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Abstract Cystic fibrosis is a common autosomal recessive disease caused by

mutations in the CFTR gene that encodes an anion channel expressed in epithelia

and other cell types. While the disease affects multiple organ systems, it is progres-

sive pulmonary disease, characterized by airway infection and inflammation, that is

life limiting. The origins of the lung disease associated with loss of CFTR function

are complex and likely multifactorial. Current research is defining how loss of

CFTR anion channel activity alters the volume and composition of respiratory

secretions and thereby impacts host defenses. Here we review the current under-

standing of the defect in innate immunity that characterizes the airway disease in

cystic fibrosis. Advances in cystic fibrosis basic science research and the develop-

ment of new animal models of disease are shedding new light on the causes of lung

disease and may lead to new, more targeted therapies.

1 Introduction

Cystic fibrosis (CF) is an autosomal recessive disease caused bymutations in the cystic

fibrosis transmembrane conductance regulator (CFTR) gene (Rommens et al. 1989).

CFTR encodes an anion channel regulated by nucleotides and phosphorylation. Over

1,500 disease-associated CFTR mutations have been reported. The most common

mutation is a three-base deletion in exon 10 resulting in the loss of a phenylalanine

residue at position 508 (DF508), present on ~70 % of mutant alleles (Kerem et al.

1989). In addition to primary or secondary CFTR-associated changes that lead to
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pulmonary diseasemanifestations, polymorphisms in other genetic loci may influence

the CF phenotype (Garred et al. 1999; Henry et al. 2001; Salvatore et al. 2002). Several

candidate modifier genes have been proposed for CF including mannose-binding

protein (Garred et al. 1999), HBD-1 and HBD-2 (Salvatore et al. 2002), alpha

1-antitrypsin enhancer (Henry et al. 2001), and HLA class II (Aron et al. 1999).

A recent genome-wide association study identified two new modifier loci for CF

(Wright et al. 2011).

CF is a multiorgan system disease affecting the gastrointestinal tract (liver, gall

bladder, small and large intestine, pancreas), sweat glands, reproductive system,

sinuses, and respiratory tract. While the signs and symptoms of the disease have

been recognized for centuries, it was only in the 1930s that Fanconi (Fanconi et al.

1936) and Andersen (1938) recognized and characterized the disorder as a distinct

pathologic entity and noted its genetic basis. Although loss of CFTR function

causes disease in many tissues and cell types, it is the effect on the respiratory

tract that is most life limiting. More than 90 % of people with CF die of progressive

lung disease associated with chronic bacterial infection and inflammation within the

airways (Rowe et al. 2005). CF lung disease is associated with the eventual chronic

colonization of the airways with large numbers of bacteria, notably Haemophilus
influenzae, Staphylococcus aureus, and Pseudomonas aeruginosa (Rosenfeld et al.

2001). It is increasingly recognized that CF-associated airway infections are

polymicrobial and involve biofilm formation (Bjarnsholt et al. 2009; Sibley and

Surette 2011; Singh et al. 2000a). Remarkably, these infections are confined to the

respiratory tract and spread to other organs is extremely rare.

In this chapter, we will focus our attention on the host defense problem within

the airways. In CF, bacteria grow in regions of the lung that are normally sterile.

The clinical course of CF lung disease correlates with the acquisition of bacterial

infection and its progression. Whatever the cause underlying this propensity for

infection, it is lung specific. These features indicate that loss of CFTR activity

impairs the innate defenses of the lung. The precise link between loss of CFTR

function in the airways and the host defense defect remains an area of intense

study and scientific debate. Here we review our current understanding of CF lung

disease.

2 Overview of CF Lung Disease

The loss of CFTR anion channel activity has a profound impact on the function of

many organs, most notably those lined by epithelia and involved in the elaboration

of secretions at mucosal surfaces (Welsh et al. 2001). In addition, there is growing

evidence that CFTR may be important to the function of non-epithelial cell types,

including alveolar macrophages (Di et al. 2006; Zhang et al. 2010), neutrophils

(Painter et al. 2006, 2008, 2010), lymphocytes (Bubien 2001; Bubien et al. 1990;

Mueller et al. 2011), smooth muscle cells (Robert et al. 2004, 2005; Vandebrouck

276 J.A. Bartlett and P.B. McCray Jr.



et al. 2006), neurons (Rogan et al. 2010), and others. Here we will confine our focus

to the impact of loss of CFTR function on the onset and progression of lung disease.

Lung disease in infants and preschool-aged children with CF can be remarkably

asymptomatic at its earliest stages. A series of bronchoscopy and bronchoalveolar

lavage (BAL) studies helped document that infants with CF may have significant

inflammation and bacterial infection in the face of no respiratory symptoms or signs

(Armstrong et al. 2005; Balough et al. 1995; Khan et al. 1995). Early laboratory

evidence of lung disease includes the presence of neutrophils, proinflammatory

cytokines, and culturable bacteria such as H. influenzae and S. aureus in BAL

fluid (Khan et al. 1995; Muhlebach et al. 1999). High-resolution chest CT scans

are among the most sensitive early radiologic measures of disease and may

demonstrate inhomogeneity of aeration, subsegmental atelectasis, bronchial wall

thickening, and airway obstruction in healthy-appearing young children. As the

disease progresses, bronchial dilatation and bronchiectatic changes are observed in

the airways. These findings indicated that the respiratory tract host defenses of

children with CF are compromised early on in their ability to eradicate bacteria

encountered by inhalation or microaspiration. While aggressive, early treatments

have slowed the rate of progression of lung disease, CF remains a serious chronic

disease. Lung transplant is currently the only option available for patients with

advanced disease.

While studies of the host defense defect associated with CF usually focus on

bacterial infections, there is evidence that people with CF may have problems in

their ability to tolerate infections by respiratory viruses. One prospective study of

infants and children with CF reported an increased morbidity associated with

respiratory syncytial virus infections (Abman et al. 1988). Hiatt and coworkers

found that compared to non-CF subjects, infants with CF were more likely to

develop lower respiratory tract infections associated with hospitalization and

reduction in lung function (Hiatt et al. 1999). In contrast, Ramsey and colleagues

studied school-aged children with CF prospectively and did not identify

any significant adverse effect of respiratory viral infections on pulmonary

function compared with age-matched non-CF controls (Ramsey et al. 1989). In

experiments using cultured primary CF and non-CF airway epithelia, Erzurum et al.

noted an increase in parainfluenza type III replication in CF cells (Zheng et al.

2003). This increase in virus replication was associated with reduced nitric oxide

synthase 2 (NOS2) and 20,50-oligoadenylate synthetase (OAS) 1 induction in

response to virus or interferon gamma. The investigators linked these reductions

in antiviral defenses to an impaired activation of signal transducer and activator of

transcription (STAT)1. Recently, Sutanto and coworkers studied primary cells from

CF and non-CF subjects and noted that human rhinovirus 1B replicated to higher

levels in CF respiratory epithelia (Sutanto et al. 2011). This finding was also

associated with a reduced apoptotic response and increased release of IL-8 in the

CF epithelia. These studies are intriguing as some antimicrobial peptides and

proteins exhibit antiviral properties (Daher et al. 1986), and signaling mediated

by type I and type III interferons may also promote antibacterial defenses (Li et al.

2008). In addition, intracellular pathogen sensing mediated by NLRP1 and NLRP3

Cystic Fibrosis and Defective Airway Innate Immunity 277



inflammasomes may influence both antiviral and antibacterial host defense

responses (Cassel and Sutterwala 2010; Guarda et al. 2011; Poeck et al. 2010;

Poeck and Ruland 2011; Strunk et al. 2011). Further studies are needed to

determine if mutations in CFTR also cause a defect in antiviral innate immunity.

While our discussion focuses on how loss of CFTR function results in the

primary manifestations of CF lung disease, it is important to understand that

disease progression results in secondary complications that further compromise

airway defenses. As airway bacterial infection in children with CF evolves from

intermittent infection to chronic colonization, the host mounts an impressive

response. Predominant findings include the release of proinflammatory cytokines

by epithelia and immune effector cells that include IL-1, TNF-alpha, IL-6, 1L-17

(Decraene et al. 2010; Dubin and Kolls 2011; McAllister et al. 2005; Tan et al.

2011), and 1L-23 (Decraene et al. 2010; McAllister et al. 2005) and neutrophil

chemoattractants such as IL-8, IL-17, and CCL20 (Armstrong et al. 2005; Balough

et al. 1995; Khan et al. 1995; McAllister et al. 2005; Muhlebach et al. 1999) and the

secretion of pathogen-specific antibodies (Doring et al. 1988). Intense neutrophilic

infiltration of the airways ensues, and the associated inflammatory responses

include the release of enzymes such as neutrophil elastase, myeloperoxidase,

cathepsins, and others. In addition, airway pathogens can release proteases

and other inflammatory stimuli that gradually lead to disease progression. These

secondary inflammatory responses contribute to the destruction of airway tissue and

stimulate proliferative responses in the airway epithelium (Leigh et al. 1995) with

associated remodeling, such as goblet cell metaplasia (Bedrossian et al. 1976; Davis

and Dickey 2008; Groneberg et al. 2002). This burden of proteases causes further

secondary compromise in antimicrobial defenses by directly degrading host defense

proteins such as lactoferrin (Britigan et al. 1993), defensins (Taggart et al. 2003),

SLPI (Weldon et al. 2009), and elafin (Guyot et al. 2008). In addition, the protease-

rich environment of the CF airways can cleave TLR-2 and TLR-4, which may

further impair innate immune signaling (Greene et al. 2004). These persistent host

responses to polymicrobial infection add to the difficulties in defining the host

defense defects directly linked to loss of CFTR function and distinguishing them

from those that arise as a consequence of the host inflammatory response.

3 Innate Immune Defenses in the Airways

The airways face a daily burden of inhaled or aspirated bacteria, viruses, and other

potentially damaging particulates. To protect against these threats, the epithelium

of the respiratory tract has evolved multiple mechanisms to prevent microbial

infection and minimize tissue damage in response to infectious agents. At the

most basic level, the epithelium protects the airways from such insults by serving

as a physical barrier between the environment and the underlying tissue. However,

the defensive capacity of this mucosal surface extends far beyond its simple barrier

function. The conducting airways are lined by a pseudostratified columnar
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epithelium consisting of ciliated and non-ciliated surface cells, mucin-producing

goblet cells, and a progenitor cell type termed basal cells. The conducting airway

epithelium also possesses submucosal glands, which supply bulk liquid secretion,

additional mucins, and other molecules with antimicrobial, anti-inflammatory, or

other host defense functions to the airway surface. Together, the surface airway

epithelia and submucosal glands are responsible for generating the airway surface

liquid (ASL)—a mixture of secreted proteins and peptides with innate immune

functions, as well as lipids, surfactants, and electrolytes important for ASL volume

homeostasis. The ASL is organized into two compartments: an aqueous phase near

the cell surface that bathes the cilia (the sol or periciliary layer) and a layer of

hydrated mucus (the gel layer) that rests atop the sol phase (Fig. 1). Inhaled

microbes and other particles are trapped in this mucus layer, which, propelled by

the coordinated beating of the cilia, slides along the top of the periciliary fluid layer

in a process known as mucociliary clearance. In this way, particles are swept up and

out of the airways to the nasopharynx, where they are eliminated by swallowing.

Similarly, cough clearance also removes particles from the airway lumen (Bartlett

et al. 2008a).

A

B

c
g

b

Fig. 1 The airway surface liquid (sol) and mucus (gel) layers provide an optimal environment for

the function of secreted host defense factors. (A) Scanning electron microscope image of osmium

and perfluorocarbon fixed cultured well-differentiated non-CF primary human airway epithelial

cells. Black arrowhead indicates gel layer; white arrowhead indicates sol layer. This sentence
refers to fig. 1B. (B) Note ciliated cells (c), goblet cells (g), and basal cells (b). Light microscopy

image of osmium and perfluorocarbon fixed newborn non-CF pig tracheal epithelium stained with

toluidine blue. Black arrowhead indicates gel layer; white arrowhead indicates sol layer. Scale

bars in both images indicate 10 mm
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In addition to these physical and mechanical defense mechanisms, the airway

epithelium actively interfaces with the environment and constitutively or inducibly

secretes an array of innate immune effector molecules into the ASL that sense and

respond to microbial threats (Table 1). This “chemical shield” includes cationic

peptides with broad-spectrum antimicrobial activity, such as the beta-defensins

(Pazgier et al. 2006; Schutte and McCray 2002; Singh et al. 1998), CCL20 (Starner

et al. 2003), and the human cathelicidin LL-37 (Bals et al. 1998b), as well as the

prototypic antimicrobial protein lysozyme (Fleming 1922; Fleming and Allison

1922), which kills bacteria by degrading peptidoglycan in the bacterial cell wall.

There are also innate immune molecules that combat bacteria in ways that do not

involve direct killing, such as iron sequestration by lactoferrin (Masson et al. 1966;

Oram andReiter 1968) or binding of bacterial siderophores (iron-chelatingmolecules)

by the neutrophil gelatinase-associated lipocalin (NGAL, or lipocalin-2) (Goetz et al.

2002). Many of these molecules are multifunctional. For example, the collectins

surfactant protein A (SP-A) and surfactant protein D (SP-D) bind microbes and act

as opsonins (Kuan et al. 1992; Tenner et al. 1989; van Iwaarden et al. 1990, 1991,

1994) and also help to modulate inflammation through their interactions with

phagocytes and inflammatory-signaling molecules (Murakami et al. 2002; Sano

et al. 1999; Sato et al. 2003). The abundant secreted protein PLUNC (palate,

lung, nasal epithelium clone) possesses potent surfactant activity and is proposed to

contribute to airway epithelial defenses through antimicrobial as well as anti-biofilm

effects (Chu et al. 2007; Gakhar et al. 2010; Lukinskiene et al. 2011; McGillivary

and Bakaletz 2010; Zhou et al. 2008). Airway secretions also contain proteins with

anti-inflammatory functions, such as the protease inhibitors elafin and secretory

leukocyte protease inhibitor (SLPI) (Butler et al. 2006; Henriksen et al. 2004;

Sallenave 2010). Porter and coworkers demonstrated that airway epithelia secrete

lipids that exert direct antimicrobial activity and synergize with host defense proteins

(Do et al. 2008).

In addition to polypeptide- and lipid-based defenses, the secreted enzyme

lactoperoxidase (LPO) contributes to an oxidative host defense system. In this

system, LPO uses H2O2 produced by the dual oxidases DUOX1 and DUOX2

(members of the NOX gene family) to catalyze the oxidation of the secreted

anion thiocyanate (SCN�) in the ASL. This reaction generates the antibacterial

product hypothiocyanate (OSCN�), which is toxic to several relevant airway

pathogens (Conner et al. 2002; Forteza et al. 2005; Gerson et al. 2000; Moskwa

et al. 2007; Wijkstrom-Frei et al. 2003). In all cases, these defensive molecules may

be either constitutively expressed or induced in response to various inflammatory

stimuli. This redundancy in the number of host defense factors that act by multiple

mechanisms is further augmented by their ability to act together in synergistic or

additive manners (Singh et al. 2000b).

A third arm of lung host defense involves the resident phagocytic cells, including

alveolar macrophages and neutrophils that may be recruited to sites of airway

infection and inflammation. In addition to engulfing and destroying bacteria, both

macrophages and neutrophils release a variety of potent antimicrobial factors to

augment the epithelial responses to invading microorganisms. Macrophages and

280 J.A. Bartlett and P.B. McCray Jr.



T
a
b
le

1
A
S
L
h
o
st
d
ef
en
se

fa
ct
o
rs

P
ro
d
u
ct

R
el
at
iv
e

co
n
ce
n
tr
at
io
n

in
A
S
L

C
el
lu
la
r
so
u
rc
e

F
u
n
ct
io
n
(s
)

R
ef
er
en
ce
s

L
y
so
zy
m
e

mg
-m

g
/m

L
E
p
it
h
el
ia
,
n
eu
tr
o
p
h
il
s

A
n
ti
b
ac
te
ri
al

F
le
m
in
g
(1
9
2
2
),
F
le
m
in
g
an
d
A
ll
is
o
n

(1
9
2
2
),
H
ia
tt
et

al
.
(1
9
5
2
)

L
ac
to
fe
rr
in

mg
/m

L
E
p
it
h
el
ia
,
n
eu
tr
o
p
h
il
s

A
n
ti
b
ac
te
ri
al
,
an
ti
v
ir
al
,
an
ti
fu
n
g
al
,

in
h
ib
it
io
n
o
f
m
ic
ro
b
ia
l
g
ro
w
th
th
ro
u
g
h

ir
o
n
se
q
u
es
tr
at
io
n

A
rn
o
ld

et
al
.
(1
9
8
0
),
M
as
so
n
et

al
.
(1
9
6
5
,

1
9
6
6
),
O
ra
m

an
d
R
ei
te
r
(1
9
6
8
),
S
an
o

et
al
.
(2
0
0
3
),
X
u
et

al
.
(1
9
9
9
)

S
u
rf
ac
ta
n
t
p
ro
te
in

A
(S
P
-A

)
n
g
-m
g
/m

L
E
p
it
h
el
ia

M
ic
ro
b
ia
l
ag
g
re
g
at
io
n
,
o
p
so
n
iz
at
io
n
,

m
o
d
u
la
ti
o
n
o
f
in
fl
am

m
at
io
n

H
ar
ts
h
o
rn

et
al
.
(1
9
9
8
),
K
o
rf
h
ag
en

et
al
.

(1
9
9
6
),
L
eV

in
e
et
al
.
(1
9
9
9
a,
b
,
2
0
0
0
),

M
u
ra
k
am

i
et

al
.
(2
0
0
2
),
S
an
o
et

al
.

(1
9
9
9
),
S
at
o
et
al
.
(2
0
0
3
),
T
en
n
er
et
al
.

(1
9
8
9
),
v
an

Iw
aa
rd
en

et
al
.
(1
9
9
0
,

1
9
9
1
)

S
u
rf
ac
ta
n
t
p
ro
te
in

D
(S
P
-D

)
n
g
-m
g
/m

L
E
p
it
h
el
ia

M
ic
ro
b
ia
l
ag
g
re
g
at
io
n
,
o
p
so
n
iz
at
io
n
,

m
o
d
u
la
ti
o
n
o
f
in
fl
am

m
at
io
n

H
ar
ts
h
o
rn

et
al
.
(1
9
9
8
,
1
9
9
4
),
K
u
an

et
al
.

(1
9
9
2
),
L
eV

in
e
et

al
.
(2
0
0
0
),
Y
o
sh
id
a

et
al
.
(2
0
0
1
)

S
ec
re
to
ry

le
u
k
o
cy
te

p
ro
te
as
e
in
h
ib
it
o
r

(S
L
P
I)

mg
/m

L
E
p
it
h
el
ia
,

n
eu
tr
o
p
h
il
s,

m
ac
ro
p
h
ag
es

P
ro
te
as
e
in
h
ib
it
io
n
,
an
ti
-i
n
fl
am

m
at
o
ry
,

an
ti
m
ic
ro
b
ia
l

H
en
ri
k
se
n
et

al
.
(2
0
0
4
),
H
ie
m
st
ra

et
al
.

(1
9
9
6
),
M
ih
ai
la

an
d
T
re
m
b
la
y
(2
0
0
1
),

S
ai
to
h
et

al
.
(2
0
0
1
),
S
al
le
n
av
e
et

al
.

(1
9
9
4
,
1
9
9
7
)

P
ep
ti
d
as
e
in
h
ib
it
o
r
3
(e
la
fi
n
)

n
g
/m

L
E
p
it
h
el
ia
,

n
eu
tr
o
p
h
il
s,

m
ac
ro
p
h
ag
es

P
ro
te
as
e
in
h
ib
it
io
n
,
an
ti
-i
n
fl
am

m
at
o
ry
,

an
ti
m
ic
ro
b
ia
l,
o
p
so
n
iz
at
io
n

H
en
ri
k
se
n
et
al
.
(2
0
0
4
),
K
in
g
et
al
.
(2
0
0
3
),

M
ih
ai
la

an
d
T
re
m
b
la
y
(2
0
0
1
),

S
al
le
n
av
e
et

al
.
(1
9
9
4
),
S
im

p
so
n
et

al
.

(1
9
9
9
),
W
il
k
in
so
n
et

al
.
(2
0
0
9
)

C
y
st
at
in

S
U
nk
no

w
n

E
p
it
h
el
ia

C
y
st
ei
n
e
p
ro
te
as
e
in
h
ib
it
o
r

Is
em

u
ra

et
al
.
(1
9
8
4
),
L
in
d
ah
l
et
al
.
(1
9
9
9
)

L
ip
o
ca
li
n
-1

(t
ea
r
li
p
o
ca
li
n
)

U
nk
no

w
n

E
p
it
h
el
ia

C
y
st
ei
n
e
p
ro
te
as
e
in
h
ib
it
o
r,
ir
o
n

se
q
u
es
tr
at
io
n
th
ro
u
g
h
si
d
er
o
p
h
o
re

b
in
d
in
g

F
lu
ck
in
g
er

et
al
.
(2
0
0
4
),
L
in
d
ah
l
et

al
.

(1
9
9
9
),
R
ed
l
et

al
.
(1
9
9
8
),
v
an
’t
H
o
f

et
al
.
(1
9
9
7
)

(c
o
n
ti
n
u
ed
)

Cystic Fibrosis and Defective Airway Innate Immunity 281



T
a
b
le

1
(c
o
n
ti
n
u
ed
)

P
ro
d
u
ct

R
el
at
iv
e

co
n
ce
n
tr
at
io
n

in
A
S
L

C
el
lu
la
r
so
u
rc
e

F
u
n
ct
io
n
(s
)

R
ef
er
en
ce
s

N
eu
tr
o
p
h
il
g
el
at
in
as
e-
as
so
ci
at
ed

li
p
o
ca
li
n
(N

G
A
L
,
o
r
li
p
o
ca
li
n
-2
)

n
g
/m

L
E
p
it
h
el
ia
,
n
eu
tr
o
p
h
il
s

Ir
o
n
se
q
u
es
tr
at
io
n
th
ro
u
g
h
si
d
er
o
p
h
o
re

b
in
d
in
g

C
o
w
la
n
d
et
al
.
(2
0
0
3
),
G
o
et
z
et
al
.
(2
0
0
2
),

K
je
ld
se
n
et

al
.
(1
9
9
3
),
T
ri
eb
el

et
al
.

(1
9
9
2
)

B
ac
te
ri
ci
d
al
/p
er
m
ea
b
il
it
y
-i
n
cr
ea
si
n
g

p
ro
te
in

(B
P
I)

U
nk
no

w
n

N
eu
tr
o
p
h
il
s

A
n
ti
b
ac
te
ri
al
,
an
ti
-i
n
fl
am

m
at
o
ry
,

en
d
o
to
x
in
n
eu
tr
al
iz
at
io
n
,o
p
so
n
iz
at
io
n

Io
v
in
e
et

al
.
(1
9
9
7
),
M
ar
ra

et
al
.
(1
9
9
0
),

W
ei
ss

et
al
.
(1
9
7
8
)

P
L
U
N
C
(o
r
S
P
L
U
N
C
1
,
L
U
N
X
,

N
A
S
G
,
S
P
U
R
T
,
B
P
IF
A
1
)

mg
/m

L
E
p
it
h
el
ia
,
n
eu
tr
o
p
h
il
s

A
n
ti
m
ic
ro
b
ia
l,
b
io
fi
lm

in
h
ib
it
io
n

B
ar
tl
et
t
et

al
.
(2
0
0
8
b
),
B
in
g
le

an
d
B
in
g
le

(2
0
0
0
),
C
h
u
et
al
.
(2
0
0
7
),
G
ak
h
ar

et
al
.

(2
0
1
0
),
L
in
d
ah
l
et

al
.
(2
0
0
1
),

L
u
k
in
sk
ie
n
e
et
al
.
(2
0
1
1
),
M
cG

il
li
v
ar
y

an
d
B
ak
al
et
z
(2
0
1
0
),
Z
h
o
u
et

al
.

(2
0
0
8
)

P
h
o
sp
h
o
li
p
as
e
A
2

mg
-m

g
/m

L
E
p
it
h
el
ia
,
n
eu
tr
o
p
h
il
s

A
n
ti
b
ac
te
ri
al
,
p
ro
in
fl
am

m
at
o
ry

E
ls
b
ac
h
et

al
.
(1
9
7
9
),
R
o
se
n
th
al

et
al
.

(1
9
9
5
),
W
ei
n
ra
u
ch

et
al
.
(1
9
9
6
),

Z
al
le
n
et

al
.
(1
9
9
8
)

Ig
A
se
cr
et
o
ry

co
m
p
o
n
en
t

mg
/m

L
E
p
it
h
el
ia

P
re
v
en
ts
b
ac
te
ri
al

ad
h
es
io
n
to

m
u
co
sa
l

su
rf
ac
es

F
ie
d
le
r
et
al
.(
1
9
9
1
),
P
h
al
ip
o
n
et
al
.
(2
0
0
2
)

C
o
m
p
le
m
en
t
fa
ct
o
r
C
3

U
nk
no

w
n

E
p
it
h
el
ia

C
o
m
p
le
m
en
t
si
g
n
al
in
g
,
an
ti
b
ac
te
ri
al
,

an
ti
fu
n
g
al

C
an
d
ia
n
o
et

al
.
(2
0
0
7
),
N
o
rd
ah
l
et

al
.

(2
0
0
4
),
S
o
n
es
so
n
et

al
.
(2
0
0
7
)

S
1
0
0
A
8
(c
al
g
ra
n
u
li
n
A
)
an
d
S
1
0
0
A
9

(c
al
g
ra
n
u
li
n
B
)
(t
o
g
et
h
er

k
n
o
w
n
as

ca
lp
ro
te
ct
in
)

U
nk
no

w
n

E
p
it
h
el
ia
,

n
eu
tr
o
p
h
il
s,

m
ac
ro
p
h
ag
es
,

m
o
n
o
cy
te
s

A
n
ti
b
ac
te
ri
al
,
an
ti
fu
n
g
al

ef
fe
ct
s
th
ro
u
g
h

se
q
u
es
tr
at
io
n
o
f
d
iv
al
en
t
ca
ti
o
n
s,

n
eu
tr
o
p
h
il
ch
em

o
ta
x
is

C
o
rb
in

et
al
.
(2
0
0
8
),
C
o
rn
is
h
et
al
.
(1
9
9
6
),

M
u
rt
h
y
et

al
.
(1
9
9
3
),
N
is
ap
ak
u
lt
o
rn

et
al
.
(2
0
0
1
a,
b
),
R
y
ck
m
an

et
al
.

(2
0
0
3
),
S
o
h
n
le
et

al
.
(1
9
9
1
,
1
9
9
6
),

S
te
in
b
ak
k
et

al
.
(1
9
9
0
),
V
an
d
al

et
al
.

(2
0
0
3
),
X
u
et

al
.
(1
9
9
9
)

S
1
0
0
A
7
(p
so
ri
as
in
)

U
nk
no

w
n

E
p
it
h
el
ia
,

m
ac
ro
p
h
ag
es

A
n
ti
b
ac
te
ri
al

A
n
d
re
se
n
et

al
.
(2
0
1
1
),
G
la
se
r
et

al
.

(2
0
0
5
),
L
ee

an
d
E
ck
er
t
(2
0
0
7
)

S
1
0
0
A
1
2
(c
al
g
ra
n
u
li
n
C
)

U
nk
no

w
n

N
eu
tr
o
p
h
il
s,

m
o
n
o
cy
te
s

A
n
ti
b
ac
te
ri
al
,
an
ti
fi
la
ri
al

C
o
le

et
al
.
(2
0
0
1
),
G
o
tt
sc
h
et

al
.
(1
9
9
9
),

G
u
ig
n
ar
d
et

al
.
(1
9
9
5
)

D
ef
en
si
n
s
(a
lp
h
a
an
d
b
et
a)

n
g
-m

g
/m

L
E
p
it
h
el
ia
,

n
eu
tr
o
p
h
il
s,

m
ac
ro
p
h
ag
es

A
n
ti
b
ac
te
ri
al
,
an
ti
fu
n
g
al
,
an
ti
v
ir
al
,

ch
em

o
ta
ct
ic

fo
r
T
ce
ll
s,
m
o
n
o
cy
te
s,

d
en
d
ri
ti
c
ce
ll
s

B
al
s
et

al
.
(1
9
9
8
a)
,
C
h
er
to
v
et

al
.
(1
9
9
6
),

D
ah
er

et
al
.
(1
9
8
6
),
G
an
z
et
al
.
(1
9
8
5
),

G
ar
ci
a
et
al
.(
2
0
0
1
a,
b
),
G
o
ld
m
an

et
al
.

282 J.A. Bartlett and P.B. McCray Jr.



(1
9
9
7
),
H
ar
d
er

et
al
.
(2
0
0
1
),
Ji
a
et

al
.

(2
0
0
1
),
L
eh
re
r
et

al
.
(1
9
8
8
),
M
cC

ra
y

an
d
B
en
tl
ey

(1
9
9
7
),
S
in
g
h
et

al
.

(1
9
9
8
),
T
er
ri
to

et
al
.
(1
9
8
9
),
Y
an
g

et
al
.
(1
9
9
9
)

C
C
L
2
0

n
g
/m

L
E
p
it
h
el
ia
,

n
eu
tr
o
p
h
il
s,

m
ac
ro
p
h
ag
es

C
h
em

o
k
in
e,
an
ti
b
ac
te
ri
al
,
an
ti
fu
n
g
al

S
ta
rn
er

et
al
.
(2
0
0
3
),
Y
an
g
et

al
.
(2
0
0
3
)

L
L
-3
7

U
nk
no

w
n

E
p
it
h
el
ia
,
n
eu
tr
o
p
h
il
s

A
n
ti
b
ac
te
ri
al
,
en
d
o
to
x
in

n
eu
tr
al
iz
at
io
n
,

w
o
u
n
d
re
p
ai
r,
an
g
io
g
en
es
is
,

ch
em

o
ta
ct
ic

fo
r
m
as
t
ce
ll
s,

n
eu
tr
o
p
h
il
s,
m
o
n
o
cy
te
s,
T
ce
ll
s

A
g
er
b
er
th

et
al
.
(2
0
0
0
),
B
al
s
et

al
.

(1
9
9
8
b
),
C
o
w
la
n
d
et

al
.
(1
9
9
5
),

H
ei
lb
o
rn

et
al
.
(2
0
0
3
),
K
o
cz
u
ll
a
et

al
.

(2
0
0
3
),
L
ar
ri
ck

et
al
.
(1
9
9
5
),

N
iy
o
n
sa
b
a
et

al
.
(2
0
0
2
),
S
o
re
n
se
n

et
al
.
(1
9
9
7
),
T
ja
b
ri
n
g
a
et

al
.
(2
0
0
6
),

T
u
rn
er
et
al
.
(1
9
9
8
),
Y
an
g
et
al
.
(2
0
0
0
)

C
h
o
le
st
er
y
l
es
te
rs
(c
h
o
le
st
er
y
l

li
n
o
le
at
e,
ch
o
le
st
er
y
l
ar
ac
h
id
o
n
at
e)

mg
/m

L
E
p
it
h
el
ia

A
n
ti
b
ac
te
ri
al

D
o
et

al
.
(2
0
0
8
)

L
ac
to
p
er
o
x
id
as
e
(L
P
O
)

mg
/m

L
S
u
b
m
u
co
sa
l
g
la
n
d

ep
it
h
el
ia

C
at
al
y
ze
s
o
x
id
at
io
n
o
f
S
C
N
�
to

fo
rm

O
S
C
N
�

C
o
n
n
er

et
al
.
(2
0
0
2
),
G
er
so
n
et
al
.
(2
0
0
0
),

L
o
re
n
tz
en

et
al
.
(2
0
1
1
),
M
o
sk
w
a
et

al
.

(2
0
0
7
),
W
ij
k
st
ro
m
-F
re
i
et

al
.
(2
0
0
3
)

H
2
O
2
(v
ia

D
U
O
X
)

0
.1

mM
E
p
it
h
el
ia

O
x
id
iz
es

S
C
N
�
to

fo
rm

an
ti
b
ac
te
ri
al

O
S
C
N
�

C
o
n
n
er

et
al
.
(2
0
0
2
),
F
o
rt
ez
a
et
al
.
(2
0
0
5
),

G
er
so
n
et

al
.
(2
0
0
0
),
L
o
re
n
tz
en

et
al
.

(2
0
1
1
),
M
o
sk
w
a
et

al
.
(2
0
0
7
),

W
ij
k
st
ro
m
-F
re
i
et

al
.
(2
0
0
3
)

S
C
N
�

mM
E
p
it
h
el
ia

A
n
ti
b
ac
te
ri
al

in
o
x
id
iz
ed

fo
rm

(O
S
C
N
�
)

C
o
n
n
er

et
al
.
(2
0
0
2
),
G
er
so
n
et

al
.
(2
0
0
0
)

L
o
re
n
tz
en

et
al
.
(2
0
1
1
),
M
o
sk
w
a
et

al
.

(2
0
0
7
),
W
ij
k
st
ro
m
-F
re
i
et

al
.
(2
0
0
3
)

Cystic Fibrosis and Defective Airway Innate Immunity 283



neutrophils store and secrete many of the same innate immune factors released by

airway epithelia, such as alpha- and beta-defensins (Ganz et al. 1985; Garcia et al.

2001a), LL-37 (Cowland et al. 1995), lysozyme (Hiatt et al. 1952), lactoferrin

(Masson et al. 1969), NGAL (Kjeldsen et al. 1993), and PLUNC (Bartlett et al.

2008b), as well as phagocyte-specific products such as the anti-inflammatory

bactericidal/permeability-increasing protein (BPI) (Weiss et al. 1978).

Macrophages and neutrophils actively communicate with airway epithelia by

releasing and responding to cytokines and other molecules involved in amplifica-

tion and/or regulation of inflammatory responses.

In airway epithelia, as well as in macrophages and neutrophils, many innate

immune responses are mediated by Toll-like receptors (TLRs), a family of pattern

recognition receptors that evolved to recognize a variety of pathogen-associated

molecular patterns (PAMPs). Engagement of a TLR typically initiates a signaling

cascade that results in an immune response tailored to the invading organism. TLRs

respond by activating the transcription of numerous cytokine genes, including TNF,

IL-6, and IL-12 as well as a variety of chemokine genes (Akira and Takeda 2004).

TLRs also induce proforms of IL-1b and IL-18, which are then processed

and secreted by NOD-like receptor-mediated caspase-1 activity. Additional intra-

cellular receptors also coordinate epithelial innate immune responses to pathogens,

including the NOD-like receptors, RIG-I, and MDA5 (Andrejeva et al. 2004;

Yoneyama et al. 2004). Reactive oxygen species (ROS) are among the most

evolutionarily conserved pathway of responses to infection or injury and are

triggered by all danger-associated molecular patterns (DAMPs) and PAMPs.

A ROS-dependent pathway triggers the inflammasome complex formation in

myeloid cells like macrophages (Cruz et al. 2007).

4 How Does Loss of CFTR Function Alter Airway

Host Defenses?

It has been challenging to explain the complex pathogenesis of CF lung disease.

While it is well established that CF is caused by absent or reduced CFTR anion

channel activity, it has been difficult to draw a direct line from this molecular defect

to the varied CF disease manifestations. In the case of CF lung disease, the critical

question is: How does the loss of anion channel activity cause defective innate

immunity in the airways? This question has given rise to a number of hypotheses,

which touch on multiple components of mucosal innate immunity. We stress that

these hypotheses are not necessarily mutually exclusive and that it is possible, even

likely, that the primary pathogenesis of CF lung disease is multifactorial.
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4.1 Altered Na+ and Cl� Transport in CF

CFTR is a Cl� channel that also conducts HCO3
�, SCN�, I�, and other anions

(Anderson et al. 1991a, b). For this reason, considerable effort has focused on

identifying links between altered electrolyte transport by airway epithelia and the

functions of the innate immune system. As epithelia use Cl� secretion and Na+

absorption to coordinately regulate the volume of secretions, it is important to

understand both Cl� and Na+ transport and osmotically coupled liquid movement

across the airway epithelium in CF patients. Several groups have investigated how

CF may alter the volume or composition of respiratory secretions.

One hypothesis posits that CFTR activity is essential for the regulation of ASL

volume and mucus hydration and that absence of CFTR causes dehydration of the

ASL and reduced mucociliary clearance (Boucher 2004, 2007). This model rests on

the concept that the depth of the ASL periciliary layer is tightly regulated to ensure

a height of ~7 mm (Matsui et al. 1998). This ~7 mm depth, the approximate length of

a cilium, is thought to be optimal for efficient ciliary beating and movement of the

mucus layer. Early studies assessing the nasal and airway transepithelial voltage

(Vt) in CF subjects indicated that the CF epithelium had a lower (lumen-negative)

Vt and also exhibited a greater reduction in nasal Vt after application of amiloride,

an inhibitor of the epithelial Na+ channel (ENaC), relative to non-CF epithelia

(Knowles et al. 1981, 1983a, b). Based on this observation, it was suggested that

Na+ hyperabsorption and concomitant liquid absorption reduces ASL volume in the

CF airways. This depletion of ASL would then lead to dehydration of the mucus

layer, resulting in thick, sticky, adherent mucus that is difficult to move, ultimately

impairing mucociliary clearance in the CF airways. In support of this hypothesis,

evidence for altered ASL volume homeostasis, thickened mucus, and reduced

mucociliary transport has been reported using cultured airway epithelia from

human CF and non-CF patients (Matsui et al. 1998). In a study of bronchial tissue

biopsies from human CF and non-CF subjects, CF samples showed a trend toward

reduced ASL depth, although this did not reach statistical significance (Griesenbach

et al. 2011). In the same study, a comparison of the periciliary liquid height of the

nasal epithelium in wild-type and CFTR-null mice revealed a significant decrease

in samples from the CFTR-null animals (Griesenbach et al. 2011).

Data from recent experiments in cultured CF and non-CF epithelia provide an

alternative interpretation for the increased nasal Vt observed in people with CF. Itani

and coworkers studied cultured primary well-differentiated human airway epithelia

and failed to find evidence for increased Na+ conductance in CF epithelia (Itani et al.

2011). Under basal or cAMP-stimulated conditions, the transepithelial conductance

of CF epithelia was reduced compared with non-CF epithelia, and the reduction could

be accounted for solely by the loss of the CFTR channel conductance. The addition of

amiloride resulted in greater decreases in Vt and short-circuit current in CF epithelia

than non-CF epithelia. However, amiloride caused similar reductions in conductance

and Na+ absorption in cells from both genotypes, indicating that the effects of

amiloride were due to a loss of Cl� conductance. These results suggest that loss of

anion conductance is the critical defect in electrolyte transport in CF epithelia.
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Inhibition of Na+ transport in the respiratory tract as a therapy has been

investigated in CF subjects given the ENaC inhibitor amiloride by inhalation.

A multicenter randomized double-blind placebo-controlled clinical trial investigated

the efficacy of thrice-daily inhaled amiloride on pulmonary function of CF

patients over a 6-month period. The study failed to demonstrate significant benefit

(Pons et al. 2000).

A second hypothesis proposes that changes in ASL ionic strength might adversely

affect the activity of innate immune effector proteins. In this model, loss of CFTR-

dependent Cl� transport results in increased ASL NaCl concentrations due to an

inability of the surface epithelium to modify ASL composition by absorption of Cl�

and Na+. A predicted outcome of this scenario is a reduction in the activity of

salt-sensitive antimicrobial factors. This hypothesis emphasizes the central

importance of antimicrobials, particularly cationic peptides and proteins, in

protecting the airways from microbes (Cole et al. 1999, 2002). It is known that the

activity levels of numerous antimicrobial factors, including lysozyme, lactoferrin,

alpha- and beta-defensins, and others, are diminished in solutions of increased ionic

strength (Goldman et al. 1997; Porter et al. 1997; Singh et al. 1998, 2000b; Travis

et al. 1999; Valore et al. 1998). In experiments using cultured well-differentiated

human primary airway epithelia derived from CF and non-CF donors, Smith and

colleagues found that CF epithelia exhibited a killing defect when a small bacterial

inoculum was applied directly to the apical surface (Smith et al. 1996). However,

when in vitro killing assays were performed using ASL that had been removed from

the apical surface of the cultures using water as a diluent, there was no significant

difference in killing between CF and non-CF-derived samples. This result implied

that it was unlikely that CF ASL lacked a critical bactericidal factor, and suggested

instead that the activity of a bactericidal factor or factor(s) was inhibited by some

aspect of the ASL environment in the CF epithelia. To test the hypothesis that the

NaCl concentration influences antimicrobial activity in CF ASL, the authors replaced

the ASL of both CF and non-CF cultures with solutions containing either high

(182 mM) or low (92 mM) Cl� concentrations and repeated the bacterial killing

assays. Bacterial killing was significantly reduced in non-CF cells that received the

high salt solution, while killing activity was restored in CF cells under the low salt

conditions (Smith et al. 1996).

While this hypothesis remains a subject of debate, the idea that loss of CFTR

function alters the ASL milieu in a manner that impairs the activity of host

defense factors remains attractive. A confounding factor has been the difficulty of

accurately measuring ASL salt concentrations in vivo. Some investigators reported

that Cl� concentrations are indeed elevated in CF (Gilljam et al. 1989; Joris et al.

1993; Kozlova et al. 2006a, b; Vanthanouvong et al. 2006; Zabner et al. 1998),

while others found no significant difference in NaCl concentrations between CF and

non-CF (Caldwell et al. 2002; Grubb et al. 2002; Jayaraman et al. 2001a, b;

Knowles et al. 1997). If a difference in the concentration of ASL NaCl is not

validated in CF, the experimental findings of the study of Smith and colleagues

(1996) continue to point to a compositional change in CF ASL that negatively

impacts the function of host defense factors.
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4.2 Altered SCN� Transport in CF

This hypothesis builds from the observation that CFTR conducts thiocyanate

(SCN�) (Tabcharani et al. 1993). While many secreted host defense proteins and

peptides are well characterized, the recognition of an airway epithelial oxidative

microbicidal system is recent. This oxidative system consists of two H2O2-

generating enzymes of airway epithelia, dual oxidases (DUOX)1 and 2, along

with a pseudohalide anion (thiocyanate, SCN�), and the enzyme lactoperoxidase

(LPO) (Conner et al. 2002; Forteza et al. 2005; Gerson et al. 2000; Moskwa et al.

2007; Wijkstrom-Frei et al. 2003). The DUOX enzymes generate H2O2 into the

apical extracellular space where H2O2 reacts with SCN� in a LPO-catalyzed

reaction to form the antibacterial molecule OSCN� (H2O2 + SCN� ! OSCN�)
(Fig. 2). Both LPO and SCN� are highly concentrated in the airway surface liquid.

SCN� is secreted apically by airway epithelia and accumulates in the ASL in

concentrations of approximately 400–460 mM (Lorentzen et al. 2011; Wijkstrom-

Frei et al. 2003). The DUOX/LPO/SCN� system can generate sufficient OSCN� to

eliminate bacteria in vitro and in vivo (Conner et al. 2007; Moskwa et al. 2007).

SCN� secretion is reduced in CF cells and tissues (Conner et al. 2007; Moskwa

et al. 2007), leading to the hypothesis that diminished SCN� (and therefore reduced

OSCN�) availability impairs defenses against airway pathogens. In support of this,

Moskwa and coworkers reported that OSCN�-mediated killing of Staphylococcus
aureus was inhibited on the apical surface of cultured CF airway epithelia (Moskwa

et al. 2007). The relative contribution of this system to normal airway defenses

in vivo, and how relevant its inactivation may be to CF pathogenesis, is currently

unresolved. In a recent study, Lorentzen and colleagues found that the

concentrations of SCN� were variable, and not significantly different, in the nasal

secretions of humans with and without CF, suggesting that the bacterial killing

activity of OSCN� was unlikely to be different between genotypes (Lorentzen et al.

2011). However, lung function correlated positively with SCN� levels in the CF

Fig. 2 Model of the

oxidative host defense system

at the apical side of airway

epithelia. DUOX enzymes are

the H2O2-generating

cytochromes in the apical

membrane of airway

epithelia. LPO is secreted by

submucosal glands. SCN� is

utilized by LPO for OSCN�

generation
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subjects in this study. These findings suggest that while oxidative defenses are

important for overall lung health, CFTR activity may not be the only determinant of

ASL SCN� levels; the authors cite SCN� transport by alternative ion channels as

potential compensating mechanisms in the CF airways (Lorentzen et al. 2011). One

candidate for alternative SCN� transport, the sodium-independent chloride/iodide

transporter pendrin (also known as SLC26A4), is expressed by human airway

epithelia and is upregulated in response to IL-4 (Pedemonte et al. 2007) and to

viral infections (Nakagami et al. 2008). Therefore, it is possible that, in some

individuals, increased pendrin expression might partially compensate for loss of

CFTR activity in inflamed CF airways.

4.3 Altered HCO3
� Transport in CF

It has been long recognized that loss of CFTR function results in the acidification of

pancreatic secretions and that CF pancreatic secretions fail to properly alkalinize in

response to secretagogues (Gaskin et al. 1982; Kopelman et al. 1988). CFTR

expressed within the airways also transports bicarbonate (HCO3
�) and thereby

helps buffer ASL (Fischer and Widdicombe 2006; Smith and Welsh 1992). In the

airways, loss of HCO3
� secretion via CFTR is predicted to result in a diminished

capacity to alkalinize respiratory secretions. A number of studies have assessed

ASL pH using in vitro systems and in vivo models. There is evidence that secretions

from submucosal glands derived from human CF nasal tissues are hyperacidified

relative to non-CF secretions (Song et al. 2006) and that cultured CF human

bronchial epithelia acidify their ASL more rapidly than do non-CF cells (Coakley

et al. 2003). In studies comparing CFTR-null and wild-type mice, Jayaraman and

coworkers noted no significant differences in the in vivo airway pH as measured

using a tracheal window preparation (Jayaraman et al. 2001b). Reductions in ASL

pH could negatively influence innate immunity by several mechanisms [reviewed

in (Coakley and Boucher 2001; Poschet et al. 2002)] including inhibiting the

activity of antimicrobials (Dorschner et al. 2006; Lehrer et al. 1983; Selsted et al.

1985), altering the viscosity of secretions (Bhaskar et al. 1991; Holma 1985), and

decreasing ciliary beat frequency (Clary-Meinesz et al. 1998).

4.4 CF-Associated Changes in Airway Submucosal Gland
Function and Secreted Mucins

Alterations in airway submucosal gland physiology are also implicated in the innate

immune defects in CF. Submucosal glands are responsible for the secretion of

liquid and mucins, such as the gel-forming mucin MUC5B (Groneberg et al. 2002),

as well as numerous proteins and peptides with antimicrobial, anti-inflammatory,
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and other host defense functions (Wine and Joo 2004). A submucosal gland is

formed by invagination of the airway epithelial surface to form a single collecting

duct, into which multiple mucous tubules empty (Wine and Joo 2004). The more

proximal portions of these tubules are lined by mucous cells, responsible for mucin

production, while the distal acini of the tubules contain serous cells that secrete

liquid, electrolytes, and various protein and peptide components of ASL. CFTR is

expressed primarily in the serous acini (Engelhardt et al. 1992), where its anion

channel activity is thought to play a key role in liquid secretion. As major sites of

mucus production, the submucosal glands contribute to the quantity and quality of

mucus in the airways and are studied for their possible involvement in generating

the abnormal mucus that is a hallmark of CF lung disease.

Several investigators hypothesize that liquid secretion by serous cells is reduced

in CFTR-deficient submucosal glands, leading to altered hydration of secreted

mucins and the ASL. The resulting mucus is predicted to be unusually viscous

and would impede the efficient mechanical clearance of particles from the airways.

Such changes in mucus rheologic properties could also lead to obstruction of

submucosal gland ducts. In support of this hypothesis, there is abundant evidence

that liquid secretion in response to secretory signals is reduced when CFTR

function is impaired. A number of studies confirmed that CF glands fail to secrete

in response to forskolin and vasoactive intestinal peptide (VIP), agonists that

stimulate secretion by elevating intracellular cAMP levels (Choi et al. 2009; Joo

et al. 2002, 2006, 2010; Lee and Foskett 2010). Similarly, secretion in CF glands is

impaired in response to the neuropeptide substance P (Choi et al. 2009; Joo et al.

2010) and to carbachol when administered in combination with other agonists

(Choi et al. 2007). In keeping with these data, studies of secretions collected from

individual submucosal glands suggest that viscosity is significantly elevated in

secretions from CF individuals (Jayaraman et al. 2001a; Salinas et al. 2005).

Defective HCO3
� secretion is also hypothesized to impact mucin release and

viscosity (Quinton 2008). One model posits that, early in the process of mucus gel

formation and extrusion from the submucosal glands, polyanionic mucin molecules

are packed together into condensed mucin granules. To maintain this structure, the

mucin molecules are highly cross-linked and their charges neutralized by a “shield”

of Ca2+ ions. HCO3
�, which effectively chelates Ca2+, can sequester these Ca2+ ions,

thereby releasing the cross-links betweenmucins and allowing the mucins to rapidly

expand as they are released from submucosal glands and/or goblet cells. In this way,

HCO3
�may be intimately involved in the swelling and hydration of the ASL mucus

layer. This model is supported by the demonstration that adding HCO3
� to mucus

gels increases mucus dispersal in vitro (Chen et al. 2010a). Therefore, in CF glands

and tissues, the absence of CFTR-mediated HCO3
� secretion may result in mucus

granules that de-condense inappropriately, giving rise to viscous, under-hydrated

mucus that impairs mucociliary clearance (Chen et al. 2010a).

In addition to the impact of impaired secretory responses of CF glands on the

hydration status of mucins, it is suggested that this phenomenon could affect the

abundance of secreted antimicrobials and other host defense factors from gland

serous cells. While there is currently little direct evidence for this, Wine and

Cystic Fibrosis and Defective Airway Innate Immunity 289



colleagues reported that a number of known innate immune molecules, including

lysozyme, NGAL (lipocalin-2), HSC-71, and the protease inhibitors alpha

1-antitrypsin and alpha 1-antichymotrypsin, are secreted by Calu-3 cells (a serous

cell model) in response to forskolin stimulation (Joo et al. 2004). This observation

leads to the prediction that secretion of antimicrobials may be reduced in the

absence of CFTR. Additionally, when this observation is considered with the

above-mentioned defects in liquid secretion and mucus hydration, it is tempting

to speculate that in CF glands, secreted innate immune molecules may become

“trapped” within viscous polyanionic mucus and are therefore less likely to be

properly presented to the airway lumen.

Increased mucin production by the surface epithelium may also contribute to

impaired mucociliary clearance in CF. Airway surface goblet cells secrete the

gel-forming mucin MUC5AC and, to a lesser extent, MUC5B (Groneberg et al.

2002; Hovenberg et al. 1996). Goblet cell metaplasia is a response to chronic

inflammation and is commonly seen in CF lung disease (Bedrossian et al. 1976;

Davis and Dickey 2008; Groneberg et al. 2002). Therefore, the increased viscous

secretions associated with CF are derived in part from the surface epithelium.

In keeping with this, Derichs and colleagues reported that the viscosity was

increased in both the mucus and the periciliary liquid layers of the ASL from

cultured CF bronchial epithelia, which do not possess submucosal glands (Derichs

et al. 2011). This raises the possibility that increased mucin production from goblet

cells may also impact innate immunity by providing more binding sites for cationic

antimicrobials and other molecules that normally associate with the polyanionic

mucin polymers in the airways (Felgentreff et al. 2006), making those antimicrobial

factors less available to interact with their target pathogens.

5 New Animal Models of CF Lung Disease

A limitation in advancing knowledge of the molecular basis of CF lung disease has

been the lack of animal models that recapitulate key features of lung and other

organ disease pathology. The mouse models with CFTR-null alleles and human

CFTR mutations available since the early 1990s have contributed greatly to disease

understanding but do not develop spontaneous lung disease similar to humans with

CF. Recently, several groups used somatic cell targeting of the CFTR gene,

followed by nuclear transfer and cloning to develop novel models in pigs (Klymiuk

et al. 2011; Rogers et al. 2008a, b) and ferrets (Sun et al. 2008, 2010). These new

animal models recapitulate key features of CF disease (Klymiuk et al. 2011; Rogers

et al. 2008b; Sun et al. 2010). At birth, the airways of CFTR targeted pigs are free of

inflammation but manifest a bacterial host defense defect without the secondary

consequences of infection (Rogers et al. 2008b; Stoltz et al. 2010). Pigs with

targeted CFTR genes spontaneously develop hallmark features of CF including

airway inflammation, remodeling, mucus, and infection within months of birth

(Fig. 3). Their lungs contain multiple bacterial species (Gram-negative and
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Gram-positive), suggesting an equal opportunity host defense defect. While the

lungs of newborn pigs show no inflammation, they are less often sterile than

wild-type littermate controls. Moreover, after intrapulmonary bacterial challenge

with Staphylococcus aureus, CF pigs fail to eradicate bacteria as effectively as

wild-type pigs (Stoltz et al. 2010). These results suggest that impaired bacterial

elimination is the pathogenic event initiating a cascade of inflammation and

pathology.

Studies of CF pig submucosal glands have shown that the model exhibits

responses to agonists qualitatively similar to glands from human patients with CF

(Joo et al. 2010). CF pig glands produce almost no liquid in response to cAMP

agonists and reduced volumes in response to all other stimuli except carbachol.

Furthermore, glands from newborn CF pigs, like human CF glands, exhibit a

reduced secretory response to substance P (Joo et al. 2010). Thus, CF glands have

a reduced ability to respond to important secretagogues. These findings, combined

with the hypoplastic submucosal glands of the newborn CF airways (Meyerholz

et al. 2010), raise the possibility that the gland contributions to ASL are altered in

their volume and composition in CF.

Recent studies in newborn CF pigs provide further support for the idea that an

altered ASL environment is a primary cause of impaired innate immunity in the

lung. In vitro and in vivo experiments showed that ASL pH was lower in CF pigs,

and this reduction in pH reduced the antimicrobial activity of ASL (Pezzulo et al.

2012). Interestingly, a more acidic ASL pH also diminished bacterial killing in

wild-type pigs, while increasing ASL pH increased antimicrobial activity in the

ASL of pigs with CF. These results in newborn animals support the concept that

reductions in ASL pH due to loss of CFTR-dependent HCO3
� secretion impair the

activity of endogenous antimicrobial proteins and peptides, allowing for the onset

of airway infection.

Experiments in the CF pig model also yielded some unexpected findings. CFTR
targeted pigs exhibit morphological abnormalities of the newborn trachea and large

airways, including tracheal cartilage alterations, a decrease in submucosal gland

mass, and more noticeable smooth muscle bundles in the posterior trachea

Fig. 3 Airway disease in a pig model of cystic fibrosis. Airways from a CFTR+/+ (left panel, H&E

stain) and a CFTR�/� pig (middle and right, PAS and H&E, respectively), bar ¼ 90 mm. CFTR�/�

pig is infected with the Gram-negative organism Bordetella bronchiseptica. Note the increased

mucosal thickening and mucin expression in the epithelium with mucocellular lumen obstruction

(middle panel). ACF pig airway is obstructedwith neutrophils andmucopurulent debris (right panel)
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(Meyerholz et al. 2010). Interestingly, retrospective analysis of chest CT scans from

children with CF revealed that the tracheas of CF subjects were less circular than

the non-CF control individuals (Meyerholz et al. 2010), echoing the tracheal

abnormalities observed in the CF piglets. These results are contrary to the dogma

that the “lungs of children with CF are normal at birth,” and raise the possibility that

loss of CFTR function perturbs a developmental program in the lung resulting in

structural abnormalities. Such changes could also contribute to the lung disease

phenotype.

In a series of experiments using cultured airway epithelia and freshly excised

nasal and tracheal tissues from CFTR�/� pigs, as well as in vivo electrophysio-

logical measurements, Chen et al. reported that airway epithelia from newborn CF

pigs displayed a reduced Cl� conductance without an increase in Na+ conductance

(Chen et al. 2010b). The authors implicate the loss of the CFTR-dependent Cl�

conductance, rather than increased Na+ conductance, as the explanation for the

greater reduction in Vt in response to amiloride observed in CF epithelia relative to

non-CF epithelia. Measurements of the periciliary liquid depth in fixed tracheal

tissue from pigs indicated no significant difference in ASL depth between the CF

and non-CF airways at birth. These data suggest that ASL/mucus dehydration due

to Na+ hyperabsorption in CF airways may not be a primary event in CF patho-

genesis, although they do not rule out the possibility that perturbations in Na+

transport may affect airway immunity as the disease progresses.

CFTR-null ferrets also develop multiorgan system disease, and neonatal animals

manifest a pulmonary host defense defect in the airways associated with coloni-

zation by bacteria (Sun et al. 2010). Early results also indicate that adult CF ferrets

develop a lung disease phenotype with similarities to human CF, including bacterial

colonization (John Engelhardt, personal communication). Continued studies of

animal models that reproduce key phenotypic features of human CF lung disease

are likely to provide further insights into the links between loss of CFTR function

and the initial pathologic events.

6 Future Directions

With recent advances in CF basic science research and the development of new

animal models, the field is poised to make further breakthroughs in the understanding

of disease pathogenesis, including a better grasp of the molecular basis of the airway

host defense defect. Advancements in these areas are critical to the development of

new pulmonary specific or systemic therapies to prevent the onset or slow the rate of

disease progression.
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