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Inverse Scattering for Non-classical Impedance
Schrödinger Operators

Sergio Albeverio, Rostyslav O. Hryniv, Yaroslav V. Mykytyuk
and Peter A. Perry

Abstract. We review recent progress in the direct and inverse scattering the-
ory for one-dimensional Schrödinger operators in impedance form. Two classes
of non-smooth impedance functions are considered. Absolutely continuous
impedances correspond to singular Miura potentials that are distributions
from 𝑊−1

2,loc(ℝ); nevertheless, most of the classic scattering theory for Schrö-
dinger operators with Faddeev–Marchenko potentials is carried over to this
singular setting, with some weak decay assumptions. The second class con-
sists of discontinuous impedances and generates Schrödinger operators with
unusual scattering properties. In the model case of piece-wise constant imped-
ance functions with discontinuities on a periodic lattice the corresponding re-
flection coefficients are periodic. In both cases, a complete description of the
scattering data is given and the explicit reconstruction method is derived.

Mathematics Subject Classification (2010). Primary: 34L25, Secondary: 34L40,
47L10, 81U40.

Keywords. Schrödinger operator, impedance function, inverse scattering prob-
lem.
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1. Introduction

In this paper, we shall discuss inverse scattering problems for one-dimensional
Schrödinger operators 𝐻 in the impedance form,

𝐻 := −1

𝑝

d

d𝑥
𝑝2

d

d𝑥

1

𝑝
, (1.1)

for non-smooth impedance functions 𝑝. Our aim is two-fold: firstly, we shall show
that the classic inverse scattering theory for Schrödinger operators as discussed
in, e.g., [27, 31, 40, 54, 60, 61, 63] and which is well understood for Faddeev–
Marchenko potentials 𝑞 ∈ 𝐿1

(
ℝ, (1+∣𝑥∣)d𝑥) (also called Jost–Bargmann potentials

in the physical literature), can successfully be extended to a much wider class of
operators, and shall give an account on a recent progress in this direction. Secondly,
even though the general approach remains the same, we shall demonstrate that
such extensions lead to scattering objects whose properties might differ drastically
from those observed in the Faddeev–Marchenko case.

We note that the above impedance Schrödinger operators can often be writ-
ten, at least for smooth enough 𝑝, in a more usual potential form; however, there
are several reasons why our primary interest is in operators 𝐻 in the impedance
form (1.1). Firstly, Hamiltonians of many models of mathematical physics (e.g.,
in optics, electromagnetics etc.) take the form (1.1), or can easily be transformed
to it; the corresponding example is given in Subsection 1.3. Secondly, (1.1) allows
a reduction to a first-order Dirac-type (or Zakharov–Shabat) system that is much
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easier to work with. Finally, a non-negative Schrödinger operator in potential form
can usually be recast as (1.1) for a suitable impedance function 𝑝, cf. [48], while
for non-smooth 𝑝 impedance Schrödinger operators may not possess a reasonable
potential form; in this sense the class of operators (1.1) is larger.

Indeed, set 𝑢 := (log 𝑝)′ = 𝑝′/𝑝. For absolutely continuous 𝑝, the operator 𝐻
can be written in the factorized form,

𝐻 = −
( d

d𝑥
+ 𝑢

)( d

d𝑥
− 𝑢

)
, (1.2)

and becomes a Schrödinger operator in the potential form,

𝐻𝑦 = −𝑦′′ + 𝑞𝑦, (1.3)

for the Miura potential 𝑞 := 𝑢′ + 𝑢2. For this to be a regular potential, 𝑢 must be
at least locally absolutely continuous and thus 𝑝 a function from the Sobolev class
𝑊 2
1,loc(ℝ). We, however, will not require any continuity of 𝑢. The first part of the

paper will discuss the case where 𝑢 is a function in 𝐿2,loc(ℝ) with additional decay
properties and thus 𝑞 will be a distribution that locally belongs to the Sobolev
space 𝑊−1

2 (ℝ). In the second part, we will treat the case where the impedance 𝑝
is discontinuous; then 𝑢 contains the Dirac 𝛿-functions and 𝑞 – at least formally –
involves their derivatives 𝛿′. See the monographs [6] and [7] for detailed treatment
of Schrödinger operators with singular potentials and extensive bibliography lists.

Yet another motivation for thinking of the Schrödinger operator 𝐻 in terms
of the function 𝑢 rather than in terms of its potential 𝑞 is given by Miura and
is related to completely integrable dispersive equations, cf. [33]. Recall that the
Miura map is defined as

𝐵 :𝐿2,loc(ℝ) → 𝑊−1
2,loc(ℝ),

𝑢 �→ 𝑢′ + 𝑢2.
(1.4)

In 1968, Miura [62] observed that if 𝑢(𝑥, 𝑡) is a smooth solution of the mKdV
equation, then

(𝐵𝑢)(𝑥, 𝑡) =
∂𝑢

∂𝑥
(𝑥, 𝑡) + 𝑢2(𝑥, 𝑡)

is a smooth solution of the KdV equation. For this reason, the Miura map has
played a fundamental role in the study of existence and well-posedness questions for
these two equations. A suitable extension of the scattering theory for Schrödinger
operators in the form (1.2) would allow to apply the inverse scattering transform
method to study initial value problems for mKdV and other completely integrable
dispersive equations with highly singular initial data; cf. [30] for a particular ex-
ample of the defocussing non-linear Schrödinger (NLS) equation with the Dirac
delta-functions in potentials.

We shall concentrate on two classes of operators 𝐻 in (1.1) or (1.2), which
are in a sense “extremal” and for which the direct and inverse scattering problems
have recently been quite thoroughly discussed. The first is the class of (locally)
absolutely continuous impedance functions 𝑝, for which the corresponding 𝑢 = 𝑝′/𝑝
have certain integrability at infinity and which still bears lots of properties found
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for problems with Faddeev–Marchenko potentials; see [35, 36, 46]. The second
class is with piece-wise constant 𝑝 [3, 4, 66, 67]; formally, the corresponding 𝑢
is a discrete measure, i.e., the sum of the Dirac 𝛿-functions. The Schrödinger
operators (1.1) in this second class possess quite unusual scattering properties [9,
10]; in a certain sense, the corresponding scattering theory might be viewed as a
“discrete” analogue of the classical one.

Despite the formal similarities in the way the inverse scattering problems
are solved in both cases, there are essential differences that do not allow to com-
bine the two methods and to treat generic piece-wise smooth impedances, i.e.,
generic measures d log 𝑝 without singular continuous components. Needless to say,
such a unified theory would be of much interest for many applications, e.g., for
electromagnetic scattering theory in stratified media.

1.1. Basic definitions

Now we recall the main objects of the scattering theory for Schrödinger operators
in one dimension and describe in general terms the results we want to derive;
see, e.g., [19, 27, 31, 58, 59, 64, 67] for a detailed exposition. We shall work in
terms of the logarithmic derivative 𝑢 = 𝑝′/𝑝 of the impedance function 𝑝; the
precise assumptions on 𝑢 will be stated in the next sections. In particular, in the
continuous case 𝑢 will be in 𝐿2(ℝ) with some decay at infinity, while for piece-wise
constant 𝑝 the function 𝑢 is a measure.

Denote by 𝔩 the differential expression generated by either (1.1) or (1.2) on
the maximal domain in 𝐿2,loc(ℝ). By definition, the Jost solutions 𝑓±(⋅, 𝜔) for
𝜔 ∈ ℝ are solutions to the Schrödinger equation 𝔩(𝑦) = 𝜔2𝑦 that are asymptotic
to e±i𝜔𝑥 at ±∞, i.e., such that

𝑓+(𝑥, 𝜔) = ei𝜔𝑥(1 + 𝑜(1)), 𝑥 → +∞,

𝑓−(𝑥, 𝜔) = e−i𝜔𝑥(1 + 𝑜(1)), 𝑥 → −∞.

The Jost solutions exist for quite a large class of impedance functions 𝑝 (resp. 𝑢).
For real nonzero 𝜔, the solutions 𝑓−( ⋅ , 𝜔) and 𝑓−( ⋅ ,−𝜔) form a fundamental
system of solutions of 𝔩(𝑦) = 𝜔2𝑦 and thus there exist coefficients 𝑎(𝜔) and 𝑏(𝜔)
such that

𝑓+(𝑥, 𝜔) = 𝑎(𝜔)𝑓−(𝑥,−𝜔) + 𝑏(𝜔)𝑓−(𝑥, 𝜔). (1.5)

As in the classic scattering theory for Schrödinger operators with potentials in
the Faddeev–Marchenko class, the coefficients 𝑎 and 𝑏 will be shown to verify the
identities ∣𝑎(𝜔)∣2 − ∣𝑏(𝜔)∣2 = 1, 𝑎(−𝜔) = 𝑎(𝜔), 𝑏(−𝜔) = 𝑏(𝜔), and the relation

𝑓−(𝑥, 𝜔) = 𝑎(𝜔)𝑓+(𝑥,−𝜔)− 𝑏(−𝜔)𝑓+(𝑥, 𝜔). (1.6)

The corresponding right 𝑟+ and left 𝑟− reflection coefficients are introduced via

𝑟+(𝜔) := −𝑏(−𝜔)

𝑎(𝜔)
, 𝑟−(𝜔) :=

𝑏(𝜔)

𝑎(𝜔)
, (1.7)
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and 𝑡 := 1/𝑎 is the transmission coefficient. The motivation for these terms comes
from physics; indeed, the solution

𝑡(𝜔)𝑓+(𝑥, 𝜔) = 𝑓−(𝑥,−𝜔) + 𝑟−(𝜔)𝑓−(𝑥, 𝜔)

describes the plane monochromatic wave ei𝜔𝑥 sent in from−∞ (the term 𝑓−(𝑥;−𝜔))
that after interaction with the impedance 𝑝 partly transmits to +∞ (the term
𝑡(𝜔)𝑓+(𝑥;𝜔)) and partly gets reflected back to −∞ (the term 𝑟−(𝜔)𝑓−(𝑥;𝜔)).

These coefficients form the matrix

𝑆(𝜔) :=

(
𝑡(𝜔) 𝑟+(𝜔)
𝑟−(𝜔) 𝑡(𝜔)

)
called the scattering matrix for 𝐻 . This matrix is unitary on the real line and the
above properties of the scattering coefficients 𝑎 and 𝑏 imply that 𝑆 can uniquely
be reconstructed from the right or left reflection coefficient alone. We observe that
the impedance Schrödinger operator 𝐻 is non-negative and thus has no bound
states; therefore 𝑆 comprises all the scattering information on 𝐻 .

The direct scattering theory studies the properties of the scattering maps 𝒮±
defined via

𝒮+ : 𝑢 → 𝑟+,

𝒮− : 𝑢 → 𝑟−.

The inverse scattering problem is to reconstruct the function 𝑢 and thus the
Schrödinger operator 𝐻 from its scattering matrix (i.e., from its reflection co-
efficient 𝑟+ or 𝑟−). More exactly, for a given class of Schrödinger operators, i.e.,
for a given class of functions 𝑢, a complete solution of the inverse scattering prob-
lem consists in proving that the maps 𝒮± are one-to-one, finding their images, and
constructing the inverse maps 𝒮−1± .

Next we discuss in some more detail two classes of problems we will mostly
be interested in.

1.2. Miura potentials: the case of absolutely continuous 𝒑

To describe the first class of problems to be studied, we start with the observation
that if a Schrödinger operator (1.3) has no bound states, then the corresponding
potential 𝑞 admits a Riccati representation given by the Miura map (1.4). Namely,
for 𝑞 ∈ 𝑊−1

2,loc(ℝ) real-valued and 𝜑 ∈ 𝐶∞
0 (ℝ) define the Schrödinger form 𝔥

corresponding to (1.3) via

𝔥(𝜑) :=

∫
∣𝜑′(𝑥)∣2 d𝑥+ ⟨𝑞, ∣𝜑∣2⟩,

where ⟨ ⋅ , ⋅ ⟩ is the pairing between 𝑊−1
2,loc(ℝ) and 𝑊 1

2,comp(ℝ). Then, as shown

in [48], if 𝑞 is a real-valued distribution in 𝑊−1
2,loc(ℝ) for which the Schrödinger

form 𝔥 is nonnegative, then 𝑞 may be presented as 𝑞 = 𝐵𝑢 for a function 𝑢 ∈
𝐿2,loc(ℝ). Such a function 𝑢 need not be unique; we will call 𝑞 a Miura potential
and any function 𝑢 satisfying 𝑞 = 𝐵𝑢 a Riccati representative for 𝑞. It is easily
seen that two Riccati representatives for a given 𝑞 differ by a continuous function
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and that a Riccati representative 𝑢 is the logarithmic derivative of a positive
distributional solution to the zero-energy Schrödinger equation −𝑦′′ + 𝑞𝑦 = 0.

One may not hope for extension of the scattering theory that would recon-
struct directly a singular Miura potential 𝑞 ∈ 𝑊−1

2,loc(ℝ) of (1.3). However, the
corresponding Riccati representative 𝑢 is a regular function, and reconstruction
of 𝑢 from the scattering data of 𝐻 might be possible. Since, however, a Miura
potential 𝑞 possesses many different Riccati representatives, one has to single out
a distinguished 𝑢 that should be recovered.

One such possibility was suggested in [36], where the class𝒬0 of Miura poten-
tials admitting Riccati representatives 𝑢 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ) was considered. In this
case, such a Riccati representative is unique, thus giving a natural parametrization
of Miura potentials 𝑞 and Schrödinger operators (1.2) and (1.3). Below, we give
several examples from [36] of Miura potentials generated this way.

Example 1.1. Let 𝑢 be an even function that for 𝑥 > 0 equals 𝑥−𝛼 sin𝑥𝛽 . Assume
that 𝛼 > 1 and 𝛽 > 𝛼+1. Then 𝑢 belongs to 𝐿1(ℝ)∩𝐿2(ℝ) and the corresponding
Miura potential 𝑞 = 𝑢′ + 𝑢2 is of the form

𝑞(𝑥) = 𝛽 sign (𝑥)∣𝑥∣𝛽−𝛼−1 cos ∣𝑥∣𝛽 + 𝑞(𝑥)

for some bounded function 𝑞. Thus 𝑞 is unbounded and oscillatory; nevertheless,
the corresponding Schrödinger operator possesses only absolutely continuous spec-
trum filling out the positive semi-axis and the scattering and inverse scattering on
such potentials is well defined.

Example 1.2. Assume that 𝜙 ∈ 𝐶∞
0 (ℝ) is such that 𝜙 ≡ 1 on (−1, 1). Take

𝑢(𝑥) = 𝛼𝜙(𝑥) log ∣𝑥∣ with 𝛼 > 0. Then 𝑢 ∈ 𝐿1(ℝ) ∩ 𝐿2(ℝ); moreover, since the
distributional derivative of log ∣𝑥∣ is the distribution P.v. 1/𝑥, the corresponding
Miura potential 𝑞 is smooth outside the origin and has there a Coulomb-type sin-
gularity. See, e.g., [16, 34, 57] and the references therein for discussion and rigorous
treatment of Schrödinger operators with Coulomb potentials.

Example 1.3 (Frayer [35]). The Riccati representative 𝑢 = 𝛼𝜒[−1,1], with 𝛼 a
nonzero real constant and 𝜒Δ the indicator function of a set Δ, corresponds to the
Miura potential

𝑞 = 𝛼𝛿(⋅+ 1)− 𝛼𝛿(⋅ − 1) + 𝛼2𝜒[−1,1],

𝛿 being the Dirac delta-function centered at the origin.

The class 𝒬0 of Miura potentials, however, is rather small in the sense that
all the corresponding Schrödinger operators (1.2) possess resonance (or half-bound
state) at the origin, see Section 2. In particular, 𝒬0 includes neither the model
singular potential 𝑞 = 𝛼𝛿, with 𝛼 > 0 and 𝛿 being the Dirac delta function centered
at the origin, nor generic (i.e., non-resonant) Faddeev–Marchenko potentials. For
this reason a further extension of 𝒬0 is desirable.
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Such a wider class 𝒬 of Miura potentials 𝑞 was suggested in [46]. Recall that
any Riccati representative 𝑢 gives rise to a strictly positive distributional solution 𝑦
of the zero-energy Schrödinger equation −𝑦′′ + 𝑞𝑦 = 0 via

𝑦(𝑥) = exp

(∫ 𝑥

0

𝑢(𝑠)d𝑠

)
and, conversely, any positive solution 𝑦 ∈ 𝐻1

loc(ℝ) gives rise to a Riccati repre-
sentative 𝑢(𝑥) = 𝑦′(𝑥)/𝑦(𝑥). Thus, the set of Riccati representatives for a given
distribution potential 𝑞 is parameterized by positive solutions 𝑦 to the zero-energy
Schrödinger equation normalized by 𝑦(0) = 1. Among all positive solutions to
𝑦′′ = 𝑞𝑦 there are extremal ones 𝑦± with the properties that∫ ∞

0

d𝑠

𝑦2+(𝑠)
=

∫ 0

−∞

d𝑠

𝑦2−(𝑠)
= +∞,

and then any positive solution 𝑦 takes the form 𝑦 = 𝜃𝑦+ + (1− 𝜃)𝑦− for some 𝜃 ∈
[0, 1]. The corresponding extremal Riccati representatives 𝑢± = (log 𝑦±)

′
belong

to 𝐿2,loc(ℝ); we will assume in addition that 𝑢± are in 𝐿2(ℝ) and that 𝑢+ is
integrable at +∞ and 𝑢− is integrable at −∞. The set of all potentials with the
above properties is denoted by 𝒬, i.e.,

𝒬 := {𝑞 = 𝑞 ∈ 𝑊−1
2 (ℝ) : ∃𝑢± ∈ 𝐿2(ℝ) ∩ 𝐿1(ℝ

±) s.t. 𝑞 = 𝑢′+ + 𝑢2+ = 𝑢′− + 𝑢2−}.
We observe that the Riccati representatives 𝑢+ and 𝑢− with the above prop-

erties are unique [44, Ch. IX.2 (ix)] and that 𝒬0 corresponds to the case where
𝑢− = 𝑢+, i.e., where the extremal solutions 𝑦− and 𝑦+ are linearly dependent.
This condition is very unstable under perturbation of 𝑞, whence the case 𝑞 ∈ 𝒬0
might be considered “exceptional” and 𝑞 ∈ 𝒬1 := 𝒬 ∖ 𝒬0 “generic”. A poten-
tial 𝑞 ∈ 𝒬 is uniquely determined by the data 𝑢−∣(−∞,0), 𝑢+∣(0,∞), and the “jump”

(𝑢−−𝑢+)(0). The set 𝒬 contains all real-valued potentials of Faddeev–Marchenko
class generating non-negative Schrödinger operators as well as many singular po-
tentials (e.g., with Dirac delta-functions and Coulomb-like singularities). For in-
stance, if 𝑞 = 𝑞0 + 𝑞1 is such that 𝑞0 ∈ 𝒬, 𝑞1 ∈ 𝑊−1

2 (ℝ) is of compact support,
and the corresponding operator 𝐻 of (1.3) is non-negative, then 𝑞 ∈ 𝒬; see [46].

In fact, a further extension is possible; namely, one can add a Miura potential
from 𝒬 to any Faddeev–Marchenko potential; the resulting Schrödinger operator
need not be non-negative any longer but will in general have a finite number of
negative eigenvalues. A comprehensive direct and inverse scattering theory for such
operators can be developed; this will be discussed in [47].

1.3. A physical example with discontinuous impedance

The second class of Schrödinger operators we shall treat are generated by (1.1) with
discontinuous impedances. There are many physically relevant problems leading
to such operators [3, 4, 66], and we present below one example.
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Non-destructive testing of a layered isotropic medium is usually based on
probing by electromagnetic waves and leads to the Maxwell system for the elec-
tric 𝐸( ⋅ , 𝜔) and magnetic 𝐻( ⋅ , 𝜔) components of the electromagnetic field [42].
For the planar probing wave of frequency 𝜔 and normal incidence (along the 𝑥-axis)
this system takes the form⎧⎨⎩

𝑑𝐸(𝑥, 𝜔)

𝑑𝑥
+ i𝜔𝜇(𝑥)𝐻(𝑥, 𝜔) = 0,

𝑑𝐻(𝑥, 𝜔)

𝑑𝑥
+ i𝜔𝜀(𝑥)𝐸(𝑥, 𝜔) = 0,

with 𝜇 and 𝜀 denoting respectively the permeability and permittivity of the me-
dium. Under the Liouville transformation

𝑠(𝑥) :=

∫ 𝑥

0

√
𝜀(𝑥′)𝜇(𝑥′) 𝑑𝑥′, 𝑝(𝑠) := 4

√
𝜀(𝑠)

𝜇(𝑠)
,

the above Maxwell system assumes the form⎧⎨⎩
𝑑𝐸(𝑠, 𝜔)

𝑑𝑠
+

i𝜔

𝑝2(𝑠)
𝐻(𝑠, 𝜔) = 0;

𝑑𝐻(𝑠, 𝜔)

𝑑𝑠
+ i𝜔𝑝2(𝑠)𝐸(𝑠, 𝜔) = 0,

and yields the impedance Schrödinger equation

−(𝑝2(𝑠)𝐸′(𝑠, 𝜔)
)′
= 𝜔2𝑝2(𝑠)𝐸(𝑠, 𝜔) (1.8)

for the electric potential 𝐸. Clearly, the impedance 𝑝 is discontinuous at the in-
terface points between the layers.

The inverse scattering problem of interest is to reconstruct the impedance
function 𝑝 given the scattering data for the equation (1.8). Here, we consider the
model case where 𝑝 is piece-wise constant and has jumps at the points of a regular
lattice 𝑑ℤ, for some 𝑑 > 0. Without loss of generality, we shall assume that 𝑑 = 1,
scaling appropriately the 𝑠-axis as necessary. Then in every interval Δ𝑗 := (𝑗, 𝑗+1)
equation (1.8) takes the form −𝐸′′ = 𝜔2𝐸, and the impedance 𝑝 only determines
the interface conditions at the lattice points 𝑠 ∈ ℤ.

We further set 𝑦(𝑠, 𝜔) = 𝑝(𝑠)𝐸(𝑠, 𝜔) and find that 𝑦 satisfies the equation

− 1

𝑝(𝑠)

𝑑

𝑑𝑠
𝑝2(𝑠)

𝑑

𝑑𝑠

𝑦

𝑝(𝑠)
= 𝜔2𝑦, (1.9)

for which the mathematical treatment of the corresponding direct and inverse scat-
tering problems is easier. Since the asymptotic behavior of the solutions 𝐸( ⋅ , 𝜔)
and 𝑦( ⋅ , 𝜔) of equations (1.8) and (1.9) are the same up to the factor 𝑝(𝑠), the
scattering problems for the two equations are equivalent. Clearly, (1.9) is just the
spectral problem 𝐻𝑦 = 𝜔2𝑦 for the impedance Scrödinger operator 𝐻 of (1.1).
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1.4. Some singular impedance Schrödinger operators not discussed

There are some other classes of Schrödinger operators that can be reduced to
the impedance form. One of the examples is the Schrödinger operator 𝐻𝜅 on the
half-line generated by differential expressions

ℓ𝜅(𝑦) := −𝑦′′ +
𝜅(𝜅+ 1)

𝑥2
𝑦 + 𝑞𝑦

with Bessel-type potentials 𝜅(𝜅 + 1)/𝑥2, where 𝜅 ∈ [− 12 , 12 ). For non-negative
integer values of 𝜅 such operators arise in the decomposition in spherical harmonics
of the three-dimensional Hamiltonian −Δ, and then 𝜅 is the angular momentum,
or partial wave, see [19, 26]. Operators of the form 𝐻𝜅 with non-integer values
of 𝜅 arise in the study of scattering of waves and particles in conical domains (see,
e.g., [20]), as well as in the study of the Aharonov–Bohm effect [2]. See also the
related paper [56], where inverse scattering is discussed for long-range oscillating
potentials leading to scattering functions with finite phase shifts.

We observe that for many 𝑞 the differential expression ℓ𝜅 might be written
in the factorized form (1.2)

−
( 𝑑

𝑑𝑥
− 𝜅

𝑥
+ 𝑣

)( 𝑑

𝑑𝑥
+

𝜅

𝑥
− 𝑣

)
with suitable 𝑣, thus taking the impedance form (1.1) with 𝑝 = 𝑥−𝜅 exp

∫
𝑣. Re-

cently, direct and inverse scattering problem for 𝐻𝜅 on the half-line was studied
in [8]. It was demonstrated there that the scattering function 𝐹 possesses some un-
usual properties, namely, that it is discontinuous at the origin and at infinity and
1− 𝐹 does not tend to zero. In particular, in the model case 𝑞 ≡ 0 the scattering
function 𝐹 was shown to take two different constant values for 𝜔 < 0 and 𝜔 > 0.
As the scattering problems on half-line are formulated in somewhat different terms
than on the whole line, we shall not discuss here the inverse scattering problems
for the operator 𝐻𝜅.

There are some works studying scattering problems for Hamiltonians on
the half-line with Coulombic reference potential, see, e.g., [24, 25]. Although the
Coulomb-type singularity can be modeled by Miura potentials treated here, see
Example 1.2, taking 1/𝑥 as a reference potential again requires somewhat different
techniques that could not be covered in this paper without significantly enlarging
its size.

The paper is organized as follows. In Section 2, we discuss the general ap-
proach to solve the inverse scattering problem for the impedance operators 𝐻 for
continuous and discontinuous impedance functions. The continuous case leading to
Schrödinger operators with Miura potentials is studied in Section 3, and the case
of piece-wise constant impedances in Section 4. Finally, the Appendix contains
some basic properties of Wiener-type Banach algebras.
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2. The general approach and main results

The extension of the scattering theory we are going to present here builds upon the
standard approach; however, we use extensively the Banach algebra and Banach
space techniques and, whenever possible, avoid point evaluations of the functions
involved.

We define the Fourier transforms ℱ+ and ℱ− via

(ℱ+𝑓)(𝑥) := 1

2𝜋

∫ ∞

−∞
ei𝑠𝑥𝑓(𝑠) d𝑠,

(ℱ−𝑓)(𝑥) := 1

2𝜋

∫ ∞

−∞
e−i𝑠𝑥𝑓(𝑠) d𝑠

(2.1)

for summable 𝑓 and extend them in the usual manner to distributions. It will be
convenient to work with the functions

𝐹+(𝑥) := (ℱ+𝑟+)(𝑥) = 1

2𝜋

∫ ∞

−∞
ei𝑠𝑥𝑟+(𝑠) d𝑠, (2.2)

𝐹−(𝑥) := (ℱ−𝑟−)(𝑥) = 1

2𝜋

∫ ∞

−∞
e−i𝑠𝑥𝑟−(𝑠) d𝑠 (2.3)

and to analyze the mappings 𝑢 �→ 𝐹+ and 𝑢 �→ 𝐹− given by ℱ+ ∘𝒮+ and ℱ− ∘𝒮−.
The scattering mappings 𝒮± are known to be close to the Fourier transforms in
the sense that the mappings ℱ+∘𝒮+ and ℱ−∘𝒮− are close to the identity mapping
and, in particular, act continuously in certain spaces of interest, see [45, 46].

We shall concentrate mostly on the case of absolutely continuous impedances
generating Miura potentials; then 𝑢 is in 𝐿2(ℝ). The differences in the discrete
case will be discussed at the end of this section; then 𝑢 is a discrete measure.

2.1. The continuous case

In the continuous case, the Riccati representative 𝑢 is supposed to generate the
Miura potential 𝑞 ∈ 𝒬. A generic 𝑞 ∈ 𝒬 possesses two different representatives 𝑢±
with the property that 𝑢± ∈ 𝐿2(ℝ) ∩ 𝐿1(ℝ±) and is uniquely determined by the
triple {𝑢−∣ℝ− , 𝑢+∣ℝ+ , (𝑢− − 𝑢+)(0)}, and in the exceptional case 𝑢− = 𝑢+. Set
𝑋 := 𝐿1(ℝ) ∩ 𝐿2(ℝ) with the norm ∥𝑓∥𝑋 = ∥𝑓∥𝐿1 + ∥𝑋∥𝐿2; then 𝒬 might be
regarded as a subset of 𝑋 ⊕ ℝ, while 𝒬0 is identified with 𝑋 .

In what follows, we shall exploit the relation between the factorized Schrö-
dinger operators (1.2) and the AKNS–Dirac systems [1], for which the inverse
scattering theory is also well understood, at least for regular potentials [29, 38, 39,
43, 65, 68, 69]. Indeed, consider the reduced Dirac equation

𝐿𝑌 :=
(
𝐵

𝑑

𝑑𝑥
+ 𝑢±𝐽

)
𝑌 = 𝜔𝑌, (2.4)

where

𝐵 =

(
0 1
−1 0

)
, 𝐽 =

(
0 1
1 0

)
. (2.5)
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It is straightforward to verify that if 𝑌 = (𝑦1, 𝑦2)
𝑇 solves (2.4) with say 𝑢+, then

𝑦1 and 𝑦2 solve the respective Schrödinger equations −𝑦′′ + 𝑞±𝑦 = 𝜔2𝑦 with

𝑞± = ±𝑢′+ + 𝑢2+.

The appearance of the operator 𝐿 here should not be surprising since 𝐿 is the first
operator in the Lax pair for the modified Korteweg–de Vries equation.

The Jost solutions for the AKNS Dirac system (2.4) can be constructed
in an explicit manner, and thus we can derive the representations for the Jost
solutions 𝑓− and 𝑓+ for the Schrödinger operators 𝐻 in the factorized form (1.2).
Then we shall show that, for every fixed 𝑥 ∈ ℝ, the Jost solutions 𝑓− and 𝑓+ are
such that the functions

e−i𝜔𝑥𝑓+(𝑥, 𝜔)− 1 and ei𝜔𝑥𝑓−(𝑥, 𝜔)− 1 (2.6)

are the Fourier transforms of some elements of 𝑋 supported on the positive half-
line ℝ+. In particular, there is a kernel 𝐾+(𝑥, 𝑡) such that, for every fixed 𝑥 ∈ ℝ,
the function 𝐾+(𝑥, ⋅ ) is an element of 𝑋 supported on the half-line 𝑡 > 𝑥 and
such that

𝑓+(𝑥, 𝜔) = ei𝜔𝑥 +

∫ ∞

𝑥

𝐾+(𝑥, 𝑡)e
i𝜔𝑡 d𝑡. (2.7)

The kernel 𝐾+ generates the corresponding transformation operator, see [59].

We regard the Fourier transforms ℎ̂ = ℱ+ℎ of functions ℎ ∈ 𝑋 as elements of

the corresponding Wiener-type algebra 𝑋̂ of continuous functions with the norm

∥ℎ̂∥
ˆ𝑋 := ∥ℎ∥𝑋 . Adjoining the unity 1 to 𝑋̂, we then prove that the functions

𝜔𝑎(𝜔)/(𝜔 + i) and 𝜔𝑏(𝜔)/(𝜔 + i) are respectively elements of 1 ∔ 𝑋̂ and 𝑋̂, that

𝑎−1 belongs to 1 ∔ 𝑋̂ and 𝑎 admits an extension into the upper-half complex
plane ℂ+ as an analytic function that is continuous and bounded on the closed
upper-half plane ℂ+ outside the disks ∣𝜔∣ ≤ 𝜀, for every 𝜀 > 0. As a result, the

scattering coefficient 𝑟+ belongs to 𝑋̂ ; in particular, the function 𝐹+ = ℱ+𝑟+
belongs to 𝑋 . Next, symmetry properties of 𝑎 and 𝑏 result in the same symmetry
for 𝑟+, viz., 𝑟+(−𝜔) = 𝑟+(𝜔) for real 𝜔; also, ∣𝑟+(𝜔)∣ < 1 for real nonzero 𝜔.

Concerning the value 𝜔 = 0, two cases are possible. We say that the Schrö-
dinger operator 𝐻 has a resonance (also called half-bound state) at 𝜔 = 0, if the
zero-energy Jost solutions 𝑓−( ⋅ , 0) and 𝑓+( ⋅ , 0) are linearly dependent. In this case

𝑞 ∈ 𝒬0; moreover, 𝑎 is then an element of 1 ∔ 𝑋̂ and, in particular, is bounded
on the whole real line thus yielding the inequality ∣𝑟+(0)∣ < 1. Generically, 𝑞 ∈ 𝒬1
and 𝐻 possesses no resonance at 𝜔 = 0; then 𝑎 is unbounded at the origin and
𝑟+(0) = −1. Moreover, the explicit way 𝑟+ depends on 𝑎 and 𝑏 leads to the
conclusion that the regularized coefficient

𝑟+(𝜔) :=
1− ∣𝑟+(𝜔)∣2

𝜔2

belongs to 𝑋̂ .



12 S. Albeverio, R. Hryniv, Ya. Mykytyuk and P. Perry

Introduce now the set

ℛ := {𝑟 ∈ 𝑋̂ ∣ 𝑟(−𝜔) = 𝑟(𝜔), ∣𝑟(𝜔)∣ < 1 for 𝜔 ∈ ℝ ∖ {0}}
and its subsets

ℛ0 := {𝑟 ∈ ℛ ∣ ∣𝑟(0)∣ < 1} (2.8)

and

ℛ1 := {𝑟 ∈ ℛ ∣ 𝑟(0) = −1, 𝑟 ∈ 𝑋̂, 𝑟(0) ∕= 0}, (2.9)

where 𝑟(𝜔) := (1 − ∣𝑟(𝜔)∣2)/𝜔2. The set ℛ0 is endowed with the topology of 𝑋̂ ,
while the topology of ℛ1 is determined by the distance

𝑑(𝑟1, 𝑟2) = ∥𝑟1 − 𝑟2∥ ˆ𝑋 + ∥𝑟1 − 𝑟2∥ ˆ𝑋 .

One of our main results is that the sets ℛ0 and ℛ1 consist of the reflection
coefficients for the class of Schrödinger operators under consideration in the res-
onant (i.e., exceptional 𝑞 ∈ 𝒬0) and non-resonant (i.e., generic 𝑞 ∈ 𝒬1) cases,
respectively. More exactly, the typical result reads as follows. Denote by 𝑋ℝ the
subset of real-valued functions in the space𝑋 ;𝑋ℝ is a real subspace of 𝑋 under the
inherited topology. Recall that 𝑞 ∈ 𝒬 is parametrized by a pair (𝑤,𝛼) ∈ 𝑋 ⊕ ℝ+,
in which 𝑤

∣∣
ℝ± are equal to 𝑢±

∣∣
ℝ± and 𝛼 = (𝑢− − 𝑢+)(0); moreover, 𝛼 = 0 for

𝑞 ∈ 𝒬0 and 𝛼 > 0 for 𝑞 ∈ 𝒬1.
Theorem 2.1. The maps

𝒮± : (𝑤,𝛼) �→ 𝑟±
are homeomorphic between 𝑋ℝ and ℛ0 and between 𝑋ℝ⊕ℝ+ and ℛ1, respectively.

This gives a complete description of the scattering data for the class of opera-
tors under consideration, and thus solves the direct scattering problem and settles
existence in the inverse problem. It remains to find the procedure to actually de-
termine 𝑢 given 𝑟+ or 𝑟−.

To this end we observe that equation (1.6) yields the relation

ei𝜔𝑥𝑓−(𝑥, 𝜔)
𝑎(𝜔)

= ei𝜔𝑥𝑓+(𝑥,−𝜔) + ei𝜔𝑥𝑟+(𝜔)𝑓+(𝑥, 𝜔).

The properties of 𝑎 and of the function ei𝜔𝑥𝑓−(𝑥, 𝜔) of (2.6) imply that the left-
hand side of the above equality is a function admitting a bounded analytic ex-
tension to the upper-half complex plane. Therefore the Fourier transform of the
right-hand side is supported on the positive half-line; working it out on account of
the representation (2.7) leads to the well-known Marchenko equation relating the
Fourier transform 𝐹+ of 𝑟+ and the kernel 𝐾+ of the transformation operator:

𝐾+(𝑥, 𝑡) + 𝐹+(𝑥+ 𝑡) +

∫ ∞

𝑥

𝐾+(𝑥, 𝑠)𝐹+(𝑠+ 𝑡) 𝑑𝑠 = 0, 𝑥 < 𝑡. (2.10)

For every fixed 𝑥 ∈ ℝ, the above Marchenko equation is understood as an
equality of 𝑋-valued functions of argument 𝑡 for 𝑡 > 𝑥. Given the reflection co-
efficient 𝑟+ and thus the function 𝐹+, one can solve this equation for 𝐾+(𝑥, ⋅ ),
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for every fixed 𝑥. In the case of Faddeev–Marchenko potentials 𝑞 the kernel 𝐾+ is
absolutely continuous in the domain 𝑥 ≤ 𝑡, and the equality

𝑞(𝑥) = −2
𝑑

𝑑𝑥
𝐾+(𝑥, 𝑥)

holds almost everywhere.

For singular 𝑢, the kernel 𝐾+ allows no restriction onto the diagonal 𝑥 = 𝑡,
and the above formula becomes useless. Moreover, our aim is to determine the
Riccati representative 𝑢, and not the potential 𝑞.

To derive the main relation between 𝑢 and the transformation operators, we
assume for the time being that 𝑞 is a Faddeev–Marchenko potential and consider
along with (2.10) the equation

𝐾−(𝑥, 𝑡)− 𝐹+(𝑥+ 𝑡)−
∫ ∞

𝑥

𝐾−(𝑥, 𝑠)𝐹+(𝑠+ 𝑡) 𝑑𝑠 = 0, 𝑥 < 𝑡,

in which 𝐹+ is replaced with −𝐹+. In the resonant case this corresponds to taking
−𝑟+ instead of 𝑟+. Using the fact that the scattering maps 𝒮± are odd in the
resonant case, we conclude that −𝑟+ corresponds to the Riccati representative −𝑢,
so that

−2
𝑑

𝑑𝑥
𝐾−(𝑥, 𝑥) = −𝑢′(𝑥) + 𝑢2(𝑥).

Introducing the kernels

𝑀±(𝑥, 𝑡) :=
1

2

[
𝐾+(𝑥, 𝑡)±𝐾−(𝑥, 𝑡)

]
,

we see that

𝑢(𝑥) = −2𝑀−(𝑥, 𝑥), (2.11)

which is the desired relation. We note that the kernels 𝑀± satisfy the system of
equations

𝐹+(𝑥+ 𝑡) +𝑀−(𝑥, 𝑡) +
∫ ∞

𝑥

𝑀+(𝑥, 𝑠)𝐹+(𝑠+ 𝑡) 𝑑𝑠 = 0, (2.12)

𝑀+(𝑥, 𝑡) +

∫ ∞

𝑥

𝑀−(𝑥, 𝑠)𝐹+(𝑠+ 𝑡) 𝑑𝑠 = 0, (2.13)

found in the inverse theory for Zakharov–Shabat systems [72].

It turns out [36, 46] that the same relations take place also for the case of
Miura potentials in 𝒬. Therefore, given the reflection coefficient 𝑟+, one can form
the above Zakharov–Shabat system (2.12)–(2.13) with 𝐹+ = ℱ+𝑟+, solve it for
𝑀−, and determine 𝑢 from (2.11).

In fact, the Riccati representative 𝑢 determined via (2.11) will be integrable
at +∞ but need not be such at −∞; in other words, 𝑢 is the extremal Riccati
representative 𝑢+ of 𝑞 ∈ 𝒬. To find the other extremal Riccati representative 𝑢−
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that is integrable at −∞, we use the left reflection coefficient 𝑟−, take its Fourier
transform 𝐹− := ℱ−𝑟− of (2.3), and form the “left” analogue

𝐹−(𝑥+ 𝑡) +𝑀−
− (𝑥, 𝑡) +

∫ 𝑥

−∞
𝑀−
+ (𝑥, 𝑠)𝐹−(𝑠+ 𝑡) 𝑑𝑠 = 0, (2.14)

𝑀−
+ (𝑥, 𝑡) +

∫ 𝑥

−∞
𝑀−
− (𝑥, 𝑠)𝐹−(𝑠+ 𝑡) 𝑑𝑠 = 0 (2.15)

of the Marchenko-type system (2.12)–(2.13); then 𝑢− = 2𝑀−
− (𝑥, 𝑥).

The final and the most difficult step will be to prove that 𝐵𝑢+ = 𝐵𝑢− =: 𝑞
in the sense of distributions and that the Schrödinger operator 𝐻 with Miura
potential 𝑞 has the reflection coefficient 𝑟+ we have started with. The details are
discussed in Section 3.

2.2. The discrete case

In the case where 𝑝 is piece-wise constant, no direct analogue of (2.11) exists.
However, there are meaningful analogues of the transformation operators but in a
discretized form, see Section 4. Assume that 𝑝 has jumps at the sites of a regular
lattice 𝑑ℤ; without loss of generality, we may take 𝑑 = 1. The function 𝑢 = (log 𝑝)′

is now the discrete measure, 𝑢 = −∑
𝑢𝑘𝛿(⋅ − 𝑘), with

𝑢𝑘 := log
𝑝(𝑘 + 0)

𝑝(𝑘 − 0)
,

so that

𝑝(𝑥) = exp
{ ∑
𝑘:𝑘>𝑥

𝑢𝑘

}
.

In other words, Riccati representatives 𝑢 are now elements of the space 𝑋
of measures 𝑑𝜇 =

∑
𝜇𝑘𝛿(⋅ − 𝑘) of finite total variation, i.e., with the sequences

𝝁 := (𝜇𝑘) belonging to ℓ1(ℤ). Then the corresponding set 𝑋̂ of Fourier transforms
of elements in 𝑋 is the Wiener algebra of 2𝜋-periodic functions with absolutely
convergent Fourier series

∑
𝜇𝑘e

i𝑘𝑠. In particular, the scattering coefficients 𝑎 and

𝑏 and the reflection coefficients 𝑟± are elements of 𝑋̂ , and 𝐹± = ℱ±𝑟± are discrete
measures supported by ℤ.

The transformation operators exist and can be represented in the following
way. Set Δ𝑗 := [𝑗, 𝑗 + 1) and denote by 𝑃𝑗 the orthogonal projector in 𝐿2(ℝ)
onto 𝐿2(Δ𝑗), 𝑃𝑗𝑔(𝑥) = 𝑔(𝑥)𝜒Δ𝑗 (𝑥), with 𝜒Δ𝑗 being the characteristic function
of Δ𝑗 . It is convenient to use the unitary equivalence of the spaces 𝐿2(ℝ) and
𝐿2(0, 1)⊗ ℓ2(Z) and to represent functions 𝑔(𝑥) in 𝐿2(ℝ) as 𝑔(𝑦, 𝑘), with 𝑦 ∈ [0, 1),
𝑘 ∈ ℤ, and 𝑔(𝑦, 𝑘) = 𝑔(𝑦 + 𝑘). Under this identification, every bounded operator
𝑇 in 𝐿2(ℝ) can be written in the matrix form (𝑇𝑚,𝑛)𝑚,𝑛∈ℤ, with 𝑇𝑚,𝑛 := 𝑃𝑚𝑇𝑃𝑛.

In these notations, the transformation operator 𝐾 for the Schrödinger oper-
ator 𝐻𝑢 can be constructed in an explicit way and its components 𝐾𝑚,𝑛 can be
shown to be of the form 𝐾(𝑚,𝑛)𝑇𝑚+𝑛, there 𝐾(𝑚,𝑛) is a number and 𝑇 is the re-
flection operator in 𝐿2(Δ0), i.e., (𝑇𝑔)(𝑦) = 𝑔(1− 𝑦). Further, set 𝑅(𝑘) := 𝑟+(−𝑘);
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then the discrete analogue of the Marchenko equation reads

𝐾+(𝑚,𝑛) +𝑅(𝑚+ 𝑛) +

∞∑
𝜉=𝑚+1

𝐾+(𝑚, 𝜉)𝑅(𝜉 + 𝑛) = 0, 𝑚 < 𝑛,

while the analogue of the Zakharov–Shabat system takes the form

𝑀+(𝑚,𝑛) +
∞∑

𝜉=𝑚+1

𝑀−(𝑚, 𝜉)𝑅(𝜉 + 𝑛) = 0,

𝑀−(𝑚,𝑛) +𝑅(𝑚+ 𝑛) +

∞∑
𝜉=𝑚+1

𝑀+(𝑚, 𝜉)𝑅(𝜉 + 𝑛) = 0.

As in the continuous case, the kernel 𝑀− determines the function 𝑢, but the
corresponding relation takes a somewhat different form, namely,

tanh𝑢𝑛 = 𝑀−(𝑛− 1, 𝑛+ 1), 𝑛 ∈ ℤ. (2.16)

It is the difference between recovering 𝑢 via (2.11) in the continuous case and (2.16)
in the discrete case that does not allow to a unified approach to reconstructing
measures 𝑢 with both continuous and discrete components.

The details of solutions of the inverse scattering problems in the continuous
and discrete cases respectively are given in Sections 3 and 4 below.

3. Inverse scattering for Miura potentials

The standard method of solution of the inverse scattering problem for Schrödinger
operators is due to Marchenko and is based on the so-called transformation oper-
ators. As mentioned above, for impedance Schrödinger equations a more efficient
approach is that of Zakharov and Shabat for the related Dirac system (2.4). Below,
we explain the basic steps in the solution of the inverse scattering problem for the
Schrödinger operator with Miura potentials using the reduced Dirac systems in
AKNS form.

3.1. Jost solutions

We shall start with the simpler case where 𝑞 ∈ 𝒬0, i.e., where the Riccati repre-
sentative 𝑢 belongs to 𝑋 := 𝐿1(ℝ) ∩ 𝐿2(ℝ).

An effective construction of the Jost solution for 𝑞 = 𝑢′+𝑢2 with given 𝑢 ∈ 𝑋
uses the “conjugate” potentials 𝑞(−) = −𝑢′ + 𝑢2 corresponding to −𝑢 and the
associated reduced Dirac equation (2.4). Namely, we first construct a fundamental
solution matrix for the Dirac system (2.4), i.e., a 2× 2 matrix solution 𝑈( ⋅ , 𝜔) to(

𝐵
𝑑

𝑑𝑥
+ 𝑢𝐽

)
𝑈 = 𝜔𝑈
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that approaches e−𝜔𝑥𝐵 as 𝑥 tends to +∞ (recall that the matrices 𝐵 and 𝐽 were
defined in (2.5)). Noting that 𝐵 has eigenvalues 𝜆1 = −i and 𝜆2 = +i with the
corresponding eigenvectors

𝑣1 =

(
1

−i

)
, 𝑣2 =

(
1

i

)
,

we then see that the Jost solutions 𝑓+ and 𝑓
(−)
+ for the potentials 𝑞 and 𝑞(−) satisfy

the relation (
𝑓+(𝑥, 𝜔)

−i𝑓
(−)
+ (𝑥, 𝜔)

)
= 𝑈(𝑥, 𝜔)𝑣1. (3.1)

Variation of constants formula leads to the integral equation

𝑈(𝑥, 𝜔) = e−𝜔𝑥𝐵 −
∫ ∞

𝑥

e−𝜔(𝑥−𝑡)𝐵𝑢(𝑡)𝐵𝐽𝑈(𝑡, 𝜔) d𝑡.

Using the successive approximation method, we set

𝑈0(𝑥, 𝜔) = exp (−𝜔𝑥𝐵)

and

𝑈𝑛(𝑥, 𝜔) = −
∫ ∞

𝑥

e−𝜔(𝑥−𝑡)𝐵𝑢(𝑡)𝐵𝐽𝑈𝑛−1(𝑡, 𝜔) d𝑡

for 𝑛 ≥ 1; then 𝑈 is formally given by the Volterra series
∑

𝑛≥0 𝑈𝑛.

In a straightforward recursive manner one derives the formulas

𝑈2𝑛(𝑥, 𝜔) =

∫
𝑥<𝑡1<⋅⋅⋅<𝑡2𝑛

𝑢(𝑡1) ⋅ ⋅ ⋅𝑢(𝑡2𝑛)e−𝜔(𝑥−2𝜎2𝑛(t))𝐵 d𝑡1 ⋅ ⋅ ⋅ d𝑡2𝑛

and

𝑈2𝑛−1(𝑥, 𝜔)

= −
∫
𝑥<𝑡1<⋅⋅⋅<𝑡2𝑛−1

𝑢(𝑡1) ⋅ ⋅ ⋅𝑢(𝑡2𝑛−1) 𝐵𝐽 e𝜔(𝑥−2𝜎2𝑛−1(t))𝐵 d𝑡1 ⋅ ⋅ ⋅d𝑡2𝑛−1,

where

𝜎𝑛(t) :=

𝑛∑
𝑗=1

(−1)𝑗+1𝑡𝑗

for 𝑛 ≥ 1 and t := (𝑡1, 𝑡2, . . . , 𝑡𝑛). The proof uses the anti-commutation relation
𝐵𝐽 + 𝐵𝐽 = 0 (which implies that 𝐽 exp(𝑡𝐵) = exp(−𝑡𝐵)𝐽) together with the
identity

𝜎𝑛+1(𝑡1, . . . , 𝑡𝑛+1) = 𝑡1 − 𝜎𝑛(𝑡2, . . . , 𝑡𝑛+1).

Note that
∥∥e𝜔𝑥𝐵∥∥ = 1 for all real 𝑥 and 𝜔, with ∥ ⋅ ∥ being the operator

norm on 2× 2 matrices. Therefore, with

𝜂(𝑥) :=

∫ ∞

𝑥

∣𝑢(𝑠)∣ d𝑠,
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one easily shows that

∥𝑈𝑛(𝑥, 𝜔)∥ ≤
(
𝜂(𝑥)

)𝑛
𝑛!

,

so the Volterra series for 𝑈 converges uniformly in 𝜔 ∈ ℝ to a bounded continuous
function 𝑈( ⋅ , 𝜔) on ℝ.

Since 𝑣1 is an eigenvector of 𝐵 and 𝐽𝑣1 = −𝑖𝑣2, we compute that

𝑈2𝑛(𝑥, 𝜔)𝑣1 =

(∫
𝑥<𝑡1<⋅⋅⋅<𝑡2𝑛

𝑢(𝑡1) ⋅ ⋅ ⋅𝑢(𝑡2𝑛) 𝑒𝑖𝜔(𝑥−2𝜎2𝑛(t)) dt

)
𝑣1

and

𝑈2𝑛−1(𝑥, 𝜔)𝑣1 = −
(∫

𝑥<𝑡1<⋅⋅⋅<𝑡2𝑛−1

𝑢(𝑡1) ⋅ ⋅ ⋅𝑢(𝑡2𝑛−1) 𝑒−𝑖𝜔(𝑥−2𝜎2𝑛−1(t)) dt

)
𝑣2.

Relation (3.1) now yields the representation

𝑓+(𝑥, 𝜔) = 𝑎(𝑥, 𝜔)ei𝜔𝑥 + 𝑏(𝑥, 𝜔)e−i𝜔𝑥,

for the Jost solution 𝑓+, with

𝑎(𝑥, 𝜔) = 1 +
∞∑
𝑛=1

𝑎2𝑛(𝑥, 𝜔),

𝑏(𝑥, 𝜔) =

∞∑
𝑛=1

𝑏2𝑛−1(𝑥, 𝜔),

where

𝑎2𝑛(𝑥, 𝜔) :=

∫
𝑥<𝑡1<⋅⋅⋅<𝑡2𝑛

𝑢(𝑡1) ⋅ ⋅ ⋅𝑢(𝑡2𝑛)e−2i𝜔𝜎2𝑛(t) dt (3.2)

and

𝑏2𝑛−1(𝑥, 𝜔) := −
∫
𝑥<𝑡1<⋅⋅⋅<𝑡2𝑛−1

𝑢(𝑡1) ⋅ ⋅ ⋅𝑢(𝑡2𝑛−1)e2i𝜔𝜎2𝑛−1(t) dt. (3.3)

We can obtain a more useful representation for 𝑎(𝑥, 𝜔) and 𝑏(𝑥, 𝜔) by recast-
ing (3.2) and (3.3) as follows. In (3.2), let 𝑠 = −𝜎2𝑛(t) and 𝑦𝑗 = 𝑡𝑗+1. Note that
𝜎2𝑛(t) ≤ 0 in the region of integration. We then have

𝑎2𝑛(𝑥, 𝜔) =

∫ ∞

0

e2i𝜔𝑠𝐴2𝑛(𝑥, 𝑠) d𝑠

where

𝐴2𝑛(𝑥, 𝑠) =

∫
𝑥<𝑠−𝜎2𝑛−1(y)<𝑦1<⋅⋅⋅<𝑦2𝑛−1

𝑢(𝑠− 𝜎2𝑛−1(y))𝑢(𝑦1) ⋅ ⋅ ⋅𝑢(𝑦2𝑛−1) dy

obeys the estimates

∥𝐴2𝑛(𝑥, ⋅ )∥𝐿1(ℝ+) ≤
(
𝜂(𝑥)

)2𝑛
(2𝑛)!
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for 𝑢 ∈ 𝐿1(ℝ) and

∥𝐴2𝑛(𝑥, ⋅ )∥𝐿2(ℝ+) ≤ ∥𝑢∥2
(
𝜂(𝑥)

)2𝑛−1
(2𝑛− 1)!

for 𝑢 ∈ 𝑋 . It follows that

𝑎(𝑥, 𝜔) = 1 +

∫ ∞

0

e2i𝜔𝑠𝐴(𝑥, 𝑠) d𝑠

where
∥𝐴(𝑥, ⋅ )∥1 ≤ cosh 𝜂(𝑥)− 1

and
∥𝐴(𝑥, ⋅ )∥2 ≤ ∥𝑎∥2 sinh 𝜂(𝑥).

Finally, it is easy to check that lim𝑥→∞𝐴(𝑥, ⋅ ) = 0 and that the limit 𝐴(𝑠) =
lim𝑥→−∞𝐴(𝑥, 𝑠) exists in 𝐿1(ℝ+) ∩ 𝐿2(ℝ+).

Next we consider 𝑏(𝑥, 𝑠). In (3.3), let 𝑠 = 𝜎2𝑛−1(t) and note that 𝑥 < 𝑠 in
the region of integration. Thus with 𝑦𝑗 = 𝑡𝑗+1 for 1 ≤ 𝑗 ≤ 2𝑛− 2 we get

𝑏2𝑛−1(𝑥, 𝜔) = −
∫ ∞

𝑥

e2i𝜔𝑠𝐵2𝑛−1(𝑥, 𝑠) d𝑠,

where

𝐵2𝑛−1(𝑥, 𝑠) =
∫
𝑥<𝑠+𝜎2𝑛−2(y)<𝑦1<⋅⋅⋅<𝑦2𝑛−1

𝑢(𝑠+ 𝜎2𝑛−2(y))𝑢(𝑦1) ⋅ ⋅ ⋅𝑢(𝑦2𝑛−2) dy

obeys multi-linear estimates similar to those for 𝐴2𝑛. In particular,

𝑏(𝑥, 𝜔) = −
∫ ∞

𝑥

e2i𝜔𝑠𝐵(𝑥, 𝑠) 𝑑𝑠

where (taking 𝑋-norms on ℝ and extending 𝐵(𝑥, 𝑠) to zero if 𝑠 < 𝑥)

∥𝐵(𝑥, ⋅ )∥1 ≤ sinh 𝜂(𝑥)

and
∥𝐵(𝑥, ⋅ )∥2 ≤ ∥𝑢∥2

(
cosh 𝜂(𝑥) − 1

)
.

We can show that the limit

𝐵(𝑠) = lim
𝑥→−∞𝐵(𝑥, 𝑠)

exists in 𝑋 .
Finally, similar multi-linear estimates for the differences 𝐴2𝑛 − 𝐴2𝑛 and

𝐵2𝑛+1 −𝐵2𝑛+1 of such functions constructed for 𝑢 and 𝑢 show that 𝑢 �→ 𝐴(𝑥, ⋅ )
and 𝑢 �→ 𝐵(𝑥, ⋅ ) are continuous mappings from 𝑋 to 𝐶 (ℝ;𝑋).

Introduce the matrix

𝑉 :=

(
1 1
−i i

)
composed of the eigenvectors 𝑣1 and 𝑣2 of 𝐵 and set Ψ(𝑥, 𝜔) := 𝑉 −1𝑈(𝑥, 𝜔)𝑉 .
Then Ψ is a solution of the AKNS-ZS system

Ψ′ = i𝜔𝐽1Ψ+ 𝑢𝐽Ψ



Inverse Scattering for Impedance Schrödinger Operators 19

with 𝐽1 := diag{1,−1}, and one can verify in a straightforward manner that

e−i𝜔𝐽1Ψ(𝑥, 𝜔) =

(
𝑎(𝑥, 𝜔) 𝑏(𝑥, 𝜔)

𝑏(𝑥, 𝜔) 𝑎(𝑥, 𝜔)

)
is an element of the group 𝑆𝑈(1, 1); see [36]. In particular, we see that

∣𝑎(𝑥, 𝜔)∣2 − ∣𝑏(𝑥, 𝜔)∣2 = 1.

From the computations above it is clear that the limits

𝑎(𝜔) = lim
𝑥→−∞𝑎(𝑥, 𝜔)

𝑏(𝜔) = lim
𝑥→−∞ 𝑏(𝑥, 𝜔)

exist and define continuous functions of 𝜔. Moreover,

∣𝑎(𝜔)∣2 = ∣𝑏(𝜔)∣2 + 1 (3.4)

so that ∣𝑎(𝜔)∣ ≥ 1, while the symmetry relations

𝑎(𝜔) = 𝑎(−𝜔) and 𝑏(𝜔) = 𝑏(−𝜔)

are inherited from those for 𝑎(𝑥, 𝜔) and 𝑏(𝑥, 𝜔). More importantly:

Proposition 3.1. Suppose that 𝑢 ∈ 𝐿1(ℝ). Then the functions 𝑎(𝜔) and 𝑏(𝜔) admit
integral representations

𝑎(𝜔) = 1 +

∫ ∞

0

e2i𝜔𝑠𝐴(𝑠) d𝑠,

𝑏(𝜔) = −
∫ ∞

−∞
e2i𝜔𝑠𝐵(𝑠) d𝑠,

where

∥𝐴∥1 ≤ cosh(∥𝑢∥1)− 1,

∥𝐵∥1 ≤ sinh ∥𝑢∥1 ,
and the function 𝐴 ∈ 𝐿1(ℝ+) and 𝐵 ∈ 𝐿1(ℝ) depend continuously on 𝑢 in 𝐿1(ℝ).
If, also, 𝑢 ∈ 𝐿2(ℝ), then

∥𝐴∥2 ≤ ∥𝑢∥2 sinh ∥𝑢∥1 ,
∥𝐵∥2 ≤ ∥𝑢∥2

(
cosh ∥𝑢∥1 − 1

)
,

and the maps 𝑢 �→ 𝐴 and 𝑢 �→ 𝐵 are continuous as maps from 𝑋 to 𝐿1(ℝ+) ∩
𝐿2(ℝ+) and to 𝑋 respectively.

Using this proposition, it is easy to derive the representation of the Jost
solution 𝑓+ in the form (2.7), with 𝐾(𝑥, ⋅) the function in 𝑋 for every 𝑥 ∈ ℝ.
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3.2. The scattering data

It follows from Proposition 3.1 that for 𝑢 ∈ 𝑋 the scattering coefficients 𝑎 and

𝑏 are elements of the Wiener algebras 1 ∔ 𝑋̂ and 𝑋̂, respectively. Since 𝑎 is an

invertible element of 1∔ 𝑋̂, we see that 𝑟+(𝜔) := −𝑏(−𝜔)/𝑎(𝜔) belongs to 𝑋̂. The

symmetry properties of 𝑎 and 𝑏 yield the relation 𝑟(−𝜔) = 𝑟(𝜔), while (3.4) implies
that ∣𝑟(𝜔)∣ < 1 for all 𝜔 ∈ ℝ. This establishes the direct part of the scattering
problem, namely:

Proposition 3.2. For every real-valued 𝑢 ∈ 𝑋, the reflection coefficient 𝑟+ of the
corresponding Schrödinger operator 𝐻𝑢 is an element of the set ℛ0 of (2.8).

In the case where 𝑞 = 𝑢′− + 𝑢2− = 𝑢′+ + 𝑢2+ ∈ 𝒬1 := 𝒬 ∖ 𝒬0 for some
𝑢± ∈ 𝐿1(ℝ±)∩𝐿2(ℝ), we cannot pass to the limit 𝑥 → −∞ in the above formulas
for 𝑎(𝑥, 𝜔), 𝑏(𝑥, 𝜔), 𝐴(𝑥, 𝑠), and 𝐵(𝑥, 𝑠). However, all the other arguments remain
valid as they only require half-line integrability of 𝑢, which holds for 𝑢+. Therefore,
we get the following

Lemma 3.3. The representation formulas

𝑓+(𝑥, 𝜔) = ei𝜔𝑥 +

∫ ∞

𝑥

𝐾+(𝑥, 𝜁)e
i𝜔𝜁𝑑𝜁,

𝑓
[1]
+ (𝑥, 𝜔) = i𝜔

(
ei𝜔𝑥 +

∫ ∞

𝑥

𝐾+,1(𝑥, 𝜁)e
i𝜔𝜁 𝑑𝜁

)
hold, with 𝑓

[1]
+ := 𝑓 ′ − 𝑢+𝑓 and the kernels 𝐾+(𝑥, ⋅ ) and 𝐾+,1(𝑥, ⋅ ) belonging to

𝑋 for every fixed 𝑥 ∈ ℝ.

The reason why quasi-derivatives 𝑓 [1] := 𝑓 ′−𝑢+𝑓 are used above comes from
the fact that for 𝑓 in the domain of the operator 𝐻𝑢, the derivative 𝑓 ′ need not
be continuous while 𝑓 [1] is continuous. Denoting by 𝑊+{𝑓, 𝑔} := 𝑓 [1]𝑔 − 𝑓𝑔[1] the
modified Wronskian, we get from the above representations the equality

𝑊+ {𝑓+(𝑥, 𝜔), 𝑓+(𝑥,−𝜔)} = −2i𝜔, (3.5)

for every nonzero 𝜔 ∈ ℝ.
Clearly, there are analogous construction for the left Jost solutions 𝑓−(𝑥, 𝜔)

and their quasi-derivatives 𝑓
[1]
− := 𝑓 ′− − 𝑢−𝑓− that use the Riccati representa-

tive 𝑢−. We then determine the coefficients 𝑎 and 𝑏 from the relations (1.5) and
(3.5) as

𝑎(𝜔) =
𝑊+ {𝑓−(𝑥, 𝜔), 𝑓+(𝑥, 𝜔)}

2𝑖𝜔
, (3.6)

𝑏(𝜔) = −𝑊+ {𝑓−(𝑥,−𝜔), 𝑓+(𝑥, 𝜔)}
2𝑖𝜔

(3.7)

for real nonzero 𝜔. Using now the integral representations for the Jost solutions
𝑓± and their quasi-derivatives, and recalling that 𝑣 := 𝑢− − 𝑢+ is a non-negative
continuous function, we arrive at the following conclusion.
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Lemma 3.4. Suppose that 𝑞 ∈ 𝒬. Then the coefficients 𝑎 and 𝑏 admit the repre-
sentation

𝑎(𝜔) = 1 +𝐴1(𝜔)− 𝑣(0)

[
1 +𝐴2(𝜔)

2i𝜔

]
,

𝑏(𝜔) = 𝐵1(𝜔) + 𝑣(0)

[
1 +𝐵2(𝜔)

2i𝜔

]
,

in which 𝐴𝑗 and 𝐵𝑗, 𝑗 = 1, 2, are real-valued functions in 𝑋, with 𝐴𝑖 supported
on [0,∞). Moreover, 𝐴2 = 𝐵2 = 0 if 𝑞 ∈ 𝒬0 and

1 +𝐴2(0) = 1 +𝐵2(0) = 𝑓+(0, 0)𝑓−(0, 0)

is nonzero if 𝑞 ∈ 𝒬1. The maps 𝑞 �→ 𝐴𝑗 and 𝑞 �→ 𝐵𝑗 are continuous maps from 𝒬
into 𝑋.

It follows that in the generic case 𝑞 ∈ 𝒬1 the coefficients 𝜔𝑎(𝜔)/(𝜔 + i) and

𝜔𝑏(𝜔)/(𝜔+ i) are elements of the Wiener algebras 1∔ 𝑋̂ and 𝑋̂, respectively, but
𝑎 and 𝑏 themselves have singularity at the origin. The function 𝑎 never vanishes

on the real line so that 1/𝑎 is well defined and belongs to 1 ∔ 𝑋̂; as a result,

𝑟+(𝜔) := −𝑏(−𝜔)/𝑎(𝜔) and 𝑟−(𝜔) = 𝑏(𝜔)/𝑎(𝜔) are well defined and belong to 𝑋̂ .
In particular, 𝑟± are continuous functions and 𝑟±(0) = −1. More details are given
in the following statement, where 𝑤± stand for the restrictions of the Riccati
representatives 𝑢± onto the respective half-line ℝ± and the set ℛ1 was introduced
in (2.9).

Proposition 3.5. Suppose that 𝑞 ∈ 𝒬1. Then 𝑟± ∈ ℛ1, and the maps

𝒮± : (𝑤+, 𝑤−, 𝑣(0)) �→ 𝑟±
and

(𝑤+, 𝑤−, 𝑣(0)) �→ 𝑟±
are continuous.

3.3. Reconstruction of the transmission coefficient

Next, we show how to construct 𝑡 = 1/𝑎 given either one of the reflection coeffi-
cients. Again the case 𝑞 ∈ 𝒬0 is much simpler, and we shall concentrate on the
non-resonant case 𝑞 ∈ 𝒬1.

We observe that formula (3.6) allows to extend 𝑎 analytically in the open

upper-half plane ℂ+ and this extension has no zeros in ℂ+ ∖ {0}. Thus the regu-
larization

𝑎̃(𝜔) :=
𝜔

𝜔 + i
𝑎(𝜔)

of 𝑎 extends to a bounded holomorphic function in the upper half-plane with no
zeros in its closure. Using the Schwarz formula to reconstruct the function log 𝑎̃
from its real part Re log 𝑎̃(𝑠) = log ∣𝑎̃(𝑠)∣, we get

𝑎̃(𝑧) = exp

(
1

𝜋i

∫
ℝ

log ∣𝑎̃(𝑠)∣ d𝑠

𝑠− 𝑧

)
. (3.8)
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It follows from (3.8) that

𝑡(𝑧) := 1/𝑎(𝑧) =
𝑧

𝑧 + i
exp

{
1

2𝜋i

∫
ℝ

log

[(
1− ∣𝑟±(𝑠)∣2

) 𝑠2 + 1

𝑠2

]
d𝑠

𝑠− 𝑧

}
,

and 𝑡 on the real line is given as a boundary value as Im 𝑧 → 0. In terms of the
Riesz projector 𝒞+, we get the formula

𝑡(𝜔) =
𝜔

𝜔 + i
exp

{(
𝒞+ log

[(
1− ∣𝑟±(𝑠)∣2

) 𝑠2 + 1

𝑠2

])
(𝜔)

}
. (3.9)

In particular, the number 𝜃 := lim𝜔→0 [2i𝜔/𝑡(𝜔)] can be recovered from either
reflection coefficient.

We next show that formula (3.9) makes sense for every element 𝑟 ∈ ℛ1.
Indeed, the function(

1− ∣𝑟(𝜔)∣2
) 𝜔2 + 1

𝜔2
= 1− 𝑟(𝜔)𝑟(−𝜔) + 𝑟(𝜔) (3.10)

belongs to the algebra 1 ∔ 𝑋̂, does not vanish on the real line, and tends to 1 at
infinity. By the Wiener–Levi Lemma A.2, the function

log
[(

1− ∣𝑟(𝜔)∣2
) 𝜔2 + 1

𝜔2

]
also belongs to 1∔ 𝑋̂; in fact, since it vanishes at infinity, it belongs to 𝑋̂. Finally,

the Riesz projector 𝒞+ acts continuously in 𝑋̂, and exponentiation is a continuous

operation in 1∔𝑋̂ by the Wiener–Levi lemma. We now define a function 𝑡̃ ∈ 1∔𝑋̂
by (cf. (3.9))

𝑡̃ = exp

{
𝒞+ log

[(
1− ∣𝑟(𝜔)∣2

) 𝜔2 + 1

𝜔2

]}
. (3.11)

Clearly, 𝑡̃ is an invertible element of the Banach algebra 1 ∔ 𝑋̂ . Moreover, the
following holds:

Lemma 3.6. The mappings

ℛ1 ∋ 𝑟 �→ 𝑡̃ ∈ 1∔ 𝑋̂ and ℛ1 ∋ 𝑟 �→ 1/𝑡̃ ∈ 1∔ 𝑋̂

are continuous.

We observe that since the function in (3.10) is even and the Riesz projector

maps even functions into odd ones, the function 𝑡̃ enjoys the symmetry prop-

erty 𝑡̃(−𝜔) = 𝑡̃(𝜔). We set 𝑡(𝜔) = 𝜔𝑡̃(𝜔)/(𝜔 + i); then the above considerations
show that

𝑡(𝜔)

𝑡(−𝜔)
=

𝜔 − i

𝜔 + i

𝑡̃(𝜔)

𝑡̃(−𝜔)

also belongs to 1∔ 𝑋̂. The function

𝑟#(𝜔) = − 𝑡(𝜔)

𝑡(−𝜔)
𝑟(−𝜔)
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thus belongs to ℛ1 and, as ∣𝑡(𝜔)/𝑡(−𝜔)∣ = 1, we have

1− ∣∣𝑟#(𝜔)∣∣2
𝜔2

=
1− ∣𝑟(𝜔)∣2

𝜔2
∈ 𝑋̂.

Hence:

Proposition 3.7. For 𝑟 ∈ ℛ1, define 𝑡̃ by (3.11) and set 𝑡(𝜔) = 𝜔 𝑡̃(𝜔)/(𝜔+i). Then
the nonlinear map

ℐ : 𝑟 �→ 𝑟#(𝜔) := − 𝑡(𝜔)

𝑡(−𝜔)
𝑟(−𝜔)

is a continuous involution on ℛ1.
We observe that if 𝑟± are the reflection coefficients for a Schrödinger opera-

tor 𝐻 with Miura potential 𝑞 ∈ 𝒬, then ℐ𝑟± = 𝑟∓.

3.4. The inverse problem

In this subsection we solve the inverse scattering problem by proving the following
theorem.

Theorem 3.8. Suppose that 𝑟 ∈ ℛ𝑗 , 𝑗 = 0, 1. Then there exists a unique 𝑞 ∈ 𝒬𝑗

having 𝑟 as its right reflection coefficient; moreover, the map 𝑟 �→ 𝑞 is continuous.

The resonant case 𝑟 ∈ ℛ0 is much simpler and can be settled by the limiting
procedure from the well-known results for smooth potentials 𝑞 in the Schwartz
class; we therefore concentrate on the case where 𝑟 ∈ ℛ1.

We thus suppose given a function 𝑟 ∈ ℛ1, presumed to be the right reflection
coefficient corresponding to a potential 𝑞0 to be found. From this data, we can
construct 𝑡(𝜔) (and hence 𝑎(𝜔) := 1/𝑡(𝜔)) using (3.9), and use the involution ℐ
to construct 𝑟# = ℐ𝑟, a candidate for the left reflection coefficient. Clearly, 𝑏 is
defined as 𝑟#𝑎.

We then form two Zakharov–Shabat systems like (2.12)–(2.13) but taking
the putative reflection coefficients 𝑟 and 𝑟# instead of 𝑟+ and 𝑟− and prove that

these equations are uniquely soluble for the kernels 𝑀± and 𝑀#
± . These kernels

determine candidate right and left Riccati representatives 𝑤 and 𝑤#, which give
the Riccati data (

𝑤∣
ℝ+ , 𝑤#

∣∣
ℝ− , (𝑤# − 𝑤)(0)

)
(3.12)

of a distribution potential 𝑞0 ∈ 𝒬. The construction exhibits continuity of the
map from 𝑟 to the data (3.12) as maps from ℛ to 𝑋+ ×𝑋− × ℝ+, with 𝑋± :=
𝐿1(ℝ±) ∩ 𝐿2(ℝ±).

The most difficult part of the problem is to justify the reconstruction by
showing that 𝑤′ +𝑤2 = (𝑤#)′ + (𝑤#)2 = 𝑞0 and that 𝑞0 has reflection coefficients
𝑟 and 𝑟#. It then follows from the uniqueness result (whose proof is a simple variant
of that for Levinson’s theorem given in [27]) that 𝑞0 is the correct reconstruction.
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Now we explain some details of the above algorithm. Taking the Fourier
transform 𝐹 of the function 𝑟, we form the Marchenko-type system

𝐹 (𝑥+ 𝑡) +𝑀−(𝑥, 𝑡) +
∫ ∞

𝑥

𝑀+(𝑥, 𝑠)𝐹 (𝑠 + 𝑡) d𝑠 = 0, (3.13)

𝑀+(𝑥, 𝑡) +

∫ ∞

𝑥

𝑀−(𝑥, 𝑠)𝐹 (𝑠 + 𝑡) d𝑠 = 0. (3.14)

It is convenient to make change of variables 𝑠 = 𝑥 + 𝑦 in the above integrals and
to introduce the linear operator 𝑇𝐹 (𝑥) on 𝑋+ by

𝑇𝐹 (𝑥)𝜓(𝑦) :=

∫ ∞

0

𝜓(𝑡)𝐹 (𝑥 + 𝑦 + 𝑡) 𝑑𝑡.

Since 𝐹 ∈ 𝑋 , this operator is compact in 𝑋+. Substituting for 𝑀+ from (3.14) in
equation (3.13) and using the notation 𝐹𝑥(⋅) := 𝐹 (𝑥+ ⋅), we then get the following

equation for 𝑀−(𝑥, 𝑦) := 𝑀−(𝑥, 𝑥+ 𝑦):

𝐹2𝑥(𝑦) +𝑀−(𝑥, 𝑦)− 𝑇 2𝐹 (2𝑥)𝑀−(𝑥, ⋅)(𝑦) = 0,

or (
𝐼 − 𝑇 2𝐹 (2𝑥)

)
𝑀−(𝑥, ⋅) = −𝐹2𝑥.

We now prove that the operator 𝐼 − 𝑇 2𝐹 (2𝑥) is boundedly invertible in 𝑋+.
Indeed, the inequality ∣𝑟(𝑘)∣ < 1 a.e. implies that ker𝐿2(𝐼 ±𝑇𝐹 (2𝑥)) is trivial (see,
for example, the proof of Lemma 6.4.1 in [59]), and then compactness of 𝑇𝐹 (2𝑥)
in 𝑋+ together with the Fredholm alternative gives the result. Therefore,

𝑀−(𝑥, ⋅) = −(𝐼 − 𝑇 2𝐹 (2𝑥)
)−1

𝐹2𝑥

is the solution we are looking for. Using the operator identity

(𝐼 − 𝑇 )−1 = 𝐼 + 𝑇 (𝐼 − 𝑇 )−1,

we can show that

𝑀−(𝑥, 𝑦) = −𝐹 (2𝑥+ 𝑦) +𝐺(𝑥, 𝑦)

for some function 𝐺 that is jointly continuous in 𝑥 and 𝑦. In particular,

𝑤(𝑥) := −2𝑀−(𝑥, 0) = 2𝐹 (2𝑥)− 2𝐺(𝑥, 0)

is well defined and can be shown to belong to the space 𝐿1 ∩𝐿2 on every half-line
(𝑐,∞).

“Left” analogues of the above objects constructed for 𝑟# instead of 𝑟− pro-
duce a function 𝑤# that belongs to 𝐿1 ∩𝐿2 on every half-line (−∞, 𝑐) and equals

𝑤#(𝑥) = 2𝑀#
− (𝑥, 0) = −2𝐹#(2𝑥) + 2𝐺#(𝑥, 0)

for some continuous function 𝐺#. The difference 𝑤# −𝑤 is continuous; indeed, it
suffices to show that 𝐹 + 𝐹# is a continuous function. Recalling that 𝐹 = ℱ+𝑟
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and 𝐹# = ℱ−𝑟# (cf. (2.2)–(2.3)), we get that

𝐹 (𝑥) + 𝐹#(𝑥) =
1

2𝜋

∫ ∞

−∞

(
𝑟(𝜔) + 𝑟#(−𝜔)

)
ei𝜔𝑥 d𝜔,

=
1

2𝜋

∫ ∞

−∞

(
1− 𝑡(−𝜔)

𝑡(𝜔)

)
𝑟(𝜔)ei𝜔𝑥 d𝜔.

We next observe that 𝑡(−𝜔)/𝑡(𝜔) belongs to the Wiener algebra 1∔ 𝑋̂ and tends

to 1 at infinity, so that 1 − 𝑡(−𝜔)/𝑡(𝜔) is in 𝑋̂ and thus in 𝐿2(ℝ); as a result,
𝐹 + 𝐹# is the Fourier transform of the integrable function (1 − 𝑡(−𝜔)/𝑡(𝜔))𝑟(𝜔)
and thus is continuous.

The next step in the reconstruction algorithm is to show that 𝑤 and 𝑤#

are the right and left extremal Riccati representatives of the potential 𝑞0 ∈ 𝒬
corresponding to the data (3.12). We do this by first showing that 𝐾 := 𝑀++𝑀−
is the kernel of the transformation operator for the Schrödinger operator 𝐻𝑤 with
potential 𝑞 := 𝑤′ + 𝑤2, i.e., that

𝑓(𝑥, 𝜔) := ei𝜔𝑥 +

∫ ∞

𝑥

𝐾(𝑥, 𝑠)ei𝜔𝑠 d𝑠

is the right Jost solution for 𝐻𝑤. Similarly, the kernel 𝐾# := 𝑀#
+ +𝑀#

− formed

from the kernels 𝑀#
± solving the “left” Marchenko-type system (2.14)–(2.15) but

with 𝐹− replaced by 𝐹#, is the kernel of the transformation operator for the
Schrödinger operator 𝐻𝑤# with potential 𝑞# := (𝑤#)′ + (𝑤#)2, i.e.,

𝑓#(𝑥, 𝜔) := e−i𝜔𝑥 +
∫ 𝑥

−∞
𝐾#(𝑥, 𝑠)e−i𝜔𝑠 d𝑠

is the left Jost solution for 𝐻𝑤# .

It turns out that the functions 𝑓 and 𝑓# are related as follows.

Lemma 3.9. The following holds:

𝑓#(𝑥, 𝜔) = 𝑎(𝜔)𝑓(𝑥,−𝜔)− 𝑏(−𝜔)𝑓(𝑥, 𝜔), (3.15)

𝑓(𝑥, 𝜔) = 𝑎(𝜔)𝑓#(𝑥,−𝜔) + 𝑏(𝜔)𝑓#(𝑥, 𝜔), (3.16)

where 𝑎 and 𝑏 are constructed from 𝑟 as explained at the beginning of this subsec-
tion.

As a result, we conclude that 𝑓(⋅, 𝜔) solves the equations −𝑦′′+𝑞𝑦 = 𝜔2𝑦 and
−𝑦′′ + 𝑞#𝑦 = 𝜔2𝑦, which implies that 𝑞 = 𝑞# = 𝑞0 as distributions in 𝑊−1

2,loc(ℝ).

It follows that 𝑓 and 𝑓# are respectively the right and left Jost solutions of the
Schrödinger operator with Miura potential 𝑞0 ∈ 𝒬1, and now (3.15) and (3.16)
show that 𝑟 and 𝑟# are respectively its right and left reflection coefficients. This
completes the reconstruction procedure and the proof of Theorem 3.8.
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3.5. Sobolev properties of the scattering mappings

One of the motivations for extending the inverse scattering theory is the possibility
to study solvability of some completely integrable nonlinear partial differential
equations with irregular initial data [14, 22, 33, 37]. For instance, the Cauchy
problem for the modified Korteweg-de Vries (mKdV) equation on the line is

𝑢𝑡 + 𝑢𝑥𝑥𝑥 + 6𝑢2𝑢𝑥 = 0;

𝑢(𝑥; 0) = 𝑢0(𝑥).
(3.17)

The existence of global weak solutions for initial data in 𝐿2(ℝ) was proven by
Kato [51] and, independently, by Kruzhkov and Faminskĭı [55]; see also [17] and
[41]. Kato’s result gives existence but no uniform continuity of the solution in the
initial data. On the other hand, Kenig, Ponce, and Vega [52] showed local well-
posedness for initial data in the Sobolev space 𝐻𝑠(𝑅) if 𝑠 ≥ 1

4 , while Colliander,
Keel, Staffilani, Takaoka, and Tao [23] proved global well-posedness for initial data
in 𝐻𝑠(𝑅) for 𝑠 > 1

4 .
The classical inverse scattering method for mKdV on the line (see Wadati [71]

and Tanaka [70], Beals and Coifman [11–13] and in a more general setting the
monograph of Beals, Deift and Tomei [14]) constructs a classical solution using
the inverse scattering transform for initial data 𝑢0 in the Schwartz class 𝑆(ℝ).
The crucial observation (made originally by C. Gardner, J. Green, M. Kruscal and
R. Miura [37] in 1974 for the KdV equation) is that if the function 𝑢(𝑥, 𝑡) solves
the mKdV equation (3.17), and 𝐻(𝑡) is the family of Schrödinger operators in the
factorized form (1.2) with Riccati representatives 𝑢(𝑥, 𝑡),

𝐻(𝑡) := −
( d

d𝑥
+ 𝑢(𝑥, 𝑡)

)( d

d𝑥
− 𝑢(𝑥, 𝑡)

)
,

then the reflection coefficient 𝑟(𝑡) for 𝐻(𝑡) evolves in a straightforward manner

in time, namely, 𝑟(𝑡, 𝜔) = e8i𝑡𝜔
3

𝑟(0, 𝜔). Thus given the initial condition 𝑢(𝑥, 0) =
𝑢0(𝑥), one finds the scattering data for the operator 𝐻(0), calculates their time
evolution, and then reconstructs the potential 𝑢(𝑥, 𝑡) of the operator 𝐻(𝑡) thus
solving the mKdV equation.

The only obstacle to apply this method to initial data of low regularity is
that the mKdV flow does not preserve the inclusion 𝑟 ∈ ℛ. Therefore we need
to find smaller classes of initial data 𝑢0, for which the corresponding classes of
reflection coefficients remain invariant. Similarly, the same questions arise in con-
nection with using the inverse scattering for the ZS-AKNS systems [36] to solve
the defocussing nonlinear Schrödinger equation. In other words, the problem is to
study the properties of the scattering maps for various spaces of 𝑢.

Fourier-type properties of the map 𝑞 �→ 𝑟 have been studied by many authors,
including Cohen [21], Deift and Trubowitz [27], Faddeev [32], and Zhou [73]. These
authors imposed weighted 𝐿1 assumptions on 𝑞 and obtained regularity results for
𝑟 in terms of 𝐿∞-norms of 𝑟 and its derivatives. Kappeler and Trubowitz [49, 50]
studied Sobolev space mapping properties of the scattering map and observed that,
similarly to the Fourier transform, whenever 𝑞 is integrable with the weight ⟨𝑥⟩𝑘 :=
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(1 + ∣𝑥∣2)𝑘/2, 𝑘 ≥ 3, then the reflection coefficient 𝑟 is 𝑘 − 1 times differentiable,
while smoothness of 𝑞 is reflected in the weight integrability of 𝑟. They extend
their results to potentials with finitely many bound states in [50] and also prove
analyticity and investigate the differential of the scattering map. Deift and Zhou
in [28] discuss the long-time asymptotics of solutions to the non-linear Schrödinger
equation with the initial data in weighted Sobolev spaces.

In our paper [45] we showed that, for any 𝑠 > 1
2 , the mapping

𝒮 : 𝑢 �→ 𝑟

is locally invertible bi-Lipschitz map between real space 𝐿2(ℝ, ⟨𝑥⟩𝑠𝑑𝑥) and special
subspace of 𝑊 𝑠

2 (ℝ). However, the space 𝑊 𝑠
2 (ℝ) is not invariant under the mKdV-

induced flow of 𝑟 if 𝑠 > 1
2 , whence this result is not directly applicable to solving the

mKdV. It might be possible, however, to study the mKdV equation in the space
𝑊 2𝑠
2 (ℝ, ⟨𝑥⟩𝑠𝑑𝑥) since the corresponding space 𝑊 𝑠

2 (ℝ, ⟨𝑥⟩2𝑠𝑑𝑥) of the reflection
coefficients is preserved under the mKdV flow. This and other related questions
will be discussed elsewhere [18].

4. The case of discontinuous impedance function

In this section, we show that the case of discontinuous impedance functions leads
to Schrödinger operators whose scattering matrices possess completely different
properties than those observed in the previous section. The corresponding func-
tions 𝑢 = (log 𝑝)′ now contain Dirac 𝛿-functions and hence are not summable.
Moreover, a common sense suggests that the scattering transforms 𝒮± act approx-
imately as the Fourier transforms and thus the reflection coefficients 𝑟± should
have properties typical to those of the Fourier transform of 𝑢. We shall show that,
indeed, 𝑟± contain (almost-) periodic components and, as a result, do not tend to
zero at infinity, contrary to what was observed for singular Miura potentials in the
previous section.

Inverse scattering for Schrödinger operators with discontinuous impedances
were considered before (see, e.g., [3–5, 19, 66, 67], but only piece-wise smooth
impedances with a finite number of discontinuities were allowed. Also, the so-
called layer-stripping method was used, i.e., on every interval of continuity of 𝑝,
the problem was transformed to the potential form and then solved by the stan-
dard methods, while the discontinuity in the impedance was determined form the
asymptotics of the scattering data. One then had to recalculate the scattering data
for the next interval of continuity, and then repeat the process until all discontinu-
ities have been treated. Unfortunately, no method has been suggested that would
automatically determine 𝑝 along with all its jumps in a generic situation.

To better expose the main effects encountered in this problem, we shall con-
centrate on the model example of piece-wise constant impedance function 𝑝 having
jumps at points of a regular lattice, taken to be ℤ without loss of generality. We
shall comment in Subsection 4.8 on possible extensions.
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4.1. The operators

Throughout this section, the function 𝑝 is assumed constant on the intervals Δ𝑗 :=
(𝑗, 𝑗 + 1) and hence takes the form

𝑝(𝑠) = exp
{ ∑
𝑗 : 𝑗>𝑠

𝑢𝑗

}
for some real numbers 𝑢𝑗 . Since in applications only bounded and uniformly posi-
tive impedances are of interest, it is natural to assume that the sequence 𝒖 := (𝑢𝑗)
belongs to ℓ1(ℤ). Equation (1.9) is the spectral problem 𝐻𝑦 = 𝜔2𝑦 for the corre-
sponding Schrödinger operator 𝐻 = 𝐻𝒖 generated by the differential expression

𝔩 := − 1

𝑝(𝑠)

𝑑

𝑑𝑠
𝑝2(𝑠)

𝑑

𝑑𝑠

1

𝑝(𝑠)
.

The differential expression 𝔩 acts as 𝔩 𝑦 := −𝑦′′ on its domain consisting of functions
𝑦 such that both 𝑦/𝑝 and 𝑝𝑦′ are locally absolutely continuous, i.e., of functions 𝑦
satisfying the interface conditions

e𝑢𝑗𝑦(𝑗+) = 𝑦(𝑗−),

e−𝑢𝑗𝑦′(𝑗+) = 𝑦′(𝑗−)
(IF𝑗)

at every lattice point 𝑠 = 𝑗. The operator 𝐻 is the realization of 𝔥 in 𝐿2(ℝ), i.e.,
𝐻𝑦 = −𝑦′′ on the domain

dom𝐻 = {𝑦 ∈ 𝑊 2
2 (ℝ ∖ ℤ) ∣ ∀𝑗 ∈ ℤ, (IF𝑗) holds}.

It is immediate to see that the operator 𝐻 is symmetric; in fact [53], it is also
self-adjoint on the above domain.

4.2. Jost solutions and the scattering data

The right Jost solution 𝑓+( ⋅ , 𝜔), if exists, must be of the form

𝑓+(𝑠, 𝜔) = 𝑎𝑗e
i𝜔𝑠 + 𝑏𝑗e

−i𝜔𝑠

on each interval Δ𝑗 . The interface conditions at the point 𝑥 = 𝑗 force the relation(
𝑎𝑗−1
𝑏𝑗−1

)
= 𝑀(𝑗, 𝜔)

(
𝑎𝑗
𝑏𝑗

)
(4.1)

with

𝑀(𝑗, 𝜔) :=

(
cosh𝑢𝑗 e−2i𝜔𝑗 sinh𝑢𝑗

e2i𝜔𝑗 sinh𝑢𝑗 cosh𝑢𝑗

)
.

We observe that the matrix 𝑀(𝑗, 𝜔) for all 𝜔 ∈ ℝ belongs to the group 𝑆𝑈(1, 1).
Denoting by ∣𝐴∣ the norm of a matrix 𝐴 and by 𝐼2 := diag(1, 1) the unity matrix
in ℂ2, we see that the inclusion (𝜇𝑗) ∈ ℓ1(ℤ) yields the inequality∑

𝑗∈ℤ
∣𝑀(𝑗, 𝜔)− 𝐼2∣ < ∞,
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whence for every 𝑘 ∈ ℤ the product

𝑀𝑘(𝜔) :=

−→∏
𝑗>𝑘

𝑀(𝑗, 𝜔) := lim
𝑚→∞𝑀(𝑘 + 1, 𝜔) ⋅ ⋅ ⋅𝑀(𝑚,𝜔)

converges to an element of 𝑆𝑈(1, 1). Also, by the same reason, the limit

𝑀(𝜔) := lim
𝑛→−∞𝑀𝑛(𝜔)

exists and belongs to 𝑆𝑈(1, 1).
Set now (

𝑎𝑛(𝜔)

𝑏𝑛(𝜔)

)
:= 𝑀𝑛(𝜔)

(
1

0

)
,

(
𝑎(𝜔)

𝑏(𝜔)

)
:= 𝑀(𝜔)

(
1

0

)
;

then, for every fixed 𝜔 ∈ ℝ, we have that 𝑎𝑛(𝜔) → 𝑎(𝜔) and 𝑏𝑛(𝜔) → 𝑏(𝜔) as
𝑛 → −∞. Also, 𝑀𝑛(𝜔) → 𝐼2 as 𝑛 → ∞ yields 𝑎𝑛(𝜔) → 1 and 𝑏𝑛(𝜔) → 0 as 𝑛 → ∞
and thus the 𝑎𝑛(𝜔) and 𝑏𝑛(𝜔) indeed determine the right Jost solution 𝑓+( ⋅ , 𝜔)
via (1.5).

The coefficients 𝑎𝑛 and 𝑏𝑛 possess some useful properties, which we now
discuss. Assume first that a sequence 𝒖 = (𝑢𝑛) is such that, for some 𝑚 ∈ ℕ, we
have 𝑢𝑛 = 0 if ∣𝑛∣ > 𝑚. Then one can prove that, for every 𝑛 ∈ ℤ, the functions
𝑎𝑛 and 𝜔 �→ e−2i𝜔(𝑛+1)𝑏𝑛(𝜔) belong to the Hardy space 𝐻+ of functions that
are bounded and analytic in the upper-half complex plane ℂ+. Moreover, for the
Fourier series expansions of 𝑎𝑛 and 𝑏𝑛,

𝑎𝑛(𝜔) =
∑
𝑚≥0

𝑎̂𝑛(𝑚)ei𝜔𝑚, 𝑏𝑛(𝜔) =
∑

𝑚≥2(𝑛+1)
𝑏̂𝑛(𝑚)ei𝜔𝑚 (4.2)

the interface condition (4.1) yields the relations

𝑎̂𝑛(0) = cosh𝜇𝑛+1𝑎̂𝑛+1(0), 𝑏̂𝑛(2𝑛+ 2) = sinh𝜇𝑛+1𝑎̂𝑛+1(0). (4.3)

Passing to the limit as 𝑚 → ∞ shows that the above properties hold for all 𝒖 ∈ ℓ1.
It follows that, for every fixed 𝒖 ∈ ℓ1 and 𝑠 = 𝑛+ 𝑦 with 𝑛 ∈ ℤ and 𝑦 ∈ (0, 1), the
function of 𝜔

e−i𝜔𝑠𝑓+(𝑠, 𝜔) = 𝑎𝑛(𝜔) + e−2i𝜔𝑠𝑏𝑛(𝜔)

belongs to the Hardy space 𝐻+. In a similar manner, one concludes that

ei𝜔𝑠𝑓−(𝑠, 𝜔) ∈ 𝐻+ (4.4)

for every 𝑥 ∈ ℝ. Observe also that none of 𝑎 and 𝑎𝑛 has zeros in the open upper-
half plane ℂ+ as otherwise the corresponding impedance Schrödinger operators
would have non-positive eigenvalues, which is impossible.

We next recall the following

Definition 4.1. The Wiener algebra 𝑊 is a complex Banach algebra of 2𝜋-perio-
dic continuous functions ℎ with absolutely convergent Fourier series

∑
𝑛∈ℤ ℎ𝑛e

i𝑛𝑥

under the point-wise multiplication and the norm ∥ℎ∥𝑊 :=
∑

𝑛∈ℤ ∣ℎ𝑛∣.
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The above considerations might be summarized as follows:

Proposition 4.2. The functions 𝑎𝑛, 𝑏𝑛, 𝑎, and 𝑏 are 𝜋-periodic elements of the
Wiener algebra 𝑊 , depend therein continuously on 𝒖 ∈ ℓ1,ℝ and satisfy the esti-
mates

∥𝑎𝑛∥𝑊 + ∥𝑏𝑛∥𝑊 , ∥𝑎∥𝑊 + ∥𝑏∥𝑊 ≤ exp
{∥𝒖∥}.

The Wiener algebra 𝑊 has a nice property that the spectrum of an element
ℎ ∈ 𝑊 is the range Ranℎ := {ℎ(𝑥) ∣ 𝑥 ∈ ℝ}; as a result, ℎ is invertible in 𝑊
whenever ℎ does not vanish on ℝ. Now, the inclusion 𝑀(𝜔) ∈ 𝑆𝑈(1, 1) yields the
relation

∣𝑎(𝜔)∣2 − ∣𝑏(𝜔)∣2 = 1

for real 𝜔; therefore 𝑎 does not vanish on ℝ and thus is invertible in 𝑊 . It follows
that the reflection coefficients 𝑟−(𝜔) = 𝑏(𝜔)/𝑎(𝜔) and 𝑟+(𝜔) = −𝑏(−𝜔)/𝑎(𝜔)
belong to 𝑊 as well. Set

R := {𝑟 ∈ 𝑊 ∣ 𝑟(𝑥 + 𝜋) = 𝑟(𝑥), 𝑟(−𝜔) = 𝑟(𝜔), ∥𝑟∥∞ < 1}; (4.5)

then the above reasoning establish the direct part of the inverse problem, namely:

Corollary 4.3. For every real-valued sequence 𝒖 ∈ ℓ1 the reflection coefficients 𝑟−
and 𝑟+ of the corresponding Schrödinger operator 𝐻𝒖 belong to R.

The next step is to show that, firstly, the reflection coefficients determine
uniquely the corresponding scattering coefficients 𝑎 and 𝑏, and, in fact, that every
𝑟 ∈ R generates some 𝑎 and 𝑏 that have properties the genuine scattering coef-
ficients do. Secondly, a continuous involution ℐ on R exists such that the right
and left reflection coefficients for every Schrödinger operator 𝐻𝒖 with 𝒖 ∈ ℓ1,ℝ are
related via 𝑟− = ℐ𝑟+.

Lemma 4.4.

(i) Every 𝑟 ∈ R admits a unique representation in the form 𝑟 = 𝑏/𝑎 with 𝑎, 𝑏 ∈
𝑊 such that 𝑎 is invertible in 𝑊 , zero-free in ℂ+, and satisfies 𝑎̂(0) > 0 and
∣𝑎∣2 = (1− ∣𝑟∣2)−1.

(ii) For 𝑟 ∈ R, take 𝑎 and 𝑏 as in part (i) and set 𝑟#(𝜔) := −𝑏(−𝜔)/𝑎(𝜔). Then
the function 𝑟# also belongs to R and the mapping

ℐ : 𝑟 �→ 𝑟#

is a continuous involution on R.
(iii) Assume that 𝒖 ∈ ℓ1,ℝ and that 𝑟± are the reflection coefficients for the

Schrödinger operator 𝐻𝒖; then ℐ𝑟± = 𝑟∓.
(iv) For every 𝑟 ∈ R, the mapping [0, 1] ∋ 𝑧 → (𝑧𝑟)# ∈ R is real analytic.
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4.3. Transformation operators

The Jost solution 𝑓+( ⋅ , 𝜔) can also be represented via the transformation operator.
We shall need such a representation only for the values of 𝑓+ at the lattice points
𝑠 ∈ ℤ. Using the Fourier series expansions (4.2) of 𝑎𝑠 and 𝑏𝑠 in (1.5), we see that

𝑓+(𝑠+ 0, 𝜔) = 𝑎𝑠(𝜔)e
i𝜔𝑠 + 𝑏𝑠(𝜔)e

−i𝜔𝑠

=
∑
𝑡≥𝑠

ei𝜔𝑡
[
𝑎̂𝑠(𝑡− 𝑠) + 𝑏̂𝑠(𝑡+ 𝑠)

]
.

For 𝑠, 𝑡 ∈ ℤ, we set

𝑀+(𝑠, 𝑡) :=
𝑎̂𝑠(𝑡− 𝑠)

𝑎̂𝑠(0)
− 𝛿(𝑠, 𝑡), 𝑀−(𝑠, 𝑡) :=

𝑏̂𝑠(𝑡+ 𝑠)

𝑎̂𝑠(0)
, (4.6)

𝐾±(𝑠, 𝑡) := 𝑀+(𝑠, 𝑡)±𝑀−(𝑠, 𝑡), (4.7)

where 𝛿(𝑠, 𝑡) is the Kronecker delta. It then follows that, for all 𝜔 ∈ ℝ and 𝑠 ∈ ℤ,

𝑓+(𝑠+ 0, 𝜔) = 𝑎̂𝑠(0)
(
ei𝜔𝑠 +

∞∑
𝑡=𝑠+1

𝐾+(𝑠, 𝑡)e
i𝜔𝑡

)
. (4.8)

Equalities (4.3) yield the crucial relation

𝑀−(𝑠− 1, 𝑠+ 1) = tanh𝑢𝑠, 𝑠 ∈ ℤ ,

that allows one to uniquely reconstruct the numbers 𝑢𝑠 from the kernel 𝑀−. Ob-
serve that analogous procedure in the continuous case gives the value of 𝑢 as the
restriction of 𝑀− on the diagonal, cf. (2.11).

Remark 4.5. The “genuine” transformation operator for 𝐻𝒖 can be constructed
in a similar manner. Using the unitary equivalence of 𝐿2(ℝ) and ℓ2(ℤ)⊗𝐿2(0, 1),
we can represent every function 𝑔 ∈ 𝐿2(ℝ) via the sequence (𝑔(𝑛, 𝑦))𝑛∈ℤ of its
restrictions onto Δ𝑛, with 𝑔(𝑛, 𝑦) := 𝑔(𝑛+ 𝑦) for 𝑛 ∈ ℤ and 𝑦 ∈ (0, 1). For ease of
notation, we shall write 𝑔(𝑛, ⋅) as 𝑔𝑛.

Substituting the Fourier series expansions for 𝑎𝑛 and 𝑏𝑛 in the expression for
𝑓 at the point 𝑠 = 𝑛+ 𝑦 ∈ Δ𝑛, we get

𝑓𝑛(𝑦) =
∑
𝑚≥𝑛

𝑎̂𝑛(𝑚− 𝑛)ei𝜔(𝑚+𝑦) +
∑

𝑚≥𝑛+2
𝑏̂𝑛(𝑚+ 𝑛)ei𝜔(𝑚−𝑦)

=: 𝑎̂𝑛(0)
[
ei𝜔(𝑛+⋅) +

∑
𝑚>𝑛

[𝐴(𝑛,𝑚) +𝐵(𝑛,𝑚)]ei𝜔(𝑚+⋅)
]
(𝑦),

where 𝐴(𝑛,𝑚) and 𝐵(𝑛,𝑚) are operators in 𝐿2(0, 1) given by

𝐴(𝑛,𝑚) =
𝑎̂𝑛(𝑚− 𝑛)

𝑎̂𝑛(0)
𝐼, 𝐵(𝑛,𝑚) =

𝑏̂𝑛(𝑚+ 𝑛+ 1)

𝑎̂𝑛(0)
𝑇

and 𝑇 is the reflection operator in 𝐿2(0, 1) defined via 𝑇𝑓(𝑦) = 𝑓(1− 𝑦).
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It turns out that the operator 𝒦 in 𝐿2(ℝ) given by

(𝒦𝑔)𝑛 = 𝑎̂𝑛(0)
[
𝑔𝑛 +

∑
𝑚>𝑛

(𝐴(𝑛,𝑚) +𝐵(𝑛,𝑚))𝑔𝑚

]
is the transformation operator for 𝐻𝒖. In other words, for every 𝑔 ∈ 𝑊 2

2 (ℝ),
the function 𝒦𝑔 belongs to the domain of 𝐻𝒖 and 𝐻𝒖𝒦𝑔 = −𝒦𝑔′′. Indeed, the
fact that the function 𝒦𝑔 belongs to 𝑊 2

2 outside the integer points and satisfies
the interface conditions can be verified in a straightforward manner first for 𝑔 of
support contained in (𝑗 − 1

2 , 𝑗 +
1
2 ), for some 𝑗 ∈ ℤ and then using the linearity.

Finally, one can show that the operator 𝒦 is boundedly invertible and performs
similarity of the operators 𝐻𝒖 and 𝐻0. We shall not need this fact in what follows.

4.4. Derivation of the Marchenko equation

The Marchenko equation relating the kernel of the transformation operator and
the Fourier transform of the reflection coefficient can now be derived in a standard
manner. The only difference is that, because 𝑟+ is a periodic function and the
kernel 𝐾 is in a sense piece-wise constant, the discrete Fourier transform should
be used.

Assume that 𝑓± are the Jost solution for the operator 𝐻𝒖, with some 𝒖 ∈
ℓ1,ℝ, and that 𝑎, 𝑏, and 𝑟 = 𝑟+ are the corresponding scattering and reflection
coefficients. Since 𝑎 never vanishes on the real line, the relations (1.6) and (1.7)
imply that

ei𝜔𝑥𝑓−(𝑥, 𝜔)
𝑎(𝜔)

= ei𝜔𝑥𝑓+(𝑥,−𝜔) + 𝑟(𝜔)ei𝜔𝑥𝑓+(𝑥, 𝜔).

By (4.4), for every 𝑥 ∈ ℝ the function 𝜔 �→ ei𝜔𝑥𝑓−(𝑥, 𝜔) belongs to the alge-
bra 𝑊+ := 𝑊 ∩𝐻+, and thus the same is true of the function

𝑔(𝑥, 𝜔) := ei𝜔𝑥𝑓+(𝑥,−𝜔) + 𝑟(𝜔)ei𝜔𝑥𝑓+(𝑥, 𝜔).

Set

𝑅(𝑠) := 𝑟(−𝑠), 𝑠 ∈ ℤ; (4.9)

then equality (4.8) for each 𝑠 ∈ ℤ yields

𝑔(𝑠+ 0, 𝜔)

𝑎̂𝑠(0)
= 1 +

∞∑
𝑡=𝑠+1

𝐾+(𝑠, 𝑡)e
−i𝜔(𝑡−𝑠) +

∑
𝑛∈ℤ

𝑟(𝑛)ei𝜔(𝑛+2𝑠)

+
∞∑

𝜉=𝑠+1

∑
𝑛∈ℤ

𝑟(𝑛)𝐾+(𝑠, 𝜉)e
i𝜔(𝜉+𝑠+𝑛)

= 1 +
∑
𝑡∈ℤ

𝐿+(𝑠, 𝑡)e
−i𝜔(𝑡−𝑠),

where

𝐿+(𝑠, 𝑡) := 𝐾+(𝑠, 𝑡) +𝑅(𝑠+ 𝑡) +
∞∑

𝜉=𝑠+1

𝐾+(𝑠, 𝜉)𝑅(𝜉 + 𝑡).
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Recalling that 𝑔(𝑠+ 0, ⋅ ) ∈ 𝑊+, we derive the following discrete analogue of the
Marchenko equation for all 𝑠, 𝑡 ∈ ℤ with 𝑠 < 𝑡:

𝐾+(𝑠, 𝑡) +𝑅(𝑠+ 𝑡) +
∞∑

𝜉=𝑠+1

𝐾+(𝑠, 𝜉)𝑅(𝜉 + 𝑡) = 0. (4.10)

4.5. Derivation of the Zakharov–Shabat system

It follows from the analysis of Subsection 4.2 that the sign change 𝒖 �→ −𝒖 does not
affect the functions 𝑎𝑛, while 𝑏𝑛 change to −𝑏𝑛; as a result, we have 𝑟±,−𝒖 = −𝑟±,𝒖.
Therefore the counterpart of (4.10) for 𝐾− reads

𝐾−(𝑠, 𝑡)−𝑅(𝑠+ 𝑡)−
∞∑

𝜉=𝑠+1

𝐾−(𝑠, 𝜉)𝑅(𝜉 + 𝑡) = 0. (4.11)

Recalling the definition of the kernels 𝑀+ and 𝑀− in (4.6), one can recast the
system (4.10)–(4.11) as

𝑀+(𝑠, 𝑡) +

∞∑
𝜉=𝑠+1

𝑀−(𝑠, 𝜉)𝑅(𝜉 + 𝑡) = 0, (4.12)

𝑀−(𝑠, 𝑡) +𝑅(𝑠+ 𝑡) +
∞∑

𝜉=𝑠+1

𝑀+(𝑠, 𝜉)𝑅(𝜉 + 𝑡) = 0 (4.13)

for 𝑠, 𝑡 ∈ ℤ and 𝑠 < 𝑡, which is a discrete analogue of the Zakharov–Shabat system.

4.6. Solution of the Zakharov–Shabat system

Take now an arbitrary element 𝑟 of R; our aim is to show that it is the right
reflection coefficient for a Schrödinger operator𝐻𝒖 with some real-valued sequence
𝒖 ∈ ℓ1. We shall do this by first solving the Zakharov–Shabat system with the
sequence 𝑅 defined via (4.9) and then determining 𝒖 via (2.16).

The sequence 𝑅(𝑛) generates a continuous operator ℛ in ℓ2 := ℓ2(ℤ) via

(ℛ𝑥)(𝑠) :=
∑
𝑡∈ℤ

𝑅(𝑠+ 𝑡)𝑥(𝑡). (4.14)

Taking the (inverse) Fourier transform of (4.14), we see that

∥ℛ∥ = sup
𝜔∈ℝ

∣𝑟(𝜔)∣ ≤ ∥𝑅∥1,

where ∥𝑅∥1 denotes the ℓ1-norm of the sequence 𝑅. In particular, ∥ℛ∥ < 1; this
inequality is used crucially to establish the unique solvability of the Zakharov–
Shabat system. For 𝑠 ∈ ℤ, we denote by 𝒫𝑠 an orthoprojector in ℓ2 given by

(𝒫𝑠𝑥)(𝑡) :=

{
𝑥(𝑡) if 𝑡 > 𝑠,

0 otherwise,

and set ℛ𝑠 := 𝒫𝑠ℛ𝒫𝑠. Also, X shall stand for the set of all complex-valued
functions on

Ω := {(𝑠, 𝑡) ∈ ℤ2 ∣ 𝑠 < 𝑡}
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with

∥𝑋∥2X := sup
𝑠∈ℤ

∑
𝑡=𝑠+1

∣𝑋(𝑠, 𝑡)∣2

finite; the set X is a Banach space with respect to the norm ∥ ⋅ ∥X . Also, X0

stands for the subspace of X defined by

X0 := {𝑋 ∈ X ∣ lim
𝑠→+∞

∑
𝑡>𝑠

∣𝑋(𝑠, 𝑡)∣2 = 0}.

Then the following holds.

Theorem 4.6. For every 𝑟 ∈ R, define 𝑅 ∈ ℓ1(ℤ) via 𝑅(𝑛) := 𝑟(−𝑛). Then the
Zakharov–Shabat system (4.12)–(4.13) has a unique solution (𝑀+,𝑀−) belonging
to the space X0 × X . This solution is given by

𝑀+(𝑠, 𝑡) = ⟨(𝐼 −ℛ2𝑠)−1ℛ𝑠ℛ𝑒𝑠, 𝑒𝑡⟩,
𝑀−(𝑠, 𝑡) = −⟨(𝐼 −ℛ2𝑠)−1𝒫𝑠ℛ𝑒𝑠, 𝑒𝑡⟩,

(4.15)

with ⟨ ⋅ , ⋅ ⟩ denoting the scalar product in ℓ2 and (𝑒𝑠) the standard orthonormal
basis therein, and depends continuously in X0 × X on 𝑟 ∈ R.

We shall also need a related uniqueness result stating that no two different 𝑟 ∈
R can share the same solutions of the corresponding Zakharov–Shabat systems.
This will be crucial in the inverse scattering problem of the next subsection.

Theorem 4.7. Assume that 𝑟1, 𝑟2 ∈ R are such that the solutions 𝑀± of the related
Zakharov–Shabat systems (4.12)–(4.13) coincide. Then 𝑟1 = 𝑟2.

Proof. Denote by 𝑅1 and 𝑅2 the corresponding ℓ1-sequences formed from the
Fourier coefficients of 𝑟1 and 𝑟2 (namely, 𝑅𝑗(𝑛) := 𝑟𝑗(−𝑛)) and recall that 𝐾+ is
given by 𝐾+ = 𝑀+ +𝑀−. Set 𝑅 := 𝑅1 −𝑅2; then 𝑅 satisfies the relations

𝑅(𝑠+ 𝑡) +

∞∑
𝜉=𝑠+1

𝐾+(𝑠, 𝜉)𝑅(𝜉 + 𝑡) = 0 (4.16)

for all 𝑠 ∈ ℤ and all 𝑡 > 𝑠. Using properties of the kernel 𝐾+ and (4.16), we shall
show that

(i) there is 𝑁 ∈ ℤ such that 𝑅(𝑛) = 0 for all 𝑛 ≥ 𝑁 ;
(ii) the 𝑁 above can be taken arbitrary;

which results in 𝑅 ≡ 0.
For (i), it suffices to show existence of 𝑠 ∈ ℤ such that∑

𝜉>𝑠

∣𝐾+(𝑠, 𝜉)∣ < 1; (4.17)

indeed, (4.16) yields the inequality

max
𝑛>2𝑠

∣𝑅(𝑛)∣ ≤ max
𝑛>2𝑠

∣𝑅(𝑛)∣ ⋅
∑
𝜉>𝑠

∣𝐾+(𝑠, 𝜉)∣,
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which by (4.17) forces that 𝑅(𝑛) = 0 for all 𝑛 > 2𝑠. This is proved by using the
explicit formulae (4.15) for solutions 𝑀± and the fact that

∑
𝑡>𝑠 ∣𝑅𝑗(𝑡)∣ tends to

zero as 𝑠 → +∞. Part (ii) is then established by induction. □
4.7. The inverse scattering problem

Finally we show that every 𝑟 ∈ R is a right reflection coefficient for a Schrödinger
operator 𝐻𝒖 corresponding to a unique sequence 𝒖 = (𝑢𝑗)𝑗∈ℤ ∈ ℓ1,ℝ. The consid-
erations of the previous sections imply that such a 𝒖 must verify the relation

tanh𝑢𝑗 = 𝑀−(𝑗 − 1, 𝑗 + 1), 𝑗 ∈ ℤ,

where the kernel 𝑀− satisfies the Zakharov–Shabat system (4.12)–(4.13), in which
𝑅(𝑗) := 𝑟(−𝑗).

This suggests the following reconstruction algorithm:

(1) given 𝑟 ∈ R, form the sequence 𝑅 =
(
𝑅(𝑛)

) ∈ ℓ1,ℝ with 𝑅(𝑛) := 𝑟(−𝑛);
(2) solve the Zakharov–Shabat system (4.12)–(4.13) with the given 𝑅 to get

(𝑀+,𝑀−) ∈ X0 × X and form the sequence v := (𝑣(𝑗)) with 𝑣(𝑗) :=
𝑀−(𝑗 − 1, 𝑗 + 1) for 𝑗 ∈ ℤ;

(3) define 𝑢𝑗 ∈ ℝ via tanh𝑢𝑗 := 𝑣(𝑗) and form 𝒖 := (𝑢𝑗)𝑗∈ℤ.
By Theorem 4.6 step (2) can always be performed, but 𝒖 can only be defined if
∥v∥∞ < 1. We shall prove this is the case and, moreover, that so-defined 𝒖 belongs
to ℓ1. The final step is to show that the Schrödinger operator corresponding to
this 𝒖 has 𝑟 we have started with as its right reflection coefficient.

We first start with 𝑟 of small norm.

Lemma 4.8. Assume that 𝑟 ∈ R is such that ∥𝑟∥𝑊 ≤ 1
2 ; then the corresponding

sequence v belongs to ℓ1 and ∥v∥1 ≤ 2
3 .

This can be derived from the explicit formula (4.15) for the solution 𝑀− of
the Zakharov–Shabat system. Therefore 𝒖 is well defined; we then consider the
corresponding Schrödinger operator 𝐻𝒖 and determine its right reflection coef-
ficient 𝑟𝒖,+ and the corresponding kernels 𝑀𝒖,±. In fact, both 𝑀± and 𝑀𝒖,±
satisfy the discrete hyperbolic system with the same initial conditions determined
by v and therefore coincide [10]. It follows that the sequence 𝑅𝒖(𝑛) := 𝑟𝒖,+(−𝑛)
along with 𝑅(𝑛) verifies the Zakharov–Shabat system with the same 𝑀±; by The-
orem 4.7, 𝑟𝒖,+ = 𝑟. This completes the solution of the inverse scattering problem
in the case when ∥𝑟∥𝑊 < 1

2 .
In a generic case, we first show that the sequence v belongs to ℓ1 at +∞.

To this end we observe that, by (4.15), the values of 𝑣(𝑛) for 𝑛 > 𝑁 only depend
on 𝑅(𝑛) with 𝑛 > 𝑁 ; choosing 𝑁 so that

∑
𝑛>𝑁 ∣𝑅(𝑛)∣ < 1

2 and using the above
reasonings yields the result.

At the second step we exploit the way 𝒖 and 𝑟± behave under the reflection
𝑥 �→ −𝑥 to show that v ∈ ℓ1. Namely, set 𝑟# := ℐ𝑟, with the involution ℐ defined in
Lemma 4.4. Regarding 𝑟 as a putative right reflection coefficient for the Schrödinger
operator to be found, we conclude that 𝑟# will then be its left reflection coefficient.
If 𝑟 were a genuine right reflection coefficient for some Schrödinger operator 𝐻𝒖
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and 𝒖# = 𝑢(𝑛, 𝑟#) is the sequence constructed for 𝑟# instead of 𝑟, then we would
have the relation

𝑢(𝑛, 𝑟#) = −𝑢(−𝑛, 𝑟)

for all 𝑛 ∈ ℤ. In particular, this relation holds whenever the 𝑊 -norm of 𝑟 is
sufficiently small. Using now the analytic dependence on a small parameter 𝜀 of
the sequences 𝒖 and v constructed from 𝜀𝑟, we can establish the above equality for
an arbitrary 𝑟 ∈ R. This shows that the sequence v constructed for every 𝑟 ∈ R
belongs to ℓ1. The final step is to use the same analyticity to prove that ∥v∥∞ < 1;
see [10] for details.

Thus given any 𝑟 ∈ R, we can successfully perform the steps (i) to (iii) in the
above reconstruction algorithm and to determine a real-valued sequence 𝒖 in ℓ1.
The fact that the corresponding Schrödinger operator 𝐻𝒖 has the right reflection
coefficient equal to the 𝑟 we have started from is again justified using the unique-
ness result of Theorem 4.7. This completes the solution of the inverse scattering
problem for the class of impedance Schrödinger operators under consideration.

4.8. Some generalizations

Most of the above considerations can be generalized for the situation where the
discontinuity points 𝑥𝑘 of the impedance function 𝑝 do not form a periodic lattice.
Assume that the set {𝑥𝑘} does not have finite accumulation points, that 𝑥𝑘 are
labelled in increasing order, and determine the sequence 𝑢𝑘 from the relation

𝑝(𝑥) = exp
{ ∑
𝑘:𝑥𝑘>𝑥

𝑢𝑘

}
.

Then under the assumption that the sequence (𝑢𝑘) belongs to ℓ1 we can define
the scattering coefficients 𝑎(𝜔) and 𝑏(𝜔) as in Subsection 4.2. They are no longer
elements of the Wiener algebra 𝑊 ; however, they are almost-periodic functions
with absolutely summable Fourier series [15] and thus elements of a generalized
Wiener-type algebra𝑊𝑎𝑝. The spectrum of an element in this algebra is the closure
of its range over ℝ; thus we again get that 𝑎 is invertible in 𝑊𝑎𝑝 and 𝑟 ∈ 𝑊𝑎𝑝.

Next, the function 𝑎 belongs to the Hardy space 𝐻+, and this opens the
door to deriving an analogue of the Marchenko equation. It takes the form (4.10),
where the variables 𝑠 and 𝑡 belong to the additive group Γ spanned by {𝑥𝑗} and
the summation in 𝜉 is over Γ as well.

Due to the condition ∥𝑟∥∞ < 1, the corresponding Zakharov–Shabat system
might be shown to possess a unique solution in ℓ2(Γ). The difficult part of the
inverse scattering problem is to find a replacement for the relation (2.16) and
thus actually determine the sequence (𝑢𝑘) and then justify that the corresponding
Schrödinger operator 𝐻𝒖 has the reflection coefficient 𝑟 have started with. This
will be discussed in a future work that is currently in progress.
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Appendix

Let us denote by 𝐿1(ℝ) the Wiener algebra of Fourier transforms (2.1) of functions

in 𝐿1(ℝ) with norm ∥𝑓∥
ˆ𝐿1 := ∥𝑓∥𝐿1, and by 𝑋̂ the Banach algebra that is the

image of 𝑋 = 𝐿1(ℝ)∩𝐿2(ℝ) under the Fourier transform, equipped with the norm

∥𝑓∥
ˆ𝑋 := ∥𝑓∥𝑋. We also denote by 1 ∔ 𝑋̂ the unital extension of 𝑋̂ obtained by

adding the constant functions and norming 1∔ 𝑋̂ with the norm

∥𝑐+ 𝑓∥1∔ ˆ𝑋 = ∣𝑐∣+ ∥𝑓∥
ˆ𝑋 ;

we similarly define 1∔𝐿1(ℝ). The Fourier transform extends to 1∔ 𝑋̂ by mapping
the constant 1 into the convolution identity 𝛿.

We will need the following results.

Lemma A.1. Suppose that 𝑓 = 𝛼+ ℎ̂ ∈ 1∔ 𝑋̂. Then 𝑓 is invertible in the Banach

algebra 1∔ 𝑋̂ if and only if 𝑓 is non-vanishing on ℝ and 𝛼 ∕= 0.

Proof. If 𝑓 is invertible in 1∔ 𝑋̂ it is also invertible in 1∔𝐿1(ℝ), so the condition
is necessary by the Wiener theorem. If, on the other hand, 𝑓 does not vanish on

ℝ and 𝛼 ∕= 0, then 𝑓 is invertible in 1∔𝐿1(ℝ) with 𝑓−1 = 𝛼−1 + 𝑔 for 𝑔 ∈ 𝐿1(ℝ).
We need to check that 𝑔 ∈ 𝐿2(ℝ). Without loss we take 𝛼 = 1 and compute that

𝑔 = −(1 + ℎ̂)−1ℎ̂, which shows that 𝑔 ∈ 𝐿2(ℝ) as required. □

We now have an analogue of the Wiener–Levi theorem for 1∔ 𝑋̂.

Lemma A.2. Assume that 𝑓 ∈ 1 ∔ 𝑋̂ and that 𝜙 is a function that is analytic in

an open neighborhood Ω of the closure of the range of 𝑓 . Then 𝜙 ∘ 𝑓 ∈ 1∔ 𝑋̂ and,
moreover, the map

𝑓 �→ 𝜙 ∘ 𝑓

is an analytic map from 1 ∔ 𝑋̂ into itself when restricted to functions with range
contained in a fixed compact subset of Ω.

Proof. It suffices to note that, according to the above, the spectrum of 𝑓 in 1∔ 𝑋̂
coincides with the closure of its range. Then the standard functional calculus for
Banach algebras applies, thus yielding the result. □
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Abstract. The present paper reviews the theory of bounded Jacobi matrices
whose essential spectrum is a finite gap set, and it explains how the theory
can be extended to also cover a large number of infinite gap sets. Two of
the central results are generalizations of Denisov–Rakhmanov’s theorem and
Szegő’s theorem, including asymptotics of the associated orthogonal polyno-
mials. When the essential spectrum is an interval, the natural limiting object
𝐽0 has constant Jacobi parameters. As soon as gaps occur, ℓ say, the complex-
ity increases and the role of 𝐽0 is taken over by an ℓ-dimensional isospectral
torus of periodic or almost periodic Jacobi matrices.
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1. Introduction

Let 𝑑𝜇 be a probability measure on ℝ with moments of all orders, that is,∫
ℝ

∣𝑥∣𝑛𝑑𝜇(𝑥) < ∞ for all 𝑛 ≥ 0. (1.1)

When 𝑑𝜇 is nontrivial (i.e., supp(𝑑𝜇) is infinite), we can apply the Gram–Schmidt
process to 1, 𝑥, 𝑥2, . . . and obtain a sequence {𝑃𝑛}𝑛≥0 of orthonormal polynomials

⟨𝑃𝑛, 𝑃𝑚⟩ :=
∫
ℝ

𝑃𝑛(𝑥)𝑃𝑚(𝑥)𝑑𝜇(𝑥) = 𝛿𝑛𝑚, (1.2)

where each 𝑃𝑛 has positive leading coefficient and is of degree 𝑛. It is a basic fact
that such polynomials satisfy a three-term recurrence relation of the form

𝑥𝑃𝑛(𝑥) = 𝑎𝑛+1𝑃𝑛+1(𝑥) + 𝑏𝑛+1𝑃𝑛(𝑥) + 𝑎𝑛𝑃𝑛−1(𝑥), 𝑛 ≥ 0 (1.3)

The author was supported by a Steno Research Grant (09-064947) from the Danish Research
Council for Nature and Universe.
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with 𝑎𝑛 = ⟨𝑃𝑛−1, 𝑥𝑃𝑛⟩ > 0 and 𝑏𝑛 = ⟨𝑃𝑛−1, 𝑥𝑃𝑛−1⟩ ∈ ℝ for 𝑛 ≥ 1 (by convention,
𝑃−1(𝑥) ≡ 0). To see this, simply expand 𝑥𝑃𝑛 in terms of 𝑃0, 𝑃1, . . . , 𝑃𝑛+1 and use
the orthogonality relation (1.2). Note also that

𝑃𝑛(𝑥) =
1

𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
(
𝑥𝑛 − (𝑏1 + ⋅ ⋅ ⋅+ 𝑏𝑛)𝑥

𝑛−1 + ⋅ ⋅ ⋅
)

for 𝑛 ≥ 1. (1.4)

The spectral theorem for orthonormal polynomials (also known as Favard’s
theorem) states that for any pair of sequences {𝑎𝑛, 𝑏𝑛}∞𝑛=1 ∈ (0,∞)ℕ × ℝℕ, there
exists a probability measure 𝑑𝜇 on ℝ such that the polynomials generated by (1.3),
with 𝑃0(𝑥) = 1, satisfy the orthogonality relation (1.2). In general, this measure
of orthogonality need not be unique. But when the recurrence coefficients are
bounded, say 𝑎𝑛, ∣𝑏𝑛∣ ≤ 𝐶, then 𝑑𝜇 is indeed unique and supp(𝑑𝜇) is contained in
[−3𝐶, 3𝐶]. Conversely, if 𝑑𝜇 has compact support, then the associated recurrence
coefficients are bounded by

max
𝑥∈supp(𝑑𝜇)

∣𝑥∣ < ∞

and the polynomials are dense in 𝐿2(𝑑𝜇). We shall henceforth assume that supp(𝑑𝜇)
is compact.

The three-term recurrence relation (1.3) links orthogonal polynomials to Ja-
cobi matrices, that is, tridiagonal matrices of the form

𝐽 =

⎛⎜⎜⎜⎝
𝑏1 𝑎1
𝑎1 𝑏2 𝑎2

𝑎2 𝑏3 𝑎3
. . .

. . .
. . .

⎞⎟⎟⎟⎠ (1.5)

with 𝑎𝑛 > 0 and 𝑏𝑛 ∈ ℝ. In fact, the matrix 𝐽 in (1.5) represents the operator of
multiplication by the identity function 𝑥 in the Hilbert space 𝐿2(𝑑𝜇) with respect
to the orthonormal basis {𝑃𝑛}𝑛≥0. When 𝐽 is viewed as an operator on ℓ2(ℕ), its
spectrum 𝜎(𝐽) coincides with supp(𝑑𝜇) and we shall refer to 𝑑𝜇 as the spectral
measure of 𝐽 .

In spectral theory for orthogonal polynomials, one studies the relation be-
tween nontrivial probability measures 𝑑𝜇 satisfying (1.1) on one hand and pairs of
sequences {𝑎𝑛, 𝑏𝑛}∞𝑛=1 ∈ (0,∞)ℕ × ℝℕ on the other hand. The aim of the present
paper is to give a general view of the situation where 𝑑𝜇 is compactly supported
and the recurrence coefficients (also known as Jacobi parameters) are bounded
sequences. As already mentioned, there is a one-one correspondence between these
two classes of objects and we shall focus on results that explain how qualitative fea-
tures of the Jacobi parameters, say, are reflected in the measure of orthogonality,
and vice versa.

Throughout, we shall write the probability measure 𝑑𝜇 as

𝑑𝜇 = 𝑓(𝑥)𝑑𝑥 + 𝑑𝜇s, (1.6)
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with 𝑑𝜇s singular to 𝑑𝑥. Rather than 𝜎(𝐽), many of the results are more suitably
formulated in terms of 𝜎ess(𝐽), the essential spectrum of 𝐽 . By definition,

𝜎ess(𝐽) := {𝑥 ∈ 𝜎(𝐽) ∣ 𝑥 is not an isolated eigenvalue of 𝐽}. (1.7)

As regards proofs, in particular, a key role is played by the 𝑚-function (or Stieltjes
transform of 𝑑𝜇) defined by

𝑚(𝑧) := 𝑚𝜇(𝑧) =

∫
𝑑𝜇(𝑥)

𝑥− 𝑧
, 𝑧 ∈ ℂ ∖ supp(𝑑𝜇). (1.8)

This analytic function is known to be a Nevanlinna–Pick function (i.e., Im𝑚(𝑧) ≷ 0
for Im 𝑧 ≷ 0) and we have

𝑚(𝑧) = −1/𝑧 +𝒪(𝑧−2) (1.9)

near ∞. In fact, one can write down the Laurent expansion of 𝑚𝜇 around ∞ in
terms of the moments of 𝑑𝜇. More importantly, the boundary values 𝑚(𝑥+ 𝑖0) :=
lim𝜀↓0𝑚(𝑥+ 𝑖𝜀) exist for a.e. 𝑥 ∈ ℝ and

1

𝜋
Im𝑚𝜇(𝑥+ 𝑖𝜀) 𝑑𝑡

𝑤−−→ 𝑑𝜇 as 𝜀 ↓ 0. (1.10)

To be even more specific,

𝑓(𝑥) =
1

𝜋
Im𝑚𝜇(𝑥+ 𝑖0) a.e. on ℝ (1.11)

and

𝜇s
({𝑥}) = lim

𝜀→0
𝜀 Im𝑚𝜇(𝑥+ 𝑖𝜀) for all 𝑥 ∈ ℝ. (1.12)

So isolated mass points of 𝑑𝜇 (or isolated eigenvalues of 𝐽) are poles of 𝑚.
The simplest compact subsets of ℝ that have positive measure are intervals

of the form [𝛼, 𝛽] with −∞ < 𝛼 < 𝛽 < ∞. In Section 2, we shall consider the
situation when 𝜎ess(𝐽) has this form and without loss of generality we may assume
that −𝛼 = 𝛽 = 2. The associated Jacobi parameters are often – but not always
– close to 1 and 0 as 𝑛 → ∞. Orthogonal polynomials on a compact interval are
intimately related to Jacobi parameters that are asymptotically constant. As we
shall see, the theory is well developed and many precise results are available.

In Section 3, we generalize our studies to finite gap sets 𝔢, that is, finite
unions of closed intervals. When 𝔢 is the union of two or more disjoint intervals,
the complement ℂ ∖ 𝔢 is no longer simply connected. This is to be overcome by
using the universal covering map. Perhaps more seriously, the structure of the
Jacobi parameters changes. They are no longer asymptotically constant but rather
asymptotically periodic or almost periodic. The natural limit point (viz., the free
Jacobi matrix) also has to be replaced by an ℓ-dimensional torus, where ℓ counts
the number of gaps in 𝔢.

Finally, in Section 4 we consider infinite gap sets of Parreau–Widom type.
This notion of regular compact sets includes Cantor sets of positive measure,
among others. The theory is less developed, but many results that hold for fi-
nite gap sets can be extended to the infinite gap setting.
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2. Perturbations of the free Jacobi matrix

The most natural choice of Jacobi parameters is

𝑎𝑛 ≡ 1 and 𝑏𝑛 ≡ 0. (2.1)

As is well known, the associated orthogonal polynomials are Chebyshev of the 2nd
kind

𝑈𝑛(𝑥) =
sin(𝑛+ 1)𝜃

sin 𝜃
, 𝑥 = 2 cos 𝜃.

They are orthogonal on the interval [−2, 2] with respect to the semicircle law

𝑓0(𝑥) =
√
4− 𝑥2/2𝜋. We shall follow the standard terminology and refer to

𝐽0 =

⎛⎜⎜⎜⎝
0 1
1 0 1

1 0 1
. . .

. . .
. . .

⎞⎟⎟⎟⎠ (2.2)

as the free Jacobi matrix.

If 𝑎𝑛 → 1 and 𝑏𝑛 → 0, then 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 is a compact perturbation
of 𝐽0 and hence 𝜎ess(𝐽) = [−2, 2] by Weyl’s theorem. There may be points in
supp(𝑑𝜇) ∖ [−2, 2], but these are all isolated mass points that can only accumulate
at ±2. Moreover, a result of Nevai [14] states that the ratio 𝑃𝑛+1(𝑥)/𝑃𝑛(𝑥) has a
limit for 𝑥 ∕∈ 𝜎(𝐽).

The condition 𝜎ess(𝐽) = [−2, 2], on the other hand, is by itself not strong
enough to imply 𝑎𝑛 → 1 and 𝑏𝑛 → 0 (see, e.g., [21, Section 1.4] for a counter-
example). An extra condition is needed and for 𝑑𝜇 as in (1.6), the Denisov–
Rakhmanov theorem [9] states that if 𝜎ess(𝐽) = [−2, 2] and 𝑓(𝑥) > 0 a.e. on
[−2, 2], then 𝑎𝑛 → 1 and 𝑏𝑛 → 0. Denoting by 𝐽𝑛 the 𝑛 times stripped Jacobi ma-
trix (i.e., the matrix obtained from 𝐽 by removing the first 𝑛 rows and columns),
the above conclusion can also be formulates as 𝐽𝑛 → 𝐽0 strongly.

The more detailed spectral analysis involves the rate of convergence of the
Jacobi parameters. Of particular interest are the cases of Hilbert–Schmidt and
trace-class perturbations of 𝐽0. A deep result of Killip and Simon [12] classifies the
spectral measures of all Jacobi matrices 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 for which

∞∑
𝑛=1

(𝑎𝑛 − 1)2 + 𝑏2𝑛 < ∞. (2.3)

They all have

supp(𝑑𝜇) = [−2, 2] ∪ {𝑥𝑘},
where {𝑥𝑘} is a countable set of isolated mass points, possibly empty, and are
precisely those probability measures of the form (1.6) that satisfy∫ 2

−2
log 𝑓(𝑥)

√
4− 𝑥2 𝑑𝑥 > −∞ (2.4)
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and ∑
𝑘

(∣𝑥𝑘∣ − 2
)3/2

< ∞. (2.5)

The proof of Killip–Simon’s theorem relies on sum rules, obtained from a
factorization of the 𝑚-function. More precisely, one shows that

𝑀(𝑧) := −𝑚(𝑧 + 1/𝑧), ∣𝑧∣ < 1 (2.6)

is a meromorphic Herglotz function and hence of the form 𝑀 = 𝐵 ⋅ 𝑂, where 𝐵
is an alternating Blaschke product and 𝑂 an outer function (see [18] for details).
The sum rules now result from computing the Taylor coefficients of log(𝑀(𝑧)/𝑧)
in two different ways.

Note that

𝜙(𝑧) := 𝑧 + 1/𝑧 (2.7)

is the unique conformal mapping of the unit disk 𝔻 onto ℂ∖[−2, 2] for which 𝜙(0) =
∞ and lim𝑧→0 𝑧𝜙(𝑧) = 1. The use of 𝜙 in the theory of orthogonal polynomials
goes back at least to Szegő.

Compared to (2.3), the a priori stronger condition

∞∑
𝑛=1

∣𝑎𝑛 − 1∣+ ∣𝑏𝑛∣ < ∞ (2.8)

was conjectured by Nevai [13] and later proven by Killip and Simon [12] to imply
the Szegő condition, that is, ∫ 2

−2

log 𝑓(𝑥)√
4− 𝑥2

𝑑𝑥 > −∞. (2.9)

In turn, (2.9) is closely related to

𝑎1 ⋅ ⋅ ⋅𝑎𝑛 ∕→ 0 (2.10)

and ∑
𝑘

(∣𝑥𝑘∣ − 2
)1/2

< ∞. (2.11)

What is known as Szegő’s theorem states that if (2.11) holds, then (2.9) is equiva-
lent to (2.10). Moreover, (2.9)–(2.10) implies (2.11) so as formulated by Simon and
Zlatoš [22], any two imply the third. In the setting of Szegő’s theorem (i.e., when
(2.9)–(2.11) hold), the product in (2.10) has a positive limit, (2.3) is satisfied, and
both of the series

∞∑
𝑛=1

(𝑎𝑛 − 1),

∞∑
𝑛=1

𝑏𝑛 (2.12)

are conditionally convergent. Furthermore, a result of Peherstorfer and Yuditskii
[15] states that

𝑧𝑛𝑃𝑛(𝑧 + 1/𝑧)→ 𝐵(𝑧)𝐷(𝑧)

1− 𝑧2
(2.13)
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uniformly on compact subsets of 𝔻, where 𝐵 is the Blaschke product

𝐵(𝑧) =
∏
𝑘

∣𝑧𝑘∣
𝑧𝑘

𝑧𝑘 − 𝑧

1− 𝑧𝑘𝑧
, 𝑧𝑘 =

1

2

(
𝑥𝑘 −

√
𝑥2𝑘 − 4

)
and 𝐷 the outer function

𝐷(𝑧) = exp

{∫ 2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
log

( ∣ sin 𝜃∣
𝜋𝑓(2 cos 𝜃)

)
𝑑𝜃

4𝜋

}
.

This type of power asymptotic behavior is known as Szegő asymptotics. Note that
since

𝑈𝑛(𝑧 + 1/𝑧) =
𝑧𝑛+1 − 𝑧−𝑛−1

𝑧 − 𝑧−1
∼ 𝑧−𝑛

1− 𝑧2
,

we can replace 𝑧𝑛 by 1/𝑈𝑛(𝑧 + 1/𝑧) on the left-hand side in (2.13) if the factor
1− 𝑧2 on the right-hand side is removed too.

While the Szegő condition implies Szegő asymptotics, as has long been known,
it is not a necessary condition. Examples for which (2.11) fails and yet the left-
hand side of (2.13) has a limit are given by Damanik and Simon in [8]. More
importantly, [8] proves that 𝑧𝑛𝑃𝑛(𝑧 + 1/𝑧) has a limit for all 𝑧 ∈ 𝔻 if and only if
(2.3) holds and the series in (2.12) are conditionally convergent. The right-hand
side of (2.13), however, is only correct when (2.9) holds.

3. Finite gap Jacobi matrices

In this section, we shall consider Jacobi matrices 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 for which 𝜎ess(𝐽)
is a finite gap set, that is, a set of the form

𝔢 =

ℓ+1∪
𝑗=1

[
𝛼𝑗 , 𝛽𝑗

]
, 𝛼1 < 𝛽1 < 𝛼2 < ⋅ ⋅ ⋅ < 𝛽ℓ+1. (3.1)

Apart from a single interval, such a finite union of closed intervals is the simplest
type of compact sets in ℝ with positive measure (and no isolated points). Note
that ℓ counts the number of gaps in 𝔢 and when ℓ ≥ 1, two questions arise:

∙ Is there a natural choice of 𝐽 that can serve as a limit point, like 𝐽0 did for
the interval [−2, 2]?

∙ What replaces the conformal mapping 𝜙 in (2.7) when ℂ ∖ 𝔢 is no longer
simply connected?

The answer to the first question is negative. There is no single 𝐽 that will take
over the role of 𝐽0. Even when 𝔢 only has one gap, say 𝔢 = [−2,−1] ∪ [1, 2], there
are several sequences of periodic Jacobi parameters with period 2 (i.e., 𝑎𝑛+2 = 𝑎𝑛
and 𝑏𝑛+2 = 𝑏𝑛 for all 𝑛) leading to the right spectrum, namely 𝔢. And it seems
impossible to pick out one that should be more natural than all the others. In
fact, the Denisov–Rakhmanov theorem is known to fail when [−2, 2] is replaced by
a finite gap set with at least one gap. The Jacobi parameters need not approach
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a single point. Rather, they approach a set which is topologically a circle (or a
1-dimensional torus) when ℓ = 1.

For a general finite gap set 𝔢 as in (3.1), Simon [19,20] suggested to introduce
the so-called isospectral torus 𝒯𝔢 of dimension ℓ. The structure of this limiting
object is carefully described in [4]. It consists of all Jacobi matrices whose 𝑚-
function is a minimal Herglotz function on the two-sheeted Riemann surface 𝒮
associated with 𝔢. Loosely speaking, one can think of 𝒮 as two copies of ℂ ∖ 𝔢
glued together suitably. Alternatively, 𝒯𝔢 is the collection of all two-sided Jacobi
matrices 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=−∞ that have spectrum 𝔢 and are reflectionless on 𝔢 (see,
e.g., [17, 23] for more details).

The isospectral torus is invariant under coefficient stripping, a very useful
fact. If 𝐽 ′ is a point on 𝒯𝔢, then the Jacobi parameters {𝑎′𝑛, 𝑏′𝑛}∞𝑛=1 are periodic
or almost periodic sequences, depending on whether the intervals in 𝔢 all have
rational harmonic measure (i.e., whether 𝜇𝔢

(
[𝛼𝑗 , 𝛽𝑗 ]

) ∈ ℚ for all 𝑗, where 𝑑𝜇𝔢 is
the equilibrium measure of 𝔢). We say that 𝔢 is periodic if all [𝛼𝑗 , 𝛽𝑗 ] have rational
harmonic measure. The spectral measure of 𝐽 ′ is also very regular. It is purely
absolutely continuous on 𝔢 with a density that satisfies the Szegő condition (see
(3.3) below). Besides, it has at most one mass point in each of the ℓ gaps in 𝔢 and
no other singular part. For later use, we pick 𝐽♯ to be a suitable reference point
on 𝒯𝔢, namely a Jacobi matrix whose spectral measure has no singular part at all.

A remarkable result of Remling [17] generalizes the Denisov–Rakhmanov the-
orem to finite gap sets. It states that if 𝜎ess(𝐽) = 𝔢 and 𝑓(𝑥) > 0 a.e. on 𝔢, then
the orbit of 𝐽 under coefficient stripping approaches the isospectral torus 𝒯𝔢. The
sequence of 𝐽𝑛’s need not have a limit, but any of its accumulation points (essen-
tially right limits) lie on 𝒯𝔢. In order to ensure convergence to some point on the
isospectral torus and not only the torus as a set, stronger assumptions on 𝐽 are
needed.

We say that a Jacobi matrix 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 with spectral measure 𝑑𝜇 of
the form (1.6) belongs to the Szegő class for 𝔢 if

supp(𝑑𝜇) = 𝔢 ∪ {𝑥𝑘},
where {𝑥𝑘} is a countable set of isolated mass points satisfying the Blaschke con-
dition ∑

𝑘

dist(𝑥𝑘, 𝔢)
1/2 < ∞ (3.2)

and 𝑓 obeys the Szegő condition∫
𝔢

log 𝑓(𝑥)

dist(𝑥,ℝ ∖ 𝔢)1/2 𝑑𝑥 > −∞. (3.3)

It is proven in [5] that when (3.2) holds, (3.3) is equivalent to

𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
Cap(𝔢)𝑛

∕→ 0. (3.4)
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In fact, just as for Szegő’s theorem on [−2, 2], any two of (3.2)–(3.4) imply the
third. While the sequence in (3.4) no longer has a limit, it turns out to be asymp-
totically periodic/almost periodic.

Another result of Christiansen, Simon, and Zinchenko [5] states that if 𝐽
belongs to the Szegő class for 𝔢, there is a unique point 𝐽 ′ ∈ 𝒯𝔢 so that

∣𝑎𝑛 − 𝑎′𝑛∣+ ∣𝑏𝑛 − 𝑏′𝑛∣ → 0. (3.5)

Equivalently, this means that 𝐽𝑛 − 𝐽 ′𝑛 → 0 strongly (i.e., the orbit of 𝐽 under
coefficient stripping approaches the orbit of 𝐽 ′ on 𝒯𝔢). To explain which point on
the torus to pick and to make a statement about the asymptotics of 𝑃𝑛, we first
need to answer the second question.

In short, the role of 𝜙 is taken over by the universal covering map of 𝔻 onto
Ω := ℂ ∖ 𝔢. This is the standard tool for ‘lifting’ functions on multiply connected
domains to the unit disk. The universal covering map 𝜓 : 𝔻 → Ω is only locally
one-to-one and each point in Ω has infinitely many preimages in 𝔻. These are
related to one another through a Fuchsian group Γ of Möbius transformations,

𝜓(𝑧) = 𝜓(𝑤) ⇐⇒ ∃𝛾 ∈ Γ : 𝑧 = 𝛾(𝑤).

We fix 𝜓 uniquely by also requiring that 𝜓(0) = ∞ and lim𝑧→0 𝑧𝜓(𝑧) > 0. Γ is
isomorphic to the fundamental group 𝜋1(Ω) and hence a free group on ℓ generators,
say 𝛾1, . . . , 𝛾ℓ.

To get a better picture of Γ, we introduce the open set

𝔽 :=
{
𝑧 ∈ 𝔻 : ∣𝛾′(𝑧)∣ < 1 for all 𝛾 ∕= id

}
. (3.6)

This is a fundamental domain for Γ, that is, no two points of 𝔽 are equivalent
under Γ and 𝔽 contains at least one point from each Γ-orbit. Geometrically, 𝔽 is
symmetric in the real line and consists of the unit disk with 2ℓ orthocircles (and
their interior) removed. The circular arcs in the upper (or lower) half-disk, say
𝐶1, . . . , 𝐶ℓ, are in one-one correspondence with the gaps in 𝔢 under the covering
map 𝜓. In fact, one can take the generator 𝛾𝑗 to be reflection in 𝐶𝑗 following
complex conjugation.

The multiplicative group of characters on Γ, denoted Γ∗, turns out to play
an important role. Since an element in Γ∗ is determined from its values on the
generators of Γ, we can think of Γ∗ as an ℓ-dimensional torus. The point is that
𝒯𝔢 and Γ∗ are homeomorphic. To get hold of a homeomorphism between these two
ℓ-dimensional tori, we first introduce the Jost function of an element in the Szegő
class. Let 𝑑𝜇♯ = 𝑓 ♯(𝑥)𝑑𝑥 be the spectral measure of 𝐽♯, our reference point on 𝒯𝔢.
For 𝐽 in the Szegő class of 𝔢, we define its Jost function by

𝑢(𝑧; 𝐽) =
∏
𝑘

𝐵(𝑧, 𝑧𝑘) exp

{∫ 2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
log

(
𝑓 ♯(𝜓(𝑒𝑖𝜃))

𝑓(𝜓(𝑒𝑖𝜃))

)
𝑑𝜃

4𝜋

}
, 𝑧 ∈ 𝔻 (3.7)

where {𝑧𝑘} are the unique points in 𝔽 with Im 𝑧𝑘 ≥ 0 and 𝜓(𝑧𝑘) = 𝑥𝑘. This analytic
function turns out to be character automorphic, that is, there exists 𝜒𝐽 ∈ Γ∗ such
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that

𝑢(𝛾(⋅); 𝐽) = 𝜒
𝐽
(𝛾)𝑢( ⋅ ; 𝐽) for all 𝛾 ∈ Γ. (3.8)

Most importantly, the map

𝒯𝔢 ∋ 𝐽 −→ 𝜒
𝐽
∈ Γ∗, (3.9)

essentially the Abel map, is a homeomorphism (see, e.g., [4] for details).
We are now able to explain which point 𝐽 ′ on 𝒯𝔢 is the right one for (3.5) to

hold: Take the unique point for which 𝜒
𝐽′ = 𝜒𝐽 . This fact is proven in [5] by use of

Remling’s theorem, the homeomorphism (3.9), and a technical lemma stating that
strong convergence to a point on the torus implies convergence of the associated
characters. We repeat the proof here as it merely takes a few lines.

For contradiction, suppose that

∣𝑎𝑛 − 𝑎′𝑛∣+ ∣𝑏𝑛 − 𝑏′𝑛∣ ∕→ 0.

Then there is a subsequence {𝑛𝑘} so that 𝐽 and 𝐽 ′ have different right limits, say
𝐾 ∕= 𝐾 ′. Due to Remling’s theorem, both 𝐾 and 𝐾 ′ lie on 𝒯𝔢, and we have

𝜒𝐽𝑛𝑘
−→ 𝜒𝐾 and 𝜒

𝐽′𝑛𝑘

−→ 𝜒
𝐾′

since 𝐽𝑛𝑘
→ 𝐾 and 𝐽 ′𝑛𝑘

→ 𝐾 ′ strongly. As 𝜒
𝐽
= 𝜒

𝐽′ , we also have 𝜒
𝐽𝑛

= 𝜒
𝐽′𝑛

so

that 𝜒
𝐾
= 𝜒

𝐾′ . This contradicts the fact that 𝐾 ∕= 𝐾 ′.
The Jost function also enters the picture in connection with the asymptotic

behavior of 𝑃𝑛. With 𝑃 ′
𝑛 the orthonormal polynomials associated with 𝐽 ′ (not to

be confused with the derivative), we have

𝑃𝑛(𝜓(𝑧))

𝑃 ′
𝑛(𝜓(𝑧))

−→ 𝑢(𝑧; 𝐽)

𝑢(𝑧; 𝐽 ′)
(3.10)

uniformly on compact subsets of 𝔽, the fundamental domain for Γ. This result
should be compared with (2.13) and the fact that 𝑢(𝑧; 𝐽0) = 1.

Along the lines of [8], Christiansen, Simon, and Zinchenko [6] set out to find
weaker assumptions than the Szegő condition that still imply Szegő asymptotics
(in the sense that the left-hand side of (3.10) has a limit). At first sight, it may
look like

∞∑
𝑛=1

(𝑎𝑛 − 𝑎′𝑛)
2 + (𝑏𝑛 − 𝑏′𝑛)

2 < ∞ (3.11)

and conditional convergence of

∞∑
𝑛=1

(𝑎𝑛 − 𝑎′𝑛),
∞∑
𝑛=1

(𝑏𝑛 − 𝑏′𝑛) (3.12)

will be sufficient. But a more careful analysis shows that the periodicity/almost
periodicity has to be taken into account and one needs to replace the conditional
convergence with a more involved set of assumptions involving the harmonic mea-
sures 𝜇𝔢([𝛼𝑗 , 𝛽𝑗 ]) for all 𝑗. The reader is referred to [6] for more details.
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The generalized Nevai conjecture has recently been proved in the finite gap
setting by Frank and Simon [10]. They answer in the affirmative that if 𝐽 =
{𝑎𝑛, 𝑏𝑛}∞𝑛=1 is a Jacobi matrix with spectral measure 𝑑𝜇 of the form (1.6) and

∞∑
𝑛=1

∣𝑎𝑛 − 𝑎′𝑛∣+ ∣𝑏𝑛 − 𝑏′𝑛∣ < ∞ (3.13)

for some point 𝐽 ′ on 𝒯𝔢, then the Szegő condition (3.3) holds. Hence there is
some understanding of ℓ1-convergence to 𝒯𝔢. Among other things, [10] relies on an
improved Birman–Schwinger bound in the gaps of 𝔢.

The situation of ℓ2-convergence to 𝒯𝔢, on the other hand, is much less un-
derstood. Whether or not the Killip–Simon theorem can be proved for all finite
gap sets is still an open question. That it is true when 𝔢 is periodic has proven by
Damanik, Killip, and Simon [7]. The ingenious idea of [7] is to handle the peri-
odic case by use of matrix orthogonal polynomials. But this method only applies
to periodic 𝔢. The proof of Killip–Simon’s theorem for [−2, 2] relies among other
things on the explicit form of 𝜙. The universal covering map, in turn, is much more
complicated. Even if one succeeds in finding 𝜓 explicitly, the expression at hand
will still be too difficult to work with. New insight is needed to really understand
the concept of ℓ2-convergence to the isospectral torus.

4. Infinite gap Jacobi matrices

Every compact set � ⊂ ℝ can be written in the form

� = [𝛼, 𝛽] ∖
∪

𝑗
(𝛼𝑗 , 𝛽𝑗), (4.1)

where ∪𝑗 is a countable union of disjoint open subintervals of [𝛼, 𝛽]. We shall refer
to (𝛼𝑗 , 𝛽𝑗) as a ‘gap’ in � and now mainly focus on the situation of infinitely many
gaps. In order to develop the theory, a few restrictions have to be put on �. But
among others, there will still be room for Cantor sets of positive measure.

First of all, we shall always assume that ∣�∣ > 0 to allow for an absolutely
continuous part of 𝑑𝜇. This in particular implies that the logarithmic capacity of
�, denoted Cap(�), is positive so that the domain Ω = ℂ∖� has a Green’s function.
We denote by 𝑔 the Green’s function for Ω with pole at ∞. This function is known
to be positive and harmonic on Ω, and

𝑔(𝑧) = log ∣𝑧∣+ 𝛾(�) + 𝑜(1)

near ∞, where 𝑒−𝛾(�) = Cap(�).

To avoid dealing with isolated points in the essential spectrum, we assume
that � is regular, that is,

lim
Ω∋𝑧→𝑥

𝑔(𝑧) = 0 for all 𝑥 ∈ �. (4.2)



Finite and Infinite Gap Jacobi Matrices 53

Hence 𝑔 has precisely one critical point in each gap of �. Denoting by 𝑐𝑗 the critical
point in (𝛼𝑗 , 𝛽𝑗), we impose the so-called Parreau–Widom condition,∑

𝑗
𝑔(𝑐𝑗) < ∞. (4.3)

While Widom was interested in Riemann surfaces with sufficiently many analytic
functions, the notion becomes useful to us as the equilibrium measure 𝑑𝜇� of �
turns out to be absolutely continuous (see, e.g., [2] for a detailed proof). Moreover,
the𝑚-function for measures supported on � is of bounded characteristic when lifted
to 𝔻.

The Parreau–Widom condition (4.3) is known to be satisfied for compact sets
that are homogeneous in the sense of Carleson [1]. By definition, this means there
is an 𝜀 > 0 such that

∣(𝑥 − 𝛿, 𝑥+ 𝛿) ∩ �∣
𝛿

≥ 𝜀 for all 𝑥 ∈ � and all 𝛿 < diam(�). (4.4)

Carleson introduced this geometric condition to avoid the possibility of certain
parts of � to be very thin, compared to Lebesgue measure. To get an explicit
example of an infinite gap set which is homogeneous, remove the middle 1/4 from
the interval [0, 1] and continue removing subintervals of length 1/4𝑛 from the
middle of each of the 2𝑛−1 remaining intervals. The set � of what is left in [0, 1] is
a Cantor set of length 1/2, and the reader may check that ∣(𝑥− 𝛿, 𝑥+ 𝛿)∩�∣ ≥ 𝛿/4
for all 𝑥 ∈ � and all 𝛿 < 1.

Just as in the finite gap setting, we can make use of the covering space
formalism. In fact, the seminal paper [23] of Sodin and Yuditskii deals with infinite
gap sets of Parreau–Widom type. Let 𝐽 = {𝑎𝑛, 𝑏𝑛}∞𝑛=1 be a Jacobi matrix with
𝜎ess(𝐽) = � and spectral measure 𝑑𝜇 of the form (1.6). Denote by {𝑥𝑘} the possible
mass points of 𝑑𝜇 outside �. We say that 𝑑𝜇 (or 𝐽) satisfies the Szegő condition if∫

�

log 𝑓(𝑥) 𝑑𝜇�(𝑥) > −∞. (4.5)

As follows at once when recalling the explicit form of 𝑑𝜇𝔢 (see, e.g., [21, Chap. 5]),
this is the natural way of generalizing (3.3). On condition that∑

𝑘
𝑔(𝑥𝑘) < ∞, (4.6)

Sodin and Yuditskii [23] showed that 𝑀 := 𝑚 ∘ 𝜓 is of bounded characteristic on
𝔻 and without a singular inner part. Hence it admits a factorization of the form

𝑀(𝑧) = 𝐵∞(𝑧) exp

{∫ 2𝜋

0

𝑒𝑖𝜃 + 𝑧

𝑒𝑖𝜃 − 𝑧
log

∣∣𝑀(𝑒𝑖𝜃)
∣∣ 𝑑𝜃
2𝜋

}
(4.7)

with 𝐵∞ the Blaschke product of zeros and poles, and this paves the way for step-
by-step sum rules. Comparing the constant terms in (4.7) and iterating 𝑛 times
lead to

log
( 𝑎1 ⋅ ⋅ ⋅ 𝑎𝑛
Cap(�)𝑛

)
=

∑
𝑘

(
𝑔(𝑥𝑘)− 𝑔(𝑥𝑛,𝑘)

)
+

1

2

∫
�

log

(
𝑓(𝑡)

𝑓𝑛(𝑡)

)
𝑑𝜇�(𝑡), (4.8)
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where {𝑥𝑛,𝑘} are the eigenvalues of 𝐽𝑛 outside � and 𝑓𝑛 is the absolutely continuous
part of its spectral measure. Interpreting the integral on the right-hand side in
terms of relative entropies, one can show that the Szegő condition is equivalent to

𝑎1 ⋅ ⋅ ⋅𝑎𝑛
Cap(�)𝑛

∕→ 0 (4.9)

provided that (4.6) holds. The details are given in [2] and the proof also shows
that the sequence in (4.9) is bounded above and below. While one direction is
straightforward using (4.8), the other involves some cutting and pasting in the
Jacobi matrix before applying (4.8).

For general Parreau–Widom sets, the isospectral torus 𝒯� will be infinite
dimensional and we equip it with the product topology. It is known that Remling’s
theorem generalizes and one can ask if elements in the Szegő class still approach
a point on 𝒯� and not only the isospectral torus as a set. Provided the Abel map
remains a homeomorphism, the same proof as in Section 3 should work. For this to
hold, an extra condition on � turns out to be needed. The so-called direct Cauchy
theorem has to be valid (see [24], [11]). These and related issues are treated in
the upcoming paper [3]. A recent article of Yuditskii [25] points out that Parreau–
Widom sets for which the direct Cauchy theorem holds are still more general than
homogeneous sets. Asymptotics of orthogonal polynomials on homogeneous sets
were treated by Peherstorfer and Yudiskii in [16].
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Szegő class. Constr. Approx. 33, 365–403 (2011)

[6] J.S. Christiansen, B. Simon, and M. Zinchenko, Finite gap Jacobi matrices, III. Be-
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1. Introduction and main results

1.1. Introduction

In 1950 Ginzburg and Landau [1] presented the first satisfactory mathematical
description of the phenomenon of superconductivity. Their model examined the
macroscopic properties of a superconductor in a phenomenological way, without
explaining its microscopic mechanism. In the GL theory the superconducting state
is represented by a complex order parameter 𝜓(𝑥), which is zero in the normal
state and non-zero in the superconducting state. The order parameter 𝜓(𝑥) can
be considered as a macroscopic wave-function whose square ∣𝜓(𝑥)∣2 is proportional
to the density of superconducting particles.

In 1957 Bardeen, Cooper and Schrieffer [2] formulated the first microscopic
explanation of superconductivity starting from a first principle Hamiltonian. In a
major breakthrough they realized that this phenomenon can be described by the
pairing-mechanism. The superconducting state forms due to an instability of the
normal state in the presence of an attraction between the particles. In the case of
a metal the attraction is made possible by an interaction through the lattice. For
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other systems, like superfluid cold gases, the interaction is of local type. In the BCS
theory the superconducting state, which is made up by pairs of particles of opposite
spin, the Cooper-pairs, is described by a two-particle wave-function 𝛼(𝑥, 𝑦).

A connection between the two approaches, the phenomenological GL theory
and the microscopic BCS theory, was made by Gorkov [3] who showed that, close
to the critical temperature, the order parameter 𝜓(𝑥) and the pair-wavefunction
𝛼(𝑥, 𝑦) are proportional. A simpler argument was later given by de Gennes [4].

Recently we presented in [7] a mathematical proof of the equivalence of the
two models, GL and BCS, in the limit when the temperature 𝑇 is close to the crit-

ical temperature 𝑇𝑐, i.e., when ℎ = [(𝑇𝑐 − 𝑇 )/𝑇𝑐]
1/2 ≪ 1, where 𝑇𝑐 is the critical

temperature for the translation-invariant BCS equation. The mathematical aspects
of this equation where studied in detail in [8, 6, 9, 10, 11]. In the present paper
we present this result in the simplified case a of one-dimensional system where the
particles interact via an attractive contact interaction potential of the form

𝑉 (𝑥 − 𝑦) = −𝑎𝛿(𝑥− 𝑦) with 𝑎 > 0 . (1.1)

We assume that the system is subject to a weak external potential 𝑊 , which
varies on a large scale 1/ℎ compared to the microscopic scale of order 1. Since
variations of the system on the macroscopic scale cause a change in energy of the
order ℎ2, we assume that the external potential 𝑊 is also of the order ℎ2. Hence
we write it as ℎ2𝑊 (ℎ𝑥), with 𝑥 being the microscopic variable. The parameter ℎ
will play the role of a semiclassical parameter.

We will prove that, to leading order in ℎ, the Cooper pair wave function
𝛼(𝑥, 𝑦) and the GL function 𝜓(𝑥) are related by

𝛼(𝑥, 𝑦) = 𝜓

(
ℎ
𝑥+ 𝑦

2

)
𝛼0(𝑥− 𝑦) (1.2)

where 𝛼0 is the translation invariant minimizer of the BCS functional. In partic-
ular, the argument 𝑥 of the order parameter 𝜓(𝑥̄) describes the center-of-mass
motion of the BCS state, which varies on the macroscopic scale. To be precise, we
shall prove that 𝛼(𝑥, 𝑦) = 1

2 (𝜓(ℎ𝑥) +𝜓(ℎ𝑦))𝛼0(𝑥− 𝑦) to leading order in ℎ, which
agrees with (1.2) to this order.

For simplicity we restrict our attention to contact potentials of the form
(1.1), but our method can be generalized to other kinds of interactions; see [7] for
details. The proof presented here is simpler than the general proof in [7] which
applies to any dimension 𝑑 ≤ 3. There are several reasons for this. First, there is no
magnetic field in one dimension. Second, for a contact interaction the translation
invariant problem is particularly simple and the corresponding gap equation has
an explicit solution. Finally, several estimates are simpler in one dimension due
the boundedness of the Green’s function for the Laplacian.

1.2. The BCS functional

We consider a macroscopic sample of a fermionic system, in one spatial dimension.
Let 𝜇 ∈ ℝ denote the chemical potential and 𝑇 > 0 the temperature of the sample.
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The fermions interact through the attractive two-body potential given in (1.1). In
addition, they are subject to an external force, represented by a potential 𝑊 (𝑥).

In BCS theory the state of the system can be conveniently described in terms
of a 2× 2 operator-valued matrix

Γ =

(
𝛾 𝛼
𝛼̄ 1− 𝛾

)
satisfying 0 ≤ Γ ≤ 1 as an operator on 𝐿2(ℝ) ⊕ 𝐿2(ℝ). The bar denotes complex

conjugation, i.e., 𝛼̄ has the integral kernel 𝛼(𝑥, 𝑦). In particular, Γ is assumed to
be hermitian, which implies that 𝛾 is hermitian and 𝛼 is symmetric (i.e., 𝛾(𝑥, 𝑦) =

𝛾(𝑦, 𝑥) and 𝛼(𝑥, 𝑦) = 𝛼(𝑦, 𝑥).) There are no spin variables in Γ. The full, spin
dependent Cooper pair wave function is the product of 𝛼 with an antisymmetric
spin singlet.

We are interested in the effect of weak and slowly varying external fields,
described by a potential ℎ2𝑊 (ℎ𝑥). In order to avoid having to introduce boundary
conditions, we assume that the system is infinite and periodic with period ℎ−1.
In particular, 𝑊 should be periodic. We also assume that the state Γ is periodic.
The aim then is to calculate the free energy per unit volume.

We find it convenient to do a rescaling and use macroscopic variables instead
of the microscopic ones. In macroscopic variables, the BCS functional has the form

ℱBCS(Γ) := Tr
(−ℎ2∇2 − 𝜇+ ℎ2𝑊 (𝑥)

)
𝛾 − 𝑇 𝑆(Γ)− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥)∣2 𝑑𝑥 (1.3)

where 𝒞 denotes the unit interval [0, 1]. The entropy equals 𝑆(Γ) = −TrΓ lnΓ.
The BCS state of the system is a minimizer of this functional over all admissible Γ.

The symbol Tr in (1.3) stands for the trace per unit volume. More precisely,
if 𝐵 is a periodic operator (meaning that it commutes with translation by 1),
then Tr𝐵 equals, by definition, the (usual) trace of 𝜒𝐵, with 𝜒 the characteristic
function of 𝒞. The location of the interval is obviously of no importance. It is not
difficult to see that the trace per unit volume has the usual properties like cyclicity,
and standard inequalities like Hölder’s inequality hold. This is discussed in more
detail in [7].

Assumption 1.1. We assume that 𝑊 is a bounded, periodic function with period 1
and

∫
𝒞 𝑊 (𝑥) 𝑑𝑥 = 0.

1.2.1. The translation-invariant case. In the translation-invariant case 𝑊 = 0 one
can restrict ℱBCS to translation-invariant states. We write a general translation-
invariant state in form of the 2× 2 matrix

Γ =

(
𝛾(−𝑖ℎ∇) 𝛼̃(−𝑖ℎ∇)

𝛼̃(−𝑖ℎ∇) 1− 𝛾(−𝑖ℎ∇)

)
, (1.4)

that is, 𝛾 = [Γ]11 and 𝛼 = [Γ]12 have integral kernels

𝛾(𝑥, 𝑦) =
1

2𝜋

∫
ℝ

𝛾(ℎ𝑝)𝑒𝑖𝑝(𝑥−𝑦) 𝑑𝑝 and 𝛼(𝑥, 𝑦) =
1

2𝜋

∫
ℝ

𝛼̃(ℎ𝑝)𝑒𝑖𝑝(𝑥−𝑦) 𝑑𝑝 .
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The fact that Γ is admissible means that 𝛼̃(𝑝) = 𝛼̃(−𝑝), that 0 ≤ 𝛾(𝑝) ≤ 1 and
∣𝛼̃(𝑝)∣2 ≤ 𝛾(𝑝)(1−𝛾(−𝑝)) for any 𝑝 ∈ ℝ. For states of this form the BCS functional
becomes

ℱBCS(Γ) =
∫
ℝ

(ℎ2𝑝2−𝜇)𝛾(ℎ𝑝)
𝑑𝑝

2𝜋
−𝑇

∫
ℝ

𝑆(Γ̃(ℎ𝑝))
𝑑𝑝

2𝜋
− 𝑎ℎ

∣∣∣∣∫
ℝ

𝛼̃(ℎ𝑝)
𝑑𝑝

2𝜋

∣∣∣∣2 , (1.5)

with 𝑆(Γ̃(𝑝)) = −Trℂ2 Γ̃(𝑝) ln Γ̃(𝑝) and Γ̃(𝑝) the 2×2 matrix obtained by replacing
−𝑖∇ by 𝑝 in (1.4).

In the following, we are going to summarize some well-known facts about
the translation-invariant functional (1.5). For given 𝑎 > 0, we define the critical
temperature 𝑇𝑐 > 0 by the equation

1

𝑎
=

∫
ℝ

tanh
(
𝑝2−𝜇
2𝑇𝑐

)
𝑝2 − 𝜇

𝑑𝑝

2𝜋
. (1.6)

This is the form in which the gap-equation is usually presented in the physics lit-
erature, see, e.g., [13, 4]. The fact that there is a unique solution to this equation
follows from the strict monotonicity of 𝑡/ tanh 𝑡 for 𝑡 > 0. If 𝑇 ≥ 𝑇𝑐, then the mini-
mizer of (1.5) satisfies 𝛼̃ ≡ 0 and 𝛾(ℎ𝑝) = (1+exp((ℎ2𝑝2−𝜇)/𝑇 ))−1. If 0 < 𝑇 < 𝑇𝑐,
on the other hand, then there is a unique solution Δ0 > 0 of the BCS gap equation

1

𝑎
=

∫
ℝ

1

𝐾0
𝑇 (𝑝)

𝑑𝑝

2𝜋
, (1.7)

where

𝐾0
𝑇 (𝑝) =

√
(𝑝2 − 𝜇)2 +Δ20

tanh
(
1
2𝑇

√
(𝑝2 − 𝜇)2 +Δ20

) . (1.8)

Moreover, the minimizer of (1.5) is given by

Γ̃0(ℎ𝑝) =
(
1 + exp

(
1
𝑇 𝐻0

Δ0
(ℎ𝑝)

))−1
(1.9)

with

𝐻0
Δ0

(𝑝) =

(
𝑝2 − 𝜇 −Δ0
−Δ0 −𝑝2 + 𝜇

)
.

Writing 𝛼̃0(ℎ𝑝) = [Γ̃0(ℎ𝑝)]12 one easily deduces from (1.9) that

𝛼̃0(𝑝) =
Δ0

2𝐾0
𝑇 (𝑝)

. (1.10)

To summarize, in the case 𝑊 ≡ 0 the functional ℱBCS has a minimizer Γ0

for 0 < 𝑇 < 𝑇𝑐 whose off-diagonal element does not vanish and has the integral
kernel

𝛼0((𝑥 − 𝑦)/ℎ) =
Δ0
2

∫
ℝ

1

𝐾0
𝑇 (ℎ𝑝)

𝑒𝑖𝑝(𝑥−𝑦)
𝑑𝑝

2𝜋
. (1.11)

We emphasize that the function 𝛼0 depends on 𝑇 . For 𝑇 close to 𝑇𝑐, which is the
case of interest, we have Δ0 ∼ const(1− 𝑇/𝑇𝑐)

1/2.
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1.3. The GL functional

Let 𝜓 be a periodic function in 𝐻1
loc(ℝ). For numbers 𝑏1, 𝑏3 > 0 and 𝑏2 ∈ ℝ the

Ginzburg-Landau (GL) functional is given by

ℰ(𝜓) =
∫
𝒞

(
𝑏1∣𝜓′(𝑥)∣2 + 𝑏2𝑊 (𝑥)∣𝜓(𝑥)∣2 + 𝑏3

(
1− ∣𝜓(𝑥)∣2)2) 𝑑𝑥 . (1.12)

We denote its ground state energy by

𝐸GL = inf{ℰ(𝜓) ∣𝜓 ∈ 𝐻1
per } .

Under our assumptions on𝑊 it is not difficult to show that there is a corresponding
minimizer, which satisfies a second-order differential equation known as the GL
equation.

1.4. Main results

Recall the definition of the BCS functional ℱBCS in (1.3). We define the energy
𝐹BCS(𝑇, 𝜇) as the difference between the infimum of ℱBCS over all admissible Γ
and the free energy of the normal state

Γ0 :=

(
𝛾0 0
0 1− 𝛾0

)
(1.13)

with 𝛾0 = (1 + 𝑒(−ℎ
2∇2+ℎ2𝑊 (𝑥)−𝜇)/𝑇 )−1. That is,

𝐹BCS(𝑇, 𝜇) = inf
Γ
ℱBCS(Γ)−ℱBCS(Γ0) . (1.14)

Note that

ℱBCS(Γ0) = −𝑇 Tr ln
(
1 + exp

(− (−ℎ2∇2 − 𝜇+ ℎ2𝑊 (𝑥)
))

/𝑇
)
. (1.15)

For small ℎ this behaves like an (explicit) constant times ℎ−1. Under further regu-
larity assumptions on 𝑊 , (1.15) can be expanded in powers of ℎ. We do not need
this, however, since we are only interested in the difference 𝐹BCS(𝑇, 𝜇).

Since Γ0 is an admissible state, one always has 𝐹BCS(𝑇, 𝜇) ≤ 0. If the strict
inequality 𝐹BCS(𝑇, 𝜇) < 0 holds, then the system is said to be in a superconducting
(or superfluid, depending on the physical interpretation) state.

Theorem 1.2. Let Assumption 1.1 be satisfied, and let 𝑇𝑐 > 0 be the critical tem-
perature in the translation invariant case, defined in (1.6). Let 𝐷 > 0. Then there
are coefficients 𝑏1, 𝑏2 and 𝑏3, given explicitly in (1.20)–(1.22) below, such that

𝐹BCS(𝑇𝑐(1−𝐷ℎ2), 𝜇) = ℎ3
(
𝐸GL − 𝑏3

)
+ 𝑜(ℎ3) (1.16)

as ℎ → 0. More precisely, the error term 𝑜(ℎ3) satisfies

− constℎ3+
1
3 ≤ 𝑜(ℎ3) ≤ constℎ5 .

Moreover, if Γ is an approximate minimizer of ℱBCS at 𝑇 = 𝑇𝑐(1−ℎ2𝐷), in
the sense that

ℱBCS(Γ) ≤ ℱBCS(Γ0) + ℎ3
(
𝐸GL − 𝑏3 + 𝜖

)
(1.17)
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for some small 𝜖 > 0, then the corresponding 𝛼 can be decomposed as

𝛼(𝑥, 𝑦) =
1

2

(
𝜓(𝑥) + 𝜓(𝑦)

)
𝛼0(ℎ−1(𝑥 − 𝑦)) + 𝜎(𝑥, 𝑦) (1.18)

with ℰGL(𝜓) ≤ 𝐸GL + 𝜖+ constℎ
1
3 , 𝛼0 defined in (1.11), and∫

𝒞×ℝ

∣𝜎(𝑥, 𝑦)∣2 𝑑𝑥 𝑑𝑦 ≤ constℎ3+
1
3 . (1.19)

1.5. The coefficients in the GL functional

In order to give explicit expressions for the coefficients in the GL functional we
introduce the functions

𝑔0(𝑧) =
tanh(𝑧/2)

𝑧
, 𝑔1(𝑧) =

𝑒2𝑧 − 2𝑧𝑒𝑧 − 1

𝑧2(1 + 𝑒𝑧)2
, 𝑔2(𝑧) =

2𝑒𝑧 (𝑒𝑧 − 1)

𝑧 (𝑒𝑧 + 1)3
.

Setting, as usual, 𝛽𝑐 = 𝑇−1𝑐 we define

𝑐 =
2
∫
ℝ

[
𝑔0(𝛽𝑐(𝑞

2 − 𝜇))− 𝛽𝑐(𝑞
2 − 𝜇)𝑔1(𝛽𝑐(𝑞

2 − 𝜇))
]
𝑑𝑞

𝛽𝑐
∫
ℝ

𝑔1(𝛽𝑐(𝑞2−𝜇))
𝑞2−𝜇 𝑑𝑞

.

The three coefficients of the GL functional turn out to be as follows,

𝑏1 = 𝑐𝐷
𝛽2𝑐
16

∫
ℝ

(
𝑔1(𝛽𝑐(𝑞

2 − 𝜇)) + 2𝛽𝑐𝑞
2 𝑔2(𝛽𝑐(𝑞

2 − 𝜇))
) 𝑑𝑞

2𝜋
, (1.20)

𝑏2 = 𝑐𝐷
𝛽2𝑐
4

∫
ℝ

𝑔1(𝛽𝑐(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
(1.21)

and

𝑏3 = (𝑐𝐷)2
𝛽2𝑐
16

∫
ℝ

𝑔1(𝛽𝑐(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋
. (1.22)

We shall now discuss the signs of these coefficients. First note that 𝑔0(𝑧) −
𝑧𝑔1(𝑧) = (𝑧𝑔0(𝑧))

′ > 0 and 𝑔1(𝑧)/𝑧 > 0, which implies that 𝑐 > 0. Using 𝑔1(𝑧)/𝑧 >
0 again, we see that 𝑏3 > 0. In contrast, the coefficient 𝑏2 may have either sign,
depending on the value of 𝛽𝑐𝜇 (which depends on 𝑎 and 𝜇). The coefficient 𝑏1 is
again positive, as the following computation shows: using the fact that 𝑔2(𝑧) =
𝑔′1(𝑧) + (2/𝑧)𝑔1(𝑧) we find

𝑏1 = 𝑐𝐷
𝛽2𝑐
16

∫
ℝ

(
𝑔1(𝛽𝑐(𝑞

2 − 𝜇)) + 2𝛽𝑐𝑞
2

(
𝑔′1(𝛽𝑐(𝑞

2 − 𝜇)) +
2𝑔1(𝛽𝑐(𝑞

2 − 𝜇))

𝛽𝑐(𝑞2 − 𝜇)

))
𝑑𝑞

2𝜋

= 𝑐𝐷
𝛽2𝑐
16

∫
ℝ

(
𝑔1(𝛽𝑐(𝑞

2 − 𝜇)) + 𝑞
𝑑

𝑑𝑞

(
𝑔1(𝛽𝑐(𝑞

2 − 𝜇))
)
+ 4𝑞2

𝑔1(𝛽𝑐(𝑞
2 − 𝜇))

𝑞2 − 𝜇

)
𝑑𝑞

2𝜋

= 𝑐𝐷
𝛽2𝑐
4

∫
ℝ

𝑞2
𝑔1(𝛽𝑐(𝑞

2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋
.

The claimed positivity is now again a consequence of 𝑔1(𝑧)/𝑧 > 0.
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2. Sketch of the proof

In the following we will consider temperatures 𝑇 = 𝑇𝑐(1−𝐷ℎ2). It is not difficult
to see that the solution Δ0 of the BCS gap equation (1.7) is of order Δ0 = 𝑂(ℎ).

It is useful to rewrite the BCS functional in a more convenient way. Define
Δ to be the multiplication operator

Δ = Δ(𝑥) = −𝜓(𝑥)Δ0,

where Δ0 is the solution of the BCS equation (1.7) for temperature 𝑇 , and 𝜓 a
periodic function in 𝐻2

loc(ℝ). Define further

𝐻Δ =

( −ℎ2∇2 − 𝜇+ ℎ2𝑊 (𝑥) Δ
Δ ℎ2∇2 + 𝜇− ℎ2𝑊 (𝑥)

)
. (2.1)

Formally, we can write the BCS functional as

ℱBCS(Γ) = −Tr(−ℎ2∇2 − 𝜇+ ℎ2𝑊 ) +
1

2
Tr𝐻ΔΓ− 𝑇𝑆(Γ)

+
1

4ℎ𝑎
Δ20

∫
𝒞
∣𝜓(𝑥)∣2𝑑𝑥− ℎ𝑎

∫
𝒞

∣∣∣∣Δ0𝜓(𝑥)2ℎ𝑎
− 𝛼(𝑥, 𝑥)

∣∣∣∣2 𝑑𝑥 . (2.2)

The first two terms on the right are infinite, of course, only their sum is well
defined. For an upper bound, we can drop the very last term. The terms on the
first line are minimized for ΓΔ = 1/(1 + 𝑒

1
𝑇 𝐻Δ), which we choose as a trial state.

Then

𝐹BCS(𝑇, 𝜇) ≤ ℱBCS(ΓΔ)−ℱBCS(Γ0) (2.3)

≤ −𝑇

2
Tr

[
ln(1 + 𝑒−

1
𝑇 𝐻Δ)− ln(1 + 𝑒−

1
𝑇 𝐻0)

]
+

1

4ℎ𝑎
Δ20

∫
𝒞
∣𝜓(𝑥)∣2𝑑𝑥 .

To complete the upper bound, we have to evaluate Tr[ln(1 + 𝑒−𝐻Δ/𝑇 ) − ln(1 +
𝑒−𝐻0/𝑇 )]. This is done via a contour integral representation and semiclassical types
of estimates.

The lower bound is divided into several steps. We first aim at an a priori
bound on 𝛼 for a general state Γ, which has lower energy than the translation-
invariant state. With

𝐻0
Δ0

=

( −ℎ2∇2 − 𝜇 Δ0
Δ0 −ℎ2∇2 + 𝜇

)
,

we can rewrite the BCS functional in the form

ℱBCS(Γ) = −Tr(−ℎ2∇2 − 𝜇+ ℎ2𝑊 ) +
1

2
tr𝐻0

Δ0
Γ− 𝑇𝑆(Γ)

+ ℎ2Tr𝑊𝛾 +
1

4ℎ𝑎
Δ20 − ℎ𝑎

∫
𝒞

∣∣∣∣ Δ02ℎ𝑎
− 𝛼(𝑥, 𝑥)

∣∣∣∣2 𝑑𝑥. (2.4)

From the BCS equation and the definition of 𝛼0 in (1.11) we conclude that

𝛼0(0) =
1

2𝜋ℎ

∫
ℝ

Δ0
2𝐾0

𝑇 (𝑝)
𝑑𝑝 =

Δ0
2𝑎ℎ

, (2.5)
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and hence

ℱBCS(Γ)−ℱBCS(Γ0) ≥ 𝑇

2
ℋ(Γ,Γ0)+ℎ2 Tr𝑊 (𝛾−𝛾0)−𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥)−𝛼0(0)∣2𝑑𝑥,

(2.6)
where ℋ denotes the relative entropy

ℋ(Γ,Γ0) =
2

𝑇

(
1

2
tr𝐻0

Δ0
Γ− 𝑇𝑆(Γ) +

1

2
tr𝐻0

Δ0
Γ0 − 𝑇𝑆(Γ0)

)
= Tr

[
Γ
(
ln Γ− ln Γ0

)
+ (1− Γ)

(
ln(1− Γ)− ln(1− Γ0)

)]
. (2.7)

Note that the left side of (2.6) is necessarily non-positive for a minimizing state Γ.

One of the essential steps in our proof, which is used on several occasions,
is Lemma 5.1. This lemma presents a lower bound on the relative entropy of the
form

ℋ(Γ,Γ0) ≥ Tr
[
𝐻0

(
Γ− Γ0

)2]
+

1

3

(
TrΓ(1− Γ)− TrΓ0(1− Γ0)

)2
∣TrΓ(1− Γ)− TrΓ0(1− Γ0)∣+TrΓ0(1− Γ0)

, (2.8)

where 𝐻0 = (1− 2Γ0)
−1 ln((1−Γ0)/Γ0). In our case here, it equals 𝐾0

𝑇 (−𝑖ℎ∇)/𝑇 ,
with 𝐾0

𝑇 defined in (1.8). From (2.6) we deduce that for a minimizer Γ

0 ≥ ℱBCS(Γ)−ℱBCS(Γ0) ≥ Tr𝐾0
𝑇 (𝛾 − 𝛾0)2 + ℎ2Tr𝑊 (𝛾 − 𝛾0) (2.9)

+

∫
𝒞
⟨𝛼( ⋅ , 𝑦)− 𝛼0( ⋅ −𝑦ℎ )∣𝐾0

𝑇 (−𝑖ℎ∇)− 𝑎𝛿( ⋅ −𝑦ℎ )∣𝛼( ⋅ , 𝑦) − 𝛼0( ⋅ −𝑦ℎ )⟩ 𝑑𝑦

+
1

3

𝑇
(
Tr

[
𝛾(1− 𝛾)− 𝛾0(1− 𝛾0)− ∣𝛼∣2 + ∣𝛼0∣2])2

∣Tr [𝛾(1− 𝛾)− 𝛾0(1− 𝛾0)− ∣𝛼∣2 + ∣𝛼0∣2]∣+Tr [𝛾0(1− 𝛾0)− ∣𝛼0∣2] ,

where ⟨⋅∣⋅⟩ denotes the inner product in 𝐿2(ℝ). Observe that the term in the second
line is a convenient way to write Tr𝐾0

𝑇 (𝛼−𝛼0)∗(𝛼−𝛼0)−𝑎ℎ
∫
𝒞 ∣𝛼(𝑥, 𝑥)−𝛼0(0)∣2𝑑𝑥.

From the first line on the right side and the Schwarz inequality together with the
fact that 𝐾0

𝑇 − 𝑎𝛿 ≥ 0, we obtain first that Tr𝐾0
𝑇 (𝛾 − 𝛾0)2 ≤ 𝑂(ℎ3). Together

with the last line this further gives the a priori bound ∥𝛼∥22 ≤ 𝑂(ℎ).

Next, we use that 𝐾0
𝑇 − 𝑎𝛿 has 𝛼0 as unique zero energy ground state, with

a gap of order one above zero, and we can further conclude from (2.9) that 𝛼 is
necessarily of the form

𝛼(𝑥, 𝑦) = 1
2 (𝜓(𝑥) + 𝜓(𝑦))𝛼0((𝑥− 𝑦)/ℎ) + 𝛽(𝑥, 𝑦),

with ∥𝛽∥22 ≤ 𝑂(ℎ3). This information about the decomposition of 𝛼 then allows us
to deduce, again by means of a lower bound of the type (2.8), that the difference
ℱBCS(Γ)−ℱBCS(ΓΔ) is very small compared to ℎ3. This reduces the problem to
the computation we already did in the upper bound.
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3. Semiclassics

One of the key ingredients in both the proof of the upper and the lower bound are
detailed semiclassical asymptotics for operators of the form

𝐻Δ =

( −ℎ2∇2 − 𝜇+ ℎ2𝑊 (𝑥) Δ(𝑥)

Δ(𝑥) ℎ2∇2 + 𝜇− ℎ2𝑊 (𝑥)

)
. (3.1)

Here Δ(𝑥) = −ℎ𝜓(𝑥) with a periodic function 𝜓, which is of order one as ℎ → 0
(but might nevertheless depend on ℎ). We are interested in the regime ℎ → 0.
In contrast to traditional semiclassical results [12, 16] we work under minimal
smoothness assumptions on 𝜓 and 𝑊 . To be precise, we assume Assumption 1.1
for 𝑊 and that 𝜓 is a periodic function in 𝐻2

loc(ℝ).
Our first result concerns the free energy.

Theorem 3.1. Let

𝑓(𝑧) = − ln
(
1 + 𝑒−𝑧

)
, (3.2)

and define

𝑔0(𝑧) =
𝑓 ′(−𝑧)− 𝑓 ′(𝑧)

𝑧
=

tanh
(
1
2𝑧
)

𝑧
, (3.3)

𝑔1(𝑧) = −𝑔′0(𝑧) =
𝑓 ′(−𝑧)− 𝑓 ′(𝑧)

𝑧2
+

𝑓 ′′(−𝑧) + 𝑓 ′′(𝑧)
𝑧

=
𝑒2𝑧 − 2𝑧𝑒𝑧 − 1

𝑧2(1 + 𝑒𝑧)2
(3.4)

and

𝑔2(𝑧) = 𝑔′1(𝑧) +
2

𝑧
𝑔1(𝑧) =

𝑓 ′′′(𝑧)− 𝑓 ′′′(−𝑧)

𝑧
=

2𝑒𝑧 (𝑒𝑧 − 1)

𝑧 (𝑒𝑧 + 1)3
. (3.5)

Then, for any 𝛽 > 0,

ℎ

𝛽
Tr [𝑓(𝛽𝐻Δ)− 𝑓(𝛽𝐻0)] = ℎ2𝐸1 + ℎ4𝐸2 +𝑂(ℎ6)

(
∥𝜓∥6𝐻1(𝒞) + ∥𝜓∥2𝐻2(𝒞)

)
,

(3.6)

where

𝐸1 = −𝛽

2
∥𝜓∥22

∫
ℝ

𝑔0(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋

and

𝐸2 =
𝛽2

8
∥𝜓′∥22

∫
ℝ

(𝑔1(𝛽(𝑞
2 − 𝜇)) + 2𝛽𝑞2𝑔2(𝛽(𝑞

2 − 𝜇)))
𝑑𝑞

2𝜋

+
𝛽2

2
⟨𝜓∣𝑊 ∣𝜓⟩

∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋

+
𝛽2

8
∥𝜓∥44

∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋
.

More precisely, we claim that the diagonal entries of the 2× 2 matrix-valued
operator 𝑓(𝛽𝐻Δ)− 𝑓(𝛽𝐻0) are locally trace class and that the sum of their traces
per unit volume is given by (3.6). We sketch the proof of Theorem 3.1 in Subsection
6.2 below and refer to [7] for some technicalities.
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Our second semiclassical result concerns the behavior of (1+exp(𝛽𝐻Δ))
−1 in

the limit ℎ → 0. More precisely, we are interested in [(1 + exp(𝛽𝐻Δ))
−1]12, where

[ ⋅ ]12 denotes the upper off-diagonal entry of an operator-valued 2× 2 matrix. For
this purpose, we define the 𝐻1 norm of a periodic operator 𝜂 by

∥𝜂∥2𝐻1 = Tr
[
𝜂∗(1− ℎ2∇2)𝜂] . (3.7)

In Subsection 6.3 we shall prove

Theorem 3.2. Let

𝜌(𝑧) = (1 + 𝑒𝑧)−1 (3.8)

and let 𝑔0 be as in (3.3). Then

[𝜌(𝛽𝐻Δ)]12 =
𝛽ℎ

4

(
𝜓(𝑥) 𝑔0(𝛽(−ℎ2∇2 − 𝜇)) + 𝑔0(𝛽(−ℎ2∇2 − 𝜇))𝜓(𝑥)

)
+ 𝜂1 + 𝜂2

where

∥𝜂1∥2𝐻1 ≤ 𝐶ℎ5∥𝜓∥2𝐻2(𝒞) (3.9)

and

∥𝜂2∥2𝐻1 ≤ 𝐶ℎ5
(
∥𝜓∥2𝐻1(𝒞) + ∥𝜓∥6𝐻1(𝒞)

)
. (3.10)

4. Upper bound

We assume that 𝑇 = 𝑇𝑐(1 − 𝐷ℎ2) with a fixed 𝐷 > 0 and denote by Δ0 the
solution of the BCS gap equation (1.7). In the following we write, as usual, 𝛽 =
𝑇−1 = 𝛽𝑐(1−𝐷ℎ2)−1 with 𝛽𝑐 = 𝑇−1𝑐 . It is well known that the Ginzburg-Landau
functional has a minimizer 𝜓, which is a periodic 𝐻2

loc(ℝ) function. We put

Δ(𝑥) = −Δ0𝜓(𝑥),

and define 𝐻Δ by (2.1).

To obtain an upper bound for the energy we use the trial state

ΓΔ =
(
1 + 𝑒𝛽𝐻Δ

)−1
.

Denoting its off-diagonal element by 𝛼Δ = [ΓΔ]12, we have the upper bound

ℱBCS(ΓΔ)−ℱBCS(Γ0) = − 1

2𝛽
Tr

[
ln(1 + 𝑒−𝛽𝐻Δ)− ln(1 + 𝑒−𝛽𝐻0)

]
+

Δ20
4ℎ𝑎

∥𝜓∥22 − ℎ𝑎

∫
𝐶

∣∣∣∣Δ0𝜓(𝑥)2ℎ𝑎
− 𝛼Δ(𝑥, 𝑥)

∣∣∣∣2 𝑑𝑥 (4.1)

≤ − 1

2𝛽
Tr

[
ln(1 + 𝑒−𝛽𝐻Δ)− ln(1 + 𝑒−𝛽𝐻0)

]
+

Δ20
4ℎ𝑎

∥𝜓∥22 .

The first term on the right side was evaluated in Theorem 3.1.
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Applying this theorem with 𝜓 replaced by (Δ0/ℎ)𝜓 we obtain that

ℱBCS(ΓΔ)−ℱBCS(Γ0)

≤ −ℎ𝛽

4

Δ20
ℎ2

∥𝜓∥22
∫
ℝ

𝑔0(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋

+
ℎ3

2

[
𝛽2

8

Δ20
ℎ2

∥𝜓′∥22
∫
ℝ

(𝑔1(𝛽(𝑞
2 − 𝜇)) + 2𝛽𝑞2𝑔2(𝛽(𝑞

2 − 𝜇)))
𝑑𝑞

2𝜋

+
𝛽2

2

Δ20
ℎ2

⟨𝜓∣𝑊 ∣𝜓⟩
∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
+

𝛽2

8

Δ40
ℎ4

∥𝜓∥44
∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋

]
+

Δ20
4ℎ𝑎

∥𝜓∥22 +𝑂(ℎ5) . (4.2)

In the estimate of the remainder we used that 𝜓 is 𝐻2 and that Δ0 ≤ 𝐶ℎ.

Next, we use that by definition (1.7) of Δ0 the first and the last term on the
right side of (4.2) cancel to leading order and that one has

− ℎ𝛽

4

Δ20
ℎ2

∥𝜓∥22
∫
ℝ

𝑔0(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
+

Δ20
4ℎ𝑎

∥𝜓∥22

=
ℎ𝛽

4

Δ20
ℎ2

∥𝜓∥22
∫
ℝ

(
𝑔0(𝛽

√
(𝑞2 − 𝜇)2 +Δ20)− 𝑔0(𝛽(𝑞

2 − 𝜇))

)
𝑑𝑞

2𝜋

= −ℎ3𝛽2

8

Δ40
ℎ4

∥𝜓∥22
∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋
+𝑂(ℎ5) .

We conclude that

ℱBCS(ΓΔ)−ℱBCS(Γ0)

≤ ℎ3

2

[
𝛽2

8

Δ20
ℎ2

∥𝜓′∥22
∫
ℝ

(𝑔1(𝛽(𝑞
2 − 𝜇)) + 2𝛽𝑞2𝑔2(𝛽(𝑞

2 − 𝜇)))
𝑑𝑞

2𝜋

+
𝛽2

2

Δ20
ℎ2

⟨𝜓∣𝑊 ∣𝜓⟩
∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
+

𝛽2

8

Δ40
ℎ4

∥𝜓∥44
∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋

− 𝛽2

4

Δ40
ℎ4

∥𝜓∥22
∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋

]
+𝑂(ℎ5) . (4.3)

Up to an error of the order 𝑂(ℎ5) we can replace 𝛽 = 𝛽𝑐(1−𝐷ℎ2)−1 by 𝛽𝑐 on the
right side. Our last task is then to compute the asymptotics of Δ0/ℎ. To do so,
we rewrite the BCS gap equation (1.7) as

𝛽𝑐

∫
ℝ

𝑔0(𝛽𝑐(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
=

1

𝑎
= 𝛽

∫
ℝ

𝑔0

(
𝛽
√
(𝑞2 − 𝜇)2 +Δ20

)
𝑑𝑞

2𝜋
.

A simple computation shows that

Δ20 = 𝐷ℎ2
∫
ℝ

[
𝑔0(𝛽𝑐(𝑞

2 − 𝜇))− 𝛽𝑐(𝑞
2 − 𝜇)𝑔1(𝛽𝑐(𝑞

2 − 𝜇))
]
𝑑𝑞

𝛽𝑐
∫
ℝ

𝑔1(𝛽𝑐(𝑞2−𝜇))
2(𝑞2−𝜇) 𝑑𝑞

(
1 +𝑂(ℎ2)

)
.
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Inserting this into (4.3) and using the fact that ℰ(𝜓) = 𝐸GL we arrive at the upper
bound claimed in Theorem 1.2.

5. Lower bound

5.1. The relative entropy

As a preliminary to our proof of the lower bound, we present a general estimate
for the relative entropy. In this subsection 𝐻0 and 0 ≤ Γ ≤ 1 are arbitrary self-
adjoint operators in a Hilbert space, not necessarily coming from BCS theory. Let

Γ0 :=
(
1 + exp(𝛽𝐻0)

)−1
. It is well known that

ℋ(Γ,Γ0) = Tr
(
𝛽𝐻0Γ + Γ lnΓ + (1− Γ) ln(1− Γ) + ln (1 + exp(−𝛽𝐻0))

)
is non-negative and equals to zero if and only if Γ = Γ0. Solving this equation
for 𝐻0, i.e., 𝐻0 = 𝛽−1(ln(1 − Γ0) − ln Γ0), we can rewrite ℋ(Γ,Γ0) as a relative
entropy,

ℋ(Γ,Γ0) = Tr
[
Γ
(
ln Γ− ln Γ0

)
+ (1− Γ)

(
ln(1− Γ)− ln(1 − Γ0)

)]
. (5.1)

The following lemma quantifies the positivity of ℋ and improves an earlier result
from [5].

Lemma 5.1. For any 0 ≤ Γ ≤ 1 and any Γ0 of the form Γ0 = (1 + 𝑒𝛽𝐻
0

)−1,

ℋ(Γ,Γ0) ≥ Tr

[
𝛽𝐻0

tanh(𝛽𝐻0/2)

(
Γ− Γ0

)2]
+

1

3

(
TrΓ(1− Γ)− TrΓ0(1− Γ0)

)2
∣TrΓ(1− Γ)− TrΓ0(1− Γ0)∣+TrΓ0(1− Γ0)

.

Proof. It is tedious, but elementary, to show that for real numbers 0 < 𝑥, 𝑦 < 1,

𝑥 ln
𝑥

𝑦
+ (1− 𝑥) ln

1− 𝑥

1− 𝑦
≥ ln 1−𝑦𝑦

1− 2𝑦
(𝑥− 𝑦)2 +

1

3

(𝑥(1− 𝑥)− 𝑦(1− 𝑦))
2

∣𝑥(1 − 𝑥)− 𝑦(1− 𝑦)∣+ 𝑦(1− 𝑦)
.

Using joint convexity we see that

(𝑥(1− 𝑥) − 𝑦(1− 𝑦))
2

∣𝑥(1 − 𝑥)− 𝑦(1− 𝑦)∣+ 𝑦(1− 𝑦)

= 4 sup
0<𝑏<1

[
𝑏(1− 𝑏) ∣𝑥(1 − 𝑥)− 𝑦(1− 𝑦)∣ − 𝑏2𝑦(1− 𝑦)

]
.

Let us replace on the right side the modulus ∣𝑎∣ by max{𝑎,−𝑎}, and then use
Klein’s inequality [15, Section 2.1.4] for either of the expressions. This implies the
result. □
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5.2. A priori estimates on 𝜶

We begin by briefly reviewing some facts about the translation-invariant case 𝑊 ≡
0; see also Subsection 1.2.1. Recall that Γ0 denotes the minimizer of ℱ in the

translation-invariant case. It can be written as Γ0 = (1 + 𝑒𝛽𝐻
0
Δ0 )−1 with

𝐻0
Δ0

=

( −ℎ2∇2 − 𝜇 −Δ0
−Δ0 ℎ2∇2 + 𝜇

)
.

Here Δ0 is the solution of the BCS gap-equation (1.7) and 𝛽−1 = 𝑇 = 𝑇𝑐(1−𝐷ℎ2).
Notice the distinction between Γ0 and Γ0 which was defined in (1.13). The latter
one, Γ0, contains the external potential 𝑊 and has no off-diagonal term.

Recall also that we denote the kernel of the off-diagonal entry 𝛼0 = [Γ0]12 by
𝛼0((𝑥− 𝑦)/ℎ), which is explicitly given in (1.11). From this explicit representation
and the fact that Δ0 ≤ 𝐶ℎ we conclude, in particular, that

∥𝛼0∥22 =
∫ 1

0

𝑑𝑦

∫
ℝ

𝑑𝑥 ∣𝛼0((𝑥− 𝑦)/ℎ)∣2 = ℎ

∫
ℝ

∣𝛼0(𝑥)∣2 𝑑𝑥 ≤ 𝐶ℎ . (5.2)

Moreover, the BCS gap-equation (1.7) is equivalent to

(𝐾0
𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿(𝑥))𝛼0(𝑥/ℎ) = 0 . (5.3)

This implies, in particular, that

Tr𝐾0
𝑇 (−𝑖ℎ∇)𝛼0𝛼0 − 𝑎ℎ∣𝛼0(0)∣2 = 0 . (5.4)

Now we turn to the case of general 𝑊 . Our goal in this subsection is to prove
that the 𝛼 of any low-energy state satisfies bounds similar to (5.2) and (5.4).

Proposition 5.2. Any admissible Γ with ℱBCS(Γ) ≤ ℱBCS(Γ0) satisfies

∥𝛼∥22 =
∫ 1

0

𝑑𝑥

∫
ℝ

𝑑𝑦 ∣𝛼(𝑥, 𝑦)∣2 ≤ 𝐶ℎ (5.5)

and

0 ≤ Tr𝐾0
𝑇 (−𝑖ℎ∇)𝛼𝛼− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥)∣2 𝑑𝑥 ≤ 𝐶ℎ3 , (5.6)

where 𝛼 = [Γ]12.

Proof. We divide the proof into two steps.

Step 1. Our starting point is the representation

ℱBCS(Γ)−ℱBCS(Γ0) = 1
2𝛽 ℋ(Γ,Γ0) + ℎ2Tr 𝛾𝑊 − 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥) − 𝛼0(0)∣2 𝑑𝑥

(5.7)

for any admissible Γ, with the relative entropy ℋ(Γ,Γ0) defined in (5.1). We note

that Γ0 is of the form (1+ 𝑒𝛽𝐻
0

)−1 with 𝐻0 = 𝐻0
Δ0

. We use Lemma 5.1 to bound
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ℋ(Γ,Γ0) from below. Since 𝑥 �→ 𝑥/ tanh𝑥 is even, we can replace 𝐻0
Δ0

by its

absolute value 𝐸(−𝑖ℎ∇) =
√
(−ℎ2∇2 − 𝜇)2 +Δ20, and thus

Tr

[
𝐻0
Δ0

tanh 𝛽
2𝐻

0
Δ0

(Γ− Γ0)
2

]
= Tr

[
𝐾0
𝑇 (−𝑖ℎ∇)(Γ− Γ0)

2
]

= 2Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 + 2Tr𝐾0

𝑇 (−𝑖ℎ∇)(𝛼− 𝛼0)(𝛼 − 𝛼0)

with

𝐾0
𝑇 (ℎ𝑝) =

𝐸(ℎ𝑝)

tanh 𝛽𝐸(ℎ𝑝)
2

from (1.8). With the aid of Lemma 5.1 and the assumption ℱBCS(Γ) ≤ ℱBCS(Γ0)
we obtain from (5.7) the basic inequality

0 ≥ Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 + ℎ2Tr 𝛾𝑊 (5.8)

+ Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛼− 𝛼0)(𝛼 − 𝛼0)− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥) − 𝛼0(0)∣2 𝑑𝑥

+
𝑇

3

(
Tr

[
𝛾(1− 𝛾)− 𝛾0(1− 𝛾0)− 𝛼𝛼 + 𝛼0𝛼0

])2∣∣∣Tr [𝛾(1− 𝛾)− 𝛾0(1− 𝛾0)− 𝛼𝛼 + 𝛼0𝛼0
]∣∣∣+Tr

[
𝛾0(1− 𝛾0)− 𝛼0𝛼0

] .

In the following step we shall derive the claimed a priori estimates on 𝛼 from this
inequality.

Step 2. We begin by discussing the first line on the right side of (5.8). Using the
fact that Tr𝑊𝛾0 = 0 (since 𝑊 has mean value zero) and the Schwarz inequality
we obtain the lower bound

Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 + ℎ2Tr𝑊𝛾

= 1
2 Tr𝐾

0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 + 1

2 Tr𝐾
0
𝑇 (𝛾 − 𝛾0)2 + ℎ2Tr𝑊 (𝛾 − 𝛾0)

≥ 1
2 Tr𝐾

0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 − ℎ4 12 Tr𝑊

(
𝐾0
𝑇 (−𝑖ℎ∇)

)−1
𝑊

≥ 1
2 Tr𝐾

0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 − 𝐶ℎ3 . (5.9)

The last step used that Tr𝑊
(
𝐾0
𝑇 (−𝑖ℎ∇)

)−1
𝑊 ≤ ∥𝑊∥2∞Tr𝐾0

𝑇 (−𝑖ℎ∇)−1 ≤
𝐶ℎ−1.

Next, we treat the second line on the right side of (5.8). Recall that the BCS
gap equation in the form (5.3) says that the operator 𝐾0

𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿(𝑥) has an
eigenvalue zero with eigenfunction 𝛼0(𝑥/ℎ). Hence

Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛼− 𝛼0)(𝛼− 𝛼0)− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥) − 𝛼0(0)∣2 𝑑𝑥

= Tr𝐾0
𝑇 (−𝑖ℎ∇)𝛼𝛼− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥)∣2 𝑑𝑥 .
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Since a delta potential creates at most one bound state, zero must be the ground
state energy of 𝐾0

𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿(𝑥), and we deduce that

Tr𝐾0
𝑇 (−𝑖ℎ∇)𝛼𝛼− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥)∣2 𝑑𝑥 ≥ 0 .

This information, together with (5.9) and (5.8), yields

Tr(1 − ℎ2∇2)(𝛾 − 𝛾0)2 ≤ 𝐶 Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 ≤ 𝐶ℎ3 , (5.10)

Tr𝐾0
𝑇 (−𝑖ℎ∇)𝛼𝛼− 𝑎ℎ

∫
𝒞
∣𝛼(𝑥, 𝑥)∣2 𝑑𝑥 ≤ 𝐶ℎ3 (5.11)

and (
Tr

[
𝛾(1− 𝛾)− 𝛾0(1 − 𝛾0)− 𝛼𝛼+ 𝛼0𝛼0

])2∣∣∣Tr [𝛾(1− 𝛾)− 𝛾0(1− 𝛾0)− 𝛼𝛼+ 𝛼0𝛼0
]∣∣∣+Tr

[
𝛾0(1− 𝛾0)− 𝛼0𝛼0

] ≤ 𝐶ℎ3 .

(5.12)

We know that Tr
[
𝛾0(1− 𝛾0)− 𝛼0𝛼0

]
≤ 𝐶ℎ−1 from the explicit solution in the

translation invariant case, and therefore (5.12) yields∣∣∣Tr [𝛾(1− 𝛾)− 𝛾0(1− 𝛾0)− 𝛼𝛼 + 𝛼0𝛼0
]∣∣∣ ≤ 𝐶ℎ . (5.13)

In order to derive from this an a priori estimate on 𝛼 we use (5.10) and the Schwarz
inequality to bound∣∣Tr(𝛾 − 𝛾0)

∣∣ ≤ ℎ−2Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛾 − 𝛾0)2 + ℎ2Tr

(
𝐾0
𝑇 (−𝑖ℎ∇)

)−1 ≤ 𝐶ℎ

and∣∣Tr(𝛾2 − (𝛾0)2)
∣∣ = ∣∣Tr(𝛾 − 𝛾0)(𝛾 + 𝛾0)

∣∣ ≤ ℎ−2Tr(𝛾−𝛾0)2+ℎ2Tr(𝛾+𝛾0)2 ≤ 𝐶ℎ .

Finally, since Tr𝛼0𝛼0 ≤ 𝐶ℎ (see (5.2)), we conclude from (5.13) that Tr𝛼𝛼 ≤ 𝐶ℎ,
as claimed. □

5.3. Decomposition of 𝜶

Here we quantify in which sense 𝛼(𝑥, 𝑦) is close to 1
2 (𝜓(𝑥) + 𝜓(𝑦))𝛼0(ℎ−1(𝑥−𝑦)).

There is one technical point that we would like to discuss before stating the result.
The asymptotic form 1

2 (𝜓(𝑥) + 𝜓(𝑦))𝛼0(ℎ−1(𝑥 − 𝑦)) will allow us in the next
subsection to use the semiclassical results in a similar way as in the proof of the
upper bound. Our semiclassics, however, require 𝜓 to be in 𝐻2. While we naturally
get an 𝐻1 condition, the 𝐻2 condition is achieved by introducing an additional
parameter 𝜖 > 0, which will later chosen to go to zero as ℎ → 0.

Proposition 5.3. Let Γ be admissible with ℱBCS(Γ) ≤ ℱBCS(Γ0). Then for every
sufficiently small 𝜖 ≥ ℎ > 0, the operator 𝛼 = [Γ]12 can be decomposed as

𝛼(𝑥, 𝑦) = 1
2 (𝜓(𝑥) + 𝜓(𝑦))𝛼0(ℎ−1(𝑥− 𝑦)) + 𝜎(𝑥, 𝑦) (5.14)

with a periodic function 𝜓 ∈ 𝐻2(𝒞) satisfying

∥𝜓∥𝐻1 ≤ 𝐶 , ∥𝜓∥𝐻2 ≤ 𝐶𝜖ℎ−1 (5.15)
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and with
∥𝜎∥2𝐻1 ≤ 𝐶𝜖−2ℎ3 . (5.16)

More precisely, one has 𝜎 = 𝜎1 + 𝜎2 with

∥𝜎1∥2𝐻1 ≤ 𝐶ℎ3 (5.17)

and with 𝜎2 of the form

𝜎2(𝑥, 𝑦) =
1
2

(
𝜓(𝑥) + 𝜓(𝑦)

)
𝛼0(ℎ−1(𝑥− 𝑦)) ,

where the Fourier transform of 𝜓 supported in {∣𝑝∣ ≥ 𝜖ℎ−1}. The Fourier transform
of 𝜓 is supported in {∣𝑝∣ < 𝜖ℎ−1}.

We recall that the 𝐻1 norm of an operator was introduced in (3.7).

Proof. Step 1. We can write (5.6) as

0 ≤
∫
𝒞
⟨𝛼( ⋅ , 𝑦)∣𝐾0

𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿(⋅ − 𝑦)∣𝛼( ⋅ , 𝑦)⟩ 𝑑𝑦 ≤ 𝐶ℎ3 . (5.18)

Here, the operator 𝐾0
𝑇 (−𝑖ℎ∇) acts on the 𝑥 variable of 𝛼(𝑥, 𝑦), and ⟨ ⋅ ∣ ⋅ ⟩ denotes

the standard inner product on 𝐿2(ℝ).
Now we recall that the operator𝐾0

𝑇−𝑎ℎ𝛿(⋅ −𝑦) on 𝐿2(ℝ) has a unique ground
state, proportional to 𝛼0(ℎ−1(⋅ − 𝑦)), with ground state energy zero. There are no
further eigenvalues and the bottom of its essential spectrum is Δ0/ tanh

[
Δ0

2𝑇

] ≥
2𝑇 . In particular, there is a lower bound, independent of ℎ, on the gap. We write

𝜓0(𝑦) =

(
ℎ

∫
ℝ𝑑

∣𝛼0(𝑥)∣2 𝑑𝑥
)−1 ∫

ℝ𝑑

𝛼0(ℎ−1(𝑥− 𝑦))𝛼(𝑥, 𝑦) 𝑑𝑥 (5.19)

and decompose

𝛼(𝑥, 𝑦) = 𝜓0(𝑦)𝛼
0(ℎ−1(𝑥− 𝑦)) + 𝜎0(𝑥, 𝑦) .

Then (5.18) together with the uniform lower bound on the gap of 𝐾0
𝑇 −𝑎ℎ𝛿( ⋅ −𝑦)

yields the bound ∥𝜎0∥22 ≤ 𝐶ℎ3. We can also symmetrize and write

𝜎1(𝑥, 𝑦) = 𝜎0(𝑥, 𝑦) +
1
2 (𝜓(𝑥) − 𝜓(𝑦))𝛼0(ℎ−1(𝑥− 𝑦)) . (5.20)

Then
𝛼(𝑥, 𝑦) = 1

2 (𝜓0(𝑥) + 𝜓0(𝑦))𝛼
0(ℎ−1(𝑥 − 𝑦)) + 𝜎1(𝑥, 𝑦) (5.21)

again with
∥𝜎1∥22 ≤ 𝐶ℎ3 . (5.22)

This proves the first half of (5.17). Before proving the second half in Step 4 below
we need to study 𝜓.

Step 2. We claim that ∫
𝒞
∣𝜓0(𝑥)∣2 𝑑𝑥 ≤ 𝐶 (5.23)

and ∫
𝒞
∣𝜓′0(𝑥)∣2 𝑑𝑥 ≤ 𝐶 . (5.24)
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The first inequality follows by Schwarz’s inequality∫
𝒞
∣𝜓0(𝑥)∣2 𝑑𝑥 ≤ ∥𝛼∥22

ℎ
∫
ℝ
∣𝛼0(𝑥)∣2𝑑𝑥

and our bounds (5.5) and (5.2). In order to prove (5.24) we use again Schwarz’s
inequality, ∫

𝒞
∣𝜓′0(𝑥)∣2 𝑑𝑥 ≤

∫
ℝ×𝒞 ∣(∇𝑥 +∇𝑦)𝛼(𝑥, 𝑦)∣2 𝑑𝑥 𝑑𝑦

ℎ
∫ ∣𝛼0(𝑥)∣2𝑑𝑥 . (5.25)

Lemma 5.4 below bounds the numerator by a constant times

ℎ−2
∫
𝒞
⟨𝛼( ⋅ , 𝑦)∣𝐾0

𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿(⋅ − 𝑦)∣𝛼( ⋅ , 𝑦)⟩ 𝑑𝑦 ,

and therefore (5.24) is a consequence of (5.18) and (5.2).

Step 3. Next, we establish the remaining bound ∥∇𝜎1∥22 ≤ 𝐶ℎ in (5.17). We use
formula (5.20) for 𝜎1. First of all, using the fact that

𝐾(−𝑖ℎ∇) ≥ 𝑐(1− ℎ2∇2)
one easily deduces from (5.18) that ∥∇𝜎0∥22 ≤ 𝐶ℎ. Moreover, because of (5.2) and
(5.24) ∫

𝒞
∣𝜓′0(𝑥)∣2

∫
ℝ

∣𝛼0(ℎ−1(𝑥− 𝑦))∣2𝑑𝑥 𝑑𝑦 ≤ 𝐶ℎ .

Finally,

ℎ−2
∫
𝒞×ℝ

∣𝜓0(𝑥)− 𝜓0(𝑦)∣2∣(𝛼0)′(ℎ−1(𝑥− 𝑦))∣2 𝑑𝑥 𝑑𝑦

= ℎ−14
∑
𝑝∈2𝜋ℤ

∣𝜓0(𝑝)∣2
∫
ℝ

∣∣(𝛼0)′(𝑥)∣∣2 sin2 ( 12ℎ𝑝𝑥) 𝑑𝑥

≤ ℎ
∑
𝑝∈2𝜋ℤ

∣𝑝∣2∣𝜓0(𝑝)∣2
∫
ℝ

∣∣(𝛼0)′(𝑥)∣∣2 𝑥2 𝑑𝑥 ≤ 𝐶ℎ ,

where we used (5.24) and the fact that
∫
ℝ

∣∣(𝛼0)′(𝑥)∣∣2 𝑥2𝑑𝑥 is finite. This is a simple

consequence of the fact that the Fourier transform of 𝛼0 is given by the smooth

function Δ0

2(2𝜋)1/2

(
𝐾0
𝑇

)−1
. This completes the proof of (5.17).

Step 4. Finally, for each 𝜖 ≥ ℎ we decompose 𝜓0 = 𝜓 + 𝜓, where the Fourier
transforms of 𝜓 and 𝜓 are supported in {∣𝑝∣ < 𝜖ℎ−1} and {∣𝑝∣ ≥ 𝜖ℎ−1}, respectively.
Clearly, the bounds (5.23) and (5.24) imply (5.15).

Moreover, ∥𝜓∥2 ≤ 𝐶𝜖−1ℎ and ∥𝜓′∥2 ≤ 𝐶, and hence

𝜎2(𝑥, 𝑦) =
1
2

(
𝜓(𝑥) + 𝜓(𝑦)

)
𝛼0(ℎ−1(𝑥 − 𝑦))

satisfies ∥𝜎2∥2𝐻1 ≤ ℎ3𝜖−2. This completes the proof of the proposition. □
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In the previous proof we made use of the following

Lemma 5.4. For some constant 𝐶 > 0,

ℎ2
∫
ℝ×𝒞

∣(∇𝑥 +∇𝑦)𝛼(𝑥, 𝑦)∣2 𝑑𝑥 𝑑𝑦

≤ 𝐶

∫
𝒞
⟨𝛼( ⋅ , 𝑦)∣𝐾0

𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿(⋅ − 𝑦)∣𝛼( ⋅ , 𝑦)⟩ 𝑑𝑦 (5.26)

for all periodic and symmetric 𝛼 (i.e., 𝛼(𝑥, 𝑦) = 𝛼(𝑦, 𝑥)).

Proof. By expanding 𝛼(𝑥, 𝑦) in a Fourier series

𝛼(𝑥, 𝑦) =
∑
𝑝∈2𝜋ℤ

𝑒𝑖𝑝(𝑥+𝑦)/2𝛼𝑝(𝑥− 𝑦) (5.27)

and using that 𝛼𝑝(𝑥) = 𝛼𝑝(−𝑥) for all 𝑝 ∈ 2𝜋ℤ we see that (5.26) is equivalent to

𝐾0
𝑇 (−𝑖ℎ∇+ ℎ𝑝/2) +𝐾0

𝑇 (−𝑖ℎ∇− ℎ𝑝/2)− 2𝑎 𝛿(𝑥/ℎ) ≥ 2

𝐶
ℎ2𝑝2 (5.28)

for all 𝑝 ∈ 2𝜋ℤ. This inequality holds for all 𝑝 ∈ ℝ, in fact, for an appropriate
choice of 𝐶 > 0, as we shall now show.

Since 𝐾0
𝑇 ≥ const(1 + ℎ2(−𝑖∇+ 𝑝/2)2), it suffices to consider the case of ℎ𝑝

small. If 𝜅 = Δ0/ tanh
[
Δ0

2𝑇

] ≥ 2𝑇 denotes the gap in the spectrum of 𝐾0
𝑇 (−𝑖ℎ∇)−

𝑎ℎ𝛿 above zero, and ℎ−1/2𝜙0(𝑥/ℎ) its normalized ground state, proportional to
𝛼0(𝑥/ℎ),

𝐾0
𝑇 (−𝑖ℎ∇+ ℎ𝑝/2) +𝐾0

𝑇 (−𝑖ℎ∇− ℎ𝑝/2)− 2𝑎ℎ𝛿

≥ 𝜅
[
𝑒𝑖ℎ𝑥𝑝/2 (1− ∣𝜙0⟩⟨𝜙0∣) 𝑒−𝑖ℎ𝑥𝑝/2 + 𝑒−𝑖ℎ𝑥𝑝/2 (1− ∣𝜙0⟩⟨𝜙0∣) 𝑒𝑖ℎ𝑥𝑝/2

]
≥ 𝜅

[
1−

∣∣∣∣∫ ∣𝜙0(𝑥)∣2𝑒−𝑖ℎ𝑥𝑝𝑑𝑥
∣∣∣∣] . (5.29)

In order to see the last inequality, simply rewrite the term as 𝜅(2−∣𝑓⟩⟨𝑓 ∣− ∣𝑔⟩⟨𝑔∣),
where ∣⟨𝑓 ∣𝑔⟩∣2 =

∣∣∫ ∣𝜙0(𝑥)∣2𝑒−𝑖ℎ𝑥𝑝𝑑𝑥
∣∣, and compute the smallest eigenvalue of

the corresponding 2× 2 matrix. Since 𝜙0 is reflection symmetric, normalized and
satisfies

∫
𝑥2∣𝜙0∣2 𝑑𝑥 < ∞ (see Step 4 in the proof of Proposition 5.3), we have

1−
∣∣∣∣∫ ∣𝜙0(𝑥)∣2𝑒−𝑖ℎ𝑥𝑝𝑑𝑥

∣∣∣∣ = ∫
∣𝜙0(𝑥)∣2 (1− cos(ℎ𝑝𝑥)) 𝑑𝑥 ≥ 𝑐ℎ2𝑝2 .

This completes the proof of (5.28). □

5.4. The lower bound

Pick a Γ with ℱBCS(Γ) ≤ ℱBCS(Γ0) and let 𝜓 be as in Proposition 5.3 (depending
on some parameter 𝜖 ≥ ℎ to be chosen later). As before we let Δ(𝑥) = −𝜓(𝑥)Δ0
and define 𝐻Δ by (2.1). We also put ΓΔ = (1 + exp(𝛽𝐻Δ))

−1.
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Our starting point is the representation

ℱBCS(Γ)−ℱBCS(Γ0) = −𝑇

2
Tr

[
ln(1 + 𝑒−𝛽𝐻Δ)− ln(1 + 𝑒−𝛽𝐻0)

]
+

𝑇

2
ℋ(Γ,ΓΔ) + Δ0 Re

∫
𝒞
𝜓(𝑥)𝛼(𝑥, 𝑥)𝑑𝑥 − ℎ𝑎

∫
𝒞
∣𝛼(𝑥, 𝑥)∣2𝑑𝑥 . (5.30)

(Compare with (5.7).) According to the decomposition (5.14) which, in view of
the BCS gap equation (1.7), reads on the diagonal

𝛼(𝑥, 𝑥) = 𝜓(𝑥)𝛼0(0) + 𝜎(𝑥, 𝑥) =
Δ0𝜓(𝑥)

2𝑎ℎ
+ 𝜎(𝑥, 𝑥) ,

we can obtain the lower bound

ℱBCS(Γ)− ℱBCS(Γ0) ≥− 𝑇

2
Tr

[
ln(1 + 𝑒−𝛽𝐻Δ)− ln(1 + 𝑒−𝛽𝐻0)

]
+

𝑇

2
ℋ(Γ,ΓΔ)− 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥 .

For the first two terms on the right side we apply the semiclassics from Theo-
rem 3.1. Arguing as in the proof of the upper bound and taking into account the
bounds on 𝜓 from Proposition 5.3 we obtain

ℱBCS(Γ)−ℱBCS(Γ0) ≥ℎ3
(ℰGL(𝜓)− 𝑏3

)− 𝐶𝜖2ℎ3

+ 𝑇
2 ℋ(Γ,ΓΔ)− 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥 . (5.31)

Our final task is to bound the last two terms from below. In the remainder of this
subsection we shall show that

𝑇
2 ℋ(Γ,ΓΔ)− 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥 ≥ −𝐶

(
𝜖ℎ3 + 𝜖−2ℎ4

)
. (5.32)

The choice 𝜖 = ℎ1/3 will then lead to

ℱBCS(Γ)−ℱBCS(Γ0) ≥ ℎ3
(
𝐸GL − 𝑏3

)− 𝐶ℎ3+1/3 ,

which is the claimed lower bound.

In order to prove (5.32) we again use the lower bound on the relative entropy
from Lemma 5.1 to estimate

𝑇 ℋ(Γ,ΓΔ) ≥ Tr

[
𝐻Δ

tanh 1
2𝑇 𝐻Δ

(Γ− ΓΔ)
2

]
. (5.33)

The next lemma will allow us to replace the operator 𝐻Δ in this bound by 𝐻0.

Lemma 5.5. There is a constant 𝑐 > 0 such that for all sufficiently small ℎ > 0

𝐻Δ

tanh 1
2𝑇 𝐻Δ

≥ (1− 𝑐ℎ)𝐾0
𝑇 (−𝑖ℎ∇)⊗ 𝕀ℂ2 . (5.34)
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Proof. An application of Schwarz’s inequality yields that for every 0 < 𝜂 < 1

𝐻2
Δ ≥ (1− 𝜂)

(
𝐻0
Δ0

)2 − 𝜂−1(Δ20∥𝜓 − 1∥2∞ + ℎ2∥𝑊∥2∞) .

The expansion formula [14, (4.3.91)]

𝑥

tanh(𝑥/2)
= 2 +

∞∑
𝑘=1

(
2− 2𝑘2𝜋2

𝑥2/4 + 𝑘2𝜋2

)
shows that 𝑥 �→ √

𝑥/ tanh
√
𝑥 is an operator monotone function. This operator

monotonicity implies that

𝐾0
𝑇 (−𝑖ℎ∇)⊗ 𝕀ℂ2 ≤ (1− 𝜂)−1/2

√
𝐻2
Δ + 𝜂−1(Δ20∥𝜓 − 1∥2∞ + ℎ2∥𝑊∥2∞)

tanh 1
2𝑇 (1 − 𝜂)−1/2

√
𝐻2
Δ + 𝜂−1(Δ20∥𝜓 − 1∥2∞ + ℎ2∥𝑊∥2∞)

≤ (1 − 𝜂)−1/2
√

𝐻2
Δ + 𝜂−1(Δ20∥𝜓 − 1∥2∞ + ℎ2∥𝑊∥2∞)

tanh 1
2𝑇

√
𝐻2
Δ + 𝜂−1(Δ20∥𝜓 − 1∥2∞ + ℎ2∥𝑊∥2∞)

≤ (1 − 𝜂)−1/2
(
1 + 1

4𝑇 2𝜂 (Δ
2
0∥𝜓 − 1∥2∞ + ℎ2∥𝑊∥2∞)

) 𝐻Δ

tanh 1
2𝑇 𝐻Δ

for 0 < 𝜂 < 1. The Sobolev inequality and (5.15) show that ∥𝜓∥∞ ≤ 𝐶∥𝜓∥𝐻1 ≤ 𝐶,
and hence the lemma follows by choosing 𝜂 = ℎ. □

To proceed, we denote 𝛼Δ = [ΓΔ]12 and recall from Theorem 3.2 that

𝛼Δ =
Δ0
4

(
𝜓𝐾0

𝑇 (−𝑖ℎ∇)−1 +𝐾0
𝑇 (−𝑖ℎ∇)−1𝜓

)
+ 𝜂1 + 𝜂2

=
1

2

(
𝜓𝛼0 + 𝛼0𝜓

)
+ 𝜂1 + 𝜂2

with 𝜂1 and 𝜂2 satisfying the bounds (3.9) and (3.10). The second equality follows
from the explicit form (1.10) of 𝛼0. Comparing this with (5.14) we infer that

𝛼 = 𝛼Δ + 𝜎 − 𝜂1 − 𝜂2 . (5.35)

Then (5.33) and (5.34) imply that

𝑇
2 ℋ(Γ,ΓΔ)− 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥

≥ (1− 𝑐ℎ)Tr𝐾0
𝑇 (−𝑖ℎ∇)(𝛼− 𝛼Δ)(𝛼 − 𝛼Δ)− 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥

≥ (1− 𝑐ℎ)Tr𝐾0
𝑇 (−𝑖ℎ∇)𝜎𝜎 − 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥

− (1− 𝑐ℎ)2ReTr𝐾0
𝑇 (−𝑖ℎ∇)𝜎(𝜂1 + 𝜂2) . (5.36)

In order to bound the first term on the right side from below we are going to
choose a parameter 𝜌 ≥ 0 such that 𝑐ℎ + 𝜌 ≤ 1/2. Here 𝑐 is the constant from
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(5.34). (Eventually, we will pick either 𝜌 = 0 or 𝜌 = 1/4, say.) Note that

(1 − 𝑐ℎ)Tr𝐾0
𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿 = 𝜌𝐾0

𝑇 (−𝑖ℎ∇) + (1 − 2𝑐ℎ− 2𝜌)(𝐾0
𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿)

+ (𝑐ℎ+ 𝜌)(𝐾0
𝑇 (−𝑖ℎ∇)− 2𝑎ℎ𝛿) .

We recall that the operator𝐾0
𝑇 (−𝑖ℎ∇)−𝑎ℎ𝛿 is non-negative and that the operator

𝐾0
𝑇 (−𝑖ℎ∇)−2𝑎ℎ𝛿 has a negative eigenvalue of order one (by the form boundedness

of 𝛿 with respect to 𝐾0
𝑇 (−𝑖∇)). Hence 𝐾0

𝑇 (−𝑖ℎ∇)− 2𝑎ℎ𝛿 ≥ −𝐶1 with a constant
𝐶1 independent of ℎ. (In the following it will be somewhat important to keep track
of various constants, therefore we introduce here a numbering.) Moreover, using
the fact that 𝐾0

𝑇 (−𝑖ℎ∇) ≥ 𝑐1(1− ℎ2∇2) we arrive at the lower bound

(1− 𝑐ℎ)Tr𝐾0
𝑇 (−𝑖ℎ∇)− 𝑎ℎ𝛿 ≥ 𝑐1𝜌(1− ℎ2∇2)− 𝐶1(𝑐ℎ+ 𝜌) ,

which means for the first term on the right side of (5.36) that

(1−𝑐ℎ)Tr𝐾0
𝑇 (−𝑖ℎ∇)𝜎𝜎−𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥 ≥ 𝑐1𝜌∥𝜎∥2𝐻1−𝐶1(𝑐ℎ+𝜌)∥𝜎∥22 . (5.37)

We now turn to the second term on the right side of (5.36). Theorem 3.2, to-
gether with the bounds (5.15) on 𝜓, implies that ∥𝜂1+𝜂2∥2𝐻1 ≤ 𝐶𝜖2ℎ3. This bound,
combined with ∥𝜎∥2𝐻1 ≤ 𝐶𝜖−2ℎ3 from Lemma 5.3, however, is not good enough.
(It leads to an error of order ℎ3.) Instead, we shall make use of the observation
that in the decompositions 𝜎 = 𝜎1 + 𝜎2 and 𝜂1 + 𝜂2 one has

Tr𝐾0
𝑇 (−𝑖ℎ∇)𝜎2𝜂1 = 0 .

This can be seen by writing out the trace in momentum space and recalling that
the Fourier transform of the 𝜓 involved in 𝜎2 has support in {∣𝑝∣ ≥ 𝜖ℎ−1}, whereas
the one of the 𝜓 involved in 𝜂1 has support in {∣𝑝∣ < 𝜖ℎ−1} (see also (6.22)).

Using the estimates (5.17) and (3.10) on 𝜎1 and 𝜂2 we conclude that∣∣Tr𝐾0
𝑇 (−𝑖ℎ∇)𝜎(𝜂1 + 𝜂2)

∣∣ ≤ ∣∣Tr𝐾0
𝑇 (−𝑖ℎ∇)𝜎1𝜂1

∣∣+ ∣∣Tr𝐾0
𝑇 (−𝑖ℎ∇)𝜎𝜂2

∣∣
≤ 𝐶2

(
𝜖ℎ3 + ℎ5/2∥𝜎∥𝐻1

)
. (5.38)

Combining (5.36), (5.37) and (5.38) we find that

𝑇
2 ℋ(Γ,ΓΔ)− 𝑎ℎ

∫
𝒞
∣𝜎(𝑥, 𝑥)∣2 𝑑𝑥

≥ 𝑐1𝜌∥𝜎∥2𝐻1 − 𝐶1(𝑐ℎ+ 𝜌)∥𝜎∥22 − 2𝐶2

(
𝜖ℎ3 + ℎ5/2∥𝜎∥𝐻1

)
. (5.39)

Next, we are going to distinguish two cases, according to whether 4𝐶1∥𝜎∥22 ≤
𝑐1∥𝜎∥2𝐻1 or not. In the first case, we choose 𝜌 = 1/4 and ℎ so small that 𝑐ℎ+ 𝜌 ≤
1/2. In this way we can bound the previous expression from below by

1
8𝑐1∥𝜎∥2𝐻1 − 2𝐶2

(
𝜖ℎ3 + ℎ5/2∥𝜎∥𝐻1

)
≥ −8𝑐−11 𝐶22ℎ

5 − 2𝐶2𝜖ℎ
3 .

This proves the claimed (indeed, a better) bound (5.32) in this case.
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Now assume, conversely, that 4𝐶1∥𝜎∥22 > 𝑐1∥𝜎∥2𝐻1 . Then we choose 𝜌 = 0
and bound (5.39) from below by

− 𝐶1𝑐ℎ∥𝜎∥22 − 2𝐶2

(
𝜖ℎ3 + ℎ5/2∥𝜎∥𝐻1

)
≥ −𝐶1𝑐ℎ∥𝜎∥22 − 2𝐶2

(
𝜖ℎ3 + ℎ5/2 (4𝐶1/𝑐1)

1/2 ∥𝜎∥2
)
.

The bound (5.16) on ∥𝜎∥2 now leads again to the claimed lower bound (5.32).
This concludes the proof of the lower bound to the free energy in Theorem 1.2.

Concerning the statement about approximate minimizers we note that ℱBCS(Γ0)−
ℱBCS(Γ0) = 𝑂(ℎ3) and that our a-priori bounds on 𝛼 in Proposition 5.3 remain
true under the weaker condition that ℱBCS(Γ) ≤ ℱBCS(Γ0) + 𝐶ℎ3. We leave the
details to the reader.

6. Proof of semiclassical asymptotics

In this section we shall sketch the proofs of Theorems 3.1 and 3.2 containing the
semiclassical asymptotics. We shall skip some technical details and refer to [7] for
a thorough discussion.

6.1. Preliminaries

It will be convenient to use the following abbreviations

𝑘 = −ℎ2∇2 − 𝜇+ ℎ2𝑊 (𝑥), 𝑘0 = −ℎ2∇2 − 𝜇 . (6.1)

We will frequently have to bound various norms of the resolvents (𝑧 − 𝑘)−1 for 𝑧
in the contour Γ defined by Im 𝑧 = ±𝜋/(2𝛽) for 𝛽 > 0. We state these auxiliary
bounds separately.

For 𝑝 ≥ 1, we define the 𝑝-norm of a periodic operator 𝐴 by

∥𝐴∥𝑝 = (Tr ∣𝐴∣𝑝)1/𝑝 (6.2)

where Tr stands again for the trace per unit volume. We note that for a Fourier
multiplier 𝐴(−𝑖ℎ∇), these norms are given as

∥𝐴(−𝑖ℎ∇)∥𝑝 = ℎ−1/𝑝
(∫

ℝ

∣𝐴(𝑞)∣𝑝 𝑑𝑞
2𝜋

)1/𝑝
. (6.3)

The usual operator norm will be denoted by ∥𝐴∥∞.

Lemma 6.1. For 𝑧 = 𝑡± 𝑖𝜋/(2𝛽) and all sufficiently small ℎ one has∥∥(𝑧 − 𝑘)−1
∥∥
𝑝
≤ 𝐶 ℎ−1/𝑝 ×

{
𝑡−1/(2𝑝) for 𝑡 ≫ 1

∣𝑡∣−1+1/(2𝑝) for 𝑡 ≪ −1
if 1 ≤ 𝑝 ≤ ∞ , (6.4)

as well as ∥∥(𝑧 − 𝑘)−1
∥∥
∞ ≤ 𝐶 ×

{
1 for 𝑡 ≫ 1

∣𝑡∣−1 for 𝑡 ≪ −1
. (6.5)
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Proof. The estimates are easily derived with 𝑘0 instead of 𝑘 by evaluating the
corresponding integral. Since the spectra of 𝑘 and 𝑘0 agree up to 𝑂(ℎ2) the same
bounds hold for 𝑘. □

6.2. Proof of Theorem 3.1

The function 𝑓 in (3.2) is analytic in the strip ∣ Im 𝑧∣ < 𝜋, and we can write

𝑓(𝛽𝐻Δ)− 𝑓(𝛽𝐻0) =
1

2𝜋𝑖

∫
Γ

𝑓(𝛽𝑧)

[
1

𝑧 −𝐻Δ
− 1

𝑧 −𝐻0

]
𝑑𝑧 ,

where Γ is the contour 𝑧 = 𝑟 ± 𝑖 𝜋
2𝛽 , 𝑟 ∈ ℝ. We emphasize that this contour rep-

resentation is not true for the operators 𝑓(𝛽𝐻Δ) and 𝑓(𝛽𝐻0) separately (because
of a contribution from infinity), but only for their difference.

We claim that

[𝑓(𝛽𝐻Δ)]11 = [𝑓(𝛽𝐻Δ)]22 − 𝛽[𝐻Δ]22 . (6.6)

Recall that [ ⋅ ]𝑖𝑗 denotes the 𝑖𝑗 element of an operator-valued 2× 2 matrix. To see
(6.6), we introduce the unitary matrix

𝑈 =

(
0 1
−1 0

)
and note that

[𝑓(𝛽𝐻Δ)]11 = − [𝑈𝑓(𝛽𝐻Δ)𝑈 ]22 .

On the other hand, 𝑈𝐻Δ𝑈 = −𝐻Δ, which implies that

𝑈𝑓(𝛽𝐻Δ)𝑈 = 𝑓(−𝛽𝐻Δ) = 𝑓(−𝛽𝐻Δ) .

The claim (6.6) now follows from the fact that 𝑓(−𝑧) = 𝑓(𝑧)− 𝑧.

Subtracting (6.6) and the corresponding formula for 𝐻0 and noting that
𝐻Δ and 𝐻0 coincide on the diagonal we find that the two diagonal entries of
𝑓(𝛽𝐻Δ) − 𝑓(𝛽𝐻0) are complex conjugates of each other. Since their trace is real
we conclude that

Tr [𝑓(𝛽𝐻Δ)− 𝑓(𝛽𝐻0)] =
1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) Tr

[
1

𝑧 −𝐻Δ
− 1

𝑧 −𝐻0

]
11

𝑑𝑧 .

(For technical details concerning the interchange of the trace and the integral we
refer to [7].)

The resolvent identity and the fact that

𝛿 := 𝐻Δ −𝐻0 = −ℎ

(
0 𝜓(𝑥)

𝜓(𝑥) 0

)
(6.7)
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is off-diagonal (as an operator-valued 2× 2 matrix) implies that

Tr

[
1

𝑧 −𝐻Δ
− 1

𝑧 −𝐻0

]
11

= Tr

[
1

𝑧 −𝐻0

(
𝛿

1

𝑧 −𝐻0

)2]
11

+Tr

[
1

𝑧 −𝐻0

(
𝛿

1

𝑧 −𝐻0

)4]
11

+Tr

[
1

𝑧 −𝐻Δ

(
𝛿

1

𝑧 −𝐻0

)6]
11

=: 𝐼1 + 𝐼2 + 𝐼3 .

In the following we shall prove that

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧)𝐼1 𝑑𝑧 = −ℎ𝛽2

2
∥𝜓∥22

∫
ℝ

𝑔0(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋

+
ℎ3𝛽3

8
∥𝜓′∥22

∫
ℝ

(
𝑔1(𝛽(𝑞

2 − 𝜇)) + 2𝛽𝑞2𝑔2(𝛽(𝑞
2 − 𝜇))

) 𝑑𝑞

2𝜋

+
ℎ3𝛽3

2
⟨𝜓∣𝑊 ∣𝜓⟩

∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋

+𝑂(ℎ5)∥𝜓∥2𝐻2 , (6.8)

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧)𝐼2 𝑑𝑧 =
ℎ3𝛽3

8
∥𝜓∥44

∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋
+𝑂(ℎ5)∥𝜓∥3𝐻1∥𝜓∥𝐻2 (6.9)

and
1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧)𝐼3 𝑑𝑧 = 𝑂(ℎ5)∥𝜓∥6𝐻1 . (6.10)

This will clearly prove (3.6). We will treat the three terms 𝐼3, 𝐼2 and 𝐼1 (in this
order) separately.

𝑰3: With the notation 𝑘 introduced in (6.1) at the beginning of this section,
we have

𝐼3 =Tr

[
1

𝑧 −𝐻Δ

]
11

Δ
1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
.

Using Hölder’s inequality for the trace per unit volume (see [7]) and the fact that
∣𝑧 −𝐻Δ∣ ≥ 𝜋/(2𝛽), we get

∣𝐼3∣ ≤ 2𝛽

𝜋
ℎ6∥𝜓∥6∞

∥∥(𝑧 − 𝑘)−1
∥∥3
6

∥∥(𝑧 + 𝑘)−1
∥∥3
6
.

Together with (6.4), this yields

∣𝐼3∣ ≤ 𝐶ℎ5

1 + ∣𝑧∣3 ∥𝜓∥
6
∞ .

Here it was important to get a decay faster than ∣𝑧∣−2, since we need to integrate
𝐼3 against the function 𝑓 which behaves linearly at −∞. Since ∥𝜓∥∞ ≤ 𝐶∥𝜓∥𝐻1

by Sobolev inequalities we have completed the proof of (6.10).



Derivation of GL Theory for a 1D System 81

𝑰2: We continue with

𝐼2 = Tr
1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
.

By the resolvent identity we have

1

𝑧 − 𝑘
=

1

𝑧 − 𝑘0
+

1

𝑧 − 𝑘0
ℎ2𝑊

1

𝑧 − 𝑘
. (6.11)

Using Hölder as above, we can bound∣∣∣∣Tr( 1

𝑧 − 𝑘
− 1

𝑧 − 𝑘0

)
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘

∣∣∣∣
≤ ℎ6∥𝑊∥∞

∥∥(𝑧 − 𝑘0)
−1∥∥

∞ ∥𝜓∥4∞∥(𝑧 − 𝑘)−1∥33∥(𝑧 + 𝑘)−1∥2∞ . (6.12)

By (6.4) and (6.5) this is bounded by 𝐶ℎ5∥𝜓∥4𝐻1(𝒞)(1 + ∣𝑧∣5/2)−1. What we effec-

tively have achieved for this error is, therefore, to replace one factor of (𝑧 − 𝑘)−1

in 𝐼2 by a factor of (𝑧 − 𝑘0)
−1

In exactly the same way we proceed with the remaining factors (𝑧−𝑘)−1 and
(𝑧 + 𝑘)−1 in 𝐼2. The only difference is that 𝑘 might now be replaced by 𝑘0 in the
terms we have already treated, but this does not effect the bounds.

The final result is that (𝜋𝑖)−1
∫
Γ 𝑓(𝛽𝑧) 𝐼2 𝑑𝑧 equals

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧)Tr

[
1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0

]
𝑑𝑧 +𝑂(ℎ5)∥𝜓∥4𝐻1 ,

and it remains to compute the asymptotics of the integral.

Let us indicate how to perform the trace per unit volume Tr[. . . ]. In terms
of integrals the trace can be written as

ℎ4

(2𝜋)4

∫ 1

0

𝑑𝑥1

∫
ℝ

𝑑𝑥2

∫
ℝ

𝑑𝑥3

∫
ℝ

𝑑𝑥4

∫
ℝ4

𝑑𝑝1𝑑𝑝2𝑑𝑝3𝑑𝑝4 𝜓(𝑥1)𝜓(𝑥2)𝜓(𝑥3)𝜓(𝑥4)

× 𝑒𝑖𝑝1(𝑥1−𝑥2)

(𝑧 − (ℎ2𝑝21 − 𝜇))2
𝑒𝑖𝑝2(𝑥2−𝑥3)

𝑧 + (ℎ2𝑝22 − 𝜇)

𝑒𝑖𝑝3(𝑥3−𝑥4)

𝑧 − (ℎ2𝑝23 − 𝜇)

𝑒𝑖𝑝4(𝑥4−𝑥1)

𝑧 + (ℎ2𝑝24 − 𝜇)
. (6.13)

Since 𝜓 is periodic with period one we have

𝜓(𝑥𝑗) =
∑

𝑙𝑗∈2𝜋ℤ
𝜓(𝑙𝑗)𝑒

𝑖𝑥𝑗 𝑙𝑗 .

We insert this into the above integral and perform the integrals over 𝑥2, 𝑥3, 𝑥4.
This leads to 𝛿-distributions such that we can subsequently perform the integrals
over 𝑝2, 𝑝3, 𝑝4, as well as the integral over 𝑥1. In this way we obtain

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧)Tr

[
1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0

]
𝑑𝑧

= ℎ3
∑

𝑝1,𝑝2,𝑝3∈2𝜋ℤ
𝜓(𝑝1)𝜓∗(𝑝2)𝜓(𝑝3)𝜓∗(−𝑝1 − 𝑝2 − 𝑝3)𝐹 (ℎ𝑝1, ℎ𝑝2, ℎ𝑝3)
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with

𝐹 (𝑝1, 𝑝2, 𝑝3) =
𝛽4

𝜋𝑖

∫
Γ

𝑑𝑧 𝑓(𝛽𝑧)

∫
ℝ

𝑑𝑞

2𝜋

1

(𝑧 − 𝛽((𝑞 + 𝑝1 + 𝑝2 + 𝑝3)2 + 𝜇))
2

× 1

𝑧 + 𝛽((𝑞 + 𝑝1 + 𝑝2)2 − 𝜇)

1

𝑧 − 𝛽((𝑞 + 𝑝1)2 − 𝜇)

1

𝑧 + 𝛽(𝑞2 − 𝜇)
.

The leading behavior is given by

𝐹 (0, 0, 0)
∑

𝑝1,𝑝2,𝑝3∈2𝜋ℤ
𝜓(𝑝1)𝜓∗(𝑝2)𝜓(𝑝3)𝜓∗(−𝑝1 − 𝑝2 − 𝑝3) = 𝐹 (0, 0, 0)∥𝜓∥44 .

The integral 𝐹 (0, 0, 0) can be calculated explicitly and we obtain

𝐹 (0, 0, 0) =
𝛽3

8

∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑞2 − 𝜇

𝑑𝑞

2𝜋

with 𝑔1 from (3.4). In order to estimate the remainder we use the fact that [7]

∣𝐹 (𝑝1, 𝑝2, 𝑝3)− 𝐹 (0, 0, 0)∣ ≤ const
(
𝑝21 + 𝑝22 + 𝑝23

)
.

Using Schwarz and Hölder we can bound∑
𝑝1,𝑝2,𝑝3∈2𝜋ℤ

𝑝21

∣∣∣𝜓∗(𝑝1)𝜓∗(𝑝2)𝜓(𝑝3)𝜓(−𝑝1 − 𝑝2 − 𝑝3)
∣∣∣ ≤ const ∥𝜓∥𝐻2∥𝜓∥3𝐻1

and equally with 𝑝21 replaced by 𝑝22 and 𝑝23. Hence we conclude that

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼2 𝑑𝑧

= ℎ3
∑

𝑝1,𝑝2,𝑝3∈2𝜋ℤ̂
𝜓(𝑝1)𝜓∗(𝑝2)𝜓(𝑝3)𝜓∗(−𝑝1 − 𝑝2 − 𝑝3)𝐹 (ℎ𝑝1, ℎ𝑝2, ℎ𝑝3) +𝑂(ℎ5)∥𝜓∥4𝐻1

= ℎ3𝐹 (0, 0, 0)∥𝜓∥44 +𝑂(ℎ5)∥𝜓∥3𝐻1∥𝜓∥𝐻2 .

This is what we claimed in (6.9).

𝑰1: Finally, we examine the contribution of

𝐼1 = Tr

[
1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘

]
.

Using the resolvent identity (6.11) we can write 𝐼1 = 𝐼𝑎1 + 𝐼𝑏1 + 𝐼𝑐1 , where

𝐼𝑎1 = Tr

[
1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0

]
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and

𝐼𝑏1 = Tr

[
1

𝑧 − 𝑘0
(𝑘 − 𝑘0)

1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0

+
1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
(𝑘0 − 𝑘)

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0

+
1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
Δ† 1

𝑧 − 𝑘0
(𝑘 − 𝑘0)

1

𝑧 − 𝑘0

]
.

The part 𝐼𝑐1 consists of the rest. We claim that

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼𝑎1 𝑑𝑧 = −ℎ𝛽2

2
∥𝜓∥22

∫
ℝ

𝑔0(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋

+
ℎ3𝛽3

8
∥𝜓′∥22

∫
ℝ

(
𝑔1(𝛽(𝑞

2 − 𝜇)) + 2𝛽𝑞2𝑔2(𝛽(𝑞
2 − 𝜇))

) 𝑑𝑞

2𝜋

+𝑂(ℎ5)∥𝜓∥2𝐻2 , (6.14)

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼𝑏1 𝑑𝑧 =
ℎ3𝛽3

2
⟨𝜓∣𝑊 ∣𝜓⟩

∫
ℝ

𝑔1(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
+𝑂(ℎ5)∥𝜓∥𝐻2∥𝜓∥𝐻1

(6.15)
and

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼𝑐1 𝑑𝑧 = 𝑂(ℎ5)∥𝜓∥2𝐻1 . (6.16)

Clearly, this will imply (6.8).
We begin with 𝐼𝑐1 . These terms contain at least five resolvents, where at least

two terms are of the form (𝑧−𝑘#)
−1 and at least one term of the form (𝑧+𝑘#)

−1.
(Here 𝑘# stands for any of the operators 𝑘 or 𝑘0.) Moreover, they contain at least
two factors of 𝑘 − 𝑘0. The terms are either of the type

𝐴 = Tr
1

𝑧 − 𝑘0
(𝑘 − 𝑘0)

1

𝑧 − 𝑘
Δ

1

𝑧 + 𝑘0
(𝑘0 − 𝑘)

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘0
(6.17)

(at least three minus signs) or of the type

𝐵 = Tr
1

𝑧 − 𝑘0
Δ

1

𝑧 + 𝑘0
(𝑘0 − 𝑘)

1

𝑧 + 𝑘0
(𝑘0 − 𝑘)

1

𝑧 + 𝑘
Δ† 1

𝑧 − 𝑘
(6.18)

(only two minus signs). Terms of the first type we bound by

∣𝐴∣ ≤ 𝐶ℎ6∥𝑊∥2∞∥𝜓∥2∞∥(𝑧 − 𝑘0)
−1∥2∞∥(𝑧 + 𝑘0)

−1∥3∥(𝑧 + 𝑘)−1∥3∥(𝑧 − 𝑘)−1∥3 .
By (6.4) and (6.5) this can be estimated by 𝐶ℎ5∣𝑧∣−2+1/6 if Re 𝑧 ≥ 1 and by
𝐶ℎ5∣𝑧∣−2−1/6 if Re 𝑧 ≤ −1. This bound is finite when integrated against 𝑓(𝛽𝑧).

Terms of type 𝐵 can be bounded similarly by replacing 𝑧 by −𝑧. Indeed, we
note that since

∫
Γ
𝑧 𝐵 𝑑𝑧 = 0, we can replace 𝑓(𝛽𝑧) by 𝑓(−𝛽𝑧) = 𝑓(𝛽𝑧) − 𝛽𝑧 in

the integrand without changing the value of the integral. I.e., we can integrate 𝐵
against a function that decays exponentially for negative 𝑡 and increases linearly
for positive 𝑡, instead of the other way around. These considerations lead to the
estimate (6.16).
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Next, we discuss the term 𝐼𝑎1 . After doing the contour integral the term 𝐼𝑎1
gives

(𝜋𝑖)−1
∫
Γ

𝑓(𝛽𝑧) 𝐼𝑎1 𝑑𝑧 = ℎ
∑
𝑝∈2𝜋ℤ

∣𝜓(𝑝)∣2𝐺(ℎ𝑝)

with

𝐺(𝑝) = −𝛽

2

∫
ℝ

tanh
(
1
2𝛽((𝑞 + 𝑝)2 − 𝜇)

)
+ tanh

(
1
2𝛽(𝑞

2 − 𝜇)
)

(𝑝+ 𝑞)2 + 𝑞2 − 2𝜇

𝑑𝑞

2𝜋
.

By definition (3.3) we have

𝐺(0) = −𝛽2

2

∫
ℝ

𝑔0(𝛽(𝑞
2 − 𝜇))

𝑑𝑞

2𝜋
.

Integrating by parts we can write

𝐺′′(0) =
𝛽3

4

∫
ℝ

(
𝑔1(𝛽(𝑞

2 − 𝜇)) + 2𝛽𝑞2𝑔2(𝛽(𝑞
2 − 𝜇))

) 𝑑𝑞

2𝜋

with 𝑔1 and 𝑔2 from (3.4) and (3.5). Moreover, one can show that [7]∣∣𝐺(𝑝)−𝐺(0)− 1
2𝑝
2𝐺′′(0)

∣∣ ≤ 𝐶𝑝4 .

From this we conclude that

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼𝑎1 𝑑𝑧 = ℎ
∑
𝑝∈2𝜋ℤ

∣𝜓(𝑝)∣2 (𝐺(0) + 1
2𝐺

′′(0)ℎ2𝑝2
)
+𝑂(ℎ5)∥𝜓∥2𝐻2

= ℎ𝐺(0)∥𝜓∥22 + 1
2𝐺

′′(0)ℎ3∥𝜓′∥22 +𝑂(ℎ5)∥𝜓∥2𝐻2 ,

which is what we claimed in (6.14).

Finally, we proceed to 𝐼𝑏1 . After the contour integration we find

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼𝑏1 𝑑𝑧 = ℎ3
∑

𝑝,𝑞∈2𝜋ℤ
𝜓∗(𝑝)𝜓(𝑞)𝑊 (−𝑝− 𝑞)𝐿(ℎ𝑝, ℎ𝑞) ,

where

𝐿(𝑝, 𝑞) = 𝛽3
∫
ℝ

𝐿(𝑝, 𝑞, 𝑘)
𝑑𝑘

2𝜋

with

𝐿(𝑝, 𝑞, 𝑘) =
1

𝜋𝑖

∫
Γ

ln
(
2 + 𝑒−𝛽𝑧 + 𝑒𝛽𝑧

) 1

𝑧 + 𝑘2 − 𝜇

1

𝑧 − 𝑝2 + 𝜇

1

𝑧 − 𝑞2 + 𝜇

×
(

1

𝑧 − 𝑝2 + 𝜇
+

1

𝑧 − 𝑞2 + 𝜇
+

1

𝑧 + 𝑘2 − 𝜇

)
𝑑𝑧 .

We have

𝐿(0, 0) =
𝛽3

2

∫
ℝ

𝑔1(𝛽(𝑘
2 − 𝜇))

𝑑𝑘

2𝜋

and (see [7] for details)

∣𝐿(𝑝, 𝑞)− 𝐿(0, 0)∣ ≤ 𝐶
(
𝑝2 + 𝑞2

)
.
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By the Schwarz inequality we can bound∑
𝑝,𝑞∈2𝜋ℤ

∣∣∣𝜓∗(𝑝)𝜓(𝑞)𝑊 (−𝑝− 𝑞)(𝑝2 + 𝑞2)
∣∣∣ ≤ 𝐶∥𝑊∥2∥𝜓∥𝐻2∥𝜓∥𝐻1 ,

and obtain

1

𝜋𝑖

∫
Γ

𝑓(𝛽𝑧) 𝐼𝑏1 𝑑𝑧 = ℎ3𝐿(0, 0)
∑

𝑝,𝑞∈2𝜋ℤ
𝜓∗(−𝑝)𝜓(𝑞)𝑊 (𝑝− 𝑞) +𝑂(ℎ5)∥𝜓∥𝐻2∥𝜓∥𝐻1

=
ℎ3𝛽3

2
⟨𝜓∣𝑊 ∣𝜓⟩

∫
ℝ

𝑔1(𝛽(𝑘
2 − 𝜇))

𝑑𝑘

2𝜋
+𝑂(ℎ5)∥𝜓∥𝐻2∥𝜓∥𝐻1 .

This concludes the proof of Theorem 3.1.

6.3. Proof of Theorem 3.2

Since the function 𝜌 in (3.8) is analytic in the strip ∣ Im 𝑧∣ < 𝜋, we can write
[𝜌(𝛽𝐻Δ)]12 with the aid of a contour integral representation as

[𝜌(𝛽𝐻Δ)]12 =
1

2𝜋𝑖

∫
Γ

𝜌(𝛽𝑧)

[
1

𝑧 −𝐻Δ

]
12

𝑑𝑧 , (6.19)

where Γ is again the contour Im 𝑧 = ±𝜋/(2𝛽). We expand (𝑧 −𝐻Δ)
−1 using the

resolvent identity and note that, since 𝐻Δ = 𝐻0 + 𝛿 with a 𝐻0 diagonal and 𝛿
off-diagonal, only the terms containing an odd number of 𝛿’s contribute to the
12-entry of (𝑧 −𝐻Δ)

−1. In this way arrive at the decomposition

[𝜌(𝛽𝐻Δ)]12 = 𝜂0 + 𝜂1 + 𝜂𝑎2 + 𝜂𝑏2 , (6.20)

where

𝜂0 = − ℎ

4𝜋𝑖

∫
Γ

𝜌(𝛽𝑧)

(
𝜓

1

𝑧2 − 𝑘20
+

1

𝑧2 − 𝑘20
𝜓

)
𝑑𝑧 , (6.21)

𝜂1 =
ℎ

4𝜋𝑖

∫
Γ

𝜌(𝛽𝑧)

(
1

𝑧 − 𝑘0
[𝜓, 𝑘0]

1

𝑧2 − 𝑘20
+

1

𝑧2 − 𝑘20
[𝜓, 𝑘0]

1

𝑧 + 𝑘0

)
𝑑𝑧 , (6.22)

𝜂𝑎2 = − ℎ3

2𝜋𝑖

∫
Γ

𝜌(𝛽𝑧)
1

𝑧 − 𝑘0

(
𝑊

1

𝑧 − 𝑘
𝜓 + 𝜓

1

𝑧 + 𝑘0
𝑊

)
1

𝑧 + 𝑘
𝑑𝑧 (6.23)

and

𝜂𝑏2 = − ℎ3

2𝜋𝑖

∫
Γ

𝜌(𝛽𝑧)
1

𝑧 − 𝑘
𝜓

1

𝑧 + 𝑘
𝜓

1

𝑧 − 𝑘
𝜓

[
1

𝑧 −𝐻Δ

]
22

𝑑𝑧 . (6.24)

A simple residue computation yields

𝜂0 = −ℎ

4

(
𝜓

𝜌(𝛽𝑘0)− 𝜌(−𝛽𝑘0)

𝑘0
+

𝜌(𝛽𝑘0)− 𝜌(−𝛽𝑘0)

𝑘0
𝜓

)
=

ℎ𝛽

4
(𝜓 𝑔0(𝛽𝑘0) + 𝑔0(𝛽𝑘0) 𝜓) ,
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which is the main term claimed in the theorem. In the following we shall prove
that

∥𝜂1∥2𝐻1 ≤ 𝐶ℎ5∥𝜓∥2𝐻2 , (6.25)

∥𝜂𝑎2∥2𝐻1 ≤ 𝐶ℎ5∥𝜓∥2𝐻1 , (6.26)

and

∥𝜂𝑏2∥2𝐻1 ≤ 𝐶ℎ5∥𝜓∥6𝐻1 . (6.27)

This clearly implies Theorem 3.2.

𝜂1: The square of the 𝐻1 norm of 𝜂1 is given by

∥𝜂1∥2𝐻1 = ℎ
∑

𝑝∈2𝜋ℤ
∣𝜓(𝑝)∣2𝐽(ℎ𝑝)

with

𝐽(𝑝) =
𝛽4

4

∫
ℝ

(
(𝑞 + 𝑝)2 − 𝑞2

)2 (
1 + 𝑞2

) ∣𝐹 (𝑞 + 𝑝, 𝑞)− 𝐹 (𝑞, 𝑞 + 𝑝)∣2 𝑑𝑞

2𝜋

and 𝐹 (𝑝, 𝑞) equals

1

𝑝2 − 𝜇

1

1 + 𝑒𝛽(𝑝2−𝜇)
1

1 + 𝑒𝛽(𝑞2−𝜇)

(
𝑒𝛽(𝑝

2−𝜇) − 𝑒𝛽(𝑞
2−𝜇)

𝑝2 − 𝑞2
+

𝑒𝛽(𝑝
2+𝑞2−2𝜇) − 1

𝑝2 + 𝑞2 − 2𝜇

)
.

One can show that 0 ≤ 𝐽(𝑝) ≤ 𝐶𝑝4 [7], which yields the desired bound (6.25).

𝜂a2: This term is a sum of two terms and we begin by bounding the first one,
that is, −ℎ3(2𝜋𝑖)−1

∫
𝜌(𝛽𝑧)(𝑧 − 𝑘0)

−1𝑊 (𝑧 − 𝑘)−1𝜓(𝑧 + 𝑘)−1 𝑑𝑧. Using Hölder’s
inequality for the trace per unit volume we find that the square of the 𝐻1 norm
of the integrand can be bounded by

Tr

[
1− ℎ2∇2
∣𝑧 − 𝑘0∣2 𝑊

1

𝑧 − 𝑘
𝜓

1

∣𝑧 + 𝑘∣2𝜓
1

𝑧 − 𝑘
𝑊

]
≤
∥∥∥∥1− ℎ2∇2
∣𝑧 − 𝑘0∣2

∥∥∥∥
∞
∥𝑊∥2∞∥𝜓∥2∞∥(𝑧 − 𝑘)−1∥2∞∥(𝑧 + 𝑘)−1∥22 .

In order to bound this we use (6.4) and (6.5), as well as the fact that ∥(1 −
ℎ2∇2)∣𝑧 − 𝑘0∣−2∥∞ is bounded by 𝐶∣𝑧∣−1 if Re 𝑧 ≤ −1 and by 𝐶∣𝑧∣ if Re 𝑧 ≥ 1.
(This follows similarly as (6.5).) In particular, we conclude that for Re 𝑧 ≤ −1
the previous quantity is bounded by 𝐶ℎ−1∥𝜓∥2∞∣𝑧∣−7/2. The square root of this is
integrable against 𝜌(𝛽𝑧) and we arrive at the bound 𝐶ℎ5/2∥𝜓∥∞ for the 𝐻1 norm.
For the positive 𝑧 direction, we notice that 𝜌(𝛽𝑧) decays exponentially leading to
a finite result after 𝑧 integration.

For the second term in 𝜂𝑎2 we proceed similarly. It is important to first notice
that 𝜌(𝑧) = 1− 𝜌(−𝑧), however, and that the 1 does not contribute anything but
integrates to zero. Proceeding as above we arrive at (6.26).

𝜂b2 : Finally, we consider 𝜂𝑏2. Using Hölder’s inequality for the trace per unit
volume and bounding [(𝑧 −𝐻Δ)

−1]22 by 2𝛽/𝜋 for 𝑧 ∈ Γ we find that the square
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of the 𝐻1 norm of the integrand is bounded by

4𝛽2

𝜋2
∥𝜓∥6∞

∥∥∥∥1− ℎ2∇2
∣𝑧 − 𝑘0∣2

∥∥∥∥
∞
∥(𝑧 − 𝑘)−1∥2∞∥(𝑧 + 𝑘)−1∥22 .

Similarly as in the bound for 𝜂𝑎2 one can show that for Re 𝑧 ≤ −1 this is bounded
by 𝐶ℎ−1∥𝜓∥6∞∣𝑧∣−7/2. This leads to (6.27).
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Auf der Morgenstelle 10, D-72076 Tübingen, Germany
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Eigenfunction Expansions Associated with the
One-dimensional Schrödinger Operator

Daphne J. Gilbert

Abstract. We consider the form of eigenfunction expansions associated with
the time-independent Schrödinger operator on the line, under the assumption
that the limit point case holds at both of the infinite endpoints. It is well
known that in this situation the multiplicity of the operator may be one or
two, depending on properties of the potential function. Moreover, for values
of the spectral parameter in the upper half complex plane, there exist Weyl
solutions associated with the restrictions of the operator to the negative and
positive half-lines respectively, together with corresponding Titchmarsh-Weyl
functions.

In this paper, we establish some alternative forms of the eigenfunction
expansion which exhibit the underlying structure of the spectrum and the
asymptotic behaviour of the corresponding eigenfunctions. We focus in par-
ticular on cases where some or all of the spectrum is simple and absolutely
continuous. It will be shown that in this situation, the form of the relevant
part of the expansion is similar to that of the singular half-line case, in which
the origin is a regular endpoint and the limit point case holds at infinity.
Our results demonstrate the key role of real solutions of the differential equa-
tion which are pointwise limits of the Weyl solutions on one of the half-lines,
while all solutions are of comparable asymptotic size at infinity on the other
half-line.

Mathematics Subject Classification (2010). Primary 34L10, 47E05, 47B25.

Keywords. Eigenfunction expansions, Sturm-Liouville problems, unbounded
selfadjoint operators.

1. Introduction

The study of eigenfunction expansions associated with singular differential opera-
tors of the Sturm-Liouville type was initiated by Weyl [6], [19], and subsequently
generalised by Stone, Kodaira, Titchmarsh, and others [16], [14], [17], [18]. Partic-
ularly well known are the Fourier, Hermite and Legendre expansions, the Laguerre
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polynomials and the Fourier-Bessel series, all of which have widespread applica-
tions in engineering and the physical sciences. It therefore seems worthwhile to
explore the general behaviour of the eigenfunctions which contribute to such ex-
pansions, to investigate the relationship between the eigenfunctions and spectral
properties, and to consider under what circumstances the formal structure of the
standard expansions can be improved.

In the case of singular Sturm-Liouville operators, the eigenfunctions are them-
selves solutions of the differential equations. If the multiplicity of the spectrum is
two then every solution of 𝐿𝑢 = 𝜆𝑢 may be regarded as an eigenfunction, but
since the dimension of the solution space is also two, we expect not more than two
linearly independent solutions to feature as integral kernels in the expansions. In a
similar way, it seems reasonable to expect that when the spectrum, or a part of the
spectrum, is simple then for each relevant value of 𝜆, precisely one linearly indepen-
dent solution should feature in the expansion. This expectation has recently been
confirmed for some specific classes of singular Sturm-Liouville operators, which
include cases where both singular endpoints are limit point (see, e.g., [7], [8]).

It is the purpose of this paper to demonstrate that, in the case where part
or all of the absolutely continuous spectrum is simple, the corresponding part of
the expansion can always be reformulated in such a way that the integral kernels
are, up to scalar multiples, the unique eigenfunctions themselves. To achieve this
result we start from the Weyl-Kodaira expansion formula [3], [14], and following
the method of Kac [12], [13], diagonalise the spectral density matrix in order to
identify the eigenfunctions and simplify the expansion. It turns out that in the
process of reformulating the part of the expansion where the spectral multiplicity
is one, the contribution of the half-line operators𝐻−∞ and𝐻∞ is reflected through
their respective Titchmarsh-Weyl 𝑚-functions and corresponding spectral densi-
ties. This information enables the asymptotic behaviour of the eigenfunctions at
±∞ to be determined in terms of the theory of subordinacy [10], [11], and details
of the process will be demonstrated through worked examples.

Note. Throughout the paper the use of the term “eigenfunctions” is not restricted
to specific real solutions of the differential equation which are in 𝐿2(R), but also
includes “eigendifferentials” in the terminology of Weyl [4], [19], as well as other
relevant solutions associated with the essential spectrum. Where appropriate we
will distinguish between singular eigenfunctions and absolutely continuous eigen-
functions depending on whether the corresponding 𝜆-values are in the minimal
supports of the singular, respectively absolutely continuous parts of the spectral
measure, and the term generalised eigenfunction will be used to refer to an eigen-
function of either type.
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2. Mathematical background

In this section we briefly summarize the relevant underlying theory from which
the main results of this paper are obtained.

Consider the differential operator 𝐻 on 𝐿2(−∞,∞) associated with

𝐿𝑢 := −𝑢′′ + 𝑞(𝑟)𝑢 = 𝜆𝑢, −∞ < 𝑟 < ∞,

where 𝑞(𝑟) : R → R is locally integrable, 𝜆 ∈ R is the spectral parameter, and
the differential expression 𝐿 is in Weyl’s limit point case at ±∞. In this case the
unique self-adjoint operator 𝐻 is defined by

𝐻𝑓 = 𝐿𝑓, 𝑓 ∈ 𝒟(𝐻),

where 𝑓 ∈ 𝒟(𝐻) if

(i) 𝑓, 𝐿𝑓 ∈ 𝐿2(R),
(ii) 𝑓, 𝑓 ′ are locally absolutely continuous on R.

We refer to 𝐻 as the Schrödinger operator on the line.

It is convenient in this context to use the so-called splitting method to analyse
the spectrum of 𝐻 and derive appropriate formulations of the associated eigen-
function expansion. We first define the half-line operator 𝐻∞ to be the restriction
of 𝐻 to 𝐿2([0,∞)) with a Dirichlet boundary condition at 𝑟 = 0, and choose a
fundamental set of solutions {𝑢1(𝑟, 𝑧), 𝑢2(𝑟, 𝑧)} of 𝐿𝑢 = 𝑧𝑢, 𝑧 ∈ C, to satisfy

𝑢1(0, 𝑧) = 𝑢′2(0, 𝑧) = 0, 𝑢2(0, 𝑧) = 𝑢′1(0, 𝑧) = 1, (2.1)

where for 𝑖 = 1, 2, 𝑢′𝑖(0, 𝑧) denotes the value at 𝑟 = 0 of the derivative of
𝑢𝑖(𝑟, 𝑧) with respect to 𝑟. Associated with 𝐻∞, there exists a Herglotz function
𝑚∞(𝑧) : C+ → C+ known as the Titchmarsh-Weyl function, such that the so-
lution 𝑢2(𝑟, 𝑧) + 𝑚∞(𝑧)𝑢1(𝑟, 𝑧) of 𝐿𝑢 = 𝑧𝑢 is in 𝐿2([0,∞)) for all 𝑧 ∈ C+. The
related spectral function 𝜌∞(𝜆) : R → R is non-decreasing, continuous on the right
and generates a non-negative Borel-Stieltjes measure 𝜇∞ on R. Its derivative, the
spectral density function 𝜌′∞(𝜆), exists and satisfies

𝜌′∞(𝜆) = lim
𝑧↓𝜆

1

𝜋
Im 𝑚∞(𝑧), 𝑧 = 𝜆+ i𝜖, (2.2)

for Lebesgue and 𝜇∞-almost all 𝜆 ∈ R, and the spectrum 𝜎(𝐻∞) may be defined
by

𝜎(𝐻∞) := R ∖ {𝜆 ∈ R : 𝜌∞ is constant in a neighbourhood 𝑁(𝜆) of 𝜆},
which is the smallest closed set containing the points of increase of 𝜌∞(𝜆).

The half-line operator 𝐻−∞ on 𝐿2((−∞, 0]) is defined in a similar way, the
principal difference being that the Titchmarsh-Weyl function 𝑚−∞(𝑧) has negative
imaginary part on C+, so that the spectral density 𝜌′−∞(𝜆) satisfies

𝜌′−∞(𝜆) = − lim
𝑧↑𝜆

1

𝜋
Im 𝑚−∞(𝑧), 𝑧 = 𝜆+ i𝜖, (2.3)
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for Lebesgue and 𝜇−∞-almost all 𝜆 ∈ R. We note that the spectrum of both
half-line operators is simple, that is to say, both 𝐻∞ and 𝐻−∞ have spectral
multiplicity one.

The standard form of the eigenfunction expansion associated with the self-
adjoint operator 𝐻∞ is as follows for 𝑓(𝑟) ∈ 𝐿2([0,∞)):

𝑓(𝑟) =
l.i.m.
𝜔→∞

∫ 𝜔

−𝜔
𝑢1(𝑟, 𝜆)𝐺(𝜆) 𝑑𝜌∞(𝜆), (2.4)

where 𝑢1(𝑟, 𝜆), 0 ≤ 𝑟 < ∞, satisfies the boundary condition in (2.1) with 𝑧 = 𝜆 ∈
R, and

𝐺(𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

0

𝑢1(𝑟, 𝜆) 𝑓(𝑟) 𝑑𝑟,

where convergence in the mean is in 𝐿2([0,∞)) and 𝐿2(R; 𝑑𝜌∞(𝜆)) respectively
[2]. Note that 𝐺(𝜆) only contributes to the expansion (2.4) for those 𝜆 which
are points of increase of 𝜌∞, or more precisely, belong to a minimal support of
𝜇∞ (see Definition 2 below). We see that the integral kernel of both transform
and inverse transform is a solution of 𝐿𝑢 = 𝜆𝑢 satisfying the Dirichlet boundary
condition at 𝑟 = 0, namely 𝑢1(𝑟, 𝜆), and it follows that 𝑢1(𝑟, 𝜆) is an eigenfunction
of 𝐻∞ for those 𝜆 contributing to the spectrum of the operator. Note that the
spectral function 𝜌∞(𝜆) is constant on each open interval of the resolvent set, so
that there is no contribution to the integral in (2.4) when 𝜆 is in the resolvent set.
The expansion associated with the operator 𝐻−∞ has a similar form, with obvious
adjustments.

In the case of the full line operator 𝐻 , the analogue of the Titchmarsh-Weyl
𝑚-function is a 2×2 𝑀 -matrix, which is defined in terms of the scalar 𝑚-functions
associated with 𝐻−∞ and 𝐻∞ by

𝑀(𝑧) :=
1

𝑚−∞ −𝑚∞

(
𝑚−∞𝑚∞ 1

2 (𝑚−∞ +𝑚∞)
1
2 (𝑚−∞ +𝑚∞) 1

)
(2.5)

for 𝑧 ∈ C+. The associated matrix spectral function for 𝜆 ∈ R,

(𝜌𝑖𝑗(𝜆)) :=

(
𝜌11(𝜆) 𝜌12(𝜆)
𝜌21(𝜆) 𝜌22(𝜆)

)
,

is continuous on the right, has bounded variation on compact subintervals of the
real line, and generates a Borel-Stieltjes measure (𝜇𝑖𝑗) which is positive semi-
definite [14]. The components of the corresponding density matrix

(
𝜌′𝑖𝑗(𝜆)

)
satisfy

𝜌′𝑖𝑗(𝜆) = lim
𝑧↓𝜆

1

𝜋
Im 𝑀𝑖𝑗(𝑧), 𝑧 = 𝜆+ i𝜖, (2.6)

Lebesgue and 𝜇𝑖𝑗-almost everywhere on R for each 𝑖, 𝑗 = 1, 2, and the spectrum
of 𝐻 is given by

𝜎(𝐻) := R ∖ {𝜆 ∈ R : (𝜌𝑖𝑗) is constant in a neighbourhood 𝑁(𝜆) of 𝜆}.
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As noted above, both the half-line operators, 𝐻−∞ and 𝐻∞, have spectral
multiplicity one; however, in the case of the full line operator 𝐻 where both end-
points are limit point, some or all of the spectrum may have multiplicity two. Here
the standard formulation of the expansion in its most general form is given by the
Weyl-Kodaira formula [3], [14], from which we have for 𝑓 ∈ 𝐿2(R),

𝑓(𝑟) =
l.i.m.
𝜔→∞

∫ 𝜔

−𝜔

2∑
𝑖=1

2∑
𝑗=1

𝑢𝑖(𝑟, 𝜆) 𝐹𝑗(𝜆) 𝑑𝜌𝑖𝑗(𝜆), (2.7)

where

𝐹 (𝜆) = {𝐹1(𝜆), 𝐹2(𝜆)} = l.i.m.
𝜂→∞

{∫ 𝜂

−𝜂
𝑢1(𝑟, 𝜆)𝑓(𝑟)𝑑𝑟,

∫ 𝜂

−𝜂
𝑢2(𝑟, 𝜆)𝑓(𝑟)𝑑𝑟

}
,

and 𝑢1(𝑟, 𝜆), 𝑢2(𝑟, 𝜆), satisfy (2.1) at 𝑟 = 0, with 𝑧 = 𝜆 ∈ R, convergence of the
integrals being in 𝐿2(R) and 𝐿2(R; 𝑑𝜌𝑖𝑗(𝜆)), respectively. An advantage of this
form of the eigenfunction expansion is that it has very general application, so that
with suitable adjustments it may also be applied to cases where

∙ the endpoints −∞, ∞, are replaced by 𝑎, 𝑏, respectively, and the decomposi-
tion point 0 by 𝑐, where −∞ ≤ 𝑎 < 𝑐 < 𝑏 ≤ ∞,

∙ the boundary condition at the decomposition point 𝑐 ∈ R is cos(𝛼)𝑢(𝑐, 𝜆) +
sin(𝛼)𝑢′(𝑐, 𝜆) = 0 for some 𝛼 ∈ [0, 𝜋),

∙ one or both of the endpoints is in the limit circle case.

For further details, see [10].
However, a significant drawback of the Weyl-Kodaira formula is that in the

case of simple spectrum those solutions of the differential equation which are eigen-
functions of the operator 𝐻 cannot be identified directly from the expansion as it
stands. We note that the formulation (2.7) contains four terms, whereas the mul-
tiplicity of the spectrum, and hence the dimension of the eigenspaces, is at most
two. It will be shown that whenever the spectrum of 𝐻 has multiplicity one, the
expansion can be reduced to a much simpler form which replicates many of the
features of (2.4) in the half-line case. In this situation the eigenfunctions are the
integral kernels in the simplified expansion and can be completely characterised
in terms of their subordinacy properties.

To clarify the relevance of the theory of subordinancy in this context, we first
briefly introduce some key features. A subordinate solution of 𝐿𝑢 = 𝜆𝑢, 𝑟 ≥ 0,
when 𝐿 is regular at 0 and in the limit point case at infinity, is defined as follows:

Definition 1. A solution 𝑢𝑠(𝑟, 𝜆) of 𝐿𝑢 = 𝜆𝑢, −∞ < 𝜆 < ∞, 0 ≤ 𝑟 < ∞, is said to
be subordinate at infinity if

lim
𝑁→∞

∥ 𝑢𝑠(𝑟, 𝜆) ∥𝑁
∥ 𝑢(𝑟, 𝜆) ∥𝑁

= 0,

where ∥ . ∥𝑁 denotes (
∫ 𝑁

0
∣ . ∣2𝑑𝑟)1/2, and 𝑢(𝑟, 𝜆) denotes any solution of 𝐿𝑢 = 𝜆𝑢

which is linearly independent from 𝑢𝑠(𝑟, 𝜆).
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Thus a subordinate solution is unique up to multiplication by scalars or functions
of 𝜆, and is asymptotically smaller than any linearly independent solution of the
same equation, in the sense of limiting ratios of Hilbert space norms. To contribute
to the eigenfunction expansion associated with 𝐻∞, a solution 𝑢(𝑟, 𝜆) of 𝐿𝑢 = 𝜆𝑢
must either

(a) satisfy the boundary condition at 𝑟 = 0 in the case where no solution is
subordinate at infinity, or

(b) satisfy the boundary condition at 𝑟 = 0 and be subordinate at infinity,

since the set of all 𝜆 ∈ R for which no solution satisfies (a) or (b) has 𝜇∞-
measure zero [11]. In fact the solutions of 𝐿𝑢 = 𝜆𝑢, 𝑟 ≥ 0 which satisfy (a) are
absolutely continuous eigenfunctions of 𝐻∞, and solutions which satisfy (b) are
singular eigenfunctions of 𝐻∞. The definition of subordinate solutions and the
distinguishing properties of the eigenfunctions are entirely analogous in the case
of 𝐻−∞.

The relationship between the eigenfunctions and the corresponding parts of
the spectrum of 𝐻 can be made more precise using the concept of a minimal
support of a Borel-Stieltjes measure.

Definition 2. A subset 𝑆 of R is said to be a minimal support of a measure 𝜈 on
R if the following conditions hold:

(i) 𝜈(R ∖ 𝑆) = 0,
(ii) if 𝑆0 is a subset of 𝑆 such that 𝜈(𝑆0) = 0, then ∣ 𝑆0 ∣= 0,

where ∣ . ∣ denotes Lebesgue measure.

Note that a minimal support of a measure 𝜈 is unique up to sets of 𝜈- and Lebesgue
measure zero and, in the case of a spectral measure, provides an indication of
where the spectrum is concentrated (for further details, see [11]). Corresponding
to the decomposition of a Borel-Stieltjes measure 𝜈 into absolutely continuous
and singular parts, 𝜈𝑎.𝑐. and 𝜈𝑠., there exist minimal supports, 𝑆(𝜈𝑎.𝑐.) and 𝑆(𝜈𝑠.)
respectively such that 𝑆(𝜈𝑎.𝑐.)∪𝑆(𝜈𝑠.) = 𝑆(𝜈) and 𝑆(𝜈𝑎.𝑐.)∩𝑆(𝜈𝑠.) = ∅, where 𝑆(𝜈)
is a minimal support of 𝜈. For 𝐻∞, as shown in [11], minimal supportsℳ𝑎.𝑐.(𝐻∞),
ℳ𝑠.(𝐻∞) of the absolutely continuous and singular parts respectively of 𝜇∞ are
as follows:

ℳ𝑎.𝑐(𝐻∞) = {𝜆 ∈ R : no solution of 𝐿𝑢 = 𝜆𝑢 is subordinate at ∞} ,
ℳ𝑠.(𝐻∞) = {𝜆 ∈ R : there exists a solution of 𝐿𝑢 = 𝜆𝑢 which satisfies the

Dirichlet boundary condition at 0 and is subordinate at ∞}
Minimal supports, ℳ𝑎.𝑐(𝐻−∞) and ℳ𝑠.(𝐻−∞), of the absolutely continuous and
singular parts of 𝜇−∞ are obtained by replacing ∞ with −∞ in the above equa-
tions. Note that the Lebesgue measure of a minimal support of a spectral measure
and the Lebesgue measure of the corresponding spectrum are not in general equal.
For example, in the case where there is dense singular spectrum on a real inter-
val [𝑐, 𝑑], the singular spectrum, being a closed set, will contain [𝑐, 𝑑], so that the
Lebesgue measure of the interval is 𝑑 − 𝑐; however, the minimal support of the
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singular part of a spectral measure will always have Lebesgue measure zero. A
similar situation can also arise in relation to the absolutely continuous spectrum
(see, e.g., Example 6.5 in [10]).

In the case of a full-line operator𝐻 on 𝐿2(R) with two limit point end-points
and spectral measure 𝜇, a minimal support of 𝜇 is given by ℳ = ℳ𝑎.𝑐.(𝐻) ∪
ℳ𝑠.(𝐻), where

ℳ𝑎.𝑐.(𝐻) = {𝜆 ∈ R : either no solution of 𝐿𝑢 = 𝜆𝑢 exists which is

subordinate at −∞, or no solution of 𝐿𝑢 = 𝜆𝑢 exists

which is subordinate at +∞, or both}
ℳ𝑠.(𝐻) = {𝜆 ∈ R : a solution of 𝐿𝑢 = 𝜆𝑢 exists which is

subordinate at both±∞}
(see [9]). The nature of the eigenfunctions when 𝐻 has simple spectrum will be
considered in Section 4.

3. Diagonalising the spectral density matrix

In order to simplify the eigenfunction expansion in the case where both endpoints
are limit point, we follow the method of I.S. Kac [12], [13], and begin by introducing
a spectral density matrix. Let 𝑀𝜏 (𝑧) denote the trace of the 𝑀 -matrix in (2.5),
so that for 𝑧 ∈ C+

𝑀𝜏 (𝑧) := 𝑀11(𝑧) +𝑀22(𝑧)

=
𝑚−∞(𝑧) 𝑚∞(𝑧) + 1

𝑚−∞(𝑧)−𝑚∞(𝑧)
. (3.1)

Since 𝑚−∞ and 𝑚∞ are anti-Herglotz and Herglotz functions respectively, it is
straightforward to check that 𝑀𝜏 (𝑧) is Herglotz, so that Im𝑀𝜏 (𝑧) > 0 for 𝑧 ∈ C+.
It follows that a non-decreasing function 𝜌𝜏 (𝜆) : R → R exists such that

𝜌′𝜏 (𝜆) = lim
𝑧↓𝜆

1

𝜋
Im𝑀𝜏 (𝑧), 𝑧 = 𝜆+ 𝑖𝜖, (3.2)

exists and is satisfied for Lebesgue and 𝜇𝜏 -almost all 𝜆 ∈ R, where 𝜇𝜏 is the
non-negative Borel-Stieltjes measure generated by 𝜌𝜏 (𝜆). Moreover, since (𝜌𝑖𝑗(𝜆))
is positive semi-definite, 𝜇𝑖𝑗 is absolutely continuous with respect to 𝜇𝜏 for each
𝑖, 𝑗 = 1, 2, from which it may be inferred that for lim𝑧↓𝜆 Im𝑀𝜏 (𝑧) ∕= 0,

𝑑𝜌𝑖𝑗(𝜆) =
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)𝑑𝜌𝜏 (𝜆) = lim
𝑧↓𝜆

Im𝑀𝑖𝑗(𝑧)

Im𝑀𝜏 (𝑧)
𝑑𝜌𝜏 (𝜆), 𝑧 = 𝜆+ i𝜖, (3.3)

Lebesgue and 𝜇𝜏 -almost everywhere on R (see [10], Lemma 5.3). We refer to(
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
=

(
𝑑𝜌11
𝑑𝜌𝜏

(𝜆) 𝑑𝜌12
𝑑𝜌𝜏

(𝜆)
𝑑𝜌21
𝑑𝜌𝜏

(𝜆) 𝑑𝜌22
𝑑𝜌𝜏

(𝜆)

)
(3.4)
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as the spectral density matrix for 𝐻 . Since the set

𝑆0 := {𝜆 ∈ R : lim
𝑧↓𝜆

Im𝑀𝜏 (𝑧) = 0}
has 𝜇𝜏 -measure zero, we may take(

𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
=

(
0 0
0 0

)
for all 𝜆 ∈ 𝑆0. (3.5)

Also, noting that the limits as 𝑧 ↓ 𝜆 in (3.3) exist for Lebesgue and 𝜇𝜏 -almost all
𝜆 ∈ R ∖ 𝑆0, we have that

𝑑𝜌11
𝑑𝜌𝜏

(𝜆) =
Im 𝑚−∞(𝜆) ∣ 𝑚∞(𝜆) ∣2 − Im 𝑚∞(𝜆) ∣ 𝑚−∞(𝜆) ∣2

𝐷(𝜆)
, (3.6)

𝑑𝜌12
𝑑𝜌𝜏

(𝜆) =
𝑑𝜌21
𝑑𝜌𝜏

(𝜆)

=
Im 𝑚−∞(𝜆) Re 𝑚∞(𝜆)− Im 𝑚∞(𝜆) Re 𝑚−∞(𝜆)

𝐷(𝜆)
, (3.7)

𝑑𝜌22
𝑑𝜌𝜏

(𝜆) =
Im 𝑚−∞(𝜆) − Im 𝑚∞(𝜆)

𝐷(𝜆)
, (3.8)

almost everywhere on R ∖ 𝑆0, where

𝐷(𝜆) = Im 𝑚−∞(𝜆)
(
1+ ∣ 𝑚∞(𝜆) ∣2)− Im 𝑚∞(𝜆)

(
1+ ∣ 𝑚−∞(𝜆) ∣2) ,

and 𝑚−∞(𝜆), 𝑚∞(𝜆), denote the normal limits of 𝑚−∞(𝑧), 𝑚∞(𝑧), respectively
as 𝑧 ↓ 𝜆 ∈ R.

The following theorem establishes a rigorous correlation between the rank of
the spectral density matrix and the multiplicity of the spectrum of 𝐻 .

Theorem 1 (Kac). The spectral multiplicity of 𝐻 is two if and only if the 𝜇𝜏 -
measure of the set

ℳ2 :=

{
𝜆 ∈ 𝐸 : rank

(
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
= 2

}
is strictly positive, where

𝐸 :=

{
𝜆 ∈ ℳ :

(
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
exists

}
for some minimal support ℳ of 𝜇𝜏 . The set ℳ2 is a maximal set of multiplicity
2, and for 𝜇𝜏 -almost all 𝜆 ∈ (R ∖ℳ2), 𝐻 has multiplicity one with

rank

(
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
= 1.

An important consequence of the theorem, as recognized by Kac, is the following.

Corollary 1. Let

𝑆𝑑 := {𝜆 ∈ R : Im 𝑚−∞(𝜆) < 0, Im 𝑚∞(𝜆) > 0} .
Then 𝜇𝜏 (ℳ2 △ 𝑆𝑑) = 0, where △ denotes the symmetric difference.
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The corollary implies that only the absolutely continuous part of the spectrum
can have multiplicity two, or contain a non-trivial subset with multiplicity two. It
also implies that the degenerate spectrum is supported on

𝑆′ := {𝜆 ∈ R : no solution of 𝐿𝑢 = 𝜆𝑢 is subordinate at either −∞ or at ∞},

where 𝜇𝜏 (𝑆𝑑 △ 𝑆′) = 0 (see [10] for further details).

We now use the spectral density matrix to rearrange the Weyl-Kodaira for-
mulation (2.7) in such a way that the generalised eigenfunctions of 𝐻 are exhibited
explicitly in the expansion. Using (3.3)–(3.5), it is straightforward to see that the
integral on the right-hand side of (2.7) may be expressed as follows:∫ 𝜔

−𝜔

2∑
𝑖=1

2∑
𝑗=1

𝑢𝑖(𝑟, 𝜆)𝐹𝑗(𝜆)𝑑𝜌𝑖𝑗(𝜆) =

∫ 𝜔

−𝜔
(𝑈(𝑟, 𝜆))𝑇

(
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
𝐹 (𝜆)𝑑𝜌𝜏 (𝜆) (3.9)

where the superfix 𝑇 denotes the transpose, and

𝑈(𝑟, 𝜆) =

(
𝑢1(𝑟, 𝜆)
𝑢2(𝑟, 𝜆)

)
, 𝐹 (𝜆) =

(
𝐹1(𝜆)
𝐹2(𝜆)

)
,

with 𝐹1(𝜆) and 𝐹2(𝜆) as in (2.7). Since the spectral density matrix (3.4) is real
and symmetric, we may decompose it in such a way that(

𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
= 𝑃𝑇 𝐷 𝑃, (3.10)

where

𝐷 =

(
1 0
0 0

)
or

(
1 0
0 1

)
,

according as the rank of the spectral density matrix is 1 or 2 respectively, and 𝑃
is a 2× 2 matrix given by

𝑃 =

(
𝜎
1/2
11 𝜎

−1/2
11 𝜎12

0 𝜎
−1/2
11 (𝜎11𝜎22 − 𝜎12

2)1/2

)
(3.11)

for 𝜎11 ∕= 0, where for each 𝑖, 𝑗 = 1, 2, 𝜎𝑖𝑗 denotes (𝑑𝜌𝑖𝑗/𝑑𝜌𝜏 )(𝜆). Note that 𝑃
𝑇 𝑃 =

(𝜎𝑖𝑗(𝜆)) and that 𝑃 has full rank if and only if the determinant, 𝜎11𝜎22 − 𝜎212, of
the spectral density matrix is strictly positive. For non-trivial cases where 𝜎11 = 0,
we have

𝐷 = 𝑃 =

(
0 0
0 1

)
, (3.12)

taking into account the positive semi-definite property of the spectral density ma-
trix and the fact that 0 ≤∣ 𝜎𝑖𝑗 ∣≤ 1 for 𝑖, 𝑗 = 1, 2 (see [10]).
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Let ℳ1 denote the set of all 𝜆 ∈ 𝐸 such that ((𝑑𝜌𝑖𝑗/𝑑𝜌𝜏 )(𝜆)) has multiplicity
one. From (2.7), (3.9) and (3.10), we have for 𝑓(𝑟) ∈ 𝐿2(R),

𝑓(𝑟) = l.i.m.
𝜔→∞

∫ 𝜔

−𝜔
(𝑈(𝑟, 𝜆))𝑇 𝑃𝑇 𝐷𝑃 𝐹 (𝜆) 𝑑𝜌𝜏 (𝜆)

=
l.i.m.
𝜔→∞

∫ 𝜔

−𝜔
(𝑉 (𝑟, 𝜆))

𝑇
𝐷 𝐺(𝜆) 𝑑𝜌𝜏 (𝜆), (3.13)

where

𝑃 𝑈(𝑟, 𝜆) = 𝑉 (𝑟, 𝜆) =

(
𝑣1(𝑟, 𝜆)
𝑣2(𝑟, 𝜆)

)
, 𝑃 𝐹 (𝜆) = 𝐺(𝜆) =

(
𝐺1(𝜆)
𝐺2(𝜆)

)
, (3.14)

and convergence is in 𝐿2(R). Using (3.11)–(3.14), this leads to

𝑓(𝑟) =
l.i.m.
𝜔→∞

{∫
(−𝜔,𝜔)∩ℳ1

𝑣(𝑟, 𝜆) 𝐺(𝜆) 𝑑𝜌𝜏 (𝜆)

+

2∑
𝑖=1

∫
(−𝜔,𝜔)∩ℳ2

𝑣𝑖(𝑟, 𝜆) 𝐺𝑖(𝜆) 𝑑𝜌𝜏 (𝜆)

}
, (3.15)

where

𝐺(𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

−𝜂
𝑣(𝑟, 𝜆) 𝑓(𝑟) 𝑑𝑟,

with

𝑣(𝑟, 𝜆) =

{
𝜎
1/2
11 𝑢1(𝑟, 𝜆) + 𝜎

−1/2
11 𝜎12 𝑢2(𝑟, 𝜆) 𝜎11 ∕= 0

𝑢2(𝑟, 𝜆) 𝜎11 = 0,
(3.16)

and for 𝑖 = 1, 2,

𝐺𝑖(𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

−𝜂
𝑣𝑖(𝑟, 𝜆) 𝑓(𝑟) 𝑑𝑟,

with

𝑣1(𝑟, 𝜆) = 𝜎
1/2
11 𝑢1(𝑟, 𝜆) + 𝜎

−1/2
11 𝜎12 𝑢2(𝑟, 𝜆),

𝑣2(𝑟, 𝜆) = 𝜎
−1/2
11 (𝜎11 𝜎22 − 𝜎12

2)1/2 𝑢2(𝑟, 𝜆).

Also for 𝑘 = 1, 2,

ℳ𝑘 :=

{
𝜆 ∈ R : rank

(
𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
= 𝑘

}
,

and convergence of the integrals is in 𝐿2(R) and 𝐿2(R; 𝑑𝜌𝜏 (𝜆)), respectively.

From (3.15), 𝑣(𝑟, 𝜆) is an eigenfunction of 𝐻 for each 𝜆 ∈ ℳ1, and for each
𝜆 ∈ ℳ2, a basis for the eigenspace is {𝑣1(𝑟, 𝜆), 𝑣2(𝑟, 𝜆)}. Note from Kac’s theorem,
that if 𝜇𝜏 (ℳ2) = 0 the spectrum of 𝐻 is simple so that the second term in (3.15)
is null and the expansion has a similar form to that of the half-line case in (2.4).
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4. The case of simple spectrum

In this section, we focus on the particular case where the spectrum of 𝐻 is simple
and purely absolutely continuous. In this situation 𝜇𝜏 (ℳ2) = 0, and hence as
shown in Section 3, the expansion in (3.15) reduces to a simpler form, so that for
𝑓(𝑟) ∈ 𝐿2(R)

𝑓(𝑟) =
l.i.m.
𝜔→∞

∫ 𝜔

−𝜔
𝑣(𝑟, 𝜆) 𝐺(𝜆) 𝑑𝜌𝜏 (𝜆) (4.1)

where 𝑣(𝑟, 𝜆) is as in (3.16), and

𝐺(𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

−𝜂
𝑣(𝑟, 𝜆) 𝑓(𝑟) 𝑑𝑟,

with convergence in the mean in 𝐿2(R) and 𝐿2(R; 𝑑𝜌𝜏 (𝜆)) respectively.
We now investigate the structure of the eigenfunction 𝑣(𝑟, 𝜆) in terms of its

relationship to the Titchmarsh-Weyl functions, 𝑚−∞, 𝑚∞, and the corresponding
Weyl solutions associated with 𝐻−∞ and 𝐻∞, respectively. This will enable the
asymptotic behaviour of 𝑣(𝑟, 𝜆) as 𝑟 → ±∞ to be ascertained in terms of the
theory of subordinacy.

From (3.11) and (3.14), we have for 𝜎11 ∕= 0, 𝜎22 ∕= 0,

𝑣(𝑟, 𝜆) =
(
𝜎
1/2
11 𝜎

−1/2
11 𝜎12

)( 𝑢1(𝑟, 𝜆)
𝑢2(𝑟, 𝜆)

)
, (4.2)

since by Kac’s theorem the assumption that 𝐻 has simple spectrum implies that
det(𝜎𝑖𝑗) = 0, and hence that the second row of 𝑃 in (3.11) is zero. In cases where
𝜎11 = 0 or 𝜎22 = 0, it follows from (3.12) and (3.11) that 𝑣(𝑟, 𝜆) = 𝑢2(𝑟, 𝜆) or
𝑣(𝑟, 𝜆) = 𝑢1(𝑟, 𝜆), respectively.

From (4.2), 𝑣(𝑟, 𝜆) is a linear combination of 𝑢1(𝑟, 𝜆) and 𝑢2(𝑟, 𝜆), whose
coefficients are functions of 𝜆 which reflect the nature of the spectrum at 𝜆. In
order to determine the coefficients, we first introduce the following disjoint sets:

𝑆1 := {𝜆 ∈ R : 𝑚−∞(𝜆) ∈ C−, 𝑚∞(𝜆) ∈ R ∪ {∞}}
𝑆2 := {𝜆 ∈ R : 𝑚−∞(𝜆) ∈ R ∪ {∞}, 𝑚∞(𝜆) ∈ C+}
𝑆3 := {𝜆 ∈ R : 𝑚−∞(𝜆) = 𝑚∞(𝜆) ∈ R ∪ {∞}}
𝑆4 := {𝜆 ∈ R : 𝑚−∞(𝜆) ∈ C−, 𝑚∞(𝜆) ∈ C+}

Note that 𝑆1 ∪ 𝑆2 is a minimal support of the absolutely continuous part of the
spectral measure 𝜇𝜏 in ℳ1. The set 𝑆3 is a minimal support of the singular part
of 𝜇𝜏 and always has Lebesgue measure zero. Altogether the set {𝑆𝑖 : 𝑖 = 1, . . . , 3}
constitutes a minimal support of the part of the spectral measure 𝜇𝜏 corresponding
to the simple part of the spectrum, so is equal toℳ1 up to sets of 𝜇𝜏 - and Lebesgue
measure zero. Also from Corollary 1, 𝑆4 andℳ2 differ at most by 𝜇𝜏 - and Lebesgue
null sets, so that the degenerate part of the spectrum is supported on those values
of 𝜆 on which both 𝑚−∞(𝜆) and 𝑚∞(𝜆) are strictly complex (see also [10]). Note
that the resolvent set is the largest open set in R∖{𝑆𝑖 : 𝑖 = 1, . . . , 4}.
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In this section we concentrate particularly on 𝑆1 and 𝑆2 which are associated
with the simple part of the absolutely continuous spectrum. In fact it is sufficient to
consider 𝑆1 in detail, since the derivations and results are almost entirely analogous
for 𝑆2.

For simplicity of exposition, suppose in the first instance that 𝑆1 = R. If
𝜆 ∈ 𝑆1, so that 𝑚∞(𝜆) ∈ R∪ {∞}, then since 𝑚−∞(𝜆) ∈ C−, we have from (3.6)
and (3.7),

𝜎11 =
(𝑚∞(𝜆))2

1 + (𝑚∞(𝜆))2
, 𝜎12 =

𝑚∞(𝜆)

1 + (𝑚∞(𝜆))2
(4.3)

and hence from (4.2),

𝑣(𝑟, 𝜆) =
𝑢2(𝑟, 𝜆) +𝑚∞(𝜆) 𝑢1(𝑟, 𝜆)

(1 + (𝑚∞(𝜆))2)1/2
, (4.4)

which is a real solution of the differential equation and a scalar multiple of the
pointwise limit of the Weyl solution for 𝐻∞, viz. 𝑢2(𝑟, 𝑧)+𝑚∞(𝑧)𝑢1(𝑟, 𝑧), as 𝑧 ↓ 𝜆.
Note also that if 𝑚∞(𝑧) → ∞ as 𝑧 ↓ 𝜆 ∈ R, it follows from (4.3) that 𝜎11 = 1 and
𝜎12 = 0, so that 𝑣(𝑟, 𝜆) = 𝑢1(𝑟, 𝜆), which is an eigenfunction of 𝐻∞; this is also
directly evident from (4.4) above. Thus we see that for all 𝜆 in 𝑆1, 𝑣(𝑟, 𝜆) is a real
solution of 𝐿𝑢 = 𝜆𝑢 which is subordinate at ∞. Also, since 𝑚−∞(𝜆) is strictly
complex for 𝜆 ∈ 𝑆1, we infer from the theory of subordinacy that all solutions are
of comparable asymptotic size as 𝑟 → −∞ [11]. Substituting for 𝑣(𝑟, 𝜆) from (4.4)
into (4.1) now yields for 𝑓(𝑟) ∈ 𝐿2(R),

𝑓(𝑟) = l.i.m.
𝜔→∞

∫ 𝜔

−𝜔

𝑢2(𝑟, 𝜆) +𝑚∞(𝜆)𝑢1(𝑟, 𝜆)

(1 + (𝑚∞(𝜆))2)1/2
𝐺(𝜆) 𝑑𝜌𝜏 (𝜆), (4.5)

where

𝐺(𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

−𝜂

𝑢2(𝑟, 𝜆) +𝑚∞(𝜆)𝑢1(𝑟, 𝜆)

(1 + (𝑚∞(𝜆))2)1/2
𝑓(𝑟) 𝑑𝑟,

with convergence as before.
We illustrate the process outlined above by considering two operators, both

of which are in the limit point case at ±∞ and have purely absolutely continuous
spectrum.

Example 1. Let

𝑞(𝑟) =

{
0 −∞ < 𝑟 < 0,
1 0 ≤ 𝑟 < ∞,

(4.6)

and define a fundamental set of solutions {𝑢1(𝑟, 𝑧), 𝑢2(𝑟, 𝑧)} of 𝐿𝑢 = 𝑧𝑢 on R to
satisfy the conditions in (2.1). By choosing the

√
𝑧-plane to have positive imaginary

part in C+, we have for Im𝑧 > 0,

exp (−i
√
𝑧𝑟) ∈ 𝐿2(R

−), exp (i
√
𝑧 − 1𝑟) ∈ 𝐿2(R

+),

from which it is straightforward to show that for 𝑧 ∈ C+,

𝑚−∞(𝑧) = −i
√
𝑧, 𝑚∞(𝑧) = i

√
𝑧 − 1,
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so that the boundary values for 𝑧 = 𝜆 ∈ R are given by

𝑚−∞(𝜆) = −i
√
𝜆, 𝑚∞(𝜆) = i

√
𝜆− 1, (4.7)

respectively. We remark that 𝑚−∞(𝜆) is real for 𝜆 ≤ 0 and complex for 𝜆 > 0,
while 𝑚∞(𝜆) is real for 𝜆 ≤ 1 and complex for 𝜆 > 1. Thus we have 𝑆1 = (0, 1],
𝑆2 = 𝑆3 = ∅ and 𝑆4 = 𝑆𝑑 = (1,∞), where 𝑆𝑑 is as in Corollary 1. Since both
𝑚−∞(𝜆) and 𝑚∞(𝜆) are real for 𝜆 ≤ 0, we may take (𝜎𝑖𝑗(𝜆)) to be the zero matrix
as in (3.5) for −∞ < 𝜆 ≤ 0, and note that the resolvent set is (−∞, 0).

It is straightforward to determine the spectral density matrix explicitly for
𝜆 > 0, using (3.4)–(3.8). For 0 < 𝜆 ≤ 1, we note that 𝑚∞(𝜆) = −√1− 𝜆 to obtain(

𝑑𝜌𝑖𝑗
𝑑𝜌𝜏

(𝜆)

)
=

1

2− 𝜆

(
1− 𝜆 −√1− 𝜆

−√1− 𝜆 1

)
, (4.8)

which has rank 1, from which it follows by Theorem 1 that the spectrum of 𝐻 is
simple on 0 < 𝜆 ≤ 1. The spectral density matrix for 𝜆 > 1 is obtained in a similar
way and has full rank (see [10], Example 5.10), so that 𝑆2 = (1,∞) = ℳ2.

The spectral density matrix for 𝜆 ∈ 𝑆1 in (4.8) may be decomposed as in
(3.10), to give

𝐷 =

(
1 0
0 0

)
, 𝑃 =

1√
2− 𝜆

( −√1− 𝜆 1
0 0

)
, (4.9)

and hence from (4.7) and (4.9),

𝑃 𝑈 =

(
−
√
1− 𝜆√
2− 𝜆

𝑢1(𝑟, 𝜆) +
1√
2− 𝜆

𝑢2(𝑟, 𝜆)

)
=

𝑢2(𝑟, 𝜆) +𝑚∞(𝜆)𝑢1(𝑟, 𝜆)

(1 + (𝑚∞(𝜆))2)
1
2

(4.10)

= 𝑣(𝑟, 𝜆),

for 𝜆 ∈ (0, 1], where 𝑢1(𝑟, 𝜆), 𝑢2(𝑟, 𝜆) satisfy

𝑢1(𝑟, 𝜆) =

⎧⎨⎩
1

2
√
1−𝜆

(
𝑒
√
1−𝜆𝑟 − 𝑒−

√
1−𝜆𝑟

)
, 𝑟 ≥ 0

sin(
√
𝜆𝑟)√
𝜆

, 𝑟 < 0
(4.11)

𝑢2(𝑟, 𝜆) =

⎧⎨⎩
1
2

(
𝑒
√
1−𝜆𝑟 + 𝑒−

√
1−𝜆𝑟

)
, 𝑟 ≥ 0

cos
(√

𝜆𝑟
)
, 𝑟 < 0

(4.12)

It follows from (4.11) and (4.12) that for 𝜆 ∈ (0, 1], no solution of 𝐿𝑢 = 𝜆𝑢
is subordinate at −∞, and that the real-valued eigenfunction 𝑣(𝑟, 𝜆) in (4.10)
satisfies (4.5) and is subordinate at ∞. Moreover, since 𝑚∞(𝜆) is real on (0, 1], we
have from (3.1) and (3.2),

𝜌′𝜏 (𝜆) = − 1

𝜋

Im 𝑚−∞(𝜆)
(
1 + (𝑚∞(𝜆))2

)
∣ 𝑚−∞(𝜆) −𝑚∞(𝜆) ∣2 , 0 < 𝜆 ≤ 1, (4.13)

= (2 − 𝜆) 𝜌′−∞(𝜆),
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noting that on this 𝜆-interval,

𝜌′−∞(𝜆) = − 1

𝜋
Im𝑚−∞(𝜆), 1 + (𝑚∞(𝜆))2 = 2− 𝜆,

and
∣ 𝑚−∞(𝜆)−𝑚∞(𝜆) ∣2= 1.

Since𝑚∞(𝜆) is finite for all values of 𝜆, we may multiply (4.10) by (1+(𝑚∞(𝜆))2)
1
2

and divide (4.13) by (1 + (𝑚∞(𝜆))2) to obtain a simpler form of the expansion
(4.5) which holds on 𝑆1 = (0, 1]. The part of the expansion corresponding to the
simple spectrum of 𝐻 on 𝑆1(𝜆) then reduces to the following spectral projection:

𝒫(0,1]𝑓(𝑟) =
∫ 1

0

𝑒−
√
1−𝜆 𝑟 𝐺(𝜆)

√
𝜆𝑑𝜆,

where

𝐺(𝜆) =

∫ ∞

−∞
𝑒−

√
1−𝜆 𝑟 𝑓(𝑟) 𝑑𝑟,

and the integrals converge absolutely. Note that the full expansion for𝐻 would also
include the set 𝑆4 = (1,∞), on which the spectrum is purely absolutely continuous
with multiplicity 2.

Example 2. Consider the Airy operator associated with the singular Sturm-Liou-
ville equation,

−𝑢′′(𝑟, 𝜆) + 𝑟 𝑢(𝑟, 𝜆) = 𝜆𝑢(𝑟, 𝜆), −∞ < 𝑟 < ∞. (4.14)

It is well known that a fundamental set of solutions for (4.14) is given by {𝐴i(𝑟−
𝜆), 𝐵i(𝑟− 𝜆)}, and that the differential equation is in the limit point case at both
endpoints [5]. Moreover, 𝐴i and 𝐵i can be expressed in terms of Bessel functions
[1], [15], and the solution 𝐴i(𝑟−𝜆), 𝜆 ∈ R, is real valued and square integrable at
infinity with respect to 𝑟 for all 𝜆 ∈ R. It follows that 𝐴i(𝑟 − 𝜆) is subordinate at
infinity [11], from which it may be inferred that

𝑚∞(𝜆) = lim
𝑧↓𝜆

𝐴i′(𝑟 − 𝑧)

𝐴i(𝑟 − 𝑧)

∣∣∣∣
𝑟=0

, (4.15)

for all 𝜆 ∈ R, where ′ denotes differentiation with respect to 𝑟.
To investigate the asymptotic behaviour of solutions of (4.14) at −∞, we

first note that the conditions for validity of the Liouville-Green approximation are
satisfied in this case (see [15], Chapter 6). Hence the asymptotic behaviour of a
fundamental set, {𝑢+(𝑟, 𝜆), 𝑢−(𝑟, 𝜆)}, of solutions of (4.14) as 𝑟 → −∞ is given
by:

𝑢±(𝑟, 𝜆) =
1

(𝑟 − 𝜆)
1
4

exp

(∫ 𝑟

±(𝑟 − 𝜆)
1
2 𝑑𝑟

)
(1 + 𝑜(1)). (4.16)

Since for each fixed 𝜆 ∈ R, (𝑟 − 𝜆) is eventually negative as 𝑟 → −∞, we may
write

𝑢±(𝑟, 𝜆) = 𝐾
1

(𝜆− 𝑟)
1
4

exp

(∫ 𝑟

±i(𝜆− 𝑟)
1
2 𝑑𝑟

)
(1 + 𝑜(1)), (4.17)
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as 𝑟 → −∞ for each 𝜆 ∈ R, where 𝐾 is a constant which is independent of 𝑟
and 𝜆. It may be deduced from (4.17) that for every real value of 𝜆, no solution
of (4.14) is subordinate at −∞, so that 𝑚−∞(𝜆) ∈ C− for all 𝜆 ∈ R [11]. This,
together with (4.15), which implies that 𝑚∞(𝜆) ∈ R ∪ {∞} for all 𝜆 ∈ R, shows
that 𝑆1 = R.

Thus we have shown that in the case of the Airy operator, the spectrum of
𝐻 is purely absolutely continuous with multiplicity one on the whole real line, and
that the absolutely continuous eigenfunctions which feature in the expansion (4.1)
are given by

𝑣(𝑟, 𝜆) =
𝑢2(𝑟, 𝜆) +𝑚∞(𝜆)𝑢1(𝑟, 𝜆)

(1 + (𝑚∞(𝜆))2)1/2
, (4.18)

where 𝑚∞(𝜆) is as in (4.15). Note that 𝑣(𝑟, 𝜆) is a scalar multiple of 𝐴i(𝑟 − 𝜆),
and that when 𝜆 is an eigenvalue of 𝐻∞, so that 𝑚∞(𝑧) → ∞ as 𝑧 ↓ 𝜆, it follows
from (4.18) that 𝑣(𝑟, 𝜆) = 𝑢1(𝑟, 𝜆).

To determine the scalar Herglotz function,𝑀(𝑧), explicitly it is first necessary
to identify (up to a scalar multiple) the Weyl solution of 𝐿𝑢 = 𝑧 𝑢, which is in
𝐿2(R

−) for 𝑧 ∈ C+. Then 𝑚−∞ can be obtained by evaluating the logarithmic
derivative of the Weyl solution at 𝑟 = 0, as in (4.15). We omit the technical details.

These examples confirm that when part or all of the spectrum is absolutely con-
tinuous with multiplicity one, the corresponding eigenfunctions in the expansion
(4.1) are solutions of 𝐿𝑢 = 𝜆𝑢 which are subordinate at one of the limit point
endpoints, and are of comparable asymptotic size to all linearly independent so-
lutions of the same equation at the other endpoint. In cases where both 𝑆1 and
𝑆2 have positive 𝜇𝜏 -measure, but 𝑆3 and 𝑆4 are empty, the simplified expansions
will still be valid on the relevant 𝜆-sets, but non-overlapping spectral projections
are needed to separate the corresponding parts of the expansion. Thus we expect
the absolutely continuous eigenfunctions associated with 𝑆1 and 𝑆2 respectively
to be real scalar multiples of 𝑢2(𝑟, 𝜆) + 𝑚∞ 𝑢1(𝑟, 𝜆) and 𝑢2(𝑟, 𝜆) + 𝑚−∞ 𝑢1(𝑟, 𝜆),
and the corresponding spectral densities to be positive scalar multiples of 𝜌−∞(𝜆)
and 𝜌∞(𝜆), noting that there may be some 𝜆 dependence in the scalar multiples.
We have for 𝑓(𝑟) ∈ 𝐿2(−∞,∞),

𝑓(𝑟) =
l.i.m.
𝜔→∞

{∫
(−𝜔,𝜔)∩𝑆1

𝑢2(𝑟, 𝜆) +𝑚∞(𝜆)𝑢1(𝑟, 𝜆)

∣ 𝑚−∞(𝜆)−𝑚∞(𝜆) ∣ 𝐺+(𝜆) 𝑑𝜌−∞(𝜆)

+

∫
(−𝜔,𝜔)∩𝑆2

𝑢2(𝑟, 𝜆) +𝑚−∞(𝜆)𝑢1(𝑟, 𝜆)

∣ 𝑚−∞(𝜆) −𝑚∞(𝜆) ∣ 𝐺−(𝜆) 𝑑𝜌∞(𝜆)

}
(4.19)

where

𝐺+(𝑟, 𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

−𝜂

𝑢2(𝑟, 𝜆) +𝑚∞(𝜆)𝑢1(𝑟, 𝜆)

∣ 𝑚−∞(𝜆) −𝑚∞(𝜆) ∣ 𝑓(𝑟) 𝑑𝑟,

𝐺−(𝑟, 𝜆) =
l.i.m.
𝜂→∞

∫ 𝜂

−𝜂

𝑢2(𝑟, 𝜆) +𝑚−∞(𝜆)𝑢1(𝑟, 𝜆)

∣ 𝑚−∞(𝜆) −𝑚∞(𝜆) ∣ 𝑓(𝑟) 𝑑𝑟.
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with convergence in 𝐿2(R), 𝐿2(R; 𝑑𝜌−∞) and 𝐿2(R; 𝑑𝜌∞) respectively. Noting
that for 𝜆 ∈ 𝑆1(𝜆),

𝜌′𝜏 (𝜆) = − 1

𝜋

Im 𝑚−∞(𝜆)
(
1 + (𝑚∞(𝜆))2

)
∣ 𝑚−∞(𝜆) −𝑚∞(𝜆) ∣2 , 0 < 𝜆 ≤ 1, (4.20)

we may write

𝑑𝜌𝜏 (𝜆) =

(
1 + (𝑚∞(𝜆))2

)
∣ 𝑚−∞(𝜆)−𝑚∞(𝜆) ∣2 𝑑𝜌−∞(𝜆), 0 < 𝜆 ≤ 1.

We see that the form of the first integrand in (4.19) is derived from (4.5), by
cancellation of the term (1 + (𝑚∞(𝜆))2) in the numerator of the expression for
𝜌′𝜏 (𝜆) in (4.20) with the denominator of the eigenfunctions in (4.5), and by removal
of the term ∣ 𝑚−∞(𝜆)−𝑚∞(𝜆) ∣2, which is strictly positive for 𝜆 ∈ 𝑆1∪𝑆2, from the
denominator of 𝜌′𝜏 (𝜆) in (4.20) to the denominators of the eigenfunction in (4.19).
The argument is entirely analogous for 𝜆 ∈ 𝑆2(𝜆), with ∞ and −∞ interchanged.
Note that the expansion in (4.19) is still valid if 𝑚∞(𝑧) or 𝑚−∞(𝑧) ↓ ∞ as 𝑧 ↓ 𝜆 for
𝜆 in 𝑆1 or 𝑆2 respectively, in which case the eigenfunctions are given by 𝑢1(𝑟, 𝜆).

The form of the expansion in (4.19) clearly demonstrates the relationships be-
tween properties of the simple part of the absolutely continuous spectrum and the
asymptotic behaviour of the corresponding absolutely continuous eigenfunctions; it
also exposes the contribution of the Titchmarsh-Weyl 𝑚-functions and associated
spectral densities of the half-line operators, 𝐻−∞ and 𝐻∞, to the structure of the
expansion in this case. We expect to extend this work to cases where the spectrum
includes non-trivial singular and/or degenerate parts in a separate publication.
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1. Introduction

In previous papers, sometimes in collaborations with other colleagues, we have
analyzed spectral minimal partitions for some specific open subsets of ℝ2 and
for the sphere 𝕊2. See [4] for some of the basic results and for more detailed
definitions. In contrast with two-dimensional eigenvalue problems for which a few
examples exist where the eigenvalues and the eigenfunctions are explicitly known
– rectangles, the disk, sectors, the equilateral triangle, 𝕊2 and the torus – explicit
non-nodal examples for minimal partitions are lacking. Up to now we only have
been able to work out explicitly 𝔏3 for the 2-sphere, [5].

Here we find other examples of non-nodal minimal partitions for problems for
which the circle 𝕊1 is a deformation retract. Note that the Laplacian on the circle
𝕊1∗ (with perimeter 1) can be interpreted as the Laplacian on an interval (0, 1) with
periodic boundary conditions. For this one-dimensional problem we can work out
the partition eigenvalues (see below for a definition) 𝔏𝑘(𝕊1∗) explicitly. We have
𝔏𝑘 = 𝜋2𝑘2. Observe that for odd 𝑘 ≥ 3 the 𝔏𝑘 are not eigenvalues, whereas for k
even they are. The corresponding k-partitions are given by partitioning the circle
into 𝑘 equal parts, hence 𝐷1 = (0, 1/𝑘), 𝐷2 = (1/𝑘, 2/𝑘), . . . , 𝐷𝑘 = ((𝑘 − 1)/𝑘, 1)
identifying 0 with 1.

We will consider a strip on a cylinder or the annulus with suitable boundary
conditions. All these domains are homotopic to 𝕊1∗. For those domains we are going
to investigate the corresponding minimal 3-partitions.
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We recall some notation and definitions. Consider a k-partition 𝒟𝑘 = (𝐷1,
. . . , 𝐷𝑘), i.e., 𝑘 disjoint open subsets 𝐷𝑖 of some Ω. Here Ω can be a bounded
domain in ℝ2 or in a 2-dimensional 𝐶∞ Riemannian manifold.

Consider first −Δ on Ω where Δ can be the usual Laplacian or in the case
of a manifold (with boundary or without boundary) the corresponding Laplace-
Beltrami operator. For the case with boundary we can impose Dirichlet or Neu-
mann but we could also have mixed boundary conditions.

We associate with 𝒟𝑘

Λ(𝒟𝑘) = sup
1≤𝑖≤𝑘

𝜆1(𝐷𝑖)

where 𝜆1(𝐷𝑖) denotes

∙ either the lowest eigenvalue of the Dirichlet Laplacian in 𝐷𝑖

∙ or the lowest eigenvalue of the Laplacian in 𝐷𝑖 where we put the Dirichlet
boundary condition on ∂𝐷𝑖 ⊂ Ω and the Neumann boundary condition on
∂𝐷𝑖 ∩ ∂Ω.

It is probably worth to explain rigorously what we mean above by 𝜆1(𝐷𝑖) in
the case of measurable 𝐷𝑖’s.

Definition 1.1. For any measurable 𝜔 ⊂ Ω, let 𝜆𝐷1 (𝜔) (resp. 𝜆𝑁1 (𝜔)) denotes the
first eigenvalue of the Dirichlet realization (resp. ∂Ω-Neumann) of the operator in
the following generalized sense. We define

𝜆𝐷 𝑜𝑟𝑁
1 (𝜔) = +∞ ,

if
{
𝑢 ∈ 𝑊 1(Ω) , 𝑢 ≡ 0 a.e. on Ω ∖ 𝜔

}
= {0},

𝜆𝐷1 (𝜔) = inf

{∫
Ω
∣∇𝑢(𝑥)∣2 𝑑𝑥∫
Ω ∣𝑢(𝑥)∣2 𝑑𝑥

: 𝑢 ∈ 𝑊 1
0 (Ω) ∖ {0} , 𝑢 ≡ 0 a.e. on Ω ∖ 𝜔

}
,

𝜆𝑁1 (𝜔) = inf

{∫
Ω
∣∇𝑢(𝑥)∣2 𝑑𝑥∫
Ω ∣𝑢(𝑥)∣2 𝑑𝑥

: 𝑢 ∈ 𝑊 1(Ω) ∖ {0} , 𝑢 ≡ 0 a.e. on Ω ∖ 𝜔

}
,

otherwise.
We call groundstate any function 𝜙 achieving the above infimum.

Of course, if 𝜔 ⊂⊂ Ω, we have 𝜆𝐷1 (𝜔) = 𝜆𝑁1 (𝜔).
The 𝑘th partition-eigenvalue 𝔏𝑘(Ω) is then defined by

𝔏𝑘(Ω) = inf
𝒟

Λ(𝒟) , (1.1)

where the infimum is considered1 over the 𝑘-partitions.
Any 𝑘-partition 𝒟 for which

𝔏𝑘(Ω) = Λ(𝒟) (1.2)

is called spectral minimal 𝑘-partition, for short minimal 𝑘-partition.

1We refer to [4] for a more precise definition of the considered class of 𝑘-partitions and the notion
of regular representatives.
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If needed we will write 𝔏𝐷𝑘 (Ω) or 𝔏
𝑁
𝑘 (Ω) to indicate if we choose the Dirichlet

condition or the ∂Ω-Neumann condition in the above definitions.

Although not explicitly written in [4], all the results obtained in the case of
Dirichlet are also true in the case of Neumann. In particular, minimal partitions
exist and have regular representatives.

One of the main results in [4] concerns the characterization of the case of
equality in Courant’s nodal theorem. Consider an eigenvalue problem −Δ𝑢𝑘 = 𝜆𝑘
with suitable homogeneous boundary conditions (as previously defined) and order
the eigenvalues in increasing order 𝜆1 < 𝜆2 ≤ 𝜆3 ≤ ⋅ ⋅ ⋅ ≤ 𝜆𝑘 . . . . If we assume
that 𝑢𝑘 is real, then Courant’s nodal theorem says that the number of its nodal
domains 𝜇(𝑢𝑘) satisfies 𝜇(𝑢𝑘) ≤ 𝑘. Note that Courant’s nodal theorem holds in
greater generality, in higher dimensions and with a potential. Here a nodal do-
main is a component of Ω∖𝑁(𝑢𝑘) where Ω is the domain in Ω or the manifold and

𝑁(𝑢𝑘) = {𝑥 ∈ Ω ∣ 𝑢𝑘(𝑥) = 0}. We call 𝑢𝑘 and 𝜆𝑘 Courant sharp if 𝜇(𝑢𝑘) = 𝑘. In
[4] we have also described some properties of minimal partitions. In many respects
they are related to nodal domains. Nodal domains have many interesting proper-
ties. In particular in neighboring nodal domains the corresponding eigenfunction
has different signs. Thereby two nodal domains 𝐷𝑖, 𝐷𝑗 are said to be neighbors if

Int𝐷𝑖 ∪𝐷𝑗 is connected. We can associate with any (not necessarily nodal) parti-
tion, say 𝒟𝑘 = (𝐷1, . . . , 𝐷𝑘), a simple graph in the following way: we associate to
each 𝐷𝑖 a vertex and draw an edge between two vertices 𝑖, 𝑗 if the corresponding
𝐷𝑖, 𝐷𝑗 are neighbors. This amounts to say that nodal graphs 𝒢(𝒟𝑘) are bipartite
graphs.

The relation with Courant’s nodal theorem is now the following, which is
valid in the Dirichlet or Neumann case:

Theorem 1.2 (Dirichlet). If for a bounded domain Ω with smooth boundary a min-
imal 𝑘-partition 𝒟 with associated partition eigenvalue 𝔏𝐷𝑘 has a bipartite graph
𝒢(𝒟), then this minimal 𝑘-partition is produced by the nodal domains of an eigen-
function 𝑢 which is Courant sharp so that −Δ𝐷𝑢 = 𝜆𝐷𝑘 𝑢 in Ω and 𝜆𝐷𝑘 = 𝔏𝐷𝑘 .

Theorem 1.3 (𝝏Ω-Neumann). If for a bounded domain Ω with smooth boundary
a minimal 𝑘-partition 𝒟 with associated partition eigenvalue 𝔏𝑁𝑘 has a bipartite
graph 𝒢(𝒟), then this minimal 𝑘-partition is produced by the nodal domains of an
eigenfunction 𝑢 which is Courant sharp so that −Δ𝑁𝑢 = 𝜆𝑁𝑘 𝑢 in Ω and 𝜆𝑁𝑘 = 𝔏𝑁𝑘 .

Note that by the minimax principle 𝜆𝐷𝑘 ≤ 𝔏𝐷𝑘 , resp. 𝜆
𝑁
𝑘 ≤ 𝔏𝑁𝑘 and that, by

Pleijel’s Theorem [10], for each Ω there is a 𝑘(Ω) such that for each 𝑘 > 𝑘(Ω) any
associated eigenfunction 𝑢 has strictly less than 𝑘 nodal domains. That implies
that, for sufficiently high 𝑘, the spectral minimal 𝑘-partitions are non-nodal.

Note also that we will also meet mixed cases, when either Dirichlet or Neu-
mann boundary conditions are assumed on different components of ∂Ω.
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2. Neumann problem for a strip on the cylinder

We start with the a strip 𝐶(1, 𝑏) = 𝐶(𝑏) on a cylinder where

𝐶(𝑏) = 𝕊1∗ × (0, 𝑏) . (2.1)

If needed, we can represent the strip by a rectangle 𝑅(1, 𝑏) = (0, 1) × (0, 𝑏) with
identification of 𝑥 = 0 and 𝑥 = 1. But the open sets of the partition are always
considered as open sets on the strip.

We consider Neumann boundary conditions at 𝑦 = 0 and 𝑦 = 𝑏. The spectrum
for the Laplacian Δ𝑁 with these boundary conditions is discrete and is given by

𝜎(−Δ𝑁 ) =

{
𝜋2

(
4𝑚2 +

𝑛2

𝑏2

)
(𝑚,𝑛)∈ℕ2

}
. (2.2)

Note that eigenvalues for 𝑚 ≥ 1 have at least multiplicity two. Identifying
𝐿2(𝐶(1, 𝑏)) and 𝐿2(𝑅(1, 𝑏)), a corresponding orthonormal basis of eigenfunctions
is given by the functions on 𝑅(1, 𝑏) (𝑥, 𝑦) �→ cos(2𝜋𝑚𝑥) cos(𝜋𝑛 𝑦

𝑏 ) ((𝑚,𝑛) ∈ ℕ2)
and (𝑥, 𝑦) �→ sin(2𝜋𝑚𝑥) cos(𝜋𝑛 𝑦

𝑏 ) ((𝑚,𝑛) ∈ ℕ∗ ×ℕ), where ℕ∗ = ℕ ∖ {0}. We can
now distinguish the following cases:

(i) If 𝑏 < 1
2 ,

𝜆𝑁1 = 0 , 𝜆𝑁2 = 𝜆𝑁3 = 4𝜋2 < 𝜆𝑁4 .

(ii) If 12 < 𝑏 < 1,

𝜆𝑁1 = 0 , 𝜆𝑁2 =
𝜋2

𝑏2
, 𝜆𝑁3 = 𝜆𝑁4 = 4𝜋2 < 𝜆𝑁5 .

(iii) If 𝑏 = 1,

𝜆𝑁1 = 0 , 𝜆𝑁2 = 𝜋2 , 𝜆𝑁3 = 𝜆𝑁4 = 𝜆𝑁5 = 4𝜋2 < 𝜆𝑁6 .

(iv) If 𝑏 > 1,

𝜆𝑁1 = 0 , 𝜆𝑁2 = 𝜋2 , 𝜆𝑁3 = 4𝜋2 < 𝜆𝑁4 .

In particular, we see that 𝜆𝑁3 (𝐶(1, 𝑏)) is Courant sharp if and only if 𝑏 ≥ 1. Note
also that, for 𝑏 ∈ (12 , 1], 𝜆

𝑁
4 (𝐶(1, 𝑏)) cannot be Courant sharp, and that 𝜆𝑁5 (𝐶(1, 1))

cannot be Courant sharp.
Before we state the main result for the strip on the cylinder, we look also at

its double covering 𝐶(2, 𝑏), whose associated rectangle is given by (0, 2)× (0, 𝑏).

Lemma 2.1. The Neumann eigenvalues for 𝐶(2, 𝑏) are given, assuming that

𝑏 ≤ 1/3, (2.3)

by

𝜆𝑁1 = 0, 𝜆𝑁2 = 𝜆𝑁3 = 𝜋2, 𝜆𝑁4 = 𝜆𝑁5 = 4𝜋2, 𝜆𝑁6 = 𝜆𝑁7 = 9𝜋2. (2.4)

Note that 𝜆𝑁6 (𝐶(2, 𝑏)) is Courant sharp if 𝑏 ≤ 1/3.

Remark 2.2. Note that 𝜆𝑁2 = 𝜆𝑁3 implies that 𝔏𝑁3 > 𝜆𝑁3 and that by Theorem 1.3
the associated 𝒟3 is non-nodal.

Note that for 𝑏 ≥ 1, we get by the same theorem that 𝜆𝑁3 (𝑏) = 𝔏𝑁3 (𝑏) =
4𝜋2

𝑏2 .
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Remark 2.3. The Neumann boundary conditions imply that the zero’s hit the
boundary not as in the Dirichlet case. More precisely consider the cylinder 𝐶(1, 𝑏)
with associated rectangle 𝑅(1, 𝑏) and assume that the zero hits at (𝑥0, 0). In polar
coordinates (𝑟, 𝜔) centered at this point the zeroset looks locally like the zeroset of
𝑟𝑚 cos𝑚𝜔,𝑚 = 1, 2, . . . . This is in contrast with the Dirichlet case where we would
have 𝑟𝑚 sin𝑚𝜔. The 𝑟𝑚 factor is just included to point out that eigenfunctions
near zero’s behave to leading order as harmonic homogeneous polynomials.

Here comes the main result for the minimal 3-partition for the strip on the
cylinder.

Theorem 2.4. For

𝑏 ≤ 𝑏0 =
1

2
√
5
, (2.5)

we have
𝔏𝑁3 (𝐶(𝑏)) = 9𝜋2. (2.6)

The associated minimal 3-partition 𝒟3(𝑏) = (𝐷1, 𝐷2, 𝐷3) is up to rotation repre-
sented by

𝐷ℓ = ((ℓ − 1)/3, ℓ/3)× (0, 𝑏), (2.7)

in 𝑅(1, 𝑏).

Before giving the proof it might be appropriate to consider the case 𝑏0 < 𝑏 ≤
1. In this direction, we have:

Proposition 2.5. For 𝑏 ∈ [2/3, 1) the spectral minimal 3-partition 𝒟3(𝑏) is not the
one given by (2.7) and 𝔏𝑁3 (𝐶(𝑏)) < 9𝜋2 for 2/3 < 𝑏 < 1.

Proof. It is immediate that the eigenfunction associated with 𝑚 = 0 and 𝑛 = 2

(𝑥, 𝑦) �→ cos(2𝜋 𝑦
𝑏 ) has three nodal domains with energy 4𝜋2

𝑏2 which is less than

9𝜋2. □
Proof of the theorem. Note that by definition of 𝔏𝑁3 , we have in any case

𝔏𝑁3 (𝐶(𝑏)) ≤ 9𝜋2. (2.8)

We first sketch the main ideas for the proof. There are two arguments which
will be crucial for the proof:

(1) Take any candidate for a minimal 3-partition, 𝒟3 = (𝐷1, 𝐷2, 𝐷3). If we can
show that Λ(𝒟3) > 9𝜋2 then this 𝒟3 cannot be a minimal partition due to
the definition of 𝔏𝑁3 (𝐶(𝑏)).

(2) Assume 𝑏 ≤ 1/3. A 3-partition 𝒟3 is said to have property B if it becomes
on the double covering 𝐶(2, 𝑏) a 6-partition.

Assume that there is minimal 3-partition 𝒟3 with property B. Then Λ(𝒟3),
the energy of this partition is larger than or equal to 𝜆𝑁6 (𝐶(2, 𝑏)). To see this
just note that by Lemma 2.1, 𝜆𝑁6 (𝐶(2, 𝑏)) is Courant sharp. The corresponding
minimal 6-partition 𝒟6 = (𝐷1, . . . , 𝐷6) is given by

𝐷ℓ = ( (ℓ− 1)/3 , ℓ/3)× (0, 𝑏), ℓ = 1, 2, . . . , 6. (2.9)
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Furthermore 𝒟6 for 𝐶(2, 𝑏) is just the lifted 3-partition of 𝐶(1, 𝑏) given in Theo-
rem 2.4.

Hence it suffices to show that the candidates for minimal partitions
have the property B.

We also observe that the only candidates for minimal 3-partitions, assuming
𝑏 < 1, are non-nodal and further that, if we have a candidate for 𝒟3 = (𝐷1, 𝐷2, 𝐷3)
for a minimal partition, each 𝐷𝑖 is nice, that means

Int (𝐷𝑖) = 𝐷𝑖. (2.10)

If not we could lower the energy by removing an arc inside 𝐷𝑖 without reducing
the number of the 𝐷𝑖. Here we neglect sets of capacity 0.

The assumption on 𝐷𝑖 implies by monotonicity that

𝜆𝐷1 (𝐷𝑖) > 𝜆𝐷1 (𝐶(1, 𝑏)) = 𝜋2/𝑏2.

Hence if 𝜋2/𝑏2 > 9𝜋2 the associated partition must already lead to a Λ3(𝒟3) > 9𝜋2,
so (1) applies. □

We proceed by showing that any minimal 3-partition has property B. To show
this it suffices that in any minimal 3-partition 𝒟3 = (𝐷1, 𝐷2, 𝐷3) all the 𝐷𝑖 are
0-homotopic. This implies that lifting this partition to the double covering yields
a 6-partition and the argument (2) applies. We assume for contradiction that 𝐷3
is not contractible, hence contains a path of index 1. We first observe that 𝐷1 and
𝐷2 must be neighbours (if not the partition would be nodal). Then let us introduce
𝐷12 = Int (𝐷̄1 ∪ 𝐷̄2). Because 𝐷3 contains a path of index 1, 𝐷12 cannot touch
one component of the boundary of the cylinder and we have 𝜆𝑁2 (𝐷12) = 𝔏𝑁3 . By
domain monotonicity (this is not the Dirichlet monotonicity result but the proof
can be done either by reflection or by a density argument), the second eigenvalue
𝜆𝑁2 (𝐷12) = 𝜆𝑁1 (𝐷1) must be be larger than the second eigenvalue of the Dirichlet-
Neumann problem of the cylinder. But we have, with 𝜆𝑁𝐷

𝑖 denoting the eigenvalues
with Neumann and Dirichlet boundary conditions on the two components of the
boundary of the strip,

𝜆𝑁𝐷
1 =

𝜋2

4𝑏2
, 𝜆𝑁𝐷

2 = 𝜋2min
( 1

𝑏2
,

1

4𝑏2
+ 4

)
. (2.11)

Hence

𝜆𝑁2 (𝐷1,2) > 𝜆𝑁𝐷
2 , (2.12)

and we get a contradiction if 𝜆𝑁𝐷
2 ≥ 9𝜋2. We just have to work out the condition

on 𝑏 such that

min
( 1
𝑏2

,
1

4𝑏2
+ 4

) ≥ 9. (2.13)

This is achieved for 𝑏 ≤ (2
√
5)−1 as claimed in (2.5) in Theorem 2.4.

Remark 2.6. We recall that, although there is a natural candidate (which is nodal
on the double covering), the minimal 3-partition problem with Dirichlet conditions
for the annulus (also in the case of a thin annulus) or the disk is still open.
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Remark 2.7. In view of the considerations above and of Proposition 2.5 the ques-
tion arises whether for some 𝑏 < 1 the corresponding minimal partition has the
property that it has one or two points in its zero set where 3 arcs meet, hence
having locally a Y-structure as discussed for instance in [5]. As in the case of the
rectangle considered in [1], we can observe that in the case 𝑏 = 1, the eigenfunc-
tion cos 2𝜋𝑥 − cos 2𝜋𝑦 has a nodal set described in 𝑅(1, 1) by the two diagonals
of the square and that it determines indeed a nodal 3-partition. The guess is
then that when 1 − 𝜖 < 𝑏 < 1 (with 𝜖 > 0 small enough) this nodal 3-partition
will be deformed into a non nodal minimal 3-partition keeping the symmetry
(𝑥, 𝑦) �→ (𝑥, 1− 𝑦). We expect two critical points from which three arcs start.

3. Extension to minimal 𝒌-partitions of 𝑪(𝒃)

One can also consider for Ω = 𝐶(𝑏) minimal 𝑘-partitions with 𝑘 odd (𝑘 ≥ 3) and
Neumann condition and assume

𝑏 <
1

𝑘
. (3.1)

The theorem of the previous section can be extended to the case 𝑘 > 3.
First one observes that, if the closure of one open set of the minimal 𝑘-partition
contains a line joining the two components of the boundary, then one can go to the
double covering and obtain a (2𝑘)-partition. If (3.1) is satisfied, 𝜆𝑁𝑘 (𝐶(0, 2𝑏)) is
Courant sharp, and get as in the previous section that the energy of this partition
is necessarily higher than 𝑘2𝜋2.

So there is no 𝐷𝑖 whose boundary has nonempty intersection with both parts
of the boundary of the strip. Hence there exists one component of ∂Ω and at least
𝑘+1
2 𝐷𝑖 of the 𝑘-partition such that their boundaries ∂𝐷𝑖’s do not intersect with

this component. We immediately deduce that if 𝑏 ≤ 1
𝑘 :

min
(
𝔏𝐷𝑁

𝑘+1
2

(Ω),𝔏𝑁𝐷
𝑘+1
2

(Ω)
)
≥ 𝑘2𝜋2 , (3.2)

we have 𝔏𝑁𝑘 (Ω) = 𝑘2𝜋2.
Here 𝔏𝐷𝑁

ℓ corresponds to the ℓth spectral partition eigenvalue for the strip
with Dirichlet boundary condition on 𝑦 = 0 and Neumann boundary condition
for 𝑦 = 𝑏 and 𝔏𝑁𝐷

ℓ is defined by exchange of the boundary conditions on the two

boundaries. In our special case, due to the symmetry with respect to 𝑦 = 𝑏
2 , we

have actually 𝔏𝐷𝑁
ℓ (𝐶(𝑏)) = 𝔏𝑁𝐷

ℓ (𝐶(𝑏)).
Having in mind that2 𝜆𝐷𝑁

ℓ ≤ 𝔏𝐷𝑁
ℓ , (3.2) is a consequence of

𝜆𝐷𝑁
𝑘+1
2

≥ 𝑘2𝜋2.

If 𝑏 < 1
𝑘 , we get in the case when 𝑘 = 4𝑝+ 3 (𝑝 ∈ ℕ) the additional condition

1

4𝑏2
+ 4(𝑝+ 1)2 ≥ (4𝑝+ 3)2 .

2Note that we have equality for ℓ even and 𝑏 < 1
ℓ
.
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Similarly, we get in the case when 𝑘 = 4𝑝+ 1 (𝑝 ∈ ℕ∗)
1

4𝑏2
+ 4𝑝2 ≥ (4𝑝+ 1)2 .

We have consequently proven:

Theorem 3.1. If

∙ 𝑘 = 4𝑝+ 3 (𝑝 ∈ ℕ) and 𝑏 ≤ 1
/√

(3𝑘 + 1)(𝑘 − 1),
or

∙ 𝑘 = 4𝑝+ 1 (𝑝 ∈ ℕ∗) and 𝑏 ≤ 1/
√
(3𝑘 − 1)(𝑘 + 1),

then
𝔏𝑘(𝐶(𝑏)) = 𝑘2𝜋2 ,

and a minimal 𝑘-partition is given by 𝐷ℓ = ((ℓ − 1)/𝑘, ℓ/𝑘)) × (0, 𝑏) , for ℓ =
1, . . . , 𝑘.

4. Generalization to other thin domains

The previous proof is more general than it seems at the first look. At the price
of less explicit results we have a similar result for an annulus like domain Ω. We
mention first the case 𝑘 = 3 where the conditions read

∙ The eigenfunction associated with 𝜆𝑁6 (Ω
𝑅) is Courant sharp and antisym-

metric with respect to the deck transformation from Ω𝑅 onto Ω,

∙ 𝜆𝑁6 (Ω
𝑅) ≤ inf(𝜆𝐷𝑁

2 (Ω), 𝜆𝑁𝐷
2 (Ω)) . (4.1)

Here Ω𝑅 is the double covering of Ω and (DN) (respectively (ND)) corre-
sponds to the Dirichlet-Neumann problem (Dirichlet inside, Neumann outside),
respectively (Dirichlet outside, Neumann inside). In the case of the annulus, these
conditions can be made more explicit.

Here is a typical result which can be expected. For 𝑏 > 0 and two regular
functions ℎ1(𝜃) and ℎ2(𝜃) on the circle such that ℎ1 < ℎ2, we consider an annulus
like domain around the unit circle defined in polar coordinates by

𝐴(𝑏) = {(𝑥, 𝑦) : 1 + 𝑏ℎ1(𝜃) < 𝑟 < 1 + 𝑏ℎ2(𝜃)} .
It is clear from [8] together with Poincaré’s inequality that there exists 𝑏0 > 0 such
that, if 0 < 𝑏 ≤ 𝑏0, condition (4.1) is satisfied.

One must verify the condition for Courant sharpness, which is true for the
sixth eigenvalue of the lifted Laplacian on the double covering of the annulus
and should be also true for our more general situation but for which we have no
references, (see however [2] for thin curved tubes and [9]).

Remark 4.1. Although not explicit, condition (4.1) can be analyzed by perturba-
tive method. This is indeed a purely spectral question. There is a huge literature
concerning thin domains, see for example [3, 8] (and references therein).

Remark 4.2. Similar considerations lead also to extensions to higher 𝑘 odd for the
thin annulus with Neumann boundary conditions.
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Jacobi and CMV Matrices with Coefficients
of Generalized Bounded Variation

Milivoje Lukic

Abstract. We consider Jacobi and CMV matrices with coefficients satisfying
an ℓ𝑝 condition and a generalized bounded variation condition. This includes
discrete Schrödinger operators on a half-line or line with finite linear combi-
nations of Wigner–von Neumann type potentials cos(𝑛𝜙+𝛼)/𝑛𝛾 with 𝛾 > 0.

Our results show preservation of the absolutely continuous spectrum,
absence of singular continuous spectrum, and that embedded pure points in
the continuous spectrum can only occur in an explicit finite set.

Mathematics Subject Classification (2010). Primary 42C05,47B36.

Keywords. Jacobi matrix, CMV matrix, bounded variation, Wigner–von Neu-
mann potential, almost periodic.

For a bounded sequence {𝑎𝑛, 𝑏𝑛}∞𝑛=1 with 𝑎𝑛 > 0, 𝑏𝑛 ∈ ℝ, the corresponding
Jacobi matrix is the tridiagonal matrix acting on ℓ2(ℕ),

𝐽(𝑎, 𝑏) =

⎛⎜⎜⎜⎜⎝
𝑏1 𝑎1
𝑎1 𝑏2 𝑎2

𝑎2 𝑏3
. . .

. . .
. . .

⎞⎟⎟⎟⎟⎠ . (1)

For a sequence {𝛼𝑛}∞𝑛=0 with ∣𝛼𝑛∣ < 1, the corresponding CMV matrix [1] is a
five-diagonal unitary matrix which acts on ℓ2(ℕ), defined by

𝒞(𝛼) =

⎛⎜⎜⎜⎝
Θ0

Θ2
Θ4

. . .

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝
1

Θ1
Θ3

. . .

⎞⎟⎟⎟⎠ (2)

where 1 stands for a single entry of 1 and Θ𝑗 are unitary 2× 2 blocks

Θ𝑗 =

(
𝛼̄𝑗

√
1− ∣𝛼𝑗 ∣2√

1− ∣𝛼𝑗 ∣2 −𝛼𝑗

)
(3)
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CMV matrices arise naturally in the study of orthogonal polynomials on the unit
circle (see [1, 11]).

It is well known that bounded variation combined with decay to the free case
implies preservation of a.c. spectrum. These results are often cited as Weidmann’s
theorem, who proved the result for Schrödinger operators [13]. The analogous
Jacobi and CMV results are due to Máté–Nevai [7] and Peherstorfer–Steinbauer [9].

Interest in operators with decaying harmonic oscillations dates at least to the
work of Wigner and von Neumann [8] (see also [10, XIII.13]), who constructed on
ℝ3 a radial potential 𝑉 (𝑟) with the asymptotic behavior

𝑉 (𝑟) = −8
sin(2𝑟)

𝑟
+𝑂(𝑟−2), 𝑟 → ∞ (4)

with the peculiar property that the Schrödinger operator−Δ+𝑉 has an eigenvalue
at +1 embedded in the a.c. spectrum [0,+∞). We are interested in a class of Jacobi
and CMV matrices with similar behavior. This motivates our use of the notion of
generalized bounded variation:

Definition 1. A sequence 𝛽 = {𝛽𝑛}∞𝑛=𝑁 (𝑁 can be finite or −∞) has rotated
bounded variation with phase 𝜙 if

∞∑
𝑛=𝑁

∣𝑒𝑖𝜙𝛽𝑛+1 − 𝛽𝑛∣ < ∞. (5)

A sequence 𝛼 = {𝛼𝑛}∞𝑛=𝑁 has generalized bounded variation with the set of phases
𝐴 = {𝜙1, . . . , 𝜙𝐿} if it can be expressed as a finite sum

𝛼𝑛 =

𝐿∑
𝑙=1

𝛽(𝑙)𝑛 (6)

of 𝐿 sequences 𝛽(1), . . . , 𝛽(𝐿), such that the 𝑙th sequence 𝛽(𝑙) has rotated bounded
variation with phase 𝜙𝑙. We will denote by 𝐺𝐵𝑉 (𝐴) the set of sequences with
generalized bounded variation with set of phases 𝐴.

For an example of rotated bounded variation with phase 𝜙, take 𝛽𝑛 = 𝑒−𝑖(𝑛𝜙+𝛼)𝛾𝑛,
with {𝛾𝑛}∞𝑛=𝑁 any sequence of bounded variation. Generalized bounded variation
may seem like an unnatural condition for real-valued sequences, but by combin-
ing rotated bounded variation with phases 𝜙 and −𝜙, one gets 𝑒−𝑖(𝑛𝜙+𝛼)𝛾𝑛 +
𝑒+𝑖(𝑛𝜙+𝛼)𝛾𝑛 = cos(𝑛𝜙+𝛼)𝛾𝑛. It is then clear that a linear combination of Wigner–
von Neumann type potentials plus an ℓ1 part,

𝑉𝑛 =

𝐾∑
𝑘=1

𝜆𝑘 cos(𝑛𝜙𝑘 + 𝛿𝑘)/𝑛
𝛾𝑘 + 𝑞𝑛 (7)

with 𝛾𝑘 > 0 and {𝑞𝑛} ∈ ℓ1, has generalized bounded variation.
Wong [14] has the first result for CMV matrices with generalized bounded

variation, proving Theorem 2 in the case {𝛼𝑛}∞𝑛=0 ∈ ℓ2. For discrete Schrödinger
operators, Janas–Simonov [3] analyzed the potential 𝑉𝑛 = cos(𝜙𝑛 + 𝛿)/𝑛𝛾 + 𝑞𝑛,
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with 𝛾 > 1/3 and {𝑞𝑛}∞𝑛=1 ∈ ℓ1, and obtained for this potential the same spectral
results as our Corollary 3.

We can now state the main results:

Theorem 1 (Lukic [6]). Let 𝐽 be a Jacobi matrix with coefficients {𝑎𝑛, 𝑏𝑛}∞𝑛=1. Let
𝑝 be a positive integer, 𝐴 ⊂ ℝ a finite set of phases, and make one of these sets of
assumptions:

1∘ {𝑎2𝑛 − 1}∞𝑛=1, {𝑏𝑛}∞𝑛=1 ∈ ℓ𝑝 ∩𝐺𝐵𝑉 (𝐴)
2∘ {𝑎𝑛 − 1}∞𝑛=1, {𝑏𝑛}∞𝑛=1 ∈ ℓ𝑝 ∩𝐺𝐵𝑉 (𝐴)

Then

(i) 𝜎ac(𝐽) = [−2, 2]
(ii) 𝜎sc(𝐽) = ∅
(iii) 𝜎pp(𝐽) ∩ (−2, 2) is the subset of an explicit finite set,

𝜎pp(𝐽) ∩ (−2, 2) ⊂ {±2 cos(𝜂/2)
∣∣𝜂 ∈ 𝐴+ ⋅ ⋅ ⋅+𝐴︸ ︷︷ ︸

𝑝−1 times

}
(8)

where 𝐴 = 𝐴 ∪ {0} in case 1∘ and 𝐴 = (𝐴+𝐴) ∪ 𝐴 ∪ {0} in case 2∘.

Theorem 2 (Lukic [6]). Let 𝒞 = 𝒞(𝛼) be a CMV matrix with coefficients {𝛼𝑛}∞𝑛=0
such that

{𝛼𝑛}∞𝑛=0 ∈ ℓ𝑝 ∩𝐺𝐵𝑉 (𝐴)

for a positive odd integer 𝑝 = 2𝑞 + 1 and a finite set 𝐴 ⊂ ℝ. Then

(i) 𝜎ac(𝒞) = ∂𝔻, where ∂𝔻 is the unit circle
(ii) 𝜎sc(𝒞) = ∅
(iii) 𝜎pp(𝒞) is the subset of an explicit finite set,

𝜎pp(𝒞) ⊂
{
exp(𝑖𝜂)

∣∣𝜂 ∈ (𝐴+ ⋅ ⋅ ⋅+𝐴︸ ︷︷ ︸
𝑞 times

)− (𝐴+ ⋅ ⋅ ⋅+𝐴︸ ︷︷ ︸
𝑞−1 times

)
}

(9)

Remark 1. If a sequence {𝛽𝑛} has rotated 𝑞-bounded variation, i.e.,
∑∣𝑒𝑖𝜙𝛽𝑛+𝑞 −

𝛽𝑛∣ < ∞, then it also has generalized bounded variation so our results trivially
extend to such sequences (with the appropriate adjustment of the set 𝐴).

In the special case 𝑎𝑛 = 1, Theorem 1 becomes a result on discrete Schrödin-
ger operators on a half-line. By a standard pasting argument, this also implies a
result for discrete Schrödinger operators on a line.

Corollary 3. Let

(𝐻𝑥)𝑛 = 𝑥𝑛+1 + 𝑥𝑛−1 + 𝑉𝑛𝑥𝑛 (10)

be a discrete Schrödinger operator on a half-line or line, with {𝑉𝑛} in ℓ𝑝 with
generalized bounded variation with set of phases 𝐴.
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Then

(i) 𝜎ac(𝐻) = [−2, 2]
(ii) 𝜎sc(𝐻) = ∅
(iii) 𝜎pp(𝐻) ∩ (−2, 2) is a finite set,

𝜎pp(𝐻) ∩ (−2, 2) ⊂
{
±2 cos(𝜂/2)

∣∣∣𝜂 ∈
𝑝−1∪
𝑘=1

(𝐴+ ⋅ ⋅ ⋅+𝐴︸ ︷︷ ︸
𝑘 times

)
}

This corollary applies in particular to linear combinations of Wigner–von
Neumann potentials (7).

All the results discussed so far concern perturbation of the free operator by
generalized bounded variation. For perturbations of other operators the situation
is more complicated. For instance, in contrast to Weidmann’s theorem, Last [5] has
shown that for some classes of potentials 𝑉0, perturbing the discrete Schrödinger
operator −Δ + 𝑉0 by a perturbation 𝑉 of bounded variation can destroy a.c.
spectrum.

In another direction, one can relax the bounded variation condition to an
ℓ2 condition on 𝑞-variation, namely

∑
𝑛∣𝑥𝑛+𝑞 − 𝑥𝑛∣2 < ∞. Kaluzhny–Shamis [4],

using in part ideas from Denisov [2] who studied the case 𝑎𝑛 ≡ 1, have shown
that this kind of perturbation with 𝑥𝑛 → 0 preserves the a.c. spectrum of periodic
Jacobi operators.

In yet another direction, Stolz [12] takes Δ to be the forward difference
operator (Δ𝑥)𝑛 = 𝑥𝑛+1 − 𝑥𝑛 and analyzes discrete Schrödinger potentials with
Δ𝑗𝑉 ∈ ℓ𝑘/𝑗 for 1 ≤ 𝑗 ≤ 𝑘, showing that a.c. spectrum persists precisely on the
interval [−2 + lim sup𝑛→∞ 𝑉𝑛, 2 + lim inf𝑛→∞ 𝑉𝑛].

As communicated to us by Yoram Last, this problem can also be motivated
in a different way: let 𝑉𝑛 = 𝜆𝑛𝑊𝑛, with 𝜆𝑛 > 0 monotone decaying to 0, and let 𝐻
be given by (10). For different classes of potentials 𝑊 , what kind of decay do we
need to ensure preservation of a.c. spectrum? For 𝑊 from a large class of almost
periodic potentials, our results state that any {𝜆𝑛} ∈ ℓ𝑝, 𝑝 < ∞, suffices:

Corollary 4. Let (10) be a discrete Schrödinger operator on a half-line or line with
𝑉𝑛 = 𝜆𝑛𝑊𝑛, {𝜆𝑛} ∈ ℓ𝑝 of bounded variation (with 𝑝 < ∞) and 𝑊 a trigonometric
polynomial,

𝑊𝑛 =

𝐿∑
𝑙=1

𝑎𝑙 cos(2𝜋𝛼𝑙𝑛+ 𝜙𝑙)

Then with 𝐴 = {±2𝜋𝛼1, . . . ,±2𝜋𝛼𝑙}, all conclusions of Corollary 3 hold.
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Order Convergence Ergodic Theorems
in Rearrangement Invariant Spaces

Mustafa Muratov, Julia Pashkova and Ben-Zion Rubshtein

Abstract. We find necessary and sufficient conditions for order convergence
of Cesáro averages of positive absolute contractions in rearrangement invari-
ant spaces. We study the case, when the considered measure is infinite. The
investigation of order convergence includes both Dominated and Individual
Ergodic Theorems.

Mathematics Subject Classification (2010). Primary 37A30; Secondary 46B42.

Keywords. Ergodic theorems, rearrangement invariant spaces, positive abso-
lute contraction, order convergence.

1. Introduction

Let (Ω, 𝜇) be an infinite 𝜎-finite non-atomic measure space, L𝑝 = L𝑝(Ω, 𝜇) , 1 ≤
𝑝 ≤ +∞ and L0 = L0(Ω, 𝜇) be the set of all 𝜇-measurable functions 𝑓 : Ω → R.

We write: L0 = L0(R+,m) in the particular case, when Ω = R+ = [0,∞)
and 𝜇 = m is the usual Lebesgue measure on [0,+∞).

A linear operator 𝑇 : L1+L∞ → L1+L∞ is said to be an absolute contraction
or (L1,L∞)-contraction if 𝑇 is a contraction in L1 and in L∞ as well. The operator
𝑇 is said to be positive if 𝑇𝑓 ≥ 0 for all 𝑓 ≥ 0. Let us denote by 𝒫𝒜𝒞 the set of
all positive absolute contractions.

For any 𝑇 ∈ 𝒫𝒜𝒞 and 𝑓 ∈ L1 + L∞ we consider the Cesáro averages

𝐴𝑛,𝑇 𝑓 =
1

𝑛

𝑛∑
𝑘=1

𝑇 𝑘−1𝑓

This work was partially supported by the State Fund for Fundamental Researches of Ukraine
grant Φ40.1/008.
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and the corresponding dominant function

𝐵𝑇 𝑓 = sup
𝑛≥ 1

𝐴𝑛,𝑇 ∣𝑓 ∣ = sup
𝑛≥ 1

1

𝑛

𝑛∑
𝑘=1

𝑇 𝑘−1𝑓.

Notice that 𝐵𝑇 𝑓 ∈ L0 for all 𝑓 ∈ L1 + L∞ (see [9], Ch. 8, §4 and [22], Ch. 1, §6).
A Banach space E of measurable functions on (Ω, 𝜇) is called rearrangement

invariant (r.i.) if

𝑓 ∈ L0 , 𝑔 ∈ E, 𝑓∗ ≤ 𝑔∗ =⇒ 𝑓 ∈ E , ∥𝑓∥E ≤ ∥𝑔∥E .

Here 𝑓∗ denotes the decreasing right-continuous rearrangement of ∣𝑓 ∣. It can be
defined as the right-continuous generalized inverse

𝑓∗(𝑥) := inf{𝑦 ∈ [0,+∞) : n𝑓 (𝑦) ≤ 𝑥}, 𝑥 ∈ [0,∞)

of the distribution function n𝑓 of ∣𝑓 ∣, which is

n𝑓 (𝑥) = 𝜇 {𝑢 ∈ Ω : ∣𝑓(𝑢)∣ > 𝑥} ,

The function 𝑓∗ is well defined if n𝑓 (𝑥) < +∞ for some 𝑥 ≥ 0.
In the case (Ω, 𝜇) = (R+,m) r.i. spaces E = E(R+,m) will be called stan-

dard. For any r.i. space E(Ω, 𝜇) on an arbitrary measure space (Ω, 𝜇) there is a
unique standard r.i. space E(R+,m) on (R+,m) (called standard realization of
E) such that

𝑓 ∈ E(Ω, 𝜇) ⇐⇒ 𝑓∗ ∈ E(R+,m)

(see [21], Ch. II, §8). In general we do not assume that the measure space (Ω, 𝜇)
is separable and isomorphic to the standard measure space (R+,m).

It is known (see [21], Ch. II, §4.1 or [24], Ch. 2.a), that for every r.i. space E
there exist continuous inclusions

L1 ∩ L∞ ⊆ E ⊆ L1 + L∞ ⊆ L0 ,

where L0 is considered as a complete topological linear space with respect to the
stochastic convergence, i.e., the measure convergence on all finite measure sets.

On the other hand, every r.i. Banach space E is a Banach lattice and a
sublattice of the lattice L0, equipped with the usual partial order on functions
(see [17], Ch. 10 and [24], Ch. 1.c.). The lattice L0 is order 𝜎-complete and also
order complete, since the measure 𝜇 is 𝜎-finite.

Remind that a subset 𝐹0 of a partially ordered set 𝐹 is said to be order
bounded in 𝐹 if 𝑓 ≤ 𝑔 for all 𝑓 ∈ 𝐹0 and some 𝑔 ∈ 𝐹 . The set 𝐹 is called
order complete if every order bounded subset 𝐹0 ⊆ 𝐹 has the least upper bound
sup𝐹0 ∈ 𝐹 and the greatest lower bound inf 𝐹0 ∈ 𝐹 in 𝐹 .

Further, a sequence {𝑓𝑛}∞𝑛=1 of elements of a partially ordered set 𝐹 is said

to be order convergent to 𝑓 ∈ 𝐹 in 𝐹 (𝑓𝑛
(𝑜)−→ 𝑓), if there exist 𝑔𝑛 ∈ 𝐹 and ℎ𝑛 ∈ 𝐹

such that

𝑔𝑛 ↑ 𝑓 , ℎ𝑛 ↓ 𝑓 , 𝑓 = sup
𝑛≥1

𝑔𝑛 = inf
𝑛≥1

ℎ𝑛 ∈ 𝐹 .
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If, in addition, 𝐹 is an order 𝜎-complete lattice then 𝑓𝑛
(𝑜)−→ 𝑓 ∈ 𝐹 iff {𝑓𝑛 , 𝑛 ≥ 1}

is order bounded in 𝐹 and

𝑓 = sup
𝑛≥1

inf
𝑚≥𝑛

𝑓𝑚 = inf
𝑛≥1

sup
𝑚≥𝑛

𝑓𝑚 ∈ 𝐹 .

Let E ⊆ L0(Ω, 𝜇) be an r.i. Banach space on (Ω, 𝜇). Then

∙ E is a order complete sublattice of the order complete lattice L0.

∙ A sequence {𝑓𝑛}∞𝑛=1 is order convergent in E ( 𝑓𝑛
(𝑜)−→ 𝑓 ∈ E) iff the set

{𝑓𝑛 , 𝑛 ≥ 1} is order bounded in E and the sequence {𝑓𝑛}∞𝑛=1 is order
convergent in L0.

∙ 𝑓𝑛
(𝑜)−→ 𝑓 ∈ L0) iff 𝑓𝑛 → 𝑓 almost everywhere on (Ω, 𝜇)).

Keeping in mind these facts we can formulate the following two problems
that will be under our consideration:

Problem 1. Let E be an r.i. Banach space and 𝑇 ∈ 𝒫𝒜𝒞. What is the subset

E𝑇 := {𝑓 ∈ E : {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent in E } ?

Problem 2. What is the subclass of all r.i. Banach spaces such that E𝑇 = E for
all 𝑇 ∈ 𝒫𝒜𝒞, i.e., the sequence of Cesáro averages {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent
in E for all 𝑓 ∈ E and 𝑇 ∈ 𝒫𝒜𝒞 ?

Notice again that the sequence {𝐴𝑛,𝑇𝑓}∞𝑛=1 of Cesáro averages is (𝑜)-conver-
gent in E iff the corresponding dominant function 𝐵𝑇 𝑓 belongs to E, while the
sequence {𝐴𝑛,𝑇 𝑓}∞𝑛=1 itself converges almost everywhere on (Ω, 𝜇).

This means that the setup includes both Dominated Ergodic Theorem (𝒟ℰ𝒯 )
and Individual (Pointwise) Ergodic Theorem (ℐℰ𝒯 ) in the classical case of spaces
L𝑝 and Zygmund’s classes 𝒵𝑟 = L log𝑟 L (see, e.g., [9], Ch. VIII, §6 or [22], Ch. I,
§1.6).

First individual and dominated ergodic theorems where proved in [12], [40],[2]
and [18] for measure preserving transformations. One can find detailed explanation,
various generalizations and relevant references in [22], and also in [1], where the
case of infinite measure is treated in more details. Dunford and Schwartz ([8], [9]
considered ergodic theorems for positive absolute contractions in spaces L𝑝 , 1 ≤
𝑝 < ∞. The Converse Dominated Ergodic Theorem in L1 was proved by Ornstein
[34] for finite measure preserving transformations (see [22], pp. 54–56, where the
infinite measure case is also described).

A. Veksler and A. Fedorov began to study Ergodic Theorems for general
rearrangement invariant spaces. They investigated in [38] and [39] conditions of
strong operator convergence of the Cesáro averages 𝐴𝑛,𝑇 , 𝑇 ∈ 𝒫𝒜𝒞 in r.i. Banach
spaces E. In particular they described the class of r.i. spaces E, for which the Sta-
tistical (Mean) Ergodic Theorem holds on E, i.e., the sequence of Cesáro averages
{𝐴𝑛,𝑇 𝑓}∞𝑛=1 is convergent in norm ∥ ⋅ ∥E for all 𝑓 ∈ E and 𝑇 ∈ 𝒫𝒜𝒞.

Dominated Ergodic Theorems in r.i. spaces on finite measure spaces were
studied in [4]. Some recent results on Ergodic Theorems in Orlicz and Lorentz
spaces one can find in [30] [31], [32] and [33].
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In this paper we solve Problems 1 and 2. Our main results Theorems 2.1–2.4
and some their consequences are formulated in Section 2.

These theorems follow in turn immediately from corresponding Dominated
Ergodic Theorem, Converse Dominated Ergodic Theorem and Individual Ergodic
Theorem, which are proved in Section 3, 4, and 5, respectively.

In the important particular cases, when the r.i. space E is an Orlicz space
E = LΦ or a Lorentz space Λ𝑊 , Problems 1 and 2 are solved in Section 6 in terms
of corresponding Orlicz functions Φ and weight functions 𝑊 .

The corresponding classical results for space L𝑝 and for Zygmund classes
L log𝑟 L also follow.

2. Main results

To estimate the dominant functions 𝐵𝑇 𝑓 , 𝑓 ∈ E, we use the maximal Hardy-
Littlewood function 𝑓∗∗, which is defined for any function 𝑓 ∈ L1 + L∞ by

𝑓∗∗(𝑥) :=
1

𝑥

𝑥∫
0

𝑓∗(𝑢) 𝑑𝑢, 𝑥 ∈ (0,∞) .

Let E = E(Ω, 𝜇) be an r.i. space on a measure space (Ω, 𝜇), and E(R+,m)
be the corresponding standard r.i. space. The Hardy core of E is

EH = EH(Ω, 𝜇) := {𝑓 ∈ (L1 + L∞)(Ω, 𝜇) : 𝑓∗∗ ∈ E(R+,m)} .

Evidently, 𝑓∗ ≤ 𝑓∗∗ for every 𝑓 ∈ E, whence EH ⊆ E. Moreover, it can be verified
that EH is an r.i. space with the norm

∥𝑓∥EH := ∥𝑓∗∗∥E , 𝑓 ∈ EH ,

provided that EH ∕= {0}.
Notice that in the standard case (Ω, 𝜇) = (R+,m), the space EH is the

largest r.i. space, for which the Hardy operator

(𝐻𝑓)(𝑥) :=
1

𝑥

𝑥∫
0

𝑓(𝑢) 𝑑𝑢 , 𝑥 ∈ (0,∞)

is a positive contraction from EH to E.
It should be mentioned that for any r.i. space E and 𝑇 ∈ 𝒫𝒜𝒞

𝑇 (EH) ⊆ EH

and the restriction 𝑇 ∣EH : EH → EH is a contraction.
Indeed, by Calderon-Mityagin theorem

(𝑇𝑓)∗∗(𝑥) ≤ 𝑓∗∗(𝑥) , 0 < 𝑥 < ∞
for all 𝑓 ∈ L1 + L∞ and 𝑇 ∈ 𝒫𝒜𝒞 (see [5], [26] or [21], Ch.II, §3.4). Whence

∥𝑇𝑓∥EH := ∥(𝑇𝑓)∗∗∥E ≤ ∥𝑓∗∗∥E := ∥𝑓∥EH .
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Thus every r.i. space of the form EH, is an interpolation space with respect to the
pair (L1 ∩ L∞,L1 + L∞).

On the other hand, r.i. spaces need not to be interpolational. There exist r.i.
spaces E such that 𝑇E ∕⊆ E for some 𝑇 ∈ 𝒫𝒜𝒞( [21], Ch. II §5.7). Thus 𝑇𝑓 and
𝐴𝑛,𝑇 𝑓 do not a priori belong to E for 𝑓 ∈ E and 𝑇 ∈ 𝒫𝒜𝒞.

The r.i. space ℛ0 = ℛ0(Ω, 𝜇) can be defined by

ℛ0 = {𝑓 ∈ L1 + L∞ : 𝑓∗(+∞) := lim
𝑥→+∞ 𝑓(𝑥) = 0} .

It plays an important role in our exposition. This space may be described in many
different ways:

ℛ0 = {𝑓 ∈ L1+L∞ : n𝑓 (𝑥) < +∞ , 𝑥 > 0} = 𝑐𝑙L1+L∞(L1 ∩L∞) = 𝑐𝑙L1+L∞(L1) ,

and ℛ0 is the heart of L1 + L∞ considered as an Orlicz space.
Now we can formulate our main result (solving Problem 1):

Theorem 2.1. Let E be an r.i. space. Then for all 𝑓 ∈ EH ∩ℛ0 and all 𝑇 ∈ 𝒫𝒜𝒞
the sequence of averages {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent in E.

Condition 𝑓 ∈ EH implies that the sequence {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order bounded in
E, i.e., 𝐵𝑇 𝑓 ∈ E. Thus Dominated Ergodic Theorem (𝒟ℰ𝒯 ) in E holds on Hardy
core EH of E.

Condition 𝑓 ∈ ℛ0 implies that the sequence {𝐴𝑛,𝑇𝑓}∞𝑛=1 is order convergent
in L0, i.e., Individual Ergodic Theorem (ℐℰ𝒯 ) holds on ℛ0.

The converse is also true. Namely,

Theorem 2.2. Let E be an r.i. space such that E ∕= EH ∩ ℛ0. Then there exist
𝑓 ∈ E and 𝑇 ∈ 𝒫𝒜𝒞 such that the sequence {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is not order convergent
in E.

Both 𝒟ℰ𝒯 and ℐℰ𝒯 parts in the converse theorem can be made more precise
separately. Let 𝜃 be a measure preserving transformation on (Ω, 𝜇) and 𝑇 = 𝑇𝜃 ∈
𝒫𝒜𝒞 is of the form 𝑇𝜃𝑓 = 𝑓 ∘ 𝜃. Evidently, 𝑇𝜃 ∈ 𝒫𝒜𝒞 and 𝑇𝜃E = E for each r.i.
space E. Let 𝒫𝒜𝒞0 consists of all operators 𝑇𝜃, where 𝜃 is an conservative ergodic
measure preserving transformation on (Ω, 𝜇).

Theorem 2.3. Let E be an r.i. space and 𝑇 = 𝑇𝜃 ∈ 𝒫𝒜𝒞0. Then

1) If 𝐵𝑇 𝑓 ∈ E then 𝑓 ∈ EH.
2) If E ⊈ ℛ0 then the sequence {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is not order convergent for some

𝑓 ∈ E.

Turning to Problem 2, we have the following corollary of Theorems 2.1
and 2.2.

Theorem 2.4. Let E be an r.i. space. The following conditions are equivalent:

(i) The sequence {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent for all 𝑓 ∈ E and 𝑇 ∈ 𝒫𝒜𝒞.
(ii) E = EH ∩ℛ0.
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Thus

∙ An r.i. space E satisfies Order Ergodic Theorem (E ∈ 𝒪ℰ𝒯 ), iff EH = E
and E ⊆ ℛ0.
Condition EH = E means that the Hardy operator 𝐻 acts as a bounded

operator on E. To clarify the condition one can use the dilation group {𝐷𝑡 , 0 <
𝑡 < +∞} and the lower and upper indexes 1 ≤ 𝑝

E
≤ 𝑞

E
≤ +∞ of an r.i. space E,

which are defined as follows.
Let for any 𝑓 ∈ L0 = L0(R+,m):

𝐷𝑡𝑓(𝑥) := 𝑓(𝑥/𝑡) , 0 < 𝑥, 𝑡 < ∞.

Then {𝐷𝑡 , 0 < 𝑡 < ∞} is a group of bounded linear operators 𝐷𝑡 : E → E on the
standard r.i. space E = E(R+,m), corresponding to E(Ω, 𝜇).

The function 𝑑E(𝑡) := ∥𝐷𝑡∥E→E is semi-multiplicative on (0,∞), i.e., 𝑑E(𝑠+
𝑡) ≤ 𝑑E(𝑠) 𝑑E(𝑡) for all 𝑠, 𝑡. Hence, there exist the limits

𝑝
E
:= lim

𝑡→∞
log 𝑡

log 𝑑E(𝑡)
= inf
1<𝑡

log(𝑡)

log 𝑑E(𝑡)
, 𝑞

E
:= lim

𝑡→0
log 𝑡

log 𝑑E(𝑡)
= inf
0<𝑡<1

log 𝑡

log 𝑑E(𝑡)
,

and they are called lower and upper Boyd indices of the r.i. space E (see [3], [21],
Ch. II, §4.3, [24], Ch. 2.b).
Proposition 2.5 ([21], Chap. II, §6.1). Let E be an r.i. space and 𝑑E(𝑡) = ∥𝐷𝑡∥E→E

and 𝑝
E

be the lower Boyd index. Then the following conditions are equivalent:

∙ EH = E.
∙ 𝑝

E
> 1.

∙ ∫ 1
0 𝑑E(1/𝑡) 𝑑𝑡 < ∞.

∙ 𝑑E(𝑡) = 𝑜(𝑡) as 𝑡 → +∞.

The second condition E ⊆ ℛ0 is well verifiable since E ⊈ ℛ0 implies 1 ∈ E
and E ⊇ L∞

For instance, 𝑝
L𝑝

= 𝑞
L𝑝

= 𝑝 for each 1 ≤ 𝑝 ≤ +∞, whence (L𝑝)H = L𝑝 for

𝑝 > 1, while (L1)H = 𝒵1 ⊈ L1 (see below). Thus

∙ L𝑝 ∈ 𝒪ℰ𝒯 iff 1 < 𝑝 < +∞ .

while

∙ L𝑝 ∈ 𝒟ℰ𝒯 iff 1 < 𝑝 ≤ +∞ .
∙ L𝑝 ∈ ℐℰ𝒯 iff 1 ≤ 𝑝 < +∞ .

3. Dominated Ergodic Theorem

Let 𝑇 ∈ 𝒫𝒜𝒞 and let 𝐴𝑛,𝑇 = 1
𝑛

∑𝑛
𝑘=1 𝑇

𝑘−1 be the corresponding Cesáro averages.
Consider the dominant function

𝐵𝑇 𝑓(𝜔) = sup
𝑛≥ 1

(𝐴𝑛,𝑇 ∣𝑓 ∣)(𝜔), 𝜔 ∈ Ω.

Notice that 𝐵𝑇 𝑓(𝜔) < ∞ for all 𝑓 ∈ L1 + L∞ ( [9], Ch. VIII, §4). This fact
also follows from Lemma 3.3 (below).
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In this section we consider two following problems

∙ Let E be an r.i. Banach space and 𝑇 ∈ 𝒫𝒜𝒞. What is the subset

E𝑇
𝒟ℰ𝒯 := {𝑓 ∈ E : 𝐵𝑇 𝑓 ∈ E } ?

∙ What is the subclass of all r.i. Banach spaces 𝐸 such that E𝑇
𝒟ℰ𝒯 = E for all

𝑇 ∈ 𝒫𝒜𝒞, i.e., sequences of Cesáro averages {𝐴𝑛,𝑇𝑓}∞𝑛=1 are order bounded
in E for every 𝑇 ∈ 𝒫𝒜𝒞?

Theorem 3.1 (Dominated Ergodic Theorem). Let E(Ω, 𝜇) be an r.i. space and
𝑇 ∈ 𝒫𝒜𝒞. Then 𝑓 ∈ EH implies 𝐵𝑇 𝑓 ∈ E and

∥𝐵𝑇 𝑓∥E ⩽ ∥𝑓∥EH .

Theorem 3.1 follows from the following two lemmas.

Lemma 3.2. Let functions 𝑓, 𝑔 ∈ (L1 + L∞)(Ω, 𝜇), 𝑓 ≥ 0, 𝑔 ≥ 0, satisfy the
following condition:

1) 𝑔∗(∞) = 0;
2) For every 𝑡 > 0

𝜇{𝑔 > 𝑡} ⩽ 1

𝑡

∫
{𝑔>𝑡}

𝑓 𝑑𝜇.

Then 𝑔∗(𝑠) ⩽ 𝑓∗∗(𝑠) for all 𝑠 > 0.

Proof. We shall use the following “maximal” property of the function 𝑓∗ ([21], Ch.
II, §2),

𝑠∫
0

𝑓∗(𝑥) 𝑑𝑥 = sup
𝐺:𝜇𝐺=𝑠

∫
𝐺

𝑓 𝑑𝜇.

Let 𝑡 > 0 and 𝑠 = 𝜇{𝑔 > 𝑡}. Then
𝑠 ⩽ 1

𝑡

∫
{𝑔>𝑡}

𝑓 𝑑𝜇,

and hence

𝑡 ⩽ 1

𝑠

∫
{𝑔>𝑡}

𝑓 𝑑𝜇 ⩽ 1

𝑠
sup

𝐺:𝜇𝐺=𝑠

∫
𝐺

𝑓 𝑑𝜇 =
1

𝑠

𝑠∫
0

𝑓∗(𝑥) 𝑑𝑥 = 𝑓∗∗(𝑠).

Thus
𝑡 ⩽ 𝑓∗∗(𝜇{𝑔 > 𝑡}) = 𝑓∗∗(𝑠).

Since 𝑠 = 𝜇{𝑔 > 𝑡} = m{𝑔∗ > 𝑡}, then 𝑔∗(𝑠) ⩽ 𝑡 and, in addition, 𝑔∗(𝑠) = 𝑡 in
the case when 𝑔∗ is continuous at the point 𝑠.

Consider the partition (0, +∞) = 𝒜 ∪ ℬ, where
𝒜 = {𝑠 ∈ (0, +∞) : 𝑠 = 𝜇{𝑔 > 𝑡}, for some 𝑡 > 0}

and
ℬ = (0, +∞)∖𝒜.
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Consider two cases.

1) Let 𝑠0 ∈ 𝒜. Then

{𝑡 > 0 : 𝜇{𝑔 > 𝑡} = 𝑠0} ∕= ∅.
Denote

𝑡0 = sup{𝑡 > 0 : 𝜇{𝑔 > 𝑡} = 𝑠0} = sup{𝑡 > 0 : m{𝑔∗ > 𝑡} = 𝑠0}.
Since 𝑔∗(𝑠) is a non-increasing right continuous function, we have

𝑡0 = 𝑔∗(𝑠0 − 0) = lim
𝑠→𝑠0−0

𝑔∗(𝑠).

Further, the inequality 𝑡 ⩽ 𝑓∗∗(𝑠0) holds for all 𝑡 > 0 such that

𝜇{𝑔 > 𝑡} = 𝑠0.

Hence 𝑡0 ⩽ 𝑓∗∗(𝑠0) and
𝑔∗(𝑠0 − 0) ⩽ 𝑓∗∗(𝑠0),

whence
𝑔∗(𝑠0) ⩽ 𝑔∗(𝑠0 − 0) ⩽ 𝑓∗∗(𝑠0).

2) Let 𝑠 ∈ ℬ. Consider

𝑠0 = sup{𝑢 > 𝑠 : 𝑔∗(𝑢) = 𝑔∗(𝑠)}.
There are three possible subcases

2.1) 𝑔∗ is not continuous at 𝑠0. Then

m{𝑔∗ > 𝑡} = 𝑠0

for every 𝑡 ∈ [𝑔∗(𝑠0), 𝑔∗(𝑠0 − 0)]. Hence 𝑠0 ∈ 𝒜 and

𝑔∗(𝑠0) = 𝑔∗(𝑠0 − 0) ⩽ 𝑓∗∗(𝑠0) ⩽ 𝑓∗∗(𝑠).

2.2) 𝑔∗ is continuous at 𝑠0. Let 𝑠1 > 𝑠0 and the function 𝑔∗ is strictly
decreasing on [𝑠0, 𝑠1]. Then for every 𝑠′ ∈ (𝑠0, 𝑠1) there exists 𝑡 > 0 such that

m{𝑔∗ > 𝑡} = 𝜇{𝑔 > 𝑡} = 𝑠′.

Hence 𝑠′ ∈ 𝒜 and

𝑔∗(𝑠′) ⩽ 𝑓∗∗(𝑠′).
By passing to the limit with 𝑠′ → 𝑠0 − 0 we have

𝑔∗(𝑠) = 𝑔∗(𝑠0) = 𝑔∗(𝑠0 + 0) ⩽ 𝑓∗∗(𝑠0 + 0) ⩽ 𝑓∗∗(𝑠0) ⩽ 𝑓∗∗(𝑠).

2.3) 𝑠0 = +∞.
Then for each 𝑥 ∈ [𝑠,+∞) we have

𝑔∗(𝑥) = 𝑔∗(𝑠) = 𝑔∗(∞) = 0,

and hence

𝑔∗(𝑠) = 0 ⩽ 𝑓∗∗(𝑠). □

Lemma 3.3. Let 𝑇 ∈ 𝒫𝒜𝒞 and 𝑓 ∈ (L1 + L∞)(Ω, 𝜇). Then

(𝐵𝑇 𝑓)
∗(𝑠) ⩽ 𝑓∗∗(𝑠).
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Proof. We may assume without loss of generality that 𝑓 = ∣𝑓 ∣ ⩾ 0.

1) First consider the case 𝑓∗(∞) = 0. Then 𝑓∗∗(∞) = 0. It is not hard to show,
that

(𝐵𝑇 𝑓)
∗(∞) = 0.

We use Maximal Ergodic Inequality for 𝑇 ∈ 𝒫𝒜𝒞 ([22], Ch. 1, §1.6):

𝜇{𝐵𝑇𝑓 > 𝑡} ⩽ 1

𝑡

∫
{𝐵𝑇 𝑓>𝑡}

𝑓 𝑑𝜇, 𝑡 > 0

and put 𝑔 = 𝐵𝑇 𝑓 .

The functions 𝑓 and 𝑔 satisfy the conditions of Lemma 3.2 and hence

𝑔∗(𝑠) = (𝐵𝑇 𝑓)
∗ ⩽ 𝑓∗∗(𝑠), 𝑠 > 0.

2) Let now 𝑓∗(∞) = 𝜆 > 0. Then 𝑓 = 𝑓𝜆 + 𝜆, where 𝑓∗𝜆(∞) = 0. Since

(𝑓𝜆 + 𝜆)∗(𝑡) = 𝑓∗𝜆(𝑡) + 𝜆

and

(𝑓𝜆 + 𝜆)∗∗(𝑡) =
1

𝑡

𝑡∫
0

(𝑓𝜆 + 𝜆)∗(𝑠) 𝑑𝑠 =
1

𝑡

𝑡∫
0

(𝑓∗𝜆 + 𝜆)(𝑠) 𝑑𝑠

=
1

𝑡

𝑡∫
0

𝑓∗𝜆(𝑠) 𝑑𝑠+ 𝜆 = 𝑓∗∗𝜆 (𝑡) + 𝜆,

we have

(𝐵𝑇 𝑓)
∗(𝑠) = [𝐵𝑇 (𝑓𝜆 + 𝜆)]∗(𝑠) ⩽ [𝐵𝑇 (𝑓𝜆)]

∗(𝑠) + 𝜆

⩽ 𝑓∗∗𝜆 (𝑠) + 𝜆 = (𝑓𝜆 + 𝜆)∗∗(𝑠) = 𝑓∗∗(𝑠),

i.e.,

(𝐵𝑇 𝑓)
∗(𝑠) ⩽ 𝑓∗∗(𝑠). □

Proof of Theorem 3.1. Let 𝑓 ∈EH, then 𝑓 ∈(L1+L∞)(Ω,𝜇) and 𝑓∗∗∈E(R+,m).

By Lemma 3.3,

(𝐵𝑇 𝑓)
∗(𝑠) ⩽ 𝑓∗∗(𝑠), 𝑠 > 0.

Therefore (𝐵𝑇 𝑓)
∗ ∈ E(R+,m) and

∥(𝐵𝑇 𝑓)
∗∥E(R+,m) ⩽ ∥𝑓∗∗∥E(R+,m).

Since [(𝐵𝑇 𝑓)
∗]∗ = (𝐵𝑇 𝑓)

∗, we have also 𝐵𝑇 𝑓 ∈ E and

∥𝐵𝑇 𝑓∥E = ∥(𝐵𝑇 𝑓)
∗∥E(R+,m) ⩽ ∥𝑓∗∗∥E(R+,m) = ∥𝑓∥EH . □
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4. Converse Dominated Ergodic Theorem

Theorem 4.1 (Converse Dominated Ergodic Theorem). Let E(Ω, 𝜇) be an r.i.
space, 𝜃 be an ergodic conservative measure preserving transformation on (Ω, 𝜇)
and 𝑇 = 𝑇𝜃 ∈ 𝒫𝒜𝒞0 is of the form 𝑇𝜃𝑓 = 𝑓 ∘ 𝜃. Then 𝐵𝑇 𝑓 ∈ E implies 𝑓 ∈ EH.

In order to prove the theorem we need the following inequalities.

Proposition 4.2. Let 𝑓 ∈ L1(Ω, 𝜇) + L∞(Ω, 𝜇), 𝑓 ⩾ 0 and 𝐶 > 1. Then

(𝐶 − 1)m{𝑓∗∗ ⩾ 𝐶𝑡} ⩽ 1

𝑡

∫
{𝑓>𝑡}

𝑓 𝑑𝜇 ⩽ m{𝑓∗∗ > 𝑡}

for all 𝑡 > 𝑓∗(∞).

Proof. 1) The first inequality. Since n𝑓 = n𝑓∗ we may suppose without loss of
generality that 𝑓 = 𝑓∗.

Let 𝑠 = m{𝑓∗∗ ⩾ 𝐶𝑡}. Since 𝑡 > 𝑓∗(∞) and 𝐶 > 1, we have 𝐶𝑡 > 𝑓∗(∞).
For every 𝑢 > 𝑓∗(∞)

𝑓∗∗(m{𝑓∗∗ > 𝑢}) = 𝑢,

therefore 𝑓∗∗(𝑠) = 𝐶𝑡. Thus

1

𝑠

𝑠∫
0

𝑓∗(𝜏) 𝑑𝜏 = 𝐶𝑡, and 𝑠 =
1

𝐶𝑡

𝑠∫
0

𝑓∗ 𝑑m.

If 𝑠 ⩽ m{𝑓∗ > 𝑡}, Then

𝑠 ⩽ 1

𝐶𝑡

m{𝑓∗>𝑡}∫
0

𝑓∗ 𝑑m =
1

𝐶𝑡

∫
{𝑓∗>𝑡}

𝑓∗ 𝑑m.

Whence

(𝐶 − 1)𝑠 < 𝐶𝑠 ⩽ 1

𝑡

∫
{𝑓∗>𝑡}

𝑓∗ 𝑑m =

∫
{𝑓>𝑡}

𝑓 𝑑𝜇.

The function 𝑓∗ is non-increasing, hence 𝑠 > m{𝑓∗ > 𝑡} implies 𝑓∗(𝑠) ⩽ 𝑡.
Then

1

𝐶𝑡

𝑠∫
m{𝑓∗>𝑡}

𝑓∗ 𝑑m ⩽ 1

𝐶𝑡

𝑠∫
m{𝑓∗>𝑡}

𝑡 𝑑m ⩽ 1

𝐶𝑡
𝑠𝑡 =

𝑠

𝐶

and hence

𝑠− 𝑠

𝐶
⩽ 1

𝐶𝑡

m{𝑓∗>𝑡}∫
0

𝑓∗ 𝑑m.

Thus

(𝐶 − 1)𝑠 ⩽ 1

𝑡

∫
{𝑓∗>𝑡}

𝑓∗ 𝑑m.
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2) The second inequality. Let 𝑢 = m{𝑓∗∗ > 𝑡}. Since 𝑡 > 𝑓∗∗(∞), we have
𝑓∗∗(𝑢) = 𝑡 and

𝑡 =
1

𝑢

𝑢∫
0

𝑓∗(𝑠) 𝑑𝑠.

Whence

𝑢 =
1

𝑡

𝑢∫
0

𝑓∗(𝑠) 𝑑𝑠 ⩾ 1

𝑡

∫
{𝑓∗>𝑓∗(𝑢)}

𝑓∗ 𝑑m.

Since 𝑡 = 𝑓∗∗(𝑢) ⩾ 𝑓∗(𝑢), we have also

1

𝑡

∫
{𝑓∗>𝑓∗(𝑢)}

𝑓∗ 𝑑m ⩾ 1

𝑡

∫
{𝑓∗>𝑡}

𝑓∗ 𝑑m,

i.e.,

m{𝑓∗∗ > 𝑡} = 𝑢 ⩾ 1

𝑡

∫
{𝑓∗>𝑡}

𝑓∗ 𝑑m. □

Lemma 4.3. Let 𝜃 be an ergodic conservative measure preserving transformation
on (Ω, 𝜇) and 𝑇 = 𝑇𝜃 ∈ 𝒫𝒜𝒞 is of the form 𝑇𝜃𝑓 = 𝑓 ∘ 𝜃. Then

𝑓∗∗(𝑠) ⩽ 2(𝐵𝑇 𝑓)
∗
(𝑠

2

)
for all 𝑠 > 0 and for every 𝑓 ∈ ℛ0.
Proof. We may suppose without loss of generality that 𝑓 = ∣𝑓 ∣ ⩾ 0.

By Proposition 4.2 with 𝐶 = 2 we have

m{𝑓∗∗ ⩾ 2𝑡} ⩽ 1

𝑡

∫
{𝑓>𝑡}

𝑓 𝑑𝜇

for all 𝑡 > 𝑓∗(∞). Here 𝑓∗(∞) = 0 since 𝑓 ∈ ℛ0. It is proved in [22], Lemma 6.7,
that

1

2𝑡

∫
{𝑓>𝑡}

𝑓 𝑑𝜇 ⩽ 1

2𝑡

∫
{𝐵𝑇 𝑓>𝑡}

𝑓 𝑑𝜇 ⩽ 𝜇{𝐵𝑇 𝑓 > 𝑡}.

Thus
m{𝑓∗∗ ⩾ 2𝑡} ⩽ 2𝜇{𝐵𝑇𝑓 > 𝑡}

for all 𝑡 > 0. This inequality holds for every 𝑇 ∈ 𝒫𝒜𝒞 of the form 𝑇 = 𝑇𝜃, where
𝜃 is an ergodic conservative measure preserving transformation of (Ω, 𝜇).

For every 𝑠 > 0 we have now

(𝐵𝑇 𝑓)
∗
(𝑠

2

)
= inf

{
𝑡 > 0 : 𝜇{𝐵𝑇𝑓 > 𝑡} ⩽ 𝑠

2

}
⩾ inf {𝑡 > 0 : m{𝑓∗∗ ⩾ 2𝑡} ⩽ 𝑠} ⩾ inf {𝑡 > 0 : m{𝑓∗∗ > 2𝑡} ⩽ 𝑠}
=

1

2
inf {2𝑡 > 0 : m{𝑓∗∗ > 2𝑡} ⩽ 𝑠} =

1

2
(𝑓∗∗)∗(𝑠) =

1

2
𝑓∗∗(𝑠). □
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Proof of Theorem 4.1. Let 𝐵𝑇 𝑓 ∈ E. By using the dilation operator𝐷𝑡 with 𝑡 = 2,

(𝐷2𝑔)(𝑡) = 𝑔

(
𝑡

2

)
, 𝑡 > 0,

and putting 𝑔 = 𝐵𝑇 𝑓 , we can write the inequality in Lemma 4.3 as 𝑓∗∗ ≤
2𝐷2(𝐵𝑇 𝑓)

∗. It is known ([21], Ch. II, §4.3, [24], Ch. 2.b) that the dilation operator
𝐷𝑡 act as a bounded liner operator in each of standard rearrangement invariant
space E(R+,m). Hence,

𝐵𝑇 𝑓 ∈ E(Ω, 𝜇) ⇔ (𝐵𝑇 𝑓)
∗ ∈ E(R+,m) ⇔ 𝐷2(𝐵𝑇 𝑓)

∗ ∈ E(R+,m).

Therefore

𝐵𝑇 𝑓 ∈ E(Ω, 𝜇) ⇒ 𝑓∗∗ ∈ E(R+,m) ⇔ 𝑓 ∈ EH(Ω, 𝜇) . □
We shall say that an r.i. space E has Hardy-Littlewood property (E ∈ ℋℒ𝒫)

if EH = E, that is 𝑓 ∈ E ⇔ 𝑓∗∗ ∈ E. We shall write E ∈ 𝒟ℰ𝒯 if 𝐵𝑇 𝑓 ∈ E for
all 𝑓 ∈ E and 𝑇 ∈ 𝒫𝒜𝒞.
Corollary 4.4. E ∈ 𝒟ℰ𝒯 ⇔ E ∈ ℋℒ𝒫.

5. Pointwise Ergodic Theorem

Recall that ℛ0 = 𝑐𝑙L1+L∞(L1 ∩ L∞) is the minimal part of the space L1 + L∞.
It consists of all 𝑓 ∈ L1 + L∞ such that 𝑓∗(∞) = 0, or (an equivalent condition)
n𝑓 (𝑥) < ∞ for all 𝑥 > 0.

Theorem 5.1. Let 𝑇 ∈ 𝒫𝒜𝒞 and 𝑓 ∈ ℛ0, then {𝐴𝑛,𝑇 𝑓}∞𝑛=1 converges almost every-
where on (Ω, 𝜇). Conversely, let 𝜃 be an ergodic conservative measure preserving
transformation on (Ω, 𝜇) and 𝑇 = 𝑇𝜃 is of the form 𝑇𝜃𝑓 = 𝑓 ∘𝜃. Then there exists
𝑓 ∈ L∞ such that {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is not a.e. convergent on (Ω, 𝜇).

Proof. The first part of the theorem is an improved version of Dunford-Schwartz
Pointwise Ergodic Theorem (see, for example, [10], Ch. 8, §8.2.6 and §8.6.11).

In order to prove the “converse” part we suppose that 𝜃 be an ergodic con-
servative 𝜇-preserving transformation on Ω and 𝑇 = 𝑇𝜃 satisfies the condition:

{𝐴𝑛,𝑇 𝑓}∞𝑛=1 converges almost everywhere on (Ω, 𝜇) for every 𝑓 ∈ L∞. (∗)
Then for any probability measure 𝜈 ∼ 𝜇 and all measurable sets 𝐴 there exist
limits

𝜈(𝐴) = lim
𝑛→∞

∫
Ω

𝐴𝑛,𝑇𝜒𝐴 𝑑𝜈 = lim
𝑛→∞

1

𝑛

𝑛−1∑
𝑘=0

𝜈(𝜃−𝑘𝐴). (∗∗)

It can be shown by means Theorems 4.3.1–4.3.3 from [22], that the weak conver-
gence

1

𝑛

𝑛−1∑
𝑘=0

𝜈 ∘ 𝜃−𝑘 → 𝜈 (∗ ∗ ∗)

in (∗∗) yields in fact convergence in norm.
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Indeed, let ℎ = 𝑑𝜈
𝑑𝜇 ∈ L1(𝜈) be Radon-Nikodym derivative and

𝑇 𝑜
𝜃 : L1(𝜈) ∋ 𝑔 → 𝑇 𝑜

𝜃 𝑔 = 𝑔 ∘ 𝜃−1
ℎ ∘ 𝜃−1

ℎ
∈ L1(𝜈).

Then∫
Ω

(𝑇 𝑜
𝜃 𝑔)(𝜔) 𝑑𝜈(𝜔) =

∫
Ω

𝑔(𝜃−1𝑤)
ℎ(𝜃−1𝑤)
ℎ(𝜔)

𝑑𝜈(𝜔) =

∫
Ω

𝑔(𝜃−1𝑤)ℎ(𝜃−1𝑤) 𝑑𝜇(𝜔)

=

∫
Ω

𝑔(𝜔)ℎ(𝜔)𝑑𝜇(𝜔) =

∫
Ω

𝑔(𝜔) 𝑑𝜈(𝜔),

i.e., the operator 𝑇 𝑜
𝜃 is a positive isometry in L1(𝜈) as well as its dual 𝑇𝜃 is a positive

isometry in L∞(𝜈) = L∞(𝜈). Setting 𝑔 = 1 ∈ L1(𝜈) and using Mean Ergodic

Theorem ([22], Theorem 2.1.1), we get that the weak convergence of 1𝑛
∑𝑛−1

𝑘=0 𝑇
𝑜
𝜃 1

(provided by (∗)) implies the strong convergence to a function ℎ̃ ∈ L1(𝜈), which

is nothing more than 𝑑𝜈
𝑑𝜈 .

Thus 𝜈 = 𝑑𝜈
𝑑𝜈 𝜈 is a 𝜃-invariant measure on Ω such that 𝜈 ∼ 𝜇 and 𝜈(Ω) = 1.

Since 𝜃 is ergodic and conservative, every such 𝜃-invariant measure is of the form
𝑐𝜇 with a constant 𝑐 > 0, i.e., 𝜈(Ω) = ∞. The contradiction shows that (∗) does
not hold. □

6. Consequences for Orlicz and Lorentz spaces

Orlicz spaces

Let Φ: [0,+∞) → [0,+∞] be an Orlicz function, i.e., Φ(0) = 0 , Φ is increasing
left-continuous and convex. Assume also that Φ is nontrivial, i.e., Φ(𝑥) > 0 and
Φ(𝑦) < ∞ for some 𝑥, 𝑦 > 0. The derivative Φ′ exists a.e., and it is assumed to be
left-continuous with Φ′(𝑥) = +∞ iff Φ(𝑥) = +∞.

The corresponding conjugate Orlicz function Ψ is defined by its derivative
Ψ′, which is the left-continuous inverse of Φ′.

The Orlicz space LΦ = LΦ(Ω, 𝜇) is the set defined as follows

LΦ :=

{
𝑓 ∈ L0 :

∫
Ω

Φ(𝑓/𝑎) 𝑑𝜇 < ∞ for some 𝑎 > 0

}
,

equipped with the norm

∥𝑓∥LΦ := inf

{
𝑎 > 0:

∫
Ω

Φ(∣𝑓 ∣/𝑎) 𝑑𝜇 ≤ 1

}
, 𝑓 ∈ L0 ,

where inf ∅ := ∞.

Notice that this “slightly generalized” definition includes the spaces L1 , L∞
and also L1∩L∞ , L1+L∞ as the smallest and largest Orlicz spaces (see [19], Ch.
2, [10], Ch. 2, §2.1 and also [35], [36]).



136 M. Muratov, J. Pashkova and B.-Z. Rubshtein

We use also the heart HΦ = HΦ(Ω, 𝜇) of the Orlicz space LΦ,

HΦ :=

{
𝑓 ∈ L0 :

∫
Ω

Φ(∣𝑓 ∣/𝑎) 𝑑𝜇 < ∞ for all 𝑎 > 0

}
,

which is a closed subspace of LΦ. If Φ(𝑥) < +∞ for all 𝑥 > 0, the heart HΦ

coincides with the closure 𝑐𝑙LΦ(L1 ∩ L∞) of LΦ. If LΦ(𝑥) = +∞ for some 𝑥 > 0
then HΦ = {0}.

For any Orlicz function Φ we use the function 𝜉Φ defined by

𝜉Φ(𝑥) = Ψ(Φ′(𝑥)) .

If 𝑦 = Φ′(𝑥) < +∞, there is equality 𝑥𝑦 = Φ(𝑥) + Ψ(𝑦) in the Young’s inequality
𝑥𝑦 ≤ Φ(𝑥) + Ψ(𝑦), i.e.,

𝜉Φ(𝑥) = 𝑥Φ′(𝑥) − Φ(𝑥) .

In many important cases (but not always) 𝜉Φ is an Orlicz function.
A converse question thus arises: Does there exist an Orlicz function Φ𝐻 such

that 𝜉Φ𝐻 = Φ, for a given Orlicz function Φ? It is easy to show, for instance, that
𝜉Φ𝐻 = Φ for

Φ𝐻(𝑥) = 𝑥

∫ 𝑥

0

Φ′(𝑢)
𝑢

𝑑𝑢 − Φ(𝑥) ,

provided that the integral exists for some 𝑥 > 0 small enough.

Proposition 6.1. Let Φ and Φ𝐻 be two Orlicz functions such that 𝜉Φ𝐻 = Φ. Then

(LΦ)H = LΦ𝐻 and (HΦ)H = HΦ𝐻 .

The Boyd indexes 𝑝
L𝜙

and 𝑞
L𝜙

of Orlicz spaces can be computed by the

function Φ. They coincide with the dilation indexes of Φ,

𝑝
LΦ

= lim
𝑥→∞

log𝑀Φ(𝑥)

log 𝑥
, where 𝑀Φ(𝑥) = sup

0<𝑦<∞
Φ(𝑥𝑦)

Φ(𝑦)
.

To check condition (LΦ)H = LΦ, (which is equivalent to 𝑝
LΦ

> 1), one can also
use

𝑝(Φ) := sup

{
𝑝 > 0: inf

𝑥>0,𝑦>1

Φ(𝑥𝑦)

𝑥𝑝Φ(𝑥)
> 0

}
.

Note that the index 𝑝(Φ) was studied in [4] in the case 𝜇(Ω) < +∞, and in [11]
under additional Δ2-conditions.

Proposition 6.2. Let Φ be an Orlicz function. Then

1) (LΦ)H = LΦ ⇐⇒ 𝑝(Φ) > 1 ⇐⇒ (HΦ)H = HΦ .
2) a) LΦ ⊆ ℛ0 ⇐⇒ Φ(𝑥) > 0 for all 𝑥 > 0.

b) HΦ ⊆ ℛ0
These results together with Theorems 2.1 and 2.4 solve Problems 1 and 2 for

Orlicz spaces and their hearts.

∙ The sequence of averages {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent in LΦ if 𝑓 ∈ LΦ𝐻

and 𝑓∗(+∞) = 0.
∙ The sequence of averages {𝐴𝑛,𝑇𝑓}∞𝑛=1 is order convergent in HΦ if 𝑓 ∈ HΦ𝐻 .
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∙ An Orlicz space LΦ satisfies Order Ergodic Theorem (LΦ ∈ 𝒪ℰ𝒯 ) iff 𝑝(Φ) >
1 and Φ(𝑥) > 0 for all 𝑥 > 0.

∙ An Orlicz heart HΦ satisfies Order Ergodic Theorem (LΦ∈𝒪ℰ𝒯 ) iff 𝑝(Φ)>1.

Zygmund classes

𝒵𝑟 = L log𝑟 L , 0 ≤ 𝑟 < +∞.
This important class of Orlicz spaces 𝒵𝑟 = 𝒵𝑟(Ω, 𝜇) is defined by the follow-

ing Orlicz functions:

Φ𝑟(𝑥) :=

{
0 , 0 ≤ 𝑥 ≤ 1
𝑥 log𝑟 𝑥 , 1 < 𝑥 < ∞ , 0 < 𝑟 < +∞ .

We set
𝒵𝑟 := LΦ𝑟 , ℛ𝑟 := HΦ𝑟 , 0 < 𝑟 < ∞ ,

and also 𝒵0 = L1 + L∞, having the heart ℛ0.
Proposition 6.3. For all 0 ≤ 𝑟 < +∞:

1) (𝒵𝑟)H = 𝒵𝑟+1 and (ℛ𝑟)H = ℛ𝑟+1 .
2) 𝒵𝑟 ∩ℛ0 = ℛ𝑟 = 𝑐𝑙𝒵𝑟(L1 ∩ L∞).

Thus for all 0 ≤ 𝑟 < +∞:

∙ The sequence of averages {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order bounded in 𝒵𝑟 if 𝑓 ∈ 𝒵𝑟+1.
∙ The sequence of averages {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent in 𝒵𝑟 if 𝑓 ∈ ℛ𝑟+1.

Lorentz spaces

Let 𝑊 be an increasing function on [0,+∞) such that: 𝑊 (0) = 0, 𝑊 is concave
on (0,+∞), and 𝑊 (𝑥) > 0 for some 𝑥 > 0. Then 𝑊 is absolutely continuous on
the open interval (0,∞) with the decreasing density function 𝑊 ′(𝑥) , 𝑥 > 0, while
𝑊 (0+) may be positive.

The Lorentz space Λ𝑊 = Λ𝑊 (Ω, 𝜇) is defined as

Λ𝑊 := {𝑓 ∈ L0 : ∥𝑓∥Λ𝑊 < +∞}
with the norm

∥𝑓∥Λ𝑊 :=

∫ ∞

0

𝑓∗(𝑥) 𝑑𝑊 (𝑥) = 𝑓∗(0)𝑊 (0+) +

∫ ∞

0

𝑓∗(𝑥)𝑊 ′(𝑥) 𝑑𝑥 < ∞ ,

where +∞ ⋅ 0 = 0 (see [21], Ch. II, §5.1, and also [24], Ch. 2, [25] and references
therein).

The Stieltjes integral
∞∫
0

𝑓∗(𝑥) 𝑑𝑊 (𝑥) has an atomic part 𝑓∗(0)𝑊 (0+) in the

case 𝑊 (0+) > 0. The Lorentz spaces are maximal r.i. spaces with respect to the
norm ∥ ⋅ ∥Λ𝑊 .

By this definition Λ𝑊 ⊆ L∞ if 𝑊 (0+) > 0, and Λ𝑊 ⊇ L∞ if 𝑊 (+∞) :=
lim
𝑥→∞𝑊 (𝑥) < +∞. Whence Λ𝑊 = L∞ if both the conditions 𝑊 (0+) > 0 and

𝑊 (+∞) < +∞ hold.
The Hardy core (Λ𝑊 )H of the Lorentz space Λ𝑊 and its lower index 𝑝Λ𝑊

are easily computed by the weight function 𝑊 .
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Proposition 6.4.

1) Let Λ𝑊𝐻 = Λ𝑊𝐻 (Ω, 𝜇) be the Lorentz space, where its weight function 𝑊𝐻 is
uniquely defined by the conditions: 𝑊𝐻(0) = 𝑊 (0) = 0 , 𝑊𝐻(0+) = 𝑊 (0+)
and

𝑊 ′
𝐻(𝑥) =

∫ +∞

𝑥

𝑊 ′(𝑢)
𝑢

𝑑𝑢 < +∞ , 𝑥 ∈ (0,+∞) .

Then (Λ𝑊 )H = Λ𝑊𝐻 . (If
+∞∫
1

𝑊 ′(𝑥)
𝑥 𝑑𝑥 = +∞ then (Λ𝑊 )H = {0}.)

2) The index 𝑝
Λ𝑤

is equal to (𝛽𝑊 )−1, where the dilation index 𝛽𝑊 of 𝑊 is
defined by

𝛽𝑊 = lim
𝑥→∞

log𝑀𝑊 (𝑥)

log 𝑥
, where 𝑀𝑊 (𝑥) = sup

0<𝑦<∞
𝑊 (𝑥𝑦)

𝑊 (𝑦)
.

3) Λ𝑊 ⊆ ℛ0 iff 𝑊 (+∞) := lim
𝑥→+∞𝑊 (𝑥) = +∞.

Thus for any Lorentz space Λ𝑊 ,

∙ The sequence of averages {𝐴𝑛,𝑇 𝑓}∞𝑛=1 is order convergent in Λ𝑊 if 𝑓 ∈ Λ𝑊𝐻

and 𝑓∗(+∞) = 0.
∙ A Lorentz space Λ𝑊 satisfies the Order Ergodic Theorem (Λ𝑊 ∈ 𝒪ℰ𝒯 ) iff

𝛽𝑊 < 1 and 𝑊 (+∞) = +∞.

More general Lorentz spaces Λ𝑊, 𝑞 = Λ𝑊, 𝑞(Ω, 𝜇) are defined by

Λ𝑊, 𝑞 :=

{
𝑓 ∈ 𝒮0 : ∥𝑓∥L𝑊,𝑞 :=

(∫ ∞

0

(𝑓∗(𝑥))𝑞 𝑑𝑊 (𝑥)

)1/𝑞
< ∞

}
for 1 ≤ 𝑞 < ∞, where Λ𝑊, 1 = Λ𝑊 .

The classical Lorentz spaces are defined as L𝑝,𝑞 := Λ𝑊, 𝑞 with 𝑊 (𝑥) = 𝑥𝑞/𝑝,
and for 1 ≤ 𝑞 ≤ 𝑝 ≤ ∞,

L𝑝,∞ :=

{
𝑓 ∈ L0 : ∥𝑓∥L𝑝,∞ := sup

0<𝑥<∞

(
𝑥1/𝑝𝑓∗(𝑥)

)
< ∞

}
.

The cases when 𝑞 > 𝑝 (i.e., 𝑊 is not concave) are relevant as well, while ∥ ⋅ ∥L𝑊, 𝑞

is not a norm there (see [37], Ch. V, §3).
Order Ergodic Theorems in the spaces Λ𝑊,𝑞 with 1 < 𝑞 < +∞ are quite

similar to the case of Λ𝑊 . Roughly speaking, the second index 𝑞 has no influence
on the order convergence in Λ𝑊,𝑞.

7. Additional comments and remarks

Orlicz-Lorentz spaces

The situation becomes more intricate if we turn to general Orlicz-Lorentz spaces.
These r.i. spaces Λ𝑊,Φ = Λ𝑊,Φ(Ω, 𝜇), can be defined by

Λ𝑊,Φ := {𝑓 ∈ 𝒮0(Ω, 𝜇) : ℐ𝑊,Φ(𝑓/𝑎) < ∞ for some 𝑎 > 0} ,
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with the norm

∥𝑓∥Λ𝑊,Φ := inf {𝑎 > 0: ℐ𝑊,Φ(𝑓/𝑎) ≤ 1} ,

where

ℐ𝑊,Φ(𝑓) :=

∞∫
0

Φ(𝑓∗(𝑥)) 𝑑𝑊 (𝑥) , 𝑓 ∈ L0 = L0(Ω, 𝜇).

The functions Φ and 𝑊 in this definition are not usually assumed to be convex
and concave.

This very wide class of r.i. spaces (including original Orlicz and Lorentz
spaces) has been intensively studied for the last two décades. We can refer to [27],
[28], [13], [14], [15], [16], [20] and to the references cited therein as well.

The computation of Boyd indexes 𝑝E , 𝑞E and the description of Hardy core
EH for the spaces E = LΦ,𝑊 is a hard partly open problem. (See, e.g., [6], [7],
[14], [15], [23], [29].)

Any progress in this direction will imply new results on Problems 1 and 2.

Order convergence of conditional expectations

Order convergence results (similar to Theorems 2.1, 2.2, 2.4 ) can be proved for
sequences of conditional expectations 𝑇𝑛 = 𝐸ℱ𝑛 .

Let ℱ denote the 𝜎-algebra of all 𝜇-measurable subsets of Ω and ℱ1 ⊆ ℱ2 ⊆
ℱ3 ⊆ ⋅ ⋅ ⋅ be an increasing sequence of 𝜎-subalgebras ℱ𝑛 of ℱ . Since 𝜇(Ω) = +∞,
the conditional expectation operators 𝑇𝑛 = 𝐸ℱ𝑛 (with respect to ℱ𝑛) need not to
be well defined. However, 𝑇𝑛 ∈ 𝒫𝒜𝒞 if the restriction 𝜇∣ℱ𝑛 of the measure 𝜇 on
ℱ𝑛 is 𝜎-finite.

Theorem 7.1. Let 𝑇𝑛 = 𝐸ℱ𝑛 , 𝑛 ≥ 1, be the conditional expectations with respect
to ℱ𝑛 and assume that 𝑇𝑛 ∈ 𝒫𝒜𝒞 for all 𝑛. Let E be an r.i. space. Then the
sequence of the conditional expectations 𝑇𝑛 = 𝐸ℱ𝑛𝑓 is order convergent in E for
all 𝑓 ∈ EH ∩ℛ0.

Conversely, for every 𝑓 /∈ EH ∩ ℛ0 there exists a sequence of conditional
expectations 𝑇𝑛 = 𝐸ℱ𝑛 ∈ 𝒫𝒜𝒞 , 𝑛 ≥ 1, such that the sequence {𝑇𝑛𝑓}∞𝑛=1 is not
order convergent in E.

The proof is based on Lemmas 3.3 and 4.3 with the dominant function

𝑔 = 𝐵𝑓 := sup
𝑛≥1

𝐸ℱ𝑛𝑓 .

Suitable versions of Doob maximal inequality (adapted to the case of infinite mea-
sure) are used to this end. It should be mentioned that analogous estimates for
𝐵𝑓 = sup

𝑛≥1
𝑇𝑛𝑓 were obtained in [10], Ch. 3, in the case of Orlicz spaces E = LΦ.

The mentioned above map Φ → 𝜉Φ was introduced and treated therein to this
end.
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퓞퓔퓣 on finite measure spaces

Main Order convergence results (Theorems 2.1–2.4) hold if m(Ω) < +∞. The
restriction that 𝑓 ∈ ℛ0 is evidently unnecessary in this case.

In other words, order boundedness in E of the Cesáro sums {𝐴𝑛,𝑇𝑓}∞𝑛=1, 𝑇 ∈
𝒫𝒜𝒞 implies their order convergence in the r.i. space E. In particular, E ∈ 𝒟ℰ𝒯
implies E ∈ 𝒪ℰ𝒯 .

Dominated Ergodic Theorems in r.i. spaces on finite measure spaces are stud-
ied in [4].

Convergence in norm

Statistical (Mean) Ergodic Theorems (𝒮ℰ𝒯 ) deal with the norm convergence of
Cesáro sums {𝐴𝑛,𝑇 𝑓}∞𝑛=1, where 𝑇 is a bounded linear operator on a Banach space.
The operator is assumed to be Cesáro bounded (see, e.g., [22], Ch. 2 §2.1).

For rearrangement invariant Banach spaces a natural related problem is:
When does the sequence {𝐴𝑛,𝑇 ]

∞
𝑛=1 converge in the norm ∥ ⋅ ∥E of the r.i. space

E, for all 𝑓 ∈ E and all 𝑇 ∈ 𝒫𝒜𝒞 ( E ∈ 𝒮ℰ𝒯 )?

The following result can be proved in the case of finite measure ([38] and
[39]):

Theorem 7.2. Let E = E(Ω, 𝜇) be an r.i. space and 𝜇(Ω) < ∞. Then E ∈ 𝒮ℰ𝒯
iff E has order continuous norm, i.e.,

0 ≤ 𝑓𝑛 ∈ E , 𝑓𝑛 ↓ 0 , ∥𝑓𝑛∥E → 0 .

The order continuous norm property can be described in some different ways
(see [21], Ch. II, §4, [24], Ch. I).
Proposition 7.3. Let E = E(Ω, 𝜇) be an r.i. space. Then the following conditions
are equivalent:

1) E has an order continuous norm.

2) E is minimal (i.e., E = 𝑐𝑙E(L1 ∩ L∞)) and 𝜑E(0+) = 0, where 𝜑E is the
fundamental function of E.

3) E′ = E∗, i.e., the associated (Köthe dual) space of E coincides with its dual
space.

4) The standard r.i. space E(R+,m) corresponding to E is separable.

It should be noted that there is no connection between the conditions E ∈
𝒪ℰ𝒯 and E ∈ 𝒮ℰ𝒯 . For instance, (provided that 𝜇(Ω) < ∞), one has:

∙ L𝑝 ∈ 𝒪ℰ𝒯 and L𝑝 ∈ 𝒮ℰ𝒯 for 1 < 𝑝 < +∞ .
∙ L1 /∈ 𝒪ℰ𝒯 and L1 ∈ 𝒮ℰ𝒯 .
∙ L𝑝,∞ ∈ 𝒪ℰ𝒯 and L𝑝,∞ /∈ 𝒮ℰ𝒯 for 1 < 𝑝 < +∞ .

In the case 𝜇(Ω) = ∞ the space L1 has an order continuous norm, however
L1 /∈ 𝒮ℰ𝒯 . While L𝑝 ∈ 𝒮ℰ𝒯 for 1 < 𝑝 < ∞, since the spaces are reflexive.
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1. Introduction

We denote by ℬ(ℋ) the bounded linear operators on a complex Hilbert space ℋ,
equipped with the operator norm, and for 𝐴,𝐵 ∈ ℬ(ℋ), [𝐴,𝐵] = 𝐴𝐵 −𝐵𝐴 is the
commutator of 𝐴 and 𝐵. Let ℋ1 and ℋ2 be two Hilbert spaces and ℋ = ℋ1 ⊗ℋ2
their tensor product. In this note we consider the following situation. Suppose
𝐴 ∈ ℬ(ℋ) and 𝜖 ≥ 0 are such that∣∣∣∣ [𝐴,�⊗𝐵]

∣∣∣∣ ≤ 𝜖∥𝐴∥∥𝐵∥ for all 𝐵 ∈ ℬ(ℋ2). (1.1)

We will prove that there exists 𝐴′ ∈ ℬ(ℋ1) such that ∥𝐴− 𝐴′ ⊗ �∥ ≤ 𝜖∥𝐴∥. The
case 𝜖 = 0 is trivial, since in that case we have 𝐴 ∈ (�⊗ℬ(ℋ2))′ = ℬ(ℋ1)⊗�, and
therefore there exists 𝐴′ ∈ ℬ(ℋ1) such that 𝐴 = 𝐴′⊗�. If ℋ2 is finite dimensional,
the result is also well known. In that case one can take for 𝐴′ the normalized partial
trace of 𝐴:

𝐴′ =
1

dimℋ2Trℋ2𝐴.

To see that this choice for 𝐴′ does the job, it suffices to note that

𝐴′ ⊗ � =

∫
𝒰(ℋ2)

𝑑𝑈 (�⊗ 𝑈∗)𝐴(� ⊗ 𝑈),

where 𝑑𝑈 is the normalized Haar measure on the unitary group, 𝒰(ℋ2), of ℋ2.
Based on work supported in part by the National Science Foundation under grant DMS-1009502
and the European project COQUIT.
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Then, by the assumption (1.1) one has

∥𝐴′ ⊗ �−𝐴∥ ≤
∫
𝒰(ℋ2)

𝑑𝑈
∣∣∣∣ (�⊗ 𝑈∗)[𝐴, (� ⊗ 𝑈)]

∣∣∣∣ ≤ 𝜖∥𝐴∥ . (1.2)

Our direct motivation for extending this result to the general case, in which ℋ2
is allowed to be infinite dimensional, stems from the recent applications of Lieb-
Robinson bounds [8] to obtaining local approximations of time-evolved observables
in quantum mechanics in the works [1, 2, 9, 10].

2. The main lemma

The existence of an approximation 𝐴′ ∈ ℬ(ℋ1) satisfying the same error bound
𝜖∥𝐴∥ as in (1.2) is shown in the following lemma. The lemma shows that, as in the
finite-dimensional case, one can take 𝐴′ to given by a completely positive linear
map � : ℬ(ℋ1 ⊗ℋ2) → ℬ(ℋ1) which has the defining properties of a conditional
expectation.

Lemma 2.1. Let ℋ1 and ℋ2 be Hilbert spaces. Then there is a completely positive
linear map � : ℬ(ℋ1 ⊗ℋ2) → ℬ(ℋ1) with the following properties:

1. For all 𝐴 ∈ ℬ(ℋ1), �(𝐴⊗ �) = 𝐴;
2. Whenever 𝐴 ∈ ℬ(ℋ1 ⊗ℋ2) satisfies the commutator bound∣∣∣∣ [𝐴,�⊗𝐵]

∣∣∣∣ ≤ 𝜖∥𝐴∥∥𝐵∥ for all 𝐵 ∈ ℬ(ℋ2),
�(𝐴) ∈ ℬ(ℋ1) satisfies the estimate

∥�(𝐴)⊗ �−𝐴∥ ≤ 𝜖∥𝐴∥;
3. For all 𝐶,𝐷 ∈ ℬ(ℋ1) and 𝐴 ∈ ℬ(ℋ1 ⊗ℋ2), we have

�((𝐶 ⊗ �)𝐴(𝐷 ⊗ �)) = 𝐶�(𝐴)𝐷.

Proof. For any finite-dimensional projection 𝑃 ∈ ℬ(ℋ2) denote by 𝒰(𝑃 ) the com-
pact group of unitary operators of the form 𝑈 = (�− 𝑃 ) + 𝑃𝑈𝑃 , and by �𝑃 the
averaging operator with the normalized Haar measure 𝑑𝑈 on 𝒰(𝑃 ):

�𝑃 (𝐴) =

∫
𝒰(𝑃 )

𝑑𝑈 (�⊗ 𝑈∗)𝐴(�⊗ 𝑈). (2.1)

By the argument given in the introduction we have ∥𝐴−�𝑃 (𝐴)∥ ≤ 𝜖∥𝐴∥ and for
𝐶,𝐷 ∈ ℬ(ℋ1) and 𝐴 ∈ ℬ(ℋ1⊗ℋ2), we have �𝑃 ((𝐶 ⊗�)𝐴(𝐷⊗�)) = 𝐶�𝑃 (𝐴)𝐷.
Moreover, if 𝑃 ≥ 𝑄, we have 𝒰(𝑃 ) ⊃ 𝒰(𝑄), and hence

[�⊗ 𝑈,�𝑃 (𝐴)] = 0 for 𝑃 ≥ 𝑄 and 𝑈 ∈ 𝒰(𝑄). (2.2)

Now let (𝑃 (𝛼))𝛼∈𝐼 be a universal subnet of the net of finite-dimensional projections
over some directed index set 𝐼. Then since ∥�𝑃 (𝛼)(𝐴)∥ ≤ ∥𝐴∥, the universal
subnet is bounded and therefore must be weak-*-convergent. We call the limit
�∞(𝐴). Clearly then, �∞ is linear, completely positive, leaves every operator
𝐴⊗ � fixed, and also satisfies the property 3 of the statement of the lemma, since
it is defined as a weak limit of a map with these properties. Moreover, if 𝐴 satisfies
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the commutator bound each �𝑃 (𝐴) lies in the compact (𝜖∥𝐴∥)-ball around 𝐴 and
so does the limit.

It remains to prove that we can write �∞(𝐴) = �(𝐴) ⊗ �, i.e., that [� ⊗
𝐵,�∞(𝐴)] = 0 for all 𝐵 ∈ ℬ(ℋ2). By taking the limit of Eq. (2.2) over 𝑃 along the
chosen net, we find that this is true for any 𝐵 ∈ 𝒰(𝑄) for any finite-dimensional
𝑄. But these sets generate a weakly dense subalgebra of ℬ(ℋ2), which concludes
the proof. □

Note that the map � of Lemma 2.1 is completely positive and unit preserv-
ing and therefore bounded (with ∥�∥ = 1) and hence norm-continuous. Norm-
continuity is however not always sufficient in applications. It is sometimes impor-
tant that the map 𝐴 �→ 𝐴′ is continuous with respect to a different, more suitable
topology. In [1], e.g., the local approximations appear in an integral and continu-
ity is relied on to insure the integrability of the integrand. Since in Lemma 2.1
𝐴′ is obtained as a weak cluster point, its continuity properties are not obvious.
Therefore, we consider other maps with the properties of a conditional expectation,
namely 1 and 3 of Lemma 2.1, but with a slightly worse approximation property
(to be precise, with the 𝜖 in property 2 of Lemma 2.1 replaced by 2𝜖) and which
is continuous with respect to the weak (and 𝜎-weak) operator topology.

Proposition 2.2. Let ℋ1 and ℋ2 be Hilbert spaces and let 𝜌 be a normal state on
ℬ(ℋ2). Define the map �𝜌 = id ⊗ 𝜌 by �𝜌(𝐴 ⊗ 𝐵) = 𝜌(𝐵)𝐴 for all 𝐴 ∈ ℬ(ℋ1)
and 𝐵 ∈ ℬ(ℋ2). Then, �𝜌 has the properties 1 and 3 of Lemma 2.1 and, whenever
𝐴 ∈ ℬ(ℋ1 ⊗ℋ2) satisfies the commutator bound

∥[𝐴,�⊗𝐵]∥ ≤ 𝜖∥𝐴∥∥𝐵∥ for all 𝐵 ∈ ℬ(ℋ2).
we have

∥�𝜌(𝐴)−𝐴∥ ≤ 2𝜖∥𝐴∥. (2.3)

Proof. By Lemma 2.1 we have

∥�(𝐴)−�𝜌(𝐴)∥ = ∥�𝜌

(
�(𝐴)⊗ �−𝐴

)
∥ ≤ ∥�(𝐴)⊗ �−𝐴∥ ≤ 𝜖∥𝐴∥.

Therefore, it follows that

∥�𝜌(𝐴) ⊗ �−𝐴∥ ≤ ∥(�(𝐴)−�𝜌(𝐴)) ⊗ �∥+ ∥�(𝐴)⊗ �−𝐴∥ ≤ 2𝜖∥𝐴∥. □

It is unclear whether the factor 2 in equation (2.3) is really needed. Numerical
evidence suggests that maybe it is even true with the same bound as in the Lemma.
By an approximation argument it would suffice to show this in finite dimension.
We tried low-dimensional (21 × 21) random matrices 𝐴, choosing for 𝜌 the state
farthest removed from the tracial state, namely a pure one. The random matrices
were drawn from the unitarily invariant ensemble. Then 𝛿 = ∥�𝜌(𝐴) − 𝐴∥ is
readily computed, and in all cases we found unitary operators 𝑈 ∈ ℬ(ℋ2) such
that ∥𝐴 − (�⊗ 𝑈∗)𝐴(� ⊗ 𝑈)∥ ≥ 𝛿. We are, of course aware, that this is far from
conclusive, since by measure concentration random matrices in high dimension
might easily avoid the regions of counterexample with high probability. That is,
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for most of the cases with respect to the unitarily invariant measure the factor 2
is not needed, but counterexamples nevertheless might exist.

3. Application to infinite systems

So far, we have discussed two-component systems with a Hilbert space of the form
ℋ1⊗ℋ2. In applications the decomposition into two components often corresponds
to selecting a finite subsystem of an infinite system [1].

Consider a collection of systems labeled by a countable set Γ (e.g., Γ is often
taken to be the 𝑑-dimensional hypercubic lattice ℤ𝑑.) Associated with each site
𝑥 ∈ Γ, there is a quantum system with a Hilbert space ℋ𝑥. For finite Λ ⊂ Γ, we
define

ℋΛ =
⊗
𝑥∈Λ

ℋ𝑥 and 𝒜Λ =
⊗
𝑥∈Λ

ℬ(ℋ𝑥) (3.1)

where ℬ(ℋ𝑥) denotes the bounded linear operators on ℋ𝑥. For Λ0 ⊂ Λ ⊂ Γ, 𝒜Λ0

can be identified in the natural way with 𝒜Λ0 ⊗ �Λ∖Λ0
⊂ 𝒜Λ. One then defines

𝒜loc =
∪
Λ⊂Γ

𝒜Λ (3.2)

as an inductive limit taken over the net of all finite subsets of Γ. The completion of
𝒜loc with respect to the operator norm is a 𝐶∗-algebra, which we will denote by𝒜Γ.

The strategy of Proposition 2.2 now allows us to define a family of maps
�Λ, for finite Λ ⊂ Γ, such that �Λ : 𝒜Γ → 𝒜Λ, in a way compatible with the
embeddings 𝒜Λ0 ⊂ 𝒜Λ, for Λ0 ⊂ Λ, i.e., such that

�Λ0 = �Λ0 ∘�Λ, if Λ0 ⊂ Λ. (3.3)

We will therefore choose a family of normal states on ℬ(ℋ𝑥), or equivalently, a
family of density matrices, (𝜌𝑥)𝑥∈Γ and let 𝜌Γ be the corresponding a product state
on 𝒜Γ. For each Λ ⊂ Γ, let 𝜌Λ𝑐 denote the restriction of 𝜌Γ to 𝒜Γ∖Λ. On 𝒜loc, �Λ
is then defined by setting

�Λ = id𝒜Λ ⊗ 𝜌Λ𝑐 . (3.4)

and it is straightforward to see that the �Λ defined in this way satisfy the compat-
ibility property (3.3). All these maps are contractions and extend uniquely to 𝒜Γ
by continuous extension, with preservation of the compatibility property. Clearly,
�Λ can be considered as a map 𝒜Γ → 𝒜Γ with ran�Λ = 𝒜Λ ⊂ 𝒜Γ. Note that the
maps �Λ depend on the choice of normal states 𝜌𝑥. Since the properties we are
interested in here do not explicitly depend on this choice, we suppress it in the
notation. The following property is a direct consequence of the construction of the
�Λ and Proposition 2.2.

Corollary 3.1. Let Λ ⊂ Γbe finite. Suppose 𝜖 ≥ 0 and 𝐴 ∈ 𝒜Γ are such that∣∣∣∣ [𝐴,�⊗𝐵]
∣∣∣∣ ≤ 𝜖∥𝐴∥∥𝐵∥ for all 𝐵 ∈ 𝒜Γ∖Λ.

Then, with �Λ the map defined in (3.4), we have �Λ(𝐴) ∈ 𝒜Λ and

∥�Λ(𝐴) −𝐴∥ ≤ 2𝜖∥𝐴∥. (3.5)
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We remark that if dimℋ𝑥 < ∞, for all 𝑥 ∈ Γ, i.e., when 𝒜Γ is a UHF
algebra, we can take the normalized partial trace (maximally mixed state) for
each of the 𝜌𝑥 and replace 2𝜖 by 𝜖 by the argument given in the introduction.
In any case, it is easy to construct representations of 𝒜Γ in which the maps �Λ
are represented by weakly continuous maps. Again, it is an interesting question
whether the replacement of the ‘error’ 𝜖 by 2𝜖 is really necessary in order to be
able to treat the situation with infinite-dimensional component systems.

In the next section we discuss the relation of our construction of a condi-
tional expectations �, with the property 𝑃 introduced by Schwartz almost fifty
years ago [12].

4. Extension to general von Neumann algebras

The ideas in Lemma 2.1 can be extended to the wider setting of von Neumann
algebras, when we replace the algebra ℬ(ℋ2) by a general von Neumann algebra
ℳ on the Hilbert space ℋ, which replaces ℋ1 ⊗ ℋ2. As usual, ℳ′ denotes the
commutant ofℳ, i.e., the von Neumann algebra of bounded operators commuting
with ℳ.

Some of the following equivalences are known deep results. Our addition is the
last item. Let us mention that while some implications in the following proposition
are only valid in the case of ℋ being separable, the others do not depend on this
assumption. This will be made clear in the proof.

Proposition 4.1. Let ℳ ⊂ ℬ(ℋ) be a von Neumann algebra with trivial center.
Then the following properties are equivalent:

1. ℳ is hyperfinite, i.e., the weak closure of an increasing family of matrix
algebras all sharing the same identity.

2. ℳ has property P [11], i.e., for every 𝑋 ∈ ℬ(ℋ) the weak*-closed convex hull
of {𝑈∗𝑋𝑈 ∣ 𝑈 ∈ ℳ unitary} contains an element of ℳ′.

3. ℳ′ is injective, i.e., there is a linear map � : ℬ(ℋ) → ℳ′ such that
∥�(𝑋)∥ ≤ ∥𝑋∥, and �(𝐴) = 𝐴 for 𝐴 ∈ ℳ′.

4. There is a linear map � : ℬ(ℋ) → ℳ′ such that for all 𝑋 ∈ ℬ(ℋ)

∥�(𝑋)−𝑋∥ ≤ sup
{
∥[𝑋,𝑈 ]∥

∣∣∣ 𝑈 ∈ ℳ unitary
}
.

Furthermore we have that � is completely positive with norm 1 and fulfills

�(𝐴𝑋𝐵) = 𝐴�(𝑋)𝐵 for 𝐴,𝐵 ∈ �(ℳ).

Proof. The next three implications also apply to the case whereℋ is not separable.
(1) implies (2) follows by an easy application of the fact that ℳ is the weak

closure of matrix algebras ℳ𝛼, and each of these algebras obviously has property
P. But then ℳ has property P since its commutant is the intersection of the
commutants ℳ′

𝛼, see also [11], Corollary 4.4.17.
That (1) implies the first equation in (4) is proven along the lines of the

proof of Lemma 2.1, using again the fact that ℳ is the weak closure of matrix
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algebras ℳ𝛼, for which the bound is immediate. But if we choose 𝑋 ∈ ℳ′ we
find that ∥�(𝑋) − 𝑋∥ = 0. The second identity then follows from the fact that
if � : 𝒩 → 𝒩 is a projection on a von Neumann algebra such that the range
�(𝒩 ) is a von Neumann subalgebra containing the identity, then � has to be
completely positive with norm 1, and satisfies the identity �(𝐴𝑋𝐵) = 𝐴�(𝑋)𝐵
for 𝐴,𝐵 ∈ �(𝒩 ) [5, 14]. The implication (4) to (3) follows immediately from the
last argument.

The last two implications do require a separable Hilbert space ℋ.

The equivalence of the notions of hyperfiniteness and injectivity is a deep
result by Connes [4] ( see [7] for a simpler proof). It is easily seen that ℳ is
injective if and only if ℳ′ is injective, see [13], Proposition XV.3.2. Hence, (3)
also implies (1).

The missing implication, i.e., (2) implies (3), was proven by Schwartz, in the
same paper where he also defined property P [12]. □

In the above situation we have that, for𝐴 ∈ ℳ and 𝐵 ∈ ℳ′, we get𝐵�(𝐴) =
�(𝐵𝐴) = �(𝐴𝐵) = �(𝐴)𝐵, i.e., �(𝐴) ∈ ℳ′ ∩ℳ′′ = ℂ�. Hence there is a state
𝜌 such that �(𝐴) = 𝜌(𝐴), and thus

�(𝐴𝐵) = 𝜌(𝐴)𝐵 for 𝐴 ∈ ℳ, 𝐵 ∈ ℳ′. (4.1)

Since the linear hull of the set of elements 𝐴𝐵 is weak*-dense in ℬ(ℋ) it would
seem that via this formula the state 𝜌 determines �. However, that is deceptive,
because � need not be normal (i.e., weak*-continuous). Indeed, the only case in
which � is normal, is the case described in Proposition 2.2. The state 𝜌 is then
obviously also normal. That ℳ′ = �(ℬ(ℋ))) must be type one follows from a
general result of Tomiyama that the von Neumann type (I, II, or III) cannot
increase under normal conditional expectations (see also [6, Example 1.1] and [15,
Theorem IV.2.2]). Note also that by evaluating with a normal state 𝜎 we can obtain
product states 𝐴𝐵 �→ 𝜌(𝐴)𝜎(�(𝐵)) between ℳ and ℳ′ when � is normal, such
product states could also be made normal, which also entails that ℳ is type I [3].

It follows from this discussion that one can, in general, not use (4.1) to define
� with a normal state 𝜌 taking the place of the partial trace: the map � densely
defined by (4.1) cannot have a continuous extension to ℬ(ℋ), except in the type
I case.
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The Spectra of Selfadjoint Extensions of Entire
Operators with Deficiency Indices (1,1)

Luis O. Silva and Julio H. Toloza

Abstract. We give necessary and sufficient conditions for real sequences to
be the spectra of selfadjoint extensions of an entire operator whose domain
may be non-dense. For this spectral characterization we use de Branges space
techniques and a generalization of Krein’s functional model for simple, regular,
closed, symmetric operators with deficiency indices (1,1). This is an extension
of our previous work in which similar results were obtained for densely defined
operators.
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1. Introduction

The aim of this work is to present a generalization of the spectral characterization
of entire operators given in [18]. This generalization is realized by extending the
notion of entire operators to a subclass of symmetric operators with deficiency
indices (1, 1) that may have non-dense domain. The spectral characterization of
a given operator in the class is based on the distribution of the spectra of its
selfadjoint extensions within the Hilbert space. More concretely, for a given simple,
regular, closed symmetric (possibly not densely defined) operator with deficiency
indices (1, 1) to be entire it is necessary and sufficient that the spectra of two of its
selfadjoint extensions satisfy conditions which reduce to the convergence of certain
series (the precise statement is Proposition 5.2).

The class of entire operators was concocted by M.G. Krein as a tool for
treating in a unified way several classical problems in analysis [10, 11, 12, 14]. The
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entire operators form a subclass of the closed, densely defined, symmetric, regular
operators with equal deficiency indices. They have many remarkable properties as
is accounted for in the review book [7]. Krein’s definition of entire operators hinges
on his functional model for symmetric operators and it requires the existence of
an element of the Hilbert space with very peculiar properties. As first discussed
in [18] it is possible to determine whether an operator is entire by conditions that
rely exclusively on the distribution of the spectra of selfadjoint extensions of the
operator.

Although Krein’s original work considers only densely defined symmetric op-
erators, it is clear that the definition of entire operators can be extended to the case
of not necessarily dense domain with no formal changes (see Definition 2.5). Since
non-densely and densely defined symmetric operators share certain properties, the
machinery developed in [18] carries over with some mild modifications.

One ingredient of our discussion is an extension of the functional model devel-
oped in [18]. This functional model associates a de Branges space to every simple,
regular, closed symmetric operator with deficiency indices (1,1). It is worth re-
marking that functional models for this and for related classes of operators have
been implemented before; see for instance [5, 20]. However, the functional model
proposed in [18] has shown to be particularly suitable for us. Here we deem ap-
propriate to mention [16] for a related kind of results.

This paper is organized as follows. In Section 2 we recall some of the prop-
erties held by operators that are closed, simple, symmetric with deficiency indices
(1, 1); the notion of entire operator is also introduced here. Section 3 provides a
short review on the theory of de Branges Hilbert spaces, including those results
relevant to this work, in particular, a slightly modified version of a theorem due to
Woracek (Proposition 3.1). In Section 4 we introduce a functional model for any
operator of the class under consideration so that the model space is always a de
Branges space. Finally, in Section 5 we single out the class of de Branges spaces
corresponding to entire operators and provide necessary and sufficient conditions
on the spectra of two selfadjoint extensions of an entire operator.

2. On symmetric operators with not necessarily dense domain

Let ℋ be a separable Hilbert space whose inner product ⟨⋅, ⋅⟩ is assumed antilinear
in its first argument. In this space we consider a closed, symmetric operator 𝐴 with
deficiency indices (1, 1). It is not assumed that its domain is dense in ℋ, therefore
one should deal with the case when the adjoint of 𝐴 is a linear relation. That is,
in general,

𝐴∗ := {{𝜂, 𝜔} ∈ ℋ ⊕ℋ : ⟨𝜂,𝐴𝜑⟩ = ⟨𝜔, 𝜑⟩ for all 𝜑 ∈ dom(𝐴)} . (1)

Whenever the orthogonal complement of dom(𝐴) is trivial, the set 𝐴∗(0) := {𝜔 ∈
ℋ : {0, 𝜔} ∈ 𝐴∗} is also trivial, i. e. 𝐴∗(0) = {0}, so 𝐴∗ is an operator; otherwise
𝐴∗ is a proper closed linear relation.
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For 𝑧 ∈ ℂ one has

𝐴∗ − 𝑧𝐼 := {{𝜂, 𝜔 − 𝑧𝜂} ∈ ℋ ⊕ℋ : {𝜂, 𝜔} ∈ 𝐴∗} , (2)

so accordingly

ker(𝐴∗ − 𝑧𝐼) := {𝜂 ∈ ℋ : {𝜂, 0} ∈ 𝐴∗ − 𝑧𝐼} . (3)

Since ker(𝐴∗ − 𝑧𝐼) = ℋ ⊖ ran(𝐴 − 𝑧𝐼), our assumption on the deficiency indices
implies dimker(𝐴∗ − 𝑧𝐼) = 1 for all 𝑧 ∈ ℂ ∖ ℝ. Also, since

𝐴∗(0) = {𝜔 ∈ ℋ : ⟨𝜔, 𝜓⟩ = 0 for all 𝜓 ∈ dom(𝐴)} ,
it is obvious that 𝐴∗(0) = dom(𝐴)⊥.

The selfadjoint extensions within ℋ of a closed, non-densely defined symmet-
ric operator 𝐴 are the selfadjoint linear relations that extend the graph of 𝐴. We
recall that a linear relation 𝐵 is selfadjoint if 𝐵 = 𝐵∗ (as subsets of ℋ⊕ℋ).

The following assertion follows easily from [8, Section 1, Lemma 2.2 and
Theorem 2.4].

Proposition 2.1. Let 𝐴 be a closed, non-densely defined, symmetric operator in ℋ
with deficiency indices (1, 1). Then:

(i) The codimension of dom(𝐴) equals one.
(ii) All except one of the selfadjoint extensions of 𝐴 within ℋ are operators.
(iii) Let 𝐴𝛾 be one of the selfadjoint extensions of 𝐴 within ℋ. Then the operator

𝐼 + (𝑧 − 𝑤)(𝐴𝛾 − 𝑧𝐼)−1, 𝑧 ∈ ℂ ∖ spec(𝐴𝛾), 𝑤 ∈ ℂ

maps ker(𝐴∗ − 𝑤𝐼) injectively onto ker(𝐴∗ − 𝑧𝐼).

In connection with this proposition we remind the reader that the spectrum
of a closed linear relation 𝐵 is the complement of the set of all 𝑧 ∈ ℂ such that
(𝐵 − 𝑧𝐼)−1 is a bounded operator defined on all ℋ. Moreover, spec(𝐵) ⊂ ℝ when
𝐵 is a selfadjoint linear relation [6].

Given 𝜓𝑤0 ∈ ker(𝐴∗ − 𝑤0𝐼), with 𝑤0 ∈ ℂ ∖ ℝ, let us define
𝜓(𝑧) :=

[
𝐼 + (𝑧 − 𝑤0)(𝐴𝛾 − 𝑧𝐼)−1

]
𝜓𝑤0 , (4)

Note that 𝐼+(𝑧−𝑤0)(𝐴𝛾 − 𝑧𝐼)−1 is the generalized Cayley transform. Obviously,
𝜓(𝑤0) = 𝜓𝑤0 . Moreover, a computation involving the resolvent identity yields

𝜓(𝑧) =
[
𝐼 + (𝑧 − 𝑣)(𝐴𝛾 − 𝑧𝐼)−1

]
𝜓(𝑣), (5)

for any pair 𝑧, 𝑣 ∈ ℂ ∖ ℝ. This identity will be used later on.
Let us now recall some concepts that will be used to single out a class of

closed symmetric operators with deficiency indices (1, 1).
A closed, symmetric operator 𝐴 is called simple if∩

𝑧∈ℂ∖ℝ
ran(𝐴− 𝑧𝐼) = {0}.

Equivalently, 𝐴 is simple if there exists no non-trivial subspace ℒ ⊂ ℋ that reduces
𝐴 and whose restriction to ℒ yields a selfadjoint operator [15, Proposition 1.1].
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There is one property specific to simple, closed symmetric operators with
deficiency indices (1, 1), that is of interest to us. It concerns their commutativity
with involutions. We say that an involution 𝐽 commutes with a selfadjoint relation
𝐵 if

𝐽(𝐵 − 𝑧𝐼)−1𝜑 = (𝐵 − 𝑧𝐼)−1𝐽𝜑,

for every 𝜑 ∈ ℋ and 𝑧 ∈ ℂ ∖ ℝ. If 𝐵 is moreover an operator this is equivalent to
the usual notion of commutativity, that is,

𝐽 dom(𝐵) ⊂ dom(𝐵), 𝐽𝐵𝜑 = 𝐵𝐽𝜑

for every 𝜑 ∈ dom(𝐵).

Proposition 2.2. Let 𝐴 be a simple, closed symmetric operator with deficiency in-
dices (1, 1). Then there exists an involution 𝐽 that commutes with all its selfadjoint
extensions within ℋ.

Proof. Choose a selfadjoint extension 𝐴𝛾 and consider 𝜓(𝑧) as defined by (4).
Recalling (5) along with the unitary character of the generalized Cayley transform,
and applying the resolvent identity, one can verify that

⟨𝜓(𝑧), 𝜓(𝑣)⟩ = ⟨𝜓(𝑣), 𝜓(𝑧)⟩ (6)

for every pair 𝑧, 𝑣 ∈ ℂ ∖ℝ.
Now define the action of 𝐽 on the set {𝜓(𝑧) : 𝑧 ∈ ℂ ∖ ℝ} by the rule

𝐽𝜓(𝑧) = 𝜓(𝑧),

and on the set 𝒟 of finite linear combinations of such elements as

𝐽

(∑
𝑛

𝑐𝑛𝜓(𝑧𝑛)

)
:=

∑
𝑛

𝑐𝑛𝜓(𝑧𝑛).

Then, on one hand, (6) implies that 𝐽 is an involution on 𝒟 which can be extended
to all ℋ because of the simplicity of 𝐴. On the other hand, since by the resolvent
identity

(𝐴𝛾 − 𝑤𝐼)−1𝜓(𝑧) =
𝜓(𝑧)− 𝜓(𝑤)

𝑧 − 𝑤
,

one obtains the identity

𝐽(𝐴𝛾 − 𝑤𝐼)−1𝜓(𝑧) = (𝐴𝛾 − 𝑤𝐼)−1𝐽𝜓(𝑧)

which by linearity holds on 𝒟 and in turn it extends to all ℋ.
So far we know that 𝐽 commutes with 𝐴𝛾 . By resorting to the well-known

resolvent formula due to Krein (see [8, Theorem 3.2] for a generalized formulation),
one immediately obtains the commutativity of 𝐽 with all the selfadjoint extensions
of 𝐴 within ℋ. □

A closed, symmetric operator is called regular if for every 𝑧 ∈ ℂ there exists
𝑑𝑧 > 0 such that

∥(𝐴− 𝑧𝐼)𝜓∥ ≥ 𝑑𝑧 ∥𝜓∥ , (7)
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for all 𝜓 ∈ dom(𝐴). In other words, 𝐴 is regular if every point of the complex
plane is a point of regular type.

Definition 2.3. Let 𝒮(ℋ) be the class of simple, regular, closed symmetric operator
in ℋ, whose deficiency indices are (1, 1).

In [17, 18] we deal with the subclass of operators in 𝒮(ℋ) that are densely
defined. In the present work we extend the results of [18] to the larger class defined
above. At this point it is convenient to touch upon some well-known properties
shared by the operators in 𝒮(ℋ) that are densely defined, and whose generaliza-
tions to the whole class is rather straightforward. The following statement is one
of such generalizations which we believe may have been already proven, however,
due to the lack of the proper reference, we provide the proof below.

Proposition 2.4. For 𝐴 ∈ 𝒮(ℋ) the following assertions hold true:

(i) The spectrum of every selfadjoint extension of 𝐴 within ℋ consists solely of
isolated eigenvalues of multiplicity one.

(ii) Every real number is part of the spectrum of one, and only one, selfadjoint
extension of 𝐴 within ℋ.

(iii) The spectra of the selfadjoint extensions of 𝐴 within ℋ are pairwise interlaced.

Proof. Let us prove (i) in a way similar to the one used to prove [7, Propositions
3.1 and 3.2], but taking into account that the operator is not necessarily densely
defined.

For 𝐴 ∈ 𝒮(ℋ) and any 𝑟 ∈ ℝ consider the constant 𝑑𝑟 of (7). Thus, the
symmetric operator (𝐴− 𝑟𝐼)−1, defined on the subspace ran(𝐴− 𝑟𝐼), is such that∥∥(𝐴− 𝑟𝐼)−1

∥∥ ≤ 𝑑−1𝑟 . By [13, Theorem 2] there is a selfadjoint extension 𝐵 of

(𝐴 − 𝑟𝐼)−1 defined on the whole space and such that ∥𝐵∥ ≤ 𝑑−1𝑟 . Now, 𝐵−1 is
a selfadjoint extension of 𝐴 − 𝑟𝐼 and

∥∥𝐵−1𝑓
∥∥ ≥ 𝑑𝑟 ∥𝑓∥ for any 𝑓 ∈ dom(𝐵−1),

which implies that the interval (−𝑑𝑟, 𝑑𝑟) ∩ spec(𝐵−1) = ∅. By shifting 𝐵−1 one
obtains a selfadjoint extension of 𝐴 with no spectrum in the spectral lacuna (𝑟 −
𝑑𝑟, 𝑟 + 𝑑𝑟). By perturbation theory any selfadjoint extension of 𝐴 which is an
operator has no points of the spectrum in this spectral lacuna other than one

eigenvalue of multiplicity one. When dom(𝐴) ∕= ℋ, the same is also true for the
spectrum of the selfadjoint extension which is not an operator. This follows from a
generalization of the Aronzajn-Krein formula (see [8, Equation 3.17]) after noting
that the Weyl function is Herglotz and meromorphic for any selfadjoint extension
being an operator. Now, for proving (i) consider any closed interval of ℝ, cover it
with spectral lacunae and take a finite subcover.

Once (i) has been proven, the assertions (ii) and (iii) follow from [8, Equa-
tion 3.17] and the properties of Herglotz meromorphic functions. □
Definition 2.5. An operator 𝐴 ∈ 𝒮(ℋ) is called entire if there exists 𝜇 ∈ ℋ such
that

ℋ = ran(𝐴− 𝑧𝐼)+̇ span{𝜇}
for all 𝑧 ∈ ℂ. Such 𝜇 is called an entire gauge.
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If 𝐴 ∈ 𝒮(ℋ) turns out to be densely defined, then Definition 2.5 reduces to
Krein’s [12, Section 1]. There are various densely defined operators known to be
entire [7, Chapter 3], [12, Section 4]. On the other hand, for what will be explained
in the subsequent sections, there are also entire operators with non-dense domain.
Let us outline how one may construct an entire operator which is not densely
defined. The details of this construction will be expounded in a further paper.

Consider the semi-infinite Jacobi matrix⎛⎜⎜⎜⎜⎜⎜⎜⎝

𝑞1 𝑏1 0 0 ⋅ ⋅ ⋅
𝑏1 𝑞2 𝑏2 0 ⋅ ⋅ ⋅
0 𝑏2 𝑞3 𝑏3

0 0 𝑏3 𝑞4
. . .

...
...

. . .
. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (8)

where 𝑏𝑘 > 0 and 𝑞𝑘 ∈ ℝ for 𝑘 ∈ ℕ. Fix an orthonormal basis {𝛿𝑘}𝑘∈ℕ in ℋ. Let 𝐵
be the operator in ℋ whose matrix representation with respect to {𝛿𝑘}𝑘∈ℕ is (8)
(cf. [2, Section 47]). We assume that 𝐵 ∕= 𝐵∗, equivalently, that 𝐵 has deficiency
indices (1, 1) [1, Chapter 4, Section 1.2]. Let 𝐵0 be the restriction of 𝐵 to the set
{𝜙 ∈ dom(𝐵) : ⟨𝜙, 𝛿1⟩ = 0}. It follows from (1), (2) and (3) that 𝜂 ∈ ker(𝐵∗

0 − 𝑧𝐼)
if and only if it satisfies the equation

⟨𝐵𝜙, 𝜂⟩ = ⟨𝜙, 𝑧𝜂⟩ ∀𝜙 ∈ dom(𝐵0) .

Thus ker(𝐵∗
0 − 𝑧𝐼) is the set of 𝜂’s in ℋ that satisfy

𝑏𝑘−1 ⟨𝛿𝑘−1, 𝜂⟩+ 𝑞𝑘 ⟨𝛿𝑘, 𝜂⟩+ 𝑏𝑘 ⟨𝛿𝑘+1, 𝜂⟩ = 𝑧 ⟨𝛿𝑘, 𝜂⟩ ∀𝑘 > 1 (9)

Hence dimker(𝐵∗
0 − 𝑧𝐼) ≤ 2. Now, let

𝜋(𝑧) :=

∞∑
𝑘=1

𝑃𝑘−1(𝑧)𝛿𝑘 𝜃(𝑧) :=

∞∑
𝑘=1

𝑄𝑘−1(𝑧)𝛿𝑘 ,

where 𝑃𝑘(𝑧), respectively 𝑄𝑘(𝑧), is the 𝑘th polynomial of first, respectively second,
kind associated to (8). By the definition of the polynomials 𝑃𝑘(𝑧) and 𝑄𝑘(𝑧) [1,
Chapter 1, Section 2.1], 𝜋(𝑧) and 𝜃(𝑧) are linearly independent solutions of (9) for
every fixed 𝑧 ∈ ℂ. Moreover, since 𝐵 ∕= 𝐵∗, 𝜋(𝑧) and 𝜃(𝑧) are in ℋ for all 𝑧 ∈ ℂ
[1, Theorems 1.3.1, 1.3.2], [19, Theorem 3]. So one arrives at the conclusion that,
for every fixed 𝑧 ∈ ℂ,

ker(𝐵∗
0 − 𝑧𝐼) = span{𝜋(𝑧), 𝜃(𝑧)} .

Any symmetric non-selfadjoint extension of 𝐵0 has deficiency indices (1,1). Fur-
thermore, if 𝜅(𝑧) is a (𝑧-dependent) linear combination of 𝜋(𝑧) and 𝜃(𝑧) such that
⟨𝜅(𝑧), 𝜃(𝑧)⟩ = 0 for all 𝑧 ∈ ℂ ∖ℝ, then (by a parametrized version of [19, Theorem
2.4]) there corresponds to an appropriately chosen isometry from span{𝜅(𝑧)} onto

span{𝜅(𝑧)} a non-selfadjoint symmetric extension 𝐵 of 𝐵0 such that dom(𝐵) is not

dense and ker(𝐵∗ − 𝑧𝐼) = span{𝜃(𝑧)}. We claim that 𝐵 is a non-densely defined

entire operator. Indeed, 𝐵 ∈ 𝒮(ℋ) (the simplicity follows from the properties of
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the associated polynomials [1, Chapter 1, Addenda and Problems 7]). Moreover,
since

⟨𝜃(𝑧), 𝛿2⟩ = 𝑏−11 , ∀𝑧 ∈ ℂ ,

𝛿2 is an entire gauge.

3. A review on de Branges spaces with zero-free functions

Let ℬ denote a nontrivial Hilbert space of entire functions with inner product
⟨⋅, ⋅⟩ℬ. ℬ is a de Branges space when, for every function 𝑓(𝑧) in ℬ, the following
conditions holds:

(A1) For every 𝑤 ∈ ℂ ∖ ℝ, the linear functional 𝑓(⋅) �→ 𝑓(𝑤) is continuous;
(A2) for every non-real zero 𝑤 of 𝑓(𝑧), the function 𝑓(𝑧)(𝑧 −𝑤)(𝑧 −𝑤)−1 belongs

to ℬ and has the same norm as 𝑓(𝑧);

(A3) the function 𝑓#(𝑧) := 𝑓(𝑧) also belongs to ℬ and has the same norm as 𝑓(𝑧).

It follows from (A1) that for every non-real 𝑤 there is a function 𝑘(𝑧, 𝑤)
in ℬ such that ⟨𝑘(⋅, 𝑤), 𝑓(⋅)⟩ℬ = 𝑓(𝑤) for every 𝑓(𝑧) ∈ ℬ. Moreover, 𝑘(𝑤,𝑤) =
⟨𝑘(⋅, 𝑤), 𝑘(⋅, 𝑤)⟩ℬ ≥ 0 where, as a consequence of (A2), the positivity is strict
for every non-real 𝑤 unless ℬ is ℂ; see the proof of Theorem 23 in [4]. Note
that 𝑘(𝑧, 𝑤) = ⟨𝑘(⋅, 𝑧), 𝑘(⋅, 𝑤)⟩ℬ whenever 𝑧 and 𝑤 are both non-real, therefore

𝑘(𝑤, 𝑧) = 𝑘(𝑧, 𝑤). Furthermore, due to (A3) it can be shown that 𝑘(𝑧, 𝑤) = 𝑘(𝑧, 𝑤)
for every non-real 𝑤; we refer again to the proof of Theorem 23 in [4]. Also note
that 𝑘(𝑧, 𝑤) is entire with respect to its first argument and, by (A3), it is anti-
entire with respect to the second one (once 𝑘(𝑧, 𝑤), as a function of its second
argument, has been extended to the whole complex plane [4, Problem 52]).

There is another way of defining a de Branges space. One starts by considering
an entire function 𝑒(𝑧) of the Hermite-Biehler class, that is, an entire function
without zeros in the upper half-plane ℂ+ that satisfies the inequality ∣𝑒(𝑧)∣ >∣∣𝑒#(𝑧)∣∣ for 𝑧 ∈ ℂ+. Then, the de Branges space ℬ(𝑒) associated to 𝑒(𝑧) is the

linear manifold of all entire functions 𝑓(𝑧) such that both 𝑓(𝑧)/𝑒(𝑧) and 𝑓#(𝑧)/𝑒(𝑧)
belong to the Hardy space 𝐻2(ℂ+), and equipped with the inner product

⟨𝑓(⋅), 𝑔(⋅)⟩ℬ(𝑒) :=
∫ ∞

−∞

𝑓(𝑥)𝑔(𝑥)

∣𝑒(𝑥)∣2 𝑑𝑥.

It turns out that ℬ(𝑒) is complete.
Both definitions of de Branges spaces are equivalent, viz., every space ℬ(𝑒)

obeys (A1–A3); conversely, given a space ℬ there exists an Hermite-Biehler func-
tion 𝑒(𝑧) such that ℬ coincides with ℬ(𝑒) as sets and the respective norms satisfy
the equality ∥𝑓(⋅)∥ℬ = ∥𝑓(⋅)∥ℬ(𝑒) [4, Chapter 2]. The function 𝑒(𝑧) is not unique;

a choice for it is

𝑒(𝑧) = −𝑖

√
𝜋

𝑘(𝑤0, 𝑤0) im(𝑤0)
(𝑧 − 𝑤0) 𝑘(𝑧, 𝑤0),

where 𝑤0 is some fixed complex number in ℂ+.
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An entire function 𝑔(𝑧) is said to be associated to a de Branges space ℬ if
for every 𝑓(𝑧) ∈ ℬ and 𝑤 ∈ ℂ,

𝑔(𝑧)𝑓(𝑤)− 𝑔(𝑤)𝑓(𝑧)

𝑧 − 𝑤
∈ ℬ.

The set of associated functions is denoted assocℬ. It is well known that

assocℬ = ℬ + 𝑧ℬ;
see [4, Theorem 25] and [9, Lemma 4.5] for alternative characterizations. In pass-
ing, let us note that 𝑒(𝑧) ∈ assocℬ(𝑒) ∖ ℬ(𝑒); this fact follows easily from [4,
Theorem 25].

The space assocℬ(𝑒) contains a distinctive family of entire functions. They
are given by

𝑠𝛽(𝑧) :=
𝑖

2

[
𝑒𝑖𝛽𝑒(𝑧)− 𝑒−𝑖𝛽𝑒#(𝑧)

]
, 𝛽 ∈ [0, 𝜋).

These real entire functions are related to the selfadjoint extensions of the multi-
plication operator 𝑆 defined by

dom(𝑆) := {𝑓(𝑧) ∈ ℬ : 𝑧𝑓(𝑧) ∈ ℬ}, (𝑆𝑓)(𝑧) = 𝑧𝑓(𝑧). (10)

This is a simple, regular, closed symmetric operator with deficiency indices (1, 1)
which is not necessarily densely defined [9, Proposition 4.2, Corollary 4.3, Corollary

4.7]. It turns out that dom(𝑆) ∕= ℬ if and only if there exists 𝛾 ∈ [0, 𝜋) such
that 𝑠𝛾(𝑧) ∈ ℬ. Furthermore, dom(𝑆)⊥ = span{𝑠𝛾(𝑧)} [4, Theorem 29] and [9,
Corollary 6.3]; compare with (i) of Proposition 2.1.

For any selfadjoint extension 𝑆♯ of 𝑆 there exists a unique 𝛽 in [0, 𝜋) such
that

(𝑆♯ − 𝑤𝐼)−1𝑓(𝑧) =
𝑓(𝑧)− 𝑠𝛽(𝑧)

𝑠𝛽(𝑤)
𝑓(𝑤)

𝑧 − 𝑤
, 𝑤 ∈ ℂ ∖ spec(𝑆♯), 𝑓(𝑧) ∈ ℬ. (11)

Moreover, spec(𝑆♯) = {𝑥 ∈ ℝ : 𝑠𝛽(𝑥) = 0}. [9, Propositions 4.6 and 6.1]. If 𝑆♯ is a
selfadjoint operator extension of 𝑆, then (11) is equivalent to

dom(𝑆♯) =

{
𝑔(𝑧) =

𝑓(𝑧)− 𝑠𝛽(𝑧)
𝑠𝛽(𝑧0)

𝑓(𝑧0)

𝑧 − 𝑧0
, 𝑓(𝑧) ∈ ℬ, 𝑧0 : 𝑠𝛽(𝑧0) ∕= 0

}
,

(𝑆♯𝑔)(𝑧) = 𝑧𝑔(𝑧) +
𝑠𝛽(𝑧)

𝑠𝛽(𝑧0)
𝑓(𝑧0).

The eigenfunction 𝑔𝑥 corresponding to 𝑥 ∈ spec(𝑆♯) is given (up to normaliza-
tion) by

𝑔𝑥(𝑧) =
𝑠𝛽(𝑧)

𝑧 − 𝑥
.

Thus, since 𝑆 is regular and simple, every 𝑠𝛽(𝑧) has only real zeros of multiplicity
one and the (sets of) zeros of any pair 𝑠𝛽(𝑧) and 𝑠𝛽′(𝑧) are always interlaced.

The proof of the following result can be found in [21] for a particular pair of
selfadjoint extensions of 𝑆. Another proof, when the operator 𝑆 is densely defined,
is given in [18, Proposition 3.9].
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Proposition 3.1. Suppose 𝑒(𝑥) ∕= 0 for 𝑥 ∈ ℝ and 𝑒(0) = (sin 𝛾)−1 for some fixed
𝛾 ∈ (0, 𝜋). Let {𝑥𝑛}𝑛∈ℕ be the sequence of zeros of the function 𝑠𝛾(𝑧). Also, let
{𝑥+𝑛 }𝑛∈ℕ and {𝑥−𝑛 }𝑛∈ℕ be the sequences of positive, respectively negative, zeros
of 𝑠𝛾(𝑧), arranged according to increasing modulus. Then a zero-free, real entire
function belongs to ℬ(𝑒) if and only if the following conditions hold true:

(C1) The limit lim
𝑟→∞

∑
0<∣𝑥𝑛∣≤𝑟

1

𝑥𝑛
exists;

(C2) lim
𝑛→∞

𝑛

𝑥+𝑛
= − lim

𝑛→∞
𝑛

𝑥−𝑛
< ∞;

(C3) Assuming that {𝑏𝑛}𝑛∈ℕ are the zeros of 𝑠𝛽(𝑧), define

ℎ𝛽(𝑧) :=

⎧⎨⎩
lim
𝑟→∞

∏
∣𝑏𝑛∣≤𝑟

(
1− 𝑧

𝑏𝑛

)
if 0 is not a root of 𝑠𝛽(𝑧),

𝑧 lim
𝑟→∞

∏
0<∣𝑏𝑛∣≤𝑟

(
1− 𝑧

𝑏𝑛

)
otherwise.

The series
∑
𝑛∈ℕ

∣∣∣∣ 1

ℎ0(𝑥𝑛)ℎ′𝛾(𝑥𝑛)

∣∣∣∣ is convergent.

Proof. Combine Theorem 3.2 of [21] with Lemmas 3.3 and 3.4 of [18]. □

4. A functional model for operators in 퓢(퓗)

The functional model given in this section follows the construction developed in
[18], now adapted to include all the operators in the class 𝒮(ℋ). This functional
model is based on (the properties of) the operator mentioned in (iii) of Proposi-
tion 2.1 with the following addition.

Proposition 4.1. Given 𝐴 ∈ 𝒮(ℋ), let 𝐽 be an involution that commutes with one
of its selfadjoint extensions within ℋ (hence with all of them), say, 𝐴𝛾 . Choose
𝑣 ∈ spec(𝐴𝛾). Then, there exists 𝜓𝑣 ∈ ker(𝐴∗ − 𝑣𝐼) such that 𝐽𝜓𝑣 = 𝜓𝑣.

Proof. Let 𝜙𝑣 be an element of ker(𝐴𝛾 − 𝑣𝐼). Since 𝐽 commutes with 𝐴𝛾 , one
immediately obtains that 𝐽𝜙𝑣 ∈ ker(𝐴𝛾 − 𝑣𝐼). But, by our assumption on the
deficiency indices of 𝐴 and its regularity, ker(𝐴∗ − 𝑣𝐼) is a one-dimensional space
and it contains ker(𝐴𝛾 − 𝑣𝐼). So, in ker(𝐴𝛾 − 𝑣𝐼), 𝐽 reduces to multiplication by
a scalar 𝛼 and the properties of the involution imply that ∣𝛼∣ = 1. Now, 𝜓𝑣 :=
(1 + 𝛼)𝜙𝑣 has the required properties. □

Given 𝐴 ∈ 𝒮(ℋ) and an involution 𝐽 that commutes with its selfadjoint
extensions within ℋ, define

𝜉𝛾,𝑣(𝑧) := ℎ𝛾(𝑧)
[
𝐼 + (𝑧 − 𝑣)(𝐴𝛾 − 𝑧𝐼)−1

]
𝜓𝑣 , (12)

where 𝑣 and 𝜓𝑣 are chosen as in the previous proposition, and ℎ𝛾(𝑧) is a real
entire function whose zero set is spec(𝐴𝛾) (see Proposition 2.4 (i)). Clearly, up to
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a zero-free real entire function, 𝜉𝛾,𝑣(𝑧) is completely determined by the choice of
the selfadjoint extension 𝐴𝛾 and 𝑣. Actually, as it is stated more precisely below,
𝜉𝛾,𝑣(𝑧) does not depend on 𝐴𝛾 nor on 𝑣.

Proposition 4.2.

(i) The vector-valued function 𝜉𝛾,𝑣(𝑧) is zero-free and entire. It lies in ker(𝐴∗ −
𝑧𝐼) for every 𝑧 ∈ ℂ.

(ii) 𝐽𝜉𝛾,𝑣(𝑧) = 𝜉𝛾,𝑣(𝑧) for all 𝑧 ∈ ℂ.
(iii) Given 𝜉𝛾1,𝑣1(𝑧) and 𝜉𝛾2,𝑣2(𝑧), there exists a zero-free real entire function 𝑔(𝑧)

such that 𝜉𝛾2,𝑣2(𝑧) = 𝑔(𝑧)𝜉𝛾1,𝑣1(𝑧).

Proof. Due to (iii) of Proposition 2.1, the proof of (i) is rather straightforward.
In fact, one should only follow the first part of the proof of [18, Lemma 4.1]. The
proof of (ii) also follows easily from our choice of 𝜓𝑤 and ℎ𝛾(𝑧) in the definition
of 𝜉𝛾,𝑤(𝑧). To prove (iii), one first uses (iii) of Proposition 2.1 and the fact that
dimker(𝐴∗ − 𝑤𝐼) = 1 to obtain that 𝜉𝛾2,𝑤2(𝑧) and 𝜉𝛾1,𝑤1(𝑧) differ by a nonzero
scalar complex function. Then the reality of this function follows from (ii). □

For the reason already explained, from now on the function 𝜉𝛾,𝑣(𝑧) will be
denoted by 𝜉(𝑧). Now define

(Φ𝜑) (𝑧) := ⟨𝜉(𝑧), 𝜑⟩ , 𝜑 ∈ ℋ.

Φ maps ℋ onto a certain linear manifold ℋ̂ of entire functions. Since 𝐴 is simple,

it follows that Φ is injective. A generic element of ℋ̂ will be denoted by 𝜑(𝑧), as
a reminder of the fact that it is the image under Φ of a unique element 𝜑 ∈ ℋ.

The linear space ℋ̂ is turned into a Hilbert space by defining

⟨𝜂(⋅), 𝜑(⋅)⟩ := ⟨𝜂, 𝜑⟩ .

Clearly, Φ is an isometry from ℋ onto ℋ̂.

Proposition 4.3. ℋ̂ is a de Branges space.

Proof. It suffices to show that the axioms given at the beginning of Section 3 holds

for ℋ̂.
It is straightforward to verify that 𝑘(𝑧, 𝑤) := ⟨𝜉(𝑧), 𝜉(𝑤)⟩ is a reproducing

kernel for ℋ̂. This accounts for (A1).

Suppose 𝜑(𝑧) ∈ ℋ̂ has a zero at 𝑧 = 𝑤. Then its preimage 𝜑 ∈ ℋ lies in
ran(𝐴− 𝑤𝐼). This allows one to set 𝜂 ∈ ℋ by

𝜂 = (𝐴− 𝑤𝐼)(𝐴− 𝑤𝐼)−1𝜑 = 𝜑+ (𝑤 − 𝑤)(𝐴𝛾 − 𝑤𝐼)−1𝜑.

Now, recalling (12) and applying the resolvent identity one obtains

⟨𝜉(𝑧), 𝜂⟩ = 𝑧 − 𝑤

𝑧 − 𝑤
⟨𝜉(𝑧), 𝜑⟩ .

Since 𝜂 and 𝜑 are related by a Cayley transform, the equality of norms follows.
This proves (A2).
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As for (A3), consider any 𝜑(𝑧) = ⟨𝜉(𝑧), 𝜑⟩. Then, as a consequence of (ii) of
Proposition 4.2, one has 𝜑#(𝑧) = ⟨𝜉(𝑧), 𝐽𝜑⟩. □

It is worth remarking that the last part of the proof given above shows that
# = Φ𝐽Φ−1.

The following obvious assertion is the key of (every) functional model; we
state it for the sake of completeness.

Proposition 4.4. Let 𝑆 be the multiplication operator on ℋ̂ given by (10).

(i) 𝑆 = Φ𝐴Φ−1 and dom(𝑆) = Φdom(𝐴).

(ii) The selfadjoint extensions of 𝑆 within ℋ̂ are in one-one correspondence with
the selfadjoint extensions of 𝐴 within ℋ.

Item (ii) above can be stated more succinctly by saying that

Φ(𝐴𝛽 − 𝑧𝐼)−1Φ−1 = (𝑆𝛽 − 𝑧𝐼)−1, 𝑧 ∈ ℂ ∖ spec(𝐴𝛾),

for all 𝛽 of a certain (common) parametrization of the selfadjoint extensions of
both 𝐴 and 𝑆. This expression is of course valid even for the exceptional (i.e.,
non-operator) selfadjoint extension of 𝐴. In passing we note that the exceptional
selfadjoint extension of a non-densely defined operator in 𝒮(ℋ) corresponds to the

selfadjoint extension of the operator 𝑆 whose associated function lies in ℋ̂.

5. Spectral characterization

In the previous section we constructed a functional model that associates a de
Branges space to every operator 𝐴 in 𝒮(ℋ) in such a way that the operator of
multiplication in the de Branges space is unitarily equivalent to 𝐴. The first task
in this section is to single out the class of de Branges spaces corresponding to entire
operators in our functional model. Having found this class, we use the theory of de
Branges spaces to give a spectral characterization of the multiplication operator
for the class we found. This is how we give necessary and sufficient conditions on
the spectra of two selfadjoint extensions of an entire operator.

The following proposition gives a characterization of the class of de Branges
spaces corresponding to entire operators in our functional model.

Proposition 5.1. 𝐴 ∈ 𝒮(ℋ) is entire if and only if ℋ̂ contains a zero-free entire
function.

Proof. Let 𝑔(𝑧) ∈ ℋ̂ be the function whose existence is assumed. Clearly there
exists (a unique) 𝜇 ∈ ℋ such that 𝑔(𝑧) ≡ ⟨𝜉(𝑧), 𝜇⟩. Therefore, 𝜇 is never orthogonal
to ker(𝐴∗ − 𝑧𝐼) for all 𝑧 ∈ ℂ. That is, 𝜇 is an entire gauge for the operator 𝐴.

The necessity is established by noting that the image of the entire gauge
under Φ is a zero-free function. □



162 L.O. Silva and J.H. Toloza

Proposition 5.2. For 𝐴 ∈ 𝒮(ℋ), consider the selfadjoint extensions (within ℋ) 𝐴0
and 𝐴𝛾 , with 0 < 𝛾 < 𝜋. Then 𝐴 is entire with real entire gauge 𝜇 (𝐽𝜇 = 𝜇)
if and only if spec(𝐴0) and spec(𝐴𝛾) obey conditions (C1), (C2) and (C3) of
Proposition 3.1.

Proof. Apply Proposition 3.1 along with Proposition 5.1. □
We remark that when 𝐴 is an entire operator with non-dense domain, it may

be that either 𝐴0 or 𝐴𝛾 is not an operator (see Proposition 2.1 (ii)). Nevertheless,
even in this case, spec(𝐴0) and spec(𝐴𝛾) satisfy (C1), (C2) and (C3).

The following proposition shows, among other things, that the original func-
tional model by Krein is a particular case of our functional model.

Proposition 5.3. Assume 1 ∈ ℋ̂. Then there exists 𝜇 ∈ ℋ such that

ℎ𝛾(𝑧) =
〈
𝜓𝑣 + (𝑧 − 𝑣)(𝐴𝛾 − 𝑧𝐼)−1𝜓𝑣, 𝜇

〉−1
and 𝐽𝜇 = 𝜇. Moreover, 𝜇 is the unique entire gauge of 𝐴 modulo a real scalar
factor.

Proof. Necessarily, 1 ≡ ⟨𝜉(𝑧), 𝜇⟩ for some 𝜇 ∈ ℋ. By (12), and taking into account
the occurrence of 𝐽 , one obtains the stated expression for ℎ𝛾(𝑧). By the same
token, the reality of 𝜇 is shown.

Suppose that there are two real entire gauges 𝜇 and 𝜇′. The discussion in
Paragraph 5.2 of [7] shows that (Φ𝜇𝜇

′)(𝑧) = 𝑎𝑒𝑖𝑏𝑧 with 𝑎 ∈ ℂ and 𝑏 ∈ ℝ. Due to
the assumed reality, one concludes that 𝑏 = 0 and 𝑎 ∈ ℝ. □

6. Concluding remarks

We would like to add some few comments concerning further extensions of the
present work.

First, since there are de Branges spaces that contain the constant functions
but whose multiplication operator is not densely defined, it follows that, apart
from the example given in Section 2, there should be other operators in the class
introduced in this work that are not comprised in the original Krein’s notion of
entire operators. The details of our example as well as other ones and applications
of our results will be studied elsewhere.

Second, it is possible to define a notion of a (possibly non-densely defined)
operator that is entire in a generalized sense, much in the same vein as the original
definition by Krein for densely defined operators (see [7, Chapter 2, Section 9]).
Following [18, Section 5], operators entire in this generalized sense could also be
characterized by the spectra of their selfadjoint extensions.

Finally, it is known that the set of selfadjoint operator extensions within
ℋ of a non-densely defined operator are in one-one correspondence with a set of
rank-one perturbations of one of these selfadjoint operator extensions [8, Section
2]. This set of rank-one perturbations is generated by elements in ℋ so it seems
interesting to study the relation (if any) between these elements and the gauges of
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operators in 𝒮(ℋ). Ultimately, we believe that a suitable characterization of the
rank-one perturbations could provide another necessary and sufficient condition
for a non-densely defined operator in 𝒮(ℋ) to be entire. This problem, as well as
the previous one, will be discussed in a subsequent work.
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Asymptotics of Eigenvalues of an Energy
Operator in a Problem of Quantum Physics

Eduard A. Yanovich

Abstract. In this paper we consider eigenvalues asymptotics of the energy op-
erator in one of the most interesting models of quantum physics, describing
an interaction between two-level system and harmonic oscillator. The energy
operator in this model can be reduced to a class of infinite Jacobi matrices.
Discrete spectrum of this class of operators represents the perturbed spectrum
of harmonic oscillator. The perturbation is an unbounded operator compact
with respect to unperturbed one. We use slightly modified Janas-Naboko suc-
cessive diagonalization approach and some new compactness criteria for infi-
nite matrices. First two terms of eigenvalues asymptotics and the estimation
of remainder are found.
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1. Introduction and main results

We consider the energy operator of the following form

Ĥ =
ℏ𝜔0
2

𝜎̂𝑧 + ℏ𝜔 â+ â+ ℏ𝜆 (𝜎̂+ + 𝜎̂−)( â+ â+ ) ,

where 𝜎̂𝑧 , 𝜎̂+, 𝜎̂− are the 2× 2 matrices of form

𝜎̂𝑧 =

(
1 0
0 −1

)
, 𝜎̂+ =

(
0 1
0 0

)
, 𝜎̂− =

(
0 0
1 0

)
,

â and â+ are the creation and annihilation operators of the harmonic oscillator,
𝜆 is the interaction constant, 𝜔 is the oscillator frequency, 𝜔0 is the transition fre-
quency in the two-level system. These matrices and operators satisfy the following
commutative relations

[𝜎̂+, 𝜎̂−] = 𝜎̂𝑧 , [𝜎̂𝑧, 𝜎̂+] = 2 𝜎̂+ , [𝜎̂𝑧 , 𝜎̂−] = −2 𝜎̂− , [â, â+] = 1
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It was shown [13] that the hamiltonian of this model is represented by two Jacobi
matrices. These matrices have the following general form

𝐴 =

⎛⎜⎜⎜⎜⎜⎜⎝

𝑐1 𝑔
√
1 0 0 0 . . .

𝑔
√
1 1 + 𝑐2 𝑔

√
2 0 0 . . .

0 𝑔
√
2 2 + 𝑐1 𝑔

√
3 0 . . .

0 0 𝑔
√
3 3 + 𝑐2 𝑔

√
4 . . .

0 0 0 𝑔
√
4 4 + 𝑐1 . . .

. . . . . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎟⎟⎠ (1.1)

where 𝑔, 𝑐1, 𝑐2 are real parameters. It is well known [1, 2] that the matrix 𝐴
defines a selfadjoint operator with simple spectrum and the domain 𝐷(𝐴) is dense
in the space 𝑙2(ℕ). Since the operator 𝐴 can be considered as relatively compact
perturbation of the main diagonal, its spectrum is discrete.

The main goal of this paper is the investigation of the eigenvalues 𝜆𝑛(𝐴)
behavior for large values of 𝑛 with other parameters fixed. There are many articles
concerning similar problems [3, 4, 5, 6, 7, 8, 9, 10, 11, 12].

The result of this paper is given by the following asymptotic formula (Theo-
rem 3.3)

𝜆𝑛(𝐴) = 𝑛− 𝑔2 +
𝑐1 + 𝑐2

2
+𝑂

(
1

𝑛1/16

)
, 𝑛 → ∞ (𝑔 ∕= 0).

2. Selection of the main component in the asymptotics

Let us present the operator 𝐴 in (1.1) in the form

𝐴 = 𝐴0 +
𝑐1 + 𝑐2

2
𝐼 +

𝑐1 − 𝑐2
2

𝑅 , (2.1)

where 𝐼 is the identical matrix, 𝐴0 and 𝑅 are defined in the following way

𝐴0 =

⎛⎜⎜⎜⎜⎝
0 𝑔

√
1 0 0 . . .

𝑔
√
1 1 𝑔

√
2 0 . . .

0 𝑔
√
2 2 𝑔

√
3 . . .

0 0 𝑔
√
3 3 . . .

. . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎠ , 𝑅 =

⎛⎜⎜⎜⎜⎝
1 0 0 0 . . .
0 −1 0 0 . . .
0 0 1 0 . . .
0 0 0 −1 . . .
. . . . . . . . . . . . . . .

⎞⎟⎟⎟⎟⎠
The matrix 𝐴0 represents so-called “shifted oscillator” operator: 𝑎+𝑎+𝑔 (𝑎+

𝑎+), where 𝑎+ and 𝑎 are the creation and annihilation operators. If we use the
matrix representation of 𝑎+ and 𝑎, we obtain exactly the matrix 𝐴0.

Eigenvalues problem for the operator 𝐴0 has an exact solution. This solution
can be obtained in different ways. For example, with the help of Bogolubov’s
transformation [14] or by using continued fractions [15, 16]. In the work [7] the
operator 𝐴0 was considered using the Bargmann space.

The solution of the eigenvalues problem for the operator 𝐴0 has the form

𝐴0 𝑎𝑛 = 𝜇𝑛 𝑎𝑛 , 𝜇𝑛 = 𝑛− 𝑔2 , 𝑛 = 0, 1, 2, . . . (2.2)
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Here 𝑎𝑛 are normalized eigenvectors of the operator 𝐴0. Its expansion through the
basis vectors 𝑒𝑛 of the matrix representation (1.1) has the form

𝑎𝑚 =

∞∑
𝑛=0

𝑈𝑛,𝑚 𝑒𝑛 ,

(2.3)

𝑈𝑛,𝑚 ≡

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

exp{−𝑔2/2}
√
𝑛!𝑚! 𝑔𝑚−𝑛

×
𝑛∑
𝑖=0

(−1)𝑖
(𝑔2)𝑖

𝑖! (𝑛− 𝑖)! (𝑖+𝑚− 𝑛)!
, 𝑚 ≥ 𝑛

exp{−𝑔2/2}
√
𝑛!𝑚! 𝑔𝑛−𝑚 (−1)𝑛−𝑚

×
𝑚∑
𝑖=0

(−1)𝑖
(𝑔2)𝑖

𝑖! (𝑚− 𝑖)! (𝑖+ 𝑛−𝑚)!
, 𝑛 ≥ 𝑚.

Using the definition of generalized Chebyshev-Laguerre polynomials 𝐿
(𝑠)
𝑛 (𝑥) [19]

𝐿(𝑠)𝑛 (𝑥) =
(𝑛+ 𝑠)!

𝑛!

𝑛∑
𝑖=0

𝐶𝑖
𝑛 (−1)𝑖

𝑥𝑖

(𝑖+ 𝑠)!
, 𝐶𝑖

𝑛 =
𝑛!

𝑖! (𝑛− 𝑖)!
, (𝑠 ≥ 0)

and its property

𝐿(−𝑠)𝑛 (𝑥) = (−𝑥)𝑠
(𝑛− 𝑠)!

𝑛!
𝐿
(𝑠)
𝑛−𝑠(𝑥) , (𝑠 ≥ 0) , (2.4)

we obtain

𝑈𝑛,𝑚 ≡ 𝑈𝑛,𝑚(𝑔) = exp{−𝑔2/2}
√

𝑛!

𝑚!
𝑔𝑚−𝑛 𝐿(𝑚−𝑛)𝑛 (𝑔2). (2.5)

The simplest way to obtain (2.2) is to use Bogolubov’s transformation. Its
idea is following. It is well known that the spectrum of harmonic oscillator can
be obtained through the commutative property [𝑎, 𝑎+] = 1 of operators 𝑎 and 𝑎+

only. Assume that 𝑎 = 𝑏 + 𝐶 (𝑎+ = 𝑏+ + 𝐶), where 𝐶 is some real constant. It
is evident that [𝑏, 𝑏+] = 1, and the spectrum of 𝑏+𝑏 is the spectrum of harmonic
oscillator. On the other hand

𝐴0 = 𝑎+𝑎+ 𝑔 (𝑎+ 𝑎+) = 𝑏+𝑏+ (𝐶 + 𝑔)(𝑏+ 𝑏+) + 𝐶2 + 2𝑔𝐶.

If 𝐶 = −𝑔, 𝐴0 = 𝑏+𝑏 − 𝑔2, i.e., 𝐴0 is shifted oscillator. From that (2.2) follows at
once.

To receive (2.3) let us notice that the transition 𝑎 → (𝑎− 𝑔) can be obtained
by orthogonal transformation 𝑈

𝑎− 𝑔 = 𝑈+𝑎𝑈 , 𝑈 = 𝑒𝑔(𝑎−𝑎
+) = 𝑒−𝑔

2/2𝑒−𝑔𝑎
+

𝑒𝑔𝑎.

This transformation is well known in the theory of coherent states (see for exam-
ple [17]). Thus we have

𝑈+𝐴0𝑈 = 𝑎+𝑎− 𝑔2 , 𝑎𝑚 = 𝑈𝑒𝑚 = 𝑒−𝑔
2/2𝑒−𝑔𝑎

+

𝑒𝑔𝑎𝑒𝑚.
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Expanding exponents to the series and using relations

𝑎𝑒𝑚 =
√
𝑚𝑒𝑚−1 , 𝑎+𝑒𝑚 =

√
𝑚+ 1 𝑒𝑚+1 , 𝑚 = 0, 1, 2, . . . ,

after simple algebraic transformations, we obtain (2.3) and hence (2.5).

Let us note here that the completeness of the “shifted oscillator” eigenfunc-
tions (in coordinate representation) for complex values of the parameter 𝑔 is con-
sidered in [18].

Let us find the matrix of the operator 𝑅 in the basis of the operator 𝐴0
eigenvectors. Denoting the elements of the transformed matrix as 𝑅̃𝑘,𝑚 and taking
into account that 𝑅𝑛,𝑚 = (−1)𝑛 𝛿𝑛,𝑚, we obtain

𝑅̃𝑘,𝑚 = (𝑅𝑒𝑚, 𝑒𝑘) = (𝑈𝑇𝑅𝑈)𝑘,𝑚 =

∞∑
𝑛=0

(−1)𝑛 𝑈𝑛,𝑘 𝑈𝑛,𝑚. (2.6)

Let us represent matrix elements 𝑈𝑛,𝑚 = 𝑈𝑛,𝑚(𝑔) as contour integral

𝑈𝑛,𝑚(𝑔) = exp{−𝑔2/2}
√

𝑚!

𝑛!
𝑔𝑛−𝑚

1

2𝜋𝑖

∮
𝐶

𝑥𝑚−1
(
1

𝑥
− 1

)𝑛

exp

{
𝑔2

𝑥

}
𝑑𝑥 , (2.7)

where 𝐶 is a unit circle centered in the origin of the complex plane 𝑥 (𝐶 is positively
oriented). This expression can be easily checked by calculation of integral with the
help of residues.

Substituting (2.7) in (2.6) and summing up over 𝑛, we find

𝑅̃𝑘,𝑚 = exp{−2𝑔2}
√
𝑘!𝑚! 𝑔−𝑚−𝑘

1

(2𝜋𝑖)2

×
∮
𝐶

∮
𝐶

(𝑥)𝑚−1 (𝑥′)𝑘−1 exp
{
𝑔2

(
2

𝑥
+

2

𝑥′
− 1

𝑥𝑥′

)}
𝑑𝑥 𝑑𝑥′.

Contour integrals in this expression can be calculated consistently with the
help of residues as before. As a result, using (2.5), we obtain

𝑅̃𝑘,𝑚 = (−1)𝑘 𝑈𝑘,𝑚(2𝑔). (2.8)

In spite of seeming asymmetry, the matrix 𝑅̃𝑘,𝑚 is symmetric (𝑅̃𝑘,𝑚 = 𝑅̃𝑚,𝑘).
It can be easily verified by means of the property (2.4).

Using the asymtotics of the generalized Chebyshev-Laguerre polynomials [19]

𝐿𝑠
𝑛(𝑥) = 𝜋−1/2 𝑛𝑠/2−1/4 𝑥−𝑠/2−1/4 𝑒𝑥/2

×
{
cos

(
2
√
𝑛𝑥− 𝑠𝜋/2− 𝜋/4

)
+𝑂(𝑛−1/2)

}
, 𝑛 → ∞ ,

(2.9)

we find

lim
𝑛→∞ 𝑅̃𝑛,𝑛+𝑝 = 0 , ∀𝑝 ∈ 𝑍. (2.10)
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In what follows we will need the following result [5]

Lemma 2.1 (J. Janas-S. Naboko). Let 𝐷 be a selfadjoint operator in a Hilbert space
𝐻 with simple discrete spectrum (𝐷𝑒𝑛 = 𝜇𝑛𝑒𝑛), where {𝑒𝑛} is an orthonormal
basis of eigenvectors in 𝐻 and 𝜇𝑛 are simple eigenvalues (𝜇𝑛 → ∞), ordered by
∣𝜇𝑖∣ ≤ ∣𝜇𝑖+1∣. Assume that ∣𝜇𝑖 − 𝜇𝑘∣ ≥ 𝜖0 > 0 , ∀𝑖 ∕= 𝑘. If 𝑅 is a compact operator
in 𝐻 then the eigenvalues 𝜆𝑛(𝑇 ) of the operator 𝑇 = 𝐷+𝑅 (with discrete spectrum
too) become simple for large values of 𝑛 and satisfy to the asymptotic formula

𝜆𝑛(𝑇 ) = 𝜇𝑛 +𝑂(∥𝑅∗𝑒𝑛∥) , 𝑛 → ∞ , (2.11)

where 𝑅∗ is the adjoint operator with respect to 𝑅.

Matrices 𝑅 and 𝑅̃ = 𝑈𝑇𝑅𝑈 represent bounded noncompact operator (pro-
jector) since 𝑅2 = 𝐼. Therefore we can’t apply here at once Lemma 2.1.

Let us prove the following theorem:

Theorem 2.2. Let 𝐷 be a selfadjoint operator in a Hilbert space 𝐻 with eigenvalues
𝜇𝑛 = 𝑛, (𝑛 = 0, 1, 2, . . .) and complete system of corresponding eigenvectors in 𝐻.
Let 𝑅 be a bounded, selfadjoint, noncompact operator and its matrix 𝑅𝑛,𝑘 in the
basis of operator 𝐷 eigenvectors satisfy to the condition

lim
𝑛→∞𝑅𝑛, 𝑛+𝑝 = 0 , ∀𝑝 ∈ 𝑍. (2.12)

Then the eigenvalues 𝜆𝑛(𝑇 ) of the operator 𝑇 = 𝐷+𝑅 (having a discrete spectrum
too) become simple for large values of 𝑛 and satisfy to the following asymptotic
estimation

𝜆𝑛(𝑇 ) = 𝑛+𝑅𝑛,𝑛 +𝑂 (𝑠𝑛) , 𝑛 → ∞ , (2.13)

where

𝑠𝑛 =

√√√⎷∑
𝑘 ∕=𝑛

∣𝑅𝑘,𝑛∣2
(𝑛− 𝑘)2

,

and 𝑠𝑛 → 0 at 𝑛 → ∞.

For the proof of this theorem we need the following compactness criteria for
infinite matrices.

Lemma 2.3. Let 𝑉 be a bounded, noncompact operator in a Hilbert space 𝐻. Let
its matrix 𝑉𝑖,𝑗 (𝑖, 𝑗 = 0, 1, . . .) in some orthonormal basis satisfy to the condition

lim
𝑛→∞𝑉𝑛, 𝑛+𝑝 = 0 , ∀𝑝 ∈ 𝑍. (2.14)

Let 𝑏 = {𝑏𝑖}∞𝑖=−∞ is an arbitrary 𝑙2-sequence

∥𝑏∥2 =
∞∑

𝑖=−∞
∣𝑏𝑖∣2 < ∞. (2.15)

Then the operator 𝐾 with matrix 𝐾𝑖,𝑗 = 𝑏𝑖−𝑗𝑉𝑖,𝑗 (𝑖, 𝑗 = 0, 1, . . .) is compact in 𝐻.
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Proof. Let us show at first that the operator 𝐾 is bounded. For that we need to
prove the estimates [20]

∞∑
𝑗=0

∣𝐾𝑖,𝑗 ∣ < 𝐴 , ∀𝑖 ;
∞∑
𝑖=0

∣𝐾𝑖,𝑗 ∣ < 𝐴 , ∀𝑗 , (2.16)

where 𝐴 is a constant independent of 𝑖 and 𝑗 (∥𝐾∥ ≤ 𝐴). Using Cauchy’s inequal-
ity, we have

∞∑
𝑗=0

∣𝐾𝑖,𝑗 ∣ =
∞∑
𝑗=0

∣𝑏𝑖−𝑗𝑉𝑖,𝑗 ∣ ≤
⎛⎝ ∞∑

𝑗=0

∣𝑏𝑖−𝑗 ∣2
⎞⎠1/2⎛⎝ ∞∑

𝑗=0

∣𝑉𝑖,𝑗 ∣2
⎞⎠1/2

≤ ∥𝑏∥
√
(𝑉 𝑉 ∗)𝑖,𝑖 ≤ ∥𝑏∥ ⋅ ∥𝑉 ∥

Due to (2.15) the first estimate in (2.16) is fulfilled. By the same way the validity
of the second estimate in (2.16) is established. Thus the operator 𝐾 is bounded.
Let us prove now its compactness.

Let us define the cut-off function 𝑏(𝑛) = {𝑏(𝑛)𝑖 }∞𝑖=−∞ of the sequence {𝑏𝑖}

𝑏
(𝑛)
𝑖 =

{
0 , ∣𝑖∣ > 𝑛
𝑏𝑖 , ∣𝑖∣ ≤ 𝑛.

Let us define the sequence of operators 𝐾(𝑛) by the formula 𝐾
(𝑛)
𝑖,𝑗 = 𝑏

(𝑛)
𝑖−𝑗𝑉𝑖,𝑗 .

It follows from this definition and from (2.14) that 𝐾(𝑛) is a compact operator for
arbitrary 𝑛. We proceed further as in the proof of (2.16)

∥𝐾 −𝐾(𝑛)∥ ≤ ∥𝑏− 𝑏(𝑛)∥ ⋅ ∥𝑉 ∥.
Therefore

∥𝐾 −𝐾(𝑛)∥ → 0 , 𝑛 → ∞ ,

and 𝐾 is compact as a limit by norm of compact operators [20, 21].

Proof of Theorem 2.2. Keeping the same notations, let us associate each operator
with a matrix in the basis of the operator 𝐷 eigenvectors.

Following the main ideas of the work [5] let us show that there exist such
anti-hermitian operator 𝐾 (𝐾∗ = −𝐾) that

(𝐼 +𝐾)𝑇 −𝐷1(𝐼 +𝐾) = 𝐵 , (2.17)

where 𝐵 is compact operator and 𝐷1 = 𝐷 + diag{𝑅𝑛,𝑛}. (So 𝐷1 is the diagonal
matrix with elements (𝐷1)𝑛,𝑛 = 𝑛 + 𝑅𝑛,𝑛.) Suppose that such operator 𝐾 have
found. The condition (2.17) means that

𝑇 = (𝐼 +𝐾)−1(𝐷1 +𝐵(𝐼 +𝐾)−1)(𝐼 +𝐾).

(The existence of the inverse operator (𝐼+𝐾)−1 follows from the anti-hermitianess
of 𝐾.) Thus the operators 𝑇 and 𝐷1+𝐵(𝐼 +𝐾)−1 are similar and have the same



Asymptotics of Eigenvalues of an Energy Operator 171

spectrum. But the operator 𝐵 is compact and the eigenvalues of 𝐷1 due to (2.12)
satisfy the requirements of Lemma 2.1. Applying Lemma 2.1 we obtain

𝜆𝑛(𝑇 ) = 𝑛+𝑅𝑛,𝑛 +𝑂 (∥𝐵∗𝑒𝑛∥) . (2.18)

Therefore for the proof of the theorem we should establish the existence of such
the operator 𝐾 and find the matrix of the compact operator 𝐵. Substituting the
expressions for the matrices 𝑇 and 𝐷1 in (2.17) we obtain

(𝐼 +𝐾)𝑇 −𝐷1(𝐼 +𝐾) = 𝑅1 − [𝐷,𝐾] +𝐾𝑅− diag{𝑅𝑛,𝑛}𝐾 , (2.19)

where [⋅, ⋅] is the commutator and 𝑅1 is the matrix of the operator 𝑅 with zero
main diagonal (𝑅1 = 𝑅− diag{𝑅𝑛,𝑛}).

This expression will be the matrix of compact operator if we can find such a
compact operator 𝐾 that the condition [𝐷,𝐾] = 𝑅1 is valid, or in matrix form:
𝐾𝑖,𝑗 (𝑖− 𝑗) = (𝑅1)𝑖,𝑗 . It follows from that

𝐾𝑖,𝑗 =
𝑅𝑖,𝑗

𝑖− 𝑗
, 𝑖 ∕= 𝑗 ; 𝐾𝑖,𝑖 = 0 , 𝑖 = 0, 1, . . . . (2.20)

As the operator 𝑅 is selfadjoint the corresponding to the matrix (2.20) op-
erator 𝐾 is anti-hermitian. Its compactness follows from Lemma 2.3. Actually, if
we choose the sequence {𝑏𝑖} as {1/𝑖} (𝑖 ∕= 0) then from (2.12) it follows that all
conditions of Lemma 2.3 are fulfilled.

Now from (2.19) we find the form of the compact operator 𝐵:

𝐵 = 𝐾𝑅− diag{𝑅𝑛,𝑛}𝐾.

Since ∥𝐵∗𝑒𝑛∥ ≤ 𝐶∥𝐾∗𝑒𝑛∥, where 𝐶 is constant, we can replace in (2.18)
𝑂 (∥𝐵∗𝑒𝑛∥) on 𝑂 (∥𝐾∗𝑒𝑛∥). Taking into account (2.20) we obtain

𝑂 (∥𝐾∗𝑒𝑛∥) = 𝑂

⎛⎝√√√⎷∑
𝑘 ∕=𝑛

∣𝑅𝑘,𝑛∣2
(𝑛− 𝑘)2

⎞⎠ .

Substituting this estimate to (2.18), we obtain the formula (2.13). The theo-
rem is proved. □

Due to (2.10), the condition (2.12) of Theorem 2.2 is fulfilled. Hence, applying
Theorem 2.2 and taking into account (2.2), (2.1) and (2.8) we have the following
result

𝜆𝑛(𝐴) = 𝑛− 𝑔2 +
𝑐1 + 𝑐2

2
+𝑂 (𝑠𝑛) , 𝑛 → ∞ ,

where

𝑠𝑛 =

√√√⎷∑
𝑘 ∕=𝑛

∣𝑅̃𝑘,𝑛∣2
(𝑛− 𝑘)2

=

√√√⎷∑
𝑘 ∕=𝑛

∣𝜔(𝑛−𝑘)𝑘 (4𝑔2)∣2
(𝑛− 𝑘)2

. (2.21)



172 E.A. Yanovich

We use here the normalized Laguerre functions 𝜔
(𝑠)
𝑛 (𝑥)

𝜔(𝑠)𝑛 (𝑥) =

√
𝑛!

(𝑛+ 𝑠)!
𝑒−𝑥/2 𝑥𝑠/2 𝐿(𝑠)𝑛 (𝑥) ,

+∞∫
0

𝜔(𝑠)𝑚 (𝑥)𝜔(𝑠)𝑛 (𝑥) 𝑑𝑥 = 𝛿𝑛,𝑚.

From (2.5) and (2.8) it follows that

∣𝑅̃𝑘,𝑛∣ = ∣𝜔(𝑛−𝑘)𝑘 (4𝑔2)∣.

3. Estimation of the remainder

To estimate the decreasing rate of the sequence 𝑠𝑛 we should have another estima-

tion for Laguerre’s functions 𝜔
(𝑠)
𝑛 (𝑥) rather than the estimation following from (2.9)

(in (2.9) the parameter 𝑠 is fixed). We could not find this result among known one
and therefore we provide here not only the formulation but also the proof of it.

Lemma 3.1. Suppose that 𝑥 > 0, 𝑠 ∈ 𝑍+. Then the following estimate for the
Bessel functions 𝐽𝑠(𝑥) is valid

∣𝐽𝑠(𝑥)∣ ≤ 2

√
2

𝜋𝑥

(
1 +

𝑠

𝑥

)𝑠
.

Proof. Let us use known representation [22]

𝐽𝑠(𝑥) =

√
2

𝜋𝑥
(𝑃 (𝑥, 𝑠) cos(𝑥− 𝑠𝜋/2− 𝜋/4)−𝑄(𝑥, 𝑠) sin(𝑥 − 𝑠𝜋/2− 𝜋/4)) ,

where

𝑃 (𝑥, 𝑠) =
1

2 Γ(𝑠+ 1/2)

∞∫
0

𝑒−𝑢 𝑢𝑠−1/2
{(

1 +
𝑖𝑢

2𝑥

)𝑠−1/2
+

(
1− 𝑖𝑢

2𝑥

)𝑠−1/2}
𝑑𝑢

𝑄(𝑥, 𝑠) =
1

2𝑖Γ(𝑠+ 1/2)

∞∫
0

𝑒−𝑢 𝑢𝑠−1/2
{(

1 +
𝑖𝑢

2𝑥

)𝑠−1/2
−
(
1− 𝑖𝑢

2𝑥

)𝑠−1/2}
𝑑𝑢.

It is evident that

∣𝐽𝑠(𝑥)∣ ≤
√

2

𝜋𝑥
(∣𝑃 (𝑥, 𝑠)∣ + ∣𝑄(𝑥, 𝑠)∣) , (3.1)

and everything reduces to the estimation of the integrals 𝑃 (𝑥, 𝑠) and 𝑄(𝑥, 𝑠). Let
us consider the integral for 𝑃 (𝑥, 𝑠). The estimation for 𝑄(𝑥, 𝑠) is the same. At
𝑠 = 0 we have ∣𝑃 (𝑥, 𝑠)∣ ≤ 1, ∣𝑄(𝑥, 𝑠)∣ ≤ 1 and the estimation (3.1) gives the
required inequality. Suppose that 𝑠 ∈ 𝑁 . In this case we have

∣𝑃 (𝑥, 𝑠)∣ ≤ 1

Γ(𝑠+ 1/2)

∞∫
0

𝑒−𝑢 𝑢𝑠−1/2
(
1 +

𝑢

2𝑥

)𝑠−1/2
𝑑𝑢.
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Expanding the binomial in this integral in the series on 𝑢/2𝑥(
1 +

𝑢

2𝑥

)𝑠−1/2
= 1 +

𝑝−1∑
𝑘=1

(𝑠− 1/2) ⋅ ⋅ ⋅ ⋅ ⋅ (𝑠− 1/2− (𝑘 − 1))

𝑘!

( 𝑢

2𝑥

)𝑘
+

(𝑠− 1/2) ⋅ ⋅ ⋅ ⋅ ⋅ (𝑠− 1/2− (𝑝− 1))

𝑘!
(1 + 𝜃)𝑠−𝑝−1/2

( 𝑢

2𝑥

)𝑝
,

𝜃 ∈ (0, 𝑢/2𝑥)

and putting 𝑝 = 𝑠 we have (1 + 𝜃)𝑠−𝑝−1/2 < 1 and therefore(
1 +

𝑢

2𝑥

)𝑠−1/2
< 1 +

𝑠∑
𝑘=1

(𝑠− 1/2) ⋅ ⋅ ⋅ ⋅ ⋅ (𝑠− 1/2− (𝑘 − 1))

𝑘!

( 𝑢

2𝑥

)𝑘
.

Integrating by terms we obtain

∣𝑃 (𝑥, 𝑠)∣ ≤ 1 +

𝑠∑
𝑘=1

Γ(𝑠+ 𝑘 + 1/2)

Γ(𝑠+ 1/2)

(𝑠− 1/2) ⋅ ⋅ ⋅ ⋅ ⋅ (𝑠− 1/2− (𝑘 − 1))

𝑘!

1

(2𝑥)𝑘

< 1 +
𝑠∑

𝑘=1

(2𝑠)𝑘
𝑠 ⋅ ⋅ ⋅ ⋅ ⋅ (𝑠− (𝑘 − 1))

𝑘!

1

(2𝑥)𝑘
=
(
1 +

𝑠

𝑥

)𝑠
.

For 𝑄(𝑥, 𝑠) the same estimate is valid and the formula (3.1) leads again to the
required inequality. The lemma is proved. □
Lemma 3.2. If 𝑥 > 0; 𝑛, 𝑠 ∈ 𝑍+ and 𝑠16 ≤ 𝑛 then∣∣∣𝜔(𝑠)𝑛 (𝑥)

∣∣∣ ≤ 𝐶(𝑥)

(𝑛+ 1)1/4
, (3.2)

where the constant 𝐶(𝑥) depends on 𝑥 only.

Proof. Let us use Laguerre’s functions integral representation through the Bessel
functions [19]

𝜔(𝑠)𝑛 (𝑥) =
𝑒𝑥/2√

𝑛! (𝑛+ 𝑠)!

∞∫
0

𝑒−𝑡 𝑡𝑛+
𝑠
2 𝐽𝑠(2

√
𝑡𝑥) 𝑑𝑡 , 𝑛, 𝑠 ∈ 𝑍+.

Let us split this integral into two one

𝜔(𝑠)𝑛 (𝑥) =
𝑒𝑥/2√

𝑛! (𝑛+ 𝑠)!

⎛⎝ 𝑡0∫
0

+

∞∫
𝑡0

⎞⎠ ,

where 𝑡0 ≥ 0 is an arbitrary now.
For estimation of the first integral let us use the known inequality [22]

∣𝐽𝑠(𝑥)∣ ≤ 1 , 𝑠 ∈ 𝑍+ , 𝑥 ∈ 𝑅 .

For estimation of the second integral we use more precise estimate from Lemma 3.1

∣𝐽𝑠(𝑥)∣ ≤ 2

√
2

𝜋𝑥

(
1 +

𝑠

𝑥

)𝑠
< 2𝑒

√
2

𝜋𝑥
, 𝑥 ≥ 𝑠2.
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Putting 𝑡0 = 𝑠4/4𝑥 (so that at 𝑡 ≥ 𝑡0 one can use the last estimate) we have

∣𝜔(𝑠)𝑛 (𝑥)∣ ≤ 𝑒𝑥/2√
𝑛! (𝑛+ 𝑠)!

⎡⎣ 𝑡0∫
0

𝑒−𝑡 𝑡𝑛+
𝑠
2 𝑑𝑡+

2𝑒√
𝜋
√
𝑥

∞∫
𝑡0

𝑒−𝑡 𝑡𝑛+
𝑠
2−1/4 𝑑𝑡

⎤⎦
≤ 𝑒𝑥/2√

𝑛! (𝑛+ 𝑠)!

[
𝑡0 max

𝑡≥0

{
𝑒−𝑡 𝑡𝑛+

𝑠
2

}
+

2𝑒√
𝜋
√
𝑥
Γ(𝑛+ 𝑠/2 + 3/4)

]

= 𝑒𝑥/2

[
𝑠4

4𝑥

𝑒−(𝑛+
𝑠
2 ) (𝑛+ 𝑠/2)𝑛+

𝑠
2√

𝑛! (𝑛+ 𝑠)!
+

2𝑒√
𝜋
√
𝑥

Γ(𝑛+ 𝑠/2 + 3/4)√
𝑛! (𝑛+ 𝑠)!

]
.

Using known inequalities for Gamma-function following from Stirling’s for-
mula

𝐶1 𝑧
𝑧−1/2 𝑒−𝑧 ≤ Γ(𝑧) ≤ 𝐶2 𝑧

𝑧−1/2 𝑒−𝑧 , 𝑧 ≥ 𝛿 > 0 ,

where 𝐶1, 𝐶2 are some constants independent of 𝑧. Let us estimate each term in
square brackets. We have

2𝑒√
𝜋
√
𝑥

Γ(𝑛+ 𝑠/2 + 3/4)√
𝑛! (𝑛+ 𝑠)!

≤ 𝐶(𝑥)
(𝑛+ 𝑠/2 + 3/4)𝑛+𝑠/2+1/4

(𝑛+ 1)𝑛/2+1/4 (𝑛+ 𝑠+ 1)𝑛/2+𝑠/2+1/4

≤ 𝐶(𝑥)

(𝑛+ 1)1/4

(1 + 𝑠
2(𝑛+1) )

𝑛

(1 + 𝑠
𝑛+1 )

𝑛/2
≤ 𝐶(𝑥)

(𝑛+ 1)1/4

(
1 +

𝑠2

4(𝑛+ 1)2

)𝑛/2

≤ 𝐶(𝑥)

(𝑛+ 1)1/4
exp

{
𝑠2

8(𝑛+ 1)

}
.

At last, if we put 𝑛 ≥ 𝑠2 then

2𝑒√
𝜋
√
𝑥

Γ(𝑛+ 𝑠/2 + 3/4)√
𝑛! (𝑛+ 𝑠)!

≤ 𝐶(𝑥)

(𝑛+ 1)1/4
, (𝑛 ≥ 𝑠2). (3.3)

Similarly, we can estimate the second term

𝑠4

4𝑥

𝑒−(𝑛+
𝑠
2 ) (𝑛+ 𝑠/2)𝑛+

𝑠
2√

𝑛! (𝑛+ 𝑠)!
≤ 𝐶(𝑥)

𝑠4 (𝑛+ 𝑠/2)𝑛+𝑠/2

(𝑛+ 1)𝑛/2+1/4 (𝑛+ 𝑠+ 1)𝑛/2+𝑠/2+1/4

≤ 𝐶(𝑥)

(𝑛+ 1)1/4
𝑠4

(𝑛+ 𝑠+ 1)1/4

(1 + 𝑠
2(𝑛+1) )

𝑛

(1 + 𝑠
𝑛+1 )

𝑛/2

≤ 𝐶(𝑥)

(𝑛+ 1)1/4
𝑠4

(𝑛+ 𝑠+ 1)1/4
exp

{
𝑠2

8(𝑛+ 1)

}
.

If 𝑛 ≥ 𝑠16 then

𝑠4

4𝑥

𝑒−(𝑛+
𝑠
2 ) (𝑛+ 𝑠/2)𝑛+

𝑠
2√

𝑛! (𝑛+ 𝑠)!
≤ 𝐶(𝑥)

(𝑛+ 1)1/4
, (𝑛 ≥ 𝑠16). (3.4)

From (3.3), (3.4) it follows that∣∣∣𝜔(𝑠)𝑛 (𝑥)
∣∣∣ ≤ 𝐶(𝑥)

(𝑛+ 1)1/4
, (𝑛 ≥ 𝑠16) , □
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Having the estimate (3.2) and the orthogonality condition of the transforma-
tion 𝑈 :

∞∑
𝑘=0

∣𝑈𝑘,𝑛∣2 =
∞∑
𝑘=0

∣∣∣𝜔(𝑛−𝑘)𝑘

∣∣∣2 = 𝑛∑
𝑘=0

∣∣∣𝜔(𝑘)𝑛−𝑘
∣∣∣2 + ∞∑

𝑘=1

∣∣∣𝜔(𝑘)𝑛

∣∣∣2 = 1 , ∀𝑛 ∈ 𝑍+ (3.5)

(∣𝜔(𝑛−𝑘)𝑘 ∣ = ∣𝜔(𝑘−𝑛)𝑛 ∣) one can give the estimate of the remainder which is defined
by the sum ∑

𝑘 ∕=𝑛

∣𝜔(𝑛−𝑘)𝑘 ∣2
(𝑛− 𝑘)2

=

𝑛∑
𝑘=1

∣𝜔(𝑘)𝑛−𝑘∣2
𝑘2

+

∞∑
𝑘=1

∣𝜔(𝑘)𝑛 ∣2
𝑘2

. (3.6)

From Lemma 3.2 it follows that

∣𝜔(𝑘)𝑛−𝑘∣2 ≤
𝐶

(𝑛− 𝑘 + 1)1/2
, 𝑛− 𝑘 ≥ 𝑘16 (𝑛 ≥ 𝑘16 + 𝑘)

∣𝜔(𝑘)𝑛 ∣2 ≤ 𝐶

(𝑛+ 1)1/2
, 𝑛 ≥ 𝑘16 (𝑘 ≤ 𝑛1/16).

Let 𝑘𝑛 ≥ 0 be a maximal nonnegative integer of 𝑘, satisfying to the equation
𝑛 ≥ 𝑘16 + 𝑘. It is evident that 𝑘𝑛 ≤ 𝑛1/16. Hence

∣𝜔(𝑘)𝑛−𝑘∣2 ≤
𝐶

(𝑛− 𝑛1/8 + 1)1/2
, 𝑘 ≤ 𝑘𝑛

∣𝜔(𝑘)𝑛 ∣2 ≤ 𝐶

(𝑛+ 1)1/2
, 𝑘 ≤ 𝑘𝑛.

Let us present the sum (3.6) in the form

∑
𝑘 ∕=𝑛

∣𝜔(𝑛−𝑘)𝑘 ∣2
(𝑛− 𝑘)2

=

[
𝑘𝑛∑
𝑘=1

∣𝜔(𝑘)𝑛−𝑘∣2
𝑘2

+

𝑘𝑛∑
𝑘=1

∣𝜔(𝑘)𝑛 ∣2
𝑘2

]

+

[
𝑛∑

𝑘=𝑘𝑛+1

∣𝜔(𝑘)𝑛−𝑘∣2
𝑘2

+
∞∑

𝑘=𝑘𝑛+1

∣𝜔(𝑘)𝑛 ∣2
𝑘2

]
.

Due to last inequalities we have[
𝑘𝑛∑
𝑘=1

∣𝜔(𝑘)𝑛−𝑘∣2
𝑘2

+

𝑘𝑛∑
𝑘=1

∣𝜔(𝑘)𝑛 ∣2
𝑘2

]
≤ 2𝐶

(𝑛− 𝑛1/8 + 1)1/2

𝑘𝑛∑
𝑘=1

1

𝑘2
= 𝑂

(
1

𝑛1/2

)
.

Since 𝑘𝑛 ∼ 𝑛1/16, we have using (3.5)[
𝑛∑

𝑘=𝑘𝑛+1

∣𝜔(𝑘)𝑛−𝑘∣2
𝑘2

+

∞∑
𝑘=𝑘𝑛+1

∣𝜔(𝑘)𝑛 ∣2
𝑘2

]
≤ 1

(𝑘𝑛 + 1)2

[
𝑛∑

𝑘=𝑘𝑛+1

∣𝜔(𝑘)𝑛−𝑘∣2 +
∞∑

𝑘=𝑘𝑛+1

∣𝜔(𝑘)𝑛 ∣2
]

≤ 1

(𝑘𝑛 + 1)2
= 𝑂

(
1

𝑛1/8

)
.
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Combining both estimates, we obtain∑
𝑘 ∕=𝑛

∣𝜔(𝑛−𝑘)𝑘 ∣2
(𝑛− 𝑘)2

= 𝑂

(
1

𝑛1/2

)
+𝑂

(
1

𝑛1/8

)
= 𝑂

(
1

𝑛1/8

)
.

Taking into account formula (2.21), we arrive at the following main result

Theorem 3.3. The eigenvalues 𝜆𝑛(𝐴) of the operator 𝐴 (1.1) at 𝑔 ∕= 0 have the
following asymptotics

𝜆𝑛(𝐴) = 𝑛− 𝑔2 +
𝑐1 + 𝑐2

2
+𝑂

(
1

𝑛1/16

)
, 𝑛 → ∞.
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