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tions related to fractional differential equations, to pose some open problems
in the study of fractional differential equations.
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1. Main aspects of the modern theory
of fractional differential equations

1.1. Elements of the classification

In this section we present a brief introduction to the theory of fractional differential
equations. Since it is not the main goal of the article, we restrict our attention only
to the elements of classification of those types of problems which belong to the
discussion in the framework of this theory. For wider expositions, which include
many historical facts and extended bibliography, we refer to the main book by
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S.G. Samko (published jointly with his co-authors A.A. Kilbas and O.I. Marichev)
[43], to recent monographs [6], [23], and to survey paper [24].

It should be mentioned that in earlier time (see, e.g., [43]) mainly fractional
differential equations with Riemann-Liouville fractional derivative (see definition
(R-L) below) were investigated. Whereas later, motivated by needs of applications,
the use of the Caputo fractional derivative (see definition (Caputo) below) became
popular. Equations with Caputo derivatives for the first time in the book form
were presented in [44]. Both types of derivatives were discussed in [23], see also [6].

Ordinary fractional differential equations
This collection includes all equations of the form

𝐹 (𝑥, 𝑦(𝑥),𝒟𝛼1
𝑎1 𝜔1(𝑥)𝑦(𝑥),𝒟𝛼2

𝑎2 𝜔2(𝑥)𝑦(𝑥), . . . ,𝒟𝛼𝑛𝑎𝑛 𝜔𝑛(𝑥)𝑦(𝑥)) = 𝑔(𝑥), (1.1)

where 𝒟𝛼𝑗𝑎𝑗 is a right/left-sided derivative of one of the known types (see Sec. 2
below and/or [43]), 𝛼1, . . . , 𝛼𝑛 are arbitrary positive real numbers, and 𝜔1, . . . , 𝜔𝑛
are certain weight functions. Such equations appeared due to direct generalizations
of different applied models (description of a number of these applications can be
found in the Proceedings of IFAC Workshops on Fractional Differentiation and
its Applications (2004, Bordeaux, France; 2006, Porto, Portugal; 2008, Ankara,
Turkey; 2010, Badajoz, Spain; 2012, Nanjing, China)). The main achievements of
the theory of ordinary fractional differential equations are connected with basic
results of the fractional calculus (see, e.g., [37], [43]).

We have to point out the following kinds of equations, which are particular
cases of equation (1.1):

– linear homogeneous fractional ordinary differential equations,
– linear inhomogeneous fractional ordinary differential equations,
– linear homogeneous fractional ordinary differential equations with variable
coefficients,

– linear inhomogeneous fractional ordinary differential equations with variable
coefficients,

– nonlinear fractional ordinary differential equations,
– sequential differential equations of fractional order,
– ordinary fractional differential equations on the whole real line,
– multidimensional ordinary fractional differential equations.

The multidimensional theory is less developed because of several reasons.
First of all, the corresponding elements of the theory of multidimensional frac-
tional integro-differentiation are not completely investigated. Second, researchers
are still in the process of discovering of the physical, mechanical, chemical, biolog-
ical phenomenon, which can be adequately described by certain multidimensional
models involving fractional derivatives. Therefore, one can single out only few
types of multidimensional ordinary fractional differential equations developed up
to the same level as the corresponding one-dimensional equations. For discussion
of these problems we refer to the book [25] and references therein.
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Fractional partial differential equations

Several models involving fractional partial differential equations are known. Any-
way, a complete classification of this class of equations does not exist. The most
cited source on this subject is the book [23]. We can also mention the recent
books [33], [69] and extended lists of references presented in [23] and in [33]. Here
we present several examples of known fractional partial differential equations. It
should be mentioned that fractional derivatives with respect to the time variable
are taken in these equations either in the form of Riemann-Liouville (see definition
(R-L) below in Sec. 2) or in the form of Caputo (see definition (Caputo) below
in Sec. 2). As for fractional derivatives with respect to spatial variables, they are
taken in some appropriate sense including Riesz-Feller type fractional derivatives
(inverses to fractional potential type operators) (see Sec. 2 below and/or [23], [43]).

∙ Gerasimov’s equation:

𝜌
∂2𝑢

∂𝑡2
= 𝑘

(
𝐷𝛼
−,𝑡

[
∂2𝑢

∂𝑥2

])
(𝑥, 𝑡).

∙ “Hyperbolic” fractional differential equation:(
𝐷𝛼

0+,𝑥𝐷
𝛽
0+,𝑦𝑢

)
(𝑥, 𝑦) = 𝑓

[
𝑥, 𝑦, 𝑢,𝐷𝛼

0+,𝑥𝑢,𝐷
𝛼−1
0+,𝑥𝐷

𝛽
0+,𝑦𝑢,𝐷

𝛽
0+,𝑦𝑢,𝐷

𝛼−1
0+,𝑥𝑢

]
.

∙ Differential equation of semi-integer order:

𝑛∑
𝑘=0

𝑎𝑘

(
𝐷
𝑘/2
0+,𝑥𝐷

(𝑛−𝑘)/2
0+,𝑦 𝑢

)
(𝑥, 𝑦) = 𝑓(𝑥, 𝑦).

∙ Fractional diffusion-wave equation:(
𝐷𝛼

0+,𝑡𝑢
)
(𝑥, 𝑡) =

(
𝐷𝛽
𝑥𝑢

)
(𝑥, 𝑡) (1 ≤ 𝛼 ≤ 2, 0 ≤ 𝛽 ≤ 2).

∙ Multidimensional diffusion-wave equation:(
𝐷𝛼

0+,𝑡𝑢
)
(x, 𝑡) = 𝜆2 (Δx𝑢) (x, 𝑡), x ∈ ℝ𝑛 (0 < 𝛼 < 2).

1.2. Methods of investigation

In this subsection we mention problems which are usually considered for fractional
differential equations. We also single out the types of solutions as well as indicate
methods for the solution.

Treating problems:

– Cauchy problem: values of standard derivatives at some points are given.
– Cauchy-type problem: values of fractional derivatives and/or integrals at
some points are given.

– Dirichlet-type problem (for partial fractional differential equations): values of
standard and/or fractional derivatives at end-points of an interval are given.

– Initial-boundary value problem with local and/or non-local initial conditions
(i.e., Cauchy-type initial conditions).
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Types of solutions:

– Solutions in classical functional spaces such as Schauder-type spaces or Lebes-
gue-type spaces, or corresponding weighted spaces.

– Generalised or weak solutions (i.e., distributions on certain spaces of test
functions).

Methods of solution:

– Compositional methods based on certain known formulas for different kind
of fractional integrals and derivatives.

– Methods of integral transforms, which allow to reduce fractional differential
equations to functional equations.

– Integral equations method. Since, by definition, the fractional derivatives are
compositions of differential operators and certain integral operators, then it is
possible to find (for special types of equations) integral equations equivalent
to considered fractional differential equations.

– Numerical methods. Numerical methods for fractional differential equations
differ essentially as from the numerical methods for classical differential equa-
tions as from those performed for integral equations. Anyway one can find
in the literature several numerical algorithms which are especially worked up
for fractional equations (see, e.g., [44]).

2. Basic components of investigations related to fractional
differential equations

In this section we briefly outline certain investigations which form a base for further
development of the theory of fractional differential equations.

2.1. Development of fractional calculus

Starting point for any investigation concerning fractional differential equations is
to establish the corresponding results for fractional derivatives and integrals. Below
we single out some collections of the properties which are usually in discussion.

∙ Formal properties (including semi-group properties), composition formulas
for different types of fractional derivatives, calculation of fractional deriva-
tives of elementary and special functions. Below one can find a list of some
definitions of fractional derivatives. Surely this list is not complete and con-
tains only most frequently cited notations.

– Riemann-Liouville derivatives

(
𝐷𝛼
𝑎+𝑢

)
(𝑥) =

1

Γ(𝑛− 𝛼)

(
𝑑

𝑑𝑥

)𝑛 𝑥∫
𝑎

𝑢(𝑡)𝑑𝑡

(𝑥− 𝑡)𝛼−𝑛+1
(𝑛 = [Re𝛼] + 1, 𝛼 > 0);

(R-L)
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– Caputo (or Gerasimov-Caputo) derivatives

(
𝐶𝐷𝛼

𝑎+𝑢
)
(𝑥) =

(
𝐷𝛼
𝑎+

[
𝑢(𝑡)−

𝑛−1∑
𝑘=0

𝑢(𝑘)(𝑎)

𝑘!
(𝑡− 𝑎)𝑘

])
(𝑥); (Caputo)

– Erdelyi-Kober derivatives

(
𝐷𝛼
𝑎+;𝜎,𝜂𝑢

)
(𝑥) = 𝑥−𝜎𝜂

(
1

𝜎𝑥𝜎−1
𝑑

𝑑𝑥

)𝑛
𝜎𝑥𝜎(𝑛−𝛼)

Γ(𝛼)

𝑥∫
𝑎

𝑡𝜎(𝜂+𝛼+1)−1𝑢(𝑡)𝑑𝑡
(𝑥𝜎 − 𝑡𝜎)𝑛−𝛼

; (E-K)

– Hadamard derivatives

(𝒟𝛼𝑎+𝑢)
(𝑥) =

(
𝑥
𝑑

𝑑𝑥

)𝑛
1

Γ(𝑛− 𝛼)

𝑥∫
𝑎

(
log

𝑥

𝑡

)𝑛−𝛼+1 𝑢(𝑡)𝑑𝑡

𝑡
; (Hadamard)

– Grünwald-Letnikov derivatives

𝑢
𝛼)
+ (𝑥) = lim

ℎ→+0

(Δ𝛼
ℎ𝑢) (𝑥)

ℎ𝛼
= lim
ℎ→+0

∞∑
𝑘=0

(−1)𝑘
(

𝛼
𝑘

)
𝑢(𝑥− 𝑘ℎ)

ℎ𝛼
; (G-L)

– Riesz derivatives

D𝛼𝑢(x) = ℱ−1∣𝝎∣𝛼ℱ𝑢(x), x ∈ ℝ𝑛; (Riesz)

– other definitions of fractional derivatives via pseudo-differential opera-
tors method (see, e.g., [20]).

∙ Acting properties of operators of fractional integration (differentiation) in
different functional spaces.

∙ Representation of functions by fractional integrals of functions which be-
long to different functional spaces (in particular, characterization of spaces
𝐼𝛼 (𝐿𝑝)).

∙ Operator properties (relations to singular integral operators, inversion for-
mulas, relations to operators of integral transforms).

2.2. Development of the theory of first-order integral equations

Here we mention several kinds of integral equations which are closely related to
the problems of fractional differential equations. The study of their solvability as
well as their solution in closed form are important components of the theory of
fractional differential equations.

– Abel integral equations and their applications.
– Integral equations with weak singularities.
– Volterra integral equations.
– Convolution type integral equations.

One of the most import aims here is to prove an equivalence of differential
equations and integral equations.
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2.3. Development of methods of integral transforms

As it was already mentioned, the method of integral transforms is one of the basic
methods at the investigation of fractional differential equations. The most used
integral transforms in this branch of mathematics are the following transforms:

– Fourier integral transforms.
– Laplace integral transforms.
– Mellin integral transforms (see, e.g., [34]).
– Integral transforms with special functions in the kernel.
– Integral G-transforms

(G𝑓) (𝑥) =

∞∫
0

𝐺𝑚,𝑛𝑝,𝑞

[
𝑥𝑡

∣∣∣∣ (𝑎𝑖)1,𝑝
(𝑏𝑗)1,𝑞

]
𝑓(𝑡)𝑑𝑡,

where

𝐺𝑚,𝑛𝑝,𝑞

[
𝑧

∣∣∣∣ (𝑎𝑖)1,𝑝
(𝑏𝑗)1,𝑞

]
=

1

2𝜋𝑖

∫
ℒ

𝑚∏
𝑗=1

Γ(𝑏𝑗 + 𝑠)
𝑛∏
𝑖=1

Γ(1− 𝑎𝑖 − 𝑠)

𝑝∏
𝑖=𝑛+1

Γ(𝑎𝑖 + 𝑠)
𝑞∏

𝑗=𝑚+1

Γ(1− 𝑏𝑗 − 𝑠)

𝑧−𝑠𝑑𝑠.

– Integral H-transforms (see, e.g., [21])

(H𝑓) (𝑥) =

∞∫
0

𝐻𝑚,𝑛
𝑝,𝑞

[
𝑥𝑡

∣∣∣∣ (𝑎𝑖, 𝛼𝑖)1,𝑝
(𝑏𝑗 , 𝛽𝑗)1,𝑞

]
𝑓(𝑡)𝑑𝑡,

where

𝐻𝑚,𝑛
𝑝,𝑞

[
𝑧

∣∣∣∣ (𝑎𝑖, 𝛼𝑖)1,𝑝
(𝑏𝑗 , 𝛽𝑗)1,𝑞

]
=

1

2𝜋𝑖

∫
ℒ

𝑚∏
𝑗=1

Γ(𝑏𝑗 + 𝛽𝑗𝑠)
𝑛∏
𝑖=1

Γ(1− 𝑎𝑖 − 𝛼𝑖𝑠)

𝑝∏
𝑖=𝑛+1

Γ(𝑎𝑖 + 𝛼𝑖𝑠)
𝑞∏

𝑗=𝑚+1

Γ(1 − 𝑏𝑗 − 𝛽𝑗𝑠)

𝑧−𝑠𝑑𝑠.

2.4. Development of the theory of special functions

Methods and results of special function theory are very important for the problems
which we are discussing. First of all this is due to the fact that a number of
fractional differential equations admits closed form solutions. These solutions are
represented usually via special functions of specific types. Special functions mostly
applied in the theory of fractional differential equations are the following (see,
e.g., [35]):

– generalizations of Mittag-Leffler special functions

𝐸𝛼,𝛽(𝑧) =
∞∑
𝑘=0

𝑧𝑘

Γ(𝛼𝑘 + 𝛽)
;
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– generalizations of Wright special functions

𝑝Ψ𝑞

[
(𝑎𝑖, 𝛼𝑖)1,𝑝
(𝑏𝑗 , 𝛽𝑗)1,𝑞

∣∣∣∣ 𝑧] =

∞∑
𝑘=0

𝑝∏
𝑖=1

Γ(𝑎𝑖 + 𝛼𝑖𝑘)

𝑞∏
𝑗=1

Γ(𝑏𝑗 + 𝛽𝑗𝑘)

𝑧𝑘

𝑘!
;

– general types of special functions:

– 𝐺-function: 𝐺𝑚,𝑛𝑝,𝑞

[
𝑧

∣∣∣∣ (𝑎𝑖)1,𝑝
(𝑏𝑗)1,𝑞

]
,

– 𝐻-function (see, e.g., [36]): 𝐻𝑚,𝑛
𝑝,𝑞

[
𝑧

∣∣∣∣ (𝑎𝑖, 𝛼𝑖)1,𝑝
(𝑏𝑗, 𝛽𝑗)1,𝑞

]
.

2.5. Development of multidimensional fractional calculus

At last we have to mention several multidimensional operators whose properties
are now forming the base for developing a theory of multidimensional fractional
differential equations:

– polypotential type operator

(𝒦𝛼𝜑) (x) = 1

2𝑛
𝑛∏
𝑘=1

Γ(𝛼𝑘) cos 𝛼𝑘𝜋/2

∫
ℝ𝑛

𝜑(t)𝑑t
𝑛∏
𝑘=1

∣𝑥𝑘 − 𝑡𝑘∣𝛼𝑘
;

– Riesz potential

(I𝛼𝜑) (x) =
1

𝛾𝑛(𝛼)

∫
ℝ𝑛

𝜑(y)𝑑y

∣x− y∣𝛼 ;

– hypersingular operator

(D𝛼𝜑) (x) =
1

𝑑𝑛,𝑙(𝛼)

∫
ℝ𝑛

(
Δ𝑙

y𝜑
)
(x)

∣y∣𝑛+𝛼 𝑑y,
(
Δ𝑙

y𝜑
)
(x) =

𝑙∑
𝑘=0

(−1)𝑘
(

𝑙
𝑘

)
𝜑(x − 𝑘y).

3. The role of Professor S.G. Samko in the creation and
development of the theory of fractional differential equations

First of all we have to point out that it is problematic to mention all results by S.G.
Samko having influence on the development of the discussed theory. Therefore,
we restrict ourselves only on the main results which we will briefly outline. In
particular, the list of S.G. Samko’s books and articles, cited here, is surely not
complete.

Main directions in which S.G. Samko obtained results having an essential
influence on the establishing and development of the theory of fractional differential
equations are the following:

– singular integral equations and boundary value problems;
– Abel integral equations and their applications;
– integral equations with weak singularities;
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– integral equations of convolution type;
– fractional calculus;
– fractional powers of operators;
– one- and multi-dimensional theory of potential type operators;
– hypersingular operators;
– functional spaces with variable exponents.

One can compare these results with the above-described aims of the the-
ory and applications of fractional differential equations. It makes the reader an
impression on the great importance of the results by S.G. Samko.

The rest of this section is organized as follows. We mention certain directions
as titles of subsections, specify some results in these directions and present the
corresponding references.

3.1. Singular integral equations and boundary value problems

– Abstract theory (Noether theory) of complete (or general) singular integral
equations and singular integral equations with a shift [15], [16], [17] (including
equations with integrals along an open arc Γ [7], [14])

𝑎(𝑡)𝜑(𝑡) + 𝑏(𝑡)

∫
Γ

𝜑(𝜏)

𝜏 − 𝑡
𝑑𝜏 +

∫
Γ

𝑘(𝑡, 𝜏)𝜑(𝜏)𝑑𝜏 = 𝑓(𝑡).

– Classes of complete singular integral equations solvable in closed form
[53], [57].

– Generalized argument principle [8], [9].

– Acting properties of singular integral operators (SIO) (including SIO on Car-
leson curves) in spaces with variable exponents [27], [29], [30], [31].

– Applications of the theory of singular integral equations to the investigation
of boundary value problems in classes of analytic functions represented by
the Cauchy type integrals [26], [28].

3.2. Abel integral equations and their generalizations

– Solution in closed form of generalized Abel type integral equations [49],
[50], [55].

– Proof of the relation formulas of fractional integration operators with singular
integral operators [51], in particular,

𝐼𝛼−𝜑 = cos 𝛼𝜋𝐼𝛼+𝜑+ sin 𝛼𝜋𝑆𝐼𝛼+𝜑.

– Noether theory of generalized Abel type integral equations [52], [54]:

𝑢(𝑥)

𝑥∫
𝑎

𝜑(𝑡)𝑑𝑡

(𝑥− 𝑡)𝜇
+ 𝑣(𝑥)

𝑏∫
𝑥

𝜑(𝑡)𝑑𝑡

(𝑡− 𝑥)𝜇
= 𝑓(𝑥).
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3.3. Integral equations with weak singularities

– Solution in closed form of integral equations with logarithmic kernel [60].
– Normal solvability, asymptotic method of solution to integral equations with
logarithmic and homogeneous kernel [22].

– Asymptotic behaviour of singular values of integral operators with weak sin-
gularities [10].

– Inversion of integral equation
𝑥∫

−∞
𝑘(𝑥− 𝑡)𝜑(𝑡)𝑑𝑡 = 𝑓(𝑥)

with Sonine’s kernel 𝑘 ∈ 𝐿𝑙𝑜𝑐1 (ℝ1
+) (i.e., such that there exists 𝑙 ∈ 𝐿𝑙𝑜𝑐1 (ℝ1

+)

such that
𝑥∫
0

𝑘(𝑥− 𝑡)𝑙(𝑡)𝑑𝑡 ≡ 1) [3], [4].

– Classes of correctness in the weighted Hölder spaces for Sonine’s integral
equation [5].

3.4. Convolution type integral equations

– Solvability of convolution type integral equations [12], [13]

𝑎0(𝑡)𝜑(𝑡) +

𝑛∑
𝑗=1

𝑎𝑗(𝑡)

∞∫
−∞

𝑏𝑗(𝜏)ℎ𝑗(𝑡− 𝜏)𝜑(𝜏)𝑑𝜏 = 𝑓(𝑡).

– Solution in a closed form of special kinds of convolution type integral equa-
tions [18].

– Noether theory of convolution type integral equations [19].
– Convolution type operators in spaces with variable exponent [64], [65].
– Nonlinear convolution type operators and equations [11].

3.5. Fractional integro-differentiation

One of the most essential achievements in this area were gathered in the books
written by S.G. Samko jointly with his friends and colleagues A.A. Kilbas and O.I.
Marichev [42], [43]. These books are now standard reference works on fractional
calculus. They constitute the very precise and careful analysis of all essential ques-
tions of this subject. It is not a surprise that the English version [43] is called by
many scientists as “THE BIBLE OF FRACTIONAL CALCULUS”. Inspite of the
great importance of [43] and its encyclopedic nature, investigations of fractional
differential equations, conducted after this book and inspired by it, still deserve a
separate survey article.

Below we briefly describe a number of precise results obtained by S.G. Samko
in this area.

– Description of the image I𝛼(𝐿𝑝) of the Riesz potential [56], [58].
– Isomorphism of weighted Hölder spaces under the acting of the operator of
fractional derivative [39].
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– Marchaud-type formula for the operator of fractional derivative in domains
Ω ⊂ ℝ𝑛 [45]

𝐷𝛼
Ω𝜑(x) = 𝑐(𝛼)

[
𝜑(x)

∫
ℝ𝑛∖Ω

𝑑y

∣x− y∣𝑛+𝛼 +

∫
Ω

𝜑(x) − 𝜑(y)

∣x− y∣𝑛+𝛼 𝑑y

]
.

– Description of functions that have no first-order derivative, but have frac-
tional derivatives of all orders less than one [32].

– Approximative definition of a fractional differentiation [48].
– Characterization of the range of one-dimensional fractional integration in the
space with variable exponent [47].

– Description of the acting properties of generalized Riemann-Liouville opera-
tor of fractional integration of variable order

𝐼
𝛼(𝑥)
𝑎+ 𝜑(𝑥) =

1

Γ(𝛼(𝑥))

𝑥∫
𝑎

𝜑(𝑡)𝑑𝑡

(𝑥 − 𝑡)1−𝛼(𝑥)

in generalized Hölder spaces [38], [39].
– Formula for a left inverse to Liouville operator of fractional integration (i.e.,
with 𝑎 = −∞) of variable order [63].

– Fractional differentiation and integration of variable order in spaces with
variable exponent [41], [62].

3.6. Fractional powers of operators

– Application of the hypersingular integrals’ method to construction of effec-
tive formulas for fractional powers of the classical operators of mathematical
physics

𝐼 −Δ, −Δ𝑥 +
∂

∂𝑡
, 𝐼 −Δ𝑥 +

∂

∂𝑡
,

where 𝐼 is an identity operator, and Δ is the Laplace operator [1], [66], [67].

3.7. The theory of (one- and multidimensional) potential type operators

– Inversion of the Riesz type fractional potential [40], [59]

(𝒦𝛼𝜑) (𝑥) = 1

𝛾𝑛−1(𝛼)

∫
∣x∣=1

𝜑(𝜎)𝑑𝜎

∣x− 𝜎∣𝑛−1−𝛼 .

– Investigation of properties of operators generalizing fractional integration op-
erators (

𝐼𝛼(⋅)𝑚 𝜑
)
(𝑥) =

∫
Ω

𝜑(y)𝑑𝜇(y)

𝑑(x,y)𝑚−𝛼(𝑥)

in the Lebesgue spaces with variable exponents [2].
– Application to multidimensional integral equations of the first kind [68], [46].
– Relation to Grünwald-Letnikov’s approach to fractional calculus [61].
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4. Conclusion

The theory of fractional differential equations is a highly developing branch of ma-
thematics. These equations are arising either from theoretical considerations and
generalizations or from many applications for which the fractional machinery is a
natural tool for the description of the corresponding phenomenon.

In Section 2 we tried to describe briefly the main aims and ideas which are
used at the formulation and investigation of fractional differential equations. Surely
such a description is far from completeness since the subject is too wide.

In order to establish and develop the theory of fractional differential equa-
tions one needs to create background, to develop instruments for investigation and
to introduce new innovative ideas. In all these directions Professor S.G. Samko ob-
tained many important results. In Section 3 we have seen only few of these results,
which lay in the core of the considered theory. A lot of fresh and innovative ideas
can be found in the cited papers and books by S.G. Samko.

We hope that our article helps the reader to find new ideas and to show the
ways for further development of a very interesting branch of science – the theory
and applications of fractional differential equations.
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