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Abstract The interface between the external environment and the body’s internal

structures is defined by the mucosal tissue and the viscous lining fluid that is

responsible for maintaining its integrity and protecting internal structures from

damage or infection. Human mucosal fluids include seminal fluid, cervical mucus,

bronchial and nasal secretions and tears whose composition is particularly compli-

cated. Here we will focus on just two related molecules that are present in the

mucosal lining fluid, namely, secretory leucocyte protease inhibitor (SLPI) and

trappin-2/elafin, that are responsible for many of the homeostatic and host defence

functions of these uniquely situated viscous sols. This review will focus on our

increasing understanding of these two molecules from a simple role as local

antibiotics that respond to pathogen invasion to major orchestrators of cellular

interplays, host defence mechanisms and immune homeostasis.
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1 SLPI

1.1 The Gene and Molecule

Early understanding of SLPI structure and function was complicated by at least four

interrelated factors (Seemuller et al. 1986). Firstly, multiple forms seemed to exist

in vivo. Secondly, the mucosal environment where SLPI is present is often full of

mucous, leucocytes and degradative enzymes. Thirdly, isolation of molecules from

tissues often involved the use of trypsin or non-specific protease digestion steps.

Finally, inhibitors of similar activity were isolated from anatomically distinct body

compartments. Thus, bronchial mucus inhibitor (BMI), human seminal inhibitor

I (HUSI-I), cervical mucus inhibitors (CUSI), antileucoprotease (ALP), secretory

leucocyte protease inhibitor (SLPI) and mucus proteinase inhibitor (MPI) proved to

be identical or derived from a mature inhibitory protein encoded by a single gene of

the human genome (Fritz 1988). Human and mouse SLPI are relatively conserved

at both the genomic and protein level. The human gene is composed of ~2.6 kb and

is organised into four exons, which transcribes a 399-base-pair message to a

132-amino acid protein (Stetler et al. 1986). Similarly, the mouse gene is composed

of four exons, which transcribes a 396-base-pair coding sequence to a 131-amino

acid protein (Kikuchi et al. 1998). Human SLPI is located on chromosome 20, and

the mouse orthologue is located to the syntenic chromosome 2 H (Kikuchi et al.

1998). In both species the functional domains of the SLPI molecule are distributed

across the exons; exon 1 codes for the secretion signal, exon 2 the trypsin inhibition

domain, exon 3 the elastase inhibitory domain and exon 4 the 30 untranslated region.
Grutter and co-workers eloquently wrote that ‘SLPI has a boomerang-like shape

with both wings comprising two well separated domains of similar architecture’

in their paper outlining the 2.5 Å crystal structure of SLPI binding to bovine

a-chymotrypsin (Grutter et al. 1988). Each domain is, relatively conserved, cyste-

ine rich and has high homology to the whey acidic protein (WAP) genes found in

rodent milk (Campbell et al. 1984). However, despite the presence of two separate

WAP domains, it is the C-terminal that is responsible for the antielastase,

antichymotrypsin and antitrypsin activities and that leucine 72 is a key residue

involved in the interaction (Kramps et al. 1990; Eisenberg et al. 1990). In keeping

with this, both full length and a truncated C-terminal (1/2 SLPI) SLPI could also

inhibit cathepsin G activity (Renesto et al. 1993). However, SLPI and its active site

variants do not bind or inactivate proteinase 3(PR-3), but instead get cleaved in the

N-terminal domain at alanine-16 (Rao et al. 1993). This is further complicated by

the species specific potency of SLPI against these proteases (Wright et al. 1999a).

1.2 Expression and Binding Interactions

Numerous studies have evaluated the tissue distribution of SLPI in humans using

specimens from surgically treated patients or autopsy where normal tissue is selected
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from gross appearance and further examination by light microscopy. These studies

utilise specific antisera to localise signal in tissue by immunocytochemistry or to

detect in biological fluids using ELISA. SLPI is expressed in numerous areas of

the respiratory tract including the submucosal glands of the nose and bronchus,

non-ciliated cells of the bronchus, terminal and respiratory bronchioles and alveolar

duct (Franken et al. 1989; Fryksmark et al. 1982). Willems et al. used two separate

antibodies to localised SLPI along the elastic fibres of the alveolar septa and walls of

the bronchi, bronchioles, blood vessels and extracellular matrix (Willems et al. 1986;

Kramps et al. 1989). Using a gold labelling technique to demonstrate increased

resolution in serous cells of the bronchial submucosal glands, SLPI was located

in granules, including structures such as the endoplasmic reticulum and nuclear

envelope. This study could only detect SLPI in the Clara cells of bronchial epithelium

(De Water et al. 1986). SLPI has also been detected in lung secretions including

bronchoalveolar lavage (Kouchi et al. 1993; Ohlsson et al. 1992), broncholavage

(Kouchi et al. 1993) and sputum sol phases (Piccioni et al. 1992).

SLPI is also expressed in reproductive mucosa where it has been localised to the

epithelium of the upper cervix (Schill et al. 1978) and in seminal fluid (Moriyama

et al. 1998). More specifically others have demonstrated SLPI expression in the

cervical crypts, together with high concentrations in cervical mucus which varied

throughout the menstrual cycle with increased concentrations during the ovulatory

compared to follicular phases (Casslen et al. 1981; Moriyama et al. 1999). Interest-

ingly during pregnancy SLPI is increased in cervical tissue and is particularly high

in the cervical plug which also has a high molar ratio of SLPI to elastase. Denison

and co-workers demonstrated dramatic increases in the levels of SLPI (~200-fold)

in amniotic fluid over the course of pregnancy and suggested that the major source

is the decidua parietalis cells (Denison et al. 1999). These studies together with

demonstration of SLPI in foetal membranes suggest a protective role (involving

structural integrity and inhibition of proinflammatory responses) for SLPI during

the menstrual cycle and pregnancy (Helmig et al. 1995).

Expression of SLPI has been demonstrated in many other mucosal tissues and

lining fluids including salivary glands (Ohlsson et al. 1984; Shugars et al. 2001; Cox

et al. 2006), middle ear (Carlsson & Ohlsson 1983; Lee et al. 2006), maxillary sinus

(Fryksmark et al. 1985), intestine, (Bergenfeldt et al. 1996), colon, (Nystrom et al.

2001), human skin (Wiedow et al. 1993), nasal secretions (Westin et al. 1999a),

peritoneal fluid (Shimoya et al. 2000), stomach (Wex et al. 2004), gingival

crevicular fluid (Cox et al. 2006; Nakamura-Minami et al. 2003) and cornea

(Nielsen et al. 2005).

The binding interactions of SLPI are not limited to forming 1:1 molar complexes

with proteases such as elastase, chymotrypsin and trypsin. Indeed, binding activities

for SLPI are not just limited to the extracellular milieu but have also been reported at

the plasma membrane and within the intracellular space. Extracellular binding

interactions include those to the pathogen-associated molecular patterns bacterial

lipopolysaccharide (LPS) (Ding et al. 1999), mannan-capped lipoarabinomannans

and phosphatidylinositol mannoside (Gomez et al. 2009) together with numerous

glycosaminoglycans (Fath et al. 1998; Ying et al. 1997) and classes of immunoglob-

ulin (Hirano et al. 1999). Intracellular binding interactions include binding to DNA
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(Miller et al. 1989; Taggart et al. 2002) and to IRAK, IkBa and IkBb (Lentsch et al.

1999a). Interactions at the plasma membrane include annexin-II (Ma et al. 2004),

scramblase-1 (Tseng& Tseng 2000; Py et al. 2009) and scramblase-4 (Py et al. 2009).

1.3 Antimicrobial Activity

SLPI has moderate antimicrobial actions against a variety of human bacterial

pathogens including Escherichia coli, Staphylococcus aureus, S. epidermidis,
Pseudomonas aeruginosa andMycobacterium bovis (Wiedow et al. 1998; Hiemstra

et al. 1996; Nishimura et al. 2008). SLPI is less potent (on a molar basis) than

lysozyme or defensin with 50 % inhibitory concentrations against E. coli of 4.7 mM,

1.8 mM and 1.4 mM, respectively, with the antimicrobial domain residing in the

N-terminal (Hiemstra et al. 1996). SLPI has also been shown to have antimicrobial

activity against metabolically active fungi, in particular Aspergillus fumigatus and
Candida albicans. Interestingly metabolically quiescent A. fumigatus conidia were
resistant to SLPI in this study. The antifungal activity is reported to be equal to

lysozyme and defensins and also appears to reside in the N-terminal portion of the

molecule (Wiedow et al. 1998; Tomee et al. 1997).

In contrast to the relatively consistent parallel studies investigating bacterial and

fungal activity, the antiviral activity of SLPI has proved much more complicated.

McNeely and colleagues identified a protein in saliva that could protect monocytes

against HIV infection which following analysis was confirmed to be SLPI

(McNeely et al. 1995; Shugars et al. 1997). Since then reports have both supported

(McNeely et al. 1997) and refuted (Turpin et al. 1996) this work. Following this,

studies focused on two main aspects of this compelling argument: (1) clinical

studies attempting to relate SLPI levels to transmission of HIV and viral load and

(2) mechanistic studies attempting to explain the precise conditions necessary for

activity. Thus, SLPI was increased in saliva and plasma of HIV-infected individuals

compared to uninfected controls (Baqui et al. 1999). In a study of pregnant HIV-

positive South African women, those who had higher levels of SLPI in vaginal fluid

had lower perinatal transmission rates to their babies (Pillay et al. 2001). In a

similar but larger study of 602 saliva samples from 188 infants over the first 3

months following birth, increased SLPI was associated with a reduced risk of HIV

transmission from breast milk (Farquhar et al. 2002).

1.4 Unique Role in Inflammation: Priming Innate Immunity
and Tissue Remodelling

Cell culture studies have identified a plethora of cytokines, drugs and hormones that

modulate the levels of SLPI when introduced to the bathing medium. In human
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airway cells, Abbinante-Nissen et al. found that neutrophil elastase (NE) was a

potent inducer of SLPI transcript. Furthermore, other neutrophil products, such as

cathepsin G, myeloperoxidase and lysozyme, had little or no effect on SLPI

transcript levels. In contrast, two non-neutrophil proteases, trypsin and pancreatic

elastase, also increased SLPI transcript levels at higher doses than that required of

NE. These authors also showed that tumour necrosis factor-alpha (TNF-a) and

interleukin (IL)-8 induced little or no SLPI transcript levels (Abbinante-Nissen

et al. 1993). Using Clara cells and alveolar type II cells and measuring SLPI protein

as an end point, we showed both a constitutive and IL-1b- or TNF-a-induced
production of SLPI (Sallenave et al. 1994). Interestingly, glucocorticoids can

induce SLPI transcript in human airway epithelial cells with a descending potency

of fluticasone > triamcinolone > or ¼ dexamethasone > methylprednisolone

> hydrocortisone (Abbinante-Nissen et al. 1995). This study also demon-

strated that elastase and fluticasone together induce synergistic increases in

SLPI. Indeed, the ability of glucocorticoids to induce SLPI may be partly

responsible for their anti-inflammatory action. Furthermore, progesterone

has been shown to upregulate SLPI mRNA and protein through a mechanism

involving its transactivation of the SLPI gene through the progesterone

receptor (PR), via induction of basic transcription element-binding protein-

1 (BTEB1) gene and co-recruitment of BTEB1 and the PR coactivator

cAMP-response element-binding protein (CBP) to the SLPI promoter

(Velarde et al. 2006; King et al. 2003).

The late 1990s saw a dramatic change in the way we viewed SLPI. Before then

SLPI was considered an antimicrobial molecule with potent antiprotease activity;

however, the seminal work of Jin and colleagues in macrophages demonstrating the

ability of LPS to induce SLPI and furthermore that SLPI could suppress

LPS-induced activation of NF-kB and synthesis of TNF-a/nitric oxide suggested

that SLPI had immunomodulatory activity as well (Jin et al. 1997). In a later paper,

the same group also demonstrated that LPS-induced SLPI was an early (~30 min)

and prolonged response (remaining at 72 h). The LPS inducible proteins IL-10

and IL-6 could also upregulate SLPI but IL-1b and TNF-a could not. Finally, the

Gram-positive cell wall constituent LTA could also stimulate SLPI production

(Jin et al. 1998). There are multiple mechanisms responsible for these effects

including the ability of SLPI to inhibit NF-kB activation by stabilisation of

IRAK, IkBa and IkBb proteins, despite increasing the amount of phosphorylated

and polyubiquitinated IkBa (Taggart et al. 2002; Lentsch et al. 1999a). This is

supported by the anti-inflammatory activity of a non-secretable form of SLPI when

transfected into macrophages (Zhu et al. 1999). Others have suggested that SLPI

can prevent the p65 subunit of NF-kB binding to its consensus sequence in the

promoters regions of target genes. It is unclear which domain of the SLPI molecule

mediates the anti-inflammatory action as one study suggests that oxidation of SLPI

inhibits this action (Taggart et al. 2002), whereas site-directed mutants of the

oxidisable methionine residue (Met 73) could still inhibit LPS-induced TNF and

nitric oxide responses (Yang et al. 2005). In vivo Mulligan and co-workers have

suggested that the leucine 72 residue which is essential in determining antiprotease
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function is vital, and their studies implicate the antitrypsin activity in SLPI (through

a Lysine 72 mutant) to have a greater suppressive effect on the inflammatory

response than wild-type SLPI (Mulligan et al. 2000).

Generation of mice deficient in SLPI at the beginning of the millennium has

enhanced our knowledge of the in vivo effects of this molecule. The first of these

studies suggested a role for SLPI in linking host defence with wound repair

(Ashcroft et al. 2000). SLPI-deficient mice have deficient cutaneous wound healing

with increased inflammation and elastase activity with enhanced local production of

TGF-beta. In a similar model, Zhu has suggested an alternative pathway dependent

on proepithelin and its cleaved product epithelin which have opposite effects during

inflammation (Zhu et al. 2002). Proepithelin blocks TNF-a-induced neutrophil

activation and oxidant and protease release, whereas epithelin inhibits the growth

of epithelial cells and induces IL-8 production by neutrophils. In this way

proepithelin complexed with SLPI cannot be cleaved with elastase to epithelin,

and SLPI null mice can be rescued with proepithelin. Angelov and co-workers

identified differences in the mechanisms of wound healing in a combined dermal

scarring and oral non-scarring model (Angelov et al. 2004). Here an absence of

SLPI results in markedly impaired oral wound healing associated with increased

inflammation, raised elastase activity and decreased matrix deposition through

increased MMP activity suggesting deregulated proteolysis. Intriguingly, TGF-

beta expression is increased in cutaneous model (Zhu et al. 2002), but decreased

in the oral model (Angelov et al. 2004) pointing to the ability of SLPI to improve

wound healing by very different local mechanisms. The link is particularly perti-

nent in a cardiac transplant model of ischemia/reperfusion injury where SLPI-

deficient hearts had profound abnormalities in early contraction and high protease

expression and TGF-beta expression (Schneeberger et al. 2008). Interestingly,

systemic SLPI could not rescue this phenotype, whereas including SLPI in the

preservation solution prior to transplantation reversed the phenotype suggesting a

dual inhibitory effect on protease and TGF-beta expression might be the underlying

mechanism (Schneeberger et al. 2008).

The identification of these homeostatic functions for SLPI encouraged others to

investigate its role during inflammation and infection. In a model of endotoxin shock,

SLPI-deficient mice had significantly higher mortality possibly due to increased

levels of macrophage IL-6, HMG-1 and NF-kB compared to wild-type cells

(Nakamura et al. 2003). Similarly B cells isolated from null mice showed increased

proliferation and IgM production suggesting that SLPI acts to attenuate excessive

inflammatory responses. However, in a model of infection, SLPI null mice were

highly susceptible to Mycobacterium bovis, when given by the respiratory route,

suggesting a role in driving the local inflammatory response to clear pathogens

(Nishimura et al. 2008).

In addition to gene deletion, functional studies have also supplemented recombi-

nant SLPI either through overexpression (e.g. adenoviral) or administration of the

purified protein. Thus, adenoviral gene delivery of SLPI can protect against ischemic
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brain injury (Wang et al. 2003) and has also been shown to attenuate NF-kB-
dependent inflammatory responses to atherogenic stimuli (Henriksen et al. 2004).

By transfecting multiple clones of the highly metastatic subline (H-59) to overexpress

SLPI, Wang and colleagues showed that these cells’ ability to elicit a host

proinflammatory response in the liver was markedly decreased, as evidenced by

reduced TNF-a production and vascular E-selectin expression, relative to controls

(Wang et al. 2006). Consistent with these findings, recombinant SLPI administered

systemically could suppress inflammation associated with joint damage (Song et al.

1999) and attenuate hepatic ischemia/reperfusion injury (Lentsch et al. 1999b) in rats

and mice, respectively. Furthermore, local delivery of SLPI to ovine lung by aerosol

has been shown to prevent allergen-induced pulmonary responses in a model of

asthma (Wright et al. 1999b), and topical administration to the eye in guinea pigs

suppressed the recruitment of eosinophils and decreased the severity of conjunctivitis

(Murata et al. 2003).

It has been unclear for sometime whether SLPI has proinflammatory/immune

stimulatory effects that are distinct from its direct antimicrobial activity. In models

of resolving inflammation where neutrophil apoptosis has been shown to stimulate

macrophage clearance (Savill et al. 1989), SLPI seems to play a proinflammatory

role. Firstly, murine macrophages produce SLPI during clearance of apoptotic cells

(Odaka et al. 2003), and SLPI (together with lactoferrin) is secreted by activated

neutrophils (Jacobsen et al. 2008). Recently a functional study by Subramaniyam

and colleagues has suggested that SLPI inhibits apoptosis therefore prolonging the

life of neutrophils during inflammation (Subramaniyam et al. 2011). In support of

an immune stimulatory role for SLPI, Gomez and co-workers have shown that SLPI

may act as a pattern recognition receptor for mycobacteria which acts to stimulate

phagocytosis (Gomez et al. 2009). Thus, it seems that the proinflammatory actions

of SLPI are dependent on the type of pathogen and on the progress of the inflam-

matory response.

1.5 Key Roles in Mucosal Tissue: Ovarian and Gastric Cancer

An emerging literature identifying a role for SLPI in cancer has developed over the

last few years. Initial evidence for this came from mRNA differential display

systems identifying changes in a SLPI gene variant in the highly metastatic murine

carcinoma cell line IMC-HA1 (Morita et al. 1999). The gene was isolated as SLPI-a
and SLPI-b and was found to be differentially expressed with SLPI-a expressed

ubiquitously in tumours but SLPI-b having lower expression in normal tissues and

distinct expression in certain tumours (e.g. P388 leukemias). In a separate study, the

repression of SLPI was shown to be under the control of the cell growth regulator

interferon regulatory factor (IRF)-1 suggesting that it might be a downstream target

modulating cell growth properties (Nguyen et al. 1999). Changes in SLPI levels

have been associated with cancer. For instance, SLPI is expressed in a number of

tumour environments including ovarian endometriomas (Suzumori et al. 2001;
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Shigemasa et al. 2001), head and neck squamous cell carcinomas (Westin et al.

1999b), cervical adenocarcinoma (Tian et al. 2004) and gastric cancer (Cheng et al.

2008) but decreased in prostate cancer (Xuan et al. 2008).

A role for SLPI in cancer has been suggested in a variety of studies. Devoogdt

et al. have suggested a pro-malignant role as transfection of low malignant lung

carcinomas with SLPI produced a highly malignant phenotype both in vitro and

in vivo (Devoogdt et al. 2003), and moreover, the protease inhibitory function was

essential for that activity. In a later study, the same author has found that

overexpression of a protease-dead SLPI resulted in more aggressive ovarian

cancers (Devoogdt et al. 2009). This tumour-promoting effect of SLPI is thought

to mediate the pro-tumourigenic effects of TNF-a as SLPI expression and tumour

size was decreased in TNF-a-deficient mice (Devoogdt et al. 2006). In being a TNF

responsive gene, SLPI may even impact on the ‘cancer immunoediting hypothesis’

which suggests that the local tumour microenvironment might induce cancer cell

variants with increased resistance to the immune system (Dunn et al. 2002).

2 Trappin-2/Elafin

2.1 The Gene and Molecule

Trappin-2 protein was purified and characterised from human lung secretions and

skin tissues in the 1980s and 1990s under a variety of names, such as elafin, BSI-E,

elastase-specific inhibitor (ESI), precursor of elafin–ESI (PELESI) and skin-

derived antileucoprotease (SKALP) (Hochstrasser et al. 1981; Kramps & Klasen

1985; Wiedow et al. 1990; Sallenave & Ryle 1991; Sallenave et al. 1992). The

trappin-2 gene encodes a secreted 9.9-kDa non-glycosylated 95-residue cationic

protein (Saheki et al. 1992; Sallenave & Silva 1993), comprising an N-terminal

domain (38 residues) or cementoin domain (Nara et al. 1994) and a C-terminal

inhibitory whey acidic protein (WAP)-type domain (57 residues) (Bairoch &

Apweiler 1997). The N-terminal domain contains several repeated motifs with

the consensus sequence Gly–Gln–Asp–Pro–Val–Lys that can anchor the whole

molecule to extracellular matrix proteins by transglutaminase-catalysed cross-

links. By doing so, it is believed trappin-2 shields the elastic tissues from locally

secreted enzymes (e.g., NE), which overwhelm the tissues at times of inflammation/

infection (Nara et al. 1994). The C-terminal domain is structurally similar to the

SLPI domains (about 40 % sequence identity with each SLPI domain). Trappin-2 is

encoded by the PI3 gene in the same chromosome region 20q12–13 as SLPI gene

and is composed of three exons spanning about 2 kb. The first exon codes for the 50

untranslated region, the signal peptide and the first few amino acids of the mature

protein; the second exon encodes most of the mature protein, and the third exon

encodes the 30 untranslated region (Molhuizen et al. 1993). Trappin-2 is translated

with a signal peptide that is cleaved during secretion and proteolytically processed

148 T.S. Wilkinson et al.



to form a ~6-kDa peptide referred to as elafin. Although the antiprotease activity of

trappin-2 was initially identified in both the intact 9.9-kDa peptide and its cleaved

6-kDa C-terminus product (elafin), trappin-2 has a reduced protective effect in an

in vivo model of elastase-induced lung injury when it is cleaved of its cementoin

domain (Tremblay et al. 2002).

2.2 Expression and Binding Interactions

Trappin-2 or its orthologues are also found in other mammals and is expressed both

in foetal and adult tissues (Pfundt et al. 1996). Interestingly, the expression trappin-

2/elafin has not been demonstrated in rat or mouse tissues (Williams et al. 2006).

Trappin-2 inhibits NE, porcine pancreatic elastase and PR-3 with a low degree of

reversibility but does not inhibit cathepsin G, trypsin or chymotrypsin and, hence,

has a more restricted spectrum of inhibition than SLPI (Williams et al. 2006). The

regulation of trappin-2 expression by healthy and inflamed tissues has attracted

much attention. Unlike SLPI, low levels of trappin-2 is secreted by bronchial and

alveolar epithelial cells as well as keratinocytes in steady state, but its production is

significantly increased under the influence of LPS as well as inflammatory

cytokines IL-1 and TNF-a (Sallenave et al. 1994). A few signalling pathways,

namely, c-jun, p38 mitogen-activated protein (MAP) kinase and NF-kB pathways,

are implicated in the trappin-2 response to inflammatory molecules (Pfundt et al.

2000, 2001; Bingle et al. 2001). Likewise, trappin-2/elafin mRNA expression is

increased by free NE in bronchial epithelial cells, which is found at high

concentrations (mM levels) at inflammatory sites (Reid et al. 1999; van Wetering

et al. 2000). In recent years, trappin-2 has increasingly been shown to display

functions beyond its protease inhibition [reviewed in (Williams et al. 2006;

Roghanian & Sallenave 2008; Sallenave 2010)] such as antimicrobial and

mmunomodulatory activities, as will be discussed below.

2.3 Antimicrobial Activity

Our group first ascribed antimicrobial activity to trappin-2 in the late 1990s. Impor-

tantly, we demonstrated that trappin-2 was active against two major respiratory

pathogens, the Gram-negative Pseudomonas aeruginosa and Gram-positive Staphy-
lococcus aureus both in vitro and in vivo (Simpson et al. 1999; McMichael et al.

2005a). To this end, overexpression of trappin-2 by adenovirus-mediated gene transfer

dramatically increased the local antibacterial defences against P. aeruginosa and

S. aureus infections (Simpson et al. 1999; McMichael et al. 2005a). On the other

hand, supernatants of P. aeruginosa could induce trappin-2 production in human

keratinocytes, and trappin-2 inhibits growth of P. aeruginosa in vitro, but not E. coli
(Meyer-Hoffert et al. 2003; Bellemare et al. 2008). P. aeruginosa is an opportunistic
pathogen and commonly resistant to conventional antibiotics that is life-threatening
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for immunocompromised individuals and for patients suffering from chronic respira-

tory diseases such as cystic fibrosis (CF). P. aeruginosa is also the predominant

bacteria associated with nosocomial infections, and acute P. aeruginosa infection

may result in sepsis and death (Hancock 1998; Erwin & VanDevanter 2002).

Similarly, Staphylococcus aureus infections are closely associated with pneumonia

and sepsis, particularly in nosocomial infections, and its increasing association with

antimicrobial resistance has become a major concern for clinicians (Butterly et al.

2010). In addition to the above-mentioned pathogens, trappin-2 has significant

bactericidal activity against Klebsiella pneumoniae, Haemophilus influenzae, Strep-
tococcus pneumoniae and Branhamella catarrhalis which are also common features

of inflammatory lung disorders such as CF and chronic obstructive pulmonary disease

(COPD) (Baranger et al. 2008). Furthermore, trappin-2 and its cleaved product elafin

possess potent fungicidal activities against pathogenic Aspergillus fumigatus and

Candida albicans, which have preferential tropism for human lungs and other

mucosae (Baranger et al. 2008).

Trappin-2/elafin has also been shown to possess anti-human immunodeficiency

virus (HIV) activity, although the mechanism(s) of this inhibition is currently

unknown. Both trappin-2 and SLPI have been detected in cervicovaginal lavage

samples of HIV-negative and HIV-positive women (Moreau et al. 2008; Ghosh

et al. 2010a). Reportedly, the 6-kDa elafin was amongst factors that correlated with

protective immunity to HIV infection in the genital tract secretions of a group of

African women who remain virus-free despite multiple high-risk exposures to HIV

infection (Iqbal et al. 2009). Recombinant trappin-2/elafin is able to inhibit both

T cell-tropic X4/IIIB and macrophage-tropic R5/BaL HIV-1 in a dose-dependent

manner (Ghosh et al. 2010b). This inhibitory activity was observed when virus was

incubated with trappin-2/elafin but not when trappin-2/elafin was added to cells

either before infection or after infection. This indicates that the inhibitory activity

of trappin-2/elafin occurs through a direct interaction with the virus rather than at

the level of the target cell surface, for example, through the blocking of receptors.

Collectively, these findings propose that trappin-2/elafin may play an important

protective role in vivo against the transmission of HIV from men to women. In the

latest attempt to develop preventive anti-HIV therapeutics, engineered commensal

bacteria secreting elafin have been utilised that appear to confer protection against

HIV infection in vitro (Fahey et al. 2011). These innovative yet unproven

approaches are designed to regulate immunity in the female reproductive tract in

ways that will potentially reduce HIV infection in women.

2.4 Unique Roles in Inflammation: Linking Innate
and Adaptive Immunity

The initial interaction between antimicrobial peptides and pathogens is due to

electrostatic forces, since the host defence peptide is positively charged and
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molecules such as LPS and lipoteichoic acid are negatively charged. Indeed, trappin-

2 and its C- and N-terminus peptides are capable of binding both smooth and rough

forms of LPS at the lipid A portion of the molecule, with N-terminus binding both

forms of LPS more avidly, thus modulating immune responses (McMichael et al.

2005b). Moreover, binding of trappin-2 and cementoin (trappin-2N-terminal domain)

to P. aeruginosa elicits morphological changes such as wrinkling and blister forma-

tion on the cell surface and the presence of pore-like structures (Baranger et al. 2008;

Bellemare et al. 2010; Wilkinson et al. 2009). It is commonly assumed that the

presence of pore-like structures is indicative of cell lysis. However, several lines of

evidence suggest that the membrane disruption properties of cementoin, trappin-

2 and elafin are considerably weaker compared to other antimicrobial peptides, such

as the amphibian lytic magainin 2 (Bellemare et al. 2010). Moreover, recent evidence

indicates that trappin-2 and elafin, but not cementoin, are capable of reducing biofilm

development and the secretion of pyoverdine, which correlates with the ability of

these peptides to bind DNA in vitro and to accumulate within the bacterial cytosol

(Bellemare et al. 2010; Li et al. 2010a). Thus, in addition to bacterial opsonisation

and induction of cell lysis, trappin-2 and elafin attenuate the expression of some

P. aeruginosa virulence factors, possibly through acting on intracellular pathways

(Bellemare et al. 2010). Interestingly, it has been suggested that trappin-2 WAP

domain also specifically inhibits a P. aeruginosa-secreted peptidase with the

characteristics of arginyl peptidase (protease IV) and prevents bacterial growth

in vitro (Bellemare et al. 2008).

In an effort to further address the mechanisms by which trappin-2 exerts

its antimicrobial/immunomodulatory effects in the host, in vitro and in vivo models

of the very earliest interactions between P. aeruginosa and macrophages were

developed by us to mimic the presumed environment encountered in the initial

stages of lung infection (Wilkinson et al. 2009). Consequently, subantimicrobial

concentrations (nanomolar range) of trappin-2 enhanced clearance of P. aeruginosa
(strain PA01) by macrophages, which was dependent on prior opsonisation of the

bacteria by trappin-2 in vitro. Similarly, wild-type mice receiving an intratracheal

dose of trappin-2-opsonised P. aeruginosa had significantly decreased bacterial

burden compared with mice receiving nonopsonised P. aeruginosa. In striking

contrast, CD14-deficient mice were resistant to the P. aeruginosa-opsonising
effects of trappin-2 and were unable to clear the bacteria as effectively (Wilkinson

et al. 2009). Hence, CD14, a promiscuous pattern recognition receptor, is the only

described receptor involved in mediating the effect of trappin-2 to date. CD14 has a

broad ligand specificity allowing it to bind Gram-positive, Gram-negative and viral

pathogens (Anas et al. 2010). CD14 can also participate in non-inflammatory or

anti-inflammatory responses by acting as a macrophage receptor for engulfment of

apoptotic cells (Anas et al. 2010). Furthermore, trappin-2-opsonised P. aeruginosa
simultaneously promoted a CD14-dependant fivefold increase in CXCL1 compared

with nonopsonised bacteria, which led to a rapid recruitment of neutrophils soon

after, as previously observed in other experimental models (Simpson et al. 1999;

Sallenave et al. 2003; Roghanian et al. 2006). Both CXCL1 and CXCL2 act through

the chemokine receptor CXCR2, which has been shown to be essential for host
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protection against P. aeruginosa pneumonia (Tsai et al. 2000). Thus, in the early

stages of infection, trappin-2 simultaneously delivers pathogens to resident alveolar

macrophages, while contributing to activation of the neutrophil/CXCR2 axis should

the bacterial inoculum appear sufficient to drive significant infection. These recent

findings further strengthen the notion that trappin-2 is able to augment clearance of

pathogens at early onset of infection, even before recruitment of neutrophils and

other effector cells to the inflammatory site.

It is noteworthy to point out that P. aeruginosa PAO1-conditioned medium

and two purified Pseudomonas metalloproteases, pseudolysin (elastase) and

aeruginolysin (alkaline protease), are able to cleave recombinant elafin leading to

loss of its antiprotease activity and binding to fibronectin following transglutaminase

activity, respectively (Ghosh et al. 2010b). Moreover, elafin is cleaved by its cognate

enzyme NE, present at excessive concentration at inflammatory milieu, and that

P. aeruginosa infection promotes this effect (Guyot et al. 2008). Consequently,

such cleavages may have repercussions on the innate immune function of elafin.

When secreted locally at mucosal sites, trappin-2 promotes recruitment or

priming of innate immunity. Expression of the human trappin-2 gene in the murine

lungs results in an increased influx of inflammatory cells in response to infection/

inflammation (Wilkinson et al. 2009; Sallenave et al. 2003; Roghanian et al. 2006;

Simpson et al. 2001), and the interaction of trappin-2 with LPS results in an

augmentation of the LPS-induced TNF-a response in a murine macrophage cell

line (McMichael et al. 2005b). Interestingly, transgenic mice expressing human

trappin-2 show lower serum-to-bronchoalveolar lavage ratios of proinflammatory

cytokines, including TNF-a, macrophage inflammatory protein 2 and monocyte

chemoattractant protein 1, than wild-type mice in response to local intratracheal

LPS stimulation with a concomitant increase in inflammatory cell influx (Sallenave

et al. 2003). Conversely, trappin-2 transgenic mice show lower TNF-a serum levels

in response to systemic LPS, indicating that trappin-2 may have a dual function,

that is, promoting upregulation of local lung innate immunity while simultaneously

downregulating potentially unwanted systemic inflammatory responses in the

circulation (e.g. preventing septic shock) (Sallenave et al. 2003).

As discussed above, trappin-2 was first identified as being able to protect tissues

from the damaging effects of proteases released during inflammation and was later

shown to be functionally active in the regulation of both inflammation and innate

immunity (Williams et al. 2006). However, emerging data expand upon the previ-

ously described functions for trappin-2/elafin, by showing that the influence of

trappin-2 actually extends to include modulation of adaptive immune responses. To

this end, using the dual system of trappin-2 expression (either provided as an adeno-

viral construct or in an elafin-transgenic model), our laboratory provided novel

evidence that trappin-2 induces a type 1-biased inflammatory and immunological

response (cellular and humoral) in the lungs and spleens ofmice overexpressing elafin

(Roghanian et al. 2006). The demonstrated Th1 skewing effect of trappin-2 is likely to

be mediated through the increase in numbers and/or activation status of lung antigen-

presenting cells, as elafin overexpressers exhibited higher numbers of total lung

CD11c+high cells and CD11c+high MHCII+high cells (dendritic cells; DCs), expressing
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higher levels of the B7 family costimulatory molecules CD80 and CD86 (indicative

of activated DCs). In accordance with the increase in the number of activated DCs,

increased levels of proinflammatory cytokines IL-12, TNF-a and IFN-g were

observed in BALF of trappin-2 overexpressers (Roghanian et al. 2006). Clinical

evidence to support a role for trappin-2 in the augmentation of a Th1 phenotype is

also available, for example, increased levels of trappin-2 are found in pathological

conditions associated with a type I immune response, such as in the bronchoalveolar

lavage of farmer’s lung sufferers (Tremblay et al. 1996) and psoriatic skin

(Schalkwijk et al. 1993).

More recently, human gd T cells have been shown to produce trappin-2/elafin

(both mRNA and protein) upon stimulation with supernatant of P. aeruginosa
grown in culture. Between 2 and 5 % of CD3+ T cells in the peripheral blood

express the gd T cell receptor (TCR) instead of the conventional ab TCR. In

contrast to the peripheral blood, gd T cells represent a major T cell population in

other anatomical localisations such as the small intestine where 20–30 % of local

T cells are gd T cells (Kabelitz et al. 2000; Hayday 2000). gd T cells have the

capacity to act as antigen-presenting cells (Brandes et al. 2005) and to secrete

antimicrobial effector molecules such as granulysin (Dieli et al. 2001) and the

cationic antimicrobial peptide LL37/cathelicidin, which is typically produced by

epithelial cells (Agerberth et al. 2000; Selsted and Ouellette 2005). Due to certain

features, which gd T cells share with cells of both the adaptive (e.g. TCR expres-

sion) and the innate immune system (e.g. Toll-like receptor expression, antigen-

presenting capacity), gd T cells are thought to bridge innate and adaptive immunity

(Hayday 2000). The secretion of elafin by gd T cells might contribute to the

recruitment of neutrophils or the opsonisation of the pathogens in sites of inflam-

mation where access is restricted.

2.5 Key Roles in Mucosal Tissue

2.5.1 Reproductive Tract

In addition to the lung mucosa and skin, trappin-2 expression and regulation has

received much interest in the female genital tracts, as it represents a major mucosal

site. The mucosal immune system in the female reproductive tract has evolved to

meet the unique requirements arising from the need to deal with sexually transmitted

bacterial and viral pathogens, allogeneic spermatozoa and the immunologically

distinct foetus. In this regard, a wide range of antimicrobial peptides including

trappin-2 are expressed throughout the female genital tract [(Nishimura et al.

2008; Tomee et al. 1997), reviewed in (Horne et al. 2008)]. Trappin-2 and SLPI

are expressed in the vagina (Draper et al. 2000) and cervix, with high concentrations

of SLPI demonstrated in the cervical mucus (12, 57). SLPI is expressed in

endometrium from the mid-late secretory phase of the menstrual cycle when it is

localised predominantly to the glandular epithelium (King et al. 2000). In contrast,
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trappin-2 is expressed primarily in endometrial neutrophils during menstruation

(Turpin et al. 1996). Trappin-2 and SLPI are also detectable in the vaginal secretions

throughout pregnancy (Shugars et al. 1997). Trappin-2 levels are diminished in

bacterial vaginosis, suggesting that it may be an important component of innate

immunity in the lower genital tract (Stock et al. 2009). In the Fallopian tube,

trappin-2 and SLPI mRNA are upregulated in ectopic pregnancy. In contrast to

endometrium, trappin-2 and SLPI are not regulated in a cycle-dependent manner at

the mRNA level in the Fallopian tube. The pathology underlying ectopic pregnancy

is unclear although previous infection with Chlamydia trachomatis is a risk factor.

In line with this, the mRNA message for trappin-2 is increased during in vitro

chlamydial infection of an oviductal cell line (King et al. 2009).

Natural antimicrobial production is also an important part of the innate immune

response of the amnion. Indeed, the primary amnion epithelial cells produce potent

natural antimicrobials, including trappin-2 and SLPI, which may help protect the

pregnancy from infection (Stock et al. 2007). Taken together, these observations

suggest that trappin-2 and SLPI play important roles in the maintenance of the

female reproductive tract physiology via regulation of protease activity, wound

healing and tissue remodelling. Trappin-2 and SLPI may also be implicated in the

event of pathological conditions, such as infection and ectopic implantation (King

et al. 2009), and abnormal expression of these peptides may predispose to infection

or ectopic pregnancy.

2.5.2 Gastrointestinal Tract

Recent limited studies also point out to the important roles played by antimicrobial

peptides, including trappin2/elafin and SLPI, in the gastrointestinal tract and

associated pathologies. In a rhesus macaque host–pathogen model, microarray

analysis revealed that in Helicobacter pylori-infected animals, several innate

antimicrobial effector proteins, including elafin and siderocalin, and several novel

paralogues of human b-defensin-2 were upregulated, which depended on the

presence of the cag pathogenicity island (Baqui et al. 1999). In another study,

investigating the presence of antimicrobial peptides in biopsies from the healthy

oesophagus, stomach and the duodenum, trappin-2 was found to be predominantly

expressed in the oesophagus (Hosaka et al. 2008).

Antimicrobial peptide imbalance appears to contribute to aetiology and patho-

genesis of inflammatory bowel disease (IBD) (Pillay et al. 2001; Farquhar et al.

2002; Abbinante-Nissen et al. 1993). Interestingly, in biopsies taken from patients

with Crohn’s disease, the expression of trappin-2 and SLPI was shown to be

attenuated upon inflammation, thereby suggesting a disruption of the protease/

antiprotease balance in chronic inflammatory status of the gut (Schmid et al.

2007). By taking advantage of the adenoviral construct and two trappin-2 transgenic

murine models, we established that restoring this proteolytic imbalance by the

expression of the trappin-2 is associated with a strong protective effect against

the development of colitis in experimental models (Motta et al. 2011). This
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protection appears to be both due to reduced NE/PR-3 and trypsin-like activities

and also due to the inhibition of NF-kB proinflammatory pathway by trappin-2, as

observed in other models (Velarde et al. 2006; King et al. 2003). Collectively, these

results not only provide definitive insights into the importance of the proteolytic

balance in gut inflammation but also point to trappin-2 as a possible protective

molecule in chronic inflammatory disorders of the gut (Motta et al. 2011).

3 WAP as Therapeutics, Drug Targets or Biomarkers

In vitro and in vivo experimental modelling has identified the activities of SLPI and

trappin-2/elafin, but transforming these results into medicines is only just becoming

a reality.

Numerous studies in the 1990s reported the effects of giving recombinant SLPI

to humans (McElvaney et al. 1993; Bergenfeldt et al. 1990; Stolk et al. 1995;

McElvaney et al. 1992) with a view to treating lung disease. These studies con-

firmed elimination half-lives of 10 min (Bergenfeldt et al. 1990) and 0.2–2.8 h

(Stolk et al. 1995) for intravenous administration and inhalation, respectively.

Inhaled therapy appears to be the way forward due to increased lung targeting

and decreased systemic effects although repeated dosing was necessary to maintain

therapeutic levels in CF patients (McElvaney et al. 1993). Analysis of epithelial

lining fluid from patients with emphysema has suggested this may be due to SLPI

cleavage by cathepsins (Taggart et al. 2001). To improve delivery to the diseased

lung, Gibbons and co-workers have developed a dry powder formulation of

liposome-encapsulated recombinant SLPI that proved better at retaining a protec-

tive function against cathepsin L-induced rSLPI inactivation compared to an

aqueous DOPS–rSLPI liposome dispersion and was also more stable under storage

(Gibbons et al. 2010).

Improvements have also been made with regard to the production of recombi-

nant protein. Expression of SLPI in bacteria required extensive denaturation and

renaturation to refold the disulphide-rich protein into its biologically active form

(Lucey et al. 1990). Recently two alternative methods of production have been

developed using baculovirus expression (Gray et al. 2002) and the yeast Pichia
pastoris (Li et al. 2009, 2010b) with purification under non-denaturing conditions.

These advances have suggested that SLPI can be produced in an efficient and cost-

effective manner for therapeutic purposes. These methods have resulted in a greater

yield of protein with improved biological activity. Interestingly Zani and

co-workers have produced fusion proteins to create antiproteases with activities

overlapping with SLPI and elafin so that elastase, cathepsin G and PR-3 could be

inhibited by one molecule (Zani et al. 2009). Such manipulation of these molecules

will hopefully result in designer therapeutics directed at lung diseases (e.g. COPD)

where protease/antiprotease balance is destructive to the host.

Further advances moving SLPI therapeutics one step closer to reality have been

reported recently: firstly, the development of four hybridomas that produce anti-
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human SLPI monoclonal antibodies (Chen et al. 2006); secondly, the specificity of

serum SLPI levels to differentiate between benign ovarian cysts and malignancies

(Tsukishiro et al. 2005); thirdly, the development of cleaved SLPI (cSLPI) as a

biomarker of chymase activity in allergic disease (Belkowski et al. 2008); and,

finally, the exciting potential of the SLPI promoter as a tissue-specific promoter in

the development of ovarian cancer gene therapy (Barker et al. 2003).

4 Concluding Remarks

Recent publications on the WAP SLPI and trappin-2/elafin have dramatically

changed our current view of these molecules. They are no longer ‘just’

antiproteases expressed in lining fluid but major modulators of immunity. More-

over, their actions seem temporally regulated to be expressed during stages of the

immune response. They have roles in innate immune priming, which links to the

adaptive immune system and also to immune homeostasis and tissue remodelling,

suggesting that their plethora of activities are essential throughout the inflammatory

response. Understanding how they can produce such varying activities over the

course of the inflammatory response is not so well understood and will form the

basis for the next generation of literature on these quite extraordinary pleiotropic

molecules.
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