
its tails at ±25, dividing the interval [−25, 25] into 200 equal subintervals of length
0.25 and summing up the areas of the rectangles with length 1 and height equal
to the distance from the left point of each subinterval to the integrand value at
the same point. Note that in order to save time this numerical integration may be
implemented by means of matrix multiplication. In our calculations we set𝑀 = 10
and 𝜆 = 0.95. In our experience given the extended kernel function ℎ the selection

of 𝑀 and 𝜆 affects the shape of the Fourier transform ℎ̂𝜆 and thus the numerical
integration in the Fourier domain. In the case of the modified Bjerksund model, we

have observed that the Fourier transform ℎ̂𝜆 tends more rapidly to zero for high
𝑀 . Whereas our numerical integration generally has lower error for 𝜆 close to one.
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Figure 2. A comparison of simulation methods for the modified Bjerk-
sund model with 𝑎 = 1, 𝑏 = 1, 𝛼 = 1 and 𝜆 = 0.95, using the Euler
(4.2), numerical integration and Fourier methods on the interval [0, 1]
with 𝛿 = 0.01 and the numerical integration in the Fourier domain on
the interval [−25, 25] with step size 0.25.

From this it is clear, that one should be careful when selecting the parameters of
our Fourier method approach.

Using the tic,toc Matlab function we measured the effectivity of the respective
methods in terms of speed. It turned out the Euler method was the fastest one,
spending the time 0.00054sec, whereas the numerical integration method used
0.0023sec, and the Fourier method used 0.0021sec (the experiments were performed
on a standard laptop computer). Note that the time given for the Fourier method
excludes the computation of the Fourier transform, as repeated evaluation of the
Fourier transform would not be required for simulation of multiple paths. From
Figure 2, we see that the Fourier and approximative Euler both give very good
replication of the “exact” path, here taken as the integral method. However it is
evident that there is a rather big difference between the two methods in terms
of how closely they follow the “exact” path. Indeed the path obtained by the
approximative Euler scheme has a much lower error rate than the path obtained
by the Fourier method. But that is hardly surprising given the extra source of error
in the numerical integration of the inverse Fourier transform. We remark that the
error in the Fourier method may potentially be lowered by more sophisticated
methods of numerical integration, which in turn is likely to lead to increased
computation time.
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5. Deriving electricity forward prices from spot

Power markets trade in forward contracts with (financial) delivery of electricity
over an agreed time period. Buying electricity forward1 with delivery over the
period [𝑇1, 𝑇2], will yield a profit/loss at time 𝑇2 being∫ 𝑇2

𝑇1

𝑆(𝑢) 𝑑𝑢− 𝐹 (𝑡, 𝑇1, 𝑇2)(𝑇2 − 𝑇1),

where 𝐹 (𝑡, 𝑇1, 𝑇2) is the forward price agreed with the seller of the contract at time
𝑡 ≤ 𝑇1. As long as we assume a continuous-time spot price model, it is natural
to suppose that delivery is the cumulative amount of electricity defined as the
integral of 𝑆(𝑢) over the delivery period.

In case power would be a tradeable commodity, one could have used the buy-
and-hold strategy to perfectly replicate the forward contract. In fact, we would
have replicated delivery of 𝑆(𝑢) at each time instant 𝑢 ∈ [𝑇1, 𝑇2]. The result of
such an exercise would be that

𝐹 (𝑡, 𝑇1, 𝑇2) =
1

𝑇2 − 𝑇1

∫ 𝑇2
𝑇1

𝑆(𝑡)𝑒−𝑟(𝑢−𝑡) 𝑑𝑢

=
𝑆(𝑡)

𝑟(𝑇2 − 𝑇1)

{
𝑒−𝑟(𝑇1−𝑡) − 𝑒−𝑟(𝑇2−𝑡)

}
, (5.1)

with 𝑟 being the risk-free interest rate in the market. This forward price can be
represented as the conditional expectation of the spot price, given a risk neutral
probability 𝑄. Hence,

𝐹 (𝑡, 𝑇1, 𝑇2) =
1

𝑇2 − 𝑇1

∫ 𝑇2
𝑇1

𝔼𝑄[𝑆(𝑢) ∣ ℱ𝑡] 𝑑𝑢, (5.2)

where 𝑄 is an equivalent martingale measure for 𝑆(𝑡), that is, the discounted spot
price is a martingale under 𝑄.

In order to have the representation (5.2) of the forward price, we must have
a spot price dynamics for which there exists (at least one) equivalent martin-
gale measure 𝑄. However, in the case of power, this condition turns out to be
highly non-restrictive. As we recall, we cannot trade in the spot of electricity in
the “mathematical finance” sense of the word due to non-storability. Hence, the
buy-and-hold strategy fails for electricity, and we no longer have the no-arbitrage
argument leading to the price (5.1), and in consequence (5.2). On the other hand,
forwards are liquidly traded in power markets, and the no-arbitrage theory pre-
scribes that their dynamics must be a martingale under some pricing measure 𝑄.
The standard approach (see Benth et al. [8]) in power markets is therefore to as-
sume that the forward price is defined by (5.2) for an equivalent measure 𝑄. We
emphasise that 𝑄 does not need to be a martingale measure. With this definition of
forward prices, the measure 𝑄 plays the role of modelling the risk premium in the

1that is, going long a forward contract on electricity
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spot-forward market, that is, the premium producers have to accept as discount
in prices in order to hedge their production in forward contracts.

From the definition (5.2), we see that

𝐹 (𝑡, 𝑇1, 𝑇2) =
1

𝑇2 − 𝑇1

∫ 𝑇2
𝑇1

𝑓(𝑡, 𝑢) 𝑑𝑢,

where 𝑓(𝑡, 𝑢) is the forward price at time 𝑡 ≥ 0 of a contract delivering at time
𝑢 ≥ 𝑡. Of course,

𝑓(𝑡, 𝑢) = 𝔼𝑄[𝑆(𝑢) ∣ ℱ𝑡].
Thus, to derive the dynamics of a power forward contract 𝐹 (𝑡, 𝑇1, 𝑇2), one can first
compute the price of a fixed-maturity forward 𝑓(𝑡, 𝑢), and next find its average
over the delivery period. In order to find 𝑓(𝑡, 𝑢), we must choose a measure 𝑄.

We could use the tool-box of incomplete markets theory in mathematical fi-
nance to choose a probability 𝑄. However, many of the approaches rest on deriving
partial hedges of the derivative in question, and finding a 𝑄 based on the cost of
(partial) hedging. As we have already argued, the spot is not suitable for trad-
ing in a portfolio, and thus such approaches fail. Indifference pricing is another
alternative, based on hedging in correlated assets. For example, the shares of a
major power utility company are dependent on the power prices, and one could
exploit such a dependency in order to build partial hedges for power derivatives
like the forward. We refer to Carmona [10] for an account of indifference pricing
in incomplete markets, including power markets.

The parametric approach is the typical choice in the literature on pricing for-
wards in power markets (see Benth et al. [8]). The measure 𝑄 is chosen among
a parametric family of equivalent probabilities, and the parameters are next es-
timated from historical forward prices. In this way, we model the risk premium,
and estimate it from historical prices. We study this approach more closely for
spot models being in the class of LSS processes. We will follow the analysis in
Barndorff-Nielsen et al. [1] closely, and refer to this paper for further details and
a more in-depth discussion.

Consider the LSS process 𝑋(𝑡) defined in (3.1). Introduce the measure 𝑄 by
the Radon–Nikodym derivative process

𝑍(𝑡) =
𝑑𝑄

𝑑𝑃

∣∣
ℱ𝑡= exp (𝜃𝐿(𝑡)− 𝜓(−i𝜃) 𝑡) ,

for 𝑡 ∈ [0, 𝑇 ∗], with 𝑇 ∗ being some terminal time in the market covering all delivery
periods of interest. In order for 𝑍(𝑡) to be a martingale, we assume that the Lévy
process 𝐿 has exponential moments, that is, there exists a constant 𝑐 > 0 such
that for all ∣𝜃∣ ≤ 𝑐, ∫ ∞

−∞
e𝜃𝑧 ℓ(𝑑𝑧) <∞,

where ℓ(𝑑𝑧) is the Lévy measure of 𝐿. Then 𝑍(𝑡) is a martingale for all ∣𝜃∣ ≤ 𝑐.
Hence, 𝑄 is an equivalent probability of 𝑃 , and the measure change is called the



Stochastic Modeling of Power Markets 281

Esscher transform. One can see that the Lévy measure of 𝐿 with respect to 𝑄
becomes

ℓ𝑄(𝑑𝑧) = e𝜃𝑧ℓ(𝑑𝑧),

being an exponential tilting of the original measure. The measure change is re-
stricted to times 𝑡 ≥ 0, treating 𝑡 = 0 as the start of the economy. For simplicity,
we do not make any measure change with respect to the volatility process 𝜎(𝑡),
although this could be done as well (see Barndorff-Nielsen et al. [1] for details on
this).

Let us first suppose that the spot price 𝑆(𝑡) is the exponential of the LSS
process 𝑋(𝑡),

𝑆(𝑡) = Λ(𝑡) exp(𝑋(𝑡)).

Recall that Λ(𝑡) is a deterministic seasonality function, naturally being positive
and measurable. Implicitly, we suppose that 𝑆(𝑡) has a finite expectation in order to
have well-defined forward prices. We find the following result in Barndorff-Nielsen
et al. [1]:

Proposition 5.1. Suppose that 𝜃 is such that

exp

(∫ 𝑢
0

𝜓(−i(𝜃 + 𝑔(𝑢− 𝑠)𝜎(𝑠))) − 𝜓(−i𝜃) 𝑑𝑠
)

has finite expectation for all 0 ≤ 𝑢 ≤ 𝑇 ∗. Then the forward price 𝑓(𝑡, 𝑢) at time
𝑡 ≥ 0 with delivery at time 𝑢 ≥ 𝑡 is

𝑓(𝑡, 𝑢) = Λ(𝑢)Ψ(𝑡, 𝑢; 𝜃) exp

(∫ 𝑡
−∞

𝑔(𝑢− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠)

)
,

where,

Ψ(𝑡, 𝑢; 𝜃) = 𝔼

[
exp

(∫ 𝑢
𝑡

𝜓(−i(𝜃 + 𝑔(𝑢− 𝑠)𝜎(𝑠)) − 𝜓(−i𝜃) 𝑑𝑠
)
∣ ℱ𝑡

]
Proof. See Barndorff-Nielsen et al. [1]. □

We observe that the forward price is a function of∫ 𝑡
−∞

𝑔(𝑢− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠),

which does not coincide with 𝑋(𝑡) = ln𝑆(𝑡) − ln Λ(𝑡), unless 𝑢 = 𝑡. Hence, in
general, the forward price is not affine in the spot as is usual with most one-factor
spot models used in electricity modelling. Furthermore, it is clear that in general
it is impossible to integrate analytically 𝑓(𝑡, 𝑢) with respect to the delivery time
𝑢, and therefore we cannot get any closed-form expressions for power forward
prices 𝐹 (𝑡, 𝑇1, 𝑇2). The function Ψ(𝑡, 𝑢; 𝜃) measures implicitly the risk premium
in the forward market. In the case of no volatility in the LSS process, 𝜎(𝑠) = 1,
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then Ψ(𝑡, 𝑢; 𝜃) in the forward price simplifies considerably to the deterministic
expression

Ψ(𝑡, 𝑢; 𝜃) = exp

(∫ 𝑢−𝑡
0

𝜓(−i(𝜃 + 𝑔(𝑠)))− 𝜓(−i𝜃) 𝑑𝑠
)
.

This can be further computed given a specification of 𝐿, which gives 𝜓.
As a special case, consider now 𝐿 = 𝐵, a Brownian motion (in which case

the Esscher transform coincides with Girsanov transformation)

𝑑𝑓(𝑡, 𝑢)

𝑓(𝑡, 𝑢)
= 𝑔(𝑢− 𝑡)𝜎(𝑡) 𝑑𝑊 (𝑡),

with 𝑊 being the 𝑄 Brownian motion obtained from the measure change. What
is interesting here, is that the volatility of the forward is given by

Σ(𝑡, 𝑢) = 𝑔(𝑢− 𝑡)𝜎(𝑡).

For the case of 𝑋(𝑡) being an OU-process, we find 𝑔(𝑢− 𝑡) = exp(−𝛼(𝑢− 𝑡)) with
𝛼 > 0 the speed of mean reversion. Then the volatility of the forward is lower
than the spot volatility 𝜎(𝑡) for all maturity times 𝑢 > 𝑡, but is increasing towards
the spot volatility as time to maturity converges to zero. This is known as the
Samuelson effect (see Samuelson [17]). For LSS models, we find a similar effect, as

lim
𝑢↓𝑡

Σ(𝑡, 𝑢) = 𝑔(0)𝜎(𝑡),

as long as 𝑔(0) is well defined. Supposing in addition that 𝑔 is differentiable with∫∞
0 𝑔′(𝑠)2 𝑑𝑠 <∞, 𝑋(𝑡) will be in the class of semimartingale process by Proposi-
tion 3.2. We see from the dynamics of 𝑋(𝑡) in Proposition 3.2 that the volatility
becomes 𝑔(0)𝜎(𝑡). Hence, for such LSS models, we have the Samuelson effect.

In general it seems very hard to integrate the forward price 𝑓(𝑡, 𝑢) over some
delivery period in order to obtain an expression for a power forward, without
resorting to numerical integration. It is desirable to have accessible a power forward
price dynamics which can be computed efficiently in order to do risk management
and derivatives pricing. This is an argument in favour of arithmetic models. To
this end, consider

𝑆(𝑡) = Λ(𝑡) +𝑋(𝑡)

where we suppose that 𝑋 is an LSS process in 𝐿1(𝑄). We have the following from
Barndorff-Nielsen et al. [1]:

Proposition 5.2. The forward price is

𝑓(𝑡, 𝑢) = Λ(𝑢) + Ψ(𝑡, 𝑢; 𝜃) +

∫ 𝑡
−∞

𝑔(𝑢− 𝑠)𝜎(𝑠) 𝑑𝐿(𝑠).

where

Ψ(𝑡, 𝑢; 𝜃) = (−i𝜓′(−i𝜃))
∫ 𝑢
𝑡

𝑔(𝑢− 𝑠)𝔼[𝜎(𝑠) ∣ℱ𝑡] 𝑑𝑠

Proof. See Barndorff-Nielsen et al. [1]. □
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Note that we can integrate this 𝑓(𝑡, 𝑢) with respect to 𝑢 by appealing to the
stochastic Fubini theorem, and given a kernel function 𝑔 we may potentially derive
analytical expressions.

In the discussion above, we have restricted our attention to one-factor spot
models, in the sense that the spot is driven by one LSS process. In practice, one
may consider multi-factor models, which gives a richer structure for capturing a
reasonable spot price evolution, but also to get more realistic power forward price
dynamics. A further extension is to consider forward price models directly, with
possibly infinitely many factors. Using ambit fields, see Barndorff-Nielsen et al. [2],
one may provide a rich class of models for the forward dynamics.
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Abstract. A current issue in the theory and practice of insurance and rein-
surance markets is to find alternative ways of securitizing risks. Insurance
companies have the possibility of investing in financial markets and there-
fore hedge against their risks with financial instruments. Furthermore they
can sell part of their insurance risk by introducing insurance linked products
on financial markets. Hence insurance and financial markets may no longer
be considered as disjoint objects, but can be viewed as one arbitrage-free
market. Here we provide an introduction to how mathematical methods for
pricing and hedging financial claims such as the benchmark approach and
local risk minimization can be applied to the valuation of hybrid financial
insurance products, as well as to premium determination, risk mitigation and
claim reserve management.
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1. Introduction

A current issue in the theory and practice of insurance and reinsurance markets is
to find alternative ways of securitizing risks. To this purpose, insurance companies
have tried to take advantage of the vast potential of capital markets by introduc-
ing exchange-traded insurance-linked instruments such as mortality derivatives
and catastrophe insurance options. At the same time, insurance products such as
unit-linked life insurance contracts, where the insurance benefits depend on the
price of some specific traded stocks, offer a combination of traditional life insur-
ance and financial investment. Furthermore, new kinds of insurance instruments,
which offer protection against risks connected to macro-economic factors such as
unemployment, are recently offered on the market. Hence insurance and financial
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markets may no longer be viewed as disjoint objects, but can be considered as one
arbitrage-free market. Here we provide an introduction to how mathematical meth-
ods for pricing and hedging financial claims can be applied to the valuation and
hedging of the hybrid products mentioned above, as well as to premium determi-
nation, risk mitigation and claim reserve management. In this paper we propose to
use the benchmark approach for pricing and the (local) risk minimization method
for hedging purposes. We motivate these choices as follows.

We have already remarked that insurance markets and financial markets can
be seen as one arbitrage-free market. However insurance claims are in general not
replicable by other financial instruments, which implies that the hybrid market
consisting of financial and insurance products is incomplete. As a consequence,
there usually exist several equivalent (local) martingale measures, corresponding
to the same numéraire, that guarantee the absence of arbitrage in the market. In in-
complete markets a pricing and hedging criterion with a corresponding equivalent
(local) martingale measure must then be selected. Rather natural and tractable are
quadratic hedging criteria such as mean-variance hedging and local risk minimiza-
tion, see [41] and [25] for extensive surveys on these methods. The local risk minimi-
zation approach provides for a given square-integrable contingent claim𝐻 a perfect
hedge by using strategies that are not necessarily self-financing, with (discounted)
portfolio value given by the gain of trade plus an instantaneous adjustment called
the cost. The optimal strategy, when it exists, is determined by the property of hav-
ing minimal risk, in the sense that the optimal cost is given by a square-integrable
martingale strongly orthogonal to the martingale part of the asset price process.
This implies that the optimal strategy is “self-financing on average”, i.e. remains as
close as possible to being self-financing. In this setting, one can hedge a contingent
claim 𝐻 by investing in the primary assets on the market and by compensating
other sources of risks by using the cost. In particular (local) risk-minimization nat-
urally appears as suitable hedging method when market incompleteness derives by
the presence of an additional source of randomness external to the financial mar-
ket (such as for example mortality risk, catastrophe risk, insurance risks), that is
“orthogonal” to the asset price dynamics, but not necessarily independent of them
and vice versa. This is the case of market models containing financial insurance-
linked instruments, such as mortality derivatives (survival swaps, longevity bonds)
recently introduced on the markets to hedge against systematic mortality risk in
life insurance contracts, and unit-linked life insurance contracts, i.e., contracts that
combine insurance benefits and financial investment. Some references on this topic
are for example [1, 4, 5, 8, 9, 15, 16, 31, 32, 37] and [38].

Local risk minimization is mainly an hedging criterion and provides a no-
arbitrage price only as a “by-product” of the method, but such a valuation is
not its primary objective. Hence for what concerns the pricing issue, we con-
sider here the benchmark approach, introduced in the literature by several authors
([20, 21, 28, 33, 34, 35]). The benchmark approach provides a pricing rule (real-
world pricing) under the real-world probability measure ℙ by using a particular
discounting factor called benchmark or ℙ-numéraire portfolio, and does not require
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the existence of an equivalent (local) martingale measure (ELMM). The numéraire
portfolio contains information on macro-economic influences and on risks genera-
ted by the complex of hybrid products on the market. Hence it can be seen as a
general indicator of the market’s financial and economic conditions (cost of capital,
interest rates, expected investment returns, macro-economic influences, market de-
pendence structure). Real-world pricing uses the numéraire as a measure of market
performance and then results to be more natural than pricing by selecting a partic-
ular equivalent martingale measure. In this way we also benefit from the statistical
advantages of working directly under the real-world probability measure.

Furthermore, for hedgeable claims, the real-world pricing formula gives their
minimal price and for non-hedgeable claims this method is consistent with (as-
ymptotic) utility indifference pricing as defined in [35] in a very general setting.
Moreover there is an intrinsic relation between (local) risk minimization approach
and real-world pricing, that justifies the use of the benchmark approach for pri-
cing also in incomplete markets. To this extent we refer to the detailed discussion
contained in Section 5.

For what concerns the application of the no-arbitrage pricing theory to pre-
mium determination for insurance contracts, this topic has been already discussed
in the literature by several authors, see [17, 29, 40] and [42], as explained in Sec-
tion 3.

Here we consider the benchmark approach also for actuarial application as
more natural pricing method with respect to the martingale methods of the stan-
dard no-arbitrage pricing theory, since it keeps a close connection to the classical
premium calculation principles, which also use the real-world probability mea-
sure ℙ.

Furthermore, in the case of real-world pricing of insurance contracts, we take
directly in account the role of investment opportunities in assessing premiums and
reserves, since the benchmark is a direct and intuitive global indicator of (hybrid)
market performance. This is of course even more relevant for insurance structures
depending heavily on the performance of financial markets and macro-economic
factors, such as for example unemployment insurance products. On the contrary
the choice of a particular martingale measure for actuarial applications appears
quite artificial, since it is exclusively determined in relation to the primitive finan-
cial assets on the market. A detailed discussion on the relation between actuarial
premium calculation principles and real-world pricing is contained in Section 5.

The structure of the paper is the following. First of all we introduce shortly
the benchmark approach. Then in Section 3.1 we illustrate an application of real-
world pricing to premium determination for unemployment insurance products,
after having discussed no-arbitrage pricing of insurance claims in Section 3. After-
wards we consider local risk minimization for hybrid markets: in Section 4 we recall
the main features of this hedging method and in Section 4.1 we apply it to dynamic
hedging with longevity bonds. Finally a discussion on the relation between (local)
risk minimization approach, real-world pricing and actuarial premium calculation
principles concludes the paper in Section 5.
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2. The benchmark approach

As stated in the introduction, we adopt the benchmark approach for our pricing
issue. All fundamental results of this approach can be found in [35] for jump
diffusion and Itô process driven markets and in [33] for a general semimartingale
market.

Let 𝑇 > 0 be a finite time horizon. We consider a frictionless financial market
model in continuous time, which is set up on a complete probability space (Ω,ℱ ,ℙ),
endowed with a filtration 𝔽 = (ℱ𝑡)0≤𝑡<𝑇 that is assumed to satisfy ℱ𝑡 ⊆ ℱ for all
𝑡 ∈ [0, 𝑇 ], ℱ0 = {∅,Ω}, as well as the usual hypotheses, see [36].

On the market, we can find 𝑑+ 1 non-negative, adapted tradable (primary)
security account processes, represented by the (𝑑 + 1)-dimensional càdlàg semi-
martingale 𝑆 = (𝑆𝑡)𝑡∈[0,𝑇 ] = (𝑆0

𝑡 , 𝑆
1
𝑡 , . . . , 𝑆

𝑑
𝑡 )
𝑡𝑟
𝑡∈[0,𝑇 ]. Here we interpret 𝑆0

𝑡 as the

value of the adapted, strictly positive savings account at time 𝑡, 𝑡 ∈ [0, 𝑇 ].
Let 𝐿(𝑆) denote the space of ℝ𝑑+1-valued, predictable strategies

𝛿 = (𝛿𝑡)𝑡∈[0,𝑇 ] = (𝛿0𝑡 , 𝛿
1
𝑡 , . . . , 𝛿

𝑑
𝑡 )
𝑡𝑟
𝑡∈[0,𝑇 ] ,

for which the corresponding gain from trading in the assets, i.e.,
∫ 𝑡
0
𝛿𝑠 ⋅ 𝑑𝑆𝑠, exists

for all 𝑡 ∈ [0, 𝑇 ].
Here, 𝛿𝑗𝑡 represents the units of asset 𝑗 held at time 𝑡 by a market participant.

The portfolio value 𝑆𝛿𝑡 at time 𝑡 ∈ [0, 𝑇 ] is then given by

𝑆𝛿𝑡 = 𝛿𝑡 ⋅ 𝑆𝑡 =
𝑑∑
𝑗=0

𝛿𝑗𝑡𝑆
𝑗
𝑡 .

A strategy 𝛿 ∈ 𝐿(𝑆) is called self-financing if changes in the portfolio value are
only due to changes in the assets and not due to in- or outflow of money, i.e., if

𝑆𝛿𝑡 = 𝑆𝛿0 +

𝑡∫
0

𝛿𝑠 ⋅ 𝑑𝑆𝑠 , 𝑡 ∈ [0, 𝑇 ] ,

or equivalently

𝑑𝑆𝛿𝑡 = 𝛿𝑡 ⋅ 𝑑𝑆𝑡 .
In the sequel we won’t always request strategies to be self-financing. We write
𝒱+
𝑥 (𝒱𝑥) for the set of all strictly positive (non-negative), finite and self financing
portfolios 𝑆𝛿 with initial capital 𝑆𝛿0 = 𝑥. We now introduce the notion of the
ℙ-numéraire portfolio.

Definition 2.1. A portfolio 𝑆𝛿∗ ∈ 𝒱+
1 is called ℙ-numéraire portfolio if every non-

negative portfolio 𝑆𝛿 ∈ 𝒱1, discounted (or benchmarked) with 𝑆𝛿∗ , forms a (𝔽,ℙ)-
supermartingale. In particular, we have

𝔼

[
𝑆𝛿𝜎

𝑆𝛿∗𝜎

∣∣∣ℱ𝜏] ≤ 𝑆𝛿𝜏

𝑆𝛿∗𝜏
a.s. (2.1)

for all stopping times 0 ≤ 𝜏 ≤ 𝜎 ≤ 𝑇 .
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From now on, we choose the ℙ-numéraire portfolio as benchmark. We call
any security, when expressed in units of the numéraire portfolio, a benchmarked
security and refer to this procedure as benchmarking. The benchmarked value of a
portfolio 𝑆𝛿 is given by

𝑆𝛿𝑡 =
𝑆𝛿𝑡

𝑆𝛿∗𝑡
, 𝑡 ∈ [0, 𝑇 ].

If a ℙ-numéraire portfolio exists, it is unique by the supermartingale property and
Jensen’s inequality, see [3].

To establish the further modeling framework, we make the following (rather
weak) assumption, see [3], [28] or [35].

Assumption 2.2. The ℙ-numéraire portfolio 𝑆𝛿∗ ∈ 𝒱+
1 exists in our market.

If it exists, the ℙ-numéraire portfolio is equal to the “growth optimal portfo-
lio” (in short: GOP), which is defined as the portfolio with the maximal growth-
rate in the market. It also satisfies several other optimality criteria, see [3, 26, 33]
and [35], and can be approximated under fairly weak assumptions by a sequence of
well-diversified portfolios (see Theorem 3.6 of [34]). The existence and uniqueness
of the ℙ-numéraire portfolio can be shown in a sufficiently general setting, see [3],
[28] or [35].

Definition 2.3. A benchmarked non-negative self-financing portfolio 𝑆𝛿 is a strong
arbitrage if it starts with zero initial capital, that is 𝑆𝛿0 = 0, and generates some
strictly positive wealth with strictly positive probability at a later time 𝑡 > 0, that
is P(𝑆𝛿𝑡 > 0) > 0.

With the existence of the ℙ-numéraire portfolio and the corresponding su-
permartingale property (2.1), strong arbitrage opportunities, as defined in Def-
inition 2.3, are excluded, see [33]. There could still exist some weaker forms of
arbitrage, which would require to allow for negative portfolios of total wealth,
however. Because of the (often legally established) principle of limited liability,
these portfolios should be excluded in a realistic market model: a market partici-
pant generally holds a non-negative portfolio of total wealth, otherwise he would
have to declare bankruptcy. This holds in particular for insurance companies that
must take care of several legal constraints for trading.

Let us now consider two portfolios 𝑆𝛿 ∈ 𝒱𝑥 and 𝑆𝛿
′ ∈ 𝒱𝑦 with 𝑆𝛿𝑇 = 𝑆𝛿

′
𝑇

ℙ-a.s. Let the benchmarked portfolio process 𝑆𝛿𝑡 , 𝑡 ∈ [0, 𝑇 ], be a martingale and

the benchmarked portfolio process 𝑆𝛿
′
𝑡 , 𝑡 ∈ [0, 𝑇 ], be a supermartingale. Then

𝑆𝛿𝑡 = 𝔼
[
𝑆𝛿𝑇

∣∣∣ℱ𝑡] = 𝔼
[
𝑆𝛿

′
𝑇

∣∣∣ℱ𝑡] ≤ 𝑆𝛿
′
𝑡 , ∀𝑡 ∈ [0, 𝑇 ] , (2.2)

and in particular

𝑥 = 𝑆𝛿0 ≤ 𝑆𝛿
′

0 = 𝑦 .

Then 𝑆𝛿 (if it exists) has minimal price among all benchmarked portfolios with the
same terminal value. Hence, a rational (risk-averse) investor would always invest
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in a benchmarked martingale portfolio (if it exists). This justifies the following
definition of “fair” wealth processes, see [33].

Definition 2.4. A portfolio process 𝑆𝛿 = (𝑆𝛿𝑡 )𝑡≥0 is called fair if its benchmarked
value process

𝑆𝛿𝑡 =
𝑆𝛿𝑡

𝑆𝛿∗𝑡
, 𝑡 ∈ [0, 𝑇 ] ,

forms a (𝔽,ℙ)-martingale.

Definition 2.5. A 𝑇 -contingent claim 𝐻 is a ℱ𝑇 -measurable random variable with

𝔼
[
∣𝐻∣
𝑆𝛿∗𝑇

]
<∞. We denote by

�̂� :=
𝐻

𝑆𝛿∗𝑇

the benchmarked payoff of the 𝑇 -contingent claim 𝐻 .

According to Definition 2.4, it is natural to define the so-called real-world
pricing formula for a 𝑇 -contingent claim 𝐻 as follows:

Definition 2.6. For a 𝑇 -contingent claim 𝐻 the fair price 𝑃𝑡(𝐻) of 𝐻 at time
𝑡 ∈ [0, 𝑇 ] is given by

𝑃𝑡(𝐻) := 𝑆𝛿∗𝑡 𝔼

[
𝐻

𝑆𝛿∗𝑇

∣∣∣ℱ𝑡] = 𝑆𝛿∗𝑡 𝔼
[
�̂�

∣∣ℱ𝑡] . (2.3)

Here (2.3) is addressed as real-world pricing formula.

Hence the corresponding benchmarked fair price process (𝑃𝑡)𝑡∈[0,𝑇 ] =(
𝑃𝑡
𝑆𝛿∗𝑡

)
𝑡∈[0,𝑇 ]

forms a (𝔽,ℙ)-martingale.

Definition 2.7. We say that a non-negative benchmarked contingent claim �̂� ∈
𝐿1(ℱ𝑇 ,ℙ) is hedgeable if there exists a self-financing strategy 𝛿�̂� = (𝛿�̂�𝑡 )𝑡∈[0,𝑇 ] =

(𝛿�̂�,1𝑡 , 𝛿�̂�,2𝑡 , . . . , 𝛿�̂�,𝑑𝑡 )𝑡𝑟𝑡∈[0,𝑇 ] such that

�̂� = �̂�0 +

∫ 𝑇
0

𝛿�̂�𝑢 ⋅ d𝑆𝑢.

In the case of a hedgeable benchmarked payoff �̂� , the real-world pricing for-
mula (2.3) provides the description for the fair portfolio of minimal price among

all replicating self-financing portfolios for �̂�, since the benchmarked fair port-
folio value forms by definition a ℙ-martingale. The benchmark approach allows
other self-financing hedge portfolios to exist for �̂� , see [35]. However, these non-
negative portfolios are not ℙ-martingales and, as supermartingales, therefore more
expensive than the ℙ-martingale given by the benchmarked fair portfolio process
obtained by (2.3), see (2.2).
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Remark 2.8. If a 𝑇 -contingent claim 𝐻 and the value 𝑆𝛿∗𝑇 at time 𝑇 of the ℙ-
numéraire portfolio are independent, we get

𝑃𝑡(𝐻) = 𝑆𝛿∗𝑡 𝔼
[ 1

𝑆𝛿∗𝑇
∣ℱ𝑡

]
𝔼 [𝐻 ∣ℱ𝑡]

= 𝑃 (𝑡, 𝑇 )𝔼 [𝐻 ∣ℱ𝑡] , (2.4)

where 𝑃 (𝑡, 𝑇 ) is the fair price at time 𝑡 ≤ 𝑇 of a zero-coupon bond with nominal
value one, paid at time 𝑇 . This formula is often called the actuarial pricing formula.

3. No-arbitrage pricing of insurance claims

Pricing of random claims has ever been one of the core subjects in both actuarial
and financial mathematics and there exist various approaches for calculating (fair)
prices. The actuarial way of pricing usually considers the classical premium calcu-
lation principles that consist of net premium and safety loading: if 𝐻 describes a
random claim, which the insurance company has to pay (eventually) in the future
at time 𝜏 , then a premium 𝑃 (𝐻) to be charged for the claim is defined by

𝑃 (𝐻) = 𝔼

[
𝐻

𝐷𝜏

]
︸ ︷︷ ︸

net premium

+ 𝐴

(
𝐻

𝐷𝜏

)
︸ ︷︷ ︸
safety loading

, (3.1)

where 𝐷 is a discounting factor chosen according to actuarial judgement (see
also [29] for further remarks). Note that the net premium is the expected value
of 𝐻 with respect to the real-world (or objective) probability measure. Possible

safety loadings could be 𝐴( 𝐻𝐷𝜏 ) = 0 (net premium principle), 𝐴( 𝐻𝐷𝜏 ) = 𝑎 ⋅ 𝔼
[
𝐻
𝐷𝜏

]
(expected value principle, where 𝑎 ≥ 0), 𝐴( 𝐻𝐷𝜏 ) = 𝑎 ⋅ 𝕍𝑎𝑟( 𝐻𝐷𝜏 ) (variance principle,

where 𝑎 > 0) or 𝐴( 𝐻𝐷𝜏 ) = 𝑎 ⋅
√
𝕍𝑎𝑟( 𝐻𝐷𝜏 ) (standard deviation principle, where

𝑎 > 0), see, e.g., [39]. The existence of a safety loading is justified by ruin arguments
and the risk-averseness of the insurance company.

Widely used pricing approaches in finance base on no-arbitrage assumptions
(see, e.g., the famous papers of Black and Scholes [11] and Merton [30]). A finan-
cial market, consisting of several primary assets, is assumed to be in an economic
equilibrium, in which riskless gains with positive probability (arbitrage) by trading
in the assets are impossible. A fundamental result in this context is that absence
of arbitrage is implied by the existence of an equivalent (local) martingale mea-
sure, i.e., a probability measure, which is equivalent to the real-world measure
and according to which all assets, discounted with some numéraire, are (local)
martingales. There are different versions of this result which is often called the
fundamental theorem of asset pricing (in short: FTAP), see, e.g., [18], [19], [22],
[24] or [27].
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Based on the FTAP, it can then be shown that, at any time 𝑡, an arbitrage-
free price 𝑃𝑡(𝐻) of a (contingent) claim 𝐻 (paid at time 𝑇 ≥ 𝑡) can be defined by

𝑃𝑡(𝐻) := 𝑁𝑡𝔼ℚ

[
𝐻

𝑁𝑇

∣∣ℱ𝑡] , (3.2)

where ℚ is an equivalent (local) martingale measure and (𝑁𝑡)𝑡∈[0,𝑇 ] a discounting
factor process.

From an economic point of view both the safety loading in equation (3.1)
and the change to an equivalent (local) martingale measure in equation (3.2) ex-
press the risk-averseness of the insurance company. Hence, there have been several
attempts to connect actuarial premium calculation principles with the financial
no-arbitrage theory. The papers [17] and [42] both describe a competitive and
liquid reinsurance market, in which insurance companies can “trade” their risks
among each other. Since riskless profits shall be excluded also in this setting, the
no-arbitrage theory applies and insurance premiums can be calculated by equation
(3.2). Both papers actually show that under some assumptions there exist equiva-
lent martingale measures, which explain premiums of the form (3.1), so that these
principles provide arbitrage-free prices, too.

Therefore no-arbitrage pricing theory can be applied also to actuarial pre-
mium determination. To this purpose, in this paper we choose the benchmark ap-
proach, as we have already thoroughly explained in the Introduction. In Section 5
we comment extensively on the relation between actuarial premium calculation
principles and real-world pricing. We now illustrate an application of real-world
pricing to premium determination of unemployment insurance products.

3.1. Real-world pricing for unemployment insurance products

We first introduce the structure of the considered unemployment insurance pro-
ducts. The product’s basic idea is that the insurance company compensates to
some extend the financial deficiencies, which an unemployed insured person is ex-
posed to. Here we only consider contracts with deterministic, a priori fixed claim
payments 𝑐𝑖, which can be interpreted as an annuity during an unemployment
period, and predefined payment dates 𝑇𝑖, 𝑖 = 1, . . . , 𝑁 . An example for this kind
of contracts is given by Payment Protection Insurance (in short: PPI) products
against unemployment, which are linked to some payment obligation of an obligor
to its creditor.

The following details of the insurance contract are important for the later
model specifications:

– Regarding the method of premium payment, we have to differentiate between
single rates, where the whole insurance premium is paid at the beginning
of the contract, and periodical rates. For our modeling purpose, we want
to focus on calculating single premiums. This is again motivated by PPI
unemployment products, which are often sold as an add-on directly by the
creditor. The insurance company then receives a single rate from the creditor,
who in turn allocates this rate to the instalments.



Evaluating Hybrid Products 293

– The obligor must have been employed at least for a certain period before the
contract’s conclusion. Hence we assume that she is employed at the beginning
of the contract.

We also consider three time periods that belong to the exclusion clauses of the
contracts and impact the insurance premium.

– The waiting period 𝑊 starts with the beginning of the contract. If an insured
person becomes unemployed at any time of this period, he is not entitled to
receive any claim payments during the whole unemployment time.

– The deferment period 𝐷 starts with the first day of unemployment. An in-
sured person is not entitled to receive claim payments until the end of this
period.

– The third period is comparable to the waiting period and is called the re-
qualification period and denoted by 𝑅. The difference between waiting and
requalification period is their beginning. The waiting period starts with the
beginning of the contract and the requalification period with the end of any
unemployment period that occurred during the contract’s duration. If an in-
sured person becomes (again) unemployed at any time of the requalification
period, he is not entitled to receive any claim payment during the whole time
of unemployment.

For existing unemployment insurance contracts, the waiting, deferment and re-
qualification periods currently vary from three to twelve months.

According to the contract structure defined above, the random insurance
claim 𝐻𝑖 at the payment date 𝑇𝑖 can be defined as

𝐻𝑖(𝜔) := 𝑐𝑖𝐼{𝑊<𝜏1≤𝑇𝑖−𝐷,𝜏2>𝑇𝑖}∪
∞∪
𝑗=2

{𝜏2𝑗-1−𝜏2𝑗-2>𝑅,𝑊<𝜏2𝑗-1≤𝑇𝑖−𝐷,𝜏2𝑗>𝑇𝑖}
(𝜔) ,

where (𝜏𝑗)𝑗∈ℕ with 𝜏0 := 0 are the random jump times of the employment-
unemployment process 𝑋 := (𝑋𝑡)𝑡∈[0,𝑇 ] that describes at time 𝑡 if the insured
person is employed (𝑋𝑡 = 0) or not (𝑋𝑡 = 1).

Assumption 3.1. Every (random) insurance claim 𝐻𝑖 of the unemployment insur-

ance contract, paid at time 𝑇𝑖, is independent of the respective value 𝑆𝛿∗𝑇𝑖 of the
ℙ-numéraire portfolio at time 𝑇𝑖.

Under this assumption we can apply the actuarial pricing formula (2.4), that
requires in this case only the conditional joint distributions of the jump times
𝜏𝑗 , 𝑗 ∈ ℕ. However we note that this assumption may be too strong for a realistic
model. The insurance claims obviously depend on macroeconomic unemployment
factors, which in turn may have interdependencies with financial markets, repre-
sented by the ℙ-numéraire portfolio (or the GOP). For the study of dependence
effects between the insurance claims and the ℙ-numéraire portfolio, we refer to [10].

Furthermore, we assume that there is the possibility of putting money on
a bank account with constant interest rate 𝑟 > 0, and that the employment-
unemployment process 𝑋 follows a time-homogeneous strong Markov chain with
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respect to ℙ and

ℱ𝑡 = ℱ𝑋𝑡 = 𝜎(𝑋𝑢, 𝑢 ≤ 𝑡), 𝑡 ∈ [0, 𝑇 ].
These assumptions may again be too strong for a realistic model. Actually, the
probability of an insured person of getting unemployed or employed may depend
on his past employment-unemployment development. An extension of this model
can be found in [10].

Under these hypotheses the sojourn times 𝜏𝑗 − 𝜏𝑗−1, 𝑗 ≥ 1, given 𝑋0 =
𝑖0, 𝑖0 ∈ {0, 1}, are conditionally independent and exponentially distributed, with
parameters given by the intensity matrix

Λ =

(
𝜆0 −𝜆0
−𝜆1 𝜆1

)
(3.3)

of 𝑋 . In particular, we have

ℙ (𝜏1 − 𝜏0 > 𝑡1, . . . , 𝜏𝑛 − 𝜏𝑛−1 > 𝑡𝑛∣ 𝑋0 = 𝑖0) = 𝑒−𝜆𝑖0 𝑡1 ⋅ ⋅ ⋅ ⋅ ⋅ 𝑒−𝜆𝑖𝑛−1+1𝑡𝑛 ,

where 𝑖0, 𝑖1, . . . , 𝑖𝑛−1 ∈ {0, 1} with 𝑖𝑘 = 1 − 𝑖𝑘−1, 𝑡1, . . . , 𝑡𝑛 ∈ [0,∞), and
𝜆𝑖0 , . . . , 𝜆𝑖𝑛−1 are defined by (3.3), see [43].

For the sake of simplicity, we now assume that 𝑡 ∈ [𝑇𝑘−1,𝑊 ), that the insured
person was employed at the actual beginning of the contract (𝑋0 = 0) and that
the first jump to unemployment 𝜏1 has not occurred up to time 𝑡 (𝑡 < 𝜏1).

Proposition 3.2. Under Assumption 3.1 we obtain the insurance premiums 𝑃𝑡 for
𝑋0 = 0 and 𝑡 ∈ [𝑇𝑘−1,𝑊 ) as follows:

𝑃𝑡 =
𝑁∑
𝑖=𝑘

𝑆𝛿∗𝑡 𝔼
[
�̂�𝑖

∣∣∣ℱ𝑡
]
=

𝑁∑
𝑖=𝑘

𝑒−𝑟(𝑇𝑖−𝑡)𝔼
[
�̂�𝑖

∣∣∣ℱ𝑡
]

(3.4)

=

𝑁∑
𝑖=𝑘

𝑐𝑖𝑒
−(𝑟+𝜆1)(𝑇𝑖−𝑡)

( 𝜆0

𝜆0 − 𝜆1

(
𝑒−(𝜆0−𝜆1)(𝑊−𝑡) − 𝑒−(𝜆0−𝜆1)(𝑇𝑖−𝐷−𝑡))

+ 𝜆2
0𝜆1

𝑇𝑖−𝐷−𝑡∫
max{𝑊−𝑡,𝑅}

𝑦∫
𝑅

𝑒−(𝜆0−𝜆1)𝑥
𝑦−𝑥∫
0

𝑒−(𝜆0−𝜆1)𝑢𝐼0(2
√

𝜆0𝜆1𝑢(𝑦 − 𝑥− 𝑢))𝑑𝑢𝑑𝑥𝑑𝑦
)
,

(3.5)

where 𝐼0(𝑥) is the modified first kind Bessel function of order 0. In general, the
modified first-order Bessel function 𝐼𝛼(𝑥) of order 𝛼 ∈ ℝ is given by

𝐼𝛼(𝑥) =

∞∑
𝑚=0

1

𝑚! Γ(𝑚+ 𝛼+ 1)

(𝑥

2

)2𝑚+𝛼

.

Proof. Pricing formula (3.4) derives by applying (2.4) and (3.5) by the assumptions
on the employment-unemployment process 𝑋 . For further details on the proof, we
refer to [10]. □

Note that, due to the “loss of memory” property of 𝑋 , it is sufficient to
calculate the insurance premiums for 𝑡 ≤ 𝜏1. Analogous computations deliver the
price for all the other cases, see [10].
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4. (Local) risk minimization for hybrid markets

We now turn to the hedging issue. To avoid technicalities, we focus on the case
where the asset prices discounted with the savings account 𝑆0 are given by local
martingales under a given probability measure ℙ. We denote by 𝑆 the vector of
the 𝑑+ 1 discounted primary security accounts

𝑆 :=

(
𝑆𝑡
𝑆0
𝑡

)
𝑡∈[0,𝑇 ]

= (1, 𝑆1
𝑡 , . . . , 𝑆

𝑑
𝑡 )
𝑡𝑟
𝑡∈[0,𝑇 ].

Remark 4.1. This assumption on the underlying asset price processes may appear
quite restrictive. However if we choose as discounting factor the ℙ-numéraire port-
folio, by Assumption 2.2 and Theorem 2.4 of [26] it follows that the vector process

𝑆 of benchmarked primary security accounts is always a ℙ-local martingale, if 𝑆 is
given by a continuous semimartingale and also for a wide class of jump-diffusion
models.

Under these assumptions on the discounted financial markets, we can apply
the risk-minimization method as originally introduced in [23]. For further details,
we also refer to [41].

Definition 4.2. An 𝐿2-admissible strategy is any ℝ𝑑+1-valued predictable vector
process 𝛿 = (𝛿)𝑡∈[0,𝑇 ] = (𝛿0𝑡 , 𝛿

1
𝑡 , . . . , 𝛿

𝑑
𝑡 )
𝑡𝑟
𝑡∈[0,𝑇 ] such that

(i) the associated discounted portfolio 𝑆𝛿 is a square-integrable stochastic pro-
cess whose left-limit is equal to 𝑆𝛿𝑡− = 𝛿𝑡 ⋅ 𝑆𝑡, 𝑡 ∈ [0, 𝑇 ],

(ii) the stochastic integral
∫
𝛿 ⋅ d𝑆 is such that

𝔼

[∫ 𝑇
0

𝛿𝑡𝑟𝑢 d[𝑆]𝑢𝛿𝑢

]
<∞. (4.1)

Here [𝑆] = ([𝑆𝑖, 𝑆𝑗])𝑖,𝑗=1,...,𝑑 denotes the matrix-valued optional covariance
process of 𝑆.

Since the market is not complete, we also admit strategies here that are not
self-financing and may generate profits or losses over time as defined below.

Definition 4.3. For any 𝐿2-admissible strategy 𝛿, the cost process 𝐶𝛿 is defined by

𝐶𝛿𝑡 := 𝑆𝛿𝑡 −
∫ 𝑡
0

𝛿𝑢 ⋅ d𝑆𝑢 − 𝑆𝛿0 , 𝑡 ∈ [0, 𝑇 ]. (4.2)

Here 𝐶𝛿𝑡 describes the total costs incurred by 𝛿 over the interval [0, 𝑡].

Definition 4.4. For an 𝐿2-admissible strategy 𝛿, the corresponding risk at time 𝑡
is defined by

�̄�𝛿𝑡 := 𝔼
[(
𝐶𝛿𝑇 − 𝐶𝛿𝑡

)2∣∣∣ℱ𝑡] , 𝑡 ∈ [0, 𝑇 ],
where the cost process 𝐶𝛿, given in (4.2), is assumed to be square-integrable.
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We now wish to find an 𝐿2-admissible strategy 𝛿 which minimizes the asso-
ciated risk measured by the fluctuations of its cost process in a suitable sense.

Definition 4.5. Given a discounted contingent claim �̄� ∈ 𝐿2(ℱ𝑇 ,ℙ), an 𝐿2-
admissible strategy 𝛿 is said to be risk-minimizing if the following conditions hold:

(i) 𝑆𝛿𝑇 = �̄�, ℙ-a.s.;

(ii) for any 𝐿2-admissible strategy 𝛿 such that 𝑆𝛿𝑇 = 𝑆𝛿𝑇 ℙ-a.s., we have

�̄�𝛿𝑡 ≤ �̄�𝛿𝑡 ℙ-a.s. for every 𝑡 ∈ [0, 𝑇 ].

Lemma 4.6. The cost process 𝐶𝛿 associated to a risk-minimizing strategy 𝛿 is a
ℙ-martingale for all 𝑡 ∈ [0, 𝑇 ].

Proof. For the proof of Lemma 4.6, we refer to [41] and [6]. □

The martingale property of the cost process characterizes the mean-self-
financing property of the strategy 𝛿, i.e., 𝐿2-admissible strategies that somehow
are kept “self-financing on average”.

The next result shows how to provide a risk-minimizing strategy for a given
claim. Letℳ2

0(ℙ) be the space of all square-integrable martingales starting at null
at the initial time.

Proposition 4.7. Every discounted contingent claim �̄� ∈ 𝐿2(ℱ𝑇 ,ℙ) admits a
unique risk-minimizing strategy 𝛿 with portfolio value 𝑆𝛿 and cost process 𝐶𝛿,
given respectively by

𝛿 = 𝛿�̄� , 𝑆𝛿𝑡 = 𝔼
[
�̄�
∣∣ℱ𝑡] , 𝐶𝛿𝑡 = 𝐿�̄�𝑡 ,

for 𝑡 ∈ [0, 𝑇 ], where 𝛿�̄� and 𝐿�̄� are provided by the Galtchouk–Kunita–Watanabe
(GKW) decomposition of �̄�, i.e.,

�̄� = �̄�0 +

∫ 𝑇
0

𝛿�̄�𝑢 ⋅ d𝑆𝑢 + 𝐿�̄�𝑇 , ℙ-a.s., (4.3)

where �̄�0 ∈ ℝ, 𝛿�̄� is an 𝔽-predictable vector process satisfying the integrability
condition (4.1) and 𝐿�̄� ∈ ℳ2

0(ℙ) is strongly orthogonal to each component of 𝑆.

Proof. The proof follows from Theorem 2.4 of [41] and Lemma 4.6. □

Thus, the problem of minimizing risk is reduced to finding the representation
(4.3). Decomposition (4.3) is often addressed in the literature as the Föllmer–
Schweizer decomposition.

We now illustrate an application of the local risk minimization approach to
hedging of mortality derivatives.
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4.1. Application to mortality risk: Dynamic hedging with longevity bonds

A large number of life insurance and pensions products have mortality and
longevity as a primary source of risk. Life and pension insurance companies typ-
ically use deterministic mortality intensities when determining premiums and re-
serves. However empirical evidence (see [14] for a literature overview on this topic)
shows that this assumption is not realistic, so companies are exposed also to
changes in the mortality intensity, i.e., to systematic mortality risk. This risk can-
not be diversified away by pooling (i.e., by using sufficiently large portfolios) as
in the case of unsystematic mortality risk, i.e., the risk associated with the status
of individual life, but on the contrary its impact increases for larger portfolios of
insured persons. Here we use the terminology of (systematic) mortality risk to
denote all forms of deviations in aggregate mortality rates from those anticipated.
More precisely, it can be differentiated in longevity risk, i.e., the risk that aggre-
gate survival rates for given cohorts are higher than anticipated, and short-term,
catastrophic mortality risk, i.e., the risk, that over short period of time, mortal-
ity rates are very much higher than would be normally experienced (such as for
example in the case of a pandemic influenza or a natural catastrophe). Although
mortality and longevity risk can be re-insured, traditional reinsurance is becom-
ing inadequate to offer sufficient protection against these risks. Furthermore the
new regulatory regime Solvency II proposal, due to be adopted in 2012, will re-
quire insurance companies to hold significant additional capital to guarantee their
annuity liabilities if longevity risk cannot be controlled effectively. Since existing
markets provide no effective hedge for longevity and mortality risk, recent studies
([2, 12, 13] and [14]) have highlighted the need of encouraging the introduction
of a life market in order to address the problem of an extremely fast ageing pop-
ulation and the risk of long retirement periods that cannot be afforded anymore
by a shrinking (younger) labor force. Hence to this purpose, new forms of invest-
ment in mortality derivatives have been recently introduced as alternative or as a
complement to traditional reinsurance. Some examples are the followings (for an
exhaustive discussion on mortality products, we refer to [14]):

∙ Longevity bonds, where coupon payments are linked to the number of sur-
vivors in a given cohort. The first example of longevity bond in the history is
represented by Tontine bonds issued by some European governments in the
17th and 18th centuries. The first modern longevity bonds were introduced
in 2004 by the European Investment Bank and BNP Paribas.

∙ Short-dated, mortality securities : market traded securities, whose payments
are linked to a mortality index. They allow the issuer to reduce its exposure
to short-term catastrophic mortality risk. The first bond of this type was
issued with great success by Swiss Re in 2004.

∙ Survivor swaps, where counterparties swap a fixed series of payments for a
series of payments linked to the number of survivors in a given cohort. Until
now a small number of survivor swaps have been traded only on an over-the-
counter basis.
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Other kinds of products such as mortality options, i.e., financial contracts with
mortality rate as underlying, have been discussed only at a theoretical level in the
literature. The AFPEN (the Association of French Pension Funds) has suggested to
introduce also an annuity futures market. Some of these new investment products
such as some longevity bonds have encountered the favor of the public. However
the establishment of a life market is still at the beginning.

As a contribution to the ongoing discussion on the introduction of longevity
markets, we now consider an application of risk minimization to dynamic hedging
with longevity bonds. For further details on this issue, we refer to [9]. The math-
ematical setting is the following. The time of death 𝜏 > 0 of a person is modeled
as a random variable with 𝑃 (𝜏 > 𝑡) > 0 for any 𝑡 ∈ [0, 𝑇 ], and we denote by
𝐻𝑡 = 𝕀{𝜏≤𝑡} the counting process of death. Let ℍ := (ℋ𝑡)𝑡∈[0,𝑇 ] be the filtration,
generated by 𝐻 . We assume that the overall information is represented by the
filtration 𝔾 := 𝔽 ∨ ℍ, where 𝔽 := (ℱ𝑡)𝑡∈[0,𝑇 ] is the augmented natural filtration
of some Brownian motion 𝑊 . To avoid technical difficulties, we suppose that the
hypothesis (𝐻) holds, i.e., every 𝔽-martingale remains a martingale in the larger
filtration 𝔾. In particular, 𝑊 is a 𝔾-martingale, and then by Lévy’s characteriza-
tion a 𝔾-Brownian motion. The survival probability process 𝐺 associated to 𝜏 is
supposed to fulfill

𝐺𝑡 := ℙ (𝜏 > 𝑡∣ ℱ𝑡) = exp

(
−

∫ 𝑡
0

𝜇𝑢 𝑑𝑢

)
=: exp (−Γ𝑡) , 𝑡 ∈ [0, 𝑇 ],

where the stochastic mortality intensity 𝜇 is given by an 𝔽-progressively measur-
able process driven by𝑊 . The counting process martingale𝑀 associated with the
one-jump process 𝐻 is given as

𝑀𝑡 = 𝐻𝑡 −
∫ 𝑡
0

(1−𝐻𝑢)𝜇𝑢𝑑𝑢, 𝑡 ∈ [0, 𝑇 ].

For simplicity we assume here to work with a fixed constant short rate 𝑟. We now
suppose that it is possible to trade on the financial market in an instrument called
a longevity bond which has present value

𝐵𝑡 =

∫ 𝑡
0

𝑒−𝑟𝑢𝐺𝑢 𝑑𝑢, 𝑡 ∈ [0, 𝑇 ].

The payment generated by this bond has the form of an annuity, where the de-
clining rate is given by the survival probability for the age cohort of the insured
person. The (discounted) value process associated with the longevity bond is thus
given by the conditional expectation

𝑉𝑡 = 𝔼

[∫ 𝑇
0

𝑒−𝑟𝑢𝐺𝑢 𝑑𝑢

∣∣∣∣∣𝒢𝑡
]
, 𝑡 ∈ [0, 𝑇 ] . (4.4)

Remark 4.8. If we consider a benchmarked financial market 𝑆𝑡, 𝑡 ∈ [0, 𝑇 ], then
the pricing formula for the benchmarked value process of the longevity bond is
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given by

𝑉𝑡 = 𝔼

[∫ 𝑇
0

𝐺𝑢
𝑆𝛿∗𝑢

𝑑𝑢

∣∣∣∣∣𝒢𝑡
]
, 𝑡 ∈ [0, 𝑇 ] . (4.5)

In the case of dividends paying assets, the benchmark approach presents the dis-
advantage that we need to know the joint conditional distribution of (𝑆𝛿

∗
, 𝐺) to

compute (4.5). Note however that when the interest rate is supposed to be constant
and the discounted asset prices to be local martingales, then the pricing formulas
(4.4) and (4.5) coincide, since the ℙ-numéraire portfolio is given in this case by
the savings account 𝑆0.

We assume the existence on the market of a gratification annuity with in-
creasing, continuous rate payments equal to 1−𝐺𝑡 as long as the insured person
is alive, up to maturity 𝑇 . As 𝐺𝑡 can be inferred from the longevity index which
itself bases on realized mortality of some representative group, such an instrument
rewards longevity relative to the policyholder’s own age cohort. The present value
of a gratification annuity is given by

𝐶𝑎 =

∫ 𝑇
0

𝑒−𝑟𝑢 (1−𝐻𝑢) (1−𝐺𝑢) 𝑑𝑢 .

Our goal is now to hedge the risk exposure from having sold the gratification
annuity by trading dynamically in the longevity bond with value process 𝑉 . For
this sake we need some technical assumptions. First we assume 𝑒Γ𝑇 ∈ 𝐿2(𝑃 ), and
introduce the spaces 𝐿2(𝑊 ), 𝐿2(𝑀) consisting of all predictable 𝜃, 𝜓 such that

𝔼

[∫ 𝑇
0

𝜃2𝑠 𝑑𝑠

]
<∞, 𝔼

[∫ 𝑇
0

𝜓2
𝑠 𝑑Γ𝑠

]
<∞.

The space Θ of admissible strategies consists of all predictable 𝜗 such that

𝔼

[∫ 𝑇
0

𝜗2𝑠 𝑑 ⟨𝑉 ⟩𝑠
]
<∞.

In this setting the risk minimizing strategy for the gratification annuity can be
found by first computing the GKW decompositions of 𝑉 and 𝔼 [𝐶𝑎∣ 𝒢𝑡] , 𝑡 ∈ [0, 𝑇 ],
with respect to the 𝔾-martingales 𝑊 and 𝑀 . By comparing them, one can then
deduce the Föllmer–Schweizer decomposition

𝐸 [𝐶𝑎∣ 𝒢𝑡] = 𝑐+

∫ 𝑡
0

𝜗∗𝑠 𝑑𝑉𝑠 + 𝑉 ⊥𝑡 ,

where 𝜗 ∈ Θ and 𝑉 ⊥ is a square integrable martingale strongly orthogonal to 𝑉
(i.e., 𝑉 𝑉 ⊥ is a local martingale). For further details we refer to [9].

Theorem 4.9. Under the hypotheses above, by martingale representation, for each
𝑢 ∈ [0, 𝑇 ] there exists a constant 𝑐𝑢 and a predictable process (𝜃𝑢,𝑠)𝑠∈[0,𝑇 ] ∈ 𝐿2(𝑊 ),
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with 𝜃𝑢,𝑠 = 0 if 𝑠 > 𝑢, such that

𝔼
[
𝑒−𝑟𝑢 (1−𝐺𝑢) 𝑒

−Γ𝑢∣∣ℱ𝑡] = 𝑐𝑢 +

∫ 𝑡∧𝑢
0

𝜃𝑢,𝑠 𝑑𝑊𝑠

= 𝑐𝑢 +

∫ 𝑡
0

𝜃𝑢,𝑠𝕀[0,𝑢](𝑠) 𝑑𝑊𝑠,

for 𝑡 ∈ [0, 𝑇 ]. We set 𝑐 :=
∫ 𝑇
0

𝑐𝑢 𝑑𝑢 < ∞. Then the Föllmer–Schweizer decom-
positions of the gratification annuity 𝐶𝑎 with respect to the longevity bond 𝑉 is
given by

𝐶𝑎 = 𝑐+

∫ 𝑇
0

𝜂𝑠 𝑑𝑉𝑠 + 𝑉 ⊥𝑇 ,

where 𝑉 ⊥𝑇 =
∫ 𝑇
0+ 𝛾𝑀𝑠 𝑑𝑀𝑠, the predictable integrand 𝛾𝑀 ∈ 𝐿2(𝑀) is equal to

𝛾𝑀𝑠 = −(1−𝐻𝑠−)𝑒Γ𝑠
∫ 𝑇
𝑠

(
𝑐𝑢 +

∫ 𝑠
0

𝜃𝑢,𝑣 𝑑𝑊𝑣

)
𝑑𝑢, 𝑠 ∈ [0, 𝑇 ],

and 𝜂 ∈ Θ is uniquely determined by the equation

𝜂𝑠𝜉𝑠 = (1 −𝐻𝑠−)𝑒Γ𝑠
∫ 𝑇
𝑠

𝜃𝑢,𝑠 𝑑𝑢, 𝑠 ∈ [0, 𝑇 ].

Here the predictable integrand 𝜉 ∈ 𝐿2(𝑊 ) derives by the predictable martingale
representation for the longevity bond

𝑉𝑡 = 𝐸

[∫ 𝑇
0

𝑒−𝑟𝑢𝐺𝑢

∣∣∣∣∣ℱ𝑡
]
= 𝑉0 +

∫ 𝑡
0

𝜉𝑠 𝑑𝑊𝑠, 𝑡 ∈ [0, 𝑇 ].

Proof. For the proof we refer to [9]. □

5. Relation between (local) risk minimization approach
and real-world pricing

We now discuss the relation between the (local) risk minimization approach and
real-world pricing. For an exhaustive discussion of the connection between the risk
minimization approach and real-world pricing, we also refer to [6]. For further
details on the relation between the existence of the numéraire portfolio and the
minimal martingale density, see [26].

For the sake of simplicity, we assume that the underlying financial market
contains only continuous asset prices. Then by Theorem 2.4 of [26] it follows that

the benchmarked asset price process 𝑆 is given by a local martingale. Given a
benchmarked contingent claim �̂� ∈ 𝐿2(Ω,ℱ𝑇 ,ℙ), by Proposition 4.7 there exists
a unique risk-minimizing strategy 𝜉�̂� , that can be obtained by the Galtchouk–
Kunita–Watanabe decomposition of �̂� with respect to 𝑆 given by

�̂� = 𝐸[�̂� ] +

∫ 𝑇
0

𝜉�̂�𝑢 ⋅ d𝑆𝑢 + 𝐿�̂�𝑇 , ℙ-a.s., (5.1)
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where 𝜉�̂� is an 𝔽-predictable vector process with 𝔼
[∫ 𝑇

0 𝜉�̂�𝑢
𝑡𝑟
d[𝑆]𝑢𝜉

�̂�
𝑢

]
< ∞ and

𝐿�̂� = (𝐿�̂�𝑡 )𝑡∈[0,𝑇 ] is a square-integrable martingale with 𝐿�̂�0 = 0, strongly orthogo-

nal to each component of 𝑆. The benchmarked portfolio’s value process associated

to 𝜉�̂� is then 𝔼
[
�̂�
∣∣∣ℱ𝑡], 𝑡 ∈ [0, 𝑇 ], with initial value 𝔼

[
�̂�
]
and benchmarked

cost process 𝐿�̂� . Hence the real-world pricing formula (2.3) coincides at any time

𝑡 ∈ [0, 𝑇 ] with the portfolio’s value of the risk-minimizing strategy for �̂� in in-
complete markets where the benchmarked underlyings are local martingales. This
is the case not only for continuous asset price models, but also for a large class
of jump-diffusion models, see for example [35], Chapter 14, pages 513–549. More-
over we also remark that the risk-minimizing strategy is independent of the choice
of the discounting factor in market models driven by continuous asset price pro-
cesses or where the orthogonal martingale structure is generated by continuous
martingales. For further details on this, we refer to [6] and [7].

Furthermore decomposition (5.1) allows us to decompose every square-

integrable benchmarked contingent claim as the sum of its hedgeable part �̂�ℎ and
its unhedgeable part �̂�𝑢 such that we can write

�̂� = �̂�ℎ + �̂�𝑢,

where

�̂�ℎ := �̂�0 +

∫ 𝑇
0

𝜉�̂�𝑢 ⋅ d𝑆𝑢
and

�̂�𝑢 := 𝐿�̂�𝑇 .

Here the benchmarked hedgeable part �̂�ℎ can be replicated perfectly, i.e.,

�̂�𝐻ℎ(𝑡) = 𝔼
[
�̂�ℎ

∣∣∣ℱ𝑡] = �̂�0 +

∫ 𝑡
0

𝜉�̂�𝑢 ⋅ d𝑆𝑢 , 𝑡 ∈ [0, 𝑇 ],

and 𝜉�̂� yields the fair strategy for the self-financing replication of the hedgeable
part of �̂�. The remaining benchmarked unhedgeable part can be diversified and

will be covered through the benchmarked cost process 𝐿�̂� . In particular at 𝑡 = 0
the initial value of the risk-minimizing strategy coincides with the real world price
for the hedgeable part at 𝑡 = 0, while the benchmarked unhedgeable part remains
totally untouched. This is reasonable because any extra trading could only create
unnecessary uncertainty and potential additional benchmarked profits or losses.

However for 𝑡 > 0 the cost 𝐿�̂� will be different from 0 and

𝔼
[
�̂�
∣∣∣ℱ𝑡] = 𝔼

[
�̂�ℎ

∣∣∣ℱ𝑡]+ 𝐿�̂�𝑡 , 𝑡 ∈ [0, 𝑇 ],
can be interpreted as an actuarial valuation formula, with the difference that the
expectation term involves only the hedgeable part of the claim. The safety loading
is given here by the benchmarked cost process. For similar results on the relation
between actuarial valuation principles and mean-variance hedging, we also refer
to [40].
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The connection between risk-minimization and real-world pricing is then an
important insight which both gives a clear reasoning for pricing and hedging of con-
tingent claims via real-world pricing also in incomplete markets, and contributes
to justify the use of the benchmark approach also for actuarial applications.
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Abstract. We study exponential Lévy models with change-point which is a
random variable, independent from initial Lévy processes. On canonical space
with initially enlarged filtration we describe all equivalent martingale mea-
sures for change-point model and we give the conditions for the existence
of 𝑓 -divergence minimal equivalent martingale measure. Using the connec-
tion between utility maximisation and 𝑓 -divergence minimisation, we obtain
a general formula for optimal strategy in change-point case for initially en-
larged filtration and also for progressively enlarged filtration. We illustrate
our results considering the Black–Scholes model with change-point.
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1. Introduction

The parameters of financial models are generally highly dependent on time: a
number of events (for example the release of information in the press, changes in
the price of raw materials or the first time a stock price hits some psychological
level) can trigger a change in the behaviour of stock prices. This time-dependency
of the parameters can often be described using a piece-wise constant function: we
will call this case a change-point model. In this context, an important problem in
financial mathematics will be option pricing and hedging. Of course, the time of

This work is supported in part by ECOS project M07M01 and by ANR-09-BLAN-0084-01 of the
Department of Mathematics of Angers’s University.



306 S. Cawston and L. Vostrikova

change (change-point) for the parameters is not explicitly known, but it is often
possible to make reasonable assumptions about its nature and use statistical tests
for its detection.

Change-point problems have a long history, probably beginning with the
papers of Page [47, 48] in an a-posteriori setting, and of Shiryaev [56] in a
quickest detection setting. The problem was later considered in many papers,
see for instance [3, 15, 22, 44, 50, 51, 61] and also the book [2] and references
there. In the context of financial mathematics, the question was investigated in
[9, 16, 23, 31, 32, 40, 59, 60, 62] and was often related to a quickest detection
approach.

It should be noticed that not only quickest detection approach is interesting in
financial mathematics, and this fact is related with pricing and hedging of so-called
default models (see [1, 18] and references there). In mentioned papers a number
of very important results was obtained but for the processes without jump part or
with only one jump.

The models with jumps, like exponential Lévy models, in general, compromise
the uniqueness of an equivalent martingale measure when such measure exists. So,
one has to choose in some way an equivalent martingale measure to price. Many
approaches have been developed and various criteria suggested for this choice of
martingale measure, for example risk-minimization in an 𝐿2-sense [20, 42, 54, 55],
Hellinger integrals minimization [12, 13, 29], entropy minimization [19, 45, 21],
𝑓 𝑞-martingale measures [35] or Esscher measures [33].

All these approaches can be considered in unified way using so-called 𝑓 -
divergences, introduced by Ciszar [14] and investigated in a number of papers
and books (see for instance [43] and references there). It should also be noticed
that a general characterisation of 𝑓 -divergence minimal martingale measures with
applications to exponential Lévy models was given first in [28].

We recall that for 𝑓 a convex function on ℝ+,∗ and two measures 𝑄 and 𝑃
such that 𝑄 << 𝑃 , the 𝑓 -divergence of 𝑄 with respect to 𝑃 is defined as

𝑓(𝑄∣𝑃 ) = 𝔼𝑃

[
𝑓

(
𝑑𝑄

𝑑𝑃

)]
where 𝑑𝑄

𝑑𝑃 is Radon–Nikodym density of 𝑄 with respect to 𝑃 , and 𝐸𝑃 is the
expectation with respect to 𝑃 . We recall that the utility maximisation is closely
related to 𝑓 -divergence minimisation via Fenchel–Legendre transform and this will
be one of essential points to obtain an optimal strategy.

The aim of this paper is to study 𝑓 -divergence minimal martingale measures
and optimal portfolios from the point of view of utility maximization, for expo-
nential Lévy model with change-point where the parameters of the model before
and after the change are known and a change-point itself is a random variable, in-
dependent from initial Lévy processes. We remark that even complete models like
Black–Scholes model, become to be incomplete in change-point setting. Moreover,
in our case, the characteristics of price process depend on 𝜏 , and then, in general,
simple conditioning with respect to 𝜏 and the use of the results on the processes
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with independent increments do not give us a right answer. For this reason we use
dual approach.

We start by describing our model in more details. We assume the financial
market consists of a non-risky asset 𝐵 with interest rate (𝑟𝑡)𝑡≥0, namely

𝐵𝑡 = 𝐵0 exp

(∫ 𝑡
0

𝑟𝑠 𝑑𝑠

)
where

𝑟𝑡 = 𝑟𝕀{𝜏>𝑡} + 𝑟𝕀{𝜏≤𝑡}, (1.1)

with 𝑟, 𝑟 interest rates before and after change-point 𝜏 , and a 𝑑-dimensional risky
asset 𝑆 = (𝑆𝑡)𝑡≥0,

𝑆𝑡 =
⊤(𝑆(1)

0 exp(𝑋
(1)
𝑡 ), . . . , 𝑆

(𝑑)
0 exp(𝑋

(𝑑)
𝑡 ))

where 𝑋 is a stochastic process obtained by pasting in 𝜏 of two 𝑑-dimensional
Lévy processes 𝐿 and �̃� together:

𝑋𝑡 = 𝐿𝑡𝕀{𝜏>𝑡} + (𝐿𝜏 + �̃�𝑡 − �̃�𝜏 )𝕀{𝜏≤𝑡}. (1.2)

Here and further 𝐿 and �̃� supposed to be independent Lévy processes with charac-
teristics (𝑏, 𝑐, 𝜈) and (�̃�, 𝑐, 𝜈), respectively which are independent from 𝜏 (for more

details see [53]). Here 𝑏, �̃� stand for drift, 𝑐, 𝑐 denote the covariance matrix of Brow-
nian part, and 𝜈, 𝜈 are Lévy measures on ℝ𝑑,∗. To avoid unnecessary complications
we assume up to now that the parameters 𝑟 and 𝑟 in (1.1) are equal to zero, and

that 𝑆
(𝑖)
0 = 1 for all 1 ≤ 𝑖 ≤ 𝑑.
To describe a probability space on which the process 𝑋 is well defined, we

consider (𝐷,𝒢,𝔾) the canonical space of right-continuous functions with left-hand
limits equipped with its natural filtration 𝔾 = (𝒢𝑡)𝑡≥0 which satisfies standard
conditions: it is right-continuous, 𝒢0 = {∅, 𝐷}, ⋁𝑡≥0 𝒢𝑡 = 𝒢. On the product of
such canonical spaces we define two independent Lévy processes 𝐿 = (𝐿𝑡)𝑡≥0
and �̃� = (�̃�𝑡)𝑡≥0 with characteristics (𝑏, 𝑐, 𝜈) and (�̃�, 𝑐, 𝜈) respectively and denote
by 𝑃 and 𝑃 their respective laws which are assumed to be locally equivalent:

𝑃
loc∼ 𝑃 . As we will consider the market on a fixed finite time interval, we are

really only interested in 𝑃 ∣𝒢𝑇 and 𝑃 ∣𝒢𝑇 for a fixed 𝑇 ≥ 0 and the distinction
between equivalence and local equivalence does not need to be made.

Our change-point will be represented by an independent random variable
𝜏 of law 𝛼 taking values in ([0, 𝑇 ],ℬ([0, 𝑇 ]). The set {𝜏 = 𝑇 } corresponds to the
situation when the change-point does not take place, or at least not on the interval
we are studying.

On the probability space (𝐷 × 𝐷 × [0, 𝑇 ], 𝒢 × 𝒢 × ℬ([0, 𝑇 ], 𝑃 × 𝑃 × 𝛼) we
define a measurable map 𝑋 by (1.2) and we denote by ℙ its law. In what follows
we use 𝔼 mainly for the expectation with respect to ℙ but this notation will be
also used for the expectation with respect to 𝑃 × 𝑃 × 𝛼.

From point of view of observable processes we can have the following situa-
tions. If we observe only the process 𝑋 then the natural probability space to work
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is (𝐷,𝒢,ℙ) equipped with the right-continuous version of the natural filtration
𝔾 = (𝒢𝑡)𝑡≥0 where 𝒢𝑡 = 𝜎{𝑋𝑠, 𝑠 ≤ 𝑡} for 𝑡 ≥ 0. Now, if we observe not only the
process 𝑋 but also some complementary variables related with 𝜏 then we can take
it into account by the enlargement of the filtration. First we consider the filtration
ℍ given by ℋ𝑡 = 𝜎(𝕀{𝜏≤𝑠}, 𝑠 ≤ 𝑡) and note that ℋ𝑇 = 𝜎(𝜏). Then we introduce
two filtrations: the initially enlarged filtration 𝔽 = (ℱ𝑡)𝑡≥0

ℱ0 = 𝒢0 ∨ℋ𝑇 , ℱ𝑡 =
∩
𝑠>𝑡

(𝒢𝑠 ∨ℋ𝑇 )

and the progressively enlarged filtration �̂� = (ℱ̂𝑡)𝑡≥0 which satisfies:
ℱ̂0 = 𝒢0 ∨ℋ0, ℱ̂𝑡 =

∩
𝑠>𝑡

(𝒢𝑠 ∨ℋ𝑠).

In the case of additional information the most natural filtration from the point

of view of observable events would be �̂�. However, it is not so easy to obtain
the explicit formulas of optimal strategies for progressively enlarged filtration. So,
we start by investigation of optimal strategies for initially enlarged filtration. In
special cases of exponential utility, logarithmic utility and power utility it gives us
an optimal strategy for progressively enlarged filtration automatically. In order to
obtain an optimal strategy in general case, we do projection (see Proposition 4.11
for the details).

The paper is organized in the following way. In Section 2 we start by recalling
in unified way the facts about 𝑓 -divergence minimal equivalent martingale mea-
sures for exponential Lévy models. This information will be used for investigation
of change-point case.

In Section 3 we study the change-point case. On mentioned probability space
and for initially enlarged filtration we describe first all equivalent martingale mea-
sures. Then, we introduce as hypotheses, such properties of 𝑓 -divergence minimal
equivalent martingale measures as a preservation of Lévy property and a scaling
property. The question of preservation of Lévy property was considered in details
in [6] and it was shown that the class of 𝑓 -divergences preserving Lévy property
is larger then common 𝑓 -divergences, i.e., the functions such that 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 ,
𝑎 > 0, 𝛾 ∈ ℝ. We recall that these functions are those for which there exists 𝐴 > 0
and real 𝐵, 𝐶 such that 𝑓(𝑥) = 𝐴𝑓𝛾(𝑥) +𝐵𝑥+ 𝐶 where

𝑓𝛾(𝑥) =

⎧⎨⎩
𝑐𝛾𝑥

𝛾+2 if 𝛾 ∕= −1,−2,
𝑥 ln(𝑥) if 𝛾 = −1,
− ln(𝑥) if 𝛾 = −2,

(1.3)

and 𝑐𝛾 = sign[(𝛾 + 1) (𝛾 + 2)]. The conditions for existence and the expression of
Radon–Nikodym density 𝑍∗𝑇 (𝜏) of 𝑓 -divergence minimal martingale measure for
change-point model is given in Theorem 3.2. Then, in Corollaries 3.3 and 3.4 we
give the corresponding results for common 𝑓 -divergences and, finally, we apply the
results to Black–Scholes change-point model.
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In Section 4 we present first some facts about utility maximisation and the
formulas for optimal strategies of single exponential Lévy model. Then we give a
decomposition formula for 𝑓 ′(𝑍∗𝑇 (𝜏)) in initially enlarged filtration. These decom-
positions allow us via the result of [28] to identify optimal strategy (see Theorem
4.8). We illustrate these results by considering again the Black–Scholes model with
a change-point.

2. 𝒇 -divergence minimal EMM’s for exponential Lévy model

We start by recalling in unified way the facts about 𝑓 -divergence minimal martin-
gale measures for exponential Lévy models. Namely, we will consider common 𝑓 -
divergences and we will discuss the preservation of Lévy property by 𝑓 -divergence
minimal locally equivalent martingale measures (EMM’s). We will also mention the
expressions for so-called Girsanov parameters when we change the initial measure
𝑃 into 𝑓 -divergence minimal EMM’s and also the expression of Radon–Nikodym
density of these measures in terms of Girsanov parameters.

Let now 𝐿 = (𝐿𝑡)𝑡≥0 be 𝑑-dimensional Lévy process with parameters (𝑏, 𝑐, 𝜈)
where 𝑏 is the drift parameter, 𝑐 is a covariance matrix of Brownian part and 𝜈 is
the Lévy measure, i.e., the measure on ℝ𝑑,∗ which satisfies∫

ℝ𝑑
(∣𝑥∣2 ∧ 1)𝜈(𝑑𝑥) < +∞.

We recall that the characteristic function of 𝐿𝑡 for 𝑡 ∈ ℝ+ and 𝑢 ∈ ℝ is given
then by:

𝜙𝑡(𝑢) = 𝔼𝑒𝑖⟨𝑢,𝐿𝑡⟩ = 𝑒𝜓(𝑢)𝑡

and in turn, the characteristic exponent

𝜓(𝑢) = 𝑖 ⟨𝑢, 𝑏⟩ − 1

2
⟨𝑐𝑢, 𝑢⟩+

∫
ℝ𝑑
(exp(𝑖 ⟨𝑢, 𝑥⟩)− 1− 𝑖 ⟨𝑢, ℎ(𝑥)⟩)𝜈(𝑑𝑥),

where from now on, ℎ is the truncation function and ⟨⋅, ⋅⟩ is a scalar product in
ℝ𝑑. We set 𝑆 = (𝑆𝑡)𝑡≥0 with

𝑆𝑡 =
⊤
(
𝑆
(1)
0 exp(𝐿

(1)
𝑡 ), . . . , 𝑆

(𝑑)
0 exp(𝐿

(𝑑)
𝑡 )

)
for our risky asset and 𝐵 = (𝐵𝑡)𝑡≥0 for non-risky asset with constant interest
rate 𝑟. We will suppose without loss of generality up to now that 𝑆

(𝑖)
0 = 1 for all

1 ≤ 𝑖 ≤ 𝑑 and 𝑟 = 0.
Let 𝑇 be a fixed horizon and 𝔾 = (𝒢𝑡)𝑡≥0 be natural filtration. We recall

that for a convex function 𝑓 on ℝ+,∗, the 𝑓 -divergence of the restriction 𝑄𝑇 of the
measure 𝑄 with respect to the restriction 𝑃𝑇 of the measure 𝑃 to 𝒢𝑇 is:

𝑓(𝑄𝑇 ∣𝑃𝑇 ) = 𝐸𝑃

[
𝑓

(
𝑑𝑄𝑇
𝑑𝑃𝑇

)]
.

Here by convention we set this integral equal to +∞ if the corresponding function is
not integrable. We recall that 𝑄∗𝑇 is an 𝑓 -divergence minimal equivalent martingale
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measure if 𝑓(𝑄∗𝑇 ∣𝑃𝑇 ) < +∞ and

𝑓(𝑄∗𝑇 ∣𝑃𝑇 ) = inf
𝑄∈ℳ(𝑃 )

𝑓(𝑄𝑇 ∣𝑃𝑇 )

where ℳ(𝑃 ) is the set of locally equivalent martingale measures supposed to be
non-empty. We also recall that an 𝑓 -divergence minimal equivalent martingale
measure 𝑄∗ is invariant under scaling if for all 𝑥 ∈ ℝ+,∗

𝑓(𝑥𝑄∗𝑇 ∣𝑃𝑇 ) = inf
𝑄∈ℳ(𝑃 )

𝑓(𝑥𝑄𝑇 ∣𝑃𝑇 ).

It is called time-invariant if 𝑄∗ is the same for all 𝑇 > 0. For a given exponential
Lévy model 𝑆 = 𝑆0 𝑒

𝐿, we say that an 𝑓 -divergence minimal martingale measure
𝑄∗ preserves the Lévy property if 𝐿 remains a Lévy process under 𝑄∗.

We recall that the density 𝑍 of any equivalent to 𝑃 measure 𝑄 can be written
in the form 𝑍 = ℰ(𝑀) where ℰ denotes the Doleans–Dade exponential and 𝑀 =
(𝑀𝑡)𝑡≥0 is a local martingale. It follows from Girsanov theorem that there exist
predictable functions 𝛽 and 𝑌 verifying the following integrability conditions: for
𝑡 ≥ 0 (𝑃 -a.s.) ∫ 𝑡

0

⟨𝑐𝛽𝑠, 𝛽𝑠⟩ 𝑑𝑠 <∞,∫ 𝑡
0

∫
ℝ𝑑
∣ℎ(𝑦) (𝑌𝑠(𝑦)− 1) ∣𝜈𝑋,𝑃 (𝑑𝑠, 𝑑𝑦) <∞,

and such that

𝑀𝑡 =

∫ 𝑡
0

⟨𝛽𝑠, 𝑑𝑋𝑐𝑠⟩+
∫ 𝑡
0

∫
ℝ𝑑
(𝑌𝑠(𝑦)− 1)(𝜇𝑋 − 𝜈𝑋,𝑃 )(𝑑𝑠, 𝑑𝑦)

where 𝜇𝑋 is a jump measure of the process 𝑋 and 𝜈𝑋,𝑃 is its compensator with
respect to (𝑃,𝔾), 𝜈𝑋,𝑃 (𝑑𝑠, 𝑑𝑦) = 𝑑𝑠 𝜈(𝑑𝑦) (for more details see [34]). We will refer
to (𝛽, 𝑌 ) as the Girsanov parameters of the change of measure from 𝑃 into 𝑄.
It is known from Grigelionis result [30] that a semi-martingale is a process with
independent increments under𝑄 if and only if their semi-martingale characteristics
are deterministic, i.e., the Girsanov parameters do not depend on 𝜔, i.e., 𝛽 depends
only on time 𝑡 and 𝑌 depends on (𝑡, 𝑥) time and jump size. Since Lévy process
is homogeneous process, it implies that 𝑋 will remain a Lévy process under 𝑄 if
and only if there exists 𝛽 ∈ ℝ𝑑 and a positive measurable function 𝑌 such that
𝛽𝑡(𝜔) = 𝛽 and 𝑌𝑡(𝜔, 𝑦) = 𝑌 (𝑦) (𝑃 × 𝜆× 𝜈-a.s.).

We recall that if Lévy property is preserved, 𝑆 will be a martingale under 𝑄
if and only if

𝑏+
1

2
diag(𝑐) + 𝑐𝛽 +

∫
ℝ𝑑
[(𝑒𝑦 − 1)𝑌 (𝑦)− ℎ(𝑦)]𝜈(𝑑𝑦) = 0

where 𝑦 = ⊤(𝑦1, . . . , 𝑦𝑑) and 𝑒𝑦 − 1 is a vector with the components 𝑒𝑦𝑖 − 1 for
1 ≤ 𝑖 ≤ 𝑑. This follows again from Girsanov theorem and reflects the fact that
under 𝑄 the drift of 𝑆 is equal to zero.
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As it was mentioned, our aim in this section is to consider in more detail
the class of minimal martingale measures for the functions which satisfy (1.3). In
particular, the minimal measure for 𝑓 will be the same as that for 𝑓𝛾 . Minimal
measures for the different functions 𝑓𝛾 have been well studied (see [28] and further
references). It has been shown in [19, 35, 37] that in all these cases, the minimal
measure, when it exists, preserves the Lévy property.

Sufficient conditions for the existence of a minimal measure and an explicit
expression of the associated Girsanov parameters have been given in the case of
relative entropy in [21, 33] and for power functions in [35]. It was also shown in
[33] that these conditions are in fact necessary in the case of relative entropy or
for power functions. Our aim in this section is to give a unified expression of such
conditions for all functions which satisfy 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 and to show that, under
some conditions, they are necessary and sufficient. We have already mentioned
that 𝑓 -divergence minimal martingale measures play an important role in the
determination of utility maximising strategies. In this context, it is useful to have
further invariance properties for the minimal measures such as scaling and time
invariance properties. This is the case when 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 .

Theorem 2.1. Consider a Lévy process 𝑋 with characteristics (𝑏, 𝑐, 𝜈) and let 𝑓
be a function such that 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 , where 𝑎 > 0 and 𝛾 ∈ ℝ. Suppose that

𝑐 ∕= 0 or
∘

supp (𝜈) ∕= ∅. Then there exists an 𝑓 -divergence minimal equivalent
to 𝑃 martingale measure 𝑄 preserving Lévy properties if and only if there exist
constants 𝛼, 𝛽 ∈ ℝ𝑑 and measurable function 𝑌 : ℝ𝑑,∗ → ℝ+ such that

𝑌 (𝑦) = (𝑓 ′)−1(𝑓 ′(1) + 𝛼(𝑒𝑦 − 1)) (2.1)

with, for 𝑐 ∕= 0, 𝛼 = 𝑐𝛾 (𝛾 + 1) (𝛾 + 2)𝛽 if 𝛾 ∕= −1,−2 and 𝛼 = 𝛽 if 𝛾 = −1 or
𝛾 = −2, and such that the following properties hold:

𝑌 (𝑦) > 0 𝜈 − 𝑎.𝑒., (2.2)∫
∣𝑦∣≥1

∣𝑒𝑦 − 1∣𝑌 (𝑦)𝜈(𝑑𝑦) < +∞, (2.3)

𝑏+
1

2
diag(𝑐) + 𝑐𝛽 +

∫
ℝ𝑑
((𝑒𝑦 − 1)𝑌 (𝑦)− ℎ(𝑦))𝜈(𝑑𝑦) = 0. (2.4)

If such a measure exists the Girsanov parameters associated with 𝑄 are: (𝛽, 𝑌 ) if
𝑐 ∕= 0, and (0, 𝑌 ) if 𝑐 = 0. In addition, this measure is scale and time invariant.

We begin with some technical lemmas. For 𝑄
loc∼ 𝑃 we denote by (𝑍𝑡)𝑡≥0

Radon–Nikodym density process of 𝑄 with respect to 𝑃 .

Lemma 2.2. Let 𝑄 be the measure preserving Lévy property. Then, 𝑄𝑇 ∼ 𝑃𝑇 for
all 𝑇 > 0 iff

𝑌 (𝑦) > 0 𝜈 − 𝑎.𝑒.,∫
ℝ𝑑
(
√

𝑌 (𝑦)− 1)2𝜈(𝑑𝑦) < +∞. (2.5)
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Proof. See Theorem 2.1, p. 209 of [34]. □

Lemma 2.3. Under 𝑄𝑇 ∼ 𝑃𝑇 , the condition 𝐸𝑃 ∣𝑓(𝑍𝑇 )∣ <∞ is equivalent to∫
ℝ𝑑
[𝑓(𝑌 (𝑦))− 𝑓(1)− 𝑓 ′(1)(𝑌 (𝑦)− 1)]𝜈(𝑑𝑦) < +∞. (2.6)

Proof. In our particular case, 𝐸𝑃 ∣𝑓(𝑍𝑇 )∣ < ∞ is equivalent to the existence of
𝐸𝑃 𝑓(𝑍𝑇 ). We use the Itô formula to express this integrability condition in pre-
dictable terms. Taking for 𝑛 ≥ 1 stopping times

𝑠𝑛 = inf{𝑡 ≥ 0 : 𝑍𝑡 > 𝑛 or𝑍𝑡 < 1/𝑛}
where inf{∅} = +∞, we get for 𝛾 ∕= −1,−2 and 𝛼 = 𝛾 + 2 that 𝑃 -a.s.

𝑍𝛼𝑇∧𝑠𝑛 = 1 +

∫ 𝑇∧𝑠𝑛
0

𝛼𝑍𝛼𝑠− ⟨𝛽, 𝑑𝑋𝑐𝑠 ⟩+
1

2
𝛼 (𝛼− 1) ⟨𝑐 𝛽, 𝛽⟩

∫ 𝑇∧𝑠𝑛
0

𝑍𝛼𝑠−𝑑𝑠

+

∫ 𝑇∧𝑠𝑛
0

∫
ℝ𝑑

𝑍𝛼𝑠−(𝑌
𝛼(𝑦)− 1)(𝜇𝑋 − 𝜈𝑋,𝑃 )(𝑑𝑠, 𝑑𝑦)

+

∫ 𝑇∧𝑠𝑛
0

∫
ℝ𝑑

𝑍𝛼𝑠−[𝑌
𝛼(𝑦)− 1− 𝛼(𝑌 (𝑦)− 1)]𝑑𝑠 𝜈(𝑑𝑦).

Hence,

𝑍𝛼𝑇∧𝑠𝑛 = ℰ(𝑁 (𝛼) +𝐴(𝛼))𝑇∧𝑠𝑛
where

𝑁
(𝛼)
𝑡 =

∫ 𝑡
0

𝛼 ⟨𝛽, 𝑑𝑋𝑐𝑠 ⟩+
∫ 𝑡
0

∫
ℝ𝑑
(𝑌 𝛼(𝑦)− 1)(𝜇𝑋 − 𝜈𝑋,𝑃 )(𝑑𝑠, 𝑑𝑦)

and

𝐴
(𝛼)
𝑡 =

𝑡

2
𝛼 (𝛼− 1) ⟨𝑐𝛽, 𝛽⟩+ 𝑡

∫
ℝ𝑑
[𝑌 𝛼(𝑦)− 1− 𝛼(𝑌 (𝑦)− 1)]𝜈(𝑑𝑦).

Since [𝑁 (𝛼), 𝐴(𝛼)]𝑡 = 0 for each 𝑡 ≥ 0 we have

𝑍𝛼𝑇∧𝑠𝑛 = ℰ(𝑁 (𝛼))𝑇∧𝑠𝑛ℰ(𝐴(𝛼))𝑇∧𝑠𝑛 .

In the case 𝛼 > 1 and 𝛼 < 0, and 𝐸𝑃𝑍
𝛼
𝑇 <∞, we have by Jensen inequality

0 ≤ 𝑍𝛼𝑇∧𝑠𝑛 ≤ 𝐸𝑃 (𝑍
𝛼
𝑇 ∣ ℱ𝑇∧𝑠𝑛)

and since the right-hand side of this inequality form uniformly integrable sequence,

(𝑍𝛼𝑇∧𝑠𝑛)𝑛≥1 is also uniformly integrable. We remark that 𝐴
(𝛼)
𝑡 ≥ 0 for all 𝑡 ≥ 0

and

ℰ(𝐴(𝛼))𝑇∧𝑠𝑛 = exp(𝐴
(𝛼)
𝑇∧𝑠𝑛) ≥ 1.

It means that (ℰ(𝑁 (𝛼))𝑇∧𝑠𝑛)𝑛∈ℕ∗ is uniformly integrable and

𝐸𝑃 (𝑍
𝛼
𝑇 ) = exp(𝐴

(𝛼)
𝑇 ).

Hence, (2.6) holds.
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If (2.6) holds, then by the Fatou lemma and since ℰ(𝑁 (𝛼)) is a positive local
martingale we get

𝐸𝑃 (𝑍
𝛼
𝑇 ) ≤ lim𝑛→∞𝐸𝑃 (𝑍𝑇∧𝑠𝑛) ≤ exp(𝐴

(𝛼)
𝑇 ) <∞.

For 0 < 𝛼 < 1, we have again

𝑍𝛼𝑇∧𝑠𝑛 = ℰ(𝑁 (𝛼))𝑇∧𝑠𝑛ℰ(𝐴(𝛼))𝑇∧𝑠𝑛
with uniformly integrable sequence (𝑍𝛼𝑇∧𝑠𝑛)𝑛≥1. Since

ℰ(𝐴(𝛼))𝑇∧𝑠𝑛 = exp(𝐴
(𝛼)
𝑇∧𝑠𝑛) ≥ exp(𝐴

(𝛼)
𝑇 ),

the sequence (ℰ(𝑁 (𝛼))𝑇∧𝑠𝑛)𝑛∈ℕ∗ is uniformly integrable and

𝐸𝑃 (𝑍
𝛼
𝑇 ) = exp(𝐴

(𝛼)
𝑇 ).

For 𝛾 = −2 we have that 𝑓(𝑥) = 𝑥 ln(𝑥) up to linear term and

𝑍𝑇∧𝑠𝑛 ln(𝑍𝑇∧𝑠𝑛) =
∫ 𝑇∧𝑠𝑛
0

(ln(𝑍𝑠−) + 1)𝑍𝑠− ⟨𝛽, 𝑑𝑋𝑐𝑠 ⟩+
1

2
⟨𝑐 𝛽, 𝛽⟩

∫ 𝑇∧𝑠𝑛
0

𝑍𝑠−𝑑𝑠

+

∫ 𝑇∧𝑠𝑛

0

∫
ℝ𝑑

𝑍𝑠−[ln(𝑍𝑠−)(𝑌 (𝑦)− 1) + 𝑌 (𝑦) ln(𝑌 (𝑦)](𝜇𝑋 − 𝜈𝑋,𝑃 )(𝑑𝑠, 𝑑𝑦)

+

∫ 𝑇∧𝑠𝑛

0

∫
ℝ𝑑

𝑍𝑠−(𝑌 (𝑦) ln(𝑌 (𝑦))− 𝑌 (𝑦) + 1 )𝑑𝑠 𝜈(𝑑𝑦).

Taking mathematical expectation we obtain:

𝐸𝑃 [𝑍𝑇∧𝑠𝑛 ln(𝑍𝑇∧𝑠𝑛)] (2.7)

= 𝐸𝑃

∫ 𝑇∧𝑠𝑛
0

𝑍𝑠−

[
1

2
⟨𝑐 𝛽, 𝛽⟩+

∫
ℝ𝑑
(𝑌 (𝑦) ln(𝑌 (𝑦))− 𝑌 (𝑦) + 1 ) 𝜈(𝑑𝑦)

]
𝑑𝑠.

If 𝐸𝑃 [𝑍𝑇 ln(𝑍𝑇 )] < ∞, then the sequence (𝑍𝑇∧𝑠𝑛 ln(𝑍𝑇∧𝑠𝑛))𝑛∈ℕ∗ is uniformly
integrable. In addition, 𝐸𝑃 (𝑍𝑠−) = 1 and we obtain applying Lebesgue monotone
convergence theorem that

𝐸𝑃 [𝑍𝑇 ln(𝑍𝑇 )] = 𝑇 [
1

2
< 𝑐𝛽, 𝛽 > +

∫
ℝ𝑑
(𝑌 (𝑦) ln(𝑌 (𝑦))− 𝑌 (𝑦) + 1 )𝜈(𝑑𝑦)]

and this implies (2.6). If (2.6), then by the Fatou lemma from (2.7) we deduce
that 𝐸𝑃 [𝑍𝑇 ln(𝑍𝑇 )] < ∞.

For 𝛾 = −1, we have 𝑓(𝑥) = − ln(𝑥) and exchanging 𝑃 and 𝑄 we get:

𝐸𝑃 [− ln(𝑍𝑇 )] = 𝐸𝑄[𝑍𝑇 ln(𝑍𝑇 )]

= 𝑇

[
1

2
⟨𝑐 𝛽, 𝛽⟩+

∫
ℝ𝑑
(𝑌 (𝑦) ln(𝑌 (𝑦))− 𝑌 (𝑦) + 1 )𝜈𝑄(𝑑𝑦)

]
where 𝑍𝑇 = 1/𝑍𝑇 and 𝑌 (𝑦) = 1/𝑌 (𝑦). But 𝜈𝑄(𝑑𝑦) = 𝑌 (𝑦)𝜈(𝑑𝑦) and, finally,

𝐸𝑃 [− ln(𝑍𝑇 )] = 𝑇

2
⟨𝑐 𝛽, 𝛽⟩+ 𝑇

∫
ℝ𝑑
(− ln(𝑌 (𝑦)) + 𝑌 (𝑦)− 1)𝜈(𝑑𝑦)

which implies (2.6). Again from (2.6) we get that 𝐸𝑃 [− ln(𝑍𝑇 )] is finite. □
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Lemma 2.4. If the second Girsanov parameter 𝑌 has a particular form (2.1) then
the condition ∫

∣𝑦∣≥1
∣𝑒𝑦 − 1∣𝑌 (𝑦)𝜈(𝑑𝑦) < +∞

implies the conditions (2.5) and (2.6).

Proof. We can cut each integral in (2.5) and (2.6) on two parts and integrate on
the sets {∣𝑦∣ ≤ 𝛿} and {∣𝑦∣ > 𝛿} for some 𝛿 > 0. Then we can use a particular form
of 𝑌 and conclude easily writing Taylor expansion of order 2. □

Proof of Theorem 2.1. (Necessity) We suppose that there exists 𝑓 -divergence min-
imal equivalent martingale measure 𝑄 preserving Lévy property of 𝑋 . Then, since
𝑄𝑇 ∼ 𝑃𝑇 , the conditions (2.2), (2.5) follow from Theorem 2.1, p. 209 of [34]. From
Theorem 3 of [6] we deduce that (2.1) holds. Then, the condition (2.3) follows
from the fact that 𝑆 is a martingale under 𝑄. Finally, the condition (2.4) follows
from Girsanov theorem since 𝑄 is a martingale measure and, hence, the drift of 𝑆
under 𝑄 is zero.

(Sufficiency) We take 𝛽 and 𝑌 verifying the conditions (2.2), (2.3), (2.4) and
we construct

𝑀𝑡 =

∫ 𝑡
0

⟨𝛽, 𝑑𝑋𝑐𝑠 ⟩+
∫ 𝑡
0

∫
ℝ𝑑
(𝑌 (𝑦)− 1)(𝜇𝑋 − 𝜈𝑋,𝑃 )(𝑑𝑠, 𝑑𝑦).

As known from Theorem 1.33, p. 72–73, of [34], the last stochastic integral is well
defined if

𝐶(𝑊 ) = 𝑇

∫
ℝ𝑑
(𝑌 (𝑦)− 1)2𝐼{∣𝑌 (𝑦)−1∣≤1}𝜈(𝑑𝑦) <∞,

𝐶(𝑊 ′) = 𝑇

∫
ℝ𝑑
∣𝑌 (𝑦)− 1∣𝐼{∣𝑌 (𝑦)−1∣>1}𝜈(𝑑𝑦) <∞.

But the condition (2.3), the relation (2.1) and Lemma 2.4 implies (2.5). So, (𝑌 −
1) ∈ 𝐺loc(𝜇

𝑋) and 𝑀 is local martingale. Then we take

𝑍𝑇 = ℰ(𝑀)𝑇

and this defines the measure 𝑄𝑇 by its Radon–Nikodym density. Now, the condi-
tions (2.2), (2.3) together with the relation (2.1) and Lemma 2.4 imply (2.5), and,
hence, from Lemma 2.2 we deduce that 𝑃𝑇 ∼ 𝑄𝑇 .

Since 𝑃𝑇 ∼ 𝑄𝑇 , the Lemma 2.3 gives us the needed integrability condition:
𝐸𝑃 ∣𝑓(𝑍𝑇 )∣ < ∞. Now, since (2.4) holds, 𝑄 is martingale measure, and it remains
to show that 𝑄 is indeed 𝑓 -divergence minimal. For that we take any equivalent

martingale measure �̄� such that 𝐸𝑃 ∣𝑓(𝑍𝑇 )∣ < ∞ where 𝑍𝑇 =
𝑑�̄�𝑇
𝑑𝑃𝑇

and we show

that

𝐸𝑄𝑓
′(𝑍𝑇 ) ≤ 𝐸�̄�𝑓

′(𝑍𝑇 ). (2.8)

If the mentioned inequality holds, the Theorem 2.2 of [28] implies that 𝑄 is an
𝑓 -divergence minimal.
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In the case 𝑓𝛾(𝑥) = 𝑐𝛾𝑥
𝛾+2 with 𝛾 < −1 we obtain from Theorem 4 in [6]

and the particular form of 𝑌 that

𝑍𝛾+1
𝑇 = 𝐸𝑄(𝑍

𝛾+1
𝑇 ) ℰ(𝑁 (𝛾+1))𝑇

where for 0 ≤ 𝑡 ≤ 𝑇

𝑁
(𝛾+1)
𝑡 =

∫ 𝑡
0

(𝛾 + 1)𝐸𝑄(𝑍𝑇−𝑡)𝛾+1
〈
𝛽, 𝑑�̂�𝑡

〉
and �̂� stands for the vector of stochastic logarithms of the components of 𝑆. So,
ℰ(𝑁 (𝛾+1)) is a positive local martingale with respect to �̄� and, hence, a super-
martingale, and we get

𝐸�̄�𝑍
𝛾+1
𝑇 ≤ 𝐸𝑄𝑍

𝛾+1
𝑇 .

Multiplying by 𝑐𝛾(𝛾 + 2) < 0 we obtain (2.8).
In the case 𝛾 > −1, 𝑐𝛾(𝛾 +2) > 0. We prove using again a particular form of

𝑓 ′ and 𝑌 that

𝑍𝛾+1
𝑇 = 𝐸𝑄(𝑍

𝛾+1
𝑇 ) +

∫ 𝑇
0

𝑍𝛾+1
𝑡− (𝛾 + 1)𝐸𝑄(𝑍

𝛾+1
𝑇−𝑡)

〈
𝛽, 𝑑�̂�𝑡

〉
.

We notice that the right-hand side is a positive local martingale with respect
to �̄� Then, we take a localising sequence (𝜏𝑛)𝑛∈ℕ and the mathematical ex-
pectation with respect to �̄� in previous equality, and we show that the family
(𝑍𝑇∧𝜏𝑛𝑍

𝛾+1
𝑇∧𝜏𝑛)𝑛∈ℕ is uniformly integrable with respect to 𝑃 . In fact, using Cauchy–

Schwarz inequality with 𝑝 = 𝛾+2
𝛾+1 and 𝑞 = 𝛾 + 2 we can show that this family has

uniformly bounded expectation with respect to 𝑃 and that it is uniformly contin-
uous. As a consequence, we have (2.8).

In the case 𝛾 = −1 we prove again using Theorem 4 in [6] that

ln(𝑍𝑇 ) = 𝐸𝑄(ln(𝑍𝑇 )) +
〈
𝛽, �̂�𝑇

〉
.

The right-hand side is a local martingale with respect to �̄�. Then, we take a
localising sequence (𝜏𝑛)𝑛∈ℕ and we show that

𝐸𝑄�̂�𝑡 = lim
𝑛→∞𝐸𝑄�̂�𝑡∧𝜏𝑛 = 0.

For 𝛾 = −2 we have:

− 1

𝑍𝑇
= 𝐸𝑄

(
− 1

𝑍𝑇

)
+

∫ 𝑇
0

1

𝑍𝑠
𝑑�̂�𝑠.

The integral in the right-hand side of this expression is a local martingale with
respect to �̄�. We show that its expectation with respect to �̄� is equal to zero and
it proves that 𝑄 is minimal martingale measure.

Finally, note that the conditions which appear in Theorem 2.1 do not depend
in any way on the time interval which is considered and, hence, the minimal
measure always exists and its Girsanov parameters does not depend on 𝑇 . So,
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the measure 𝑄∗ is time invariant. Furthermore, if 𝑄∗ is 𝑓 -divergence minimal, the
equality

𝑓(𝑐𝑥) = 𝐴𝑓(𝑥) +𝐵𝑥 + 𝐶

with 𝐴,𝐵,𝐶 constants, 𝐴 > 0, gives

𝐸𝑃

[
𝑓

(
𝑐
𝑑�̄�

𝑑𝑃

)]
= 𝐴𝐸𝑃

[
𝑓

(
𝑑�̄�

𝑑𝑃

)]
+𝐵 + 𝐶

≥ 𝐴𝐸𝑃

[
𝑓

(
𝑑𝑄

𝑑𝑃

)]
+𝐵 + 𝐶 = 𝐸𝑃

[
𝑓

(
𝑐
𝑑𝑄

𝑑𝑃

)]
and 𝑄 is scale invariant. □

3. 𝒇 -divergence minimal EMM’s for change-point model

Here we describe all locally equivalent martingale measures (EMMs) for change
point model leaving on our probability space equipped with initially enlarged filtra-
tion, and in particular in relation to the sets of EMMs of the two associated Lévy
models 𝐿 and �̃�. For that we introduce the sets of equivalent martingale measures
ℳ(𝑃,𝔾) andℳ(𝑃,𝔽) related with 𝐿 and the filtrations 𝔾 and 𝔽 respectively. We
denote the relative sets for �̃� byℳ(𝑃 ,𝔾) andℳ(𝑃,𝔽).

3.1. EMMs for change-point model

We assume that the setsℳ(𝑃,𝔾) andℳ(𝑃 ,𝔾) are non-empty. Let 𝑄 ∈ℳ(𝑃,𝔽)
and �̃� ∈ ℳ(𝑃 ,𝔽). We introduce the Radon–Nikodym density processes 𝜁 =

(𝜁𝑡)𝑡≥0 and 𝜁 = (𝜁𝑡)𝑡≥0 given by

𝜁𝑡 =
𝑑𝑄𝑡
𝑑𝑃𝑡

, 𝜁𝑡 =
𝑑�̃�𝑡

𝑑𝑃𝑡

where 𝑄𝑡, 𝑃𝑡, �̃�𝑡, 𝑃𝑡 stand for the restrictions of the corresponding measures to the
𝜎-algebra ℱ𝑡.

According to the result of Jeulin [36] (see also [4]), there exist the versions

of density processes 𝜁, 𝜁 which can be written in the form (𝜁𝑡(𝜏))𝑡≥0, (𝜁𝑡(𝜏))𝑡≥0 in
a way that for a.e. 𝑢 ∈ supp(ℒ(𝜏)), 𝜁(𝑢) = (𝜁𝑡(𝑢))𝑡≥0 and 𝜁(𝑢) = (𝜁𝑡(𝑢))𝑡≥0 are
(𝑃,𝔾) and respectively (𝑃 ,𝔾) martingales. In what follows we take such versions
of 𝜁 and 𝜁.

We also introduce for all 𝑡 > 0

𝑣𝑡 =
𝑑𝑃𝑡
𝑑𝑃𝑡

,

then
𝑉𝑡 = 𝕀[[0,𝜏 ]](𝑡) +

𝑣𝑡
𝑣𝜏

𝕀]]𝜏,+∞[[(𝑡). (3.1)

We remark that the measure ℙ which is the law of 𝑋 verify for 𝑡 ≥ 0:

𝑑ℙ𝑡
𝑑𝑃𝑡

= 𝑉𝑡.
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To describe all EMMs leaving on our space we define the process 𝑧 = (𝑧𝑡)𝑡≥0
given by

𝑧𝑡 = 𝜁𝑡𝕀[[0,𝜏 ]](𝑡) + 𝜁𝜏
𝜁𝑡

𝜁𝜏
𝕀]]𝜏,+∞[[(𝑡). (3.2)

Finally, we consider the measure ℚ such that

𝑑ℚ𝑡
𝑑ℙ𝑡

= 𝑧𝑡. (3.3)

Proposition 3.1. A measure ℚ is an equivalent martingale measure for the expo-
nential model (1.2) related to the process 𝑋 iff its density process has the form
(3.3).

Proof. First we show that the process 𝑧 is a density process with respect to ℙ and
that the process 𝑆 = (𝑆𝑡)𝑡≥0 such that

𝑆𝑡 = 𝑒𝐿𝑡𝕀[[0,𝜏 ]](𝑡) + 𝑆𝜏𝑒
�̃�𝑡−�̃�𝜏 𝕀]]𝜏,+∞[[(𝑡)

is a (ℚ,𝔽)-martingale.
We begin by noticing that if for all 𝑢 ∈ supp(ℒ(𝜏)), 𝑀(𝑢) and �̃�(𝑢) are two

strictly positive (𝑃,𝔾) martingales , then 𝑁(𝑢) = (𝑁𝑡(𝑢))𝑡≥0 such that

𝑁𝑡(𝑢) =

[
𝑀𝑡(𝑢)𝕀[[0,𝑢]](𝑡) +𝑀𝑢(𝑢)

�̃�𝑡(𝑢)

�̃�𝑢(𝑢)
𝕀]]𝑢,+∞[[(𝑡)

]
is a (𝑃,𝔾) martingale.

To show that 𝑧 is a (ℙ,𝔽)-martingale, we prove an equivalent fact that
(𝑉𝑡 𝑧𝑡)𝑡≥0 is a (𝑃,𝔽) martingale. For that we use the relations (3.1), (3.2), we
condition with respect to 𝜏 and we use the previous remark with 𝑀𝑡(𝑢) = 𝜁𝑡(𝑢)

and �̃�𝑡(𝑢) = 𝜁𝑡(𝑢)𝑣𝑡. Furthermore, we see that 𝔼𝑧𝑡 = 1. To show that 𝑆 = (𝑆𝑡)𝑡≥0
is (ℚ,𝔽)-martingale we establish that (𝑉𝑡 𝑧𝑡 𝑆𝑡)𝑡≥0 is a (𝑃,𝔽)-martingale. For this
we use the same remark with 𝑀𝑡(𝑢) = 𝑒𝐿𝑡𝜁𝑡(𝑢) and �̃�𝑡(𝑢) = 𝑣𝑡𝜁𝑡(𝑢)𝑒

�̃�𝑡 .
Conversely, 𝑧 is the density of any equivalent martingale measure if and only if

(𝑧𝑡 𝑆𝑡)𝑡≥0 is a (ℙ,𝔽)-martingale. But the last fact is equivalent to: for any bounded
stopping time 𝜎,

𝔼(𝑧𝜎 𝑆𝜎) = 1.

Replacing 𝜎 by 𝜎∧𝜏 in previous expression we deduce that (𝑧𝑡∧𝜏 )𝑡≥0 is the density
of a martingale measure for (𝑒𝐿𝑡∧𝜏 )𝑡≥0. In the same way, using the martingale
properties of 𝑧 we get for any bounded stopping time 𝜎 that

𝔼

(
𝑧𝜎 𝑆𝜎

𝑧𝜎∧𝜏 𝑆𝜎∧𝜏

)
= 1

and so
(
𝑧𝑡
𝑧𝑡∧𝜏

)
𝑡≥𝜏

is the density of an equivalent martingale measure for the process(
𝑒�̃�𝑡−�̃�𝑡∧𝜏

)
𝑡≥𝜏

. □
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3.2. From EMM’s to 𝒇 -divergence minimal EMM’s

In the following theorem we give an expression for the density of the 𝑓 -divergence
minimal EMM’s ℚ∗𝑇 with respect to ℙ𝑇 in our change-point framework. We denote
by 𝑄∗ and �̃�∗ 𝑓 -divergence minimal EMM’s belonging toℳ(𝑃,𝔾) andℳ(𝑃 ,𝔾)
respectively.

We set for 𝑡 ∈ [0, 𝑇 ]
𝑧∗𝑇 (𝑡) = 𝜁∗𝑡

𝜁∗𝑇
𝜁∗𝑡

where 𝜁∗ and 𝜁∗ are the densities of 𝑄∗ and �̃�∗ with respect to 𝑃 and 𝑃 respec-
tively.

We introduce the following hypotheses:

(ℋ1): The 𝑓 -divergence minimal equivalent martingale measures 𝑄∗ and �̃�∗ rela-
tive to 𝐿 and �̃� exist.

(ℋ2): The 𝑓 -divergence minimal equivalent martingale measures 𝑄∗ and �̃�∗ pre-
serve the Lévy property and are scale and time invariant.

(ℋ3): For all 𝑐 > 0 and 𝑡 ∈ [0, 𝑇 ], we have
sup

0≤𝑡≤𝑇
𝔼∣𝑧∗𝑇 (𝑡) 𝑓 ′(𝑐 𝑧∗𝑇 (𝑡)) ∣ <∞

where 𝔼 is the expectation with respect to ℙ.

Theorem 3.2. Assume that 𝑓 is a strictly convex function, 𝑓 ∈ 𝐶1(ℝ+,∗), and that
(ℋ1), (ℋ2), (ℋ3) hold. If the 𝑓 -divergence EMM’s ℚ∗ for the change-point model
(1.2) exists, then

𝑑ℚ∗𝑇
𝑑ℙ𝑇

= 𝑐(𝜏) 𝑧∗𝑇 (𝜏)

where 𝑐(⋅) is a measurable function [0, 𝑇 ]→ ℝ+ such that 𝔼𝑐(𝜏) = 1.
For 𝑐 > 0, let

𝜆𝑡(𝑐) = 𝔼[ 𝑧∗𝑇 (𝑡) 𝑓
′(𝑐 𝑧∗𝑇 (𝑡)) ]

and let 𝑐𝑡(𝜆) be its right-continuous inverse.
If in addition there exists 𝜆∗ such that∫ 𝑇

0

𝑐𝑡(𝜆
∗)𝑑𝛼(𝑡) = 1, (3.4)

then the 𝑓 -minimal equivalent martingale measure for a change-point model exists
and the density 𝑍∗𝑇 (𝜏) of ℚ

∗
𝑇 with respect to ℙ𝑇 is equal to

𝑍∗𝑇 (𝜏) = 𝑐∗(𝜏) 𝑧∗𝑇 (𝜏)

where 𝑐∗(𝑡) = 𝑐𝑡(𝜆
∗) for 𝑡 ∈ [0, 𝑇 ].

Corollary 3.3. Assume that 𝑓 is power function, 𝑓(𝑥) = 𝑐𝛾𝑥
𝛾+2. Then under (ℋ1)

the 𝑓 -divergence EMM for change-point model exist and 𝑍∗𝑇 (𝜏) = 𝑐∗(𝜏) 𝑧∗𝑇 (𝜏) with

𝑐∗(𝑡) =
[𝔼( 𝑧∗𝑇 (𝑡)

𝛾+2 )]−
1
𝛾+1∫ 𝑇

0
[𝔼( 𝑧∗𝑇 (𝑡)𝛾+2 )]−

1
𝛾+1 𝑑𝛼(𝑡)

.
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Corollary 3.4. Assume that 𝑓(𝑥) = 𝑥 ln(𝑥). Then under (ℋ1) the 𝑓 -divergence
EMM for change-point model exist and 𝑍∗𝑇 (𝜏) = 𝑐∗(𝜏) 𝑧∗𝑇 (𝜏) with

𝑐∗(𝑡) =
𝑒−𝔼( 𝑧∗𝑇 (𝑡) ln 𝑧

∗
𝑇 (𝑡) )∫ 𝑇

0
𝑒−𝔼( 𝑧∗𝑇 (𝑡) ln 𝑧

∗
𝑇 (𝑡) ) 𝑑𝛼(𝑡)

.

Corollary 3.5. Assume that 𝑓(𝑥) = − ln(𝑥). Then under (ℋ1) the 𝑓 -divergence
EMM for change-point model exist and 𝑍∗𝑇 (𝜏) = 𝑐∗(𝜏) 𝑧∗𝑇 (𝜏) with 𝑐∗(𝑡) = 1.

Remark 3.6. We can also express the factor 𝑐∗(𝑡) in terms of 𝑓 -divergences of the
processes 𝐿 and �̃�. Namely, one can see easily that

𝔼( 𝑧∗𝑇 (𝑡)
𝛾+2

) = 𝔼( 𝜁∗𝑡
𝛾+2 )𝔼( 𝜁∗

𝛾+2

𝑇−𝑡 )
and that

𝔼( 𝑧∗𝑇 (𝑡) ln 𝑧
∗
𝑇 (𝑡) ) = 𝔼( 𝜁∗𝑡 ln 𝜁

∗
𝑡 ) + 𝔼( 𝜁∗𝑇−𝑡 ln 𝜁

∗
𝑇−𝑡 ),

𝔼(− ln 𝑧∗𝑇 (𝑡) ) = 𝔼(− ln 𝜁∗𝑡 ) + 𝔼(− ln 𝜁∗𝑇−𝑡 ).
In turn, the last quantities can be easily expressed via the corresponding Girsanov
parameters using the Itô formula as it was done in Lemma 2.3.

Proof of Theorem 3.2. For any equivalent martingale measure ℚ in change-point
situation we have:

𝑓(ℚ𝑇 ∣ℙ𝑇 ) = 𝔼𝑧𝑇 = 𝔼

[
𝑓

(
𝜁𝜏 (𝜏)

𝜁𝑇 (𝜏)

𝜁𝜏 (𝜏)

)]
.

Since 𝐿, �̃� and 𝜏 are independent, we also have:

𝔼

[
𝑓

(
𝜁𝜏 (𝜏)

𝜁𝑇 (𝜏)

𝜁𝜏 (𝜏)

)
∣𝜏 = 𝑢

]
= 𝔼

[
𝑓

(
𝜁𝑢(𝑢)

𝜁𝑇 (𝑢)

𝜁𝑢(𝑢)

)]
.

Using the fact that

(
𝜁𝑡(𝑢)

𝜁0(𝑢)

)
𝑡≥0

is a density process of some equivalent martingale

measure from ℳ(𝑃,𝔾), and also time invariance and scaling properties we get
that

𝔼

[
𝑓

(
𝜁𝑢(𝑢)

𝜁𝑇 (𝑢)

𝜁𝑢(𝑢)

)
∣𝜎(�̃�)

]
≥ 𝔼

[
𝑓

(
𝜁0(𝑢)𝜁

∗
𝑢

𝜁𝑇 (𝑢)

𝜁𝑢(𝑢)

)
∣𝜎(�̃�)

]
.

In the same way and with similar arguments as before we deduce that

𝔼

[
𝑓

(
𝜁0(𝑢)𝜁

∗
𝑢

𝜁𝑇 (𝑢)

𝜁𝑢(𝑢)

)
∣𝜎(𝐿)

]
≥ 𝔼

[
𝑓

(
𝜁0(𝑢)𝜁

∗
𝑢

𝜁∗𝑇
𝜁∗𝑢

)
∣𝜎(𝐿)

]
.

Finally,

𝔼

[
𝑓

(
𝑐(𝜏) 𝜁𝜏

𝜁𝑇

𝜁𝜏

)]
≥ 𝔼

[
𝑓

(
𝑐(𝜏) 𝜁∗𝜏

𝜁∗𝑇
𝜁∗𝜏

)]
where 𝑐(𝜏) is any positive random variable with expectation 1.
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To find 𝑓 -divergence minimal equivalent martingale measure we minimize the
function

𝐹 (𝑐) =

∫ 𝑇
0

𝔼[𝑓( 𝑐(𝑡)𝑧∗𝑇 (𝑡) )] 𝑑𝛼(𝑡)

over all Borelian bounded functions 𝑐 : [0, 𝑇 ] → ℝ+,∗ such that 𝔼𝑐(𝜏) = 1. For
that we consider a linear space ℒ of Borelian bounded functions 𝑐 : [0;𝑇 ] → ℝ
with the norm ∣∣𝑐∣∣ = sup𝑡∈[0,𝑇 ] ∣𝑐(𝑡)∣ and also the cone of such positive functions.

We apply Kuhn–Tucker theorem (see [41]) to the function

𝐹𝜆(𝑐) = 𝐹 (𝑐)− 𝜆

∫ 𝑇

0

(𝑐(𝑡)− 1)𝑑𝛼(𝑡)

with Lagrangian factor 𝜆 > 0. We show that the Fréchet derivative ∂𝐹𝜆∂𝑐 of 𝐹𝜆(𝑐),
defined by

lim
∣∣𝛿∣∣→0

∣𝐹𝜆(𝑐+ 𝛿)− 𝐹𝜆(𝑐)− ∂𝐹𝜆
∂𝑐 𝛿∣

∣∣𝛿∣∣ = 0 (3.5)

is equal to:

∂𝐹𝜆
∂𝑐

(𝛿) =

∫ 𝑇
0

(𝔼[𝑓 ′( 𝑐(𝑡)𝑧∗𝑇 (𝑡) )𝑧
∗
𝑇 (𝑡)] − 𝜆) 𝛿(𝑡)𝑑𝛼(𝑡). (3.6)

In fact, by the Taylor formula, we have for 𝛿 ∈ ℒ:
𝐹𝜆(𝑐+ 𝛿)− 𝐹𝜆(𝑐)− ∂𝐹𝜆

∂𝑐
𝛿

=

∫ 𝑇
0

𝔼[(𝑓 ′( (𝑐(𝑡) + 𝜃(𝑡) )𝑧∗𝑇 (𝑡)) − 𝑓 ′( 𝑐(𝑡)𝑧∗𝑇 (𝑡) ))𝑧
∗
𝑇 (𝑡)]𝛿(𝑡)𝑑𝛼(𝑡)

where 𝜃(𝑡) is a function which takes values in the interval [0, 𝛿(𝑡)]. We remark
that the modulus of the right-hand side in the previous equality is bounded from
above by:

𝐴𝑇 = sup𝑡∈[0,𝑇 ] 𝔼[ ∣ 𝑓 ′( (𝑐(𝑡) + 𝜃(𝑡) )𝑧∗𝑇 (𝑡))− 𝑓 ′( 𝑐(𝑡)𝑧∗𝑇 (𝑡) ) ∣ 𝑧∗𝑇 (𝑡) ] ∣∣𝛿∣∣.
Since 𝑓 ′ is continuous and increasing and the functions 𝑐 and 𝛿 are bounded,
hypothesis (ℋ3) implies that 𝐴𝑇 is finite. We conclude by the Lebesgue dominated
convergence theorem that (3.5) holds and then (3.6).

Then, in order to ∂𝐹𝜆∂𝑐 𝛿 = 0 for all 𝛿 ∈ ℒ, it is necessary and sufficient to
take 𝑐 such that

𝔼[ 𝑧∗𝑇 (𝑡) 𝑓
′(𝑐(𝑡)𝑧∗𝑇 (𝑡))]− 𝜆 = 0 𝛼-a.s.

Finally, for each 𝑐 > 0 and 𝑡 ∈ [0, 𝑇 ] we consider the function
𝜆𝑡(𝑐) = 𝔼[ 𝑧∗𝑇 (𝑡) 𝑓

′(𝑐𝑧∗𝑇 (𝑡)) ].

We see easily that it is increasing in 𝑐 and that its right-continuous inverse 𝑐𝑡(𝜆)
satisfies:

𝜆 = 𝔼[ 𝑧∗𝑇 (𝑡) 𝑓
′(𝑐𝑡(𝜆)𝑧∗𝑇 (𝑡)) ].

Now, to obtain a minimizer 𝑐∗, it remains to find, if it exists, 𝜆∗ which
satisfies (3.4). □
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Proof of Corollaries 3.3, 3.4 and 3.5. First of all we remark that for common 𝑓 -
divergences, the hypothesis (ℋ1) implies (ℋ2) and (ℋ3). Then, we obtain in power
case 𝑓(𝑥) = 𝑐𝛾𝑥

𝛾+2 that 𝜆𝑡(𝑐) = (𝛾+2) 𝑐𝛾 𝑐
𝛾+1 𝔼[𝑧∗𝑇 (𝑡)

𝛾+2]. For 𝑓(𝑥) = 𝑥 ln(𝑥) we
get 𝜆𝑡(𝑐) = 𝔼[𝑧∗𝑇 (𝑡) ln 𝑧

∗
𝑇 (𝑡)]+ln 𝑐+1. In the case 𝑓(𝑥) = − ln𝑥 we get 𝜆𝑡(𝑐) = −1/𝑐.

Finally, we write down 𝑐𝑡(𝜆) and we integrate with respect to 𝛼 to find 𝜆∗ and the
expression of 𝑐∗(𝑡). □

Example. A change-point Black–Scholes model. We apply the previous results
when 𝐿 and �̃� define Black–Scholes type models. Therefore, we assume that 𝐿
and �̃� are continuous Lévy processes with characteristics (𝑏, 𝑐, 0) and (�̃�, 𝑐, 0) re-
spectively, 𝑐 > 0. As is well known, the initial models will be complete, with a
unique equivalent martingale measure which defines a unique price for options.
However, in our change-point model the martingale measure is not unique, and we
have an infinite set of martingale measures of the form:

𝑑ℚ𝑇
𝑑ℙ𝑇

(𝑋) = 𝑐(𝜏) exp

(∫ 𝑇
0

𝛽𝑠𝑑𝑋
𝑐
𝑠 −

1

2

∫ 𝑇
0

𝛽2𝑠𝑐𝑑𝑠

)

where 𝑐(⋅) is a measurable function [0, 𝑇 ]→ ℝ+,∗ such that 𝔼[𝑐(𝜏)] = 1 and

𝛽𝑠 = −1
𝑐

[ (
𝑏+

𝑐

2

)
𝕀[[0,𝜏 ]](𝑠) +

(
�̃�+

𝑐

2

)
𝕀]]𝜏,+∞[[(𝑠)

]
.

If for example 𝑓(𝑥) = 𝑐𝛾𝑥
𝛾+2 with 𝛾 ∕= −1,−2 then applying Theorem 3.2,

we get

𝑐∗(𝑡) =
𝑒−

𝛾+2
2𝑐 [(𝑏+ 𝑐2 )

2𝑡+(�̃�+ 𝑐2 )
2(𝑇−𝑡)]∫ 𝑇

0 𝑒−
𝛾+2
2𝑐 [(𝑏+ 𝑐2 )

2𝑡+(�̃�+ 𝑐2 )
2(𝑇−𝑡)]𝑑𝛼(𝑡)

.

If 𝑓(𝑥) = 𝑥 ln(𝑥), then

𝑐∗(𝑡) =
𝑒−

1
2𝑐 [(𝑏+

𝑐
2 )

2𝑡+(�̃�+ 𝑐2 )
2(𝑇−𝑡)]∫ 𝑇

0 𝑒−
1
2𝑐 [(𝑏+

𝑐
2 )

2𝑡+(�̃�+ 𝑐2 )
2(𝑇−𝑡)]𝑑𝛼(𝑡)

.

If 𝑓(𝑥) = − ln(𝑥), then 𝑐∗(𝑡) = 1.

4. Optimal strategies for utility maximization

We start by recalling some useful basic facts about optimal strategies for utility
maximization. Then some decomposition formulas will be given which permit us
to find optimal strategies. We end up by giving the formulas for optimal strategies
for utility maximization in change-point setting for both initially and progressively
enlarged filtrations.



322 S. Cawston and L. Vostrikova

4.1. Some known facts

In this subsection, we are interested in finding optimal strategies for terminal
wealth with respect to some utility functions. More precisely, we assume that our
financial market consists of two assets: a non-risky asset 𝐵, with interest rate 𝑟,
and a risky asset 𝑆, modelled using the change-point Lévy model defined in (1.2).

We denote by �⃗� = (𝐵,𝑆) the price process and by Φ⃗ = (𝜙0, 𝜙) the amount of

money invested in each asset. According to usual terminology, a predictable �⃗�-

integrable process Φ⃗ is said to be a self-financing admissible strategy if for every
𝑡 ∈ [0, 𝑇 ] and 𝑥 initial capital〈

Φ⃗𝑡, �⃗�𝑡

〉
= 𝑥+

∫ 𝑡
0

〈
Φ⃗𝑢, 𝑑�⃗�𝑢

〉
where the stochastic integral in the right-hand side is bounded from below. We
will denote by 𝒜 the set of all self-financing admissible strategies. In order to avoid
unnecessary complications, we will assume again that the interest rate 𝑟 is 0, so
that starting with an initial capital 𝑥, terminal wealth at time 𝑇 is

𝑉𝑇 (𝜙) = 𝑥+

∫ 𝑇
0

⟨𝜙𝑠, 𝑑𝑆𝑠⟩ .

Let 𝑢 denote a strictly increasing, strictly concave, continuously differentiable func-
tion on dom(𝑢) = {𝑥 ∈ ℝ∣𝑢(𝑥) > −∞} which satisfies

𝑢′(+∞) = lim
𝑥→+∞𝑢′(𝑥) = 0,

𝑢′(𝑥) = lim
𝑥→𝑥𝑢

′(𝑥) = +∞

where 𝑥 = inf{𝑢 ∈ dom(𝑢)}.
We will say that 𝜙∗ defines an optimal strategy with respect to 𝑢 if

𝔼𝑃

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙∗𝑠 , 𝑑𝑆𝑠⟩
)]

= sup
𝜙∈𝒜

𝔼𝑃

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙𝑠, 𝑑𝑆𝑠⟩
)]

.

As in [37], we will say that 𝜙∗ is an asymptotically optimal strategy if there exists
a sequence of admissible strategies (𝜙(𝑛))𝑛≥1 such that

lim
𝑛→+∞𝐸

[
𝑢

(
𝑥+

∫ 𝑇
0

〈
𝜙(𝑛)𝑠 , 𝑑𝑆𝑠

〉)]
= sup
𝜙∈𝒜

𝐸

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙𝑠, 𝑑𝑆𝑠⟩
)]

.

As known, there is a strong link between this optimization problem and the pre-
vious problem of finding 𝑓 -divergence minimal martingale measures. Let 𝑓 be the
convex conjugate function of 𝑢:

𝑓(𝑦) = sup
𝑥∈ℝ

{𝑢(𝑥)− 𝑥𝑦} = 𝑢(𝐼(𝑦))− 𝑦𝐼(𝑦)



Lévy Models with a Change-point 323

where 𝐼 = (𝑢′)−1 = −𝑓 ′. We recall that in particular

if 𝑢(𝑥) = ln(𝑥) then 𝑓(𝑥) = − ln(𝑥)− 1,
if 𝑢(𝑥) =

𝑥𝑝

𝑝
, 𝑝 < 1 then 𝑓(𝑥) = −𝑝− 1

𝑝
𝑥

𝑝
𝑝−1 ,

if 𝑢(𝑥) = 1− 𝑒−𝑥 then 𝑓(𝑥) = 1− 𝑥+ 𝑥 ln(𝑥).

The following result gives us the relation between portfolio optimization and 𝑓 -
minimal martingale measures.

Theorem 4.1 (cf. [28]). Let 𝑥 ∈ ℝ+ be fixed and 𝑓 ∈ 𝐶1(ℝ+,∗). Let 𝑄∗ be an
equivalent martingale measure which satisfies

𝔼𝑃

∣∣∣∣𝑓 (
𝜆
𝑑𝑄∗𝑇
𝑑𝑃𝑇

)∣∣∣∣ <∞, 𝔼𝑄∗

∣∣∣∣𝑓 ′(𝜆
𝑑𝑄∗𝑇
𝑑𝑃𝑇

)∣∣∣∣ <∞

for 𝜆 such that

−𝔼𝑄∗𝑓 ′
(
𝜆
𝑑𝑄∗𝑇
𝑑𝑃𝑇

)
= 𝑥.

Then, if 𝑄∗ is an 𝑓 -divergence minimal martingale measure, there exists a pre-
dictable function 𝜙∗ such that (

∫ ⋅
0
< 𝜙∗𝑢, 𝑑𝑆𝑢 >) is a 𝑄∗-martingale and

−𝑓 ′
(
𝜆
𝑑𝑄∗𝑇
𝑑𝑃𝑇

)
= 𝑥+

∫ 𝑇
0

⟨𝜙∗𝑢, 𝑑𝑆𝑢⟩ .

If the last relation holds, then
→
Φ= (𝜙0, 𝜙∗) with 𝜙0𝑡 = 𝑥 +

∫ 𝑡
0 < 𝜙∗𝑢, 𝑑𝑆𝑢 > − <

𝜙∗𝑡 , 𝑆𝑡 > is an asymptotically optimal portfolio strategy. Moreover, if 𝑥 > −∞, this
strategy is optimal.

Proof. The first part of the theorem is a slight adaptation of [37]. We do however

recall the proof for the reader’s ease. We denote 𝑍𝑇 =
𝑑𝑄∗𝑇
𝑑𝑃𝑇

.

As 𝑓 ′ is strictly increasing, continuous and due to imposed integrability
conditions, the function 𝜆 �→ 𝐸𝑄∗ [𝑓 ′(𝜆𝑍𝑇 )] is also increasing and continuous.
Furthermore, since 𝑓 ′ = −(𝑢′)−1, we have lim𝜆→0𝐸𝑄∗ [𝑓 ′(𝜆𝑍𝑇 )] = −∞ and
lim𝜆→+∞ 𝐸𝑄∗ [𝑓 ′(𝜆𝑍𝑇 )] = −𝑥. Hence, for all 𝑥 > 𝑥, there exists 𝜆 > 0 such
that 𝐸𝑄∗ [𝑓 ′(𝜆𝑍𝑇 )] = −𝑥. As 𝑄∗ is minimal for the function 𝑥 �→ 𝑓(𝜆𝑥), it follows
from Theorem 3.1 of [28], that there exists a predictable process 𝜙∗ such that

−𝑓 ′(𝜆𝑍𝑇 ) = 𝑥+

∫ 𝑇
0

⟨𝜙∗, 𝑑𝑆𝑠⟩

and furthermore
∫ ⋅
0 < 𝜙∗𝑠, 𝑑𝑆𝑠 > defines a 𝑄∗-martingale. Then, from the definition

of the convex conjugate, we have

𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙∗, 𝑑𝑆𝑠⟩
)
= 𝑓(𝜆𝑍𝑇 )− 𝜆𝑍𝑇 𝑓 ′(𝜆𝑍𝑇 ) (4.1)
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and, hence,

𝐸𝑃

[∣∣∣∣𝑢(𝑥+

∫ 𝑇
0

⟨𝜙∗, 𝑑𝑆𝑠⟩
)∣∣∣∣] ≤ 𝐸𝑃 ∣𝑓(𝜆𝑍𝑇 )∣+ 𝜆𝐸𝑃 [𝑍𝑇 ∣𝑓 ′(𝜆𝑍𝑇 )∣] <∞.

If now 𝜙 denotes any admissible strategy, we have from 𝑢(𝑥) ≤ 𝑥𝑦 + 𝑓(𝑦) for all
𝑥, 𝑦 ∈ ℝ+,∗ and (4.1) that

𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
)
≤

(
𝑥+

∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
)
𝜆𝑍𝑇 + 𝑓(𝜆𝑍𝑇 )

≤
(
𝑥+

∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
)
𝜆𝑍𝑇 + 𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙∗, 𝑑𝑆𝑠⟩
)
+ 𝜆𝑍𝑇 𝑓

′(𝜆𝑍𝑇 ).

Taking expectation, we obtain since 𝐸𝑃 (𝑍𝑇 𝑓 ′(𝜆𝑍𝑇 )) = −𝑥, that

𝐸𝑃

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
)]

≤ 𝐸𝑃

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙∗, 𝑑𝑆𝑠⟩
)]

+ 𝜆𝐸𝑄∗

[∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
]
.

Now, under 𝑄∗,
∫ ⋅
0
⟨𝜙, 𝑑𝑆𝑠⟩ is a local martingale and if it is bounded from below,

then 𝐸𝑄∗
[∫ 𝑇

0 ⟨𝜙, 𝑑𝑆𝑠⟩
]
≤ 0. Therefore,

𝐸𝑃

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
)]

≤ 𝐸𝑃

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙∗, 𝑑𝑆𝑠⟩
)]

.

Furthermore, if 𝑥 > −∞, we note that ∫ 𝑇
0
⟨𝜙∗𝑠 , 𝑑𝑆𝑠⟩ ≥ 𝑥 − 𝑥, so that 𝜙∗ defines

an admissible strategy, and hence is a 𝑢-optimal strategy.
When 𝑥 = −∞, we can construct using the definition of 𝒜 a sequence of

admissible strategies 𝜙(𝑛) such that for all 0 ≤ 𝑡 ≤ 𝑇 , (𝜙(𝑛) ⋅ 𝑆)𝑡 ≥ −𝑛 and such
that

lim
𝑛→+∞𝐸

[
𝑢

(
𝑥+

∫ 𝑇
0

〈
𝜙(𝑛), 𝑑𝑆𝑠

〉)]
= sup
𝜙∈𝒜

𝐸

[
𝑢

(
𝑥+

∫ 𝑇
0

⟨𝜙, 𝑑𝑆𝑠⟩
)]

.

Finally, 𝜙∗ is asymptotically 𝑢-optimal. □

In the following theorem proved in [7] we give a unified expression of 𝑢-
optimal strategy for exponential Lévy model. We denote by (𝛽∗, 𝑌 ∗) the Girsanov
parameters for changing of the measure 𝑃 into 𝑄∗. We put also

𝜉𝑡(𝑥) = 𝐸𝑄∗ [𝑓 ′′(𝑥𝑍𝑇−𝑡)𝑍𝑇−𝑡].

Theorem 4.2. Let 𝑢 be a 𝒞3(]𝑥,+∞[) utility function and 𝑓 its convex conjugate.
Assume there exists an 𝑓 -minimal martingale measure 𝑄∗ which preserves the
Lévy property and such that the integrability conditions are satisfied: for all 𝜆 > 0
and all compact set 𝐾 ⊆ ℝ+

𝐸𝑃 ∣𝑓(𝜆𝑍𝑇 )∣ < +∞, 𝐸𝑄∣𝑓 ′(𝜆𝑍𝑇 )∣ < +∞, sup
𝑡≤𝑇

sup
𝜆∈𝐾

𝐸𝑄[𝑓
′′(𝜆𝑍𝑡)𝑍𝑡] < +∞.

Then for any fixed initial capital 𝑥 > 𝑥, there exists an asymptotically 𝑢-optimal
strategy 𝜙∗. In addition, 𝜙∗ defines an 𝑢-optimal strategy as soon as 𝑥 > −∞.



Lévy Models with a Change-point 325

Furthermore, if 𝑐 ∕= 0, we have for 1 ≤ 𝑖 ≤ 𝑑 that

𝜙∗,(𝑖)𝑠 = −𝜆𝛽∗,(𝑖)𝑍𝑠−
𝑆
(𝑖)
𝑠−

𝜉𝑠(𝜆𝑍𝑠−)

where 𝜆 is a unique solution to the equation 𝐸𝑄∗(−𝑓 ′(𝜆𝑍𝑇 )) = 𝑥.

If 𝑐 = 0,
∘

supp (𝜈) ∕= ∅ and it contains zero, and 𝑌 ∗ is not identically 1, then
𝑓 ′′(𝑥) = 𝑎𝑥𝛾 with 𝑎 > 0 and 𝛾 ∈ ℝ, and for 1 ≤ 𝑖 ≤ 𝑑

𝜙∗,(𝑖)𝑠 = −𝜆𝛼∗,(𝑖)𝑍𝑠−
𝑆𝑠−

𝜉𝑠(𝜆𝑍𝑠−)

where again 𝜆 is a unique solution to the equation 𝐸𝑄∗(−𝑓 ′(𝜆𝑍𝑇 )) = 𝑥 and the
constant 𝛼∗ is related with the second Girsanov parameter 𝑌 ∗ by the formula:

𝛼∗,(𝑖) = exp(−𝑦0)𝑌 (𝑦0)
𝛾 ∂𝑌

∂𝑦𝑖
(𝑦0)

where 𝑦0 is chosen arbitrarily in
∘

supp (𝜈).

In the case of classical utilities we obtain the following result.

Proposition 4.3. Consider a Lévy process 𝑋 with characteristics (𝑏, 𝑐, 𝜈) and let
𝑓 be a function such that 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 , where 𝑎 > 0 and 𝛾 ∈ ℝ. Let 𝑢𝑓 be
its concave conjugate. Assume there exist 𝛼, 𝛽 ∈ ℝ𝑑 and a measurable function
𝑌 : ℝ𝑑 ∖ {0} → ℝ+ such that

𝑌 (𝑦) = (𝑓 ′)−1(𝑓 ′(1) + 𝛼(𝑒𝑦 − 1))
with, for 𝑐 ∕= 0, 𝛼 = 𝑐𝛾 (𝛾 + 1) (𝛾 + 2)𝛽 if 𝛾 ∕= −1,−2 and 𝛼 = 𝛽 if 𝛾 = −1 or
𝛾 = −2, and such that the following properties hold:

𝑌 (𝑦) > 0 𝜈 − 𝑎.𝑒.,∫
𝑦≥1

(𝑒𝑦 − 1)𝑌 (𝑦)𝜈(𝑑𝑦) <∞.

𝑏+
1

2
diag(𝑐) + 𝑐𝛽 +

∫
ℝ𝑑
((𝑒𝑦 − 1)𝑌 (𝑦)− ℎ(𝑦))𝜈(𝑑𝑦) = 0.

Then if 𝑐 ∕= 0, there exists an asymptotically optimal strategy 𝜙∗ given by

𝜙∗,(𝑖)𝑠 = 𝛼𝛾(𝑥)
𝛽(𝑖) 𝑍𝛾+1

𝑠−
𝐸𝑄∗ [𝑍𝛾+1

𝑠 ]𝑆
(𝑖)
𝑠−

,

where 𝑥 is initial capital and

𝛼𝛾(𝑥) = (𝛾 + 1)(𝑥+ 𝑓 ′(1))− 𝑎. (4.2)

If 𝑐 = 0 and
∘

supp (𝜈) ∕= ∅, then

𝜙∗,(𝑖)𝑠 = 𝛼𝛾(𝑥)
𝛼(𝑖) 𝑍𝛾+1

𝑠−
𝐸𝑄∗ [𝑍𝛾+1

𝑠 ]𝑆
(𝑖)
𝑠−

,

In addition, 𝜙∗ is optimal as soon as 𝛾 ∕= −1.
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4.2. A decomposition formula for initially enlarged filtration

We use the structure of ℚ∗ presented in Theorem 3.2 to write down a decompo-
sition formula mentioned in Theorem 4.1 for 𝑓 ′(𝜆𝑍∗𝑇 (𝜏)). First of all we give the
expressions for Girsanov parameters when changing the measure ℙ into ℚ∗.

Lemma 4.4. Let Girsanov parameters of the 𝑓 -divergence minimal equivalent mar-
tingale measures 𝑄∗ and �̃�∗ are (𝛽∗, 𝑌 ∗) and (𝛽∗, 𝑌 ∗) respectively. Then the Gir-
sanov parameters when changing from ℙ to ℚ∗ are:

𝛽∗𝑡 (𝜏) = 𝛽∗𝕀[[0,𝜏 ]](𝑡) + 𝛽∗ 𝕀]]𝜏,+∞[[(𝑡)

𝑌 ∗𝑡 (𝜏) = 𝑌 ∗𝕀[[0,𝜏 ]](𝑡) + 𝑌 ∗ 𝕀]]𝜏,+∞[[(𝑡).

It should be noticed that Girsanov parameters 𝛽∗(𝜏), 𝑌 ∗(𝜏) do not define
entirely the measure ℚ∗. In fact, ℱ0 = 𝜎(𝜏) is not trivial and 𝑍∗0 (𝜏) = 𝑐(𝜏).

To write a decomposition formula of (ℚ∗,𝔽) martingale as a stochastic inte-
gral with respect to (𝑆𝑡)𝑡≥0 of some 𝔽-predictable function (𝜙𝑡(𝜏)))𝑡≥0 it is suffi-
cient to proceed by conditioning with respect to 𝜏 . In fact, from Proposition 2.1
of [4] we know that 𝑁(𝜏) is (ℚ∗,𝔽) martingale iff for a.e. 𝑢 ∈ supp(ℒ(𝜏)), 𝑁(𝑢) is
(ℚ∗𝑢,𝔾) martingale, where ℚ

∗
𝑢 is conditional probability ℚ

∗ given 𝜏 = 𝑢. Moreover,
(𝜙𝑡(𝜏)))𝑡≥0 is 𝔽-predictable iff for a.e. 𝑢 ∈ supp(ℒ(𝜏)), (𝜙𝑡(𝑢)))𝑡≥0 is 𝒫(𝔾⊗𝔹(ℝ+))
measurable.

We introduce for fixed 𝑢 ∈ supp(ℒ(𝜏)), 𝑥 ≥ 0 and 𝑡 ∈ [0, 𝑇 ] the quantities
𝜌(𝑢)(𝑡, 𝑥) = 𝔼ℚ∗(𝑓 ′(𝑍∗𝑇 (𝜏)) ∣ 𝜏 = 𝑢, 𝑍∗𝑡 (𝑢) = 𝑥)

and we remark that

𝜌(𝑢)(𝑡, 𝑥) = 𝔼ℚ∗
𝑢
(𝑓 ′(𝑍∗𝑇 (𝑢)) ∣𝑍∗𝑡 (𝑢) = 𝑥)

where ℚ∗𝑢 is conditional probability ℚ
∗ given 𝜏 = 𝑢. We notice that for regular con-

ditional probabilities and for right-continuous versions of conditional expectations
we have: ℙ-a.s. for all 𝑡 ∈ [0, 𝑇 ]

𝔼ℚ∗( 𝑓 ′(𝑍∗𝑇 (𝜏)) ∣ ℱ𝑡) = 𝜌(𝜏)(𝑡, 𝑍∗𝑡 (𝜏)).

To simplify the notation we introduce 𝜂𝑇−𝑡(𝑢) such that

𝜂𝑇−𝑡(𝑢) =
𝑧∗𝑇 (𝑢)
𝑧∗𝑡 (𝑢)

.

As a consequence of previous formulas, we have

𝜌(𝑢)(𝑡, 𝑥) = 𝔼ℚ∗
𝑢
[𝑓 ′(𝑥𝜂𝑇−𝑡(𝑢))].

Now, we would like to use the Itô formula for 𝜌(𝑢)(𝑡, 𝑍∗𝑡 (𝑢)). But the mentioned
function is not sufficiently smooth and we will proceed by approximations. For
that we construct a sequence of functions (𝜙𝑛)𝑛≥1.

Lemma 4.5. Let 𝑓 be convex function belonging to 𝐶3(ℝ+,∗). There exists a se-
quence of bounded functions (𝜙𝑛)𝑛≥1, which are of class 𝒞2 on ℝ+,∗, increasing,
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such that for all 𝑛 ≥ 1, 𝜙𝑛 coincides with 𝑓 ′ on the compact set [ 1𝑛 , 𝑛] and such
that for sufficiently big 𝑛 the following inequalities hold for all 𝑥, 𝑦 > 0:

∣𝜙𝑛(𝑥)∣ ≤ 4∣𝑓 ′(𝑥)∣+𝛼 , ∣𝜙′𝑛(𝑥)∣ ≤ 3𝑓 ′′(𝑥) , ∣𝜙𝑛(𝑥)−𝜙𝑛(𝑦)∣ ≤ 5∣𝑓 ′(𝑥)−𝑓 ′(𝑦)∣ (4.3)
where 𝛼 is a real positive constant.

Proof. We set, for 𝑛 ≥ 1,

𝐴𝑛(𝑥) = 𝑓 ′(
1

𝑛
)−

∫ 1
𝑛

𝑥∨ 1
2𝑛

𝑓 ′′(𝑦)(2𝑛𝑦 − 1)2(5− 4𝑛𝑦)𝑑𝑦

𝐵𝑛(𝑥) = 𝑓 ′(𝑛) +
∫ 𝑥∧(𝑛+1)

𝑛

𝑓 ′′(𝑦)(𝑛+ 1− 𝑦)2(1 + 2𝑦 − 2𝑛)𝑑𝑦

and finally

𝜙𝑛(𝑥) =

⎧⎨⎩
𝐴𝑛(𝑥) if 0 ≤ 𝑥 < 1

𝑛 ,

𝑓 ′(𝑥) if 1
𝑛 ≤ 𝑥 ≤ 𝑛,

𝐵𝑛(𝑥) if 𝑥 > 𝑛. □

Proof. We can verify easily that 𝜙𝑛 coincide with 𝑓 ′ on [ 1𝑛 , 𝑛] and that the prop-
erties (4.3) hold. □

Now we replace 𝑓 ′ by 𝜙𝑛 in previous formulas and we introduce

𝜌(𝑢)𝑛 (𝑡, 𝑥) = 𝔼ℚ∗(𝜙𝑛(𝑍
∗
𝑇 (𝜏)) ∣ 𝜏 = 𝑢, 𝑍∗𝑡 (𝑢) = 𝑥).

It is not difficult to see that

𝜌(𝑢)𝑛 (𝑡, 𝑍∗𝑇 (𝑢)) = 𝔼ℚ∗
𝑢
[𝜙𝑛(𝑥𝜂𝑇−𝑡(𝑢))].

In the next lemma we give a decomposition formula for 𝜌
(𝑢)
𝑛 . For that we put

𝜉
(𝑛,𝑢)
𝑡 (𝑥) = 𝔼ℚ∗

𝑢
[𝜂𝑇−𝑡(𝑢)𝜙′𝑛(𝑥𝜂𝑇−𝑡(𝑢))]

and

𝐻
(𝑛,𝑢)
𝑡 (𝑥, 𝑦) = 𝔼ℚ∗

𝑢
([𝜙𝑛(𝑥𝜂𝑇−𝑡(𝑢)𝑌 ∗𝑡 (𝑦))− 𝜙𝑛(𝑥𝜂𝑇−𝑡(𝑢))]).

Lemma 4.6. We have ℚ∗𝑢-a.s., for all 𝑡 ≤ 𝑇 ,

𝔼ℚ∗
𝑢
[𝜙𝑛(𝑍

∗
𝑇 (𝑢)) ∣ 𝒢𝑡]

= 𝔼ℚ∗
𝑢
[𝜙𝑛(𝑍

∗
𝑇 (𝑢))] +

∫ 𝑡
0

𝑍∗𝑠−(𝑢) 𝜉
(𝑛,𝑢)
𝑠 (𝑍∗𝑠−(𝑢))

〈
𝛽∗𝑠 (𝑢), 𝑑𝑋

(𝑐),ℚ∗
𝑢

𝑠

〉
+

∫ 𝑡
0

∫
ℝ𝑑

𝐻(𝑛,𝑢)
𝑠 (𝑍∗𝑠−(𝑢), 𝑦) (𝜇

𝑋 − 𝜈𝑋,ℚ
∗
𝑢)(𝑑𝑠, 𝑑𝑦)

where 𝜈𝑋,ℚ
∗
𝑢 is a compensator of the jump measure 𝜇𝑋 with respect to (𝔾,ℚ∗𝑢).
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Proof. In order to apply the Itô formula to 𝜌
(𝑢)
𝑛 , we show that 𝜌𝑛 is twice con-

tinuously differentiable with respect to 𝑥 and once with respect to 𝑡 on the set
𝑥 ≥ 𝜖, 𝜖 > 0 and 𝑡 ∈ [0, 𝑇 ] and that the corresponding derivatives are bounded on
the mentioned set. Then we apply the Itô formula to 𝜌

(𝑢)
𝑛 but stopped at stopping

times

𝑠𝑚 = inf

{
𝑡 ≥ 0 ∣𝑍∗𝑡 (𝑢) ≤

1

𝑚

}
,

with 𝑚 ≥ 1 and inf{∅} =∞.
From strong Markov property of Lévy processes we have:

𝜌(𝑢)𝑛 (𝑡 ∧ 𝑠𝑚, 𝑍
∗
𝑡∧𝑠𝑚(𝑢)) = 𝐸ℚ∗

𝑢
(𝜙𝑛(𝑍

∗
𝑇 (𝑢)) ∣ 𝒢𝑡∧𝑠𝑚)

and we remark that (𝐸ℚ∗
𝑢
(𝜙𝑛(𝑍

∗
𝑇 (𝑢)) ∣ 𝒢𝑡∧𝑠𝑚))𝑡≥0 is a ℚ∗𝑢-martingale. By the Itô

formula we obtain that:

𝜌(𝑢)𝑛 (𝑡∧𝑠𝑚,𝑍∗𝑡∧𝑠𝑚(𝑢))=𝜌(𝑢)𝑛 (0,𝑍∗0 (𝑢))+
∫ 𝑡∧𝑠𝑚
0

∂𝜌
(𝑢)
𝑛

∂𝑠
(𝑠,𝑍∗𝑠−(𝑢))𝑑𝑠

+

∫ 𝑡∧𝑠𝑚
0

∂𝜌
(𝑢)
𝑛

∂𝑥
(𝑠,𝑍∗𝑠−(𝑢))𝑑𝑍

∗
𝑠−(𝑢)+

1

2

∫ 𝑡∧𝑠𝑚
0

∂2𝜌
(𝑢)
𝑛

∂𝑥2
(𝑠,𝑍∗𝑠−(𝑢))𝑑⟨𝑍∗,𝑐(𝑢)⟩𝑠

+

∫ 𝑡∧𝑠𝑚
0

∫
ℝ

[
𝜌(𝑢)𝑛 (𝑠,𝑍∗𝑠−(𝑢)+𝑦)−𝜌(𝑢)𝑛 (𝑠,𝑍∗𝑠−(𝑢))−

∂𝜌
(𝑢)
𝑛

∂𝑥
(𝑠,𝑍∗𝑠−(𝑢))𝑦

]
𝜇𝑍

∗
(𝑑𝑠,𝑑𝑦).

Then we can write that

𝜌(𝑢)𝑛 (𝑡 ∧ 𝑠𝑚, 𝑍
∗
𝑡∧𝑠𝑚(𝑢)) = 𝐴𝑡∧𝑠𝑚 +𝑀𝑡∧𝑠𝑚

where for 0 ≤ 𝑡 ≤ 𝑇

𝐴𝑡=

∫ 𝑡
0

∂𝜌
(𝑢)
𝑛

∂𝑠
(𝑠,𝑍∗𝑠−(𝑢))𝑑𝑠+

1

2

∫ 𝑡
0

∂2𝜌
(𝑢)
𝑛

∂𝑥2
(𝑠,𝑍∗𝑠−(𝑢))𝑑⟨𝑍∗,𝑐(𝑢)⟩𝑠

+

∫ 𝑡
0

∫
ℝ

[
𝜌(𝑢)𝑛 (𝑠,𝑍∗𝑠−(𝑢)+𝑦)−𝜌(𝑢)𝑛 (𝑠,𝑍∗𝑠−(𝑢))−

∂𝜌
(𝑢)
𝑛

∂𝑥
(𝑠,𝑍∗𝑠−(𝑢))𝑦

]
𝜈𝑍

∗,ℚ∗
𝑢(𝑑𝑠,𝑑𝑦)

and

𝑀𝑡 =

∫ 𝑡
0

∂𝜌
(𝑢)
𝑛

∂𝑥
(𝑠, 𝑍∗𝑠−(𝑢))𝑑𝑍

∗
𝑠−(𝑢)

+

∫ 𝑡

0

∫
ℝ

[
𝜌(𝑢)𝑛 (𝑠, 𝑍∗𝑠−(𝑢) + 𝑦)− 𝜌(𝑢)𝑛 (𝑠, 𝑍∗𝑠−(𝑢))

]
(𝜇𝑍

∗
(𝑑𝑠, 𝑑𝑦)− 𝜈𝑍

∗,ℚ∗
𝑢(𝑑𝑠, 𝑑𝑦)).

But since 𝐴 is predictable process and (𝐸ℚ∗
𝑢
(𝜙𝑛(𝑍

∗
𝑇 (𝑢)) ∣ 𝒢𝑡∧𝑠𝑚))𝑡≥0 is a ℚ∗𝑢-

martingale, we obtain that ℚ∗𝑢-a.s., 𝐴𝑡 = 0 for all 0 ≤ 𝑡 ≤ 𝑇 .

From [52], Corollary 2.4, p. 59, we get since 𝜎(∪∞𝑚=1𝒢𝑡∧𝑠𝑚) = 𝒢𝑡 that
lim
𝑚→∞ 𝜌(𝑢)𝑛 (𝑡 ∧ 𝑠𝑚, 𝑍

∗
𝑡∧𝑠𝑚(𝑢)) = 𝐸ℚ∗(𝜙𝑛(𝑍

∗
𝑇 (𝑢)) ∣ 𝒢𝑡).
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Moreover, we remark that for all 𝑥 ∈ ℝ and 𝑠 ∈ [0, 𝑇 ]
∂𝜌

(𝑢)
𝑛

∂𝑥
(𝑠, 𝑥) = 𝜉(𝑛,𝑢)𝑠 (𝑥)

and all 𝑥, 𝑦 ∈ ℝ and 𝑠 ∈ [0, 𝑇 ]
𝐻(𝑛,𝑢)
𝑠 (𝑥, 𝑦) = 𝜌(𝑢)𝑛 (𝑠, 𝑥 𝑌 ∗𝑠 (𝑦))− 𝜌(𝑢)𝑛 (𝑠, 𝑥).

Using the definition of local martingales we conclude that the decomposition of
lemma holds. □

The next step consists to pass to the limit in previous decomposition. For
that let us denote for 0 ≤ 𝑡 ≤ 𝑇

𝜉
(𝑢)
𝑡 (𝑥) = 𝔼ℚ∗

𝑢
[𝜂𝑇−𝑡(𝑢)𝑓 ′′(𝑥𝜂𝑇−𝑡(𝑢))]

and

𝐻
(𝑢)
𝑡 (𝑥, 𝑦) = 𝔼ℚ∗

𝑢
([𝑓 ′(𝑥𝜂𝑇−𝑡(𝑢)𝑌 ∗𝑡 (𝑦))− 𝑓 ′(𝑥𝜂𝑇−𝑡(𝑢))]).

Lemma 4.7. We have ℚ∗𝑢-a.s., for all 𝑡 ≤ 𝑇 ,

𝔼ℚ∗
𝑢
(𝑓 ′(𝑍∗𝑇 (𝑢))∣𝒢𝑡)=𝔼ℚ∗

𝑢
[𝑓 ′(𝑍∗𝑇 (𝑢))]+

∫ 𝑡
0

𝑍∗𝑠−(𝑢)𝜉
(𝑢)
𝑠 (𝑍𝑠−(𝑢))

〈
𝛽∗𝑠 (𝑢),𝑑𝑋

(𝑐),ℚ∗
𝑢

𝑠

〉
+

∫ 𝑡
0

∫
ℝ𝑑

𝐻(𝑢)
𝑠 (𝑍𝑠−(𝑢),𝑦)(𝜇𝑋−𝜈𝑋,ℚ

∗
𝑢)(𝑑𝑠,𝑑𝑦)

where 𝜈𝑋,ℚ
∗
𝑢 is a compensator of the jump measure 𝜇𝑋 with respect to (𝔾,ℚ∗𝑢).

Proof. The proof consists to show the convergence in probability of stochastic
integrals and conditional expectations using the properties of 𝜙𝑛 cited in Lemma
4.5 and can be performed in the same way as in [7]. □

4.3. Optimal strategies in a change-point situation for initially enlarged filtration

Let 𝑢 be a utility function belonging to 𝐶3(]𝑥,+∞[) and 𝑓 its convex conjugate,

𝑓 ∈ 𝐶3(ℝ+,∗). We suppose that ℳ(𝑃 ) ∕= ∅ and ℳ(𝑃 ) ∕= ∅ and we introduce the
following hypothesis

(ℋ4): For each compact set 𝐾 of ℝ+,∗ we have:

sup
𝜆∈𝐾

sup
𝑡∈[0,𝑇 ]

𝐸𝑄∗ [𝜁∗𝑡 𝑓
′′(𝜆 𝜁∗𝑡 ) ] <∞, sup

𝜆∈𝐾
sup
𝑡∈[0,𝑇 ]

𝐸𝑄∗ [𝜁
∗
𝑡 𝑓

′′(𝜆 𝜁∗𝑡 ) ] <∞

where 𝜁∗ and 𝜁∗ are the densities of the 𝑓 -divergence EMM’s 𝑄∗ and �̃�∗

with respect to 𝑃 and 𝑃 respectively.

Theorem 4.8. Let 𝑢 be a strictly concave function belonging to 𝐶3(]𝑥,+∞[) and
𝑥 > 𝑥. Suppose that a convex conjugate 𝑓 of 𝑢 satisfy (ℋ1), (ℋ2), (ℋ3), (ℋ4) and
(3.4). Then for change-point model (1.2) there exists an 𝔽-optimal strategy 𝜙∗. If
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𝑐 ∕= 0, then for 1 ≤ 𝑖 ≤ 𝑑

𝜙
∗,(𝑖)
𝑡 = −𝜆

𝛽𝑡
∗,(𝑖)(𝜏)𝑍∗𝑡−(𝜏)

𝑆
(𝑖)
𝑡−

𝜉
(𝜏)
𝑡 (𝜆𝑍∗𝑡−(𝜏))

with 𝛽∗(𝜏) defined in Lemma 4.4 and 𝜆 such that 𝔼ℚ∗(−𝑓 ′(𝜆𝑍∗𝑇 (𝜏))) = 𝑥.

If 𝑐 = 0 and
∘

supp (𝜈) ∕= ∅, ∘
supp (𝜈) ∕= ∅ both supports containing 0,and 𝑌 ,

𝑌 are not identically 1, then 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 with 𝑎 > 0 and 𝛾 ∈ ℝ, and the optimal
strategies are defined by the same formula but with the replacement of 𝛽∗𝑡 (𝜏) by
𝛼∗𝑡 (𝜏) such that

𝛼
∗,(𝑖)
𝑡 (𝜏) = 𝑒−𝑦0,𝑖𝑌 ∗(𝑦0)𝛾

∂𝑌 ∗

∂𝑦𝑖
(𝑦0)𝕀{𝜏>𝑡} + 𝑒−𝑦1,𝑖𝑌 ∗(𝑦1)𝛾

∂𝑌 ∗

∂𝑦𝑖
(𝑦1)𝕀{𝜏≤𝑡}

with any 𝑦0 ∈ ∘
supp (𝜈) and 𝑦1 ∈ ∘

supp (𝜈).

Proof. From Theorem 3.2 and the hypotheses (ℋ1), (ℋ2), (ℋ3) and (3.4) it follows
that there exists an 𝑓 - divergence minimal martingale measure ℚ∗. Since the pro-
cesses 𝑋 and 𝑆 are 𝔽-adapted, applying Theorem 3.1 in [28], we have the existence
of an 𝔽-adapted optimal strategy 𝜙∗ such that

−𝑓 ′(𝜆𝑍∗𝑇 (𝜏)) = 𝑥+

∫ 𝑇
0

< 𝜙∗𝑢, 𝑑𝑆𝑢 >

and such that
∫ .
0
< 𝜙∗𝑢, 𝑑𝑆𝑢 > defines a martingale with respect to (ℚ,𝔽). More-

over, for all 𝑥 > 𝑥, there exists 𝜆 > 0 such that 𝐸𝑄∗ [𝑓 ′(𝜆𝑍𝑇 )] = −𝑥. Then, to
get our formulas for 𝑐 ∕= 0, we compare the decomposition of Lemma 4.7 and the
decomposition of Theorem 4.1. For 𝑐 = 0 we use first the Theorem 3 of [6] to prove
that 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 . Then, again we compare the decomposition of Lemma 4.7 and
the decomposition of Theorem 4.1 and we obtain the result. □

Corollary 4.9. Let 𝑢 be common utility function and let 𝑓 be its convex conju-
gate, 𝑓 ′′(𝑥) = 𝑎𝑥𝛾 , where 𝑎 > 0 and 𝛾 ∈ ℝ. Then for 𝑥 > 𝑥 there exists an
𝑢-asymptotically optimal strategy if and only if the conditions of Theorem 2.1 are
verified for both processes 𝐿 and �̃�. Furthermore, if 𝑐 ∕= 0 then 1 ≤ 𝑖 ≤ 𝑑

𝜙
∗,(𝑖)
𝑡 = −𝐴𝑡(𝜏)

𝛽
∗,(𝑖)
𝑡 (𝜏) (𝑍∗𝑡−(𝜏))

𝛾+1

𝑆
(𝑖)
𝑡−

with

𝐴𝑡(𝜏) = 𝛼𝛾(𝑥)
𝔼( [𝑧∗𝑇 (𝜏)/𝑧

∗
𝑡 (𝜏)]

𝛾+2 ∣ 𝜏 )
𝔼( [𝑍∗𝑇 (𝜏)]𝛾+2 )

where 𝛼𝛾(𝑥) is defined by (4.2). If 𝑐 = 0, then we have the same formula for
𝜙∗𝑡 with replacement of 𝛽∗𝑡 (𝜏) by 𝛼∗𝑡 (𝜏) given in Theorem 4.8. In addition, 𝜙∗ is
optimal as soon as 𝛾 ∕= −1.
Proof. According to Theorem 2.1, under the assumptions (2.2), (2.3) and (2.4), the
Lévy model associated with 𝐿 has an 𝑓 -divergence minimal equivalent martingale
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measure which preserves the Lévy property and is scale invariant. The same is true
for the Lévy model associated with �̃�. Then, the existence of 𝑓 -divergence EMM’s
for change-point model follows from Theorem 3.2 and the formulas for strategies
follow directly from Theorem 4.8. □

Remark 4.10. From Corollary 4.9 we can see the following. Let 𝜓∗ and 𝜓∗ be
𝑢-optimal strategies for the exponential Lévy models 𝐿 and �̃� respectively. Then
the 𝑢-optimal strategy for corresponding change-point model can be written as

𝜙∗𝑡 = 𝐵𝑡(𝜏)𝜓
∗
𝑡 𝕀{𝜏≥𝑡} + �̃�𝑡(𝜏)𝜓

∗
𝑡 𝕀{𝜏<𝑡}

where

𝐵𝑡(𝜏) = (𝑐∗(𝜏))𝛾+1𝔼( [𝜁
∗
𝜏−𝑡]

𝛾+2 ∣ 𝜏)𝔼( [𝜁∗𝑇−𝜏 ]𝛾+2 ∣ 𝜏 )
𝔼( [𝑍∗𝑇 (𝜏)]𝛾+2 )

𝔼(𝜁∗𝑡 )
𝛾+2,

�̃�𝑡(𝜏) = (𝑐∗(𝜏))𝛾+1(
𝜁𝜏

𝜁𝜏
)𝛾+1 𝔼( [𝜁∗𝑇−𝑡]

𝛾+2 )

𝔼( [𝑍∗𝑇 (𝜏)]𝛾+2 )
𝔼(𝜁∗𝑡 )

𝛾+2.

When 𝑢 is exponential utility, and, hence, 𝛾 = −1, we see that 𝐵𝑡(𝜏) = ˜𝐵𝑡(𝜏) = 1
and the optimal strategy 𝜙∗ can be obtained by pasting together at 𝜏 two optimal
strategies 𝜓∗ and 𝜓∗:

𝜙∗𝑡 = 𝜓∗𝑡 𝕀{𝜏≥𝑡} + 𝜓∗𝑡 𝕀{𝜏<𝑡}.
For logarithmic utility (𝛾 = −2) since 𝑐∗(𝜏) = 1 we get:

𝜙∗𝑡 = 𝜓∗𝑡 𝕀{𝜏≥𝑡} +
𝜁𝜏
𝜁𝜏

𝜓∗𝑡 𝕀{𝜏<𝑡}.

For power utility we use the expression for 𝑐∗(𝜏) to simplify the expression of 𝐵𝑡(𝜏)
which becomes to be equal to

𝐵𝑡 =
(
𝔼 ([𝑍∗𝑇 (𝜏)]

𝛾+2)
)−1 (∫ 𝑇

0

[𝔼( 𝑧∗𝑇 (𝑡)
𝛾+2 )]−

1
𝛾+1 𝑑𝛼(𝑡)

)−(𝛾+1)

.

Then,

𝜙∗𝑡 = 𝐵𝑡 𝜓
∗
𝑡 𝕀{𝜏≥𝑡} + �̃�𝑡(𝜏)𝜓

∗
𝑡 𝕀{𝜏<𝑡}.

In mentioned cases, 𝜙∗ is already adapted with respect to progressively enlarged
filtration.

Example. Optimal strategy for Black–Scholes model with change point and expo-
nential utility. As before, we now want to apply the results when 𝐿 and �̃� define
Black–Scholes type models. Therefore, we assume that 𝐿 and �̃� are continuous
Lévy processes with characteristics (𝑏, 𝑐, 0) and (�̃�, 𝑐, 0) respectively. Let 𝜏 be a

random variable bounded by 𝑇 which is independent from 𝐿 and �̃�. Then the
asymptotically optimal strategy from the point of view of maximization of expo-
nential utility 𝑢(𝑥) = 1− exp(−𝑥) will be:

𝜙
∗,(𝑖)
𝑡 = −𝛽

(𝑖)
𝑡

𝑆
(𝑖)
𝑡−

=
(𝑏(𝑖) + 𝑐𝑖,𝑖/2)

𝑐𝑆
(𝑖)
𝑡

𝕀[[0,𝜏 ]](𝑡) +
(�̃�(𝑖) + 𝑐𝑖,𝑖/2)

𝑐𝑆
(𝑖)
𝑡

𝕀]]𝜏,+∞[[(𝑡).
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4.4. Optimal strategies in progressively enlarged filtration

We denote as before by ℳ(ℙ,𝔽) and ℳ(ℙ, �̂�) the sets of equivalent martingale
measures related with initially enlarged filtration 𝔽 and progressively enlarged

filtration �̂�. Since ℱ̂𝑇 = ℱ𝑇 , for any 𝑓 convex function

inf
ℚ∈ℳ(ℙ,𝔽)

𝔼𝑓

(
𝑑ℚ𝑇
𝑑ℙ𝑇

)
= inf

ℚ∈ℳ(ℙ,�̂�)
𝔼𝑓

(
𝑑ℚ𝑇
𝑑ℙ𝑇

)
.

From previous part and under the conditions of Theorem 2.1 for exponential Lévy
models related with 𝐿 and �̃�, we have:

inf
ℚ∈ℳ(ℙ,𝔽)

𝔼𝑓

(
𝑑ℚ𝑇
𝑑ℙ𝑇

)
= 𝔼𝑓

(
𝑑ℚ∗𝑇
𝑑ℙ𝑇

)
= 𝔼𝑓(𝑍∗𝑇 (𝜏)).

Then, since 𝑍∗𝑇 (𝜏) is ℱ̂𝑇 -measurable, ℚ∗𝑇 is the restriction of the minimal equiva-
lent martingale measure on ℱ̂𝑇 .

First of all we remark that when the minimal equivalent measure ℚ∗ exists,
there exists a (ℚ∗,𝔽)-predictable process 𝜙∗ such that (cf. [28])

−𝑓 ′(𝜆𝑍∗𝑇 (𝜏)) = 𝑥0 +

∫ 𝑇
0

⟨𝜙∗𝑠 , 𝑑𝑆𝑠⟩ (4.4)

where (
∫ ⋅
0⟨𝜙∗𝑠, 𝑑𝑆𝑠⟩) is (ℚ∗,𝔽)-martingale and 𝜆 is a constant such that

−𝐸ℚ∗𝑓 ′(𝜆𝑍∗𝑇 (𝜏)) = 𝑥0.

At the same time, there exists a (ℚ∗, �̂�)-predictable process 𝜙∗ such that

−𝑓 ′(𝜆𝑍∗𝑇 (𝜏)) = 𝑥0 +

∫ 𝑇
0

⟨𝜙∗𝑠 , 𝑑𝑆𝑠⟩ (4.5)

where (
∫ ⋅
0
⟨𝜙∗𝑠, 𝑑𝑆𝑠⟩) is (ℚ∗, �̂�)-martingale and 𝜆 is again a constant such that

−𝐸ℚ∗𝑓 ′(𝜆𝑍∗𝑇 (𝜏)) = 𝑥0.

In the following proposition we give the result of shrinking, which gives us 𝜙∗ in
general case.

Proposition 4.11. Let the conditions of Theorem 2.1 are satisfied for exponential
Lévy models related with 𝐿 and �̃�. Suppose that 𝑐 is not degenerated or 𝜈 ∕= 0 and
𝜈 ∕= 0. Then ℚ∗ × 𝜆-a.s.

𝜙∗𝑠 = 𝐸ℚ∗(𝜙∗𝑠 ∣ ℱ̂𝑠).
Proof. We denote by 𝒫(ℚ∗, �̂�) and 𝒫(ℚ∗,𝔽) the sets of predictable functions re-
lated with ℚ∗, �̂� and 𝔽 respectively. Since

𝒫(ℚ∗, �̂�) ⊆ 𝒫(ℚ∗,𝔽)
and 𝑆 is a (ℚ∗,𝔽)-martingale, the process (

∫ ⋅
0
⟨𝜙∗𝑠 , 𝑑𝑆𝑠⟩) is a local (ℚ∗,𝔽)-

martingale. But since it is uniformly integrable, it is a (ℚ∗,𝔽)-martingale.
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Let us denote 𝑁 = (𝑁𝑡)0≤𝑡≤𝑇 with

𝑁𝑡 =

∫ 𝑡
0

⟨(𝜙∗𝑠 − 𝜙∗𝑠), 𝑑𝑆𝑠⟩.

From (4.4) and (4.5) we deduce that 𝑁𝑡 = 0 for all 𝑡 ∈ [0, 𝑇 ]. Then for any
truncation level 𝑘 > 0 for the jumps, the truncated process 𝑁 (𝑘) is equal to zero,
too. Then for all 𝑡 ∈ [0, 𝑇 ],

𝐸ℚ∗ [𝑁 (𝑘), 𝑁 (𝑘)]𝑡 = 𝐸ℚ∗⟨𝑁 (𝑘), 𝑁 (𝑘)⟩𝑡 = 0 (4.6)

where ⟨⋅, ⋅⟩ stands for predictable quadratic variation of 𝑁 (𝑘). To write the expres-
sion of ⟨𝑁 (𝑘), 𝑁 (𝑘)⟩ we denote for 𝑡 ∈ [0, 𝑇 ]

𝑐𝑡 = 𝑐𝕀{𝜏>𝑡} + 𝑐𝕀{𝜏≤𝑡}, 𝑌𝑡 = 𝑌 ∗(𝑦)𝕀{𝜏>𝑡} +
ˆ̃𝑌 ∗(𝑦)𝕀{𝜏≤𝑡},

where 𝑌 and ˆ̃𝑌 are second Girsanov parameters corresponding to the stochastic
exponential of exp(𝐿) and exp(�̃�) when we change 𝑃 and 𝑃 into 𝑄∗ and �̃�∗

respectively, and

𝜈𝑡(𝑑𝑦) = 𝜈(𝑑𝑦)𝕀{𝜏>𝑡} + 𝜈(𝑑𝑦)𝕀{𝜏≤𝑡}.

Then, for 1 ≤ 𝑖 ≤ 𝑑 the diagonal element 𝑖 of ⟨𝑁 (𝑘), 𝑁 (𝑘)⟩𝑡 is equal to∫ 𝑡

0

(𝜙
∗,(𝑖)
𝑠 − 𝜙

∗,(𝑖)
𝑠 )2

𝑆
(𝑖)
𝑠−

𝑐(𝑖,𝑖)𝑠 𝑑𝑠+

∫ 𝑡
0

∫
ℝ𝑑

(𝜙
∗,(𝑖)
𝑠 − 𝜙

∗,(𝑖)
𝑠 )2

𝑆
(𝑖)
𝑠−

𝑦2𝕀{∣𝑦∣≤𝑘}𝑌𝑠(𝑦)𝜈𝑠(𝑑𝑦)𝑑𝑠

and from (4.6) it equal to zero for all 𝑡 ∈ [0, 𝑇 ]. Since 𝑃
loc
<< 𝑃 , we have 𝑐 = 𝑐. If

𝑐𝑖,𝑖 ∕= 0 or 𝜈 ∕= 0 and 𝜈 ∕= 0 then we get that ℚ∗ × 𝜆-a.s.

(𝜙
∗,(𝑖)
𝑠 − 𝜙

∗,(𝑖)
𝑠 )2

𝑆
(𝑖)
𝑠−

= 0.

It implies that ℚ∗ × 𝜆-a.s.

𝜙∗,(𝑖)𝑠 − 𝜙∗,(𝑖)𝑠 = 0

and it proves the result of our proposition. □
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Optimal Investment-consumption
for Partially Observed Jump-diffusions

Claudia Ceci

Abstract. We deal with an optimal consumption-investment problem under
restricted information in a financial market where the risky asset price follows
a non-Markovian geometric jump-diffusion process. We assume that agents
acting in the market have access only to the information flow generated by
the stock price and that their individual preferences are modeled through a
power utility. We solve the problem with a two steps procedure. First, by
using filtering results we reduce the partial information problem to a full
information one involving only observable processes. Next, by using dynamic
programming, we characterize the value process and the optimal-consumption
strategy in terms of solution to a backward stochastic differential equation.
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Secondary 91B16, 60G57, 60J60.

Keywords. Utility maximization, optimal stochastic control, partial informa-
tion, backward stochastic differential equations, jump-diffusion processes.

1. Introduction

In this paper we study an extension of the classical Merton optimal investment-
consumption problem to a partially observable financial market in which asset
prices follow geometric jump-diffusions. A single agent manages his portfolio by
investing in a bond and in the stock asset 𝑆𝑡 and chooses a portfolio-consumption
strategy in order to maximize on a finite horizon his total expected utility from
consumption and terminal wealth. The agent’s information is described by the
natural filtration of the stock price process,{F𝑆𝑡 }𝑡∈[0,𝑇 ], hence his decisions must
be adapted to {F𝑆𝑡 }𝑡∈[0,𝑇 ] and this leads to a utility maximization problem under
restricted information.

This work was partially supported by PRIN 2008 “Probabilitá e Finanza”.
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Utility maximization problems in a full information setting have been largely
studied in the literature by using different approaches, such as convex duality
methods, stochastic control techniques based on the Hamilton–Jacobi–Bellman
equation or backward stochastic differential equations (see for example [2, 8, 11,
14, 17, 20, 21, 25] and references therein). Portfolio selection problems with partial
information have been studied among others in [16, 23, 24] in a continuous setting,
in [1, 18] for jump-diffusions and in [6] in the case where the risky asset follows
a Markov pure jump process. In [1] it is assumed that investors are only able
to observe the stock price process and not the Markov chain which drives the
jump intensity. In [18] a default model is studied where investors only observe
asset prices and default times, while the drift of the asset price dynamics and the
default intensities are not directly observable.

The contribution of this note consists in solving the utility maximization
problem with intermediate consumption under partial information in a general
jump-diffusion setting. More precisely, we do not assume Markovianity of the asset
price dynamics and we work with a jump component described by a general integer-
valued measure.

The outline of the paper is as follows. In Section 2, we describe the market
model and the optimal investment-consumption problem under restricted infor-
mation. In Section 3, by projection on the information flow we reduce the partial
observable problem to a full information one and we give a representation theorem
for F𝑆𝑡 -martingales. In Section 4, we formulate the full information problem (with

respect to the filtration {F𝑆𝑡 }𝑡∈[0,𝑇 ]) as a stochastic control problem. The special
form of the power utility leads to a factorization of the associated value process
into a part depending on the current wealth and the so-called opportunity process
𝐽𝑡 ([21, 22]) around which our analysis is built. In Section 5, by using dynamic
programming we show that 𝐽𝑡 solves a backward stochastic differential equation
and we provide a feedback formula for the optimal consumption in terms of 𝐽𝑡.
We discuss the particular case of bounded investment strategies and finally we
characterize the opportunity process in the case of non constrained strategies via
a sequence of solutions of Lipschitz BSDEs. We conclude the section providing
a verification result and giving as application a simplified model where the risky
asset dynamics is driven by two independent point processes whose intensities are
not directly observed by investors.

2. The market model and problem formulation

In this paper, we consider a complete filtered probability space (Ω, {F𝑡}𝑡∈[0,𝑇 ], 𝑃 )
endowed with a Brownian motion 𝑊𝑡 with values in ℝ and a Poisson random
measure 𝑁(𝑑𝑡, 𝑑𝜁) independent of 𝑊𝑡. Here 𝑇 is a fixed final time. The financial
market consists of a nonrisky asset, with price process normalized to unity, and
one risky asset with logreturn process 𝑌𝑡 given by the following jump-diffusion
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process

𝑑𝑌𝑡 = 𝑏𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊𝑡 +

∫
𝑍

𝐾(𝑡; 𝜁)𝑁(𝑑𝑡, 𝑑𝜁), 𝑌0 = 0. (2.1)

The mean measure of 𝑁(𝑑𝑡, 𝑑𝜁) is denoted by 𝜈(𝑑𝜁) 𝑑𝑡 with 𝜈(𝑑𝜁) a 𝜎-finite mea-
sure on a measurable space (𝑍,Z). The coefficients 𝑏𝑡 and 𝜎𝑡 are progressive F𝑡-
adapted processes with 𝜎𝑡 > 0 𝑃 -a.s. ∀𝑡 ∈ [0, 𝑇 ], and𝐾(𝑡; 𝜁) is an ℝ-valued (𝑃,F𝑡)-
predictable process joint measurable w.r.t. (𝑡, 𝜁) ∈ [0, 𝑇 ]×𝑍. We also assume some
requirements for (2.1) to be well defined

𝔼

∫ 𝑇
0

∣𝑏𝑡∣𝑑𝑡 <∞ 𝔼

∫ 𝑇
0

𝜎2𝑡 𝑑𝑡 <∞ 𝔼

∫ 𝑇
0

∫
𝑍

∣𝐾(𝑡; 𝜁)∣𝜈(𝑑𝜁)𝑑𝑡 <∞ (2.2)

and which entail that 𝑌𝑡 has finite first moment. The price 𝑆𝑡 of the risky asset
follows a geometric jump-diffusion process given by

𝑆𝑡 = 𝑆0𝑒
𝑌𝑡 𝑆0 ∈ ℝ+.

From Itô’s formula we get that 𝑆𝑡 solves the following differential equation

𝑑𝑆𝑡 = 𝑆𝑡−

{
𝜇𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊𝑡 +

∫
𝑍

�̃�(𝑡; 𝜁)𝑁(𝑑𝑡, 𝑑𝜁)

}
where

𝜇𝑡 = 𝑏𝑡 +
1

2
𝜎2𝑡 , �̃�(𝑡; 𝜁) = 𝑒𝐾(𝑡;𝜁) − 1.

We are interested in solving an optimal portfolio problem for an agent who has
access only to the observable flow generated by asset prices

F𝑆𝑡 = 𝜎{𝑆𝑠; 𝑠 ≤ 𝑡} = F𝑌𝑡 = 𝜎{𝑌𝑠; 𝑠 ≤ 𝑡} ⊆ F𝑡.

We shall call this situation the case of partial information to distinguish it from
the case of full information where investors observe the whole filtration {F𝑡}𝑡∈[0,𝑇 ].
We assume that {F𝑆𝑡 }𝑡∈[0,𝑇 ] satisfies the usual conditions of right-continuity and
completeness.

The investor starts with initial capital 𝑧0 > 0, invests at any time 𝑡 ∈ [0, 𝑇 ]
the fraction 𝜃𝑡 of the wealth 𝑍𝑡 in stock 𝑆𝑡 and also consumes at the rate 𝐶𝑡𝑍𝑡.
We consider both cases of utility from terminal wealth only and with intermediate
consumption. As in [21] and [22], to unify the notations we introduce the measure
𝜇(𝑑𝑡) on [0, 𝑇 ] by 𝜇(𝑑𝑡) = 0 in the case without consumption and 𝜇(𝑑𝑡) = 𝑑𝑡 in
the case with consumption and assume the convention 𝐶𝑇 = 1 (which means that
all the remaining wealth is consumed at time 𝑇 ).

Because the agent’s information is described by the filtration {F𝑆𝑡 }𝑡∈[0,𝑇 ]
the decisions (𝜃𝑡, 𝐶𝑡) must be adapted to F

𝑆
𝑡 . By considering F

𝑆
𝑡 -predictable, self-

financing trading strategies, the dynamics of the wealth process controlled by the
investment-consumption process (𝜃𝑡, 𝐶𝑡) evolves according with

𝑑𝑍𝑡 = 𝑍𝑡−

(
𝜃𝑡

𝑑𝑆𝑡
𝑆𝑡−

− 𝐶𝑡𝜇(𝑑𝑡)

)
, 𝑍0 = 𝑧0. (2.3)
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The solution process 𝑍𝑡 to (2.3) of course depends on the chosen strategy (𝜃, 𝐶).

To be precise we should therefore denote the process 𝑍𝑡 by 𝑍𝜃,𝐶𝑡 but sometimes
we will suppress 𝜃, 𝐶.

For an agent with power utility

𝑈(𝑥) =
𝑥𝛼

𝛼
0 < 𝛼 < 1

the objective is to maximize over a suitable class of strategies A either the expected
utility from terminal wealth

sup
(𝜃,𝐶)∈A

𝔼
[
𝑈(𝑍𝜃,𝐶𝑇 )

]
and with intermediate consumption

sup
(𝜃,𝐶)∈A

𝔼

[ ∫ 𝑇
0

𝑈(𝐶𝑡𝑍
𝜃,𝐶
𝑡 ) 𝑑𝑡+ 𝑈(𝑍𝜃,𝐶𝑇 )

]
.

Defining 𝜇0(𝑑𝑡) = 𝜇(𝑑𝑡) + 𝛿{𝑇}(𝑑𝑡), where 𝛿𝑎 denotes the Dirac measure at the
point 𝑎, both the cases can be written as

sup
(𝜃,𝐶)∈A

𝔼

[ ∫ 𝑇
0

𝑈(𝐶𝑡𝑍
𝜃,𝐶
𝑡 )𝜇0(𝑑𝑡)

]
. (2.4)

Let us come back to the market model. We introduce the discrete random
measure ([4],[13]) associated to the jump component of 𝑌𝑡

𝑚(𝑑𝑡, 𝑑𝑥) =
∑

𝑠:Δ𝑌𝑠 ∕=0

𝛿{𝑠,Δ𝑌𝑠}(𝑑𝑡, 𝑑𝑥) (2.5)

and observe that for any real-valued function 𝑓(𝑥) the following equality holds∫ 𝑡
0

∫
𝑍

𝑓(𝐾(𝑠; 𝜁))1I{𝐾(𝑠;𝜁) ∕=0}(𝑠, 𝜁)𝑁(𝑑𝑠, 𝑑𝜁) =
∫ 𝑡
0

∫
ℝ

𝑓(𝑥)𝑚(𝑑𝑠, 𝑑𝑥). (2.6)

We recall Proposition 2.2 in [5] which provides the (𝑃,F𝑡)-local characteristics
of 𝑚(𝑑𝑡, 𝑑𝑥) in terms of the measure 𝜈(𝑑𝜁).

Proposition 2.1. Let ∀𝑡 ∈ [0, 𝑇 ], ∀𝐴 ∈ B(ℝ) (where B(ℝ) denotes the family of
Borel sets of ℝ)

𝐷𝐴𝑡 (𝜔) = {𝜁 ∈ 𝑍 : 𝐾(𝑡, 𝜔; 𝜁) ∈ 𝐴 ∖ {0}} ⊆ 𝐷𝑡(𝜔) = {𝜁 ∈ 𝑍 : 𝐾(𝑡, 𝜔; 𝜁) ∕= 0}.
Under the assumption

𝔼

∫ 𝑇
0

𝜈(𝐷𝑠) 𝑑𝑠 <∞ (2.7)

the (𝑃,F𝑡)-predictable projection of 𝑚 is given by

𝑚𝑝(𝑑𝑡, 𝑑𝑥) = 𝜆𝑡Φ𝑡(𝑑𝑥)𝑑𝑡

where 𝜆𝑡 is a non-negative F𝑡-predictable process and Φ𝑡(𝑑𝑥) is an F𝑡-predictable
process taking values in the space of probability measures over (ℝ,B(ℝ)) and they
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satisfy ∀𝐴 ∈ B(ℝ)

𝑚𝑝(𝑑𝑡, 𝐴) = 𝜆𝑡Φ𝑡(𝐴)𝑑𝑡 = 𝜈(𝐷𝐴𝑡 )𝑑𝑡. (2.8)

In particular 𝜆𝑡 = 𝜈(𝐷𝑡) provides the (𝑃,F𝑡)-predictable intensity of the point
process 𝑁𝑡 = 𝑚((0, 𝑡],ℝ) which counts the total number of jumps of 𝑌 until time 𝑡.

Remark 2.2. Equation (2.8) can be also written as

𝑚𝑝(𝑑𝑡, 𝑑𝑥) = 𝜆𝑡Φ𝑡(𝑑𝑥)𝑑𝑡 =

∫
𝐷𝑡

𝛿𝐾(𝑡;𝜁)(𝑑𝑥)𝜈(𝑑𝜁)𝑑𝑡.

Let us observe that the local characteristics (𝜆𝑡,Φ𝑡(𝑑𝑥)) of 𝑚(𝑑𝑡, 𝑑𝑥) are not ob-

servable by investors since the process 𝐾(𝑡; 𝜁) is not F𝑆𝑡 -adapted.

The (𝑃,F𝑡)-semimartingale structure of the risky asset 𝑆𝑡 is described in the
following proposition.

Proposition 2.3. Under (2.2), (2.7) and in addition

𝔼

∫ 𝑇
0

∫
𝑍

∣�̃�(𝑡; 𝜁)∣𝜈(𝑑𝜁) <∞ (2.9)

𝑆𝑡 is a (𝑃,F𝑡)-semimartingale with the decomposition

𝑆𝑡 = 𝑆0 +𝑀𝑆
𝑡 +𝐴𝑆𝑡

where

𝐴𝑆𝑡 =

∫ 𝑡
0

𝑆𝑟𝜇𝑟𝑑𝑟 +

∫ 𝑡
0

∫
ℝ

𝑆𝑟−(𝑒
𝑥 − 1)𝜆𝑟Φ𝑟(𝑑𝑥)𝑑𝑟

is a process with finite variation paths, and

𝑀𝑆
𝑡 =

∫ 𝑡
0

𝑆𝑟𝜎𝑟𝑑𝑊𝑟 +

∫ 𝑡
0

∫
ℝ

𝑆𝑟−(𝑒
𝑥 − 1)(𝑚(𝑑𝑟, 𝑑𝑥) − 𝜆𝑟Φ𝑟(𝑑𝑥)𝑑𝑟)

is a (𝑃,F𝑡)-local martingale.

Proof. Under (2.2), (2.7) and (2.9), the process∫ 𝑡
0

𝜇𝑠𝑑𝑠+

∫ 𝑡

0

𝜎𝑠𝑑𝑊𝑠+

∫ 𝑡
0

∫
𝑍

�̃�(𝑠;𝜁)𝑁(𝑑𝑠,𝑑𝜁)

=

∫ 𝑡
0

{
𝜇𝑠+

∫
𝑍

�̃�(𝑠;𝜁)𝜈(𝑑𝜁)

}
𝑑𝑠+

∫ 𝑡
0

𝜎𝑠𝑑𝑊𝑠+

∫ 𝑡
0

∫
𝑍

�̃�(𝑠;𝜁)(𝑁(𝑑𝑠,𝑑𝜁)−𝜈(𝑑𝜁)𝑑𝑠)

is a (𝑃,F𝑡)-semimartingale, hence 𝑆𝑡 is a semimartingale being the Doléans-Dade
exponential of a semimartingale. The expressions of the processes 𝐴𝑆𝑡 and 𝑀𝑆

𝑡

follow by Equation (2.6). □
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3. Reduction to an optimization problem
with complete information

To solve the utility maximization problem under partial information we first reduce
it to a full information one involving only F𝑆𝑡 -adapted processes. To this aim we

need to compute the (𝑃,F𝑆𝑡 )-predictable projection of the integer-valued measure
𝑚(𝑑𝑡, 𝑑𝑥).

From now on we will denote by �̂�𝑡 the (𝑃,F
𝑆
𝑡 )-optional projection of a generic

process 𝑅𝑡, satisfying 𝔼∣𝑅𝑡∣ <∞ ∀𝑡 ∈ [0, 𝑇 ], defined as the unique optional process
(in a 𝑃 -indistinguishable sense) such that for each F𝑆𝑡 -stopping time 𝜏 , �̂�𝜏 =

𝔼[𝑅𝜏 ∣F𝑆𝜏 ] 𝑃 -a.s. on {𝜏 <∞}.
Remark 3.1. We recall two well-known facts: for every (𝑃,F𝑡)-martingale 𝑚𝑡, the

projection �̂�𝑡 is a (𝑃,F
𝑆
𝑡 )-martingale and that for any progressively measurable

process Ψ𝑡 with 𝔼
∫ 𝑇
0 ∣Ψ𝑡∣𝑑𝑡 <∞

ˆ∫ 𝑡
0

Ψ𝑠𝑑𝑠−
∫ 𝑡
0

Ψ̂𝑠𝑑𝑠

is a (𝑃,F𝑆𝑡 )-martingale. Note that this implies that 𝐸
∫ 𝑇
0 Ψ𝑡𝑑𝑡 = 𝔼

∫ 𝑇
0 Ψ̂𝑡𝑑𝑡.

Let us denote by P(F𝑆𝑡 ) the F
𝑆
𝑡 -predictable 𝜎-field on (0, 𝑇 ]× Ω.

Proposition 3.2. Let us assume (2.7). The (𝑃,F𝑆𝑡 )-predictable projection, 𝜈𝑝(𝑑𝑡,
𝑑𝑥), of 𝑚(𝑑𝑡, 𝑑𝑥) is given by 𝜈𝑝(𝑑𝑡, 𝑑𝑥) = 𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡, where 𝜈𝑝𝑡 (𝑑𝑥) is a measure-

valued F𝑆𝑡 -predictable process satisfying 𝜈𝑝𝑡 (𝑑𝑥) = (̂𝜆𝑡Φ𝑡)(𝑑𝑥), 𝑑𝑃 × 𝑑𝑡-a.e. More

precisely, for each 𝐻(𝑡, 𝑥), P(F𝑆𝑡 )-measurable

𝔼

[∫ 𝑇
0

∫
ℝ

𝐻(𝑡, 𝑥) 𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡

]
= 𝔼

[∫ 𝑇
0

∫
ℝ

𝐻(𝑡, 𝑥)(̂𝜆𝑡Φ𝑡)(𝑑𝑥)𝑑𝑡

]

= 𝔼

[∫ 𝑇
0

∫
ℝ

𝐻(𝑡, 𝑥) 𝑚(𝑑𝑡, 𝑑𝑥)

]
.

Proof. By definition of (𝑃,F𝑡)-predictable projection of the integer-valued mea-
sure 𝑚(𝑑𝑡, 𝑑𝑥) it follows that, for each 𝐻(𝑡, 𝑥) (𝑃,F𝑡)-predictable process jointly
measurable w.r.t. (𝑡, 𝑥) ∈ [0, 𝑇 ]× ℝ, verifying the condition

𝔼

∫ 𝑇
0

∫
ℝ

∣𝐻(𝑟, 𝑥)∣𝜆𝑟Φ𝑟(𝑑𝑥)𝑑𝑟 <∞,

the process

𝑚𝑡 =

∫ 𝑡
0

∫
ℝ

𝐻(𝑟, 𝑥)(𝑚(𝑑𝑟, 𝑑𝑥) − 𝜆𝑟Φ𝑟(𝑑𝑥)𝑑𝑟) (3.1)
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is a (𝑃,F𝑡)-martingale. Let us now consider in (3.1) a process 𝐻(𝑡, 𝑥) which is

(𝑃,F𝑆𝑡 )-predictable. By Remark 3.1 we get that∫ 𝑡
0

∫
ℝ

𝐻(𝑟, 𝑥)𝑚(𝑑𝑟, 𝑑𝑥) − 𝔼

[∫ 𝑡
0

∫
ℝ

𝐻(𝑟, 𝑥)𝜆𝑟Φ𝑟(𝑑𝑥)𝑑𝑟∣F𝑆𝑡
]

is a (𝑃,F𝑆𝑡 )-martingale, and∫ 𝑡
0

∫
ℝ

𝐻(𝑟, 𝑥)𝑚(𝑑𝑟, 𝑑𝑥) −
∫ 𝑡
0

∫
ℝ

𝐻(𝑟, 𝑥)𝜆𝑟Φ𝑟(𝑑𝑥)𝑑𝑟

is a (𝑃,F𝑆𝑡 )-martingale. In particular, for any 𝐴 ∈ B(ℝ)

𝑚((0, 𝑡], 𝐴)−
∫ 𝑡

0

𝜈(𝐷𝐴𝑠 )𝑑𝑠 = 𝑚((0, 𝑡], 𝐴)−
∫ 𝑡
0

∫
𝐴

𝜆𝑠Φ𝑠(𝑑𝑥)𝑑𝑠

is a (𝑃,F𝑆𝑡 )-martingale. Hence, since 𝜈(𝐷
𝐴
𝑡 ) is a progressively measurable process,

it provides the (𝑃,F𝑆𝑡 )-intensity of 𝑁𝑡(𝐴) = 𝑚((0, 𝑡], 𝐴) and as in [4, Theorem

T13] one can find a (𝑃,F𝑆𝑡 )-intensity, 𝜆
𝐴
𝑡 , that is predictable. It suffices define 𝜆

𝐴
𝑡 ,

for any 𝐴 ∈ B(ℝ), as the Radon–Nikodym derivatives of 𝑃 (𝑑𝜔)𝜈(𝐷𝐴𝑡 )(𝜔)𝑑𝑡 w.r.t.

𝑃 (𝑑𝜔)𝑑𝑡 on P(F𝑆𝑡 ). □

Throughout the paper we denote by 𝑚𝑆(𝑑𝑡, 𝑑𝑥) the (𝑃,F𝑆𝑡 )-compensated
martingale random measure

𝑚𝑆(𝑑𝑡, 𝑑𝑥) = 𝑚(𝑑𝑡, 𝑑𝑥) − 𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡

and we recall that, for any𝐻(𝑡, 𝑥), jointly measurable process, F𝑆𝑡 -predictable such
that

𝔼

∫ 𝑇
0

∫
𝑍

∣𝐻(𝑡, 𝑥)∣𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡 <∞
(
resp.

∫ 𝑇
0

∫
𝑍

∣𝐻(𝑡, 𝑥)∣𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡 <∞ 𝑃 -a.s.

)
the process

∫ 𝑇
0

∫
𝑍
𝐻(𝑡, 𝑥)𝑚𝑆(𝑑𝑡, 𝑑𝑥) is a (𝑃,F𝑆𝑡 )-martingale (resp. local-martin-

gale).
Next, assuming

𝔼

∫ 𝑇
0

∣𝑏𝑡∣
𝜎𝑡

𝑑𝑡 <∞, (3.2)

and the volatility 𝜎𝑡 to be F
𝑆
𝑡 -adapted, we introduce the innovation process

𝐼𝑡 :=𝑊𝑡 +

∫ 𝑡
0

1

𝜎𝑠
(𝑏𝑠 − �̂�𝑠)𝑑𝑠.

By extending classical results in filtering theory ([19]) to our frame we have the
following

Proposition 3.3. Let 𝜎𝑡 to be F𝑆𝑡 -adapted. The random process {𝐼𝑡}𝑡∈[0,𝑇 ] is a

(𝑃,F𝑆𝑡 )-Wiener process.
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Proof. By Equation (2.6) we get that
∫
𝑍
𝐾(𝑡; 𝜁)𝑁(𝑑𝑡, 𝑑𝜁) =

∫
ℝ
𝑥 𝑚(𝑑𝑡, 𝑑𝑥). Hence,

taking into account Equation (2.1), we have

𝑑𝐼𝑡 =
1

𝜎𝑡

{
𝑑𝑌𝑡 − �̂�𝑡 −

∫
ℝ

𝑥 𝑚(𝑑𝑡, 𝑑𝑥)

}
,

which implies that 𝐼𝑡 is an F
𝑆
𝑡 -adapted process. We now compute the following

conditional expectation, ∀𝑠 ≤ 𝑡

𝔼
[
𝐼𝑡 − 𝐼𝑠 ∣ F𝑆𝑠

]
= 𝔼

[∫ 𝑡
𝑠

{
𝑏𝑢
𝜎𝑢

− �̂�𝑢
𝜎𝑢

}
𝑑𝑢 ∣ F𝑆𝑠

]
+ 𝐸[𝑊𝑡 −𝑊𝑠 ∣ F𝑆𝑠 ].

Since, the first term of the right-hand side vanishes because of the properties of
the conditional expectation and the second one vanishes because 𝑊𝑡 is an F𝑡-

Brownian motion and F𝑆𝑡 ⊆ F𝑡 we get that 𝐼𝑡 is a (𝑃,F
𝑆
𝑡 )-martingale. Finally, the

thesis follows by the Lévy Theorem. □

Taking into account (2.6), Propositions 3.2 and 3.3, we are able to give the

(𝑃,F𝑆𝑡 )-decompositions of the semimartingales 𝑌𝑡 and 𝑆𝑡

𝑌𝑡 = 𝑌0 +

∫ 𝑡
0

{
�̂�𝑠 +

∫
ℝ

𝑥𝜈𝑝(𝑑𝑥)

}
𝑑𝑠+

∫ 𝑡
0

𝜎𝑠𝑑𝐼𝑠 +

∫ 𝑡
0

∫
ℝ

𝑥 𝑚𝑆(𝑑𝑠, 𝑑𝑥) (3.3)

𝑆𝑡 = 𝑆0 +

∫ 𝑡
0

𝑆𝑠

{
𝜇𝑠 +

∫
ℝ

(𝑒𝑥 − 1)𝜈𝑝𝑠 (𝑑𝑥)
}
𝑑𝑠

+

∫ 𝑡
0

𝑆𝑠𝜎𝑠𝑑𝐼𝑠 +

∫ 𝑡
0

∫
ℝ

𝑆𝑠−(𝑒
𝑥 − 1)𝑚𝑆(𝑑𝑠, 𝑑𝑥).

(3.4)

Remark 3.4. Let us observe that by Proposition 3.2 and assumptions (2.9) we get
that

𝔼

[ ∫ 𝑇
0

∫
ℝ

∣𝑒𝑥 − 1∣𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑠
]
= 𝔼

[ ∫ 𝑇
0

∫
ℝ

∣𝑒𝑥 − 1∣(̂𝜆𝑡Φ𝑡)(𝑑𝑥)𝑑𝑡
]

= 𝔼

[ ∫ 𝑇
0

∫
ℝ

∣𝑒𝑥 − 1∣𝜆𝑡Φ𝑡(𝑑𝑥)𝑑𝑡
]
= 𝔼

∫ 𝑇
0

∫
𝑍

∣�̃�(𝑡; 𝜁)∣𝜈(𝑑𝜁) <∞.

By virtue of (3.4) the wealth process 𝑍𝑡 induced by the investment-
consumption strategy (𝜃𝑡, 𝐶𝑡), satisfies

𝑑𝑍𝑡 = 𝑍𝑡−

(
𝜃𝑡𝜇𝑡𝑑𝑡− 𝐶𝑡𝜇(𝑑𝑡) + 𝜃𝑡𝜎𝑡𝑑𝐼𝑡 + 𝜃𝑡

∫
ℝ

(𝑒𝑥 − 1)𝑚(𝑑𝑡, 𝑑𝑥)
)
.

Then the utility maximization problem defined in (2.4) can be now treated as a full
information problem since all the processes involved are adapted to the observable
flow {F𝑆𝑡 }𝑡∈[0,𝑇 ].

The last part of this section is devoted to derive a martingale representation
theorem for (𝑃,F𝑆𝑡 )-martingales. Let us observe that from Proposition 3.3 it follows
that

F𝐼𝑡 ∨ F𝑚𝑡 ⊆ F𝑆𝑡
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where F𝑚𝑡 = 𝜎{𝑚((0, 𝑠], 𝐴); 𝑠 ≤ 𝑡, 𝐴 ∈ B(ℝ)}, and in general this inclusion holds
in a strict sense. From now on we will assume a stronger condition than (3.2),
that is

𝔼

∫ 𝑇
0

(
𝑏𝑠
𝜎𝑠

)2

𝑑𝑠 <∞ 𝑃 -a.s. (3.5)

and we consider the positive local martingale defined as the Doléans-Dade expo-

nential of the (𝑃,F𝑡)-martingale −
∫ 𝑡
0
𝑏𝑠
𝜎𝑠

𝑑𝑊𝑠,

𝐿𝑡 = Exp

(
−

∫ 𝑡
0

𝑏𝑠
𝜎𝑠

𝑑𝑊𝑠

)
= exp

{
−

∫ 𝑡
0

𝑏𝑠
𝜎𝑠

𝑑𝑊𝑠 − 1

2

∫ 𝑡
0

(
𝑏𝑠
𝜎𝑠

)2

𝑑𝑠

}
.

We shall make the usual standing assumption

Assumption A: 𝐿𝑡 is a (𝑃,F𝑡)-martingale, that is 𝔼[𝐿𝑇 ] = 1.

Under this last assumption we can define on F𝑇 a probability measure𝑄 equivalent
to 𝑃 such that

𝑑𝑄

𝑑𝑃
∣F𝑇 = 𝐿𝑇 . (3.6)

By Girsanov theorem the process

𝑊𝑡 :=𝑊𝑡 +

∫ 𝑡
0

𝑏𝑠
𝜎𝑠

𝑑𝑠

is a (𝑄,F𝑡)-Wiener process, moreover since by the definition of 𝐼𝑡 the following
equality is fulfilled

𝑊𝑡 = 𝐼𝑡 +

∫ 𝑡
0

�̂�𝑠
𝜎𝑠

𝑑𝑠 (3.7)

it turns out that the process 𝑊𝑡 is F
𝑆
𝑡 -adapted, and as a consequence

�̂�𝑡 = 𝔼[𝐿𝑡∣F𝑆𝑡 ] =
𝑑𝑄

𝑑𝑃
∣F𝑆𝑡 = Exp

(
−

∫ 𝑡
0

�̂�𝑠
𝜎𝑠

𝑑𝐼𝑠

)
. (3.8)

Let us notice that, by Jensen’s inequality and (3.5)

𝔼

∫ 𝑇
0

(̂𝑏𝑡)
2

𝜎2𝑡
𝑑𝑡 ≤ 𝔼

∫ 𝑇
0

𝑏2𝑡
𝜎2𝑡

𝑑𝑡 = 𝔼

∫ 𝑇
0

(
𝑏𝑡
𝜎𝑡

)2

𝑑𝑡 <∞.

In order to derive a representation theorem for (𝑃,F𝑆𝑡 )-martingales we need an

additional assumption on 𝜎𝑡. Since 𝜎𝑡 is F
𝑆
𝑡 -adapted and F

𝑆
𝑡 = F𝑌𝑡 there exists

for each 𝑡 ∈ [0, 𝑇 ] a Borel measurable 𝐻𝑡 : 𝐷ℝ[0, 𝑇 ] → (0,+∞) such that 𝜎𝑡 =
𝐻𝑡(𝑌.∧𝑡) 𝑃 -a.s. Here 𝐷ℝ[0, 𝑇 ] denotes the space of càdlàg ℝ-valued paths endowed
with the Skorokhod metric, and we assume that 𝐻𝑡 satisfies a global Lipschitz
condition on 𝐷ℝ[0, 𝑇 ].

We summarize below all the conditions introduced in this section that we
shall use from now on

Assumptions B: Assumption A, (2.2), (2.7), (2.9), (3.5) and assume 𝜎𝑡 to be F
𝑆
𝑡 -

adapted and such that 𝐻𝑡 satisfies a global Lipschitz condition on 𝐷ℝ[0, 𝑇 ].
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Lemma 3.5. Under Assumptions B, the filtration F𝑆𝑡 coincides with the filtration

generated by 𝑊𝑡 and the jump measure 𝑚(𝑑𝑡, 𝑑𝑥), that is

F𝑆𝑡 = F𝑊𝑡 ∨ F𝑚𝑡 .

Proof. Since 𝑊𝑡 and 𝑚(𝑑𝑡, 𝑑𝑥) are F𝑆𝑡 -adapted we have that F
𝑊
𝑡 ∨ F𝑚𝑡 ⊆ F𝑆𝑡 . To

prove the converse, let us observe that, taking into account (3.3) and (3.7), the
process 𝑌𝑡 solves under the probability 𝑄, defined by (3.6), the following equation

driven by 𝑊𝑡 and 𝑚(𝑑𝑡, 𝑑𝑥)

𝑑𝑌𝑡 = 𝜎𝑡𝑑𝑊𝑡 +

∫
ℝ

𝑥 𝑚(𝑑𝑡, 𝑑𝑥). (3.9)

Finally, since 𝜎𝑡 = 𝐻𝑡(𝑌.∧𝑡) 𝑃 -a.s. and 𝐻𝑡 : 𝐷ℝ[0, 𝑇 ]→ (0,+∞) satisfies a global
Lipschitz condition on𝐷ℝ[0, 𝑇 ], the stochastic functional differential equation (3.9)

has a unique strong solution F𝑊𝑡 ∨ F𝑚𝑡 -adapted, hence F𝑆𝑡 = F𝑌𝑡 ⊆ F𝑊𝑡 ∨ F𝑚𝑡 , and
this concludes the proof. □

Finally we are able to prove the announced martingale representation theo-
rem, which extend to a non-Markovian case Proposition 2.6 in [7].

Proposition 3.6. Under Assumptions B, every (𝑃,F𝑆𝑡 )-local-martingale 𝑀𝑡 admits
the decomposition

𝑀𝑡 =𝑀0 +

∫ 𝑡
0

∫
ℝ

𝜂(𝑡, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡
0

𝜓𝑠𝑑𝐼𝑠

where 𝜂(𝑡, 𝑥) is a F𝑆𝑡 -predictable process and 𝜓𝑡 a F𝑆𝑡 -adapted process such that∫ 𝑇
0

∫
ℝ

∣𝜂(𝑡, 𝑥)∣𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡 <∞,

∫ 𝑇
0

𝜓2
𝑡 𝑑𝑡 <∞ 𝑃 -a.s.

Proof. Let 𝑄 be the probability measure defined on F𝑇 by (3.6). Notice that∫ 𝑇
0 𝜈𝑝𝑡 (ℝ)𝑑𝑡 < ∞ 𝑃 -a.s. since

∫ 𝑇
0 𝜈𝑝𝑡 (ℝ)𝑑𝑡 =

∫ 𝑇
0 �̂�𝑡𝑑𝑡 𝑃 -a.s. and, by (2.7),

𝔼
∫ 𝑇
0 �̂�𝑡𝑑𝑡 = 𝔼

∫ 𝑇
0 𝜆𝑡𝑑𝑡 < ∞. Hence, recalling that F𝑆𝑡 = F𝑊𝑡 ∨ F𝑚𝑡 we can ap-

ply Remark 3.2 in [3] which states that for any 𝑀𝑡, (𝑄,F𝑆𝑡 )- local-martingale,

there exist two F𝑆𝑡 -adapted processes 𝜙(𝑡, 𝑥) predictable and 𝜓𝑡 such that

𝑀𝑡 =𝑀0 +

∫ 𝑡
0

∫
ℝ

𝜂(𝑠, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡
0

𝜓𝑠𝑑𝑊𝑠

with ∫ 𝑇
0

∫
ℝ

∣𝜂(𝑡, 𝑥)∣𝜈𝑝𝑡 (𝑑𝑥) <∞,

∫ 𝑇
0

𝜓2
𝑡 𝑑𝑡 <∞ 𝑄-a.s.

Let𝑀𝑡 be a (𝑃,F
𝑆
𝑡 )-local martingale, by Kallianpur–Striebel formula𝑀𝑡 =𝑀𝑡�̂�

−1
𝑡

is a (𝑄,F𝑆𝑡 )-local martingale, where �̂�𝑡 is defined in (3.8). We can write𝑀𝑡 =𝑀𝑡�̂�𝑡
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and by the product rule we deduce

𝑑𝑀𝑡 =𝑀𝑡−𝑑�̂�𝑡 + �̂�𝑡−𝑑𝑀𝑡 + 𝑑
〈
𝑀 𝑐, 𝐿𝑐

〉
𝑡
+ 𝑑

(∑
𝑠≤𝑡

Δ𝑀𝑠Δ�̂�𝑠

)

= �̂�𝑡

(
𝜓𝑡 − �̂�𝑡

𝜎𝑡
𝑀𝑡

)
𝑑𝐼𝑡 +

∫
ℝ

�̂�𝑡−𝜂(𝑡, 𝑥)𝑚
𝑆(𝑑𝑡, 𝑑𝑥)

which gives the martingale representation for 𝑀𝑡 with 𝜓𝑡 = �̂�𝑡𝜓𝑡 − �̂�𝑡
𝜎𝑡
𝑀𝑡 and

𝜂(𝑡, 𝑥) = �̂�𝑡−𝜂(𝑡, 𝑥). □

4. The optimal investment-consumption problem

In this section we focus on formulating the F𝑆𝑡 -optimal investment-consumption
problem as a stochastic control problem. We begin by recalling that the wealth
process 𝑍𝑡 satisfies

𝑑𝑍𝑡 = 𝑍𝑡−

(
𝜃𝑡

𝑑𝑆𝑡
𝑆𝑡−

− 𝐶𝑡𝜇(𝑑𝑡)

)
(4.1)

= 𝑍𝑡−

{
𝜃𝑡𝜇𝑡𝑑𝑡− 𝐶𝑡𝜇(𝑑𝑡) + 𝜃𝑡𝜎𝑡𝑑𝐼𝑡 + 𝜃𝑡

∫
ℝ

(𝑒𝑥 − 1)𝑚(𝑑𝑡, 𝑑𝑥)
}
.

The set of admissible strategies A consists of all the pairs (𝜃𝑡, 𝐶𝑡), where 𝜃𝑡 is an

ℝ-valued, F𝑆𝑡 -predictable process and 𝐶𝑡 a non-negative F
𝑆
𝑡 -adapted process such

that 𝐶𝑇 = 1 and∫ 𝑇
0

{
∣𝜃𝑡𝜇𝑡 − 𝐶𝑡∣+ 𝜃2𝑡 𝜎

2
𝑡 + ∣𝜃𝑡∣

∫
ℝ

∣𝑒𝑥 − 1∣𝜈𝑝𝑡 (𝑑𝑥)
}
𝑑𝑡 <∞ 𝑃 -a.s. (4.2)

∀𝑥 ∈ ℝ 1 + 𝜃𝑡(𝑒
𝑥 − 1) > 0 𝑑𝑃 × 𝑑𝑡-a.e. (4.3)

Proposition 4.1. Let {𝜃𝑡, 𝐶𝑡}𝑡∈[0,𝑇 ] be an admissible strategy. Then the wealth equa-

tion has a unique positive solution 𝑍𝜃,𝐶𝑡 given by

𝑍𝜃,𝐶𝑡 =𝑧0𝑒
∫
𝑡
0

∫
ℝ
log(1+𝜃𝑠(𝑒

𝑥−1))𝑚(𝑑𝑠,𝑑𝑥)+
∫
𝑡
0
𝜃𝑠𝜎𝑠𝑑𝐼𝑠+

∫
𝑡
0
(𝜃𝑠𝜇𝑠− 1

2 𝜃
2
𝑠𝜎

2
𝑠)𝑑𝑠−

∫
𝑡
0
𝐶𝑠𝜇(𝑑𝑠). (4.4)

Proof. Equation (4.1) can be written as 𝑑𝑍𝑡 = 𝑍𝑡−𝑑𝑀
𝜃,𝐶
𝑡 , where from (4.2)

𝑀𝜃,𝐶
𝑡 :=

∫ 𝑡
0

{𝜃𝑠𝜇𝑠 + 𝜃𝑠

∫
ℝ

(𝑒𝑥 − 1)𝜈𝑝𝑠 (𝑑𝑥)}𝑑𝑠−
∫ 𝑡
0

𝐶𝑠𝜇(𝑑𝑠)

+

∫ 𝑡
0

𝜃𝑠𝜎𝑠𝑑𝐼𝑠 +

∫ 𝑡
0

𝜃𝑠

∫
ℝ

(𝑒𝑥 − 1)𝑚𝑆(𝑑𝑠, 𝑑𝑥)

is a (𝑃,F𝑆𝑡 )-semimartingale. By the Doléans-Dade Theorem we get that there exists

a unique semimartingale 𝑍𝜃,𝐶𝑡 given by

𝑍𝜃,𝐶𝑡 = 𝑧0 𝑒𝑀
𝜃,𝐶
𝑡 − 1

2<(𝑀
𝜃,𝐶)

𝑐
>𝑡Π𝑠≤𝑡(1 + Δ𝑀𝜃,𝐶

𝑠 )𝑒−Δ𝑀
𝜃,𝐶
𝑠 .
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Moreover, 𝑍𝜃,𝐶𝑡 > 0 if and only if 1 + Δ𝑀𝜃,𝐶
𝑠 = 1 +

∫
ℝ
𝜃𝑠(𝑒

𝑥 − 1)𝑚({𝑠}, 𝑑𝑥) > 0
∀𝑠 ≤ 𝑡, and this condition is implied by (4.3). Finally, by standard computation
we derive expression (4.4). □

Remark 4.2. Let us observe that the pair (𝜃𝑡, 𝐶𝑡) = (0, 0), ∀𝑡 ∈ [0, 𝑇 ), is an

admissible strategy whose associated wealth is given by 𝑍0,0
𝑡 = 𝑧0.

Remark 4.3. For any (𝜃, 𝐶) ∈ A, the following inequality is fulfilled∫
ℝ

∣(1 + 𝜃𝑡(𝑒
𝑥 − 1))𝛼 − 1∣𝜈𝑝𝑡 (𝑑𝑥) ≤

∫
ℝ

∣𝜃𝑡∣∣𝑒𝑥 − 1∣𝜈𝑝𝑡 (𝑑𝑥) <∞ 𝑃 -a.s. (4.5)

As a consequence

𝑀𝑡(𝛼) :=

∫ 𝑡
0

∫
ℝ

{[1 + 𝜃𝑠(𝑒
𝑥 − 1)]𝛼 − 1}𝑚𝑆(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡
0

𝛼𝜃𝑠𝜎𝑠𝑑𝐼𝑠

+

∫ 𝑡
0

𝛼(𝜃𝑠𝜇𝑠𝑑𝑠− 𝐶𝑠𝜇(𝑑𝑠)) +

∫ 𝑡
0

∫
ℝ

{[1 + 𝜃𝑠(𝑒
𝑥 − 1)]𝛼 − 1}𝜈𝑝𝑠 (𝑑𝑥)𝑑𝑠

is a (𝑃,F𝑆𝑡 )-semimartingale and by (4.4), using standard computations, we have

𝑍𝛼𝑡 = 𝑧𝛼0 𝑒
1
2𝛼(𝛼−1)

∫ 𝑡
0
𝜃2𝑠𝜎

2
𝑠𝑑𝑠 Exp(𝑀𝑡(𝛼)) (4.6)

where we recall Exp denotes the Doléans-Dade exponential.

From now on we shall furthermore assume that

sup
(𝜃,𝐶)∈A

𝔼

[ ∫ 𝑇
0

(𝐶𝑡𝑍𝑡)
𝛼𝜇0(𝑑𝑡)

]
<∞.

As usual in stochastic control frame we introduce the associated value process
which gives a dynamic extension of the optimization problem (2.4) to each initial
time 𝑡 ∈ [0, 𝑇 ]. For any 𝑡 ∈ [0, 𝑇 ], (𝜃, 𝐶) ∈ A, let us consider the set of strategies
coinciding with (𝜃, 𝐶) until time 𝑡

A𝑡(𝜃, 𝐶) := {(𝜃, 𝐶) ∈ A : (𝜃𝑠, 𝐶𝑠) = (𝜃𝑠, 𝐶𝑠), 𝑠 ≤ 𝑡}
and define the value process as

𝑉𝑡(𝜃, 𝐶) = ess sup
(𝜃,𝐶)∈A𝑡(𝜃,�̄�)

𝔼

[ ∫ 𝑇
𝑡

(𝐶𝑠𝑍𝑠)
𝛼

𝛼
𝜇0(𝑑𝑠) ∣ F𝑆𝑡

]
.

From the dynamic programming principle ([10]) ∀(𝜃, 𝐶) ∈ A

𝑉𝑡(𝜃, 𝐶) +

∫ 𝑡
0

(𝐶𝑠𝑍
𝜃,�̄�
𝑠 )𝛼

𝛼
𝜇(𝑑𝑠)

is a (𝑃,F𝑆𝑡 )-supermartingale and (𝜃
∗, 𝐶∗) ∈ A is optimal for problem (2.4) if and

only if

𝑉𝑡(𝜃
∗, 𝐶∗) +

∫ 𝑡
0

(𝐶∗𝑠𝑍𝜃
∗,𝐶∗
𝑠 )𝛼

𝛼
𝜇(𝑑𝑠)
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is a (𝑃,F𝑆𝑡 )-martingale. By Equation (4.4) we get that, for any (𝜃, 𝐶) ∈ A

𝑉𝑡(𝜃, 𝐶) =
(𝑍𝜃,�̄�𝑡 )𝛼

𝛼
𝐽𝑡

where the càdlàg process 𝐽𝑡 does not depend on (𝜃, 𝐶) and is defined as

𝐽𝑡 = ess sup
(𝜃,𝐶)∈A𝑡

𝔼

[ ∫ 𝑇
𝑡

(𝐶𝑠𝑍𝑠)
𝛼

𝑍𝛼𝑡
𝜇0(𝑑𝑠) ∣ F𝑆𝑡

]
, (4.7)

here A𝑡 denotes the set of admissible strategies over [𝑡, 𝑇 ]. The process 𝐽𝑡 is the
so-called opportunity process and it is a suitable tool to derive results about the
optimal investment-consumption strategy. In particular, the Bellman optimality
principle can be stated as follows.

Proposition 4.4. The following properties hold true:

(i) {𝐽𝑡}𝑡∈[0,𝑇 ] is the smallest càdlàg F𝑆𝑡 -adapted process s.t. 𝐽𝑇 = 1 and ∀(𝜃, 𝐶) ∈
A, (𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡 +

∫ 𝑡
0
(𝐶𝑠𝑍

𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠) is a (𝑃,F𝑆𝑡 )-supermartingale.

(ii) (𝜃∗, 𝐶∗) ∈ A is an optimal investment-consumption strategy if and only if

(𝑍𝜃
∗,𝐶∗
𝑡 )𝛼𝐽𝑡 +

∫ 𝑡
0
(𝐶∗𝑠𝑍

𝜃∗,𝐶∗
𝑠 )𝛼𝜇(𝑑𝑠) is a (𝑃,F𝑆𝑡 )-martingale.

We give now some other properties of the process 𝐽𝑡.

Proposition 4.5. ∀𝑡 ∈ [0, 𝑇 ], 𝐽𝑡 ≥ 1, 𝑃 -a.s. and sup𝑡∈[0,𝑇 ] 𝔼[𝐽𝑡] ≤ 𝐽0 <∞.

Proof. Since (𝜃𝑡, 𝐶𝑡) = (0, 0) ∀𝑡 ∈ [0, 𝑇 ) is an admissible strategy, by (4.7) we

get that 𝐽𝑡 ≥ 1 and, from Proposition 4.4, 𝐽𝑡 is a (𝑃,F
𝑆
𝑡 )-supermartingale. Then

𝔼(𝐽𝑡) ≤ 𝐽0, where 𝐽0 =
𝛼
𝑧𝛼0
sup(𝜃,𝐶)∈A 𝔼

[ ∫ 𝑇
0

𝑈(𝐶𝑡𝑍𝑡)𝜇
0(𝑑𝑡)

]
<∞. □

5. A BSDE approach

In this section, we address the problem of characterizing dynamically the oppor-
tunity process 𝐽𝑡. In all this section we make the class of hypotheses summarized
in Assumptions B. First, let us fix some notations

∙ S𝑝, 1 ≤ 𝑝 ≤ +∞, denotes the space of ℝ-valued F𝑆𝑡 -adapted stochastic pro-
cesses {𝐻𝑡}𝑡∈[0,𝑇 ] with ∥𝐻∥S𝑝 = ∥ sup𝑡∈[0,𝑇 ] ∣ 𝐻𝑡 ∣ ∥𝐿𝑝 <∞.

∙ L2𝜈𝑝 ( L1𝜈𝑝,loc ) denotes the space of ℝ-valued F𝑆𝑡 -predictable processes
{𝑈(𝑡, 𝑥)}𝑡∈[0,𝑇 ] indexed by 𝑥 with

𝔼

∫ 𝑇

0

∫
ℝ

∣ 𝑈(𝑡, 𝑥) ∣2𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡 <∞(
resp.

∫ 𝑇
0

∫
ℝ

∣ 𝑈(𝑡, 𝑥) ∣2 𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡 <∞, 𝑃 -a.s.

)
.
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∙ L2 (L2loc) denotes the space of ℝ-valued F𝑆𝑡 -adapted processes {𝑅𝑡}𝑡∈[0,𝑇 ] with

𝔼

∫ 𝑇
0

∣ 𝑅𝑡 ∣2 𝑑𝑡 <∞
(
resp.

∫ 𝑇
0

∣ 𝑅𝑡 ∣2 𝑑𝑡 <∞ 𝑃 -a.s.

)
.

From Proposition 4.4, since (𝜃𝑡, 𝐶𝑡) = (0, 0) ∈ A, the process {𝐽𝑡}𝑡∈[0,𝑇 ], is a
(𝑃,F𝑆𝑡 )-supermartingale and it admits a unique Doob–Meyer decomposition

𝐽𝑡 = 𝑚𝐽𝑡 −𝐴𝑡

with 𝑚𝐽𝑡 a (𝑃,F
𝑆
𝑡 )-local martingale and 𝐴𝑡 a nondecreasing (𝑃,F

𝑆
𝑡 )-predictable

process with 𝐴0 = 0. By the martingale representation result (Proposition 3.6)
there exist Γ(𝑡, 𝑥) ∈ L1𝜈𝑝,loc and 𝑅𝑡 ∈ L2loc such that

𝑚𝐽𝑡 =

∫ 𝑡
0

∫
ℝ

Γ(𝑠, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡
0

𝑅𝑠𝑑𝐼𝑠. (5.1)

Theorem 5.1. If there exists an optimal strategy (𝜃∗, 𝐶∗) ∈ A for the utility
maximization problem (2.4), the process {𝐽𝑡,Γ(𝑡, 𝑥), 𝑅𝑡}𝑡∈[0,𝑇 ] solves the follow-
ing BSDE

𝐽𝑡 = 1−
∫ 𝑇
𝑡

∫
ℝ

Γ(𝑠, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥)−
∫ 𝑇

𝑡

𝑅𝑠𝑑𝐼𝑠 (5.2)

+

∫ 𝑇
𝑡

ess sup
(𝜃,𝐶)∈A

{
𝑓(𝑠, 𝐽,Γ, 𝑅, 𝜃)𝑑𝑠+ (𝐶𝛼𝑠 − 𝛼𝐶𝑠𝐽𝑠)𝜇(𝑑𝑠)

}
where

𝑓(𝑡, 𝑦, 𝑢, 𝑟, 𝜃) =

∫
ℝ

(
𝑦 + 𝑢(𝑡, 𝑥)

)[{1 + 𝜃𝑡(𝑒
𝑥 − 1)}𝛼 − 1]𝜈𝑝𝑡 (𝑑𝑥) (5.3)

+ 𝛼𝜃𝑡𝜎𝑡𝑟 +

{
𝛼𝜃𝑡𝜇𝑡 +

𝛼(𝛼 − 1)
2

𝜎2𝑡 𝜃
2
𝑡

}
𝑦.

Moreover, the optimal strategy (𝜃∗, 𝐶∗) realizes the essential supremum in (5.2)

and 𝐶∗𝑡 = (𝐽𝑡)
1
𝛼−1 , 𝑃 -a.s..

Proof. For any (𝜃, 𝐶) ∈ A we apply the product rule to compute (𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡

(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡 = 𝑧𝛼0 𝐽0 +

∫ 𝑡
0

𝐽𝑠−𝑑(𝑍𝜃,𝐶𝑠 )𝛼 +

∫ 𝑡
0

(𝑍𝜃,𝐶𝑠− )𝛼𝑑𝐽𝑠 (5.4)

+
∑
𝑠≤𝑡

Δ(𝑍𝜃,𝐶𝑠 )𝛼Δ𝐽𝑠 + 𝑑
〈
𝑍𝜃,𝐶, 𝐽

〉
𝑡
.

Since by (5.1) and (4.6)

Δ𝐽𝑠 =

∫
ℝ

Γ(𝑠, 𝑥)𝑚({𝑠}, 𝑑𝑥),

Δ(𝑍𝜃,𝐶𝑠 )𝛼 = (𝑍𝜃,𝐶𝑠− )𝛼
∫
ℝ

[{1 + 𝜃𝑠(𝑒
𝑥 − 1)}𝛼 − 1]𝑚({𝑠}, 𝑑𝑥),
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we get that (5.4) becomes

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡

)
= (𝑍𝜃,𝐶𝑡− )𝛼𝑑𝑚𝐽𝑡

+ (𝑍𝜃,𝐶𝑡− )𝛼𝐽𝑡−

{
𝛼(𝛼 − 1)

2
𝜎2𝑡 𝜃

2
𝑡 𝑑𝑡+ 𝑑𝑀𝑡(𝛼)

}
− (𝑍𝜃,𝐶𝑡− )𝛼𝑑𝐴𝑡

+

∫
ℝ

(
𝐽𝑡− + Γ(𝑡, 𝑥)

)
(𝑍𝜃,𝐶𝑡− )𝛼

[{1 + 𝜃𝑡(𝑒
𝑥 − 1)}𝛼 − 1]𝑚(𝑑𝑡, 𝑑𝑥)

+ 𝛼𝜃𝑡𝜎𝑡𝑅𝑡(𝑍
𝜃,𝐶
𝑡 )𝛼𝑑𝑡.

Then, taking into account Equation (4.6)

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡

)
= 𝑑𝑀𝐽

𝑡 − (𝑍𝜃,𝐶𝑡− )𝛼
[
𝑑𝐴𝑡 −

∫
ℝ

(
𝐽𝑡 + Γ(𝑡, 𝑥)

)
[{1 + 𝜃𝑡(𝑒

𝑥 − 1)}𝛼 − 1]𝜈𝑝𝑡 (𝑑𝑥)𝑑𝑡

− 𝛼(𝛼− 1)
2

𝜎2𝑡 𝜃
2
𝑡 𝐽𝑡𝑑𝑡− 𝛼𝐽𝑡(𝜃𝑡𝜇𝑡𝑑𝑡− 𝐶𝑡𝜇(𝑑𝑡))− 𝛼𝜃𝑡𝜎𝑡𝑅𝑡𝑑𝑡

]
with

𝑀𝐽
𝑡 =𝑀𝐽

0 +

∫ 𝑡
0

∫
ℝ

(𝑍𝜃,𝐶𝑠− )𝛼Γ(𝑠, 𝑥){1 + 𝜃𝑠(𝑒
𝑥 − 1)}𝛼𝑚𝑆(𝑑𝑠, 𝑑𝑥) (5.5)

+

∫ 𝑡
0

∫
ℝ

(𝑍𝜃,𝐶𝑠− )𝛼𝐽𝑠−
[{1 + 𝜃𝑠(𝑒

𝑥 − 1)}𝛼 − 1]𝑚𝑆(𝑑𝑠, 𝑑𝑥)

+ 𝛼

∫ 𝑡
0

𝜃𝑠𝜎𝑠(𝑍
𝜃,𝐶
𝑠 )𝛼𝐽𝑠𝑑𝐼𝑠.

Based on the above derivations, we obtain

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡

)
+ 𝐶𝛼𝑡 (𝑍

𝜃,𝐶
𝑡 )𝛼𝜇(𝑑𝑡) (5.6)

= 𝑑𝑀𝐽
𝑡 − (𝑍𝜃,𝐶𝑡− )𝛼[𝑑𝐴𝑡 − 𝑓(𝑡, 𝐽,Γ, 𝑅, 𝜃)𝑑𝑡− (𝐶𝛼𝑡 − 𝛼𝐶𝑡𝐽𝑡)𝜇(𝑑𝑡)]

with 𝑓(𝑡, 𝑦, 𝑢, 𝑟, 𝜃) given by (5.3). Since, by the Bellman optimality principle
(Proposition 4.4), ∀(𝜃, 𝐶) ∈ A

(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡 +

∫ 𝑡
0

𝐶𝛼𝑟 (𝑍
𝜃,𝐶
𝑟 )𝛼𝜇(𝑑𝑟) (5.7)

is a (𝑃,F𝑆𝑡 )-supermartingale it follows that (5.5) is a (𝑃,F
𝑆
𝑡 )- local martingale and

𝑑𝐴𝑡 − 𝑓(𝑡, 𝐽,Γ, 𝑅, 𝜃)𝑑𝑡− (𝐶𝛼𝑡 − 𝛼𝐶𝑡𝐽𝑡)𝜇(𝑑𝑡) ≥ 0, which in turn implies

𝑑𝐴𝑡 ≥ ess sup
(𝜃,𝐶)∈A

[𝑓(𝑡, 𝐽,Γ, 𝑅, 𝜃)𝑑𝑡+ (𝐶𝛼𝑡 − 𝛼𝐶𝑡𝐽𝑡)𝜇(𝑑𝑡)].

On the other hand, again by the Bellman optimality principle, (𝜃∗, 𝐶∗) ∈ A is an
optimal strategy if and only if the associated process given in (5.7) by replacing
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(𝜃, 𝐶) by (𝜃∗, 𝐶∗) is a (𝑃,F𝑆𝑡 )-martingale. Thus if and only if

𝑑𝐴𝑡 = 𝑓(𝑡, 𝐽,Γ, 𝑅, 𝜃∗)𝑑𝑡+ {(𝐶∗𝑡 )𝛼 − 𝛼𝐶∗𝑡 𝐽𝑡}𝜇(𝑑𝑡)
= ess sup

(𝜃,𝐶)∈A
[𝑓(𝑡, 𝐽,Γ, 𝑅, 𝜃) + (𝐶𝛼𝑡 − 𝛼𝐶𝑡𝐽𝑡)𝜇(𝑑𝑡)].

To conclude the proof, let us notice that since the essential supremum of 𝐶𝛼𝑡 −𝛼𝐶𝑡𝐽𝑡
is attained in (𝐽𝑡)

1
𝛼−1 this implies that 𝐶∗𝑡 = (𝐽𝑡)

1
𝛼−1 , 𝑃 -a.s. □

Remark 5.2. Conditions for existence of optimal strategies can be found in [14]
for the case of terminal wealth and [15] for the case with consumption.

Remark 5.3. By Proposition 4.5, ∀𝑡 ∈ [0, 𝑇 ] 𝐽𝑡 ≥ 1 𝑃 -a.s., thus if (𝜃∗, 𝐶∗) is
an optimal investment-consumption strategy then 𝐶∗𝑡 = (𝐽𝑡)

1
𝛼−1 , which in turn

implies that ∀𝑡 ∈ [0, 𝑇 ], 0 ≤ 𝐶∗𝑡 ≤ 1, 𝑃 -a.s.

We now study the utility maximization problem defined in (2.4) over the

subset A𝑘 ⊂ A of admissible strategies, (𝜃, 𝐶) ∈ A, such that 𝜃 is uniformly
bounded by 𝑘, with 𝑘 ≥ 1. In this frame the process 𝐽𝑡 is replaced by

𝐽𝑘𝑡 = ess sup
(𝜃,𝐶)∈A𝑘𝑡

𝔼

[ ∫ 𝑇
𝑡

(𝐶𝑠𝑍𝑠)
𝛼

𝑍𝛼𝑡
𝑑𝑠+

𝑍𝛼𝑇
𝑍𝛼𝑡

∣ F𝑆𝑡
]
, (5.8)

here A𝑘𝑡 denotes the set of admissible strategies A
𝑘 over [𝑡, 𝑇 ]. We introduce for

any (𝜃, 𝐶) ∈ A the process

𝜉𝜃,𝐶𝑡 := 𝔼

[ ∫ 𝑇
𝑡

(𝐶𝑠𝑍𝑠)
𝛼

𝑍𝛼𝑡
𝑑𝑠+

𝑍𝛼𝑇
𝑍𝛼𝑡

∣ F𝑆𝑡
]
.

Proposition 5.4. Let us assume ∀𝑡 ∈ [0, 𝑇 ]
∣�̃�(𝑡; 𝜁)∣ ≤ 𝑐, 𝜆𝑡 = 𝜈(𝐷𝑡) ≤ 𝑐, ∣𝑏𝑡∣ ≤ 𝑐, 𝜎𝑡 ≤ 𝑐 𝑃 -a.s. (5.9)

with 𝑐 positive constant. Then, for any (𝜃, 𝐶) ∈ A𝑘, 𝜉𝜃,𝐶𝑡 is uniformly bounded on
𝑡 by a constant independent of (𝜃, 𝐶).

Proof. Firstly, we observe that assumptions (5.9) imply

𝜆𝑡Φ𝑡(ℝ) = 𝔼[𝜆𝑡∣F𝑆𝑡 ] ≤ 𝑐 𝑃 -a.s.

and since 𝜈𝑝𝑡 (𝑑𝑥) = 𝜆𝑡Φ𝑡(𝑑𝑥), 𝑑𝑃 × 𝑑𝑡-a.e.∫
ℝ

∣𝑒𝑥 − 1∣𝜈𝑝𝑡 (𝑑𝑥) =
∫
ℝ

∣𝑒𝑥 − 1∣𝜆𝑡Φ𝑡(𝑑𝑥) = 𝔼

[ ∫
𝑍

�̃�(𝑡; 𝜁)𝜈(𝑑𝜁)∣F𝑆𝑡
]
≤ 𝑐2 𝑃 -a.s.

(5.10)

∀(𝜃, 𝐶) ∈ A𝑘 let us consider the probability measure 𝑃 𝜃,𝛼 defined on F𝑆𝑇 as

𝑑𝑃 𝜃,𝛼

𝑑𝑃
∣F𝑆𝑇 = 𝐿𝜃𝑇 = Exp(𝑀𝜃,𝛼)𝑇
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with

𝑀𝜃,𝛼
𝑡 :=

∫ 𝑡

0

𝛼𝜃𝑠𝜎𝑠𝑑𝐼𝑠 +

∫ 𝑡
0

∫
ℝ

[(1 + 𝜃𝑠(𝑒
𝑥 − 1))𝛼 − 1]𝑚𝑆(𝑑𝑠, 𝑑𝑥)

By the Doléans-Dade exponential formula for all 𝑡 ≤ 𝑠 ≤ 𝑇

𝑍𝛼𝑠
𝑍𝛼𝑡

=
𝐿𝜃𝑠
𝐿𝜃𝑡

exp

{
𝛼

∫ 𝑠
𝑡

[(
𝜃𝑟 𝜇𝑟 +

𝛼− 1
2

𝜃2𝑟𝜎
2
𝑟

)
𝑑𝑟 − 𝐶𝑟𝜇(𝑑𝑟)

]
+ 𝛼

∫ 𝑠
𝑡

∫
𝑍

[(1 + 𝜃𝑟(𝑒
𝑥 − 1))𝛼 − 1]𝜈𝑝𝑟 (𝑑𝑥)𝑑𝑟

}
and, taking into account (4.5), we get

𝔼

[
𝑍𝛼𝑠
𝑍𝛼𝑡

∣F𝑆𝑡
]
≤ 𝔼𝜃,𝛼

[
exp

{
𝛼

∫ 𝑠
𝑡

∣𝜃𝑟𝜇𝑟∣𝑑𝑟 + 𝛼

∫ 𝑠
𝑡

∫
𝑍

∣𝜃𝑟∣∣𝑒𝑥 − 1∣𝜈𝑝𝑟 (𝑑𝑥)𝑑𝑟
}
∣F𝑆𝑡

]
where 𝔼𝜃,𝛼 denotes the expectation w.r.t. 𝑃 𝜃,𝛼. Finally, by (5.9) and (5.10),

𝔼

[
𝑍𝛼𝑠
𝑍𝛼𝑡

∣F𝑆𝑡
]
≤ 𝑒𝑐(𝑘)(𝑠−𝑡) 𝑃 -a.s.

with 𝑐(𝑘) a suitable positive constant independent of (𝜃, 𝐶), which in turn implies
that ∀𝑡 ∈ [0, 𝑇 ]

𝜉𝜃,𝐶𝑡 =𝔼

[ ∫ 𝑇
𝑡

(𝐶𝑠𝑍𝑠)
𝛼

𝑍𝛼𝑡
𝜇0(𝑑𝑠) ∣ F𝑆𝑡

]
≤ (𝑘 + 1)𝑒𝑐(𝑘)𝑇 𝑃 -a.s. □

Lemma 5.5. Under (5.9), ∀(𝜃, 𝐶) ∈ A𝑘, the process {𝜉𝜃,𝐶𝑡 ,Γ𝜃,𝐶(𝑡, 𝑥), 𝑅𝜃,𝐶𝑡 }𝑡∈[0,𝑇 ]
is the unique solution in S2 × L2

𝜈𝑝 × L2 to the BSDE

𝜉𝜃,𝐶𝑡 = 1−
∫ 𝑇
𝑡

∫
ℝ

Γ𝜃,𝐶(𝑠, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥) −
∫ 𝑇
𝑡

𝑅𝜃,𝐶𝑠 𝑑𝐼𝑠 (5.11)

+

∫ 𝑇
𝑡

[
𝑓(𝑠, 𝜉𝜃,𝐶 ,Γ𝜃,𝐶, 𝑅𝜃,𝐶 , 𝜃)𝑑𝑠+ (𝐶𝛼𝑠 − 𝛼𝐶𝑠𝜉

𝜃,𝐶
𝑠 )𝜇(𝑑𝑠)

]
with 𝑓(𝑠, 𝑦, 𝑢, 𝑟, 𝜃) given in (5.3).

Proof. As in [2] we consider the space 𝐿(ℝ, 𝜈𝑝) of measurable functions 𝑢(𝑥) with
the topology of convergence in measure and define for 𝑢, 𝑢 ∈ 𝐿(ℝ, 𝜈𝑝),

∥𝑢− 𝑢∥𝑡 =
(∫

ℝ

∣𝑢(𝑥) − 𝑢(𝑥)∣2𝜈𝑝𝑡 (𝑑𝑥)
) 1

2

. (5.12)

By (5.9), ∀(𝜃, 𝐶) ∈ A𝑘, 𝑢(𝑥) ∈ 𝐿(ℝ, 𝜈𝑝) and 𝑦 ∈ ℝ there exists a positive constant
𝑑(𝑘), independent of (𝜃, 𝐶), such that∫

ℝ

(
𝑦 + 𝑢(𝑥)

)[{1 + 𝜃𝑡(𝑒
𝑥 − 1)}𝛼 − 1]𝜈𝑝𝑡 (𝑑𝑥) (5.13)

≤ ∣𝜃𝑡∣
∫
ℝ

{∣𝑦∣+ ∣𝑢(𝑥)∣}∣𝑒𝑥 − 1∣𝜈𝑝𝑡 (𝑑𝑥) ≤ 𝑑(𝑘){∣𝑦∣+ ∥𝑢∥𝑡} 𝑃 -a.s.
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Observing that the generator of BSDE (5.11) is given by

𝑔(𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶) =

∫
ℝ

(
𝑦 + 𝑢(𝑥)

)[{1 + 𝜃𝑡(𝑒
𝑥 − 1)}𝛼 − 1]𝜈𝑝𝑡 (𝑑𝑥) (5.14)

+ 𝛼𝜃𝑡𝜎𝑡𝑟 + 𝐶𝛼𝑡 +

{
𝛼(𝜃𝑡𝜇𝑡 − 𝐶𝑡) +

𝛼(𝛼− 1)
2

𝜎2𝑡 𝜃
2
𝑡

}
𝑦

in the case with intermediate consumption (by (5.14) without the part in 𝐶𝑡 if
there is no intermediate consumption), it follows that it is uniformly Lipschitz in
(𝑦, 𝑢, 𝑟). By classical results (see for instance Proposition 3.2 in [2]) there exists a

unique solution (𝜉, Γ̃, ℝ̃) ∈ S2 × L2𝜈𝑝 × L2 to BSDE (5.11) and following the same
computations as in the proof of Theorem 5.1 we get that

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝜉𝑡

)
+ 𝐶𝛼𝑡 (𝑍

𝜃,𝐶
𝑡 )𝛼𝜇(𝑑𝑡) = 𝑑𝑀 𝜉

𝑡

where

𝑑𝑀 𝜉
𝑡 =

∫
ℝ

(𝑍𝜃,𝐶𝑡− )𝛼Γ̃(𝑡, 𝑥){1 + 𝜃𝑡(𝑒
𝑥 − 1)}𝛼𝑚𝑆(𝑑𝑡, 𝑑𝑥)

+

∫
ℝ

(𝑍𝜃,𝐶𝑡− )𝛼𝜉𝑡−
[{1 + 𝜃𝑡(𝑒

𝑥 − 1)}𝛼 − 1]𝑚𝑆(𝑑𝑡, 𝑑𝑥) + 𝛼𝜃𝑡𝜎𝑡(𝑍
𝜃,𝐶
𝑡 )𝛼𝜉𝑡𝑑𝐼𝑡.

Equation (4.6) and conditions (5.9) imply that ∀(𝜃, 𝐶) ∈ A𝑘

sup
𝑡∈[0,𝑇 ]

(𝑍𝜃,𝐶𝑡 )𝛼 ≤ 𝑒𝑑(𝑁𝑇+∣𝐼𝑇 ∣+𝑇 ) 𝑃 -a.s.

where 𝑁𝑡 = 𝑚((0, 𝑡],ℝ) and 𝑑 is a suitable positive constant. Now, the intensity
𝜆𝑡 of the point process 𝑁𝑡 is bounded by 𝑐, hence for any constant 𝑏, 𝔼[𝑒𝑏𝑁𝑇 ] ≤
𝑒(𝑒

𝑏−1)𝑐. This entails that ∀(𝜃, 𝐶) ∈ A𝑘, (𝑍𝜃,𝐶𝑡 )𝛼 belongs to S𝑝, for any 𝑝 ≥ 1.

Therefore 𝑀 𝜉
𝑡 is a (𝑃,F

𝑆
𝑡 )-uniformly integrable martingale, whose 𝑡-time value is

the F𝑆𝑡 -conditional expectation of its terminal value, which implies that 𝜉𝑡 = 𝜉𝜃,𝐶𝑡 .
□

Now we are in a position to solve the investment-consumption problem in
the case of bounded strategies.

Proposition 5.6. Under (5.9), the following hold:

∙ (𝐽𝑘𝑡 ,Γ𝑘(𝑡, 𝑥), 𝑅𝑘𝑡 ) ∈ S2 × L2
𝜈𝑝 × L2 is the unique solution to BSDE

𝐽𝑘𝑡 = 1−
∫ 𝑇
𝑡

∫
ℝ

Γ𝑘(𝑠, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥) −
∫ 𝑇
𝑡

𝑅𝑘𝑠𝑑𝐼𝑠 (5.15)

+

∫ 𝑇
𝑡

ess sup
(𝜃,𝐶)∈A𝑘

[𝑓(𝑠, 𝐽𝑘,Γ𝑘, 𝑅𝑘, 𝜃)𝑑𝑠+ (𝐶𝛼𝑠 − 𝛼𝐶𝑠𝐽
𝑘
𝑠 )𝜇(𝑑𝑠)]

with 𝑓(𝑠, 𝑦, 𝑢, 𝑟, 𝜃) given in (5.3).

∙ There exists an optimal strategy (𝜃𝑘, 𝐶𝑘) ∈ A𝑘 for (5.8).

∙ A strategy (𝜃𝑘, 𝐶𝑘) ∈ A𝑘 is optimal if and only if it attains the essential
supremum in (5.15).
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Proof. To prove that 𝐽𝑘 is a solution to BSDE (5.15) we follow the same lines

of the proof of Theorem 5.1. From Proposition 4.4, since (𝜃𝑡, 𝐶𝑡) = (0, 0) ∈ A𝑘,

the process {𝐽𝑘𝑡 }𝑡∈[0,𝑇 ] is a (𝑃,F𝑆𝑡 )-supermartingale and it admits a unique Doob–
Meyer decomposition

𝐽𝑘𝑡 = 𝑚𝐽
𝑘

𝑡 −𝐴𝐽
𝑘

𝑡

with 𝑚𝐽
𝑘

𝑡 a (𝑃,F𝑆𝑡 )-local martingale and 𝐴𝐽
𝑘

𝑡 a nondecreasing (𝑃,F𝑆𝑡 )-predictable

process with 𝐴𝐽
𝑘

0 = 0. By the martingale representation result there exist
Γ𝑘(𝑡, 𝑥) ∈ L1𝜈𝑝,loc and 𝑅𝑘𝑡 ∈ L2loc such that

𝑚𝐽
𝑘

𝑡 =

∫ 𝑡
0

∫
ℝ

Γ𝑘(𝑠, 𝑥)𝑚𝑆(𝑑𝑠, 𝑑𝑥) +

∫ 𝑡
0

𝑅𝑘𝑠𝑑𝐼𝑠.

Again by the Bellman optimality principle (Proposition 4.4)

∀(𝜃, 𝐶) ∈ A𝑘, (𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑘𝑡 +

∫ 𝑡
0

𝐶𝛼𝑠 (𝑍
𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠) (5.16)

is a (𝑃,F𝑆𝑡 )-supermartingale. By applying the product rule and following the same
computations as in the proof of Theorem 5.1 (see Equation (5.6)), we get that

∀(𝜃, 𝐶) ∈ A𝑘

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑘𝑡

)
+𝐶𝛼𝑡 (𝑍

𝜃,𝐶
𝑡 )𝛼𝜇(𝑑𝑡) = 𝑑𝑀𝐽𝑘

𝑡 − (𝑍𝜃,𝐶𝑡− )𝛼
{
𝑑𝐴𝐽

𝑘

𝑡 − 𝑑𝐹 (𝑡, 𝐽,Γ, 𝑅, 𝜃, 𝐶)
}

where 𝑑𝐹 (𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶) = 𝑓(𝑡, 𝑦, 𝑢, 𝑟, 𝜃)𝑑𝑡+(𝐶𝛼−𝛼𝐶𝑦)𝜇(𝑑𝑡) and𝑀𝐽𝑘 is a (𝑃,F𝑆𝑡 )-
local martingale. As a consequence

𝑑𝐴𝐽
𝑘

𝑡 ≥ ess sup
(𝜃,𝐶)∈A𝑘

𝑑𝐹 (𝑡, 𝐽𝑘,Γ𝑘, 𝑅𝑘, 𝜃, 𝐶)

and (𝜃𝑘, 𝐶𝑘) ∈ A𝑘 is an optimal strategy for the problem (5.8) if and only if

𝑑𝐴𝐽
𝑘

𝑡 ≥ ess sup
(𝜃,𝐶)∈A𝑘

𝑑𝐹 (𝑡, 𝐽𝑘,Γ𝑘, 𝑅𝑘, 𝜃, 𝐶) = 𝑑𝐹 (𝑡, 𝐽𝑘,Γ𝑘, 𝑅𝑘, 𝜃𝑘, 𝐶𝑘).

Notice that for any fixed (𝑡, 𝜔, 𝐽𝑘,Γ𝑘, 𝑅𝑘), 𝐹 (𝑡, 𝐽𝑘,Γ𝑘, 𝑅𝑘, 𝑤1, 𝑤2) is continu-
ous with respect to the pair (𝑤1, 𝑤2) ∈ [−𝑘, 𝑘]×[0, 1], since the following inequality
holds

∣Γ𝑘(𝑡, 𝑥)∣∣{1 + 𝑤1(𝑒
𝑥 − 1)}𝛼 − 1∣ ≤ ∣Γ𝑘(𝑡, 𝑥)∣∣𝑤1∣∣𝑒𝑥 − 1∣

and, taking into account that Γ𝑘(𝑡, 𝑥) and ∣𝑒𝑥− 1∣ ∈ L2𝜈𝑝 , we can apply Lebesgue’s
Theorem on dominated convergence. Therefore, by a predictable selection theorem
we have that there exists (𝜃𝑘, 𝐶𝑘) ∈ A𝑘 which realizes the essential supremum of

𝐹 (𝑡, 𝐽𝑘,Γ𝑘, 𝑅𝑘, 𝜃, 𝐶) over A𝑘. Hence (𝜃𝑘, 𝐶𝑘) ∈ A𝑘 is an optimal strategy for the
problem (5.8) and (𝐽𝑘,Γ𝑘, 𝑅𝑘) solves BSDE (5.15).

It remains to prove uniqueness of the solutions to BSDE (5.15). It is sufficient
to consider the case with intermediate consumption. Notice that the generator of
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BSDE (5.15) in such a case can be written as

𝑔(𝑡, 𝑦, 𝑢, 𝑟) = ess sup
(𝜃,𝐶)∈A𝑘

𝑔(𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶),

where 𝑔(𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶) is given in (5.14).
Since we have, ∀(𝑦, 𝑢, 𝑟), (𝑦, 𝑢, 𝑟) ∈ ℝ× 𝐿(ℝ, 𝜈𝑝)× ℝ

𝑔(𝑡, 𝑦, 𝑢, 𝑟) ≤ ess sup
(𝜃,𝐶)∈A𝑘

∣𝑔(𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶)− 𝑔(𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶)∣+ 𝑔(𝑡, 𝑦, 𝑢, 𝑟)

by (5.9) and (5.13) we obtain

𝑔(𝑡, 𝑦, 𝑢, 𝑟)− 𝑔(𝑡, 𝑦, 𝑢, 𝑟) ≤ 𝐿
(∣𝑦 − 𝑦∣+ ∥𝑢− 𝑢∥𝑡 + ∣𝑟 − 𝑟∣)

(see (5.12) for the definition of ∥𝑢−𝑢∥𝑡) and by symmetry 𝑔(𝑡, 𝑦, 𝑢, 𝑟) is uniformly
Lipschitz in (𝑦, 𝑢, 𝑟).

Applying classical results it follows that (𝐽𝑘,Γ𝑘, 𝑅𝑘) ∈ S2 × L2𝜈𝑝 × L2 is the
unique solution to BSDE (5.15). □

We now come back to the non constrained case and we give a characterization
of the value process 𝐽𝑡 as the limit of the sequence {𝐽𝑘𝑡 }𝑘≥1. Let us observe that
this result does not require the existence of an optimal investment-strategy for the
investment-consumption problem (2.4).

Proposition 5.7. For any 𝑡 ∈ [0, 𝑇 ], we have that

𝐽𝑡 = lim
𝑘→∞

𝐽𝑘𝑡 𝑃 -a.s.

Proof. We follow the same lines of the proof of Theorem 4.1 in [17]. Fix 𝑡 ∈ [0, 𝑇 ],
since A𝑘𝑡 ⊂ A𝑘+1

𝑡 ∀𝑘, we have that {𝐽𝑘𝑡 }𝑘≥1 is an increasing sequence and we define
the random variable

𝐽 ′(𝑡) = lim
𝑘→∞

𝐽𝑘𝑡 𝑃 -a.s.

Now observing that A𝑘𝑡 ⊂ A𝑡 ∀𝑘, we get that 𝐽𝑘𝑡 ≤ 𝐽𝑡 and therefore 𝐽 ′(𝑡) ≤ 𝐽𝑡
𝑃 -a.s.

Before proving the opposite inequality we first observe that by monotone
convergence theorem for conditional expectation, since 𝐽𝑘𝑡 are F

𝑆
𝑡 -supermartingales

∀𝑘, 𝐽 ′(𝑡) is a F𝑆𝑡 -supermartingale, and we can consider its càdlàg version which
we denote by 𝐽 ′𝑡. By the Doob–Meyer decomposition we can write

𝑑𝐽 ′𝑡 =
∫
ℝ

Γ′(𝑡, 𝑥)𝑚𝑆(𝑑𝑡, 𝑑𝑥) +𝑅′𝑡𝑑𝐼𝑡 − 𝑑𝐴′𝑡

with Γ′(𝑡, 𝑥) ∈ 𝐿1
𝜈𝑝,loc, 𝑅′𝑡 ∈ 𝐿2

loc and 𝐴′𝑡 a nondecreasing (𝑃,F
𝑆
𝑡 )-predictable

process. Following the same computations as in Theorem 5.1 (see Equation (5.6))
the product rules gives, ∀(𝜃, 𝐶) ∈ A

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝐽 ′𝑡

)
+ 𝐶𝛼𝑡 (𝑍

𝜃,𝐶
𝑡 )𝛼𝜇(𝑑𝑡) (5.17)

= 𝑑𝑀𝐽′
𝑡 − (𝑍𝜃,𝐶𝑡− )𝛼 [𝑑𝐴′𝑡 − 𝑓(𝑡, 𝐽 ′,Γ′, 𝑅′, 𝜃, 𝐶)𝑑𝑡− (𝐶𝛼 − 𝛼𝐶𝐽 ′𝑡)𝜇(𝑑𝑡)]
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where 𝑀𝐽′
𝑡 is a (𝑃,F𝑆𝑡 )-local martingale defined as in (5.5). We now want to prove

that ∀(𝜃, 𝐶) ∈ A
(𝑍𝜃,𝐶𝑡 )𝛼𝐽 ′𝑡 +

∫ 𝑡
0

𝐶𝛼𝑠 (𝑍
𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠)

is a (𝑃,F𝑆𝑡 )-supermartingales. Let Ã be the set of uniformly bounded admissible

strategies. Since ∀(𝜃, 𝐶) ∈ Ã there exists 𝑛 ≥ 1 such that (𝜃, 𝐶) ∈ A𝑛, we have

that (𝜃, 𝐶) ∈ A𝑘 ∀𝑘 ≥ 𝑛, and taking into account Equation (5.16), that

(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑘𝑡 +

∫ 𝑡
0

𝐶𝛼𝑠 (𝑍
𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠)

is a (𝑃,F𝑆𝑡 )-supermartingale. By monotone convergence theorem we derive that

∀(𝜃, 𝐶) ∈ Ã, (𝑍𝜃,𝐶𝑡 )𝛼𝐽 ′𝑡 +
∫ 𝑡
0

𝐶𝛼𝑠 (𝑍
𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠)

is a (𝑃,F𝑆𝑡 )-supermartingale and by Equation (5.17) we have

∀(𝜃, 𝐶) ∈ Ã, 𝑑𝐴′𝑡 − [𝑓(𝑡, 𝐽 ′,Γ′, 𝑅′, 𝜃, 𝐶)𝑑𝑡+ (𝐶𝛼 − 𝛼𝐶𝐽 ′𝑡)𝜇(𝑑𝑡)] ≥ 0.

Thus
𝑑𝐴′𝑡 ≥ ess sup

(𝜃,𝐶)∈Ã
[𝑓(𝑡, 𝐽 ′,Γ′, 𝑅′, 𝜃, 𝐶)𝑑𝑡+ (𝐶𝛼 − 𝛼𝐶𝐽 ′𝑡)𝜇(𝑑𝑡)].

Now, since ∀(𝜃, 𝐶) ∈ A, 𝜃𝑡 = lim𝑘 𝜃
𝑘
𝑡 with 𝜃𝑘𝑡 = 𝜃𝑡1I∣𝜃𝑡∣≤𝑘 ∈ Ã, we get

ess sup

(𝜃,𝐶)∈Ã
[𝑓(𝑡, 𝐽 ′,Γ′, 𝑅′, 𝜃, 𝐶)𝑑𝑡+ (𝐶𝛼 − 𝛼𝐶𝐽 ′𝑡)𝜇(𝑑𝑡)]

= ess sup
(𝜃,𝐶)∈A

[𝑓(𝑡, 𝐽 ′,Γ′, 𝑅′, 𝜃, 𝐶)𝑑𝑡 + (𝐶𝛼 − 𝛼𝐶𝐽 ′𝑡)𝜇(𝑑𝑡)]

hence 𝑑𝐴′𝑡 ≥ ess sup(𝜃,𝐶)∈A[𝑓(𝑡, 𝐽
′,Γ′, 𝑅′, 𝜃, 𝐶)𝑑𝑡 + (𝐶𝛼 − 𝛼𝐶𝐽 ′𝑡)𝜇(𝑑𝑡)]. Again by

(5.17)

∀(𝜃, 𝐶) ∈ A 𝑀𝐽′
𝑡 ≥ (𝑍𝜃,𝐶𝑡 )𝛼𝐽 ′𝑡 +

∫ 𝑡
0

𝐶𝛼𝑠 (𝑍
𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠) ≥ 0

is a (𝑃,F𝑆𝑡 )-supermartingale, since it is a non-negative local martingale. This im-

plies that (𝑍𝜃,𝐶𝑡 )𝛼𝐽 ′𝑡+
∫ 𝑡
0 𝐶𝛼𝑠 (𝑍

𝜃,𝐶
𝑠 )𝛼𝜇(𝑑𝑠) is a (𝑃,F𝑆𝑡 )-supermartingale ∀(𝜃, 𝐶) ∈ A.

Finally, by Bellman principle 𝐽 ′𝑡 ≥ 𝐽𝑡 𝑃 -a.s. ∀𝑡 ∈ [0, 𝑇 ] and this concludes the
proof. □

We conclude this section by giving a verification result for the general case
and providing an example which can be solved using this result.

Proposition 5.8. Under the assumptions:

(i) there exists a solution (𝐽𝑡, Γ̃(𝑡, 𝑥), �̃�𝑡) to BSDE (5.2) such that 𝑀𝐽
𝑡 defined

in (5.5) is a (𝑃,F𝑆𝑡 )-local martingale
(ii) there exists (𝜃∗, 𝐶∗) ∈ A which attains the essential supremum in Equation

(5.2) with (𝐽𝑡,Γ(𝑡, 𝑥), 𝑅𝑡) replaced by (𝐽𝑡, Γ̃(𝑡, 𝑥), �̃�𝑡)
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(iii) 𝜉𝜃
∗,𝐶∗
𝑡 is the unique solution to BSDE (5.11) associated with (𝜃∗, 𝐶∗).

Then 𝐽𝑡 = 𝐽𝑡 𝑃 -a.s. for any 𝑡 ∈ [0, 𝑇 ], and (𝜃∗, 𝐶∗) is an optimal strategy.

Proof. Let (𝐽𝑡, Γ̃(𝑡, 𝑥), �̃�𝑡) be a solution to BSDE (5.2), by applying the product
rule and following the same computations as in the proof of Theorem 5.1 (see
Equation (5.6)), we get that ∀(𝜃, 𝐶) ∈ A

𝑑
(
(𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡

)
+ 𝐶𝛼𝑡 (𝑍

𝜃,𝐶
𝑡 )𝛼𝜇(𝑑𝑡)

= 𝑑𝑀𝐽
𝑡 − (𝑍𝜃,𝐶𝑡− )𝛼

{
ess sup

(𝜃,𝐶)∈A
𝑑𝐹 (𝑡, 𝐽, Γ̃, �̃�, 𝜃, 𝐶)− 𝑑𝐹 (𝑡, 𝐽, Γ̃, �̃�, 𝜃, 𝐶)

}
where 𝑑𝐹 (𝑡, 𝑦, 𝑢, 𝑟, 𝜃, 𝐶) = 𝑓(𝑡, 𝑦, 𝑢, 𝑟, 𝜃)𝑑𝑡+(𝐶𝛼−𝛼𝐶𝑦)𝜇(𝑑𝑡) and𝑀𝐽 is a (𝑃,F𝑆𝑡 )-

local martingale such that 𝑀𝐽
0 = 𝑧𝛼0 𝐽0. Notice now that

𝑀𝐽
𝑡 ≥ (𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡 +

∫ 𝑡
0

𝐶𝛼𝑠 (𝑍
𝜃,𝐶
𝑠 )𝛼𝑑𝑠 ≥ 0

and since every non-negative local martingale is a supermartingale the process𝑀𝐽

is a (𝑃,F𝑆𝑡 )-supermartingale.

Thus ∀(𝜃, 𝐶) ∈ A, (𝑍𝜃,𝐶𝑡 )𝛼𝐽𝑡+
∫ 𝑡
0
𝐶𝛼𝑠 (𝑍

𝜃,𝐶
𝑠 )𝛼𝑑𝑠 is a (𝑃,F𝑆𝑡 )-supermartingale,

and from Bellman principle it yields that 𝐽𝑡 ≥ 𝐽𝑡 𝑃 -a.s. for any 𝑡 ∈ [0, 𝑇 ].
To prove the opposite inequality, let us observe that by (ii), 𝐽𝑡 solves

BSDE Equation (5.11) associated to (𝜃∗, 𝐶∗) ∈ A, and by (iii), 𝐽𝑡 = 𝜉𝜃
∗,𝐶∗
𝑡 ≤

ess sup(𝜃,𝐶)∈A 𝜉𝜃,𝐶𝑡 = 𝐽𝑡, 𝑃 -a.s. for any 𝑡 ∈ [0, 𝑇 ]. Hence 𝐽𝑡 = 𝐽𝑡, 𝑃 -a.s. and

(𝜃∗, 𝐶∗) is an optimal strategy. □

Example. We now present a particular model where the risky asset follows a geo-
metric jump-diffusion driven by two independent point processes whose intensities
are not directly observed by investors. Let us assume

𝐾(𝑡; 𝜁) =
2∑
𝑗=1

𝐾𝑗(𝑡)1I𝐷𝑗(𝑡)(𝜁)

with 𝐾1(𝑡) > 0,𝐾2(𝑡) < 0 (𝑃,F𝑆𝑡 )-predictable processes and 𝐷𝑗(𝑡), 𝑗 = 1, 2,

(𝑃,F𝑆𝑡 )-predictable processes taking values in Z. In this particular case the logre-
turn process solves

𝑑𝑌𝑡 = 𝑏𝑡𝑑𝑡+ 𝜎𝑡𝑑𝑊𝑡 +

2∑
𝑗=1

𝐾𝑗(𝑡)𝑁
𝑗
𝑡

with 𝑁 𝑗𝑡 = 𝑁((0, 𝑡), 𝐷𝑗(𝑡)), 𝑗 = 1, 2, independent counting processes with (𝑃,F𝑡)-

predictable intensities given by 𝜆𝑗𝑡 = 𝜈(𝐷𝑗(𝑡)). In this model the agent can observe

the processes 𝐾𝑗(𝑡) but not the intensities 𝜆
𝑗
𝑡 . As in the general case we assume 𝜎𝑡
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a strictly positive F𝑆𝑡 -adapted process. The integer-valued random measure defined

in (2.5) and its (𝑃,F𝑆𝑡 )-predictable dual projection are given by

𝑚(𝑑𝑡, 𝑑𝑥) =

2∑
𝑗=1

𝛿𝐾𝑗(𝑡)(𝑑𝑥)𝑁
𝑗
𝑡 , 𝜈𝑝(𝑑𝑡, 𝑑𝑥) =

2∑
𝑗=1

𝛿𝐾𝑗(𝑡)(𝑑𝑥)�̃�
𝑗
𝑡𝑑𝑡

respectively, where �̃�𝑗𝑡 , 𝑗 = 1, 2, denote the (𝑃,F𝑆𝑡 )-predictable intensities of 𝑁
𝑗
𝑡 .

From now on we assume ∀𝑡 ∈ [0, 𝑇 ], 𝑃 -a.s.
∣𝑏𝑡∣ ≤ 𝐴2, ∣𝜎𝑡∣ ≤ 𝐴2, 𝐴1 ≤ 𝜆𝑗𝑡 ≤ 𝐴2, 𝐴1 ≤ 𝐾𝑗(𝑡) ≤ 𝐴2, 𝑗 = 1, 2 (5.18)

with 𝐴𝑖, 𝑖 = 1, 2, positive constants. We consider the case with intermediate con-
sumption. The BSDE (5.2) adapted to this particular model is given by

𝐽𝑡 = 1−
2∑
𝑗=1

∫ 𝑇
𝑡

Γ(𝑠, 𝑗)(𝑁 𝑗𝑡 − �̃�𝑗𝑡𝑑𝑡)−
∫ 𝑇
𝑡

𝑅𝑠𝑑𝐼𝑠 (5.19)

+

∫ 𝑇
𝑡

ess sup
(𝜃,𝐶)∈A

ℎ(𝑠, 𝐽,Γ(1),Γ(2), 𝑅, 𝜃, 𝐶)𝑑𝑠

where

ℎ(𝑡, 𝑦, 𝑢1, 𝑢2, 𝑟, 𝜃, 𝐶) =

2∑
𝑗=1

(
𝑦 + 𝑢𝑗

)[{1 + 𝜃𝑡(𝑒
𝐾𝑗(𝑡) − 1)}𝛼 − 1]�̃�𝑗𝑡

+ 𝛼𝜃𝑡𝜎𝑡𝑟 + 𝐶𝛼𝑡 +

{
𝛼(𝜃𝑡𝜇𝑡 − 𝐶𝑡) +

𝛼(𝛼 − 1)
2

𝜎2𝑡 𝜃
2
𝑡

}
𝑦.

We begin by observing that by (4.3) any admissible trading strategy 𝜃𝑡 necessarily

satisfies 𝜃𝑡 ∈
(
− 1
𝑒𝐾1(𝑡)−1 ,

1
𝑒𝐾2(𝑡)−1

)
for a.e. 𝑡 and assumption (5.18) yields that

admissible investment strategies take values in a compact space. Following similar
computations as those performed in the proofs of Lemma 5.5 and Proposition
5.6 we obtain that the generator of the BSDE (5.19) is uniformly Lipschitz in
(𝑦, 𝑢1, 𝑢2, 𝑟).

From classical results there exists a unique solution, (𝐽𝑡, Γ̃(𝑡, 1), Γ̃(𝑡, 2), �̃�𝑡) ∈
S2 × L21 × L22 × L2, to the BSDE (5.19). Here L2𝑖 denotes the space of ℝ-valued

F𝑆𝑡 -predictable processes {𝑈(𝑡)}𝑡∈[0,𝑇 ] such that 𝔼
∫ 𝑇
0
∣𝑈(𝑡)∣2�̃�𝑖𝑡𝑑𝑡 <∞.

Finally, we have that for any fixed (𝑡, 𝑦, 𝑢1, 𝑢2, 𝑟) the essential supre-

mum of ℎ(𝑡, 𝑦, 𝑢1, 𝑢2, 𝑟, 𝜃, 𝐶) is achieved at
(
𝜃∗(𝑡, 𝑦, 𝑢1, 𝑢2, 𝑟), 𝐶∗ = 𝑦

1
𝛼−1

)
where

𝜃∗(𝑡, 𝑦, 𝑢1, 𝑢2, 𝑟) is such that ∂ℎ∂𝜃 ∣𝜃=𝜃∗ = 0. Indeed, it is sufficient to observe that
∂2ℎ
∂2𝜃 < 0 𝑃 -a.s. and that

lim
𝜃→ −1

𝑒𝐾1(𝑡)−1

∂ℎ

∂𝜃
= +∞, lim

𝜃→ 1

𝑒𝐾2(𝑡)−1

∂ℎ

∂𝜃
= −∞ 𝑃 -a.s.
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Proposition 5.8 implies that 𝐽𝑡 coincides with the opportunity process and the
unique optimal investment-consumption strategy is given by

(𝜃∗𝑡 , 𝐶
∗
𝑡 ) =

(
𝜃∗(𝑡, 𝐽𝑡, Γ̃(𝑡, 1), Γ̃(𝑡, 2), �̃�𝑡), (𝐽𝑡)

1
𝛼−1

)
with (𝐽𝑡, Γ̃(𝑡, 1), Γ̃(𝑡, 2), �̃�𝑡) unique solution of BSDE (5.19).
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Università di Chieti-Pescara
I-65127 Pescara, Italy
e-mail: ceci@sci.unich.it

mailto:ceci@sci.unich.it


Progress in Probability, Vol. 67, 363–379
c⃝ 2013 Springer Basel

Stochastic Control and Pricing
Under Swap Measures
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Abstract. This paper relates to an approach described in [6] which, for the
pricing of bonds and bond derivatives, is alternative to the classical approach
that involves martingale measures and is based on the solution of a stochastic
control problem, thereby avoiding a change of measure. It turns out that this
approach can be extended to various situations where traditionally a change
of measure is involved via a change of numeraire. In the present paper we
study this extension for the case of Swap measures that are relevant in the
classical approach to the pricing of Swaps and Swaptions.
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chastic control.

1. Introduction

In a recent paper [6], a new approach has been proposed for the derivation of
bonds and bond derivatives prices in a diffusion-type multivariate factor model
for the term structure of interest rates which, while yielding the same arbitrage
free prices, is alternative to the classical derivation. It is based on the solution of
a stochastic control problem and its key feature can be described as follows. In
the classical approach a fundamental tool are martingale measures that can be
obtained by a Girsanov-type measure transformation. The latter implies a change
of drift in the dynamics of the factors which however preserves the trajectories.
Now, the drift of a diffusion-type factor process can also be changed by a feedback
control as it is done in stochastic control. With the latter approach the trajectories
are changed, but the measure remains unchanged.

An immediate implication of this key feature is the novel insight that it
becomes equivalent to compute prices either on the basis of a traditional measure
change or by solving an optimal stochastic control problem. In fact, since the values
that one ultimately observes are the prices, it is irrelevant whether these values
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are generated by considering the same trajectories of the factors under a different
measure or by considering different trajectories (which one does not even observe)
under the same measure. What is relevant is that in both ways one generates the
same prices. The major novelty of our approach can thus be seen in the linking of
stochastic optimal control theory with the classical martingale approach thereby
providing an alternative representation of the prices of bonds and interest rate
derivatives under a multifactor term structure. The use of system theoretic tools
also allows for much simpler formulae for computing bond derivatives prices.

In [6] the approach via a stochastic control interpretation is worked out in
detail for prices and forward prices of bonds and then generalized also to forward
measures in view of the pricing of more general derivative products. This general-
ization to forward measures hints at the possibility to extend the approach also to
different situations. One such possible extensions concerns Swap measures that are
relevant in interest rate derivative pricing, in particular for Swaps and Swaptions.
The major purpose of the present paper is now to work out this latter extension.

In order to describe the approach for Swap measures, it is unavoidable to
summarize the main steps of the approach in [6]. This is done in the first five
sections of the paper, where we also specify the model and the assumptions and
recall some basic facts from arbitrage pricing and stochastic control. Furthermore,
in addition to recalling in these five sections the approach in [6], in Subsection 5.1
we also present a control interpretation of expectations under forward measures,
which will then be useful also in the case of Swap measures. Finally, Sections
6 and 7 contain the novel part with respect to [6], namely the stochastic control
interpretation of Swap rates and of expectations under Swap measures respectively.

2. Arbitrage-free term structure

Let (Ω,ℱ ,ℱ𝑡,ℚ) be a given filtered probability space. Consider the 𝑙-dimensional
Markovian factor process 𝑥(⋅), evolving under ℚ, according to the dynamics

𝑑𝑥(𝑡) = f (𝑡, 𝑥(𝑡))𝑑𝑡 + g(𝑡, 𝑥(𝑡))𝑑𝑤𝑡, 𝑡 ∈ [0, 𝑇 ], 𝑥(0) = 0, (2.1)

where 𝑇 > 0, f is an 𝑙-dimensional vector function and g is a matrix function of
dimensions 𝑙 × 𝑘, 𝑤 is a 𝑘-dimensional (ℚ,ℱ𝑡) Wiener process.

For the bond prices we consider a notation of the form 𝑝(𝑡, 𝑇, 𝑥(𝑡)), where 𝑡
is the time variable, 𝑇 is the date of maturity and 𝑥(𝑡) is the value of the factor
process 𝑥(⋅) at time 𝑡. Analogously, the forward rate corresponding to 𝑝(𝑡, 𝑇, 𝑥)
will be denoted by 𝑓(𝑡, 𝑇, 𝑥) := − ∂

∂𝑇 ln 𝑝(𝑡, 𝑇, 𝑥) and the short rate by 𝑟(𝑡, 𝑥) :=
𝑓(𝑡, 𝑡, 𝑥).

We shall make the following

Assumption 2.1. There exists some constant 𝑀 > 0 such that, uniformly in 𝑡 ∈
[0, 𝑇 ]:

∙ ∣∣f(𝑡, 𝑥)∣∣ ≤𝑀(1 + ∣∣𝑥∣∣), ∣∣g(𝑡, 𝑥)∣∣ ≤𝑀

∙ ∣𝑟(𝑡, 𝑥)∣ ≤𝑀(1 + ∣∣𝑥∣∣2).
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We have the well-known Term Structure Equation (see, e.g., [1, 2])

Theorem 2.2. In an arbitrage-free bond market, with the filtered probability space
(Ω,ℱ ,ℱ𝑡,ℚ), the function 𝑝(𝑡, 𝑇, 𝑥) is the unique solution (see Remark 2.3 below)
of the PDE ⎧⎨⎩

∂
∂𝑡𝑝(𝑡, 𝑇, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝑝(𝑡, 𝑇, 𝑥)

+ 1
2 tr(g

′(𝑡, 𝑥)∇𝑥𝑥𝑝(𝑡, 𝑇, 𝑥)g(𝑡, 𝑥))
− 𝑟(𝑡, 𝑥)𝑝(𝑡, 𝑇, 𝑥) = 0

𝑝(𝑇, 𝑇, 𝑥) = 1.

(2.2)

Remark 2.3. It is possible to prove (see [3, Ch. 6, Section 4]) that, under Assump-
tion 2.1, the stochastic differential equation (2.1) has a unique strong solution and
that the solution to (2.2), if it exists, is unique within the class of functions sat-

isfying the growth condition ∣𝑝(𝑡, 𝑇, 𝑥)∣ ≤ 𝐶𝑒𝐶∣∣𝑥∣∣
2

for all 𝑡 ≤ 𝑇 and all 𝑥 ∈ ℝ𝑙,
where 𝐶 is a positive constant possibly depending on 𝑇 .

3. Stochastic control in interest rate derivative pricing

As mentioned in the Introduction, the traditional pricing techniques are based
on measure changes, where the trajectories of the stochastic processes involved
are preserved, but a modification in their drift term is implicit in the measure
transformation.

Our approach, instead, makes this drift modification for the factor process
explicit, while maintaining the original martingale measure ℚ. Moreover, we obtain
drift changes by introducing a control process and choosing a suitable objective
function. We shall show that the prices arising from a suitable stochastic control
formulation are the same as those calculated by the usual methods.

These control problems are obtained in the following three steps, illustrated
here for the case of bond prices:

∙ apply a logarithmic transform to the bond price;
∙ use the available pricing equations to obtain a PDE for the transformed price;
∙ identify an HJB equation, and the corresponding stochastic control problem,
associated to such a PDE.

As a first instance of our argument, in this section we investigate the connec-
tion between bond prices and stochastic optimal control, following the approach in
[4]. Here we assume that the factor process evolves, under the standard martingale
measure ℚ, according to the general dynamics (2.1).

Now we put

𝑊 (𝑡, 𝑇, 𝑥) := − ln 𝑝(𝑡, 𝑇, 𝑥). (3.1)
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Remembering (2.2), we obtain that the function 𝑊 (𝑡, 𝑇, 𝑥) in (3.1) satisfies⎧⎨⎩

∂
∂𝑡𝑊 (𝑡, 𝑇, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝑊 (𝑡, 𝑇, 𝑥)

− 1
2∇𝑥𝑊 ′(𝑡, 𝑇, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑊 (𝑡, 𝑇, 𝑥)

+ 1
2 tr (g

′(𝑡, 𝑥)∇𝑥𝑥𝑊 (𝑡, 𝑇, 𝑥)g(𝑡, 𝑥)) + 𝑟(𝑡, 𝑥) = 0

𝑊 (𝑇, 𝑇, 𝑥) = 0.

(3.2)

Remark 3.1. As usual, it is easy to check that the bond price 𝑝(𝑡, 𝑇, 𝑥) is a solution
to (2.2) and, in view of Remark 2.3, it is unique. Notice then that (3.2) is the
equation satisfied by a one-to-one transformation of 𝑝(𝑡, 𝑇, 𝑥), and thus it also has
a unique solution.

Consider next the following stochastic control problem:⎧⎨⎩
𝑑𝑥(𝑡) = [f(𝑡, 𝑥(𝑡)) + g(𝑡, 𝑥(𝑡))𝑢(𝑡)] 𝑑𝑡+ g(𝑡, 𝑥(𝑡))𝑑𝑤𝑡

𝑊 (𝑡, 𝑇, 𝑥) = inf
𝑢(⋅)∈𝒰

𝔼ℚ
𝑡,𝑥

{∫ 𝑇
𝑡

(
1

2
𝑢′(𝑠)𝑢(𝑠) + 𝑟(𝑠, 𝑥(𝑠))

)
𝑑𝑠

}
,

(3.3)

where 𝒰 denotes the class of admissible control laws, namely the control pro-
cesses for which the first equation in (3.3) has a unique solution in probabil-

ity law and the expected cost, namely 𝐽(𝑡, 𝑇, 𝑥, 𝑢(⋅)) := 𝔼ℚ
𝑡,𝑥

{∫ 𝑇
𝑡

(
1
2𝑢
′(𝑠)𝑢(𝑠)

+ 𝑟(𝑠, 𝑥(𝑠))
)
𝑑𝑠

}
, has finite value.

It is possible to prove (see [4]) the following

Proposition 3.2. The bond price 𝑝(𝑡, 𝑇, 𝑥) can be expressed as

𝑝(𝑡, 𝑇, 𝑥) = exp [−𝑊 (𝑡, 𝑇, 𝑥)] ,

where 𝑊 (𝑡, 𝑇, 𝑥) is the optimal value function of the stochastic control prob-
lem (3.3).

In the field of stochastic control, we have the following (see [5])

Sufficient Condition for Admissibility: Given a process 𝑢(⋅), suppose that there
exist some constants 𝑀 and 𝐾 such that:

∙ ∣∣𝑢(𝑡, 𝑥)∣∣ ≤𝑀(1 + ∣∣𝑥∣∣) for all (𝑡, 𝑥) ∈ [0, 𝑇 ]× ℝ𝑙;
∙ for any bounded 𝐵 ⊂ ℝ𝑙 and any 𝑇0 in (0, 𝑇 ),

∣∣𝑢(𝑡, 𝑥)− 𝑢(𝑡, 𝑦)∣∣ ≤ 𝐾∣∣𝑥− 𝑦∣∣
for all 𝑥, 𝑦 ∈ 𝐵 and 0 ≤ 𝑡 ≤ 𝑇0.

Then 𝑢(⋅) is an admissible control law. Notice that 𝐾 may depend on 𝐵 and 𝑇0,
while both 𝑀 and 𝐾 may depend on 𝑢(⋅).

Thus, a possible choice in order to have admissibility for the optimal control
law in (3.3) is to make the following
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Assumption 3.3. The gradient of 𝑊 (𝑡, 𝑇, 𝑥), solution of (3.2), satisfies a linear
growth condition, i.e.,

∣∣∇𝑥𝑊 (𝑡, 𝑇, 𝑥)∣∣ ≤𝑀(1 + ∣∣𝑥∣∣) for all 𝑥 ∈ ℝ𝑙,

for some constant 𝑀 > 0, uniformly in 𝑡 ∈ [0, 𝑇 ].
Remark 3.4. Notice that such a hypothesis is not void: it is satisfied, for example,
in the case of linear dynamics as discussed in [6].

Remark 3.5. Assumption 3.3 will turn out to be sufficient in order to assure that
the optimal control law of problem (3.3) is an admissible control law, in the sense
of the Sufficient Condition for Admissibility. However, such a hypothesis is not
strictly needed: it can be substituted by another one implying just admissibility
for the optimal control law.

4. Forward prices

Since now we have a complete control interpretation for the bond prices maturing
at a given 𝑇 , we consider the more complex problem of pricing derivatives on these
bonds that have a maturity 𝜏 , with 𝑡 ≤ 𝜏 ≤ 𝑇 . For this purpose, in this section we
first consider computing the expected value at time 𝑡 of the 𝑇 -bond price at time
𝜏 . We refer to such a quantity as the forward price of the 𝑇 -bond. More precisely,
using the forward measure 𝑄𝜏 , the one with 𝑝(𝑡, 𝜏, 𝑥(𝑡)) as numeraire, we want to
calculate

𝔼ℚ𝜏

𝑡,𝑥 {𝑝(𝜏, 𝑇, 𝑥(𝜏))} . (4.1)

Our purpose in this section is to obtain a control description for the forward
price (4.1). For this purpose we define the process 𝑥𝜏 (𝑡), with dynamics

𝑑𝑥𝜏 (𝑡) = [f(𝑡, 𝑥𝜏 (𝑡))− gg′(𝑡, 𝑥𝜏 (𝑡))∇𝑥𝑊 (𝑡, 𝜏, 𝑥𝜏 (𝑡))] 𝑑𝑡+ g(𝑡, 𝑥𝜏 (𝑡))𝑑𝑤𝑡,

𝑥𝜏 (0) = 0, (4.2)

where the function 𝑊 (𝑡, 𝜏, 𝑥) is the unique solution of the PDE in (3.2), with
𝑇 = 𝜏 .

Moreover, let us put

𝑝𝜏 (𝑡, 𝑇, 𝑥) := 𝔼ℚ
𝑡,𝑥 {𝑝(𝜏, 𝑇, 𝑥𝜏 (𝜏))} = 𝔼ℚ

𝑡,𝑥 {exp [−𝑊 (𝜏, 𝑇, 𝑥𝜏 (𝜏))]} , (4.3)

where the second equality comes from (3.1). The Kolmogorov backward equation
associated to (4.3) is⎧⎨⎩

∂
∂𝑡𝑝
𝜏 (𝑡, 𝑇, 𝑥) + [f ′(𝑡, 𝑥) − (∇𝑥𝑊 )′(𝑡, 𝜏, 𝑥)gg′(𝑡, 𝑥)]∇𝑥𝑝𝜏 (𝑡, 𝑇, 𝑥)

+ 1
2 tr (g

′(𝑡, 𝑥)∇𝑥𝑥𝑝𝜏 (𝑡, 𝑇, 𝑥)g(𝑡, 𝑥)) = 0

𝑝𝜏 (𝜏, 𝑇, 𝑥) = exp[−𝑊 (𝜏, 𝑇, 𝑥)].

(4.4)

Remark 4.1. Differently from what concerns equation (2.2), Assumption 2.1 is not
sufficient in order to guarantee uniqueness of the solution to (4.4). However, since
it is sufficient to require ∇𝑥𝑊 (𝑡, 𝜏, 𝑥) to have at most linear growth in 𝑥, under
Assumption 3.3, we indeed have uniqueness.
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Putting

𝑊 𝜏 (𝑡, 𝑇, 𝑥) := − ln 𝑝𝜏 (𝑡, 𝑇, 𝑥),
analogously to what has been made in the previous section, the PDE (4.4) becomes⎧⎨⎩

∂
∂𝑡𝑊

𝜏 (𝑡, 𝑇, 𝑥) + [f ′(𝑡, 𝑥) − (∇𝑥𝑊 )′(𝑡, 𝜏, 𝑥)gg′(𝑡, 𝑥)]∇𝑥𝑊 𝜏 (𝑡, 𝑇, 𝑥)

− 1
2 (∇𝑥𝑊 𝜏 )

′
(𝑡, 𝑇, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑊 𝜏 (𝑡, 𝑇, 𝑥)

+ 1
2 tr (g

′(𝑡, 𝑥)∇𝑥𝑥𝑊 𝜏 (𝑡, 𝑇, 𝑥)g(𝑡, 𝑥)) = 0

𝑊 𝜏 (𝜏, 𝑇, 𝑥) =𝑊 (𝜏, 𝑇, 𝑥).

(4.5)

For reasons of admissibility of the optimal control law (4.7) below, as explained in
Remark 3.5, we make the following

Assumption 4.2. The gradient of 𝑊 𝜏 (𝑡, 𝑇, 𝑥), solution of (4.5), has at most linear
growth, i.e.,

∣∣∇𝑥𝑊 𝜏 (𝑡, 𝑇, 𝑥)∣∣ ≤𝑀(1 + ∣∣𝑥∣∣) for all 𝑥 ∈ ℝ𝑙,

for some constant 𝑀 > 0, uniformly in 𝑡 ∈ [0, 𝑇 ].
Since it has a similar structure to (3.2), also the PDE (4.5) can be seen as

resulting from a HJB equation, namely (dropping the arguments of the functions)⎧⎨⎩
∂
∂𝑡𝑊

𝜏 + inf𝑢∈ℝ𝑘
{
[f ′ − (∇𝑥𝑊 )′gg′ + 𝑢′g′]∇𝑥𝑊 𝜏

+ 1
2 tr(g

′∇𝑥𝑥𝑊 𝜏g) + 1
2𝑢
′𝑢
}
= 0,

𝑊 𝜏 (𝜏, 𝑇, 𝑥) =𝑊 (𝜏, 𝑇, 𝑥)

(4.6)

with the usual solution

𝑢∗(𝑡, 𝑥;𝑊 𝜏 ) = −g′(𝑡, 𝑥)∇𝑥𝑊 𝜏 (𝑡, 𝑇, 𝑥). (4.7)

Thus, equation (4.6) is the HJB equation originating from the following sto-
chastic control problem⎧⎨⎩

𝑑𝑥𝜏 (𝑡) =
[
f(𝑡, 𝑥𝜏 (𝑡))− gg′(𝑡, 𝑥𝜏 (𝑡))∇𝑥𝑊 (𝑡, 𝜏, 𝑥𝜏 (𝑡))

+ g(𝑡, 𝑥𝜏 (𝑡))𝑢(𝑡)
]
𝑑𝑡+ g(𝑡, 𝑥𝜏 (𝑡))𝑑𝑤𝑡

𝑊 𝜏 (𝑡, 𝑇, 𝑥) = inf
𝑢(⋅)∈𝒰

𝔼ℚ
𝑡,𝑥

{∫ 𝜏
𝑡

1

2
𝑢′(𝑠)𝑢(𝑠)𝑑𝑠+𝑊 (𝜏, 𝑇, 𝑥𝜏 (𝜏))

}
.

(4.8)

The symbol 𝒰 denotes the class of the admissible control laws, for which the first
equation in (4.8) has a unique solution in probability law and the expected cost

𝐽(𝑡, 𝜏, 𝑥, 𝑢(⋅)) := 𝔼ℚ
𝑡,𝑥

{∫ 𝜏
𝑡

1
2𝑢
′(𝑠)𝑢(𝑠)𝑑𝑠 +𝑊 (𝜏, 𝑇, 𝑥𝜏 (𝜏))

}
has finite value.

Remark 4.3. For the well-posedness of a stochastic control problem, also a condi-
tion on the terminal cost is needed. More precisely, we have to require it to have
at most polynomial growth (again, see [5]). Notice that, thanks to Assumption
3.3, the stochastic control problem (4.8) satisfies this requirement. If we substitute
Assumption 3.3 with another one implying just admissibility in (3.3), we need to
require additionally that 𝑊 (𝑡, 𝑇, 𝑥) has at most polynomial growth in 𝑥.
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Now we are ready to give the control interpretation promised above for the
forward prices, based on problem (4.8). Indeed, it is possible to prove the following
(see [6])

Proposition 4.4. For 𝑡 ≤ 𝜏 , it holds

𝔼ℚ𝜏

𝑡,𝑥 {𝑝(𝜏, 𝑇, 𝑥(𝜏))} = 𝑝𝜏 (𝑡, 𝑇, 𝑥) = exp [−𝑊 𝜏 (𝑡, 𝑇, 𝑥)] .

5. Forward measures and a general pricing formula

In this section we show the existence of a close connection between the factor
process 𝑥𝜏 (⋅) defined in (4.2) and the forward measure ℚ𝜏 , for each 𝜏 > 0. More
precisely, for a given expectation taken with respect to the forward measure ℚ𝜏 ,
we are interested in expressing such an expected value by using the standard
martingale measure ℚ, by means of a suitable modification to the original factor
process 𝑥(⋅), evolving according to (2.1). This is specified in the following two
propositions.

Proposition 5.1. Given 𝜏 > 0, let 𝑡 be a fixed time-instant, with 0 ≤ 𝑡 ≤ 𝜏 , and let
𝑥 be a fixed vector in ℝ𝑙. Let 𝑥(𝑠), 𝑠 ∈ [𝑡, 𝜏 ], be the process satisfying (2.1) with
𝑥(𝑡) = 𝑥, and let 𝑥𝜏 (𝑠), 𝑠 ∈ [𝑡, 𝜏 ], be the process satisfying the dynamics in (4.8)
with 𝑥𝜏 (𝑡) = 𝑥. Then the random variable 𝑥(𝜏) has the same distribution under the
forward measure ℚ𝜏 (the one with numeraire 𝑝(𝑡, 𝜏, 𝑥(𝑡))) as the random variable
𝑥𝜏 (𝜏) under the standard martingale measure ℚ (the one with numeraire 𝐵(𝑡)).

This proposition can be proved analogously to Proposition 4.1 in [6].
The following proposition can now be obtained (see always [6]).

Proposition 5.2. Given a date of maturity 𝜏 and a 𝜏-claim 𝐹 (𝑥(𝜏)), its arbitrage-
free price at time 𝑡, with 𝑡 ≤ 𝜏 , is

𝜋(𝑡) = 𝔼ℚ
𝑡,𝑥

{
exp

[
−

∫ 𝜏
𝑡

𝑟(𝑠, 𝑥(𝑠))𝑑𝑠

]
⋅ 𝐹 (𝑥(𝜏))

}
= 𝑝(𝑡, 𝜏, 𝑥) ⋅ 𝔼ℚ

𝜏

𝑡,𝑥 {𝐹 (𝑥(𝜏))} .
Then, if 𝑊 (𝑡, 𝜏, 𝑥) is the unique solution of (3.2) with 𝑇 = 𝜏 , we have the following
representation for 𝜋(𝑡):

𝜋(𝑡) = exp [−𝑊 (𝑡, 𝜏, 𝑥)] ⋅ 𝔼ℚ
𝑡,𝑥 {𝐹 (𝑥𝜏 (𝜏))} .

5.1. Control interpretation for expectations under forward measures

Proposition 5.1 allows one to obtain a control description for expected values
with respect to forward measures. It will be achieved by introducing a further
control problem, obtained by adding a control term to the dynamics (4.2), i.e., by
adding a second control term to the original factor process dynamics (2.1) (indeed,
dynamics (4.2) originate from problem (3.3)). The result in this section somehow
generalizes what has been made in Section 4 for forward prices. More precisely, we
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have the following: considering expectations under a forward measure, let 𝑌 (𝑥) be
a real-valued positive function and define

𝑑(𝑡, 𝜏, 𝑥) := 𝔼ℚ𝜏

𝑡,𝑥 {𝑌 (𝑥(𝜏))} .
Thanks to Proposition 5.1, we get an alternative representation for 𝑑(𝑡, 𝜏, 𝑥),
namely

𝑑(𝑡, 𝜏, 𝑥) = 𝔼ℚ
𝑡,𝑥 {𝑌 (𝑥𝜏 (𝜏))} . (5.1)

The Kolmogorov backward equation associated to (5.1) is⎧⎨⎩
∂
∂𝑡𝑑(𝑡, 𝜏, 𝑥) + [f

′(𝑡, 𝑥)− (∇𝑥𝑊 )′(𝑡, 𝜏, 𝑥)gg′(𝑡, 𝑥)]∇𝑥𝑑(𝑡, 𝜏, 𝑥)
+ 1

2 tr (g
′(𝑡, 𝑥)∇𝑥𝑥𝑑(𝑡, 𝜏, 𝑥)g(𝑡, 𝑥)) = 0

𝑑(𝜏, 𝜏, 𝑥) = 𝑌 (𝑥).

As usual, we apply the logarithmic transform to 𝑑(𝑡, 𝜏, 𝑥), and so we define

𝑊𝑌 (𝑡, 𝜏, 𝑥) := − ln 𝑑(𝑡, 𝜏, 𝑥).
We have the following PDE for 𝑊𝑌 (𝑡, 𝜏, 𝑥)⎧⎨⎩

∂
∂𝑡𝑊

𝑌 (𝑡, 𝜏, 𝑥) + [f ′(𝑡, 𝑥)− (∇𝑥𝑊 )′(𝑡, 𝜏, 𝑥)gg′(𝑡, 𝑥)]∇𝑥𝑊𝑌 (𝑡, 𝜏, 𝑥)

− 1
2 (∇𝑥𝑊𝑌 )

′
(𝑡, 𝜏, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑊𝑌 (𝑡, 𝜏, 𝑥)

+ 1
2 tr

(
g′(𝑡, 𝑥)∇𝑥𝑥𝑊𝑌 (𝑡, 𝜏, 𝑥)g(𝑡, 𝑥)

)
= 0

𝑊𝑌 (𝜏, 𝜏, 𝑥) = − ln𝑌 (𝑥).
As in the previous sections, also this PDE results from a HJB equation, in partic-
ular the one originating from the stochastic control problem⎧⎨⎩

𝑑𝑥𝜏 (𝑡) =
[
f(𝑡, 𝑥𝜏 (𝑡)) − gg′(𝑡, 𝑥𝜏 (𝑡))∇𝑥𝑊 (𝑡, 𝜏, 𝑥𝜏 (𝑡))

+ g(𝑡, 𝑥𝜏 (𝑡))𝑢(𝑡)
]
𝑑𝑡+ g(𝑡, 𝑥𝜏 (𝑡))𝑑𝑤𝑡

𝑊𝑌 (𝑡, 𝜏, 𝑥) = inf
𝑢(⋅)∈𝒰

𝔼ℚ
𝑡,𝑥

{∫ 𝜏
𝑡

1

2
𝑢′(𝑠)𝑢(𝑠)𝑑𝑠− ln𝑌 (𝑥𝜏 (𝜏))

} (5.2)

where 𝒰 denotes the class of the control processes for which the first equa-
tion in (5.2) has a unique solution in probability law and the expected cost

𝐽(𝑡, 𝜏, 𝑥, 𝑢(⋅)) := 𝔼ℚ
𝑡,𝑥

{∫ 𝜏
𝑡

1
2𝑢
′(𝑠)𝑢(𝑠)𝑑𝑠 − ln𝑌 (𝑥𝜏 (𝜏))} has finite value.

Thus

𝑑(𝑡, 𝜏, 𝑥) = exp
[−𝑊𝑌 (𝑡, 𝜏, 𝑥)

]
,

with 𝑊𝑌 (𝑡, 𝜏, 𝑥) the optimal value function in (5.2).

Remark 5.3. Notice that we need to assume that 𝑌 (𝑥) is regular enough in order
for − ln𝑌 (𝑥) to have at most polynomial growth and for ∇𝑥𝑊𝑌 (𝑡, 𝜏, 𝑥) to have at
most linear growth (for reasons of well-posedness of the stochastic control prob-
lem (5.2) and admissibility of the resulting optimal control law, see Remarks 3.5
and 4.3).
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6. Swap rates

The main purpose of this paper is to apply the previous control approach to swap
measures. We use notations taken from [1] (see also [2]). Given a set of increasing
dates 𝑇0, 𝑇1, . . . , 𝑇𝑁 and choosing 𝑛 ∈ {0, . . . , 𝑁 − 1}, a fundamental quantity
arising in this context is the so-called swap rate 𝑅𝑛,𝑁 (𝑡, 𝑥(𝑡)), given by

𝑅𝑛,𝑁(𝑡, 𝑥(𝑡)) :=
𝑝(𝑡, 𝑇𝑛, 𝑥(𝑡)) − 𝑝(𝑡, 𝑇𝑁 , 𝑥(𝑡))

𝐶𝑛,𝑁 (𝑡, 𝑥(𝑡))
,

where

𝐶𝑛,𝑁 (𝑡, 𝑥(𝑡)) :=
∑𝑁

𝑖=𝑛+1
𝛼𝑖 ⋅ 𝑝(𝑡, 𝑇𝑖, 𝑥(𝑡)),

with 𝛼𝑖 := 𝑇𝑖−𝑇𝑖−1. Let ℚ𝑛,𝑁 be the swap measure, namely a probability measure,
equivalent to ℚ, under which 𝑅𝑛,𝑁 (𝑡, 𝑥(𝑡)) is a martingale. We thus have

𝔼ℚ𝑛,𝑁

𝑡,𝑥

{
𝑅𝑛,𝑁 (𝑇𝑛, 𝑥(𝑇𝑛))

}
=

𝑝(𝑡, 𝑇𝑛, 𝑥)− 𝑝(𝑡, 𝑇𝑁 , 𝑥)

𝐶𝑛,𝑁 (𝑡, 𝑥)
. (6.1)

Remark 6.1. In what follows we shall assume that

𝑝(𝑡, 𝑇𝑛, 𝑥) > 𝑝(𝑡, 𝑇𝑁 , 𝑥) for all (𝑡, 𝑥) ∈ [0, 𝑇𝑛]× ℝ𝑙.

This hypothesis is not restrictive at all, since (remember that 𝑝(𝑡, 𝑇𝑛, 𝑥) ≥
𝑝(𝑡, 𝑇𝑁 , 𝑥) if 𝑟(𝑡, 𝑥) ≥ 0) we have 𝑝(𝑡, 𝑇𝑛, 𝑥) = 𝑝(𝑡, 𝑇𝑁 , 𝑥) if and only if 𝑟(𝑠, 𝑥(𝑠)) =
0 a.e. in [𝑇𝑛, 𝑇𝑁 ]. In other words, the above assumption is always satisfied in the
real world.

We are interested in obtaining a control description for (6.1). First of all, we
prove the following

Lemma 6.2. Let 𝑇0, 𝑇1, . . . , 𝑇𝑁 be a set of increasing maturities and let 𝑝(𝑡, 𝑇𝑖, 𝑥)
be the price of the zero-coupon 𝑇𝑖-bond at time 𝑡, for 𝑖 = 0, 1, . . . , 𝑁 . Let
𝑘 ∈ {0, 1, . . . , 𝑁 − 1} and let 𝑃 (𝑡, 𝑥) be an arbitrary linear combination of bonds
evaluated at time 𝑡 for 𝑥(𝑡) = 𝑥, i.e.,

𝑃 (𝑡, 𝑥) =
∑𝑁

𝑖=𝑘
𝛽𝑖 ⋅ 𝑝(𝑡, 𝑇𝑖, 𝑥),

for some 𝛽𝑖 ∈ ℝ, 𝑖 = 𝑘, . . . , 𝑁 . Then 𝑃 (𝑡, 𝑥) is the unique solution of the PDE⎧⎨⎩
∂
∂𝑡𝑃 (𝑡, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝑃 (𝑡, 𝑥) + 1

2 tr (g
′(𝑡, 𝑥)∇𝑥𝑥𝑃 (𝑡, 𝑥)g(𝑡, 𝑥))

− 𝑟(𝑡, 𝑥)𝑃 (𝑡, 𝑥) = 0

𝑃 (𝑇𝑘, 𝑥) =
∑𝑁
𝑖=𝑘 𝛽𝑖 ⋅ 𝑝(𝑇𝑘, 𝑇𝑖, 𝑥).

Proof. From Theorem 2.2, each function 𝑝(𝑡, 𝑇𝑖, 𝑥) satisfies

∂
∂𝑡𝑝(𝑡, 𝑇𝑖, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝑝(𝑡, 𝑇𝑖, 𝑥) + 1

2 tr (g
′(𝑡, 𝑥)∇𝑥𝑥𝑝(𝑡, 𝑇𝑖, 𝑥)g(𝑡, 𝑥))

−𝑟(𝑡, 𝑥)𝑝(𝑡, 𝑇𝑖, 𝑥) = 0.

Since 𝑃 (𝑡, 𝑥) is a linear combination of them, it is solution of the same PDE. The
choice of the boundary condition is obvious, while the uniqueness of the solution
comes from Assumption 2.1. □
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Using Lemma 6.2, 𝐶𝑛,𝑁 (𝑡, 𝑥) satisfies (from now on, we shall omit the super-
script 𝑛,𝑁 in all the PDEs)⎧⎨⎩

∂
∂𝑡𝐶(𝑡, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝐶(𝑡, 𝑥) + 1

2 tr (g
′(𝑡, 𝑥)∇𝑥𝑥𝐶(𝑡, 𝑥)g(𝑡, 𝑥))

− 𝑟(𝑡, 𝑥)𝐶(𝑡, 𝑥) = 0

𝐶(𝑇𝑛, 𝑥) =
∑𝑁
𝑖=𝑛+1 𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥).

(6.2)

Let us put (making explicit the dependence on the instant 𝑇𝑛)

𝑍𝑛,𝑁 (𝑡, 𝑇𝑛, 𝑥) := − ln𝐶𝑛,𝑁 (𝑡, 𝑥). (6.3)

From (6.2), 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥) is the unique (for the same reasons as in Remark
2.3) solution of⎧⎨⎩

∂
∂𝑡𝑍(𝑡, 𝑇𝑛, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥)

− 1
2 (∇𝑥𝑍)′ (𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥)

+ 1
2 tr (g

′(𝑡, 𝑥)∇𝑥𝑥𝑍(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥)) + 𝑟(𝑡, 𝑥) = 0

𝑍(𝑇𝑛, 𝑇𝑛, 𝑥) = − ln∑𝑁
𝑖=𝑛+1 𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥).

(6.4)

It is easy to recognize that this PDE has the same form as (3.2), except for
the terminal condition. Thus one can carry out the same arguments as in the proof
of Proposition 3.2 (given in [6]), observing that (6.4) can be seen as originating
from the HJB equation (dropping the arguments of the functions)

∂

∂𝑡
𝑍 + inf

𝑢∈ℝ𝑘

{
[f ′ + 𝑢′g′]∇𝑥𝑍 +

1

2
tr (g′ ∇𝑥𝑥𝑍 g) +

1

2
𝑢′𝑢+ 𝑟

}
= 0,

whose optimal control is

𝑢∗(𝑡, 𝑥;𝑍𝑛,𝑁 ) = −g′(𝑡, 𝑥)∇𝑥𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥). (6.5)

In order to guarantee admissibility for such a control law, in the sense of the
Sufficient Condition for Admissibility in Section 3, we make the following

Assumption 6.3. The gradient of 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥), solution of (6.4), satisfies a linear
growth condition, i.e.,

∣∣∇𝑥𝑍𝑛,𝑁 (𝑡, 𝑇𝑛, 𝑥)∣∣ ≤𝑀(1 + ∣∣𝑥∣∣) for all 𝑥 ∈ ℝ𝑙,

for some constant 𝑀 > 0, uniformly in 𝑡 ∈ [0, 𝑇 ].
Such a hypothesis is not too restrictive. Indeed, we have the following

Lemma 6.4. Under Assumption 3.3, and supposing that 𝑟(𝑡, 𝑥) ≥ 0, 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥)
has at most quadratic growth.

Proof. Given two dates of maturity 𝑇1, 𝑇2, with 𝑇1 < 𝑇2, since the spot rate is
non-negative, we have 𝑝(𝑡, 𝑇1, 𝑥) ≥ 𝑝(𝑡, 𝑇2, 𝑥). Using this fact, we get

𝑝(𝑡, 𝑇𝑁 , 𝑥)

𝑁∑
𝑖=𝑛+1

𝛼𝑖 ≤ 𝐶𝑛,𝑁 (𝑡, 𝑥) =

𝑁∑
𝑖=𝑛+1

𝛼𝑖 ⋅ 𝑝(𝑡, 𝑇𝑖, 𝑥) ≤ 𝑝(𝑡, 𝑇𝑛+1, 𝑥)

𝑁∑
𝑖=𝑛+1

𝛼𝑖.
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So, remembering (3.1), we obtain

− ln
𝑁∑

𝑖=𝑛+1

𝛼𝑖 +𝑊 (𝑡, 𝑇𝑛+1, 𝑥) ≤ 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥) ≤ − ln
𝑁∑

𝑖=𝑛+1

𝛼𝑖 +𝑊 (𝑡, 𝑇𝑁 , 𝑥).

Since Assumption 3.3 implies that 𝑊 (𝑡, 𝑇𝑛+1, 𝑥) and 𝑊 (𝑡, 𝑇𝑁 , 𝑥) have at most
quadratic growth, the proof is concluded. □

The function 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥) in (6.3) is now the optimal value function of the
stochastic control problem⎧⎨⎩

𝑑𝑥(𝑡) = [f(𝑡, 𝑥(𝑡)) + g(𝑡, 𝑥(𝑡))𝑢(𝑡)] 𝑑𝑡+ g(𝑡, 𝑥(𝑡))𝑑𝑤𝑡

𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥) = inf𝑢(⋅)∈𝒰 𝔼ℚ
𝑡,𝑥{

∫ 𝑇𝑛
𝑡

(
1
2𝑢
′(𝑠)𝑢(𝑠) + 𝑟(𝑠, 𝑥(𝑠))

)
𝑑𝑠

− ln∑𝑁
𝑖=𝑛+1 𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥(𝑇𝑛))},

(6.6)

where 𝒰 is the class of the admissible control laws, for which the first equation in
(6.6) has a unique solution in probability law and the expected cost

𝐽(𝑡, 𝑇𝑛, 𝑥, 𝑢(⋅))

:= 𝔼ℚ
𝑡,𝑥

{∫ 𝑇𝑛
𝑡

(
1

2
𝑢′(𝑠)𝑢(𝑠) + 𝑟(𝑠, 𝑥(𝑠))

)
𝑑𝑠− ln

𝑁∑
𝑖=𝑛+1

𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥(𝑇𝑛))
}

has finite value.
Substituting (6.5) into the dynamics in (6.6), we obtain

𝑑𝑥𝑛,𝑁 (𝑡) =
[
f(𝑡, 𝑥𝑛,𝑁 (𝑡))− gg′(𝑡, 𝑥𝑛,𝑁 (𝑡))∇𝑥𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥𝑛,𝑁 (𝑡))

]
𝑑𝑡

+ g(𝑡, 𝑥𝑛,𝑁 (𝑡))𝑑𝑤𝑡. (6.7)

In order to give an idea of the significance of the dynamics (6.7), we compute
the Girsanov kernel 𝐿𝑛,𝑁 of the measure transformation from ℚ to the forward
measure ℚ𝑛,𝑁 . By using (6.4), we first have

𝑑𝑍(𝑡, 𝑇𝑛, 𝑥) =
∂

∂𝑡
𝑍(𝑡, 𝑇𝑛, 𝑥) 𝑑𝑡+ f ′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥) 𝑑𝑡

+
1

2
tr (g′(𝑡, 𝑥)∇𝑥𝑥𝑍(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥)) 𝑑𝑡

+ (∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥) 𝑑𝑤𝑡
=

[
1

2
(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥)− 𝑟(𝑡, 𝑥)

]
𝑑𝑡

+ (∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥) 𝑑𝑤𝑡.
Thus

𝑑𝐶(𝑡, 𝑥) = 𝑑𝑒−𝑍(𝑡,𝑇𝑛,𝑥)

= − 𝐶(𝑡, 𝑥) 𝑑𝑍(𝑡, 𝑇𝑛, 𝑥)

+
1

2
𝐶(𝑡, 𝑥)(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥) 𝑑𝑡
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= − 𝐶(𝑡, 𝑥)

[
1

2
(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥)− 𝑟(𝑡, 𝑥)

]
𝑑𝑡

− 𝐶(𝑡, 𝑥)(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥) 𝑑𝑤𝑡
+
1

2
𝐶(𝑡, 𝑥)(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝑍(𝑡, 𝑇𝑛, 𝑥) 𝑑𝑡

= 𝐶(𝑡, 𝑥)𝑟(𝑡, 𝑥) 𝑑𝑡− 𝐶(𝑡, 𝑥)(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥) 𝑑𝑤𝑡,

and so, recalling (see [1]) that 𝐿𝑛,𝑁 (𝑡) is given by 𝐿𝑛,𝑁(𝑡) = 𝐶(𝑡,𝑥)
𝐵(𝑡)𝐶(0,0) , namely by

the normalized ratio of the numéraires,

𝑑𝐿𝑛,𝑁(𝑡) = 𝑑

(
𝐶(𝑡, 𝑥)

𝐵(𝑡)𝐶(0, 0)

)
=

𝑑𝐶(𝑡, 𝑥)

𝐵(𝑡)𝐶(0, 0)
+

𝐶(𝑡, 𝑥)

𝐶(0, 0)
𝑑

(
1

𝐵(𝑡)

)
(6.8)

=
𝐶(𝑡, 𝑥)

𝐵(𝑡)𝐶(0, 0)
𝑟(𝑡, 𝑥) 𝑑𝑡− 𝐶(𝑡, 𝑥)

𝐵(𝑡)𝐶(0, 0)
(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥) 𝑑𝑤𝑡

− 𝐶(𝑡, 𝑥)

𝐵(𝑡)𝐶(0, 0)
𝑟(𝑡, 𝑥) 𝑑𝑡

= − 𝐿𝑛,𝑁(𝑡)(∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥) 𝑑𝑤𝑡.

Then the Girsanov kernel is exactly −g′(𝑡, 𝑥(𝑡))∇𝑥𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥(𝑡)), i.e., the mini-
mizer (6.5). It follows that (6.7) represents the factor process dynamics under the
forward measure ℚ𝑛,𝑁 . This leads us to claim that the expected value

𝔼ℚ𝑛,𝑁

𝑡,𝑥

{
𝑅𝑛,𝑁(𝑇𝑛, 𝑥(𝑇𝑛))

}
can be computed as an expectation with respect to the standard martingale mea-
sureℚ, assuming that the factor process evolves according to (6.7), instead of (2.1),
𝑥(⋅) and 𝑥𝑛,𝑁 (⋅) having the same initial condition 𝑥 and 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥) being the
solution of (6.4).

Indeed, defining the quantity

ℛ𝑛,𝑁 (𝑡, 𝑥) := 𝔼ℚ
𝑡,𝑥

{
𝑅𝑛,𝑁 (𝑇𝑛, 𝑥

𝑛,𝑁 (𝑇𝑛))
}
,

we can prove the following

Proposition 6.5. For 𝑡 ≤ 𝑇𝑛, it holds

𝔼ℚ𝑛,𝑁

𝑡,𝑥

{
𝑅𝑛,𝑁(𝑇𝑛, 𝑥(𝑇𝑛))

}
= ℛ𝑛,𝑁 (𝑡, 𝑥).

Proof. From (6.1), we have to show that

ℛ𝑛,𝑁 (𝑡, 𝑥) = 𝑝(𝑡, 𝑇𝑛, 𝑥) − 𝑝(𝑡, 𝑇𝑁 , 𝑥)

𝐶𝑛,𝑁 (𝑡, 𝑥)
. (6.9)
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Inspired by the proof of Proposition 4.4 (given in [6]), let 𝑀(𝑡, 𝑥) := 𝑝(𝑡, 𝑇𝑛, 𝑥)−
𝑝(𝑡, 𝑇𝑁 , 𝑥). From Lemma 6.2, 𝑀(𝑡, 𝑥) satisfies⎧⎨⎩

∂
∂𝑡𝑀(𝑡, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝑀(𝑡, 𝑥) + 1

2 tr (g
′(𝑡, 𝑥)∇𝑥𝑥𝑀(𝑡, 𝑥)g(𝑡, 𝑥))

− 𝑟(𝑡, 𝑥)𝑀(𝑡, 𝑥) = 0

𝑀(𝑇𝑛, 𝑥) = 𝑝(𝑇𝑛, 𝑇𝑛, 𝑥)− 𝑝(𝑇𝑛, 𝑇𝑁 , 𝑥) = 1− 𝑝(𝑇𝑛, 𝑇𝑁 , 𝑥).

Defining (notice that, according to Remark 6.1, we may assume 𝑀(𝑡, 𝑥) > 0)

𝐷(𝑡, 𝑥) := − ln𝑀(𝑡, 𝑥),

this 𝐷(𝑡, 𝑥) is the solution of⎧⎨⎩
∂
∂𝑡𝐷(𝑡, 𝑥) + f ′(𝑡, 𝑥)∇𝑥𝐷(𝑡, 𝑥) − 1

2 (∇𝑥𝐷)′ (𝑡, 𝑥)gg′(𝑡, 𝑥)∇𝑥𝐷(𝑡, 𝑥)
+ 1

2 tr (g
′(𝑡, 𝑥)∇𝑥𝑥𝐷(𝑡, 𝑥)g(𝑡, 𝑥)) + 𝑟(𝑡, 𝑥) = 0

𝐷(𝑇𝑛, 𝑥) = − ln (1− 𝑝(𝑇𝑛, 𝑇𝑁 , 𝑥)) .

(6.10)

Moreover, the Kolmogorov backward equation associated toℛ𝑛,𝑁 (𝑡, 𝑥) is (we write
only ℛ instead of ℛ𝑛,𝑁 )⎧⎨⎩

∂
∂𝑡ℛ(𝑡, 𝑥) + [f ′(𝑡, 𝑥) − (∇𝑥𝑍)′(𝑡, 𝑥)gg′(𝑡, 𝑥)]∇𝑥ℛ(𝑡, 𝑥)

+ 1
2 tr (g

′(𝑡, 𝑥)∇𝑥𝑥ℛ(𝑡, 𝑥)g(𝑡, 𝑥)) = 0

ℛ(𝑇𝑛, 𝑥) = 1−𝑝(𝑇𝑛,𝑇𝑁 ,𝑥)∑
𝑁
𝑖=𝑛+1 𝛼𝑖⋅𝑝(𝑇𝑛,𝑇𝑖,𝑥)

.

Again, applying a logarithmic transform to ℛ𝑛,𝑁 (𝑡, 𝑥) and making explicit the
dependence on the time-instant 𝑇𝑛, we put

𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) := − lnℛ𝑛,𝑁 (𝑡, 𝑥).
The function 𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) satisfies

⎧⎨
⎩

∂
∂𝑡
𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) + [f ′(𝑡, 𝑥)− (∇𝑥𝑍)′(𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)]∇𝑥𝑊ℛ(𝑡, 𝑇𝑛, 𝑥)

− 1
2
(∇𝑥𝑊ℛ)

′
(𝑡, 𝑇𝑛, 𝑥)gg

′(𝑡, 𝑥)∇𝑥𝑊ℛ(𝑡, 𝑇𝑛, 𝑥)

+ 1
2
tr
(
g′(𝑡, 𝑥)∇𝑥𝑥𝑊ℛ(𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥)

)
= 0

𝑊ℛ(𝑇𝑛, 𝑇𝑛, 𝑥) = − ln 1−𝑝(𝑇𝑛,𝑇𝑁 ,𝑥)∑𝑁
𝑖=𝑛+1 𝛼𝑖⋅𝑝(𝑇𝑛,𝑇𝑖,𝑥)

.

(6.11)

In order to prove (6.9), it suffices to show that

exp
[−𝑊ℛ(𝑡, 𝑇𝑛, 𝑥)

]
=

exp [−𝐷(𝑡, 𝑥)]

exp [−𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥)]
,

i.e., that

𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) + 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥) = 𝐷(𝑡, 𝑥).

Let

�̃� (𝑡, 𝑥) :=𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) + 𝑍𝑛,𝑁 (𝑡, 𝑇𝑛, 𝑥).
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From equations (6.11) for 𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) and (6.4) for 𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥), we have

− ∂

∂𝑡
�̃� = − ∂

∂𝑡
𝑊ℛ − ∂

∂𝑡
𝑍 = f ′∇𝑥𝑊ℛ − (∇𝑥𝑍)′ gg′∇𝑥𝑊ℛ

− 1

2

(∇𝑥𝑊ℛ)′ gg′∇𝑥𝑊ℛ +
1

2
tr

(
g′∇𝑥𝑥𝑊ℛg

)
+ f ′∇𝑥𝑍 − 1

2
(∇𝑥𝑍)′ gg′∇𝑥𝑍 +

1

2
tr (g′∇𝑥𝑥𝑍g) + 𝑟

= f ′
[∇𝑥𝑊ℛ +∇𝑥𝑍

]
+
1

2
tr
(
g′

[∇𝑥𝑥𝑊ℛ +∇𝑥𝑥𝑍
]
g
)

− 1

2

[∇𝑥𝑊ℛ +∇𝑥𝑍
]′
gg′

[∇𝑥𝑊ℛ +∇𝑥𝑍
]
+ 𝑟

= f ′∇𝑥�̃� +
1

2
tr(g′∇𝑥𝑥�̃�g)− 1

2
(∇𝑥�̃� )′gg′∇𝑥�̃� + 𝑟.

The boundary condition is

�̃� (𝑇𝑛, 𝑥) =𝑊ℛ(𝑇𝑛, 𝑇𝑛, 𝑥) + 𝑍𝑛,𝑁 (𝑇𝑛, 𝑇𝑛, 𝑥)

= − ln 1− 𝑝(𝑇𝑛, 𝑇𝑁 , 𝑥)∑𝑁
𝑖=𝑛+1 𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥)

− ln
𝑁∑

𝑖=𝑛+1

𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥)

= − ln (1− 𝑝(𝑇𝑛, 𝑇𝑁 , 𝑥))

= 𝐷(𝑇𝑛, 𝑥).

Thus, �̃� (𝑡, 𝑥) satisfies the same PDE as 𝐷(𝑡, 𝑥), namely the PDE in (6.10), and
has the same terminal value. Since the equation in (6.10) has unique solution (for

the same reasons as in Remark 2.3) and is satisfied by both �̃� (𝑡, 𝑥) and 𝐷(𝑡, 𝑥),
we get

𝐷(𝑡, 𝑥) = �̃� (𝑡, 𝑥) =𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) + 𝑍𝑛,𝑁 (𝑡, 𝑇𝑛, 𝑥) for 𝑡 ≤ 𝑇𝑛. □

Proposition 6.5 leads to a control interpretation for expectations on swap
rates as in (6.1). As in Sections 3 and 4, in order to have also for (6.6) an admissible
control problem we make the following

Assumption 6.6. The gradient of 𝑊ℛ(𝑡, 𝑇𝑛, 𝑥), solution of (6.11), has at most
linear growth, i.e.,

∣∣∇𝑥𝑊ℛ(𝑡, 𝑇𝑛, 𝑥)∣∣ ≤𝑀(1 + ∣∣𝑥∣∣) for all 𝑥 ∈ ℝ𝑙,

for some constant 𝑀 > 0, uniformly in 𝑡 ∈ [0, 𝑇 ].
The PDE in (6.11) can be seen as resulting from the HJB equation

∂

∂𝑡
𝑊ℛ+ inf

𝑢∈ℝ𝑘

{
[f ′ − (∇𝑥𝑍)′gg′ + 𝑢′g′]∇𝑥𝑊ℛ +

1

2
tr

(
g′∇𝑥𝑥𝑊ℛg

)
+
1

2
𝑢′𝑢

}
= 0.

Thus, we obtain

𝔼ℚ𝑛,𝑁

𝑡,𝑥

{
𝑅𝑛,𝑁(𝑇𝑛, 𝑥(𝑇𝑛))

}
= exp

[−𝑊ℛ(𝑡, 𝑇𝑛, 𝑥)
]
,
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where𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) is the optimal value function of the stochastic control problem⎧⎨⎩
𝑑𝑥𝑛,𝑁 (𝑡) = [f(𝑡, 𝑥𝑛,𝑁 (𝑡))− gg′(𝑡, 𝑥𝑛,𝑁 (𝑡))∇𝑥𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥𝑛,𝑁 (𝑡))

+ g(𝑡, 𝑥𝑛,𝑁 (𝑡))𝑢(𝑡)]𝑑𝑡 + g(𝑡, 𝑥𝑛,𝑁 (𝑡))𝑑𝑤𝑡

𝑊ℛ(𝑡, 𝑇𝑛, 𝑥) = inf𝑢(⋅)∈𝒰 𝔼ℚ
𝑡,𝑥

{∫ 𝑇𝑛
𝑡

1
2𝑢
′(𝑠)𝑢(𝑠)𝑑𝑠− ln 1−𝑝(𝑇𝑛,𝑇𝑁 ,𝑥𝑛,𝑁 (𝑇𝑛))∑

𝑁
𝑖=𝑛+1 𝛼𝑖⋅𝑝(𝑇𝑛,𝑇𝑖,𝑥𝑛,𝑁(𝑇𝑛))

}
with 𝒰 denoting again the class of the admissible control laws, for which the first
equation in the control problem above has a unique solution in probability law
and the expected cost

𝐽(𝑡, 𝑇𝑛, 𝑥, 𝑢(⋅)) := 𝔼ℚ
𝑡,𝑥

{∫ 𝑇𝑛
𝑡

1

2
𝑢′(𝑠)𝑢(𝑠)𝑑𝑠 − ln 1− 𝑝(𝑇𝑛, 𝑇𝑁 , 𝑥

𝑛,𝑁 (𝑇𝑛))∑𝑁
𝑖=𝑛+1 𝛼𝑖 ⋅ 𝑝(𝑇𝑛, 𝑇𝑖, 𝑥𝑛,𝑁 (𝑇𝑛))

}
has finite value.

7. Swap measures and a general pricing formula

Analogously to what has been made in Section 5, it is possible to establish a
connection between the factor process 𝑥𝑛,𝑁 (⋅) and the swap measure ℚ𝑛,𝑁 ; more
precisely, such a process is the key element in order to calculate expectations under
ℚ𝑛,𝑁 by using the standard martingale measure ℚ. Indeed, we have the following

Proposition 7.1. Let 𝑇0, 𝑇1, . . . , 𝑇𝑁 be a set of increasing maturities. Fix a vector
𝑥 in ℝ𝑙, 𝑛 ∈ {0, 1, . . . , 𝑁 − 1} and a time-instant 𝑡, with 0 ≤ 𝑡 ≤ 𝑇𝑛. Let 𝑥(𝑠),
𝑠 ∈ [𝑡, 𝑇𝑛], be the process satisfying (2.1) with 𝑥(𝑡) = 𝑥, and let 𝑥𝑛,𝑁 (𝑠), 𝑠 ∈ [𝑡, 𝑇𝑛],
be the process satisfying (6.7) with 𝑥𝑛,𝑁 (𝑡) = 𝑥. Then the random variable 𝑥(𝑇𝑛)
has the same distribution under the swap measure ℚ𝑛,𝑁 (the one with numeraire
𝐶𝑛,𝑁 (𝑡, 𝑥(𝑡))) as the random variable 𝑥𝑛,𝑁 (𝑇𝑛) under the standard martingale
measure ℚ (the one with numeraire 𝐵(𝑡)).

Proof. The proof is analogous to the one of Proposition 4.1 in [6] and we outline
here its main steps. We recall that (see (6.8))

𝑑𝐿𝑛,𝑁(𝑠) = −𝐿𝑛,𝑁(𝑠)(∇𝑥𝑍)′(𝑠, 𝑇𝑛, 𝑥)g(𝑠, 𝑥) 𝑑𝑤𝑠,
i.e., the Girsanov kernel of the measure transformation from ℚ to ℚ𝑛,𝑁 is

𝜎(𝑠) = −g′(𝑠, 𝑥(𝑠))∇𝑥𝑍𝑛,𝑁(𝑠, 𝑇𝑛, 𝑥(𝑠)).
Thus, the process 𝑤𝑄

𝑛,𝑁

𝑠 , defined by

𝑑𝑤𝑄
𝑛,𝑁

𝑠 = 𝑑𝑤𝑄𝑠 + g′(𝑠, 𝑥(𝑠))∇𝑥𝑍𝑛,𝑁(𝑠, 𝑇𝑛, 𝑥(𝑠))𝑑𝑠, (7.1)

is a Wiener process under ℚ𝑛,𝑁 . Consider the factor process 𝑥(⋅), satisfying (2.1)
under ℚ. Substituting (7.1) into (2.1), we get (6.7) under ℚ𝑛,𝑁 . Since 𝑥(𝑡) =
𝑥𝑛,𝑁 (𝑡) = 𝑥, the distribution is the same. □

We also deduce a pricing equation in the following analog of Proposition 5.2.
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Proposition 7.2. Given a date of maturity 𝑇𝑛, a 𝑇𝑛-claim 𝐹 (𝑥(𝑇𝑛)), whose
arbitrage-free price at time 𝑡, with 𝑡 ≤ 𝑇𝑛, is

𝜋(𝑡) = 𝔼ℚ
𝑡,𝑥

{
exp

[
−

∫ 𝑇𝑛
𝑡

𝑟(𝑠, 𝑥(𝑠))𝑑𝑠

]
⋅ 𝐹 (𝑥(𝑇𝑛))

}
= 𝐶𝑛,𝑁 (𝑡, 𝑥) ⋅ 𝔼ℚ𝑛,𝑁

𝑡,𝑥

{
𝐹 (𝑥(𝑇𝑛))

𝐶𝑛,𝑁 (𝑇𝑛, 𝑥(𝑇𝑛))

}
,

this price 𝜋(𝑡) admits a representation of the form

𝜋(𝑡) = exp
[−𝑍𝑛,𝑁(𝑡, 𝑇𝑛, 𝑥)

] ⋅ 𝔼ℚ
𝑡,𝑥

{
𝐹 (𝑥𝑛,𝑁 (𝑇𝑛))

𝐶𝑛,𝑁 (𝑇𝑛, 𝑥𝑛,𝑁 (𝑇𝑛))

}
,

where 𝑍𝑛,𝑁 (𝑡, 𝑇𝑛, 𝑥) is the unique solution of (6.4).

7.1. Control interpretation for expectations under swap measures

By proceeding exactly as in Subsection 5.1, it is possible to obtain a control de-
scription for expectations with respect to swap measures. Given a positive function
𝑉 (𝑥), we put

ℰ(𝑡, 𝑇𝑛, 𝑥) := 𝔼ℚ𝑛,𝑁

𝑡,𝑥 {𝑉 (𝑥(𝑇𝑛))}
and making use of Proposition 7.1, we get

ℰ(𝑡, 𝑇𝑛, 𝑥) = 𝔼ℚ
𝑡,𝑥

{
𝑉 (𝑥𝑛,𝑁 (𝑇𝑛))

}
. (7.2)

Following the standard procedure, we write the Kolmogorov backward equa-
tion associated to (7.2), and then put

𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥) := − ln ℰ(𝑡, 𝑇𝑛, 𝑥).
The function 𝑊𝑉 satisfies⎧⎨⎩

∂
∂𝑡𝑊

𝑉 (𝑡, 𝑇𝑛, 𝑥) +
[
f ′(𝑡, 𝑥) − (∇𝑥𝑍𝑛,𝑁)′(𝑡, 𝑇𝑛, 𝑥)gg′(𝑡, 𝑥)

]∇𝑥𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥)

− 1
2 (∇𝑥𝑊𝑉 )

′
(𝑡, 𝑇𝑛, 𝑥)gg

′(𝑡, 𝑥)∇𝑥𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥)

+ 1
2 tr

(
g′(𝑡, 𝑥)∇𝑥𝑥𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥)g(𝑡, 𝑥)

)
= 0

𝑊𝑉 (𝑇𝑛, 𝑇𝑛, 𝑥) = − ln𝑉 (𝑥).
Our control interpretation is given by the fact that 𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥) can be seen

also as the optimal value function of the stochastic control problem⎧⎨⎩
𝑑𝑥𝑛,𝑁 (𝑡) = [f(𝑡, 𝑥𝑛,𝑁 (𝑡))− gg′(𝑡, 𝑥𝑛,𝑁 (𝑡))∇𝑥𝑍𝑛,𝑁 (𝑡, 𝑇𝑛, 𝑥𝑛,𝑁 (𝑡))

+ g(𝑡, 𝑥𝑛,𝑁 (𝑡))𝑢(𝑡)]𝑑𝑡 + g(𝑡, 𝑥𝑛,𝑁 (𝑡))𝑑𝑤𝑡

𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥) = inf𝑢(⋅)∈𝒰 𝔼ℚ
𝑡,𝑥

{∫ 𝑇𝑛
𝑡

1
2𝑢
′(𝑠)𝑢(𝑠)𝑑𝑠− ln𝑉 (

𝑥𝑛,𝑁 (𝑇𝑛)
)} (7.3)

where 𝒰 denotes the class of the control processes for which the first equa-
tion in (7.3) has a unique solution in probability law and the expected cost

𝐽(𝑡, 𝑇𝑛, 𝑥, 𝑢(⋅)) := 𝔼ℚ
𝑡,𝑥

{∫ 𝑇𝑛
𝑡

1
2𝑢
′(𝑠)𝑢(𝑠)𝑑𝑠− ln𝑉 (

𝑥𝑛,𝑁 (𝑇𝑛)
)}

has finite value. As

in Subsection 5.1, we need to assume that 𝑉 (𝑥) is regular enough in order to have
a well-posed stochastic control problem and an admissible optimal control law,
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i.e., in order for − ln𝑉 (𝑥) to have at most polynomial growth and for the gradient
of 𝑊𝑉 (𝑡, 𝑇𝑛, 𝑥) to have at most linear growth.

Remark 7.3. It is easy to see that the entire argument in Sections 6 and 7 works
exactly as for the forward measures. Indeed, in both cases:

∙ the logarithm of the numeraire is the optimal value function of a stochastic
control problem (see (3.3) for forward measures and (6.6) for swap measures);

∙ the optimal control law 𝑢∗(⋅) coincides with the Girsanov kernel of the mea-
sure transformation from ℚ to the new martingale measure, when discussing
forward prices and swap rates respectively;

∙ the optimally controlled factor process is distributed under ℚ as the original
factor process under the equivalent martingale measure (compare Proposi-
tions 5.1 and 7.1);

∙ a second control problem (see (5.2) and (7.3)), obtained by further controlling
the factor process, permits to give a control interpretation to all expectations.
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Affine Variance Swap Curve Models

Damir Filipović

Abstract. This paper provides a brief overview of the stochastic modeling of
variance swap curves. Focus is on affine factor models. We propose a novel
drift parametrization which assures that the components of the state process
can be matched with any pre-specified points on the variance swap curve.
This should facilitate the empirical estimation for such stochastic models.
Moreover, sufficient and yet flexible conditions that guarantee positivity of
the rates are readily available. We finally discuss the relation and differences
to affine yield-factor models introduced by Duffie and Kan [8]. It turns out
that, in contrast to variance swap models, their yield factor representation
requires imposing constraints on systems of nonlinear equations that are often
not solvable in closed form.
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Keywords. Affine variance swap rate factor models, Variance swaps, VIX.

1. Variance swaps

Variance swap rates are becoming increasingly available over-the-counter at many
different maturities. It becomes vital to design and estimate stochastic term struc-
ture models for the variance swap rates, see, e.g., Carr and Wu [3]. We first give
a brief overview of the stochastic modeling of variance swap curves.

Let 𝑆 denote the price process of an underlying stock index modeled on some
filtered probability space (Ω,ℱ , (ℱ𝑡)𝑡≥0,ℚ). We assume that ℚ is a risk-neutral
pricing measure, and that 𝑆 is a semimartingale of the form

𝑑𝑆𝑡
𝑆𝑡−

= 𝑟𝑡 𝑑𝑡+ 𝜎𝑡 𝑑𝑊𝑡 +

∫
ℝ

(e𝑥 − 1) (𝜇(𝑑𝑡, 𝑑𝑥)− 𝜈𝑡(𝑑𝑥) 𝑑𝑡) .

Here 𝑊 is a standard Brownian motion, and 𝜇(𝑑𝑡, 𝑑𝑥) denotes the jump measure
associated to log𝑆. That is, Δ log𝑆𝑡 =

∫
ℝ
𝑥𝜇(𝑑𝑡, 𝑑𝑥). The ℚ-compensator 𝜈𝑡(𝑑𝑥) 𝑑𝑡

I thank Tom Hurd, Loriano Mancini, Eberhard Mayerhofer, Wolfgang Runggaldier, and an anony-

mous referee, for helpful discussions and comments. Research support from NCCR FINRISK of
the Swiss National Science Foundation is gratefully acknowledged.
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of 𝜇(𝑑𝑡, 𝑑𝑥) is assumed absolutely continuous. Finally, we have some non-negative
predictable risk-free short rate 𝑟 and volatility process 𝜎, and we assume that∫ 𝑇

0

𝑟𝑡 𝑑𝑡 <∞ a.s., 𝔼ℚ

[∫ 𝑇
0

𝜎2𝑡 𝑑𝑡+

∫ 𝑇
0

∫
{∣𝑥∣≥1}

e𝑥𝜈𝑡(𝑑𝑥) 𝑑𝑡

]
<∞

for all finite 𝑇 . See Jacod and Shiryaev [13] for the relevant background on semi-
martingales.

The annualized realized variance of 𝑆 over a given time horizon [𝑡, 𝑡 + 𝜏 ] is
defined as the annualized quadratic variation of the log returns, which equals

RV(𝑡, 𝜏) =
1

𝜏
([log𝑆]𝑡+𝜏 − [log𝑆]𝑡)

=
1

𝜏

(∫ 𝑡+𝜏
𝑡

𝜎2𝑠 𝑑𝑠+

∫ 𝑡+𝜏
𝑡

∫
ℝ

𝑥2 𝜇(𝑑𝑠, 𝑑𝑥)

)
.

A variance swap on 𝑆, initiated at 𝑡 and with time to maturity 𝜏 , pays the difference

RV(𝑡, 𝜏) −VS(𝑡, 𝜏)
between the annualized realized variance and the variance swap rate, VS(𝑡, 𝜏),
fixed at 𝑡. By convention the variance swap rate is such that the variance swap
contract has value zero at inception. Assuming further that

𝑟 and [log𝑆] are ℱ𝑡-conditionally independent under ℚ,
risk-neutral pricing then implies that

VS(𝑡, 𝜏) = 𝔼ℚ [RV(𝑡, 𝜏) ∣ ℱ𝑡] = 1

𝜏

∫ 𝑡+𝜏
𝑡

𝑓(𝑡, 𝑠) 𝑑𝑠

where we define the 𝑇 -forward variance 𝑓(𝑡, 𝑇 ) prevailing at 𝑡 as

𝑓(𝑡, 𝑇 ) = 𝔼ℚ

[
𝜎2𝑇 +

∫
ℝ

𝑥2 𝜈𝑇 (𝑑𝑥) ∣ ℱ𝑡
]
.

For 𝑡 = 𝑇 we obtain the spot variance

𝑣𝑡 ≡ 𝑓(𝑡, 𝑡) = 𝜎2𝑡 +

∫
ℝ

𝑥2 𝜈𝑡(𝑑𝑥). (1.1)

Note the analogy – and difference – to the forward curve of interest rates, see,
e.g., [12]. The 𝑇 -forward variance 𝑓(𝑡, 𝑇 ) is a martingale for 𝑡 ∈ [0, 𝑇 ] under the
risk-neutral measure ℚ. In contrast, the 𝑇 -forward interest rate is a martingale
under the respective 𝑇 -forward measure ℚ𝑇 .

The aim is now to model the stochastic evolution of the forward variance
curve 𝑓(𝑡, 𝑇 ), or equivalently, the spot variance 𝑣𝑡. Any semimartingale price pro-
cess 𝑆 whose characteristics satisfy the consistency condition (1.1) is then com-
patible to this variance swap model. Related literature where this program has
been carried out includes Buehler [2], Egloff et al. [9], Cont and Kokholm [6], and
Filipović et al. [10].
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Throughout the paper, we denote by 1 = (1, . . . , 1)⊤ the vector with all
entries equal to 1, and we shall follow the convention

e𝑠 − 1
𝑠

=
𝑠

e𝑠 − 1 = 1 for 𝑠 = 0. (1.2)

2. The VIX formula

Before we proceed with modeling the variance swap curve, we derive in this aux-
iliary section an alternative valuation formula for variance swap rates based on a
replication argument. This formula underlies the computation of the VIX (Chicago
Board of Options Exchange Volatility Index), which is defined as variance swap
on the S&P 500 index with a time to maturity of 30 days.

We start with an elementary identity.

Lemma 2.1. For reals 𝑎, 𝑏 > 0 we have∫ 𝑎
0

1

𝐾2
(𝐾 − 𝑏)+ 𝑑𝐾 +

∫ ∞

𝑎

1

𝐾2
(𝑏−𝐾)+ 𝑑𝐾 = log(𝑎)− log(𝑏) + 1

𝑎
(𝑏 − 𝑎). (2.1)

We now assume that the futures contract on 𝑆 with maturity 𝑇 is traded
and continuously marked to market. Moreover, in this section we assume that

interest rates 𝑟𝑡 are deterministic.

We denote by 𝑃 (𝑡, 𝑇 ) = e−
∫
𝑇
𝑡
𝑟𝑠𝑑𝑠 the discount bonds, and the futures price process

by 𝐹𝑡 = 𝑆𝑡/𝑃 (𝑡, 𝑇 ). Then

𝑑 log𝐹𝑡 =
𝑑𝐹𝑡
𝐹𝑡−

− 1

2
𝜎2𝑡 𝑑𝑡−

∫
ℝ

(e𝑥 − 1− 𝑥)𝜇(𝑑𝑡, 𝑑𝑥).

Hence the realized variance over the time interval [𝑡, 𝑇 ], with time to maturity
𝜏 = 𝑇 − 𝑡, can be written as

𝜏RV(𝑡, 𝜏) =

∫ 𝑇
𝑡

𝜎2𝑠 𝑑𝑠+

∫ 𝑇
𝑡

∫
ℝ

𝑥2 𝜇(𝑑𝑠, 𝑑𝑥)

= 2(log(𝐹𝑡)− log(𝐹𝑇 )) + 2
∫ 𝑇
𝑡

𝑑𝐹𝑠
𝐹𝑠−

− 2
∫ 𝑇
𝑡

∫
ℝ

(
e𝑥 − 1− 𝑥− 𝑥2

2

)
𝜇(𝑑𝑠, 𝑑𝑥)

= 2

(∫ 𝐹𝑡
0

1

𝐾2
(𝐾 − 𝑆𝑇 )

+ 𝑑𝐾 +

∫ ∞

𝐹𝑡

1

𝐾2
(𝑆𝑇 −𝐾)+ 𝑑𝐾

)

+ 2

∫ 𝑇
𝑡

(
1

𝐹𝑠−
− 1

𝐹𝑡

)
𝑑𝐹𝑠 − 2

∫ 𝑇
𝑡

∫
ℝ

(
e𝑥 − 1− 𝑥− 𝑥2

2

)
𝜇(𝑑𝑠, 𝑑𝑥).

In the last equality we used (2.1) and the fact that 𝐹𝑇 = 𝑆𝑇 . We thus obtained a
replication strategy for the realized variance modulo some error term due to the
jumps of 𝑆: holding static a basket of European options and trading dynamically
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in the futures contract by holding 2
(

1
𝐹𝑠−

− 1
𝐹𝑡

)
futures at time 𝑠. Taking ℚ-

expectation gives for the variance swap rate

VS(𝑡, 𝜏) = VIX(𝑡) + 𝜖

with the VIX rate

VIX(𝑡) =
2

𝜏

∫ ∞

0

Θ𝑡(𝐾, 𝑡+ 𝜏 )

𝑃 (𝑡, 𝑡+ 𝜏)𝐾2
𝑑𝐾

and error term

𝜖 = − 2
𝜏
𝔼ℚ

[∫ 𝑡+𝜏
𝑡

∫
ℝ

(
e𝑥 − 1− 𝑥− 𝑥2

2

)
𝜈(𝑑𝑥)𝑑𝑠 ∣ ℱ𝑡

]
where Θ𝑡(𝐾, 𝑡+ 𝜏 ) denotes the price of an out-of-the-money European option with
strike price 𝐾 and maturity 𝑡+ 𝜏 (a call option when 𝐾 > 𝐹𝑡 and a put option
when 𝐾 ≤ 𝐹𝑡). The error term 𝜖 only appears when 𝑆 has jumps. It is typically
non-negative, since log-returns are negatively skewed. Hence the VIX is lower
biased since it neglects jump risk premium. This model-free valuation has been
derived in increasing order of generality by Britten–Jones and Neuberger [1], Jiang
and Tian [14], Carr and Wu [3].

3. Variance swap rate factor models

We now introduce a – possibly non-Markovian – multi-factor model for the variance
swap term structure. We let 𝑋 be a semimartingale state process with values in
ℝ𝑚, solving the stochastic differential equation

𝑑𝑋𝑡 = 𝜅 (𝜃 −𝑋𝑡) 𝑑𝑡+ 𝑑𝑀𝑡 (3.1)

for some parameters 𝜅 ∈ ℝ𝑚×𝑚, 𝜃 ∈ ℝ𝑚, and where 𝑀 is a multivariate martin-
gale, which can possibly also depend on other “unspanned stochastic volatility”
factors.1 We further assume that the spot variance is an affine function of the state
variable:

𝑣𝑡 = 𝜙0 + 𝜓⊤0 𝑋𝑡 (3.2)

for some parameters 𝜙0 ∈ ℝ and 𝜓0 ∈ ℝ𝑚. Under these assumptions, it follows
that the term structure of annualized variance swap rates becomes affine in 𝑋𝑡:

VS(𝑡, 𝜏) =
1

𝜏

∫ 𝜏
0

𝔼ℚ [𝑣𝑡+𝑠 ∣ ℱ𝑡] 𝑑𝑠 = 1

𝜏

∫ 𝜏
0

(
𝜙(𝑠) + 𝜓(𝑠)⊤𝑋𝑡

)
𝑑𝑠

=
Φ(𝜏)

𝜏
+
Ψ(𝜏)⊤

𝜏
𝑋𝑡

(3.3)

1The reader is referred to Collin–Dufresne and Goldstein [5] for the definition of the concept of
unspanned stochastic volatility.
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where 𝜙 and 𝜓 are given by

𝜙(𝜏) = 𝜙0 +

∫ 𝜏
0

𝜃⊤𝜅⊤𝜓(𝑠) 𝑑𝑠 = 𝜙0 + 𝜃⊤𝜓0 − 𝜃⊤𝜓(𝜏)

𝜓(𝜏) = e−𝜅
⊤𝜏𝜓0,

and we denote their integrals by

Φ(𝜏) =

∫ 𝜏
0

𝜙(𝑠) 𝑑𝑠 = 𝜙0𝜏 + 𝜃⊤𝜓0𝜏 − 𝜃⊤Ψ(𝜏)

Ψ(𝜏) =

∫ 𝜏
0

𝜓(𝑠) 𝑑𝑠.

(3.4)

Indeed, for any 𝑇 > 0 it is easily seen that 𝑁𝑡 = 𝜙(𝑇 − 𝑡) + 𝜓(𝑇 − 𝑡)⊤𝑋𝑡 is a
martingale with 𝑁𝑇 = 𝑣𝑇 . Hence 𝜙(𝑇 − 𝑡) +𝜓(𝑇 − 𝑡)⊤𝑋𝑡 = 𝔼ℚ[𝑣𝑇 ∣ ℱ𝑡], and (3.3)
follows for 𝑇 = 𝑡+ 𝑠, as desired.

Note that the constituents of the term structure, i.e., the functions 𝜙 and 𝜓,
only depend on the drift parameters 𝜅 and 𝜃, and the spot variance parameters 𝜙0
and 𝜓0. The aim is to find a specification so that the factors𝑋𝑡 match pre-specified
points on the variance swap curve:

𝑋𝑖𝑡 = VS(𝑡, 𝜏𝑖), 𝑖 = 1, . . . ,𝑚 (3.5)

for some fixed maturities 0 ≤ 𝜏1 < ⋅ ⋅ ⋅ < 𝜏𝑚. In view of (3.3) it follows that
property (3.5) holds if and only if2

Φ(𝜏𝑖)

𝜏𝑖
= 0 and

Ψ(𝜏𝑖)

𝜏𝑖
= ei, 𝑖 = 1, . . . ,𝑚, (3.6)

where ei denotes the 𝑖th standard basis vector in ℝ𝑚, and where for 𝜏 = 0 we
set Φ(𝜏)/𝜏 = 𝜙0 and Ψ(𝜏)/𝜏 = 𝜓0. Following Duffie and Kan’s [8] terminology
for yield curve models, we call a factor model satisfying (3.3) and (3.5) an affine
variance swap rate factor model .

We shall now derive conditions on 𝜅, 𝜃, 𝜙0, and 𝜓0 for (3.6) to hold under
the standing assumption that

𝜅 is diagonalizable. (3.7)

That is, there exists an invertible real 𝑚×𝑚-matrix 𝑆 whose columns are linearly
independent eigenvectors of 𝜅, and such that

𝜅 = 𝑆𝐿𝑆−1 for the diagonal matrix 𝐿 = diag(𝜆1, . . . , 𝜆𝑚) (3.8)

consisting of the real eigenvalues 𝜆𝑖 of 𝜅. Here is our main result.

2Here we make the mild assumption that the support of the random variable 𝑋𝑡 contains an
open set in ℝ𝑚.
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Theorem 3.1. The matching condition (3.5) holds if and only if the eigenvalues 𝜆𝑖
of 𝜅 are mutually different and there exists some ℓ ∈ ℝ such that

𝜃 = ℓ1 (3.9)

𝜙0 = ℓ
(
1− 1⊤𝜓0

)
(3.10)

𝜓0 =
(
𝑆−1

)⊤
1 (3.11)

𝑆 = (w1 ∣ ⋅ ⋅ ⋅ ∣ wm)
⊤

(3.12)

with wi given by

wi = (𝐿𝜏𝑖)
−1 (𝐼 − e−𝐿𝜏𝑖)1, 𝑖 = 1, . . . ,𝑚. (3.13)

In particular, for the boundary case 𝜏1 = 0 where 𝑋1𝑡 = VS(𝑡, 0) = 𝑣𝑡 is the
spot variance, we have 𝜙0 = 0 and 𝜓0 = e1.

Moreover, the above parameters 𝜅, 𝜃, 𝜙0, 𝜓0, and thus Φ and Ψ, are invariant
with respect to a permutation of the eigenvalues 𝜆𝑖.

It is worth noting that (3.9) implies that all components of 𝑋𝑡, whence all
benchmark variance swap rates VS(𝑡, 𝜏𝑖), mean-revert to the same level ℓ. While
this may seem to be a stringent statistical restriction on the model, we must
keep in mind that this property holds under the risk-neutral pricing measure ℚ,
which is different from the objective probability measure ℙ in general. The mean-
reversion levels of the variance swap rates VS(𝑡, 𝜏𝑖) under ℙ can thus still be
mutually different.

Before proving Theorem 3.1, we state an immediate corollary which is most
useful from a modeler point of view.

Corollary 3.2. For any choice of real parameters ℓ and 𝜆1 < ⋅ ⋅ ⋅ < 𝜆𝑚 there exists
a unique set of parameters 𝜙0 ∈ ℝ, 𝜓0 ∈ ℝ𝑚, 𝜃 ∈ ℝ𝑚, and 𝜅 ∈ ℝ𝑚×𝑚 in the class
of (3.7) such that the matching condition (3.5) holds. More specifically, they are
explicitly given by (3.8)–(3.13).

Moreover, this parametrization is exhaustive in the sense that it is in a one-
to-one relation with every drift and spot variance specification in (3.1)–(3.3) in the
class of (3.7) such that the matching condition (3.5) holds.

Note that the order of the eigenvalues 𝜆𝑖 matters if the martingale part 𝑀
of 𝑋 depends on them, see Remark 4.1 below. It is reasonable to restrict to non-
negative eigenvalues 𝜆𝑖 since then, and only then, the variance swap curve (3.3) is
bounded as a function of 𝜏 ∈ [0,∞).
Proof of Theorem 3.1. To simplify notation, we shall write 𝜅⊤ = 𝒮𝐿𝒮−1 with
𝒮 =

(
𝑆−1

)⊤
in what follows. Using the convention (1.2), we then obtain the

explicit expressions

𝜓(𝜏) = 𝒮 e−𝐿𝜏 𝒮−1𝜓0

Ψ(𝜏) = 𝒮𝐿−1 (𝐼 − e−𝐿𝜏)𝒮−1𝜓0.
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Combining this with (3.4), we infer that property (3.6) is equivalent to the following
conditions: for all 𝑖 = 1, . . . ,𝑚,

𝜙0 + 𝜃⊤𝜓0 − 𝜃⊤ei = 0 (3.14)

𝒮(𝐿𝜏𝑖)−1
(
𝐼 − e−𝐿𝜏𝑖)𝒮−1𝜓0 = ei. (3.15)

We first note that (3.14) holds if and only if all components 𝜃𝑖 = 𝜃⊤ei =
𝜙0 + 𝜃⊤𝜓0 of 𝜃 are identical. Hence (3.14) holds if and only if 𝜃 = ℓ1 for some
ℓ ∈ ℝ such that ℓ

(
1− 1⊤𝜓0

)
= 𝜙0, which proves (3.9) and (3.10).

Next we denote the linearly independent column vectors of 𝒮−1 by wi =
𝒮−1ei. Then, using convention (1.2) again, condition (3.15) can be rewritten as(

𝐼 − e−𝐿𝜏𝑖)−1 (𝐿𝜏𝑖)wi ≡ 𝒮−1𝜓0 =

𝑚∑
𝑗=1

𝜓0𝑗wj, 𝑖 = 1, . . . ,𝑚. (3.16)

We claim that all components of the vector 𝒮−1𝜓0 must be nonzero. Indeed, sup-
pose the 𝑘th component of 𝒮−1𝜓0 were zero. Then (3.16) implies that wi𝑘 = 0
for all 𝑖. But then 𝒮−1 cannot be invertible, which is absurd. Now suppose there
are 𝑚 linearly independent vectors wi which satisfy (3.16), and let 𝐷 be any in-
vertible diagonal matrix. It then follows by inspection that (3.16) also holds for
w̃i = 𝐷wi in lieu of wi. Consequently, after some appropriate transformation if
necessary, we can assume that 𝒮−1𝜓0 = 1 without loss of generality. We thus have
shown that (3.15) holds if and only if wi is of the form (3.13) and 𝜓0 = 𝒮 1, where
𝒮−1 = (w1 ∣ ⋅ ⋅ ⋅ ∣ wm), which is (3.11) and (3.12).

Finally, we note that the vectorswi defined by (3.13) are linearly independent
if and only if the eigenvalues 𝜆𝑖 of 𝜅 are mutually different. We also note that 𝜏1 = 0
implies w1 = 1 and thus 𝜓0 = e1 by linear independence of the vectors wi, see
(3.16). The invariance of 𝜅, 𝜃, 𝜙0, and 𝜓0 with respect to a permutation of the
eigenvalues 𝜆𝑖 follows by inspection. Thus the theorem is proved. □

4. Non-negative variance swap rates

Theorem 3.1 does not assert nonnegativity of the implied variance swap curve (3.3).
Negative variance swap rates are clearly non-desirable. In this section we give
sufficient conditions on the specification (3.8)–(3.13) to produce non-negative swap
rates. We first observe that the variance swap rates VS(𝑡, 𝜏) remain non-negative
for all 𝑡 and 𝜏 if and only if the spot variance 𝑣𝑡 is non-negative for all 𝑡. Moreover,
from (3.10) and (3.11) it follows that

𝑣𝑡 = 𝜙0 + 𝜓⊤0 𝑋𝑡 = 1⊤𝑆−1 (𝑋𝑡 − ℓ1) + ℓ. (4.1)

On the other hand, in view of (3.8) and (3.9), the stochastic differential equation
for 𝑋 reads

𝑑𝑋𝑡 = 𝑆𝐿𝑆−1 (ℓ1−𝑋𝑡) 𝑑𝑡+ 𝑑𝑀𝑡. (4.2)
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This suggests to look at the transformed state process

𝑍𝑡 = 𝑆−1 (𝑋𝑡 − ℓ1) + ℓ𝜋,

for some fixed 𝜋 ∈ [0, 1]𝑚 such that 1⊤𝜋 = 1. It satisfies the stochastic differential
equation

𝑑𝑍𝑡 = 𝑆−1𝑑𝑋𝑡 = 𝐿 (ℓ𝜋 − 𝑍𝑡) 𝑑𝑡+ 𝑆−1𝑑𝑀𝑡.

Note that the drift of 𝑍𝑡 is fully decoupled. Sufficient conditions on the parameters
ℓ and 𝐿, and the martingale part 𝑀𝑡 such that 𝑍𝑡 takes values in the positive
orthant ℝ𝑚+ are well known, see, e.g., [7, Theorem A.5] or [12, Section 10.7.1]. This
in turn implies a non-negative spot variance, which expressed in terms of 𝑍𝑡 reads

𝑣𝑡 = 1⊤𝑍𝑡.

The recipe for constructing non-negative variance swap rate factor models
now reads as follows:

(i) Fix some ℓ ≥ 0 and 𝑚 mutually distinct eigenvalues 𝜆1, . . . , 𝜆𝑚 ≥ 0. Define
𝐿 and 𝑆 as in (3.8) and Theorem 3.1.

(ii) Let 𝑍𝑡 be a jump-diffusion process with state space ℝ𝑚+ of the form

𝑑𝑍𝑡 = 𝐿 (ℓ𝜋 − 𝑍𝑡) 𝑑𝑡+ 𝑑𝑁𝑡

for some suitably specified martingale 𝑁𝑡. For example, for the diffusion case
we would set

𝑑𝑁𝑡 = Σ(𝑍𝑡) 𝑑𝑊𝑡

where𝑊𝑡 is an 𝑚-dimensional Brownian motion, and Σ(𝑧) is a ℝ𝑚×𝑚-valued
dispersion function such that for any boundary point 𝑧 ∈ ∂ℝ𝑚+ the orthogonal
diffusion components vanish:

Σ (𝑧)⊤ ei = 0 if 𝑧𝑖 = 0. (4.3)

Indeed, such a specification asserts that the diffusion 𝑍𝑡 is ℝ𝑚+ -valued, see
[12, Lemma 10.11].

(iii) Then 𝑣𝑡 = 1⊤𝑍𝑡 defines a non-negative variance swap process with matched
points on the curve

𝑋𝑖𝑡 = VS(𝑡, 𝜏𝑖)

for the transformed state process𝑋𝑡 = 𝑆(𝑍𝑡−ℓ𝜋)+ℓ1. The jump-diffusion 𝑋𝑡
a fortiori takes values in ℝ𝑚+ and is characterized by its stochastic differential
equation (4.2) with martingale part 𝑑𝑀𝑡 = 𝑆𝑑𝑁𝑡. The spot variance can be
expressed in terms of 𝑋𝑡 by (4.1). For the above diffusion example we would
have

𝑑𝑀𝑡 = 𝑆Σ
(
𝑆−1 (𝑋𝑡 − ℓ1) + ℓ𝜋

)
𝑑𝑊𝑡 (4.4)

where Σ is any dispersion function satisfying the invariance condition (4.3).

Remark 4.1. Note that, while the spot variance, 𝜙0, 𝜓0, and drift specification, 𝜅,
𝜃, of 𝑋𝑡 is invariant with respect to a permutation of the eigenvalues 𝜆𝑖, the mar-
tingale specification (4.4) is not. In other words, the parameters 𝜆𝑖 also influence
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the martingale part of 𝑋𝑡, in order to assert the nonnegativity of the variance swap
rates. Hence the order of the eigenvalues 𝜆𝑖 matters for the full specification of 𝑋𝑡.

5. Numerical example

We shall now consider a simple numerical example. A more detailed analysis and
empirical study of variance swap rate factor models is given in [11].

We let 𝑚 = 2. Following up the above recipe, we let 𝑍𝑡 be an ℝ2
+-valued

affine diffusion of the form

𝑑𝑍𝑡 = 𝐿 (ℓ𝜋 − 𝑍𝑡) 𝑑𝑡+Σ(𝑍𝑡) 𝑑𝑊𝑡

with Σ(𝑧) = diag
(
𝜎1
√
𝑧1, 𝜎2

√
𝑧2
)
, for some positive parameters 𝜎1, 𝜎2. The invari-

ance condition (4.3) is obviously satisfied. Indeed, 𝑍𝑡 is well defined and ℝ2
+-valued

for any choice of ℓ ≥ 0 and mutually distinct eigenvalues 𝜆1, 𝜆2 ≥ 0, see, e.g., [12,
Theorem 10.8]. For illustration, we now fix the following parameter values

𝜋 = (1/2, 1/2)⊤, ℓ = 0.2, 𝜆1 = 1, 𝜆2 = 3.

Moreover, we fix the maturity dates 𝜏1 = 1/4 and 𝜏2 = 1, where time is measured in
years. Figure 1 shows the resulting basis functions Φ(𝜏)/𝜏 , Ψ1(𝜏)/𝜏 , and Ψ2(𝜏)/𝜏
in the term structure equation (3.3). The matching conditions (3.6) can be verified
by inspection.

Figure 1. The term structure basis functions Φ(𝜏)/𝜏 , Ψ1(𝜏)/𝜏 , and
Ψ2(𝜏)/𝜏 . The vertical lines indicate 𝜏1 = 1/4 and 𝜏2 = 1. Inspection
shows that the matching conditions (3.6) hold.
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In line with (4.2) and (4.4), the corresponding state process 𝑋𝑡 = 𝑆(𝑍𝑡 −
ℓ𝜋) + ℓ1 is characterized by the stochastic differential equation

𝑑𝑋𝑡 =

(
6.4 −7.6
2.4 −2.4

)((
0.2
0.2

)
−𝑋𝑡

)
𝑑𝑡+Σ𝑋(𝑋𝑡) 𝑑𝑊𝑡

with dispersion function Σ𝑋(𝑥) given by

Σ𝑋(𝑥) =

(
0.9𝜎1

√−1.9𝑥1 + 4.3𝑥2 − 0.4 0.7𝜎2
√
3.8𝑥1 − 5.4𝑥2 + 0.4

0.6𝜎1
√−1.9𝑥1 + 4.3𝑥2 − 0.4 0.3𝜎2

√
3.8𝑥1 − 5.4𝑥2 + 0.4

)
.

For the following illustration we set 𝜎1 = 𝜎2 = 0.2, and 𝑍0 = ℓ𝜋. Figures 2 and
3 show a common ℚ-trajectory of the vector-valued processes 𝑍𝑡 and 𝑋𝑡, respec-
tively. While Figure 2 gives evidence of the independence of the two components
of 𝑍𝑡, Figure 3 illustrates that the components of 𝑋𝑡, that is, the variance swap
rates VS(𝑡, 𝜏1) and VS(𝑡, 𝜏2), are correlated.

Figure 2. A trajectory of the process 𝑍𝑡, whose components are inde-
pendent by definition.

6. Comparison to affine yield-factor models

In their seminal paper, Duffie and Kan [8] introduce the class of affine factor
models for the term structure of interest rates. Generically, such an affine term
structure model is first written in terms of some latent diffusion state vector 𝑋𝑡.
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Figure 3. The corresponding trajectory of the state process 𝑋𝑡, whose
components are the variance swap rates VS(𝑡, 𝜏1) and VS(𝑡, 𝜏2), which
are obviously correlated.

That is, the yield curve is an affine function of 𝑋𝑡,

𝑦(𝑡, 𝜏) =
𝐴(𝜏)

𝜏
+

𝐵(𝜏)⊤

𝜏
𝑋𝑡, (6.1)

for some deterministic functions 𝐴(𝜏) and 𝐵(𝜏), which are given as solutions to
some system of non-linear (Riccati) ODEs determined by the characteristics of 𝑋 .
The diffusion 𝑋 in turn is necessarily an affine process, meaning that its drift and
diffusion matrix are affine functions in the state 𝑋𝑡. Duffie and Kan [8] then also
impose matching conditions similar to (3.5), such that

𝑦(𝑡, 𝜏𝑖) = 𝑋𝑖𝑡, 𝑖 = 1, . . . ,𝑚 (6.2)

for some fixed maturities 0 ≤ 𝜏1 < ⋅ ⋅ ⋅ < 𝜏𝑚. As above, this is equivalent
3 to

𝐴(𝜏𝑖)

𝜏𝑖
= 0 and

𝐵(𝜏𝑖)

𝜏𝑖
= ei, 𝑖 = 1, . . . ,𝑚.

Since here 𝐴 and 𝐵 solve non-linear ODEs, it is much more difficult to find an a
priori parametrization, such as in Theorem 3.1 for the variance swap curves, that
are consistent with the matching condition (6.2). Indeed, Duffie and Kan [8] state
that they “do not have theoretical results describing how certain coefficients can be
fixed in advance so as to achieve consistency with [the matching condition (6.2)].”

3Under the mild assumption that the support of the random variable 𝑋𝑡 contains an open
set in ℝ𝑚.
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Instead, they propose the practical but indirect solution of first specifying an
arbitrary affine factor model (6.1) with latent state vector 𝑋𝑡. In a second step
they change the variables via the affine transformation

𝑌𝑖𝑡 =
𝐴(𝜏𝑖)

𝜏𝑖
+

𝐵(𝜏𝑖)
⊤

𝜏𝑖
𝑋𝑡.

Provided the 𝑚 × 𝑚-matrix 𝐾 with 𝑖th row vector given by 𝐵(𝜏𝑖)
⊤/𝜏𝑖 is non-

singular, this change of variables is possible. The process 𝑌 is an affine diffusion
and the yield curve becomes affine in 𝑌𝑡 of the form

𝑦(𝑡, 𝜏) =
𝐴∗(𝜏)

𝜏
+

𝐵∗(𝜏)⊤

𝜏
𝑌𝑡,

for 𝐴∗(𝜏) = 𝐴(𝜏) + 𝐵(𝜏)⊤𝐾−1𝑘 and 𝐵∗(𝜏)⊤ = 𝐵(𝜏)⊤𝐾−1, where 𝑘𝑖 = 𝐴(𝜏𝑖)/𝜏𝑖.
By construction, the matching condition (6.2) holds in these new coordinates:
𝑦(𝑡, 𝜏𝑖) = 𝑌𝑖𝑡. However, the characteristics of 𝑌 are now given in terms of 𝐾,
which again depends via a solution of the non-linear Riccati equations on the
original parameters of 𝑋 . Apart from simple two-factor models, this approach
is often difficult to implement and therefore has not been widely used, see also
Collin-Dufresne et al. [4].
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Efficient Second-order Weak Scheme
for Stochastic Volatility Models

Benjamin Jourdain and Mohamed Sbai

Abstract. Stochastic volatility models can be seen as a particular family of
two-dimensional stochastic differential equations (SDE) in which the volatil-
ity process follows an autonomous one-dimensional SDE. We take advantage
of this structure to propose an efficient discretization scheme with order two
of weak convergence. We prove that the order two holds for the asset price
and not only for the log-asset as usually found in the literature. Numerical
experiments confirm our theoretical result and we show the superiority of our
scheme compared to the Euler scheme, with or without Romberg extrapola-
tion.

Mathematics Subject Classification (2010). 60H35, 65C30, 91G60.

Keywords. Discretization schemes, weak convergence, Lamperti transform,
stochastic volatility models.

1. Introduction

The limitations of the Black & Scholes framework are widely accepted, especially
the constant volatility assumption. The use of stochastic volatility models instead
is now standard market practice but, unfortunately, there are only few cases where
exact option pricing formulae exist for the pricing of simple European options.
One has to resort to semi-analytical formulae or to discretization schemes com-
bined with Monte Carlo approximations of expectations to price options. The aim
of this article is to propose a simple and yet competitive discretization scheme
of stochastic volatility models which has a second-order weak convergence prop-
erty, much more efficient than the famous Euler scheme with order one of weak
convergence commonly used by practitioners.

This research benefited from the support of the “Chaire Risques Financiers”, Fondation du Risque
and the French National Research Agency under the program ANR-08-BLAN-0218 BigMC.
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In our study, we will consider the following specification which nests almost
all the known stochastic volatility models:⎧⎨⎩ 𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+ 𝑓(𝑌𝑡)𝑆𝑡

(
𝜌𝑑𝑊𝑡 +

√
1− 𝜌2𝑑𝐵𝑡

)
; 𝑆0 = 𝑠0 > 0

𝑑𝑌𝑡 = 𝑏(𝑌𝑡)𝑑𝑡+ 𝜎(𝑌𝑡)𝑑𝑊𝑡; 𝑌0 = 𝑦0
(1.1)

where (𝑆𝑡)𝑡∈[0,𝑇 ] is the asset price, 𝑟 the instantaneous interest rate, (𝐵𝑡)𝑡∈[0,𝑇 ]
and (𝑊𝑡)𝑡∈[0,𝑇 ] are independent standard one-dimensional Brownian motions, 𝜌 ∈
[−1, 1] is the correlation between the Brownian motions respectively driving the
asset price and the process (𝑌𝑡)𝑡∈[0,𝑇 ] which solves a one-dimensional autonomous
stochastic differential equation. The volatility process is (𝑓(𝑌𝑡))𝑡∈[0,𝑇 ] where the
transformation function 𝑓 is usually taken positive and strictly monotonic in order
to ensure that the effective correlation between the stock price and the volatility
keeps the same sign (the function 𝜎 usually takes non-negative values).

There exists an extensive literature on numerical integration of stochastic
differential equations by the Euler scheme (see for example [1, 2] and [3]). More
recently, many discretization schemes of higher order of weak convergence have
appeared in the literature. Among others, we cite the work of Kusuoka [4, 5], the
Ninomiya and Victoir [6] scheme which we will use hereafter, the Ninomiya and
Ninomiya [7] scheme and the cubature on Wiener space by Lyons and Victoir [8].

But, with the exception of the Heston model (𝑓(𝑦) =
√
𝑦, 𝑏(𝑦) = 𝜅(𝜃 − 𝑦)

and 𝜎(𝑦) = 𝜈
√
𝑦) where both 𝑓 and 𝜎 are singular, the development of specific

discretization schemes for stochastic volatility models has only received little at-
tention. In the present paper, we assume that the functions 𝑓 , 𝜎 and 𝑏 are smooth
which means that we do not deal with the Heston model.

In [16], we take advantage of the structure of (1.1) to construct and ana-
lyze simple and robust ad’hoc discretization schemes which have nice convergence
properties. We introduce a scheme devoted to the pricing of path-dependent op-
tions and prove that the Wasserstein distance between its law on the discretization
grid and the law of the solution to (1.1) on the grid converges with order one, i.e.,
like a constant multiplied by the time-step. We also propose a scheme devoted to
the pricing of vanilla options with potential order two of weak convergence and
confirm this presumed order by numerical experiments. The aim of the present
paper is to actually prove this order two property.

To exhibit this scheme, we perform a logarithmic change of variables for the
asset: the two-dimensional process (𝑋𝑡 := log (𝑆𝑡) , 𝑌𝑡)𝑡∈[0,𝑇 ] solves the following
SDE⎧⎨⎩ 𝑑𝑋𝑡 =

(
𝑟 − 1

2𝑓
2(𝑌𝑡)

)
𝑑𝑡+ 𝑓(𝑌𝑡)

(
𝜌𝑑𝑊𝑡 +

√
1− 𝜌2𝑑𝐵𝑡

)
; 𝑋0 = log(𝑠0).

𝑑𝑌𝑡 = 𝑏(𝑌𝑡)𝑑𝑡+ 𝜎(𝑌𝑡)𝑑𝑊𝑡; 𝑌0 = 𝑦0
(1.2)

Our main idea is to get rid in the first equality of the stochastic integral
involving the common Brownian motion (𝑊𝑡)𝑡∈[0,𝑇 ].
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In all what follows, we assume that

(𝒜) 𝑓 and 𝜎 are 𝒞1 functions and 𝜎 > 0.

One can then define the primitive 𝐹 (𝑦) =
∫ 𝑦
0
𝑓
𝜎 (𝑧)𝑑𝑧 and apply Itô’s formula

to get

𝑑𝐹 (𝑌𝑡) =
𝑓

𝜎
(𝑌𝑡)𝑑𝑌𝑡 +

1

2
(𝜎𝑓 ′ − 𝑓𝜎′)(𝑌𝑡)𝑑𝑡.

Therefore (𝑋𝑡, 𝑌𝑡)𝑡∈[0,𝑇 ] solves{
𝑑𝑋𝑡 = 𝜌𝑑𝐹 (𝑌𝑡) + ℎ(𝑌𝑡)𝑑𝑡+

√
1− 𝜌2𝑓(𝑌𝑡)𝑑𝐵𝑡

𝑑𝑌𝑡 = 𝑏(𝑌𝑡)𝑑𝑡+ 𝜎(𝑌𝑡)𝑑𝑊𝑡

where ℎ : 𝑦 �→ 𝑟 − 1
2𝑓

2(𝑦)− 𝜌( 𝑏𝜎𝑓 +
1
2 (𝜎𝑓

′ − 𝑓𝜎′))(𝑦).
Integrating the stochastic differential equation (1.2) gives

𝑋𝑡 = log(𝑠0) + 𝜌(𝐹 (𝑌𝑡)− 𝐹 (𝑦0)) +

∫ 𝑡
0

ℎ(𝑌𝑠)𝑑𝑠+
√
1− 𝜌2

∫ 𝑡
0

𝑓(𝑌𝑠)𝑑𝐵𝑠.

We are only left with an integral with respect to time which can be handled
by the use of a trapezoidal scheme and a stochastic integral where the integrand
is independent of the Brownian motion. Hence, conditionally on (𝑌𝑡)𝑡∈[0,𝑇 ],

𝑋𝑇 ∼ 𝒩 (
log(𝑠0) + 𝜌(𝐹 (𝑌𝑇 )− 𝐹 (𝑦0)) +𝑚𝑇 , (1− 𝜌2)𝑣𝑇

)
where 𝑚𝑇 =

∫ 𝑇
0 ℎ(𝑌𝑠)𝑑𝑠 and 𝑣𝑇 =

∫ 𝑇
0 𝑓2(𝑌𝑠)𝑑𝑠. This suggests that, in order to

properly approximate the law of𝑋𝑇 , one should accurately approximate the law of
𝑌𝑇 and carefully handle integrals with respect to time of functions of the process
(𝑌𝑡)𝑡∈[0,𝑇 ]. We thus define our weak scheme as follows

Weak 2 scheme

𝑋
𝑁

𝑇 = log(𝑠0) + 𝜌(𝐹 (𝑌
𝑁

𝑇 )− 𝐹 (𝑦0)) +𝑚𝑁𝑇 +

√
(1− 𝜌2)𝑣𝑁𝑇 𝐺

where 𝐺 is a normal random variable and (𝑚𝑁𝑇 , 𝑣
𝑁
𝑇 ) is computed independently

using the Ninomiya–Victoir scheme (𝑌
𝑁

𝑡𝑘
)0≤𝑘≤𝑁 applied to (𝑌𝑡)𝑡∈[0,𝑇 ] on the grid(

𝑡𝑘 =
𝑘𝑇
𝑁

)
0≤𝑘≤𝑁 :

𝑚𝑁𝑇 =
𝑇

𝑁

𝑁−1∑
𝑘=0

ℎ(𝑌
𝑁

𝑡𝑘
) + ℎ(𝑌

𝑁

𝑡𝑘+1
)

2
and 𝑣𝑁𝑇 =

𝑇

𝑁

𝑁−1∑
𝑘=0

𝑓2(𝑌
𝑁

𝑡𝑘
) + 𝑓2(𝑌

𝑁

𝑡𝑘+1
)

2
.

Note that, conditionally on (𝑌
𝑁

𝑡𝑘
)0≤𝑘≤𝑁 , 𝑋

𝑁

𝑡 is also a Gaussian random vari-

able with mean log(𝑠0) + 𝜌(𝐹 (𝑌
𝑁

𝑇 )− 𝐹 (𝑦0)) +𝑚𝑁𝑇 and variance (1− 𝜌2)𝑣𝑁𝑇 .
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It is well known that the Ninomiya and Victoir [6] scheme is of weak order
two. For the sake of completeness, we give its definition in our setting:⎧⎨⎩𝑌

𝑁

0 = 𝑦0

∀0 ≤ 𝑘 ≤ 𝑁 − 1, 𝑌
𝑁

𝑡𝑘+1
= 𝑒

𝑇
2𝑁 𝑉0𝑒(𝑊𝑡𝑘+1

−𝑊𝑡𝑘 )𝑉 𝑒
𝑇
2𝑁 𝑉0

(
𝑌
𝑁

𝑡𝑘

)
where

𝑉0 : 𝑥 �→ 𝑏(𝑥)− 1

2
𝜎𝜎′(𝑥) and 𝑉 : 𝑥 �→ 𝜎(𝑥). (1.3)

The notation 𝑒𝑡𝑉 (𝑥) stands for the solution, at time 𝑡 and starting from 𝑥, of
the ODE 𝜂′(𝑡) = 𝑉 (𝜂(𝑡)). What is nice with our setting is that we need to inte-
grate only one-dimensional ODEs which can be solved explicitly. Indeed, if 𝜁 is a

primitive of 1
𝑉 : 𝜁(𝑡) =

∫ 𝑡
0

1
𝑉 (𝑠)𝑑𝑠, then the solution writes as 𝜂(𝑡) = 𝜁−1 (𝑡+ 𝜁(𝑥)).

Note that our scheme can be seen as a splitting scheme for the SDE satisfied
by (𝑍𝑡 = 𝑋𝑡 − 𝜌𝐹 (𝑌𝑡), 𝑌𝑡):{

𝑑𝑍𝑡 = ℎ(𝑌𝑡)𝑑𝑡+
√
1− 𝜌2𝑓(𝑌𝑡)𝑑𝐵𝑡

𝑑𝑌𝑡 = 𝑏(𝑌𝑡)𝑑𝑡+ 𝜎(𝑌𝑡)𝑑𝑊𝑡 .
(1.4)

The differential operator associated to (1.4) writes as

ℒ𝑣(𝑧, 𝑦) = ℎ(𝑦)
∂𝑣

∂𝑧
+ 𝑏(𝑦)

∂𝑣

∂𝑦
+

𝜎2(𝑦)

2

∂2𝑣

∂𝑦2
+
(1− 𝜌2)

2
𝑓2(𝑦)

∂2𝑣

∂𝑧2

= ℒ𝑌 𝑣(𝑧, 𝑦) + ℒ𝑍𝑣(𝑧, 𝑦)
where

ℒ𝑌 𝑣(𝑧, 𝑦) = 𝑏(𝑦)
∂𝑣

∂𝑦
+

𝜎2(𝑦)

2

∂2𝑣

∂𝑦2

and

ℒ𝑍𝑣(𝑧, 𝑦) = ℎ(𝑦)
∂𝑣

∂𝑧
+
(1− 𝜌2)

2
𝑓2(𝑦)

∂2𝑣

∂𝑧2
.

One can check that our scheme amounts to first integrate exactly ℒ𝑍 over a half
time step then apply the Ninomiya–Victoir scheme to ℒ𝑌 over a time step and
finally integrate exactly ℒ𝑍 over a half time step. According to results on splitting
(see Alfonsi [9] or Tanaka and Kohatsu-Higa [10] for example) one expects this
scheme to exhibit second-order weak convergence. Actually, according to Theorem
1.17 in Alfonsi [9], our scheme has potential second-order of weak convergence. To
deduce formally the order two of weak convergence, one needs to check regularity
of the solution of the backward Kolmogorov equation associated with the model.

We will use a slightly different point of view to prove our convergence
result stated in the second section. Indeed we need to apply test functions with
exponential growth to 𝑋𝑇 to be able to analyze weak convergence of the stock
price and not only of its logarithm. We are going to take advantage of the Gaussian

conditional distributions of both 𝑋𝑇 and 𝑋
𝑁

𝑇 given (𝑊𝑡)𝑡≤𝑇 to integrate such

functions. Then we will analyse the weak convergence of the triplet (𝑌
𝑁

𝑇 ,𝑚
𝑁
𝑇 , 𝑣

𝑁
𝑇 )



Second-order Weak Scheme for Stochastic Volatility Models 399

to (𝑌𝑇 ,𝑚𝑇 , 𝑣𝑇 ) using the backward Kolmogorov equation associated with the
degenerate SDE (2.2).

The third section is devoted to numerical experiments which confirm the
theoretical rates of convergence.

Notations. We will consider, for a number of time steps 𝑁 ≥ 1, the uniform
subdivision

∏
𝑁 = {0 = 𝑡0 < 𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑁 = 𝑇 } of [0, 𝑇 ] with the discretization

step 𝛿𝑁 = 𝑇
𝑁 .

We denote by 𝑓2 the greatest lower bound of the function 𝜓 : 𝑦 �→ 𝑓2(𝑦) and

by 𝑓2 its lowest upper bound.

2. Analysis of the order of weak convergence

Under regularity assumptions on the coefficients of (1.1), we prove order two of
weak convergence for the log-asset price:

Theorem 2.1. Suppose that 𝜌 ∈ (−1, 1). If the following assumptions hold

(ℋ1) 𝑏, 𝜎, ℎ and 𝑓 are 𝒞6 functions with bounded derivatives and their sixth-
order derivatives are globally Hölder continuous. Moreover, ℎ and 𝑓 are
bounded.

(ℋ2) 𝐹 is 𝒞6 and bounded together with all its derivatives.

(ℋ3) 𝑓2 > 0

then, for any measurable function 𝑔 verifying ∃𝑐 ≥ 0, 𝜇 ∈ [0, 2) such that ∀𝑥 ∈
ℝ, ∣𝑔(𝑥)∣ ≤ 𝑐𝑒∣𝑥∣

𝜇

, there exists 𝐶 > 0 such that∣∣∣𝔼(𝑔(𝑋𝑇 ))− 𝔼
(
𝑔(𝑋

𝑁

𝑇 )
)∣∣∣ ≤ 𝐶

𝑁2
.

In terms of the asset price, we easily deduce the following corollary where the
payoff function 𝛼 may exhibit polynomial growth at infinity:

Corollary 2.2. Under the assumptions of Theorem 2.1, for any measurable function
𝛼 verifying ∃𝑐 ≥ 0, 𝜇 ∈ [0, 2) such that ∀𝑦 > 0, ∣𝛼(𝑦)∣ ≤ 𝑐𝑒∣ log(𝑦)∣

𝜇

, there exists
𝐶 > 0 such that ∣∣∣𝔼 (𝛼(𝑆𝑇 ))− 𝔼

(
𝛼(𝑒𝑋

𝑁
𝑇 )

)∣∣∣ ≤ 𝐶

𝑁2

Proof of the theorem. The idea of the proof consists in conditioning by the Brow-
nian motion which drives the volatility process and then applying the weak error
analysis of Talay and Tubaro [1].
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As stated above, conditionally on (𝑊𝑡)𝑡∈[0,𝑇 ], both 𝑋𝑇 and 𝑋
𝑁

𝑇 are Gaussian
random variables and one can easily show that

𝜖 :=
∣∣∣𝔼 [

𝑔(𝑋𝑇 )− 𝑔(𝑋
𝑁

𝑇 )
]∣∣∣

=

∣∣∣∣∣∣
∫
ℝ

𝑔(𝑥)𝔼

⎡⎣exp
(
− (𝑥−log(𝑠0)+𝜌𝐹 (𝑦0)−𝜌𝐹 (𝑌𝑇 )−𝑚𝑇 )2

2(1−𝜌2)𝑣𝑇

)
√
2𝜋(1− 𝜌2)𝑣𝑇

−
exp

(
− (𝑥−log(𝑠0)+𝜌𝐹 (𝑦0)−𝜌𝐹 (𝑌 𝑁𝑇 )−𝑚𝑁𝑇 )2

2(1−𝜌2)𝑣𝑁𝑇

)
√
2𝜋(1− 𝜌2)𝑣𝑁𝑇

⎤⎥⎥⎦ 𝑑𝑥

∣∣∣∣∣∣∣∣ .

For 𝑥 ∈ ℝ, denote by 𝛾𝑥 the function

𝛾𝑥 : ℝ× ℝ× ℝ∗+ → ℝ

(𝑦,𝑚, 𝑣) �→
exp

(
− (𝑥−log(𝑠0)+𝜌𝐹 (𝑦0)−𝜌𝐹 (𝑦)−𝜑(𝑚))2

2(1−𝜌2)𝜓(𝑣)
)

√
2𝜋(1− 𝜌2)𝜓(𝑣)

where 𝜑 : ℝ → [−2𝑇 sup𝑧∈ℝ ∣ℎ(𝑧)∣, 2𝑇 sup𝑧∈ℝ ∣ℎ(𝑧)∣] and 𝜓 : ℝ → [𝑇2 𝑓
2, 2𝑇𝑓2]

are smooth functions with bounded derivatives such that 𝜑(𝑚) = 𝑚 for 𝑚 ∈
[−𝑇 sup𝑧∈ℝ ∣ℎ(𝑧)∣, 𝑇 sup𝑧∈ℝ ∣ℎ(𝑧)∣] and 𝜓(𝑣) = 𝑣 for 𝑣 ∈ [𝑇𝑓2, 𝑇 𝑓2].

Since 𝑚𝑇 and 𝑚𝑁𝑇 (resp. 𝑣𝑇 and 𝑣𝑁𝑇 ) belong to [−𝑇 sup𝑧∈ℝ ∣ℎ(𝑧)∣, 𝑇 sup𝑧∈ℝ ∣ℎ(𝑧)∣]
(resp. [𝑇𝑓2, 𝑇 𝑓2]), 𝜖 ≤ ∫

ℝ
𝑔(𝑥)𝑒(𝑥)𝑑𝑥 where

𝑒(𝑥) =
∣∣∣𝔼 [

𝛾𝑥(𝑌𝑇 ,𝑚𝑇 , 𝑣𝑇 )− 𝛾𝑥(𝑌
𝑁

𝑇 ,𝑚
𝑁
𝑇 , 𝑣

𝑁
𝑇 )

]∣∣∣ .
Consequently, it is enough to show the following intermediate result: ∃𝐶,𝐾 > 0
such that ∀𝑥 ∈ ℝ,

𝑒(𝑥) ≤ 𝐶

𝑁2
𝑒−𝐾𝑥

2

. (2.1)

We naturally consider the following three-dimensional degenerate SDE:⎧⎨⎩
𝑑𝑌𝑡 = 𝜎(𝑌𝑡)𝑑𝑊𝑡 + 𝑏(𝑌𝑡)𝑑𝑡; 𝑌0 = 𝑦0

𝑑𝑚𝑡 = ℎ(𝑌𝑡)𝑑𝑡; 𝑚0 = 0

𝑑𝑣𝑡 = 𝑓2(𝑌𝑡)𝑑𝑡; 𝑣0 = 0.

(2.2)

Notice that in the Ninomiya–Victoir scheme applied to this three-dimensional
SDE, the approximation of the solution at time 𝑡𝑘+1 is deduced from the

one at time 𝑡𝑘 by applying 𝑒
𝛿𝑁
2 𝑉0𝑒(𝑊𝑡𝑘+1

−𝑊𝑡𝑘 )𝑉 𝑒
𝛿𝑁
2 𝑉0 where 𝑉0(𝑦) = (𝑏(𝑦) −

1
2𝜎𝜎

′(𝑦), ℎ(𝑦), 𝑓2(𝑦)) and 𝑉 (𝑦) = (𝜎(𝑦), 0, 0). The resulting approximation of

(𝑌𝑇 ,𝑚𝑇 , 𝑣𝑇 ) is very close to (𝑌
𝑁

𝑇 ,𝑚
𝑁
𝑇 , 𝑣

𝑁
𝑇 ) but with equality only for the first

coordinate: indeed in the integration of the ODE corresponding to 𝑉0, this first
coordinate evolves thus modifying the coefficients ℎ(𝑦) and 𝑓2(𝑦) which, in con-
trast, remain constant in our scheme. In order to prove (2.1), we need to analyze
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the dependence of the error on 𝑥 and not only on 𝑁 . That is why we resume the
error analysis of Ninomiya and Victoir [6] in a more detailed fashion.

For 𝑥 ∈ ℝ, let us define the function 𝑢𝑥 : [0, 𝑇 ]× ℝ× ℝ× ℝ∗+ → ℝ by

𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣) = 𝔼
[
𝛾𝑥

(
(𝑌𝑇−𝑡,𝑚𝑇−𝑡, 𝑣𝑇−𝑡)(𝑦,𝑚,𝑣)

)]
where we denote by (𝑌𝑇−𝑡,𝑚𝑇−𝑡, 𝑣𝑇−𝑡)(𝑦,𝑚,𝑣) the solution at time 𝑇 − 𝑡 of (2.2)
starting from (𝑦,𝑚, 𝑣).

The remainder of the proof leans on the following lemmas, the proofs of
which are postponed to the appendix. We will use the standard notation for partial
derivatives: for a multi-index 𝛼 = (𝛼1, . . . , 𝛼𝑑) ∈ ℕ𝑑, 𝑑 being a positive integer,
we denote by ∣𝛼∣ = 𝛼1 + ⋅ ⋅ ⋅ + 𝛼𝑑 its length and by ∂𝛼 the differential operator
∂∣𝛼∣/∂𝛼1

1 . . . ∂𝛼𝑑𝑑 .

Lemma 2.3. Under assumptions (ℋ1), (ℋ2) and (ℋ3), we have that

i) 𝑢𝑥 is 𝒞3 with respect to the time variable and 𝒞6 with respect to the space
variables. Moreover, it solves the following PDE{

∂𝑡𝑢𝑥 + ℒ𝑢𝑥 = 0

𝑢𝑥(𝑇, 𝑦,𝑚, 𝑣) = 𝛾𝑥(𝑦,𝑚, 𝑣)
(2.3)

where ℒ is the differential operator associated to (2.2):

ℒ𝑢(𝑦,𝑚, 𝑣) =
𝜎2(𝑦)

2

∂2𝑢

∂𝑦2
+ 𝑏(𝑦)

∂𝑢

∂𝑦
+ ℎ(𝑦)

∂𝑢

∂𝑚
+ 𝑓2(𝑦)

∂𝑢

∂𝑣
.

ii) For any multi-index 𝛼 ∈ ℕ3 and integer 𝑙 such that 2𝑙 + ∣𝛼∣ ≤ 6, there exists
𝐶𝑙,𝛼,𝐾𝑙,𝛼 > 0 and 𝑝𝑙,𝛼 ∈ ℕ such that ∀𝑡 ∈ [0, 𝑇 ], ∀(𝑦,𝑚, 𝑣) ∈ ℝ3,∣∣∂𝑙𝑡∂𝛼𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣)

∣∣ ≤ 𝐶𝑙,𝛼𝑒
−𝐾𝑙,𝛼𝑥2 (1 + ∣𝑦∣𝑝𝑙,𝛼) .

Lemma 2.4. Under assumption (ℋ1),

∀𝑞 ∈ ℕ, sup
0≤𝑘≤𝑁

𝔼
(∣∣∣𝑌 𝑁𝑡𝑘 ∣∣∣𝑞) <∞.

Now, following the error analysis of Talay and Tubaro [1], we write that∣∣∣𝔼 [
𝛾𝑥(𝑌𝑇 ,𝑚𝑇 , 𝑣𝑇 )− 𝛾𝑥(𝑌

𝑁

𝑇 ,𝑚
𝑁
𝑇 , 𝑣

𝑁
𝑇 )

]∣∣∣ ≤ 𝑁−1∑
𝑘=0

𝜂𝑘(𝑥)

where 𝜂𝑘(𝑥) =
∣∣∣𝔼 [

𝑢𝑥(𝑡𝑘+1, 𝑌
𝑁

𝑡𝑘+1
,𝑚𝑁𝑡𝑘+1

, 𝑣𝑁𝑡𝑘+1
)− 𝑢𝑥(𝑡𝑘, 𝑌

𝑁

𝑡𝑘 ,𝑚
𝑁
𝑡𝑘 , 𝑣

𝑁
𝑡𝑘)

]∣∣∣ and ∀0 ≤
𝑘 ≤ 𝑁,

𝑚𝑁𝑡𝑘 = 𝛿𝑁

𝑘−1∑
𝑗=0

ℎ(𝑌
𝑁

𝑡𝑗 ) + ℎ(𝑌
𝑁

𝑡𝑗+1
)

2
and 𝑣𝑁𝑡𝑘 = 𝛿𝑁

𝑘−1∑
𝑗=0

𝑓2(𝑌
𝑁

𝑡𝑗 ) + 𝑓2(𝑌
𝑁

𝑡𝑗+1
)

2
.
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Using the Markov property for the first term in the expectation and Taylor’s
formula together with PDE (2.3) for the second, we get

𝜂𝑘(𝑥) =

∣∣∣∣𝔼[𝜙𝑥(𝑡𝑘+1, 𝑌
𝑁

𝑡𝑘
,𝑚𝑁𝑡𝑘 , 𝑣

𝑁
𝑡𝑘
)− 𝑢𝑥(𝑡𝑘+1, 𝑌

𝑁

𝑡𝑘
,𝑚𝑁𝑡𝑘 , 𝑣

𝑁
𝑡𝑘
)

+ 𝛿𝑁ℒ𝑢𝑥(𝑡𝑘+1, 𝑌
𝑁

𝑡𝑘 ,𝑚
𝑁
𝑡𝑘 , 𝑣

𝑁
𝑡𝑘)−

𝛿2𝑁
2
ℒ2𝑢𝑥(𝑡𝑘+1, 𝑌

𝑁

𝑡𝑘 ,𝑚
𝑁
𝑡𝑘 , 𝑣

𝑁
𝑡𝑘)

+
1

2

∫ 𝑡𝑘+1

𝑡𝑘

∂3𝑢𝑥
∂𝑡3

(𝑡, 𝑌
𝑁

𝑡𝑘
,𝑚𝑁𝑡𝑘 , 𝑣

𝑁
𝑡𝑘
)(𝑡− 𝑡𝑘)

2𝑑𝑡

]∣∣∣∣
with 𝜙𝑥(𝑡𝑘+1, 𝑦,𝑚, 𝑣) = 𝔼

[
Γ𝑦(𝑌

𝑁,𝑦

𝑡1 )
]
where

Γ𝑦(𝑧) = 𝑢𝑥

(
𝑡𝑘+1, 𝑧,𝑚+ 𝛿𝑁

ℎ(𝑧) + ℎ(𝑦)

2
, 𝑣 + 𝛿𝑁

𝑓2(𝑧) + 𝑓2(𝑦)

2

)
.

Using Taylor’s formula, we can show that ∀𝑧 ∈ ℝ,

Γ𝑦(𝑧) = Γ𝑦,1(𝑧) + 𝛿𝑁Γ𝑦,2(𝑧) +
𝛿2𝑁
2
Γ𝑦,3(𝑧) +𝑅0(𝑧)

where

Γ𝑦,1(𝑧) = 𝑢𝑥(𝑡𝑘+1, 𝑧,𝑚, 𝑣)

Γ𝑦,2(𝑧) =
ℎ(𝑧) + ℎ(𝑦)

2

∂𝑢𝑥
∂𝑚

(𝑡𝑘+1, 𝑧,𝑚, 𝑣) +
𝑓2(𝑧) + 𝑓2(𝑦)

2

∂𝑢𝑥
∂𝑣

(𝑡𝑘+1, 𝑧,𝑚, 𝑣)

Γ𝑦,3(𝑧) =

((
ℎ(𝑧) + ℎ(𝑦)

2

)2
∂2𝑢𝑥
∂𝑚2

(⋅) +
(
𝑓2(𝑧) + 𝑓2(𝑦)

2

)2
∂2𝑢𝑥
∂𝑣2

(⋅)
)
(𝑡𝑘+1, 𝑧,𝑚, 𝑣)

+ 2
ℎ(𝑧) + ℎ(𝑦)

2

𝑓2(𝑧) + 𝑓2(𝑦)

2

∂2𝑢𝑥
∂𝑚∂𝑣

(𝑡𝑘+1, 𝑧,𝑚, 𝑣)

and

𝑅0(𝑧) =

∫ 𝛿𝑁
0

(𝛿𝑁 − 𝑡)2

2
𝑑𝑡

((
ℎ(𝑧) + ℎ(𝑦)

2

)3
∂3𝑢𝑥
∂𝑚3

(⋅) +
(
𝑓2(𝑧) + 𝑓2(𝑦)

2

)3
∂3𝑢𝑥
∂𝑣3

(⋅)

+ 3

(
𝑓2(𝑧) + 𝑓2(𝑦)

2

)2(
ℎ(𝑧) + ℎ(𝑦)

2

)
∂3𝑢𝑥
∂𝑚∂𝑣2

(⋅)

+ 3

(
ℎ(𝑧) + ℎ(𝑦)

2

)2(
𝑓2(𝑧) + 𝑓2(𝑦)

2

)
∂3𝑢𝑥
∂𝑚2∂𝑣

(⋅)
)(

𝑡, 𝑧,𝑚, 𝑣
)

(2.4)

where 𝑡 = 𝑡𝑘+1,𝑚 = 𝑚+ 𝑡ℎ(𝑧)+ℎ(𝑦)2 and 𝑣 = 𝑣 + 𝑡 𝑓
2(𝑧)+𝑓2(𝑦)

2 . So

𝜙𝑥(𝑡𝑘+1,𝑦,𝑚,𝑣)=𝔼

[
Γ𝑦,1

(
𝑌
𝑁,𝑦

𝑡1

)
+𝛿𝑁Γ𝑦,2

(
𝑌
𝑁,𝑦

𝑡1

)
+

𝛿2𝑁
2
Γ𝑦,3

(
𝑌
𝑁,𝑦

𝑡1

)
+𝑅0

(
𝑌
𝑁,𝑦

𝑡1

)]
.

With a slight abuse of notations, we define the first-order differential operators 𝑉0
and 𝑉 acting on 𝒞1 functions by 𝑉0𝜉(𝑥) = 𝑉0(𝑥)𝜉

′(𝑥) and 𝑉 𝜉(𝑥) = 𝑉 (𝑥)𝜉′(𝑥) for
𝜉 ∈ 𝒞1(ℝ) where the functions 𝑉0 and 𝑉 are defined in (1.3). We make the same
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expansions as in Ninomiya and Victoir [6] but with making the remainder terms
explicit in order to check if they have the good behavior with respect to 𝑥. We can
show after tedious but simple computations that

𝔼
[
Γ𝑦,1(𝑌

𝑁,𝑦

𝑡1 )
]
= Γ𝑦,1(𝑦) +

𝛿𝑁
2

(
𝑉 2Γ𝑦,1(𝑦) + 2𝑉0Γ𝑦,1(𝑦)

)
+

𝛿2𝑁
8

(
4𝑉0

2Γ𝑦,1(𝑦) + 2𝑉0𝑉
2Γ𝑦,1(𝑦)

+ 2𝑉 2𝑉0Γ𝑦,1(𝑦) + 𝑉 4Γ𝑦,1(𝑦)
)
+ 𝔼 (𝑅1(𝑦))

𝔼
[
Γ𝑦,2(𝑌

𝑁,𝑦

𝑡1 )
]
= Γ𝑦,2(𝑦) +

𝛿𝑁
2

(
𝑉 2Γ𝑦,2(𝑦) + 2𝑉0Γ𝑦,2(𝑦)

)
+ 𝔼 (𝑅2(𝑦))

𝔼
[
Γ𝑦,3(𝑌

𝑁,𝑦

𝑡1 )
]
= Γ𝑦,3(𝑦) + 𝔼 (𝑅3(𝑦))

where

𝑅1(𝑦) =

∫ 𝛿𝑁
2

0

∫ 𝑠1
0

∫ 𝑠2

0

𝑉0
3Γ𝑦,1(𝑒

𝑠3𝑉0𝑒𝑊𝛿𝑁 𝑉 𝑒
𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠3𝑑𝑠2𝑑𝑠1

+

∫ 𝑊𝛿𝑁
0

∫ 𝑠1
0

∫ 𝑠2
0

∫ 𝑠3
0

∫ 𝑠4
0

∫ 𝑠5
0

𝑉 6Γ𝑦,1(𝑒
𝑠6𝑉 𝑒

𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠6 ⋅ ⋅ ⋅ 𝑑𝑠1

+
𝛿𝑁
2

∫ 𝑊𝛿𝑁
0

∫ 𝑠1
0

∫ 𝑠2
0

∫ 𝑠3
0

𝑉 4𝑉0Γ𝑦,1(𝑒
𝑠4𝑉 𝑒

𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠4𝑑𝑠3𝑑𝑠2𝑑𝑠1

+
𝛿2𝑁
8

∫ 𝑊𝛿𝑁
0

∫ 𝑠1
0

𝑉 2𝑉0
2Γ𝑦,1(𝑒

𝑠2𝑉 𝑒
𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠2𝑑𝑠1

+

∫ 𝛿𝑁
2

0

∫ 𝑠1
0

∫ 𝑠2
0

𝑉0
3Γ𝑦,1(𝑒

𝑠3𝑉0(𝑦))𝑑𝑠3𝑑𝑠2𝑑𝑠1

+
𝛿𝑁
2

∫ 𝛿𝑁
2

0

∫ 𝑠1
0

𝑉0
2𝑉 2Γ𝑦,1(𝑒

𝑠2𝑉0(𝑦))𝑑𝑠2𝑑𝑠1 (2.5)

+
𝛿𝑁
2

∫ 𝛿𝑁
2

0

∫ 𝑠1
0

𝑉0
3Γ𝑦,1(𝑒

𝑠2𝑉0(𝑦))𝑑𝑠2𝑑𝑠1

+
𝛿2𝑁
8

∫ 𝛿𝑁
2

0

𝑉0𝑉
4Γ𝑦,1(𝑒

𝑠1𝑉0(𝑦))𝑑𝑠1

+
𝛿2𝑁
8

∫ 𝛿𝑁
2

0

𝑉0
3Γ𝑦,1(𝑒

𝑠1𝑉0(𝑦))𝑑𝑠1

+
𝛿2𝑁
4

∫ 𝛿𝑁
2

0

𝑉0𝑉
2𝑉0Γ𝑦,1(𝑒

𝑠1𝑉0(𝑦))𝑑𝑠1,
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𝑅2(𝑦) =

∫ 𝛿𝑁
2

0

∫ 𝑠1
0

𝑉0
2Γ𝑦,2(𝑒

𝑠2𝑉0𝑒𝑊𝛿𝑁 𝑉 𝑒
𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠2𝑑𝑠1

+

∫ 𝑊𝛿𝑁
0

∫ 𝑠1
0

∫ 𝑠2
0

∫ 𝑠3
0

𝑉 4Γ𝑦,2(𝑒
𝑠4𝑉 𝑒

𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠4𝑑𝑠3𝑑𝑠2𝑑𝑠1

+
𝛿𝑁
2

∫ 𝑊𝛿𝑁
0

∫ 𝑠1
0

𝑉 2𝑉0Γ𝑦,2(𝑒
𝑠2𝑉 𝑒

𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠2𝑑𝑠1

+

∫ 𝛿𝑁
2

0

∫ 𝑠1
0

𝑉0
2Γ𝑦,2(𝑒

𝑠2𝑉0(𝑦))𝑑𝑠2𝑑𝑠1 (2.6)

+
𝛿𝑁
2

∫ 𝛿𝑁
2

0

𝑉0𝑉
2Γ𝑦,2(𝑒

𝑠1𝑉0(𝑦))𝑑𝑠1 +
𝛿𝑁
2

∫ 𝛿𝑁
2

0

𝑉0
2Γ𝑦,2(𝑒

𝑠1𝑉0(𝑦))𝑑𝑠1,

𝑅3(𝑦) =

∫ 𝛿𝑁
2

0

𝑉0Γ𝑦,3(𝑒
𝑠1𝑉0𝑒𝑊𝛿𝑁 𝑉 𝑒

𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠1 (2.7)

+

∫ 𝑊𝛿𝑁
0

∫ 𝑠1
0

𝑉 2Γ𝑦,3(𝑒
𝑠2𝑉 𝑒

𝛿𝑁
2 𝑉0(𝑦))𝑑𝑠2𝑑𝑠1 +

∫ 𝛿𝑁
2

0

𝑉0Γ𝑦,3(𝑒
𝑠1𝑉0(𝑦))𝑑𝑠1.

Putting all the terms together, one can check that

𝜙𝑥(𝑡𝑘+1, 𝑦,𝑚, 𝑣) = 𝑢𝑥(𝑡𝑘+1, 𝑦,𝑚, 𝑣) + 𝛿𝑁ℒ𝑢𝑥(𝑡𝑘+1, 𝑦,𝑚, 𝑣)

+
𝛿2𝑁
2
ℒ2𝑢𝑥(𝑡𝑘+1, 𝑦,𝑚, 𝑣) +𝑅(𝑦)

where 𝑅(𝑦) = 𝔼
[
𝑅0(𝑌

𝑁,𝑦

𝑡1 ) +𝑅1(𝑦) + 𝛿𝑁𝑅2(𝑦) +
𝛿2𝑁
2 𝑅3(𝑦)

]
. Finally,

𝑒(𝑥) ≤
𝑁−1∑
𝑘=0

𝔼

[∣∣∣∣12
∫ 𝑡𝑘+1

𝑡𝑘

∂3𝑢𝑥
∂𝑡3

(
𝑡, 𝑌

𝑁

𝑡𝑘
,𝑚𝑁𝑡𝑘 , 𝑣

𝑁
𝑡𝑘

)
(𝑡− 𝑡𝑘)

2𝑑𝑡

∣∣∣∣+ ∣∣∣𝑅(
𝑌
𝑁

𝑡𝑘

)∣∣∣] . (2.8)

From Lemmas 2.3 and 2.4, we deduce that there exists 𝐶1,𝐾1 > 0 such that

𝑁−1∑
𝑘=0

𝔼

[∣∣∣∣12
∫ 𝑡𝑘+1

𝑡𝑘

∂3𝑢𝑥
∂𝑡3

(
𝑡, 𝑌

𝑁

𝑡𝑘 ,𝑚
𝑁
𝑡𝑘 , 𝑣

𝑁
𝑡𝑘

)
(𝑡− 𝑡𝑘)

2𝑑𝑡

∣∣∣∣] ≤ 1

𝑁2
𝐶1𝑒

−𝐾1𝑥
2

. (2.9)

On the other hand, a close look to (2.4), (2.5), (2.6) and (2.7) convinces us

that the term 𝔼
[∣∣∣𝑅(

𝑌
𝑁

𝑡𝑘

)∣∣∣] is of order 1
𝑁3 and that it involves only derivatives

of 𝑢𝑥 and of the coefficients of the SDE (2.2). So, thanks to Lemmas 2.3 and 2.4,
there exists 𝐶2,𝐾2 > 0 such that

𝑁−1∑
𝑘=0

𝔼
[∣∣∣𝑅 (

𝑌
𝑁

𝑡𝑘

)∣∣∣] ≤ 1

𝑁2
𝐶2𝑒

−𝐾2𝑥
2

. (2.10)

Putting (2.9) and (2.10) in (2.8), we conclude that (2.1) holds. □
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Remark 2.5.

∙ As for plain vanilla options pricing, observe that, by the Romano and Touzi
[11] formula,

𝔼
(
𝑒−𝑟𝑇𝛼(𝑆𝑇 )∣(𝑌𝑡)𝑡∈[0,𝑇 ]

)
= 𝐵𝑆𝛼,𝑇 (𝑠, 𝑣)

where 𝑠 = 𝑠0𝑒
𝜌(𝐹 (𝑌𝑇 )−𝐹 (𝑦0))+𝑚𝑇+(

(1−𝜌2)𝑣𝑇
2𝑇 −𝑟)𝑇 , 𝑣 = (1−𝜌2)𝑣𝑇

𝑇 and 𝐵𝑆𝛼,𝑇 (𝑠, 𝑣)
stands for the price of a European option with pay-off 𝛼 and maturity 𝑇 in
the Black–Scholes model with initial stock price 𝑠, volatility

√
𝑣 and constant

interest rate 𝑟. When, like for a call or a put option, 𝐵𝑆𝛼,𝑇 is available in a
closed form, one should approximate 𝔼

(
𝑒−𝑟𝑇𝛼(𝑆𝑇 )

)
by

1

𝑀

𝑀∑
𝑖=1

𝐵𝑆𝛼,𝑇

(
𝑠0𝑒
𝜌(𝐹 (𝑌

𝑁,𝑖
𝑇 )−𝐹 (𝑦0))+𝑚𝑁,𝑖𝑇 +(

(1−𝜌2)𝑣
𝑁,𝑖
𝑇

2𝑇 −𝑟)𝑇 ,
(1− 𝜌2)𝑣𝑁,𝑖𝑇

𝑇

)
where𝑀 is the total number of Monte Carlo samples and the index 𝑖 refers to
independent draws. Indeed, the conditioning provides a variance reduction.

∙ In the special case of an Ornstein–Uhlenbeck process driving the volatility,
(𝑌𝑡)𝑡∈[0,𝑇 ] is solution of the following SDE

𝑑𝑌𝑡 = 𝜈𝑑𝑊𝑡 + 𝜅(𝜃 − 𝑌𝑡)𝑑𝑡, 𝑌0 = 𝑦0

with 𝜈 > 0 and 𝜅, 𝜃 ∈ ℝ. One should then replace the Ninomiya–Victoir
scheme by the true solution 𝑌𝑡 = 𝑦0𝑒

−𝜅𝑡 + 𝜃(1 − 𝑒−𝜅𝑡) + 𝜈
∫ 𝑡
0
𝑒−𝜅(𝑡−𝑠)𝑑𝑊𝑠.

The order two of weak convergence is then preserved.

3. Numerical illustration of weak convergence

For the following numerical computations, we are going to consider Scott’s model
(see [12]): {

𝑑𝑆𝑡 = 𝑟𝑆𝑡𝑑𝑡+ 𝜎0𝑒
𝑌𝑡𝑆𝑡

(
𝜌𝑑𝑊𝑡 +

√
1− 𝜌2𝑑𝐵𝑡

)
𝑑𝑌𝑡 = 𝜅(𝜃 − 𝑌𝑡)𝑑𝑡+ 𝜈𝑑𝑊𝑡

⇒ 𝑓(𝑦) = 𝜎0𝑒
𝑦, 𝑏(𝑦) = 𝜅(𝜃 − 𝑦) and 𝜎(𝑦) = 𝜈

with the following set of parameters: 𝑆0 = 100, 𝑟 = 0.05, 𝑇 = 1, 𝜎0 = 0.25, 𝑦0 =

0, 𝜅 = 1, 𝜃 = 0, 𝜈 = 7
√
2

20 , 𝜌 = −0.2 and 𝑓 : 𝑦 �→ 𝜎0𝑒
𝑦. Then 𝑌 is an Ornstein–

Uhlenbeck process which can be simulated exactly on the time-grid
∏
𝑁 .

We compute the price of a call option with strike 𝐾 = 100 and maturity
𝑇 = 1. For our scheme, using both the conditioning variance reduction technique
presented in Remark 2.5 and the opportunity to simulate exactly the process 𝑌 ,
we approximate the price of the option by

𝑃𝑁,𝑀Weak2 =
1

𝑀

𝑀∑
𝑖=1

𝐵𝑆𝛼,𝑇

(
𝑠0𝑒
𝜌(𝐹 (𝑌 𝑖𝑇 )−𝐹 (𝑦0))+�̃�𝑁,𝑖𝑇 +(

(1−𝜌2)𝑣
𝑁,𝑖
𝑇

2𝑇 −𝑟)𝑇 ,
(1− 𝜌2)𝑣𝑁,𝑖𝑇

𝑇

)



406 B. Jourdain and M. Sbai

Figure 1. Illustration of the convergence rate for the call option

where

(�̃�𝑁,𝑖𝑇 , 𝑣𝑁,𝑖𝑇 ) = 𝛿𝑁

𝑁−1∑
𝑘=0

(
ℎ(𝑌 𝑖𝑡𝑘) + ℎ(𝑌 𝑖𝑡𝑘+1

)

2
,
𝑓2(𝑌 𝑖𝑡𝑘) + 𝑓2(𝑌 𝑖𝑡𝑘+1

)

2

)
and the index 𝑖 refers to independent draws. For the Euler schemes, we approximate
the price of the option by

𝑃𝑁,𝑀Euler =
1

𝑀

𝑀∑
𝑖=1

𝐵𝑆𝛼,𝑇

(
𝑠0𝑒
𝜌
∑𝑁−1
𝑘=0 𝑓(𝑌

𝑖
𝑡𝑘
)(𝑊 𝑖

𝑡𝑘+1
−𝑊 𝑖

𝑡𝑘
)−𝜌2𝑣𝑁,𝑖𝑇 𝑇

,
(1 − 𝜌2)𝑣𝑁,𝑖𝑇

𝑇

)
.

In Figure 1 we draw the logarithm log
(∣∣∣𝑃exact − 𝑃𝑁,𝑀scheme

∣∣∣) of the pricing error
where the reference call price 𝑃exact ≈ 12.82603 is obtained by a multilevel Monte
Carlo with an accuracy of 5𝑏𝑝 (see [15] for the multilevel Monte Carlo method),
as a function of the logarithm of the number 𝑁 of time steps. In order to avoid
statistical noise, we make 𝑀 = 107 simulations.

We see that, as expected, the Weak 2 scheme and Euler scheme with Romberg
extrapolation exhibit a weak convergence of order two and converge much faster
than the Euler scheme. For the same number of time steps, the precision obtained
by our scheme is better than the one obtained by the Euler scheme with Romberg
extrapolation.

Finally, note that the weak scheme does not require the simulation of ad-
ditional terms when compared to the Euler scheme, with and without Romberg
extrapolation. Combined with its second-order weak convergence, this makes the
Weak 2 scheme very competitive for the pricing of plain vanilla European options.
In Figure 2, we give the relative error of each scheme as a function of the compu-
tation time needed when we fix the number of simulation to 𝑀 = 100 000. The
vertical bars in the figure represent the confidence interval. We see that our scheme
reaches a high level of precision in less than a second. It takes at least five seconds
for the Euler to reach the same level of precision. Certainly, the use of Romberg
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Figure 2. Convergence of the call price with respect to time

extrapolation improves the ratio precision/computation time but it is still much
less efficient compared to our scheme.

4. Conclusion

In this article, we have capitalized on the particular structure of stochastic volatil-
ity models to propose and analyze an ad’hoc discretization scheme with order two
of weak convergence. Our numerical experiments confirm this theoretical rate of
convergence. The Euler scheme with Romberg extrapolation also achieves second-
order weak convergence but we show that our scheme is much more competitive.

Appendix. Proofs

A.1. Proof of Lemma 2.3

We refer to [13, Theorem 7.1, p. 295] for the existence of a classical solution to the
PDE (2.3), 𝐶1 with respect to the time variable and 𝐶2 with respect to (𝑦,𝑚, 𝑣).
Then the Feynmac Kac representation formula ensures that this function is equal
to 𝑢𝑥.

Let us now check the additional regularity properties. To do so, we first derive
the following estimation of the derivatives of 𝛾𝑥:

∀𝛽 ∈ ℕ3 such that 𝛽1 ≤ 6, ∃𝐶𝛽 ,𝐾𝛽 > 0 such that

∀(𝑦,𝑚, 𝑣) ∈ ℝ3, ∣∂𝛽𝛾𝑥(𝑦,𝑚, 𝑣)∣ ≤ 𝐶𝛽𝑒
−𝐾𝛽𝑥2 .

(A.1)
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Indeed, using Leibniz’s formula, one can show that ∂𝛽𝛾𝑥(𝑦,𝑚, 𝑣) can be written
as a weighted sum of terms of the form

𝜁𝑘 =
(𝑥− log(𝑠0) + 𝜌𝐹 (𝑦0)− 𝜌𝐹 (𝑦)− 𝜑(𝑚))𝑘2

(𝜓(𝑣))𝑘1+
1
2

× exp
(
− (𝑥− log(𝑠0) + 𝜌𝐹 (𝑦0)− 𝜌𝐹 (𝑦)− 𝜑(𝑚))2

2(1− 𝜌2)𝜓(𝑣)

)
×
𝑘3∏
𝑖=1

(
𝐹 (𝑖)(𝑦)

)𝑎𝑖 (
𝜑(𝑖)(𝑚)

)𝑏𝑖 (
𝜓(𝑖)(𝑣)

)𝑐𝑖
where 𝑘 = (𝑘1, 𝑘2, 𝑘3) belongs to a finit set 𝐼𝛽 ⊂ ℕ3 and (𝑎𝑖, 𝑏𝑖, 𝑐𝑖)0≤𝑖≤𝑘3 are
constants taking value in ℕ3. Using assumptions (ℋ2) and (ℋ3), Young’s inequality
and the boundedness of 𝜑 and 𝜓 together with their derivatives, we show that

∃𝐶𝑘,𝐾𝑘 > 0 such that ∣𝜁𝑘∣ ≤ 𝐶𝑘𝑒
−𝐾𝑘𝑥2 which yields the desired result.

By inverting expectation and differentiations, we see that for any multi-index
𝛽 ∈ ℕ such that 𝛽1 ≤ 6, the derivative ∂𝛽𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣) exists and is a continuous
function equal to the expectation of a product between derivatives of the flow
(𝑦,𝑚, 𝑣)→ (𝑌𝑇−𝑡,𝑚𝑇−𝑡, 𝑣𝑇−𝑡)(𝑦,𝑚,𝑣) and derivatives of the function 𝛾𝑥 evaluated
at (𝑌𝑇−𝑡,𝑚𝑇−𝑡, 𝑣𝑇−𝑡)(𝑦,𝑚,𝑣). Using result (A.1) and the fact that, under assump-
tions (ℋ1) and (ℋ2), the derivatives of the flow satisfy a system of SDEs with
Lipschitz continuous coefficients (see for example Kunita [13]) we obtain that for
𝛽 ∈ ℕ such that 𝛽1 ≤ 6,

∃𝐶𝛽 ,𝐾𝛽 > 0, ∀(𝑦,𝑚, 𝑣) ∈ ℝ3, ∣∂𝛽1𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣)∣ ≤ 𝐶𝛽𝑒
−𝐾𝛽𝑥2 . (A.2)

Now, let us fix 𝛼 ∈ ℕ3, 𝑙 ∈ ℕ such that 2𝑙 + ∣𝛼∣ ≤ 6 and (𝑡, 𝑦,𝑚, 𝑣) ∈ [0, 𝑇 ]× ℝ3.
Thanks to the PDE (2.2), the derivative ∂𝑙𝑡∂𝛼𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣) exists and is a contin-
uous function equal to (−1)𝑙∂𝛼ℒ𝑙𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣). One can check that the right-hand
side is equal to a weighted sum of terms of the form ∂𝛽𝑢𝑥(𝑡, 𝑦,𝑚, 𝑣)×𝜋𝛾(𝑏, 𝜎, 𝑓, ℎ)
where 𝛽 ∈ ℕ3 is multi-index belonging to a finite set 𝐼1𝛼,𝑙 ⊂ {0, 1, . . . , 6} × ℕ2 ,

𝛾 is a suffix belonging to a finite set 𝐼2𝛼,𝑙 and 𝜋𝛾(𝑏, 𝜎, 𝑓, ℎ) is a product of terms
involving the functions 𝑏, 𝜎, 𝑓, ℎ and their derivatives up to order 4.

Assumptions (ℋ1) and (ℋ2) yield that ∃𝑐2𝑙,𝛼 ≥ 0 and 𝑞𝑙,𝛼 ∈ ℕ such that

∀𝛾 ∈ 𝐼2𝛼,𝑙, ∣𝜋𝛾(𝑏, 𝜎, 𝑓, ℎ)∣ ≤ 𝑐2𝑙,𝛼(1 + ∣𝑦∣𝑞𝑙,𝛼). (A.3)

Gathering (A.3) and (A.2) enables us to conclude.

A.2. Proof of Lemma 2.4

Making the link between ODEs and SDEs (see Doss [14]), one can check that

(𝑌
𝑁

𝑡1 , . . . , 𝑌
𝑁

𝑡𝑁 ) has the same distribution law as (𝑌 2𝑡1 , . . . , 𝑌 2𝑡𝑁 ) where (𝑌 𝑡)𝑡∈[0,2𝑇 ]
is solution of the following inhomogeneous SDE

𝑌 𝑡 = 𝑦0 +

∫ 𝑡
0

𝑏(𝑠, 𝑌 𝑠)𝑑𝑠+

∫ 𝑡
0

𝜎(𝑠, 𝑌 𝑠)𝑑𝑊𝑠
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with, ∀(𝑠, 𝑦) ∈ [0, 2𝑇 ]× ℝ,

𝑏(𝑠, 𝑦) =

⎧⎨⎩
1

2
𝜎𝜎′(𝑦) if 𝑠 ∈ ∪𝑁−1

𝑘=0

[
(4𝑘+1)𝑇

2𝑁 , (4𝑘+3)𝑇
2𝑁

]
𝑏(𝑦)− 1

2
𝜎𝜎′(𝑦) otherwise

and

𝜎(𝑠, 𝑦) =

⎧⎨⎩ 𝜎(𝑦) if 𝑠 ∈
𝑁−1∪
𝑘=0

[
(4𝑘 + 1)𝑇

2𝑁
,
(4𝑘 + 3)𝑇

2𝑁

]
0 otherwise

.

Since these coefficients have a uniform in time linear growth in the spatial
variable, one easily concludes.
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Bid-Ask Spread Modelling,
a Perturbation Approach

Thomas Lim, Vathana Ly Vath, Jean-Michel Sahut
and Simone Scotti

Abstract. Our objective is to study liquidity risk, in particular the so-called
“bid-ask spread”, as a by-product of market uncertainties. “Bid-ask spread”,
and more generally “limit order books” describe the existence of different sell
and buy prices, which we explain by using different risk aversions of market
participants. The risky asset follows a diffusion process governed by a Brow-
nian motion which is uncertain. We use the error theory with Dirichlet forms
to formalize the notion of uncertainty on the Brownian motion. This uncer-
tainty generates noises on the trajectories of the underlying asset and we use
these noises to expound the presence of bid-ask spreads. In addition, we prove
that these noises also have direct impacts on the mid-price of the risky asset.
We further enrich our studies with the resolution of an optimal liquidation
problem under these liquidity uncertainties and market impacts. To complete
our analysis, some numerical results will be provided.

Mathematics Subject Classification (2010). 60G15, 60H10, 60G45, 91G80.

Keywords. Error theory using Dirichlet Forms, order books, bid-ask spread,
optimal control problem, liquidity.

Introduction

A stock index is defined as an aggregate value produced by combining several
stocks or other investment vehicles together and expressing their total values
against a base value from a specific date. Stock Market indexes, for instance, are
intended to represent an entire stock market and thus track the market’s changes
over time. They are generally used as benchmark to measure the relative perfor-
mance of any given investment portfolio. But they are not directly tradable assets.
An increasing role of the asset management industry is to provide investors with

This research benefitted from the support of the “Chaire Risque de Crédit”, Fédération Bancaire
Française.
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investment tools capable of replicating a wide range of indices. These investment
tools are often known as trackers or Exchange Traded Funds (ETF). To put it into
perspective, investments in ETF have significantly increased over the last decade.

Let us now consider a process𝑋 representing a stock market index, i.e., a non-
tradable asset, which is governed by a given SDE (stochastic differential equation).
We also consider the process 𝑆 representing an ETF on the non-tradable index 𝑋 .

Our main objective in this paper is to address two important questions arising
from the trading of the ETF. The first question concerns the price value and its
trajectory behavior compared to that of the index. Beyond this first question, we
will, in particular, address the microstructure problem of the transaction market
and attempt to model the financial and economic rationale behind the existence of
the bid-ask spread. The second question is linked to the practical study of optimal
liquidation strategy in the context of non-liquidity.

Managing a tracker fund is not as simplistic as it first looks. Indeed, the
impossibility to trade continuously, the lack of liquidity in the transaction of the
index’s components, liquidity and transaction costs, etc, imply that the values 𝑆 of
the index tracker fund and the index 𝑋 may be highly correlated but not identical,
i.e., this phenomenon is called tracking errors.

By value of the tracker fund, we mean the “fundamental value” obtained
by summing parts of the tracker fund. Due to tracking errors, which are non-
observable, the “theoretical” value of the tracker fund is itself a non-observable
process, i.e., at each time, it is a random variable. Furthermore, should we take
into account the liquidity problem, the “value” of the tracker fund should be
the liquidation value of the assets owned in the fund. The liquidation value is
very different from the last-transaction based price or the mid-price. However,
from the investors’ point of view, the price value of the tracker fund is also and
especially its quoted prices. Indeed, the ETF is itself a trading asset. As such, to
invest in (disinvest from) the tracker fund, one has to go through the market and
make appropriate buy (sell) order transaction. Its price therefore depends on the
dynamics of the overall buy and sell orders.

To sum up, the dynamics of the price value 𝑆 of the ETF has two driving
factors: a fundamental factor and a trading factor. The fundamental factor consid-
ers the tracker fund as the aggregate value produced by combining its components
while the trading factor deals with the microstructure of market transactions, i.e.,
when the liquidity risk and cost are factored in.

In addressing our first question on the dynamics of the price value 𝑆 and
its trajectory, we will in particular study how the non-observability of the funda-
mental values of the tracker fund explains the existence of the limit order book
and more specifically the bid-ask spread. Indeed, at any fixed time, the price
value 𝑆 is not observable but it is a random variable where its law or at least its
mean and variance may be characterized. In the context of this randomness and
non-observability, the existence of different risk aversions of market participants
directly explains the presence of different types of orders, i.e., limit and market
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orders and in particular the presence of many buy and sell limit order prices form-
ing the limit order book. In order to focus on the modelling of the bid-ask spread,
we consider a “representative” price-setter market participant who places all limit
orders, in particular the best buy and best sell limit orders, i.e., the prices and the
number of shares he is willing to buy and sell. Prior to setting the buy and sell
orders, the representative agent obtains the distribution of possible asset values
from the market information but has no possibility to observe the assets’ realized
values. A rational decision is to send a buy (sell) limit order with a lower (higher)
price with respect to the assets mean value such that their difference justifies the
risk taken.

In the mathematical finance literature, there are several approaches modelling
liquidity risk. One approach is to explain liquidity risk by the presence of an insider
[2, 17]. Another approach is the market manipulation literature where prices are
assumed to depend directly on the trading strategies, see [3] and [10]. A third
approach is to consider liquidity risk in terms of the difference between the bid
and ask prices, i.e., the existence of a bid-ask spread. Transaction costs [16] are one
way to model the bid-ask spread. In [18], liquidity risk is expressed by the presence
of transaction costs and market manipulation. Another way is to directly model
the bid-ask spread or the order books and explain its presence as being intrinsic
to the financial markets, driven by trades between different market participants.

Bid-ask spread and order books play a crucial role in many financial problems
such as unwinding large block of shares for large investors and hedging strategy
of options for traders. These problems were investigated by the likes of [1] and
[20]. Due to the complexity of the study, state process representing the underlying
price is assumed to have simple dynamics such as Bachelier’s dynamics [20], or is
assumed to be a martingale process [1].

However, in the above models, liquidity risk is considered a posteriori. In
other words, assuming the existence of liquidity risk, different approaches are used
to replicate its effects. To our knowledge, few studies in the fields of mathematical
finance have attempted to model the financial and economic rationales behind the
existence of the bid-ask spread. This is precisely the objective in this paper: study
and explain, in the context of the ETF trading, the existence of the bid-ask spread,
and more generally limit order book, as a by-product of market uncertainties.

The mathematical formulation of such problems relies on the specification
of a coherent framework to describe the remaining randomness on prices. In our
study, the asset value depends on two random sources: the first one describes the
evolution of the asset mean value while the second delineates the shape of asset
(sell-buy) prices at a given fixed time. The coupling of the two probability spaces,
with its respective filtration, requires complex tools and represents the principal
drawback of this kind of approach. Therefore, we choose a different strategy based
on error theory using Dirichlet forms formalism developed in [8] and [9]. The
advantages of this approach are inherent to its elasticity and powerful tools.

Such an approach provides us with a perfect knowledge of the bid-ask spread
component of the order book, i.e., the best/highest bid price and the best/lowest
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ask price of the order book placed by the “representative” price-setter market par-
ticipant. Once our bid-ask spread model obtained, as in [20] or [1], we investigate
an optimal liquidation problem for a large portfolio.

The article is organized as follows. In Section 1, we introduce the economic
model for bid-ask spread and we present the analysis of prices variance and bias.
In Section 2, we study an optimal liquidation problem associated with the bid-
ask spread model developed in the previous section. And finally, in Section 3, we
provide some numerical results.

1. The model

In this section, we aim at modelling the dynamics of the ask and bid prices of
an ETF fund. Our objective is to define an asset price model that considers the
bid-ask spread as an inherent part of asset price evolution.

We consider a process 𝑋 representing an observable but non-tradable bench-
mark index, e.g., an industrial sector index, which is governed by a given stochastic
differential equation (SDE). We also consider a process 𝑆 representing an ETF on
this index. The first question arising from the trading of the asset 𝑆 concerns its
price value. In particular, we address the way the “representative agent” sets his
best bid and ask price and the resulting dynamics of those two prices. It is clear
that the price of the asset 𝑆 is generally very closed to the tracked index 𝑋 .

1.1. Theoretical analysis of path sensitivity and approximation

We consider a probability space (Ω, ℱ , ℙ) and the process 𝑋 is governing by the
following SDE.

𝑑𝑋𝑡 = 𝑟𝑋𝑡 𝑑𝑡+𝑋𝑡 𝜎(𝑡, 𝑋𝑡) 𝑑𝑊𝑡, (1.1)

where 𝑟 is the drift and 𝜎 a function on ℝ+×ℝ that verifies the following assump-
tions.

Assumption 1.1 (Underlying diffusion).

1. SDE (1.1) admits a unique strong solution, denoted 𝑋 , such that 𝑋 is square-
integrable and does not explode in finite time with probability 1.

2. The solution 𝑋 of SDE (1.1) is always positive.
3. 𝑓(𝑥) = 𝑥𝜎(𝑡, 𝑥) is twice derivable function in 𝑥 and the derivatives are
Lipschitz and bounded.

These assumptions cover a large class of stochastic models in finance. In
particular, Assumption 1.1 is satisfied by log-normal diffusion and a large part of
local volatility models. For Constant Elasticity of Variance model, we may refer
to [11].

To simplify our notations, we denote the first and second derivatives of
𝑥𝜎(𝑡, 𝑥):

𝜁(𝑡, 𝑥) = 𝜎(𝑡, 𝑥) + 𝑥
∂𝜎

∂𝑥
(𝑡, 𝑥), 𝜂(𝑡, 𝑥) = 2

∂𝜎

∂𝑥
(𝑡, 𝑥) + 𝑥

∂2𝜎

∂𝑥2
(𝑡, 𝑥).
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We assume that the price process 𝑆 of the ETF follows the same SDE as
the one of the index 𝑋 , but its Brownian motion is perturbed by the problem of
replication. The process 𝑆 is therefore assumed to follow the following SDE

𝑑𝑆𝑡 = 𝑟 𝑆𝑡 𝑑𝑡+ 𝜎(𝑡, 𝑆𝑡)𝑆𝑡 𝑑𝐵𝑡,

where 𝐵 is a Brownian motion, which is almost explained by 𝑊 but characterized
by a small uncertainty. We assume that

𝐵𝑡 =
√
𝑒−𝜖 𝑊𝑡 +

√
1− 𝑒−𝜖 𝑊𝑡, (1.2)

where 𝜖 is a small parameter and 𝑊 is a Brownian motion, independent w.r.t. the
filtration (ℱ𝑡)𝑡≥0 where ℱ𝑡 = 𝜎{𝑊𝑠, 0 ≤ 𝑠 ≤ 𝑡}, that resume all hedging errors.

The two Brownian motions, 𝑊 and 𝑊 , play different roles. 𝑊 describes
the market information, that is progressively known through the index value.
Therefore, at time 𝑡 the information ℱ𝑡 is known, whereas the information

𝒢𝑡 = 𝜎{𝑊𝑠, 0 ≤ 𝑠 ≤ 𝑡} is unknown or unobservable. To deal with this problem, we
choose to follow error theory approach using Dirichlet forms developed on [8] and
[9]. We fix an error structure (Ω, ℱ , ℙ, 𝔻, Γ), where (Ω, ℱ , ℙ) is the Wiener space
in which the Brownian motion 𝐵 lives, while Γ is an Ornstein–Uhlenbeck carré du
champ operator with constant weight 𝜃 (see Section 3 in [9]). Using this theory,
formula (1.2), known as Mehler formula, is automatically justified (see Section
VI.2. in [8]).

Error theory enables us to find a limited expansion of the law of the price
of illiquid asset due to the noise on Brownian motion. In particular, we have the
following results.

Theorem 1.2 (Law of illiquid asset price). Under Assumption 1.1 and a Gaussian
approximation, the uncertainty on Brownian motion is transmitted to the process
𝑆, which represents the illiquid asset price. Then, any realization 𝜔 of process 𝑋,
at time 𝑡, fixes a (ℱ𝑡-conditional) random variable 𝑆𝑡(𝜔) described by

𝑆𝑡(𝜔, �̂�) = 𝑋𝑡(𝜔) + 𝜖𝒜[𝑆]𝑡(𝜔) +
√

𝜖Γ[𝑆]𝑡(𝜔) 𝒩 (�̂�),
where 𝒩 is a centered reduced Gaussian random variable independent w.r.t. ℱ𝑡,
while Γ[𝑆]𝑡(𝜔) and 𝒜[𝑆]𝑡(𝜔) are given by⎧⎨⎩

Γ[𝑆]𝑡 = 𝜃𝑀2
𝑡

∫ 𝑡
0

𝑋2
𝑠 𝜎

2(𝑠, 𝑋𝑠)

𝑀2
𝑠

𝑑𝑠+ Γ[𝑆]0𝑀
2
𝑡 ,

𝒜[𝑆]𝑡 =𝑀𝑡

∫ 𝑡
0

𝜂(𝑠, 𝑋𝑠) Γ[𝑆]𝑠 − 𝜃𝑋𝑠 𝜎(𝑠, 𝑋𝑠)

2𝑀𝑠

[
𝑑𝑊𝑠 − 𝜁(𝑠, 𝑋𝑠) 𝑑𝑠

]
,

𝑀𝑡 = ℰ
{∫

0

𝜁(𝑠, 𝑋𝑠) 𝑑𝑊𝑠 +

∫
0

𝑟 𝑑𝑠

}
𝑡

,

(1.3)

where ℰ denotes the Doleans–Dade exponential.
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The proof of this theorem is mainly based on the truncated expansion in
error theory using Dirichlet forms, see [8] and [9]. The two following lemmas form
the main backbone of the proof. Indeed, they give the expression of the variance
Γ[𝑆] and the bias 𝒜[𝑆].
Lemma 1.3 (Variance due to Brownian motion). Let 𝑋 be the solution of SDE (1.1)
and assume that Assumption 1.1 holds. Then, the uncertainty effect on process 𝑆
satisfies the following SDE

𝑑Γ[𝑆]𝑡 = 2 𝜁(𝑡, 𝑋𝑡) Γ[𝑆]𝑡 𝑑𝑊𝑡

+
[
2 𝑟 + 𝜁2(𝑡, 𝑋𝑡)

]
Γ[𝑆]𝑡 𝑑𝑡+ 𝜃 𝜎2(𝑡, 𝑋𝑡)𝑋

2
𝑡 𝑑𝑡.

(1.4)

Moreover, Γ[𝑆] has the following closed form solution

Γ[𝑆]𝑡 = 𝜃𝑀2
𝑡

∫ 𝑡
0

𝑋2
𝑠 𝜎

2(𝑠, 𝑋𝑠)

𝑀2
𝑠

𝑑𝑠+ Γ[𝑆]0𝑀
2
𝑡 .

Lemma 1.4 (Bias due to Brownian motion). Let 𝑋 be the solution of SDE (1.1)
and assume that Assumption 1.1 holds. Then, the bias effect on process 𝑆 satisfies
the following SDE

𝑑𝒜[𝑆]𝑡 = 𝑟𝒜[𝑆]𝑡 𝑑𝑡+
[
𝜁(𝑡, 𝑋𝑡)𝒜[𝑆]𝑡 + 1

2
𝜂(𝑡, 𝑋𝑡) Γ[𝑆]𝑡 − 𝜃

2
𝜎(𝑡, 𝑋𝑡)𝑋𝑡

]
𝑑𝑊𝑡.

(1.5)
Moreover, 𝒜[𝑆] has the following closed form solution

𝒜[𝑆]𝑡 =𝑀𝑡

∫ 𝑡
0

𝜂(𝑠, 𝑋𝑠) Γ[𝑆]𝑠 − 𝜃𝑋𝑠 𝜎(𝑠, 𝑋𝑠)

2𝑀𝑠

[
𝑑𝑊𝑠 − 𝜁(𝑠, 𝑋𝑠) 𝑑𝑠

]
.

The proofs of these lemmas are postponed to the Appendix.

Remark 1.5 (Closed forms). Equations (1.3) show an interesting property of pro-
cesses Γ[𝑆] and 𝒜[𝑆], it is easy to check that the law of (Γ[𝑆]𝑡, 𝒜[𝑆]𝑡)𝑡≥0 is com-
pletely explicit given the law of (𝑋𝑡, 𝑊𝑡)𝑡≥0. Therefore, Equations (1.3) are closed
forms in the sense of involving only algebraic operations and stochastic integrals.

Remark 1.6 (Black–Scholes case). In the particular case of 𝜎 constant, i.e., in the
Black–Scholes model, Equations (1.3) are simplified with Γ[𝑆]𝑡 proportional to the
square of 𝑋𝑡 and 𝒜[𝑆]𝑡 proportional to 𝑋𝑡.

Moreover, we have the following corollary:

Corollary 1.7 (Equilibrium price). The equilibrium price, i.e., the mean of the
price distribution, is given by

𝑆𝑀𝑡 = 𝔼
[
𝑆𝑡

∣∣ℱ𝑡] = 𝑋𝑡 + 𝜖𝒜[𝑆]𝑡.
The equilibrium price is therefore different from 𝑋𝑡. In particular, this shift exists
in Black–Scholes framework. However, in this case, this shift is proportional to
𝑋𝑡, so it is possible to include it into the starting point 𝑆𝑀0 . This shift can explain
tracking errors usually observed on ETF-markets, for instance see [14].
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Finally as a corollary of the two previous lemmas, we have the following
Markov property.

Corollary 1.8 (Markov property). The triplet �̃� = (𝑋, Γ[𝑆], 𝒜[𝑆]) is a Markovian
process if and only if 𝑋 is Markovian.

This assertion is a direct consequence of the fact that Γ[𝑆] verifies SDE (1.4)
which only depends on the process 𝑋 , and finally 𝒜[𝑆] follows SDE (1.5) which
depends on both 𝑋 and Γ[𝑆].

1.2. Bid-ask model

Theorem 1.2 gives us the law of the illiquid asset price given the value of the
benchmark/index. In this subsection, we explain how this approach can be used
to define bid and ask prices and suggest a model that reproduces it.

We consider the presence of many agents on the market, all informed about
the economic evolution of the benchmark price 𝑋 , but without money-market
intelligence about the residual information drawn by the perturbation, i.e., the

independent Brownian motion 𝑊 . We assume that all agents are risk adverse and
can estimate the distribution of the uncertainty of the illiquid asset price, at any
fixed time 𝑡, given by Theorem 1.2. We now consider uniquely price-setter agents
or liquidity providers who place limit orders as opposed to market orders placed by
price-taker agents, liquidity takers. Indeed, their aggregated limit orders constitute
an order book and therefore the bid-ask spread. It stands to reason that, at any
given time 𝑡, there exists a price-setter agent with minimal risk aversion with
respect to other agents. This agent accepts to buy the asset at a price 𝑆𝐵𝑡 higher
than the prices proposed by the other agents. Thus, the price proposed by this
agent is the bid price and it is denoted by 𝑆𝐵𝑡 . This price is completely defined
by the law of the illiquid asset and the risk aversion of this agent. A symmetric
analysis generates the ask price 𝑆𝐴𝑡 .

Let us assume, for the sake of simplicity, that there exists a representative
price-setter agent who always submits the best buy and sell prices, which we re-
spectively define as best bid price 𝑆𝐵𝑡 and best ask price 𝑆𝐴𝑡 . Indeed, we assume
that he accepts to buy the illiquid asset at a price 𝑆𝐵𝑡 such that the risk of over-
valuing of this asset is equal to a supportable risk probability 𝜒𝐵. Therefore he
takes the risk against the expected earnings, see Figure 1. In conclusion, 𝑆𝐵𝑡 is the
𝜒𝐵-quantile of the illiquid asset price distribution given by the uncertainty on the
Brownian motion, see Theorem 1.2.

The definition of ask price is symmetric, i.e., 𝑆𝐴𝑡 is the (1 − 𝜒𝐴)-quantile
of the illiquid asset price distribution given by the uncertainty on the Brownian
motion. It is clear that 𝜒𝐴+𝜒𝐵 < 1, since the representative agent is risk-adverse.

Definition 1.9 (Static bid and ask prices). Let 𝜒𝐵 and 𝜒𝐴 with 𝜒𝐴 + 𝜒𝐵 < 1
be risks taken by the “representative price setter” in respectively overvaluing and
undervaluing the illiquid asset at a given time 𝑡. The corresponding bid 𝑆𝐵𝑡 and
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Figure 1. Bid price definition, defined by a risk probability 𝜒.

ask 𝑆𝐴𝑡 prices are defined as follow

𝑆𝐵𝑡 = 𝑋𝑡 + 𝜖𝒜[𝑆]𝑡 +
√

𝜖Γ[𝑆]𝑡 𝒩−1(𝜒𝐵),

𝑆𝐴𝑡 = 𝑋𝑡 + 𝜖𝒜[𝑆]𝑡 +
√

𝜖Γ[𝑆]𝑡 𝒩−1(1− 𝜒𝐴).

Since the law of residual uncertainty is always Gaussian, the definition of
the bearable risk is equivalent to the definition of the trader utility function. For
sake of simplicity, we fix the same supportable risk for sell 𝑆𝐵𝑡 and buy 𝑆𝐴𝑡 prices,
i.e., 𝜒𝐵 = 𝜒𝐴 = 𝜒. In Figure 2, we study an example and consider the CEV
model. Given a trajectory of 𝑋 , we compute the evolution of the bid price 𝑆𝐵, the
mid-price 𝑆𝑀 and the ask price 𝑆𝐴.

Remark 1.10. The trajectories of 𝑋 and 𝑆𝑀 are different. This is due to the fact
that 𝑋 is not linear w.r.t. 𝑊 in CEV diffusion, see Section 2.3, hence the error
introduces a bias, see Corollary 1.7.

In order to define a bid-ask model, we have to choose a dynamic for this risk
aversion, since a static risk aversion is very restrictive. The dynamic risk aversion
is not only justified by the very nature of the “representative price-setter agent”
but also by market order flow from price-taker agents.

We now turn to the choice of a dynamics of the bid-ask spread. In the eco-
nomic literature, bid-ask spread depends mainly on two factors: the value of the
stock and the trading volume, see [22]. In particular, the bid-ask spread converges
to zero (resp. infinity) when the asset price goes to zero (resp. infinity). However
the relative spread1 converges to a strictly positive constant (resp. zero) when the
asset price goes to zero (resp. infinity). This effect can be explained endogenously
with the evolution of the variance Γ[𝑆], see Section 2.3 for an analysis in CEV
case.

The trading volume equally plays a leading role. If we analyze two assets with
almost the same price but with different trading volumes, we notice that the lower
the trading volume, i.e., the more illiquid the asset is, the larger bid-ask spread,
see for instance [24]. An economic explanation is that the traders accept higher

1The relative spread is defined as the ratio between bid-ask spread and the asset.
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Figure 2. An example with CEV model: given a single path of the
process 𝑋 , in black, we can compute explicitly the mid-price, in light
grey, and the bid and the ask prices using a standard deviation, in dark
grey.

risks if they can easily close their positions, which is possible with the presence
of many counterparts. Historical data shows that average trading volumes are
mean-reverting on medium term, the bid-ask spread shows the same behavior.

In order to satisfy the above behavior, we use a continuous time finite state
markov chain process 𝐿 representing market liquidity, all state values of 𝐿 are
positive. We assume that the markov chain is irreducible, so that we can say that
𝐿 is a mean reverting process. Finally, we suppose that (𝐿𝑡)𝑡≥0 is independent
with respect to (ℱ𝑡)𝑡≥0. We consider the following model of the bid-ask spread.
Definition 1.11 (Bid and ask model). At any time 𝑡, given the value of the bench-
mark 𝑋𝑡(𝜔), the bid and ask prices are given by⎧⎨⎩𝑆𝐴𝑡 = 𝑋𝑡 + 𝜖𝒜[𝑆]𝑡 +

√
𝜖Γ[𝑆]𝑡 𝐿𝑡,

𝑆𝐵𝑡 = 𝑋𝑡 + 𝜖𝒜[𝑆]𝑡 −
√

𝜖Γ[𝑆]𝑡 𝐿𝑡.
(1.6)

Remark 1.12. The choice of this model is justified by the following properties.

– Positivity: The ask price is always higher than the bid price.
– Closed forms: In our model, all terms, excepted the underlying 𝑋 , have an
explicit form. The law of 𝑋 is the unique law that we have to estimate
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numerically. This computation can be easily performed using a Monte Carlo
method.

– Error tracking: The mid-price 𝑆𝑀 is different to the benchmark one, since
a systematic bias exists. The two prices are relatively closed given a small
parameter 𝜖.

– Separation: In our model, the bid-ask spread is explained by two independent
factors. The first factor concerns the sensitivity of the benchmark/index level
path w.r.t. the Brownian motion 𝑊 . In an economic point of view, it corre-
sponds to the sensitivity w.r.t. “market” information. The second one is risk
aversion of market participants which mainly depends on trading volumes.

– Mean reverting: If the underlying value is relatively stable, the bid-ask spread
shows a mean reverting behavior.

– Bid-ask spread tails: Given the evolution of the benchmark, the law of the
bid-ask spread is lognormal, so extremely wide or small spreads are possible
but with a very low probability.

2. Optimal liquidation portfolio problem

2.1. The Economic Motivations and the Objective Functions

The above bid-ask spread model, as defined in Definition 1.11, highlights the mar-
ket imperfections due to liquidity risk. Thus, a natural but challenging problem
for both professionals and academics in finance to solve is the optimal portfolio
liquidation problem. Let us consider a price-taker investor who decides to close his
position over a finite horizon, he has to define a trading strategy which maximizes
his terminal portfolio value. Since the attempt to sell the whole block of shares
causes, generally, a lack of balance between supply and demand, it results in an
average selling price well below the best pre-order bid price. In practice, large or-
ders are generally split into a number of consecutive small orders to reduce the
overall price impact.

Let us therefore investigate a problem of an investor seeking to liquidate 𝑁
shares of stock over a finite time horizon 𝑇 . To solve this problem, we consider a
discrete framework by assuming that trading occurs only at discrete times 𝑡0 <
𝑡1 < ⋅ ⋅ ⋅ < 𝑡𝑛 = 𝑇 . A strategy decision 𝜋 for the investor is a sequence (𝜋𝑖)0≤𝑖≤𝑛
valued in [0, 𝑁 ] where 𝜋𝑖 is ℱ𝑡𝑖-measurable and represents the number of shares
to be sold at time 𝑡𝑖. We define an admissible strategy as being a strategy 𝜋 such
that

∑𝑛
𝑖=0 𝜋𝑖 = 𝑁 . As such we define the set of admissible strategies 𝒜(𝑡𝑖, 𝑝) as

𝒜(𝑡𝑖, 𝑝) =
{
𝜋 = {𝜋𝑖, . . . , 𝜋𝑛}, 𝜋𝑗 ≥ 0 ∀ 𝑗 ∈ {𝑖, . . . , 𝑛} and

𝑛∑
𝑗=𝑖

𝜋𝑗 = 𝑝

}
.

Price impact. In addition to the existence of the bid-ask spread as evidenced in the
previous section, we equally take into account a lack of market depth by assuming
that marginal selling prices are non-increasing. Indeed, there is no infinite liquidity
at either the best bid price nor at the best ask price. For that purpose, we introduce
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an impact function 𝑔 which indicates the average price obtained at a sell market
order. More precisely, when an investor submits a sell order of 𝑥 number of shares

through a single sell order at time 𝑡, the obtained average price 𝑆
𝐵

𝑡 (𝑥) is assumed

𝑆
𝐵

𝑡 (𝑥) = 𝑆𝐵𝑡 𝑔(𝑥), (2.1)

where the function 𝑔 verifies the following assumption.

Assumption 2.1 (Trading impact function).

1. 𝑔 is a continuous positive deterministic function independent to 𝑆.
2. 𝑔 is non-increasing.
3. ℎ(𝑥) = 𝑥 𝑔(𝑥) is strictly non-decreasing and concave.

Remark 2.2.

1. We assume that trading impact is temporary when trading occurs. Only the
price takers who place market price orders (at best selling prices) pay the
liquidity costs. After the trades, the order book is refilled with limit orders
from other market participants [1].

2. 𝑔(𝑥) corresponds to the ratio between the average stock price received fol-
lowing the sale of 𝑥 shares at market price order and the best bid price. This
average price obviously decreases with the number of traded shares.

3. The marginal price [(𝑥+𝛿𝑥)𝑔(𝑥+𝛿𝑥)−𝑥𝑔(𝑥)]𝑆𝐵 should be non-negative and
non-increasing. Therefore, the function ℎ(𝑥) = 𝑥 𝑔(𝑥) must be non-decreasing
and concave. The concavity comes from the shape of the order book, which
displays a maximum around the best bid price, see [22].

Objective function. The objective of the investors is to maximize their net present
value (wealth) from the sales of the stock shares in holding. To fully describe our
state process, we should take into account not only the processes 𝑋 and 𝐿 but
also Γ[𝑆] and 𝒜[𝑆]. As such, the state process to consider is 𝑍 = (�̃�, 𝐿), where �̃�
is defined as in Corollary 1.8. At any initial time 𝑡𝑖 and any state value (𝑧, 𝑝) of
the variables (𝑍𝑡𝑖 , 𝑃𝑡𝑖), with 𝑃𝑡𝑖 the number of stock shares that we initially have
at time 𝑡𝑖, we define our reward function for any strategy 𝜋 ∈ 𝒜(𝑡𝑖, 𝑝) by

𝐽(𝑖, 𝑧, 𝑝, 𝜋) = 𝔼

[ 𝑛∑
𝑗=𝑖

𝑒−𝜌(𝑡𝑗−𝑡𝑖)𝜋𝑗 𝑆𝐵𝑡𝑗 𝑔(𝜋𝑗)
∣∣∣ℱ𝑡𝑖],

where 𝜌 represents the interest rate.

The objective of the investor is to maximize this reward function over all
admissible strategies. We therefore introduce the following value function

𝑣(𝑖, 𝑧, 𝑝) = sup
𝜋∈𝒜(𝑡𝑖,𝑝)

(𝐽(𝑖, 𝑧, 𝑝, 𝜋)). (2.2)

For an initial state (𝑖, 𝑧, 𝑝), 𝜋 ∈ 𝒜(𝑡𝑖, 𝑝) is called an optimal strategy if
𝑣(𝑖, 𝑧, 𝑝) = 𝐽(𝑖, 𝑧, 𝑝, 𝜋).
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In the sequel, we restrict the set of admissible strategies 𝒜(𝑡𝑖, 𝑝) to Markov
strategies subset of 𝒜(𝑡𝑖, 𝑝), which is denoted 𝒜(𝑡𝑖, 𝑝) (that is possible from Propo-
sition 8.1 of [5]).

2.2. Theoretical solution of the optimization problem

We now prove the existence of a solution to our optimization problem (2.2) and
its uniqueness. Given an initial 𝑁 stock shares of the risky assets, our objective
is to prove that an optimal strategy in liquidating our portfolio exists in 𝒜(𝑡0, 𝑁)
and this one is unique. For notation convenience, we shall denote 𝑍𝑖 (resp. 𝑆𝑖, 𝑃𝑖)
for 𝑍𝑡𝑖 (resp. 𝑆𝑡𝑖 , 𝑃𝑡𝑖). Using the dynamic programming principle, we have:

Theorem 2.3 (Existence). Under Assumptions 1.1 and 2.1, there exists an optimal
policy 𝜋 = (𝜋0, . . . , 𝜋𝑛) to the optimization problem, such that 𝜋 ∈ 𝒜(𝑡0, 𝑁). This
optimal strategy is given by the argmax in the following programming equation⎧⎨⎩

𝑣(𝑖, 𝑧, 𝑝) = ess sup
0≤𝜋𝑖≤𝑝

{
𝜋𝑖 𝑠

𝐵
𝑖 𝑔(𝜋𝑖)

+ 𝔼
[
𝑒−𝜌(𝑡𝑖+1−𝑡𝑖)𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝑝− 𝜋𝑖)

∣∣∣ℱ𝑡𝑖 ]},
𝑣(𝑛, 𝑧, 𝑝) = 𝑝 𝑠𝐵𝑛 𝑔(𝑝),

(2.3)

where 𝑠𝐵𝑖 is defined by the components of the variable 𝑧𝑖 (see the definition of 𝑆𝐵

in (1.6)).

Proof. This is an immediate application of Proposition 8.5 of [5]. From (1.6), we
have

𝔼
[
𝑆𝐵𝑡

]
= 𝔼 [𝑋𝑡] + 𝜖𝔼 [𝒜[𝑆]𝑡]− 𝔼

[√
𝜖Γ[𝑆]𝑡

]
𝔼 [𝐿𝑡] .

From Assumption 1.1, 𝑋 does not explode in finite time and 𝜎(𝑡, 𝑥), 𝜁(𝑡, 𝑥) and

𝜂(𝑡, 𝑥) are Lipschitz and bounded, thus 𝔼
[𝒜[𝑆]𝑡] < ∞ and 𝔼

[√
𝜖Γ[𝑆]𝑡

]
< ∞.

Since the process 𝐿 is a finite state markov chain, it is clear that 𝔼 [𝐿𝑡] < ∞ and
as the process 𝑋 is square integrable, we also have that 𝔼 [𝑋𝑡] < ∞. Therefore
𝔼
[
𝑆𝐵𝑡

]
<∞ and it enables us to check assumptions (𝐹+) and (𝐹−) in Proposition

8.5 of [5]. Then, it remains to prove that the supremum in relation (2.3) is attained.
This immediately follows from the continuity of 𝑣(𝑖 + 1, 𝑧, 𝑝) with respect to 𝑝,
which is the case thanks to Assumption 2.1. □

We now turn to the uniqueness property of the optimal strategy.

Theorem 2.4 (Uniqueness). Under Assumptions 1.1 and 2.1, there is at most one
solution to optimization problem (2.2).

Proof. We first introduce the following function 𝜗 defined for any 𝑥 ≤ 𝑦 as

𝜗(𝑖, 𝑧, 𝑥, 𝑦) = 𝑥 𝑠𝐵𝑖 𝑔(𝑥) + 𝔼
[
𝑒−𝜌Δ𝑖𝑣(𝑖 + 1, 𝑍𝑖,𝑧𝑖+1, 𝑦 − 𝑥)

∣∣∣ℱ𝑡𝑖],
𝑖 ∈ {1, . . . , 𝑛− 1},

with Δ𝑖 := 𝑡𝑖+1 − 𝑡𝑖.
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We now prove by recurrence that 𝜗 is concave w.r.t. (𝑥, 𝑦) and the value
function 𝑣 is strictly concave w.r.t. 𝑝 for all 𝑖 ∈ {0, . . . , 𝑛}.

We first note that for 𝑖 = 𝑛, 𝑣(𝑛, 𝑧, 𝑝) is strictly concave w.r.t. 𝑝, according
to Assumption 2.1. We can easily verify that 𝜗(𝑛, 𝑧, 𝑥, 𝑦) is concave w.r.t. (𝑥, 𝑦).
Assuming that for 𝑖+1, 𝑣(𝑖+1, 𝑧, 𝑝) and 𝜗(𝑖+1, 𝑧, 𝑥, 𝑦) are respectively strictly
concave w.r.t. 𝑝 and to (𝑥, 𝑦), let prove that it is equally the case for 𝑖.

Let 0 ≤ 𝜆 ≤ 1, (𝑥1, 𝑦1) and (𝑥2, 𝑦2), with 0 ≤ 𝑥𝑖 ≤ 𝑦𝑖 ≤ 𝑁 , we have

𝜗(𝑖, 𝑧, 𝜆 𝑥1 + (1− 𝜆)𝑥2, 𝜆 𝑦1 + (1− 𝜆) 𝑦2)

= (𝜆𝑥1 + (1− 𝜆)𝑥2) 𝑠
𝐵
𝑖 𝑔 (𝜆𝑥1 + (1− 𝜆)𝑥2))

+ 𝔼
[
𝑒−𝜌Δ𝑖𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝜆 (𝑦1 − 𝑥1) + (1− 𝜆) (𝑦2 − 𝑥2))

∣∣∣ℱ𝑡𝑖],
since the first term is strictly concave, we obtain

(𝜆𝑥1 + (1− 𝜆)𝑥2) 𝑠
𝐵
𝑖 𝑔 (𝜆𝑥1 + (1− 𝜆)𝑥2)

> 𝜆𝑥1 𝑠
𝐵
𝑖 𝑔(𝑥1) + (1− 𝜆)𝑥2 𝑠

𝐵
𝑖 𝑔(𝑥2),

and by recurrence the second term is strictly concave, we obtain

𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝜆 (𝑦1 − 𝑥1) + (1− 𝜆) (𝑦2 − 𝑥2))

> 𝜆𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝑦1 − 𝑥1) + (1− 𝜆) 𝑣(𝑖 + 1, 𝑍𝑖,𝑧𝑖+1, 𝑦2 − 𝑥2).

Taking the expectation, we get

𝔼
[
𝑒−𝜌Δ𝑖𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝜆 (𝑦1 − 𝑥1) + (1− 𝜆) (𝑦2 − 𝑥2))

∣∣∣ℱ𝑡𝑖]
≥ 𝜆𝔼

[
𝑒−𝜌Δ𝑖𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝑦1 − 𝑥1)

∣∣∣ℱ𝑡𝑖]
+ (1− 𝜆)𝔼

[
𝑒−𝜌Δ𝑖𝑣(𝑖+ 1, 𝑍𝑖,𝑧𝑖+1, 𝑦2 − 𝑥2)

∣∣∣ℱ𝑡𝑖].
Thus 𝜗(𝑖, 𝑧, 𝑥, 𝑦) is strictly concave w.r.t. (𝑥, 𝑦) as the sum of two strictly concave
functions.

We now prove that 𝑣(𝑖, 𝑧, 𝑦) is strictly concave w.r.t. 𝑦. For any 0 ≤ 𝑥1 ≤ 𝑦1
and 0 ≤ 𝑥2 ≤ 𝑦2, from the expression of 𝑣 in (2.3), we have for all 0 ≤ 𝜆 ≤ 1

𝑣(𝑖, 𝑧, 𝜆 𝑦1 + (1− 𝜆) 𝑦2) ≥ 𝜗(𝑖, 𝑧, 𝜆 𝑥1 + (1− 𝜆)𝑥2, 𝜆 𝑦1 + (1− 𝜆) 𝑦2).

Since 𝜗(𝑖, 𝑧, 𝑥, 𝑦) is strictly concave with respect to (𝑥, 𝑦), we get

𝑣(𝑖, 𝑧, 𝜆 𝑦1 + (1− 𝜆) 𝑦2) > 𝜆𝜗(𝑖, 𝑧, 𝑥1, 𝑦1) + (1− 𝜆)𝜗(𝑖, 𝑧, 𝑥2, 𝑦2).

The latter equality holds for any positive 𝑥1 ≤ 𝑦1 and 𝑥2 ≤ 𝑦2. In particular since
the supremum is attained (from Theorem 2.3), we can take 𝑥∗1 and 𝑥∗2 such that

𝑣(𝑖, 𝑧, 𝑦1) = 𝜗(𝑖, 𝑧, 𝑥∗1, 𝑦1) = sup
0≤𝑥≤𝑦1

𝜗(𝑖, 𝑧, 𝑥, 𝑦1)

𝑣(𝑖, 𝑧, 𝑦2) = 𝜗(𝑖, 𝑧, 𝑥∗2, 𝑦2) = sup
0≤𝑥≤𝑦2

𝜗(𝑖, 𝑧, 𝑥, 𝑦2)

thus
𝑣(𝑖, 𝑧, 𝜆 𝑦1 + (1 − 𝜆) 𝑦2) > 𝜆𝑣(𝑖, 𝑧, 𝑦1) + (1− 𝜆) 𝑣(𝑖, 𝑧, 𝑦2).
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Hence, 𝑣(𝑖, 𝑧, 𝑝) is strictly concave w.r.t. 𝑝. We have therefore proved the strict
concavity of both functions. Using relation (2.3) and the above concavity property,
we may obtain by iteration at most one solution to the optimization problem. □

2.3. Log-normal and constant elasticity of variance diffusions

For numerical and implementation purpose, we now consider our two particular
diffusion models, with the first being the log-normal diffusion, i.e.,

𝑑𝑋𝑡 = 𝑟 𝑋𝑡 𝑑𝑡+ 𝜎 𝑋𝑡 𝑑𝑊𝑡.

It is clear that this diffusion verifies Assumption 1.1. In this case, we remark that
the bias 𝒜[𝑆]𝑡 and the variance Γ[𝑆]𝑡 become proportional respectively to 𝑋𝑡 and
𝑋2
𝑡 . As a result,

𝑆𝐵𝑡 = 𝑋𝑡 [1− 𝜖 a+
√
𝜖 𝛾 𝐿𝑡] ,

where a and 𝛾 are constants, and the average price at which we sell a quantity 𝜋𝑖
at time 𝑡𝑖, given by formula (2.1), is simplified and we have the following average
price

𝑆
𝐵

𝑡𝑖 (𝜋𝑖) = 𝑋𝑡𝑖 𝑔(𝜋𝑖) [1− 𝜖 a+
√
𝜖 𝛾 𝐿𝑡𝑖 ] .

As such, we consider an extension of the Black–Scholes model, which is the CEV
model, see [11]. This model takes into account the heteroscedasticity of the asset
returns and explains the down-slopping behavior of the implied volatility, see for
instance [19].

Assumption 2.5 (CEV diffusion). The volatility function 𝜎(𝑡, 𝑋𝑡) is equal to 𝜎𝑋𝛼𝑡 ,
where 𝜎 is a positive constant and 𝛼 is constant and belongs to (−1, 1). We also
assume that 𝑋𝑡 ≥ 𝜉 > 0 for all 𝑡 ∈ [0, 𝑇 ]. That is SDE (1.1) is replaced by the
following SDE

𝑑𝑋𝑡 = 𝑟 𝑋𝑡 𝑑𝑡+ 𝜎𝑋𝛼+1
𝑡 𝑑𝑊𝑡. (2.4)

The CEV diffusion, unfortunately, does not verify Assumption 1.1. However,
all previous results still hold and their proofs remain substantially the same with
the main difference coming from some properties of CEV diffusion that can be
found in [15].

Under Assumption 2.5, we have also the following rewriting of Theorem 1.2.

Corollary 2.6 (Constant elasticity of variance model). Under Assumption 2.5, the
result of Theorem 1.2 remains true and Equations (1.3) are replaced by⎧⎨⎩

Γ[𝑆]𝑡 = 𝜃𝑀2
𝑡

∫ 𝑡
0

𝜎2 𝑋2𝛼+2
𝑠

𝑀2
𝑠

𝑑𝑠+ Γ[𝑆]0𝑀
2
𝑡 ,

𝒜[𝑆]𝑡 = 𝑀𝑡

∫ 𝑡
0

𝛼 (𝛼+ 1)𝑋𝛼−1𝑠 Γ[𝑆]𝑠 − 𝜃 𝜎 𝑋𝛼+1
𝑠

2𝑀𝑠
×[

𝑑𝑊𝑠 − 𝜎 (𝛼+ 1)𝑋𝛼𝑠 𝑑𝑠
]
,

𝑀𝑡 = ℰ
{
𝜎 (𝛼+ 1)

∫ 𝑡
0

𝑋𝛼𝑠 𝑑𝑊𝑠 + 𝑟 𝑡

}
.



Bid-Ask Spread Modelling 425

Moreover, the martingale parts of the Doob decomposition of
√
Γ[𝑆]𝑡 and

√
Γ[𝑆]𝑡
𝑋𝑡

are respectively ⎧⎨⎩𝜎 (𝛼+ 1)𝑋𝛼𝑡
√
Γ[𝑆]𝑡 𝑑𝑊𝑡,

𝜎 𝛼𝑋𝛼−1𝑡

√
Γ[𝑆]𝑡 𝑑𝑊𝑡.

Proof. The proof of the first part is just a simplification of relation (1.3) in the case
of CEV diffusion. The second part is an easy application of the Itô formula. □

Remark 2.7. In particular, we may notice that in CEV case:

∙ The fluctuations of the absolute spread, which are proportional to √
Γ[𝑆],

are always positively correlated with the underlying 𝑋 .
∙ The fluctuations of the relative spread, which are proportional to the ratio√

Γ[𝑆] over𝑋 , are negatively (resp. positively) correlated with the underlying
𝑋 if the CEV-exponent 𝛼 is negative (resp. positive). The case usually treated
in literature is when the CEV-exponent is smaller than one, for instance see
[6]. Therefore, the relative bid-ask spread grows when the asset price falls,
whereas the absolute bid-ask spread falls with the benchmark.

This remark is important, since it is well known on financial markets that the
bid-ask spread converges to zero (resp. infinity) when the asset price goes to zero
(resp. infinity). Instead, the relative spread grows when the asset price goes to zero
and converges to zero when the asset price goes to infinity. The previous remark
says that our model can explain endogenously this effect with the evolution of the
variance Γ[𝑆] if we suppose that the parameter 𝛼 is negative, i.e., the diffusion is
sub-linear. This case is usually presented in literature as a way to explain why the
BS model overprices in-the-money call options and underprices out-of-the-money
ones, see for instance [11] and [19].

3. Numerical results

In this section, we provide some numerical results of the optimal strategy of the
liquidation problem. For this purpose, we use two models.

1. The Black–Scholes model with the drift equal to zero. This model is used as
a basic reference, since we have closed form expressions.

2. A CEV model with the drift equal to zero and a negative CEV-exponential.
This model is used to evaluate the impact of sensitivity w.r.t. the Brownian
motion.

We consider the following trading impact function 𝑔

𝑔(𝑥) = exp(−𝜆𝑥) , (3.1)

where the constant 𝜆 < 1
𝑁 , with 𝑁 the total number of shares to liquidate. It

is rather clear that function 𝑔 verifies Assumption 2.1 on the interval [0, 𝑁 ]. We
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restrict our function to the set [0, 𝑁 ] given the fact that the optimal liquidation
strategy abstains to buy shares at any time.

The optimal liquidation strategy is determined by using the dynamic pro-
gramming equation (2.3).

The classical approach to solve this kind of problem is to discretize all pro-
cesses and to reduce the computation on a finite probability space, see [4]. Thus,
we discretize our processes using Monte Carlo simulations for CEV one and closed
forms for log-normal one.

3.1. Black–Scholes case

We first consider the case when the underlying 𝑋 follows SDE (2.4) with 𝛼 = 0,
i.e., the Black–Scholes model. The dynamic programming principle (2.3) gives us
the optimal strategy to liquidate our portfolio. The strategy depends on three
factors:

– the level of the underlying 𝑋 ,
– the value of the liquidity process 𝐿,
– the residual quantity of stocks that we still have to sell.

In Figures 3, 4, and 5, we present our numerical results in the Black–Scholes
case, in particular, the dependencies of the optimal selling strategy on the three
factors mentioned above.

Remark 3.1 (Black–Scholes case).

∙ We find that the optimal strategy is completely independent with respect to
underlying 𝑋𝑡 (see Figure 3). This result is coherent with the literature, see
[1], and [20], given the fact that the spread is proportional to the underlying
price in this particular case.

∙ The optimal strategy is almost linear with respect to the number of remaining
stocks (see Figure 4). A slight concavity is equally worth noticing. This effect
is explained by the presence of an exponential cost (3.1) on optimization
problem (2.2), which breaks the linearity of the problem and prevents very
large orders.

∙ Finally, the main result is that the optimal strategy decreases when the bid-
ask spread increases and the dependence is almost linear till the spread is
lower than its long term average (see Figure 5). When the spread is bigger
than its mean, the optimal strategy is to keep all remaining stocks. This result
is very interesting since it says that the optimal strategy depends mainly on
the bid-ask spread and its equilibrium law. The optimal strategy can be
resumed by we have to sell when the spread is small and to wait a better
time when it is wide.

3.2. CEV Case

We consider the case when the underlying follows SDE (2.4) with 𝛼 = −0.7. The
numerical simulations show that the results found in the Black–Scholes case remain
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Figure 3. BS case: optimal selling quantities as function of the under-
lying value for different values of liquidity process 𝐿𝑡.
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Figure 4. BS case: optimal selling quantities as function of the remain-
ing shares owned by the investor.
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Figure 5. BS case: optimal selling quantities as function of the relative
bid-ask spread.

true, except for the dependencies of the optimal selling strategies on underlying
value (see Figure 6).

Remark 3.2. (CEV Case)

1. The optimal selling strategy is completely unaffected by underlying price
when the stock is highly liquid. However, when it is illiquid, the optimal
selling strategy is positively correlated with the price of underlying asset.

2. We also have analyzed the impact of a change on the CEV exponential 𝛼.
When this parameter increases to zero, the dependency on the price of un-
derlying asset is lessened.

Economic interpretation/explanation. We may explain the effect mentioned in the
first point of Remark 3.2 by the non-linear dependency of the bid-ask spread on the
underlying value (see Corollary 2.6). Indeed, when the price of underlying asset
falls, the relative bid-ask spread (in percentage of the asset price) increases, which
in turn incites the investor to delay the selling or sell a smaller number of shares.

The below Figure 7 shows the shape of the selling region (above the curve)
and the non-selling region (below the curve) at a given time and a given level of
stock price.
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Figure 6. CEV case: optimal selling quantities as function of the un-
derlying value with linear scale (left) and logarithmic scale (right).

Figure 7. CEV case: an example of the selling regions as function of
the remaining number of shares.
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Figure 8. CEV case: an example of the optimal selling strategy given
a liquidity trajectory.

Appendix. Proofs of Lemmas 1.3 and 1.4

We start with the proof of Lemma 1.3.

Proof. The proof is split into three steps.

Step 1:We compute the SDE satisfied by the sharp of 𝑆, see Section V.2 in [8] for
the definition and more details:

𝑑𝑆#
𝑡 = 𝑟 𝑆#

𝑡 𝑑𝑡+ 𝜁(𝑡, 𝑋𝑡)𝑆
#
𝑡 𝑑𝑊𝑡 +

√
𝜃 𝜎(𝑡, 𝑋𝑡)𝑋𝑡 𝑑𝑊𝑡,

where 𝑊 is an independent Brownian motion defined in a probability space

(Ω̃, ℱ̃ , ℙ̃) copy of the original probability space. Assumption 1.1 insures that the
previous SDE admits a square integrable solution.

Step 2: We apply the Itô formula to (𝑆#)2 and take the expectation under the

probability ℙ̃, since one of the properties of the sharp operator is that Γ[𝑆]𝑡 =

�̃�
[
(𝑆#
𝑡 )

2
]
, see Sections VI.2 and VII.4 in [8]. Therefore we find SDE (1.4).

Step 3: Finally, we prove that SDE (1.4) admits the closed form solution (1.3).
Using the methods developed in Section 5 in [9] and noticing that the SDE verified
by the sharp is linear, we may apply a variation of constant method, see for
instance V.9 in [23], and obtain a closed form for 𝑆#. Then, we compute easily

the expectation under ℙ̃ of the square of 𝑆#. Another possibility is to check that
the first equation in (1.3) is solution to SDE (1.4). □

We now turn to the proof of Lemma 1.4.



Bid-Ask Spread Modelling 431

Proof. The proof is based on an 𝐿2-convergence argument, see for instance [13],
by using the fact that operators Γ[⋅] and 𝒜[⋅] are closed, see [8].

We define a partition {𝜏𝑖}𝑖=0,...,𝑛 of the interval [0, 𝑇 ], where 𝑇 is a sufficient
large time. We approximate 𝑋 with the following process

𝑍𝑡 =

𝑛−1∑
𝑖=0

𝜎(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖
(
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

)
+ 𝑟

𝑛−1∑
𝑖=0

𝑍𝜏𝑖
(
𝜏𝑖+1 ∧ 𝑡− 𝜏𝑖 ∧ 𝑡

)
.

It is clear that 𝑍 converges to 𝑋 when the partition step goes to zero, thanks
to hypotheses 1 and 3 of Assumption 1.1. Then, we apply the bias operator on 𝑍
(see Section 6 in [9]), and we find

𝒜[𝑍]𝑡 =
𝑛−1∑
𝑖=0

{
𝜁(𝜏𝑖, 𝑍𝜏𝑖)𝒜 [𝑍]𝜏𝑖

(
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

)
+ 𝑟𝒜 [𝑍]𝜏𝑖 (𝜏𝑖+1 ∧ 𝑡− 𝜏𝑖 ∧ 𝑡)

}
+

𝑛−1∑
𝑖=0

{
𝜎(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖 𝒜

[
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

]
+ 𝜁(𝜏𝑖, 𝑍𝜏𝑖) �̃�

[
𝑍#
𝜏𝑖

(
𝑊#
𝜏𝑖+1∧𝑡 −𝑊#

𝜏𝑖∧𝑡
)]}

+
1

2

𝑛−1∑
𝑖=0

𝜂(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖 Γ [𝑍𝜏𝑖 ]
(
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

)
.

(A.1)

Then, we take the limit in SDE (A.1), when the step of the partition goes to
zero and we have to prove that equation (A.1) converges to the integral form of
equation (1.5). For sake of simplicity on notation, we compute all equations at the
final time 𝑇 . We start with the remark that 𝑍 converges to 𝑋 in 𝐿2-norm when
the step partition goes to zero. It is also clear that Γ[𝑍] converges to Γ[𝑆] due to
the fact that Γ is a closed operator, see for instance [8], and the result of Lemma
1.3, this convergence is in 𝐿1-norm but it is easy to check that it is true in 𝐿2-norm
too. Then, under Assumption 1.1, we will prove that

𝑛−1∑
𝑖=0

𝜂(𝜏𝑖, 𝑍𝜏𝑖) Γ[𝑍]𝜏𝑖
(
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

) 𝐿2→
∫ 𝑇
0

𝜂(𝑡, 𝑋𝑡 Γ[𝑆]𝑡 𝑑𝑊𝑡. (A.2)

We separate the last integral using the partition (𝜏𝑖)𝑖=0,...,𝑛 and we evaluate the
difference in 𝐿2-norm, so we find

𝔼
[{

𝜂(𝜏𝑖, 𝑍𝜏𝑖) Γ[𝑍]𝜏𝑖
(
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

)− ∫ 𝜏𝑖+1

𝜏𝑖

𝜂(𝑡, 𝑋𝑡) Γ[𝑆]𝑡 𝑑𝑊𝑡

}2]
= 𝔼

[{
𝜂(𝜏𝑖, 𝑍𝜏𝑖) Γ[𝑍]𝜏𝑖(𝑊𝜏𝑖+1 −𝑊𝜏𝑖)− 𝜂(𝜏𝑖, 𝑋𝜏𝑖) Γ[𝑍]𝜏𝑖(𝑊𝜏𝑖+1 −𝑊𝜏𝑖)

+ 𝜂(𝜏𝑖, 𝑋𝜏𝑖) Γ[𝑍]𝜏𝑖
(
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

)− 𝜂(𝜏𝑖, 𝑋𝜏𝑖) Γ[𝑆]𝜏𝑖
(
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

)
+ 𝜂(𝜏𝑖, 𝑋𝜏𝑖) Γ[𝑆]𝜏𝑖

(
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

)− ∫ 𝜏𝑖+1

𝜏𝑖

𝜂(𝑡, 𝑋𝑡) Γ[𝑆]𝑡 𝑑𝑊𝑡

}2]
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< 𝔼
[{
[𝜂(𝜏𝑖, 𝑍𝜏𝑖)− 𝜂(𝜏𝑖, 𝑋𝜏𝑖)] Γ[𝑍]𝜏𝑖

(
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

)}2]
+ 𝔼

[{
𝜂(𝜏𝑖, 𝑋𝜏𝑖) [Γ[𝑍]𝜏𝑖 − Γ[𝑆]𝜏𝑖 ]

(
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

)}2]
+ 𝔼

[{
𝜂(𝜏𝑖, 𝑋𝜏𝑖) Γ[𝑆]𝜏𝑖

(
𝑊𝜏𝑖 −𝑊𝜏𝑖−1

)− ∫ 𝜏𝑖+1

𝜏𝑖

𝜂(𝑡, 𝑋𝑡) Γ[𝑆]𝑡𝑑𝑊𝑡

}2]
.

The first expectation converges to zero thanks to the Lipschitz hypothesis on
𝜂(𝑡, 𝑥) w.r.t. 𝑥. The second expectation goes to zero using the fact that Γ[𝑍]
converges to Γ[𝑆] in 𝐿2-norm. The last expectation converges to zero when the
partition step goes to zero in accordance with the definition of the stochastic
integral. Then the limit (A.2) is proved.

Using the same arguments and Gronwall lemma, see for instance Chapter V
in [23], we have

𝑛−1∑
𝑖=0

𝜁(𝜏𝑖, 𝑍𝜏𝑖)𝒜 [𝑍]𝜏𝑖
(
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

) 𝐿2→
∫ 𝑇
0

𝜁(𝑡, 𝑋𝑡)𝒜 [𝑆]𝑡 𝑑𝑊𝑡

and
𝑛−1∑
𝑖=0

𝒜 [𝑍]𝜏𝑖 (𝜏𝑖+1 − 𝜏𝑖)
𝐿2→

∫ 𝑇
0

𝒜 [𝑆]𝑡 𝑑𝑡.

We study the third term in equation (A.1). We find

𝑛−1∑
𝑖=0

𝜎(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖 𝒜
[
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

]
= −𝜃

2

𝑛−1∑
𝑖=0

𝜎(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖
[
𝑊𝜏𝑖+1 −𝑊𝜏𝑖

]
,

thanks to the chain rule of semigroup 𝒜, see Section 3 in [9]. We also remark that
𝜎(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖 converges to 𝜎(𝜏𝑖, 𝑋𝜏𝑖)𝑋𝜏𝑖 , thanks to Assumption 1.1. Using always
the same arguments used to prove limit (A.2), we have therefore that

𝑛−1∑
𝑖=0

𝜎(𝜏𝑖, 𝑍𝜏𝑖)𝑍𝜏𝑖 𝒜
[
𝑊𝜏𝑖+1∧𝑡 −𝑊𝜏𝑖∧𝑡

] 𝐿2→ −𝜃

2

∫ 𝑇
0

𝜎(𝑡, 𝑋𝑡)𝑋𝑡 𝑑𝑊𝑡.

Finally, we analyze the term

𝑛−1∑
𝑖=0

𝜁(𝜏𝑖, 𝑍𝜏𝑖) �̃�
[(

𝑍#
𝜏𝑖

) (
𝑊#
𝜏𝑖+1∧𝑡 −𝑊#

𝜏𝑖∧𝑡
)]

.

We introduce a conditional expectation with respect to the 𝜎-algebra ℱ̃𝜏𝑖 =
𝜎{(𝑊#

𝑠 , 𝑊𝑢) ∣𝑢, 𝑠 < 𝜏𝑖}
𝑛−1∑
𝑖=0

�̃�
[
�̃�

[(
𝑍#
𝜏𝑖

) (
𝑊#
𝜏𝑖+1∧𝑡 −𝑊#

𝜏𝑖∧𝑡
)∣∣∣ ℱ̃𝜏𝑖]]

=
𝑛−1∑
𝑖=0

�̃�
[(
𝑍#
𝜏𝑖

)
�̃�

[
𝑊#
𝜏𝑖+1

−𝑊#
𝜏𝑖

∣∣∣ ℱ̃𝜏𝑖] ] = 0,
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using the fact that 𝑍# is adapted to the filtration (ℱ̃𝑡)𝑡≥0 and 𝑊# remains a

Brownian motion w.r.t. filtration (ℱ̃𝑡)𝑡≥0, since 𝑊# and 𝑊 are independent. As a
consequence, the fourth term in equation (A.1) is always equal to zero and we have
proved the convergence of equation (A.1) to the integral form of equation (1.5).
Now it is easy to check that the second equation in (1.3) solves SDE (1.5) □
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Optimal Portfolio in a
Regime-switching Model

Adrian Roy L. Valdez and Tiziano Vargiolu

Abstract. In this paper we derive the solution of the classical Merton problem,
i.e., maximizing the utility of the terminal wealth, in the case when the risky
assets follow a diffusion model with switching coefficients. We show that the
optimal portfolio is a generalisation of the corresponding one in the classical
Merton case, with portfolio proportions which depend on the market regime.
We perform our analysis via the classical approach with the Hamilton–Jacobi–
Bellman equation. First we extend the mutual fund theorem as presented in [5]
to our framework. Then we show explicit solutions for the optimal strategies
in the particular cases of exponential, logarithm and power utility functions.

Mathematics Subject Classification (2010). 35K40, 60H30, 91G10, 91G80,
93E20.

Keywords. Utility maximization, regime-switching models, HJB equation, mu-
tual fund theorem, exponential utility, logarithmic utility, power utility.

1. Introduction

The standard model for a financial market is the following. Let the bond price 𝐵𝑡
satisfy

𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡,

with 𝑟 > 0 deterministic, and the stock prices 𝑆𝑡 = (𝑆1
𝑡 , . . . , 𝑆

𝑑
𝑡 ) satisfy

𝑑𝑆𝑡 = diag (𝑆𝑡)(𝜇(𝑡, 𝑆𝑡) 𝑑𝑡+Σ(𝑡, 𝑆𝑡) 𝑑𝑊𝑡),

where 𝜇 : [0, 𝑇 ]×ℝ𝑑 → ℝ𝑑, Σ : [0, 𝑇 ]×ℝ𝑑 → ℝ𝑑×𝑑 are suitable functions and𝑊 is
a 𝑑-dimensional Brownian motion defined on a suitable probability space (Ω,𝔽,ℙ).
Assume also that Σ has full rank. In this situation the classical problems (utility
maximization, pricing and hedging of derivatives) are solved.

This work was partly supported by PRIN Research Grant “Probability and finance” under grant
2008YYYBE4 and by the University of Padova under grant CPDA082105/08.
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However, these kinds of model fail in incorporating sudden changes in the
dynamics of the assets, occurring for example during a financial crisis. Among
the various models which are more suitable for this, we will analyse the so-called
regime-switching models, introduced for the first time in [12]: while these models
are now broadly used in various fields of financial mathematics (see, e.g., [1, 2, 3,
4, 6, 7, 10, 14, 17, 22] and references therein), it seems that the classical problem
of utility maximisation of terminal wealth has not yet been addressed in this
framework.

To fix the ideas, let us consider the classical Merton problem: assume that
𝜇𝑡 ≡ 𝜇 and Σ𝑡 ≡ Σ are deterministic and known, and an agent wants to maximise
his(her) expected utility from terminal wealth

𝔼[𝑈(𝑋𝑇 )]

where the self-financing portfolio 𝑋 has dynamics

𝑑𝑋𝑡 = 𝑋𝑡 [(ℎ𝑡 ⋅ 𝜇+ (1− ℎ𝑡 ⋅ 1)𝑟) 𝑑𝑡 + ℎ𝑡Σ𝑑𝑊𝑡]

with ℎ𝑖𝑡 the proportion of wealth invested in the 𝑖th risky asset, 𝑖 = 1, . . . , 𝑑, and
1 = (1, . . . , 1) ∈ ℝ𝑑. It is well known (see for example [5]) that, if for exam-
ple 𝑈(𝑥) = 𝑥𝛾/𝛾, then the optimal portfolio allocation is given by the constant
proportions

ℎ̂𝑡 ≡ ℎ :=
1

1− 𝛾
(ΣΣ𝑇 )−1(𝜇− 𝑟1).

Thus, no matter what happens in the world, an investor would always try to keep
these portfolio proportions. A natural question arises: is this world too simple?

The idea of regime-switching models is that the “economy” can assume𝑚 ≥ 2
different states, and when there is a change of state, prices change their dynamics.
In this simple example, coefficients 𝜇 and Σ depend on this state. As reported in
[15], the typical intuitive situation for this is the following: the economy switches
between 𝑚 = 2 states, i.e., “business as usual” (BAU, state 1) and “crisis” (state
2), with the typical following stylized facts:

∙ (much) higher variances in Σ2 than in Σ1;
∙ significantly larger correlations from Σ2 than from Σ1, reflecting contagion
effects;

∙ predominantly negative 𝜇2 (−𝑟1), reflecting down market effects.

The way this could impact the classical Merton problem is seen in the following
numerical example.

Example. Assume 𝑑 = 2 and that in the BAU state both assets have yield equal
0.01 +𝑟 and volatility 0.2, with correlation 0.1; this can be represented as 𝜇1−𝑟1 =
(0.01, 0.01) and

Σ1Σ
𝑇
1 =

(
0.04 0.004
0.004 0.04

)
.



Optimal Portfolio in a Regime-switching Model 437

For an agent with risk-aversion coefficient 𝛾 = 0.1, this gives the optimal portfolio

ℎ =
1

1− 0.1(Σ1Σ
𝑇
1 )
−1(𝜇1 − 𝑟1) ≃ (0.2525, 0.2525)

so this agent will invest the 25.25% of its wealth in each of the two risky assets.
Assume now that in the “crisis” state assets do not change their yield, but

the two volatilities increase to 0.3 and the correlation to 0.6. Thus, now we still
have 𝜇2 − 𝑟1 = (0.01, 0.01) and

Σ2Σ
𝑇
2 =

(
0.09 0.054
0.054 0.09

)
.

For the same agent as above, this gives the optimal portfolio

ℎ =
1

1− 0.1(Σ2Σ
𝑇
2 )
−1(𝜇2 − 𝑟1) ≃ (0.0771, 0.0771)

so, under the “crisis” state, the agent will diminish his(her) investment down to
7.71% in each of the two risky assets.

The aim of this paper is to present a way to make the above argument
(and optimal portfolios) rigorous. In particular, in Section 2 we will define the
regime-switching model, frame the utility maximization problem in this context
and present a classical way to solve it, namely the dynamic programming approach
with Hamilton–Jacobi–Bellman (HJB) equation, which in this framework becomes
a system of stochastic differential equations: this allows to derive a mutual fund
theorem, which generalizes the classical one holding in diffusion models (see, e.g.,
[5]). In Sections 3, 4 and 5, respectively, we analyze the classical cases of exponen-
tial, logarithm and power utility functions in greater detail, generalizing classical
results.

2. The model

As in [4], we begin by assuming that the bond price 𝐵𝑡 satisfies

𝑑𝐵𝑡 = 𝑟𝐵𝑡𝑑𝑡,

for some 𝑟 > 0, and that there are 𝑚 ∈ ℕ states of the world and 𝑑 (non-
defaultable) risky assets, with values in 𝐷 := (0,∞)𝑑. Let the stock prices
𝑆𝑡 = (𝑆1

𝑡 , . . . , 𝑆
𝑑
𝑡 ) satisfy{
𝑑𝑆𝑡 = diag (𝑆𝑡)(𝜇𝜂𝑡− (𝑡, 𝑆𝑡) 𝑑𝑡+Σ𝜂𝑡−(𝑡, 𝑆𝑡) 𝑑𝑊𝑡),

𝑑𝜂𝑡 =
∑𝑚
𝑘,𝑗=1(𝑗 − 𝑘)𝕀{𝑘}(𝜂𝑡−)𝑑𝑁

𝑘𝑗
𝑡 ,

(2.1)

where, for each 𝑖 = 1, . . . ,𝑚, 𝜇𝑖 : [0, 𝑇 ] × 𝐷 → ℝ𝑑, Σ𝑖 : [0, 𝑇 ] × 𝐷 → ℝ𝑑×𝑑 are
functions such that (𝑡, 𝑠) → diag (𝑠)𝜇𝑖(𝑡, 𝑠) and (𝑡, 𝑠) → diag (𝑠)Σ𝑖(𝑡, 𝑠) are 𝐶1

on [0, 𝑇 ]×𝐷, 𝑊 is a Brownian motion and 𝑁 = (𝑁𝑘𝑗)1≤𝑘,𝑗≤𝑚 is a multivariate
𝔽-adapted point process such that

(𝑁𝑘𝑗𝑡 )𝑡 has (𝑃,𝔽)-intensity 𝜆𝑘𝑗(𝑡, 𝑆𝑡)
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with bounded 𝐶1 functions 𝜆𝑘𝑗 : [0, 𝑇 ]×𝐷 −→ [0,∞); 𝑊 and 𝑁 are independent
and are both defined on a probability space (Ω,𝔽,ℙ). This implies (see [4]) that
for all (𝑡, 𝑠, 𝑘) ∈ [0, 𝑇 ] × 𝐷 × {1, . . . ,𝑚} there is a unique strong solution (𝑆, 𝜂)
to Equation (2.1) starting from (𝑆𝑡, 𝜂𝑡) = (𝑠, 𝑘), up to a possibly finite random
explosion time. Thus, we also assume that

ℙ{𝑆𝑢 ∈ 𝐷 for all 𝑢 ∈ [𝑡, 𝑇 ]} = 1 for all (𝑡, 𝑠, 𝑘) ∈ [0, 𝑇 ]×𝐷 × {1, . . . ,𝑚}.
Remark 2.1. As in [14] (and implicitly in [2, 3, 4, 7, 8]), we assume that the
process 𝜂 is observable: in fact, if we assume that the Σs are distinct, then the
local quadratic variation-covariation of the risky assets 𝑆 in any small interval to
the left of 𝑡 will yield Σ𝜂𝑡− exactly. Hence, even if 𝑆 is not Markovian, (𝑆, 𝜂) is
jointly so.

We now build a self-financing portfolio with initial capital 𝑋0 > 0, with the
following dynamics:

𝑑𝑋𝑡 =
(
𝜋𝑡 ⋅ 𝜇𝜂𝑡−(𝑡, 𝑆𝑡) + (𝑋𝑡 − 𝜋𝑡 ⋅ 1)𝑟

)
𝑑𝑡+ 𝜋𝑡Σ𝜂𝑡−(𝑡, 𝑆𝑡)𝑑𝑊𝑡 (2.2)

where

𝜋𝑖𝑡 = 𝑆𝑖𝑡𝜃
𝑖
𝑡

is the wealth invested in the 𝑖th risky asset, with 𝜃𝑖𝑡 being the number of 𝑖th stocks
in hand at time 𝑡. An alternative definition of 𝑋 , more usual when we have the
additional constraint 𝑋𝑡 > 0 (for example when dealing with logarithmic or power
utility function) is the following:

𝑑𝑋𝑡 = 𝑋𝑡
[(
ℎ𝑡 ⋅ 𝜇𝜂𝑡−(𝑡, 𝑆𝑡) + (1 − ℎ𝑡 ⋅ 1)𝑟

)
𝑑𝑡+ ℎ𝑡Σ𝜂𝑡−(𝑡, 𝑆𝑡)𝑑𝑊𝑡

]
where

ℎ𝑖𝑡 =
𝑆𝑖𝑡𝜃

𝑖
𝑡

𝑋𝑡
=

𝜋𝑖𝑡
𝑋𝑡

is, as in the Introduction, the proportion of wealth invested in the 𝑖th risky asset,
with 𝜃𝑖𝑡 being the number of 𝑖th stocks in hand at time 𝑡.

We define

𝐽(𝑡, 𝑥, 𝑠, 𝜂;𝜋) := 𝔼[𝑈(𝑋𝑡,𝑥,𝑠,𝜂;𝜋𝑇 )]

and the value function

𝑉 (𝑡, 𝑥, 𝑠, 𝜂) = sup
𝜋∈Θ

𝐽(𝑡, 𝑥, 𝑠, 𝜂;𝜋) (2.3)

where (𝑋𝑡,𝑥,𝑠,𝜂;ℎ, 𝑆𝑡,𝑥,𝑠,𝜂;ℎ, 𝜂𝑡,𝑥,𝑠,𝜂;ℎ) is the three-dimensional controlled Markov
process starting from (𝑥, 𝑠, 𝜂) at time 𝑡 with the dynamics defined by Equations
(2.1) and (2.2) with the control 𝜋 ∈ Θ[𝑡, 𝑇 ], where Θ[𝑡, 𝑇 ] is the set of admissible
controls, i.e., predictable processes on [𝑡, 𝑇 ] such that Equation (2.2) has a unique
strong solution 𝑋𝑡,𝑥,𝑠,𝜂;𝜋 for each initial condition (𝑥, 𝑠, 𝜂) at time 𝑡 such that

𝔼[𝑈(𝑋𝑡,𝑥,𝑠,𝜂;𝜋𝑇 )] ∈ ℝ, (𝑒−𝑟𝑢𝑋𝜋𝑢 )𝑢 ∈𝑀2([𝑡, 𝑇 ]) and (𝜋𝑢𝑈(𝑋
𝜋
𝑢 ))𝑢 ∈𝑀2([𝑡, 𝑇 ]).
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As already noted, the three state variables (𝑋,𝑆, 𝜂) in (2.1) and (2.2) form
a Markov process, with infinitesimal generator given by

𝐴𝜋𝑉 (𝑡, 𝑥, 𝑠, 𝑘) := (𝐿𝜋𝑥 + 𝐿𝜋𝑥𝑠)𝑉 (𝑡, 𝑥, 𝑠, 𝑘) +
𝑚∑
𝑗=1

𝜆𝑘𝑗 [𝑉 (𝑡, 𝑥, 𝑠, 𝑗)− 𝑉 (𝑡, 𝑥, 𝑠, 𝑘)]

(2.4)
for all 𝜋 ∈ ℝ𝑑, 𝑡 ∈ [0, 𝑇 ], 𝑥 ∈ ℝ, 𝑠 ∈ 𝐷, 𝑘 = 1, . . . ,𝑚, where

𝐿𝜋𝑥𝑉 := 𝑟𝑥𝑉𝑥 + (𝜇𝑘 − 𝑟1) ⋅ 𝜋𝑉𝑥 + 1

2
∥𝜋Σ𝑘∥2𝑉𝑥𝑥,

𝐿𝜋𝑥𝑠𝑉 := 𝜇𝑘𝑠𝑉𝑠 +
1

2
tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠𝑉𝑠𝑠) + 𝜋Σ𝑘(𝑠Σ𝑘)

𝑇𝑉𝑥𝑠

with 𝑠 := diag 𝑠 for all 𝑠 ∈ 𝐷, 𝑔𝑘(𝑡, 𝑠) = 𝑔(𝑡, 𝑠, 𝑘) for 𝑔 = 𝜇, 𝜎, 𝑉𝑡, 𝑉𝑥 and 𝑉𝑥𝑥 are
the scalar derivatives with respect to the variables 𝑡 and 𝑥, while 𝑉𝑠 is the gradient
with respect to the vector 𝑠 = (𝑠1, . . . , 𝑠𝑑), 𝑉𝑠𝑠 is the Hessian matrix and 𝑉𝑠𝑥 is the
gradient of 𝑉𝑥 with respect to 𝑠. The operator 𝐴𝜋 is linked to the process (𝑋,𝑆, 𝜂)
via the so-called Dynkyn formula

𝔼[𝑓(𝑇,𝑋𝜋𝑇 , 𝑆𝑇 , 𝜂𝑇 )]−𝔼[𝑓(𝑡,𝑋𝜋𝑡 , 𝑆𝑡, 𝜂𝑡)] = 𝔼

[∫ 𝑇

𝑡

𝐴𝜋𝑢𝑓(𝑢, ,𝑋𝜋𝑢 , 𝑆𝑢, 𝜂𝑢) 𝑑𝑢

]
(2.5)

for sufficiently regular 𝑓 .

We can now write the “integro-differential” Hamilton–Jacobi–Bellman (HJB)
equation related to the utility maximization problem (2.3) above in a similar man-
ner following the arguments of [19], and obtain

𝑉 𝑘𝑡 + sup
𝜋

𝐴𝜋𝑉 = 0 (2.6)

where 𝑉 𝑖(𝑡, 𝑥, 𝑠) := 𝑉 (𝑡, 𝑥, 𝑠, 𝑖), 𝑉 (𝑡, 𝑥, 𝑠) := (𝑉 (𝑡, 𝑥, 𝑠, 1), . . . , 𝑉 (𝑡, 𝑥, 𝑠,𝑚)) and
the “integrals” are on the space {1, . . . ,𝑚}, and final condition

𝑉 𝑘(𝑇, 𝑥, 𝑠) = 𝑈(𝑥), (𝑥, 𝑠, 𝑘) ∈ ℝ×𝐷 × {1, . . . ,𝑚}. (2.7)

Solving for �̂�𝑘 which maximizes the Hamiltonian, we obtain

�̂�𝑘 = − (Σ𝑘Σ
𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1)𝑉 𝑘𝑥 + 𝑠𝑉 𝑘𝑥𝑠

𝑉 𝑘𝑥𝑥
. (2.8)

Notice that if 𝑉 is independent of 𝑠, then the HJB equation simplifies to

𝑉 𝑘𝑡 + sup
ℎ

𝐿𝜋𝑥𝑉
𝑘 +

𝑚∑
𝑗=1

𝜆𝑘𝑗
[
𝑉 𝑗 − 𝑉 𝑘

]
= 0 (2.9)

and the optimal portfolio reduces to one of Merton type

�̂�𝑘 = − 𝑉 𝑘𝑥
𝑉 𝑘𝑥𝑥

(Σ𝑘Σ
𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1). (2.10)
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The rigorous link between the utility maximization problem (2.3) and the
HJB equation (2.6) is given, as usual, by the following verification theorem. In
order to present it, we follow the results in [11] and [13]. First define

𝒟 :=

{
𝑓 = (𝑓1, . . . , 𝑓𝑚) ∈ 𝐶1,2([0, 𝑇 ]× ℝ×𝐷;ℝ𝑚) such that
∀𝑡 ∈ [0, 𝑇 ], the Dynkyn formula (2.5) holds ∀𝜋 ∈ Θ[𝑡, 𝑇 ]

}
.

The usual choice for possibly discontinuous Markov processes is 𝒟 := 𝐶2
0 ([0, 𝑇 ]×

ℝ), the 𝐶2 functions vanishing at infinity: in fact for this space it is always possible
to prove that the Dynkyn formula holds. However, this space is too small for our
purposes, as typical utility functions are unbounded, so we have to define 𝒟 more
generally, as done also in [20].

We can now state the following verification theorem, which is a particular
case of [13, Theorem III.8.1].

Theorem 2.2 (Verification Theorem). Let 𝐾 ∈ 𝒟 be a classical solution to (2.6)
with final condition (2.7), and assume that there exists an admissible control 𝜋∗ ∈
Θ[𝑡, 𝑇 ] such that

𝜋∗𝑢 ∈ argmax𝜋 𝐴𝜋𝐾(𝑢,𝑋𝜋𝑢 , 𝑆𝑢, 𝜂𝑢) ℙ-a.s. for all 𝑢 ∈ [𝑡, 𝑇 ].

Then 𝐾(𝑡, 𝑥, 𝑠, 𝑘) = 𝐽𝜋
∗
(𝑡, 𝑥, 𝑠, 𝑘) = 𝑉 𝑘(𝑡, 𝑥, 𝑠).

Thus, the utility maximisation problem boils down to finding a regular so-
lution of the HJB equation. The usual procedure for this is to guess a particular
solution for a given utility function 𝑈 and to see whether this particular candi-
date satisfies the Verification Theorem above. Since the most challenging task in
doing this is usually to check whether this candidate solution belongs to 𝒟, here
we present a technical lemma which will be used in the following sections.

Lemma 2.3. If the Σ𝑘 are bounded in (𝑡, 𝑠), then 𝑉 ∈ 𝒟 if, for all 𝑡 ∈ [0, 𝑇 ] and
𝜋 ∈ Θ[𝑡, 𝑇 ], we have that for all 𝑘, 𝑗 = 1, . . . ,𝑚,

𝔼

[∫ 𝑇
𝑡

∥𝑉𝑥(𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡)𝜋𝑢∥2 + ∥𝑉𝑠(𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡) ⋅ 𝑆𝑢∥2 𝑑𝑡

]
< +∞, (2.11)

𝔼

[∫ 𝑇
𝑡

∣𝑉 (𝑡,𝑋𝑡, 𝑆𝑡, 𝑗)− 𝑉 (𝑡,𝑋𝑡, 𝑆𝑡, 𝑘)∣𝜆𝑘𝑗(𝑡, 𝑆𝑡) 𝑑𝑡
]
< +∞. (2.12)

Proof. For 𝑡 ∈ [0, 𝑇 ] and 𝜋 ∈ Θ[𝑡, 𝑇 ] we have
𝑑𝑉 (𝑡,𝑋𝜋𝑡 , 𝑆𝑡, 𝜂𝑡) = 𝐴𝜋𝑉 (𝑡,𝑋𝜋𝑡 , 𝑆𝑡, 𝜂𝑡−) 𝑑𝑡+ 𝑑𝑀𝑡

where the process 𝑀 is defined by 𝑀𝑡 := 0 and the dynamics

𝑑𝑀𝑡 := 𝑉𝑥𝜋𝑡Σ𝑡 𝑑𝑊𝑡 + 𝑉𝑠diag 𝑆𝑡Σ𝑡 𝑑𝑊𝑡

+

𝑚∑
𝑗,𝑘=1

[𝑉 (𝑡,𝑋𝑡, 𝑆𝑡, 𝑗)− 𝑉 (𝑡,𝑋𝑡, 𝑆𝑡, 𝑘)]1{𝑘}(𝜂𝑡−)(𝑑𝑁
𝑘𝑗
𝑡 − 𝜆𝑘𝑗(𝑡, 𝑆𝑡) 𝑑𝑡).
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The lemma follows from the fact that the Dynkyn formula holds if 𝑀 is a martin-
gale. Sufficient conditions for this are Equation (2.12) and

𝔼

[∫ 𝑇
𝑡

∥𝑉𝑥(𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡)𝜋𝑢Σ(𝑢,𝑋𝑢, 𝑆𝑢, 𝜂𝑢)∥2

+ ∥𝑉𝑠(𝑢,𝑋𝑢, 𝑆𝑢, 𝜂𝑢)diag 𝑆𝑢Σ(𝑢,𝑋𝑢, 𝑆𝑢, 𝜂𝑢)∥2 𝑑𝑢

]
< +∞.

If the Σ𝑘 are bounded in (𝑡, 𝑠), then this is implied by Equation (2.11). □

Remark 2.4. The requirement that the Σ𝑘 be bounded in (𝑡, 𝑠) is quite natural:
in fact, since the diffusion coefficient (conditioned to 𝜂𝑡− = 𝑘) in Equation (2.1)
is diag (𝑆𝑡)Σ𝑘(𝑡, 𝑆𝑡), a classical sufficient condition to have a unique solution is to
require it (and the drift) to be Lipschitz and with sublinear growth with respect
to 𝑆𝑡: this is morally equivalent to the fact that the Σ𝑘 are bounded.

A first consequence of Theorem 2.2 is a generalization of the classical mutual
fund theorem (see, e.g., [5]). This result is obtained in the case when 𝜇𝑘, Σ𝑘 do
not depend on 𝑆, and is valid with any utility function 𝑈 such that Equation (2.9)
has a smooth solution.

Corollary 2.5 (Mutual fund theorem). If 𝜇𝑘, Σ𝑘 and 𝜆𝑘𝑗 do not depend on 𝑆 and
Equation (2.9) has a smooth solution 𝑉 = (𝑉 𝑘)𝑘, then the optimal portfolio strat-
egy is given by the feedback control �̂�𝑡 := �̂�𝑘(𝑡,𝑋𝑡, 𝑆𝑡)∣𝑘=𝜂𝑡− , where the functions

�̂�𝑘, 𝑘 = 1, . . . ,𝑚 are defined as in Equation (2.10).

Proof. Since the 𝜇𝑘, Σ𝑘 and 𝜆𝑘𝑗 do not depend on 𝑆, as well as the final condition
𝑈(𝑥), we can search for a solution of the form 𝑉 𝑘(𝑡, 𝑥), thus 𝑉 𝑘𝑠 = 𝑉 𝑘𝑠𝑠 = 𝑉 𝑘𝑥𝑠 = 0
and the optimal strategy in Equation (2.8) becomes Equation (2.10). Substituting
this in Equation (2.6), we obtain Equation (2.9): if this equation has a smooth
solution, then the Verification Theorem 2.2 applies, and the theorem follows. □

Remark 2.6. Roughly speaking, results known as “mutual fund theorems” (for a
much more general treatment see [21]) say that the optimal portfolio consists of
a possibly dynamic allocation between two fixed mutual funds: in this particular
situation, the first fund consists only of the risk-free asset 𝐵, while the second
fund is given by the fixed vector

(Σ𝜂𝑡−(𝑡)Σ
𝑇
𝜂𝑡−(𝑡))

−1(𝜇𝜂𝑡−(𝑡)− 𝑟1)

for all 𝑡 ∈ [0, 𝑇 ], which depends neither on the particular utility function used nor
on the individual prices of the risky assets, but still depends on time 𝑡 and on the
state 𝜂𝑡−. The amount of this fund to be taken is given by the scalar

−𝑉
𝜂𝑡−
𝑥 (𝑡,𝑋𝑡)

𝑉
𝜂𝑡−
𝑥𝑥 (𝑡,𝑋𝑡)

which is typically positive as the functions 𝑉 𝑘 are typically increasing and concave.
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Of course, the major assumption of Theorem 2.2 and Corollary 2.5 is to
have a smooth solution 𝑉 . This is satisfied in the following three particular cases,
which are quite standard, namely the exponential, logarithmic and power utility
functions: what really happens is that in some of these cases one obtains results
also with more general assumptions.

3. Exponential utility

We now analyze the particular case when 𝑈(𝑥) = −𝛼𝑒−𝛼𝑥, with 𝛼 > 0.

Lemma 3.1. Assume that 𝑈(𝑥) = −𝛼𝑒−𝛼𝑥, with 𝛼 > 0, and that for all 𝑘 =
1, . . . ,𝑚 the functions 𝜇𝑘, Σ𝑘Σ

𝑇
𝑘 are locally Lipschitz and bounded, Σ𝑘 is nonsingu-

lar for all (𝑡, 𝑠), Σ−1𝑘 𝜇𝑘 is bounded and 𝜆𝑘𝑗 ∈ 𝐶1
𝑏 ([0, 𝑇 ]×𝐷) for all 𝑘, 𝑗 = 1, . . . ,𝑚.

Then:

1. There exists a unique classical solution 𝐶 := (𝐶𝑘)𝑘=1,...,𝑚 ∈ 𝐶1,2
𝑏 ([0, 𝑇 ] ×

𝐷;ℝ𝑚) for the following system of PDEs:⎧⎨⎩
𝐶𝑘𝑡 + 𝑟𝑠 ⋅ 𝐶𝑘𝑠 +

1

2
tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠𝐶

𝑘
𝑠𝑠)

−𝑒−𝑟(𝑇−𝑡)

𝛼

⎡⎣ 𝑚∑
𝑗=1

(
𝑒−𝛼𝜙(𝐶

𝑘−𝐶𝑗) − 1
)
𝜆𝑘𝑗 +

1

2
𝑧2𝑘

⎤⎦ = 𝑟𝐶𝑘,

𝐶𝑘(𝑇 ) = 0

(3.1)

where the functions 𝜙 and 𝑧2𝑘 are defined as

𝜙(𝑡) := 𝑒𝑟(𝑇−𝑡), 𝑧2𝑘(𝑡, 𝑠) := (𝜇𝑘(𝑡, 𝑠)− 𝑟1)𝑇 (Σ𝑘(𝑡, 𝑠)Σ
𝑇
𝑘 (𝑡, 𝑠))

−1(𝜇𝑘(𝑡, 𝑠)− 𝑟1).
(3.2)

2. The function

𝑉 𝑘(𝑡, 𝑥, 𝑠) = −𝛼𝑒−𝛼𝜙(𝑡)(𝑥−𝐶
𝑘(𝑡,𝑠))

with 𝜙(𝑡) := 𝑒𝑟(𝑇−𝑡), belongs to 𝒟 and satisfies the HJB Equation (2.9).
3. The optimal portfolio strategy �̂�𝑘𝑡 is given by

�̂�𝑡:=
(Σ𝑘(𝑡, 𝑆𝑡)Σ𝑘(𝑡, 𝑆𝑡)

𝑇 )−1(𝜇𝑘(𝑡, 𝑆𝑡)− 𝑟1) + 𝛼𝜙(𝑡)diag (𝑆𝑡)𝐶
𝑘
𝑠 (𝑡, 𝑆𝑡)

𝛼𝜙(𝑡)

∣∣∣∣
𝑘=𝜂𝑡−

.

Proof. Point 1 follows from [4, Theorem 2.4]. For point 2, the partial derivatives
of 𝑉 𝑘 are given by ⎧⎨⎩

𝑉 𝑘𝑡 =
[
𝐶𝑘𝑡 + 𝑟𝑥 − 𝑟𝐶𝑘

]
𝛼𝜙𝑉 𝑘

𝑉 𝑘𝑥 = −𝛼𝜙𝑉 𝑘

𝑉 𝑘𝑥𝑥 = (𝛼𝜙)2𝑉 𝑘

𝑉 𝑘𝑠 = 𝐶𝑘𝑠𝛼𝜙𝑉
𝑘

𝑉 𝑘𝑠𝑠 = [𝛼𝜙𝐶𝑘𝑠 ⊗ 𝐶𝑘𝑠 + 𝐶𝑘𝑠𝑠]𝛼𝜙𝑉
𝑘

𝑉 𝑘𝑥𝑠 = −𝐶𝑘𝑠 (𝛼𝜙)
2𝑉 𝑘.
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In order to prove 𝑉 ∈ 𝒟, we check Equations (2.11)–(2.12): first,

𝔼

[∫ 𝑇
𝑡

∥𝑉𝑥(𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡)𝜋𝑢∥2 + ∥𝑉𝑠(𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡) ⋅ 𝑆𝑢∥2 𝑑𝑡

]

= 𝔼

[∫ 𝑇
𝑡

∥𝛼𝜙(𝑡)𝑈(𝑋𝑡)𝑒𝛼𝜙(𝑡)𝐶(𝑡,𝑆𝑡)𝜋𝑡∥2 𝑑𝑡

]

+ 𝔼

[∫ 𝑇
𝑡

∥𝛼𝜙(𝑡)𝑉 (𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡)𝐶𝑠(𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡) ⋅ 𝑆𝑡∥2 𝑑𝑡

]
.

Since 𝐶 and 𝜙 are bounded, the first addend is finite since 𝜋 ∈ Θ[𝑡, 𝑇 ], and by the
same argument the second addend reduces to

𝑀𝔼

[∫ 𝑇
𝑡

∥𝑒−𝛼𝜙(𝑡)𝑋𝜋𝑡 𝑆𝑡∥2 𝑑𝑡

]
≤𝑀(𝑇 − 𝑡)𝔼

[∫ 𝑇
𝑡

𝑒−2𝛼𝜙(𝑡)𝑋
𝜋
𝑡 𝑑𝑡

] 1
2

𝔼

[∫ 𝑇
𝑡

∥𝑆𝑡∥2 𝑑𝑡

] 1
2

for a suitable 𝑀 : the final product is finite by standard SDE estimates (see for
example [13, Appendix D], so Equation (2.11) is satisfied. As concerns Equation
(2.12), it reduces to

𝔼

[∫ 𝑇
𝑡

𝑒−𝛼𝜙(𝑡)𝑋
𝜋
𝑡 ∣𝑒𝛼𝜙(𝑡)𝐶𝑗(𝑡,𝑆𝑡) − 𝑒𝛼𝜙(𝑡)𝐶

𝑘(𝑡,𝑆𝑡)∣𝜆𝑘𝑗(𝑡, 𝑆𝑡) 𝑑𝑡
]

≤𝑀𝔼

[∫ 𝑇

𝑡

𝑒−𝛼𝜙(𝑡)𝑋
𝜋
𝑡 𝑑𝑡

]
for a suitable 𝑀 : as before, this quantity is finite, so also Equation (2.12) is satis-
fied. Thus, 𝑉 ∈ 𝒟 by Lemma 2.3. Substituting its derivatives in the operators 𝐿𝜋𝑥
and 𝐿𝜋𝑥𝑠 appearing in Equation (2.6), we get

𝐿𝜋𝑥𝑉
𝑘 := 𝛼𝜙𝑉 𝑘

[
−𝑟𝑥 − (𝜇𝑘 − 𝑟1) ⋅ 𝜋 + 1

2
𝛼𝜙∥𝜋Σ𝑘∥2

]
,

𝐿𝜋𝑥𝑠𝑉
𝑘 := 𝛼𝜙𝑉 𝑘

[
𝜇𝑘𝑠𝐶

𝑘
𝑠 +

1

2
tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠[𝛼𝜙𝐶

𝑘
𝑠 ⊗ 𝐶𝑘𝑠 + 𝐶𝑘𝑠𝑠])− 𝛼𝜙𝜋Σ𝑘(𝑠Σ𝑘)

𝑇𝐶𝑘𝑠

]
:= 𝛼𝜙𝑉 𝑘

[
𝜇𝑘𝑠𝐶

𝑘
𝑠+

1

2
𝛼𝜙∥𝑠𝐶𝑘𝑠Σ𝑘∥2 +

1

2
tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠𝐶

𝑘
𝑠𝑠)− 𝛼𝜙𝜋Σ𝑘(𝑠Σ𝑘)

𝑇𝐶𝑘𝑠

]
.

The maximizer in Equation (2.8) becomes

�̂�𝑘 =
(Σ𝑘Σ

𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1) + 𝛼𝜙𝑠𝐶𝑘𝑠

𝛼𝜙
.

Substituting all this into Equation (2.6) and dividing by 𝛼𝜙𝑉 𝑘, we obtain Equation
(3.1), which is satisfied by 𝐶. Finally, point 3 follows from the �̂�𝑘 just obtained.

□
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Remark 3.2. Point 2 is not a surprise here: in fact, in the exponential case one can
check directly from the definition of 𝑉 in Equation (2.3) and from the dynamics
of 𝑋 in Equation (2.2) that

𝑉 (𝑡, 𝑥, 𝑠, 𝜂) = 𝑒−𝛼𝜙(𝑡)𝑥𝑉 (𝑡, 0, 𝑠, 𝜂)

for all (𝑡, 𝑥, 𝑠, 𝜂), so that the value function 𝑉 is (exp-)affine in 𝑥.

As a particular case, we can see that the Mutual Fund Theorem 2.5 holds
true in this situation.

Corollary 3.3. If 𝜆𝑘𝑗 and 𝑧2𝑘 do not depend on 𝑠 for all 𝑘, 𝑗 = 1, . . . ,𝑚, then the
discounted wealth invested in the risky assets is given by

𝑒𝑟(𝑇−𝑡)�̂�𝑡 =
(Σ𝑘(𝑡, 𝑆𝑡)Σ𝑘(𝑡, 𝑆𝑡)

𝑇 )−1(𝜇𝑘(𝑡, 𝑆𝑡)− 𝑟1)

𝛼

∣∣∣
𝑘=𝜂𝑡−

Moreover, if also 𝜇𝑘 and Σ𝑘 do not depend on 𝑠 for all 𝑘 = 1, . . . ,𝑚, then the above
optimal discounted wealth invested in the risky assets only depends on (𝑡, 𝜂𝑡−).

Proof. In this case, the solution of the system of ODEs⎧⎨⎩𝐶𝑘𝑡 − 𝑒−𝑟(𝑇−𝑡)
𝛼

[∑𝑚
𝑗=1

(
𝑒−𝛼𝜙(𝐶

𝑘−𝐶𝑗) − 1
)
𝜆𝑘𝑗 + 1

2𝑧
2
𝑘

]
= 𝑟𝐶𝑘,

𝐶𝑘(𝑇 ) = 0

is also solution of Equation (3.1), so that 𝐶𝑠 ≡ 0. Thus,

�̂�𝑡 =
(Σ𝑘(𝑡, 𝑆𝑡)Σ𝑘(𝑡, 𝑆𝑡)

𝑇 )−1(𝜇𝑘(𝑡, 𝑆𝑡)− 𝑟1)

𝛼𝜙(𝑡)

∣∣∣
𝑘=𝜂𝑡−

and by multiplying for 𝜙(𝑡) we obtain the desired result. □

4. Logarithmic utility

In this and the following section, as we will have the constraint 𝑋𝑡 > 0 for all
𝑡 ∈ [0, 𝑇 ], as definition of strategy we adopt ℎ (the proportion of wealth in the
risky assets) instead of 𝜋. This means that in the infinitesimal generator Equation
(2.4) we must substitute 𝐿𝑥ℎ𝑥 + 𝐿𝑥ℎ𝑥𝑠 for 𝐿

𝜋
𝑥 + 𝐿𝜋𝑥𝑠.

In the case of a logarithmic utility function, the optimal portfolio is of the
general form in Equation (2.8) even when 𝜇𝑘, Σ𝑘 and 𝜆𝑘𝑗 depend on 𝑆.

Proposition 4.1. Assume that 𝑈(𝑥) = log 𝑥, and that for all 𝑘 = 1, . . . ,𝑚 the
functions 𝜇𝑘, Σ𝑘Σ

𝑇
𝑘 are locally Lipschitz and bounded, Σ𝑘 is nonsingular for all

(𝑡, 𝑠), Σ−1𝑘 𝜇𝑘 is bounded and 𝜆𝑘𝑗 ∈ 𝐶1
𝑏 ([0, 𝑇 ]×𝐷) for all 𝑘, 𝑗 = 1, . . . ,𝑚. Then:

1. There exists a unique classical solution 𝐶 := (𝐶𝑘)𝑘=1,...,𝑚 ∈ 𝐶1,2
𝑏 ([0, 𝑇 ] ×

𝐷;ℝ𝑚) for the following system of PDEs:{
𝐶𝑘𝑡 + 𝑟 + 𝜇𝑘𝑠𝐶

𝑘
𝑠 +

1
2 tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠𝐶

𝑘
𝑠𝑠) +

1
2𝑧

2
𝑘 +

∑𝑚
𝑗=1

(
𝐶𝑗 − 𝐶𝑘

)
𝜆𝑘𝑗 = 0,

𝐶𝑘(𝑇 ) = 0,
(4.1)

where the functions 𝜙 and 𝑧2𝑘 are defined as in Equation (3.2).
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2. The function
𝑉 𝑘(𝑡, 𝑥, 𝑠) = log 𝑥+ 𝐶𝑘(𝑡, 𝑠)

belongs to 𝒟 and satisfies the HJB Equation (2.9).

3. The optimal portfolio proportion ℎ̂𝑘𝑡 is given by

ℎ̂𝑡 := (Σ𝑘(𝑡, 𝑆𝑡)Σ𝑘(𝑡, 𝑆𝑡)
𝑇 )−1(𝜇𝑘(𝑡, 𝑆𝑡)− 𝑟1)

∣∣
𝑘=𝜂𝑡−

.

Proof. Just as above, point 1 follows from [4, Theorem 2.4]. For point 2, the partial
derivatives of 𝑉𝑘 are now given by

𝑉 𝑘𝑡 = 𝐶𝑘𝑡 , 𝑉 𝑘𝑥 =
1

𝑥
, 𝑉 𝑘𝑥𝑥 = − 1

𝑥2
, 𝑉 𝑘𝑠 = 𝐶𝑘𝑠 , 𝑉 𝑘𝑠𝑠 = 𝐶𝑘𝑠𝑠, 𝑉 𝑘𝑠𝑥 = 0.

In order to prove 𝑉 ∈ 𝒟, we check Equations (2.11)–(2.12): first, Equation (2.11)
reduces to

𝔼

[∫ 𝑇
𝑡

∥ℎ𝑡∥2 𝑑𝑡

]
+ 𝔼

[∫ 𝑇
𝑡

∥𝐶𝑠(𝑡, 𝑆𝑡, 𝜂𝑡) ⋅ 𝑆𝑡∥2 𝑑𝑡

]
.

Since 𝐶 is bounded, the second term is finite, and the first term is finite by defi-
nition of Θ[𝑡, 𝑇 ]. Equation (2.12) reduces to

𝔼

[∫ 𝑇
𝑡

∣𝐶(𝑡, 𝑆𝑡, 𝑗)− 𝐶(𝑡, 𝑆𝑡, 𝑘)∣𝜆𝑘𝑗(𝑡, 𝑆𝑡) 𝑑𝑡
]
< +∞

which is true, due to the boundedness of 𝐶 and of the 𝜆𝑘𝑗 . Thus, 𝑉 ∈ 𝒟. Substi-
tuting its derivatives in the operators 𝐿𝑥ℎ𝑥 and 𝐿𝑥ℎ𝑥𝑠 appearing in Equation (2.6),
we get

𝐿𝑥ℎ𝑥 𝑉 𝑘 := 𝑟 + (𝜇𝑘 − 𝑟1) ⋅ ℎ− 1

2
∥ℎΣ𝑘∥2,

𝐿𝑥ℎ𝑥𝑠𝑉
𝑘 := 𝜇𝑘𝑠𝐶

𝑘
𝑠 +

1

2
tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠𝐶

𝑘
𝑠𝑠).

The maximizer in Equation (2.8) becomes

ℎ̂𝑘 = (Σ𝑘Σ
𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1).

Substituting all this into Equation (2.6), we obtain Equation (4.1), which is satis-

fied by 𝐶. Finally, point 3 follows from the ℎ̂𝑘 just obtained. □
This result in some sense extends the result of Merton [18], in that the optimal

portfolio has the form of the Merton optimal portfolio, even if the coefficients 𝜇𝑘
and Σ𝑘 can depend on the price of the risky assets 𝑆 in general. If they do not
depend on 𝑡 and 𝑆, however, we retrieve the usual “constant proportions” result,
which follows.

Corollary 4.2. If 𝜇𝑘 and Σ𝑘 do not depend on (𝑡, 𝑠) for all 𝑘 = 1, . . . ,𝑚, then the
optimal portfolio proportions in the risky assets are given by

ℎ̂𝑡 := (Σ𝑘Σ
𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1)

∣∣
𝑘=𝜂𝑡−

which only depends on 𝜂𝑡−.

Proof. The proof is straightforward from point 3 of Proposition 4.1. □
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5. Power utility

In the case of a power utility function, we do not get general results as in the two
previous cases, unless we assume that 𝜇𝑘, Σ𝑘 and 𝜆𝑘𝑗 do not depend on 𝑠.

Proposition 5.1. Assume that 𝑈(𝑥) = 𝑥𝛾/𝛾, with 𝛾 < 1, 𝛾 ∕= 0, and that for all
𝑘, 𝑗 = 1, . . . ,𝑚 the functions 𝜇𝑘, Σ𝑘 and 𝜆𝑘𝑗 do not depend on 𝑠; besides, 𝜇𝑘,
Σ𝑘Σ

𝑇
𝑘 are locally Lipschitz and bounded, Σ𝑘 is nonsingular for all 𝑡, Σ−1𝑘 𝜇𝑘 is

bounded and 𝜆𝑘𝑗 ∈ 𝐶1
𝑏 ([0, 𝑇 ]). Then:

1. There exists a unique classical solution 𝐶 := (𝐶𝑘)𝑘=1,...,𝑚 ∈ 𝐶1,2
𝑏 ([0, 𝑇 ];ℝ𝑚)

for the following system of ODEs:⎧⎨⎩𝐶𝑘𝑡 + 𝑟 +
1

2

1

(1− 𝛾)
𝑧2𝑘 +

1

𝛾

∑𝑚

𝑗=1

(
𝑒𝛾(𝐶

𝑗−𝐶𝑘) − 1
)
𝜆𝑘𝑗 = 0,

𝐶𝑘(𝑇 ) = 0.

(5.1)

where the functions 𝜙 and 𝑧2𝑘 are defined as in Equation (3.2).
2. The function

𝑉 𝑘(𝑡, 𝑥, 𝑠) =

(
𝑥𝑒𝐶

𝑘(𝑡)
)𝛾

𝛾

belongs to 𝒟 and satisfies the HJB Equation (2.9).

3. The optimal portfolio proportion ℎ̂𝑘𝑡 is given by

ℎ̂𝑡 :=
1

1− 𝛾
(Σ𝑘(𝑡)Σ𝑘(𝑡)

𝑇 )−1(𝜇𝑘(𝑡)− 𝑟1)
∣∣∣
𝑘=𝜂𝑡−

. (5.2)

Proof. As above, point 1 follows from [4, Theorem 2.4]. For point 2, the partial
derivatives of 𝑉𝑘 are now given by

𝑉 𝑘𝑡 = 𝛾𝐶𝑘𝑡 𝑉
𝑘, 𝑉 𝑘𝑥 =

𝛾

𝑥
𝑉 𝑘, 𝑉 𝑘𝑥𝑥 = −𝛾(1− 𝛾)

𝑥2
𝑉 𝑘, 𝑉 𝑘𝑠 = 𝑉 𝑘𝑠𝑥 = 𝑉 𝑘𝑠𝑠 = 0.

In order to prove 𝑉 ∈ 𝒟, we check Equations (2.11)–(2.12): firstly, Equation (2.11)
reduces to

𝔼

[∫ 𝑇
𝑡

∥𝛾𝑉 (𝑡,𝑋𝑡, 𝑆𝑡, 𝜂𝑡)ℎ𝑡∥2 𝑑𝑡

]
which is finite by definition of Θ[𝑡, 𝑇 ]. Equation (2.12) reduces to

𝔼

[∫ 𝑇
𝑡

1

𝛾
𝑋𝛾𝑡 ∣𝑒𝛾𝐶

𝑗(𝑡) − 𝑒𝛾𝐶
𝑘(𝑡)∣𝜆𝑘𝑗(𝑡) 𝑑𝑡

]
≤𝑀𝔼

[∫ 𝑇
𝑡

𝑋𝛾𝑡 𝑑𝑡

]
for a suitable 𝑀 , since 𝐶 and the 𝜆𝑘𝑗 are bounded. This quantity is finite by
definition of Θ[𝑡, 𝑇 ]. Thus, 𝑉 ∈ 𝒟. Substituting its derivatives in the operators
𝐿𝑥ℎ𝑥 and 𝐿𝑥ℎ𝑥𝑠 appearing in Equation (2.6), we get

𝐿𝑥ℎ𝑥 𝑉 𝑘 := 𝛾𝑉 𝑘
(
𝑟 + (𝜇𝑘 − 𝑟1) ⋅ ℎ− 1

2
(1− 𝛾)∥ℎΣ𝑘∥2

)
,

𝐿𝑥ℎ𝑥𝑠𝑉
𝑘 := 0.
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The maximizer in Equation (2.8) becomes

ℎ̂𝑘 =
(Σ𝑘Σ

𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1)

(1− 𝛾)
.

Substituting all this into Equation (2.9) and dividing by 𝛾𝑉 𝑘, we obtain Equation

(5.1), which is satisfied by 𝐶. Finally, point 3 follows from the ℎ̂𝑘 just obtained.
□

Also this result in some sense extends the result of Merton [18], in that the
optimal portfolio has the form of the Merton optimal portfolio. If 𝜇𝑘 and Σ𝑘 do
not depend on 𝑡, we again retrieve the usual “constant proportions” result, which
follows.

Corollary 5.2. If 𝜇𝑘 and Σ𝑘 do not depend on (𝑡, 𝑠) for all 𝑘 = 1, . . . ,𝑚, then the
optimal portfolio proportions in the risky assets are given by

ℎ̂𝑡 :=
1

1− 𝛾
(Σ𝑘Σ

𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1)

∣∣∣∣
𝑘=𝜂𝑡−

which only depends on 𝜂𝑡−.

Proof. The proof is straightforward from point 3 of Proposition 4.1. □
Remark 5.3. If 𝜇𝑘, Σ𝑘 or 𝜆𝑘𝑗 also depend on 𝑠, then Equation (5.1) must be
modified as follows:⎧⎨⎩

𝐶𝑘𝑡 + 𝑟 +
1

2

1

(1− 𝛾)
𝑧2𝑘 +

1

𝛾

𝑚∑
𝑗=1

(
𝑒𝛾(𝐶

𝑗−𝐶𝑘) − 1
)
𝜆𝑘𝑗

+

(
𝜇𝑘 − 1

1− 𝛾
(𝜇𝑘 − 𝑟1)

)
𝑠𝐶𝑠 +

1

2
tr (𝑠Σ𝑘Σ

𝑇
𝑘 𝑠𝐶𝑠𝑠)

+
1

2

𝛾

1− 𝛾
∥𝑠𝐶𝑠Σ𝑘∥2 = 0,

𝐶𝑘(𝑇 ) = 0,

i.e., the additional terms in the second and third lines must be included, one of
which is a nonlinear function of the gradient 𝐶𝑠. This is a quasilinear system of
PDEs, to which the results of [4] do not apply, and that in general needs a theory
which is more complex and beyond the scope of this paper.

We are now able to reconsider the initial Example 1.1 and to make it rigorous.

Example (Example 1.1 continued). Assume 𝑑 = 2 and let 𝜇𝑘 − 𝑟1 ≡ (0.01, 0.01)
for 𝑘 = 1, 2 and

Σ𝑘 :=

⎧⎨⎩

(
0.04 0.004
0.004 0.04

)
for 𝑘 = 1,

(
0.09 0.054
0.054 0.09

)
for 𝑘 = 2.
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Then the optimal portfolio strategy for an investor with 𝑈(𝑥) = 𝑥𝛾/𝛾 with 𝛾 = 0.1,
by Equation (5.2) is given by

ℎ̂𝑡 :=
1

1− 𝛾
(Σ𝑘Σ

𝑇
𝑘 )
−1(𝜇𝑘 − 𝑟1)

∣∣∣
𝑘=𝜂𝑡−

= (0.2525, 0.2525)1{𝜂𝑡−=1} + (0.0771, 0.0771)1{𝜂𝑡−=2}.

Thus, our optimal investor always switches between holding 25.25% of its wealth
in each of the two risky assets in the “normal” state, and 7.71% in each of the two
risky assets during a “crisis” state.
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[8] A. Capponi, J.E. Figueroa-López, and J. Nisen, Pricing and semimartingale repre-
sentations of vulnerable contingent claims in regime-switching markets. Mathemati-
cal Finance, (2012), (doi:10.1111/j.1467-9965.2012.00533.x), to appear.
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Can there Be Excessive
Mathematization of the World?

Nicolas Bouleau

Abstract. If we consider the evolution of ideas regarding chance since Antiq-
uity (Aristotle, Cicero), the appearance of the calculations during the 17th
century (Pascal, Fermat), to the theory of hedging on financial markets, we
see: a) an extraordinary development of mathematics to manipulate random-
ness b) the increasing use in this language in economics in the 20th century
c) a gradual eviction in the backyard of all that concerns the interpretation of
phenomena. The shift to a collective work involving interpretation is an urgent
need in the contemporary controversies: financial crises, long-term, biodiver-
sity, but it faces a passive resistance due to the comfort of the agreement on
mathematics.

The question on which we focus here is on what philosophical bases
and under what circumstances can there be excessive mathematization of the
world? This question is asked repeatedly about the economy. To elucidate
this difficult problem we address it in a broader scope than just the economy,
for knowledge in general. We discuss when and how to diagnose excessive
mathematization and what it means. This leads us to ask: why normal science
and revolutions in jolts? Why orthodox economics and crises?

Mathematics Subject Classification (2010). Primary 00A30; Secondary 00A06.

Keywords. Mathematics, economics, economy, chance, risk, heavy tails, epis-
temology.

1. The contribution of mathematics to knowledge:
Some history and preliminary remarks

Since the beginnings of civilization mathematics has been associated with most
forms of knowledge. Early examples are Archimedes’s work in engineering and,
from the same era, The Nine Chapters about land measures and economy in China.
Few areas have not been influenced in some way by mathematics. From this long
and multi-faceted history we extract some key features.
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1.1. The Baconian program served by mathematics

It is in Il Saggiatore (The Assayer) in 1623 that Galileo posits that the universe is
written in the language of mathematics. This 𝛼𝜋𝑜𝜑𝜏𝜀𝛾𝜇𝛼 as it is called, became
the foundation of all Western science. This clarifies Francis Bacon’s program, which
asserts that man has a Promethean perspective, because he is subject to God
choosing to share his power. He can conquer, dominate and transform nature.
Galileo tells us how he can know and understand it. In fact later in his work – as
Alexander Koyre has clearly shown [15] – Galileo proceeds essentially by thought
experiments following mathematical reasoning, not by experiments providing data
for subsequent modeling.

He believed that mathematics was a sufficient sign of the essence of God
in nature that nature would reveal its secrets purely by geometric and algebraic
deductions. Over a century later, Kant built his philosophy around the explicit
idea that mathematics, although not based in sensory experience (a priori judg-
ments), nevertheless teaches about the world (synthetic judgments). Subsequently
mathematics has gradually yielded the philosophical throne of synthetic a priori
judgments, but without ever losing the prestige of a natural fertility. In the early
19th century there was a separation with mathematics on one side, taking a modern
and rigorous turn in the writings of Gauss, Cauchy and Bolzano, and philosophy
on the other side, which, with Hegel’s Logic, had no mathematical element. But
then the emergence of non-Euclidean geometries and crises in the foundations of
mathematics gave rise to a plurality of views about mathematics and its role in
the development of scientific knowledge. At the end of the 19th and 20th cen-
turies, with the development of physics that became the focus of epistemology,
mathematics is, with variations depending on the authors, mainly considered as a
servant of the natural sciences (cf. [2, 21]); we refer to this as its ancillary role.

1.2. The appearance of mathematics in economics

Sociology, as introduced by Auguste Comte, takes a non-mathematical road, except
through the use of statistics, particularly by Durkheim. Subsequently it acquired
its own methodological bases with Max Weber in the early 20th century. Eco-
nomics, on the other hand, was mathematized as early as the mid 19th century
with Jules Dupuit and Augustin Cournot, without really using statistics. Prior to
this, economics presented itself as a kind of philosophy of accounting operations.
After Dupuit and Cournot economics was full of talk of derivatives, equations and
integrals. How did math come to be accepted into the very heart of this social
science?

To answer this we follow the path of Jules Dupuit (1804–1865). A civil en-
gineer, he realized that one can do better than simply fixing a single price for
the tolls on a bridge since, whatever the price, some users will find it too expen-
sive, while others would happily pay an even higher toll. He is the inventor of
what today is called market segmentation. Having a good mathematical training
he had the intuition that with a single price one cannot recover all of the integral
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of the curve that quantifies the willingness to pay; one can only recover that of a
truncated curve. This idea of an integral is quite clear in his articles.

Yet we must note that this “willingness to pay” is a poorly defined concept. It
depends on many factors, the weather, time of day, seasons, and a thousand social
and economic causes. It seems impossible to measure. A collection of experiments
measuring traffic against toll level would not provide a curve but a cloud of points.
It also depends on the tolls levied on other crossings, and on whether users collude
and sell their rights of crossing etc.

In the early 19th century, this concept was debated under the name ‘utility’.
Dupuit pursued the belief that the mathematical phenomenon that he had discov-
ered would help to clarify the concept. He postulated the existence of this quantity
as a property of the commodity being exchanged and its price, which is shared
according to the benefits of the seller/manufacturer and the consumer. “Political
economics, he wrote [as opposed to social economics], should measure the utility
of an object by the sacrifice that each consumer is prepared to make in order to
acquire it” and he took the still famous example of a bridge [13]: “[the utility of a
toll bridge] can be separated into two main parts:

1) the lost utility, which corresponds to those crossings that would have occurred
if the toll were abolished but which do not take place with the current charge,
and

2) the utility produced, which corresponds to the crossings which do take place.
This latter splits into two further parts:

a) utility for the producer, i.e., the money raised by the toll, and

b) utility for the consumer, i.e., the excess value of the service over the
price it costs.”

Dupuit explains [12]: “[In a shop we see] the fine, the very fine, the super
fine, the extra fine, which, though from the same barrel and showing no difference
other than the superlative of the label, are sold at very different prices” and this
changes the optimization of public taxes: “So when the bridge is built and the State
establishes a tariff, it stops caring about production costs. It charges less for a heavy
cart which wears out the bridge more, than for a carriage with good suspension.
Why two different prices for the same service? Because the poor do not value the
crossing as highly as the rich, and raising the tariff would only prevent them from
using the bridge.” He explains: “The goal is always the same: to charge for the
service rendered, not what it costs, but what the buyer thinks its value to be”[12].

Dupuit fully realizes that, being defined by thought experiments, this notion
of utility is difficult to measure. He acknowledges that it is abstract. “It may be
objected that the calculation for which we have given the formula is based on data
that no statistics can provide, thus we will never be able to express precisely the
utility provided by a machine, by a road, by any work . . . ” But he advances the
famous argument, which has been repeated endlessly by neo-classicists ever since,
that economic science is only an approximation. It is this argument that led to
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all the ambiguities in the passage from descriptive to normative and to the per-
formativity of discourse, and which opened economics up to all the mathematical
refinements imaginable.

Dupuit starts from a mathematical property and uses it to account for the
psychological, and it is interesting to compare his approach with that of Con-
dorcet, who, at the end of the preceding century, proposed a different kind of
mathematization of the social.

Condorcet, a great mathematician, aimed to use the calculus of probabilities
to understand the propagation and sharing of a “reason to believe” (what we call
today the degree of certainty), a concept somewhat similar to that of utility but
based on the truth or fallacy of judgments. He pursued this program at length,
making, along the way, the great discovery of the “paradox of the vote of an as-
sembly” (about 3 options 𝐴,𝐵,𝐶, the majority may be obtained on the preference
𝐴 < 𝐵, a majority on 𝐵 < 𝐶, and also a majority on 𝐶 < 𝐴). But he did not
think that it would be possible to go so far as to calculate peoples’ behavior.

“On the use of language of geometry, the amount of universal commodity, that
of a particular commodity, these can be approximated by numbers, but the urge to
buy and sell cannot be calculated. Yet the changes in price depend on this moral
quantity which, in turn, depends on opinions and passions. It is a beautiful idea
to try to calculate everything, but look at the greatest mathematicians of Europe,
the likes of d’Alembert and Lagrange. They seek to understand the motion of three
attracting bodies: they assume that these bodies are point masses, or are very nearly
spherical, and yet this issue, despite being limited by a hundred conditions that
make calculation easier, has occupied them for twenty years without an answer.
The effect of the forces acting on the head of the dullest shopkeeper is much more
difficult to calculate.” [11]

Condorcet’s approach starts from the psychological, the reason to believe,
and attempts a mathematization of sociality by the calculus of probabilities. His
epistemology is an extension of that of Laplace: we cannot determine everything –
principles, laws of forces and their way of acting – only the calculation of probabil-
ity is relevant. It is an approach with an a priori limitation of science. Condorcet
had to spell out all his assumptions – independence or correlation of opinions etc.
– before doing calculations.

Dupuit, on the other hand, can immediately perform calculations, and does
so in his articles, he constructs concepts which interpret price curves (assumed to
be obtained). His concepts require very strong assumptions of independence, but
he leaves the details of these hypotheses to be spelt out and improved later.

These features – the independence of agents presented as approximation,
the progression from prices and quantities to concepts and then, during the 19th
century, production function, and problem-solving by local differentiation – these
will be the backbone of the neo-classical theory with Stanley Jevons, Carl Menger,
Léon Walras (general equilibrium), von Böhm-Bawerk, Vilfredo Pareto (theory of
optimum), Irving Fisher, etc. creating an evocative and highly flexible language
that is still in use today.
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1.3. Advanced mathematization of finance

This is a very recent and well-known phenomenon, whose history I have recounted
elsewhere [4]. I will simply explain how an apparently very clever mathematiza-
tion of risk, helped lead financiers away from safe practices and facilitated the
emergence of the subprime crisis. The crisis has occured in an era when finance
is thoroughly mathematized, as a result of the “Black–Scholes revolution”. A re-
discovery of the work of Bachelier and the use of Brownian motion in modeling,
and developments of stochastic calculus after the Second World War, particularly
the work of K. Itô (1915–2008), provided a mathematical language (that of semi-
martingales) in which the non-arbitrage principle could be expressed under broad
assumptions that were suitable for operational cases. Methods for pricing and
hedging options were thus provided by partial differential equations. The simplest
case is when volatility is constant, but it is clear to everyone that these methods
are largely perfectible, a point which is epistemologically essential.

This led to three historical phenomena: the development of derivatives mar-
kets in the U.S. first, then Japan and Europe, a transformation of professional
profiles in banks and a call for new mathematical skills, and an enhanced political
role for finance which was felt during the construction of the European Union and
then in the globalization movement.

From the hedging of (European or American) options on stocks and cur-
rencies, the mathematical formalization then spread to more delicate issues: rate
models. In particular, the bond market and the term structure of interest rates. The
Cox–Ingersoll–Ross and Heath–Jarrow–Morton models allow the non-arbitrage
principle to be applied here. Furthermore the theory can make use of infinite-
dimensional models that must be simplified and calibrated to the current data.
These model the behavior of agents over five, ten or twenty years and are therefore
highly uncertain, this uncertainty being expressed in the language of probability
theory.

But the most ambitious level of mathematization goes even further and deals
with securitization of debts and risk assessments. Putting risks on the market is
a priori a good idea, in the sense that it is better not to put all your eggs in one
basket. But this assumes that the players (banks, insurance companies) can assess
the risks.

This gave rise to a mathematical innovation worth mentioning here. It was
noted that to estimate the risk of a portfolio of contingent claims, the classical
method known as ‘value at risk’, based on a criterion of the form (level of losses,
probability of this level), entailed some logical difficulties. It has been shown that
any criterion satisfying the desired consistency was of a particular mathematical
form called a ‘coherent risk measure’ cf. [5]. We emphasize that these tools allow
calculations for complex portfolios assuming known probability of rare events, i.e.,
the tails of probability distributions which have great influence on the results.
These methods, in other words, yield a quantification based on unknowns.



458 N. Bouleau

In the credit-risk market financial institutions have mathematical tools to
estimate risks on reassembled portfolios for the purpose of exchanging them and
improving the situation of each individual with respect to their own utility func-
tion and their aversion to risk. It has often been stressed in the commentaries on
the crisis that the new tools of these markets especially CDO and CDS (credit de-
fault swaps) did not encourage operators to exercise caution. That is correct. The
changes in the way agents dealt with risk when protected by insurance, termed
‘moral hazard’ by the Anglo-Saxons, surely had a role in making the ‘soufflé’ of
the crisis rise. But equally important is the fact that it was wrong to think that
the risk was ‘in the portfolio’. The risk is interpretative in nature and just as
“the beauty of the Parthenon is not found in the dust of the Parthenon”, so these
mathematical tools do not see the global economic interpretations related to the
decline in U.S. household savings etc.

1.4. The quantification of uncertainty is a removal of meaning

From an epistemological point of view this fundamental fact needs to be stressed.
It is the significance of the event that creates the risk. The probabilistic representa-
tion of risk is classically a pair of mathematical quantities: 1) a probability law that
governs the states that can arise, 2) a random variable, i.e., a function that maps
each state to the damage, that is to say the cost (counted algebraically if there are
also benefits). This representation by a pair of quantities is a mathematical model
both too simple and too ideal for thinking about risk. It is too ideal because we are
almost never in a situation where this model is well informed. We do not know the
tails of probability distributions because they concern rare events for which there
is insufficient data. We do not know what correlations occur to assess the damage
and we do not have a full description of what can happen. Moreover the model is
too simplistic because it removes the reasons that make us interested in the events
as if their translation into costs could be done automatically and objectively.

The true purpose of risk analysis is to move forward with a little foresight in
organizing facts and social practices. It may be the risk that a child be knocked
down while crossing the street, the risk that the air of Paris be toxic, that the
failure of one business will cause that of others, etc. The intellectual operation of
probabilizing a situation is fundamentally one of removing meaning. It is largely
problematic for all matters concerning human behavior. Risk analysis necessarily
involves understanding interpretations.

It is the meaning of the event that creates the risk. As an example, suppose a
particular type of cancer is found in a certain proportion of the Swiss population.
This proportion is then used to estimate the risk. If it is subsequently found that
most of the people with this cancer had consumed cannabis twenty years ago,
say, then all cannabis users become potential patients. The risk is much higher;
the meaning of the event has changed. Reducing risk to a probability distribution
of sums of money amounts to trusting mathematization as an approximation,
as if it were describing a physical reality, whereas it is actually a question of
meaning whose subjectivity permeates every interaction between the agents. This
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epistemological point is extremely important. They are interpretations, and hence
meanings, that are replaced by numbers.

Recently there have been significant improvements in financial analysis, es-
pecially with the so-called coherent risk measures. All these methods for making
decisions in the face of uncertainty have the innate defect of assuming the interpre-
tative process to be closed. Yet, on the contrary, new interpretations are constantly
emerging. Once a new reading is made, new risks are created, but perceived only
by those who understand it. If in 2006, nobody had seen the growth of house
prices and the decline of household savings in the United States as a phenome-
non open to several interpretations, the corresponding risk would not have been
perceived. Mathematization of risk conceals these difficulties behind assumptions
about the tails of probability distributions. It is not enough to say that those are
poorly known. They are by nature provisional and changeable according to the
interpretative knowledge that agents bring from their understanding of economic
phenomena.

1.5. In liberal economics, every quantification opens
a possible extension to the market

There are numerous examples. The most recent is the quantification of research
work. Up until the end of the last century, the quality of researchers was seen in
terms of idiosyncratic talents that could only be truly appreciated by researchers
themselves experienced in the same type of activities. Putting in place all the
machinery of publication indices and journal citations has profoundly disrupted
the working relations in the profession. I will say no more. The result has been the
emergence of an international market for students, teachers and researchers, with
Universities being faced with a new logic where their financial budgets determine
what league of intellectual athletes they can afford.

Another example, one which is more serious in its long-term consequences,
is biodiversity. Mathematization here is based on separating species into two cate-
gories. On the one hand are the ‘remarkable’ species, those officially considered as
threatened. For these species we calculate the cost of conservation much as for his-
torical monuments. On the other hand for the ‘ordinary’ species we calculate the
ecological service they provide, from prokaryotes (bacteria) to eukaryotes (higher
species) by standard methods of cost-benefit analysis. One can then buy and sell
any part of nature or exchange it against goods or services already quantified by
the economy.

2. When and how is there excessive mathematization?

We now examine the particular type of inefficiency and problem that suggests a
diagnosis of excessive mathematization.

2.1. We only realize after the fact

The recent financial crisis is quite illustrative in this regard. While the crisis had
not yet occurred – except in the eyes of some non-orthodox observers as there
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always are – every agent and every financial institution believed that they should
estimate the risk of their portfolios (comprised of complex products such as credit
derivatives) by the methods best suited to the very mathematical nature of these
products. Coherent risk measures make assumptions on the tails of laws but enable
one to handle multiple scenarios. The weak point is that they omit scenarios based
on global interpretations where the value of each portfolio cannot be calculated
by considering the others as ne varietur.

Once the crisis had started, and after the resultant upheavals, what happened
was the result of political forces: on one hand a strong current of opinion emerged
urging the adoption of regulatory measures in order to avoid future crises or at
least limit their damage, on the other hand most financial workers felt that all that
was needed was to take into account the interpretation that had been neglected, to
improve, in other words, the global readings of risky situations by strengthening
the role of rating agencies in particular. The latter have now been warned, and
have learnt to keep in mind the previously neglected facts (resistance to “stress”
of the various institutions, etc.). For public opinion we are back where we started,
with the same tools with the same defects.

2.2. Calculations conceal ignorance

This is obvious for financial risks. Because we do not know how to quantify coun-
terparty risks, or those related to market liquidity, and much less those which are
due to human error or to changes in the law, very precise calculations are mixed
with crude estimates hoping that they will have no appreciable impact on the
outcome. Applying sophisticated calculations, such as coherent risk measures, to
complex portfolios supposes that the risks are expressed perfectly in the ontology
of the objects considered at the outset. In other words it adds a second level: one
ignores one’s ignorance. This affects the market (organized or OTC) in credits and
their derivatives. By the market, portfolios acquire a value where everyone trusts
everybody else’s calculations though they are no better. This leads to an insta-
bility that may be called “methodological moral hazard” which is the belief that
mathematics is able to capture new interpretations if the calculations are done by
everyone. This kind of instability is worse than in conventional markets in assets
and their options because the timescales are much longer (tens of years instead of
tens of months) and the punishment of economic reality comes much more slowly.

2.3. The ancillary role of mathematics as servant is confused
with that of the subjects being served

The previous idea can be generalized to all situations of mathematized knowledge.
Let us take the case of physics. It is obviously helpful to physics when the mathe-
matics used by physicists is improved. There is a real fertility there which has been
particularly emphasized by Gaston Bachelard. But it works with the same inter-
pretations as the served science. We are in the syntactic part of normal science in
Kuhn’s sense. Although Bachelard, with his usual talent, shows that mathematics
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can suggest questions for physicists, it is impossible to get genuinely new interpre-
tations of phenomena occuring in the domain of the master discipline in this way.
Mathematization is an essential component in the phenomenon of scientific crisis
as described by Thomas Kuhn.

2.4. That a theoretical representation be perfectible does not mean it is the only
way to deal with reality and does not guarantee that it is capable of taking
into account every aspect of the situation in question

By theoretical representation I mean a semi-artificial language using mathematics,
as in physics or modeling. The fundamental point is that perfectibility gives the
illusion of completeness. Ptolemy’s geocentric planetary system provides a good
example: the excess of mathematization lies in cycles and hypocycles that can be
added at will. The original system was improved by Tycho Brahe and is infinitely
perfectible, and the excess only became apparent after the new interpretation given
by Copernicus. The only flaw in Ptolemy’s system is that it has no place for this
new interpretation. Yet the new interpretation was much less precise, at least ini-
tially, when Copernicus was proposing heliocentric circles. But this is astronomy
not planar geometry, and the new reading acquires legitimacy from the fact that
it too could be a starting point for improvements; it also has room for possible
enhancements. Galileo cannot depart from this new interpretation because he rec-
ognized in Jupiter and its satellites a Copernican system. Nevertheless, having,
at that pre-Newtonian time, only a kinematic description of phenomena, he has
no compelling argument against the geocentric system. He was accused during his
trial of basing his position on “beliefs” that are not in the sacred texts. It is a case
of one interpretation against another, a situation cleverly analysed by Augustin
Cournot cf. [6]. The position of Cardinal Robert Bellarmine is that faith has a
monopoly of beliefs and that science must remain a means of describing what is
allowed in God’s creation.

2.5. There is confusion between creativity of the representation
and creativity of the world

Within a system of thought, especially one that is perfectible, one cannot see a
reason to escape the system. This is related to Quine’s remarks on ontological
commitment and on the near impossibility of talking about things we either don’t
know about or deny the existence of. Quine emphasizes our strong tendency to
“talk and think about objects” [19] both in ordinary language and in physical or
economic theories where agents and objects are subject to certain relationships.
“It is hard to say how else there is to talk, not because our objectifying pattern
is an invariable trait of human nature, but because we are bound to adapt any
alien pattern to our own in the very process of understanding or translating the
alien sentences.” Quine also takes into account the ontological conflicts in order
to clarify them. The novelty of the famous article “On What There Is” [20] is the
proposal of a definition of ontological commitment which in principle applies quite
generally. In fact these fine arguments inspired by mathematical logic are based
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on the use of logical quantifiers and are quite abstract, and they do not focus on
the emergence of new objects.

A more concrete historical example is very illuminating: the abandonment
of the natural scale in music. The octave, fifth and other basic musical intervals
correspond initially to the division of a vibrating string into simple fractions, one-
half for an octave, two-thirds for the fifth, three-fourths for the fourth, etc. This
is a strict mathematization of the harmony that is actually perceived by the ear
through sound frequencies. If we move from fifth to fifth by iterating the operation
of taking two-thirds of the length, then translating these divisions back onto the
original octave yields the intervals of the so-called Pythagorean scale. It is very
close to the mathematics of vibrating strings, which is the natural (and scientific)
basis of sound. It took more than twenty centuries before the natural scale and
its improvements were abandoned and the so-called “even-tempered” scale, which
gives exactly the same role to all intervals, was adopted. The instruments built on
the even-tempered scale do not give preference to a particular key, but they do
not respect fully the laws of vibrating strings. The creativity of the musicians has
won over that of mathematics in music. The victory is in fact not total, because
of some harmonics that are heard as dissonance, etc. But the point to emphasize
here is that the idealized world of mathematics has been put to one side in favour
of a world based on social practice.

3. Why normal science and jolts of revolutions?
Why orthodox economics and crises?

Things seem to move like tectonic plates, in jolts. Why is this? How can we im-
plement a production of knowledge that goes beyond the Kuhnian epistemology?

3.1. As Kuhn thought, normal science is very close to the Popperian vision

Only the modalities of its functioning are seen with a more social emphasis on
paradigms as shared understandings of scientific communities. The real difference
with Popper is that the disorder that precedes a crisis is more complex than
simply encountering a decisive experiment that could refute the theory: there are
also attempts to negotiate with the forms of interpretations. Usually the plasticity
of the paradigms allows the acceptance of new facts or events in the theory. Kuhn
takes the example of a child learning to distinguish ducks, swans and geese in a zoo,
with his father playing the role of experimental verdict. He stresses the importance
of slightly fuzzy categories whose vagueness is not mathematically quantified [16].
But in certain historical situations, the various ways of arranging things lead to
choices that are too artificial (properties of the ether, for example), which gives
rise to the search for and the legitimization of more radical interpretative changes.

3.2. But most mathematization situations are not Popperian

Economic theories are not likely to be refuted by any observations of facts. The
social environment is constantly changing and is never the same twice. Special-
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ized models with predictive aims are probabilistic and cannot be falsified by a
single event. More generally, mathematizations useful for studying changes in the
environment (pollution, climate change) are always open to several competing
models, each based on a different perspective (extrapolation from ice cores or CO2

emissions), each perfectible as new data become available. The simplest generic
example is that of modeling the flow of a river for flood forecasting. Families of
models based on Gaussian ARMA factoring in 1) the water depth, 2) the flow
rate, 3) the logarithm of the depth and 4) the logarithm of flow, are each infin-
itely perfectible if new measured data are available yet they do not give the same
probabilities of reaching a certain level. This does not mean that these models are
useless, far from it. It just shows that it is not because reality is plural that it is not
scientific. In fact, for one type of phenomenon, the data are always finite in number
and a finite number of points can be matched either by polynomials or by com-
binations of real exponentials or trigonometric functions etc. If you think about
the immense range of subjects opened up by modeling, then you quickly become
convinced that it is the Popperian cases that are the exception. For a theory to be
a credible candidate to be Popperian, in addition to agree with past experiments,
it must have a fixed number of parameters, each fixed numerically. It is hard to
think of any apart from gravitation and some physical theories. Probabilistic the-
ories never fall into this category because an infinite number of events is needed to
determine a probability distribution. Now for theories with an inifinite number of
parameters, or theories belonging to a family of perfectible representations (as in
our example of ARMA times series) the question whether they are popperian or
not is not relevant because an negative experiment refutes only numerical values
of the parameters (cf. [3]).

This remark also applies equally well to normal science in the sense of Kuhn.
It is an extremely restrictive view of knowledge. Let us be more precise.

3.3. It is the monism required at each step that causes the jolts

Where does the new interpretation that is characteristic of a scientific revolu-
tion come from? It can only come from differences in the subject community. In
other words, the jolts come from the absolute will that the community accept only
one truth. Yet this is one particular vision of knowledge and social organization
of science. If we accept instead that ‘reality’ is also, and indeed primarily, peo-
ple, groups, with their abilities, their habits, their psychology, and their means
of interacting with their environment, we see that the only way to capture, or
at least to take some account of, the innovation in the world is to make space
for the instances where new representations are constructed: users’ associations,
professional groups, consulting experts, victims of unforeseen circumstances, etc.
As Funtowicz and Ravetz have thoroughly analyzed, this route leads to a better
quality of knowledge, more reliable and in which we can have more confidence [14].

It is a pluralistic knowledge, but that is not to say that it is relativistic.
This distinction is crucial. Specifically, as soon as one demands a certain level of
rigor and consistency, one is limited to a small number of different approaches,
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just as the major political ideas concern a limited number of parties in multiparty
parliamentary systems. To say that departing from the monism of unique truth
leads one into relativism is the coarse argument of dominant representations, which
the jolts of scientific crises regularly refute.

Nevertheless, if the implementation of such pluralistic knowledge is progress-
ing well in some areas such as climate change or the protection of sensitive areas
(despite clashes with political power, which are nothing new), it presents par-
ticular difficulties for economics. With globalization, knowledge about economic
exchanges has a strong tendency to monism. One would think, however, that the
growing environmental problems should lead us to greater tolerance in the imple-
mentation of specific economic experiments and their running as a condition of
better support for natural equilibriums.

4. Interpretative pluralism is not destructive of knowledge;
it is a better type of knowledge

We now propose to examine more thoroughly the features of that better quality and
what role mathematics can play. This will necessitate a step back from science as it
is currently most often understood and practiced. Beyond the concept of “confined
research” introduced by Michel Callon [10], it appears that what is at stake is the
conquering character of the Baconian program and themasculine virtues connected
with them.

For convenience we shall use the term challenge-science to describe the view,
held until recently by most scientists, that sees knowledge as a challenge to nature.
It challenges nature to a duel. The honor in the game is to respect the assumptions
that govern the rules for experiments. This includes Popperian science and Kuhn’s
normal science. In fact it is very old; the induction principle advocated by many
philosophers and scientists to account for knowledge is similar in nature. Put
simply, Popper proposes an induction articulated on a theory. Instead of accepting
the thesis that knowledge is essentially philosophical in its ability to spot a pattern
and extrapolate it – an idea championed simultaneously (in 1843) by John Stuart
Mill and by Augustin Cournot who finely analysed it – thus drawing from a large
number of results, or a large number of circumstances, a prospective law that is
to be evaluated, Popper strengthens the criterion by requiring that we move from
observed facts to a representation with the dress of a theory, that is to say, based
on a mathematical syntax like mechanics as formulated by Lagrange or Hamilton.
Historically, it is indisputable that during the whole period where industrialization
had not yet complexified technology too much, science was practiced with little
experimentation and as many challenges were presented to colleagues as to nature.
The discoveries at the time of Pascal, Fermat and Father Mersenne were often
announced as puzzles, whose answer was known only to the finder, to challenge
the wit of contemporaries.

In these early years of the 21st century, a new awareness, unique in the
history of man, is happening. Endless continual growth is impossible, and even
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if the limit is not yet reached, the current pace is so destructive that it must
be drastically curbed [8]. It is becoming less and less clear that using challenge-
science vis-à-vis the environment, with new technical devices and a progressive
mathematization to calculate the economic optimum by cost-benefit analyses in
the context of democracy and liberal economy, can overcome the global challenges:
arable land, species, climate change, pollution of soil and water, etc. New options
for production and consumption (e.g., use oriented product service systems, etc.)
and for democratic structures (new bicameralism [9, 17]) are probably essential.
But, more fundamentally, we must also consider the question of what kind of
knowledge. The epistemological question of how knowledge is produced also arises.

4.1. What logical status can the new knowledge have?

Is there “room” for anything else? What are the characteristics of forms of knowl-
edge that are not falsifiable theories – are there any? They would eventually be
forgotten but they are innumerable. Included in this field are all useful discoveries
that form the logical category complementary to that of refutable hypotheses. The
vast majority of knowledge about animal, mineral and vegetable, and a great deal
of technical expertise, is of this type.

In this class we find most of the chemistry that has long been viewed as
pre-scientific when compared with physics. The great chemist Henry Le Chatelier
in the early twentieth century says: “These two sciences have a similar purpose,
they both study phenomena that result in transformations of energy, i.e., mechan-
ical, calorific, electrical or chemical power. In teaching physics one refers only to
the laws of natural phenomena: the laws of Mariotte, Gay-Lussac, Ohm, Joule,
Descartes, Carnot, etc. [. . . ] In chemistry, on the other hand, there is an endless
list of small particular facts [. . . ] the material thus accumulated will be very useful
for the subsequent establishment of science but they do not yet constitute it in any
way” [18]. Why such a disgrace? Is it justified in terms of services rendered?

This class also contains most medical and environmental knowledge. Long
before Popper, Claude Bernard wrote the following about medicine: “in science you
can make two kinds of discoveries. Some are predicted by theory; these suppose two
conditions: a very advanced science, e.g., physics, and simplicity of the phenomena.
The other kind are unexpected: they appear unexpectedly in the experiment, not as
corollaries of the theory and devoted to confirm it, but always outside of it and
therefore contrary to it” [1].

More generally, outside the challenge-science category lies all the knowledge
about how the world is, what features make it the way we find it, and not another
that follows the same laws. This is not inconsistent with general knowledge in
Aristotle style, but these innumerable and fortuitous data, that reflect what life
and history have made, are essential for nature and the society. Besides, without
them challenge-science is nothing. Computers can help us to store them but they
do not reduce to dimensions or coordinates. They are interpretative like the new
paradigms that Kuhnian revolutions bring. We must therefore accept that some are
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complementary – plural answers to the same question, differing accounts written
in different styles and emphasizing different points.

4.2. A knowledge whose social function is not prediction but caution and care

We have to make a place for stories, testimonies, for what makes our current
understanding of the world in all its diversity. They are the basis for the uses and
values that give meaning to representations, even scientific ones.

With regard to mathematics, there is no reason to exclude it, we need it
here too. But symbols may be used more freely than in axiomatized theories. It
is perfectly legitimate to reveal a phenomenon, to represent a trend or a natural
evolution using existing scientific languages from the established sciences or from
engineering which are semi-artificial languages with partial mathematization. For
managing natural equilibriums of life and for working on collective decisions of
social groups, it is necessary to allow various representations and even different
rationalities to coexist. The use of mathematics as thought patterns, for the lin-
guistic value of symbols and combinations thereof, is useful and desirable. They
are not reserved for expressing the truths of challenge-science.

4.3. The main tool of a better quality science is critical and contradictory modeling

The models are able first to take into account the distinctive features of situa-
tions and to apply proven knowledge to them and secondly to translate, by the
ordinary language which forms the internal cement and the external context, an
interpretation of the complexity into what we are interested in.

If they are not to be seen as low level or amateur challenge-science, it is es-
sential that models be always viewed as a facet of a plurality. Firstly, they must
be validated by data with the same rigor as usually required by scientists. This
validation is not a test of truth, but simply a process of eliminating the unlikely.
Secondly they must be recognized as a social expression, i.e., a form of commu-
nication from an agent (be that a group, association, company, territorial entity,
etc.) to an audience in order to contribute to a decision and therefore subject to
criticism by other models. Knowledge is no longer formed exclusively by a struggle
between theory and nature but by a contest between models. This process obvi-
ously requires a specific organizational context, just as challenge-science requires
cautious experimental protocols. The “rules” are not currently codified, but the
experiments are underway at international level for the IPCC and in the public
debates, citizen juries etc., in a kind of applied living epistemology still under
development.

To critique a model is difficult. The quantitative arguments are linked to-
gether, everything is connected. It is a huge task to draw out all the implicit
assumptions of a model. Even though we know that every model is arbitrary in
some aspects, we do not see this arbitrariness explicitly. When discussing one
model, our thinking remains stuck in a rut. The best way is to build another
model from scratch – the options are much clearer then.
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To construct another model, the dualities introduced by the philosophy of
science are relevant – they facilitate a dialectic setting for the occurrence of what
may be called co-truths. Let us consider a few examples.

Discrete / continuous. Much of the economic theory can be developed with-
out individualizing agents or goods. Some scholars find it illuminating to derive
global laws from a micro-economic individual rationality. When studying traffic,
we may use flow models or we may model each vehicle individually. Sometimes it
is thought that discretization, spatial or temporal, simplifies the problems, with
the recurrence rules being more elementary than differential equations and finite
element algorithms reducing partial differential equations to simple algebra. But
often the opposite happens: the discrete probabilities are sometimes intractable
and some algorithms (such as Kalman), are best understood in continuous time.

Descriptive / explanatory. In 1970, two American authors, G.E.P. Box and
G.M. Jenkins took methods invented by Wiener for signal processing and applied
them to economic predictions. Treating annual series without any regard to their
economic meaning, they sometimes obtained better predictions. This is the fun-
damental duality which we began with in this article. In the history of science,
it often occurs in successive periods. The purely descriptive approach can be an
advance when it frees us from certain loaded interpretations. On the other hand,
explanations allow a reading to shed light on situations other than those already
considered.

Quantitative / qualitative. The philosophical work of René Thom has bril-
liantly illustrated that mathematics provides representation tools that go far be-
yond the quantitative. A huge field of natural phenomena can be addressed qual-
itatively through a language adapted to the evolution of forms.

Deterministic / random. A huge number of modeling situations involve risks.
The instinctive tendency of modelers is to probabilize the uncertainties – we have
already discussed this tendency. This provides a very efficient syntax thanks to the
stochastic calculus developed in the 20th century. But this, especially in the tails
of laws, conceals ignorance. Uncertainty is sometimes better illustrated by some
typical or extreme trajectories obtained from different scenarios.

Image / symbol. Let us take the example of dance. Dozens of notation systems
have been developed by the choreographers to record ballets, either based on a
limited vocabulary of successive steps (Feuillet system 1700) or more elaborate,
noting the dancer’s energy in each movement (Laban system 1927). The problem is
one of modeling, with the usual constraints of relevance for the choreographer and
dancers. But is this not a false problem since film and video can provide us with
an almost perfect image of the ballet ? The image reproduces, it can provide the
perfect illusion of reality, but it does not, by itself, allow choreographic creation.
The notation systems have the immense superiority of enabling one to record a
ballet that has never been danced.

Critiques of models cannot come from recipes or an a priori classification,
especially since, as we have emphasized, their relevance depends on the social group
that proposes them. The quality of the plural knowledge thus produced comes
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particularly from the things that it can draw out of reality but which challenge-
science fails to see. Applied in good conditions of open democracy, it is likely
to show hidden effects, unnoticed risks, possibly unsuspected solutions. Challenge-
science instead, with the successive stages of its rockets, heads only in one direction.

5. Conclusion: The problem is not that there is too much
mathematics, but that it is used exclusively as a framework
for theories that claim to univocal truth

The propensity to mathematize more and more can occur in the development of a
classical theoretical line of thought as much as one based on modeling, especially
if one assigns a value of absolute truth to the interpretative framework we work
in, so that syntactic developments will be seen as revealing reality. This occurs in
modeling because the modelers tend to think that their models are reality. But
faced with other models they are forced to acknowledge the scope of their approach.
In contrast, in a Popperian conception, mathematization can be pursued without
any restraint, until a crisis occurs. Our analysis of mathematization is an Ariadne’s
thread that opens up the philosophy of knowledge to a new and immense field of
thought. It turns away from the jousts, catapults and knights-in-armor of the
conquering knowledge, it takes a step back, whereupon challenge-science starts to
look like a very particular way of understanding the world.

It is ultimately a choice between what is important and what is not. A river
basin for example, may remain for centuries. But we are faced here with contra-
dictory logics, politicians who want to develop jobs, farmers who want to irrigate,
associations that want to respect the landscape, companies that want to build dams
for electricity, etc. Often neither the economic interest nor the democratic vote,
can overcome the basic dominance of selfishness. Maintaining the scenes of natural
life involves intermediate languages between native speech and falsifiable science,
languages which oppose but do not destroy each other, which, by their plurality,
are open to the interpretation of data and the imagination of eventualities.

About mathematics itself, there is no need worry. Real mathematicians know
what drives them: the pleasure of an intellectual game [7]. Maths does not need
to be the framework for a grand and unique building of knowledge. On the con-
trary, freedom from applications and doctrines has always been maintained: non-
Euclidean geometries, non-standard analysis, etc. Explorations off the beaten track
are rewarded with the surprise of the treasures discovered there.
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