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Abstract Antimicrobial peptides (AMPs) are part of innate immunity, establishing

a first line of defense against pathogens. All plant organs express AMPs constitu-

tively or in response to microbial challenges. Plant AMPs are structurally and

functionally diverse. Five classes of AMPs are considered in this review, the

thionins, defensins, lipid transfer proteins (LTPs), snakins, and a group of related

knottins, cyclotides and hevein-like AMPs. Besides targeting fungal, bacterial, and

oomycete pathogens, certain AMPs can be directed against other organisms, like

herbivorous insects. The biological activity of plant AMPs primarily depends on

interactions with membrane lipids, but other modes of action exist as in the case of

defensins with a-amylase activity or a defensin-like peptide that interacts with a

receptor kinase. Limited information exists on the regulated expression of plant

AMPs, their processing, and posttranslational modification. Conclusive data on the

role of certain AMPs in plant defense have only recently become available. This

review can therefore only be considered as a snapshot of the progress in this field of

research.

1 Introductory Remark

Protection of plants and animals against infectious microorganisms depends on

both constitutive and induced defense mechanisms. Antimicrobial peptides (AMPs)

are an important component of constitutive and induced epithelial defenses,

contributing to the first line of defense in animals (Schröder 1999). Plants produce
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AMPs in all organs either constitutively or in response to microbial infection, but

information about the expression of AMPs in epidermal cells is limited. As plants

also biosynthesize protective secondary metabolites, AMPs may not be as crucial

for the first line of defense as in animals. In light of the induction of specific AMPs,

a brief review of the plant immune system will be given first.

2 Innate Immunity in Plants

The innate immune system of plants consists of two branches (Jones and Dangl

2006). Initial recognition of microbes by host plants is analogous to the animal

system in that pattern recognition receptors (PRRs) on the surface of the host

cell detect the presence of pathogen-associated molecular patterns (PAMPs),

representing small motifs of largermolecules that are essential formicrobial survival

(Janeway 1989). PAMP-triggered immunity (PTI) activates a myriad of processes,

including mitogen-activated protein kinase (MAPK) cascades, production of reac-

tive oxygen species (ROS), hormone signaling, and gene expression (Schwessinger

and Zipfel 2008). Successful pathogens suppress PTI by delivering virulence effec-

tor proteins to the host. In turn the second branch of plant immunity, which is defined

by another set of largely intracellular plant receptors, the resistance (R) gene

products, is activated. These receptors recognize specific effector proteins directly

or indirectly to activate effector-triggered immunity (ETI), a stronger plant defense

response that can culminate in programmed cell death (Jones and Dangl 2006).

PTI and ETI stimulate distinct hormone biosynthesis and signaling pathways.

ETI triggers salicylic acid (SA) biosynthesis and signaling, leading to local and

systemic acquired resistance (SAR) against biotrophic pathogens (Metraux et al.

1990; Delaney et al. 1994). SAR is the induction of broad-spectrum disease

resistance in uninfected distal tissues activated by local pathogen infection that

results in tissue necrosis, also known as the hypersensitive response (Ward et al.

1991). Conversely, PTI stimulates ethylene (ET) biosynthesis (Felix et al. 1999).

The cross talk between PTI and ET biosynthesis and signaling has recently been

reviewed (Trujillo and Shirasu 2010). ET and jasmonic acid (JA) synergistically

activate plant defenses against necrotrophic pathogens (Thomma et al. 1998).

Moreover, antagonistic interaction exists between JA/ET and SA signaling (Niki

et al. 1998). Both pathways induce the expression of AMPs in different ways, as

will be discussed later.

3 General Characteristics of Plant AMPs

Like AMPs of animal origin, the molecular diversity of AMPs from plants is

striking (Padovan et al. 2010). Plant AMPs were assigned to different classes

according to their tertiary structures (Fig. 1). The most common classes are
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thionins, defensins, and lipid transfer proteins. Plant AMPs share the following

important features: They are small cationic peptides with molecular masses of

2–10 kDa. The structures of these small peptides are stabilized through formation

of 2–6 disulfide bridges. The activities of plant AMPs are primarily directed against

fungal, oomycete, and bacterial microorganisms, but certain members of a class can

be directed against other targets, including herbivorous insects.

Different classes of plant AMPs will be discussed next. Special attention will be

given to their structures and functions, their regulated expression, and their modes

of action.

4 Thionins

The first AMP isolated from plants was a thionin from the endosperm of wheat

(Balls et al. 1942). The protein moiety of a proteolipid was later shown to be a

mixture of two forms, purothionins a and b (Nimmo et al. 1968). Additional

thionins were isolated, including a- and b-hordothionins from barley endosperm,

viscotoxins and phoratoxins from mistletoe species, and crambin from the crucifer-

ous plant Crambe abyssinica (Bohlmann and Apel 1991). Thionins from cereals

Fig. 1 3D structures of representative antimicrobial peptides (AMPs) belonging to different
classes of AMPs from plants. Viscotoxin A3 (PDB entry 1ED0), a thionin from mistletoe (Viscum
album) is a representative of thionins. Defensins are represented by defensin 1 (PDB entry 1JKZ)

from pea (Pisum sativum). An example of lipid transfer proteins (LTPs) is the non-specific nsLTP2

(PDB entry 1TUK) from wheat (Triticum aestivum). Kalata B1 (PDB entry 1NB1) is a cyclotide

from the perennial herb Oldenlandia affinis. Disulfide bridges are highlighted in yellow; a-helices
and b-sheets are color-coded in red and blue, respectively
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and Pyrularia pubera have four disulfide bonds. Other dicotyledonous thionins

have three disulfide bonds. The structural feature common to all thionins is the

G (gamma) fold consisting of two antiparallel a-helices that form a stem and

antiparallel b-sheets that form an arm (Padovan et al. 2010). A groove exists

between the helical and b-sheet segments. Thionins are cationic peptides with

amphipathic properties with the exception of crambin, which is hydrophobic and

carries no net charge.

Both purothionins differentially inhibit the growth of and kill several bacterial

plant pathogens but not mycelial fungi (Fernandez de Caleya et al. 1972). Thionins

from the endosperm and leaf of barley inhibit the fungi Drechslera teres, a

pathogen of barley, and Thielaviopsis paradoxa, a pathogen of sugar cane

(Bohlmann et al. 1988). The thionin from P. pubera has antifungal as well as

antibacterial activities (Vila-Perello et al. 2005). Thionins also affect organisms

other than plant pathogens. Purothionins are toxic to small mammals when injected

intravenously or intraperitoneally but not when administered orally (Coulson et al.

1942). The reason behind these broad biological activities lies in the thionin

structure.

Thionin exerts its primary effect on the membrane through binding of

phospholipids (Stec et al. 2004). Amino acid residues 1 and 2 as well as residues

9–14 are highly conserved. Specifically, Lys1 and Arg10 contribute to phosphate

binding. Ser2 and Tyr13 form the glycerol-binding site. Modeling of thionin

interactions with phospholipids implied that the acyl chain of the phospholipid

fits into the groove of the toxin (Stec et al. 2004). In the absence of phospholipids,

thionins form dimers that bind inorganic phosphate and are stabilized by Asn11 and

Asn14. Upon association with membranes, monomers are formed that insert into

the membrane and segregate phospholipids. This action destabilizes the membrane,

leading to ion leakage and eventually to lysis.

Mature thionins are derived from preproproteins that contain an N-terminal

signal peptide for targeting to the endoplasmic reticulum (ER) and a C-terminal

acidic peptide that is thought to neutralize the activity of the cationic thionin.

Thionins are targeted to the vacuole (Romero et al. 1997). The function of

vacuolar-targeted thionins is probably analogous to the action of basic chitinase

and b-1,3-glucanase (Mauch and Staehelin 1989). These enzymes accumulate in

the vacuole and are released during host cell lysis caused by pathogen attack. The

sudden release of high concentrations of antimicrobial peptides is thought to

overwhelm invading pathogens without time to adapt to the challenge.

The genome of the model plant Arabidopsis thaliana also encodes thionins. The
Thi2.1 and Thi2.2 genes are regulated differently (Epple et al. 1995). Thi2.1 is

constitutively expressed at high levels in flowers and siliques and inducible in

seedlings in response to methyl jasmonate and inoculation with the fungal pathogen

Fusarium oxysporum. Thi2.2 is constitutively expressed in seedlings but not induc-
ible. The octadecanoid pathway, which is analogous to the inflammatory response

pathway in animals that leads to the production of prostaglandins from arachidonic

acid, culminates in JA biosynthesis and induction of Thi2.1 expression (Bergey

et al. 1996; Bohlmann et al. 1998). This was proven with the help of JA-insensitive
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and JA-deficient mutants, which were no longer able to induce Thi2.1 expression in
response to stimuli like wounding, leading to JA accumulation and signaling

(Bohlmann et al. 1998). Overexpression of Thi2.1 in transgenic A. thaliana plants

decreased susceptibility to F. oxysporum (Epple et al. 1997). Hyphae had more

growth anomalies, including hyperbranching, when the fungal pathogen was grown

on cotyledons of Thi2.1-overexpressing lines than on cotyledons of untransformed

plants (Epple et al. 1997). A phenotypically similar disruption of fungal growth was

observed when F. oxysporum was exposed to thionins in vitro (Vila-Perello et al.

2005). To address the endogenous function of thionins, a loss-of-function approach

is needed. For this purpose, lines with T-DNA insertions in exon regions of both

Thi2.1 and Thi2.2 genes are available from The Arabidopsis Information Resource

(TAIR). However, their analysis still needs to be performed. As will become clear

from the next chapter, knockout or knockdown mutants are useful for determining

the in vivo function of AMPs.

5 Defensins

Defensins were originally grouped with the thionins and defined as g-thionins.
However, structural comparisons to insect defensins required a reclassification of

this group of AMPs as defensins (Bruix et al. 1993). Characteristically, defensins

consist of a well-defined triple-stranded antiparallel b-sheet and a single a-helix
that lies parallel to the b-sheet. The a-helix is connected to the b-sheet with the help
of two disulfide bridges, forming a characteristic Cys-stabilized a-helix b-sheet
(CSab) motif (Cornet et al. 1995). Typical plant defensins form two additional

disulfide bonds. Plant and arthropod defensins consist of a babb pattern, whereas

mammalian b-defensins contain an N-terminal a-helix and an overall abbb-fold.
Plant defensins are small 45–54 amino acids long cationic peptides. Defensins are

widely distributed among dicots and monocots. The genome of A. thaliana alone

was shown to encode more than 300 defensin-like (DEFL) peptides, 78 % of which

have a CSabmotif (Silverstein et al. 2005). An even larger diversity of DEFL genes

is present in legume species (Graham et al. 2008).

Unlike animal defensins, few plant defensins are active against bacteria (Franco

et al. 2006; Yokoyama et al. 2008). Instead, the most common activity of these

peptides is directed against diverse fungi (Osborn et al. 1995). Besides these

antimicrobial activities, specific defensins have been reported to inhibit protein

synthesis (Mendez et al. 1990), protease trypsin (Wijaya et al. 2000), or a-amylase

activity (Bloch and Richardson 1991; Lin et al. 2007; Pelegrini et al. 2008). The

a-amylase inhibitors are insecticidal. The defensins VrD1 from Vigna radiata and

VuD1 from Vigna unguiculata use the L3 loop and the N-terminus, respectively, to

inhibit a-amylase activity (Lin et al. 2007; Pelegrini et al. 2008).

Plant defensins also influence plant growth and development. Medicago spp. do

not express MsDef1 and MtDef2 in roots, but when roots of A. thaliana are

exogenously treated with MsDef1, MtDef2, or RsAFP2, their growth is retarded
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and root hair elongation is inhibited (Allan et al. 2008). According to the authors,

constitutive expression of MsDef1 in A. thaliana did not alter root or root hair

growth. Altered expression of the tomato defensin DEF2 in transgenic tomato

plants reduced pollen viability and seed production (Stotz et al. 2009). Constitutive

expression of this defensin had pleiotropic effects on plant development. In contrast

to the above examples, the following developmental process has been studied at the

mechanistic level. The S-locus protein 11 (SP11), also known as S-locus Cys-rich

(SCR) protein, is a DEFL peptide that interacts with the S-locus receptor kinase

(SRK) to trigger self-incompatibility, a response that prevents self-fertilization via

inhibition of pollen tube growth and that favors outcrossing (Nasrallah 2002). The

L3 loop connecting b2 and b3 and the a-helical region are important for recognition

of SP11 by SRK (Sato et al. 2004).

A group of DEFL peptides with four to six Cys residues was recently shown to

control symbiotic interactions. Nodule-specific Cys-rich (NCR) peptides govern

terminal differentiation of nitrogen-fixing endosymbiotic Rhizobium bacteria in

root nodules of leguminous host plants (Van de Velde et al. 2010). NCR peptides

are delivered to the bacterial symbiont via a nodule-specific secretory pathway

(Wang et al. 2010). These peptides cross the bacterial membrane and accumulate

inside the bacteria to inhibit cytokinesis and to stimulate DNA synthesis and cell

enlargement (Van de Velde et al. 2010). These examples demonstrate that defensins

and DEFL peptides are functionally diverse, probably reflecting their evolutionary

diversification.

The defensins DmAMP1 from Dahlia merckii and RsAFP2 from Raphanus
sativus induce rapid potassium efflux and calcium influx in the hyphae of the

fungus Neurospora crassa in combination with medium alkalinization (Thevissen

et al. 1996). Inhibition of fungal growth in response to both defensins was

associated with cation-resistant membrane permeabilization (Thevissen et al.

1999). Using radiolabeled HsAFP1, a defensin from Heuchera sanguinea, specific
high-affinity binding sites were identified on the plasma membrane of N. crassa
(Thevissen et al. 1997). A genetic approach was used to identify these binding sites

as complex lipids (Thevissen et al. 2000). Mutation in the IPT1 gene, encoding an

enzyme that catalyzes the last step in biosynthesis of the sphingolipid mannose-

(inositol-phosphate)2-ceramide, conferred DmAMP1 resistance to Saccharomyces
cerevisiae. Sensitivity of the yeasts Candida albicans and Pichia pastoris to

RsAFP2 was a function of the gene GCS, encoding UDP-glucose:ceramide

glucosyltransferase (Thevissen et al. 2004). RsAFP2 was shown to interact with

membrane components of lipid rafts to elicit the production of reactive oxygen

species, leading to fungal cell death (Aerts et al. 2007). NaD1, a defensin from

Nicotiana alata, also causes permeabilization of the fungal membrane, but it enters

fungal cells via a cell wall-dependent mechanism possibly reaching intracellular

targets (van der Weerden et al. 2008, 2010). Thus, even with respect to antifungal

activity, different modes of defensin action exist.

Different defensins are expressed throughout the plant. Defensins were first

isolated from seeds of monocot and dicot species. Importantly, the defensins from

radish seeds RsAFP1 and RsAFP2 are released during seed germination after
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disruption of the seed coat (Terras et al. 1995). The amount of released peptides was

shown to be sufficient for inhibition of fungal growth around the germinating

seedlings. RsAFP peptides are expressed in surface cell layers and in spaces

between different organs of the seed. Moreover, RsAFP peptides are secreted into

the middle lamella region of plant cell walls, which are important for cellular

adhesion. Expression of RsAFPs is induced after pathogen challenge, and constitu-

tive expression of RsAFP2 in transgenic tobacco resulted in increased resistance

against the foliar pathogen Alternaria longipes (Terras et al. 1995). Different

defensins are constitutively expressed in every organ of A. thaliana (Thomma

and Broekaert 1998). PDF1.2 has been established as an important marker gene

to study the activation of the JA/ET signaling pathway (Manners et al. 1998; Mitter

et al. 1998; Brown et al. 2003; Nandi et al. 2003; Ndamukong et al. 2007; Zander

et al. 2009). PDF1.2 is regulated by an amplification loop that involves recognition

of the endogenous peptide elicitors AtPEP1-6 by the receptors AtPEPR1 and

AtPEPR2 (Huffaker et al. 2006; Huffaker and Ryan 2007; Pearce et al. 2008;

Yamaguchi et al. 2010). AtPEPR1 and AtPEP1-3 are induced after inoculation of

A. thaliana with the necrotrophic ascomycete Sclerotinia sclerotiorum, which may

be responsible for the dramatic induction of PDF1.2 in response to pathogen

infection (Stotz et al. unpublished). To determine the endogenous function of

PDF1.1 and PDF1.2, knockout and knockdown lines were generated (De Coninck

et al. 2010). However, no difference in pathogen susceptibility was observed

between the knockout lines and wild-type plants, probably because of the functional

redundancy of multiple AtPDF genes. Still, overexpression of PDF1.1 resulted in

reduced susceptibility to the necrotrophic fungus Cercospora beticola (De Coninck
et al. 2010). More conclusive results were obtained in tobacco. Silencing of the

tobacco defensin PR-13 resulted in increased susceptibility of Nicotiana attenuata
to Pseudomonas syringae pv. tomato DC3000 under glasshouse conditions and

increased susceptibility to opportunistic Pseudomonas spp. and mortality in the

native habitat (Rayapuram et al. 2008). PR-13 is closely related to the defensin

peptide NaD1 and more distantly related to thionins (Fig. 2). Based on these data,

defensins are clearly important for plant defense, and their evolutionary diversifi-

cation is the basis for various ecological functions.

Most defensins consist of a signal sequence that targets the peptides to the ER,

followed by the mature peptide. Solanaceous floral defensins are an exception

because they also contain an acidic C-terminal extension, which perhaps prevents

inappropriate activation of mature cationic peptides (Stotz et al. 2009). This

difference in proteolytic processing adds to the complexity of plant defensins. It

is to be expected that additional information on the impact of defensins on mem-

brane lipids and proteinaceous receptors will soon become available. To appreciate

the function of plant defensins, this is the most urgent problem that needs to be

addressed.

Innate Immunity in Plants: The Role of Antimicrobial Peptides 35



6 Lipid Transfer Proteins

Lipid transfer proteins (LTPs) were named based on their ability to facilitate

transfer of phospholipids between a donor and an acceptor membrane in vitro

(Bloj and Zilversmit 1977; Kader et al. 1984). As these LTPs have broad substrate

specificity, they are also referred to as nonspecific LTPs (nsLTPs) (Kader 1996).

Genome-wide analysis of nsLTP gene families resulted in detection of 52 and 49

members in rice and A. thaliana, respectively (Bureau et al. 1996).

Plant lipid transfer proteins are quite abundant and comprise of two families,

LTP1 and LTP2. Members of the plant LTP1 family are about 10 kDa in size,

consist of 90–95 amino acids, and are basic, with isoelectric points between 9 and

10. These LTPs have eight Cys residues conserved at similar positions in their

primary structure, which form four disulfide bridges stabilizing the tertiary structure

(Kader 1996). The LTP2 family members share the properties of the LTP1 family

but are only about 7 kDa in size, possessing about 70 amino acids on average. LTPs

contain a signal peptide at the amino terminal end, which is cleaved and targets the

mature peptide to the cellular secretory pathway resulting in export to the apoplast.

The extracellular localization was confirmed for LTPs from a variety of plants

(Sterk et al. 1991; Terras et al. 1992; Molina and Garcia-Olmedo 1993; Segura et al.

1993). Expression studies showed that LTP transcripts are abundant in epidermal

10 20 30 40 50
....|....|....|....|....|....|....|....|....|....|..

Pdef_Vigun          -RTCE-SQSHRFKGPCVSDTN-CASVCRTERFSGGHCRGFRRRCLCTKHC--
NaD1                -RECK-TESNTFPGICITKPP-CRKACISEKFTDGHCSKILRRCLCTKPC--
NaPR13 KSTCK-AESNTFEGFCVTKPP-CRRACLKEKFTDGKCSKILRRCICYKPC--
beta-purothionin    KSCCKSTLGRNCYNLCRARGA--QKLCA--NVCR--C-KLTSGLSCPKDFPK
alpha-purothionin   KSCCRSTLGRNCYNLCRARGA--QKLCA--GVCR--C-KISSGLSCPKGFPK
alpha-hordothionin  KSCCRSTLGRNCYNLCRVRGA--QKLCA--GVCR--C-KLTSSGKCPTGFPK
beta-hordothionin   KSCCRSTLGRNCYNLCRVRGA--QKLCA--NACR--C-KLTSGLKCPSSFPK
viscotoxin A1       KSCCPSTTGRNIYNTCRLTGS-SRETCA--KLSG--C-KIISASTCPSNYPK
viscotoxin B2       KSCCPNTTGRDIYNTCRLGGG-SRERCA--SLSG--C-KIISASTCPSDYPK
viscotoxin A3       KSCCPNTTGRNIYNACRLTGA-PRPTCA--KLSG--C-KIISGSTCPSDYPK
phoratoxin A        KSCCPTTTARNIYNTCRFGGG-SRPVCA--KLSG--C-KIISGTKCDSGWNH 
Pp-TH               KSCCRNTWARNCYNVCRLPGTISREICA--KKCD--C-KIISGTTCPSDYPK
crambin TTCCPSIVARSNFNVCRLPGT-PEALCA--TYTG--C-IIIPGATCPGDYAN 

Fig. 2 Alignment of defensin and thionin amino acid sequences. The predicted mature peptide

sequence of PR-13 from Nicotiana attenuata NaPR13 (GenBank AY456268) is highlighted in

bold and compared to the related defensins NaD1 from Nicotiana alata (GenBank Q8GTM0) and

Pdef_Vigun from Vigna unguiculata (GenBank ACN93800). Note that all eight Cys, two Gly, and
one Glu residue are highly conserved and shared among these three peptides. Less closely related

to NaPR13 are the thionins: b-purothionin from Triticum urartu (GenBank 218767043),

a-purothionin from Triticum aestivum (GenBank 4007850), a- and b-hordothionins from

Hordeum vulgare (GenBank 19110 and 225008, respectively), viscotoxins A1 (GenBank

190613619), B2 (GenBank 190613410) and A3 (GenBank 7245963) from Viscum album,
phoratoxin A from California mistletoe (GenBank 135797), thionin from Pyrularia pubera
(GenBank 135798), and crambin from Crambe abyssinica (GenBank 6226577). Boxes indicate
identical (black) and similar amino acids (gray)
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and peripheral cell layers (Sossountzov et al. 1991; Sterk et al. 1991; Fleming et al.

1992; Molina and Garcia-Olmedo 1993; Thoma et al. 1994). In broccoli, an LTP

was found to be the main protein of the wax layer (Pyee et al. 1994).

Structural data were obtained for LTP1 proteins from wheat (Gincel et al. 1994;

Charvolin et al. 1999), maize (Shin et al. 1995; Gomar et al. 1996), barley

(Heinemann et al. 1996; Lerche and Poulsen 1998), and rice (Lee et al. 1998).

LTP2 proteins from wheat and rice were also analyzed by solution NMR and X-ray

diffraction (Samuel et al. 2002; Hoh et al. 2005). Most LTP proteins have a globular

structure consisting of a bundle of four a-helices linked by flexible loops and

contain a large central hydrophobic cavity. The size of this cavity differs between

LTP1 and LTP2, the latter being more spacious, enabling binding of a planar sterol

(Samuel et al. 2002). The cavity of LTP1 is variable and can adapt its volume to

bind one or two mono- or diacylated lipids or other hydrophobic molecules. LTP1

proteins cannot load sterols or molecules with a rigid backbone (Douliez et al. 2000,

2001; Pato et al. 2002), suggesting that plasticity of the cavity and flexibility of the

hydrophobic molecules limit the “nonspecificity” of the nsLTPs.

Antifungal and antibacterial activities were among the first functions shown for

LTPs from barley, maize, spinach, and A. thaliana (Terras et al. 1992; Molina et al.

1993; Segura et al. 1993). Relative activities of different plant LTPs vary among

pathogens, indicating some degree of specificity (Molina et al. 1993; Sun et al.

2008). Also, synergistic activity of an LTP with a thionin against the bacterial

pathogen Clavibacter michiganensis ssp. sepedonicus was observed in vitro, while

only additive effects were observed for a fungal pathogen (Molina et al. 1993;

Garcia-Olmedo et al. 1995). Overexpression of a barley LTP2 in tobacco as well as

in A. thaliana plants reduced disease symptoms after infection of leaves with the

bacterial pathogen P. syringae (Molina and Garcia-Olmedo 1997), and

overexpression of an onion LTP in wheat plants decreased growth of the fungal

pathogen Blumeria graminis f.sp. tritici (Roy-Barman et al. 2006).

The mechanism of the toxicity observed for plant LTPs toward fungi and

bacteria still remains to be elucidated. It is likely that lipid-binding properties and

antimicrobial activity are independent of each other. Unlike related cereal LTPs,

Ace-AMP1, an LTP from onion with antifungal activity, was not able to bind

diacylphospholipids (Cammue et al. 1995; Tassin et al. 1998). The toxicity and

lipid-binding activity of several wheat LTPs were not correlated (Sun et al. 2008).

Mutational analysis of the rice nsLTP1 gene indicated that lipid binding and

antimicrobial functions are unrelated (Ge et al. 2003). These data support the

view that, with respect to LTP structure, lipid binding and antimicrobial activities

are spatially separated.

It was recently suggested that a new subfamily of plant LTPs, signaling LTPs,
should be formed, consisting of LTPs related to two characterized LTPs with

signaling function (Pii et al. 2010). This group would consist of the Medicago
truncatula LTP MtN5, which is expressed in response to a root pathogenic fungus

and in root nodules colonized by the symbiotic bacterium Sinorhizobium meliloti
(Pii et al. 2009, 2010), together with a closely related protein from A. thaliana,
defective in induced resistance 1 (DIR1). DIR1 is required for inducing SAR in

Innate Immunity in Plants: The Role of Antimicrobial Peptides 37



distal tissues after initial infection with a necrotizing pathogen (Maldonado et al.

2002). There is also evidence that DIR1 itself might be the mobile signal, as

antibodies directed against the tomato DIR1 homolog, Le-DIR1, recognized this

protein in the phloem sap of tomato plants (Mitton et al. 2009). Another LTP,

azelaic acid induced 1 (AZI1), was recently shown to be required for production of

the signal, which induces priming of defense responses for SAR (Jung et al. 2009a).

Several genetic studies strongly indicated that a lipid or lipid-derived compound is

required for the establishment of SAR in A. thaliana (Nandi et al. 2004; Chaturvedi
et al. 2008; Shah 2009). However, the identity of the SAR signal, the molecular

properties of LTPs, which render them active, and the identity of the bound lipid

substrate (if any) in vivo remain to be determined. Interestingly, wheat LTP1 was

shown to bind to a plasma membrane-located receptor for elicitins (Buhot et al.

2001). Elicitins are small proteins secreted by oomycete pathogens capable of

binding phospholipids and fatty acids in competition with sterols (Ponchet et al.

1999; Osman et al. 2001). Elicitins are able to trigger plant defense responses

reminiscent of SAR (Keller et al. 1996). It is tempting to speculate that some LTPs

could mediate pathogen recognition and thereby fulfill yet an additional role in

plant defense processes.

It was originally suggested that LTPs facilitate intracellular transfer of lipids.

However, most LTPs have been extracellularly localized. The following diverse

functional data also indicate that LTPs play important roles in the apoplast. This

includes direct antimicrobial activity, and for some LTPs, their role in plant defense

signaling was shown. DIR1, for instance, appears to be a signaling molecule in

itself. Other LTPs may act via binding to plant elicitin receptors. Plant LTPs were

assigned additional divergent functions, including a role in beta-oxidation (Tsuboi

et al. 1992), cutin synthesis (Pyee et al. 1994), pollen adherence (Park et al. 2000),

and somatic embryogenesis (Sterk et al. 1991). In the future, we will have to

address the exact mechanism by which LTPs mediate signaling, identify the

in vivo substrates of LTPs, and determine the mode of antimicrobial action.

7 Hevein-Like AMPs, Knottins, and Cyclotides

These three types of AMPs are treated together because of their structural

similarities. All of them form a triple-stranded b-sheet that is stabilized by at

least three disulfide bridges.

7.1 Hevein-Like AMPs

Hevein is the most abundant protein in latex of rubber trees. The mature peptide

consists of 43 amino acids with four disulfide bridges and contains a chitin-binding

domain (Lee et al. 1991). Homologous chitin-binding domains are found in

multidomain proteins, like chitinase (Iseli et al. 1993), and in hevein-like AMPs

(Broekaert et al. 1992).
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Two classes of hevein-like AMPs exist. The first class of peptides is similar to

hevein and contains eight Cys residues. Examples are PnAMP1 and PnAMP2, two

peptides that are produced in seeds of Pharbitis nil (Koo et al. 1998). PnAMP1 and

PnAMP2 are 41 and 40 amino acids long, respectively. Their antimicrobial activity

is not dependent on microbial chitin production as oomycete pathogens were also

inhibited by these peptides. Fluorescently labeled PnAMP1 rapidly penetrates

hyphae, leading to membrane disintegration and disruption of hyphal tips.

The second class of hevein-like AMPs is shorter and contains only six Cys

residues. Examples are AcAMP1 and AcAMP2, two peptides from seeds of

Amaranthus caudatus, consisting of 29 and 30 amino acids, respectively (Broekaert

et al. 1992). Both peptides were found to be potent inhibitors of fungal growth when

six fungal pathogens and one saprophyte were tested. The antibacterial activity of

these peptides is much lower. As in the case of thionins, divalent cations inhibited

the antimicrobial activity of these peptides. Intercellular wash fluids from leaves of

sugar beet contain another peptide, designated as IWF4 (Nielsen et al. 1997). The

chitin-binding activity of this peptide was stronger than that of class I and class IV

chitinases (Hamel et al. 1997). IWF4 is 30 amino acids long and inhibits growth of

the foliar pathogen Cercospora beticola (Nielsen et al. 1997). Its mRNA is consti-

tutively expressed in leaves and flowers but not induced after inoculation of sugar

beet leaves with C. beticola.
Hevein-like AMPs are produced as preproproteins. They contain a signal peptide

that targets them for secretion and a C-terminal extension (De Bolle et al. 1996;

Nielsen et al. 1997). Overexpression of pnAMP-h2 in transgenic tobacco elevated

resistance to Phytophthora parasitica (Koo et al. 2002). PnAMPs therefore possibly

protect seeds of P. nil against pathogens.

7.2 Knottins

Knottins are structurally different from hevein-like AMPs in that all three disulfide

bridges take part in the reinforcement of the sheet structure and a helix found in

hevein-like AMPs is absent (Chagolla-Lopez et al. 1994). The solution structure of

a knottin from seeds of Phytolacca americana was solved (Gao et al. 2001b).

The 38 amino acids long knottin from P. americana has broad-spectrum anti-

fungal activity (Gao et al. 2001). Earlier, two knottins were isolated from seeds of

Mirabilis jalapa (Cammue et al. 1992). The 37- and 38-amino-acid long MjAMP1
and MjAMP2, respectively, associate to form dimers and effectively inhibit a wide

range of fungal pathogens and, to a lesser degree, Gram-positive bacteria. Seeds of

Amaranthus hypochondriacus contain a knottin that inhibits a-amylase activity

(Chagolla-Lopez et al. 1994), demonstrating that these AMPs have multiple

biological activities.

An unusual AMP with two knottin motifs was isolated from the cycad Cycas
revoluta (Yokoyama et al. 2009). The recombinant peptide is capable of binding to

chitin and has antifungal and antibacterial activity. Mutant forms of recombinant
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CyAMP1 were generated by site-direct mutagenesis of amino acids that are

conserved with knottins and hevein-like AMPs. These mutant peptides were no

longer able to bind to chitin and lost their antifungal activity. However, the

antibacterial activity was maintained, suggesting a different mode of action against

prokaryotes.

Knottins are encoded as preproteins and not proteolytically processed like

hevein-like AMPs (De Bolle et al. 1995). Expression of MjAMP2 in transgenic

tobacco showed that the peptide is secreted and functional because it inhibits

in vitro growth of Botrytis cinerea (De Bolle et al. 1996). However, MjAMP2 did

not protect transgenic tobacco against infection from B. cinerea or A. longipes.
Further research is therefore needed to determine the role of knottins in protection

of plants against pathogens.

7.3 Cyclotides

Kalata B1 was the first identified member of a new family of cyclic AMPs (Saether

et al. 1995). These peptides are covalently joined by a peptide bond between the

N- and C-terminal amino acids. Cyclotides consist of 27 to 37 amino acids with an

embedded cystine knot (Padovan et al. 2010). Unlike other AMPs, cyclotides are

not cationic peptides, but they contain a solvent-exposed hydrophobic patch. Two

major subfamilies of cyclotides exist. The Möbius subfamily contains a twist in the

peptide backbone, owing to the presence of a Pro residue in loop 5 that is preceded

by a cis-peptide bond located between Cys residues five and six (Craik et al. 2006).
The bracelet subfamily does not contain a Pro residue in loop 5, but it contains a

short helical segment in loop 3 that lies between the third and fourth Cys residues.

Aside from the Cys residues, the Glu residue in loop 1 between the first and second

Cys residues is most highly conserved throughout the cyclotide family (Goransson

et al. 2009). This Glu residue forms a hydrogen bond network that stabilizes the

cyclotide framework for efficient aggregation in membranes (Goransson et al.

2009).

Cyclotides are present in Cucurbitaceae and Apocynaceae, in every analyzed

species of the Violaceae, and in a few species of the coffee family Rubiaceae

(Gruber et al. 2008). Linear cyclotide-like sequences are present in monocots

(Poaceae), suggesting that these peptides evolved prior to the divergence of

monocots and dicots. Presence of a single intron in Rubiaceae genes but absence

thereof in Violaceae genes suggests that cyclization evolved independently after the

divergence of Asterids and Rosids. Within a single species, Viola hederacea, 66
different cyclotides were identified (Trabi and Craik 2004). Cyclotide diversity

within a single plant family is estimated to be in the order of 10,000 (Craik et al.

2006; Gruber et al. 2008).

Cyclotides are generated from linear precursor proteins that contain one, two, or

three cyclotide domains (Dutton et al. 2004; Gillon et al. 2008). Precursor proteins

consist of an ER signal sequence, an N-terminal pro-domain, an N-terminal repeat,

40 H.U. Stotz et al.



the cyclotide domain, and a C-terminal tail. Oak1 is the precursor protein of kalata

B1 from the African plant Oldenlandia affinis. Foliar extracts from O. affinis
contain an 11-kDa protein without the ER signal sequence, a 6-kDa processing

intermediate without the N-terminal pro-domain, and mature 4-kDa kalata B1. The

cyclotide processing sites are highly conserved (Gillon et al. 2008). A protein-

disulfide isomerase was shown to be essential for correct oxidative folding of kalata

B1 and production of biologically active cyclotides (Gruber et al. 2007). An

asparaginyl endopeptidase was shown to catalyze peptide bond formation between

the N-terminal Gly and C-terminal Asn residues in kalata B1 (Saska et al. 2007).

Violacin A from Viola odorata is a naturally occurring linear cyclotide that

contains a mutation introducing a stop codon and preventing translation of the

key Asn residue required for cyclization (Ireland et al. 2006).

Cyclotides have multiple biological activities. Kalata B1 accelerates contractions

during childbirth. Cyclotides, including kalata B1, have antimicrobial activity that is

salt-sensitive (Tam et al. 1999). Kalata B1 also has insecticidal activity, disrupting

epithelial cells in the midgut of lepidopteran larvae (Jennings et al. 2001; Gruber

et al. 2007; Barbeta et al. 2008). Various cyclotides possess cytotoxic, hemolytic,

and anti-HIV activities (Chen et al. 2006; Ireland et al. 2006, 2008). This diversity of

biological activities together with the marked resistance against chemical, thermal,

and enzymatic degradation conferred by the closed cysteine knot structure has

sparked interest in using cyclotides as scaffolds for protein engineering and drug

design (Craik et al. 2006).

The biological activity of cyclotides depends on membrane interactions. The

size of the surface-exposed hydrophobic patch determines cytotoxicity, hemolytic,

and anti-HIV activities of cyclotides (Chen et al. 2006; Ireland et al. 2008). Bracelet

cyclotides are generally more hydrophobic than Möbius cyclotides with hydropho-

bic residues on both faces of the molecule (Ireland et al. 2008). Insertion into lipid

bilayers differs between members of both subfamilies (Wang et al. 2009). Whereas

Möbius cyclotides interact with the membrane via loops 2 and 6, bracelet cyclotides

interact via loops 2 and 3. Strategically located charged residues modulate hydro-

phobic interactions between cyclotides and target membranes and influence the

therapeutic index of these peptides (Ireland et al. 2008). Evidently, only a portion of

the cyclotide molecule binds to the membrane. These peptides are not buried deeply

into the membrane. In the case of bracelet cyclotides, hydrophobicity has been

linked to their membrane-disrupting ability (Svangard et al. 2007).

Production of cyclic kalata B1 has been reduced in transgenic tobacco via

silencing of asparaginyl endopeptidase (Saska et al. 2007). This would make it

possible to test effects of altered cyclotide expression on biotic interactions, but

such studies have not yet been performed. It should be noted that another family of

circular plant proteins exists that is distantly related to the cyclotides and has trypsin

inhibitor activity (Felizmenio-Quimio et al. 2001).
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8 Snakins

Yet another class of AMPs was found in solanaceous plants. These AMPs isolated

from potato (Solanum tuberosum) and closely related Solanum species were termed

snakins based on their sequence similarity to hemotoxic desintegrin-like snake

venoms (Segura et al. 1999). The amino acid sequences of snakins are also related

to gibberellin-stimulated transcripts GAST and GASA from a variety of plant

species, including A. thaliana. The mature snakin-1 (StSN1) and snakin-2 (StSN2)

peptides are cationic and contain 63 and 66 amino acids, respectively, with 12 Cys

residues (Segura et al. 1999; Berrocal-Lobo et al. 2002).Whereas StSN1 is preceded

by a signal sequence, StSN2 is derived from a preproprotein that contains an

additional N-terminal acidic peptide and requires proteolytic processing.

Snakins have antifungal and antibacterial activities (Segura et al. 1999;

Berrocal-Lobo et al. 2002). StSN1 and StSN2 cause rapid aggregation of Gram-

positive and Gram-negative bacteria. Interestingly, StSN1 caused aggregation of

Ralstonia solanacearum at concentrations that were not toxic to these Gram-

negative bacteria (Segura et al. 1999). Although snakins do not lyse artificial

lipid membranes, they can promote aggregation of liposomes (Caaveiro et al.

1997). This mode of action is clearly different from other AMPs and responsible

for the synergistic activities of StSN1 and potato defensin PTH1 against bacterial

and fungal pathogens.

Another AMP that aggregates bacteria prior to killing is hydramacin-1 from the

freshwater polyp Hydra (Jung et al. 2009). The structure of hydramacin-1 has been

solved and shown to consist of two hydrophobic hemispheres sandwiched by a belt

of positive charges. The cationic StSN1 peptide consists of a central hydrophobic

stretch flanked by highly polar N-terminal and C-terminal domains (Segura et al.

1999). Further comparisons will have to await the structure of snakins to be solved.

Developmental expression of StSN1 and StSN2 mRNAs differs but it overlaps

(Segura et al. 1999; Berrocal-Lobo et al. 2002). StSN1 expression is particularly

high in axillary and floral buds, in the stem and in petals, but tubers and carpels also

express this gene. StSN2 is strongly expressed in tubers, petals, carpels, stamen, and

leaves, but stems and floral buds also express this gene. Wounding and treatment

with the phytohormone abscisic acid induce StSN2 expression in leaves (Berrocal-

Lobo et al. 2002). StSN2 expression is also induced after infection of tubers with

B. cinerea but suppressed after inoculation with the bacteria R. solanacearum and

Erwinia chrysanthemi. The expression patterns of StSN1 and StSN2 are therefore

compatible with roles in constitutive and induced resistance, respectively.

Overexpression of ScSN1 from Solanum chacoense in transgenic potato

increased resistance to the fungal pathogen Rhizoctonia solani and the Gram-

negative bacterium Erwinia carotovora (Almasia et al. 2008; Kovalskaya and

Hammond 2009). Conversely, silencing of snakin-2 in Nicotiana benthamiana
reportedly resulted in an increase in susceptibility to C. michiganensis subsp.

michiganensis (Balaji et al. 2010). These results point toward an important role of

snakins in defense of solanaceous plants against pathogens.
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9 Conclusions

Plant AMPs are functionally and structurally diverse. Structural features common

to plant AMPs are disulfide bridges and secondary structures like a-helices and

b-sheets. These structural features generate compact molecules that are resistant to

chemical and physical insults and can survive hostile environments like the plant

cell wall and the vacuole. Another general feature is that plant AMPs interact with

lipids, phospholipids in the case of thionins, sphingolipids in the case of defensins,

and various lipids in the case of LTPs. Interactions between other plant AMPs and

lipids appear to be less specific. Moreover, other molecular functions, like chitin

binding, in the case of hevein-like AMPs and knottins, and interactions with other

proteins as observed for defensins and LTPs are important.

Certain plant AMPs, like thionins and cyclotides, are inherently toxic, while

others, including defensin and LTPs, are not. The latter category of AMPs has been

shown to fulfill important functions in plant signaling. The exact mechanism by

which LTPs and defensins modulate plant signaling will be of interest not only to

plant scientists.

The vast diversity of Cys-rich AMPs in the plant kingdom suggests that these

peptides fulfill important ecological functions. The molecular evolution of the

different classes of plant AMPs is incompletely understood. Research on this

topic is desperately needed to better understand interactions of plants with symbi-

otic and pathogenic microbes and with herbivorous and beneficial insects.

In this review, we provide clear evidence that AMPs are an intricate part of the

plant immune system, not merely executers of a defense program designed to kill

enemies. AMPs therefore fill similar niches in the immune systems of plants and

animals, although the molecules involved and the processes are different. As animal

defensins are known to link innate and adaptive immune systems (Yang et al. 1999;

Biragyn et al. 2002; Funderburg et al. 2007), plant LTPs play essential roles in SAR.

As their animal counterparts, plant AMPs can be exploited for pharmaceutical

purposes. In the presence of multiple-drug-resistant bacteria, peptide antibiotics are

clearly needed, and plant AMPs may add their share to the antimicrobial cocktail

that may be used to fend of infectious diseases.
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